File Number S360-29 ’
order No. Gc24-9005-5 | DOS
TOS
| S ——

Systems Reference Library

IBM System /360
Disk and Tape Operating Systems
PL/I Programmer's Guide

This publication complements the Systems Reference
Library publication IBM System/360, PL/I Subset Ref-
erence Manual, Order No. GC28-8202. Its purpose is to aid
the programmer and to familiarize him with the tech-
niques of PL/I programming. This publication therefore
provides all information that is not part of the PL/I
Subset Reference Manual but required by the programmer

to write programs in the PL/I Subset Language and to
have them compiled and executed in the DOS/TOS environ-
ment.

The main topics covered in this publication are:

e .The DOS/TOS environment.

e PL/I data file organization.

® Storage requirements of PL/I programs and program
-elements.

.® 'The overlay facility.

® Listings produced for PL/I programs.

® Restrictions to the PL/I Subset language.

In some instances, the programmer may desire
detailed additional information on topics not directly
connected with PL/I. A list of all pertinent Systems
Reference Library publications is provided in the
Introduction section of this publication.

Sixth Edition (September; 1970)

This is a major revision of GC24-9005-4 and Technical Newsletters
GN33-9067 and GN33-9078.

Changes to the text and small changes to the illustrations are
indicated by a vertical line to the left of the change; changed
or added illustrations are denoted by the symbol e to the left
of the caption.

This edition applies to change level 3-8 of the DOS PL/I compiler
(DOS release 24) and change level 2~3 of the TOS PL/I compiler (TOS
release 14) and to all subsequent levels until otherwise indicated
in new editions or Technical Newsletters.

Changes are continually made to the information herein; before using
this publication in connection with the operation of IBM systems,
consult the latest IBM System/360 SRL Newsletter, Form GN20-0360,
for the editions that are applicable and current.

This publication was prepared for production using an IBM computer
to update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Laboratories, Programming Publications, 7030
Boeblingen/Germany, P. O. Box 210.

© Copyright International Business Machines Corporation 1967, 1968,
1969, 1970

INTRODUCTION o & o o o o o « o o o o =

RUNNING PROGRAMS UNDER DOS/TOS CONTROL
The Disk and Tape Operating Systems .
I/0 Device Assignment .« « « o« « o
The Job Control Program . « « o« « « o
Job Control Statements
The PROCESS Statement o« e
Compilation Under DCS/TCS Control .
The Linkage Editor Program
linkage Editor Control Statements .
Including Okject Modules into the
Cbject Program « « « o« « o« o « o o =«
Sample Compilation . ¢« « « « & « o .

CAIALOGING
Cataleoging into the Core-Image Libkrary
Cataloging into the Relocatable Library
Library Maintenance Runs . . . « .+ « .
Special Considerations on TOS

DATA FILES o ¢ o « o o o o s o o o o =«
File Organization Schemes
Consecutive Files . . . ¢ ¢ < . « .
Regicnal Files . « . &« ¢ ¢« ¢ &« « o« &
Indexed Files . ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o
Digk Organization . « . . .« « « « . .
Record Types . . . « « o o o s e a @
Ingput/Output Processing e e e e e e
hccess Methods .
Buffering .« « o« o o ¢ & o « o « o o

- ® ® & e e o e o o

FILE LABELS .« & v o « o =« « o e o
Restrictions on Special PL/I Files .
Job Control Statements«
Multi-File Volumes and Backwards
Files . . .
Iink- Edltlng And labeled Flles « .o
Cataloging of Label Information . .
Progran - Label Communication . . .
hssignrent of System Files to Disk .

LINKAGE CONVENTIONS e % o o * e & o =
Correlation Between PIL/I and
Assembler Modules e @ e e s e o e
Checkpoint and Restart . . . « . . .

GEMERAL PROSRAMMING INFORMATION . . .
Statement Format . + « o o o ¢ o o o
Program Segmentation . . . ¢«
Pregram EXpansion .« « <« « o o « o o .
Conversions .« . . e . e o o o o o o
Use Oof UNSPEC . & 4 o o o o o o o &«
Computations With Overlay

BlOCKIng o« o o o o o o 2 o o o o o o
Simulation of P-Format Items o« e o

Sirulation of Arrays of structures .« .
Use of the DEFINED Attribute
Use of Based Variables with Structures
Redefinition of Attributes
Use cf the 48-Character Set
Sive OVerflow .+ ¢« o« ¢« o o o o o o o

CONTENTS

Use of the DISPLAY Statement with the
REPLY OPtioOn « v v o o o o = o « « « =
Precision of Decimal Data . « « o« « «
Changing the Talk Control Table

Improvement of Do-Loops . . .
Rounding on Cutput with E and F Fcrmat
Items . . . e e e e o e o e e e o w

Handling Blank Numeric Fields . . .

Use of List-Directed and Edlt-Dlrected
Data Transmission . « « « « 2 « « + «
Use of Pictures With Stream-oriented

Data TransSmiSSioOn . « « a « = « « =
PICTURE Specifications . . . «
ENDFAGE With Multiple-Line PUT

PROGRAM-CHECKCUT FACILITIES & o « « =
Exhibit Changed . . « . « . ¢« .« + . .
Tracing « &+ o o o « @ o « = s « o« « @
The DYNDUMP ROUtINE & « o o o o « « =
Locating Execution-Time Errcrs

DATA STCRAGE RECUIREMENTS « e e = o a
Data DesCriptOrs . v o « o « « o o o =
Data ITtéms . v o ¢ o @ o o o « = o = =
Coded Arithmetic Data . ¢ « « « o+
Numeric (Picture-Specified) Cata . .
String Data .« « ¢ o « « « = w o o
Iabel Data « « o « o « o o a s « o =
Pointer Variakles . . . - s e
Data Storage Depending cn Storage tlass
Storage of External Data « « « « o « «
Use of Constants in the Scurce Text .

DATA STORAGE MAPPING e e s w
Storage Mapping -~ Element Data o «
Storage Mapping -- AXraysS . « « « o =
Storage Mapping -~ Structures

SUBROUTINE STCRAGE REQUIREMENTS . . .
Conversion Sukroutines . . « « . . .
Built-In Functiomns,
Pseudo-Variables, and Other Implied
Subroutine Calls « o »
Subroutines Called by L/O Statements

I/0 STORAGE REQUIREMENTS o « o « w « o
File Declarations . « « o« « o o« o '« =
Buffers
DTF Table . . « . « &
Aprendage .« .« ¢ . o
IOCS Logic Module . .
Examples . « ¢ ¢« o o . .
System Units o« v v ¢ o o o o o o o o o
SYSPRINT . «w v o ¢ o o « « o o o o «
SYSIN @ v« o « o o o s a o o o o « «

.
.
)
.
3
.
.

PROGRAM OVERHEAD . . ¢ ¢ @« ¢ o ¢ o« « =
The Static Storage Area . « « « o «
The Dynamic Storage ATYe€a « « o« o o
The Block Prologue . .« . . « « o « «
The PL/I Control Routine

SOURCE TEXT AND OBJECT PROGRAM . . .
Problem Analysis Example
File Description
Data Assumptions« . < . .

Other Assumptions« . .
Storage Requirements . o« « o« « « o« o
OVERLAY .« ¢ ¢ o o « o o o o o « =« =

PROGRAM LISTINGS . e o« o « o o o = «
Source Program Listing
Syrbol Table Listing . « . « . &« .+ «
Cross-Reference Listing
Offset Table Listing . . . « e e e
External Symbol Table Llstlng « o e
Bleck Table Listing . . . « . « . .
Object Code Listing . «
Statement Offset Listing
Compile-Time Diagnostic Messages
Object-Time Diagnostic Messages

List of Message Codes

L)
»

APPENDIX A. CONVERSICN SUBRCUTINES .

APPENDIX B. POSSIBLE COMBINATICNS OF
DATA CONVERSIONS o « o o o « o o o «

APPENDIX C. BUILT-IN FUNCTIONS, PSEUDC

VARIABLES, AND CTHER IMPLIED
SUBROUTINE CALLS « v o « « « o o « «

APPENDIX D. I/0 SUBROUTINES
APPENDIX E. FILE LABEL FCRMATS . . .

APPENDIX F. COMFILE-TIME DIAGNOSTIC
MESSAGES « ¢ « « « « o o o o o o« o

APPENDIX G. I/C STATEMENT FORMAT AND
ON-CONDITION CHECKLIST « « « o o o o«

APPENDIX H. FILE DECLARATION
ATTRIBUTES AND CPTICNS . . = o« « o«

APPENDIX I. DEFAUIT ATTRIEUTES OF
CODED ARITHMETIC VARIABLES

APPENDIX J. RESTRICTIONE T0 THE PL/I
SUBSET IANGUAGE . . w o o ¢ o « « &

INDEX . & ¢ o o o o o s o o o s o »

.101

106

.127

.128

.129

.130

.136

This publicaticn complements the Systems
Reference Library publication IBM_Systen/
360, PL/I Sukset Reference NManual, Form
GC28-8202 (hereafter referred to as the
Subset Reference Manual). It provides all
infcrrmation that is not part of the lan-
guage specificaticns but required Ly the
programmer to write programs in the PL/I
Subset language and to have them compiled
and executed in the DCS/TCS environment.

This rublication is divided into four
logical parts:

Part - I - provides all information regard-
ing the DOS/TCS environrent, PL/
I data file organization includ-
ing the ENVIRCNMENT attribute,
linkage ketween PL/I and
Assembler modules, and FL/I pro-
gramming in the DOS/TOS
environment.

Part II - prcvides all information regard-
ing storage requirements of pro-
grams written in the PL/I Subset
language, and a description of
the overlay facility.

Part IIT - describes all listings and diag-
ncstic messages produced for PL/
I programs running under DOS/TIO0OS
centrol.

Part IV - Appendix. Some of the individu-
al appendixes provide informa-
ticn taken out of the corres-
ponding sections to imprcve the
readakility, e.g., a list of all
available I/C subroutines. The
reraining appendixes furnish
additional reference information
the PL/I programmer might find
useful.

The last secticn of the Appendix lists
the imrlementaticn-derendent restrictions
to the PL/I Subset language as it is
described in the Sukset Reference Manual.
The individuval restrictions are listed in
alrhabetical crder.

Tc free the rrcgrammer of the necessity
of referring to other publications for
additicnal information, this puklication is
made as self-supporting as possible by dup-
licating some of the information given
elsewhere. However, should this puklica-
tion not give all the details the programm-
er needs for sclving his proklem, these
details can be found in the pertinent SRL
publicaticn, A list of all SRL puklica-
tions the programmer- may have to refer to
is given belcw:

A RS- AL A A

IBM System/360 Disk Orerating Syster,
System Programmer's Guide,
Form GC24-5073

IBM System/360 Cperating Systen, PL/I
Library Computational Sukroutines,
Form GC28-6590

IBM System/360 Frincirles cf Ogeraticn,
Fcrr GA22-6821

IBM System/360 Disk and Tape Operating Sys-
tems, Concepts and Facilities,
Ferm GC24-5030

IEM System/360 Disk and Tape Operating Sys-
tems, Utility Program Stecificaticns,
Form GC24-3465

IEM System/360 Disk Cperating System, Sys-
tem Control and System Service Prcgrarms,
Form GC24-5036

IEM sSystem/360 Tape Operating System, Sys-
ter Contrcl and System Service Prcgrars,
Foerm GC24-3431

IEM System/ 360 Disk Operating System,
Supervisor and Input/Cutgut Macros,
Fcrm GC24-5037

IBM System/360 Tape Cperating System,
Supervisor and Input/Output Macros,
Fcrm GC24-3432

IBM System/360 Disk Operating System, Data
Management Concepts, Form GC2u4-3427

IBM System/360 Tape Operating Systen, Data
Management Concepts, Form GC24-3430

IEM System/360 Disk Cperating System, PL/I
DASD Macros, Form GC24-5059

Minimum Requirements for Ccmrilation

1. 16,384 (16K) kytes of core storage on
one of the conpatible ncdels cf Systen/
360 (not Model 20, 44). The compiler
itself requires 10K. Mcre than 10K are
required if SYSIFT, SYSLST, and/or SYS-
PCH are DASD files. This is a system
generation option.

2. a. Either one IBM 2311 Disk Stcrage

Crive or one IBM 2314 Direct Access

Storage Facility cr

E. four IBM Magnetic Tape Drives of
the series 2400. A 7-track tare
may ke used for SYSRES. The use of
a 9-track tape fcr SYSRES will
improve the performance. The data
conversion feature is required fcr

Introducticn 5

7-track drives. Cne additional
tape drive is required for compile-
and-go operation.

3. One card readspunch or one card reader

and cne card rpunch.
4. One rrinter.
5. One IBM 1052 Printer-Keykoard (required

for operator-to-system communication).
6. The optional supervisor feature Program
Interrurt (PC).

Note: Either one cr koth of the units
listed under items 3 and 4 may ke replaced
by one additional magnetic tape drive per
rerlaced unit.

The speed of compilation is greatly
reduced if (1) the source program contains
more than 80 programmer-defined identi-
fiers, and (2) a 16K system is used to com-
pile a program greater than 16K.

For determination of the required work-
file srace refer tc Workfile Requirements
in Aprendix G cf IBM System/360 Disk
Orerating Syster, System Generation_and
Ferm GC24-5033.

Mininum Requirements for Execution

Additiocnal machine features required for
arithmetic, compare, and ccnversicn are
listed in Figure 1.

Note: At EXEC time all IJKSnn transients
must be available in the ccre-imrage
likrary.

Maximum Ccnfiguration Supported

The fcllowing units and features are
supported:

1. BAll of the units and features srecified
for compilation. (Cisk files are nct
supported for tape-resident systems.)

2. All of the follcwing devices:
a. IBM 2540%*
b. IBN 1403
c. IBM 1404 (for continuous forms

only)
d. IBENM 1442N1
e. IBM 1442N2
f. IBN 1443
g. IBM 2501
h. IBM 2520B1
i. 1IBM 2520B2
j. IBEM 2520B3
k. IEM 1445
1. IEBEM 2321

3. Additional main storage up tc 16 mill-
ion tytes.

The executicn-time requirements depend on
the requirements of the system and the *The Punch/Read Feed (PRF) special feature
object rrograrn. is not implemented ky PL/I.
________ - 1
r N T T T T A T T T 1
Ccrrarison Of/With	Coded			Numeric		
Arithmetic With/And	Fixed	Fixed	Coded	Fixed,	Numeric	
Convert To	Decimal	Binary	Flcat	SterlingjFloat	Bit	Char.
L i 4 —_ +___ s 4 . 1 L 1						
r T T T T 1 T 1						
Frenm	I			I		
k . -————{ l						
Coded fixed decimal	D	b,F2	D,F	D	D,F	D
L X 4 — 4 - o e 4 4 1 ¥						
r . . T T T T T T 1 R						
Fixed binary	D,F2	X	F	D,F2	D,F	X
b= : A $--= + 1 —pommmmm oo i						
Coded float	D,F	F	F	D,F	D,F	F
I 4 e e + 4 + + 1						
. . 1 T T T a1						
Nureric fixed and	D	D,F2	D,F	D	D,F	C
sterling	I			I	I	
} 4 _+ _____ + 4 4 + 4 4						
[R T T T T T T A						
Nureric flcat	D,F	D,F	D,F	D,F { D,F	LC,F	x*
F--- { $ommv 1 1 1 $-----——-4 ~1
[Bit | D | X | F | D | D,F | X | X [
1. 4 4 4 4 4 4 4 4
r T T T T T T T 1
|Character | wnp | NP | NP | NPT | NP2 | X I X |
—— 1 —te L 4L L 4 4 dJd
|D - Decimal feature required. |
|F - Flcating-pcint feature required. Conversion only. |
|NP - Not permitted. |
|[X - Nc special features required. |
J
1
|+ - Conversion only. |
|2 - Flcating-rcint feature only if scale factor not equal to zerc. |
i J

Figure 1.
6

Additional Nachine Feature for Arithmetic,

Comparison, or Conversion

This section describes the compilation and
executicn of PL/I programs under control of
the Disk and Tape Operating Systems. The
pertinent terminology, control statements,
and their fcrrmats are discussed when
required.

Basic Terminclcgy

It is cconvenient to refer to each stage of
prcgram develcpment ky a particular name,
because just the term program wculd be too
general and, therefore, confusing.

In program development, the programmer
writes sets of source statements that may
fecrr a cerrlete program or part thereof. A
card deck containing one external rrocedure
written in the FL/I Sukset language is
referred to as a source module. A source
module is the unit that is processed during
a ccrpilaticn. The compilation results in
one or two obiject modules. The first
okject module is produced by the PL/I com-
piler fcor all cf the file declarations, if
any, contained in the source module. The
seccnd ckject mcdule is produced for the
scurce mcdule. Object modules can ke
loaded by the DOS/TCS Linkage Editor pro-
gran and then executed. An okject module
consists of standard ESD (External Symbcl
Dicticnary), TXT (Text), RLD (Relocation
Dictionary) cards, and one END card.

Tc start the execution of a PL/I pro-
gram, control must be transferred frorm the
Disk or Tape Operating System tc the object
rrcgrarn. The external procedure to which
control is transferred from the Job Ccntrol
rrcgram must have the cption MAIN.

Scrre parts of the okject program may not
be required in storage throughout its
execution. External procedures that are
never active simultaneously may use the
same storage area to save storage. Each

RUNNING ERCGRAMS UNLCER_ DOS/TOS CONTROL

gart of the program that is in storage only
for a fraction of the executicn time is
_____ Using the MAIN
procedure as an overlay is not permitted.
Each overlay as well as that part cf the
rrogram that resides in storage throughout
the execution of the object rrcgram is
referred to as a phase. A phase consists
of one or more external rrccedures. Fcr
detailed information refer to the secticns

Some standard procedures such as PL/I
built-in functions or conversicn subrcu-
tines have been incorporated into the relo-
catable likrary as library subrcutines.
Only the code required for calling these
subroutines is corpiled intc the cbject
module. The likrary sukroutines themselves
are incorporated into the arrrcgriate
rhases Lty the autolink feature cf the LOS/
TCS Linkage Editor program.

Extra code is required to allcw scre
housekeeping during the execution of a PL/I
program. This code, which is referred tc
line in an object module cr inccrporated
due tc an explicit likrary subroutine call.

The relationship between the user's PL/I1
mrainline rrogram, the FL/I ogram,
and the DOS/TOS system 1s shown in Figure
1A.

Note: The EL/I_control program is a set cf
library routines in th€ reélocatable library
which are included into cbject rrcgrams at

linkage-edit time and perform certain con-

trol functions at executicn time.

Obiject-Tine Storage lLayout

The layout of main stcrage during executicn
of a PL/I program is shown in Figure 1BR.

Runrning Frograms Under CCS/TOS Contrcl 7

SUPERVISOR

Intercepts Program Checks, Passes
Control to PL/I Interrupt Handler

PL/I PL/I
MAINLINE CONTROL PROGRAM
Initialization (Prologue) - Initialization Routine
- o GO TO Routine
GO TO Extemal Name -4 (Return is to External Name)
> ® OPEN/CLOSE Routines
OPEN/CLOSE - (Call $ Transients)
L4 SIGNAL Routine Handles
B READ, WRITE, etc. Exceptional Conditions and
Issues Messages
END. (MAIN), STOP - ® STOP Routine Calls $
Transient for Automatic
Closing of Files and EOJ
° Interrupt Hondler Usually
Calls $ Transient
L e —_ (Retum is Conditional)
Miscellaneous Subroutines
= Such as: T T T T T T T T T T T T T T T T
A 1/O Transmitters) 1 .
Conversion Routines g e $ Transient Area
Built=-in Functions (May Call $$B Transients)

Figure 1A, PL/I Program Structure

Lower Storage Hardware Area

3
13

Supervisor Transient Areas T

DTF-Appendages
DTFs and Buffers

PL/! User Program Procedures J

A\)

33
-

LIOCS Modules

DTF for SYSPRINT

Logic Module for SYSPRINT

PL/1 Control Program

PL/! Library Subroutines

These components are used to load the
system and to prepare and ccntrcl the
execution of all processing and problem
programs within the systern.

The system service programs consist of
the linkage Editor and the Librarian.
These programs are used to bring compiled
source programs into an executable.fcrrat
and to maintain the likraries.

Figure 2 shows a schermatic regresenta-
tion of the Disk and Tape Cperating
Systems.

Tc make full use of CCS/TOS, the usex
should be familiar with (1) the functions
of the individual systen ccrnpcnents and (2)
the interaction of these components. Users
of the overlay feature shculd be thcrcughly
fariliar with the DOS/TOS Linkage Editor
program. Users of the label-rrccessing
facilities should ke familiar with DOS/TOS"
data management concerts. This secticn
briefly discusses those parts of the DOS/
TCS that are of interest tc users cf the
PL/I Sukset language.

r >
Ji.' Overlay Program Area (Optional) = Disk/Tape Operating Systems
l DSAs L System Control System Service Processing
4
(Allocated only During Execution) T Programs Programs Programs
Language
Translators
Upper Storage Initial r Assembler _]I
Program Linkage | Cobol |
Loader Editor | |
Program : Fortran |
Figure 1B. Object-Time Storage Layout | P :
L
THE CISK AND TAPE OPERATING SYSTEMS S .
upervisor
. . Service Programs
The Cisk and Tagpe Orerating Systems (DOS/ == ———— 1
TOS) are a group of processing prograrns I Autotest
with the contrcl and service programs | SWYW?We
required to maintain continucus operaticn. L Utilities |
They are self-ccntained systems and require Job Librarion ||} ~ """ 7™
a minimum of operator intervention. Control
Program User-Written
. . Programs
The processing programs consist of lan-
guage translatcrs and service programs.
The group of processing programs can be
exranded by adding user-written proklem
programs.
Figure 2. Schematic Representaticn cf the

The system control program -- the frame
work cf TCOS/TOS -- consists of three
components:

¢ the Sugerviscr program,
¢ the Jcb Centrcl program, and

¢ the Initial Program ILoader (IPL).

Disk and Tape Cperating Systems

System Control Prcgrars

The Surervisor handles all hardware inter-
rupts, cauvses I/0 cperaticns tc be per-
fcrred, and contains a fetch rcutine fcr
fetching program phases from the core-image

Running Prograns Under DOS/TOS Control 9

library. The Supervisor resides in storage
throughcut the execution of all IBM-
supplied and user-written programs.

The Jcb Ccntrcl program provides jocb-to-
jcb transiticn within DOS/TOS. It performs
its functions between job steps and doces
nct reside in stcorage while a proklem pro-
gram is being executed.

The IPL is of no interest to the PL/I
Frcgrammer.

SystemﬁService Prcgrams

The Linkage Editor links all relocatable
object mcdules that are produced ky the
language translators, i.e., it assigns
absclute addresses and resolves cross-
references between different object modules
(external symkols). The output of the Lin-
kage Editor can ke either immediately
executed or incorporated into the ccre-
image likrary.

The Librarian is a group of prograrns
used fcr maintaining the likraries and pro-
viding printed and/or punched output frocm
these libraries. The 3 libraries are:

¢ the ccre-irage likrary,
s the relocatakle likrary, and

e the scurce-statement likrary.

The core-image library contains cbject-
prcgram thases already processed ky the
Linkage Editcr. These programs are ready
for execution under control of the Supervi-
scr. The ccre-image library contains, for
instance, the system control and service
prcgrans thenselves and the PL/I compiler.

The relccatakle library contains okject
modules produced by the language transla-
tcrs. Ckject ncdules may ke prececed ky
Linkage Editor control staterents. The
individual nrcdules ccntaineé in the relo-
catakle library are used as input tc the
Linkage Editcr. Mcst cf the kuilt-in func-
tions of PL/I as well as service rcutines
required fcr the executicn cf PL/I object
programs are contained in the relccatable
likrary.

The source statement library is not used
by e PI/I compiler or during cbject grc-

gran executicr.

ic

Multiprogramming

DCS and TCS permit the switching cf rrcces-
sing between one or two foreground programs
and one kackground rrcgram, in which case
all programs reside in storage simul-
taneously. This methcd increases the tctal
throughrut since some program may use the
CPU while another rrograr is waiting fcr
input/outrut. If more than one program
requires the CPU, the fcregrcund-1l rrcgram
has the highest and the kackground program
the lowest priority. The rrogran(s) cf
lower priority are dormant until the
program(s) of higher pricrity start(s)
waiting fcr a completion of input/output.

The stcrage areas - referred tc as fgar-
programs are defined at syster generation
time and may ke changed ky the cperatcr
between job steps.

The DOS/TOS PL/I compiler, the Linkage
Editor, and the librarian exclusively wcrk
in the kackgrcund partition. DOS programs
compiled by the DOS PL/I ccmpiler can ke
executed in a foregrouna partition, pro-
vided the supervisor was generated with the
orticn MPS=BJF and a minimum of 10K of
storage 1s assigned. tc € rartiticn.
ckject rrcgrams may only ke executed in
batched-job mode. Since the Linkage Editor
is not availakle in a fcregrcund jck, frrc-
grams to ke run in a foreground partition
must have been previcusly catalcged intc
the ccre-image likrary.

PL/I

TOS programrs conpiled by the PL/I ccn-

The Jok Control statements fcr fcre-
ground jcks are the same as those for back-
ground jobs, excert that the crticns LINK
and CATAL of the OPTION statement as well
as the logical units ESYSLNK and SYSRLB rust
nct ke used with foreground jobs.

170 LEVICE ASSIGNMENT

The 1/0 devices used during compilation and
execttion are referred tc by lcgical device
addxresses instead¢ of ky their physical
device addresses. Thus, the user may dis-
regard the rhysical device assignments of
the systermr ccnfiguraticr he uses. Moxeov-
er, if a nunker of different system confi-
gtrations is used, recompilaticn of a
scurce prcgram is required only if the
device types (1442, 2540, etc.) change.
The lcgical device addresses the FL/I pro-
grammer shotld kncw are listed in Figuzre 2.

Logical
Device Device Referred to
Address
SYSRDR Input device from which Job Control statements are read. Not used by PL/I compiler or object programs.
SYSIPT Input device from which the input for the PL/I compiler is read. Can also be referred to by SYSIN.
SYSIN Input device combining the functions of SYSRDR and SYSIPT.
SYSLST Output device used by the PL/I compiler. The device used is the same as the PL/I standard output device for listing
(SYSPRINT). (For PL/I object-time messages refer to PROCEDURE Statement in Appendix H.)
SYSPCH Card punching device used by the PL/| compiler when a punched card object deck is specified..
SYSOUT Output device combining the functions of SYSLST and SYSPCH, Cannot be assigned by an ASSGN statement.
SYSLNK Input/output device used by the Linkage Editor and the PL/I compiler when compiling and subsequent link-editing
is specified.
Console typewriter used for listing messages issued to the operator by the PL/I compiler and the object program.
SYSLOG SYSLOG is also used when a DISPLAY statement appears in the PL/I program (For PL/1 object-time messages refer
to PROCEDURE Statement in Appendix J.)
Logical device addresses available to the programmer (programmer logical units as opposed to the remaining units,
which are also referred to as system logical units).SYSO0T, , dn 3 are used as work file addresses by
SYS000 the language processors and the Linkage Editor. They may be used as work file oroutput file addresses, but the user
to must protect his input files from being destroyed by the compiler or Linkage Editor in the case of a compile-and-
SYS222 execute or link-and-execute job. For this purpose, he should use the DISPLAY statement with the REPLY option and
instruct the operator to mount the input file immediately before opening the file at execution time if a sufficient
number of 1/O units is not available.
Figure 3. Logical Device Addresses Used by the PL/I FProgrammer

Logical device addresses can be assigned 1.
to physical devices

1. when building the system,
2. by the operator, or

3. Dby means cf the ASSGN statement (see
the section The ASSGN_Statement).

If multi-grogramming is included in the
supervisor, independent sets of logical
units are prcvided for the kackground area
and both foreground areas.

THE_JOB_CONTROL_PROGRAM 2.

The Job Control program permits processing

of batched jcks in kackground mode. A job

is the execution of a problem and consists

of one or more job_steps. A job step is a
single compilaticn of an external proce- 3.
dure, a Linkage Editor run, a Likrarian

run, or the execution of an object program.

JOB CONTROL STATEMENTS

The execution of the Jok Control program is 4.
initiated by Jok Control statements read

from SYSRDR. The general format of Job

Control statements is as follows:

Name

Job Control statements are identified
by two slashes (//) in colurns 1 and 2.
The second slash must be followed by

one or more blanks. Exceptions are:

a. The end-of-job statement contains
/& in columns 1 and 2.

b. The end-of-data-file statement con-
tains /% in columns 1 and 2.

c. The comments statement contains *
in column 1 and a blank in column
2.

operation

The entry in the operation field cf a
Job Control statement describes the
type of operation tc be performed. It
must ke followed by one or more blanks.

operand

The operand may be blank or consist of
one or more entries separated by com-
mas. Interspersed blanks are not per-
mitted. The last entry must be fol-
lowed by one or more blanks unless its
last character is in column 71.

Comments

Comments are permitted anywhere after
the trailing blank of the operand
field.

Running Programs Under DCS/TOS Ccntrcl 11

The ASSGN Statement

The ASSGN statement is used to assign a
logical device address to a physical
device. The format of the ASSGN statement
is as follows:

+X'ss'
// ASSGN SYSxxx,device-address
,ALT

in Figure 3 (with the exception of SYSOUT,
which cannot be assigned by means of ASSGN
staterents). The system permits programmer
logical units in the range from SYS000 to
SYS222. The number of units actually per-
mitted per partition in a specific instal-
lation is defined at system generation time
and normally less than 223. SYS000 to sSYs-
004 are the minimum provided by the system.

The following restrictions should be
observed when re-assigning some of the log-
ical units:

1. SYSRDR, SYSIPT, SYSIN, SYSIST, and SY¥S-
PCH cannot be assigned to 2311 or 2314
DASD extents by ASSGN statements. 1In
case they are assigned to a 11 or
2314 DASD extent either at system
generation time or Ly the operator, a
special version of the PL/I compiler
that needs a minimum of 12K of storage
for execution must have keen cataloged
at system generation time.

2. SYSLNK must be assigned to the same
device type as SYSRES for DOS and to a
magnetic tape drive for TOS. Any re-
assignments must be made before issuing
an OPTION statement that contains the
LINK or CATAL option.

3. SYSLOG should be assigned to a 1052
console typewriter. Assignment to a
printer is possible but degrades the
system functions and prevents the use
of the DISPIAY statement with the REPLY
ortion.

b, SYS001l to sSYS003 must ke assigned to
the same device type (either magnetic
tape drives or 2311 or 2314 DASD
extents) for the entire duration of a
cecmpilation.

Device-address rpermits two formats:

X'cuu' where c¢ is the channel number and uu
the unit number in hexadecimal
notation.

Ua Unassign. The jok is canceled if a
file attached to this logical unit
is referred to ky one of the I/0
statements OPEN, CLOSE, GET, PUT,
READ, WRITE, or REWRITE.

12

It is
used for specifying mode settings for 7-
track and dual-density 9-track tages. If
X'ss' is not specified, the system assumes
X'90"' for 7-track tapes and X'C0' for 9-
track tapes. The possilkle specifications
for X'ss' are listed in Figure 4.

r T T T T 1
	Bytes		Trans-	
	per		late	Convert
ss	inch	Parity	Feature	Feature
p-m-t- + F-- F]				
10	200	odd	off	cn

20	200	even	off	off
28	200	even	on	cff
30	200	odd	off	off
38 { 200	odd	on	cff	
50	556	odd	off	on
60	556	even	off	off
68	556	even	on	off
70	556	odd	off	cff
78	556	odd	on	off
90	800	odd	off	en
AO	800	even	off	off
a8 { 800	even	on	cff	
BO	800	odd	off	off
B8	800	odd	on	off
CO	800	single-density 9-track		
cO	1600	dual-density 9-track i		
] 8 | 800 | dual-density 9-track |
L 4 b]
Figure 4. ©Possible Specificaticns for

X'ss' in the ASSGN Statement

ALT indicates an alternate magnetic tape
unit that is used if the capacity 9f the
criginal unit is reached. The characteris-
tics of the original and the alternate unit
must be the same. Multirle alternates may
be assigned to one logical unit.

Note: All device assignments made with
ASSGN statements are reset between_ joks tc
the configuration specified at system
generation time plus any modifications that
may have been made by the operator. (See
the section The JCB_Statement.)

The_ EXEC_Statement

The execution of a jok step is initiated by
the statement:

/7 EXEC name

Name is the name of the first rhase of the
program to be fetched frem the core-irage
library and to ke executed. Therefore,
execution of a PL/I compilaticn wculd be
initiated ky the statement

// EXEC PL/I
The name must be omitted if a rrogram

linked in the previous jok step of the same
job is to be executed frcr SYSLNK.

The JOB Statement

Each job begins with tne statement:
// JOB job-name

Job-name is a user-defined name of 1 to 8

characters.

Note: The JOB statement cancels all pre-
vicusly issued OPTION and ASSGN statements.

The LISTIO_Statement

The LISTIO statement is used to obtain a
listing of the I/0 assignments. The format
of this statement is

/7 LISTIO

with one of the operands listed in Figure
5. The listing is produced on SYSIST. The
listing varies according to the operand.
For magnetic tape units, physical units are
listed with current device specification.

r T - ——=-1
| Operand|Causes the Listing of |
e $--- - -
|the physical units assigned to |
| lall system logical units.

|
prmmm e + {
|
1

| PROG |the physical units assigned to
| |all background programmer logical
|units.

b e !
}
ALL | the physical units assigned to |

!
!
|
|
T T e 3
|
|
i.
|
|

|the specified logical unit. |
[

4
UNITS |the logical units assigned to all]
|physical units. |
4

T
| DOWN |all physical units specified as |
| |inoperative. |
b o e
| ta |all physical units not currently |
| |assigned to a logical unit.

b ¥ -- -4
| X*cuu' |the logical units assigned to the]
specified physical unit.

L L Y J

Figure 5. Operands of LISTIC Statement and

Corresponding Actions

The MTC Statement

The MTC statement is used to control opera-
tions on logical units assigned to magnetic
tapes. The format of the MIC statement is

// MTC op-code,SYSxxx[,nnl

For further details refer to the section
Multi-File Volumes and_Backwards Files.

The OPTION Statement

The OPTION statement is used to specify
options for the compilaticn of PL/I scurce
programs. Its format is

// OPTION optioni{,opticn2l....

If this statement is crnitted, a set of
standard options defined at system genera-
tion time will apply. If more than one
OPTION statement is issued in one jcb, all
further OPTION statements change only those
options that are respecified. BAll cther
options will remain unchanged.

All options specified in the OPTION sta-
tement are canceled when a new JOB state-
ment is read. (See the section The_ JOE
Statement.)

The options LINK and CATAL are canceled
1. if severe or disastrcus errcrs have
keen detected during a PL/I
compilation.

2. after a new EXEC statement has been
executed.

The options that may be used by the PL/I
programmer are listed in Figure 6.

The PAUSE Statement

The PAUSE statement can be used tc stcp
batched-mode processing in order to save
output files produced by a previously
executed program. Its fcrmat is

// PAUSE comments

The comments are printed on SYSLOG (pro-
vided SYSIOG has keen assigned) to indicate
the action to be taken by the operator.

The RESET Statement

The RESET statement resets I/0 assignments
to the standard assignments. The standard
assignments are those specified at system
generation time plus any modifications made
by the operator Ly means of an ASSGN com-
mand (as opposed to using an ASSGN control
statement) without the TEMP option. The
format of the RESET statement is:

// RESET
with one of the operands SYS, PROG, ALL,
SYSxxx. The meaning of the individual

operands is described belcw.

SY¥S resets all system logical units tc
their standard assignments.

PROG resets all programmer logical units to
their standard assignments.

Running Programs Under DOS/TOS Ccntrel 13

Option Function
LOG Causes all Job Control statements to be listed on SYSLST.
NOLOG Suppresses the LOG option.
DUMP Causes the contents of core storage and registers to be listed on SYSLST in case of an abnormal termination of the job.
NODUMP Suppresses the DUMP option.)
LINK Causes thg compiled PL/1 program to be .wrirren on SYSLNK for !afer processing by the Linkage Editor, This option, if
used, must precede all other Linkage Editor control statements, if any.
Suppresses the LINK option. The LINK option is also suppressed if a serious or disastrous error is detected during
NOLINK compilation of a PL/I source program or if an EXEC statement with a blank operand field is read.
Causes the LINK option to be set. In addition, it causes the cataloging of a phase or program into the core-imaoge
CATAL library ofter either a /& or a // EXEC MAINT statement has been read.
DECK Causes the PL/I compiler to punch an object deck if no disastrous compile-time error has been detected.
NODECK Suppresses the DECK option.
LIST Causes the PL/I compiler to list the source program on SYSLST.
NOLIST Suppresses the LIST option.
LISTX Causes the PL/I compiler to list the object program on SYSLST.
NOLISTX Suppresses the LISTX option.
SYM Causes the PL/| to list the symbol table, the block table, the offset table, and the external symbol table on SYSLST.
NOSYM Suppresses the SYM option.
ERRS Causes the PL/I compiler to list all detected errors on SYSLST,
NOERRS Suppresses the ERRS option,
XREF Causes the PL/I compiler to write a cross-reference listing on SYSLST,
NOXREF Suppresses the XREF option.
Informs the PL/I compiler that source programs are written in the 48-character set in EBCDIC notation. (No provision
48C has been made for BCDIC and ASCII character sets.)
60C Informs the PL/| compiler that source programs are written in 60-character set in EBCDIC notation.
MINSYS Causes the Linkage Editor to produce minimum-size modules for later runs on systems with a background program
(TOS only) area smaller than 24K, when link-editing on systems with a larger background program area.
Figure 6. Orperands Used in the OPTION Statement

ALL resets all programmer and system logic-
al units to their standard assignments.

S a—-

its standard assignment.

The UPSI Statement

This statement (User Program Switch Indica-
tors) allows the user to set program
switches that can be tested much the same
as sense switches or lights used on other
machines. The UPSI statement has the fol-
lowing format:

// UPSI nnnnnnnn

14

The operand consists cf one to eight
characters of 0, 1, or X. Positicns ccn-
taining 0 are set to 0. Positions contain-
ing 1 are set to 1. Positions containing X
remain unchanged. Unspecified rightmost
positions are assumed to be X.

Job Control clears the UPSI byte to
zeros before reading control statements for
each job. When Job Contrcl reads the UPSI
statement, it sets or ignores the bits of
the UPSI byte in the communication regicn.
Left to right in the UPSI statement, the
digits correspond to bits 0 thrcugh 7 in
the UPSI kyte. Any combination of the
eight bits may be tested by problem pro-
grams at execution time.

The DOS PL/I compiler checks bit 0 of
the UPSI byte; the other kits are ingored.

If bit 0 is on (1) during compilation,
Librarian and Linkage Editor statements are
prcduced to permit to compile and catalog
in one job step into the relocatable
library. Bit 0 should ke off (0) if cata-
loging into the relocatable library is not
desired. For further details on cataloging
refer to the section Cataloging into the
Relocatable Library.

The End-cf-Data-File Statement

The end-of-data-file statement (/* in
columns 1 and 2) serves as a delimiter for
the input read from SYSIPT. Therefore,
PL/I programs must ke terminated by an end-
of-data-file statement. This statement is
also reccgnized on the programmer logical
units that are assigned to a card reader.
This causes the ENDFILE condition to be
raised for a PL/I ‘input file.

The End-of-Job Statement

The end-cf-jok statement (/& in columns 1
and 2) indicates that a job has been com-
pleted. If this statement is omitted, the
Job Control rprogram may skip the next job
stacked on SYSRDR and/or SYSIPT. If SYSRDR
and SYSIPT are different units, the end-of-
job statement must appear on both.

The Comments Statement

A special comments statement (* in column 1
and blank in column 2, followed by the
desired comments) is availakle for longer
messages. The comments are printed on SYS-
LOG, but no halt is caused Lty this
statement.

File Label Job Control Statements

For all Job Control statements referring to
disk and tape file labels see the section
File Labels.

THE PROCESS STATEMENT

The PROCESS statement allows the programmer
to specify compile-time options. More than
one card may be used per external
procedure.

General format:

* PROCESS ortion [,optionl...

crx

+ PROCESS option [,optionl...

General rules:

1. The carxds have to precede the PL/I1
source program. They must, hcwever,
follow the // EXEC FL/I statement.

2. The card has to start either with an
asterisk or with a plus sign in column
one, followed by one cr more blanks.
If the plus sign is used it is treated
as an asterisk. The cption list may
not extend beyond column 71.

3. The options in the PRCCESS statement
override jok-control options or any
other options encountered in previcus
PROCESS statements.

The options that can agpear in the
orerand field of a PRCCESS card are:

1. Options supported by Job Contrcl:

DECK NCSYM
NCDECK ERRS
LIST NOERRS
NCLIST XREF
LISTX NOXREF
NCLISTX usc
SYM 60C

A description of the above options is
given in Figure 6 in the section The
Job Control Program.

2. Options not supported by Job Control:

a. CFT, NOOPT

OPT causes the optimizaticn of
compiled code.

NOOPT suppresses the OPT option.

The default is CET.
Note: Cptimizaticn imgplies the
deletion of as much code as the
compiler can diagnose as redundant.

Warning: If the option OPT is
used, sequential assignment state-
ments for the sare variable (e.g.,
A=1; B=X; A=3;) will be optimized
in such a way that - as the ccn-
tents of 'A' are not referred to
between the two assignments - the
first assignment to 'A' will be
optimized.

If the contents of 'A' are required
between the two assignments (e.g.,

Running FPrograms Under DCS/TOS Ccntrcl 15

to be used as control values in the
event of an interrupt such as SIZE,
CONVERSION, etc.) the assignment
statements must be lakeled, since
labeling a statement resets the
internal optimization control.

b. STMT, NCSTMT

STMT causes statement numbers to
be printed with object time
diagnostics.

NOSTMT suppresses the STMT option.

The default is NOSTMT.

c. LISTO, NOLISTO

LISTO causes the statement num-
bers to ke listed and the
offset of the first byte
used after these statements
to be printed.

NOLISTO suppresses the LISTC
option.

The default is NOLISTO.

Note: LISTO overrides LISTX, i.e.,
if LISTO and LISTX are specified,
the LISTX option is ignored.

COMPILATION UNDER DOS/TOS CCNITROL

If a single PL/I source module is to be
compiled under DOS/TOS control, the card
sequence should be as follows:

// JOB job-name

// OPTION DECK,LIST,NOSYM,60C see note 1
// EXEC PL/I

PL/I source module

/*
14 see note 2
Note_1: This statement causes the PL/I

compiler to punch an object module on SYS-
PCH and to list the source program on SYS-
LST. The listing of source module symbols
is surpressed. The source program is writ-
ten in the 60-character set. LOG, DUMP,
LISTX, and ERRS are assumed to have been
established as standard options at system
generation time.

Note_2: Another /& card must be read from

SYSIPT if SYSRDR and SYSIPT do not refer to
the same input device.

16

r 1
| Deck on SYSRDR |
t 1
|7/ JOB MYJOB |
|// OPTION DECK,U48C }
|7/ ASSGN SYSIFT,X'271',X'50" |
| * PLEASE MOUNT REEL 4711 ON UNIT 271 |
|7/ PAUSE ERCCEED |
|77/ EXEC PL/I |
|7/ EXEC FL/I |
|77 EXEC PL/I |
|78 |
t {
| Records on SYSIPT |
[X
r 1
| First PL/I source module |
|7 * |
| Second PL/I source mcdule |
|/ * |
| Third PL/I source mcdule i
j/* |
| 7€ |
L J

Figure 7. Coding for a Job Consisting of
three PL/I Conrilations

ASSGN statements to change the assign-
ment of logical device addresses for this
job may be placed anywhere between the JOB
and the EXEC statement. BAssignments for
SYSLNK must not be changed after OPTION
LINK has keen specified.

Figure 7 shows the ccding for a jokt con-
sisting of three PL/I conpilaticns. SYSRLR
and SYSIPT are assumed to refer to dif-
ferent input devices. SYSIPT is assumed to
be a 7-track tape drive.

Since a job step comprises only cne
single compilation, an EXEC statement as
well as a /* statement is required for the
compilation of each source module (external
procedure) .

TBE_LINKAGE_EDITOR_PROGRAM

The Iinkage Editor program relocates the
object modules produced by the PL/I compil-
er into an aksolute okject program.

Modules retrieved from the relocatable
library may be incorporated intc the cbject
program during the Linkage Editor run.
Programs written in Asserbler language and
assembled Ly means of the DOS/TOS Assembler
may also be incorporated. For details on
the communication with prcgrams written in
Assembler language refer to the section
Linkage Conventions. The object prcgram
produced by the Linkage Editor may either
be executed ky using the EXEC statement
with a blank operand or be incorporated
into the core-image library.

If a Linkage Editor run is desired, the
first Linkage Editor control statement and
the first EXEC statement must be preceded

by an OPTION statement with either the LINK
or the CATAL option.

The Linkage Editor program can run in
the background partition only.

LINKAGE EDITOR CONTROL STATEMENTS

The execution of the Linkage Editor program
is initiated by Linkage Editor control sta-
tements read from SYSRDR. The general for-
mat of Linkage Editor control statements is
similar to that of the Job Control state-
ments, excert that Linkage Editor control
statements have a blank in column 1 instead
of // in columns 1 and 2.

The Linkage Editor program uses the fol-
lowing fcur control statements:

e the PHASE statement,
e the INCLUDE statement,
¢ the ENTRY statement, and
¢ the ACTION statement.

The exact format of these statements is
given in those parts of this section where
their arrlication is descriked.

The ACTION Statement

This is an orticnal statement for directing
the Linkage Editor. If ACTION statements
are issued to the lLinkage Editor, they must
precede all other input to the Linkage Edi-
tor on SYSLNK. This can be ensured by
placing the ACTION statement(s) immediately
after the OPTION statement with the operand
LINK or CATAL. The format of the ACTION
statement is:

ACTION operand

The following operands are of interest
to the PL/I user:

F1 The prcocgram is link-edited to work
F2 in foreground partition 1 or 2,
respectively. The start address

of the appropriate foreground par-
tition is assumed to ke the
address allocated at link-edit
time. Only one of these two
operands may be specified for one
link-editing step. (The operands
Fl, F2 are not available in TO0S.)

NOMAP Suppresses listing of the Linkage
Editcr storage map on SYSLST.
Diagnostics are written on SYSLOG.

CANCEL The job is canceled if any error

is detected during link-editing.

More than one ACTICN statement may be
issued for one link-editing step.

The PHASE Statement

If the program consists cf more than cne
rhase or if the program is to be cataloged,
each phase to be link-edited must be fre-
ceded by a PHASE statement of the following
format:

PHASE phase-name,origin

characters, the first of which must be
alphabetic but should nct be a § sign. In
case of multi-phase programs, the ghase-
name must be longer than four characters
and the first four characters must be
identical for all phase names of that pro-
gram. Different programs nust differ in
the first four characters of their phase
name(s) in order to avoid incorrect stcrage
allocation. (See the section Processing of
Overlays by the Linkage Editor.)

begin address of this specific rhase. An
asterisk may ke used as an origin specifi-
cation to indicate that this phase is to
follow either the previcus rhase cr the
Supervisor at the next double-word boun-
dary. This simple format of the PHASE sta-
tement covers all normal applications in
the background partition. For the format
of the phase origin in coverlay structures
refer to the section Qverlay.

Two methods are availakle for 1link-
editing foreground prograrns:

1. Using the statement ACTION Fn. In this
case, the same set of PHASE statements
may be used as for background programs.

2. Using the operand forrmat F+address of
the PHASE statement for the origin of
the first (or only) rhase.
address is the absolute address of the
foreground area in which the link-
edited program is to ke executed. It
may be specified by a nexadecimal numk-
er of four to six digits (X'hhhhhh') or
by a decimal number cf five tc eight
digits (dddddddd) or in the form nnnnk,
where nnnn is two to fcur digits and K
equals 1024. For example, an origin
may be specified as F+X'8000°' or F+
32768 or F+32K.

For either method, a foreground save
area is created at the specified address.
The (first) phase starts at the first
double-word boundary follcwing this save
area. The space allocated to a fcreground
program by the Linkage Editor plus suffi-
cient space following the end of the rro-
gram for dynamic allocation of PL/I auto-

Running Programs Under DOS/TOS Control 17

matic storage must be allocated at execu-
tion time to the appropriate foreground
partition.

Since foreground programs must be cata-
loged before they can ke executed, a PHASE
statement is mandatory for foreground pro-
grams. (Programs compiled by the PL/I com-
piler and PL/I library routines are not
self-relbcating.)

Note: The autolink feature of the Linkage
Editor is required to include routines from
the relocatable library that are to be
linked with the object modules compiled by
the PL/I compiler. Therefore, the option
NOAUTO of the PHASE or ACTION statement
must never be used.

INCLUDING OBJECT MODULES INTO THE OBJECT
PROGRAM

The appropriate object modules can be inco-
rporated into the object program by:

¢ compilation,
e including cbject card decks,

e including object modules from the relo-
catable library, or

e using the autolink feature.

To have the source module compiled and the
output written on SYSLNK, the card sequence
must be as follows:

// EXEC PL/I
PL/I source module

/¥

If SYSRDR and SYSIPT refer to different
input devices, the PL/I source module and
the /* card must be read from SYSIPT.

Processing by the Linkage Editor and
execution is suppressed in case severe or
disastrous programming errors are detected
during compilation.

Source modules written in Assembler lan-
guage may be added in the same manner by
using the statement // EXEC ASSEMBLY for
calling the Assembler. For details on the
communication with programs written in
Assenbler language refer to the section
Linkage Conventions.

Including Object Card Decks

To include one or more okject card decks
into the object program, the required con-

18

trol cards as well as the seguence in which
they must be read from SYSIPT or SYSRDR,
respectively, are shown in Figure 8.

Note: The INCLUDE card, when used for this
application, must have the following
format:

INCLUDE preceded and fcllowed by blanks

only

r - T 1
| Cards | Read from |
[N P 4
r 1
| INCLUDE | SYSRDR |
| .o |
| N one or more cb-| SYSIPT |
| “es ject modules | |
i e | |
|7 * | SYSIPT |
L P J
Figure 8. Including Object Card Decks

Including Object Modules from the
Relocatable Library

An INCLUDE statement must be read from SYS-
RDR for each module to be incorrorated into
the object program from the relocatable
library. When used for this agprlicaticn,
the INCLULE statement must have the format:

INCLUDE module-name

Using the Autolink_ Feature

If some references to external names remain
unresolved after all modules have been read
in from SYSLNK, SYSIPT, and/or from the
relocatable library, the autolink feature
of the Linkage Editor searches the relocat-
able library for module names identical tc
the unresolved names and includes the
corresponding modules intc the cbject
program.

Private Relocatable Library under DOS

Cataloging and including of relocatable
modules may be performed by means of a
private relocatakle library. For DOS, the
private relocatakle library resides on an
extra 1316 disk pack. The 2311 disk drive
on which this pack is mounted has the log-
ical device address SYSRLE.

For including modules, the DOS Linkage
Editor first searches the pack assigned to
SYSRLB and, if the requested module is not
found there or if SYSRLE is not assigned,
it searches the relocatable library cn the
system residence pack.

If SYSRIB is assigned, relocatable
modules are cataloged intc the private
relocatable library. Otherwise, they are
cataloged into the systenr residence rack.

For creating rrivate relocatakle
libraries refer to the SRL publication IBM
System/360, Disk Operating System, System
Control and System Service Programs, Form
GC24~-5036.

For private relocatable libraries under
TOS see Special Considerations on TCS.

The ENTRY Statement

The card input to the Linkage Editor may be
delimited by an ENTRY statement of the fol-
lowing format:

ENTRY [namel

Name is the external name of the entry
point used. The entry point must be a pri-
mary or secondary entry of the external
procedure that has the option MAIN. If the
primary entry point of the MAIN procedure
is used, the name may be omitted.

If no ENTRY statement is issued, ENTRY
with a blank operand is assumed.

Note: If modules written in Assembler lan-
guage are to be incorporated into the
object program, the Assembler END statement
should have a blank operand field in order
to avoid confusion of entry points.

Exrors During Linkage Editing

For each file srecified in the source pro-
gram, the compiler generates a special DTF
table which includes the names of the I/0
modules to be called. Sometimes different
I/0 modules have the same secondary entry
point; e.g., for ISAM files the same secon-
dary entry point IJHAARZZ occurs if in one
file ADDRUFF (primary entry point IJHAARZP)
is specified and in another INDEXAREA (pri-
mary entry point IJHAARCZ) (see Figure 9).
In this case message 21431 (Content of sta-
tement in errcr) will ke generated during
link-edit time. The program executes
correctly, however.

r T T

i | INDEXAREA | INDEXAREA

| |specified|not specified
4 L

- T T
| ADDBUFF specified|IJHAARCP {IJHAARZP

| | |
| ADDBUFF not |IJHARRCZ |IJHAARZZ
| specified | |
L L L

Figure 9.

s oo e e e s o s

Generation of Secondary Entry
Points in I/0 Modules for ISAM
Files

SAMPLE COMPILATION

The example shown in Figure 10 illustrates
a combination of all three possibilities to

build an object program. Four modules glus
the appropriate library subroutines are to
be combined into an okject program, which
is to be executed upon completion of the
compilation. The example is based on the
fecllowing assumptions:

1. One module (A) is a PL/I source module.

2. Two modules (P1, P2) have been pre-
viously compiled and punched.

3. One module (R) is contained in the
relocatable library.

4. A listing of the source program and the
symbol table is required for module A.

5. A is the entry point to be used.
Note: The numbers at the left in Figure 10

are for reference purposes only; they are
not part of the coding.

== T]
1	// JOB NO1234
2	// CPTICN LINK,SYM,LIST
3	PHASE EXAMPLE, *
4	// EXEC PL/I
	A: PRCCEDURE CPTIONS (MAIN);
5	. 1
	.
	END /*Rh*/;
	7*
6	INCLUDE
	.
	. deck P1
	.
] .	
	. deck F2

	.
	7*
7	INCLUDE R
8	ENTRY
9	// EXEC LNKEDT
10	77 EXEC
	.
	. data
	.
11	+
12	7¢&
[N L 4
Figure 10. Sample Compilation

Explanation

1 Furnishes the Communication Regicn of
the Surervisor with the name of the job.

2 Specifies the compiler options S¥M and
LIST and enakles the FL/I compiler and
Job Control to write cr copy the outrput
on SYSLNK for later processing by the
Linkage Editor.

3 The PHASE statement precedes all mcdules
to be processed by the Linkage Editor.

Running Programs Under DOS/TOS Control 19

10

11

12

The asterisk indicates that the program
is to be lcaded immediately following
the Supervisor.

Calls the PL/I compiler.

PL/1 source program. A (the name of the

MAIN procedure) is the primary entry
point.

Ccauses the subsequent modules Pl and P2
to be copied onto SYSLNK.

This statement is copied onto SYSLNK.
When encountered by the linkage Editor,
the module R is fetched from the relo-
catable library and incorporated.

Delimits the input to the Linkage Edi-
tor. The blank operand causes the pri-
mary entry point A to be entered by Job
Control at execution time.

Calls the Linkage Editor to produce the
object program. The names of all
modules called by A, Pl, P2, and R must
be names of modules contained in the
relccatable library. These modules are
automatically incorporated ky the auto-
link feature of the Iinkage Editor.

Causes Job Control to fetch the execut-
able object program and transfers con-
trol to A for execution.

The end-of-data-file statement delimits
the input data. If the file name is
explicitly declared, this statement may
be tested by means of an ON ENDFILE
statement.

End-of-job statement. In case of an
abnormal termination of the jok, Job
Control skips all input up to this
statemwent.

Assumed that all input to be read from

SYSIPT has been loaded onto a 7-track tape
reel and that SYSIPT is assigned to the
tare drive whose physical address is 281,

r T 1
| | Cards read from SYSRDR |
bk - - |
| |77 JcCB NC1234 |
|13|// ASSGN SYSIPT, X'281',X'90" |
| |// CPTICN LINK,SYM,LIST [
|| PHASE EXAMPLE, * |
| |7/ EXEC FL/I |
[INCLUDE |
|| INCLUDE R I
|| ENTRY |
| |77/ EXEC LNKEDT |
| |/7/ EXEC [
|14] /¢ |
L i - J

Figure 11. Control Cards and Input Units
for Deck shown in Figure 10
(Part 1 of 2)

Explanation

13 SYSIPT is assigned to a 7-track tape
drive. (The assignment differs frcm the
installation standard.)

14 /& must appear on both SYSRDR and
SYSIPT.

r T ==]
[Cards read from SYSIPT |
I e .
| | A: PRCCEDURE CPTICNS (MAIN); |
| e |
| “en |
[END /*A*/; |
[17* !
[|
| ... deck P1 |
[I
I ... deck P2 |
I |
I |
| | ... data |
T I
|14]7¢ |
L 4 4

Figure 11. Control Cards and Input Units

the input from SYSRDR and SYSIPT for the
above example is as shown in Figure 11.

20

for Deck Shown in Figure 10
(Part 2 of 2)

Cataloging of frequently used program
phases or object modules into one of the
DOS/TOS libraries greatly reduces the time
required for card reading and/or Linkage
Editor processing. Okject modules may be
cataloged into the relocatable library.
Executable prcgrams already processed by
the Linkage Editor may be cataloged into
the core-image library.

The name of a phase or module must be
unique for each library. 1If phases or
modules are cataloged, any module or phase
already contained in the respective library
and having the same name is automatically
deleted. This necessitates some naming
conventicns for each installation in order
to prevent a user from deleting programs
that are either rart of the system or cata-
loged into the library by other programmers
using the same installation. Core-image
library rhase names starting with $ as well
as relocatable library module names start-
ing with IJ are names of system programs.
For this reason, the user should be very
careful when cataloging phases or modules
the names of which start with the above
characters.

The Library routine that handles cata-

loging and deleting is called by the Job
Control statement // EXEC MAINT.

CATALOGING INTO_THE CORE-IMAGE_ LIBRARY

If a program is to be cataloged into the
core-image library, the statement // OPTION
with the CATAL ortion must ke given prior
to Linkage Editor processing, i.e., this
statement must precede the first PHASE card
of the program to be cataloged in case of
compile-and-link runs. Upon successful
completion of Linkage Editor processing the
program is then automatically cataloged
when an // EXEC LNREDT and /& card is read.
(Note that no // EXEC statement without
name must precede the // EXEC LNKEDT or /§
statexent in this job.) No further catalog
control statements are required.

Note: An error may occur if a phase exists
in the core-image library whose name starts
with the same four characters as the pro-

- gramr to be cataloged (see the publication
IBM System/360 Disk Operating System, Sys-
tem Control and System Service Progranms,
Form GC24-5036).

Programs or phases that are no longer
required in the core-image library may be
deleted by using the DELETC statement, the

CATALOGING

two possible formats of which are as
fcllows:

DELETC phasell,phase2l...
DELETC prgl.ALL[,prg2.ALL]...

The first format is used to delete
single rhases. The operands phasel, pha-
se2, etc., each specify the name cf one
rhase to ke deleted. The second format is
used to delete entire prcgrams. Since the
first four characters of all phase names of
any program are identical, the entire fro-
gram is deleted if these four characters
are specified. prgl, prg2, etc., must
therefore ke exactly four characters long.

CATALOGING INTC THE RELCCATAELE_ LIBRARY

Each card deck to be catalcged into the
relocatakle library must be preceded by the
control statement

CATALR module-namel,v.nm]

The module specified by the operand
relocatakle library. Cataloging stops when
the END card of the module has been cata-
loged. The module may ke preceded but not
followed by Linkage Editor control
statements.

v.m specifies the change level at which
the module is to be catalcged. Vv may be
any decimal number from 0 through 127. m
may be any decimal number from 0 through
255. A change level of 0.0 is assumed if
this operand is omitted.

Compilation of a PL/I scurce module may
result in two okject modules. (The first
one will be referred to as file mcdule and
the second one as procedure module in this
section.) The file module is produced for
all of the file declarations (except file
name parameters) contained in the scurce
module. The procedure module is produced
for the source module itself. Note that
each individual obkject module reguires a
separate CATALR statement for cataloging.
The file module may be catalocged under any
of the file names.

The DCS PL/I compiler facilitates cata-
loging into the relocatakle library by
optionally producing control statements on
SYSPCH. "If bit 0 of the UPSI byte (see the
section The UPSI Statement) is on during
compilation, the following output is

Cataloging 21

generated on SYSPCH depending on whether or
not a file module is generated with the
external procedure:

with file module without file module

CATALR Fname
file rodule
CATALR name
INCLUDE Fname
procedure module

CATALR name
procedure module

name is the primary entry point of the
external procedure. Fname means that the
nare of the external procedure, immediately
preceded by the character F, is used as the
nare of the file module. The INCLUDE sta-
terent is generated to have the file module
automatically included with the procedure
module.

There is no automatic catalog feature
for ccompile-and-catalog into the relocat-
able library. Bowever, if a sufficient
nunber of tape drives is available, it is
recormrended to assign SYSPCH to a magnetic
tape drive and to reassign the same drive
to SYSIPT for the catalog step, thus eli-
minating unnecessary card handling.

The following example shows what control
statements are required for compile-and-
catalog into the relocatable library:

// JOB COMPILE AND CATALOCG
* INTO THE RELOCATABLE LIBRARY
// OPTION SYM,LISTX,DECK

1 // UPST 1

2 // ASSGN SYSPCH,X'182°'

2 // MTC REW, SYSPCH
// EXEC PL/I

cee PL/I source program

7%

3 // MTC WTM, SYSPCH

3 // MTC REW, SYSPCH

3 // RESET SYSPCH

4 // ASSGN SYSIPT,X'182°¢

5 // EXEC MAINT
/&

Explanation

1. This statement causes the DOS PL/I com—-
riler to generate control statements
that precede the object module(s).

2. MAssigns magnetic tape unit 182 to SYS-
PCH and positions the tape at the load
point.

3. Closes and repositions.SYSPCH. (Do not
use the // CLOSE statement since this
statement unloads the tape, thus caus-
ing unnecessary operator action).

22

4., The compiler output is now assigned to
SYSIPT.

5. The librarian is called. The CATALR
statements cause cataloging into the
relocatable library.

Note: The control statements are generated
only on SYSPCH, not on SYSLNK. Thus,
compile~and-catalog intc the relocatakle
library does not preclude the LINK and
CATAL options in the same job.

The DEIETR statement may be used tc
delete either single modules or entire pro-
grams contained in the relocatable likrary.
All modules whose names start with the same
3-character combination are considered to
be part of the same program. The two poss-
ible formats of the contrcl staterent are

'DELETR module-namel [,ncdule-nare2l...
DELETR prgl.ALL[,prg2.ALL]...

The operands prgl, prg2, etc., must con-
sist of exactly 3 characters.

LIBRARY MAINTENANCE_RUNS

Cataloging and deleting fcr all libraries
can be done in one single job step. In the
following example, the prcgram LNCT is
deleted from the core-image library and the
modules BCDFIR and BCDSEC are catalcged in
the same jok step. BCDSEC is preceded by a
PHASE statement that is tc be cataloged
with the module.

/7 JOB CATALOG TWO DECKS,
* SECCND WITH FHASE CARD
// EXEC MAINT

DELETC LNCT.AILL

CATALR BCDFIR

..« deck BCDFIR
CATALR BCDSEC
PHASE BCDPR2, *
* THIS STATEMENT IS ALSO CATALOGED
... deck BCDSEC
/ * END CF MAINT. LECK
/&

The input deck must be followed by an
end-of-data-file statement if another job
step within the same job fcllows the main-
tenance run. The Likrarian control state-
ments and input decks tc be catalcged are
read from SYSIPT. (In TCS, Librarian con-
trol statements are read from SYSRDR.)

Examgle for Cataloging a Foreground Program

// JOB CATALFG
// OPTION CATAL
1 ACTION F2
2 PHASE FGPXYZ, *
// EXEC PL/1
*
PL/T source deck
[]
/%
3 // ASSGN SYSRIB,X'192"
// EXEC LNKEDT
/6

The ACTION statement (1) causes the Lin-
kage Editor to allocate storage for the
program in the storage presently allocated
to the foreground-two partition. The PHASE
statement (2) gives the program the name
FGPXYZ. The second operand (*) specifies
that the prcgram is to start n bytes kehind
the location assigned at link-edit time as
the start address of the foreground-two
partiticn (n is the length of a foreground
save area reguired by the system). The
program to be cataloged is compiled in the
same job. The ASSGN statement (3) assigns
SYSRLE sc that the Linkage Editor can
obtain modules to be included by the AUTO-
LINK feature frcm a private relocatable
library.

SPECIAL CONSIDERATIONS CN_TCS

If TOS is used, phases in the core-image
and modules in the relocatakle likrary are
not stored at random locations kut in
alphameric order. Therefore, all rhases
and/cr mcdules to be cataloged must also be
in alphameric order. Maintenance requests
for the core-image and the relocatakle
library may be given in the same job step
but must not ke intermixed. Note that a
maintenance run under TOS control causes

copying of the full system ontc a new
volume that will be located on SYS002.
SY¥S001 must ke assigned to a tape drive for
intermediate use in this case.

The TOS compiler does not generate
CATALR statements. However, the user may
prepare his own CATALR statements and put
them into the job stream cn SYSRDR fcllcw-
ing // EXEC MAINT. (In TOS, Librarian con-
trol statements are read from SYSRDR
instead of from SYSIPT.) The file module
should be given a name equal to one of the
file names to avoid the use of an INCLULCE
statement for including the file mcdule.

Users needing a large nurmber of relocat-
able modules should use a private relccat-
___________ Using a private relocatable
library yields the following advantages:

1. Only the relocatakle library is copied
during updating.

2. The performance of INCLUDE and AUTOLINK
is considerakly faster during proces-
sing by the Linkage Editor.

During Linkage Editor grocessing and
library maintenance, the private relocat-
akle library resides on an additional mag-
netic tape unit assigned to SYSRLE. &
private relocatakle library is produced by
preceding the first CATALR or DELETIR state-
ment by the special Librarian statement
NEWVOL. (The tape reel on S¥S002 to accom-
modate the newly created relocatable
library must ke initialized with a standard
volume label.)

If a private relocatable library is to
be used on TCS, it must contain all modules
to be included from the relocatable library
because SYSRIB and the relocatable library
on the system's resident library are never
searched koth.

Cataloging 23

DATA_FILES

A file is a set of data stored on an
external storage medium. Its purpose is
either one or a combination of the
follcwing:

¢ To provide the program with the required
input.

¢ To store intermediate results obtained
during the execution of the program.
This may be required because the storage
capacity does not suffice to accommodate
both the program and the data.

e To store the results obtained by the
execution of the program (maybe for use
as input either to the same program at a
later execution or to another program).

A blcck is the physical unit of informa-=
ticn transferred between internal storage
and the external storage medium of the
file.

A record is the unit of information
which is logically transferred between the
program and the file by a single PL/I READ,
WRITE, or REWRITE statement. A block may
contain more than one record (blocked reco-
rds). In blocked record files, the records
are buffered until a full block has been
gathered and then physically transmitted to
the file. 1In the case of input files, one
block is read into a buffer, and each READ
statement transfers (locates) one single
record to the program.

identifies a magnetic tape file or a direct
access storage device (DASD) file. Labels
are processed by the PL/I statements OPEN
and CLOSE.

A key is the information required to
locate a record within a DASD file declared
with the attribute DIRECT.

FILE ORGANIZATION SCHEMES

The organization of a file may be consecu-
tive, regional, or indexed.

The term file ocrganization is synonymous
with an algorithm for identifying and
locating blocks and records on the storage
medium holding the file.

24

CCNSECUTIVE FILES

The blocks contained in CCNSECUTIVE files
are identified by the sequence in which
they are stored. This renders it impcss-
ikle to access (or store) the blocks in any
manner other than sequential. This, in
turn, implies that the DIRECT attribute is
not permitted for CCNSECUTIVE files.

A PL/I file declared tc be CONSECUTIVE
may consist of a deck of punched cards, a
listing on a printer, one or ncre reels of
magnetic tape, oOr some space on Sne Or more
1316 disk packs used with the 2311 disk
drive. Cther storage media for CONSECUTIVE
files like the paper tape reader, the opt-
ical cnaracter reader, cr telerrocessing
lines (DOS only) may ke addressed by using
subroutines written in Assembler language
that will process these files.

A magnetic tape file may be contained on
a single tape reel or-on more than one reel
(multi-reel file). The lcgical unit where
the file is located must be declared in the
MEDIUM option of the ENVIRCNMENT attrikute.
When using a multi-reel file, more than one
tape drive may be assigned to this logical
unit by specifying the ALT opticn in the
ASSGN statement to overlap processing and
mounting of tape reels. Cnly labeled files
should ke used for multi-reel files.

A magnetic tape may also contain more
than one file. To positicn the file
correctly an NMTC statement may be used to
space the tape forward cver as many tage
marks as precede the file to be opened.
(Refer to Multi-File Volumes and_ Backwards
Files in the section File Labels.)

—===x PRl A

REGIONAL FILES

The regional file organization is pcssikle
only for DIRECT DASD files. REGIONAL files
are processed using the DCS Direct Access
method. Two different methods are used:

e REGIONAL (1) where reccrds are addressed
by their relative position in the file

e REGIONAL(3) where reccrds are addressed
(1) ky the number of the track on which
they reside, the track number being
relative to the first track cf the file
and (2) by means of a key associated
with the record.

For further details refer tc the secticn
Disk Organization.

Restrictions. REGIONAL files must ke de-
clared with the attributes DIRECT and
KEYED, which exclude tne use of the STREAM,
PRINT, SEQUENTIAL, and the buffering attri-
butes. The KEYLENGTH option of the
ENVIRONMENT attribute is not permitted for
REGIONAL(1) files but must be specified for
REGIONAL (3) files. REGIONAL files permit
only fixed unblocked records. The V, U,
BUFFERS, LEAVE, and NOLABEL options of the
ENVIRONMENT attribute are not permitted for
REGIONAL files. The maximum relative reco-
rd or track number is 22%4-1, The EXTENT
staterents fcr REGIONAL files must ke supp-
lied in ascending symbolic-unit order. If
there are multi-volume files, the symbolic
units must be assigned in consecutive
order.

Note cn Cecmgpatibility. In OS PL/I, certain
information contained in the key field or
data field of REGIONAL files is used to
flag a record of that file as deleted.
Therefore, if the user plans to create
files with DOS PL/I and read and/or update
them with OS PL/I, he should avoid keys or
data that would cause OS PL/I to consider
the record as deleted. For detailed infor-
mation refer to the pertinent section of
the 0S PL/I Programmer's Guide, Form
GC28-6594,

REGIO@QL‘l) Files

The individual records in a REGIONAL(1)
file are identified by their position rela-
tive tc the pcsition of the first record in
the file, which has a relative record numb-
er of 0. A track is assumed to contain as
many rececrds as may fit, i.e., if some

parts of the track are still errty, these
"holes" are nevertheless ccunted as real
records. The numker of records per track
is shown on the Programmer's Reference
Chart, Form X20-1705. The key used to
identify individuval records and issued with
the KEY or KEYFRCM option of a REAL, WRITE,
or REWRITE statement is nct written cntc
the DASD file but specified as a numeric
field declared as PICTIURE ' (8)9'. There-
fore, records to ke read from a REGIONAL(1)
file must not contain keys on the DASD.

The value contained in the nurmeric field
(key) is the relative numker of the record
in the file.

Creating a REGICNAL (1) File. The extents
to be used by a PL/I REGIONAL(1l) file must
be preformatted ky the LCS Clear LCisk uti-
lity program. (For details refer tc the
SRL publication IBM Systen/360, Disk and
Tape Operating Systems, Utility Program
Specifications, Form GC2u4-3465,) This uti-
lity program creates dummy records that
contain a string filled with user-defined
characters. The file can then be actually
created by specifying the OUTPUT attribute.
Figure 12 (top) shows a sarple card deck
used for preformatting a REGIONAL(1l) file.

The DLEL and EXTENT statements are
described in the section File Labels. Note
that the dummy file should have an expira-
tion date that has already been passed
because, otherwise, the unexpired-file con-
dition would prevent the FL/I cutrut file
from being opened. Note further that the
dummy file is sequential and that its name
is UOUT, independent of the actual name of
the file to be used in the PL/I program.

1 2345o7a9nonle\au\slunmwmm ‘)‘76.27111:7.-:;.‘!““14““‘73839 AIﬂ"“‘4546424649505152"‘“"““5&59606]""-"“““"6869707]727317475';6!77]7079!)
A1 LjoB | | | MYNAME 1] < ok
1}1] |ASISIGN] | |S|¥|S|8/9i61, Ix,'111912]' . B A O RO
L7 DLBLL || Uloj ‘rert@IONAL 1) FILLE',16/6!//016!1 4] d1 SRR
/| lexTieT] [s]y]sie) F’-*"r“” vy 3{1108],/9,30 JRABNRRRYSAD
L] EXEC] | | CILIRDISK] | N RN
/|1, UCle Jagxem,mr-‘_iﬂﬂﬂl,C'ﬁ‘ Hoy Jrlb E IS |
/1) JEND] | | 1] »4 4 b b o
J | i ! |l ll
.‘Q.. B ,? A.,ﬂ»yz - . , l P _.,' ..: {-.
- | ft,]'; 44k ? % P 44y . ! |
- ‘4_ A A S T e +4 l DAt -
/11, I08 | ¢ | PREFRMTL | il Ll SIS S I U) I A
111 ASSGN, | 15Nisi0ipie!,ix 1119:2)") | | ; bl Ly | ENEEASENE
1 sl | uour], | ReEsltoNALl 13 lFizlel, | INENENE ia ARSI A NS SRR
e i | ot 4 pioge’ il 3 | v | [* i ! t | | TT
(AT ;E;x¢r§q~4r;,‘sulsQQ,t‘,,la{asﬁ;g, Uy.5(11160),40, | L S A H' RS
/J ;E‘;X"E‘fc; [,CtLLQ;D!SKL T { [0 I 1 O - A#L _.,]L{,,.‘_.!,T,.{....___W .T,]'_}_T ,1‘ 4 i [2 ‘ i *q 1 !J_
/LI‘* 1U;C;L; ‘B'=’(‘lK‘,1§6l).m'18‘i¢o)q) C .'.L f ‘IOT, L. 43. . J___ A L_F.,_i L.T,_,, 4 LT ; } i i‘ ! ‘ . il I ; * .
o O N i H o P P [I I I I b
BECEND | A A e L e
% o T T l'TL AR IR A IR AL I I
/l‘. AR it ']LTI” TT -+ _J_ﬂ.l.t,.‘n,l ++‘i”Lj Itr o Tszl T; ' ‘lf‘: 4‘:._
""""" RN EREEREEE S R - “H*‘.L'i“ﬁtl»!';'Tf‘T*m EREE RERERRERERESE

Figure 12. Sanple Card Decks for Preformatting REGIONAL Files

Data Files 25

The UCL statement and the END statement are
utility control statements and have a fixed
forrat, i.e., no additional klanks must be
inserted. K=0 means that no key is asso-
ciated with the records. D=100 means that
the block length is 100. This value may be
modified to the user's requirements and
must be identical with the actual Fklock
length of the PL/I file. The dollar sign
is the character to which the file is
cleared. It may be replaced by any other
character,

The KEY_ and KEYFROM Options for REGIONAL(1)
Files. The expression in the KEY or KEY-
FROM option in READ, WRITE, or REWRITE sta-
tements must result in a character string
of the form PICTURE '(8)9'. The value n
represented by this expression is used to
access the n-th record of the file relative
to the beginning of the file. n must be
less than 224,

REGIONAL(3) Files

Contrary to REGIONAL(1) files, records in
REGIONAL(3) files are addressed by the
nurber of the track on which they are
located, the track being relative to the
first track occupied by the file. The
first track of a REGIONAL(3) file is coun-
ted as track 0. Each individual record
contained in one track is associated with a
key on the DASD in order to distinguish it
frcwm other records in that track. The
length of this key is declared in the KEY-
LENGTH ortion of the ENVIRONMENT attribute.
The key is a concatenation of two strings.
The first (left) key string is a character
string of a maxi-mum length of 247 charac-
ters and contains the information required
to distinguish the records from the remain-
ing records cn the same track. The second
(right) key string is a numeric field de-
clared as PICTURE '(8)9' which contains the
relative track number. The full key is
written onto, or read from, the DASD file.

Like REGIONAL(1) files, REGIONAL(3)
files require rreformatting ky the DOS
Clear Disk Utility program. In addition to
its clearing function, the utility program
resets the record RO (capacity record) to
reflect that all tracks are empty. The
file can then be actually created by speci-
fying the OUTPUT attribute. An example is
shown in Figure 12 (bottom).

If an attempt is made to write more
reccrds cnto a track than its capacity per-
mits, the ON KEY condition is raised.

The_KEY and KEYFROM Options for REGIONAL(3)
_____ The expression in the KEY or KEY-
FROM option in READ, WRITE, or REWRITE sta-
tements must result in a character string
whose length is the same as the length spe-
cified in the KEYLENGTH option of the

26

ENVIRONMENT attribute. The last 8 charac-
ters must ke in the form PICTURE '(8)9'.
The numeric value n represented by the last
8 characters is used to access the n-th
track of the file with a key identical to
the character-string exrressicn. n must ke
less than 224,

INDEXED FILES

This file organization is suppcrted by the
DOS PL/I compiler and by the PL/I DASTC
macro instructions. Both methods may be
used to create, access, and urdate files
with the indexed-sequential file crganiza-
tion. For details on the PL/I DASD macro
instructions refer to the publicaticn IEM
System/360 Disk Operating Systen, PL/I DASD
Macros, Form GC24-5059.

Indexed-Sequential Crganization

An indexed-sequential file is one whcse
records are organized on the basis cf a
collating sequence determined by control
fields (referred to as keys) that rrecede
each block of data. The key for each block
of data is from 1 to 255 bytes in length
and contains the identifier of the last
logical record in that blcck. Indexed-
sequential files are contained in some
space allocated on direct access volures as
prime areas and index areas.

The indexed-sequential file organization
gives the programmer great flexibility in
the operations he can perform on a file.
Using this scheme of file crganizaticn, he
has the akility to

e read or write (in a manner similar tc
that for sequential files) logical reco-
rds whose keys are in ascending ccllat-
ing sequence.

e read or write random logical records.

If a large portion of the file is Lkeing
processed, reading records in this mann-
er is somewhat slower than reading
according to a collating seguence since
a search for pointers in indexes is
required for the retrieval of each
record.

¢ add logical records with new keys. The
system locates the proper position in
the file for the new record and ncdifies
the ‘indexes accordingly.

Indexes. The akility to read and write
records from anywhere in an indexed-
sequential file is provided by indexes that
are part of the file. There are always two
types of indexes: a cylinder index fcr the
entire file, and a track_index for each
cylinder. An entry in a cylinder or track
index contains the identificaticn of a spe-

cific cylinder cr track and the highest key
associated with that cylinder or track.

The system lccates a given record by its
key after a search of a cylinder index and
a track index within that cylinder.

is optionally available for very large
files. B master index is generated only if
the INDEXMULTIPLF option is specified in
the declaration of the respective output
file. The master index contains an entry
for each track cf the cylinder index. 1If a
master index is present, the search in the
cylinder index is limited to a search on
one track. For usual applications, a mast-
er index is not recommended if the cylinder
index consists of less than four tracks.

The track index always resides on the
sare extent as the rrime data area. The
cylinder and master index may reside on the
same volume as the prime data area; howev-
er, they may also reside on a different
volume of a different DASD type. The
cylinder index must ke immediately adjacent
to the master index, if any, on the same
volure. Master and cylinder index must be
completely contained in one volume.

Inserticn of Records. A new record added
to an indexed-sequential file is placed
into a location on a track which is deter-
mined by the value of its key field. 1If
records were inserted in precise physical
sequence, insertion would necessitate
shifting all records of the file that have
keys higher than that of the one inserted.
However, an overflow area is available for
each cylinder. Thus, a record can ke
inserted into its proper position with only
those records on the track teing shifted in
which the insertion is made.

Overflcw Area. In addition to the prime
area, whose tracks initially receive the
records of an indexed-sequential file,
there is an overflow area for records for-
ced off their original tracks ky insertion
of new records. When a record is to be
inserted, the records already on the track
that are to follow the new record are writ-
ten back onto the track after the new reco-
rd. The last record on the track is writ-
ten onto an overflow track. Figure 13
illustrates this adjustment for addition of
records to an indexed-sequential file whose
keys are in a numerical ascending sequence.

When this file is created, its records
are placed on the prime tracks in the
stcorage area allccated to the file. If a
record, e.dg., record 7, is to be inserted
into the file, the indexes indicate that
record 7 belongs on primary track 1. Reco-
rd 7 is then written immediately following
record 5, and records 8 and 10 are retained
on this track. Since record 11 no longer

fits, it is written ontc an overflcw track
and the proper track index is adjusted to
show that the highest key ¢n prime track 1
is 10 and that an overflow record exists.
When records 17 to 22 are added tc the end
of the file, prime track 2 receives records
17 to 21, but record 22 dces nct fit and is
written following record 11 on the overflow
track. When record 9 is inserted, reccrd
10 is shifted to the overflow track after
record 22. Note that records 10 and 11 on
the overflow track are chained together tc
show their logical sequence and to indicate
that they belong to the same prime track.

Initial Format of File

Prime Track 1 112134y s5)]s8s]iwln

Prime Track 2 12113 | 16

Overflow Track 1

Format of File after Insertion of Record 7

Prime Track 1 1 2 3 4 5 8110

Prime Track 2 12113 16

Overflow Track 1 1

Format of File after Insertion of Records 17-22
and Record ¢

Prime Track 1 11 2 31| 4 5 7 8 ¥

Y
%

Prime Track 2 12113 | 16
M

0= I

Addition of Records to a 1-
Cylinder, 3-Track Indexed-
Sequential File

Overflow Track 1

Figure 13.

Independent Overflow Area. An inderendent
overflow area can be specified by an EXTENT
statement (kefore the program is executed)
to specify the area extent. If one cr more
of the (cylinder) overfliow area(s) become
full, additional overflow records are writ-
ten on the independent overflow area. This
area may be on the same vclurme as the data
records or on another volume, but must be
contained on one single vclume. The numker
of overflow tracks reserved on each cylind-
er of the prime data area is determined Ly
the CFLTRACKS option of the ENVIRONMENT
attribute.

Data Files 27

When using the PL/I DASD macro instruc-
tions, two tracks per cylinder are reserved
as overflow area. 'The numier of extents
per file with FL/T DASD macro instructions
is restricted to ten. Note that the
cylinder index constitutes a separate
extenti.

The location of index areas, overflow
areas, and the rrime data areas on DASD
devices are specified by means of DLBL and
EXTENT statements. (Refer to the section
File Labels.)

Record Format and Reys. With indexed
files, all records must be of fixed length
(blocked or unblocked). Since only one key
is permitted per block on DASD devices, the
access method for blocked records requires
that the key be embedded in the data field
of the record. The location of the key
within the record is specified ky the KEY-
LOC option of the ENVIRONMENT attribute.
The key must ke embedded in the data field
if records are blocked; it may be ermbedded
if the records are unklocked. If KEYLOC is
specified to indicate embedding, the key is
inserted automatically into the field dur-
ing creation cof the file or during addition
of records to the file.

When the PL/I DASD macros are used, a
record key is lccated within each record,
and one extra key is associated with each
block. This key is identical with the
highest (or only) record key in the block.

No RECORD condition will be raised for
retrieving cr updating files. The IOCS
module gets the record length during OPEN
time from the format-2 file label as it was
written at creation time. No checking is
made between this entry and the entry in
the DTF table.

The KEY, KEYFROM, and KEYTO Options for
INDEXED Files. The expression or variable
in the KEY, KEYFROM, or KEYTO option of
READ, WRITE, or REWRITE statements must
result in or be a character string of the
sare length as the length specified in the
KEYLENGTH oprtion of the ENVIRONMENT
attribute,

Note: In indexed-sequential files, retri-
eval, updating, and adding of records can
be performed either sequentially or at ran-
dom. However, indexed-sequential files can
be created only sequentially.

Note on Compatibility. In OS PL/I, cerxrtain
information contained in the key field or
data field of INDEXED files is used to flag
a record of that file as deleted. There-
fore, if the user plans to create files
with DOS PL/I and read and/or update them
with OS PL/I, he should avoid keys or data
that would cause 0S PL/I to consider the

28

record as deleted. For detailed informa-
tion refer to the pertinent section of the
0S PL/I Programmer's Guide, Form C28-6594.,

CISK _ORGANIZATICN

As an example of a DASD crganizaticn, this
section descrikes the 1316 disk pack used
with the 2311 Disk Storage Drive. The 2316
disk pack used with the 2314 Direct Access
Storage Facility is organized very similar-
ly. However, the 2316 disk pack consists
of 11 disks with 20 surfaces on which data
is recorded with doukle density. For
further details (also on the 2321 Data Cell
Drive) refer to the publicaticns IEM
Systen/ 360 Component Descriptions, Form
GA26-3599 (for the 2314) and IEM System/360
Component Descriptions, Form GA26~-5988 (for
the 2311 and 2321).

The 2311 DASD uses 1316 disk packs as
recording medium. One disk pack consists
of 6 dickse. The tog surface ci the ugger
disk and tune kottom surface of the lowest
disk are not used, which leaves 10 surxfaces
for recording. Each disk surface contains
203 concentric tracks. Track 1, 2, 3,
etc., on each gurface-is physically lccated
below or avove track 1, 2, 3, etc., of the
other surfaces. Therefore, the ccrresgcnd-
ing tracks are referred to as 203 concentr-
ic cylinders. 200 cylinders are used fcr
actual recording; the remaining 3 are
reserved.

The 2311 is provided with one access arm
equirped with 10 read/write heads. The
heads are mounted vertically sc that data
contained in one cylinder can be accessed
without any mechanical mcverent. This,
however, renders it necessary to internally
switch from surface toc surface within a
cylinder in case one track (of a consecu-
tive file) is completely filled. When a
cylinder is filled, reading or writing is
resumed on the first track of the next
cylinder. This technique minimizes the
access-arm movement time.

Thus, a disk pack is thcught of as ccn-
sisting of 200 cylinders, each cylinder
consisting of 10 tracks. A ccnsecutive
part of cylinders (or tracks) set aside for
usage by a specific file is referred to as
an extent. An extent is defined by an
EXTENT statement (refer to the section File
Labels). In case two or more files are to
be accessed alternmatingly, each individual
file may ke assigned a part of consecutive
tracks per cylinder instead of full cylin-
ders. For instance, tracks 0 to 4 of
cylinders 10 to 99 may be assigned tc
FILEA, while tracks 5 to 9 of the same set
of cylinders may be assigned to FILEB. The
latter technique is referred to as split-
cylinder technique.

Record 0 (Track Record 1 Record 2
Descriptor) RO R1 R2
/—/__—a—_\ A — —\
G G G G G G G G G G G G
al IM |a] HA l|al| Count la| Data || AM lo| Count |a| Key [@| Data {a| AM {a| Count o] Key |a| Data
P P P P P P P P P P P
Home Address
Defines the location of the track in
terms of the physical parameters of
the Files. Address Marker
Indicates the beginning of a new record. The
A Index Morker record RO does not have an address marker.
Indicates the physical beginning of each track.
® Figure 14. Contents of a Track
The information contained on a track is Fixed Blocked Records
recorded in physical records (see Figure
14). Each rhysical record consists of 2 or All records are of the sawe length., Each
3 fields. block contains a fixed nurber of records.

The first field is a count field (C)
identifying the record. The prograrmer is
not concerned with this field. The second
field is the key field (XK). It has the
length given in the KEYLENGTH option of the
ENVIRONMENT attribute or in the KEYLEN
operand of a PL/I DASD macro instruction
and ccontains the key given in the KEY or
KEYFROM option. CONSECUTIVE and REGIONAL(
1) files have no key field. The last field
is the data field (D) and contains the
block to be read or written. The first
record (Track Descriptor) of each track
(R0O) is not part of the information trans-
ferred by a PL/I program kut contains some
statistical information. The home address
(HA) is cf no interest to the PL/I
programmer .

RECORD_TYPES

These are five record types that can be
handled by PL/I rrograms:

fixed unblccked
fixed blocked
variable unblccked
variable blocked
undefined

Fixed Unblocked Records

Each
The

All records are of the same length.
block contains exactly one record.
ENVIRONMENT option used is F(m).

(Only the last block of a file may contain
less records.) The ENVIRCNMENT orticn used
is F(m,n).

Variable Blocked Records

The records are of variakle length, each
block containing a variable nurbexr of recc-
rds. However, a maximum rlock lenyth is
specified. To enable the input/output con-
trol routines to determine the lengths of
blocks and records, the klocks contain
extra fields that are not part of the actu-
al record. The first 4 kytes of each block
contain a block control field. Each record
in the block is also preceded by a U-byte
record control field. The ENVIRONMENT
option used is V(m), where m is the maximum
block size. m must include the number of
bytes required by both the reccrds and the
control fields.

The D Compiler automatically surports
variable-length klocked records if V(m) is
specified, i.e., it always accormcdates as
many records in a klock as will fit.

If at the end of a track there is not
enough space for the whcle block, the I/0
routines write part of the block (but com-
plete user-defined records) at the end of
the track and shifts the remaining records
onto the next track. Boundary problems may
occur, however, if the rules for using the
LOCATE statement with the SET option are
not followed.

Data Files 29

Variable Unblocked Records

This is a real subset of variable klocked.
With variable unblocked records, the value
of m in V(m) is 8 higher than the largest
possible record in the file. Variakle
blocked and variable unblocked records may
be intermixed.

Undefined Reccrds

The records are cof variakle length. Each
block contains one record. No control
fields are used. The ENVIRCNMENT option
used is U(m).

Restrictions

A block has the meaning that the physic-
al storage medium is advanced one block
after the corresponding operation has been
performed. In the case of punched cards,
for instance, this implies that one card is
read or punched. This, in turn, implies
that the remainder of the card is ignored,
and the next block starts with transmission
of column 1 of the next card in case a
block length cf less than 80 Lbytes is spe-
cified for a card file.

INPUT/QUTPUT_ PROCESSI NG

ACCESS METHODS

Since records in files declared with the
CONSECUTIVE option are identified merely by
the sequence in whicn they are created, the
only possibility to read, write, or update
records in such files is to sequentially
process the file from its starting point.
This procedure is referred to as the
sequential access method, and files so
accessed have the attribute SEQUENTIAL.

In cther files, the records are identi-
fied by keys. In this case, each individu-
al record can be accessed Ly use of the key
regardless of the physical location of the
record. This procedure is referred to as
the direct access method, and a file so
accessed has the attrikute DIRECT.

Note: Indexed-sequential files may be read
or updated either sequentially or direct.

Note: If twc or more files are simul-

taneocusly open on the same physical non-
DASD device or DASD extent, the order of

30

access to the files is unrredictable. Read
and punch feed of a 2540 Card Read-Punch
count as two different devices. For
example, a read and a punch file cannct ke
oren at the same time using the same 1442
or 2520 Card Read-Punch. As ancther
example, if there is a record file assigned
to a printer and the standard system -
STREAM - file uses the same printer, both
files have their own buffers and print
inderendently of each other, i.e., the
printed lines will not necessarily appear
in the same sequence as the WRITE and PUT
statements are executed.

BUFFERI NG

A buffer is a part of storage used to
accommodate data to be read or written.
Buffers are used to allow transmission of
data asynchronously to the prograr flcw.

Files with the UNBUFFERED attribute
allow no overlapping of input/output opera-
tions. In files declared with the BUFFEREL
attribute, execution of I/C operations is
overlapped if the opticn BUFFERS(2) is spe-
cified in the ENVIRCNMENT attribute., For
files declared with the BUFFERED attrikute,
the buffers can ke made available for use
as work areas by using the READ statement
with the SET option or the LOCATE state-
ment, i.e., the kased record variables are
located directly in the buffers.

Tape files with the UNBUFFERED attribute
must also have the NCLAREL attribute.
Therefore, no multi-volume files or
alternate-tape specificaticns are
permitted.

If OUTPUT is specified in addition to
UNBUFFERED and NOLABEL, tape labels are nct
checked and not overwritten.

Disk input and update files with the
UNBUFFERED attrikute are cpened with the
output OPEN routine. Therefore, the
expiration date for such files must be
lower than the current date.

Although kuffering attributes are not
permitted for DIRECT files, one buffer is
assigned to REGICNAL and INDEXED CIRECT
files. The minimum length of the buffer is
the record length. The maximum length of
the buffer is the record length + keylength
+ 8 for REGIONAL files and INDEXED DIRECT
INPUT files. For INDEXEL DIRECT UPLCATE
files, the maximum length of the buffer is
the block length + keylength + 8 + 10 (for
the sequence link field).

A tape reel or disk pack may contain infor-
mation that is required for a certain
period of time. Therefore, each file (tape
reel or disk extent) must be checked for
its expiration date. In addition, a check
must be performed to determine if the prop-
er volume has been mounted for processing.
These checks are performed ky reading and
compar ing special records that are con-
tained in the respective volume. These
special records, which are referred to as
labels, are processed whenever an CPEN or
CLOSE statement is executed for a particu-
lar file.

The label information is furnished by
means of special Job Control statements,
which are described later in this section.
There are two tyres of labels: volume
labels and file labels.

Volume labels are used to identify the
volume (tape reel or disk pack). During
executicn of the OPEN routine, the volume
serial number is compared against the
information supplied to the Supervisor.
volure labels can be created by means of
IBM-supplied utility programs.

cessed by the program and indicate whether
or not the file must be retained for a cer-
tain period cf time. When an OPEN state-
ment is encountered, the information con-
tained in the file labels of input and upd-
ate files is compared against the informa-
tion supplied to the Supervisor. If a wis-
match is found, a message to the operator
is printed. When an OPEN statement is
encountered for an output file, the expira-
tion date in the file label is checked
against the date stored in the communica-
tion region of the Supervisor. If the
exriraticn date nas been neither reached
nor passed, a message to the operator is
printed and the execution of the program is
interrupted. In case the expiration date
has been reached or passed, a new file
label is created from the information supp-
lied thrcugh the control cards. The old
file label is overwritten by the new file
label.

Labeled tare files have two types of
labels: header labels and trailer labels.
The header label precedes each file and
defines it. The trailer lakel is written
at the end of the file. It furnishes the
information required to determine whether
the end of the file has been reached or
whether the file is continued on another
volume. Tare files may also be unlabeled.

FILE_LABELS

This condition is specified by the option
NCLABEL in the ENVIRONMENT attribute.

Disk files must be labeled. Disk file
labels do not precede or follow the indivi-
dual file. They are contained in a special
region referred to as the VIOC (Vclume
Table 0f Contents). Disk labels are
updated either during execution of the
CLOSE routine or when an end-of-extent is
reached. Switching from veclume tc volume
for multi-volume files is effected automat-
ically without any programming effort.
Note: Punched-card and print files must
nct be lakeled.

For detailed informaticn and restric-
tions on labkel processing see the SRL pub-
lications describing the DOS/TOS data mana-
gement concepts, the DOS/TOS Supervisor and
I/0 macro instructions, and the DOS system
control and service prograns.

RESTRICTICNS CN SFECIAL FL/I FILES

PL/I does not provide fcr label rrocessing
of UNBUFFERED files. However, file labels
are checked for expiration (also if INPUT
is specified) and cleared. The volume
label is maintained.

No provision has keen made for label
processing of the standard PL/I files SYSIN
and SYSPRINT.

As far as lakel processing is concerned,
UPDATE and INPUT files are handled in the
Same manner.

JOB CONTROL STATEMENTS

A set of Job Control statements is required
for each labeled file. This set of state-
ments must be in a specific sequence and
irmediately precede the // EXEC statement
for the job step in which the file is
processed. .

Note: DIBL and EXTENT Job Control state-
ments for SYSIPT, SYSLST, or SYSPCH must
precede the corresponding rermanent ASSGN
commands.

The sequence of Job Ccntrol statements
for disk lakels is as follows:

// DLBL
// EXTENT (one or more)

File Labels 31

The Jcb Control statement for tape
labels is as follows:

// TLBL

The syntax rules are the same as those
for the cther Job Control statements.
Trailing commas not followed by an coperand
may be suppressed.

Note: The former disk and tape lakel Job
Control statements DLAB, VOL, XTENT, and
TPLAB may still be used. However, the old
and new disk label statements must not be
intermixed, i.e., XTENT is associated with
DLAB and VUL, and EXTENT is associated with
DLEL.

The DLBL_Statement

The DLBL statement furnishes the disk file
label information. The format of this sta-
tement is as follows:

// DLBL filename, ['file-ID'],[date],[codes]

The meaning and format of the operands is
described below:

filename is identical to the name of the

PL/I file.

'file-ID' is the name of the file that is
recorded on the disk drive as an identifi-
cation of the file. It may comprise from 1
to 44 bytes of alphameric data. If less
than 44 characters are used, the field is
left-justified and padded on the right with
blanks. If this field is omitted, the file
name is used as file-ID.

date is a field of one to six numeric
characters. Twc formats are possikle. The
first format is yy/ddd, which indicates the
expiraticn date of the file for output or
the creation date for input. (The day of
the year may have from one to three charac-
ters.,) Optionally, a 1- to 4-digit reten-
tion period may be specified for output
files. If this operand is omitted, a 7-day
retention period is assumed for output
files. For input files, no checking is
performed if this operand is omitted or if
a retention period is specified.

codes is a 2- or 3-character field indicat-

ing the type of file label as follows:
SD for Seguential Disk,
DA for REGIONAL files,

ISC for Indexed Sequential using Load Cre-
ate, or

ISE for Indexed Sequential using Lcad
Extension, Add, or Retrieve.

32

SD is assumed if this parameter is
ormi tted.

For output files, the current date is
used as the creation date.

The EXTENT Statement

The EXTENT statement defines an extent of a
DASD file. Cne or more EXTENT statements
must follow each DLBL statement. The
EXTENT statement has the format

// EXTENT [S¥sSxxxl, [ssssssl, [t], (hnn],
[rrrrr], (mommm] , (Ad]

The meaning and format of the operands is
described kelow.

field that indicates the symbclic unit of
the volume to which this extent applies.

If this operand is oritted, the symbolic

unit of the preceding EXTENT statement is
used.

For multi-volume REGIONAL files the sym-
bolic unit numbers in the correspcnding
EXTENT statements must ke in direct ascend-
ing sequence (e.g., SYS006, SYS007,
SYS008).

ssssss (serial number) is a field of cne to
six characters that indicates the volume
serial numker of the volume to which this
extent applies. If less than six charac-
ters are used, the field is right-justified
and padded to the left witn zercs. If this
orerand is omitted, the volume serial numb-
er of the preceding EXTENT statement is
used. If no volume serial number was pro-
vided in that statement, the serial numker
will not ke checked. (Files may be des-
troyed in this case due to mounting of the
wrong volume.)

t (type) is a 1-digit field indicating the
type of extent as follows:

1 - data area (no split cylinder)

2 - independent overflow area (for indexed
sequential file)

4 - index area (for indexed sequential
file)

8 - data area (split cylinder)

Type 1 is assumed if this orperand is

cri tted.

nnn (sequence numker) is a field of one to
three characters that ccntains a decimal
number from 0 to 255. The deciral nurnber
indicates the sequence number of the extent
within a multi-extent file. For indexed
files, the sequence numker 0 is always
associated with the master index. Thus, if
a master index is specified, the seguence
number for indexed files starts with 0;

otherwise, i.e., if no master index is
used, the first extent of an indexed file
has the sequence number 1. The extent
sequence number for all other types of
files begins with 0. If this operand is
omitted for the first extent of ISFMS
files, the extent is not accepted. This
operand is not required for SD and DA
files.

rrrrr (relative track number) is a field of
one to five characters that indicates the
sequential number of the track (relative to
zero) where the data extent is to kegin.
For instance, track 0 of cylinder 150 on a
2311 has the relative track number 1500.

If this orperand is omitted on an ISFMS
file, the extent is not accepted. The
orperand is not required for SD or DA input
files (the extents from the file labels are
used in this case).

nerrm {(number of tracks) is a field of one
to five characters that indicates the numb-
er of tracks to be alotted to the file.

The operand may be omitted for SD or DA
input files. For split cylinders, the
number of tracks must be an even multiple
of the number of tracks per cylinder speci-

fied for the file.

dd (split cylinder track) is a field of one
or two digits that indicates the upper
track number for the split cylinder in SD
files.

Note: For INDEXED and REGIONAL files the
LBLTYP card must also be present.

Tne TLBL Statement

The TLBL statement contains file lakel
information for tape label checking and
writing. Its format is as follows:

// TLBL filename,[*file-ID'], [(datel,
{file-serial-numberl],
tvolume-sequence-numberl,
[file-sequence-numkerl,
[generation-numberl,
[version-numker]

‘The meaning and format of the operands
is described below.

filename is a field of one to six charac-

ters identical to the name of the PL/I
file.

'file-ID' is a field of one to 17 charac-
ters, contained within apostrophes, that
indicates the name associated with the file
on the volume. This operand may contain
embedded blanks. If this operand is
omitted for output files, filename is used
instead. If this operand is omitted for
input files, no labels are checked.

‘assumed.

date is a field of one tc six numeric
characters. Two formats are possible. The
first format is yysddd, which indicates the
expiration date of the file or cutput or
the creation date for input. (The day of
the year may have from cne to three charac-
ters.) Optionally, a 1- to 4-digit reten-
tion period may be specified fcr cutrput
files. If this operand is omitted, a 0O-day
retention period is assured for outgut
files. For input files, no checking is
performed if this operand is omitted or if
a retention period is specified.

file-serial-number is a field of cne to six
characters that indicates the volume serial
number of the first (or cnly) reel cf the
file. If less than six characters are spe-
cified, the field is right-justified and
padded with zeros. 1If this operand is
omitted for output files, the volume serial
number of the first (or cnly) reel cf the
file-is used. If this operand is omitted
on input, no checking is performed.

volume-sequence-numker is a field of one to
four digits. The sequence numbers cf the
vclumes of a multi-volume file must be in
ascending order. If this crerand is
onitted for output files, BCD 0001 is
assumed. No checking is performed if this
operand is omitted for input files.

file-sequence-number is a field of cne to
four digits. The sequence numbers of the
files of a multi-file volume must be in
ascending order. If this cperand is
omitted for output files, BCD 0001 is

No checking is performed if this
operand is omitted for input files.

generation-number is £ field of one to four
characters that modifies the file~ID. If
this operand is omitted for output files,
BCD 0001 is assumed. Nc¢ checking is per-
formed if this operand is omitted fcr input
files.

version-numker is a field of one or two
characters that modifies the generation
nunber. If this operand is omitted for
output files, BCD 01 is assumed. Nc check-
ing is performed if this operand is omitted
for input files.

Notes:

1. For output files, the current date is
used as the creation date.

2. BAs far as lakel processing is con-
cerned, -UEDATE files are handled the
same as INPUT files.

Examples for Iabel Statements

Figure 15 (top) shows an example cf DIBL
and EXTENT statements used for a seguential
2311 disk input file. The statements iden-
tify the file declared as MASTIN in a PL/I

File Labels 33

program. Its external identification
(stored in the VTOC) is MASTER-INVENTORY-
FILE. No further entries in the DLBL sta-
tement are required for an input file.

The logical unit used for the file is
S5YS005 and the volume identification of the
1316 disk pack to be mounted on S¥S005 is
VOL172. No further EXTENT statement
operands are reguired.

Figure 15 (middle) shows an example of
the creation of an indexed sequential file

by usage of the PL/I DASD macro LODIS. In
addition to the previous example, the
expiration date of the file (March 1, 1969)

and the code ISC is specified in the DLBL
statement. There are two EXTENT state-
ments. The first one specifies the extent
of the cylinder index, which is extent 1.
It starts at track number 1000 (i.e.,
cylinder 100, track 0) on logical unit SYS-
004 and consists of 10 tracks. The data
area, which is the second extent, resides
on a different logical unit: SYS005. The
extent number need not be specified in this
case, but the delimiting comma must be
written.

Figure 15 (bottom) gives an example of a
"TLBEL statement. The file is assumed to be
an input file., It is no multi-file volume
and a version number is not used. Since it

is an input file, no date entry has. been
specified.

MULTI-FILE VCLUMES AND EACKWARDS FILES

The handling of multi-file volumes on the
2311 requires no special rreparation since
all file lakels are available when the file
is opened. When using tape files, the tape
must be positioned so that the label can ke
checked during execution of the OPEN rou-
tine. Positioning is nct required fcr the
first file on the tape kecause it is auto-
matically positioned unless the LEAVE
orticn has keen specified. For correctly
positioning the tape for the second, third,
.., nth file, the LEAVE option must be
specified in the ENVIRONMENT attribute.
This prevents the CPEN rcutine from rewind-
ing the tape reel. A lakeled tape file has
the format shown in Figure 16.

To position a tape reel that ccntains
labeled files at the nth file, the tape
reel must first be rewound and then sraced
fcrward in such a manner that the first
information read is the header label cf the
nth file. The Jobk Control statement used
to control tape drive operaticns has the
fcllowing form:

// MTC code,SYSxxx[,nnl

1)2{3(4 5—[6 7|8 |9 [1O[11[12{131415]16/17 18 |vu1lu[23"‘““27aaiwalﬂﬁ K

2 47 148 (4915018 |82 58159160} 6162} 63! S| 68 69170171122) 73| 74 6177178 79| 80
/s D] [| MalsiTirig, | MalsiTElR]-1 INviENTIOlR Y- Fiz L
[EXTENT! [SIy!SI9i9/5], vVi0lL 4712
/] DiLIBIL clulsiTIINL ' icluls|TIOMEIR - IFITILIE| 1317)'1, 169/ 18|66, T1SIC
(| lExiENT] |s|yisigigk], IPinioia]1ia], u 1.ﬂqﬂg+i
(1] EXTIEINT] |N|s91015], 1P) 2'1,1.2,ﬂtp__,H
/1] TILIgL | | PN L:’PAXRiQLL-FIL 11,1397, 141,1,1419
T I } !"
Figure 15. Examples for Disk and Tape Labe) Statements
¥ e | | .
Vol First g First File g First f Second E Second File
olume Header Dat Trailer i Header etc
Label Lobel 13 a o Label § Label ® Data .
K Records é‘ R e ’§' Records
[
Load
point
Figure 16. Format of Labeled Tape File

34

The operand ccde is one of the following
function codes:

BSF backspace file

BSR backspace record
ERG erase gap

FSF forward srpace file
FSR forward space record
REW rewind

RUN rewind and unload
WIM write tare mark

Forward-space-file and kackgpace-file
cause the read head to ke positioned at the

record following the pext tape mark that is
EﬁEbunEE?gagﬁ-di- ' - —

address of the tape drive on which the per-
tinent tape reel is mounted.

The operand nn is a decimal numker from
01 through 99 that specifies the number of
times the specified function is to be per-
forred. If this field and the comma pre-
ceding it are omitted, nn is assumed to be
01.

The following example shows the MTC sta-
terents required to position the tape reel
on SYS006 at the header label of the third
data file.

// MTIC REW,SY¥S006
// MIC FSF,SYS006,06

In unlabeled tape volumes, the end of
each file is indicated by a tape mark. A
tape mark may or may not precede the first
file. Unlabeled tape files written by PL/I
programs have a tape mark preceding the
first file unless NOTAPEMK is specified in
the ENVIRONMENT attribute.

If a magnetic tape file has the BACK-
WARDS attribute, the read head must be
positioned behind the trailer lakel of this
file before the file is opened. 1In case a
file has been written and closed just
before it is re-opened to be read back-
wards, it is positioned correctly if the
LEAE ortion was specified for the written
file. Unlabeled BACKWARDS files must start
with a tare mark.

If an input file of a multi-file volume
declared with the LEAVE option has been
closed and the next file of this volume is
to be opened (or the same file is to be
opened in the reserve direction), the mag-
netic tape is positioned correctly only if
the ENDFILE condition was raised prior to
the closing of the file. In the case of
STREAM input, additional (dummy) GET state-
ments must be issued to synchronize the
input stream with the ENDFILE condition.

To prevent raising of the CONVERSION condi~-

tion, the variables read by these dummy GET
statements should ke of the character tyre.

LINK-EDITING AND LABELED FILES

Before a program that uses and/or processes
labeled files can be processed by the Lin-
kage Editor, the Linkage Editor must be
instructed to reserve a label area. This
area must precede the area occupied by the
program, except in the case of CONSECUTIVE
disk files where no such area is required.
To reserve the lakel area, a special Job
Control statement must precede the state-
ment // EXEC LNKEDT. The type of statement
used depends on whether the program runs
under control of the Disk Operating System
or of the Tape Operating System.

Job Control Statements for DOS

The format of the Job Ccntrol statement fcr
rrocessing disk files with the REGIONAL or
INDEXED option is as follcws:

// LBLTYP NSD(nn)

The operand nn is the largest number of
extents to be used by any single file.
Note that this number must be enclosed in
parentheses.

Note that nn must specify the number of
EXTENT cards and not the EXTENTNUMBER in
the ENVIRONMENT attribute.

The format of this statement for the
processing of lakeled tape files is as
follows:

/7 IBLTYP TAPE
Note: This statement is not reguired for

processing of labeled tape files if REGION-
AL files are used at the same time.

Job_Control Statements for TOS

The format of the Job Control statement for
the processing of labeled tape files is as
follows:

// LBLTYP TAPE(nn)

The operand nn is the number of labeled
tape files to be processed.

Figure 17 shows a source deck including
Job control statements fcx processing cne
REGIONAL file with two extents, and two
tape files.

File Labels 35

// JOB INVENTRY
// OPTION LINK, LIST, ERRS, 60C
PHASE UPDATE, *
// EXEC PL/I
INVENTRY : PROCEDURE OPTION'S (MAIN);
DECLARE MASTER FILE UPDATE RECORD ENVIRONMENT
(REGIONAL(@)....)....,
BACKUP FILE OUTPUT ENVIRONMENT (MEDIUM
(5Y5007,2400)....)....,
EXEPT FILE OUTPUT ENVIRONMENT (MEDIUM
(SYS008,2400).). ...,

END;

Ve

ENTRY
// LBLTYP NSD(02)
// EXEC LNKEDT
// DLBL MASTER,’ MASTER INVENTORY FILE’,, DA
// EXTENT SYS005,1427
// EXTENT 5YS006,1431

// TLBL BACKUP,’BACKUP INVENTORY’,100,2711,,,10,8
// TLBL EXEPT,’EXCEPTION INVENTRY’,30,2614,,,10,0
// EXEC
data
*
/&
Figure 17. Sample Source Deck with Control

Statements

CATALOGING OF LABEL INFORMATION

For DOS, the DLBEL, EXTENT, and TLBL state-
ments for sequential files may be cataloged
as standard files so that the programmer is
relieved from issuing the control cards
with each execution of the program. For
details refer to the SRL publication
describing the DOS system control and sys-
tem service programs.

PROGRAM - LAEBEL COMMUNICATION

Figure 18 shows the communication ketween a
PL/I source program, the object program,
Job Control statements, and a 2311 disk
unit with a 1316 disk pack.

The LIOCS (Logical.Input/Cutput Control
System) table produced ky the PL/I compiler
somewhere contains the file name as a
character string. The communication
between this table and the actual file
extent (s) is established ky storing the
extent information in the table during
executicn of the OPEN statement.

The set of label statements (DLEL,
EXTENT) to be used for opening the file is
the one whose DIBL statement contains the
same file name as stored in the character

36

string of the LIOCS table. The lcgical
device address is taken from the EXTENT
card. The physical unit -- in this case a
2311 disk drive -- is then determined from
the standard assignment cr from the tem-
rorary assignments, respectively. The
serial number field of the EXTENT statement
is compared against the volume label of the
1316 disk pack to determine whether the
right pack has Lkeen mounted.

The remaining action derends on the file
type. For INFUT or UFDATE files, the VTOC
on the disk pack is searched fcr a lakel
matching the file-ID issued in the DIBL
statement (MY DEAR FILE in Figure 18.)

When a matching lakel is found, the remain-
ing file information is checked against the
label information in the VTOC, and the
extent information is passed to the LIOCS
table to allow proper addressing of the
blocks to be transferred.

In case of CUTEUT files, all existing
labels in the VTOC are checked against
overlap with the file to be created. The
file is opened only if there is nc cverlag
with any unexpired file. The new label is
then written into the VICC.

In case of CCNSECUTIVE multi-volume
files, one volume will be opened at a time,
i.e., the second volume is opened when the
last extent of the first volume has been
processed, etc. Cpening cf the seccnd and
following volumes is automatic. Thus, no
explicit CPEN statement need be given. Fcr
all other files, all volumes will be opened
at once. Therefore, all volumes to ke rrc-
cessed must ke mounted at the same time in
this case.

The handling of tape label infcrraticn
is similar.

ASSIGNMENT OF SYSTEM FILES TO DISK

In systems with at least 24K pcsitions cf
main storage, the system logical units SYS-
IPT, SYSLST and/or SYSPCH may be assigned
to an extent of 2311 or 2314 disk storage.

It should ke noted that the assignment
of system files to disk requires cperatcr
intervention. For a complete description
(also of ASSGN and CLCSE ccrmands) refer to
the SRL puklication System/360 Disk Operat-
ing, System Control and Syster Service Prc-
grams, Form GC24-5036.

The PL/I programmer should be aware of
the fact that the PL/I standard files SYSIN
and SYSPRINT are assigned to SYSIPT and
SYSLST respectively. Since these files
cannot be closed Ly the programmer and cnly
one PL/I file can be opened for one System
logical unit on Disk at any one time, the

'

use of GET or PUT statements without the
FILE option should be avoided if there are
user-declared files for SYSIPT and SYSLST.
In order to avoid implied usage of SYSLST
for comments as a result of error condi-
tions, it is recommended to use the ONSYS-
LOG opticn in the OPTICNS attribute of the
MAIN procedure.

The assignment of system logical units
to disk storage drives must ke permanent.
The operator ASSGN command must be used
instead of the programmer statement
(// ASSGN). Temporary assignments (via the
// BASSGN statement) to other Jevice types
are rermitted.

Note: The system generation parameter SYS-
FIL is reguired to allow assignment of sys-
ter lcgical units to a disk drive.

Systenr input and output files are
assigned to disk by providing a set of DLBL
and EXTENT statements and then submitting a
permanent ASSGN Command. The set of DIBL
and EXTENT statements preceding the ASSGN
command may contain only one EXTENT
statement.

The filename in the DLBL statement
(which will be associated with the SY¥Sxxx
entry from the accompanying EXTENT state-
ment) must be one of the following:

IJSYSIN for SYSRDR, SYSIPT, or the
combined SYSRDR/SYSIPT file SYSIN

IJsYspH for SYSPCH
IJSYSLS for SYSLIST
In the DIBL statement, the codes operand

must specify SD (or blank, which means SD)
to indicate seguential DASD file type.

In the EXTENT statement, type may be 1
(data area, no split cylinder) or 8 (data
area, split cylinder). There is no unique
requirement for the remaining operands of
the EXTENT statement.

The ASSGN command must be one of the
following:

1. ASSGN SYSIN,X'cuu' (fcr a ccmbined
SYSRDR/SYSIPT file).
2. ASSGN SYSRDR,X'cuu' (for SYSRDR cnly).

3. ASSGN SYSIPT,X'cuu' (fcr SYSIPT cnly).

4. ASSGN SYSPCH,X'cuu' (fcr SYSPCH).

5. MASSGN SYSIST,X'cuu' (for SYSLST).
Note that all must be permanent

assignments.

System logical units assigned to disk
must be closed ky the operator. The opera-
tor CLOSE command must be used to sgpecify a
system input or output file which has been
previously assigned to a 2311 cr 2314. The
ortional second parameter (X'cuu') of the
CLOSE command may be used (instead cof an
ASSGN command) to assign the system lcgical
unit to a physical device. The system will
notify the operator that a CLOSE is
required when the limit of the file has
been exhausted. If a prcgram attempts to
read or write keyond the limits of the
file, the program will be terminated and
the file must Lbe closed.

File Labels 37

// ASSGN SYS004,X'191°

FILE
F—‘ 'MY DEAR
FILE'

Volume label
VOLI2A

Unit X'191°

2311 Disk Unit

A 4

—_— 1

I -

(// EXTENT SYS004,VOLI2A,,,1000,210

// DLBL FILEA,'MY DEAR FILE'

VTOC containing
labe! of
'MY DEAR FILE'

'
'
L

PL/1 source program

Object program
LIOCS table

DC CL8'FILEA

L

—-—-~]/O commands in LIOCS table control actual data transfer

«—————-File information chain

— — — Information flow between VTOC and LIOCS table ot open timed

Figure 18.

38

Program - Lakel Communication

DECLARE FILEA FILE
UPDATE ENVIRONMENT
(MEDIUM (SYS004,2311)

The user of PL/I programs is not concerned
with internal linkage during activation and
de-activaticn of blocks. To increase the
capabil ity and/or efficieny of his program
he may, however, wish to combine modules
written in the PL/I Sukset language with
modules written in Assembler language.
exanple, the rrogrammer may wish to make
use of the checkpoint facility. Since
there is no checkroint facility in PL/I,
the user may call a subroutine written in
Assenbler language. Calling of sukroutines
written in FORTRAN or CCBCL is not
permitted.

For

Register Conventions

Some registers may have to be used during
the execution of the called program. The
user must save the contents of these regis-
ters by providing a save area. The address
of the save area is contained in register
13. The general registers involved in
linking a called procedure to the main pro-
grar are listed in Figure 19. Note that
floating-point registers are not saved by
the called sukroutine.

e e e e e i o e

r T
| REGI STER | CONTENTS
L

— i . ek

b
1 |Address of an argument list.
| This list contains the addresses|
Jof the arguments. in the sequencej|
| stated in the argument (or para-|
lmeter) list in the CALL, PROCE- |
|DURE, or ENTRY statement. Each |
|argument requires one full-word
|on full-word koundary. In func-|
| tion references, the argument
|list is immediately followed by |
| the address of the field where |
|the information computed by the |
|subrout1ne is stored.

|
|

|

|

|

|

i
|Address cf the save area.

_ -

14 |Address to which the called sub- |

|

]

1

|

I

| routine returns when execution
| has ‘been completed.

15 | Branch address, i.e., the |
|address in the called subroutine
|to wnich control is transferred |
| for execution.
1 .

1 e " e e T i S M s g T s T e T e, T e e ™ i = s e
[y
(%)

General Registers Used for
Linking to a Sukroutine Writ-
ten in Assembler Language

Figure 19.

LINKAGE CONVENTIONS

Note: If control is transferred from an
Assembler routine to ancther PL/I subrou-
tine, registers 7 and 8 must contain the
same values as when contrcl was trans-
ferred to the Assembler routine.

Calling

Assume that register 13 has been set ear-
lier in the program. To accomplish
correct linkage, three additional regis-
ters (1, 14, and 15) must be set. Regist-
er 1 need not be set if no arguments are
passed on and the call is nct a functicn
reference. The three different sejuences
that may be used to establish the required
linkage ketween the main program and the
called subroutine are shown in Figure 20.

Note: The DOS/TOS macro instruction CALL
may be used to facilitate programming in
cases 2 and 3 shown in Figure 20.

r—— - -——== 1
| L 15, =V(sukroutine) |
I BAILR 14,15 [
prmmmmmm e --- .
i CNOP 2,4 |
| L 15 ,=V (subroutine) |
] LA 14, *+6+U*n |
| BALR 1,15 |
| DC A(addressl) |
| DC A(address2) |
|) |
I e |
| DC A (addressn) |
- — :
| L 15, =V(sukroutine) |
| L 1,=A(listaddr) |
| BALR 14,15 |
{ cea {
|listaddr DC A (addressl) |
| cee I
| e |
Lee j
Figure 20. Three Different Codings fcr
Linking the Main Program and
the Called Sukroutine
Saving

Each calling program must provide a save
area to store the contents of the general
registers used by the called subrcutine.
When communicating with EFL/I, the minimum
length of this area is 20 full-words (80
bytes). The area may be exranded for
storing intermediate results or data of
the storage class AUTOMATIC. This stcrage
is called the DSA (Dynamic Storage Area).

Linkage Conventions 39

r T B T T 1
| WORD| DISPLACEMENT | CONTENTS | STCRED BY |
b-=-—4- + -—- $!
[0 |DC X'03° |Calling module |
| [{DC AL3(INDIC)?*] |
s T -—- {
| 2 | 4 |Save area address of program |Calling module |
| | |that called the calling program] |
F---—4 , i T - !
| 3 | 8 |save area address of called |Calling module if initialized |
1 | | program |by IJKSZICN2 |
-t $ e $!
[12 |Register 14 |Called module |
e $-——- -- — '
| 5 | 16 |Register 15 |Called module
F-—-—+ oo + !
| 6 | 20 |Register 0 |Called module |
b=t - + i
I 7 24 |Register 1 |Called module |
F----+ e e - f
1 « . :.... :.... %
] . i . +.... ____________ L %....]
| 18 68 |Register 12 |Called module |
e oo ¥ !
| 19 | 72 | Invocation count | PL/I library |
-4~ : S -—- + !
| 20} 76 |DSA pointer to embracing |PL/I internal procedures |
| { |static Llock | |
F 1 4 e ——— - 1 }
| *INDIC is a full-word containing the information on the status of |
| statement prefixes. |
| 2Modules written in PL/I are initialized by IJKSZCN. |
L J
Figure 21. Layout of the First 20 Words of the DSA of a Calling Progran

Figure 21 shows the layout of the first Returning
20 full-words of the DSA of a calling pro-
gram. Assume that register 13 contains Before returning control from the subrou-
the address of the first word of the DSA. tine to the calling program, the contents

of all registers must be restored. This
) } is done as follows:
The first instruction of a subroutine

written in Assemkler language must save L 13,4(@13) RESTORES REG13
the general registers 14, 15, 0,, 12. LM 14,12,12(13) RESTORES REGl4-12
The DOS/TOS macro instruction SAVE can be BR 14
used for this purpose. These registers
must be saved even if their contents are The last two instructicns may be rerlaced
not destroyed during execution of the sub- by DOS/TCS macro RETURN (14,12)
routine. Otherwise, ON-conditions .that
may occur might not be handled correctly. The usage of 1LABEL parameters for
The next steps to ke taken are: returning from subroutines written in
Assembler language necessitates a library
1. Store the contents of register 13 in call instead of a RETURN racrc instruc-
word 2 of the subroutine save area. tion. Therefore, the address of the LABEL
parameter must be loaded intc register 1.
2. Ensure that word 3 of the save area of The routine IJKSZCP must ke called next.
the calling PL/I program is not des- The contents of register 13 are autcmatic-
troyed by the Assembler subroutine. ally saved by this routine. Therefore,
they must not have been changed
3. Set register 13 to the address of the previously.

subroutine save area.
The following example shows how a

4. Ensure the addressakility in case library call can be used tc return frcm a
register 15 is destroyed during execu- subroutine written in Assembler language
tion of this module. by means of LABEL parameters.

490

L 1,8(3)
* LOADS ADDRESS OF TABLE VARIABLE
CALL IJKSZCP

Note: The likrary subkroutine IJKSZCN must
be used to initialize the DSA if LABEL
parameters are used.

CORRELATION BETWEEN PL/I AND ASSEMBLER
MODULE S

Modules written in the PL/I Subset lan-
guage may call modules written in Assembl-
er language and vice versa. However, if
the program is combined of koth PL/I and
Assembler modules, one PL/I module with
the attribute MAIN is required for correct
initialization of the PL/I modules. Note
that this MAIN procedure must ke the first
module to be executed.

Cal;ing an Assemkler Module

‘A module written in Assemkler language is
called according to the rules for calling
external procedures either by means of a
CALL statement or by means of a function
reference. The Assembler module must
satisfy all linkage rules given in this
section., If the Assembler module does not
call any other rmodule, it must provide a
minimum save area of two full-words. The
U-byte field INDIC pointed to Ly kytes 1
to 3 of the first word must contain the
follcwing information:

Byte 3 contains the standard prefix
option switches, whereas byte 2 contains
the actual prefix ortion switches. 1If
INDIC is not initialized by the library
subroutine IJKSZCN, the contents of byte 3
must be moved into kyte 2 by the prologue
of the module. The contents of byte 2 may
be changed during execution of the module.

Bits 0 to 5 are used as switches with
the following functions:

ZERODIVIDE
UNDERFLOW
OVERFLOW
FIXEDOVERFLOW
CONVERS ION
SIZE

nEwRP O

If the respective kits are on (1), the
corresponding ON-condition is enakled. If
they are off (0), the ON-condition is
disabled.

If bit 7 is on, the PL/I interrupt-
handling routine interprets a hardware
fixed-point or decimal overflow condition
as a SIZE error. If bit 7 is off, the
condition is interpreted as FIXEDOVERFLOW.

Note: Word 2 of the save area and regist-
er 13 must ke correctly initialized prior
to the occurrence of any interrupt.

Assembler Module Calling PL/I Mcdules

Assembler modules that directly or
indirectly call PL/I modules must rrcvide
a full DSA with a minimum of 20 full-
words. This can be done by using the PL/I
library sukroutine IJKSZCN, which creates
the DSA and provides correct handling of
register 13. The subroutine sets the
werds 1, 2, 3, 19, and 20 of the DSA.

wWord 20 accommodates the ccntents of
register 0 at the time when IJKSZCN was
called. 1In internal PL/I rrocedures, this
will be the address of the DSA of the
statically embracing blcck. Wcrd 3 cocn-
tains the address of the storage location
where IJKSZCN will construct the next DSA
in case the present module calls ancther
module.

Calling IJKSZCN destrcys register 5.
Therefore, register 5 shculd nct be
initialized ky an Assemkler module before
IJKSZCN is called., IJKSZCN is called as
shown below:

LA 1,PBL
L 15,=V(IJKSZCN)
BALR 14,15

PBL is an 8-kyte area containing the fol-
lowing information:

DS OF

PBEL DC X'03°
DC AL3(INDIC)
DC A(length)

Note:
bytes.

Length is the length of the [S2 in

The calling sequence for IJKSZCN should
be preceded only by the SAVE macrc
instruction and two LR instructions pro-
viding for the addressability cf the
module itself and the argument list.

Passing Arquments

The argument addresses in the argument
list point to the first byte cf the data,
array, Or structure to ke passed cn. The
address of a V-type constant is passed for
an ENTRY argument. The wcrd fcllewing the
V-tyre constant contains a pointer to the
DSA of the block statically embracing the
rassed procedure if the passed procedure
is internal.

To allow for addressing of AUTOMATIC
variables contained within the embracing
block of an entry parameter, a call tc the
entry parameter should have the format
shown in Figure 22.

Linkage Ccnventions 41

7'3 9 1011 12)13|1415

148 (49 150| 51 52|53 “]“ 5657

1(2|3[4i5}6 ‘l \6)7]!0192021227’\”95%9728293)31“"“‘“cla 40 (4} (42 143 [44 | 45146 |47 | 75(76{77)|78| 79|80
[i,ﬁj,___ R| lojdldlr le|s]s!-[i - pla|r|aimeltlelr |-[t]iis]t] | |L|0jAIDIs| |AIDDRIE]s]S NIT,
1L =Al(lair lgjulmein|t |- It |i s} ONILIY| [IIF| JAIRIGIUIM 0 |
1 , CAL%ED RIOUITIIIN T|HAT
% Lidddi ARGIUMENT (LILISIT] ElLlY
HRA Y RERENCRIN R IRRRE RN LiolaDls| |rlels| |15 1
AR e rH S
s b ;1 Ly | ¢,+§<; féA{”r+.T b 4l
R R R e o R e S R RSN R S 1 .
Figure 22. Format of Call to Entry Parameter

If FILE arguments are used, the address
in the argument list points to the file
arpendage. In addition to the information
in byte 0, the first word of the file
arrendage contains the address of the DTF
table for this file.

File arguments should be used very
carefully in Assembler sukroutines. Issu-
ing an IOCS macro to a CCB which is part
of a DTF table used by a PL/I program may
destroy the synchronization between the
PL/I program and logical IOCS. (Note that
the CCB address must ke inserted at object
time when IOCS macros are used for file-
name parameters.) However, a programmer
experienced in DOS/TOS ICCS may use file-
nare rarameters in Assemkler sukroutines
to improve the capability of his program.
For examrle, he may:

1. change DTF tables to allow handling of
additional user labels or non-standard
tape labels before opening a file.

change DTF tables to accomplish spe-
cial stacker selection. PL/I programs
use normal stackers for card input
files and stacker 2 for punched-card
output files.

issue a CNTRL macro instruction for
seeking on a REGIONAL file to allow
overlapping of seek time.

Figure 23 shows a PL/I procedure that
calls a module written in Assembler lan-
guage, which itself contains a function
reference to another external PL/I
procedure.

Data of the scope EXTERNAL may be
shared between PL/I and Assembler modules.

Case_l1l. Data items within PL/I modules
which are referred to by Assemkler lan-

guage modules:

Use EXTRN statement in the Assemkler
modules.

Case 2. Data items within Assembler
modules which are referred to by PL/I

modules:

42

Each data item must be a separate CSECT;
otherwise incorrect addresses will be
assigned when the programs are
link-edited.

If a data item is a structure, all its
individuval elements can be coded tcgether
as a series of DCs or as a DS in the
Assembler-language module under a single
CSECT. In preparing such a structure, the
PL/I structure mapping rules as descriked
under Data Storage Mapping must, however,
be observed.

The CSECT statement must be used if the
respective name is not declared tc be
EXTERNAL in any PL/I program within the
same phase. .In all other cases, the fprc-
gramnmer may use the instruction he consi-
ders convenient.

Note: Values returned by routines written
in Assemkler language must have the format
specified for PL/I. Flcating~pcint data
must be normalized.

CHECKPOINT AND RESTART

A typical example for a procedure written
in Assembler language is checkpcinting and
restarting. For convenience, both the
checkpoint part and the restart part
should ke contained in the same routine.

If checkpointing is desired, the
restart address, the end address, and the
tape file positioning information must be
provided. (Some additicnal inforraticn is
required if the checkpoint is to be writ-
ten on disk.) The restart address is
known if it is in the same module as the
checkpoint routine. The end address can
be taken from word 3 of the save area,
since this is the address cf the next (not
yet allocated) save area. Names of tape
files can either be passed as parameters
or addressed directly by using a V-tyfge
constant. (See the discussion on file
parameters in the secticn Passing Arqu-
_____ The same applies to the usage of
V-type constants.)

After the jok has keen restarted with
the RSTRT statement, the restart routine

// EXEC PL/I
CALLER: PROCEDURE OPTIONS (MAINY);
DECLARE C CHARACTER (25) STATIC;
CALL SUBASM (A,B,C) /* CALLS SUBROUTINE WRITTEN IN ASSEMBLER LANGUAGE */;
END;
/*
// EXEC ASSEMBLY
TITLE ’SUBROUTINE CALLED BY PL/I AND CALLING PL/I’
SUBASM START 0 PARAMETERS ARE A, B, C
USING *,9
SAVE (14,12) SAVE REGISTERS
LR 9,15 ASSURE PROGRAM ADDRESSABILITY
LR 3,1 ASSURE ADDRESSABILITY OF PARAMETERS
LA 1,PBL CREATE OWN DSA
CALL 1JKSZCN
L 1,013) MAKE A ADDRESSABLE
LE 0,0(1) LOAD A
L 1,4(3) MAKE B ADDRESSABLE
AE 0,0(1) ADD B
CALL LEVEL3, (X,Y,RETURN) CALL PL/I FUNCTION PROCEDURE
L 1,8(3) MAKE C ADDRESSABLE
MvC 0(24,1),RETURN C = RETURN || '.’;
MVI 24(1), X’ 48"
L 13,4(13)
RETURN (14,12) RETURN TO CALLING PL/I PROCEDURE
X DS F ARGUMENT X
Y DS CL3 ARGUMENT Y
DS OF
PBL DC X’03’ DATA TO CREATE DSA
DC AL3(ONINDICT) POINTER TO ON-INDICATOR WORD
DC A(80) 20-WORD DSA
ONINDICT DC 3X'0’
DC B’11110000" SIZE AND CONVERSION DISABLED
RETURN DS CL24 SPACE FOR RECEIVING STRING FROM
* PL/1 FUNCTION LEVEL3
END
r _
// EXEC PL/I
LEVEL3 PROCEDURE (U,V) CHARACTER (24);
DECLARE STR CHARACTER (21), V FIXED DECIMAL (5,2);
RETURN (8%’ i STR) /* ONE BLANK AUTOMATICALLY
ADDED AT THE END TO OBTAIN
CORRECT LENGTH */;
END;
/t
Figure 23. Example of Linkages between PL/I Procedure and Assemkler Module

must issue an STXIT macro for Program
Check Interruption. The two address
operands to ke issued with STXIT are the
external names IJKSZCI and IJKZWSI for the
routine address and the save area, respec-

tively. Morecver, the program mask must
be reset.
Note: PL/I input files must not contain

interspersed checkpoint records.

Figure 24 shows a coding example of a
routine combining the checkpoint and the

restart part. For detailed information
refer to the following SRIL publications:

IBM System/360 Disk Cperating System, Sys-—
tem Control and System Service Programs,
Form GC24-5036

IBM System/ 360 Disk Cperating System,
Supervisor and Inputs/Outrut Macros, Fcrm
GC24~-5037

Linkage Conventions 43

For_ TOS IBM Systen/360 Tape Cperating System,
T Supervisor and Input/Output Macros, Form
IBM System/360 Tapre Operating System, Sys- GC24-5035

tem Control and System Service Programs,

Fern GC24-5034

CPRS TITLE ‘CHECKPOINT-RESTART ROUTINE’
* CALLED BY A PL/I PROCEDURE. THE INFORMATION ON THE
x POSITIONING OF THE TWO FILES TAPEIN AND TAPEOUT IS
* TO BE CHECKPOINTED,
CHPRES START
USING *,12
SAVE (14,12)
LR 12,15 SET BASE REGISTER
LA 1,PBL CALL PL/I PROLOGUE ROUTINE
L 15,=V(IJKSZCN)
BALR 14,15
L 2,=V(TAPEIN) PREPARE FILE TABLE
L 2,0(2)
ST 2, FILETAB+2
L 2,=V(TAPEOUT)
L 2,0(2)
ST 2, FILETAB+
L 2,8(13) LOAD END ADDRESS
BALR 3,0 SAVE PROGRAM MASK IN AUTOMATIC
ST 3,80(13) STORAGE
CHKPT SYS007,RESTART, (2), TPOINT CHECKPOINT ON SYS007
B RETURN
* RESTART PART, NOTICE THAT ALL GENERAL
* REGISTERS ARE AUTOMATICALLY RESTORED.
RESTART L 0,=V(1JKSZC!) SET PROGR. CHECK INTERRUPTION EXIT.
L 1,=V(1JKZWS1)
STXIT PC,(0), (1)
L 2,80(13) SET PROGRAM MASK.
SPM 2
RETURN L 13,4(13) RETURN TO PL/I CALLER
RETURN (14,12)
DS OF
PBL DC X703 ARGUMENT FOR 1JKSZCN
DC AL3(INDIC)
DC A(88) PL/I SAVE AREA DEFINITION + 1 WORD FOR
* SAVING PROGRAM MASK (MUST BE MULTIPLE
* OF EIGHT).
INDIC DC AQQ) ON INDICATORS
TPOINT DC A(FILETAB) POINTER TO FILETABLE
DC A(0) PIOCS FILES NOT USED
CNOP 2,4
FILETAB DC H'2! * FILE TABLE
DS 7 *
END

Figure 24. Coding Example of Combined Checkpoint and Restart Routine

Ly

This section describes some programming
techniques to save storage, produce a
faster object program, perform functions
not easily achieved with more conventional
PL/I language facilities, make a program
fit into the available storage, etc.

STATEMENT FORMAT

The first column of every source text card
must be blank. Columns 73-80 are ignored;
they may contain any information.

PROGRAM SESMENTATICN

Every program should be written so that it
can be segmented if necessary. The case
of storage overflow should ke provided for
'so that, if it does occur, it can be
handled easily. Breakpoints in the logic
of a program, i.e., points where a program
phase can be terminated and a suksequent
phase entered, should be numerous.

Data common to successive programs can
be kept through the proper use of the
EXTERNAL attribute. However, not all data
need be external.

Programs that read data, compute, and
write results lend themselves to segmenta-
tion mcst readily. Wherever practical,
entire programs should be written as
sequences of calls for suktroutine proce-
dures because each call is a logical brea-
kpoint. Thus, the entire storage can be
loaded with as many sukroutines as can be
accommodated. The next phase then regeats
the rrocess of loading the storage with
the next group of subroutines, etc.

PROGRAM_EXPANSICN

In general, no more than 90 % of the
storage available for any program phase
should be used during the first six months
of its life because, at one time or anoth-
er, every program tends to expand due to

1. programming errors,

2. the need to expand the original
function,

3. errors in the system program or in the
associated subroutines, and/or

4. an increase of the data storage
requirements.

GENERAL_PRCGRAMMING INFORMAT ION

If a program uses the entire storage
and no space is left for eventualities,
reasconakle solutions become difficult.

If, however, normal expansicn was rrovided
for, the overall job is much easier.

CONVERSICNS

If a numeric variable is tc be used fre-
quently in expressions, it is much mcre
economical to convert the variable to
coded form once and use the coded fcrr in
all expressions. This is easily done by
means of an assignment statement.

Conversions implicit in IF statements
fcliow the rules for arithmetic conver-
sions, and the intermediate rrecisicns
should be considered when using such
expressions.

For example, in case 3 (IF X=U THEN...)
of the following sample program the conv-
ersion -rules are applied t¢ X, giving a
short-precision floating-point numbéer
which is then expanded (radded) with
trailing zeros to long precision before
the actuval comparison operaticn, Thus
expression 2 will ke executed, not expres-
sion 1. However, if X and U are assigned
with a value which will ke the same in
both short and long precision (e.g. 0.5),
then expression 1 will be executed.

In evaluating the following program,
refer to Section F: Data Conversion in
IBM System/360, Disk and Tare Operating
Systems, PL/I Subset Reference Manual,
Form GC28-8202.)

Z: PROCEDURE OPTIONS(MAIN) ;
DECLARE X DECIMAL FIXED(5,2);
DECLARE T DECIMAL FIXED(15,2);
DECIARE Y FLCAT(6);

DECLARE U FLOAT(16) ;

X=123.45;

¥=123.45;

T=123.45;

U=123.45;

IF X=Y THEN expression 1; /* Yes */
EISE expressicn 2; /% No */

IF X=T THEN expression 1; /* Yes */
EISE expressicn 2; /% No */

IF X=U THEN expression 1; /* No */
ELSE expressicn 2; /% Yes %/

IF Y=T THEN expression 1; /* No */
ELSE expressicn 2; /* Yes %

IF ¥=U THEN expression 1; /% No */
ELSE expressicn 2; /* Yes ¥/

IF T=U THEN expression 1; /* Yes */
ELSE expressicn 2; /* No #*/

END;

General Programming Information 45

USE_OF UNSPEC

The UNSPEC pseudo variable and the UNSPEC
built~in functicn handle the internal
representation of data. The internal
representation of data is summarized in
Figure 43 and descrikbed in detail in the
section Data Storage Reguirements.

The programmer must make sure that
values assigned by the UNSPEC pseudo vari-
able have the correct format. Otherwise,
the results are unpredictakle. Note that
the internal representation of floating-
point data is normalized. Consider the
following exarrple:

DECLARE A FLOAT, B CHARACTER(1), C FIXED
DECIMAL(5,3);

B= '8';

X: PUT EDIT (UNSPEC(B)) (SKIP,B);

Y: UNSPEC(A)=(31)'0'B || '1'B;

Z: UNSPEC(C)=(16)'0'B || '01100000°B;

The result of statement X is 11111000.
Statement Y yields unpredictable results
since the value to ke assigned is not nor-
malized. Statement Z also yields unpre-
dictable results since the last half-byte
does not contain a valid sign for packed
decimal data representation.

COMPUTATIONS WITH OVERLAY

Whenever possible, input/output phases
should be performed separately from compu-
tational phases. Thus, the I/0 subrou-
tines including the E and/or F conversion
subroutines are never in storage simul-
taneously with the other sukroutines (ari-
thmetic, base, and scale conversion,

etc.). This can result in considerable
storage savings (see Figure 25).
. ROOT
1 2 3| 4 5 é
Phase 1: Phase 2: Phase 3:
Opens files, Opens files,
Performs input, Computation Performs output,
Closes files. Closes files.

Figure 25. Example of Using Overlays to
Perform Computations and 1I/0

Orerations Separately

46

BLOCKING

It may happen that one large set cf data
is used in a program only at one specific
point, that another large set cof data is
used at another point, etc. In this case,
each set of data used at cne pcint shculd
arpear in a separate block so that the
data is AUTOMATIC by default (unless de-
clared to ke STATIC) and allccated cnly
when the respective block is active.
Thus, the same storage area can be used
for all data sets to be used.

SIMULATION OF_ P-FORMAT ITEMS

The PICTURE-format items cf 0S PL/I are a
more powerful tool for editing than the
format items available in DOS/TOS PL/I.
However, numeric fields in edit-directed
I/0 operations can easily be simulated Ly
overlaying numeric fields with character
strings using the DEFINEL attribute. 2an
example is shown Lelow:

DECLARE U PICTURE '$$,$$9.V99BCR',
B CHARACTER (12) DEFINEL U;

U= ...

PUT SKIP EDIT ('U = *, B) (2 A);

SIMUIATICN CF_ARRAYS CF_STRUCTURES

Since arrays of structures are not rer-
nitted in the PL/I Subset language, it is
recommended to simulate arrays cf struc-
tures by using arrays in structures, i.e.,
by arrays that are not themselves struc-
tures. Should this not be feasible,
arrays of structures may be simulated by
using based structures. This can be
accomplished ky assigning to the pointer
the value of an element cf a character-
string array. The programmer is respons-
ible for satisfying all bcundary
requirements.

The following example shows the handl-
ing of structures in CS FL/I versus LOS/
TOS PL/1:

OS_EL/L

DECIARE 1 A, 2 B FLCAT, 2 C(10), 3 D
PICTURE '9999°,
3 E PICTURE 'XX',
3 F PICTURE '99V99°';

DO I=1 TO 10;

A.DZI)=..._

END;

This could be written in DOS/TOS as
follows:

DECLARE PTR POINTER, 1 A, 2 B FLOAT, 2 C
(10) CHARACTER(10), 1 X BASED
(PTR), 2 D PICTURE '9999%°, 2 E
PICTURE 'XX', 2 F PICTURE '99Vv99';

DO I=1 tc 10;
PTR=ADDR(A.C(I));

XeDZeanew

END;

USE_OF THE _DEFINED ATTIRIBUTE

For scalar variakles or arrays, the
DEFINED attribute is used when

1. a variable is to have more than one
name (correspondence defining), or

2. two serarate variakles are to occupy
the same storage area provided they
are never required simultaneously
(overlay defining).

In either case, the actual storage
requirement is that of the kase identifier
and not the sum of the storage require-
ments of all variables. For restrictions
on the use of the DEFINED attribute for
scalar variables and arrays see the Subset
language publication.

The use of the DEFINED attribute can
result in considerakble savings of storage.
This is obvious for arrays, e.g., the
statement

DECIARE A (5,9,7), B (5,9,7) DEFINED 3;

merely reguires the storage area for array
A (315 data items). Without the DEFINED
attribute, the storage requirements would
be twice as much. But in spite of the
more severe restictions on the use of the
DEFINED attrikute for structures, it can
also be of considerable use in this case.

USE_OF BASED VARIABLES WITH STRUCTURES

The restrictions on the use of the DEFINED
attribute for structures can be circum-
vented by using kased variatles instead of
the DEFINED attribute. For example, in
the statement shown kelow structures U and
I are based variables. They are never
allocated any storage. Instead, the
pointer variable P can be used to utilize
the storage occugied by structure A
whenever structures U and I are referred

to (provided that structure A is not
required at the same time).

CECLARE P POINTER,
ALIGNED,

B BIT(7),

C FIXED DECIMAL(13,2),
D CHARACTER (21),
ALIGNED BASED (F),
V BINARY,

W,

X BIT(19),

BASED (F),

J,

K,

L;

[y
g

[[SISESE N SE SESNaENE SN

The statement
P = ADDR (R);

would cause any subsequent reference to
either U or I or any component of U or I
to point to the storage area occuried Ly
A. This simulates the use of the DEFINED
attribute with all of its restricticns
removed except that the kased structures
must be mapped in the same or less stcrage
than the map of the overlaid structure.
This process may be extended even further
so that a kased variakle structure occu-
pies the storage area of any one cf many
structures. This is demonstrated below:

DECLARE (V1,V2) ECINTER,
1A, 2B, 2 Crevacens
1 U ALIGNED, 2 F, 3 C BIT (9),+..,
1R, 22, 2M, 3 S CHARACTER(2),..,
1 P1 BASED (V1), 2 L, 2 Xyeeuy
1 P2 ALIGNED BASED (V2),
2 D BIT(9),.;

V1=ADDR(A) ;

. using Pl here points to A

V1=ADDR(U);

. using Pl here points tc U

V2=ADDR (R);

« Uusing P2 here points to R

V1=ADDR(R) ;
. using Pl here points tc R
etc.

Of course, the storage reguirement of
structure P1 must not exceed that of tne
smallest of either A, U, or R. Since the
structure P2 does not pcint to A cr U in
this procedure, the only prerequisite is
that its storage requirement must nct
exceed that of R.

General Programming Information 47

Note on Compatibility: The structure-
mapping technique for 0S PL/I is identical
to that for DOS/TOS PL/I in every respect
but cne. The exceprtion is that DOS/TQS
PL/I1I causes all structures to kegin at
double-word boundaries. This is accomp-
lished py padding to tne left of the first
addressable element until kyte zero is
reached. (See the section Structure Map-

0S PL/I begins structures at the first
addressable element. This difference is
of no significance in PL/I programming
unless the above-described technique is
enplcyed. When this technique is used,
compatibility is guaranteed if at least
one element cf the non-kased structure has
a stringency level that is as high as that
of the element (or elements) of the high-
est stringency level of the Lkased
structure.

For the D Comgiler the pointer asso-
ciated with a based structure must be
assigned an address value which insures
that the first element of the structure
has the same distance to a doukle-word
boundary as it would have if the structure
was not based.

Note: The use of based structures to
avoid the use of the DEFINED attribute is
dependent on structure mapping which, in
turn, is implementation-defined.

REDEFINITION OF ATTRIBUTES

The two preceding sections showed that a
nurber of structures can ke made to occupy
the same storage area. Similarly, a
single character-class variable may be
conceived of in many different ways. Con-
sider the declaration shown below.

DECIARE A CHARACTER (80),
1 B DEFINED A,
C CHARACTER (40),
D CHARACTER (30),
E CHARACTER (10),
DEFINED A,
G PICTURE '(8)9°',
H PICTURE '9°,
I CHARACTER (61),
J PICTURE '(5)9V(5)9',
DEFINED A,
L (10) PICTURE '3(4) 9v(2)9';

NRNONDONE NN

A represents a string of 80 characters
whereas B, F, and K represent three dis-
tinct structures. However, these three
distinct structures refer to the same
storage area as A. This technique is
especially useful in programs with many
different structures to ke read. For
instance, the program may read a character
string and, depending on its first

48

character, treat it in any one of many
different ways without requiring space for
each possikle structure.

USE_CF_ THE 48-CHARACTER_ SFET

If the 48-character set is used, the word
PT, in addition to those listed in the
Subset language publication, is a reserved
keyword. Programs written in the 60-
character set can ke read if 48C is speci-
fied in the CPTICN statement (but not vice
versa).

SIZE_OVERFLOW

If a size overflow occurs during F-format
output, the output field will ccntain
asterisks, even if SIZE is disabled.

USE_CF_THE_DISPLAY STATEMENT WITH THE
REPLY OPTICN

Using the DISPLAY statement with the REPLY
option is possikle only if a 1052 Printer-
Keyboard is available.

PRECISICN CF _DECIMAL DATA

The use of an odd precisicn for decimal
data will keep the generated code at a
minimum and thus improve the rrcgran
performance.

CHANGING THE TAB CONTROL_TAELE

List-directed output to FRINT files auto-
matically aligns data on rreset tab pcsi-
tions. For the D-level compiler, these
tab positions are 1, 25, 49, 73, 97, and
121.

The tak positions are determined from
the control table IJKTLTIR which is catalo-
gued under this name in the relocatable
library. To obtain different tab rcsi-
tions, the programmer only has to change
this table by specifying the focllcwing
macro instruction:

IJKZL (tak, [tak, ..., IFF)

In this macro instruction, ‘tab' is a
decimal constant indicating the desired
tab postion, and °*FF' indicates the end of
the table. Tabs must be specified in
ascending sequence, and their values must
range between 1 and 144. The length cf
the tab list specified in the IJKZIL macro
instruction must not exceed 127 charac-
ters, including opening and closing paren-
theses and commas.

Follcwing is an example of the IJKZL
macro instruction and the control state-
ments required to change the tab settings.

// JOB IJKTLTB
// OPTION DECK
// EXEC ASSEMBLY
1JKZL (1,25,50,75,100,FF)
END
/%
* THE RESULTING OBJECT DECK IS INPUT
* FOR THE FOLLOWING EXEC MAINT PROGRAM
// EXEC MAINT

(Object deck)
/*
/6

If the specified tab positions do not fall
between the values 1 and 144, or if they
are not in ascending sequence, one of the
following messages is issued:

PARAMETER GT 144

PARAMETER NOT IN ASCENDING ORDER

IMPROVEMENT OF DO-LOQOPS

The execution time of a DO-loop can be
reduced if a fixed binary variakle is used
as contrcl variakle in the DC statement.

For example, if in the statement

DO var = expl TO exp2 [(BY exp3l
{WHILE (expl)];

'var' is a fixed binary value, all con-
stants used as expl, exp2, and exp3 will
be converted to fixed kinary during compi-
lation, in order to avoid conversions dur-
ing executicn.

ROUNDING _ON_OUTPUT_WITH E_AND_F_FORMAT
LIEMS

on output, data edited by the E- or F-
forrat are rounded at the last numeric
position, and not truncated.

HANDLING BLANK NUMERIC FIELDS

When using a PICTURE specification with

'9's for numeric fields and the field is
blank, a program check (data exception)

occurs.

This is a particular proklem for card
input where fields are often left blank
rather than filled with zeroes.

The problem can be avcided by declaring
the field with FICTURE using 'Z' rather
than '9'. Note that for fields over-
punched with the sign, this is not true.

Assume card columns 1-10 are numerical
and may or may not be punched.

DECLARE CCL_1 FICTURE '(10)9';
DECLARE CCL_1 FICTURE *(10)Z°;

The first DECLARE statement will cause a
data exception if the field is blank. 1In
the second example, no data excepticn will
occur.

The programmer should, however, be
aware that the exclusive use of '9's in a
PICTURE specification results in more
efficient code.

USE_CF LIST-DIRECTED AND_EDIT-DIRECTED
DATA_TRANSNISSICN

When the list-directed and edit-directed
transmission modes are used for the same
file, the user is responsible fcr the
correct positioning of the file.

USE_CF_PICTURES WITH STREAM-ORIENTEL DATA
TRANSMI SSION

1. Character-string pictures:

The D Compiler handles them in the
same way as normal character-string
variables.

2. Arithmetic pictures:

All kinds of arithmetic pictures are
possikle in the data lists of GET and
PUT statements.

a. Edit-directed transrission:
Only such items in the data stream
which can be described by the E orx
F format can be transferred from
(FUT) or into (GET) arithmetic
pictures. If, on output, the pro-
granmmer wants the character regre-
sentation of the picture, he
should use the CHAR built-in func-
tion as pseudo-variable with the
picture as argument in the data
list.

b. List-directed transmission:
On input, only [+|-1] arithmetic
constants can be transferred into
arithmetic pictures. On output,
the character representation will
ke transferred into the data
stream.

General Programrming Informaticn 49

PICTURE_SPECIFICATIONS

Storage can ke saved Ly proper declaration
of fixed numeric PICTURE fields.

1. PICTURE specifications without drift-
ing characters: make the first digit
rosition '%Z' or '*' and avoid writing
the first '9' in the field immediately
fcllcwing an insertion character.

'29,99.v99"' is better than '99,99.V99’
'SZ729999" is better than *S999999°
'+72%,72999' is ketter than '+7Z%Z,9999"

2. Specifying "V." rather than ".V"
results in better code in the fcllow-
ing cases:

(a) If the first fractional digit
position is the first *'9' in the
field, then
‘'2%,2ZZV.99' is ketter than
'2%,2%%.V99".

(b) If a drifting character or zero-
surrression is specified past the
decimal point, then
*$55355VLaS$S" 1is ketter than
' $5555.Vvs3%”

"E¥x*x%V **x*' is better than
ETTE T ETY

3. Give the variable in the right-hand
side of an assignment statement the
attribute DECIMAL FIXED with the same
scale and precision as the PICTIURE.

50

If there is an expression cn the
right-hand side try tc prcduce the
desired scale and precision.

4, Zero-suppression with "*" costs more
storage (code) than zerc-surpressiocon
with "2" if

i oy wom
ing) or

is used (static or drifc~

rosition.

5. If the PICTURE does not contain at
least one "9", "I", "I" or "R", but
does contain a "vV", additional ccde is
required for clearing the field in
case of a zero value.

ENDPAGE_WITH MULTIPLE-LINE PUT

When using a FUT statement producing mul-

tiple lines, the ENDPAGE ccndition should

not ke enakled kecause cf possible lcss of
data:

ON ENDPAGE(F) GOTO X;
PUT FILE(F) EDIT(data-list) (fcrmat-1list);
X: new header;

In this example the ENDPAGE condition
may be raised during execution cf the data
list (assuming multiple-line output); but
no return from X is possible, sc that the
rest of the data list will be ignored.

Certain language features are provided in
PL/I to assist the programmer in dekugging
his program. These facilities are
described belcw.

EXHIBIT CHANGED

The EXHIBRIT CHANGED feature uses the
library routine IJKEXHC which requires
approximately 1200 bytes of main storage.

Functicn:

The first execution of the CALL IJKEXHC
statement causes the printing of the names
listed in the statement, and their values
in hexadecimal notation.

General Format:
CALL IJKEXHC (name , Name «...);

The argument 'name' can ke an unsuk-
scripted, ungyualified name representing an
element, an array, or a structure which
are nct contained in an array or struc-
ture, or it can be a string or arithmetic
constant. However, it cannot ke a lakel
constant, an entry name, or a file narme.

General Rules:

1. Names with the attribute AUTOMATIC are
rrinted each time the CALL IJKEXHC
statement is first executed after a
new block activation. WNames with the
attribute STATIC are printed only the
first time the CALL IJKEXHC is
executed if the activated block is
internal. They are printed each time
the CALL IJKEXHC statement is executed
if the activated block is external.

2. On subsequent rasses of the CALL
IJKEXHC statement, the names and
values are printed only if the value
has changed since the time the state-
rent was last executed.

3. If there are several CALL IJKEXHC sta-
tements in cne program, they are inde-
pendent from each other.

4. The maximum number of arguments for
one CALL IJKEXHC statement is 12. If
an argument has the BASED or DEFINED
attribute, the related pointer or base
variable is counted as an argument,
regardless of whether it has been spe-
cified in the argument list or not.

PRCGRAM-CHECKOUT FACILITIES

5. Up to 30 names can be checked by CALL
IJKEXHC statements within cne block,
if 10K bytes are available to the com-
piler. For each additional 4K, ur to
46K, 30 additional names can be
checked.

6. The values of element variables having
the attributes BINARY FIXED, BINARY
FLOAT, DECIMAL FIXED, DECIMAL FLOAT,
CHARACTER, BIT, or FICIURE are alsc
rrinted in their external form.

IRACING

The TRACING feature uses the library rou-
tine IJKTRON which requires 1258 bytes of
main storage.

Function:

The two statements, CALL IJKTRON and CALL
IJKTROF, function like a switch. IJKTRON
switches tracing on, while IJKIROF turns
it off.

If tracing is enabled for a blcck, the
following information is printed on
SYSLST:

1. ¢Cn entry, the external name of the
block, or, if the block has no label,
the internal name of the block.

2. ©On leaving a block via an END or
RETURN statement, a message is given
to indicate the exit. If the STMT
option is active, the statement number
of the END or RETURN statement is
printed as well as the number of the
statement to which the program
returns.

Note: If for 'CALL entry name' infer-
mation should ke printed, tracing must
be enabled for the blcck which ccn-
tains the entry name.

3. For each executed GCTC statement

a. the external name (up to eight
characters) and value cf the lakel
variakle or constant if the GOTO
statement is_not in an cn-unit, or

k. the ON-condition and the value of
the label variable or constant if
the GCTC statement is in an
on-unit.

If the STMT option is active, the sta-
tement number of the GOTO statemrent
and the statement numker of the target
statement are also disglayed.

Program-Checkcut Facilities 51

General Format:

CALL IJKTRON;
CALL IJKTROF;

General Rules;

1. Tracing can be explicitly enabled in a
bleck by a CALL IJKTRON statement.

2. A CALL IJKTROF statement explicitly
disables tracing in a block.

3. If tracing is neither explicitly
enabled nor disabled in a block, the
tracing status of the dynamically con-
taining block is applied.

4, The dynamically containing block of
the main procedure has tracing
disabled.

5. At least one of the two statements has
t¢c be specified if tracing is to
appear in an external procedure.

6. When calling an external procedure
(provided tracing is enabled at the
time of the call), the called phase
must have a call for either IJKTRON or
IJKTROF. If this condition is not
satisfied, the results are unpredict-
able in the event of an interrupt.

Exargle:

1) Al: PROCEDURE OPTIONS (MAIN) ;

2) CALL IJKTRON;

3) GOTO All;

L) All: CALL Bl;

5) Cc=3;

6) GOTO A2;

2] A2: BEGIN;

8) CALL IJKTROF;

9) GOTO A21;
10) A21: CALL IJKTRCN;

52

11

12)
13)

iw?

15)

16)

This example causes the fcllowing

Bl:

END A2;

END Al;
FRCCEDURE;

CALL IJKTRCF;

RETURN;

END B1;

(the

statement numkers in the above example are
referenced in the left-hand margin belcw) :

1)

2)

3)

4,13)

14,

15)

6)

7

12)

When the main prccedure is invcked,
no tracing status is specified and,
therefore, tracing for this blcck
and, per definition, for the dynam-
ically containing blcck is
disakled.

Tracing is explicitly enabled in
klock Al.

The external name and value cf
lakel A1l are printed.

No tracing status is specified fcr
this rklock; therefore, the
(enabled) status cf the containing
klock Al is adopted and the name of
the procedure Bl is printed.

Tracing is explicitly disabled for
this block, and nc nessage is
printed when control returns to
statement 5.

The external name and value of the
label A2 are printed since tracing
is still enakled in al.

With the activation of block A2
tracing is neither enabled ncr dis-
akled, therefore the (enabled) sta-
tus of block A1 is adopted and the
external name of klock A2 is
printed.

Tracing is disabled for blcck A2
and no message is printed.

Tracing is again enabled and the
pass of the END statement is indi-
cated on SYSIST.

Since tracing in the main routine
is still enabled, the pass of this
ENLC statement is also indicated on
SYSLST.

THE_DYNDUMP ROUTINE

The statement
CALL DYNDUMP (argument-1list);

may be used tc have the internal represen-
tation of the items in the argument list
displayed in hexadecimal notation. The
argument list may contain up to 12 items.
Each argument must ke either a scalar
expression or a variable name.

The DYNDUMP routine (56 kytes in
length) uses the PL/I Control routine and
the SYSPRINT file with the associated
module. No additional I/0 subroutines are
required. Thus, the DYNDUMP routine pro-
vides an econcmical way of displaying
intermediate results during checkout of
PL/I rrograms with a minimum of likrary
and I/0 module overhead.

The following example shows the use of
the DYNDUMP routine.

DECLARE A FIXED(5,2), B(10), C BIT(1);

e e e

CALL DYNDUMP (A,B,C);

Three items are displayed: A as 3
bytes (6 hexadecimal digits), B as U0
bytes (80 hexadecimal digits), and C as
one byte (2 hexadecimal digits).

Note: The current value of C is indicated
by the first bit. If the variable length

is an exact multiple of 48 kytes, the end

address+1 will be printed on the next line
in order to delimit the variables for ease
of reading.

LOCATING EXECUTION-TIME ERRCRS

If a PL/I object program is terminated by
the PL/I Control routine and the DUMP
option is active, the proklem program area
is printed (dumped) on the device assigned
to SYSLST. The following information is
intended to assist the programmer in ana-
lyzing a rprogram dump and to locate the
error that caused the termination of this
program.

‘Note: There is no guarantee that main
storage organization will always be as
described belcw. Severe programming
errors, €.g., illegal use of based
variables, the UNSPEC pseudo variable, or
use of user-written Assemkler subroutines
may yield unpredictable results.

If the error was caused by an I/0
operation, lcck up the Linkage Editor
storage map to find the address of the DTF
table for the respective file. The first

word of the DTF table contains the address
of the corresponding CCRB. For details cn
the CCB refer to the SRL publications
describing the DCS/TCS Sugerviscr and I/0
macro instructions.

Data declared with the attribute
EXTERNAL can ke found using the addresses
given in the Linkage Editor storage map.

To determine the absolute address of
static internal data refer to the cffset

Table Listing).

To locate the storage alliocated to an
automatic variakle, the cffset c¢f the
variable within the DSA (Dynamic Storage
Area) is determined fron the cffset takle,
and this offset is added to the DSA
address of the block to which the variakle
is internal. The address of the L[SA is
automatically loaded intc register 13 at
prologue time. Word 20 of the CSA con-
tains the DSA address of the statically
embracing klock.

The load point of the main DSA is the
next double-word boundary after the high-
est high-core address of all external
blocks linked in the prcgrarm.

More than one DSA may be allccated,
i.e., if more than one klock is active.
To find the DSA of the blcck where the
error is detected, check the byte pointed
to by register 13. If this byte contains
either X'hl' or X'h3' (h may be any hexa-
decimal digit), register 13 points to the
relevant DSA. In this case, the error
message was most prokably caused by a Pro-
gram Check interrupt.

The instruction that caused the inter-
rupt can be found by means of the diag-
nostic message. The old PSW and the regi-
sters can ke found at the lccation with
the external lakel IJKZWEI.

If the kyte contains X°05*, register 13
points to a LSSA (Library Standard Save
Area), the second word of which contains
the chain-back word. If this again pcints
to a LSSA, repeat the chain-back process
until the chain-back wcrd pcints tc a DSA.
This DSA then belongs to the block where
the error was detected.

To identify the block, go to the chain-
back address of the relevant DSA. If this
points to another DSA, word 5 of the DSA
contains the absolute address of the
block. The klock can then be identified
using the object code listing and the Lin-
kage Editor storage map. If the chain-
back word does not point tc a DSA, the
relevant DSA is the DSA of the MAIN proce-
dure (see Figure 254).

Program-Checkcut Facilities 53

active block.

The chain of DSAs resembles the current
environment at the point of execution
where the error was detected.
the chain has its corresponding currently
From where and at which

CALL SUB1?
L 15,=V(SUBI)
BALR 14,15
END, .
L 13,4(13)
LM 14,12,12(13)
BR 14 to STOP Routine

DUMDSA

MAIN . .PROCEDURE OPTIONS (MAIN), .

F————————————

Static Storage

DSA SAVMAIN

Flags | AL3(Block Description)

L4 ___ 2

Chain Back
A(DUMDSA)

Chain Forward

A(Next Available Core)

- Retum Register 14

Entry Register 15

Work Area

Variables

Y

Figure 25A. DSA Chaining

54

r————-’
+—=—1

I
|
L—

I—

Each DSA in

be determined by means cf the LCSA of the

calling klock. For detailed information

on the first 20 words of the DSA refer to
the section lLinkage Conventions.

SUB1..PROCEDURE, . LAST. .PROCEDURE, .
USING *,15 USING *,15
r-'#. STM 14,12,12,(13) i——- [STM 14,12,12(13)
' |
PROLOGUE : PROLOGUE
|
|
CALL LAST |
L 15,=V(LAST) | RETURN
BALR 14,15 : L 13,4(13)
-1 i LM 14,12,12(13)
| I BR 14
| I
| RETURN |
| L 13,4,(13) i
| LM 14,12,12013) |
'l e 14 I
|]
: Static Storage { Static Storage
| |
I
| | |
| | DsA sAvsusl I |] OsA saviAsT
++ 4+ | %
: Flags | AL3(Block Description) H = : : : Flags | AL3(Block Description) |
| Chain Back L1 Chain Back
L] qin Bac
TJV A(Calling DSA) ‘:"f‘ A(Calling DSA)
|
: Chain Forward _1__} Chain Forward
i A(Next Available Core) T~ — | A(Next Available Core)
! |
LY Retumn Register 14 | Return Register 14
|
Entry Register 15 - - Entry Register 15
Work Area Wori< Area
Variables Variables

location a specific klock is activated can

e —dJ

The storage requirements for data depend
on the following two factors:

1. The storage required for the data
itself.

2. The storage regquired for the data
descriptcr. (The data descriptor is
reguired whenever the compile-time
data description is to ke used in the
object program.)

DATA_DESCRIPTORS

A data descriptor may describe more than
one data iter. Only one data descriptor
is required fcr a group of data items that
have identical (either explicitly or
implicitly declared) attributes, e.g., for
individual variables of identical attri-
butes or for array elements. Thus, the
statement

DECLARE (A,
(5,2), (E, F,

B, C(21), D) FIXED DECIMAL
G) PICTURE *$99.99°';

requires only two descriptors: one
describing A, B, the 21 C's, and D, and
one describing E, ¥, and G. Constants
(except those used in output lists), label
variables, lakel constants, or pointer
variables do not require a descriptor.

A data descrirtor and, therefore,
storage in the object program is required
only if the rertinent data item is used in
a conversion or I/0 library subroutine.

r h T T 1
| Fixed decimal] | |
| Float decimal| | |
| Fixed binary |Coded 1
Float binary		
Sterling		
constants		
+ {Arithmetic
|Fixed decimal|Numeric | |
| Float decimal| (picture- | |
| sterling | specified) | |
+ I
|Character | [| |
| Bit |String | |
| Picture- | N |
| srecified | | |
| character | | |
r y {Non- |
| Label |Label larithmetic |
t- + i [
|Pointer |Pointer | |
L~ 1 de e 3
Figure 26. Types of Data Items

DATA_STORAGE REQUIREMENTS

DATA_ITEMS

Figure 26 shows the types of data items
that require storage. In the fcllowing
text, the storage requirements for each of
these items are specified and illustrated
by means of examples. The storage
requirements given in these exanples fper-
tain to the data only. Unless otherwise |
stated, references to ccded arithmetic and
string data apply to both variables and
constants. Other data types will have
constants and variables explicitly dif-
ferentiated in regard to storage
reguirements.

CODED ARITHMETIC DATA
Binary Fixed

Default precision: 15 bits
Maximum precision: 31 kits
Storage requirements:

1. Descriptor
3 bytes (if required)

2. Data
4 bytes internal fixed-point regaxrd-
less of declared or default precisicn.

Figure 27 shows the storage require-
ments for the binary fixed data declared
in the following sample statement:

DECLARE I(8,5), A FIXED BINARY(D7),
J STATIC, Z(3) FIXED BINARY(27);

r~—=--7T T T]
|DATA | DECLARED | CEFAULT | i
| ITEM| ATTIRIBUTES | ATTRIBUTES |BYTES|

L 4 4 y

T T T 1
| I |Dimension (8,5) |FIXED BINARY | 160 |
| | |Precisicn (15) |]
S S + {
| A |FIXED BINARY |None | 4|
| | Precision (7) | | |
b=t % temmmnd
| 3 |STATIC |FIXED BINARY | 4 |
| | |Precision (15)] |
. e + $ommeei
{ 2 |Dimension (3) |[Ncne | 12 |
| | FIXED BINARY | | |
| |Precision (27) | | |
% 4 & 4 %
| TOTAL 180 |
L —_— J

Figure 27. Example of Binary Fixed Data

Data Storage Requirements 55

Decimal Fixed

Default rrecisicn: (5,0)
Maximum precision: (15,0)
Storage requirements:

1. Descriptor
3 bytes (if required)

2. Dpata
Packed decimal form --
4 bits = 1/2 byte for each digit. The
sign is always stored and requires 1/2
byte. The total storage required must
be expressible in Lkyte form, i.e.,
+5.2 requires 2 bytes (1/2 byte for
the sign, 1 kyte for the two digits,
1/2 byte padding).
Scale factor range:
present).

0 to 15 (if

Figure 28 shows the storage require-
ments for the decimal fixed data declared
in the following sample statement:

DECLARE A FIXED, B(5,2,3) FIXED, I FIXED
STATIC, Q FIXED(14,2);

=== » T =y 1
| DATA | DECLARED | DEFAULT | i
|ITEM| ATTRIBUTES | ATTRIBUTES |BYTES|

} oo e i
| A JFIXED | DECI MAL i

| | |Precision(5, 0)] 3
e + S i
B	Dimension	DECIMAL	
	5,2,3)	Precision(5,0)	90
	FIXED		
e ommmmmmmmm e fo-mm- .			
I	FIXED STATIC	DECIMAL]
	{Precision(5, 0)} 3		
p-===t== + . 1			
@	FIXED	DECI MAL i 8	
	Precisicn(14, 2)		
e Ao boeeeey			

TOTAL 104 |

—_—— 4

Figure 28. Example of Decimal Fixed Data

Default precision: 21 bits
Maximum precisicn: 53 kits
Storage requirements:

1. Descriptor
2 bytes (if required)
2. Data

Hexadecimal floating-point form (see

the SRL puklication IBM System/360,

Principles of Operation, Form

A22-6821).

a. Short floating-point form (4
bytes) used for a precision of
less than 22 Lkits.

b. Long floating-point form (8 bytes)
used for a precision of greater
than 21 bits.

56

Figure 29 shows the stcrage require-
ments for the kinary flcat data declared
in the following sample statement:

DECLARE A BINARY, B BINARY(29), C(2,5)
BINARY(16), D FLCAT BINARY(50);

~——--T T T 1
|DATA| DECLARED | TCEFAULI | |
|ITEM| ATTRIBUTES | ATTRIBUTES |BYTES|
p-———1 e - {
| 2 |BINARY | FLOAT | 4
| | |Precisicn (21) | |
I 4 i

v Tr—T=TTTEs s - - T {
| B |BINARY | FLOAT | 8|
| | Precision (29) | | |
p=—t- e $o-—1
| C |Dimension (2, 5)|FLOAT | 40 |
[{ BI NARY | | I
| |Precision (16} | | |
p-—-—+ Fmmmmmmmmm ¥ y
| D |BINARY FLCAT |Ncne | 8 |
| |Precision (50) | | |
k.-__ 1 4 —_——— L %
| TOTAL 60 |
e e e e e e e e e e o o e e e e e e 2 e Jd

Figure 29. Example of Binary Float Data

Decimal Float

Default precision: 6 decimal digits
Maximum rrecision: 16 decimal digits
Storage requirements:

1. Descriptox

2 bytes (if required)
2. Data

a. Short form (4 bytes) used for less
than 7 decimal digits.

b. 1long form (8 bytes) used for nore
than 6 decimal digits.

Figure 30 shows the stcrage reguire-
ments for the decimal float data declared
in the following sample statement:

DECIARE A(5,3), B FLCAT(8),
C DECIMAL(14), D;

r~ T T T 1
|CATA| DECLARED | DEFAULT I i
|ITEM| ATTRIBUTES | ATTRIBUTES |RBYTES|
k-——-1+ 4--=-—- ¥ 1
| & |Dimension (5, 3)|DECIMAL FLOAT | 60 |
| | |Precisicn (6) | |
b=t 1 L
| B |FLCAT |DECIMAL | 8 |
| |Precision (8) |] |
-+ 1 {
| ¢ |DECIMAL | FLOAT | 8 |
| |Precision (14) | | |
e 4 1 !
| D |None |DECIMAL FLOAT | 4 |
| | |Precisicn (6) | |
-t i L -9
| TOTAL 80 |
Lee J
Figure 30. Example of Decimal Flcat LCata

NUMERIC (PICTURE-SPECIFIED) DATA

Default precision: not applicatle

Maximum length: after resolution of all
rerlicaticns, the picture-specified num-
eric field must not be greater than 32
characters. The numker of possikle
picture-specified digit positions
derends on whether the numker is numeric
fixed (15 digits) or numeric float (16
digits).

Storage reguirements:

1. Descriptoer

a. Fixed-point data -- one byte for
each picture character plus 8 to
20 bytes, with an average of 12
additional kytes (if required).

b. Floating-point data -- one byte
for each picture character plus 20
to 44 bytes, with an average of 24
additional kytes (if required).

c. Numeric sterling data -- one byte
for each picture character plus 4
bytes (if required).
2. Data

6E€-byte for each picture character
excert fcr M, V, K, and G.

Figure 31 shows the storage require-
ments fcr the numeric data declared in the
following sample statement:

DECLARE A PICTURE '$99.99', B PiCTURE
"(8)9V(4)9', C PICTURE '.99K+99°, D
PICTURE 'ZZ99B9(2)B.9,99¢;

r=——-7 T T===""1
BEFORE	AFTER		
DATA	REPLICATION	REPLICATION	
ITEM	RESOLUTICN	RESCLUTION	BYTES
b====t + St e			
] & 14$99.99	Same] 6		
e t - tommm			
B }(8)9V(4)9	99999999v9999	12	
L L			
r =t T ““+ “““ f			
C 1.99K+99	same [6		
e g m e i			
D	2299B9(2)B.9,99	ZZ99B9BB.9,99	13
L= i —d
1 TOTAL 37 |
e e e e e e e e e e e e e e e e e v e 3

Figure 31. Example of Numeric Data

STRING DATA

Character-String Data

Default
Minimum
Maximum
Storage

rrecision: not applicable
length: 1 character
length: 255 characters

requirements:

1. Descrirtor

2 bytes (if required)

2. Data
1 byte per character

Figure 32 shows the storage reguire-
ments for the character-string data de-
clared in the following sample statement:

DECLARE A(5) CHARACTER(20), B CHARACTER

(111);
) T == T 1
| DATA ITEM | DECLARED ATTRIBUTES | BYTES |
b=~ 1 - ¥ !
| A | Dimension (5) | 100 |
| | CHARACTER (20) | |
b= t -
| B | CHARACTER (111) | 111 |
t : + 4 1
I TOTAL 211 |
L -— J
Figure 32. Example of Character-String
Data
Bit-String Data
Default precision: not agglicable
Minimum length: 1 kit
Maximum length: 64 bits
Storage requirements:
1. Descriptor
2 bytes (if required)
2. Data
1 byte for each group of 8 bits or
part thereof. Packed format is nct
permitted.

Figure 33 shows the storage require-
ments for the bit-string data declared in
the following sample statement:

DECLARE A BIT(12), B (11,7,2) BIT (1);
r—= - T ————=—- T 1
| DATA ITEM | DECIARED ATTRIBUTES | RBYTES |
F t t 4
| A | BIT (12)] 2
fmmmmmmmmmmmpmm - + {
| B | Dimension (11,7,2) | 154 |
| { BIT (1) | |
k-~ L e 1
| TOTAL 156 |
| A - —— J
Figure 33. Example of Bit-String Data
Picture-Sgecified Character-String Data
Default precision: not arplicable
Minimum length: 1 character
Maximum length: 255 characters
Storage requirements:

1. Descriptor
2 bytes (if required)
2. Data
1 byte per character
Data Storage Requirements 57

Figure 34 shows the storage require-
ments for the ricture-specified character-
string data declared in the following
sanple statemrent:

DECLARE A PICTURE *'(105)X', B

CHARACTER(105):
r T e et
| DATA ITEM | DECLARED ATTRIBUTES | BYTES |
b= + e !
| A | PICTURE ' (105)X’ | 105 |
prmmmmm e + e .
| B | CHARACTER (105) | 105 |
pmmmmme e L e 1
| TOTAL 210 |
b e e J
Figure 34, Example of Both Character-
String and Picture-Specified
Character-String Data
LAEEL DATA

Label Variables

Default rrecisiocn: not applicakle
Maximum precision: not applicable
Storage reguirements: 8 bytes

Label Constants

Default precision: not applicable

Maximum precision: not applicable

Storage reguirements: 8 bytes for each
occurrence of the label in an assignment
statement or in a GO TO statement refer-
ring to a label that is not contained in
the blcck containing the GO TO state-
ment. Label constants in R format items
require 4 bytes. All other label con-
stants do not require storage.

Figure 35 shows the storage require-
ments for the label data declared in the
following sample statement:

DECLARE A LABEL, B(7) LABEL;

T b et
| DATA ITEM | DECLARED ATTRIBUTES | BYTES |
e + s e !
| A | LABEL | 8 |
e ommmmm e et S :
| B | Dimension (7) | 56 |
| | LABEL] |
} L I
[TOTAL 64 |
| O, ——— 4
Figure 35. Example of Label Data

POINTER VARIABLES
Default precision: not applicable

Maximum precision: not applicakle
Storage requirements: U4 Lytes

58

Figure 36 shows the storage reguire-
ments for the pointer variable declared in
the following sample statement:

DECLARE P PCINTER, A BASED (P) FLOAT;

r——==1= T T 1
| CATA| CECLARED I DEFAULT | |
|ITEM| ATTRIBUTES | ATIRIBUIES |BYTES|
p-=-—4 T
| P |POINTER |Ncne |4
I i -t 4 }
L)

I TOTAL 4
Lo -]
Figure 36. Example of Pcinter Data

DATA STORAGE DEFENDING CN STORAGE CLASS

STATIC and AUIOMATIC data regquire the same
amount of storage. No storage is required
for BASED data. However, accessing based
variaktles by means of pcinters reguires U4
extra bytes per reference compared with
the other storage classes.

STORAGE_OF_ EXTERNAL DATA

Each distinct EXTERNAL variable, array, or
structure requires storage in multiples of
8 bytes, since padding to the next double-
word boundary is required if the length of
the EXTERNAL data item is not 8 2r a mul-
tiple of 8 bytes. Figure 37 shcws the
storage requirements of the EXTERNAL data
declared in the following samgle
statement :

DECLARE (A BIT(2), B(3,2,3) CHARACTER(2),
C CHARACTER (9), D FLOAT(14), E,
F PICTURE '$99.99', G FIXED DECIMAL
(13,2)) EXTERNAL;

r T TETETTE T 1
| | BYTE RECUIRED |
I t T T {
| VARIABLE | DATA | | |
| | STCRAGE | EACLING | TOTAL |
frmemm e e e e 1
| A | 1| 7 | 8

F ¢ e oo 1
| B | 36 |) | 40 |
f-—m - G - o —
| ¢ | 9 | 7 | 16 |
b= t —fmmmmmmmm- e e .
| D | 8 | 0 | 8 I
prmmmm e e +--- +- !
| E I 4o 4 I 8 I
b + fmmmm e e 1
| F | 6 | 2 | 8 |
pmmommm e e T e {
i G | 7 1 | 8 I
L -1 L ——te J
Figure 37. Example of External Data

Storage

USE_OF CONSTANTS IN THE_SQURCE TEXT

Constants may appear in the source text
wherever an expression is permitted. In
addition, they may appear as replication
factors, uprer kounds of a subscript range
in the dimension attribute of an array,

etc.

Arrearance and representation of

constants in the object program degends
entirely on their representation and con-

text in the source program.

Cnly the fol-

lewing three cases are of concern to the
programmer:

1.

2'

If a constant appears in the source
text as an argument in a function or
subroutine procedure, its object-time
representation is derived directly
from the source-program representa-
ticn. For example, the statement

CALL A (1.5, 3.7E-4, 110011B);
results in an object-time FIXED DECIM-
AL representation of the constant 1.5,
a FLOAT DECIMAL (short float) repre-
sentaticn of the constant 3.7E-4, and
a FIXED BINARY representation of the
ccnstant 110011B.

Note: If arguments are written as
constants, these constants are trans-
mitted to the called routine in coded
form and with the precision derived
from the source text representation.
The called routine, in turn, assumes a
certain internal representation of the
argument as specified in the paramreter
declaraticn. The user must therefore
ensure that base, scale, and precision
of becth arguments and parameters
match. For instance, declaring the
first parameter in the akove example
as FIXED (7,1) might lead to an
object-time error kecause the called
program assumes an argument that occu-
ries 4 bytes, whereas the constant 1.5
occupies only 2 bytes.

If a constant appears in the source
text as the upper kound of an array
subscript, the appearance of this con-
stant in the object program depends on
how the expression used in this sub-
scrirt rosition is employed in the
remainder of the source text. At
best, no constant appears at okject
time for any upper bound. In the most

unfavorable case, a FIXED BINARY con-
stant appears in the cbject program
for every upper kound in the dimension
attribute of tne DECLARE statement.
Thus,

DECLARE A (5, 7, 2), B (9, 11);

may result in, at most, five FIXED
BINARY constants in the object pro-
gram. At best, no object~time con-
stant will appear for the five upper
bounds in the source text.

An object-time constant is derived
form each source-text constant of a
certain base, scale, and precision.
Bowever, kase, scale, and precision of
the object-time constant depend
entirely on the context in which it is
used. For example, the statements

DECLARE A BINARY;
A =1.7;

cause the constant 1.7 to be stored in
the okject program in floating-roint
form, even though the source-text
representation is fixed decimal.
shows that identically represented
source-text constants may be converted
at compile time into a number of dif-
ferent okject-time constants (this
does not apply to ccnstants in LO
iteration specifications). For
instance, the following sarncle

st at ements

This

DECIARE A FIXED DECIMAL,
B BINARY, C FIXED BINARY;

A= 2;
B = 2;
c = 2;

result in three different object-time
representations of the single cocmpile-
time constant 2. Cn the other hand,
constants of equal value, base, scale,
and precision are stored only once in
the object program unless NOOPT has
keen specified in the PL/I PROCESS
card. When in doubt about constants
which appear similar, e.g., 1.2E+7 as
opposed to 12000000, the programmer
should review the question of preci-
sion of arithmetic ccnstants in the
Subset language publication.

Data Storage Requirements 59

DATA_ STORAGE MAPPING

This section discusses the location of a
variable in relation to other variakles.
The location of data with respect to the
entire program is discussed in the section
Prcqgram Overhead.

Boundary Requirements

In the object program, variakles that are
not part of a structure are grouped
according to certain rules referred to as
boundary requirements, which depend on the
hardware configuration of the system used.
For the System/360, the largest unit of
stcrage is the "doukle word" (8 kytes),
which must always be on a double-word
boundary (double-word aligned). That is,
the first byte of any double word in
storage must ke on an address divisible by
8. "Full words" (4 bytes) must be full-
werd aligned, i.e., the first byte of any
full word in storaye must be on an address
divisible by 4. Bit strings, as another
example, must be byte aligned, i.e., they
may occur on any byte koundary. If any
machine address divisible by 8 is chosen
as arbitrary kyte 0, the akbove koundary
requirements can be reduced to the
following:

s double-word aligned data may appear on
any byte 0;

e full-word aligned data may appear on
any byte 0, 4, 0, 4, etc.; and

® byte-aligned data may appear on any
byte 0, 1, 2, 3, ... 7, 0, etc.

STORAGE_MAPPING -- ELEMENT DATA

To minimize padding between element data
items, the DOS/TOS PL/I compiler gathers -
as far as possible - all element data
items that are subject to the same boun-
dary requirements. This is done regard-
less of the point of declaration within
the program.

The fcllcwing discusses the possibili-
ties of mapping elementary data items not
contained_in structures or_ arrays and
should be understood as an introduction to
the mapping of structures.

Much storage can be saved ky economic-
ally arranging the individual data types.
Consider the following example:

A BIT(2), B, C BIT(9), D;

1he result of left-to-right storage
allocation is illustrated in Figure 38.

60

The total storage requirement in this
example is 16 kytes, of which 5 are used
for padding.

A B c
P
L) 1] T L)
1 [l ! ==
1 L - 1
o 1 2 3 4 5 6 7 0 1

Figure 38.

Storage Allccation Example 1

Rearranging the variakles as follows:
A BIT(2), C BIT(9), B, D;

results in a reduction of the total
storage requirements to 12 bytes with only
one padding kyte. Figure 39 ijllustrates
the storage allocation.

I EER=NEEEE

1 2 3 4 5 6 7 0 1 2 3
Figure 39.

e PA
-—<50

Storage Allccation Example 2

Finally, assume that the variables were
rearranged as follows:

E, D, A BIT(2), C BIT(9);

This is the way in which the DOS/TOS PL/I
compiler gathers elementary data items not
contained in arrays or structures. The
total storage requirements would be
reduced to 11 bkytes without any padding.
The storage allocation is shown in Figure
40.

B D A C
~ . aY A\ ‘I_'H/_'A—\
T 1 7 | B T
I 1 [[| I 1 1
. ' 'l 1 '} [l r
0 1 2 3 4 5 6 7 0 1 2

Figure 40. Storage Allocation Example 3

STORAGE _MAPPING -- ARRAYE

The storage requirement of an array equals
the sum of the requirements of the indivi-
dual data items contained in the array.
Bit-string data items are aligned cn byte
boundary. Thus, the storage requirement
of the array declared in the statement

DECLARE A(5,4,3) BIT(9);

can be calculated as follcws: The nunrber
of data items in the array is 5x4x3=60.
Due to boundary alignment, each itern
requires 2 kytes. Total storage reguire-
ment: 2x60=120 bytes.

The individual items of an array are
stored in major row seqguence. For the
above examrle, this means that the items
are stored as follows:

A(1,1,1)
A(1,1,2)
a(5,4,2)
a(5,4,3)

STORAGE MAPPING -- STRUCTURES

To minimize pradding, the DOS/TOS PL/I com-
piler gathers - as far as possible - all
elementary data items that are sukject to
the same boundary reguirements.

In the declaration of a structure, such
gathering of data is not performed kecause
a structure is regarded as one record, and
the programmer might wish to predestine
the relative position of every data item
within that reccrd, e.g., in a punched
card. Thus, the statement below results
in the storage allocation illustrated in
Figure 41. The total storage requirement
is 12 bytes, including 3 padding Lytes.

DECLARE 1 A ALIGNED, 2 B, 2 C BIT(1), 2 D;

Figure #41. Storage Allocation Example U

In this examrle, structure A, which has
the unused 3 bytes between C and D, can be
thought of as a record without any editing
descriptors for the components B, C, and
D. It should not be thought of as a kit
string because this might lead the pro-
grarmer to erroneously assume that the
first bit of the byte following C is the
first bit of L.

Logical Degpth Ccncept

In the fcllowing discussion, the term
"logical depth" is used to describe the
level nurber of a minor structure or ele-
mentary data item relative to the level of
the major structure. A minor structure or
elementary data item can have a high level
number but be at a relatively low logical
depth. For instance, in the following
sample declaration:

DECLARE 1 A,
15 B,
15 ¢,
95 D,
95 E,

15 F,
31 G,

structure J has components at logical
depth 5 although the level number is 54.
The logical depth of these components is
greater than that of the conpcnents of
structure C (3), even though their level
number (54) is not as high.

When mapping a major structure, first
map all minor structures at greatest log-
ical depth n. Then continue with magring
the minor structures at logical depth n-1.
The components that form the minor struc-
ture at logical depth n-1 consist of:

1. elementary items at logical depth n,
and

2. minor structures at lcgical depth n,
which have already keen mapped.

After mapping the minor structures at
logical depth n-1, proceed by mapring all
minor structures at logical depth n-2.
Again, the components that form the minocr
structure at logical depth n-2 consist of:

1. elementary items at logical depth n-1,
and

2. minor structures at logical depth n-1,
which have already been marred and
contain the mapped structures at log-
ical depth n.

Ccontinuing this prccess leads to the
major structure, which is at logical
depth 1. Mapping of the major structure
is done ky joining the components at log-
ical depth 2. These compcnents ccnsist
of:

1. elementary items logical depth 2, and

2. minor structures at lcgical derth 2,
which have already keen mapped and
contain the mapped structures at 1lcg-
ical depth 3. These, in turn, contain
the mapped structures at lcgical degth
4, etc.

The storage mapping of structures is
done according to the set of rules listed
kelow. In the mapping process, a com-
ponent (or a group of partially marred
components) may ke shifted to minimize the
padding that may be required between theé
component and the component to be
appended. The opportunity or rctential
for such shifting depends on the stringen-
cy level of the element tc be arpended.
The amount of shifting that is permissible

Data Storage Mapping 61

r | S T T T T

| variable |Stored Internally| Storage | Alignment | |Strin-
| Type | as | Requirement? |Requirement| Explanation |gency
| | | (in Bytes) | | | Level
t - L Uttt et + + +

| BIT (n) 2 |One kyte for each| n |] |

| |group of 8 bits |CEIL -—= |

| | (or part thereof)| 8 | | |

F - tomem e i | I

r T

| CHARACTER (n) {One byte per | n | |

| | character | | | Data ray |

——= + - t- - i I begin on |

| PICTURE |One byte for each|Number of | Byte | any byte] 1
| |PICTURE character|PICTURE charac-| | |

| |except M,V,K,G |ters other thanj |

| | [M, V, K, and G | | |

r e e i I |
|DECIMAYL FIXED |11/72 byte per wtl | | |

| (w, d) |digit plus 1/2 |CEIL == | | |

| |byte for sign | 2 | | |

b +-- : + -—- + t t

| BINARY FIXED (w) |Binary integer | | | |

k } -—-—1 | I I

| BINARY FLOAT (w) | | | | Data must |

| w < 22 | Short | 4 | Frll-vord | begin on |
b--- {floating point | | | byte 0 or 4 |

| DECIMAL FLOAT (w) | | [| | 2
| w <7 | | | I |

[N L J o e e e o e { | I

r T T

| LABEL L - I 8 | | |

t 1 -+ —mmemmet + !

| POINTER | -—- | 4 | Full-word | Data must |

| | | | (right- | kegin on |

| | | | adjusted) | byte 0 or 4 |

[N } - N - —— 4 ———— 4

r T T T T
|BINARY FLOAT (w) | | I | |

| 21 < w < 54 | | | | Data must |

[{Long | 8 | Doukle- | begin on | 3
| DECIMAL FLOAT (w) |floating point | | woxd | byte 0

I 6 <w< 17 | | I I |
b---- 8 ——dn L 1 1
|*See Storage of External Data for data declared with attrikute EXTERMAL.
{2Structures containing kit strings must have the attribute ALIGNED because the default

| attribute (UNALIGNED) is not permitted in the PL/I Sukset language.

L

e e e sl s — —— — g S—— — — —— — — — — — —— T o ot S m—— d— — ———— {— ———— — . t—— —] c— o——

Figure 42,

is determined by the alignment require- 3.

ments of the element(s) to be shifted.
Both the stringency level number and

the alignment requirements for the indivi-
dual data items are shown in Figure 42.

Structure Mapping Rules

1. Locate the first minor structure of
the greatest logical depth. (See
Figure 43, part A. The declaration
shcwn is used throughout the figure.)

2. Begin the map with the first element

of this minor structure. The map
begins on byte zero (See Figure 43,
part B).

62

Summary of Data Alignment Regquirements and Stringency Levels

Append the next element of the rinor
structure at the first following byte
position where it may be legally
placed. This kyte position is deter-
mined by the alignment requirement cof
the element to ke appended. (See
Figure 43, part B.)

Owing to the alignment reguirement,
some unused space (radding) may result
ketween the first and the appended
element. The preceding element may
then ke shifted to the right prcvided
the alignment requirement of that ele-
ment is still satisfied after the
shifting. If no shifting or only a
partial shifting is permissible, the
padding remains there permanently.
(See Figure 43, part E.)

The elements so mapped are now per-

manently joined and may be considered

a single element.

The alignment

requirement of the joined items is
that of the item of higher stringency

level.

Figure 43, part B.)

Rereat rules 3 and 4 for all remaining
elements of the minor structure.

(See
10.

Repeat rules 2 through 6 for all minor

structures of the same logical depth.

Map all minor structures individually.

(see Figure 43, part C.)

Repeat rules 2 through 7

11.

for the minor

structures of the next higher logical

depth.

according to rules 3 and 4.

Elementary items are aprended

Minor

structures are appended keginning at
the byte position they had when they

were rreviously mapped.

Padding

12.

between the two elements, if any, is

remcved by

Any padding that remains after these
two shifting processes remains there
permanently. (See Figure U3, rart D.)

Continue this repetitive process until
all minor structures are marped. (See
Figure 43, part E.)

Map the major structure as if mapring
a minor structure. (See Figure 43,
part F.)

If the shifted structure does not
begin on byte zero, pad tc the left
until Lkyte zero is reached. This is
the physical beginning of the struc-
ture. However, the name of the major
structure still points to the first
component of the structure.

The first element of the structure
must kegin on kyte zero of the struc-
ture being mapped if the structure is
a based variakle and the pointer vari-
able associated with it arpears in the

a. shifting the succeeding element as SET clause of a READ or LOCATE state-
far tc the left as its alignment ment. In this case, the user must
rejuirement permits, and make sure that the structure begins on

byte zero. Padding, if required, is
best done with a dummy variable of the

b. shifting the preceding element as CHARACTER type. (See Figure 43, fart
far to the right as its alignment G.)
requirement permits.

® DECLARE 1 A ALIGNED,) ©
2 B DECIMAL FIXED (11),
2 ¢, Rule No, 2 ““ Rule No. 2
3D BIT (4),
3E PICTURE *(8)9V (4)9*, o 1 2 3
3F,
4 G LABEL, S 2 K N o
4 H PICTURE *9.9K599°, : —r— F
B BEEREEEEREREI2
Stort here ——o 5 J BIT (7), .
(Rule No. 1) 5 K FLOAT (6), 0 1 2 3 4 5 & 7 o1 2 3 4 5 6 7
5 L BINARY (32),
4 M, J K N+O E
5 N CHARACTER (4) =N T
‘ T B H i T T Y T T T
ST, IEEEREC T iR R R
2 Q, 3 4 5 6 7 0167 0 1 2 3 4 5 6 7
3RBIT (), M
3s, J K L
4 T LABEL, A = 3 - - — — : = Rule No. 6
: 3 ::'gAA‘}rY(;f?) B [; ; j_ I i : : ; i E i l Application of Structure Mapping Rule No. 7
3 W CHARACTER (3), B 4 5 6 7 0 1 2 3 4 5 & 7
2 X DECIMAL (6); M Rule No. 6
Somple Declaration Application of Structure Mapping Rules Nes. 2-6
Figure #3. Example of Structure Stdrage Mapping (Part 1 of 2)

Data Storage Mapping 63

© K . T
H H [i H T I T T T
[}] i [} Rule No,
REBREEREEERLN REREEEERERTL
0 1 2 3 4 5 6 7 | 0 1 2 3 4 5 & 7
s H | T y
~ A
I I EEEEEE | TN EREE
20 HE T Rule No. 3 l :RJ I . I Rufe No. 3
016 7 0 T2 3 4 5 ‘ 0 16 7 0 1 2 3
: T+U \
7T T T T
o O EEREREN
i A ' 1 1 | i
I 012 3 1 2 3 4 5 6 7
Rule No. 6
| T+ v
l f_J_\ A
Ll T 1) 1
Rule No. 8 1 ofb T v T] e Nos
l 'l '} ' L I} 1 I 4
l 4 50 7 0 1 2 3 4 5 & 7
G+H | M | S
L= —
1] v T T |
| 01I [}]] Rule No. 6
<4 501 2 3 46 7 0 16 7, I
F Application of Structure Mapping Rule No. 8
D
ﬁRuIQNo.Z ’
0 |
D £ |
T T T T T ;\ T M T T 3
l l N T T T T T S A S B IRuIeNo.3|
N S B N SN S S T S |
0 1 2 3 4 5 6 7 0 1 2 3 4 I
I R S
m RUIeNO‘a
l 3 4 56 7
R+S w
| H H f q T T
Ij' I |§<l !RU|QNO.4 |) '{{l l t] lRuleNo.b
A 1 .t | 1 1 1 1 1
w7 02 3 4 5 6 7 3 4 5 67 0 1 2
C | Q

Application of Structure Mapping Rule No, 9

©®

@

i T T ; T T A
L I oy l Rule No. 2 ~— -~ N
A 1 . 1 Y T M T) 1
[12 3 4 5 6 —DE : D | % |L 1 1 I
[
0 P21 2 3 4 5 & 7

If one of the conditions specified in Structure Mapping Rule
No. 12 were applicable to structure A, the leading padding
byte could be removed by inserting a dummy variable as
follows ;

DECLARE | A ALIGNED,
2 8 DECIMAL FIXED (11),
2¢C,

The unused character variable PAD now occupies byte 0 so
that the requirements of Rule No. 12 are met.

Application of Structure Mapping Rule No. 10

Application of Structure Mapping Rule No. 12

Example of Structure Storage Mapping (Part 2 of 2)

Figure 43,

64

Three types cf subroutines may be required
in a program:

1. Conversion subroutines.

2. Subroutines called by built-in func-
tion names, pseudo variakles, and
other implied subroutine calls.

3. Subroutines called by I/C statements.

CONVERSION SUBROUTINES

Conversion subroutines are required in the
object program when certain conversions
are irplicitly requested in the source
text. For example, the statements

DECLARE A FIXED BINARY, B FIXED, C
BINARY;
A =B + C;

imply that B is to ke converted to binary
flcat before being added to C, and that
the sum is to be converted to fixed binary
before being stored in A.

The 18 ccnversion sukroutines (see
Appendix A) can perform every kind of data
ccnversicn rermitted in the PL/I Sukset
language. Appendix B lists all possible
corbinations cf data conversion and shows
which subroutines are required to perform
such conversions. For instance, the conv-
ersion from numeric float to numeric fixed
deciral requires sukroutines 4, 5, and 12
Subroutine 5 converts from numeric float
tc an internal intermediate form. Subrou-
tine 4 converts from this internal inter-
mediate form to coded fixed decimal. Sub-
routine 12 ccnverts from coded fixed
decimal to numeric fixed decimal.

Note: 1In some cases it may happen that no
subrcutine is used at okject time although
the condition for its inclusion was satis-
fied. 1In these cases, the user has over-

estimated his storage requirements.

Average Cconversion Requirements

A system used for scientific purposes will
normally use sukroutines 1, 2, 7, 8, 9,
10, and possibly 17 and 18, with a total
storage requirement of approximately 2K
for an average program.

A system used for commercial purposes
will mcst likely use sukroutines 11 and 12
with a total storage requirement of appro-
ximately .7K for an average program.

SUBROUTINE_STORAGE REQUIREMENTS

BUILT-IN FUNCTIONS, PSEUDO-VARIABLES, AND
OTHER IMFLIED SUBRCUTINE CALLS

Certain ruilt-in functions and pseudo-
variables require an object-time subrcu-
tine for proper functioning. Some of the
built-in functions only allcw float argu-
ments. If an argument is not in this
form, it is converted befcre the subrcu-
tine is activated.

The source text .operatcr ** is an
irplicit request for an exponentiation
subroutine and, depending on the attri-
butes of the arguments, six different suk-
rcutines could ke required.

All information required for this type
of subroutines is listed in Appendix C.

Depending on the specific arguments,
scme functions that are marked IL may or
may not require subroutines. Fcr
instance, a fixed first argument in the
FIXED function would not require a subrcu-
tine, whereas a float first argument most
probably would. However, the subroutine
used is a conversion sukroutine rather
than a function subroutine.

The object-time subrcutines are cata-
lcged in the relocatakle library. The
programmer can find the mcdule name in the
entry-points column. If a module has more
than one entry point, the module name is
written first.

Note: For some mathematical functions,
the programmer may be interested in
details such as error statistics and
algorithms. For such details refer to the
SRL publication IBM Systen/360 Orerating
System, PFL/I lLikrary Computational Subrou-
tines, Form GC28-6590. The DOS/TOS PL/I
compiler uses the same algorithms as the
0S PL/I compiler. Where applicable, the
respective internal names of the 0S PL/1I
compiler sukroutines are given in paren-
theses in the rightmost cclumn cf Aprendix
C.

Special Note Regarding Ccrrpatibility

Certain built-in functicns available in
the full PL/I language are not available
in the PL/I Subset language. Thus, if the
name of a user-written function procedure
happens to be the same as that of an
unavailakle kuilt-in function, the user-
written function procedure is called if
the program was compiled by means of the
DOS/TOS PL/I compiler because the built-in

Subroutine Storage Requirements 65

function of that name is not availakle.
However, if this program were compiled by
neans of the OS PL/I compiler, the kuilt-
in function of that name -- which, in this
case, is available -- would be called.

For examrle:

A: PROCEDURE;

X = REAL(Y);

END;
REAL is a function procedure. If this

procedure is compiled by means of the 0S
PL/I conpiler, the kuiit-in function REAL

66

is called. Therefore, user-written func-
tion procedures should be named in such a
manner as to avoid these complications.

SUBROUTINES CALLED BY I/C STATEMENTS

Subroutines may ke called by I/O source
statements for use at object time. The
library suvkroutines that may be called are
listed and described in Appendix D.

Care should be taken that any subrcu-
tine called ky an I/0 statement does not
itself contain an I/C staterment, a PUT/GET
STRING statement, or invoke another sub-
routine containing such a statement.

This section provides the information that
allows the user to determine the amount of
storage rejuired for I/C purposes at
object time. Okject-time core storage is
required

1. as a functicn of the file declaration
itself, and

2. by library subroutines called by I/0
statements, such as GET, PUT, etc.

The library subroutines called by I/0
statements are listed in Appendix D.

FILE DECLARATIONS

R A g

Each file declaration requires four items:

1. Buffers (if required)
2. DTF table

3. Appendage

4. IOCS logic module

The first three items are unique to
each declaration. The fourth may be used
by various file declarations.

BUFFERS

The number of buffers and the correspond-
ing storage requirements directly derive
from the file declaration.

For files other than REGICNAL or INDE-
XED, the buffer size is equal to the klock
size specified in the F, V, or U option.
Thus, 80 bytes are required with the
option F(80). If, in addition, the option
BUFFERS(2) is used, the storage require-
ments for the buffers of this file are
doubled. The total storage required for
such files eguals the sum of the storage
requirerents for all kuffers used for all
these files.

Note: Nc buffer storage is required if
the F or U option is used with unbuffered
files.,

Additional kuffer storage (8 * nunmber
of extents) is set aside for REGIONAL
files.

For REGIONAL(3) files the key length
must be added to the buffer length.

The buffer storage requirements for
indexed files can be calculated according
to the fcollowing formulas:

I/0_STORAGE REQUIREMENTS

1. Indexed sequential ingput and urdate

unblocked:
blocked:
recs ize)

recsize+2* keylength+10
MAX (blocksize,keylength+10+

2. Indexed sequential output

blocksizetkeylength+8+recsize
[+keylength if unblcckedl

3. Indexed direct update

recsize [+keylength if unblocked]
[+ADDBUFF if specifiedl

[+MAX (8+keylength+blccksize,
8+keylength+l0+recsize) if ADDBUFF
not specified]

[+INDEXAREA if specified]

4. Indexed direct input

keylength+MAX(klocksize,10+recs ize)
[+INDEXAREA if specified]

DTF TABLE

The DTF (Define The File) table is
regquired for each declaraticn. The func-
tion of the DIF takle is (together with
the appendage) to allow ccmmunicaticn
between the okject program produced from
I/0 source statements and the DTIF program.
The DTF program in turn communicates with
the operating system for rhysical device
control.

The DTF takle has a fixed length for
each I/0 device type. Figure 44 shcws the
storage requirements for the individual
DTF tables.

The numker of DIF takles is egual to
the number of files. The toctal storage
required for all DTF tables is, therefore,
equal to the sum of their individual
storage requirements. Thus, an okject
program using three printers and five buf-
fered, blocked-record, magnetic tare files
would require

3 x 48 + 5 x 112'= 704 bytes of storage
for DTF tables.

A DTFCD takle is generated for each
card device. Figure 45 shcws the PL/1I

attributes and the corresponding DTFCD
parameters.

I/C Storage Requirements 67

- s o

T - 1
| Declaration | Storage Requirements |
| Specified by File] in Bytes |
—— ¥ - -
b
Card dev. INPUT	56
Card dev. OUTPUT	48
2540,00TPUT	136
2520, OUTPUT	56
e oo .	
Pxrinter	48
- t e
|Unbuffered { |
| magnetic tape | us8 |
______ 4 ————p—m]
. T 1 T
|Magnetic tage, | | | |
|other than unbuf-| | | |
| I |

|fered, with the

| option | INPUT| CUTPUT | UPDATE|
I s I
| F | 112 | 104] -
| v { 128 | 120 | -
[U | 112 | 104 | -
o t + -t -4
Regicnal (1) *			
with VERIFY i -	256	264	
without VERIFY	216	216	216
b==- ¥ } R			
Regional (3)*			
with VERIFY	-	328	336
without VERIFY	216	288	288
-~ : t F .			
Indexed direct*	300	-	556%%
with INDEXAREA*	324	-	580%%
Indexed. l			
sequential#*	284	252	284
	! I		
Note: 4 x extentnumber must ke added to			
all values given for indexed files			
k- : T S 1			
Consecutive disk#	i		
Unbuffered	152	152	152
F	136	160	160
v	152 { 176	192	
u	152	168	192
F t t t 4			
DTFDI	240	240	240
} £ i L __'			
* Nct permitted for TOS.			
** Add keylength to this value.			
L -

Figure W44, Storage Requirements for DTF

Tables

A DTFPR takle is generated for each
printer. Figure 46 shows the PL/I attri-
butes and the corresponding DTFPR
parameters.

A DTFMT takle is generated for each
magnetic tape drive. Figure U7 shows the
PL/I attributes and the corresponding
DTFMT parameters.

A DTFSD takle is generated for each
disk file with the CONSECUTIVE option.
Figure 48 shows the PL/I attributes and
the corresponding DTFSD parameters.

68

r T
| PL/I ATTRIBUTES |DTFCC PARAMETERS
l

¢ --4-

| Blocksize in F option | BLKSI ZE

L 4

] T

|Logical device address |DEVADDR

|in MEDIUM option |

p== +

|Cev. type in MEDIUM opt.|
2540 | DEVICE=2540
1442 |DEVICE=1442
2520 |DEVICE=2520
2501 | DEVICE=2501

}
+
Function attribute |

b e e i s ety e il . e e e e ki e B e e s s e R e e e e ey e e e e e e

I

|

|

|

I

| INPUT | TYPEFILE=INPUT
| |EOFADDR

| CUTEUT | TYPEFLE=OUTPUT
| | SSELECT=2

F-- e e -

|F (blocksize) |RECFORM=FIXUNE
b= -—4-

| BUFFERS option |

| BUFFERS(1) | IOAREA1

| BUFFERS (2) | ICARER1

| | TOAREAZ2

| | IOREG=(2)

F

| 2540, CUTEUT | CRDERR=RETRY

L ——mge

I

|Control character for |

|RECORD 1/0

| CTLASA |CILCHR=ASA

| CTL360 | CTLCHR=YES

L L

Figure 45. FL/I Attributes and Ccrres-

ponding DIFCD Parameters

r -T]

| PL/I ATTRIBUTES |DTFPR PARAMETERS
4
T

|Blocksize in F option | BLKSI ZE

L 4 3

T T

|logical device address |DEVALLR

|in MEDIUM option |

i 4

1] T

|Dev. type in MEDIUM opt.|

| 1403 |DEVICE=1403

| 1404 |DEVICE=1404

| 1443 |DEVICE=1443

| 1445 | DEVICE=1445

i, 4 yl

|

F (blocksize)

BUFFERS Option

-

—+

I
1
|
1
I
I
1
I
I
[
I
|
T 1
|RECFORM=FIXUNE |
1
|
|
I
|
|
1
I
|
I
|
|

[

| BUFFERS (1) |ICAREAL

| BUFFERS(2) | IOAREAL

| | IOAREA2

| | IOREG=(2)

b t 1
| USAGE attribute |

| STREAM | CTLCHR=ASA

| RECCRD |PRINTOV=YES

| CTIASA | CTLCHR=ASA
| CTL360 | CTLCHR=YES
[-1

Figure 46. PL/I Attributes and Corres-

ponding DTFER Farareters

r - T i 1 r =T 1
|PL/I ATTRIBUTES | DTFMT PARAMETERS| | PL/I ATTRIBUTES |DTFSC PARAMETERS|
t-mmm e 8| + 1
|Blocksize in F, |BLKSIZE | |Blocksize in F, | BLKSIZE |
|V, U crtion | | |V, U option |
F + i + 1
|Recsize in F option |RECSIZE | |Recsize in F option | RECSIZE |
--------- + --1 + 4
|Logical device address |DEVADDR | |Device type in |DEVICE= 2311
| in MEDIUM option | | | MEDIUM option | 2314 |
F + i | | 2321 |
lFI Vr ¢} OPticn l l % % - "l
% % ‘ }F, V, U option {
F (blocksize)	RECFORM=FIXUNB		F (blocksize)	RECFORM=FIXUNE
F (blocksize,	RECFORM=FIXEBLK		(klocksize,	RECFORM=FIXBLK
recsize)	IOREG=(2)		recsize)	IOREG=(2)
V (maxblocksize)	RECFORM=VARELK		V (maxklocksize)	RECFORM=VARELK
	IOREG=(2)	i	IOREG= (2)	
U (maxblocksize)	RECFORM=UNDEF		U (maxklocksize)	RECFORM=UNDEF
p—————= + -~ 1 r + 1				
BUFFERS opticn			BUFFERS option	
1				
I	[BUFFERS (1)	IOAREAL	
BUFFERS (1) {ICAREAL 1 i BUFFERS(2)	IOAREAL I			
BUFFERS (2)	IOAREAL	i	IOAREA2	
]	ICAREA2			IOREG=(2) [
	ICREG=(2)	3 +		
b + - ———]	Function attribute			
Function attribute				
			INPUT	TYPEFLE=INPUT
				EOFALDR
] INPUT	TYPEFLE=INPUT	[OUTPUT	TYPEFLE=OUTPUT	
I	EOFADDR] i UPDATE	TYPEFLE=INPUT		
OUTPUT	TYPEFLE=CUTPUT			UPDAT E=YES
I INPUT	TYPEFLE=WCRK [EOFADDR i	
} UNBUFFERED	1 I INEUT)	TY PEFLE=WORK		
OouTPUT { EOFADDR		UNBUFFERED	DELETFL=NO	
b + -9	QUTEUT	EOFACDR		
V (maxblocksize) OUTPUT	VARBLD=(3)		UPDATE UNBUFFERED	EOFADCR [
pmmmmmm e ¥ -~ it —— 4= :				
{INPUT, V and F	WLRERR {	V (maxblocksize) OUTPUT	[VARBLD=(3)	
not UNBUFFERED !	t-- 4 i			
___________ ¥ ————	VERIFY	VERIFY=YES		
BACKWARDS	READ=BACK	t + {		
s o 4	- - - { ERROPT=Library			
LEAVE	REWI ND=NCRWD			routine
r + -—- 1 r + i				
NOLABEL option			INPUT or UPDATE, F and V	WLRERR
	t + 1			
NOLABEL	FILABL=NC	JUu, other than UNBUFFERED	RECSIZE=(U4)	
without NOLABEL	FILABL=STD	L L 4		
—————— + SRR				
U option, BACKWARDS	ICREG= (2) I Figure 48. PL/I Attributes and Corres-			
- R + -_— { ponding DTFSD Parameters
| INPUT | ERROPT=Likrary |
| |routine |
e 1 1
|0, other than UNBUFFERED|{RECSIZE=(U4) | APPENDAGE
L § 4

PL/1I Attrikutes and Corres-
ponding DTFNMT Parameters

Fiaure u47.

A DIFDA takle is generated for each
disk file with the REGIONAL option.
Figure 49 shows the PL/I attributes and
the correspcnding DTFDA parameters.

The appendage, like the DTF table, con-

sists of information derived frcm the file

declaration.
between the object program rroduced from

It also allows communication

170 source statements and the DTF program.
The length of the appendage is exclusively

determined ky the presence of a single
attribute or option. If the declaration

I1/0 Storage Requirements

69

1. contains the INDEXED option, the
appendage length is 40 Lytes;

2. contains the REGIONAL option, the
arpendage length is 56 tytes;

3. contains the BUFFERED, STREAM, or UPD-
ATE attribute, the appendage length is
24 bytes;

4., contains the PRINT attrikute or is for
SYSLST, the appendage length is 32
bytes;

5. does not apply to one of the file
types listed under items 1 through 4,
the arpendage length is 16 Lytes.

The number of appendages is equal to
the number of files. The total storage
required for arpendages is equal to the
sum of their individual storage
requirements.

r
| PL/I ATTRIBUTES DTFDA PARAMETERS|

T

|
== rmmmmmmm e 1
|Blocksize in F option | BLKSIZE |
b t -1
|Device type in |DEVICE= 2311 |
|MEDIUM cption i 2314 |
| | 2321 |
b , e —— '
| F (blocksize) | RECFORM=FIXUNB |
- } —mmmmmmf
| BUFFERS (1) | IOAREAL

prmmmmm e !
Function attribute and	
organization option	
INPUT, REGIONAL(1)	TYPEFLE=INPUT
]	READID=YES [
OUTPUT, REGIONAL(1)	TYPEFLE=CUTPUT
	WRITEID=YES
UPDATE, REGIONAL(1l)	TYEEFLE=INPUT
	READID=YES
I	WRITEID=YES]
] INPUT, REGIONAL(3)	TYPEFLE=INPUT
	READKEY=YES
	KEYARG
	KEYLEN
OUTPUT, REGIONAL(3)	TYPEFLE=CUTPUT
	AFTER=YES
	KEYLEN
UPCATE, REGIONAL(3)	TYPEFLE=INPUT
	READYKEY=YES
	WRITEKY=YES [
[KEYARG
	KEYLEN
	AFTER=YES
o + e	
VERIFY	VERIFY=YES [
b= } -~	
- -	SEEKADDR
- -	ERRBYTE
- -	XTNTXIT=IJKTXRM
- -	CONTROL=YES
L R J
Figure 49. PL/I Attributes and corres-

ronding DTFDA Parameters

70

r== T T -]
|PL/ I | |
| ATTRI BUTES |DTFIS PARAMETERS |
4

- + -~ {
| INPUT | TYPEFLE=SEQNTL

SEQUENTIAL or	ICAREAS
	IOREG=(2)
	ICRCUT=RETIRVE
[KEYARG1
o + - -	
INPUT DIRECT	TYEEFLE=RANDOM [
	IOAREAR]
	ICREG=(2)
	ICRCUT=RETRVE [
	KEYARG (serarate)
e e)	
CUTPUT	IOAREAL
SEQUENTIAL	WCRKL (cnly if blccked)
	IORCUT=LCAD
F t - -4	
UPDATE DIRECT	TYFEFLE=RANDCM
	IOCAREAL?2, “
	WCRKL2, %
	ICAREAR?2
[IOREG=(2)
	IOROUT=ALTCRIR
	KEYARG?, 3
b=~ $-—- -	
Cevice type	BEVICE=2311, 2314, or 2321
b t .	
VERIFY or	
device	VERIFY=YES
type = 2321	
b t -- -1	
F(a)	RECFCRM=FIXUNRB

|F(a,b) | RECFCRM=FIXELK

| | NRECDS |
| | RECSI ZE {
b==- fommmmmmmee e 1
KEYLENGTH	KEYLEN
CF LTRACKS	CYLCFL
INDEXMULTIPLE	MSTIND=YES
EXTENTNUMBER	DSKXTNT
KEYLCC	KEYLCC
INDEXAREA	INDAREA
	INDSIZE
: - JINDSKIP I
ADDBU ICSIZE

| HIGHINDEX 2311 |HINDEX=n |
| 2314 | |
i 2321 |
r — !
|* Separate for klocked |
|2 L = R possible |
|2 same as WORKL if unblocked |
| 4 ADD separate |
| I
| I ‘. ——]
Figure 50. PL/I Attributes and Ccrres-

ponding DTFIS Parameters
A DTFIS table is generated for each

disk file with the INDEXED option., Figure

50 shows the PL/I attrikutes and the
corresponding DTFIS parameters,

A DTFDI takle is generated for Stream
files or buffered Record files if

1. the logical address specifies SYSIPT,
SYSLST, or SYSPCH in the MEDIUM option
and

2. CTLASA is specified for RECORD CUTPUT
files and

3. PRINT attrikute is specified for
STREAM OUTPUT files

4, records are of fixed length and
unblccked and the record size (n) is
less than 81 (for SYSIPT) or less than
82 (for SYSPCH) or less than 122 (for
SYSLST) .

Figure 51 shows the PL/I attributes and
the corresponding DTFDI parameters.

r T - 1
| PL/I ATTRIEUTES | DTFDI PARAMETERS |
- t -
| Device address in | |
| MEDIUM ortion | DEVADDR=SYSxxx]

- o 1
| BUFFERS(1) | IOAREAl |
| BUFFERS(2) | IOAREA1 |
| | ICAREA2 |
t | IOREG=(2) |
e t -
| SYSIPT | ECFADDR=... |
| | ERRCEFT=... |
| | WLRERR=... |
F 1 1
| Recsize in F option | RECSIZE=... |
L 4 —— 4

PL/I Attributes and Corres-
pcnding DTFDI Parameters

Figure 51.

I0CS LOGIC MODULE

The IOCS logic module uses the information
obtained fror the DTF takle and the appen-
dage, to communicate between the object
program and the DOS/TOS control program.
Different IOCS logic modules are used
depending on the options and attrikutes
specified in the file declaration. Files
having the same options and attributes use
the same IOCS logic module. For instance,
any number of file declarations, each of
which refers to a doukle-kuffered input
file using a 2540 card reader, would gen-
erate a reguirement for one single IOCS
logic module only.

The device type is the principal factor
in determining which IOCS logic module is
to be used. In Figures 52 through 57, the
individual mcdules are therefore grouped
according to device types. The storage
required for each module is stated in
bytes.

T -

Cne Buffer | Twc Buffers
—4--

Output| Input
L

Input Output

128 216

132 116

128 124

T
I
t $
| |
------- f-m et
|
%
|
_il.
|

128

-
|
|
|
|
|
;
b — e — o —]
e e n e B e gy e e e g b =

T
|
L
T
I
4
+
|
4
T
|
4
+
!
L

e o]
(]
- — o —

Figure 52. IOCS Logic Modules for Card

Reading and Funching Cevices

r
| Frinter Files

L]
|
b=~ -r= !
| STREAM | RECORD |

1 Buffer

2 Buffers |1 Buffer |2 Buffers

196 220

+
|
4
T
| 118 152
L

|
t
[
L

'

Figure 53. ICCS Iogic Modules for

Printers

Buffered

are Files F U

ackwards 556

Pypm 3
—_— e — e

564 762

——t

11 others

| |

! |

n !
R :

| 1

: |

690 | |
d

o ey
~
w
©

P — = — - —

F——t —t+—
)
i

L

Figure 54. IOCS Logic Modules for Magnet-

ic Tape Units

If both BACKWARDS and non-BACKWARDS
modules are used in the same program, only
the BACKWARDS module is included.

r

|
|Disk
| Files

Consecutive Regicnal

T

[

b T
| Un-

|buvffered Ruffered
|

|

Il

T

|

+

I

Jr

|

4

[y

o e e e e e e e e e e
(V3]

L T
F| V| U

el w
(V]
R = YU SR * A S——

Input 392

682

w
o
N
o0
e}
[+)

T T
output 5741 1166] 730
1 R

722 392

=)
Xe]
o))

Update

o e o e e e — e

{
r
|
L L 1
L T T
682 | 546| 746| 618
e 1 4
}
|
L
1
|
1

- — - —— oy ——— —

T T
910]1255 1062
1 i

ICCS lLogic Mcdules for Disk
Units (other than INDEXED
Files)

Figure 55.

I1/C Storage Requirements 71

T ‘ L} T L . 1t 0
| Disk | Input | Cutput| Update |
| | | e e 1 .
| Indexed Files | | |Blocked |Unbl.| DECLARE TAPEBF FILE RECORD BACKWARDS
t } + - $--——- 4 UNBUFFERED ENVIRCNMENT (U(512) MELCIUM
|Sequential | 1086] 803 | 1086 (1086 | (SYS004, 2400) LEAVE NOLAEEL) ;
| Direct | 990] -- | 2948 2752 |
|with INDEXAREA| 1138| -- | 3162 | 2966 | Buffers 0 bytes
|with ADDBUFF | -—] - | 3220 |2936 | DTF takle 48 bytes
L - i 4 4 —_—d— J Appendage 16 bytes
ICCS logic module 318 bytes
Figure 56. 1I0OCS Logic Modules for bisk ~ ecccemeaa
Units (INDEXED Files) Total 382 bytes
r- S 1
| |BUFFERS(1) BUFFERS(2) | Example 5
t t o]
| Input | 308 368 | DECIARE DISK1F FILE STREAM INPUT ENVIRON-
| Output | 643 723 | MENT (F(1739) BUFFERS (2) MEDIUM (SY¥S(001,
L e 4 2311));
Figure 57. 1ICCS Logic Module for DTFDI Buffers 3478 bytes
Files DTF takle 136 bytes
Appendage 24 bytes
ICCS logic module 546 bytes
EXAMPLES | eem e —————
Total 4184 bytes

The follcwing examples show the storage
requirements for buffers, DTIF takle, Example 6
appendage, and IOCS logic module.
DECLARE DSKF FILE RECORD UPDATE BUFFERED
Example 1 ENVIRCNMENT (F(1024, 256) BUFFERS (1)
MEDIUM (SYS002, 2311));
DECLARE PUNCHF FILE OUTPUT ENVIRONMENT

(F(80) MEDIUM (SYSPCH, 2540)); Buffers 1024 bytes
DTF table 160 bytes
Buffers 80 Lkytes Appendage 24 bytes
DTF table 136 bytes ICCS logic module 910 bytes
Appendage 24 bytes eemem———
IOCS logic module 192 kytes Total 2118 bytes
Total 432 bytes Example_ 7
Example 2 DECLARE DSKR3F FILE RECCRL OUTPUT CIRECT
KEYED ENVIRCNMENT (REGICNAL (3) F(800)
DECLARE PRINTF FILE STREAM CUTPUT PRINT MEDIUM (SYS003, 2311) KEYLENGTH (9))
ENVIRONMENT (CONSECUTIVE F(121) BUFFERS
(1) MEDIUM (SYSLST, 2400)); Buffers 809 bytes
8x3 extents (default) 24 bytes
Buffers 121 bytes DTF takle 288 bytes
DTF table 240 Lbytes Appendage 56 bytes
Appendage 32 bytes IOCS logic module 696 bytes
I0CS logic module 690 kytes e
————————— Total 1873 bytes
Total 1083 bytes
Example 8
Exarple 3
DECIARE DSKR1F FILE RECCRLC UPCATE LCIRECT
DECLARE TAPEFF FILE RECORD UNBUFFERED KEYED ENVIRONMENT (REGIONAL (1) F(600)
ENVIRONMENT (U(512) MEDIUM (SYS004, 2400) MEDIUM (SYS004, 2311));
LEAVE NOIABEL) ;
Buffers 600 bytes
Buffers 0 bytes 8x3 extents (default) 24 bytes
DTF table 48 bytes DTF table 216 bytes
Appendage 16 bytes Appendage 56 bytes
I0CS lcgic module 318 Lytes ICCS logic module 392 bytes
Total 382 kytes Total 1288 bytes

72

DECLARE TAPERF FILE RECORD INPUT BUFFERED
ENVIRONMENT (V(2048) BUFFERS (2) MEDIUM
(SYS005, 2400));

Buffers 4096 bytes
DTF table 128 kytes
Appendage 24 bytes
I0CS logic module 762 kytes
Total 5010 Lkytes

Example 10:

DECLARE INDSQI FILE RECORD INPUT KEYED
ENVIRONMENT (F(800,80) MEDIUM (S¥S011,
2314) INDEXED KEYLENGTH(10) EXTENTNUMBER(
3) INDEXMULTIPLE KEYLOC(15));

Buffers 800 bytes
DTF table 296 bytes
Arpendage 40 bytes
I0OCS logic module 1086 bytes
Total 2222 bytes

Exagple 11:

DECLARE INDDUP FILE RECORD UPDATE DIRECT
KEYED ENVIRONMENT (F(800,80) MEDIUM
(5YS012,2321) INDEXED KEYLENGTH(12) VERIFY
EXTENINUMBER(2) OFLTRACKS (3) KEYLCC(23)
ALCDBUFF(1688));

Buffers 1768 bytes
DTF table 576 bytes
Arrendage 40 bytes

I0CS logic module 3220 bytes

Total 5604 bytes

Note: If all of tne file declaraticns
shown in these exanples were t¢ arrear in
the same program, the total storage
reguirements would be less than the sum of
the individual storage requirements
because, in a few cases, different file
declarations would use the same IOCS logic
module.

SYSTEM UNITS

SYSPRINT

The storage required for the DTF table,
appendage, and IOCS logic module for SYS-
PRINT is 416 bytes for TCS and 424 bytes
for DOS. 1If DOS allows a 2311 as SYSIST,
688 bytes are required.

SYSIN

The storage required for the DTIF table,
appendage, and IOCS logic module is 192
bytes for TCS and 216 bytes fcr DOs. If
DOS allows a 2311 as SYSIPT, 408 bytes are
reguired.

Ncte: If SYSIN and SYSPRINT are used in
one rrogram, the storage regquired for both
is 568 bytes for T0S and 600 fcr DOS. The
storage requirement is 920 bytes for LOS
if a 2311 is permitted for SYSIPT or
SYSIST.

I/C Storage Regquirements 73

PROGRAM OVERHEAD

Object-program overhead derives from the
following two sources:

1.

2.

The DOS/TOS Supervisor, the size of
which is installation-dependent.

The general PL/I overhead area, which
exists as a function of the PL/I
source text. This area comprises the
following four parts:

a. The
b. The
c. The
d. The

static storage area.

dynamic storage area.
block prologue.

PL/I control module,

THE STATIC STORAGE AREA

Static storage is %equired by the seven

items listed below.

(Note that internal

blocks reguire only the static storage
listed under items 5 - 7.)

1.

Since items 1, 5,

A constant basis of 132 bytes.

All variables in any block declared
with the attribute STATIC.

Constants used in the source text.

Four bytes for

a. each library subroutine explicitly
or implicitly used in the source
text;

b. each reference to a procedure that
is external to the procedure under
construction; and

c. each distinct data item contained
in any block and declared with the
attribute EXTERNAL,

A communications area of 4 bytes.

An entry table witn a minimum length
of 4 bytes. If the block is a proce-
dure, an additional entry of 4 bytes
is made for each ENTRY statement in
the block.

An entry of 8 bytes is made for the
occurrence of each different condition
in any ON statement internal to the
block.

and 6 are always

required, the minimum static storage area

required is 140 kytes,
trivial procedure.

74

even for the most
For example,

A: PROCEDURE OPTIOCONS (MAIN) ;
END;

Examples of Calculating Static Storage

The following procedure:

A: PROCEDURE OPTIONS (MAIN);
DECIARE B FIXED RINARY STATIC;
C: FRCCEDURE;

D: ENTRY;
RETURN;
END;
E: BEGIN;
DECLARE I STATIC;
I=1101B;
END;
F: ENTRY;
END;

consists of the blocks a, C, and E.

The

static storage requirements of the indivi-

dual blocks are discussed in terms of
items 1 through 7 listed abcve.

Block A

1. 132-byte basis 132

2. Two variables with the STATIC
attrikute 8

3. O©One constant 4

4. Communications area 4

5. Entrxy takle of 4 bytes minimum

the

bytes

bytes
bytes

bytes

plus 4 bytes for entry point F 8
TOTAL Igg—
Block C
1. Communications area 4
2. Entry table 8
TOTAL 12
Block E
1. Communications area 4
2. Entry takle 4
TOTAL -g—

Consider another external procedure A

that contains no other blccks.
400 bytes of static data storage
(variables and constants).

It uses

It requires

five likrary sukroutines explicitly and

three library subroutines implicitly.

Three prccedures external to A are
referred to in procedure A. Six variables
are declared with the attrikute EXTERNAL.
The procedure has seven secondary entry
points and contains six CN statements, of
which four have differing conditions.
External procedure A would require the
following static storage:

1. 132-byte basis 132 bytes
2. STATIC variables
400 bytes

3. Constants
4. a. 8 library subroutines 32 bytes

b. 3 prccedures external to A 12 bytes

c. 6 EXTERNAL variables 24 bytes
5. Clommunications area 4 bytes
6. Entry table 32 bytes
7. Four ON statements with

differing conditions 32 bytes

TCTAL 668 bytes

Finally, consider a third external pro-
cedure W that contains two other proce-
dures, X and Y. Procedure Y contains a
BEGIN block Z.

W uses 400 bytes of static data
storage, X and Y each use 100, and Z uses
200 bytes. Procedure W requires 3 library
subroutines, X requires 2, Y requires 5,
and Z requires 13. The library subrou-
tines used in blocks W, X, and Y are all
different. The 13 subroutines used by Z
comprise 3 that are required by other
blocks. No procedure external to W is
referred to, and there is no EXTERNAL
data. Procedure W has 5 ENTRY statements,
X has 2, and Y has 3. There are no ON
statements in W, 2 ON statements with
identical conditions in X, 3 ON statements
with differing conditions in Y, and no ON
statement in Z.

The static storage requirements for the
individual blocks are as follows:

Block W
1. 132-byte basis 132 bytes
2. STATIC variables
800 bytes
3. Constants
4. A total of 20 library 80 bytes
subroutines

5. Communications area 4 bytes
6. Entry table 24 bytes

TCTAL 1040 bytes

1. Communications area 4 bytes

2. Entry table 12 bytes

3. One ON statement 8 Lytes
TOTAL 24 Lytes

Block Y

1. Communications area 4 bytes

2. Entry table 16 bytes

3. Three differxring ON ccnditions 24 Lytes

TOTAL 44 bytes
Block 2
1. Communications area 4 bytes
2. Entry takle 4 bytes
TomAL 8 bytes

The total static storage required Ly
external procedure W thus amounts to
1040 + 24 + 44 + 8 = 1116 bytes.

THE DYNAMIC STORAGE AREA

Each blocks has its own dynamic storage
area. The dynamic storage area is zero
when the block is not active. The length
of the dynamic storage area when the klock
is active is determined by the following
five items:

1. Data with the attribute AUTOMATIC,
either declared or by default.

2. A communications area of 80 bytes.

er to be transmitted to this block.

4. Working storage area I:
This area is used tc store intermedi-
ate results of arithmetic expressions.
The length of this area is a function
of the complexity of the source text.
For a program with arithmetic data
only, the average length of this area
is approximately 36 bytes. However,
if the expressions ccntain character
strings, the length increases with the
length of the character strings.

5. Working storage area II:
This area is used tc store expressions
contained in DC loops. DO statements

may be of either one cf the following
three forms:

Program Overhead 75

a. DO var=expr-l,expr-2,...,exXpr-n;
For such DO statements, the expre-
ssions are developed and stored
directly in the variable so that
no. additional storage is required.

b. DO var=expr-1 TO expr-2; oOr
DO variakle=expr-1 BY expr-2;

16 bytes are required for each DO

statement of this form, regardless
of the number of iteration speci-

fications in each statement.

T0 BY
expr-2
BY TO

c. DO var=expr-1i expr-3;

24 bytes are required for each DO
statement of this form, regardless
of the number of iteration speci-
fications in each statement.

The information required to determine
which iteration specification is being
operated upon is also stored in work-
ing storage area II. Each DO state-
ment with more than one iteration spe-
cification requires additional bytes
to service all iteration specifica-
tions. Thus, each DO statement
requires zero, 16, or 24 bytes for
storing expressions within iteration
specifications, plus 8 Lbytes if there
is more than one iteration specifica-
tion for the DO statement.

Example of Calculating Dynamic Storage

Assune a .procedure consists of the extern-
al procedure A, which contains the intern-
al procedures B and C. Internal procedure
C contains the BEGIN block D. A and B
each have 400 bytes of AUTOMATIC data, C
has 200, and D has 100 bytes of AUTOMATIC
data. Procedures A, B, and C have only
one entry point (their primary entry
point), and each procedure has a list of
five parameters. Only coded arithmetic
data is used. The dynamic storage
requirements of the individual blocks are
then as follows:

Block 2

1. Data 400 bytes
2. Communications area 80 bytes
3. Parameter storage 20 bytes
4. Working storage area I, 36 bytés

5. Working storage area II (de- 96 bytes
‘pends on complexity of DC's)

TCTAL 632 bytes

76

Block B
1. Data 400 Lytes
2. Communications area 80 bytes
3. Parameter storage 20 bytes
4. Working storage area I, 36 bytes
approx.
5. Working storage area II, 32 bytes
approx.
TOIAL 568 Lytes
Block ¢
1. Data 200 Lytes
2. Communications area 80 bytes
3. Parameter storage 20 Lkytes
4. Working storage area I, 36 bytes
approx.
TOTAL 336 bytes
Block D
1. Data 100 bytes
2. Communications area 80 bytes
3. Working storage area I, 36 kytes
approx.
4. Working storage area II, 32 Lytes
approx.

TOTAL 248 Lbytes

The total requirement for dynamic
storage at a given moment depends on which
blocks are simultaneocusly active. The
total storage required is the sum of the
dynamic storage areas fcxr the active
blocks. 1In the akove example, this is a
minimum of 632 bytes. If all blocks are
active simultaneously, the dynamic storage
requirements amount to 1784 bytes.

THE BLOCK PRCICGUE

The prologue is a set of instructions
generated for a PROCEDURE, ENTRY, or BEGIN
statement. The generated instructicns
vary depending on the statement. The
minimum prologue is 52 bytes. The maximum
is approximately 140 bkytes. The minimum
prologue is used whenever the block is a
BEGIN block. In all other cases, the
average is approximately 60 bytes per pro-
logue. A secondary entry point with 12
arguments results in the maximum cf 140
bytes.

THE PL/T CONTROL ROUTINE

The PL/I control routine is a library sub-
routine, which is always required in
storage for PL/I programs. It is respons-
ible for the interaction of the individual
PL/I program components. Some of its
functions are listed kelow:

1. Dynamic storage allocation.

2. Hardware interrupt servicing.

3. Handling of ON conditions.

4, Ccnstructing diagnostic messages.

5. Terminating execution.

6. Transmitting communications informa-
tion from block to blcck.

7. Providing library work space.

The PL/I control routine is fixed in
length (approximately 1500 bytes) and is
present only once in a PL/I program,
regardless of the complexity of blocking
structures, the number of external prcce-
dures, and depth of overlaying.

Note: In the discussion of the program
overhead, it was shown where the STATIC
and AUTCMATIC data will be. In all furth-
er references, the term "overhead" is used
for the actuval overhead without data and

Prcgram Overhead 77

SQURCE_TEXT_AND OBJECT_ PROGRAM

After having estimated the storage
requirements of (1) data, (2) library sub-
routines, (3) file declarations, and (4)
overhead contained in the program, the
user can determine what part of the total
storage capacity is left for the remaining
paxrt of the program. The remaining part
mainly consists of (1) in-line instruc-
tions prcduced directly from. the source
text and (2) calling sequences to subrou-
tines for those operations that cannot be
done in line.

What instructions are produced from the
source text can ke shown by a simple
example.

DECLARE A FIXED DECINMAL;

A= B *C+ D;

The instructions produced from the assign-
ment statement might be as follows:

. In-line instruction to load B into
some register.

. In-line instruction to multiply C
(floating-point multiplication) with
the contents of this register.

. In-line instruction to add D
(floating-point) to the contents of
this register.

. Calling sequence(s) to convert the
contents of this register to fixed
decimal form.

. In-line instruction to store the
result in A.

Calling sequences can ke avoided in
some cases, e.g., in the example shown
above by giving A the attributes FLOAT
DECIMAL instead of FIXED DECIMAL. To save
storage, the user should, therefore, write
his programs in such a manner as to avoid
unnecessary calling sequences.

The above example shows that a series
of instructions is generated for a single
PL/I statement. The numker of generated
instructions depends on the form and com-
plexity of the respective statement. The
number of instructions generated for a
source-text DO statement, for instance,
depends on the complexity of the expre-

78

ssions within an iteraticn specification,
the number of options chosen, and the
number of iteration specifications.
However, the following average values can
be assumed:

1. In a purely scientific environment,
the average PL/I source statement
generates ten 4-byte instructions.

2. In a purely commercial environment,
the average PL/I source statement
generates seven 4-byte instructions.

3. These average values are ccnsiderakly
increased by an excessive use of con-
versions of base or scale and GET and
PUT statements in either scientific or
commercial environments.

4. Parameters as well as BASED and
EXTERNAL data require 4 bytes in addi-
tion to the storage requirerents cf
the data item.

Thus, if 5000 bytes are available for
the object program, the user may assume
that approximately 125 PL/I statements
(scientific environment) cr 178 PL/I sta-
tements (commercial environment) can be
accommodated in this area. If the prcgram
exceeds this numker of statements, the
user must either shorten the functicn of
the program or use the overlay feature.

Note: 1If listing of source-prcgram state-
ment numbers in case of execution-time
errors is requested (by specifying STMT in
the PL/I FRCCESS card), the additional
storage requirements are 4 bytes for each
time the statement number appears in the
okject-program listing.

PROBLEM_ ANALYSIS_ EXAMPLE

A tape system that has a storage capacity
of 16K is used for maintaining files. The
problem program consists of 3 phases.
Phase 1 reads transacticn cards (cne 80-
column card per transaction) and sorts,
edits, and writes the ccntents cf these
transaction cards on a magnetic.tape file.
Phase 2 reads the old master file, a tran-
saction card, and writes a new master file
record. Both of these operations involve
magnetic tapes for o0ld and new master h
records. An exception report is written,
if necessary, on a fourth magnetic tare.
Phase 3 takes the exception file and pre-
pares it with appropriate headings.

In the following example, only the
storage requirements for phase 2 are
examined.

FILE DESCRIPTION

01d Master File: Unblocked,
records of fixed length.

320-character

New Master File: Unblocked, 320-character
records of fixed length.

Transaction File. Unblocked 80-character
records of fixed length.

Exception File: Unblocked 100-character
records cf fixed length.

DATA ASSUMPTICNS

Due to the requirements of temporary
storage, arithmetic statements, etc., 50
variables and constants are used in addi-
tion to the data read from and written
into files. All data is describable in
terms of pictures and character strings;
no data is read or written in packed mode.

OTHER ASSUMPTIONS
1.. Each file has only one kuffer.

2. The data is processed in its respec-
tive buffer by use of the READ SET or
LOCATE SET statements.

3. The rrogram can be written in one
block.

4. The rroblem does not necessitate
intexr-rhase communication.

5. If conversions from numeric fixed to
coded fixed kecome excessive, the user
will convert the data items once and
use the coded fixed form for subse-
quent computations.

STORAGE _REQUIREMENTS

The storage reguirements are as follows:

1. Data
a. Data read from, or written into,
files are accounted for in

buffers.
b. 30 variables (XXXX.ZXX) 120 bytes
20 constants {(XXX.XX) 60 bytes

c. Descriptors approximately 150 bytes

TOTAL approx.

2. Non-I/0 Subroutines

Numbers 11 and 12

TOTAL 640_bytes
3. File_ Descriptions
a. Buffers - 820 bytes
b. DTIF tables - 368 bytes
c. Arpendages - 96 bytes
d. ICCS logic modules - 690 bytes
TOTAL 1974 bytes
4. 1I/0_Sukroutines
Number 6
TOTAL 652_bytes
5. Qverhead
a. Static - approx. 160 bytes
k. Dynamic - approx. 150 bytes
c. Prologue - approx. 60 bytes
d. PIL/I control - approx. 1500 bytes
TOTAL approx. 1870 bytes

6. DOS/TOS Control Program

approx. 6150 Lkytes

GRAND TCTAL approx. 11,616 bytes

This means that approximately 4,770
bytes of storage are available for the
actual program, so that the approximate
number of PL/I statements that would fit
into storage is 160.

After having programmed the prcblem,
the user would determine whether or not he
can change the buffering to allcw for
faster transaction processing. If the
data read and/or written are changed into
racked form, the ruffer requirements are
reduced, and the non-I/0 subroutines of
640 bytes would not be required. This
would allow for approximately 30 addition-
al PL/I statements.

Source Text and Cbject Program 79

OV ERLAY

If certain parts of an object program are
not required in storage throughout its
execution and never simultaneously
required in storage, the same storage area
can be used to store these parts to reduce
the overall reguirements of the program.

Each part of the program that will
reside in storage only for a fraction of
the execution time is referred to as an
overlay. The MAIN procedure must not be
used as an overlay. Each overlay as well
as any portion of the program that resides
in storage throughout the execution is
referred to as a phase. A phase consists
of one or more external procedures.

The PL/I subset does not provide direct
overlay facilities. However, overlays can
be performed by using the library subrou-
tine OVERLAY that provides a link to the
operating system which, in turn, loads the
actual overlay. (Refer to the SRL publi-
cations describing the DOS/TOCS control and
service programs.) The statement calling
the overlay must be coded as follows:

{label:] ... CALL OVERLAY
(character string expression - max.
length 8)

LI NK:

For example, CALL OVERLAY

(* PHASES');

The overlay call activates the OVERIAY
subroutine and transmits the name of the
phase to be fetched to the control pro-
gram. The control program locates this
phase on the external medium. The phase
is then loaded into storage. It must not
overlay the fetching procedure. Finally,
control is returned to the fetching
procedure.

Rules for Using Overlay

The follewing 17 rules should be okserved
when using overlay calls:

1. After the phase has been entered in
storage, it must ke activated Lty means
of a call to the procedure name or any
of its entry points.

2. The phase name is independent of the
procedure name. It is assigned by
means of a PHASE card during proces-
sing by the Linkage Editor.

3. A fetching phase (i.e., a phase acti-

vating an overlay) may have been
fetched into storage by a preceding

80

10.

11.

fetching phase. A series cf succes-
sive fetching phases is referred to as
a tree structure (see Figure 58). The
principal fetching phase of a tree
structure is referred to as the rcot.
A phase within the tree structure
which is not a fetching rhase is
referred to as a leaf.

A fetching phase may fetch any phase
lower than itself in the tree struc-
ture, provided the fetched phase is on
the same branch as the fetching rhase.

If a phase fetches a rhase more than
one level below it, an empty space is
left in storage for each rhase between
the fetching and the fetched phase.

The root cannot be overlaid. It
resides in storage throughout the
execution of the problem program.

A phase may ke activated at any time
after it has been fetched, rrcvided it
has not keen destroyed.

Fetching a phase already fetched into
storage causes a new cory cf that
phase to ke fetched into storage. All
variables of that phase which are in
static storage have no known value.

Data to ke known in more than one
phase may be given the EXTERNAL attri-
bute or ke transmitted through argu-
ment lists of the CALL statement.
External names that are to be common
to more than one rhase belcw the rcct
level must ke declared to be external
both in the affected rhases and in the
root. For larger volumes of data, the
use of the EXTERNAL attribute general-
ly requires less storage than argument
transmission. Where the argurent
names change, argument transmissicn is
normally more economical than giving
the data the EXTERNAL attribute.

External names of procedures to be
fetched must be unique (see Figure
58.)

A library sukroutine is incorporated
in every phase in which it is used if

a. the subroutine is used in a prcce-
dure kelow the root level; and

b. that subroutine is not in the
root. The multigle arpearance of
the sukroutine can be avoided by

incorrorating it in the root
through the use of an INCLUDE sta-
tement during link-editing so that
it appears only in the root.

ROOT
[
1 B
A
.| | [B
c D E M N 0
F G H |
L |
J K L

Note : The ROOT phase may fetch any phase, A through O. Phase A

may fetch any phase, C through L.Phase B may fetch any phase,
M through O. Phase C may fetch phases F and G. Phase E may
fetch any phase, H through L. Phase H may fetch phases J
through L. Phases D, M, N, O, F, G, |, J, K, and L are
leaves.

Figure 58. Schematic Representation of a
Tree Structure
Note: Care should be taken if relo-

12.

13.

catable modules that are not PL/I
library subroutines are to be included
into more than one phase by the auto-
link feature. For details, refer to
the SRL publications describing the
DOS/TOS system control and system ser-
vice programs.

If many phases from different kranches
of the tree structure activate the
same procedure, this procedure may be
incorporated in the root in a manner
similar to the inclusion of sukrou-
tines (see rule 11).

If (1) the declaration of a file is
rade internal to some phase which is
not the root, (2) this file is opened
in this phase, ‘and (3) the phase is
about to be overlaid with a phase from
another branch of the tree structure,
the user must close this file before
it is destroyed. This restriction
does not apply if the file is declared
both in the root and in a lower phase.

Note: If the PL/I standard files are
used (by a GET or PUT statement) in a
phase other than the root, these files
must either be used in the root phase,
tco, or in a phase that will not be
further overlaid. Another possibility
is to include the corresponding

14,

15.

16.

17.

modules in the rcot by means of the
Linkage Editor contrcl statements

INCLUDE IJKSYSA (for PUT)
INCLUDE IJKSYSI (fc¢r GET)

In all other cases, the standard files
cannot be closed, and an error will
occur at End-of-Jcb.

If the okject-time diagnostic
are to include the numbers of
source statements causing the errcrs,
STMT must be specified in the PROCESS
card for at least one external prcce-
dure contained in the root phase.

messages
the

The time to find and transfer a rhase
to core storage requires between 200
and 600 msec for DCS, derending on the
phase length. A 10K phase, for
example, would require approcximately
350 msec.

The time required to find and transfer
a phase to core storage for TOS
depends on the physical location cf
the phase on SYSLNK.

Different modules tc be included from
the relocatakle library may be ident-
ical except for one cr rmore additional
entry points in one of these modules.
If the module without the additional
entry point(s) is contained in the
root phase, calling cf the module with
the entry point(s) in overlay phases
will result in an errcr during
link~editing.

For instance, the PL/I library rou-
tines IJKISTM and IJKILCM have the
following entries:

---------- T R b
| Module Name | IJKTSIM | IJKTICM |
----------------- + !
Entry	IJKTSTM	IJKTSTM
Names	IJKTSTN	IJKTSTN
	IJKISTR	IJKTSTR
		IJKTLCM
1 -4 L _—

(IJKTSTM is used for stream I/O,
IJKTICVM is used for stream I/0 with
COLUMN or LINE.)

If IJKTSTNM is contained in the root
phase, calling of IJKILCM in an over-
lay phase will result in an error dur-
ing link-editing. 1To avoid such
errors, the module ccntaining the
additional entry (IJKTLCM in this
case) must be included in the rcot
phase ky means of an INCLUDE
statement.

Overlay 81

Qverlay Example

Assure that some program consists of one
external procedure, which is a single
block. Compilation of this procedure on a
system with a storage capacity of 16K pro-
duces an object program that requires 20K.
The storage reguirements for the individu-
al parts of the program are as follows:

DOS/TOS control program - 6K

Over head - 2K

Data - 2K

Subroutines including - 5K
logical 10CS

Object program - 5K

Actually, the program requires only 19K
under the assumption that 1K of data is
automatic and 1K is static. However, 20K
is required when the data is allocated.

In order to make the object program run
on a system with a storage capacity of
16K, it is segmented into 8 phases. The
root, which is located kehind the DOS/TO0S
control program, contains the MAIN proce-
dure and the subroutines. Thus, the root
plus the DOS/TOS control program may
require 11K rlus the overhead and program
requirement of 2K, i.e., a total of 13K.
Since the PL/I control program is in the
root phase, the total overhead for the
non-rcot phases is approximately .5K.

This remaining overhead increases
slightly because there are now 8 separate
blocks, each of which with its own over-
head. The allotment of this remaining
overhead may result in .25K per block.

Due to these changes, the program logic
must be slightly changed and extended to
allow for the overlaying. This brings the
requirement for the object program to
about .7K per phase. Since each phase
requires less than 1K and the root rlus
the control program requires 15K, the pro-
gram will now run on a system with a
storage capacity of 16K. The root will
fetch the first phase (named PHSE1) and
activate it. Control is then returned to
the root, and the second phase (named
PHSE2) is fetched.and activated. ‘This
process is rerpeated until the eighth phase
has been executed. This completes the
processing of one transaction, and the
process is then repeated. The names of
the procedures shown below are A for the
root and Bl, B2,, B8 for the phases.

A:PROCEDURE OPTIONS (MAIN);
DECLARE (data items) EXTERNAL;
ON ENDFILE . (file-name) action;

BEGIN: CALL OVERLAY ('PHSEl1');
CALL B1;
CALL OVERIAY ('PHSE2');
CALL B2;

CALL OVERLAY ('PHSES8');

82

CALL BS8;
GC TC BEGIN;
END

B5: PRCCEDURE;
DECLARE (data items) EXIERNAL;

. Ssource text

RETURN;
END;

For DCS, the additional time reguired
per transaction when using the overlay
feature is approximately 4 seccnds. For
TOS, the additional time required depends
on the number and order cf the rhases. 1In
the above example, the time increase is
about the same for DCS and 1T0OS.

Processing of Overlays by the Linkage
Editor

All phases of one program are processed by
the Linkage Editor program in one single
job step. Therefore, only one // EXEC
LNKEDT statement must be given for a

mul ti-phase program. Each rhase requires
one PHASE statement, which must immediate-
ly precede the input for this rhase. The
ENTRY statement, if used, must be the last
statement in the input stream to be writ-
ten on SYSINK. A multi-rhase rrogram must
ceontain one external procedure with the
option MAIN. This external prccedure must
arpear in the physically first phase,
i.e., in the root rhase.

If programs that contain overlays are
to be processed ky the Linkage Editor pro-
gram, a PHASE statement cf either cne of
the following three formats must be used:

1. PHASE phasename, RCCT
This format must be used fcr the rocct
rhase. It must be the first PHASE
statement in the input stream.

2. PHASE phasename, *
This format of the PHASE statement
causes the suksequent phase to be
loaded beginning at the next double-
word koundary. The use of this state-
ment is recommended fcr the seccnd
rhase.

3. PHASE phasename, symkol
phase name or an entry name appearing
in a previous phase (except in the
root phase). This fcrrat of the PHASE
statement causes the next phase to be
loaded beginning at the address of the
symbol.

The syntax rules for the PHASE state-
ment are as follows:

1. A phase name must be from 5 to 8
characters long.

2. BAll rhase names of a program must be Explanation
identical in their leftmost four
characters. 1 Causes loading of phase OVLAY2.

2 Causes loading of phase OVLAY3.
Note: Different programs (tree struc-
tures) must differ in the first four 3 Activates procedure E in phase OVIAY3.
characters of their phase names in It is assumed that phase OVLAY3 has
orxder to aveid incorrect storage been locaded previously and has not been
allocation. destroyed, e.g., by relcading rhase
OVLAY2,

3. The rhase names must ke identical to 4 The module JKLM that is cataloged in
the values of the character-string the relocatakle library is to be used
expressions (except for klanks on the in OVLAY2 and OVLAY5. 1herefore, it is
right-hand side) that are used as included in the RCCT phase by an
arguments in the CVERLAY statement. INCLUDE statement.

5 This statement causes three acticns:
When link-editing multiphase foreground

programs, the ACTION statement with the a. It signals that the input stream of

operand F1 or F2 must be used because, CVIAY1l is terminated.

otherwise, the PHASE card for the first

phase could not have the ROOT operand. k. The modules that are contained in

The first three characters of the phase the relocatable library and

names of a multiphase foreground program required for CVLAY1l are retrieved

shculd be FGP to have them retrieved fast- from the library by the autolink

er from the core-image library. feature in order tc complete

OVLAY1.

s e 1

| |77/ J0B MYOVIAY | c. Phase CVIAY2 is loaded beginning at

| |// OPTION LINK | the first double-wcrd boundary fol-

| | PHASE OVIAY1l,ROOT | lowing the last module of OVLAY1l.

| |// EXEC PL/I]

| | RT: PROCEDURE OPTIQNS (MAIN); | 6 This statement causes three actions:

| | RU:ENTRY I

| 1] CALL OVERLAY (°'OVLAY2'); | a. It signals that the input stream of

|| . | OVIAY2 is terminated.

| 2] CALL OVERLAY ('OVLAY3'); |

(I . | b. The library modules that are

| 31 CALL E; | required for phase OVLAY2 and not

| 1 . | contained in the ROOT vhase

| | END; | (CVLAY1l) are retrieved from the

| 7% | library by the autclink feature.

|4} INCLUDE JKLM |

151 PHASE OVLAY?2, * | c. The starting point of OVLAY3 is

(. INCLUDE | determined to be the same as that

11 deck XYZ] for CVIAY2.

| 17 |

161 PHASE OVLAY3,0VLAY2 | 7 This statement causes four actions:

| +1 INCLUDE MYPROG |

| |// EXEC PL/I | a. It signals that the input stream

| | E: PROCEDURE; | for the program is terminated.

[- !

(! END; | k. The likrary modules that are

| 7% | required for phase OVLAY3 and not

| 71 ENTRY RU | contained in the RCQOT phase

| |// EXEC LNKEDT | (OVLAY1) are retrieved from the

| 8l 77 EXEC | likrary by the autolink feature.

| 178 |

oo ———————— 4 c. RU is determined to be the starting

Figure 59. Sample Program to be Processed point for the execution of the

by the Linkage Editor program.
Figure 59 shows a sample program to be d. The starting point of the dynamic

storage area is determined to begin
on the first double-woxd boundary
following OVLAY2 or OVLAY3, whi-
chever is longer.

processed by the Linkage Editor. The num-
bers at the left-hand margin are not part
of the ccding; they serve as reference to
the explanations only.

Overlay 83

8 Fetches OVLAY1l and transfers control to
entry point RU. Note that only the
ROOT phase is loaded by // EXEC.

+ See PL/I Procedures Contained in the
Relocatable Library below.

The structure of the resolved overlay
scheme of the above example is shown in
Figure 60.

DOS/TOS

Modules included by the
autolink feature, if any.

|
|
|

XYZ }NH¢ROG

OVLAY2 Modules included T
by the autolink OVLAY3 E
feature, if any.

) Modules included
by the autolink
|) feature, if any.

Dynamic storage

]
|
|
|
L

Structure of the Resolved Overlay Scheme - R.

Structure of the Resolved
Overlay Scheme

Figure 60.

84

PL/I Procedures Contained in the
Relocatable Library

Precompiled PL/I procedures may be inco-
rporated in the relocatable library by
using the DCS/TCS MAINI' service program.

A module is retrieved frcr the library and
incorporated in the okject program by the
autolink feature when the name cf the
module is specified for the first time
either in a PL/I functicn reference or in
a CALL statement.

No module is retrieved from the library
if only secondary entry pcints are
referred to in the calling procedure(s).
In this case, a statement of the format

INCLUDE module-namre

is required to include the module in the
object program. On the other hand, inco-
rporation by the autolink feature can be
suppressed for a specific module by refer-
ring only to secondary entries of that
module. To oktain the same result as by
calling the primary entry roint, the rrc-
grammer may insert a statement of the
format

ENTRY secondary-entry-name

imrmediately kehind the PRCCEDURE statement
of the external procedure.

Note: Although this description covers
most of the applications of the overlay
scheme, the reader should study the sec-
tion covering the Linkage Editor program
in the SRL publications that describe the
DOS/TOS system control and service
programs.

SOURCE _PROSRAM LISTING

2ll source program cards are listed if the
LIST option is in effect. Each card is
printed as one line. The source state-
ments are numbered sequentially starting
at 1. The statement numker is printed in
print positions 1 through 6 of the line
where the statement begins (right-
aligned). In case a line contains morxre
than cne statement, only the number of the
first statement is printed. However,
since the remaining statements are coun-
ted, the next line again gives the correct
statement number.

Note: If comments or character strings
are not correctly opened or closed in the
source text, unpredictakle diagnostic mes-
sages may be produced. Also, the source
statement numbering will be erratic.

If the source statement contains any
exror(s), the statement numker is used in
the corresponding diagnostic message to
clearly identify the statement in error.
The diagnostic messages are listed in
Appendix F.

Column 1 of PL/I source program cards
must always be klank. If column 1 of a
source card contains any character, print
positions 7 through 20 of the correspond-
ing line in the source program listing --
i.e., the gap between the statement number
column and the source statement column
plus column 1 of the source card -- are
filled with asterisks to indicate this
error. Columns 73 through 80 are ignored
and may contain any information.

SYMBOL_ TABLE LISTING

If the SYM option is specified, all sym-
bols used in PL/I source programs are
listed in the symbol table. The format of
the symbol takle is shown in Figure 61.

The symbol tabkle is listed even if
NOSYM was specified in case a declaration
contains an error or an external name is
too- long.

The programmer is advised to examine
the symbol table listing after the first
compilation of a procedure to detect
erroneously declared identifiers and iden-
tifiers that may have been incorporated by
default rules as the result of
mispunching.

The attributes ALIGNED or UNALIGNEL, if
specified for a major structure, are

PROGRAM LISTINGS

structure, unless an opposite attribute
has been explicitly declared for a parti-
cular element.

e Sttt 1
| Print | |
| Positions|Contain |
R oo {
| 1-31 |user-defined name |
F oo e {
| 33-36 jinternal representation |
o o !
| 38-39 | block numbker |
b I 4
| 41 |block level nurber |
t 1 -~ {
| 43-u49 jone of the attributes ARRAY, |
| | STRUCT., ENTRY, or BUILTIN# |
k- I U e {
| 51-53 |logical structure level#* |
e S -- {
| 55-61 |one of the attributes ARITHM., |
| |STRING, LABEL, POINTEk, FILE, |
I |or PICTURE* |
k Tt — 1
| 63-69 |one of the attributes DECIMAL, |
[| BINARY, ALIGNED, UNAL., CONST., |
| jor VARIAB. * |
_________________________ {
| 73-75 |one of the attributes FIXED, |

|FLCAT, BIT, CHAR., or STERL* |
e . v {
| 77-81 |the precision or length* |
k prmmmmmmm e - :
| 83-88 |one of the attributes STATIC, |
[{AUTOM., BASED, PARAM., or |
| |DEFIN, * |
T 1
| 90-92 |one of the attributes INT or |
l lEXT 1
| * if applicakle |
| W - 4

Figure 61. Format of the Symbol Table
Iisting

Any error detected during compilation in
the declaration of the symbols is identi-
fied in the symbol table. In this case,
only the source program symbol, one of the
messages listed in Figure 62, three
asterisks, and the ccde pertaining to the
message appear in the respective line of
the listing.

parand only. Comparison starts with the
innermost block and proceeds either on the
same nesting level according to the block
seguence of the program, cr to the blcck
with the next higher nesting level.

Program Listings 85

0UTI: PROCEDURE;

DECLARE E BINARY EXTERNAL;

IN: PROCEDURE;
DECLARE E DECIMAL EXTERNAL;
END IN;

END OUT;

The message appears with the E in procedure
IN.

pe———-

) 1
| Code | Message Text |
O S 1
| 01 | SYNTACTICAL DECLARE ERROR. |
p-==-t !
| 02 |CONFLICTING ATTRIBUTES.]
e I — T T LS !
| 03 |PRECISION IS MISSING CR WRONG. |
t + 1
| O4 |BASE VARIABLE ITSELF IS DEFINED OR |
] | BASED. |
VT !
| 05 |BASE OR POINTER INCORRECT. |
O]

-

|
b--=1

| 07 |MULTI-DECLARED IDENTIFIER. |
e -

| 08 |ENTRY RETURNS VALUE WITH CONFLICTING|
|

| ATTRIBUTES. |
{05 | TNvALID STROCTURE. (Any invalia |
| |element in a structure may invalid- |
| late the entire structure). |
t oA IARRAY TOO LONG. T 1
T 0B ESTRUCTURE TOO LONG.) _—f
r-oc [POINTER IN BASED STRUCTU;;: 1
T 0D ETOO MANY ARRAYS. f
r OE |INVALID PICTURE. o --1
{-6;-|STRUCTURE LEVEL TOO DEEP?_-- -_-I

.|.

| 10 |NAME EXCEEDS 31 CHARACTERS IN |
|LENGTH. 1
|

+ -

11 |EXTERNAL NAME EXCEEDS 8 CHARACTERS |
| IN LENGTH. 1
4

|
b
n
|
S F i
|
|
L

Figure 62. Error Codes Used in the Symbol

Table Listing

CROSS-REFERENCE IISTING

If XREF is specified either in the OPTION
statemrent or in the PL/I PROCESS statement
a cross-reference listing will be provided

86

containing the external names in alghaketic
order as well as the internal names and the
statement numkers of those statements in
which the names appear. References tc
identifiers in DECLARE statements or to
incorrectly declared identifiers are not
printed.

OFFSET_TABLE_LISTING

The offset table listing is produced if the
SYM option is specified in the OPTION sta-

tement. The information is printed in four
columns in hexadecimal notation.

Internal Name. A variable cr constant is
listed in the offset table if (1) it is de-
clared in the source text and (2) it
appears either in the autcrmatic or static
storage area, and (3) has a fixed offset
relative to the keginning of the respective
storage area.

Offset. This column gives the offset of
the data item relative to the beginning of
the automatic or static stcrage area for

the corresponding klock.

Type. This column indicates whether the
data item is contained in static cr in
auvtomatic storage.

Module Cffset. This colunn gives the off-
set of the data item relative to the begin-
ning of the module in which it arrears.
(Since the addresses in automatic storage
are dynamically assigned, no offset rela-
tive to the beginning of the mcdule can ke
given for automatic data.) The absclute
address of the data item contained in stat-
ic storage can be determined by adding the
load address of the module (to be found in
the lLinkage Editor storage magp) tc the
value given here.

EXTERNAL SYMBOL_ TABLE_ LISTING

The external symbol table is produced if
the SYM option is specified in the OPTION
statement. 1t contains the following
information:

column 1: SYMBCL the external symbol
column 2: TYPE - either sD, LD, or ER
column 3: ESID ESID number of control
section that is referred
to (fcr SD and ER)

begin address (for SC

column 4: ADDR

and LD)

column 5: IENGTH - end address (for SO
only)

column 6: ESID - ESID number of control

section that is referred
to (fcr LD)

BLOCK_TABLE LISTING

The block takle listing is produced if the
SYM option-is specified in the OPTION sta-
tement. The block table gives the number
of the program klock and the size of the

corresponding DSA in hexadecimal notation.

OBJECT CODE LISTING

The object code generated for a PL/I source
program is listed following the offset
table. The following should be noted:

1. All addresses and operands are printed
‘in hexadecimal notation.

2. Length specifications in SS instruc-
tions are printed modulo 256 if one
length is specified and modulo 16 if
two lengths are specified.

3. Operands of the form X'nnn' (b) repre-
sent generated variakles or constants.
nnn is the displacement and b is the
base register.

4. Operands of the form N'nnn', where nnn
is greater than or equal to 100, repre-
sent internal names of declared items.
(These can also be found in the symbol
table.)

5. Operands of the form N'nnn', where nnn
is less than 100, represent internal
names of PL/I library subroutines.

6. Labels of the form IL'nnn' represent
internal names of declared or generated
labels. (Only declared labels can be
found in the symbol table.)

7. Operands of the form N'nnn' that appear
in the instructions BC, BAL, or BCT
represent internal names of either de-
clared or generated lakels.

8. A 'constant' Of the form X'' has the
same function as the assembler instruc-
ticn EQU *

9. An instruction of the form

L'nnn' DC A(N'nnn')
does not rerresent an address constant
of itself. L'nnn', in this case, is
the label of the constant, whereas A(
N'nnn') refers to an entry point of
that internal name in the program. For
example, in the instruction

L'0104" DC A(N'0104")
L'0104' is the lakel of the constant
defined by the DC. A{(N'0104') refers
to an entry point in the program that
has the internal name.

10. If a statement is preceded by more than
one lakel, all labels are equated to
the one directly preceding the state-
ment. For the statement:

A: B: C: X =1Y;

the following ccde wculd be generated:

L' * EQU * (for a)
L' ' ECU * (fcr B)
L' ' MVC caes

11. The numker of the source statement for
which the object code is generated is
printed at the end of the specific part
of the object text. The statement
number may appear more than once if the
respective source statement was broken
down into logical parts during
compilation.

STATEMENT CFFSET_ LISTING

If IISTC is specified in the PROCESS card
the statement numbers and the relative
location of the end of each staterent
within the okject module is printed. LISTO
overrides LISTX, i.e., if LISTO and LISTX
are specified, the LISTX option is ignored
because the object code listing and the
statement offset listing cannot be printed
together.

COMPILE-TIME DIAGNCSTIC MESSAGES

Errors caused by non-observance of language
rules and/or restrictions in the source
text are detected by the conriler. A diag-
nostic message is printed for each detected
error (after the source listing). Thus,
more than one diagnostic message may be
printed for one statement. The fcrmat of
the diagnostic messages is.as shown in
Figure 63.

The error messages are printed cn the
unit assigned to SYSLST if ERRS was speci-
fied in the Job Contrcl OPTION statement or
in the PL/I FRCCESS card. The error list
is followed by a message resulting frcm all
detected errors. This message gives the
action taken by the comrgiler.

If errors of the severity T are
detected, the message is:

5E01I JCBSTEF FL/I TERMINATED.
OPTICN RESET.

LINK

If no errors of the severity T, but
errors of the severity S are detected, the
message is:

5E02I LINK CPFTICN RESET.

Program Listings 87

T T

| COLUMN| CONTAL NS |
t + -

[

b
1 |5A, 5C, 5E, or 5G, depending on |
| |where the error is detected. |

pmmmmmm A e |

|three decimal digits (only two for]|
| messages that are also printed on |
| |the console) giving the number of |
| | the error message. |

jthe character I (system standard |
	indicating that the message is of
	informational type and no operator
	action is required).
5]
1

4 |the numker of the statement in
|which the error was detected (only
|for messages starting with 5C and
| SE) .

B T —_— -

I I
| I
| I
| I
t 1
| 5 |the severity code (one of th |
| |characters W, E, S, or T). |
I |W_=_Warning , I
	This code indicates that the com-
	riler suspects an error although
	the program is written in legal
	PL/I language. The compiler takes
{no further action.	
	E_= Error
	This code indicates that the pro-
	gram is not legal. However, the
	compiler has taken the correspond-
	ing corrective action. Execution
jwill ke successful if the correc-	
	tive action was adequate.
	S_=_Severe_error
	This code indicates that the pro-
Jgram contains errors which the	
	compiler is unakle to correct, but]
	which do not prevent the compila-
jtion from being continued. Execu-	
	tion of the produced object pro-
	gram will not be successful.
{T_= Termination	
	This code indicates errors causing
	the termination of the compila-
	tion. Compilation is terminated
	after the phase handling the error
	1listings has been reached and the
	messages have been printed.

prmmmmm +-- e E—— {
| © |a comment referring to the |
| |detected error. (See Appendix F.) |
R ¥ — ’]
Figure 63. Format of Diagnostic Messages

Since in the case of severe errors no
linkage editing is possikle, the // EXEC
LNKEDT statement, if any, is flagged as
invalid by the Job Control message 1S1nD
STATEMENT OUT OF SECUENCE.

If only errors of the severity W or E
are detected, the message is:

SEQ03I POSSIBLE ERRORS IN SOURCE
PROGRAM.

88

The individual diagnostic error messages
are listed in Appendix F.

OBJECT-TIME DIAGNOSTIC MESSAGES

Errors that occur during execution cf PL/I
programs cause the printing of an object-
time diagnostic message. The format cf
these messages is as follows:

5L00I ccqggqggqg aaaaaa ERROR STMT
SLOOI is a prefix tc identify the mes-

sage as a PL/I object-time
message,

cc are two hexadecimal digits iden-
tifying the ressage, (see the
message code list below),
q9a999 are six hexadecimal digits qua-
lifying the message code with
the address cf a file, if appl-
icable. Ctherwise six zercs.
aaaaaa are six hexadecimal digits sge-
cifying the address where the
error was detected. If the
error was detected in a library
routine, aaaaaa is ‘the address
of the instructicn that follows
the call of the routine in the
PL/I object prcgram.
STMT If STMTI was srecified in the
PROCESS card, the number of the
source statement that caused the
error is printed in the form
STATEMENT NUMBER nnnn. In -some
instances it is impcssible tc
determine the statement that
caused the errcr; nnnn is then
set to 0000.

For errors not raising an ON-condition
(other than ERROR), a message is printed
for the specific error and the ERROR-
cendition is raised. This applies to all
errors with a message ccde higher than 10.

If SYSLST is not yet crened (e.g.,
because of insufficient stcrage fcr DSA),
some of the messages may be printed on the
printer-keyboard only.

LIST OF MESSAGE CCDES

1. PL/I CN-Condition_Comments
These object-time diagnostic messages
are issuved only if an enabled PL/I CN-
condition is raised and no ON-unit is
currently being executed for this
condition.

01 CVERFLCW
02 UNDERFLOW

03 ZERODIVIDE 4a.

04 FIXEDOVERFLOW

05 SIZE

06 CONVERSION

09 ERROR

0A ENDFILE

C TRANSMIT

0D KEY

OE RECORD

Only the last four conditions

use the file-name qualification.

With indexed-sequential files the END-

FILE condition will also be raised if a

key higher than the last one on the

file is reguested. I(f the ENDFILE con-

dition is not enakled for the file, the

message 80 - NO RECORD FOUND - will be

issued.

Hardware_ Interrupts

Severe programming errors might lead to

Frogram-check hardware interrupts dur-

ing the execution of a PL/I program.

These possikle interrupts are identi-

fied by the following codes:

11 Operation

12 Privileged operation

13 Execute

14 Protection

15 Addressing 4k.

16 Specification

17 Data

1E Significance

Note: For details refer to the SRL

publication IBM_System/360, Principles

of_Operation, Form A22-6821.

Housekeering Errors

21 STORAGE OVERFLOW
There is not sufficient storage
availakle for dynamic storage
allocation.

22 INVALID LABEL
The label variakle in a GOTC state-
ment does not contain a valid
label.

23 SECONLC CALL OF MAIN
A procedure with the option MAIN is
called by a PL/I program.

24 PARAMETER NOT ON DOUBLE-WORD
BOUNDARY
Procedure expecting doukle-
precision floating-point variable
as rarameter has keen passed
single-precision value.

25 INVALID SIGN CHARACTER be.

Incorrect character for sign posi-
tion of PICTURE data containing T,
I, or R in specification.

Mathematical and Arithmetical Subrou-
tines_(Short Arguments)

30 X LT 0 IN SQRT(X)

31 ABS(X) GE (2**18)#*K IN SIN(X)
OR COS(X) (K=PI) OR SIND(X) OR
CCSD (X) (K=180)

32 ABS(X) GE (2*#18)*K IN TAN(X)
(K=PI) OR TAND(X) (K=180)

33 X TCC NEAR SINGULARITY IN
TAN(X) or TAND(X)

34 y=X=0 IN ATAN(Y,X)

35 X GR 174.6 IN SINH(X) OR
CCSH(X)

36 X GR 174.6 IN EXE(X)

37 X GR 1 IN ATANH(X)

38 X IE 0 IN LCG(X) CR LOG2(X) OR
LOG10(X) OR X LE O AND Y NOT FIXED
PCINT (F,0) IN EXPRESSION X**Y

39 X=0, Y LE O IN X#*Y

3 X=0, N=0 IN X**N

Mathematical and Arithmetical Subrou-
tines (Long Argquments)

40 X 1T 0 IN SCRT(X)

41 ABS(X) GE (2**50)*K IN SIN(X) OR
COS(X) (K=PI) OR ESIND(X) OR
CCsD (X) (K=180)

42 ABS(X) GE (2**50)*K IN TAN(X)

(K=PI) OR TAND(X) (K=180)

43 X TCC NEAR SINGULARITY IN
TAN(X) OR TAND(X)

44 yY=X=0 IN ATAN(Y, X)

45 X GR 174.6 IN SINH(X) OR COSH(X)

46 X GR 174.6 IN EXP(X)

47 X GR 1 IN ATANH (X)

48 X LE 0 IN LOG(X) OR LOG2(X)
CR LCGL0(X) CR X LE 0 AND Y NOT
FIXED POINT (P, 0) IN EXPRESSICN
X**Y

49 X=0, Y LE O IN X**Y

4A X=0, N=0 IN X**N

Other Built-in Functions

50 Y¥=0 IN MCD(X,Y)
Binary fixed arguments

Prcgram Listings 89

920

51

52

53

54

55

Y=0 IN MOD(X,Y)
Decimal fixed arguments

¥=0 OR
ABS(X/Y) GT 7.2%10**75 IN MOD(X,Y)
Short floating-point arguments

¥=0 OR
ABS(X/Y) GT 7.2%10%#*75 IN MOD (X, Y)
Long floating-point arguments

MOD(X,Y¥) GE ABS(Y)
Short floating-point arguments

MOD (X,Y) GE ABS(Y)
Long floating-point arguments

MOD for floating-point arguments
will be calculated as

a=X/Y; b=Y*a; MOD(X,Y)=X-b

If the expronent of X is so high

that X+Y has the same value as X,
then MOD(X,¥Y)=0; message 54 or 55
will be generated in such a case.

Input/Outrut Errors

61

62

63

64

65

66

67

FORMAT ERROR
Illegal combination of data list
item and format list item.

END OF STRING

Attempt to read or write beyond the
specified string in a GET EDIT or
PUT EDIT statement with the STRING
option.

ILLEGAL USE OF CONTROL FORMAT OR
OPTION

An invalid PAGE, SKIP, LINE, or
COLUMN format is specified for a
file.

ILLEGAL USE OF STREAM FILE

Attempt to execute a disallowed GET
EDIT or PUT EDIT statement for a
STREAM file.

ILLESAL USE OF CONSECUTIVE
BUFFERED FILE

Attempt to execute a disallowed
READ, WRITE, REWRITE, or LOCATE
statement for a CCNSECUTIVE BUF-
FERED file.

ILLEGAL USE OF CONSECUTIVE
UNBUFFERED FILE

Attempt to execute a disallowed
READ, WRITE, or REWRITE statement
for a CONSECUTIVE UNBUFFERED file.

ILILEGAL USE OF REGICNAL FILE
Attempt to execute a disallowed
READ, WRITE, or REWRITE statement
for a REGIONAL file.

69

6A

6B

6C

6D

6E

6F

70

71

72

7B

PAGE SIZE OPTION FOR NON-PRINT FILE

ILLEGAL USE OF INLCEXED SEQUENTIAL
FILE

Attempt to execute an invalid READ,
WRITE, or REWRITE statement for an
INDEXED SEQUENTIAL file.

ILIEGAL USE CF INCEXED DIRECT FILE
Attempt to execute an invalid READ,
WRITE, or REWRITE statement fcr an
INDEXED DIRECT file.

INPUT DATA ELEMENT TOO LONG
Attempt to read an element of
excessive length in a GET LIST
statement.

TCC MANY CCNCURRENT I/0 ERRORS FOR
STACK SIZE

Indicates that mcre than three
files have WLR and/or TRANSMIT
errors being handled at the same
time.

FILE IN ERROR NOT IN STACK
Indicates that a file with WLR or
TRANSNMIT error flagged in the DTF
appendage is not in the errcr file
stack.

(N.B. This message can also occur
if the LBLTYP card has been
omitted, thereby causing label data
to overlay and set the aprrorriate
kit in the DTIF appendage).

ILLEGAL USE OF STREAM FILE

Attempt to execute a disallcwed GET
LIST or FUT LIST statement for a
STREAM file.

ERROR DURING POSITIONING OF INDEZXED
SECUENTIAL INPUT FILE

An error has occurred during the
positioning to the record key sre-~
cified in the KEY option of a READ
statement.

ERRCR DURING INITIALIZATION OF
INDEXED SEQUENI'TIAL OUTPUT FILE
The cylinder index area is not
large enough to accommodate all
entries required to index each
cylinder specified for the prime
data area.

ERRCR DURING INITIALIZATION OF
INDEXED SECUENI'IAL OUTPUT FILE

The master index area is not large
enough to accommodate all entries
required to index each track cf the
cylinder index.

END CF STRING

Attempt to read cr write beyond the
specified string in a GET LIST or
PUT LIST statement with the STRING
option.

80

81

82

83

If the ERROR condition is raised as
a result of System action for the
KEY condition, one of the fcllowing
messages may be printed to give a
rore specific description of the
error that caused the KEY condition
to be raised.

NO RECORD FOUND

The record to be retrieved by a
READ KEY from an INDEXED file has
not been found in the data file.

OVERFLOW AREA FULL

There is no more space available in
the overflow area(s) for the record
to be added to an INDEXED DIRECT
file by a WRITE KEYFROM statement.

PRIME DATA AREA FULL

The prime data area has been filled
while creating or extending an
INDEXED SEQUENTIAL file by a WRITE
KEYFROM statement.

DUPLICATE RECORD
The record keing added by a WRITE

84

87

KEYFRCM statement to an INDEXED
SEQUENTIAL or DIRECT file has a
duplicate record key of ancther
record in the file.

SEQUENCE CHECK

The record being written by a WRITE
KEYFRCM statement to an INDEXED
SEQUENTIAL file is not in the
sequential order required.

FCRMAT ERRCR IN INPUT

a) Delimiter is neither blank nor
comma

b) Character B is missing in
external format of a bit string

c) External format of data item is
incompatible with internal
declaration, e.g.

External : Internal;:

character string«—sbit string

string data <«— numeric,
E,F-format

Program Listings 91

APPENDIX A, CONVERSION SUBRCUTINES

r T T T 1
|No. and| | | I
| intern.| | Reason for Inclusion | |
| name |Function |in Object Program | Size(in Bytes) |
F ¢ — - :
| 1 |Converts input data |F or E format has appeared | 404
| IJRVECM| from F or E notation to an |in an input statement | |
| |internal intermediate form] | |
b } o $=-- ¥ 1
2 |Converts data from an internal |F or E format has appeared | 1024
| IOKVCEM|intermediate form to F or E | in° an output statement | |
| | format in preparation for output| | |
P ¥ t -1
| 3 |Converts data in storage in Coded fixed decimal expres- | 68 |
|coded fixed decimal form tc an |sion appears in an output list | [
| ITJKVPCM |internal intermediate form | or | |
| | |Coded fixed decimal data | i
| 1 |requires conversion to float- | |
| i |ing scale or kinary Lkase | |
b ¢ - -4 == 3
4	Converts data from an internal Coded fixed decimal variable	214	
}intermediate form to coded	arpears in an input list		
IJRVCPM	fixed decimal form	or	
i		Whenever a conversion to	1
		coded fixed decimal is required	
b= o T --—-4 1			
5	Converts data stored in	A numeric float variakle	492
IJKVFCM	numeric float form to an inter-	appears in an arithmetic	
IOKVNPM	nal intermediate form	expression or in an output listj	
¢ $. t 4			
6	Converts data in an internal	Numeric float variable	680
	intermediate form to internal	arpears in an input list	
IJKVCFM	numeric float	or	
ITRVPNM	larpears on the left side of an		
		assignment symbol	
k- o - ——=- s 1			
7	Converts data in storage in	Integer binary fixed expres-	60
IJKVBCM	fixed binary form to an inter-	sion appears in an output list	
	nal intermediate form		
e , Fomms ————t !			
8	Converts data in an internal	Binary fixed variable appears	238
IOKVCBM	intermediate form to fixed	in an input 1list i	
	binary form		
b b o e ommm - S 1			
9 Converts data from coded float-	Coded float expression or non-	3202	
ling point form (short or long	integer binary expressiont		
IJKVICMlword) to an internal intermedi-	appears in an output list		
	ate form or		
		Coded float or non-integer	
		fixed binary expression is	
i		assigned to a numeric decimal	
]	variable or a coded fixed		
		decimal variakle	
! t t + :			
10	Converts data from an internal Coded float variable agpears	3922	
IJKVCTM	intermediate form to coded	in an input 1list	
	floating form (short or long)	or	
		Conversion to coded float is	
		required from either numeric	
i	data or coded fixed decimal]		
L 1 1 L J

92

r)t i T 1
No. and			
intern,		Reason for Inclusion	
name	Function j[in Object Program	size(in Bytes)	
+ . y |
------- - $--——- - T — y
| 11% |Converts data from numeric | Numeric fixed decimal number is| 368 |
| IJKVNPM| fixed form to coded fixed jused in an arithmetic
| |decimal form3 |expression or in an output list| i
L 4
T -- -—-4 -1
| 125 Converts data from coded fixed |Numeric fixed decimal number | 316
| |decimal form to numeric fixed |appears on the left of an | |
| IOKVPNM|decimal form3 |assignment symkol or in an |
| | | input list | |
s T - 4 :
| 13 Converts from numeric fixed |Numeric sterling field is used | 796 | |
| ITKVRPM |[sterling to coded fixed decimal |in an arithmetic expression cr | |
| [|in an output list | |
t e $ - : - -——
| 14 |Converts from coded fixed | Numeric sterling number | 1252
|]decimal to numeric fixed larpears on the left of an | | |
| IJKVPRM |sterling |assignment symbol or in an |
| | }jinput list | |
+ t == e fmmmmmmie . R
| 15 |Converts character string to |Conversion to bit string from | 254 i
|bit string |character strina form is | |
| IJKVGIM| |required - | |
p-mmmm - - - T D - - -4 {
| 16 |Converts bit string to character|Conversion to character | 148
| |string | string from bit string is |
| LJRVIGM] |required or a kit-string | {
| | | expression appears in an |
| [|output list | |
-+ T — . -4 1
| 17 |Converts fixed kinary data to Conversion from binary | 132
{ IOKVBTM| coded float |fixed to coded float is | |
| | required | |
I e $ommm— - —mm oo 1 :
18 |Converts coded float data to jConversion from coded | 228
|IJRVTEM|fixed kinary |float to fixed binary is | |
| | | required | |
} i U, F. Il
|
|*The only way for a non-integer fixed binary number to appear is if the result of a |
| division of one fixed binary integer by another results in a non-integral value cr Ly |
| use of any of the built-in functicns PRECISION, BINARY, or FIXED. |
! |
|2Also reguires a table of 128 bytes. Subroutines 9 and 10 require this table. If both|
| subroutines appear, the takle is in storage only once. ' |
| I
| 2Any rpicture data represented ky [9...1[V]1[9...1(T] is converted to and from ccded |
| fixed decimal by a single in-line instruction and requires no sukroutines. |
|
|#Subroutine 11 is a subset of subroutine 5. If 5 is present, 11 is not. |
|
| Subroutine 12 is a subset of subroutine 6. If 6 is present, 12 is not. |
L e e _— —_— J

Appendix A. Conversicn Subroutines 93

APPENDIX B. _POSSIBLE COMBINATIONS OF

DATA CONVERSICNS

FORMAT ITEMS .
-
ro 1| 2
2| o0 0}
gl e | Z z
oV 28 -] L] 2 =
gl x| <| Q| m| 2| ©
x| w o) | »w|l < “l o
FROM Tl vl 2] u|l V| Z 51 2 o
ol 2| a|l 2| 2| @ 3| = o
w w < =) é % é g g @ E E g Z
ol z| ol zlz|z| S| E5l3]°8
1,4, 1,4,
F NP | NP O[NP O[NP 1,4 o0 1,10] 1,6 4| 1,8 NP (NP | NP | NP
wv)
7,4 1,4
2 E NP | NP |[NP | NP | 1,4 ,"[1,10] 1,6] {4,'| 1,8| NP |NP | NP | NP
.___ 12 6] 14
Lz‘; A NP | NP [NP [NP NP NP (NP NP NP NP | X |NP I NP NP
o
o B NP | NP {NP | NP [NP NP [NPOINP NP NP O[NP | 15 | NP [NP
CODED FIXED DECIMAL 2,3]2,3|Np |NP | IL | 12 [3,10]3,6 | 14 |1L [NP | IL | NP | NP
NUMERIC FIXED DECIMAL f;s' 2]'13' NP | NP [T 11,123;:0' 3]']6' madn e[| Ne|Ne
CODED FLOAT 2,9]2,9 [NP | NP [4,9 4']2' IL | 6,9 4]'49' 18 |NP | 18 | NP |NP
NUMERIC FLOAT 2,512,5 |NP [NP [4,5 4']52' 5,10| 5,6 4;‘:" 58| 1L |5,8|NP NP
NUMERIC STERLING 2,312,3 1np | NP | 13 12,1331 363,04 13 [L | 13 | Ne e
13 | 13 13] 13
FIXED BINARY 2,712,7 [NP NP [L |12 {17 6,7] 14 | 1L NP [l [NP | NP
CHARACTER STRING NP [Ne | x [e e NP [e NP e e[ae |15 [e | Ne
BIT STRING NP (NP {NP {16 | iL |12 | 1L {6,714 | {16 | [ne |NP
LABEL NP | NP | NP | NP NP NP [Ne NP NP NP [Ne [Np [l [Np
POINTER NP [NP | NP | NP NP NP [e {Ne e [Ne [e | NP [Ne L

Legend: NP - Not permitted.

IL - Done directly in-line; no subroutine required.

X - Contained as part of edit-directed |/O package to be discussed in I/O chapter.

The numbers indicate the applicable conversion subroutines listed in Appendix A.

94

APPENDIX C.

BUILI-IN FUNCTIONS, PSEUDO_VARIABLES, AND OIHER IMPLIEL SUEROQUTINE_CALLS

=T et T T - -T 1
Lol | | size | o o N
|No|Name |Argument (s) | Internal | in |Restrictions and Additional |
[| |Name(s) | Bytes |Information |
I - - } + — 1
I | kit string | IJKRBKA | 292 |
|] | | IJKREKE] |Result must not exceed max. |
|19 | REPEAT b . ——— $——————— {string 1length |
[| character string | IJKRGKM | 84 |

b=+ - - - e — 1 1 1
| 20§ |bit string |ITKREBIM | 292 |

+ - INDEX t — t 4 |
121 | character string | IJKRGIM | 108 |

F--1 fommmm oo omommmme- oo f-mmmm - 1
| 22| BoOL | |IJKREEM | 424 | |
b=+ 1 —mmmmmme pommmmmoeet : ---)
1 1 | character string | in-1ine | - |

| 23] SUBSTR p———-— it DR ————t 4 |
(I |bit string |IJKVIIM | 180 |

f—t--- oo eee fommmmaamt t --- 1
|24 |UNSPEC | kit string | in-1ine | -- |Argument must not exceed |
. | | | |8 bytes |
b=+ e + -+ + -—-- --- {
|26 | DATE | | IJKSDTM | 58 | |
F--+ ommm oo t-—- —4-—- + !
| 27| STRING] |in-line | - |]
bt 1 _ - + e 4
I | fixed kinary | IJKRUBM | 148 | |
| 28| ROUND |fixed decimal |in-line | --] |
| ¢ e e i |
[| float | in-line | -- {
b-—4- pommmmm oo fmmmmamm + + 1
| 29] |all fixed binary JITKRMEBX | 278 | |
I | | IJKRMBN| | |
-t b $—— + {Argument with differing data |
| 30§ lall fixed decimal |IJKRMPX | 386 |attrikutes causes some of the |
| | | IJKRMPN]| |data to be ccnverted to cne of|
b--{MAX/MIN @ e - Fomm————— {the four permissible types. |
| 311 [all short float | IJKRMSX | 132 |The choice depends on the |
I | | IJKRMSN| |element of. the highest |
s | --————————— o ———— F-m—————— {stringency level. |
|32] |{all long float | IJKRMLX | 172 | !
11 | | IJKRMLN| | |
F--+ oo $---- 1 + :
| 33| SIGN | |in-line | - |
[- ; -t t t 4
{1 | fixed kinary | IJKRWBM | 356 | 1
S — 1 1 |
|] |£ixed decimal] ITKRWPM | 580 |[In-line code for TRUNC of |
|34 |TRUNC t + + {fixed decimal data. IJKRWPM is|
[|short float | IJKRWSM | 236 |used only fcr FLOOR and CEIL. |
Lo F —mmmmmmemmee e oo 1 |
|1 |long float |IJKRWLM | 244 | |
b=t + L + L '
|35 | FLOOR |Contained in TRUNC. Entry points are IJKRT.. |
F-—4 fmmmmmm oo --- -1
] 36| CEIL |Contained in TRUNC. Entry points are IJKRV.. |
[S 4 -J

Arpendix C. Built-in Functions, Pseudo Variables, and Other Implied Subrcutine Calls 95

—=T- T - T T - T - 1
[1 | 1 | size | . . |
| No | Name |Argument(s) |Internal | in |Restrictions and Additional
[| |Name(s) | Bytes |Information |
-~ 1 O t emm e {
|| | fixed Lkinary | IJKRSBM | 200 | |
I I e et I 4 |
| |fixed decimal | ITKRSPM | 265 | |
370D e + -—- -1 |
1 1 |short float | IJKRSSM | 184 | |
T o T - - |
| |long float]IJKRSLM | 192 |
b=+ 1 ot fommmm oo '
|38 | PRECIS ION | |in-1line | -- |
F-—4 + - P - 1
| 39| HIGH | |in-1line | -~ |
==+ 1 e P + - :
|40 {LOW | {in-line | - | |
P-4 oo e e :
| 41| FIXED | t | |Attriktutes of arguments must |
-+ -4 | | |permit conversion sgecified Ly|
|42 | FLOAT | | | |built-in functicn name. Nc
-+ { | | | subroutine is called if
| 43| BINARY i | | | argument is already in re-~ |
t--+ 4 | { |guested forwm. Arrrorriate |
|44 | DECIMAL | | | |subroutines 1-18 are used. |
e e —— 1 | | |Choice depends on attributes |
| 45|BIT i |] |of argument and built-in |
-+ q | | |function nare. (See [
|46 | CHAR | |] |Appendix A. |
s e e +-—- !
| 47| suM | fin-line | -
b=+ 1 - A + - .
|48 | PROD | |in-line | --
----- b - T 1 1
| 49|ALL | |in-1line | -— |
$ e —————— = 1 4+ + § |
T T T . . v T 1
|50 | ANY | |in-1line | -- |
. - i + 1 - -1
| 51|ABS i |lin-line | -—-
bt 1 e e + e oo 4
[|expr.1l fixed binary|IJKREBM | 92 ||Result| < 231-] |
| 52 |lexpr.2 integer | | |
|1 | constant | | | (IHEXIB) |
k-~ T e 1 1 -1
| |lexpr.l fixed deci~- |IJKREPM- | 140 | |Result| < 1015-1]
{153 |mal, expr.2 integer| | | |
(| |constant | | | (IHEXID)
F—1 b 4 -+ I T :
I 1 |]expr.l short float, | IJKRESM | 144 | |Result| < 7.2x107S
| 5S4 |expr.2 fixed binary| |
[|with scale factor 0] | | (THEXIS)
b--{expr.l**expr.2 f——————m—m—cmeem———— - + -—— -—— {
[|lexpr.l long float, |IJKRELM | 152 ||Result| < 7.2x1075 |
|1551 |expr.2 fixed blnaryl | | |
| |with scale factor 0} | |(IHEXIL) [
=1 et B B S '
| | |]expr.l short float |IJKRXSA | 152]Expr 1 > 0; expr.2 not integer|
| 56} | | | (60,62) | constant or fixed binary; |
i 1 | | | | lresult| =< 7.2x1075
I | i | | (IHEXXS) |
-1 fmmmmm e m oo + fomm oo 1
	expr.l long float	IJKRXLM	168	Expr.1l > 0; expr.2 not integer			
57	i	(61,63) *	constant or fixed binary;				
]xresult	< 7.2x107S
(| |] | | (IHEXXL) |
L 1 1 —m 1 L - - J

96

r—-T T -T-- T - T ———- 1
I | | Size | |
|No|Name |Argument (s) | Internal | in |Restrictions and Additicnal |
| | | | Name (s) | Bytes |Information |
t--t-—---—- + -1 t t - .|
| | |short float | TIRQQSM | 176 |Argument = 0 cr 2.4x10-78 < |
| 58} | | | | argument < 7.2x1075

|| | | | | (IHESCS) l
F~-1SORT - +-———- + -+ -—= i
| | |long float | ITKQQLM | 160 |Argument = 0 or 2.4x10-78 <

159 | | | | largument < 7.2x1075 |
| |] | | |(IHESSQL) |
t=—f-- 1 fmm e e 1
160 | |short float | IJKQASM | 232 lArgument < 174.6 i
| | | | | | (IHEEXS) |
t—1EXP t + R Bt i
|61 |long float | TJRQALM | 456 |Argument < 174.6 |
| | | | | | (IHEEXL) |
--1-- + + + - .|
| | |short float | IJKQLsA | 272 |Argument < 7.2x107S]
| 62} | | IJKQLSE| | (IHELNS) |
| { | IJRQLSC| | |
F—-fLOG /L0531 0/L0OG2 f—————————m—mm e - + R 4
| 1 |long float |IJKQLLA | 384 |Argument < 7.2x1075 |
1631 | | IJKQLLB| | (IHELNL) |
I | | IJKRQLLC| | {
——4-- + ----4 --——t + - -
| | |short float | IJRQSSD | 304 | |Radian Arg| < 2%8xri |
|64 | | IJKQSSE| | |Degree Arg| < 218x180

| | | TIJRQSSC| { |
|] | | IJKQSSA| | (IHESNS) |
t--4SIN/COS/ t + + + - _—— 4
| |SIND/COSD |long float | IJRQSLD | 416 ||Radian Arg| < 259xri |
| 65] | | IJKQSLE|] | | Degree Arg| < 25°x180 |
[| | IJRQSIC| | |
|| | | IJKQSLA| |(IHESNL) |
fmt=- 1 ===t + o 1
[|short float | IJKQTSB | 280 | |Rad1an Arg| < 218xpi |
| 66| | | IJRKQTSA| | | Degree Arg| < 218x180 |
1 I | | | (IHETNS) I
k--{ TAN/TAND b————————————————— - + + - - {
I |long float | ITKQTLE | 360 ||Radian Arg| < 25°xpi |
1671 | | IJRQTLA| | {Degree Arg| < 259x180 |
| | | |] | (THETNL) |
- 1 E— t —- 1
| |short float | IJRQNSD | 400 |0 < |X,Y] £ 7.2x1075 1
| 681 | | IJRQNSE| | |
| |ATAN(X) | | IJRQNSC|] i
| |ATAN(Y,X) | | IJKQONSA| | (IHEATS) 1
t—-—-4 ATAND(X) t + ——t = - |
| |ATAND(Y,X) |long float | IJKQNLD | 536 |0 < |X,¥Y| < 7.2x107s |
| | | IJKONLE| | |
169 | [| IJKONIC| | [
| | { IJKQNLA| | (IHEATL)

b+ + e A + + e §
|70 |short float | TJRKQCSA | 208 ||Axg| < 174.6 |
|1 I | IJKQCSE| (60) *| (IHESHS) |
}--4SINH/ COSH } SRR N $ + — -4
171 |long float |[IJKQCIA | 288 ||Arg| =< 174.6 |
[| | IJKQCLE| (61) *| (IHESHL) |
b=t~ $-- fomommoee } T S !
172 |short float | IJKQDSA | 212 | |Arg| =< 7.2x107s

I 1 | | | (60) *| (IHETHS) |
F-—{TANE e fommm e + ¥ -1
173 |long float | IJKQD1A | 288 ||Arg| < 7.2x1075 |
(. | | | (61) *| (IHETHL) |
| I T L 4 L L d
Appendix C. Built-in Functions, Pseudo Variables, and Cther Implied Subkroutine Calls 97

=T T Il Sttt T - B 1ttt 1
I | | | size | _ " 1
| No| Name |Ar gument (s) |Internal | in |Restrictions and Additional |
Il | |Name(s) | Bytes |Information |
o o e e 1 e {
| 74 |short float |IJKQBSA | 208 |]Arg] < 1 |
[i | | (62)* | (IHEHTS) {
F--{ATANH F -—= i S e G ettt ——=- 1
| 75] |long float |IJKQBLA | 280 | |Argl < 1
[| | I (63)#* | (IHEHTL) |
F--+ fommm oo e -- o :
| 76} |short float |IJKQRSE | 408 ||Arg| =< 7.62x1037
| | | IJKQRSA| (60)* | (ITEEFL) 1
f--}ERF/ERFC b————— - 4 -—q- - - ']
| 77| |long float | IJKQRLE | 776 ||Arg| < 7.62x1037 |
1 | | | IJKRQRIA| (61)* | (IHEEFL) |
F--+ oo T e -- !
{78|ADDR | |in-line | == |
b=+ 1 — t == 1
|79 |NULL | |in-line | -~ |
e oo e = + S - i
| 80{ADD | lin-line | -]
-+ 3 B 1 -+ :
|81 |DIVIDE | | in-line | - |
p=—4--- pmmm oo $-- + + 1
| 82| MULTIPLY i {in-line | -- i
* ', | T, L L J'
| #*The subroutine, the numker of which is given in parentheses, is alsc used by {
| this routine. |
[- —_— -J
r T e oo — e s e oo 1
| BUILT-IN FUNCTICNS CCNTAINED IN THE FULL-SET LANGUAGE, BUT NCT IMFLEMENTEC |
| IN THE D-LEVEL COMPILER |
________________________ {
| ALLOCATION DATAFIELD LBOUND ONCHAR CNS QURCE
| COMPLETION DIM LENGTH ONCODE POINTER
| COMPLEX EMPTY LINENO CNCCUNT ECLY |
| CONJG HBOUND NULLO ONFILE PRIORITY
| COUNT IMAG OFFSET CNKEY REAL |
| ONLOC STATUS |
e e e e e e e e e o e e ——— - g

98

r

o e e e e e e T T e e e T e e e e e e e -

AFPENDIX D. _I/0 SUBROUTINES

- e At B st B IS e T 1
[lnternal | |Reason for Inclusion in | |
| Nurber | Name |Name(s) |Description |Cbject Frogram | Bytes|
¥ + e T 4 {
1 |Pagesize |IJKTPSM |Controls number of | The PAGESIZE option appears | 72 |
| | |lines on printed pagelln an OPEN statenent | |
} T T L
2T | Stream |LJKTSTM |Constructs a logical |Always present for files | 674% |
|Constructor I| IJKTSTIN|stream from physical |declared with the STREAM | |
| | IJKTSTR]record and vice versa|attrikute |
------ - t - —= v o D
3%+ |Stream | ITKTLCM |Same as Stream Con- |Always present fcr files |876% |
|ConstructorII| IJKISTM|structor I excerpt |with the STREAM attribute, | |
| | IJKTSTN|{that LINE or COLUMN |with format list containing | |
| | IJKTSTR|is used | LINE or CCLUMN, or with PUT | |
| | | |statement containing the | |
| | | ILINE optiocn | |
------ +— 1 F —- A hoeal
42 |Format I |IJKTFDM |Assoc1ates a varlablelGEI/PUT FILE EDIT statement |480 |
| | |with its editing |appears in source program |
| l |descriptor | | |
t + P ' - $-—=——f
52 |Format II | IOKTGDI |Same as Format I |GET/FUT STRING ELIT state- |ulu4 |
] | IJKIGDO| | ment appears in source | |
| | | | program |]
------ I S S S —— ¥ 1
h Consecutive |IJKTCBM |Transmits data to/ |READ/WRITE/LCCATE/REWNRITE | 552% |
|Puffered | | from the buffer from/|statement is used for a | |
| Transmitter | |to a record variable |consecutive buffered file |
| | | for consec. files | | |
—————— ST B T s — ¥ {
7 [Consecutive [IJKTCU: |Transmits data | READ/WRITE/REWRITE statement|252% |
|Unbuffered | | directly from/to an |is used for a ccnsecutive | |
| Transmitter | |external device Junkuffered file | |
| | | directly to/from a | | |
| | |record variable { | |
b e T + S Somat
8 |Regional | ITKTRGM lrransmlts data to and|READ/WRIIE staterent is used|398 |
| Transmitter | |from a regional de- |for a regional file | |
| | |vice via a hidden | |
l | |buffer | | |
+ 1 T ———— fommm - - t 1
9 {Regional | IDKTXRM |Determines extent of |A regional file exists 1356 |
|Extent I | lregional file at open|for 2311 or 2314 | |
| | | time and serves as |] |
| | |file addressing rou- | [|
i | {tine to subroutine 8 | | |
—————— = : e t {
10 | Regional |IJKTXRN |Same as 9 |A regional file exists 1378 |
|Extent II | | |for 2321 |
+ o T P I—— e 4
11 | Indexed |IJKTSIM |Transm1ts data to/ |READ/WRITE statement is used|652 |
|Sequential | | from indexed data |for indexed sequential file | |
| Transmitter | |sets in seq. access | | |
| [| access [[|
—————— e T Tt + 1
12 | Indexed |LJKTDIM |Transmits data to/ | READ/WRITE statement is used|5U0 |
|Direct | | from indexed data |for indexed direct file | |
| Transmitter | |sets in direct access] | |
______ o 1 ——bemee U S |

I/0 Subroutines, Part 1 of 2

Appendix D. I/0 Subroutines 99

—===-=-7 ‘ T T T=—-" - - T 1
|Internal | |Reason for Inclusion in |
| Nurber | Name |Name(s) |Description |Cbject Program |Bytes|
p------4 t L T —— 1 U S {
| 13 |Display |IJKTDPD |Handles DISPLAY | DISPLAY statement appears 184 |
| | | IJKTDPR|statement and REPLY |in source progran |
a l 1 loptlon | l 4
T T T =TT T e E
| 1u {LIST-1/0 | IOKTLIM |Handles list-directed|GET [FILE/STRING] LIST {1068 |
| | I |[input I I I
‘, 1 + 1 ——— e e e e e e e 4]
1 T T _ A T T A
| 15 |LIST-1/0 | IJKTLOM |Handles list-directed|FUT [FILE/STRING] LIST 11076 |
I I [|output I ! I
l’ L i L 5 M S TV WS —— 1
| I
I I
| 1subroutines 2 and 3 are never koth used in any object prograrm. |
I |
| 2Requires a 200~-byte format scanner. May be required by either subrcutine 4 or 5, |
u but is present only once. |
|
| *Regquires an additional subroutine of 100 bytes. May ke required Ly several
| subroutines but is present only once. |
| I
L e e e e s e e e e e e e e J

I/0 Subrocutines, Part 2 of 2

100

*q xrpusddy

sjewacy ToqeT o TTd

10T

19qe7 °1Td 2del paepuels

Field

File Lobel Number

.

L] 2 3 4 5 [} 7] 8] 9 nom 12 13 14
File Identifier SFeirIieul SZ:::‘; -SeZLl:nce "g] Creation Expiration Block System Code Reserved
~Number Number | Number ' & § Dote Date Count
°Z
(4]
L LTI LT T Lol T It [o] [fefe] | leletste] [[1s]e] [[| tofefal [[[[eld [ITTTLTTI1RIATI]]]e
——— [i
Lobel Version
Identifier Number of File Security
Generation
The standard tape file lobel format and contents are as follows:
FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH DESCRIPTION
1. LABEL IDENTIFIER Identifies the type of label 9. CREATION DATE Indicates the year and the day of the year that the
3 bytes, EBCDIC HDR = Header -~ beginning of a data file & bytes file was created:
EOF = End of File - end of a set of data
EOV= End of Volume - end of the physical reel Position Code Meaning
: 1 blank none
2 FILE LABEL NUMBER Always a 1 2-3 00 - 99 Year
3. FILE IDENTIFIER Uniquely identifies the entire file, may contain only 4-6 001 - 366 Day of Year
17 bytes, EBCDIC printable characters. (e.g., Jonuary 31, 1965 would be entered as 65031)
4. FILE SERIAL NUMBER Uniquely identifies a file/volume relationship. This 10. EXPIRATION DATE Indicates the year and the day of the year when the
& bytes, EBCDIC field is identical to the Volume Serial Number in the 6 bytes file may become a scratch tape. The format of this
volume label of the first or only volume of a multi- field is identical to Field 9. On a multj-file reel,
volume file or a multi-file set. This field will nomally processed sequentially all files are considered to ex-
be numeric (000001 to 999999) but may contain any six pire on the same day.
ic ch N
alphameric characters - I p—— ;"‘fc:omw:i:;zr:';':;o"f e Fie:
5. VOLUME SEQUENCE NUMBER Indicates the order of a volume in a given file or 1 byte - ¢ A n o e e
Sbytes multi-file set. The first must be numbered 0001 and :h: ;:“;;’{eqﬁ::'m“ﬁ:"c?umﬁ::” of
subsequent numbers must be in proper numeric sequence. (Not used by DOS / TOS)
6. FILE SEQUENCE NUMBER Assigns numeric sequence to a file within a multi-file 12. BLOCK COUNT Indicates the number of data blocks written on the file
4 bytes set, The first must be numbered 0001. 6 bytes from the lost header label to the first trailer label ex-
clusive of tape marks. Count does not include check-
7. GENERATION NUMBER Uniquely identifies the various editions of the file. point records. This field is used in Trailer Labels.
4 bytes May be from 0001 to 9999 in proper numeric seq . —
13. SYSTEM COPBE Uniquely identifies the programming system.
8. VERSION NUMBER OF Indi the version of a g of a file. 13 bytes
GENERATION 2 bytes
4, RESERVED Reserved. Should be recorded as blanks.
7 bytes

*d XIaNdIddv

SIVWYOd Idd¥T HTII4

coT

(€ J0 T 23aed) 1 3Jewxod ’‘Tage] oTTJd ASYQ piepuels

Field

L. 2 334 25 6Z:z g
File Name ngn;:iz:elr :"g-zg ?;; :Ei i,-’ vg. System Code
AT O T T LT R LT] e e TTTTTTTTT R

L Format

Exfen)—J L Bytes used in last

Identifier Count block of directory
7|0 '.'_'.g 13} Mg 6017 e 1212 First Extent Additional Extent Additional Extent 3
€| le 2
-3 = - Lost 21122 23 24 PS| 28 19| 32
Reserved ng uE. K] g"ég '3’ ?; § Record i Lower Upper Pointer
= 3 £ 3|25 ; £3 Pointer | & Limit | Limit
20| = | ¢)
=L L] leielelel=lelzelelsiefz(e [[s[e] | [[eizielsiie] | 2] | efeielel | sl | [olelslsl | slo | i8] [[
Ll Lol Ll (g L Condl Cond Cod Cand Lo Kand Cond Ead '—'I-l'—a— | | Lot
Data Set Exhnf—’ - Extent
Indicators Type Sequence
Indicator Number
Format 1: This formot is common to all data files on Direct Access Storage Devices.
FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH DESCRIPTION
1. FILE NAME This field serves as the key portion of the file label. The remaining fields comprise the DATA portion of the file lobel:

44 bytes, alphomeric
EBCDIC

Each file must have a unique file name. Duplication of
file nome will cause retrieval errors. The file nome can
consist of tree sections:

1. File ID is an alphomeric nome assigned by the user
and identifies the file. Can be 1 -35 bytes if gene-
ration and version numbers are used, or 1-44 bytes
if they are not used.

2. Generation Number. If used, this field is separated
from File ID by a period. It has the format Gnnnn,
where G identifies the field as the generation number
and nnnn (in decimal) identifies the generation of
the file.

3. Version Number of Generation. If used, this secti

immediately follows the generation number and has

the format Vnn, where V identifies the field as the
ersion of g ion and nn (in decimal)
identifies the version of generation of the file.

Note: The Disk Operation System compares the entire
field against the file-ID given in the DLBL statement .|
The g tion and i bers are treated
differently by Operating System /360,

2, FORMAT IDENTIFIER 1 = Format 1
1 byte, EBCDIC numeric
3. FILE SERIAL NUMBER Uniquely identifies a file/volume mloﬂonshih. Itis
6 bytes, alphameric EBCDIC identical to the Volume Serial Number of the first or
only volume of a multi-volume file.
4, VOLUME SEQUENCE NUMBER Indicates the order of a volume relative to the first
2 bytes, binary volume on which the datq file,resides.
5. CREATION DATE Indicates the year and the day of the year the file was
3 bytes, discontinuous binary created. It is of the form YDD, where Y signifies the
year (0-99) and DD the day of the year (1 -366).
6. EXPIRATION DATE Indicates the year and the day of the year the file
3 bytes, discontinuous binary may be deleted. The form of this field is identical to
that of Field 5.
7A EXTENT COUNT Contains a count of the number of extents for this file

on this volume. If user labels are used, the count does
not include the user label track. This field is maintained
by the Disk Operating System programs.

g xtpusddy

sjewicd ToqeT @ Ttd

€0T

1 jewxod ‘Teqel a1TJd ASYA PIepuels

(€ FO T 3xed)

FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH DESCRIPTION
78 BYTES USED IN LAST BLOCK Used by Operating System /360 only for partitioned 13. BLOCK LENGTH Indicates the block length for fixed length records or
OF DIRECTORY (library Structure) data sets. Not usea L.y the Disk 2 bytes, binary maximum block size for variable length blocks.
1 byte, binary Operoting System.
14, RECORD LENGTH Indicates the record length for fixed length records or
7C SPARE Reserved. 2 bytes. binary the maximum record length for voricble length records.
1 byte
15. KEY LENGTH Indicates the length of the key portion of the data
8 SYSTEM CODE Uniquely identifies the progromming system. The churac- 1 byte, binary records in the file.
13 bytes ter codes that can be used in this field are limited to -
0-9, A-Z, orblanks. 16, KEY LOCATION Indicates the high order postion of the dato record.
2 bytes, binary
9 RESERVED Reserved
7 bytes 17. DATA SET INDICATORS Bits within this field are used to indizate the following:
1 byte .
10. FILE TYPE The contents of this field uniquely identify the type of Bit
2 bytes data file: O 1f on, indicates that this is the last volume on which
_ . S this file normally resides. This bit is used by the
Hex 4000 = Consecutive organization Disk Operating System
Hex 2000 = Direct-access orgonization 1 1f on, indicates that the data set described by this
Hex 8000 = Indexed-sequential organization file must remain in the same absolute location on
Hex 0200 = Library organization the direct access device.
B~ S : 2 if on, indicates that Block Length must al be
Hex 0000 = Organization not defined in the file label. a r::lﬁlplelco‘; ; byf:s. ck Length must always
1". RECORD FORMAT The contents of this field indicate the type of records 3 If on, indicdtes that this data file ist security pro-
1 byte contained in the files tected; a password must be provided in order to
Bit access it.
Position Content Meaning 4 -7 Spare. Reserved for future use.
Oond 1 o Vericble length records 18. SECONDARY ALLOCATION Indicates the amount of storage to be requested for this
10 Fixed length records 4 bytes, binary data file ot End of Extent. This field is used by Opera-
. ting System /360 only. It is not used by the Disk Ope-
n Undefined f rating System routines. The first byte of this field is
2 0 No track overflow an indication of the type of allocation request. Hex
1 File is organized usi code C2 (EBCDIC B) blocks (physical records), hex
trock oo © il code E3 (EBCDIC 1) indicotes tracks, and hex code
tirg Sysrem./360 iv) C3 (EBCDIC C) indicates cylinders. The next three
g Syste i bytes of this field is a binary number indicating how
3 0 Unblocked records many bytes, tracks or cylinders are requested.
! Blocked records 19. LAST RECORD POINTER Poins 1o the last record written in a sequential or
4 0 No truncated records 5 bytes, discontinuois binary partition-organization data set. The format is TTRLL,
N Truncated records in file where TT is the relative oddress of the track contai-
v ning the last record, R is the ID of the last record,
5and 6 01 Control character ASA and LL is the number of bytes remaining on the track
code following the last record. If the entire field contains
10 Control ch binary zeros, the last record pointer does not apply.
machine code 20. SPARE Reserved
00 Control character not 2 bytes
stated
21. EXTENT TYPE INDICATOR Indicates the type of extent with which the following
7 0 Records have no keys 1 byte fields are associated:
1 Récords are written
with keys. HEX CODE
00 Next three fields do not indicate any extent.
12. OPTION CODES Bits within this field are used to indicate various options . s, .
Tote Byte used in building the file. 01 Prime area (Indexed Sequential); or Consecutive

Bit

0 = If on, indicates data file was created using Write
Validity Check.

1-7 = unused

area, etc., (i.e., the extent containing the
user’s data records.)

Overflow area of an Indexed Sequential file.

Cylinder Index or mester Index area of an
Indexed Sequential file.

8

0T

‘Tage o7TTd ASYd paepueils

(€ JO € 3xed) T 3ewaod

FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH DESCRIPTION
40 User label track area. 25-28. ADDITIONAL EXTENT These fields have the same format as the fields 21 - 24
10 bytes above.
8n Shared cylinder indicator, where n=1, 2, or 4.
29-32. ADDITIONAL EXTENT These fields have the same format as the fields 21-24]
22, EXTENT SEQUENCE NUMBER Indicates the extent sequence in a multi-extent file. 10 bytes above.
1 byte, binary .
N . 33, POINTER TO NEXT FILE LABEL The address (format CCHHR) of a continuation label if
2. LOWER LIMIT The cylinder and the track oddress specifying the WITHIN THIS LABEL SET needed to further describe the file. If field 10 indicates
4 bytes, discontinuous binary starting point (lower limit) of this extent component. 5 bytes, discontinuous binary Indexed Sequential organization, this field will point
This field has the format CCHH. to a Format 2 file lobel within this label set. Other-
- wise, it points to a Format 3 file label, and then only
24, UPPER LIMIT The cylinder and the track oddress specifying the ending

aoint (upper limit) of this extent component. This field
has the format CCHH.

if the file contains more than three extent segments.
This field contains all binary zeros if no additional
file label is pointed to.

1 2 3 4 5 [71{819]10jN 12 13 14115 16 17 18 9
5 ©
8 2 z
2 . z
i File P System Volume 8 |EXTENT|EXTENT] w| 3§
| Filename[|File ID Serial g @ Cod Serial S |Lower [Upper [Z[2[F]|F
z S Number 2 2 A ® |Number § | Limit Limit 8 ? Vo
g = g8 ¥ =| & HEHEE
g 3 o AEIR IR ol SEIHE:
[} o] oL S
0 %) b1 el=l8| 2| = Z\Z El gl
3 3 E 2|8 a| &l 2 2l HERE
3 3 2 3|5/ &1&|8 A S & &8
1 7 1 44 1 é 213]3]2]1 13 é 111 4 4 1 {1111 |Bytes
0 1 8 9 53] 54 [60[62] 65[68[70] 71 84 (90} 92 96 [100]1010102{103| Displacement
Field Name Description
1. DLBL-EXTENT Indicator X'80" = Next EXTENT on new pack,
X'40' = Last EXTENT
X120' = Bypass EXTENT (SD), or number of EXTENTS (DA or [SFMS),
X0 = New value on same unit.
X108' = EXTENT limits omitted.
X'04' = EXTENT converted to DASD address.
2, Filename
3. DA/IS Switch Same as field 1 except that only bits 4 and 5 are used for DA or ISFMS.
4, File ID File identifier including generation and version numbers.
If field is missing on DLBL card, filename padded with blanks is inserted.
5. Format ID Numeric 1 is inserted.
6. File Serial Number Volume serial number from first EXTENT.
7. Volume Sequence Number Always initialized to X'0001'.,
8. Creation Date Initialized with 3 bytes of X'00".
9. Expiration Date If date is in the form YYDDD, it is converted to YDD.
If date is in retention period form, 1 to 4 characters, the field is padded with
binary zeros.
10. Reserved The retention period, if specified, is converted to a 2-byte number and
inserted in this field.
1. Open Code DLBL type:
S = Sequential
D = Direct Access
C or E = Indexed Sequential File Management System
12, System Code Initialized to contain:
DOS/360 VER 3. This field is not processed by DOS.
13. Volume Serial Number Volume serial number for EXTENT,
14, EXTENT-Type Same codes as in Format 1 label :
X'00' = Next three fields do not indicate any extent.
X'01' = Prime area (ISFMS) or consecutive area, etc., (i.e., the extent
containing the user's data records).
X'02' = Overflow area of an ISFMS file.
X'04' = Cylinder index or master index of an ISFMS file.
X'40* = User label track area.
X'8n' = Shared cylinder indicator, where n =1, 2, or 4,
15, EXTENT Sequence Number Number of extents as determined by the EXTENT card sequence.
16. EXTENT Lower Limit Relative extent converted to the form HHnnT for // DLBL job control statement, or
CCHH from // DLAB job control statement.
17. EXTENT Upper Limit Same as field 16, but for upper limit,
18, System Unit Class Device class and unit numbers.
System Unit Order
19. 2321 Lower Call 2321 EXTENT lower and upper limit bin numbers.

2321 Upper Call

Note: For Sequential Disk files, a complete 104-byte block is repeated for each new EXTENT. For Direct Access and ISFMS files,
only fields 13 through 18 are repeated for each EXTENT,

Format of DASD Label Information in Label Area Reserved Ly LABTYP Card

Appendix E. File Label Formats 105

APPENDIX F. COMPILE-TIME DIAGNOSTIC MESSAGES

In the list of diagnostic messages below,
the message text is preceded by the message
nurber and the applicakle severity code.
Where necessary, the messages are fcllowed
by an exgplanaticn, an example, a descrip-
tion of the action taken by the system, and

cessary for him to do sc. However, even
when system action successfully corrects an
error, the user should remrember that, if he
subsequently recompiles the same program,
he will get the same diagncstic nmessage
again unless he has corrected the source

the resrcnse required from the user. error.
Explanation, Example, and System Action are
given only when the text of the message is
not sufficiently self-explanatory. Ncte: Cne or more of the following four
diagnostic messages may appear after one of
When no User Response is stated, the the messages 5C003I thrcugh 5C030I in crderx
user should assume that he must correct the to give additional information. These four

error in his source program unless the
action taken by the system makes it unne-

messages are printed withcut message num-—
bers and severity codes.

CHARACTER MARKED BY ASTERISK IS NOT IN 60 CHAR. SET.

Note: This diagnostic message will only be printed for errcrs in DECLARE
statements.

THE PRECEDING ERRCR CONCERNS THE VARIABLE NAMED variable nanme

THE PRECEDING ERROR CONCERNS THE ATTR.
statement item

FACTCRIZATICN BEGINNING WITH declare-

'ee..' REPRESENTS CHARACTER STRING CONSTANT.

Explanation: TIllegal use of character-string constant. Since external rerre-
sentation of the character-string constant is not availakle, the ccnstant is
rerlaced by four periods.

Example: DECLARE N PICTURE A'99999'. Due to the illegal character 'A' the
string '99999' is not recognized as numeric picture kut as character-string
constant. The following messages will be issued where xx represents the sta-
tement number:

5C019I xx S INVALID ATTRIBUTE(S) IGNORED..A'....'
: ' REPRESENTS CHARACTER STRING CONSTANT.
THE PRECEDING ERROR CONCERNS THE VARIABLE NAMEL N.

5A001I T NO COMPILER CUTPUT SPECIFIED IN OPTION STATEMENT.
5A002I T NOT THE SAME OR WRCNG MEDIUMTYPES FOR SYS001, SYs002, SYS003.
Fxplanation: SYS001, S¥S002, and SY¥S003 must be assigned tc the same device
type, i.e., either to magnetic tape drives, or to 2311 or 2314 DASLC extents.
50003 T PARTITION SIZE ICC SMALL FOR THE 12K VARIANT.
5AR004I W ASTERISK IS NCT FCLLOWED BY BLANK. CARD IGNORED.
Exrlanation: Refers to PL/I PROCESS card. A plus sign is treated as an
asterisk.
S5SA005T W ASTERISK AND BLANK(S) NOT FOLLOWED BY KEYWORD PROCESS.
Explanation: Refers to PL/I PROCESS card. A plus sign is treated as an

106

asterisk.

5A006I

5A 0071

5A0081I

520091

5A010I

5320111

5C0031

520041

5C 0051

5C0061I

5C0071

5C 0081

5C0091

5C0101

5C0111
5C0121

5C 0131

OPTION invalid option UNKNOWN. FOLLOWING TEXT IGNCRED.

Explanation: Refers to PL/I PROCESS card.

KEYWORD PROCESS NCT FOLLCWED BY BLANK. CARD INGORED.
Explanation: Refers to PL/I PROCESS card.

PROCESS LIST TOO LONG. IGNORED IS invalid option
Explanation: Refers to PL/I PROCESS card.

PROCESS LIST TOO LONG.

Explanation: Refers to PL/I PROCESS card.

COMMA NOT FOLLOWED BY OPTION.

Explanation: Refers to PL/I PROCESS card.

—— e e

LEVELNUMBER OF STRUCTURE ITEM TOO HIGH. ASSUMED TC BE level number

Example: DECLARE FIL FILE ENVIRONMENT INPUT;

OPTION LIST NOT CLOSED BY). PARENTHESIS INSERTED AT END OF STATEMENT.

Exrlanation: This message concerns the ENVIRONMENT and the INITIAL
attrikutes.

Example: DECLARE FIL FILE PRINT ENV(MEDIUM(SYSIST,1403) F(80) ;

NO POINTER SPECIFIED FOR BASED ITEM.

Example: DECLARE VAR BASED;

ERROR IN SPECIFICATION OF POINTER FOR BASED ITEM. IGNCRED IS based data item

Examples: 1. DECLARE B BASED (A,D);
2. DECLARE C BASED (F(I));

NO BASE SPECIFIED FOR DEFINED ITEM.

Example: DECLARE X DEFINED;

ERROR IN SPECIFICATION OF BASE FOR DEFINED ITEM. IGNORED IS defined data item

ERROR IN RETURNS LIST. IGNORED IS invalid elements

Example: DECLARE FUNCT ENTRY RETURNS (7);

NO LENGTH SPECIFIED FOR STRING. LENGTH ASSUMED TC BE maximur value
ERROR IN STRING LENGTH SPECIFICATION. IGNORED IS invalid element
Example: DECLARE CHARA CHARACTER (STU);

ERROR IN PRECISICN ATTRIRBUTE. IGNORED IS invalid element

Example: DECLARE VAR FIXED (XYZ);

Appendix F. Compile-Time Diagnostic Messages

107

5C014I

5C0151

5C016I

5C0171

5C0181

5C0191

5C0201

500211

5C 0221

5C 0231

5C0241
5C0251
5C 0261
5C0271
5C028T

5C0291

5C0301

5Cou4r

108

VALUE OF ARRAY BOUND MUST NOT BE 0. ASSUMED TO BE 1.

VALUE OF ARRAY BOUND TOO HIGH. ASSUMED TO BE maximum value
ERROR IN DIMENSION ATTRIBUTE. IGNORED IS invalid element
Example: DELCARE aA(7,1,J);

RIGHT PARENTHESIS MISSING. CORRESPONDING LEFT ONE IGNORED BEFORE declare_sta-
tement item

NESTING OF ATTRIBUTE FACTIORIZATIONS TOO DEEP. DECIARATICNS FROM NESTING LEVEL
9 ON IGNORED

INVALID ATTRIBUTE(S) IGNORED.. invalid attribute [,invalid attribute...]
SYNTACTICALLY ILLEGAL CHARACTER(S) IGNORED.. ignored character (s)
Example: DECLARE PP FIXED §;

DECL. TOO LONG. ITEMS EXCEEDING LIMIT ARE IGNORED BEGINNING WITH declare sta-
tement item

NO NAME OR FACTORIZATION FOR LEVELNUMBER.. level numker
Example: DECLARE 1 STR, 2, 3 STR1;

NC INITIALIZATION WITH INITIAL ATTRIRBUTE.

Exanmple: DECLARE VAR INITIAL STATIC;

LEVELNUMBER MUST NOT BE 0. ASSUMED TO BE 1.
STRINGLENGTH MUST NOT BE 0. ASSUMED TO BE maximum value
PRECISION TOOC LARGE. SET TO 53.

SCALEFACTOR TOO GREAT. ASSUMED TO BE maximum value
STRINGLENGTH TOO GREAT. ASSUMED TO BE maximum value

LIST OF INITIALIZATIONS NOT CLOSED BY). PARENTHESIS INSERTED AT ENLC OF
STATEMENT.

NUMBER OF DIGITS IN PRECISION ATTRIBUTE MUST NCT BE 0. DEFAULT VALUE ASSUMEL.
SYNTAX ERROR IN INITIALLIST. NO INITIALIZATICN CF variakle name

Explanation: The INITIAL-list is composed of the following elements: con-
stants, iteration-factors, left and right parentheses, and ccmmas. Error

number 44 will be issued if

* the succession of these elements is incorrect, or
* the constants or iteration-factors are incorrect.

Examples of incorrect succession:
1. INITIAL (1,2,)

2. INITIAL (1,(2, 3))
3. INITIAL (1,(10) (2,3)W)

Examples of incorrect constants:
1. 1013B

2. 123E
3. 1.21.2L

5C0451

5C0461

50471

5c0u81

5C0491

5C0501

5C0511
5C0521

5C 0531

520541
5C0551
5C0561
5C0571

500581

Examples of incorrect iteration-factors:

1. INITIAL ((-3)0)
2. INITIAL ((0)(1,2))
3. INITIAL (10(1,2))

Moreover, message number 44 will be issved, if there is an illegal character
within the INITIAL-list, e.g., INITIAL (2 * 3).

NESTING DEPTH EXCEEDS 8. NO INITIALIZATION OF variable name

ITERATION FACTOR NOT ALLOWED FOR SCALAR VARIABLE. NC INITI2L. OF variable
name

Example: DECLARE 7 FIXED INITIAL ((3)4);
ITERATION FACTOR GREATER THAN 32K. NO INITIALIZATION OF variable name
WRONG DATA TYPE. NO INITIALIZATION OF variable name

Explanation: This error message will be issuved, if the type of a constant

within the INITIAL-list is not compatible with the type of the variable to be
initialized.
Example: DECLARE A DECIMAL FIXED INITIAL (‘'ABC');

INITIAL VALUE IS NOT A LABEL CONST. WITHIN THE SCCPFE CF LABEL VARIABLE. NO
INITIAL. CF variable name

Exrlanation: The label constant is internal to a procedure cr begin block
internal to the klock in which the label-variable is declared.

Example: P: PROCEDURE;
DECLARE LAB LABEL INITIAL (L2);

BEGIN;

L2: END;
END P;

MORE THAN ONE CONST. FOR SCALAR VARIABIE. NC INITIALIZATICN OF variable name
Example: DECLARE Y INITIAL (3E + 01, 33 E + 2);

TOO MANY CONSTANTS FOR ARRAY. EXCESS ONES IGNCRED FCR array name

INITIALLIST TOO LONG. INITIAL ATTRIBUTE IGNCRED FCR variable name

MULTI PLE DECIARATICN OF NAME name

Fxrlanation: This message only occurs if a STATIC structure containing ele-

ments with INITIAL attribute is multiply declared.
ERROR IN F-OPTION OF FILE filename

LEFT PARENTHESIS INSERTED IN FILE filename

ILLEGAL ELEMENT IGNORED IN FILE filename

RIGHT PARENTHESIS INSERTED IN FILE filename

ILLEGAL USAGE OF REGIONAL OPTION. OPTICN IGNCRED IN FILE filename

Appendix F. Compile-Time Diagncstic Messages 109

520591

5C060T

5C 0611
5C0621I
5C063I
5C064T
5C065I
5C0661I

5C0671I

5C0681

5C 0691

5C 0701
5C 0711
5C0721
5C0731
500741
5C 0751

5C0761

5C 0771

5C0781

5C0791

110

=]

H B = o

=

s A1 +H3 1

KEYED ATTRIBUTE INSERTED FOR DIRECT AND/OR INDEXED FILE filename

Explanation: Files with the attributes DIRECT and/or INDEXED must have the

attrikute KEYED.

KEYLENGTR SPECIFICATION MISSING IN FILE filename

Explanation: KEYLENGTH must be specified in files having the KEYED attribute.
ERROR IN KEYIENGTH SPECIFICATION FOR FILE filename

ERROR IN BLOCKSIZE SPECIFICATION FOR FILE filename

ERROR IN BUFFERS OPTION. BUFFERS(1) ASSUMED FOR FILE filenare

ERROR IN OFLTRACKS SPECIFICATION. OFLTRACKS IGNCRED FCR FILE filenane

ERROR IN MEDIUM OPTION FOR FILE filename

INVALID LOGICAL DEVICE NAME IN FILE filename

Example: DECLARE FILE2 FILE INPUT ENVIRONMENT (MEDIUM (SYSRLCR, 2540) ...);

SYSRDR is an invalid logical unit (choice must be made between SYSIPT and SYS-
nnn [nnn=001-2221).

INVALID DEVICE TYPE SPECIFICATION IN FILE filename
Example: DECLARE FILE3 FILE...ENVIRONMENT (MEDIUM(...,2020)...);
DEVICE TYPE OR FUNC. ATTIR. CONFLICTS WITH LCG. DEVICE NAME IN FILE filename

Example: DECLARE FILE4 FILE INPUT ENVIRONMENT (MEDIUM (SYS001, 1403)...);
Input from Printer 1403 impossible.

CONFLICTING ATTRIBUTES AND/OR OPTIONS IN FILE filename
Examples: 1. DECLARE FILES FILE INPUT RECORD UPDATE ...;

2. DECLARE FILE6 FILE OUTPUT ENVIRONMENT (MEDIUM (SYS002, 1403)
LEAVE NOLABEL F (81));

INPUT, OUTPUT, OR UPDATE ATTRIBUTE MISSING IN FIIE filename
DIRECT ATTRIBUTE INSERTED FOR REGIONAL FILE filename
NOLABEL OPTION INSERTED FOR UNBUFFERED TAPE FILE filename
ENVIRONMENT ATTRIBUTE MISSING IN FILE filename

MEDIUM OPTION MISSING IN FILE filename

BLOCKSIZE NOT DIVISIBLE BY RECORDSIZE IN FILE filename
RECORDSIZE OF RECORD NOT DIVISIBLE BY 8 IN FILE filename

Explanation: The record size must be divisible by 8 if bloccked records are to
be transferred by a READ SET or LOCATE statement.

DIVISION OF BLOCKSIZE BY 8 DOES NOT YIELD REMAINDER OF 4 IN FILE filename
Explanation: If the V option is used, the record size of reccrds to be trans-
ferred by a READ SET or LOCATE statement must yield a remainder of 4 after
division by 8.

BLOCKSIZE BEYOND DEVICE DEPENDENT LIMITS IN FILE filename

F, U, OR V OPTION MISSING IN FILE filename

5C0801 T
5C081I E
5CO084T T
5C085I E
5C082I1 W
5C086I S
5C0871 s
5C0881 s
5C0891I s
5C0901 S
5C0911 W

ACCITIONAL ERROR(S) IN FILE filename

Exrlanation: The maximum number of error messages issued fcr one file

declaration is 7. If the file declaration contains more than 7 errors, this
message is printed.

INVALID ATTRIBUTE IGNORED IN FILE filename

FRROR IN EXTENT NUMBER SPECIFICATION FOR FILE filename

EXTENTNUMBER SET TO 3 IN DECLARATION OF FILE filename

PRINT ATTRIBUTE ASSUMED FOR PHYSICAL DEVICE PRINTER IN FILE filename
INVALID DEVICE TYPE SPECIFIED FOR HIGHINDEX IN FILE filename

Explanation: Only the device types 2311 and 2314 are allowed. 2321 may ke

specified if the device type in the: corresponding MEDIUM option is alsc 2321.

System Action: The invalid device type is used for execution.

NUMBER OF OFLTRACKS EXCEEDS DEVICE DEPENDENT LIMITS IN FILE filename

Explanation: The number n of overflow tracks specified in the OFLTRACKS

option must be within the following limits:

0 <n< 8 for 2311
0 < n < 18 for 2314 and 2321

System Action: The value in error is used for execution.

KEYLOC BEYOND RECORDSIZE LIMITS IN FILE filename

Explanation: The key location n specified in the KEYLCC option must be within

the followinag limits:
1 < n < record size - keylength + 1

The message is issued if n > record size - keylength + 1. If n = 0 message
5C092r is printed.

System Action: The value in error is used for execution.

ACDBUFF AREA LESS THAN MINIMUM OR GREATER THAN MAXIMUM IN FILE filename

Explanation: The number n of bytes specified in the ADDBUFF option must be
within the following limits:

64 + klock size + keylength < n < 32K

System Action: The value in error is used for execution.

RECORDSIZE NOT GREATER THAN KEYLENGTH IN FILE filename

ExglanatiOn:A For blocked records, the record size must be greater than the

keylength., If KEYLOC is specified, this also applies for unblocked records.

System Action: The value in error is used for execution.

RECORDSIZE EXCEEDS LIMIT FOR OVERFLOW RECORD IN FILE filename

Explanation: The lengths n of the records on the overflow tracks are

restricted as follows:

n < 3605 - keylength - 10 bytes for 2311
n < 7249 - keylength - 10 bytes for 2314
n < 1984 - keylength - 10 bytes for 2321

Appendix F. Compile-Time Diagncstic Messages 111

5C0921

5C0931

5C 0951

5c0961

5C0971

5C 0981

5C 0991

5C100I

5C1011

5C1021

5C1031

5C1041

5C105I

5C106I

112

INDEXAREA, ADDBUFF, HIGHINDEX OR KEYLOC OPTION IGNORED IN FILE filename

Exrlanation: One of the options INDEXAREA, ADDBUFF, HIGHINDEX or KEYLOC is
either not followed by a parenthesized specification or is fcllowed by an
invalid specification.

INDEXAREA LESS THAN MINIMUM OR GREATER THAN MAXIMUM IN FILE filename

Explanation: The number n of bytes specified in the INDEXAREA option must not
exceed the following limits:

3 + (keylength + 6) < n < 32K

System Action: The value in error is used for execution.

MORE THAN CONE INITIAL ATTRIBUTE FOR variable name

System Action: Cnly the first INITIAL attribute is used.

MORE THAN ONE DIMENSION ATTRIBUTE FOR variable name

System Action: Only the first dimension attribute is used.

MORE THAN ONE LEVELNUMBER FOR STRUCTURE ITEM structure itenr name

System Action: The first level number is used.

MORE THAN CNE PRECISION CR STRING LENGTH SPECIFIED FOR variakle name

System_Action: The first precision or length is used.

MORE THAN CNE PICTURE ATTRIBUTE SPECIFIED FOR variakle name

System_Action: Only the first PICTURE attribute is used.

MORE THAN ONE BASE OR POINTER SPECIFIED FOR variable name
Example: DECLARE NAME BASED(X) DECIMAL FIXED(7) BASED(Y);

STRUCT. NOT START. WITH LEVELNUMBER 1, ASS. TO BE MAJCR STRUCT. NAME IS struc-
ture name

Example: DECLARE 2A, 2B, 2C; A is assumed to ke the major-structure name.
NON-FILETYPE ATTRIBUTES IGNORED FOR FILE filename

NON-APPLICABLE ATTRIBUTE(S) IGNORED FOR STRUCTURE structure name

Example: DECLARE 1 Al FIKXED, 2B, 2C;

INVALID INITIALIZATION IGNORED FOR variable name

Explanation: Initialization with INITIAL-attribute is conflicting with tyre
or attributes of the variable.

Example: DECLARE E ENTRY INITIAL (SUBPRO) ;
ALIGNMENT PERFORMED FOR BITSTRING bitstring-variakle name

Explanation: Bit strings contained in structures and bitstring-arrays are
aligned by the D-compiler.

MORE THAN 12 DIFF. PARAMETERS TO BRE PASSED TC CR FROM BLCCK NUMBER block
number

Explanation: Number of parameters is limited to 12.

5C1071

501081

5C1091I
5Cc1101

5C111rI

5C1131

5C1151
5C116I1
5Cc1171
5C1181I
5C1191

5C1201

5C1211
5C1221
5C1231

5C1241

5E001I

E

E

TOO MANY DIGITS SPECIFIED IN PREC. ATTR. DEFAULT VALUE ASSUMED FOR variable
name

NO SCALE ALLCWED WITH FLOAT OR BIN FIXED. DFLT.PRECIS. ASSUMED FOR variable
nane

Explanation: A scale factor must not be specified within the precision attri-

bute of BINARY FIXED or FLOAT variables. The whole precision attribute will
be ignored and the default precision is assumed for that variable.

Examples:
Illegal: Assumed:
BINARY FIXED (15,3) BINARY FIXED (15)
BINARY FIXED (31,0) BINARY FIXED (15)
DECIMAL FLOAT (3,2) DECIMAL FLOAT (6)
DECIMAL FLCAT (6,0) DECIMAL FLOAT (6)
BINARY FLOAT (53, 8) BINARY FLOAT (21)
BINARY FLOAT (53,0) BINARY FLOAT (21)

ENTRY INTO EXT. PROC. IS OF TYPE EXTERNAL. INTERNAL ATTR. IGN. FOR entry name
MORE THAN 32K BYTES REQUIRED FOR ARRAY array name

POINTER AND/OR BASE IDENT. NOT OR INCORRECTLY DECIL. FCR ARRAY array name
Exampgle: DECLARE U, BAS(10) BASED (U); U is not a pointer.

REFERENCED VARIABLE OR RELATED BASE/POINTER INCORR. FOR ARRAY array name

Example: DECLARE 1 A, 2 (B(10),C), X(10) DEFINED B;
Defining on elements of structures is not allowed.

REPLICATICN FACTCR OF ZERO IGNORED IN INITIAL LIST CF variable name

STRING CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name
EXPONENTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name

FLOAT. CONSTANTS TRUNCATED ON RIGHT IN INITIAL IIST CF variable name

ZERO ASSUMED FOR INVALID FLOAT. CONSTANTS IN INITIAL LIST CF variable name

MAX. VALUE ASSUMED FOR INVALID FLOAT. CONSTANTS IN INITIAL LIST OF variable
name

STERLING CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST UF wariable name
BINARY FIXED CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name
DECIMAL FIXED CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST CF variable name

RESULT OF CONST. CONV. UNDEF. DUE TO SIZE ERROR. CHECK INITIAL LIST OF vari-
akle name

ILLEGAL CHARACTER IN LABEL PREFIX OR STATEMENT BEGINNING.

Examples: 1. LB1: +B2: 1LB3: ABC = 50;
Second label is not an identifier.

2. LAB: +BC = 50;
Statement begins with an illegal character.

System_Action: The error statement is replaced ky a dummy statement.

Appendix F. Compile-Time Diagncstic Messages 113

5E002T T

5E003I T
5E0OO4I T
5E005I T
5E006I T
5E007T T
5E008I T
5E009I T

114

STATEMENT TYPE CANNCT BE IDENTIFIED.

Exrlanation: An identifier at statement beginning is neither a statement
identifier nor followed by the assignment symbol =.

Example: PUTT SKIP EDIT (B) (A); PUTIT is not a statement identifier.

System Action: The error statement is replaced by a dummy statement.

NESTING OF BLOCKS EXCEEDS 3 LEVELS.

Explanation: Implementation restriction. The depth of nested blocks is

restricted to 3 levels. The external proceduce is the first level.

System Action: The flagged statement is replaced ky the required number of
END statements. The suksequent statements are ignored.

NUMBER OF BLOCKS EXCEEDS 63.

Explanation: Implementation restriction. The total number of blocks in an
external procedure (including the external procedure) must not exceed 63.

System_Action: The flagged statement is replaced ky the reguired number of
END statements. The subsequent statements are ignored.

User Response: Reduce number of blocks in one compilation by generating
external procedures.

SEMICOLON FOUND IN IF-STATEMENT BEFORE ‘THEN' IS DETECTED.
Exanmple: IF A = 1; THEN GOTO IAB;

System Action: The incorrect IF statement is replaced by a dummy statement.

NO LABEL IS PERMITTED BEFORE AN ELSE-CLAUSE.
Example: IF A =1 THEN ...; LAB: ELSE B = 5;
ELSE FOLLOWED BY INVALID UNIT.

Example: IF A =1 THEN ...; ELSE 5 = B; where B is a correctly declared
variakle

System Action: <The invalid ELSE clause is replaced by a dummy statement.

DO-GROUP NESTING EXCEEDS 12 LEVELS.

Explanation: Implementation restriction. The maximum depth of a nested set

of DO statements (including repetitive specifications in GET or PUT state-
ments) is 12.

System Action: The flagged DO statement is replaced by a durmy statement and
the following text is ignored.

INVALID END STATEMENT.

Exrlanation: The keyword END is not followed by a semicolecn cor by the label

of its associated PROCEDURE, BEGIN, or DO statement.

Example: LAB: PROCEDURE;

END LAS;

SE010I T
5E0111 T
SEQ12I T
5E0131 T
S5EO141 T
560151 T
5EO16I T
50171 T
5E020I T

LOGICAL END OF PROGRAM DETECTED BEFORE END CF SCURCE TEXT.

Explanation: Text follows the logical end of the program. The programmer
seems to have made an error in matching END statements with PROCEDURE, BEGIN,
or DO statements.

System Action: All text following the flagged statement is ignored.

MORE THAN ONE LABEL BEFORE PROCEDURE OR ENTRY STATEMENT.

Explanation: PROCEDURE and ENTRY statements must have one and only one label.

NO LABEL BEFORE PROC. OR ENTRY STATEMENT. LABEL B INSERTED.

Explanation: PRCCEDURE and ENTRY statements must have one and only one label.

System _Action: The compiler inserts the label 'B:' ©bLefore the flagged state-
rent. This may cause further error messages (e.g., multiple declaration).

FIRST STMNT NOT PROCEDURE STMNT. FOLLOWING TEXT IGNCRED.

System Action: Further error messages may result (e.g., 5E012I and 5E015I).

STATEMENT TOO LONG. STATEMENT TRUNCATED.

Explanation: Internal buffer overflow.

User Response: Subdivide statement and recompile.

END OF SOURCE MCDULE FOUND BEFORE LOGICAL END OF PROGRAM.

Exglanation: Proklem causing the error may be:

1. Missing final semicolon.

Example: LAB: PROCEDURE OPTIONS (MAIN) ;

END
/%

2. Missing END statement(s).

Example: LAB: PROCEDURE OPTIONS (MAIN);

DOI =1 TO 5;
END;
/*
RIGHT PARENTHESIS MISSING IN THIS STATEMENT.
Example: A(2,3,1 = 15; where A is declared as a three-dimensional array.
END OF SOURCE MODULE FOUND IN PARENTHESIZED LIST.
ELEMENT IN PREFIX LIST IS NOT A LEGAL CONDITION NAME.

Explanation: The prefix list contains either an illegal condition name or no

condition name at all.
Examples: 1. (): LAB: statement;

2. (ZERODIVIDE,+UNDERFLOW) : LAB: statement;

3. (ZERODIDIVE, UNDERFLOW): LAB: statement;

Appendix F. Compile-Time Diagncstic Messages 115

System Action: The entire prefix list is ignored.

5E021T ‘T NAME IN PREFIX LIST NOT FOLLOWED BY COMMA CR PARENTHESIS.
Examples: 1. (ZERODIVIDE UNDERFLOW): statement;
2. (CVERFLOW+CONVERSION) : statement;

System Action: The entire prefix list is ignored.

5E022I T CONFLICTiNG CONDITION NAMES IN PREFIX LIST.
Example: (NOCONVERSION,CONVERSION): statement;

System Action: The conflicting names are ignored.

5E023I T COLON AFTER PREFIX LIST IS MISSING.

S5E025I T RIGHT PARENTHESIS IS MISSING IN DATA OR FORMAT LIST

5E026I T MAIN PROCEDURE HAS INCORRECT OPTION LIST.
Explanation: For the D-level compiler, the option list of a main prccedure is
defined as

MAIN(,ONSYSLOG]I

It must be enclosed in parentheses immediately followed by a semicclon. The
problem causing the error may be:

1. Missing comma or right parenthesis.
Example: . TEST: PROCEDURE OPTIONS (MAILN;

2. Element in list which is not an identifier.
Example: TEST: PROCEDURE OPTIONS (+AIN);

3. Identifier in list which is neither MAIN nor ONSYSLCG.
Example: TEST: PROCEDURE OPTIONS (MIAN);

4, oOption list not followed by semicolon.

SEO34I T TWO OR MORE IDENTICAL IDENTIFIERS IN ONE PARAMETER LIST.

SEQ41I T MAJOR OR MINOR STRUCTURE IN IF STATEMENT.

SEOU2T T ARRAY IN EILEMENT-EXPRESSION OF IF-STATEMENT

5E043I T INCORRECT SYNTAX IN THIS STATEMENT.

S5EO45I T EXTERNAL NAME(S) OF THIS PROGRAM LONGER THAN 8 CHARACTERS.

Exrlanation: See explanation of message 5EOU46I.

S5EO46I E EXTERNAL NAME(S) OF THIS PROGRAM LONGER THAN 6 CHARACTERS.

Exrlanation: Implementation restriction. The length of external identifiers
muast not exceed 6 characters. This also applies to names that are external Ly
default such as filenames, names of external procedures, etc. If an identifi-
er has 7 or 8 characters, the object program can still ke executed but errors
may possibly occur. If the external identifier is longer than 8 characters
the compilation is terminated (message S5EQ045I is issued). The statement in
error indicated in this message need not be the statement in which the errcr
is detected.

SEO47I T TOO MANY IDENTIFIERS IN THIS STATEMENT.

116

5E0491

5E050T

5E0511I

5E0531

5E0551I

5E0561I

5E0571

S5E058I

5E0591
5E0601

5E061T

T

User Response: Subdivide statement and recompile.

POINTER AND/CR BASE IDENTIFIER NOT OR INCORRECTLY DECLARED.

Fxamples: 1. DECLARE G CHARACTER (4);
DECLARE K CHARACTER {(4) BASED (G);
K = 'TEST';
2. DECLARE P DECIMAL FILOAT POINTER;
DECLARE A BASED (P);
A = A+1;

In both examples, the third statement is flagged.
ATTRIBUTE TABLE CVERFLOW. TOO MANY VARIABLES IN THIS STIMNT.

User Response: Subkdivide statement and recompile.

INVALID DEFINING
Example: DECLARE 1 A,
2 B DEFINED D,
2 C;
DECIARE Dj;
B = 4;
The third statement causes the error message.
OPERAND IN A GOTQC STATEMENT IS NOT A LABEL.

Explanation: The operand in a GOTO statement must always be a label constant
or an element label variable.

ZERO-REPLICATICN FACTOR FOR STRING CONSTANT IGNORED.

STRING CONSTANT TOO LONG. TRUNCATED.

Explanation: Implementation restriction. The length of bit-string constants
is restricted to 64 bits; the length of character-string constants is

restricted to 255 characters.

System Action: Bit strings exceeding 64 bits and character strings exceeding
255 characters are truncated on the right.

EXPONENT TCO LONG. TRUNCATED.

Exrlanation: Implementation restriction. The exponent subfield of a decimal
floating point constant is restricted to 2 digits, and that cf a binary float-
ing point constant to 3 digits.

System Action: The exponent is truncated on the right.

FLOATI NG—-PCINI' CCNSTANT TOO LONG. TRUNCATED.

Exrlanation: Implementation restriction. The length of binary floating-roint
data is restricted to 53 bits; the length of decimal flocating-point data is
restricted to 16 digits.

System Action: Decimal and binary floating-point constants exceeding 16
digits or 53 Lkits, respectively, are truncated on the right, and the exponents
are increased by the number of digits or bits truncated.

FLOATING~-PCINI' CCNSTANT TOO SMALL. SET TO ZERC.
FLOATI NG-PCI NI CCNSTANT TOO LARGE. MAXIMUM VALUE ASSUMED.

STERLING CONSTANT TRUNCATED.

Appendix F. Compile-Time Diagncstic Messages 117

Explanation: The sterling constant is converted to and stored as decimal

fixed-point pence. The converted constant must not exceed 15 significant
digits.

System Action: The converted decimal fixed-point pence number is truncated on
the right.

SEO0AR?I E BINARY FIXED-POLNT CONSTANT TOO LONG. TRUNCATED.

Fxrlanation: Implementation restriction. The length of binary fixed-roint

numbers must not exceed 31 bits.

System Action: The constant is truncated on the right.

5E063I E DECIMAL FIXED-POINT CONSTANT TOO LONG. TRUNCATED.

Exrlanation: Implementation restriction. The length of decimal fixed-point

numbers must not exceed 15 digits.

System Action: The constant is truncated on the right.

5E064I E RESULT OF CONSTANT CONVERSION UNDEFINED DUE TC SIZE ERRCR.

Explanation: The number of significant digits resulting from the constant

conversion is greater than the precision specified for the target.

Exanmple: DECLARE X FIXED BINARY (10);
X = 2.U4UES;

5E065I T TOO MANY CONSTANTS IN THIS COMPILATION.
Exrlanation: Internal kuffer or constant-counter overflow.
5E067I E INVALID CHARACTER STRING. ONE BLANK ASSUMED.

Explanation: The apostrophe opening the character string is immediately fol-
lowed by the closing apostrophe.

System Action: The compiler assumes the character string tc consist of one
blank.

5E068I T QUALIFIED NAME NOT DECLARED.
Example: LAB: PROCEDURE OPTIONS (MAIN);
STRUCT .SUBL = 50;
END;
5E069T1 T REFERENCED VARIABLE OR RELATED BASE/POINTER INCORRECT.

Example: DECLARE A CHARACTER (3) BASED (P);
A = 'XYZ';

If P is not declared, the assignment statement causes the error
message.

SE070I E A) HAS BEEN INSERTED IN ARGUMENT OR FORMAL FARAMETER LIST.
Example: CALL DYNDUMP (A,B ;
SE071I T UNSPECIFIED SYNTACTICAL ERROR.

Fxample: DO A = (BTO C BY D AHILE (E)); where A is a variable and B, C, D,

E are valid expressions. The parentheses enclosing the specification of the
DO statement are illegal.

56072 T INTERNAL BUFFER CVERFLOW. (PROBABLY TOO MANY PARENTHESES).

118

5E073I

5E0741

5E0751

5E0761
5E0771
5E0791

5E0801

5E081I

5E0821

5E083I

5E084I

5E085I

T

T

T

T

User Response: Subdivide statement and recompile.

ONE OR MORE) INSERTED TO OBTAIN A VALID EXPRESSICN.

Example: DECLARE (A,B,C,D,E) DECIMAL FIXED;
A = B** (C+D*E ;

ACTION FOR 5EO073I MAY CAUSE ADDITIONAL ERROR MESSAGES.
2ND CPERAND IN DISPLAY STATEMENT INVALID.

Explanation: The second operand of the DISPLAY statement must be a character-

string element variable enclosed in parentheses.
SHILLING FIELD OF STERLING CONSTANT GREATER THAN 19.
FRROR IN PARAMETER, OR SUBSCRIPT, OR ARGUMENT LIST.
WHILE FOLLCWED BY INVALID EXPRESSION.

1ST OPERAND IN DISPLAY STATEMENT INVALID.

Explanation: The first operand in a DISPLAY statement must be an element

expression enclosed in parentheses.
INVALID CR MISSING CONDITION NAME.

Explanation: The keyword ON is not followed by a valid condition name and/orx

Examples: 1. CN +ONVERSION GOTO LAE;
2. ON CNVERSION GOTO LAE;
3. ON ENDFILE GOTO LAB; (filename missing)
4. ON ENDPAGE(?RATE)GOTO LAB; (invalid filename)

INVALID OR MISSING OPERAND AFTER GOTO IN ON STATEMENT;

Explanation: The keyword GOTO in an ON statement is not fcllowed by an
identifier.

Examples: 1. ON CCNVERSION GOTO;
2. ON CCNVERSION GOTO +AE;

UNSPECIFIED ERROR IN ON STATEMENT.
Explanation: The ON statement has the following format:

ON condition {SYSTEM;| ON-unit}

The compiler detected that the ON-condition is neither follcwed by the keyword
SYSTEM nor by a valid ON-unit.

Example: ON CONVERSION +5;

INVALID CALL STATEMENT.

Explanation: No identifier, especially no entry name, is fcllowing the key-

Examples: 1. CALL +AB;
2. CALL;

ERROR IN CLOSE LIST.
Exrlanation: The CLOSE statement has the following format:

CLOSE FILE (filename) [, FILE (filename)] ...;

Appendix F. Compile-Time Diagncstic Messages 119

5E0861

5E0871I

5E0881I

5E0891I

5E0901

5E0911

50921

5E093T

120

T

T

Either the keyword CLOSE or one of the commas in the list is not fcllcwed ky
the keyword FILE.

Examples: 1. CLCSE FLE (OUT);

2. CLCSE (0UT);

3. CLOSE FILE (OUT), (IN);
ERROR IN FILE OPTION

Explanation: Syntax error. The file option consists of the keyword FILE fol-

lowed by the file name enclosed in parentheses.
Examples: 1. OPEN FILE (+-%);
2. OPEN FILE IN);
3. CLOSE FILE (IN ;
where IN is a valid file name.
ERROR IN CPEN LIST.
Explanation: The OPEN statement has the following format:

OPEN FILE (filename) options group [,FILE (filename) opticns grourl...;

Either the keyword OPEN or one of the commas in the list is not followed by
the keyword FILE.

Examples: 1. OPEN FLE (IN);
2. OPEN (IN);
3. OCPEN FILE (IN), (OUT);
WRONG FILE OPTION IN READ, WRITE, OR REWRITE STMNT.

Explanation: The keyword READ, WRITE, or REWRITE is not followed by the key-
word FILE.

INVALID OR MISSING OPERAND IN PAGESIZE OPTICN.
NO SET OPTION IN LOCATE STATEMENT.

Explanation: The file option in a LOCATE statement is not followed by the

Examples: 1. LOCATE A FILE (OUT);
2. LOCATE A FILE (OUT) SE (P);

INVALID OR MISSING CPERAND IN KEY OPTION.

Explanation: Syntax error. The KEY option must consist of the keywcrd KEY

followed by a parenthesized expression representing a character string.
INVALID FRCM, FILE, OR INTO OPTION.

Explanation: Syntax error. FROM, FILE, or INTO is not followed by a valid
operand, or the operand is not enclosed in parentheses.

Example: PUT FILE OUT EDIT (BUFFER) (A);
INVALID OR MISSING OPERAND IN SET OR STRING CETICN.

Explanation: Syntax error. E.g., the SET option consists of the keyword SET

followed by the name of a pointer variable enclosed in parentheses.

Examples: 1. LOCATE A FILE (OUT) SET (Pl ; where Pl is a pcinter variatle.
2., LOCATE A FILE (OUT) SET (1) ;

5E094I T INVALID OR MISSING OPERAND IN KEYFROM COPTICN.

Explanation: The keyword KEYFROM must be followed ky an element expression

enclosed in parentheses.

5E096I T ERROR IN FORMAT LIST
Explanation: The error may be caused ky:
1. Left parenthesis of one of the format lists is missing.
2. A left parenthesis or one of the commas in the list is neither fcllowed Ly
an iteration factor nor by a valid format item.
3. An iteration factor in the list is neither followed by a valid fcrmat item
nor by a format list.
5E097I F MISSING) INSERTED IN FORMAT LIST.
5E098I T MISSING OR INVALID CONTROLVARIABLE IN DC-STATEMENT.

Example: DO C(5) =1 TO 7;
" The control variable C must hot be subscripted.

5E099I T INVALID LINE, COLUMN, OR X FORMAT ITEM.

Explanation: Missing or invalid cperand in a LINE, CCLUMN, cr X-forrat item.

In the above example, the right parenthesis enclosing the operand of the X-
format item is missing.

5E100I T INVALID R FORMAT ITEM.
Exrlanation: Missing or invalid operand in an R-format item.
5E101I T MISSING (IN E OR F FORMAT ITEM.
5E102I T MISSING INTEGER IN E OR F FORMAT ITEM.
51031 T MISSING) IN E OR F FORMAT ITEM.
5E104I T COMMA MISSING AFTER 1ST INTEGER IN E FORMAT ITEM.
5E105I T BUILT-IN FUNCTION AS ARGUMENT OF PSEUDO-VARIABLE.
5E108I T INVALID OPTION LIST IN READ OR WRITE STATEMENT.
581091 S MAIN PROCEDURE MUST NOT RETURN AN EXPRESSION VALUE.
5E110I S CHARACTER OR BIT EXPRESSION IS TOO LONG.
Explanation: The number of characters resulting from the evaluation of a
character-string expression must not exceed 255. For bit-string expressioms,
the numker of resulting bits must not exceed 6U4.
5E1111 T DATA, OPTION, OR FORMAT LIST CONTAINS INVALID ITEM(S).
Examples: 1. PUT SKIP EDIT (BUFFER (A);
Right parenthesis missing after BUFFER.
2. PUT EDIT SKIP (BUFFER) (A&);
The keyword EDIT must immediately be followed by the data
specification.

5E112I T INVALID DATA ELEMENT.

5E113T1 T INVALID REPETITIVE SPECIFICATION.

Appendix F. Compile-Time Diagncstic Messages 121

5E1141
SElle6I

5E1171

SE118I
5E119I

5E120I

5E1211

5E122I

5E123I

5E124T

5E1261

5E1271

5E128I

5E1291

122

]

T

S

INCORRECT ENTRY DECLARATION.

MISSING OR WRONG BASED VAR. OR FILE OPTICN IN LCCATE STMNT.

Explanation: Syntax error. The LOCATE statement has the following format:
LOCATE kased variable FILE (filename) SET (pointer variable);

The kased variable must be unsubscripted and must not be a rinor structure or
an element of a structure.

Examples: 1. LOCATE +1 FILE (OUT) SET (P1);
2. LOCATE Al (OUT) SET (P1);

INVALID EXPRESSION.
Explanation: The error may be caused Ly:

1. Missing operand.
2. Two infix operators not separated by operand.

WARNING FOR INCOPRECT PREFIX IN ENTRY STATEMENT.
TOO MANY ENTRY PCINTS AND/OR ON CONDITIONS IN BLOCK.
ILLEGAL NULL STATEMENT IN ON~UNIT.

Explanation: The null on-unit must not be specified for the conditicns CONV-

ERSION, ENDFILE, and KEY.

END OF INVALIDLY NESTED DO GROUP. NESTING EXCEEDS 12 LEVELS.

Explanation: Implementation restriction. The maximum depth of a nested set
of DO statements (including repetitive specifications in GET or PUT state-
ments) is 12. This message is issued as a follow-up to message 5E008I.

System_Action: The flagged END statement is replaced by a dummy statement.

ILLEGAL FILENAME IN ON CONDITION.
ILLEGAL I.ABEL IDENTIFIER IN ON UNIT.

Example: DECLARE C DECIMAL FIXED;
ON CONVERSION GOTO C;

REVERT STATEMENT WITHOUT CORRESPONDING ON STATEMENT.

INCORRECT NUMBER OF ARGUMENTS.

Example: B = SUBSTR(A, 1 1);

Due to a missing comma in the argument list, the compiler recognizes only twc
arguments.

OPTIONS MAY NOT BE SPEC. FOR SUBPROCEDURES. CPTIONS IGNCRED.

BUILT-IN FUNCTION NAME IN INCORRECT CONTEXT.

Explanation: A built-in function name has explicitly been declared with the

BUILTIN attrikute, but is used in a non-function-reference ccntext.
Example: DECLARE ABS BUILTIN;
ABS = ABS + 1;
Note: Built-in functions without arguments or which have been declared con-

textually only are not concerned.

CONVERSION OF ARITH. DATA TO BIT STRING YIELDS RESULT GT 31.

5E1301 T

5E1311 T
5E132I T
5E1331 T
5E134I T
5E1351 T
5FE1371 T
5E138I T
5E1401 s
5E141I T
S5E142T T
5E1431 T
SE144T T
5E145I T
5E146I T
5EI471 T
S5E1481 T
SE149I s
51501 T
5E1521 T

INVALID KEY.
MORE THAN 65534 VARIABLES AND/OR CONSTANTS.

Explanation: An internal overflow of the variakle and constant counter of the
compiler occurred.

STACK OVERFLOW. (IF-NEST TOO DEEP).

Explanation: Implementation restriction: The maximum number of IF statements

e Al g

in a nest is 100.

PROBABLY BAD IF-NEST.

ELSE IMMEDIATELY FOLLOWS IF.

ELSE IMMEDIATELY FOLLOWS ANOTHER ELSE.

ILLEGAL STATEMENT USED AS UNIT IN AN IF STATEMENT.

Examples: 1. IF element expression THEN FCRMAT (format-list);
2. IF element expression THEN unit-1 EISE FCRMAT (format-list);

The FORMAT statement is not permitted as unit in an IF statement.
ELSE WITHOUT CORRESPONDING IF.

INCORRECT SPECIFICATION OF CONSTANT ARGUMENT.

TOO MANY STRUCTURES IN STRUCTURE ASSIGNMENT.

NUMBER OF INTERMEDIATE RESULTS IS TOO BIG. STACK OVERFLOW.
NON-IDENTICAL STRUCTURING IN STRUCTURE ASSIGNMENT.

ARRAY IN PSEUDO-VAR OR OPERAND IN ARRAY-ASSIGN IS NCT ARRAY.
OPERAND ON THE LEFT SIDE OF STRUCTURE-ASSIGNMENT IS NC STRUCT.

INVALID CCNVERSICN OR ILLEGAL COMBINATION OF DATA TYPES.
Example: P = A; where A is a character string and P is a pcinter variable.

NON-IDENTICAL NUMBER OF ARRAY ELEMENTS IN ARRAY-ASSIGNMENT.
UNPERMITTED ASSIGNMENT TO FUNCTION VALUE.

Explanation: Tne left side of an assignment statement is a built-in function
which is neither a STRING built-in function nor a pseudo variable.

NUMBER OF ARGUMENTS IS GREATER THAN TWELVE.
TOO MANY REPETITIVE SPECIFICATIONS.

Explanation: Implementation restriction. The number of iteration specifica-

tions must not exceed 50.

Fxamgle: DO I =1 T0 2, 2 T0 3, 3 TC 4, ..., 51 TC 52;

System Action: The flagged DO statement is replaced by a dummy statement and
the following text is ignored.

PROCESSING OF STATEMENT TERMINATED. (TABLE OVERFLOW).

Explanation: An internal table overflow occurred during the processing cf a

DO statement.

Since the DO statement will be deleted from the text string, there will be a
surplus END statement in the source program.

Appendix F. Compile-Time Diagnostic Messages 123

User Response: Subdivide statement and recompile.

5E1531I

=

POINTER AS ELEMENT OF DATA LIST.

5E1547T

=

POSSIBLE ERROR IN FORMAT ITEM IF USED FCR CUTPUT.
5E155I S INCORRECT ARGUMENT IN BUILT-IN FUNCTION.

Example: DECLARE (A,B) CHARACTER (2);
B = SUBSTR(A,5,4);

Since A and B are only two characters long, the arguments 5 and 4 in the argu-
ment list are invalid.

5E0156I

0

INVALID NUMBER OF DIMENSIONS.

Example: A (2 3,1) = 15; where A is declared as a three-dinmensicnal array.
The error is caused by a missing comma between the integers 2 and 3.

5E157I W ERROR IF USED FOR OUTPUT.
5E158I T ENTRY NAME OR LABEL ON LEFT SIDE OF ASSIGNMENT STATEMENT .
Example: LAB: N = 3; DO LAB = A TO B; where A and B are valid expressions.
581591 T R FORMAT ITEM IN ITERATION LIST AT DEPTH GREATER THAN TWO.
5E160I T STATEMENT TOO LCNG. STATEMENT DELETED.

Explanation: 1Internal buffer overflow.

User Response« Subdivide statement and recompile.

5E161I T TOO MANY IDENTIFIERS IN PROGRAM.

5E162I S CONTROL ITEMS NOT ALLOWED FOR THIS STATEMENT.

5E163I T NO LABEL DESIGNATCR IN REMOTE FORMAT ITEM.

5Elé64X E LARBEL CONST. IN R FORMAT ITEM NOT INTERNAL TO CRRNT BLOCK.

Explanation: The R format item and the specified FCRMAT statement must ke
internal to the same block.

5E165I S NO POINTER VARIABLE IN SET OPTION.

5E166I S INCORRECT RECORD VARIABLE.

S5E167I W RECORD VARIABLE ON WRONG BOUNDARY.
Explanation: The variable is nnt on a double-word koundary. BAn error may
occur if later a READ statement with the SET option is issued, and a similar
variable is used.

5E168I S RECORD VARIABLE CN WRONG BOUNDARY.

5E169I S RECORD VARIABLE LENGTH NCT IN ACCORLCANCE WITH RECORDSIZE.

SE170I S INCORRECT VARIABLE IN STRING OPTION.

5E1711 T INCORRECT NAME IN FILE OPTION.

Explanation: File name not or incorrectly declared.

5E172I S STATEMENT NOT IN ACCORDANCE WITH FILE DECLARATICN.

124

5E1731

5E1741

5E1751I

5E1761

5E1771

5E1781

5E1791

5E180T
5E181T

5E182I

5E183I
5E184T
5E1861
5E1871
5E2181

5E219I

5E2281

52291

5E2301

INCORRECT ITEM IN DATA LIST.

NO STRING VARIABLE IN SUBSTR PSEUDO-VARIABLE.

FORMAT LIST TOC LCNG.

EFxrlanation: Internal kuffer overflow.

FORMAT STATEMENT NOT PRECEDED BY LABEL. STATEMENI DELETED.

Explanation: A FORMAT statement must be preceded by at least one label.

TOO MANY FORMAT LABELS IN PROGRAM.

Explanation: Implementation restriction. The number of labels preceding FOR-
MAT statements in one program is restricted to 127.

NESTING OF ITERATICN LIST IN FORMAT LIST TOO DEEP.

REMOTE FORMAT ITEM IN FORMAT STATEMENT. STATEMENT DELETED.

Explanation: A FORMAT statement cannot contain an R format item.

System Action: The error statement is deleted from the text string.

INCORRECT A,B FCRMAT ITEM IN GET STATEMENT.
VIOLATION OF FORMAT ITEM RESTRICTION.
MOD (LENGTH CF RECORD VARIABLE,8) IS UNEQUAL TC FCUR.

Exrlanation: If the V option is used, the record size of records to be trans-

ferred by a READ SET or LOCATE statement must yield a remainder of 4 after
division by 8.

INCORRECT VARIABLE IN REPLY OPTION.

WRONG VARIABLE IN SET OR KEYTO OPTION.

TOO MANY REPETITIVE SPECIFICATIONS IN DATA SPECIFICATICN.
LENGTH OF RECORD VARIABLE GREATER THAN MAXBILCCKSIZE.
ILLEGAL EXPRESSICN IN ASSIGNMENT STATEMENT.

MORE THAN TWELVE PARAMETERS IN PROCELCURE/ENTRY STATEMENT.

System Action: The parameter list is truncated on the right.

CHARACTER STRING IN DISPLAY STATEMENT LCONGER THAN 80 BYTES.
EVALUATION OF OPTIM. SUBSCR. YIELDS DISPLACENM. GREATER 32K

Explanation: At least one subscripted variakle in this statement is outside

the declared kound of the array.

Example: The semantically wrong statement A(I) = A(I+35000); where A is de-
clared as A(10), will cause this diagnostic message. This error is only
detected if OPT is specified.

IMPLEMENTATION DEFINED SUBROUTINE.

Explanation: This warning message will appear for each statement using one of

the facilities DYNDUMP, OVERLAY, IJKTRON, IJKTRCF, IJKEXHC.

Appendix F. Compile-Time Diagnostic Messages 125

5E2311 E TOO MANY ARGUMENTS FOR IJKEXHC IN ONE BIOCK.

5E232I F INVALID ARGUMENT(S) FOR EXHIBIT CHANGED IGNCRED.
5E233I E UNPERMITTED VALUE OF CONSTANT SUBSCRIPT(S).

Exrlanation: Constant subscript(s) too large. The absolute value of the dis-

rlacement to the origin of the array is greater than 32767.
5SE234I E NO SCALE FACTOR GIVEN IN BUILT-IN-FUNCT.

Explanation: Concerning the built in functions ADD, MULTIFLY, DIVIDE for

fixed-scale arguments.
5E235I S INTERMED. RESULT IN ADD-FUNCT. TOO LONG. STATEMTI. IGNORED

Explanation: Length of necessary working space (resulting fromr precision and

scale of the arguments) greater than hardware defined limits (only fcr fixed
scale arguments).

5E236I S INTERMED SCALE-FACT. EXCEEDS PERMITTED RANGE
Explanation: The intermediate scale factor in the kuilt-in-functions ADD,
MULTI PLY, or DIVIDE is greater than 127 or less than -128 (cnly for fixed-
scale arguments).

5E238I E TIME/DATE/COR NULL ASSUMED TO NAME PL/I BUILT-IN-FUNCTION

Explanation: Builtin functions without arguments should be exrlicitely de-
clared with the BUILTIN attribute.

SE239I E UNKNOWN FUNCTION CR SUBROUTINE. ATTR. ENTRY ASSUMED

Explanation: Entry names must be explicitly declared with the attribute

ENTRY.
5G 011 PROGRAM BLOCK GREATER THAN 32K. COMPILATION TERMINATED.
5G021 SOURCE PROGRAM TOO LONG. COMPILATION TERMINATED.
5G031 STATIC STORAGE OVERFLOW. COMPILATION TERMINATED.
5G0uI AUTOMATIC STCRAGE CVERFLCW. COMPILATICN TERMINATED.
5G 051 MORE THAN 256 ESID NUMBERS NECESSARY. COMPILATION TERMINATED.
5G06I MORE THAN 65,534 VARTIABLES AND/OR CONSTANTS. COMPILATION TERMINATED.
5G07I POSSIBLE RECURSIVE USE OF EXTERNAL PROCEDURE. CCMPILATICN TERMINATEL.
5W01I SUCCESSFUL COMPILATION. ‘
5W02I COMPIIATION IN ERROR.

126

APPENDIX G._ _I/O STATEMENT FCRMAT AND_CN-CCNDITION CHECKLIST

RECORD

SEQUENTIAL
STREAM Q L DIRECT

CONSE - REG- REG- | IN-
CUTIVE CSNNBSUEFCF LE’;'E‘:; 'NSDEE;(ED IONAL | IONAL |DEXED
BUFFERED) 3) |pirecT]

TYPE OF FILE

VALID INPUT/DUTPUT
STATEMENT FORMATS
AND APPLICABLE
'N-CONDITIONS

INPUT/OUTPUT NOT DECLARED, OUTPU

INPUT/QUTPUT NOT DECLARED, INPUT
INPUT

INPUT DECLARED
BACKWARDS, INPUT NOT DECLARED

INPUT
O JOUTPUT, NOT PRINT

O JOUTPUT PRINT

Zz

INPUT
INPUT

2 {OUTPUT DECLARED
Z JUPDATE DECLARED

INPUT
Z Jourrur
Z JurpATE
z

Z tourput
Z JUPDATE
z

Z Jourput
Z JuPDATE
z

2z Joureur
2 J UPDATE

Z JINPUT
Z § UPDATE

FILE (filename)

O
z

FILE (filename) INPUT

z
z

OPEN

FILE (filenome) OUTPUT M

FILE (filename) PAGESIZE {(n) (¢]

CLOSE FILE (filename) O[O0|OJO0}10j0OJOJO|O[0|0|0O]JO|O|OjO|O[O}JO[O[O}O]|O

FILE (filenome) EDIT (dota) {format) [(data)Format)]. ..

e}

GET*

FILE (filename) LIST (data) (o]

FILF (filenome) EDIT (data) #ormat) {{data)(format)]. .. o]

FILE (filename) LIST (data) o

FILE (filename) PAGE [LINE(n)]

PUT* FILE (filenome){PAGE|LINE (n)|SKIP (n)}

FILE (filename){PAGEILINE (n)|SKIP (n)}EDIT (data){format)|(data) {format))

O (0[O }|O{O{0O

FILE (Filename){PAGE|LINE (n)|SKIP (n)} LIST (data)

FILE (filename) INTO (variable) o [e] K¢ o|0f|0 [e] [e)

FILE (filename) SET (pointer) [e] [e]

READ FILE (filename) INTO (variable) KEY (expression) (o] [o] o) ofjo o] o] ©

FILE (filename) INTO (variable) KEYTO (varioble) [0} o}

FILE (filename) (o]

REWRITE FILE (filename) FROM (variable) o} (o] [0}

FILE (filenome) FROM (variable) KEY (expression) O (] O

LOCATE variable FILE (ﬁlenumﬂ SET (poinfg) o
FILE (filename) FROM (variable) o o] o

WRITE
FILE (filenome) FROM (variable) KEYFROM (expression) (o] O} O 0|0 (o]

CONVERSION 0]0]|0O

SIZE

o
o
[¢]

CONDITIONS ENDFILE (filename)) fo) olo olo|o fo) o

WHICH MAY ENDPAGE (filename) [e]

OCCLR KEY (filename) 0]Oj0}0O]jOjJOjO]OlOjO|0O

RECORD (filename) Q] OjojJoj0O|O]l0j0O |0

[e]
[e]
[¢]
o]
[e]
(o]
o
[¢]
[¢]
[e]
O

TRANSMIT (filename) O] OjO§ 0| 0|0]0|0]|0|0]O0|O]O[O[O]O}|0OlO]JO|O|O]O]|O

Symbols used: M = Use of this statement is mondatory

O = For |/O statements: Use of this statement format is optional
For ON conditions: This condition may occur

* = Note that GET/PUT STRING is not an I/O statement and may be used without

Input/Output Statement Formats and ON-Conditions

Appendix G. I/0 Statement Format and CN-condition Checklist 127

APPENDIX

H.

FILE DECLARATION ATTRIBUTES _AND_ OPTICNS

FILE
ATTRIBUTES
AND OPTIONS

STREAM

INPUT
TYPE OF FILE

QUTPUT
NOT
PRINT

OuUTPUT

PRINT

CONSECUTIVE

REGIONAL

INDEXED

BUFFERED

UNBUFFERED)

INPUT

®)

SEQUENTIAL | DIRECT

OUTPUT

S
=)

DASD ONLY

CARD /PRINTER

TAPE
DASD

CARD

TAPE

DASD
PRINTER

TAPE

DASD

CARD

BACKWARDS

TAPE
FORWARDS
TAPE

DASD

CARD /PRINTER
DASD UPDATE
INPUT/OUTPUT
DASD UPDATE

TAPE
DASD
INPUT
OQUTPUT
UPDATE

INPUT

OuUTPUT

UPDATE

UPDATE.

OouTPUT

INPUT

FILE

filenome [1-6 characters]

w
«n
“v
wn

w

©w
%

v

w

©w

w

w

o« | INPLT

v

o
o

o

o

olw

[I

ofw

v
v
[
w
w

O|w»n
w
v
v

©w

o
o
o

o

o
<o

RECORD
STREAM

[

wlofe
o

»

v

w

wlo|w

wlo vl UPDATE

INPUT
OUTPUT
UPDATE

v

SEQUENTIAL
DIRECT

KEYED
BACKWARDS
PRINT

BUFFERED
UNBUFFERED

ENVIRONMENT

(S|{s|s

MEDIUM (

23
w
w
w
[
wn
[
n
©n
[

SYSIPT,
SYSPCH,
SYSLST,

SYSnnn, [nnn = 000-227] cjc)c

(a]
la)

[alia}

2501125201 25401
1403114041 1443}
2400)

2311]2314]2321)

1442) S

njojo|n|n

1445)

olojlojinjo
(]
“w
v
[
[
v
%)
[

[
[

v
v

U (maxblocksize)
F (blocksize)

V (maxblocksize)

F (locksize, recsize)

BUFFERS (1)
BUFFERS (2)

o
o
o
o

o

o

o

ololalnlnla

olo|{n|O|n}w

I RIBIIGE
ojolnlalaln]

CTLASA|CTL 360

Joiolnlo|ln|n]

LEAVE
NOLABEL
NOTAPEMK
VERIFY

[e]

o]

[e]

o
«»

CONSECUTIVE
REGIONAL (1)
REGIONAL (3)
INDEXED

EXTENTNUMBER
rlNDEXMULTIPLE

OFLTRACKS (n)
KEYLOC {n) (15

KEYLENGTH (n) ["
HIGHINDEX ({2311)23142321})

{INDEXAREA () [n<32K]
ADDBUFF (n)[64+blocksize +keylengths n< 32!(]

= 9 - 255 for REGIONAL (3)

v

w

v

n =1 - 255 for INDEXED
(n)w »

ololv |t

Q|O|w|un|w

ololw|wle

n=0=8 for 2311 ‘I

n =0 =18 for all other DASD;s
n £ recsize=keylength +l]

L3

=lojolo|w]~

)
EXTERNAL

SIS S |5,

S|s|s N S IS |s S{sS|sS N

p{p[p [p]

S
D

pinjolofD (DD |D}DI|D D

%lulolol=|lojololn]n|~

S = Attribute or option must be specified,
D = Default attribute or option if not specified,

O= Optional attribute or option, Specify if applicable.

C = Choice must be made between these_options.

E = Must be specified here or in the OPEN statement (but not in both places),
for blocked files isn=1,

B = Optional for unblocked files, The default value

No entry is permitted where a blonk appears,

¥ UNBUFFERED is not permitted for files residing on a 2321 Data Cell Drive,
*%For INDEXED files, EXTENTNUMBER (n) must be specified[2<n < 256).
For REGIONAL files, EXTENTNUMBER (n) is optional [0< n<256).

128

APPENDIX T.

DEFAULT ATTRIBUTES OF CCDED ARITHMETIC VARIABLES

DECLARED ATTRIBUTES

DEFAULT ATTRIBUTES

DECIMAL FIXED

DECIMAL FLOAT

BINARY FIXED

BINARY FLOAT

DECIMAL

BINARY

FIXED

FLOAT

None - initial character | - N

None - all others

(5,0

©)

(15)

(21

FLOAT 6)

FLOAT (21)
DECIMAL (5,0)
DECIMAL (6)
BINARY FIXED (15)
DECIMAL FLOAT (6)

Appendix I.

Default Attributes of Coded Arithmetic Variables 129

APPENDIX J.

RESTRICTIONS TO THE PL/I_ SUBSET LANGUAGE

ALIGNED or UNALIGNED

Must not be specified for minor-structure
names.

Arithmetic Constants

Any embedded klanks in arithmetic constants
will be deleted from the number string and
no error message will ke given. However,
embedded blanks in repetition-factor fields
of PICTURE items are not deleted.

Arrays

The maximum number of arrays in a source
module is 32.

Arrays of Structures

Arrays of structures are not implemented.

Attribute Factorization

The maximum attribute factorization depth
is 8.

Binary Fixed-Point Data

Binary fixed-point numkers may have a
length between 1 and 31 bits. This also
applies to all intermediate results in
binary fixed-point form.

Binary_ Floating-Point Data

Binary floating-point data may have a
"length between 1 and 53 bits.

Bit strings may have a length between 1 andg
64 bits. The default alignment attribute
is not implemented; bit strings are aligned
by the D-Compiler. A warning message is
given if a bit string associated with the
default alignment attrikute occurs within a
structure.

Blanks

Blanks embedded in arithmetic constants
will be deleted (see also Arithmetic
Constants).

Blanks between operators will also be
deleted. E.g., X * * Y; will be inter-
preted as X**Y. Similarly, 'XXX' 'YYY'
will be interpreted as '"XXX''YYY', result-
ing in a character-string value of XXX'YYY.

130

Blocks (of Program)

The .size of any intermal cr external gro-
gram block (exclusive of data) is
restricted to 32K. The size of an external
block plus all of its internal blocks
(exclusive of data) must not exceed 6UK.

The depth of nested blocks is restricted
to 3. The external procedure ccunts as
depth 1.

The total number of blocks in an extern-

al procedure (including the external rroce-
dure) must not exceed 63.

Blocksize Cptions

The block length must be at least 1 byte
(at least 18 Lkytes for magnetic tare files)
and must not exceed 32,767 bytes. The
device types and correspcnding maximum
block lengths are as follows:

2540 80
2540 (CTLASA, CTIL3690) 81
1442 80
1442 (CTLASA, CTL360) 81
2520 80
2520 (CTLASA, CTL360) 81
2501 80
1403 (PRINT attrikute or CTLASA or 133
CT1360)
1403 (no PRINT attrikute) 132
1404 (PRINT attribute cr CILASA cx 133
CT1360)
1404 (no PRINT attribute) 132
1443 (PRINT attrikute cr CTLASA cr 145
CTL360)
1443 (no PRINT attribute) 144
1445 (PRINT attrikute or CTLASA crx 114
CTL360)
1445 (no PRINT attribute) 113
2400 (no PRINT attribute) 32,767
2400 (PRINT attribute) 145
2311 (no key, no PRINT attribute) 3625
2311 (PRINT attribute) 145
2311 (including key) 3605
2314 (no key, no PRINT attribute) 7294
2314 (PRINT attrikute) 145
2314 (including key) 7249
2321 (no key, no PRINI attribute) 2000
2321 (PRINT attrikute) 145
2321 (including key) 1984

The block size option V must include the
control words for the blocks and records.

Only fixed-length unblocked records are
permitted for STREAM files.

The block size options V and U and the F
option with the record size option are per-
mitted for magnetic tape files and disk
files only. '

Built-in Functions

String arguments must not ke used in the
ROUND built-in function.

Bit arguments must not be used with the
UNSPEC built-in function.

Character Strings

Character strings may nave a length between
1 and 255.

Compatibility with 0S F PL/I

1. A GOTO statement which branches direct-
ly into an iterative DO loop will not
be diagnosed as an erxor by the D Com-
piler, although such a statement is not
allowed in the language, and is flagged
as illegal by the F Compiler.

2, Certain statements are not recognized
by the F Compiler (see DYNDUMP,

___________ in this Appendix).

3. The I/O ENVIRONMENT attributes are not
recognized by the F Compiler.

Refer also to Appendix B. Upward Compa-
tibility in the publication IBM System/360
DOS/TOS PL/I Sukset Reference Manual, Form

GC28-8202.

Conversion

Arithmetic to bit string:
The scale factor must ke less than the
precision.

Bit string to arithmetic:
The maximum length of the kit string to be
converted is 31.

Static - internal:

The static storage for any external proce-
dure (excluding external data) must be less
than 64K.

Automatic:
The automatic storage area per block rust
be less than 64K.

Data aggregates:
Each individual data aggregate must be less
than 32K.

Decimal Fixed-Point Data

Decimal fixed-point numbers may have a
length between 1 and 15 digits. This alsc
arplies to all intermediate results in
decimal fixed-point form.

Decimal Floating-Point Data

Decimal floating-point numbers may have a
length between 1 and 16 digits.

DECLARE Statement

The length of a DECLARE statement is unre-
stricted; however, the length of cne
declaration-unit appearing in a DECLARE
statement is restricted to

¢ 136 syntactical elements, if 10K bytes
are available to the ccmpiler, and to

e 2000 syntactical elements, if 46K bytes
are availakle to the ccmriler.

One declaration-unit is delimited Ly
» the keyword DECLARE and a semicolon, or

¢ the keyword DECLARE and a first-level
comma, oY

¢ two first-level comrmas, or
e a first-level comma and a semicclon.

Each parenthesis, identifier, corma,
attribute, and constant is counted as one
syntactical element. A character-string
constant in an INITIAL-list counts as two
syntactical elements. Consider the follow-
ing example:

DECLARE (X FIXED, D FLCAT) STATIC,
(A INITIAL (7), B(10)) EXTERNAL,
NAME CHARACTER (4) INITIAL
(*ABCD') ;

The above DECLARE statement consists cf
three declaration-units, the first of which
contains 8, the second 13, and the third 10
syntactical elements.

DEFINED Attribute

A bit class variakle must not be a DEFINED
item. The attributes for the CEFINED item
and the kase identifier will not be checked
to determine whether they correspend to the
rules for overlay defining.

Dimension Attrikute

The maximum numkber of dimensions is 3.

Each bound must be an unsigred integer less
than 32,768. The dimensicn attribute may
be factored.

Appendix J. Restrictions to the PL/I Subset Language 131

DISPLAY Statement

The result in the message expression in the
DISPLAY statement must not exceed 80 chara-
cters. If the REPLY option is used, the
message must be followed by the EOB (End of
Block) cendition by pressing the appropri-
ate keys. For an example see the SRL pub-
lication IBM System/360 Model 30, Function-
al Characteristics, Form A24-3231, Altern-
ate Code Key.

DO_Statement
The number of iteration specifications in a
DO nest must not exceed 50.

The maximum depth of a nested set of DO
statements is 12. For details on repeti-
tive specification see GET_Statement.

DYNDUMP, IJREXHC, ITJKTRON, IJKTROF, OVERIAY

The names DYNDUMP, IJKEXHC, IJKTRON, IJK-
TROF, and OVERLAY are not recognized by the
0S PL/I compiler. Consequently, the CALL
statement referring to one of these names
will result in an unresolved external
reference from the linkage editor under the
0S PL/I compiler. Under the D-level com-
piler, a warning message is issued for each
statement using one of these names.

END_sStatement

If a label follows the END statement, it
must be the label of the nearest unmatched
PROCEDURE, RBREGIN, or DO statement. If a
BEGIN or DO statement is preceded by more
than one label, only the one closest to the
statement identifier may be used with the
END statement.

Exponent Subfield

The exponent sukfield for decimal and
binary floating-point constants is
restricted to 3 digit positions for binary
and 2 digits for decimal constants.

Files (unbuffered)

For unbuffered files the RECORD condition
will not be raised for records of incorrect
length, because for the implementation of
unbuffered files the system work files have
been used (compiler enters the DTFSD para-
meter TYPEFLE=WORK in the DTF table).

FORMAT Statement

Replication factors:

The replication factor in a FORMAT state-
ment may range between 1 and 255.

The depth of nested replication factors in
a format list of a FORMAT statement is
limited to 2.

132

Format constants:

The format constants must be such that w,
d, s, and p are decimal integer ccnstants.
Only p may be signed (positive or nega-
tive). The A, X, LINE, and COLUMN field
widths must ke less than 256. The B field
width must be less than 65.

The I and F field width must be less than
33. This width includes the sign for cut-
put fields even when they are gositive,
i.e., written as a klank. A SKIP must ke
less than 4.

The exponent subfield for input data
described Ly the E format specificaticn is
limited to 2 digit positions.

The exponent subfield fcr outrut data
described ky the E format specification is
always written with 2 digit positions.

GET Statement

The replication factor in a format list in
GET or PUT statements may range between 1
and 255.

The derth of nested replication factors
in a format list of GET cr PUT statements
is restricted to 5. If the format list
contains a remote format item that is ccn-
tained in a replication nest, it must not
be at a depth greater than 2.

The depth of a nested set of repetitive
specifications as well as the total number
of repetitive specifications in GET and PUT
statements are restricted tc 11.

Identifiers

The length of EXTERNAL identifiers must not
exceed 6 characters. This alsc arrlies tc
names that are external Ly default, such as
file names, names of external rrocedures,
etc.

The maximum number of IF statements in a
nest is 100.

Implicit Declarations

The identifiers DATE, NULL, and TIME shculd
always ke declared explicitly. If they are
not explicitly declared a warning message
is issued, and the BUILTIN attribute is
assumed.

INITIAL Attrikute

The length of the INITIAL-list for a
character-string array is restricted by the
following formula:

NC * LE + 14 * NF < NI

where

NC = the number of constants in the
INITIAL-list

LE = the length of one array element

NF = the number of iteration factors

1500 (if 10K are available to the
compiler)

18000 (if 46K are available to the
comgiler)

NI

Consider the following example:

DECLARE CH(10) CHARACTER(250) INITIAL
(N2H)'a',*'s*',(2)*c','n', 'E','F°',
UGI'IHI);

The INITIAL-1list in the above DECLARE
statement contains eight constants and one
iteraticn factor. String repetition fac-
tors (as in (2)'A' and (2)°'C') are not
counted. The length of one array element
is 250.

Application of the above formula yields
a result of 2014 whicn is in error if NI =
1500.

KEY Condition

The KEY condition will not be raised for
REGIONAL files if an attempt is made to add
a duplicate key by a WRITE statement.

Labels

The total numker of lakels for all remote
FORMAT statements in an external procedure
must not exceed 127. This restriction is
independent of the size of the availakle
background program area.

List 1/0

The statement PUT LIST(NULL); - where NULL
is declared as tne kuilt-in function - will
not be diagnosed as an error, but will be
executed giving unpredictatle output data.

Internal names:

The maximum number of names in all DECLARE
statements of a program klock is 3048. The
maximum number of names given all its
attributes by default is 3048.

Note: The above restrictions are applic-
able cnly if the source program is compiled
on a 16K system. The restrictions are
_eased ccnsiderakly with the availakility of
additional core storage.

External names:
The numwber of external names must not

exceed 255. Names of external structures
count as two names. This restriction is
independent of the size cf the availakle
background program area.

Note: The number 255 includes the names of
all library subroutines used by this
external procedure.

Total numker of names:

The total number of distinct internal and
external names in a source program must not
exceed 32,000. This restricticn is inde-
pendent of the size of the available
background

Nesting I/0 Statements

While an I/C statement is active, no other
I/0 statement must be activated (GET and
PUT STRING are considered I/0 statements in
this connection). Thus, in the following
example the second PUT statement is nct
allowed since it is 'nested' in the first
one.

PUT FILE (X) EDIT (FUNCI(FARl,P2R2, .c..)
(format list);

FUNCT: PROCEDURE (PARA1,PARA2,....)
RETURNS (CHAR(120));
DCL Y CHAR (120);

PUT STRING (Y) ZDIT (data list) (format
list);

RETURN (Y);
END FUNCT;

ON_Statement

If the condition of the ON statement is
CONVERSICN, =NDFILE, or KEY, the action
must not be the null statement. A prefix
is not allowed in an CN statement.

When a key error occurs in a WRITE sta-
tement, the KEY condition is raised during
execution of the current statement cr the
next I/0 operation.

The standard system action for FIXEDO-
VERFLOW is comment and raise the ERROR
condition.

PAGESIZE_Cpticn

The default condition is the size sgpecified
by the line count of the syscem.

Appendix J. Restrictions to the PL/I Subset Language 133

Parameters

The number of distinct parameters of a pro-
cedure must not exceed 12. The same para-
meter appearing in a numker of parameter
lists of the same procedure (one PRCCEDURE
statement and several ENTRY statements,
each with parameter lists) is considered as
only one parameter.

Entry name parameters must be explicitly
declared with the ENTRY attribute.

PICTURE Attribute

A PICTURE specification must have at least
one PICTURE character other than M, V, K,
or G. Arithmetic pictures must not have
more than 32 characters excluding M, V, K,
and G. PICTURE character strings must not
have more than 255 characters. A PICTURE
character preceded by the replication fac-
tor k is considered as k PICTURE
characters.

PICTURE Lata

Data declared with the PICTURE attribute
must not have more than 15 digit-characters
for numeric fixed-point data and 16 digit-
characters for the mantissa and two for the
exponent of numeric floating-point data.

Pictures with the fill character * pre-
ceded or follcwed by one of the characters
+, -, S, or $ cause these characters to be
replaced by * when the variakle has a value
of zero. Similarly, CR or DB are replaced
by *#*,

The picture character B is implemented
as a conditional insertion character when
used in conjunction with a drifting
character.

Procedure Default Condition

The default ccndition for all procedures
excluding built-in functions and library
subroutines is IRREDUCIBLE. The default
conditicn for all data is ABNORMAL in the
DOS/TOS PL/I compiler.

The PL/I Subset language does not have
the attributes REDUCIBLE, IRREDUCIBLE,
NORMAL, and ABNORMAL. Therefore, the user
should familiarize himself with these items
if he wishes to run programs written in the
PL/I Subset language under CS control. For
details on these attributes see the SRL
publication IBM System/360, Cperating Sys-
tem, PL/I(F) Lanquage Reference Manual,
Form GC28-8201.

PROCEDURE Statement

The OPTIONS attribute permits an options
list, the form of whicnh is (MAIN [,

134

ONSYSICGl). The MAIN option specifies this
procedure to be the initial procedure. The
ONSYSLCG option specifies that all cutput
as a result of action taken due to an ON
condition is to be printed on the device
assigned to SYSLCG. If both options are
used, they must appear in the crder given
above. Procedures declared with the
OPTIONS attribute cannot be called frcm
other procedures.

Put St atement

Refer to GET_ Statement.

gualified Names

If a qualified name is truncated on the
right, the remaining part cf the qualified
name must ke unique. For example, in the
structure

DECLARE 1 ATR,
2 A1,
3 B1,
3 B2,
4 D1,
4 D2,
2 A2,
3 B1,
4 D3,
4 D4,
3 B3;

the qualification ATR.B1.D3 is not allowed
since ATR.B1 is not unique. The correct
gqualification would be ATR.A2.B1.D3. Ambi-
guous names may not be fiagged by the com-
piler, and the code produced fcr such amki-
guous references is unpredictaple.

Repetition Factor

A repetition factor must be an unsigned
decimal integer. 1Its length is restricted
to three digits. 1ts value must not exceed
255. The two examples kelcw are in error:

DECLARE A FICTURE ' (0010)X';
DECLARE B PICTURE ' {260)X"';

No emkedded klanks are allowed in the
repetition factor. E.g. CECLARE C PICTURE
'*(1 2)9*'; is invalid. However, preceding
or following blanks are allowed, as e.g. in
DECILARE D FICTURE'(4)X';

Scale Factor

Declaration of a scale factcr is rermitted
only with decimal fixed-point data. It may
range between 0 and 15 and must be

uns igned.

Statements

The total number of identifiers, ccnstants,
and delimiters (excluding insignificant

blanks and comments) contained in a state- compilation and no error message will be

ment must not exceed 230. given. Level numbers may cnly ke factored
for elements of a structure, i.e., if fac-
The number of different identifiers and torization occurs in a structure declara-
constants (excluding constants not con- tion, the corresponding items are reco-
tained in an expression) is limited to 90 gnized as structure elements.

for each statement.

Note: The above restrictions are applic- For example, in the declaration
able only if the program is compiled on a

16K system. Each additional 4K available DCL 1 A&,

to the comriler allows an equivalent 2(B,C,D),

increase. 3(E,F,G);

B, C, D, E, F and G will all be assumed to
Structure_Declarations be elements of structure 2, and will be
' assigned the logical level 2.

The maxirum lcgical depth of a structure is

8. The maximum level number is 255. The In order to cbtain the structure
nurber of names in a structure is
restricted to 62, if 10K are availakle to DCI 1 A,
the compiler (766 if 46K are available). 2 B,
This includes the major-structure name, 2 C,
minor-structure name(s), and structure- 2 D,
elerent names. 3 E,
3 F,
Structures (level numbers) 3 G;
Any embedded blanks in level numkers will the declaration of D must be removed from
be deleted from the number string during the factorization krackets.

Appendix J. Restrictions to the FL/I Subset Language 135

INLCEX

(Where more than one page reference is given, majcr reference appears first.)

3

ABNORMAL attribute.ic.ceecacecceasceansass 134
Access MethOdS.ieeeececaaccaccanccannases 30
ACTION statement...ccececccncsccccsnencaas 17
ALIGNED. cceecasasscscsccansenasasansasaacas 130
Alignment reguirementS..cccecceeccecacss 62
ALLeNdag€ecescsecccaccveaccananacsansnna 69
Arguments, pPassing Of.c.cceesccccccasces U1
Arithmetic constantS.cceccecccacecanaass 130
Arithmetic datl@.cceceececiscccacsscansesscas 55
Array boUndS..ececeeecceascnascessecsnnaass 59
AYraAYSeescencasoetsaccsasnsanannsncsasaes 130
Arrays of structures...cceeeeceeeaca. 46,130
Assembler MOAULES.eceianceacssososonneaas U1
Assenbler mcdules calling PL/T..eceea... 41
Assembler modules, linking of........... 39
ASSGN statement.eceeeecnseeseaaccsscancas 12
Attribute factorizatiONecececececseeases 130
Attributes, redefining.ee..... eecanaaaae U8
Autolink featur€..ei.e.eieecacecasccccanseas 18
AUTOMATIC data StOrag€eececascsasscssscss 958
Autcratic StOrag€ecececesacecancannanes 131
AUTOMATIC variableS.eceeceecnceaascncecas 41

Background rartitionN...eeseeceaveces. 10,17
Background processingeececececssecssacassas 10
BACKWARDS attribut€...cceceaccascscccnes 35
BACKWARDS fil@Seccuiecaaccocncscannasansse 3l
BASED Qttribut@eiceeececneacsacascacccneas U7
BASED data StOrag€iececesecccecccnccceccanae 58
Based StrUCtUYES.cecaccsncenssnsascnssan U6
Based variableS.ccecccescccnsacoccanaas U7
Based variables with structure€S.eccecea... 47
Binary

fixed and float variakleS.c.ceceeacaeas 62

fixed dat@.ceccoseesmwamecassssansaecs 55,130

flcat data..eeseeeeanececannancess 56,130
Bit StringS..cccecececcnceascasaeas 130,57,62
BlankS.eeeeaa cecccmecsseccecncasnsscsasas 130
Block (Of data)eeecemecwancsccannoassncnae 24
Blccks (cf programdlueceeceacescasssaseaas 130
Block lengtheceineceeecanecanocacaaanaas 130
BlCCKk PXClOgUEieceeeececsnsncncecnncaaas 16
BlOCK SiZ€eceeacececscnnccacnsansacanaee 29
Block table 1istingeeaseccceccescaacasas 87
Blocked reCOrdS..ccececeaccncssancacnsane 29
BlOCKINgeaeeasanccascnanenansanncaanssas U6
Blocksize OptiONeiecccececaacancssansesceecss 130
Boundary reqUirementS..eeecesssccccaasss 60
Bounds Of an arrayeececceccccecccccnceaassas 59
Buffer (length)eeeececesceaaccscsacsnacsns 30
BUFFERED attribute.ciseccececeecassanaaea 30
BUffErSeieeeeasecaacecannnsnssancsnsnnane 67
BUufferingeececeecceccenesccaacsacscnseases 30
Buffering attrikuteS..cceceeceacsccncancas 30
Built-in functionNS.ec.cceacceeecsaass 95,131,65

136

CALL statement.cceccececscnscsascsnscaness 39,41
Calling Assembler mOdUl€S.ccececsceecseess 39
CATAL option (CETICN stmnNt)eeceseecssnsce 13
Catalog control statementS.eeececacececess 21
Catalogingeeececeacecencscssncaceacncesenes 21
foreground ProgramS...ccecccecsccscenes 23
into core-image likraryeecececeesessnees 21
into relocatable libraryeeeeesceececesss 21
lakel informatiON.cessceesacecaacsscess 36
relocatable moduUleS.ceeeeceacacacesese 18
CATAIR Statementeeceeececaannencanncenss 21
Chain-back WOrd.ecceeecssssssencsassccas 53
Chaining Cf DSA'Seeieetanecncaceancceanes SUt
Character StringSe..cecesssssssssess 131,57
CHARACTER vVariakleS.cecensccacasancscaanecs 62
CheckpOintinge.ceeecacaseacccaccncnssnaen U2
CLOSE statement (FL/I)eccececccsscecceess 31
CNTRL MACYOcsessensnncsnscesassasccnccosse U2
COBOL SUbrOUtineSeeccececececccsncocacesass 39
Ccde generatiON.necciecccsccesccsanssnasse 718
Coded arithmetic dat@eseesseccscasesaaas 95
Ccded arithmetic variakles, default
attributes Of..ieeccceccacceacancnsesen 129
Comments Statement.enececceccccacsemcscacne 15
CompatibilitVeecieecscacececccaacanens 131,65
Compilaticn requirementS.ecceccacscacsaacs D
Compilation under DOS/TOSeemsscsecascncee 16
Ccmpile and catalOgeececcnscccscceacses 22,15
Compile and linKeeecweweccosacescamnasaans 21
Compile-time diagnosticSeceeceswe-.. 106,87
Compile-time OptiONSeeseceecceaasa 13,14,15
CONSECUTIVE fil€Seeeceeansacsncanccanasce 24
Constants, representation O0feceececececaen 59
Control field...cieeececancsaconnencaneas 29
contrcl routineg, PL/lcececsccccacasscace 17
CONVERSICN cOnditiONeeeecssaceceswssas 133,35
CONVEYSiON.ieaoeensasnssonnsssccsnnes 45,131
possible combinations Cf.cecececacaasa U
YeQUIiLEMENtS i eeeesnccaascncsanacasass 65
SUDroUtineSeecieceeesscassnccanasscs 92,65
Ccre-image likraryeeeeecesesesecasas 10,12,21
Correspondence definingeiceeeececececeaes U7
Cross-reference listinge.eccecececeeeceaass 85
Cylindereiecieeeeeneecaascaacacannenacsaaan 28
Cylinder inNdeX..ecesececccencecnmensassacaas 26

CA (DIBL statement)eeecececcanacaasasnaes 32
DASD file label formatSeceewescesscesass 101
DASD lakel information..ececececceecescees 105
Cata
Aggregat @S ceecececcccceacssnscnneanseas 131
BYCBeeescencesnesencsssnnencencenscasase 32
AesSCriftOYieeuieeeencacanesacccanancans 35
£1leSieeeeecacacatncccacacenncnoanaeasaas 2U
ItemSeeecrennssesenssscsccnnscessnanse I3
StOXAgE€eeceacesanceanssecssccsossensseces 131
StCrage mMapPiNgececseccecccccmecassases 60
Storage requirenmentS.ccsccecccscesscesa 95
conversion, possikle combinations..... 94

DATE ceecessansacossnscscncscanacsscssasasse 132
Decimral

data, precision of...... caeean acessecs. U8B

fixed and flcat variakleS...ceceavecaas 62

fixed dat@.ceececcncsacescsccasasesas 131,56

flcat dat@.ecacecaascaccnnaseasessas 131,56
DECLARE statemeNtesccecessscssascascaces 131
DEFINED attrikbut@eeeececacccaasaaasaas 47,131
DELETC statement...c.ccecicceeccncancanan 21
Deleting frow likrari€S.eieeaceceaceasnsaas 21
DELETR statement..eccececscaccacccaansases 22
Device srecification for tapeS.eceecea.. 12
Diagnostic messages

cenpile-timE@eeieeeeeancacaacanaaas 106,87

Oobject-time.ceeeneeeeaceeeeenanenaaeas 88
Dirensicn attribUte.seeeeeeaaceasaacnaas 131
Direct access method..eececeeaaaceaas 24,30
Disk and Tare Operating SYSte€MS...seeeaas. 9
Disk fileSeeeeeecaencaancacnseannaescaaas 31
Disk file FrccesSsinge.cecceccccscacasecas 35
Disk lab€lS.iseacceancasaccacassaasaseeas 31
Disk crganizatiCheeseceececncecanansnaaeas 28
DISPLAY statement..eceeecececeecaaas 132,U8
Disrlaying intermediate results

(CYNDUMP) ccveavascmeacnsansacanasssasce 53
DLAB statement.....ceececcaeecanccansaes 32
DLEL statemenNteiecesscacscsccsasscasccnss 32,31
DO loops

crtimizaticn Cfuieseceeneeeceacecsncnaas U9
DO statemenNt.cecececescscsncesacaccsancansas 132
39,40,53,75
DSA chainingececesasceceansacascsasneanaas DU
DTIF CYCOTaANMeesaaccoaccsnasscannansascscaa 07
DTF table........ ceeeaana ceasaseeas. U2,67,53
DIFCDueeaescessasscancancnaaanacncnnssee 08,67
DTFDA ceesasaascacansacacnanscasansnes 10,69
DIFLI e eececnsasacanccsanmesnsaccasnsasnaaeas /1
DIFIS eeascccasenssancssacssasccsssanseas 10
DTIFMTeeeneecscaasascsacssssssncacsasnse 09,68
DT FPRucecesassasanneassacsacsccssccsasansaes 08
DIFSDecescacsacccscnacansscasnaasnsans 09,68
Dump interpretatiCNesc.cececcsccsscnsesas 53
Dynamic storage area (DSA)..... 39,40,53,75
DYNCUMP YOULIiN€e.eseeceocsascccnasas 53,132

DSPAceeeesaceaccnaaanacnannsnncsnse

E-format OULLUL.eeecceneccnessacacceaness U9
Edit-directed data transmissioN....... .. 49
ENC statement (PL/I)...icceeacecaacnneas 132
ENDFILE condition....e.eceee..... 133,35,20
End-cf-data-file statement....ceeeee. 15,22
End-of-job statement..cceceecececcsccancse 15
ENCPAGE with multiple-line PUTeccseeases 50
Entry name parameter...cceecececsseacesss 134
EntYY PCintSeeeevescescncaccsanasansenas 19
ENTRY statement........ eecesaceanasanan .. 19
Errcr messages
compile-time,cceceeecaccacecncnaas 106,87
Chject-time.iceeeeaeeeaacsaaacanccsaceas 88
Errcr statisticS.cieecieececeaceceacnacasas 65
EXEC statement.c.eceececeeecenecenccscaseas 12
Executicn requirementS.ceceeecececanacaas 6
EXHIBIT CHANGED ccceveccacssancsssacssassas 51
Expiraticn dat€..ceececcaaccaaaaaas 32,33,31
Exponent subfield.eeeeecereceeeaaseaess 132
EXteNteeeasesacnceeocacasancnsascnnccaase 28
EXTENT statement.ccecescscecescescaneass 28,32
External
Attribute.iciieeccaceaccccancaneness 45,80

Jat @eevecscansccasancscascessancsannsaasnas U2

data StOrag€..eewessscsncssacsnsasacncas 58
procedire. e ... T
StrUCLUYESeeeeesccoanesaenssannnnaanses 133
syrbcl takle 1istingeeececceanceceaccenes 86

F-fcrmat cutput.ece..ieas.. B | 2°]

Factcrization of attribute€éS..aiceaecc... 130
Fil@uaeaeneoaesnosansmeansanansacnanansaas 24
ALLENJa0€ e e aessacacansacsaansesasasccase 42
ALGUMENtS. caeeececanaancacnacnsaceacas U2
ALt rikuteSeaeeaseecocacecssannsaas 128,30
declaration checklisSteceecienccncneass 128
declarationsS..... cececaaas ceasasas eeaas 67

IDieecacecanasncsancaananaccacascsas 32,33
label formatS.ece.cecenenccseencanseae 101
lakels. i ieeiieneaeasesnsanssecsasaass 31
MOAULlEaeeeaeacencsnnanacacnnanannasces 21
0XganizatioN..e.cececcaaccaacacaaacaas 24
CAYAME TS cceceseansacscosssnasnsasanaes U2
SEJUEeNCe NUMDEY . veecvsevsaccsasensccssaa I3
serial numker.....caeecceecccacceasanaeas 33
unbufferediseeeeeeeeccccascecccnasase 132
Fixed blocked reCOrdSesescacecccasccsncenes 29
Fixed unblocked reCoOrdSesceccsceasccccses 29
FIXEDOVERFLCWeeeeosaeoanascacwesaanannes 133
Floating-point registerS.cceeecenseeeanss 39
Fcreground partitiONe.secececceeceaaae.s 17,10
Foreground pProOgrall...eeceesssnscscesccassse 10
Fcreground Save 3YE€@eeeceseecccscscnsense 17
FOrmat CONStantSeecececssamencancsssoannne 132
FCRMAT Statement cvececeeasccacanaacssas 132
FORTRAN SUDroutineS.....ceecvceccancnass 39
Function referencCe..iceeeenececacsnsacaess U1

Generated catalog control statements.... 22
Generation NUMDEr ... sseeescecascscsccanee 33
GET statement.eceececaccsccmneanascansnssss 132

Hardware interruptS.ececceccccescacnseasss 89
Header label.uiiecececccasccmancacacaane 31
Hcusekeeping €rrOrS.cececcacecacessncccaeas 89

IdentifiersS.ceecieeceecenascceanccasecasns 132
IF NEStiNgueeascsacscesasaasnosnscssaseas 132
ITKEXHC e aeeeencceassncncncncnasneenss 51,132
TIKSZCTeeecenonnecasansasascancssansansss U3
JIKSZCNeeaeoowasasaonmonanesnasacannness U1
IJKTRCF e eueesanacccnsseasosancnseasanes 51,132
TIKTRON . coeevaesncsanascscsmennnsnees 51,132
IJKZL macro instructiChN....... ceeaees H8,049
TIRZWSIeeeeasaaencsacnscancsnnscesnsaasnoes 43
Implicit declaratioONeeeceesncecenanceaass 132
Inplied sukroutine callS.ececessceasss 95,65
Including
by cOmpilatioNeceececececscccacsanccnaes 18
from the relocatable library..eecs.cee«. 18
okbject card deCKkS.eeecasscsasasascccaes 18
object MOAUlESeeaieecscacnnnanceannese 18
Inderendent overflow 8r€a@.ceccececcescseaces 27
INAEXeevanenonasscscsscsaancnasnncasease 20
INJdEX BYCBeeeavsecasacsacanascssaacanasas 26,32
Indexed fileSiiceeeeeaecceccasccannacnans 26
Indexed-sequential

Index 137

file, creation Of..ciacevecccaccnsanas 26

s O Y P 1

organization...... ceececscecans cesacaas 26
INITIAL attrikbute€.ceecececcacanccenesss 132
Initial Program Loader.ecececececenacancnaas 9
I/0 device asSignNmMeNt..ceeccececceccesses 10

listing Of.ceeeeineeeeaacecnancenaaena 11
I/0 @YXCYSiceaasaosccncassnsncsccssssssass 20
I/0 PrCCeSSiNgeccesecescenccsncacscs aaanes 30
I/0 statement format checklist......... 127
I/0 stcrage requirementSececceccsancacces 67
I/0 sUbroutineS...ceccccacscscsasasonasas 99
ICCS 1cgic MCAUlEueaceeaaccancncansesnsn 11
IPLcceecsaccescccacsncssassscsaccnsssnconas D
IRREDUCIBLE attribute.....ceeececcns ... 134
ISC (DLBL statement)..scecsesscscecaocssceaa 32
ISE (DLBL statement).ceeecccccscaccaceas 32
Iteration specification (DO nest)...... 132

JODeeaseeacaaesacesassancnsnsssaassnanas 11

JcCb Ccontrcl FrCgraMie.eecaecescecacnasnans 11
Job Control statementS.cecececceecasosaes 11
JOB statement....ccececesccccsncascsescasnas 13
JCh SteFeeceeacecacecacenannannasannseas 11

24,30
KEY condition.sccececscaccsasacssecaseasas 133
KEY OPtilChecsecaccnaacsnecaaccncnasnes 26,28
KEYFROM OptioNn.ccceeceancas esesassees 26,28
KEYLENGTH OFtiON.ccacecaaccacsancaaas 26,28
KEYTO OpPtiON.eccceesnsasnoecacsscsacnacaas 28

KEYaaeeeeaaaeeannasaacnesascsssane nan

Label ciceeaccesaccaanaaassananasaas 31,133,284
AYCOeeeessssceaccsasancccensccsaconsnass 35
constants (sStorage) cceeceeececsenecacas 58
contrcl statementS..ceececcccaasaaccas 31
datBeseecscacesssncannccanascasssacene D8
(END statement) ceeeecaccanacsa eeeeeaae 132
information, cataloging of.......c.... 36
FYCCESSiNg.ueeeeuneeanaacacenanncnanna 24
-program COMMUNICALiON.ceecaecaceasaasa 36
statemrent exanples................. 33,34
variableS..cceceanaan 62,58

Labeled files, 11nk edltlng............. 36

Lakeled tape fileéS.ciceeeeaecasanaass 31,35

LEBLTIYP staterent.ccecieecececsescaaacaccasas 35

T T . - 1t

LEAVE OFtiCNecaecensacnaccnsscscacassasna 34

Level number (structures)......ceceee.. 135

LibrariaNeeeeceescecaaas eecenscsassees 9,10
control statements.............. 21,22,23

Library mwaintenance (TOS)............... 23

MaintenancCe YUNS.ccecccscccsccscsasccsns 22
standard save area (ISSA)eeeeccaceceaaes 53
SUbrOoUtineS .ueeeeaceencacanana ceemscaas 1

LINK option (OPTICN stmnt).............. 13
Linkage FAitOreieeeeeeessaeaeaccaosconnccses 9
control statementS......... ceeeeass 17,21
|23 e I - . Y 1
StOYage MaAPeeceececccceevcacancnsaas 53,17
Link-editing
foreground pProgramS..ccescecsccccssess 17
labeled fileSeiieeecceacacsscseaacansae 35
multiphase foreground ProgramSe..seces. 83
CVEYlaySeecesaceseacecsassasacscanannnaaa 82
Linking Assembler moduleS..eceeeeesse 39,041
Linking conventicnS....ccecececacaceaanaa 39
LIOCS tablecccsscesesccccssacscssascnnsan 36

138

List-directed data transmission......... 49
LiSt I/0ceceeocanancacsnnnuncsccsansaaas 133
Listing of I/C assignmentSeceecceceececass 13
Listings, PrOgrale.cscesscssssasccsnsccaana 85
LISTIC statement.sccesscecaccecsasccccscsacs 13
Locating execution-time errorsS.......... 53
LCDIS MACYOseeenesensaccansacnsaseaneuee U
Legical deptheceieeeeeeceececananeanaeass 61
Logical device addresSS...ececssassess. 10,11
Lcgical UNitSeveeeccemecsaacsacsanansnoas 12

Machine featUreS.i..ceacecascscscccacascaa O
Machine requirementS..cesecscescscccsasas .. 6
Magnetic tape, positioning Of...ceceec.. 35
MAIN OpPtiONewecccncceacacancssaacscss 134,41
MAIN PYXOCEAUY €. euncsanccncccncacnaananss U1
MapPPingecacesosacnscsascasessannsoncaaes D1
Master indeXeeceeecececcvsncascsasccancae 27
MOAUle NAMESceececsssscsasscssanscssascecas 21
MIC StatemeNte..ccceecccencssensss 34,35,13
Multi-extent fil€s.cececeeacocmecncaanans 32
Multi-file VOlUME. . eeerowoccasoasesacaeasa 3
Multiprogramminge..ececeeccececemecasasaasas 10
Multi-reel fil€ueaeeaossncsnmsnananacaaas 24
Multi-volume fil€ececeesaacecascocsnases 33

NAMESaeesesascsscsnssascsnassscacnssaassas 133
Nested bloCKkSeeeeecseescnnsscosnanssases 130
Nested I/C statements..... eccsmsscccases 133
NEWVOL Statement.c.ccecccececscesccnncsessen 23
NCAUTO: ceacoeencwencsscscascsnnscnscnannsasa 18
NORMAL attribUte.ineceieaceceesceaccscsases 134
Normalized dat@.uw.eceeeesoaacscceasacncsaasas U6
NULL:eeeaasscnsosssoscccacsnoscsosnoncnccncee 132
Numeric data (StOrage)..eceeceacenceceass 57
Numeric fields in edit-directed I/0..... U6

Object code 1listingieecceccececcescaanas 87
Okbject mModUleE. . iincieeeeeenacenaneacanaennne 7
Object-time diagnostiCSeeaeceececccacaasss 88
Okject-time storage layOUteecececaceceess 7,9
Offset table listingeececswwesececece.s 86,53
ON-ccnditions..... cesesmecanccncacas 127,133
ON-condition COMMENtS..ceeecencansessesas 88
ON statementeeeeeeceececencenansneacascnas 133
ONSYSLOG OpPtiONeeescceccanasssassanesss 13U
OPEN Statement..ceacrcescencsccccenaeasscss 31
OptimizatiONecececsccsaccceaamanesaasssnes 15
OPTICN statement..cceeecceceseeeess 13,10,14
OPTIONS attribUt€..ecaseeaceceasccaasaas 134
Orticns 1iSteeieeesencncacssasnnsscsncses 134
OVerflow ar€@..ceecececsascccccecosescas 27

independent....cicceccacaacncnseeas 27,32
OVerhead.eeeasncseerscsacsancascnanseananneas 14,7
Overlap, seek tim€........ weescsancs eaa. U2
Overlapping I/0 Ope€rationSeesceceecsessas 30
OVerlayeeeseseecencsaccaconssssass 80,46,132,7

defining.ceecieeeececcacancenns L Y

EXAMPlEC e e enneccacocnnmencnssnnsccseoss 82

rules fOr USiINge..cecseeeaccocnacasnans 80

P-format 1temS..iceencececscscacscsanaea 46
Paddingecesccsececcencsacacnacacsasasscsna 00
PAGESIZE OpPtiONecececescecaacasasacnaas 133
PAraneL erSccceveecacsccsacensasccscccnoss 13U
Partition, foregrocund/backgrcun@........ 10
PAUSE statement.ccecececacsccscccccencneaes 13

PhaSE€uieecacecccassasanancsencnceaccsaes 80,7
10aAiNge ceeecacenaccnnacsnaccanccncasns 81
NAMES e asancccccescsassanssassnaasscas 21,80

PHASE statement..cececececccecces eeeceees 17,82

Physical device addresSS...ecececaacsaccees 10

PICTURE attribut€..ececececnceccaenaaas 134
data@.esscscacaaanaan meesaaccanccacaas 134
specificationS.cecececacscccsscsnsancnsae 50

Picture-sgecified
character strings...... ceecsesscenacan 57
data (Sstorage) ieeescececscscnccaancaane 97

PICTURE variableS.cecesccsencacaacaacaas 62

Pictures, use with stream-oriented

data transmiSSiON.ecescecsascsccacascsnes U9

PL/I ccntrol YCUtin€.e.icaaeceecnaccanaane 717

Pointer variableS..cceeecssansacassaas 58,62
StOYaAg€eceeeaacceccnsncsnaccasnanasnees D8

Pcsiticoning cf magnetic tap€S.eeeececesscess 35

Precision of arithmetic constants....... 59

Precisicn cf decimal dat@.eeseccceasssasaa U8

Preformatting REGIONAL file€S..eeeeaes 25,26

Prime data AX€@..eeececceasccasccscsssaccse 26

Private relocatable librarye...ce.... 18,23

Prccedure
contained in relocatable library...... 84
default ccnditioNeceeacecaess cassseas 134
MOAULECeeaasnacsscanascsecsosnanssescnas 7,21

PRCCEDURE staterment....ceceececceaacaaess 134

PROCESS statement.....ccecesceccaceassssae 15

PYICgYal eXFaNSiCNeeeeecacacscacsacacaase U5

Program segmentatioN...cccecesccsccacass U5

Prcgram storage requirementS...ecceseesaes 79

Programmey logical unitS....eceeecceceeee 12

Pseudc variakleS...ceeeescaacacnseaas 65,95

PUT statement......... cescccncacsccaaas 13U

Qualified NAMES.ccacsacscsencncacancess 134

Re-assigning logical unitS..ecececceceaas. 12
RECOXAeeeeenoncecascncsncaaascnssnaseansans 24

LYPESeeecacennseccsacsceancccasscansase 29
Redefinition cf attrikute€S....ceaeceeaes U8
REDUCIBLE attribute...ccccecccecccccsss 134
REGIONAL fileS.ueeeecscccansascacanss 24,25
Register usage for linking....ceeceecece.. 39
Relative track nURLEr..eecieceacaaaeaeces 33
Relocatable librarye.eecececececeesass 10,21

FXivVateeceeeeeeeencacanananna ceecanees 18
Remote fcrmat item..... cecacnsanaasss e 132
Remote FORMAT statementeccececcecceceses 132
Reretiticn factOr.ieeeeeieeeaneeeaanaeass 134
Repetitive specificatiONeciececsscesecsass 132
Rerlicaticn factor.e.eeeeeeeeeeeeesneaes 132
REPLY OptiONeceececceccaansacncaceasess 132,48
RESET statement.e.c.ececeececcacceacnancsncanss 13
ResStartingeceeecceceeaceavecscecscancsncsns U2
Restricticns cn PL/I languag€.e<seseess 130
Retention period...cccececeecacceassas 32,33
RETURN KAGCXCeeeoosoncancnsanssnassnsssas U0
Returning registerSecececsccsccccascesecas U0
Rewind creratioNeeeeeeeeceecenseccencase 35
ROOt.cecccncccansns cecencceccrtenaccancnn 80
Rcunding on OUtPUt.eceaacesacccaacsccass U9
RSTRT statement..c.cccececeasscscacscanasces U2

SAVE AYCAeeeeacucscncsncssassnscacanscaaas U1
SAVE MACYOaeecesevcaccccsnncsnssscccscccascses HO
Saving regisSterS.ceececccncccansaancecccas 39

Scale factOYeeeeeeeanecsenceamacansnaas 1304
SLC (CLBL sStatement).cecceccescceascecasecacas 32
Secondary entry poOintS.cecescecscnaeassass 8
Seek time OVEeXlaP.ecieceesesccsnannaccans .« 42
Segmentation Of ProgramS..ccessscescseas 45
Self-relocating ProOgramMSesecsssaceasceass 18
SEeqUEeNCEe NUMDer.c.iceeeeacacecacaacanaans 32
Sequential access methOGeeweceececaas 24,30
Serial NUMDEere.ceeeewecsnensacsannsnccan 32
SIZE OVerflow...iceeeenceecccnmacnncecnsse U8
SKIP.aacweasossocssansscacccsnscsannancasnsse 132
Scurce
MOAUlE. e coeecenecnncnansacanacccacnmnnne 7
pregram 1istingeeeececscseccccscscsceenss 85
statement likrary..eececeecececsacccecees 10
text and object PrograNe.c.cesecsssssees 78
Split-cylinder techniquUe€.«.ceecececaneeas 28
Split cylinder tracCK.esseesacascascesasea 33
Standard I/C assSignmeEntS.ceccecesesaccsaass 11
StatementsS.ceaeeeacecescacascaceanessas 134
Statement forMat.ccascececaccaanacass 45,134
Statement offset listingeeceeeccacessnes 87
STATIC data StOYag€eeesscecscscssscccscen 58
Static St0rage..eeeeccssesaccaacsscsaeas 131
Static StCrage Ar€A.ceccceccescaccnsaees 71U
Storage layoUt..ieeeeececccencncccnancans 7,9
Storage mapping
AYTAYSeeecsacsncsccnnsscnsscnssssnsence 00
element dat@cecececececencascacncnasecas 60
StrUCEUYESeeceeaosenncssassccsncnacscenese 601
Storage requirementS.mececececceccanaaass 55,79
STREAM file€S.cecweceesscencccnsnscesnses 130
String data, storage Of..cecececececacansas 57
Stringency level....eeecesecanccnsess 61,62
SEYUCEUTLE.e . e eureacaccancnancannacanans U7
declaratiOne.cececeesscacacacsacaaeeans 135
external..cecceccencccececencancsnnas 133
level NUMbEYS.cuwcencaascnceacnaanesses 135
NAEPINge ceeecccccasascnascancanannse 01,47
MappPing rUleS.eeceeeecenecsacaacnaanman 62
maximum depth.ceceecaceeeaceccaancesss 135
maximum level number...e.ceecececesanss 135
STXIT MACYO:eeoavsescancmsmcsncacasasannce 43
Subroutine calls, implied.ececeacsnsas 95,65
Subrcutine storage requirementSee.eecse.. 65
Subroutines, called by I/0
StatementS.ceeeeecneancecacacacncsencas 66
SULEYViSOYecoeoeaocasan eemecen eeemcecanes 9
Symbol table listinge..ceccecceceeccneeses 85
SYyrbclic UNiteeeeeecncsecnccsccacanavenaes 32
SYSINeeeeaeossacsesaasaccacnsacaass 12,31,73
SYSIPT.veeoceosossanansnscnscscncssannsnsace 12
SYSLNKeeeooesoosoosncsassannsanseanseass 10 12
assignments foXe.eeeeeececenacencncaas 17
SYSLOGaewwseesasesacoanasnacssosansnssnsas 12
SYSLSTeenecceeacncacaacccsaassccccnscnnns 12
SYSPCHaeeesessmcnsascnmancnssancsessecnsas 12
SYSPRINT:eaeeacccesasccannanacennsnes 31,73
SYSRLReseaccsmonsoniosnasacesascassensessas 12
SYSRES.enocaccacesascscnsnmasnsasacsanssnsee 12
SYSRLEB::eecesoasnccsnncnsccsavenaseees 10,18
SYS001-003.c.cccuscccsoanccsssnccnaceaseanns 12
System cCnNtrO0l PrOgramS .eceecececscacscsces 9
System logical UnitSeececeecsccccnccccenees 12
System SEerVicCe€ prograMSececccecceceseess 10
SyStem UnitS.ieeccececssccccnancsccascccnee 713

Index 139

Tab centrol takle e eeeecaaneneeannanaas U8
Tab POSIitiONSeceeeceaccccaenncaceacocseass U8
Tage
drive control operatiON.ecececcaccecsses 34
file LrOCESSiNgeeecaaeceaneccacannseas 35
labelS.eesaasacenaacsaccsnsssscaannsnaes 31
TIMEeeaasascscscnacsmeansasssnsccaasescancas 132
TLEL statement.ccccecccccccccascassnsns 32,33
TPLAB statemrente.ceccececcacaccacacscsncass 32
TRACINGasaaacoacaa X
TraCKeeeanaassasanaasacescasacsacasaasans 28
INAEXeueeacancoscenssasccscacacssncscasncnsa 26
number Of..ccceccccccncsosnasassnssncaa 33
Trailer lakbeliceecesacacccensacanascnanas 31
Tree sStruCtUr€.iccecencecccscnccsseasassasaaas 81

UCL statement.cecccecccescescscssasscnncns 20
UNBLIGNE . e ceceancsaacscaancscasncaasnsaass 130
UNBUFFERED attribute...c..ceececscsancnes 30
Undefined recCCrdS.eceeeamaccsvaccaaccccase 30
Unlabeled fileS.icecasacecnscccasescnanccas 28

140

Unlabeled tape fileS...eecacecnnecssaaaas 35
UNSPEC. ceacecanceacnacsnssccssnnnnascscsansses 46
UPSI Dyt@i.ececeacscnsassacacasnncass 14,21
UPSI statement..ceececeeancaaccanneass 14,21
User Program Switch IndicatOre.eceecceee. 18

V OFtiONeeescecccasscssccacecnnsssacasa 130
Variable blocked reCOrdS.cecseccacsacscee 29
Variakle unklocked recordS..ececeswacccass 30
Version NUMDEer.cesceemcccccsscascncsacnces 33
VOL statement..cececccsccccncscscccsaonme 32
VOlUME.ceeereeaaaconncccsnancenssmecnncas 31
lakelieeiieeeanacenmacnannensnnasnsnss 31
serial NUMDEeY..eeiacacosccascennsaes 31,32
SEeQUENCE NUMEEYeieeeeceoessancacacanas 33
Table of Contents (VIOC)waceamneesee 31,36
VIOCeeoosmacssacsassnasssncnascnssnacse 31,36

XTENT statement.cceceencceccccascannsacss 32

READER’S COMMENT FORM

IBM System/360 GC24-9005-5
DOS/TOS PL/I
Programmer’s Guide

e How did you use this publication?

As a reference source ... O
As a classroom text ... O
As a self-study text ... 0

¢ Based on your own experience, rate this publication . . .

As a reference sOUrce: .. e e e
Very Good Fair Poor Very
Good Poor
Asatext: L L e e
Very Good Fair Poor Very
Good Poor

® What is your 0CCUPAHOND ettt

* We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC24-9005-5

YOUR COMMENTS, PLEASE . ..

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of 1BM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold

€ 00 0080000000000 00P I EToectessesecesssssoscscscnnsnssoscasnsnocenecssse eesesevecese

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WiLL BE PAID BY ...

IBM Corporation
112 East Post Road
White Plains, N. Y. 10601

Attention: Department 813 BP

00 0 00000000000 N0L000CI00000000nts00E000L0N00000000EsP0 0000000000000 0EeE0080c000000e0sec0eseesncsc00ssRLesOEEE NS .

Folid

BV

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
{USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International}

B 508 8 e aaeaecet 0t 00 1000000000080 E000000000000006000000600000000000000000000000000000000csINNsNNssesessececcstscocsnerssosetnoscssncsnniosn

Fold

“esecsnnse

N Y

3NIT SIHL ONOV 1LND

§-5006-¥229 °PING s Jawwniboud | /14 SOL/SOQ 09€/waishs wa|

GC24-9005-5

TBIM

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

$-S006-¥2D9 3PINO 5 sowwniboly | £)d SOL/S0QA 095/ aishS W)

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	replyA
	replyB
	xBack

