
File Number S360-30
Order No. GY30-5002-4

IBM System/360
Disk Operating System
Queued Telecommunications Access Method
Pr~gram Logic Manual

Program Number 360N-C:0-470

Program Logic

This reference publication describes the internal
logic of the Queued Telecommunications Access Method
(QTAM) under the IBM System/360 Disk Operating System.

It is intended for persons involved in program
maintenance and by systems programmers who are
altering the program design. Program logic
information is not necessary for the operation of the
program; therefore, the distribution of this
publication is limited to those with maintenance and
alteration requirements.

For titles and abstracts of other associated
publications, see IBM system/360 Bibliography,
GA22-6822.

PREFACE

Purpose of.this Publication

This Program Logic Manual (PLM) is a
detailed guide to the internal structure of
the Queued Telecommunications Access Method
(QTAM). It supplements the program
listings by providing descriptive text and
flowcharts; program structure at the
machine instruction level is not discussed.

Design of this Publication

This PLM presents the logic of QTAM as a
series of logical levels. Each succeeding
level describes the program in more detail.

• The Program Level: The first two
sections describe the physical and
logical organization of QTAM. QTAM is
discussed from two points of
view: first, as a program within the
DOS control program structure; and
second, as a separate control program.

• The Major Component Level: The third
section gives an outline of QTAM
operations at the component level. The
interaction among the major QTAM
components is described in some detail.
Appendix E is a foldout chart showing
the general flow of QTAM operations and
is designed to complement this section.

Fifth Edition January 1971

• The Routine Level: The next six
sections contain detailed descriptions
of the QTAM routines followed by
flowcharts of all the routines. The
flowcharts are arranged alphabetically
by chart ID for easy reference.

Detailed illustrations and descriptions
concerning QTAM queues and subtasks,
control block formats, and linkages are
presented in appendixes.

Prerequisite and Related Literature

Effective use of this manual requires a
knowledge of the concepts presented in the
following IBM System/360 publications:

IBM System/360 Principles of Operation,
GA22-6821.

IBM Systern/360 Disk Operating System, QTAM
Message control Program, GC30-5002.

IBM System/360 Disk Operating System, QTAM
Message Processing Program Services,
GC30-5003.

IBM System/360 Disk Operating System
(DOS), system control, GY24-5017.

This edition, GY30-5002-4, corresponds to DOS release 24.
It is a major revision of, and renders obsolete,
GY30-5002-3. Incorporated are changes issued in Technical
Newsletters Y30-5529, dated April 15, 1969, and Y30-5537
dated July 14, 1969.

Changes are indicated by a vertical line to the left of the
affected text and to the left of affected parts of figures.

Specifications contained herein are subject to change from
time to time. Any such change will be reported in
subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
reader's comments. If the form has bef'n removed, comments
may be addressed to IBM corporation, Publications Center
Deot. E01, P.O. Box 12275, Research Triangle Park, North
Carolina, 27709.

@ Copyright International Business Machines corporation
1967, 1968, and 1970.

1r"
.'l__/

INTRODUCTION • • • • • • 11

12 PHYSICAL ORGANIZATION OF QTAM
System Generation • • • 12
Assembling and Linkage-Editing a
Message Control Program
Assembling and Linkage-Editing a
Message Processing Program • •

• • • 13

• 14

LOGICAL ORGANIZATION OF QTAM • • • • 15
QTAM within the Disk Operating System
Control Program Structure • • • • • 15

Message Control Problem Program 15
Message Processing Problem Program •• 17
QTAM supervisory Routines • 17

QTAM as a Separate Control Program • • • 18
Queue Management • • • • • • • • 18
QWAIT and QPOST • • • • • • • • 21
QDISPATCH • • • • • • • • • • • 22
Initial Status of the QTAM Control
Program • • • • • • 24

OUTLINE OF QTAM OPERATIONS • • • • 25
Message Control Program for a Nonaudio
Application • • • • • • • • • • • • • • 2 6

Initialization • • • • • • • 26
Receiving Initiation • • 27
First PCI (Receiving) • 28
PCI--Full Buffer (Receiving) • • • 28
Disk Interruption (Receiving) • • 30
Line End Interruption (Receive EOB) • 31
Line End Interruption (Receive EOT) • 31
Summary of Receiving • • • • • 32
Sending Initiation • • • • • • • • 33
Disk Interruption--Sending, First
Buffer • • • • • • • • • • • • • • 33

Buffer 33
Disk Interruption--Sending all
Buffers, Second Time for First
PCI--Sending • • • • • • • • •
Line End Interruption (Send EOB) •
Line End Interruption (Response to

• • 34
• • 35

EOB) • • • • • • • • • • • • • • • 35
Line End Interruption (Send EOT) ••• 36

Message Control Program For An Audio
Application • • • • • • • • • 36

Initialization • • • • • • • • • 36
End-of-Receiving Initiation ••• 37
Audio Line End Interruption
(Receiving) • • • • • • • • • •
summary of Receiving • • • •
Sending Initiation • • • • •
IBM 7772 Disk Interruption •
IBM 7772 Audio Sending • • •
PCI Sending • • • • • • • •
Audio Line End Interruption

Message Processing Program for a
Nonaudio Application • • • • •

Initialization • • • • • • •
First GET • • • • • • • • •

• • • 37
• • 37

• • • 38
• • 38

38
• 39

• • • 39

• • • 40
• • 40

• • • 40
Replenishing the MS-Process Queue
Transferring Response Messages • •

• • 42
43

• • 44 IBM 2260-2848 Local Operations • • •

CONTENTS

Message Processing Program for an Audio
Application • • • • • • • 45

Initialization • • • • • • • 45
Obtaining a Message • • 45
Transferring Response Messages • • 46

MESSAGE CONTROL PROGRAM (LPS) ROUTINES • 47
Breakoff Routine • • • • • • • • 47
Cancel Message Routine • • • 47
Distribution List Routine . • • • • 48
Date Stamp Routine • • • • • • • • • • • 49
End of Address CEOA) Routine • • • 49
End of Block Routine • • • • • • • 51
End of Block and Line Correction
Routine • • • • • • • • • 51
Error Message Routine • • • • • • • 52
Expand Header Routine • • 53
Intercept Message Routine • 53
Audio Input Message Logging Routine • • 54
Lookup Terminal Table Entry Routine 54
Conversational Mode Routine • 54
Initiate Mode Routine • • • • • • • • • 56
Message Mode Interface rtoutine • • 56
Priority Mode Routine • • • • • 56
Message Type Routine • • • • • • 56
operator control Routine • • • • • • • • 57
Polling Limit Control Routine • • 62
Pause Routine • • • • • • • • • • • 62
Route Message Routine • • • • • 63
Reroute Message Routine • • • • • 64
Scan Header Routine • 65
Sequence Number in Routine • • • • • 65
Skip Character Set Routine • • 65
Sequence Out Routine • • • • • • • 66
source Terminal verification Routine • • 66
Skip-On-count Routine • 66
Translate Routine • • • • • • 67
Ti.me Stamp Routine • • • • • • • • • 67

MESSAGE PROCESSING PROGRAM ROUTINES • • 68
change Line Routine • • • • • 68
Change Polling List Routine • • • • • • 69
Change Terminal Table Entry Routine • • 69
Checkpoint Request Routine • • • • • 70
copy Line Error Counters Routine • • • • 70
Copy Terminal Table Entry Routine 71
Copy Polling List Routine • • 71
Copy Queue control Block (QCB) Routine • 71
DTF Locator Routine • • • • • • • • • • 72
GET Audio Message Routine • • • • • • • 72
GET Nonaudio or Audio Message Routine • 73
GET Record or Audio Message Routine • • 74
GET Segment or Audio Message Routine • • 76
GET Message Routine • • • • • • 77
GET Record Routine • • • 78
GET Segment Routine • • 79
PUT Audio Message Routine • • 79
PUT Message Routine • • 80
PUT Record Routine • • • • • • • • • • 81
PUT Segment Routine • • 82
Close Message Control Routine 83
Retrieve DASO Routine • • • • • • 84

3

' ~
··' i ~

Retrieve by Sequence Number Routine
Release Message Routine
START/STOP Audio Line

QTAM SERVICE FACILITIES
Checkpoint/Restart • • •

Checkpoint Routine • • • • •
On-Line Terminal Testing

Terminal Test Recognition Routine
Operator Awareness Routine •
OBR/SDR Routine • • • • •

85
85

• 86

• • • 87
• • • 87

87
• • • 8 9

• • 8 9
90

• • • 9 0

QTAM 'TRANSIENT ROUTINES • • • • • • 92
QTAM Open Monitor/Open DASD Message
Queues File Routine • • • • • • • • • • 92
Open Nonaudio Line Group/MS Queues
Routine • • • • • • • • • • • • • • • • 93
Open Checkpoint/Restart Routine
(Phase 1} • • • • • . • • • • • • • • • 94
Open Checkpoint/Restart Routine
(Phase 2) •••••••••
Open IBM 7772 DCV Vocabulary File
Routine • • • • • • • • • • • 94
OPEN Audio Line Group/Output Queue
Files Routine • • • • • • • • • 95
QTAM Close Routine (Phase 1) • 96
QTAM Close Routine (Phase 2) • • • • •• 96
QTAM Close Routine (Phase 3) • 97

QTAM Audio Message Writer Routine • • 98
QTAM Message Writer Routine (Phase 1) • 98
QTAM Message Writer Routine (Phase 2) • 98
QTAM Message Writer Routine (Phase 3) • 98
QTAM Cancel Routine (Phase 1) • 99
QTAM cancel Routine (Phase 2) .100
Terminal Test Header Analysis Routine .100

Terminal Test Module for IBM 1030 •• 101
Terminal Test Module for IBM 1050 •• 101
Terminal Test Module for IBM 1060 •• 101
Terminal Test Module for IBM 2260 •• 101
Terminal Test Module for IBM 2740 •• 102

QTAM SVC/SUBTASK CONTROL ROUTINE •••• 103
Entry Interface Subroutine • .103
QTAM Post Subroutine • • • • • • .103
QTAM Wait Subroutine • • • • • • .104
Priority Search Subroutine •• 104
Queue Insert Subroutine ••• 105
Defer-Entry Subroutine ••••••••• 105
Qdispatch Subroutine • • • • • .105
Exit Select Subroutine • • .107
Exit Interface Subroutine ••• 107

QTAM IMPLEMENTATION ROUTINES •
Receive Scheduler Routine (Chart
Send Scheduler (Chart 1) • • •

.108
00) •• 108

•• 109
End of Poll Time Delay Routine (Chart
2) • • • • • • • • • • • • • • • • • •• 109
BRB-Ring Routine (Chart 3) • • • • • • • 110
Active-Buffer-Request Routine (Chart 4) 111
Available-Buffer Routine (Chart 5) .111
Buffer-ERB Routine (Chart 6) • • •• 111
Interim LPS Routine (Chart 7) ••• 112
Qmover Routine (Chart 9) • • • • •• 112
DASD Destination Routine (Chart 10) •• 112
GET-Scheduler Routine (Chart 11) •••• 112
Return-Buffer Routine (Chart 12) •••• 113
End Insert Routine (Chart 13) ••• 113
LPS control Routine (Chart 15) • • .113

4

Buffer Recall/Cleanup Routine (Chart
16, 17) ••••••••••• •• 114

•• 115
•• 115

Free-BRB Routine (Chart 18) • • • •
Disk I/O Routine (Chart DC) • • • •
Disk-End Appendage (Charts DA and DB)
IBM 7772 Disk-End Appendage (Chart Dl)
IBM 7772 Disk Read Routine (Chart D2)
IBM 7772 Line Write Routine (Chart 03)
IBM 7772 DCV-Buffer Routine (Chart D4)

.115

.115
.115
.116
.116

LINE INPUT AND OUTPUT ••••••• 117
General Flow • • • • • • •••••• 117
QTAM Physical Input/Output Module ••• 117

Activate Routine (Chart RW} •• 117
Channel Program Generator Routine
(Charts RX, RY) • • • • • .119
Channel Programs • • • • • • • • • • .121
IBM 2260 Local (2848) •••••••• 132
IBM 2260 Local--Terminal to CPU ••• 133
line-pci and program check module •• 157
line appendage module •••••••• 159
Decision Tables for Error Recovery
Procedures •••••••••••••• 163

Audio Linc Appendage Module •• 168
Decision Tables for Audio Error
Recovery Procedures • • • • • • • •
WTTA Line Appendage Module

WTTA Line-PCI Routine
WTTA Line-End Routine • • • •

IBM 2260 LOcal Appendages
Message Writer Initiator Routine

QTAM CHARTS

•• 171
•• 173
• .173
•• 174
•• 175
• .177

• .179

APPENDIX A: QTAM QUEUES AND SUBTASKS •• 322
Queues • • • • • • • • • • • • • 322

_A.ctive-Buffer-Request Queue • 322
Additional-CCW Queue ••••••• 322
ARU-Send Queue • • • • • • • • • • • • 322
Attention Queue ••••••••••• 322
Available-Buffer Queue • • .322
Checkpoint Queue • • • • • .322
Communications-Line Queue •••••• 323
DASD Destination Queue • • .323
DCV Buffer Queue • • • • • .323
Disk Input/Output Queue •• 323
Distribution List Queue •• 323
Inactive-ERB Queue • • .323
Interirn-LPS Queue •• 324
LPS Queue • • • • • .324
Operator Control CHNGT Queue •• 324
DASD Process Queue • • • .324
Return-Buffer Queue • • • • • • 324
Terminal Test Buffer Routing Queue •• 324
Terminal Test Stopline Queue • • .325
Time Delay Queue • • • • • • .325
QMOVE Queue • • • • • • • • • • 325

Subtasks • • • • • • • • • • • • .325
Active-Buffer-Request Subtask •• 325
ARU-Send Subtask • • • • • .325
Available-Buffer subtask • • .325
Checkpoint Subtask • • • • .325
DASO Destination Subtask ••••••• 325
DCV Buffer Subtask • • • • .325
Disk Input/Output subtask •• 325
Distribution-List Subtask •• 325
Get-Scheduling Subtask • • .326
Interim LPS Subtask . • • • • .326

() LPS Subtask • • • • • • •• 326
Operator Contro1 CHNGT Subtask •••• 326
Queue Insert Subtask ••••••••• 326
Queue Insert by Priority Subtask ••• 326
Qdispatch Subtask • • • • • • •• 326
Receive-Scheduling Subtask • • •• 326
Return Buffer Subtask ••• 326
Send-Scheduling Subtask ••• 326
Terminal Test Buffer Routing Subtask .327
Termina1 Test Single Stopline Subtask 327
Terminal Test Stopline Subtask •••• 327
Time Delay subtask •••••••••• 327
Qmover Subtask • • • • • • • • • • • • 327

APPENDIX B: QTAM CONTROL BLOCKS .328
·rhe Queue Control Block < QCB) • • • 32 8
The Element Control Block (ECB) •••• 328
Truncated Subtask Control Block (STCB) .329
Full Subtask Control Block (STCB) ••• 329
DTF Table for QTAM • • •• 330

DTF Type DA • • • • • • •• 330
DTF Type CK .332
DTF Type AV • • • • • • • • • • • 33 4
DTF Nonaudio Type LG • .335
DTF Audio Type LG ••••••• 337
DTF Type PQ •••••• 339
DTF Type DQ • • • • • • •• 341
DTF Type AQ • • • • • 342

Line Control Block (LCB) • • • • • .343
Audio Line Control Block (ALCB) •• 347
QTAM Vector Table •• 350
Special Control Block Forms •• 351

Combined QCB/STCB •••••••••• 351
QCB for DASD Destination Queue •• 351
QCB for DASD Process Queue • • • .352
QCB for 7772 DCV Buffer Queue •• 353
IBM 7772 DCV Buffer Element •• 354
Buffer Request Block .. • • • • • • 355
PAUSE BRB/CCW • • • • • • • • • .357
Element control Block--IJLQIPSF .357
Combined CCB/ECB for IBM 2260 Local .357
Buffer Prefixes 358

APPENDIX C: QTAM LINKAGES •• 361

APPENDIX D: ALPHABETICAL LIST OF QTAM
MODULES, • .366

APPENDIX E: GENERAL FLOW OF QTAM
OPERATIONS • • • • • • • • 369

APPENDIX F: HEADER AND TEXT
RELATIONSHIPS ON A DASD QUEUE

APPENDIX G: GENERAL FLOW OF QTAM/ARU
OPERATIONS

INDEX

.371

•• 375

•• 377

5

/

(
_

(--_--\
I

j

('

Figure 1. Message Control Problem
Program • • • • • • ,. • .• • • • • • • • 16
Figure 2. QTAM Nucleus •••••••• 23
Figure 3. BRB Ring Before Insertion
of Pa use BRB/CCW • • • • • • • ,. • • • 6 3
Figure 4. BRB Ring After Insertion
of Pause BRB/CCW • • • • • • • • • • • 64
Figure 5. Format of the Checkpoint
Record • • • • • • • • • • • • 88
Figure 6. Device I/O Modules ••••• 121
Figure 7. TP Operation Codes ••••• 122
Figure 8. Table of Offsets to Model
Channel Programs •••••••••••• 122
Figure 9. Types of IBM 2740
Terminals with Associated Modules .143
Figure 10. DTF Table Format for Type
DA • • • • • • • • • .330
Figure 11. DTF Table Format for Type
CK • • • • • • • • • • 332
Figure 12. DTF Table Format for Type
AV. • • • • • • • • • • 334

Table 1. Initial Selection Errors .163
Table 2. Errors After Initial
Selection164
Table 3. Sense Byte Analysis . . • 164
Table 4. Unit Exception . .165
Table 5. Lost Data • 165
Table 6. Time Out165
'l'able 1. Intervention Required . • 166
Table 8 .. , Bus Out Check166

FIGURES

Figure 13. DTF Table Format for
Nonaudio Type LG • • • • • .335
Figure 14. DTF Table Format for Audio
Type LG. • • • • • • • • • .337
Figure 15. DTF Table Format for Type
PQ • • • • • • • • • • 339
Figure 16. DTF Table Format for Type
DQ • • • • • • • • • • 341
Figure 17. DTF Table Format for Type
AQ • • • • • • • • • • • • 342
Figure 18. Typical LCB DSECT
(IJLQLCBO) (Part 1 of 2) • • 343
Figure 19. Typical ALCB DSECT
(IJLQLABO) (Part 1 of 2) • • .347
Figure 20. Combined CCB/ECB for the
IBM 2260 Local -· • • • • • • • • • • • • 357
Figure 21. Buffer Prefix Formats
(Part 1 of 3) ••••••••••••• 358
Figure 22. Example of Message Header
and Text Relationships in Direct
Access Destination and Process Queue .373

TABLES

Table 9. Data Check166
Table 10. Overrun167
Table 11. Initial Selection Errors . .171
Table 12 • Errors After Initial
Selection172
Table 13. Channel Data check . .172
Tahle 14. Sense Byte Analysis . .172
Table 15 • Initial SelE!Ction Errors . .177
Table 16. Unit Check in Status . .177

7

Chart Al. ARU Internal and ARU
R0 ceive Routines ••••••••
Chart A2. ARU Send Routine

.179

.180
Chart A3. Analysis and IBM 7772 Line
PCI Routines • . . • • • • .181
Chart A4. IBM 7770 Line End Routine •• 182
Chart A5. IBM 7772 Line End Routine •• 183
Chart BO. Breakoff Routine ••••.• 184
Chart cc. Copy Line E~ror Counters
Routine
Chart CK.
Chart CL.
Chart CM.
Chart CP.
Chart CR.
Chart CT.
Routine
Chart Cl.
Chart C2.
Chart C3.
Chart DA.
of 2)
Chart DB.
of 2)

Chart DC.
Chart DE.
Routine
Chart DL.
Chart DP.
Chart DQ.
Routine
Chart DT.
Chart Dl.
Cha.rt 02.
Chart D3.
Chart D4.
Chart EA.
Routine
Chart EB.
Chart EC.

• • • • • • • • • • • • 18 5
Checkpoint Routine ••. 186
Change Line ••• 187
Cancel Message Routine ••• 188
Change Polling List Routine 189
Checkpoint-Restart Routine .190
Change Terminal Table Entry

• • • • • • • • • • • • • • • • 191
QTAM Close Routine (Phase 1) 192
QTAM Close Routine (Phase 2) 193
QTAM Close Routine (Phase 3) 194
Disk-End Appendage (Part 1

Disk-End Appennage (Part 2

Disk I/O Routine • • • •
Copy Terminal Table Entry

Distribution List Routine
Copy Polling List Routine
Copy Queue Control Block

Date Stamp Routine

.195

.196
•• 197

•• 198
.199
.200

•• 201
• 20 2

IRM 7772 Disk End Appendage
IBM 7772 Disk Read Routine
IBM 7772 Line Write Routine
IBM 7772 DCV Buffer Routine
End-of-Address CEOA)

.203

.204

.205

.206

End-of-Block (EOE) Routine
End-of-Block and Line

• 207
.208

Correction Routine • • • • • •• 209
Chart EG. Line End Appendage (Part 1
of 9) . • • • • • •• 210
Chart EGl. Line End Appendage (Part 2
of 9) ••••••••••••••• 211
Chart EH.
of 9)

Chdrt EI.
of 9)

Chart EJ.
of 9)

Chart EK.
of 9)

Chart EL.
of 9)

Chart EM.
of 9)

Chart EN.
of 9)
Chart ER.
Chart EX.
Chart FL.

8

Line End Appendage (Part 3
.212

Line End Appendage (Part 4
• 213

Line End Appendage (Part 5
. 214

Line End Appendage (Part 6
• 215

Line End Appendage (Part 7
• 216

Line End Appendage (Part 8
• 217

Line End Appendage (Part 9

Error Message Routine
Bxpand Header Routine
DTF Locator Routine

• 218
• • • 219

• 220
•••• 221

Chart G:n.. Get Audio Message Routine ... 222
Chart GB. Get Nonaudio or rrndio
Message Routine (Part 1 of 2) •• 223
Chart GC. Get c~ona udio or A.udio
Message Routine (Part 2 of 2) .224
Chart GD. Get Record or Audio Message
Routine (Part 1 of 2) ••••••••• 225
Chart GE. Get Record or Audio Message
Routine (Part 2 of 2) • • • • • .226
Chart GF. Get Segment or Audio
Message Routine (Part 1 of 2) •• 227
Chart GG. Get Segment or Audio
Message Routine {Part 2 of 2) •• 228
Chart G}!\. Get Message Routine (Part 1
of 2) • • • • • • • • • .229
Chart GN. Get Message Routine (Part 2
of 2)
Chart GQ. Get Record Routine (Part 1
of 2)
Chart GR. Get Record Routine (Part 2
of 2)
Chart GS. GET Segment Routine
Chart IT. Intercept Message Routine
Chart LR. Line Appendage PCI and

• • 230

• 231

• • 232
•• 233

.234

Program Check Module • • • • • • .235
Chart LG. Audio Input Message Logging
Routine • • • • • • • • • • 236
Chart LK. Lookup Terminal Table Entry
Routine 237
Chart LO. IBM 2260 Local Aopendage
(Part 1 of 3) ••••••••••••• 238
Chart LP. IBM 2260 Local Appendage
{Part 2 of 3) •••••.••••••• 239
Chart LQ. IBM 2260 Local Anpendage
(Part 3 of 3) ••••••.•••••• 240
Chart MC. Conversational Mode Routine 241
Chart MM. Message Mode Interface.
Initiate Mode,, and Priority Mode
Routines ••••••••.•••••• 242
Chart M'T'. Message Type Routine • • 243
Chart MW. Message Writer Initiator
Routine •••••••••••••••• 244
Chart o:n.. Operator Awareness Routine .245
Chart OB. OBR/SDR Routine • .. • • • • • 246
Chart oc. Operator Control Routine •.• 247
Chart OD. Operator Control Routine:
Common Subroutines • • • • • • • • • .. • 248
Chart OE. Operator Control Routine:
COPYT, CHNG'l', and INTHCPT ••••••• 249
Chart OF. Operator Control Routine:
RELEASEM 11 S'l'ARTLN n SWITCH,, and COPYC • • 250
Chart OG. Operator Control Routine:
STOPLN ••••••••••••••••• 251
Chart OH. Operator Control Routine:
STOPLN and INTREL • • • • • • • • • • • 252
Chart OJ. Operator Control Routine:
STARTARU and STOPARU • • • • • • • .• • • 253
Chart 01. QTAM Open 1".onitor/Open DASD
Message Queue File Routine (Phase 1) •• 254
Chart 02. Cpen Nonaudio Line Group/MS
Queue File Routine ••••••••••• 255

r'! .. · .. ' <\

Chart 03. Open Checkpoint/Restart
Routine (Phase 1) • . • . •256
Chart 04. Open Checkpoint/Restart
Routine (Phase 2) • • • . • .257
Chart 07. QTAM Open IBM 7772 DCV
Vocabulary File Routine • • • • • .258
Chart 08. QTAM Open Audio Line
Group/Output Queues File Routine •••• 259
Chart PA. Put Audio Message Routine •• 260
Chart PL. Polling Limit control
Routine ••••••••••••• 261
Chart PM. PUT Message Routine ••• 262
Chart PQ. Put Record Routine (Part 1
of 2) ••••••••••••• 263
Chart PR. Put Record Routine (Part 2
of 2) • • • • • • • • • .26U
Chart PS. PUT Segment Routine •••• 265
Chart PZ. Pause Routine ••• 266
Chart QT. CLOSE Message Control ••• 267
Chart QW. QTAM SVC/Subtask Control
Routine (Part 1 of 3) • . • • • • • • • 26 8
Chart QX. QTAM SVC/Subtask Control
Routine (Part 2 of 3) ••••••.••• 269
Chart QY. QTAM SVC/Subtask control
Routine (Part 3 of 3) ••••••••• 270
Chart RD. Retrieve DASD Routine •.•• 271
Chart RG. Route Message Routine ••• 272
Chart RM. Release Message Routine •• 273
Chart RR. Reroute Message Routine •• 274
Chart RS. Retrieve by Sequence Number
Routine
Chart RW. QTAM PIOCS--Activate

••• 275

Routine • • • • • • • • • • • • •• 276
Chart RX. QTAM PIOCS--Channel Program
Generator (Part 1 of 2) ••••• 277
Chart RY. QTAM PIOCS--Channel Program
Generator (Part 2 of 2) ••••• 278
Chart SH. Scan Header Routine .• 279
Chart SI. Sequence Number-In Routine .280
Chart SK. Skip Character Set Routine .281
Chart so. Sequence-Out Routine •••• 282
Chart SR. Source Terminal
Verification Routine ••••.•••• 283
Chart SS. Start/Stop Audio Line
Routine ••••••.••••••••• 284
Chart ST. Skip-on-Count Routine ••. 285
Chart TM. Terminal Test Header
Analysis Routine • • • • . • . • .• • • • 286
Chart TN. Terminal Test Subtasks ••• 287
Chart TR. Translate Routine •• 288

Chart TS.
Chart TT.

Time Stamp Routine •• 289
Terminal Test Recognition

Routine • .• 290
Chart Tl. Terminal Test Module for
IBM 1030 • • 291
Chart T2. Terminal Test Module for
IBM 1050 - . - - . •• 292
Chart T3. Terminal Test Module for
IBM 1060 • .293
Chart T4. Terminal Test Module for
IBM 2848/2260 ·• "' . - . . . • - 294
Chart TS. Terminal Test Module for
IBM 2740 •• 295
Chart WA. Audio ERP Message Writer
Routine • • • • • • .. • • • • • • • 296
Chart Wl. Message Write Routine
(Transient) Phase 1 .. . ,. . o • 297
Chart W2. Message Write Routine
(Transient) Phases 2 and 3 • • • 298
Chart XL. QTAM Cancel Routine (Phase
1) ••••• - •• - •• - ••••••• 299
Chart XM. QTAM Cancel Routine (Phase
2) • • • • .. 300
Chart Yl. WTTA Line Appendage (Part 1
of 3) ••••••••••••••••• 301
Chart Y2. WTTA Line Appendage (Part 2
of 3) ••••••••••••••••• 302
Chart Y3. WTTA Line Appendage (Part 3
of 3) ••••••••••••• 303
chart 00. Receive Scheduler Routine .304
Chart 01. Send Scheduler Routine ••• 305
Chart 02. End-of-Poll Time-Delay
Routine • • • • • • • • • • •• 306
Chart 03. BRB Ring Routine ••.••••• 307
Chart 03:1. ERB Ring Routine •••••• 308
Chart 04. Active Buffer Request Routine 309
Chart 05. Available Buffer Routine ••• 310
Chart 06. Buffer-BRB Routine •• 311
Chart 07. Interim LPS Routine ••••• 312
Chart 09. Qmover Routine • • • .. • • • 313
Chart 10. DASD Destination Routine •• 314
Chart 11. GET Scheduler Routine •• 315
Chart 12. Return Buffer Routine •• 316
Chart 13. End Insert Routine •• 317
Chart 15. LPS Control Routine ••••• 318
Chart 16. Buffer Recall/Cleanup
Routine (Part 1 of 2) ••••••••• 319
Chart 17. Buffer Recall/Cleanup
Routine {Part 2 of 2) •••••• 320
Chart 18. Jo,ree BRB Routine .• • • • • • 321

9

/

:{

In IBM System/360 Disk Operating System, an
access method is a procedure for
transferring data between main storage and
an input/output device. A variety of
access methods is available to the user of
the Disk Operating system (DOS). One of
these, the Queued Telecommunications Access
Method (QTAM), can control data transfer
between main storage and remote terminals.

QTAM is a generalized input/output
control system that extends the techniques
of Logical IOCS to the telecommunications
environment. Files accessed by the problem
programmer are queues of messages incoming
from, or outgoing to, remote terminals via
communication lines. Even though the time
and order of the arrival and departure of
messages to and from the central processing
unit (CPU) are unpredictable, the support
provided by QTAM enables the programmer to
handle them as if they were organized
sequentially.

A telecommunications system operating
under DOS/QTAM is logically divided into
two types Of programs each of which
executes in a separate partition. These
types of programs are:

1. a message control program that always
operates in the Foreground-one
partition, and

2. one or more message processing programs
that execute in the Foreground-two
and/or Background partitions.

Note: With multitasking support, one or
more message processing programs can be
executed in the same partition as the
message control program. The message
control program must have the highest
priority in the partition. For a complete
discussion of multitasking, see the DOS
system control publication, Form Y29-5017.

A message control program systematically
and efficiently controls the flow of

INTRODUCTION

message traffic from one remote terminal to
another, and between remote terminals and
any message processing programs. A message
processing program consists of the
programming required to process the
contents of the messages.

QTAM provides logic in support of both
types of programs. Extensive support is
supplied for a message control program and
includes, via the linkages generated by
QTAM macro instructions, the QTAM logic
required to:

1. identify the configuration of the
telecommunication system to the Disk
Operating system,

2. establish and perform the line control
procedures required for the various
types of terminals and modes of
connection, and

3. control the routing of messages in
accordance with the requirements of the
user.

GET/PUT logic is provided to a message
processing program for obtaining messages
to be processed and for placing response
messages.

The paramount reason for dividing
telecommunications support into two types
of programs is that message flow to and
from the computer is random and proceeds at
relatively slow speeds (due to the
operating speeds of the terminals
supported), while the messages, once
delivered to the computer, can be processe::l
at computer speeds. To fully utilize the
computing system capabilities, message
traffic must proceed asynchronously with
message processing. This asynchronous
method of execution is basea on the
completion of awaited events (for example,
I/O termination), and on the established
priorities of Foreground-one,
Foreground-two, and Background.

Introduction 11

PHYSICAL ORGANIZATION OF QTAM

This section describes the various parts of
the total package called QTAM. Little is
said of the function of the various pieces
artd even less of the logic of their
operation. However, it is important to
understand what the pieces are, where they
come from, how they get into the system,
and their relationship to the rest of the
package. The following topics are
discussed in this section:

1. System Generation.

2. Assembling and Linkage-Editing a
Message Control Program.

3. Assembling and Linkage-Editing a
Message Processing Program.

SYSTEM GENERATION

When QTAM is called for during a system
generation procedure CTP=QTAM operand in
SUPVR SYSGEN macro instruction), a number
of subroutines collectively called the QTAM
SVC/Subtask control routine are included as
a part of the DOS Supervisor Nucleus.
These subroutines are then always present
in the system, regardless of whether a
telecommunications application is being
executed.

The QTAM nucleus routine consists of
nine subroutines, each of which is
discussed later in this manual.

1. Entry Interface

2. QTAM Wait

3. QTAM Post

4. Qdispatch

5. Defer Entry

6. Priority Search

7. Queue Insert

8. Exit Select

9. Exit Interface

Note: When TP=QTAM is specified, SVC
support for BTAM is also included in the
nucleus; however, QTAM has no requirement
for this BTAM logic.

12 DOS QTAM Program Logic Manual

Other system generation considerations
for including QTAM in the system are:

1. Multiprogramming support CMPS=YES
operand in SUPVR macro> must be
included because QTAM requires at
least two partitions in DOS. Because
multiprogramming support is required,
storage protection {SP=YES operand in
CONFG macro) must be specified.

2. The interval timer is required
{TIMER=YES operand in CONFG macro) if
the polling interval or time stamping
options provided by QTAM are desired.
Additionally, the timer must be
assigned to the Foreground-1 partition
CIT=Fl operand of FOPT macro) for the
polling interval option.

Note: When multitasking support is
included in the DOS Supervisor CAP=YES
operand in SUPVR macro instruction), a
number of message processing programs can
operate in the system. The maximum number
of message processing programs to be
supported is defined at system generation
CTP=QTAMn where n is equal to the number of
message processing programs).

After a system generation has been
performed, the various QTAM components are
in the system libraries on the SYSRES
volume. The distribution of the QTAM
components is described as follows.

SOURCE STATEMENT LIBRARY: All QTAM macro
definitions called for during the assembly
of message control and message processing
programs reside in this library. Appendix
c lists all QTAM macro instructions and
indicates what the expansion is for each.
QTAM DSECTS are also included in the Source
Statement Library and may be included in an
assembly via a COPY statement.

CORE IMAGE LIBRARY: The QTAM SVC/Subtask
Control routine is a part of the Supervisor
nucleus that resides in this library. QTAM
transient routines also reside in this
library; these routines CQTAM Open and
Close executors) are dynamically fetched
into the logical transient area as needed
for execution.

RELOCATABLE LIBRARY: The remaining
components of QTAM are the logic modules
required to implement the functions
provided by QTAM. These modules reside in
the relocatable library and include:

()
1. Macro-Introduced Modules. These

modules correspond to QTAM macro
instructions. Each module performs
the function represented by its
associated macro instruction, whose
expansion generates linkage to the
module. Also included in this
category are certain second-level
modules that perform generalized
functions required by two or more
modules directly associated with a
macro instruction. In this
publication these modules, whether
first or second-level, are defined as
External Routines.

2. QTAM Implementation module (IJLQIP).

3. Physical Input/Output module CIJLQRW).

4. Line Appendage module for PCI and
Program Check (IJLQLC).

5. Normal Line End Appendage and ERP
module (lEDQLA).

6. Disk Input/Output module (IJLQDA).

7. Audio Line Appendage module (IJLQAA).

8. 7772 Disk Appendage module (IJLQAD).

9. GET/PUT logic modules. Seven GET
modules and four PUT modules are
provided. The PUT and four of the GET
modules correspond to the
message/segment/record/audio ·message
options. The other GET modules
correspond to the three combined
options of audio message with message,
segment, or record.

10. WTTA Line Appendage module (IJLQTA).

Appendix D contains an alphabetical
listing of all the QTAM logic modules.

ASSEMBLING AND LINKAGE-EDITING A MESSAGE
CONTROL PROGRAM

The user codes the QTAM macro instructions
necessary to design a message control
program. The output of this assembly
includes several tables and control blocks,
a buffer area, linkages to QTAM external
and transient routines, and, except for
these linkages and a few minor Line
Procedure Specification CLPS) macro
instruction expansions, very little other
executable code. The message control
object module may include some user-written
routines, but these will normally not be
extensive.

The assembled object module is then
link-edited to include the necessary
external routines from the relocatable
library. These external routines are the
LPS routines used in processing header
information, translating from one code to
another, directing messages to the proper
lines and queues, etc. The remainder of
the required QTAM logic modules are also
incorporated (via V-type address constants)
into the message control program during
this linkage-editing procedure.

A large module called the QTAM
Implementation module (IJLQIP) is included
from the relocatable library, because of a
V-type address constant generated in the
expansion of the DTFQT macro for the DASO
queues, the 777 2 DCV vocabulary., and the
7770 line group files. The Implementation
module contains two distinct types of
routines - distinct as far as their logical
relationship to the rest of the system.
The two types are:

1. Problem program routines, executed
enabled to all interruptions as part of
the message control program. These
routines receive control through branches
from the external routines that are
link-edited with the message control
program.

2. Supervisory routines, executed
disabled to all interruptions, as part of
the QTAM nucleus "task." These routines
receive control through branches from the
QTAM SVC Subtask Control routine in the
nucleus.

The Line Appendage, Audio Line
Appendage, WTTA Line Appendage, and Disk
I/O modules are link-edited from the
relocatable library because of v-type
address constants generated by the DTFQT
macros for the Line Group, WTTA line group,
Audio Line Group, and DASO Queue files,
respectively. The 7772 Disk Appendage is
link-edited from the relocatable library
because of a V-type address constant
generated by the BUFARU macro instruction.
All these modules contain a third distinct
type of routine: the I/O Appendage. These
I/O appendages are executed disabled to all
interruptions, again logically as part of
the QTAM nucleus "task." The appendages
receive control from the I/O Interruption
Handler routine in the DOS Supervisor.

Note: The logical relationship of the two
types of routines in the Implementation
module with each other and with the I/O
appendages is discussed more fully in the
next section. From the point of view of
physical organization, this collection of
routines represents no more than a
convenient and efficient packaging·
technique. The Implementation module,

~hysical Organization of QTAM 13

together with the I/O appendages, can in no
way be thought of as a •program.•

The last module linkage-edited into the
message control program is the Physical I/O
module. It is included because of a V-type
address constant generated, again, by the
expansion of the DTFQT macro for the DASD
Queues file. This module contains routines
that generate and initiate execution of
channel programs on the communication
lines. These routines run in problem
program state as part of the user's message
control program.

The resulting output of the Linkage
Editor run is then cataloged as a single
phase into the core image library, ready to
be loaded for execution. This message
control program phase must be executed in
foreground-1, the highest priority
partition in the system.

ASSEMBLING AND LINKAGE-EDITING A MESSAGE
PROCESSING PROGRAM

A message processing program normally needs
only the OPEN, CLOSE, GET, and PUT macro
instructions and some file definition macro
instructions. when this is the case, no
QTAM external routines are required to be
link-edited with the assembled object
module. The only QTAM modules
linkage-edited with the assembled object
module are the selected GET and PUT
modules. The modules selected depend on
the unit or combination of units of data
processed by the program: record, segment,
message, or audio message.

The appropriate GET module(s) are
included from the relocatable library
because of a v-type address constant

11.! DOS QtAM Program Logic Manual

generated by the expansion of the DTFQT
macro for the Main Storage CMS) Process
Queue(s). The appropriate PUT module is
included because of a V-type address
constant generated by the expansion of the
DTFQT macro for the MS Des~ination or Audio
Output Queues.

An installation also writes at least one
message processing program that uses the
following macro instructions to examine and
modify the status of the message control
program and/or to initiate termination of
the message control program:

CHNGP
CHNGT
CKREQ
CLOS EMC
COPYC
COPYP
COPYQ
COPYT
RELEASEM
RETRIEVE
STARTARU
STARTLN
STOPARU
STOPLN

When any of these macros are used, the
linkage editor includes the corresponding
external routines in the load module. /

The resulting output of the Linkage
Editor run is then cataloged into the core
image library, ready to be loaded for
execution. The message processing program
phase may be linkage-edited to execute in
either the foreground-2 or the background
partition. With multitasking, however, it
is possible to execute several processing
programs in the foreground-one partition as
tasks with lower priorities than the
message control task.

(

The preceding section explained how the
physical pieces of QTAM are positioned in
main storage. This section explains how
these pieces are logically related and how
they pass control back and forth.

In this section, the logical
organization of Q~AM is discussed within
two different frameworks. First, QTAM is
considered as a part of operating system
task management and within the structure
and categories of that control program.
Then QTAM is considered as a separate
logical entity outside of the framework of
the operating system control program, and
is viewed as a control program in its own
right. The key to understanding the
logical organization of QTAM lies in
understanding the overlap of the two
control program structures.

QTAM WITHIN THE DISK OPERATING SYSTEM
CONTROL PROGRAM STRUCTURE

The various pieces discussed under Physical
Organization of QTAM can be grouped into
three logical categories:

1. The Message Control Program

2. Message Processing Program(s}

3. The QTAM Supervisory Routines

The message control and message
processing programs are both run under
control of the DOS task management
routines. From the point of view of DOS
task management, they are in no way
different from any other problem programs.
They are scheduled and dispatched according
to the priorities indicated in the Program
Information Blocks (PIBs} for the
partitions in which they are being run.

The third category, QTAM Supervisory
Routines, is all that is left over after
distinguishing and separating the two
processing programs. These routines are
executed as SVC handling routines or as
asynchronously scheduled I/O interruption
handling routines. Strictly speaking, they
are executed as part of the message control
and message processing programs.
Practically speaking, however, it is more

LOGICAL ORGANIZATION OF QTAM

meaningful to think of these as a separate
category, outside of the task framework
established by DOS task management. The
discussion in this section is primarily an
attempt to explain the nature of this third
category as it is to be understood in
relation to the other two. The discussion
continues under QTAM Supervisory Routines.

MESSAGE CONTROL PROBLEM PROGRAM

The message control problem program
includes the following:

1. The object module output from the
assembly of the user's code.

2. The external routines link-edited with
the assembly output.

Note: If the LIST macro instruction
is used, a single supervisory routine
called the Distribution List routine,
in a module named IJLQDL, is
link-edited into the message control
load module. This routine is one of
the supervisory routines, and is not
part of the problem program.

3. Three of the routines in the
Implementation module:

4.

5.

• LPS Control

• Buffer Recall/Cleanup

• Free BRB

The QTAM Physical I/O module.

Two routines link-edited with the
Audio Line Appendage module:

• ARU Receive

• ARU Internal

Figure 1 shows a simplified flowchart of
this problem program. The flowchart is
included here to show how the three problem
program routines in the Implementation
module, the QTAM Physical I/O module , and
the two audio routines are related to the
rest of the message control program.

Logical Organization 0£ Q'rAM 15

Physicol 1/0

Available Buffer
for Receiving

Build channel
program and
EXCP.

C learn-'up'-------~

Post buffer to
specified
Destination Queue

YES

LPS Receiver
Group

Perform LPS
Receive functions Received
on message segment
in this buffer.

Perform LPS error
checking functions
on received
segment.

Cleanu

Post last buffer to
Destination Queue
and release ·buffers

J21------
Free BRB

Release BR&
and free the
line

Start

Open disk and
line groups and
issue END READY.

ARU;lPS

Perform LPS
functions on input
message in the
audio element
(ALCB)

Post ALCB to
Main Storage
Process Queue

Figure 1. Message Control Problem Program

16 DOS QTAM Pro<:Jram Logic Manual

Perform LPS send
functions on
message segment
in this buffer.

Physical 1/0

Initiate sending
of segment over
the line (EXCP)

ARU-lnternal

Post ALCB to
ARU-Send
Queue

Request for Disk
1/0 0 ration

EXCP

Perform LPS error

>-.;..;"'---to-I checking on
transmission of
segment

Cleanup

Release
buffers

0

('

MESSAGE PROCESSING PROBLEM PROGRAM

A message processing problem program
includes the assembled user code and
external routines link-edited with it,
including the GET, PUT routines. The only
difference between a QTAM message
processing program and any other processing
program is the requirement for and the
implementation of cross-partition
communication. The various macro
instructions that can be used in a message
processing program are handled as follows:

1. COPYP, COPYT, and COPYQ present no
problem. The corresponding external
routine simply reads the requested
information from the foreground-one
partition using address pointers
stored in a QTAM vector table and in
the terminal table.

2. All other macro instructions cause SVC
interruptions to the QTAM supervisory
routines. Any cross-partition
communication is done by the
supervisory routines, operating under
the storage protection key of the
supervisor.

From the point of view of logical
organization, unusual operations are
noticed in the following cases: PUT, GET
(for audio processing), CLOSEMC, STARTARU,
and STOPARU macro instructions. To avoid
including a large amount of code in
supervisory routines for each of the
corresponding modules, certain code that
must be executed in supervisor state is
packaged within these modules. The SVC
routine entered as a result of one of these
macro instructions branches back to these
sections of code in the corresponding
problem program modules to execute them in
supervisor state.

Note: Operations under extended
multiprogramming capabilities
(multitasking) that allow one-partition
processing do not differ from the above
description.

QTAM SUPERVISORY ROUTINES

Within the framework of the DOS control
program is the third category, the QTAM
supervisory routines. From the point of
view of physical organization, the QTAM
supervisory routines consist of:

1. The QTAM subroutines within the
Supervisor nucleus.

2. Those routines within the
Implementation module (in partition
Fl) that are executed in supervisor
state. This includes all but the
three identified as part of the
message control problem program.

3. The Disk 1/0, Line Appendage, IBM 2260
Appendage, and the optional WTTA Line
Appendage modules.

4. The Distribution List routine
link-edited with the message control
program.

5. The optional IBM 7772 Disk Appendage
and Audio Line .11.ppendage modules,
except the two audio routines
link-edited with the Audio Line
Appendage and part of the message
control program.

6. Part of the GET (for audio
processing), PUT. CLOSEMC, and
STARTARU/STOPARU modules in the
message processing problem program
partition(s).

7. The Checkpoint routine link-edited
with the message control program when
the checkpoint/restart option is
specified.

From the point of view of the
interruption handling facilities of the
Disk Operating System, the QTAM supervisory
routines consist of:

1. SVC routines, entered by SVCs 30 and
31 from problem program partitions.

2. Asynchronously scheduled 1/0
interruption handling routines,
entered from the DOS 1/0 Interrupt
Handler.

While both of these points of view are
correct, neither is very helpful in
understanding the logical organization of
QTAM. For example, a routine within a QTAM
appendage to which control is passed to
process an 1/0 interruption may also be
executed as the result of an SVC
interruption. The problem is that both
points of view are taken from within the
framework of the DOS Control Program
environment and are seen within the
categories of that system. The solution to
the problem lies in understanding the
implications of the statement:

"QTAM is a Control Program"

QTAM is a control program, and it
happens to be within a second control
program. Later, it will be explained how
the two overlap. First, however., let us

Logical Organization of QTAM 17

look at the QTAM control program within its
own framework as a separate logical entity.

QTAM AS A SEPARATE CONTROL PROGRAM

The one essential function of a control
program is allocation of system resources.
The system resources to be allocated by
QTAM are:

1. CPU processing time

2. Main storage space

3. I/O paths

To perform this allocation function
efficiently, QTAM breaks the system
resources into the smallest practical
number of pieces, as follows:

1. The work to be done is broken into
many separate units called ~~
subtasks. small pieces of the time
resource are then allocated to
individual subtasks.

2. The main storage space to be allocated
is broken into a large number of
buffers. Only that amount of storage
absolutely required at a given time
need be tied up for a given function.

3. The I/O paths controlled by QTAM are
the communication lines and the disk
queue. Only that I/O path absolutely
required at a given time need be tied
up for a given function.

I

Allocation of the time resource is
called scheduling, while "allocation"
usually refers to physical resource
allocation only. However, one of the most
important design attributes of the QTAM
Control Program, distinguishing it from
other possible designs <including the Disk
Operating System itself) is that the entire
allocation function is performed by a
single mechanism. This allows a complete
interdependence of time allocation
(scheduling) and physical resource
allocation. scheduling becomes a function
of allocation, and allocation becomes a
function of scheduling.

The following sections describe the
resource allocation mechanism of QTAM. The
key to the mechanism is the QTAM Ready
Queue. This Ready Queue is the structure
through which a resource is allocated to a
subtask. The actual mechanism of
allocation is the QWAIT and QPOST
operations performed by the QTAM subtasks.
QWAIT, in effect, puts a request for a

18 DOS QTAM Program Logic Manual

resource on the Ready Queue. QPOST passes
an available resource to the Ready Queue.
The QTAM SVC subtask Control routine
performs a queue-management function that
includes dispatching the subtask at the top
of the Ready Queue.

QUEUE MANAGEMENT

Both physical resources and subtasks are
represented to the queue management
routines by control blocks. The resources
are broken into elements, with each element
represented by an Element Control Block
(ECB). Subtas~s are represented by Subtask
Control Blocks (STCBs). Queues of elements
are allowed to build up as a chain of ECB's
starting with an address pointer in a Queue
Control Block (QCB). Queues of requests
for elements also may build up as a chain
of STCBs starting with another address
pointer in a QCB. A detailed description
of all control blocks used by QTAM is
contained in Appendix B.

Element control Blocks

Five main types of permanent Element
Control Blocks (ECBs) are:

1. Buffer ECBs.

2. Communications line ECBs.

3. Audio communications line ECBs.

4. Buffer request ECBs.

5. 7772 DCV buffer ECBs.

Buffers are areas of main storage that
contain message data and/or control
information. The first 8 bytes of each
buffer comprise an ECB. As with all QTAM
elements, the "identity" of the buffer at a
particular time depends solely upon the
queue its representative ECB is chained
into at that time. The buffer proper is
always physically identifiable as a fixed
number of bytes of main storage.

If the ECB representing the buff er is
chained into a QCB for a Destination queue,
the buffer is full~ that is, it contains a
message segment to be transmitted to a
destination. When the same ECB is
subsequently chained into the Available
Buffer QCB, the element involved is now an
available buffer, even though there has
been no change in the physical storage
area.

/

\

(
~.

(--

'

7772 DCV buffers are main storage areas
that contain the digitally coded voice
(DCV) words dynamically retrieved from the
7772 DCV vocabulary file. The first eight
bytes of each 7772 DCV buffer comprise an
ECB. An ECB representing an available 7772
DCV buffer is chained into the QCB for the
co~responding 7772 DCV buffer queue. An
ECB representing a nonavailable 7772 DCV
buffer is associated with an operative
audio line.

Audio and nonaudio communications lines
are represented to QTAM through the Audio
Line Control Block (ALCB) and the Line
Control Block (LCB), respectively. There
is an LCB or an ALCB for each line.
Therefore, the LCB and the ALCB themselves
are treated as the resource element. The
ECB is contained in the first eight bytes
of the LCB or ALCB.

To avoid preassigning buffers before
they are actually needed, QTAM uses Buff er
Request Blocks (BRBs) to queue buffer
requests, which is explained later (see
Outline of QTAM Operation}. These BRBs are
elements. The ECB is contained within the
BRB. The number of BRBs in the system is
determined by the number of buffers in the
buffer pool; there is one BRB per buffer.
Thus, this pool of BRBs is itself a pool of
resources to be allocated to the various
subtasks that use them.

Subtask Control Blocks

The two types of Subtask Control Blocks
(STCBS) are:

1. Truncated STCBs

2. Full STCBS

Truncated STCBs represent subtasks that
are executed in supervisor state. These
subtasks are performed by routines that are
packaged within the following modules:
QTAM Implementation, Disk I/O, Audio Line
Appendage, 7772 Disk Appendage, GET (for
audio processing>, PUT (for audio
processing}, CLOSEMC and STARTARU/STOPARU
(but also including the Distribution List
routine linked with the message control
program). These routines are called
implementation routines and the truncated
STCB represents an implementation subtask.

Full STCBs represent subtasks that are
executed in problem program state. These
subtasks are performed by the message
control and message processing problem
programs. At this point there is an
overlap of the Disk Operating system
control program structure with the QTAM

control program structure. A QTAM problem
program subtask is created when an SVC 30
or 31 is issued within a Disk Operating
system task. More specifically, a control
block called a full STCB is initialized to
represent the problem program subtask and
is used as a QTAM STCB. As a subtask then,
the problem program is placed under the
subtask management of QTAM and must contend
for control in that multitask environment
before it is released to contend with other
Disk Operating System tasks in the system.
This is explained more fully in the
following sections.

Note at this point., however, that every
problem program request that results in a
QTAM SVC 30 or 31 causes a subtask to be
created. These problem program subtasks
are always lower in priority than any QTAM
implementation subtask; thus, they are
never considered for dispatching until all
of the internal implementation subtasks
have done all of the work that can be done
with the resources available. There is one
full STCB per problem program task
preassembled into the QTAM nucleus.

Queue Control Blocks

The QTAM Ready Queue can be thought of as a
queue of queues, each queue being
associated with a QCB. The following is a
list of various types of queues that may
appear at any given time on the Ready
Queue. A more complete and detailed list
is given in Appendix A.

AVAILABLE BUFFER QUEUE: This queue keeps
track of unassigned buffers. The element
chain is the chain of all buffers that are
currently not assigned. As soon as a
buffer is no longer needed, it is posted to
this queue. The STCB chain for this QCB is
limited to the STCB for the Available
Buffer subtask that is used whenever a
buffer is made available.

LPS QUEUE: This queue passes elements from
the QTAM control program to the message
control problem program. As shown in
Figure 1, the element chain may point to:

1. An empty buffer, signifying that a
line-read operation is to be
initiated.

2. A message-filled buffer to be passed
through some portion of the LPS
section.

3. A request for a disk I/O operation to
be started.

Logical organization of QTAM 19

4. An ALCB with a full audio input buffer
to oe passed through an ARU/LPS
section.

5. An ALCB requesting an I/O operation on
an audio line.

6. A 7772 DCV buffer requesting a disk
read operation.

This is the QCB that the LPS Control
routine in the message control problem
program waits on.

MAIN STORAGE PROCESS QUEUE: This queue
passes full buffers from the QTAM control
program to a message processing program.
The element chain is the chain of buffers
containing the message unit that is passed
to the message processing program. This is
the QCB that a message processing program
GET waits on.

DASD DESTINATION AND DASD PROCESS QUEUES:
There is a QCB for every destination queue
and every process queue defined by the TERM
and PROCESS macro instructions in the
message control program. When a buff er is
posted to one of these queues, it is never
physically chained to the QCB. Instead,
the buffer is posted directly to the Ready
queue and, when it reaches the top, it is
removed and the indicated QCB is put in its
place. The STCB chain from one of these
QCBs always ends with the STCB for the DASD
Destination subtask. It may be preceded by
the STCB for the line's Send Scheduling
subtask (if it is a destination queue) or
the GET-Scheduling subtask (if it is a
process queue).

INACTIVE BRB QUEUE: This queue keeps track
of inactive buffer request blocks. The
element chain is the chain of all BRBs that
are not currently assigned. The STCB chain
may contain the STCB for a line's
Receive-scheduling subtask and/or one or
more Send-Scheduling subtasks.

ACTIVE BRB QUEUE: This queue passes active
buffer requests from the various subtasks
that require buffers to the Active Buffer
Request subtask, which obtains the buffers.
The element chain is the chain of active
BRBs. The STCB chain is limited to the
STCB for the Active Buffer Request subtask.

ADDITIONAL-CCW QUEUE: This is a queue of
special purpose BRBs containing the ccws
used to transmit idle or other specified
characters when certain lin~ control
characters are encountered in an outgoing
message. When one of these line control
characters is encountered by the Pause
routine in the send portion of the LPS, the

20 DOS QTAM Program Logic Manual

problem program waits on this queue to
obtain one of these BRBs. All Pause BRBs /
initially appear in the element chain of
this queue as a result of the BUFFER macro
expansion.

DISK INPUT/OUTPUT QUEUE: BRBs containing
channel command words are posted to this
queue when a disk read operation is
required. Full buffers are posted to the
same queue for writing messages out on the
disk. The STCB chain is limited to the
STCB for the Disk Input/Output subtask.

COMMUNICATIONS LINE QUEUE: There is one
QCB for each communication line. The QCB
is created in the LCB itself when the LCB
is encountered on the Ready Queue, as
follows:

1. When a send or receive operation is
completed, the LCB is posted to the
Ready Queue as an element.

2. When the LCB reaches the top of the
Ready Queue, a field within it is
initialized as a QCB.

3. The element chain is then completed by
posting the LCB to itself.

4. A Receive-Scheduling subtask is then
created for the line unless there is
already a Send-Scheduling subtask
waiting for the line.

ARO SEND QUEUE: There is only one QCB for
all communications lines. This QCB is part
of the audio implementation programs
link-edited with the Audio Line Appendage
module. ALCBs containing a full
address-chain buffer are posted to this
queue to send the audio output message on
line. The STCB chain is limited to the
STCB for the ARU Send subtask.

7772 DCV BUFFER QUEUE: There is a QCB for
each 7772 Audio Response Unit with at least
one line U:sing DCV words dynamically
retrieved from the 7772 vocabulary file. ~
QCB created in the message control program
through the BUFARU macro expansion keeps
track of the unassigned DCV buffers of one
or more 7772 line groups. The element
chain is the chain of all DCV buffers that
are currently not assigned to the
corresponding 7772 line groups. As soon as
a DCV buffer is no longer needed, it is
posted to its queue. The STCB chain for
this QCB generally contains the STCB for
the Queue Insert subtask, but it may
contain the 7772 DCV buffer subtask when no
ocv buff er is available and one or more
audio lines are waiting for an available
DCV buffer.

/

c

QWAIT AND QPOST

A subtask requests a resource from a queue
by issuing a QWAIT on the associated QCB.
A subtask passes a resource with which it
is finished to another subtask or a problem
program by QPOSTing the resource to the
proper QCB.

QWAIT from Problem Program

A problem program (either message control
or message processing) requests an element
from the Ready Queue by issuing an SVC 30.

Note: All QTAM SVC's are macro-generated.
The problem programmer should never
have to issue one directly.

The Supervisor SVC Interrupt Handler
initializes a PIB and passes it to the
Entry Interface subroutine in the QTAM
SVC/Subtask control routine. The PIB
information is used to initialize a full
STCB to represent re-entry to the QTAM
problem program, and the requesting program
is placed in the wait state.

The full STCB contains the address of a
special QCB labeled QSVCQCB. The address
of the QCB for the element queue being
waited on is passed in register O. If the
element is available, its address is placed
in register 1; the requesting prograro is
removed from the wait state, and control is
passed to the problem program via the DOS
Supervisor task selection mechanism.

If the element is not available, the
full STCB is chained to the QCB of the
element chain being waited on. The
requesting problem program is left in the
wait state, and control is returned to the
system Supervisor. The DOS task selection
routine then dispatches some other task if
there is one waiting (for example, a
message processing program in a lower
priority partition). Otherwise, it places
the entire system in the wait state.

When some other subtask subsequently
posts an element to the queue that the
problem program waited on, the problem
program will be dispatched by QTAM by
turning off the wait flag in the PIB for
the program. The problem program will then
be dispatched in its proper task priority
by Disk Operating System task management.

QPOST from Problem Program

A problem program (either message control
or message processing) passes an element to
the Ready Queue by issuing an SVC 31. As
with the QWAIT, the full STCB contains the
address of, and is chained to, the QSVCQCB
QCB. The QCB of the queue that the element
is being posted to is passed in register O
and the address of the ECB for the element
being passed is in register 1. The ECB is
placed on the Ready Queue. If a subtask is
waiting for the element, it is dispatched.
If no subtask is waiting for the element,
the ECB is chained to the proper QCB. When
all items on the Ready Queue are
dispatched, the problem program regains
control.

QWAIT from Internal Implementation subtask

When one of the implementation subtasks
requires an element, it looks directly at
the QCB for the element queue being waited
on. If the element is available, the
subtask removes it from the chain and
continues (relinking the element chain, if
necessary). No SVC is issued.

If the element chain is empty, the
subtask branches directly to the queue
management routines in the QTAM SVC/Subtask
Control routine. If the STCB for the
requesting subtask is not already chained
to the QCB for the requested element, it is
placed on that chain. Control then passes
to the Qdispatch subroutine to activate the
next subtask.

QPOST from Internal Implementation Subtask

When one of the QTAM implementation
subtasks has an element to pass to the
Ready Queue, it branches directly to the
Post subroutine in the QTAM SVC/Subtask
control routine Cno SVC is issued). The
ECB is placed on the Ready Queue and
contains the address of the QCB to which it
was posted. The STCB for the subtask that
posted the element is left chained to the
QCB that it was already on and that subtask
resumes operation.

Summary: A QWAIT chains the STCB of the
requesting subtask to a QCB. The QCB may
or may not be on the Ready Queue. A QPOST
places an element's ECB directly on the
Ready Queue. The ECB contains a pointer to
the QCB to which it is posted. When the
ECB reaches the top of the Ready queue, it
is replaced at the top by the QCB and the
first subtask chained to the QCB is
dispatched.

Logical Organization of QTAM 21

QDISPATCH

The QTAM SVC/Subtask Control routine in the
supervisor nucleus provides the overall
queue management facilities which include:

1. Interfacing with the Disk Operating
System Supervisor.

2. Placing problem programs in wait
state; then posting them camplete.

3. Chaining ECBs to the Ready Queue and
STCBs to QCBs in the proper priority
sequence.

4. Dispatching the highest priority
subtask.

The QTAM nucleus routine is comprised of
several subroutines, and each is discussed
in the section QTAM SVC/Subtask control
Routine later in this manual. At this
point, however, we can look at the queue
management facility as a whole.

Figure 2 shows a very generalized
flowchart of the QTAM nucleus. Part 1
illustrates the preceding discussion of the
QPOST and QWAIT. The test made at E2 is
the Qdispatch function. The Qdispatch
subroutine examines the item at the head of
the Ready Queue.

The position of all items on the Ready
Queue is determined by the relative
priorities of elements as they are posted
to the queue. Generally speaking, the
priority of an element is determined by the
type of subtask to which it is being
passed. There are seven commonly used
priorities, indicated by a hexadecimal code
in the ECB.

HIGHEST CODE (FE): This highest priority
code is given to special audio elements
enabling truncated subtasks to be
dispatched immediately. These subtasks,
executed in supervisor mode, are.located in
the four GET modules working on audio
messages, the audio PUT, CLOSEMC and
STARTARU/STOPARU modules.

SECQND-HIGHEST CODE (FD): This priority is
given to all audio elements (Audio Line
control Blocks, 7772 DCV buffers) being
processed by the message control program.

THIRD-HIGHEST CODE (FC): This priority is
given to all Audio Line Control Blocks
being passed to message processing
programs.

FOURTH-HIGHEST CODE (EC): The only element
ever given a code of EC is a BRB. This is
done in two instances:

22 DOS QTAM Program Logic Manual

1. When the buffer request is for a disk
operation. This is done to optimize
scanning the disk queue area.

2. When the buffer request is made by the
Line PC! routine following the first
PC! on a line-receive operation. The
high priority causes additional
buffers needed for a line-read
operation to be assigned as rapidly as
possible.

FIFTH-HIGHEST CODE (F4): This priority is
given to all nonaudio elements being passed
to implementation subtasks that run
disabled to interruption.

SIXTH-HIGHEST CODE (EO): This priority is
given to all nonaudio elements being passed
to the message control program.

LOWEST CODE (DC): This lowest priority
code is given to all nonaudio elements
being passed to message processing
programs.

Qdispatch follows the address pointer in
location QSVCRDYQ to the item at the top of
the Ready Queue. The item will be either
an ECB or a QCB. Qdispatch examines the
key field in the first byte to determine
what the item is:

Key = 0: All ECB's have a key of zero.

Note: There is one special case where a
full STCB appears directly on the Ready
Queue instead of chained to a QCB. This is
the full STCB created during
initialization, after the ENDREADY macro
instruction is executed and the first QTAM
SVC is issued in the LPS Control routine.
This full STCB appears to Qdispatch as an
ECB pointing to a location labeled QSVCQCB
at QSVCRDYQ-8. Therefore, the address at
location QSVCRDYQ appears as the head of a
STCB chain in a pseudo QCB labeled QSVCQCB
and the program represented by the full
STCB is given control.

There is always a subtask waiting on the
element, though in some cases it may be
only an interim subtask that removes the
element from the Ready Queue and chains it
to a QCB element chain (i.e., the Queue
Insert subtask.)

Key = 2: A key of two indicates a QCB with
a subtask at the top of its STCB chain that
is •ready•, or "not waiting• for an
element. The STCB was chained to the QCB
as the result of a QPOST. It will now
regain control.

Kev = 3: A key of three indicates a QCB
with a subtask at the top of its STCB chain
that is "not ready", or •waiting" for an

QDISPATCH

B2--'----

EXAMINE ITEM
ON TOP OF
READY QUEUE

C2 IS

(~~~~) >-Y~E~S----------------

REMOVE ITEM
FROM TOP OF
READY QUEUE

QSVCDABL

E3--'---
REMOVE ECB
FROM TOP OF

YES

QSVCA

READY QUEUE & "----~<'
REPLACE WITH
QCB

E5----
REMOVE ITEM
FROM TOP Of
READY QUEUE;
If QCB, SET
KEY= I

Figure 2.

-- --

QTAM

ro.sI

Al

Bl

0
QTAM

__ POS_T_

ENTRY
INTERFACE

DI

El

PLACE ADDR OF
PIB IN 3RD WO
OF STCB OF
LAST DISP QCB

Fl

ASSIGN STCB
PRIORITY
(10,20 OR 30)

GI

SET QTAM WAIT
BIT ON IN PIB

PLACE SPEC.
QCB ADDR
IN ECB

Kl--'---

SET UP
PARAMETERS
IN REGS FOR
PRI SEARCH

PRIORITY
SEARCH

QTAM Nucleus

QTAM
WAIT

A2

SET KEY=3 OF
LAST DISPATCH
QCB

I
j
I
I
I

r-
I

E2

REMOVE STCB
FROM PRESENT

I CHAIN

I

I
I
I
I SKIP TOP

STCB IN

I
CHAIN

I H2

SET UP
PARAMETERS
IN REGS

PRIORITY
SEARCH

EXIT
INTERFACE

B4

QCB KEY

[QeQCO I =NOT ON READY QUEUE

EY SET 2 =ON READY QUEUE AND READY TO
PRIORITY 0 2 BE ACTIVATED
SEARCH

3 =ON READY QUEUE BUT STCB IS
WAITING FOR ECB AND CANNOT
BE REACTIVATED UNTIL ECB IS

C4 AVAi LABLE

~
EARCH SPEC. SAVE QCB PTR

HAIN BY AS LAST DISP

RIORITY, FIND QCB, PIB PTR

NSERT POINT INTO REG RA

D3

SET UP 04 wAS IT
PARAMETERS QWAIT

QPOST

OR QPOST

QWAIT

E3 E4 E5

I PLACE PTR TO PLACE ADDR
INSERT ITEM

ECB IN REG OF DUMMY
INTO CHAIN SAVE AREA PIB INTO STCB

I

I F5

~ QDISPATCH--

~
RESET PRIORITY
OF STCB

EXIT TO 'Ff'
SELECT

I
G3 I GS

TOP QCB

I
RESET QTAM
WAIT BIT IN

KEY SET
PIB USING

TO 3 REG RA

I

I 1/0 H5
H4

INT. HOW
EXT03 ENTERED

NO SVC

J3 J5
BRANCH TO
IJLQIP

EXT02

Logical Organization of QTAM 23

element. The STCB was chained to the QCB
as the result of a QWAIT. Note that if an
element had been available, the subtask
that issued the QWAIT would have regained
control without the Qdispatch routine being
entered. Because the element is not
available, the key of the QCB is set to 1,
and the link address is changed to remove
the QCB from the Ready Queue.

The flowchart in Figure 2 further shows
how control is passed to the dispatched
subtask. If the subtask is represented by
a truncated STCB, the Exit Select
subroutine simply branches to the entry
point of the implementation subtask. If it
is a proolem program (full STCB), the Exit
Interface routine posts completion of the
SVC in the PIB for the program and returns
control to the Supervisor. If the SVC
request from the problem program could not
be satisfied, completion is posted in a
dummy PIB before return to the Supervisor,
and the problem program remains in the wait
state.

In the latter case, QTAM is placing one
problem program in wait state and enabling
another problem program that was previously
placed in wait state, or that was ready but
in a lower priority partition, to be
dispatched again by the Disk Operating
System task supervisor.

One dummy element control block
indicates the end of all element chains and
is permanently the last item on the Ready
Queue. When this ECB reaches the top of
the Ready Queue, the last QTAM problem
program is placed in wait state.

INITIAL STATUS OF THE QTAM CONTROL PROGRAM

This section describes briefly the initial
status of QTAM, that is, the status at the
time the message control program phase is
loaded from the core image library for
execution. The initial status of the QTAM
queues and the initial location of the
primary resources are represented by the
assembly listings of the various QTAM
components and are summarized here.
Detailed information concerning the initial
status of QTAM can be obtained from the
assembly listings.

Ready Queue: The initial item at the top
of the Ready Queue is a full STCB to be
used for handling the first QTAM SVC issued
in a problem program.

Available Buffer Queue: All buffers
initially appear in the element chain of
this queue as a result of the BUFFER macro
expansion.

2q DOS QTAM Program Logic Manual

Additional-CCW Queue: All Pause BRB/CCWs
initially appear in the element chain of
this queue as a result of the BUFFER macro
expansion.

Inactive-ERB Queue: All BRBs initially
appear in the element chain of this queue
as a result of the BUFFER macro expansion.
The STCB chain initially contains the STCB
for the Queue Insert subtask.

Communication Line Queues: There is one
such queue for each line in the system.
The QCB is contained in the LCB generated
by the expansion of the DTFQT macro for the
line group file. If receiving (CPRI=R) or
equal (CPRI=E) priority is specified, the
STCB for the Receive Scheduler subtask is
initially first in the line's STCB chain.
If sending (CPRI=S) priority is specified,
the STCB for the Qdispatch subtask is
initially first in the STCB chain.

DASO-Destination Queue: The element chain
of this queue initially contains the dummy
last element labeled IJLQIP5F which
indicates that no buffers are in the chain.
Initially, the STCB for the line's Send
Scheduler subtask is first in the STCB
chain.

DASO-Process Queue: The element chain
initially contains only the dummy last
element labeled IJLQIP5F. The first STCB
is initially the one for the Get Scheduler
subtask.

ARU Send Queue: The element chain
initially contains only the dummy last
element labeled IJLQIP5F, which indicates
that no ALCBs are in the chain.

7772 DCV Buffer Queues: All DCV buffers
associated with one or more 7772 line
groups initially appear in the element
chain of the corresponding queue as a
result of the BUFARU macro expansion. The
STCB chain initially contains the STCB for
the Queue Insert subtask.

All Other Queues: The element chain of all
other queues initially contains either:

1. The dummy last element (IJLQIP5F in
module IJLQIP) which indicates that no
elements are in the chain initially,
but that elements may appear in the
chain when execution begins; or

2. The address of the queue itself which
indicates that no elements ever appear
on the element chain. The STCB chain
for all queues not mentioned is
limited to the STCB for the subtask
having the same name as the queue.
For example, the STCB chain of the
Disk I/O queue initially contains, and
is limited to, the STCB for the Disk
I/O subtask.

This section describes the functional flow
of QTAM operations at the component level.
QTAM is composed of five major functional
components:

1. Message control problem program-- The
portion of the message control program
phase that executes in problem program
state. Hereafter, in this discussion,
this component is referred to simply
as the message control program.

2. Message processing programs-- One or
more message processing programs may
be executed in the foreground-one
(only with multitasking),
foreground-two, and/or background
partitions.

3. QTAM nucleus-- The SVC/Subtask Control
routine is the supervisor-resident
component of QTAM that handles QTAM
svcs and controls the dispatching of
QTAM subtasks.

4. QTAM subtasks-- A portion of the
message control program phase that
executes in supervisor mode as a
logical extension of the QTAM nucleus.
Each subtask is represented to the
QTAM nucleus by a STCB and is selected
for execution when the unit of work it
performs is required.

5. QTA.i"'l appendages-- A portion of the
message control program phase that
services interruptions caused by QTAM
line or disk operations. This
component runs in supervisor mode and
is entered from the DOS Supervisor
each time an interruption caused by a
QTAM input/output operation occurs.

Note: QTAM transient routines might
be considered as a sixth major
component. However, for the sake of
continuity, the QTAM Open routine is
discussed as a part of the message
control or message processing program
depending on which type of QTAM file
is being opened.

This section discusses the following
three major subjects, since all QTAM
operations (audio and nonaudio) use the
same message control and message processing
programs:

1. The message control program. This
describes step by step the total
process initiated for receiving and

OUTLINE OF QTAM OPERATIONS

sending a message over a communication
line.

2. The message processing program. This
describes the message transfer to and
from a message processing program.

3. IBM 2260-2848 Local operations. This
describes the operations for the IBM
2260-2848 Local Display Complex, with
emphasis on the areas differing from
remote operations.

The interaction of the QTAM subtasks and
appendage is extensive for both operations.
Therefore, descriptions of these components
are included as required in both subjects.

Because the functional flow of audio and
nonaudio operations is very different, each
major subject is covered in two sections:
nonaudio and audio applications.

Processing in all the QTAM components is
initiated as a result of interrupts (SVC,
disk, and line) that occur during the
receiving and sending of a message or the
transferring of a message to or from a
message processing program. These
interrupts result in the processing of one
or more asynchronously operating subtasks
and/or an appendage. The QTAM subtasks
communicate with one another and with the
message control or processing program by
means of the QPOST and QWAIT functions (see
section on QPOST and QWAIT). When a
subtask (or program) has an element to be
processed by another subtask, the QPOST
function is used. When a subtask (or
program) is ready to receive an element,
the QWAIT function is used. Subtask
selection is performed by the QTAM nucleus
and is controlled by the ordering of items
on the Ready queue as discussed previously
under Queue Management.

To avoid excessive repetition, the
operation of the QTAM nucleus which is
entered to perform a QPOST or QWAIT
function is not included in this
description. Instead, the switch from one
subtask to another is indicated by "***
ENTER subtask name SUBTASK***"· The return
to a problem program (message control or
processing> that issued a QPOST or QWAIT is
indicated in a similar manner.

Note: The following discussion assumes
that multitasking support is not included.
This affects terminology rather than QTAM
operations.

outline of QTAM Operations 25

The interference of one line with
another is handled by the queueing provided
within the QPOST/QWAIT functions. For this
reason and for the sake of simplicity, the
operation of more than one line is not
discussed. In this manner, the logical
sequence of events for an operation can be
described without regard to other items on
the Ready queue or unrelated interrupts
that may occur. For example, when an
element is posted to a queue, it is assumed
that no unrelated subtask is contending for
control; therefore, the subtask associated
with that queue is activated immediately.

Appendix E is a foldout chart showing
the functional flow of the four QTAM
components discussed in this chapter. The
four major components are separated by
solid lines. The subtasks, appendages, or
modules within a component are divided by
broken lines. The labels on the chart are
the names of routines or LPS subgroups and
define the boundaries of a particular
routine or subgroup. Detailed discussions
and flowcharts of all the routines
described in this chapter are contained
elsewhere in this publication (refer to the
table of contents for page numbers).

MESSAGE CONTROL PROGRAM FOR A NONAUDIO
APPLICATION

After the message control program phase has
been loaded from the core image library
into the foreground one partition, it is
entered for execution by the DOS
Supervisor.

ENTER MESSAGE CONTROL PROGRAM

INITIALIZATION

1. QTAM Open Monitor/Open DASO Message
Queues File Routine, Phase 1: The
address of the QTAM Vector Table is
placed into the DOS Communication
Region so that QTAM routines requiring
information from the Vector Table can
access it. The extent data for these
QTAM files is read, and the File
Protect subroutine is called into the
transient area. It is passed a
parameter directing it to call into
the transient area the open module
that must be executed next.

2. Open DASO Message Queues File Routine,
Phases 2 and 3: If the DASO Message
Queues file is a multivolume file,
this routine prepares the proper

26 DOS QTAM Program Logic Manual

initialization functions. Extent data
for the next extent (if any) is read,
and Phase 3 is called into the
transient area. Phase 3 tests if this
is the last extent for the file. If
yes, return is made through the File
Protect subroutine to the system Open
Monitor. If no, return is made to
Phase 2.

3. Open Checkpoint/Restart Routine., Phase
1: If a checkpoint records file is to
be opened, this routine tests to
determine if a restart is to be
performed. If so, Phase 2 of the Open
Checkpoint/Restart routine is called
into the transient area. (This
discussion assumes that a restart is
not to be performed.) The routine
checks the size of the checkpoint work
area and formats the disk extents with
dummy records. Return is made to the
QTAM Open Monitor.

4. Open Line Group/MS Queues Routine: A
Set Address (SAD) command is prepared
to set the telecommunications control
unit (except for an IBM 2701) to the
proper transmission speed for the
terminal devices in the line group.
If the line is a nonswitched line, an
Enable command is prepared. If
neither cornrnand is required, a No Op
command is prepared. An SVC 31
CQPOST) is issued to post the LCB to
itself. This causes the line to be
scheduled for a receiving operation.

ENTER RECEIVE SCHEDULER SUBTASK

5. Receive Scheduler Routine: If there
is an active entry in the polling list
for the line, exit is made to the BRB
Ring routine to continue
initialization procedures for
receiving. If the end of the polling
list is detected, exit is made to the
End of Poll Time Delay routine to
observe a polling interval, if any.

6. BRB Ring Routine: A ring of buffer
request blocks (BRBs) is built for
dynamic buffer allocation (BRBs are
obtained from the Inactive BRB queue).
The number of BRBs in the ring is
equal to the value specified in the
BUFNO operand. The address of the
first BRB in the ring is stored in the
LCB so the Activate routine can access
it later, and the read-initial
operation code is placed in the LOPC
field of the LCB. The first BRB is
then posted to the Active BRB queue
with a high priority (X'EC') to cause
immediate servicing of the request for
a buffer.

7.

ENTER ACTIVE BRB SUBTASK

Active BRB Routine: Recognition of
the high priority BRB causes an exit
to the Buffer-BRB routine when a
buffer is available (an available
buffer is assumed for this
description).

8. Buffer-BRB Routine: An empty buffer
is obtained from the Available Buffer
queue, and it is assigned to the line
by placing the address of the LCB in
the buffer prefix. The buffer is then
posted to the LPS queue with a
priority of X'EO'.

RETURN TO MESSAGE CONTROL PROGRAM

9. QTAM Open Routine (continued): If
there are other lines in the line
group, an SVC 31 (QPOST) is issued and
Steps 3 through 6 are repeated for
each line. Thus, when the line group
has been completely opened, the
following conditions exist:

a. there is a ERB ring for each line
in the group.

b. there is one empty buffer for each
line in the group chained into the
LPS queue.

10. ENDREADY Macro Instruction: The
user's registers are saved in the user
save area. If the Checkpoint Records
file has been opened, a QPOST (SVC 31)
is issued to post the checkpoint
element to itself. This action causes
the interval timer to be set for the
first checkpoint interval. (This
discussion assumes that the checkpoint
interval method of checkpointing is
used.>

ENTER CHECKPOINT SUBTASK

11. Checkpoint Routine: The
user-specified interval is obtained
and is passed to the Time Delay
routine.

12. Time Delay Routine: A special element
representing a request to set the
timer for the specified interval is
posted to the LPS queue. Control
returns to the Message Control
Program.

RETURN TO MESSAGE CONTROL PROGRAM

13. ENDREADY Macro Instruction: Exit is
made to the LPS Control routine.

1q. LPS Control Routine: A QWAIT (SVC 30)
is issued to wait on the LPS queue.
The timer request element posted to
this queue in Step 12 is returned, and
a SETIME macro instruction is issued
to set the timer for the specified
checkpoint interval.

RECEIVING INITIATION

1. LPS Control Routine: An SVC 30 is
issued to QWAIT for the next item on
the LPS queue. The QTAM nucleus
removes an empty buffer from the LPS
queue and returns it to the LPS
Control routine. (The buffer
previously was placed on the LPS queue
by the Buffer-BRB routine.) The
registers are initialized for the
Activate routine,0 and the buffer is
passed to that routine.

2. Activate Routine: The address of the
first BRB in the ring formed for this
receiving operation is obtained from
the LCB for the line. A ccw for
reading data into the entire buffer is
prepared in the first two words of
this BRB (the third word contains the
TIC address to the next BRB in the
ring). Idle characters are inserted
into the buffer per the value
specified by the LPSTART macro
instruction. The BRB is passed to the
Channel Program Generator routine.

3. Channel Program Generator Routine:
The CCWs for terminal selection
(polling) and reading the first
segment are prepared (read-initial
channel program). In preparing the
channel program, the CCW for the
buffer is transferred from the passed
BRB to the channel program area, and
the TIC command is moved from the BRB
to the end of the CCWs in the channel
program area.

Note that the TIC address is
invalid at this point because a buffer
has not yet been assigned to the next
BRB in the ring. The PCI flag is set
in the read data ccw to cause a
program-controlled interrupt (PCI) at
the start of this first buffer. An
EXCP (SVC 0) is then issued to start
the I/O operation. After the I/O
operation has been started, exit is
made to the LPS Control routine.

Outline of QTAM Operations 27

4. LPS Control Routine: QWAIT for the
next item on the LPS queue. If there
are other lines in the system; steps 2
through 4 are repeated until input
operations have been started on each
line. When an I/O operation has been
started for each line, the LPS Control
routine finds no further buffers on
the LPS queue, and the message control
program enters a wait state. At this
point a message processing program in
a lower priority partition is given
control through the DOS task selection
mechanism. Subsequent PCis and I/O
interruptions cause buffers to be
posted to the LPS queue, thereby
allowing the message control program
to proceed.

FIRST PCI (RECEIVING)

It was emphasized under QTAM Opens that
initially only one buffer is assigned to a
line for receiving. QTAM causes a PCI to
occur at the start of the first buffer so
that an empty buffer can be assigned to
each of the remaining BRBs (after the
first) in the ring formed for receiving the
message. The DOS Supervisor passes control
to the QTAM Line Appendage which recognizes
the PCI and enters the Line-PCI routine.

1. Line-PCI Routine: The remaining BRBs
(after the first BRB) in the BRB ring
are posted to the Active BRB queue
with high priority (X'EC').

ENTER ACTIVE BRB SUBTASK

2. Active BRB Routine: Recognition of
the high-priority BRB causes an exit
to the Buffer-ERB routine if a buffer
is available Can available buffer is
assumed for this description}.

3. Buffer-BRB Routine: Another empty
buffer is assigned for receiving on
the line and is posted to the LPS
queue with a priority of X'EO'.

Steps 2 and 3 are repeated for each
BRB posted to the Active BRB queue by
the Line-PCI routine. The buffers are
obtained from the Available Buff er
queue.

4. Return to DOS Supervisor: Servicing
of the PCI is now complete; therefore,
control is returned to the DOS
Supervisor. Before returning to the
Supervisor, however, the message
control program is removed from the
wait state by turning off the wait

28 DOS QTAM Program Logic Manual

flag in the PIB for the foreground-1
partition. This procedure is
performed because the buffer(s) postea
to the LPS queue satisfies the QWAIT
SVC issued by the LPS Control routine
in step 5 of Receiving Initiation.

5. DOS Supervisor: Because the message
control program is the
highes~-priority program ready to
proceed, that program is selected for
activation by the DOS Supervisor.
Control is returned to the LPS Control
routine at the instruction following
the QWAIT.

Note: The procedures described in
steps 4 and 5 apply in most cases
where a PCI or I/O interrupt is
processed by QTAM routines. For the
sake of brevity, any discussion of
returns to the DOS Supervisor and the
action taken by the Supervisor is
omitted from the remainder of this
description except when a deviation
from these procedures occurs.

RETURN TO MESSAGE CONTROL PROGRAM

6. LPS Control Routine: The empty buffer
returned by the QWAIT is passed to the
Activate routine.

7. Activate Routine: A ccw (with the PCI
flag set) is prepared for the entire
buffer in the second (next) BRB in the
ring. The BRB is then added to the
channel program already in process for
the line. This is accomplished by
making the TIC address valid in the
ccw at the end of the channel program
previously built (see Step 3 of
Receiving Initiation). Exit is then
made to the LPS control routine. In
this example, the second BRB now
contains a TIC to the third BRB in the
ring, but the TIC address is invalid
because a buff er has not yet been
assigned to the third BRB.

8. LPS control Routine: QWAIT for the
next item on LPS queue. Steps 6 and 7
are repeated until an empty buffer has
been assigned to each BRB in the ring.
The message control program then
enters the wait state pending the
arrival of another item on the LPS
queue.

PCI--FULL BUFFER (RECEIVING)

During line receiving operations, a PCI
occurs at the start of each buffer. The

/
I

__

action required for the PCI at the start of
the first buffer has already been
described. The PCI for each buffer
subsequent to the first indicates that the
previous buffer has been filled with
message data and can be processed by the
user's LPS section. The handling of each
such PCI is described here.

1. Line-PC! Routine: In this example,
the PC! at the start of the second
buffer indicates that the first buffer
has been filled with incoming data.
The first BRB in the ring (the BRB to
which the first buffer was assigned)
is posted to the Active-ERB queue with
a low priority (X"E4'), and the
message-filled buff er is posted to the
Interim LPS queue. More generally,
for all PCis subsequent to the first:

a. the preceding BRB is posted to the
Active-ERB queue, and

b. the message filled buffer is
posted to the Interim LPS queue.

The former allows the same BRB
ring to be reused for the case where
the incoming message requires more
buffers than specified in the BUFNO
operand. The latter causes each
message-filled buffer to eventually be
routed to the user's LPS section.

ENTER ACTIVE BRB SUBTASK

2. Active BRB Routine: The BRB posted by
the Line-PC! routine in the previous
step is chained into the element chain
of the Active BRB queue.

ENTER INTERIM LPS SUBTASK

3. Interim LPS Routine: The
message-filled buffer posted to the
Interim LPS queue in step 1 is now
posted to the LPS queue with low
priority (X'EO').

Note: The Interim LPS subtask
provides the means of delaying
the processing of all buffers
until all BRBs are processed
when a PCI is missed due to
extended CPU disable time.

RETURN TO MESSAGE CONTROL PROGRAM

4. LPS Control Routine: The SVC 30
(QWAIT) issued by this routine in step
8 of First PCI (Receiving> is

satisfied by the appearance of the
message-filled buffer on the LPS
queue. The registers are initialized,
and the buffer containing the header
segment of the incoming message is
passed to the receive group of the
user's LPS.

5. RCVSEG subgroup of LPS: Executed for
all segments.

6. RCVHDR Subgroup of LPS: This portion
of the LPS is executed only for the
first buffer of the message (after the
second PCI). The Lookup Terminal
Table Entry routine Clinked to by
either the Route Message routine or
the DIRECT macro expansion) sets the
address of the QCB for the destination
in the LQDT field of the source line
LCB.

7. ENDRCV Subgroup of LPS: The ENDRCV
macro expansion tests the BSTA field
of the buffer prefix for EOB, EOT or
duplicate header. If any of these are
indicated, the functional macros
within the ENDRCV subgroup are
executed; otherwise, exit is made to
the Cleanup routine. In this example,
it is assumed that no EOB or EOT
appears in the first buffer. (The
duplicate header condition applies
when multiple routing of the message
is being performed via the EOA macro
and is not considered in this
discussion.)

8. Cleanup Routine: An SVC 31 (QPOST) is
issued to post the buffer containing
the header to the DASO-destination
queue with a priority of X'E4'. (The
address of the QCB for the destination
was saved in the LCB in step 6.) For
the first buffer, this causes the Send
Scheduler subtask to be activated.
For subsequent buffers containing
segments of this message, it causes
the DASO-Destination subtask to be
activated.

ENTER SEND SCHEDULER SUBTASK

9. Send Scheduler Routine: This routine
detects a message-filled buff er to be
written on the disk and exits to the
DASO-Destination routine.

10. DASO-Destination Routine: A disk
location (relative record number) is
assigned for this buffer. Disk
locations are reserved and recorded
for the next segment of this message
Cif any) and the header segment of the
next message for this destination
queue. The buffer is then posted to

outline of QTAM Operations 29

the Disk I/O queue; meanwhile, the
Send Scheduler waits for the
destination line to become free.

ENTER DISK I/O SUBTASK

11. Disk I/O Routine: The relative record
number assigned to the buffer in the
previous step is converted to an
actual DASD address. A channel
program is set up for writing the
buffer (less the first eight bytes) on
the disk, and a special control block
is posted to the LPS queue to request
that the I/O be started.

RETURN TO MESSAGE CONTROL PROGRAM

12. Cleanup Routine: The QPOST (SVC 31)
issued by this routine in step 8 is
completed. This routine then exits to
the LPS Control routine.

13. LPS Control Routine: QWAITs on the
LPS queue. The request to start a
Disk I/O operation posted to the LPS
queue in step 11 is returned. This
routine issues an EXCP (SVC 0) to
start the I/O and QWAITs for the next
item on the LPS queue. At this point,
no item is on that queue so the
message control program enters a wait
state.

Summary of Operations to this Point

Operations completed:

• Filling of first buffer from line.

• Processing of first buffer by receive
group of user's LPS.

Operations in process:

• Filling of second buffer from line

• Writing of first buffer on the disk

Possible Interruptions

At this point, any one of four possible
interruptions may occur due to the
operations in process.

30 DOS QTAM Program Logic Manual

• A PCI indicates that another buffer has
been filled from the line. Steps 1
through 13 of PCI--Full Buffer
(Receiving> are repeated with the
following differences:

1. The buffer is not processed by the
RCVHDR subgroup of the LPS.

2. The DASO-Destination routine
initializes the buffer for a text
segment and reserves only one disk
location (for the next text
segment).

• Channel-End (CE), Device End (DE) from
the disk indicates that writing of the
first buffer on the disk is complete.

• CE, DE from the line indicates that an
EOB was received from the terminal.

• CE, DE, and unit exception (UE) from
the line indicates that an EOT was
received from the terminal.

This discussion assumes that the disk
interruption occurs first followed by a
line interruption for an EOB.

DISK INTERRUPTION (RECEIVING)

CE, DE from the disk indicates that the
disk write operation has been completed.
The DOS Supervisor passes control to the
Disk-End Appendage.

1. Disk-End Appendage: The message
segment contained in the buffer has
been recorded in the appropriate
DASO-Destination Cor process) queue;
therefore, the buff er is now released.
This is accomplished by posting the
buff er to the Available Buffer queue.

ENTER AVAILABLE BUFFER SUBTASK

2. Available Buffer Routine: The BRB
placed on the element chain of the
Active BRB queue by the Line-PC!
routine (step 1 of PCI--Full Buffer
(Receiving>> is found, removed, and
passed to the Buffer-BRB routine.

3. Buffer-BRB Routine: An empty buffer
is removed from the Available Buffer
queue and assigned for receiving on
the line. The buffer is posted to the
LPS queue with a priority of X'EO'.

/

c

(

RETURN TO MESSAGE CONTROL PROGRAM

4. LPS Control Routine: The appearance
of an empty buff er on the LPS queue
causes the QWAIT earlier issued by
this routine to be satisfied. The
buffer is passed to the Activate
routine.

5. Activate Routine: A CCW is prepared
in the BRB for the entire buffer and
is added to the channel program
already in process.

6. LPS Control Routine: QWAIT on the LPS
queue. The message control program
enters the wait state.

LINE END INTERRUPTION (RECEIVE EOB)

CE, DE on a line I/O interruption indicates
that an EOB was received from the terminal,
control passes to the Line-End routine in
the Line Appendage.

1. Line-End Routine: A check is made for
errors in the transmission (data
check, intervention required, or
time-out). If any is detected, it is
recorded in the error halfword of the
LCB. The offset to the next available
location (following the EOB) in the
buffer is recorded in the BSSZ field
of the buffer prefix, and the buffer
is passed to the Interim LPS routine.

2. Interim LPS Routine: The offset in
the terminal table of the source
terminal is obtained from the LCB and
placed in the buffer pref ix (BSTO
field). The buffer containing the EOB
is posted to the LPS queue with x•Eo'
priority.

RETURN TO MESSAGE CONTROL PROGRAM

3. LPS Control Routine: The buffer
posted to the LPS queue in the
preceding step is obtained and passed
to the user's LPS section.

4. RCVSEG Subgroup of LPS: Executed for
all segments.

5. RCVHDR Subgroup of LPS: This subgroup
is bypassed because the current buffer
is not the first buffer.

6. ENDRCV subgroup of LPS: Because the
current buffer contains an EOB, this
subgroup is executed up to and
including the EOE (or EOBLC) macro
expansion.

7. EOB (or EOBLC) Routine: The Read
Continue indicator is set in the LCB,
and the buffer is passed to the
Activate routine.

8. Activate Routine: A CCW is prepared
for the entire buffer in the BRB
associated with the buffer.

9. Channel Program Generator Routine: A
Read continue channel program is
generated to respond to the EOB, and
to read the next block of data into
the portion of the buffer following
the EOB. An EXCP is issued to start
the I/O operation, and exit is made to
the LPS Control routine.

10. LPS control Routine: QWAIT for the
next item on the LPS queue. No item
is on the LPS queue, so the message
control program enters the wait state.

LINE END INTERRUPTION (RECEIVE EOT)

CE, DE and UE from the line indicate that
an EOT was received from the terminal.
Control passes to the Line-End routine in
the Line Appendage.

1. Line-End Routine: Any errors detected
are recorded in the error halfword of
the LCB. The buffer is passed to the
Interim LPS routine.

2. Interim LPS Routine: The buffer
containing the EOT (and the previous
EOB) is posted to the LPS queue with a
priority of X'EO".

RETURN TO MESSAGE CONTROL PROGRAM

3. LPS Control Routine: The buffer
posted to the LPS queue in the
preceding step is obtained and passed
to the user's LPS section.

4. RCVSEG Subgroup of LPS: Executed for
that portion of the segment that
follows a previous EOB.

5. RCVHDR Subgroup of LPS: This subgroup
is bypassed because this buffer is not
the first buffer. CA previous EOB
also causes this subgroup to be
bypassed.)

6. ENDRCV Subgroup of LPS: This entire
subgroup is executed because an EOT
has been received.

7. POSTRCV Macro Instruction: The
expansion of this macro is a branch to
the Cleanup routine.

Outline of QTAM Operations 31

8. Cleanup Routine: An SVC 31 (QPOST) is
issued to post the buffer to the
DASD-Destination queue with a priority
of X'E4'.

ENTER DASO-DESTINATION SUBTASK

9. DASD-Destination Routine: The disk
location previously reserved for the
next segment in this message is
assigned to this buffer. Because this
buff er contains an EOT and is not the
first segment of the message, disk
locations are not assigned for the
next segment or the header segment of
the next message. The buffer is then
posted to the Disk I/O queue.

ENTER DISK I/O SUBTASK

10. Disk I/O Routine: The relative record
number assigned to the buffer is
converted to an actual DASD address.
A special control block requesting
that the disk I/O operation be started
is posted to the LPS queue. (As
previously described, this control
block is passed to the LPS Control
routine which issues the EXCP to start
the I/O.)

RETURN TO MESSAGE CONTROL PROGRAM

11. Cleanup Routine (continued): The SVC
31 issued in step 8 has been
completed. Any buffers assigned for
this operation but not used are posted
to the Available Buffer queue with
X'E4' priority. The following step is
repeated for each such buffer posted.

ENTER AVAILABLE BUFFER SUBTASK

12. Available Buffer Routine: The buffer
being released is linked into the
element chain of the Available Buffer
queue.

RETURN TO MESSAGE CONTROL PROGRAM

13. Cleanup Routine (continued): At this
point, the Distribution List, EOA, and
Conversational Mode routines would be
executed if any of the functions
performed by these routines are
specified for this message (this
example assumes none were specified).
Exit is made to the Free BRB routine.

32 DOS QTAM Program Logic Manual

14. Free BRB Routine: Each BRB in the
ring constructed for the receiving
operation just completed is posted to
the Inactive BRB queue.
Exception: If a BRB is in the Active
BRB queue, it is not posted. ~ flag
is set in this BRB so that when a
buffer is available, it will not be
assigned to the BRB and the BRB is
then posted to the Inactive BRB queue.

The LCB for the line is then posted
(SVC 31) to itself to free the line
for its next use.

SUMMARY OF RECEIVING

Operations Completed

• Received complete message including
EOT.

• Message written on DASO-destination
queue.

• Indicated to the destination line that
a message is queued for transmission
(this was accomplished by chaining the
STCB for the Send Scheduler into the
LCB for the destination line).

• Released buffers and BRBs associated
with source line.

• Freed the source line to poll or send.

Next Use of source Line

The next use of the nonswitched line over
which the message was received depends on
the relative priority of receiving versus
sending as specified in the CPRI operand
for the line group.

• Receiving has priority over sending
(CPRI=R). Messages are sent on the
line only while a polling interval is
being observed. In this example, if
CPRI=R were specified, the Receive
Scheduler would now be dispatched to
initialize for repolling the same
terminal.

• Receiving and sending have equal
priority (CPRI=E). Messages are sent
on the line at the end of a polling
pass of the terminals on the line,
regardless of any specified polling
interval. In this example, polling
would continue until the end of the
polling list is detected.

_

(
I

.__

' {.

• Sending has priority over receiving
(CPRI=S). The Send Schedul.er gains
control.s for sending on the l.ine each
time an EOT is received, the end of the
poll.ing list is detected, or a negative
response to polling is received.

Because this discussion assumes a
one-line system, the message just received
is to be sent to a terminal on the same
line. Also, for the purpose of this
example, it is assumed that sending has
priority over receiving. For either
receiving or equal priority, the procedures
already described would be repeated at this
time. If the message just received was
destined for a terminal on another line,
the time at which it would be sent would
depend on the status of the system and the
priority assigned to that line. But at
some point in time, the destination line
would become free, and the Send Scheduler
would gain control of the line.

SENDING INITIATION

Continuing with the example, because
sending priority is assumed for the line,
the line's Send Scheduler is activated for
sending the message just received.

ENTER SEND SCHEDULER SUBTASK

1. Send Scheduler Routine: This routine
exits to the BRB Ring routine when the
line is free for sending and a
complete message is on the
DASD-destination queue for the line.

2. BRB Ring Routine: A ring of BRBS to
be used for dynamic buffer allocation
is built. (BRBs are obtained from the
Inactive BRB queue.) The address of
the first BRB in the ring is stored in
the LCB for later access by the
Activate routine. Because this is a
sending operation, the disk relative
record number of the first segment in
the message is placed in the first
BRB, and the BRB is assigned (RSTA=9)
for a disk read. The first BRB is
then posted to the Disk I/O queue with
a priority of X'EO'.

RETURN TO MESSAGE CONTROL PROGRAM

At this point, the QPOST of the LCB
issued by the Free BRB routine (step
14 of Line End Interruption (Receive
EOT)) is compl.eted and control
returned to that routine which exits

immediately to the I.PS Control
routine.

3. LPS Control Routine: QWAIT for item
on the LPS queue.

ENTER DISK I/O SUBTASK

4. Disk I/O Routine: A buffer from the
Available Buffer queue is assigned for
the disk read operation. (If no
buffer is available, the BRB is posted
to the Active BRB queue to wait for an
available buffer.) The relative
record number of the first segment is
converted to an actual disk address,
and a request to start the disk read
operation is posted to the LPS queue.

RETURN TO MESSAGE CONTROL PROGRAM

5. LPS Control Routine: Issues an EXCP
to start the disk read operation, and
then QWAITs for an item on the LPS
queue. The message control program
enters a wait state pending completion
of the disk read.

DISK INTERRUPTION--SENDING, FIRST BUFFER

CE, DE from the disk indicates that reading
of the first buffer is complete. The DOS
Interrupt Handler passes control to the
Disk End Appendage.

1. Disk End Appendage: A sequence-out
number is assigned to the message and
recorded in the header prefix. The
message-sent <or serviced) flag is set
in the prefix (bit 3 of ESTA) and a
new start I/O is requested to rewrite
the same buffer on the disk.
(Rewriting the same buffer on the disk
with the message-sent flag turned on
indicates to QTAM that the message has
been handled even though it has not
actually been transmitted yet.)
Control returns to the DOS Supervisor
which starts the I/O to rewrite the
buffer and then returns to the
interrupted program.

DISK INTERRUPTION--SENDING ALL BUFFERS,
SECOND TIME FOR FIRST BUFFER

1. Disk End Appendage: The buffer filled
by the disk read operation is posted

Outline of QTAM Operations 33

to the LPS queue. If this is the
second interrupt for the first buffer,
the message-sent flag is turned off in
the buff er prefix prior to posting the
buffer to the LPS queue. The disk
relative record number of the next
segment is placed into the next BRB in
the ring, and the BRB is posted to the
Disk I/O queue.

ENTER DISK I/O SUBTASK

2. Disk I/O Routine: A buffer from the
Available Buffer queue is assigned for
reading the next segment of the
message from the disk. The relative
record number of the next segment is
converted to an actual DASO address.
A request to start the disk-read
operation is posted to the LPS queue
with a high priority, so it will be
processed before the message-filled
buffer placed on the LPS queue in step
1.

RETURN TO MESSAGE CONTROL PROGRAM

3. LPS Control Routine: This routine
issues an EXCP to begin reading the
next segment from the disk queue. A
QWAIT is then issued to obtain the
message-filled buffer from the LPS
queue. This buffer is passed to the
user's LPS section.

4. SENDHDR Subgroup of LPS: Executed for
the first segment only.

5. SENDSEG subgroup of LPS: Executed for
all segments.

6. ENDSEND Macro Instruction: The
expansion of this macro generates a
branch to the Activate routine and an
entry point to the End Send subgroup.
At this point, the branch to the
Activate routine is taken.

7. Activate Routine: The message-sent
flag is set in the buffer prefix of
all buffers. For the first buffer,
the address of the first BRB in the
ring is obtained from the LCB for the
destination line. A CCW is prepared
in the BRB for writing the entire
buffer. The BRB also contains an
invalid (two low order bits are
nonzero) TIC address to the next BRB.
The BRB is passed to the Channel
Program Generator routine with an
indication that a Write Initial
channel program is to be generated.

34 DOS QTAM Program Logic Manual

For all buffers except the first
buffer, a ccw is prepared in the BRB
for the entire buffer. This BRB is
added to the channel program already
in process by making the TIC address
in the previous BRB valid <two
low-order bits are cleared to zero).
The PCI flag is set in the ccw, and
exit is made to the LPS Control
routine. Step 8 is executed only for
the first buffer of the message.

8. Channel Program Generator Routine: A
write-initial channel program is
generated in the channel program area
for the destination line. It consists
of the ccws for terminal selection
(addressing) and writing the first
segment. In preparing the channel
program, the ccws for writing the
segment and the TIC to the next BRB
are transferred from the passed BRB to
the end of the channel program area.
An EXCP is issued to start the I/O
operation, and exit is made to the LPS
Control routine.

9. LPS Control Routine: A QWAIT is
issued for the next item on the LPS
queue. The message control program
enters the wait state.

To avoid repetition in this
discussion, the following operations
are assumed to be completed or in
progress at this point:

Operations completed:

1. Writing of first segment of message
the line.

2. Reading of second segment from the
disk.

3. Processing of the second segment by
the Send group of the LPS.

Operation in progress:
Writing of second segment on the line.

PCI--SENDING

on

A PCI occurs during sending operations at
the start of every buffer except the first.
The PCI flag was set in the CCW prepared in
step 7 of the preceding section.

1. Line-PCI Routine: The preceding ERB
is posted to the Active BRB queue
(priority X'E4') to request a buffer
for the next disk read. The preceding
buffer is posted to the Available
Buffer queue because the data in the
buffer has been sent over the line.
This procedure allows the BRB ring to

/

_

(
I'-

(

be reused as many times as necessary
to send the entire message.

ENTER ACTIVE BRB SUBTASK

2. Active BRB Routine: The BRB posted to
the Active BRB queue in the preceding
step is linked into the element chain
of that queue.

ENTER AVAILABLE BUFFER SUBTASK

3. Available Buffer Routine: Posting of
a buffer to the Available Buff er queue
in step 1 causes this routine to be
entered. The BRB chained into the
Active BRB queue in step 2 is removed
from the element chain and passed to
the Buffer-BRB routine.

4. Buffer-BRB Routine: Because the BRB
is a buffer request for a disk read, a
buffer (from the Available Buffer
queue) is reserved for the disk read,
and the BRB is posted to the Disk I/O
queue.

ENTER DISK I/O SUBTASK

5. DisK I/O Routine: The relative record
number of the next segment to be read
from the disk is converted to an
actual DASD address. A request to
start the disk read operation is
posted to the LPS queue.

RETUKN TO MESSAGE CONTROL PROGRAM

6. LPS Control Routine: An EXCP is
issued to start the disk read
operation. (The interruption that
occurs when this disk operation is
completed was described previously.)
The routine then QWAITs for the next
item on the LPS queue.

LINE END INTERRUPTION (SEND EOE)

This example assumes that the second
segment of the message contains an EOB.
When this EOB is sent over the line, an
interruption occurs, and control is passed
to the Line Appendage.

1. Line-End Routine: This routine sets
up a restart address to read the
response to the EOB. An exit is then

made to the DOS Supervisor which
issues SIO to read the response.

LINE END INTERRUPTION (RESPONSE TO EOE)

1. Line-End Routine: Error checking is
performed for the block just sent.
Any error detected is recorded in the
error halfword for the line. The
buffer containing the EOB is posted to
the LPS queue with X'EO' priority.
This causes the buffer to be routed
through the Send LPS again for further
error checking of the block that was
sent over the line.

RETURN TO MESSAGE CONTROL PROGRAM

2. LPS Control Routine: The buffer
posted to the LPS queue in the
preceding step is routed to the user's
LPS section.

Note: Just before sending the segment
over the line, the message-sent flag
was turned on in the buffer prefix
(bit 3 of BSTA). When the segment is
routed to the Send LPS for the second
time, the functions in the ENDSEND
subgroup are performed. The SENDHDR
and.SENDSEG subgroups are bypassed
because the segment was processed by
these subgroups before it was sent
over the line.

3. ENDSEND Subgroup of LPS: For each EOB
detected in an outgoing message, this
subgroup is executed up to and
including the EOB (or EOBLC) routine.

4. EOE (or EOBLC) Routine: The
write-continue code is set in the LCB,
and the buff er containing the EOB is
passed to the Activate routine.

5. Activate Routine: A ccw is prepared
for the entire buffer in the BRB
associated with the buffer.

6. Channel Program Generator
Routine: The CCW prepared in the
preceding step is modified to write
that portion of the buffer that
follows the EOB character. An EXCP is
issued to start the I/O, and exit is
made to the LPS Control routine.

7. LPS Control Routine: QWAIT for the
next item on the LPS queue.

Outline of QTAM Operations 35

LINE END INTERRUPTION (SEND EOT)

1. Line End Routine: The buffer
containing the EOT is posted to the
LPS queue with X'EO' priority.

RETURN TO MESSAGE CONTROL PROGRAM

2. LPS control Routine: The buffer
posted to the LPS queue in the
preceding step is routed to the Send
group of the user's LPS. (Because the
message-sent flag is on, the buffer is
routed directly to the ENDSEND
subgroup.)

3. ENDSEND Subgroup of LPS: The entire
subgroup is executed because a
complete message has been sent.

4. POSTSEND Macro Instruction: The
expansion of this macro generates a
branch to the Cleanup routine.

5. Cleanup Routine: QPOST is issued to
release the buffer to the Available
Buffer queue.

6. Free BRB Routine: Each BRB in the
ring formed for sending the message is
posted to the Inactive BRB queue.

Exception: If a BRB is in the Active
ERB queue, it is not immediately
released. A flag is set in the BRB so
that when a buffer is available, it
will not be assigned to the BRB. The
ERB is then posted to the Inactive BRB
queue.

The LCB for the line is posted to
itself to free the line for its next
use.

Note: Once sending commences on a
line; the line's Send Scheduler
continually gains control until all
messages on the destination queue for
the line have been sent. The
procedures beginning at sending
Initiation are repeated for each
complete message on the destination
queue.

ENTER SEND SCHEDULER SUBTASK

7. Send Scheduler Routine: A test is
made to determine if another complete
message is on the DASD destination
queue. In this example, no other
message is on the queue at this point.

36 DOS QTAM Program Logic Manual

Therefore, the Send Scheduler removes
itself from the line's STCB chain and
waits for other messages to arrive on
the destination queue.

ENTER RECEIVE SCHEDULER SUBTASK

The cycle of receiving a message and
then sending it over the same line is
now complete. Because this discussion
assumes queueing by line, the Receive
Scheduler subtask gains control to
resume polling the terminals on the
line. If queuing were by terminal,
another Send Scheduler subtask would
be contending with the Receive
Scheduler for control of the line.

MESSAGE CONTROL PROGRAM FOR AN AUDIO
APPLICATION

The message control program is loaded and
entered as described in the section Message
control Program (for a Nonaudio
Application).

ENTER MESSAGE CONTROL PROGRAM

INITIALIZATION

1. QTAM Open 7772 DCV Vocabulary File
Routine: The address of the QTAM
Vector Table is placed, if necessary,
in the DOS communication Region so
that QTAM routines requiring
information from the vector table can
have access to it. The initialization
of the 7772 DCV buffers (BABs) is
completed and all the user-specified
DCV words are loaded into main
storage. The extent data for this
QTAM file is read, and the File
Protect Subroutine is called into the
transient area. A parameter is passed
directing it to call into the
transient area the open module that
must be executed next.

2. QTAM Open Audio Line Group/Output
Queue File Routine: The
initialization of all ALCBs is
completed and enabling is initiated on
each line according to initial
conditions.

0

()

END-OF-RECEIVING INITIATION

1. ENDREADY Macro Instruction: The
user's registers are saved in the user
save area. A branch is made to the
LPS control routine

2. LPS Control Routine: A QWAIT (SVC 30}
is issued to wait for the next ALCB on
the LPS queue. The LPS Control
routine finds no ALCB on the LPS
queue, and" the message control program
enters a wait state. At this point,
control is given to a message
processing program in a lower priority
partition through the DOS task
selection mechanism. Subsequent I/O
interruptions cause ALCBs to be posted
to the LPS queue. This allows the
message control program to proceed.

Possible interruptions: At this
point, any of the following line
interruptions may occur as a result of
audio input operations:

• Channel-end (CE} and Device-end
{DE) on an enable operation
indicate that a 7772 invitational
message may be sent.

• Channel-end and Device-end on a
read operation indicate that an
input message has been received in
an ALCB. However, if the input
length is null or if only one EOT
character has been received, the
line is disabled and reinitiated
according to initial conditions.

• Channel-end, Device-end, and Unit
Exception CUE) indicate that the
caller hung up during a read
operation. In this case, the line
is disabled and reinitiated
according to initial conditions.

AUDIO LINE END INTERRUPTION (RECEIVING)

Channel-end and Device-end on an audio line
I/O interruption indicate that an input
message was received from a remote
terminal. Control passes to the Audio
Line-End routine in the Audio Line
Appendage.

1. Audio Line-End Routine: A check is
made for errors in the transmission
(data check, or input message
overlength). If any is detected, it
is recorded in the error byte of the
ALCB. The length of the input message
is computed and saved in the ALCB.

But if this length is null or if the
received message consists of one EOT
character only, the line is disabled
and reinitiated according to initial
conditions. At this point, the ALCB
is posted to the LPS queue.

RETURN TO MESSAGE CONTROL PROGRAM

2. LPS Control Routine: The ALCB posted
to the LPS queue in the preceding step
is obtained and passed to the user's
ARU/LPS section.

3. User's ARU/LPS: The user can make a
check for input message overlength,
invalid repetition request as first
message in a transaction, or data
check during a read operation. As
soon as an error is detected, the ALCB
is passed to the ARU Internal routine.
If no error is detected, the ALCE is
passed to the ARU Receive routine
(step 4 is bypassed).

4. ARU Internal Routine: The user's
error message, in the form of an
address chain, is placed in the
address-chain buffer located in the
ALCB. The length of the address chain
is stored in the ALCB. The ALCE is
posted to the ARU Send queue, and exit
is made to the LPS Control routine.

5. ARU Receive Routine: The passed ALCB
is given a priority code of X'FC'. To
post this ALCB to the message
processing program in which it must be
processed, the corresponding
MS-process queue is searched. If
found, the ALCE is posted to it, and
control is given to the LPS Control
routine. If not found (the message
processing program has not been
opened), the ALCB is queued in a
waiting chain located in the
corresponding PROCESS macro expansion,
and control is given to the LPS
Control routine. This waiting chain
is directly transferred into the
MS-process queue as soon as the
message processing program is opened.

6. LPS Control Routine: Waits for the
next item on the LPS queue. If none,
the message control program enters the
wait state.

SUMMARY OF RECEIVING

An input message has been received in the
ALCB that must be processed by the message
processing program, and the caller is
waiting for an audio answer on the line.

Outline of QTAM Operations 37

SENDING INITIATION

Assume the message processing program
provided a 7772 output message expressed in
the form of an address chain. The audio
PUT routine places this address chain in
the address chain buffer of the ALCB, gives
the ALCB a priority code of X'FD', and
posts the ALCB to the ARU Send queue to
activate the ARU Send scheduler.

ENTER ARU SEND SUBTASK

1. ARU Send Routine: Checks the type of
unit related to the passed ALCB.
Assuming it is a 7772 ALCE, the
initial conditions for a 7772 write
operation are set, and a test is made
to determine whether or not a DCV
buff er pool has been declared. If
not, all DCV words to be used are
already in main storage (word table>,
and control is directly passed to the
7772 Disk Read routine. If yes, an
available DCV buffer is extracted from
the element chain of the DCV buffer
queue and attached to the requesting
ALCB. Then, control is given to the
7772 Disk Read routine.

Note: When the element chain of the
DCV buff er queue contains no available
DCV buffer, the ALCB is queued in a
temporary waiting chain located in the
DCV buffer queue. In this queue, the
STCB field is updated with the address
of the 7772 DCV buffer STCB, and
control returns to the Qdispatch
routine. At this point, a DCV buffer
is expected to become free by another
line. When this occurs, the available
DCV buffer is posted to the DCV buffer
queue, and the DCV buffer subtask is
activated.

ENTER 7772 DCV BUFFER SUBTASK

2. 7772 DCV Buffer Routine: Dequeues the
ALCB from the waiting chain and
associates it with the passed DCV
buffer. when the last ALCE in the
waiting chain has been thus dequeued,
the address of the STCB field of the
DCV buffer queue is updated with the
address of the Queue Insert STCB. No
update is performed if one or more
ALCBs remain in the waiting chain. In
either case, control is given to the
7772 Disk Read routine.

38 DOS QTAM Program Logic Manual

3. 7772 Disk Read Routine: Analyzes the
next address in the address chain
buffer of the ALCB.

• If this address is that of a DCV
word in main storage, it is
computed and stored into the ALCB.
The 7772 Disk Read routine then
makes a test for a user's pause
following a DCV word address. If
this pause is present, it is
stored into the ALCB. In either
case, control passes to the 7772
Line Write routine.

• If this address is that of a DCV
word in the DCV vocabulary disk
file, a part of the DCV buffer
allocated to the ALCB is assigned
to the DCV word to be read. The
disk address is computed, and the
disk channel program is updated in
the DCV buffer header. The 7772
Disk Read routine then makes a
test for a user's pause following
a DCV word address. If this pause
is present, it is stored into the
ALCB. In either case, the DCV
buffer is posted to the LPS queue.

4. LPS Control Routine: on recognition
of a DCV buffer, this routine issues
an EXCP to start a disk read
operation, and then waits for an item
on the LPS queue. The message control
program enters the wait state until
the next interruption.

IBM 7772 DISK INTERRUPTION

Channel-end and Device-end from the
vocabulary disk indicate that reading of
the DCV word is completed. The DOS
Interrupt Handler passes control to the
7772 Disk End Appendage.

1. Disk End Appendage: The address and
length of the DCV word being read are
stored into the ALCE associated with
the DCV buffer, and control passes to
the 7772 Line Write Routine.

IBM 7772 AUDIO SENDING

1. 7772 Line Write Routine: Updates the
channel program in the ALCB for a
write operation. The PCI flag is set
in the Write CCW used for the current
DCV word, except when this DCV word
corresponds to the last address in the
address chain. If a user's pause has
been stored into the ALCB, a write

"'-, __ _

c

(-

CCWfor pause is updated in the channel
program. In any case, the channel
program keeps looping on a Write ccw
for elementary pause until the next
DCV word is ready to be sent from the
DCV buffer. Then, the following
operations are executed, depending on
whether the DCV word to be sent is the
first word, an intermediate word, or
the last word.

• For the first DCV word, the ALCB
is posted to the LPS queue.

• For the intermediate DCV words,
the waiting loop created in the
channel program for the preceding
DCV word is broken, and the next
DCV word to be sent (except the
last) is chained to the Write ccw.
At this point, the section PCI
Sending is entered.

• For the last DCV word, there is no
PCI flag for the corresponding
Write ccw nor waiting loop in the
channel program. But, the last
Write CCW is chained to a Read or
Disable ccw, depending on the mode
of transaction. At this point,
the section Audio Line End
Interruption is entered.

RETURN TO MESSAGE CONTROL PROGRAM

2. LPS Control Routine: Issues an EXCP
to start a write line operation, and
waits for the next element on the LPS
queue.

PCI SENDING

A PCI occurs during the sending operation
of each DCV word except the last. The DOS
Interrupt Handler passes control to the
Audio Line Appendage.

1. Audio Line Appendage: on recognition
of a PCI on a 7772 write operation,
the ALCB is passed to the Disk Read
routine, and the previous steps (from
step 3 in section Sending Initiation)
are repeated until complete emission
of the last DCV word.

AUDIO LINE END INTERRUPTION

Assuming a 7772 audio line is working in
inquiry mode, the Write ccw (in the channel
program) for the last DCV word has been

chained to the Disable ccw. An
interruption occurs., and control passes to
the Audio Line Appendage.

1. Audio Line Appendage: on recognition
of a Channel•end or Device-end on a
7772 Disable operation, the channel
program in the ALCB is updated on the
Enable ccw according to initial
conditions. The exit from the Exit
interface routine is changed to a
return to the Audio Line Appendage
after the DCV buffer has become free.
The DCV buffer is posted to the DCV
buffer queue, and control is given to
the Qdispatch routine. If no ALCB is
waiting for a DCV buffer, the Queue
Insert subtask is activated.

ENTER QUEUE INSERT SUBTASK

2. Queue Insert Routine: The DCV buffer
is placed last-in-first-out in the
element chain of the DCV buffer queue,
the normal exit from the Exit
Interface routine is bypassed, and the
special return to the Audio Line
Appendage is taken.

3. Audio Line Appendage: The normal exit
from the Exit Interface routine is
reestablished, and the ALCB is posted
to the LPS queue.

RETURN TO MESSAGE CONTROL PROGRAM

~- LPS Control Routine: Issues an EXCP
to start an enable operation on line,
and waits for the next element on the
LPS queue.

At this point, the 7772 cycle of
receiving a message and sending an audio
answer on the same line is complete.

Note: The sending part of a
corresponding 7770 cycle is very
simple and short, as shown below:

• The ARU Send routine updates the
channel program, and posts the
ALCB to the LPS Control routine.

• The LPS Control routine issues an
EXCP to start the complete write
operation.

• Channel-end and Device-end passed
to the Audio Line Appendage
indicate the completion of the
transaction.

• The channel program is updated on
the Enable ccw according to
initial conditions.

outline of QTAM Operations 39

• The ALCE is posted to the LPS
queue which issues an EXCP to
start the enable operation.

At this point, too, the 7770 cycle is
complete.

MESSAGE PROCESSING PROGRAM FOR A NONAUDIO
APPLICATION

After the message processing program phase
has been loaded from the core image library
into either the foreground-2 or background
partition, it is entered for execution by
the DOS supervisor at some point when the
message control program (in foreground one}
enters tne wait state. This discussion
assumes that the message processing program
is executing in foreground-2.

ENTER MESSAGE PROCESSING PROGRAM

INITIALIZATION

1. Q'IAM Open Routine, Main Storage CMS)
Process and Destination Queues: When
an MS-process queue is being opened,
the address of the QCB for the
corresponding DASD-process queue
(generated by the expansion of a
PROCESS macro in the message control
program) is placed into the DTF table.
The address of the LCB for the
MS-process queue is placed into the
QSTL field of the QCB for the
DASO-process queue. This action opens
the "door" between the message control
and message processing programs and
allows messages to be transferred to a
processing program in response to a
GET.

To open a MS-destination queue, the
open bit is turned on in the DTF
table.

FIRST GET

The transfer of message-filled buffers to
the MS-process queue commences when the
first GET macro instruction is issued in
the message processing program. Prior to
the first GET, any incoming messages having
this processing program as a destination
are accumulated on the corresponding
DASO-process queue.

40 DOS QTAM Program Logic Manual

Note: The procedures for handling an
incoming message destined for a processing
program prior to the first GET are
basically the same as those described in
the section Message Control Program, except
that the message is written on a
DASO-process queue rather than on a
DASO-destination queue.

This discussion assumes that the work
unit requested by a GET is a complete
message (WU=M) terminated by an EQT
character, and that the user-defined work
area is large enough to contain an entire
message. It is also assumed that the
Expedite option was not specified in the
PROCESS macro.

1. Get Message Routine: This routine
normally releases the previous buffer
to the Return Buffer queue through a
QPOST (SVC 31). The previous buffer
is that buffer in the MS-process queue
from which data was transferred to the
user work area on the previous GET.
Because this is the first GET, there
is no previous buffer; therefore, a
dummy buffer (contained in the DTF
table for the MS-process queue) is
posted to the Return Buffer queue.

ENTER RETURN BUFFER SUBTASK

2. Return Buffer Routine: The QCB for
the MS-process queue is contained in
the DTF table for that queue and
serves a dual purpose because it is
also used as a BRB. The BRB is
initialized for requesting a buffer
into which a segment can be read from
the DASO-process queue. Because the
dummy buffer is being returned, exit
is made to the Get Scheduler routine.
Subsequent to the first GET, the
previous buffer being returned from
the MS-process queue is posted to the
Available Buffer queue before exiting
to the Get Scheduler.

3. Get Scheduler Routine: A test is made
to determine if there is a message on
the DASO-process queue (a message is
assumed in this description). The
disk relative record number of the
header segment of the message is
obtained from the QCB for the
DASO-process queue and placed into the
BRB. The BRB is then posted to the
disk I/O queue.

ENTER DISK I/O SUBTASK

4. Disk I/O Routine: A buffer from the
Available Buff er queue is assigned

(_/
forthe disk-read operation. (If no
buffer is available, the BRB is posted
to the Active BRB queue to wait for a
buffer to become available.) The
relative record number of the segment
is converted to an actual DASD
address, and a request to start the
disk operation is posted to the LPS
queue.

RETURN TO MESSAGE CONTROL PROGRAM

5. LPS Control Routine: The message
control program has been in the wait
state because a message processing
program gains control only when the
message control program is waiting for
an item to appear on the LPS queue.
The start I/O request posted in the
preceding step causes this wait to be
satisfied, and the LPS Control routine
issues an EXCP to start the disk read
operation. It then QWAITs for the
next item on the LPS queue, and the
message control program enters the
wait state again.

RETURN TO MESSAGE PROCESSING PROGRAM

6. Get Message Routine (continued): The
QPOST issued by this routine in step 1
has been completed. A QWAIT (SVC 30)
is issued to wait for a buffer in the
MS-process queue. At this point, the
message processing program also enters
th-:! wait state pending completion of
reading the header segment from the
disk. Because both the message
control and message processing
programs are in the wait state, the
DOS Supervisor gives control to a
non-QTAM program in the background
partition.

Disk Interrupt, Header Segment

CE, DE from the disk indicates that reading
of the header segment into the buff er is
complete. Control passes to the Disk End
Appendage via the DOS Supervisor.

7. Disk End Appendage: A sequence-out
number is assigned to the message and
recorded in the header prefix. The
message-sent flag is set in the prefix
to indicate to QTAM that the message
has been serviced. Return is then
made to the Supervisor with a request
to rewrite the header segment on the
disk. The Supervisor starts the I/O
and returns to the interrupted
program.

Disk Interrupt, Rewrite of Header Segment

The disk-end appendage is entered when a
disk interruption indicates that rewriting
of the header segment has been completed.

8. Disk End Appendage: The BRB and the
buffer containing the header segment
are removed from the Disk I/O queue.
The message-sent flag is turned off in
the header prefix, and the buff er
containing the header segment is
chained into the MS-process queue.

A test is then made to determine if
the MS-process is full. The number of
buffers allocated to the MS-process
queue is specified by the BUFNO
operand of the DTFQT macro used to
define. the MS-process queue. BUFN0=4
is assumed in this discussion;
therefore, the MS-process queue is not
full at this point.

The relative record number of the
next segment in the message (last
segment in this example) is placed
into the same BRB, and the BRB is
posted to the Disk I/O queue again.

At this point, Steps 4 and 5 are
repeated to start reading the next
segment into a buffer.

RETURN TO MESSAGE PROCESSING PROGRAM

9. Get Message routine (continued): The
message-filled buffer placed on the
MS-process queue in step 8 causes the
QWAIT issued by this routine in step 6
to be satisfied. Control returns to
the instruction after the QWAIT with
the address of the buffer containing
the header segment in register 1.

Note: completion of the disk read of
the second segment would cause the
message processing task to be
interrupted; however, discussion of
this interrupt is deferred for the
moment.

The Get Message routine transfers
the header segment from the buffer to
the user's work area and moves the
name of the source terminal into the
TRMAD field. A test is then made for
end-of-message. This discussion
assumes that two buffers are required
to contain the complete message;
therefore, a QWAIT is issued to obtain
another buffer from the MS-process
queue.

outline of QTAM Operations 41

Prior to the QWAIT, a QPOST is
issued to return the previous buff er
Cbuf fer just processed) to the Return
Buffer Queue. This QPOST causes steps
2 through 5 to be repeated to start
reading the header segment of the next
message from the disk when the current
disk operation is completed.

Disk Interrupt, Text segments

CE, DE from the disk indicates that reading
of the text segment has been completed.

10. Disk End Appendage: The buffer
containing the text segment is chained
into the MS-process queue. This
discussion assumes that this text
segment ends the message. Because the
MS-process queue is still not full,
the ERB is initialized with the
relative record number of the next
segment and is posted to the disk I/O
queue. This causes reading of the
next segment from the disk queue to
commence as previously described.

RETURN TO MESSAGE PROCESSING PROGRAM

11. Get Message Routine (continued): The
appearance of the buffer containing
the last segment of this message on
the MS-process queue causes the QWAIT
issued in step 9 to be satisfied. The
data in the buffer Cup to and
including the EOT) is transferred to
the work area starting at the position
after the end of the header segment.
Because a complete message has now
been placed in the work area, the
length of the message and the
end-of-message code are set in the
GET/PUT prefix. Control then returns
to the instruction after the GET for
processing of the message according to
the application.

REPLENISHING THE MS-PROCESS QUEUE

After the first GET has been issued, QTAM
automatically replenishes the MS-process
queue with incoming messages having the
MS-process queue as their destination. As
long as messages are arriving faster than
they are being processed, QTAM can
constantly fill the MS-process queue in
anticipation of subsequent GETS. This
action reduces the time required to provide
a message in response to a GET by ensuring
that a message-filled buffer is in the

42 DOS QTAM Program Logic Manual

MS-process when a QWAIT is issued by the
GET routine.

QTAM uses two methods to constantly
replenish the MS-process queue subsequent
to the first GET. The first method is
initiated by the GET routine and has
already been described. In summary, when a
GET is issued, the GET routine issues a
QPOST to release the buffer used for the
previous GET. This QPOST causes reading of
the next segment from the DASO-process
queue to be started.

When reading of the next segment is
completed, the disk-end appendage chains
the filled buffer into the MS-process
queue. Thus, the buffer that was released
from the MS-process queue is replaced by
another buff er containing data to be
provided in response to a subsequent GET.
Additionally, the Disk-End appendage
continues to initiate disk reads until the
MS-process queue is full or until there are
no more unserviced messages in the
DASO-process queue.

The second method of replenishing the
MS-process queue is performed by the
message control program at the time the
message segment is received over the line.
The procedures for receiving a message
segment destined for a processing program
are identical to those for a segment
destined for a terminal up to the point
when the segment is posted to the DASD
queue by the Cleanup routine. The buffer
containing the segment for a processing
program is posted to a DASO-process queue
rather than a DASO-destination queue, and
the following occurs.

ENTER GET SCHEDULER SUBTASK

1. DASD Destination Routine: A relative
record number is assigned to the
buffer. If the buffer contains a
header segment (assumed for this
discussion>, disk locations are
reserved for the next segment of this
message (if any> and for the header
segment of the next message. The
buffer is then chained into the Disk
I/O queue to be written on the
DASO-process queue. Exit is made to
the Get Scheduler routine.

2. Get Scheduler Routine: A test is made
to determine if the MS-process queue
is full. If the MS-process queue is
full, any attempt to place the buffer
in that queue is deferred until a
previous buffer is returned by a GET.
However. this discussion assumes that
the MS-process queue is not full, and
that a BRB requesting a read of the

current buff er is already in the
Active BRB queue. This ERB is posted
to the Disk I/O queue behind the
buffer posted in step 1.

ENTER DISK I/O SUBTASK

3. Disk I/O Routine: At this point, the
element chain of the disk I/O queue
contains two elements. The first
element is a buffer containing a
header segment to be written on the
DASO-process queue. The second
element is a BRB requesting that the
same header segment (first element> be
read from the DASO-process queue. The
relative record number assigned to the
buffer is converted to an actual DASD
address, and a request to start the
disk-write operation is posted to the
LPS queue. The LPS Control routine
issues an EXCP to start the I/O
operation, and QWAITs for the next
item on the LPS queue. The message
control program then enters the wait
state.

Disk Interrupt (Write}

An interrupt from the disk indicates that
the disk write has been completed.

4. Disk-End Appendage: The buffer and
the ERB are removed from the disk I/O
queue. Because the BRB is a request
to read the buffer that was just
written, the buffer is simply chained
in the MS-process queue without
actually doing the disk read. This
technique has two advantages:

a. the disk-read operation required
for the first GET or when the
MS-process queue is full, is
eliminated, and

b. the MS-process queue is
replenished more rapidly in
anticipation of subsequent GETS.

The Disk-End appendage then turns
on the message-sent bit in the header
prefix and assigns a sequence out
number to the message. Control
returns to the DOS Supervisor with a
request to rewrite the same buffer on
the disk. Rewriting of the header
segment with the message-sent bit on
is a standard QTAM technique
indicating that the message has been
serviced.

TRANSFERRING RESPONSE MESSAGES

When a response message is to be sent to a
terminal, a PUT macro is issued in the
message processing program. This
discussion assumes that a complete message
(WU=M) is being PUT.

1. Put Message Routine: The message data
in the work area must be transferred
into a buffer. A buffer is requested
for this purpose by posting CQPOST} a
BRB to the Active BRB queue with a
priority of X'EC'. (The BRB is
contained in the first four words of
the DTF table for the MS-destination
queue.}

ENTER ACTIVE BRB SUBTASK

2. Active BRB Routine: The BRB with high
priority is passed to the Buffer-ERB
routine if a buffer is available.
This discussion assumes that a buffer
is available.

3. Buffer-ERB Routine: A buffer is
removed from the Available Buff er
queue, and exit is made to a special
entry point in the PUT Message
routine.

4. PUT Message Routine (Special
Entry}: This is a special section of
the PUT Message routine that executes
in supervisor mode to circumvent a
violation of the storage protection
feature. Upon entry, the address of
the buff er requested is in register 1.

The terminal table is searched to
locate the entry for the destination
terminal specified in the TRMAD field.
The address of the QCB for the
DASD-destination queue is obtained
from the terminal table entry and
placed in the buffer prefix and in the
LCB. The message data is moved from
the work area to the buffer using the
length specified in the GET/PUT
prefix. The end-of-message code is
set in the BSTA field of the buffer
prefix, and the buffer is posted to
the DASO-destination queue.

At this point, the procedures for
writing the buffer on the disk are
performed. The action caused by
posting the buffer to the
DASO-destination queue is identical to
that described in the section, Message
Control Program. When the destination
line becomes free for sending, the
message is sent to the terminal as
described under the Message Control
Program.

outline of QTAM Operations 43

Note: If the entire message cannot be
contained in a single buffer,
another buff er is requested and
steps 2 through 4 are repeated.
This continues until the entire
message has been transferred to
buffers, and the buffers posted to
the DASD-destination queue. The
end-of-message code is set in the
prefix of the last buffer required
for the message.

RETURN TO MESSAGE PROCESSING PROGRAM

5. Put Message Routine (continued): The
QPOST issued by this routine in step 1
has been completed. Control is
returned to the instruction after the
PUT so that the GET/process/PUT cycle
may continue.

IBM 2260-2848 LOCAL OPERATIONS

The IBM 2260 Local differs in operation
from other QTAM-supported devices. Because
it is locally attached, the IBM 2260 Local
is neither polled nor addressed. Instead,
when the operator at the IBM 2260 desires
to send a message to the CPU, he keys in
the S~ART symbol followed by the text, and
depresses the ENTER key. Depressing the
ENTER key results in an I/O interrupt with
the attention bit set in the csw. This I/O
interrrupt is referred to as an Attention
interrupt or read request.

When an Attention interrupt occurs at
the CPU, a command control block (CCB) for
the IBM 2260 initiating the read request
must be in the DOS channel queue. If it is
not, the interrupt is ignored by the DOS
Interrupt Handler. The CCB is a part of
the terminal table entry for the IBM 2260.

When an IBM 2260 Local line group is
opened, the QTAM Open routine causes the
CCB for each IBM 2260 from which messages
can.be received to be placed in the channel
queue. A NOP channel program is initiated
for the IBM 2260. When the CE, DE
interrupt ending the NOP occurs, the DOS
Interrupt Handler passes control to the IBM
2260 Local Appendage. This appendage sets
the channel end (CE) flag in the CSW status
Call other bits are cleared) and returns to
the DOS Interrupt Handler. The appearance
of the CE flag along with the device-end
posting bit (assembled as a one in
transmission byte zero of the CCB) causes
the DOS Interrupt Handler to leave the CCB
on the channel queue so that an Attention

44 DOS QTAM Program Logic Manual

Interrupt from that IBM 2260 can be
recognized and serviced. After the line
group has been opened, read requests from
the IBM 2260s are serviced on a
'first-come, first-served' basis.

When an Attention Interrupt occurs, the
IBM 2260 Local Appendage again gains
control. The CCB for the IBM 2260 is
posted to an Attention queue maintained in
the LCB for the line group. Channel end,
device end is set in the CSW to cause the
DOS Interrupt Handler to remove the CCB
from the channel queue. If the line
control block (LCB) is available, the
procedures necessary to perform the read
operation are initiated immediately. These
procedures include forming a ring of buffer
request blocks (BRBs) and assigning the
buffers required for the read operation.
Due to the high data rate of the IBM 2260
Local., all buffers required to contain an
incoming message must be assigned before
one read operation is started. This
differs from the buffer management
technique used for receiving from remote
terminals in which only one buffer is
assigned initially and additional buffers
are obtained as needed through
program-controlled interrupts.

When all buffers have been assigned, an
EXCP is issued to read the message. A
channel end. device end interrupt occurs
when reading is completed. The IBM 2260
Local Appendage routes the message-filled
buffers to the Receive Group of the user's
LPS section. The CE flag is set in the CSW
to cause the DOS Interrupt Handler to leave
the CCB on the channel queue so that any
subsequent read request from the 2260 can
be serviced. Processing and further
routing of the message are the same as
described for a message received from a
remote terminal under the Message Control
Program.

The general techniques for sending a
message to an IBM 2260 Local (or to the IBM
1053 printer attached to the IBM 2848) are
the same as for sending a message to a
remote terminal, except that addressing is
not performed. Additionally, an SVC 25 is
issued to initiate the write channel
program. When the write operation
completes, the IBM 2260 Local Appendage
causes the CCB to remain on the channel
queue as described previously.

Data transfer can occur between the CPU
and only one IBM 2260 Local at a time. For
this reason, only one LCB is generated for
an IBM 2260-2848 Local line group.. This
LCB contains all control information
required for I/O operations in the line
group and for LPS processing of messages.
If a read request (Attention Interrupt)
from an IBM 2260 occurs while the LCB is

not available due to LPS processing of a
previous message or because QTAM is
preparing to send a message to a terminal
in the line group, the CCB is removed from
the channel queue and posted to the
Attention queue. The read request is
serviced when the LCB becomes available for
receiving.

For further information, refer to the
section IBM 2260 Local Appendage.

MESSAGE PROCESSING PROGRAM FOR AN AUDIO
APPLICATION

After the message processing program has
been loaded from the core image library
into either the foreground 2 or background
partition, it is entered for execution by
the DOS supervisor at some point when the
message control program (always in
foreground 1) enters the wait state.
Assume that the message processing program
is executed in foreground 2 partition and
handles only audio messages.

ENTER MESSAGE PROCESSING PROGRAM

INITIALIZATION

1. QTAM Open Main storage (MS) Process
and Destination Queues File Routine:
The opening procedure for the
MS-process queue file is practically
the same as that used in a nonaudio
application, because an MS-process
queue may consist of audio as well as
nonaudio messages. But, at assembly
time in the message control program, a
PROCESS macro instruction does not
indicate if it corresponds to a
message processing program working on
all types of message or on audio
messages only. On the other hand, the
PROCESS macro expansion always
generates a DASO-process queue, and
the audio programming uses only the
QSTL field of the DASO-process QCB to
obtain the address of the MS-Process
QCB. However, the ALCBs waiting for
opening of the message processing
program and for processing are located
in the waiting chain of the
corresponding PROCESS macro expansion,
and are transferred into the element
chain of the MS-process queue.. Then,
the open bit is turned on in the
MS-process queue DTF table.

2. QTAM Open Audio Line Group/Output
Queue File Routine: The ARU-Send
queue address is placed in the Audio
Output queue DTF table and the open
bit is turned on.

OBTAINING A MESSAGE

The ALCBs containing the input messages to
be processed may have been transferred at
open time of the MS-process queue file.
Assume that the user-defined work area is
large enough to contain any input message,
and that the work unit requested by the GET
macro instruction is an audio message
(WU=A).

1. Get Audio Message Routine: A QWAIT
(SVC 30) is issued to wait for an ALCB
in the MS-Process Queue. When no ALCB
is available, the message processing
program enters the wait state. Then.
because both the message control and
message processing programs are in the
wait state, the DOS Supervisor gives
control to a non-QTAM program in the
background partition. When an ALCB is
waiting for processing, it is passed
to the Get Audio Message routine.
This routine transfers the input
message from the input buffer (in the
ALCE) into the user•s work area,
places the message length in the
GET/PUT pref ix, and moves the name of
the source line into the LINAD field.
At this point, a high-priority audio
element is posted to a combined
QCB/STCB (in the Get Audio Message
module) to avoid a violation of the
storage protection feature.

ENTER GET AUDIO SUBTASK

2. Get Audio Message Routine (in
Supervisor Mode): The GET bit in the
ALCB is turned on, and control is
passed to the Qdispatch routine. This
GET bit will be used to check the
destination line, which must be the
same as the source line (no switching
is allowed) when the user's answer is
sent via the Put Audio Message
routine.

3. Get Audio Message Routine
(continued): Control is given to the
instruction following the GET macro
instruction, to process the message
according to the user's application.

Outline of QTAM Operations 45

TRANSFERRING RESPONSE MESSAGES

After the message has been processed, the
user rrust answer to the calling terminal on
line. Therefore, he provides an output
message in the form of an address chain,
and issues a PUT macro instruction.

1. Put Audio Message Routine: The ALCB
is searched from the line name
specified by the user in the LINAD
field. A check is made for the
presence of the GET bit in the ALCB.
If this bit is found, this indicates
that an audio answer is awaited on the
line. At this point, a high-priority
audio element is posted to a combined
QCB/STCB <in the Put Audio Message
module) to avoid a violation of the
storage protection feature.

46 DOS QTAM Program Logic Manual

ENTER PUT AUDIO SUBTASK

2. Put Audio Message Routine (in
Supervisor Mode): The message data is
transferred from the work area into
the address chain buff er of the ALCB.
In the ALCB, the address chain length
is updated, the priority code is set
to X'FD', and the GET bit is turned
off. Then, control is given to the
Qdispatch routine.

3. Put Audio Message Routine
(continued): The ALCB is posted to
the ARU Send queue, and control is
given to the instruction following the
PUT macro instruction so that the
GET/process/PUT cycle can continue.

Note: The action caused by posting
the ALCB to the ARU send queue is
identical to that described in the
section Message Control Program for an
Audio Application.

c

(

This section summarizes the operation of
each of the LPS routines from which the
user selects those required for his
particular message-control functions. The
routines selected collectively form the
Line Procedure Specification (LPS) section
of the message control program. Each LPS
routine is contained within a module; each
module contains a single routine.

The majority of the LPS routines
correspond to LPS macro instructions, and
are linkage-edited into the message control
program phase because of the inclusion of
the macro instructions in the message
control source program. They are entered
upon execution through linkages generated
in the macro-expansions.

The remaining LPS routines are
generalized routines; each of these is
linkage-edited into the message control
program phase because of a linkage
generated in any of several other LPS
routines.

Each of the following LPS routine
descriptions provides the name of the
routine, the name of the module that
contains it, the function of the routine,
entry point and linkage information, and
names of external routines used.

BREAKOFF ROUTINE

Module Name: IJLQBO (Chart BO)

Entry Point: Expansion of the BREAKOFF
macro instruction generates a BALR to the
routine at IJLQBO, using register 15 as the
branch register and register 14 as the
return register. Register 14 also serves
as a parameter register. The parameter
list passed to the routine consists of the
maximum length of a message.

Function: causes transmission of an
incoming message to be terminated and an
error bit set if the incoming message
exceeds the maximum length specified, or if
the characters in the buffer are identical
(usually an indication of terminal or line
malfunction). If the characters are not
identical, the count of characters is added
to the previous count in the LECT field of
the LCB.

The specified maximum length of a
message is passed to the routine via

MESSAGE CONTROL PROGRAM (LPS) ROUTINES

register 14. If the specified length is
greater than zero., the accumulated length
is compared with the length specified. If
the accumulated length is greater than the
maximum length, the receive bit in the LST~
field of the LCB is turned off. This stops
further assignment of buffers for this
operation and causes a program check
interrupt to occur.

If the accumulated length is less than
or equal to the maximum length, a test is
made for end of message. If it is not the
end of a message, return is made to the
next LPS instruction; otherwise, a test for
program check is made.

If no program check has occurred, return
is made to the next LPS instruction. If a
program check has occurred, as a result of
no buffer assignment, the read operation
code is cleared and the breakoff bit is set
in the error-halfword (LEHW). The address
of a CCW with the BREAK command code is
moved into the CCB area of the LCB, and
EXCP is issued to write the breakoff
characters. The routine branches to the
LPS control routine CIJLQIP20 in module
IJLQIP) to wait for the breakoff.

External Routines Used: EXCP (SVC 0)

CANCEL MESSAGE ROUTINE

Module Name: IJLQCM (Chart CM)

Entry Point: Expansion of the CANCELM
macro instruction generates a BALR to the
routine at IJLQCM. using register 15 as the
branch address re~ister and register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine
consists of the error mask in hexadecimal
notation.

Function: Causes the message to be
canceled when any of the error conditions
specified by the error mask is indicated in
the error-halfword, or when the error mask
is zero.

If the error mask is not zero., and none
of the error conditions specified by the
mask are indicated in the error-halfword,
return is made to the next LPS instruction.
When any of the error conditions specified
by the error mask is indicated in the
error-halfword, or when the error mask is

Message Control Program (LPS) Routines 47

zero, linkage is made to the Recall routine
to obtain the message header.

After the header segment is returned
(address in register 6) by the Recall
routine, the cancel bit is set in the
buffer status byte (ESTA) of the header
prefix. This effects cancellation of the
message. A zero is moved into the LMPL
byte of the LCB to cancel the multiple
route option. This effects cancellation of
the message for any further destination
that Illay be specified in the message
header. Also, the converse bit is turned
off so that the line is not left connected
unnecessarily. Return is then roade to the
next LPS instruction.

Note: Linkage to the Recall routine is not
performed if an invalid destination
specification was previously detected for
this message. The header need not be
recalled because Q'IAM previously routed it
to a special error queue on the DASD.

External Routines Used: Recall (IJLQIP22
in module IJLQIP).

DISTRIBUTION LIST ROUTINE

Module Name: IJLQDL (Chart DL)

Entry Points:

1. This routine is entered at IJLQDL + 14
from the QTAM SVC/Subtask Control
Routine. Entry at this point occurs
when the Distribution List subtask is
dispatched because the Distribution
List QCB appears at the top of the
Ready Queue. The Distribution List
QCB appears on the Ready Queue when an
incoming message has a distribution
list as its destination.

2. A second entry point into the
Distribution List routine is made from
the Cleanup routine CIJLQIP23 in
module IJLQIP). This entry is to an
unlabeled instruction.

Function: Implements multiple routing of a
single message by causing a copy of the
message to be placed on the DASD queue for
each of the several destinations contained
in a distribution list as defined by a LIST
macro instruction.

This routine is composed of two
separate, but related, sections of code.
The first section (explained in item l,
which follows) of code is entered from the
QTAM SVC/Subtask control routine and
performs an initialization procedure
necessary for multiple routing via a

48 DOS QTAM Program Logic Manual

distribution list. The second section of
code (item 2, which follows> is entered
from the Cleanup routine each time that
routine is performing its function of
routing the incoming message to its
appropriate DASD queue.

The second section performs the function
of recalling the header segment from the
DASD and causes the current segment to be
placed on the DASD queue for the next
destination specified in the distribution
list.

1. First section of Distribution List
routine: This section of code is
entered when a distribution list is
specified as the destination for a
message. It obtains the address of
the LCB and the destination key
(relative address) of the distribution
list entry from the buffer prefix, and
places the destination key into the
LDLD field of the LCB.

The terminal table entry for the
first entry in the list is accessed,
and the QCB address for this
destination is placed into the LCB
(LQDT field) and into the buffer
prefix (BQAD field). The relative
address of the terminal table entry is
also placed into the prefix (BTDO
field). Exit is then made <via a
direct branch) to the Priority Search
(QSVCPRI) subroutine in the
SVC/Subtask Control routine. This
exit causes the filled buffer to be
posted to the QCB for the first
destination in the list.

If this is the first time this
routine has been entered, linkage is
made to the End Insert Routine before
exiting to the Priority Search
subroutine. The End Insert routine
causes the address of the second
section of the Distribution List
routine to be placed permanently into
the chain of routines to be entered
from the Cleanup routine in its
handling of each incoming message
segment. After the first time, this
entry into the End Insert routine is
not made <use of the End Insert
routine is described in detail in the
description of the EOA routine).

2. Second section of the Distribution
List routine: This section of code is
entered from the Cleanup routine
(after its address is placed in the
Cleanup address chain as described
above> each time the Cleanup routine
has completed the routing of a message
segment to the appropriate DASO queue.
If multiple routing via a
distributionlist is not in progress

orhas been comp1eted (indicated by
zeros in the LDLD f ie1d of the LCB or
by the dummy last entry in the list>.
return is made to the Cleanup routine
via the return address in register 14.

If multiple routing is in progress.,
i.e., there is another va1id entry in
the distribution list, the terminal
table entry for that destination is
accessed, and its QCB address is
placed into the LCB (LQDT field). The
LDLD field is updated for accessing
the next entry in the list. Linkage
is then made to the Recall routine to
obtain a copy of the header.

Upon return, the relative address
of the terminal table entry for this
destination is placed into the BTDO
field of the buffer prefix. Exit is
then made to the beginning of the
Cleanup routine (IJLQIP23 in module
IJLQIP). This causes the current
segment to be posted to the queue for
this destination. After posting this
segment, Cleanup returns to this
section of the Distribution List
routine for handling of the next entry
in the list. This continues until all
entries in the distribution list have
been processed.

External Routines Used:

Recall (IJLQIP22 in module IJLQIP)

Cleanup (IJLQIP23 in module IJLQIP)

End Insert (IJLQNDRT in module IJLQIP)

Priority Search (QTAM nucleus)

DATE STAMP ROUTINE

Module Name: IJLQDT (Chart DT)

Entry Point: Expansion of the DATESTMP
macro instruction generates a BALR to the
routine at IJLQDT, using register 15 as the
branch address register and register 14 as
the return register. Register 14 serves
also as the parameter list register. The
parameter list passed to the routine
consists of one item: a halfword
containing, in binary, the length (9) of
the date field to be inserted in the
message header.

Function: Obtains the current date from
the DOS communication region, and inserts
it in the message header in either the
format bmm/dd/yy or bdd/mm/yy, where b is a
blank, dd is the day, mm the month, and yy
the year. Prior to inserting the date, the

routine 1inks to the Expand Header routine,
which "expands" the header by shifting,
nine places to the left, all message
characters preceding the place in the
header where the date is to be inserted.
The date is inserted in the field thus
created. Return is made to the next LPS
instruction.

External Routines Used: Expand Header
(module IJLQEX)

END OF ADDRESS (EOA) ROUTINE

Module Name: IJLQEA (Chart EA)

Entry Points:

1. Expansion of the EOA macro instruction
generates a BALR to the Message Type
routine at IJLQMT, using register 15
as the entry register and register 14
as the return register. Register 14
also serves as a parameter list
register. The parameter list passed
to the Message Type routine consists
of the size of the EOA character
sequence (one to eight) and the actual
EOA character sequence specified in
the macro. Parameter register 1
contains the address of the End of
Address (EOA) routine. If the Message
Type routine does not find the
specified EOA sequence in the next
nonblank field of the header, it
effects linkage to the EOA routine at
IJLQEA.

2. A second entry point into the EOA
routine is effected from the Cleanup
routine (IJLQIP23 in module IJLQIP).
This entry is to an unlabeled
instruction that begins a separate
section of code executed only when
entry is from the Cleanup routine.
The address of the LCB for the line
over which the current message was
received is passed in register 4.

Function: causes multiple routing of an
incoming message when more than one
destination is specified in the header.

The EOA routine is divided into two
separate, but related, sections of code.
The first section, item 1 which follows, is
entered from the LPS <via the Message Type
routine) and performs the function of
locating each successive destination code
specified in the header of the message. It
also performs an initialization procedure
that causes the second section of code to
be executed at the appropriate time.

Message Control Program (LPS) Routines 49

The second section of code, item 2 which
follows, is entered from the Cleanup
routine each time that routine is
performing its function of routing the
incoming message to its appropriate
destination queue on the direct-access
storage device (DASO). This second section
performs the function of recalling the
header segment from the DASD'and causing
the current segment to be placed on the
DASD destination queue for each destination
(after the first) specified in the message
header.

1. First Section of EOA routine: This
section of code is entered from the
EOA macro expansion Cvia the Message
Type routine) for handling of each
successive destination code in the
header. When the Message Type routine
finds the specified EOA sequence in
the header, it does not enter the EOA
routine because this is a signal that
all destination codes have already
been handled. Instead, it returns to
the next instruction in the EOA
macro-expansion.

When entered, this section of the
EOA routine computes and saves (in the
LMPL field of the LCB) the offset from
the start of the header to the next
destination code in the header. (The
previous destination code was located
by the Route Message routine.)

If this is the first time the EOA
routine has been entered (from any
LPS), it links (BAL) to the End Insert
routine in module IJLQIP. The End
Insert routine places the address of
the second section of the EOA routine
into a chain of addresses Cby
priority)~ the addresses in this chain
are the addresses of routines to be
entered from the Cleanup routine in
its handling of each incoming message.

The End Insert routine is never
entered again from EOA while QTAM is
active.. This is accomplished by an
instruction modification technique as
follows: Prior to returning to the
EOA routine, the End Insert routine
overlays the second operand of the BAL
instruction (in the EOA routine) with
the address of the Skip Character Set
routine (module IJLQSK). End Insert
then returns, via the return register
minus four, to the same BAL
instruction. Thereafter, the BAL
instruction is always a branch to the
Skip Character set routine.

50 DOS QTAM Program Logic Manual

After computing the offset to the
next destination code (or after return
from End Insert on the first entry as
just described)., the EOA routine exits
to the Skip Character Set routine.
This routine advances the scan point
past the specified EOA character
sequence (bypassing any intervening
destination codes) and returns to the
next instruction in the EOA macro
expansion.

The instruction in the EOA macro
ex~ansion to which control is returned
makes a test to determine if a
duplicate message header is being
handled. If the header is not a
duplicate, normal LPS header
processing continues. If it is a
duplicate header, a branch is made to
the ENDRCV macro expansion because LPS
header processing has already been
performed for this header.

2. Second Section of EOA routine: This
section of code is entered from the
Cleanup routine (after its address is
placed in the Cleanup address chain as
just described) each time the Cleanup
routine has completed the routing of a
message to the appropriate DASD
destination or process queue. If
multiple routing is not in progress or
has been completed (indicated by a
zero in the LMPL field of the LCB),
return is made to the Cleanup routine.

If multiple routing is in progress,
i.e •• if there is another destination
code to be handled in the header,
linkage is made to the Recall routine
(IJLQIP22 in module IJLQIP, charts 16,
17} to obtain a duplicate copy of the
header. The scan pointer (register 5)
is reset to point to the next
destination code in the header by

· using its offset previously computed
and saved in the LMPL field of the
LCB. The LMPL field is then set to
zero. Exit is then made to the Route
Message routine which handles the next
destination code and exits to the
first instruction of the EOA macro
expansion in the appropriate LPS
(actually the return address
established by the ROUTE macro
expansion and saved by the Route
routine).

Execution of both sections of the
EOA routine is repeated until all
destination codes in the header have
been handled.

(

\ __

/(
.I

'"l_

External Routines Used:

Skip Character Set C~odule IJLQSK)

End Insert (IJLQNDRT in module IJLQIP)

Recall CIJLQIP22 in module IJLQIP)

Route Message (module IJLQRG)

END OF BLOCK ROUTINE

Module Name: IJLQEB (Chart EB)

Entry Point: Expansion of the EOB macro
instruction or of the ENDRCV macro
instruction Cif this macro is present in a
WTTA LPS) generates a BALR to the routine
at IJLQEB, using register 15 as the entry
register and register 14 as the return
register. No parameters are passed.

Function: The function of this routine
depends on whether it is entered from the
EOB macro expansion or from the ENDRCV
macro expansion.

1. This routine is entered from the EOB
macro expansion whenever a message
block (delimited by an EOB or EOT
character) has been received or sent.
~he routine performs error checking on
the transmission and causes a read or
write continue operation to be
initiated if the message block was
received or sent without error.

If the message has been cancelled,
an error message sent, or the message
rerouted, return is made to the next
LPS instruction. Similarly, if the
status byte of the CSW indicates an
end of transmission, a unit exception.,
or that the residual count in the CSW
is zero, return is to the next LPS
instruction. If none of the preceding
conditions are detected, the
End-of-Block bit in the buffer prefix
is set because there was a positive
indication that this message was sent
or received correctly.

In setting up for sending the next
block, the scan pointer is adjusted to
segment size and stored in the header
prefix. The LECB halfword in the LCB
is updated by storing the segment size
in this field. Otherwise, a write
continue indication is set in the LOPC
field of the LCB. This causes the
Physical I/O routine, when entered, to
generate a write continue channel
program to write the next block of the
rressage.

If the transmission was a read
operation, the read continue indicator
is set in the LOPC field of the LCB.
This causes the Physical I/O routine,
when entered, to generate a read
continue channel program to read the
next block of the message. For both
operations the buff er is set to be
reused. The routine exits to the
Physical I/O routine which generates
and initiates execution of the
appropriate channel program.

2. This routine is entered from the
ENDRCV macro expansion to test the WRU
flag in the LCB. If this flag is off,
return is made to the next LPS
instruction. If the WRU flag is on,
this indicates that the last received
character is WRU. In this case, an
exchange of identification sequences
must be performed. The EOB bit in the
buffer prefix is set, and the buffer
is set to be reused. The Read
continue indicator is set in the LOPC
field of the LCB. The End-of-Block
routine exits to the Physical I/O
routine, which generates and initiates
execution of the appropriate channel
program. This channel program
performs an exchange of identification
sequences and reads the rest of the
input message, provided EOM is
different from WRU.

External Routines Used: QTAM Physical I/O
<module IJLQRW)

END OF BLOCK AND LINE CORRECTION ROUTINE

Module Name: IJLQEC (Chart EC)

Entry Point: Expansion of the EOBLC macro
instruction generates a BALR to the routine
at IJLQEC, using register 15 as the entry
register and register 14 as the return
register. No parameters are passed.

Function: This routine is entered from the
EOBLC macro expansion whenever a message
block (delimited by an EOB or EOT
character) has been received or sent. In
general, the routine performs error
checking on the transmission and causes a
read or write continue operation to be
initiated if the message block was received
or sent without error.

If the message has been canceled, an
error message sent, or the message
rerouted, return is made to the next LPS
instruction. If the error halfword in the
LCB indicates a transmission error, the
retry counter is incremented by one. If
retransmission has already failed three

Message control Program CLPS) Routines 51

times. the cancel bit is set in the LDFG
field of the LCB for the line so that
succeeding segments of the message in error
will be cancelled, and return is made to
the next LPS instruction. If not, the
routine branches and links to the Recall
routine to obtain the header. If the line
is sending to a remote terminal, the write
continue indicator is set in the LOPC field
of the LCB, and the routine exits to the
start of the LPS for another try at
transmission. Prior to the exit the
error halfword is cleared for the retry.

EOBLC is also used to initiate a retry
operation if a bus-out check occurred while
sending to an IBM 2260 or IBM 1053 locally
attached. The IBM 2260 Local Appendage
sets an indicator in the LOPC field of the
LCB to indicate the operation to be
retried.

r-------------------T---------------------1
I Failing Operation I Retry_operation I
~-------------------+---------------------~
I Write Initial to I Erase, Write Initial!
I IBM 2260 Local I I
~-------------------+---------------------~
I Write Initial to I Write Initial I
I IBM 1053 Local I I
~-------------------+---------------------~
I Write-at-line- I Write-at-line- I
I address to IB~ I address I
I 2260 Local I I
L-------------------i---------------------J

After recalling the Header of the
message in error Cvia linkage to the Recall
routine), exit is made to the start of the
LPS for retry. If the error occurs a
second time, EOBLC returns to the next
in-line LPS instruction for user error
processing.

If the line is receiving, action is
taken to retry receiving the message. If
there is no EOB present in any buffer
position other than the last position, the
cancel bit of the BSTA field in the prefix
is set. The sequence-in number in the TSIN
field of the terminal table entry is
adjusted to account for the retry. Linkage
is made to the Recall routine to obtain the
header. The scan pointer and the LEOB
field of the LCB are updated. Any space in
the header area that is reserved for time,
date, and sequence-out number insertions
are filled with idle characters. The
distribution list and multiple routing
indicators are cleared, and the error
halfword is reset to zero. The retry
indicator is set in the LOPC field of the
LCB.

The buffer size is stored in the BSSZ
field of the prefix to indicate the message
size, and the buffer is set for reuse.

52 DOS QTAM Program Logic Manual

Exit is to the Physical I/O routine which
initiates the retry. If there were no
transmission errors, tests are made in the
csw. If the status byte of the CSW
indicates an end of transmission, a unit
exception, or that the residual count in
the CSW is zero, return is to the next LPS
instruction. The End of Block bit in the
prefix is set, because there was a positive
indication that this message was sent or
received correctly.

In setting up for sending the next
message, the scan pointer is adjusted to
segment size and stored in the header
prefix. The retry counter is set to zero
in the LEHW field of the LCB. The LEOB
halfword is updated by storing the segment
size in this field. If the transmission
was a write operation, a test is made to
see if the next character to be written is
an End of Transmission. If the next
character is an EOT, there is no further
execution of the routine, and a return is
made to the next LPS instruction.
Otherwise, the write continue indication is
set in the LOPC field of the LCB and exit
is made to the Physical I/O routine.

If the transmission was a read, the
read-continue indicator is set before exit
to the Physical I/O routine. The Physical
I/O routine generates and initiates
execution of the appropriate channel
program to continue reading or writing the
next block of the message.

External Routines used:

QTAM Physical I/O (module IJLQRW)

Recall (IJLQIP22 in module IJLQIP)

ERROR MESSAGE ROUTINE

f'lbdule Name: IJLQER (Chart ER)

Entry Point: Expansion of the ERRMSG macro
instruction generates a BALR to the routine
at IJLQER, using register 15 as the entry
register and register 14 as the return
register. Register 14 serves also as a
parameter list register. The parameter
list passed to the routine consists of the
error mask in hexadecimal notation.
Register 0 contains the length of the error
message CO if an address is specified).
The address of an area that contains the
destination code is passed in register 2,
and the address of the error message text
is passed in register 1.

Functio~: causes a user-written error
message to be sent to a designated terminal
when any of the error conditions specified

/

()

f- \
14 /

in the error mask is indicated in the
error-halfword, or when the error mask is
zero. If the error mask is not zero and
none of the error conditions specified by
the error mask are indicated in the
error-halfword, return is to the next LPS
instruction. When an error condition is
encountered, linkage is made to the Recall
routine Cin module IJLQIP) to obtain the
header. A test is made for the option of
including the header of the message in the
error message.

If the header is not to be included, the
scan pointer is reset to the beginning of
the header of the message in error. The
specified error message then overlays the
header.

If the header is included. the pointer
remains positioned at the end of the
header. The text area of the buffer is
loaded with the error text. If the error
message exceeds the space in the buffer,
the text is truncated. The size of the
message is stored in BSSZ field of the
prefix. and a single segment message is
indicated in the ESTA field of the prefix.

If the error message is to be sent
because of an invalid incoming sequence
number, the error message will be scanned.
If the special character $ is encountered.
the correct input sequence number is moved
into the four bytes following the $, and
the $ is overlaid with a blank. If a
second $ is found before the end of the
error message, the invalid sequence number
is moved into the four bytes following the
$, and this second $ is also overlaid with
a blank.

Linkage is made to the Lookup Terminal
Table Entry routine, which looks up the
destination code in the terminal table and
places the relative address of its terminal
table entry in the BDTO field of the header
prefix. Return to the next LPS instruction
is made by the Lookup routine.

External Routines Used:

Recall CIJLQIP22 in module IJLQIP)

Lookup Terminal Table Entry (Module IJLQLK)

EXPAND HEADER ROUTINE

Module Name: IJLQEX (Chart EX)

Entry Point: The routine is entered via a
BALR from SEQOUT, TIMESTMP, and DATESTMP;
register 15 is the branch address register
and register 3 is the return register. The
address of the parameter list is passed to

the routine in register 14. The parameter
list contains the number of spaces the
header is to be expanded.

Function: Creates in the message header
the space needed to insert a new field in
the header.

The number of characters to be shifted
is computed by subtracting from the value
in the scan pointer register the sum of the
address of the buffer plus 31 (so as not to
include the prefix) plus the number of
characters to be expanded. If the result
is negative, return is made to the next LPS
instruction, because there is no space for
the shift. If there is space available,
all message characters that have already
been processed are shifted to the left of
the specified amount.

After the characters of the header have
been shifted, a blank is inserted as a left
delimiter at the start of the created
field. The scan pointer offset for the
next header destination code <saved in LMPL
field of the LCB) is decremented by the
length of the new field in case multiple
routing is in progress. Return is to the
calling routine.

External Routines Used: None

INTERCEPT MESSAGE ROUTINE

Module Name: IJLQIT (Chart IT)

Entry Point: Expansion of the INTERCPT
macro instruction generates a BALR to the
routine at IJLQIT, using register 15 as the
entry register and register 14 as the
return register. Register 14 serves also
as a parameter list register. The
parameter list passed to the routine
consists of the specified error mask in
hexadecimal notation. The parameter
register 1 contains the address of an
optional subfield in the terminal table
defined by th~ user to contain the relative
record number of the message being
intercepted.

Function: causes suppression of all
message transmission to a terminal when any
of the error conditions specified by the
mask is indicated in the error-halfword, or
when the error mask is specified as zero.

If the error mask is not zero, and none
of the error conditions specified by the
mask are indicated in the error-halfword,
return is to the next LPS instruction. If
the intercept function is to be perTormed,
the routine makes linkage to the Recall
routine to recall the header.

Message Control Program (LPS) Routines 53

Upon return from Recall, the routine
turns off the serviced bit and turns on the
priority bit in the header prefix so that a
new sequence number is not assigned. The
send bit in the 'ISTA byte of the terminal
table entry for the destination terminal is
turned off to indicate that messages on the
queue for the destination are to be
withheld from transmission. If the
intercept bit in the TSTA byte is on,
indicating that a previous header disk
address is in the Intercpt subfield, and if
the header disk address is greater than the
disk address already in the Intercpt
subfield, return is to the next LPS
instruction.

If the header disk address is less than
the address in the Intercpt subfield or if
the intercept bit in the TSTA byte is not
on, the intercept bit is set to one, to
indicate that a message on the queue was
not transmitted, and the header disk
address is put into the Intercpt subfield
in the user area of the terminal table
entry. The offset of the intercept
subfield from the beginning of the terminal
table entry is computed and saved (for use
by the Release Message routine} in a byte
reserved by the expansion of the LPSTART
macro. Return is to the next LPS
instruction.

External Routines Used: Recall (IJLQIP22
in module IJLQIP)

AUDIO INPUT MESSAGE LOGGING ROUTINE

Module Name: IJLQLG (Chart LG}

Entry Point: The Logging routine is
entered at IJLQLG via linkage from the
LOGSEG macro expansion when the ARU operand
has been specified. Upon entry, register 4
contains the address of the ALCE of the
line requiring the input message logging.

Function: Prepares in the ALCE the
preformatted prefix to be logged with the
input message. This prefix immediately
precedes the input buffer and includes, in
succession:

1. Logical unit number of the symbolic
line assignment ("nnn" of SYSnnn)

2. Length of the input data to be logged

3. Date stamped information

4. Time stamped information when the
timer is available and the keyword
operand LOGTIME=YES has been specified
in the DTF line group of the line.
The unused part of the buffer is reset
to binary zeros.

54 DOS QTAM Program Logic Manual

Register 2 contains the address of the
first byte of the prefix, and control
returns to the next instruction in the
LOGSEG macro expansion.

External Routines Used: None.

LOOKUP TERMINAL TABLE ENTRY ROUTINE

Module Name: IJLQLK (Chart LK)

Entry Point: The Lookup routine is entered
at IJLQLK via linkage from the DIRECT macro
expansion or via a direct branch from the
Error Message, Route Message, or Reroute
Message routine. Upon entry, register 2
contains the address of the work area
containing the name to be looked up.

Function: Obtains, in succession0 the name
contained in each terminal table entry and
compares it with the name provided in a
work area. Each time a nonequal compare
results, the process is repeated with the
name from the next terminal table entry.
When an equal compare results,, the routine
obtains, from the terminal table entry, the
address of the queue control block for the
destination (or process} queue, and places
this QCB address in the LQDT field of the
LCB. The offset of the entry relative to
the beginning of the terminal table is
placed in the BDTO field of the buffer
prefix.

If the terminal name in the work area
does not compare with any entry name in the
terminal table, the routine turns on the
invalid destination bit (bit 0} in the
error-halfword, and places the address of
the QCB for the error (dead-letter) queue
in the LQDT field of the LCB.

External Routines Used: None

CONVERSATIONAL MODE ROUTINE

Module Name: IJLQMC (Chart MC}

Entry Points:

1. If there is no character specified in
the second operand of the macro, the
expansion of the MODE macro
instruction generates a BALR to the
routine at IJLQMC, using register 15
as the entry register and register 14
as the return register. If there is a
character specified in the second
operand, the address of the
conversational Mode routine is passed
in register 1 to the Message Mode

(

Interface routine <module IJLQMM)
which enters this routine at IJLQMC if
the specified character is found in
the header.

2. A second entry into the Conversational
Mode routine is made from the Cleanup
routine to an unlabeled entry point.
~his is a separate section of code
that is executed only when entry is
from the Cleanup routine. The address
of the LCB for the line that is to
operate in conversational mode is
passed in register 4.

Function: Causes the line over which the
current message is being received to be
placed in a conversational mode; that is,
the line connection is maintained until a
reply to the inquiry is sent.

The Conversational Mode routine is
composed of two separate, but related,
sections of code. The first section, item
1 that follows, performs the initialization
procedures necessary for the conversational
mode function to be implemented. The
second section of code, item 2 that
follows, implements the function.

1. First section of conversational Mode
routine: This section of code is
entered from the MODE macro expansion
(unconditional CONVERSE) or from the
Message Mode Interface routine
(conditional CONVERSE). Entry is at
IJLQMC. The "converse" bit is set in
the LSTA Cline status) byte of the
LCB.

If this is the first time this
routine has been entered, linkage is
made to the End Insert routine
(IJLQNDRT in module IJLQIP). End
Insert performs an initialization
function that ensures that the second
section of the Conversational Mode
routine is executed (via an entry from
the Cleanup routine) at the proper
time. (The function performed by the
End Insert routine is identical to
that described under the ECA routine.)
Return is to the next LPS instruction.

2. Second Section of the Conversational
Mode routine: This section of code
is entered (at an unlabeled entry
point) from the Cleanup routine during
its handling of each message. If the
converse bit is not on Cin LSTA field
of LCB), if there has been a polling
or addressing error is on the line,
orthe destination is not a processing
program, the request for
conversational mode is ignored and

return is made (via register 14) to
the Cleanup routine.

If the line is still receiving,
exit is made to the LPS Control
routine to wait for completion of the
incoming inquiry message. If the line
is sending, the line is turned around
to receive by setting the converse and
receive bits in the LSTA field of the
LCB.

The QCB for the process queue Cto
which the inquiry is being directed)
is assigned a high priority to ensure
most rapid handling of the inquiry
message and its reply. If the end of
the polling list for the line (if
nonswitched) has been reached, the
pointer to the current polling list
entry (LPPT field of LCB) is reset to
the beginning of the polling list.
Exit is made to the LPS Control
routine to continue processing.

The buffer containing the inquiry
message was flagged to indicate
conversational mode. When this buffer
is released after completion of a GET
by the processing program, the Return
Buffer routine Cin module IJLQIP)
posts this buffer to the LPS Queue.
When this buff er is obtained from the
LPS Queue by the LPS Control routine6

control returns to the Conversational
Mode routine Cvia the Cleanup
routine>. The conversational Mode
routine then begins a scan to
determine if a message Cth~ reply) is
on the DASD queue for the source
terminal (that is, the terminal that
initiated the inquiry).

If no message is on the queue Cor
if the source terminal was not
identified), exit is made to the
Cleanup routine. If there is a
message, initialization procedures are
performed for sending the reply: the
send bit is set in the LSTA field of
the LCB., and the write initial
indicator is set in the LOPC field.
The buffer containing the original
inquiry message is released, via a
QPOST, to the Available Buffer queue.
The disk address of the reply message
header is placed into the LCB. A
request for sending the reply is
posted Cvia a QPOST) to the Disk I/O
queue (this causes the Disk I/O
subtask to be activated for reading
the reply from disk and most rapid
sending of the reply message). Exit
is made to the LPS Control routine to
continue normal processing.

Message Control Program (LPS) Routines 55

External Routines Used:

LPS Control (IJLQIP20 in module IJLQIP)

End Insert (IJLQNDRT in module IJLQIP)

INITIATE MODE ROUTINE

Module Name: IJLQMI (Chart MM)

Entry Point: If there is no specified
character in the second operand of the
macro, the expansion of the MODE macro
instruction generates a BALR to the routine
at IJLQMI, using register 15 as the branch
address register and register 14 as the
return register. If there is a character
specified in the second operand, the
address of the Initiate routine is placed
in the parameter register 1, and the
routine is entered by a branch from the
Message Mode Interface routine.

Function: The routine sets the Initiate
bit in the LSTA field of the LCE. Return
is to the next LPS instruction.

External Routines Used: None

MESSAGE MODE INTERFACE ROUTINE

Module Name: IJLQMM (Chart MM)

Entry Point: Expansion of the MODE macro
instruction generates a BALR to the routine
at IJLQMM, using register 15 as the branch
address register and register 14 as the
return register. The parameter list passed
to the routine in register 14 contains the
character that is to be compared with the
first nonblank character in the header.
Register 1 is a parameter register that
contains the address of the routine that is
specified by the first operand of the
macro.

Function: This routine is entered when
there is a specific character specified in
the second operand of the MODE macro.
Linkage is made to the Scan Header routine
to obtain the next nonblank character in
the header. If the character, provided by
the Scan routine, is identical to the one
specified in the MODE macro, the routine
branches to the routine designated in the
first operand. If the characters do not
match, the scan pointer is restored, and
return is made to the next LPS instruction.

External Routines Used: Scan Header
(Module IJLQSH)

56 DOS QTAM Program Logic Manual

PRIORITY MODE ROUTINE

Module Name: IJLQMP (Chart MM)

Entry Point: If there is no specified
character in the second operand of the
macro, the expansion of the MODE macro
instruction generates a BALR to the routine
at IJLQMP, using register 15 as the branch
address register and register 14 as the
return register. If there is a character
specified in the second operand, the
address of the Priority Mode routine is
placed in parameter register 1, and the
routine is entered by a branch from the
Message Mode Interface routine.

Function: Linkage is made to the Scan
Header routine which obtains and provides
the address of the first nonblank character
in the header. The first nonblank
character is moved into the LTPR field of
the LCB and becomes the priority of the
message. Return is made to the next LPS
instruction.

External Routines Used: Scan Header
(Module IJLQSH)

MESSAGE TYPE ROUTINE

Module Name: IJLQMT (Chart MT)

Entry Point: Expansion Of the MSGTYPE
macro instruction generates a BALR to this
routine at IJLQMT, using register 15 as the
branch address register and register 14 as
the return register. Register 14 serves
also as a parameter list register. The
parameter list passed to the routine
consists of a halfword containing the field
size and a constant containing the
character sequence with which the scanned
character sequence is to be compared.

Function: Saves the scan pointer~ then
links to the scan Header routine, which
obtains and provides to the Message Type
routine the next character sequence in the
message header. The Message Type routine
compares the character sequence provided
with the character sequence specified in
the MSGTYPE macro statement.

If the character sequences are
identical, the routine branches to the next
executable LPS instruction. If they are
not identical, the routine restores the
scan pointer and branches to the next
MSGTYPE or delimiter macro in the LPS, thus
bypassing any instructions preceding the
next MSGTYPE or delimiter macro. Because
the scan pointer is restored when the two
character sequences are not the same, a

(\
' I

_,)

rf
':t

('

series of Message Type routines may be
executed, each examining the same message
type character sequence in the header.

External Routines Used: Scan Header
(Module IJLQSH)

OPERATOR CONTROL ROU'IINE

Module Name: IJLQOC (Charts OC, OD, OE,
OF, OG, and OH)

Entry Point: Expansion of the CPCTL macro
instruction generates a BALR to the
Operator Control routine at IJLQOC.
Register 15 is the branch register,
register 14 is the return register, and
register 1 contains the address of a
parameter list generated by the macro
instruction.

Function: Interpreting, selecting, and
performing a control operation requested by
the user by entering a message from a
user-specified control terminal.

The routine is branched to if the code
generated by the macro instruction
determines that the message is being sent
from an operator control terminal. The
routine compares the next field in the
buffer with the specified control message
identifier. If it is not equal, return is
made to the next LPS instruction. The
routine tests if the scan pointer has run
out of the header. If yes, the scan
pointer is reset to where it was when the
OPCTL macro instruction gained control, and
return is made to the next LPS instruction.
The routine tests if the message is to be
cancelled. If yes, the message is routed
back to the terminal that sent the message
by the Routing subroutine.

The routine then branches to the Scan
Header routine to access the next field in
the header. Upon regaining control, it
tests to determine if the field is a valid
operator control operation. If it is not,
the message is routed back to the terminal
that sent the message by the Routing
subroutine. If it is valid, the routine
selects the correct subroutine for the
operation and branches to it, The
operation subroutines are discussed in
detail. Also discussed are four auxiliary
subroutines used ty more than one operation
subroutine, SUBl, SUB2, UNPAK, and ROUTE
(the Routing subroutine).

CHNGT Operation Subroutine: The subroutine
branches to SUB1, which returns to the
CHNGT Operation subroutine the address of
the terminal table entry for the terminal
specified in the operator control message

and the number of bytes in the buffer
following the termname operand.

The information in the buff er. from the
beginning of the data field to the end of
the buffer, is translated according to a
special translate table labeled TABLETRN.
Use of this table translates IBM 1050 code
into hexadecimal.

A translate-and-test instruction is then
executed on the buffer from the beginning
of the data field to the end of the buffer.
The table used with this instruction
(TABLETST) causes the instruction to halt
whenever a byte is tested that is not equal
to one of the bytes X'FO' through X'FF'.

If the instruction exhausts the buffer
count without a halt, the message is
returned to the source terminal via the
Routing subroutine. If the instruction
halts. the byte at which the instruction
halted is tested to determine if it is one
of the valid delimiting characters for the
data field (blank, EOB or EOT). If it is
not, the message is returned to the source
terminal via the Routing subroutine.

The subroutine tests to determine if the
number of characters in the data field
(excluding the delimiting character) is
even. If it is not an even number, the
message is returned to the source terminal
via the Routing subroutine.

The subroutine tests to determine if the
number of characters in the data field
(excluding the delimiting character> can
fit into a single terminal table entry. If
not, the message is returned to the source
terminal via the Routing subroutine.

The subroutine then posts the Change
Terminal Table Entry QCB to itself via a
QPOST (SVC 31). The Change Terminal Table
Entry subtask is entered in supervisor
state.

The subtask tests the QCB for the
terminal table entry to make sure that the
entry is for a terminal. If it is not, the
message is returned to the source terminal
via the Routing subroutine.

The subtask tests to determine if the
line for this terminal is active. If it is
not active, the terminal table entry is
changed starting with the sequence-in
CIJLQTSIN) field.

If the line is active, the sequence-in
and sequence-out fields in the entry are
not changed. The entry is changed starting
with the status field CIJLQTSTA) and the
data field of the operator control message
is truncated accordingly.

Message Control Program CLPS) Routines 57

The information from the data field in
the buffer is then packed into a work area,
and the work area is moved into the
terminal table entry. The subtask exits to
Qdispatch.

Upon reentry, the subroutine performs
checking procedures, then returns to the
macro generated code to branch to the
ENDRCV delimiter macro instruction.

COPYC Operation Subroutine: An audio
switch is set on to allow SUB! to scan the
audio line table. Then a branch is made to
SUB!, which returns the address of the
terminal or audio line entry specified.
For a terminal entry, a test is made to
make sure that the entry is for a terminal.
If it is not, exit is made to the Routing
subroutine.

The address of the LCB or ALCB is
obtained and the buffer is posted to a
special QCB (COPYCLR) to enter the COPYCLR
subtask at COPYCLR+6 in disabled state.

The threshold line error counters are
added to the cumulative line error
counters. The cumulative counters are
converted and forroatted into the work area.
A branch is made to UNPAK to unpack and
translate the work area into the buffer.
The threshold counters are cleared and exit
is made to Qdispatch.

Upon return, the subroutine branches to
the Routing subroutine to return the buffer
to the caller.

COPYT Operation subroutine: The subroutine
branches to SUB!, which returns to the
COPYT Operation subroutine the address of
the terminal table entry for the terminal
specified in the operator control message
and the number of bytes in the buffer
following the termname operand.

The COPYT Operation subroutine tests to
determine if the length remaining in the
buffer is enough to contain the information
to be placed in it from the terminal table.
If there is enough length, the subroutine
branches to UNPAK to insert the terminal
table entry into the buffer starting with
the IJLQTSIN field. If there is not enough
length, the subroutine sets flags to
indicate to UNPAK to truncate the entry at
the low-order end and to insert the amount
of the entry that will fit.

on return, the subroutine branches to
the Routing subroutine to send the message
back to the source terminal.

58 DOS QTAM Program Logic Manual

INTERCPT Operation Subroutine: The
subroutine tests the parameter list to
determine if the INTRCPT=YES operand was
specified in the OPCTL macro instruction.
If it was not. the message is returned to
the source terminal via the Routing
subroutine.

The subroutine then branches to SUB! to
obtain the address of the terminal table
entry specified in the operator control
message. It tests to determine if the
entry is a terminal entry. If not, the
message is returned to the source terminal
via the Routing subroutine.

If it is a terminal entry, the send bit
in the IJLQTSTA field is turned off, and
the subroutine returns to the macro
generated code to branch to the ENDRCV
delimiter macro instruction.

INTREL Operation Subroutine: The
subroutine turns on a switch (SWl) to
indicate that the entry is from INTREL, and
branches directly to STOPLN. Processing
proceeds as described in STOPLN Operation
Subroutine up to entry into SUBTASK!.

On entry into SUBTASK11 the LCB is
deactivated by insertion of X'OO' into the
first byte of the LCB. A test is then made
to determine if entry is from INTREL. If
not, processing continues as described
under STOPLN. Otherwise, the subtask
branches to SUBTASK2.

At SUBTASK2, the LCB is removed from the
Ready Queue, and the switch representing
entry from INTREL (SWl) is cleared.

The buffer is modified to cause it to
appear to the system as an LCB. The
subtask prepares this pseudo-LCB for
insertion into the time queue with a
two-minute delay. The status field of the
LCB (LSTA) is changed to prevent the LCB
from being started while the pseudo-LCB is
in the Time Delay routine.

In the Time Delay routine., the
pseudo-LCB is recognized as coming from
INTREL. A branch is made to the QTAM Post
routine to post the pseudo-LCB to itself to
activate the next subtask on the STCB chain
of the pseudo-LCB, causing entry into
STCB2.

At STCB2, a branch is made to the QTAM
Post routine to post the real LCB to
itself. At this time, the system also
dispatches the pseudo-LCB, which is now
treated as a buffer again, to the Available
Buffer queue.

After the line has been stopped and
entry has been made into TRYEXIT, another

/-

'__

/

test is made to determine if entry is from
INTREL. If yes., the switch indicating
entry from INTREL (SW1) is cleared and the
INTREL switch in the LCB (in field LDFG) is
set. A test is made to determine if the
LCB has been deactivated. If not, exit is
made to Qdispatch. Otherwise, a branch is
taken back into SUBTASK2 at the point where
the buffer is modified to appear to the
system as an LCB (BUILD2).

Entry into the INTREL subroutine may be
from the Operator Awareness routine when it
posts the buffer to a special QCB
(IJLQOC70) associated with a special STCB
(IJLQOC80). (Both are located in the
Operator Control rrodule.} The subtask
activated tests to determine if the LCB is
active. If it is not, a branch is taken
into SUBTASK2 at the point where the buffer
is modified to appear to the system as an
LCB (BUILD2). If the LCE is active, the
switch indicating entry from INTREL (SW1}
is set, and a branch is taken to the STOP2
subtask at the point where the combined
QCE-STCE is generated in the buffer
(GENSTCE).

RELEASEM Operation Subroutine: The
subroutine tests to determine if
INTRCPT=YES was specified in the OPCTL
macro instruction. If it was not, the
message is returned to the source terminal
via the Routing subroutine.

If the operand was so specified, the
subroutine branches to SUBl to get the
address of the terminal table entry
specified in the operator control message.
Upon return, it tests to determine if the
terminal is in intercept mode. If it is
not, the subroutine returns to the macro
generated code to branch to the ENDRCV
delimiter macro instruction.

If the terminal is in intercept mode,
the subroutine obtains from the parameter
list the off set to the intercept optional
field in the terminal table entry, and
compares the current disk address in the
QCB with the disk address saved there. If
they are not equal, the disk address in the
optional field replaces the current disk
address.

The status of the terminal is then
returned to active mode and the subroutine
returns to the macro generated code to
branch to the ENDRCV delimiter macro
instruction.

STARTARU Operation Subroutine: An audio
switch is set on to allow SUE1 to scan the
audio line table. Then, a branch is made
to SUBl, which returns the address of the
audio line table entry specified in the

operator control message. The address of
the DTF line group is obtained and a test
is made to determine if the DTF table has
been opened. If not, the message is
returned to the source terminal via the
Routing subroutine.

If ALL is specified in the operator
control message, the address of the first
ALCB in the line group is accessed. If the
relative line number is specified. a test
is made to check if this relative line
number is valid. If not, the message is
returned to the source terminal via the
Routing subroutine. If yes, the address of
the corresponding ALCE is accessed.

When the ALCE stop flag is off, the line
is already active and the line processing
is completed.

When the ALCE stop flag is on., but the
line is not effectively stopped, the stop
flag is reset and the line processing is
completed. When the ALCB stop flag is on
and the line is effectively stopped, an
EXCP (SVC 0} is issued to restart the audio
line. If ALL has been specified, this
restart procedure is made for each line.
In any case, return is made to the macro
generated to branch to the ENDRCV delimiter
macro instruction.

STARTLN Operation Subroutine: The
subroutine branches to SUBl, which returns
to the STARTLN Operation subroutine the
address of the terminal table entry
specified in the operator control message
and the number of bytes in the buff er
following the termname operand. The
subroutine then branches to SUE2, which
translates the entry into EBCDIC in the
low-order bytes of the buffer.

The subroutine tests the QCB for the
terminal table entry to make sure that the
entry is for a terminal. If it is not, the
message is returned to the source terminal
via the Routing subroutine.

The subroutine tests to determine if ALL
is specified in the operator control
message. If it is, the subroutine exits to
the Change Line routine at the "start all"
entry point. If it is not, entry is at the
"start single line" entry point.

The Change Line routine returns an error
code to the STARTLN Operation subroutine in
register 15. The subroutine tests this
register for a code of O, which indicates
that no errors occurred. If the register
does not contain O, the message is returned
to the source terminal via the Routing
subroutine. If the code is O, no errors
occurred, and return is made to the macro

Message Control Program (LPS) Routines 59

generated code to branch to the ENDRCV
delimiter macro instruction.

STOPARU Operation Subroutine: An audio
switch is set on to allow SUBl to scan the
audio line table. Then, a branch is made
to SUBl, which returns the address of the
audio line table entry specified in the
operator control message. The address of
the DTF line group is obtained and a test
is made to determine if the DTF table has
been opened. If not, the message is
returned to the source terminal via the
Routing subroutine.

If ALL is specified in the operator
control message, the address of the first
ALCB in the line group is accessed. If the
relative line number is specified, a test
is made to check if this relative line
number is valid. If not, the message is
returned to the source terminal via the
Routing subroutine. If yes, the address of
the corresponding ALCE is accessed.

The ALCB stop flag is set on for the
specified line or for each line in the line
group if ALL has been specified, and return
is made to the macro generated code to
branch to the ENDRCV delimiter macro
instruction.

STOPLN Operation Subroutine: The
subroutine branches to SUBl, which returns
to the STOPLN Operation subroutine the
address of the terminal table entry for the
terminal specified in the operator control
message and the number of bytes in the
buffer following the termname operand. The
subroutine then branches to SUB2, which
translates the entry into EBCDIC in the
low-order bytes of the buffer.

A test is made to determine if at least
22 bytes past the buffer prefix are
available for use in the buffer. If not,
the message is returned to the source
terminal via the Routing subroutine.

A test is made to determine if all lines
are to be stopped in the line group that
includes the line on which the operator
control terminal is located. If so, the
message is returned to the source terminal
via the Routing subroutine.

A test is made to determine if the DTF
table containing the line to be stopped has
been opened. If not, the message is
returned to the source terminal via the
Routing subroutine.

The buffer size is extended, into the
buffer prefix, to 56 bytes.

A test is made to determine if the
subroutine was entered via an INTREL

60 DOS QTAM Program Logic Manual

operator control message. If so, a branch
is made to SUBTASK2 (described in INTREL
Operation Subroutine).

A test is made to determine if ALL is
specified in the operator control message .•
If so, parameters are set up for the number
of LCBs in the line group.

The subroutine then issues a QPOST to
post a special QCB C STOPlQCB) to itself.
Entry into the STOP! subtask is in
supervisor state.

The STOP! subtask changes a branching
address in the Implementation module at
IJLQIP25. This change causes the Post Send
or the Post Receive routine (whichever is
to gain control) to the exit to the
Operator Awareness routine rather than to
the Buffer Recall/Cleanup routine.

The STOP! subtask tests the status field
in the LCB CIJLQLSTA) for the line that is
to be stopped. If the line is not active,
SUBTASK! branches to TRYEXIT. (Action
taken at TRYEXIT is discussed later in this
section.>

The STOP! subtask tests to determine if
an operator control STOPLN procedure is
pending by examining the first STCB in the
STCB chain of the LCB. If it is the STOPLN
STCB (STOP2), a branch is made to TRYEXIT.

If the line is active, tests are made to
determine if it is a switched line. If so,
and if it is not actively transmitting, the
subtask issues a HALT I/O to stop the
Enable command for the line.

If a Read Initial channel program is
initiated on a WTTA line, a test is made to
determine whether data is being received
over that line. If not 0 the subtask issues
a HALT I/O to stop the Prepare command for
the WTTA line.

A test is made to determine. whether this
is the first time this subtask has been
reentered to stop other lines in a line
group. If this is a reentry, the subtask
branches to STOP2.

The STOP! subtask loads the address of
another special QCB CSTOP2QCB) into the
destination field of the buffer, then
branches to Qdispatch. Control returns to
the macro generated code.

The STOP2 subtask is activated when the
Cleanup routine posts the buffer to the
destination queue. Because the STOP2 QCB
was inserted in the destination field of
the buffer, the buffer is passed to STOP2
instead.

' (-.

The STOP2 subtask generates in the
buffer a combined QCB-STCB and coding to
branch to SUBTASK1. This combined QCB-STCB
is inserted as the first STCB in the STCB
chain of the LCB for the line that is to be
stopped.

A test is made to determine if entry was
from INTREL. If not, exit is made to
Qdispatch. If entry was from IN'IREL, the
switch representing entry from INTREL (SW1)
is cleared, the INTREL switch in the LCB
(in field LDFG) is set, and exit is made to
Qdispatch.

When activity ceases on the line, entry
is made to the next subtask on the LCB STCB
chain, which is now the combined QCB-STCB
set up in the buffer. The coding in the
buffer branches to SUBTASK1.

SUBTASK1 deactivates the LCB by
inserting X'OO' in the first byte of the
LCB.

A test is made to determine if entry is
from INTREL. If so, the subtask branches
to SUBTASK2 .•

The next STCB from the STCB chain of the
LCB is examined to determine if it is a
full STCB. If it is not, the LCB is
removed from the Ready Queue, thus stopping
the line.

If there are other lines to be stopped,
the subtask branches to TRYEXIT.
Otherwise, exit is made to the QTAM Post
routine to post the buffer to the Available
Buffer queue.

At TRYEXIT, a test is made to determine
if there are more lines to be stopped. If
so, the next LCB in the DTF table for the
line group is accessed, and return is made
to the STOPl subtask at the point where the
line is examined to determine if it is
active.

If there are no more lines to be
stopped, a test is made to determine if
SUBTASKl has been executed. If it has,
then the buffer has already been posted to
the Available Buffer queue, and exit is
made to Qdispatch. If SUBTASK1 has never
been executed, this subtask exits to the
QTAM Post routine to post the buff er to the
Available Buffer queue.

SWITCH Operation Subroutine: The parameter
list generated by the OPCTL macro
instruction includes a pointer to the
terminal table entry for the operator
control terminal, and (if specified in the
OPCTL macro instruction) a pointer to the
terminal table entry for the alternate
operator control terminal. The SWITCH
Operation subroutine reverses these two

addresses in the parameter list, then
returns to the macro generated code to
branch to the ENDRCV delimiter macro
instruction.

If an alternate operator control
terminal has not been specified, the
message is returned to the source terminal
via the Routing subroutine.

Common Operator Control Subroutines:

SUBl. The subroutine branches to the Scan
Header routine to get the next field in the
message (termname operand). Upon return,
it branches to the Lookup Terminal Table
Entry routine to determine if the termname
operand is valid. If not and if the audio
switch is off. the message is returned to
the source terminal via the Routing
subroutine. If not and if the audio switch
is on., the audio line table is scanned to
search a line table entry corresponding to
the linename operand. If such a line entry
is not found. the message is returned to
the source terminal via the Routing
subroutine. If the line entry is found,
return is made to the calling routine.

For a terminal entry, the subroutine
then calculates the number of bytes in the
buffer following the termname operand.
Passing these parameters, return is made to
the calling subroutine.

SUB2. The subroutine gets the QCB for the
terminal table entry specified, and tests
to make sure that it is an entry for a
terminal. If it is not, the message is
returned to the source terminal via the
Routing subroutine.

Otherwise. the relative line number and
the address of the DTF table are saved.
The scan pointer is moved past any
delimiting blanks in the buffer, and return
is made to the calling routine.

UNPAK. The subroutine unpacks and
translates into valid EBCDIC the terminal
table entry starting at the IJLQTSIN field
into the remaining bytes of the buffer. If
the remaining bytes cannot contain the
terminal table entry, its low-order end is
truncated and the data that can fit is
inserted. Return is made to the calling
subroutine.

Routing Subroutine. The subroutine moves
the source identifier field (ESTO) to the
destination identifier field (BDTO) in the
header prefix. The address of the QCB for
the source terminal is placed in the LCB
and return is made to the macro generated
code to branch to the ENDRCV delimiter
macro instruction.

Message Control Program (LPS) Routines 61

External Routines Used:

Lookup Terminal Table Entry (Module IJLQLK)

Operator Awareness (Module IJLQOA)

Scan Header (Module IJLQSH)

Change Line (Module IJLQCL)

Time Delay (in Implementation module)

POLLING LIMIT CONTROL ROUTINE

Module Name: IJLQPL (Chart PL)

Entry Point: Expansion of the POLLIMIT
macro instruction generates a BALR to this
routine at IJLQPL using register 15 as the
branch address register and register 14 as
the return register. Bits 24-31 of
parameter register 1 contain the specified
polling limit.

Function: Limits the number of messages to
be accepted from a nonswitched terminal
during one polling pass. If the polling
pointer is not equal to the terminal entry
for the current message or is at the end of
the polling list, return is to the next LPS
instruction. Otherwise, the current poll
count (contained in the LMCT field of the
LCB) is compared to the limit specified.
If the count, incremented by one, is less
than the limit, then return is to the next
LPS instruction. If the count, incremented
by one, exceeds or is equal to the limit,
the polling pointer is set to the next
terminal (in the polling list for the line)
before returning to the next LPS
instruction.

External Routines Used: None

PAUSE ROUTINE

Module Name: IJLQPZ (Chart PZ)

Entry Point: Expansion of the PAUSE macro
instruction generates linkage to this
routine at IJLQPZ, using register 15 as the
entry register and register 14 as the
return register. Register 14 also serves
as a parameter list register. The
parameter list consists of three items:

1. The control character which causes
insertion of idle (or other)
characters.

2. The number of idle (or other)
characters to be inserted.

62 DOS QTAM Program Logic Manual

3. The hexadecimal configuration of the
idle (or other) character(s) to be
inserted.

Function: causes the specified number of
idle (or other) characters to be inserted
in an outgoing message segment each time
the specified control character is
encountered in the segment.

The address of the first byte to be
scanned for the special control character
is computed for a header or text segment.
The address of the previous BRB/CCW in the
BRB-ring formed for sending this message is
obtained from the LCCW field of the LCB.
If the previous BRB/CCW is a Pause BRB/CCW,
the number of Pause BRB/CCWs remaining in
the Additional-CCW queue is obtained from
the location labeled COUNT. Otherwise, the
number of Pause BRB/CCWs is obtained from
expansion of the BUFFER macro (location
IJLQBFRZ+2). The buffer is then scanned
for the specified control character.

If the character does not appear in the
buffer, return is made to the next LPS
instruction. If the character is found,
the number of remaining Pause BRB/CCWs is
decremented by one and stored in location
COUNT. (If the count is zero, return is
made to the next LPS instruction without
further action. Insufficient Pause
BRB/CCWs were specified in the BUFFER macro
instruction, and no idle characters are
transmitted.) The routine then loads the
address of the Additional- CCW QCB into
register 0 and links to the LPS Control
routine at IJLQIP21.

The LPS Control routine issues a QWAIT
(SVC 30) to request a Pause BRB/CCW from
the element chain of the Additional- CCW
queue. When the request is satisfied,
control is returned to the Pause routine
with the address of the Pause BRB/CCW in
register 1.

The Pause BRB/CCW is a block of 24 bytes
(for 3 CCWs) and is initialized and
inserted into the BRB ring in the following
manner (Figures 3 and 4 illustrate the BRB
ring and buff er before and after insertion
of the Pause BRB/CCW): The TIC address in
the previous BRB/CCW is inserted into the
third CCW of the Pause BRB/CCW and is
overlaid by the address of the Pause
BRB/CCW. The data address from the
previous next BRB/CCW is placed into the
first Pause CCW so that this CCW writes all
message data preceding the control
character and the control character itself.

The address of the data character
following the specified control character
is placed into the previous 0 next BRB/CCW."
The counts for both data fields are
computed (count 1 and count 2 in Figure 4)

\

(
\

~.

()
and placed in the appropriate ccw•s. The
second Pause CCW is then initialized with
the address and count of the idle <or
other) characters to be transmitted. The
final step is to place the address of the
Additional CCW queue into the third Pause
CCW; this is used for releasing the Pause
BRB/CCW to the Additional-CCW queue after
the segment has been transmitted.

The routine then branches back to resume
scanning the remainder of the buffer for
the specified control character. If it is
encountered again, the preceding procedure
is repeated. This process continues until
the entire buffer has been scanned or until
no further Pause BRB/CCWs are available.
Return is made to the next LPS instruction.

External Routines Used: LPS Control
(IJLQIP20 in Module IJLQIP)

ROUTE MESSAGE ROUTINE

Module Name: IJLQRG (Chart RG)

Entry Point: Expansion of the Route macro
instruction generates a BALR to the routine
at IJLQRG, using register 15 as the branch

Count

Buffer: Prefix Message Data

address register and register 14 as the
return register. Register 14 serves also
as a parameter list register. The
parameter list passed to the routine
consists of one item: a halfword
containing in binary, either:

1. the maximum size of each destination
code in incoming message headers; or

2. all ones, indicating that the
destination code fields are of
variable length (the end of the field
is indicated by a blank).

Function: Links to the Scan Header routine
to obtain the destination code in the
incoming message header; then branches to
the LOokup Terminal Table Entry routine,
which looks up the destination code in the
terminal table and places the relative
address in the BDTO field of the incoming
header prefix. Return to the next LPS
instruction is made by the Lookup routine,
rather than the Route Message routine.

External Routines Used:

Scan Header (Module IJLQSH)

Lookup Terminal Table Entry (Module IJLQLK)

Specified Control Character

TIC Address
TIC
Command

Previous BRB/CCW in Ring

Write
Command

Flags

Data Address

Count

Next BRB/CCW

Figure 3. BRB Ring Before Insertion of Pause BRB/CCW

Message Control Program (LPS) Routines 63

Buffer:

2nd CCW

Count 1

----"'---....
Prefix

Write
Command

Flags

Write
Command

N
L

Data Address

Count 1

Address of Idles

Flags Count of Idles

TIC
Command

TIC Address

TIC
Command

3rd CCW

TIC Address

Previous BRB/CCW in Ring

Address of Additional - CCW QCB

Pause BRB/CCW

Flags

Data Address

Count 2

Next BRB/CCW

Figure 4. BRB Ring After Insertion of Pause BRB/CCW

REROUTE MESSAGE ROUTINE

Module Name: IJLQRR (Chart RR)

Entry Point: Expansion of the REROUTE
macro instruction generates a BALR to the
routine at IJLQRR, using register 15 as the
branch address register and register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine
consists of the address of the error mask
in hexadecimal notation. In parameter
register 2 is the address of a field
containing the code of the alternate
destination.

Function: causes a message to be sent to
an alternate destination when any of the
error conditions specified by the error
mask is indicated in the error-halfword, or

64 DOS QTAM Program Logic Manual

when the error mask is zero. If the error
mask is not zero, and none of the error
conditions specified by the mask .are
indicated in the error-halfword, return is
made to the next LPS instruction.
Otherwise, linkage is made to the Recall
routine Cin module IJLQIP), whi.ch obtains
the header. Upon return, the routine
branches to the Lookup Terminal Table Entry
routine, which looks up the terminal table
entry for the alternate destination and
places its relative address in the BDTO
field of the incoming header prefix.
Return to the next LPS instruction is made
by the Lookup routine.

External Routines Used:

Recall CIJLQIP22 in Module IJLQIP)

Lookup Terminal Table Entry (Module IJLQLK)

()

(··.,

/

SCAN HEADER ROUTINE

Module Name: IJLQSH (Chart SH)

Entry Point: This routine is entered via a
BALR from the IJLQMP, IJLQSI, IJLQSK,
IJLQMM, IJLQRG, IJLQSR, and IJLQMT modules;
register 15 is the branch address register
and register 3 is the return register. The
address of a single-item parameter list is
passed to the routine in register 14. The
parameter list contains the field length or
the variable-field-length indicator. Upon
entry, the scan pointer register {register
5) contains the address of either the last
character of the last header field scanned,
or the first blank character following the
field.

Function: Obtains one or more nonblank
characters from a fixed or variable-length
header field and places them in a work
area, the address of which is returned in
register 2 to the calling routine.

The scan Header routine moves the scan
pointer register one position at a time,
and places any nonblank header character
found into the work area. This operation
is repeated until the end of the field is
reached or the work area is filled <work
area size is eight bytes>.

If the field to be scanned is
fixed-length, its size is provided to the
routine in a parameter list; the routine
places into the work area the number of
characters specified. During scanning, any
blank characters encountered are passed
over. They are not placed in the work area
and they are not included in the count of
characters maintained by the routine.

If the field to be scanned is
variable-length, an indicator (2X"FF') is
passed to the routine in the parameter
list. The Scan rleader routine scans to the
first nonblank character and then places it
and all succeeding nonblank characters into
the work area. The scan is delimited when
either:

1. the first blank character is
encountered, or

2. the eighth nonblank character is moved
into the work area.

During any scan operation if the end of
the segment is reached before the scan is
completed, the scan is terminated and the
"incorrplete header• bit {bit 5) is set in
the error-halfword.

External Routines Used: None

SEQUENCE NUMBER IN ROUTINE

Module Name: IJLQSI (Chart SI)

Entry Point: Expansion of the SEQIN macro
instruction generates a BALR to the routine
at IJLQSI, using register 15 as the branch
address register and register 14 as the
return register. Register 14 also serves
as a parameter list register. The
parameter list passed to the routine
consists of one item: the number of
character positions for the input-message
sequence number field. If this operand is
omitted, a hexadecimal "FF' indicates a
variable-length field.

Function: The routine links to the Scan
routine to obtain the sequence number from
the header. If the number is in proper
sequence, it is converted to binary
notation and put into the BNIN {sequence
number in) field of the header prefix. If
the number is not in sequence according to
the TSIN field in the terminal table entry,
the sequence error bit is set accordingly
in the LCB.

If the sequence number is too low, the
routine sets the "too low" bit (bit 3) in
the LEHW (error-halfword) field of the LCB
and return is to the next LPS instruction.
If the sequence number is too high, the
"too high" bit (bit 2) is set in the LEHW
field of the LCB, and return is to the next
LPS instruction. When either error
condition occurs, the sequence-in field in
the terminal table entry remains unchanged.
If the number is in correct sequence.,, the
expected sequence number from the terminal
table is stored in the LBCT field of the
LCB. The number in the sequence number
field in the terminal table entry is
incremented by one for the next message
before returning to the next LPS
instruction.

External Routines Used: Scan Header
(Module IJLQSH)

SKIP CHARACTER SET ROUTINE

Module Name: IJLQSK (Chart SK)

Entry Point: Expansion of the SKIP macro
instruction specifying a particular
sequence of characters to be skipped
generates a BALR to the routine at IJLQSK,
using register 15 as the branch address
register and register 14 as the return
register. Register 14 serves also as a
parameter list register. The parameter
list passed to the routine consists of:

Message control Program (LPS) Routines 65

1. a halfword containing the length of
the character sequence to be found,
and

2. a character constant containing the
characters to be skipped.

Function: Advances the scan pointer
(contained in register 5) from its current
position past all header characters up to
and including a specified character
sequence. At the completion of the
operation, the scan pointer points to the
last character in the specified sequence.
Incrementing the scan pointer causes all
characters bypassed to be ignored during
header processing. If the end of the
segment is reached before the specified
sequence is found, the operation is
terminated and the "incomplete header" bit
(bit 5) is set in the error halfword for
the line.

External Routines Used: Scan Header
(Module IJLQSH)

SEQUENCE OUT ROUTINE

Module Name: IJLQSO (Chart SO)

Entry Point: Expansion of the SEQOUT macro
instruction generates a BALR to the routine
at IJLQSO, using register 15 as the branch
address register and register 14 as the
return register. Register 14 also serves
as a parameter list register. The
parameter list passed to the routine
consists of one item: the number of
character positions for the output sequence
number.

Function: The routine links to the Expand
Header routine, which "expands" the header
by creating a new field whose high-order
byte is the location pointed to by the scan
pointer. The binary sequence number is
obtained from the sequence number out
(BNOT) field in the header prefix and
converted to decimal form. The sequence
number is unpacked and inserted into the
new header field. Return is to the next
LPS instruction.

External Routine Used: Expand Header
(Module IJLQEX)

SOURCE TERMINAL VERIFICATION ROUTINE

Module Name: IJLQSR (Chart SR)

Entry Point: Expansion of the SOURCE macro
instruction generates a BALR to the routine

66 DOS QTAM Program Logic Manual

at IJLQSR, using register 15 as the branch
address register and register 14 as the
return register. Register 14 also serves
as a parameter list register. The
parameter list passed to the routine
consists of one item: a halfword
containing a source code field-length
indicator.

Function: Determines the validity of the
source terminal code field of an incoming
message header.

Linkage is made to the Scan Header
routine which returns in register 2 the
address of an area containing the source
terminal code found in the header.
Verification of the source code is made as
follows:

1. If the message originated from a
nonswitched terminal, the contents of
the source code field are compared
with the name of the originating
terminal (as the name appears in the
terminal table entry). If the
characters match, the source code is
considered valid. If they do not
match, the "invalid source code" bit
(bit 6) is set in the error-halfword
for the line.

2. If the message originated from a
switched or autopolled terminal the
contents of the source code field are
compared with each terminal entry name
in the terminal table., in succession,
until a match is found. If the source
code matches any of the entry names in
the terminal table, it is considered
valid. If no match is found among any
of the entry names in the table . ., the
code is considered invalid and the
"invalid source code" bit is set to
one. If the source code is valid, the
routine places its relative address
<within the terminal table) in the
source key (BSTO) field of the header
prefix in the buffer whose message
segment is being operated upon. The
relative address is also placed in the
LTTD field of the LCB.

In all cases, control returns to the
next instruction in the LPS.

External Routines Used: Scan Header
(Module IJLQSH)

SKIP-ON-COUNT ROUTINE

Module Name: IJLQST (Chart ST)
c

(

Entry Point: The expansion of a SKIP macro
instruction specifying a number of
characters to be skipped generates a BALR
to the routine at IJLQST, using register 15
as the branch address register and register
14 as the return register. Register 14
also serves as a parameter list register.
The parameter list passed to the routine
consists of one item: a halfword
containing the number of characters to be
skipped.

Function: Advances the scan pointer
{contained in register 5) from its current
position past a specified number of
nonblank header characters. The pointer
then points to the last nonblank character
needed to complete the count. Incrementing
of the scan pointer causes all characters
bypassed to be ignored during header
processing. If the end of the segment is
reached before the SKIP operation is
completed, the operation is terminated and
the "incomplete header• bit Cbit 5) is set
in the error-halfword for the line.

External Routines Used: None

TRANSLATE ROUTINE

Module Name: IJLQTR {Chart TR)

Entry Point: Expansion of the TRANS macro
instruction generates a BALR to the routine
at IJLQTR, using register 15 as the branch
address register and register 14 as the
return register. The parameter register 1
contains the address of the translation
code table named in the operand of the
macro.

Function: Translates message segments from
one code to another. The number of
characters to be translated is computed by
subtracting the address of the first byte

to be translated from the address of the
end of the segment. If the number is
non-negative, the message data is
translated using the table specified in the
macro. Return is to the next LPS
instruction.

External Routines used: None

TIME STAMP ROUTINE

Module Name: IJLQTS {Chart TS)

Entry Point: Expansion of the TIMESTMP
macro instruction generates a BALR to the
routine at IJLQTS, using register 15 as the
branch address register and register 14 as
the return register. Register 14 also
serves as a parameter list register. The
parameter list passed to the routine
consists of one item: a halfword
containing, in binary,, the length of the
time information field to be inserted in
the message header.

Function: Obtains the current time in
packed decimal format Cvia a GETIME macro),
unpacks it, and inserts a specified portion
of the time information in the message
header. Prior to inserting the timeu the
routine links to the Expand Header routine,
which "expands" the header by shifting to
the left all message characters preceding
the location in the header where the time
information is to be inserted. The time is
inserted in the field thus created. The
maximum field size is nine characters in
the format bhh.rnm.ss, where b = blank,
hh = hours, mm = minutes 0 and ss = seconds.
Lesser field sizes have a similar format,
truncated from the right.

External Routines used: Expand Header
{Module IJLQEX)

Message Control Program (LPS) Routines 67

MESSAGE PROCESSING PROGRAM ROUTINES

This section contains a detailed
description of all the QTAM routines that
support a message processing program.
These routines include the GET and PUT
routines and the routines associated with
the macro instructions that examine and
modify the status of the telecmrmunications
system. The routines discussed in this
section have several characteristics in
common:

1. Each routine is linkage-edited into
the message processing program due to
a V-type address constant generated by
the expansion of a QTAM macro
instruction.

2. Each routine is entered for execution
by linkage generated by the expansion
of its associated macro instruction.

3. Each routine saves and restores
registers using standard register
saving techniques.

All of the routines discussed, with the
exception of the Close Message Control
routine (CLOSEMC}, provide error returns
when an invalid condition is detected.
Error codes are returned in register 15,
right-adjusted. The codes for specific
error conditions are contained in the
discussions of the individual routines.
Zeros are returned in register 15 when no
error is detected.

CHANGE LINE ROUTINE

Module Name: IJLQCL (Chart CL)

Entry Points:

1. IJLQCL--from STOPLN macro expansion
for a specified line.

2. IJLQCL + 2--from STARTLN macro
expansion for a specified line.

3. IJLQCL + 4--from STOPLN macro
expansion if ALL is specified.

4. IJLQCL + 6--from STARTLN macro
expansion if ALL is specified.

Upon entry, register 0 contains the address
of the specified DTF table with the
relative line number in the high-order
byte. It should be noted that entry to
this routine is made only when the DTF

68 DOS QTAM Program Logic Manual

Locater routine was able to locate the
specified DTF table.

Function:
lines) in
activated
whether a
issued.

causes a specified line (or all
the specified line group to be
or deactivatedR depending on
STARTLN or STOPLN macro has been

If either of the following errors is
detected, no action is taken and return is
made to the calling routine with an error
code in register 15, right-adjusted:

1. DTF table has not been opened (error
code= x•o1•>: or

2. Invalid relative line number (error
code = x • 0 8') •

If no errors are detected, the LCB for the
specified line (or the first LCB in the
group if ALL) is accessed.

If entry is for a STARTLN, and if the
line is not already active, the line is
activated as follows: The address of the
LCB is loaded into the SVC parameter
registers 0 and 1, and the line (LCB) is
posted to itself via an SVC QPOST. Posting
a line to itself is the standard technique
used for activating (freeing) the line.

If entry is for a STOPLN on a
nonswitched and non-WTTA line, and if the
line is not already inactive. the line is
stopped as follows: the address of the LCB
for the specified line is loaded into SVC
parameter register 0 and an SVC QWAIT is
issued. This causes the line to be placed
in an inactive state. Note that for
autopolled lines in read initial the
wraparound polling list is broken before
issuing the QWAIT.

If the STOPLN is for a switched line or
for a WTTA line, a test is made to
determine if the line is involved in active
transmission (that is, the line has been
assigned for a dial operation or is
currently connected to a terminal). If it
is, a special ECB representing a request
for a Halt I/O operation is posted by a
QPOST to the LPS queue. LPS control
recognizes the element and issues a Halt
I/O (SVC 27). If the line is not currently
involved in active transmission, the SVC 27
is not issued.

If ALL has been specified in the STOPLN
or STARTLN macro, the applicable procedure

is repeated for each line in the line
group. Return is to the calling routine.

External Routines Used:

QPOST (SVC 31)

QWAIT (SVC 30)

HALT I/O (SVC 27)

CHANGE POLLING LIST ROUTINE

Module Name: IJLQCP (Chart CP)

Entry Point: Expansion of the CHNGP macro
instruction generates linkage to this
routine at IJLQCP, using register 15 as the
entry register and 14 as the return
register. Upon entry, register O contains
the address of the named DTF tatle with the
specified relative line number in its
high-order byte; register 1 contains
either:

1. the address of the work area if the
old list is to be replaced, or

2. the address of a field containing the
"change status" indicator if the list
is to be activated or deactivated.

It should be noted that entry is made to
this routine only when the DTF Locater
routine (Module IJLQFL) was able to locate
the specified DTF table.

Function: Replaces the current polling
list with a new polling list, or changes
the status of the polling list.

If any of the following errors are
detected, no movement of data occurs.
Return is to the calling routine with an
error indicator in register 15,
right-adjusted:

1. DTF table has not been opened (error
code= X'Ol'}

2. Invalid relative line number (error
code = x• 08')

3. Length of new polling list is not
equal to that of the current list
(error code X'10').

The specified polling list is located as
follows: The appropriate LCB is found by
multiplying the relative line number by the
size of the LCBs in this line group and
adding the result to the beginning address
of the first LCB in the group. The LPOL
field in this LCB contains the address of
the desired polling list.

If the polling list is to be replaced,
the QMOVE QCB (IJLQIP70 in module IJLQIP)
is posted to itself (via an SVC QPOST).
This causes the QMOVER routine to be
activated for the cross-partition movement
of the new polling list. Parameters passed
to the QMOVER routine are:

1. register 3--length of the area to be
moved;

2. register 4--address of the current
polling list being replaced; and

3. register 5--address of the work area
containing the new list.

If just the status byte in the current
polling list is to be changed" the
following parameters are passed to the
QMOVER routine:

1. register 3--contains zeros to cause
the QMOVER routine to change just the
status byte of the list;

2. register 4--address of the current
polling list;

3. register 5--address of the area
containing the change status
indicator.

After the SVC QPOST is satisfied, i.e ••
after the change has been completed, return
is made to the calling routine.

External Routine Used:

QMOVER (IJLQIP80 in Module IJLQIP)

QPOST (SVC 31)

CHANGE TERMINAL TABLE ENTRY ROUTINE

Module Name: IJLQCT (Chart CT}

Entry Point: Expansion of the CHNGT macro
instruction generates a BALR to the routine
at IJLQCT, using register 15 as the entry
register and register 14 as the return
register. Upon entry, parameter register 0
contains the address of the work area; the
address of an area containing the terminal
name is passed in register 1.

Function: Causes a current terminal table
entry to be replaced with a new entry
contained in the specified work area.

The address of the QTAM Vector Table is
obtained from the DOS Communication Region;
the address of the terminal table (in the
F1 partition) is obtained from the Vector
Table. A search of the terminal table is

Message Processing Program Routines 69

performed in an attempt to find the entry
to be changed. The name specified in the
macro is compared with the name in the TTID
field of each entry until a match is found
or the end of the terminal table is
reached.

If the name specified is not found,
return is made with an error code of X'20'
in register 15. If the name is found, the
length of the new entry is compared with
that of the old. If the lengths are
unequal, an error indicator of X'10' is set
in register 15 and return is made to the
calling program.

The LCB for the line to which the
specified terminal is attached is accessed.
If LSTA in the LCB is zero, the line is
inactive so the entire old entry may be
replaced. The QMOVE QCB (IJLQIP70) is
posted to itself <via a QPOST). This
causes the QMOVER routine (in module
IJLQIP) to be entered for the
cross-partition movement of the new entry.
Parameters passed to the QMOVER routine
are:

1. register 3--length of the area to be
moved;

2. register 4--address of the terminal
table entry being replaced; and

3. register 5--address of the work area
containing the new entry.

If LSTA is not zero (the line is
active),, the sequence-number-in (TSIN) and
sequence-number-out {TSOT) fields in the
old entry must not be disturbed. Thus, the
change is effected by two separate
movements of data (via 2 QPOSTs) so as to
skip over these fields.

After the SVC QPOST is completed, return
is made to the calling program.

External Routines Used: QMOVER (IJLQIP80
in module IJLQIP)

CHECKPOINT REQUEST ROUTINE

Module Name: IJLQCR (Chart CR)

Entry Point: The expansion of the CKREQ
macro instruction generates a BALR to the
Checkpoint Request module at IJLQCR. No
parameters are passed.

Function: The Checkpoint Request routine
issues a QPOST to post a checkpoint request
element to the checkpoint queue (located in
the Checkpoint module). The routine then
issues a QWAI'I on the checkpoint request

70 DOS QTAM Program Logic Manual

queue (also located in the Checkpoint
module). This QWAIT is satisfied when the
Checkpoint module, after it has taken the
checkpoint, issues a QPOST to post a
checkpoint request element to the
checkpoint request queue. Upon normal
return, the Checkpoint Request routine
passes to the message processing program.
in register 15, a code of X'OO' to indicate
that no errors have occurred.

If the user issues a CKREQ macro
instruction when checkpointing has not been
specified in the message control program.
the routine returns an error code of X'04'
in register 15. If the user issues a CKREQ
macro instruction when the checkpoint
interval method of checkpointing has been
specified, the routine returns an error
code of X'08' in register 15.

External Routines Used:

QPOST {SVC 31)

QWAIT (SVC 30)

COPY LINE ERROR COUNTERS ROUTINE

Module Name: IJLQDC (Chart CC)

Entry Point: Expansion of the COPYC macro
instruction generates a BALR to the Copy
Line Error Counters routine at IJLQDC.
Register 0 contains the address of the
user's work area. Register 1 contains the
address of the terminal or line name
specified. Register 15 is the branch
register, and register 14 is the return
register. Register 14 also contains the
address of an area containing the relative
line number if a relative line number is
specified by the user. If it is not
specified., the area contains zeros.

Function: Copies the line error counters
for a line into a user-specified work area.

The routine gets the address of the
vector table and locates the QTAM portion
of the vector table. From this, the
routine finds the location of the terminal
table and searches the terminal table for
the entry for the terminal specified by the
user. If a terminal entry is not found and
if an audio line table is specified, its
address is obtained from the vector table,
and the routine searches for a line table
entry corresponding to the line name
specified. If no entry is found, the
routine returns to the user's program,
passing an error code of X'20',
right-adjusted, in register 15. If a
terminal entry is found, the routine
locates the QCB for the entry, and finds

(
\\,,___

(

inthe QCB the address of the DTF table for
the line group in which the terminal is
located. If the user has specified the
relative line number, the routine uses it
to locate the LCB for the particular line
whose counters are to be copied.
Otherwise, the routine uses the relative
line number specified in the QCB.

If a line entry is found, the routine
locates the ALCB for the particular audio
line whose counters are to be copied.

The routine copies the threshold
counters and the cumulative counters from
the LCB or ALCB, adds them together, and
places the total in the user-specified work
area. The Qmover routine is entered via a
QPOST (SVC 31) two times, first to set the
cumulative counters to the new total, then
to set the threshold counters to o. The
routine then returns to the user's program
with a code of x•oo•, right-adjusted, in
register 15.

External Routines Used:

Qmover routine (IJLQIP80 in Module IJLQIP)

QPOST (SVC 31)

COPY TERMINAL TABLE ENTRY ROUTINE

Module Name: IJLQDE (Chart DE)

Entry Point: Expansion of the COPYT macro
instruction generates a BALR to the routine
at IJLQDE, using register 15 as the entry
register and register 14 as the return
register. Upon entry, register 0 contains
the address of the work area into which the
entry is to be copied and register 1
contains the address of a location
containing the entry name.

Function: Moves a specified terminal table
entry into a specified work area.

The terminal table address Cin the Fl
partition) is accessed through the DOS
communication region and the QTAM Vector
Table. A search of the terminal table is
made to find the specified entry. If the
specified entry is not found, return is
made to the calling program with an error
code of x•20• in register 15. If the entry
is found, the entire entry is moved to the
specified work area. The length of the
entry to be moved is found in the first
byte (TSZE field) of the entry. Return is
to the calling program.

External Routines Used: None.

COPY POLLING LIST ROUTINE

Module Name: IJLQDP (Chart DP)

Entry Point: Expansion of the COPYP macro
instruction generates linkage to the
routine at IJLQDP, using register 15 as the
entry register and register 14 as the
return register. Register 1 contains the
address of a work area into which the
polling list is to be copied. The address
of the DTF table for the line group is
contained in the low-order 3 bytes of
register O. The relative line number of
the line associated with the polling list
is passed in the high-order byte of
register O. It should be noted that entry
is made to this routine only when the DTF
Locator routine (module IJLQFL) has been
able to locate the specified DTF table.

Function: Moves a copy of the specified
polling list into a specified work area.

If either of the following errors in
specification is detected, return is made
to the calling program with an error
indicator in register 15, right-adjusted:

1. DTF table not opened (error= '01');
or

2. invalid relative line number (error
code= '08').

The specified polling list is located as
follows: The appropriate LCB is found by
multiplying the relative line number by the
size of the LCBs in this line group and
adding the result to the beginning address
Of the first LCB. The LPOL field in this
LCB contains the address of the desired
polling list. The polling list is then
moved into the specified work area and
return is made to the calling routine.

External Routines Used: None.

COPY QUEUE CONTROL BLOCK (QCB) ROUTINE

Module Name: IJLQDQ (Chart DQ)

Entry Point: Expansion of the COPYQ macro
instruction generates linkage to this
routine at IJLQDQ, using register 15 as the
entry register and register 14 as the
return register. Upon entry, register 0
contains the address of the specified work
area, and register 1 points to a field
containing the name (character string) of a
DASD terminal or process queue associated
with the requested QCB.

Message Processing Program Routines 71

Function: Moves a copy of the requested
QCB into the specified work area.

•rhe address of the terminal table is
accessed through the DOS colt1Illunication
region and the QTJ.\M Vector Table. The
specified terminal name is compared,
successively, with the name in the TTID
field of each terminal table entry until an
equal compare or the end of the terminal
table is reached. If the specified name is
not found in the terminal table, return is
made to the calling routine with an error
indicator of x•20• in register 15,
right-adjusted.

The address of the requested QCB is
obtained from the TQAD field in the
specified terminal table entry. The QCB is
then moved into the specified work area
(the QCB for all DJ.\SD process or
destination queues is 32 bytes in length).
Return is made to the calling routine.

External Routines Used: None.

DTF LOCATOR ROUTINE

Module Name: IJLQFL (Chart FL)

Entry Point: Expansion of the STOPARU,
STARTJ.\RU, STOPLN, STARTLN, COPYP, and CHNGP
macro instructions generate linkage to this
routine at IJLQFL, using register 15 as the
entry register and 14 as the return address
register. Upon entry, the address of the
area containing the specified DTF name is
supplied in register 1.

Function: Finds the address of the DTF
table corresponding to the DTF name
(character string) specified in the macro.
The logic module associated with the macro
requires the DTF table address for proper
execution.

In operation, the routine obtains the
address of the last QTAM DTF opened from
the VECLDTF field of the QTAM Vector Table.
Using this as a beginning address, it
searches all QTAM DTF tables in an attempt
to locate the one corresponding to the name
specified. The name contained in the DNME
field of the last DTF table is compared
with the specified name. If they are
unequal, the address of the previous DTF in
the chain as created by the QTAM Open
routine, is obtained from the DFLK field in
the DTF and the search continues. When an
equal compare is made, the address of the
DTF table located is placed into register 1
and return is made to the next instruction
in the macro expansion.

72 DOS QTAM Program Logic Manual

If the specified DTF table is not found,
or if it is not a DTF table for a line
group file, return is made with an error
code of X'20' in register 15. The next
instruction in the macro expansion tests
for an error return in register 15. If no
error is indicated, linkage is made to the
appropriate logic module. If an error is
indicated, return is made to the calling
routine.

External Routines used: None

GET AUDIO MESSAGE ROUTINE

Module Name: IJLQGA (Chart GA)

Entry Points: This routine is entered at
the following points:

1. IJLQGA+B via linkage generated by the
GET macro expansion. Upon entry,
register 0 contains the address of the
work area, and register 1 contains the
address of the DTF table for an
MS-process queue.

2. IJLQGA20+14 from the QTAM Control
Program. This entry is a special
section of the GET Audio Message
routine which runs in supervisor state
to avoid cross-partition storage
protection in turning on the GET bit
in an ALCB (in the foreground-!
partition). Upon entry into the GET
audio subtask, the address of the
high-priority GET audio element, which
contains the address of the passed
ALCB, is in register 1.

Function: Provides the next sequential
audio message in a specified work area.
The routine first removes the MS-process
queue from the Ready Queue through a QWAIT
(SVC 30) on the Ready Queue itself and then

makes a test to determine whether an ALCB
is in the process queue:

1. If bot, and if a user-written routine
has been specified to handle this
situation (SYNCAD keyword operand),
linkage is made to this routine,.

Exception: If CLOSEMC has been issued
(master receive switch off), control
transfers to the routine specified in
the FLUSHAD keyword operand.

2. If yes (or if no user-written routine
was specified>, the next ALCB is
requested by issuing a QWAIT (SVC 30)
on the process queue. (If there is no
ALCB in the queue, control does not

return until another ALCB arrives.)
The address of the ALCE is returned to
register 1. From the ALCB, the line
table entry enables the address of the
source line name to be obtained.
Then, this line name is moved into the
area specified in the LINAD keyword
operand.

If the work area is not large enough to
contain the message received in the input
buffer of the ALCE, and if a user-written
routine has been specified in the OVAD
keyword operand, linkage is made to this
routine. On return from this routine, or
if it has not been specified, the length of
the input messages is reduced to the size
of the work area. The remainder of the
message, which cannot be placed in the work
area, is ignored.

The length of the message is stored into
the GET/PUT prefix (first two bytes) of the
work area and, according to this length,
the message data is moved from the ALCE
into the work area.

The address of the ALCB is stored into
the high priority GET audio element which
is posted (SVC 31) to the special GET audio
queue. On activation of the GET audio
subtask, the GET bit is set on in the ALCE,
and the control returns to the calling
section of the GET Audio Message routine.

Finally, return is made to the next
instruction in the message processing
program.

External Routines Used:

QPOST (SVC 31)

QWAIT (SVC 30)

GET NONAUDIO OR AUDIO MESSAGE ROUTINE

Module Name: IJLQGE (Charts GB and GC

Entry Points: This routine is entered at
the following points:

1. IJLQGE+8 via linkage generated by the
GET macro expansion. Upon entry,
register 0 contains the address of the
work area, and register 1 contains the
address of the DTF table for an MS
process queue.

2. IJLQGB20+14 from the QTAM Control
Program. This entry is an audio
section that runs in supervisor state
to avoid cross-partition storage
protection in turning on the GET bit
in an ALCE (in the foreground-one

partition). Upon entry into the GET
audio subtask. the address of the
high-priority GET audio element, which
contains the address of the passed
ALCB, is in register 1.

Function: Provides the next sequential
message in a specified work area. This
work area is made up of two consecutive
parts: the first part used to receive
nonaudio messages, the second to receive
audio messages. The lengths of these parts
are specified in the SOWA and SOWARU
keyword operands, respectively.

The routine first removes the MS process
queue from the Ready Queue through a QWAIT
(SVC 30) on the Ready Queue itself and then
tests to determine whether an element
(buffer or ALCE) is in the process queue:

1. If not, and if a user-written routine
has been specified to handle this
situation (SYNCAD keyword operand),
linkage is made to this routine.

Exception: If CLOSEMC has been issued
(master receive switch off), control
is transferred to the routine
specified via the FLUSHAD keyword
operand.

2. If yes (or if no user-written routine
was specified), a test is made to
determine whether any message data
remains in a buff er obtained from a
previous GET.

a. If not, and if the last processed
element is not an ALCE, the
previous buffer is released to the
Return Buffer queue through an
SVC 31 (QPOST), and the next
element is requested through an
SVC 30 (QWAIT) on the process
queue. (If no element is in the
queue, control does not return
until another element arrives.)
The address of the buffer is
returned to register 1. At this
point, the header disk pointer is
saved for use by the next
checkpoint.

b. If yes, the QPOST/QWAIT sequence
is bypassed, because the message
data remaining in the buffer must
be handled before releasing the
buffer. The count and starting
address of the remaining data are
computed before continuing.

The routine then tests to determine
whether the next element to be processed is
a buffer or an ALCE.

Message Processing Program Routines 73

1. If it is a buffer, if this buffer
contains the header, and if the source
terminal displacement (BSTC in buffer
prefix) is not zero, the source
terminal name-is moved into the area
specified in the TRMAD keyword
operand. (The source displacement is
zero if the message is from another
message processing program, or if the
message arrived over a switched or
autopolled line for which the SOURCE
macro instruction was not included in
the incoming LPS.) The user's switch
specified in the SWITCH keyword
operand is turned off.

The message data is moved from the
buff er into the first part of the work
area using the size of the data, or
the size of the remainder of the work
area (first part) if smaller. After
this has been executed, a test for
end-of-message is made. If
end-of-message is not found, a waiting
loop is entered to release (QPOST) the
buffer and to wait (QWAIT) for the
next. If found, the type and length
of the message data moved are stored
into the GET/PUT prefix.

If the first part of the work area
is not large enough to contain the
entire message, and if a user-written
routine has not been specified to
handle this situation (OVAD keyword
operand), the count of the message
data remaining in the buffer is
computed and stored before control
returns to the calling routine. If a
user-written routine has been
specified, linkage is made to this
routine. In either case, the
remainder of the message is moved into
the first part of the work area when
the next GET is issued.

2. If it is an ALCE, the address of the
source line name is computed, and the
line name is moved into the area
specified in the LINAD keyword
operand. The user's switch specified
in the SWITCH keyword operand is
turned on.

If the second part of the work area
is not large enough to contain the
message received in the input buffer
of the ALCB, and if a user-written
routine has been specified in the OVAD
keyword operand, linkage is made to
this routine. On return from this
routine, or if it has not been
specified, the length of the input
message is reduced to the size of the
second part of the work area. The
remainder of the message., which cannot

74 DOS QTAM Program Logic Manual

be placed in the work area, is
ignored.

The length of the message is stored
in the GET/PUT prefix (first two
bytes) of the work area (second part)
and, according to this length, the
message data is moved from the ALCB
into the work area (second part>.

The address of the ALCB is stored
in the high-priority GET audio
element, which is posted (SVC 31) to
the special GET audio queue. On
activation of the GET audio subtask,
the GET bit is set on in the ALCB, and
control returns to the calling section
of this module.

When a complete message is in the work
area return is made to the next instruction
in the message processing program..

External Routines Used:

QPOST (SVC 31)

QWAIT (SVC 30)

GET RECORD OR AUDIO MESSAGE ROUTINE

Module Name: IJLQGC (Charts GD and GE)

Entry Points: This routine is entered at
the following points:

1. IJLQGC+8 via linkage generated by the
GET macro expansion. Upon entry,
register 0 contains the address of the
work area, and register 1 contains the
address of the DTF table for an MS
process queue .•

2. IJLQGC20+14 from the QTAM Control
Program. This entry is an audio
section that runs in supervisor state
to avoid cross-partition storage
protection in turning on the GET bit
in an ALCB (in the foreground-1
partition>. Upon entry into the GET
audio subtask, the address of the
high-priority GET audio element, which
contains the address of the passed
ALCB, is in register 1.

Function: Provides the next sequential
message record or audio message in a
specified work area. This work area is
made up of two consecutive parts: the
first part used to receive message records,
the second to receive audio messages. The
length of these parts is specified in the
SOWA and SOWARU keyword operands,
respectively.

\.

(/

(

The routine first removes the MS-process
queue from the Ready Queue through a QWAIT
(SVC 30) on the Ready Queue itself and then
tests to determine whether an element
(buffer or ALCE) is in the process queue:

1. If not, and if a user-written routine
has been specified to handle this
situation (SYNCAD keyword operand),
linkage is made to this routine.

Exception: If CLOSEMC has been issued
to initiate a closedown procedure
(master receive switch off), control
is transferred to the routine
specified via the FLUSHAD keyword
operand.

2. If yes (or if no user-written routine
specified), a test is made to
determine whether part of a record
remains in a buffer obtained from a
previous GET.

a. If not, and if the last processed
element is not an ALCE, the
previous buffer is released to the
Return Buffer queue through an SVC
31 (QPOST), and the next element
is requested through an SVC 30
(QWAIT) on the process queue. (If
no element is in the queue,
control does not return until
another element arrives.) The
address of the buffer is returned
to register 1. At this point, the
header disk pointer is saved for
use by the next checkpoint.

b. If yes, the QPOST/QWAIT sequence
is bypassed, because the remaining
data in the buffer must be handled
before releasing the buffer. The
count and starting address of the
remaining data are computed before
continuing.

The routine then tests to determine
whether the next element to be processed is
a buffer or an ALCE.

1. If it is a buffer, if this buffer
contains the header, and if the source
terminal displacement (ESTO in buffer
prefix) is not zero, the source
terminal name is moved into the area
specified in the TRMAD keyword
operand. (The source displacement is
zero if the message is from another
rressage processing program, or if the
message arrived over a switched or
autopolled line for which the SOURCE
macro instruction was not included in
the incoming LPS.) The user's switch
specified in the SWITCH keyword
operand is turned off.

The data in the buff er is moved
into the first part of the work area,
one byte at a time, until either:

a. A new-line (NL) or EOB character
is encountered in the buffer~ or

b. The first part of the work area is
filled. If a NL or EOE character
is found, it is moved into the work
area along with any consecutive NLs
or EOEs that immediately follow it.
The type of message unit and the
record length are placed in the
GET/PUT prefix.

If the first part of the work area
is not large enough to contain the
entire record. and if a user-written
routine has not been specified to
handle this situation (OVAD keyword
operand), the count of the data not
transferred is computed and stored for
the next GET. If a user-written
routine has been specified, linkage is
made to this routine. In either case,
the remaining data will be supplied on
the next GET.

If neither of the preceding
conditions specified is encountered in
the current buffer, an SVC 30 (QWAIT)
is issued to request another buffer,
and the above procedure is repeated.

2. If it is an ALCB, the address of the
source line name is computed, and the
line name is moved into the area
specified in the LINAD keyword
operand. The user's switch specified
in the SWITCH keyword operand is
turned on.

If the second part of the work area
is not large enough to contain the
message received in the input buff er
of the ALCB0 and if a user-written
routine has been specified in the OVAD
keyword operand, linkage is made to
this routine. On return from this
routine, or if it has not been
specified, the length of the input
message is reduced to the size of the
second part of the work area. The
remainder of the message,, which cannot
be placed in the work area, is
ignored.

The length of the message is stored
into the GET/PUT prefix (first two
bytes) of the work area (second part)
and., according to this length, the
message data is moved from the ALCE
into the work area (second part).

The address of the ALCE is stored
into the high-priority GET audio

Message Processing Program Routines 75

element which is posted (SVC 31) to
the special GET audio queue. On
activation of the GET audio subtask,
the GET bit is set on the AI.CB, and
control returns to the calling section
of this module.

When a record or an audio message is in
the work area, return is made to the next
instruction in the message processing
program.

External Routines Used:

QPOST (SVC 31}

QWAIT (SVC 30)

GET SEGMENT OR AUDIO MESSAGE ROUTINE

Module Name: IJLQGD (Charts GF and GG)

Entrx Points: This routine is entered at
the following points:

1. IJLQGD+8 via linkage generated by the
GET macro expansion. Upon entry,
register 0 contains the address of the
work area, and register 1 contains the
address of the DTF table for an
MSprocess queue.

2. IJLQGD20+14 from the QTAM control
Program. This entry is an audio
section that runs in supervisor state
to avoid cross~partition storage
protection in turning on the GET bit
in an ALCB (in the foreground-1
partition). Upon entry into the GET
audio subtask, the address of the
high-priority GET audio element, which
contains the address of the passed
ALCB, is in register 1.

Function: Provides the next sequential
message segment or audio message in a
specified work area. This work area is
made up of two consecutive parts: the
first part used to receive message
segments, the second to receive audio
messages. The lengths of these parts are
specified in the SOWA and SOWARU keyword
operands, respectively.

The routine first removes the MS process
queue from the Ready Queue through a QWAIT
(SVC 30) on the Ready Queue itself and then
tests to determine whether an element
(buffer or ALCB) is in the process queue.

1. If not, and if a user-written routine
has been specified to handle this
situation (SYNCAD keyword operand),
linkage is made to this routine.

76 DOS QTAM Program Logic Manual

Exception: If CLOSEMC has been issued
to initiate a closedown procedure
(master receive switch off), control
is transferred to the routine
specified via the FLUSHAD keyword
operand.

2. If yes (or if no user-written routine
specified), a test is made to
determine whether part of a segment
remains in a buffer obtained from a
previous GET.

a. If not, and if the last processed
element is not an ALCE, the
previous buffer is released to the
Return Buff er queue through an
SVC 31 (QPOST), and the next
element is requested through an
SVC 30 (QWAIT) on the process
queue. (If no element in the
queue, control does not return
until another element arrives.)
The address of the buffer is
returned to register 1. At this
point the header disk pointer is
saved for use by the next
checkpoint.

b. If yes. the QPOST/QWAIT sequence
is bypassed, because the remaining
data in the buffer must be handled
before releasing the buffer. The
count and starting address of the
remaining data are computed before
continuing.

The routine makes a test to determine
whether the next element to be processed is
a buff er or an ALCB.

1. If it is a buffer, if this buffer
contains the header, and if the source
terminal displacement {BSTO in buffer
prefix) is not zero, the source
terminal naiiie-is moved into the area
specified in the TRMAD keyword
operand. (The source displacement is
zero if the message is from another
message processing program, or if the
message arrived over a switched or
autopolled line for which the SOURCE
macro instruction was not included in
the incoming LPS.) The user's switch
specified in the SWITCH keyword
operand is turned off.

The message segment is moved from
the buff er into the first part of the
work area using the segment size, or
the size of the work area (first part)
if smaller. If the entire data has
been moved into the work area, the
type and length of the data moved is
stored into the GET/PUT prefix.

If the first part of the work area
is not large enough to contain the

(

entire segment, and if a user-written
routine has not been specified to
handle this situation (OVAD keyword
operand), the count of the data not
transferred is computed and stored for
the next GET. If a user-written
routine has been specified, linkage is
made to this routine. In either case,
the remaining data will be supplied on
the next GET.

2. If it is an ALCE, the address of the
source line name is computed, and the
line name is moved into the area
specified in the LINAD keyword
operand. The user's switch specified
in the SWITCH keyword operand is
turned on.

If the second part of the work area
is not large enough to contain the
message received in the input buffer
of the ALCE, and if a user-written
routine has been specified in the OVAD
keyword operand, linkage is made to
this routine. On return from this
routine, or if it has not £een
specified, the length of the input
message is reduced to the size of the
second part of the work area. The
remainder of the message, which cannot
be placed in the work area, is
ignored.

The length of tbe message is stored
into the GET/PUT prefix (first two
bytes) of the work area (second part)
and, according to this length, the
message data is moved from the ALCE
into the work area (second part).

The address of the ALCE is stored
into the high-priority GET audio
element which is posted (SVC 31) to
the special GET audio queue. On
activation of the GET audio subtask,
the GET bit is set on in the ALCE, and
control is returned to the calling
section of this module.

When a segment or an audio message is in
the work area, return is made to the next
instruction in the message processing
program.

External Routines used:

QPOST (SVC 31)

QWAIT (SVC 30)

GET MESSAGE ROUTINE

Module Name: IJLQGM (Charts GM and GN)

Entry Point: This routine is entered at
IJLQGM+8 via linkage generated by expansion
of the GET macro. Upon entry. register 0
contains the address of the work area, and
register 1 contains the address of the DTF
table for an MS process queued

Function: Provides the next sequential
message in a specified work area.

The routine first makes a test to
determine if there is a message in the
process queue. If there is none and if a
user-written routine has been specified to
handle this situation CSYNCAD keyword
operand>, linkage is made to the specified
routine. Exception: If no message is in
the queue and CLOSEMC has been issued (the
master receive switch is off>v exit is made
to the routine specified via the FLUSHAD
keyword operand.

If there is a message in the queue, or
if no message is in the queue but no
user-written routine is specified, a test
is made to determine if there is message
data remaining in the buffer from a
previous GET. If there is no message data,
the previous buff er is released to the
Return Buffer queue through an SVC 31
(QPOST), and a request for the next buffer
is made by a QWAIT (SCV 30) on the process
queue. (If there is no message in the
queue, control does not return until
another message arrives.) The address of
the buff er is returned in register 1.

At this point0 the header disk pointer
is saved for use by the next checkpoint.

If there was data remaining in the
previous buffer, the QPOST/QWAIT sequence
is bypassed because the remaining data in
that buffer must be handled before
releasing it; the count and starting
address of the remaining data are computed
before continuing.

If the current buff er contains the
header and if the source terminal
displacement (ESTO in buffer prefix> is not
zero, the source terminal name is moved
into the area specified in the TRMAD
keyword operand. (The source displacement
is zero if the message is from another
processing program or if the message
arrived over a switched or autopolled line
for which the SOURCE macro was not included
in the incoming LPS.)

The message data is moved from the
buffer into the work area using the size of
the data or size of remainder of work

Message Processing Program Routines 77

area,if smaller. If all data in the buffer
has been moved into the work area, a test
is made for end of message. If it is not
end of message, a loop is made to release
this buff er and to QWAIT for the next
buffer. If it is the end of message, the
type and length of data moved are stored in
the GET/PUT prefix and return is made to
the next instruction in the processing
program.

If the work area was not large enough to
contain the entire message and if a
user-written routine is not specified to
handle this case (OVAD keyword operand>, a
count of the data remaining in the buff er
is computed and stored before returning to
the calling routine. If a user-written
routine is specified, linkage is made to
the srecified routine. In either case, the
remainder of the message is moved to the
work area when the next GET is issued.

External Routines Used:

QPOST (SVC 31)

QWAIT (SVC 30)

GET RECORD ROUTINE

Module Name: IJLQGR (Charts GQ and GR)

Entry Point: This routine is entered at
IJLQGR+8 via linkage generated by expansion
of the GET macro. Upon entry., register 0
contains the address of the work area, and
register 1 contains the address of the DTF
table for an MS process queue.

Function: Provides the next sequential
message record in a specified work area.

The routine first makes a test to
determine if there is a message in the
process queue. If there is none and if a
user-written routine has been specified to
handle the situation (SYNCAD keyword
operand}, linkage is made to the specified
routine. Exception: If no message is in
the queue and CLOSEMC has been issued to
initiate a closedown procedure (the master
switch is off}, exit is made to the routine
specified via the FLUSHAD keyword operand.

If there is a message in the queue or if
no message is in the queue but no
user-written routine is specified., a test
is made to determine if part of a record
remains in the buffer from a previous GET.
If not, the previous buff er is released to
the Return Buffer queue through an SVC 31
(QPOST}, and a request for the next buffer
is made by a QWAIT (SVC 30) on the process

78 DOS QTAM Program Logic Manual

queue. (If there is no message in the
queue. control does not return until
another message arrives.) The address of
the buffer is returned in register 1. ,,_

At this point~ the header disk pointer
is saved for use by the next checkpoint.

If there was data remaining in the
previous buffer, the QPOST/QWAIT sequence
is bypassed because the remaining data in
that buffer must be handled before
releasing it. The count and starting
address of the remaining data are computed
before continuing.

If the current buffer contains the
header and if the source terminal
displacement (BSTO in buffer prefix) is not
zero, the source terminal name is moved
into the area specified in the TRMAD
keyword operand. (The source displacement
is zero if the message is from another
processing program or if the message
arrived over a switched or autopolled line
for which the SOURCE macro was not included
in the incoming LPS.}

The data in the buffer is moved into the
work area one byte at a time until either:

1. a new line (NL} or EOB character is
encountered in the buffer; or

2. the work area has been filled.

If a NL or EOB character is found, it is
moved to the work area along with any
consecutive NLs or EOBs that immediately
follow it. The type of message unit and
record length are placed into the GET/PUT
prefixw and return is made to the calling
routine.

If the work area is not large enough for
the entire record, the count of the data
not transferred is comouted and stored for
the next GET. If a user-written routine
has been specified to handle this
situation, linkage is made to that routine.
If no such routine is specified, return is
to the calling routine. In either case.
the remaining data will be supplied on the
next GET.

If neither of the preceding conditions
specified is encountered in the current
buffer, a QWAIT is issued requesting
another buffer and the procedure is
repeated.

External Routines Used:

QWAIT (SVC 30)

QPOST (SVC 31)

ii ,,

< ':I '\\

GET SEGMENT ROUTINE

Module Name: IJLQGS (Chart GS)

Entry Point: This routine is entered at
IJLQGS+8 via linkage generated by expansion
of the GET macro. Upon entry, register 0
contains the address of the work area, and
register 1 contains the address of the DTF
table for an MS-Process Queue.

Function: Provides the next sequential
message segment in a specified work area.

The routine first makes a test to
determine if there is a message in the
process queue. If there is none and if a
user-written routine has been specified to
handle this situation (SYNCAD keyword
operand), linkage is made to the specified
routine. Exception: If no message is in
the queue and CLOSEMC has been issued to
start a closedown procedure (master receive
switch is off) exit is made to the routine
specified by the FLUSHAD keyword operand.

If there is a message in the queue or if
no message is in the queue but no
user-written routine is specified, a test
is made to determine if part of the segment
remains in the buffer from a previous GET.
If not, the previous buffer is released to
the Return Buffer queue through an SVC 31
(QPOS~>. and a request for the next buffer
is made by issuing a QWAIT (SVC 30) on the
process queue. (If there is no message in
the queue, control does not return until
another message arrives.) The address of
the buffer is returned in register 1.

At this point, the header disk pointer
is saved for use by the next checkpoint.

If there was data remaining in the
previous buffer, the QPOST/QWAIT sequence
is bypassed because the remaining data in
that buffer must be handled before
releasing it. The count and starting
address of the remaining data are computed
before continuing.

If the current buff er contains the
header and if the source terminal
displacement (ESTO in buffer prefix> is not
zero, the source terminal name is moved
into the area specified in the TRMAD
keyword operand. (The source displacement
is zero if the message is from another
processing program or if the message
arrived over a switched or autopolled line
for which the SOURCE macro was not included
in the incoming LPS.) The message segment
is moved from the buffer into the work area
using the size of the segment or the size
of the work area, if smaller. If all data
has been moved into the work area, the type
and length of data moved is stored in the

GET/PUT pref ix and return is made to the
next instruction in the processing program.

If the work area was not large enough to
contain the entire segment and if a
user-written routine is not specified to
handle this case (OVAD keyword operand), a
count of the data remaining in the buff er
is computed and stored before returning to
the calling routine. If a user-written
routine is specified., linkage is made to
the specified routine before returning. In
either case, the remainder of the segment
is moved to the work area when the next GET
is issued.

External Routines used:

QPOST (SVC 31)

QWAIT (SVC 30)

PUT AUDIO MESSAGE ROUTINE

Module Name: IJLQPA (Chart PA)

Entry points: This routine is entered at
the following points:

1. IJLQPA+12 via linkage generated by the
PUT macro expansion. Upon entry,
register 0 contains the address of the
work area, and register 1 contains the
address of the DTF table for an Audio
output queue.

2. IJLQPA20+14 from the QTAM Control
Program. This entry is a special
section running in the supervisor
state to avoid cross-partition storage
protection in moving the audio output
message from the work area (in a
message processing program> into the
ALCB (in the foreground-1 partition>.
Upon entry in the PUT audio subtask,
the address of the high-priority PUT
audio element, which contains the
address of the passed ALCB, is in
register 1.

Function: Moves an audio output message
from a specified work area into an ALCB,
and causes this ALCB to be posted on the
ARU-Send queue for emission of the audio
answer.

The audio line table is searched to
locate the line entry for the destination
specified in the LINAD keyword operand. If
the audio line name specified by the user
is invalid, an error code of X'Ol.! 0 is
returned to the calling routine in register
15, right-adjusted.

Message Processing Program Routines 79

The ALCB is searched from the line
entry, and the GET bit is tested to
determine if this ALCE corresponds to a
line waiting for an audio answer. If the
GET bit is off, the audio destination is
considered invalid because no switching is
allowed on audio lines, and an error code
of X'02' is returned to the calling routine
in register 15, right-adjusted.

The length of the output message is
checked to make sure it is greater than the
size of the GET/PUT prefix (2 bytes), and
the address of the ALCB is stored into the
high-priority PUT audio element which is
posted (SVC 31) to the special PUT audio
queue.

On activation of the PUT audio subtask,
the following operations are performed in
the passed ALCB: the audio output message
is moved from the work area into the
address chain buffer, the GET bit is set
off, and the priority code is set to X'FD'
before return is made to the calling
section of the PUT Audio Message routine.

The ALCB is posted (SVC 31) to the
ARU-Send queue, and control is transferred
to the next instruction in the message
processing program. When a 7772 line is
waiting for a DCV buffer a warning code of
x•os• is returned in register 15 but the
audio answer will be sent as soon as a DCV
buffer is available.

External Routines Used:

QPOST (SVC 31)

PUT MESSAGE ROUTINE

Module Name: IJLQPM (Chart PM)

Entry Points:

1. IJLQPM+12 from the PUT macro
expansion. Upon entry, register 0
contains the address of a work area,
and register 1 contains the address of
the DTF table.

2. IJLQPM+60 from the Buffer-ERB routine.
This entry is to a special section of
the PUT message routine which runs in
supervisor state to circumvent
cross-partition storage protection in
moving the message from the work area
(in a message processing program) to a
buffer Cin the Fl partition). Upon
entry, register 1 contains the address
of the available buffer.

80 DOS QTAM Program Logic Manual

Function: Moves a complete message from a
specified work area to a buffer (more than
one buff er is used, if necessary) and
causes the buffer(s) to be routed to the
specified destination Cor process) queue on
the direct-access storage device.

A request for a buffer into which to
move the message data is initiated by
posting Cvia an SVC 31) a BRB (contained in
the first 4 words of the DTF table) to the
Active BRB queue, A QWAIT (SVC 30) is then
issued to wait for a buffer to become
available. Normal return from this QWAIT
does not occur until the following
procedure is completed:

When the buffer assigned for the PUT
operation is passed to the Buffer-ERB
routine (in module IJLQIP), that routine
links to a special section of the PUT
Message routine (entry point 2 above) that
executes under the storage protection key
of the Supervisor. If the buffer is to
contain the message header, the following
procedures are performed:

1. The address of a special LCB contained
in the DTF table is placed into the
BLCB field of the buff er prefix.

2. The number of idle characters (X'17'>,
if any, at the beginning of the work
area is computed and placed in the
scan pointer field CBSPT) of the
prefix for later use in the Send Group
of the LPS.

3. The sequence-in and sequence-out
fields (BNIN and BNOT) in the pref ix
are set to zero.

4. The terminal table is searched to
locate the entry for the destination
specified via the TRMAD keyword
operand. The relative address of the
located entry is placed into the
destination key CBDTO field) in the
prefix. The address of the QCB for
the destination is obtained from the
entry and placed into the LCB.

5. If the user has specified a priority
for the message (4th byte of GET/PUT
prefix is nonzero>, the priority code
is placed in the LCB.

The message data is then moved into the
buff er using the length specified in the
GET/PUT prefix, or the size of the buffer
(minus the prefix) if the buffer cannot
contain the entire message. If the latter
occurs, the residual count of the message
data in the work area is computed and
saved. and the work area pointer is updated
and saved, The count of the data moved
into the buffer is placed into the BSSZ
field of the prefix., and the source key

'11 ... : ' ·g
~(

(BSTO field) in the prefix is set to zero
to indicate a processing program as the
source.

If the entire message Cor the last
portion of the message) is in this buffer,
the end-of-message bit is set in the BSTA
field of the prefix. Otherwise, the
appropriate indicator is set in BSTA
depending on whether the buffer contains a
header or text segment. Exit is then made
to the Interim LPS routine, which causes
the QWAIT to be satisfied. control returns
to the PUT message routine in problem
program state to the instruction following
the QWAIT.

The buff er returned by the QWAIT has
already been filled with the message data
as described. This buffer is now posted
(SVC 31) to the specified destination
queue. A QWAIT (SVC 30) is then issued to
remove the BRE from the top of the Ready
Queue. If the entire message has been
handled, return is made to the calling
routine. If further message data remains
in the work area, the routine branches to
request another buffer and the procedure
described above is repeated. This
continues until the entire message has been
transferred and posted.

Note: If an invalid destination is
specified, no transfer of message data
occurs. An error code of X'20' is returned
to the calling routine in register 15,
right-adjusted.

External Routines Used:

QPOST (SVC 31)

QWAIT (SVC 30)

PUT RECORD ROUTINE

Module Name: IJQPR (Charts PQ and PR)

Entry Points:

1. IJLQPR+12 from the PUT Macro
expansion. Upon entry, register 0
contains the address of the work area
and register 1 contains the address of
the DTF table.

2. IJLQPR+60 from the Buffer ERB routine
(see PUT Message routine description}.

Function: Moves the message record from
the specified work area into a buffer (or
more than one buffer if necessary). When a
buffer is filled, it is posted to the
specified destination queue.

This routine issues a QPOST/QWAIT
sequence to request a new buffer in the
same manner described in the PUT Message
routine. The QWAIT is not satisfied until
the following procedure is completed:

When the buffer assigned for the PUT
operation is passed to the Buffer-ERB
routine (in module IJLQIP)., that routine
branches to a special section of the PUT
Record routine (entry point 2 above) that
executes under the protection key of the
Supervisor.

Preparation for later releasing of the
buffer obtained (called the "new" buffer in
this discussion) by the QWAIT is performed
by placing the address of the Available
Buffer queue into the BQCB field of the
buffer prefix. The BRB contained in the
DTF table for the MS Destination queue is
linked into the top of the Ready Queue in
preparation for requesting the next buffer.
A test is made to determine if there is a
buffer (called the "previous" buffer} that
was not completely filled with message data
by the previous PUT.

Note: This routine does not post a buffer
to the specified destination queue until
the buffer is filled or until an end of
message is indicated.

The example of a previous buffer is
discussed later ; however., it should be
noted here that there will always be a
previous buff er except when the preceding
PUT was for the last record in the message
(end of message}.

The procedures performed when there is
no previous buffer are now described.
Because the last record PUT was the end of
that message. the current record must be a
header segment; therefore, the following
initialization procedures are performed for
the "new" buffer:

1. The address of the LCB is placed into
the buffer prefix.

2. The number of idle characters (X'17'},
if any, at the beginning of the
specified work area is computed and
placed in the scan pointer field
(BSPT} of the prefix for later use in
the Send Group of the LPS.

3. The sequence-in and sequence-out
fields in the prefix are set to zero.

4. The source key (BSTO field} in the
prefix is set to zero to indicate a
processing program as the source.

5. The terminal table is searched to
locate the entry for the specified
destination. The relative address of

Message Processing Program Routines 81

the located entry is placed into the
destination key (BDTO field) of the
prefix. The address of the QCB for
the destination is obtained from the
entry and placed into the ICB.

6. If the user has specified a priority
for the message (4th byte of GET/PUT
prefix is nonzero), the priority code
is placed in the LCB.

The message data is then moved into the new
buffer using the record length specified in
the GET/PUT prefix, or the size of the
buffer (minus the prefix) if the buffer
cannot contain the'entire record.

If the record size is used for the move,
the third byte in the GET/PUT prefix is
tested to determine if this is the end of
the message CEOM). If EOM is detected, the
EOM bit is set in the buffer prefix; the
new buffer is linked into the top of the
Ready Queue; and exit is made to the
Qdispatch subroutine.

Qdispatch causes the new buffer to be
routed to the specified destination and
effects return to the QWAIT issued in the
problem program portion of the PUT Record
routine, which then returns to the calling
routine. If this was not the end of the
message, the new buffer address is saved
Cit is not posted) and return is effected
to the calling routine. on the next PUT
issued, the current new buffer then becomes
the previous buffer.

If the buffer was not large enough to
contain the entire record, the residual
count of the message data in the work area
is saved, and the work area pointer is
updated and saved. The message-filled
buffer is then linked into the top of the
Ready Queue pushing the BRB previously
placed at the top of the Ready Queue to
second in line. Exit is made to Qdispatch,
which routes the buffer to its destination.
The BRB now becomes the first item on the
Ready Queue. Therefore, another buffer is
assigned for this PUT operation, and the
supervisor section of the PUT Record
routine is again entered.

The procedure is repeated, but only
those functions required for a buff er
containing a text segment are performed.
This process continues until the entire
record has been transferred. When this
occurs, control is effected to the calling
routine.

The procedures performed upon entry into
this routine when there is a previous,
unfilled buffer from the preceding PUT are
now described. The new buffer (obtained by
the QWAIT) is released by linking it in to
the top of the Ready Queue (the address of

82 DCS QTAM Program Logic Manual

the Available Buffer QCB was previously
inserted in the ECB of the buffer). This
pushes the BRB down to second position on
the Ready Queue.

A test is then made to determine if the
record currently in the user's work area
contains a header. It should not because
the previous record did not have the end of
message indicator. However, if the current
record does begin a new message,
end-of-message must be forced for the
record in the previous buffer. The EOM bit
is set in the buffer prefix, and the field
containing the address of the previous
buffer is cleared to zero. The previous
buff er is linked into the top of the Ready
Queue, and exit is made to the Qdispatch
subroutine. Upon exit, the order of items
on the Ready Queue is:

1. the previous buffer,

2. the new buffer, and

3. the BRB.

This causes the following action: The
previous buffer containing the last record
of the preceding message is posted to the
destination queue; the new buffer is
released to the Available Buffer queue; and
another new buffer is assigned for the
current record which is the first record of
a message. Control then returns to the
supervisory section of the PUT Record
routine at IJLQPR+60. The current record
is now handled in the same manner described
for the case where there was no previous
buffer.

If the current record in the work area
does not contain a header, the routine
branches to move the record into the
remaining area of the previous buffer. The
current record is handled in the manner
already described for handling a record
that contains text only.

External Routines Used:

QPOST (SVC 31)

QWAIT (SVC 30)

PUT SEGMENT ROUTINE

Module Name: IJLQPS (Chart PS)

Entry Points:

1. IJLQPS+12 from the PUT macro
expansion. Upon entry, register 0
contains the address of a work area,
and register 1 contains the address of
the DTF table.

({

2. IJLQPS+60 from the Buffer-ERB routine.
This entry is to a special section of
the PUT Segment routine which runs in
supervisor state to circumvent
cross-partition storage protection in
moving the message from the work area
(in a message processing program) to a
buffer (in the F'l partition). Upon
entry, register 1 contains the address
of the available buffer.

Function: Moves a message segment from a
specified work area to a buff er (more than
one buffer is used, if necessary) and
causes the buffer(s) to be routed to the
specified destination (or process) queue on
the direct-access storage device.

A request for a buff er into which to
move the segment is initiated by posting
(via an SVC 31) a ERE (contained in the
first 4 words of the DTF table) to the
Active ERB queue. A QWAIT (SVC 30) is then
issued to wait for a buffer to become
available. Normal return from this QWAIT
does not occur until the following
procedure is completed:

When the buffer assigned for the PUT
operation is passed to the Buffer-ERB
routine Cin module IJLQIP), that routine
links to a special section of the PUT
Segment routine (entry point 2 above) that
executes under the storage protection key
of the Supervisor. If the buffer is to
contain the message header, the following
procedures are performed:

1. The address of a special LCB contained
in the DTF table is placed into the
BLCB field of the buffer prefix.

2. The number of idle characters (X'17'),
if any, at the beginning of the work
area is computed and placed in the
scan pointer field (BSPT) of the
prefix for later use in the Send Group
of the LPS.

3. The sequence-in and sequence-out
fields (ENIN and BNOT) in the prefix
are set to zero.

4. The terminal table is searched to
locate the entry for the destination
specified via the TRMAD keyword
operand. The relative address of the
located entry is placed into the
destination key (BDTO field) in the
prefix. The address of the QCB for
the destination is obtained from the
entry and placed into the LCB.

5. If the user has specified a priority
for the message (4th byte of GET/PUT
prefix is nonzero), the priority code
is placed in the LCB.

The message data is then moved into the
buffer using the length specified in the
GET/PUT prefix, or the size of the buffer
(minus the prefix) if the buffer cannot
contain the entire segment. If the latter
occurs, the residual count of the message
data in the work area is computed and
saved, and the work area pointer is updated
and saved. The count of the data moved
into the buffer is placed into the BSSZ
field of the prefix, and the source key
(BSTO field) in the prefix is set to zero
to indicate a processing program as the
source.

The appropriate indicator is set in the
BSTA field of the prefix depending on
whether the buffer contains a header or
text segment. Exit is then made to the
Interim LPS routine which causes the QWAIT
to be satisfied. control returns to the
PUT Segment routine in problem program
state to the instruction following the
QWAIT.

The buffer returned by the QWAIT has
already been filled with the message data
as described. This buffer is now posted
(SVC 31) to the specified destination
queue. A QWAIT (SVC 30) is then issued to
remove the BRB from the top of the Ready
Queue.

If the entire segment has been handled,
return is made to the calling routine. If
further message data remaihs in the work
area, the routine branches to request
another buffer and the procedure described
above is repeated. This continues until
the entire segment has been transferred and
posted.

Note: If an invalid destination is
specified, no transfer of message data
occurs. An error code of X'20' is returned
to the calling routine in register 15,
right-adjusted.

External Routine Used:

QPOST (SVC 31)

QWAIT (SVC 30)

CLOSE MESSAGE CONTROL ROUTINE

Module Name: IJLQQT (Chart QT)

Entry Point: Expansion of the CLOSEMC
macro instruction generates linkage to this
routine at IJLQQT, using register 15 as the
entry register and 14 as the return
register. No parameters are required.

Message Processing Program Routines 83

Function: This routine stops all active
lines in the system. sets the
•master-receive-switch• so that no more
incoming traffic is accepted, and then
resumes outgoing message traffic.

The routine turns off the master-receive
switch by posting (via an SVC QPOST) the
QMOVE QCB to itself. This causes the
QMOVER subtask to be activated to perform
the actual manipulation of the switch (in
the Fl partition). The address of the
master-receive~switch, as obtained from the
VECMRSW field in the QTAM Vector Table, is
passed to the QMOVER routine in register 4.
The master-receive-switch is located at
IJLQMRSW in the Implementation module
(IJLQIP).

At open time. the QTAM Open routines
(Modules IJLQ01, IJLQ02, IJLQ07, and
IJLQ08) chained together all of the DTF
tables for QTAM files opened in the message
control program and placed the address of
the last such DTF into the VECLDTF field of
the QTAM Vector Table. When this address
is used as a starting point, the Close
Message control routine is able to access
each DTF table for a line group file; and
through each such DTF table, all of the
LCBs (or ALCBs) for the lines in the line
group.

Each LCB generated in the system is
accessed, in turn, and a test is made to
determine if the line associated with the
LCB is currently active (LSTA = x•oo•
indicates inactive). If the line is
inactive, it is bypassed. If it is active,
the following action is taken:

1. A STOPLN macro instruction is issued
for the line; then

2. A STARTLN macro instruction is issued
for the line.

The significance of the preceding procedure
is: The STOPLN causes all operations on
the designated line to cease after the
current transmission is completed (see
Change Line routine description). The
following STARTLN causes the same line to
be reactivated for output only operations.
Each time the Receive Scheduler routine (in
module IJLQIP) is entered, it examines the
master-receive-switch. If it is off (as is
the case at this point), input operations
are not initiated on the line.

Each ALCB generated in the system is
accessed, in turn, and a test is made to
determine if the audio line associated with
the ALCB is currently enabled (LSTS=X'Ol'
indicates the enable state). If the line
is not enabled, the next ALCB is accessed.
If the line is enabled, the ALCB address is
stored in a high-priority audio element.

84 DOS QTAM Program Logic Manual

This element posted (via an SVC QPOST) to
the LPS queue requests a HALT I/O operation ('
<via an SVC 27} on the line associated with \"
the passed ALCB. Each time the Audio Line
Appendage routine is entered (in module
IJLQAA), it examines the master-receive
switch. If it is off (as is the case at
this point), no enabling is initiated on
the line.

The preceding procedure is repeated for
each active line in the system. The net
effect,, upon return to the calling routine,
is that all line input into the system has
been stopped, while line output operations
continue as normal. In addition, the QTAM
Ready Queue is scanned to search for ALCB
elements to be processed in a message
processing program. Any such ALCBs found
are removed from the Ready Queue and queued
by priority in the element chain of their
corresponding MS-process queues.

External Routines Used:

QPOST (SVC 31)

Change Line <module IJLQCL)

DTF File Locator (module IJLQFL)

RETRIEVE DASD ROUTINE

Module Name: IJLQRD (Chart RD}

Entry Point: Expansion of the RETRIEVE
macro instruction generates linkage to this
routine at IJLQRD. Upon entry, register 1
contains the DASD relative record number of
the message segment to be retrieved, and
register 0 contains the address of the
specified work area.

Function: The Retrieve-DASD routine
transfers a message segment previously
placed in a DASD destination or DASD
process queue to a specified work area.

If an invalid relative record number is
specified., no action is taken. and return
is made to the calling routine with an
error code of X'02' in register is.
right-adjusted. {QTAM maintains the last
relative record number used on the disk in
the VECDRNN field of the QTAM Vector
Table).

If the operation is to proceed, the
routine builds a BRB-QCB (in the work area
specified by the user) as follows: The
passed relative record number is placed in
the BRB (RNSA field) as the address of the
next segment to be read from the disk. and
the status byte (RSTA field) in the BRB is
set to 9 to indicate a read-from-disk

(
__

operation. The address of the STCB for the
Queue Insert by Priority subroutine is
placed into the QSTC field of the QCB. The
BRB/QCB is then posted (via an SVC QPOST)
to the Disk I/O QCB. Return from the SVC
indicates that the read-from-disk operation
has been initiated. An SVC QWAIT is then
issued to wait for completion of the disk
operation. This QWAIT SVC returns the main
storage address of the retrieved segment in
register 1. Yet another SVC QWAIT is
required to ensure that the BRB/QCB is
taken off the Ready Queue before it is
overlaid in the work area.

The size of the segment retrieved is
obtained from the BSSZ field in its buff er
prefix and is used to move the segment into
the specified work area. Return is to the
calling routine. Note that the buffer
prefix, minus the first 8 bytes, is
included in the data moved to the work
area.

External Routines Used:

QPOST (SVC 31)

QWAIT (SVC 30)

RETRIEVE BY SEQUENCE NUMBER ROUTINE

Module Name: IJLQRS (Chart RS)

Entry Point: Expansion of the RETRIEVE
macro generates linkage to this routine at:

1. IJLQRS if input sequence number is
specified, or

2. IJLQRS+2 if output sequence number is
specified.

On entry, register 1 contains the sequence
number of the message header to be
retrieved and register 0 contains the
address of the work area into which the
header segment is to be placed. The first
8 bytes of the work area contain the name
of the terminal Cor processing program)
from whose DASD queue the message header is
to be retrieved.

Function: This routine causes the header
segment of the requested message to be
retrieved from the specified DASD queue and
placed into a user-provided work area.

If an invalid terminal name or an
invalid sequence number is specified, no
action is taken. An error code cx•20• for
invalid terminal name or X'40' for invalid
sequence number) is set in register 15,
right-adjusted, and return is made to the
calling routine.

This routine searches the terminal table
to locate the terminal table entry for the
specified terminal. The address of the QCB
for the DASD queue is obtained from the
TQAD field of the terminal table entry
located. In the QBAK field of the QCB is
the relative record number of the header
segment of the last message placed on the
DASD queue. Using this as a starting
point, this header segment and each
preceding header segment in the DASD queue
are retrieved, in order, until the header
segment having the desired sequence number
is found.

Implementation of the preceding general
procedure is as follows: This routine
generates linkage to the Retrieve DASD
routine (Module IJLQRD) which actually
causes the message segment to be read from
the DASD queue and placed into the work
area. Parameters passed to the Retrieve
DASD routine are: register O contains the
address of the work area and register 1
contains the relative record number of the
segment to be retrieved.

Upon return frorr. the Retrieve DASO
routine, the specified sequence number is
compared with the sequence number in the
header prefix CBNIN field if input sequence
number was specified or BNOT field if
output sequence number was specified}. If
the sequence numbers are equal, return is
made to the calling routine with a X'OO' in
register 15. If they are unequal., the
relative record number of the previous
header segment in the DASO queue is
obtained from the BMHD field of the buffer
prefix, and the preceding procedure is
repeated.

External Routines Used: Retrieve DASO
(Module IJLQRD)

RELEASE MESSAGE ROUTINE

Module Name: IJLQRM (Chart RM)

Entry Point: Expansion of the RELEASEM
macro instruction generates linkage to this
routine at IJLQRM, using register 15 as the
entry register and 14 as the return
register. Upon entry, parameter register 1
points to an area containing the name
(character string) of the terminal to which
intercepted messages are to be released.

Function: Turns off the "intercept" bit in
the terminal table entry for the specified
terminal and restores, if necessary, the
address of the next message to be read from
the disk.

Message Processing Program Routines 85

A search is made of the terminal table
to locate the terminal table entry for the
specified terminal. If the entry is not in
the table. return is made to the calling
routine with an error code of x•20• in
register 15. If the specified entry is
found, the intercept bit <in the TSTA
field) is tested. If it is not on. return
is made to the calling routine with an
error code of X'04' in register 15. because
messages to the terminal have not been
previously intercepted (via an INTERCPT
macro in the LPS).

The displacement (from the beginning of
the entry) to the intercept subfield in the
terminal table entry is obtained from the
location where the Intercept Message
routine placed it. If the disk address in
the QNRA field of the QCB for the DASD
queue is greater than the disk address in
the intercept subfield, a priority message
has arrived on the DASD queue. Therefore,
the address in the intercept subfield must
replace the address in the QNRA field or
the intercepted messages will not be sent.
This is accomplished by the QMOVER routine
via an SVC QPOST.

After the header address of the first
intercepted message has been restored in
the QCB. if necessary, this routine issues
another SVC QPOS~ which causes the QMOVER
routine to turn on the "send" bit and turn
off the intercept bit in the terminal table
entry. Return is made to the calling
routine.

External Routines Used:

QMOVER (IJLQIP80 in Module IJLQIP)

QPOST (SVC 31)

START/STOP AUDIO LINE

Module Name: IJLQSS (Chart SS)

Entry Points:

1. IJLQSS. from STOPARU macro expansion
for a specified line.

2. IJLQSS+2, from STARTARU macro
expansion for a specified line .•

3. IJLQSS+4, from STOPARU macro expansion
if ALL is specified.

4. IJLQSS+6, from STARTARU macro
expansion if ALL is specified.

Upon entry, register 0 contains the
address of the specified DTF table with the

86 DOS QTAM Program Logic Manual

relative line number in the high-order
byte, unless ALL has been specified. Noted
that entry to this routine is made only
when the DTF Locator routine is able to
locate the specified DTF table. Therefore,
this routine is also entered from the QTAM
Control Program in the supervisor mode at
IJLQSS20+14 to prepare a stop or start line
operation.

Function: causes a specified line (or all
lines) in the specified line group to be
activated or deactivated depending on
whether a STARTARU or STOPARU macro
instruction has been issued.

If either of the following errors is
detected. no action is taken, and return is
made to the calling routine with an error
code in register 15. right-adjusted:

1. DTF table not opened (error code
X'Ol'); or

2. Invalid relative line number (error
code X'08').

If no errors are detected, the ALCB for
the specified line (or the first ALCB in
the line group if ALL has been specified)
is accessed.

The address of the ALCB is stored in a
high-priority audio element. which is
posted (via an SVC QPOST) to a start/stop
audio queue. The dispatching of this queue
by the QTAM Control Program activates a
truncated subtask included in the
start/stop audio module. If the entry is
from a STARTARU macro expansion., and if the
line is not already active. the start
request flag is set on in the ALCB
CLSSF=X'40' indicates start request>. the
stop flag is set off, and the EXCP flag is
set on (LSSF=X'Ol' indicates EXCP request).
If the entry is from a STOPARU macro
expansion, the stop flag is set on in the
ALCB (LSTS=X'20' indicates stop request>,
and if the line group is a 7770 line group
operating in information mode,, in the
channel program the command chaining flag
is suppressed from the DISABLE ccw. On
return to the problem program, if the EXCP
flag is on in the ALCB, this ALCB is posted
<via an SVC QPOST) to the LPS queue
requesting a START I/O operation.

If ALL has been specified in the
STARTARU or STOPARU macro instruction, the
applicable procedure is repeated for each
line in the line group, before return is
made to the calling routine.

External Routines Used:

QPOST (SVC 31)

Service facilities provided by QTAM
include Checkpoint/Restart, On-line
Terminal Testing, Operator Control, Error
Recovery Procedures, and Operator
Awareness.

The Operator Control facility is
logically associated with the OPCTL macro
instruction in the Line Procedure
Specification, and is discussed in the
section Message Control Program (LPS)
Routines.

The Error Recovery Procedures are
physically a part of the Line Appendage
module, and are discussed in the section
Line Input and Output.

CHECKPOINT/RESTART

The checkpoint facility causes records to
be written on a checkpoint records file on
a disk. The records contain information on
the status of the queues and the
telecommunications network. The checkpoint
records may be written either:

1. At fixed intervals of time, specified
by the user, or

2. Whenever each message processing
partition in tbe system has issued a
CKREQ macro instruction.

The information from the checkpoint
records may be used to perform a Restart
operation after a system failure. This is
done by performing an initial program load
of the system, and loading the message
control program into the same location it
occupied when the failure occurred. If a
restart is to be performed, this is done by
Phase 2 of the Open Checkpoint Records File
routine. The information saved at the most
recent checkpoint is moved to the proper
areas, overlaying the initial values. Thus
the system is reinitialized to the status
it had at the time that checkpoint was
taken.

If CKREQ macro instructions are issued
in the message processing programs to
perform checkpointing, the Checkpoint
Request routine is entered. This routine
links to the Checkpoint routine to take the
checkpoint. The Checkpoint Request routine
is discussed in the section Message
Processing Program Routines.

QTAM SERVICE FACILITIES

CHECKPOINT ROUTINE

Module Name: IJLQCK (Chart CK)

Entry Points: The routine is entered
either at CHKPTRTN or at CKSTCB+6.

Entry is at CHKPTRTN when:

• The ENDREADY macro instruction is
executed.

• A timer interruption occurs, or a CKREQ
macro instruction is issued in a
message processing program.

• The checkpoint element reaches the top
of the Disk I/O queue.

• A disk write operation to write a
checkpoint record on the disk has been
completed.

Entry is at CKSTCB+6 when:

• Any but the last checkpoint request
element is posted to the checkpoint
request queue.

The action taken for each type of entry
is discussed under separate headings.

Function: This routine causes checkpoint
records to be written on the checkpoint
records file either at specified intervals
or when a CKREQ macro instruction has been
issued in every message processing
partition.

Entry from ENDREADY: The expansion of the
ENDREADY macro instruction generates a
QPOST (SVC 31) to post the checkpoint
element to the checkpoint queue. The
subtask activated links to the Time Delay
routine in the Implementation module,
passing the checkpoint interval in register
6 and the address of the checkpoint element
in register 4.

Entry via a Timer Interruption or a CKREQ
Macro Instruction: The subtask activated
tests to determine if entry was made
because of a CKREQ macro instruction. If
so, it tests to determine if all message
processing partitions have issued CKREQ.
If not, the subtask branches to Qdispatch.

If all message processing partitions
have issued CKREQ or if the entry was made
because of a timer interruption, the
checkpoint data is stored into the

QTAM Service facilities 87

checkpoint save area. The format of the
checkpoint save area is shown in Figure 5.
Data saved for the checkpoint record is:

1. From the terminal table entries, all
fields except the first word. DSECT
names for fields saved are: IJLQTSIN,
IJLQTSOT, IJLQTSTA and IJLQTTID, plus
all user-specified optional fields.

2. From the destination QCBs (DSECT
names: IJLQQNRA, IJLQQMCT, IJLQQNWA,
and IJLQQBK). From the process QCBs
CDSECT names: IJLQQNRA, IJLQQMCT,
IJLQQNWA, IJLQQBAK, and IJLQQFST).

3. From the LCBs (DSECT names: IJLQLSTA,
IJLQLHDR, IJLQLNAS, and IJLQLTTD).

4. From the polling lists, all fields
except the first byte. (There are no
DSECT names for fields in a polling
list.)

The element chain of the Disk I/O queue
is then examined. If other elements appear
on the Disk I/O queue, the routine places
the checkpoint element on the Disk I/O
queue below the other elements and branches
to Qdispatch. When the checkpoint element
reaches the top of the Disk I/O queue
element chain, this routine is reentered to
prepare to write the checkpoint record.

If no element is on the Disk I/O queue
element chain, the routine proceeds
immediately to prepare to write the
checkpoint element.

Entry from the Checkpoint Element Reaching
the Top of the Disk I/O Queue: The subtask
activated sets up the channel program to
write the checkpoint record on the DASD.
It then branches to the Q'i'AM Post
subroutine to post a dummy ECB to the LPS
queue. The LPS Control routine recognizes
the ECB, and issues an EXCP to write the
checkpoint record.

Entry from the Completion of a Disk Write
Operation: The routine tests to determine
if all the checkpoint data has been
written. If it has not, the disk addresses
are set to the next record, and the routine
again branches to the QTAM Post subroutine
to post the dummy ECB to the LPS queue.
This process continues until all the
checkpoint data is written on the disk.
The routine then prepares the checkpoint
control record and causes it to be written
on the disk in the same way.

When return is made from writing the
control record, the routine tests to
determine what method of checkpointing is
being used. If the checkpoint interval
method is being used, the routine sets up
the necessary parameters, and links to the

88 DOS QTAM Program Logic Manual

r------------------------------------1
+O IVECDRRN, the next relative record I

jnumber to be used (from the Vector I
!Table). I
t------------------------------------i

+4 IIJLQDA60, the relative record number!
jof the record currently being read I
!or written. I
~-----------------T------------------i

+8 !Offset to the !Offset to the I
(beginning of the !beginning of the I
lterm entry save IQCB save area. I
I area. I I
~-----------------+------------------1

+12 !Offset to the !Offset to the I
!beginning of the !beginning of the I
!polling list savejLCB save area. I
I area. I I
t-----------------~------------------i
I I

+16 / /
Term entry save area

/ /

I I
~------------------------------------1
I I
/ /

QCB save area
/ /

I I
r------------------------------------1
I I
I /

Polling list save area
I I

I I
~------------------------------------i
l I
/ /

LCB save area
/ I

I I
L------------------------------------J

Figure 5. Format of the Checkpoint Record

Time Delay routine to set the next
checkpoint interval.

If the checkpoint request method is
being used, the routine inserts the
checkpoint element at the top of the Ready
Queue, and links to the QTAM Post
subroutine to post a check request element
to the check request queue. The routine is
reentered at CKSTCB+6 to post subsequent
check request elements.

Entry from Posting a Check Request Element:
The routine tests to determine if there is
more than one check request element yet to
be posted. If so, the routine again
inserts the checkpoint element at the top
of the Ready Queue before linking to the
QTAM Post subroutine to post another check
request element to the check request queue.
This is done until only one check request
element remains to be posted. At this

c\

'[\,'

time, the routine does not insert the
checkpoint element at the top of the Ready
Queue, but effectively surrenders control
in posting the final check request element
to the check request queue.

External Routines used:

Time Delay routine in Implementation module

Disk I/O routine in Disk I/O module
(IJLQDA)

LPS Control (IJLQIP20 in Module IJLQIP)

ON-LINE TERMINAL TESTING

The on-Line Terminal Test facility provides
tests that can be used by the terminal
operator as a startup procedure, and by the
IBM customer engineer for terminal checkout
and diagnosis of terminal failure. A test
is requested by entering a test request
message at a terminal.

The Terminal Test Recognition routine,
which is entered via the LPSTART macro
instruction, is the only resident terminal
test routine. The Terminal Test Header
Analysis routine and the five terminal test
modules for tests on particular terminal
types are transient routines. They are
called into the logical transient area from
the core Image Library when needed. These
routines are discussed in QTAM Transient
Routines.

TERMINAL TEST RECOGNITION ROUTINE

Module Name: IJLQTT (Chart TT)

Entry Point: Expansion of the LPSTART
macro instruction generates a BALR to the
Terminal Test Recognition routine. Entry
is at IJLQTT. Register 1 contains the
address of a parameter list generated by
the LPSTART macro. Register 6 contains the
address of the buffer to be processed.
Register 14 is the return register.

Function: Recognizes terminal test
activity, calls terminal test transient
routines, performs cleanup, and stops and
restarts line operation.

The routine checks the incoming messages
for the test activation code (99999). If
the code is not present, return is made to
the LPSTART macro expansion, and normal LPS
processing resumes.

If the test activation code is present,
the buffers associated with the line
operation are posted to a test QCB. The
subtask activated (Terminal Test Buffer
Routing Subtask) sets test identification
flags in the buffer prefix containing the
test request and posts it to the LPS queue.
Subsequent buffers are posted to the
available buffer queue. (Terminal Tests
utilize only the buffer containing the
header segment).

Upon the next execution of the LPSTART
macro, the buff er with the test request and
test identification flags are processed by
the routine. The test identification flags
are recognized at entry to the module and
the terminal test transient routines are
called. These routines validate the test
request and set up the appropriate test.

The buffer is then posted to another
test queue control block. The subtask
activated stops the line to be utilized by
the terminal tests by placing a test
subtask control block in the STCB chain of
the appropriate LCB.

After the line operation has been
stopped, further identification flags are
set in the buffer prefix, and again the
buffer is posted to the LPS queue. The
flags are recognized at entry into the
module and the test message is sent to the
terminal.

Upon completion of the test message
transmission, the Line End Appendage posts
the buffer to the LPS queue. -All areas and
buffers utilized by the terminal tests are
then freed, and QTAM line operation is
restarted on the subject line.

If a test message is to be returned to
the requesting terminal on a dial line, the
transient routines are called immediately
upon recognition of the test activation
code. The test message is then sent to the
terminal without utilizing the stop line
subtask. Buffers are released to the
available buffer queue by the buffer
routing subtask.

External Routines Used:

EXCP (SVC 2)

Recall (IJLQIP22 in module IJLQIP)

Cleanup CIJLQIP23 in module IJLQIP)

Defer Entry CQTAM nucleus)

Terminal Test Header Analysis (module
IJLQTM)

QTAM Service facilities 89

OPERA~OR AWARENESS ROUTINE

Module Name: IJLQOA (Chart OA)

Entry Points: If operator awareness is
specified in the TERMTBL macro instruction
(OPCTL=chars) or if the OPCTL macro
instruction is specified, the LPS macro
instructions POSTSEND and POSTRCV enter the
Operator Awareness routine at IJLQOA
instead of the Buff er Recall/Cleanup
routine (IJLQIP22).

Function: Sends I/O error messages or
threshold line error counter messages to
the operator control terminal.

Upon entry from POSTSEND or POSTRCV, a
test is made to determine if ERP has
specified that an operator control error
message is to be sent. If not, a branch is
made to RETURN.

The routine tests to determine if a
threshold message is to be sent. If yes,
the routine goes to THRESH to set up the
threshold message. If not, the routine
tests to determine if an I/O error message
is to be sent. If yes, the routine goes to
IOERR to set up the I/O error message. If
neither message is indicated, the routine
branches to RETURN.

At THRESH, the routine first branches to
a subroutine within the IJLQOA module
called RECALL, which returns a buffer to be
used to contain the error message. The
threshold error message is constructed in
the buffer. The flag that indicated that a
threshold error message was to be written
is turned off.

The routine then enters SENDMSG, where
construction of the message is completed.
The buff er pref ix is set to indicate that
the message is to be routed to the primary
operator control terminal. A test is made
to determine if an I/O error message is
also required. If it is, the routine goes
to IOERR to set up the I/O error message.
Otherwise, the routine branches to RETURN.

At IOERR, the routine first branches to
RECALL to obtain a buff er to contain the
error message. The routine gets the index
into the I/O error message table, turns off
the flag that indicated that an I/O error
message was to be sent, and constructs the
I/O error message in the buffer. The
routine then branches to SENDMSG. Note
that the routine then must branch to RETURN
from SENDMSG because the I/O error message
flag has been turned off.

At RETURN, a test is made to determine
if a permanent error has occurred on the
line and if INTREL has been indicated for

90 DOS QTAM Program Logic Manual

this line. If so, the routine branches to
the Buff er Recall/Cleanup routine at
IJLQIP22, which writes the error message on
the proper DASO destination queue, gets
another buffer, and returns it to this
routine. The buffer prefix of this buffer
is modified to indicate that it is to be
posted to the INTREL queue.

The routine exits to the Buffer
Recall/Cleanup routine at IJLQIP23. If
INTREL was not indicated. the error message
is written on the disk at this time. If
INTREL was indicated, the new buff er
accessed is posted to the INTREL queue.

RECALL Subroutine: A test is made to
determine if the buffer just processed by
LPS is to be placed on disk. If not, then
it can be used to contain the error message
and return is made to the caller.

If the buffer is to be written on disk,
the subroutine links to the Buffer
Recall/Cleanup routine at IJLQIP22. Here
the buffer is written on the disk, another
buffer is acquired, a header is read into
it and it is returned to the RECALL
subroutine. RECALL returns it to the
caller.

External Routines Used: Buffer
Recall/Cleanup routine in the
Implementation module (IJLQIP22, IJLQIP23).

OBR/SDR ROUTINE

Module Name: IJLQOB (Chart OB)

This module is included in the message
control program by means of a V-type
address constant generated when the OBRSDR
operand is specified in the TERMTBL macro
instruction. The module is a collection of
four distinct routines necessary for the
optional OBR/SDR function (see the DOS QTAM
Message control Program, Form C30-5004,
section on OBR/SDR Error Recording).

1. SDR Step-counters Routine.

This routine is entered by a BAL from
IJLQEP, IJLQLO, or IJLQTA. The routine
assigns sets of in-core SDR counters to
lines or terminals and increments these
counters according to the following
rules:

• If the SDR first-time switch (X'08'
bit in the third-from-last byte of
the LCB) is off, control is returned
immediately to the calling routine.
Otherwise, this switch is turned off
and the routine continues.

• If the IJLQL~~D field in the LCB is
nonzero (indicating that the terminal
ID is known} and the X'lO' bit is on
in the third-from-last byte of the
LCB (indicating that counts should be
by terminal, if possible}, the
routine prepares to count by
terminal. Otherwise the routine
prepares to count by line.

•The routine checks the SDR counter
offset field (IJLQTSDR in the TERM
entry if counting by terminal; the
last halfword of the LCB if counting
by line}. If the field is O, no SDR
counter set has been assigned yet;
the next available SDR counter set is
then assigned to the line or terminal
by storing its offset in the SDR
counter offset field.

• ~he "total transmissions" counter in
the assigned SDR counter set is
incremented by 1.

• If the halfword following the BAL
instruction contains a nonzero value,
this indicates that an error should
also be counted. The appropriate
error counter is incremented by 1.

If the maximum possible value has been
reached for either counter (255 for
total transmissions, 15 for error
counters}, the X'04' bit is turned on
in the third-from-last byte of the
LCB. This flag will later cause this
SDR counter set to be added to the
corresponding set of counters on
disk.

Control is then returned to the calling
routine. If not enough SDR counter
sets are provided, some requests for
assignment of counter sets must be
ignored. Error counts for lines or
terminals without assigned SDR counter
sets will be lost.

2. OBR/SDR Test Routine.

This routine is entered from the LPS
control routine. The routine checks
the third-from-last byte in the LCB.
If the X'02' bit is on, the routine
builds an OBR record from data in the
LCB, passes the record to the system
OBR routines via an SVC 44, waits for
completion, and resets the bit to zero.
If the x•o4• bit is on, the routine
builds an SDR record containing the
counters that are about to overflow.
passes the record to the system SDR
routines via an SVC 43, and waits for
completion. The bit and the SDR
counters are then reset to zero.
Control is returned to the LPS control
routine.

3. Check SDR First-Time Routine.

This routine is entered by a BAL from
IJLQEP. The routine turns on the X'08'
bit in the third-from~last byte of the
LCB if the error retry count in the LCB
is zero. This bit is a first-time
switch to prevent the SDT step-counters
routine from counting retries.

4. OBR/SDR Polltest Routine.

This routine is entered by a BAL from
IJLQLA. The routine determines the
source terminal when an initial
interrupt occurs on an autopoll line if
the index byte from the read response
or the residual count from a poll
command is available. The terminal
table offset of the source terminal is
stored in the IJLQLTTD field of the
LCB.

External Routines Used:

SVC 43 DOS System SDR routine.
SVC 44 DOS System OBR routine.

QTAM Service facilities 91

QTAM TRANSIENT ROUTINES

There are five groups of QTAM routines that
are dynamically fetched into the logical
transient area for execution:

1. QTAM Open routines (six phases).

2. QTAM Close routines (three phases).

3. QTAM Message Writer routines (four
phases).

4. on-Line Terminal Test routines (six
phases).

5. QTAM Cancel Routine (two phases>.

This section contains a detailed
description of these routines.

QTAM OPEN MONITOR/OPEN DASD MESSAGE QUEUES
FILE ROUTINE

Module Name: IJLQOl (Chart 01)

Entry Point: Whenever a QTAM DTF table is
opened at execution time, the system Open
Monitor recognizes the file as a QTAM file,
reads the extent information if it is a
DASD file, and fetches into the logical
transient area the QTAM Open Monitor
routine, which is cataloged on the core
Image Library under the name $$BOQ001.
control is then passed to this routine at
IJLQOl. Upon entry, register 2 contains
the address of the DTF table being opened.

Return is made to the QTAM Open Monitor
routine when the other Open modules have
completed processing.

Function: Performs preliminary
initialization functions, analyzes the type
of QTAM file being opened, and either
fetches the proper OPEN module or performs
the proper opening functions

This routine tests to determine which
type of QTAM file is being opened. The
eight types of QTAM files are:

1. DASD Messages Queues (Message
Control).

2. DASD Checkpoint Records (Message
control).

3. DASD 7772 DCV Vocabulary (Message
control).

92 DOS QTAM Program Logic Manual

4. Nonaudio Line Group (Message Control).

5. Audio Line Group (Message Control).

6. MS Process Queue (Message Processing).

7. MS Destination Queue (Message
Processing).

8. Audio Output Queue (Message
Processing).

If the Audio or Nonaudio Line Group,
MS-Process Queues, MS-Destination Queues,
or Audio output Queues files are being
opened, the routine issues a FETCH to bring
the proper OPEN module into the transient
area.

The routine tests to determine if the
DLBL information for the file has been
initially processed. If it has not, the
routine fetches the system Open Monitor
C$$BOPEN), which performs this function.

If the DASD Message Queues file is being
opened., the routine initializes each
partition's communication region with the
address of the QTAM vector table. The
address of the DTFQT is placed in the
vector table and in the chain of opened
DTFs in the vector table. The PIB table of
the message control program partition is
modified to allow exits to QTAM appendages
from the supervisor. The relative record
number of the first available record on the
file is placed in the QTAM vector table.
If operator awareness is included. the
Implementation module (IJLQIP} is modified
to cause the LPS macro instructions
POSTSEND and POSTRCV to enter the Operator
Awareness routine before entering the
Buffer Recall/Cleanup routine. The number
of QTAM buffers per track for the device
type is computed and stored in the DTF
table.

If the Checkpoint Records file is being
opened, a test is made to determine if the
DASD Message Queues file was opened
immediately previous to this file. If it
was not, an error message is sent and the
job is cancelled.

The routine then fetches the Sequential
Disk Open Input routine C$$BOSDI1), which
validates and file protects the extent and
returns control. The routine then posts
the limits of the extent information to the
DTF table.

If the DASD 7772 DCV Vocabulary file or
the Checkpoint Records file is being
opened, the routine exits to Phase 1 of the
Open Checkpoint/Restart routine (IJLQ03) or
to the Open IBM 7772 DCV Vocabulary File
routine (IJLQ07), via a FETCH.

If the DASD Message Queues file is being
opened, the extent is checked for
preformatting. If it is not preformatted
correctly, an error message is sent and the
job is cancelled. The routine then tests
to determine if there are more extents in
the file. If so, the Sequential Disk Open
Input routine is fetched to validate the
next extent. when all extents are
validated, the routine sets the open bit in
the DTF and tests to determine if there are
additional QTAM files to be opened by this
OPEN macro instruction. If so, control
returns to the beginning of the routine.
If there are no more, control is passed to
the system Open Monitor via a FETCH.

If this routine has passed control to
other QTAM Open modules, it is reentered
and it passes control back to the system
Open Monitor.

External Routines Used:

FETCH (SVC 2)

OPEN NONAUDIO LINE GROUP/MS QUEUES ROUTINE

Module Name: IJLQ02 (Chart 02)

Entry Point: This routine is brought into
the transient area and control passed to it
through a FETCH issued by the QTAM Open
Monitor routine. 'Ihe QTAM Open Line
Group/MS Queues routine is cataloged on the
Core Image Library under the name $$BOQ002.
Register 2 contains the address of the DTF
table being opened.

Function: Performs initialization
functions necessary to prepare line group
and main storage queues files for
operation.

The routine first tests to determine
which file is being opened, and branches to
the proper subroutine.

Open Line Group Subroutine: As each line
group is opened, the address of its DTF
table is added to the chain of opened DTF
tables that was started by placing the
address of the DTF for the DASD Message
Queues file in the Vector Table. If the
DTF table is for a remote line group, a
channel program is built for each line
consisting of the necessary commands for
making the line ready. For nonswitched

lines0 an Enable command is prepared. If
the TCU type is an IBM 2702, the
appropriate SAD command is prepared. For
all other remote lines, a No Op command is
prepared. After each channel program is
built,, a test is made to determine if a
Restart is being performed. If it is not,
the channel program is executed by issuing
EXCP, followed by a WAIT to await
completion of the channel program.

If a Restart is being performed, the
subroutine adds an additional command to
the channel program (Read Skip for IBM
terminals, Break for non-IBM terminals).
The channel program is executed by issuing
EXCP, followed by a WAIT.

Upon completion of the channel program,
for a remote line the subroutine issues an
SVC 31 (QPOST) to post the LCB to itself.
This causes the line to be scheduled for a
receiving operation.

If the DTF table is for an IBM 2260
Local line group, the terminals are
prepared for transmission as follows.
First, the ACLOC field in the DTF table is
adjusted to the next highest fullword
boundary, which is the CCB offset in the
device access area. The LCB for the line
group is posted to itself. via a QPOST, to
initialize the Receive Scheduler. If the
DTF is not being opened for receive
operations, no further initialization is
performed, and the routine exits to open
the next DTF.

For receive operations" each terminal in
the polling list is prepared for receiving
by turning on the 'receive allowed" flag in
the terminal table entry and issuing a NOP
channel program. when the channel program
completes, the IBM 2260 Local Appendage
causes the CCB to remain on the DOS channel
queue awaiting Attention Interrupts (read
requests). When all IBM 2260s have been
enqueued, the routine exits to open the
next DTF.

The subroutine now tests if all LCBs in
this line group have been handled. If not,
the next LCB address is acquired and
initialized. If all LCBs have been
handled, the next DTF address is acquired
and tested to determine if it is a line
group file. If it is not. return is made
to the QTAM Open Monitor routine through a
FETCH.

Open MS Queues subroutine: The address of
the DTF table for the file is linked into
the chain from the VECPDQLK field in the
Vector Table. When an MS Process Queue is
being opened, the address of the QCB for
the corresponding DASD Process Queue is
placed into the DTF table. The address of
the LCB for the Process Queue (formed in

QTAM Transient Routines 93

the DTF table for the MS Process Queue) is
placed into the QSTL field of the QCB for
the DASD Process Queue. This action
establishes the interface between the
message control and message processing
programs and allows messages to be
transferred to a processing program in
response to a GET. Control is returned to
the QTAM Open Monitor routine through a
FETCH.

External Routines Used:

EXCP (SVCO)

FETCH (SVC2)

OPEN CHECKPOINT/RESTART ROUTINE (PHASE 1)

Module Name: IJLQ03 (Chart 03)

Entry Point: Entry into this routine is
from the File Protect subroutine, which is
called by the QTAM Open Monitor. Phase 1
of the QTAM Open Checkpoint/Restart routine
is cataloged on the Core Image library
under the name $$BOQ003. Register 2
contains the address of the DTF table being
opened.

Function: Performs initialization
functions necessary to open the checkpoint
records file.

The routine reads the checkpoint control
record and tests it for correct formatting.
If it is incorrectly formatted, an error
message is sent and the job is cancelled.
If it is formatted correctly, the first
byte of the record is tested for X'OO'. If
it is not X'OO', a Restart must be
performed. The routine sets a bit in the
checkpoint flag byte in the QTAM vector
table to indicate that a Restart is being
performed, reads the proper checkpoint
record, and issues a FETCH to call in Phase
2 of the Open Checkpoint/Restart routine.

If the first byte of the control record
is equal to X'OO', the routine goes through
a scanning loop to compute the size of the
work area needed to contain the checkpoint
data. It compares the result with the size
of the work area specified in the SOWA
keyword operand and assembled into the DTF
table. If the work area assembled is too
small, an error message is sent and the job
is cancelled.

The routine then formats the disk extent
{as far as necessary> with dummy records.
Control is returned to the QTAM Open
Monitor through a FETCH.

94 DOS QTAM Program Logic Manual

OPEN CHECKPOINT/RESTART ROUTINE (PHASE 2)

Module Name: IJLQ04 (Chart 04)

Entry Point: Phase 2 of the Open
Checkpoint/Restart routine is called by
Phase 1 of the Open Checkpoint/Restart
routine when it determines that a Restart
is to be performed. The QTAM Restart
routine is cataloged in the Core Image
Library under the name $$BOQ004 and is
entered for execution at IJLQ04. Register
2 contains the address of the DTF table.

Function: Reestablishes the nonaudio
queues and the telecommunications network
to the status it had at the time the last
checkpoint was taken.

The routine goes through a scanning loop
to compute the size of the work area needed
to contain the checkpoint data. It
compares the result with the size of the
work area assembled into the DT.F table. If
the work area assembled is too small. an
error message is sent, and the job is
cancelled.

The data in the checkpoint record is
then used to reinitialize the queues,
polling lists, terminal table, and LCBs.
In initializing the LCBs, the routine tests
to determine if the line is in Send or
Receive status. If in Send status, the
Send Scheduler STCB is placed ahead of the
Receive Scheduler STCB in the LCB. If in
Receive status, the header of the message
being received at the time the checkpoint
was taken is read in from the disk,
canceled, and written back on the disk.
Return is made to the QTAM Open Monitor
through a FETCH.

External Routines Used:

Message Writer, Phase 3 (IJLQW3)

EXCP (SVC 0)

WAIT (SVC 7)

OPEN IBM 7772 DCV VOCABULARY FILE ROUTINE

Module Name: IJLQ07 (Chart 07)

Entry Point: Entry into this routine is
from the File Protect subroutine, which is
called by the QTAM Open Monitor. The QTAM
Open 7772 DCV Vocabualry File routine is
cataloged on the Core Image Library under
the name $$BOQ007. Register 2 contains the
address of the DTF table being opened.

(

\ ____

.~····

it
Function: Performs initialization
functions necessary to use the 7772 DCV
Vocabulary file.

When the 7772 DCV vocabulary DTF is the
first opened DTF table, the routine places
the address of the Q'IAM Vector Table into
the DOS communication region. 'This is
necessary to allow the cross-partition
communication required in QTAM. The
address of this D'IF table begins the chain
of opened DTF tables in the Vector Table
(VECLDTF field). When the 7772 DCV
Vocabulary DTF is not the first-opened DTF
table, the routine checks that the
previously opened file is the DASO Message
Queues file, and adds the address of this
DTF table to the chain of opened DTF
tables.

Each DCV buffer in each buff er pool
associated with the 7772 line group is
searched. The disk assignment unit order
of the 7772 DCV Vocabulary file is stored
in the CCB of each DCV buffer.

If a word table is provided, the routine
searches the address of the first
word-table entry, and the DCV word is read
from the 7772 DCV Vocabulary file into the
corresponding WORD macro expansion. This
procedure is repeated for each DCV word
required by the user in main storage.

Control is returned to the QTAM Open
Monitor through a FETCH.

External Routines Used:

FETCH (SVC 2)

EXCP (SVC 0)

OPEN AUDIO LINE GROUP/OUTPUT QUEUE FILES
ROUTINE

Module Name: IJLQ08 (Chart 08)

Entry Point: This routine is brought into
the transient area and control passed to it
through a FETCH issued by the QTAM Open
Monitor routine. The QTAM Open Audio Line
Group/Output Queues routine is cataloged on
the Core Image Library under the name
$$BOQ008. Register 2 contains the address
of the DTF table being opened.

Function: Perforrr,s initialization
functions to prepare audio line group and
output queues files for operation.

The routine first tests to determine
which file is being opened and branches to
the proper subroutine.

Open Audio Line Group Subroutine: When a
7770 Line Group DTF is the first opened DTF
table, the subroutine places the address of
the QTAM Vector Table into the DOS
communication region. This is necessary to
allow the cross-partition communication
required in QTAM. The address of this DTF
table begins the chain of opened DTF tables
in the Vector Table (VECLDTF field). When
a 7770 Line Group DTF is not the first
opened DTF table, the address of this DTF
table is added to the chain of previously
opened DTF tables.

When a 7772 Line Group DTF is opened,
the subroutine checks that the 7772 DCV
Vocabulary file has been opened, and then
places the address of this DTF table in the
chain of previously opened DTF tables.

In any case, the addresses of the
ARU-Send queue and the QTAM SVC routines
are placed in the Vector Table.

As each audio line group is opened, the
address of the first ALCB is obtained and
the line table address is stored into the
VECLTBL field of the Vector Table. The
address of the line table entry is searched
and stored in the ALCB. If a 7770 line
group requires an initial write operation.
the ALCB channel program is updated with
the informational or invitational data. In
any case, the ALCE status is set to ENABLE
(LSTS=X'Ol' indicates enable status), and
the ALCB channel program is executed by
issuing an EXCP.

The subroutine then tests if all ALCBs
in the line group have been handled. If
not, the next ALCB address is acquired and
initialized. If all ALCBs have been
handled, the next DTF address is acquired
and tested to determine if it is that of an
audio line group file. If it is not,
return is made to the QTAM Open Monitor
routine through a FETCH.

Open Audio Output Queues Subroutine: The
subroutine moves the ARU-Send queue address
from the VECARUSQ field of the Vector Table
to the Audio Output queue DTF table. The
address of this DTF table is linked into
the chain from the VECPDQLK field in the
Vector Table. Control returns to the QTAM
Open Monitor routine through a FETCH.

External Routines Used:

FETCH (SVC 2)

EXCP (SVC 0)

QTAM Transient Routines 95

QTAM CLOSE ROUTINE (PHASE 1)

Module Name: IJLQCl (Chart Cl)

Entry point: Whenever a QTAM file is to be
closed, this routine is fetched into the
logical transient area by the DCS Close
Monitor and entered at IJLQCl. The QTAM
Close module is cataloged in the Core Image
Library under $$BCQC01. Upon entry,
register 2 contains the address of the DTF
table for the file being closed.

Function: Analyzes the type of QTAM file
to be closed, performs a cleanup action for
the files used in the message control
program, and fetches the QTAM Close Phase 2
for the files used in the message
processing program.

When this phase is entered because of a
CLOSE macro for a type DA, AV, or LG file,
all line operations have already been
stopped. Therefore, only minor cleanup
functions are required to close these
files. The DTF table for the file being
closed is removed from the chain of those
opened, and the open bit is turned off.
When the type CK file is being closed the
first byte of the checkpoint control record
is set to x•oo•, and it is written onto the
disk to indicate a proper close. the Ready
Queue in the QTAM nucleus is reinstated to
its initial status (that is, the status of
the Ready Queue at the time the message
control program phase is loaded to begin
execution}. This action eliminates the
necessity for an IPL procedure each time a
QTAM message control program is loaded for
execution.

Upon completion of processing, return is
made to the DOS Close Monitor via a FETCH.

External Routines used:

FETCH (SVC 2)

EXCP (SVC 0)

Message Writer (Module IJLQMW)

QTAM CLOSE ROUTINE (PHASE 2)

Module Name: IJLQC2 (Chart C2)

Entry Point: This routine is called into
the logical transient area via a FETCH
issued by Phase 1 of the QTAM Close
Routine. Phase 2 of the QTAM Close routine
is cataloged in the core Image Library
under the name $$BCQC02. Control is passed
to this routine at IJLQC2 and upon entry
register 2 contains the address of the DTF
table for the file to be closed.

96 DOS QTAM Program Logic Manual

Function: causes a QTAM file opened in a
message processing program to be closed.
When the closing of the last PQ, DQ. or AQ
type file is completed, this routine issues
a FETCH to call in Phase 3 of the QTAM
Close routine.

Because of the nature of QTAM, all PQ,
DQ, and AQ files opened in any message
processing programs must be closed before
the QTAM files in the message control
program can be closed.

For a PQ (MS-process>, DQ
(MS-destination)., or AQ <Audio Output>
file, the address of the DTF table is
removed from the chain of DTF tables
created at Open time. The chain begins at
the address of the last PQ, DQ, or AQ table
opened and is obtained from the VECPDQLK
field of the QTAM Vector Table. If this is
a type PQ DTF table, the open bit is turned
off and the link address to the
corresponding DASO-process queue is
destroyed. The link address to this
processing queue placed in the QSTL field
of the QCB for the DASO-process queue at
Open time is also cleared. The only thing
required for a type DQ or AQ is to turn off
the open bit.

Each time a type PQ, DQ, or AQ file is
being closed, this routine tests the
master-receive switch to determine if a
closedown procedure is in progress. If so,
return is made to the DOS Close Monitor.
But, if there is no closedown procedure and
if type PQ file operates on audio messages,
all the audio line group files sending
messages to the MS-process queue are
searched. from the VECLDTF field of the QTAM
Vector Table. For each active audio line,
a special ECB representing a request for a
Halt I/O operation is posted via a QPOST to
the LPS queue before issuance of the QWAIT.
LPS control recognizes the element and
issues a Halt I/O (SVC 27) on the line to
break the connection. If necessary, the
DCV buffer associated with a 7772 line is
freed by posting it (via an SVC QPOST) to
the ocv buffer queue from which it has been
obtained, and control is then returned to
the DOS Close Monitor. If a closedown
procedure is indicated, a check is made to
see if all PQ, DQ, or AQ files in the
system have been closed (this condition
exists when the VECPDQLK field contains
zeros). If not, return is made to the DOS
Close Monitor. The Close routine goes
through the chain of DTF table for type DA,
AV, and LG files (starting at the address
in the VECLDTF field) to access each line
in the system.

For each active nonaudio line, a QWAIT
(SVC 30) is issued for the LCB to stop all
operations on the line. If the line is a
switched line and is currently connected to

(_

a terminal, a special ECB representing a
request for a Halt I/O operation is posted
via a QPOST to the LPS queue before
issuance of the QWAIT. LPS control
recognizes the element and issues a Halt
I/O (SVC 27) on the line to break the
connection. Before issuing any QWAITs to
stop line operations, a switch (actually
part of the roaster-receive switch) is set
which causes each subsequent QWAIT on an
LCB to have a low priority. This action
causes all outgoing messages still on the
destination queue for the line to be sent
before the QWAIT is staisfied.

For each active audio line, the end of
the write operation is expected by testing
the ALCB status flag (LSTS=X'01' indicates,
at this time, no activity on the line).

In this manner, all outgoing message
traffic is flushed before this routine
releases control. All incoming traffic was
stopped previously by the Close Message
control routine upon issuance of a CLOSEMC
macro in the message processing program.

Return is made to the Close Monitor
unless the file being closed is the last
QTAM file closed in the message processing
prograro(s). In this case Phase 3 of the
QTAM Close routine is fetched.

External Routines Used:

HALT I/O (SVC 27)

QPOST (SVC 31)

QWAIT (SVC 30)

Message writer (Module IJLQRW)

FETCH (SVC 2)

QTAM CLOSE ROUTINE (PHASE 3)

Module Name: IJLQC3 (Chart C3)

Entry Point: This routine is called into
the logical transient area via a FETCH
issued by Phase 2 of the QTAM Close routine
when the last PQ, DQ, or AQ file is closed
from a message processing program. Phase 3
of the QTAM Close routine is cataloged in
the core Image Library under the name
$$BCQC03. Control is passed to this
routine at IJLQC3.

Function: Closed, the Close routine goes
through the chain of DTF table for type DA,
AV, and LG files (starting at the address
in the VECLDTF field> to access each line
in the system.

For each active nonaudio line, a QWAIT
(SVC 30) is issued for the LCB to stop all
operations on the line. If the line is a
switched line and is currently connected to
a terminal, a special ECB representing a
request for a Halt I/O operation is posted
via a QPOST to the LPS queue before
issuance of the QWAIT. LPS control
recognizes the element and issues a Halt
I/O (SVC 27) on the line to break the
connection. Before issuing any QWAITs to
stop line operations, a switch (actually
part of the master-receive switch) is set
which causes each subsequent QWAIT on an
LCB to have a low priority. This action
causes all outgoing messages still on the
destination queue for the line to be sent
before the QWAIT is staisfied.

For each active audio line, the end of
the write operation is expected by testing
the ALCB status flag (LSTS=X'Ol' indicates,
at this time, no activity on the line).

In this manner, all outgoing message
traffic is flushed before this routine
releases control. All incoming traffic was
stopped previously by the Close Message
control routine upon issuance of a CLOSEMC
macro in the message processing program.
It performs action to initialize for
entering the closedown routine in the
message control program. The address of
the save area for the Fl partition is
obtained from the F1 PIB. The return PSW
in the save area is overlaid with the
address specified in the EOJAD keyword
operand of the DTFQT macro instruction for
the first opened file in the message
control program. The registers saved by
the ENDREADY macro expansion are moved from
the user's save area into the Fl save area,
and the QTAM wait flag in the PIB is turned
off, making the message control program
eligible for activation. When activated,
the message control program is entered at
the EOJAD address, which begins a section
of code that includes CLOSE macros that
complete the closing of the type LG, AV,
and DA files. being closed, the Ready
Queue in the QTAM nucleus is reinstated to
its initial status (that is,, the status of
the Ready Queue at the time the message
control program phase is loaded to begin
execution). This action eliminates the
necessity for an IPL procedure each time a
QTAM message control program is loaded for
execution. Return is made to the Close
Monitor.

External Routines Used:

FETCH (SVC 2)

QTAM Transient Routines 97

QTAM AUDIO MESSAGE WRITER ROUTINE

Module Name: IJLQWA (Chart WA)

Entry Point: This routine is called into
the logical transient area by a FETCH
(SVC 2) issued by the LPS Control routine
upon recognition of a special audio ECB
posted to the Ready Queue by the Message
Writer Initiator routine (IJLQMW). The
Audio Message Writer is cataloged on the
Core Image Library under the name $$BQWTRA.
Entry to the routine is at IJLQWA.

Function: The routine tests to determine
what error message is to be written. This
message was registered by the Error
Recovery Procedures in the Audio Line
Appendage module (IJLQAA) or the 7772 Disk
Appendage (IJLQAD). The routine writes the
message to the system console by issuing an
EXCP (SVC 0). Upon return, an SVC 11 is
immediately issued to request return to the
routine which issued the FETCH.

External Ro9tines Used:

EXCP (SVC 0)

QTAM MESSAGE WRITER ROUTINE (PHASE 1)

Module Name: IJLQWl (Chart Wl)

Entry Points: This routine is called into
the logical transient area by a FETCH
(SVC 2) issued by the QTAM Open or Close
routines, or by the LPS Control routine
upon recognition of a special ECB posted to
the Ready Queue by the Message Writer
Initiator routine (IJLQMW). Phase 1 of the
Message Writer routine is cataloged on the
Core Image Library under the name $$BQWTR1.
Entry to the routine is at IJLQW1. If
entry is from the Open or Close routine,
register 0 contains the message number,
right-adjusted, and register 2 contains the
address of the DTF table.

Function: The routine tests to determine
what error message is to be written. If a
message to be written was registered by the
Error. Recovery Procedures in the Line
Appendage module (IJLQLA) or in the Audio
Line Appendage module {IJLQAA), the routine
writes the message to the system console
(or, if the operator control feature is
specified requesting error messages sent to
the operator control terminal, to that
terminal) by issuing an EXCP (SVC 0). Upon
return, an SVC 11 is immediately issued to
request return to the routine which issued
the FETCH.

98 DOS QTAM Program Logic Manual

If the message to be written was
requested by one of the QTAM Open or Close
routines, the routine calls into the
logical transient area, via a FETCH
(SVC 2), either Phase 2 or Phase 3 of the
QTAM Message Writer. depending upon what
message is to be written.

External Routines Used:

EXCP (SVC 0)

FETCH (SVC 2)

QTAM MESSAGE WRITER ROUTINE (PHASE 2)

Module Name: IJLQW2 (Chart W2)

Entry Point: This routine is called into
the logical transient area via a FETCH
(SVC 2) issued by Phase 1 of the QTAM
Message Writer routine upon recognition of
a request for an error message which this
routine is to write. Phase 2 of the
Message Writer routine is cataloged on the
core Image Library under the name $$BQWTR2.
Entry to the routine is at IJLQW2.
Register 0 contains the message number,
right-adjusted, and register 2 contains the
address of a DTF table.

Function: The routine writes error
messages requested by the QTAM Open or
Close routines. The message may be
notification of an invalid Open, an invalid
Close, an invalid DTFQT, a TERM or LINE
entry not found, an invalid DCV word
address, or any of a group of messages
notifying the operator of errors in the
extent data. The routine writes the
message to the system console by issuing an
EXCP (SVC 0). Upon return, a WAIT (SVC 7)
is issued to await completion of the
writing of the message. Upon completion.
the job is cancelled via a CANCEL (SVC 6).

External Routines Used:

EXCP (SVC 0)

CANCEL (SVC 6)

WAIT (SVC 7)

QTAM MESSAGE WRITER ROUTINE (PHASE 3)

Module Name: IJLQW3 {Chart W2)

Entry Point: This routine is called into
the logical transient area via a FETCH
(SVC 2) issued by Phase 1 of the QTAM
Message Writer routine upon recognition of

a request for an error message that this
routine is to write. Phase 3 of the
Message writer routine is cataloged on the
core Image Library under the name $$BQWTR3.
Entry to the routine is at IJLQW3.
Register 0 contains the message number.
right-adjusted, and register 2 contains the
address of a DTF table.

Function: The routine writes any of a
second group of messages requested by the
QTAM Open or Close routines, which notify
the operator of errors in the extent data.
The routine writes the message to the
system console by issuing an EXCP (SVC 0).
Upon return. a WAIT (SVC 7) is issued to
await completion of the writing of the
message. Upon completion, the job is
cancelled via a CANCLL (SVC 6).

External Routines Used:

EXCP (SVC 0)

CANCEL (SVC 6)

WAIT (SVC 7)

QTAM CANCEL ROUTINE (PHASE 1)

Module Name: IJLQXL (Chart XL)

Entry Point: If a QTAM Message control
Program or Message Processing Program is
cancelled, this routine is fetched into the
logical transient area by the DOS
Terminator Monitor ($$BEOJ) and entered at
IJLQXL. Phase 1 of the QTAM Cancel routine
is cataloged on the Core Image Library
under the name $$EQCNCL.

Function: If a message Processing Program
is cancelled, all references to that
Message Processing Program are purged from
the Message Control Program and the
Supervisor.

Immediately upon entry, two SVC 22s are
issued to disable the system for I/O
interrupts. The first SVC 22 seizes the
system and sets the system mask. The
second SVC 22 releases the system. A test
is then made to determine if the Message
control Program or a Message Processing
Program is being cancelled. If the Message
Control Program is being cancelled, exit is
made by fetching $$BQCNCM, Phase 2 of the
QTAM Cancel routine.

This routine is fetched during cancellation
of a Message Processing Program only for
abnormal termination of a Message
Processing Program, or when cancellation is
requested from the console.

The return PSW in the program save area
is examined to determine if the cancelled
Message Processing Program was in a QWAIT
status due to a GET. PUT, or RETRIEVE
operation. If it is in a QWAIT status, the
STCB chain of the QCB or BRB being waited
on is searched to locate the full STCB
representing reentry to the Message
Processing Program. When located, the full
STCB is removed from that chain and reset
to an inactive status. It is then linked
to the bottom of the Ready Queue for its
next usage (otherwise the full STCB would
be lost). If the item waited on is a BRB
in the element chain of the Active BRB or
Disk I/O queue, the BRB is removed from the
chain and the chain is relinked.

The remaining cleanup functions are
performed regardless of whether a QWAIT is
pending. The chain of Message Processing
Program DTF tables (starting at VECPDQLK in
the Vector Table) is searched for DTF
tables defined and opened in the cancelled
Message Processing Program. Each DTF table
associated with the cancelled program is
thus found and removed from the chain of
DTFs. If the DTF table is for a
MS-destination queue, the "in source chain"
flag (LALT+2) in the DTF's LCB is tested to
determine if a PUT is currently in
progress. If so, the DTF's LCB is removed
from the chain of LCBs currently sending to
that destination.

If the DTF table is for a MS-process
queue., further message transfer to that
queue is stopped by clearing the QSTL field
in the corresponding DASO-process QCB.
Next, any buffers currently associated with
the DTF table are returned to the QTAM
buffer pool in the Message Control Program
to avoid losing them. The last buff er
passed to the Message Processing Program in
response to a GET is released by posting
via an SVC 31 the buffer to the Return
Buffer queue. Each unprocessed buffer in
the element chain of the MS-process queue
is posted to the Available Buffer queue via
an SVC 31. Additionally, if the EXPEDITE
option has not been specified for the
queue, the next disk read address (QNRA
field in the DASO-process QCB) is reset
with the relative record number of the
first unprocessed header segment in the
MS-process queue. This action causes the
unprocessed messages to be read from the
disk queue again if the Message Processing
Program is reloaded and the DTF table
reopened.

The system is enabled for interrupts,
and exit is made by fetching $$BEOJ3.

QTAM Transient Routines 99

External Routines used:

SVC 22

SVC 2

QPOST (SVC 31)

QTAM CANCEL ROUTINE (PHASE 2)

Module Name: IJLQXM (Chart XM)

Entry Point: If a QTAM Message Control
Program is being cancelled, this routine is
fetched into the the logical transient area
by Phase 1 of the QTAM Cancel routine and
is entered at IJLQXM. Phase 2 of the QTAM
cancel routine is cataloged on the Core
Image Library under the name $$BQCNCM.

Function: This Cancel phase performs
cleanup functions for the Message Control
Program and initiates the cancellation of
each Message Processing Program in the
system (if any exists).

Immediately upon entry, two SVC 22s are
issued to disable the system for I/O
interupts. The first SVC 22 seizes the
system and sets the system mask. The
second SVC 22 releases the system. Line
error statistics for each line in the
system are then printed Cvia an EXCP) on
the operator console during this
cancellation procedure.

A QTAM Message Processing Program cannot
run without the Message Control Program.
Therefore cancellation of each Message
Processing Program (if any) is initiated.
The chain of Message Processing Program DTF
tables created at Open time (starting at
VECPDQLK in the QTAM Vector Table) is
searched for the presence of any Message
Processing Programs in the system. As each
Message Processing Program is found, a
cancel flag of X'8163~ is set in the PIB
for that Message Processing Program. This
action causes the Message Processing
Program to be cancelled the next time the
DOS Task Selection mechanism selects that
program for activation. The QTAM Ready
Queue in the Supervisor is then reinstated
to its initial status so that a new copy of
the Message Control Program can be loaded
for execution without the necessity for an
IPL procedure. The QTAM word in the DOS
communication region is cleared to remove
any indication of QTAM from the system.
Two SVC 22s are issued to enable the system

100 DOS QTAM Program Logic Manual

for interrupts, and exit is made by
fetching $$BEOJ3 for completion of the
cancellation procedure.

External Routines Used:

SVC 22

EXCP (SVC 0)

WAIT (SVC 7)

SVC 2

TERMINAL TEST HEADER ANALYSIS ROUTINE

Module Name: IJLQTM (Charts TM and TN)

Entry Point: This routine is called into
the logical transient area via a FETCH
(SVC 2) issued by the Terminal Test
Recognition routine. The Terminal Test
Header Analysis routine is cataloged on the
Core Image Library under the name $$BQHDCK.
Entry is at IJLQTM21. The address of a
parameter list is passed in register 0.

Function: Performs preliminary validation
of the test request, translates the input
message as necessary, and sets up the
terminal addressing characters.

The input message is located, and any
translation necessary is performed.
Translations that may be needed are for
symbolic addresses of terminals and
translation between ASCII and EBCDIC.

The proper terminal addressing
characters, the address of the LCB, and the
device type and features are placed in the
buffer prefix.

The proper Terminal Test routine is then
called into the logical transient area via
a FETCH.

External Routines used:

FETCH (SVC2)

Terminal Test Module for IBM 1030 (IJLQTl)

Terminal Test Module for IBM 1050 CIJLQT2)

Terminal Test Module for IBM 1060 CIJLQT3)

Terminal Test Module for IBM 2260 CIJLQT4)

Terminal Test Module for IBM 2740 CIJLQT5)

TERMINAL TEST MODULE FOR IBM 1030

Module Name: IJLQT1 (Chart Tl)

Entry Point: This routine is called into
the logical transient area via a FETCH
(SVC 2) issued by the On-Line Terminal Test
Header Analysis routine. The Terminal Test
Module for IBM 1030 is cataloged on the
core Image Library under the name $$BQ1030.
Entry is at IJLQT1. Register 0 contains
the address of a parameter list.

Function: Generates channel program for
IBM 1030 on-line tests.

The input message is located and the
header is validated. The header is
analyzed for type of request. CCWs for the
proper data and control purposes are formed
in a special area defined for this purpose.
(If the buffer can be utilized, the ccws
are formed in the text area of the buffer.)
If the requested data pattern is not in
use, the pattern is moved into a new area.
If the new area is not available, the test
request is deferred for later processing.
If the request is for a stored data
comparison and the data is not correct, the
input message is switched. Return is to
the Terminal Test Recognition routine.

External Routines Used: None.

TERMINAL TEST MODULE FOR IBM 1050

Module Name: IJLQT2 (Chart T2)

Entry Point: This routine is called into
the logical transient area via a FETCH
(SVC 2) issued by the On-Line Terminal Test
Header Analysis routine. The Terminal Test
Module for IBM 1050 is cataloged on the
Core Image Library under the name $$BQ1050.
Entry is at IJLQT2. Register 0 contains
the address of a parameter list.

Function: Generates channel program for
IBM 1050 on-line tests.

The input message is located and the
header is validated. The header is
analyzed for type of request. ccws for the
proper data and control purposes are formed
in a special area defined for this purpose.
(If the buffer can be utilized, the CCWs
are formed in the text area of the buffer.}
If the requested data pattern is not in
use, the pattern is moved into a new area.
If the new area is not available, the test
request is deferred for later processing.
If the request is for a stored data

comparison and the data is not correct, the
input message is switched. Return is to
the Terminal Test Recognition routine.

External Routines Used: None.

TERMINAL TEST MODULE FOR IBM 1060

Module Name: IJLQT3 (Chart T3)

Entry Point: This routine is called into
the logical transient area via a FETCH
(SVC 2) issued by the On-Line Terminal Test
Header Analysis routine. The Terminal Test
Module for IBM 1060 is cataloged on the
Core Image Library under the name $$BQ1060.
Entry is at IJLQT3. Register 0 contains
the address of a parameter list.

Function: Generates channel program for
IBM 1060 on-line tests.

The input message is located and the
header is validated. The header is
analyzed for type of request. CCWs for the
proper data and control purposes are formed
in a special area defined for this purpose.
(If the buffer can be utilized, the ccws
are formed in the text area of the buffer.)
If the requested data pattern is not in
use, the pattern is moved into a new area.
If the new area is not available, the test
request is deferred for later processing.
If the request is for a stored data
comparison and the data is not correct, the
input message is switched. Return is to
the Terminal Test Recognition routine.

External Routines Used: None.

TERMINAL TEST MODULE FOR IBM 2260

Module Name: IJLQT4 (Chart T4)

Entry Point: This routine is called into
the logical transient area via a FETCH
(SVC 2) issued by the On-Line Terminal Test
Header Anaylsis routine. The Terminal Test
Module for IBM 2260 is cataloged on the
Core Image Library under the name $$BQ2260.
Entry is at IJLQT4. Register 0 contains
the address of a parameter list.

Function: Generates channel program for
IBM 2260 on-line tests.

The input message is located and the
header is validated. The header is
analyzed for type of request. ccws for the
proper data and control purposes are formed
in a special area defined for this

QTAM Transient Routines 101

purpose.CI£ the buffer can be utilized. the
ccws are formed in the text area of the
buffer.> If the requested data pattern is
not in use, the pattern is moved into a new
area. If the new area is not available,
the test request is deferred for later
processing. If the request is for a stored
data comparison and the data is not
correct, the input message is switched.
Return is to the ~erminal Test Recognition
routine.

External Routines Used: None

TERMINAL TEST MODULE FOR IBM 2740

Module Name: IJLQTS (Chart TS)

Entry Point: This routine is called into
the logical transient area via a FETCH
(SVC 2) issued by the On-Line Terminal Test
Header Analysis routine. The Terminal Test

102 DOS QTAM Program Logic Manual

Module for IBM 2740 is cataloged on the
Core Image Library under the name $$BQ2740.
Entry is at IJLQTS. Register 0 contains
the address of a parameter list.

Function: Generates channel program for
IBM 2740 on-line tests.

The input message is located and the
header is validated. The header is
analyzed for type of request. ccws for the
proper data and control purposes are formed
in a special area defined for this purpose.
(If the buffer can be utilized, the ccws
are formed in the text area of the buffer.)
If the requested data pattern is not in
use, the pattern is moved into a new area.
If the new area is not available, the test
request is deferred for later processing.
If the request is for a stored data
comparison and the data is not correct, the
input message is switched. Return is to
the Terminal Test Recognition routine.

External Routines Used: None.

'"' ~'. "<~

The QTAM SVC/Subtask control routine is
included in the DOS Supervisor at System
Generation to handle interrupts caused by
the issuance of a QTAM SVC (SVC 30 or SVC
31) and to control the dispatching of QTAM
subtasks. This supervisory routine
consists of nine subroutines which are
summarized below. (See Charts QW, QX, QY.)

ENTRY INTERFACE SUBROUTINE

This subroutine is entered from the SVC
Interrupt Handler of the Supervisor
whenever a QTAM SVC (QWAIT or QPOST) is
issued. This subroutine performs
initialization functions for the QTAM
SVC/Subtask control routine.

Associated with each entry to this
subroutine is a Program Information Block
(PIB). One PIE per partition is
pre-assembled into the DOS Supervisor, and
the address of the PIE associated with the
partition from which the SVC was issued is
passed <in register 10) to the Entry
Interface subroutine. This PIE contains
information about the partition and
includes:

1. a ready/waiting flag: and

2. the address of the program save area
where registers and the return program
status word (PSW) are stored.

The program issuing the QTAM SVC is
represented to the SVC/Subtask Control
routine by a full STCB. One full STCB per
partition (or task when support for
multitasking is included) is pre-assembled
into the QTAM SVC/Subtask Control routine
for this purpose. These full STCBs are
initially in an inactive state and are
linked into the STCB chain of the pseudo
QCB labeled QSVCQCB.

When the Entry Interface subroutine is
entered, it obtains an inactive full STCB
and initializes it to represent re-entry to
the program requesting service when the
request has been satisfied. The full STCB
to be used for this purpose is always the
first STCB in the STCB chain of the last
QCB dispatched by the QTAM SVC/Subtask
Control routine. The address of this "last
dispatched QCB" is obtained from the
location labeled QSVCSAVE and is initially
the address of the pseudo QCB (QSVCQCB).

QTAM SVC/SUBTASK CONTROL ROUTINE

The initialization functions performed
by the subroutine are:

1. Saves registers and the old SVC PSW in
the save area pointed to by the PIE
(this is accomplished via a branch and
link to the supervisor's generalized
save routine, SVEREG).

2. Saves all registers (7 through 6) in
the QTAM save area.

3. Inserts the PIB address into the full
STCB (the full STCB contains the
address of QTAMs dummy PIE when not
initialized). Cancel exit when no
STCB available.

4. Assigns a priority to the full STCB.

5. Sets a wait flag in the PIB so that
the program associated with the PIB is
not selected for re-activation by the
task selection mechanism of the DOS
Supervisor.

After these initialization functions are
performed, the Entry Interface subroutine
exits to the QTAM Wait or Post subroutine,
depending on which SVC has been issued.

QTAM POST SUBROUTINE

The Post subroutine is entered from the
Entry Interface subroutine when an SVC 31
(QPOST) has been issued. Three nonaudio
implementation routines (Interim LPS, BRB
Ring., and Line Appendage routines) and
three audio implementation routines (7772
Disk Read, 7772 Line Write, and Audio Line
Appendage routines) enter this subroutine,
via a direct branch, to cause an effective
post. Entry is always at QSVCPOST. Upon
entry, register 1 contains the address of
an element and register 2 contains the
address of the QCB to which the element is
to be posted.

The Post subroutine places the address
of the passed QCB into the QCB address
field of the specified element control
block. This is the means by which an
element becomes associated with a QCB.
This subroutine then branches to the
Priority Search subroutine to cause the
element to be placed in the Ready Queue in
priority order.

QTAM SVC/SUBTASK Control Routine 103

QTAM WAIT SUBROUTINE

The Wait subroutine is entered at QSVCWAIT
from the Entry Interface subroutine when an
SVC 30 (QWAIT) has been issued. Upon
entry, register 2 contains the address of
the QCB from which an element is requested
by the SVC. Register 9 contains the
address of the last QCB dispatched on the
previous entry into the QTAM SVC routine.
The first STCB in the subtask chain of this
last-dispatched QCB is the full STCB
representing re-entry <when the wait
condition is satisfied) to the program that
issued the SVC.

The Wait subroutine determines what
disposition is necessary to schedule the
waiting program (represented by the full
STCB} for re-activation. Depending on
current conditions, any one of four
possible courses of action may be
necessary.

1. If the highest-priority STCB in the
subtask chain of the QCB specified by
the SVC is •not waiting" (QKEY=2),
this subroutine branches immediately
to the Defer-Entry subroutine at
QSVCUNAV. Reasons for this branch are
explained in the discussion of that
subroutine.

2. If the specified QCB has an element
available on its ECB chain, the
element is removed from the chain and
its address placed into parameter
register one. The Wait subroutine
then branches to the Exit Select
subroutine at QSVCRTNX. This branch
causes the full STCB to be selected
for activation. Control is thus
returned (via the DOS Supervisor) to
the program that issued the SVC 30
with the address of the requested
element in register 1.

The net effect is that at the time
the program requesting an element is
dispatched, its full STCB still
appears in the subtask chain of the
last-dispatched QCB; however, the
element chain from which it is drawing
elements is that of the QCB specified
by the requesting program. This
action insures immediate satisfaction
of the wait condition when the
requested element is available.

3. If the specified QCB has no elements
available, but the last-dispatched QCB
and the QCB specified by the
requesting program are the same, the
STCB is already chained into the
correct QCB and the QCB is already
waiting on the Ready Queue. The Wait

104 DOS QTAM Program Logic Manual

subroutine branches to the Qdispatch
subroutine.

4. If the specified QCB has no elements
available and is not the
last-dispatched QCB, the Wait
subroutine branches to the Defer-Entry
subroutine at QSVCUNAV. This action
causes the full STCB to be removed
from the subtask chain of the
last-dispatched QCB. and linked (by
priority) into the subtask chain of
the specified QCB so that it can be
dispatched when an available element
is posted to the specified QCB.

The Wait subroutine is also entered at
the special entry point, QSVCTSTQ. by the
ERB Ring routine in the Implementation
module. A detailed discussion of the
reasons for this special entry appears in
the description of that routine. Briefly.
this determines if the last-dispatched QCB
and a QCB specified by the calling routine
are the same. Disposition is the same as
just described in item 3 or 4. The main
thing here is that the item being
manipulated is an LCB rather than a full
STCB.

PRIORITY SEARCH SUBROUTINE

The Priority Search subroutine is entered
at QSVCPRI:

1. from the QTAM Post subroutine or the
Defer-Entry subroutine;

2. when the Queue Insert by Priority
subtask is dispatched; or

3. by a direct branch from the End of
Poll Time Delay or Active Buffer
Request routine in the Implementation
module.

This subroutine performs the generalized
function of determining the position within
a chain that an item should assume to be in
correct priority sequence.. Items in the
chain are arranged in descending order of
priorities from the top of the chain. The
subroutine acts on all chains includinq--eie
Ready Queue.

Upon entry, register 9 points to the
head of the chain, and register 1 contains
the address of the item to be ordered
within the chain. The item to be ordered
may be an element, an STCB, or a QCB,
depending on the source of this entry.

In operation, this subroutine examines
each item on the chain until it finds
either an item with lower priority than

that of the search argument, or the last
item on the chain (signalled by a priority
of 255). When either condition is met. the
subroutine exits to the Queue Insert
subroutine which actually inserts the item
into the chain.

QUEUE INSERT SUBROUTINE

The Queue Insert subroutine is entered at
QSVCLIFO:

1. from the Priority Search subroutine;

2. when the Queue Insert subtask is
dispatched; or

3. via a direct branch from the Available
Buffer. Buffer-ERB, or Disk I/O
routine.

This subroutine performs the generalized
function of linking an item into a chain.
It is applied to all chains including that
of the Ready Queue. The point of insertion
is the head of the chain except when this
subroutine is entered from the Priority
Search subroutine, which selects the
insertion point according to the priority
of the item.

When this subroutine is entered,
register 1 contains the address of the item
to be inserted. Register 9 points to the
link address field of the item already in
the chain which the new item is to follow.
The link address field of the item already
in the chain is placed into the new item
and is replaced by the address of the new
item. This subroutine then exits to the
Qdispatch subroutine for handling of the
item currently at the head of the Ready
Queue.

DEFER-ENTRY SUBROUTINE

The Defer-Entry subroutine is entered at
QSVCUNAV either:

1. from the QTAM Wait subroutine or the
Qdispatch subroutine, or

2. via a direct branch from the Send
Scheduler or Receive Scheduler routine
in the Implementation module.

This subroutine causes the activation of
a subtask to be deferred. Which subtask is
being def erred and the reason depends on
the source of entry into this subroutine.
If entered from the QTAM wait subroutine,
re-entry to the program that issued an SVC

QWAIT is deferred because the element
requested is not yet available. If entered
from the Send Scheduler routine, the Send
Scheduler subtask for a nonswitched line is
deferred because the line is not currently
available for sending.

When one of the preceding routines
encounters an STCB for a subtask that
cannot be activated, a branch to the
Defer-Entry subroutine is taken. Upon
entry. register 9 contains the address of
the QCB in which the STCB was encountered;
register 2 contains the address of a QCB
specified by the calling routine. This
subroutine removes the STCB from the STCB
chain of the QCB in which it appears, and
branches to the Priority Search subroutine.
This causes the removed STCB to he placed
(by priority) into the STCB chain of the
QCB specified by the calling routine.

An exception arises if the QKEY field of
the QCB specified by the calling routine is
2. This condition indicates that the
highest-priority subtask on the STCB chain
of that QCB is a ready subtask, that is, a
subtask not waiting for elements, and is
ready to receive control. The STCB being
processed, however, is not ready. If it is
of higher priority than the ready subtask,
it cannot be placed at the head of the STCB
chain without pre-empting the ready status
that applies to the current top STCB. For
maximum efficiency, the ready STCB should
be honored first. Therefore, this
subroutine enters the Priority Search
subroutine by a path that insures that the
new STCB is queued by priority order below
the current top STCB. ~~-

QDISPATCH SUBROUTINE

This subroutine is entered at QSVCDISP:

1. from the Queue Insert subroutine or
the QTAM Wait subroutine;

2. when the Qdispatch subtask is
dispatched; or

3. via a direct branch from numerous
routines in the Implementation module
or in the Audio Line Appendage Module.

The Qdispatch subroutine performs the
primary internal management function within
QTAM. This subroutine maintains continuity
by receiving control from a completed
subtask and selecting the next subtask
which is to receive control, except for
those cases in which another subroutine is
able to determine the subtask to be
activated next (for example, when the Wait
subroutine finds that an element is

QTAM SVC/SUBTASK Control Routine 105

already available for a full subtask
requesting the element and that the
Qdispatch subroutine can be bypassed).

In most cases, when a QTAM subtask has
completed its unit of work or is unable to
perform its unit of work (for example, if
the send Scheduler subtask is dispatched to
initiate sending on a line that is
designated as an input only line), entry is
made into the Qdispatch subroutine for
handling of the item currently at the head
of the Ready Queue. This entry may be
either direct, that is, by a direct branch,
or indirect. An indirect entry occurs when
a subtask branches to some other subroutine
in the SVC/Subtask Control routine, and
that subroutine, in turn, causes entry into
the Qdispatch subroutine. No parameters
are passed.

In operation, this subroutine examines
the item currently at the head of the Ready
Queue (location QSVCRDYQ) and takes the
appropriate action, depending on the type
of item encountered. Items that can appear
on the Ready Queue are:

1. Queue Control Blocks (QCB) for which
the highest-priority subtask is not
waiting for elements (QKEY = 2) and is
ready to be dispatched.

2. Queue Control Blocks for which the
highest-priority subtask is waiting
for elements (QKEY = 3) and cannot be
dispatched.

3.

4.

Element Control Blocks (ECB),
containing the address of the QCB to
which the element (Buffer, BRB, or
LCB) has been posted (ECB key is 0).

Full STCBs for
(SKEY) is also
of a full STCB
address of the
QSVCQCB.

which
zero.
always
pseudo

the key value
The first word
contains the
QCB labeled

The explanation of the effect of the
appearance of each type of item at the head
of the Ready Queue follows.

Queue Control Block -- Not Waiting (QKEY is
11: When the item at the head of the Ready
Queue is a "not waiting" QCB, this
subroutine exits to the Exit Select
subroutine at QSVCBD. This causes control
to be given to the first (highest priority)
subtask represented in the STCB chain of
that QCB and the QCB becomes a "waiting"
QCB (QKEY is set to 3).

Queue control Block -- Waiting CQKEY is 3):
When a •waiting" QCB appears at the head of
the Ready Queue, it is removed from the
Ready Queue and its key is set to 1. The
QCB is replaced at the head of the Ready

106 DOS QTAM Program Logic Manual

Queue by the item to which it linked. A
branch is made to the beginning of the (
Qdispatch subroutine for examination of the '"-
new item.

A QCB waiting for elements cannot
contend for control; however, it will
automatically be returned to the Ready
Queue when an element becomes available.

Element Control Block: An element control
block appears on the Ready Queue as a
result of an SVC 31 (QPOST) and contains
the address of the QCB for the queue to
which the element has been posted. When an
element reaches the top of the Ready Queue,
it is immediately replaced by the next item
on the Ready Queue. However, the QCB
pointer in the element control block is
retained. That QCB is then treated as
though it, rather than an element
associated with it, had been encountered;
its highest priority subtask is activated,
and its key is set to 3.

This convention has several significant
aspects:

1. It is the means by which a removed
waiting QCB is returned to the Ready
Queue.

2. It illustrates the case where the
active QCB, that is, the QCB with
which the active subtask control block
is associated, is not necessarily at
the head of the Ready Queue.

3. It explains that an element control
block need not be physically chained
into a QCB to become associated with
that QCB. Specifically. it ensures
that an element is immediately acted
upon, except in the case where the
queue involved already has at least
one other "real" element and is
already contending for computing time.

Full Subtask control Block: This is the
only form of STCB that appears on the Ready
Queue. Its appearance at the head of the
Ready Queue has exactly the same effect as
the appearance there of a "not waiting"
(key is 2) QCB with this STCB at the head
of its STCB chain. The subtask is
activated and the key of the QCB with which
it is associated (QSVCQCB) is set to 3.

The mechanism by which this is
accomplished is as follows:

1. LOcation QSVCRDYQ contains a pointer
to the full STCB.

2. The full STCB itself has the
appearance (to the Qdispatch
subroutine) of an element. Its QCB
address is QSVCQCB.

I~
'_/

3. QSVCQCB is a storage location
equivalent to QSVCRDYQ minus 8 bytes.
It also appears to be the first word
of a "not waiting" QCB.

4. Because the full STCB is apparently an
element control block associated with
a "not waiting" QCB, the first STCB in
the chain of that QCB should be
selected for activation. The address
of the first STCB is found in the
third fullword of the QCB.

5. The third fullword of QSVCQCB which
appears as a QCB is the location
QSVCRDYQ. Therefore, the full
subtask, whose address is at QSVCRDYQ,
is selected for control.

EXIT SELECT SUBROUTINE

This subroutine activates QTAM subtasks
represented by truncated STCBs or exits to
the Exit Interface subroutine if the STCB
is a full STCB.

The first byte of a truncated STCB is
the entry code field and is a branch
modifier of the form Centrypt-NRET), where
entrypt is the address of the desired entry
point. NRET is the location from which the
branch offset is applied. When the Exit
Select subroutine encounters a nonzero
entry code, it corrputes the branch address
and branches to the computed entry point in
the QTAM Implementation module (IJLQIP}.

If the entry code is zero, the STCB is a
full STCB representing re-entry to a

program that issued a QTAM SVC. In this
case, this subroutine exits to the Exit
Interface subroutine.

EXIT INTERFACE SUBROUTINE

This subroutine is entered from the Exit
Select subroutine to process full STCBs.
Before any other action is taken, the
subroutine determines whether the problem
program is being scheduled for activation
because it was represented in the STCB
chain of a waiting QCB for which an element
has been encountered. If this condition
exists, the address of the element is
placed in parameter register 1 and the
register stored in the save area of the
partition associated with the full STCB
being processed. The address of the save
area is obtained from a PIB, the address of
which has previously been inserted into the
STCB.

Before control is returned to the DOS
supervisor, several functions are
performed. The wait flag is removed from
the PIB. This action indicates to the
Supervisor that the requested service has
been completed and the program issuing the
SVC can be reactivated. The registers are
restored from the save area. The full STCB
being used is restored to an "unused,
available" state by removing the PIB
address from the STCB. After these
functions are complete, the Exit Interface
subroutine branches to the supervisor
General Exit routine for eventual re-entry
to the program issuing the SVC.

QTAM SVC/SUBTASK Control Routine 107

QTAM IMPLEMENTATION ROUTINES

The routines in this section, together with
those in the Line Input/Output section,
perform the primary functions necessary for
the implementation of QTAM. These routines
are in the QTAM Implementation module
CIJLQIP), with the following exceptions:

• The Disk-End Appendage and the Disk I/O
routine, which are packaged in the Disk
I/O module (IJLQDA).

• The 7772 Disk-End Appendage, the Disk
Read routine, the Line Write routine,
and the DCV Buffer routine, which are
packaged in the 7772 Disk Appendage
module CIJLQAD).

Note that the greatest amount of QTAM
audio implementation is performed in the
routines packaged in the Audio Line
Appendage module (IJLQAA) described in the
Line Input and output section.

As previously stated, all but three of
these routines are supervisory routines
which execute as a logical extension of the
QTAM SVC/Subtask Control routine. The
three routines in the Implementation module
which run in problem program state are the
LPS Control, Buffer Recall/Cleanup, and
Free ERB routines. These routines provide
the interface between the supervisory
routines and the remainder of the message
control problem program.

RECEIVE SCHEDULER ROUTINE (CHAR~ 00)

This routine is entered at RCVSCH when the
Receive Scheduler subtask is activated.
This subtask is activated when the LCB
(Communication Line QCB) appears at the top
of the Ready Queue with the STCB for the
Receive Scheduler at the head of its STCE
chain.

Several tests are made to determine if
receiving operations are to be initiated on
the line represented by the LCB. If the
status byte in the polling list for the
line is zero, or if the
master-receive-switch is off (system close
is in process), receive operations are not
initiated. If the LCB is for an IBM 2260
Local line group and no CCB has been posted
to the Attention queue for the line group,
receive operations are not initiated. In
all cases, exit is made to the Exit Select
subroutine at QSVCRE~N to dispatch the next

108 DOS QTAM Program Logic Manual

subtask in the STCB chain of the
Communication Line QCB. The next subtask
will normally be the line's Send Scheduler
subtask, if any, or the Qdispatch subtask.

An exception arises if the next STCB is
a full STCB representing a waiting problem
program. If this is the case, the waiting
program cannot be reactivated because the
SVC it issued has not been satisfied.
Therefore, the LCB is removed from the
Ready Queue and exit is made to the
Defer-Entry subroutine at QSVCUNAV to
remove the full STCB from the STCB chain.

For remote terminals, this routine then
examines the current polling list entry for
the line. If the current entry is valid
(that is, it is not the dummy entry
signalling the end of the polling list>,
exit is made to the ERB-Ring routine at
RQCONSTR to initialize for receiving. If
the end of the polling list has been
detected, the current entry pointer CLPPT
field in LCB) is reset to the first entry
in the list and exit is made to the End of
Poll Time Delay routine. This causes I
either a polling interval to be observed or _
rescheduling of polling on the line.

For the LCB for.an IBM 2260 Local line
group in which a CCB is found in the
Attention queue, the CCB is removed and the
next CCB (if any> is promoted to the top of
the queue. The address of the removed CCB
is saved in the LCB, and the Attention
Queue flag in the terminal table entry for
the IBM 2260 Local is turned off. Exit is
made to the BRB-Ring routine to continue
initialization for a read operation .•

If the line is a WTTA line, the Receive
Scheduler routine tests the EOT flag in the
LWTT field of the LCB. If this flag is on,
exit is made to the Exit Select subroutine
to enter the Send Scheduler subtask of the
line, if present. If the EOT flag is off,
exit is made to the BRB-Ring routine at
RQCONSTR to initialize for receiving.

Note: A possible endless loop is
circumvented by a test to determine that
the polling list contains at least one
active entry. If the list contains no
active entry. the exit to the End of Poll
Time Delay routine is not taken. Instead,
the Receive Scheduler subtask is skipped
over in the STCB chain, and control is
passed to the second subtask in the chain r
via a branch to the Exit Select subroutine. _

:{

SEND SCHEDULER (CHART 1)

This routine is entered when an LCB appears
at the top of the Ready queue with the Send
Scheduler STCB at the head of its STCB
chain, or when a message is to be written
on the disk. If a message is to be written
on the disk, the routine links to the DASD
Destination routine at SCREEN to cause a
post to the Disk I/O QCB.

If the DTF table has not been opened for
output or the relative line nurnter is
greater than the number of extents, the
routine branches to the Qdispatch
subroutine. If the DTF table is open for
output and this is a dial line, the routine
tests for the availability of an access
line. If it is not available, it looks at
the next access line. If an access line is
available, it disables the line to make it
unavailable for incoming traffic.

If the DTF table is open for output and
this is a WTTA line, the Send Scheduler
routine tests whether data is being
received. If so, control is returned to
the Defer Entry subroutine at QSVCUNAV. If
not, the line is disabled to be available
for outgoing traffic.

If the line is nondial or non-WTTA, it
is set to indicate the line is trying to
send. If the line is not free, a branch to
the Defer-Entry subroutine is made. If the
line is free, the LCB is linked to the top
of the Ready queue to cause the Send
Scheduler subtask to be activated for line
operations.

If the routine was entered because the
LCB was on top of the Ready queue, the
routine tests for an incoming priority
message. If there are no completed
nonpriority messages and if initiate mode
has been specified, or if priority messages
are corning in, the LCB is removed from the
source chain. If neither an initiate mode
nor sending is indicated in the LSTA field,
the status of the LCB is cleared. If a
partial message is in the queue (an invalid
condition), the routine branches to the
Wait subroutine. After the status code is
set, the routine exits:

1. if entered via the Get Scheduler,
return is to that routine, or

2. if the line is sending, the routine
branches to the BRB-Ring routine at
RQCONST.

END OF POLL TIME DELAY ROUTINE (CHART 2)

This routine has three entry points:

1. At DELAY, from the Receive Scheduler
routine when the end of the polling
list for a nonswitched line is
detected. Upon entry, register 4
contains the address of the LCB
representing the line for which a
polling pass has been completed.

2. At TIMEEXIT, from the DOS Interrupt
Handler whenever a timer interruption
occurs. This entry is established by
a STXIT macro issued in the LPS
Control routine prior to setting of
the timer.

3. At TIMEEND+6, when the Time Delay
subtask is dispatched upon the
appearance of the Time Delay QCB at
the top of the Ready Queue.

When entry is at DELAY from the Receive
Scheduler routine, a test determines if any
messages were received during the polling
pass just completed. If messages were
received, a direct branch is made to the
Priority Search subroutine in the QTAM
nucleus. This causes the line to be
rescheduled for polling as follows: the
Receive Scheduler STCB is inserted into the
STCB chain of the Communication Line QCB
according to its priority relative to the
priority of any Send Scheduler STCB already
in the chain. Polling on the line resumes
when the Communication Line QCB (the LCB)
appears at the top of the Ready Queue with
the Receive Scheduler STCB at the head of
its STCB chain.

If no messages were received, the
interrupt request time (current time plus
user-specified polling interval) is
calculated and placed in the LBCT field of
the passed LCB. The interrupt request time
is then used as the search argument for
chaining the LCB into its proper position
in the Time Delay queue relative to the
interrupt request times of other LCBs
already in the queue.

After the current LCB is inserted into
the Time Delay queue (or when entry is due
to activation of the Time Delay subtask),
the current time is subtracted from the
interrupt request time stored in the LCB at
the top of the Time Delay queue. The
result is tested to determine the required
course of action:

1. If the result exceeds zero, that is,
the interrupt request time is later
than the current time, the calculated
value is stored for use by the LPS
Control routine. A special ECB

QTAM Implementation Routines 109

(labeled IP1IREB) representing a
request for a polling interval is
posted to the LPS queue via a direct
branch to the Post subroutine. This
causes entry into the LPS Control
routine where a SETIME macro (SVC 10)
is issued to set the timer for the
calculated interval.

2. If the result is less than or equal to
zero, that is, the current time is
later than the interrupt request time,
or an interval of zero was specified,
a test is made to determine if the LCB
is the dummy LCB in the checkpoint
element. If it is the checkpoint
element, it is removed from the top of
the Time Delay queue and posted to the
checkpoint queue to activate the
checkpoint subtask. A test is made to
determine if it is a pseudo-LCB passed
from the Operator Control module. If
it is, the pseudo-LCB is posted to
itself to activate the INTREL subtask.
If it is an LCB, it is removed from
the top of the Time Delay queue, and a
direct branch is made to the Priority
Search subroutine. This causes
polling on the line to be rescheduled
as previously described for the case
where messages were received during a
polling pass. If this routine has
been entered because of dispatching of
the Time Delay subtask, a test
determines if the line is free, that
is, not currently being used for
sending. If the line is free, the LCB
is placed at the top of the Ready
Queue prior to branching to the
Priority Search subroutine. This
causes polling on the line to resume
immediately.

When a.time interruption occurs, the End
of Poll Time Delay routine is entered at
TIMEEXI~ from the DOS Interrupt Handler.
The Time Delay queue is posted to itself
via a QPOST (SVC 31). This action causes
the Time Delay subtask (discussion follows)
to be activated. Upon return from this
SVC, exit is made to the DOS Interrupt
Handler so that the program that was
executing when the timer interrupt occurred
can become eligible to regain control.

The End of Poll Time Delay routine is
entered at TIMEEND+6 when the Time Delay
subtask is activated. This entry occurs
when the Time Delay QCB appears at the top
of the Ready Queue (see QPOST after timer
interruption just discussed). A test
determines if there are any LCB's currently
chained into the Time Delay queue. If
there are, the current time is obtained via
a GETIME macro and the LCB at.the top of

110 DOS QTAM Program Logic Manual

the Time Delay queue is handled as
previously described. If no LCB is in the
Time Delay queue, exit is made to the
Qdispatch subroutine for handling of the
next item on the Ready Queue.

BRB-RING ROUTINE (CHART 3)

This routine constructs the BRB ring used
to send or receive a message, and begins
initialization of a ccw in each BRB. The
BRBs are drawn from the element chain of
the Inactive BRB queue generated on
expansion of the BUFFER macro instruction.
The routine attempts to form a ring
containing the number of BREs specified in
the BUFNO parameter of the DTFQT macro
instruction.

When the routine is entered, register 9
is adjusted so that the line control block
appears to the system to be an STCB. This
anticipates the situation in which not
enough BRBs are available to complete the
ring. In this case, the LCB is placed on
the STCB chain of the Active Buffer Request
queue (through a branch to QSVCTSTQ in the
QTAM Wait subroutine). When a BRB is
posted to that queue, the ERB-Ring routine
makes another attempt to complete the ring.
When sufficient BRBs are available, the
resulting BRB ring consists of a series of
BRBs, each containing:

1. in the third fullword, the
transfer-in-channel operation code and
the address of the preceding BRB/CCW
in the ring, and

2. in the fourth fullword, a pointer to
the LCB for which the ring was
constructed.

Because each BRB/CCW contains a
transfer-in-channel to the previously built
BRB/CCW, the TIC address in the first
BRB/CCW is initially meaningless. The last
step in completing the ring (if enough BRBs
were available) is, therefore. to reset the
first BRB/CCW to transfer-in-channel to the
last. If the order of construction of a
four-member BRB/CCW chain was A-B-C-D, the
order of execution will be A D C B.

When the BRB/CCW ring is complete, the
LCB is removed from the location where it
was encountered as an apparent STCB -- that
is, from the head of an STCB chain or the
Ready Queue. Depending upon whether a send
or receive operation is being prepared for,
further initialization is performed.

1f 1'.l
\' ---

1.

2.

3.

The element control block portion of
the first BRB/CCW is given a priority
value:

RECEIVE - X'EC'

SEND - X'EO'

Into the LCB (LOPC field) is inserted
an operation-type code for subsequent
use by the Physical I/O module:

RECEIVE - 1 (Read Initial)

SEND - 2 (Write Initial)

Register 2 is initialized for the QCB
for the queue to which the first
ERB/CCW is to be posted:

RECEIVE - Active-Buffer-Request Queue

SEND - Disk Input/Output Queue (for
send operations, additional
initialization consists of
setting a code of X'09' in the
RSTA field of the BRB and
inserting the relative record
number for the first segment
of the message in the RNSA
field).

A test is made to determine if a message
is to be received from a 2260 Local
terminal. If not, the routine causes the
first BRB/CCW in the ring to be posted to
the appropriate queue by exiting to the
Post subroutine in the QTAM SVC/Subtask
control routine.

If a message is to be received from a
2260 Local terminal, additional procedures
are performed. The entire ring of BRBs is
linked to the top of the Ready Queue. Into
each BRB is placed a high priority (X'EC')
and the address of the Active Buffer
Request queue. Exit is made to the
Qdispatch subroutine in the QTA~ nucleus to
cause requests for all needed buffers to be
initiated. This action is necessary
because all required buffers must be
assigned before the Read operation (EXCP)
is initiated in the QTAM Physical I/O
module.

ACTIVE-BUFFER-REQUEST ROUTINE (CHART 4)

This routine is entered at IJLQIP81+6 on
activation of the Active-Buffer-Request
subtask. The element passed to the routine
is an active BRB. The routine determines
whether a buffer to satisfy the request is
available and should be assigned., or
whether the active BRB should be queued for
later servicing.

If the active BRB represents the
beginning of a BRB ring to be used for a
receive operation, the routine removes a
buffer from the element chain of the
Available-Buffer QCB and exits to the
Buffer~BRB routine. Parameters passed to
that routine are the address of the active
BRB, the address of the removed buffer, and
the address of the Available-Buffer QCB.

If the active BRB is not the first of a
ring for a receive operation, or if it is
the first but no buffer is available, the
routine branches to the Priority Search
subroutine to cause the active BRB to be
queued on the element chain of the Active
Buffer-Request queue.

AVAILABLE-BUFFER ROUTINE (CHART 5)

This routine is entered at BFRREQ on
activation of the Available-Buffer subtask,
or from the Buffer-BRB routine. The
routine responds to the availability of a
buffer by attempting to locate an active
BRB. If no BRB is active, the buffer is
chained into the element chain of the
Available Buffer queue through a branch to
the Queue Insert subroutine. If a BRB is
active, this routine branches to the
Buffer-ERB routine.

BUFFER-BRB ROUTINE (CHART 6)

This routine is entered at BFRSCH+6 from
either the Active Buffer Request routine or
the Available Buffer routine. Upon entry,
register 6 contains the address of an
active BRB and register 1 contains the
address of an available buffer.

This routine makes the appropriate
disposition of the buffer depending upon
the status of the BRB. The BRB may be
associated with any one of three
operations.

1. The BRB is associated with a
read-from-disk operation: This is an
indication that the BRB was previously
in the Disk I/O Queue, but that a
buffer was not available at that time.
This routine effectively (but not via
an SVC) posts the BRB to the Disk I/O
Queue, and exits to the QTAM
SVC/Subtask Control routine at
QSVCLIFO to cause the buffer to be
posted to the Available Buff er Queue.
This action ensures that the buffer
will now be available for the
read-from-disk operation.

QTAM Implementation Routines 111

2. The ERB is associated with a
receive-from-line operation: After
determining that the line is still
available for receiving, the buffer is
assigned to the line and placed on the
LPS Queue via an exit to the
Interim-LPS routine. If the line is
not available for receiving, this
routine exits to the Available Buffer
routine in an attempt to assign the
buffer elsewhere.

3. The ERB is associated with a PUT
operation: This case arises when a
PUT module in a message processing
program has requested a buffer via a
QPOST or QWAIT SVC. This routine
passes the buffer to a special section
of the PUT module, which places the
data into the buffer while executing
in supervisor state (movement of the
data must be effected in supervisor
state so as not to violate storage
protection}.

INTERIM LPS ROUTINE (CHART 7}

This routine is entered when the Interim
LPS QCB (IJLQIP76) appears at the top of
the Ready queue. This routine provides the
means of delaying the processing of all
buffers until all BRBs are processed when a
PCI interruption is missed because of
extended CPU disable time.

When entered the routine immediately
posts the buffer passed to it to the LPS
queue. This causes the LPS Control
routine, which is waiting for a buffer, to
be entered for processing of the buffer.

QMOVER ROUTINE (CHART 9}

This routine is entered at IJLQIP80+6 upon
activation of the Qmover subtask. This
subtask is activated when the Qrnove QCB
appears at the top of the Ready Queue.

The Qmover routine moves data from the
Foreground-2 or Background partition into
the Foreground-1 partition, while operating
under the storage protection key of the
supervisor. The routines associated with
the CHNGT, CHNGP, COPYC, and CLOSEMC macro
instructions require this function. The
function is requested by posting the Qrnove
QCB to itself via a QPOST (SVC 31).

The routine moves the desired data per
parameters passed by the requesting
routine:

1. register 3 contains the length of the
data to be moved;

112 DOS QTAM Program Logic Manual

2. register 4 contains the address of the
Fl area into which the data is to be
moved; and

3. register 5 contains the address of the
data to be moved.

After the data is moved, this routine exits
to the Qdispatch subroutine for handling of
the next item on the Ready Queue. The next
item may be the full STCB representing
reentry to the requesting program.

Note: This routine is used in the same way
in a one-partition processing environment
(i.e., with multitasking}.

DASD DESTINATION ROUTINE (CHART 10)

This routine is entered on activation of
the DASD Destination subtask, or by a
branch-and-link from the Send-Scheduler
routine. The latter entry occurs when the
Send-Scheduling subtask is activated
because of the availability of a
message-filled buff er to be written on the
disk.

For buffers containing text segments,
the routine routes a full buffer to the
Disk I/O Queue and increments the message
count (unless a CANCEL operation is in
progress>. The LCB for the source line
--the line on which the segment now in the
buffer was received --is removed from the
source chain in which it previously
appeared and is linked into the source
chain for the destination queue. The "next
segment" relative record number is
calculated and stored, and the routine
either:

1. returns to the Send-Scheduler routine;
or

2. exits to the Qdispatch subroutine.

GET-SCHEDULER ROUTINE (CHART 11}

This routine is entered when a buffer has
been returned from a GET operation or when
a disk read from a DASD-process queue has
been completed. The routine makes three
tests to determine whether the message
processing program is ready to accept
another segment. If

1. there is no message segment in the
DASD process queue,

2. there are too many buffers in the main
storage process queue for the
processing program to handle, or

3. a segment is currently being read from
the DASO process queue.

No further disk read can be initiated,
and this routine exits to the Qdispatch
routine.

If none of the three conditions exits,
the routine initiates a disk read from the
DASD process queue.

RETURN-BUFFER ROUTINE (CHART 12)

This routine returns a buffer from the
main storage process queue and exits to the
GET-Scheduler routine to allow resumption
of disk reads from the DASO process queue.

END INSERT ROUTINE (CHART 13)

This routine is entered by a branch and
link from the End of Address,
conversational Mode, or Distribution List
routine to enter the address of these
routines in a chain of routines to be
executed according to the specified
priority by the Buffer Cleanup Routine.

The routine co~pares the priority
S?ecified in the calling routine with the
priority that has been set in the End
Insert Routine. If the priority is less
than the highest priority routine, the
priority of the calling routine is compared
with the next priority routine in the chain
until the priority is high.

When the priority is higher than the
priority of the one already in the chain,
the address and priority of the calling
routine are inserted in the constant of the
higher priority routine in the chain. The
pointer to the calling routine is adjusted
to point to the BAL instruction. The
operand of this instruction in the calling
routine is overlaid with the constant
following the BAL instruction. This
constant contains a register that has been
set up by the calling routine. To complete
the chain, the constant is overlaid with
the address and priority of the lower
priority routine. This routine branches
back to the calling routine at the BAL
instruction.

LPS CONTROL ROUTINE (CHART 15)

This routine is entered at IJLQIP20 from
the expansion of the ENDREADY macro
instruction during initialization of the
telecommunications system. Thereafter, it
is entered at the same entry point from

numerous implementation routines. The most
common entries are from:

1. the Physical I/O module after a line
I/O operation has been initiated, and

2. the Free BRB routine after the buffers
and BRBs for a previous operation have
been released and the line freed.

3. the ARD-Internal and ARD-Receive
routines (packaged in the Audio Line
Appendage module) after any ARU/LPS
processing has been completed for a
line.

When entered, the routine issues an
immediate SVC 30 to QWAIT for the next item
on the LPS queue. The item returned by the
SVC may be any of the following:

1. An available buffer into which a
message segment is to be read.

2. A buffer containing a header or text
segment, that is, a message-filled
buffer, that has been read or is to be
written.

3. A special ECB representing a request
to start a disk I/O operation.

~. A special ECB representing a request
to set the timer for a polling
interval.

5. A Pause BRB/CCW

6. An audio line control block into which
an input message is to be processed by
the user's LPS routines.

7. An audio line control block requesting
an I/O operation.

8. A 7772 DCV buffer requesting a disk
read operation from the 7772 DCV
Vocabulary file.

9. A special ECB representing a request
to stop a specified audio line.

10. A special ECB requesting a Halt I/O on
a dial line.

When an available "first" buffer is
encountered, the routine exits to the
Activate routine (in module IJLQRW) at
IJLQRW to cause receipt of the message to
be initiated. When a full buffer or the
last buffer is encountered, the routine
exits to the beginning CLPSTART expansion}
of the user•s LPS section. Prior to
entering either the Activate routine or
theuser's LPS, the registers are
initialized as follows:

QTAM Implementation Routines 113

Register 4--address of the appropriate
LCB.

Register 5--the scan pointer is set for
header analysis or for data
address in read initial
operation.

Register 6--address of the buffer.

Register 7--address of the beginning
instruction in the user's
LPS section.

Register 8--address of the appropriate
terminal table entry.

Register 9--end-of-segment address.

If the item is a request to start a disk
I/O o~eration, the routine loads the
address of the CCE for disk operations into
register 1 and issues an EXCP (SVC 0). The
necessary channel program was previously
built by the Disk I/O routine which
requested that the I/O operation be
started.

For a polling interval request, the
address of the Q~AM timer interrupt
handling routine (labeled TIMEEXIT) is
first established via a STXIT macro. Then
a SETIME (SVC 10) is issued to set the
timer for the interval requested by the End
of Poll Time Delay routine.

After either a disk I/O operation has
been initiated or the timer set, control is
returned to the beginning of this routine
(at IJLQIP20) to QWAIT for the next item on
the LPS queue.

If the item is a Pause BRB/CCW, exit is
made to the Pause routine.

When an audio input message is to be
processed, the routine exits to the
beginning (LPSTART expansion) of the user's
ARU/LPS section. Before this user's
section is entered the registers a~e
initialized as follows:

Register 4--address of the appropriate
ALCE.

Register 7--address of the beginning
instruction in the user's
ARU/LPS section.

If an audio line control block requests
an I/O operation, the channel program is
ready and an EXCP (SVC 0) is immediately
issued on the line. Control returns to the
beginning of this routine (at IJLQIP20).

If a 7772 DCV buffer requests a disk
read operation, the channel program is
ready in the buffer itself, and an EXCP is

114 DOS QTAM Program Logic Manual

immediately issued to read a DCV word.
Control returns to the beginning of this
routine (at IJLQIP20).

If a special ECB representing a request
to stop an audio line is encountered. the
CCB address is extracted from the ALCE and
a Halt I/O is issued through an SVC 27.
Control returns to the beginning of this
routine (at IJLQIP20).

BUFFER RECALL/CLEANUP ROUTINE (CHART 16 1

17) '

This routine is entered through a branch
instruction generated on expansion of a
macro instruction in the problem program.
The routine performs a cleanup function
when entered at IJLQIP23 through the
calling sequence generated by a POSTSEND .•
ENDRCV, or POSTRCV macro instruction. The
recall function is performed when entry is
at IJLQIP22 through the calling sequence
from the cancel Message. EOBLC, Error
Message, Reroute Message, EOA1 or
Distribution List routines. The difference
between the two entry paths is that in the
second case the recall flag is set on in
the LCB (LSTA 64).

For either a cleanup or a recall /
operation. the routine releases all buffers 1"

assigned to the line. Buffers are released
to the appropriate queue through an SVC 31.
(The first buffer to be released may
already contain a message segment; if so.
it is posted to its destination queue.)
The first buffer (if it does not already
contain a message segment) and all
subsequent buffers not scheduled to be
filled are posted to the Available-Buffer
queue. Pause BRB/CCWs encountered in the
ERB ring from which buffers are being
released are posted to the Additional ccw
queue.

Buffers that have been assigned to the
line and have also been scheduled for a
read from direct-access storage are treated
differently. When such a buffer is
encountered, the routine branches to the
LPS Control routine.

At that time. the cleanup flag or the
recall flag (but not both) is on in the LCB
for the line. indicating the type of
operation in progress. When the LPS
control routine is entered, it waits for a
message-filled buffer and proceeds as usual
unless the buffer is assigned to a line for
which the recall or cleanup flag is on.
When a buffer with either flag. (but not
both) is found, the LPS Control routine r-
branches back into the Buffer "--
Recall/Cleanup routine, where the buffer is

r

then released to the Available-Buffer
queue.

To recall a message segment. the routine
provides the buffer request blocks required
to read message segments from the
direct-access storage, obtains the segment
being recalled, and exits to the calling
routine.

When the cleanup operations performed by
this routine are finished, the routine
exits to the Free-ERB routine. The
Free-ERB routine completes the cleanup
operation by releasing all BRBs in the ring
to the Inactive-ERB queue and freeing the
line for another operation.

FREE-ERB ROUTINE (CHART 18)

This routine is entered at LINEFREE from
the Buffer Recall/Cleanup routine. Its
function is to complete cleanup operations
by releasing certain resources so they will
be available for their next usage.

The routine examines each ERE in the
ring of BRBs passed to determine its
disposition. If the ERB is not currently
in the Active ERB queue, the ERB is
released to the Inactive BRB queue through
an SVC 31. If the ERB is in the Active BRB
queue (this is an indication that a request
for a buffer is still pending), the ERB is
not released. Instead. it is bypassed and
the next BRB in the ring is exareined. Any
BRB bypassed in this manner will be
subsequently released by the Buffer-ERB
routine.

After all BRBs in the ring have been
released (or bypassed), the routine posts
the LCB to itself through an SVC 31. This
is the standard technique for returning a
line to the free condition. Exit is made
to the LPS Control routine at IJLQIP20.

DISK I/O ROUTINE (CHART DC)

This routine is entered on activation of
the Disk Input/Output subtask. The routine
chains message-filled buffers (for disk
writes) and BRBs (for disk reads) onto the
element chain of the Disk Input/Output
queue. The relative record number used by
QTAM is converted into a relative track
address. Then. the relative track address
is converted into an actual DASD address.
The routine then posts a special element to
the LPS queue. After gaining control, the
LPS control routine issues the EXCP to
write on or read from disk.

When the checkpoint element is on the
Disk I/O queue, the routine links all
subsequent elements into the queue below
the checkpoint element. When the
checkpoint element reaches the top of the
queue, the routine places the Disk I/O
queue on the top of the Ready Queue and
posts the checkpoint element to the
checkpoint queue.

DISK-END APPENDAGE (CHARTS DA AND DB}

This routine is an I/O appendage, entered
from the I/O Supervisor following a DASD
read or write operation. If a receive
operation over a line is taking place and
the interrupt is from writing a buffer just
received onto the disk, the routine routes
the empty buffer required for the next
segment to be received to the Available
Buffer queue. If a send operation over a
line is taking place and the interrupt is
from reading a buffer to be sent from the
disk, the routine routes the message-filled
buffer to the LPS queue. initializes the
next BRB in the ring to read the next
segment of the message. and (if a buffer
has been assigned) routes it to the Disk
I/O queue. If the interrupt is from
writing a checkpoint record on the disk.
the routine gets the address of the
checkpoint element and the checkpoint
queue. and posts the element to the queue
to activate the checkpoint subtask.

IBM 7772 DISK-END APPENDAGE (CHART Dl)

This routine is an I/O appendage entered
from the I/O Supervisor following a disk
read operation on the 7772 DCV Vocabulary
file. The routine stores the ocv word
length in the ALCE associated with the 7772
DCV buffer, and branches to the 7772 Line
Write routine.

IBM 7772 DISK READ ROUTINE (CHART 02)

This routine analyzes the user-provided
address chain located in the address-chain
buff er of the ALCE to obtain the
characteristics of the next DCV word to be
sent.

It is entered at IJLQAD30 from the
ARU-Send routine when a DCV buffer has
beenallocated to the ALCE of a 7772 line
waiting for an audio answer. It is
reentered at the same point from the Audio
Line PCI routine each time the

QTAM Implementation Routines 115

transroissionof a DCV word begins and the
next DCV word must be prepared. It is also
reentered from the 7772 DCV Buffer routine
when a DCV buffer is available for a
waiting 7772 line.

When a DCV word is to be read from the
Vocabulary file, the address of the buff er
part in which it will be read is stored in
the ALCB. The routine is reentered at
REREAD to check the presence of a pause or
a repeat element in the address chain.
Then, the DCV buffer representing a read
disk request is posted to the LPS queue via
a branch to the Post subroutine.

When a DCV word is already in main
storage in the word table, the length and
address of this word are stored in the
ALCB. The routine is reentered at REREAD
to check the presence of a pause or a
repeat element in the address chain. Then,
a branch is made to the 7772 Line Write
routine.

If a pause element is encountered after
a word address, the pause count is saved in
the ALCB and the routine is reentered at
REREAD to check the possible presence of a
repeat element. If a repeat element is
encountered after a word address or a pause
element, the repeat count is decremented
and the address chain pointer is
reinitialized at the beginning of the
address chain.

IBM 7772 LINE WRITE ROUTINE (CHART D3)

This routine is entered at IJLQAD60 from
the 7772 Disk-End Appendage and from the

116 DOS QTAM Program Logic Manual

7772 Disk Read routine when a write (or
disable) operation must be requested or
continued on a 7772 line.

If the first DCV word is to be sent, the
channel program in the 7772 ALCB is updated
and this ALCE. representing a line write
request, is posted to the LPS queue via a
branch to the POST subroutine.

When one of the intermediate DCV words
is to be sent, the channel program is
updated to allow the construction of the
audio transmission, and a branch is made to
the QDISPATCH subroutine.

If the last DCV word is to be sent, the
channel program is updated, and the last
write command is chained on either a
disable command (if the line is operating
in information or inquiry mode) or a read
command (if the line is operating in
conversation mode). Then, exit is made to
the Qdispatch subroutine.

IBM 7772 DCV-BUFFER ROUTINE (CHART D4)

This routine is entered at IJLQAD40+6 on
activation of the 7772 DCV buffer subtask
when the Audio Line Appendage posts an
available DCV buffer to the 7772. DCV buffer !
queue. This DCV buffer is allocated to the '"
first ALCB dequeued from the ALCB waiting ·
chain located in the DCV buffer queue. The
address of the Queue Insert subtask
(IJLQIP8B) is placed in the subtask address
field of the DCV buffer queue only when
there is no more ALCB waiting for a DCV
Buffer. In any case, the routine branches
to the 7772 Disk Read routine.

(

GENERAL FLOW

Four routines are provided to execute the
nonaudio line I/O functions: the Activate
and Channel Program Generator routines in
the QTAM Physical I/O module and the Line
PCI and Line End routines in the Line
Appendage module.

Five routines packaged in the Audio Line
Appendage module are provided to prepare
the execution of the audio line I/O
functions: the ARD-Internal and
ARU-Receive routines operating in problem
program mode, and the ARO-Send, the 7772
Line PCI, and Audio Line End routines.

The Activate routine is passed a
message-filled or empty buffer and a BRB.
It creates a CCW in the BRE and sets up
pointers for the Channel Program Generator
routine for a read or write initial
operation or adds the buffer to an already
initiated operation.

The Line PCI routine releases a
previously filled buffer to the LPS queue
or an emptied buffer to the Available
Buffer queue and places the associated ERB
on the Active ERB queue for a new buffer,
preparing it for its next use.

The Line End routine provides many
functions. On successful completion of an
I/0 operation, it routes the last emptied
buffer to the LPS queue and restarts I/O
for the LRC check, or it routes the last
filled buffer to the LPS queue and goes to
the LPS Control routine. For an error
completion, the error condition is posted
in the error-halfword of the LCB, and the
LPS Control routine is entered. For a
program check condition (an indication that
the next ERB does not have a buffer
assigned), a buffer is obtained through the
PCI routine and the I/O is restarted. For
a negative response to a poll operation,
the polling list pointer is updated and the
I/O restarted.

The ARU-Internal routine posts to the
ARU-Send queue an ALCE, which contains a
user-provided address chain.

The ARD-Receive routine posts to an
MS-Process queue an ALCB, which contains an
input message previously processed by the
user's ARU/LPS routines.

The ARU-Send routine, according to the
type of ALCB, performs the following

LINE INPUT AND OUTPUT

functions. For a 7770 ALCB, it prepares
the channel program to send an audio
answer, and posts the ALCE representing a
Start I/O request to the LPS queue. For a
7772 ALCB, it requires a DCV buffer, if
necessary, before control is passed to the
7772 Disk Read routine for exploitation of
the user-provided address chain.

The 7772 Line PCI routine. according to
the type of the associated channel command,
performs the following functions. When a
PCI occurs on a Write command, the 7772
ALCB is routed to the 7772 Disk Read
routine. When a PCI occurs on a Read
command, the routine releases, if
necessary, the DCV buffer associated with
the ALCB to the corresponding DCV buffer
queue.

The Audio Line End routine performs
several functions. On completion of a 7772
enable operation, it prepares an
invitational or informational channel
program and posts the ALCB to the ARU-Send
queue. On completion of an input
operation, it posts the ALCE to the LPS
queue to process the input message. On
completion of an output operation. it
updates the ALCB channel program according
to initial conditions, posts the ALCB
representing a Start I/O request to the LPS
queue, and, if necessary, releases a 7772
DCV buffer to the corresponding DCV buffer
queue.

QTAM PHYSICAL INPUT/OUTPUT MODULE

Module Name: IJLQRW (Chart RW, RX, RY)
This module consists of two routines:

1. the Activate routine. and

2. The Channel Program Generator (CPG)
routine

These routines are discussed in the
following paragraphs.

ACTIVATE ROUTINE (CHART RW)

Entry Point: This routine is entered at
IJLQRW by the LPS Control routine, the EOB
or EOBLC routine, and the expansions of the
ENDSEND and POSTSEND macro instructions.
Upon entry, it is expected that the
register contents are:

Line Input and output 117

Register 4 CIJLQLCBR) contains the LCB
address.

Register 6 {IJLQBFRR) contains a buff er
address.

Register 7 CIJLQLPSR) contains a user
LPS routine address.

Register 8 CIJLQ~BLR) contains the
termina1 table entry address.

Register 9 (IJLQEOSR) contains the end
of segment address.

These registers p1us registers O, 13, and
15 are preserved by this routine: the
others are destroyed.

Function: The Activate routine creates a
channe1 program in a ERB and/or performs
initialization functions for the CPG
routine. It then exits by a branch to the
CPG routine to initiate the I/O operation,
or by a branch to the LPS Contro1 routine,
at IJLQIP20 in modu1e IJLQIP, when a buffer
has been added to a previous1y started 1ine
I/O operation.

In operation, the BRB to which the
buffer is to be assigned is located from
the LCCW field in the LCB. The chain fie1d
of the ERB to which LCCW points addresses
the current BRB. For a "first" BRB, LCCW
points to LPCI-9 Ca pseudo BRB), and LPCI
(the chain field of this pseudo BRB) is
initialized to the address of the first
real BRB. The buffer text address is
placed in the BRB/CCW data field and a read
or write operation code is inserted in the
command code fie1d. The handling
thereafter depends upon the function of the
BRB.

First BRB

The BRB may be a "first" BRB for receiving
or sending. For this BRB, the channel
program must be started through the Channel
Program Generator routine. This includes
an initial read or write operation and a
read or write continue operation after an
EOB.

The BRB is set up to perform the I/O
operation but is not used for it. The
channel program is generated by the Channel
Program Generator routine. For an initia1
operation, the data address passed to the
CPG routine is the message header portion
of the buffer. The count is the end of the
segment minus the beginning address.

For a write initial, register 1 is set
to point to the addressing characters

118 DOS QTAM Program Logic Manua1

Cnonswitched terminal) or dia1 digits
(switched terminal), or CCB/ECB CIBM 2260
Local) which are in the terminal table
entry. If it is a nonswitched line, the
device access area format is:

r---T----1
IA Al p Pl
L---.1.----J

where A = addressing character and P =
polling character. For a switched 1050 the
format is:

r-T---~-------T-----1

INI Dial Digits! A A I
L-.1.------------.1.-----J

where N = the number of dial digits. For a
TWX terminal, the format is:

r---T-----------T---,-----,------------1
I N !Dial Digits! M f SPACEI ID COMPARE J
L---.1.-----------.1.---.1.-----.1.~----------J

where M = the length of the TWX terminal
identification sequence. The dial digits
are sent to address the TWX terminal. and
the responding ID sequence is read into the
SPACE area and compared against the ID
COMPARE sequence (the compare is performed
in the Line End routine). For an IBM 2260
or 1053 Local termina1, the device access
area consists of a 16-byte CCB followed by
an eight-byte ECB.

For a read initia1 on a nonswitched
remote polled line, register 1 is set to
point to the current polling list entry .•
The polling list entry is a two-byte offset
to the terminal entry in the termina1 table
which can be accessed to obtain the pol1ing
characters. The last two bytes in the poll
list contain binary zeros. For a switched
1050 1ine, the pol1ing characters are in
the polling list. The format is:

r---T----1
I o I PP I L ___ J. ___ _J

The zero byte specifies an answer list.
For a TWX line the format of the polling
list is:

r---T---T-----------1
I 0 I N I ID DIGITS I
L---J.~-.1.----~--~-J

For an IBM 2260 Local, register 1 is set
to point to the CCB in the terminal table
entry.

For a read initial on an autopolled (
line, the polling characters are in the \
polling list which has the following '--
format:

(f
l/

r----T---1
I PP I I I
L----.L ___ J

where PP are the polling characters Cone
for an IBM 1030 0 two for other terminals>,
and I is the index byte used to identify
the terminal in the polling list.

For a read initial, idle characters are
placed in the field reserved at the
beginning of the message area in the
buffer, as specified in the LPSTART macro.
The incoming message is temporarily routed
to the error queue. The channel program is
then generated. For a switched line for
which connection has previously been
established (the "Don't Dial" flag is on in
the LCB), a write conversational channel
program is specified.

For a write initial or write
conversational, the status of the terminal
is checked before entering the CPG routine.
If the terminal is not receiving, the error
is posted and the user•s LPS routine is
entered via register IJLQLPSR.

A read or write continue is requested by
the EOE or EOBLC routine. In this case,
the address and count for the data transfer
is modified by the EOB offset field in the
LCB to point to the position after the EOB
character.

Non-First BRB

A "non-first" BRB is associated with an I/O
operation which was started previous to the
assignment of this buffer to this BRB. The
address of the buffer text area and the
count are placed in the BRB/CCW. The PCI
and CD flags are set to one in the ccw. If
it is the last segment of a message., the CD
flag is turned off. The operation with
which this BRB is associated:

1. may be currently in progress,

2. may be on an IBM 2260 Local read
operation and thus not yet have been
started, or

3. Ray have been terminated with a
channel program check (invalid TIC
address), indicating that a buffer was
not supplied in time.

In cases 1 and 2, the TIC in the
previous BRB is made valid. If the
previous BRB was a "first" BRB, the channel
program is chained to this ERB. (If it was
not a "first" BRB, the two BRBs are already
chained.) The ERB status is tested for an
indication of the last ERB in the ring for

an IBM 2260 Local read operation. If this
is not the case, a branch is made to the
LPS control routine. If this is the case,
a branch is made to start the channel
program before returning to the LPS Control
routine.

In the case of a channel program check,
the BRB address is moved into the CCB
channel program address area, EXCP is
issued to restart the I/O, and a branch is
made to the LPS control routine.

Pause BRB

The Pause BRBs are special BRBs that send
fill characters as specified by the user in
a PAUSE macro. The first Pause BRB sends
text, if there is text, as well as fill
characters. The PAUSE routine creates CCWs
with address and count fields. The count
field for the first BRB/CCW in the chain is
computed from the beginning of text address
and the address in the next BRB/CCW (filled
in by the PAUSE routine). All succeeding
Pause BRBs are skipped over.

CHANNEL PROGRAM GENERATOR ROUTINE (CHARTS
RX, RY)

Entry Point: This routine is entered at
RWlCPGOl from the Activate routine. The
address and count for the read or write
data CCWs are passed from the Activate
routine. The polling or addressing list
address (or dial digits address) is passed
in register 1 from the Activate routine.
The count for the polling or addressing ccw
is contained in the model ccw. The dial or
TWX count is in the polling list passed.

Function: This routine creates a channel
program in the CCB and issues EXCP to start
the I/O. The channel programs created are
Read/Write Initial, Read/Write Continue,
Write Conversational, and Read Repeat. For
initial contact on a switched line, the
Answer or Call segment of the channel
program is also generated. Exit from this
routine is made by a branch to the LPS
control routine CIJLQIP20 in module
IJLQIP). This occurs when the end of the
polling list is encountered or after the
start of the I/O operation. It permits the
initiation of I/O on other lines and
concurrent processing of messages in the
LPS sections or message processing
programs, if any.

In operation, the desired channel
program is created from model channel
programs contained in a device I/O module.

Line Input and Output 119

The special characters for the device are
also contained in the device I/C module.
The address of the Device I/O module for a
line is in the DTF table.

A model channel program consists of the
skeleton information for every ccw needed
to perform a given operation. The
information includes the operation code,
flag byte, TP operation code, and a count
byte which may or may not be used.

Eleven subroutines in the CPG routine
create ccws:

1. Model Expander 1 (RW1SG101): inserts
the address and count fields into the
read response to polling, disable and
enable ccws.

2. Model Expander 2 (RW1SG201): inserts
the address and count fields into read
or write data ccws.

3. Model Expander 3 CRW1SG3 OU : inserts
the address and count fields into read
response to addressing ccws.

q_ Model Expander q (RW1SGq01}: inserts
the address and count fields into
special character ccws.

5. Model Expander 5 (RW1SG501): inserts
the addressing and count fields into
write polling/addressing characters
ccws, dial ccws or Read or Write TWX
ID CCWs.

6. Model Expander 6 (RW1SG601): inserts
the address and count fields into the
poll ccws.

7. Model Expander 7 (RW1SG701): inserts
the address field into the
transfer-in-channel ccws for automatic
polling (Auto Poll).

8.

9.

Model Expander 8 (RW1SG801): inserts
the address of the sense field
(IJLQLSEN) of the LCB into the Sense

CCW of the Read Initial channel
program.

Model Expander 9 (RW1SG901): inserts
the addressing and count fields into
the Write CPU-ID and Read Terminal-ID
CCWs. Moreover, in the case of the
Write CPU-ID ccw, this expander checks
whether WRU=YES is specified in the
DTFQT macro instruction.

a. If WRU=YES is specified, the
command Chaining flag is set on,
the next ccw (Write WRU) is
executed, and an identification
sequence exchange is performed.

120 DOS QTAM Prograrr Logic Manual

b. If WRU=YES is not specif iedn the
Command Chaining flag remains off.
In this case., the computer
identification is sent to the
terminal, but no identification
sequence exchange is performed.

10. Model Expander 10 (RW1SGA01): is
associated with the TIC command of the
Write Initial channel program to
insert the transfer address into this
TIC command. This transfer address
is:

a. the address of ccw no. 3 (Write
CPU-ID) if the WRU macro
instruction is present in the Send
Header subgroup of the LPS; or

b. the address of ccw no. 6 (Write
Area) if the WRU macro instruction
is not present in the Send Header
subgroup of the LPS.

11. Model expander 11 (RW1SGB01): inserts
the address of the letter shift
preceding the mark character string
into the address field of the ccw.
For a line defined as an output-only
line, this subroutine adds to the ccw
count the number of mark characters to
be sent.

If an initial operation is requested on
a switched line, a call or answer segment
channel program is generated. The read or
write initial segment is generated
following the call or answer segment.

If a read initial operation is requested
on a nonswitched line, the polling list is
scanned until an entry is found for a
terminal that is in a receiving status. If
the end of the polling list is encountered,
the buff er (empty) is posted to the LPS
queue, and an exit is made to the LPS
Control routine.

After the operation segment of the
channel program has been generated, a TIC
to the second BRB in the ring is placed
after the last ccw in the CCB. If a buffer
has not been requested for the second BRB,
the PCI flag is set in the last ccw in the
CCB. EXCP is issued to start the I/O and
exit is made to the LPS Control routine.

Channel program generation for an IBM
2260 Local network differs from remote
operation in two respects. First, because
this is a contention device, polling is
unnecessary. Instead, the terminal
requesting attention is identified via the
CCB for the line, which is included in the
terminal table entry. second, in order to
efficiently handle the higher data rate of
a local device, the channel program for

~ ..

receive is not started until all buffers
are assigned.

For a write initial, the CCB for the
line is accessed in the terminal table
entry. An SVC 25 is issued to remove the
CCB from the DOS channel queue. The
appropriate channel program (as specified
by the WRT60 operand of the MODE macro) is
generated and started in the same manner as
for remote devices. No addressing is
required because the device is connected
directly to the channel. The supervisor
automatically restarts any write that
encounters a busy device.

For a read initial, the CCB in the
terminal table is accessed for generation
of the channel program. The appropriate
read ccw (as specified by the RTYPE operand
in the DTFQT macro instruction) is
generated. The PCI flag is turned off.
The channel program is not started at this
time. Instead, control returns to the LPS
Control routine to continue assigning
buffers for the read.

il CHANNEL PROGRAMS

The device I/O modules contain the model
channel programs which the CPG routine uses
to build the executable channel programs.
There is one device I/O module for each
terminal type supported. See Figure 6.

QTAM frequently places a TP operation
code into bits 40-47 of a ccw. These codes
are used to determine the action to be
taken when an interrupt occurs. The TP
operation codes used are contained in
Figure 7.

r-----------T-----------------------------1
I I I
!Module Namel Model Channel Programs For: I
·-----------+-----------------------------1
I l I
IJLQMO IIBM 1030 I

I I
IJLQMl IIBM 1060 I

I I
IJLQM2 IIBM 2260 Remote (2848) I

I
IJLQM3 AT&T 83B3 I

I
IJLQM4 WU Plan 115A I

I
IJLQM5 IBM 1050 switched/Nonswitched

IJLQM6 IBM 1050 Nonswitched
I
IIJLQM8 AT&T TWX (Models 33/35)
I
IIJLQM9 IBM 2260 Local
I
IIJLQNO IBM 2740 (Basic)
I
IIJLQNl IBM 2740 (Basic/Dial)
I
IIJLQN2 IBM 2740 (Station Control>

IJLQN3 IBM 2740 (Station Control
and Checking)

I
IJLQN4 IBM 2740 (Dial, Transmit

Control and Checking>

IJLQN5 IBM 2740 (Checking)

IJLQN6 IBM 2740 <Dial and Checking)

IJLQN7 IBM 2740 <Dial and Transmit
Control)

IIJLQN8 World Trade telegraph
I terminal
l--------~-~-----------------------------

Figure 6. Device I/O Modules

Line Input and output 121

r------T----------------------------------1
I I I
I Code I Meaning I
~------+------------------------~--------~

I
x•oo• !Not used

I
X'Ol' !Read Response to Write polling

Jcharacters (POLL-RESTART).
I

X'02'1Read Response to Write addressing
Jcharacters (MULTI-ADDR).
I

X'03' !Read or write data
I

X' 04'' IRE-START after Enable.
I

x•os•1Twx or W'I'IA identification check
I

X'06'1Read with skip. I
I I

x•07'1Read response to Write text (IBM>.1
I I

X'08'1Read text in buffer. I
I I

X"09'IRE-SET. I
I I

x·• OA" I Write Break (contention on I
I IWTTA !ines) I
L------~----------------------------------J

Figure 7. TP Operation Codes

Each device I/O module contains a table
of offsets at the beginning that defines
the valid operations for the device. Each
byte in the table contains the offset to
the model channel program for the specified
operation. The offsets and the
corresponding model channel programs are
defined in Figure 8. If the operation is
invalid for the device, the byte contains
X'FF'.

122 DOS QTAM Program Logic Manual

r--------~---T-----------------------1

I I I
I Offset Code I Operation I
~-------------+--~-------------------~
I I I
I x•oo• I Autopoll Read Initial I
I I I
I x• 01' I Read Initial I
I I I
I X'02' I Write Initial I
I I I
I X'03' I Read Continue I
I I I
I X'04' I Write Continue I
I I I
I x• 05' I Read Short I
I I I
I X'06 9 I Write Conversational I
I I I
I x•o7• I Read Repeat I
I I I
1 x• 08' I Answer Segment I
I I I
I x•o9• I call segment I
I I I
I X'OA' I Special Characters I
I I I
l x• OB' I Write Erase I
I I I
I x•oc• I Write At Line Address I
L--------~---~-------~--------------J

Figure 8. Table of Offsets to Model
Channel Programs

In the following channel operation
descriptions,

Table refers to the special character table
~~- in the device I/O module

~ refers to the polling, addressing,
dial, or TWX ID list passed by the
Activate routine,

~ and Length are the address and count
fields passed by the Activate
routine.

'.'f. I:
' /

(_

IBM 1030--Terminal to CPU

Read Initial:

r--------T--------------------------T---------T--------T---------T-----------1
I I I I I TP I I
!Command I Operation I Address I Flags I Code I Count I
~--------+--------------------------+---------+-~-----+---------+-----------i

I I I I I I
1 I write © © © I Table I CD" SLI I 0 I 3 I

I I I I I I
2 I write polling characters I List I CC,SLI I 0 I 1 I

I I I I I I
I I I I I I
I I I I I I

3 I Read response character I Area I CD I Polling I 2 I
I I I I Restart I I
I I I I I I

4 I Read message block I Area+2 I CD I 0 I length-2 I
--------L--------------------------L-------~L--------L---------L-----------J

Command 1: Sends three C s to set all terminals on the line in
control mode.

Command 2: Polls a device by sending its polling characters.

Command 3: The effect of the command is as follows:

1. A negative response Conly one character received) causes
an interruption with a wrong-length indication. The
Line End routine detects this condition and initializes
the channel program to poll the device specified by the
next entry in the polling list. control is then
returned to the Supervisor for execution of commands 2
through 4. This procedure continues until Ca) a
positive response is received, or Cb) the last
nonskipped entry in the polling list has been polled.

2. on positive response, the response character and the
first byte of text are read. Data chaining then takes
effect to Command 4.

Command 4: Reads text until the count is exhausted and chains through a
TIC placed after it to the second BRB/CCW in the ring. If a
buffer was not requested for the second BRB/CCW., the PCI
flag would cause an interrupt on Command ~ and the PCI
routine would be entered to obtain a buffer. If the buffer
had been requested but not assigned, the TIC command would
have an invalid address that would cause a program check
interrupt. The Line End routine would recognize this
condition and obtain the buffer.

The preceding example is the channel program generated for a
read-initial operation to poll the IBM 1030. The channel program for
polling the other terminals supported may be slightly different, but the
polling technique is the same. Note that the IBM 1030 uses only one
polling character in Command 2~ therefore, the count is 1.

When an IBM 1031 Input Station is polled, each input unit of the
station takes part in sending the message.. The 1031 determines the
order in which these input units will be contacted. The input units of
the 1031 are the card reader, the badge reader, the manual control unit.
and the cartridge reader.

Auto Poll Read Initial:
Line Input and Output 123

r--------T--------------------------T---------T--------T---------1-----------,
!Command I Operation I Address I Flags I TP Code I Count I
r--------+--------------------------+-------~+--------+---------+-----------~
I I I I I
I 1 Write © © © Table I CC, SLI 0 I 3 I
I I I I
I 2 Poll Any I CC,SLI 0 I k{n) I
I entry in! I I
I polling I I
I list I I
I I I
I 3 TIC 2nd POLL SLI 0 1 I
I Command I
I I
I 4 TIC Read I

5 Poll

6 TIC

7 Read Response

Response

1st
entry in
polling
list

2nd POLL!
Command I

Area
I
I
I

CC,SLI 0

SLI 0

CD 1

k{n)

1

2

I
I
I
I
I
I
I
I
I
I
I
I

8 I Read Message Block I Area+l I CD I 3 Length-2 I
L--------L--------------------------L---------L--------L---------L-----------J
command 1: Sends three ~ 's to set all terminals on the line in

control mode.

Command 2: Starts polling of the terminals on the line# beginning at
any entry in the polling list.

k 2 for IBM 1030, k = 3 for other devices.

n number of terminal entries between the starting entry
and the end of the polling list.

Command 3: On a negative response to polling at the end of the polling
list, this TIC command will be executed to start the second
POLL command.

Command 4: On a positive response to polling, this TIC command will be
executed to start the READ response command.

Command 5: Starts polling of the terminals on the line, beginning at
the top of the polling list.

k 2 for IBM 1030, k = 3 for other devices.

n total number of entries in the polling list.

command 6: on a negative response to polling at the end of the polling
list, this TIC command will be executed to restart previous
(2nd) POLL command.

Command 7: Reads the index byte and the first byte of text in the first
two bytes of the buffer area. Data chaining then takes
effect to command 8.

124 DOS QTAM Program Logic Manual

Command 8: Reads text until the count is exhausted and chains through a
TIC placed after it to the second BRB/CCW in the ring. If a
buffer was not requested for the second BRB/ccw. the PCI
Elag causes an interrupt on command 8 and the PCI routine is
entered to obtain a buffer. If the buffer was requested but
not assigned, the TIC command has an invalid address which
causes a program check interrupt. The Line End routine
recognizes this condition and obtains the buffer.

The preceding example is the channel program generated for an Auto Poll
read initial operation to poll an IBM 1030. The channel program for
polling the other terminals supported is the same.

Read Continue: Consists of a Write @ plus a read initial operation.
~read-Continue operation is sent after an EOB character has been
encountered during a read operation. It restarts polling on the line.

Read Repeat: Consists of a Write @ plus
Read Repeat is issued after an EOB character
a read operation, EOBLC is specified, and an
occurred. It sends a negative response ®
initial sequence which restarts polling.

a read initial operation.
has been encountered during
error in transmission

and chains to a read

Line Input and Output 125

IBM 1030--CPU to ~erminal

Each 1033 printer on a line is addressed with a single addressing
character obtained from a terminal table entry.

Write Initial: A write-initial operation addresses and then sends a
message to the 1033 printer.

r---1
I Operation I Address I Flags I TP code I Count I
~-------------------------------+---------+--------+---------+--------~
I I I I I I
l 1. Write © © © @ I Table I CD,SLI I O I 4 I
I I I I I I
12. Write addressing character I List I CD I 0 I 1 l
I I I I I I
13. Write 1 I Table I CC,SLI I 0 I 2 I
I I I I I I
14. Read response to addressing I Area I CC I 0 I 1 I
I I I I I I
15. Write Data I Area I CD I Read I I
I I I I data I Length I
L-------------------------------~---------~--------~---------~--------J

C Places the line in control mode.

s Indicates to the 1031A control stations that the address specifies
a 1033 printer.

1 Conditions the 1031A to answer.

The 1031A replies with either ® (ready) or @
command chaining occurs only on the receipt of CT) .
response to addressing, the operation is terminated.
response, Command 4 chains to Command 5 to begin the

Cnot ready).
On negative
On positive

data transfer.

Write Continue: Same as step 5 of the write-initial operation. A Write
Continue is requested after an EOB character when sending.

IBM 1060--Terminal to CPU

Each IBM 1062 Teller Terminal is polled with a two-character code. The
first of these two characters identifies the IBM 1061 Teller Terminal
Cone or two per 1061).

126 DOS ,QTAM Prograw Logic Manual

Read Initial: Used to begin polling on the line. The channel program
is:

r------------------T---------T---------T----~---T-----------1
I Operation I Address I Flags I TP Code I Count I
~------------------+---------+---------+---------+-----------1
I I I I I
11. write ©©©I Table I CD,SLI I 0 I 3
I I I I I
12. write polling I List I CC,SLI I 0 I 2
I characters I I I I
I I I I I
13. Read response I Area I CD I Poll- I 2
I character I I I restart I
I I I I I
14. Read message I Area+2 I CD I 0 I Length-2
I block I I I I
L------------------i---------i-~------i _________ i __________ _

Auto Poll Read Initial: used to begin polling on the Auto Poll line.
The channel program is:

r--------T---------------------~---T-------~--r--------T---------T-----------1

I I I I I I I
!Command I Operation I Address I Flags I TP Code I count I
~--------+--------------------------+-----------+--------+-----~---+-----------1

I I I
1 I write © © © I Table I CC,SLI O 3

I I I
2 Poll I Any entry I CC,SLI 0 k(n)

in polling!
list I

I
3 TIC 2nd POLL I SLI 0 1

Command I
I

4 TIC Read I
Response I

I
5 Poll 1st entry I CC,SLI 0 k(n)

in polling!
list I

I
6 TIC 2nd POLL I SLI 0 1

command I
I

7 Read Response Area I CD 1 2
I

8 Read Message Block Area+l I CD 3 I Length-2 I
--------i---------------------~---i ___________ i ________ i _________ i ___________ J

Read Continue [=Writ~ +Read Initial]: Read continue is issued
after an EOB is encountered during a successful read-initial operation
to execute a single command to send a positive response © to the 1061
and chain to a read-initial sequence to restart polling on the line.

Read ReQeat [=Write_@) +Read Initial]: Read Repeat is issued after a
Read operation is terminated by an incoming EOB and the block was
received in error. The channel program writes the negative
response @ to the 1061, then chains to a read-initial sequence to
restart polling on the line. Read Repeat is performed only when the
EOBLC macro is specified.

Line Input and Output 127

IBM 1060--CPU to Terminal

Each 1062 on a line is addressed with a two-character code. The first
of the two addressing characters identifies the 1061 control unit. The
second character identifies the 1062 terminal.

Write Initial: A write-initial channel program is issued to address and
send a message to a 1062. The channel program is:

r------------------T---------T---------T---------T-----------1
I Operation I Address I Flags I TP Code I Count I
~------------------+---------+---------+---------+-----------i
I I I I I
11. Write ©©©I Table I CD,SLI I 0 I 3
I I I I I
12. Write address- I List I C'C,SLI I 0 I 2
I ing character I I I I
I I I I I
13. Read response I Area I CC I 0 I 1
I to addressing I I I I
I I I I I
14. write message I Area I CD I 0 I Length
I block I I I I
L------------------i---------i---------i---------i-----------

128 DOS QTAM Program Logic Manual

'l /

()

IBM 2260 Remote (2848)

PROGRAMMING INFORMATION

1. The format of a message received from a 2260 through a READ is the
following:

r---------------------------------------1
ISTXjdevice address I Ctext11 [CAN11ETXILRCI
L---i--------------i------i-----i---i ___ J

STX: start of text character.

Device Address: Characters that identify the sending unit (display
station or printer>.

'Iext: The printer status has a zero-length text.

CAN: This character is sent only if the display control unit
detects an internal operation error when transmitting the
message.

ETX: End of text character.

LRC: Longitudinal redundancy check character. The LRC
accumulation is started by the STX character and terminated
by the ETX character.

2. The format of a message sent to a 2260 through a WRITE is the
following:

r------------------------1
I STX I text I ETX I LRC l
L-----i------i-----i-----J

3. When Write-at-Line-Address is specified, the first byte of the text
indicates the line address.

r---------------------------------~-----,
I STX I line address I text I ETX I LRC I
L_ ____ i ______________ i_~----i-----i--~-J

When further messages are sent without re-addressing, the display
station interprets the first character after STX as a line address.

IBM 2260 Remote--Terminal to CPU

Each IBM 2260 is polled with a two-character code.

Read Initial (DISPLAY): A Read-initial operation is issued to start or
restart polling on a line. The channel program is:

Line Input and Output 129

r------------------T---------T--~----T------~-T-----------1

I Operation I Address I Flags I TP Code! Count I
~------------------+---------+--~----+---------+-----------~

I I I I
1. Write EOT I l I I

sequence I Table CD I 0 I 3 I
I J I I

2. Write polling I List CD I 0 I 2 I
characters or l I I I
r;rinter I I I I
request chars.) I I I

3. Write READ MI
code
(2848 alert)

I I I I
I Table cc.SL! l o I 1 I
I I I I
I I I I
I I I I

4. Read response I Area CD I Poll- I 2 I
character I I restart! I

I I I I
15. Read roessage I Area+2 CD I 0 I Length-2 I
L------------------i---------i--~----i---------i-----------J

The characters specified in the polling list may initiate a specific
poll of a 2260 display station or a general poll of a 2848 display
control unit.

Specific Poll of a Display Station: On positive response (STX), Command
4 chains to Command 5, and the rressage is read. On negative response
(EO'I), an interrui;tion occurs. The Line End appendage routine detects
this condition via the TP op code, initializes the channel program to
poll the next entry within the list, and returns control to the
Supervisor.

General Poll of a Display Control Unit: If the printer has a status
pending as a result of a previous request (see Write Initial), this
message will be transmitted. Command 4 chains to Command 5. If the
printer is not ready, the display stations are scanned for a message.
If a message is pending, it is sent. If the printer is not ready and no
message is waiting for transmission, a negative response EOT is
received. The channel program is interrupted. Line End detects this
condition, updates the channel program, and returns control via the
Supervisor to poll the next entry within the polling list.

Read Continue [WRITE ACK+ Read Message]: READ Continue is requested
from the EOB routine after a successful read-initial operation. A WRITE
command sends a positive response (ACK) to the station and chains to a
READ. If the previous operation was a specific poll of a display
station, that station answers with EOT, which ends the operation. If
the previous operation was a general poll of a display control. a
message is received if one is pending; otherwise, an EOT ends the
operation.

Read Repeat [WRITE NAK +READ Message] (Display Only): A Read Repeat is
requested from the EOBLC routine for retransmission of a message block
that is received in error. The Write command sends a negative response
to the display station and chains to a read command to retry the
transmission.

130 DOS QTAM Program Logic Manual

(, .. _
\

/

IBM 2260--CPU to ~erminal

Two characters are used to address the IBM 2260.

write Initial (Display or Printer>:

r------------------T---------~-------T------~-T-----------1

I Operation I Address I Flags I TP Codel Count I
l------------------+---------+--------+---------+-----------~

I I I I
1. Write EOT I I I

sequence I Table I CD I 0 3
I I I

2. Write address- I List I CD I 0 2
ing characters! I I

I I I
3. write WRITE I I I

code I Table I cc.sLI I O 1
I I I

4. Read response I Area I CC I 0 1
I I I

5. write STX I Table I CD I 0 1
I I I

16. Write message I Area I CD I 0 Length
L------------------i---------i--------i------~-i------~---J

The EOT sequence resets the IBM 2848 Display Control address selection
to control mode, nonselected status and causes all 2848s on the line to
prepare to receive an addressing sequence. The addressing characters
indicate a display station or a printer.

When a printer is addressed, command 4 reads the response to the
addressing sequence. A negative response (EOT or NAIO interrupts the
channel program: NAK indicates that the printer is not ready ; EOT
indicates that the printer is ready but the buffer is not empty. In
both cases a printer request is set.

A positive response (ACK) indicates that the printer is ready and
available. Command 4 chains to Command 5, and the message is sent. If
a transmission error occurs, the 1053 operation is aborted as soon as
the data parity error is detected, a quote symbol is printed out, and
the printer buffer is cleared. EOBLC causes transmission retry by
requesting a write continue.

When a Display Station is addressed, Command 4 reads the response to
the addressing sequence. That response is normally positive (ACK).
Command 4 chains always to command 5. The characters are displayed on
the CR~. starting at the cursor position.

If a transmission error occurs, the transfer is retried from EOBLC by
requesting a Write Continue. However, the data will be displayed
starting at the cursor position, and the erroneous message will not be
cleared unless the write erase option is specified in the user's LPS
(MODE macro).

write at tine Address (Display Only>: Same as Write Initial, except
Command 3 is the write WRITE LINE code. The MODE macro causes a Write
at Line Address operation, which positions the cursor to the start of a
specified line. If a transmission error occurs, sending is retried with
a Write Continue. Data will be displayed starting at the same line.

Line Input and Output 131

Write Erase (Display Only): Same as Write Initial, except Command 3 is
write ERASE code. write Erase is specified by the MODE macro to erase
the CRT before the next segment is sent.

Write Continue [=Write Message] (Display or Printer): A Write Continue
is issued when an error is encountered while sending and the EOBLC (or
EOB) macro has been specified. If the previous operation was a Write
Initial addressing a printer, the Write Continue retries transmission of
the message.

If the previous operation was a Write-at-Line-Address, or a
Write-at-Line-Address followed by one or several Write Continues. the
cursor is positioned at the beginning of the line specified in the
message. In all other cases, the characters are displayed on the
station starting at the cursor position.

IBM 2260 LOCAL (2848)

Programming Inforrration

1. A message received from an IBM 2260 through a read consists
entirely of text. The transmission code is in EBCDIC. The
transmitted text consists of all characters displayed between the
START and EOM symbols and excluding any characters to the right of
the first NL symbol on a line. (The NL symbol itself is
transmitted.) There are no line control characters for this
device.

A zero-length text is possible and can arise in the following
ways:

a. The terminal operator enters a null message (START and EOM
only).

h. The operator attempts to enter a message with no START symbol.

c. The operator prepares a valid message, but the START symbol is
erased between the time the ENTER key is depressed and QTAM
issues the read.

When a zero-length message is received, the 'zero-length
rr1essage'bit (bit 4) is set in the error halfword.

2. A message sent to an IBM 2260 Local through a write consists
entirely of text, except when the write-with-line-address mode is
specified in the MODE macro instruction. A zero-length message is
allowed and may be used with the erase/write MODE option to effect
erasure of the display.

3. When write-at-line-address mode is being used. the first byte of
the user header portion of the message must be the line address
code. This byte is transmitted but is not displayed. Line address
codes for the IBM 2260 Local terminal are shown in Figure 8A.
Other values for the line address byte give unpredictable results.

4. Messages to an IBM 2260 Local which exceed the line width
automatically continue on the next line, wrapping around from the
last line to the first if necessary. Messages to the IBM 1053
printer should contain NL or EOM characters for carrier control.

132 DOS QTAM Program Logic Manual

(
i__

(

5. ~he WRT60 operand of the MODE macro instruction is ignored for
messages to the IBM 1053 printer. A write initial command is
issued and the line address code, if present, is printed as data.

r---------------------T----------------------1
!Line Address code I Display Line Number I
~---------------------+----------------------i
I X'FO' I 1 I
I X'Fl' I 2 I
I x• F2' I 3 l
I X'F3' I 4 I
I x• F3" I 5 I
I X'F4' I 6 I
I X'F6' I 8 I
I x• FT" I 9 I
I X' p9• l 10 I
I X'FA' I 11 I
I X'' FB' l 12 I
L---------------------i----------------------J

IBM 2260 LOCAL--TERMINAL TO CPU

Terminal to CPU transmission occurs as follows:

1. At OPEN time, or following the completion of a successful read or
write, the CCB for the line is placed on the Supervisor channel
queue by the IBM 2260 Local Appendage. This initializes the
Supervisor to pass Attention interrupts from the terminal to the
IBM 2260 Local Appendage.

2. When the terminal operator has a message to send, he keys a START
symbol, followed by the message text, and then presses the ENTER
key. This causes an Attention interrupt, and the Supervisor passes
control to the IBM 2260 Local Appendage. This appendage removes
the CCB from the channel queue and posts it to the Attention queue
maintained in the LCB for the line group.

3. When QTAM recognizes the CCB on the Attention queue, a number of
buffers sufficient to contain the maximum size message (as
specified in the BUFNO operand of the DTFQT macro instruction) are
obtained, and a channel program is built to read the entire
message.

4. When all buffers have been assigned, an EXCP is issued.to read the
message.

Read Initial: A read initial is issued to read a message from the IBM
2260 Local. All characters between the START and EOM symbols, except
characters to the right of a NL symbol, are transfered. When the
message is read, the START symbol is cleared and the keyboard is
unlocked. If insufficient buffers have been specified in the BUFNO
operand, a partial message is received and the 'insufficient buffers'
bit (bit 11) is set in the error halfword. The channel program is:

r-----------T---------T-------T---------T-------1
I Operation I Address I Flags I TP Code I Count I
~-----------+---------+-------+---------+-------i
I Read DS Mii Area I CD,SLII 63 I Length!
L-----------i---------i _______ i _________ i _______ J

Line Input and Output 133

Read Short: A read short replaces a read initial for all terminals in
the line group if RTYPE=SHORT is specified in the DTFQT macro
instruction. The read short option allows the user to take advantage of
the faster hardware end-sequence for this command. Read short does not
clear the START symbol after the message has been read, but it does
unlock the keyboard. The channel program is identical to read initial
except that the command code is Short Read DS MI.

IBM 2260 Local--CPU to Terminal

CPU-to-terminal transmission occurs as follows:

1. QTAM issues an SVC 25 to remove the terminal CCB from the channel
queue. This causes the Supervisor to ignore any subsequent
Attention interrupts from that device.

2. A write channel program is executed to write to tne IBM 2260 Local
or to the IBM 1053 printer.

3. If the device is an IBM 2260 Local, the message is displayed
beginning at a point determined by the WRT60 operand of the MODE
macro instruction. The message overwrites existing characters in
the display screen, including messages in preparation or messages
entered but not yet read by QTAM.

4. If the device is an IBM 1053 printer, the message is transferred
whenever the printer buffer becomes free. The Supervisor restarts
the channel program automatically if the printer is busy, but the
line group is not freed for other messages until the message has
been sent.

5. If the printer is not ready (intervention required), the operation
is posted cowplete-with-error.

Write Initial: A write initial is issued to send a message to an IBM
2260 Local or to an IBM 1053 printer. If the message is to an IBM 2260
Local, the display begins at the current location of the cursor.
Messages to the printer start at the current location of the IBM
Selectric type element (normally at a new line). The channel program
is:

r--------------T---------T--------T---------T--------1
I Operation I Address I Flags I TP Code I Count I

t--------------+---------+------~+---------+--------~
I Write Buffer I Area I CD,SLT I 03 I Length l
L--------------i _________ i ________ i _________ i~------J

Erase/Write: Erase/Write may be specified instead of Write Initial by
the MODE macro instruction. The command is valid only to an IBM 2260.
The screen is erased and the message is displayed beginning in the upper
left-hand display position. The channel program is:

r--------------T---------T--------T---------T~------1

I Operation I Address I Flags I TP Code I Count I

t--------------+---------+------~+---------+~------~
I 1. Erase I -- I CC,SII I 00 I 01* I
I 2. Write DS I Area I CD,SLI I 03 I Length I
I Buffer I I I I I
L--------------i _________ i ________ i---------i~------J
*Dummy count

134 DOS QTAM Program Logic Manual

\

Write-at-line-address: Write-at-line-address may be specified in place
of write initial by the MODE macro instruction. The command is valid
only to an IBM 2260. The first byte of text is interpreted as the line
address, and the message is displayed beginning at that line. The
channel program is the same as write initial except that the command
code is write-at-line-address.

AT&T 83B3--Programminq Information

1. An AT&T 83B3 Teletypewriter Selective Calling System Control
Station controls up to 38 teletypewriters on a line. The teletypes
may be:

a. Model 28 Receive Only Typing Reperforator (ROTR};

b. Model 28 Automatic Send Receive (ASR); or

c. A combination of the two models.

2. Transmission between the 270x and the terminal is in Baudot code.
The shift character conversion is a standard feature.

r--------------------------------------1
10 1 2 3 4 5 6 7 system/360 byte I
~-------------------------------~-----~
I- - s 1 2 3 4 5 Shifted Baudot code I
L--------------------------------------J
3. The Transmitter start Code (TSC) is a two-character code the

function of which is similar to polling characters in IBM
equipment. The Call Directing Code (CDC) is a two-character code
the function of which is similar to addressing characters in IBM
equipment.

4. Response to TSC <polling)

a. Positive response is the message itself.

b. Negative response is V. The channel-end and device-end status
bits are set. Unlike IBM terminals, there is no unit exception
with negative response. When the terminal is not ready. no
response character is sent. A 2 second timeout occurs and unit
check is set in the status byte.

5. Response to CDC (addressing)

a. Positive response is v or M.

b.. No response is a negative response
check.

AT&T 83B3--Terminal to CPU

2 second timeout and unit

Read Initial: A Read Initial is issued to start or restart polling.
The channel program is:

Line Input and Output 135

r---1
I Operation I Address I Flags I TP Code I Count I

t-----------------+----~----+---~----+---------+-----------i
I I I I I I
11. Write EOT I I I I I
I sequence I Table I CD,SLI I 0 I 3 I

I I I I I I
12. Write TSC I List I CC,SLI I 0 I 2 I

I I I I I I
13. Read response I Area I CD I Poll- I 2 I
I I I I restart I I

I I I I I I
14. Read Message I Area+2 I CD !Read Data! Length-2 I
L-----------------i---------i---------L---------i-----------J

AT&T 83B3--CPU to Terminal

Each terminal on a line has a unique two-character Call Directing Code
(CDC).

Write Initial: A Write Initial is issued to send a message to a
station. The channel program is:

r--~-------------1
I Operation I Address I Flags I TP Code I Count I

t-----------------+---------+---~----+---------+-----------i
I I I I I
11. Write EOT I I I I
I sequence I Table I CD,SLI I 0 I 3
I I I I I
12. Write CDC List I CD I 0 I 2
I I I I
13. Write shift Table I CC,SLI I 0 I 1
I character I I I
I Cltrs> I I I
I I I I
14. Read response Area I CC I Multi- I 1
I character I I address-I
I I I ing I
I I I I
15. Write message Area I CD I Write I
I I I Data I Length
L-----------------i---------i---~----i------~-i-----------

Western union 115A--Prograrnminq Information

1. Plan 115A is a multidrop system. Up to 20 way stations can be
accommodated on a line. A way station is a Model 28 Teletypewriter
Automatic Send Receive (ASR) associated with a way station
selector.

2. Transmission between the 270x and the terminal is in Baudot code.
The shift character conversion is a standard feature.

136 DOS QTAM Program Logic Manual

c

(

r--------------------------------------1
IO 1 2 3 4 5 6 7 System/360 byte I
~-------------------------------~-----~
I- - S 1 2 3 4 5 Shifted Baudot code I
L--------------------------------------J

3. ~he invitation-to-send code is similar to polling characters:

The first character is an •x•.

~he second character identifies the station.

~he call code is similar to addressing characters:

~he first character is a line control character 'circuit call".

The second character identifies the station.

4. Response to invitation to send (polling):

a. Positive response is the message itself.

t. Negative response is v, which generates the channel-end and
device-end status (no unit exception is set as with IBM
terminals).

c. No response: 2 second timeout and unit check.

5. Response to call (addressing):

a. Positive response is •v.•

t. When the terminal is not ready, no response character is
received.

6. ~he EOT sequence is tH
unit exception status.
"LTRS.")

which sets channel end, device end, and
(t= upshift or "FIGS"; = downshift or

7. The first character of the message must be an EOA, which generates
a space. The last portion of the message is an EOT sequence, which
disconnects the station.

WU Plan 115A--Terroinal to CPU

Each terminal on a line is "invited to send" with a two-character code.
The first character is always X. The second character identifies the
terminal.

Read Initial: Read Initial is issued to start or restart polling on a
line. ~he channel program is:

Line Input and Output 137

r-----------------T---------T---------T---------T-----------1
I Operation I Address I Flags I TP Code I Count I
r-----------------+---------+---~----+---------+-----------~
I I I I I I
11. Write EOT I I l I I
I sequence I Table I CD,SLI I 0 I 9 I
I I I I I I
12. Write "Invita-1 List I CC,SLI I 0 I 2 I
I tion code" I I I I I
I I I I I I
13. Read Response I Area I CD I Poll- I 2 I
I I I I restart I I
I I I l I I
14. Read Message I Area+2 I CD !Read Datal Length-2 I
L-----------------i _________ i _________ i _________ i ___________ J

WU Plan 115A--CPU to Terminal
Each terminal on a line is addressed by a two-character call code. The
first character is the line control character circuit call. The second
character identifies the terminal. ~~~ ~~

Write Initial: A Write Initial is issued to send a message. The
channel program is:
r------------------T--------T---------T---------T-----------1
I Operation !Address I Flags I TP Code I Count I
~------------------+--------+---------+---------+-----------~
I I I l I
11. Write EOT I I I I
I sequence I Table I CD,SLI I 0 9 I
I I I I I
12. Write call code] List I CC,SLI l 0 2 l
I I I I I
13. Read response I Area I cc I Multi- I
I I I I address- I
I I I l ing 1 I
I I I I I
14. Write message I Area I CD I Write I
I I I I Data Length I
L------------------i ________ i _________ i ______ ~_i ___________ J

IBM 1050, Nonswitched--Terminal to CPU

Each component on a line is polled with a two-character code. The first
of these two polling characters identifies the terminal; the other
either selects a device or is the common polling character (0).

Read Initial: Read Initial is used to start or restart polling on a
line. The channel program is:

138 DOS QTAM Program Logic Manual

(· .. ,

/ r------------------T---------T---------T---------T-----------,
I Operation I Address I Flags I TP Code I count I
r------------------+---------+-~------+---------+-----------i
I I I I I I
11. Write @@©I Table I CD,SLI I 0 I 3 I
I I I I I I
12. Write polling I List I CC,SLI I 0 I 2 I
I characters I I I I I
I I I I I I
13. Read response I Area I CD I Poll- I 2 I
I I I I restart I I
I I I I I I
14. Read message I I I I I
I block I Area+2 I CD I 0 I Length-2 I
L------------------i _________ i _________ i _________ i ___________ J

Auto Poll Read Initial: Used to begin polling on the Auto Poll line.
The channel program is:

r-------T------------------T-------------T------T-------T--------,
!Command!Operation !Address !Flags ITP codelCount I
r-------+------------------+-------------+--~--+-------+--------~
I I I I
I 1 write © © © !Table CC,SLII O 3 I
I I I
I 2 Poll Any entry in CC,SLI 0 k(n)
I polling list
I
l 3 TIC 2nd POLL SLI 0 1
I Command

4 TIC

5 Poll

6 TIC

7 Read Response

Read Response

1st entry in
polling list

2nd POLL
Command

Area

CC,SLI 0 k<n>

SLI 0 1

CD 1 2

I
I
I
I
I
I
I

I I
8 Read Message Block Area+l CD 3 !Length-21 _______ i __________________ i _____________ i ______ ~ _______ i ________ J

g~~g_£ontinu~[=WRIT~-~-READ Data]: The Read Continue is requested
from the EOB or EOBLC routine after a successful Read Initial or Read
Continue operation to read subsequent blocks from the same component.
The channel program writes the positive response character and chains to
a read command. The data received is either followed by a @ or @
alone. To restart polling on the line, another aead Initial must be
generated.

Read Repeat [=WRITE iii)_+ READ Message block]: The Read Repeat is
requested from the EOBLC routine, in the event of a transmission error,
to reread a message block. The channel program writes the negative
response character and chains to a read command that specifies the same
storage area as in the previous operation.

IBM 1050, Nonswitched--CPU to Terminal

Each terminal on a line is addressed with a two-character code. The
first of these two addressing characters identifies the terminal. The
second selects one or all of the components of that terminal.

Line Input and output 139

Write Initial: Write Initial is generated to send a message to a
terminal. The channel program is:

r------------------T---------T---------T---------T-----------1
I Operation I Address) Flags I TP Code I Count I
~------------------+---------+---------+---------+-----------1
I I I I I I
I 1. Write © ©©I Table l CD I 0 l 3 I
I I I I I I
I 2. Write address- I List I cc, SLI I 0 I 2 I
I ing charactersj I I I I
I I I I I I
13. Read response I Area) CC I Multi- I 1 I
I to addressing I I I address-I I
I I I I ing I I
I I I I I I
14. Write@ I Table I CD I 0 I 1 I
I I I I I I
15. Write message I Area I CD I 0 I Length I L------------------i---------i _________ i _________ i ___________ J

write continue: Write Continue is requested from the EOB or EOBLC
routine to write another message block after a successful write-initial
or write-continue operation. The channel program writes a message block
and chains to the BRB/CCW to continue the operation .•

IBM 1050, Switched--Terminal to CPU

Terminal to CPU transmission occurs as follows:

1. Program issues a Read Initial referencing an answering-polling list
to enable a line. Prior to the enable, no calls can be received by
the CPU.

2. Terminal operator calls the CPU when he has something to send.
This completes the enable command, causing a device end-channel end
(DE-CE) interruption.

3. QTAM polls the terminal that dialed, using the polling characters
supplied in the polling list. If the terminal sends a positive
response, a read ccw is executed to transfer the message block.
The answering-polling list must contain polling characters of all
the terminals that may call the CPU on this line. Normally, the
common polling character 0 is used to poll all components on the
terminal.

Read Initial: A Read Initial is issued to start polling. The channel
program is:

r------------------T---------T---------T---------T-----------1
!Operation I Address I Flags I TP Code I Count I
~------------------+---------+---------+---------+-----------i
I I I I I I
11. Disable I I CC,SLI I 0 I 1 I
I I I I I I
12. Enable I I SLI I Restart I 1 I
I I I I I I
13. Write pad I Table I cc~SLI I O I 15 I
I characters I I I I I L------------------i---------i _________ i _________ i ___________ J

140 DOS QTAM Prograw Logic Manual

commands 4-7 are the same as commands 1-4 of read initial for 1050
nonswitched.

~e~Q_£ontin!!§_[WfilrE_JX2 + READ Data]: A Read Continue is requested
from the EOB or EOBLC routine after a successful Read Initial or Read
Continue to read the next block of data from the same component. The
channel program writes the positive response character and chains to a
read command.

g~ad_g~~at_lWRfTE~G)_ +READ Data]: The Read Repeat is requested from
the EOBLC routine after an unsuccessful read operation for
retransmission of the data which was received in error. The channel
proqram writes the negative response character and then chains to a read
command that specifies the same storage as the previous operation.

f§~_1050, Switched--CPU to Terminal

CPU-to-terminal transmission occurs as follows:

1. The program issues a Write Initial referencing a call-addressing
list to dial the terminal and address the component.

2. lf a positive response is received, the message is sent. If a
negative response, the operation is posted complete-with-error.

Write Initial: A Write Initial is generated to send the first block of
a message. The channel program is:

r------------------T---------T~-------T----~---T-----------1

I Operation I Address I Flags I TP Code I count I
r------------------+---------+---------+----~---+-----------~
I I I
11. Disable I cc, SLI 0 1 I
I I I
12. Dial the call I List CC,SLI 0 n I
I digits I I
I I I
13. Write © © ©I Table CD 0 3 I
I I I
14. Write address- I List CC,SLI 0 2 I
I ing characters! I
I I I
15. Read response I Area cc Multi- 1 l
I to addressing I address- I
I I ing I
I I I
16. Write message I I
I block I Area CC,SLI 0 Length I
L------------------L---------L---------L---------L-----------J
n = number of dial digits as specified in the terminal table entry.

Write Continue (Same as Step 6 of Write Initial): The Write continue is
requested from the EOB or EOBLC routine after a successful Write
Initial, Write Conversational, or Write Continue operation to send the
next message block.

Write Conversational (Same as Steps 3-6 of Write Initial): This option
provides the facility to readdress a terminal on a line with which
connection is already established.

Line Input and output 141

AT&T TWX 33/35--Terrninal to CPU

TWX terminals are not polled. Line connection is established on
terminal request; the terminal dials the CPU through a switched network.
and the CPU answers the call.

Read Initial: The Read Initial channel program is used when
transroission is originated by the terminal operator calling the
The type of polling list is an answer list which specifies that
connection must be established by the terminal. before data may
transroitted. The channel program is:

r------------------T---------T--~---~T~---~--T-----------1

I I I I I I
I Operation I Address I Flags I TP code I Count I
~------------------+---------+--~-----+-----~--+-----------i
I I I I I
11. Disable cc.sLI I O I 1 I
I I I I
12. Enable SLI I Restart I 1 I
I I I I
13. Write CPU-ID I I I
I sequence List CC,SLI I 0 I m I
I 1 I I
14. Read Response Area CD I Poll- I 2 I
I I restart I I
I I I I
15. Read data Area-2 CD I Read I Length-2 I
I I data I I
L~----------------~----------L--~-----~---------~-----------J

CPU.
line
be

m = count of characters in the CPU ID sequence specified in the polling
list for the line.

TWX Model 33/35--CPU to Terminal

TWX terminals are not addressed. Line connection is established on CPU
request; the CPU calls the remote terminal through a switched network .•

Write Initial: The Write Initial channel program is used when
transroission is to be originated by the CPU calling the terminal. The
type of terminal list is a call list which specifi.es that line
connection must be established by the CPU. before data may be
transmitted. The channel program is:

142 DOS QTAM Program Logic Manual

/

c

, ,,

r------------------T---------T---------T---------T-----------1
j I I I I I
I Operation I Address I Flags I TP Code I Count I
r------------------+---------+---------+---------+-----------~
I I I I I I
11. Disable I I CC,,SLI I 0 I 1 I
I I I I I I
12. call the dial- I I I I I
I digits I List I CC,SLI I 0 I n I

I I I I I I
(3. Read terminal I List I CC,SLI I TWX ID I m I
i ID Sequence I I I I I
I I I I I I
14. Write data I Area I CD I Write I Length I
I I I I data I I

L------------------~---------~---------~---------~-----------J

n = specifies the number of dial digits in the terminal table entry.

m = specifies the number of characters in the TWX terminal ID sequence.

Write Conversational [WRITE Data]: Write Conversational can be used
following Read Initial, Write Initial, or a previous Write
Conversational. The channel program consists of a single command. The
data transmitted must not end with a turn-around character.

IBM 2740 Remote Terminals

There are eight different types of IBM 2740 terminals, depending on the
features provided. Each terminal uses a different set of commands.
Eight modules are provided (IJLQNO - IJLQN7}, one for each terminal <see
Figure 9).

r--------T-------------------------------------T---------1
(IBM 27401 I Associ- I
!Terminal(I ated I
I Type I Features Provided I Module I
r--------+-------------------------------------+---------~
I I I I
I 274A (Basic Type I IJLQNO I
I I I I
I 274B (Basic, Dial I IJLQN1 I
I I I I
I 274C !Station control I IJLQN2 I
I I I I
I 274D !Station Control and Checking I IJLQN3 I
I I I I
I 274E (Dial, Transmit Control and Checking I IJLQN4 I
I I I I
I 274F !Checking I IJLQNS I
I I I I
I 274G (Dial with Checking I IJLQN6 I
I I I I
I 274H (Dial, Transmit Control I IJLQN7 I
L--------~-------------------------------------~---------J

Figure 9. Types of IBM 2740 Terminals with Associated Modules

Line Input and output 143

IBM 274A (Basic) - ~erminal to CPU

Read Initial:
r-------T------------------T-------T-------T----------~---T--~-----1
!Command! Operation !Address! Flags I TP Code I Count I
~-------+------------------+-------+-------+-------~------+---------~
l l I I I I I
I 1 !Write © © © I Table l CC,SLII 0 I 3 I
I I I I I I I
I 2 !Prepare for I I I I I
I I Receipt of Data I I CC,SLII 0 I 1 I
I I I I I I I
I 3 !Sense I LSEN I CC,SLII 0 I 2 I
I I I I I I I
I 4 !Read Data I Area I CD !Read Data I Length I
L-------.L.-----------------i---~--i---~--i----------~---i _________ J

Command 1: Sends three © 's to set all terminals on the line in
control mode.

Command 2: Indicates to the CPU that data is arriving. (No data
transfer occurs with this command.)

Command 3: Indicates to QTAM whether or not the Prepare command has
completed for STOPLN-STARTLN logic.

command 4: Reads text until the count is exhausted and chains through a
TIC placed after it to the second BRB/CCW in the ring. If a
buffer is not requested for the second BRB/CCW, the PCI flag
causes an interrupt on command 4, and the PCI routine is
entered to obtain a buffer. If the buffer is requested but
not assigned, the TIC command has an invalid address which
causes a program check interrupt. The Line End routine
recognizes this condition and obtains the buffer.

IBM 274A (Basic) - CPU to Terminal

Writ~_Initial:

r-------T------------------T---~--T-------T---------------T---------1
jCommandl operation IAddressj Flags I TP Code I Count I
~-------+------------------+---~--+-------+~-------------+---------~
I I I I I I I
I 1 !Write @ I I I I I
I I followed by 1s I I I l I
I I idle characters I Table I CD I 0 I 16 I
I I I I I I I
I 2 !Write Data I Area I CD !Write Data I Length I
L-------i------------------i---~--i-------i~-------------i _________ J

Command 1: Write @) indicates that the following characters will be
text. Transmission of idle characters insures that the
terminal has time to prepare to receive.

£Q!!!mand £: Writes text until the count is exhausted.

144 DOS QTAM Program Logic Manual

IBM 274B (Basic/Dial) - Terminal to CPU

Read Initial:
r-------T------------------T-------T-------T-~------------T---------1

ICommandl Operation !Address! Flags I TP Code I Count I
~-------+------------------+-------+-------+---------------+---------~

I I I I I I
1 I Disable I I cc, SLI I 0 l 1 I

I I I I l I
2 I Enable I I cc. SLI I Restart l 1 I

I I I I ·l I
3 I Prepare for I I I I I

I Receipt of Data t I cc, SLI I 0 I 1 I
I I I I I I

4 jSense I LSEN I cc.sLII O I 2 I
I I I I l I

5 I Read Data I Area I CD I Read data ,] Length I
-------~------------------~-------~-------~---------------~---------J

Line Input and Output 145

IBM 274B (Basic/Dial} - CPU to ~erminal

~Eit~_Initial:

r-------T------------------T-------T-------T---------------T---------1
!Command! Operation !Address! Flags I TP Code I Count I
~-------+------------------+-------+-------+---------------+---------i
I I I I I I I
I 1 I Disable I I CC, SLI I 0 I 1 I
I I I I I I I
I 2 !Dial I I CC,SLI I 0 I Length I
I I I I I I I
I 3 I write Pad I I I I I
I I Characters I Table I CC, SLI I 0 I 15 I
I I I I I I I
I 4 I write @ I I I I I
I I followed oy 15 I I I I I
I I idle characters I Table I CD I 0 I 16 I
I I I I I I I
I 5 !Write Data I Area I CD !Write Data I Length I
L-------i------------------i-------i-------i---------------i _________ J

~Ei~~-Conversational: Same as Commands 4 and 5 of Write Initial.

g~ad_Initial:

r-------T------------------T---~--T-------T---------------T---------1

tcommandl Operation IAddress1 Flags I TP Code I Count I
~-------+------------------+-------+-------+---------------+---------~
I I I I I I
I 1 !Write @ © @ I Table I CD 0 I 3 I
I I I I I I
I 2 I Write Polling I I I I
I I Character I List I CD 0 I 1 I
I I I I I I
I 3 !Write Space I Table I CC,SLI 0 I 1 I
I I I I I I
I 4 !Read Response I I I I
I I Character I Area I CD Poll Restart I 2 I
I I I I I I
I 5 jRead Data I Area I CD Read Data I Length-21
L-------i------------------i-------i-------i~-------------i _________ J

146 DOS QTAM Program Logic Manual

c

·(· \

_/

Auto Poll Read Initial:

r-------y------------------T--------T------y---------------y---------1
ICommandl Operation !Address !Flags I TP Code I Count I
~-------+------------------+--------+------+---------------+---------~

I I
1 !Write © © @ Table CC,SLI 0 3 I

I I
2 I Poll Any CC,SLI 0 kCn) I

I entry I
I in I
I polling I

list I
I

3 TIC 2nd SLI 0 1
POLL
Command

4 TIC Read

5 Poll

6 TIC

7 Read Response

Response

1st
entry
in
polling
list

CC,SLI 0

I
I
I
I

2nd SLI 0 I
!POLL I
I Command I
I I
I Area CD 1 I
I I

k(n)

1

2

I 8 Read Message Block!Area+l CD 3 I Length-21
L _______ i __________________ i ________ i ______ i~-------------~---------J

Line Input and output 147

IBM 274C (Station Control) - CPU to Terminal

!'!rit~~Initial:
r-------T------------------T---~--T-------T~-------------T---------1

I Command I Operation I Address I Flags I TP Code I Count I
~-------+------------------+-------+-------+---------------+---------1
I I I I
I 1 Write @@©@I Table I CD 0 I 4
I I I I
I 2 Write Addressing I I I
I Character I List I CD 0 I 1
I I I I
I 3 Write Space I Table I CC,SLI 0 I 1
I I I I
I 4 Read Response I I I
I Character I Area I CC Multiaddressingl 1
I I I I
I 5 Write Data I Area I CD Write Data I Length
L-------~------------------~-------~---~--~~-------------~---------

IBM ~24D <station control and Checking) - Terminal to CPU

Read Initial:
r-------T------------------T-------T-------T~-------------T---------1

!Command! Operation !Address! Flags I TP code I Count I
~-------+------------------+-------+-------+---------------+---------1
I I I I
I 1 Write @ © © I Table CD 0 I 3 I
I I I I
I 2 Write Polling I I I
I Character I List CD 0 I 1 I
I I I I
I 3 Write Space I Table CC,SLI 0 I 1 I
I I I I
I 4 Read Response I I I
I Character I Area CD Poll Restart I 2 I
I I I I
I 5 Read Data 1Area+2 CD Read Data I Length-21
L-------~------------------~-------i-------~---------------i _________ J

(
I

"'---

148 DOS QTAM Program Logic Manual

r-------T------------------T--------T------T---------------T---------1
!Command! Operation !Address !Flags I TP Code I Count I
r-------+------------------+--------+------+---------------+---------~
I I I I I I
I 1 Write © © © !Table ICC,SLI(O I 3 I
I I I I I
I 2 Poll !Any ICC,SLI 0 I k(n) I
I I entry I I I
I I in I I I
I !polling I I I
I I list I I I
I I I I I
I 3 TIC I 2nd I SLI 0 I 1 I
I IPOLL I I I
I I command I I I
I I I I I I
I 4 I TIC I Read I l I
I I I Response I I I
I I I I I I
I 5 !Poll (1st ICC,SLI 0 I k(n) I
I I I en try I I I
l I I in I I I
I I I polling I I I
I I I list I I I
I I I I I I
I 6 I TIC (2nd I SLI 0 I 1 I
I I !POLL I I I
I I I command I I I
I I I I I I
I 7 !Read Response !Area I CD 1 I 2 I
I I I I I I
I 8 !Read Message BlockjArea+l I CD 3 I Length-21 L-------i __________________ i ________ i ______ i _______________ i _________ J

gg~sl_i;;.ont_inue:

r-------T------------------T--------T------T---------------T---------1
ICommandl Operation !Address !Flags I TP code I Count I
r-------+------------------+--------+------+---------------+---------~
I I I I I I I
I 1 !Write @ I Table jCC,SLil 0 I 1 I
I I I I I I I
I 2 !Read Data I Area I CD !Read Data I Length I
L-------i------------------i---~---i ______ i _______________ i _________ J

Line Input and Output 149

IBM 274D (Station Control and Checking) - CPU to Terminal

Write Initial:

r-------T------------------T-------T-------T~-------------T---------1

!Command! Operation !Address! Flags I TP Code I Count I
r-------+------------------+-------+-------+---------------+---------~
I I I I I I
I 1 Write © © © @ I Table I CD I 0 I 4 I
I I I I I I
I 2 Write Addressing I I I I I
I Character I List I CD I O I 1
I I I I I
I 3 Write Space I Table I CC,SLII 0 I 1
I I I I I
I 4 Read Response I I I I
I Character I Area I CC IMultiaddressingl 1
I I I I I
I 5 write @ I I I I
I followed by 1s I I I I
I idle characters I Table I CD I 0 I 16
I I I I I
I 6 Write Data I Area I CD !Write Data I Length
L-------~------------------~-------~-------~---------------~---------J

Write continue: same as command 6 of Write Initial.

150 DOS QTAM Program Logic Manual

IBM 274E (Dial, Transmit control and Checking) - Terminal to CPU

Read Initial:
r-------T------------------T-------T-------T---------------T---------1
IComrnandl Operation IAddressJ Flags I TP Code I Count I
t-------+------------------+-------+-------+---------------t---------~

I I I I ! I
1 !Disable I I cc.sLII O I 1 I

I I I I I I
2 I Enable I I SLI I Restart I 1 I

I I I I I I
3 I Write I, space I Table I CC 0 SLI I 0 l 2 I

I I I I l I
4 I Read Response I I I l l

I Character I Area I CD !Poll Restart l 2 J
I I I I I l

5 !Read Data I Area I CD !Read Data l Length-2l
_______ i __________________ ~-------i-------~-~------------i _________ J

g(;;~\'.!_fQ!}_tinue:

r-------T------------------T-------T-------r---------------T---------,
ICommandl Operation !Address! Flags I TP Code I Count I
t-------+------------------+-------+-------+---------------+---------~
I I I I I I I
I 1 !Write ® I Table I CC,SLII 0 I 1 I
I I I I I I I
I 2 !Read Data I Area I CD !Read Text I Length I L _______ i __________________ i _______ i _______ i _______________ L _________ J

Jl§~LE.~ea!:_: Write @ followed oy Command 2 of Read Continue.

Line Input and Output 151

IBM 274E (Dial, Transmit Control and Checking) - CPU to terminal

Write Initial:
r-------T------------------T-------T-------T---------------T---------1
!Command! Operation !Address! Flags I TP Code I count I
t-------+------------------+-------+-------+---------------+---------~

I I I I I I
1 I Disable I I cc, SLI I 0 I 1 I

I I I I I I
2 !Dial I I CC,SLII 0 I Length I

I I I I I I
3 I write pad I I I I I

I Characters 1 Table I CC,SLII O I 15 I
I I I I I I

4 !Write @ I I I I I
I tollowea by 15 I I I I I
I idle characters I Table I CD I 0 I 16 I
I I I I I I

5 !Write Data I Area I CD !Write Data I Length I
-------i------------------i-------i-------i----------~---i _________ J

Write Continue: same as Comrrand 5 cf Write Initial.

Write Conversational: Same as Command 5 of Write Initial.

IBM 274F (Checking) - 'Ierminal to CPU

Read Initial:
r-------T------------------T-------T-------T----------~---T---------1

!Command! Operation IAddressj Flags I TP code I Count I
t-------+------------------+-------+-------+---------------+---------~
l I I I I I I
I 1 !Write © © © I Table I CC,SLII 0 I 3 I
I I I I I I I
I 2 I Prepare for I I I I I
I I Receipt of Data I I CC,SLI I 0 I 1 I
I I I I I I I
I 3 I Sense I LSEN I cc r SLI I 0 I 2 I
I I I I I I I
I 4 !Read Data I Area I CD !Read Data I Length I
L-------i------------------i-------i-------i---------------i---------J

Read Continue: Write Cf> followed by Command 3 of Read Initial.

Read Reoeat: Write @ followed by Comrrand 3 of Read Initial.

152 DOS QTAM Program Logic Manual

IBM,274F (Checking) - CPU to Terminal

~Eit.e Igitial:
r-------T------------------T-------T-------T~-------------T---------1
I Command I Operation I Address I Flags I 'fP code I Count I
t-------+------------------+-------+-------+---------------+---------~
I I I I I I I
I 1 !Write @ I I I I I
I I followed by 1s I I I I I
I I idle characters I Table I CD I 0 I 16 I
I I I I I I I
I 2 !Write Data I Area I CD !Write Data I Length I
L-------i------------------i-------i-------~---------------~---------J

Write Continue: same as command 2 of ~rite Initial.

Write Conversational: The same commands as write Initial.

IBM 274G (Dial and Checking> - ~erminal to CPU

Read Initial:
r-------T------------------T----~-T-~----T-~------------T-~-------1
I command I Operation I Address 1 Flags I TP Code I Count I
t-------+------------------+-------+-------+-~------------+---------~

1

2

3

4

5

Disable

Enable

Write ©@@

Prepare for
Receipt of Data

Sense

I l I
I cc .• SLI 0 I 1 I
I I I
I CC,SLI Restart I 1 I
I I I

Table I cc.sLI o I 3 I
1 I I
I I I
I cc. SLI 0 I 1 I
I l I

LSEN I CC,SLI 0 I 2 I
I l I

6 Read Data Area I CD Read Data I Length I
-------i------------------i----~-i-------i-----------~--i-________ J

Read Continue: Write ® followed by Command 5 of Read Initial.

Read Repeat: Write @ followed by Command 5 of Read Initial.

Line Input and Output 153

IBM 274G <Dial and Checking} - CPU to Terminal

~~!_te Ini!:_!_al:
r-------T------------------T-------T-------T---------------T---------1
jcommandl Operation jAddressj Flags I TP code I count I
!--------+------------------+-------+-------+---------------+---------~

I I I I I I
1 !Disable I I CC,SLII 0 I 1 I

I I I I I I
2 I Dial I I CC, SLI I 0 I Length I

I I I I I I
3 I write pad I I I I I

I Characters l Table I CC,SLII O I 15 I
I I I I I I

4 I write @ I I I I I
I tallowed by 15 I I I I I
I idle characters I Tanle I CD I 0 I 1 I
I I I I I I

5 !Write Data I Area I CD IV.rite Data I Length I
L-------i------------------~-------i _______ i _______________ i _________ J

Write Continue: Same as Command 5 of Write Ir.=..t:_ialo

Write Conversational: same as Commands 4 and 5 of Write Initial.

154 DOS QTAM Program Logic Manual

c . IBM 274H {Dial and Transmit Control) - Terminal to CPU

Read Initial:
r-------T------------------T-------T-------T---------------~---------1

ICommandl Operation IAddressj Flags I TP Code J Count I
~-------+------------------+-------+-------+---------------+---------i
I I I I I l I
I 1 !Disable I I CC,SLII 0 I 1 I
I I I I I I I
I 2 I Enable I I SLI I Restart I 1 I
I I I I I I l
I 3 jWrite /,space I Table J CC.,SLII 0 I 2 I
I I I I I I I
I 4 !Read Response I I I I I
I I Character I Area I CD !Poll Restart I 2 I
I I I I I I I
I 5 !Read Data 1Area+2 I CD jRead Data I Length-21
L-------~------------------~-------~-------~---------------~---------J

IBM 274H {Dial and Transmit Control) - CPU to Terminal

Write Initial:
r-------T------------------T-------T-------T---------------T---------1
IComrnandl Operation IAddressl Flags I TP Code J Count I
~-------+------------------+-------+-------+---------------+---------~
I I I I I i I
I 1 I Disable I I cc,, SLI I 0 l 1 I
I I I I I I I
I 2 I Dial I I CC.,SLI I 0 I Length I
I I I I I I I
I 3 I Write Pad I I I I I
I I Characters I 'Iable I cc, SLI I 0 I 15 l
I I I I I I J
I 4 jWrite Data I Area I CD !Write Data I Length I
L-------~------------------~-------~-------~---------------~---------J

Write Conversational: Same as Command 4 of Write Initial.

World Trade Telegrapn Terminals

The channel programs for terminal-to-CPU transmission {Read Initial and
Read Continue) and for CPU-to-terminal transmission {Write Initial) are
made up of two parts:

• The first part {identification-exchange channel program) is an inner
channel program automatically associated with the second part to
perform identification sequence exchanges, whenever requested,
during message transmission.

• The second part {Read or Write channel program proper) is set up to
receive input messages or to send output messages.

Read Initial: A Read Initial is issued to enable the CPU to receive a
character sent by the terminal. The channel program is:

Line Input and output 155

r-------T------------------T-------T-------T---------------y---------1
I Command I Operation I Address I Flags I TP Code J Count I
t-------+------------------+-------+-------+---------------+---------t
I I I I I I I
I 1 !Write CPU-ID I I I f I
I I sequence (Note 5)1 List I CD SLII 5 I n I
I I I I I I I
I 2 !Write (Note 3) I WRU I cc SLII O I 1 I
I I I I I I I
I 3 !Read Terminal- I I I I I
I I ID (Note 6) I List I SLI I 5 I Length-11
t-------+------------------+-------+-------+---------------+---------t
I I I I I I I
I 4 I Prepare I 0 I CC SLI I 0 I 1 I
I I I I I I I
I 5 !Sense (Note 1) I LSEN I cc SLII O I 1 I
I I I I I I I
I 6 I Read I Area I SLI I 3 I Lt;mgth I
L-------i-------------------'-------i-------i---------------i---------J

Read Continue: A Read continue is issued after an EOM signal to read
the next input message. or after a WRU signal to read the rest of the
input roessage. The channel program is:

r-------T------------------T-------y-------T---------------,----------1
I I I I I I I
I command I Operation I Address I Flags I TP Code J Count I
t-------+------------------+-------+-------+---------------+---------~
I I I I I I I
I 1 I Write CPU- ID I I I I I
I I sequence (Note 5)1 List I CD SLII 5 I n I
I I I I I I I
I 2 !Write (Note 3) I WRU I cc SLII O) 1 I
I I I I I I I
I 3 f Read Terminal- I List I SLI I 5 I Length-1)
I I ID <Note 6 > I I I l I
t-------+------------------+-------+-------+---------------+---------~
I I I I I I I
I 4 !Read I Area I SLI I 3 I Length I L-------i------------------i _______ i _______ i _______________ i _________ J

write Initial: A Write Initial is issued to send an output message.
The channel program is:

156 DOS QTAM Program Logic Manual

./

c

!r

(-~--\ ..
i

" __ ,//

r-------T------------------T-------T-------T---------------T---------1
I I I I I l I
jCommandl Operation jAddress! Flags I TP Code I Count I
~-------+------------------+-------+-------+---------------t---------i

I I I I I
1 !Write (Note 2) I Table I CD SLI 5 I l+m I

I I I I I
2 jWrite (Note 3) I Table I CD SLI 5 I 12 I

I I I I I
3 I TIC (Note 4 > I I l I

I I I l I
4 !Write CPU-ID I List I CD SLI 5 I n I

I sequence <Note 5) I I I I
I I I I I

5 jWrite (Note 6) I WRU I CC SLI 0 I 1 I
I I I I I

6 jRead Terminal-ID I List I SLI 5 I Length-11
I C Note 7 > I I t I

~-------+------------------+----~-+-------+---------------+---------i
I I I I I J I
I 7 I Write I Area I SLI I 3 I Length I
L-------~------------------~----~-~-------~---------------~---------J

Note 1: LSEN is the address of the sense byte in the LCB. This byte is
set to X'FF' before the Read Initial channel program is set up. When
the SENSE command is executed (that is, when the terminal starts sending
an input message), the LSEN byte is overlaid by the adapter sense byte.

Note 2: One LTRS character is sent which may be followed by "m" padding
characters if the line is defined as an output line only with the
"motor-off" option.

Note 3: Twelve (12) LTRS characters must be sent at the beginning of
each output message.

Note 4: The transfer address in the TIC CCW is that of ccw no. 3 or
that of CCW no. 6, depending on whether or not the WRU macro instruction
is present in the Send-Header subgroup of the LPS.

Note 5: The computer identification (CPU-ID) defined in the POLL macro
instruction associated with the line is sent to the terminal .•

Note 6: When the Automatic Answerback Unit feature is installed on the
terminal, the CPU sends the WRU signal to the terminal which, in turn.
sends its identification sequence to the CPU.

Note 7: The terminal identification is read into the area reserved by
the TERM macro instruction associated with the line.

LINE-PC! AND PROGRAM CHECK MODULE

Module Nam~: IJLQLC (Chart LB)

Entry: This module is entered from IJLQLA when a PCI or CPC has
occurred.

This module disposes of the buffer filled or emptied by the channel
command preceding that which caused the PCI, and places a request for
the buffer that is to be emptied or filled by the ccw when it is again
encountered in the ring.

Line Input and Output 157

Graphically:
r---------T--------1
I I I
I READ @ I TIC I L---------i-- ____ J

r---------T--------1
I I I

. READ ® I TIC I L---------i___ _ ___ J

r---------T--------1
I I I
I READ © I TIC I

I I L _________ i ________ J

This ccw-pair filled
buffer@, which is
to be disposed of.

This ccw-pair is
filling bUffer @and
caused the PCI.

This CCW-pair will
fill buffer@, which
must now be obta~ned.

For receive operations, buffer @ is routed to the Interim-LPS
~ueue. If the line is an Auto Poll line, the first byte in this buffer
contains the index of the responding terminal in the polling list and is
used to update the polling list pointer in the LCB. (If the index is
not that of the terminal on which the polling operation was started, the
message count is reset to zero in the LCB.) For send operations, the
buffer is routed to the Available-Buffer queue. In either case, the
request for buffer (£) is routed to the Active Buffer Request queue.

This module may also be entered as a result of a program check
occurring because a buffer was not provided on time. or because a CCW
with a zero data count was accessed. The two low-order bits of the TIC
command in each BRB/CCW indicate BRB status. When a buffer has been
allocated, these hits are set to zero. Because of timing
considerations, a PCI flag in the CCW preceding a CCW containing a TIC
may not interrupt the channel program before the transfer-in-channel
command is accessed. If this happens before the required buffer has
been allocated and the BRB status code has been cleared. the requirement
that the TIC address be on a doubleword boundary is violated by the
nonzero low-order bits and a program check occurs. Four possibilities
arise:

1. The check occurred on the TIC following the CCW for the last
segment of an outgoing message. This is a normal situation and is
ignored. (The missing buffer is for the "next" segment and there
is no next segment.) If this is not the case, the "start channel
program" pointer (IJLQLCPA) is reset to the CCW to which the TIC
command was to have transferred control; this anticipates
correction of the condition.

2. It is possible that through asynchronous operations a buffer was
allocated, and the TIC address made valid, in the period between
the program check's generation and its detection by the program.
If this is true, the channel program is simply restarted.

3. The process of allocating a buffer may already have been initiated;
if so, the routine exits to the Supervisor to allow time for the
process to complete.

4. If the process of allocating a buffer has not already been
initiated, the routine branches to the Line-PC! routine (at NOTINQ)
to release the buff er filled by the CCW immediately preceding the
TIC that caused the program check.

158 DOS QTAM Program Logic Manual

/

/

\.

c .

LINE APPENDAGE MODULE

Module Name: IJLQLA (Chart EG-EN)

Entry: This appendage is entered from the supervisor.

1. When a proqrammed-controlled interrupt (PCI) or channel program
check CCPC) occurs during the execution of QTAM channel command for
the line.

2. When a channel end occurs during line I/O operation.

When entered because of a PCI or CPC, control is passed to IJLQLC
after initialization of the register.

Normally the routine routes a message-filled buffer to the LPS queue
or exits to the supervisor to restore the channel program.

When it is entered because of a negative response to polling, the
routine resets the polling-list pointer to the next entry in the polling
list before initiating restart. If the end of the polling list has been
reached, the routine sets the "cleanup" code in the LCB (LSTA = X'BO').

For autopolled lines, when it is entered because the end of the
polling list is reached (the channel program must have been previously
modified to allow this interruption), the routine sets the LCB polling
list pointer to the dummy "end-of-list" entry and sets on the LCB
cleanup code.

Error recovery procedures are provided to perform tests on the status
and sense bits to determine if a transmission error occurred on the
operation. If so, the routine branches to an appropriate subroutine
which attempts to recover from the error.

Generally, if there has been no text transfer, the channel program is
retried. If there is an error after three attempts to execute the
channel program, the error is considered permanent. If a timeout or
intervention required error occurs on a switched line, the csw is saved
in the LSAV field of the LCB. A CCW to disable the line is set up as
the first ccw in the channel program. A disable return CX'BO'> is set
in the LERR+l field of the LCE, and exit is made to the supervisor to
execute the disable.

A condition that should not happen is also considered a permanent
error, and the •should not occur• bit, bit 7, is set in the error
halfword in the LCB.

For all permanent errors, a message is written to the operator. The
routine executes a branch-and-link to the Message Writer subtask
CIJLQMW), passing parameters in standard registers. The Message Writer
subtask builds an information block from the information in the LCB, and
inserts a dummy ECB at the top of the Ready Queue, then returns to the
Line Appendage routine. The routine releases the LCB and issues a QPOST
to free the buffer. LPS Control recognizes the dummy ECB, and either:

1. Issues a FETCH (SVC 2) to call Phase 1 of the Message Writer routine
into the transient area, passing the address of the information
block in register O, or

2. If the Message Writer is presently writing a message, stacks the
message in a save area, issues a QPOST to post a dummy element to
itself with a low priority, and exits to Qdispatch. When the
Implementation module regains control, it again tests to determine
if the Message writer is occupied and repeats the sequence.

Line Input and Output 159

For certain types of error (data check, intervention required, and
nontext timeouts), threshold line error counters are added to the
cumulative counters, the threshold counters are resetf and an operator
message is provided.

Error Recovery Procedure Subroutines

For all channel status errors except unit exception (attention. status
modifier, control unit end, program check, protection check,,, channel
data check, channel control check. interface control check or chaining
check), no retry is performed and an error message is immediately sent.

A unit exception on a read, read response to poll, or enable is
handled as other channel status errors. A unit exception on a write
command is retried two times, with these exceptions:

1. If a Teletype I adapter is on the line, a break command is issued
and it is treated as a permanent error. No message is sent.
however, unless the error occurred on the second retry.

2. If an IBM 2701 terminal control unit is on the line~ a read skip is
issued and return is to the Read Skip subroutine (see Read Skip
Subroutine).

3. If a World Trade Telegraph Adapter is on the line, there is a
contention situation. A break command is issued, and on completion
of this command the write command is retried.

When a unit check occurs, a SENSE command is issued to obtain the
sense bits. Upon return, these bits are tested to determine which of
the following subroutines to enter.

Data Check subroutine: Generally, the channel program is retried two
times. If it fails three times, it is treated as a permanent error: An
error message is sent, and the line is handled as if it had returned a
negative response to polling.

If there was a text transfer, it is treated as a permanent error, but
no error message is sent unless other errors have occurred on the same
channel program.

If a World Trade Telegraph Adapter is on the line, two conditions can
occur:

1. If the failing CCW is a write, there is a contention situation. A
break command is issued, and on completion of this command the write
command is retried.

2. If the failing ccw is a break~ the command is retried 15 times,
after which it is treated as a permanent error.

If the failing ccw is a write on a line with any but a Teletype I
adapter, the "should not occur" flag is set in the error halfword, and
it is treated as a permanent error.

If a permanent error occurs when an IBM 2701 terminal control unit is
on the line, a Diagnostic Write/Read is performed. If the Diagnostic
Write/Read does not complete successfully, bit 13 is set in the error
halfword.

160 DOS QTAM Program Logic Manual

A data check causes the threshold line error counter for data checks
to be incremented. 'Ihe counter is incremented for each nontext failure
(except "should not occur• errors>. including both retries.

Timeout subroutine: Generally, the channel program is retried two
times. If it fails three times. it is treated as a permanent error: An
error message is sent and the line is handled as if it had returned a
negative response to polling.

If there was a text transfer, it is treated as a permanent error, but
no error message is sent unless this is a return from a third retry.

For a read response to polling on a TWX terminal. it is treated as a
permanent error. but no error message is sent.

For a read response to polling on any other switched terminal:

1. If receiving, retry is started with the third ccw.

2. If sending, the first ccw is set to a disable and retry is started
on the first ccw. If the failing CCW is a prepare., retry is started
with the prepare ccw. For all other cases involving retry. retry is
started on the first ccw ..

A timeout causes the threshold line error counter for timeouts to be
incremented. The counter is incremented for each failure. including all
retries.

cf Intervention Required Subroutine: Generally, the channel program is
:.1 retried two times. If it fails three times. it is treated as a
·~- permanent error: An error message is sent, and the line is handled as

if it had returned a negative response to polling.

If there was a text transfer, the timeout bit, bit 9 6 is set in the
error halfword and it is treated as a permanent error, but no message is
sent unless this is a return from a third retry. If this occurs on a
switched line, a disable is issued to break the connection.

An intervention required error causes the threshold line error
counter for intervention required errors to be incremented.. The counter
is incremented for each failure, including all retries.

Lost Data Subroutine: Generally. the channel program is retried two
times. If it fails three times. it is treated as a permanent error: An
error message is sent, and the line is handled as if it had returned a
negative response to polling.

If the failing ccw is not a text transfer, the channel program is
retried, starting at the first ccw for a nonswitched line and starting
at the third CCW for a switched line.

If the failing CCW is a text transfer and the residual count is not
equal to 0, it is treated as a permanent error.

If the failing ccw is a text transfer and the residual count is equal
to 0, a read skip co~mand is executed, and return is to the Read Skip
subroutine .•

Line Input and Output 161

Bus Out and Overrun Subroutine: Generally. the channel program is
retried two times. If it fails three times, it is treated as a
permanent error: An error message is sent, and the line is handled as
if it had returned a negative response to polling.

If a bus out check has occurred on a write ccw, the subroutine tests
if:

1. The next CCW is a read, or

2. A type III adapter is on the line.

If either is the case, a read skip is executed. Subsequent actions
taken are the same as those taken following execution of a read skip in
the Lost Data Subroutine.

If a bus out check has occurred on a write ccw and either a type I or
type II adapter is on the line, it is considered a permanent error but
no message is sent.

If a bus out check has occurred on a CCW that is not text transfer,,
the channel program .is retried. For a TWX terminal, retry must start
with the first ccw. For any other switched terminal, retry starts with
the third ccw, bypassing the disable-dial ccws.

If a bus out check has occurred on a dial ccw, retry must begin with
the first ccw.

For an overrun check on a text transfer CCW, the retry counter in the
error halfword (bits 14 and 15) is updated and retry is performed.

For an overrun check on a CCW that is not text transfer, the channel
program is retried. For a TWX terminal, retry must start with the first
ccw. For any other switched terminal, retry starts with the third ccw~
bypassing the disable-dial CCWs.

Command Reject and Equipment Check Subroutine: If the error is a
command reject, the channel program is retried two times. If it fails
three times, it is treated as a permanent error: An error message is
sent, and the line is handled as if it had returned a negative response
to polling.

If the error is an equipment check, the "control unit failure" bit,
bit 13, is set in the error halfword. For a switched line, the line is
disabled. The condition is considered a permanent error.

Read Skip Subroutine: This subroutine is entered on return from issuing
a read skip in one of the other error subroutines.

The status bytes from the read skip are tested for any errors, and
the sense bytes are tested for command reject, bus out check, equipment
check, overrun or residual count equal to 0. If any of these conditions
has occurred, the "should not occur" bit, bit 7, is set in the error
halfword, and it is treated as a permanent error. Otherwise, the sense
byte of the read skip is saved and the original sense byte and csw are
restored.

If the original error was on a switched line, a test is made to
detern:ine if a tin:eout or intervention required error occurred on the
read skip. If yes, the line is disabled and it is treated as a
permanent error.

162 DOS QTAM Program Logic Manual

If no, a test is made to determine if the original error was on a
text transfer. If yes, it is treated as a permanent error but no
message is sent. If no, retry is performed.

If the original error was on a nonswitched line, a test is made to
determine if it was the third error. If yes, it is treated as a
permanent error.

If no, a test is made to determine if a timeout or intervention
required error occurred on the read skip. If yes, an indicator is set
for the End of Block and Line Correction routine to perform reselection.
If no, the indicator is not set. Both cases are treated as permanent
errors but no message is sent.

DECISION TABLES FOR ERROR RECOVERY PROCEDURES

Flowcharts are not provided for error recovery procedures within the
Normal Line End Appendage and ERP module CIJLQEP). The following
decision tables can be used to determine what action is taken for the
various errors that may occur.

1f Table 1. Initial Selection Errors
{

r----------------------T---------,
I conditions I Actions I
~----------------------+---------i
I I I
I Attention I B I
I I I
I Control Unit End I B I
I I I
I Status Modifier I B I
I I I
I Unit Check I I
I Bus Out Check I c I
I command Reject I c I
I I I
I Any other Abnorroal I I
I Status or Sense I B I
L----------------------~---------J

(/

Line Input and output 163

Table 2. Errors After Initial selection

r----------T---------~------------------------r--------------1
!Priority I Status Conditions I Action I
~----------+---------------------------------+--------------~
I I I I
I 1 I Channel Data Check I D I
I I I I
I 2 I Busy I D I
1. I I I
I 2 I Attention I D I
I I I I
I 2 I Control Unit End I D I
I I I I
I 2 I Status Modifier I D I
I I I I
I 3 I Unit Check jsee Table 3 I
I I I I
I 4 I Chaining Check I D I
I I I I
I 4 I Program Check I D I
I I I I
I 4 I Protection Check I D I
I I I I
I 5 I Unit Exception !See Table 4 I
I I I I
I 6 I Incorrect Length I D I
L----------~---------------------------------.L--------------J

Table 3. Sense Byte Analysis

r----------T---------------------------------~-------------1
I Priority I sense Bit I Action I
~----------+---------------------------------+--------------i

I I
1 I Equipment Check I D

I I
2 J Lost Data 1see Ta~le 5

I I
3 I Time out !See Table 6

I I
4 I Intervention Required !See Table 7

I I
5 I Bus Out Check !See Table 8

I I
6 I Data Check jSee Table 9

I I
7 I overrun jsee Table 10

I I
8 I command Reject I C I __________ i _________________________________ J_ _____________ J

164 DOS QTAM Program Logic Manual

'""--

(

\..

c

c . .
Table 4. Unit Exception

r----------T---------------------------------T--------------1
I Command I Device Type I Action I
r----------+---------------------------------+--------------1
I I I I
!WRITE I 83B3,115A I E I
I I I I
!WRITE I World Trade telegraph terminal I N I
I I I I
!WRITE I All Others I F I
I I I I
I ALL OTHERS' All I D I
l __________ i _________________________________ ..._ _____________ J

Table 5. Lost Data

r----------T---------------------------------T--------------1
I Command I Type I Action I
r----------+---------------------------------+--------------1
I l I I
IDIAL I I G I
I I I I
I READ I TWX ID Response I G I
I I I I
IREAD l TEXT I !I I
I I I I
I READ I All Others I C I
I I I I
IALL OTHERS! All I D I
l __________ i _________________________________ ..._ _____________ J

Table 6. Time Out

r----------T---------------------------------T--------------1
!Command I Type I Action I
r----------+---------------------------------+--------------1
I I I I
IDIAL I I G I
I I I I
DISAELE I I c I

I I i
PREPARE I I c

I I
READ I TEXT I J

I I
READ I TEXT Response I J

I l
READ I TWX ID R~sponse I M

I l
READ I All Others I I

l I
I ALL OTHERS I All I D
l __________ i _________________________________ ..._ ____________ _

Line Input and Output 165

Table 7. Intervention Required

r----------T---------------------------------T----------~---,

I Command I Type I Action I
t----------+---------------------------------+--------------~
I I I I
IDIAL I I G I
I I I I
I PREP ARE I I G I
I I I I
I WRITE I I D I
I I I I
I READ I Prior to Text I I I
I I I I
I READ I Text or After I J I
I I I I
I ALL OTHERS I All I D I
L----------~--------------------------~------~--------------J

Table 8. Bus Out Check

r----------T--------------------------------~T--------------1
I Command I Type I Action I
t----------+-------------~-------------------+--------------~
I I I I
IDIAL I I G. I
I I I I
I WRITE I TEX'I (IBM Adapter 'Iypes 1" 2, 3) I F I
I I I I
I WRITE I TEX'I - All Others I J I
I I I I
I WRITE I Prior to Text I I I
I I I I
IWRITE I After 'Iext l C I
I l I I
IALL O'IHERSI All I D I
L----------~--------------------~-----------~--------------J

Table 9. Data Check

r----------T---------------------------------r--------------,
I Command I Type I Action I
t----------+---------------------------------+--------------~
I I I I
!WRITE I All except world Trade I I
I I telegraph terminals I K I
I I I I
!WRITE I World 'Irade telegraph terminal I N I
I I I I
!BREAK I World Trade telegraph terminal I O I
I I I I
I READ I TWX ID Response I G I
I I I I
!READ l TEXT I L t
I I I I
I READ I Response to Text I L I
I I I I
I READ I All Others I I I
I I I I
IALL OTHERS! All I D I
L----------~--------------------~-----------~--------------J

166 DOS QTAM Program Logic Manual

C'
'

Table 10. overrun

r----------T---------------------------------,--------------1
!Command I Type I Action I
~----------+--------------------~-----------+--------------~
I I I I
I READ I TWX ID Response I G I
I I I I
I READ I Prior to Text I I I
I I I I
I READ I Text or After I L I
I l I I
!ALL OTHERS! All I D I
L----------~---------------------------------..L.-------------J

ACTIONS

A An intervention required message is provided indicating that the
device is unavailable; for example, control unit has power off.

B The failing ccw is retried. on the third occurrence of this
condition an operator message is provided indicating a "should not
occur• error.

c The failing ccw is retried. On the third occurrence of this
condition an operator message is provided.

D An operator message is provided. If the error occurred on a switched
line, a disable ccw is executed before return.

E A Break command is issued and the initial channel program is
executed. On the third occurrence of this condition, an operator
message is provided.

F A Read skip corrmand is issued and an initial channel program is
executed. On the third occurrence of this condition. an operator
message is provided.

G The channel program is retried. On the third occurrence of this
condition, the line is disabled and an operator message is provided.

H If the residual count is not 0, go to action D. If the residual
count is o, a Read skip command is issued and an initial type channel
program is executed if EOBLC has been specified. On the third
occurrence of this condition, an operator message is provided.

I The channel program is retried after the Dial or Enable sequence. if
present. On the third occurrence of this condition, an operator
message is provided.

J An initial channel program is executed if EOBLC has been specified.
On the third occurrence of this condition an operator message is
provided.

K For Teletype Type I adapters go to action I. Otherwise a Diagnostic
Write/Read operation is performed on nonswitched lines if the control
unit is a 2701, and an operator message is provided.

L A repeat channel program is executed if EOBLC has been specified. On
the third occurrence of this condition an operator message is
provided.

Line Input and Output 167

M The error is ignored and return is made to normal processing.

N A contention situation occurred. A break command chained to a write
command (Carriage return plus Line Feed) is issued.

o The break command is retried 15 times before the error is treated as
a permanent error and a message is sent to the operator.

AUDIO LINE APPENDAGE MODULE

Module Name: IJLQAA

Entry Point: This appendage is entered from the Supervisor at IJLQAA

1. when a program-controlled interrupt (PCI) occurs during the
execution of a 7772 channel command for the line; or

2. when a channel-end condition occurs during an I/O operation.

Entry from the Supervisor is into an analysis subroutine which
determines whether the 7772 Line PCI routine or the Audio Line-End
routine is to be executed. The ARO-Internal, ARU-Receive. and ARU-Send
routines packaged in the Audio Line Appendage module are discussed
first.

ARU-Internal Routine (Chart Al)

This routine is entered at IJLQAA70 in problem program state through a
branch generated on expansion of a CHECKARU or REPEAT macro. The ALCB
containing a user-provided address chain is posted Cvia an SVC 31) to
the ARU-Send queue before return is made to the beginning of the LPS
control routine Cat IJLQIP20).

ARU-Receive Routine (Chart Al)

This routine is entered at IJLQAA20 in problem program state through a
branch generated on expansion of a POSTARU macro. The ALCB priority is
set to X'FC', and the ALCB containing an input message is posted (via an
SVC 31) to the corresponding MS process queue defined in the message
processing prograrr. for the GET audio messages. When the message
processing program is not opened, the ALCB is queued in an ALCB waiting
chain located in the expansion of the corresponding PROCESS macro
instruction. In any case, this routine exits to the beginning of the
LPS control routine Cat IJLQIP20).

ARU-Send Routine (Chart A2)

This routine is entered on activation of the ARU-Send subtask at
IJLQAA51+6 when an ALCB containing a user-provided address chain is
posted Cvia an SVC 31) to the ARU-Send queue by the ARU-Internal or the
Audio PUT routine. The routine is also entered when an ALCB
representing a 7772 line requiring an initial write operation is posted
Via a branch to the POST subroutine) to the ARU-Send queue by the Audio
Line End routine.

168 DOS QTAM Program Logic Manual

(\
/ Depending on the type of audio line6 the routine performs the

following functions. For a 7770 line, it updates the ALCB channel
program before branching to the Audio Line-End routine to request a
Start I/O operation on the line. For a 7772 line, it first checks if a
DCV buffer pool has been provided for the line group. If not, the
routine branches to the 7772 Disk Read routineo If yes. a DCV buffer is
required. When no DCV buffer is available, the 7772 ALCB is queued in
the ALCB wa1ting chain of the DCV buffer queue, and the address of the
7772 DCV Buffer subtask is placed in the subtask field of this queue (if
this has not been formerly done by a previous ALCB in this chain>.
Then, the routine exits to the Qdispatch subroutine. When a DCV buffer
is available, it is dequeued from the element chain of the DCV buffer
queue and allocated to the ALCB. Then, the routine branches to the 7772
Disk Read routine.

IBM 7772 Line PCI Routine (Chart A3)

This portion of the Audio Line Appendage is entered from an analysis
subroutine when a program controlled interrupt (PCI) has occurred during
the execution of a read or write channel command for a 7772 line.

When the PCI has occurred on a write command, this routine branches
to the 7772 Disk Read routine to prepare the sending of the next DCV
word. When the PCI has occurred on a read command, with or without a
channel-end condition, the following action is taken.

• No channel-end: If a DCV buffer was allocated to the 7772 ALCB, it
is posted to the DCV buffer queue via a branch to the QPOST
subroutine. If not, the routine branches to the Qdispatch
subroutine.

• Channel-end on reception of a nonconsistent message (no input
character, or an EOT character only): The channel program is
updated for a Disable command, the status of the ALCB is set to
indicate DISABLE (LSTS=X'04')• and the routine branches to the Audio
Line-End routine to request a Start I/O operation on the 7772 line.

• Channel-end on reception of a consistent message: The length of the
input message is computed, then stored in the ALCB, and the status
of the ALCB is set to indicate READ (LSTS=X'02'). When a 7772 DCV
buffer was allocated to the ALCB, the exit to the Qdispatch
subroutine is changed to return to the 7772 Line PCI routine at the
SPECIAL entry, and this DCV buffer is posted to the DCV Buffer queue
via a branch to the POST subroutine. When no DCV buffer was
allocated, or when the 7772 Line PCI routine is reentered at
SPECIAL, the routine branches to the Audio Line-End routine to post
the ALCB to the LPS queue for input processing.

Audio Line-End Routine (Charts A4* A5)

This portion of the Audio Line Appendage consists of two subroutines
entered from the analysis subroutine (Chart A3) when a channel-end
condition occurs during the execution of a channel command for an audio
line.

IBM 7770 Line-End subroutine (Chart A4): Depending on which channel
command causes the channel-end condition, the subroutine function is as
follows:

Line Input and Output 169

• On a Disable command, the subroutine updates the channel program
according to initial conditions and sets the status of the ALCB to
indicate ENABLE (LSTS=x• 01' >. If the line must be stopped,0 exit is
made to the Qdispatch subroutine. If not, the ALCB representing an
enable request is posted to the LPS queue via a branch to the POST
subroutine.

• On a Read command when a nonconsistent message (no input character
or an EOT character only) is received, the subroutine updates the
channel program to prepare the disabling of the line and sets the
status of the ALCE to indicate DISABLE (LSTS=X'04'). Then0 the ALCB
representing a disable request is posted to the LPS queue via a
branch to the POST subroutine.

• On a Read command when a consistent message is received, the
sqbroutine computes the length of the input message.8 stores it in
the ALCB, and sets the status of the ALCB to indicate READ
(LSTS=X'02'). If an overlength condition is detected, the
overlength bit is set on in the ALCB error byte. Then, the ALCB
representing an input message to be processed by the user's LPS
routines is posted to· the LPS queue via a branch to the POST
subroutine.

IBM 7772 Line-End Subroutine (Chart AS):
command causes the channel-end condition,
follows. (The simultaneous occurrence of
in IBM 7772 Line PCI Routine.)

Depending on which channel
the subroutine function is as
a PCI condition is described

• on an Enable command, the subroutine updates the channel program
according to the initial write condition and sets the status of the
ALCB to indicate WRITE AFTER DISABLE (LSTs=x•10•>. Then, the ALCB
is posted to the ARU Send queue via a branch to the POST subroutine
to send the invitional or informational message.

• On a Disable command, the subroutine updates the channel program
according to initial conditions, sets the status of the ALCB to
indicate DISABLE (LSTS=X'04 1) 0 and, if a DCV buffer was allocated to
the ALCB, returns this buffer to the DCV buffer queue. Then, the
ALCB representing an evable request is posted to the LPS queue via a
branch to the POST subroutine. When the subroutine detects that the
line must be stopped after an Enable command, the disabling of the
line is prepared. If this is detected after a Disable command, the
enabling of the line is not requested.

• On a Read command, the subroutine computes the length of the input
message, stores it in the ALCB, sets the status of the ALCB to
indicate READ (LSTS=X'02'), and, if an overlength condition is
detected, sets on the overlength bit in the ALCB error byte. Then,
the ALCB representing an input message to be processed by the user•s
LPS routines is posted to the LPS queue via a branch to the POST
subroutine. When the input message is nonconsistent, the disabling
of the line is prepared and the ALCB posted to the LPS queue
represents a disable request.

Audio Error Recovery Procedures

The audio error recovery procedures are provided to perform tests on the
status and sense bits to determine if a transmission error occurred on
the operation. If so, the routine attempts to recover from the error.

Generally, if there has been no data transfer, the channel program is
retried. if there is an error after three attempts, the error is

170 DOS QTAM Program Logic Manual

i(

considered permanent. A condition that should not happen is considered
a permanent error, and the csw is saved in the LACF field of the ALCB.
A disable CCW is prepared and exit is made to the supervisor to execute
the disanle.

For all permanent errors, a message is written to the operator on the
system console. 'Ihe routine executes a branch-and-link to the Message
Writer subtask (IJLQMW), passing parameters in standard registers. The
Message Writer subtask builds an information block from the information
in the ALCB, and inserts a dummy ECB at the top of the Ready Queue, then
returns to the Audio Line Appendage routine. The LPS Control routine
recognizes the dummy ECB, and either:

1. Issues a FETCH (SVC 2) to call the Audio Message Writer routine
(IJLQWA) into the logical transient area, passing the address of
the information block in regioter 0, or

2. If the Message Writer is presently writing a message, the message
is stacked and the availability of the Message Writer will be
tested each time the Implementation module regains control.

For each transmission, the threshold line error counters are updated6

and if one of therr reaches its threshold value, these counters are added
to the cumulative counters, the threshold counters are reset, and an
operator message is provided.

For the errors occurring on read commands (channel data check or
overrun) the "error on read" bit (X"20') is set in the line error byte.

For all channel status errors except unit exception (program check,
protection check, chaining check, or channel data check) no retry is
performed and an error message is immediatly sent.

A unit exception detected on a read or write command is not an error.,,
but indicates the caller is not expecting the end of the transaction.

When a unit check occurs, a SENSE command is issued to obtain the
sense bits. Upon return, these bits are tested to determine which
action is to be performed.

DECISION TABLES FOR AUDIO ERROR RECOVERY PROCEDURES

Charts are not provided for error recovery procedures within the Audio
Line Appendage module (IJLQAA). The following decision tables can be
used to determine what action is taken for the various errors that may
occur.

Table 11. Initial Selection Errors

r----------------------------------T------1
I Conditions I Action I
~----------------------------------+------~
!Unit Check I I
I Bus out Check I A I
I Command Reject I A I
I I I
!Any other Abnormal Status or Sensel B I
L----------------------------------~------J

Line Input and Output 171

Table 12. Errors After Initial Selection

r--------T-----------------------------T-----~-------1
IPrioritylStatus Conditions I Action I
~--------+----------------------~-----+--------------i
I 1 Channel Data Check I See Table 3 I
I I I
I 2 Unit Check !See Table 4 I
I I I
I 3 Protection Check I c I
I I I
I 3 Program Check I c I
I I I
I 3 Chaining Check I c I
I I I
I 4 Incorrect Length I C I
I I I
I 5 Any other Abnormal Status I c I

L--------i-----------------------------i--------------J

Table 13. Channel Data Check

r--------T----------------------~-----T-----~-------1
I Command I Control Unit Type I Action I
~--------+-----------------------------+--------------i
!READ 17770, 7772 I D I
I I I I
I WRITE 17770 I E I
I I I I
I WRITE 17772 I F I

L--------i----------------------~-----i--------------J

Table 14. Sense Byte Analysis

r--------T----------------------~-----T--------------1
I Priority I Sense Conditions I Action I
~--------+-----------------------------+--------------i
I 1 Equipment Check I C I
I I I
I 2 Bus Out Check (not alone) I I
I WRITE (7770) I E I
I WRITE (7772) I F I
I READ I c I
I I I
I 3 Data Check (not alone) I I
I WRITE (7770) I E I
I OTHERS I c I
I I I
I 4 overrun I I
I WRITE (7770) I E I
I WRITE (7772) I c I
I READ I D I
I I I
I 5 All other sense Conditions I C I
L--------i-----------------------------i-----~-------J

ACTIONS

A. The failing ccw is retried. On the third occurrence of this
condition an operator message is provided and a disable CCW is
executed before return.

172 DOS QTAM Program Logic Manual

/f ,
\~ /

B. The failing CCW is retried. On the third occurrence of this
condition an operator message is provided indicating a "should not
occur" error and a disable ccw is executed before return.

c. An operator message is provided and a disable ccw is executed before
return.

D. An operator message is provided and return is made to normal
processing.

E. An operator message is provided. A noise message is sent on the
line before restarting the channel program on the command chained to
the failing write command.

F. An operator message is provided. The channel program is restarted
on the command chained to the failing write command.

WTTA LINE APPENDAGE MODULE

Module Name: IJLQTA {Charts Yl, Y2, and Y3)

Entry points: This appendage is entered from the Supervisor

1. when a prograF-controlled interrupt {PCI) occurs during the
execution of a QTAM channel command for the line: or

2. on channel-end during I/O operations.

Furthermore, this appendage can be re-entered from the QTAM Line
Appendage routine IJLQLA.

The WTTA Line Appendage is composed of the following two routines:

• The WTTA Line-PCI routine

• The WTTA Line-End routine

WTTA LINE-PCI ROUTINE

The WTTA Line-PCI routine is entered when a program-controlled
interrupt (PCI) occurs during execution of a QTAM channel command for
the line.

If the interrupted channel command is a Write ccw or a Read ccw with
a residual count in the csw different from the initial count, control is
returned to the QTAM Line Appendage IJLQLA.

If the interrupted channel command is a Read ccw with equal initial
and residual counts, the action taken depends on the type of the Read
ccw, as follows:

1. If the interrupted channel command is the first Read ccw, the PCI is
ignored and control is returned to IJLQLA.

2. If the interrupted channel command is a Read ccw in a BRB, the
Line-PCI routine tests the last character contained in the last
filled buffer, as follows:

Line Input and output 173

a. If this character is EOM, EOT, or WRU, the residual count of the
csw is set to zero and the address of the ccw corresponding to
the last filled buffer is inserted into the csw.

b. If this character is other than EOM, EOT, or WRU, control is
returned to the QTAM Line Appendage IJLQLA.

WTTA LINE-END ROUTINE

The WTTA Line-End routine is entered when an I/O operation ends with
a channel-end condition, or is re-entered from the QTAM Line Appendage
IJLQLA. Moreover, if an I/O operation ends with channel-end and
unit-check conditions, the result of the Sense operation performed by
IJLQLA is analyzed to check whether an abnormal condition occurred and,
if so, control is passed to the ERP routines.

The operations executed by the WTTA Line-End routine depend on
whether this routine is entered on completion of a Halt I/O operation,
of a Read channel program, of a Write channel program, of an exchange of
identification sequences or of a Break channel program, as follows:

1. On completion of a Halt I/O operation: If data is being received at
the same time as the Halt I/O operation is executed, the interrupted
Read Initial channel program is restarted. If no data is being
received, a Write channel program is started to send an LTRS
character followed by n Mark characters (where "n" is the number
specified in the DTFQT macro instruction). On completion of this
Write channel program:

a. If the corrmand has correctly ended, the buffer prepared for
input is posted to the Interim LPS Queue and the cleanup flag is
set on in the LCB.

b. If the cororoand has not correctly ended, the Read channel program
is restarted.

2. On completion of a Read channel proqram: The last character
received in the corresponding buffer is analyzed:

a. If this character is EOT, the EOT flag is set on and the buffer
is posted to the Interim LPS routine.

b. If this character is EOM, the buff er is posted to the Interim
LPS routine.

c. If this character is WRU, the action taken depends on whether or
not the buffer is the first. If the WRU character is in the
first buffer, the Read ccw is updated to read the rest of this
buffer, and the first part (identification sequence exchange> of
the Read channel program is started. If the WRU character is in
another buffer, the WRU flag is set on in the LCB and the buffer
is posted to the Interim LPS routine.

3. On completion of a Write channel program: The operations to be
executed depend on how the I/O operation has ended.

a. If the I/O operation has ended with a normal-end condition, the
buffer is posted to the LPS queue, provided no exchange of
identification sequences is requested at the end of the output
message. If this exchange is requested, the first part
(identification sequence exchange) of the Write channel program
is started.

b. If the I/O operation has ended with an abnorm<:.1-end condition
(contention), a Write Break channel program is started if the
interrupted ccw is not a Write Text ccw. If the interrupted ccw
is a Write Text CCW, the transmission error bit is set on and
the buffer is posted to the LPS Queue.

174 DOS QTAM Program Logic Manual

4. On completion of an exchange of identification sequences: If the
terminal has sent its identification sequence (WRU=YES specified in
D~FQT), a Write Break is started to inhibit the LTRS character,
which is still sent after the terminal identification. On
completion of the Break CCW, the result of the exchange is analyzed
to determine whether or not the exchange has been successfully
performed, and to take the appropriate action as follows:

a. If the exchange was unsuccessful, this condition is set in the
line error halfword, and the buffer is posted to the Interim LPS
queue (for receiving operations) or to the LPS queue (for
sending operations).

b. If the exchange was successful, the action taken depends on when
the exchange was performed:

At the beginning of an output message: The write channel
program is restarted.

At the end of an output rnessage: The last buffer is posted to
the LPS queue.

When receiving an input message: If EOM=WRU, the last buffer is
posted to the Interim LPS queue. If EOM is different from WRU 1

the read channel program is restarted to read the rest of the
input message.

5. On completion of a Break channel program: If the command has
correctly ended, t.he interrupted Write CCW is restarted. If the
command has not correctly ended, the Break channel program is
restarted (there are only 15 retries). If the fifteenth retry has
not correctly ended, the transmission error bit is set on and the
buffer is posted to the LPS Queue if the line is sending, or to the
Interim LPS Queue if the line is receiving (before posting, the
buffer size is updated).

IBM 2260 LOCAL APPENDAGES

Module Name: IJLQLO (Charts LO, LP, and LQ)

Entry: This appendage is entered from the Supervisor when:

1. A program-controlled interrupt (PCI) occurs during execution of a
QTAM command for the IBM 2260-2848 Local line group;

2. An I/O interrupt occurs ending execution of such a command; or

3. An I/O interrupt occurs with the Attention bit set in the CSW
status, caused by the ENTER key being depressed at an IBM 2260 Local
terminal. This interrupt is processed only if a command control
block (CCB) for that IBM 2260 is in the DOS channel queue.

The status bits of the CSW are analyzed for normal or error conditions
and entry is made to the proper subroutine.

The module is composed of two subroutines, in addition to preliminary
analysis. 'Ihese subroutines are the Attention subroutine and the
Channel End subroutine. Error recovery procedures are included as a
logical part of the Channel End subroutine. These subroutines are
discussed seperately in the following paragraphs.

Whenever exit is made to a supervisory routine, the CSW status bits
are set to indicate whether or not the CCB for the terminal is to

Line Input and Output 175

remainon the channel queue. If sending or receiving is to be '"--
permanently discontinued for the terminal. such as during a system
close-down, the CCB is removed from the channel queue .•

When entered because of a PCI or program check., cont_rol is passed to
IJLQLC. PCI's can occur only on send operations. For receive
operations, all buffers needed to read a message are obtained in the
ERB-Ring routine prior to execution of the channel program.

Attention Subroutine

This subroutine is entered when an attention interrupt has occurred,
indicating that a message has been entered at a terminal and is ready
for processing. If this Read request occurs when a system close-down is
in progress, or when the terminal is set for output only, it is ignored
and return is made to the Supervisor to remove the CCB from the channel
queue. In the case of a temporary stoppage of the terminal, return is
made to the supervisor, but the CCB remains on the channel queue.

If the Read request can be accepted, a test is made to determine if
the LCB is available. If it is, it is posted to itself and linked to
the top of the Ready Queue. This causes receiving to be initiated the
next time Qdispatch gains control. Exit is then made to the
Priority-Search subroutine in the QTAM nucleus to post the CCB for the
terminal to the Attention queue for the line group.

Channel End Subroutine

Under normal ending conditions of a receive operation, the prefix of
each buffer containing data is initialized and all buffers are linked to
the head of the Ready Queue. Exit is then made to the Qdispatch
subroutine, which routes the buffers to the user's LPS.

For send operations, a test is made to determine if an Attention
interrupt has been posted for the terminal to which the message was just
sent. If so, the CCB is removed from the Attention queue., because the
message to be read when the Attention interrupt was serviced has been
overlaid by the message just written to the terminal. The last buffer
of a message sent is routed to the Send LPS so that the user may perform
error checking.

In a receive operation, if the residual count is equal to the initial
count and the interrupt occurs on the first ccw in the channel program.
the terminal operator has depressed the ENTER key without having keyed
in the START symbol. The 'zero length message bit' (bit 4) in the error
halfword is set and the first buffer is routed to the LPS. If an
incorrect length indication is received with the residual count equal to
zero, the terminal operator has entered a message too long to fit into
the buffers provided. The 'insufficient buffers' bit (bit 11) in the
error halfword is set and the buffers filled are routed to the LPS.

Error recovery procedures are entered if a transmission error is
indicated in the status or sense bits. Appropriate error bits are set
in the error halfword and a message is provided either to the system
console through the Message Writer subtask or to an operator control
terminal if Operator Awareness is specified in the Message control
Program.

176 DOS QTAM Program Logic Manual

(
I

__

r(.·· .. ·· .

After completion of the error recovery procedures, the buffers are
returned and exit is made to the LPS Control Routine as though normal
end had occurred. Specific actions taken for various errors are shown
in Tatles 15 and 16.

Table 15. Initial Selection Errors Table 16. Unit Check in Status

r--------T------------------------T-------1 r--------T------------------------T-------1
IPrioritylStatus Condition !Action I jPrioritylSense Byte Condition !Action I
~--------+------------------------+-------~ ~--------+------------------------+-------~
I I I I I I
I 1 !Channel Data Check 1 I I 5 !Equipment Check-Read I 5
I I I I I I
I 2 !Unit Exception 2 I I I -All I
I I I I I I
I 2 !Chaining Check 2 I I I Others I 2
I I I I I I
I 7 !Unit Check with Bus Out 4 I I 6 !Intervention Required I
I I I I I I
I 9 !Program Check 1 I I I -Printer I 1
I I I I I I
I 10 !Protection Check 1 I I I -others I 2
L--------~----------------------~~-------J I I I

I 7 !Bus out-write I 3
I I I
I 7 I Bus out-Read r 2
I I I
I 8 !Command Reject I 1
I I I
I 4 IAll other sense bits I 4
L--------i------------------------~-------J

ACTIONS

1. An operator message is provided.

2. An operator message indicating a 'should not occur• error is
provided.

3. en the second occurrence, an operator message is provided. Retry
of the channel program is initiated by EOBLC.

4. The channel program is retried. on the second occurrence an
operator message is provided .•

5. An ERASE ccw is executed and an operator message is provided.

MESSAGE ~RITER INITIATOR ROUTINE

Module Name: IJLQMW (Chart MW)

Entry Points: The Message Writer Initiator routine may be entered:

1. From the Line Appendage module when an error message is to be
written on the system log. Entry is at IJLQMW. Line Appendage
passes the address of the tuff er in register 2, the address of the
DTF table for the line in register 3, and the address of the LCB
for the line in register 4.

Line Input and Output 177

2. At a log appendage within the routine that is entered upon an
interrupt from the system log. Entry is at LOGAP.

3. From the 7772 Disk or Audio Line Appendage module when the sending
of an error message is requested by the audio devices. Note that
in this case, the Audio ERP Message Writer will be loaded via a
FETCH in the logical transient area.

Function: Builds an information block containing all data needed to
write the error message and places an ECB on the Ready Queue to cause
the transient Message writer routine to be called via a FETCH to write
the message.

Upon entry from Line Appendage, the routine tests to determine if any
one of six information blocks provided is available for use. If not,
the routine places the buffer on a waiting queue and returns to
Qdispatch. If an information block is available, the routine moves all
data needed to write the error message from the I.CB into the information
block.

The routine tests to determine if a system log I/O operation is
taking place. If it is, the routine returns to Line Appendage.
Otherwise, the routine inserts a special ECB on the Ready Queue, and
then returns to Line Appendage.

The LPS Control routine recognizes the ECB, and calls Phase 1 of the
QTAM Message Writer routine into the logical transient area via a FETCH0

passing to it the address of the information block.

Upon entry at the log appendage (LOGAP), the routine examines the
information blocks to determine if another message is to be sent.

If not, the routine branches to Qdispatch. Otherwise, the special
ECB is again placed on the Ready Queue before exit is made to Qdispatcho

External Routines Used: None.

178 DOS QTAM Program Logic Manual

Chart AL

QTAM CHARTS

ARU Internal and ARU Receive Routines

ARU-1 NTERNAL
ROUTINE

****A2********* • • •CHECKARU/REPEAT* • • •••••••••••••••

IJLQAA70 X
*****82********** • • * GET ARU-SEND * * QUEUE ADDRESS * • • • •

x ••c2•••••••
****QPOST****

•POST ALCB TO * * ARU-SENO * * QUEUE * • • •••••••••••

x •••••02••········ • • *GET LPS CONTROL*
ROUTINE ADDRESS • • • •

x
****E2********* * EXIT TO * * IJLQIP20 * * • •••••••••••••••

ARU-RECEIVE
ROUT I NE

****A3********* • • * POSTARU * • • •••••••••••••••

IJLQAA20 X
*****B3********** • • * SET ALCB * * PRIORITY TO * * x• FC' * • • •••••••••••••••••

x
*****C3********** • • * GET PROCESS * * PROGRAM ENTRY *
•FROM OTF TABLE * • • •••••••••••••••••

x
*****03********** • • * GET DASO * * PROCESS OUEUE * * ADDRESS * . .
•••••••••••••••••

x
•*• RECENQ

E3 *• *****E4**********
• * MSG *• • *

.•PROCESSING *• NO •GET ADDRESS OF *
• PROGRAM •••••••• .X• THE ALCB *

• OPENED • * WA IT·ING CHAIN *
· · • * •. ·* •••••••••••••••••

*YES

:x .•....................... x i
*****F3********** • * *GET MS-PROCESS *
* QUEUE ADDRESS *

REC TEST F4 •*••. *****FS**********

• • • •

i
G3*****

****OPOST****
*POST ALCB TO *

* MS-PROCESS *
* QUEUE * • •

.• *· * * •* DUMMY *• NO * GET NEXT *
• ELEMENT IN •••••••••X* ELEMENT IN *

• CHAIN • * CHAIN *
· · * * *· ·*

*YES

RFCENQUE X
*****G4**********
• QUEUE ALCB IN * * CHAIN BEFORE * * THE DUMMY *
* ELEMENT *
• *

:x ...•................•••. :
BYAl i

*****H3********** • • •GET LPS CONTROL*
•ROUTINE AOORESS* • • • • *****************

i
****J 3*********

* EXIT TO *
* IJLQIP20 * • • ***************

QTAM Charts 179

Chart A2. ARU Send Routine

ARUSND72
*****AZ********** . .
SET INITIAL AND ****Al********* * ARU-SEND * * SUBTASK ENTRY * . . ••• X+FIRST WORD FLAG*

ARUSEND X
*****Bl********** • • * RESET ALCB * * ERROR BYTE *

x .•.
Cl *• ... *· •* 7770 *• NO • *· CONTROL • *·

• UNIT •
· · *· ·* *YES

x
*****01*******•** . .
+LOAD WRITE CCW *
*ADDRESS IN CCB * . .
• •

x
*****El********** • • * UPDATE WRITE * * CCW IN ALCB *
+CHANNEL PROGRAM* • •

x ...
Fl *· ·* •.

YES •* MASTER *•
••••*• RCVE SWITCH ·*

• OFF ·
· · *· •* *NO

x

* ON * • •
x .•.

82 *· • * IS *• •* PREVIOUS *• NO
• STATUS •• ••• *· READ •*

· · *· . * *YES

x
*****CZ********** . .
* SET PUT ANO * * WRITE STATUS * • • . .

:x :
x . *· .•.

02 •• 03 *·
•* *• ·* IS *• •* IS *· YES •* THERE AN *• NO *· BUFFER POOL •••••••••• x•.AVAILABLE ocv .. • ••••

•.PROVIDED •* *• BUFFER ·*
*· • • *· ·* *· . * *· ·* •NO *YES

:x
TAC i:

*****E2********** • • * GET 7772 DISK * * READ ROUTINE * * ADDRESS *

x
****F2********* * EXIT TO * * IJLQA030 * . .

x
*****E 3********** • • * ALLOCATE DCV *
*BUFFER TO ALCB * . .
• •

x
*****F 3********** .. * DEQUEUE OCV * : ... : ee~~~~~ ~~~~N :
* OF OCV BUFFER * * QUEUE *

x·
• *• CONVERSE NOBUF ·*·

Gl *• *****G2********** G3 *•
·* *· * * ·* *·

*****E5********** . . * QUEUE ALCB AT *
.... X+TOP Of THE ALCB* * WAITING CHAIN * • •

x
*****FS********** . .
*GET ADDRESS OF * * THE 7772 OCV *
•BUFFER SUBTASK * • •

x
·* INQUIRY •• NO •CHAIN WRITE ccw• • * DUMMY *• YES •

*****G5********** * PUT THIS *
•ADDRESS IN THE * * SUBTASK Fl ELD * * OF THE OCV * * BUFFER OUEUE *

• MOOE •••••• ••• X* ON READ CCW *
· · • * *· ·* * * *· •• *****************

*YES

:•...• x:
x

*****Hl********** . .
CHAIN WRITE CCW
•ON 01 SABLE CCW * • • . .

x
*****H2* ********* • • * SET PUT AND * * WRITE STATUS * • • . .

i i
*****Jl********** •••••J2**********
• * * * * SET DISABLE * * GET LPS QUEUE *
* STATUS *••••• ••• X• ADDRESS • • •
* * * * ***************** •••••••••••••••••

x
****K2********* * EXIT TO * * QSVCPOST *

• ELEMENT IN ·••••••••• •••••••• •••••• •••• ••••• *• CHAIN •* · •. ·*
· · •NO

ENQ X
*****H3********** . .
* GET NEXT *

•• .X• ELEMENT IN * * WAITING CHAIN *
x .•.

J 3 *·
• NO •* DUMMY *·
••••*• ELEMENT IN •*

• CHAIN • *. .•
•• •*

*YES

x
*****K3**********
* * ****K4********* * QUEUE ALCB IN * * EXIT TO * •
• CHAIN BEFORE x• QSVCOI SP •x ••••••••••••••••• * DUMMY ELEMENT * * * * • • ••••••••••••••

180 DOS QTAM Program Logic Manual

((

Chart A3. Analysis and IBM 7772 Line PCI Routines

•••• • • * A3 * • • ••••

•••••
*A3 * * A5* •• •

• ~. AP72A •*• AP72C i
*****A2********** A3 *• A4 *• *****A5********** • • .• •. .• •• • * ****Al********* * AUDIO LINE * +GET ADDRESS OF * NO •* IS LAST *· YES •* *• YES * COMPUTE INPUT *
•7772 DI SK READ •x •. COMMAND ·*··· x•. CE OE ·*··· X•HESSAGE LENGTH • * APPENDAGE * • • • ROUTINE * *• READ •* *• •* * * * * *· ·* •. .• • *
***************** *· ·* *· •• *****************

x .•.
81 *·

IJLQAA x
.• *· ****82********* . * IS *• YES * ext T TO *

• CHANNEL ·· •• ... * 1JLQA030 *
•~ BUSY .,:t:

•NO

x
*****Cl**********
•SAVE REGISTERS *
* SET BASE * * REGISTER FOR * * QTAM SVC * * ROUTINE *

x
*****01********** * SET BASE * * REGISTER FOR *
*IMPLEMENTATION *
:t:ROUTI NE ANO FOR*
* ALCB *

x
*****El********** • • * SET BASE *
* REGISTER FOR *
* DTF FROM ALCB *

x .•.
Fl *·

• • ***************

****C2********* . * RETURN TO *
••• X* SUPERVISOR * . .

•* SENSE *• ****F2*********
•* CCW OR *• YES * EXIT TO AUDIO *

• STATUS ·••••• ••• X• ERP PROCEDURE * *· ERROR • * * *
*. • • ***************

· · *NO

NO SEN SE X
*****G l**********
*SAVE LAST USED *
* COMMAND CODE *
•ANO CSW STATUS *
* IN ALCB * . .

i
*****Hl********** • • * MOVE RESIDUAL *
*COUNT INTO CCB *

x
•*• APPEN072 • *·

Jl •• J2 ••
.• *· . * *·

* •NO
**** . . .
*A3 *· ..
* 84*
**** i<

AP728 .•.
B4 *·

****83********* ·* *·
* EXIT TO * NO•* IS OCV *·
* QSVCOISP •X••••••••*• BUFFER .•
* * *.ALLOCATED.* ,..

****D3********* * REENTRY FROM *
* SUPER VI SOR * • •

SPECIAL i
*****E3********** . .
*RESTORE RETURN *
* REGISTERS OF *
* SUPERVISOR * . .

x
**** • • • J4 * • •

•., ~ *
· · *YES

x
*****C4********** • • *GET DCV BUFFER.*
* ADDRESS FROM *
* ALC8 * . .

x
*****04********** . .
* CLEAR THE OCV *
•BUFFER ·ADDRESS *
* 1 N ALC8 * • •

x
****E4*********

* EXIT TO *
* QSVCPOST * • •

AP72FA
*****F4**********

x ...
B5 *• • * *•

• *LENGTH=O OR*• YES
· MASTER RCVE •• •••

· SWITCH •
• OFF ·

•NO

x .•.
C5 *·

NO •* *•
.. ••• *• OVERLENGTH •* •. ·*

· · *YES

x
*****05********** . .
*SET OVERLENGTH *
*BIT ON IN Al CB * * ERROR BYTE * • •

:•.... x: x
AP72E • *•

E5 *• ·* •.
NO •* IS LAST *•

••••••*• CHARACTER •*
• EQT •

· · *· ·* •YES

i
**** . . . *****F5********** * DECREMENT * * LENGTH BY ONE *

*ANO CLEAR ALCB *
* STORE INPUT * X
*MESSAGE LENGTH •X ••• * IN ALCB * . .

x
*****G4********** . . • • *SET READ STATUS* . .
• •

x .•.
*****H3********** H4 *•
* SAVE RETURN * ·* *·
* REGISTERS OF * YES ·* *•
*SUPERVISOR ANO *X••••••••*• PCI •*
PREPARE SPECIAL *· •*
* RETURN * *· •*
***************** *· ·*

i

•NO
**** . . .

• J4 *··· • •

* ERROR BYTE * • •

x .•.
G5 *•

• NO •* *•
•••••• *· LENGTH=O •*

*· .•
• · • ... *

*YES
**** . . .
•A3 *••.
* H5*
**** •

OISBL 72 X
*****HS********** . .
* MOVE DISABLE * •
•CCW ADDRESS IN •X •••
* CCB * • • •••••••••••••••••

**** . .
* 84 * • •

**** x x

•••••J4********** *****J5**********

·* 7770 *· NO •* *• YES
· CONTROL •••••••••X*• PCI ·*••••

* * * SET DISABLE *
* GET LPS QUEUE * *STATUS ANO SET *

· UNIT • *• •* •. ·* *· . * *· ·* •. ·* •YES *NO

x
****Kl********* * EXIT TO 7770 *

* LINE ENO *
* ROUTINE *

x
****K2********* * EXIT TO 7772 *

* LI NE END *
* ROUTINE *

x
• • * A3 * . .

* ADDRESS •X *ALCB EXCP FLAG *
* * * ON * • * • •
***************** *****************

x
****K4*********

* EXIT TO *
* QSVCPOST * . .

QTAM Charts 181

Chart A4. IBM 7770 Line End Routine

****Al********* * 7770 l INE END * * ROUTINE * • •

x ...
Bl *·

·* *· YES •* *•
••••*• INFORMATION ·*

• MOOE •
*· . * *· ·* *NO

**** • • * B2 * • •

x

START70A • *· START70B
82 *· *****83********** . * ALCB *• * * ·* START *• YES * RESET START *

.REQUEST FLAG ••• •••••• X* REQUEST AND *
*• ON • * *APPENDAGE FLAGS*

· · * * *· . * **•************** *NO

**** . .
• 84 *
• *

•••• * • * 85 • * • ••••
DI SBL 70 X READ70 • ~.

*****B4********** 85 *•
* * • * *· * LOAD DISABLE * YES •* ALCB *• •ccw ADDRESS IN •x *· HALT I /0 ·* * CCB * X *• FLAG ON • * * • •• ••
***************** *· .• *NO

x .•. x EXECEXCP X X x
Cl *·

•* WAS *· •* PREVIOUS *• NO

*****C2********** • • * SET ALCB *
*****C 3********** *****C4**********
* * * * * SET ALCB EXCP * * SET DISABLE *

*****CS********** . .
• STATUS ••••• *APPENDAGE FLAG * ••• X* FLAG ON *X•••••• ••* STATUS *

* COMPUTE INPUT *
*MESSAGE LENGTH *

• DISABLE • *· .•
· · *YES

x
**** • • * 65 * • •

* ON * * * * * • • * * * *
***************** ***************** *****************

• * • •

x x :POSTIP77 X
x .•.

*****Dl********** . .
LOAD ENABLE CCW
*AOORE~S IN CCB * • • . .

x

****DZ*********
* EXIT TO *
* QSVCDISP * . .

•*• WR701NI T
El *· *****E2**********

·* *· * *
•* INITIAL *· YES *CHAIN ENABLE *

• WRITE •••••••••X* CCW ON WRITE *
· · * ccw * *· ·* * * *· ·* *****************

•NO

x x
*****Fl********** *****FZ* **** *****
* * * * * CHAIN ENABLE * * UPDATE WRITE *
*<OR WRl3EI CCW *X••••••••* CCW *
* ON READ CCW * * *
* * * * ***************** *****************

: x:
START70 X

*****G !********** . .
* RESET ALCB * * ERROR BYTE *

x
*****Hl********** . .
* SET ENABLE *
* STATUS *

x ...
J l *·

·* *• ****JZ*********
•* ALCB *• YES * EXIT TO *

· HALT 1/0 •••••••••X* QSVCOISP *
· FLAG ON · * *

· · ***************
· · •NO

x ...
Kl *·

·* *· •* ALCB *• NO •
*· * • STObNFLAG • *. *· • • •

· · *· ·* *YES

x
**** . .

* 82 * • •

*****03********** . .
* GET LPS OUEUE *

05 *•
• * *· • YES • * *•

* ADDRESS *X ••• ••••••*• LENGTH=O •* . .
• •

x
****E3********* * EXIT TO *

* QSVCPOST * . .

· · *· ·* *· ·* *NO

x ...
ES *•

·* *· NO •* *•
•••• *• OVERLENGTH •*

· • *· ·* *· ·* *YES

x
*****F5********** • • *SET OVERLENGTH *
*BIT ON IN ALCB *
* ERROR BYTE * • •

: ..•....... x:
x

REA070F READ700 .•.
*****G4********** G5 *•
* * ·* *· * STORE INPUT * NO .• IS LAST *•
*MESSAGE LENGTH *X••••••••*• CHARACTER •*
* * X *• EOT •* * * *· .•
***************** *· • *

x
*****H4********** • * . . .

• •••••*SET READ STATUS*

*YES

READ70E X
*****H5**********
DECREMENT INPUT
•MESSAGE LENGTH *
*ANO CLEAR ALCB * * ERROR BYTE *
* * *****************

x .•.
JS *•

·* *· • NO •* *•
•••• ••*• LENGTH=O •*

· · *• ·* *· ·* *YES

x
**** * • * 84 * • •

182 DOS QTAM Program Logic Manual

Chart AS. IBM 7772 Line End Routine

****Al********* * 7772 L lNE END * * ROUTINE * • •

x
CHDVEND •*• CHDVRDND •*• AP72G

Bl *• 82 *· *****B3********** ·* *· •* ... * * ·* IS ALCB *· NO ·* IS ALCB *·YES *LOAD ADDRESS OF* *· STATUS ·*····· ... x•. STATUS x• ENABLE ccw IN * *· ENABLE •* X *• DISABLE •* * CCB *
· · *· ·* * * *· ·* *· .. * ***************** *YES *NO

x x
·*· . *· cl :(>". (2 ·~

·* *· . * *·
x

*****(3********** . .
YES •* IS ALCB *• •* IS LAST *"YES * SET ENABLE *
•••*• HALT 1/0 ·* *· FLAG ON •*
x

***** *A3 *
* HS* . .

•

· · *· ·* *NO

x .•.
DI *•

·* *· •* INITIAL *· NO • *· WRITE •*••••••
· · *· .. * *· ·* *YES

x
*****E !********** • • * SET STATUS TO * * WRITE AFTER * * ENABLE * . .

x
*****Fl********** . .
* UPDATE WRITE * * COi *

x
*****G 1********** . .
* GET ARU-SENO *
* QUEUE ADDRESS *

x
****HI*********

* EXIT TO *
* QSVCPOST * . .

· COMMAND ••••• *· RE AD • *
*· .. * *· . * *NO

x

*A3 *
* H5* • • .

x

*A3 *
* A5* •• •

* STATUS *
* • . .

x
*****D3********** . .
* CLEAR ALCB *
* ERROR BYTE *
• * • *

x
.. *~

*****E2********** E3 *•
* DEC HAIN * ·* •.
* WRITE CCW * YES ·* WRITE *·
* FROM ENABLE *X ••*• INITIAL •* * CO/ * •.REQUIRED •*
* * *· ·* ***************** *· ·*

•NO

**** • * * F4 * • *

: x~ X
AP72H ·*· AP721 •*•

F3 *• F4 *• ·* *· .•WAS ocv•.
•* MASTER *· YES ·* BUFFER *• YES

**** . .
* J3 * * •

• RCVE SWITCH •••••••••X*• ASSIGNED •*••••
• OFF · X * .. TO ALCB •*

· · *· ...
· · *· ·* *NO *NO

x .•.
G3 *· x

·* *· ****G4*********
·* ALCB *• YES .. * EXIT TO *

• HALT 1/0 ••••••• * QSVCOISP *
*• FLAG ON .. * • *

· • ***************
· · *NO

x

x

*A3 *
* B4*
* • •

·*• AP72J •*• AP72K
H3 *. H4 *· *****HS**********

·* *· ·* *• * RESET ALCB *
.. * ALCB *· YES ·* NEW *· YES * APPENDAGE ANO * *· STOP FLAG ·*· ••••••• x•. START ·*· x• START REQUEST *
· ON · *· REQUEST •* * FLAGS *

· · *· ·* * *
*· .. * *· • * *****************

*NO *NO

: x:
AP72HA X

*****J 3**********
* SAVE RETURN *
* REGISTER OF *
*SUPER VI SOR ANO *
* PREPARE *
'SPECIAL' ENTRY

x
*****K3********** . .
* SET ALCB EXCP *
* FLAG ON * •· . * •

x
**** . .

* F4 * • *

x
*****J4********** • • * SET ALCB *
*APPENDAGE FLAG *
* ON * . .

x
**** . .

* F4 * . .

x
*****J5**********
* •
•RESET ALCB STOP*
* FLAG * . .
* *

x
**** * • • J3 •

• *

QTAM Charts 183

Chart BO. Breakof f Routine

IJL'Q80

+•++Al********* • • * 8Rl::AKOFF * • •

x
*****Bl********** * GET THE *
*ADDRESS Of THE * * START OF DATA * * FOLLOW ING THE * * PREFIX *

x
*****Cl********** . .
* GET THE *
*lEl'llGTH OF DATA * * JN MESSAGE * • •

x
Ol *• 02 *•

• + *• • *AKE All•.
•* LESS THAN *• NU •* MESSAGE *• YES

• 2 BYTES IN •••••••••X*• CHARAClERS •*••

184

• MESSAGE • •.IOENTICAL.* •
* YES * NU

x
*****E2********** • • • * ACCUMULATE *

•••••••••• ••••••• x+ TOTAL MESSAGE *
LENGTH TO THIS
* POINT *

x
*****f2********** * GET *
+MAXIMUM MESSAGE+
+ LENGTH * * SPECIFIED BY * * USER +

. t ... x G2 *• G3 *• •••••G1t••••••••••
• • IS *• • • HAS +. • *

•* PASSED *• NO • * MAX I HUH *• YES • TURN •
•.LENGTH EQUAL ••••• ••••• x•. U:-NGTH BEEN ••••••• ••• x•Off RECEIVE BIT•

•· ZEMO .+ •.EXtEEOF.r> •* * IN LSTA •
• YES * NO

. i . • x
x .•.

H2 *•
.• *• ••••Hl••••••••• •* ENO OF *• Nll * *

+.MESSAGE ON IN•*••••••••X* KETURN TO USER*
• PREFIX • * *

* YES

x .•. J2 •. •••••Jl•••••••••• ••J1t•••••••
.• *• • SET * + • ••••JS*********

.:~Het~0~:~= N~:.~~~ x:1Nf~~~~iz~Nrcs : •....... x•=R~~:e~~~::;FF ••.•••••••• :ro LP~xi~NTROL :
*• BUFFER .+ * FOR BREAKOfF * * CHARACTERS * * l5A2 * •• •• • • • • • ••••••••••••••

• NU

x
****K2********• . .

* RETURN- TO USER• • • •••••••••••••••

DOS QTAM Program Logic Manual

Chart cc. Copy Line Error Counters Routine

****Al********* • •
*****A2********** . .
* GET QCB *

*****A4**********
* ADO THRESHOLD *
* COUNTERS TO *

* COPYC * X* ADDRESS * ••• X* CUMULATIVE * . .

IJLQDC X
*****Bl********** * SA VE * * REGISTERS *
* SET * * BA SE * • •

x
*****Cl********** • • * GET ADDRESS *

* • * • •••••••• *********

x
*****B2* ********* * • * GET OTF * * TABLE ADDRESS *
* • • •

x
·*· C2 *•

·* *· •* SWITCHED *• NO * OF VECTOR * *• LINE •*•••••••••••••••••• * TABLE * *· . * . . *· . *
***************** *

*YES

x x
·*· 02 *·

·* *·
*****Dl********** * GET ADDRESS *
* OF * * OTAM VECTOR * ·* USER *• NO •

• SPECIFIF.D ·••••••••••••• ••• x. * TABLE * . .

x
*****El********** . .
* GET ADDRESS * * OF TERMINAL *
* TABLE * . .

• RLN •
*· . *

· · *YES

x
*****E2**********
* LOCATE LCB *
* USING RLN *
* SPECIFIED BY *
* US ER * . .
******** *********

*****E3********** . .
* LOCATE LCB * •
* USING RLN • •• x ••• * FROM QCB * • •

: x:
x ...

Fl *·
·* *· . * ENTRY *· YES • *· FOUND •*•••••.

· · *· . * *· ·* •NO

x ...
Gl *• *****G2**********

·* *· * * ·* LINE *· YES * GET ADDRESS *
• TABLE •••• ••••• X* OF LINE *

•.SPECIFIEO.* * TABLE *
*· . * * * *· ·* *****************

*NO

x .t
*****Hl********** H2 *• *****H3**********
* RESTORE * ·* *• * *
* REGISTERS, * NO •* ENTRY *· YES * LOCATE ACCB *
* SET ERROR *X•••• •• ••*• FOUND •*•. ••••• .X* ADDRESS FROM *· •••
*CODE OF X'20' * *• •* * LINE ENTRY *
* * ·~ . * * * ***************** *· .. * *****************

x
****Jl********* . .

*RETURN TO USER * . .

.

* COUNTERS * • •

x
*****B4**********
* MOVE *
* CUMULATIVE *
* COUNTERS TO *
* WORK AREA *
* •

x
C4*****

****QPOST****
* RESET * * CUMULATIVE *
* COUNTERS TO *

* NfW TOTAL *

x
D4*****

****OPOST****
* RESET *

* THRESHOLD *
* COUNTERS TO *
* ZERO *

x
*****E4********** * RESTORE *
* REGISTERS *
* SET ERROR * * CODE OF X' 00 1 * . .
~**********

x
****G4********* . .

*RETURN TO USER * • •

QTA.IVJ Charts 185

Chart CK.

****Al********* . .
* BEGIN * • •

x

Checkpoint Routine

*****Bl********** *****B2**********
*DISKIO CKF4 * *DISKIO CKF4 * *---------------* *---------------* * GO TO WRITE *·•. ••• .. X* GO TO WRITE *
THIS CHECKPOINT * THIS CONTROL * * RECORD * * RECORD *
***************** *****************

: x •••••••••••
x

*****CZ********** . .

****A3********* . .
* CHECKPOINT * . .

x
·*.

83 *· *****B4**********
•*ELEMENT*• * *

•* AT TOP OF *· YES * GET RECOVER *
• DISK •••••••• .X* ADDRESS AND * *. QUEUF • * *RFS IDUAL COUNT *

*· . * * * *. . * ***************** * NO

x x
·*· ·*· c 3 *· C4 *. *****C5**********

·* *. •* *· *SET SEEK/SEAPCH* * SET 'WAITING *
*FOR CHECKPOINT * • YES ·* fNTRY *• ·* IS *• NO *ADDRl=SS TO NEXT*

186

* TIME' FLAG * . .

x
*****DZ**********
*SET CHECKPOINT *
* INTERVAL AND * * DUMMY LCB *
*PARAMETERS FOR *
*TIME-Df'.:LAY RTN *
**************:ti**

x
**** E 2 ** ****** * * GO TO * * TIME-DELAY * * ROUTINE *

••••• •*• FROM ·*
.ENDREADY ·

. · *· ·* * NO

x
'°' **D3******** *SET 'CHECKPOINT¥ * BFING TAKEN' * * FLAG, SAVF *
CH ECK POI NT OAT A . .

x
*****f3**********
*PUT CHECKPOINT * * ELEMENT AT *
*BOTTOM OF DI SK *
OUEUE, SfT FLAG
*TO SHOW THIS *

x
*** **F3********** • • * SET RECOVER * * ADDRESS AS * * 'BF.GIN' *
* * *****************

x
****G3********* *EXIT TO* * QSVCQISP * . .

DOS QTAM Program Logic Manual

· RfS!OUAL •••••••••X* TRACK WITH *
·;ouNT ~.·* : an~~o~gwo~fibR :

*. • * ***************** * YES

x
****04********* * GQ TIJ RECOVER * * ADD RF SS * . .

****F4********* • • * DISK IO * . .

x
*****G4********** . .
* SET UP DISK *
CHANNfL PROGRAM • • . .

:x•........•.....•• :
x

H4***** • • * ****EXCP***- * * START 1/0 * * Rf AD * • •

):
*****J4********** • • * SET RECOVER *
* ADDRESS AS *
*RETURN ADDRESS * . .

x
****K4********* * fXIT.TD *

* QSVCDISP * • •

tf-\
\t_j

Chart CL.

Al
STARTLN/
STOPLN

IJLQCL
Bl

SAVE REGISTERS
14-12
INITIALIZE BASE
REGISTER

Cl
GET RELATIVE
LINE NUMBER
SUPPLIED BY
USER

Dl

GET DTF
ADDRESS
SUPPLIED BY
USER

El

SET UNOPENED

REY

DTF ERROR FLAG
FOR USER

PUT USER'S
ERROR FLAG IN
REGISTER 15

Hl--L-----,

RESTORE
REGISTERS 14-12

Jl-L--~

RETURN

Change Line

YES

YES

F2

RESET ERROR
FLAG AND SET
INVALID RLN
FLAG FOR USER

CLEAR USER'S
ERROR
INDICATOR

BJ
GET START
ADDRESS OF
LCB AREA AND
ACCESS LCB FOR
THIS LINE

F4
IS LINE

/.INACTIVE
<..._TRANSMISSION

85-----.
MODIFY CHANNEL
PROGRAM TO GET

>----11.,'INTERRUPTIO N AT
END OF POLLING
LIST

QTAM Charts 187

Chart CM. Cancel Message Routine

IJLQCN

••••A2********* • • O CANCELN O • • •••••••••••••••

ic .•. . ..
Bl *• 83 *•

• * I S *. NU • * ANY *• NO
• ERROR MASK •••. •••• .x•. DESIGNATED •*•••••••• ••• •••••••••••••••••••••

*• ZERO • * *• ERRORS • *
* YES * VES

x i .•.
*****Cl********** C3 *•
•RECALL 16l\2* .•DEST ERK• •.
•-•-•-•-•-•-•-•-• NU •* blT ON IN *• * *X • • • •• ••• *.MASK ANO ERR •* * RECALL Hh\Ol:R * •.HALF WOAD.•

* YES

x J.
*****IJ2********** 03 *• *****04********** • • . • Is •• • CANCEL • • ••••os•••••••••
•TURN UN CANCEL * •* PREVIOUS *• YES *MULTIPLE ROUTE * X * •
• Bir IN HEADER •••••••••••· SE~UENCE ·•••••• •• .XoBYTE ANO CLEAR •••••••••XO RETURN • * PREFIX * •.~UMBER EQ.• X * CONVERSE MODE * * *
• • •.ZERO •• • en IN LCB • • •••••••••••••• ••••••••••••••••• •• •• • •••••••••••••••• • NO

x *****E3•••••••••• • • • RESTORE * •
• PREVIOUS *••• •••
•SEUUE-NCE NUMBER* • •

188 DOS QTAM PrograE Logic Manual

()
Chart CP. Change Polling List Routine

IJLQCP

••••Al********* • •
• CHNGP * • • •••••••••••••••

x
*****Bl********** • • * SA'JE *
•REGISTERS 14-12* • • • • •••••••••••••••••

i
*****Cl********** * l UAD PASSED *
•DTF ADDRESS ANO*
•DTF NOT OPENED *
*ERROR FLAG FOR * * USER * •••••••••••••••••

x .•. 01 •. •••••02••········
•* HAS THE *• YES * CLEAR DTF *

• OTF BEEN • •••••••• X* NOT OPENED *
• OPENED • * ERROR FLAG * •.

• NO

x .•.
E2 *• *****E3**********

•* *• * GET * •* IS *• NU *THE: ADDRESS Of *
• PASSED RLN •••••••••><* THE POLLING *

•TOO HIGH • * LIST FROM THE *
• · • * OTF *

* YES

~
*****f2********** * SET INVALID * * RELATIVE LINE * * NUMBEK ERROR * * FLAU FOR USER * • • •••••••••••••••••

i .•.
f3 ••

. * USER *• **** •* SPECIFIED *• YES * *
•.STATUS CHANGE·*••• .x• H4 •

• ONLY • * *
• NO

x .•.
G3 *• *****G4**********

.• IS *• * GET LENGTH * •* NEW LIST *• YES • AND OECRENENT *
•.SIZE EOUAL ro.• •••••••• x• TO START NOVE •

•.OLD LIST •* *IN 2ND POSITION•
•.SIZE •* * *

• NO

x
*****H3********** • • * LOAD *
•INVALID LENGTH • * ERROK FLAG * * • •••••••••••••••••

•••• . . .
• H4 •.x. • • x
*****H4********** * GET *
•THE ADDRESS OF •
• THE QMOVER *
• ROUTINE IN * * IJLQIP * • ••••••••••••••••

x i •••••J3••••······ ••J4•••••••
. i : USER~~A~RROR : * •;~t~'ga&~::• *
••• ••• ••• • ••. • •••• •• • • •• ••••• • • •• • • ••••• ••. X* FLAG IN *X•. •• ••. •* TO I TS ELF TO •

•REGISTER 15 FOR• •EXECUTE NOYE * * RETURN * * * ••••••••••••••••• • ••••••••••

i
****K3*********

• RES TORE REGS *
•0-12 AND RETURN• * TO USER • •••••••••••••••

QTAM Charts 189

Chart CR.

Al---

IJLQCR

Bl

SAVE REGISTERS
12-14

Cl

GET VECTOR
TABLE ADDRESS

DJ-~--~

GET CHECK
POINT DTF
ADDRESS

El
INTVL CHKPT

/ SPECIFIED IN
~MESSAGE

CONTROL

GET ERROR
CODE

NO

Gl--'----~

STORE IN
SAVE AREA

Hl---'----

RESTORE
REGISTERS
12-14

Jl-'---

RETURN

Checkpoint-Restart Routine

AJ----~

GET MODULE
BASE

BJ

SET CHECK-
POINT
PRIORITY

CJ

GET ELEMENT
ADDRESS

GET QCB
ADDRESS FOR
WAIT

INDICATE
GOOD CHECK
POINT TAKEN
(IN SAVE AREA)

190 DOS QTAM Prograro Logic Manual

Chart CT. Change Terminal Table Entry Routine

I JLWC T

****Al********* . .
* CHNGT * . .
*** * ** * ***** ***

x
*****!'I l * "'**** * *** * SAV[*
Rl::GISTl:RS 14-12 * ANU Clt-AR THE * * UStR'S. Ek.RUR * * INOICATOR *
** * *** * * ***** * ***

x
*****C. L********** * LOAD * * WORKING *
*PARAMl::TERS ANO *
*ACCESS FIRST * * ENTRY *
*** ** ** * ******** *

x
. *· . *·

l) 1 *. li2 *. *****03********** ·* IS *• •* 15 *· * INITIALIZE *
•* THIS THE *· Yt:S ·* Nf:w lNTRY *· YI-$ *AND GET ADL)RfSS*

••• X*. t-NTKY TO BE •••••••••• x•.SIZI- t.QUAL rn.• •••••••• x• t)f QMOVE QCB
• *• CHANGED ·* *.IJUJ SlZE .:ci: * f(IK CHANGING

· • *· ·* * ENTRY *
· · *· ·* ***************** * NO * NU

x ...
El *·

• * *· ·* IS THIS *• YES *· THE LAST •*•••••• *· ENTRY ·*
· · *· ·* * NU

x ...

x
**** * E 2* ***** * *** * SET X'lO' * * A~ tRKUR * * INUILATOR FUR *••••• •
*INVALI ll LE-NGTli * . .
**** * * *'**** ** ** **

f- l *· *****F Z********(.:*
·*SIZE OF*• • * 5tT X'20' * ·* l:NTRV *· YES X * AS ERK.OR *

-*.IN1HCATEO AS .. • X*- lNtJICATOR hJR *
· ZERO IN • * INl/AllD TAf3U: *

•.TABLE.* * fNTRY * *· ·* ***************** * NU

x
*** **G 1 **'******** . .

• * ACCESS lHE *
••••* Nl:XT E:NTKY IN * * Ti::KMTl3l * . .

*** *** **** *******

x
** *** F 3 *** **** ***
GE:T THE AnllRESS * OF THE * * lJESflNATION *
*QUEUE QCB FRUM * * THE TERMT Bl *
** ***************

x .•.
F3 °'· *****F4**********

.•IS IT A*• * *
•* TFRMJNAL *· YES * CALCULATE THE *

• DESTINATION ·••••••••X*LCB ADDRESS FOR* *· ·* * THE TERMINAL *
*· . * * •

*. • * ***************** * NO

x x
*****G3********** G4 *•
ADJUST THF SIZE:: ·* *• * SU THAT THE * YES ·* HAS STOP *•
*LENGTH BYTE IS *X••••••••*• LINE BEEN •* * NUT OISTURBE:O • *• ISSUED •* * IN MOVE * *· •*
'****************'°'

x
H3*****

****{.!PUST****
CAUSE' MDVf: TO

BE EXECUTED FOR
*ENTIRE ENTRV * . .

x
*****J3**********

• NO

x
H4*****

****QPOST**** * CAUSE QCB * * AODRESS TO BE * * MUVEO TO * * TERMTBL *
x •••••J 4********** • * LOAD ERROR * * BYPASS *

• X * FLAG IN * * Sl'.-QUENCE *
•••••••••••••••• .X*REGISTER 15 ANO•x ••• * RESTORE *

*REGISTf:-RS 0-12 *

* NUMBERS IN * * TEkMTBL ANO * * WORK ARE A * ········*········
x

****K3********* . .
•RETURN TO USER *

x
K4*****

****OPOST**** .. * CAUSE *
••••. •* RE-MAINOER OF *

* ENTRV TO BE *
+ CHANGED *

QTAM Charts 191

Chart Cl. QTAM Close Routine (Phase 1)

EXITACl

* * * C2 *
* * ****

****A2********* * • * $$BCQC01 * • •

I JLQCl X
*****B2**********
* * *GET CURRENT DTF*
* ADDRESS * • • * *

:•.••..........•. x:
x

TESTACl • *• •*•
C2 *• C3 *·

• * *· ·* *· •* IS DTF *• YES ·* VALID *· NO
• OPENED •• •• •••• .X•. QTAM OTF •*••• ..

" • *• TYPE ·*
*· . * *· ·* *· . * *· ·* *NO *YES

:x
x x

EXITCI . *· ...
02 *· 03 *·

x
**** • * * J2 * • *

****Dl********* • * *• .,"4- OTF *• ****04********* * RETURN TO DOS * NO •* MORE *• * CLOSE MONITOR •X •.. OTF TO BE •*
* $$BCLOSE * X *• CLOSED •*
*************** *· . * *· . * *YES

GETNXTC 1 X
*****E2* ********* • *
* GET NEXT DTF *
* ADDRESS *
* •
* * ··-·· ********** ***

x
*****F2*******'°'** * • * INCREMENT DTF * * LIST POINTER * • * • •
**** *************

x . ..
G2 *•

• * *· • NO .. • QTAM *•
... ••••*• OTF TYPE •*

· · "'· • * *· . * *YES

x ...
H2 *·

**** ·* *· * * YE:S •* VALID *•
* C2 *X••••*• QTAM DTF •*
* * *• TYPE • *
**** *· . * *· . * •NO

**** * • •
* J2 *··. • •
**** ERR2Cl x
****J2*********

*CAL l MS GWTR TO *
*SHOW INVALID *
* DTF TYPE *

•* TYPE *• YES *CALL QTAM CLOSE*
•.X 1 52 1 t X 1 53 1 •••••••••• x• PHASE 2 *

•.OR X 1 55 1 ·* * $$BCQC02 *
· · *************** *· ·* •NO

x
•*· NORM

E 3 *. *****E4********** *****ES**********
·* *· * * * * •* *• NO * SEARCH DTF * *REMOVE DTF FROM*

... CHECKPOINT x• ADDRESS IN ••••••••• x• CHAIN *
· DTF • * CHAIN * * * *· ·* * 1* * * *· . * ***************** ***************** *YES

x
CHKPNTC 1 •*

F3 *· . * IS *· • * MESSAGE *· NO
*• CONTROL • *•, ••

· ACTIVE ·
· · *· ·* *YES

x ...
G3 *·

·* *· • NO ·* SYSTEM *•
.X••••*• CLOSE IN •*

.PROGRESS ·
· · *· ·* *YES

x
*****H3**********
* CLEAR *
* CHECKPOINT *
ROUTINE ADDRESS
IN VECTOR TABLE . .

x
J 3*****

****EXCP*****
* WRITE *

* PROPERLY *
CLOSED FLAG ON*

FIRST RECORD*

ERR lC l x
****G4*********

*CALL MSGWTR TO * * SHOW INVALID *
*CLOSE SEQUENCE *

x
·*· F5 *•

·* *· NO •* LINE *•
•••• *• GROUP DJ F •*

· · *· ·* *· ·* *YES

:x
x

*****G5**********
• *
* GET (FIRST) *
* (NEXT) LINE *
• *
* *

x
H5*****

****EXCP**"'** * WRITE * * THRESHOLD *
* COUNTERS * • •

x .•.
J5 *· ... *· . • * MORE *• YES.

• LINES TO •• •••
•CONSIDERS.

· · *· ·* *NO

• x ..
• x .. "'
x

*****K 3********** . . * TURN OTF OPEN *
BIT OFF
* * • •

192 DOS QTAM Program Logic Manual

Chart C2.

C2

REMOVE DTF
FROM CHAIN

QTAM Close Routine (Phase 2)

A2----...
$$BCQC02

IJLQC2 82 _ __.... __ __,

GET CURRENT
DTF POINTER

G2-~--~
ZERO PTR TO MS
PROCESS IN
DASO PROCESS
AND LOW ORDER
2 BITS OF PTR TO
DASO QCB

TURN DTF
OPEN BIT OFF

GETNXTC2

J3 AUDIO
/MS PROCESS _N_0_--11.i
QCB WITH LOWER

"'a'~;""'

C4----~

GET NEXT DTF
ADDRESS

CLEAR QTAM
WAIT BIT
IN BG PIB

NO

HIDARULG

05-----,
SEARCH AUDIO
LINE GROUPS
LINKED TO THE
MS PROCESS
QUEUE

QTAM Charts 193

Chart C3. QTAM close Routine (Phase 3)

****A2********* . .
* $SBC QC03 * • •

I JLQC3 X
*****82*********• . .
* TURN MASTER *
:t:RCVE SW ITCH OFF*
* * . .

x . ..
C2 *· .. * *· •*IS •.NO

• CHKPNT ·· ...
• PRESENT ·

*· . *
·~ . * *YES

x .•.
02 *· • * *·

NO ·* WAITING *·
•••• •• •••• ••*• FOR ANOTHER •*

• CKREO •
*· • * *· . * *YES

**** • • * B4 * • •

NEXTLINE X
*****B4********** * • * GET !FIRST) * * (NEXT) LCB *

x ...
C4 *•

•* DIAL *·
•*LINE AND NO*• NO

· TRANS- •• •• •
• MISSION •

· · *· . * *YES

x
04*****

****QPDS T****
POST HALT I/O

*REQUEST TO LPS * * QUEUE *
• *

:x :
GETENTRY X

x .•. SKI PH IO X
El*****

****OWAI T****
WAIT FOR NEXT

E2 *· • * *· . •* CKREQ *· NO X

E4*****
****OWA IT****

* SEND All *
POSTED MESSAGES

FDR TH IS LI NE . . * CHKPNT * *• GUTSTAND •*•••• * ACTIVATION * . . *· . * *· . *
*********** *· . * ***********

*YES

.t PSTCKREQ X
x .•.

Fl *• **F2******* F4 *• ·* *• ****QPOST**** **** ·* *·
•* IS THIS *• YES * ACTIVATE * * * YES •* MORE *• *· CKREQ ·*· •••• •• .X:t: CHKPNT ONCE * * 84 *X••••*• LINES TO •*
• • * MORE * * * •.CONSIDER •*

194

· · * * **** *· ·*
· · *********** *· ·* •NO

:x•..... :
SHUTDWNA X

*****G2********** * •

*NO
**** . . .

* G4 *••• . .
**** SHUTOWNl CLOSELST •*•

*****G3********** G4 *·
* * ·* *· • :t:GET LAST OPENED* * GET NEXT OTF * NO ·* OTF CHAIN *·

•••••••••••••••••X*DTF ADDRESS IN * * ADDRESS IN *X ••*• EXHAUSTED ·*
* CHAIN * * CHAIN * *· •* • • ****"'************ * * *· . * ***************** *· • *

: x :
x

• *• CLOSALCB
HZ *• *****H3**********

·* *· * * YES•* DASO *• * GET IFIRSTI *
•••*• OTF TYPE •* ••• X* INEXTI ALCB *

x
**** • • * G4 * . .

· · * *
*· . * * * *· • * *****************

*NO

x :x
x .•. ·*· J2 *· J3 *'"

·* *· ·* *· •* AUDIO *• YES • • * END OF *· NO •
• LG OTF TYPE •• ••• x. *· WRITE •*••••

*· • *
· · *· ·* *NO

x
**** . .

* 84 * • •

·COMPLETED.
· · *· ·* *YES

x .•.
K3 *· . .. * *·

.YES •* MORE *• NO
••••*• LINES TO •*••••

•.CONSIDER ·*
*· .•

*· . * . x

* * * G4 * * •

DOS QTAM Program Logic Manual

*YES

x
*****H4********** . .
* RESTORE DOS *
*OTAM INTERFACE * • • • • *****************

x
*****J.4********** * INITIALIZE *
MESSAGE CONTROL
* PSW TO EOJAD * * ADORE SS *
* •

x
****K4********* * RE TURN TO DOS * * CLOSE MONITOR *

* $$BC LOSE *

Chart DA. Disk-End Appendage (Part 1 of 2)

****Al********* . .
*Dl SK APPENDAGE * . .

x
IJLQOA ·*· ·*· ·*· Bl*· B2 *• *****B3********** 84 *•

.•PROGRAM•. •* *· * * •* *• ****B5*********
.•PROTECTJON *· NO .•CHAINING DR•. NO *SAVE REGISTERS * ·* *· YFS * i:xn TO PflST *

*·OR CHANNEL •••••••••• x•. UNIT •••••••••• x•FOR INTERRUPHD• x•. CH~CKPOINT •••••••••• x•CHKP!\JT rn St=Li:: *
• DATA · *• CHECK •* * PROGRAM * *• CCR ·* * *

•.CHECK.* *• •* * * *• ·* ***************
· · *· ·* ***************** *· ·* *YES *YES *NO

: x:
x x *****C4********** *****("'**********

****CZ**>: •:V~:t-'!'Y * GET FIR<.iT AND * * SAVF REGISTER * * RETURN VIA * *SECOND EU:Mt:!\11 ~* *FOR If\IT!=PRUPTEO* * REGISTER 7 * * CN DISK I/IJ *•••••• •• X* PRrGRAM, GFT * . . * QUEU~ * *l ST, ?Nr'J ITEM<; *

**** . . *************** ***** *DA * * * * nN f'JSKIOO *
***************** *****************

* 01 * . . ****
*DA *

* .oi * .
* 02 *• •• . . .t **** x x

Dl *• *****D2********** *****D'?i**********
• *IS 2ND *. * * * * ****04*********

•*A REQUEST*· NO *MOVE LINK FIELD* *INSfRT THE DISK* * EXIT TO *
• TO READ •••••••••X* OF BRB INTO *••••••••X*l/(l QCB AT TOP *••••••••X* QSVCPOST *

• lST · X *DISK 1/0 QCB * *OF READY QUEUE* * *
*· • * * * * * ***************

· · ***************** ***************** * YES

x .•.
El *. *****E2********** *** **F3**********

•* *· *GET BRB ADDRESS* *MOVE LINK FIELD*
•* 2ND *• NO * FOR POSTING, * * QF BRB p,;rn * •

· HOLDS A TIC •••••••••X*PUT READY QUEUE*••••••••X* BUFFER LINK *••••
• COMMAND · *ADDRESS IN BRB * * F IELO *

• • * FIRST WORO * * *
· · ***************** ***************** * YES

x
*****Fl**********
* GET LCB FROM * * BRB WHERE TIC *
POINTS, PUT LCB
DISK ADDRESS IN
* 2ND *

x
·*· ·*·

x
**** . .

* ('11 * . .

Gl *. *****G2********** *** **G3********** G4 *. *****G5**********
·* *• *CLEAR CANCEL * * * RFSTORE LCB * ·* *• * *

·* READ *· YES * SENT FLAGS IN * *PJINTER IN BRB,* •* QISK *· NO *GFT ADDRFSS OF *
• REQUESTED ·••••••••X*PREFJX, REMOVE *••••••••X* ASSIGN THE *••••••••X*. READ FDR A •*••••••••X* LPS QUEUE FOR*

· · X *BRB * BFR FROM * * BUFFFR TO THE * *• GFT •* * P!"'STING *
• • *DISK 1/0 QUEUE * * LINE * *· •* * *

· · ***************** ***************** *· ·* *****************
*NO *YES

x ...
Hl *• *****HZ**********

. * *· * * ·* HEADER *· NO * TURN OFF EOB * •
• SEGMENT •••••••••X*FLAG IN PREFIX*••••

· · x * * *· ·* * * *· ·* ***************** * YES

x

•1DB·* * AJ:* •• •

... x
x

·*· Jl *·
·* *· ·* MESSAGE *· NO

• CANCELLED • ••••
• OR SENT •

· · *· . * * YES

*****J2********** . .
* SET FLAG TO *
* ALLOW *·
*RFTRANSMISSION * . .
***************** x

x

*DB * * A2* . . .

X •*•YES ·*• .*.NO
*****Kl********** K2 *• K3 *· K4 *· *****K5**********

:DECREMENT QUEUE: •*R~TRANSMJ~·*· NO :(·*·*•WRIT!:'*·*· YES ·*·*cAJ\ICEL *·*·YES :TURM 01\1 CLEANUP:
: SIZE COUNTER :········X*.*· RE~~~RT ·*·*········X*·*~N DISK cc~*·*········X*·*~IT iH IN·*·* .. ·x····x: Fl.oAG IN LCB :····

* * *· ·* *· ·* *· ·* * * ***************** *· ·* *· ·* *· ·* *****************
* * NO *

QTAM Charts 195

Chart DB. Disk-End Appendage (Part 2 of 2)

A2----~

Al MSG NO ~~~~l~Ai~~~
<oESTINATION ">--~_... MESSAGE SENT,

A 2740 MODEL 2 SET DISK CCW

Bl DEST, NO
ERMINAL
N DELA'V'.

cl

TO WRITE

C2'--"---~
PUT SEQUENCE
NUMBER IN
PREFIX, ADD ONE
AND STORE IN
TERMINAL TABLE

SET PRIORITY
BITON IN
MESSAGE
PREFIX

YES

GET AVAILABLE
BUFFER QUEUE
ADDRESS

B3--L.--~

INDICATE IN
BRB THAT BUFFER
IS ELIGIBLE FOR
DISK QUEUE

MAKE BRB
ADDRESSABLE

F3

DECREMENT BY
ONE AND
REPLACE BUFFER
LIMIT

SAVE MESSAGE
SOURCE IN
PREFIX

J3

GET RETURN
BUFFER QUEUE
ADDRESS

196 DOS QTAM Program Logic Manual

INDICATE BRB
INACTIVE

INDICATE BRB
WAITING, SAVE
BRB POINTER IN
LCB

H4

UPDATE NEXT
AVAILABLE
SEGMENT
ADDRESS IN LCB

J4

INDICATE
DUMMY BRB IN
MS PROCESS
QUEUE

E5
PUT DISK
ADDRESS INTO
BRB, INDICATE
ADDRESS
ASSIGNED

GS
RESET BRB
STATUS CODE,
GET DISK VO
QUEUE QCB
ADDRESS

H5

LINK DISK VO
QCB INTO BRB,
SET X'E4'
PRIORITY IN BRB

J5

LINK ITEM AT
READY QUEUE
HEAD INTO
DISK VO QCB

KS
PUT BUFFER OR
BRB ON READY
QUEUE, INSERT
RETURN BUFFER
ON DISK VOQC

(
~

Chart DC.

*****A 1 ********** • • * SET QK.EY IN *
•DISK 1/0 QCB TO* * f..IOT WAITING * • •

x

Disk I/O Routine

·*· ·*· •• ~ls r~i:•. .•82 1s *·.. !****B3*********!
·* DISK BEEN *• NO .•CHECKPOINT *• YES *GET CHECKPOINT * *· BUSY WITH •••••••••• x•. IN ·*······· .x•ELEMENT ADORESS•
• I/O • •.PROGRESS ·* * *

""· ·* *· ·* * * *· ·* *· ·* ***************** * YES * NO

••••••••••• x:x •••••••••••••••••••••••• :
ic x ·*· ·*· ·*· *""***C2********** C3 *· C4 *• C5 *• * ACESS THE * •* *· .•ELEMENT•. .+ NF.W *• *****C l*******:t:Vtr • • * REMOVE BRB OR * * BUf-FER FROM * * k EADY iJlJEUE * • •

+IFIRST> (NEXT> * ·* IS THIS *• NO •* IN CHAIN *• NO .•ELEMENT HAS*• Yf:S
•ELEMENT IN THE *··· x•. THE LAST x•. HAS HIGH •••••••••• x•. HIGH ·*···.
: CHAl':ll : *-.~LEMEN~··* *·~~IORIT~*·* *·~~IOPIT~*·*

***************** *· ·* *· ·* *· ·* * VF.S * YES * NO
**** . . .

• • X.* G5 * x * **** * • • • • • • • • • • • • • x
·*· . *· ·*· l) l *. *** **03********** 04 *. 05 * • • * *. * * •*ELEME~T*• •* NEW *• ·* WAS *• YES • * ENABLE NEXT * NO •* IN CHAIN *• YES •* ELEMENT *• *· SfCONO ITEM ·*· ... x ········* ELEMENT TO BE •x .. ······*· LESS THAN .•x.......... LESS THAN ·* *· REMOVED •* * ACl:SSED * X *• CURRENT •* *• CURRENT •*

· • * * *.AOOR •* •.AOOR •*
· · ***************** *· ·* *· ·* * NU * YES * NO

x ic .•.
E5 *• *****E 1 **********

•GFT PQINTF.R T(I *
* FIRST ITEM IN *
*DISK l/D OCB• S * * ELEMENT CHAIN * • •

.•ELF1r4ENT*• •

x ...
Fl *•

.. * *. ·* *• YES *· CHECKPOINT •*•••• *• ELEMENT •*
*· . *

· · * NO

x ...
Gl *· • * IS *.

x

•DA *
• .o~• .

*****F2********** *****F3********** * SET UP WRITE * * * * CODE FOR CCW * * SET HIGH * * GET SEGMENT *••••••••X*PR IORITY IN THC*
RF:=LATIVE RECORD * BUFFF.R OR BRB *
* NUMBER * * *
***************** ***************** x

x . ..

•* IN CHAIN *• YESX
• Ll:SS THAN ••••.

• CURRF.NT •
•.AODR •*

· · * NO

:• x:
x . ..

F5 *•
•* NEW *•

• NO •* ELEMENT *•
•••• •••• •••••.••• ••••• •••••••••• •.LESS THAN ONE.*

•IN CHAIN •
· · *· ·* * YES

**** • • * * .x ••••••••••• * GS •.x . • •

G3 *• *****G4********** x
•* *· *REMOVI FROM QCB* •* ELEMENT *• NU • •* IS THIS *· YES * ELF Mr NT CHAIN * ****G5********* • * * EXIT TO LIFO * * • *· CHAIN ·*••••••••• •••••••••

• EMPTY ·
· · *· ·* * YES

x
*****H l**********
:Dl~~T I~~E~c~NTo!
' l' TO INDICATE * DISK IDLE * . .

x
****Jl********* * EXIT TO * * DISPATCH * • *

· A BRB FOR A •••. •• •• .X•GET HlJrFFR FROM*
•.DISK READ.* * AVAILABLE *

• • * BUFF IR QUEUE * ***************
*. • * *****•* ••******** * NO

*DC * . * H3 *.X. * * .x ••••••.•.••
**** x
*****H3********** * PUT COMMAND *
CClDE A~O BUFFER
*ADDRESS IN CCW *
*SET UP CHANNEL * * PROGRAM *

x
****J3********* * fX IT Tt1 * * QSVCPOST * . .

x ...
H4 *•

• * *• ****H5********* •* WAS A *• NO * EXIT TO * *· tHJ 1 F FR •* •••••••• x• QSVCPOST •
•.AVAILABLE.* * *

. · *************** ... ·* * YES

ic
***** ,J lt ••******** * INSFHT BUFFER* * INlf\ 'llSK I/O * * QC!\ 11 EMENT *
•CHA IN ')AVE BRB *
•AOORf \') IN FCB *
......... *********

x
*****K 1t•********* * SI 1 HIGH *
PRIOR TTY l'N NEW
!B~~~hRl:rig~rFg~ !
* ccw *

QTAM Charts 197

Chart DE. Copy Terminal Table Entry Routine

IJLQOE

****A2********* • • • copv·r • • • •••••••••••••••

x
·····~2·•········ . .
* SAVE *
•REGI SHRS 14-12* • • • • •••••••••••••••••

x •••••cz•••••••••• • • * CLEAK ERROK * * INDICATOR ANO *
LUAIJ PARAME f[RS

x
*****02********** • • * LOCATE THE * * BEG INNJ NG Of * * TE~MTBL * • •

x
*****E2********** • • * SEARCH * * TEH.MTBL FOK * * TF.H.MNAME *

i .•. f2 *· 3••········ •* *• * SET INV AL ID *
•* *• t>IU *rERMINAL TABLE *

• ENTkY FOUND •••••••• .x• fNTRY F.RROR *
• • * INDICATOR FOR *

• • * USER * •. ·* •••••••••••••••••
* YES

x
*****l>2••••······ * MDVI: TERMINAL * * Er-HRY TU * * WORKAREA * * STARTING IN * * F IKST ijYH: *

. .
• x •••••••••••••••••••••••••

x
*****H2********** * LUAIJ • * USE:R' S ER KUR * * FLAG ANO * * KE: STOKE *
*REGISTERS 0-11 *

x ••••J2••••••••• • •
*RFTURN TO USER *

198 DOS QTAM Program Logic Manual

/

/

Chart DL. Distribution List Routine

***** *DL *
**A!* .

(JU.llll X
**** :i;. Al**********'
*GET ADOIH:SS OF * * LCBANO *
OESl 1NA11UN KEY * Fl<OM MlSSAGE * * 1-'Kl:HX *
**** ** ** *** ******

Dllt::ST X
*****bl******'°'***
o: STllfU:: *
Ul::.TlNATION KfY * lr~LUIAS *
*lJt-1-::)El TU ·\IEXT * * Et'-<TKY IN LIST*

* * * * **** ** ** ** * * *

x ...
Cl*· *****C2***'Ct******

. * i ~ *· * * ·* THU<.[AN *· NU * LUAI! THE *
•.tNTKY IN THt- .• •••••••• x•urSTINfl.TIU'I KtY*

.Tl.:fU<1lNAL · X * IN THI-' PIH'.FIX *
•.TArllt.* * *

· · *****"**********'°' * YI:-;,

x
* * ** * D l * ** *** * ** * . .
* GET AUlJKESS * UF Tt::KMT~L * i:f\tl kY * . .
** * * * * *** * * *** * * *

x
*****El********** . .
•µu1 WCh ADORl::SS* •
*Hit< f:NTRY [NTLJ *••••••
: THl:LCB:

** * * ** * * ***** * "'* *

x
** ::<* * ,J 2 '~ ** * * * ** * * * •
PUT 1JlB AUIJklSS
*FOk l"-1TKY I 1\IHl * * l-C!I [lF RUFFFk *
• * * * * ·~ * * ** ** * * *** * *

x
*** * * t 2* ** * * * * * * * . . * (;['T ADtlRl::SS * uf- Ti-IE: Rf-AIJY * WUl:UI:: . .
** * * ** ** *** * * * * * *

x . ..
i-Z *· **¢**fl**********

.*IS THIS*. *NURT 1183*
•* f'-H': fli<ST *• YES *-*-*-*-*-*-*-*-*

•TlMl: IN L!Sl •••••••••X* GLl TO
• KllUTINf. · * l:NDINSk.T

*• • * * f<lJUT INE *· . * ******(<**********
• NO

: x :

x
* ** *'· 2* * * * **** * * EXIT *

"'TU f>KIOR1TY IN*
* SUPV *
*** ** ***** ** ** *

*Dl *
* A4* .. .

x
U 1 ***A4********** * GET OFFSET *
*FROM THE: LCB TO•
HHE NE)(T ENTRY *
IN OlSTRIBUTION
* LIST *

x .•.
B4 *• • * IS *.

•* THERE: A *• NO
11<,.0ISTRIBUTION •*••••••••

• LIST • X
.ENTRY· *****

· · *l6 •
*YES *FS*

x
e<****C4********** * SAVE HEADER * * HlK INSERTION * * INTU QUEUE ()F * * THE NEXT * * DESTINATION * (l:••(l:*(I:*••········

x
****(l:L)4****•••••• . .
*BUMP OFFSET TO *
*lHl NEXT ENTRY *
o: IN THE LIST * . .

Ul 1 !_~I X
*****l4**********
* STORE *
•IH ~Tli'-lATION KEY*
* IN LCB AS *
•:Jf I SET TO NEXT *
"' lNTIH IN LIST*
•• •••************

x .•.
f-4 *·

.• IS *•

..
•

.• !HERE AN *·NO
•,fNTR'r' IN THE•*••••••••

•.Tt-RMINAL ·* X
• .. TABLE.• ***** *· .• *16 • * YES * FS•

x 'II••• *G4********** . .
• (,!:.1 ADDRESS *

Of TERMTBL *
ENTRY * • ••••*************

x

•• •

•• ••*H4********** *****H5********** • * *RE CALL 0004*
•PlJI (,JC8 ADDRESS* •-•-•-•-•-•-•-•-•
•t trn ~NTRY IN-To *• K• GO TO RECALL •
• THE LCB * * ROUTINE TO * • * *RETRIEVE HEADER*

x
*****J5•••·······
* PUT *
*DESTINATION IN *
PREFIX AND TURN * OFF THE 2 BIT *
* INLSTA * •••••••••••••••••

ic
*****K5********** * GET *
*THE ADDRESS OF *
• THE BUFFER *
CLEANUP ROUTINE • • •••••••••••••••••

x ••••• •16 • * Bl* •• •
QTAM Charts 199

Chart DP. Copy Polling List Routine

1.11.QGP

••••AZ••••••••• • •
• COPYP • • • •••••••••••••••

ic •••••az•••••••••• • • • SAVE •
•REGISTERS H-12* • • • • •••••••••••••••••

ic
*****CZ**********
:oT~o~go:mE~No:
*D TF NOT OPE NED *
•ERROR FLAG FOR • * USER * •••••••••••••••••

ic .•. 02 •. •••••03•••·······
•* HAS THE *• YES * CLEAR OTF *

•· •. 0i~e~~iN . • ·•· ·· ·· ·· · x: ~alo~P~~~g : •• •• • •••••••••••••••• • NO

i .•.
E3 *• .. ***E4**********

.• •. * SET INVALID *

.:•PASsii RLN •:.~~! x: =~AUVMA~E:
*•TOO HIGH • * O FLAG FOR USER O•.......•.•...

• NO

i
*****f3********** * GET *
•THE ADDRESS OF *
* THE POLLING * * LIST FROM THE O
* DTF * •••••••••••••••••

i
*****G3**********
•GET THE LENGTH O
o FROM THE POLL *
O LIST ANO COPY O * POLLING LIST *
O INTO WORKAREA O •••••••••••••••••

.••••••••••••• ••••• x.x •••••••••••• •••••••••••••
x

*****H3********** * LOAD * * USER 1 S ERROR *
o FLAG IN O
•REGISTER 15 FOR•
o RETURN O •••••••••••••••••

x •••••J3••········ • • * RESTORE *
•REGISTERS 0-12 O • • • •

x
••••K3********* • • •RETURN TO US ER * • • •••••••••••••••

200 DOS QTAM Program Logic Manual

/

Chart DQ.

(\

"/

Copy Queue Control Block Routine

IJLQDQ

****A2••••***** • • * COPYQ * • • •••••••••••••••

x
*****B2********** • • * SAVE *
REGISTERS 14-12 • • • • •••••••••••••••••

x
•••••C.2****•••••• * CLEAR *
*ERROR INDICATOR•
* ANO LOAD * * PARAMETfR * * REGISTERS * •••••••••••••••••

x •••••02••········ . .
* LOCATE * * BEGINNING OF * * TERMTBL * • • •••••••••••••••••

x
*****E2********** • • * SEARCH * * lERMTSL FOR * * TERMNAME * • • •••••••••••••••••

x .•.
F2 *• *****F3**********

•• •• • SET X1 04' •
• * *• NO * IN ERROR * *• ENTRV FOUND •*••••••• .X• INDICATOR FOR *
• • * INVALID QCB *

• • * NAME * *· .• • ••••••••••••••••
* YES

x
*****G2********** • • * GET QCB * * ADORE SS FROM * * ENTRY * • • •••••••••••••••••

x
*****H2********** . .
* MOVE QCB * * INFO TO WORK * * AREA * • • •••••••••••••••••

:x .•...................•.. :
x

*****J2••········ * LOAD * * USER'S ERROR * * FLAG ANO * * RESTORE *
*REGJ STERS 0-12 * •••••••••••••••••

x
****1<2********* • • *RETURN TO USER * • • •••••••••••••••

QTAM Charts 201

Chart D'I'. Date Stamp Routine

I Jl\JOT

****A3********* • • * DATESTHP *
;

*****83•••••••••* *EXPAND EXAl* ·-·-·-·-·-·-·-·-· * EXPAND HEADER * * f-OR DATE * * INSEIHION *

x
*****C3********** * GET DATF. * * fROM * * CUMMUNICAT ION * * REGION * . .

x
*****03**********
* UNPACK DATE * * I Nf"O * . .

x
* * * ** E: 3 *** ******* . .
* HOVE: *
*fORMATTE:D DATF *
* INTO HEADER * . .

;
****F 3********* . .

RE TUKN * .

202 DOS QTAM Program Logic Manual

,,
',\

Chart Dl. IBM 7772 Disk End Appendage

****A3********* * 7712 DISK * * APPENDAGE * . .

x
I JLQAO •*•

83 *· . * *. ****84********* ·* UNIT *• YES * RETURN TO * *· BUSY •*••••••••X*SUPERVISOR VIA *
• • * REGISTER 7 *

*. . * *************** *· ·* *ND

x
*****C 3**********
* * *SAVE SUPERVISOR* * REGISTERS *
* * * * *****************

x
*****03********** * INITIALIZE *
*BASES FDR QTAM * * SVC AND :t
*IMPLEMENTATION * * ROUTINES *

x
*****E 3********** . .
* GET ALCB * * ADDRESS FROM * * OCV BUFFER * * •

.....
*Dl * * F4* .. .

x
•*• MESSAGl A X

F3 *• *****F4**********
•* *• *GET ADDRESS OF * ·* IS *· YES * I RP MESSAGE *

• RECORD NOT •••••••••X* WllITER * *· FOUND ·* * INITIATOR *
· · * * *· . * **** ************* *ND

x ... x
*****G2********** G3 *• ***••G4•********* * I J LOMW *

·-·- ·-·-•-*-•-•-* * PKINl ERROR *
* * ·* *· * COMPUTE DCV * NO •* ANY *· * WORD LENGTH *X •• •••• ••*• OTHER ERROR ·*
* * *· ·* * Mf SS.AGE *
* * *· ·* * •
***************** *· •* *****************

*YES

x : x:
. *· H2 *•

• * *· ·* WORD *• YES *· LENGTH ·*• •••
• ERROR ·

*· . *
· · •NO

x
*****J2* ********* • • *STORE OCV WORD *
*LENGTH IN ALCB * . .
• *

x
****K2********* * EXIT TO * * IJLQAD60 *

* * ***************

x
**** * • * F4 * • *

x
****•H4********** * •
*St T I l{ROR TONE * * INALCB * * • . .
·············****

x
****. ,14********** . .
* Sfl l AST WORD * * I l AG ON * . .
• • •••• *************

x
****K'•********* * I XI T TO * * I JLOAD60 * • •

QTAM Charts 203

Chart D2. IBM 7772 Disk Read Routine

**** • • * Al * • •

x

•*• DISKRG ·*•
Al *• A2 *• ·* *.. •*FIRST*·

•* PAUSE *• YES •* WORD OR *• YES
• ELEMENT ·••••• ••• X*• PREVIOUS •*•••• *· ·* *• PAUSE •*

· · *· . * *· ·* *· . * *NO *NO
**** . . .

* Bl *·
x

**** * • * 84 * . .

****A3*********
*1172 DISK READ * * ROUTINE * . .

*************** **** . .
* B4 *
• *

****AS********* * EXIT TO * * IJLQA060 * . .
*************** x

**** OJSKREAD •*• x
*****B2**********

**** IJLQAD30 .~.. DRDISB i .i~~ • •••• • • • ••
83 *• *****B4********** 85 *•

BC

Bl *· .
·* *· ·* WORD *· YES

• ALREADY •• •• .. *· FOUND ·*
· · *· ·* *NO

x

x
**** . .

* cs * • •

* SAVE PAUSE *
* COUNT ANO *
* INCREMENT *
* ADDRESS CHAIN *
* POINTER *
******** *********

·* *· * * ·* *· .:* HAe~c~/0 *:.~~: x: SE~L~b5~2LE : x•:* ~8e2o *:.
• FLAG ON • * * X *• •*

· · * * *· ·* *. . * ***************** *· .. * *NO *YES
**** . . .

* cs *·· ..
x • *

**** x•.
C 3 *. *****C4********** cs *·

·* *· * * ·* *·
*****Cl********** * SAVE WORD * * ADDRESS AND * * INCREMENT * * ADDRESS CHAIN * * POINTER *

•* INITIAL *• YES * CLEAR ADDRESS * •* DISK *• NO •
· WORD FLAG .• •••• .X CHAIN POINTER * *· EXIT •*• • • .,, *· ON • * * * *· ·* *· ·* * * *· ·* ***************** *· • * ***************** *· ·* •NO *YES

: x:x •••••••••••••••••••••••• : x ... x ... REREAD : 0 I SKEX IT X
01 *· .•ADDRESS*.

D3 *·
**** ·* *· ·* CHAIN *• YES * * ·*LAST *•YES •

• LENGTH ••••• * 03 * .. •• .X*• WORD FLAG •*• ... •••• •• •••••. •••• •• •••• •••• •••
•.EXCEEDED ·* * * *• ON • *

· · ic **** *· ·*
· · •NO

x .•.

**** • • * HS * . .

El *· *****E2**********
·* *· * * •* ADDRESS *• YE~ * SET LAST WORD *

• CHAIN •••• X* FLAG ON
.EXHAUSTED. *

· · * * *• • * ******** *********
•NO

: x :
x

*****F !**********
* CLEAR PAUSE *
FI ELD AND RESET
* INITIAL WORD * * Fl AG * . .

x .•.

CORE READ
*****F 2********** • • *SEARCH DCV WORD*

... X* ENTRY IN WORD *
: TABLE :

x ...

*· . * *NO

DISKRA X
*****E4********** . .
GET DTF ADDRESS

*****E3**********
*GET ADDRESS OF *
* ADDRESS CHAIN *
* BUFFER FROM * X* FROM ALCB *
* ALCB * . .

x ...
F3 *•

. * *· . * *. YES •
•.INVITATIONAL•*••••••

• WRITE ·
· · *· ·* *NO

. . . .

x
*****F4**********
* •
* GET FIRST *
* INVITATIONAL *
* WORD ADDRESS * . .

: x :
x . ..

*****OS********** . .
*GET OCV BUFFER *
*ADDR FROM ALCB *
* • • •

x
*****ES********** . .
* GET LPS QUEUE *
* ADDRESS *

x
****F5*********

* EXIT TO *
* QSVCPOST * • •

GI *• G2 *· G4 *• *****GS**********
•* *· .. * *· ·* *· * * ·* DISK OR *• CORE • ·* WORD *· NO ·* INITIAL *· YES •SET REPEAT BIT *

· CORE WORD •• ••••• *· ENTRY FOUND •*• •••

*****G 3********** . .
*UPDATE ADDRESS *
* CHAIN ADDRESS * x•. WORD FLAG ·*· x•ON IN THE ALCB

*· . *
· · *· ·* *DISK

x
·*· Hl *·

·*BUFFER *•
•* POOL AND *• NO

• VALID DISK •••••
*. ADDRESS • *

· · *· ·* *YES

ic
*****J !********** . .
*GET DCV BUFFER *

x

*Dl * * F4* •• •

· · *· . *
· · *YES

ic
*****H2***'°****** . .
* SAVE WORD *
LENGTH AND WORD
* ADDRESS IN * * AL CB *

*****J2**********
*PREPARE BUFFER *
CHANNEL PROGRAM

x

*Dl * * F4* .. .

* FROM ALCB * ••• X* TO READ DCV *

ic
*****K !**********
* UPDATE BUFFER *
* AREA FLAG ANO * •
* SAVE BUFFER *· •••••
AREA ADDRESS IN * ALCB *

* WORD * . .

:x :
x

*****K2********** . .
*SET WORD FOUND *
* FLAG ON *

x
**** . .

* D3 * • •

* POINTER * . .
** **** ***********

x
DISKRB ...

H3 *·
·* *· ·* REPEAT *• YES •

~ ELEMENT •••••••
· · *· ·* *· ·* *NO

• ON • * ERROR BYTE *
*· . * * * *· ·* *****************

•NO
**** . .

* H5 *•• ..
x * **** * ..

•*• DISKRC X
H4 *• *****HS**********

·* *· * * ·* REPEAT *• YES * SET LAST WORD *
• COUNT EQUAL •••. •••• .X* FLAG ON *

*. ZERO • * * *
· · * * *· • * *****************

•NO

x

* * * 84* * •

x ... DI SKR F DISKRO X
x

·*· J 3 *· • * *· ·* DISK *• YES
• WORD •••••

· ADDRESS •
· · *· ·* •NO

x
**** . .

* Al * . .

x
**** • • * Bl * • •

*****J4********** • * * DECREMENT *

JS *•
·* *· • * WORD *• YES

* REPEAT COUNT * X•. ALREADY •*• ••• . .
• •

x
*****K4********** • • *RESTORE ADDRESS* •
* CHAIN COUNTER *••• ••• . .
* •

• FOUND •
· · *· ·* *NO

x
**** • • * 84 *

* * ****

x

* * * CS* • *

204 DOS QTAM Program Logic Manual

Chart D3. IBM 7772 Line Write Routine

•••• • • * Al * • • ••••
WLINEC X

*****Al********** • •
*SET SLI ANO DC *
•FLAGS IN WRITE *
• ccw * • •

x

• ••• • • * A2 * • • ••••
x .•.

A2 *• .• *· •* WRITE *• YES
• AFTER •• •••

• ENABLE •
•NO

x

x
**** • • * El * • •

****A3*********
1112 LINE WRITE
* ROUTINE * • •

x .•. IJLQAD60 ·*• •*•
*****Bl********** • •
•SET SLI AND CC *
•FLAGS IN WRITE * * PAUSE CCW *

B2 *• 83 *· 84 *• *****85*********-,: •• *· . * *.. • * *· • * •* INQUIRY *· NO •* DISABLE *• YES •* INITIAL *• YES tt= UPDATE ALCB *
*• MOOE • * •..• *· FLAG ON •*••••••••X*. CCW FLAG ON •*••••••••X*CHANNEL PROGRAM* *· .• *• •* *• •* * FOR DISABLE * x *· ·* *· ·* * * *• ·* *· .• *****************

*YES

.t WLINEE i c I •. •••••c2•••••••••• ·* •. * • •* *• YES * SET DISABLE *
• INFORMATION •••••• ••• x• STATUS * *· MODE • * X * *

· · * •
•NO

x .•.
Dl *· .•DI SABLE•.

•*FLAG ON OR *• YES •
• MASTER RCVE •••• •••

*SWITCH OFF.•
· · *· ·* •NO

**** . . .
• .. X* A2 * • •

**** Wll NEH
*****El********** • •
+SET SL! ANO PCI* • .X• FLAGS IN READ * * ccw * • •

• *****************
**** • • * El *

x •••••02•••.•······ • • •CHAIN WRITE CCW• * WITH DISABLE * • ccw • • • •••••••••••••••••

• •••• • :x .•..•.•.•......•.•.•.••. :
WLINEI X

*****Fl******* • • * CHANGE *

WLI NEG
*****F2********** • • *SET DC, S LI ANO*

**** . .
* El * • •

*NO •NO

WLINE i WLINEA i:
*****C3********** *****C4**********
* RESET WORD * * STORE PAUSE *
* FOUND ANO * *ADDRESS IN ALCB*
POSSIBLE PAUSE •x •• •••••• AS DCV WORD *
* FLAGS * * ADORE SS * • * * •
***************** *****************

x
*****03**********
* MOVE WORD *
* ADDRESS ANO * * LENGTH INTO *
* WRITE CCW * • •

x
*****E3********** . .
GET PAUSE COUNT
* FROM ALCB * • • • •

x
*****F3********** • • * UPDATE WRITE *

* WRITE CODE * * PCI FLAGS IN •x ••• * PAUSE CCW *
* INTO TIC CODE* • •

x
WLINEJ •*•

Gl *•
·* *·

* WRITE CCW * • •

x

• • • •

x ...
G3 *•

·* *· NO·* INITIAL *• .. ··*· ccw .•x •••

*****G2********** • • *SET DC AND SL I *
*FLAGS IN PAUSE * * WRITE CCW * • •

•* DISABLE *• YES
• TO BE •• •• •

· • •. ·*
*YES

x
*****HI********** • • * RESET INITIAL *

x
*****H2********** . .

• I SSUEO •
· · *· ·* •NO

x
WLINEB .•.

H3 *•
·* *· • NO •* LAST *•

x
**** • • * Al * • •

* FLAG * • •
*UPDATE ADDRESS *
* IN WRITE/TIC * •••• ••*• WORD FLAG •*••••

• •

x
*****J l********** • • *GET FIRST WRITE* * CCW ADDRESS *
* • • •

**** . . .
• • x• 05 * • •

• ccw * • •

iC
*****J2******* • • . * CHANGE TIC *

•• ••••* CODE INTO *
* WRITE CODE * • •

• ON •
· · *· ·* *YES

:wLINEK **** WLINEL
*****Kl********** *****K2*******)(

• :UPDATE CCW AREA: : CHANGE * * * ****~jj~*;~**** *
••• x: FLAG :········x: l~~iT~l~og8oe•*········x: QSVCOISP :

* • * * ***************
***************** **************

x
**** • * * Al * • •

x
*****C5********** • • * SET DISABLE *
* STATUS *
• * • •

**** . . .
* 05 *··· • • **** •

START72 X
•••••05********** • • *LOAD ADDRESS OF*
*FIRST CCW INTO *
* THE ALCB CCB * • •

x
*****E5********** • • * SET ALCB EXCP * * FLAG ON * . .
• •

x
*****f5********** • • * GET LPS QUEUE *
ADDRESS TO POST
* THE ALCB * • •

x
****G5********* * EXIT TO *

* QSVCPOST * • •

QTAM Charts 205

Chart D4. IBM 7772 DCV Buffer Routine

206 DOS QTAM Program Logic Manual

****A3*********
•7772 DCV BUFFER* * SUBTASK ENTRV * • • •••••••••••••••

IJLQA040+6 X
*****83**********
•GET ADDRESS OF * * FIRST ALCB * * WA IT ING FOR A * * DCV BUFFER * . .
•••••••••••••••••

x
*****C3********** • • * DEQUEUE THIS * * ALCB FROM THE * * WAITING CHAIN * • • •••••••••••••••••

x
*****03********** * ALLOCATE THE * * AVAILABLE CCV *
*BUFFE:R TO THIS * * ALCB * • •

x
•••••E3********** * ALLOCATE THIS * * ALCB TO THE * * AVAILABLE CCV * * BUFFER * • •

x .•.
F3 *•

•* IS *• . * ANOTHER *• YES *. ALCB •*• •••
• WAITING •

· · *· ·* •NO

x
*****G3********** * LOAD Q INSERT *
ACOR IN SUBTASK * ADDRESS FIELD * * OF DCV BUFFER * * QUEUE *
•• ***************

:x .•....•.•• :
x

****H3********* * EXIT TO * * IJLQAD30 * • • ***************

/

(
I

c. '
Chart EA.

•••••
•~A *
• Al* • • •

IJLQ[A X

End-of-Address (EOA} Routine

*****AL********** * GH OFFSt-T TO * * NE:XT *
•UtSTINATlllN lN * * THI- Hl:AllER * • •

x
*****Bl********** * STORt-- THE * * LirfS!:T IN THl- * * LCB MULTIPLE: *
+ ROUT ING *
• lNUICATml. o:

x
*****Cl**********
• (jf:;J •
+AO DRE S::,, Of SK IP* * TO C.HAM.ACH:R * * SET RtlUTIN[* • •

i .•.
Ul *. *****!ll**********

.+IS THIS+. *NUKT lJttJ+
•* THE flRST *• YlS •-•-+-+-•-•-•-•-• •• r IJrillE IN EOA x• GU TU
• RUUTINE • * ENDIN~ltl

+. •* * IHJUTINf *
* NO

:x ..•••.•........•........ :
i ••••1:: •••••••••• * f.I(IT • * TU SklP SKA2 * • •

•••••
*EA * * A4* •• •

x .•.
A4 *•

•* HAS *• •* MULTIPLE *• NO
•.ROUT ING BEEN •*••. •• •• •

•.SPECIFIED.• X
•• •• •16 • * YES • F5•

x
•••••B4**********
• SAVt: HEADER * * fOH INSERTION • * INTO OUEUE Of •
• THE NEXT *
• DESTINATION O •••••••••••••••••

x
*****Cit**********
RECALL l781 ·-·-·-·-·-·-·-·-· * GU TO RECALL • * ~llUT [NE TO *
*R l:TR I EVE HEADER•
• ••••••••••••••••

x •••••04••········ * CLEAR LCB *
•EKIWR INDICATOR•
* ANO *
*DISTRIBUTION *
*LIST POINTER * • ••••••••••••••••

x
*****E4**•******* * RE'.SET SCAN • * POINTER TO *
*OFfSET OF NEXT * * Dt::STINAflON •
• * •••••••••••••••••

x
•••••f4••········ • • * CLEAR THE • * MULTIPLE *
ROUT ING POINTER • • •••••••••••••••••

x
*****Git**********
*Nl::LUAIJ ADDRESS *
•SAVl:O IN ROUTE * * ROUTINE TO * * RETURN TO EOA * * MACRO * •••••••••••••••••

x
*****Hit********** . .
* GET ADDRESS * * Of ROUTE * * ROUTINE FOR * * t:XIT * •••••••••••••••••

x ••••J4•••······ * EXIT *
*TO ROUTE RGA3 * • • •••••••••••••••

•• •

QTAM Charts 207

Chart EB.

AJ----
EOB

Bl
YES

End-of-Block (EOB) Routine

B2 !DENT
EXCHANGE

REQUEST

NO

B3-----,

SET EOB BIT IN
PREFIX

CJ MESSAGE, <CANCEL LED. OR ,_Y_E_s _____ ...i
ERROR MESSAGE

SENT

EI

<6!ou~~1~~~~Ls
0

3

YES

YES

f2--'--~

RETURN

YES

SET UP WRITE
CONTINUE IN
LCB

208 DOS QTAM Program Logic Manual

YES

GET REMAINDER
OF BUFFER TO
PROCESS

D4-~--~

SET UP READ
CONTINUE IN
LCB

NO

G4.-~--~

SAVE BUFFER
SIZE AND FIND
ADDRESS OF
LAST CHARACTER
IN BUFFER

H4-~--.,

RESET LCB TO
USE BUFFER

~~-I T~T,._O~P-H~SI--~
CAL IOC RWAl

NO

B5-----.

RESTORE SCAN
POINTER IN
PREFIX

()

Chart FC. End-of-Block and Line correction Routine

IJUll:C . ..
A4 *•

****Al****•**** . . •* *• ****AS********* •* TRIED TO *• YES * *
• EUt'ilC * ..• x•. TRANSMIT •••••••••• x• RETURN • . . *• THREE •* * * *• T !HES.• ***************

x .•.
IH "'• • •ME:SSAGE•. ****R2********"'

•* CANCELLED *· YE:.S * *
• UK i::Rf.lUR •••••••••X* Kl:TUKN *

• Ml::SSAGE • * *
•SENT • *************•* •. ·*

• NO

x
=*•

Cl *• . • *·
•* *· YES •

t,.Tl<ANSMISSlON •*••
• E:KkOR ·

· ·
• NO

i ...
Ill *•

•* *. ****D2*****'°'***

. ...
* NO

x
*****84••········ • • * RESET * * TRANSMISSION * * E-RRORS * • •

x
*****C4*********• • RECALL 1682 * ·-·-·-·-·-·-·-·-· • • * KF-CALL HEAllER * . .
•••••••••••••••••

i .•.
04 ••

.•.
C5 •,,,

.• FIRST *• NO
• • • X•. EOB IN •*• •• •

•. MESSAGE •*
* YES

x
. * EOT *• YE.~ * * • * IS * • NO •

•••••05•••······· •CANCEL MESSAGE O
• ANO RE TURN TO O
•DASO ANO RESET *
• TERM TBL •
•SEQUENCE NUMBER•

• OH. LHHE-R •• ••••••• X* IH-TUKN * •.LINE SENDING •*•••••. *. l::l<t<Ul<S •* * * ··········•*•••
• NO

x .•.
E.l ••

•* t • ttttLl*****+"••t
•* Kl:SIUUAL *• Y~S * * *• CQUNf E'-)UAL •*••••••••X* Kl:lUM.111 *
*• I ERU • * * *

• NU

x
*****Fl********** * SET * * t-OB IN Plol.EF IX * * AND ~tT RETRY *
•CUUNTE:R TO lE:RO* • • ,..

x .•.
Gl *· *****t,2********** *-****G3********** • • •• • * * • ·* I~ *· Yl~ * GfT 1-tEMAINUt-K * * StT UP *

• THIS TEXT •••••••••.I(* Uf- 1.HJFH:R TO ••••••••·"''°' IH:AO CONTINUE*
• SE-GMi:.NT • X * t'i.l:llCE~~ * • IN LCB * •• •• • • * • ***••············ * NO

x x .•.

..
*· .•

• VES

i
*****E4********** • • * SET UI' *
*WK 1 H CONTINUE *
• IN LCB * . .
• ••••••••••••••••

i
****F4********* • • * RETURN *

*****Hl****•***** . . H3 *• **•**H4*****•****
* t<(SlURE * • •* IS *• * SAVt BUFFER *

•* THIS A *• Nil * Sill: AND FIND *

• ••••••••••••••••

i
*****E5**********
O RECALL 1682 • +--•-•-·-.-.·-·-·-· • • • RECALL HEADER • • • • ••••••••••••••••

i .•.
F5 *•

YES •* IS THIS •• • •• •*• 2260 DEVICE •*
• TYPE •

• NO

x
*****G5**********
• SETUP EDA AND • * FILL HEADER • : m~ i~hE~An :
• SPECIFIED • •••••••••••••••••

: ...•.•.... x:
i

*****H5********** •CLEAR LCB DIST.•
•SCAN POINTER IN•.••••. * l'Rf.f IX * •• WRITE ••••••••• .x•ADORE-SS OF LAST•x ••• :"bmprf1 ~is~l :
• • +.OPERATION.• X * CHAl<ACTER IN *

• • * BUFF FR *
* YES

i ...
J3 •• ••••J2••······· ·* •. * * YE~ •* JS EOT *• * KCTUKN •x •• ••••••*• NEXT •* * * +.CHARACTER.+

• NO

i
*****K3********** • • * SE::T UP * •
WRIT£- CONTINUE•••••• * IN LCB * • • •••••••••••••••••

x •••••J4••········ • •
• RESET * * LCB TO REUSE * * HUFFER * . .
• ••••••••••••••••

x
****K4********* * l XI T TO *

• PHYSICAL toe •
• RWA 1 *

• INDICATOR AND •
• ERROR FLAGS • • ••••••••••••••••

x
*****JS*********• * TURN • * ON END OF • •
:Mm~~Ecacg f~T:•·· ·
• LCB • • ••••••••••••••••

x
*****KS********** • • . . .

• •• ••.•GET BUFFER SIZE* • • • • • ••••••••••••••••

QTAM Charts 209

Chart EG. Line End Appendage (Part 1 of 9)

B2,----.,

SAVE REGISTERS.
IF LCB, SET BASE ,.__~N~O-<
REG ISTERS FOR
SUPERVISOR

210 DOS QTAM Program Logic Manual

A31-----...

IJLQLA

84----
RETURN TO
SUPERVISOR

D4.---

SET REGISTERS
NO l = BUFFER ADDR

3=CCWCOUNT
+14

G4
NO MESSAGE CODE

~----...:.:.:< INDICATING)
NO MESSAGE

J4-~--

ADD 2-BIT
COUNTERS TO
THRESHOLD
COUNTERS

YES

E51----~

SET RESIDUAL
COUNT IN
CSWTO ZERO

F5i-...Z.---.

RESET LERR + l
TO ZEROS

SET LDFG TO
SCAN DIAL-OUT
CALL QUEUE

Chart EGl.

(_

Line End Appendage (Part 2 of 9)

LERPCHKl
~ M~

~STATUS CHANNEL

TTENTION, >'-Y:.:ES'-------r----------.------_,K D:1to~T~<g<L
MO~l~~~~~ION 'UNIT EN L NO

YES

B3

~;~~U~ECK~N;_:O;__ _ _...

Q~~~~~~,L
'-/

NO

E4
/READ

<.~~~ONSE-TO- YES
POLLING CCW
'(TP OP 01)

F4
/ LCPA
POINTING TO

READ-RESPONSE
'-. To ma/

'ccw
YES

LERPOI

G4-~--~

SET 'SHOULD
NOT-OCCUR'
BIT IN ERROR
HALFWORD

LERPSTAT
G5-...L.--~

SAVE CSW AT
LSAVWITH
STATUS
RESTORED FROM
LSBO & LSBl

H5•------
SET "CONTROL
UNIT FAILURE"
BIT IN ERROR
HALFWORD

J5--'---
CALC. UPDATED
ERROR COUNT
~ EOBLC CNTR
+ RETRYCNTR
+1

KS;-~---

ZERO
EOBLC
COUNTER

YES

QTAM Charts 211

Chart EH. Line End Appendage (Part 3 of 9)

IP4A

"lO

NOTSEND
El--'---~

CLEAR EOBLC
CNTR AND
"TRANSMISSION
ERROR" BIT JN
ERROR HALFWORD

Fl--'----

SET MSG
CODE FOR
"NO MSG"

UPDATE AND
CHECK
THRESHOLD
COUNTERS

~~ f---------'
TOWTTAP

F2-~-~

JJLQTA+4

G2'----
MOVE X'OJ' TO

YES LERR+I (RETURN
">-'---+-!CODE

ADD 2-BIT
CNTRS TO
THRESHOLD
CNTRS

LCLEAR
KJ--'----

ZERO RETRY
CNTR,2-BJT
CNTRS,LERR+I,
LCAM+I

INDICATING
THRESHOLD MSG
ONLY)

212 DOS QTAM Prograrr Logic Manual

NO

SET POLL LIST
POINTER TO ADDR
OF DUMMY END
OF-LIST ENTRY

SUBTRACT
BSSZ FROM
REGISTER 3

SET LDFG TO
INDICATE
DIAL LINE
CONNECTED

Ks-~--~

SET POLL LIST
POINTER TO
ADDRESS OF
DUMMYAND
OF-LJST ENTRY

:'f

Chart EI. Line End Appendage (Part 4 of 9)

RESET LCB
STATUS BYTES
LSBO & LSBI
TO ZERO

IP4V
Fl

STORE REG 2
AT LCPA
CHANNEL PROG.
RESTART ADDR

YES

HI
IJLQTA-1£

I JI ADJUST SAVED
RETURN ADDR
(IN QSVC REGS)
FOR -+Cl
RETURN

Kl~~-~

QSVCDISP

CAUSES RESTART
FROM CCN
WHOSE ADDR
IS IN LCPA

A2 READ <INITIAL
CHANNEL
PROGRAM

IP4J

SET REGISTER
2 =ADDRESS
OF LSCP

RESTORE CON
POINTER BY
SUBTRACTING
8 FROM REG 2

IP4RI

STEP POLL
LIST POINTER
TO NEXT
ENTRY

H2

NO

YES

RS TAU TOP
D3----~

STEP POINTER
TO NEXT
POLL LIST
ENTRY

Q;cno
ES TART
OLLI NG

~"™'~ STATUS =
NORMAL
POLLING

NO

H3
STORE
TERMINAL
TABLE OFFSET
AT LTTD AND
BSTO

B4--L--~

STORE ADDR
OF DEVICE
ACCESS Fl ELD
IN 2ND CCN
(AT TLSCP-+e)

C4--'----

SAVE POLL
LIST
POINTER
AT LPPT

MOVE XH' TO
LCAM·il TO
BYPASS
TRANSMISSION
COUNT

F4

TURN ON
CLEAN-UP
BIT IN LSTA

·IP4Q
G4

SAVf. POLL
LIST
POINTIR
AT LPPT

TURN ON
"MESSAGI NOT
SENT" BIT IN
ERROR
HALFWORD

TURN ON
"LINE FREE"
BIT IN LDFG

SET RESIDUAL
COUNTS IN
CSW AND CCB
EQUAL TO
REG 3

F5

STORE CCN
POINTER (REG 2)
AT LAST

G5 LCPA"-._

/'O"HNG ;o~ READ-RESPONSE-TO
-EOB CON'

NO ~J

H5

SET REGISTER
3 = LEOB
(EOB OFFS ET)

QTAM Charts 213

Chart EJ. Line End Appendage (Part 5 of 9)

EJ
Fl

IP4B
BJ _ _._ __ _

SUBTRACT
CSW RESIDUAL
COUNT FROM
REGISTER 3

Cl
-BYPASS-.._

TRANSMISSION YES
<.._ COUNT

(LCAM+I = X'FF')

Dll--'----
UPDATE AND
CHECK
THRESHOLD
COUNTERS

IP4Z

RESET
LCAM+I
TO ZERO

FJ---L--
STORE
REGISTER 3
AT BSSZ
(SEGMENT
SIZE - 8)

BAL TO
STPLNRCV

J!-...L---

SET REGISTER
2 =ADDRESS
OF INTERIM
LPS QCB

Kl--'--

QSVCPOST

AS

A2 A3 LAST AS---~
(~«~/ SEGMENT NO RETURN TO \
~WITH STATUS= CE0">-------------t-+kALLING ROUTINE

'-...AND DE/

I PS END

D2 TERMINAL NO
(' WITH LRC
"-.CHECKING

CAPABILITY

E2-~--

SET CCW POINTER
(REG 2) TO
ADDRESS OF
READ-RESPONSE
TO-EOB CCW

H2 _ _._ __ _

RESTORE CCW
POINTER (REG 2)
TO ADDRESS OF
INTERRUPTED
ccw

J2 _ _. __ ~

STPLNSND EJA2

BAL TO
STPLNSND

K2--'---

SET REGISTER
2 =ADDRESS
OF LPS
QCB

H2

STPLNRCV ,,,...._
/DIAL

NO B4 LINE AND NO)--,--a.< INTERRUPTED">-_.._ ___,

N02740A
C3·-~--

CALCULATE
ADDRESS OF
DELAY ECB
FOR DEST.
TERMINAL

F3-~--

SET FLAG
TO INDICATE
DELAY ECB ON
TIME DELAY
QUEUE

G3-~--

PLACE BUFFER
ON READY Q
"POSTED" TO
LPS QCB

H3-~--

DISABLE SEND
SCHEDULER
(X'80' IN DASD
DEST QCB
PRIORITY FIELD)

J3-~--

IJLQIPCK

CCWNOTA
DISABLE

NO
lES

C4 LCB s ""- SS· ENDING'-._
<.FIRST SUBTASK',.,__N_O_-; .. ~(lUNIT EXCEPTION>

A ~:~~E~~L~;VE OR TWX

STPLNDIS
E4--''---~

MOVE X' EO' TO
LERR+I TO
INDICATE
STOPLJNE
DISABLE ISSUED

F4 ---''---~

TURN OFF
HIO FLAG
IN LDFG

YES

214 DOS QTAM Program Logic Manual

Chart EK. Line End Appendage {Part 6 of 9)

er I

A2 A4
.JROGR.

SET MSG SET REGISTER ,Al CHK, YES RESET CSW
·P~OTECTION CH CODE FOR THE STATUS TO

I =BUFFER ADDR

OR CHAINING' APPROPRIATE CE,DE ONLY
2 =ADDR OF

CH MSG FAILING CCW

B51JLQTA+l6

NO YES WORLD TRADE
LINE
APPENDAGE

LSTSNO

Cl C2 C3

SET MSG TURN ON MOVE X'DF' TO NEXT

CODE FOR "SHOULD NOT
MOVE ADDR INSTR LERR+I TO OF LSCP

"UNIT OCCUR" BIT INDICATE TO LCPA NORMAL)
EXCEPTION IN ERROR INITIAL (RESTART ADDR)
MSG" HALFWORD SELECTION ERROR

D2 D4
CALC. UPDATED

YES SET MSG ERROR COUNT UPDATE AND

CODE FOR IN REG 10 = CHECK

"SHOULD NOT EOBLC CNTR THRESHOLD

OCCUR" MSG +RETRY CNTR+I CNTRS

LSTUNEX

E2 ES

STORE UPDATED
YES ERROR COUNT TURN ON

(REG 10) AT X'FO' BITS

RETRY IN LFLAG

COUNTER

Fl READ-
/RESPONSE-TO- NO ZERO

ADDRESSING CCW EOBLC

'(TP OP 02(COUNTER

LERPN I LS ENCK
GI

TURN OFF MOVE X'FI' TO MOVE X'F4'
"CONTROL UNIT LERR+I TO TO LERR+I TO

FAILURE" BIT INDICATE ERP- INDICATE ERP-
IN ERROR IN-CONTROL, IN-CONTROL
HALFWORD WRITE BREAK & READ SKIP

H2 H3 H5
SET MESSAGE

GET ADDR CODE FOR
OF WRITE "COMMAND
BREAK CCW REJECT"
IN REG 2 MESSAGE

LSENCNT

Jl J5

STORE UPDATE AN STORE UPDATED

ERROR COUNT YES J4 SENSE NO ERROR COUNT

(REG 10) AT <BITS EXCEPT (REG 10) AT
RETRY COMMAND RETRY

COUNTER 'REJECi' COUNTER

LTOSWT

l YES

K3 TO INDIVIDUAL ERP

STORE SET "TIMEOUT ROUTINES FOR THE

REGISTER 3 EXCEEDED" DIFFERENT ERROR

AT LCPA BIT IN ERROR TYPES.

HALFWORD SEE DECISION TABLES
IN TEXT OF PLM.

'(-,
1 •• '.J
\

QTAM Charts 215

Chart EL.

SAVE SENSE
BYTE FROM
ERP CCW
AT LSEN+l

Cl--'----,

RESTORE SENSE
FOR ORIGINAL
CCW FROM
LCAM+I

DI--'----,

SET MESSAGE
CODE FOR
"ERROR IN ERP"
MESSAGE

El RETURN <FROM DIAG
W/R (X'02' IN

'LERR+I)/

YVES

Fl WHICH
/DIAGNOSTIC
<.._W/R CCW WAS

INTERRUPTED

SET "CONTROL
UNIT FAILURE"
BIT IN ERROR
HALFWORD

NO

Line End Appendage (Part 7 of 9)

LNRDSKIP

NO

B2-_._--..,

RESET
LERR+l
TO ZEROS

LNRESTR
K2-~---,

RESTORE CSW
DATA AT LSAV
FROM LSCP
+40

A3:------,

RESET
LERR+l
TO ZEROS

NO

YES

K3•----~

RESTORE
FAILING CCW
FROM LSCP
+32

SET MESSAGE
CODE FOR
"NO MESSAGE"

2ND

NO

(DIAG WRITE)

LNDWR
H4--L----,

SET "CONTROL
UNIT FAILURE".
BIT IN ERROR
HALFWORD

J4----~

SET REGISTER
3 =A (LSCP+24)
TO RESTART
WITH ENABLE

216 DOS QTAM Program Logic Manual

YES

E5--'---~

SET REGISTER
3 =A (LSCP)
TO RESTART
WITH FIRST
ccw

LNDIS
G5

IST
(DISABLE)

SET "CONTROL
UNIT FAILURE"
BIT IN ERROR
HALFWORD

H5: _ _._ __,

SET REGISTER 3
=A (LSCP-113) TO
RESTART WITH
DIAGNOSTIC
WRITE

LNEXFC
K5i--L--~

STORE RESTART
ADDRESS (REG 3)
AT LCPA

(."\

j

()

Chart EM. Line End Appendage (Part 8 of 9)

C2----~

SET REGISTER

')o.N_o;._ __ ~s~~~~R~~~T~~T
SET TIMEOUT
BIT IN LSEN
TO STOP RETRIES

. BY EOBLC RTN

SET "SHOULD
NOT OCOJR"
BIT IN ERROR
HALFWORD

El--&----.
SET MESSAGE
CODE FOR
"SHOULD NOT
OCOJR"
MESSAGE

WITH FIRST CCW

D4~
>-Y_E_S------------~SENSE (LSEl,Hl)~Y;;,;ES'---ol

=TIMEOUT OR INT.

ZERO
EOBLC
COUNTER

REQ./

NO

LRDCKTXT

F4 TEXT
·"----'"--£TRANSFtR CCW

SET TIMEOUT
BIT IN LSEN
TO STOP RETRIES
BY EOBLC RTN

LNRDO

H3--'---~

SET MESSAGE
CODE FOR
"NO MESSAGE"

J31----''--

MOVE RETRY
COUNTER INTO
EOBLC
COUNTER

TP OP 03

G4

LERPDIS

F5'----''---

SAVE SENSE
BYTES (LSEN)
AT LERC

GS--&.--
X 'FB' IN
LERR+I TO
INDICATE ERP
IN CONTROL
AND DISABLE

DISABLE
H5'---L---

GET ADDRESS
OF DISABLE
CCWIN
REGISTER 2

QTAM Charts 217

Chart EN. Line End Appendage (Part 9 of 9)

LCTLCK
A

RESET CSW
STAnJS TO
CE,DE ONLY

Bl

SET MESSAGE
CODE FOR
"CHANNEL DATA
CHECK" MESSAGE

C2

SAVE SENSE
BYTE FROM
FAILING CCW
AT LCAM+l

LSENEQU
Dl

SET
"TRANSMISSION
ERROR" BIT IN
ERROR
HALFWORD

Fl F2

SET "SHOULD SAVE CSW AT
NOT OCCUR" LSAVWITH STArus
BIT IN ERROR RESTORED FROM
HALFWORD LSBO & LSBl

LSENRD

Gl G2
SET MESSAGE
CODE FOR BUILD A
"SHOULD NOT SENSE CCW
OCOJR" IN LERC
MESSAGE

H2

SET REGISTER
2 =ADDRESS
OF LERC

LPODISB

A3

SET LDFG
TO INDICATE
REDIALING
NEEDED

B3

RESTORE
SENSE BYTE
(LSEN) FROM
LERC

SET "CONTROL
UN IT FAILURE"
BIT IN ERROR
HALFWORD

LPOENER

E3

SET REGISTER
2 =ADDRESS
OF FAILING
ccw

F3

RESTORE
STA rus BYTES
LSBO & LSBl
FROM LSAV+4

RESET
LCAM+I
TO ZEROS

K3--'--
IJLOMW

218 DOS QTAM Program Logic Manual

.
A4

IJLQEP+4

RTNFMW

SET MESSAGE
CODE FOR
"NO MESSAGE"

LERPTEX
D4

SET REGISTER .
3 = CCW COUNT
+14-RESIDUAL
COUNT

F4
SET X'FF' IN
LCAM+l TO
BYPASS
TRANSMISSION
COUNTING

G4

CLEAR RETRY
COUNTER AND
LERR+l

RESET LFLAG
AND LCAM+l
TO ZERO

NO

*ENTRY FROM
IJLQMW

SET UNIT CHK
BIT IN LSBO
TO PREVENT
RESTARTING VO

K5---
IJLQTA+4

\-

/

' "

Chart ER. Error Message Routine

E2----

LEAVE SCAN
POINTER
POINTING TO
END OF HDR

INSERT
CORRECT
NUMBER AND
RESUME

K2-~---

INSERT
INCORRECT
SEQUENCE
NUMBER

YES

AJ----,
ERRMSG

RECALL
HEADER

YES

NO

KJ-----,

RESET SCAN
POINTER

---------------------------·-------- ----

/C5
'>'-N.:.:O'--''-~ RETURN

E4

SET SCAN
POINTER TO
END OF HDR
PREFIX

F4
SKIP POINTER
PAST IDLE
CHARACTERS
FOR TIME AND
DATE STAMP

G4

GET START OF
ERROR TEXT IN
BFR USING SCAN
POINTER

H4

COMPUTE
SPACE LEFT
IN BUFFER

MOVE ERROR
TEXT INTO
BUFFER

F5
MOVE ERROR
TEXT INTO
BUFFER AND
TRUNCATE
EXCESS

G5
COMPUTE
MESSAGE
SIZE AND
STORE IN
PRE PIX

H5
INDICATE
SINGLE
SEGMENT
MESSAGE IN
PREFIX

J5

GET THE
ADDRESS OF
THE LOOKOUT
ROUTINE

KS-.L..--.
EXIT TO
LOOKOUT

QTAM Charts 219

Chart EX. Expand Header Routine

IJLQEX

•***Al********* . .
* fXPANO * • • •••••••••••••••

x .•.
Bl *•

NO •* POlNTFR *•
••••*• PUINTING AT •*

• liLANK •
* YES

i •••••c i•••••••••• . .
* SHIFT POINTER * * LEfT ONE * * CHARACTER * * POS lTION * •••••••••••••••••

: .•.•.•.... x:

i •••••01•········· • • *COMPUTE AUORfSS* * Of- FIRST * * CHARACTER TO * * SHIFT * •••••••••••••••••

i
•••••i: l••········ • •
*C.DMPUTI:- NUl'4liER * * Of CHAH.AC H.RS * * TO SHIFT * • • •••••••••••••••••

i .•.
F 1 *•

*****C3********** • • * SHIFT *
••• X* CHAt<ACT FH.S TO * * t-XPAND HEADER * • •

i
•••••u.~•••••••••• • • * COMPUTE *
.. AOUH.tSS Of •
•SrAIH Of FIELll •

x
***••t-3•••······· . .
* JNSt-IH ~1.ANK * * AS l F.FT * * IJLLIMITE:R OF * * f IE:LO *

x

•* SiJACE *• Yt::S •

•••••rJ•••••••••• * G~. T * * ~LAN POINTF.R * * HIR NEXT it
* DE.ST INAT ION * * ClHH: *

• FUK ~HIFT ••••••. •• • •••• •• ••••• • •• •• •• ••• ••
• l El-T •

• Ncl

i
****Gl********* • • * RETURN * • •

.
K ·•· *****L.i********** Git *• * • •• •• * SHIFT PUlNTEK * •* *• ND

* l[fl SIZF. OF *••••••••X*.EOA BEEN DONE•*••••
• NEW flt:.Ln * *• •*

• YES

x •••••Hit••········ • • * RESTORE * * STORED SCAN * * POINTER * • • •••••••••••••••••

x ••••J4••······· . . .
* RETURN •X. •• • • •••••••••••••••

220 DOS QTAM Program Logic Manual

I

\,

I~

(

_

Chart FL.

c ' '

0

DTF Locator Routine

I JtUGA

****A3********* . .
•GET OTF ADDRESS•
• •

x
*****B3********** . .
* SAVI: *
KfGISTERS 14-12 . .
• •

x
*****C3********** • • * GET * * l AST OTF * * ADDRESS *

.. ..• . ..•. . x:
x ...

ll3 *• *****04**********
•* *• * PUT Off *

.• DTF NAME *• YES * ADDRESS IN *
•.IS REQUESTED •*••••••••X*REGISTER l ANO*

• tJNE • * 0 IN REGISTiR *
•• •• • 15 •

* NU

x
*****E3********** . .
* GET * * PRELEDING OTF * * ADORE SS * . . *•···············

,; .•.
r J •.

• •• :t .•
• Y£S • * *•
u••*• TYPE EQUALS •*

• LG •
* NO

,;
*****G3********** . .
* PUT * * X1 20' IN * * R[(,JSTl:R 15 * . . *•••·············

:x•....• :
x

*****H3********** . .
* RESTORE *
*REGISTERS 0-12 * • •

x ••••J:J•••······ . .
* RETURN • • •

QTAM Charts 221

Chart GA. Get Audio Message Routine

****Al********* • • * GET * • • •••••••••••••••

I JLQGA X
*****Bl**********
*SAVE REGISTERS * * IN THE USER 1 S * * AREA AND GET * * OTF ADORE SS * . .
•••••••••••••••••

ic .•.
Cl *•

·* *· •* IS DTF *• NO
• OPENED •••••• ••••• •••••••.

· · *· .•
*YES

NOERR GA X
*****Dl********** • • *GET MS-PROCESS * * QUEUE ADORE SS •X ... • • • •

ic .•.
El *• .• *·

•••• • • • en • • •

•* IS *• YES
*• THERE AN • *• ••.

• ELEMENT • *· ••
· · •NO

x
*****Fl********** • • *' GET FLUSHAO * * EXIT ADDRESS * • • • •

x

ic •••• • • * E4 * • •

x
•••••02********** • • •SET USER ERROR * * FLAG IN * * REGISTER 15 * • • •••••••••••••••••

ic
****E2********* * RETURN TO * * CALLER * • • •••••••••••••••

•*• GA1EXT04
Gl *• *****G2********** ·* •. • * •* MASTER *• YES * RESTORE *

• RCVE SWITCH •••••••••X* REGISTER FROM *
• OFF • * SAVE AREA *

· · • •
•• • * *****************

•NO

ic .•.
Hl *• .• *·

• * SYNCAD *• NO
• SPECIFIED •••••

•• •* •. ·*
· · *YES

x
••Jl*******

SYNCAD*
* GO TO USER * * SYNCHRONOUS *
* ROUTINE *
* •

x
**** • • * E4 * • •

x
**** • • * E4 * • •

x
H2***** . .

****FLU SHAD****
* GO TO USER *

*EXIT ROUTINE * • •

**** • • * A3 * • •

GAlSRHLN X
*****A3**********
•MOVE AUDIO LINE* * NAME INTO *
* USER'S AREA *
* ILINADl * * •

x
•*• GA10VA12 •*•

83 *· 84 *·
•* INPUT *• •* *•

•* SIZE GT *• YES •* OVERFLOW *• NO
• WORK AREA •••••••••X*• EXIT •*••••

• SIZE • •.SPECIFIED.•
· · *· ·* •. ·* *· ·* *NO *YES

x
*****C3********** • • *HOVE INPUT SIZE*
* INTO GET /PUT *
* PREFIX * • • •••••••••••••••••

x
••C4*******

****DYAD*** * * GO TO USER * * OVERFLOW * * ROUTINE * . .

:x •....•.•.. :
GAlMVTlO X GA1RES14 X

•••••03••········ *****D4********** • • * * * GET INPUT * *MOVE WORK AREA *
*BUFFER ADDRESS *X••••••••* SIZE INTO *
* * *GET/PUT PREFIX *
* * * * ***************** *****************

x
*****E3********** . .•
MOVE INPUT DATA * IN WORK ARl:::A * • • • • •••••••••••••••••

x
*****F3********** * SAVE ALCB * * ADDRESS INTO *
* GET AUDIO * * ELEMENT * • • •••••••••••••••••

x
G3*****

••QPOST** * POST GET * * AUDIO ECB TO *
•GET AUDIO QCB*

x

**** • • * E4 *••• • •
**** •

GA1GAL07 X
E4***** * •

*****OWAI T***** * WAIT FOR NEXT *
* ELEMENT * • •

x
*****F4********** • * *GET QTAH READY *
* QUEUE ADDRESS * • • • •

x
G4*****

****CWAI T**** * REMOVE MS * * PROCESS QUEUE *
* FROM READY *

* QUEUE *

ic . ..
H4 *•

·* *· ****H3*********
* RETURN TO THE * •* IS IT A *• NO * CALLER * • • •••••••••••••••

• CLOSE •• •••
• ELEMENT •

· · •YES

x
J4***** * •

*****QPOS T***** •• •* RELEASE * * CLOSE *
x * •• ~~~=~~I •• *

**** • • • 01 •
• *

x

* * * A3 * • •

222 DOS QTAM Program Logic Manual

****A5********* * ENTRY FROM • * SUPERVISOR • * •

x
*****85********** * GET ALCB *
* ADDRESS FROM * * GET AUDIO * * ELEMENT * • •

x
*****C5********** • • •SET ALCB GET IN•
PROCESS FLAG ON • • • •

x
****05********* * EXIT TO *

* QSVCDISP * • •

C',
'

'

I

c:I

Chart GB. Get Nonaudio or Audio Message Routine (Part 1 of 2}

****Al********* • •
GB1GBF07

*****A2********** • • * GET DTF AND *

GB1GAL09
A3***** *****A4**********

****OWAIT**** * *
*WAIT FOR THE * ·*GET QTAM READY *

**** • • * A5 * • •

GB1REM15 X

• IJLQGB • ••• X* WORK AREA * ••••• X• NEXT ELEMENT *• ••• •••• X* QUEUE ADDRESS *

*****A5********** • • •GET ADDRESS OF *
•PREVIOUS BUFFER• • • • •

x
*****Bl**********
•SAVE REGISTERS *
•IN USER'S SAVE *

•• X• AREA AND GET * * OTF ADDRESS * • •
• • ••••••••••••••••

• • * Bl * • • x .•.
Cl *• .• *·

NO •* IS DTF *•
••• *• OPENED • * *· .•

•. ·* x •••• • • * E5 * • •
*YES

**** . . .
•••• 01 • . .

•••• •••• x
NOERRGB • *•

01 *•
.•BUFFER *•

.+PRESENT OR *• YES •
•.DISK READ IN •*•••••.

• PROCESS • X
•NO

x .•.
El *•

•* ANY *· .
.•ELEMENT IN *• YES.

• MS-PROCESS ·· ... *. QUEUE • * X
· · •NO

x .•.
Fl *•

•* ANY *• • • * CATA FROM *· YES.
• PREVIOUS ••••.

• BUFFER • X
· · •NO

x .•.
Gl *•

NO •* MASTER *·
••••*• RCVE SWITCH •*

• OFF • •. ·*
· · *YES

:G81EXT04 X
Hl*****

F LUSHAD * GO TO USER * * EXIT ROUTINE * • • • • •••••••••••

...... ······x .•.
Jl ••

•* SYNCAD *• NO •
• SPECIFIED ••••• •• •• x

•YES

x
Kl*****

SYNCAD*
* GO TO USER * •

* SYNCHRONOUS *• •••
* ROUTINE * • • •••••••••••

* ADDRESSES * x • * * * • • • • * *
: .•.. ••••••••••• • ••••••••••••••••

x . ..
B2 ••

.. .
•* A3 *

• * IS *• •

...
B3 ••

·* •.
•* PREVIOUS *· YES. YES •* IS IT *•

· ELEMENT •• •••
• AUCHO •

*· . * •. ·*
•NO

x

• ••*• AN ALCB .•x ...
i

•GC•
* Bl* •• •

*· ••
· · •. ·*

*NO

i

x
B4*****

****OWAI T****
* REMOVE MS *

* PROCESS OUEUE *
* FROM READY *

* QUEUE *

x ...
C4 *•

·* *·
*****C2********** • • * GET WORK AREA *
•SIZE ANO START *
MESSAGE ADDRESS • • •••••••••••••••••

*****C3**********
* SET BUFFER *
* PRESENT ANO *
FIRST BUFFER OF

• NO •* IS IT A *•

x .•.
D2 *· • *HES SAGE*·

•* FROM *• YES
• PREVIOUS •• •••

• GET • •• . * •. ·*
•NO

**** . . .
* E2 *••. • •

GBl SEG08 X
*****E2********** • • *GET ADDRESS OF *
•PREVIOUS BUFFER* • • • • •••••••••••••••••

x . ..
F2 *·

•* *·

i
**** • • * A5 * • •

•* BUFFER *• NO
• PRESENT ••• ••

· · *· ... *· .•
•YES

x
G2*****

****QPOST****
* RETURN LAST *

* BUFFER TO *
+RETURN BUFFER*

* QUEUE *

i
**** • • * A3 * • •

•••• ••*• CLOSE •*
* MESSAGE * • •

x
*****03********** • • *SET AUDIO FLAG *
•ANO USER SWITCH*
* (SWITCH) OFF * • •

x .•.
E3 *•

·* *· •* TEXT *• YES *· SEGMENT •*••••
· · *· ·*

•NO

i .•.
F3 *•

·* *· . •* IS IT A *• YESX *· PROCESS •*•• ...
• QUEUE •

· · *· ·* •NO

x
** ***G 3**********
* MOVE TERMINAL *
*IDENTIFICATION *
•INTO USER AREA * * CTRMAOI * • • ** •••••••••••••••

• ELEMENT •
· · *· ••

•YES

x
04*****

****QPOST****
RELEASE CLOSE

* ELEMENT *•. •. • • • •

**** • • * E4 *••• • • x **** . ..
E4 *•

•* HAS *•

x
**** • * * 01 • • •

•* WORK AREA *• YES
• BEEN •••••

• FILLED •
· · *· ·* *NO

**** . . .
* F4 *• •• • •

**** •
GBlSEGll X

*****F4********** . .
* MOVE SEGMENT *
* INTO USER'S *
* WORK AREA * • •

:x ••.•.....• : x
GBlNOWll •*•

G4 *•
·* *· •* BUFFER *• YES

*• LARGER THAN • *• •••
•.WORK AREA.•

*· ••
•NO

• • • ••••••••••••••••

i
*****B5**********
•COMPUTE ADDRESS*
* OF FIRST *
•CHARACTER TO BE*
* MOVED * • •

x •••••cs•••••••••• • • •COMPUTE SIZE OF•
*REMAINING DATA * • • • •

i •••• • • * J3 * • •

**** • • * E5 * • • • •••
x

*****E5********** • • •SET USER ERROR * * FLAG IN * * REGISTER 15 * • •

x
****F5********* * RETURN TO *

* CALLER * • •
*************** x

*****GS********** * RESTORE *
*REGISTERS FROM *
* USER'S SAVE *X••• * AREA * • • ••••••••••••••••• • ••• • • *GS* • •

x ix··········: x •••• ··x
GBlTXTll •*• GBlSTAll ·*• GB10VF22 •*•

*****HZ********** • • * INDICATE NO *
*BUFFER PRESENT * • • • •

x

H3 *• H4 *•
·* *· ·* *· ·* BUFFER *• YES ·* ENO OF *• NO

• EMPTY •••••••••X*. MESSAGE •*••••
· · *· ·* *· ·* *· ·* *· ·* ... •* *NO *YES

**** . . .
* J3 *··. • •

x
**** • • * E2 * • • ••••

HS *•
·* *· • * OVERFLOW *• NO

• EXIT •• •••
•.SPECIFIED.•

· .• •. · *YES

.•. GBlSWAll •*• x i
J2 *· •• *·

•* FIRST *• YES
• BUFFER OF •• •••

*• MES SAGE • * •. ·*
• · •NO

x
*****K2********** * RESTORE *
*REGISTERS FROM *
* USER'S SAVE *
* AREA * • • • ••••••••••••••••

i
**** • • * Bl * • • ••••

i
**** • • * A3 * • •

J3 *•
.•IS WORK*.

•* AREA *• YES
• SUFFICIENT •••••

•.FOR DATA •*
*· .•

· · •NO
x

**** • • * F4 * • • • •••

*****J4********** • • * SET SEGMENT *
*TYPE TO EOM IN *
*GET /PUT PREFIX * • •

J5*****
****OVAD***** * GO TO USER *

* OVERFLOW *
• ROUTINE * • •

:x•••••• :

i GB1EXT14 X
** ***K 3********** • • * USE WORK AREA * * SIZE FOR MOVE * • • • •

i
**** • • * E4 * • • • •••

*****K4********** • • * STORE DATA * •
* COUNT IN •X •••••••• •• •• •• •••
•GET/PUT PREFIX *

x •••• • • * G5 * • • • ••• QTAM Charts 223

Chart GC. Get Nonaudio or Audio Message Routine (Part 2 of 2)

ic
*****Bl********** • • * GET AUDIO * * WORK AREA * * ADDRESS * • • •••••••••••••••••

ic
*****Cl********** • • •MOVE AUDIO LINE* * NAME IN USER * * AREA (LINAOI * • • •••••••••••••••••

ic
*****DI********** • • * SET AUDIO. * * FLAG ON * • • • • •••••••••••••••••

x
*****El********** • • * SET USER * * SWITCH * * !SWITCH) ON * • •

x ...
Fl *•

•* •* M~~~~lE *• *• VES

**** • • * 82 • • •

ic
*****82********** * MOVE l NPUT * * AREA DATA * * INTO WORK * * AREA * • * •••••••••••••••••

ic
*****C2********** • • *· SAVE ALCB *
*ADDRESS IN GET * * AUDI 0 ELEMENT * • • *****************

x
02*****

****QPOST**** * POST GET * * AUDIO ECB TO * * GET AUDIO * * QUEUE * •••••••••••

x
*****E2********** * RES TORE * ****E3********* * REGISTERS * * RETURN TO * * FROM USER'S *••••••••X* CALLER * * SAVE ARE A * * * * * •••••••••••••••

•.SIZE GREATER •*••••••••••••••••••
•.THAN WORK.*

•.AREA •*
· · •ND

ic
*****GI********** * MOVE INPUT * * SIZE IN * * GET /PUT * * PREFIX * • • •••••••••••••••••

x
• *• GCIOVA22

G2 *• *****G3**********
•* *· * • •* OVERFLOW *• YES * SAVE ALCB *

• EXIT •••••••••X* ADDRESS *
•.SPECIFIED.* * * •. ·* • • *• •• • ••••••••••••••••

•NO

ic
H3*****

****OVAD**"' * * GO TO * * USER OVERFLOW * * ROUTINE * * (OVADJ • •••••••••••

GC1EXT19 X X X
*****Jl********** *****J2********** *****J3********** * * * MOVE WORK * * * * GET INPUT * * AREA SIZE * * RESTORE *
* AREA ADDRESS •x......... IN GET/PUT •x......... ALCB •
* * * PREFIX * * ADDRESS *
• • * * * *
***************** ***************** *****************

224

x •••• • • • 82 • • • ••••

DOS QTAM Program Logic Manual

****84*********
* ENTRY FROM *
* SUPER VI SOR * • •

x
*****C4**********
* GET ALCB * * ADDRESS FROM *
* GET AUDIO * * ELEMENT * • •

x
*****04********** • • * SET ALCB *
GET-IN-PROGRESS * FLAG ON * • •

ic
****E4********* *EXIT TO* * QSVCDI SP * • •

c

/

C ..
/

Chart GD. Get Record or Audio Message Routine (Part 1 of 2)

****Al********* • •
GC1GBF07

*****A2********** • • * GET DTF AND *

GtlGAL09
A3***** *****A4**********

* * * * * •••QWAIT*** * * GET OTAM *

•••• • • * A5 * • •

GC1REM15 X

: IJLQGC : ••• x• WORK AREA * ••••• x• WAIT FOR NEXT ••••••••• x• READY QUEUE •
X * ELEMENT * * ADDRESS *

*****A5********** • • * GET ADORESS * * OF PREVIOUS *
* BUFFER *

•••••••••••••••
•••• • * . * Bl *••. • • x

*****Bl**********
*SAVE REGISTERS *
IN USER'S SAVE * AREA AND GET * * OTF ADDRESS *
* *

x .•.
Cl *•

NO • * IS OTF *•
••• *• OPENED • *
x

* ES * • *
•. ·* *· .•

*YES

**** . . .
•••• 01 • • • •••• x

NOERRGC •*•
01 ••

.•BUFFER *•
.•PRESENT OR *• YES •

•.DISK READ IN •••••• x.
•.PROGRESS ·* *· .• •. ·*

•NO

* ADDRESS * • •
***************** * * * * : .•.. *********** *****************

x . ..
82 ••

.. .
•* A3 * .. .

• * IS *• •
.•.

83 *· ·* •.
•* PREVIOUS *· YES. YES • * IS IT *·

x
84*****

****QWAI T****

• ELEMENT •• ••• •• •*• AN ALCB .•x * REMOVE MS * * PROCESS QUEUE •
* FROM READY * *• AUDIO •*

•. ·*
•NO

x
*****C2*****•••** • • * GET WORK AREA *
•SIZE AND START *
MESSAGE ADDRESS • • •••••••••••••••••

x . ..
02 *·

·* *·

x

+GE• * 811< •• •

•* MESSAGE *• YES
• FROM •• •••

•PREVIOUS •
• GET ·

· · •NO
**** . . .

* E2 *••. • •

x •••• • • * A5 * • •

· · *· ·* *· ·* •NO

x
'*C3**********
* SET BUFFER *
* PRESENT ANO *
* Fl RST BUFFER *
* OF MESSAGE * • •

x
*****D3********** • • *SET AUDIO FLAG *
* AND SWITCH *
* (SWITCH) OFF * • •

rOc QUEUE *

x .•.
C4 *•

•* IS *•
• NO •* IT A *•
••••••*• CLOSE •*

• ELEMENT •
· ·

*YES

x
04*****

****QPOST**** * RELEASE *
• • •* CLOSE *

x
**** • * * Dl * . .

* ELEMENT * • •

• •

x
*****85**********
* COMPUTE *
* ADDRESS *
* OF FIRST *
* CHARACTERS *
* TO BE MOVED *

x
*****C5********** • • * COMPUTE * * S lZE OF *
* REMAINING *
* DATA *

x
**** • * • J3 •

• •

**** • • * E5 • • • ••••
x • **** • x x .•. .GCIGETOB X .•. GC1SEG13

*****E4********** El *•
•* ANY *•

• •ELEMENT IN *• YES •
• MS-PROCESS •••• .X.

• QUEUE •
•NO

x .•.
Fl *•

•* ANY *• •* DATA FROM *• YES •
• PREVIOUS •• ••••• *. BUFFER • * X

· · •NO

x .•.
Gl *•

•* IS *•
NO .•MASTER RCVE•.

••••*• SWITCH •* *· OFF ·*
· · *YES

:GC1EXT04 X
Hl***** • • * **FLUSHAD** * * GO TO USER *

•EXIT ROUTINE *
* *

..• .•.
Jl ••

·* *· .~ SYNCAD *• NO •
• SPECIFIED •••••

· · x *· ·* *· ·* *YES

x
Kl*****

*"°'*SYNCAD** * * GO TO USER * •
* SYNCHRONOUS *• * ROUTINE * . .

*****E2********** . . .
* GET ADDRESS *
* OF PREVIOUS *
* BUFFER * • • ****•*•**********

x ...
F2 *• .• *·

E3 *•
·* *· YES • * TEXT *·

•• ••*• SEGMENT •*
· · *· .• *· ••

*NO

x .•.
F3 *•

·* *·

* MOVE *
* CHARACTER *

... X* FROM BUFFER *
* TO WORK AREA * • • .. *****************

**** • • * E4 * • •
**** x ...

F4 *• ·* MORE *•

*****E5********** * SET USER * * ERROR FLAG *
* IN * * REGISTER 15 * • • *****************

x
****f5*********

•* BUFFER *• NO • YES.• IS IT A *• ·* BUFFERS *• YES * RETURN TO *
• PRESENT .• •••• •• ••• PROCESS •* *· TO BE •*•••• * CALLER *

· · *· ·* *· .•
*YES

x
G2*•***

¥•••QPOST****
* RETURN LAST * * BUFFER TO *
RETURN BUFFER * QUEUE *

x
*****H2********** • * * INDICATE NO *
*BUFFER PRESENT * . . • •

x . ..
J2 *·

·* *·

x •
**** • . ..

* A3 *· . ..

• QUEUE • *· .•
· · *NO

x
*****G3**********
* MOVE TERMINAL *
*IDENTIFICATION *
*INTO USER AREA * * ITRMAD) * . .

*. MOVED • * *· .•
· · •NO

**** . . .
* G4 *·•• • •

GC1EOM13 •*•

G4 *•
·* *· NO ·* END OF *•

• ••*• MESSAGE •*
· · *· ·* •• •* x

*YES

x •••• • • * J3 * • •

* •
x

*****G5**********
* RES E * * REGI * * FROM S * * AR * • *
***************** x

: x:

•••• • • * E2 * • • •••• x
GCl TXTll •*• X GC1EXT14 •

H3 *• *****H4********** *****H5**********
·* *· * * * STORE DATA *

• * BUFFER *• YES * SET SEGMENT * * COUNT IN *
• EMPTY •• •••

· ·
*TYPE TO EOM IN *••••••••X*GET/PUT PREFIX *
•GET/PUT PREFIX * X * *

*· *· ·* .• x • • • *
***************** *****************

*NO **** x •••• * •
* * . * G4 * * j3 *·.. * • * * •••• • ••••••••••••••

GClC~:tt GClENDll •• YES
J 3 *. J4 *• ·* •. ·* *• •* FIRST *•YES ·* NEW *• YES •* PREVIOUS *•

• BUFFER OF •• ••• *• LINE OR EOB •*••••••••X•.CHARACTER EOB.•
• MESSAGE •

· · *NO

x
*****K2*'*********
* RES TORE *
*REGISTERS FROM *
* USER'S SAVE * * AREA * * •
**************•••

x •••• • • * Bl * • •

x
**** • • * A3 * • •

• .. CHARACTER.• *. OR NEW •*
• • • .. LINE •*

*· .• *· ·* *NO *NO

:x •...•...•..•.•........•. :
•...........•...•..••••.• x: x

GC lMOVl \ 3 •*• * • GC10VF2 2 K4 • :i.N2. **K 5*******
•* *• ·* *• ****OVAD*** *

NO •* WORK *· YES ~* OVERFLOW *• YES * GO TO USER *
...... AREA SIZE •••••••••• x•. EXIT •••••••••• x• OVERFLOW *

x • ••• • • * E4 * . .

*·EXHAUSTED.• *·SPECIFIED.• * ROUTINE *
· · *· .• • * *· .• *· ·* *********** . .

QTAM Charts 225

Chart GE. Get Record or Audio Message Routine (Part 2 of 2)

.....
•GE* * Bl* •• •

x
*****Bl********** • • •GET AUDIO WORK * * AREA ADORE SS * • • • • •••••••••••••••••

x
*****Cl********** • • *MOVE AUDI 0 LI NE*
•NAME INTO USER * * AREA C LINA DJ * • • •••••••••••••••••

x
*****Dl********** • • * SET AUDIO * * FLAG ON * • • • • •••••••••••••••••

x
*****El********** • • * SET USER * * SWITCH * * ISWITCHl ON * • • •••••••••••••••••

x .•.
fl *· •* INPUT *• •* MESSAGE *• YES

•••• • •
• 82 * • • • •••

x •••••82••········ • • * MOVE INPUT * * DATA INTO * * WORK AREA * • • •••••••••••••••••

x •••••c2•••••••••• • • * SAVE ALCB * * ADDRESS JN * * AUDIO GET * * ELEMENT * •••••••••••••••••

x ••02••••••• ****QPOST**** * POST AUDI 0 *
*GET ELEMENT TO * * AUDI 0 GET * * QUEUE * •••••••••••

x
*****E2*•******** * RESTORE * ****E3*********
*REGISTERS FROM * * RETURN TO * * USER'S SAVE *• •••••••X* CALLER *
* AREA * * * • • ••••••••••••••• • ••••••••••••••••

•.SIZE GREATER •*••••••• ••••••••••.
*•THAN WORK.•

•.AREA •* *· .•
•NO

x
*****Gl********** . .
MOVE INPUT SIZE * INTO GEt/PUT * * PREFIX * • • •••••••••••••••••

x
•*• GB10VA22

G2 *• *****G3**********
•* •• * • •* OVERFLOW *• YES * SAVE ALCO *

• EXIT •• •••••••X* AODRESS *
•.SPECIFIEO.* * *

· · * • *· • • • ••••••••••••••••
•NO

ic
H3*****

****OVAO*** * * GO TO USER * * OVERFLOW * * ROUTINE * • • •••••••••••

G81TX19 X X X
*****J l********** *****J2••········ •••••J 3••········ * * • • • • * GET INPUT * *MOVE WORK AREA * * RESTORE ALCO * * AREA ADDRESS •x......... SIZE INTO •x......... ADDRESS •
* * *GET /PUT PREFIX * * * • • • • • • ••••••••••••••••• ••••••••••••••••• • ••••••••••••••••

226

x
**** • • • 82 * • • ••••

DOS QTAM Program Logic Manual

****84********* * ENTRY FROM * * SUPERVISOR * • •
ic

*****C4********** * GET ALCB * * ADDRESS FROM * * AUDIO GET * * ELEMENT * • •

ic
•••••04********** • • * SET ALCB *
*GET-IN-PROCESS * * FLAG ON * • • •••••••••••••••••

ic
****E4********* * EXIT TO * * QSVCOISP * • • •••••••••••••••

I

'"---

Chart GF. Get Segment or Audio Message Routine {Part 1 of 2)

****Al********* • •
GOlGBF07

*****A2********** • • * GET OTF ANO *

A3***** **A4*******
****OWAI T**** ****OWAIT****

* WAIT FOR * * REMOVE MS *

**** • • * A5 * • •
i

*****A5**********
* COMPUTE * * ADDRESS OF *

* GET * •• • x• WORK AREA * ••••• x• NEXT *· ••••••• x• PROCESS QUEUE •
* ELEMENT * * FROM READY *

* FIRST * * CHARACTER * • • •••••••••••••••
**** . . .

* Bl *••. • •
I JLQGD X

*****Bl**********
*SAVE REGl SYERS *
•IN USER'S AREA * * ANO GET OTF * * ADDRESS * • •

x .•.
Cl *•

NO • * IS DTF *•
• ••*• OPENED •* •. ·*
x *· .•

••••
*YES • ••• . . . * H5 * • • •••• 01 • • • ••••

.... x
NOERRGD • *•

01 *·
• •BUFFER *•

.•PRESENT OR *• YES •
•.DISK READ IN •••••• x.

• PROCESS •
•NO

x ...
El *•

•* ANY *·
.•ELEMENT IN *• YES •

• MS PROCESS •• ••• x.
• QUEUE •

· · •. ·*
•NO

x .•.
Fl *•

•* ANY *• •* CATA FROM *• YES •
• PREVIOUS ·· ·· ••.

* ADDRESSES * • • •••••••••••••••••

x ...
82 *·

* * * QUEUE * ••••••••••• • ••••••••••

x
B3 *· 84 ••

•* *• •* IS *· • * IS *• •
•* PREVIOUS *• YES. YES •• rs IT *· NO ·* IT A ••

• ELEMENT •• ••• ••• *• AN ALCB .•X •••••.• •*• CLOSE • *
• AUDIO • X

*· .•
•NO

x
*****C2**********
* GET WORK *
* AREA SIZE *
* ANO START *
* HES SAGE *
* ADDRESS *

x .•.
02 ••

• *MES SAGE• •

• x
• •GG•
•* Bl* ...

•

•* FROM *• YES
• PREVIOUS •••••

*• GET • *
•NO

x

x
* K4 *• . ..

**** •

• · *• ELEMENT •*
· .• •• · •• •* ••••

•NO *YES

x
*****C3********** • • * SET BUFFER *
* PRESENT *
* FLAG ON * . .

x
*****03********** • • •SET AUDIO FLAG *
•ANO USER SW ITCH* * ISWITCHI OFF * • •

x .•.
E3 *•

x
C4*****

****QPOST****
* RELEASE *

* CLOSE *
* ELEMENT * • • •••••••••••

x
**** • • * 01 • • • ••••
•••• . .

* E4 * • • • •••
GDlSEGlO X

*****E4********** * HOVE *
*****E 2* **** ***** • • * GET ADDRESS *
* FROM PREVIOUS *

YES •* TEXT *• * SEGMENT *
•• ••*• SEGMENT •* * BUFFER * *· ·* • • ••••••••••••••••• •. ·*

*NO

* IN USER'S * * WORK AREA * • • •••••••••••••••••

* TO BE MOVED * • ••••••••••••••••

x
•••••B5********** • • * COMPUTE *
* SIZE OF *
* REMAINING * * DATA * •••••••••••••••••

x • ••• • • • J3 • • •

x x x•. .•. .•. GDlOVFI 7 •*•
F2 *• F3 *• F4 *• F5 *• • •* IS *• •* IS *• • ·* •. •* IS *• NO.

• BUFFER •··•
XYES •* IT A *•
•• ••*• PROCESS •*

•* BUFFER *• YES.
•.GREATER THAN •*••••

NO • * OVERFLOW *•
••••*• EXIT •*

• BUFFER • X *• PRESENT • * *• QUEUE •* *• WORK •* •.SPECIFIED.•
•NO

x .•.
GI *•

•* IS *•
NO ·* MASTER *•

••••*• RCVE SWITCH •*
• OFF •

· · *YES

:GOlEXT04 X
Hl*****

FLUSHAD * GO TO * * USER EXIT * * ROUTINE * • •
········· ···x .•.

JI *•
·* *· • * SYNCAO *• NO •

• SPECIFIED •••• .x.
*YES

x
K 1*****

***SYNCAO** * * GO TO USER * •
* SYNCHRONOUS *• ••••• * ROUTINE * • • •••••••••••

•. ·* *· .•
*YES

x
G2*****

****CPOST****
* RETURN LAST *

* BUFFER TO *
+RETURN BUFFER*

* QUEUE * •••••••••••

x
*****H2********** • • * INOI CATE *
* NO BUFFER *
* PRESENT * • • •••••••••••••••••

x
•••••J2**********
* RES TORE *
* REGISTERS *
* FROM USER'S *
* SAVE AREA * • • • ••••••••••••••••

x •••• • • * Bl * • •
****-

· .• •.AREA • •• •* •. ·* *· ·*
*NO •NO *YES

x GDl STAIO X x
*****G4********** * SET SEGMENT *
* TYPE TO ZERO *

G5*****
• ****OVAD*** *
X * GO TO *

*****G3**********
* MOVE TERMINAL *
•IDENTIFICATION *
•INTO USER AREA * x• IN GET/PUT * ••••* USER 1 S * * (TRMADI * * PREFIX * . . • • •••••••••••••••••

: ..•...•... x: :x :

* OVERFLOW *
* ROUTINE * • ••••••••••

**** • * * HS *••• • • x
GDl TXTlO •*•

H3 *•
:GD1EXT18 X **** x

·* •.
• * BUFFER *• YES ..

· EMPTY · ••••••
· •• •. ·

•NO
• J3 *··· • • •••• GDlShAlO •*•

J3 ••
•* IS *•

•* WORK AREA *• YES
• SUFFICIENT ••• ••

·FOR DATA •
.• I •

· · •NO
x •••• . .

* E4 * • • • •••

*****H4********** * STORE DATA * * COUNT IN * * GET/PUT *
* PREFIX * • • • ••••••••••••••••

*****H5********** * SET USER *
* ERROR FLAG *
* IN * * REGISTER *
• 15 • •••••••••••••••••

x
•••••J4********** x
* RESTORE * ****J5*********
* REGISTERS * * RETURN TO *

FROM USER'S *• •. •. • •. X* CALLER *
SAVE AREA * * * • • ••••••••••••••• •••••••••••••••••

•••• • • * K4 •.X • • • x GDlREMll X
*****K3********** • • * USE WORK *
* AREA SIZE *
* FOR MOVE * • • • ••••••••••••••••

x •••• • • * E4 * • • ••••

*****K4********** • * * GET ADDRESS *
* OF PREVIOUS *
* BUFFER * • • • ••••••••••••••••

x
**** • • * AS * • • ••••

QTAM Charts 227

Chart GG. Get Segment or Audio Message Routine (Part 2 of 2)

***** *GG• * Bl* •• •
x

*****Bl********** • • * GET AUDIO * * WORK AREA * * ADORE SS * . .

x
*****Cl********** * MOVE AUDIO * * LINE NAME * * IN USER * * AREA * * (LINAOJ *

x
*****Dl********** • • * SET AUDIO * * FLAG ON * . .
• •

x
*****El********** • • * SET USER * * SWITCH * * (SWITCH) ON * • •

x .•.
Fl *•

•* INPUT *•
•* MESSAGE *• YES

**** . .
* 82 * • •

x

*****B2********** • • * MOVE INPUT * * DATA INTO * * WORK AREA * • •

x
*****C2********** * SAVE ALCB * * ADDRESS * * IN AUDIO * * GET E LE ME NT * • •

x
02*****

****OPOST**** * POST AUDI 0 * * GET ECB * * TO AUDIO * * GET QUEUE *

x
*****E2********** * RESTORE * *"'**E3********* * REGISTERS * * RETURN TO * * FROM USER 1 S *• •• •• •• .X* CALLER *
* SAVE AREA * * *
* * ***************
**************"'**

•.SIZE GREATER •*••••••••••••••••••
•.THAN WORK.*

•.AREA •*
· · *NO

x
*****G l**********
* MOVE INPUT * * SIZE IN * * GET /PUT *
* PREFIX * • •

x
•*• GD10VA17

G2 *• *****G 3**********
·* *· * * •* OVERFLOW *• YES * SAVE *

• EXIT •• •• ••••• X• ALCB *
•.SPECIFIED.• * AOORFSS *

· · * * *· • * *****************
*NO

x
H3•****

****OVAD*** * * GO TO * * USLR * * OVERFLOW * * ROUTINE *
GOl TXT14 X X X

*****Jl********** *****J2********** *****J3**********
* * * MOVE WORK * * *
* GET INPUT * * AREA SIZE * * RESTORE *
: A~~~:ss :x········: JNPl~~{~UT :·········: A~5~~ss :
* * * * * * ***************** ***************** *****************

228

x
**** • * * B2 *

* * ****

DOS QTAM Program Logic Manual

****84********* * ENTRY FROM *
* SUPER VI SOR * • •

i(
*****C4**********
* GET ALCB * * ADDRESS FROM * * AUDIO GET * * ELEMENT * * •

x
*****04********** * • * SET ALCB *
GET-IN-PROGRESS
* FLAG ON * * •

x
****E4********* * EXIT TO *

* OSVCOISP + • •

Chart GM.

IJLQGM
Al---~

GET

Bl-_._--~

SAVE REGISTERS

YES

SET ERROR CODE

ET

GET RETURN
CODE AND
RESTORE
REGISTERS

Fl
RETURN TO

CALLER

Get Message Routine (Part 1 of 2)

E2

RESTORE
REGISTERS

F2
BALR FLUSHAD

TO USER
SPECIFIED
ROUTINE

YES

RESTORE
REGISTERS

~!·.,.L~R "'"sY~N-CA=D---,

TO USER
SPECIFIED
ROUTINE

RESTORE
REGISTERS

QTAM Charts 229

Chart GN.

DJ--L--~

INDICATE
NO BUFFER
PRESENT

RESTORE
REGISTERS

Gl-..L--
REENTER
THIS NODULE

Get Message Routine {Part 2 of 2)

A2------.

SET UP TO
OOVE
REMAINDER
OF DATA

INDICATE
BUFFER
PRESENT

PLACE SEQUENCE
NUMBER IN
AREA (IF
APPLICABLE)

G2-....L..----.

MOVE SOURCE
ID INTO USER
AREA (IF
AVAILABLE)

USE AVAILABLE
WORK AREA
SIZE FOR MOVE

DJ-....L..----.

MOVE DATA
INTO
WORK AREA

INDICATE
NO
OVERFLOW

INDICATE
EOM
SEGMENT TYPE

FILL IN
WORK AREA
PREFIX

KJ--L--~

RESTORE
REGISTERS

YES

C4--'-----.

USE MESSAGE
SIZE FOR
OOVE

F4--'-----,

SAVE COUNT
OF DATA
REMAINING
IN BUFFER

230 DOS QTAM Program Logic Manual

YES

ES-----.

FILL IN
WORK AREA
PREFIX

FS---L----,

SAVE COUNT
OF DATA
REMAINING
IN BUFFER

BALR OVAD
USER SPECIFIED
ROUTINE

H5--<----,

RESTORE
REGISTERS

JS RETURN
TO USER

/

Chart GQ.

IJLQGS

Al---~

GET

Bl-~---,

SAVE
REGISTERS

SET
ERROR
CODE

El-~-~
RETURN
TO USER

GJ-~--~

GET USERS
FLUSHAD
ADDRESS

Get Record Routine (Part 1 of 2)

G2 < SYNCAD
EXIT

AVAILABLE

GET USERS
SYN CAD
ADDRESS

TO USER
SPECIFIED
ROUTINE

NO

114----~

GET NUMBER
>-'Y_ES_-1"'4 OF CHARACTERS 1---.-t

TO BE MOVED

RESTORE
REGISTERS

HJ-~-~
REENTER
THIS MODULE

F4-~--~

PLACE SEQUENCE
NUMBER IN
WORKAREA
(IF PROVIDED)

G4----~

MOVE SOURCE
TERM ID INTO
USER AREA
(IF AVAILABLE)

BS----~

GET ADDRESS
OF FIRST

•CHARACTER
TO MOVE

D5----~

COMPUTE
NUMBER OF
BYTES TO
MOVE

INDICATE
BUFFER
AVAILABLE

INDICATE NO
OVERFLOW,
FILL IN WORK
AREA PREFIX

RESTORE
REGISTERS

Ks-~~~

RETURN TO USER

QTAM Charts 231

Chart GR.

SAVE NUMBER
OF CHARACTERS
REMAINING IN
BUFFER

rH2;~gR~~REA
~EFIX

·-r---

J2-~--...,

RESTORE
REGISTERS

K2_~-..,.-..
RETURN TO
USER

NO

Get Record Routine (Part 2 of 2)

INDICATE
END-0 F-RECORD
SENSED

G3-"~~~-~

MOVE
CHARACTER
INTO
WORKAREA

HJ-~~-~

UPDATE
WORKAREA
AND BUFFER
POINTERS

C4--'----,
INDICATE
OVERFLOW AND
SET UP
SEGMENT
SIZE

D4--'-----,

SAVE NUMBER
OF CHARACTERS
REMAINING
IN BUFFER

E4--'-----,

FILL IN
WORKAREA
PREFIX

F4--'----,

GET OVAD
ADDRESS

RESTORE
REGISTERS

J4 _ _i__--._

RETURN
TO USER

232 DOS QTAM Prograrr, Logic Manual

c :

;4.

(
\~

0

Chart GS. GET Segment Routine

IJLQGS

Al---~

GET

SAVE
REGISTERS

SET
ERROR
CODE

El---'~-~

cl

RESTORE
REGISTERS

RETURN~

GI-----

GET FLUSHAD
ROUTINE
ADDRESS

HI-----

GET SYNCAD
ROUTINE
ADDRESS

YES

YES

YES

J2 -B-A-LR--~

TO USER
SPECIFIED
ROUTINE

K2-----

INDICATE
NO BUFFER
PRESENT

A4-----

YES GET ADDRESS
·>'---...i OF REMAINING

INDICATE
BUFFER
PRESENT

PUICE SEQUENCE
NUMBER IN
WORK AREA
{IF APPLICABLE)

H3--L--

MOVE SOURCE
INTO WORK
AREA {IF
AVAILABLE)

RESTORE
REGISTERS

DATA

BS _ _._ __ ~

USE AVAILABLE
.---------1 WORK AREA SIZE

FOR MOVE

D4--L--~

llOVE
DATA

/E4 DATA
<:'REMAINING

"IYa
YES

DF4-t:.J_
NDIC ATE

~IRtlOW

CS----~

GS

HS

USE DATA
SIZE FOR
MOVE

GET OVAD
ROUTINE
ADDRESS

BALR

TO USER
SPECIFIED
ROUTINE

PICK UP
RETURN
CODE

JS---L--~

RESTORE
REGISTERS

KSR.""ET=u-'R-N,----....

TO CALLER

QTAM Charts 233

Chart IT. Intercept Message Routine

I JL~IT

****A3********* • • • INTERCPT * • • •••••••••••••••

x .•. . ..
8) •• ..84 •• •• • •* *·•. NO •* ANY *:.~~ ..

•• • ~RR~~RaASK •• ••••• ••••• x• •• ~E~Afci~lEO ••
*••·:Es •·.·~es

. . .x •••••••••••••••••••••••••
x

*****Cl**********
• TURN Off SE"'D *
• BIT IN TSTA •
• FIELD Of •
•TERMINAL TABLE * * ENTRY * •••••••••••••••••

x .•.
03 •• • * IS *• YES

•.INTERCEPT 8 IT•*• •••
• ON IN •

•.TSTA •*
• NO

x
*****El********** • • * TURN * * ON INTERCEPT * * SIT * • • •••••••••••••••••

x
*****f3********** * STORE LAST *
*MESSAGE NUMBER *
•INTO INTERCEPT *
FIELD IN TERM'L * TABLE ENTRY * •••••••••••••••••

. i .
• x •••••••••••••••••••••••••••••••••••••

x
****G3********* • • * RETURN * • • •••••••••••••••

234 DOS QTAM Program Logic Manual

/

(':
_j

Chart LB. Line Appendage PCI and Program Check Module

•••••
*LB * * Al* • • •

IJLQLC X
*****Al********** * FIND *
• THE CCW *
* PR ECEOING THE *
* TIC COMMAND • • •

x
*****Bl**********
•GET THE ADDRESS* * OF THE CCW *
•CONTAINING THE *
• FIRST PCI NOT • * SERV ICEO * •••••••••••••••••

x .•.
Cl *•

• :· A~s1~mT ·~~~~-
•• BLOCK •*

*NO

x .•.
Dl *•

•* IS A *•

i •••• • • * G3 * • • ••••

•* BUFFER *• NO
• ASSIGNED TO •••••

+.NEXT BRB •*
* YES

x
*****El**********
• GET START * * OF BUFFER *
•ADDRESS CHAIN *
•BUFFER INTO BRR* • • •••••••••••••••••

x
*****Fl********** * SET PRIORITY *
*GET ADDRESS Of •
• INTERIM LPS •
* QUEUE CLEAR • * EDM IN PREFIX * •••••••••••••••••

x .•.
GI *•

x •••• • • * C3 * • • ••••

•* IS *• NO
•.LINE SENDING •*• •••

* YES

x
*****Hl********** * SAVE *
+POINTER TO NEXT*
SEGMENT IN LSEG
•AS THE CURRENT *
*. SEGMENT * •••••••••••••••••

i •••••Jl•••······· * GET AVAILABLE *
• BUFFER QUEUE •
•ADDRESS RESET •
• SRB TO HIGHER * * PRIORITY * •••••••••••••••••

:x •••.••...• :

i
*****Kl********** * PUT QCB * * AODkESS INTO * * PREF IX BUMP *
*EXCESS BUFFERS • * COUNT BV ONE * •••••••••••••••••

•••••
*LB * * A3* •• ••.... x:

x

•••• • • • A5 • • •
x .•.

A5 ••

NO •• ·;H1l5THE •· ••
x• ••••••*·.~:al°'l~~E .••*

*****A3**********
• MAKE NEXT BRB •
o ADDRESSABLE *
•GET ADDRESS OF *
* ACTIVE BUFFER •
• REQUEST QUEUE * ••••••••••••••••• :;r: •· •..• ·• * Al• • YES •• •• :

x
*****83********** * PUT ADDRESS * * OF ACTIVE *
*BUFFER REQUEST *
•QUEUE IN FIRST * * WORD OF 8R8 *
• ••• . . .

* C3 *• X. • • •••• x •••••t3••········ * SET FLAG *
•IN TIC AOOREs·s •
•TO INDICATE BRB•
• IN ACTIVE BRB • * QUEUE * • ••••••••••••••••

x •••••03••••······ * LINK NEXT BRB *
• INTO PREVIOUS * * ELEMENT GET *
ADDRESS OF NEXT * BLOCK * • ••••••••••••••••

:x .••..•..•.•..........••••
x

El•*•+. *****E4**********
•* *• * REMOVE INSERT *

•* IS NEXT *• YES •BLOCK FRON BRB O
•••• B~~~~RtN •• ••••••• ••• x::1~GINsw~u~~· :

•.BLOCK.• • QUEUE •
• NO

.....••...• x: x .•.
fl ••

• * WAS A CCW *• NO •
• .~I~~S~E~CI .••••••••• • •. •••••• ••••••••••

* YES ••••
*LB * • * Gl •.x. • • •••• x
*****G3**********
* GET FIRST • * PCI CCW *
• ADDRESS GET •
•TIC ADDRESS TO • * NEXT BLOCK * • ••••••••••••••••

x
*****Hl********** * MOVE BUFFER * * INTO NEXT * * BLOCK PUT *
•COMBINED COUNT •
INTO NEXT BLOCK • ••••••••••••••••

x •••••J3••········ *PUT l/''llSERT QCB *
•IN INSERT BLOCK*
* SET PRIORITY •
• PUT INSERT •
*BLOCK IN CHAIN • • ••••••••••••••••
••••
*LB * • * Kl *•X•
:.... i .•.

Kl *•
.YES .• IS NEXT *•
••. •*• BLOCK AN •*

• INSERT •
*•BLOCK.•

• NO

x •••• • • * A5 * • • ••••

•••••as•i••••••••
• !;INK •
• f.11RRllNT &HAAN •
: 1UFMss1~9o :
:..tl~i%.i¥~~1 •• :

•••••cs•!•••••••• • • • RESET LPCI •
• lllTH NEXT IRB •
• ADDRESS • • • •••••••••••••••••

.. i ••
•Qll. •xx• • • •

QTAM Charts 235

Chart LG. Audio Input Message Logging Routine

****A2********* . .
* LOGSEG * • •

lJLQLG X
*****B2********** • * * GET DTF TABLE * * ADDRESS * . .
• •

x
*****C2********** * GET INPUT *
*BUFFER ADDRESS *
* AND INPUT *
*MESSAGE LENGTH * . .
**********"'******

x
*****DZ********** . .
* CLEAR UNUSED * * PART OF INPUT * * BUFFER AREA * • •

x
*****E2********** . .
* LOAD LOG AREA * * ACDRESS IN * * REGISTER 0 * . .
******** *********

x
*****F2********** . .
* SAVE LOG AREA * * ADDRESS *

x
*****G2********** * MOVE IN LOG *
*AREA CONVERTED * * ANO UNPACKED * * INPUT MESSAGE * * LENGTH *

x
*****H2**********
SAVE REGISTER l
* • . .

x
*****J2********** . .
* MOVE THE DATE * • * INTO THE LOG *• ••• * AREA * • • *****************

............. ··x .•.
83 *· **B4*******

•* *· * GETIME *
·* *· YES *-*-*-*-*-*-*-*

• LOGTIME •••••••••X* GET EXACT *
• • * TIME OF *

• • * DAY *
*· • * ***********

*NO

x
*****C4********** . .
* MOVE THE TIME * * INTO THE LOG *
* AREA * • • *****************

x x
*****03********** *****04**********
* * * * * RESTORE * * RESTORE LOG *
* REGISTER l *X••••••••*AREA ADDRESS IN*
* * * REGISTER 0 *
* * * * ***************** *****************

x
* *** E 3** * * ** * ** * RETURN TO * * CALLER * . .
* **** **** * * ****

236 DOS QTAM Program Logic Manual

Chart LK. Lookup Terminal Table Entry Routine

I JLQLK

** * *A2 **** * ** ** . .
* LOOKUP * . .
* ********** * * * *

x
* * ** •1~ (' **** ****** * (.;i:.f~AX * * SI If: UF * * Tf IHH.;AMI:: f l<(JM * * TEH.M TAHU: * . .
** (<** * ***** ** * ***

x
** ** *C 2 ** * * * * * * * * . .
* TURN *
*UFF HJ~ STATU~ *
* !HT * . .
** ** * ** * ** * *** •• *

: x .. .
x • NO

. *· ·*· IJZ *• *****03********** 04 *•
•* TST *· * * .• *•

•* 1-R.STCNXTJ *· NU * l.OMPUTf: * ·* *•
•• TEl<M TABLE •••••••••• x• NtXT ENTl{Y • •••••••• x•.fNfl [)F TABLE ...

•.f-NTRY fflK.* * ADURESS * *· .•
O:,.Of:~T •* * * •. •*

*· . * ***************** •..• *YES *YES

: x •••••••••••
x

**** •£ 2.* * ** ** *** * . .
* MDVf * * i.JUf"'. UE ADOH TO *
* LC ti * . .
**** * *** **** * *** *

x
**** *f- 2*********'°' * PUT * * TERM TABU:: * * t-NTKY INtJE::J(* * INTO PRCFIX * . .
**** * * ** ********.

x
** t: *G2 * **"' * "'* •* . .

* f{fTURN * . .

• •*• ••f 4*•········ . .
* SET * * Dl~TINATION • * ffHWM. RIT IN * * LCB *

x
****•f 4••••••••••
• ASSIGN * * HI- ~SAGE TO * • • • • • • • • • •. • .. • • • • "" • ... • ••. ·* 1-M.ROR *
• lJL'.->TINATlON * * !JUEUE *

QTAM Charts 237

Chart LO. IBM 2260 Local Appendage (Part 1 of 3)

Al----

IJLQLO

Bl
SAVE REGISTERS
(REG 7 SET TO
+4 RETURN FOR
csw
PROCESSING)

Cl
INITIALIZE REG
I DTF, LCB
I TERM ENTRY,
BASE FOR IP &
QTAM NUCLEUS

DI

GET DEVICE
ADDRESS FROM
PUB AND PLACE
IN LCB

B2

POST CHANNEL
DATA CHECK
ERROR MSG
MODE IN LCB

C2

SET TRANS ERROR
AND MSG-NOT-
SENT FLAGS IN
ERROR HFWD

IJLQLC

H2
PLACE ADDR IN
csw so
SUPERVISOR
WILL NOT
BYPASS

YES

POST SHOULD-
NOT-OCCUR
ERROR MESSAGE
CODE IN LCB

G3

SET CU FAILURE
FLAG IN ERROR
HALFWORD

MOVE BYTES
1-7 OF CSW TO
LCB FOR
MESSAGE WRITER

238 DOS QTAM Program Logic Manual

M·-----.

SET RESTART
ADDR IN CCB

GETS NS
C4

SET UP
SENSECCW

E4
POST
PROTECTION CK
ERROR MESSAGE
CODE JN LCB

G4
RESIDENT MSG WRT

PREPARE & POST
ERROR MESSAGE
TO CONSOLE

NO

AS----~

RESTORE REGS
FOR +O RETURN

SAVE BYTES 1-7
OF CURRENT
CSW IN LCB

D5

SET TRANS ERROR
FLAG IN ERROR
HALFWORD

FS

SET MESSAGE-
NOT-SENT
FLAG IN ERROR
HALFWORD

INDICATE ERROR
MESSAGE FOR
OPERATOR
AWARENESS

/
!

~

Chart LP. IBM 2260 Local Appendage (Part 2 of 3)

SET PCI FLAG
IN CSW TO
LEAVE CCB ON
CHANNEL
QUEUE

SET BUSY AND
DE BITS IN PUB,
SET CHANNEL -----I
QUEUE FLAG IN
TERM ENTRY

POST LCB TO
ITSELF AND LINK

-,_:.:.;__--I TO TOP OF

INITIALIZE FOR
POSTING CCB
TO ATTENTION
QUEUE

SET CE, DE IN
CSW, TURN OFF
BUSY & DE FLAGS
IN PUB

SET CE, DE IN
CSW, TURN OFF
BUSY & DE FLAGS
IN PUB

PRIORITY SEARCH

READY QUEUE

POST ERR IN ERP
ERROR MESSAGE ~---''"<
CODE IN LCB

RESTORE
REGISTERS

RETURN TO
SUPERVISOR

SET UP
INTERVENTION
REQUIRED ERROR
MESSAGE CODE
IN LCB

TR ON MESSAGE
NOT-SENT FLAG,
TR OFF TRANS
ERROR FLAG IN
ERROR HFWD

NO

TURN OFF
CHANNEL QUEUE
FLAG, TURN OFF
BUSY & OE PUB
FLAGS

SET CE AND DE
IN CSW

RETURN TO
SUPERVISOR

EQIPCK

POST EQUIP
CHECK ERROR
MESSAGE
CODE IN LCB

TURN ON CU
FAILURE AND
MESSAGE-NOT
SENT FLAGS
IN LCB

QTAM Charts 239

Chart LQ. IBM 2260 Local .Appendage (Part 3 of 3)

TURN ON
RETRY SWITCH

SET WRT AT
LINE ADDR
INDICATOR FOR
EOBLC

TURN ON
MESSAGE-NOT-
SENT FLAG IN
ERROR
HALFWORD

TURN ON
RETRY SWITCH

SET UP
RESTART CCW

SET INDICATOR
FOR ERASE,
WRITE FOR
EOBLC

SET INDICATOR
FOR WRITE
FOR EOBLC

SET X'70' IN
BSTA TO CAUSE
LPS ERROR
PROCESSING

POST BUS OUT
'>'-.;;.;...-'----l ERROR MESSAGE

Kl

CODE IN LCB

LENGTH-MES
FLAG IN ERROR
HALFWORD &
SET UP BUFFER

LINK BUFFERS
CONTAINING
DATA TO HEAD
OF READY
QUEUE

SET PCI IN CSW,
BUSY & DE IN
PUB, CHANNEL
QUEUE FLAG IN
TERM ENTRY

EXIT TO
6 DISPATCH

240 DOS QTAM Program Logic Manual

ON (AND) OFF
ERP FLAGS IN
ERROR HALF
WORD

NO

SET PCI IN CSW,
BUSY & DE IN
PUB, CHANNEL
QUEUE FLAG IN
TERM ENTRY

INTERIM LPS
ROUTINE

,/

REMOVE CCB

YES FROM ATTN
QUEUE & TURN
.OFF ATTENTION
QUEUE FLAG

SET CE, DE IN

YES
CSW TO REMOVE
CCB FROM
CHANNEL
QUEUE

AND DE FLAGS
IN PUT AND
CHANNEL
QUEUE FLAG

RM N

(

_

Chart MC. Conversational Mode Routine

IJL QMC

••••Al********* •CONVERSATIONAL *
•MOOE SUBROUT lNE• . .
•••••••••••••••

x
*****Bl********** * SET *
+ LCB •
+CUNVERSAT JON AL *
+ MODE BIT * • •

x .•.
Cl *• *****Cl**********

•* *• +NOR T 13R3*
• •F JRST TlME *• Vt:~ •-+-•-•-•-•-•-•-•

• IN THIS •••••••••X• GO TO
• ROUTINE • * ENUINSH.T

*• .. • * IWUTI NE *
o NO

:x :
x ••••01•••······ * RETUM.N *

• TO MACRO *
* EX PANS ION *

•••••
*MC * * AJ* • • •

x .•.
A3 *•

• •CONVRSE•. • * HOOE ANO *• NO
•.ORIG MESSAGE •*• •••• •• •

+.PROCESSED.• X
•• •• •16 • * YES * F5*

x ...
B3 *•

•* PULl(NG *•YES

• • •

•.OR ADDRESSING.*•••••••• *· ERROR. •* X .. ~.
•• •• •16 • * NO * F5*

x . • .
(.J •• * J !:i THIS *• NU

•• •

+. A PROCESS •*••. ••
+. QUEUE .+ X

•• •• •16 •
* YES + F 5+

• •••••03••••······ . .
* S Al/ E *
* RETURN *
*IU:GIHERS 14-3 *

x .•.
EJ *• ·* IS *• . * LINE: *• VFS

•• •

• RtCfll/ING •••••••G•)(..
•• • • •15 • * NO t A2*

x
*****F3********** • • * TURN LINE * * AROUND TO * * RECEIVE *

• . ..

•• •

*****&2********** Gl *• * • ... •. * FI Nfl * ¥ E 5 • t ENO *• * STAKT OF- •x •. Uf POLLING •* * illll l I NG l I ST * *. l I$ T • * • * •• ••
o NO

x
*****H3********** . .

•••••
="~,: •• •

i .•. "' ..
No •• ··P~S~Efsf•· ••

•••••••• •.QUEUE ON Al N.•
X *• A R PLY .e

•16 • • ••• * Bl* • YES •• •

x •••••C5•••••••••• • •
:IN1mh1iMca :
• ADORE SS Of •
• REPLY • • ••••••••••••••••

.. •TNITIALllE LC8 * •
••••~••••••••••••)(: t(l~1:: 4~b~¥t~~ :)(•••

• •
x ••J3••·····

••ttQPOS T **** * POST TO * * ACT IVE BUFFER *
M.EQUEST QUEUE • •

x
•15 •
* A2* •• •

QTAM Charts 241

Chart MM. Message Mode Interface, Initiate Mode, and Priority Mode
Routines

IJLQMH

****Al********* • • * MODE * • •
x

*****Bl********** • • * SAVE *
• SCAN PO INTER • • • • • •••••••••••••••••

•••••c1•i••••••••
* SCAN SHAl • ._._._._._._._._.
•GET NEXT HEADER• * NON-BLANK *
• CHARACTER • •••••••••••••••••

x .•.
Dl *• *****02**********

•* MOOE *• VES •-•-•-•-•-•-•-•-• *• CHARACTER •*•·•••••••X* LINK TO * *• FOUND •* *SPEClf 1 ED MOOE *
• • * SUBROUT 1 NE *

*NO

i
*****El********** • • • RESTORE •
• SCAN POINTER O • • . . . •••••••••••••••••

:x ••••.•••••••••.••••••.•• :
x

****fl********* • • * RETURN * • • •••••••••••••••

DOS QTAM Program Logic Manual

IJLQMI

****Bit*********
• INITIATE *
*MODE SUBROUTINE• • • •••••••••••••••

i
*****Cit********** • •
• SET •
•INITIATE BIT IN• * LCB •, • • •••••••••••••••••

i
****04********* • • * RETURN * • • •••••••••••••••

l JLOMP

****B5********* * PRIORITY *
*MODE: SUBROUTINE• • • •••••••••••••••

x
*****C5********** * SCAN SHAl * ·-·-·-·-·-•-*-•-• *GE. T NEXT HEADER* * NON-BLANK * * CHARACTER • • ••••••••••••••••

x •••••os•••••••••• • • * MOVE * * PRIORI TY BYTE * * INTO LCB * • • • ••••••••••••••••

x
****E5********* • • * RETURN * • • • ••••••••••••••

/

Chart MT.

/

Message Type Routine

I JLQHT

••••A3********* • • * MSGTVPE * • • •••••••••••••••

i
*****83••········ * • * SAVE * * SCAN POlNTER *
* • • •

i
•••••C3********** • • * GET SCAN * * SUBROUTINE * * ADORE SS *

j(
•••••03••········ * SCAN SHAl * ·-·-·-·-·-·-·-·-· •GET NEXT HEADER* * NUN-Bl ANK * * CHARACTER * •••••••••••••••••

i .•.
E3 *•

•* MSG *• ****E4********* ·* TYPE *• VFS * RETURN TO * *• C.HARACTER •*• ••••••• x• NEXT MACRO *
• EQUAL • * STATEMENT *

• NO

i
** ***F 3********** . .
'* RESTORE * * SCAN POINTER * . .
• * •••••••••••••••••

i
****G3********* * RETURN TO *

NCXT MSGTYPE DR * l:::OA ROUTINE * •••••••••••••••

QTAM Charts 243

Chart MW. Message Writer Initiator Routine

****A3*****•*** . . * JJLQMW +
x

. *· ·*· *****Bl********** B2 *• 83 *.
* * ·* *· ·* •. * PLACE ALCB * NO •* INFO *• YES ·* AUDIO *· * ON WAITING •x ····*· BLOCK .•x ··*· ELEMENT •• * QUEUE * •.AVAILABLE.• *• .•
* * *· . * *. . *
***************** *· ·* *· ·*

x
****Cl********* . .

* QOISPATCH * . .

*YES *NO

x .•.
C 3 *. *****C4**********

·* *· * * ·* INFO •. NO * PLACE BUFFER * *· BLOCK .+ •••••••• X* ON WAITING *
•.AVAILABLE:.+ * QUEUE *

· · * * *· . * ***************** *YES

****AS********* • • * LOG APPENDAGE * . .
• ••••••••••••••

i
LOG AP • *•

' 85 *· .• *· • * OTHER *• NO
• INFO BLOCKS •••••

• BUILT •
· · *· . * *YES

x
*****C5********** • • * INSERT ECB * * IN READY * * QUEUE * • •

: x:x •••••••••• :

244

x
*****02********** * BUILD * * INFORMATION *
* BLOCK FROM *
* DATA IN ALCB * . .

x
*****03******• ••• * BUILD • * INFORMATION •
*BLOCK FROM DA l A• * INLCB • * •
*************••••

: x:
x .•.

E3 *· . * •. •* 1/0 +. Yf-S
*• ON SYSTEM • • ••••

*• LOG • •
· · *· ·* *NO

x
*****F 3******* ++ • . .
* INSERT ECB * IN READY * QUEUE * •
***********••••••

:x -... ":
x ...

G3 *·
****G2********* . * *· * IJLOAA DR * YES •* AUDIO +.

* IJLQAD *X••••••••*• ELEMENT .+
* * *· -• *************** *· ·* *· . * *NO

x
****H3******* ++ * • * IJLQLA • . .
**********••• ••

DOS QTAM Program Logic Manual

x
****05********* • • * QOISPATCH * • •

(\
I

,,/

Chart OA. Operator Awareness Routine

****Al********* • • * IJLQOA * • •

x .•.
Bl *·

·* *· NO ·* OP CTL *•
• • • • *• ERR MSG TO •*

• BE SENT •
· · *· ·* * YES

x ...
Cl *· . * *· •* THRESH *• YES

• MSG TO BE •• ••• ••••••••• ••••••• ••••••••••••• ••••• ••••••
• SENT ·

· · *· ·* * NO

x ...
01 *·

·* *·

**** • • * D2 * . .

........... x:
:10ERR X

*****02**********
*RECALL *

•* I/0 ERR *• YES •
._ ... _____________ .

• NISG TO BE •• •••••
• SENT •

· · *· ·* * NO

: x:
:x •..........
x

RETURN • *·
El *.

·* *· NO •* PERMANENT *•
••• ·*• ERROR ON •*

• LINE •
· · *· . * * YES

x .•.
Fl *•

• . * *· X NO •* INTREL *•
••••*• FOR THIS ·*

• LINE ·
· · *· ·* * YES

x
*****Gl**********
•IJLQIP22 *

* GET BUFFER TO * * CONTAIN ERR * * MF SS AGE *

x
*****E2**********
•GET INDEX INTO * * ERR. MSG TABLE * * CLEAR 1/0 FRR * * MSG FLAG * . .

x
*****F2********** • • * BUILD ERR * * MESSAGE IN * * BUFF FR *
* •

THR.l=SH i(
*****D3**********
*R.E CALL * ·---------------· * GET BUFFER TO * * CONTAIN ERR * * MESSAGE *
'~** ********** ****

x
•••**E3********** . .
* BUILD l=RR * * MESSAGE l"I * * BUFFH * . .
*** **************

........... x:
:stNflMSG)<

*****F3********** * C(lMPLETE * * BUILDING MSG *
*SET TO SEND TO *
OP CTL TERMINAL . .

x .•.
G3 *•

. * *· ·---------------· • NO ·* I/Q ERR *•
•WRITE BUFFER 01'11* * DI SK~ RETURN * * NEW BFR *

: x:

x
*****Hl********** * MODIFY PREF IX * * OF BUFFER TO *
*INDICATE TO BE * * POSTED TO * * INTREL QUEUF *

x
****J l********* . .

* IJLOIP23 * . .
********•******

••••••••••••••••••• ••••• •••• ••••*• MSG ALSO ·*
.REQUIRED •

· · *· ·* * YES

x
**** . .

* 02 * . .

****A4********* • • * PECALL * • •

x .•.
64 *·

·* *· •* BUFFER *• "10
• TO BE PUT •• •••

· ON DISK •
*· . * *· ·* * vi:s

x
*****C4**********
*lJLQIP22 * ·--------..------- *
WRITE BUFFER [lN
: DIS~f:wR~~~Rri :

:x :

x
****D4********* * Rl=TURN TO * * CALLER * . .

QTAM Charts 245

Chart OB.

Al---~

IJLQOB

SDRBYLIN
Cl

SET FLAG TO
SHOW COUNT
BY LINE --
GET COUNTER
OFFSET FROM LCB

ERRCNTR
Gl

COUNT
ERROR

SET FLAG TO
FORCE ROLLING
OF SOR COUNTERS
ONTO DISK

OBR/SDR Routine

COUNTRTN

TURN OFF SOR
lST-TIME SWITCH

NO

02-
SET FLAG TO
SHOW COUNT
BY TERMINAL --
GET COUNTER
OFFSET FROM
TERM ENTRY

CHKASSGN
E2

ASSIGN SOR
COUNTER SET TO
THIS LINE OR
TERMINAL (IF ONE
IS NOT ALREADY
ASSIGNED

CTRASSGN
F2

ADD 1 TO TOT AL
TRANSMISSION
COUNTER

NO

SDRTST2

J2,, TOTAL,
YES TRANSMISSION

COUNT AT/
MAXIMUM
'VALUE/

NO
K2

SDREXIT
K2

RETURN TO
LLING ROUTIN

1':3---~

IJLQOB +4

RCDTEST

C3
GET
INFORMATION
COMMON TO
BOTH OBR AND
SOR RECORDS

BUILD OBR
RECORD; ISSUE
OBR SVC; WAIT
FOR COMPLETION

G3

leu1LD SOR
RECORD; ISSUE
SOR SVC; WAIT
FOR COMPLETION

H3

RESET SOR
COUNTERS TO
ZERO

J3
BRANCH TO
USER'S LPS

246 DOS QTAM Program Logic Manual

J3

A4---~
ISLQOB+S

CHECKlST

YES

C4

TURN ON SOR
1 ST-TIME SWITCH
IN LCB

04
RETURN TO

CALLING ROUTINE

ERPOLLl
E4
FIND CORRECT
POLLIST ENTRY
USING INDEX
BYTE

H5

A5----
IJLQOB + 12

POLL TEST

ERPOLL
E5

CALCULATE
POLLIST ENTRY
ADDRESS USING
RESIDUAL COUNT

FINDTERM
F5

FIND TERMTBL
ENTRY
CORRESPONDING
TO CURRENT
POLLIST ENTRY

ERPOLL6
G5

STORE TERMTBL
OFFSET OF
SOURCE TERMINA
INLTID

ERPOLL7
H5
RETURN TO

LLING ROUTINE

.1

.___

/

Chart oc. Operator Control Routine

. ······x
****Al********* • • * OPCTL * • • •••••••••••••••

x
*****Bl********** * IJLQSH * ·-·-·-·-·-·-·-·-· •GET FIRST FIELD* * IN HOR * • •

x .•.
Cl *•

•* SCAN *•
YES .•PTR BEYOND *•

••• •*• ENO OF • *
• HOR •

•NO

x ••• • *· .•.
01 *· 02 *• 03 *• *****04**********

•* *• •* *• •* *• * IJLQSH *
•* CTL MSG *• YES •* SINGLE *• YES •* MSG TO *• NO •-•-•-•-•-•-•-•-* .

•• IDENTIFIER ·*··· x•. SEGMENT MSG •••••••••• x•. BE •••••••••• X•GET NEXT FIELD •••••
• CORRECT • *· •* •.CANCELED •* * IN HOR * •. .• •. . • *· ·* * •

•NO *NO *YES

x
*****El********** • • • • •RESET SCAN PTR * • • • • •••••••••••••••••

:x••••• :
x

****Fl********* * NEXT LPS * * INSTRUCTION * • • •••••••••••••••

**** . . .
•oc •· •• * E4* .x •••••••• •••
**** •

ROUTE X
*****E3********** • • • *REVERSE SOURCE *

••••••••••••••••• X•IO ANO OEST IO * * IN HOR PREFIX * • • • ••••••••••••••••

x
*****F3********** • • •PUT AOOR OF QCB*
•FOR SOURCE TERM* * IN LCB * • •

x
****G3********* • • •RETURN TO MACRO* • • •••••••••••••••

*E4
009-E3

.•.
AS *•

• * *• YES
• COPYC ••. ••

•. ·*
•NO

x .•.
85 ••

·* *·

x •••••
*OF * • es• •• •

• * *• YES
• COPYT ••. ••

•. ·*
*NO

x .•.
C5 *•

x •••••
*OE * * Bl* •• •

• * *• YES
• CHNGT •• • ••

•NO

x ...
OS *·

x ••••• *OE *
• 82•
• * •

•* *• YES
• I NTERCPT •• ••• *· ••

*· .•
•NO

x .•.
ES *•

·* *·

i •••••
•OE *
• BS• • • •

• * *• YES
• INTREL ·~•••

*• ••
· • *• ••

*NO

x ...
FS *•

•* *•

x •••••
*OH * * 83• .. •

•* *• YES *• RELEASEM •*• ••• •. ·*
· · *· .•

•NO

x ...
GS *•

·* *·

x

•OF * * Bl* * • •

•* *• YES
• STOPLN ••. •• •. ·* •. ·* •• ·*

•NO

x .•.
H5 *• ·* •.

x

•OG *
* Bl* •• •

• * *• YES
• STARTLN ••. ••

· · *· ·*
*NO

x

*OF * * 82•

. i~~·········· ·*· -~-
•• •

J 3 *• J4 *• JS *• .• *· *· .• *•
•* *• NO •* *• NO • * *• YES *· STOPARU .•x....... .•. STARTARU .•x.......... SWITCH ·*· ... •. ·* •. .• •. ·*

*• •• •• ,,. *· ·*
*· •Y~s *· •Y~s *· • · *

x
***** •OJ *
• 82• •• •

x
***** •OJ * * 81• • • •

i

*OF * * 84• •• •

QTAM Charts 247

Chart OD. Operator Control Routine: Common Subroutines

****Al********* • • * SUB l * • •

x
*****Bl********** * IJLQSH * ·-·-·-·-·-·-·-·-· * GET TERMNAME *
FI ELD IN HEADER • •

x
*****Cl********** * JJLQLK * ·-·-·-·-·-·-·-·-· *LOCATE ENTRY IN* * TERM TABLE * • •

x .•.
01 *·

•* *· •* ENTRY *• NO
• FOUND ••••.

· · *· ·* *· ·* *YES

**** . . .
* El *••. • •
**** x

*****El********** * CALCULATE *
NUMBER OF BYTES * JN BUFFER * * FOLLOWING * * TERMNAME *

x
****Fl********* * RETURN TO * * CALLER * • *

.... ·····•.
Gl *•

·* *· •* POSSIBLE *• ND
• AUDIO •••• ..

• REQUEST •
· · *· ·* *YES

i
*****Hl********** • • * LOCA re ENTRY * * IN AUDIO LINE * * TABLE * • •

i .•.
Jl *· ·* •.

i
***** •oc • * E3* •• •

•* ENTRY *• NO
• FOUND ••••.

· · •. ·*
· · *YES

x
**** • * * El * • •

x
***** •oc • * E3* * • •

****A2********* • • * SUB 2 * • • •••••••••••••••

i .•.
C2 *•

• * ENTRY *• NO
• FOR A •• •••

•TERMINAL •
• •

• · *YES

x
*****02********** . .
* SAVE REL AT IVE * : Lm ~g~m~ :
* • •••••••••••••••••

i
*****E2********** * MOVE SCAN * * POINTER PAST * * BLANKS IN * * BUFFER *
* * *****************

i
****F2********* * RETURN TO * * CALLER * • • ••••***********

i
***** •oc • * E3*
* * •

****A3********* . .
* UN PAK * • • ***************

•••• . . .
• B3 *··· * •••• * x

•*• LASTSECT
B3 *· *****B4**********

•* LESS *• * * •* THAN 8 *• YfS *UNPACK 8 BYTES *
• BYTES TO · •••• .X•INTO WORK AREA *

• UNPACK • * * •• •• * •
•• • • *****************

*ND

x
*****C3********** • • •UNPACK 8 BYTES * * INTO BUFFER * . .
* •
*************'°'***

i
*****03••········ . .
* MOVE POINH-RS * * OVERLAY LAST * * BYTE UNPACKl.0 • • • *****************

x
*****E3*****•**** . . * ADJUST COUNT * * FOR BYTES • * UNPACK ED • . .
**********•••••••

i •••• • • * B3 • • *

x
*****C4********** • *
*MOVE WORK AREA *
* TO BUFFER FOR * * COUNT it • *

ic
*****04********** . .
* TRANSLATE * * BUFFER INTO * * EBCDIC * • •

i .•.
E4 *•

•• *•
YES •* ENTRY *•

••••*• FIT INTO / •* *. BUFFER • *
· · *· ·* *ND

x
*****F 4********** • • * TRUNCATE *
LOW-ORDER BYTES * IN BUFFER * • • *****************

:••• x:
i

****G4********* * RETURN TO * * CALLER * • • ***************

248 DOS QTAM Program Logic Manual

(
\'- /

(\
_j

Chart OE. Operator Control Routine: COPYT, CHNGT, and INTRCPT

****Al********* • • * RCDPYT * • •

•••• •OE • •
* Bl *•X• . . .
**** x RCOPYT •*•

Bl *.
·* *•

YES •* ENTRY *•
••••*• FIT INTO •*

• BFR •
· · *· ·* * NO

x
*****C 1 ********** . .
* SET FLAGS FOR * * SUB2 TO *
*TRUNCATE ENTRY *
* * *****************

: x:

x
*****Dl **********
*UNPAK * ·------------· * UNPACK ENTRY * * PHO BUFFER * • •

x
***»=• * oc * * E3* . . .

****A2********* . .
* RCHNGT *
* * ***************
**** *OE * . * B2 •.X. . . .
**** • RCHNGT X
*****BZ**********
*SUB 1 * ·---------------· * LOCATE ENTRY *
FOR TERMINAL lN * TERM TABLE *

x
*****C2********** • *
*TRANSLATE DATA *
FIELD TO END OF * BUFFER * . .

x
*****DZ**********
*TRANSLATE-AND- *
TEST DATA FIEUJ * TO END OF * * BUFFER * . .

x .•.
c2 * • • * *. •* COUf\JT *• YES

· EXHAUSTEO •• ••.
· · *· ·* *· ·* * ND

x .•.
F2 *·

• * *·

x
***** .ac * ·.ei·

·* HALT AT *· NO
• VAL ID ·· ...

•DELIMITER.
· · *· ·* * YES

x
·*· G2 *·

·* *·

x :oc·:
* *E\ *

*

·* i:VEN NO *• NO *· OF CHARS •*• •••
· · *. ·* *· ·* * YES

x
·*· H2 *•

·* *·

x
***** * oc *
* *E:j.°

·* CHARS *• NO *· FIT IN •*• •••••••
• E~TRY • X

****A3********* . .
*RCHNGT SUBTAS!< * • •

x .•.
83 *·

·* *· •* ENTRY *• NO
• FOR A •• • • • • •• •

•.TERMINAL •* X

· •..• · :bt*:
*YES *•E3**

•
x .•.

(3 *·
·* *· ·* LrNE *• NC' *· ACTIVE •*•. ••• •••••••••••••

. · *. ·* *. ·* * YES

x
*** **C•3********** * SET UP TO * * CHANGE FNTRY * * STARTING AT * * STATUS FIELD * • *
*** **************

x
*****P4********** * SET UP TO * * CHANGF FNTRY *
•STARTING AT SEQ* * NUMBER FIELDS * • •

:x :
x

*** **E3********** . .
* PAC.K BUFFER *
*'1ATA INTO WORK * * AREA *
* * *****************

x
*** **F3********** . .
*MOVE WORK ARl=A * * INTO ENTRY *
• * • *

x
****G3********* • * * QOI SPATCH *

• *

· · ***** *· ·* .ac * * YES *•Ei*

x
J2***** • *

* ***CPOST*** * * POST CHNGT *
•QCB TO ITSELF* • •

x
****K2********* . .

RETURN TO MACRC1
• *

•

****A~********* . .
* RPJTPrPT * * •

*OE * • * 85 *.X. ,. * .
**** x Rlt.JTR(PT •*•

R'i * •
·* *-·* Jf\!TPCPT *• NO *· = YFS •*• ••.

•.SPFC:IFIED.*
. · *· ·* * YfS

x
*****C5**********
*SU~ l * ·---------------· * LnCATf l=NTPY *
F(IR TEP~INAL IN * TERM TABLE *

x ...
(15 *.

·* *·

x :oe·:
* E3 * ..

•* PHPY *· "'0
• l=flP A •• ••• *· TFP.MINAL •*

. · *· ·* * YF'S

x
*****f~********** . .
* TURJ\I f""!FF SFN() *
* BIT I~ ~TATUS * * FJFLn * • *

x
****F~********* • • *l<fTURN TO "1ACPO* • •

x
***** .oc *
* E3 * ••

*

QTAM Charts 249

Chart OF. Operator Control Routine: RELEASEM, STARTLN, SWITCH, and
COPYC

****A 1 ********* • • * RR EL EA SM * • • •••••••••••••••
•••• * • .
•OF *• •• * Bl* ••••

RRELEASM ·*•
81 *· ·* •. •* INTRCPT *• NO

• = YES •• ••.
•.SPECIFIED.* *· .• *· •* *YES

x
*****Cl********** * SUBl * ·-·-·-·-·-·-·-·-· * LOCATE ENTRY *
FOR TERMINAL IN * TERM TABLE * •••••••••••••••••

x .•.
01 ••

·* *•

x
***** •oc • * E3* • * •

•* TERMINAL *• NO
•.IN INTERCEPT •*• •••

• MOOE • •. ·*
· · •YES

x ...
El *•

•* DISK *•
EQ • *ADDR IN QCB•. *. = 0 I SK AOOR • *

•.IN ENTRY •* *· .•
· · *UNEQ

i<
*****fl********** * DISK ADDR IN *
* QCB REPLACES * * DISK AODR IN * * ENTRY * • •

: •.•..•..•. x:
i<

*****Gl********** * • * RESTORE * * TERMINAL TO * * ACTIVE MOOE * • *

:x •.•.•.•••• :
i<

****Hl********* • * *RETURN TO MACRO*
• *

****A2********* • * * RSTARTLN * • * •••••••••••••••
**** . . .
*OF *••. • 82*
**** • RSTARTLN X
*****B2********** * SU81 * ·-·-·-·-·-·-·-·-· * LOCATE ENTRY *
*FOR TERMINAL IN• * TERM TABLE *

x •••••c2•••••••••• * SUB2 * •-•-•-*-•-·-·-·-· * GET REL LINE *
: NUM~~~~ DTF :

•••••••••••••••••

i< . ..
02 *· *****03••········ •* *• * IJLQCL *

•* IS 1 ALL' *• NO •-•-•-•-•-•-•-+-• *• SPECIFIED •*•·••••••X•GO TO START ONE*
• • * LINE ENTHV *

• • * POINT * *· • *
*YES

x .t
*****E2***•*•**** E3 *• * IJLCCL * •* *· •-•-•-•-•-•-•-•-• •* ANV +. VES *GO TO START ALL*••••••••X*• ERRORS •*•••. * LINES ENTRY * *• •* * POINT * *• .+
***************** • • • •

•NO

x
****f 3********* * • •RETURN TO MACRO• • •

x
***** •oc • * E3* • * •

250 DOS QTAM Program Logic Manual

****A4********* • * * RSWITCH * • • ***************

**** • * .
*OF *•••
* B4•
**** RSWITCH

i<
·*· B4 *•

·* *• •* ALT OP *• NO
*• CTL TERM • *• • •.

•.SPECIFIED.•

· · •• ·* •YES

i<

i<

*DC *
* E3* •• •

****AS********* • • * RCOPYC * • • ***************

•••• . . .
•OF *••• * 85*

RCOPYC X
*****BS********** * SUBl * •-*-•-·-·-·-·-·-· * LOCATE ENTRY *
•FOR TERMINAL IN*
* TERM TABLE *

x ...
cs *·

NO • * ENTRY *•

*****C4********** • • *REVERSE ADOR OF*
OP CTL TERM AND
Al T OP CTL TERM • • *****************

••••*• FOR A •*

i<
****D4********* • • *RETURN TO MACRO* • • ***************

x··············
·*· F4 *•

·* *• •* ENTRY *• NO
•.FOR AN AUDIO •*••••

• LINE •
• · *· ·* •YES

i<
*****G4********** * • * COMPUTE ALCB * * ADDRESS FROM *
•LINE ENTRY INFO* • •

x
H4***** ****QPOS T****

*POST ALCB TO * * COPYCLR QCB *
* * • *

x
***** •oc • * E3* •• •

i< ••••• •oc • * E3* ••
*

•TERMINAL •
*• ••

*YES

i<
*****D5********** • • * GET RELATIVE *
•LINE NUMBER FOR* * TERMINAL * • • *****************

i
E5***** • • * QPDST * * BUFFER TO * * COPYCLR QCB * • * • ••••••••••

**** . . .
•• x•oc • * E3* ••••

****FS********* • • •CDPYCLR SUBTASK*
* • •••••••••••••••

i<
*****GS**********
* ADD THRESHOLD *
* COUNTERS TD * * CUMULATIVE *
* COUNTERS , * • • *****************

i<
*****HS**********
* CONVERT AND * * FORMAT *
: c~8~¥~~PrnTo : * WORK AREA *

···••JS.a * UN PAK * ·-·-·-·-·-·-·----· * UNPACK AND *
•TRANS WORK AREA• * INTO BUFFER *

i<
*****KS**********

****K4********* * * * * * CLEAR * * QOISPATCH *X••••••••* THRESHOLD * * * * COUNTERS * ••••••••••••••• • *

./
:"'--

Chart OG. Operator Control Routine: STOPLN

Al
RSTOPLN

RSTOPLN
Bl

SUBJ

GET TERMINAL
ENTRY, NO.
BYTES IN BFR

Cl
SUB2

TRANSLATE
ENTRY INTO
BFR IN EBCDIC

KJ-...L..--~

SET UP
PARAMETERS
FOR ALL LCBS
IN THIS LINE
GROUP

A2
STOP! SUBTASK

STOP I SUB
B2

CHANGE ADDR
AT IJLQIP25

KlRETURN TO
MACRO

~ NOTDIA

BJ2ND OR < HIGHER
LINE BEING
'STOPPED

c
LOAD ADDR OF
STOP2QCB INTO
DESTINATION
FIELD OF BUFFER

DJ-L--
QSVCDISP

GENSTCB

YES

NO

A4
STOP2 SUBTASK

84

PUT QCB-STCB
AND CODING
FOR SUBTASK!
INTO BUFFER

C4
INSERT AS
FIRST STCB IN
STCB CHAIN 0 F
LCB FOR LINE
BEING STOPPED

CLEAR SWI,
SET INTREL
SWITCH IN
LCB

F4-"'---
QSVCDISP

A5'---
SUBTASKI

BS-...L..--~

DEACTIVATE
LCB

STOP LINE BY
REMOVING
LCB FROM
READY QUEUE

FREEBUF

H5-"--
QSVCPOST

QTAM Charts 251

Chart OH. Operator Control Routine: STOPLN and INTREL

****Al********* • • * TRYEXIT * • • •••••••••••••••
**** *Off * • * Bl *•X•

TRYEXIT X
*****Bl********** • • * INCREMENT *
* RELATIVE LINE *
* NUMBER * • • •••••••••••••••••

x .•.
Cl *• *****C2********** ·* •. • •

•* MORE *• YES * GET NEXT LCB *

****A3********* • • * R INT REL * • • •••••••••••••••
•••• •OH* •
: e3• •·x:

RI NT REL X
*****83•••······· • • • • * SET SW I * • • • •

****A4********* • • * SUBTASKZ * • • •••••••••••••••
• ••• •OH t: • * Bit •.X.

SU8TAS1<2 X •••••84••········ • • •REMOVE LCB FROM*
* READY QUEUE * * CLEAR SWl * • • •••••••••••••••••

BUILD2 X •••••t4••········ • • * MODI FY BFR TO * *• LINES TO •*•• ••••• .X•FROM OTF TABLE * ••• X•IMPERSONATE LCB•
• STOP • * * •• •• • •••••••••••••••• * NO *4'**

• «OG * .. x: 82,/ x
•*• TIMEQ

D 1 *. *****02********** •• •• • *
•• ENTRY •• YES •CLEAR sw1. SET •

• FROM INTREL •• •••• ••• x• INTREL SWITCH *
• • * IN LCB *

•• •* •••••••••••••••••
* NO

x ...
El *•

•* HAS *•
•* SUBTASK1 *• NO

• BEEN ••• ••
.PERFORMED.

* YES

x
****Fl********* • • * QDI SPATCH * • • •••••••••••••••

****Gl********* • • * ENTRY FROM QA * • • •••••••••••••••

x .•.
Hl *•

x
!'&~~=
* GS• .. •

x . ..
E2 *•

.•HAS LCB•. •
•* BEEN *. YES •

*• *~EACTI VATE~* •*• ••• •. •. • • • • • • • ••••• ,,,, •• • • • .X •
* NO

x
****F2********* • • * QDISPATCH * • •

•* LCB *• NO •
••.ACTIVE .•••••=

•. ·*
* YES

x *****Jl••········ • • • • * SET ON SW1 * • • • • •••••••••••••••••

252 DOS QTAM Program Logic Manual

• • • • • ••••••••••••••••

x
*****E4********** : c~~~~&sL~8 :
! Bm~E~fAlHo :
• • • ••••••••••••••••

x
****F4********* * TIME-DELAY * * I IJLQIPI * • • • ••••••••••••••

****A5********* • • * STCBZ SUBTASK * • • • ••••••••••••••

STCB2 X ••9s••••••• * •Q~IS~A~CB, * * * PSEU~O-l~~ TO •
•: VAi bOf b~ BF=•

• ••••••••••

c

Chart OJ. Operator Control Routine: STARTARU and STOPARU

****Al********* • • * RSTRTARU * • • •••••••••••••••
****A2********* • • * RSTOPARU * • • •••••••••••••••

• ••••
*OJ *
• 82• •• •

. . .
•OJ *••• * Bl* •••• :x .•..•.....•............. :

x x ·*· ·*· ·*· *****Bl******* *****82******* 83 *· 84 *· 85 *·
* * * * ·* *· ·* *· .• *· * SET * * SET AUDIO * •* ALCB STOP *• NO ·* IS *• YES •* HORE *• YES * STARTARU *······•·X* SWITCH * ... x•. BIT •••••••••• x•. 1 ALL' •••••••••• x•. LINES TO ·*···· * SWITCH ON * * ON * • • • •
************** **************

•••:iai: • • * E2 * • •

x
*****C2********** * SUBl * ·-·-·-·-·-·-·-·-· * LOCATE ENTRY * * IN LINE TABLl *

x • . ••••• .•.••••••••••• x. x x
*****E2********** * GET IFIRSTI * * (NEXTI * * ISPECIFIEOJ * * ALCB AO DRE SS * • •

x .•.
F2 *•

·* *· •* STARTARU *· YES •
• SWITCH ·•••• ••

• UN •
· · *· ·* •NO

x
*****G2********** . .
* SET CURRE:NT * * ALCB STOP * * BIT ON * * •

.hes J.
Hl *• H2 *•

·* *· ·* *· •* MORE *• YES •* IS *•
*• LINES TO ·*X••••••••*• 'ALL' •*

•.CONSIDER •* •.SPECIFIED.•
· · *· ·* *· ·* *· ·* *NO *NO

x
****Jl********* • • *RETURN TO MACRO* • •

x
****JZ********* • • *RETURN TO MACRO.* • •

• ON • X •.SPECIFlED.* • • .:.ONSIOER •*
· · *· ·* •. ·* *· ·* *· .;• *· ·* *YES *NO *NO

*****C3.,I•******* • •
* SET ALCB * * START REQUEST * * FLAG ON * . .
**************"'**

x .•.
03 *· .• *·

• * STOP *• NO •
•.EFFECTIVE IN •*••••••

·APPENDAGE. X

· · *· ·* *YES

x
*****E3********** • • * RESET START *
* REQUEST AND *
*APPENDAGE FLAG * • •

x
*****F3********** . .
* RESET ALCB *
* STOP BIT * • • . .

x
*****G3********** • • * GET CCB * * ADDRESS FRUM * * ALCB * • •

x
H3*****

****EXCP***** * START AN * • * AUDIO LINE *•••• • • • •

:x :
x

*****C4******* • • * SET * * STARTARU AND *
AUO I 0 !>-WITCHES . .

x
****04********* . .

RETURN TO MACRO • •

x
**** • • * E2* . .

QTAM Charts 253

Chart 01. QTAM Open Monitor/Open DASO Message Queue File Routine (Phase 1)

$$BOQOOI

SVC II
RETURN TO
USER

FETCH
$$BOQOOB

GET ADDR OF
VECTOR TABLE
FROM DTF

PUT VECTOR
TABLE ADDR IN
COM. REG. Of
EACH PART.

STORE DTF ADDR
IN VECTOR
TABLE

ALLOW
SUPERVISOR TO
ENTER QTAM
APPENDAGES

DETERMINL llT
REL. REC. NO.,
STORE IN
VECTOR TABLE

MODIFY BRANCH
ADDR FOR
POSTSEND &
POSTRCV IN
IJLQIP

CALC

COMPUTE NO
BF RS/TRACK,
STORE IN DTF

254 DOS QTAM Program Logic Manual

CHKXTNT

INITIALIZE FOR
$$BOSDll

FETSDll

INITIALIZE FOR
$$BOSDl2

FETCH
$$BOSDll

RESET FLAG
INDICATING
REENTRY FROM
VALIDATING
EXTENTS

COMPUTE
EXTENT INFO,
POST INTO
DTF

SET DTF
OPEN FLAG

Chart 02. Open Nonaudio Line Group/MS Queue File Routine

x ••••••••••••••
NOT2702 •*•

Al *·
·* *· NO •* *· •••• *• AUTOPOLL .. *

· LINE ·
· ·

• · •YES

x
*****Bl********** . .
BUILD OPERATIVE
* POLLING LIST *
************ *****

. . ---- - - -. ~" ~"')(~ x
NOAUTOP • *•

c 1 *·
·* *· YES ·* SWITCHED *·

••••*• LINE ·*
· · *· ·* *· ·* •NO

x
*****Dl********** . .

:ERR102

****82*** ******
*CALL MSGWTR TO *
*SHOW INVALID *
* SEQUENCE *

*************** x

:TYPE51 • *No
C2 *· • * *· •* WAS DA *•

*• TYPE OPENED •*X •••
*· . * *· . * *· . * *YES

x

****A3********* . .
* SSBOQ002 * . .

I JL002 X
*****B3********** . .
GET CURRENT DTF

**** . .
* 84 * • •

ic
EXITD2 ·*• GETNXTD2

64 *· *****B5**********
. * *· * * ·* ENO OF *• NO * GET NEXT DTF *

* POINTER * x•. OTF LIST • *· ••••••• x• ADDRESS * • • . .

**** . . .
* C3 *• •• . .

*· . * * * *· . * * *
· · *****************

*YES

x .•.
C3 *•

x
:EXI TlA02 x cs·*·*·

. * *· •* IS *· YES •
• CURRENT DTF •• •••••

• OPENED •
· · *· ·* *NO

ic
TEST02 .•.

03 *·
·* *·

****C4********* •* *•
* RETURN TO DOS * NO ·* IS QTAM *•
* OPEN MONITOR •X. ••• •• ••*• OTF TYPE •*
* $$BOPEN * *• ·*

*************** *· ·*

**** . . .
* 04 *·

ERR502

ic

*· . * *YES

x .•.
05 *·

·* *· * CHAIN ENABLE * * COMMAND INTO *
•CHANNEL PROGRAM*

*****D2**********
* LINK OTF INTO *
*DA/AV/LG CHAIN *
* TURN DTF OPEN *
*BIT ON AND GET *
* NO Of LCBS *

• YES •* IS OTF *·
****04*********

*CALL MSGWTR TO *
* SHOW INACTIVE *
MESSAGE CONTROL

•* VALID *• YES
••••••*•TYPE X1 51 1 •* *• QTAM OTF •*••••

• •

ic .•.
El *· . ·* *· X NO • * IS *•

••••*• DEVICE A ·* *· 2848 ·*
· · *· .. * *YES

ic
*****Fl********** . .
* CHANGE ENABLE *
•TO SPECIAL 2848* * COMMAND * . .

: x:
x

CHKSTART •*•
Gl *•

·* *· NO ·* RESTART *• YES
••••*• IN PROGRESS ·*••••

:BREAK

· · *· ·* *· ·* .
*****H l * **** ***** • • * CHANGE * * READ/SKIP TO *X * BREAK * . .

: x:
EXCP02 X

*****J l**********
* PUT POLLING *
* LIST ADDRESS *
* ANO X1 E4 1 *X •••
PRIORITY IN LCB . .

: x •••••••••••
: LOP PT X

* * * **E2* ** **** ** * • • *GET ADDRESS OF *
*(FIRST) (NEXT) *
* LCB * . .

ic ...
F2 *·

·* *· • NO • * IS *•
•••• •.CONTROL UNIT •*
x *· 2702 ·*

*· . * *· . * *YES

:cu2102 X
*****G2********** . .

• * PUT SADXXX *
•• ••* COMMAND INTO *

CHANNEL PROGRAM . .

*****H2********** . .
• * PUT READ/SKIP *
••• X* CO~MAND INTO *

CHANNEL PROGRAM • •

x
·*·· J2 *·

• *DEVICE *•
• NO •* IS TWX, *•
••••*• 83B3 OR ·*

• 115A ·
· · *· . * *YES

x • *·
Kl***** K2 *•

.;~:~ix~~:~~~t* .•L~a~0~~ a~·*· Yes:
* PROGRAM *• •• ••••• X*• CONSIDER ED ·*• •••
* * *· ·* * * *· . * *********** *· • *

*NO

x
**** • •

• 84 * • • ****

· I LG I •
· · *· ·* •NO

*************** x

.t TVPE52 •• NO
E 3 *. E4 *•

·* *· ·* IS *· ·* IS DTF *· YES •* MESSAGE *•
• TYPE X1 52' .• X. CONTROL •*

• (PQ) · *· ACTIVE ·*
• · *· . * *· . * *· ·* *NO *YES

x
·*· LOOKUP02 X

F3 *•
·* *· NO •* IS OTF *•

· · *· ·* *· . *
•NO

ERR202 x
****ES*********

*CALL MSGWTR TO *
•• X* SHOW INVALID *

* DTF TYPE *

**** . .
* E5 * . .

x

••••*• TYPE X'S3' •*

*****F4********** * LINK OTF INTO *
*PO/OQ/AQ CHAIN *
*ANO SEARCH FOR *
+ CORRESPONDING * * TERMTBL ENTRY *

*****FS********** • • *UPDATE CURRENT *
* DTF POINTER *

· {00) ·
· · *· ·* *YES

**** . . .
:TYPE53 .t

G3 *·
ic .•.

G4 *•
ERR402

• • X* C3 * • •

•* IS *• ·* MESSAGE *· NO
• CONTROL •• •••

*· ACTIVE .. •

•• •.•• ·* x
*YES * **** *

* 04 * . .

.. * *• ****GS*********
·* TERMTBL *· NO *CALL MSGWTR TO *

· ENTRY FOUND •••••••••X* SHOW TERMTBL *
· • *ENTRY NOT FOUND*

•• ·* *************** *· .• x
*YES

ic FOUND .t .•No
*****H3********** . .
*PUT FIRST STCB *
* IN DTF *

H4 *• H5 *•
·* *· . * *· ·* AUDIO *· YES .. * AUDIO *•

• PO TYPE ·· ••••••• X•. TERMINAL •*
· · *• ENTRY •*

*· . * *· ·* *· ·* *· ·* •NO *YES

X NCJTARU X X
*****J 3********** •••••J4********** *****J 5**********
* LINK OTF INTO * +STORE MS-LCB IN* * MOVE ALCB *
*PQ/DQ/AQ CHAIN * * DASO-PROCESS * * WAITING CHAIN *
* ANO TURN OTF *•• •• x •••• •OUEUE AND TURN *X•••• ••••*TO ECB CHAIN OF*
* OPEN BIT ON * +OTF OPEN BIT ON* * MS-PROCESS *

:***************: i :***************: : ••••• ~~~~~ ••••• :
**** . .

* 84 • ·x **** .•. TVPl'S455
K3 *•

.•IS DTF *• ****K4*********
NO .•TYPE X'54 1 *• YES +CALL QTAM OPEN *

• •• •.OR X1 5S 1 (LG •*•••••••·X* PHASE 8 *
x

**** • • * ES * . .

• OR AQ) • * $$BOQ008 *
· · ***************

• · •

QTAM Charts 255

Chart 03.

****Al********* . . .
* OISKIO * • •

x
*****Bl********** • *
*SAVE APPENDAGE *
*ADDRESS,SET UP *
CHANNEL PROGRAM • •

x
Cl*****

*****EXCP**** * EXECUTE * * CHANNEL * * PROGRAM * • •

x
Dl ***** *****WAIT****

WA IT ON ABOVE * CHANNEL * * PROGRAM * • •

x
*****El********** • • * RESTORE * * APPENDAGE * * ADDRESS * • •

x
****Fl********* * RETURN TO * * CALLER * . .

Open Checkpoint/Restart Routine (Phase 1)

****A3*****'°'*** • • * $$BOQOOl * * •

x .•.
83 *· ·* *· ****84********* ·* lS DA *• NO *EXIT TO MSGWTR *

• FILE Qpi::N •••••••••X* TO SHOW OPEN *
• • * SEQ FRR * *· . * .,.. •••••••••••••

*· . * • vi=s

x
*****C3****'°' >i<••• * * TURN ON OPFN *
*BIT, PUT fHKPNr• * ltTN ADDR IN * * VfCTOR TAALi- * • • **************** *

x
*****D3*****••••• . .
*PUT C.HECKPrJINT * * PARAMETERS IN * * ROUT IN!" * . .
************* ****

x
*****f3 ******* **"" *DISK IO * ·--------------- * *GO TRY TO ~r Al) *
*CONTROL RFf.fJll[l * . .
************* ""***

x ...
F3 *. *****F4**********

•* * · *DISK IO * •* WAS +. NO •---------------*
• f.lECORn ·· .. •• ... X* GO FORMAT *

*.FOPM.t\TTI P.Y *CONTPOL RECORD *
*· . * * * *. • * ***************** * y1 (,

x
·*· x

G3 *. *****G4********** ·* • . * * ·* IS THI~ •. NO * COMPUTF *
• A RESTARl ·'°'••••••••X NECESSARY * *. . * * WORKARFA SIZE * *· ... * * *. • * ***************** * VI\

x x
·*· *****H3***** * * • ** • • H4 *. *****H5**********

•* IS *• *OISKIO * * TURN flN • * 'RESTAQ:T JN t
*PROGRESS' f I fll, * . .
************>fo Co***

x
*****J3•••••••+-<t+
*DISK IO * *------------ --- • *GO READ PIHHH f.l * * CHECKPOIMT * * PECOPO *
********** •••• Co**

x
****K3********* * EXIT TO OTAM * * OPEN, PHA5£ 't * • • ************ •••

•* WORKAREA *• VES *---------------*
• LARGE •· •• ••. • .. X*GO FORMAT FIRST•

• HmUGH • * RECORD *
· · * • *· ·* ***************** * NO

x
****J4*********

GO TO MSGWTR TO * SHOW fR~OR * • • ***************

x
*****J5********** *DISKIO * *---------------· * GO FORMAT * * SFCONIJ RECORD * • • *****************

x
****K5********* * F.XIT TO QTAM * * OPEN, PHASE l * • *

256 DOS QTAM Program Logic Manual

(

\"'--

Chart 04.

/

C;
_/

Open Checkpoint/Restart Routine (Phase 2)

•***A3********* . .
* SSBOQ004 * • • •• *************

x
*** **B3 ********** * q ESTORE TERM * * TABLE,QCB * * FIELDS, LCB * * FIELDS, ANO * * POLLING LISTS *

x
*** **C.3********** * SFT UP TO *
RESEND MESSAGES * BfING SENT AT *
•CHECKPOINT TI ME* . .
•••••••••••••••••

x
*****03**********
•CANCEL MESSAGES*
•BE ING RECEIVED * * AT CHECKPOINT * * TIME * • •

x
*****E3********** • * * CnMIPUTE * * N~C!;SSARV * * WORKARFA SIZE *
* * *****************

x ...
F3 *•

•* IS *• ****F4•••••••** ·* WORKAREA *· NO •EXIT TO Mc.,r;wrR *
• LARGE •••• •••••X* TO SHOW I JJROR * *· FNOUGH •* * * *· ·* •••••••••••••••

· · * VES

x
****G3********* * EXIT TO QTAM * * OPEN, PHASE 1 * • *

QTAM Charts 257

Chart 07. QTAM Open IBM 7772 DCV Vocabulary File Routine

1----...
$$BOQ007

JJLQ07
Bl--L---,

GET CURRENT DTF 1----1--<.
POINTER

Cl-----,
PUT QTAM VECTO
TABLE ADDRESS IN
DOS COM-

UNICATION
REGION

Dl---'----.

PUT DTF ADDRESS
IN VECTOR TABLE
AS FIRST OPENED

El--1----,
PUT APPENDAGE
FLAG IN
PROGRAM
INFORMATION
BLOCK

Fl---'----,

PUT DTF ADDRESS
INTO DA/AV/LG
CHAIN

BUFRLOOP
Gll------.

GET (FIRST)
(NEXT) BUFFER
POOL ADDRESS

Hl-...... --...,

SAVE EXTENT
LIMITS IN THE
DCV BUFFER
QUEUE

INIT
Jl--1----,

PUT LOGICAL
UNIT OF DASO IN
THE CCB OF EACH
DCV BUFFER

Kl
MORE BUFFER

LINK DTF
ADDRESS TO
DA/AV/LG CHAIN

0Kl07
H2----...,

PUT 7772 DISK
APPEND. IN
AUDIO LINE
APPE N. TURN DTF
OPEN BIT ON

YES
POOLS TO >-=--+<
CONSIDER

"-../

258 DOS QTAM Program Logic Manual

NO

GETNXT07
C4

GET NEXT DTF
ADDRESS

UPDATE DTF LIST
POINTER

85

RELOCATE CCB
SET UP. SEEK AND
SEARCH CCNS

cs
RELOCATE CCNS
SET UP READ
COUNTCCN

D5

GET WORD TABLE
ADDRESS AND
FIRST DCV WORD
ENTRY

LOO PA
E5

COMPUTE DISK
ADDRESS FROM
WORD ENTRY

KS·-~--
GET NEXT DCV
WORD ENTRY

,

/

"

C\
/

Chart 08. QTAM Open Audio Line Group/Output Queues File Routine

PUT DTF ADDRESS
INTO DA/AV/LG
CHAIN

C2--&.---,

PUT DTF ADDRESS
INTO VECTOR
TABLE AS FIRST
OPENED

D2---'---
PUT APPENDAGE
FLAG INTO
PROGRAM
INFORMATION
BLOCK

OK108
E2--L--,

PUT DTF ADDR IN
DA/AV/LG CHAIN
ANDARU SEND
QUEUE ADDRESS
IN VECTOR TABLE

F2---'---
GET AUDIO OPEN
ELEMENT AND

Ml-----l AUDIO OPEN

Gl--'----,
GET FIRST ALCB
ADDRESS AND
SET INDEX TO
NUMBER OF
ALCBS

GET LINE TABLE
ADDRESS AND PUT
IT INTO VECTOR
TABLE

GET FIRST LINE
TABLE ENTRY

QUEUE FOR
QPOSTING

G2-_,_ __ _

GET NEXT LINE
TABLE ENTRY

A3---~

$$BOQ008

IJLQOS
B3--0---,

GET CURRENT DTF
POINTER

FIT
E4-~--,

PUT DTF INTO
Pa/DQ/AQ CHAI

ND ARU-SEND.
UEUE ADDRESS

IN DTF TABLE

EXITOB
F4-~--...,

TURN DTF OPEN
BIT ON

GET NEXT DTF
ADDRl:SS

UPDA Tr DTF LIST
POINTIR

PUT LINE TABLE
ENTRY IN THE
ALCB

GET FIRST ALCB
ADDRESS AND
SET INDEX TO
NUMBER OF
ALCBS

UPDATE INITIAL
WRITE CHANNEL
PROGRAM

EXCP108
G5---L----,

SET ALCB STATUS
TO ENABLE AND
GET CCB ADDRESS

QTAM Charts 259

Chart PA. Put Audio Message Routine

****Al********* . .
* PUT * • •

IJLQPA X
*****Bl********** • • •SAVE REG! STERS * * IN THE USER'S * * SAVE AREA *
* * *****************

ic
*****C 1 ********** • • * GET OTF ANO * * WORK AREA * * ADDRESSES * • • •••••••••••••••••

ic .•. 01 *· •••••02••········
·* *· * * •* IS DTF *• NO •ERROR CODE = 1 *

••••
* * * 83 •
• * ••••

PA1SAB04 X
*****83••••······
* * *GET FIRST ALCB *
*ADDRESS IN THE * * LINE GROUP * • • •••••••••••••••••

:x•.••.•.•••..•••.•••••
x

PA1NXT04C 3 • *• *• *****C4**********
•• *· • * •* ALCB *• NO * GET ADDRESS *

• FOUND •••••••••X* OF NEXT *
• · * ALCB * •. .• * * *· ·* •••••••••••••••••

•YES

x
PA1CHK05 •*•

03 *· .• *· •* IS LINE *• NO
• OPENED •• ••••••• X• UNOPENED OTF *• ••• *• WAITING TO •*•••••••••••••••••• *· •• * • *· •• * * *· ·* •••••••••••••••••

•YES

x
*****El********** • • * GET *

x
**** • • • J2 * • * ••••

• SEND •
*YES

x .•.
E3 *•

•* AUDIO *•
YES •* ANSWER *•

PAlINVll i:
*****E4**********
* ERROR CODE=2 * * NO PREVIOUS *

* LINE TABLE * • • •• • • •• • • • • • • •• ••*• LENGTH •* • GET 1 ssueD •
* ADDRESS * • • •••••••••••••••••

x PA1ALZ12 X
*****Fl********** * GET ARU *
* SEND *
* QUEUE *
* ADDRESS * • •

x
*****Gl********** • • * GET FIRST *
* AUDIO *
* LINE ENTRY * • •

••••.•.•... x: : 63 :

x • *

*****F2**********
* ERROR CODE= 16 * * USER'S *
* ANSWER *• •••
* INCONSISTENT *
• *

•*• ****PAlNTlO
Hl *• X *****H2**********

·* *· . * • • * USER *• YES. * ERROR CODE=4 *
• SPECIFIED ••••• ••• X• LINE *

• NAME • * NOT FOUND *
· · * * *· ·* *****************

•NO
•••• * * • •

• J2 *··. x

• NULL • *· .•
· · •NO

x
*****F3**********
* SAVE ALCB *
* ADDRESS * * IN THE *
* AUDIO PUT *
* ELEMENT *

x
G3*****

****OPOS T****
* POST AUDIO *

*PUT ELEMENT TO *
* AUDIO PUT *

* QUEUE * •••••••••••

x
H3*****

****OPOS T****
* POST ALCB * * TO ARU * * SEND *

* QUEUF *

* ON THIS * * LINE *

**** • • *
•• X* J2 * * •

x * * .x •••.••••••••• x
Jl *·

·* *·
.PA1END09 X

*****J2**********
•* LAST *• YES •

* RESTORE *
* REGISTERS *

• LINE ••••••• *• ENTRY •*
· · *· .•

•NO

x
*****Kl**********
* GET NEXT *

• * AUDI 0 * •••• * LI NE * * ENTRY * • •

* FROM *
* USER• S SAVE *
* AREA *

ic
****K2*********

* RETURN *
* TO * * CALLER *

.•.
J 3 ••

.•CU=7772•.
• NO ·*ANO BUFFER *•
••• •*• POOL •*
X •.PROVIDED •*

· · *YFS

x .•.
K3 *• *****K4********** • •* DCV *• * WARNING *

.ves ·* BUFFER *• NO * COOE=S *
••••*• PROVIDED OR •*••••••••X* WAIT FOR *
X *· WR I H • * * A DC V * *• ENOf-O.• * BUFFER *

•• • * ***************** •

260 DOS QTAM Program Logic Manual

****AS********* * ENTRY FROM * * SUPERVISOR * • * •••••••••••••••

x
*****BS********** • *
* GET ADDRESS *

: 1 w8~K T~~EA :
* * •••••••••••••••••

x
*****C5********** * GET ALCB *
* ADDRESS FROM * * AUDIO PUT *
* ELEMENT * • * •••••••••••••••••

x
·*· 05 *·

.•ANSWER *•
YES •*LENGTH LESS*•

•• ••*• THAN ADDR •*
•.CHAIN BFR.*

•.LGTH •*
· · *NO

x
*****E5**********
* GET ADDRESS *
* CHAIN BUFFER *
* LENGTH AS * * ANSWER *
* LENGTH *

:•..... x:
x

*****f5**********
* STORE * * ANSWER *
* LENGTH * * IN ALCB * • * •••••••••••••••••

x
*****GS**********
* MOVE ANSWER * * lNTO *
* ADDRESS-CHAIN *
* BUFFER *
* * *****************

x
*****H5**********
* RESET * * THE ALCB *
•GET-IN-PROCESS *
* FLAG * * •

x
*****JS**********
* RESTORE * * ALCB *
* PRIORITY *
* TO * * X 1 F0 1 *

x
****KS*********

* EXIT TO * * QSVCDISP *
* * ***************

(
\

"---

(

C\
/

Chart PL.

*****G l********** . .
* INCREMENT *

Polling Limit Control Routine

****A2********* • * * POLL IMIT * • * •••••••••••••••

I JLQPL X •••••82••········ . .
•GET OTF ADDRESS• * FROM LCB * • • • • •••••••••••••••••

x • *• PLAUTO
• * C2 *• •· !****C4*********:

•* AUTOPOLL *• YES * GET CURRENT *
•••• LINE •••••••••••••••••••••••••••••••••••••• x: E~~~YF~~Mpe~~ :

· · • *
*NO

x x .•.
04 ••

.• *·
YES •* tNO OF *•

•••••02••········ • • * GET CURRENT * * POLL POINTER * •••••••• ••••••••••*· POLLING •* * FROM LCB * • • •••••••••••••••••

x .•.
E2 *• • * POLL *•

• *PCI NT ER ON *• NO •
• SOURCE ••••• ••• •••• ••••• X.

•TERMINAL •
· · *· ·* *YES

x .•.
F2 *•

·* *· •* ENO OF *• YES •
• POLLING •• •• •••••••••• ••• X.

• LI ST • •. ·*
· · *NO

x

. LI ST •
*NO

x
****•I 4********** • • * GI T CURRENT *
POI l COUNT FRl!IM
* LCB * • •

x , ,,
•INf.IU Mt NT POLL * * UllJNT ANO * * Rf TlJRN TO LCB * • *

x .•.
G1t *• ... *·

• NO .+ f.l1UNT *•
•POINTER TO NEXT•X •••

*****G2********** • • * GET CURRENT *
POLL COUNT FROM .x •. fl! l IMIT •* * TERMINAL * . .

x
*****Hl**********
*RETURN POINTER * * TO LCB ANO * * CLEAR t'OLL * * COUNT * . .
•••••••••••••••••

x
**** • • * K3 * • •

* LCB * • *

x
*****H2********** • • •INCREMENT POLL *

•. ·*
·- ·* ... -.

•YES

x .•.
H4 *•

• • *•
• + IS *• YES

* COUNT * *· fll VICE A •*•••••••••••••••••• • • • • •••••••••••••••••

x
•••••J2********** * • * RETURN POLL * * COUNT TO LCB * • • • • •••••••••••••••••

**** • • • x

... l 010 ·* •. ·*
•NO

x •••••J,, ••••••••••
• * *UP!lf\ 1 I CURRENT * * tNlltY POINTER*
* !IV 3 * • •

x
*****J5********** • • •UPDATE CURRENT *
* ENTRY POINTER *
* BY 2 * • *

* K3 *• •• x ····*· :x•.•.....•••.....•.•. :
K2•*·.. i: ****ti<·'•*=********

•* *• ****K3********* *Rf ll!ltN CURRENT *
• YES •* COUNT *• NO * * * E-NTM.Y POINTER *
······*· AT LIMIT •••••••••• x•RETURN TO USER •x......... 1(1 I LI\ ANO *

· • * * * Cl I Afl POLL * *• •* *************** * UJUNT * •• •* •••••••••••••••••
*

QTAM Charts 261

Chart PM. PUT Message Routine

Al NO PUT
ENTRY

Bl

SAVE BYPASS IDLE
REGISTERS CHARACTERS

C2
SET UP TO
COMPARE
DESTINATION
WITH FIRST ENTRY
IN TERM TABLE

D3~
YES DESTINATION~ NO

A DISTRIBUTION

L E3

s

PICK UP YES SET
ERROR ERROR
CODE CODE

Fl
RETURN TO GET NEXT
USER TABLE ENTRY

262 nos QTAM Program Logic Manual

YES

USE WORKAREA
SIZE FOR
MOVE

NO

AS

USE BUFFER
SIZE FOR
IKJVE

BS

REMOVE
REQUEST

1FOR BUFFER

INDICATE
HEADER
EXPECTED
NEXT

MOVE
DATA

G5i--L--~

PLACE BUFFER
ON TOP OF
READY QUEUE

H5_.._ __

RETURN TO
IJLQIP

/
'

"---

/

~

(

Chart PQ.

IJLQPR

Al----
PUT

Bl--L--~

SAVE
REGISTERS

El _ _._ __

RETURN TO
USER

Put Record Routine (Part 1 of 2)

YES

A2----
PUT •

SET
ERROR
CODE

D2--L--~

ANTICIPATE
NEED FOR BFR
AND PLACE BRB
AT TOP OF
READY QUEUE

RETURN
NEW
BUFFER

FORCE EOM
IN PREVIOUS
BUFFER

J2-~--

SAVE NEW
BUFFER ADDRESS
AND NUMBER
CHARS
REMAINING

K2-~-

IJLQIP

NO

•ENTRY AT THIS POINT IS VIA k
BRANCH FROM QTAM MODULE
IJLQIP IN SUPERVJSOR MODE.

YES

EJ----

SET INVALID
DESTINATION
ERROR CODE

SET ERROR
CODE

YES

84.----~

BYPASS ALL
IDLE
CHARACTERS

D4·-----

GET NEXT
ENTRY

F4---

SET
ERROR
COD[

.G4-----

SET
MESSAGI:
PRIORITY

B5;----

SET SCAN
POINTER
VALUE

c5--L---~

GET TERMTABLE
ADDRESS AND
LENGTH OF
TERM ID NAME

D5 _ _._ __ _

SET UP TO
COMPARE DEST.
TERM NAME
WITH FIRST
TERMTABLE ENTRY

SET ERROR
CODE

QTAM Charts 263

Chart PR.

PREPARE TO
POST PUT
COMPLETE
WITH ERROR

Dl-~--~

REMOVE
REQUEST
FOR NEXT
BUFFER

El-~---...
RETURN

TO IJLQIP

Put Record Routine (Part 2 of 2)

B2----~

GET LOCATION
OF WORK AREA
TO START
MOVING FROM

USE
WORK AREA
SIZE FOR
MOVE

F2-...i.--~

PREPARE TO
POST PUT
COMPLETE

G2-........ --~

REMOVE
REQUEST FOR
NEXT BUFFER

H2-~--~

MOVE DATA
FROM
WORK AREA
INTO BUFFER

DJ

FILL IN
BUFFER
PREFIX

DATA
<REMAINING

IN
WORK AREA

YES

NO

264 DOS QTAM Program Logic Manual

D5

YES SET END-OF-
MESSAGE
FLAG

NO

E5

PLACE
BUFFER ON
TOP OF
READY QUEUE

F5
SAVE BUFFER
ADDRESS AND
NUMBER OF
CHARACTERS
REMAINING

'--~

GS
RETURN TO

IJLQIP

Chart PS.

IJLQPS

Al---~

PUT

BJ--'---~

SAVE REGISTERS

PICK UP
ERROR CODE

Fl-~-~
RETURN TO
USER

IJLQIP

GI---~

SET ERROR
CODE

Kl----"--

PLACE REQUEST
FOR NEXT
BUFFER ON
READY QUEUE

PUT Segment Routine

NO

REMOVE REQUEST
FOR ANOTHER
BUFFER

E2

INDICATE EOM
RECEIVED AND
HEADER
EXPECTED NEXT

F2

USE WORKAREA
LENGTH FOR
MOVE

MOVE DATA

J2-~--~

FILL IN BUFFER
PREFIX

K2_~--~
PLACE BUFFER
ON READY

NO

SET BUFFER
SIZE TO
ZERO AND PUT
DUMMY EOM

QUEUE,SAVE N0.1-------------'
OF CHARACTERS
REMAINING IN
WORKAREA

*NOTE, ENTRY AT THIS POINT
IS VIA A BRANCH FROM QTAM
MODULE IJLQIP IN
SUPERVISOR MODE.

A4----~

BYPASS ALL
IDLE
CHARACTERS

B4----~

GET NEXT
ENTRY

c4 IS THIS
<LAST ENTRY

IN TERMTABLE

YES

D4

SET ERROR
CODE

E4 <i ANY DATA
IN WORKAREA

c~J DI

G4

H4-- -:] REMO VI
REQULI T FOR
ANOTHl.R
BUFFER

J4-r-
ll'lJl;J MPlLTf
H LRRO:S

YES

YES

AS ____ ~

SET UP TO TEST
DESTINATION
WITH FIRST
ENTRY IN
TERM TABLE

FSIS CLOSE NO

<::LOSEDOWN
IN PROCESS

SET
ERROR
CODE

Js-~--~

PLACE PRIORITY
OF MESSAGE
IN WORKAREA

QTAM Charts 265

Chart PZ. Pause Routine

IJLQPZ

****A2*****'**** • • * PAUSE * . .

x
*****B2********** * GET * * ADDRESS OF *
•Fll(ST CHARACTER* * TO TRANSMIT * • •

x .•.
C2 *• *****l3********** . * *· • •

•* WAS THl:RE *• YES * GtT *
*• A f>RE VI OUS • *· x.•PRtV J.OUS COUNT *

• PAUSE: • X * OF PAUSES * *. . • * •
*· . * . ********•••······ * NO ****

x
*****D2********** * SEARCH F-UR *

* * * C3 * • *

* fNOILATEO * . * SPECIAL •x .. •••• .•.• ••••• ... * CH4RAC TER I l\j * * dUF-FER *

x ..•. . ..
E2 *• E3 *•

• *SPEC JAL*. • * *· ****E4*********
•* CHARACH:R *• YES .•ANY PAUSl::S *• NO * * *· FOUND IN •••••••••• x•. TO BF •••••••••• x• RETURN •
• BUFFER • •.INSERTEO ·* * * • . ·* *· . • • ••••••••••••••

•. ·* •. ·*
*NU *YES

ic
****F2********* . . * RETUHN * . .

x
F3***** . .

* ***QWAIT*** * * REQUEST AN *
*INSERT ALOCK * • •

x
*****G3********** * • * PUT INSCRT *

••• X* BLUCK INTO * * BRB-RING * . .

x .•.
H3 *· *****H4**********

•* IS *• * * •* NEXT *· YES * BUMP *
• ELEMENT AN ·••• ••••• X•POINTER TO NEXT*

• INSERT • * BLOCK *
•A LOCK. * *

* NU

x .•.
J3 ••

• YfS •* *• •
•• •• •.END OF BUFf.ER.•x •••••••••••••••••

*· .• *· .• *· .• * NU

x
*****K3********** * • • ••• * COMPLETE: * * *
* THE INSERT *• •• .X• C3 *
* tiLOCK * * * * • • •••

266 DOS QTAM Program Logic Manual

Chart QT. CLOSE Message control

****Al********* . .
* CLOS EMC *

IJLQQT X
*****Bl********** . .
*SAVE REGISTERS * * IN USERS SAVE *
* AREA * . .

x
*****C 1 ********** . .
* GET QMOVER *
* QUEUE ADDRESS *

x . •.
01 *· ·* IS *· •* MASTER *• YES

• RCVE SWITCH •••• •••
· OFF ·

· · *· ·* *ND

**** . .
* B2 * . .

x .•.

62 *·
·* *· ·* ACTIVE *· NO

• LINE •••••
· · *· . * *· ·* •YES

x
••C2******* * STOPLN * *-•-·-·-·-·-·-· * STOP ALL LINE *

* OPERATIONS * . .

x ••02••••••• * STARTLN * ·-·-·-·-·-·-·-· * START OUTPUT *
* OPERATIONS * . .

: x •••••••••• :
x :BYPASS 3. GETOTFQT

El*****
****QPOST****

E2 *· *****E3**********
·* *· * *

**** • • * 64 * • •

ARUCLOSE i
*****B4********** . .
*GET FIRST ALCB * * ADDRESS *

x ...
C4 *• . • *·

YES ·* AUDIO *·
••• •••*• LG ALREADY ·* *· CLOSED ·* ... ·*

· · *ND
**** . . .

• 04 * ••• . . x
LOOP QT .•.

04 *· .• .. ·* IS ALCB *• ND
· STATUS ••••• *· FNABLE ·* • . ·* •. ·*

*YES

x
* POST QMOVER *

* QCB TO ITSELF *
TO SET MASTER

RCVE SW OFF

•* MORE *· NO * GET NEXT DTF * •

* •••• [4• ********* . .
SI l lU TO X 1 EE'
IN HIU REQUEST

x
*****Fl********** . .
GET LAST OPENED
*DTF ADDRESS IN *
* CHAIN * . .

**** . . .
* Gl *••• . .

NEXTOTF

x .•.
Gl *· •• *·

YES ·* AUDIO *·
••• *• LG DTF TYPE •*

x
**** . .

* B4 * • •

· · *· ·* *· ·* *NO

x ...

· •. ~~~~Yo~~ .• ······x··x: Aoo~~~YNIN :x ...

:cxEOL

· · * * *· • * *****************
*YES

x
**** . .

* Jl * . .

x
**** . .

* Gl * . .

:NEXTALCB •*•
Hl *• **H2******* H3 *•

•* *• .. ****QPOST**** . ·* *·

+ lLEME'H * . .
* ••• *************

x
·····~ 4********** . .
+ t;l I LPS QUEUE *
* ADDRESS *
••••• ************

x
••G4*******

••••UPOST****
• VUST HID· *

•~l ~lll ~T TO LP5 *
• QUEUE * . .

• ···••*****

: x •••••••••• :

•* NONAUOIO *• NG X *POST CLOSEHC * • NO ·* MORE *• •
· LG ·· •• X•ECB TO CLOSE MC *

.DTF TYPE · * QCB *
· · * * *· ·* ***********

*YES
**** . . .

* Jl *· ... • • **** •
NEXTLCB X

*****J l ********** • • * GET IFIRSTI * * I NEXTI LCB * . .
• •

x
**** . .

* B2 * . .

x
*****J2**********
* RE5 TORE *
*REGISTERS FROM *
* USER'S SAVE *
* AREA * • •

x
****K2*********

* RETURN TO * * CALLER * • •

.... •*• LINES TO .. •x
.CONSIDER ·

· · *· ·* *YES

x
*****J3********** . .
* GET NEXT ALCB * * ADORE SS * . .
• •

x
**** . .

* 04 * • •

****A5********* * ENTRY FROM * * SUPERVISOR * . .
•••••••••••••••

NEXT ITEM X
*****B5********** • • * GET (FIRSTI *

••• X•lNEXTI ITEM ON* * READY QUEUE * . .

x .•.
cs *· • * READY *•

~* QUEUE *· 't'ES
• EXHAUSTED ••••• •. ·* *· . * *· . * *NO

x ...
D5 *· . • *·

• NO •* IS ALCB *•
••••*• WITH X 1 FC 1 ·*
X •.PRIORITY ·*

· · *· ·* *YES

:DEQUEUE X
*****E 5********** . .
* REMOVE ALCB *
* FROM READV *
* QUEUE * • •

:ENQUEUE X
*****F5**********
* CHAIN ALCB lN *

• *ITS HS PROCESS *
• •••* QUEUE BY *

* PRIORITY * . .

****G5*********
* EXIT TO *
* QSVCDI SP •X,. •• . .

QTAM Charts 267

Chart QW. QTAM SVC/Subtask Control Routine (Part 1 of 3)

QSVC 30
QSVC 31

****A3********* . .
* QPOST/QWAIT *

x
83***** . .

* ***S\/EKEG** *
*SAVE REGfSTf-RS * * 9-P JN P Ifi *

x
*****C3********** . .
*INITIALIZE FOR * * kETUKN TO OflS *
* SUPE-RV I SOR * . .

x
*****03*•········ . .
*SAVE REGS Gf-T *
IP ADORE SS f'-RUM * Vf:CTOR TABLE *

x
*****E3 ********** * GET ADIJR * * OF- NEXT FULL * * STCB SAVE *
PASSED Plti ADDk
* INSTCB *

x
*****F 3********•* . .
* ASSIGN STCA *
*PRIORlTY - Sf"T * * WAIT All IN * * PASSED PIB *

x
·*· QSVCPOST

G3 *· *****&4********** ·* *• * PUT QCB'S *
•* TYPE *· NO * ADDR IN *

• CALL QWAIT ··• ••••••X* ELEMENT GET *••••••••
• · X * AOOR OF i<EADY * X

• · * QUEUE * •••••
*·.·~ES $ ***•****•****•*** :Q~3:

•QW * • * H3 •.X. . .
**** . USVCWAJT X
*****H3 **********
•SE:T PREVIOUSLY *
•DISPATCHED iJCli *
l<lAITING KE:MOVI:.
PSEUDO QCB fRUM * READY Q *
********•••······

x .•.
J3 ••

·* •. •* PASSED *• NO

* • • •
•Qll * • * G4*

*· QCB WA IT I NG • *·•. *· . • x
*· . • ***** *• • • •<Jx * * YFS * C3*

x
*****K3********** . .
• i'.EMOVt Frnsr * EU:MENT FROM * PASSED QCB' S * CHAIN *

x
*IJX * * A3* ..

•

• • .

268 DOS QTAM Program Logic Manual

(' "
'
'

(

Ci

Chart QX. QTAM SVC/Subtask Control Routine (Part 2 of 3)

•••••
•QX •
t: A3•
•• •
• A3 •*• *• QSV~~l~!A4********** QSV~~~•*A5********** ·* IS IT ... NO • PUT ccs•s • • SET •

•• lJUMMV LAST •••••••••• x• ADORE SS IN •••••.•••• x•QCB TO WAITING •
• ELEM.ENT • X • ELEMENT * X * * •• •• * • • •

*·.·~ES ,; •**************** ; ***************** * • • •
t:QX * t:QX * * A4* * A5* ***** •••••

•ux • .. * B3 •.x. • •
**** QSVCTSTQ •*• QSVCRE TN X

H3 *• * * Yf-'i .•PASSED OCB *• * fB +X •• ••*• = LAST •* * * +.PROCESS£0.+
**** *· QCB • *

• NO
***'°'
*lJX * • * C3 •.x. . .
**** • QS.VCUNAV X

*****85********** • • * GET ADDRESS *
•OF QC8 1 S FIRST * * STCB * • •

x . .. cs •• •••••C..3********** • • ****C4********* •* IS *• * 1-tfMOVl * • l::XIT TO * YES •* STCB *• * STU\ FROM ITS * * Sf·LF.CTED *X••••••••*• TMUNCATED •*
* QCB * * SUHTASK IN IP • *• .• • • $************** *· ·*

x ...
03 *• ****'°'Dtt**********

• * *• * Gf: T * ·* PASSt::lJ *• YES * AUORE:SS OF *
•WCH ON READY ·••••••••X* f- IK~l STCR IN *

• QUl::UI: • '°' f'ASSfD QCB *
• • * CHAlti * •. ·* ***************** * NO

*\'.JX * • * t j •• x. * * .x •••••.•••••
**** • QSVCPRI X
*****E "3********** * GET *

:x •.•••••.••.
QSVL'.-.U\N):

*****I 4********** . .

....
• NO

x •••••05•••······· •MAKE ASSOCIATED* * QCB READY FOR * * NEXT ENTRY *
SAVE ADDRESS OF * LAST QCB * •••••••••••••••••

x
·*· E5 *•

* AfJDRESS Of * * /\CU ~S NEXT *
•IllM IN PASSED*

•* ENTRY *• YES
*lfIRSTJ IN£.l(T) * * ITrM IN {JUEUE * • • ** '°'**$***********

• f ROM QPOST ••. • • * UC.Ii CHAIN * . .
•**********

• ·*· ·*· F-3 *• I'• *•
·* *· ·"' •• . * *.. NO • * 1111 w (TE M *• NO •

• [;UMMY LAST •••••••••X*. Hf\\ HIGHER •*••••
• IHM · •.PHICJRlTV •*

· · q. ·* •. ·*
*YES *YES

*· ••
*· •• * NO

x
*****f5********** * PUT * * ADDRESS OF * * REQUESTED * * ELEMENT IN * * REGISTER 1 * • ••••••••••••••••

**** *l.IX * • :x ..•••..•.. : * G3 *• X. • * * .)(......................... .
**** . QSVClll-0 X
*****G:;********** . .
* lNSFRT *
I HM INTO QUEUE
** *************•*
***•
*OX * • * H3 •.X. . .
**** •

Q511CDISP X
****il<H3********** * SET * * PSE:UOIJ QCB Tfl *
>l<IUAOY GET IT CM*
A.f lOP OF READY
* QlJFUF *

x
•*• QSllLA ·*·

J.3 *· J4 •• .• *· . • *·

QSVCPST X
*****G5********** * RESET * * WAIT FLAG IN * * PI B ANO FULL * * STCB TO * *INACTIVE STATUS* •••••••••••••••••

QSVCEXIT X
*****H5********** • • * RE STORE * * REG! STE RS • • • • • •••••••••••••••••

x
•* *• YES .• *• YES

••••J5•••······ * RETURN * *· JS IT A CCB •*••••••••X*.l'i WC.II READY •*•••• * TO DOS *
• *· ·* •. .• * SUPERVISOR * .. *· ·* • . .• x • ••••••••••••••

*!JW * * H3*

•. ·* •..• * NO • NO •••• • • * A5 * • • x
: YES X .•. ·*· Kl *• *****K2********** K3 *•

•* *• * RfMUVf lTEM * •* *• •* IS *• * f~Ui'-1 READY * YES •* IS IT *•
•• STCK FULL .•x •.•.•.•.• QUE:UE GET •x •• ······*· POSTED TO ·*

• STCB · *ADCJKf:-SS Of H'S* *• ITSELF •*
*· *. ·*. * :*.~!~~!.~!~~ ••• : •. •. . •.•

·~ •oo

x
***** •ov • * A:;* ..

•

x
***** *QY * * Al• . .

•

••••
x

••K't*******
IHMOVI WAITING * *
•UC.Ii I ~LIM READY *• ••• X* H3 *
* IJU[UE· * * * • • • •••

QTAM Charts 269

Chart QY. QTAM SVC/Subtask Control Routine (Part 3 of 3)

• •••• •ov • * A3* •• •
QSVCDASL i

*****A3********** . .
*GE:T ADDRESS OF * * QCB TO WHICH *
*l TEM IS POSTED *

x
•*• QSVCA • *•

63 • • 84 ••
•* JS *• •* *•

•* ELEMl:Nl'S *• YF.S •* IS *• YES
•.QCB ON READY ·*••• ••••• x•.ELEMENT'S QCB•*••••••••

•.; QUEUE • * *• RfAOY •* X
• •• • • •• • •ox • * NO * NO * A5*

x
*****C3**********
•REPLACE ELEME:NT*
•AT l<EAOY QUEUE *
* HEALi WITH QCB *
*TO WHICH IT IS *
* POSTED *

x
•ox • * A5* •• •

x
*****C4********** • • +REMO\l't: El EM ENT + * FROM HEAD Of * * READY QUEUE + . .
• ••••••••••••••••

x • ••••
+QX *
* A4* . .

•

•• •

270 DOS QTAM Program Logic Manual

Chart RD. Retrieve DASD Routine

I JLQRO

****A2********* . .
* RETRIEVE *

i
*****B2********** . .
* SA 'WE *
REGISTERS 14-12 • • • •

i
****•C.l•*****•*** •GET ADDRESS or •
* QT AM *
IMPLEMENTATION
* ROUTINE *

i •••••u2•••••••••• * GET * * ADORE SS OF * * QUEUES FROM *
*IMPLEMENTATION *
* ROUTINE *

x
*****E2********** . .
* BUI LO QCB/BRB * * IN THE USER * * SUPP LI EO WORK * * AREA *

x
F2***** . .

B4*****
*** QWAIT *** * WAIT FOR *

••• X* MESSAGE TO BE * * RETRIFVEO *
+ FROM DISK *

x
C4*****

****OWAIT**** * WAlT FOR * * (,)CB/BRB TO BE *
*REMOVED FROM +

+READY QUfUE*
** *********

x
*****04********** . .
* MOVE THE *
•MESSAGE TO THE * * WORK AREA *

x
••E4******* *** QPOST ***

K.fTURN BUFFER * TO AIJAILABLE *
*BUFFER QUEUE *

x
*****F 4********** . .

* ** QPOST ++ * . • RESTORE *
+POST IJCB/BRB TO+ ••••••••••••••••••••• •• •••••••••
* DI SK QUEUE * •REGISTERS 14-12*

x
••••G4********* . .

kETURN •

QTAM Charts 271

Chart RG. Route Message Routine

I Jl\JRG

****A3********* • • * ROUTE *

x
*****B3********** * STORE * * LPS RETURN *
*ADDRESS IN LCR *
*FOR MPLE: ROUT·E • • •

x
*****C3 ********** * SCAN SHAl • *-•-•--*-•-·-·-·-. * G~T OEST. * * coot FROM • * HEADER *
***********"'*****

x
****03••······· * GO •

TU LOOKUP LKA?

272 DOS QTAM Program Logic Manual

Chart RM.

(

Release Message Routine

I JLQKM

****A2********* . .
• Rf:LEASEM * • • •••••••••••••••

x •••••ts2•••••••••• • • * SAVE *
Rl::GISTEKS l4-12 . .
• •

i
*****C2********** * ACCESS * * THE TERMINAL * * TABlf: ANO GC: T * * TE:RMNAMI: SIZE * • • •••••••••••••••••

i .•.
U2 *• *****Ol**********

•* I~ THIS *• YES * RESTORE *
••• X•. THE fNU OF •*• •••• ••. X*Rf::GI STERS 14-12*

+.THI:: TABLE.• * *
* NO

i
•••••£ 2•········· . .
* RUMP * * TO Nt=XT ENTKY * • • • •

i .•.
F2 *•

·*IS THIS* •
• NO • * THE *•
• •••*• TCRMINAL NAME.•

• TO BE •
•.FOUND.• * YES

i .•.

x
****E3********* * LOAD X 1 20' *

+KETURN CODE AND* * RETURN * •••••••••••••••

G2 *• *****G3********** • * IS *. *GET AOl>RESS Of *
•* THE *• YES * THE INTERCEPT *

*• TEKMINAL IN ·•••••••••X*flELD USING THE•
•.INTERCEPT.• * OFFSET FROM *

• • * LPSTART • •• •* •••••••••••••••••
* NU

x x .•.
*****H2********** • • HJ *• *****H4**********

* RESfORE *
RE:GISTERS 14-12 • • • • •••••••••••••••••

x ••••J2••······· • LOAD X1 04' •
RETURN CODE ANO * RETURN • •••••••••••••••

.•HE40ER *• * INSl::RT HEADER *
•* ADDRESS *• NO * AUIHtESS INTO *

•.MORE THAN lST•*••••••••X* UC.I! AS FIRST *
•.ELE:MNT IN.• * IU S.SAGE TO BE *

•.QUEUE.• * RlLEASED * •. ·* ••••••••••••••••• * YES

x •••••J4••········
* RESET *

• • INJlRCEPT BIT *
•••••••••••••••••X* TIJ lER0 1 SET *

•SFNU BIT ON AND•
•Rl:.SfllRE lit - l2* •••••••••••••••••

x
****K4*********

• tuAo x•oo• •
•RFTUKN COOE AND• * RETURN * •••••••••••••••

QTAM Charts 273

Chart RR. Reroute Message Routine

lJUJRR

****A2********* • • * RI: ROUTE *
x

tl2 •• 83 ••
•* *• • * *· ****64********* • * IS *. NtJ • * ANY •. NU * *

•• t-_Rf<OR MASK •••••••••• x•. iJtSIGNATl:-U •••••••••• x• tU:TURN •
*• /ERO • * *• ERKOKS • * * * *· .• • ..•

*YES *VE~

x •••••c2•••••••••• . . * MAKE HEAOER * • * AOLJH.F SS •X ••••••••••••••••• * AllAlLABLE: *
x

*****tJI********** * IH-C.hll lo82 * ·-·-·-·-·-·-·-·-· . . * RECALL Hl·AIH:R * • •

x
****t-2********* * GO * +TU LOOK.Uf' LKA?* . .
tlll<>;<•••••••*'****

274 DOS QTAM Program Logic Manual

Chart RS. Retrieve by Sequence Number Routine

IJLORS

****Al********* . .
* H.ETRIE:VE *

i
*****Bl**********
•SAVE REGISHRS,•
* SEQUENCE * * NUMBfR, ANO *
*RETURN AODRtSS *

x

****A3********* . .
* RET R *

x
*****EH**********
I JUJRD ROA2 ·-·-·-·-·-·-·-·-· * RHKI EVE *
•MESSAGE SEGMENT+
* FROM DISK *

****A4••••••••• . .
! SFQCK :

•••••••••••••••

i •••••64••········ . . * PUT SEQUENCE *
*NUMFH:R. tN WORK * * AREA * . .
•••••••••••••••••

i .•. ...
Cl *• •••••CZ***"****+• C4 •. •••••cs••••••••••

•* *· . * * **(l:*C3*********
• + IS *· NU X * Rl:STURF * * kf:flJRN * Lnw •• COMPARE •• EQUAL • SET 'CALLER' • · ··*· *· 5 ~3~&~~~ ••. • ••.••••• x: ·~~¥~te~~·s : •• TERMINAL IN •••••••••• x• CALLEK'S ••••••••• x• ro CALLEK •
• TERMTBL • X * REGISH:KS * * * •• •• • * ••••••••••••••• *• .• • CALLER' * i •. •••••*··········· •• •• • ••••••••••••••••

* YE:S ****

x •••••01••········ . .
* COMPUTE ANO * * PUT OFFSET IN *
* WORK AREA *
* Fl •.X. x
*****El********** * GET DISK * * AD[)RESS Of • * (FIRSTJINEXTI * * SEGMENT TO BE * * R EAO *

x . ..

. .
* C2 *

FL * • *****F 2********** • • • • * •
•* 15 *• VE'.> * Gl::T 1 BAU *

• IT ENO OF ·••••••••X* StQUl::NCf • *· QUEUE •* X. * NUMdf_R 1 EKROR *
· • * CODf * *· .•

* NU ****

x
*****Gl**********
IUTR RSA3 ·-·-·-·-·-·-·-·-· . .
* REHl.IC\IE NFXT * * RCCORU *

x .•.
Hl *.

. .
* F 2 *

•* BAD *· Yl:5
•.DASU AUDRE SS •* ••.•

•. ·* *· .• * NO

x

x
• f2 •

x
**** . .

* CZ * . .

.

.... . .
* C2 * • • * HIGH

i ...
04 ••

YFS ·* *•
•••*• Pf{IQRITY •*

x
• .. MESSA GE •* • NO

* CZ * . .

x
*****E4********** . .
* St-T 'CALLER' * * EQUAL TO * * 1 KFTRIEVE'S * * CALLER' *

•••• . . .
• • X* C2 * • •

Jl •. J2 •. J3 •. •••••J4••········
•* *• ·* *· •* •.. •~U fR RSAJ*

x •••• • • • f2 •
• • ••••

•••• • • * F2 * • • •••• x
: YES ...

G5 •·
•* BAD •. x•. DASO ADDRESS •*

• ND

x
*****H5*•******** • • • SIGNAL • * 1 NOT ORIGINAL * * RECORD' * • • • ••••••••••••••••

x •••••J5••········ •SEQCK RSA••

*:.KY ~~lJ~~t.JCI: * :. ~~: x•:. souRl~ KFY *.: .~~~ x•: \HI s I ~tAOER ·:. ~~ x :- ·-·-·-·-·-· ... ·-: ••••• : ·-·-·---·-·-----· * CHECK * *· IN •• *· cnRRECT •• •• •• • H!TRIEVE NEXT.
· • *· ·* *• .• • RECORD * •. . • • . ·* •. .• • ••••••••••••••••

* Nn * NO * YES

•SEQUENCE NUMBER• • • • ••••••••••••••••

:x : :•.......................••.•.•.•••••••.•.•••• x:
' . •. ·*· .•.

Kl*• K2 *• K3 *• *****K4**********
•* *• ·* *· •* *• •SHJtK RSAlt* ·* 1 S *· Yl-S •* CUkR£CT *• YES •* IS IT • .. NO •-•-•-•-•-•-•-•-•

•• THIS Hl-:A1H:~ ··········"*· TERMINAL •••••••••• x•. bY SEQUl:NCE •••••••••• x• CHECK •
• · X *· * *• IN •* •SI IJ\ll NCE NUMBER* •. ... •. .. * •. •• • •

··.·~a •*•• *·.·~u *·.·:Es •••••••••••••••••

x
* El *

. .
* Kl * x

* E 1 * • • ••• . .
* El * • •

x •••• . .
* E 1 * . .
• •••

x . ..
K5 *•

YES •* ORIGINAL • •
• •• •.RE CORO HEADER.•

i •••• • • * K2 * • • • •••

..
• NO

ic • ••• • •
• El * • • • •••

QTAM Charts 275

Chart RW. QTAM PIOCS--Activate Routine

Al
READ/WRITE'

JJLQRW
Bl
TU
REROUTE BITS
OFF IN BUFFER
GET BRB
ADDRESS FOR

FER

Cl
PUT BUFFER TEXT
ADDRESS AND
READ
COMMAND
CODE IN BRB

SET CD, PCI
FLAGS JN
CURRENT BRB

YES

YES

A2
PLACE FILL
CHARACTER JN
BUFFER AS
SPECIFIED IN
LPS

82

RO UTE MESSAGE
TO ERROR QUEUE
TEMPORARJL Y,
SET UP POLL
POINTER REG

C2

SET FLAGS TO
FREE UNUSED
BUFFER

D2~--'--
EXITTO LPS
CONTROL

F2--'----

GET ADDRESS
OF NEXT BRB

H2-----

TURN OFF CD
FLAG

YES

NO

83

GET (FIRST)
(NEXT) POLLING
LIST ENTRY

POINT TO
POLLING
CHARACTERS

YES

PUT COUNT IN
FIRST CCW

K3
BUFFER SUPPLIED

FTER PROGRA
CHECK

276 DOS QTAM Program Logic Manual

NO

YES

MAKE PREVIOUS
TIC VALID

CHAIN RESTART
CCW TO THIS
BRB

J4
EXIT TO LPS
CONTROL

K4

JW:)VE BRB
ADDRESS INTO
CCB CHANNEL
ADDRESS FIELD

YES

POINT TO
TERMINAL TABLE
ENTRY

D5 _ _._ __ _

KIP DIAL
HARACTER IF
NY PUTWPITF
ONVERSATJONAL
P CODE JN LCB

SET ERROR CODE
JN ERROR
HALFWORD

G5 _ _._ __

RETURN TO
PROCESSING JN
LPS

Chart RX. QTAM PIOCS--Channel Program Generator (Part 1 of 2)

***** *RX ''°"
A~* ***A2********** *****A3********** * •COMPUTE ADDRESS* * *

• *AND COUNT FROM * * CLEAR CCB CCW *
•••••• .X*PASSED REGS AND• X* AREA * * EOB FI ELD * * *

* * * * ***** ************ *****************

x
·*· 83 *.

·* *· ·* INITIAL *·NO *· OPERATION •*••• ••••. ••••••. •••
. · *. . * *. ·* * YfS

x
. *.

C3 *·
. * *·

YES ·* *· NO • •••••• •••• ••••. ••••••. ·*· SWITCHfO ·*••• .x .••.•.......• *. L INF: ·*
· · *· . *

*

x
. *· . *·

Dl *· 02 *·
·* *· ·* *·

•RX
* 04'" ..

x ~
•••••.•.••. x.

x
*****04**********
*RWlSGP RYGl *

·* COUNT *· YES ·* ALREADY *• YES • ·---------------· *· OF CHARS IN •*••• ••••• X•. CONNECTED •*•• •••• ••••• ••• ••••••
•.UST ISO.* *• LINF •* X

*· . * *· . * *· . * *· ·* * NO * NO

x
*****El**********
* * *SET TO GENERATE* * CALL SEGMENT *
* * * * *•***************

x
*****E2**********
* * *SET TO GENERATE*
*ANSWER SEGMENT *
* * * * *****************

:x :
x

*****Fl**********
*RWlSGP RYGl * ·---------------·

* PO!NT Fl OP * * TYPE SEGMENT * * MOf"'FL *
****** ***********

;
*****F4**********
*RWlSGG RYA3 * ·---------------· * Gt=NERATE OP * * TYPf SFGMF:NT *
* * *****************

;
·'· r 4 *• • * LA) T *•

•* CO"l.,.ANO *• NO
*POINT TO MODEL * *· DAT A • *· ... • • * CCW LIST *
* * *****************

x
*****G l**********
*RWlSGG RYA3 * ·---------------· * GENERATE * * SEGMENT * * •

x .•.
Hl *· . * *. •* TWX *• NO •

• DEVICE •••X•
· · *· ·* *· ·* * YES

•.TPAN')FFR •*
*. . * * .. * * 'ffS

x
****•(;4 **********
* * * Mnvr Tl(FROM * * BRA TO tND OF *
CHANNr L PROGRAM

* * ** ** * * *. ** ****** *

x
. '·

fff• *·
·* *. NO·* IS THIS *·

••••*• A PAUSF BRB •*
. · *. ·* •. ·* * YES

x
*****H5**********
* * *SFT PC! FLAG ON* * IN DATA CCW *
* * * * *****************

:x :

x
*****J l********** * • * • * SAVE ID COUNT *
* * * * *****************

;
*** :+J4+ *********
* * *ADJUS f LAST COi*
TO T JC HI PAUSE
* rcw *
* * ****•••••********

:)(:

x
****+ K4********** * MOVf CHA HUNG *
*FLAG ~RnM BRl3, * * SFT RFSTART' *
ADfHU 'i '> TO READ
* [)ATA r.cw *
•••••••****

x
JS*****

****F.XCP*** * * EXl=CUTE * * CHANNEL * * PROGRAM *
* * ***********

x
****KS********* * EX!T Tn LPS * * CONTROL *

* * ***************

QTAM Charts 277

Chart RY. QTAM PIOCS--Channel Program Generator (Part 2 of 2)

RWlSGIOI

READ RESPONSE
TO DIAL,
DISABLE,
ENABLE

Cl---L..--~

PUT COUNT
FROM MODEL
AND PASSED
ADDRESS INTO
ccw

DI----

RWISGP

El-...L..--~

GET DEVICE 1/0
MODULE
ADDRESS FROM
DTF

Fl---L..--~
USE OP CODE TO
GET MODULE
OFFSET AND
MODULE ADORES
TO OFFSET

GI_~-~
RETURN TO
CALLER

RWISGAOI TIC WTTA
HI--'----

PUT NEXT CCW
ADDR INTO
ccw

RWISG201

READ OR WRITE
DATA

c2 _ _._ __ _

ADD MODULE
MODIFIER TO
ADDRESS AND
SUBT MODIFIER
FROM COUNT

D2~--'---

'PUT MODIFIED
ADDRESS AND
COUNT INTO
ccw

RWI SGSOI SENSE
H2

PUT SENSE BYTE
ADDR INTO CCW

AJ---~

RWISGG

BJ
WHICH MODEL

<z:AN. PROZ

~~~~~~ BRANCHING TABLE (INDEX FROM MODEL CCW) 

READ RESPONSE 5PECIAL 
TO ADDRESS CHARACTER 

RWISGJOI 

[
CJ-~---1 
PUT COUNT 
FROM MODEL 
AND DUMMY 
RESPONSE AREA 
ADDRESS INTO 
CCW'-~---' 

EJ-~--
PUT OP CODE, 
FLAGS, TP OP 
FROM MODEL 
INTO CCW, 
INCREMENT TO 
NEXT CCW 

F3 
LAST MODEL 

ccw 

YES 

GJ_~----.. 
RETURN TO 
CALLER 

NO 

.RWISG901 ID EXCH 
HJ--'---~ 

PUT ADDR OF 
WRITE OR READ 
IDENT AREA 

J3-~--~ 

PUT COUNT 
'INTO CCW' 

RWISG401 
C4-...L..--
GET DEVICE 
MODULE ADDR 
AND CCW 
COUNT AND 
SPECIAL CHAR 
OFFSET 

04-~--
PUT COUNT 
FROM SPEC 
CHAR TBL AND 
SPEC CHAR 
ADDRESS INTO 
ccw 

E4----

PUT COUNT 
FROM SAVE 
AREA INTO 
ccw 

F4----

INCREMENT TO 
NEXT MODEL 
ccw 

RWISG601 POLL 
H4--'----

PUT CURRENT 
PO LLIST ENTRY 
ADDRESS INTO 
ccw 

J4-~---

COMPUTE 
COUNT AND 
PUT INTO CCW 

POLLING/ 
ADDRESSING, 
DIALING/ 
ANSWERING, 
TWX ID 

RWISG501 
05---'----

YES 

PUT ADDRESS 
INTO CCW 

GET COUNT 
FROM 
MODEL 

RWISG701 TIC/POLL 
HS'--'---~ 

COMPUTE 
ADDRESS OF 
NEXT CCW 
FROM MODEL 
AND PUT 
INTO CCW 

Js.-~---

RESTORE 
COMMAND 
CODE 

278 DOS QTAM Program Logic Manual 



I 
I 

'---

( \ 

/ 

Chart SH. Scan Header Routine 

IJLUSH 

****Al********* . . 
* ~CAN * • • ••••••••••••••• 

x •••••t:ll••········ . . 
* IN~l:RT * 
• BLA.NKS INTO * * WOkKWURO * . . ................. 

x •••••ct•••••••••• * LUAU o * RE::GISTER WITH o * WORK~OKO * 
O AUDH.ESS FOR O * (X TEH.NAL USE: * .................. 

:x .......................................................................................... . 
• ... 

Dl *• *****iJ7********'°'* . * l::NO *• * * •* Of *. NU * 1 NLK SCAN * *• SPECIFIED •*••••••••X*PUIN1ER Tfl NEXJO). ••••••••••••••••• 
*• FIELD •* O Hl:ADER * 

*• •* O CllARAC T£ R * .. .. . ............... . 
* YES 

x ••••fl••······· • • * RE: TURN * . . ............... 
X • YES .•. . .. 

li' •• i 3 •• . . .. . . .. 
• * END *• NU • o *• *. OF SEGMENT • *• ••••••• X *· BLANK .o .. . . .. . . .. . . .. .. .. . . . ... 

* YES • NO .... . . . 
* ft *· x. . . 
**** x 

*****F 2********** . . 
* ~f-T IH-AUf-RR * * OIT IN FRROI'!. * * HALF WlJiW * . . ................. 

x 
****G2********* • • 

• IH-TURN * • • ............... 

x *****1-.i••········ • • * MOVE * 
••• X* C.t1ARACTER TO • * WORKWORO * . . ................. 

x •••••(,3••········ . . 
* lNCREMFNT * * FIELO Silt- * 
*COUNT ER RY' ONF * . . ................. 

x .•. 
H3 *• .. .. 

.•. 
G't *• .. .. 

• * VARIABLE * • NO • 
••• x•.LE:.NGTH FIELD •*•••• 

•.SPECIFIED.• . . . . . ... 
* YES 

x 
·* *• NO • 

*****H4********** • • 
•INCREMENT SCAN * 
•PO INTER TO NEXT* *• .._DRKWORO •*• •. ••. 

*• f-llLED •* •. .. .... * YES 

x ••••J3••······· • • * RETURN * • • ••••••••••••••• 

* HEADER * * CHARACTER * • •••••••••••••••• 

x ... 
J4 •• .. .. . ... 

•* ENO *• YES * • 
*• llF St: GHENT •*•• • .x• F2 • .. .. . . .. .. . ... .. .. 

• NO 

x ... 
Kit *• 

•* *• ••••K5"******* •* *• YES * * *• BLANIC. •*••••• ••• x• RETURN * .. .. . . .. .. . ............. . .. .. 
• NO 

QTAM Charts 279 



Chart SI. Sequence Number-In Routine 

!JlQSI 

****Al********* . . 
* SE--QIN • • • ............... 

x 
*****R l********** • • * SAIJt * * AASE l<FGI STfk * • • • • ................. 

x 
*****Cl********** * SCAN SHAl * ·-·-·-·-·-·-·-·-· * Gt: T SEQUENCE:: * * NUMBER fROM * * HEADER * ................. 

x •••••01•••······· . . 
* H.ESTORE * * HASf H.EGJST£H * . . 
• • ................. 

x .•. 
E 1 *• *****EZ********** • * *• * CONVF.IH * 

.• *• NO * LH4.RACTER IN * 
•.Hl:ADEH. ERROR •••••••••• x•Sf-QUCNCE:: NUMllER•x ••••••••• c ••••••• 

*• •* * TIJ BINARY * .. .. . . .. .. . ............... . 
* YES 

x 
••••• , l •••••••••• . . 
* Sf T Sl::QUl:NCE * 

x 
r z·*·.. *****f-3•*•••••••• .. .. . . 

·* ALL *• NU * INCRfMI "ti * * LOW fl<ROR bIT •X ... e *• LHAfi.ACH:RS •*••••••••X* TO NLXT * * INLCb * • • ................. 

x 
••••li l ••······· . . 

* f.tl:TURN * • • ............... 

•.CUN\IEIHl::O.• * CHARALTI ~ * •. ·* * • • •. * ••••••••••••••••• 
* YE:S 

• ·····~2·••******* * MOVE * 
*BINARY SECJUl::NCE* * NUMBER INTO * * Hl-J\UfR PREFIX + . . *················ 

x .•. 
H2 *• *****HJ••••••**** *****H4********** 

•* IS *• * STllR1- * * INCREMENT * ****H5********* ·* MESSAGE *· YES * EXPl-CTI o * * EXPECTED * * • 
•• NUMBER IN ·*····••HX•Si:QUENCf NUM!H·R• •••••••• x•SEQUi:NCE NUMBER• •••••••• x• RETURN • 

•.SE(JUENCE ·* * IN LCO * * FOR NEXT * * • 
*• •* • * * MESSAGE * *************** ... . . ................. . ............... . 

* NO X 

x 
J2···.. *****J3••········ . . .. . . 

• YES •* IS *· NO *SET Sf:QU~NU * 
••••••*• Sl::QUENCE •*••• ••••• x•HJ<..H ERRO~ !llT * 

*• NUMBER •* * JN LCI\ * 
*• LUW ., * * * .. . . . ................ . 

• 

280 DOS QTAM Program Logic Manual 



Chart SK. 

() 

Skip Character Set Routine 

IJL~SK 

••••A.3••······· • • * ~KIP * • • ••••••••••••••• 

x 
*****03••········ • • * SAVE * * tsASt: Rl::G.151 CR * . . 
• • ••••••••••••••••• 

:x .••.••.••.•....•.•.•.••••.••••••••••• 
x 

*****C3********•* . . 
t= STOkE SCAN * * PUINTl:.k VALUE * * IN SAVL REG * • • ................. 

x 
·l<****l:.1••········ , . 
* LUAU FIELD * 
*~ lll:: PAl<Ai'1i::TCK * 
q: fKUM LI ~r<.AbE: * • • ................... 

x .•. J--3 •. • ••.• , 4•••······· .. .. . . 
• * "'1AS *• Nu * 1"41...JHMENT * 

*.SPfLIFltiJ sr.r.• •••••••• x• '.)(.Al ... PUINTER • 
*• fOJUNu •* * VALU! llY ONE * 

*· .• * • 
*· .• •*··············· * Yl::S 

x .•. 
l,4 •• .. .. 

•* *• NO • 
*• ')CAN t RROK •*• •• • ... .. . . . . . .. .. 

* YES 

x •••••tt4•••······· • • * l.ANCEL * * MVl flPLE * 
*RllUT ING IN LCS * . . ...............•. 

x x ****•J3••········ •••••J4•••••••••• 
* * * * * * * Kl.,, T SCAN * 
*11'11..IH:MENT COUNl*X••••••••*PtJl;>illM. lll ENO* * If 000 * * 11f HUFFER * 
* * * • ................... . .............•.. 

i 
••••l<,j********* . . 

* KETURN * . . ............... 

QTAM Charts 281 



Chart so. Sequence-Out Routine 

I JLQSll 

****Al********• . . 
* Sf<.iOUT • . . 
********•••···· 

x 
*****83******•••• * l:XPANO EXAL * ·-·-•-*-•-·-·-. -• . . 
* !:XPANll HFl\Ull( • . . 
******•·········· 

x 
*****C3***t<•••••• * GtT • 
•1HNAKY SF-QUt-NL! • * NUMBlK Ff.WM • * Ht AUE~ PKl-f IX + 
* • 
************** ••• 

x 
*****03*****••••• . . 
* CONVERT SI<.! * NUMttF.R TO • * DECIMAL VAlUf • . . 
************••••• 

x 
*****E]******'°'*** . . 
*IJNPACK Sl:QUft..iL! • 
* NUMtt[R PH1J • * HfADl:K Fifi ll • . . ................. 

x 
****f -~********* . . 

: R.E.TUKN + 

************* •• 

282 DOS QTAM Program Logic Manual 



Chart SR. Source Terminal Verification Routine 

••••A2********* * * * SOURCE * 
* * ••••••••••••••• 

I JLQSR X •••••e2•••••••••• 
* * * GET SCAN * * SUBROUTINE * * AOC RESS * 
* * ••••••••••••••••• 

x 
*****CZ********** * SCAN * ·-·-·-·-·-·-·-·-· *GET SOURCE CODE* * FROM HEADER * 
* * ••••••••••••••••• 

x •••••02••········ . . 
* GET TE RMNAME * * SIZE FROM * * TERMTBL * * • ••••••••••••••••• 

x 
. *· 

E2 *• .. .. 
•* *• YES *• AUTOPOLLEO •*• ••••• 
*• LI NE • * .. . . .. .. 

*NO 

x x············· ······ · ······· ·· ···· ·· ·· · 
•*• :oIALUP ·*• 

F2 *• F3 *• *****F4********** 
•* *• • •* IS *• * * •* DIAL-UP *• YES X •* CURRENT *• NO * GET THE NEXT * 

•• HES SAGE ••••• ••••• x•. TERM TABLE •••••••••• x• ENTRY ADDRESS • 
*• • * *•ENTRY FOR.• * * 

*• • * *•TERM •* * * •. ·* •. .• • •••••••••••••••• 
•NO *YES 

x .•. i x 
COMPAR2 •*• 

G2 *• G4 *• .. .. .. .. 
NO • * SOURCE *• 

*****G3********** 
•PUT ENTRY TABLE* 
* FOR SOURCE * * TERMINAL INTO * * HEADER PREFIX * • * ••••••••••••••••• 

·* ENO Of *· NO • 
•••*• NAME VALID •* 

x 
**** * * * H4 * • * 
**** 

•. ·* .. .. .. .. 
*YES 

x 
*****H3********** * STORE ENTRY * * INDEX FOR * 
•SOURCE TERMINAL* * IN LCB * 
* * ••••••••••••••••• 

x ••••J 3********* • * RETURN TO * 

+. TABLE •*• ••• *· .• •. ·* .... 
*YES .... 

• * • * H4 *••• • • .... . 
SOURCERR X 

*****H4********** . . 
+ SET INVALID * 
+ SOURCE ERROR * 
•BIT ON * • * ••••••••••••••••• 

••••••••••••••••• x• CALLER •x ••••••••••••••••• 
• * ••••••••••••••• 

QTAM Charts 283 



Chart SS. Start/Stop Audio Line Routine 

****Al********* * STARTARU * * ANO * * STOPARU * 
*************** 

IJLQSS X 
*****Bl********** * SAVE * * REGISTERS * * IN THE * 
* USER'S * 
* SAVE AREA * 
***************** 

x 
*****Cl********** * GET RELATIVE * 
* LINE NUMBER * * PROVIDED * * BY USER * . . 
***************** 

x 
*****D l********** . . 
* GET DTF * * ADDRESS * . . 
• • 
***************** 

x 
*****E !********** * SET UNOPENED * * OTF ERROR * 

*****E2***•****** 
* SET DTF * 
* ERROR FLAG * * FLAG FOR * ...... X* OFF ANO * *· THE USER * * INVALID RLN * . . * FLAG ON * 

***************** ***************** 

x x .•. . .. 
Fl *• F2 *• 

·* *· .. ·* IS *• •* IS OTF *· YES. YES ·* PASSED *• *· OPENED •*•••. •••• • .. RLN TOO HIGH •* 
*· ·* *· ·* *· ·* *NO 

**** . . . 
* Gl *• •• . . 
**** .. SSlRET!O X 

*****G !********** * PUT USER 1 S * * ERROR FLAG * • * IN REGISTER •X ...... 
* 15 * . . 
***************** 

x 
*****Hl********** * RESTORE * * REGISTERS * * FROM USER 1 $ * * SAVE AREA * • • 
***************** 

x 
****J !********* * RETURN TO * * CALLER * • • 
*************** 

*· OR •* 
•.NULL·* 

*· .• 
•NO 

x 
*****G2********** • • * CLEAR USER'S * 
* ERROR FLAG * . . . . 
******** ********* 

x ... 
H2 *· • * *· •* START *· NO 

*• OR STOP ALL ·*•••. 
*• LINES .. • 

•• • * ••. * 
*YES 

x 
*****J2***** ***** • • * SET RLN * 
* INDEX * * TO ONE * • • 
***************** 

**** . . . 
* K2 *••. • * * • x ••••••••••• 

**** • 
SS1LOOP5 X 

*****K2********** . . 
* COMPUTE ALCB * * ADDRESS FOR * 
* THIS LINE * . . 
***************** 

x 
*****A3*******•** . . ****A4********* 

.•. 
A5 *• 

·* *· •* ALCB *• NO * SET ALCf\ * 
* START * 

* ENTRY FROM * 
* SUPER VI SOR * ••• X•. STOP FLAG •*•. •• 

* FLAG ON * . . ................. 
x .•. 

83 •• .. . . 
•* START *· YES 

*• LINE •*•••• .. . . 
*· .• *· .• *N[] 

x 
*****C3********** 
* SET ALCI\ * 
* START FL.Al, * 
* OFF ANO * * ALCB STOP * * FLAG ON * 
************* •••• 

:x .......... : 
x 

*****03•••• •••••• 
* SAVE At Lii * * ADDRESS IN * 
* START/STOP * 
* AUDIO EU Ml NT * . . 
*********•••····· 

x 
**E3******* 

****QPOS fit+•• 
* POST * 

*START /STOP f UI * 
•TO START/',Jlll'* 
* QCB • ............ 

. . 
*************** 

x 
*****B4********** 
* GET ALCB * 
* ADDRESS FROM * 
* START/STOP * 
* AUDIO ELEMENT * • • 
***************** 

x .•. 
C4 *• 

·* *· •* STOP *· NO • 
*• LINE •*• ••••• 

*· .• *· .• 
*· ·* *YES 

x 
*****04********** . . 
* SET ALCB * 
* STOP * 
* FLAG ON * • • 
***************** 

SS1EXT09 X 
****E4********* 

* EXIT TO * 
* QSVCDI SP * . . 

*************** x 

*• ON •* 
*· ·* *· . * *YES 

x 
*****BS********** . . 
* SET ALCB * 
* START * 
* REQUEST * 
* FLAG ON * 
***************** 

x .•. 
C5 *• 

•* HAS *• 
• * PREVIOUS *• NO 

*• STOP BEEN ·*• ••• 
*•PERFORMED.* 

*· ·* *· ·* *YES 

x 
*****05********** 
* SET ALCB * 
* STOP FLAG * * ANO ALCB * 
* START REQUEST * 
* FLAG ON * 
***************** 

x 
**•**E5********** 
* SET START * * I /0 ANO * 
* EXCP FLAGS * 
* ON * • • 
***************** 

=••••••••••e•e'"~'"'""''"'""'"""":x ........... : 

x 
*****F3******* *** * GET ALCll * * ADDRESS Hll1M * 
* START/SHH' * 
*AUDIO ELIMINI * 
• * 
*******•••••• •••• 

x 
*****G3******* *** . . 
* GET LP~, * QUEUF * ACORESS . . 
*********** •••••• 

x 
•*• SSlEXTlO 

H3 •. *****H4********** • * • * * ·* START •. NO * INCREMENT * 
*• 1/0 ·*• ••• •••• X• RLN INDEX * 

*• FLAG ON • • X * * *· . • • * 
•• • • ***************** 

*YE\ 

x 
**J3••••••• 

****CPDS T * * ** 

x 
·*· 

J4 *· 
·* *· * POST ALCll • • NO •* MORE *• YES 

* TO LPS *·. •• * QUEUE * . . ............. •• •*· LINES TO •*•••. 
•.CONSIDER •* 

x 
**** • • * Gl * • • 
**** 

*· ·* *· ·* • x 
**** • • * K2 * . . 
**** 

284 DOS QTAM Program Logic Manual 



Chart ST. 

\. 

Skip-on-Count Routine 

1.JL,J<., I 

****A3********* . . 
* SKIP * . . 
***** *** ******* 

x 
***** ij j *** **** *** . . 
* LUAD SKII' * * LUU''ll PA1~AM * * r t~UM l I NKA6E: * . . 
** ************** * 

........... x: 
x 

#-:!< ***C ;i, * (<******** . . 
*lNCRLMlNT 5l../\N * 
*PlJl1\(f t:rl TO hlEXT* 
* LHAKACTEI< * . . 
***************** 

x 
l)j •*• *• !**it "IJ 1t*********: 

·*·*tNl}*•• .. vf.:, * ~I~ * 
*• *IJf- Sl:.G1'°'t:NT .••*•• ••••• .x.:111 Ai>I k~d~l T IN : 

. * * * * ·• •· ***••~·~********** .*.ND 

x ... 
1:.3 *· 

. ·* *· .vrs ·* *· 
x_··~*·*· BLANK •*•'* 

*· ·* *· ·* * N!J 

x 
*****f 3********** . . . . 
*.)fCRlMENT SKIP * * CUUNT * • • 
***************** 

:x .......................... . 
x 

****h3********* • • * RETUK.li * • • 
**"'************ 

QTAM Charts 285 



Chart TM. Terminal Test Header Analysis Routine 

• ••• . . . "" . • • •••• 
• • •• ••• •••••• ••••• •• •••••• •• ••••••••••• x. 

l..ILGTM2l ......... , ........ . 
• • * SSBOHOCtc. * . . ............... 

x 
*****Bl********** • • +ESTA.BLISH BASE * 
!ft. REGISTERS AND + 
+ CLEAR NO-TEST * 
+ SWITCH + .................. 

x .•. 
Cl *• .. .. 

•* FORMAT *• YES 
*• O (ASCII OR •*•••••••••••••••• 

•· eco t .• .. .. .. .. 
* NO 

x •••••01•••••••••• • • * PICK-UP COUNT * 
+ OF CHARACTERS * 
+ IN SYMBOL + . . ................... 

.•. 
El *• .. .. 

•* *• YES ..... set I FORMAT •••••••••••••••••• 
... l •• .. .. .. .. 

* NO 

x .... 
F 1 •• .. .. 

•• •• •• •••. ...• .••••••.••. ·x ... 
83 •• .. .. 

•* 1060 •. NO • 
+.COMP.-FtE TEST •*• • •• 

*• REQUEST • + .. . . .. .. 
+ YES 

•• • •• ••••• • x. 
ZERO • 
CONTINUE X 
•••••ca•••••••••• . . 
+ FIND * 

•• • • •• • • • • X • • : ~~~~~S~N~~y : . . . ............... . 
. . 
•••• " ........ x. 

•* *• NO • •• eco FORMAT 1 •••••••••••••••••••• .. .. .. .. .. .. 
t YES 

x .•. 
GI *• .. .. 

•* SYMBOL t • YES • 
t.COUNT IS ZERO•*•••••••••••••••••••••••••••••• 

*• (BCD I •* X .. .. .. .. 
• NO 

.x ••••••••••• 
CHECKS X 
ttt•tHtttt•tttt•t 

• • t TRANSLATE 
t SYMBOL TO 
t EBCDIC . . ................. 

x •••••J ••••••••••• . . 
t SET-UP TO * 
tSEARCH TERM INALt 
t TABLE t . . .................. 

x 
NEXTIO •*• 

Kl *• 

x 
ASCI IN •*• 

H3 *• .. . .. 
• YES •• SY~eOL •• 
••••••*•COUNT JS ZERO.t 

*• (ASCII I • t .. ... . ... 
• •o 

.. .. 
•* JS SYMBOL *• YES • 

*• IN TEAM INAL •* • • •• •• • • • • • • • • • • • • • •• • • • • • • •• • • • • • • • • • • • • • • • • • • •••• • • • •: *• TABLE •* .. .. .. .. 
• NO 

IDFOUND X •••••a••••••••••• t FIND LCB t 
t ADDRESS. PUT * 
•IT. DEVICE TYPEt 
tANO FEATURES IN* 
t BUFFER.' t ................. 

RESTART X 
*****A5********** * SET * 
*HO-TEST SWITCH t 
t AND CLEAR * 
t ADDRESS AREAS * 
t IN BUFFER t 

• •••••••••••••••• 

x 
****B5ttttttttt 

t RETURN TO * 
t CORE RESIDENT * 
t MODULE t ............... 

••••••••••••••• x ••••••••••• 
x .•. 

C4 *• .. .. 
NO •* *• 

• •••*• DIAL •* .. .. .. .. . ... 
* YES 

x •••••o••••••••••• * PUT * 

x •••••cs•••••••••• . . 
• • •VALi DATE HEADER• • • . . . ............... . 

x .•. 
DS •• .. .. 

t DIAL t 
t INFORMATION t 
t ADDRESS IN + 
+ BUFFER * ................. 

NO•* WRITE AT *• 
••••*•LI NE ADDRESS •* 

*• TEST •* .. . . 
. . 
••••••••••• x. 

NOD I AL X •••••e••••••••••• + PUT t 
t ADDRESSING * 
t CHARACTERS IN t 
+ BUFFER + . . . ............... . 

•. ·* * YES 

x 
•••••ES+••••***** * SET * * UP LINE * 
t ADDRESSING $ 

* CHARACTER t . . . ............... . 
. . 
••••••••••• x. 

x . .. 
F4 *• .. .. . 

•* FROM *• YESe 
t •ANO TO I'- 2260.t •• • • .. .. .. .. . ... 

* NO 

x . .. 
G4 *• 

.+FROM A *• 
•* BCD t • YES • 

t.TERMINAL ANO •*•••••• 
teTO A 2260.t .. .. . ... 

* NO 

x .•. 
H4 *• .. .. 

•*FROM A 2260* • YES • 
*• TO A BCD •*••• ••• 

*•TERMINAL •* .. .. . ... 
• NO 

FTCH2260 : 
x 

+t+•F5********* * FETCH * * 2260 DEVI CE * 
t MODULE * . ............. . 

BC02260 X 
*****GS********** • * * TRANSL-TE t 
+INPUT TO ASCII t 
* FROM BCD * • • . ............... . 

ASCI IBCO X 
*****HS********** . . 
* TRANSLATE t * INPUT TO BCD * * FROM ASCII t . . . ............... . 

. . 

.x ••••••••••••••••••••••••• 

x 
TEST2740•*• 

J4 •• .. .. 
•* IS *• YES • 

teMESSAGE TO A •*• •• •• • 
•• 2740 •• .. .. . ... 

• NO 

x 
••••J5••······· *VALIDATE HEADER* 

*ANO FETCH 2740 * 
t MODULE * . ............. . 

x .•. ···cAL.L.i030·: 
Kl!- *• .. .. 

.tIS MESSAGE *• YES • 
*• TO A 10301 •*•••••• 

*• 1050 OR •* 
•• l 060 •• . ... 

* NO 

CALLI 050 • 
CALLI 060 X 

****KS********* 
t FETCH 1030• * * I 050 OR 1 060 '\ * DEVICE MODULE t . ............. . 

••••••••••••• •••••••••• •••••••••••••••••••••••••••••••••••.•••••••••••••••••• x. 

286 

x .... 
• • * A5 * 

DOS QTAM Program Logic Manual *••••* 



Chart TN. Terminal Test Subtasks 

............................ . . * TERMINAL TEST * BUFFER ROUTING SUBTASK • • ............................ 
****B2********* . . 

* ENTRY * • • ............... 
x .•. 

C2 *• .. .. 
NO •* HEADER *• 

• •• •••• • ••• •• ••• ••*• SEGJlllENT •* 

x •• .. ••ot•••••••••• * SET UP * * POST TO * * AVA IL:ABLE * 
+ BUFF&R QUEUE * • • ................. 

.. . . .. . . .. .. 
• YES 

x •••••02•········· . . 
* SET TEAf'llllNAL * * TEST * 
*IDENTIFICATION + * IN BUFFER * ................. 

x 
*****E2********** . . 
* SET UP * * POST TO LPS * 
* QUEUE * . . ................. 

. . 
••••••••••••••••••••••••• x. 

x 
****F2********* * EXIT TO * 

+ QTAfi! POST * 
+ ROUTINE * **••··········· 

. ..................... . 
• • * TERMINAL TEST * * STOP LINE SUBTASK + 
• • ••••••••••••••••••••••• 

••••e•••••••••• . . * ENTRY TO STOP • 
• LINE • ............... 

x .•. 
c• •· .. .. 

NO •* *• 
,. ••• • •• • ••,. • •• •• ••*• DIAL LINE •• 

.x ••••••••••• 
x 

•••••D3•••••••*** . . 
* SET • 

.. .. .. .. . ... * VES 

x .•. o• •· 
•*LINE IN*• 

•* ACTIVE •• YES 

****B5********* 
* ENTRV • 
• AFTER LINE IS * * STOPPED • ••••••••••••••• 

. ........... . 

•UP TO STOP LINE* *•TRANSMISSION •*• •• • • • •• •• • • • • •• • • • • . . ................. 

x 
••••E3********* 

• EXIT TO QTAM * 
•CONTROL CEFER- * * ENTRY ROUTINE * ............... 

. . .. .. .. .... 
* NO 

x 
******E4*******•*** 

HALT 
1/0 ON LINE 

NOTE--THE DEFER ENTRY RouTiNE ........... . 
WILL PLACE A TEST STCB 
IN THE LCB STCB CHAIN. 

NOTE--OT AJrill PCST ROUTINE WILL PLACt THE BUFFER 
ON THE APPROPRIATE QUEUE. 

x •••••E5•••••••••• 
• SET • * LINE NOT * 
*AVAILABLE FLAGS• * IN BUFFER * • • . ............... . . . 

• x ••••••••••• 

x 
*****F5********** • • * SET UP POST * * OF BUFFER TO * * LPS QUEUE * . . ................. 

x 
****GS********* * EXIT TO * * QTAM POST * 

• ROUTINE * ............... 

QTAM Charts 287 



Chart TR. Translate Routine 

****AZ********* • * * TRANS * • • 
*************** 

x 
I JLQTR ... 

B2 *• 
• * *· . •* *· YES. 

*• ALCB ·*• • • • 
*· ·* *· . * 

*• ·* *NO 

x 
*****C2*"'******** * OBTAIN REL * * AOORESS FROM * * LCB OF FIRST * * CHARACTER TO * * TRANSLATE * 
***************** 

x ... 
02 *· .. * *-

NO •* TEXT *• 
•••••••••• ........ ••*• SEGMENT •* 

*· ·* *· . * *· ·* - *YES 

x x 
TRHDR ·*• ·*· 

E 1 *.. EZ *· 
·* *· . * *· ·* *• NO YES •* *• *· AUTOPOLLED •*••••X••••*• EOB •* *· LINE ·* *• •* 
*· ·* *· . * *· ·* *· ·* *YES •NO 

.:. x 
Fl •.. *****FZ********** 

•* *• • * RECOMPUTE REL * 
•* INITIAL *• NO X * ACORESS OF * *• READ •*••• .. x •••• •FIRST CHARACTER* 

•.OPERATION.• * TO TRANSLATE * 
*· .. * * * *· ·* ***************** *YES 

ic 
*****Gl********** . . 
*SKIP THE INDEX * 
* BYTE * 
* TRANS LA TI ON * • • 
***************** 

x 
*****G2********** • • * COMPUTE * 

••• X*CHARACT ER COUNT* 
* TO TRANSLATE * . . 
***************** 

TR!ARU X: 
** ***B 3**** *** *** . . 
*GET AUDIO INPUT* 
*BUFFER AOOfH '>~ * . . . . 
**********. *. * *** 

x 
*****C3********** • • *GET AUDIO INPUT* 
•MESSAGE LENGTH * * TO TRANSL A If- * . . 
************"'**** 

: x •••••••••• : 
USEEOB X . t CONV i 

*****Hl********** * COMPUTE FULL * 
* ADDRESS OF * • 
•FIRST CHARACTER*•••••• 
* TO TRANS LA TE * • • 
***************** 

H2 *• *****H3********** 
·* *· * • ·* IS *•NO * TRANSLATl * *· COUNT ZERO •*• •••••• .X* CHARACTERS * *· . * * • *· . * * • 

*· ·* ***************** *YES 

: x ......................... : 

x 
****J2********* * RETURN TO * * CALLER * . . 
*************** 

288 DOS QTAM Program Logic Manual 



Chart TS. Time Stamp Routine 

I Jt.iJl ~ 

***•A3********* . . 
• T IMl-'1 TMP * . . ............... 

x 
*****flJ••········ * t.it.PAN!I l::XAl * ·-·-·-·-·-·-·-·-· • l·.k.PANI) Hl-ADE-R * * FlJk T l ME * * INSEHTllJN * "'**•············· 

x 
**l.j**"'**** . . 

* ***C~l I Ml** * * t,[ T (.l!KKE(.T * * TI ML !Jt- flAV * • • ........... 
x 

*****03••••······ . . 
* PlH TIMr * * L)AfA INTU • * ioilJRKWURD * . . 
**••••••:1<•••••••• 

x •>11•••1: , •••••••••• . . . . 
* Ul\IPl\C+<. T IMF * * llAF A * • • ................. 

x 
*****f 3••········ . . 
* MOVt'. t-IJlTED * 
·C<T IMl: DATA INTU * * UEAO~R * . . ................. 

x 
****&3••······· . . 

* IHTURN * • • ............... 

QTAM charts 289 



Chart TT. Terminal Test Recognition Routine 

I JLQTT21 

••••e2••••••••• . . 
* IJLQTT * . . ................ •••• . . 

* C5 • • • .... 
............. x. 

x .•. 
C2 *• .. .. 

• * TEST *• YES • 
*• SET-UP •*• .;;. •• • •• •• •• • • •••• • •• • •• • • • • •• • •••• • • ••• •• ••••• •• • ••••• ••• 

*• REQUEST • * .. .. .. . . 
• NO 

x .•. 
02 •• .. .. ······································;c .•. 

04 •• .. .. 
•* TERJllNAL *• YES • YES •* TERMINAL *• 

*•TEST ACTIVITYe*•••••• .. . .. .. .. .. . . 
* NO 

x .•. 
EZ *• .. .. 

NO •* *• 

••••••• •• •••••••••*•TEST COMPLETE.• .. .. .. .. . . .. 
• NO 

x 
*****E4********** • • * SET FLAGS • 

•• • • •• •• ••• • • •••••*•TEST REQUEST •* 

x 
tttt•E3tttttt•••• . . 
t FREE TEAl.UNAL • 
tTEST CCW AND/OIH 
t PATTERN AREAS • . . .................. • FOR LINE ENO * 

x 
****Fl********* • • * RETURN TO LP S * . . ............... 

.. . . .. .. .. .. 
* YES 

x .•. 
F2 .•• .. .. 

• * RE TllRN *• YES 
•.TEST ON DIAL •*•••• 

*• LI NE • * .. . . .. . . 
* NO 

x 
****•G2********** * SET LCB * * DESTINATION * * FIELD TO TEST * 
• ace ADDRESS • . . .................. 

x .... . . 
• cs • . . 
•••• 

x 
t••ttF3ttt•tt•t• • . . 
t CPQST BUFFER 
t TO AVAILABLE * BUFFER QUEUE . . ................. 

x 
ttttttG3********* •• 

START 
LINE Y IA 

QPOST ............. 

* APPENDAGE * . . .................. 
x 

*****F4********** • • t INITIALIZE t 
tFOR SEND I NG OF t 
t TEST MESSAGE t 

• • . ............... . 
x 

******G4*********** 
EXCP TO 

SEND TEST 
MESSAGE ............. 

x 
tt•ttC5********** • • t SET TERMINAL t 
t TEST ACTJ YI TY t 
t FLAGS t 

• • . ............... . 
x 

•••••os•••••••••• * SVC 2 * ·-·-·-·-·-·-·-·-· •CALL + EXECUTE t 
t TERMINAL TEST * 
t TRANSIENTS t . ............... . 

x .•. 
ES *• . . .. 

•* *• YES 
*•TEST DEFERRED•*•••• .. .. .. .. . ... 

• NO 

x 
*****FS********** . . 
t POST t 
•BUFFER TO TEST t 
• STOP Ll NE ace • . . ................. 

x 
*****GS*********• • • * POST * •BUFFER TO DEFER* 
+ OCB * • • . ............... . 

• • JC • 

290 

x 
****HZ+++++++++ 

+RETURN TO QTAfi( + 
+BUFFER RECALL- * 
+CLEANUP ROUTINE+ ................ 

NOTE--THE QTAli! BUFFER RECALL-CLEANUP ROUTINE POSTS 
THE BUFFER TO THE TEST BUFFER ROUT ING ace. 

DOS QTAM Program Logic Manual 

•••• •• •• •• • • ••••••••••••• x.x ••••••••••••••••••••••••• 

x 
ttttH4********* 

t RETl.AN TO t 
t QTAM LPS • 
t CONTROL t . ............. . 



Chart T1. Terminal 'lest Module for IBM 1030 

IJLCT121 

······$······························ . . 
• 1030 TERMINAL TEST MODULE + . . 
t(TYPE B LOGICAL TRANSIENT ROUTINE)• . . ..................................... 

+tttB2********* . . 
t SSBC1030 t . . ............... 

x .•. 
C2 *• .. .. 

•* IS +. NCi • 
*• THE HEADER • *• • • • • • *• VAL 1 0 • t X .. . . .. .. 

t YES 

x .•. 
02 •• .. .. 

ONE •* *• 

REST ART X 
+t+ttCJtttttt+tt+ . . 
* SET + 
tNO-TEST 5'111 ITCH + . . . . . ................. . 

x ••••o3••••••••• + RETURN + 
• • ••• • • •• • • • • •• • ••*• FORfllAT •* t TO RES ICENT * 

t MODULE t .. . . .. . . .. . . 
t ZERO 

x 
+++++E2********** 
+ MOVE + 
+ ADDRESSING + 

. ............. . 
............. 

x ... 
E3 *• .. .. 

• + MESSAGE *• YES 
+CHARACTERS FROM+ *• SllllITCH TEST •*• • • • • •. • •. • • • • • • • •• • • • •• • ••• • •• • • • • •• • • • • • • • 
t ME SSA.GE TO * 
+ BUFFER t ................. 

x . .. 
FZ *• 

•*~AN\JAL *• 
• NO • * ENTRY OR *• .x. •••••••••••••••*•BADGE READER •* .. . . .. . . .. .. 

* YES 

:x .•..•.•..•. 
x .•. 

Gl *• 
•* IS *• 

NO •* BUFFER * • 
••••*•LARGE ENOUGH •* 

•.FoA ccw•s.• .. .. .. .. 
* YES 

x 
*****Hl******•*** . . 
* SET * * FLAG FOR THIS * * CASE * . . ................... 

NCTCAAD X 
*****G2*****•**** . . 
* CCJNWERT * * ADDRESSING * 
* CHARACTERS * . . ................. 

x .•. 
H2 *• .. .. 

• YES •* VALID *• NO • 
• • • • ••*• ADDRESSING •*• ••• 

•.CHARACTER.* .. . . .. . . 
• . . 

........................................ x. 

x ..... ., l••········ . . 
*SCAN WORK AREAS• 
* FOR • * AVAILABILITY * . . ... _ .............. . 

x .•. 
J2 •• .. .. 

• * WAS *• YES • 
*• CORE • *• •• • • • 

*•AVAILABLE.• .. .. .. .. 
• NO 

.. .. .. .. .... 
• NO 

x 
• • .. .. .. • • • •• •• x ............ x • 

MSGSWTCH X 
*****F5****•***** . . .•. 

F3 *• .. .. 
•* *• YES • 

•.COMP-RE TEST •*• •• •• • .. .. .. .. .. .. 
• NO 

COMPARE •*• 
F(I. • • .. .. 

•* IS *• NO • 
•.COMPARE DATA •*••••X• 

• • OK •* . . .. .. ... 
* YES 

x 
•••••G4•**-******* . . 
• SET UP * 
• VAL 10 COMPARE * 
• MESSAGE * . . . ............... . 

.................. 

* SET UP * * FOR MESSAGE * 
* SWITCH * . . . ............... . 

. . 
.x .................................................... . 

NOTINUSE X 

***•*H3********** • • *SCAN lllCRK AREAS* 
* FOR * * AVAILAE!ILITY * . . . ............... . 

x .•. 
J3 •• .. .. 

•* Ill AS * • YES • 
*• CC.RE •*• • • •• • 

•.AVAJLAE!LE.• .. . . .. .. 
• NO 

x •••••J••········· . . 
•SET USAGE COUNT* 
• TO ONE. MOVE * 
• OATA TO AREA * 
• AND PAO * . ............... . 

SETCCllS i 
*****JS********** • • • * 
• SET uP ccw•s • . . 
• • . ............... . 

. . 
• x ••••••••••••••••••••••••• 

x 
U•••K l********* * RETURN * * TO RESIDENT * * MOOIJLE * ............... 

DEFER X 
*****K2********** 
•SAYE POINTERS. * 
*FLAG THAT THIS * * IS A DEFERRED * * REQUEST ANO * * FREE AREAS * ................. 

Sf TDATA X 
•••••K••********* . . 
• SET UP DATA * 
• CCW FOR THIS * 
• PA'TTERN * . . . ............... . 

x 
****KS********* * RETURN * * TO RESIDENT * 

* Jri!ODULE * ............... 

QTAM Charts 291 



Chart T2. 

x •••••ot•••••••••• * JllOVE * * ADDRESS ING * 
•CHARACTERS FROM* 
* MESSAGE TO * * BUFFER * .................. 

Terminal Test Module for IBM 1050 

[JLOT221 

• •••••••••••••••••••••••••••••••••••• • • * 1050 TERMINAL TEST MODULE * • • •CTYPE 8 LOGICAL TRANSIENT ROUTINE) * 
• • ••••••••••••••••••••••••••••••••••••• 

RESTART X 
••••e2••••••••• • • 

•••••831••········ . . 
* SET * * SSBQl050 * • • ••••••••••••••• 

x .•. 
C2 *• .. .. 

•* JS *• N() • 
*• THE HEADER • *• • • • • • 

*• VALID • * .. . . .. .. 
* YES 

*ND-TEST SWITCH * . . 
• • • •••••••••••••••• 

x 
****C31********* * RETURN * * TO RESIOENl t * MOCULE t ............... 

............. 
x . .. 

02 •• .. .. 
• ZERO •* *• 
••••••*• FORfllAT •* .. .. .. . . .. .. 

* ONE 

x ... 
03 •• .. .. 

•* MESSAGE t • VES 
*• SWITCH TEST •*•••••••••••••••••• .. .. .. .. .... 

* NO . . 
••••••••••••• ••••• ••••••• x. 

x .•. 
El *• .. .. x .•. 

E2 *• . .. .. 
.YES •* *• 

x .•. 
E3 *• .. .. 

•* •· ves 

. ............. . 
x 

COMPARE •*• 
ES *• .. .. 

ND •* IS *• •* *• YES 
*• ANSWER LIST •*•••• • • ••* • DI AL • * *•COMPARE TEST •*• •• •• ••••••••••• • •••••••••• • ••••*•COMPARE DATA •* .. .. .. .. .. .. 

* NO 

.. .. .. . . .. .. 
* NO 

. . 
••••••••••••• x. 

x 
.... •Fl********** . . 
* SET COUNT FOR * * DIAL CHANNEL * * PROGRAM * • • .................. 

NOTDIAL i 
*****FZ********** * SET * * COUNT FOR * * NON-DIAL * 
*CHANNEL PROGRAflil* • • ................. 

. . 

.x ••••••••••••••••••••••••• 

x .•. 
GI *• 

•* IS *• 
•* BUFFER * • ND • 

• • USABLE FDR •* • • • • •• 
·•· ccw•s .• .. .. .. .. 

* YES 

• •-••Kl•••••••••• • • * SET * * FLAG FOR TtilS • 
* CASE * • • .................. 

GETCOAE )c 
*****G2********** • • •SCAN "OAK AREAS• 
• FDA * * AVAILABILITY • . . . ............... . 

x .•. 
HZ *• .. .. 

•* "AS *• YES • 
*• CORE •*••••Xe 

•.AVAILABLE•* .. .. .. .. 
O NO 

DEFER X tt•••J2••········ *SAVE POINTERS 1 • 

*FLAG THAT THIS • * IS A DEFERRED • * REQUEST ANO * * FREE AREAS • ••••••••••••••••• 

x 
****K2********* * RETURN * * TD RESIDENT * * MODULE • ••••••••••••••• 

.. .. .. .. .. .. 
* NO 

x .•. 
F3 *• 

•* IS •• **** 
•* THIS t • NO * * *• PATTERN IN •* • • • •X* H!5 * 
*• USE •* • * .. . . . ... .. .. 

* YES 

*• OK •* .. .. . ... * YES 

• *****F5********** • • * SET UP * * VALi D COMPARE * * MESSAGE * • • ••••••••••••••••• 
. . . 
.x ••••••••••••• x ••••••••••• 

x 
*****G3********** . . 
* 1-UP t * USAGE COUNT • . . ................. 

NSGSWTCH i 
*****Go\*****••••• • • 
• SET UP • * FOR MESSGAE * * SWITCH • • • • •••••••••••••••• 

. . 

............................ x.x ••••••••••• 
x .•. 

Ho\ *• .. .. 
YES •* *• 

•••• •• • .•• • •••••••*• DIAL •* 

• •••••J3••········ . . 
* SET t 
• UP DIAL ccw•s • . . . . . ............... . 

.. .. .. .. . ... 
• NO 

••••••••••• x. 
• NOTOIALl X ................... 

• • • • • SET UP ccw•s • • • • • • •••••••••••••••• 

x 
****K"********* * RETURN * * TO RESIDENT * * MODULE * • •••••••••••••• 

x 

•••• • • 
• HS o • • •••• 

NOTINUSE X 
*****HS********** • • *SCAN WORK AREAS• * FOR * * AVAILABILITY * • • • •••••••••••••••• 

• .•. 
JS •• .. .. 

eNO•* WAS*• 
••••*• CORE •* 

•.AVAILABLE•* .. . . . ... 
• YES 

x 
***•*KS•********• • • •SET USAGE COUNT• * TO ONE. MOVE * * DATA TO AREA * • • • •••••••••••••••• 

292 DOS QTAM Program Logic Manual 



Chart T3. Terminal Test Module for IBM 1060 

I JLOT32 l 

. ................................... . . . * 1060 TERllUN.aL TEST MODULE * . . 
+(TYPE B LOGICAL TRANSIENT ROUTINE) * 
• • ..................................... 

••••e2••••••••• . . 
• $$801060 • . . ............... 

x ... 
C2 *• ... .. 

NO •·* IS *• 

x 
****•C3********** . . 
* SET • 

• • • • • • • • •. • • • • • • • •*• THE HEADER • t 4 FLAG FOR THIS • 

x 
•••••01•••••••••• . . 
t SET t 
+NO-TEST SIJlllTCH t . . . . ................. 

x 
*'***Elttttttttt 

t RETURN t 
t TO RESIDENT t 
t MODULE t ............... 

GETAREA X 
... t+Fttttttttttt . . 
tSC'AN 110RK AREAS+ 
t FOR t 
t AVAILABILITY * . . ................. 

*• 'JALIO •* .. . . .. .. 
t YES 

. .. 
02 •• .. .. 

ONE • t *• 
••••*• FOR~AT •* .. . . .. . . 

*· ... 
t ZERO 

x 
tttttE2tttttttttt 
tCClNVEAT + NOVE t 
t ADDRESSING t 
+CHARACTERS FROM+ 
t MESSAGE TO t 
t BUFFER t ................. 

. . 
••••••••••• x. 

x .•. 
F2 *• 

•* IS *• 
• NO • • BUFFER *• 
• • • • • • *• USABLE FOR • * 

•· cc••s ·• .. . . .. .. 
• YES 

* CASE • . . . ............... . 
••••••••••• x. 

x .•. 
03 •• .. . . 

.+ MESSAGE *• YES 
*• SWITCH TEST •*••••••••••••••••••••••••••••••••••••••••••• • .. .. ... .. .... 

• NO 

.............. 
.•. 

E3 *• .. . .. 
•* *• YES "' 

•.COMPARE TEST •*•• • ••• .. .. .. .. . ... 
• NO 

x ... 
F3 *• 

•* IS *• 
•* THIS *• YES 

*• PATTEFIN IN •*• • • ••• 
*• USE •* .. . . ... .. 

• NO 

x 
COMPARE •* • 

E4. *• .. .. 
•* JS *• NO • 

•.COMPARE DATA •*•••••••• ••••••••X• 
*• OK •* . . .. . ... 

* YES 

x 
*****F "********** . . 
* Sf" T UP * * VAL 10 CONPARE * 
* MESSAGE * . . . ............... . 

. . 

.......................... x • 

. . . . . . . . ... . . . .. . . . . . . . . . . . . 
x ... 

G2 *• .. .. 
•* lllAS *• YES • 

*• CORE • *• •• • • • 
•.AVAILABLE•* .. . . .... 

• NO 

• x ••••••••••• 

DEFER ): 

x 
*****G3********** . . 
*SC.Ah •CAI<. AREAS• 
* FOR • * AVAILABILITY • . . ................. 

... 
H3 *• .. .. *****H2********** 

•SAVE POINTERS. * 
*FLAG THAT THIS * * IS A DEFERRED * * REQUEST ANO * * FREE AREASe * ................. 

• NO •* •AS * • 

x ••••J2••••••••• * RET\JRN * * TO RESIDENT • * MODULE * ............... 

• • • • • • * • CCRE •* 
*•AY.AlLAELE•* .. . . . ... 

* YES 

x 
•••••J3•••······· . . 
*SET USAGE COUNT• 
* TO ONE. MOYE • * OATA TO AREA + . . ................. 

x 
•••••G4********** . . 
• I-UP * * U~A<>E- COUNT * . . . . . ............... . 

• ........... x. 

SET CC Ill X 

***••H4********** . . 
* :Sl: f UP DA TA * * CCW FOR THIS * * f>A fTERN • . . . ............... . 

MSGSlllTCH X 

***•*G5•••••***** . . 
* SET UP * * FOR MESSGAE * * SWITCH * • • . ............... . 

. . 
• x ••••••••••••••••••••••••• 

x 
•••••J4••········ . . . . 
• :SLI UP CC•'S * . . . . . ............... . 

x 

····~-········· * JUIURN • * TO Rl:SIDENT * * MOllULE • ............... 

QTAM Charts 293 



Chart T4. Terminal Test Module for IBM 2848/2260 

J JLCT521 

. ................................... . . . * 28.8/2260 TERlll!INAL TEST NODULE * • • UTYPE B LOGICAL TRANSIENT ROUTINE) * 
• • ..................................... 

****B2********* • • * SSBQ2260 * . . ............... 

. .. 
C2 *• .. .. 

. ........... . 
x .•. 

C3 *• .. .. 
• * •. YES YES •* REQUEST *• 

••••*•ADDRESS TEST • * *•WRITE-AT-L INI:: •*• •• •• ••••• • •• ••• •• •• • •••••••• ••• •• •••• • • •••• .. .. .. .. .. .. 
* NO 

x .•. 
02 •• . .. .. 

XYES •* *• 
•• ••*• FORMAT ONE • * .. .. .. . . .. .. 

* NO 

x 
*****E2********** * CCNVERT * 
t ADDRESSES * * ANO PUT IN * 
t BUFFER * . . ................. 

. . 
• • ••• • • •• •• x. 

x . .. 
F2 *• 

•* ls •• 
NO •* BUFFER *• 

*• TEST •* " .. . . . ... 
• NO 

x .•. 
03 •• .. . . 

•* REQUEST + .. YES • 
... ACORESS TEST •*•••••• .. .. .. . . .. .. 

• NO 

x .•. 
E3 +. .. .. 

REQAODR X 
*****04********** * MOVE MESSAGE * * TO INPUT. * 
•CONVERT DC + OS* * ADDRESSES FOR * * MESSAGE. * . ............... . 

•* riitESSAGf_ *. YES • 
*• SWITCH TF.ST •*•··••••••••••••••Xe .. .. . .. . . .... 

* NO 

LINEA.DOR X •••••os•••••••••• . . 
* ADJUST * * DATA POINTER * * AND COUNT * • • . ............... . 

. . 
••••••••••••••••••••••••• x • 

x .•. 
F3 + .. 

············· x 
COMPARE •*• 

F4 *• .. ... .. 
•* +,. YES • •* IS *• NO • 

• • • •,. • • • • • • • • • • • ••* • USABLE FOR • * *•COMPARE TfST •*•••••• *•COMPARE DATA •*••••••••••••••••Xe 

GETAREA X 

*• CCII• S • * .. . . .. .. * YES 

TESTLINE X 
tttttG2********** . . 
t SET t 

.. .. .. . . . ... 
* NO 

x .•. 
G3 *• 

•* IS •* Tt<IS +. YES 

*• OK •* . . .. . ... 
* YES 

x 
*****G4********** . . 
* SET UP • 

*****GI********** . . 
4'SCAN lllORK AREAS* * FOR t * AVAILABILITY * . . ................. t FLAG FOR THIS t *• PATTERN l N • • • • • •• • * VAL 10 COMPARE * 

.•. 
Hl * • .. .. 

t CASE • . . ................. . . 
••••••••••••• x. 

•* WAS * • YES • 
*• CORE •* •• •• •• ••• •• • •• • • •• •" • •• •• • • •• •• • 

•.AVAILABLE.• .. .. .. .. 
* NO 

.x ••••••••••• 
DEFER X 

*• USE .. . . .... 
• NO 

*****H3•ttt+ +••+• • • •SCAN WURK ARI AS+ 
• FOR + * AVAILABIL (TY . ................. 

x ... 
J3 •• .. **'**-*J ••••••••••• 

•SAVE POINTERS, * 
*FLAG THAT THIS * 
• IS A DEFERRED * • NO •* WAS + • 

* REQUEST ANO * 
* FREE AREAS. * ................. 

x 
....... K 1********* * RETURN * * TO RESIDENT * * MODULE * ............... 

• • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • •*• CORE • * 
*•AVAJLABl.E.• .. . . . ... 

+ YES. 

x 
*****K3•••••• •••• . . 
*SET USAGE COUNT* 
*TO ONE. ~OVI * * DATA TO AR[A * . . ............ ..... 

294 DOS QTAM Program Logic Manual 

* MESSAGE * . . . ............... . 
. . 
• .......................... x • 

x 
*****H4********** • • 
• 1-UP * * USAGE COUNT * • • • • ................. 

x 
*****HS********** • • * SET UP * * FOR MESSAGE * * SWJ TCH * . . . ............... . 

. . 
• •••••••••• x.x ••••••••••••••••••••••••• 

x 
•••••J4••········ . . . . 
• SET UP ccw•s • . . . . . ............... . 

x 
****K4********* * RETURN * * TO RESIDENT * 

* MODULE * . ............. . 



/( 

Chart T5. Terminal Test Module for IBM 2740 

. ................................... . . . * 2740 TER"41NAL TEST MODULE * • • UTYFE B LOGICAL TRANSIENT ROUTINE} * . . ..................................... 

GETAAEA X 

*****CZ********** . . 
•SCAN llOAK AREAS+ 
+ FOR + 
+ A\/AlLABlLITY + • • ................. 

x .•. 
02 •• .. .. 

NO • + WAS *• 

++++83********* • • • sseo2?•0 • . . ............... 
x ... 

CJ *• 
•* IS *• 

• NO • + BUFFER *• 
• • • • • ••• uSAl!LE FOR •* 

•· ccw•s ·* .. .. .... 
+ YES 

x 
+++++03********** . . 
+ SET • 

• • • • • • • • • • • • • •• • • • •• CORE •* • FLAG FOR THIS * 
+.AVAILABLE.• .. .. .. . . 

* YES 

• c.-,sE • . . . ............... . 
• x ••••••••••• 

. . 
••••••••••••••••••••••••• x • 

DEFER X 

*"**E ••••••••••• .. SAVE POINTERS. + 
+Fl.!AG THAT THIS + 
+ lS A DEFERRED + 
+ REQUEST ANO * 
+ FREE AREAS. * .................. 

x 
+.+++Fl********* + RETURN + * TO RES lOENT + 

* MODULE * ................ 

x ... 
El *• .. .. 

•* MESSAGE *• YES 
*• SWITCH TEST •*••••••••••••• • •••••••••••••••••••••••••••••• .. .. .. .. . ... 

• NO 

................ 
x .•. 

F3 *• .. .. 
•* *• YES • 

•.COMPARE TEST •*• • • ••• .. .. .. . . .. .. 
• NO 

x ... 
GJ *• 

•• 1~ •• 
NO •* TH IS *• 

x 
COMPARt •*• 

F4 *• .. .. 
•* IS *• NO • 

*.COMPARE DATA •*• • • • • • • • • •••••••Xe 
*• OK •* . .. .. . .... 

* YES 

x 
•••••G4•********* . . 
* .,ET UP * 

MSGSllllTCH X 
*****GS********** . . 
* SET UP * 

•• •• ••••• • •• • ••• • • *• PATTERN IN •* * VAL ID COMPARE * * FOR MESSAGE * 

x 
****•H2* •******** . . 
*SCAN 'llORK AREASt: 
* FOR * * AVAILABILITY t: . . ................. 

x .•. 
J2 *· •• *• 

• NO • * WAS *• 
• •• • • • •• CORE • * 

•.AVAILABLE•* .. . . .. .. 
* YES 

x 
*•***K2********** . . 
*SET USAGE COUNT* * TO ONE11 fl\OYE * * DATA TO AREA * . . ................. 

*• USE •* .. .. .... 
• YES 

x 
*****HJ•••••••••• . . 
* 1-UP t: * USAGE COUNT * . . . . . ............... . 

* MESSAGE * . . ................. * SWITCH * . . . ............... . 

• x • 
• • ••••• •• • • x.x ...................................................... . 

x •••••J3••••······ . . 
• SET UP ccw•s • * BY FEATURE(S) * * ON TEAflllNAL * . . . ............... . 

x 
••••K3********* 

t: RETURN * 
* TO AES ICENT * 
* MO CU LE * ............... 

QTAM Charts 295 



Chart WA. Audio ERP Message Writer Routine 

****A2********* . . 
* IJLQWA * • • 
*************** 

x 
*****B2********** * GET ALCB * * AD DRESS FROM * 
* INFORMATION * * BLOCK * • • 
***************** 

x 
*****C2********** . . * GET LOGICAL * 
* UNIT ORDER * * OF THE LINE * • • 
***************** 

x ... 
02 *· *****03********** • * AUDIO *• * SET UP THE "' 

•* ERP *• NO * THRESHOLD *· MESSAGE •*••••••••X* ERROR 
*• CODE .. * * COUNTERS *· . * * MESSAGE * 

*· . * ***************** *YES 

x x 
*****E2********** *****E 3********** * * * • * SET UP THE * * GET CCB * ACCURATf ERP *••••••••X* ADDRESS Of * MESSAGE * * SYSLOG * 
* * * • 
***************** ***************** 

x 
**F 3******* 

*****EXCP**** * WRITE ON * 
•SYSTEM CONSOLE. * . . . . 

*********** 

x 
****G3********* . . 

* RETURN * . . 
*************** 

296 DOS QTAM Program Logic Manual 



Chart W1. Message Write Routine (Transient) Phase 1 

****A 1 ********* • * * lJLQWl * • * 
*************** 

x 
. *· ·*· Bl *. *****BZ********** B3 *· 

·* *· * * ·* *· ·* ERP *· YES * * ·* SENO TO *• NO 
*• MESSAGE •*•••• •••• X*SET UP MESSAGE *• ........ X*. OPCTL •*••. •• •••• ••• .• •••• 

*· ·* * * *.TfRMINAL ·* 
*· ·* * * *· ·* *. ·* ***************** *· . * * NO * YES 

x 
. *· Cl *· **CZ******* . * *. >;. * ·* MESSAGE *· YE:S * FETCH PHASE * *· NUMBER OVFR •*•••• •••• X* 3 * 

*· 10 ·* * * *· . * * * *· . * *********** * NO 

; 
*** **C3 ********** *SFT l_IP Tn 'SEND * 
* MESSAGE TO * * OPERATOR * * CONTROL * * TFRMINAL * 
*** ************** 

x 
*****C4********** * • 
*Sf-1 UP TO SENn :i.: * MESSAGE TO * 
*SYSTEM CONSOLE * 
* * ***************** 

: x .......................... : 
x x 

**Dl******* ******Cl');*********** • * * FETCH PHASE * 
• 2 * ~ XC P 

* * * * *********** 

x 
** **E3 ********* * RETURN Fl * 

* CALLER * 
* * 

** * *** ***** **** 

QTAM Charts 297 



Chart W2. Message Write Routine (Transient) Phases 2 and 3 

298 

****A2********* 
* * * IJLOW2 * * • 
*************** 

x 
*****B2 ********** 
* * * S!=T UP ERROR * * MESSAGE * . . . . 
***************** 

x 
* * ****C 2** ** ******* EXC P 
*---------------* 

W~ITE MESSAGF 
* TO SYSTEM * 

CONSOLE 

************* 

x 
**D2******* * WAIT * 

*COMPLETION OF* * WRITE * * OPFRATION * 
• * 
*********** 

x 
**E2******* . . 

• * * CAf\lCEL JOB * . 
• * 
*********** 

DOS QTAM Program Logic Manual 

****A4********* 
* * * IJLOW3 * . . 
*************** 

x 
*****84********** . . 
* SET UP ERROR * * MESSAGE * . . 
• * 
***************** 

x 
******C 4**** ******* 

fXCP 
*---------------* 

WRITF Ml=SSAGE 
* TO SYSTFM * 

CONSOLE 

************* 

x 
**D4*****.,..* * WAIT * 

*COMPLl=TION 01=* 
* WRITE * 

OPERATION * 
• * 
*********** 

x 
**F4******* • * 

* * * CANCEL JOB * . . 
• * 
*********** 



Chart XL. QTAM cancel Routine (Phase 1) 

NO 

Al---~ 

$$BQCNCL 

C2:---~ 
MCP FETCH 

NO 

SEARCH STCB 
CHAIN OF ITEM 
WAITED ON FOR 
THE FULL STCB 

Gl--'---~ 

REMOVE STCB 
FROM CHAIN, 
SET TO 
INACTIVE 
STATUS 

HJ-~--

LINK STCB TO 
BOTTOM OF 
READY QUEUE 
NEXT USAGE 

YES 

YES 

$$BQCNCM 

H2 FETCH 
$$BEOJ3 

K2--'---
REMOVE BRB 
FROM DISK 1/0 
OR ACTIVE 
BUFFER 
QUEUE 

YES 

E3 

E3--'---

ACCESS PQ/DQ 
DTF FROM 
VECTOR TABLE 
CHAIN 

REMOVE THIS 
DTF FROM 
CHAIN 

B4--'---

ZERO QSTL IN 
DASO PROCESS 
QCB (STOPS 
MSG TRANSFER) 

G4-
SET DASD
PROCESS QCB 
QNRA FIELD TO 
FIRST UNPROC 
HOR IN CORE Q 

K4----
REMOVt LCB 
FROM DFST
INATION QCB'S 
SOURCf LCB 
CHAIN 

B5--'---

GET AOOR OF 
BUFFER IN 
CORE QUEUE 

ADD COUNT 
OF UNPROCESSED 
MSGS TO MSG 
COUNT IN DASD
PROCESS QCB 

BUMP COUNT 
0 F UNPROCESS
ED COMPLETE 
MESSAGES. 

QTAM Charts 299 



Chart XM. QTAM Cancel Routine (Phase 2) 

A3-----...,. 
$$BQCNCM 

ACCESS 
PQ/DQ DTF 
FROM VECTOR 
TABLE CHAIN 

SET CANCEL 
FLAG IN PIB 
FOR THIS MPP 

300 DOS QTAM Program Logic Manual 

REINIT 

F4--'----, 

REINITIALIZE 
QTAM READY 
QUEUE IN 
SUPERVISOR 

LOO PX 
G4--'----, 

ZERO QTAM 
RD IN 

COMMUNICA TIO 
EGION 

J4 FETCH 
$$BEOJ3 

/ 

/ 



Chart Yi. 

'ENTRY FROM 
SUPERVISOR 

Bl---~ 

IJLQTA 

Cl PCI, 

WTTA Line Appendage (Part 1 of 3) 

~~~~·l~~~N.->'N_O"'-------------. 

,~~F

DI •CCW

~
COUNT

EQUALS
RESIDUAL
COUNT

J:
El INTERRUPT
CCW THE FIRS

READ
ccw

YES

NO

NO

E2
SUPRESS PCI
CONDITION
AND RETRIEVE
THE REAL
I NTERU PTED CCW

F2

F3
SUPPRESS PCI IJLQLA
CONDITION

B4---~

CHECKID

E4

IDENT OK

NO

F4
ERROR
RETURN

cs ___ ~
NORMAL
RETURf~

D5----~

>-N_O __ "'iGET ADDRESS OF

BREAK IDENT CCW l

YES

'-----------' ®
E5---~

NORMAL
RETURN

QTl'.M Charts 301

Chart Y2. WTTA Line Appendage (Part 2 of 3)

NO

Al---
TSTSEN

SUPPRESS
TRANS ERROR
(NORMAL
CONDITION)

Kl_~--._
RETURN TO
IJLQEP

A2-----i
IJLQl.A

INCREMENT
DATA CHECK
COUNTER

H2~--'---~

RETRIEVE
THE I.AST
CHARACTER
RECEIVED

'ENTRY FROM
IJLQEP TO
INTERPET
SENSE BYTE

YES

CLEAR
HALTIO

.fl.AG

B4---L--....,

MOVE WRITE
LETTERS
SHIFT CHANNEL
PROGRAM

C4----~

GET RESTART
ADDRESS OF
READ CHANNEL
PROGRAM

D4----.....

GET RESTART
>-----o.1 ADDRESS OF

WRITE CHANNEL
PROGRAM

TACO NT
EJ----~

WRBRK
E4----~

SAVE ADDRESS
OF INTERRUPTED ~-'-~
ccw

F3 /DENT
EXCHANGE YI·,

TO BE '"'"''-'--...i

1
TESTCHAR

HJ
WRU I.AST

CHARACTER
RECEIVED

~·
NO

GET ADDRESS
OF WRITE
BREAK CCW

F4----~

GET START
ADDRESS OF
/DENT EXCH
CHANNEL
PROGRAM

SET EQT
FLAG ON,

302 DOS QTAM Program Logic Manual

Y3
BJ

AS----

CLEAR HALT 10
Fl.AG, UPDATE
READ CHANNEL
PROGRAM

RESTART
FS---'----.

STORE
RESTART
ADDRESS IN
LCB

SET
TRANSMISSION
ERROR BIT

Chart Y3. WTTA Line Appendage (Part 3 of 3)

Al---~

ERPPOST

UPDATE
SEGMENT
SIZE IN
PREFIX

NO

*ENTRY FROM
IJLQEPAT
THE RETURN OF
MSG WRITER

YES

NO TEXT

SET EOT
FLAG ON

E2---L---

GET INTERIM
LPS ADDRESS
FOR QPOST

SENDEND
F2 ____ ~

CHECKID YIC4

TACLEAN
C3--L--
SET CLEANUP
CODE IN LCB,
SET BUFFER
STATUS TO
BYPASS HEADER

NORMAL YES
14------4 !DENT

TAPOSTS HI-_,_ __ _

GET LPS
ADDRESS
FOR QPOST

JI-_,_ __ _

SET EQT
FLAG ON

Kl-~-

QSVCPOST

CHECK

ERROR

G2--'----~

SET ERROR
CODE

ERROR
CHECK
!DENT

NORMAL

H3---'---

GET START
ADDRESS OF
WRITE
CHAN. PROG.

YES

TAWRU~
A4 A5 <IN r-<ES AT LEAST

THE FIRST ONE VALID
READ CCW CHARACTER

B4---L--

SET DATA
AND REQUEST
!DENT FLAGS
ON

TAPOST
C4---'---

UPDATE
SEGMENT SIZE
IN BUFFER
PREFIX

t4 ____ _

CHECKID Y1C4

CHECK
!DENT

[

114··

GIT RESTART
ADDRESS OF
KIAD CHANNEL
PROGRAM

ERROR

YES

SET DATA
FLAG ON

C5--'---

GET ADDRESS
OF IDENT.
EXCHANGE
CHAN. PROG

E5----

SET ERROR
CODE, SET
EQT FLAG ON

HS, _ __._ __ _

UPDATE
COUNT
BEFORE
POSTING

NO

QTAM Charts 303

Chart 00. Receive Scheduler Routine

Al---~

RCVSCH

Bl--'-----.

GET POLLING
LIST ADDRESS
FOR LINE FROM
LCB

GET DTF
ADDRESS
FROM LCB

NO

LOC2260
E2-----,

GET ADDRESS
>-Y_ES_--ilOI OF FIRST ECB

GET ADDRESS
OF CURRENT
POLLING LIST
ENTRY

ON ATTENTION
QUEUE

F2--'-----.

REPLACE FIRST
ECB BY SECOND
ON QUEUE

J2-~--.,

TURN OFF
ATTENTION
FLAG IN TERM
TABLE

SET CURRENT
ENTRY POINTER
IN LCB TO TOP
OF POLLING
LIST

REMOVE LCB
FROM READY
QUEUE

G3-....L..---,

SET FKEY = 0

H3~~--

QSVCUNAN

304 DOS QTAM Program Logic Manual

E4-----,

SET FKEY = 3

F4-~-~

QSVCRETN

AS-----,

INDICATE
SECOND
TIME

(~

Chart 01. Send Scheduler Routine

Al

GET ADDRESS
OF DESTINATION
DASO QCB

Hl

PREVENT
DIAL ON
ANOTHER
LINE

MOVEO
INTO
LBSTATE

SET UP REGS FOR
UNAVAIL TO
LINK SEND
SCHEDULER IN
SPECIAL WAITING
CHAIN IN LCB

Jl

QSVCUNAV

SENDSCHA

YES

A2
GET THE ADDRESS
OF THE FIRST LCB
IN THE CHAIN
FOR THE SOURCE
TERMINAL

B2
CLEAR THE IN-
SOURCE CHAIN
CODE IN LOW-
ORDER BIT OF
THE ADDRESS

PUT MESSAGE
POINTER INTO
LCB FOR
DESTINATION

E2 IS

G2
CLEAR LCB
STATUS
INFORMATION
IN CURRENT
LCB

J2
PDATE ADDRESS

OF CURRENT SEG-
ENT IN LCB AND

REMOVE LCB FROM
OURCE CHAIN

K2

REMOVE IN-
SOURCE CHAIN
CODE FROM
DECHAINED LCB

SCREEN
A3

IJLQPS9 10A3

LINK TO
SCREEN IN
DESTINATION

B3
GET RELATIVE
LINE NUMBER
AND DTF
ADDRESS FROM
THE QCB

YES E\~t:iBs
BEEN CHECKED
"'-FOR FREE/

'~~

C0

G3
STORE LCB
ADDRESS FOR
SOURCE INTO
LCB FOR
DESTINATION

H3

SET STATUS
CODE IN
LSTA

K3
RETURN TO
CALLER

NO

INCREMENT
RELATIVE LINE
NUMBER FOR
NlXT LCB

Q4-

r BIT IN
OI G TO
AKI LINE
N:AILABLE

/
G4

~OPOLLED
llNI

NO

K4-

LINK CllRRENT
LCB 10 TOP
OF RI AflY
QULIJI

NO

YES

A5
GET ADDRESS
OF LCB
CORRESPONDING
TO RELATIVE
LINE NUMBER
JN DTF

BS

GET ADDRESS
OF PUB FOR
NEXT LINE

YES

G5

SET SEND
IN POLLING
LIST

NO

J5

CHANGE THE
COMMAND
CODE TO
NO/OP

QTAM Charts 305

Chart 02. End-of-Poll Time-Delay Routine

A2-----..
DELAY

C2--L----,
CALCULATE
INTERRUPT
REQUEST TIME
(POLL INTERVAL
+CURRENT TIME)

02-.....L--~

FIND LCB
PLACE IN TIME
DELAY QUEUE
FOR LCB BY
INTERRUPT
REQUEST TIME

E2'---'-~

INSERT
LCB IN TIME
DELAY
QUEUE

BJR~E=ru~RLN=TO~'
INTERRUPTED
PROGRAM

INDICATE
TERMINAL OFF
TIME DELAY
QUEUE

YES

E3-~--...,

GET ADDRESS
OF
DESTINATION
DASO QCB

F3---'----.

INDICATE THE
SEND
SCHEDULER
AVAILABLE

GET LCB
ADDRESS

YES

C4-----.

PLACE ELEMENT
IN TIMER.
QUEUE

cs•-----..
QSVCDISP

04-----. 05------,
INITIALIZE
REACTIVATION OF

,_ __ ., RECEIVE-SCHED.

REMOVE LCB
FROM TIME
DELAY
QUEUE

H4------,

POST LCB TO
ITSELF AND
PLACE ON
READY QUEUE

J4-----.

SUBTASK FOR
THIS LINE

Fs,-~---.

LINK LCB TO
TOP OF READY
QUEUE TO
RESUME POLLING
IMMEDIATELY

G5·-~---..

QSVCDISP

J3 THIS REMOVE FROM
/ SEND YES CHAIN AND LINK

<...._SCHEDULER I >-----INTO NORMAL
CHAIN OF WAITING SUBTASK CHAIN

SUBTASK

K3 SEND

~CHEDULER
N NORMAL
SUBTASK
CHAIN

YES

NO

K4-----

LINK INTO
SUBTASK
CHAIN

K5---
QSVCDISP

306 DOS QTAM Program Logic Manual

Chart 03. BRB Ring Routine

c ,

D2

REMOVE SEND
SCHEDULER
FROM QUEUE
AND

Gl

RQCONST
Gl

CLEAR PARTIAL
MAKE LCB MESSAGE
AN APPARENT INDICATOR IN
STCB LCB

Hl

SET READ
INITIAL OP
CODE IN LCB

OBTAIN BRB
FROM INACTIVE
BRB IN QUEUE

K2
Kl·ANY

START BUILDING
<::RB'S IN YES BRB/CCW BY NACTIVE

BRB ASSIGNING
QUEUE BRB TO LINE

(' ~o x
/

83

64--1----.
INSERT TIC
ADDR t OP
CODE. RESET
PREVIOUS BRB
POINTER IN LCB

~ ORE POINTER
FIRST BRB IN
GIN LCB

E4·

ACClSS DTF
FOR NUMBER
OF BRl!'S TO BE
ASSIGNED

f4-
INVALlll TIC
ADDR IN BRB TO
INDICAH NO
BUFFI R ASSIGNED
TO BRB

G4 ARE

~ORI BRB'S
TO BE

A\\IGNED

l
GS

REMOVE LCB
FROM READY
QUEUE. GET
POINTER TO FIRST
BRB FROM LCB

HS

GET TIC ADDR OF
FIRST BRB TO LAST
BRB COMPLETING
BRB RING

JS

GET ADDRESS OF
ACTIVE BUFFER
REQUEST QCB
FOR POSTING

QTAM Charts 307

Chart 03 .1.

INITIALIZE BRB
AND LCB FOR
WRITING ON
DISK

DJ-...L--~

GET ADDRESS OF
DISK 1/0 QCB
FOR POSTING

BRB Ring Routine

C2----
CLEAR ERROR
HALFWORD AND
TERMINAL TABLE
ENTRY INDEX IN
LCB

D2--L---

SET LCB CCW
ONTO APPARENT
BRB IN THE LC B

E2-__._ __ _

SET THE RECALL
ADDR IN THE
LCB LOAD

SAVE THE ADDR
OF QTAM SVC
ROUTINE IN
QTAM VECTOR
TABLE

H2-~-~

GO TO QPOST
QWA3

YES

NO

F3-----.

GET NEXT BRB
IN RING

IG3
LINK BRB'S
TOGETHER

LINK ALL BRB'S
ON READY
QUEUE

K3--'--~

QSVCDISP

308 DOS QTAM Program Logic Manual

Chart 04. Active Buffer Request Routine

REMOVE BUFFER
FROM AVAILABLE
BFR QUEUE EC B
CHAIN

GET PARAMETERS
FOR BFR-BRB
ROUTINE

GET NEXT BRB
ON ACTIVE
BRB QUEUE

MAKE PRIORITY
EOLJAL E8

NOTE, BRB IS CODED TO LOOK L!KE A QCll,
IN EFFECT, AN EXIT TO LIFO LINKS
BRB'S TOGETHER

SEE NOTE

QTAM Charts 309

Chart 05. Available Buff er Routine

• •••• •05 •
• 82• ..

•
i •••••62••········ * ACCESS * * FIRST BRB IN *

* ACTIVE *
*BUFFER-REQUEST *
* QUEUE * •••••••••••••••••

x .•.
C2 *•

• *l S BRB *· •* AVAi LABLE *• NU
• (RPRI=2!>5) •••••••••

· · x *· . * ••••• *· . • •ox • * YES * G3*

x ...
.. .

D2 *• *****03**********
.• ··is mis"'·._. Vl::S : REMOVE BUFFEM :

• BKB FOR A •••••••••X* FROM *••••••••
•.DISK READ.* X *BUFFER-REQUf.(,J * X

*• • * * QUEUE * ***** *· . • ••••••••••••••••• *06 •
* NO * 62*

i
•••••£2********** * GET EXCl:-SS *
* COUNT Of * * tJUFfl:kS OVER *
• BRB Is - *
*UEC.REMENT t3Y l *

x .•.
F2 *•

.• *· **** •* MORE *· NO * * *· 8Rl3'S THAN •*••••X* K3 * *· BUFFERS •* * *
•.• • * ****

· · * YES

............. x:
x

*****G2********** * GET ADOR *
*Of FIRST(NEXTI *
BRB IN INACTIVE
*BUFFER REQUEST * * QUEUE *

i .•.
H2 *•

•*ISA •.NO
*• BRl3 IN THE • *• •., • • • • •

• QUEUE • X
*· • • ****"'

• • •QX * * YES * G3*

x •••••J2••········ • • * DECREMENT * * THE COUNT Of * * EXCESS BRB' S * • •
i .•.

.. .

K2 *• *****K3****** ••••
•* IS *• * •

• NO •* THE RRB *• YES * RESTORE * •
••••*• EXCESS •*••••••••X*EXCESS COUNT Of*••••

*.EXHAUSTED.• X * BUFFERS * •• • • * * •. ·* . • •••••••••••••••• • • ••• • • * K3 * . .
••••

..
•

310 DOS QTAM Program Logic Manual

Chart 06. Buffer-ERB Routine

**>!' ~' ~·
*0'· * * .~?* * ~' .

x II<**** I'.?***~'***~,.;,* . .
* r;i:1 Arlllkl;S'.':. * * {IF ~){~K i/ll *
: UlJf Uf :

* * ** * * c:.* ** (• ~'*~' ::-.\'< *

x . ..
Cl *.

•* I\ *· ·* tHU3 FC1 1< ~' .. YI:~ *. 'li ~K :'\[Al) • * , X
*•I~~ Tll='t I • (: X

*. . ;..

x
. *·

**t *
* * * (. ~ ,,
* *

"* * *C 3 ** ic< *~~ *~' *** .
PDS T *

Sl.LtCTE-fJ QCLl *••••••••)(
fl!•l!iHSS IN ORB :

* ** * * * *.O:**** ***~'

. . .
*OX * * G3*
***** x

: YES .•.
.:-of 1,(:¥****** C5 *• * •* BRB *•

CllA!fl! BRB * .•IN DISK I/O•.
!'ii l TOP OF • x•.Q BtFORE W/O ·*
f<! r.,,y UtffUE * *• BUFFER •*

* *· ...
(<>I'-•'*('~~'********* *• • *

• NO

x
1),{ (<, *****fl3********('* (<>')(<(*lllt(<~I******** *****05**********

GO TD AVAILABLE * BFR. RTN .. TO * * FIND OTHER *
*ASSIGN'"1ENT fOR * * BUFFER *

. * *. * * * Gf l *
•*IS Dl{il f-lJk *· YCS * CUNVFRT BKB * * fllllH<. Uf- PUT *

*.PUT fJPlR.AllUt~.('-•·•••••X~' TO A CJCl-3 IN *••••••._)('~' ~·Jl;UlE FROM *
.l•n!C=MI · * TYPt DWfHF * * !YI'! IH.)f)Tf * * • • * * * >:< l fl.Hl E * *· ·* ****************C< (::(t(•(·~·~'*******'il<*** * l'l:d

x
:~· ** * L '2* * * ~' ** ***:
* PJ..f'..CE. LCP * * Au.i:< I l'HO LC.fl * * f'l'G I RO,'\ IHW *
* * ***** **** ** (::~'*** *

x
. *·

!-? *· ***:C-*f-3********** ·* *• * GE.1 AUDH OF *
•* HA~ LIM'. *• Yf:.S *Ir-.AtfIVF. BUFFER*

• GuM- '1-.Lll •••••••••X* fllR REC!UfST 0 *•••• *· kf.A[)Y' •* * l<tLE:ASING *
• · * BUFFER * *. . * ***>I'*******"'***** * !\ill

x ...
:;..:: *· *****(,3********** ·* IS *• *ASSIGN BUffF.R *

•*THf"S FIRSl *• Yf5 * Tll LINE. SET *
• [1,K 1 ~ IN KING •·••••••·X* SlATUS FOK *

•lt<STC=)l • X *ROUTINE BFR TO* *· •* * f.'I/U lRSTA=5) *
*. . * ** *************** • 'u

x ... x
*****~il********** H2 *• ***('*H3 ********** . . * ~tT BKB IOLI:: * •* I~ *•
*f-LAGS (KSTC=3) * NO ·* LINE *• * HlK ASSIGNING *X••••••••*• Rl:CEIVING .. • * HUffFR * J(•.(L~TA=81 •* * tlSl:WH[Rf- * *• •*
*•****•********** *· ·*

x
***** *O'> • * B2* . . .

* Yt:.S

x ...
J2 *·

.*kt:CALL *·
.. YES ·* OPl-RATION *•
••••••*• IN PROGRESS •*

.IKSTC=3) ·
· lBRl:3 · •. ·* * NO

* STORE SEGME:NT *
*SIZE IN BUFFER * * PRHIX !BSSZJ * • •

x
***** *01 * * C3* . .

•

x
*C'<**

* •
* C3 * • *

x
j 11('******•** * ..,~ 1 *

Kf T!J•iq AlH)~ FOR * PlJl ~~IOLJLE IN * * Id(, 14 * * Ii 1'0.,'J 1~CT+l0) *
*~·(<((l'o}l'('I(<****•***

x
-l'I '•*~'**•* * (,() *

*111 1•11! MOUULE *
* I' f\, *

(q'< (- (•" o} « *******•

x
*•*** •05 •
• 82* ..
•

QTAM Charts 311

Chart 07. Interim LPS Routine

***** *01 * * A3* .. .
x

** * **A3 ** * **** >i<• * *LET THE•
* SOURC.E LCB *
*- AlJURESS ff{LJ:-1 * * THf dUfff:R +

l'REF IX *
+' * ~' * >:<•* *"" *>:<* ** * * *
**** *IJ 7 * •
: d3**.X.

**** x
'" * * "'* b3 *** ** ** * * * * SET •
~:C:,C_iURCE- TEKMINAl •
*K!:Y IN ME:SSA(,f· *
Pklf IX FROM Llf1
* fl\JTRY •
'~'~**************"'

·~ 1 * • * C:i •.x. * •
·::*~'*

x
* ** **C. 3 ** * * * * * * (! 1,

? ' * (,ET THF. ~
'~1~[Jl,~l:S'.l OF THI *
* LPS {;UEUE v
;, ~

''*************~'* (
':'*>:'*
*'·~' '/ * • * U3 •.x.
'~ *

x
"'* ***U 3 **>!' *** ¥ ~- * ~-

x
****t3*********

'~ GU * It< SUt-lfKVJS('!< ·-
(J~A3 ('

**************f

312 DOS QTAM Program Logic Manual

Chart 09. Qmover Routine

c

• •••• *09 • * A3* .. .
x

*****A3**********
*Gt"T ADDRESS Of- *
PIB FUR CALLING
4 P!<OC..RAM (,ET *
•AUlJR Of PA~f'N.*
* SAVf. A~EA *

x
"'t:3••········ * ~fl NEW *
,:., t'(Jll L (C) T *
*STATUS IJR SF.T *
* Mi\STfl{ ~WlTCH *
~ OfF *
****"'************

x .•.
(.3 *· • * ••

• >e< ANY * • Nl;
.:o. MU\ll •*•• ••

• .. kU.iUt:.ST l:U.•
*· .•

* YF.S

x
*****L3********** . .
* ~:JVE: *

kfl./Vt:Sf[I} *
Afl1UUNT * . .

"'************'°'*.(:*

:x•... :

x
*"'**[3••······· <,; i';fJ •

~ H1 SUPF.RVISfJM *
* IJXH3 * * ••••••••••••••

QTAM Charts 313

Chart 10. DASD Destination Routine

Al A A4
GET ADDRESS OF PUT HEADER PUT LCB IN
SOURCE LCB, PUT ADDRESS CHAIN INDICATE
DISK 1/0 QUEUE INTO IN IN-SOURCE
ADDRESS IN PREFIX CHAIN
MESSAGE PREFIX

B2 B4

ASSIGN DISK
NO PUT BUFFER LOCATION FOR

ON READY NEXT MESSAGE
QUEUE IN QUEUE

3 C4
INCREMENT NO. PUT ADDRESS OF

F QUEUED MSGS LAST MESSAGE
BY ONE SHOW IN QUEUE INTO
PARTIALLY PREFIX, NEXT
ENQUEUED MSG. ONE INTO QCB

04
PUT NEXT

CHANGE TIC GET ADDRESS OF MESSAGE
COMMAND BRB USED TO READ ADDRESS INTO
CODE TO NOP THIS SEGMENT MESSAGE

FROM DISK PREFIX

El

SET SEND GET ADDRESS YES FLAG IN OF FIRST (NEXT)
POLLING LCB IN
LIST QUEUE

F2

GET SOURCE NO
LCB ADDRESS
FROM BRB

G4

REMOVE GET SOURCE YES
FROM SOURCE TERMINAL
QUEUE OFFSET

H3
SHOW IN BRB NXT GET FIRST(NEXT
SEGMENT ADORES ASSIGN NEXT

SSIGNED PUT LCB IN
SEGMENT IN-SOURCE
ADDRESS NEXT SEGMENT'S CHAIN

DISK ADDR IN BRB

J4
PUT DISK

YES ADDRESS OF
LAST SEGMENT
INTO MESSAGE
PREFIX

K2
SHOW BRB NOT IN
ACTIVE BFR Q PUT K3

NO KS
ECB IN BRB AND ETURN TO CALLE QSVCDISP QX H3
BRB ADDRESS IN
BFR ON ROY Q

314 DOS QTAM Program Logic Manual

Chart 11. GET Scheduler Routine

••••• •11 •
* Al* ..

•
x .•.

A2 *• *****A3********** *****A4********** •* *• • GET AOORESS * * SAVE SOURCE *
•* IS *• YES * OF lCB * * LCB ADDRESS *

•• THI s EXl"E:DI TE.• •••••••• x• CUNT A I NED JN ••••••••• x• PUT DASO •
• • * DTF FOR MS * •PROCESS LCB IN *

• • *PROCESS QUEUES * * PREF IX *
• NO

x
*****B2********** * llE S T-DASD 10 * ·-·-·-·-·-·-·-·-· *LINK TO SCREf::N *
*IN !Jt:STINATION * * DASO RUUTINE *

x
*****C2********** * r.i:: r l\ODRE SS * * m= LCB * * CllNTAI NEO IN * * DTF FOR M!) *
*t'ROC.ESS QUEUt:S *
:rT*. .
• 02 •• x. x •••••02•········· * GET *
*AlWRfSS OF tHl.B *
* FROM CORE * * PROCESS QUE-UE * * nTF * ·········•*******

x .•.
E2 *•

•* IS *·
NO •* tiUFFEK •.

••••••••*•fllGIBLE I-OK •*
X *. 0 I SK • +

***** +.QUEUE.* •uw • •. ·* * A3* * YES ..
•

x ... f2 •. •••••f--3••••······ ·* *· * ~ET FLAG * •* I~ HUFF EK •. YES •TCi SHCJwi BUFfEK *
• fl)K A DI SK •••• ••••• X•I N DISK QUi::UF *

+.OPERATION.+ X * GLT DISK QCB *
· • * FOR POSTING * • . . * ** *************** * NU

x .•.
Gl *•

•* IS *•
YES •* THIS A *•

x ••••• •07 •
• 03• .. .

•• ••• • • •*• t>R10Rl TV •*
X *• ME:.SSAGE •* ••••• *· .•

*OIN • *• •* * A3* * NO •• •
x

x
*****84••········ • • * bET ADDRESS * * OF MS PRO CE SS *
* DTF * • • •••••••••••••••••

x
*****C4********** * GET NUMBER * * OF BUFFfR S TO * * BE FILLED IN *
*ADVANCE OF GET * • • •••••••••••••••••

x ...
04 ••

• •WAS EXACTLY*• NO
• ONE BUFFER •• • • •

+.KEQUESTEO.•
*· .•

• YES

x
*****E4********** * TURN * * OFF FLAG *
+SHOWING BUFFER * * IN 01 SK QUEUE * • • •••••••••••••••••

:x ••..•••••• :

x •••••f4••········ * RESET t * BUFFER COUNT * * WITH *
* DECH.EMHHf() *
* VALUf *

x
*****G4********** * GET *
ADDRESS OF MAIN
STORAGE PROCESS
* QCB FROM Off * * FOR POST ING * •••••••••••••••••

x .•.
H4 *•

•* WAS ENTRY *• YES

"'H2**********
•GET AUhRF.:SS Of * * DASI) PIWCtSS * * UC~ FKO.~ BK0 * * MAKE IT * * AIJllRF.SSABLE * *· FROM OJ SK •*• •••••••

x •••••J2••········ +SNllSCO OlAl* ·-·-·-·-·-·-·-·-· * LINK 111 *
*SFNO SCHEOUlfR *
* ROUTt NE *

x
•••••K.2******•••• * LOAD PRFFIX +
* WITH OISK * • : s~:~~~~~s ~~T !· ... ·· ·
*UISK OPi::RATION *

•APP EN DAGE• X
•• •• ***** *• .. + *DA *

• NO • xx•

x
•07 •
* 03• * • •

•• •

QTAM Charts 315

Chart 12. Return Buffer Routine

***** •12 •
* A3* •• •

x
*****A3********** . .
* INDICATE * * NU BUFFER IN * * ANY QUEUE * • •

x .•.
h3 *· ·* LAST *• ·* TEXT *• YI·-~

ic<.SEGMfNT SENT·*••• •••••
•.WIHI PRI-.• JC

•.CJRITY.* ••••• •. ·* •11 * * NO • Oil'°'

x
*****C3**********
*If'.!CfUASt: COUNT * * Of HUFF ERS * * PlJ:)SIBLE tJN • * TH15 QUEUE ~y * * ONE *

x .•.
03 *·

·* *· . * IS *• Nfl
• THIS LAST ••••.

*• SFGMENT • *
*· •• *· •• * VE-S

x
*****El********** . .
* GET * * AUURESS OF * * SOURCE LCB * . .

x ...
F3 *• . * *· . . * *• NO ll

•.CONVERSATION ·*···.
•. Mnoe • •

· · *· ·* * YES

x .•.
G3 *•

·* *· . • * *· YI""
•.IS IT SE:NOlNG.*•••• ... ·*

· · *· ·* * NO

x
*****H3********** * SET TO * * IU:tNTER • * CONVERSf * * FIUUT JNE • . .
** *"'*************

:x ..•....... :

x
•****J3••········ . .
PUT LPS ADORES.S
*IN BRB AND BRB *
*flN RF.ADY QUEUE * . .

x
*11 •
• 02•
•• .

.. .

316 DOS QTAM Program Logic Manual

Chart 13. End Insert Routine

• 1'3 * * H3• .. .

:x
LIL Hlll<T X

~·****Bi********** * (..(T ADDl-l *
*!If- t:.TIN£XTJ *
* J.IT N. l 'J *
*CLtANtJP/RF-CALL *
'T !JUtUE *
* * *** *. *(!: * *** * * * *

' ...
c ~ * •

• " UUt. <; *• ·* f'lllW HTN. *· NU •
:< 0 HAI/~ IUGHtR •*•• ••

_1-'/.!!UHfTV .
*. . *

*· . * * Yf:'.:-

' * ""'**ld********** , . .
* l N:.t-K f

"
,~l V. 1HJlJT lNE
11,.fD (.)Uhlf.

~<.:< *'~ * **** ******* *

' ''''**"'!' 1 >:<•********
"' '.)1-1 Kl'TURN *

AIJf)K 1 [J THf- *
1'.kANCH THAT

':< t Ml 1-.fif[) THI'}
* !-llhJT I !\II-
(' * *** * * * * * * **** * *

x
****•I'- 3 *4'******** * !Y'.i'1[)lfY BfUll.JCH *
"' IN CALLING * * K~IUTT'lf" WITH * * C!lf'llSTANT IN *
'' THAT KOUTINF *
* * * * * * * ** *** * * * * *

x
* * ** *{d *** *** * * * * -~ [,Vf:l-l.LAY * * ll,/''O'.:>TANT WITH*
(•1\1Jl)K (If IUf\I NOW*
.11- f!1Llll,.,ING NFW (•
* RTN jf\j QUt:Ul *
** ***************

x
****H3********* * t<E: TlJRN *

l ri CAI.LE~ * .

QTAM Charts 317

Chart 15. LPS Control Routine

*****Al**********
GET LCB ADDRESS
* FROM BUFFER *
*AND GET AOORESS*X •••
OF LINE GROUP'S
* DTF *

x
*****Bl********** . .
GET THE ADDRESS
* OF THE USER'S * * LPS PROGRAM * • •

x
*****C 1 ********** * SET EDS REG * * TO END-OF- *
* SEGMENT *
* ADDRESS * . .

x
*****Dl**********
*SET APPL I CABLE *
*TERMINAL TABLE * * ENTRY AND *
*INITIALIZE THE * * SCAN POINTER *

x .•.
El *•

•* ENTRY *•
YES .•FROM RECALL*•
•• •*• AND/OR •*

x
***** •17 * * B3*
* •
*

• CLEANUP •
· · *· ·* *NO

x
·*· Fl *•

.*BUFFER *•
NO • * TO BE *.

••••*• ROUTED TO •*
•.ACTIVATE •*

· · *· ·* *YES

x
*****Gl********** • • * SET SERVICED * * CODE IN *
* BSTA * • •

x
****Hl********* • • * IJLQRW * • •

****Jl*********
• *EXIT TO USER'S *
•• .X* LPS PROGRAM * . .

IJLQIP20 X
*****A2********** • • * GET THE *
* ADDRESS OF *
* THE LPS QUEUE * • •

****A4*********
*EXIT TO USER'S *
* ARU/LPS *
* PROGRAM *

*************** x

x •*• .,;ND
B2*****

****QWAI T****
WAIT FOR NEXT

* EVENT IN THE *
* LPS QUEUE *

83 *• B4 *•
·* •. ·* *·

•* •. YES •* EXCP *·
••• X*. ALCB • • •••••••• X:*. REQUEST • *

· . • •. · • • *· . • *· ·*
*********** *· ·* *· ·* *NO .*YES

x .•. : ARU2 i
C2 *·

·* *· •* AUDIO *• YES •
• ELEMENT •• •••••

· · *· . * •. ·*
*ND

*****C3*****••••• . .
*GET C.CB ADDI<!~<,• * FROM 1112 DC\I +
* BUFFER •
* •
*************• •••

x
*****C.4********** • • * SET ALC.B * * EXCP FLAG *
* OFF * • •

:x :

x
NOTARU ·*·

x
03*** ••

*****EXCP+•••
* START AUD!t1 • • * OPERATION • •••• •••• •• ••••• •••••• •••• ••• X. . .
* •

********* ••

E2 *• **E3*****•"
•* *• *****EXCP••••

·* STARTlO *• YE~ * START DISK •
• ELEMENT •••••••••X* OPERATION •·•••••••••••l••••••••••••••••X•

· · * *· ·* • •
· · *********••

•NO

x .•.
F2 *· **F3*****• •

• * *• ****FETCH••••
•* MSG WTR *· YES * FETCH • •

• REQUEST •••••••••X* TRANS I ENI *·•••••••••••••••••••••••••••X•
· ELEMENT • * MESSAG(•

• • * WRITER •
· · *******••••

•NO

x ...
G2 *• **G3*****•• **G4*******

•* *• ****STXIT•••• ***SETI ME****
•* TIMER *• YES * SET QTAM + *SET TIMER FOR* •

*· REQUEST •••••••••• x•TIMER INTEl<!-\dl'T• •••••••• x• INTERVAL ••• x.
• ELEMENT · * EXIT • * REQUESTED *

· · * • * *
· · ********••• ***********

*Nb

x
·*· H2 *• **H3****• • •

·* *• ****EXCP*••••
.*CHECK PGINT*. YES * WRIT!:: * •

·!'~L~A~~¥s!.·*········x•. c.H~~~b~bN' .• •••••••••••••••••••••••••••• x ..
· · * • *· ·* ********•••

•ND

x
·*· J2 *·

·* *· ****J3•••······
•* PAUSE *• YES * *

• BRB/CC.W •••••••••X* IJLQP/ *
· · * * *· ·* ********•••• ••• •. ·*

*NO

x
. *·

K2 *· **K3****•• •
.•HAL TIO *• ***HALTIU .. ••

: ... ~~.:* ~~QB~~~ *:.~:: x.* H~~rL:~~J * •
· ELEMENT · * * *· •• • ••• ••••••• • •• •••• •• ••• • • ••

· · * • *· .• ******•••·· •

318 DOS QTAM Program Logic Manual

Chart 16. Buffer Recall/Cleanup Routine {Part 1 of 2)

......
•16 •
* Bl* . . .

.....
•16 •
* B2* • • •

IJLQIP23 X IJLUIP22 X
*****Hl********** *****Bl********** * GET * * SAllE REGS * o AUIJR OF * * r Olt CALLI NG *
•utSTINATIUN lo!CB•x •••••••• •KTN. SET RECALL*
• f-OR POSTING * * FLAG IN LCR *
o * * (LSTA=X 1 40'1 0

x .•.
Cl *•

Yl:S •* *•
•••• •.TEXT '.:>EGMENT ·* . ..

*· .•
o NJ

x •••••01••········ * CALCULATE * * SCAN l'TR *
OOFFSET IN Sf-I< -0 * STORE IN BFK O * PRH·IX *

:•..... x:
x ...

••••• •l& •
• 83• •• •

x
*****83********** * GET ADOR OF * * AVAILABLE BFK *
O QCB FOR *
•POST {RELEASING}*
* BUt-FER *
* C3 o.x. x

C3***** • • * ***QPUST*** * * POST BFR TO * * APPROPR.IATE *
* QUEUE *

x
*****03********** . .
* ACCE~S * * NEXT RRB IN * * RING * • •
****(!:************

x .•.
I: l •• *****L2********** E3 *•

YES •* RECALL *•
••• • • •*• fLAG ON IN •* *· LCB •* *· .•

* * • * IS *• * 1U-'40Vl- * YtS ·* BRB AN *• * INSl::RT dLOCK *X••••••••*•ll\ISE-RT BLOCK •* * FR!lM t\RR IUNb * •.fOR PAUSE:.*
* * •. ·*

* NO
***************** •••• * Nil

x .•. x • .•.
Fl * • *****F?**•******* f-3 ••

• * *· * GET * ·* *·

x
*****85**********
• SET •
•BRB SW-INDICATE•
•BRB NOT WAITING•
o fDR BUFFER • • • •••••••••••••••••

x .•.
t5 ••

•* NEXT *•
•* BA.8 IN *• YES

•.&FR-REQUEST Q.•. ••• -·
• ND

ic
*****05********** • • •SET BRB STATUS *
•TD STOP FURTHER*
O ASSIGNMENTS * • • •••••••••••••••••

ic . ..
ES *•

YES •* RECALL *•
••••••••*• FLAG ON lN •*
X *• Lt6 •*

•17 • • ••• * Ol• * NO • * •••• * •16 • • * F5 •.X. • • • ••• x

i ••••• •15 •
* AZ* •• •

NO •* LAST *• * ADUR OF * • * BUFF EK *• NIJ •

*****F5**********
O GET ADDR OF • * lSTCNEXTI RTN • * IN Q *
•ESTABLISHED BY *
* ENDINSRT * •••••••••••••••••

•••*• St::GMENT IN •*
• MESSA(,E · *AlJOl TION.:\L CCW *

IJC8 FOR POSTING . .
• x
.•18 •
• * GJ* ..

•

· ·
* YE!>

x
*****G l********** * SET * * C.Ll::ANUI' ANO *
*INlTlATE COUES *
*IN LCf~ (L5TA) * • • *****************

x
*****H l********** * 11\!lTlALilE *

IC<**********

:x
x

**** • • • c j * . .
••••

• * T(1 SEAKCH RH.6 *
••••• x• RING FnR *

* ASSIGNED * * t:HJFfEKS *

x .•.
J l *.

• * *· .•HAS CLJH.H.ENT*• NU •
· HfK BEEN ·••• •• •• •• ••• •• ••• •• • • • • •••••• •

•.SEH.VlU·U •*
*· .•

* YES

x ...
K.l *· • * J.S *• •* Rl::CALL *• Vl-S

• RES.ULT Df •• •• •• • ••
• POLL ING · X

•.t:KKOI{.• *****
· · * 17 * * NO * Ul*

x
**** . .

* tH * . .

.. .

· ASSil;NED TO•••••••••••••••••••
*• BRB • *

•. ·* * YES

x
*****t.3********** * S.ET BH.8 * * Fl AGS - * * INDICATE NO *
SUFffR ASSIGNEU * TO BRB *

x
*****H3********** . .
* Gl::T ADUR UF *
i~UHER ASSIGNl:O * TO ~Rli * • •

x
• • • F\3 • . .

ic .•.
*****G4********** G5 *•
•-•-•-•-•-•-•-•-• VES •* *• * LINK TD *X••••••••*•RTN IN QUEUE •*
*KOUTINE AT TOP * *• • * * OF QUEUE * *• • *

i
• • * F5 * • •

* NO

ic • •••• •ta •
• 83• •• •

QTAM Charts 319

Chart 17. Buffer Recall/Cleanup Routine (Part 2 of 2)

***** *l 7 * * Rl* * • .
x .•.

Kl *.
• * I~ * • ·* M)(, IN *• YI::)

• f:XPf:DITL ··••••••• *· l'KOCt-SS ·* x
· · ***** *· . :(lo * 18 * * NU * h j*

x
~*Cl*****('* • *
*SJ1vr Kl.GS l~-~ * * 1-~ll•\.1 CALL INC.. * * kOUTINI:: * . .
* ** * * * * * ** *** * ** *
**** *1"7 * . * Lil *. x.
* •
**** x
"'****Ill******>:<***
* SH * * t>l·TH CU_Al-JlJP * * /1•·<1) r.: f_CALL *
Fl/\(,!::, !J,\j lo'! l l ·l
* •
~ **********

x
** * * ''•'t-: l * ** *** * ** (•
* "''- T * * - f.\llTIAlt/.l .(:
*r'kd HJ!< l{~CJl.LL * * ~;~" IHJI< fK.l;f-' * * I) l ~.<.. * "'* * * ""' ~** ** *** * * * *

x
>l'f l********~* * c.rr * * 1\l;1Jrl. tlf Ill ~K *
• I/') Wlb H:R *
•P<,~Til\Jv rn !:'.k! * . .
* * * (< * * ** ***** * * * *

x
*"'*** *I i1 *
* '-•-'* • * .

• * .

***** •l7 * * B3* ..
*

x
';< * ** * l-13 ** *** ** *"' * * &ET * * ADDR Of LAS.I *
'~ :ikR F1)R WHICH *
* BlJFff-R IS • * A~<;JGNfD *
** •>(•• ** *** (<* ***"~ *

x ...
CJ *• • * BOTH *. ·* KECALL - «, 'Ji•

-~.cu ANUP f-LAGS.• ••••••••
•.ON IN LC~.* x

· · ***** * •• * *If, * * YES * r< ~*

x
~* "**li3********.o):
~ St-T DUPL. «
*H~JK BIT IN Hl-~ *
~ PREt--IX :

:~ * * * *** ***** * * * C• *

x
''*~~**l l********\!o. * TURN o-
* UF F •
*f.Lr_ANUP/Rr-CAtL c
~ 1--LA{,') 1111 LCI~ :

-~* t- ** * $ * ******"' "' 9

;
¥«***f3********4-•
* •
* t; ~f~ l OKf REGS
: 14-1 •

>}(<""'**********')•

x
****(:.l*******Oo

* Rf.TURN • * TD CALLF:f.l •
* •

*************00

.. .

320 DOS QTAM Prograrr. Logic Manual

Chart 18. Free BRB Routine

......
•18 •
• 83• •• • :x ..•........

i •••••83••········ * MAKE * * THIS BRB * * INACTIVE ANO * * GET AOOR OF * * NEXT BRB *
x .•.

C3 *·
·* IS THIS *· YES.

•.BRB IN ACTIVE·*••••
.f<,. BRB Q • * X

*· .•
• NO

x
03***** . .

*"'**"'IJPOS l *****
¥ PO.ST LIRB TO *

*INACTIVE BRB *
• 0 •

x .•.
E3 *•

•* ANY MORE *• YES. *· BRB 1 S TO BE •*•••• *• FREED •*
• NO

x
*****F3********** * INITALIZE * * REGS FOR *
*POSTING LCB TO *
*I TS ELF TO FREE * * LINE *

x
G3*****

****QPOST****
FREE LJNE/BFR

*TD OE:ST. Q/BRB * * TO DISK Q *
x

*15 •
* A2* •• •

QTAM Charts 321

APPENDIX A: QTAM QUEUES AND SUBTASKS

QUEUES

ACTIVE-BUFFER-REQUEST QUEUE

QCB: Pr~assembled in the Implementation
module (IJLQIP); labeled IJLQIP71.

Element Chain: Dynamically created. An
element appearing on this chain is an
active Buffer Request Block (BRB)
representing a BRB ring.. The ring is
formed by a transfer-in-channel address in
each BRB pointing to the next BRB. The
element chain, which is distinct from the
ring, is formed by the link address in the
BRBs in the chain. BRBs are posted to this
chain by the BRB Ring, Disk I/O, Line PCI,
and PUT routines.

STCB Chain: Limited to the STCB for the
Active-Buffer-Request subtask.

ADDITIONAL-CCW QUEUE

QCB: Preassembled in the module (IJLQPZ>
introduced through the appearance of the
PAUSE macro instruction in the message
control program; labeled INSERTQ.

Element Chain: Generated in the problem
program on expansion of the BUFFER macro
instruction; the first BRB/CCW is labeled
IJLQISRT. A chain of special-purpose
BRB/CCWs used to schedule and contain
channel commands for the transmission of
idle characters <or any other
user-specified characters>. BRB/CCWs are
requested from this queue by the Pause
routine and are returned by the Line PCI
and Cleanup routines.

STCB Chain: May contain the STCB for the
LPS subtask. Always ends with the STCB for
the Queue Insert subtask.

ARU-SEND QUEUE

QCB: Preassembled in the audio
implementation routine in the Audio Line
App~ndage module (IJLQAA); labeled
IJL,2AA50.

322 DOS QTAM Program Logic Manual

Element Chain: Dynamically created. An
element appearing on this chain is an Audio
Line Control Block (ALCB) requesting an
output operation. ALCBs are posted to this
chain by the audio PUT, ARU-Internal. and
Audio Line End routines.

STCB Chain: Limited to the STCB for the
ARU-Send subtask.

ATTENTION QUEUE

QCB: A full word located in each LCB for
an IBM 2260 Local line group; labeled
IJLQLATN.

Element Chain: Limited to a CCB/ECB
representing a read request (Attention
Interrupt) from an IBM 2260 Local. The
lastelement in the chain is always the
dummy last element, IJLQIP5E.

STCB Chain: There is no STCB chain for
this queue.

AVAILABLE-BUFFER QUEUE

QCB: Preassembled in the Implementation
module (IJLQIP); labeled IJLQIP72.

Element Chain: Generated in the problem
program on expansion of the BUFFER macro
instruction; the first buffer is labeled
IJLQIP92. A chain of operationally-empty
buffers. Buffers are obtained from this
queue as needed and are returned by the
Cleanup, Return Buffer, and Line PCI
routines and the Disk End appendage.

STCB Chain: Limited to the STCB for the
Available-Buffer subtask.

CHECKPOINT QUEUE

QCB: Preassembled in the Checkpoint module
(IJLQCK); labeled IJLQCQCB.

Element Chain: Limited to the checkpoint
element labeled IJLQCECB.

STCB Chain: Limited to the STCB for the
Checkpoint subtask.

c

COMMUNICATIONS-LINE QUEUE

QCB: Formed by the first 12 bytes of the
Line Control Block CLCB) generated in the
problem program on the expansion of the
DTFQT macro for a line group file,. There
is one such QCB for each line defined in
the system.

Element Chain: Limited to a pointer to the
LCB itself.

STCB Chain: May contain the STCB for the
line's Receive-Scheduling subtask and/or
the STCB for the line's Send-Scheduling
subtask (or more than one Send-Scheduling
STCB if separate queues are maintained for
each terminal). Always ends with the STCB
for the Qdispatch generalized
queue-handling subtask.

DASD DESTINATION QUEUE

QCB: Generated in the problem program on
expansion of a TERM macro instruction.
Labeled QUEUEn, where n is a sequence
number reflecting the number of TERM and/or
PROCESS macro instructions previously
encountered during assembly.

Element Chain: The "element chain pointer"
in a DASD Destination QCB is the relative
record number of the header segment of the
first message in the queue of messages -
on the direct access storage device -- for
the destination. In the message chain each
header segment is linked to the next and
the preceding header segment through
internal control fields. Text segments,
which are also on the direct-access storage
device, are linked to each other, and to
the header segment to which they relate,
through self-contained actual DASD
addresses. Buffers containing message
segments are posted to these queues by the
Cleanup and PUT routines.

Note that the relative record number
simply reflects the sequence (1 through n)
in which header segments were encountered.
This number is subsequently converted to a
relative DASD address, which, in turn, is
converted to an actual DASD address.

STCB Chain:
destination
Always ends
Destination

May contain the STCB for the
line's Send-Scheduling subtask.
with the STCB for the DASD
subtask.

DCV BUFFER QUEUE

QCB: Generated in the problem program on
expansion of the BUFARU macro instruction;
labeled as this macro.

Element Chain: A chain of available DCV
buffers generated on expansion of the
BUFARU macro generating the QCB. These DCV
buffers are obtained from this queue as
needed, and returned by the Line End and
Line PCI routines on completion of a 7772
line write operation.

STCB Chain: May contain the STCB for the
7772 DCV buffer subtask when no DCV buffer
is available and one or more audio lines
are waiting for an available DCV buffer.
Generally contains the STCB for the Queue
Insert subtask.

DISK INPUT/OUTPUT QUEUE

QCB: Preassembled in the Disk I/O module
(IJLQDA); labeled IJLQIP73.

Element Chain: Dynamically created. A
chain of BRBs (containing channel command
words) for direct-access read operations,
intermixed with full buffers to be written
onto the DASO. BRBs are posted to this
queue by the BRB Ring, Get Scheduler, and
Available Buffer routines and the Disk End
appendage. Buffers are posted to this
queue by the DASD Destination routine.

STCB Chain: Limited to the STCB for the
Disk Input/Output subtask.

DISTRIBUTION LIST QUEUE

QCB: Preassembled in the module (IJLQDL)
introduced by the appearance of the LIST
macro instruction in the problem program.

Element Chain: Limited to the dummy last
element labeled IJLQIPSF. No element chain
is developed. Elements <message-filled
buffers) related to a distribution list are
immediately transferred to the DASD
Destination queue for the first terminal in
th(' distribution list.

S1~B: Limited to the STCB for the
Distribution-List subtask.

INACTIVE-ERB QUEUE

Q_f~: Preassembled in the Implementation
module (IJLQIP); labeled IJLQIP75.

Appendix A 323

Element Chain: Generated in the problem
program on expansion of the BUFFER macro
instruction; the first such BRB is labeled
IJLQIP95. A chain of BRBs of which the
third and fourth fullwords are effectively
empty. BRBs are obtained from this queue
by the BRB Ring routine and are returned by
the Free BRB routine.

STCB Chain: May contain the STCB for the
line's Receive-Scheduling subtask and/or
the S~CB for the line's Send-Scheduling
subtask (or more than one send-Scheduling
STCB if a separate queue is maintained for
each terminal>. Always ends with the STCB
for the Queue Insert subtask.

INTERIM-LPS QUEUE

QCB: Preassembled in the Implementation
module {IJLQIP); labeled IJLQIP76.

Element Chain: Limited to the dummy last
element labeled IJLQIPSF. Buffers are
posted to this queue by the Line PCI
routine and are immediately transferred to
the LPS queue upon activation of the
Interim LPS subtask.

STCB Chain: Limited to the STCB for the
Interim-LPS subtask.

LPS QUEUE

QCB: Preassembled in the Implementation
module (IJLQIP); labeled IJLQIP77.

Element Chain: Dynamically created. A
chain of empty buffers, to be used for
messages incoming from terminals,
interspersed with message-filled buffers to
be processed by the LPS routines. Empty
buffers are posted to this queue by the
Buffer-BRB routine. Message-filled buffers
are posted to this queue by the Interim LPS
and Line End routines and by the Disk End
appendage.

This element chain may also contain
audio line control blocks requiring
processing of their input messages by the
ARU/LPS routines, or requiring issuance of
an I/O operation, interspersed with 7772
DCV buffers Cif any) requiring issuance of
a disk read operation. These audio
elements are posted to this queue by the
Audio Line End routine.

STCB Chain: May contain the STCB for the
LPS subtask. Always ends with the STCB for
the Queue Insert by Priority subtask.

324 DOS QTAM Program Logic Manual

OPERATOR CONTROL CHNGT QUEUE

QCB: Preassembled in the Operator Control
module (IJLQOC); labeled CHANGE.

Element Chain: Limited to a pointer to the
Operator Control CHNGT QCB itself.

STCB Chain: Limited to the STCB for the
Operator Control CHNGT subtask.

DASD PROCESS QUEUE

QCB: Generated in the problem program on
expansion of the PROCESS macro instruction.
Labeled QUEUEn, where n is a sequence
number reflecting the number of TERM and/or
PROCESS macro instructions previously
encountered during assembly.

Element Chain: Refer to the element chain
description for the DASD Destination QCB.

STCB Chain: May contain the STCB for the
Process Queue's GET-Scheduling subtask.
Always ends with the STCB for the DASD
Destination subtask.

RETURN-BUFFER QUEUE

QCB: Preassembled in the Implementation
module (IJLQIP); labeled IJLQIP78.

Element Chain: Limited to the dummy last
element labeled IJLQIPSF. Buffers returned
from a GET are immediately transferred to
the Available Buffer queue.

STCB Chain: Limited to the STCB for the
Return-Buffer subtask.

TERMINAL TEST BUFFER ROUTING QUEUE

QCB: Preassembled in the Resident Terminal
Test routine {IJLQTT21); labeled TESTQCB.

Element Chain: Limited to the buffers
containing the request for a terminal test.
The buffers are posted to the queue by the
Resident Terminal Test routine immediately
after validation of the test activation
code.

STCB: Limited to the STCB for the Terminal
Test Buffer Routing subtask.

,(·
/

TERMINAL TEST STOPLINE QUEUE

QCB: Preassembled in the Resident Terminal
Test routine (IJLQTT21); labeled ONLTTQCB.

Element Chain: Limited to the buffer
containing the request for a terminal test.

STCB: Limited to the STCB for the Terminal
Test stopline Queue.

TIME DELAY QUEUE

QCB: Preassembled in the Implementation
module CIJLQIP); labeled TIMEQ.

Element Chain: Limited to a pointer to the
Time Delay QCB itself.

STCB Chain: Limited to the STCB for the
Time Delay subtask.

QMOVE QUEUE

QCB: Preassembled in the Implementation
module CIJLQIP) ; labeled IJLQIP70.

Element Chain: Limited to a pointer to the
Qmove QCB itself.

STCB Chain: Limited to the STCB for the
Qmover subtask.

SUBTASKS

ACTIVE-BUFFER-REQUEST SUBTASK

STCB: Preassembled in the Implementation
module (IJLQIP); labeled IJLQIP81.

Program Entry: Enters the
Active-Buffer-Request routine at IJLQIP81 +
6.

ARU-SEND SUBTASK

STCB: Preassembled in the Audio Line
Appendage module (IJLQAA); labeled
IJLQAA51.

Program Entry: Enters the ARU-Send routine
at IJLQAA51+6.

AVAILABLE-BUFFER SUBTASK

STCB: Preassembled in the Implementation
module (IJLQIP); labeled IJLQIP82.

Program Entry: Enters the Available-Buffer
routine at IJLQIP82 + 6 (alternate label
BFRREQ).

CHECKPOINT SUBTASK

STCB: Preassembled into the Checkpoint
module (IJLQCK); labeled IJLQCSTB.

Program Entry: Enters the Checkpoint
routine at IJLQCSTB+6 .•

DASO DESTINATION SUBTASK

S'l'CB: Preassembled in the Implementation
module (IJLQIP); labeled IJLQIP89.

Program Entry: Enters the DASD Destination
routine at IJLQIP89 + 6.

DCV BUFFER SUBTASK

S'l'CB: Preassembled in the 7772 Audio Disk
Appendage module (IJLQAD); labeled
I.JLQAD40.

Program Entry: Enters the 7772 DCV buffer
routine at IJLQAD40+6.

ornK INPUT/OUTPUT SUBTASK

~>'!'CB: Preassembled in the Disk I/O module
(JJLQDA); labeled IJLQIP83.

f!_ogram Entry: Enters the Disk
Input/Output routine at IJLQIP83 + 6.

01 ~>TRIBUTION-LIST SUBTASK

~>'!'CB: Preassembled in the Distribution
l:E;t (IJLQDL) module; located at
J,JLQDL + 8.

!_'..!:ogram Entry: Enters the module at IJLQDL
+ 14.

Appendix A 325

GET-SCHEDULING SUBTASK

STCB: Preassembled in the Implementation
module (IJLQIP); labeled IJLQIP8A.

Program Entry: Enters the GET-Scheduler
routine at IJLQIP8A + 6.

INTERIM LPS SUBTASK

STCB: Preassembled in the Implementation
module (IJLQIP), located at IJLQIP76 + 8.

Program Entry: Enters the Interim LPS
routine at IJLQIP76 + 14.

LPS SUBTASK

STCB: Preassembled into the QTAM
SVC/Subtask Control routine. A full STCB
is initialized by this routine as a record
of entry caused by issuance of a QTAM SVC
in the problem program.

Program Entry: Activation of the LPS
subtask causes the problem program to be
re-entered at the instruction following the
Supervisor call.

OPERATOR CONTROL CHNGT SUBTASK

STCB: Preassembled in the Operator Control
module CIJLQOC); labeled CHANGEl.

Program Entry: Enters the Operator control
routine at CHANGE1+6.

QUEUE INSERT SUBTASK

STCB: Preassembled in the Implementation
module CIJLQIP); labeled IJLQIP8B.

Program Entry: Enters the Implementation
module at IJLQIP8B + 6 -- an unconditional
branch to the Queue Insert subroutine
(QSVCLIFO) in the QTAM SVC/Subtask Control
routine.

QUEUE INSERT BY PRIORITY SUBTASK

326 DOS QTAM Program Logic Manual

STCB: Preassembled in the Implementation
module (IJLQIP); labeled IJLQIPBC.

Program Entry: Enters the Implementation
module at IJLQIP8C + 6 -- an unconditional
branch to the Priority search subroutine
(QSVCPRI) in the QTAM SVC/Subtask Control
routine.

QDISPATCH SUBTASK

STCB: Preassembled in the Implementation
module (IJLQIP); labeled IJLQIP8D.

Program Entry: Enters the Implementation
module at IJLQIP8D + 6 -- an unconditional
branch to the Qdispatch subroutine
(QSVCDISP) in the QTAM SVC/Subtask Control
routine.

RECEIVE-SCHEDULING SUBTASK

STCB: There is one Receive-Scheduling
subtask for each line; the STCB for the
subtask is contained in the third and
fourth fullwords of the corresponding Line
Control Block.

Program Entry: All Receive-Scheduling
subtasks enter the Receive-Scheduler
routine at RCVSCH.

RETURN BUFFER SUBTASK

STCB: Preassembled in the Implementation
module CIJLQIP); labeled IJLQIPBB.

Program Entry: Enters the Return-Buffer
routine at IJLQIP88 + 6.

SEND-SCHEDULING SUBTASK

STCB: There is one Send-Scheduling subtask
for each line or terminal, depending on the
queuing technique selected by the user.
The STCB for the subtask is contained
within the third and fourth fullwords of
the QCB for the corresponding DASO
Destination Queue.

Program Entry: All Send-Scheduling
subtasks enter the Send-Scheduler routine
at ENQUEUE.

/

TERMINAL TEST BUFFER ROUTING SUBTASK

STCB: Preassembled in the Resident
Terminal Test routine (IJLQTT); labeled
TESTSTCB.

Program Entry: Enters the Resident
Terminal Test routine at TESTSTCB+6.

TERMINAL TEST SINGLE STOPLINE SUBTASK

STCB: Preassembled in the Resident
Terminal Test routine CIJLQTT); labeled
STCBKEY.

Program Entry: Enters the Resident
Terminal Test routine at STCBKEY+8.

TERMINAL TEST STOPLINE SUBTASK

STCB: Preassembled in the Resident
Terminal Test routine (IJLQTT); labeled
STPLSTCB.

Program Entry: Enters the Resident
Terminal Test routine at POSTLPS.

TIME DELAY SUBTASK

STCB: Preassembled in the Implementation
module (IJLQIP) ; labeled TIMEEND.

Program Entry: Enters the End of Poll Time
Delay routine at TIMEEND + 6. This subtask
is dispatched when the Time Delay queue
appears at the top of the Ready Queue.

QMOVER SUBTASK

STCB: Preassembled in the Implementation
module (IJLQIP) ; labeled IJLQIP80 .•

Program Entry: Enters the Qmover routine
at IJLQIP80 + 6. This subtask is
dispatched when the Qmove QCB appears at
the top of the Ready Queue .•

Appendix A 327

APPENDIX B: QTAM CONTROL BLOCKS

THE QUEUE CONTROL BLOCK (QCB)

The QCB, as used in QTAM, is a control
block containing information on the status
and contents of the queue it represents.
There is one QCB for each queue. The QCB
points to the head of a chain of element
control blocks (ECB) and to the head of a
chain of subtask control blocks CSTCB).

The general form of a basic QCB is:
r---------T-----------------------------1

Olkey I element chain pointer I
~---------+-------------------~--------~

+4lpriority I link address I
~---------+-----------------------------~

+81 I STCB chain pointer I
l--~------i _____________________________ J

Typical DSECT (IJLQQCS1B0):
r---------T-------------------~--------1

0 I QKEY I QEBC I
~---------+-------------------~--------~

+4IQQPR I QLNK I
~---------+-------------------~--------~

+81 I QSTC I
L---------i-----------------------------J

Note: All DSECT names have the four
character prefix IJLQ.

Contents:

Key CQKEY): A numeric value Cl,2, or 3)
indicating the status of the queue.

1--QCB is not on the Ready Queue.

2--QCB is on the Ready Queue and its
highest priority subtask is ready for
activation.

3--QCB is on the Ready Queue, but its
highest priority subtask is waiting for
an element and cannot be activated.

Element Chain Pointer (QEBC): The address
of the first element control block in the
element control block chain for the queue.

Priority (QQPR): Priority of the queue the
QCB represents. This is the search
argument for linking the QCB into its
proper relative position (by priority) on
the Ready Queue.

Link Address (QLNK): The address of the
next item on the Ready Queue. This field
is meaningful only when the QCB is on the
Ready Queue.

328 DOS QTAM Program Logic Manual

STCB Chain Pointer CQSTC): The address of
the first STCB on the STCB chain for the
queue.

THE ELEMENT CONTROL BLOCK (ECB)

An element control block represents the
condition of an element. As previously
described, QTAM defines three types of
elements:

1. Buffers

2. Communication lines (represented by
LCBs or ALCBs)

3. Buffer requests (represented by BRBs)

4. 7772 DCV buffers

The first two fullwords of each type of
element form an element control block which
contains control information as to the
current status of the element. The general
form of an element control block is:

r------------T--------------------------1
Ojkey I QCB address I
~------------+--------------------------~

+4jpriority I link address I
l------------i--------------------------J

Key: Always zero when the ECB appears on
the Ready Queue (to distinguish it from a
QCB).

QQLAddress: A pointer to the QCB for the
queue to which the element has been posted.
This field is meaningful only while the
element is on the Ready queue, or is being
handled by the Qdispatch subroutine after
having been encountered on the Ready queue.

Priority: Priority of the element the
control block represents. This field
determines the relative position of the
element when linked into the element chain
of a QCB, or into the Ready queue.
Priority 255 identifies the last element in
a chain; this is a dummy element usable
only as an indication that the end of the
chain has been reached. QTAM controls
element priority as required for internal
sequencing.

Link Address: A pointer to the next
element control block in the chain; the
last element in a chain links to itself.
This field is meaningful only when the

element control block is linked into the
element chain of a Queue control Block or
into the Ready queue.

TRUNCATED SUBTASK CONTROL BLOCK (STCB)

General Form:

r-----------T---------------------------1
I entry I I

Olcode I I
~-----------+------------~~~~~~---------~

+4lpriority I link address I
l-----------~---------------------------J

Typical DSECT (IJLQSTS1B0):
r-----------T---------------------------1

OISKEY I I
t-----------+---------------------------~

+41SSPR I SSTL I
l-----------~---------------------------J

Note: All DSECT names have the four
character prefix IJLQ.

Entry Code: Branch modifier; a numeric
value (a multiple of 2 greater than zero)
added, in effect, to the resolved address
of storage location NRET in module IJLQIP
to provide the instruction address to be
branched to when the subtask this STCB
represents is activated. Commonly appears
in the QTAM assembly listing in the form DC
AL1 (entry - NRET), where "entry" is the
label of the branch address.

Priority: Priority of the subtask the STCB
represents; determines the relative
position of the STCB when linked into the
STCB chain of a queue control block.
Priority 255 identifies the last STCB in a
chain.

QTAM sets the priority value of STCBs
for Send Scheduling subtasks as required to
support the send versus receive priority
specified by the user in the DTFQT macro
for the line group.

Link Address: A pointer to the next STCB
in the STCB chain; the last STCB in a chain
links to itself. This field is meaningful
only when the STCB is linked into the STCB
chain of a queue control block.

FULL SUBTASK CONTROL BLOCK (STCB)

General Form:

r-----------T---------------------------1
I entry I I

Olcode I address of pseudo QCB I
~-----------+---------------------------i

+41priority I link address I
t-----------+---------------------------i

+ 81 I PIB address I
L------~---~---------------------------J

Typical DSECT (IJLQSTS1B0):
r-----------T--------------~-----------1

OISKEY I SQCB I
t-----------+---------------------------i

+4ISSPR I SSTL I
t-----------+---------------------------i

+8 I I SPIB I
l-----------~---------------------------J

Note: All DSECT names have the four
character pref ix IJLQ.

Entry Code: Always zero; this enables the
Exit Select subroutine in the QTAM
SVC/Subtask Control routine to distinguish
a full STCB (representing re-entry to a
program that issued a QTAM SVC) from a
truncated STCB.

Address of Pseudo QCB: This field always
contains the address of the pseudo QCB
labeled QSVCQCB (storage location QSVCRDYQ
minus 8). This enables the Qdispatch
subroutine to properly handle the case
whvre it encounters the full STCB at the
top of the Ready queue.

Prjc}rity: Used for the same purpose as in
a truncated STCB. The Entry Interface
subroutine assigns a priority to the full
STCI\ initialized when the DOS Supervisor
ent.c'rs the QTAM SVC/Subtask Control routine
in response to a QTAM SVC. When a full
STCB is inactive, it always has a priority
of 255.

Link Address: Initially contains the
address of the next full STCB in the chain
of full STCBs assembled into the
SVC/Subtask Control routine. Thereafter,
thi!; field is the same as for a truncated
STCB. The last full STCB in the initial
chain of full STCB's is a dummy full STCB
(la he led QSVCSTOP) that links to itself.

PITI i\ddress: When the full STCB is active,
that· is, it has been initialized by the
Entry Interface subroutine, this field
contains the address of the Program
Information Block (PIB) for the program
inti·rrupted by the QTAM SVC. At all other
tim(•:;, it contains the address of QTAM' s
dummy PIB (labeled QSVCDPIB).

Appendix B 329

DTF TABLE FOR QTAM

There are eight different types of files in
QTAM:

Direct Access (DA)

Checkpoint Records (CK)

7772 DCV Vocabulary (AV)

Line Group (LG)

Audio Line Group (LG)

Process Queue CPQ)

Destination Queue CDQ)

Audio output Queue CAQ)

The format of the DTF table for each
type is different and is discussed
separately.

330 DOS QTAM Program Logic Manual

DTF TYPE DA

r-------------T------T-·-----1
•oo• I DRCT I DTBO I DTBl I

r------T------+------+------i
0 04' I DSBO I DSBl I DLUC I DLUO I ·------i ______ i ______ i ______ i
1 08~ 1 DCPA I

r------T--------------------i
•oc• 1 DTB2 I DDAP I

t------+--------------------f
~io• 1 DLTH J DMoD J

r------t----~T-------------i
"14' I DTYP I DSWT I DNME I

t------i ______ J I
•19• I I

I r------T------~
'1c• I I I I

t------T------i------~------i
.. 20• I I DEOJ I

r------+--------------------i
G24' I DFLG I DVEC I

t------i--------------------f
•29• J DFPH I

/ /
(DTFPH table)

/ /

~-------------T-------------f
'1 7C" l DNRF I DDRF I

r-------------f------T------i
'" 80' I DEPT I OCON I DTPC I

·-------------i ______ i ______ i
.• 84" I DXNT I

/ /
(DISK FILE EXTENT AREA)

/ /

I I
r---------------------------i

•110•1 DXNT I
/ /

(CHANNEL PROGRAM AREA)
/ /

I I
L---------------------------J

Note: All DSECT names have the
four-character prefix IJLQ.

Figure 10. DTF Table Format for Type DA

contents:

The format of the DA type of DTF table is
shown in Figure 10.

r------T------T-----------------~--------1
I I Length I I
I I in I I
!Field !Bytes I Description I
~------+------+-----------------~------~~

!The first sixteen bytes are I
!the CCB data incorporated I
!in the DTF table I
I I

DRCT 2 !Residual count. I
I 00 I I I
DTBO 1 !Transmission byte O. I
I 02 I I I
DTBl 1 !Transmission byte 1. I
I 03 I I
DSBO 1 1csw status byte o.
I 04. I
DSBl 1 1csw status byte 1.
• 05' 1

DLUC
• 06.

DLUO
I 07 I

IDCPA
I" os•
I
IDTB2
I' OC'
I
I
I
IDDAP
I I OD'
I
I

DLTH
• 10 1

DMOD
'11'

IDTYP
I '14 I
I

1 Logical unit class. This
byte is always set to
X' 01'.

1 Logical unit order
ex. nnn.) •

I
4 Address of the first CCW inl

the channel program area. I
I

1 Set to X'40' for DA type to!
inticate that the next 1
three bytes contain an I
appendage address. I

I
3 Address of the Disk I

Appendage routine (IJLQDA). I
I

The next fourteen bytes are!
the System Interface Area I
and are common to all DTF I
tables (with the exception I
of the DNME field). I

I
1 The number of double words I

in this DTF table.
I

3 Address of the

1

Implementation
module(IJLQIP).

DTF type code. Codes for
different DTF types are:

I X'50'=DA, CK, or AV
I X'51'=LG
I X'52'=PQ
I X'53'=DQ
I X'54'=LG (Audio)
I I X'SS'=AQ
L------i------i-----------------~--------

r------T------T---------------------------1
I I Length I I
I I in I I
!Field !Bytes I Description I
~------+------+---------------------------~
IDSWT I 1 IDOS system switches. Bit 51
I '15' I I CX"08) is set on to I
I I !indicate that this is a DOSI
I I !Version 3 DTF. I
I I I I
IDNME I 7 !The name of the DTFQT macro
I' 16' I I that caused generation of
I I this table.

I
DNME+71
• 10• 1

1 DASD device code. Codes
for different DASD devices

I
I
I
I
I
I
I
I
I
I I

are:

X'OO'=IBM 2311
X'Ol'=IBM 2314.

End of system Interface
Area.

DNME+81
u lE' I

1 IDASD type.
I

I
I
I
IDEOJ
1 • 21.
I
I
IDFLG

u 24.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

' I 1

' I I
I

3

1

I X'OO'=DASD Message Queues!
I file I
I I
I I
!Address of the user's I
lend-of-job routine I
I I
I I
IQTAM flagso Bits 6 and 7 I
I (X'03') are used by the GETI
!modules. Other flags are
!used as follows:
I
I X"Ol"=Auto Polled lines
I
I x•o4"=Input file
I
I X"08"=0utput file
I
I X"lO=DLBL information has

been initially processed

x•oc•=Input and output
file

I x•2o•=checkpoint flag
I bit. In a type LG DTF
I table, this bit is
I flipped when the LCB data!
I has been collected from I
I the LCBs. I
I I
I X" 40'0 =Separate assembly I
I I
I X0 80"=Switched lines I
I I
I X"80"=Audio flag for PQ I
I type if WU=A 0 MA,RA, or SAi

I I is specified. I
L------i------i---------------------------J

Appendix B 331

r------T------T-----------------~--------1

I I Length I I
I I in I I
!Field !Bytes I Description I
~------+------+-----------------~--------i
I I I
IDVEC I 3 !Address of the QTAM Vector
I' 25' I I Table CIJLQIPSE) •
I I I
jDFPH I 84 !This is a DTFPH table
I" 28' I I wholly included within the
I I I DTF table for type DA.
I I I
IDNRF I 8 !These five fields contain
I thru I I DASD device type constant:;.
I DTPCI I
I I I
jDXNT I 140 !Save area for the extents
1'84' I lofthefileondisk
I I I
jDDCP I 32 !Channel program area I
1•110• I I
l ______ i ______ i ___________________________ J

332 DOS QTAM Program Logic Manual

DTF TYPE CK

r-------------T------T------1
• oo• l DRCT I DTBO I DTBl J

}-------T------+------t------i
•04• I DSBO I DSBl I DLUC I DLUO I

t------i------i------i------i
• 09• 1 ncPA I

t------T--------------------i
• oc• I DTB2 I DDAP I

t------+--------------------i
•10• I DLTH I DMOD I

}------f------T-------------i
'14' I DTYP I DSWT I DNME I

1-------i------J I
'18' J I

I r------T------f
"'le' l I I I

r------T------i------i------f
•20• I I DERQ I

,1-------t--------------------i
'24' I I DDSK I

1-------i--------------------t
"28' I DFPH I

/ /
(DTFPH table)

/ /

I I
}--------------T-------------i

• 7C' I DNRF I DDRF I
r-------------f------T------f

•90• 1 BDPT I ocoN I DTPc J
1--------------i------i------i

0 84' I DXNT I
/ /

(DISK FILE EXTENT AREA)
/ /

I I
1----------------------------f

• 94• I DSCP I
/ /

(CHANNEL PROGRAM AREA)
/ /

I I
1----------------------------i

•Be' I oswA I
r---------------------------f

• CO'' I DWKA I
/ /

(CHECKPOINT WORK AREA)
/ /

I I
l---------------------------J

Note: All DSECT names have the
f"Olir-character prefix IJLQ.

Figure 11. DTF Table Format for Type CK

(\
/

Contents:

The format of the CK type of the DTF table
is shown in Figure 11. The first 30 bytes
of the CK type of DTF table are the same as
those for the DA type of DTF table. with
the exception of the DMOD field.

r------T------T-----------------~--------1

I I Length I I
I I in I I
!Field !Bytes I Description I
~------+------+-----------------~--------i

I I I
DMOD I 3 !Address of the Checkpoint I
• 11' I I routine (IJLQCK) • I

I I
DNME+71 1 DASD device code. Codes I
'lD' I for different DASO devices I

I are: I
I I
I X'OO'=IBM 2311 I
I X'Ol'=IBM 2314
I

DNME+81
• 1E 1 I

I
I
I

DERQ I
• 21 • I

I
DDSK I
"2s• I

I I

1

3

3

I
DFPH I 84
• 20• I

I
I

DNRF I
thru I

DTPC

DXNT

JDSCP
I. 94 I

I
IDSWA
I "BC"
I
IDWKA

8

16

40

4

n

DASD type.

X'02'=DASD Checkpoint
Records file.

Address of the error queue.

Address of IJLQDA60 in the
Disk Appendage module
(IJLQDA).

This is a DTFPH table
wholly included with this
DTF table.

I
I
I
I
I

These five fields contain I
DASO device type constants. I

save area for the extent
information

Channel program area.

I
I
I
I
I
I
I
I

Size of the checkpoint work!
area.

!Checkpoint work area.

I
I
I

I 'CO' I I
L------i------i-----------------~------~J

Appendix B 333

DTF TYPE AV

r-------------------------~,
'00' I DRCT I

~------T------T--------------i
' 0 q ' I I DUNO I I

~------+------i---------~--i
'08' I DAFG I I

~------i---------------------i
'OC' I DIPM I

~------T--------------------i
'10' I DDFL I DMOD I

~------+------T--------------i
'l!J' I DDTP I DSWl I DFIN I

~------i ______ J I
'18' I I

I r------T------T-------i
' le' I I I I I

~------+------i ______ i ______ i
' 2 0 I I I DEOl I

~------+--------------------i
'21J' I DQFl I DVTl I

L------i--------------------'
Figure 12. DTF Table Format for Type AV.

Contents:

The format of the AV type of the DTF table
is shown in Figure 12.
r------T------T----------------------------1
I I Length I I
I I in I I
!Field !Bytes I Description I
~------+------+-----------------~--------i
IDRCT I IJ !Address of the 7772 word I
I' 00' I I table CIJLQWTBL). I
I I I I
IDUNO I 1 !Logical unit order (X'nnn')I
I '05' I I I
I I I I
IDAFG I 1 !Audio flags. Bits 6 and 7 I
I ' 0 8' I I (X' 0 3') are not used. I
I I !Other flags are used: I
I I I X'OIJ'=DCV buffer pool listl
I I specified. I
I I X'08'=Word table I
I I specified. I
I I X'lO'=Logging with time I
I I stamping specified. I
I I X'20'=Initial write (on) I
I I or read (off) I
I I operation. I
I I X'IJO'=Mode conversation I
I I (on) or invitation I
I I <off>. I
I I X'80'=Mode information I
I I <on>. I
L------i------i---------------------------J

331J DOS QTAM Program Logic Manual

r------T------T---------------------------1
I !Length! I
I I in I I
!Field !Bytes I Description I
~------+------+---------------------------i
I I
I 3 Address of the Audio Line I
I Appendage module (IJLQAA). I
I I
IDIPM IJ Address of the I
l'OC' Implementation module I
I (IJLQIP). I
I I
I I
IDDFL 1 Number of double words in I
1'10' this DTF table. I
I I
I I
IDMOD 3 Address of the 7772 Disk I
I'll' Appendage module <IJLQAD). I
I I
IDDTP 1 DTF type code (X' 50'). I
l'l!J' I
I I
IDSWl 1 DOS System Switches. Refer!
1'15' to DA type (DSWT field). I
I I
I I I
IDFIN 7 IThe name of the DTFQT macro!
I' 16' I that causes generation of I
I !this table. I
I I I
I I I
IDFIN+7 1 IDASD device code. Codes I
l'lD' !for different DASD devices I
I !are: I
I I I
I I x•oo~=IBM 2311 I
I I I
I x•o1~=1BM 231q I
I I
I I I
jDFIN+81 1 DASO type. I
I' lE I I I
I I X'04'= DASO DCV Vocabulary!
I I tile. I
I I I
I I
IDEOl 3 Address of the last I
1'21' previous DTFQT file opened I
I in the message control I
I program or address of the I
I user's end-of-job routine. I
I I I
I I I
IDQFl 1 IQTAM flags. Refer to DA I
1'24" !type CDFLG field). I
I I I
I I I
JDVTl 3 !Address of the QTAM Vector I
I' 25' I Table (IJLQIP5E). I
L ______ i ______ i---------------------------J

DTF NONAUDIO TYPE LG

r------T--------------------1
• oo·• I DLsz I DLCB I

~------+--------------------!
'04' I DCUD I DDIO I

~------f------T------T------i
'08' I DBFN I DLNO I DPOL I DDEV I t------+------i ______ i _____ -1
'OC' I DCUN I DLPS I

~------+--------------------i
•10• I DLTH I DMOD I

~------+------T-------------~
'14' I DTYP I DSWT I DNME I r------i ______ J I
1 18• I I

I r-------------1
' lC' I I I

r-------------i-------------i
I 20• I DFLK I

t------T--------------------f
'24' I DFLG I DOCQ I

r------+------T------T------i
'28' I DTHR I I I I

~------+------+------+------!
'2C' I DMCH I DEOM I DEOT I DWTT I r------i ______ i ______ i ______ i
• 30' I I

I I
/ /

(START OF FIRST LCB AREA)
/ /

I I
l---------------------------J

Figure 13. DTF Table Format for Nonaudio
Type LG

Contents:

The format of the nonaudio LG
table is shown in Figure 13.
Interface Area is the same as
DA type of DTF table with the
the DMOD field.

type of DTF
The System
that for the
exception of

r------T------T---------------------------1
I ILengthl I
I I in I I
!Field !Bytes I Description I
r------+------+---------------------------1
)DLSZ I 1 !Size of the LCB. I
I • 00 I I I I
I I I I
!DLCB I 3 !Address of the first LCB I
I" 01·• I I minus the size of the LCB I
I I I I
IDCUD I 1 !Device type code. codes I
1•04• I lare: I
I I I I
I I I X'Ol'=IBM 1030 I
I I I X'02'=AT&T 83B3 I
l I x•o3"=wu Plan 115A I
I I x•o4•=IBM 1060 1
I I x•os•=rBM 2260 remote I
I I x•o6•=IBM 1050 I
I I x• 01• =AT&T TWX I
I I x 1 08•=IBM 2260 Local I
I I x•o9"=IBM 2740 <274A> I
I I x•oA'=IBM 2740 C274c> I
I I x•oB'=IBM 2740 C274D> I
I I x•oc•=rBM 2740 C274F> I
I I X"OD'=IBM 2740 (274B) I
I I x• OE"=IBM 2740 C274E> I
I I X'OF·=IBM 2740 (274G) I
l I x•10•=1BM 2740 C274H> I
I I X'll"=WTTA I
I I I
IDDIO I 3 Address of the Device I/O I
1•05• I module for the line group. I
I l I
IDBFN l 1 Number of buffers needed I
1'08' for each transmission. I
I I
IDLNO 1 Number of lines in the linel
1'09' group. I
I I
DPOL 1 Polling interval in I
"OA" seconds. I

DDEV 1
'0 B0

DCUN 1
• oc•

Device-access field offset
for each terminal table
entry.

Control unit type code.
Codes are:

I
I
I
I
I
I
I
I

x•o1•=2101 I
x•o2•=2102 I

1 x•o3•=2103 I
I I

IDLPS 3 !Address of the user's LPS I
I 'OD' I logic for this line group. I
I I I
IDLTH 1 !The number of double words I
I' 10' I in this DTF table I
l I I
I I (Bytes 16 through 29 form I
I jthe System Interface Area. I
I 1see DTFQT TYPE DA>. I
I I I
IDMOD 3 !Address of the Physical I
I' 11' I I roes module <IJLQRW). I l ______ i ______ i ___________________________ J

Appendix B 335

r------T------T--------------~-~--------1

I I Length I I
I I in I I
!Field !Bytes I Description I
~------+------+---------------------------~
IDFLK 4 !Address of the last I
I '20' !previous DTFQT file opened I
I lin the message control I
I I~~~. I
I I I
IDFLG 1 IQTAM flags. Same as in DA I
I '24' ltype of DTF file. I
I I I
DOCQ 3 Dial out call queue.

I·
I

'25'
DTHR
'28'

IDMCH
I I 2C'
I
I
I
I
I
IDEOM
I' 2D'
I
IDEOT
I' 2E'
I
IDWTT
I' 2F'
I
I
I
I
I
I
I
I

4

1

1

1

1

I

Threshold values for the
error recovery procedures.

First byte=number of
transmissions.
Second byte=number of
data check errors.
Third byte=number of
intervention-required
errors.
Fourth byte=number of
timeout errors.

Number of Mark characters
required before sending an
output message to a World
Trade terminal not equipped
with the Motor-on optional
feature.

EOM signal for world Trade
terminals.

IEOT signal for world Tran<'
I terminals
I
!Flags for World Trade
terminals:

X'Ol'=WRU macro
instruction present
in the Send Header
subgroup.of the LPS

x• 02'=WRU macro
instruction present
in the End Send
subgroup of the LP~;.

X'04'
X'OB' Not used
X'lO'
X'20'=IAM=YES specified in

the DTFQT macro I
instruction I

x··20 1 =IAM=YES specified inl
the DTFQT macro I
instruction I

X'40'=WRU=YES specified inl
the DTFQT macro I
instruction I

I X'BO'=WTTA line indicator I
------~------~-------------------------J

336 DOS QTAM Program Logic Manual

(
r

\"

"

DTF AUDIO TYPE LG

r-------------T-------------1
I 00' I DALZ I DIEL I

r------T------i-------------i
I 04 I I I DFLA I

r------t------T-------------~
'08' I DAFG I DALN I DCLA I

r------+------i-------------~
'OC' I DCUT I DLPA I

r------+---------------------~
I 10 I I DDTL I I

r------f------T-------------~
'14' I DDTT I DSSW I DFLN I

r------i------i-------------~
I 18 I I I

r-------------T-------------~
'le" I I I

r-------------i-------------1
'20' I DEJA I

r------T--------------------~
'24' I DQFG I DVTA I

r------i--------------------~
'28' I DTRH I

r---------------------------~
'k' IW~ l

r---------------------------1
'30' I DOPA I

r---------------------------1
•34• I DLTA I

r---------------------------1
I 38' I DARQ I

r---------------------------~
'3C' I I

r---------------------------~
'40' / /

(START OF FIRST ALCB AREA}
/ /

I I
L---------------------------J

Figure 14. DTF Table Format for Audio Type
LG.

Contents:

The format of the audio LG type of DTF
table is shown in Figure 14.

r------T------T---------------------------1
I I Length I I
I I In I I
!Field !Bytes I Description I
r------+------+---------------------------~
IDALZ I 2 !Size of the ALCB. I
1·00 I I l I
I I I
IDIBL I 2 Length of the input buffer.I
I• 02• I I
I I I
IDFLA 1 3 Address of the first ALCB. I
I I 05. l I
I I I
I DAFG l 1 Audio flags. Refer to AV. I
I• 08 • I type <DA.FL field}. I
I I I
IDALN I 1 Number of lines in the linel
I • 09 • I group I
l I I
IDCLA I 2 Length of the address chain!
I~ OA • I buffer or length of the I
I I informatiollal message. I
I I I
IDCUT I 1 Control unit code I
I• oc• I I x•1o•=rnM 1110 I
I X'72"=IBM 7772 I
I I
IDLPA 3 ?\ddress of the user's I
I •oo• ARU/LPS logic for this line!
I group. I
I I
I DDTL ~- Number of double words in I
1'10" th~s DTF table. I
I I
I 3 Address of the I
I '11' informational address I
I chain. I
I I
I DDTT 1 DTF type code CX' 54'} .. I
I• 14 • I
I I
IDSSW 1 DOS System switches. Refer!
I' 15' to DA type CDSWT field}. I
I I
IDFLN 8 The name of the DTFQT macro
I' H>' I that causes generation of
I this table.
I
IDE.J.A
I • 20 I

I
I
I
I
lDQFG
I • 24'
I

4

1

Address of the last
previous DTFQT file opened
in the message control
program or address of the
user•s end-of-job routine.

QTAM flags. Refer to DA
type (DFLG field}.

IDVTA 3 Address of the QTAM Vector
1'25' I Table (IJLQIP5E}.
L------i------i---------------------------

Appendix B 337

r------T------T---------------------------1
I I Length I I
I I in I I
!Field !Bytes I Description I
~------+------+---------------------------~
I I I I
IDTRH I 4 !Threshold values for the I
1'28' I !error recovery procedures: I
I I I I
I I I First byte=number of I
I I I transmissions. I
I I I I
I I I Second byte=number of I
I I I hang-up operations. I
I I I Third byte=number of I
I I I errors on read
I I I operations.
I I I
I I I
I I I
I I I
I I I

Fourth byte=number of
errors on write
operations.

IDPEA I 4 !Address of the process
I' 2C' I I program entry.
I I I
IDDPA I 4 !Address of the DCV buffer
I '30' I !pool (7772) or address of
I I lthe Implementation module
I I 1<1110>.
I I I
IDLTA I 4 !Address of the line table
I' 34• I I IJLQLTBL).
I I I
I DARQ I 4 I Address of the output Quem' I
,~38' I IIJLQAA50). I
L------i------i---------------------------J

338 DOS QTAM Program Logic Manual

DTF TYPE PQ

r---------------------------1
•oo• 1 DBRB I

I I
•04• I I

I I
•03• I I

I I
• oc• I I

1-------;--------------------i
•10• I DLTH I DMOD I

r------+------,-------------i
'14" I DTYP I DSWT I DNME I

1-------J.~-----J I
'18' I I

I r-------------i
• 1c• I I DAsz I 1-------T ______ J. ____________ ~
'20• I DMXB I DSNC I

1-------+--------------------i
•24• I DFLG I DTRM I

!-------+-------------------~
'28' I DSLB I I

1-------J.--------------------i
'2C' I DPBA I

1----------------------------i
• 30' I DCPQ I

I I
'34' I I

I I
I 38. I I

1----------------------------i
I 3C' I DPNM I

I I
I 40" I I

1-------T-------------------~
'44' I DCNT I DOVA I

1-------+--------------------i
0 48' I DERR I DFAD I

!-------+-------------------~
'4C' I DPDL I DPLK I

1-------+--------------------i
•so• 1 I nsQN I

1-------J.------T-------------i
I 5 4 ' I DAAS I I

1-------T------J.-------------i
"58' I I DSWI I

!-------+-------------------~
• sc• I I DLIN I

1-------J.--------------------i
'60" / DGEL /

/ /

r---------------------------i
• 6C" I DGQC I

/ /
/ /

1--------------.-------------i
• 78. I I DGBR I

1--------------J.-------------i
•1c• I I

L---------------------------J
Figure 15. DTF Table Format for Type PQ

contents:

The format of the PQ type of DTF table is
shown in Figure 15. The System Interface
Area is the same as that for the DA type of
DTF table with the exception of the DMOD
field.

r------T------T---------------------------1
I I Length! I
I I in I I
!Field !Bytes I Description I
1-------t------+---------------------------i
IDBRB I 16 Buffer request block used I
I' oo• I by GET. This field is I
I I subdivided as follows: I
I I I
I l Bytes 1-4=BRB word 1 I
I I I
I l Bytes 5-8=BRB word 2 I
I I I
I I Byte 9=TIC command code I
I I x• 08' I
I I I
I I Bytes 10-12=Address + 2 I
I I of the DASD Process QCB I
I I I
I I I Byte 13=Dummy buffer code!
I I I x•o1• I
I I I I
I I I Bytes 14-16=Address of I
I I I the MS Process Queue LCB I
I I I I
IDLTH I 1 !The number of doublewords I
1'10' I lin this DTF table. I
I I I I
IDMOD I 3 !The address of the I
I'll' I appropriate GET module I
I I (IJLQGR, IJLQGS, IJLQGM,
I I IJLQGA, IJLQGB, IJLQGC, or
I I IJLQGD).
I l
I I
I I
lll/\SZ I
I '1 EI 1
I
I
I
IDMXB
I I 20 I

I
I

2

1

(SYSTEM INTERFACE AREA)

Size of the user-specified
work area. SOWA or
SOWARU(if WU=A is
specified).

Maximum number of buffers
to be chained into this
MS Process Queue (DCPQ).

I ll!>NC 3 Address of the user routine
1'21' jto be entered when no
I !messages are available for
I !this queue.
I I
lllFLG 1 IQTAM flags. same as in DA
1'24' !type of DTF file •
I I
I fJ'l'RM 3 I Address of the user area
I • 25' I that is to receive the
I !source terminal name I
I I (IJLQTTID). TRMAD or LINADI
I t I (if WU=A is specified). I
L ______ J. ______ i---------------------------J

Appendix B 339

r------T------T---------------------------1
I I Length I I
I I in I I
!Field !Bytes I Description I
~------+------+---------------------------i
I I I
I DSLB 1 I LCB status • I
1'28' I I
I I I
IDSLB+l 3 Address of the source LCB. I
1'29' I
I
IDPBA
• 2c•

DCPQ
'30'

DPNM
'3C'

DCNT
• 44•

DOVA
I 45 1

IDERR
I• 4 a•
I
I
I
IDFAD
I I 49'
I
I
I
I
IDPDL
I' 4C'
I
I
I
I

4

12

8

1

3

1

3

1

Address of the previous
buffer used. This field is
initially set to the
address of DBRB.

MS Process QCB.

Name of the process program
entry in the terminal table
in the message control
program.

Count of the characters
remaining in the buffer
from a previous GE.T.

Address of the user routine
to be entered when a
message unit is larger than
the provided work area.

Return code for GET.

X'OO'=No error
X'Ol'=DTF not opened

Address of the user routine
to be entered when no
message is available and
the system is in a
closedown procedure.

Partition Interrupt Key
(PIK) for the partition
containing the last
previous PQ, DQ, or AQ DTF
table opened.

IDPLK 3 !Address of the last
l'4D' !previous PQ, DQ, or AQ DTF
I ltable opened.
I I
IDSQN 3 !Address of sequence number
I '51' !work area.
I I
I !The following fields are
I !generated only if WU= MA,
I IRA, or SA is specified.
I I
IDAAS 2 !Size of user's audio area
1'54' I l<SOWARU).
L------i------i-------·-------------------

340 DOS QTAM Program Logic Manual

I
I
I
I
I

r------T------T---------------------------1
I llengthl I
I I in I I
!Field !Bytes I Description I
r------+------+---------------------------i

I
DSWI I

OLIN
• 5D"

DGEL
• 60"

DGQC
'6C'

I

3

3

12

14

Address of the
user-provided switch byte
(SWITCH).

Address of the user area
that is to receive the
source line name CLINAD).

High priority element
for immediate dispatching.

Combined QCB/STCB.

DGBR I 4 Entry point to imple-
1" 78' I mentation subtask.
L------~------i---------------------------

/
I
'"--

c .
DTF TYPE DQ

r---------------------------1
'00' I DQCB I

I I
•04• I I

I I
'08' I I

I I
• oc• I I

~------T--------------------f
•10• I DLTH I DMOD I

~------f------T-------------i
'14' I DTYP I DSWT I DNME I

~------i ______ J I
'18' I I

I r-------------i
'lC' I I DASZ I

~-------------i-------------t
'20' I DWAD I

~------T----------~---------f
'24' I DFLG I DTRM I

~------i--------------------t
'28' I DSLB I

/ /

/ /

I I
~------7--------------------i

'4C'' I DPDL I DPLK I
L------i-----------------~--J

Figure 16. DTF Table Format for Type DQ

Contents:

The format of the DQ type of DTF table is
shown in Figure 16. The System Interface
Area is the same as that for the DA type of
DTF table with the exception of the DMOD
field.

r------T------T---------------------------1
I !Length! I
I I in I I
!Field !Bytes I Description I
~------+------+--~-----------------------i
IDQCB 16 !The MS Destination QCB.
11 00 1 !This field is subdivided as

I follows:

I
IDLTH
I' 10 I
I
IDMOD
I~ 11 •
I
I
I

I
I Bytes 1-4=QCB word 1
I
I Bytes 5-8=QCB word 2
I
I Byte 9=Always x•oo•
I
I
I
I
I
I

Bytes 10-12=Address of
the first STCB. This
field is originally set
to IJLQIP8C.

I Bytes 13-16=QCB word 4
I

1 !The number of doublewords
lin this DTF table.
I

3 !Address of the appropriate
IPUT module (IJLQPR. IJLQPS.
I or IJLQPM).
I
I (SYSTEM INTERFACE AREA)
I

count of
I
IDASZ
l"lE'

2 !Save area for
!characters to
I work area.

be moved from!

DWAD
.. 20'

DFLG
1 24 I

DTRM
I 25 I

D~>LB

• 28'

t
4 1save area for address of

!input work area.
I

1 IQTAM flags. Same as in DA
!type of DTF file.
I

3 !Address of the user area
!which contains the
!destination terminal name.
I

36 IMS Destination Queue LCB.
!The last three bytes of
!this area contain the
!address of the DASO
!Destination or Process QCB

I
I
I
I

I !for the current destination!
I I terminal. I
I I I
IDPDL 1 !Partition Interrupt Key I
l'4C' I (PIK) for the partition I
I !containing the last I
I !previous PQ, DQ, or AQ DTF I
I !opened. I
I I I
I DPLK 3 I Address of the last I
l'4D' !previous PQ, DQ, or AQ DTF I
I I I opened.. I
L------i------i--------------~-----------J

Appendix B 341

DTF TYPE AQ

r---------------------------,
I 00' I I

~---------------------------1
• 04• I I

~---------------------------1 •oa• I I
~-----------------------~--t

' oc• I I
j.------T--------------------f

•10• I DDLl I DPAD I
j.------f------T-------------i

•14• I DDTl I DSW2 I DDT2 I
i.------i------i-------------1

~is• I I
~-------------T-------------i

•1c• I I I
~-------------i-------------1

•20• I DASQ I
j.------T--------------------f

•24• I DQF2 I DLNA I
~------i--------------------1

I 28 I I I
/ /

/ /
I 48 I I I

~---------------------------i
'4C' I DLNK I

~---------------------------1
• so·• 1 osAv I

1---------------------------f
•54• I DLMT I

/ /
/ /

~-------------------------~i
'60 .. I DQPA I

/ /
/ /

1-------------T-------------i
I 6C. I l DBRC I

~-------------i-------------1
•10• I I

L---------------~----------J

Figure 17. DTF Table Format for Type AQ

342 DOS QTAM Program Logic Manual

Contents:

The format of the AQ type DTF table is
shown in Figure 17.

r------T------T---------------------------1
I !Length! I
I I in I I
!Field !Bytes I Description I
~------+------+---------------------------i
IDDLl I 1 !Number of doublewords in I
I'" 10' I I this DTF table. I
I I I I
IDPAD I 3)Address of the audio PUT I
I '11 • I I module (IJLQPA) • I
I I I I
IDDTl I 1 IDTF type code (X'55'). I
1•14• I I I
I I I I
jDSW2 1 IDOS system switches. Refer!
1'15' Ito DA type CDSWT field}. I
I I I
DDT2 8 The name of the DTFQT macro!
'16' that causes generation of I

DASQ
• 20'

DQF2

DLNA
"25"

DLNK
., 4C'

4

1

3

4

this table. I
I

Address of the Output queue!
(IJLQAA50) • I

QTAM flags. Refer to DA
type (DFLG field).

Address of the user area
that is to receive the
destination line name
{LINAD).

I
I
I
I
I
I
I
I
I

Address of the last PQ, PQ,I
or AQ type DTF opened in a I
message processing program I

I
jDSAV 4 Parameter for truncated I
1•so• subtask. I
I I I
IDLMT 12 !High priority element I
I" 54' I for immediate posting. I
I I I
IDQPA 14 !Combined QCB/STCB. I
I' 60' I I
I I I
JDBRC 4 !Entry point to imple- I
I • 6C • I I mentation subtask. I
L------i------i--~-----------------------J

/

\.

/

(
I
'"-.._

LINE CONTROL BLOCK (LCB)

r------T--------------------,----------
100' I LSTA I LEOP I

I LKEY I I I I
t------+--------------------i ECB I
I LOPC,I LDAD I I QCB

'04' I LQPR,I I I I
I LRPR I I v I
t------+--------------------t----- I

'08° I LENT I LRSA I v
t------+--------------------t---------

10C' I LSPR I LSLK I
t------i-------------T------i

'10' I LHDR I LSEG I
t-------------T------i------i

I 14 ' I I LNAS I
t------T------i-------------f

'18' I LNAS I LALT I
t------+--------------------f

'1C' I LMPR I LQDT I
r------+--------------------i

•20• I LTPR I LPCI I
t------i--------------------i

'24° I LCCW I
t-------------T-------------i

•29• 1 LEHw I LBCT 1
t-------------+-------------f

I 2C' I LTTD I LDLD I
t-------------i-------------f

'30' I LDTF I
t------T--------------------f

'34' I LWTT I LRST I
t------+--------------------i

'38' I LMCT I LPPT I
t------f------T-------------i

'3C' I LMPL I LDFG I LEOB I
t------+------i-------------i

'40~ I LRLN I LPOL I
t------i------T-------------i

'44' I LSEN I LLAD I
t-------------+-------------i

'48' I LECT I LERR I
t------T------f------T------f

'4C' I LTRE I LDCE I LIRE I LTOE I ._ _____ i ______ i ______ i ______ j

Figure 18. Typical LCB DSECT (IJLQLCBO)
(Part 1 of 2)

r---------------------------1
'50' I LCTR I

t-------------T-------------f
"54' I LCDC I LCIR I

r-------------+-------------i
•59• I LCTO I LCAM I

t-------------f------T------r-----
" 5C' I LRCT I LTBO I LTB1 I t-------------i ______ i ______ i I

I LATN I I
u 60' I LSBO I LSB1 I LLUC I LLUO I I t------i ______ i ______ i ______ f CCB

• 64' I LCPA I I
r---------------------------i 1
t LOCB I 1

"68 1 J LTB2 1 LAPA I V
~------i--------------------t-----

" 6C" I LAST I
t---------------------------i

•70• I LSAV I
I I
t---------------------------i

• 78° I LERC I
I I
t---------------------------f

"Ao• t LSCP I
/ /

(Channel Program Area)
/ /

I I
l---------------------------J
Note: ALL DSECT names have the four
character prefix IJLQ.

f' j qure 18. Typical LCB DSECT (IJLQLCBO)
(Part 2 of 2)

Appendix B 343

Contents:

r------T------T-----------------~--------1

I f Lengthl I
I I in I I
!Field !Bytes I Description I
~------+------+-----------------~--------i
LSTA 1 The status of the line:
I QQI

LKEY
• oo•

I
ILEOP
I' 01•

LOPC
• 04"

LQPR
• 04 1

LRPR
I 04 9

LOAD
• 051

LENT
•os•

I

X'OO'=inactive

X'Ol'=line free

X'02'=partial message
in queue

X'04'=send

X'OB'=receive

X'10'=initiate

x' 20 '=converse

X'40'=recall

1 !Status of communication
lline queue represented by
)this LCB. Key values have
lthe same meaning as for
!other QCB's.
I

3 IIf receiving, the return
!address from the Route
!macro to the next in-line
!instruction in the user's
ILPS. If sending, address
lof the LCB for the
!originating line.
I

1 !Read/Write operation code
!for the current segment of
!current message.
I

1 IQCB's Ready Queue priority.
I
I

1 Response message priority.

3 Disk relative record number
of last correctly
transmitted segment of
current message. When LCB
appears on the Ready Queue,
this field contains the
address of the next item on
the Ready Queue.

1 Entry code (X'12'> for
Receive scheduler subtask. 1

I
Address of the first STCB I
in the STCB chain of the I

I communication line I

LRSA
1·09'

3

L------i------i-----------------~--------J

344 DOS QTAM Program Logic Manual

r------T------T---------------------------1
I !Length! I
I I in I I
!Field !Bytes I Description I
~------+------+--------------~-----------i
I I queue. If the line is to
I I be used for input., this
I I field initially contains
I I the address of the Receive
I I Scheduler STCB (address of
I I this field minus 1) • If
I I the line is for output
I t only, it contains the
I I address of the Qdispatch
I I STCB (IJLQIP8D).
I I
ILSPR I
I 'OC"
I
I
I
I
I

LSLK
·•on•

1

3

Priority of the Receive
Scheduler subtask:

1 = lower than send
Scheduler priority

2 = equal to Send
Scheduler priority

4 = higher than Send
Scheduler priority

Link address field in
Receive Scheduler STCB.

LHDR
1 10•

3 Disk relative record number!

LSEG
I' 13"
I
I
ILNAS
I '16'
I
I
I
ILALT
I "19"
I
I
I
ILMPR
1'19'
I
JLQDT
i • 1c•
I
I

3

3

3

1

3

of the current message I
he.ader. I

I
Disk relative record number!
of the current message I
segment. I

I
Address of the first seg- I
ment of the last message I
received on this line whichl
is to be transmitted. I

Address of the LCB for
another source line
currently sending to the
same destination.

Priority of the current
message.

Address of the QCB for the
destination terminals •
Valid only when receiving.

ILTPR 1 Temporary storage for
1"20' !priority of outgoing
I I message.
I I
ILPCI 3 !Address of last ccw for
I ' 21' . I which a PCI was received.
I I
ILCCW 4 !Address of last BRB/CCW forl
1·•24' I which a buffer was I
I I assigned. I
L------i------i--~-----------------------J

/

c .

()

r------T------T--------------------------1
I I Length I I
I I in I I
!Field !Bytes I Description I
~------+------+-------------------------i
I I
ILEHW 2 communication line I
I• 28' error halfword. I
I I
ILBCT 2 If receiving, contains the I
l'2A' next expected sequence-in I
I number (IJLQTSIN field in I
I terminal table entry>. If I
I not receiving, this field I
I contains the time of the I
I requested interrupt as I
I established and used by the
I End of Poll Time Delay
I routine.
ILTTD 2 Offset from beginning of
I• 2C' terminal table to the
I terminal table entry for
I the source terminal (if
I receiving> or the
I destination terminal (if
I !sending).
I I
ILDLD 2 !Offset (less 18) for cur-
I '2E' !rent entry in terminal list
I !field of distribution-list
I f entry in terminal table.
I I
I I
ILDTF 4 !Address of the DTF table
1'30' ffor this LCB.
I I
I I
ILWTT 1 !Flags for World Trade
1'34' !terminals:
I I

I
I
I

I

I
I
I
I
I
I
I
I
I
I
I

X'Ol'
X'02'
X'04'
x• 08'

Not used

X'lO'=WRU flag
X'20'=Working flag
x• 40 '=EOT flag
X'80'=Halt I/O flag

LRST I
I 35' I

3 !Address of restart ccw.

I
I

LMCT I
1 38' I

I
I

LPPT I
I 39 I I

I
I
I

LMPL I
I' 3C' I

1

3

1

I
I

Count of the messages
received from terminal.

Address of current active
entry in the polling list
for the line.

Scan pointer offset of the
next destination code in

I I message header. I
L-.-----.l.------.l.--------------------------J

r------T------T---------------------------1
I I Length I I
I I in I I
f Field fBytes I Description I
~------+------+---------------------------i
ILDFG I 1 !Flag field for dial line: I
I• 3o' I I I
I I I X'Ol'=destination terminal!
I I I is not currently I
I I I connected to a line I
l I I and an outgoing I
I I I message is waiting I
I I I in queue. I
I I I I
I I I X'02'=line has been I
I I I assigned for dial orl
I I I line is connected tol
I I I terminal. I
I 1 I
I I X'04'=polling or I
I I addressing error hasl
I I occurred; this is a I
I 1 signal to disconnect!
I I the line. I
I I I
I Ll':OB I 2 Address of EOB character I
l"lE' I relative to the address of I
I I the last correctly I
I I transmitted segment of I
I I current message. I
I I I
ILHLN I 1 !Relative line number for I
I' 110• I I this LCB. I
I I I
II.POL 3 !Address of the polling listl
I' 111 • I for this line. I
I ~ I
I L!iEN 2 Sense data from sense I
I • 1111 ' command. I
I
Ll,l\D 2 Line address <used for HIO
"46" in Send Scheduler>.

Ll·:CT
I II 8 I

I
I
I
l

U:HR 1
• II A. I

L'l'H.E
I. 4C 1

I
I
ILDCE
I• rm•

I
I
I

' I
I
I
I
I

2

2

1

1

Character count in current
incoming message, used
byBREAKOFF routine
CIJLQBO).

The next 18 bytes are used
!by the Error Recovery
Procedures in the Line
Appendage module (IJLQLA}

Retry count of ccw error
for ERP routine in Line
Appendage ERP routine in
Line Appendage module.

Threshold line error
counter=number of
transmissions.

Threshold line error
counter=number of data

I I checks. I
L------.l.------.l.---------------------------J

Appendix B 345

r------T------T---------------------------1
I I Length I I
I I in I I
!Field !Bytes f Description f
~------+------+--------------------------i
LIRE 1 Threshold line error
'4E' counter=number of

intervention required
errors.

LTOE
• 4F"

LCTR
• 50'

LCDC
• 54'

LCIR
"56'

LCTO
'58'

LCAM
'5A'

LRCT
1 5C'

LTBO
• 5E'

LTB1
• 5F'

LATN
'60'

LSBO
'60'

1

4

Threshold line error
counter=number of nontext
timeouts.

Cumulative line error
counter=total number of
transmissions.

2 Cumulative line error
counter=total number of
data checks.

2 Cumulative line error
counter=total number of
intervention required
errors.

2 Cumulative line error
counter=total number of
nontext timeouts.

2 Flag field for ERP routines
in Line Appendage module.

2

1

1

4

1

The next 16 bytes are the
CCB data incorporated in

jthe LCB
I
f Residual count
I
I
!Transmission byte O.
I
I
!Transmission byte 1.
I
I
A full word containing the
Attention QCB for IBM 2260
Local line group. This
field is initially set to
the address of the dummy
last element, IJLQIP5F.

CSW status byte o.

LSB1 1 csw status byte 1.
1•61" I
I I
ILLUC 1 Logical unit class; always I
1'62' X'01' I
I I
ILLUO 1 Logical unit order (X'nnn'>I
I' 63" I
L----·--.1.------.1.--------------------------J

346 DOS QTAM Program Logic Manual

r------T------T---------------------------1
I I Length I I
I I in I I
f Field f Bytes I Description I
r------+------+---------------------------i

I I
I.CPA I 4 Address of channel program I
• 64' I area (first CCW). I

I I
LOCB I 4 A full word containing the I
'68' I address of the CCB for the I

I IBM 2260 Local terminal. I
I

LTB2 1 Appendage indicator; set to
'68• X1 40'.

LAPA
• 69'

LAST
I 6C'

]
ILSAV
1 •10•
I
f LERC
1·78'
I
ILSCP I" 80"

I
I
I
I

3

4

8

8

I

Address of Line Appendage
routine (IJLQIP40).

Address of last ccw
executed.

save area for failing ccw

Error recovery ccw

8n !Start of channel program
jarea; size of area is
jdependent on the terminal
jtype on the line. The lastl
jthree bytes of this area I
jare used by OBR/SDR when I
jthis option is included in I

I I the system. I
L------.1.------.1.--------------------------J

(
'\.__

AUDIO LINE CONTROL BLOCK (ALCB)

'00'

'04'

'08'

•oc•

'' 14'

'18"

'lC'

'20'"

'24'

'2C'

I 30"

'34'

1 38'

'40''

'48'

I 4C'"

• 50.

'54''

r------T--------------------T----
1 LALQ I LQCA I
~------t--------------------i ECB
I LIHP I LLIA I v
~------+--------------------~----
! LSTS I LDTA I
~------t------T------T------1
I LALI I LRAN I LSSF I LERB I
~------i ______ i ______ i ______ i
I LLEA I
~-------------y-------------i
I LIML I LACL I
~-------------i-------------i
I LIBA I
~---------------------------1
I LACA I
~------T------T------T------i
I LATR I LAHU I LARE I LAWE I

~------i------i------i------1
I LACT I
~-------------T-------------i
I LACH I LACR I
~-------------+-------------1
I LACW I LARC I
~-------------+-------------i
I LAEF I (not used) I
~-------------i-------------i
I LACC I
~---------------------------i
I LACF I
I I
I I
~---------------------------i
I LACS I
I I
I I
~-------------T------T------~----
1 LREC (LCBZ) I LEOT I LBlT I
~------T------+------+------i I
I LBOS I LElS I LCLU I LLUI I I

~------i------i------i------1 CCB
I LCAI I I

~------T--------------------i I
I LAPI I LALA I v
L------i--------------------J----

Figure 19. Typical ALCE DSECT (IJLQLABO)
(Part 1 of 2)

• 58'

•co•

"ca•

•cc•

"DC'

• E4"

"58'

• 9 o·

"A0 9

7772 ALCE
r---------------------------1
I LW21 I
I LCWZ Channel Program Area I
/ /

/ I
t-------------T-------------f
I LACP I LCWL I
~------T------i-------------i
I L72F I LDBA I

1t------+--------------------i
I LTPC I LDCV I
t-------i--------------------i
I LLOC I
/ /

/ /

I r--------------------i
I I LOGTIME FIELD I
t------J i
/ /

/ L
t-------------T-------------~
i I INPUT AND I
~-------------J ADDRESS I
I CHAIN I
I BUFFERS J
L---------------------------J

7770 ALCB
r---------------------------1
I LEO I
I LCWZ Channel Program Area I
/ /

/ /

~---------------------------~
I LLUR I
I r--------------------f
/ I J

I
/ I
I I LOGTIME FIELD
t------J
/

/

I
/

/ /

l r--------------------v
• AB' I I I

t------J I
I INPUT AND ADDRESS I
I CHAIN BUFFERS I
/ /

/ /

L---------------------------'
Figure 19. Typical ALCB DSECT (IJLQLABO)

(Part 2 of 2)

Appendix B 347

Contents:

r------T------T-----------------~--------1

I I Length I I
I I in I I
!Field jBytes !Description I
~------+------+-----------------~--------i
ILALQ
I' oo•
I
ILQCA
1·01 •
I
I
ILIHP
I• 04•
I
I
I
I
I
ILLIA
I' 05 I
I
I
I
I
ILSTS
1'08'
I
I
I
I
I
I
I
I
I

1

3

1

3

1

IECB key always x•oo•
I
I
Address of the QCB

I
I
I
I

associated with the
the QPOST function.

ALCB by!

ALCB priority. X'FD' if
the ALCB is processed in
the message control
program. X'FC' if the ALCB
is processed in the message
processing program.

When ALCB appears on the
!Ready Queue, this field
lcontains the address of the
lnext item on the Ready
I Queue.
I
IALCB status, used by the
1audio programming to
Jdetermine the next action
Ito be taken on the audio
I line.
I
I
I
I
I
I
I
I
I

X'Ol"=Enable status. The
ENABLE ccw was issued or
is ready to be issued.

X'02'=Read status.
read operation was
completed.

A

I X'04'=Disable status. A
I disable operation was
I completed.

I
I
I
I

I I
I x•oa•=write status. A I
I write operation is in I
I progress. I
I I
I x•10 1 =7772 initial write I
I status. An initial write!
I is in progress. Only I
I used by the 7772 ALCB. I
I I
I X'20'=Stop status. A I
I STOPARU macro instruction!
I was issued for this line.I
I I
I X'40'=PUT status. A PUT I

I I I was issued for this line I
L------~------~---------------------------J

348 DOS QTAM Program Logic Manual

r------T------T---------------------------1
I I Length I I
I I in I I

~~~==~-i~:~::_i~====~:~~~~----------------~ 
I I I I 
I I I and the repeat function I 
I I I may take place until the I 
I I I line is disabledQ I 

I I I 
I I I X'80'=GET status.. A GET I 
I I I was issued for this line., I 

I I I and one and only one PUT 
I I must be issued on this 

I I I line. 
I I I 
ILDTA I 3 !Address of the DTF table 
I' 09 • I I for this ALCB. 
I I I 
JLALI I 1 IALCB indicator. Always 
I" oc• I Ix• FF'. This indicator 
I I !distinguishes audio and 
I I lnonaudio elements. 
I I I 
ILRAN I 1 !Relative line number 
1•oou I jwithin the line group. 
I I I 
ILSSF I 1 !Start/Stop flags. 
1 ·OE" I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 

X'Ol"=The channel program! 
is ready to be executed 
and an EXCP must be 
issued. 

X'20'=The halt function 
is requested by a CLOSE 
or CLOSEMC macro 
instruction. 

X" 4 O" =The start function 
is requested by a 
STARTARU macro 
instruction. 

x~ao•=The stop function 
requested by a STOPARU 
macro instruction was 
performed by the audio 
line appendage. 

I I I jLERB 1 !Audio error byte. 
I" OF9 I I 
I I I I 
ILLEA I 4 !Address of the line table I 
1•10• I !entry. The high-order bytel 
I I lis used to store the sense I 
l I !data from the sense I 
I I I command. I 
I I I I 
jLIML I 2 !Input message lengthu not I 
1·1~· I I including the EOT character! 
I I I if any. I 
L------~------L---------------------------J 



c\ 
_,/' 

r------T------T---------------------------1 
I ILengthl I 
I I in I I 
!Field !Bytes !Description I 
!------+------+---------------------------~ 
ILACL I 2 !Address chain length. I 
'16' I I I 

I I I 
LIBA I 4 !Address of the input area I 
'18' I I located in the ALCB. I 

l I I 
LACA I 4 !Address of the address I 
• 1c• I I chain area located in the I 

LATR 
11 20' 

LAHU 
'21' 

LARE 
• 22• 

LAWE 
"23' 

LACT 
I 24 I 

LACH 
• 28' 

ILACR 
• 2A' 

LACW 
• 2C' 

LARC 
'2E' 

LAEF 
I 30' 

LACC 
I 34' 

ILACF 
I I 38 I 
I 
ILACS 
1'40' 
l 
I 
I 
I 
I 
ILREC 
I • 48 I 
I 
ILBOT 
I' 4A' I 

1 

1 
I 

1 

1 

4 

2 

2 

2 

2 

2 

4 

8 

8 

2 

1 

IALCB after the input area. I 
I I 
!Number of transmissions. I 
I 
I 
!Number of hang-up 
I operations. 
I 
!Number of data-check 
!errors on read operations • 
I 
!Number of data-check 
!errors on write operations. 
I 
!Cumulative counter for the 

l 

total number of 
transmissions on the line. 

Total number of hang-up 
operations • 

Total number of data-check 
errors on read operations. 

Total number of data-check 
errors on write operations. 

Retry counter of CCW 
errors for ERPs. 

Flag field used by ERP's. 

Address of the 
last-executed ccw. 

Save area used to 
the failing ccw. 

store 

Error recovery ccw used to 
issue the Sense Command. 

The next 16 bytes are the 
CCB data incorporated in 
the ALCB. 

Residual count. 

Transmission byte O. 

L------i------i-----------------~------~ 

r------T------T---------------------------1 
I I Length I I 
I I in I I 
!Field !Bytes !Description I 
~------+------+---------------------------~ 
ILilIT I 1 !Transmission byte 1. I 
I' 4B' I I I 

Lnos 
v 4C' 

LBlS 
"4D" 

LCLU 
'4E' 

LCAI 
V ')QI 

Ll\PI 
I I ')4. 

I 
I Ll\r,A 
1 "' [)~" 
I 
I 
I 
I 
l 
I 
ILCWZ 
I• ';n • 
I 
I Ll\CP 
I" co• 
I 
ILCWL 
I • c:1.' 
I 
IL77.F 
I'" c11 • 

I 
I 

I I I 
1 1csw status byte o. I 

t 
I 

1 

1 

1 

4 

1 

I 3 
I 
I 
I 
I 
I 
I 
I 
1104 

' I I 2 
I 
I 
I 2 
I 
I 
' 1 l 
I 
I 
I 
I 
I 

I I 
I I 
1csw status byte 1. I 
I I 

I 
Logical unit class; always I 
X'Ol'. I 

Logical unit order in 
class. 

Address of the first ccw 
to be executed in the 
channel program area. 

Appendage indicator; set 
to X'40' 

I 
I 
I 
l 
I 
I 
I 
I 
I 
I 
I 

Address of the Audio Line I 
!Appendage routine CIJLQAA>.1 
I I 
I 
!The following bytes end a 
17772 ALCB: 
I 
I 
!Channel program area for 
113 ccws. 
I 
!Pointer in the 7772 
address chain. 

Length of the current DCV 
word to be sent. I 

I 
Send flags, used during I 
the sending of a 7772 audio! 
answer. I 

I 
x•o1•=The first ncv word I 
is to be sent. I 

I 
x•o2•=The last ncv word I 
is to be sent. I 

I 
X'04'=The previous DCV I 
word may be followed by al 
programmed pause. I 

X0 08'=The DCV word 
r~presentation has been 
found. 

I 
I 
I 
I 
I 

X'lO'=The first DCV word I 
is searched. I ______ i ______ i--~-----------------------J 

Appendix B 349 



r------T------T--------------~-~--------1 
I I Length I I 
I I in I I 
!Field !Bytes !Description I 
~------+------+---------------------------i 

I 

LDBA 
•cs• 

LTPC 
•ca• 

LDCV 
'C9' 

LLOC 
'CC' 

LCWZ 
• sa• 

i 

3 

1 

3 

26 

Sb 

I 
LLUR I 26 
I 90• I 

I 
I 
I 
l 
I 
I 
I 
I 
I 

I 
I 
I 
I 

x• 20'=The address chain I 
ends abnormally, and a I 
DISABLE command must be I 
issued. I 

I 
x•4o•=used to determine I 
which sequence of write I 
ccws is to be updated for 
the sending of the next 
DCV word. 

x•ao•=used to determine 
which part of the DCV 
buff er must contain the 
next DCV word retrieved 
from the 7772 DCV 
vocabulary file. 

!Address of the DCV buffer 
tassociated with the ALCB to 
1send the audio answer. 
I 
f Temporary pause counter. 
I 
I 
!Address of the current DCV 

I 

word to be sent. 

Optional field, used to 
store the logical order in 
class, the input message 
length, the date and time 
stamping in front of the 
input message. 

The 7772 ALCB ends with 
the input area immediately 
followed by the address 
chain area. 

The following bytes end a 
7770 ALCB: 

Channel program area for 7 
ccws. 

Optional field, used to 
store the logical order in 
class, the input message 
length, the date and time 
stamping in front of the 
input message <included in 
the LOGTIME field. 

The 7770 ALCB ends with 
the input area immediately 
followed by the address 

I chain area. 
l------i------i-----------------~--------

3SO DOS QTAM Program Logic Manual 

QTAM VECTOR TABLE 
( 

The QTAM Vector Table is a 22-word table of ~ 
addresses. The table contains the 
addresses of all areas containing control 
information necessary to effect the 
cross-partition communication required in 
DOS/QTAM. A four-byte field is reserved 
for QTAM in the DOS Communication Region 
<displacement x•ao• from the beginning of 
the communication Region>. The address of 
the QTAM Vector Table is placed into this 
field at Open time so that QTAM routines 
requiring information in the Vector Table 
can access it. The fields in the QTAM 
Vector Table follow. 

1 

Field 
~ Description 

VECTTBL Address of the terminal 
table 

2 VECIPlAD Address of the 
Implementation module 

3 VECSVCAD Address of the QTAM 

4 

s 

6 

7 

8 

9 

10 

11 

12 

13 

SVC/Subtask control 
routine in the supervisor. 

VECLDTF Address of the DTF table 
for the last QTAM file 
opened in the message 
control program. 

VECIP78 Address of the Return 
Buffer QCB 

VECEXTNT Address of disk extent 
information (IPlEXTNT) 

VECBUFSZ Address of the halfword 
containing the buff er size 
minus 8 

VECDADTF Address of the DTF table 
for the first opened 
message control file (DA., 
AV, or LG). 

VECIP71 Address of the Active-BRB 
QCB 

VECIPSF Address of the dummy end 
of chain ECB CIJLQIPSF) 

VECIPSC Address of the Queue 
Insert by Priority STCB 

VECPDQLK Address of the DTF table 
for the last QTAM file 
opened in a message 
processing program 

VECQMOVR Address of the Qmove QCB 



I( 

14 

15 

15 + 

VECMRSW Address (minus one) of the 
master receive switch 

VECCPFLG Flags for the checkpoint 
records file 

1 byte 
VECCPDTF Address of the DTF table 

for the checkpoint records 
file 

16 

17 

18 

19 

VECIP72 Address of the Available 
Buffer QCB 

VECIP73 Address of the Disk I/O 
QCB. 

VECIP77 Address of the LPS QCB 

VECDRRN Next relative record 
number to be used on the 
direct access file. 

20 VECQIP26 Address of address for 
Post send and Post 
Receive. 

21 VECLTBL Address of the audio line 
table. 

22 VECARUSQ Address of the ARU-Send 
QCB. 

SPECIAL CONTROL BLOCK FORMS 

COMBINED QCB/STCB 

The pattern of unused bytes in the QCB and 
the truncated STCB is such that these 
blocks are capable of being combined as may 
be seen from the general forms. 

QCB 
r---------T--------------------------1 

•oo• I Key I element chain pointer I 
~---------+--------------------------1 

'04' I priority! link address I 
~---------+----------------~------~i 

I os• I I STCB chain pointer I 
l---------i--------------------------J 

STCB (truncated) 
r---------T---------------------------1 

' 0 0 • I entry I I 
I code I I 
~---------+--------------------------1 

'04' I priority! link address I 
l _________ i-------------~-~--------J 

To conserve storage, the QCB and truncated 
STCB frequently are combined. The general 
form of these control blocks when combined 
is: 

Combined QCB/STCB 
r---------T--------------------------1 

I 00 I I Key I element chain pointer I 
t---------+--------------------------1 
I QCB 1 I 

• 04 I i Priority! QCB link address I 
r---------+--------------------------1 
) Entry I I 
l code I STCB chain pointer* I 
r---------+--------------------------1 
J STCB I I 

• oc• I Priority! STCB link address I 
l _________ i __________________________ J 

* address of this field minus 1. 

QCB FOR DASD DESTINATION QUEUE 

An extended QCB of 32 bytes is generated in 
the problem program on expansion of a TERM 
macro instruction. A QCB is generated 
either for each line or for each terminal 
on the line, depending on the type of 
queueing specified in the TERM macro 
im;truction,. Typical DSECT: 

r------T----------------~--1 

•oo• I QKEY I QNRA I 
t--~---+--------------------i 

"04' I I QNNT I 
r------+--------------------1 

II 0 8. I QENT I QSTC I 
r------+--------------------i 

uoc• l QSPR I QSTL l 
~------+--------------------1 

•10• I QRLN I QDTF I 
r------i------T-------------f 

"14" I QMCT I QNWA I 
r------T------i-------------i 

0 18" j(QNWA)l QLCB I 
t------+--------------------1 

~lc" I QLQF I QBAK I 
l------i ____________________ J 

Note: All DSECT names have the IJLQ 
prefix. 

Appendix B 351 



Contents: 

r------T------T---------------------------1 
I I Length I I 
I I in I I 
!Field jBytes I Description I 
t------+------+---------------------------i 
I I I 
IQKEY I 1 A dummy queue status byte, I 
1'00' I set so that the QCB appears! 
I I to be on the Ready Queue 
I I and is therefore never 

I actually put on it. 
I 

QRNA I 3 
I 01' I 

QNNT 
• os• 

IQENT 
1'08' 
I 
IQSTC 
1'09' 
I 
I 
I 
I 
I 
I 
I 
jQSPR 
1 • oc• 
I 
IQSTL 
l I OD' 

QRLN 
•10• 

QDTF 
'11' 

I 

3 

1 

3 

1 

3 

1 

3 

The relative record number 
of the next message header 
to be read from this DASO 
queue. 

The relative record number 
of the first segment to be 
normally transmitted after 
a restart. The preceding 
segments are transmitted 
even though the 'previously 
serviced' flag is set in 

!the buffer prefix. 
I 
!The 
!the 

entry code (X'84') for 
Send Scheduler subtask.j 

I I 
IThe address of the first I 
!STCB on the STCB chain for I 
!the queue. This field I 
jinitially contains the I 
!address of the STCB for the! 
!Send Scheduler subtask I 
I (address of this field I 
!minus 1). I 
I I 
!The priority (FL1'2"} for I 
lthe Send Scheduler subtask.I 
I I 
jThe address of the next I 
jSTCB in the STCB chain. I 
I This field is initially ~;et I 
I to the address of the STC B I 
lfor the DASO Destination I 
I subtask. I 
I I 
!The relative line number of I 
lthe first line on which I 
!sending is attempted for I 
!messages in this queue. I 
I I 
!The address of the DTF I 
jtable associated with this I 
jqueue. I 
I I 

QMCT 2 !The number of unprocesseo I 
I '14' I header segments in this I 
I I queue. I 
I I I 
IQNWA 3 !The disk relative record I 
1'16' Inumber for writing the next! 
I I jmessage segment. I 
L------i------i-----------------~--------J 

352 DOS QTAM Program Logic Manual 

r------T------T---------------------------1 
I !Length! I 
I I in I I 
!Field !Bytes I Description I 
·------+------+---------------------------i 
lQLCB I 3 IThe address plus 1 of the I 
1'19' I !first LCB on the chain of I 
I I ILCBs currently sending to I 
] I lthis destination. The I 
I !dummy last element in the I 
I !chain is this QCB. I 
I I I 
I I I 
I QLQF 1 I Always set to X' 00'" ,, this I 
1•1c• !field distinguishes this I 
I jQCB from an LCB I 
I I I 
I I I 
IQBAK 3 !The disk relative record I 
I 'lD • I number of the last previous I 
I jheader placed into this I 
I jqueue. If there are none I 
I jin the queue, this field I 
I I !contains zero. I 
L------i------i---------------------------J 

QCB FOR DASD PROCESS QUEUE 

An extended QCB of 32 bytes is generated in 
the problem program on expansion of each 
PROCESS macro instruction. Typical DSECT: 

r------T--------------------1 •oo• I QKEY I QNRA I 
t------+--------------------i 

"04"1 'QNNT I 
r------+--------------------i 

• 08'" I QPQF I QSTC I 
t------i--------------------i 

•oc•1 QMSL I 
t--------------------T------i 

• 10• I QFST I QFLG I 
t-------------T------i------i 

•14• I QMCT ' QNWA I 
r------T------i-------------i 

•19• l(QNWA>I QLCB I 
t------+--------------------i 

'lC'I QLQF I QBAK I 
r------+--------------------i 

" 20'' I I QHDR I l ______ i ____________________ J 

Note: All DSECT names have the IJLQ 
prefix. 



Contents: 

r------T------T---------------------------1 
I I Length I I 
I I in I I 
!Field !Bytes I Description I 
r------+------+---------------------------i 
IQKEY I 1 IA dummy queue status byte, I 
1'00' I 1set so that the QLB appears! 
I I Ito be on the Ready Queue I 
I I land is therefore never I 
I I !actually put on it. I 
I I I I 
IQNRA I 3 !The relative record number I 
1'01' I lof the next message header I 
I I Ito be read from this DASD I 
I I I queue. I 
I I I I 
IQNNT I 3 !The relative record number I 
1'05' I lof the first segment to be I 
I I !normally transmitted after I 
I I la restart. The preceding I 
I I !segments are transmitted I 
I I !even though the 'previously! 
I I !serviced' flag is set in I 
I I !the buffer prefix. I 
I I I I 
IQPQF I 1 !Always set to X'OO',, this I 
I' 08' I field distinguishes this j 
I IQCB from the I 
I IDASD Destination QCB I 
I l<X'84',>andfrom I 
I fdistribution list (X'02°). I 
I I I 
IQSTC 3 !The address of the Get I 
I '09' I Scheduler STCB. I 
I I I 
IQMSL 4 !The address of the LCB for I 
1•oc• !the Main storage Process I 
I !Queue when the Main Storage! 
I !Process Queue is open. If I 
I lit is not open, this field I 
I !contains zeros. I 
I I I 
IQFST 3 !The disk relative record I 
1•10• I number of the first header I 
I !placed into the queue. I 
I I I 
IQFLG 1 IDASD Process Queue flags. I 
1'13" !Bit 7 <x•o2 1 > is set on if I 
I lthe Expedite option is I 
I !specified for this queue; I 
I !otherwise it is set off. I 
I I I 
IQMCT 2 !The number of unprocessed I 
I '14' I header segments in this I 
I I queue. I 
I I I 
IQNWA 3 !The disk relative record I 
I '16'" I number for writing the next I 
I !message segment. I 
L------i------i---------------------------J 

() 

r------T------T---------------------------1 
I !Length! I 
I I in I I 
!Field !Bytes I Description I 
r------+------+---------------------------i 
IQLCB 3 IThe address plus 1 of the 
1'19' lfirst LCB on the chain of 
I ILCBs with messages to be 
I !placed on this DASD queue. 
I I The dummy last element in 
I !the chain is this QCB. 
I I 
IQLQF 1 !Always set to x•oo•,, this 
1•1c• I field distinguishes this 
I IQCB from an LCB. 
I I 
IQBAK 3 !The disk relative record 
1•10• !number of the last previous! 
I !header placed into this 
I !queue. If there are none 
I !in the queue, this field 
I !contains zero. 
I I 
JQHDR 3 IThe disk relative record 
l'21' !number of the next header 
I Ito be placed into this 
I !queue. If there are none 
I Ito be placed into the 
I !queue, this field contains 
I I !zero. l------i ______ i __________________________ _ 

QCB FOR 7772 DCV BUFFER QUEUE 

An extended QCB is generated in the problem 
program on expansion of a BUFARU macro 
instruction. The typical DSECT (I,ILQBABO) 
also includes one DCV buffer element. 

r-------y-------------------1 
•00•1 BKQC IBAFE I 

~-------i-------------------i 
"04" I BNIR I 

r-------T-------------------i 
'"OH•) alwayslBIFO I 

I X' 00' I 1 
~-------+-------------------i 

~oc•1 BBUN IBDEL I 
~-------i------------r------i 

~lo• 1 BBus I BBDL I 
r--------------------i------i 

• 1 4 • I not used I 
L---------------------------J 

Note: All DSECT names have the IJLQ 
prefix. 

Appendix B 353 



Contents: 

r-----T------T---------------------------1 
I I Length I I 
I I in I I 
!Field !Bytes I Description I 
~------+------+------~-------~-~--------i 

I I I 
BKQC I 1 IQCB key. Same as for other! 
• O 0' I I QCBs. I 

I I I 
BAFE 3 Address of the first 
•01• available DCV buffer. When 

no more ~uffers are 
available, this field 
contains the address of the 
dummy element (IJLQIPSF). 

BNIR 
• 04' 

4 The high-order byte 
contains the QCB priority 
always set to X'FD'. It is 
followed by the address of 
the next item on the Ready 
Queue. 

IBIFO 
I' 09 I 

3 The address of the Queue 
Insert STCB(IJLQIP8B). 
When at least one ALCB is 
waiting for an available 

I 
I 
I 
I 
I 
I 
IBBUN 
I' oc• 
I 

BDEL 
I OD'' 

BBUS 
• 10• 

1 

3 

2 

!DCV buffer, this field 
jcontains the address of the 
JDCV buffer STCB (IJLQAD41). 
I 
JThe number of DCV buffers 
Jin the DCV buffer pool 
!defined by the BUFARU macro 
I instruction. 
I 
!Address of the first ALCB 
waiting for an available 
DCV buffer. These ALCBS 
constitute an element chain 
ended with the dummy 
element (IJLQIP5F). 

Size of a DCV buffer 
including the control 
information. 

BBDL 2 Length of the data area 
I '12' required by the user for 
I each'DCV buffer. 
L ______ i ______ i-----------------~--------

IBM 7772 DCV BUFFER ELEMENT 

Each DCV buff er generated in the problem 
program on expansion of a BUFARU macro 
instruction is basically an element control 
block. such an element is shown in the 
IJLQBABO DSECT following the 7772 DCV 
buffer QCB. 

354 DOS QTAM Program Logic Manual 

r-------T----------------~-1 
'18'1 BBPR jBQCA I 

~-------i-------------------i 
•1c•1 BQEP I 

~-------T-------------------i 
•20•1 alwayslBLIF I 

I X" 00' I I 
r-------+----------------~-i 

•24• I BIND Jnot used I 
~-------i------------T---~-i 

.. 28' I BREC I BTBD I 
1----~--------------+------i 

•2c•1 Bcsw I BLUC I 
~--------------------i---~--i 

•30•1 BCPA I 
~-------T-----------~------i 

"34·• I BCAF I BDAP I 
~-------i---------~--------i 
/ / 
/ / 

~---------------------------i 
"60'1 BCCA I 

/ / 

/ / 

~-------~------------------i 
•70•1 BDCA I 

L---------------------------J 
Contents: 

r------T------T--~-----------------------1 
I ILengthl I 
I I in I I 
I Field l Bytes I Description I 
~------+------+--------------~-----------i 
IBBPR i 1 !Element key, always x•oo•. I 
I' 18 I I I I 
I I I I 
IBQCA I 3 I If the DCV buffer requests I 
1"19 1 I la disk I 
I I !read operation, this field I 
I I !contains the address of thel 
I I I LPS QCB CIJLQIP77). If the I 
I I f DCV buffer is free. this I 
i I !field contains the address I 
I I Jof the corresponding DCV I 
I I buff er QCB. I 
I I I 
JBQEP I 4 The high-order byte I 
l'lC' I contains the ECB priority I 
I I always set to X'Fo•. It isl 
I I followed by the address of I 
I I the next item on the Ready 
I I Queue. 
I I 
IUNUSEDf 1 
I I 20' I 
I I 
IBLIF I 3 !The address of the ALCB 
I" 21" I I associated with this DCV 
I I I buffer. 
I l I 
!BIND I 1 IDCV buffer indicator, 
1•24" I I always X'" FE' 
L------i------i--~-----------------------

/ 



r------T------T---------------------------1 
I I Length I I 
I I in I I 
!Field !Bytes I Description I 
r------+------+---------------------------i 
I I I I 
I I ]The next seven fields I 
I I !represent a CCB I 
I I !incorporated in the DCV I 
I I I buffer: I 
I I I I 
IBREC I 2 !Residual count. I 
I I 2 8' I I I 
I I I I 
IBTBD I 2 !Transmission bytes. ] 
I I 2A I I I I 
I 1 I I 
IBCSW I 2 1csw status bytes. I 
I. 2C I I I I 
I I I I 
IBLUC I 2 !Logical unit class, always I 
I' 2E' I IX' 01', and logical unit I 
I I !order in class I 
I I I I 
IBCPA I 4 Address of the channel I 
I" 30~ I program area (first CCW). I 
I I I 
IBCAF I 1 Appendage indicatoru set toj 
1"34' I x•40•. I 
I I I 
IBDAP I 3 Address of the 7772 Disk I 
I' 35' I Appendage routine (IJLQAD). I 
I I I 
IBSEE I 40 Channel program area for 5 I 
I • 3 8 I I ccws • I 
I I I 
IBCCA I 16 Areas for disk address I 
1'60' I conversion and count. I 
I I I 
IBDCA I DCV buffer area where the I 
1v10• I DCV words are to be read I 
I I from the 7772 DCV I 
I I vocabulary I 
L------i------i---------------------------J 

BUFFER REQUEST BLOCK 

The Buffer Request Block is basically an 
element control block with .the element 
control block characteristics as previously 
outlined. The BRB, however, takes several 
different forms during its processing 
cycle. The significant fields of the BRB 
when it is in the element control block 
chain of the Inactive-ERB queue control 
block are shown here. This is also the 
form in which the BRB is generated on 
expansion of the BUFFER macro instruction. 

BRB on Inactive-ERB Queue 

r--------.----------------------------, 
I oo• I Key (0) 1 QCB address I 

r--------+----------------------------1 
• 04'" J Priority I I.ink address I 

r--------+----------------------------i 
I 08 I 1 I I 

r--------+----------------------------1 
• oc• I I I 

L--------i----------------------------J 

The BRB Ring routine removes BRBs from the 
Inactive-ERB queue and forms the BRB ring. 
The following illustration shows the BRB 
after it has been processed by the BRB Ring 
Routine. 

BRB before assignment of next-segment 
address (in BRB ring) 

r--------T----------------------------1 
ll 0 o• I Key (0) I QCB address I 

r--------+----------------------------i 
"04'1Priorityl Link address I 

r--------+----------------------------1 
I TIC I I 

•oa"lcommand I Address of next BRB in ring! 
r--------+----------------------------i 
I status I I 

• Oc' I ( 0) I LCB address I 
L--------i----------------------------J 

The key field is zero. All elements have a 
key of zero. 

The QCB address is variable. For the first 
BRB in the ring, this field contains the 
address of the Active-Buffer-Request QCB if 
the BRB is to be used for a Receive 
op<~ration, or the address of the Disk I/O 
QCB if the BRB is to be used for a Send 
operation. For the remaining BRBs in the 
ring, this field is insignificant. 

The priority field is set to a 
X'EC' for the first BRB in the 
us0d for a Receive operation. 
is normally zero for all other 

value of 
ring to be 
This field 
BRBs. 

The TIC command is a transfer-in-channel 
command, and the following three bytes 
point to the next BRB in the ring.. For the 
first BRB in the ring only, the TIC address 
will point to the actual address of the 
next BRB which begins on a doubleword 
boundary. For all other BRBs in the ring,, 
the last two bits will be set to one (see 
BRA Status Codes) and represents the BRB 
address (always on a double-word boundary) 
plus the BRB-idle flag. 

The status field is zero, indicating no 
next-segment address has been assigned to 
this BRB. 

The LCB address is the address of the Line 
Control Block over which the send or 
receive operation will occur. 

Appendix B 355 



The Disk I/O appendage further 
initi,alizes the BRB when the ERB is to be 
used for a read from direct-access storage. 
The appendage replaces the LCB address in 
the fourth fullword of the ERB with the 
relative record number for th~ message 
segment this ERB is now associated with. 
The assigning of the next-segment address 
is indicated by changing the value of the 
status field to 9. 

ERB after assignment of next-segment 
address has changed starting at the twelfth 
byte to: 

r--------T----------------------------1 
I status I I 

'OC"I (9) I relative record number for I 
I I next segment I 
L--------~------------------~--------J 

The next illustration represents a 
buffer request block that has been 
converted to a ccw (BRB/CCW). A BRB/CCW is 
fully initialized for a write to or read 
from direct-access storage. The first two 
fullwords have been converted to a standdrd 
CCW, and are followed (in the third 
fullword) by the previously initialized 
TIC. This means that a complete BRB/CCW 
cannot be enqueued by the standard QTAM 
conventions., because the queuing 
information fields are occupied by the 
channel command word. The ERB ring is 
formed by the TIC addresses of the 
BRB/CCWs. 

BRB/CCW initialized for Direct Acce~;s 
Read or Write 
r--------T------------------1 
I command I I Stand-

• 00~ 1 code I data address I ard 
t--------+------------------i 

'04'lflags I 0 data count I ccw 
~--------+------------------i 
I TIC I address of next I 

'08'jcommand I BRE in ring I 
~--------+------------------i 
I I LCB address or I 

'OC'lstatus I relative record I 
I I number for next I 
I I segment I 
L--------~------------------J 

In the BRB/CCW, as in any other forms of 
the ERB except that appropriate to the 
Inactive-ERB queue, the fourth fullword may 
contain either status = 0 and an LCB 
address, or status = 9 and a next-segment 
relative record number. The next-segment 
address is inserted in the BRB when the 
Disk I/O appendage is processing another 
BRB in the ring. The BRB in which the 
next-segment address is replaced is 
selected according to its position in the 
ring, without reference to the queue (if 
any) upon which it appears. 

356 DOS QTAM Program Logic Manual 

The typical DSECT for a BRB is: 
r------T---------------------------1 
IRKEYI I 
I I RQCB or RCDA I 
I RCC I I 
t------+---------------------------~ 
I RPRI I I 
I I RLKA or RCT I 
I RFLG I I 
t------f-----------------T---------i 
I RTIC I RCH IRSTC I 
t------+-----------------.L---------~ 
I RSTA I RLCB or RNSA I 
L-------L---------------------------J 

~: All DSECT names have the prefix 
IJLQ. 

ERB Status Codes 

The status of a BRB at any point in time is 
indicated by a code in the two low-order 
bits of the RSTC field, the fourth byte of 
the third fullword of the BRB. The codes 
used are: 

00 - Buffer is allocated. This code, 
which never appears in the BRB used 
to send or receive the last segment 
of a message, makes the address 
portion of a ccw containing a TIC 
command valid. (Refer to Line 
Appendage routine for additional 
information on invalid TIC 
address.> This code typically is 
set when a buffer has been assigned 
to the next BRB in the ring. 

01 - Buffer is in LPS queue <if 
receiving>~ or BRB is in Disk I/O 
queue (if sending). This code 
appears in the ERB used for the 
last segment of a message. 

10 - BRB is in Active-Buffer-Request 
queue. 

11 - BRB is idle; that is, it is not in 
any queue. This code commonly 
indicates that no buffer has been 
assigned, or that this is the first 
ERB in the ring and no buffer has 
been assigned to the next ERB. 
This code is also set, typically, 
when a buffer has been allocated to 
the BRB but could not be used 
because the preceding segment had 
not yet been read when this ERB was 
selected. 



PAUSE BRB/CCW 

r-------.-----------------------~--------1 

I Write I I 
ICommandl Data Address I 
I Code I I 
r-------+---------------------------------i 
I Flags I Count of characters up to and I 
I I including the special character l 
r-------+---------------------------------i 
I Write I Address of the Idles address ha 
I Code I l 
r-------t---------T-----------------------i 
!Flags I I byte count of idles I 
r-------+---------~-----------------------i 
I TIC I Address of the next BRB I 
jComrnandl in the ring I 
I Code I I 
r-------t-----------------------~--------i 
I 0 I Address of queue for PAUSE I 
I I BRB/CCWs (Additional-CCW queue) I 
L-------~---------------------------------J 

The PAUSE BRB/CCW is a special-purpose 
BRB used to schedule and contain channel 
commands for the transmission of idle 
characters. It is inserted or linked into 
the ring of BRBs by the Pause routine. 

ELEMENT CONTROL BLOCK--IJLQIP5F 

Form: 
r---------T-------------~--------1 

IJLQIP5Fjkey = 0 jQCB address I 
r---------+-----------------------i 
jpri = 255jlink address= IJLQIP5FI 
L---------~---------------------~J 

The IJLQIP5F element control block is 
used as a dummy last element on the element 

chain of several queues and as the last 
item on the Ready Queue. It signals the 
end of a chain. It is never used as an 
"available" element. 

COMBINED CCB/ECB FOR IBM 2260 LOCAL 

This CCB/ECB is generated in the device 
access area in the terminal table entry for 
an IBM 2260 LOCAL OR 1053 Local. The value 
specified in the ACLOC operand in the DTFQT 
macro instruction determines the offset to 
the beginning of this control block. (See 
Figure 20.) 

For an IBM 2260 Local, transmission byte 
0 is assembled as X0 04' (device end posting 
bit). This bit is used in conjunction with 
channel end (alone) in CSW status.. to cause 
the Supervisor to leave the CCB on the 
channel queue. (This does not apply to the 
IBM 1053 Local.) 

The typical DSECT for a CCB/ECB is shown 
at the right. 

r-------------T------T------1 
• 00" IMRCT I MTBO IMTBl l 

r------T------f------+------i 
•04"1MSB0 IMSBl IMLUC IMLUO I 

r------~------~------~------i 
• 08" IMCPA I 

r------T--------------------i 
•oc•IMTB2 IMALA l 

r------+--------------------i 
~10'IMKEY IMTTA I 

r------+--------------------i 
"14"IMPRI IMNXT I 

L------~--------------------J 

r----------------------------------------T--------------------T--------------------1 
I I I I 
I Residual count I Transmission I Transmission I 

'0 0' I I Byte 0 I Byte 1 I 
r--------------------T-------------~----t--------------------+--------------------i 
I CSW Status I CSW status f Logical Unit Class I Logical Unit Order I 
I l I l I 

'04' I Byte 0 l Byte 1 I (always 1) l (nnn from SYSnnn) I 
r--------------------~-------------------~--------------------i--------------------i 

'08 I Address of first ccw in channel program I 
r--------------------T-------------------------------------------------------------~ 
I Appendage l Address of IBM 2260 Local Appendage I 

•oc• I Indicator I I 
r--------------------+-------------------------------------------------------------i 

'10' I (Reserved) I Address of Terminal Table Entry I 
r--------------------+--------------------------------------------------------------i 
l ECB Priority for l Address of Next CCB/r·:CB in Attention Queue I 

'14' l Linking into l l 
I Attention Queue I I 
L--------------------~-----~------------------------------------------------------J 

Figure 20. Combined CCB/ECB for the IBM 2260 Local 

Appendix B 357 



BUFFER PREFIXES 

First 8 bytes are not placed 
on direct - access queue 

Hex 0 2 3 4 5 6 
Dec 0 2 3 4 5 6 

QCB Link 
Address Address 
BQCB BQLK 

Key BKEY Buffer 
Scheduler 
Priority 

7 
7 

8 9 
8 9 

Segment 
Size 
BSSZ 

A c 
10 12 

Source 
Key 
BSTO 

BSTA 

D F 10 11 12 
13 14 15 16 17 18 

Message 
Address 
on DASO 
BMAD 

Next 
Segment 
Link 
BSLK 

Relative 
Record No. 

t3 14 15 16 17 18 19 IA 1 B IC 10 
19 20 21 22 23 24 25 26 27 28 29 

Previous Next ·Destin-
Header Heoder at ion 
Link Link Key BNIN 
BMHD BMLK BDTO 

Stored Scan Printer BSPT 

Message Sequence Number (OUT) 

IE IF 
30 31 

BNOT 

I 
Hex 0 BMPR 

Dec 0 IF=============:============----' 31 

Format of Buffer containing Heoder 

First 8 Byte.s are not placed 
on direct - access queue 

Hex 0 2 3 4 5 6 
Dec 0 2 3 4 5 6 

QCB Link 
Address Address 
BQCB BQLK 

Key BKEY Buffer 
Scheduler 
Priority 
BMPR 

I 
Hex 0 
Dec 0 

7 
7 

.BHDR 

8 9 
8 9 

Segment 
Size 
BSSZ 

Note: All DSECT names have the prefix IJLQ. 

HEADER 

A B c D F 10 11 12 
10 11 12 13 14 15 16 17 18 

Source Message Next 

Key Address Segment 

BSTO on DASO Link 
BMAD BSLK 

BSTA 

TEXT 

Figure 21. Buffer Prefix Formats (Part 1 of 3) 

358 DOS QTAM Program Logic Manual 

TEXT (Optional) 

13 14 15 
19 20 21 

Message 
Header 
Link 
BMHD 

\'-._ 



r------T--------------------------------------------------T-----------------------------1 
I I I I 
!Field I Description I Initialized by: I 
~------+--------------------------------------------------+-----------------------------~ 
I BKEY I The ECB key when the buffer appears on I Assembler I 
I '00' I the Ready queue; always zero I I 

~------+-------~------------------------------------------+-----------------------------~ 
I I I I 
I BQCB I A pointer to the QCB for the queue to I Post or Put I 
I • 01' I which the buffer has been posted. This I I 
I I field is meaningful only when the 1 I 
I I buffer is on the Ready queue. I I 

~------+--------------------------------------------------+-----------------------------~ 
I BMPR I The priority of the buffer. This field I Cleanup, Free BRB, I 
I '04' I determines the relative position of the buffer I Interim LPS. or I 
I I when it is linked into the Ready queue or the I Disk-End appendage I 
I I element chain of a QCB. I I 
~------+--------------------------------------------------+-----------------------------~ 
I BQLK I A pointer to the next item in the chain I Numerous routines I 
I • 05' I in which the buffer appears. I I 

~------+--------------------------------------------------+-----------------------------~ 
I ESSZ J Segment size <includes buffer prefix minus 8). I Buffer-BRB, Line I 
I • 08' I I appendage, Put I 

~------+------------------------~------------------------+-----------------------------~ 
I ESTO I Relative address in terminal table of entry for 1 source, Interim LPS# I 
I "OA' I source terminal. I Line appendage I 

~------+--------------------------------------------------+-----------------------------~ 
ESTA I used to indicate the status of the I I 
•oc• I message segment contained in the I I 

8 

2 

1 

8 

2-1 

BMAD 
'OD' 

I buffer. The significance of the bits I I 
I in this field is as follows: I I 
I I I 
I Bit 0: If 1, do not send or process m<>ssage. I Cancel Message I 

I I I 
I Bit 1: If 1, duplicate copy of header. I Recall I 

I I 
Bit 2: If 1, an EOB character is pres(~nt in I Line Appendage I 
~position in the buffer other than the last. I I 

Bit 3: If 1, the message was previously 
serviced or sent. 

Not used. 

Bit 5: If 1, this message was sent with 
priority. 

Bit 6-7 
00 header segment (not last segment) 
01 text segment (not last segment) 
10 header segment (last segment) 
11 text segment (last segment) 

I I 
I Disk-End appendage I 
I I 
I I 
I I 
I I 
I Disk-End appendage I 
I I 
I I 
I I 
I Activate, Line 1 
I appendage, LPS I 
I Control, Put I 
I I 
I I 

When in main storage, the address of I Buffer-BRB I 
the LCB to which the buffer is I I 
assigned. I I 
When on the disk, the relative record I DASO Destination I 

I number of the segment. I 1 
L------i------------------------~------------------------i-----------------------------J 

Figure 21. Buffer Prefix Formats (Part 2 of 3) 

Appendix B 359 



r------T------------------------~---~------~-----------T-----------------------------1 
!Field I Description I Initialized by: I 
r------+--------------------------------------------------+-----------------------------i 
I BSLK I Relative record number of the next I DASD Destination I 
I '10' I segment in this message. I I 

r------+---------------------~--~------------------------+----------------~-----------i 
I BMHD I For a header segment, the relative I DASO Destination I 
I '13' I record number of the previous header l I 
I I segment in this queue. For a text I I 
I I segment, the relative record number of I I 
I I the header segment of this message. I I 
r------+--------------------------------------------------+-----------------------------i I BTXT I start of message data for a text I I 
I '1 15" I segment. The remaining fields in the I I 
I I prefix apply only to a header segment. I I 

r------+-----------------------~~-----------~-----------+-----------------------------i 
I BMLK I The relative record number of the next I DASD Destination I 
I '16' I header segment in this queue. I I 

t------+--------------------------------------------------+-----------------------------i 
I BSP~ I Stored scan pointer; indicates the relative I Activate, Put, Cleanup~ I 
I '19' I position within the buffer where scanning I EOB, OR EOBLC I 
I I is to begin or resume. I I 

r------+--------------------------------------------------+-----------------------------i 
I BDTO I Relative address in terminal table of I Lookup or Put I 
I •1A 1 I entry for destination terminal. I I 
r------+------------------------~------------------------+-----------------------------i 
I BNIN I Sequence-in number assigned to mf'ssage~ I sequence Number In I 
I ·• 1c• I I I 
r------+--------------------------------------------------+-----------------------------i 
I BNOT I sequence-out number assigned to I Disk-End appendage I 
I "lE'" I message. I I 
r------+--------------------------------------------------+-----------------------------i 
I BHDR I start of message data for header I I 
l 1 1F• I segment. I I 
l------~------------------------~------------------------~-----------------------------J 

Figure 21. Buffer Prefix Formats (Part 3 of 3) 

360 DOS QTAM Program Logic Manual 



This chart depicts the linkages between 
macro expansions and the modules they call, 
for each of the LPS, system-status 
modifying, GET, and PUT macro instructions, 
with the exception of five of the LPS 
delimiter macro instructions. These five 
branch directly to the QTAM Implementation 

APPENDIX C: QTAM LINKAGES 

module, rather than to macro-called 
modules. 

The entry point of each module is the 
same as the module name except where it is 
shown in parentheses below the module name. 
Types of linkages are as follows: 

- isa branch 

.?_V_!::~~ is an SVC 

._ __ ..,~.,. is a branch and link (the smaller arrowhead 
indicates the point linked from and returned to) 

Appendix c 361 



QTAM QTAM 
Macro 
Instruction 

SVC/Subtask Implementation 
Modules Control Routine Module-IJLQIP 

BREAKOFF • 
S O EXCP 

.,. I IJLQBO I- - - ~~ - - ~ - - - - Supervisor 
(EXCP) 

I IJLQIP 
CANCELM ... •>----< ... -1 IJLQCM ...,, ,,__ ______________ ...,.,. (IJLQIP22) 

Supervisor 
SVC 30_ (QSVC30) 

CKREQ ...,, ___ ._,.,.1Jfl[,!_J~LQ~CJ:RLJI:::: i~ 31 
-- (QSVC31) 

~ IJLQFL I Supervisor 
CHNGP -r=:=...j IJLQCP- - ~'{S ~1 - - - - - - (QSVC31) 

(QPOST) 

CHNGT...,•---~ ... ~ll~J~LQ~C~TLJI 

CLOSEMC • 

COPYC-+-----li..t IJLQDC 

~ COPYP • -.1 IJLQDP I 

COPYQ••-----1 ... ~J IJLQDQ I 

COPYT ...,•-----1-.~j IJLQDE 

COUNTER* 

SVC 31 (Q-Posn-- ---

DATE ST MP~ 

DIRECT ... ,,___ __ ~ ... -J IJLQLK 

(QSVC31) 

(IJLQIP80) 
Qmover 

. Recall 

IJLQIP 
ENDRCV -----------------------' (IJLQJP23) 

Cleanup 

ENDREADY ---------------------.i (IJLQIP20) 
LPS Control 

ENDSEND---~l.:!_!JL~Q~R~W~:-----------------j (IJLQIP20) 

EOA 

IJLQRG 

-----11JLQLK 

LPS Control 

1!.::!!~~r---~'-'-='-'-"~-"-'-'---~ (IJLQNDRT) 
End-J.,sert 

(IJLQIP22) 
Recall 

362 DOS QTAM Program Logic Manual 



QTAM QTAM 
Macro SVC/Subtask Implementation 
I nsfTuction Modules Control Routine Module-IJLQIP 

EOB-----...i IJLQEB IJLQRW 1----,,----------..i (IJLQIP20) 
- - 5..\:::C_o EXCP LPS Control 

(EXCP} Supervisor 

EOBLC-----i-"~ I JLQEC t+----~(e_r_ro_r_re_t ..... ~--) ________ _,..._. (IJLQI P22) 

) Recall 
[~1-JL_Q_R_W_-r~---------------(IJLQIP20) 

- - - - - - s_y~ 0 _ -{EXCP J LPS Control 
( EXCP) Supervisor 

ERRMSG { .. : __ .. -1: :~~::: ~ 
_ ~~ SVC30 

GET(message)~ - - - - - - - - -
- ---~£31 ---

GET (record) -.•---1J1>~i 1JLQGR ~ == - - S;{C_3Q.. __ _ 
----~£31 --

GET(segment) .... •--<J1>-i1JLQGS k_- - - _?~~O- - - -
-- ---s~c 31 --

I NTERCPT ..,.,__ __ ,.~J JJLQIT 

LOGSEG -•----<Jl>-J LJOCS(PUT)i 

LPSTART ___ __,.,...iiusER LPSI 

MODE 
(MOD2260) 

IJLQSH 

Supervisor 
(QSVC30) 

(QSVC31) 

(QSVC30) 

(QSVC31) 

(QSVC30) 

(QSVC31) 

.. , (IJLQIP22) I 
Recall 

IJLQIP 

--------i..'..:IJ~L~Q'.:.:M:..::C::..1"'1---""-f""'"irs"-'-t....;.t"""im""e'""'o"-'-n""I '-'----._. (IJ LQNDRT) 
End Insert 

MODE 
(CONVERSE) 

MSGTYPE .. •~--i ... ~IJJLQMT HJJLQSH I 

OPCTL .... •----il,.....iiJJLQOC ~ IJLQLK : 

llJLQSH _ 

(IJLQIP20) 
LPS Control 

Appendix c 363 



Macro 
Instruction Modules 

QTAM QTAM 
SVC/Subtask Implementation 
Control Routine Module-IJLQIP 

SVC 30 Supervisor 
PAUSE ••---,..~llJLQPZ I- - -(QWArTf - - - - - (QSVC30) 

POLLIMIT ... •---ti)lo~llJLQPL I 

POSTRCV ----------------------+-! (IJLQIP23) 
Cleanup 

EXCP J Cleanup {
-------------;::::::=:=:=:::;----~ (IJLQIP23) 

POSTSEND s~S. o_ - Supervisor 
(IJLQIP20) 

-------IJLQRWi---,.-----------.i LPS Control 

SVC 30 
PUT(message) ... •---ti)lo~llJLQPM I= =.-::_-:_-:_ -_-_-_sQCJi 

PUT(record) .... •r----11)1o~l1JLQPR I= - - - - - - ~V~ ~ -. . - - - - - __ ~V£ ~I 

Supervisor 
(QSVC30) 
(QSVC31) 

(QSVC30) 
(QSVC31) 

SVC 30 
PUT(segment) ... •,__--111,..j..ilJLQPS l= =: _-_-_-:_ :_ :~(.3l (QSVC30 

(QSVC31) 

RCVHDR* 

RCVSEG* 

RELEASEM ... •---;)lo~llJLQRM I 

{ 

• )lo IJLQRR • 
REROUTE ... ___ 1 ____ , .J 

IJLQLK 

RETRIEVE ••---.. ~llJLQRD ~ == = = = : : ~~~-.Q 3_l 
(DASO address) 

RETRIEVE ----IJLQRS 
(Sequence number) 

IJLQDE 

SVC 30 
-=----_-~ _-.:: _- svc 31 - ---

IJLQRD 

{
----IJLQRG IJLQSH 

ROUTE ..,.,._ ______ ---1--,...__,~~ 
IJLQLK 

SEND HOR* 

SENDSEG* 

SEQIN ··----tl)lo~llJLQSI i-...llJLQSH I 
SEQOUT..,. ... , IJLQSO i.-...ilJLQEX I 

SKIP ··------•~llJLQSK l-+-JULQSH I 
(characters) 

SK IP ••----~)loJ"!rliJliLQ~S~T'I 
(count) 

364 DOS QTAM Program Logic Manual 

Supervisor 
(QSVC30) 
(QSVC31) 

(QSVC30) 
(QSVC31) 

.. , (IJLQIP22)1 
Recall 

/ 

/ 
( 

\ 



Macro 
Instruction 

Modules 

souRCE .. , ____ .,,.-t.I LllJ~Lo~sRuf..-+.l uLOSH I 

SVC 31 

SVC 30 

TIMESTMP .... -----1,..~l 1w.JwLO..i._Ti_:sui-....l uLmx I 

TRANS ..... -----. ... 1.IJ.:U!.J::LO~T~Rul 

QTAM 
SVC/Subtask 
Control Routine 

Supervisor 
(QSVC31) 

(QSVC30) 

QTAM 
lmpl ementation 
Module - IJLQIP 

*This macro instruction generates no code or generates in-line code; it links to no module. 

Macro 
Instructions 

ARUMGTYP* 

Modules 

QTAM AUDIO LINKAGES 

QTAM 
Control 
Program 

QTAM 
Implementation 
Module 

CHECKARU ~-------------------------------~ 

SVC 30 
GET (audio) • ... ! IJLQGA I:::::=:-::~ 

SVC 31 ._ 
SVC 30 

GET (message or audio)~::.-:_-::_ - -
svc 3i -
SVC 30 

GET (record or audio)~::.=::::_-
SVC 31 
SVC 30 

GET (segment or audio)~.::.::._-== 
SVC 31 

LOGSEG~IJLQLG I 
LIOCS(PUT) 

~ ST ART ARU ._ SVC 0 
~ IJLQSS ~ - - - -

----~IJLQFL 
STOPARU :;:~----._j IJLQSS 

Supervisor 
(QSVC30) 
(QSVC31) 

(QSVC30) 
(QSVC31) 

(QSVC30) 
(QSVC31) 

(QSVC30) 
(QSVC31) 

EXCP 
Supervisor 

Supervisor 
(QSVC30) 
(QSVC31) 

EXCP 
Supervisor 

EXCP 
Supervisor 

/ 
/ 

(IJLQIP20) 
LPS Control 

(IJLQIP20) 
LPS Control 

(IJLQIP20) 
LPS Control 

AUDIO LINE 
Appendage 
Module 

Appendix c 365 



APPENDIX D: ALPHABETICAL LIST OF QTAM MODULES 

IJLQAA Audio line appendage 

IJLQAD -- IBM 7772 disk end appendage 

IJLQBO Breakoff (BREAKOFF) 

IJLQCK 

IJLQCL 

IJLQCM 

IJLQCP 

IJLQCR 

IJLQCT 

IJLQCl 

IJLQC2 

IJLQC3 

IJLQDA 

IJLQDC 

IJLQDE 

IJLQDL 

IJLQDP 

IJLQDQ 

IJLQDT 

IJLQEA 

IJLQEB 

IJLQEC 

IJLQER 

IJLQEX 

IJLQFL 

IJLQGA 

Checkpoint 

Change line (STARTLN and STOPLN} 

Cancel message (CANCELM) 

Change polling list entry 
(CHNGP) 

Checkpoint Request (CKREQ) 

change terminal table entry 
(CHNGT) 

QTAM Close Routine (CLOSE} Phase 
1 

QTAM Close .Routine (CLOSE) Phase 
2 

QTAM Close Routine (CLOSE) Phase 
3 

Disk end appendage 

Copy Line Error Counters (COPYC) 

Copy terminal table entry 
(COPYT) 

Distribution list 

Copy polling list entry (COPYP) 

Copy queue control block status 
(COPYQ) 

Insert date in message header 
CDATESTMP) 

End-of-address (EOA) 

End-of-block (EOB) 

End-of-block and line correction 
(EOBLC) 

Error message (ERRMSG) 

Expand message header 

DTF locator 

Get audio message (GET) 

366 DOS QTAM Program Logic Manual 

IJLQGB 

IJLQGC 

IJLQGD 

IJLQGM 

IJLQGR 

IJLQGS 

IJLQIP 

IJLQIT 

IJLQLA 

IJLQLC 

IJLQLG 

IJLQLK 

IJLQLO 

IJLQMC 

IJLQMI 

IJLQMM 

IJLQMP 

IJLQMT 

IJLQMW 

IJLQMO 

IJLQMl 

IJLQM2 

IJLQM3 

IJLQM4 

IJLQM5 

Get audio or nonaudio message 
(GET) 

Get audio message or record 
(GET} 

Get audio message or message 
segment (GET) 

Get complete message (GET) 

Get message record (GET) 

Get message segment (GET) 

QTAM Implementation 

Intercept message (INTERCPT) 

Line appendage 

Line PCI - Program Check Module 

Audio input message logging 
(LOGSEG) 

Look-up terminal table entry 
(DIRECT) 

IBM 2260 Local Appendage 

Conversational mode (MODE) 

Initiate mode (MODE) 

Message-mode interface (MODE) 

Priority mode (MODE) 

Compare message type (MSGTYPE) 

Message writer initiator 

Model channel program for IBM 
1030 terminals 

Model channel program for IBM 
1060 terminals 

Model channel program for IBM 
2260 terminals 

Model channel program for AT&T 
83B3 terminals 

Model channel program for 
western Union Plan 115A 
terminals 

Model channel program for IBM 
1050 switched and nonswitched 
terminals 



IJLQM6 

IJLQM8 

IJLQM9 

IJLQNO 

IJLQNl 

IJLQN2 

IJLQN3 

IJLQN4 

IJLQN5 

IJLQN6 

IJLQN7 

IJLQN8 

IJLQOl 

IJLQ02 

IJLQ03 

IJLQ04 

IJLQ07 

IJLQ08 

IJLQOA 

IJLQOB 

IJLQOC 

IJLQPA 

IJLQPL 

IJLQPM 

Model channel program for IBM 
1050 nonswitched terminals; not 
included if the installation 
includes 1050 switched as well 
as 1050 nonswitched terminals 

Model channel program for AT&T 
TWX terminals (Models 33 and 35) 

Module channel program for IBM 
2260 Local terminals 

Model channel program for IBM 
2740 Terminals, Type 274A 

Model channel program for IBM 
2740 Terminals, Type 274B 

Model channel program for IBM 
2740 Terminals, Type 274C 

Model channel program for IBM 
2740 Terminals, Type 274D 

Model channel program for IBM 
2740 Terminals, Type 274E 

Model channel program for IBM 
2740 Terminals, Type 274F 

Model channel program for IBM 
2740 Terminals, Type 274G 

Model channel program for IBM 
2740 Terminals, Type 274H 

Model channel program for WTTA 

Open Monitor/Open DASD Message 
Queues File (OPEN) 

open Nonaudio Line/MS Queues 

Open Checkpoint/Restart (Phase 
1) 

Open Checkpoint/Restart (Phase 
2) 

Open IBM 7772 DCV Vocabulary 
File 

Open Audio Line Group/Output 
Queue Files 

Operator Awareness 

OBR/SDR 

Operator control (OPCTL) 

Put audio message CPUT) 

Polling limit control (POLLIMIT) 

Put complete message (PUT) 

IJLQPR -- Put message record (PUT) 

IJLQPS Put message segment (PUT) 

IJLQPZ 

IJLQQT 

IJLQRA 

IJLQRB 

IJLQRC 

IJLQRD 

IJLQRG 

I,JLQRM 

IJLQRR 

I,JLQRS 

IJLQRW 

I,JLQRl 

I,JLQR2 

I.JLQR3 

I,JI.QR4 

I.JLQR5 

IJLQR6 

IJI,QR7 

IJLQR8 

IJLQR9 

IJLQSB 

IJLQSC 

IJLQSH 

Pause-transmit idle characters 
(PAUSE) 

Close message control (CLOSEMC) 

Translate table RCVARU: ARU 
code to EBCDIC 

Translate table RCVITA2: ITA2 
code to EBCDIC 

Translate table RCVZSC3: ZSC3 
code to E BCD! c 

Retrieve message segment by DASD 
address (RETRIEVE) 

Route message (ROUTE) 

Release message CRELEASEM) 

Re-route message (REROUTE) 

Retrieve message header by 
sequence number (RETRIEVE) 

Physical input/output control 

Translate table RCV1030: 1030 
to EBCDIC 

Translate table RCV1050: 1050 
to EBCDIC 

Translate table RCV1050F: 1050 
to monocase EBCDIC 

Translate table RCV1060: 1060 
to EBCDIC 

Translate table RCV2260: 2260 
to EBCDIC 

Translate tables RCV83B3 or 
RCV115A: AT&T 83B3 or WU Plan 
115A to EBCDIC 

Translate table RCVTWX: AT&T 
Models 33/35 (TWX) to EBCDIC 

Translate table RCV2740: 2740 
to EBCDIC 

Translate table RCV2740F: 2740 
to monocase EBCDIC 

Translate table SNDITA2: EBCDIC 
to ITA2 

Translate table SNDZSC3: EBCDIC 
to ZSC3 

scan message header 

Appendix D 367 



IJLQSI 

IJLQSK 

IJLQSO 

IJLQSR 

IJLQSS 

IJLQST 

IJLQSl 

IJLQS2 

IJLQS4 

IJLQS5 

IJLQS6 

IJLQS7 

IJLQS8 

sequence-in number verification 
(SEQIN) 

Skip-through-character (SKIP) 

Insert sequence-out' number in 
message header (SEQOUT) 

Source terminal name 
verification (SOURCE) 

Start/Stop audio line (STARTARU 
and STOPARU) 

Skip-to-character (SKIP) 

Translate table SND1030: EBCDIC 
to 1030 

Translate table SND1050: EBCDIC 
to 1050 

Translate table SND1060: EBCDIC 
to 1060 

Translate table SND2260: EBCDIC 
to 2260 

Translate tables SND83B3 or 
SND115A: EBCDIC to AT&T 83B3 or 
WU Plan 115A 

Translate table SNDTWXE: EBCDIC 
to AT&T Models 33/35 with even 
parity (TWX) 

Translate table SND2740: EBCDIC 
to 2740 

368 DOS QTAM Program Logic Manual 

IJLQS9 Translate table SNDTWXO: EBCDIC 
to AT&T Models 33/35 with no / 

IJLQTA 

IJLQTM 

IJLQTR 

IJLQTS 

IJLQTT 

IJLQTl 

IJLQT2 

IJLQT3 

IJLQT4 

IJLQT5 

WTTA Line Appendage Module 

Terminal Test Header Analysis 

Code translation~ used in 
conjunction with a QTAM or 
user-provided translate table 

Insert time-of-day in message 
header (TIMESTMP) 

on-Line Terminal Test 

Terminal Test Module, IBM 1030 

Terminal Test Module., IBM 1050 

Terminal Test Module, IBM 1060 

Terminal Test Module, IBM 2740 

Terminal Test Module, IBM 2260 

IJLQWA -- Audio message Writer 

IJLQWl 

IJLQW2 

IJLQW3 

IJLQXL 

Message Writer for ERP 

Message Writer for open/Close 

Message writer for Multivolume 
Facility 

cancel Routine (Phase 1) 

IJLQXM -- Cancel Routine (Phase 2> 

( 
' '\___ 



Fetched by System 
Open /v\onitor 

QTAM OPEN ROUTINES 

Fetched by QTAM 
Open Monitor 

~!~i~r/b~~nr-----. .. Open Line Group 

DASO 

Store Address of 
Vector Table in 
Communication 
Region 

Compute and Save 
Ex.tent Data for 
File 

Fetch Proper 
QTAM Open 
Module 

Fetch QTAM 
Open Monitor 

APPENDIX E: 

Fetched by QTAM 
Open DASO 

Open Checkpoint Records 

Validate Size of 
Checkpoint Work 
Area 

Format Disk Extents 
with Dummy Records 

Return to System 
Open Monitor 

GENERAL FLOW OF QTAM OPERATIONS 

Empty Buffer for Receiving 

Activate 

Prepare CCW in 
BRB for Assigned 
Buffer 

Make TIC Address Yes 
Valid in Previous i.....--'"< 
BRB 

CPG 

Prepare Read 
Continue 
Channel Program 

EXCP 

Yes 

CPG 

Prepare Read 
Initial 
Channel Program 

Set PCI Flag 
in CCW for 
First Buffer 

CPG 

Prepare Write 
Initial 
Channel Program 

Yes 

Timer Request Element 

CPG 

SETIME 
Set Time for 
Checkpoint 
Interval 

Prepare Write 
Continue 
Channel Program 

RCVHDR 

Receive Header 
Subgroup of LPS 

Clean- up 

Qpost Buffer to~ 
DASD Queue 

Perform Other 
End Receive 
Subgroup 
Functions 

POSTRCV 
Clean- up 

Qpost Last 
Buffer to 
DASO Queue 

EQT 

RCVSEG 

Receive Segment 
Subgroup of LPS 

EOB Set Read 
Continue 
in LCB 

Branch to 
Activate 

Received 

Start 

Open DASO and 
Line Group Files 

EN DR EADY 
Save User Register,, 
Branch to LPS 
Control 

Request to Start 
Disk 1/0 Operation 

>--~~~~~~~~~~~~~~-'-; 

Message-filled Buffer 

LPSTART 

Send Header 
Subgroup of 
LPS 

SENDSEG 

Yes 

ENDSEND 

Branch to 
Activate 

Free BRB 

QPOST to 
Free Line 
for Next Use 

ENDSEND 

EOB or EOBLC 

Perform Other 
Functions in End 
Send Subgroup 

BRB's to 
Inactive 
BRB Queue 

EOB 
Set Write 
Continue 
Code in LCB 

Branch to 
Activate 

MESSAGE PROCESS! NG PROGRAM 

Start 

Open MS Process 
and Destination 
OuE:ues 

Process Message 
Per Application 

Fetched by 
Open tv\onitor 

Place Address of 
DASD Process 
QCB in DTF Table 

Place Address of 
LCB into DASO 
Process QCB 

Return 

Get Message Routine 

From GET 
Expansion 

Move Data from 
Buffer to Work 
Area 

Set Length and 
EOM in 
GET/PUT Prefix 

Return 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ____________ J 

Wait to Remove 
BRB from Ready 
Queue 

I 
I 
I 
I 
I 
I 

6 
{via QTAM Nucleus) 

Put Message Routine 

From PUT 
Expansion 

Return 

Special Entry 
from Buffer- BRB 

, 

--.., 
I 
I Obtain Address of 

Destination Queue I 
from Terminal Table I 

Move Dato from 
Work Area to 
Buffer 

I 
I 
I 
I 
I 
I 
I< 
I~ 
I~ 
I~ 
liL 
I~ ,-
1 
I 
I 
I 
I 
I 
I 
I 
I 
I __ ...J 





APPENDIX F: HEADER AND TEXT RELATIONSHIPS ON A DASD QUEUE 

Figure 22 illustrates how chains of 
message segments for destination and 
process queues are formed on a direct 
access storage device. 

Each chain consists of a series of areas 
on the direct access r1evice. Each area 
either: 

1. contains a message segment and the 
segment's associated header or text 
prefix, or 

2. Is reserved for the next segment to be 
placed on the chain. 

The areas, and thus the segments, are 
linked into the chain by means of 
inforrnation, called relative record 
numbers, contained in-the link fields of 
the prefixes. Each chain is formed as 
follo-ws. 

At the time the DA~;o message queues file 
is opened, one area h~ reserved for each 
chain to be formed. The header segment of 
the first message to bf' put on the chain is 
placed in the reserved drea for that chain. 
At the same time, the n<'xt two available 
areas are reserved. 1'h<> first is reserved 
for the header of the n<>xt message to be 
put on the chain, and the second is 
reserved for the first text segment of the 
same (that is, the first) message. This 
process is repeated for each succeeding 
message segment placed on the chain. Each 
time a header segment i~; placed in its 
reserved area, two more areas are reserved. 
Each time a text segrnent is placed on the 
chain, one more area is reserved. 

If the current segrnent is the last 
segment of the message, no area is reserved 
for the next text segment. Specifically., 
when a message consisting of only a header 
segment is placed on the chain, only one 
area is reserved (that is, for the header 
of the next message). When the last of a 
series of text segments is placed on the 
chain, no area is reserved. 

At the time an area i~; reserved., link 
information is placed in the link fields of 
the prefixes of the associated segments. 
Each header prefix contains the relative 
record numbers of the areas occupied by 
the: 

1. First text segment of the same 
message, 

2. Previous header segment, and 

3. Next header segment. 

Each text prefix contains the relative 
record numbers of the areas occupied by 
th(': 

1. Next text segment of the same message, 
and 

2. Header of the same message. 

If the header is the only segment in the 
me~;sage, the relative record number of the 
an•a occupied by that header is placed in 
it~; "next segment" link (BSLK) field. If 
UH' text segment is the last segment in the 
m<·~;sage, the relative record number of the 
header of the same message is placed in the 
B~a.K field. Figure 17 illustrates the 
progressive development of two chains, one 
for queue A and one for queue B. The time 
sp,in covered begins with the initialization 
of the queues (when the DASD message queues 
file is opened) and ends when there are 
three complete messages on the chain for 
qlwue A, and two complete messages on the 
ch,iin for queue B. 

The five messages contain a total of 
fourteen segments, which are placed on the 
ch.iins in the following sequence: 

1. Header of message 1, queue B CB-1) 

7.. Text segment of B-1 

3. Header of A-1 

l!. Header of A-2 

c>. Header of B- 2 

6. Text segment of A-1 

7. Text segment of A-2 (last segment) 

fl. Header of A-3 

9. Text segment of A-1 

10. Text segment of B-2 <last segment) 

11. Text segment of B-1 (last segment) 

17.. Text segment of A-3 

13. Text segment of A-1 (last segment) 

lll. Text segment of A-3 (last segment) 

Appendix F 371 



Each step in the development of the 
chains is shown in Figure 22. Each step 
shows the currently filled areas of the 
direct-access space allotted to the chains, 
the areas reserved for succeeding segments, 
and the location of the next available area 
(that is, the area that will be reserved in 
a succeeding step). 

372 DOS QTAM Program Logic Manual 



Relative record numbers representing consecutive direct- access areas: 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Beginning of Chain 
for Queue A 

19 I 20 I 

H H f Beginning of Chain for Queue B 

_l 1._:.~1~~___..._~~~~~~~~~~~~_..____.1--
Step No. H H H T t 

..... t' ..... ' ..... I _1 .... I _...____.___.___-L-__.____,___._--'-_...___.1---....__-L-__.__,____._---l._L--J[ = 
H H H T T 

2 I l I l I = 

H H HT TH TH T 

4 I i I l I l I 2 

[= 
i-= 

H H HT TH TH T HT 

5 I 1 ,J l 2 I l I 2 I I 1--
H H HT TH TH T HT T 

6 l~t..._!_1_._j_2=J_1_.___.=2-'--""_1 ___ _._---';·1 _ _c_~_._--'--'------'--'--'----L--'----'[= 
H H HT HT HT HT 

7 """"'"1=j~1 -'-j_2_._J _1_.__._~2..;..l.....~1....___._l~a)~.1--'--..;..1.....-'---'I'---'--'----'--'--'----'____,[= 
H H HT TH TH T HT TH T 

8 ~1 ..._I _1___._J _2 ..._J _1_,__-'-j =2----'-""""1 _1...,3_.il=z=.1·"--;I ---'-.L...-~.:.....Jl""-1 _.....L.___JL...,.__._____J.___.____J____,1-= 
H H HT TH TH T HT T H T T 

9 ~1 ....... I _1_,__! _2 ....L..l _1.:.....JJL...,._J___2---li~1 ...L.I ~3 ....J........;2"""'"· .J.._1! ___j__......_1 _I ---1~-'-I ~-J___....J........;_...L_---1---ll = 
H H H TH TH T II T H T T 

10 ~f ~1~j_1__.__J_2~!_1__._____,~2~···.··~1_1=j=3~.·~t=·~~001.__~l_2_l~1~~""""-'-~'----L--'---L--'---''--
H H HT TH TH T HT T H T T 

11 l~1 .... l _1__,!_2___._I _1 _.l_1_.I ..... · ....... 2 ....... 1 ~1 ...... l=3=· ··"-'"1 ....... 2·1...._l ___.!_2---"-'t: ._1 ............. ~........._~_..____.__---=__.____.I_= 
H H HT TH TH TH TT HT TT f 

12 
=t ...... ·l ··...._\I _1 __.l_2__._I _1 ....L..l _1 -L-2.:.....J· J.._I "-"1 ....L..I """"s '"""l·.:.....J·,~ ...... ·~:._I __._I _2 _..l_1~~t--3 ..... ···· l.:.....J.:......:.....J.:........____.__~__.___,I_ = 

H H HT TH TH TH TT HT TT f 
13 ...... 1 .... 1 =Ll_1 -'-i _2----'-I _1 _._1_._i =2'-...l.-...·.._1 -'-""'"3_._.._~··=··· _L_I _2 --""-'--1 ...... I ==I.._•• """"3""".•••··· 1_1_ ... ._I -----'-'I _ _.__.___.____,!_= 

H H H T H T H T II T T H T T T 

14 l'--1 ·-'-'I _1-.L..-J _2 -'-I _1 .:.....Jl~1 -'---2 ___J.__i_J......_3 ;..J.!=2=:J.._:I ___j_l _2--1..,..:.r =·, -'-I=•· ---1!=··· =3 -'-!=1__.I'"""··••····3 .... •.· ·····•·•._! __J._J______J.____JI __ 

2 3 4 5 6 7 8 9 f 1 o 1 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 l 9 I 20 I _ 

~--------------------, 
I 0-15 16-lSl'il-21 I 

I EI 15 1 Text I 
i-0~5i6-1a19-~2212~.~il------1 
I I I 

r--------------------1 
I 0-15 16-1819-21 I 

I I 
I This header link (BMHD) I 
I I 
I Next segment link (BSLK) I 

I I 
L--------------------~ 

I D 11 2 10 l:'dHeaderjTextJ : 
I I 
I Next header link (BMLK) I 

I Previous header link (BMHD) i 
LI Next segment link (BSLK) JI 
--------------------

l OLJ 8 I B I Text J I 
I f f I 
I This heoder link (BSLK) (BMHD) : 

I I 
I I 
I I 
·--------------------~ 

Header Segment Link Fields Intermediate Text Segment Link Fields Last Text Segment Link Fie Ids 
H 

D Unreserved, unfilled area [I] Area containing header segment of message l 

H T 
D Area reserved for, but not yet containing, the next header segment W Area containing text segment of message 2 

T 
D Area reserved for, but not yet containing, the next text segment c::J Area filled during this event 

Shaded blocks represent areas on queue A; Unshaded blacks represent areas on qu""" B ~ Points to next available area 

Figure 22. Example of Message Header and Text Helationships in Direct 
Access Destination and Process Queue 

Appendix F 373 



\ 



Message 
Control 
Program 

t- -OPEN - - SVC 2 
Macro 
Expansion 

1-------

r -ENDREA-DY -

Macro 
Expansion 

~1-------

1- -TRANS - -
Macro 1----~ 

Expansion I- - - - - - -'""...__ ___ -+--i 

External 
Routines 

TRANS 
Module 

r- - LOGsEG - - ~----~ 

Macro 
Expansion 

f- . - - - - - SVC 0 

f- -REPEAT- - -

Macro 
Expansion 

t-------

1-- -CHECKARU -
Macro 

t- _E~a~i~n _ _.; 

t- -POSTARU- -

Macro 
Expansion 

t--------1 

Message 
Processing 
Program 

t- -OPEN- - - - SVC 2 

Macro 
Expansion 

t------

1- - GET- - - -

Macro 1----~ 

Expansion 
t--------

LOGSEG 
Module 

Externa I 
Routines 

GET 
Module 
(ALCB/CPQ) 

1-- - - - - - _i----r-t_ ___ _J 

STARTARU 
or STOPARU 
Macro 
Expansion 

t------~ 
t- -PUT- - - -

Macro 
Expansion 

t------

CLOS EMC 
Macro 
Expansion 

START/ 
STOP 
Module 

PUT 
Module 
(ALCB/SEND) 

CLOS EMC 
Module 

SVC 30 

s~ 

SVC 30 

SVC 0 

SVC 31 

SVC 27 

l l QTAM Control Program I 

QWAIT/QPOST SVC Routine 

Asynchronous 

Interrupt -I 
s~ 

System 

.....,_ QPOST 

.....,_ QDISPATCH 

Truncated 
Subtasks 

i--

-
7772 DCV Buffer Subtask I 

7772 DCV 
Buffer 
Routine 

APPENDIX G: GENERAL FLOW OF QTAM/ARU OPERATIONS 

I QTAM/ARU Implementation I 

7772 Disk Read Routine 

DASD Word 

(DCVBUF/LPS) 

Main Storage Word 

Supervisor DISK72 
Area 1-"------+----+--- 7772 Line Write Routine 

AUDIO LINE 

~----~ svco 
Transient b 
Area 
~ 

IJLQIP20 

7772 Disk 
Appendage 

(ALCB/LPS) 

7772 Disk Arpendage Module 
t---- --------!------------ -----+-

I- - - -

l 

Audio Line 
Appendage 

(ALCB/SEND) 
(DCVBUF/BUFARU) 
(ALCB/LPS) 

LPS Control 
Routine 

(ALCB/LPS) 

SVC 0 

SVC 27 

SVC 30 

Implementation Module 

I----' 

I----, 

1---i 
1---i 

~ 
I 
I 

I 

I 
I 
I 

I 
I 
I 

c -

~----- ._____, 

ARU lnterncil 
Routine 

(ALCB/SENIJJ 

~---- ~ 

ARU SEND Subtask 

ARU Send 
Routine 

7770 
(ALCBILPS) 

7772 

SVC 31 
~ 

I 

ARU Receive 
Routine 

(ALCB/CPQ) 
SVC 31....., 

Audio Line Appendage Module 

Appendix G 375 



INDEX 

Where more than one page reference is given, the major reference appears first. 

Activate Routine 117, 27, 28, 31, 34, 35, 
276 

Active Buffer Request Queue 20, 322 
Active Buffer Request Routine 111, 27-29, 

35, 43, 309 
Active Buffer Request Subtask 27-29, 35, 

43' 325 
Additional CCW Queue 20, 24, 322 
ALCB 347 
Allocation 

CPU Processing Time 18 
I/O Paths 18 
Main Storage Space 18 

Appendages, QTAM 25 
ARU Internal Routine 37, 168, 179 
ARU Receive Routine 37, 168, 179 
ARU Send Queue 20, 24, 322 
ARU Send Routine 38, 168, 180 
ARU Send Subtask 38, 325 
Assembling QTAM 13 
Attention Interrupt (2260 Local) 44 
Attention Queue 322 
Attention Subroutine (2260 Local) 176 
Audio ERP Message Writer Routine 296 
Audio Error Recovery Procedures 170 
Audio Input Message Logging Routine 54,236 
Audio Line Appendage 39 
Audio Line Appendage Module 168 
Audio Line Control Block (ALCB) 347 
Audio Line End Interruption 42 
Audio Line End Routine 37, 169 
Available Buffer Queue 19, 24, 322 
Available Buffer Routine 111, 30, 32, 35, 

310 
Available Buffer Subtask 30, 32, 35, 325 

BRB (See Buffer Request Block) 
BRB Ring Routine 110, 26, 33, 307 
Breakoff Routine 47, 184 
Buffer-BRB Routine 111, 27, 28, 30, 35, 43 

311 
Buffer Element, IBM 7772 DCV 354 
Buffer Prefixes 358 
Buffer Recall/Cleanup Routine 114, 29, 30, 

32, 36, 319, 320 
Buffer Request Block (BRB) 118, 355 

Status Codes 356 
Bus Out and Overrun Subroutine 162, 166, 

167 

Cancel Message Routine 47, 189 
Cancel Routine, QTAM 99, 100, 299, 300 
CCB (See Channel Control Block) 
CCB/ECB (2260 Local) 357 
Change Line Routine 68, 189 
Change Polling List Routine 69, 190 
Change Terminal Table Entry Routine 69, 

191 
Channel Control Block 120 
Channel Data Check (Audio) 172 

Channel End Subroutine (2260 Local) 176 
Channel Program Generator Routine 119, 27, 

31, 34, 35, 277, 278 
Channel Programs for 

AT&T 83B3 135 
IBM 1030 123 
IBM 1050, Nonswitched Line 138 
IBM 1050, Switched Line 140 
IBM 1 060 126 
IBM 2260 129 
IBM 2740 143 
TWX Models 33/35 142 
Western Union Plan 136 
WTTA 155 

Checkpoint Queue 321 
Checkpoint Record Format 
Checkpoint Request Routine 
Checkpoint Routine 87, 27, 
Checkpoint Subtask 27, 324 
Checkpoint/Restart Facility 87 

88 
70 
186 

Cleanup Routine (See Buffer Recall/Cleanup 
!Wu tine) 

Close Message Control Routine 83, 267 
Command Reject and Equipment Check Sub-
routine 162 

Conununication Line Queue 20, 24, 323 
Control Blocks, QTAM 343 
Conversational Mode Routine 54, 241 
Copy Line Error Counters Routine 70, 185 
Copy Polling List Routine 71, 200 
Copy Queue Control Block Routine 71, 201 
Copy Terminal Table Entry Routine 71, 198 
Core Image Library 12 

DASD Destination Queue 20, 24, 323, 351, 
373 

DASO Destination Routine 112, 29, 32, 42, 
314 

DASD Destination Subtask 325, 32 
DASD Message Queues File 92 
DASD Process Queue 20, 24, 324, 352 
Data Check Subroutine 160 
Data Stamp Routine 49, 202 
DCV Buffer Queue 323 
DCV Buffer Subtask 325 
Decision Tables for Audio Error Recovery 
Procedures 171 

Decision Tables for Error Recovery Proce-
dures 163 

Defer Entry Subroutine 105 
Device I/O Modules 121 
Disk End Appendage 115, 30, 33, 41-43, 195, 

196 
Disk I/O Queue 20, 323 
Disk I/O Routine 115, 30, 32-35, 40, 43, 

1 97 
Disk I/O Subtask 
Distribution List 
Distribution List 
Distribution List 

325, 30, 32-35, 40, 43 
Queue 323 
Routine 48, 199 
Subtask 325 

Index 377 



DTF Locater Routine 72, 221 
DTF Table 

AQ Type 342 
Audio LG Type 337 
AV Type 334 
CK Type 332 
DA Type 330 
DQ Type 341 
Nonaudio LG Type 335 
PQ Type 339 

Element Control Block (ECB) 18, 106, 328 
Special Form (IJLQIP5F) 357 

Element, Buffer IBM 7772 DCV 354 
End Insert Routine 113, 317 
End-of-Address Routine 49, 207 
End-of-Block and Line Correction Routine 

31, 35, 51, 209 
End-of-Block Routine 51, 31, 35, 208 
End-of-Poll Time-Delay Routine 109, 306 
ENDREADY Macro Instruction 27, 37 
ENDSEND Macro Instruction 34 
Entry Interface Subroutine 103 
Error Message Routine 52, 219 
Error Recovery Procedure Subroutines 160 
Error Recovery Procedures, Audio 170 
Errors after Initial Selection 164 

(Audio) 172 
Exit Interface Subroutine 107 
Exit Select Subroutine 107 
Expand Header Routine 53, 220 
External Routine 13 

Free BRB Routine 115, 32, 33, 321 
Full STCB 18, 106, 329 
Functional Diagram of QTAM Components 369 

GET Audio Message Routine 72, 45, 222 
GET Audio Subtask 45 
GET Message Routine 77, 40-43, 229, 230 
GET Nonaudio or Audio Message Routine 73, 

223 I 224 
GET Record or Audio Message Routine 74, 

225 I 226 
GET Record Routine 78, 231, 232 
GET Scheduler Routine 112, 40, 42, 315 
GET Scheduler Subtask 42, 326 
GET Segment or Audio Message Routine 76, 

227 I 228 
GET Segment Routine 79, 233 
GETIME Macro Instruction 67 

Header and Text Relationships on a DASD 
Queue 371 

IBM 2260 Local Appendages 175, 44, 238-240 
IBM 7770 Line End Subroutine 169, 182 
IBM 7772 DCV Buffer Element 354 
IBM 7772 DCV Buffer Routine 116, 38, 206 
IBM 7772 DCV Buffer Queue 20, 24, 323 
~BM 7772 DCV Buffer Subtask 38, 321 
IBM 7772 Disk Read Routine 115, 38, 204 
IBM 7772 Disk End Appendage 115, 183, 203 
IBM 7772 Line PCI Routine 169, 181 
IBM 7772 Line Write Routine 116, 38, 205 
IBM 7772 Line End Subroutine 170, 183 
Implementation Module 13, 108 
Inactive BRB Queue 20, 24, 323 

378 DOS QTAM Program Logic Manual 

Initial Selection Errors 163 
Audio 172 
Errors after Initial Selection 164 
IBM 2260 Local 177 

Initialization 26, 36, 40, 45 
Initiate Mode Routine 56, 242 
Intercept Message Routine 53, 234 
Interim LPS Queue 324 
Interim LPS Routine 112, 29, 31, 312 
Interim LPS Subtask 326, 29, 31 
Interval Timer 307, 12 
Intervention Required Subroutine 161, 166 
Key 22, 106 
Key Field of ECB 328, 106 
Key Field of QCB 328, 106 

LCB 343 
Line Appendage PCI and Program Check 
Routine 235 

Line Control Block (LCB) 342 
Line End Appendage and ERP Module 159, 

210-218 
Line End Routine 31, 35, 36, 210-218 
Line Group File 

Close 96 
Open 92 

Line Input and Output General Flow 117 
Line PCI Routine 158, 28, 29, 34, 235 
Line Procedure Specification (LPS) 

ENDRCV Subgroup 29, 31 
ENDSEND Subgroup 35, 36 
RCVHDR Subgroup 29, 31 
RCVSEG Subgroup 29, 31 
SENDHDR Subgroup 34 
SENDSEG Subgroup 34 

Line-PC! and Program Check Routine 159, 2 
235 

Linkage Editing QTAM 13 
Linkages, QTAM 361 
Logical Organization of QTAM 15 
Lockup Terminal Table Entry Routine 54, 

237 
Lost Data Subroutine 
LPS Control Routine 
LPS Queue 19, 324 
LPS Subtask 326 

161, 164 
113, 27-31, 33-39, 318 

Macro Instructions, QTAM 13, 14 
List of 361 
See Associated Routine 

Main-Storage Destination Queue 96 
Main-Storage Process Queue 20, 96 

Initializing 40 
Replenishing 42 

Master Receive Switch (IJLQMRSW) 84 
Message Control Program 

Assembling 13 
Audio, Initializing 36 
Audio, Operational Flow 36 
Initializing 26 
Linkage Editing 13 
Operational Flow 26 
Structure 15 

Message Mode Interface Routine 56, 242 
Message Processing Program 

Assembling 14 
Audio, Initializing 45 



Message Processing Program (Continue) 
Audio, Operational Flow 44 
Initializing 40 
Linkage Editing 40 
Operational Flow 40 
Structure 17 

Message Type Routine 56, 243 
Message Writer Initiator Routine 178, 244 
Message Writer Routine, QTAM 98, 297, 298 
Mode, Conversational 54 
Mode, Initiate 56 
Mode, Priority 56 
Model Channel Programs 121 

Offsets to 122 
Model Expanders 120 
Modules, List of QTAM 367 

Nucleus, QTAM 23 
(See also SVC/Subtask Control Routine) 

OBR (see Outboard Recorder) 
On-Line Terminal Testing 89 
Open Audio Line Group/Output Queue Files 

Routine 95, 36, 259 
Open Checkpoint Restart Routine 

Phase 1 94, 27, 256, 257 
Phase 2 94, 257 

Open IBM 7772 DCV Vocabulary File Routine 
94, 36, 258 

Open Noaudio Line Group/MS Queues Routine 
93, 26, 40, 255 

Operational Flow, QTAM 26 
Operator Awareness Routine 90, 245 
Operator Control CHNGT Queue 324 
Operator Control CHNGT Subtask 326 
Operator Control Routine 57, 247 

CHNGT Operation Subroutine 57, 249 
Common Subroutines 61, 247 
COPYC Operation Subroutine 58, 250 
COPYT Operation Subroutine 58, 249 

INTERCPT Operation Subroutine 58, 249 
INTREL Operation Subroutine 58, 252 

RELEASEM Operation Subroutine 59, 250 
STARTARU Operation Subroutine 59, 253 
STARTLN Operation Subroutine 59, 250 
STOPARU Operation Subroutine 60, 253 
STOPLN Operation Subroutine 60, 251, 

252 
SWITCH Operation Subroutine 61, 250 

Outboard Recorder 90, 246, 346, 367 
Overrun Subroutine (See Bus Out and Overrun 
Subroutine) 

Pause BRB/CCW 62, 119, 357 
Pause Routine 62, 266 
PCI Handling 158, 28, 34, 39 
Physical I/O Module, QTAM 117 

Activate Routine 27, 28, 31, 35, 
117, 276 

Channel Program Generator Routine 27, 
31, 34, 35, 119, 277, 278 

Model Expanders 120 
Physical Organization of QTAM 12 
PIB 21, 96, 103, 107 
Polling Limit Control Routine 62, 261 
Post Subroutine, QTAM 103 
POSTRCV Macro Instruction 31 
POSTSEND Macro Instruction 36 

Priority Mode Routine 56, 242 
Priority Scheme, QTAM 22 
Priority, Send/Receive 32 
Priority Search Subroutine 104 
Program Information Block (PIB) 21, 96, 

103, 107 
PUT Audio Message Routine 79, 46, 260 

80, 43, 44, 262 
81, 263, 264 

PUT Audio Subtask 46 
PUT Message Routine 
PUT Record Routine 
PUT Segment Routine 82, 265 

QCB (See Queue Control Block) 
Qdispatch Function 22 
Qdispatch Subroutine 105 
Qdispatch Subtask 326, 105 
QMOVE Queue 325 
Qinover Routine 112, 313 
Qinover Subtask 327, 112 
QPOST 

From Internal Implementation Subtask 21 
From Problem Program 21 

QTAM 
Appendages 25 
Initial Status 24 
Linkages 361 
Logical Organization 15 
Module List 367 
Nucleus (See SVC/Subtask Control Routine) 
Outline of Operations 25 
Physical Organization 12 
Queues 322 
Separate Control Program 18 
Service Facilities 87 
Subtasks 325, 19, 25 
Supervisory Routines 17 
Vector Table 350 
Within DOS Control Program 15 

QTAM Audio Message Writer Routine 98 
QTAM Cancel Routine 99, 299, 300 
QTAM Close Routine 

Phase 1 96, 192 
Phase 2 96, 193 
Phase 3 97, 194 

QTAM Control Blocks 19, 343 
QTAM Message Writer Routine 98 
QTAM Modules, Alphabetical List 367 
QTAM Open Audio Line Group/Output Queue 
File Routine 95, 36, 45, 259 

QTAM Open Monitor/Open DASD Message Queues 
File Routine 92, 26, 254 

QTAM Open IBM 7772 DCV Vocabulary File Rou-
tine 95, 36, 258 

QTAM Operations General Flow 370 
QTAM Post Subroutines 103, 23 
QTAM Vector Table 350 
QTAM Wait Subroutine 104, 23 
Queue Control Block (QCB) 19, 106, 328 

Combined with STCB 351 
DASD Destination Queue 351 
DASD Process Queue 352 
For 7772 DCV Buffer Queue 353 
On Ready Queue 106 

Queue Insert by Priority Subtask 105, 326 
Queue Insert Routine 39 
Queue Insert Subroutine 105 
Queue Insert Subtask 326, 39, 105 
Queue Management 18 

Index 379 



_QWAIT 
From Internal Implementation Subtask 
From Problem Program 21 

Read Skip Subroutine 162 
Ready Queue 18, 24 
Receive Scheduler Routine 
Receive Scheduler Subtask 

108 

108, 26, 304 
326, 26, 36, 

Receiving Initiation 27 
Release Message Routine 85, 273 
Relocatable Library 12 
Reroute Message Routine 64, 274 
Retrieve by Sequence Number Routine 85, 

275 
Retreive DASD Routine 84, 271 
Return Buffer Queue 324 
Return Buffer Routine 113, 40, 316 
Return Buffer Subtask 326, 40 
Route Message Routine 63, 272 

Scan Header Routine 65, 279 
SDR (see Statistical Data Recorder) 
Send Scheduler Routine 109, 29, 33, 36, 

305 
Send Scheduler Subtask 326, 29, 33, 36 
Sending Initiation 33 

Audio 38 
Sense Byte Analysis 164 

Audio 172 
Sequence Number-In Routine 65, 280 
Sequence-Out Routine 66, 282 
Skip Character Set Routine 65, 281 
Skip-On-Count Routine 66, 285 
Source Statement Library 12 
Source Terminal Verification Routine 66, 

283 
Start/Stop Audio Line Routine 86, 284 
Statistical Data Recorder 91, 246, 346, 

367 
Subtask Control Block (STCB) 

Full STCB 19, 106, 329 
Truncated STCB 19, 329 

Combined with QCB 351 
Subtasks, QTAM 19, 25, 325 
Supervisory Routines, QTAM 17 

21 

SVC Subtask/Control Routine 103, 12, 268-
270 

System Generation 12 

Terminal Test Buffer Routing Queue 324 
Terminal Test Buffer Routing Subtask 327, 

287 
Terminal Test Header Analysis Routine 100, 

286 
Terminal Test Modules 

IBM 1030 101, 291 
IBM 1050 101, 292 
IBM 1060 101, 293 
IBM 2260 101, 294 
IBM 2740 102, 295 

Terminal Test Recognition Routine 89, 290 
Terminal Test Single Stopline Subtask 327, 

287 
Terminal Test Stopline Queue 325 
Terminal Test Stopline Subtask 326, 287 
Terminal Test Subtasks 287 
Time Delay Queue 325 

380 DOS QTAM Program Logic Manual 

Time Delay Subtask 327 
Time Stamp Routine 67, 289 
Time Delay Routine 27 
Timeout Subroutine 161, 164 
Timer, Interval 306, 12 
TP Operation Codes 122 
Transient Area Routines 92 
Translate Routine 67, 288 
Truncated STCB 18, 328, 349 

Unit Check in Status (2260 Local) 177 
Unit Exception 165 

Vector Table, QTAM 350 

Wait Subroutine, QTAM 104 
WTTA Line Appendage Module 173, 301-303 
WTTA Line-End Routine 174 
WTTA Line-PCI Routine 173 

/ 

( ' 
~/ 



READER'S COMMENT FORM 

IBM System/360 
Disk Operating System 
Queued Telecommunication Access Method 
Program Logic Manual 

• How did you use this publication? 

As a reference source 

As a classroom text 

As a self-study text 

0 
0 
0 

• Based on your own experience, rate this publication • 

As a reference source: Very Good 

Good 

As a text: Very Good 

Good 

• What is your occup:1tion? 

1:air 

F:tir 

Poor 

Poor 

Order No. GY30-5002-4 

Very 

Poor 

Very 

Poor 

• We would appreciate yuur other comments; please gi V<' specific page and line 

references where appropriate, If you wish a reply, bl· sure to include your name 

and address. 

• Thank you for your cooperation. No postage necessary if maileri in the U, S, A. 



GY30-5002-4 

YOUR COMMENTS, PLEASE ... 

This publication is one of a series that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your answers to the questions on the 
back of this form, together with your comments, help us produce better publications 
for your use. Each reply is carefully reviewed by the persons responsible for writing and 
publishing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in using your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. " 

POSTAGE WILL BE PAID BY .•• 

I BM Corporation 
P. 0. Box 12275 
Research Triangle Park 
North Carolina 27709 

Attention: Publications Center, Dept. E01 

() 
c 

""'"' r+ 
. }> 

0 
:i 

"' c 
:i 
co 

I 
I 
I 
I 

Fold I 

FIRST CLASS 
PERMIT NO. 569 
RESEARCH TRIANGLE PARK 
NORTH CAROLINA 

_..J 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

----------- -H~-- ---..:...i 
Fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains,N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International I 

Fold 

OJ 
s 
(/) 

w 
Cl 
0 

0 
0 
(/) 

0 
--i 
}> 
s 
-c 
0 
"' !il 
3 
r 
0 
'S. 

" s 
"' :i 
c 
'?!. 

en 
w 
Cl 
0 w 
0 

~ 
:::! 
Cl) 
Q. 

:;· 
c 
en 
)> 

G) 

-< w 
0 
0, 
0 
0 
tV 
./:. 



GY30-5002-4 

International Business Machines Carparatian 
Da!a Processing Division 
112 East Past Raad, White Plains, N.Y.10601 
[USA Only) 

IBM World Trade Carparatian 
821 United Nations Plaza, New Yark, New Yark 10017 
[International) 

ClJ 
s 
(/) 

w 
8 
0 
0 
(/) 

~ 

0 
'Q 

"' 3 
r 
0 

<O 
(") 

s 
"' :::l 

Si 
Ui 
w 
8 
w 
0 

c 
en 
)> 


