File Number S360-30
Order No. GY30-5002-u

Program Logic

IBM System/360

Disk Operating System

Queued Telecommunications Access Method
Program Logic Manual o |

Program Number 360N-C0-470

This reference publication describes the internal
logic of the Queued Telecommunications Access Method
(0TAM) under the IBM System/360 Disk Operating System.

It is intended for persons involved in program
maintenance and by systems programmers who are
altering the program design. Program logic
information is not necessary for the operation of the
program; therefore, the distribution of this
publication is limited to those with maintenance and
alteration requirements.

For titles and abstracts of other associated
publications, see IBM System/360 Bibliography,
GA22-6822.

PREFACE

Purpose of this Publication

This Program Logic Manual (PLM) is a
detailed guide to the internal structure of
the Queued Telecommunications Access Method
(QTAM). It supplements the program
listings by providing descriptive text and
flowcharts; program structure at the
machine instruction level is not discussed.

Design of this Publication

This PLM presents the logic of QTAM as a
series of logical levels. Each succeeding
level describes the program in more detail.

e The Program Level: The first two
sections describe the physical and
logical organization of QTAM. QTAM is
discussed from two points of
view: first, as a program within the
DOS control program structure; and
second, as a separate control program.

e The Major Component Level: The third
section gives an outline of QTAM
operations at the component level.
interaction among the major QTAM
components is described in some detail.
Appendix E is a foldout chart showing
the general flow of QTAM operations and
is designed to complement this section.

The

Fifth Edition January 1971

e The Routine Level: The next six
sections contain detailed descriptions
of the QTAM routines followed by
flowcharts of all the routines. The
flowcharts are arranged alphabetically
by chart ID for easy reference.

Detailed illustrations and descriptions
concerning QTAM queues and subtasks,
control block formats, and linkages are
presented in appendixes.

Prerequisite and Related Literature

Effective use of this manual requires a
knowledge of the concepts presented in the
following IBM System/360 publications:

IBM System/360 Principles of Operation,
GA22-6821.

IBM System/360 Disk Operating System,
Message Control Program, GC30-5002.

QTAM

IBM System/360 Disk Operating System, QTAM
Message Processing Program Services,
GC30-5003.

IBM System/360 Disk Operating System
(DOS), System Control, GY24-5017.

This edition, GY30-5002-4, corresponds to DOS release 24.

It is a major revision of, and renders obsolete,
GY30-5002-3.
Newsletters Y30-5529, dated April 15, 1969,
dated July 14, 1969.

Incorporated are changes issued in Technical
and Y30-5537

Changes are indicated by a vertical line to the left of the
affected text and to the left of affected parts of figures.

Specifications contained herein are subject to change from

time to time.
subsequent revisions or Technical Newsletters.

Any such change will be reported in

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving

your locality.

A form is provided at the back of this publication for

reader's comments. If the form has been removed,
may be addressed to 1BM Corporation,
Dept. EO01, P.O.

Carolina, 27709.

Box 12275, Research Triangle Park,

comments
Publications Center

North

Copyright International Business Machines Corporation

1967, 1968, and 1970.

-

INTRODUCTION 2 o o « o « » o o o o «

PHYSICAL ORGANIZATION OF QTAM
System Generation
Assembling and Linkage-Editing
Message Control Program . .

Assembling and Llnkage—Edltlng
Message Processing Program . « « « . «

o e

V]

LOGICAL ORGANIZATION OF QTAM
QTAM within the Disk Operating System
Control Program Structure . « . « o« «
Message Control Problem Program . .
Message Processing Problem Program .
QTAM Supervisory Routines
QTAM as a Separate Control Program . .
Queue Management ¢ ¢ ¢ + o .
OWAIT and QPOST . ¢ & « = o o o o

QODISPATCH . . . - » . .
Initial Status of the QTAM Control
Program =« o« o« o o « o a o o o s «

OUTLINE OF QTAM OPERATIONS . « o « o«
Message Control Program for a Nonaudio
Application . < ¢ < 4 2 4 4 4 o o o
Initialization . . . « &« « o ¢ o o &«
Receiving Initiation « « .
First PCI (Receiving)
PCI--Full Buffer (Receiving)
Disk Interruption (Receiving) . . .
Line End Interruption (Receive EOB)
Line End Interruption {(Receive EOT)
Summary of Receiving - « « « o « o« @
Sending Initiation . . . « « ¢« o o .
Disk Interruption--Sending, First
Buffer ¢ ¢ o o . o o e
Disk Interruption--Sending all
Buffers, Second Time for First Buffer
PCI--Sending« .
Line End Interruption (Send EOB) o« o
Line End Interruption (Response to
EOB) - o
Line End Interruptlon (Send EOT) . .
Message Control Program For An Audio
Application . . +« 4 ¢ o o 4 s+ o o o o
Initialization . « + « « o o o o o =
End-of-Receiving Initiation
Audio Line End Intexrruption
(Receiving) . ¢ o o o« o ¢ o o o o« =
Summary of Receiving . - . .« « .« . .
Sending Initiation
IBM 7772 Disk Interruption
IBM 7772 Audio Sending «
PCI Sending <« . o o o o o o o = «
Audio Line End Interruptlon e e e
Message Processing Program for a
Nonaudio Application . . « « . . « . .
Initialization . . <« « & « « & « « =
First GET ¢ o o« o o o o o = 2 o o =
Replenishing the MS-Process Queue .
Transferring Response Messages . . .
IBM 2260-2848 Local Operations

CONTENTS

Message Processing Program for an Audio

Application . ¢ ¢ ¢ ¢ ¢ e ¢ o 4 e o
Initialization « « ¢« ¢ « <« ¢« ¢ &« . .
Obtaining a Message . <« . « o o« « =
Transferring Response Messages . . .

MESSAGE CONTROL PROGRAM (LPS) ROUTINES
Breakoff Routine & . « ¢ & . .
Cancel Message Routine
Distribution List Routine
Date Stamp Routine . . - e o e o o
End of Address (EOA) Routlne o o e e .
End of Block Routine < .
End of Block and Line Correction

Routine . . ¢ ¢ ¢ ¢ ¢ 4 2 ¢ o o o =
Error Message Routine o « . ¢« & &« . .
Expand Header Routine
Intercept Message Routine
Audio Input Message Logging Routine .
Lookup Terminal Table Entry Routine .
Conversational Mode Routine
Initiate Mode Routine . & . « . « .+ .
Message Mode Interface Routine
Priority Mode Routine
Message Type Routine . ¢ o « o o o < =
Operator Control Routine « « o . « «
Polling Limit Control Routine
Pause Routine . . . v o o o « o o o =«
Route Message Routine . . .« « o & « &
Reroute Message Routine
Scan Header Routine .+ o « o « « « o .
Sequence Number in Routine
Skip Character Set Routine
Sequence Out Routine <« « <« ¢ o« o o « o«
Source Terminal Verification Routine .
Skip-On-Count Routine . « . & .« o o«
Translate Routine . . <« « . « . « . .
Time Stamp Routine . « . « . « < o <« =

MESSAGE PROCESSING PROGRAM ROUTINES .
Change Line Routine u. o« « « o & « « =
Change Polling List Routine
Change Terminal Table Entry Routine .
Checkpoint Request Routine
Copy Line Error Counters Routine . . .
Copy Terminal Table Entry Routine . .
Copy Polling List Routine . .

Copy Queue Control Block (QCB) Routlne
DTF Locator Routine . . « . « <« « . .
GET Audio Message Routine
GET Nonaudio or Audio Message Routine
GET Record or Audio Message Routine .
GET Segment or Audio Message Routine .
GET Message Routine « « « <« .
GET Record ROULING o & o o « o o o + &
GET Segment Routine . . « . o . <« . .
PUT Audio Message Routine
PUT Message Routine . . « . o o o «
PUT Record Routine . . . « . « =« o « «
PUT Segment Routine . « . . o « - . .
Close Message Control Routine
Retrieve DASD Routine . <« . o & u o4 .

Retrieve by Sequence Number Routine . . 85
Release Message Routine 85
START/STOP Audio Line +. « « « . 86

OTAM SERVICE FACILITIES . « « « « « « « 87
Checkpoint/Restart . . « « « « « « . . . 87

Checkpoint Routine « . . . 87
On-Line Terminal Testing . « « « « « . . 89

Terminal Test Recognition Routine . . 89
Operator Awareness Routine . . . « . . . 90
OBR/SDR Routine . . « « ¢« o« « « =« « « « 90

QTAM TRANSIENT ROUTINES . w « « o « =« « 92
QTAM Open Monitor/Open DASD Message

Queues File Routine . « ¢« « « o o « « o 92
Open Nonaudio Line Group/MS Queues
RoOUtine . o« o o« o o o o <« « e« o o « o 93

Open Checkpoint/Restart Routlne
(Phase 1) . « . . . e o e e o o s o « 94
Oopen Checkp01nt/Restart Routine
(Phase 2) . e o - o 94
Open IBM 7772 DCV Vocabulary F11e
Routine e o o o s s e o o « « 94
OPEN Audio Line Group/Output Queue
Files Routine . . . e e s e« o« o« 95
QTAM Close Routine (Phase 1) e e s o o« « 96
QTAM Close Routine (Phase 2) 96
OTAM Close Routine (Phase 3) 97
QTAM Audio Message Writer Routine . . 98
QTAM Message Writer Routine (Phase 1) . 98
QTAM Message Writer Routine (Phase 2) . 98
QTAM Message Writer Routine (Phase 3) . 98
QTAM Cancel Routine (Phase 1) 99
QTAM Cancel Routine (Phase 2) e o o o
Terminal Test Header Analysis Routine
Terminal Test Module for IBM 1030 .
Terminal Test Module for IBM 1050 .
Terminal Test Module for IBM 1060 .
Terminal Test Module for IBM 2260 .
Terminal Test Module for IBM 2740 .

QTAM SVC/SUBTASK CONTROL ROUTINE . . .
Entry Interface Subroutine
QTAM Post Subroutine . . « . « « « » .
QTAM Wait Subroutine . . .« .« ¢« « o« o«
Priority Search Subroutine
Queue Insert Subroutine « « .
Defer-Entry Subroutine
Qdispatch Subroutine
Exit Select Subroutine« . .
Exit Interface Subroutine

.108
.108
-.109

QTAM IMPLEMENTATION ROUTINES
Receive Scheduler Routine (Chart 00) .
Send Scheduler (Chart 1)
End of Poll Time Delay Routine (Chart
2) 4 e e e e e e e e - e e o = o« o 2109
BRB-Ring Routine (Chart 3) e e« o = - o 2110
Active-Buffer-Request Routine (Chart 4) 111
Available-Buffer Routine (Chart 5) . . .111
Buffer-BRB Routine (Chart 6)111
Interim LPS Routine (Chart 7)112
Qmover Routine (Chart 9) o 2112
DASD Destination Routine (Chart 10) . <112
GET-Scheduler Routine (Chart 11)112
Return-Buffer Routine (Chart 12)113
End Insert Routine (Chart 13)113
LPS Control Routine (Chart 15)113

4

Buffer Recall/Cleanup Routine (Chart
16, 17) & @ @ o« o o o « @ o = o o« s
Free-BRB Routine (Chart 18)
Disk I/0 Routine (Chart DC)
Disk-End Appendage (Charts DA and DB)
IBM 7772 Disk-EZnd Appendage (Chart D1)
IBM 7772 Disk Read Routine (Chart D2)
IBM 7772 Line Write Routine (Chart D3)
IBM 7772 DCV-Buffer Routine (Chart DUu)

LINE INPUT AND OUTPUT . « o o o «

General Flow

QTAM Physical Input/Output Module
Activate Routine (Chart RW) . .
Channel Program Generator Routine
(Charts RX, RY) &« ¢ o @ « = 2 = + o
Channel Programs .« o« « o o s o o «
IBM 2260 Local (2848) « «
IBM 2260 Local--Terminal to CPU . .
line-pci and program check module .
line appendage module . . <« « o« «
Decision Tables for Error Recovery
Procedures . . . c e o e o =

Audio Line Appendage Module « e e e e

Decision Tables for Audio Error

Recovery Procedures . . « o o s o o

WTTA Line Appendage Module c e o e o @
WTTA Line-PCI Routine « . .
WTTA Line-End Routine

IBM 2260 Local Appendages . « e e e

Message Writer Initiator Routlne - o o

8 o o @
.

QTAM CHARTS o + o o o a = o o s @« o =«

APPENDIX A: QTAM QUEUES AND SUBTASKS .

QUEUES « o o o « o o = = =
Active-Buffer-Regquest Queue
Additional-CCW QUEUE o « « o« o o « =
ARU-Send QUEUE . o o = 2 o o = = « =
Attention Queue . . & <« . . .
Available-Buffer Queue . .
Checkpoint Queue « « =« « « « .
Communications=Line Queue
DASD Destination Queue . .
DCV Buffer Queue . . « . .
Disk Input/Output Queue .
Distribution List Queue .
Inactive-BRB Queue . o o« .
Interim-LPS Queue . - « =«
LPS QUEUE <« o 2 o o o = =
Operator Control CHNGT Queue
DASD ProCeSS QUEUE w o« « o © s = o o«
Return-Buffer Queue . « « « + « o .
Terminal Test Buffer Routing
Terminal Test Stopline Queue
Time Delay QUEUE .« & <« o o & o @« o =
OMOVE QUEUE .« o o« o o o o o o o

Subtasks « « « « o« @ . - o
Active-Buffer- Request Subtask e w e
ARU-Send Subtask . . . « e e =
Available-Buffer Subtask . -
Checkpoint Subtask . . « . «
DASD Destination Subtask . .
DCV Buffer Subtask . « . . -
Disk Input/Output Subtask .
Distribution-List Subtask .
Get-Scheduling Subtask « « « « - . .
Interim LPS Subtask . « ¢« « ¢ o «

]
. 0
1 LI T ')
. .
. .

§ o » b o & 8 &
L]
§ o b
L]
.

°
L §
.
°

& o & o @
s

. .

. .

0
L]
»
®

.114
-115
.115
.115
.115
.115
.116
.116

.117
-117
.117
117

.119
.121
-132
.133
<157
159

.163
.168

171
.173
.173
.174
.175
.177

.179

. 322
.322
. 322
.322
. 322
<322
.322
.322
.323
.323
.323
«323
.323
. 323
.324
- 324
. 324
.324
-324
. 324
. 325
.325
. 325
.325
- 325
.325
.325
325
<325
.325
.325
-325
-326
. 326

LPS Subtask - o
Operator Control CHNGT Subtask “ .
Queue Insert Subtask« .
Queue Insert by Priority Subtask . .
Qdispatch Subtask« < . < .
Receive-Scheduling Subtask
Return Buffer Subtask
Send-Scheduling Subtask . . .

Terminal Test Buffer Routing Subtask

-326
-326
326
.326
.326
. 326
-326
- 326
<327

Terminal Test Single Stopline Subtask 327

Terminal Test Stopline Subtask . . .
Time Delay Subtask « . . .
Qomover SubtasK « « o« « « o ¢ o o o« @

APPENDIX B: QTAM CONTROL BLOCKS . . .
The Queue Control Block (QCB) « e =
The Element Control Block (ECB) . . .
Truncated Subtask Control Block (STCB)
Full Subtask Control Block (STCB) . .
DTF Table for QTAM . . 2 ¢ « o « « « =«
DTF TYype DA « « o o o ¢ o o o o «
DTF TYPe CK 2 o « o o « « o o o«
DTF Type AV . . . « e e s e .
DTF Nonaudio Type LG e e e e e
DTF Audio Type LG . o « v o o o < «
DTF TYPE PQ v « o« v « « « o o« o = =
DTF Type DO < o o o o o o o o o o =
DIF TYPE BAQ o « o « + o o o « « » o

.
.

. 327
. 327
<327

.328
.328
.328
.329
. 329
.330
. 330
.332
. 334
.335
. 337
. 339
. 341
.342

Line Control Block (LCB) <« + « « =« « . 2343
Audio Line Control Block (ALCB)347
QTAM Vector Table . « . ¢ ¢ « « o « « 2350
Special Control Block Forms . . . - . .351
combined QCB/STCB 4 « o « « « « « « «351
QOCB for DASD Destination Queue351
QCB for DASD Process QuUeue . . « « « «352
QCB for 7772 DCV Buffer Queuvue353
IBM 7772 DCV Buffer Element354
Buffer Request Block « « ¢« « « « « « .355
PAUSE BRB/CCW - e« « « 2357

Element Control Block--IJLQIPSF - .
Combined CCB/ECB for IBM 2260 Local
Buffer Prefixes . o o o o o 2 o o o

-357
.357
. 358
APPENDIX C: QTAM LINKAGES . <« « . . . 361
APPENDIX D: ALPHABETICAL LIST OF QTAM
MODULES =« < o « o = o = 2« « « « = = « 2366
APPENDIX E: GENERAL FLOW OF QTAM
OPERATIONS v « 2 o = &+ o = « =« « « = = 2369
APPENDIX F: HEADER AND TEXT
RELATIONSHIPS ON A DASD QUEUE371
APPENDIX G: GENERAL FLOW OF QTAM/ARU
OPERATIONS &« « o 2 o « o « o 2 o » « « <375

INDEX ¢ o o o o o o 2 u o o o = = o « 377

Figure

1.

Program .

Figure 2.

Message Control Problem

e @ e ®o o @ © ®© e ° e

QTAM Nucleus

-

-

Figure 3. BRB Ring Before Insertion
of Pause BRB/CCW © o e & o 4 o e o
Figure 4. BRB Ring After Insertion
of Pause BRB/CCW
Figure 5. Format of the Checkp01nt
RECOrXd v v o ¢ o o o o o = « « o «
Figure 6. Device I/0 Modules . . .
Figure 7. TP Operation Codes . . .
Figure 8. Table of Offsets to Model
Channel Programs . . « e
Figure 9. Types of IBM 27&0
Terminals with Associated Modules .
Figure 10. DTF Table Format for Type
DA .- . . . « o w
Figure 11 DTF Table Format for Type
CK e e e . . e o @
Figure 12. DTF Table Format for Type
AV. e e e o e e s s 2 e s o s o &
Table 1. Initial Selection Errors
Table 2. Errors After Initial
Selection « « « ¢ o o @ o 4 4 o e
Table 3. Sense Byte Analysis . . .
Table 4. Unit Exception
Table 5. Lost Data « « « <« « « o «
Table 6. Time Out . . « « « < « .
Tabkle 7. 1Intervention Required . .
Table 8. Bus Out Check . . « + .

. 16
. 23

. 63
. 64

88
.121
.122
.122
.143
.330
.332

. 334

.163

.164

.164
.165
.165
.165
.166
.166

FIGURES

Figure 13. DTF Table Format for

Nonaudio Type LG . - . e o = « 2335

Figure 14. DTF Table Format for Audio

Type LG. . - - e « o o « «337

Figure 15. DTF Table Format for Type

PO c e o e 9o e = = e w = e e s = = « 2339

Figure 16. DTF Table Format for Type

DQ @ o e e m w e m e e m e e e e s o o341

Figure 17. DTF Table Format for Type

AQ e o % e e = e e = e e o = e s o o =342

Figure 18. Typical LCB DSECT

(IJLOLCRBO) (Part 1 of 2) e e = o = o o343

Figure 19. Typical ALCB DSECT

(IJLOLABO) (Part 1 of 2) o . o« o« « « - 347

Figure 20. Combined CCB/ECB for the

IBM 2260 Local =« « « « = o « =« o =» « « <357

Figure 21. Buffer Prefix Formats

(Part 1 0f 3) & ¢ o o @ o ¢« o « = - « 358

Figure 22. Example of Message Header

and Text Relationships in Direct

Access Destination and Process Queue 373

TABLES

Table 9. Data Check . . . o . « . . .166

Table 10. OVerruUn . « « « « <« » « « » 2167

Table 11. Initial Selection Errors . .171

Table 12. Errors After Initial .

Selection . ¢ ¢ ¢ 4 2 4 v . w o e o = 2172

Table 13. Channel Data Check172

Table 14. Sense Byte Analysis . - . - .172

Table 15. Initial Selection Errors . .177
Unit Check in Status177

Table 16.

CHARTS

Chart Al. ARU Internal and ARU

Receive routines . . < « ¢ ¢ « « « « < 2179
Chart A2. ARU Send Routine180
Chart A3. Analysis and IBM 7772 Line

PCI ROUtINES & v & ¢ & o o o « « « « . 2181
Chart A4. 1IBM 7770 Line End Routine . .182
Chart A5. IBM 7772 Line End Routine . .183
Chart RO. Breakoff Routine184
Chart CC. Copy Line Error Counters

Routine . . ¢« ¢ ¢ & ¢ o ¢ o « « « « .« 2185
Chart CK. <Checkpoint Routine186
Chart CL. Change Line e e e« e . . 2187
Chart CM. Cancel Message Routine . . .188
Chart CP. Change Polling List Routine 189
Chart CR. Checkpoint-Restart Routine .190
Chart CT. Change Terminal Table Entry
ROULINE v ¢ & v ¢ 4 o o o o o« o o« « « 2191
Chart Cl. QTAM Close Routine (Phase 1) 192
Chart C2. QTAM Close Routine (Phase 2) 193
Chart C3. QTAM Close Routine (Phase 3) 194
Chart DA. Disk-End Appendage (Part 1

OF 2) 4 4 i 4 e 4 4 e e e e e o o = o 4195
Chart DB. Disk-End Appendage (Part 2

OFf 2) 4 4 v 4 @ @ 4 4 4 e e o o « o . 2196
Chart DC. Disk 1I/0 kRoutine197
Chart DE. Copy Terminal Table Entry
ROULINE o 4 v & & 4 & o o o o« « « « « 2198
Chart DL. Distribution List Routine .199
Chart DP. Copy Polling List Routine .200
Chart DQ. Copy Queue Control Block

RoOUtine < . ¢ ¢ ¢ 4« 4« o o o o o « « o 2201
Chart DT. ©Date Stamp Routine202
Chart D1l. 1I3M 7772 bisk End Appendage .203
Chart D2. IBM 7772 Disk Read Routine .204
Chart D3. IBM 7772 Line Write Routine .205
Chart D4. 1IBM 7772 DCV Buffer Routine ,206
Chart EA. End-of-Address (EOA)

Routine . . & ¢ . ¢ 4 @ ¢ & 4 . & o . 2207
Chart EB. End-of-Block (¥OB) Routine .208
Chart EC. End-of-Block and Line

Correction Routine e e e e e « <« « o 2209
Chart EG. Line End Appendage (Part 1

Of 9) & 4 i 4 i i e i e e e e e e e . 2210
Chart EG1l. Line End Appendage (Part 2

OF 9) & v ¢ 4 i i e e e e e e e e e o. W21
Chart EH. Line End Appendage (Part 3

Of 9) & o i i i i i e e e e e e e e . 2212
Chart EI. Line End Appendage (Part U4

Of 9) & i i 4 i i e i e e e e e e e o 2213
Chart EJ. Line End Appendage (Part 5

L S) e
Chart EK. Line End Appendage (Part 6

OF 9) & ¢ 4 4 i i e i e e e e e e e . 215
Chart EL. Line End Appendage (Part 7

Of 9) & i i 4 i i e e e e e e e e - . 2216
Chart EM. Line End Appendage (Part 8

Of 9) & i ¢ 4 i i e e e e e e e e .. 2217
Chart EN. Line End Appendage (Part 9

Of 9) & ¢ i 4 i i e e e e e e e e o . 2218
Chart ER. Error Message Routine - . <219
Chart EX. Expand Header Routine « .« 220
Chart FL. DTF Locator Routine e . . 2221

Chart GA. Get Audio Message Routine .

Chart GB. Get Nonaudio or Audio

Message Routine (Part 1 of 2)
Chart GC. Get Nonaudio or Audio

Message Routine (Part 2 of 2)
Chart GD. Get Record or Audio Message
Routine (Part 1 of 2) . < <« ¢« « & <« &
Chart GE. Get Record or Audio Message

Routine (Part 2 of 2) . . ¢ & <« o .« .
Chart GF. Get Segment or Audio
Message Routine (Part 1 of 2)

Chart GG. Get Segment or Audio
Message Routine (Part 2 of 2)
Chart GM. Get Message Routine (Part 1
Of 2) & v o o 4 o o o o o e« o o v o o
Chart GN. Get Message Routine (Part 2
Of 2) . o 4 4 a o o @ o o e a o o o =
Chart GQ. Get Record Routine (Part 1
Of 2) & @ 4 e o o o o o 0 e o e w e =
Chart GR. Get Record Routine (Part 2
Of 2) v o 2 o o o e« @ o o o a o o o
Chart GS. GET Segment Routine o o o
Chart IT. Intercept Message Routine
Chart LB. Line Appendage PCI and
Program Check Module . « « « & =« « « &
Chart iLG. Audio Input Message Logging
Routine .« ¢ ¢ o & o o o o o o « o o o
Chart LK. Lookup Terminal Table Entry
Routine . . 4 o o o o o o a o « o o =
Chart LO. IBM 2260 Local Appendage
(Part 1 0of 3) o v ¢ o o o ¢ o o o «
Chart LP. 1IBM 2260 Local Appendage
(Part 2 0f 3) e v o o o ¢« o o = o o =
Chart LQ. IBM 2260 Local Avbpendage
(Part 3 0f 3) . o o o o o o o o o o =
Chart MC. Conversational Mode Routine
Chart MM. Message Mode Interface,

Initiate Mode, and Priority Mode
Routines 5 o e o e o o o e e e o =
Chart MT. DMessage Type Routine . . .
Chart MW. Message Writer Initiator
Routine . ¢« v o o o o o w =« w =« o o o

Chart OA. Operator Awareness Routine
Chart OB. OBR/SDR Routine . o o o < &
Chart OC. Operator Control Routine .
Chart OD. Operator Control Routine:

Common Subroutines . « <« o « o« « o <«
Chart OE. Operator Control Routine:
COPYT, CHNGT, and INTRCPT . o « o + =«
Chart OF. Operator Control Routine:
RELEASEM, STARTLN, SWITCH, and COPYC .
Chart 0G. Operator Control Routine:
STOPLN ¢ @ o o o 2 o @ a o o v o o « =
Chart OH. Operator Control Routine:
STOPLN and INTREL . o o v « o « o o =
Chart 0J. Operator Control Routine:
STARTARU and STOPARU o« v o « o « o @« «
Chart 0l1. CTAM Open NMonitor/Open DASD
Message Queue File Routine (Phase 1) .
Chart 02. Cpen Nonaudio Line Group/MS
Queue File Routine . « o o « o = « =« =

222
. 223
. 224
. 225
. 226
. 227
- 228
. 229
. 230
.231
.232
.233
. 234
. 235
- 236
. 237
.238
.239
. 240
241
<242
. 243
. 244
. 245
. 246
. 247
. 248
. 249
.250
. 251
. 252
. 253
. 254

.255

o=

— i

Chart 03. Open Checkpoint/Restart
Routine (Phase 1) . . . « <« . . .- .
) Chart O4. Open Check901nt/Restart
Routine (Phase 2) . . o e
Chart 07. QTAM Open IBM 7772 DCV
Vocabulary File Routine . . .« e e .
Chart 08. QTAM Open Audio Llne
Group/Output Queues File Routine . . .
Chart PA. Put Audio Message Routine .
Chart PL. Polling Limit Control
Routine . . o o o o 2 a « o « s o« « =
Chart PM. PUT Message Routine « e e
Chart PQ. Put Record Routine (Part 1
Of 2) 4 4 @ 4 6 o o e 6 e o e o a o
Chart PR. Put Record Routine (Part 2
OFf 2) & i 4 4 4 ¢ o e 4 e e s a e o
Chart PS. PUT Segment Routine .« o
Chart PzZ. Pause Routine .« . « o e
Chart QT. CLOSE Message Control .« .
Chart QW. QTAM SVC/Subtask Control
Routine (Part 1 of 3) . . . -
Chart QX. QTAM SVC/Subtask Control
Routine (Part 2 of 3)
Chart QY. QTAM SVC/Subtask Control
Routine (Part 3 of 3)
Chart RD. Retrieve DASD Routine « -
Chart RG. Route Message Routine .« .
Chart RM. Release Message Routine -
Chart RR. Reroute Message Routine .
Chart RS. Retrieve by Sequence Number
Routine . o o o o« 2o o a o o o « o o
Chart RW. QTAM PIOCS--Activate
Routine . ¢ o o o 4 o o « o o « o «
Chart RX. QTAM PIOCS--Channel Program
Generator (Part 1 of 2)
Chart RY. QTAM PIOCS--Channel Program
Generator (Paxrt 2 of 2)
Chart SH. Scan Header Routine « o e
Chart SI. Sequence Number-In Routine
Chart SK. sSkip Character Set Routine
Chart SO. Sequence-Out Routine . . .
Chart SR. Source Terminal
Verification Routine e e e e e e e
Chart SS. Start/Stop Audio Line
Routine . ¢ o« o o o o o o o o o o o «
Chart ST. Skip-on-Count Routine .- .
Chart TM. Terminal Test Header
Analysis Routine ¢ ¢« ¢ = o« &
Chart TN. Terminal Test Subtasks . .
Chart TR. Translate Routine e e e

.256
.257
.258

.259
.260

.261
262

.263

. 26U
. 265
.266
. 267

.268
. 269

. 270
.271
.272
.273
274

.275
276
<277
.278
-279
.280
.281
.282
.283

.284
.285

.286

- 287
. 288

Chart TS. Time Stamp Routine289
Chart TT. Terminal Test Recognition
ROUtINE 4 2 o o « « o o o o« o « o =« o 2290
Chart Tl. Terminal Test Module for

IBM 1030 2@ 4 o o © o = = « o = « « « o 291
Chart T2. Terminal Test Module for

IBM 1050 o o o o o © @ o o o o« o o « « 2292
Chart T3. Terminal Test Module for

IBM 1060 2w 2 o o o o v o o s v = o o « 2293
Chart T#. Terminal Test Module for

IBM 28U8/2260 o o o o =« ©w o o o o w = «294
Chart T5. Terminal Test Module for

IBM 2740 & o o o o = v o o « « « o o « =295
Chart WA. Audio ERP Message Writer

ROULINE . & o o o o o o = « » o« uw =« « 2296
Chart Wl. Message Write Routine

(Transient) Phase 1 . o« o 2 o « o « o 2297

Chart W2. Message Write Routine
(Transient) Phases 2 and 3 - =298
Chart XL. QTAM Cancel Routine (Phase

. - - . »299
Chart XM. QTAM Cancel Routine (Phase

2) 4 i e 4 e o e 4 e a = o w e « = = « «300
Chart Y1. WTTA Line Appendage (Part 1

Of 3) & 4@ ¢ o o o o« e o o « « = = o « 2301
Chart Y2. WTTA Line Appendage (Part 2

of 3) . . - - - o o e . 302
Chart Y3. WTTA L1ne Appendage (Part 3

Of 3) & 4@ @ 4 a4 o o e w @ « = v = = « 2303
Chart 00. Receive Scheduler Routine -304
Chart 01. Send Scheduler Routine . . .305
Chart 02. End-of-Poll Time-Delay

Routine . . o < ¢ « o = o « = « = - < 2306
Chart 03. BRB Ring Routine307
Chart 03:1. BRB Ring Routine308
Chart 04. Active Buffer Request Routlne 309

Chart 05. Available Buffer Routine . . .310
Chart 06. Buffer-BRB Routine311
Chart 07. Interim LPS Routine . . - . .312
Chart 09. Qmover Routine - . .313
Chart 10. DASD Destination Routine . .314
Chart 11. GET Scheduler Routine315
Chart 12. Return Buffer Routine316
Chart 13. End Insert Routine317
Chart 15. LPS Control Routine318
Chart 16. Buffer Recall/Cleanup

Routine (Part 1 of 2) . . . a o « « 2319
Chart 17. Buffer Recall/Cleanup

Routine (Part 2 of 2) . ¢ ¢ o o« o « = 320
Chart 18. Free BRB Routine . . - . . 321

In IBM System/360 Disk Operating System, an
access method is a procedure for
transferring data between main storage and
an input/output device. A variety of
access methods is available to the user of
the Disk Operating System (DOS). One of
these, the Queued Telecommunications Access
Method (QTAM), can control data transfer
between main storage and remote terminals.

QTAM is a generalized input/output
control system that extends the techniques
of Logical IOCS to the telecommunications
environment. Files accessed by the problem
programmer are queues of messages incoming
from, or outgoing to, remote terminals via
communication lines. Even though the time
and order of the arrival and departure of
messages to and from the central processing
unit (CPU) are unpredictable, the support
provided by QTAM enables the programmer to
handle them as if they were organized
sequentially.

A telecommunications system operating
under DOS/QTAM is logically divided into
two types of programs each of which
executes in a separate partition.
types of programs are:

These

1. a message control program that always
operates in the Foreground-one
partition, and

2. one or more message processing programs
that execute in the Foreground-two
and/or Background partitions.

Note: With multitasking support, one or
more message processing programs can be
executed in the same partition as the
message control program. The message
control program must have the highest
priority in the partition. For a complete
discussion of multitasking, see the DOS
System control publication, Form ¥Y29-5017.

A message control program systematically
and efficiently controls the flow of

INTRODUCTION

message traffic from one remote terminal to
another, and between remote terminals and
any message processing programs. A message
processing program consists of the
programming required to process the
contents of the messages.

OTAM provides logic in support of both
types of programs. Extensive support is
supplied for a message control program and
includes, via the linkages generated by
QTAM macro instructions, the QTAM logic
required to:

1. identify the configuration of the
telecommunication system to the Disk
Operating System,

2. establish and perform the line control
procedures required for the various
types of terminals and modes of
connection, and

3. control the routing of messages in
accordance with the requirements of the
user.

GET/PUT logic is provided to a message
processing program for obtaining messages
to be processed and for placing response
messages.

The paramount reason for dividing
telecommunications support into two types
of programs is that message flow to and
from the computer is random and proceeds at
relatively slow speeds (due to the
operating speeds of the terminals
supported), while the messages, once
delivered to the computer, can be processed
at computer speeds. To fully utilize the
computing system capabilities, message
traffic must proceed asynchronously with
message processing. This asynchronous
method of execution is based on the
completion of awaited events (for example,
I/0 termination), and on the established
priorities of Foreground-one,
Foreground-two, and Background.

Introduction 11

PHYSICAL ORGANIZATION OF QTAM

This section describes the various parts of
the total package called QTAM. Little is
said of the function of the various pieces
and even less of the logic of their
operation. However, it is important to
understand what the pieces are, where they
come from, how they get into the systemn,
and their relationship to the rest of the
package. The following topics are
discussed in this section:

1. System Generation.

2. Assembling and Linkage-Editing a
Message Control Program.

3. Assembling and Linkage-Editing a
Message Processing Program.

SYSTEM GENERATION

When QTAM is called for during a system
generation procedure (TP=QTAM operand in
SUPVR SYSGEN macro instruction), a number
of subroutines collectively called the QTAM
SVC/Subtask Control routine are included as
a part of the DOS Supervisor Nucleus.

These subroutines are then always present
in the system, regardless of whether a
telecommunications application is being
executed.

The QTAM nucleus routine consists of
nine subroutines, each of which is
discussed later in this manual.

1. Entry Interface

2. QTAM Wait

3. QTAM Post

4. Qdispatch

5. Defer Entry

6. Priority Search

7. Queue Insert

8. Exit Select

9. Exit Interface
Note: When TP=QTAM is specified, SVC
support for BTAM is also included in the

nucleus; however, QTAM has no requirement
for this BTAM logic.

12 DOS QTAM Program Logic Manual

Other system generation considerations
for including QTAM in the system are:

1. Multiprogramming support (MPS=YES
operand in SUPVR macro) must be
included because QTAM requires at
least two partitions in DOS. Because
multiprogramming support is required,
storage protection (SP=YES operand in
CONFG macro) must be specified.

2. The interval timer is required
(TIMER=YES operand in CONFG macro) if
the polling interval or time stamping
options provided by QTAM are desired.
Additionally, the timer must be
assigned to the Foreground-1 partition
(IT=F1 operand of FOPT macro) for the
polling interval option.

Note: When multitasking support is
included in the DOS Supervisor (AP=YES
operand in SUPVR macro instruction), a
number of message processing programs can
operate in the system. The maximum number
of message processing programs to be
supported is defined at system generation
(TP=QTAMn where n is equal to the number of
message processing programs).

After a system generation has been
performed, the various QTAM components are
in the system libraries on the SYSRES
volume. The distribution of the QTAM
components is described as follows.

SOURCE STATEMENT LIBRARY: All QTAM macro
definitions called for during the assembly
of message control and message processing
programs reside in this library. Appendix
C lists all QTAM macro instructions and
indicates what the expansion is for each.
QTAM DSECTS are also included in the Source
Statement Library and may be included in an
assembly via a COPY statement.

CORE IMAGE LIBRARY: The QTAM SVC/Subtask
Control routine is a part of the Supervisor
nucleus that resides in this library. QTAM
transient routines also reside in this
library; these routines (QTAM Open and
Close executors) are dynamically fetched
into the logical transient area as needed
for execution.

RELOCATABLE LIBRARY: The remaining
components of QTAM are the logic modules
required to implement the functions
provided by QTAM. These modules reside in
the relocatable library and include:

1. Macro-Introduced Modules. These
modules correspond to QTAM macro
instructions. Each module performs
the function represented by its
associated macro instruction, whose
expansion generates linkage to the
module. Also included in this
category are certain second-level
modules that perform generalized
functions required by two or more
modules directly associated with a
macro instruction. In this
publication these modules, whether
first or second-level, are defined as
External Routines.

2. OTAM Implementation module (IJLQIP).

3. Physical Input/Output module (IJLORW).

4. Line Appendage module for PCI and
Program Check (IJLQLC).

5. Normal Line End Appendage and ERP
module (1EDQLA).

6. Disk Input/Output module (IJLQDA).

7. Audio Line Appendage module (IJLQAA).

8. 7772 Disk Appendage module (IJLQAD).

9. GET/PUT logic modules. Seven GET
modules and four PUT modules are
provided. The PUT and four of the GET
modules correspond to the
message/segment/record/audio message
options. The other GET modules
correspond to the three combined
options of audio message with message,
segment, or record.

10. WTTA Line Appendage module (IJLQTA).

Appendix D contains an alphabetical
listing of all the QTAM logic modules.

ASSEMBLING AND LINKAGE-EDITING A MESSAGE
CONTROL PROGRAM

The user codes the QTAM macro instructions
necessary to design a message control
program. The output of this assembly
includes several tables and control blocks,
a buffer area, linkages to QTAM external
and transient routines, and, except for
these linkages and a few minor Line
Procedure Specification (LPS) macro
instruction expansions, very little other
executable code. The message control
object module may include some user-written
routines, but these will normally not be
extensive.

The assembled object module is then
link-edited to include the necessary
external routines from the relocatable
library. These external routines are the
LPS routines used in processing header
information, translating from one code to
another, directing messages to the proper
lines and queues, etc. The remainder of
the required QTAM logic modules are also
incorporated (via V-type address constants)
into the message control program during
this linkage-editing procedure.

A large module called the QTAM
Implementation module (IJLQIP) is included
from the relocatable library, because of a
V-type address constant generated in the
expansion of the DTFQT macro for the DASD
queues, the 7772 DCV vocabulary, and the
7770 line group files. The Implementation
module contains two distinct types of
routines - distinct as far as their logical
relationship to the rest of the system.
The two types are:

1. Problem program routines, executed
enabled to all interruptions as part of
the message control program. These
routines receive control through branches
from the external routines that are
link-edited with the message control
program.

2. Supervisory routines, executed
disabled to all interruptions, as part of
the QTAM nucleus "task." These routines
receive control through branches from the
QTAM SVC Subtask Control routine in the
nucleus.

The Line Appendage, Audio Line
Appendage, WTTA Line Appendage, and Disk
I/0 modules are link-edited from the
relocatable library because of V-type
address constants generated by the DTFQT
macros for the Line Group, WTTA line group,
Audio Line Group, and DASD Queue files,
respectively. The 7772 Disk Appendage is
link-edited from the relocatable library
because of a V-type address constant
generated by the BUFARU macro instruction.
All these modules contain a third distinct
type of routine: the I/0 Appendage. These
I/0 appendages are executed disabled to all
interruptions, again logically as part of
the QTAM nucleus "task." The appendages
receive control from the I/0 Interruption
Handler routine in the DOS Supervisor.

Note: The logical relationship of the two
types of routines in the Implementation
module with each other and with the I/0
appendages is discussed more fully in the
next section. From the point of view of
physical organization, this collection of
routines represents no more than a
convenient and efficient packaging’
technique. The Implementation module,

Physical Organization of OTAM 13

together with the I/0 appendages, can in no
way be thought of as a "program."

The last module linkage-edited into the
message control program is the Physical I/O
module. It is included because of a V-type
address constant generated, again, by the
expansion of the DTFQT macro for the DASD
Queues file. This module contains routines
that generate and initiate execution of
channel programs on the communication
lines. These routines run in problem
program state as part of the user's message
control program.

The resulting output of the Linkage
Editor run is then cataloged as a single
phase into the core image library, ready to
be loaded for execution. This message
control program phase must be executed in
foreground-1, the highest priority
partition in the system.

ASSEMEBLING AND LINKAGE-EDITING A MESSAGE
PROCESSING PROGRAM

A message processing program normally needs
only the OPEN, CLOSE, GET, and PUT macro
instructions and some file definition macro
instructions. When this is the case, no
QTAM external routines are required to be
link-edited with the assembled object
module. The only QTAM modules
linkage-edited with the assembled object
module are the selected GET and PUT
modules. The modules selected depend on
the unit or combination of units of data
processed by the program: record, segment,
message, or audio message.

The appropriate GET module(s) are

included from the relocatable library
because of a V-type address constant

14 DOS QIAM Program Logic Manual

generated by the expansion of the DTFQT
macro for the Main Storage (MS) Process
Queue(s). The appropriate PUT module is
included because of a V-type address
constant generated by the expansion of the
DTFQT macro for the MS Destination or Audio
Output Queues.

An installation also writes at least one
message processing program that uses the
following macro instructions to examine and
modify the status of the message control
program and/or to initiate termination of
the message control program:

CHNGP
CHNGT
CKREQ
CLOSEMC
COoPYC
COPYP
COPYQ
COPYT
RELEASEM
RETRIEVE
STARTARU
STARTLN
STOPARU
STOPLN

When any of these macros are used, the
linkage editor includes the corresponding
external routines in the load module.

The resulting output of the Linkage
Editor run is then cataloged into the core
image library, ready to be loaded for
execution. The message processing program
phase may be linkage-edited to execute in
either the foreground-2 or the background
partition. With multitasking, however, it
is possible to execute several processing
programs in the foreground-one partition as
tasks with lower priorities than the
message control task.

pemeN

The preceding section explained how the
physical pieces of QTAM are positioned in
main storage. This section explains how
these pieces are logically related and how
they pass control back and forth.

In this section, the logical
organization of QTAM is discussed within
two different frameworks. First, QTAM is
considered as a part of operating system
task management and within the structure
and categories of that control program.
Then QTAM is considered as a separate
logical entity outside of the framework of
the operating system control program, and
is viewed as a control program in its own
right. The key to understanding the
logical organization of QTAM lies in
understanding the overlap of the two
control program structures.

QTAM WITHIN THE DISK OPERATING SYSTEM
CONTROL PROGRAM STRUCTURE

The various pieces discussed under Physical
Organization of QTAM can be grouped into
three logical categories:

1. The Message Control Program
2. Message Processing Program(s)
3. The QTAM Supervisory Routines

The message control and message
processing programs are both run under
control of the DOS task management
routines. From the point of view of DOS
task management, they are in no way
different from any other problem programs.
They are scheduled and dispatched according
to the priorities indicated in the Program
Information Blocks (PIBs) for the
partitions in which they are being run.

The third category, QTAM Supervisory
Routines, is all that is left over after
distinguishing and separating the two
processing programs. These routines are
executed as SVC handling routines or as
asynchronously scheduled I/0 interruption
handling routines. Strictly speaking, they
are executed as part of the message control
and message processing programs.
Practically speaking, however, it is more

LOGICAL ORGANIZATION OF QTAM

meaningful to think of these as a separate
category, outside of the task framework
established by DOS task management. The
discussion in this section is primarily an
attempt to explain the nature of this third
category as it is to be understood in
relation to the other two. The discussion
continues under QTAM Supervisory Routines.

MESSAGE CONTROL PROBLEM PROGRAM

The message control problem program
includes the following:

1. The object module output from the
assembly of the user's code.

2. The external routines link-edited with
the assembly output.

Note: If the LIST macro instruction
is used, a single supervisory routine
called the Distribution List routine,
in a module named IJLQDL, is

link-edited into the message control
load module. This routine is one of
the supervisory routines, and is not
part of the problem program.

3. Three of the routines in the
Implementation module:

. LPS Control
. Buffer Recall/Cleanup
L Free BRB

4. The QTAM Physical I/O module.

5. Two routines link-edited with the
Audio Line Appendage module:

. ARU Receive
L ARU Internal

Figure 1 shows a simplified flowchart of
this problem program. The flowchart is
included here to show how the three problem
program routines in the Implementation
module, the QTAM Physical I/O module , and
the two audio routines are related to the
rest of the message control program.

Logical Organization oI QTAM 15

Available Buffer
for Receiving

‘ Start ’

Open disk and
line groups and
issue ENDREADY .

thk

LPS Control

Physical 1/O

Build channel
program and
EXCP.

Cleanup

Post buffer to
specified
Destination Queue

on LPS Queue 2

Message -

element

buffer or Audio

filled Input

Messoge

Audio element YES - ge or |/O
LPS Receiver LPS Send
Group Group
Perform LPS Message Perform LPS error
Receive functions | Received Segment being ™\, Sent __ “Segment already\YES | checking on
on message segment | received or sent transmission of
in this buffer. sent segment
NO
Cleanup
o o Perform LPS send
:f,ﬁs';::slc\:gl: functions on Release
message segment buffers
(No EOT) in this buffer.
ARU/LPS Physical 1/0
Perform LPS error Perfot"m LPS R . .
checking functions functions on input Initiate sending
on received message in the of segment over
segment audio element the line (EXCP)
: (ALCB)
Cleanup
Post last buffer to CHECKARU YES
Destination Queue or REPEAT
and release buffers function
: Free BRB ARU-Receive ARU-Internal
Release BRBs Post ALCB to Post ALCB to
and free the Main Storage - ARU - Send
line Process Queue Queve

Figure 1.

16

Message Control Problem Program

DOS QTAM Program Logic Manual

i

MESSAGE PROCESSING PROBLEM PROGRAM

A message processing problem program
includes the assembled user code and
external routines link-edited with it,
including the GET, PUT routines. The only
difference between a QTAM message
processing program and any other processing
program is the requirement for and the
implementation of cross-partition
communication. The various macro
instructions that can be used in a message
processing program are handled as follows:

1. COPYP, COPYT, and COPYQ present no
problem. The corresponding external
routine simply reads the requested
information from the foreground-one
partition using address pointers
stored in a QTAM vector table and in
the terminal table.

2. All other macro instructions cause SVC
interruptions to the QTAM supervisory
routines. Any cross-partition
communication is done by the
supervisory routines, operating under
the storage protection key of the
supervisor.

From the point of view of logical
organization, unusual operations are
noticed in the following cases: PUT, GET
(for audio processing), CLOSEMC, STARTARU,
and STOPARU macro instructions. To avoid
including a large amount of code in
supervisory routines for each of the
corresponding modules, certain code that
must be executed in supervisor state is
packaged within these modules. The SVC
routine entered as a result of one of these
macro instructions branches back to these
sections of code in the corresponding
problem program modules to execute them in
supervisor state.

Note: Operations under extended
multiprogramming capabilities
(multitasking) that allow one-partition
processing do not differ from the above
description.

QTAM SUPERVISORY ROUTINES

Within the framework of the DOS control
program is the third category, the QTAM
supervisory routines. From the point of
view of physical organization, the QTAM
supervisory routines consist of:

1. The QTAM subroutines within the
Supervisor nucleus.

2. Those routines within the
Implementation module (in partition
F1) that are executed in supervisor
state. This includes all but the
three identified as part of the
message control problem program.

3. The Disk I/0, Line Appendage, IBM 2260
Appendage, and the optional WTTA Line
Appendage modules.

4. The Distribution List routine
link-edited with the message control
program.

5. The optional IBM 7772 Disk Appendage
and Audio Line Appendage modules,
except the two audio routines
link-edited with the Audio Line
Appendage and part of the message
control program.

6. Part of the GET (for audio
processing), PUT, CLOSEMC, and
STARTARU/STOPARU modules in the
message processing problem program
partition(s).

7. The Checkpoint routine link-edited
with the message control program when
the checkpoint/restart option is
specified.

From the point of view of the
interruption handling facilities of the
Disk Operating System, the OTAM supervisory
routines consist of:

1. SVC routines, entered by SVCs 30 and
31 from problem program partitions.

2. Asynchronously scheduled I/0
interruption handling routines,
entered from the DOS I/0 Interrupt
Handler.

While both of these points of view are
correct, neither is very helpful in
understanding the logical organization of
QTAM. For example, a routine within a QTAM
appendage to which control is passed to
process an I/0 interruption may also be
executed as the result of an SVC
interruption. The problem is that both
points of view are taken from within the
framework of the DOS Control Program
environment and are seen within the
categories of that system. The solution to
the problem lies in understanding the
implications of the statement:

"OTAM is a Control Program"

QTAM is a control program, and it
happens to be within a second control
program. Later, it will be explained how
the two overlap. First, however, let us

Logical Organization of QTAM 17

look at the QTAM control program within its
own framework as a separate logical entity.

QTAM AS A SEPARATE CONTROL PROGRAM

The one essential function of a control
program is allocation of system resources.
The system resources to be allocated by
QTAM are:

1. CPU processing time
2. Main storage space
3. I/0 paths

To perform this allocation function
efficiently, QTAM breaks the system
resources into the smallest practical
number of pieces, as follows:

1. The work to be done is broken into
many separate units called QTAM
subtasks. Small pieces of the time
resource are then allocated to
individual subtasks.

2. The main storage space to be allocated
is broken into a large number of
buffers. Only that amount of storage
absolutely required at a given time
need be tied up for a given function.

3. The I/0 paths controlled by QTAM are
the communication lines and the disk
queue. Only that I/0 path absolutely
required at a given time need be tied
up for a given funcFion.

Allocation of the time resource is
called scheduling, while "allocation"
usually refers to physical resource
allocation only. However, one of the most
important design attributes of the QTAM
Control Program, distinguishing it from
other possible designs (including the Disk
Operating System itself) is that the entire
allocation function is performed by a
'single mechanism. This allows a complete
interdependence of time allocation
(scheduling) and physical resource
allocation. Scheduling becomes a function
of allocation, and allocation becomes a
function of scheduling.

The following sections describe the
resource allocation mechanism of QTAM. The
key to the mechanism is the QTAM Ready
Queue. This Ready Queue is the structure
through which a resource is allocated to a
subtask. The actual mechanism of
allocation is the QWAIT and QPOST
operations performed by the QTAM subtasks.
QOWAIT, in effect, puts a request for a

18 DOS QTAM Program Logic Manual

resource on the Ready Queue. QPOST passes
an available resource to the Ready Queue.
The QTAM SVC Subtask Control routine
performs a gueue-management function that
includes dispatching the subtask at the top
of the Ready Queue.

QUEUE MANAGEMENT

Both physical resources and subtasks are
represented to the queue management
routines by control blocks. The resources
are broken into elements, with each element
represented by an Element Control Block
(ECB). Subtasks are represented by Subtask
Control Blocks {(STCBs). Queues of elements
are allowed to build up as a chain of ECB's
starting with an address pointer in a Queue
Control Block (QCB). Queues of requests
for elements also may build up as a chain
of STCBs starting with another address
pointer in a QCB. A detailed description
of all control blocks used by QTAM is
contained in Appendix B.

Element Control Blocks

Five main types of permanent Element
Control Blocks (ECBs) are:

1. Buffer ECBs.

2. Communications line ECBs.

3. Audio communications line ECBs.
4. Buffer request ECBs.

5. 7772 DCV buffer ECBs.

Buffers are areas of main storage that
contain message data and/or control
information. The first 8 bytes of each
buffer comprise an ECB. As with all QTAM
elements, the "identity" of the buffer at a
particular time depends solely upon the
queue its representative ECB is chained
into at that time. The buffer proper is
always physically identifiable as a fixed
number of bytes of main storage.

If the ECB representing the buffer is
chained into a QCB for a Destination queue,
the buffer is full; that is, it contains a
message segment to be transmitted to a
destination. When the same ECB is
subsequently chained into the Available
Buffer QCB, the element involved is now an
available buffer, even though there has
been no change in the physical storage
area.

-

7772 DCV buffers are main storage areas
that contain the digitally coded voice
(DCV) words dynamically retrieved from the
7772 DCV vocabulary file. The first eight
bytes of each 7772 DCV buffer comprise an
ECB. An ECB representing an available 7772
DCV buffer is chained into the QCB for the
coxresponding 7772 DCV buffer queue. An
ECB representing a nonavailable 7772 DCV
buffer is associated with an operative
audio line.

Audio and nonaudio communications lines
are represented to QTAM through the Audio
Line Control Block (ALCB) and the Line
Control Block (LCB), respectively. There
is an LCB or an ALCB for each line.
Therefore, the LCB and the ALCB themselves
are treated as the resource element. The
ECB is contained in the first eight bytes
of the LCB or ALCB.

To avoid preassigning buffers before
they are actually needed, QTAM uses Buffer
Request Blocks (BRBs) to queue buffer
requests, which is explained later (see
Outline of QTAM Operation). These BRBs are
elements. The ECB is contained within the
BRB. The number of BRBs in the system is
determined by the number of buffers in the
buffer pool; there is one BRB per buffer.
Thus, this pool of BRBs is itself a pool of
resources to be allocated to the various
subtasks that use them.

Subtask Control Blocks

The two types of Subtask Control Blocks
(STCBs) are:

1. Truncated STCBs
2. Full STCBs

Truncated STCBs represent subtasks that
are executed in supervisor state. These
subtasks are performed by routines that are
packaged within the following modules:
QTAM Implementation, Disk I/O, Audio Line
Appendage, 7772 Disk Appendage, GET (for
audio processing), PUT (for audio
processing), CLOSEMC and STARTARU/STOPARU
(but also including the Distribution List
routine linked with the message control
program). These routines are called
implementation routines and the truncated
STCB represents an implementation subtask.

Full STCBs represent subtasks that are
executed in problem program state. These
subtasks are performed by the message
control and message processing problem
programs. At this point there is an
overlap of the Disk Operating System
control program structure with the QTAM

control program structure. A QTAM problem
program subtask is created when an SVC 30
or 31 is issued within a Disk Operating
System task. More specifically, a control
block called a full STCB is initialized to
represent the problem program subtask and
is used as a QTAM STCB. As a subtask then,
the problem program is placed under the
subtask management of QTAM and must contend
for control in that multitask environment
before it is released to contend with other
Disk Operating System tasks in the system.
This is explained more fully in the
following sections.

Note at this point, however, that every
problem program request that results in a
QTAM SVC 30 or 31 causes a subtask to be
created. These problem program subtasks
are always lower in priority than any QTAM
implementation subtask; thus, they are
never considered for dispatching until all
of the internal implementation subtasks
have done all of the work that can be done
with the resources available. There is one
full STCB per problem program task
preassembled into the QTAM nucleus.

Queue Control Blocks

The QTAM Ready Queue can be thought of as a
queue of queues, each queue being
associated with a QCB. The following is a
list of various types of queues that may
appear at any given time on the Ready
Queue. A more complete and detailed list

is given in Appendix A.

AVAILABLE BUFFER QUEUE: This queue keeps
track of unassigned buffers. The element
chain is the chain of all buffers that are
currently not assigned. As soon as a
buffer is no longer needed, it is posted to
this queue. The STCB chain for this QCB is
limited to the STCB for the Available
Buffer subtask that is used whenever a
buffer is made available.

LPS QUEUE: This queue passes elements from
the QTAM control program to the message
control problem program. As shown in
Figure 1, the element chain may point to:

1. An empty buffer, signifying that a
line-read operation is to be
initiated.

2. A message-filled buffer to be passed
through some portion of the LPS
section.

3. A request for a disk I/O operation to
be started.

Logical Organization of QTAM 19

4. An ALCB with a full audio input buffer
to pe passed through an ARU/LPS
section.

5. An ALCB requesting an I/0 operation on
an audio line.

6. A 7772 DCV buffer requesting a disk
read operation.

This is the QCB that the LPS Control
routine in the message control problem
program waits on.

MAIN STORAGE PROCESS QUEUE: This queue
passes full buffers from the QTAM control
program to a message processing program.
The element chain is the chain of buffers
containing the message unit that is passed
to the message processing program. This is
the QCB that a message processing program
GET waits on.

DASD DESTINATION AND DASD PROCESS QUEUES:
There is a QCB for every destination queue
and every process queue defined by the TERM
and PROCESS macro instructions in the
message control program. When a buffer is
posted to one of these queues, it is never
physically chained to the QCB. Instead,
the buffer is posted directly to the Ready
queue and, when it reaches the top, it is
removed and the indicated QCB is put in its
place. The STCB chain from one of these
QCBs always ends with the STCB for the DASD
Destination subtask. It may be preceded by
the STCB for the line's Send Scheduling
subtask (if it is a destination queue) or
the GET-Scheduling subtask (if it is a
process queue).

INACTIVE BRB QUEUE: This queue keeps track
of inactive buffer request blocks. The
element chain is the chain of all BRBs that
are not currently assigned. The STCB chain
may contain the STCB for a line's
Receive-Scheduling subtask and/or one or
more Send-Scheduling subtasks.

ACTIVE BRB QUEUE: This queue passes active
buffer requests from the various subtasks
that require buffers to the Active Buffer
Request subtask, which obtains the buffers.
The element chain is the chain of active
BRBs. The STCB chain is limited to the
STCB for the Active Buffer Request subtask.

ADDITIONAL-CCW QUEUE: This is a queue of
special purpose BRBs containing the CCWs
used to transmit idle or other specified
characters when certain lin€ control
characters are encountered in an outgoing
message. When one of these line control
characters is encountered by the Pause
routine in the Send portion of the LPS, the

20 DOS QTAM Program Logic Manual

problem program waits on this gueue to
obtain one of these BRBs. All Pause BRBs
initially appear in the element chain of
this gqueue as a result of the BUFFER macro
expansion.

DISK INPUT/OUTPUT QUEUE: BRBs containing
channel command words are posted to this
queue when a disk read operation is
required. Full buffers are posted to the
same queue for writing messages out on the
disk. The STCB chain is limited to the
STCB for the Disk Input/Output subtask.

COMMUNICATIONS LINE QUEUE: There is one
QCB for each communication line. The QCB
is created in the LCB itself when the LCB
is encountered on the Ready Queue, as
follows:

1. When a send or receive operation is
completed, the LCB is posted to the
Ready Queue as an element.

2. When the LCB reaches the top of the
Ready Queue, a field within it is
initialized as a QCB.

3. The element chain is then completed by
posting the LCB to itself.

4. A Receive-Scheduling subtask is then
created for the line unless there is
already a Send-Scheduling subtask
waiting for the line.

ARU SEND QUEUE: There is only one QCB for
all communications lines. This QCB is part
of the audio implementation programs
link-edited with the Audio Line Appendage
module. ALCBs containing a full
address-chain buffer are posted to this
queue to send the audio output message on
line. The STCB chain is limited to the
STCB for the ARU Send subtask.

7772 DCV BUFFER QUEUE: There is a QCB for
each 7772 Audio Response Unit with at least
one line using DCV words dynamically
retrieved from the 7772 vocabulary file. A
QOCB created in the message control program
through the BUFARU macro expansion keeps
track of the unassigned DCV buffers of one
or more 7772 line groups. The element
chain is the chain of all DCV buffers that
are currently not assigned to the
corresponding 7772 line groups. As soon as
a DCV buffer is no longer needed, it is
posted to its queue. The STCB chain for
this QCB generally contains the STCB for
the Queue Insert subtask, but it may
contain the 7772 DCV buffer subtask when no
DCV buffer is available and one or more
audio lines are waiting for an available
DCV buffer.

QWAIT AND QPOST

A subtask requests a resource from a queue
by issuing a QWAIT on the associated QCB.

A subtask passes a resource with which it
is finished to another subtask or a problem
program by QPOSTing the resource to the
proper QCB.

QWAIT from Problem Program

A problem program (either message control
or message processing) requests an element
from the Ready Queue by issuing an SVC 30.

Note: All QTAM SVC's are macro-generated.
The problem programmer should never

have to issue one directly.

The Supervisor SVC Interrupt Handler
initializes a PIB and passes it to the
Entry Interface subroutine in the QTAM
SVC/Subtask Control routine. The PIB
information is used to initialize a full
STCB to represent re-entry to the QTAM
problem program, and the requesting program
is placed in the wait state.

The full STCB contains the address of a
special QCB labeled QSVCQCB. The address
of the QCB for the element queue being
waited on is passed in register 0. If the
element is available, its address is placed
in register 1; the requesting program is
removed from the wait state, and control is
passed to the problem program via the DOS
Supervisor task selection mechanism.

If the element is not available, the
full STCB is chained to the QCB of the
element chain being waited on. The
requesting problem program is left in the
wait state, and control is returned to the
System Supervisor. The DOS task selection
routine then dispatches some other task if
there is one waiting (for example, a
message processing program in a lower
priority partition). Otherwise, it places
the entire system in the wait state.

When some other subtask subsequently
posts an element to the queue that the
problem program waited on, the problem
program will be dispatched by QTAM by
turning off the wait flag in the PIB for
the program. The problem program will then
be dispatched in its proper task priority
by Disk Operating System task management.

QPOST from Problem Program

A problem program (either message control
Or message processing) passes an element to
the Ready Queue by issuing an SVC 31. As
with the QWAIT, the full STCB contains the
address of, and is chained to, the QSVCQCB
QCB. The QCB of the queue that the element
is being posted to is passed in register 0
and the address of the ECB for the element
being passed is in register 1. The ECB is
placed on the Ready Queue. If a subtask is
waiting for the element, it is dispatched.
If no subtask is waiting for the element,
the ECB is chained to the proper QCB. When
all items on the Ready Queue are
dispatched, the problem program regains
control.

OWAIT from Internal Implementation Subtask

When one of the implementation subtasks
requires an element, it looks directly at
the QCB for the element queue being waited
on. If the element is available, the
subtask removes it from the chain and
continues (relinking the element chain, if
necessary). No SVC is issued.

If the element chain is empty, the
subtask branches directly to the queue
management routines in the QTAM SVC/Subtask
Control routine. If the STCB for the
requesting subtask is not already chained
to the QCB for the requested element, it is
placed on that chain. Control then passes
to the Qdispatch subroutine to activate the
next subtask.

QPOST from Internal Implementation Subtask

When one of the QTAM implementation
subtasks has an element to pass to the
Ready Queue, it branches directly to the
Post subroutine in the QTAM SVC/Subtask
Control routine (no SVC is issued). The
ECB is placed on the Ready Queue and
contains the address of the QCB to which it
was posted. The STCB for the subtask that
posted the element is left chained to the
QCB that it was already on and that subtask
resumes operation.

A QWAIT chains the STCB of the
requesting subtask to a QCB. The QCB may
or may not be on the Ready Queue. A QPOST
places an element's ECB directly on the
Ready Queue. The ECB contains a pointer to
the QCB to which it is posted. When the
ECB reaches the top of the Ready queue, it
is replaced at the top by the QCB and the
first subtask chained to the QCB is
dispatched.

Summary:

Logical Organization of QTAM 21

ODISPATCH

The QTAM SVC/Subtask Control routine in the
Supervisor nucleus provides the overall
queue management facilities which include:

1. Interfacing with the Disk Operating
System Supervisor.

2. Placing problem programs in wait
state; then posting them complete.

3. Chaining ECBs to the Ready Queue and
STCBs to QCBs in the proper priority
sequence.

4., Dispatching the highest priority
subtask.

The QTAM nucleus routine is comprised of
several subroutines, and each is discussed
in the section QTAM SVC/Subtask Control
Routine later in this manual. At this
point, however, we can look at the queue
management facility as a whole.

Figure 2 shows a very generalized
flowchart of the QTAM nucleus. Part 1
illustrates the preceding discussion of the
QPOST and QWAIT. The test made at E2 is
the Qdispatch function. The Qdispatch
subroutine examines the item at the head of
the Ready Queue.

The position of all items on the Ready
Queue is determined by the relative
priorities of elements as they are posted
to the queue. Generally speaking, the
priority of an element is determined by the
type of subtask to which it is being
passed. There are seven commonly used
priorities, indicated by a hexadecimal code
in the ECB.

HIGHEST CODE (FE): This highest priority
code is given to special audio elements
enabling truncated subtasks to be
dispatched immediately. These subtasks,
executed in supervisor mode, are located in
the four GET modules working on audio
messages, the audio PUT, CLOSEMC and
STARTARU/STOPARU modules.

SECOND-HIGHEST CODE (FD): This priority is
given to all audio elements (Audio Line
Ccontrol Blocks, 7772 DCV buffers) being
processed by the message control program.

THIRD-HIGHEST CODE (FC): This priority is
given to all Audio Line Control BRlocks
being passed to message processing
Programs.,

FOURTH~HIGHEST CODE (EC): The only element
ever given a code of EC is a BRB. This is
done in two instances:

22 DOS QTAM Program Logic Manual

1. When the buffer request is for a disk
operation. This is done to optimize
scanning the disk queue area.

2. When the buffer request is made by the
Line PCI routine following the first
PCI on a line-receive operation. The
high priority causes additional
buffers needed for a line-read
operation to be assigned as rapidly as
possible.

FIFTH-HIGHEST CODE (F4): This priority is
given to all nonaudio elements being passed
to implementation subtasks that run
disabled to interruption.

SIXTH-HIGHEST CODE (EO): This priority is
given to all nonaudio elements being passed
to the message control program.

LOWEST CODE (DC): This lowest priority
code is given to all nonaudio elements
being passed to message processing
programs .

Qdispatch follows the address pointer in
location QSVCRDYQ to the item at the top of
the Ready Queue. The item will be either
an ECB or a QCB. Qdispatch examines the
key field in the first byte to determine
what the item is:

Key = 0: All ECB's have a key of zero.
Note: There is one special case where a
full STCB appears directly on the Ready
Queue instead of chained to a QCB. This is
the full STCB created during
initialization, after the ENDREADY macro
instruction is executed and the first QTAM
SVC is issued in the LPS Control routine.
This full STCB appears to Qdispatch as an
ECB pointing to a location labeled QSVCQCB
at QSVCRDYQ-8. Therefore, the address at
location QSVCRDYQ appears as the head of a
STCB chain in a pseudo QCB labeled QSVCQCB
and the program represented by the full
STCB is given control.

There is always a subtask waiting on the
element, though in some cases it may be
only an interim subtask that removes the
element from the Ready Queue and chains it
to a QCB element chain (i.e., the Queue
Insert subtask.)

Key = 2: A key of two indicates a QCB with
a subtask at the top of its STCB chain that
is "ready™, or "not waiting" for an
element. The STCB was chained to the QCB
as the result of a QPOST. It will now
regain control.

Key = 3: A key of three indicates a QCB
with a subtask at the top of its STCB chain
that is "not ready", or "waiting" for an

Al A2
BRANCH FROM
QTAM IP LAST DISPATCH EXIT
SUBTASKS Qcs INTERFACE

SET KEY=3 OF '

QCB KEY
— B4
1= NOT ON READY QUEUE
TOP QCB
QWAIT OR SPEC QCB KEY SET 2 = ON READY QUEUE AND READY TO
QPOST KEY=2 PRIORITY 102 BE ACTIVATED
SEARCH
3 = ON READY QUEUE BUT STCB IS
WAITING FOR ECB AND CANNOT
BE REACTIVATED UNTIL ECB IS
J —c3 —ca_ Y AVAILABLE
QTAM SEARCH SPEC. SAVE QCB PTR
POST CHAIN BY AS LAST DISP
PRIORITY, FIND QCB, PIB PTR
INSERT POINT ‘ INTO REG RA
ENTRY
INTERFACE
D! D3 —
ENTRY FROM STCB ON SET UP
PARAMETERS
SVC INTERRUPT CORRECT
PROCESSOR IN REGS FOR
QUEUE INSERT

:® QUELE |
y

INSERT
El 4 £3— E4 —E5 \
PLACE ADDR OF I REMOVE STCB (INSERT ITEM PLACE PTR TO PLACE ADDR
PIB IN 3RD WD FROM PRESENT KT, ECB IN REG > OF DUMMY
OF STCB OF CHAIN SAVE AREA PIB INTO STCB
LAST DISP QCB l |
a |
o ISPATCH e ‘ ? l _F5 4
QDISPATCH
ASSIGN STCB RESET PRIORITY
éXAM(I)NE ITEM PRIORITY SPEC. QCB OF STCB
N TOP OF KEY=2 TO 'FF'
READY QUEUE (10,20 OR 30) I l |
e Y l 2 l I ~es—Y
RESET QTAM
SET QTAM WAIT | g$é’; r[gp L%’; ?E(T:B WAIT BIT IN
BIT ON IN PIB PIB USING
‘ CHAIN ‘ 703 REG RA
QSVCDABL y ‘
H2
HI
p2” s SET UP I
HOW
IT FOLDED onndst PARAMETERS ENTERED
ECB/QCB IN REGS
QTAM
Qrost WAIT l INTERFACE
£2 E3 —~ E5 C ‘ l
REMOVE ECB E4 REMOVE ITEM PRIORITY 13
REMOVE ITEM FROM TOP OF FROM TOP OF PLACE SPEC. i SEARCH l BRANCH TO
FROM TOP OF READY QUEUE & READY QUEUE; QCB ADDR JLQIP
READY QUEUE REPLACE WITH IF QCB, SET IN ECB
Qcs KEY =1 | l
QSVCRTNX -2 ' | |
(EXIT SELECT) Q K 4
F2 SET UP
ASSOC PARAMETERS |
STCB=FULL IN REGS FOR
sTCB PRI SEARCH l I l
QSVCWAIT +4 PRIORITY | I
(QTAM WAIT) SEARCH

Figure 2. QTAM Nucleus

Logical Organization of QTAM 23

element. The STCB was chained to the QCB
as the result of a QWAIT. Note that if an
element had been available, the subtask
that issued the QWAIT would have regained
control without the Qdispatch routine being
entered. Because the element is not
available, the key of the QCB is set to 1,
and the link address is changed to remove
the QCB from the Ready Queue.

The flowchart in Figure 2 further shows
how control is passed to the dispatched
subtask. If the subtask is represented by
a truncated STCB, the Exit Select
subroutine simply branches to the entry
point of the implementation subtask. If it
is a proolem program (full STCB), the Exit
Interface routine posts completion of the
SVC in the PIB for the program and returns
control to the Supervisor. If the SVC
request from the problem program could not
be satisfied, completion is posted in a
dummy PIB before return to the Supervisor,
and the problem program remains in the wait
state.

In the latter case, QTAM is placing one
problem program in wait state and enabling
another problem program that was previously
placed in wait state, or that was ready but
in a lower priority partition, to be
dispatched again by the Disk Operating
System task supervisor.

One dummy element control block
indicates the end of all element chains and
is permanently the last item on the Ready
Queue. When this ECB reaches the top of
the Ready Queue, the last QTAM problem
program is placed in wait state.

INITIAL STATUS OF THE QTAM CONTROL PROGRAM

This section describes briefly the initial
status of QTAM, that is, the status at the
time the message control program phase is
loaded from the core image library for
execution. The initial status of the QTAM
queues and the initial location of the
primary resources are represented by the
assembly listings of the various QTAM
components and are summarized here.
Detailed information concerning the initial
status of QTAM can be obtained from the
assembly listings.

Ready Queue: The initial item at the top
of the Ready Queue is a full STCB to be
used for handling the first QTAM SVC issued
in a problem program.

Available Buffer Queue: All buffers
initially appear in the element chain of
this queue as a result of the BUFFER macro
expansion.

24 DOS QTAM Program Logic Manual

Additional-CCW Queue: All Pause BRB/CCWs

initially appear in the element chain of
this queue as a result of the BUFFER macro
expansion.

Inactive-BRB Queue: All BRBs initially
appear in the element chain of this gueue
as a result of the BUFFER macro expansion.
The STCB chain initially contains the STCB
for the Queue Insert subtask.

Communication Line Queues: There is one
such queue for each line in the system.
The QCB is contained in the LCB generated
by the expansion of the DTFQT macro for the
line group file. If receiving (CPRI=R) or
equal (CPRI=E) priority is specified, the
STCB for the Receive Scheduler subtask is
initially first in the line's STCB chain.
If sending (CPRI=S) priority is specified,
the STCB for the Qdispatch subtask is
initially first in the STCB chain.

DASD-Destination Queue: The element chain
of this queue initially contains the dummy
last element labeled IJLQIPSF which
indicates that no buffers are in the chain.
Initially, the STCB for the line's Send
Scheduler subtask is first in the STCBR
chain.

DASD-Process Queue: The element chain
initially contains only the dummy last
element labeled IJLQIP5F. The first STCB
is initially the one for the Get Scheduler
subtask.

ARU Send Queue: The element chain
initially contains only the dummy last
element labeled IJLQIPSF, which indicates
that no ALCBs are in the chain.

7772 DCV Buffer Queues: All DCV buffers
associated with one or more 7772 line
groups initially appear in the element
chain of the corresponding queue as a
result of the BUFARU macro expansion. The
STCB chain initially contains the STCB for
the Queue Insert subtask.

All other Queues: The element chain of all
other gqueues initially contains either:

1. The dummy last element (IJLQIPSF in
module IJLQIP) which indicates that no
elements are in the chain initially,
but that elements may appear in the
chain when execution begins; or

2. The address of the queue itself which
indicates that no elements ever appear
on the element chain. The STCB chain
for all queues not mentioned is
limited to the STCB for the subtask
having the same name as the queue.

For example, the STCB chain of the
Disk I/0 queue initially contains, and
is limited to, the STCB for the Disk
I/0 subtask.

(

This section describes the functional flow
of QTAM operations at the component level.
QTAM is composed of five major functional

components:

1. Message control problem program—- The
portion of the message control program
phase that executes in problem program
state. Hereafter, in this discussion,
this component is referred to simply
as the message control program.

2. Message processing programs-—- One oOr
more message processing programs may
be executed in the foreground-one
(only with multitasking),
foreground-two, and/or background
partitions.

3. QTAM nucleus-- The SVC/Subtask Control
routine is the supervisor-resident
component of QTAM that handles QTAM
SVCs and controls the dispatching of
QTAM subtasks.

4. OTAM subtasks-- A portion of the
message control program phase that
executes in supervisor mode as a
logical extension of the QTAM nucleus.
Each subtask is represented to the
QTAM nucleus by a STCB and is selected
for execution when the unit of work it
performs is required.

5. QTAM appendages—-- A portion of the
message control program phase that
services interruptions caused by QTAM
line or disk operations. This
component runs in supervisor mode and
is entered from the DOS Supervisor
each time an interruption caused by a
QTAM input/output operation occurs.

Note: QTAM transient routines might
be considered as a sixth major
component. However, for the sake of
continuity, the QTAM Open routine is
discussed as a part of the message
control or message processing program
depending on which type of QTAM file
is being opened.

This section discusses the following
three major subjects, since all QTAM
operations (audio and nonaudio) use the
same message control and message processing
programs:

1. The message control program. This
describes step by step the total
process initiated for receiving and

OUTLINE OF OTAM OPERATIONS

sending a message over a communication
line.

2. The message processing program. This
describes the message transfer to and
from a message processing program.

3. IBM 2260-2848 Local operations. This
describes the operations for the IBM
2260-2848 Local Display Complex, with
emphasis on the areas Aiffering from
remote operations.

The interaction of the QTAM subtasks and
appendage is extensive for both operations.
Therefore, descriptions of these components
are included as required in both subjects.

Because the functional flow of audio and
nonaudio operations is very different, each
major subject is covered in two sections:
nonaudio and audio applications.

Processing in all the QTAM components is
initiated as a result of interrupts (SVC,
disk, and line) that occur during the
receiving and sending of a message or the
transferring of a message to or from a
message processing program. These
interrupts result in the processing of one
or more asynchronously operating subtasks
and/or an appendage. The QTAM subtasks
communicate with one another and with the
message control or processing program by
means of the QPOST and QWAIT functions (see
section on QPOST and QWAIT). When a
subtask (or program) has an element to be
processed by another subtask, the QPOST
function is used. When a subtask (or
program) is ready to receive an element,
the QWAIT function is used. Subtask
selection is performed by the QTAM nucleus
and is controlled by the ordering of items
on the Ready queue as discussed previously
under Queue Management.

To avoid excessive repetition, the
operation of the QTAM nucleus which is
entered to perform a QPOST or QWAIT
function is not included in this
description. Instead, the switch from one
subtask to another is indicated by "#***
ENTER subtask name SUBTASK***", The return
to a problem program (message control or
processing) that issued a QPOST or OQOWAIT is
indicated in a similar manner.

Note: The following discussion assumes
that multitasking support is not included.
This affects terminology rather than QTAM
operations.

Outline of QTAM Operations 25

The interference of one line with

another is handled by the queueing provided

within the QPOST/QWAIT functions.

For this

reason and for the sake of simplicity, the
operation of more than one line is not

discussed.

In this manner, the logical

sequence of events for an operation can be
described without regard to other items on
the Ready queue or unrelated interrupts

that may occur.
element is posted to a queue,

For example, when an
it is assumed 3.

that no unrelated subtask is contending for

control; therefore,

the subtask associated

with that queue is activated immediately.

Appendix E is a foldout chart showing

the functional flow of the four QTAM

components discussed in this chapter.

The

four major components are separated by

solid lines.

The subtasks, appendages, or

modules within a component are divided by

broken lines.

The labels on the chart are

the names of routines or LPS subgroups and
define the boundaries of a particular

routine or subgroup.

Detailed discussions 4.

and flowcharts of all the routines
described in this chapter are contained
elsewhere in this publication (refer to the
table of contents for page numbers).

MESSAGE CONTROIL PROGRAM FOR A NONAUDIO

APPLICATION

After the message control program phase has
been loaded from the core image library

into the foreground one partition,

it is

entered for execution by the DOS

Supervisor.

5.

ENTER MESSAGE CONTROL PROGRAM

INITIALIZATION

1.

QTAM Open Monitor/Open DASD Message

Queues File Routine, Phase 1: The

address of the QTAM Vector Table is 6.
rlaced into the DOS Communication
Region so that QTAM routines requiring
information from the Vector Table can
access it. The extent data for these
OoTAM file$ is read, and the File
Protect subroutine is called into the
transient area. It is passed a
parameter directing it to call into
the transient area the open module
that must be executed next.

Open DASD Message Queues File Routine,

Phases 2 and 3: If the DASD Message

Queues file is a multivolume file,
this routine prepares the proper

26 DOS QTAM Program Logic Manual

initialization functions. Extent data
for the next extent (if any) is read,
and Phase 3 is called into the
transient area. Phase 3 tests if this
is the last extent for the file. 1If
yes, return is made through the File
Protect subroutine to the system Open
Monitor. If no, return is made to
Phase 2.

Open Checkpoint/Restart Routine, Phase
1: If a checkpoint records file is to
be opened, this routine tests to
determine if a restart is to be
performed. If so, Phase 2 of the Open
Checkpoint/Restart routine is called
into the transient area. (This
discussion assumes that a restart is
not to be performed.) The routine
checks the size of the checkpoint work
area and formats the disk extents with
dummy records. Return is made to the
QTAM Open Monitor.

Open Line Group/MS Queues Routine: A
Set Address (SAD) command is prepared
to set the telecommunications control
unit (except for an IBM 2701) to the
proper transmission speed for the
terminal devices in the line group.
If the line is a nonswitched line, an
Enable command is prepared. If
neither command is required, a No Op
command is prepared. An SVC 31
(QPOST) is issued to post the LCB to
itself. This causes the line to be
scheduled for a receiving operation.

ENTER RECEIVE SCHEDULER SUBTASK

Receive Scheduler Routine: If there
is an active entry in the polling list
for the line, exit is made to the BRB
Ring routine to continue
initialization procedures for
receiving. If the end of the polling
list is detected, exit is made to the
End of Poll Time Delay routine to
observe a polling interval, if any.

BRB Ring Routine: A ring of buffer
request blocks (BRBs) is built for
dynamic buffer allocation (BRBs are
obtained from the Inactive BRB queue).
The number of BRBs in the ring is
equal to the value specified in the
BUFNO operand. The address of the
first BRB in the ring is stored in the
LCB so the Activate routine can access
it later, and the read-initial
operation code is placed in the LOPC
field of the LCB. The first BRB is
then posted to the Active BRB queue
with a high priority (X'EC') to cause
immediate servicing of the request for
a buffer.

ENTER ACTIVE BRB SUBTASK 13.

Active BRB Routine: Recognition of 14,
the high priority BRB causes an exit

to the Buffer-BRB routine when a

buffer is available (an available

buffer is assumed for this

description).

Buffer-BRB_Routine: An empty buffer
is obtained from the Available Buffer
queue, and it is assigned to the line
by placing the address of the LCB in
the buffer prefix. The buffer is then
posted to the LPS gqueue with a
priority of X'EOQ".

***RETURN TO MESSAGE CONTROL PROGRAM¥**

9.

10.

S11.

12.

QTAM Open Routine (continued): If

there are other lines in the line
group, an SVC 31 (QPOST) is issued and
Steps 3 through 6 are repeated for
each line. Thus, when the line group
has been completely opened, the
following conditions exist:

a. there is a BRB ring for each line
in the group. 2.

b. there is one empty buffer for each
line in the group chained into the
LPS queue.

ENDREADY Macro Instruction: The
user's registers are saved in the user
save area. If the Checkpoint Records
file has been opened, a QPOST (SvVC 31)
is issued to post the checkpoint
element to itself. This action causes
the interval timer to be set for the
first checkpoint interval. (This
discussion assumes that the checkpoint 3.
interval method of checkpointing is
used.)

¥*ENTER CHECKPOINT SUBTASK*

Checkpoint Routine: The
user-specified interval is obtained
and is passed to the Time Delay
routine.

Time Delay Routine: A special element
representing a request to set the
timer for the specified interval is
posted to the LPS queue. Control
returns to the Message Control
Program.

RETURN TO MESSAGE CONTROL PROGRAM

ENDREADY Macro Instruction: Exit is
made to the LPS Control routine.

LPS Control Routine: A QWAIT (SvC 30)
is issued to wait on the LPS queue.
The timer request element posted to
this queue in Step 12 is returned, and
a SETIME macro instruction is issued
to set the timer for the specified
checkpoint interval.

RECEIVING INITIATION

LPS Control Routine: An SVC 30 is
issued to QWAIT for the next item on
the LPS queue. The QTAM nucleus
removes an empty buffer from the LPS
queue and returns it to the LPS
Control routine. (The buffer
previously was placed on the LPS queue
by the Buffer-BRB routine.) The
registers are initialized for the
Activate routine, and the buffer is
passed to that routine.

Activate Routine: The address of the
first BRB in the ring formed for this
receiving operation is obtained from
the LCB for the line. A CCW for
reading data into the entire buffer is
prepared in the first two words of
this BRB (the third word contains the
TIC address to the next BRB in the
ring). 1Idle characters are inserted
into the buffer per the value
specified by the LPSTART macro
instruction. The BRB is passed to the
Channel Program Generator routine.

Channel Program Generator Routine:
The CCWs for terminal selection
(polling) and reading the first
segment are prepared (read-initial
channel program). In preparing the
channel program, the CCW for the
buffer is transferred from the passed
BRB to the channel program area, and
the TIC command is moved from the BRB
to the end of the CCWs in the channel
program area.

Note that the TIC address is
invalid at this point because a buffer
has not yet been assigned to the next
BRB in the ring. The PCI flag is set
in the read data CCW to cause a
program-controlled interrupt (PCI) at
the start of this first buffer. An
EXCP (SVC 0) is then issued to start
the I/0 operation. After the I/O
operation has been started, exit is
made to the LPS Control routine.

Outline of QTAM Operations 27

LPS Control Routine:
next item on the LPS queue. If there
are other lines in the system, steps 2
through 4 are repeated until input
operations have been started on each
line. When an I/0 operation has been
started for each line, the LPS Control
routine finds no further buffers on
the LPS queue, and the message control
program enters a wait state. At this
point a message processing program in
a lower priority partition is given
control through the DOS task selection
mechanism. Subsequent PCIs and I/0
interruptions cause buffers to be
posted to the LPS queue, thereby
allowing the message control program
to proceed.

QWAIT for the

FIRST PCI (RECEIVING)

It was emphasized under QTAM Opens that
initially only one buffer is assigned to a

line for receiving.

QTAM causes a PCI to

occur at the start of the first buffer so
that an empty buffer can be assigned to
each of the remaining BRBs (after the
first) in the ring formed for receiving the

message.

The DOS Supervisor passes control

to the QTAM Line Appendage which recognizes
the PCI and enters the Line-PCI routine.

1.

28

Line-PCI Routine: The remaining BRBs
(after the first BRB) in the BRB ring
are posted to the Active BRB queue
with high priority (X'EC').

¥*ENTER ACTIVE BRB SUBTASK*

Active BRB Routine: Recognition of
the high-priority BRB causes an exit
to the Buffer-BRB routine if a buffer
is available (an available buffer is
assumed for this description).

Buffer-BRB Routine: Another empty
buffer is assigned for receiving on
the line and is posted to the LPS
queue with a priority of X'EO'.

Steps 2 and 3 are repeated for each
BRB posted to the Active BRB queue by
the Line-PCI routine. The buffers are
obtained from the Available Buffer
queue.

Return to DOS Supervisor: Servicing
of the PCI is now complete; therefore,
control is returned to the DOS
Supervisor. Before returning to the
Supervisor, however, the message
control program is removed from the
wait state by turning off the wait

DOS QTAM Program Logic Manual

flag in the PIB for the foreground-1
partition. This procedure is
performed because the buffer(s) posted
to the LPS queue satisfies the QWAIT
SVC issued by the LPS Control routine
in step 5 of Receiving Initiation.

DOS Supervisor: Because the message
control program is the
highest-priority program ready to
proceed, that program is selected for
activation by the DOS Supervisor.
Control is returned to the LPS Control
routine at the instruction following
the OWAIT.

Note: The procedures described in
steps 4 and 5 apply in most cases
where a PCI or I/O interrupt is
processed by QTAM routines. For the
sake of brevity, any discussion of
returns to the DOS Supervisor and the
action taken by the Supervisor is
omitted from the remainder of this
description except when a deviation
from these procedures occurs.

***RETURN TO MESSAGE CONTROL PROGRAM*%**

6.

LPS Control Routine: The empty buffer
returned by the QWAIT is passed to the
Activate routine.

Activate Routine: A CCW (with the PCI
flag set) 1is prepared for the entire
buffer in the second (next) BRB in the
ring. The BRB is then added to the
channel program already in process for
the line. This is accomplished by
making the TIC address valid in the
CCW at the end of the channel program
previously built (see Step 3 of
Receiving Initiation). Exit is then
made to the LPS Control routine. In
this example, the second BRB now
contains a TIC to the third BRB in the
ring, but the TIC address is invalid
because a buffer has not yet been
assigned to the third BRB.

LPS Control Routine: QWAIT for the
next item on LPS queue. Steps 6 and 7
are repeated until an empty buffer has
been assigned to each BRB in the ring.
The message control program then
enters the wait state pending the
arrival of another item on the LPS
queue.

PCI--FULL BUFFER (RECEIVING)

During line receiving operations, a PCI
occurs at the start of each buffer.

The

(

action required for the PCI at the start of
the first buffer has already been

described.

The PCI for each buffer

subsequent to the first indicates that the
previous buffer has been filled with
message data and can be processed by the

user's LPS section.

The handling of each

such PCI is described here.

1.

Line-PCI Routine: 1In this example,
the PCI at the start of the second
buffer indicates that the first buffer
has been filled with incoming data.
The first BRB in the ring (the BRB to
which the first buffer was assigned)
is posted to the Active-BRB queue with
a low priority (X'E4'), and the
message-filled buffer is posted to the
Interim LPS queue. More generally,
for all PCIs subsequent to the first:

a. the preceding BRB is posted to the
Active-BRB queue, and

k. the message filled buffer is
posted to the Interim LPS queue.

The former allows the same BRB
ring to be reused for the case where
the incoming message requires more
buffers than specified in the BUFNO
operand. The latter causes each
message-filled buffer to eventually be
routed to the user's LPS section.

ENTER ACTIVE BRB SUBTASK

Active BRB Routine: The BRB posted by
the Line-PCI routine in the previous
step is chained into the element chain
of the Active BRB queue.

ENTER INTERIM LPS SUBTASK

Interim LPS Routine: The
message-filled buffer posted to the
Interim LPS queue in step 1 is now
posted to the LPS queue with low
priority (X'EO0").

The Interim LPS subtask
provides the means of delaying
the processing of all buffers
until all BRBs are processed
when a PCI is missed due to
extended CPU disable time.

Note:

RETURN TO MESSAGE CONTROL PROGRAM

u.

LPS Control Routine: The SvVC 30

(QWAIT) issued by this routine in step
8 of First PCI (Receiving) is

5.

6.

10.

satisfied by the appearance of the
message-filled buffer on the LPS
queue. The registers are initialized,
and the buffer containing the header
segment of the incoming message is
passed to the receive group of the
user's LPS.

RCVSEG Subgroup of LPS: Executed for
all segments.

RCVHDR_Subgroup of LPS: This portion
of the LPS is executed only for the
first buffer of the message (after the
second PCI). The Lookup Terminal
Table Entry routine (linked to by
either the Route Message routine or
the DIRECT macro expansion) sets the
address of the QCB for the destination
in the LODT field of the source line
LCB.

ENDRCV Subgroup of LPS: The ENDRCV
macro expansion tests the BSTA field
of the buffer prefix for EOB, EOT or
duplicate header. If any of these are
indicated, the functional macros
within the ENDRCV subgroup are
executed; otherwise, exit is made to
the Cleanup routine. 1In this example,
it is assumed that no EOB or EOT
appears in the first buffer. (The
duplicate header condition applies
when multiple routing of the message
is being performed via the EOA macro
and is not considered in this
discussion.)

Cleanup Routine: An SVC 31 (QPOST) is
issued to post the buffer containing
the header to the DASD-destination
queue with a priority of X'E4'. (The
address of the QCB for the destination
was saved in the LCB in step 6.) For
the first buffer, this causes the Send
Scheduler subtask to be activated.

For subsequent buffers containing
segments of this message, it causes
the DASD-Destination subtask to be
activated.

¥*ENTER SEND SCHEDULER SUBTASK*

Send Scheduler Routine: This routine
detects a message-filled buffer to be
written on the disk and exits to the
DASD-Destination routine.

DASD-Destination Routine: A disk
location (relative record number) is
assigned for this buffer. Disk
locations are reserved and recorded
for the next segment of this message
(if any) and the header segment of the
next message for this destination
queue. The buffer is then posted to

outline of QTAM Operations 29

the Disk I/0 queue; meanwhile, the
Send Scheduler waits for the

destination line to become free.

ENTER DISK I/0 SUBTASK

Disk I/0 Routine: The relative record
number assigned to the buffer in the
previous step is converted to an
actual DASD address. A channel
program is set up for writing the
buffer (less the first eight bytes) on
the disk, and a special control block
is posted to the LPS queue to request
that the I/0 be started.

11.

¥*RETURN TO MESSAGE CONTROL PROGRAM*

12. Cleanup Routine: The QPOST (SvC 31)
issued by this routine in step 8 is
completed. This routine then exits to
the LPS Control routine.

13. LIPS Control Routine: QWAITs on the

LPS queue. The request to start a
Disk I/O operation posted to the LPS
queue in step 11 is returned. This
routine issues an EXCP (SVC 0) to
start the I/0 and QWAITs for the next
item on the LPS gueue. At this point,
no item is on that queue so the
message control program enters a wait
state.

Summary of Operations to this Point

Operations completed:

e Filling of first buffer from line.

e - Processing of first buffer by receive
group of user's LPS.

Operations in process:

e Filling of second buffer from line

* Writing of first buffer on the disk

Possible Interruptions

At this point, any one of four possible
interruptions may occur due to the
operations in process.

30 DOS QTAM Program Logic Manual

e A PCI indicates that another buffer has
been filled from the line. Steps 1
through 13 of PCI--Full Buffer
(Receiving) are repeated with the
following differences:

1. The buffer is not processed by the
RCVHDR subgroup of the LPS.

2. The DASD-Destination routine
initializes the buffer for a text
segment and reserves only one disk
location (for the next text
segment) .

e Channel-End (CE), Device End (DE) from
the disk indicates that writing of the
first buffer on the disk is complete.

e CE, DE from the line indicates that an
EOB was received from the terminal.

e CE, DE, and unit exception (UE) from
the line indicates that an EOT was
received from the terminal.

This discussion assumes that the disk
interruption occurs first followed by a
line interruption for an EOB.

DISK INTERRUPTION (RECEIVING)

CE, DE from the disk indicates that the

disk write operation has been completed.
The DOS Supervisor passes control to the
Disk-End Appendage.

1. Disk-End Appendage: The message
segment contained in the buffer has
been recorded in the appropriate
DASD-Destination (or process) queue;
therefore, the buffer is now released.
This is accomplished by posting the
buffer to the Available Buffer queue.

ENTER AVAILABLE BUFFER SUBTASK

2. Available Buffer Routine: The BRB
placed on the element <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>