
File Number S360-29
Order No. GC24-900S-S DOS

Systems Reference Lihrary

IBM System/360
Disk and Tape Operating Systems
PL/I Programmer's Guide

This publication complements the Systems Reference
Library publication IBM Systemt360, PL/I S~set Ref­
erence Manual, Order No. GC28-8202 .• Its purpose is to aid
the programmer and to familiarize him with the tech­
niques of PLjI programming. This publication therefore
provides all info.rmation that is not part of the PL/I
Subset Reference Manual but required by the programmer
to write 'programs in the PL/I Subset Language and to
h~ve them compiled and executed in the DOS/TOS environ­
ment.
~., :~ ~:'J

,The main topics covered in this publication are:

' .. : llhe DOS/TOS environment •
.. "~L/I data file organiz'ation.
• Storage requirements of FL/I programs and program

. ,elements.
• 'The overlay facility.
• Listings produced for PL/I programs.
• Restrictions to the PL/I Subset langu~ge.

In some instances, the programmer may desire
detailed additional information on topics not directly
cOnnected with PL/I. A list of all pertinent Systems
Reference Library publications is provided in the
Introduction section of this publication.

TOS

Sixth Edition (September; 1970)

This is a major revision of GC24-9005-4 and Technical Newsletters
GN33-9067 and GN33-9078.

Changes to the text and small changes to the illustrations are
indicated by a vertical line to the left of the change; changed
or added illustrations are denoted by the symbol • to the left
of the caption.

This edition applies to change level 3-8 of the DOS PL/I compiler
(DOS release 24) and change level 2-3 of the TOS PL/I compiler (TOS
release 14) and to all subsequent levels until otherwise indicated
in new editions or Technical Newsletters.

Changes are continually made to the information herein; before using
this publication in connection with the operation of IBM systems,
consult the latest IBM System{360 SRL Newsletter, Form GN2o-0360,
for the editions that are applicable and current.

This publication was prepared for production using an IBM computer
to update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Laboratories, Programming Publications, 7030
Boeblingen/Germany, P.O. Box 210.

~Copyright International Business Machines Corporation 1967, 1968,
1969, 1970

INTRODUCTION • • 5

RUNNING PROGRAMS UNDER DOS/TOS CONTROL •
rhe Disk and Tape Operating Systems

7
9

10
11
11

I/O Device Assignment
rhe Job Control Program . • • •

Job :ontrol Statements
The PROCESS Statement • • • • • • ••
Compilation Under Dos/ros Control

15
16
16 rh€~ Linkage Editor Program •••.•

Linkage Editor Control Statements
Including Object Modules into the
Cbject Program ••
Sample com~ilation •

CATALOGING . . . 0 0

• • 17

18
'0 19

21
Cataloging into the Core-Image Library · 21
Cat,aloging into the Relocatable
Library Maintenance Runs . 0

S pE!cial Considerations on TOS

DATA FILES •.••• ' •
Fi le Organization Schemes

(nnsecutive Files • • • •
Regional Files • •

. 0

Indexed Files ••••• 0 • •

Disk Organization
Record Types • • . •
Input/Output Pro,cessing

llccess Methods
Euffering

Library 21
22

· .. 23

· · · .. 24
24
24
24

· · · · 26
28
29

'. 30
30

· · · .. 30

FlI£ LABELS 31
Hestrictions on Special PL/I Files • 0 31
Job :ontrol Statements 31
r.lulti-File Volumes and Backwards
riles • 0 • 0 • • • • • '. • • •• 34
I~nk-Editing And Labeled Files • .. 35
(~taloging of Label Information 36
Program - Label Communication •• 36
11ss ignrrent of System Files to Di sk • .. 36

LINKAGE CONVENTIONS
Correlation Between PL/I and
lIssembler Modules
Checkpoint and Restart •

GENERAL PR03RAMMING INFORMATION
stcltement Format • •
Program segmentation • • • • • •
Program Expansion
Conversions .•••
USE~ of UNSPEC • • • •
:omputations With Overlay
Blocki ng • • • • • 0 • • • •

• • • .• 39

41
• • . • 42

o 45
• • 45

45
45

• • • • 45
• 46

46
• 46

Simulation of P-Format Items
Sirrulation of Arrays of Structures •

46
• • 46

47 USE~ of the DEFINED Attribute • 0 • •

USE~ of Based Variables with Structures • 47
48 Redefinition of Attributes • • •

USE! of the 48-Character Set . '. • • 48
S i~:e Overf low • • • • • • • • 48

Use of the DISPLAY staterr,ent with the
REPLY Option • • • • • • •
Precision of Decimal Data

• 48
• 48

Changing the Tab Control Table ...
Improvement of Do-Loops

• 48
49

Rounding on cutput with E and F' Fcrrrat
Items ••.•••••••••••• •• 49
Handling Blank Numeric Fields •• • • • 49
Use of List-Directed and Edit-Directed
Data Transmission •• • • • .. •• • • • 49
Use of Pictures with Stream-oriented
Data Transmission ,. • • • • .. • • 49
PICTURE Specifications • .. • 0 • 50
ENDFAGE Wi th Multiple-Line PU'l • • . • • 50

PROGRAM-CHECKCUT FACILITIES 0 51
Exhibit Changed · 51
Tracing '. · · · · ,. · . · · 51
The DYNDUMP Routine '. · · · · · . · 53
Locating Execution-'Iime Errors · 53

DATA STCRAGE REQUIREMENTS · 55
Data Descriptors · 0 .. · ' . · · · · '. 55
Data Items . · · · · .. · · · .. · · 55

Coded Arithmetic Data · 55
Numeric (Picture-Specified) Data · 57
String Data · · · .. · · ,. · · 57
Label Data · .. · · . · · .. 58
Pointer varial::les .. · .. · .. • · 58

Data Storage Depending en storage Class 58
Storage of EKternal Data · · .. · · '0 .. · 58
Use of Constants in the Scurce 'Iext 59

DATA STORAGE MAPPING .. • ..
Storage Mapping Element Data
Storage Mapping Arrays
Storage Mapping structures

60
60
60
61

SUBROUTINE STCRAGE REQUIREMENTS 65
Conversion Sucroutines • • • • • • .. • 65
Built-In Functions. ,
pseudo-Varia,bles" and Other Implied
Subroutine Calls . • • • • • . • • • • 65
Subroutines Called by IIO statements • 66

I/O STORAGE REQUIREMENTS •
File Declarations

Buffers .•.•.•••
DTF Table
Appendage • • • •
lOCS Logic Module
Examples .

System Units
SYSPRINT .•••••••
SYSIN

PROGRAM OVERHEAD •
The Static Storage Area
The Dynamic Storage Area
The Block prologue • . •
The PL/I Control Routine .

• • • 67
• 67
• 67

67
• 69

· • • 71
• • 0 72
• • • 73

73
• • • 73

· • • 74
• 74

• • • 75
76

• 77

SOURCE TEXT ~ND OBJECT PROGRAM •
Problem ~nalysis Example •

File Description •
Data ~ssumptions • • • • •
Other Assumptions

Storage Requirements

OVERLAY

PROGRAM LISTINGS • •
Source Program Listing • •
syibol Table Listing • •
Cross-Reference Listing • • • •
Offset Table Listing • •
External Symbol Table Listing
Block Table Listing
Object Code Listing ••••••
Statement Offset Listing • • . •
Compile-Time Diagnostic Messages
Object-Time Diagnostic Messages

List of Message Codes •• • •

• • 78
• 78

79
• • 79

• • • • 79
• • 79

• • 80

• • 85
• • • • 85

• • 85
86

• • 86
86

• • 87
87

• • 87
87

• • 88
88

APPENDIX A. CONVERSION SUBROUTINES. 92

APPENDIX B. POSSIBLE COMBINATIONS OF
DATA CONVERSIONS • • • • • • • • • • • • 94

APPENDIX C. BUILT-IN FUNCTIONS, PSEUDO
VARIABLES, AND CTHE~ IMPLIED
SUBROUTINE CALLS • • • • '. • • • • • • ,. 95

APPENDIX D. I/O SUBROU~INES • • • 99

APPENDIX E. FILE LABBL FORMA'IS .101

APPENDIX F. COMP1LE-~IME DIAGNOSTIC
MESSAGES • • • • • • • • • • • • • ,.106

APPENDIX G. I/O STATEMENT FORMAT rlND
ON-CONDITION CHECKLIST. • • • .127

APPENDIX E. FILE DECLARA~ION
ATTRIBUTES AND C~TICNS • •• • • • .128

APPENDIX I. DEFAULT AT'r:dIEUTES OF
CODED ARITHMETIC VARIABL~S .• • •• 129

APPENDIX J. RESTRICTIONS TO THE PL/I
SUBSET LANGUAGE • • • • • • • • .130

INDEX .136

This publicatien complements the Systems
Reference Library publica tion !~~L§:l~!:~!E~
l~QL~~~~f_§~f~~~_E~!~E~~£~_~~~~~!, Form
GC28-8202 (hereafter referred to as the
Subset Reference Manual). It provides all
information that is not part of the lan­
guage specifications but required ty the
programmer to write programs in the PL/I
Subset language and to have them compiled
and executed in the DCS/TCS environroent.

lnis publication is divided into four
logical parts:

Part . I - provides all information regard­
ing the DOS/TCS environrrent, PLI
I data file organization includ­
ing the ENVIRCNMENT attribute,
linkage tetween PL/I and
~ssembler modules, and PL/I pro­
gramming in the DOS/TOS
environment.

Part II - prcvides all information regard­
ing storage requirements of pro­
grams written in the PL/I Subset
language~ and a description of
the overlay facility.

Part III - describes all listings and diag­
ncstic messages produced for PL/
I programs running under DOS/lOS
ccntrol.

Part IV - Appendix. Some of the individu­
al appendixes provide informa­
ticn taken out of the corres­
ponding sections to improve the
readatility~ e.g., a list of all
available I/C subroutines. lhe
rerraining appendixes furnish
additional reference information
the PL/I programmer might find
useful.

~he last section of the Appendix lists
the irrplementation-dependent restrictions
to the PL/I Subset language as it is
described in the sutset Reference Manual.
The individual restrictions are listed in
alphabetical crder.

10 free the programmer of the necessity
of referring to other publications for
additicnal information, this putlication is
made as self-supporting as possible by dup­
licating some of the information given
elsewhere. However~ should this putlica­
tion not give all the details the programm­
er needs for solving his proclem, these
details can be found in the pertinent SRL
publication. A list of all SRL putlica­
tions the programmer- may have to refer to
is given belcw:

IBM System/360 Disk Operating System"
System Programmer's Guide,
Form GC24- 5073

IBM System/360 Cperating Systerr, PL/I
Library Computational sucroutines"
Form GC28-6590

IBM System/360 Frinciples cf Operaticn"
Fcrrr GA22-6821

IEM System/360 Disk and lape Operating Sys­
tems, Concepts and Facilities"
Fcrm GC24-5030

IEM System/360 Disk and Tape Operating Sys­
tems, Utility Frogram Specificaticns"
Form GC24-3465

IBM System/360 Disk Cperating System, Sys­
tem Control and Systerr, service Prcgrarrs"
Forrr. GC 2 4- 50-36

IEM System/360 lape operating System, Sys­
tem Control and Systerr Service Prcgrarrs"
Form GC24-3431

IBM System/360 Disk Operating System,
Supervisor and Input/Cutput Macros,
Ferro GC24-5037

IEM system/360 Tape Cperating System,
Supervisor and Input/Output Macros,
Ferro GC24-3432

IEM System/360 Disk Operating System, Data
Management Concepts, Forrr GC24-3427

IBM System/360 lape Operating Systerr" Data
Management Concepts, Form G'C24- 3430

IEM System/360 Disk Cperating System" PL/I
DASD Macros, Form GC24-SQS9

1. 16,384 (16K) tytes of core storage on
one of the corr~patible rr,odels cf Systerr!
360 (not ~odel 20, 44). The compiler
itself requires 10K. More than 10K are
required if SYSIFT, SYSLST" and/or SYS­
PCB are DASD files. lhis is a system
generation option.

2. a. Either one IBM 2311 Disk Stcrage
Drive or one IBM 2314 Direct Access
Storage Facility er

t. four IBM Magnetic Tape Drives of
the series 2400. A 7-track tape
may te used for SYSRES. The use of
a 9-track tape fer SYSRES will
improve the performance. The data
conversion feature is required fer

Introduction S

7-track drives. One additional
tape drive is required for compile­
and-go operation.

3. One card read/'punch or one card reader
and cne card punch.

4 • One printer.

5. One IBM 1052 printer-1<ey1:oard (required
for operator-to-,system communication).

6. The optional supervisor feature Program
Interrupt (PC).

Note: Either one or 1:oth of the units
listed under items 3 and 4 may 1:e replaced
by one additional magnetic tape drive per
replaced unit.

!he speed of compilation is greatly
reduced if (1) the source program contains
more than 80 programmer-defined identi­
fiers, and (2) a 16K system is used to com­
pile a pro'gram greater than 161<.

For determination of the required work­
file space refer to ~2f~!!le_B~~i~~m~n1§
in Appendix G of l~~--2y§!:..§m/ l§JLDi§!s
QE~f2!:.~!!g_§yst~!!L_§Y~!:.~!L~.§!!§~at!Qn_2n.9
M2!!!f~!!~!!£~, Form GC24-5033.

The execution-tirre requirements depend on
the requirements of the systerr and the
ob ject prograrr.

Additional machine features required for
arithmetic. compare, and ccnversicn are
listed in Figure 1.

Note: At EXEC time all IJ1<Snn transients must be available in the ccre-irrage
library.

~~!!~~m_££!!!!S~f~!:.!Qn_2~EEQf~g

The following units and features are
supported:

1. All of the units and features specified
for compilation. (Disk files are nct
supported for tape-resident systems.)

2. All of the following devices:
a. IEM 2540*
b. IB~ 1403
c,. IEM 1404 (for continuous forms

only)
d. IE~ 1442N1
e. IBM 1442N2
f. IE~ 1443
g. IBM 2501
h.. IE~ 2520E1
i. I.EM 2520B2
j. IEM 2520B3
k. IEM 1445
1. IEM 2321

3. Additional main storage up to 16 rrill­
ion tytes.

*The Punch/Read Feed (PRF) special f~ature
is not implement ed ty PL/I.

r--------------------T--------T--------T--------r--------T--------T--------T--------~
ICcrrparison Of/With ICoded, I INumeric I I I I
I Ar ithrretic with/And I Fixed 'F ixed 'Coded I Fixed, 'Numeric I I I
IConvert To ,Decimal, Binary I F'loat IsterlinglFloat I Bit I Char. I
.--------------------+--------+--------+--------+--------+--------+--------+--------~
I Frcrr I I I 1 1 I I I
t--------------------~ , I I I , I ,
Icoded fixed decimal 1 D ,D,F2, D,F I D I D,F 1 D I NP I
.--------------------+--------+--------+--------+--------+--------+--------+--------~
I Fixed binary I D, F2 'X 1 F 1 D,F 2 I D,F I X I NP I
r--------------------+--------+--------+--------+--------+--------+--------f--------f
ICoded float I D,F 'F I F 1 D,F I D,F 1 F 1 NP I
.--------------------+--------+--------+--------+--------+--------+--------+--------~
,Nurreric fixed and ,D ,D,F2 I D~F ,D ,D,F 1 C I X1 1
I sterling I I , , , I I I
.--------------------+--------+--------+--------+--------+--------+--------+--------~
INurreric float I D,F I D,F I D"F , D,F 1 D,F I CwF 'X1 1
r--------------------+--------+--------+--------+--------+--------f--------f--------f
I B it I 0 I X I F I DID, FIX I X I
.--------------------+--------+--------+--------+--------+--------+--------+--------~
I Character I NP I NP I NP I Np1 I Np1 I X 'X I
t-----------~--------~--------~--------~--------~-----___ ~ ________ ~ ________ ~ ________ J

'D - Decimal feature required. 1
'F' - Flcating-point feature required. Conversion only. I
INP - Not permitted. 1
IX - No special features required. I
t---f
11 - Conversion only. 1
12 - Floating-point feature only if scale factor not equal to zero. I L __ ~

Figure 1. Additional Machine Feature for Arithmetic, Comparison, or Conversion

6

This section describes the compilation and
executicn of PL/I programs under control of
the Disk and Tape operating Systems. 'Ihe
pertinent terminology, control statements,
and their forrrats are discussed when
required.

It is convenient to refer to each stage of
pregrarr develeprrent by a particular name"
because just the term Ero~~~ would be too
general and, therefore, confusing.

In program development, the prograrrmer
writes sets of source statements that may
forrr a ccmplete program or part thereof. A
card deck containing one external procedure
written in the PL/I sutset language is
referred to as a source module. A source
module is the unit-that-Is-processed during
a ccrrpilaticl!. The compilation results in
one or two QQj~1_~QQ.~!~,§. 'Ihe first
object module is produced by the PL/I com­
piler for all ef the file declarations~ if
any" contained in the source module. 'Ihe
seccnd cbject mcdule is produced for the
source mcdule. Object modules can te
loaded by the DOS/TCS Linkage Editor pro­
grarr and then executed. An otject module
consists of standard ESD (External Syrrbcl
Dicticnary), TXT (Text), RLD (Relocation
Dictionary) cards, and one END card.

'Ic start the execution of a FL/I pro­
gram, control must be transferred frorr the
Disk or Tape Operating System to the object
prograrr.. The external procedure to which
control is transferred from the Job Centrol
prcgraro rrust have the option MAIN.

Serre parts of the otject program may not
be required in storage throughout its
execution. External procedures that are
never active sirrultaneously may use the
same storage area to save storage. Each

RUNNING FRCGRA~S UNCER DOS/TOS CONTROL

part of the program that is in storage only
for a fraction of the executicn time is
referred to as an Q~~rl~y. Using the MAIN
procedure as an overlay is not permitted.
Each overlay as well as that part of the
program that resides in storage throughout
the execution of the object program is
referred to as a'E~~~~. A phase consists
of one or more external procedures. For
detailed information refer to the secticns
QY~.f.!~Y and !h~_Lin~~.9~_~.9.!!:Qr_Erog~.

Some standard procedures such as PL/I
built-in functions or conversion subrcu­
tines have been incorporated into. the relo­
eatable library as .!.!~!~y subrcutines.
Only the code required for calling these
subroutines is compiled into the cbject
module. The litrary subroutines themselves
are incorporated into the apprcpriate
phases by the autol!nk feature ef the DOSI
TCS Linkage Edttor program.

Extra code is required to allcw scrre
housekeeping during the execution of a PL/I
program. This code, which is referred tc
as gyg!b§~2, may either be generated in­
line in an object module cr inccrporated
due to an explicit library subroutine call.

The relationship between the user's PL/I
rrainline program" the FL/I control program,
and the DOS/'IOS system is shown in Figure
lA.

Note: The FIll control prograrr. is a set cf
library routines in the re16catable library
which are included into object prcgrarrs at
J,inkage-edit time and perfor[J, certain con­
trol functions at executicn time.

The layout of main stcrage during executicn
of a PI';I program is shown in Figure lE.

Running Frograms Under caS/TOS Contrel 7

SUPERVISOR

Intercepts Program Checks, Passes
Control to Pl/I Interrupt Handler

Pl/I Pl/I
MAINLINE CONTROL PROGRAM

--
Initialization (prologue) • Initialization Routine

.. • GO TO Routine
GO TO Extemal Name -- (Retum is to Extemal Name)

• OPEN/CLOSE Routines
OPEN/CLOSE (Call $ Transients)

• SIGNAL Routine Handles -r+ READ, WRITE, etc. Exceptional Conditions and
Issues Messages

END. (MAIN), STOP - • STOP Routine Calls $
Transient for Automatic
Closing of Files and EOJ

- • Interrupt Handler Usually ~
Calls $ Transient
(Return is Conditional) -------------------

Miscellaneous Subroutines

..... Such as: ~- ------ ----------
~ r:- I/O Transmitters

~ ~ $ Transient Area Conversion Routines - -
Sui It-in Functions (May Call $$S Transients)

Figure lA. PL/I Program Structure

8

Lower Storage Hardware Area

~ Supervisor Transient Areas ~ ~

DTF-Appendages
DTFs and Buffers

;; Pl/I User Program Procedures ~

LIOCS Modules

DTF for SYSPRINT

Logic Module for SYSPRINT

Pl/I Control Program

~ Pl/I library Subroutines ..

I Overlay Program Area (Optional)

DSAs
(Allocated only During Execution)

Upper Storage

Figure lE. Object-Time Storage Layout

The Disk and Ta~e Operating Systems (OOS/
'lOS) are a group of processing prograrrs
with the contrel and serviCE programs
required to maintain continuous operaticn.
They are self-ccntained systems and require
a minimum of operator intervention.

!he processing programs consist of lan­
guage translatcrs and service programs.
!he group of processing programs can be
expanded by adding user-written protlem
programs.

!he system control program -- the frame
work cf DOS/TOS -- consists of three
compon en t s :

• the Superviscr program,

• the Jcb centrel program, and

• the Initial Program loader (IPL).

These components are used to load the
system and to prepare and ccntrel the
execution of all processing and problem
programs ~ithin the systerr.

The system service programs consist of
the linkage Editor and the Librarian.
!hese programs are used to bring compiled
source programs into an executable.fcr~at
and to maintain the litraries.

Figure 2 sho~s a scherratic representa­
tion of the Oisk and Tape Cperating
Systems.

Te make full use of DCS/TOS~ the user
should be familiar with (1) the functions
of the individual systerr cerrpcnents and (2)
the interaction of these components. Users
of the overlay feature shculd be thereughly
fa~iliar with the DOS/TOS Linkage Editor
program. Users of the label-precessing
facilities should be familiar with DOS/TOS
data management concepts. !his sectien
briefly discusses those parts of the OOS/
TCS that are of interest te users ef the
PL/ I Subs et 1 anguage .•

System Control
Programs

Initial
Program
Loader

Supervisor

Job
Control
Program

Disk/Tape Operating Systems

System Service
Programs

linkage
Editor

Program

Librarian

I

Processing
Programs

Language
Translators r "A;;;;ble-; l

I I
I Cobol I
I I
I Fortran I
I PL/I I
I I
L!~G ____ J

Service Programs

i-Au~;;st-l
I Sort/Merge I
I Utilities I L.. ______ ...J

User-Written
Programs

Figure 2. Schematic Representaticn cf the
Disk and Tape Cperating Systems

!he Supervisor handles all hardware inter­
rupts" causes I/O operatiens te be fer­
fermed, and contains a fetch rcutine fer
fetching program phases from the core-image

Running Progra~s Under OOS/!OS Control 9

library. The Supervisor resides in storage
throughout the execution of all IEM­
supplied and user-written programs.

~he Job Ccntrol Frogram provides job-to­
job transition within DOS/TOS. It performs
its functions between job steps and does
not reside in storage while a problem pro­
gram is being executed.

The IPL is of no interest to the PL/I
programrrer.

§y§!~g~§~!Yi~g_R!gg!~m~

~he Linkage Editor links all relocatable
object mcdules that are produced by the
language translators, i.e., it assigns
absolute addresses and resolves cross­
references between different object modules
(external symbols). The output of the Lin­
kage Editor can be either immediately
executed or incorporated into the core­
irrage library.

~he Librarian is a group of prograrrs
used for maintaining the libraries and pro­
viding printed and/or punched output frcm
these libraries. The 3 libraries are:

• the ccre-irrage library,

• the relocatable library, anp

• the scurce-statement library.

The core-image library contains object­
prcgram phases already processed by the
Linkage Editor. These programs are ready
for execution under control of the Supervi­
sor.. The core-in·age library contains, for
instance, the system control and service
prcgrarr.s therrselves and the PL/I compiler.

The relccatable library contains object
modules produced by the language transla­
tcrs. Object rrcdules may te prece~ed by
Linkage Editor control staterrents. The
individual rrcdules ccntainec in tbe relo­
catable library are used as input tc the
Linkage Editcr. Mcst of the built-in func­
tions of PIlI as well as service rcutines
required fcr the executicn of PL/I object
programe are contained in the relccatable
library .•

The source staterrent library is not used
by the PIjI compiler or dur'ing object Frc-24

grarr executicr:.

10

DOS and TCS permit the switching cf Frcces­
sing between one or two foreground programs
and one background prograrr, in which case
all Frograms reside in storage simul­
taneously. This rr,ethod increases the tctal
throughput since some program may use the
CPU while another Frograrr is waiting fcr
input/output. If more than one program
requires the CPU, the fcregrcund-l Frcgrarr
has the highest and the background program
the lowest priority. The prograrr(s) cf
lcwer priority are dormant until the
program(s) of higher pricrity start(s)
waiting fcr a completion of input/output.

The storage areas - referred te as Ear­
£i£!9n~ - assigned to each of the three
programs are defined at systerr generation
time and may be changed by the cperater
between job steps.

The DOS/~OS PL/I compiler, the Linkage
Editor, and the Librarian exclusively wcrk
in the background partition. DOS programs
compiled by the DOS PL/I ccmpiler can be
executed in a foreground partition;-pro:
vided the superv~sor was generated with the
option MPS=BJF and a minimum of 10K of
storage ~signed to the part1t1cn. PL/I
object programs may only be executed in
batched-job mode. Since the Linkage Editor
is not available in a fcregrcund jcb~ prc­
grarrs to be run in a foreground partition
must have been previously catalcged into
the core-image library.

TOS programs corrpiled by the PL/I ccrr­
piler £~~2! run as foreground prcgrarrs.

The Job Control staterrents fer fcre­
ground jebs are the same as those for back­
ground jobs, exceFt that the cFticns LINK
and CATAL of the OPTION statement as well
as the logical units SYSLNK and SYSRLB rrust
net be used with foreground jobs.

I/O rEV ICE ASSIGNMENT

The I/O devices used during compilation and
e~ec~tion are referred tc by lcgical device
add less es instead 0 f ty their physical
device addresses. ~hus, the user nay dis­
regard the physical device assignments of
the systerr ccnfig~ratier. he uses. Moreov­
er, if a nureter of different system confi­
g~rations is used, recompilaticn of a
scurce Frcgrarr is required only if the
device t}Fes (1442, 2540~ etc.) change.
The lcgical device addresses the FL/I pro­
grammer sho~ld knc~ are listed in Eigure 3.

Logical
Device Device Referred to
Address

SYSRDR Input device from which Job Control statements are read. Not used by plil compiler or object programs.

SYSIPT Input device from which the input for the Plil compiler is read. Can also be referred to by SYSIN.

SYSIN Input device combining the functions of SYSRDR and SYSIPT.

SYSLST Output device used by the Plil compiler. The device used is the same as the plil standard output device for listing
(SYSPRINT). (For Plil object-time messages refer to PROCEDURE Statement in Appendix H.)

SYSPCH Card punching device used by the Plil compiler when a punched card object deck is specified.

SYSOUT Output device combining the functions of SYSLST and SYSPCH. Cannot be assigned by an ASSGN statement.

SYSLNK
Input/output device used by the Linkage Editor and the Plil compiler when compiling and subsequent link-editing
is specified.

Console typewriter used for listing messages issued to the operator by the Plil compiler and the object program.
SYSLOG SYSLOG is also used when a DISPLAY statement appears in the Plil program (For Plil object-time messages refer

to PROCEDURE Statement in Appendix J.)

Logical device addresses available to the programmer (programmer logical units as opposed to the remaining units,
which are also referred to as system logical units).SYSOO1, SYSOO2, and SYSOO3 are used as work file addresses by

SYSOOO the language processors and the Linkage Editor. They may be used as work file or output file addresses, but the user
to must protect his input files from being destroyed by the compiler or Linkage Editor in the case of a compile-and-

SYS222 execute or link-and-execute job. For this purpose, he should use the DISPLAY statement with the REPLY option and
i'nstruct the operator to mount the input file immediately before opening the file at execution time if a sufficient
number of I/O units is not available.

Figure 3. Logical Device Addresses Used by the PL/I Programmer

Logical device addresses can be assigned
to physical devices

1. when building the system,

2. by the operator, or

3. by rreans of the ASSGN statement (see
the section ~h~_As§§~_~t~m£n~).

If multi-~rogramming is included in the
supervisor, independent sets of logical
units are provided for the tackground area
and both foreground areas.

lhe Job Control program permits processing
of batched jots in background mode. A iQ£
is the execution of a problem and consists
of one or more j2E_2~~E~. A job step is a
single compilation of an external proce­
dure, a Linkage Editor run, a Litrarian
run, or the execution of an object program.

JOB 20NTROL STATEMENTS

rhe execution of the Jot control program is
initiated by Job Control statements read
from SYSRDR. The general format of Job
Control statements is as follows:

1. Name
Job-control statements are identified
by two slashes (//) in colurrns 1 and 2.
The second slash must be followed by
one or more blanks. Exceptions are:

a. The end-of-job statement contains
/& in columns 1 and 2.

b. The end-of-data-file statement con­
tains /* in columns 1 and 2.

c. The comments statement contains *
in column 1 and a blank in column
2.

2 • Qe~!:~!!2n
The entry in the operation field cf a
Job Control statement describes the
type of operation to be performed. It
must be followed by one or more blanks.

3. QE~!:~nQ
The operand may be blank or consist of
one or more entries separated by com­
mas. Interspersed blanks are net ~er­
mitted. The last entry must be fol­
lowed by one or more blanks unless its
last character is in column 71.

4 • ~Q!!!!!!~!1E'§
Comments are permitted anywhere after
the trailing blank of the operand
field.

Running Programs Under DeS/TOS centrel 11

rhe ASSGN statement is used to assign a
logical device address to a physical
device. The format of the ASSGN statement
is as follows:

// ASSGN SYSxxx,device-address [
,X' ss.]

,AL'I

§~§~~~ is one of the logical devices listed
in Figure 3 (with the exception of SYSOUT,
which cannot be assigned by means of ASSGN
staterrents). The system permits programmer
logical units in the range from SYSOOO to
SYS222. The number of units actually per­
mitted per partition in a specific instal­
lation is defined at system generation time
and normally less than 223. SYSOOO to SYS-
004 are the minimum provided by the system.

The following restrictions should be
observed when re-assigning some of the log­
ical units:

1.

I 2.

3.

SYSRDR, SYSIPT, SYSIN, SYSLST, and SYS­
PCH cannot be assigned to 2311 or 2314
DASD extents by ASSGN statements. In
case they are assigned to a 2311 or
2314 DASD extent either at system
generation time or by the operator, a
special version of the PL/I compiler
that needs a minimum of 12K of storage
for execution must have been cataloged
at system generation time.

SYSLNK must be assigned to the same
device type as SYSRES for DOS and to a
magnetic tape drive for TOS. Any re­
assignments must be made before issuing
an OPTION statement that contains the
LINK or CATAL option.

SYSLOG should be assigned to a 1052
console typewriter. Assignment to a
printer is possible but degrades the
system functions and prevents the use
of the DISPLAY statement with the REPLY
option.

4. SYSOOl to SYS003 must be assigned to
the same device type (either magnetic
tape drives or 2311 or 2314 DASD
extents) for the entire duration of a
compilation.

X'cuu' where c is the channel number and uu
the unit number in hexadecimal
notation.

UA

12

Unassign. The job is canceled if a
file attached to this logical unit
is referred to by one of the I/O
statements OPEN, CLOSE, GET, PU'I,
READ, WRITE, or REWRITE.

x'ss' is the device specification. It is
used-for specifying mode settings for 7-
track and dual-density 9-track tapes. If
X'ss' is not specified, the system assumes
X'90' for 7-track tapes and X'CO' for 9-
track tapes. The possible specifications
for X'ss' are listed in Figure 4.

r----T-------,--------,---------T---------,
I I Bytes I I Trans- I I
I I per I I late I Convert I
I ss I inch I Pari ty I Feature I Feature I
r----+-------t--------r---------t---------~

10 200 I odd I off I on
20 200 I even I off I off
28 200 I even I on I off
30 200 I odd I off I off
38 200 I odd I on I off
50 556 I odd J off I on
60 556 I even I off I off
68 556 I even I on I off
70 556 I odd I off I eff
78 556 I odd I on I off
90 800 I odd I off I en
AO 800 I even I off I off
A8 800 I even I on I eff
BO 800 I odd I off I off
B8 800 I odd I on I off
CO 800 I singl e- density 9-track
CO 1600 I dual-density 9-track
C 8 800 I dual- density 9 -track

-------~----------------------------
Figure 4. possible Specificatiens for

X'ss' in the ASSGN Statement

ALT indicates an alternate magnetic tape
unit that is used if the capacity ~f the
original unit is reached. The characteris­
tics of the original and the alternate unit
must be the same. Multiple alternates may
be assigned to one logical unit.

~2~g: All device assignments made with
ASSGN statements are reset Eetwg~~2E~ to
the configuration specified at system
generation time plus any modifications that
may have been made by the operator. (See
the section ~n~dg~_§£~£~ffi~n£.)

~hg_~~~£_§£~£~m~~~

The execution of a job step is initiated by
the statement:

/ / EXEC name

N~m~ is the name of the first phase of the
program to be fetched frerr the core-irrage
library and to be executed. 'I'herefore,
execution of a Pl/I compilatien weuld be
initiated by the statement

// EXEC PL/I

The name must be omitted if a program
linked in the previous job step ~f the same
job is to be executed frorr SYSLNK.

Each job begins with tne statement:

/1 JOB job-name

Job-name is a user-defined name of 1 to 8
characters.

Note: The JOB statement cancels all pre­
viously issued OPTION and ASSGN statements.

'The LISTIO statement is used to obtain a
listing of the I/O assignments. The format
of this statement is

II LISTIO

with one of the operands listed in Figure
5. The listing is produced on SYSLSr. rhe
listing varies according to the operand.
For magnetic tape units, physical units are
listed with current device specification.

r-------T---------------------------------,
10perandiCauses the Listing of I
~-------+---------------------------------~
ISYS Ithe ~hysical units assigned to I
I lall system logical units. I
~-------+---------------------------------~
IPROG Ithe ~hysical units assigned to I
I lall background programmer logicall
I lunits. I
r-------+---------------------------------~
I~LL Ithe physical units assigned to I
I lall logical units. I
r-------+---------------------------------~
ISYSxxx I the physical units assigned to I
I Ithe s~ecified logical unit. I
r-------+---------------------------------~
I UNITS ,the logical units assigned to alII
I Iphysical units. I
r-------+---------------------------------~
I DOWN lall physical units specified as I
I I inoperative. I
r-------+---------------------------------~
IU~ lall physical units not currently I
I I assigned to a logical unit. I
r-------+---------------------------------~
IX'cuu' Ithe logical units assigned to thel
I Is pecified physical unit. I L _______ ~ _________________________________ J

Figure 5. Operands of LISTIC statement and
Corresponding Actions

~Qg_~~f_2~~tgrr~~~

The MT2 statement is used to control opera­
tions on logical units assigned to magnetic
tapes. The format of the MTC statement is

// MT2 op-code,SYSxxx[,nn]

For further details refer to the section
~~lt!=f!!g_Y9!~~g~_~~9_~~f~~~Ids_~i!g§·

The OPTION statement is used to specify
options for the compilaticn of PL/I source
programs. Its format is

// OPTION optionl[,optien21 ••••

If this statement is erritted, a set of
standard options defined at system genera­
tion time will apply. If more than one
OPTION statement is issued in one jcb. all
further OPTION statements change only those
options that are respecified. All ether
options will remain unchanged.

All options specified in the OPTION sta­
tement are canceled when a new JOB state­
ment is read. (See the section The JOE
§~~£~!E~!!£.) ------

The options LINK and CATAL are canceled

1. if severe or disastreus errors have
been detected during a PL/I
compila tion.

2. after a new EXEC statement has been
eKecuted.

The options that may be used by the PL/I
programmer are listed in Figure 6.

The PAUSE statement can be used te ste~
batched-mode processing in order to save
output files produced by a previously
executed program. Its format is

II PAUSE comments

The comments are printed on SYSLOG (pro­
vided SYSlOG has been assigned) to indicate
the action to be taken by the operator.

The RESET statement resets 1/0 assignments
to the standard assignments. The standard
assignments are those specified at system
generation time plus any modifications made
by the operator by means of an ASSGN com­
mand (as opposed to using an ASSGN control
statement) without the TEMP option. The
format of the RESET statement is:

II RESET

with one of the operands SYS, PROG, ALL,
SYSXXK. 'The meaning of the individual
operands is described belew.

§X§ resets all system logical units te
their standard assignments.

PROG resets all programmer logical units to
their standard assignments.

Running Programs Under DOS/T08 Centrol 13

Option Function

LOG Causes all Job Control statements to be listed on SYSLST.

NOLOG Suppresses the LOG option.

DUMP Causes the contents of core storage and registers to be listed on SYSLST in case of an abnormal termination of the job.

NODUMP Suppresses the DUMP option.

LINK
Causes the compiled Pl/I program to be written on SYSLNK for later processing by the Linkage Editor. This option, if
used, must precede all other Linkage Editor control statements, if any.

NOLINK
Suppresses the LIN K option. The LINK option is also suppressed if a serious or disastrous error is detected during
compilation of a Pl/I source program or if an EXEC statement with a blank operand field is read.

CATAL
Causes the LINK option to be set. In addition, it causes the cataloging of a phase or program into the core-image
library after either a 1& or a II EXEC MAINT statement has been read.

DECK Causes the PL/I compiler to punch an object deck if no disastrous compile-time error has been detected.

NODECK Suppresses the DECK option.

LIST Causes the PL/I compiler to list the source program on SYSLST.

NOLIST Suppresses the LIST option.

LlSTX Causes the PL/I compiler to list the object program on SYSLST.

NOLlSTX Suppresses the LlSTX option.

SYM Causes the PL/I to list the symbol table, the block table, the offset table, and the external symbol table on SYSLST.

NOSYM Suppresses the SYM option.

ERRS Causes the Pl/I compiler to list all detected errors on SYSLST.

NOERRS Suppresses the ERRS option.

XREF Causes the PL/I compiler to write a cross-reference listing on SYSLST.

NOXREF Suppresses the XREF option.

48C
Informs the PL/I compi ler that source programs are written in the 48-character set in EBCDIC notation. (No provision
has been made for BCDIC and ASCII character sets.)

60C Informs the PL/I compiler that source programs are written in 60-character set in EBCDIC notation.

MINSYS Causes the Linkage Editor to produce minimum-size modules for later runs on systems with a background program
(TOS only) area smaller than 24K, when link-editing on systems with a larger background program area.

Figure 6. operands Used in the OPTION statement

ALL resets all programmer and system logic­
al-units to their standard assignments.

SYSxxx resets the specified logical unit to
its-standard assignment.

rhis statement (User Program Switch Indica­
tors) allows the user to set program
switches that can be tested much the same
as sense switches or lights used on other
machines. The UPSI statement has the fol­
lowing format:

// UPSI nnnnnnnn

14

The operand consists cf one to eight
characters of 0, 1, or X. Positicns con­
taining 0 are set to o. positions contain­
ing 1 are set to 1. positions containing X
remain unchanged. unspecified rightmost
positions are assumed to be x.

Job Control clears the UPSI byte to
zeros before reading control statements for
each job. When Job Control reads the UPSI
statement" it sets or ignores the bits of
the UPSI byte in the corrrrunication region.
Left to right in the UPSI statement, the
digits correspond to bits 0 through 7 in
the UPSI tyte. Any combination of the
eight bits may be tested by problem pro­
grams at execution time.

'I'he DOS PL/I compiler chec ks bit 0 of
the UPSI byte; the other tits are ingored.

If bit 0 is on (1) during compilation,
Librarian and Linkage Editor statements are
produced to permit to compile and catalog
in one job step into the relocatable
library. Bit 0 should te off (0) if cata­
loging into the. relocatable library is not
desired. For further details on cataloging
refer to the section ~~~~lQg~~~_~~E2_Eh~
~~122~E~~!~~1!££~£~·

The end-of-data-file statement (/* in
columns 1 and 2) serves as a delimiter for
the input read from SYSIPT. Therefore"
PL/I programs must be terminated by an end­
of-data-file statement. This statement is
also recognized on the programmer logical
units that are assigned to a card reader.
rhis causes the ENDF·ILE condition to be
raised for a PL/linput file.

The end-of-job statement (/& in columns 1
and 2) indicates that a job has been com­
pleted. If this statement is omitted, the
Job Control program may skip the next job
stacked on SYSRDR and/or SYSIPT. If SYSRDR
and SYS·IPT are different units, the end-of­
job statement must appear on both.

A special comments statement (* in column 1
and blank in column 2., followed by the
desired comments) is available for longer
messages. The comments are printed on SYS­
LOG, but no halt is caused by this
statement.

[1!~_~~~~!~QQ~QU~~Q!_§S~S~~~~E~

For all Job Control statements referring to
disk and tape file labels see the section
[!!~-!!~Q~!§.

THE PROCESS ST1\TEMENT

'I'he PROCESS statement allows the programmer
to specify compile-time options. More than
one card may be used per external
procedure.

General format:

* PROCESS option [,option] •••

or

+ PROCESS option [,option] •••

General rules:

1. The cards have to precede the PL/I
source program. 'Ihey must" however,
follow the / / EXEC PL/I statement .•

2. The card has to start either with an
asterisk or with a plus sign in column
one, followed by one or more blanks.
If the plus sign is used it is treated
as an asterisk. 'Ihe option list may
not extend beyond column 71.

3. The options in the PRGCESS statement
override job-control options or any
other options encountered in previous
PROCESS statements.

The options that can appear in the
operand field of a PROCESS card are:

1. Options supported by Job Control:

DECK
NGDECK
LIS'I
NGIIST
LIS'IX
NOLISTX
SYM

NGSYM
ERRS
NOERRS
XREF
NOXREF
48C
60C

A description of the above options is
given in Figure 6 in the section Th~
JO£_~2g~f2!_EfQ9f~~·

2. Options not supported by Job Control:

a. OPT, NOOP'I'

OPT

NOOPT

causes the optimization of
compiled code.

suppresses the OPT option.

The default is OPT.

~Q~~: Optimi zation implies the
deletion of as much code as.the
compiler can diagnose as redundant.

~~f~!~9: If the option OPT is
used, sequential assignment state­
ments for the same variable (e.g."
A=l; B=Xi A=3;) will be ~ptimized
in such a way that - as the con­
tents of 'A' are not referred to
between the two assignments - the
first assignment to 'A' will be
optimized.

If the contents of 'A' are required
between the two assignments (e.g.,

Running Programs Under DOS/'IOS Cont rol 15

b.

c.

to be used as control values in the
event of an interrupt such as SIZE,
CONVERSION, etc.) the a~signment
statements must be labeled, since
labeling a statement-resets the
internal optimization control.

STMT, NCSTMT

STMT causes statement numbers to
be printed with object time
diagnostics.

NOSTMT suppresses the STMT option.

The default is NOSTMT.

LISTO, NOLISTO

LISTO causes the statement num­
bers to be listed and the
offset of the first byte
used after these statements
to be printed.

NOLISTO suppresses the LIS'!O
option.

The default is NOLISTO.

Note: LI STO overrides LISTX, i. e ./'
i¥-LISTO and LISTX are specified,
the LISTX option is ignored.

COMPILATION UNDER DOS/TOS CONTROL

If a single PL/I source module is to be
compiled under DOS/TOS control, the card
sequence should be as follows:

II JOB
II OPTION
/1 EXEC

1*
1&

job-name
DECK,LIST,NOSYM,60C see note 1
PL/I

PLII source module

see note 2

~2~~_1: This statement causes ,the PL/I
compiler to ~unch an object module on SYS­
PCH and to list the source program on SYS­
LS'I. The listing of source module symbols
is su~pressed. The source program is writ­
ten in the 60-character set. LOG, DUMP,
LISTX, and ERRS are assumed to have been
established as standard options at system
generation time.

Note 2: ~nother 1& card must be read from
SYSIPT-if SYSRDR and SYSIPT do not refer to
the same input device.

16

r---,
I Deck on SYSRDR I
.---~ III JOB MYJOB I
III OPTION DECK,48C l
III ASSGN SYSIPT,X'271'"X'SO' I
I * PLEASE MOUN'!' REEL 4 711 ON UNI '!' 271 I
III PAUSE PROCEED I
1// EXEC PL/I I
III EXEC PL/I I
11/ EXEC PLII I
1/& I
t---i
I Records on SYSIPT I
t---------------------------------~-------~
I First PL/I source module I
11* I
I Second PIlI source zr,cdule I
1/* I
I Third PIlI source mcdule I
1/* I
11& I L ___ J

Figure 7. Coding for a Job Consisting of
three PL/I COIq:i lations

ASSGN statements to change the assign~
ment of logical device addresses for this
job may be placed anywhere between the JOB
and the EXEC statemenb. Assignments for
SYSLNK must not be changed after OPTION
LINK has been specified.

Figure 7 showS the coding for a job con­
sisting of three PL/I corr~ilaticns. SYSRCR
and SYSIPT are assumed to refer to dif­
ferent input devices. SYSIPT is assumed to
be a 7-track tape drive.

since a job step com~rises only one
single compilation, an EXEC statement as
well as a 1* statement is required for the
com~ilation of each source module <external
procedu re) •

The Linkage Editor program relocates the
object modules produced by the PL/I compil­
er into an absolute object ~rograrr..
Modules retrieved from the relocatable
library may be incorporated into the cbject
program during the Linkage Editor run.
Programs \<\iri tten in Asserr,bler language and
assembled by means of the DOS/TOS ~ssembler
may also be incorporated. For details on
the communication with prcgrams written in
Assembler language refer to the section
~.!!!~~9~_£2n~~nti2!!§. '!he object ~rcgram
produced by the Linkage Editor may either
be executed by using the EXEC statement
with a blank operand or be incorporated
into the core-image library.

If a Linkage Editor run is desired, the
first Linkage Editor control statement and
the first EXEC statement rrust be ~receded

by an OPTION statement with either the LINK
or the CATAL option.

The Linkage Editor program can run in
the background partition only.

LINKAGE EDITOR CONTROL STATEMENTS

The execution of the Linkage Editor program
is initiated by Linkage Editor control sta­
tements read from SYSRDR. The general for­
mat of Linkage Editor control statements is
similar to that of the Job Control state­
ments, except that Linkage Editor control
statements have a blank in column 1 instead
of II in colurr.ns 1 and 2.

The Linkage Editor program uses th.e fol-
lowing four control statements:

• the PHASE statement,

• the INCLUDE statement,

• the ENTRY statement/, and

• the ACTION statement.

The exact format of these statements is
given in those parts of this section where
their application is described.

This is an optional statement for directing
the L'inkage, Editor. If ACTION statements
are issued to the Linkage Editor, they must
precede all other input to the Linkage Edi­
tor on SYSLNK. This can be ensured by
placing the ACTION statement(s) immediately
after the OPTION statement with the operand
LINK or CATAL. The format of the AcrION
statement is:

AC'IION operand

The following operands are of interest
to the PL/I user:

F1
F2

NOMAP

CANCEL

The program is link-edited to work
in foreground partition 1 or 2,
respectively. The start address
of the appropriate foreground par­
tition is assumed to be the
address allocated at link-edit
time. Only one of these two
operands may be specified for one
link-editing step. (The operands
Fl, F2 are not available in 'lOS.)

Suppresses listing of the Linkage
Editor storage map on SYSLST.
Diagnostics ar~ written on SYSLOG.

The job is canceled if any error
is detected during link-editing.

More than one ACTICN statement may be
issued for one link-editing step.

If the program consists of more than one
phase or if the program is to be cataloged,
each phase to be link-edited must be pre­
ceded by a PHASE statement of the following
format:

PHASE phase-name, origin

En~'§~=!l~!!!~ is a symbol consisting of 1 to 8
characters, the first of which must be
alphabetic but should not be a $ sign.. In
case of multi-phase programs~ the phase­
name must be longer than four character s
and the first four characters must be
identical for all phase names of that pro­
gram. Different prograrrs rr,ust differ in
the first four characters of their phase
name(s) in order to avoid incorrect storage
allocation. (See the section Processin~f
QY~E!~Y'§_2Y_!h~_~in~~g~_~git2!~)

Q!igin indicates to the Linkage Editor the
begin addresq of this specific phase. An
asterisk may be used as an origin specifi­
cation to indicate that this phase is to
follow either the previous phase or the
Supervisor at the next double-word boun­
dary. This simple format of the PHASE sta­
tement covers all normal applications in
the background partition. For the format
of the phase origin in overlay structures
refer to the section QY~~l~Y.

Two methods are available for li~k­
editing foreground prograrrs:

1. Using the statement ACTION Fn. I n this
case, the same set of PHASE statements
may be used as for background programs.

2. Using the operand f orrrat F'+address of
the PHASE statement for the origin of
the first (or only) phase.
address is the absolute address of the
foreground area in which the link­
edited program is to be executed. It
may be specified by a hexadecimal numb­
er of ' four to six digits (X'hhhhhh') or
by a decimal number of five to eight
digits (dddddddd) or in the formnnnnK~
where nnnn is two to four digits and K
equals 1024. For example, an origin
may be specified as F+X'BOOO' ~r F+
32768 or F+ 32K.

For either method, a foreground save
area is created at the specified address.
The (first) phase starts at the first
double-word boundary following this save
area. The space allocated to a fcreground
program by the Linkage Editor plus suffi­
cient space following the end of the pro­
gram for dynamic allocation of PL/I a uto-

Running Programs Under DOS/TOS Control 17

matic storage must be allocated at execu­
tion time to the appropriate foreground
partition.

Since'foreground programs must be cata­
loged before they can be executed, a PHASE
statement is mandatory for foreground pro­
grams. (Programs compiled by the PL/I com­
piler and PL/I library routines are not
self-relocating.)

~2£~: The autolink feature of the Linkage
Edi tor is required to include routines from
the relocatable library that are to be
linked 'with the object modules compiled by
the PL/I compiler. Therefore, the option
NOAUTO of the PHASE or ACTION statement
must never be used.

INCLUDING OEJECT MODULES INTO THE OBJEC'I
PROGRAM

The appropriate object modules can be inco­
rporated into the object program by:

• compilation,

• including object card decks,

• including object modules from the relo­
catable library, or

• using the autolink feature.

To have the source module compiled and the
output written on SYSLNK, the card sequence
must be as follows:

/ / EXE::: PL/I

PL/I source module

/*

If SYSRDR and SYSIPT refer to different
input devices, the PL/I source module and
the /* card must be read from SYSIPT.

Processing by the Linkage Editor and
execution is suppressed in case severe or
disastrous programming errors are detected
during compilation.

Source modules written in Assembler lan­
guage may be added in the same manner by
using the statement // EXEC ASSEMBLY for
calling the Assembler. For details on the
communication with programs written in
Assembler language refer to the section
~!U~~g~_£QUy~utiQU~·

!n£l~g!ng_QQj~££-f~!g_Q~£~~

To include one or more object card decks
into the object program,. the required con-

18

trol cards' as well as the sequence in which
they must be read from SYSIPT or SYSRDR~
respectively, are shown in Figure 8.

Note: The INCLUDE card, when used for this
application, must have the following
format:

INCLUDE preceded and followed by blanks
only

r----------~----------------T-------------,
I Cards I Read from I
~---------------------------+-------------~
I I NCLUDE I SYSRDR I
I I I
1 one or more cb-I SYSIPT I
1 ject modules I I
1 I I
1/* I SYSIPT I l ___________________________ ~ _____________ J

Figure 8. Including Object Card Decks

An INCLUDE statement must be read from SYS­
RDR for each module to be incorporated into
the object program from the relocatable
library. When used for this application~
the INCLUDE statement must have the format:

INCLUDE module-name

If some references to external names remain
unresolved after all modules have been read
in from SYSLNK, SYSIP1, and/or from the
reloca table library, the autoli nk feature
of the Linkage Editor searches the relocat­
able library for module names identical tc
the unresolved names and includes the
corresponding modules into the object
program.

E!!yate R~lQ£~taQl~~iQ!~!y_gnde!_QQ§

cataloging and including of relocatable
modules may be perforrr.ed by means of a
private relocata.cle library. For DOS, the
private relocata.cle library resides on an
extra 1316 disk pack. The 2311 disk drive
on which this pack is mounted has the log­
ical device address SYSRLE.

For including modules" the DOS Linkage
Editor first searches the pack assigned to
SYSRLB and, if the requested module is not
found there or if SYSRLE is not assigned,
it searches the relocatable library cn the
system residence pack.

If SYSRLB is assigned, relocatable
modules are cataloged intc the private
relocatable library. otherwise, they are
cataloged into the system residence pack.

For creating private relocatable
libraries refer' to the SRL publication IBM
£Y~~~~Ll&QL_~!sk_QQ~£~f!ll~_§Y§f~mL_§Y§~~~­
£Q~~~Q~_~~g~~Y§~~~_§~Y!£~_~~2~f~m~, Form
GC24- 5036.

For private relocatable libraries under
TOS see §E~i~~_Co~~id~~~~io~~_2~_!9£.

rhe card input to the Linkage Editor may be
delimited by an ENTRY statement of the fol­
lowing format:

ENTRY [name)

~~~~ is the external name of the entry 
point used. The entry point must be a pri­
mary or secondary entry of the external 
procedure that has the option MAIN. If the 
primary entry point of the MAIN procedure 
is used, the name may be omitted. 

If no ENTRY sta'tement is issued, ENTRY 
with a blank operand is assumed. 

~Q~~: If modules written in Assembler lan­
guage are to be incorporated into the 
object program, the Assembler END statement 
should have a blank operand field in order 
to avoid confusion of entry points. 

~!!g!~_£~!!Eg_~i~~~g~_~2!£ing 

For each file specified in the source pro­
gram, the compiler generates a special DTF 
table which includes the names of the 1/0 
modules to be called. Sometimes different 
I/O modules have the same secondary entry 
point; e. g. " for ISAM, files the same secon­
dary entry point IJRAARZZ occurs if in one 
file ADDEUFF <primary entry point IJHAARZP) 
is specified and in another INDEXAREA (pri­
mary entry point IJHAARCZ) (see Figure 9). 
In this case message 21431 (Content of sta­
tement in error) will te generated during 
link-edit time. The program executes 
correctly, however. 

r-----------------T---------r-------------, 
I IINDEXAREA\INDEXAREA 1 
I Ispecifiedlnot specified 1 
~-----------------+---------+-------------~ 
IADDBUFF specifiedlIJHAARCP IIJHAARZP \ 
I I I I 
I~DDBUFF not IIJHAARCZ IIJHAARZZ I 
I specified I 1 I L _________________ ~ _________ ~ _____________ J 

Figure 9. Generation of Secondary Entry 
Points in I/O Modules for ISAM 
Files 

SAMPLE COMPILATION 

The example shown in Figure 10 illustrates 
a combination of all three possibilities to 

build an object program. Four modules plus 
the appropriate library subroutines are to 
be combined into an object program, which 
is to be executed upon completion of the 
compilation. The example is based on the 
following assumptions: 

1. One module (A) is a PL/I source module. 

2. Two modules (P1, P2) have been pre­
viously compiled and punched. 

3. One module (R) is contained in the 
relocatable library. 

4. A listing of the source program and the 
symbol table is required for rrodule A. 

5~ A is the entry point to be used. 

~~~: The numbers at the left in Figure 10 
are for reference purposes only; they are
not part of the coding.

r-----T-----------------------------------,
I 1 1/1 JOB N01234 I

2 1// OPTION LINK,SYM,LIS'I' I
3 I PHASE ExAMPLE, * I
4 III EXEC PL/I I

I A: PROCEDURE OPTIONS (MAIN); I
5 I I

I I
I
11*

6 I

7
8
9

10

l
I
I
I
I
I
1/*
I
I
1//
1//
I
I
I

11 1/*

END /*A*/;

INCLUDE

deck P1

deck P2

INCLUDE R
ENTRY
EXEC LNKED'I'
EXEC

data

12 11& I _____ ~ ___________________________________ J

Figure 10. Sample Compilation

1 Furnishes the Communication Region of
the Supervisor with the name of the job.

2 specifies the compiler options SYM and
LIST and enatles the FL/I compiler and
Job Control to write or copy the output
on SYSINK for later processing by the
Linkage Editor.

3 The PHASE statement precedes all modules
to be processed by the Linkage Editor.

Running Programs Under DOS/TOS Control 19

The asterisk indicates that the program
is to be loaded immediately following
the Supervisor.

4 Calls the PL/I compiler.

5 PL/I source program. A (the name of the
MAIN procedure) is the primary entry
point.

6 Causes the subsequent modules P1and P2
to be copied onto SYSLNK.

7 This statement is copied onto SYSLNK.
when encountered by the Linkage Editor,
the module R is fetched from the relo­
catable library and incorporated.

8 Delimits the input to the Linkage Edi­
tor. The blank operand causes the pri­
mary entry point Ato be entered by Job
Control at execution time.

9 Calls the Linkage Editor to produce the
object program. The names of all
modules called by A, P1, P2, and R must
be names of modules contained in the
relocatable library. These modules are
automatically incorporated by the auto­
link feature of the Linkage Editor.

10 Causes Job Control to fetch the execut­
able object program and transfers con­
trol to ~ for execution.

11 The end-of-data-file statement delimits
the input data. If the file name is
explicitly declared, this statement may
be tested by means of an ON ENDFILE
statement.

12 End-of-job statement. In case of an
abnormal termination of the job, Job
Control skips all input up to this
statewent.

Assumed that all input to be read from
SYSIPT has been loaded onto a 7-track tape
reel and that SYSIPT is assigned to the
tape drive whose physical address is 281,
the input from SYSRDR and SYSIPT for the
above example is as shown in Figure 11.

20

r--T--------------------------------------,
I I Cards read from SYSRDR l
I ~--------------------------------------~
I III JCB NC1234
113111 ASSGN SYSIPl,X'281',X'90'
I III OPTICN LINK,SYM"LIST
I I P BASE EXAMPLE r, *
I III EXEC FIll
I I INCLUDE
I I INCLUDE R
I I EN'I'RY
I III EXEC LNKEDl
I III EXEC
1141/& L __ ~ _____________________________________ _

Figure 11. Control Cards and Input Units
for Deck Shown in Figure 10
(Part 1 of 2)

13 SYSIPT is assigned to a 7-track tape
drive. (The assignment differs frcm the
installation standard.)

14 1& must appear on both SYSRDR and
SYSIPT.

r--T--------------------------------------,
1 I Cards read from SYSIPl I

I ~--------------------------------------~ I A: PRCCEDURE OPTIONS (MAIN);
I
I
I END I *A*I;
1 1*
I
I deck P1
I
I deck P2
I 1*
I
I data
I 1*
114 /& I L __ ~ ______________________________________ J

Figure 11. Control Cards and Input Units
for Deck Shown in Figure 10
(Part 2 of 2)

Cataloging of frequently used program
phases or object modules into one of the
DOS/TOS libraries greatly reduces the time
required for card reading andlor Linkage
Editor processing. object modules may be
cataloged into the relocatable library.
Executable programs already processed by
the Linkage Editor may be cataloged into
the core-image library.

The name of a pbase or module must be
unique for each library. If phases or
modules are cataloged, any module or phase
already contained in the respective library
and having the same name is automatically
deleted. This necessitates some naming
conventions for each installation in order
to prevent a user from deleting programs
that are either part of the system or cata­
loged into the library by other programmers
using the same installation. Core-image
library phase names starting with $ as well
as relocatable library module names start­
ing w~th IJ are names of system programs.
For this reason, the user should be very
careful when cataloging phases or modules
the names of which start with the above
characters.

The Library routine that handles cata­
loging and deleting is called by the Job
Control statement II EXEC MAINT.

If a program is to be cataloged into the
core-image library, the statement II OPTION
with the CATAL option must be given prior
to Linkage Editor processing, i.e., this
stateroent must preced,e the first PHASE card
of the program to be cataloged in case of
compi1e-and-1ink runs. Upon successful
completion of Linkage Editor processing the
program is then automatically cataloged
when an II EXEC LNKEDT and 1& card is read.
(Note that no I I EXEC statement without
name must precede the II EXEC LNKEDT or 1&
staterrent in this job.) No further catalog
control statements are required.

~Q!~: ~n error may occur if a phase exists
in the core-image library whose name starts
with the same four characters as the pro­
grarr to be cataloged (see the publication
!~~_§Y2t~~~1£~~!~~_QE~!~£ing_§y§~~mL_§Y§~
:!:~IT!_£Q~~~Q!._!!!!~_§y§!-~m_.§~Evi£~_~!:2g!!!!!)§,
Form GC24-5036).

Programs or phases that are no longer
required in the core-image library may be
deleted by using the DELETC statement, the

two possible formats of which are as
fellows:

DELETC phase1[,phase2] •••
DELETC prg1. ALL [" prg2. ALL] •••

The first format is used to delete
single phases. The operands phasel, pha­
se2, etc., each specify the name cf one
phase to be deleted. The second format is
used to delete entire pregrams. Since the
first four characters of all phase names of
any program are identical, the entire pro­
gram is deleted if these four characters
are specified. prg1, prg2" etc." must
therefore be exactly four characters long.

Each card dec~ to be cataleged into the
'relocatable library must be preceded by the
control statement

CATALR module-name [,v. rr;]

The module specified by the operand
module-name is then incorporated into the
relocatable library. Cataloging stops when
the END card of the module has been cata­
loged. The module may be preceded but not
followed by, Linkage Editor control
sta temen ts.

Y~m specifies the change level at which
the module is to be catalcged. y may be
any decimal number from 0 through 127. ~
may be any decimal number from 0 through
255. A change level of 0.0 is assumed if
this operand is omitted.

Compilation of a PL/I ~ource module may
result in t~o object modules. (The first
one will be referred to as file medule and
the second one as procedure module in this
section.) The file module is produced for
all of the file declarations (except file
name'parameters) contained in the source
module. The procedure module is produced
for the source module itself. Note that
each individual object module requires a
separate CATALR statement for cataloging.
The file module may be cataloged under any
of the file names.

The DOS PL/I compiler facilitates cata­
loging into the relocatab1e library by
optiopa1ly producing control statements on
SYSPCH. If bit 0 of the UPSI byte (see the
section The UPSI Statement) is on during
compilatIon:-the-following output is

Cataloging 21

generated on SYSPCH depending on whether or
not a file module is generated with the
external procedure:

CAT ALR Fname
file module

CATALR name
INCLUDE Fname

procedure module

CATALR name
procedure module

!!~m~ is the primary entry point of the
external procedure. Fname means that the
name of the external procedure, immediately
preceded by the character F~ is used as the
narr:e of the file module. The INCLUDE sta­
tement is generated to have the file module
automatically included with the procedure
module.

There is no automatic catalog feature
for compile-and-catalog into the relocat­
able library. However~ if a sufficient
number of tape drives is available, it is
recommended to assign SYSPCH to a magnetic
tape drive and to reassign the same drive
to SYSIPT for the catalog step, thus eli­
minating unnecessary card handling.

~he following example shows what control
statements are required for compile-and~
catalog into the relocatable library:

II JOB COMPILE AND CATALOG

* INTO THE RELOCATA~LE LIBRARY
II OPTION SYM,LISTX,DECK

1 II UPSI 1
2 II A.SSGN SYSPCH,X'182'
2 II MTC REW,SYSPCH

II EXEC PL/I

PL/I source program

1*
3 II MTC WTM,SYSPCH
3 II MTC REW" SYSPCH
3 II RESET SYSPCH
4 II A.SSGN SYSI PT, X'182'
5 II EXEC MAINT

1&

~~E!~!H!!:.!.2!!

1. 'Ihis statement causes the DOS FL/I com­
piler to generate control statements
that precede the object module(s).

2. A.ssigns magnetic tape unit 182 to SYS­
PCH and positions the tape at the load
pOint.

3. Closes and repositionsSYSPCH. (Do not
use the II CLOSE statement since this
statement unloads the tape, thus caus­
ing unnecessary operator action).

22

4. The compiler output is now assigned to
SYSIPT.

5. The librarian is called. The CATALR
statements cause cataloging into the
relocatable library.

Note: The control staterrents are generated
~~I~ on SYSPCH, not on SYSLNK. Thus~
compile-and-catalog into the relocatahle
library does not preclude the LINK and
CATAL options in the same job.

The DEIETR statement rray be used to
delete either single modules or entire pro­
grams contained in the relocatable library.
All modules whose names start with the same
3-character combination are considered to
be part of the same program. The two poss­
ible formats of the control staterrent are

DELETR module-namel [, rTodule-narre2] •••

DELETR prg 1. All [, prg2. ALL] •..

The operands prgl~ prg2~ etc., must con­
sist of exactly 3 characters.

bIgg~gX_~~I~1~~~~f~_B~~§

Cataloging and deleting fo~ all libraries
can be done in one single job step. In the
following example, the program LNCT is
deleted from the core-image library and the
modules BCDFIR and BCDSEC are cataloged in
the same job step. BCDSEC is preceded by a
PHASE sta tement' tha t is to be cataloged
with the module.

II JOB

*
CATALOG ~WO DECKS~
SECCND WITH FHASE CARD
MAIN~' II EXEC

DELETC
CATALR

LNCT.AII
BCDFIR

deck BCDFIR

CATALR BCD SEC
PHASE BCDPR2 " *

* THIS STATEMENT IS ALSO CATALOGED

1*
1&

deck BCDSEC

END OF MAINT. DECK

The input deck must be followed by an
end-of-data-file statement if another job
step within the same job follows the rrain­
tenance run. The Librarian control state­
ments and input decks to be cataloged are
read from SYSIPT. (In TCS, Librarian con­
trol statements are read from SYSRDR.)

II JOB CATALFG
II OPTION CATAL

1 ACTION F2
2 PHASE FGPXYZ,*

II EXEC PL/I
•
PL/I source deck
•

1*
3 II ASS3N SYSRLB,X'192,

II EXEC LNKEDT
1&

The ACTION statement (1) causes the Lin­
kage Editor to allocate storage for the
program in the storage presently allocated
to the foreground-two partition. The PHASE
statement (2) gives the program the name
FGPXYZ. The second operand (*) specifies
that the program is to start n bytes behind
the location assigned at link-edit time as
the start address of the foreground-two
partition (n is the length of a foreground
save area required by the system). The
program to be cataloged is compiled in the
same job. The ASSGN statement (3) assigns
SYSRLE so that the Linkage Editor can
obtain modules to be included by the AUTO­
LINK feature frcm a private relocatable
library.

If TOS is used, phases in the core-image
and modules in the relocatable library are
not stored at random locations but in
alphameric order. Therefore, all phases
andlor modules to be cataloged must also be
in alphameric order. Maintenance requests
for the core-image and the relooatable
library may be given in the same job step
but must not be intermixed. Note that a
maintenance run under TCS control causes

copying of the full systerr onto a new
volume that will be located on SYS002.
SYSOOl must be assigned to a tape drive for
intermediate use in this case.

The TOS compiler does not generate
CATALR statements. However, the user may
prepare his own CATALR statements and put
them into the job strearr: en SYSRDR follow­
ing II EXEC MAINT. (In TOS, Librarian con­
trol statements are read from SYSRDR
instead of from SYSIFT.) The file module
should be given a name equal to one of the
file names to avoid the use of an INCLUDE
statement for including the file rr;odule.

Users needing a large number of relocat­
able modules should use a E!!y~t~~1E£at­
~B1~_1i~!~!~. Using a private relocatable
library yields the following advantages:

1. Only the relocatable library is copied
d ur ing upda ti ng •

2. The performance of INCLUDE and AUT'OLINK
is considerably faster during proces­
sing by the Linkage Editor.

During Linkage Editor processing and
library maintenance(, the pr ivate relocat­
able library resides on an additional mag­
netic tape unit assigned to SY SRLE. A
private relocatable library is produced by
preceding the first CATALR or DELETR state­
ment by the special Librarian statement
NEWVOL. (The tape reel on SYS002 to accom­
modate the newly created relocatable
library must be initialized with a standard
vol ume label.)

If a private relocatable library is to
be used on Tes, it must contain all modules
to be included from the relocatable library
because SYSRLB and the relocatable library
on the system's resident library are never
searched both.

Cataloging 23

~ file is a set of data stored on an
external storage medium. Its purpose is
either one or a combination of the
f ollewing:

• To provide the program with the required
input.

• To store intermediate results obtained
during the execution of the program.
This may be required because the storage
capacity does not suffice to accommodate
both the program and the data.

• To store the results obtained by the
execution of the program (maybe for use
as input either to the same program at a
later execution or to another program).

~ block is the physical unit of informa~
tien transferred between internal storage
and the external storage medium of the
file.

~ record is the unit of information
which-is-logically transferred between the
program and the file by a single PL/I RE~D,
WRI'IE, or REWRITE statement. A block may
contain more than one record (blocked reco­
rds). In blocked record files, the records
are buffered until a full block has been
gathered and then physically transmitted to
the file. In the case of input files, one
block is read into a buffer, and each READ
statement transfers (locates) one single
record to the program.

A label is a special set of records that
identities a magnetic tape file or a direct
access storage device (DASD) file. Labels
are processed by the PL/I statements OPEN
and CLOSE.

~ ~~y is the information required to
locate a record within a DASD file declared
with the attribute DIRhCT.

'Ihe organization of a file may be consecu­
tive, regional, or indexed.

The term file organization is synonymous
with an algorithm for identifying and
locating blocks and records on the storage
medium holding the file.

24

CONSECUTIVE FILES

The blocks contained in CCNSECUTIVE files
are identified by the sequence in which
they are stored. This renders it irq:css­
ible to access (or store) the blocks in any
manner other than sequential. 'Ihis, in
turn, implies that the DIRECT attribute is
not permitted for CCNSECU!IVE files.

A PL/I file declared tc be CONSECUTIVE
may consist of a deck of punched cards, a
listing on a printer, one or rrere reels of
magnetic tape, or some space on one or more
1316 disk packs used with the 2311 disk
drive. ether storage media for CONSECUTIVE
files like the paper tape reader, the opt­
ical cnaracter reader, er teleprocessing
lines (DOS only) may be addressed by using
subroutines written in Assembler language
that will process these files.

A magnetic tape file may. be contained on
a single tape reel or'on more than one reel
(mul ti-reel file). The lcgic'al unit where
the file is located must be declared in the
MEDIUM option of the ENVIRONMEN'I attribute.
When using a multi-reel file, more than one
tape drive may be assigned to this logical
unit by specifying the ALT opticn in the
ASSGN statement to overlap processing and
mounting of tape reels. Cnly labeled files
should be used for multi-reel files.

A magnetic tape may also contain more
than one file. !o positicn the file
correctly an ~TC statement may be used to
space the tape forward ever as rrany tape
marks as precede the file to be opened.
(Refer to Multi-File Volurres and Backwards
~11~~ in the-sectIon-E!l~=~~beI~~r--------

REGIONAL FILES

The regional file organization is pessible
only for DIRECT DASD files. REGIONAL files
are processed using the CCS Direct Access
method. 'Iwo different methods are used:

• REGIONAL (1) where reccrds are addressed
by their relative position in the file

• REGIONAL (3) where reccrds are addressed
(1) by the number of the track on which
they reside, the track nunber being
relative to the first track ef the file
and (2) by means of a key associated
with the record.

For further details refer to the seeticn
Q!~~_Q~g~~i~~ii2n·

Restrictions. REGIONAL files must ce de­
clared-with-the attributes DIRECT and
KEYED, which exclude tne use of the STREAM,
PRINT, SEQUENTIAL, and the buffering attri­
butes. The KEYLENGTH option of the
ENVIRONMENT attribute is not permitted for
REGION~L(l) files but must be specified for
REGIONAL (3) files. REGIONAL files permit
only fixed unblocked records. The V, U,
BUFFERS, LEAVE, and NOLABEL options of the
ENVIRONMENT attribute are not permitted for
REGION~L files. The maximum relative reco­
rd or track number is 224_1.. The EXTENT
staterrents fer REGIONAL files must be supp­
lied in ascending symbolic-unit order. If
there are multi-volume files, the symbolic
units must be assigned in consecutive
order.

~2~~_2n_f2~E~t!~!1!£l. In OS PLII, certain
information contained in the key field or
data field of REGIONAL files is used to
flag a record of that file as deleted.
rher~fore~ if the user plans to create
files with DOS PL/I and read andlor update
them with OS PL/I, he should avoid keys or
data that would cause as PL/I to consider
the record as deleted. For detailed infor­
mation refer to the pertinent section of
the,OS PL/I Programmer's Guide, Form
GC 28- 6594.

'The individual records in a REGIONAL(l)
file are identified by their position rela­
tive to the pcsition of the first record in
the file, which has a relative record numb­
er of o. ~ track is assumed to contain as
many records as may fit, i.e., if some

parts of the track are still empty, these
"holes" are nevertheless ccunted as real
records. The number of records ~er track
is shown on the Fro~ramrr.er's Reference
Chart, Form X20-1705. The key used to
identify individual records and issued with
the KEY or KEYFRCM option of a READ, WRITE,
or REWRITE statement is nct written ontc
the DASD file but specified as a numeric
field declared as PICTURE' (8)9'. There­
fore, records to be read from a REGIONAL(l)
file must not contain keys on the D~SD.
The value contained in the nurreric field
(key) is the relative number of the record
in the file.

~!~~!!!!g_~_B§~!f~~!:!J.l2._!:!.!~. 'Ihe ext ents
to be used by a PLII REGION~L (1) fi Ie must
be preformatted cy the DCS Clear Disk uti­
lity program. (For details refer tc the
SRL publication !~~_§Y§!~~il£QL_Di~~~ng
1~£~_Q£~!~~!n9_el~~§m§L_Q!~b~!y~pr~g~m
§E~£if!£~~~2n~, Form GC24-3465.) This uti­
lity program creates dummy records that
contain a string filled with user-defined
characters. The file can then be actually
created by specifying the OUT'PU'I a ttr ibute.
Figure 12 (top) shows a sample card deck
used for preformatting a REGION~L(l) file.

The DLBL and EXTENT statements are
described in the section Fi Ie Labels. Note
that the dummy file should-have-an expira­
tion date that has already been passed
because, otherwise, the unexpired-file con­
dition would prevent the FL/I output file
from being opened. Note further that the
dummy file is sequential and that its name
is UOUT, independent of the actual name of
the file to be used in the PL/I program.

Figure 12. Sample Card Decks for Preformatting REGIONAL Files

Data Fi les 25

'rhe UCL statement and the END statement are
utility control statements and have a fixed
forrrat, i.e., no additional blanks must be
inserted. K=O means that no key is asso­
ciated with the records. D=100 means that
the block length is 100. This value way be
modified to the user's requirements and
must be identical with the actual tlock
length of the PL/I file. The dollar sign
is the character to which the file is
cleared. It may be replaced by any other
character.

~h~_~~~_~nQ_~~X!gQ~_QE~!Qn2-!Q!_S~~!Q~~~i!l
f~l~~. The expression in the KEY or KEY­
FROM option in READ, WRITE" or REWRITE sta­
tements must result in a character string
of the form PICTURE '(8)9'. The valuen
represented by this expression is used to
access the n-th record of the file relative
to the beginning of the file. n must be
less than 224.

Contrary to REGIONAL(l) files, records in
REGIONAL(3) files are addressed by the
nurrber of the track on which they are
located, the track being relative to the
first track occupied by the file. !he
first track of a REGIONAL(3) file is coun­
ted as track O. Each individual record
contained in one track is associated with a
key on the D~SD in order to distinguish it
frcm other records in that track. The
length of this key is declare1 in the KEY­
LENGTH option of the ENVIRONM~NT attribute.
r he key is a conca tena tion of two stri ngs .
The fi rst (left) key string is a character
string of a maxi~mum length of 247 charac­
ters and contains th€ information required
to distinguish the records from the remain­
i ng records on the same track. The second
(right) key string is a numeric field de­
clared, as PICTURE '(8)9' which contains the
relative track number. The full key is
written onto, or read from, the DASD file.

Like RE3IONAL(1) files, REGIONAL(3)
files require preformatting by the DOS
Clear Disk Utility program. In addition to
its clearing function, the utility program
resets the record RO (capacity record) to
reflect that all tracks are empty. rhe
file can then be actually created by speci­
fying the OUTPUT attribute. An example is
shown in Figure 12 (bottom).

If an attempt is made to write more
records onto a track than its capacity per­
mits, the ON KEY condition is raised.

·!:b~_~~~_~!lQ_~~YFgQ~_QE:!:!Qn2_fQ!_~~~!Q~~1.il!.
f!l~~. The expression in the KEY or KEY­
FROM option in READ, WRITE, or REWRITE sta­
tements must result in a character string
whose length is the same as the length spe­
cified in the KEYLENGTH option of the

26

ENVIRONMENT attribute. !he last 8 charac­
ters must be in the form PICTURE '(8)9'.
The numeric value n represented by the last
8 characters is used to access the n-th
track of the file with a key identical to
the character-string expression. n rrust be
less than 224.

INDEXED FILES

This file organization is supported by the
DOS PI/I compiler and by the PL/I DASC
macro instructions. Both methods may be
used to create, access, and update files
with the indexed-sequential file organiza­
tion. For details on the PL/I D~SD macro
instructions refer to the publicaticn IEM
§Y~E~~{l&Q_Q!~~_QE~!~Eing_§yst~gL-PL/I-DASQ
~~£!QE' Form GC24-5059.

An indexed-sequential file is one whose
records are organized on the basis cf a
collating sequence determined by control
fields (referred to as keys) that precede
each block of data. !he key for each block
of data is from 1 to 255 bytes in length
and contains the identifier of the last
logical record in that blcck. Indexed­
sequential files are contained in some
space allocated on direct access volurres as
prime areas and index areas.

The indexed-sequential file organization
gives the programmer great flexibility in
the operations he can perform on a file.
Using this scheme of file organizaticn, he
has the ability to

• read or write (in a rranner similar to
that for sequential files) logical reco­
rds whose keys are in ascending collat­
ing sequence.

• read or write random logical records.
If a large portion of the file is being
processed, reading records in this mann­
er is somewhat slower than reading
according to a collating sequence since
a search for pointers in indexes is
required for the retrieval of each
record.

• add logical records with new keys. The
system locates the proper ~osition in
the file for the new record and rrcdifies
the "indexes accordingly.

ln9~~~~. The ability to read and write
records from anywhere in an indexed­
sequential file is provided by indexes that
are part of the file. There are always two
types of inde~es: a £y1inQg!_inde~ for the
entire file, and a track index for each
cylinder. An entry-In-a-cyfInder or track
inde~ contains the identification of a spe-

cific cylinder or track and the highest key
associated with that cylinder or track.
rhe system lccates a given record by its
key after a search of a cylinder index and
a track index within that cylinder.

A third type of index, the master index,
is optionally available for very-Iarge---­
files. A master index is generated only if
the INDEXMULTIPLE option is specified in
the declaration of the respective output
file. The master index contains an entry
for each track of the cylinder index. If a
master index is present, the search in the
cylinder index is limited to a search on
one 'track. For usual applications, a mast­
er index is not recommended if the cylinder
index consists of less than four tracks.

The track index always resides on the
sarre extent as the prime data area. The
cylinder and master index may reside on the
same volume as the prime data area; howev­
er, they may also reside on a different
volume of a different DASD type. ~he
cylinder index must be immediately adjacent
to the master index, if any, on the same
volurre. Master and cylinder index must be
completely contained in one volume.

Insertion of Records. A new record added
to-an-rndexed=seguential file is placed
into a location ort a track which is deter­
mined by the value of its key field. If
records were inserted in precise physical
sequence, insertion would necessitate
shifting all records of the file that have
keys higher than that of the one inserted.
However, an overf1ow area is available for
each cylinder. Thus, a record can be
inserted into its proper position with only
those records on the track bEing shifted in
which the insertion is made.

overflow ~rea. In addition to the prime
area;-whose-tracks initially receive the
records of an indexed-sequential file,
there is an overflow area for records for­
ced off their original tracks by insertion
of new records. When a record is to be
inserted, the records already on the track
that are to follow the new record are writ­
ten back onto the track after the new reco­
rd. The last record on the track is writ­
ten onto an overflow track. Figure 13
illustrates this adjustment for addition of
records to an indexed-sequential file whose
keys are in a numerical ascending sequence.

when this file is created, its records
are placed on the prime tracks in the
storage area allocated to the file. If a
record, e.g., record 7, is to be inserted
into the file, tne indexes indicate that
record 7 belongs on primary track 1. Reco­
rd 7 is then written immediately following
record 5, and records 8 and 10 are retained
on this track. Since record 11 no longer

fits, it is written onto an overflow track
and the proper track index is adj usted to
show that the highest key on prime track 1
is 10 and that an overflow record exists.
When records 17 to 22 are added tc the end
of the file, prime track 2 receives records
17 to 21, but record 22 dces not fit and is
written following record lion the overflow
track. When record 9 is inserted, record
10 is shifted to the overflow track after
record 22. Note that records 10 and lion
the overflow track are chained together to
show their logical sequence and to indicate
tha t they belong to the sarre prime track.

Initial Format of File

Prime Track 1 I 2 I 3 I 4 I 5 I 8 110 111

Prime Track 2

Overflow Track 1

Format of File after Insertion of Record 7

Prime Track 1 1 1 1 2 1 3 I 4 5 ill 8 10

Prime Track 2 1_..1_2 ... 1_..13 1_16 1 ________ ---'

Overflow Track 1 .. 1_1_1_1 ____________ _

Prime Track 1

Prime Track 2

Overflow Track 1

Format of File after Insertion of Records 17-22
and Record 9

Figure 13.. Addition of Records to a 1-
Cylinder, 3-1rack Indexed­
Sequential File

!g9~~g9~n!_Q~~~flQ~_~~~~. ~n independent
overflow area can be specified by an EXTENT
statement (before the program is executed)
to specify the area extent. If one or more
of the (cylinder) overflow area(s) become
full, additional overflow records are writ­
ten on the independent overflow area. This
area may be on the same vclurr.e as the data
records or on another volume, but must be
contained on one single vclume. 1he nurr,ber
of overflow tracks reserved on each cylind­
er of the prime data area is determined by
the CFLTRACKS option of the ENVIRONMENT
attribute.

Data Fi les 27

When using the PL/I DASD macro instruc­
tions, two tracks per cylinder are reserved
as overflow areCl. 'llbe num:ter of extents
per file with PL/! D~SD macro instructions
is restricted to ten. Note that the
cylinder index constitutes a separate
exteni...

The location of index areas, overflow
areas, and the ~rime data areas on DASD
devices are specified by means of DLBL and
EX'IEN'I' statements. (Refer to the section
E.!lg_!!~Q~!§,.)

R~£2~~_E2!~~£_~~Q_~~~~. With indexed
files" all records must be of fixed length
(blocked or unblocked). Since only one key
is permitted per block on DASD devices, the
access method for blocked records requires
that the key be embedded in the data field
of the record. The location of the key
wi thi n the record is specified - 1:;y the KEY­
LOC option of the ENVIRONMEN'T attribute.
The key must be embedded in the data field
if records ar'e blocked; it may be errbedded
if the records are unblocked. If KEYLOC is
specified to indicate embedding, the key is
inserted automatically into the field dur­
ing creation of the file or during addition
of records to the file.

When the PL/I DASD macros are used, a
record key is lecated within each record,
and one extra key is associated with each
block. This key is identical with the
highest (or only) record key ,in the block.

No RECORD condition will be raised for
retrieving or updating files. The IOCS
module gets the record length during OPEN
time from the format-2 file label as it was
written at creation time. No checking is
made between this entry and the entry in
the DTF table.

!ng_~~~L_~~~fBQ~L_~n~KEX~~_QE£.!2g2_!2~
INDEXED Files. The expression or variable
In-the-KEY;-KEYFROM, or KEYTO option of
RE~D, WRITE, or REWRITE statements must
result in or be a character string of the
same length as the length specified in the
KEYLENGTH o~tion of the ENVIRONMEN'I
attribute.

~ot~: In indexed-sequential files, retri­
eval, updating" and adding of records can
be performed either sequentially or at ran­
dom,. However, indexed-sequential files can
be created only sequentially.

~Q~~_Q~_£Q~e~~!Q!!!!y. In OS PL/I, certain
information contained in the key field or
data field of INDEXED files is used to flag
a record of that file as deleted. There­
fore, if the user plans f6 create files
with DOS PL/I and read and/or update them
with OS PL/I, he should avoid keys or data
that would cause OS PL/I to consider the

28

record as deleted. For detailed inforrr.a­
tion refer to the pertinent section of the
OS PL/I Programmer's Guide" l"orrr C28-6594.

As an e,xample of a DASD crganizatien, this
section describes the 1316 disk pack used
with the 2311 Disk Storage Drive. 'Ihe 2316
disk pack used with the 2314 Direct Access
Storage Facility is organized very similar­
ly. However, the 2316 disk pack,consists
of 11 disks with 20 surfaces on which data
is recorded with dou1:;le density. For
further details (also on the 2321 D~ta Cell
Drive) refer to the publicaticns 1~~
§Y~£~!!!~1'§'Q_£2!!!EQ!!§!!'!:._Qg2£~'!Q~'!Q!!§', Fo r m
GA26-3599 (for the 2314) and 1~~_~y~te~/36Q
f2~E2~~~~2~~£~.!E'!:..!2!!2, Form GA26-5988 (for
the 2311 and 2321).

The 2311 DASD uses 1316 disk packs as
recording medium. One disk pack consists
of 6 disks. The tOf surface ci the u~f~r
disk and tHe tottorn surface of the lowest
disk are not used, which leaves 10 surfaces
for recording. Each disk surface contains
203 concentric tracks. 'Irack 1, 2, 3,
etc., on each ~urface'is ph~'sicall~i lccated
below o~ dD0ve track 1, 2, 3,'etc., of the
other surfaces. Therefore" the ccrrespcnd­
ing tracks are referred to as 203 concentr­
ic £Yl!!!g~~~. 200 cylinders are used fcr
actual recording; the remaining 3 are
reserved.

The 2311 is provided with one access arm
equi~ped with 10 read/write heads. The
heads are mounted vertically se that data
contained in one cylinder can be accessed
without any mechanical rrcverrent. This,
however, renders it necessary to internally
switch from surface to surface within a
cylinder in case one track (of a consecu­
tive file) is completely filled. When a
cylinder is filled~ reading or writing is
resumed on the first track of the next
cylinder. This technique minimizes the
access-arm movement time.

Thus~ a disk pack is thought of as cen­
sisting of 200 cylinders" each cylinder
consisting of 10 tracks. A ccnsecutive
part of cylinders (or tracks) set aside for
usage by a specific file is referred to as
~n ~~!g!!!. An extent is defined by an
EXTENT statement Crefer to the section File
Labels). In case two or more files are-to­
be-accessed alternatingly, each individual
file may 1:;e assigned a ~art of consecutive
tracks per cylinder instead of full cylin­
ders. For instance, tracks 0 to 4 of
cylinders 10 to 99 may be assigned to
FILEA, while tracks 5 to 9 of the same set
of cylinders may be assigned to FILEE. The
latter technique is referred to as §elit=
£Y1~~Q~~ technique.

Record 0 (Track
Descriptor) RO

Record 1
Rl

Record 2
R2

,,-_____ 1'-'-__ ---..,,,-_________ 1''-______ ---..,,,... _________ '' _________ """

G G G G G G G G G G G G
0 1M CJ HA 0 Count 0 Data 0 AM 0 Count 0 Key 0 Data 0 AM 0 Count 0 Key 0 Data

p p p p p p p , p p p P

H~._~u ~~
'-- Defines the location of the track in

terms of the physical parameters of
the files. Address Marker

Index Marker

Indicates the physic;:al beginning of each track •

• Figure 14. contents of a Track

The information contained on a track is
recorded in physical records (see Figure
14). Each physical record consists of 2 or
3 f;i.elds.

The first field is a count field (C)
identifying the record. The programmer is
not concerned with this field. The second
field is the key field (K). It has the
length given in the KEYLENGTH option of the
ENVIRONMENT attribute or in the KEYLEN
operand of a PL/I DASD macro instruction
and contains the key given in the KEY or
KEYF'ROM option. CONSECUTIVE and REGIONl\.L (
1) files have no key field. The last field
is the data field (D) and contains the
block to be read or written. The first
record (Track Descriptor) of each track
(RO) is not part of the information trans­
ferred by a PL/I program but contains some
statistical information. The home address
(HA) is of no interest to the PL/I
programmer.

These are five record types that can be
handled by PL/I programs:

fixed unblocked
fixed blocked
variable unblocked
variable blocked
undefined

Ki~~~_Q~~lQ£~~g_g~£QE9§

All records are of the Same length.
block contains exactly one record.
ENVIRONMENT option used is F(m).

Each
'rhe

Indicates the beginning of a new record. The
record RO does not have an address marker.

E~~~9_~lQs~~~_B~S2f~§

All records are of the sarre length. Each
block contains a fixed nurrber of records.
(Only the last block of a file may contain
less records.) The ENVIRCNMENT option used
is F(m,n).

The records are of variable length, each
block containing a variable nurrbe:r. of reco­
rds. Ho~everl a maximurr block lenyth is
specified.. '10 enable the input/output con­
trol routines to determine the lengths of
blocks and records., the blocks contain
extra fields that are not part of the actu­
al record. The first 4 bytes of each block
can tain a block control fie ld,. Each record
in the block is also preceded by a 4-byte
record control field. 1he ENVIRONMEN1
option used is V(m), where m is the maximum
block size. m must include the number of
bytes required by both the records and the
control fields.

The D compiler automatically supports
variable-length clocked records if Vern) is
specified, i.e., it always accorr,modates as
many records in a block as will fit.

If at the end of a track there is not
enough space for the whole block, the I/O
routines write part of the block (but com­
plete user-defined records) at the end of
the track and shifts the remaining records
onto the neKt track. Boundary problems may
occur, however, if the rules for using the
LOCATE statement with the SE1 option are
not followed.

Data Fi les 29

This is a real subset of variable tlocked.
With variable unblocked records, the value
of m in VCm) is 8 higher than the largest
possible record in. the file. Variable
blocked and variable unblocked records may
be interrrixed.

The records are of variabl e length. Each
block contains one record. No control
fields are used. The ~NVIRCNMENT option
used is Uem).

For the restrictions regarding the block
length refer to Appendix J under !H-.Q~~'§!~~
geE.!Q!!.§ ..

A block has the meaning that the physic­
al storage medium is advanced one block
after the corresponding operation has been
performed. In the case 6f punched cardsJ

for instance, this implies that one card is
read or punched. This, in turn, implies
that the remainder of the card is ignored,
and the next block starts ~ith transmission
of column 1 of the next card in case a
block length of less than 80 bytes is spe­
cified for a card file.

!N~Q!~QY!~Q!_RRO~~§§IB~

ACCESS METHODS

Since records in files declared ~ith the
CQNSECUTIVE option are identified merely by
the sequence in which they are createdw the
only po.ssibili ty to read, wri te " or update
records in such files is to sequentially
process the file from its starting point.
This procedure is referred to as the
§~g~~!!E!~!_~££~~ method, and files so
accessed have the attribute SEQUENlIAL.

In other files, the records are identi­
fied by keys. In this case, each individu­
al record can be accessed ty use of the key
regardless of the physical location of the
record. This procedure is referred to as
the direct access method, and a file so
accessed~as-the-attritute DIRECT.

N2E~: Indexed-sequential files may be read
or upda,ted either sequentially or direct.

Note: If twc or more files are simul­
taneously open on the same physical non­
DASD device or DASD extent, the order of

30

access to the files is unpredictable. Read
and punch feed of a 2540 Card Read-Punch
count as t~o different devices. For
example~ a read and a punch file cannct te
open at the same time using the same 1442
or 2520 Card Read-PUnch. As another
example, if there is a record file assigned
to a printer and the standard systerr. -
STREAM - file uses the same printer, both
files have their own buffers and print
independently of each other, i.e., the
printed lines will not necessarily appear
in the same sequence as the WRITE and PUT
statements are executed.

BUFFERING

A buffer is a part of sto;rage used to
accommodate data to be read or written.
Buffers are used to allow transmission of
data asynchronously to the prograrr flew.

Files with the UNBUFFERED attribute
allow no overlapping of input/output opera­
tions. In files declared with the BUFFERED
attribute, execution of I/O operations is
overlapped if the option BUFFERS (2) is spe­
cified in the ENVIRCNMENT attribute. For
files declared wi th the BUFFERED attritute"
the buffers can te made available for use
as work areas by using the READ statement
with the SET option or the LOCATE state­
ment, i.e .. , the based record variables are
located directly in the buffers.

Tape files with the UNBUFFERED attribute
must also have the NCLABEL attribute.
Therefore" no multi-vol ume fil es or
alternate-tape specifications are
permitted.

If OUTPUT is specified in addition to
UNBUFFERED and NOLABEL, tape labels are nct
checked and n2£ overwritten.

Disk inprit and update files with the
UNBUFFERED attritute are opened with the
2g~E~~ OPEN routine. Therefore, the
expiration date for such files rrust be
lower than the current date.

Although tuffering attributes are not
permitted for DIRECT files. one buffer is
assigned to REGICNAL and INDEXED DIRECT
files. The minimum length of the buffer is
the record length. The rraximurr: length of
the buffer is the record length + keylength
+ 8 for REGIONAL files and INDEXED DIRECT
INPUT files. For INDEXED DIRECT UPDATE
files, the maximum length of the buffer is
the block length + keylength + 8 + 10 (for
the sequence link fie ld) '.

~ tape reel or disk pack may co~tain infor­
mation that is required for a certain
period of time. Therefore, each file (tape
reel or disk extent) must be checked for
its expiration date. In addition, a check
must be performed to determine if the prop­
er volume has been mounted for processing.
'These checks are performed by reading and
comparing special records that are con­
tained in the respective volume. These
special records~ which are referred to as
labels, are processed whenever an OPEN or
CLOSE statement is executed for a particu­
lar file.

The label information is furnished by
means of special Job Control statements,
which are described later in this section.
There are two types of labels: volume
labels and file labels.

~21~~~_1~~~!~ are used to identify the
volume (tape reel or disk pack). During
execution of the OPEN routine, the volume
serial number is compared against the
information supplied to the supervisor.
volume labels can be created by means of
IBM-supplied utility programs.

File labels describe the file to be pro­
=essed-by-the-program and indicate whether
~r not the file must be retained for a cer­
tain period of time. When an OPEN state­
ment is encountered, the information con­
tained in the file labels of input and upd­
ate files is compared against the informa­
tion supplied to the Supervisor. If a mis­
match is found" a message to the operator
is printed. When an OPEN statement is
encountered for an output file, the expira­
tion date in the file label is checked
against the date stored in the communica­
tion region of the Supervisor. If the
expiraticn date nas been neither reached
nor passed, a message to the operator is
printed and the. execution of the program is
inter~upted. In case the expiration date
has been reached or passed, a new file
label is created from the information supp­
lied through the control cards. The old
file label is overwritten by the new file
label.

Labeled tape files have two types of
labels: header labels and trailer labels.
rhe header-label-precedes eachfileand-­
defines it. The trailer label is written
at the end of the file. It furnishes the
information required to determine whether
the end of the file has been reached or
whether the file is continued on another
volume. Tape files may also be unlabeled.

This condition is specified by the option
NOLABEL in the ENVIRONMENT attribute.

Disk files must be labeled. Disk file
labels do not precede or follow the indivi­
dual file. They are contained in a special
region referred to as the VTOC (Vclume
Table Of Contents). Disk labels are
updated either during execution of the
CLOSE routine or when an end-of-extent is
reached. switching from volume tc volume
for multi-volume files is effected automat­
ically wi thout any prograrrrning effort,.

Note: Punched-card and print files must
net-be lal:eled.

For detailed informaticn and restric­
tions on label processing see the SRL pub­
lica tions describing the DOS/TOS data mana­
gement concepts, the DOSITOS Supervisor and
1/0 macro instructions" and the DOS system
control and service programs.

RESTRICTICNS eN SPECIAL PL/I FILES

PL/I does not provide for label processing
of UNBUFFERED files. However, file labels
are checked for expiration (also if INPUT
is specified) and cleared. The volume
label is maintained.

No provision has been made for label
processing of the standard PL/I files SYSIN
and SYSPRINT.

As far as label processing is concerned,
UPDATE and INPUT files are handled in the
same manner.

JOB CONTROL STATEMENTS

A set of Job Control statements is required
for each labeled file4 This set of state­
ments must be in a specific sequence and
irrmediately precede the II EXEC statement
for the job step in which the file is
processed.

~.2~~: DIBI and EXTENT Job Con tr~l sta te­
ments for SYSIPT, SYSLST, or SYSPCH must
precede the corresponding perrranent ASSGN
commands,.

The sequence of Job centrol statements
for disk labels is as follows:

// DLBL
II EXTENT (one or more)

Fi Ie Labels 31

The Job Control statement for tape
labels is as follows:

// 'ILBL

'Ihe syntax rules are the same as those
for the ether Job Control statements.
Trailing commas not followed by an operand
may be suppressed.

~2~~: The former disk and tape label Job
Control statezrents DLAB, VOL, XTENT, and
TPLAE may still be used.. However, the old
and new disk label statements must not be
intermixed, i.e., XTENT is associated with
DLAB and VuL, and EXTENT is associated with
DLEL.

The DLBL statement furnishes the disk file
label inforroation. The format of this sta­
tement is as follows:

/ / DLBL filename, [' file-ID'] , [date] , [codes]

The meaning and format of the operands is
described below:

filename is identical to the name of the
PL/I-¥IIe.

'file-ID' is the name of the file that is
recorded-on the disk drive as an identifi­
cation of the file,. It may compri se from 1
to 44 bytes of alphameric data. If less
than 44 characters are used., the fiel d is
left-justified and padded on the right with
blanks. If this field is omitted, the file
name is used as file-IDe

date is a field of one to six numeric
characters. Two formats are possible. The
first format is yy/ddd~ which indicates the
exp~raticn date of the file for output or
the creation date for input. (The day of
the year may have from one to three charac­
ters.) Optionally" a 1- to 4-digit reten­
tion period may be specified for output
files. If this operand is omitted~ a 7-day
retention period is assumed for output
files. For input files, no checking is
performed if this operand is omitted or if
a retention period is specified.

codes is a 2- or 3-character field indicat­
Ing-the type of file label as follows:

SD for Sequential Disk,

DA for REGIONAL files,

ISC fo~ Indexed sequential using Load Cre­
ate, or

ISE for Indexed sequential using Load
Extension, Add, or Retrieve.

32

SD is assumed if this ~arameter is
omi tted.

For output files, the current date is
used as the creation date.

The EXTEN'I sta tement defi nes an extent of a
DASD file. Cne or more EXTENT statements
must follow each DLBL statement. The
EXTENT statement has the format

// EXTENT [SYSxxx], [ssssss], [t], [nnn],
[rrrrr] , [mmmmm] , [dd]

The meaning and format of the operands is
des cribed below.

§ys~~~ (symbolic unit) is a 6-character
field that indicates the symbolic unit of
the volume to which this extent appl ies •
If this operand is orritted, the symbolic
unit of the preceding EXTENT statement is
used.

For multi-volume REGIONAL files the sym­
bolic unit numbers in the correspcnding
EXTENT statements must be in direct ascend­
ing sequence (e.g., SY-S006" "SYS007"
SYSOOS).

222222 (serial number) is a field of cne to
siK characters that indicates the volume
serial number of the volume to which this
extent applies. If less than six charac­
ters are used, the field is right-justified
and padded to the left wi tn zeros. If this
operand is omitted, the volume serial numb­
er of the preceding EXTEN'I statement is
used. If no volume serial number was pro­
vided in tha t sta tement" the serial number
will not be checked. (Files may be des­
troyed in this case due to mounting of the
wrong vol ume.)

! {type) is a 1-digit field indicating the
type of extent as follows:

1 - data area (no split cylinder)
2 - independent overflow area (for indexed

sequential file)
4 - index area (for indexed sequential

file)
S - data area (split cylinder)

~ype 1 is assumed if this operand is
omitted.

TITITI (sequence number) is a field of one to
three characters that ccntains a decimal
number from 0 to 255,. The decirr,al nurrber
indicates the sequence number of the extent
within a multi-extent file. For indexed
files, the sequence number 0 is always
associa ted wi th the master index. Thus" if
a master indeK is specified, the sequence
number for indexed files starts with 0;

otherwise, i.e., if no master index is
used, the first extent of an indexed file
has the sequence number 1. The extent
sequence number for all other types of
files begins with O. If this operand is
omitted for the first extent of ISFMS
files, the extent is not accepted. This
operand is not required for SD and D~
files.

rrrrr (relative track number) is a field of
one-to five characters that indicates the
sequential number of the track (relative to
zero) where the data extent is to 1:egin .•
For instance, track 0 of cylinder 150 on a
2311 has the relative track number 1500.
If this operand is omitted on an ISFMS
file, the extent is not accepted. The
operand is not required for SD or DA input
files (the extents from the file labels are
used in this case).

mrnrrrrm (number of tracks) is a field of one
to five characters that indicates the numb­
er of tracks to be alotted to the file.
'Ihe oper.and may be omitted for SD or DA
input files. For split cylinders, the
number of tracks must be an even multiple
of the number of tracks per cylinder speci­
fied for the file.

99 (split cylinder track) is a field of one
or two digits that indicates the upper
track number for the split cylinder in SO
files.

Note: For INDEXED and REGION~L files the
LELTYP card must also be present.

The TLBL statement contains file label
information for tape label checking and
writing. Its format is as follows:

/ / 'ILBL fi lename" [• file-ID'] , [date] ,
(file-serial-number],
Evolume-sequence-number],
[file-sequence-number],
[generation-number],
(version-number]

'Ihe meaning and format of the operands
is desc~ibed belo~.

filename is a field of one to six charac­
ters-Identical to the name of the PL/I
file.

'file-IO' is a field of one to 17 charac­
ters-;-contained within apostrophes" that
indicates the name associated with the file
on the volume. This operand may contain
embedded blanks. If tnis operand is
omitted for output files, filename is used
instead. If this operand is-omitted for
input files, no labels are checked.

date is a field of one to six numeric
characters. Two formats are possible. The
first format is yy/ddd, which indicates the
expiration date of the file or output or
the creation date for input. ('Ihe day of
the year may have from one to three charac­
ters.) Optionally, a 1- to 4-digit reten­
tion period may be specified for output
files. If this operand is onitted"a a-day
retention period is assurred for output
files. For input files, no checking is
performed if this operand is omitted or if
a retention period is sFecified~

file-serial-number is a field of one to six
charaCters-that-Indicates the volume serial
number of the first (or only) reel of the
file. If less than six characters are spe­
cified, the field is right-justified and
padded with zeros. If this operand is
omitted for output files, the volume serial
number of the first (or only) reel of the
file-is used. If this operand is omitted
on input, no checking is performed.

Y2!~~~~~~g~~nf~~n~mt~E is a field of one to
four digits. The sequence numbers of the
volumes of a_multi-volume file must be in
ascending order. If this operand is
omitted for output files~ BCD 0001 is
assumed. No checking is performed if this
operand is omitted for input files.

iil~=~~gE~nc~=n~~Q~! is a field of one to
four digits. The sequence numbers of the
files of a multi-file volume must be in
ascending order. If this operand is
omi tted for output files l, BCD 0001 is
assumed. No checking is performed if this
operand is omitted for input files.

9~g~Ee~!2n=n~illQ~E is. f field of one to four
characters that modifies the file-ID. If
this operand is omitted for output files,
BCD' 0001 is assumed. No checking is per­
formed if this operand is omitted for input
files.

version-num1:er is a field of one or two
characters-that modifies the generation
number. If this operand is omitted for
output files~ BCD 01 is assumed. Nc check­
ing is performed if this operand is omitted
for input files.

Notes:
1 :-For output fi les, the current date is

used as the creation date.
2. As far as label processing is con­

cerned, ·UPDATE files are handled the
same as INFU'I files.

Figure 15 (top) shows an example of OLBL
and EXTENT statements used for a sequential
2311 disk input file. The statements iden­
tify the file declared as MASTIN in a PL/I

File Labels 33

program. Its external identification
(stored in the VTOC) is MASTER-INVENTORY­
FILE. No further entries in the DLBL sta­
tement are required for an input file.

The logical unit used for the file is
SYS005 and the volume identification of the
1316 disk pack to be mounted on SYS005 is
VOL172. No further EXTENT statement
operands are required.

Figure 15 (middle) shows an example of
the creation of an indexed sequential file
by usage of the PL/I OASO macro LOOIS. In
addition to the previous example, the
expiration date of the file (March l" 1969)
and the code ISC is specified in the DLBL
statement. There are two EXTENT state­
ments. The first one, specifies the extent
of the cylinder index" which is extent 1 ..
It starts at track number 1000 (i.e.,
cylinder 100, track 0) on logical unit SYS-
004 and consists of 10 tracks. The data
area, which is the second extent ,res ides
on a different logical unit: SYS005. 'I'he
extent number need not be specified in this
case~ but the delimiting comma must be
written.

Figure 15 (bottom) gives an example of a
, TLBL statement. The file is assumed to be

an input file. It is no multi-file volume
and a version number is not used. since it

is an ~nput file" no date entry has- been
specified.

~ULTI-FIL'E VCLUMES AN~ :BACKWARDS FILES

The handling of multi-file volumes on the
2311 requires no special ~reparation since
all file labels are available when the file
is opened. When using tape files, the tape
must be positioned so that the label can be
checked during execution of the OPEN rou­
tine. positioning is not required fer the
first file on the tap~ because it is auto­
matically posi tioned unless the LEA. VE'
option has been specified. For correctly
positioning the tape for the second" third.,
.•• " nth file" the l·EAVE option must be
specified in the ENVIRONMEN1 attribute.
This prevents the CPEN routine from rewind­
i,ng the tape reel. A labeled tape file has
the format shown in Figure 16.

To position a tape reel that ccntains
labeled files at the nth file, the tape
reel must first be rewound and then sFaced
forward in such a manner that the first
information read is the header label cf the
nth file. The Job Control statement used
to control .tape drive operations has the
f cllowing form:

II MTC code,SYSxxx[,nnl

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 17 18 1920 2122 2324 2526 2728 2P~ 3132 3334 3536 3738 :If • • , q '3~ 45'6 A1~ 4950 51 52 5354 5556 5758 S9~ 61 62 6364 6566 6768 6970 71 n 73 74 7576 7778 7980

I I DL ISl MA ST IN 'M lAS TE R- IN vie NT OQ I~ - FI LIE'
I , EX TE NT sl~ Is" ~5 Ivlo l 1 !7!2

f-+-I-

11... Dl IBL cu ST IN I CU ST OM ER - F ILE 37 ' 69 J I, ,1/6 1 SC I.

I , EX mE NT 5 I .. , PH 1016 1118 " 1 1/1) ,.~ f I;
tI I ex !t:IN I sl~ si6 • .5 PiN lolt 12 '1 11 2:: i1 " .11 1;,141

--
I I TL lelL PA IjlR (!)L ' P IAI~ IQiO L L -1= IL E' 1.3 19 '7 1 If 0

1 -r-L I i

Figure 15. Examples for Disk and 'Iape Label statements

/
...It

First File
...It ~ ~ First 6 l Firat i Second Second File

Volume Header ~ TraHer Header ~
Label Label

QI Data QI I QI Data
Q. g- Lobel Label a Records &- Records

etc.

) \

Load
point

Figure 16. Format of Labeled Tape File

34

The operand fgQ~ is one of the following
function codes:

BSF backspace file
BSR backspace record
ERG erase gap
F'SF forward space file
FSR forward space record
REW rewi'nd
RUN rewind and unload
WTM write ta~e mark

Forward-space-file and backspace-file
cause the read head to te positioned at the
record following the next tape mark that is
encounterea. ¢

The operand §!§~~~ is the logical device
address of the tape drive on which the per­
tinent tape reel is mounted.

The operand nn is a decimal number from
01 through 99 that specifies the number of
times the specified function is to be per­
formed. If this field and the comma pre­
ceding it are omitted, nn is assumed to be
01.

The following example shows the MTC sta­
terrents required to position the tape reel
on SYS006 at the header label of the third
data file.

II MTC REW,SYS006
II MTC FSF,SYS006,06

In unlabeled tape volumes, the end of
each file is indicated by a tape mark. A
tape rr,ark mayor may not precede the first
file. Unlabeled tape files written by PL/I
programs have a tape mark preceding the
first file unless NOTAPEMK is specified in
the ENVIRONMENT attribute.

If a rragnetic tape file has the BA.CK­
WA.RDS attribute, the read head must be
positioned behind the traile~ label of this
file before the file is opene1. In case a
file has been written and closed just
before it is re-opened to be read back­
wards, it is positioned correctly if the
LEAVE option was specified for the written
file. Unlabeled BACKWARDS files must start
with a tape rrark.

If an input file of a multi-file volume
declared with the LEAVE option has been
closed and the next file of this volume is
to be opened (or the same file is to be
opened in the reserve direction), the mag­
netic tape is positioned correctly only if
the ENDFILE condition was raised prior to
the closing of the file. In the case of
STRE~M input, additional (dummy) GET state­
ments must be issued to synchronize the
input stream with the ENDFILE condition.
To prevent raising of the CONVERSION condi-

tion, the variables read by these dummy GET
statements should be of the character type.

LINK-EDITI NG AND LABELED F'ILES

Before a program that uses and/or processes
labeled files can be processed by the Lin­
kage Editor, the Linkage Editor must be
instructed to reserve a label area. This
area must precede the area occupied by the
program, except in the case of CONSECUTIVE
disk files where no such area is required.
To reserve the label area, a special Job
Control statement must precede the state­
ment II EXEC I,NKEDT. The type of statement
used depends on whether the program runs
under control of the Disk Operating System
or of the 'Iape Operating System.

The format of the Job Control statement fer
processing disk files with the REGIONAL or
INDEXED option is as follcws:

II LBLTYP NSD(nn)

The operand nn is the largest number of
extents to be used by any single file.
Note that this number must be enclosed in
parentheses.

Note that nn must specify the number of
EXTENT cards and not the EXTENTNUMBER in
the ENVIRONMENT attribute.

The format of this statement for the
processing of labeled tape files is as
follows:

1/ LBLTYP TAPE

Note: This statement is not required for
processing of labeled tape files if REGION­
Al files are used at the same time.

The format of the Job Control statement for
the processing of labeled tape files is as
follows:

II LBLTYP TAPE(nn)

The operand nn is the number of labeled
tape files to be processed.

Figure 17 shows a source deck incl uding
Job Control statements for processing one
REGIONAL file with two extents, and two
tape files.

Fi le Labels 35

// JOB INVENTRY
// OPTION lINK,lIST,ERRS,6OC

PHASE UPDATE, *
// EXEC PL/I

INVENTRY: PROCEDURE OPTIONS (MAIN);

/*
ENTRY

DECLARE MASTER FILE UPDATE RECORD ENVIRONMENT
(REGIONAL(3) ••••) •••• ,
BACKUP FILE OUTPUT ENVIRONMENT (MEDIUM
(SYS007,2400) ••••) •••• ,
EXEPT FILE OUTPUT ENVIRONMENT (MEDIUM
(SYS008,2400) ••••) •••• ,

END;

//lBLTYP NSD(02)
// EXEC LNKEDT
// DLBL MASTER,' MASTER INVENTORY FILE' "DA
// EXTENT SYS005,1427
// EXTENT SYSOO6,1431
// TLBL BACKUP,' BACKUP INVENTORY' , 100,2711",10,8
// TLBL EXEPT, 'EXCEPTION INVENTRY' ,30,2614",10,0
// EXEC

data
/*
/&

Figure 17. Sample Source Deck with control
Statements

CATALOGING OF LABEL INFORMA'I'ION

For DOS, the DLBL, EXTENT, and TLBL state­
ments for sequential files may be cataloged
as standard files so that the programmer is
relievee from issuing the control cards
with each execution of the program. For
details refer to the SRL publication
describing the DOS system control and sys­
tem service programs.

PROGRAM - LABEL COMMUNICATION

Figure 18 shows the communication between a
PL/I source program, the object program,
Job Control statements, and a 2311 disk
unit with a 1316 disk pack.

'I'he LIOCS (Logical. Input/Output Control
System) table produced by the PL/I compiler
somewhere contains the file name as a
character string. The communication
between this table and the actual file
extent (s) is established by storing the
extent information in the table during
executicn of the OPEN statement.

'I'he set of label statements (DLBL,
EXTENT) to be used for opening the file is
the one whose DLBL statement contains the
same file name as stored in the character

36

string of the LIOCS table. 'Ihe logical
device address is taken from the EXTENT
card. The physical unit -- in this case a
2311 disk drive -- is then determined from
the standard assignment or froIT the tem­
porary assignments, respectively. The
serial number field of the EX'IENT statement
is compared against the volune label of the
1316 disk pack to determine whether the
right pack has been mounted.

The remaining action depends on the file
type. For INFUT or UPDATE files" the VTOC
on the disk pack is searched for a label
matching the file-ID issued in the DLBL
sta tement (MY DEAR FILE in Figure 18,;)
When a matching label is found, the remain­
ing file information is checked against the
label information in the v'roc" and the
extent information is passed to the LIOCS
table to allow proper addressing of the
blocks to be transferred.

In case of OUTFUT files, all existing
labels in the VTOC are checked against
overlap with the file to be created. The
file is opened only if there is no overlap
with any unexpired file. The new label is
then written into the V'ICC.

In case of CONSECUTIVE mult-i-volume
files, one volume will be oFened at a time,
i.e., the second volume is opened when the
last extent of the first volume has been
processed, etc. Opening of the second and
following volumes is automatic. Thus, no
explicit CPEN statement need be given. For
all other files, all volumes will be opened
at once. Therefore, all volumes to be pro­
cessed must be mounted at the same time in
this case.

The handling of tape label inforrraticn
is similar.

ASSIGNMENT OF SYS'IEM FILES '10 DISK

In systems with at least 24K positions of
main storage, the system logical units SYS­
IPT, SYSlST and/or SYSFCH may be assigned
to an extent of 2311 or 2314 disk storage.

It should be noted that the assignment
of system files to disk requires operator
intervention. For a complete description
(also of ASSGN and CLOSE ccrrmands) refer to
the SRL publication System/360 Disk Operat­
ing, System Control and Systerr Service Pro­
grams, Form GC24-5036.

The Pl/ I programmer shoul d be aware of
the fact tnat the PL/I standard files SYSIN
and SYSPRINT are assigned to SYSIPT and
SYSLST respectively. Since these files
cannot be closed by the programmer and only
one PL/I file can be opened for one System
logical unit on Disk at anyone time, the

use of GET or PUT statements without the
FILE option should be avoided if there are
user-declared files for SYSIPT and SYSLST.
In order to avoid implied usage of SYSLST
for comments as a result of error condi­
tions, it is recommended to use the ONSYS­
LOG option in the OPTIONS attribute of the
M1\IN procedure.

The assignment of system logical units
to disk storage drives must be permanent.
The operator ASSGN command must be used
instead of the programmer statement
(II ASSGN). Teroforary assignments (via the
II ~SSGN statement) to other device types
are permitted.

~QE~: The system generation parameter SYS­
FIL is required to allo~ assignment of sys­
terr logical units to a disk drive.

System input and output files are
assigned to disk by providing a set of DLBL
and EXTENT statements and then submitting a
permanent ~SSGN Command. The set of DLBL
and EXTENT statements preceding the ASSGN
com~and may contain only one EXTENT
statement ..

The filename in the DLBL statement
(which will be associated with the SYSxxx
entry from the accompanying EXTENT state­
ment) must be one of the following:

IJSYSIN for SYSRDR, SYSIPT, or the
combined SYSRDRISYSIPT file SYSIN

IJSYSPH for SYSPCH

IJSYSLS for SYSLST

In the DLBL statement, the codes operand
must specify SD (or blank, which means SO)
to indicate sequential DASD file type.

In the EXTENT statement, EYE~ may be 1
(data area, no split cylinder) or 8 (data
area, split cylinder). There is no unique
requirement for the remaining operands of
the EXTENT statement.

The ASSGN command must be one of the
following:

1. ASSGN SYSIN,X'cUU' (fcr a ccmbined
SYSRDRI SYSIPT file).

2. ASSGN SYSRDR,X'cuu' (for SYSRDR cnly).

3. ASSGN SYSIPT ,X' cuu' (for SYSIPT only).

4. ASSGN SYSPCH,X'cuu' (for SYSPCH).

5. ASSGN SYSLST,X'cuu' (for SYSLST).

Note that all must be permanent
assignments.

system logical units assigned to disk
must be closed by the operator. The opera­
tor CLOSE command must be used to specify a
system input or output file which has been
previously assigned to a 2311 or 2314. The
oftional second parameter (X'cuu') of the
CLOSE command may be used (instead of an
ASSGN command) to assign the system lcgical
unit to a physical device.. The system will
notify the operator that a CLOSE is
required when the limit of the file has
been exhausted. If a program attempts to
read or write beyond the limits of the
file, the program will be terminated and
the file must be closed.

File Labels 37

II ASSGN SYS004,X'191'

FILE
'MY DEAR

FilE'

Volume label
VOll2A

Unit X'191'

2311 Disk Lhit

II EXTENT SYS004, V0112A", 1000,210

VTOC containing
label of
'MY DEAR FilE'

-----1/0 commands in 1I0CS table control actual delta transfer
---File information chain

I
I
I
I
I
I
I
I
I
I
I
I

___ --1

- - -Information flow between VTOC and 1I0CS table at open timed

Figure 18. program - Label communication

38

...-----tPVI source program

Object program
1I0CS table

DC CL8'FILEA

DECLARE FllEA FilE

UPDATE ENVIRONMENT

(MEDIUM (SYS004,2311)

The user of PL/I programs is not concerned
with internal linkage during activation and
de-activation of blocks. To increase the
capability and/or efficieny of his program
he may, however, wish to combine modules
written in the PL/I sutset language with
modules written in Assembler language. For
example, the programmer may wish to make
use of the checkpoint facility. Since
there' is no checkpoint facility in PL/I,
the user may call a subroutine written in
Assembler language. calling of sUbroutines
written in FORTRAN or COBOL is not
permitted.

~~g~2~~_~~Y~~!Q~2

Some registers may have to be used during
the execution of the called program. The
user must save the contents of .these regis­
ters by providing a 'sa ve area. The address
of the save area is contained in register
13. The general registers involved in
linking a called procedure to the main pro­
gram are listed in Figure 19. Note that
floating-point registers are not saved by
the called· subroutine.

r--------T--------------------------------,
IREGISTERICONTENTS I
~--------r--------------------------------~
I 1 IAddress of an argument list. ,
, ,This list contains the addresses I
I lof the arguments in the sequencel
, ,stated in the argument (or para-I
I ., meter) list in the CALL, PROCE- ,
I 'DURE, or ENTRY statement. Each I
I ,argument requires one full-word I
r Ion full-word l::oundary. In func- t
I Ition references, the argument ,
, Ilist is immediately followed by I
I I the address of the field where ,
I I the information computed by the I
I I subroutine is stored. ,

.--------+---------~----------------------~ I 13 I Address of the save area. I
t--------+----------~---------------------~
I 14 I~ddress to which the called sub-I
I ,routine returns when execution ,
I Ihas'been completed. I

~--------+--------------------------------~ I 15 IBranch address, i.e., the I
I laddress in the called subroutine I
I Ito wnich control is transferred ,
, I for execution. 1 L ________ ~ __ ~ _____________________________ j

Figure 19. 3eneral Registers Used for
Linking to a Subroutine writ­
ten in Assembler Language

Note: If control is t~ansferred from an
Assembler routine to another PL/I subrou­
tine, registers 7 and 8 must contain the
same values as when contrel was trans­
ferred to the Assembler routine.

Assume that register 13 has been set ear­
lier in the program. ~o aCCOIT:flish
correct linkage, three additional regis­
ters (1~ 14, and 15) must.be set. Regist­
ez: 1 need not be set if no arguments are
passed on and the call is not a function
reference. The three different sequences
that may be used to establish the required
linkage between the main program and the
called subroutine are shown in Figure 20.

~2~~: The DOS/TOS macro instruction CALL
may be used to facilitate programrring in
cases 2 and 3 shown in Figure 20.

r---,
I L 15,=V(subroutine) I
I BALR 14~15 I
t------~----------------------------------~
, CNOP 2,4 I
I L 15,=V(subroutine) I
, LA 14,*+6+4*n ,
, BALR 1~15 ,
, DC A(address1) I
, DC A (address2) I , ,
I I
I DC A (addressn) I
t---~ I L 15,=V(subroutine) ,
I L 1,,=A (listaddr) I
, BALR 14,15 I , , , ,
Ilistaddr DC A (address1) I
I I
I , L ___ J

Figure 20. Three Different Codings fcr
Linking the Main Program and
the Called Subroutine

Each calling program must provide a save
area to store the contents of the general
registers used by the called subroutine.
When communicating with FL/I, the minimum
length of this area is 20 full-words (80
bytes). ~he area may be expanded for
storing intermediate results or data of
the storage cIa ss AU~OMA 'IIC. 'Ihis storage
is called the DSA (Dynamic Storage Area).

Linkage Conventions 39

r----T------------i-------------------------------T------------------------------,
,WORDI DISPLACEMENT I CONTEN'I'S I STORED BY I
.----+------------+-------------------------------+------------~-----------------f
I 1 I 0 IDC X'03' ICalling module t
I' I DC AL3 CINDIC) 1. I ,
r----~------------+-------------------------------f------------------------------f
I 2, 4 ISave area address of program ,Calling module I
I I Ithat called the calling program I I
t--~-+------------+-------------------------------f------------------------------f
I 3, 8 ISave area address of called ,Calling module if initialized I
'J I I program I by I JRSZCN2 ,
r----f------------+-------------------------------+-~----------------------------f
I 4 I 12 IRegister 14 ,Called module ,
.----+------------f-------------------------------+------------------------------~
I 5 I 16 IRegister 15 ICalled module I
r----f------------+-------------------------------f------------------------------f
, 6, 20 I Register 0 ,Called module ,

.----+------------+-------------------------------+------------------------------~
I 7 I 24 IRegister 1 Icalled module I
t----+------------+-------------------------------f------------------------------f
I · I I···· I···· I
I· I I···· I···· I
r----+---~--------+-------------------------------f------------------------------f I 18 ,1 68 I Register 12 I Called module ,
.----+------------f-------------------------------+------------------------------~
I 19 I 72 'Invocation count IFL/I library ,
r----~------------+-------------------------------f------------------------------f
I 20 I 76 IDSA pointer to embracing ~PL/I internal procedures ,
I I I static block I ,
t----~------------~-------------------------------~------------------------------f
, 1.INDIC is a full-word containing the information on the, status of I
I statement prefixes. ,
I 2Modules written in PL/I are initialized by IJKSZCN. I L __ J

Figure 21. Layout of the First 20 Words of the DSA of a Calling Prograrr

Figure 21 shows the layout of the first
20 full-words of the DSA of a calling pro­
gram. Assume that register 13 contains
the address of the first word of the DSA.

The first instruction of a subroutine
written in Assembler language must save
the general registers 14 J 15, 0, •••. , 12.
rhe DOS/TOS roacro instruction SAVE can be
used for this purpose. These registers
must be saved even if their contents are
not destroyed during execution of the sub­
routine. Otherwise, ON-condl.tionsthat
may occur might not be handled correctly.
The next steps to be taken are:

1. Store the contents of register 13 in
word 2 of the subroutine save area.

2. Ensure that word 3 of the save area of
the calling PL/I program is not des­
troyed by the Assembler subroutine.

3. Set register 13 to the address of the
subroutine save area.

4. Ensure the addressacility in case
register 15 is destroyed during execu­
tion of this module.

40

Before returning control from the subrou­
tine to the calling prograrr", the contents
of all registers must be restored. This
is done as follows:

L 13,4 (13) RES/laRES REG13
LM 14,12,12(13) RESTORES REG14-12
BR 14

The last two instructions rray be re~laced
by DOS/TCS macro RETURN (14,12)

The usage of LABEL parameters for
returning from subroutines written in
Assembler language necessitates a library
call instead of a RETURN rracro instruc­
tion. Therefore, the address of the LABEL
p·arameter must be loaded into register 1.
The routine IJKSZCP must be called next.
The contents of register 13 are automatic­
ally saved by this routine. Therefore,
they must not have been changed
previously.

The follo~ing example shows how a
library call can be used to return frcm a
subroutine ~ritten in Assembler language
by means of LABEL parameters.

L 1,8(3)
* LOADS ADDRESS OF TABLE VARIABLE

C~LL IJKSZCP

Note: The library subroutine IJKSZCN must
be-used to initialize the DSA if LABEL
parameters are used.

CORRELATION EETWEEN PL/I AND ASSEMBLER
MODULES

Modules written in the PL/I Subset lan­
guage may call modules written in Assembl­
er language and vice versa. However, if
the program is combined of both PL/I and
Assembler modules, one PL/I module with
the attribute MAIN is required for correct
initialization of the PL/I modules. Note
that this MAIN procedure must be the first
module to be executed.

£~1~ing_~n_~~~~~~!~!_MQg~!~

.A module wr:itten in Assembler language is
called according to the rules for calling
external procedures either by means of a
CALL statement or by means of a function
refer'ence. The Assembler module must
satisfy all linkage rules given in this
section. I f the Assembler module does not
call any other module, it must provide a
minimum save area of two full-words. The
4-byte field INDIC pointed to by bytes 1
to 3 of the first word must contain the
following information:

Byte 3 contains the standard prefix
option switches, whereas byte 2 contains
the actual prefix option switches. If
INDIC is not initialized by the library
subroutine IJKSZCN, the contents of byte 3
must be moved into byte 2 by the prologue
of the module. The contents of byte 2 may
be changed during execution of the module.

Bits 0 to 5 are used as switches with
the following functions:

o ZE"RODIVIDE
1 UNDERFLOW
2 OVERFLOW
3 FIXEDOVERFLOW
4 CONVERSION
5 SIZE

If the respective bits are on (1), the
corresponding ON-condition is enabled. If
they are off (0), the ON-condition is
disabled.

If bit 7 is on, the PL/I interrupt­
handlin~ routine interprets a hardware
fixed-point or decimal overflow condition
as a SI ZE error. If bi·t 7 is off, the
condition is interpreted as FIXEDOVERFLOW.

Note: Word 2 of the save area and regist­
er-i3 must be correctly initialized prior
to the occurrence of any interrupt.

Assembler modules that directly or
indirectly call PL/I modules must prcvide
a full DSA with a minimum of 20 full~
words. This can be done by using the PL/I
library subroutine IJKSZCN, which creates
the DSA and provides correct handling of
register 13. The subroutine sets the
words 1~ 2, 3, 19, and 20 of the DSA.
word 20 accommodates the contents of
register 0 at the time when IJKSZCN was
called. In internal PL/I procedures, this
will be the address of the DSA of the
statically embracing blcck. Word 3 ccn­
tains the address of the storage location
where IJKSZCN will construct the next DSA
in case the present module calls another
module.

Calling IJKSZCN destroys register 5.
Therefore, register 5 should net be
initialized by an Assembler module before
IJKSZCN is ca~led. IJKSZCN is called as
shown below:

LA
L
BALR

1,PBr
15 ,=V (IJKSZCN)
14,15

PEL is an 8-byte area containing the fol­
lowing information:

OS
PEL DC

DC
DC

OF
X' 03'
AL3 (INDIC)
A(length)

Note: f~!l.9~.h is the length of the DSA in
bytes.

The calling sequence for IJKSZCN should
be preceded only by the SAVE rracrc
instruction and two LR instructions pro­
viding for the addressability of the
module itself and the argument list.

r~~!g~~fg~m~g~2

The argument addresses in the argument
list point to the first byte of the data,
array. or structure to ~e passed cn. The
address of a V-type constant is passed for
an ENTRY argument. The wcrd following the
V-type constant contains a pointer to the
DSA of the block statically embracing the
passed procedure if the passed procedure
is in terna 1.

To allow for addressing of AUTOMATIC
variables contained within the embracing
block of an entry parameter~ a call to the
entry parameter should have the format
shown in Figure 22.

Linkage Conventions 41

Figure 22. Forroat of Call to Entry Parameter

If FILE arguments are used, the address
in the argument list points to the file
appendage. In addition to the information
in byte O. the first word of the file
appendage contains the address of the DTF
table for this file.

File arguments should be used very
carefully in Assembler sutroutines. Issu­
ing an IOCS macro to a CCB which is part
of a DTF table used by a PL/I program may
destroy the synchronization between the
PL/I program and logical IOCS. (Note that
the CCB address must te inserted at object
time when IOCS macros are usei for file­
narre parameters.) However" a programmer
experienced in DOS/TOS ICCS may use file­
narre parameters in Assemtler subroutines
to improve the capability of his program.
For example, he may:

1. change DTF tables to allow handling of
additional user labels or non-standard
tape labels before opening a file.

2. change DTF tables to accomplish spe­
cial stacker selection. PL/I programs
use normal stackers for card input
files and stacker 2 for punched-card
output files.

3. issue a CNTRL macro instruction for
seeking on a REGIONAL file to allow
overlapping of seek time.

Figure 23 shows a PL/I procedure that
calls a module written in Assembler lan­
guage, which itself contains a function
reference to another external PL/I
procedure.

Data of the scope EXTERNAL may be
shared between PL/I and Assembler modules.

Case i. Data items within PL/I modules
which-are referred to by Assembler lan­
guage modules:

Use EXTRN statement in the Assemtler
modules.

Case 2. Data items within Assembler
modules which are referred to by PL/I
modules:

42

Each data item must be a separate CSECT;
otherwise incorrect addresses will be
assigned when the prograrrs are
link-edited.

If a data item is a structure, all its
individual elements can be coded together
as a series of DCs or as a DS in the
AS$embler-language rrodule under a single
CSECT. In preparing such a structure, the
PL/I structure mapping rules as described
under Q~£~_~£2~~g§_M~EQi~g must, however,
be observed.

The CSECT statement must be used if the
respective name is not declared tc be
EXTERNAL in any PI/I program within the
same phase. .In all other cases" the r:ro­
grammer may use the instruction he consi­
ders convenient.

~2!~: Values returned by routines written
in Assembler language must have the format
specified fo~ PL/I. Floating-peint data
~E§~Qg_g2~~~1!~gQ·

CHECKPOINT AND RESTART

A typical eKample for a procedure written
in Assembler language is checkpcinting and
restarting. For convenience, both the
checkpoint part and the restart part
should be contained in the same routine.

If checkpointing is desired, the
restart address, the end address~ and the
tape file positioning information must be
provided. (Some additicnal inforrraticn is
required if the checkpoint is to be writ­
ten on disk.) The restart address is
known if it is in the same module as the
checkpoint routine. 'Ihe end address can
be taken from word 3 of the save area,
since this is the address cf the next (not
yet allocated) save area. Names of ta~e
files can either be passed as parameters
or addressed directly by using a V-tYFe
constant. (See the discussion on file
parameters in the section R~§§!~g_~~~=
m~n~~. The same applies to the usage of
V-type constants.)

After the jot has been restarted with
the RSTRT statement, the restart routine

II EXEC PL/I
CALLER: PROCEDURE OPTIONS (MAIN);

DECLARE C CHARACTER (25) STATIC;

CALL SUBASM (A, B,C) 1* CALLS SUBROUTINE WRITTEN IN ASSEMBLER LANGUAGE *1;

1*

II EXEC

SUBASM

x
Y

PBL

ON INDICT

RETURN
*

1*

.
END;

ASSEMBLY

TITLE
START
USING
SAVE
lR
LR
lA
CALL

l
LE
l
AE

CAll

L
MVC
MVI

l
RETURN
OS
OS
OS
DC
DC
DC
DC
DC
OS

END

' SUBROUTINE CAllED BY PL/I AND CALLING PL/I'
0 PARAMETERS ARE A, B, C
*,9
(14,12) SAVE REGISTERS
9,15 ASSURE PROGRAM ADDRESSABILITY
3,1 ASSURE ADDRESSABILITY OF PARAMETERS
l,PBl CREA TE OWN DSA
IJKSZCN

1,0(3) MAKE A ADDRESSABLE
0,0(1) LOAD A
1,4(3) MAKE B ADDRESSABLE
0,0(1) ADD B

lEVEl3, (X, Y, RETURN) CALL PL/I FUNCTION PROCEDURE

1,8(3) MAKE C ADDRESSABLE
0(24,1), RETURN C = RET URN II '.';
24(1), X' 4B'

13,4(13)
(14,12) RETURN TO CALLING PL/I PROCEDURE
F ARGUMENT X
Cl3 ARGUMENT Y
OF
X'03' DATA TO CREATE DSA
AL3(ONINDICT) POINTER TO ON-INDICATOR WORD
A (80) 20-WORD DSA
3X'O'
B'l1110000' SIZE AND CONVERSION DISABLED
CL24 SPACE FOR RECEIVING STRING .FROM

PL/I FUNCTION LEVEL3

II EXEC Pl/l

1*

LEVEl3: PROCEDURE (U, V) CHARACTER (24);
~EClARE STR CHARACTER (21), V FIXED DECIMAL (5,2);

RETURN ("$' II STR) 1* ONE BLANK AUTOMATICALLY
ADDED AT THE END TO OBTAIN
CORRECT LENGTH *1;

END;

Figure 23. Examfle of Linkages between PL/I Procedure and Assembler Module

must issue an STXIT macro for Program
Check Interruption. The two address
operands to te issued with STXIT are the
external names IJKSZCI and IJKZWSI for the
routine address and the save area, respec­
tively. Morecver, the program mask must
be reset.

~2~~: PL/I input files must not contain
interspersed checkpoint records.

Figure 24 shows a coding example of a
routine combining the checkpoint and the

restart part. For detailed information
refer to the following SRL publications:

Fo~_£Q§

IBM System/360 Disk Cperating Systero~ Sys­
tem Control and System Service Programs/I
Form GC24-5036

IEM System/360 Disk Cperating system,
supervisor and Input/Outfut Macros" Ferm
GC24-5037

Linkage Conventions 43

IEM System/360 Tape Operating System, Sys­
tem Control and System Service Programs,
Fcrlr GC24-50 34

IBM System/360 Tape Cperating System,
supervisor ana Input/Output Macros, Form
GC24-5035

CPRS TITLE 'CHECKPOINT -RESTART ROUTINE'
* CALLED BY A PL/I PROCEDURE. THE INFORMATION ON THE

POSITIONING OF THE TWO FILES TAPEIN AND TAPEOUT IS
* TO BE CHECKPOINTED.
CHPRES START

USING *,12
SAVE (14,12)
LR 12,15 SET BASE REGISTER
LA 1,PBL CALL PL/I PROLOGUE ROUTINE
L 15,=V(IJKSZCN)
BALR 14,15
L 2,=V(T APEIN) PREPARE FILE TABLE
L 2,0(2)
ST 2,FILETAB+2
L 2,=V(TAPEOUT)
L 2,0(2)
ST 2, FILET AB+6
L 2,8(13) LOAD END ADDRESS
BALR 3,0 SAVE PROGRAM MASK IN AUTOMATIC
ST 3,80(13) STORAGE
CHKPT SYSOO7,RESTART,(2), TPOINT CHECKPOINT ON SYSOO7
B RETURN

* RESTART PART. NOTICE THAT ALL GENERAL
* REGISTERS ARE AUTOMATICALLY RESTORED.
RESTART L O,=V(IJKSZCI) SET PROGR. CHECK INTERRUPTION 'EXIT.

L 1,=V(IJKZWSI)
STXIT PC,(O), (1)
L 2,80(13) SET PROGRAM MASK.
SPM 2

RETURN L 13,4(13) RETURN TO PL/I CALLER
RETURN (14,12)
OS OF

PBL DC X'03' ARGUMENT FOR IJKSZCN
DC AL3(INDIC)
DC A (88) PL/I SAVE AREA DEFINITION + 1 WORD FOR

* SAVING PROGRAM MASK (MUST BE MULTIPLE
* OF EIGHT).
INDIC DC A{O) ON INDICATORS
TPOINT DC A(FILETAB) POINTER TO FILETABLE

DC A(O) PIOCS FILES NOT USED
CNOP 2,4

FILETAB DC H'2' * FILE TABLE
OS 2F *
END

Figure 24. Coding Example of Combined Checkpoint and Restart Routine

44

This section describes some programming
techniques to save storage, produce a
faster object program, perform functions
not easily achieved with more conventiona~
PL/I language facilities, make a program
fi t into the available storage" etc.

The first column of every source text card
must be blank. Columns 73-80 are ignored;
they may contain any information.

Every program should be writte~ so that it
can be segmented if necessary. The case
of storage overflow should be provided for
'so that, if it does occur, it can be
handled easily. Breakpoints in the logic
of a program, i.e., points where a program
phase can beterrninated and a subsequent
phase entered, should be numerous.

Data common to successive programs can
be kept through the proper use of the
EXTERN~L attribute. However, not all data
need be external.

Programs that read data, compute" and
write results lend themselves to segmenta­
tion most readily. Wherever practical~
entire programs should be written as
sequences of calls for subroutine proce­
dures because each call is a logical brea­
kpoint. Thus, the entire storage can be
loaded with as many subroutines as can be
accommodated. The next phase then repeats
the process of loading the storage with
the next group of subroutines, etc.

In generaL, no more than 90 % of the
storage available for any program phase
should be used during the first six months
of its life because, at one time or anoth­
er, every program tends to expand due to

1. programming errors~

2. the need to expand the original
function,

3. errors in the system program or in the
associated subroutines~ and/or

4. an increase of the data storage
requirements.

If a program uses the entire storage
and no space is left for eventualities~
reasonable solutions become difficult.
If" however, normal expansion was provided
for, the overall job is much easier.

If a numeric variable is to be used fre­
quently in expressions, it is much more
economical to convert the variable to
coded form once and use the coded form in
all expressions. This is easily done by
means of an assignment statement.

Conversions implicit in IF statements
fellow the rules for arithmetic conver­
sions~ and the intermediate precisions
should be considered when using such
expression s.

For example, in case 3 (IF X=U THEN •••)
of the following sample program the conv­
~rsion'rules ~re applied to X~ giving a
short-precision floating-point number
which is then expanded (fadded) with
trailing zeros to long precision before
the actual comparison operation. Thus
expression 2 will be executed, not expres­
sion 1. However 'I if' X and U are assigned
with a value which will be the same in
both short and long precision (e.g. 0.5),
then expression 1 will be executed.

In evaluating the following program"
refer to Section F:. Data Conversion in
f~~_§1§!~mLl~QL_~i§~_~n~=1~Ee-Qferating
§1§!~m§L_R!:!Ll_§~Q§~!:_~~f~!gn~_~an!!~1:"
Form GC28-8202.

Z: PROCEDURE OP 'lION S (MAIN) ;
DECLARE X DECIMAL FIXED(5,2);
DECLARE T' DECIMAL FIXED(15~2)
DECLARE Y FLCAT(6);
DECLARE U FLOAT (16) ;
X=123.45;
Y=123.45;
T=123.45;
U=123.45;
IF X=Y 'IHEN expression 1; /* Yes */

ELSE expressicn 2; /* No */
IF X=T' THEN expression 1; /* Yes */

ELSE expressicn 2; /* No */
IF X=U THEN expression 1; /* No */

ELSE expressicn 2; /* Yes */
IF Y=T THEN expression 1; /* No */

ELSE expression 2; /* Yes */
IF y=u THEN expression 1; /* No */

ELSE expressicn 2 ; /* Yes *1
IF' T=U THEN expression 1; /* Yes *1

ELSE expressicn 2 ; /* No */
END;

General Programming Information 45

The UNSPEC pseudo variable and the UNSPEC
built-in function handle the internal
representation of data. The internal
representation of data is summarized in
Figure 43 and described in detail in the
section Q.~:!::e_§:!::Q!:~g~_B~g~!.!:~!!!~!!:!::~.

'Ihe prograromer must make sure that
values assigned by the UNSPEC pseudo vari­
able have the correct format. otherwise,
the results are unpredictable. Note that
the internal representation of floating­
point data is normalized. Consider the
following exarn~le:

DECL~RE ~ FLO~T, B CHARACTER (1) , C FIXED
DECIMAL(5,3);

B= '8';
X: PUT EDIT (UNSPEC(B» (SKIP,B);
Y : UN SPE C (~) = (31) , 0 ' B I I ' 1 ' B ;
Z: UNSPEC(C)=(16)'O'B II '01100000'B;

The result of statement X is 11111000.
Statement Y yields unpredictable results
since the value to be assigned is not nor­
malized. statement Z also yields unpre­
dictable results since the last half-byte
does not contain a valid sign for packed
decimal data representation.

Whenever possible, input/output phases
should be ~erformedseparately from compu­
tational phases. Thus, the I/O subrou­
tines including the E and/or F conversion
subroutines are never in storage simul­
taneously with the other subroutines (ari­
thmetic, base, and scale conversion,
etc.). This can result inconsiderable
storage savings (see Figure 25).

I

...-___ ~J ROO T I~ ___ -----. I __

1 2 3 4 5 6

r I ,

Phase 1: Phase 2: Phase 3:

Opens files, Opens files,
Performs input, Computation Performs output,
Closes files. Closes files.

Figure 25. Example of Using Overlays to
Perform computations and I/O
Operations separately

46

It may happen that one large set of data
is used in a program only at one specific
point., tha t another large set of data is
used at another point l, etc. In this ca se,
each set of data used at cne point shculd
a~pear in a separate block so that the
data is AU'IOMATIC by defaul t (unless de­
clared to be STATIC) and allocated cnly
when the respective block is active.
Thus, the same storage area can be used
for all data sets to be used.

§l~~~~TIQ~_QI_~~EQg~~!_±!~~§

The PICTURE-format iterr.s cf as PLII are a
more powerful tool for editing than the
format items available in DOS/'IOS PL/I.
However, numeric fields in edit-directed
I/O opera tions can easi ly be sirrulated by
overlaying numeric fields with character
strings using the DEFINEC attribute. An
example is shown below:

DECLARE U PICTURE '$$,$$9.V99BCR',
B CHARACTER (12) DEFINEC U;

U= •••
PUT SKIP EDIT (' U = I' B) (2~);

Since arrays of structures are not per­
mitted in the PLII Subset language~ it is
recommended to simulate arrays gf struc­
tures by using arrays iB structures~ i.e ••
by arrays that are not themselves struc­
tures. Should this not be feasible,
arrays of structures may be simulated by
using based structures. This can be
accomplished by assigning to the pointer
the value of an element cf a character­
string array. The programmer is respons­
ible for sa tisfying all bcundary
requirements.

The following example shows the handl­
ing of structures in as FLII versus DOSI
TOS PL/ I:

Q§_E1L!.

DECLARE 1 A, 2 B FLCAT i' 2 C (10 L, 3 D
PIC'lURE '9999',
3 E FICTURE 'XX',
3 F PICTURE '99V99';

DO 1=1 'IO 10;

A. D(I) = ••• ,.

END;

rhis could be written in DOSITOS as
follows:

DECLP...RE PTR POI NTER" 1 A, 2 B FLOAT, 2 C
(10) CHARACTER (10) , 1 X BASED
(PTR), 2 D PICTURE '9999', 2 E
PICTURE 'XX'~ 2 F PICTURE '99V99':

DO 1=1 to 10;
PTR=ADDR(A.C(I»;

X.D=

END;

For scalar varia~les or arrays~ the
DEFINED attribute is used when

1. a variable is to have more than one
name (correspondence defining), or

2. two separate varia~les are to occupy
the same storage area provided they
are never required simultaneously
(overlay defining).

In either case, the actual storage
requirement is that of the ~ase identifier
and not the sum of the storage require­
ments of all variables. For restrictions
on the use of the DEFINED attribute for
scalar variables and arrays see the Subset
language publication.

The use of the DEFINED attribute can
result in considerable savings of storage.
rhis is obvious for arrays, e.g., the
staterrent

DECL~RE A (5,9,7), B (5~9,7) DEFINED A;

merely requires the storage area for array
A (315 data items). Without the DEFINED
attribute, the storage requirements would
be twice as rruch. But in spite of the
more severe restictions on the use of the
DEFINED attribute for structures, it can
also be of considerable use in this case.

rhe restrictions on the use of the DEFINED
attribute for structures can be circum­
vented by using based variables instead of
the DEFINED attribute. For example, in
the statement shown below structures U and
I are based variables. They are never
allocated any storage. Instead, the
pointer variable P can be used to utilize
the storage occuFied by structure A
whenever structures u and I are referred

to (provided that structure A is not
required at the s arne time).

CECLARE P POIN'IER,
1 A AIIGNED I,

2 B BI'I(7) ,
2 C FIXED DECIMAL(13~2)~
2 D CHARAC'IER (21) I'

1 U ALIGNED BASED (P) I,
2 V BINARY,
2 W"
2 X BI'I(19),

1 I BASED (P),
2 J,
2 K,
2 Li

The sta temen t

P = ADDR (A);

would cause any subsequent reference to
either U or I or any component of U or I
to point to the storage area occuFied by
A. This simulates the use of the DEFINED
attribute with all of its restrictions
removed except that the based structures
must be mapped in the sa~e or less stcrage
than the map of the overlaid structure.
This process may be extended even further
so that a based variable structure occu­
pies the storage area of anyone of many
structures. This is demonstrated belOW:

DECLARE (Vl,V2) PCINTER,
1 A, 2 B, 2 C, •••••• ,
1 U ALIGNED, 2 F, 3 C BIT (9), ••• ,
1 R, 2 Z, 2 M, 3 S CHARAC'IER(2), •• ,
1 Pl BASED (Vl), 2 L, 2 X~ ••• ,
1 P2 ALIGNED BASED (V2),

2 D BIT(9),.;

Vl =ADDR (A) ;

using Pi here points to A

Vl=ADDR (U);

using Pl here points to U

V2=ADDR (R) ;

using P2 here points to R

Vl=ADDR (R) i

using Pl here points to R
etc.

Of course, the storage requirement of
structure Pl must not exceed that of toe
smallest of either A, U, or R. Since the
structure P2 does not point to A or U in
this procedure, the only prerequisite is
tha tits storage requirerrent must net
exceed that of R.

General Programming Information 47

~Qi~_Q~_~Q~~iibi!iiY: The structure­
mapping technique for as PL/I is identical
to that for DOS/TOS PL/I in every respect
but one. The exception is that Dos/ros
PL/I ca~ses all structures to begin at
double-word boundaries. This is accomp­
lished oy padding to tne left of the first
addressable element until byte zero is
reached. (See the section §E~~£E~~~_~~E=
E~~g_R~1~~, rule 11.)

as PL/I begins structures at the first
addressable element. This difference is
of no significance in PL/I programming
unless the above-described technique is
employed.. When this technique is used"
compatibility is guaranteed if at least
one element of the non-tased structure has
a stringency level that is as high as that
of the element (or elements> of the high­
est stringency level of the tased
structure.

For the D Comfiler the pointer asso­
ciated with a based structure must be
assigned an address value which insures
that the first element of the structure
has the same distance to a doutle-word
boundary as it would have if the structure
was not based.

~Q~~: The use of based structures to
avoid the use of the DEFINED attribute is
dependent on structure mapping which, in
turn, is implementation-defined.

The two preceding sections showed that a
nurrber of structures can te made to occupy
the same storage area. Similarly, a
single character-class variable may be
conceived of in many different ways. Con­
sider the declaration shown below.

DECL1\RE 1\ CHAR1\CTER (80) ,
1 B DEFINED A,

2 C CHARACTER (40) ,
2 D CHARACTER (30) ,
2 E CHARACTER (10) ,

1 F DEFINED A"
2 ,... PICTURE '(8)9' , 13

2 H PICTURE '9' ,
2 I CHARACTER (61) ,
2 J PICTURE • (5) 9V(5> 9',

1 K DEFINED A,
2 L (10) PICTURE • $ $ (4) 9V (2> 9' ;

A represents a string of 80 characters
whereas B, F, and K represent three dis­
tinct structures. However, these three
distinct structures refer to the same
storage area as A.. This technique is
especially useful in programs with many
different structures to te read. For
instance, the program may read a character
string and, depending on it~ first

48

character" treat it in anyone of many
different ways witnout requiring space for
each possitle structure.

If the 48-character set is used, the word
PT, in addition to those listed in the
Subset language publication, is a reserved
keyword. Programs written in the 60-
character set can te read if 48C is speci­
fied in the CPTICN staterrent (but not vice
versa> •

If a size overflow occurs during F-format
output" the output field wi 11 ccntain
asterisks, even if SIZE is disabled.

Using the DISPLAY staterrent with the REPLY
option is possitle only if a 1052 Printer­
Keyboard is a vailahle,

The use of an odd precisicn for decimal
data will keep the generated code at a
minimum and thus improve the prcgrarr
performance.

List-directed output to PRINT files auto­
matically aligns data on freset tab fcsi­
tions. For the D-level compiler" these
tab positions are 1,25,49, '73,97" and
121.

The tat positions are determined from
the control tableIJKTL'IE which is catalo­
gued under this name in the relocatable
library. To obtain different tab pcsi­
tions, the programmer only has to change
this table by specifying the following
macro instruction:

IJKZL (tal:, [tab, ••. ,lFF)

In this macro instruction, 'tab' is a
decimal constant indicating the de~ired
tab postion, and fFF' indicates the end of
the table. Tabs must be specified in
ascending sequence, and their values must
range bet~een 1 and 144. The length cf
the tab list specified in the IJKZL macro
instruction must not exceed 127 charac­
ters, including opening and closing paren­
theses and commas.

Following is an example of the IJKZL
macro instruction and the control state­
ments required to change the tab settings.

II JOB IJKTLTB
II OPTION DECK
II EXEC A.SSEMBLY

1*

IJKZL (1 1 25,50,75,100,FF)
END

* THE RESULTING OBJJ!:CT DECK IS INPUr
* FOR T~E FOLLOWING EXEC MAINT PROGRAM
1/ EXEC MAINT

1*
/&

(Object deck)

If the specified tab positions do not fall
between the values 1 and 144, or if they
are not in ascending sequence, one of the
following messages is issued:

PARAMETER GT 144

PARAMETER NOT IN ASCENDING ORDER

rne execution time of a DO-loop can be
reduced if a fixed binary variable is used
as contrel variable in the DC statement.

For example, if in the statement

DO var = exp1 TO exp2 [BY exp3J
(W H IL E (ex p 4'] ;

evart is a fixed binary value, all con­
stants used as exp1, exp2, and exp3 will
be converted to fixed binary during compi­
lation, in order to avoid conversions dur~
ing execution.

On output, data edited by the E- or F­
format ar~ rounded at the last numeric
position, and not truncated.

When using a PICTURE specification with
'9's for numeric fields and the field is
blank, a program check (data exception)
occurs.

This is a particular problem for card
input where fields are often left blank
rather than filled with zeroes.

The problem can be avoided by declaring
the field with PICTURE using 'Z' rather
than '9'.. Note that for fields over­
punched with the sign, this is not true.

Assume card columns 1-10 are numerical
and mayor may not be punched.

DECLARE CCl 1 FICTURE '(10) 9' i
DECLARE CCl=1 FICTURE '(10)Z'i

The first DECLARE state~ent will cause a
data exception if the field is blank. In
the second example, no data exception will
occur.

The programmer should, however, be
aware that the exclusive use of '9's in a
PICTURE specification results in more
efficient code.

When the list-directed and edit-directed
transmission modes are used for the same
file, the user is responsible for the
correct pos it ioning 0 f the fil e.

USE OF PIC'IURES WI'IH S'IREAM-ORIEN'IED DATA
~g~~~~£§§IQ~-------------------------

The D compiler handles the~ in the
same way as normal character-string
variables.

All kinds of arithmetic pictures are
possible in the data lists of GET and
PUT sta tements.

a. Edit-directed transrrission:
Only such items in the data stream
which can be described by the E or
F format can be transferred from
(FUT) or into (GET) arithreetic
pictures. If, on output~ the pro­
grammer wants the churacter repre­
sentation of the picture, he
should use the CHAR built-in func­
tion as pseudo-variable with the
picture as argurr.ent in the data
list.

b. list-directed transrrission:
On input, only [+1-] arithmetic
constants can be transferred into
arithmetic pictures. On output,
the character representation will
be transferred into the data
stream.

General Prograrrrring Informaticn 49

Storage can be saved by proper declaration
of fixed numeric PICTURE fields.

1. PICTURE specifications without drift­
ing characters: make the first digit
position 'Z1 or '*' and avoid writing
the first '9' in the field immediately
following an insertion character.

'Z9,99.V99' is better than '99,99.V99'
'SZZ9999' is better than ·8999999'
'+ZZ,Z999' is tetter than '+ZZ,9999'

2. Specifying "v.n rather than ".V"
results in better code in the follow­
ing cases:

(a) If the first fractional digit
position is the first ·9' in the
field, then
'ZZ,ZZZV.99' is better than
'ZZ,ZZZ.V99'.

(b) If a drifting character or zero­
suppression is specified past the
decimal point, then
'$$$$$V.$$' is tetter than
, $$$$$.V$$'
'*****v.**' is better than
, *****.V**'

3. Give the variable in the right-hand
side of an assignment statement the
attribute DECIMAL FIXED with the same
scale and precision as the PIC~URE.

50

If there is an expression en the
right-hand side try to produce the
desired scale and precision.

4. Zero-suppression with "*" costs more
storage (code) than zero-suppression
with" Z" if

5.

"+" or "-" is used (static or drift­
ing) or

"B" is used !!~!f the last digit
position.

If the PICTURE does not contain at
least one "9", "T", "I" or "R", but
does contain a "V", additional code is
required for clearing the field in
case of a zero value.

When using a PUT statement producing mul­
tiple lines, the ENDPAGE ccndition should
not be enabled because of possible loss of
data:

ON ENDPAGE (F) GOTO X;
PUT FILE (F) EDI'I (data-list) (forrrat-list) ;
X: new header;

In this example the ENDPAGE condition
may be raised during execution of the data
list (assuming multiple-line output); but
no return from i is possible, so that the
rest of the data list will be ignored.

Certain language features are provided in
PL/I to assist the programmer in decugging
his program. These facilities are
described below.

rhe EXHIBIT CHANGED feature uses the
library routine IJKEXHC which requires
approximately 1200 bytes of main storage.

Function:

'Ihe fi rst execution of the CALL IJKEXHC
statement causes the printing of the names
listed in the statement, and their values
in hexadecimal notation.

Generql Format:

C~LL IJKEXHC (name, name ••••);

The argument 'name' can ce an unsub­
scripted, unqualified name representing an
element, an array, or a structure which
are not contained in an array or struc­
ture, or it can be a string or arithmetic
constant. However, it cannot ce a label
constant, an entry name, or a file narre.

General Rules:

1. Names with the attribute AUTOMATIC are
printed each time the CALL IJKEXHC
statement is first executed after a
new block activation. Names with the
attribute STATIC are printed only the
first tirre the CALL IJKEXHC is
executed if the activated block is
internal. They are printed each time
the CALL IJKEXHC statement is-executed
if the activated block is external.

2. On subsequent passes of the CALL
IJKEXHC statement, the names and
values are printed only if the value
has changed since the time the state­
rrent was last executed.

3. If there are several CALL IJKEXHC sta­
tements in one program, they are inde­
pendent from each other.

4. The maximum number of arguments for
one C~LL IJKEXHC statement is 12. If
an argument has the BASED or DEFINED
attribute, the related pointer or base
variable is counted as an argument~
regardless of whether it has been spe­
cified in the argument list or not .•

5. Up to 30 names can be checked by CALL
IJKEXHC statements within one block,
if 10K bytes are available to the com­
piler. For each additional 4K~ u~ to
46K, 30 additional names can be
checked.

6. The values of element variables having
the attributes BINARY FIXED, BINARY
FLOAT, DECIMAL FIXED" DECIMAL FLOAT"
CHARACTER~ BIT, or FICTURE are also
print ed in their external form.

The TRACING feature uses the library rou­
tine IJKTRON which requires 1258 bytes of
main stora ge.

Function:

The two statements" CALL IJKTRON and CALL
IJKTROF, function like a switch. IJKTRON
switches tracing on, while IJKTROF turns
it off.

If tracing is enabled for a bleck~ the
following information is printed on
SYSLST:

1. On entry, the external name of the
block, or, if the block has no label~
the internal name of the block.

2. On leaving a block via an END or
RETURN statement" a message is given
to indica te the exi t. If the STMT
option is active, the statement number
of the END or RETURN staterr.ent is
printed as well as th~ number of the
statement to which the program
returns.
~2~~: If for 'CALL entry name' infor­
mation should be printed" tracing must
be enabled for the bleck which con­
tains the entry name.

3. For each executed GCTC statement
a. the external name (up to eight

characters) and value of the label
variacle or constant if the GOTO
statement is not in an on-unit~ or

b. the ON-condItIon and the value of
the label variable or constant if
the GCTC statement is in an
on-unit.

If the STMT option is active, the sta­
temen t number of the GOTO staterr.ent
and the statement number of the target
statement are also displayed.

Program-Checkout Facilities 51

General Format:

CALL IJKTRON;
CA.LL IJKTROF;

General Rules;

1. Tracing can be explicitly enabled in a
block by a CALL IJKTRON statement.

2. A CALL IJKTROF statement explicitly
disables tracing in a block.

3. If tracing is neither explicitly
enabled nor disabled in a block, the
tracing status of the dynamically con­
taining block is applied.

4. The dynamically containing block of
the main procedure has tracing
disabled.

5. A.t least one of the two statements has
to be specified if tracing is to
appear in an external procedure.

6. when calling an external procedure
(provided tracing is enabled at the
time of the call), the called phase
must have a call for either IJKTRON or
IJKTROF. If this condition is not
satisfied, the results are unpredict­
able in the event of an interrupt.

~~~!H.;:!.~ : 

1) A1: PROCEDURE OPTIONS (MAIN); 

2) CALL IJKTRON; 

3) GOTO All; 

4) A.ll: CALL Bl ; 
5) C=3; 

6) GOTO A2 ; 

7) A2: BEGIN; 

8) CALL IJKTROF: 

9) GOTO A21; 

10) A21: CALL IJKTRCN; 

52 

11) END A2; 

12) 
13) B1: 

END Al; 
PRCCEDURE; 

14' CALI IJKTRCF; 

15) RE'IURN; 

16) END Bli 

This example ca uses the f ellowing (the 
statement numbers in the above example are 
referenced in the left-hand margin belcw) : 

1) When the main procedure is inveked~ 
no tracing status is specified and~ 
therefore~ tracing for this bleck 
and, per definition, for the dynam­
ically containing bleck is 
disabled. 

2) Tracing is explicitly enabled in 
block Al. 

3) The external name and value ef 
label All are printed. 

4,13) No tracing status is specified fer 
this block: therefore, the 
(enabled) status ef the containing 
block A1 is adopted and the name of 
the procedure B1 is printed. 

14,15) Tracing is explicitly disabled for 
this block" and nc rressage is 
printed when control returns to 
sta tement 5. 

6) The external name and value of the 
label A2 are printed since tracing 
is still enabled in A1. 

7) With the activation of block A2 
tracing is neither enabled ncr dis­
abled, therefore the (enabled) sta­
tus of block A1 is adopted and the 
external name of block A2 is 
printed. 

8,9) Tracing is disabled for bleck A2 
and no message is printed. 

10,11) Tracing is again enabled and the 
pass of the END statement is indi­
cated on SYSLST. 

12) Since tracing in the main routine 
is still enabled, the pass of this 
END statement is also indicated on 
SYSLS'I. 



The stat~ment 

ChLL DYNDUMP (argument-list); 

may be used to have the internal represen­
tation of the items in the argument list 
displayed in hexadecimal notation. rhe 
argument list may contain up to 12 items. 
Each argument must be either a scalar 
expression or a variable name. 

The DYNDUMP routine (56 bytes in 
length) uses the PL/I Control routine and 
the SYSPRINT file with the associated 
module. No additional I/O subroutines are 
required. Thus, the DYNDUMP routine pro­
vides an economical way of displaying 
intermediate results during checkout of 
PL/I programs with a minimum of library 
and I/O module overhead. 

The following example shows the use of 
the DYNDUMP routine. 

DECLARE A FIXED(5~2). B(10), C BIT(l); 

ChLL DYNDUMP (A,B,C); 

~hree items are displayed: A as 3 
bytes (6 hexadecimal digits), B as 40 
bytes (80 hexadecimal digits), and C as 
one byte (2 nexadecimal digits). 

~QE~: The current value of C is indicated 
by the first bit. If the variable length 
is an exact ITultiple of 48 bytes, the end 
address+l will be printed on the next line 
in order to delimit the variables for ease 
of reading. 

~Q~&1!~~_§~~~~!!Q~=!!~~_~gBfg§ 

If a PL/I object program is terminated by 
tne PL/I control routine and the DUMP 
option is active, the problem program area 
is printed (dumped) on the device assigned 
to SYSLST. The following information is 
intended to assist the programmer in ana­
lyzing a program dump and to locate the 
error that caused the termination of this 
program. 

-Note: There is no guarantee that main 
;~~~age organization will always be as 
described belcw. Severe programming 
errors, e.g., illegal use of based 
variables, the UNSPEC pseudo variable, or 
use of user-written Assemtler subroutines 
may yield unpredictable results. 

If the error was caused by an I/O 
operation, leak up the Linkage Editor 
storage map to find the address of the DTF 
table for the respective file. The first 

~ord of the DTF table contains the address 
of the corresponding CCE. For details en 
the CCB refer to the SRL publications 
describing the DCS/TCS SUfervisor and ~/o 
macro instructions. 

Data declared with the attribute 
EXTERNAL can be found using the addresses 
given in the Linkage Editor storage ~ap. 

To determine the absolute address of 
sta tic internal data refer to the effset 
table listing (see the section Offset 
~~Q!~_~!st!~g). ------

TO locate the storage allocated to an 
automatic variable# the cffset of the 
variable within the DSA (Dynamic Storage 
Area) is determined frorr the offset table, 
and this offset is added to the DSh 
address of the block to which the variable 
is internal. 'rhe address 0 f the rSA is 
automatically loaded into register 13 at 
prologue time. Word 20 of the DSA con­
tains the DSA address of the statically 
embracing l:lock. 

The load point of the main DSA is the 
next double-word boundary after the high­
est high-core address of all external 
blocks linked in the pregrarr .• 

More than one DSA may be allocated. 
i.e., if more than one block is active. 
To find the DSA of the blcck where the 
error is detected, check the byte pointed 
to by register 13. If this byte contains 
either x'hl' or X'h3' (h rray be any hexa­
decimal digit), register 13 pOints to the 
relevant DSA. In this case, the error 
message was most probably caused by a Pro­
gram Check interrupt. 

The instruction that caused the inter­
rupt can be found by means of the diag­
nostic message. ~he old PSw and the regi­
sters can te found at the lecation with 
the external latel IJKzwSI. 

If the byte contains X;05~, register 13 
points to a LSSA (Library Standard Save 
Area), the second word of which contains 
the chain-back word. If tnis again feints 
to a LSSA~ repeat the chain-back process 
until the chain-back werd faints to a DSA. 
This DSA then belongs to the block where 
the error was detected. 

To identify the block, go to the chain­
back address of the relevant DSA. If this 
points to another DSA. word 5 of the DSA 
contains the absolute address of the 
block. The block can then be identified 
using the object code listing and the Lin­
kage Editor storage map. If the chain­
back word does not point to a DSh, the 
relevant DSA is the DSA of the MAIN proce­
dure ( see Figure 25A). 

Prograrn-Checkcut Facilities 53 



'Ihe chain of DSAs resembles the current 
environment at the point of execution 
where the error was detected. "Each DSA in 
the chain has its corresponding currently 
active block. From where and at which 

location a specific block is activated can 
be determined by means cf the DSA of the 
calling block. For detailed inf~rmation 
on the first 20 words of the DSA refer to 
the section !:~!!~'§!.9~_£Q!!Y~!!:!:~Q!,!§. 

MAIN .. PROCEDURE OPTIONS (MAIN), . 

CAll SUB1 

L 15,=V{SUB1) r -
BAlR 14,15 

r-~---

---
------
END,. 
l 13,4(13) 
lM 14,12,12(13) ,... 
BR 14 to STOP Routine 

DUMDSA 

-I 
1 

Static Storage 

SUB1 •. PROCEDURE, . 

USING ·,15 
.. STM 14,12,12,(13) 

-"--
PROLOGUE 

CAll LAST 
l 15,=V(~ST) 
BAlR 14,15 

r.--------
RETURN 
l 13,4, (13) 
lM 14,12,12(13) 
BR 14 

Static Storage 

LAST. . PROCEDURE, . 

USING ·,15 
~ STM 14,12,12(13) 

PROLOGUE 

RETURN 
l 
LM 
BR 

13,4(13) 
14,12,12(13) 
14 

Static Storage 

1 h I h I ~ l 
~---------------- I 

DSA SAVMAIN 

Flags I Al3(Block Description) 

L_ Chain Back 
A(DUMDSA) 

I Chain Forward 
A{Next Available Core) I 

I L __ 
Retum Register 14 

Entry Register 15 

Work Area 

Variables 

t 

Figure "25A. DSA Chaining 

54 

I 
J 

_.1 

1-- -

1-- -

1 rt­
I I I 
I I I 
L-t+ 

I I 
I I 

_.J I 
I 
I 
I 
I __ ...I 

." 

r 
I 
I 
I 
I 
I 
L 

DSA SAVSUBI 

Flags I AL3(Block Description) 

Chain Back 
A(Calling DSA) 

Chain Forward 
A{Next Available CQre) 

Return Register 14 

Entry Register 15 

Work Area 

Variables 

t 

I 
I DSA SAVLAST 

+, r .. ----~------------~ 
I I Flags IAL3{Block Description) ...J 
I I 
L I Chain Back 

t t A(Call ing DSA) 
I I 
I I 

--+-' 
I 
I 
I 
I __ ....J 

Chain Forward 
A{Next Available Core) 

Return Register 14 

Entry Register 15 

Work Area 

Variables 

t 

I 
I 

...J 



The storage requirements for data depend 
on the following two factors: 

1. The storage required for the data 
itself. 

2. 'The storage required for the data 
descriptor. (The data descriptor is 
required whenever the compile-time 
data description is to be used in the 
obj ect program.) 

A data descriptor may describe more than 
one data iterr. Only one data descriptor 
is required fer a group of data items that 
have identical <either explicitly or 
implicitly declared) attributes, e.g." for 
individual variables of identical attri­
butes or for array elements. Thus~ the 
statement 

DECL~RE (A, B, C(21), D) FIXED DECIMAL 
(5,2), eE, F, G) PICTURE '$99.99'; 

requires only two descriptors: one 
describing A, B, the 21 C's, and D, and 
one describing E" F, and G. Constants 
(except those used in output lists), label 
variables, label constants~ or pointer 
variables do not require a descriptor. 

A data des eriptor and, therefore, 
storage in the object program is required 
only if the pertinent data item is used in 
a conversion or I/O library subroutine. 

r-------------T---------------T-----------, 
IFixed decimall I I 
IFloat decimal 1 1 1 
I Fixed binary I Coded J I 
J Float binary I I I 
1 Sterling 1 I 1 
I constants 1 I 1 
r-------------t---------------iArithmetie 1 
IFixed decimallNumeric I I 
I Float decimal 1 {picture- I I 
I Sterling I specified} I I 
.-------------+---------------+-----------~ 
JCharacter I I 1 
I Eit I String I I 
I Picture- I I I 
I specified I I 1 
I character I I I 
r-------------+---------------~Non- I 
I Label I Label larithmetic I 
.-------------+---------------~ I 
IPointer IPointer I I L _____________ ~ _______________ ~ ___________ J 

Figure 26. Types of Data Items 

Q~1'~_.§lQBAGE REQUIREMENTS 

Q~!~_!.!~t!.§ 

Figure 26 shows the types of data items 
that require storage. In the fellowing 
text, the storage requirements for each of 
these items are specified and illustrated 
by means of examples. The storage 
requirements gi ven in these exarrrpies per­
tain to the data only. Unless otherwise 
stated, references to coded arithrretic and 
string data apply to both variables and 
constants. Other data ty~es will have 
constants and variables explicitly dif­
ferentiated in regard to storage 
req uirements. 

CODED ARITHME!IC' DA!'A 

Default precision: 15 bits 
Maximum precision: 31 bits 
Storage requirements: 

1. Q~s er !E:£2! 
3 bytes (if required) 

2. Data 
4-bytes internal fixed-point regard­
less of declared or default precisicn. 
Scale factor m~~~_gQ~ be specified. 

Figure 27 shows the sto~age require­
ments for the binary fixed data declared 
in the following sample statement: 

DECLARE I(S,S), A FIXED BINARY(7)~ 
J STATIC, Z(3) FIXED BINARY(27): 

r----T---------------j--------------T-----' 
I DATA I DEC IARED I DEF'AUL! I I 
1 ITEM 1 ATTRIBUTES 1 ATTRIBUTES ,I BYTES 1 
t----+---------------t--------------+-----~ 
I I IDimension (Sr,5) IFIXED BINARY I 160 I 
I I IPrecision (15) 1 I 
.----+---------------+--------------+-----~ 
I A I FIXED B,INARY I None I 4 I 
I I Precision (7) I I I 
r----+---------------+--------------+-----~ 
I J I STATIC IFIXED BINARY I 4 I 
I I I Precision (15) I I 
r----+--------------~+---~----------+-----~ 
I Z I Dimension (3) I Nene I 12 I 
I I FIXED BINARY I I I 
I IPrecision (27) I I I 
r----~---------------4--------------4-----~ 
I !'OTAL 1S 0 I L _________________________________________ J 

Figure 27. Example of Einary Fixed Data 

Data Storage Requirements 55 



Default ~recision: (5,0) 
Maximum precision: (15,0) 
storage requirements: 

1. Q.~§£~!Q1Q.~ 
3 bytes (if required) 

2. Data 
Packed decimal form --
4 bits = 1/2 byte for each digit. The 
sign is always stored and requires 1/2 
byte. The total storage required must 
be expressible in byte form, i.e., 
+5.2 requires 2 bytes (1/2 byte for 
the sign, 1 byte for t'he two digits., 
1/2 byte padding). 
Scale factor range: 0 to 15 (if 
present) • 

Figure 28 shows the storage require­
ments fo~ the decimal fixed data declared 
in the following sample statement: 

DECLARE A FIXED, B(5,~3) FIXED~ I FIXED 
S'I~ 'IIC, Q FI XED (14 ,2) ; 

r----T---------------,--------------T-----' 
ID~~~I DECL~RED I DEFAULT I , 
I l'TEM I ATTRIBUTES I ATTRIBUTES I BYTES I 
~----+---------------+--------------+-----~ 
I A IFIXED IDECIMAL i I 
J I IPrecision( 5, 0) I 3 I 
~----~---------------+--------------+-----~ 
J B I Dimension IDECIMAL I I 
I 1 (5,2,3) JPrecision(5,0)1 90 I 
I I FIXED I I I 
~----+---------------+--------------+-----~ 
I I IFIXED STATIC I DECIMAL I I 
I I I PrecisionC 5, 0) I 3 I 
r----i---------------+--------------+-----~ 
I Q IFIXED I DECIMAL I 8 I 
I IPrecision(14,2) I 'I 
r----i---------------i--------------~-----i 
I TOTAL 104 I L _________________________________________ J 

Figure 28. Example of Decimal Fixed Data 

Default precision: 21 bits 
Maximum ~recision: 53 tits 
Storage requirements: 

1. Q.~§£E!E:!:2! 
2 bytes (if required) 

2. Data 

56 

Hexadecimal floating-point form (see 
the SRL publication I~~_2~§:!:~~~1~~L 
!:!!!!£!E.!~~_.2!~_QE~-;:~t i2!!·, Form 
A.22-6821). 
a. Short floating-point form (4 

bytes) used for a precision of 
less than 22 bits. 

b. Long floating-point form (8 bytes) 
used for a precision of greater 
than 21 bits. 

Figure 29 shows the stcrage require­
ments for the binary float data declared 
in the following sample statement: 

DECLARE A BINARY, B BINARY(29), C(2,5) 
BINARY(16), D FLCA~ BINARY(50); 

r----T---------------7--------------T-----' 
JDATAI DECLARED I CEFAUL~ I I 
IITEMI ATTRIBUTES I ATTRIBUTES I BYTES' 
r----+---------------~--------------+-----~ 
I A I BINARY I FLOAT I 4 I I' ,Precisicn (21), , 
~----+---------------+--------------+-----~ 
I B I BINARY I FLOAT I 8 I 

, I Precision (29) I 'I 
~----+~--------------+--------------+-----~ 
,C IDimension (2, 5)1 FLOAT I 40 I 
I I BI NARY I I I 
I IPrecision (16) I I I 
r----+---------------+--------------+-----~ 
'D 'BINARY FLCAT INcne I 8 I 
I IPrecision (50) I I I 
r----i---------------4--------------4-----~ 
, TOTAL 60, L _________ - _______________________________ J 

Figure 29.. Example of Binary Float Data 

~~£!!!!~l F12~!:; 

Default precision: 6 decimal digits 
Maximum precision: 16 decimal digits 
Storage requirements: 

1.. De~criE!:;2E 
2 bytes (if required) 

2. Data 
a:--Short form (4 bytes) used for less 

than 7 decimal digits. 
b. Long form (8 bytes) used for rrore 

than 6 decimal digits. 

Figure 30 shows the stcrage require­
ments for the decimal float data declared 
in the following sample statement: 

DECLARE A (5 ,3), B FLCAT (8) " 
C DECIMAL(14), Di 

r----T---------------j--------------T-----' 
I tAT A 1 DECLARED I DEFAULT I I 
lITEM, ATTRIBUTES I ATTRIBUTES I BYTES! 
~----+---------------~--------------+-----f 
I A I Dimension (5, 3) I DECIMAL FLOAT I 60 I 
" ,precisicn (6), , 

~----+---------------+--------------+-----~ 
'B IFLCAT 'DECIMAL ,8 I 
, I Precision (8) I I' 
r----+---------------~--------------+-----~ 
,C 1 DECIMAL I FLOAT I 8 I 
l ,precision (14) I I' 
~----+---------------~--------------+-----f 
I D ,None I DECIMAL FLOAT' 4 I 
l' I Precision (6), , 
~----i---------------~--------------i-----f 
, TOTAL 80 I L _________________________________________ J 

F'igure 30. Example of Decimal Float Cata 



NUMERI: (PICTURE-SPECIFIED) DATA 

Default prec1s10n: not applicable 
Maximum length: after resolution, of all 

reFlications, the picture-specified num­
eric field must not pe greater than 32 
characters. The number of possible 
picture-specified digit positions 
deFends on whether the nurn~er is numeric 
fixed (15 digits) or numeric float (16 
digits). 

Storage requirements: 

1. Q~§£!!E~£! 
a. Fixed-Foint data -- one byte for 

each picture character plus S to 
20 bytes, with an average of 12 
additional t:ytes (if required). 

b. Floating-point data -- one byte 
for each picture character plus 20 
to q4 bytes~ with an average of 24 
additional bytes (if required). 

c. Numeric sterling data -- one byte 
for each picture character plus 4 
bytes (if required). 

2. Data 
One-byte for each picture character 
exceFt for M, V, K~ and G. 

Figure 31 shows the storage require­
ments for the numeric data declared in the 
following sample statement: 

DECL~RE ~ PICTURE '$99.99', B PICTURE 
'(S)9V(Q)9', C PICTURE' .99K+99'" D 
PICTURE 'ZZ99B9(2)B.9,99'; 

r--~-T---------------7--------------7-----' 
I I BEFORE I AFTER I I 
'DATAl REPLICATION , REPLICATION, , 
I I'IEMI RESOLUTION , RESCLUTION I BYTES I 
t----t---------------+---~----------+-----f 
'A I $99. 99 I Sam e ,6 I 
r----t---------------t--------------t-----~ 
,B I (S)9V(Q)9 199999999V9999 I 12 I 
t----t---------------t--------------t-----f 
,C I . 9' 9 K + 99 I Sam e ,6 , 
r----t---'---------,---t--------------t-----~ 
I D I ZZ99B9(2)B.9,99,ZZ99B9BB.9,99 I 13 I 
t----~---------------~--------------~-----f 
I TOTAL 37 I L _________________________________________ J 

Figure 31. Examfle of Numeric Data 

STRING D~T~ 

Default ~recision: not applicable 
Minimum length: 1 character 
Maximum length: 255 characters 
Storage requirements: 

1. ~~:!£!!E:.2! 
2 bytes (if required) 

2. Data 
I-byte per character 

Figure 32 shows the storage require~ 
ments for the character-string data de­
clared in the following sample statement: 

DECLARE A (5) CHARACTER( 20), B CHARACTER 
(111); 

~-----------T---------------------T-------, 
I DATA ITEM , DECI,ARED ATTRIBUTES , BYTES , 

t-----------t---------------------t-------f 
I A I Dimension (5) I 100 I 
I I CHARACTER (20) I I 
~-----------t---------------------t-------~ 
, B , CHARACTER (111) ,111 I 
t-----------+---------------------~-------f 
I TOTAL 211 I L _________________________________________ J 

Figure 32. Example of Character-String 
Data 

Default precision: not aF~licable 
Minimum length: 1 bit 
Maximum length: 64 bits 
storage requirements: 

1 • Q~§£;:i12.!:Q!: 
2 bytes (if required) 

2. Da ta 
I-Eyte for each group of S bits or 
part thereof. Packed format is n£~ 
permitted. 

Figure 33 shows tbe storage require­
ments for the bit-string data declared in 
the following sample statement: 

DECLARE A BI'I(12), B (11,7,,2) EI'I (1); 

r-----------T--------~------------T-------, 
I DATA ITE~ I DECLARED ATTRIBUTES I BYTES I 
r-----------+---------------------+-------~ 
I A I BI 'I' (12 ) ,2 I 
t-----------+---------------------+-------f 
, B I Dimens ion (11,; 7,~ 2) I 154 I 
I , BI'I (1) " 

~-----------~---------------------~-------~ 
I TOTAL 156 I L _________________________________________ J 

Figure 33. E~ample of Eit-String Data 

Default precision: not a~plicable 
Minimum length: 1 character 
Maximum length: 255 characters 
Storage requirements: 

1 • Q~§2;:1E!:2f 
2 bytes (if required) 

2. Da ta 
I-byte per character 

Data Storage Requirements 57 



Figure 34 shows the storage require­
ments for the picture-specified character­
string data declared in the following 
sample stateIrent: 

DECLARE A PICTURE '(105)X'# B 
CH~R~CTER (105) : 

r-----------T---------------------T-------, 
I DATA ITEM I DECLARED ATTRIBUTES I BYTES I 
r-----------+---------------------+-------~ 
I ~ I PICTURE' (10S)X' I 105 I 
.-----------+---------------------~-------~ 
I B I CBARACTER (l05) I 105 I • ___________ L ________________ -----L-------~ 
I TOTAL 210 I L _________________________________________ J 

Figure 34. Example of Both Character­
String and Picture-Specified 
Character-String Data 

LAEEL DATA 

Default precision: not applicable 
Maximum precision: not applicable 
Storage requirements: 8 bytes 

Default precision: not applicable 
Maximum precision: not applicable 
Storage requirements: 8 bytes for each 

occurrence of the label in ap assignment 
statement or in a GO TO statement refer­
ring to a label that is not contained in 
the bleck containing the GO TO state­
ment. Label constants in R format items 
require 4 bytes. All other label con­
stants do not require storage. 

Figure 35 shows the storage require­
ments for the label data declared in the 
following sample statement: 

DECL~RE ~ L~BEL, B(7) LABEL; 

r-----------T---------------------T-------, 
I D~T~ ITEM I DECLARED ATTRIBUTES I BYTES I 
.-----------+---------------------+-------~ 
I A I LABEL I 8 I 
t-----------+---------------------+-------~ 
I B I Dimension (7) I 56 I 
I I LABEL I I 
r-----------L---------------------L-------~ 
I TOTAL 64 I L _________________________________________ J 

Figure 35. Example of Label Data 

POINTER V~RI~BLES 

Default precision: not applicable 
Maximum prec1s1on: not applicable 
Storage requirements: 4 bytes 

58 

Figure 36 shows the storage require­
ments for the pointer variable declared in 
the following sample statement: 

DECLARE P PCINTER, A B~SED (P) FLOAT; 

r----T---------------T--------------T-----' 
ILATAI CECLARED I DEF~ULT I I 
IITEMI ATTRIBUTES I ATTRIEUTES IEYTESI 
r----+---------------+-------~------+-----~ 
I P I POINTER INcne I 4 I 
r----~---------------~--------------L-----~ 
I TOTAL 4 I L _________________________________________ J 

Figure 36. E~ample of Pcinter Data 

STATIC and AUTOMATIC data require the same 
amount of storage. No storage is required 
for EASED data. However~ accessing based 
variables by means of pcinters requires 4 
extra bytes per reference compared with 
the other storage classes. 

Each distinct,EXTERNAL variable~ array# or 
structure requires storage in multiples of 
8 bytes, since padding to the next double­
word boundary is required if the length of 
the EXTERNAL data item is not 8 ~r a mul­
tiple of 8 bytes. Figure 37 shews the 
storage requirements of the EXTERNAL data 
declared in the following sample 
statement: 

DECLARE (A BIT( 2)" B( 3,2,3) CHARACTER(2)" 
C CHARAC'TER (9) I, D FLOAT (14) " E, 
F PICTURE '$99.99', G FIXED DECIMAL 
(13,2» EXTERNAL: 

r----------T------------------------------, 
I I BYTE REQUIRED I 
I ~---------T---------T----------~ 
I VARIABLE I DATA I I I 
I I STCRAGE I PADCING I TOTAL I 
t----------+---------+---------+----------~ 
I A I 1 I 7 I 8 I 
r----------+---------+---------+----------~ 
I B I 36 I 4 I 40 I 
t----------+---------+---------+----------~ 
I C I 9 I 7 I 16 I 
t----------+---------+---------+----------~ 
I D I 8 I 0 I 8 I 
.----------+---------+---------+----------~ 
I E I 4 I 4 I 8 I 
r----------+---------+---------+----------~ 
I F I 6 I 2 I 8 I 
t----------+---------+---------+----------~ 
I G I 7 I 1 I 8 I L __________ L _________ L _________ L_--------_J 

Figure 37. Example of External Data 
Storage 



constants may a~pear in the source text 
wherever an expression is permitted. In 
addition, they may appear as replication 
factors, upper eounds of a subscript range 
in the dimension attribute of an array, 
etc. Appearance and representation of 
constants in the object program depends 
entirely on their representation and con­
text in the source program. Only the fol­
lowing three cases are of concern to the 
programmer: 

1. If a constant appears in the source 
text as an argument in a function or 
subroutine procedure, its object-time 
representation is derived directly 
from the source-program representa­
tion. For example" the statement 

CALL A (1.5# 3.7E-4# 110011B); 

results in an object-time FIXED DECIM­
AL representation of the constant 1.5, 
a FLOAT DECIMAL (short float) repre­
sentation of the constant 3.7E-4, and 
a FIXED BINARY representation of the 
constant 110011B. 

~~E~: If arguments are written as 
constants, these constants are trans­
mitted to the called routine in coded 
form and with the precision derived 
from the source text representation. 
The called routine, in turn, assuroes a 
certain internal representation of the 
argument as specified in the pararoeter 
declaration. The user must therefore 
ensure that base, scale, and precision 
of both arguments and parameters 
match. For instance, declaring the 
first parameter in the aeove example 
as FIXED (7,1) might lead to an 
object-time error tecause the called 
program assumes an argument that occu­
pies 4 bytes, whereas the constant 1.5 
occupies only 2 bytes. 

2. If a constant appears in the source 
text as the upper cound of an array 
subscript, the appearance of this con­
stant in the object program depends on 
how the expression used in this sub­
script position is employed in the 
remainder of the source text. At 
best, no constant appears at oeject 
time for any upper bound. In the most 

unfavorable case, a FIXED BINARY con­
stant appears in the cbject program 
for every upper eound in the dimension 
attribute of tne DECLARE statement. 
Thus, 

DECLARE A (5" 7/, 2)" B (9, 11); 

may result in, at most" five FI XED 
BINARY constants in the object pro­
gram. At best, no object-time con­
stant will appear for the five upper 
bounds in the source text. 

3. An object-time constant is derived 
form each source-text constant of a 
certain base~ scale, and precision. 
However, case, scale, and precision of 
the object-time constant depend 
entirely on the context in which it is 
used. For exarople ll the staterrents 

DECLARE A BINARY; 
A = 1.7; 

cause the constant 1.7 to be stored in 
the oeject program in floating-point 
form, even though the source-text 
representation is fixed decimal. This 
shows that identically represented 
source-text constants may be converted 
at compile time into a number of dif­
f.erent oeject-time constants (this 
does not apply to constants in DO 
iteration specifications). For 
instance, the following sample 
statements 

DECLARE A FIXED DECIMAL, 
B BINARY II C FIXED BINARY; 

A 2; 
B 2; 
C = 2; 

result in three different object-time 
representations of the,single compile­
time constant 2. On the other hand;, 
constants of equal value ll base" scale" 
and precision are stored only once in 
the object program unless NOOPT has 
been specified in the PL/I PROCESS 
card. When in doubt about constants 
which appear similar" e.g., 1.2E+7 as 
opposed to 12000000, the prograrr.mer 
should review the question of preci­
sion of arithmetic constants in the 
Subs et language publ ication. 

Data Storage Requirements 59 



'rhis section discusses the location of a 
variable in relation to other variatles. 
The location of data ~ith respect to the 
entire program is discussed in the section 
E!29!~~_QY~!h~~2· 

In the object program~ variatles that are 
not part of a structure are grouped 
according to certain rules referred to as 
boundary requirements, which depend on the 
hardware configuration of the system used. 
For the System/360, the largest unit of 
storage is the "doutle word" {8 tytes), 
~hich must always be on a double-word 
boundary (double-~ord aligned). That is, 
the first byte of any double word in 
storage rr.ust be on an address divisible by 
8. "Full words" (q bytes) must be full­
word aligned, i.e., the first byte of any 
full word in storage must be on an address 
divisible by q. Bit strings, as another 
example, must be byte aligned, i.e., they 
may occur on any bytE: boundary.. I f any 
machine address divisible by 8 is chosen 
as arbitrary byte 0, the above boundary 
requirements can be reduced to the 
following: 

• double-~ord aligned data may appear on 
any byte 0; 

• full-word aligned data may appear on 
any byte 0,4, 0,4, etc.; and 

• byte-aligned data may appear on any 
byte 0, 1, 2, 3, ••• 7" 0, etc. 

'ro rr.inimize padding bet~een el ement data 
items, the DOS/TOS PL/I compiler gathers -
as far as possible - all el.ement data 
items that are subject to the same boun­
dary requirements. This is done regard­
less of the point of declaration within 
the program. 

'Ihe follo~ing discusses the possibili­
ties of mapping elementary data items gQE 
2QgE~ig~Q_in_§!f~~E~f~§_Qf_~ff~~ and 
should be understood as an introduction to 
the mapping of structures. 

Much storage can be saved by economic­
ally arranging the individual data types. 
Consider the following example: 

~ BIT(2), B, C BIT(9)# 0; 

~he result of left-to-right storage 
allocation is illustrated in Figure 38. 

60 

The total storage requirerrent in this 
example is 16 tytes, of which 5 are used 
for padding. 

A o 

[J 
o 2 4 670 23456 

Figure 38. Storage Allocation Example 1 

Rearranging the variatles as follows: 

A BIT ( 2), C BIT ( 9), B, D; 

results in a reduction of the total 
storage requirements to 12 bytes with only 
one padding tyte. Figure 39 illustrates 
the storage allocation. 

A C B 0 

~I 
o 2 4 5 6 7 0 2 

Figure 39. Storage Allocation Example 2 

Finally, assume that the variables were 
rearranged as follo~s: 

B, D, A BIT ( 2), C BIT ( 9) ; 

This is the way in ~hich the DOS/TOS PL/I 
compiler gathers elerr.entary data iterr.s not 
contained in arrays or structures. The 
total storage requirerrents would be 
reduced to 11 bytes without any padding. 
The storage allocation is shown in Figure 
40. 

BOA C 
~~,..-A.-..,..-A--.. 

I ! ! ! I ! ! ! I I ! I 
o " 5 6 7 0 

Figure 40. Storage Allocation Example 3 

The storage requirement of an array equals 
the sum of the requirements of the indivi­
dual data items contained in the array. 
Bit-string data items are aligned on byte 
boundary. Thus, the storage requirement 
of the array declared in the stat~ment 

DECLARE A (5 ,4,,3) BI'I (9); 

can be calculated as follcws: 'Ihe nurrber 
of data items in the array is 5x4x3=60. 
Due to boundary alignrrent, each iterr 
requires 2 bytes,. 'Iotal storage require­
ment: 2x60=120 bytes. 



The individual items of an array are 
stored in major row sequence. For the 
above exaro~le, this means that the items 
are stored as fo~lows: 

A (1,,1,1) 
A(l,1,2) 

A (5,4,,2) 
A(5,4,3) 

ro Irinimize padding, the DOS/TOS PL/I com­
piler gathers - as far as possible - all 
elementary data items that are ~ubject to 
the same boundary requirements. 

In the declaration of a structure, such 
gatheri ng of data is not performed because 
a structure is regarded as one record, and 
the programmer might wish to predestine 
the relative position of every data item 
within that record, e.g., in a punched 
card. Thus, the statement below results 
in the storage allocation illustrated in 
Figure 41. The total storage requirement 
is 12 bytes, including 3 padding bytes,. 

DECLARE 1 A ALIGNED, 2 B, 2 C BIT(l)~ 2 0: 

B C 

rrJTre 
o 

lIfT] 
o 4 5 0 7 v 3 

Figure 41. storage Allocation Example 4 

In this example, structure A~ which has 
the unused 3 bytes between C and D, can be 
thought of as a record without any editing 
descriptors for the components B, C~ and 
D. It should not be thought of as a bit 
string because this might lead the pro­
grarrrrer to erroneously assume that the 
first bit of the byte following C is the 
fi rst bit of c. 

In the fcllowing discussion~ the term 
"logical depth" is used to describe the 
level number of a minor structure or ele­
mentary data item relative to the level of 
the major structure. A minor structure or 
elementary data item can have a high level 
number but be at a relatively low logical 
depth. For instance, in the following 
sample declaration: 

DECLARE 1 A, 
15 B, 
15 C, 

95 D, 
95 E, 

15 F, 
31 G, 

31 H" 
45 I, 
45 J, 

54 K
" 54 L; 

structure J has components at logical 
depth 5 although the level number is 54. 
The logical depth of these components is 
grea ter than that of the corr.pcnents of 
structure C (3), even though their level 
number (54) is not as high. 

when mapping a rna jor structure" first 
map all minor structures at greatest log­
ical depth n. Then continue with mapping 
the minor structures at logical depth n-l. 
The components that form the rr;inor struc­
ture at logical depth n-l consist of: 

1. elementary items at logical depth n, 
and 

2. minor struc tures at lcgical depth nr 
which have already been mapped. 

After mapping the minor structures at 
logical depth n-l, proceed by mapping all 
minor structures at logical depth n-2. 
Again, the components that form the minor 
structure at logical depth n-2 consist of: 

1. elementary items at logical depth n-l" 
and 

2. minor structures at logical depth n-l, 
which have already been mapped and 
contain the mapped structures at log­
ical depth n. 

Con tin uing this process leads to the 
major structure, which is at logical 
depth 1. Mapping of the rra jor structure 
is done by joining the components at log­
ical depth 2. These corr:pcnents ccnsist 
of: 

1. elementary items logical depth 2, and 

2. minor structures at lcgical depth 21, 

which have already been mapped and 
contain the mapped structures at log­
ical depth 3. These, in turn I, contain 
the mapped structures at lcgical de~th 
4, et c. 

The storage mapping of structures is 
done according to the set of rules listed 
below. In the mapping process, a com­
ponent (or a group of partially mapped 
components) may be shifted to minimize the 
padding that may be required between the 
component and the component to be 
appended. The opportunity or potential 
for such shifting depends on the stringen­
cy level of the element tc be appended. 
The amount of shifting that is permissible 

Data Storage Mapping 61 



r-----------------T-----------------T---------------T-----------T---------------T-------, 
I Variable IStored Internally I Storage I Alignment I IStrin- I 
I Type I as I Requirement1 I Requirement I Explanation Igency I 
I I I (in Bytes) I I I Level I 
~-----------------+-----------------+---------------+-----------t---------------+-------~ 
IEIT(n)2 lOne tyte for eachl n I I I 
I Igroup of 8 bits ICEIL --- I I I 
I I (or part thereof) I 8 I I ~ 

~-----------------+-----------------t-------~-------i 
ICH~R~CTER(n) lane byte per I n I 
I I character I I 
~-----------------+-----------------+---------------i 
I PICTURE lone byte for each I Number of I Byte 
I IPICTURE characterlPICTURE charac-I 
I lexcept M,V,K,G Iters other thanl 
I I IM~ V, K~ and G I 
~-----------------+-----------------+---------------i 
IDECIM~L FIXED 11/2 byte per I w+1 I 
I (w, d) I digit plus 1/2 I CEIL I 
I Ibyte for sign I 2 I 

Data rray 
begin on 
any byte 1 

~-----------------+-----------------+---------------+-----------+---------------+-------~ 
IBINARY FIXED {w) IBinary integer I I I I 
~-----------------+-----------------i I I I 
I BINARY FLO~T (w) I I I I Data must I 
I w < 22 I Short I 4 I Full-word 1 begin on I 
r-----------------~floating point I I I byte 0 or 4 I 
IDECIM~L FLOAT (w)1 , I I , 2 
I w < 7 I , I I I 
r-----------------+-----------------+---------------i , , 
I LABEL I I 8 I I I 
~-----------------+-----------------+---------------+-----------+---------------~ 
I POINTER I ,4, Full-word I Data rr!ust , 
I I , , ( rig ht - , beg in 0 n I 
I I I I adjusted) I byte 0 or 4 I 
r-----------------f-----------------+---------------+-----------+---------------+-------~ 
,BINARY FLOAT (w) I I I I I I 
I 21 < w < 54 I , I I Da ta rrus t I I 
~-----------------~Long I 8 I Double- I begin on I 3 I 
I DECIMAL FLO~T (w)lfloating point I I word I byte 0 I I 
I 6 < w < 17 I I I I I I 
r-----------------~--~--------------~---------------~-----------~---------------~-------~ 
11see .§.!:Q.£~gg_Q.f_~~.!:g!:!!~1_Q~!:~ for data declared lfIith attril:ute EXTERNAL,. I 
12 Structures containing bit strings must have the attribute ALIGNED because the default I 
I attr ibute (UNALIGNED) is not permi tted in the PL/I Sul:set language. I L _______________________________________________________________________________________ J 

Figure 42. Summary of Data Alignment Requirements and Stringency Levels 

is determined by the alignment require­
ments of the element(s) to be shifted. 

Both the stringency level number and 
the alignment requirements for the indivi­
dual data items are shown in Figure 42. 

1. Locate the first minor structure of 
the greatest 12gic~1 depth. (See 
Figure 43, part A. The declaration 
shown is used throughout the figure.) 

2. Begin the maF with the first element 
of this minor structure. The map 
begins on byte zero (See Figure 43, 
part B) .. 

62 

3. Append the next eleIrent of the Irinor 
structure at the first following byte 
position where it may be legally 
placed. 'Ihis byte position is deter­
mined by the alignment requirement of 
the element to be appended. (See 
Figure 43, part E.) 

4. Owing to the alignment requirement, 
some" unused space (padding) may result 
betlfleen the first and the appended 
element. The preceding elerr,ent rray 
then be shifted to the right prcvided 
the alignment requirement of that ele­
ment is still satisfied after the 
shifting. If no shifting or only a 
partial shifting is perrrissible~ the 
padding remains there permanently. 
(See Figure 43, part E.) 



5. The elements so mapped are now per­
manently joined and may be considered 
a single element. The alignment 
requirement of the joined items is 
that of the item of higher stringency 
level. 

6. Repeat rules 3 and 4 for all remaining 
elements of the minor structure. <See 
Figure 43, part B.> 

7. Repeat rules 2 through 6 for all ITinor 
structures of the same logical depth. 
Map all minor structures individually. 
(See Figure 43" part c.) 

8. Repeat rules 2 through 7 for the minor 
structures of the next higher logical 
depth. Elementary items are appended 
according to rules 3 and 4. Minor 
structures are appended ceginning at 
the byte position they had when they 
were previously mapped. padding 
between the two elements, if any, is 
removed by 

a. shifting the succeeding element as 
far tc the left as its alignment 
requirement permits, and 

b. shifting the preceding element as 
far to the right as its alignrrent 
requi rement permits. 

J 

Any padding that rerrains after these 
two shifting processes remains there 
permanently. (See Figure 43, part D.) 

9. Continue this repetitive process until 
all minor structures are mapped. (See 
Figure 43, part E.> 

10. Map the major structure as if mapping 
a minor structure. <See Figure 43 J 

part F.) 

11. If the shifted structure does not 
begin on byte zero~ pad to the left 
until byte zero is reached. This is 
the physical beginning of the struc­
t u re. How ev er" :th~_!!~m.~_Q.i_!:h~!:@iQ.!: 
~~!~£~~!~_~~111_EQ1!!!§_!Q._!:h~fi£§!: 
£g~gn~!!£_Qi_the_~t£~E~~£~· 

12. The first element of the structure 
must cegin on byte zero of the struc­
ture being mapped if the structure is 
a based variacle and the pointer vari­
able associated with it appears in the 
SET clause of a REi\D or LOCi\rE state­
ment. In this case" the user rr:ust 
make sure that the structure begins on 
byte zero. Padding~ if reguired~ is 
best done with a dummy variable of the 
CHARACTER type. (See Figure 43

1
, part 

G.) 

i@ DF.CLARE 1 A ALIGNED, 
2 B DECIMAL FIXED 01), 
2 C, 

3 D BIT ("), 

® o ",. No.2 

3 E PICTURE '(8)9V(")9', 
3 F, 

" G LABEL, 
"H PICTURE '9.91'599', 

" I, 
Start he,. - 5 J BIT (7), 
(Rul. No.1) 5" FLOAT (6), 

5 L BINARY (32), 

"M, 

2 Q, 

5 N CHARACTER ("), 
5 0 FIXED (7,3), 
5 P FLOAT (16), 

3 R BIT (7), 
3 5, 

" T LABEL, 
" U BINARY (20), 
" V FLOAT (9), 

3 W CHARACTER (3), 
2 X DECIMAL (6)j 

Sornple Declaration 

J 
~ 

I I 
,3 

J K r=- ! r ! I Rule No.3 

0 1 2 3 4 5 6 7 

J K 

II i i i I Rule No.4 

3 4 5 6 7 

K L 

! i ! I 1 1 i I ! ! ! I 
4 5 6 7 0 1 2 3 4 5 6 7 I .. 

Rule No.6 I 
Application of Structure Mapping Rules NOI. 2-6 

Figure 43. Example of Structure Stdrage Mapping (Part 1 of 2) 

Data Storage Mapping 63 



@ 

® 

r 
0 

G 

OJ: ) 
0 1 6 7 0 

G+H 

o 4 5 6 

4 5 0 

G+H 

f 
4 

H 

I 

o 

346 

6 7 

4 

M 

Rule No.2 

Rule No.3 

~ Rule No. 6 

46 7 

Rule No.8 

Rule No.6 

....... _4 -..,;.5.......;..0-..,;.1_""----"3;..,.v 4 6 7 0 1 6 7, 

Rule No.2 

o 6 

Rule No.3 

o 1 6 7 0 

T+U V 

I I R~---,--,-~f ...J...-....L-.'---'-
0 1 2 3 4 6 0 6 

Rule No.6 
T+U V 
~, 

Dr! 1 1....4_ .... _"--""_ .... --1'--....&._ ........... __ ''-1 Rule No.4 

A 

4 5 0 7 0 

Application of Structure Mapping Rule No.8 

D n Rule No.2 

0 

D E 

I 
I 
1 

" 

: : ! f i : ...J.._..L..-&_-'-_L--&._...I-_L-....&._...I-.....J,--....&._,,----&..I Rule No. 
3

1 

4 I 
D+E 

0 1 3 .. 

4 6 7 0 

6 7 .. 5 6 

D+E F 

.IJ)[LCJJEr Rule No.4 

I 
No.61 

I 
I 
I 
I 

R n Rule No. 2 

o 

Rule No.3 

4 5 6 7 

5 

CIJ}[1 Rule No.8 

5 6 7 

R+S W 
~ ...... 1 ---,---......,If(! 1 ! ! I Rule No.6 

.. 5 6 7 0 

Q 

Application of Structure Mapping Rule No.9 

Rule No.2 

o 

Rule No.3 

o 4 7 0 6 7 

B C Q 

.,c:=w, ~A==r==;::=¥-T :::r;l ~~! '. r! ~ ! 1 
o 6 7067 0 1 2 3412 

A 

Application of Structure Mapping Rule No. 10 

@ 
A 

o 2 1 6 

If one of the conditions specified in Strur.ture Mapping Rille 
No. 12 were applicable to structure A, the leading pad,jing 
byte could be removed by inserting a dummy variable as 
follows; 

DECLARE 1 A ALIGNED, 

2 PAD CHARACTER( 1), 

2 B DECIMAL FIXED (11), 

2 C, 

The unused character variable PAD now occupies byte 0 $0 

that the requi remenn of Rule No. 12 are met. 

Application of Structure Mapping Rule No. 12 

Figure 43. Example of structure Storage Mapping (Part 2 of 2) 

64 



Three types of subroutines may be required 
in a program: 

1. Conversion subroutines. 

2. Subroutines called by built-in func­
tion names, pseudo variatles, and 
other implied subroutine calls. 

3. Subroutines called by I/C statements. 

CONVERSION SUEROUTINES 

Conversion subroutines are required in the 
object program when certain conversions 
are irrplicitly requested in the source 
text. For example, the statements 

DECL~RE ~ FIXED BINARY, B FIXED, C 
EINARY; 

~ = B + C; 

i~ply that B is to be converted to binary 
float before being added to C, and that 
the sum is to be converted to fixed binary 
before being stored in A. 

The 18 conversion sutroutines (see 
~ppendix ~) can perform every kind of data 
conversion permitted in the PL/I Sutset 
language. ~ppendix B lists all possible 
combinations of data conversion and shows 
which subroutines are required to perform 
such conversions. For instance, the conv­
ersion from numeric float to numeric fixed 
deciIral requires subroutines 4, 5, and 12, 
Subroutine 5 converts from numeric float 
to an internal intermediate form. Subrou­
tine 4 converts from this internal inter­
mediate form to coded fixed decimal. Sub­
routine 12 converts from coded fixed 
decimal to numeric fixed decimal. 

~Q~~: In some cases it may happen that no 
subroutine is used at oeject time although 
the condition for its inclusion was satis­
fied. In these cases, the user has over­
estimated his storage requirements. 

~ system used for scientific purposes will 
normally use sutroutines 1~2, 7. 8# 9~ 
10, and possibly 17 and 18, with a total 
storage requirement of approximately 2K 
for an average program. 

~ system used for commercial purposes 
will most likely use sueroutines 11 and 12 
with a total storage requirement of appro­
ximately.7K for an average program. 

BUILT-IN FUNe'IIONS, PSEUDO-VARIABLES, AND 
OTHER IMPLIED SUBRCUTINE CALLS 

Certain built-in functions and pseudo­
variables require an object-time subreu­
tine for proper functioning. Some of the 
built-in functions only allow float argu­
ments. If an argument is not in this 
form" it is converted bef ere the subreu­
tine is activated. 

The source textoperater ** is an 
irr.plici t request for an exponentiation 
subroutine and, depending on the attri­
butes of the arguments" six different sut­
routines could te required. 

All information required for this type 
of subroutines is listed in Appendix c. 

Depending on the specific arguments, 
some functions that are marked IL mayor 
may not require subroutines. For 
instance" a fixed first argument in the 
FIXED function would not require a subrou­
tine, whereas a float first argument most 
probably would. However " the subroutine 
used is a conversion sutroutine rather 
thana function subroutine. 

The object-time subroutines are cata­
loged in therelocatable library. The 
programmer can find the Iredule naIre in the, 
entry-points column. If a module has more 
than one entry point~ the module name is 
written first. 

Note: F'or some mathematical functions" 
the-programmer may be interested in 
details such as error statistics and 
algorithms. For such details refer to the 
SRL publica tion !~!~L§Y§lg!r~1'§'Q._Q£er~£i!!g: 
§Y~t~mL-f!L!_!!f!~!Y_~QmE~~~~iQ~al_§~~£Qu­
tines" Form GC2 8- 65 90. The DOS/TOS PL/ I 
compIler uses the same algorithms as the 
OS PL/I compiler. Where applicable, the 
respective internal names of the OS PL/I 
compiler sutroutines are given in paren­
theses in the rightmost column ef Affendix 
C. 

certain built-in functiens available in 
the full PL/I language are not available 
in the PL/I Subset language. Thus" if the 
name of a user-written function procedure 
happens to be the same as that of an 
unavailatle tuilt-in function, the user­
written function procedure is called if 
the program was compiled by means of the 
DOS/TOS PL/I compiler because the built-in 

Subroutine storage Requirements 65 



function of that name is not availa1:le. 
However, if this program ~ere compiled by 
means of the OS PL/I compiler, the tuilt­
in function of that name -- which, in this 
case, is available ..;,- would be called. 
For examJ;le: 

A: PROCEDURE; 

x = REAL (Y); 

END: 

REAL is a function procedure. If this 
procedure is compiled by means of the OS 
PL/I compiler, the built-in function REAL 

66 

is called.. 'Therefore" user-written func­
tion procedures should be named in such a 
manner as to avoid these complications. 

SUBROUTINES CALLED BY IIC STATEMENTS 

Subroutines may be called by 1/0 source 
statements for use at object tirr.e.. The 
library subroutines that rray be called are 
listed and described in Appendix D. 

Care should be taken that any subrcu­
tine called by an I/O statement does not 
itself contain an IIC staten-ent" a PU'I/GET 
STRING statement, or invoke another sub­
routine containing such a staten-ent. 



This section Frovides the information that 
allows the user to determine the amount of 
storage required for I/O purposes at 
object time. Object-time core storage is 
required 

1. as a function of the file declaration 
itself. and 

2. by library subroutines called by I/O 
statements, such as GET, PUT, etc. 

The library subroutines called by I/O 
statements are listed in Appendix D. 

Each file declaration requires four items: 

1. Buffers (if required) 
2. DTF table 
3. Appendage 
4. IOCS logic module 

The first three items are unique to 
each declaration. The fourth may be used 
by various file declarations. 

BUFFERS 

'The number of buffers ana the correspond­
ing storage requirements directly derive 
from the file declaration. 

For files other than REGIONAL or INDE­
XED, the buffer size is equal to the block 
size specified in the F, VI' or U option. 
Thus, 80 bytes are required with the 
option F(80). If, in addition, the option 
BUFFERS (2) is us ed, the storage require­
ments for the buffers of this file are 
doubled. The total storage required for 
such files equals the sum of the storage 
requirements for all buffers used for all 
these files. 

~2~~: No buffer storage is required if 
the F or U option is used with unbuffered 
files. 

A.dditional buffer storage (8 * number 
of extents) is set aside for REGIONAL 
files. 

For REGIONA.L(3) files the key length 
must be added to the buffer length. 

The buffer storage requirements for 
indexed files can be calculated according 
to the following formulas: 

!L~§1Qg&GE~UIREMENTS 

unblocKed: recsize+2* keylength+10 
blocked: MAX (blocksize,keylength+10+ 
recs ize) 

2. !ng§!~§!g_§.§!guen~;heLQ~!:2~!: 

blocks iz e+ key len gth+ 8 +r ecsiz e 
[+keylength if unblocked] 

3. !ng~~~~g~f~£~_~~e~~ 

recsize [+keylength if unblocked] 
[+ADDBUFF if specified] 
[+MAX(8+keylength+blocksize, 
8+ key length+ 10+recs ize) if ADDBUF.F 
not specified] 
[+INDEXAREA if specified] 

4. Inde~~g~~fect ~n~!: 

keylength+MAX( l::locksizell 10+recs ize) 
[+INDEXAREA if specified] 

DTF TABl,E 

The DTF (Define 'Ihe File) table is 
required for each declaration. The fUnc­
tion of the D~F table is (together with 
the appendage) to allow ccmmunication 
between the otject program produced from 
I/O source statements and the D'IF program.. 
The DTF program in turn communicates with 
the operating system for physical device 
control. 

The DTF tatle has a fix~d length for 
each I/O device type,. Figure 44 shcws the 
storage requirements for the individual 
DTF' tables. 

The number of D'IF tables is equal to 
the number of files. 'Ihe total storage 
required for all DTF tabl es is, therefore!, 
equal to the sum of their individual 
storage requirements. Thus, an object 
program using three printers and five buf­
fered" blocked-record.; magnetic tape files 
wou ld require 

3 x 48 + 5 K 112'= 704 bytes of storage 

for DTF tables. 

A DTFCD tatle is generated for each 
card device. Figure 4~ shows the PL/I 
attributes and the corresponding DTFCD 
parameters. 

I/C Storage Requirements 67 



r-----------~-----T-----------------------, 
I Declaration I Storage Requirements I 
I Specified by Filel in Bytes I 
~-----------------f-----------------------~ 
I Card dev. I NPUT I 56 I 
ICard dev. OUTPUT I 48 I 
12540,OUTPUT I 136 I 
I 2520, OUTPUT I 56 I 
.-----------------+-------------------=---~ 
I Printer I 48 I 
.-----------------+-----------------------~ 
IUnbuffered I I 
I magnetic tape I 48 I 
.-----------------f------T--------T-------~ 
IMagnetic tape, I I I I 
lather than unbuf-t I I I 
lfered~ with the I I I I 
I option I INPUTI CUTPUT I UPDATE I 
I f------f--------+-------~ 
I F 1112 I 104 I I 
f V i 128 I 120 I I 
I 0 I 112 I 104 I I 
.-----------------+------~--------~-------~ 
I Regional (1) * I I I I 
I with VERIFY I I 256 I 264 I 
I without VERIFY I 216 I 216 I 216 I 
.-----------------f------f--------+-------f 
I Regional (3) * I I I I 
I with VERIFY I I 328 I 336 I 
I without VERIFY I 216 I 288 I 288 I 
t-----------------+------~--------~-------~ 
I Indexed direct* I 300 I I 556 ** I 
Iwith INDEXAREA* I 32-4 I 1 580**1 
I Indexed, I I I I 
jsequential* I 284 I 252 I 284 I 
I I I I I 
I~g~~: 4 x extentnumber must be added to I 
I all values given for indexed files I 
~-----------------7------7--------7-------~ 
I Consecutive disk* I I I I 
I Unbuffered I 152 I 152 I 152 I 
I F I 136 I 160 I 160 I 
I V I 152 I 176 I 192 I 
I U I 152 I 168 I 192 I 
~-----------------f------t--------+-------~ 
I D'IFDI I 240 I 240 I 240 I 
~-----------------.l.-------.L---------.L-------~ 
I * Not permitted for TOS. I 
1** Add keylength to this value. I L _________________________________________ J 

Figure 44. storage Requirements for DTF 
Tables 

A. DTFPR table is generated for each 
printer. Figure 46 shows the PL/I attri­
butes and the corresponding DTFPR 
parameters,. 

A DTFMT table is generated for each 
magnetic tape drive,. Figure 47 shows the 
PL/I attributes and the corresponding 
DTFMT parameters. 

A DTF'SD table is generated for each 
disk file with the CONSECUTIVE option. 
Figure 48 shows the PL/I attributes and 
the corresponding DTFSD parameters. 

68 

r------------------------~----------------l 
IPL/I ATTRIBUIES IDIFCC PARAMETERS I 
.------------------------+----------------f 
IBlocksize in F option IBLKSIZE I 
r------------------------f----------------f 
ILogical device address IDEVADDR I 
I in MEDIUM option I I 
r------------------------f----------------~ 
ICev. type in MEDIUM opt.1 I 
I 2540 IDEVICE=2540 I 
I 1442 IDEVICE=1442 I 
I 2520 IDEVICE=2520 I 
I 2501 IDEVICE=2501 I 
~------------------------+----------------~ 
IFunction attribute I I 
I INPUT I TYPEFILE=INPUT I 
I IEOFADDR I 
I OUTPUT I TYPEFLE=OUTPUT I 
I ISSELECT=2 I 
t------------------------+----------------~ 
IF (blocksize) IRECFORM=FIXUNB I 

r------------------------+----------------~ 
I EUFFERS option I I 
I BUFFERS(l) I IOAREA1 I 
I BUFFERS (2) I IOAREAl I 
I IIOAREA2 I 
I I IOREG= (2) I 
t------------------------+----------------~ 
12540 y OUTPUT ICRDERR=RETRY I 
r--------------------~---+----------------f 
IControl character for I 1 
IRECORD I/O I I 
I CT1·ASA I C'ILCHR=ASA I 
I CTL360 ICTLCHR=YES I L ________________________ 4 ________________ J 

Figure 45. FIll Attributes and Ccrres­
ponding DIFCD Parameters 

r------------------------T----------------, 
I PL/I ATTRIBUTES I DTFPR PARAMETERS I 
.------------------------f----------------f 
I Blocks iz e in F opt ion I BLKSI ZE I 
~------------------------f----------------~ 
Ilogical device address IDEVACCR I 
lin MEDIUM option I I 
.------------------------+----------------~ 
I Dev. type in MEDIUM opt.1 I 
I 1403 IDEVICE=1403 I 
I 1404 IDEVICE=1404 I 
I 1443 \DEVICE=1443 I 
I 1445 IDEVICE=1445 I 
~------------------------+----------------~ 
IF (blocksize) IRECFORM=FIXUNB I 
r--~~--------------------f----------------f 
I BUFFERS Option I I 
I BUFFERS (1) IIOAREA1 I 
I BUFFERS (2) IIOAREA1 I 
I I IOAREA2 I 
I I IOREG=(2) I 
~------------------------+----------------~ 
I USAGE attribute I I 
I STREAM I CTLCHR=ASA I 
I RECCRD I FRINIOV= YES I 
I CTIASA I CTLCHR=ASA I 
I CTL360 I CILCHR=YES I L ________________________ ~ ________________ J 

Figure 46. PL/I Attributes and Corres­
ponding DTFFR Fararr.eters 



r------------------------T-------------~--, 
IPL/I ATTRIEUTES IDTFMT PARAMETERS I 
r------------------------+---------------~~ 
I Blocksize in F, I BLKSIZE I 
I V, U o~tion I I 
r------------------------+----------------~ 
IRecsize in F option IRECSIZE I 
r------------------------+----------------~ 
ILogical device address IDEVADDR I 
I in MEDIUM option I I 
~-------~----------------+-------------~--~ 
IF, V, U o~tion I I 
I I t 
I I I 
I F (blocksize) IRECFORM=FIXUNB I 
I F (blocksizew IRECFORM=FIXBLK I 
I recsize) I IOREG=( 2) I 
I V (maxblocksize) IRECFORM=VARELK I 
I I IOREG=(2) I 
I U (maxblocksize) IRECFORM=UNDEF I 
~------------------------+----------------~ 
I EUFFERS opticn I I 
I I I 
I I I 
I BUFFERS(l) I ICAREAl I 
I EUFFERS(2) \ IOAREAl I 
I I ICAREA2 I 
I I ICREG=(2) I 
r------------------------t----------------~ 
I FUnction attribute I I 
I I I 
I I I 
I INPUT I TYPEFLE=INPUT I 
I I EOFADDR I 
I OUTPUT I TYPEFLE=OUTPUT I 
I INPUT} I TYPEFLE=WCRK I 
I UNBUFFERED I I 
I OUTPUT I EOFADDR I 
r------------------------+----------------~ 
IV (maxblocksize) OUTPUT IVARBLD=(3) I 
~------------------------+----------------~ 
IINPUT, V and F IWLRERR t 
I not UNBUFFERED I I 
~------------------------t-----------~----~ 
I BA.CKWA.RD S I READ=BACK I 
~------------------------t----------------~ 
lLEA.VE IREWIND=NORWD I 
r------------------------t----------------~ 
I NOLAEEL option I I 
I I I 
I NOLA.BEL IFILABL=NC I 
I without NOLABEL IFILABL=STD I 
r------------------------+----------------~ 
IU option, BA.CKWARDS IICREG=(2) I 
~------------------------+----------------~ 
I INPUT IERROPT=Library I 
I I routine I 
~------------------------+----------------~ 
IU, other than UNBUFFEREDIRECSIZE=(4) I L ________________________ ~ ________________ J 

Fiaure 47. PL/I Attributes and Corres­
ponding DTF~T Parameters 

A. D'IFDA. table is generated for each 
disk file with the REGIONAL option. 
Figure 49 shows the PL/lattributes and 
the corresponding DTFDA parameters. 

r------------------------j----------------, 
I PL/I ATTRIBUTES I DTFSD PARAMETERS I 
t------------------------+----------------~ 
I Blocks iz e in F, I BLKSIZE I 
I V, U op tion I I 
t------------------------+----------------~ 
IRecsize in F option IRECSIZE I 
r------------------------+----------------~ 
IDevice type in IDEVICE= 2311 I 
IMEDIUM option I 2314 I 
I I 2321 I 
r------------------------+----------------~ 
IF, V, U option t I 
I I I 
I F (blocksize) IRECFORM=FIXUNE I 
I (blocks iz e" I RECFORM=FIXBLK I 
I recsize) I IOREG= (2) I 
I V (maxblocksize) IRECFORM=VARELK I 
I IIOREG=(2) I 
I U (maxblocksize) I RECFORM=UNDEF I 
r------------------------+----------------~ 
IBUFFERS option I I 
I I I 
I BUFFERS (1) I IOAREAl I 

BUFFERS(2) I IOA.REAl I 
I I IOA.REA2 I 
I I IOREG=(2) r 
t------------------------+----------------~ 
IFunction attribute I I 
I I I 
I INP'UT' I TYPEFLE=1 NPUT 1 
I I EOFAtDR I 
I OUTPUT I TYPEFLE =OUTPUT ~ 
I UPDATE I TYPEF'LE=INPUT I 
I I UPDATE=YES I· 
I I EOFA.DDR I 
I I NFUrr } I TYPEFLE=WORK I 
I UNBUFFEREDIDELETFL=NO I 
I OUTFUT I EOF'ADDR I 
I UPDATE UNBUFFERED I EOFADDR I 
r------------------------+----------------~ 
I V (maxblocksize) OU'IPU'l IVARBLD= (3) I 
t------------------------+----------------~ 
I·VERIFY I VERIFY=YES I 
t------------------------t----------------~ 
1- - - 1ERROPT=Library 1 
I I routine 1 

t------------------------+----------------~ 
IINPUT or UPDATE~ F and VIWLRERR I 
t------------------------+----------------~ 
IU, other than UNBUFFEREDIRECSIZE=(4) I L ________________________ ~ ________________ J 

Figure 48.. Pl/I Attributes and COrres­
ponding DTFSD Parameters 

APPENDAGE 

The appendage, like the DTF table, con­
sists of information derived frcm the file 
declaration. It also allows communication 
bet~een the object progran ~roduced from 
I/O source statements and the DTF program. 
The length of the appendage is exclusively 
determined by the presence of a single 
attribute or option. If the declaration 

I/O Storage Requirements 69 



1. contains the I NDEXED option" the 
appendage length is 40 tytes; 

2. contains the REGIONAL option, the 
appendage length is 56 tytes; 

3. contains the BUFFERED, STREAM, or UPD­
ATE attribute, the appendage length is 
24 bytes; 

4. contains the PRINT attribute or is for 
SYSLST, the appendage length is 32 
bytes; 

5. does not apply to one of the file 
types listed under items 1 through 4, 
the appendage length is 16 bytes. 

The number of appendages is equal to 
the number of files. The total storage 
required for appendages is equal to the 
sum of their individual storage 
re qui rements • 

r------------------------~----------------, 
IPL/I ~TTRIBUTES IDTFDA PARAMETERS 1 

~--------------~---------+----------------~ 
IBlocksize in F option IBLKSIZE 1 

r------------------------+----------------~ 
1 Device type in IDEVICE= 2311 1 
)MEDIUM cption 1 2314 1 
I 1 2321 1 
r------------------------+----------------f 
1 F Cblocksize) IRECFORM=FIXUNB 1 
~------------------------+----------------f 
I EUFFERS (1) 1 IOAREA1 1 
r------------------------f----------------f 
1 F'unction attribute and I 
I organization option 
I INPUT, REGIONAL(1) TYPEFLE=INPUT 
1 READID=YES 
~ OUTPUT, REGIONAL(1) TYPEFLE=CUTPUT 
I WRITEID=YES 
1 UPDATE, REGIONAL(1) TYFEFLE=INPUT 
I READID=YES 
I WRITEID=YES 
I INPUT, REGIONAL(3) TYPEFLE=INPUT 
1 READKEY=YES 
I KEYARG 
I KEYLEN 
I OUTPUT, REGIONAL( 3) TYPEFLE=CU'TPUT 
1 AFTER=YES 
I KEYLEN 
1 UPDATE, REGIONAL(3) TYPEFLE=INPUT 
1 READYKEY=YES 
1 WRITEKY=YES 
r IKEYARG 
1 IKEYLEN 
1 ~AFTER=YES 

r------------------------+----------------~ 
I VERIFY IVERIFY=YES 1 
~------------------------+----------------~ 
1- - ISEEKADDR I 
1- - IERRBYTE 1 

I 1- - IXTNTXIT=IJKTXRM 1 
1- - ICONTROL=YES 1 l ________________________ ~ ________________ J 

Figure 49. PL/I Attributes and corres­
ponding DTFDA Parameters 

70 

r--------------j--------------------------, 
IPL/I 1 1 
I ATTRIBUTES IDTFIS PARAMETERS I 
t--------------+--------------------------~ 
I INPUT I 'IYPEFLE=~EQN'IL 1 
1 SEQUENTIAL or IICAREAS 1 
1 1 IOREG=(2) I 
I 1 ICRCUT=RE'IRVE 1 
1 I KEYARG1. I 
t--------------+--------------------------~ 
IINPUT DIRECT I TYFEFLE=R,ANDOM I 
1 I IOAREAR 1 
1 IICREG= (2) 1 
1 1 ICRCUT=RETRVE 1 
I IKEYARG (separate) I 
t--------------+--------------------------f 
I OUTPUT 1 IOAREAL 1 
1 SEQUENTIAL IWCRKL (cnly if blccked) I 
1 1 IOROUT=LCAD I 
t--------------+--------------------------~ 
IUPDATE DIRECT ITYFEFLE=RANDOM I 
1 1 IOAREAL2" 4 1 
1 IWCRKL2~4 I 
1 IICAREAR2 1 
1 1 IOREG= (2) J 
1 1 IORO U'I= ACDR 'IR 1 
1 1KEYARG1.,3 1 
t--------------+--------------------------f 
1 Device type IDEVICE=2311, 2314~ or 23211 
t--------------+--------------------------~ 
IVERIFY or 1 I 
I device IVERIFY=YES 1 
1 type = 2321 1 1 
t--------------+--------------------------~ 
I F (a) I RECFCRM=FIXUNE I 
1 F (a"b) 1 RECFCRM=FIXELK 1 
1 INRECDS 1 
1 IRECSIZE 1 
t--------------t--------------------------f 
KEYLENGTH IKEYLEN 1 
CFLTRACKS ICYlCFL 1 
INDEXMULTIPLE IMSTIND=YES 1 
EXTENTNU~BER I DSKX'INT 1 
KEYLCC IKEYLCC 1 
INDEXAREA IINDAREA I 

IINDSIZE 1 
IINDSKIP 1 

ADDBUFF IICSIZE I 
HIGHINDEX 2311IHINDEX=n 1 

23141 1 
23211 I 

t--------------+--------------------------~ 
1 I 
11. separate for tlocked 1 

12 1 = R possible I 
13 Same as WORKL if unblocked I 
14 ADD separate I 
I I L ______ ~ __________________________________ J 

Figure 50. FL/I Attributes and Ccrres­
ponding DTFIS Parameters 

A DTFIS table is generated for each 
disk file with the INDEXED opticn. Figure 
50 shows the PL/I attritutes and the 
corresponding D'I'FI S pararreters. 



A DTF'DI table is generated for Stream 
files or buffered Record files if 

1. the logical address specifies SYSIPT, 
SYSLST~ or SYSPCH in the MEDIUM option 
and 

2. C~L~S~ is s~ecified for RECORD CUTPUT 
files and 

3. PRINT attribute is specified for 
STRE~M OUTPUT files 

4. records are of fixed length and 
unblccked and the record size (n) is 
less than 81 (for SYSIPT) or less than 
82 (for SYSPCH) or less than 122 (for 
SYSLST) • 

Figure 51 shows the PL/I attributes and 
the corresponding DTFDI parameters. 

r---------------------~-------------------, 
I PL/I ATTRIBUTES I DTFDI PARAMETERS 1 

t----------------~----t-------------------~ 
I Device address in 1 1 
I MEDIUM option I DEVADDR=SYSxxx 1 
~---------------------t-------------------~ 
I BUFFERS( 1) 1 IOAREAl 1 
I EUFFERS (2) I IOAREAl 1 
1 1 ICAREA2 1 
t I IOREG=( 2) 1 
~---------------------t-------------------f 
1 SYSIPT I ECFADDR=... 1 
I 1 ERRCFT=... 1 
1 I WLRERR=... 1 
~---------------------t-------------------f 
I Recsize in F o~tion I RECSIZE=... I L _____________________ ~ ___________________ J 

Figure 51. PL/I Attributes and Corres­
pending DTFDI Parameters 

laCS LOGIC MODULE 

The IOCS logic module uses the information 
obtained trorr the DTF table and the appen­
dage, to communicate between the object 
program and the DOS/TOS control program. 
Different IOCS logic modules are used 
depending on the options and attributes 
specified in the file declaration. Files 
having the same options and attributes use 
the same Ioes logic module. For instance, 
any number of file declarations, each of 
which refers to a double-buffered input 
file using a 2540 card reader, would gen­
erate a requirement for one single laCS 
logic module only. 

The device type is the principal factor 
in determining which IOCS logic module is 
to be used. In Figures 52 through 57, the 
individual modules are therefore grouped 
according to device types. The storage 
required for each module is stated in 
bytes. 

r-------~---------------T-----------------, 
I Card 1 Cne Buffer I Twe Buffers 1 
I t-------T-------t-------T---------t 
I Files I Input I Output I Input I Output I 
t-------+-------+-------+-------+---------~ 
1 2540 I 96 I 192 I 128 1 216 I 
~--~----+-------+-------+-------+---------f 
I 1442 1 100 I 74 I 132 I 116 I 
t-------+-------+-------+-------+---------~ 
I 2520 1 96 I 80 I 128 I 124 I 
~-------+-------+-------+-------+---------t 
I 2501 I 96 I I 128 1 I L _______ ~ _______ ~ _______ ~ _______ ~ _________ J 

Figure 52. IOCS Logic Modules for Card 
Reading and Funching Devices 

r-----------------------------------------, 
I Frinter Fi les I 
.--------------------T--------------------t 
I S'IREAM I RECORD I 
t---------T----------+---------T----------~ 
11 Buffer 12 Buffers 11 Euffer 12 Buffers I 
.---------+----------+---------+----------f 
I 196 I 220 I 118 I 152 I l _________ ~ __________ ~-________ ~ __________ J 

Figure 53. ICCS logic Modules for 
Printers 

r----------T-----------------~------------, 
I I Buffered 1 Unbuffered I 
I t-----T-----T-----f I 
ITape Files I FlU I V I I 
t----------+-----+-----+-----+------------~ 
IBackwards I 738 I 556 I -- I I 
t----------+-----+-----+-----~ 318 I 
IAII othersl 690 1 564 1 762 I I l __________ ~ _____ ~ _____ ~ _____ ~ ____________ J 

Figure 54. lOCS Logic Modules for Magnet­
ic Tape Dni ts 

If both BACKWARDS and non-BACKwARDS 
modules are used in the same program, only 
the BACKWARDS module is included. 

r------T------------------------T---------, 
I I Consecutive IRegicnal I 
IDisk t---------T--------------+----T----t 
I Files I Un- I 1 1 J 
I Ibuffered j Buffered I I I 
I I ~----T----T----f 1 1 
I I I FI VI UI 1131 
t------+---------+----+----t----+----+----~ 
1 Input 1 682 I 5461 7461 6181 3921 3921 
~------+---------+----+----+----+----+----t 
1 Output I 682 1 574111661 7301 3921 6961 
t------+---------+----+----+----+----+----~ 
1 Update 1 722 1 91011255110621 3921 6961 L ______ ~ _________ ~ ____ ~----i ____ ~ ____ ~ ____ J 

Figure 55.. ICCS Logic Mcdules for Disk 
units <other than INDEXED 
Files) 

l/C storage Requirements 71 



r--------~---~-T-----T-----_r-------------, 
I Disk 1 Input I output I Update I 
I L I ~-------T-----i 
I Indexed Files 1 1 I Blocked I Unbl. 1 
~--------------+-----+------+-------+-----~ 
ISequential I 10861 803 1 1086 11086 1 
I Direct I 990 1 -- 1 2948 12752 I 
Iwith INDEXAREAI 11381 -- I 3162 12966 1 
1 with ADDBUFF I --I -- I 3220 12936 I 
L _______ ~------~-----~------~-------~-----J 

Figure 56. IOCS Logic Modules for Disk 
Units (INDEXED Files) 

r-----------T-----------------------------, 
I 1 BUFFERS (1) BUFFERS (2) I 
~-----------+-----------------------------~ 
I Input I 308 368 I 
1 Output 1 643 723 I 
L ___________ ~ ______________ ---------------J 
Figure 57. ICCS Logic Module for DTFDI 

Files 

EXAMPLES 

The following examples show the storage 
requirements for butfers, DTF table, 
appendage, and IOCS logic module. 

DECLARE PUNCHF FILE OUTPUT ENVIRONMENT 
(F(80) MEDIUM (SYSPCH, 2540»; 

Buffers 
DTF table 
Appendage 
IOCS logic module 

Total 

80 bytes 
136 bytes 

24 bytes 
192 bytes 

432 bytes 

DECLARE PRINTF FI'LE STREAM CUTPUT PRINT 
ENVIRONMENT (CONSECUTIVE F(121) BUFFERS 
(1) MEDIUM (SYSLST, 2400»; 

Buffers 
DTF table 
Appendage 
IOCS logic module 

Total 

121 bytes 
240 bytes 

32 by-tes 
690 bytes 

1083 bytes 

DECLARE TAPEFF FILE RECORD UNBUFFERED 
ENVIRONMENT (U(512) MEDIUM (SYS004' 2400) 
LE1\. VE NOL1\.BEL); 

72 

Buffers 
DTF table 
Appendage 
IOCS logic module 

Total 

o bytes 
48 bytes 
16 bytes 

318 bytes 

382 bytes 

DECLARE TAPEBF FILE RECORD BACKw1\.RDS 
UNBUFFERED ENVIRCNMENT (U(512) MErIUM 
(SYS004, 2400) LEAVE NOLAEEL); 

Buffers 
DTF table 
Appendage 
ICCS logic module 

o bytes 
48 bytes 
16 bytes 

318 bytes 

Total 382 bytes 

DECLARE DISK1F FILE STREAM INPUT ENVIRON­
MENT (F(1739) BUFFERS (2) MEDIUM (SYS001, 
2311» ; 

Buffers 
DTF table 
Appendage 
ICCS logic module 

3478 bytes 
136 bytes 

24 bytes 
546 bytes 

Total 4184 bytes 

DECLARE DSKF FILE RECORD UPDA'IE BUFFERED 
ENVIRCNMENT (F(1024, 256) EUFFERS (1) 
MEDIUM (SYS002, 2311»; 

Buffers 
DTF table 
Appendage 
ICCS logic module 

1024 bytes 
160 bytes 

24 bytes 
910 bytes 

Total 2118 bytes 

DECLARE DSI<R3F FILE RECCRr OUTPUT DIRECT 
KEYED ENVIRCNMENT (REGICNAL (3) F(800) 
MEDIUM (SYSOO 3, 2311) KEYLENGTH (9» 

Buffers 
8x3 extents 
DTF table 
Appendage 
IOCS logic 

Total 

809 
(default) 24 

288 
56 

module 696 

bytes 
bytes 
bytes 
bytes 
bytes 

1873 bytes 

DECLARE DSKR1F FILE RECCR!: UPDATE DIRECT 
KEYED ENVIRONMENT (REGIONAL (1) F(600) 
MEDIUM (SYS004, 2311»; 

Buffers 
8x3 extents 
DTF table 
Appendage 
ICCS logic 

Total 

600 
(default) 24 

216 
56 

module 392 

bytes 
bytes 
bytes 
bytes 
bytes 

1288 bytes 



DEeL~RE !~PERF FILE RECORD INPUT BUFFERED 
ENVIRONMENT (V(204S) BUFFERS (2) MEDIUM 
(SYS005, 2400»; 

Buffers 
DTF table 
~ppendage 

laCS logic rrodule 

Total 

4096 bytes 
12S bytes 

24 bytes 
762 tytes 

5010 bytes 

DECLARE INDSQI FILE RECORD INPUT KEYED 
ENVIRONMENT ( F(SOO,80) MEDIUM (SYS011, 
231Ln INDEXED KEYLENGTH(10) EXTENTNUMBER( 
3) INDEXMULTIPLE KEYLOC( 15» ; 

Buffers 
D'IF table 
Appendage 
laCS logic module 

'Iotal 

SOO bytes 
296 bytes 

40 bytes 
1086 bytes 

2222 bytes 

DEGLARE INDDUP FILE RECORD UPD~TE DIREC'I 
KEYED ENVIRONMENT (F(800,SO) MEDIUM 
(SYS012,2321) INDEXED KEYLENGTH(12) VERIFY 
EX'IEN'INUMBER(2) OFLTRACKS(3) KEYLCC(23) 
ACDBUFF(168S»i 

Buffers 
DTFtable 
Appendage 
IOCS logic module 

Total 

1768 bytes 
576 bytes 

40 bytes 
3220 bytes 

5604 bytes 

NQ!§: If all of tne file declarations 
shown in these exa~ples were to aFpear in 
the same program, the total storage 
require~ents would be less than the surr of 
the individual storage requirements 
because~ in a few cases, different file 
declarations would use the same laCS logic 
module. 

SYSPRINT 

The storage required for the DTF table. 
appendage, and IDeS logic module for SYS­
PRINT is 416 bytes for TCS and 424 bytes 
for DOS. If DOS allows a 2311 as SYSLST, 
688 bytes are required. 

SYSIN 

The storage required for the D'IF table. 
appendage~ and IOCS logic module is 192 
bytes for TCS and 216 bytes for DOS. If 
DOS allows a 2311 as SYSIP'I, 408 bytes are 
required .• 

Note: If SYSIN and SYSPRINT are used in 
one-program, the storage required for both 
is 568 bytes for 'IOS and 600 for DOS. The 
storage requirement is 920 bytes for COS 
if a 2311 is permitted for SYSIPT or 
SYSLST. 

I/C Storage Requirements 73 



Object-program overhead derives from the 
following two sources: 

1. The DOS/TOS Supervisor, the size of 
which is installation-dependent. 

2. The general PL/I overhead area, which 
exists as a function of the PL/I 
source text. This area comprises the 
following four parts: 

a. The static storage area. 
b. The dynamic storage area. 
c. The block prologue. 
d. The PL/I control module. 

rHE ST~TIC STORAGE AREA 

Static storage is i:-equired by the seven 
items listed below. (Note that internal 
blocks require only the static storage 
listed under items 5 - 7.) 

1. ~ constant basis of 132 bytes. 

2. ~ll variables in any block declared 
wi th the attribute STATIC. 

3. Constants used in the source text. 

4. Four bytes for 
a. each library subroutine explicitly 

or iroplicitly used in the source 
text; 

b. each reference to a procedure that 
is external to the procedure under 
construction; and 

c. each distinct data item contained 
in any block and declared with the 
attribute EXTERNAL. 

5. ~ communications area of ~ bytes. 

6. An entry table with a minimum length 
of 4 bytes. If the block is a proce­
dure, an additional entry of 4 bytes 
is made for each ENTRY statement in 
the block. 

7. ~n entry of 8 bytes is made for the 
occurrence of each different condition 
in any ON statement-internal to the 
block. 

Since items 1, 5, and 6 are always 
required, the minimum static storage area 
required is 140 bytes, even for the most 
trivial procedure. For example, 

74 

~: PROCEDURE OPTIONS (MAIN); 
END; 

E!~me!~f_Q~!£~!~~in~Et~ti£_§toragg 
g~g~i!:~!!!~!!.:!:§ 

The following procedure: 

A: PROCEDURE OPTIONS (M~IN); 

DECLARE B FIXED BINARY STATIC: 
C: PROCEDURE: 

D: EN'IRY: 
RETURN: 
END: 

E: BEGIN: 
DECLARE I S'lA 'IIC : 
I=1101B: 
END; 
F: ENTRY: 

END: 

consists of the blocks A" C, and E. 'Ihe 
static storage requirements of the indivi­
dual blocks are discussed in terms of the 
items 1 through 7 listed above. 

~!Q£~-~ 

1. 132-byte basis 

2. Two variables with the STATIC 
attri1:ute 

3. One constant 

132 bytes 

8 bytes 

4 bytes 

4. Communications area 4 bytes 

5. Entry table of 4 bytes minimum 

plus 4 bytes for entry point F 8 bytes 

1. Communications area 

2. Entry table 

1. Communications area 

2. Entry table 

TOTAL 156 bytes 

'IOT~L 

TOTAL 

4 bytes 

8 bytes 

12 bytes 

4 bytes 

4 bytes 

8 bytes 

Consider another external procedure A 
that contains no other blccks. It uses 
400 bytes of static data storage 
(variables and constants). It requires 
five library su1:routines explicitly and 
three library subroutines implicitly. 



rhree procedures external to ~ are 
referred to in procedure A. Six variables 
are declared with the attribute EXTERNAL. 
The procedure has seven secondary entry 
points and contains six CN statements, of 
which four have differing conditions. 
External procedure A would require the 
following static storage: 

1. 132-byte basis 132 bytes 

2. ST~TIC variables 
400 bytes 

3. ::::on stan ts 

4. a. 
b. 
c. 

8 library subroutines 32 bytes 
3 procedures external to ~ 12 bytes 
6 EXTERNAL variables 24 bytes 

5. ::::ommunications area 

6. En try table 

7. Four ON statements with 
differing conditions 

rcrAL 

4 bytes 

32 bytes 

32 bytes 

668 bytes 

Finally, consider a third external pro­
cedure W that contains two other proce­
dures, X and Y. Procedure Y contains a 
BEGIN block Z • 

. w uses 400 bytes of static data 
storage, X and Y each use 100, and Z uses 
200 bytes. Procedure W requires 3 library 
subroutines, X requires 2 I Y requires 5'1 
and Z requires 13. The library subrou­
tines used in blocks w~ X, and Yare all 
different. The 13 subroutines used by Z 
comprise 3 that are required by other 
blocks. No procedure external to W is 
referred to, and there is no EXTERNAL 
data. Procedure W has 5 ENTRY statements, 
X has 2, and Y has 3. There are no ON 
statements in W, 2 ON statements with 
identical conditions in X, 3 ON statements 
with differing conditions in Y , and no ON 
statement in Z. 

The static storage requirements for the 
individual blocks are as follows: 

Block w 
i:--i32-byte basis 132 bytes 

2 . STATIC variables 
800 bytes 

3 • Constants 

4 . A total of 20 library 80 bytes 
subroutines 

5. ::::ommunications area 4 bytes 

6. Entry table 24 bytes 
----------

TOTAL 1040 bytes 

1. Communications area 4 bytes 

2. Entry table 12 bytes 

3. One ON statement 8 bytes 

'IOTAL 24 bytes 

1. Communica tions area 4 bytes 

2. Entry table 16 bytes 

3. Three differing ON ccnditions 24 bytes 
--------

rIOT~L 44 bytes 

1. Communications ared 4 bytes 

2. Entry table 4 bytes 

rIOT~L 8 bytes 

The total static storage required by 
external procedure w thus amounts to 

1040 + 24 + 44 + 8 = 1116 bytes. 

THE DYNAMIC S'IORAGE AREA 

Each blocks has its own dynamic storage 
area. The dynamic storage area is zero 
when the block is not active. The length 
of the dynamic storage area when the block 
is active is determined by the following 
five items: 

1. Data VJith the attribute AUTOMATIC" either declared or by defaul t,. 

2. A communications area of 80 bytes. 

3. Four bytes for each gi!!§E§~~ paramet­
er to be transmitted to this block. 

4. Working storage area I: 

5. 

This area is used to store intermedi­
ate results of arithmetic expressions. 
The length of this area is a function 
of the complexity of the source text. 
For a program with arithnetic data 
only" the average length of this area 
is approximately 36 bytes. However, 
if the expressions contain character 
strings, the length increases with the 
length of the character strings. 

Working storage area II: 

This area is used tc store expressions 
contained in DC loops. DO statements 
may be of either one of the following 
three forms: 

Program Overhead 75 



a. DO var=expr-1..expr-2, ••• ,'expr-n; 
For such DO statements" the expre­
ssions are developed' and stored 
directly in the variable so that 
n~ additional storage Is required. 

b. DO var=expr-l TO expr-2; or 
DO variable=expr-1 BY expr-2; 

16 bytes are required for §~£~ DO 
statement of this form" regardless 
of the number of iteration speci­
fications in each statement. 

TO BY 
c. DO var=expr-l expr-2 expr-3; 

BY TO 

24 bytes are required for ~~£g DO 
statement of this form, regardless 
of the number of iteration speci­
fications in each statement. 

The information required to determine 
which iteration specification is being 
operated upon is also stored in work­
ing storage area II. Each DO state­
ment with more than one-iteration spe­
cification requires additional bytes 
to service all iteration specifica­
tions. Thus;-each DO statement 
requires zero,-16; or 24 bytes for 
storing expressions within iteration 
specifications., plus 8 bytes if there 
is more than one iteration specifica­
tion for the DO statement. 

Assume a.procedure consists .of the extern­
al procedure A, which contains the intern­
al procedures Band C. Internal procedure 
C contains the BEGIN block D. A and E 
each have 400 bytes of AUTOMATIC data, C 
has 200, and D has 100 bytes of AU'IOMATIC 
data •. Procedures A, B~ and C have only 
one entry point (their primary entry 
poi nt), and each procedure has a list o·f 
five parameters. Only coded arithmetic 
data is used. The dynamic storage 
requirements of the individual blocks are 
then as follows: 

-Block A r:--Oata 
2. Communications area 

3. Parameter storage 

4. ~orking storage area I, 

5 • ~orking storage are a 11- (de­
'pends on comple'xi ty of DO's) 

TOTAL 

76 

400 bytes 

80 bytes 

20 bytes 

36 bytes 

96 bytes 

---------
632 bytes 

1. Data 

2. Communications area 

3. Parameter storage 

4. Working storage area I" 
approx. 

5 .• Working storage area II, 
approx. 

TOTAL 

1. Data 

2. Communications area 

3. Parameter storage 

4. Working storage area I" 
approx. 

TorAL 

1. Data 

2. Communications area 

3. Working storage area I, 
approx. 

4. Working storage area II, 
approx. 

TOTAL 

400 bytes 

80 bytes 

20 bytes 

36 bytes 

32 bytes 

---------
568 bytes 

200 bytes 

80 bytes 

20 l::;ytes 

36 bytes 

---------
336 bytes 

100 bytes 

80 bytes 

36 1:;ytes 

32 1:;ytes 

---------
248 1:;ytes 

The total requirerrent for dynarric 
storage at a given moment depends on which 
blocks are simultaneously active. 'Ihe 
total storage required is the sum of the 
dynamic storage areas fer the active 
blocks. In the above exampl e, this is a 
minimum of 632 bytes. If all blocks are 
active simultaneously, the dynamic storage 
requirements amount to 1784 bytes. 

THE BLOCK PRCLCGUE 

The prologue is a set of instructions 
generated for a PROCEDURE, EN'IRY, or BEGIN 
statement. The generated instructiens 
vary depending on the statement. The 
min.imum prologue is 52 bytes.. The maximum 
is approximately 140 bytes. The minimum 
prologue is used whenever the block is a 
BEGIN block. In all other cases, the 
average is approximately 60 bytes per pro­
logue.. A secondary entry point with 12 
arguments results in the rraximurn ef 140 
bytes .. 



THE PL/T CONTROL ROUTINE 

The PL/I control routine is a library sub­
routine, which is always required in 
storage for PL/I programs. It is respons­
ible for the interaction of the individual 
PL/I program components. Some of its 
functions are listed below: 

1. Dynamic storage allocation. 

2. Hardware interrupt servicing. 

3. Handling of ON conditions. 

4. Ccnstructing diagnostic messages. 

5. Terminating execution. 

6. Transmitting communications informa­
tion from block to blcck. 

7,. providing library work space. 

The PL/I control routine is fixed in 
length (approximately 1500 bytes) and is 
present only once in a PL/I program, 
Legardless of the complexity of blocking 
structures, the number of external prcce­
dures" and depth of overlaying. 

Note: In the discussion of the program 
overhead, it was shown where the STATIC 
and AUTOMATIC data will be. In all furth­
er references, the term "overhead" is used 
for the actual overhead without data and 
~!!:.h2!:!!:. the DCS/TCS ~ontrol-program. 

Prcgram Overhead 77 



After having estimated the storage 
requirements of (1) data, (2) library sub­
routines, (3) file declarations" and (4) 
overhead contained in the program, the 
user can determine ~hat part of the total 
storage capacity is left for the remaining 
part of the program. The remaining part 
mainly consists of (1) in-line instruc­
tions produced directly from, the source 
text and (2) calling sequences to subrou~ 
tines for those operations that cannot be 
done in line. 

What instructions are produced from the 
source text can be sho~n by a simple 
example. 

DEC-L1-\RE 1-\ FIXED DECIMAL; 

A = B * C + D; 

rhe instructions produced fr-om the assign­
ment statement might be as follows: 

• In~line instruction to load B into 
some register. 

• In-line instruction to multiply C 
(floating-point multiplicition) ~ith 
the contents of this register. 

• In-line instruction to add 0 
(floating-point) to the contents of 
this register. 

• Calling s equence( s) to convert· the 
contents of this register to fixed 
decimal form. 

• In-line instruction to store the 
result in A. 

Calling sequences can be avoided in 
some cases., e. g. # 1.n the example shown 
above by giving A the attributes FL01-\T 
DECIM1-\L instead of FIXED DECIMAL. 'Io save 
storage, the user should~ therefore~ write 
his programs in such a manner as to avoid 
unnecessary calling sequences. 

The above example sho~s that a series 
of instructions is generated for a single 
PL/I statement. The number of generated 
instructions depends on the form and com­
plexity of the respective statement. The 
number of instructions generated for a 
source-text DO statement, for instance, 
depends on the complexity of the expre-

78 

ssions wi thin an iteration specification., 
the number of options chosen, and the 
number of iteration specifications. 
Ho~ever, the follo~ing average values can 
be assumed: 

1. In a purely scientific environment, 
the average PLII source statement 
generates ten 4-byte instructions. 

2. In a purely commercial environment" 
the average PLII source statement 
generates seven 4-byte instructions. 

3. These average values are considerably 
increased by an excessive use of con­
versions of base or scale and GET .and 
PUT statements in either scientific or 
commercial environments. 

4. Parameters as well as B1-\SED and 
EXTERNAL data require 4 bytes in addi­
tion to the storage requirerrents of 
the data item. 

Thus, if 5000 bytes are available for 
the object program" the user may assurre 
that approximately 125 PL/I statements 
(scientific environment) cr 178 PL/I sta­
tements (commercial environment) can be 
accommodated in this area. If the program 
exceeds this number 0 f statenen ts" the 
user must either shorten the functicn of 
the program or use the overlay feature. 
(Refer to the section QY~E12Y.) 

~~: If listing of source-program state­
ment numbers in case of execution-time 
errors is requested (by specifying STMT in 
the PLII PROCESS card), the additional 
storage requirements are 4 bytes for each 
time the statement number appears in the 
object-program listing. 

A tape system tnat has a storage capacity 
of 16K is used for maintaining files. The 
problem program consists of 3 phases. 
Phase 1 reads transaction cards (cne 80-
column card per transaction) and sorts~ 
editsw and writes the contents of these 
transaction cards on a rragnetic.tape file. 
Phase 2 reads the old master file" a tran­
saction card, and writes a new master file 
record. Both of these operations involve 
magnetic tapes for old and new master .... 
records. An exception report is written" 
if necessary, on a fourth magnetic ta~e. 
Phase 3 takes the exception file and pre­
pares it with appropriate headings. 



In the following eKample, only the 
storage requirements for phase 2 are 
examined. 

FILE DESCRIPTION 

Old Master File: Unblocked, 320-character 
records-of-fIxed length. 

New Master File: Unblocked" 320-character 
records-of~ixed length. 

Transaction File. Unblocked 80- character 
records-of-fixed length. 

~~£§2!iQrr_[!!~: Unblocked 100-character 
records of fixed length. 

D~T~ ~SSUMPTIONS 

Due to the requirements of temporary 
storage, arithmetic statements, etc., 50 
variables and constants are used in addi­
tion to the data read from and written 
into files. ~ll data is describable in 
terms of pictures and character strings; 
no data is read or written in packed mode. 

OTHER ASSUMPTIONS 

1.· Each file has only one tuffer. 

2. The data is processed in its respec­
tive buffer by use of the READ SET or 
LOCATE SET statements. 

3. The program can be written in one 
block. 

4. The problem does not necessitate 
inter-fhase communication. 

5. If conversions from numeric fixed to 
coded fiKed become excessive, the user 
will convert the data items once and 
use the coded fixed form for subse­
quent computations. 

The storage requirements are as follows: 

1. Data 
a~--Data read from, or written into, 

files are accounted for in 
buffers. 

b. 30 variables (XXXX.XX) 
20 constants (XXX. XX) 

120 bytes 
60 bytes 

c. Descriptors approximately 150 bytes 

TOTAL approx. 

Numbers 11 and 12 

'IortAL 

3. fi!~_.Qescfi.2!:.i.Qn~ 

a. Buffers -

b. DTF tables -
c. Appendages -

d. ICCS logic modules -

'IO'IAL 

Number 6 

TOTAL 

5. ~!h~~~ 

a. static - approx. 

h. Dynamic - approx. 

c .• Prologue - approx. 

d .. Pl/I control - approx,. 

'IO'IAL approx. 

6. DO§L!Q§-fQg~!Q!_E!Qg!~~ 

approx. 6150 bytes 

820 bytes 

368 bytes 

96 bytes 

690 bytes 

1974 b~tes 

160 bytes 

150 bytes 

60 bytes 

1500 bytes 

1870 b~tes 

§R~~Q_TC!~1_~EEfQ~. !!L&!&-Qytes 

This means that approximately 4,770 
bytes of storage are available for the 
actual program, so that the approximate 
number of PL/I statements that would fit 
into storage is 160. 

After having programroed the prcb1ero" 
the user would determine whether or not he 
can change the buffering to allow for 
faster transaction processing. If the 
data read and/or written are changed into 
packed form, the buffer requirements are 
reduced, and the non-I/O subroutines of 
640 bytes would not be required. This 
would allow for approxirrately 30 addition­
al PL/ I statements. 

Source Text and Object Program 79 



If certain parts of an object program are 
not required in storage throughout its 
execution and never simultaneously 
requi red in stor age, the same storage area 
can be used to store these parts to reduce 
the overall requirements of the program. 

Each part of the program that will 
reside in storage only for a fraction of 
the execution time is referred to as an 
overlay. The MAIN procedure must not be 
used as an overlay. Each overlay as well 
as any portion of the program that resides 
in storage throughout the execution is 
referred to as a phase. A phase consists 
of one or more external procedures. 

'The PL/I subset does not provide direct 
overlay facilities. However, overlays can 
be performed by using the library subrou­
tine OVERLAY that provides a link to the 
operating system which~ in turn, loads the 
actual overlay. (Refer to the SRL publi­
cations describing the DOS/TOS control and 
service programs.) The statement call ing 
the overlay must be coded as follows: 

[label:] ••• CALL OVERLAY 
(character string expression - max. 
length 8) 

For example, LINK: CALL OVERLAY 
(f PHAS E5 f ) ; 

The overlay call activates the OVERL~Y 
subroutine and transmits the name of the 
phase to be fetched to the control pro­
gram. The control program locates this 
phase on the external medium.T he phase 
is then loaded in·to storage. It must not 
overlay the fetching procedure. Finally, 
control is returned to the fetching 
procedure. 

The following 17 rules should be observed 
when using overlay calls: 

1. ~fter the phase has been entered in 
storage, it must be activated by means 
of a call to the procedure name or any 
of its entry points. 

2. The phase name is independent of the 
procedure name. It is assigned by 
means of a PHASE card during proces­
sing by the Linkage Editor. 

3. ~ fetching phase (i.e., a phase acti­
vating an overlay) may have been 
fetched into storage by a preceding 

80 

fetching phase. A series of succes­
sive fetching phases is referred to as 
a tree struc ture (see Figure 58). The 
principal fetching phase of a tree 
structure is referred to as the rcot. 
A phase within the tree structure 
which is not a fetching phase is 
referred to as a leaf-

4. A fetching phase may fetch any phase 
lower than itself in the tree struc­
ture~ provided the fetched phase is on 
the same branch as the fetching phase~ 

5. If a phase fetches a phase Irore than 
one level below it, an e~pty space is 
left in storage for each phase between 
the fetching and the fetched phase. 

6. The root cannot be overlaid. It 
resi~es in storage throughout the 
execution of tbe problem program. 

7. A phase may be activated at. any time 
after it has been fetched~ prcvided it 
has not been destroyed. 

8. Fetching a phase al ready fetched in to 
storage causes a new copy of that 
phase to be fetched into storage. All 
variables of that phase which are in 
static storage have no known value. 

9. Data to be known in more than one 
phase may be gi ven the EX'TERNAL attri­
bute or be transmitted through argu­
ment lists of the CALL statement. 
External names that are to be common 
to more than one phase below the root 
level must be declared to be external 
both .in the affected phases and in the 
root. For larger volumes of data, the 
use of the EX!ERNAL attribute general­
ly requires less storage than argument 
transmission. where tne argurrent 
names change" argument transmissicn is 
normally more economical than giving 
the da ta the EXTERNAL attribute. 

10. External names of procedures to be 
fetched must be unique (see Figure 
58.> 

11. A library subroutine is incorporated 
in every phase in whiCh it is used if 

a. the subroutine is used in a proce­
dure below the root level; and 

b. that subroutine is not in the 
root. The multiple appearance of 
the subroutine can be avoided by 



incorporating it in the root 
through the use of an INCLUDE sta­
tement during link-editing so that 
it appears only in the root. 

Note: The ROOT phase may fetch any phase, A through O. Phase A 
may fetch any phase, C through L.Phase 8 may fetch any phose, 
M through 0. Phose C may fetch phases Fond G. Phose E may 
fetch any phose, H through L. Phose H may fetch phases J 
through L. Phases 0, M, N, 0, F, G, I, J, K, and Lore 
leaves. 

Figure 58. schematic Representation of a 
Tree structure 

Note: Care should be taken if relo­
eatable modules that are not PL/I 
library subroutines are to be included 
into more than one phase by the auto­
link feature. For details, refer to 
the SRL publications describing the 
DOS/TOS system control and system ser­
vice programs. 

12. If many phases from, different branches 
of the tree structure activate the 
same procedure, this procedure may be 
incorporated in the root in a manner 
similar to the inclusion of subrou­
tines (see rule 11). 

13. If (1) the declaration of a file is 
made internal to some phase which is 
not the root, (2) this file is opened 
in this phase, and (3) the phase is 
about to be overlaid with a phase from 
another branch of the' tree structure, 
the user must close this file before 
it is destroyed. This restriction 
does not apply if the file is declared 
both in the root and in a lower phase. 

Note: I f the PL/I standard fi les are 
used (by a GET or PUT statement) in a 
phase other than the root~ these files 
must eitner be used in the root phase, 
too, or in a phase that will not be 
further overlaid. Another possibility 
is to include the corresponding 

modules in the root by means of the 
Linkage Enitor contrel statements 

INCLUDE IJKSYSA (for PUT) 
INCLUDE IJKSYSI (f Cr GE'I) 

In all other cases, the standard files 
cannot be closed, and an error will 
occur at End-of-Job. 

14. If the object-time diagnostic messages 
are to include the numbers of the 
source statements causi ng the errors" 
STMT must be specified in the PROCESS 
card for at least one external proce­
dure contained in the root phase. 

15. The time to find and transfer a phase 
to core storage requires between 200 
and 600 msec for DeS, depending on the 
phase length. A 10K phase, for 
example, would require approximately 
350 ms ec. 

16. The time required to find and transfer 
a phase to core storage for TOS 
depends on the physical location ef 
the phase on SYSLNK. 

17. Different modules to be included from 
the relocatable library nay be ident­
ical except for one cr more additional 
entry points in one of these modules. 
If the module without the additional 
entry point(s) is contained in the 
root phase, calling cf the module with 
the entry point(s) in overlay phases 
will result in an error during 
link- edit ing,. 

For instance, the PL/I library rou­
tines IJK'IS'IM and IJK'ILCM have the 
following entries: 

r-------------T---------T---------, 
I Module Name I IJK'lS'IM I IJK'ILCM I 
~-------------+---------+---------~ 
I Entry I IJKTSTM I IJKTSTM I 
I Names I IJKTSTN I IJKTSTN I 
I I IJK~S~R I IJKTSTR I 
I I I IJKTLCM I L _____________ L _________ L _________ J 

(IJKTS'I'M is used for stream I/O, 
IJKTLCM is used for stream 1/0 with 
COLUMN or LINE.) 

If IJKTST~ is contained in the root 
phase, calling of IJK'ILCM in an over­
lay phase will result in an error dur­
ing link-editing. 'Io avoid such 
errors, the module containing the 
additional entry ( IJKTLCM in this 
case) must be included in the root 
phase by means of an INCLUDE 
sta tement. 

Overlay 81 



Assuffie that some program consists of one 
external procedure, which is a single 
block. Compilation of this procedure on a 
system with a storage capacity of 16K pro­
duces an object program that requires 20K. 
rhe storage requirements for the individu­
al parts of the program are as follows: 

DOS/TOS control program 
Overhead 
Data 
Subroutines inclujing 

logical IOCS 
Object program 

- 6K 
- 2K 
- 2K 
- 5K 

- 5K 

Actually, the program requires only 19K 
under the assumption that 1K of data is 
automatic and lK is static. However~ 20K 
is required when the data is allocated. 

In order to make the object program run 
on a system with a storage capacity of 
16K, it is segmented into 8 phases. 'The 
root, which is located behind the DOS/TOS 
control program, contains the MAIN proce­
dure and the subroutines. Thus, the root 
plus the DOS/TOS control program may 
require 11K plus the overhead~and program 
requirement of 2K, i.e.~ a total of 13K. 
Since the PL/I control program is in the 
root phase" the total overhead f or the 
non-root phases is approximately .5K. 

This remaining overheaj increases 
slightly because there are now 8 separate 
blocks, each of which with its ,own over­
head. The allotment of this remaining 
overhead may result in .25K per block. 
Due to these changes, the program logic 
must be slightly changed and extended to 
allow for the ov'erlaying. This brings the 
requirement for the object program to 
about .7K per phase. Since each phase 
requires less than lK and the root plus 
the control program requires 15K, the pro­
gram will now run on a system with a 
storage capacity of 16K,. rhe root will 
fetch the first phase (named PHSE1) and 
activate it. Control is then returned to 
the root, and the second phase (named 
PHSE2) is fetched. and activated. This 
process is repeated until the eighth phase 
has been executed. This completes the 
processing of one transaction, and the 
process is then repeated. The names of 
the procedures shown below are A for the 
root and Bl, B2, •• , •. , B8 f or the phases. 

A:PROCEDURE OPTIONS (MAIN); 
DE~LARE (data items) EXrERNALi 
ON ENDFILE(file-name) action; 

82 

BEGIN: ~ALL OVERLAY ('PHSE1'); 
CALL Bl; 
~ALL OVERLAY ('PHSE2'); 
CALL B2; 

CALL OVERLAY ('PHSE8'); 

CALL B8; 
GC TC BEGIN; 
END 

B5:PROCEDURE; 
DECLARE (data iterrs) EXTERNAL; 

source text 

RETURN; 
END; 

For DOS, the additional time required 
per transaction when using the overlay 
feature is approximately 4 seconds. For 
TOS, the additional time required depends 
on the number and order cf the ~hases. ~n 
the above example, the time increase is 
about the same for DOS and 'los. 

E~2£~~~!~9_2f_Q~~~1~X2_~~_~h~_~inka9~ 
~9!!QE 

All phases of one prograrr are ~rocessed by 
the Linkage Editor program in one single 
job step. Therefore" only one II EXEC 
LNKEDT statement must be given for a 
multi-phase program. Each ~hase requires 
one PHASE statement, which must immediate­
ly precede the input for this phase. The 
ENTRY statement, if used" must be the last 
statement in the input stream to be writ­
ten on SYSLNK. A multi-~hase ~rograro must 
contain one external procedure with the 
option MAIN. This external procedure must 
a~pear in the physically first phase, 
i.e.~ in the root phase. 

If programs that contain overlays are 
to be processed by the Linkage Editor pro­
gram~ a PHASE statement cf either one of 
the following three formats must be used: 

1. PHASE phasename
" 

ROOT 
This format must be used fer the root 
phas e. It must be the first PHASE 
statement in the input stream. 

2. PHASE phasename,* 
This format of the PHASE statement 
caus es the sutsequent phase to be 
loaded beginning at the next double­
word boundary. The use of this state­
ment is recommended fcr the secend 
phase. 

3. PHASE phasename, symbol 
§Y~~Q1 is either a ~reviously-defined 
phase name or an entry name appearing 
in a previous phase (except in the 
root phase). rhis forrrat of the PHASE 
statement causes the next phase to be 
loaded beginning at the address of the 
symbol. 

The syntax rules for the PHASE state­
ment are as follows: 

1. A phase name must be from 5 to 8 
characters long. 



2. All Fhase names of a program must be 
identical in their leftmost four 
characters. 

Note: Different programs (tree struc­
tures) must differ in the first four 
characters of their phase names in 
order to avoid incorrect storage 
allocation. 

3. The Fhase names must be identical to 
the values of the character-string 
expressions (except for blanks on the 
right-hand side) that are used as 
arguments in the OVERLAY statement. 

When link-editing multiphase foreground 
programs, the ACTION statement with the 
operand Fl or F2 must be used because, 
otherwise, the PHASE card for the first 
phase CQuld not have the ROOT operand. 
The first three characters of the phase 
names of a multiphase foreground program 
should be FGP to have them retrieved fast­
er from the core-image library. 

r-T---------------------------------------, 
I III JOB MYOVLAY 
J III OPTION LINK 

I PH~SE OVLAY1,ROOT 
II I EXEC PLII 
I RT:PROCEDURE OPTIONS (MAIN); 
I RU:ENTRY 

11 C~LL OVERLAY ('OVLAY2'); 
I 

21 
I 

31 
I 
1 
1/* 

4~ 
51 

I 
I 
1/* 

61 
+1 
III 
I 
1 
I 
1/ * 

C~LL OVERLAY ('OVLAY3'); 

C~LL E; 

END; 

INCLUDE J:KLM 
PHASE OVLAY2,* 
INCLUDE 
deck XYZ 

PHASE OVLAY3~OVLAY2 
INCLUDE MYPROG 
EXEC PL/I 
E:PROCEDURE; 

END; 

71 ENTRY RU 
III EXEC LNKEDT 

81 II EXEC 
1/& L_~ _______________________________________ J 

Figure 59. Sample Program to be Processed 
by the Linkage Editor 

Figure 59 shows a sample program to be 
processed by the Linkage Editor. The num­
bers at the left-hand margin are not part 
of the coding: they serve as reference to 
the explanations only. 

1 Causes loading of phase OVL~Y2. 

2 Causes loading of Fhase OVLAY34 

3 Activates procedure E in phase OVLAY3 .• 
It is assumed that phase OVLA~3 has 
been loaded previously and has not been 
destroyed, e.g., by reloading Fhase 
OVLAY2. 

4 The module JKLM that is cataloged in 
the relocatable library is to be used 
in OVLAY2 and OVLAY5. 1herefore, it is 
included in the Roor phase by an 
INCLUDE statement. 

5 This statement causes three actions: 

a. It Signals that the input stream of 
CVIAYl is terminated. 

b. The modules that are contained in 
the relocatable library and 
required for CVLAYl are retrieved 
from the library by the autolink 
feature in order tc comFlete 
OVLAY1. 

c. Phase CVLAY2 is loaded beginning at 
the first double-wcrd boundary fol­
lowing the last module of OVLAY1. 

6 This statement causes three actions: 

a. It signals that the input stream of 
OVIAY2 is terminated. 

b. The library modules that are 
required for phase OVL~Y2 and not 
contained in the ROO! phase 
(CVLAY1) are retr ieved from the 
library by the autclink feature. 

c. The starting point of OVLAY3 is 
determined to be the same as that 
for CVIAY2. 

7 This statement causes four actions: 

a. It Signals that the input stream 
for the program is terminated. 

b. The library modules that are 
required for phase OVLAY3 and not 
contained in the ROOT phase 
(OVLAY1) are retrieved froIT the 
library by the autolink feature. 

c. RU is determined to be the starting 
point for the execution of the 
program. 

d. The starting point of the dynamic 
storage area is determined to begin 
on the first double-word boundary 
following OVLAY2 or OVLhY3~ whi­
chever is longer. 

Overlay 83 



8 Fetches OVLAYl and transfers control to 
entry point RU. Note that only the 
ROOT phase is loaded by II EXEC. 

The structure of the resolved overlay 
scheme of the above example is shown in 
Figure 60. 

• } DOS/TOS 

, } RT 

OV LAY T } JKLM 

: . 

I 
Modules included by the 
autol ink feature, if any. 

III XYZ 

OVlAY2 l~} Modules included 
by the autolink 
feature, if any • .... 

} MYPROG 

OVLAY3 } E 

} 

Modules included 
by the autolink 

'.~ feature, if any. 

1\ ~namk storo~ 
Structure of the Resolved Overlay Scheme - R. 

Figure 60.. structure of the Resolved 
Overlay Scheme 

84 

PL/I Procedures Contained in the 
Re~Q£~!~~1~=~!~~~EY-------------

precompiled PL/I procedures nay be inco­
rporated in the relocatable library by 
using the Des/res MAINr service program. 
~ module is retrieved frcrr the library and 
incorporated in the object program by the 
autolink feature when the name cf the 
module is specified for the first time 
either in a PIlI functicn reference or in 
a CALL statement • 

No module is retrieved from the library 
if only secondary entry fcints are 
referred to in the calling procedure(s). 
In this case, a statement of the format 

INCLUDE module-name 

is required to include the module in the 
object program. On the other hand, inco­
rporation by the autolink feature can be 
suppressed for a specific ~odule by refer­
ring only to secondary entries of that 
module. To obtain the same result as by 
calling the primary entry foint" the prc­
grammer may insert a statement of the 
forma t 

ENTRY secondary-entry-name 

immediately behind the PROCEDURE statement 
of the external procedure. 

~2~~: Although this description covers 
most of the applications of the overlay 
scheme~ the reader should study the sec­
tion covering the Linkage Editor program 
in the SRI publications that describe the 
DOS/TOS system control and service 
programs. 



All source program cards are listed if the 
LIST option is in effect. Each card is 
printed as one line. The source state­
ments are numbered sequentially starting 
at 1. The statement numcer is printed in 
print pos it ions 1 through 6 0 f the line 
where the statement begins (right­
aligned). In case a line contains more 
than one statement, only the number of the 
first statement is printed. However, 
since the remaining statements are coun­
ted, the next line again gives the correct 
statement number. 

Note: If comments or character strings 
are-not correctly opened or closed in the 
source text, unpredictatle diagnostic mes­
sages may be produced. Also, the source 
statement numbering will be erratic. 

If the source statement contains any 
error(s), tne statement numter is used in 
the corresponding diagnostic message to 
clearly identify the statement in error. 
rhe diagnostic messages are listed in 
1\.ppendix f'. 

20lumn 1 of PL/I source program cards 
must always be blank. If column 1 of a 
source card contains any cnaracter, print 
positions 7 through 20 of the correspond­
ing line in the source program listing -­
i.e., the gap between the statement number 
column and the source statement column 
plus column 1 of the source card -- are 
filled with asterisks to indicate this 
error. Columns 73 through 80 are ignored 
and may contain any information. 

§~~~Q~_!~~~~_1IS!f~~ 

If the SYM option is specified, all sym­
bols used in PL/I source programs are 
listed in the symbol table. The format of 
the symbol table is shown in Figure 61. 

'I'he symbol table is listed even if 
NOSYM was specified in case a declaration 
contains an error or an external name is 
too long. 

The pr9grammer is advised to examine 
the symbol table listing after the first 
compilation of a procedure to detect 
erroneously declared identifiers and iden­
tifiers that may have been incorporated by 
default rules as the result of 
mispunching. 

The attributes ALIGNED or UNALIGNED, if 
specified for a major structure, are 
printed together with the ~1~ill~n~~ of the 

structure, unless an opposite attribute 
has been explicitly declared for a parti­
cular element. 

r---------T-------------------------------, 
I Print I I 
IPositionslContain I 
t---------+-------------------------------~ 
I 1-31 luser-defined name I 
r---------+-------------------------------~ 
I 33-36 linternal representation I 
t---------+-------------------------------~ 
I 38-39 I block number I 
r---------+-------------------------------~ 
I 41 Iblock level nurrber I 
t---------+------------------------------·-~ 
I 43-49 lone of the attributes ARRAY~ I 
I I S'IR DC'I., EN'IR Yr, or B DI L'I'I N* I 
r---------+-------------------------------~ 
I 51-53 Ilogical structure level* I 
t---------+-------------------------------~ 
I 55-61 lone of the attributes ARITHM' I I 
I ISTRING~ LABEL, POINTEk, FILE, I 
I lor P ICTURE* I 
r---------+-------------------------------~ 
I 63-69 lone of the attributes DECIMAL" I 
I I BINARY, ALIGNED, UN~L., CONST.,I 
I lor VARIAB.* 1 
t-~-------+-------------------------------~ 
I 71-75 lone of the attributes FIXED, I 
I IFLeAT, BI'I" CHAR., or STERL* I 
t---------+-------------------------------~ 
I 77-81 Ithe precision or length* I 
r---------+-------------------------------~ 
I 83-88 lone of the attributes S'I'ATIC, I 
I IAUTOM., BASED, PARAM., or I 
I IDEFIN.* I 
t---------+-------------------------------~ 
I 90-92 lone of the attributes INT or I 
I I EX'I I 
t---------~-------------------------------~ 
1* if applicatle I L _________________________________________ J 

Figure 61. Format of the Sy:nbol Table 
Listing 

Any error detected during compilation in 
the declaration of the symbols is identi­
fied in the symbol table. In this case, 
only the source program syrrbol~ one of the 
messages listed in Figure 62, three 
asterisks, and the code Fertaining to the 
message aFpear in the respective line of 
the listing. 

Message 12 appears with the f!£§~ com­
parand only. Comparison starts with the 
innermost block and proceeds either on the 
same nesting level according to the block 
sequence of the program~ cr to the blcck 
with the next higher nesting level. 

Program Listings 85 



E~~!!H2!.g : 

OU'I~ PROCEDURE; 
DECLARE E BINARY EXTERN~L; 
I N: PROCEDURE; 

DECLARE E DECIM~L EXTERN~L; 
END IN; 

END OUT; 

The message appears with the E in procedure 
IN. 

r----T------------------------------------, 
ICodel Message Text I 
t----+------------------------------------~ 
I 01 ISYNT~CTICAL DECLARE ERROR. I 

~----~------------------------------------f I 02 ICONFLICTING ATTRIBUTES. I 
r----+------------------------------------~ 
I 03 I PRECI SI ON IS MISSI NG OR wRONG. I 
.----t------------------------------------f 
I 04 IBASE VARIABLE ITSELF IS DEFINED OR I 
I IB~SED. I 
.----t------------------------------------f 
I 05 IBASE OR POINTER INCORRECT. I 
r----~------------------------------------~ 
I 06 I ~TTRIBUTES OF SECONDARY ENTRY CON- I 
I I FLICT WITH THOSE OF PRIMARY ENTRY. 1 
r----+------------------------------------~ 
I 07 IMULTI-DECL~RED IDENTIFIER. I 

~----~------------------------------------f 
I 08 IENTRY RETURNS VALUE WITH CONFLICTING I 
I I ATTRIBUTES. I 
.----+------------------------------------~ 
I 09 IINVALID STRUCTURE. (Any invalid I 
I I element in a structure may invalid- I 
I I ate the entire structure). I 
t----+------------------------------------~ 
I O~ I~RR~Y TOO LONG. I 
.----+------------------------------------~ 
I OB ISTRUCTURE TOO LONG. I 
t----+------------------------------------~ 
I OC I POINTER IN BASED STRUCTURE. I 
.----t------------------------------------~ 
I OD ITOO MANY ARRAYS. I 
r----+------------------------------------~ 
I OE IINV~LID PICTURE. I 
.----+------------------------------------~ 
I OF ISTRUCTURE LEVEL TOO DEEP. I 
t----+------------------------------------~ 
I 10 lN~ME EXCEEDS 31 CHARACTERS IN I 
I I LEN3TH. I 
t----+------------------------------------~ I 11 IEXTERN~L N~ME EXCEEDS 8 CHARACTERS I 
I lIN LENGTH. I 
t----+------------------------------------~ 
I 12 IMULTIPLE DECLARATION OF EXTERNAL I 
I INAME INCONSISTENT. I l ____ i ____________________________________ J 

Figure 62. Error Codes Used in the Symbol 
Table Listing 

If XREF is specified either in the OPTION 
stateroent or in the PL/I PROCESS statement 
a cross-reference listing will be provided 

86 

containing the external names in alphabetic 
order as well as the internal names a-nd the 
statement numters of those statements in 
which the names appear. References tc 
identifiers in DECL~RE statements or to 
incorrectly declared identifiers are not 
printed. 

Q[~§~!_1~~~~_~!§1!~~ 

The offset table listing is produced if the 
SYM option is specified in the OP'IION sta­
tement. The information is printed in four 
columns in hexadecimal notation. 

Internal Name. A variable or constant is 
listed-in-the offset table if (1) it is de­
clared in the source text and (2) it 
appears either in the autcrr.atic or static 
storage area, and (3) has a fixed offset 
relative to the beginning of the respective 
storage area. 

Qff~~~. This column gives the offset of 
the data item relative to the beginning of 
the automatic or static storage area for 
the corresponding block. 

~YE~. This column indicates whether the 
data item is contained in static cr in 
automatic storage. 

Module Offset. 'Ihis colurrn gives the off­
set-of~he-data item relative to the begin­
ning of the module in which it ap~ears. 
(Since the addresses in automatic storage 
are dynamically assigned, no offset rela­
tive to the beginning of the module can be 
given for automatic data.) The absclute 
address of the data item contained in stat­
ic storage can be determined by adding the 
load address of the module (to be found in 
the Linkage Editor storage rr.a~) tc the 
value given here. 

The external symbol table is ~roduced if 
the SYM option is specified in the OPTION 
statement. ~t contains the following 
information: 

column 1: SYMBOL - the external symbol 
col umn 2: TYPE - either SO" LD I or ER 
column -3: ESID - ESID number ~f control 

section that is referred 
to (for SD and ER) 

column 4 : ADDR - begin address (for sr; 
and LD) 

column 5 : LENGTH - end address (for SD 
only) 

col umn 6: ESID ESID nurober of control 
section that is referred 
to (f cr LD) 



~1Qf~_1~~~~_~J§!J~§ 

The block table listing is produced if the 
SYM option is specified in the OPTION sta­
tement. The block table gives the number 
of the program block and the size of the 
corresponding DSA in hexadecimal notation. 

rhe object code generated for a PL/I source 
program is listed following the offset 
table. The following should be noted: 

1. All addresses and operands are printed 
1n hexadecimal notation. 

2. Length specifications in SS instruc­
tions are printed modulo 256 if one 
length is specified and modulo 16 if 
two lengths are specified. 

3. Operands of the form X'nnn' (b) repre­
sent generated variables or constants. 
nnn is the displacement and b is the 
base register. 

4. Operands of the form N' nnn' " where nnn 
is greater than or equal to 100~ repre­
sent internal names of declared items. 
(These can also be found in the symbol 
table. ) 

5. Operands of the form N'nnn', where nnn 
is less than 100, represent internal 
names of PL/I library subroutines. 

6. Labels of the form L'nnn' represent 
internal names of declared or generated 
labels. (Only declared labels can be 
found in the symbol table.) 

7. Operands of the form N'nnn' that appear 
in the instructions BC, BAL~ or BCT 
represent internal names of either de­
clared or generated labels. 

8. A 'constant' bf the form X" has the 
Sdme function as the assembler instruc"" 
tien EQU * 

9. An instruction of the form 

L'nnn' DC A(N'nnn') 

does not represent an address constant 
of itself. L'nnn', in this case, is 
the label of tne constant, whereas A( 
N'nnn') refers to an entry point of 
that internal name in the program. For 
examfle, in the instruction 

L'0104' DC A(N'0104') 

L'0104' is the label of the constant 
defined by the DC. A{N'0104') refers 
to an entry pOint in the program that 
has the internal name. 

10. If a statement is preceded by more than 
one label, all labels are equated to 
the one directly preceding the sta~e­
men t,. For the staterr,ent: 

A: B: C: X = Y; 

the following code weuld be generated: 

L' 
I' 
L' 

EQU * 
EQU * 
MVC 

(for 1\) 
(fer B) 

11. The number of the source statement, for 
which the object code is generated is 
printed at the end of the specific part 
of the object text. The statement 
number may appear more than once if the 
respective source staterrent was broken 
down into logical parts during 
compilation. 

If IISTC is specified in the PROCESS card 
the statement numbers and the relative 
location of the end of each staterrent 
within the object module is printed. LISTO 
overrides LISTX, i.e .• ~ if LISTO and L!STX 
are specified, the LISTX option is ignored 
because the object code listing and the 
statement offset listing cannot be printed 
together .• 

Errors caused by non-obserVance of language 
rules and/or restrictions jn the source 
text are detected by the corr:pi ler. 1\ diag­
nostic message is printed for each detected 
error (after the source listing). Thus, 
more than one diagnostic message may be 
printed for one statement,. The fermat of 
the diagnostic messages is.as shown in 
Figure 63. 

The error messages are printed en the 
unit assigned to SYSLs·r if ERRS was speci­
fied in the Job Control OPTION statement er 
in the PIlI FROCESS card. The error list 
is followed by a message reSUlting frem all 
detected errors. This message gives the 
action taken by the compiler. 

If errors of the severity Tare 
detected" the message is: 

SE01I JCBSTEF FL/I TERMINATED. LINK 
OPTICN RESET. 

If no errors of the severity T~ but 
errors of the severity S are detected, the 
message is: 

SEO 21 lINK OPTION RESET. 

Program Listings 87 



r------j----------------------------------, 
ICOLUMNICONT~INS I 
~------t----------------------------------~ I 1 15A, 5C, 5E, or 5G, depending on \ 
I I where the error is detected. I 
.------+------------------~---------------~ 
I 2 Ithree decimal digits (only two fori 
I I messages that are a Iso pri nted on I 
lithe console) giving the number of I 
I I the error message. I 
.------+----------------------------------~ 
I 3 Ithe character I (system standard I 
I I indicating that the message is of I 
I linformational type and no operator I 
I laction is required). I 
.------+-----------~----------------------~ 
I 4 Ithe numrer of the statement in I 
I Iwhich the error was detected (onlyl 
I Ifor messages starting with 5C and I 
I 15~). I 
t---~--+----------------------------------f 

5 Ithe severity code (one of the 
Icharacters W, E, S, or T). 
I~_=_~~!!!!!!g 
IThis code indicates that the com­
IFiler suspects an error although 
tthe program is written in legal 
IFL/I language. The compiler takes 
Ino further action. 
E = Error 
This-code indicates that the pro­
gram is not legal. However, the 
compiler has tak~n the correspond­
ing corrective action. Execution 
will be successful if the correc­
tive action was adequate. 
S = Severe error 
This-cede-IndIcates that the pro- I 
gram contains errors which the I 
comFiler is unable to correct, but \ 
which do not prevent the compila- I 

ttion from being continued. Execu-I 
Ition of the pr09uced object pro- I 
I gram will not be successful. I 
1!_=_!~!~!!!~ti2g I 
IThis code indicates errors causing I 
Ithe termination of the compila- I 
Ition. Compilation is terminated I 
I after the phase handling the errorl 

I Ilistings has been reached and the I 
I Imessages have been printed. I 
t------+-----------------------.... ----------~ 
I 6 la comment referring to the I 
I I detected error. <See Appendix F.) I l ______ ~ __________________________________ J 

Figure 63. Format of Diagnostic Messages 

Since in the case of severe errors no 
Ii nkage editing is poss ibl e" the / / EXEC 
LNKEDT statement, if any, is flagged as 
invalid by the Job Control message 1SlnD 
STATEMENT OUT OF SEQUENCE. 

If only errors of tne severity W or E 
are detected, the message-1s: 

88 

SE03I POSSIBLE ERRORS IN SOURCE 
PROGRAM. 

The individual diagnostic error messages 
are listed in Appendix F. 

Errors that occur during execution ef PL/I 
programs cause the printing of an object­
time diagnostic message. The ferrr,at cf 
thes e mess ages is as follows: 

SLOOI ccqqqqqq aaaaaa ERROR STMT 

SLOOI 

cc 

qqqqqq 

aaaaaa 

STMT 

is a prefix tc identif~ the mes­
sage as a PL/I object-time 
message, 

are two hexadecimal digits iden­
tifying the rressage~ (see the 
message code list below), 

are six hexadecimal digits qua­
lifying the message code with 
the address ef a fi Ie; if aFFI­
icable. Ctherwise six zercs. 

are six hexadecimal digits sFe­
cifying the address where the 
error was detected. If the 
error was detecte'd in a library 
routine, aaaaaa is the address 
of the instruction that follows 
the call of the routine in the 
PL/I object Frcgram. 

If STMT was sFecified in the 
PROCESS card, the number of the 
source statement that caused the 
error is printed in the ferm 
STATEMENT NUMBER nnnn. In -some 
instances it is imFessible to 
determine the statement that 
caused the error; nnnn is then 
set to 0000. 

For errors not ralslng an ON-condition 
(other th~n ERROR), a message is printed 
for the specific error and the ERROR­
condition is raised. This applies to all 
errors with a message ccde higher than 10. 

If SYSLST is not yet cFened (e.g., 
because of insufficient sterage fer DSA), 
some of the messages may be printed on the 
printer-keyboard only. 

LIST OF MESSAGE CCDES 

1. PI/I CN-Condition Comments 
These-ebJect~tIrne-dIagnostic messages 
are issued only if an enabled PL/I CN­
condition is raised and no ON-unit is 
currently being executed for this 
condition. 

01 CVERFICW 
02 UNDERFLOW 



03 ZERODIVIDE 
04 FIXEDOVERFLOW 
05 SIZE 
06 CONVER::iIO~ 
09 ERROR 
OA ENDFILE 
O~ TRA.NSMIT 
OD KEY 
OE RE~ORD 

Only the last four con1itions 
use the file-name qualification. 

with indexed-sequential files the END­
FILE condition will also be raised if a 
key higher than the last one on the 
file is requested. If the ENDFILE con­
dition is not enabled for the file~ the 
message 80 - NO RECORD FOUND - will be 
issued. 

2. ~~f9~~f~_!~~~ff~E~~ 
Severe programming errors might lead to 
program-check hardware interrupts dur­
ing the execution of a PL/I program. 
These possihle interrupts are identi­
fied by the following codes: 

11 Operation 
12 privileged operation 
13 Execute 
14 Protection 
15 Addressing 
16 Specification 
17 Data 
1E Significance 

Note: For details refer to the SRL 
publication !g~_§Y~~~m~1&QL_~!i~£iE1~§ 
Qf_Qe~£~~!Qg, Form A22-6821. 

3. ff2~~~~eeE!~g_~ffQf~ 
21 STORA.3 EaVE RF' LOW 

There is not sufficient storage 
available for dynamic storage 
allocation. 

22 INVALID LABEL 
The label variatle in a GOTO state­
ment does not contain a valid 
label. 

23 SECOND CALL OF ~AIN 
A procedure with the option MAIN is 
called by a PL/I program. 

24 PA.RAMETER NOT ON DOUBLE-wORD 
EOUNDARY 
Procedure expecting douhle­
prec1s1on floating-point variable 
as parameter has teen passed 
single-precision value. 

25 INVALID SIGN CHARACTER 
Incorrect character for sign posi­
tion of PICTURE 1ata containing T, 
I, or R in specification. 

4a. Mathematical and Arithmetical Subrou-
~Ine§=]~h2E!=~E~~~~~~~I--------------

30 X L'I 0 IN SQR 'I( X) 

31 ABS(X) GE (2**18)*K IN SIN(X) 
OR COS(X) (K=PI) OR SIND(X) OR 
CCSD (X) (K=180) 

32 ABS<X) GE (2**18)*K IN TAN(X) 
(K=PI) OR 'IAND(X) (K=180) 

33 X TCC NEAR SINGULARITY IN 
TAN(X) or 'IAND(X) 

34 Y=X=O IN ATAN(Y,X) 
35 X GR 174.6 IN SINH(X) OR 

CCSH{X) 

36 X GR 174.6 IN EXP(X) 

37 X GR 1 IN ATANH(X) 

38 X IE 0 IN LOG (X) CR LOG2(X) OR 
LOG10(X) OR X LE 0 AND Y NOT FIXED 
PCINT (P,O) IN EXPRESSION X**Y 

39 X=O, Y IE 0 IN x**y 

3A X=O, N=O IN X**N 

4b. Mathematical and Arithmetical Subrou-
~!~§s-II2~9=~!9~ill§!!~iI---------------

40 X IT 0 IN SQR'I' (X) 
41 ABS(X) GE (2**50)*K IN SIN{X) OR 

COS(X) (K=PI) OR SIND(X) OR 
CCSD(X) (K=180) 

42 ABS(X) GE (2**50)*K IN TAN(X) 
(K=PI) OR 'IAND( X) (K=180) 

43 X TCC NEAR SINGULARITY IN 
TAN(X) OR 'IA.ND{X) 

44 Y=X=O IN A'IAN(Y,X) 

45 X GR 174.6 IN SINH(X) OR COSH (X) 

46 X GR 174.6 IN EXP(X) 

47 X GR 1 IN A'IANH(X) 

48 X LE 0 IN LOG(X) OR LOG2(X) 
CR ICG10(X) CR X LE 0 AND Y NOT 
FIXED POIN'I (P,O) IN EXPRESSICN 
X**y 

49 X=O, Y IE 0 IN X**y 

4A X=O, N=O IN X**N 

50 Y=O IN MCD(X,Y) 
Binary fixed argurrents 

Prcgram Listings 89 



51 y=O IN MODeX~Y) 
Decimal fixed arguments 

52 Y=O OR 
~BSeX/Y) GT 7.2*10**75 IN MOOeX,Y) 
Short floating-point arguments 

53 Y=O OR 
ABS(X/Y) GT 7.2*10**75 IN MODeX,Y) 
Long floating-point arguments 

54 MODeX,Y) GE ABS(Y) 
Short floating-point arguments 

55 MODCX,Y) GE ABS(Y) 
Long floating-point arguments 

MOD for floating-point arguments 
will be calculated as 

a=X/Yi b=Y*ai MOD(X,Y)=X-b 

If the exponent of X is so high 
that X+Y has the same value as X, 
then MOD(X~Y)=Oi message 54 or 55 
will be generated in such a case. 

5. I~E~tLQ~t~~t_g~~Q~~ 
61 FORM~T ERROR 

90 

Illegal combination of data list 
item and format list item. 

62 END OF STRING 
Attempt to read or write beyond the 
specified string in a GEr EDIT or 
PUT EDIT statement with the STRING 
option. 

63 ILLE3~L USE OF CONTROL FORMAT OR 
OPTION 
An invalid PAGE~ SKIP, LINE, or 
COLUMN format is specified for a 
file. 

64 ILLEGAL USE OF STREAM FILE 
~ttempt to execute a disallowed GET 
EDIT or PUT EDIT statement for a 
STRE~M file. 

65 ILLE3~L USE OF CONSECUTIVE 
BUFFERED FILE 
~ttempt to execute a disallowed 
READ, WRITE, REWRITE, or LOC~ 'IE 
statement for a CCNSECUTIVE BUF­
FERED file. 

66 ILLEGAL USE OF CONSECUTIVE 
UNBUFFERED FILE 
Attempt to execute a disallowed 
READ, WRITE, or REWRITE statement 
for a CONSECUTIVE UNBUFFERED file. 

67 ILLE3~L USE OF REGICNAL FILE 
Attempt to execute a disallowed 
RE~O, WRITE, or REWRIrE statement 
for a REGIONAL file. 

69 PAGE SIZE OPTION FOR NON-PRINT' FILE 

6A ILLEGAL USE OF INCEXED SEQUENTIAL 
FILE 
Attempt to execute an invalid READ" 
WRITE, or REWRITE statement for an 
INDEXED SEQUENTIAL file. 

6B I LIEGAL USE CF INCEXED DIRECT FILE 
Attempt to execute an invalid READ/, 
WRITE~ or REWRITE staterrent fcr an 
INDEXED DIRECT file. 

6C INPUT DATA ELEMENT TOO LONG 
Attempt to read an element of 
excessive length in a GET LIST 
statement. 

60 Tec MANY CCNCURRENT I/O ERRORS FOR 
STACK SIZE 
Indicates that rrcre than three 
files have WLR and/or T'R~NSMIT 
errors being handled at the same 
time. 

6E FILE IN ERROR NOT IN ST~CK 
Indicates that a file with WLR or 
TRANS~IT error flagged in the DTF 
appendage is not in the errcr file 
stack. 
(N.B. This message can also occur 
if the' LBLTYP card has been 
omitted, thereby causing label data 
to overlay and set the appropriate 
bit in the DTF appendage). 

6F ILLEGAL USE OF STRE~M FILE 
Attempt to execute a disallcwed GET 
LIST or PUT LIST statement for a 
ST'REAM file. 

70 ERROR DURING POSITIONING OF INDEXED 
SEQUENTIAL INPUT FILE 
An error has occurred during the 
positioning to the record key spe­
cified in the KEY option of a READ 
sta tement. 

71 ERRCR DURING INITIALIZATION OF 
INDEXED SEQUENr IAL OUTPU'r FILE 
The cylinder index area is not 
large enough to accommodate all 
entries required to index each 
cylinder specified for the prime 
data area. 

72 ERRCR DURING INITIALIZATION OF 
INDEXED SECUENrIAL OUTPUT FILE 
The master index area is not large 
enough to accommodate all entries 
required to index each track cf the 
cy linder index. 

7B END CF STRING 
Attempt to read cr write beyond the 
specified string in a GET LIST or 
PUT LIST statement with the STRING 
option. 



If the ERROR condition is raised as 
a result of System action for the 
KEY condition, one of the following 
messages may be printed to give a 
more specific description of the 
error that caused the KEY condition 
to be raised. 

80 NO RECORD FOUND 
The record to be retrieved by a 
READ KEY from an INDEXED file has 
nnt been found in the data file. 

81 OVERFLOW AREA FULL 
There is no more space available in 
the overflow area(s) for the record 
to be added to an INDEXED DIRECT 
file by a WRITE KEYFROM statement. 

82 PRIME DATA AREA FULL 
The prime data area has been filled 
while creating or extending an 
INDEXED SEQUENTIAL file by a WRITE 
KEYFROM statement. 

83 DUPLICATE RECOKD 
The record ceing added by a wRITE 

REYFRCM statement to an INDEXED 
SEQUENTIAL or DIREC'I file has a 
duplicate record key of another 
record in the file. 

84 SEQUENCE CHECK 
The record being written by a WRITE 
REYFRCM statement to an INDEXED 
SEQUENTIAL file is not in the 
sequential order required. 

87 FCRMAT ERROR IN INPUT 

a) Delimiter is neither blank nor 
comma 

b) Character E is missing in 
external format of a bit strin~ 

c) External format of data item is 
incompatible with internal 
declaration, e.g. 

External: In ternal: character stri ng .--bi'tS't'rlng 
string data .--numeric, 

E " F- forma t 

Program Listings 91 



r------~T--------------------------------T-------------------------------,--------------, 
I No. and I I I I 
I intern. I I Reason for Inclusion , I 
I name I Function I in object Program I Size( in Bytes) I 
~-------t--------------------------------t-------------------------------t--------------~ 
I 1 IConverts input data IF or E format has appeared I 404 I 
IIJKVE~Mlfrom F or E notation to an lin an input statement I I 
I I internal intermediate form I I I 
~-------+--------------------------------t-------------------------------t--------------i 
I 2 I Converts data from an internal I F or E format has appeared I 102-4 I 
IIJKVCEMlintermediate form to F or E lin an output statement I I 
I I format in preparation for output I I I 
~-------+--------------------------------+-------------------------------+--------------~ 
I 3 I converts data in storage in I ~oded fixed decimal expres- I 68 I 
I Icoded fixed decimal form to an Ision appears in an output list I I 
IIJKVPCMlinternal intermediate· form I or I I 
I I I Coded fixed decimal data I I 
I I Irequires conversion to float- I I 
I I ling scale or l:inary base I I 
t----~--t--------------------------------t-------------------------------+--------------~ 
I 4 IConverts data from an internal Icoded fixed decimal variable I 214 I 
I I intermediate form to coded lappears in an input list I I 
I IJKVCPM I fixed deci.mal form I or I I 
f I I Whenever a conversion to 11 
I I I coded fixed decimal is required I I 
~-------~--------------------------------t-------------------------------t--------------i 
I 5 IConverts data stored in IA numeric float variable I 492 I 
IIJKVFCMlnumeric float form to an inter- lappears in an arithmetic I I 
IIJKVNPMlnal intermediate form lexpression or in an output listl I 
~------~+--------------------------------+-------------------------------+--------------~ 
I 6 'Converts data in an internal INumeric float variable I 680 I 
I I intermediate form to internal lappears in an input list I I 
J IJKVCF'M' numeric float I or I I 
IIJKVPNMI I appears on the left side of an I I 
, I lassignment symbol I I 
~-------~----~---------------------------+--------~----------------------t--------------~ 
I 7 I Converts data in storage in I Integer binary fixed expres-, 60 , 
IIJKVBCMlfixed binary form to an inter- Ision appears in an output list I I 
I Inal intermediate form I I I 
~-------+-------~------------------------+---~---------------------------t--------------~ 
I 8 IConverts data in an internal IBinary fixed variable appears I 238 I 
IIJKV~BMlintermediate form to fixed lin an input list I I 
I I binary form I I I 
~-------+--------------------------------+-------------~-----------------t--------------i 
I 9 IConverts data from coded float- ICoded float expression or non- I 320 2 , 

I ling point form (short,or long I integer binary expression1 I I 
IIJKVT~Mlword) to an internal intermedi- ,appears in an output list I I 
I I ate form I or I I 
, I I Coded float or non- integer I I 
I I I fixed binary expression is, I 
, I ,assigned to a numeric decimal , I 
I , ,variable or a coded fixed I , 
, I ,decimal variatle , , 

t-------t--------------------------------t-------------------------------t--------------~ 
,10 IConverts data from an internal Icoded float variable appears' 3922 , 

IIJKV~TMlintermediate form to coded lin an input list I I 
I ,f loating form (short or long) I or , I 
I I I Convers ion to coded float is I I 
I I Irequired from either nurr.eric I I 
I I ,data or coded fixed decimal ~ I L _______ ~ ________________________________ ~ _______________________________ ~ ______________ J 

92 



r-------T--------------------------------T-------------------------------T--------------, 
I No. and I I I I 
linterp.1 IReason for Inclusion I I 
Iname I Function lin Object Program jSize(in Bytes) I 
~-------+--------------------------------+-------------------------~-----+--------------~ 
I 114 I Converts data from numeric I Numeric fixed decimal number is I 368 I 
IIJKVNPMlfixed form to coded fixed lused in an arithmetic I I 
I Idecimal form3 lexpression or in an output listl I 
~-------+--~-----------------------------+-------------------------------+--------------~ 
I 125 I~onverts data from coded fixed INumeric fixed decimal number I 316 I 
I Idecimal form to numeric fixed lappears on the left of an I I 
I IJKVPNMI decimal form 3 lassignment symbol or in an I I 
I I I input list I I 
~-------f--------------------------------+-------------------------------+--------------~ 
I 13 I~onverts from numeric fixed INumeric sterling field is used I 796 I 
IIJKVRPMlsterling to coded fixed decimal lin an arithmetic expression cr I I 
I I I in an output list I I 
t-------t--------------------------------t-------------------------------+--------------~ 
I 14 Iconverts from coded fixed INumeric sterling number I 1252 I 
I 1 decimal to numeric fi xed I appears on the left of an I I 
IIJKVPRMlsterling lassignment symbol or in an I I 
I I I·input list I I 
~-------t--------------------------------+------~------------------------+--------------~ 
I 15 I converts character string to I ::::onversion to bi t string frolT I 254 ~ 
I Ibit string Icharacter string form is I I 
IIJKVGIMI Irequired - I I 
~-------f--------------------------------+----------------------~---~----+--------------i 
I 16 I~onverts bit string to characterlConversion to _character I 148 I 
I Istring I string from bit string is I I 
I LJKVI3Ml I required or a bit-string I t 
I I I expression appears in an I I 
I I I out put list I I 
~----·--t--------------------------------+-------------------------------+--------------~ 
I 17 I Converts fixed l:inary data to I ~on version from binary I 132 I 
IIJKVBTMlcoded float Ifixed to coded float is I I 
I I I required I I 
~-------f--------------------------------+-------------------------------+--------------i 
I 18 I~onverts coded float data to IConversion from coded I 228 I 
IIJKVTBMlfixed binary I float to fixed binary is I I 
I I I required I I 
t-------L--------------------------------~------------___________________ L ______________ ~ 

I 

1 'Ihe only way for a non-integer fixed binary number to appear is if the resul t of a 
division of one fixed binary integer by another results in a non-integral value or by 
use of any of the built-in functions PRECISION, BINARY, or FIXED. 

2~lso requires a table of 128 bytes. Subroutines 9 and 10 require this table. If both 
subroutines appear~ the table is in storage only once. 

3Any picture data represented by [9 ••• ] [V] [9 ••• ] (T] is converted to and frolT; ceded 
fixed decimal by a single in-line instruction and requires no subroutines. 

4Subroutine 11 is a subset of subroutine 5. If 5 is present, 11 is not. 

1 5 Subroutine 12 is a subset of subroutine 6. If 6 is present, 12 is not. L _______________________________________________________________________________________ J 

Appendix A. Conversien Subroutines 93 



FORMA T ITEMS -I 

-I ~ TO ~ u ~ ~ U w 
0 Z Z W I- ::::i ~ 0 0 < 

0 
W I- 0 c.:: 

~ 
I-

~ < w V) 

W -I l-
X LL. 0 LL. V) < a::: 

FROM -I Z W 
u::: U LL. U U I-

0 02 0 02 ~ ';; U 
< < LL. W co w w w w w 0 

0 ~ 0 ~ ~ 
c.:: 

w < 0 ::> 0 ::> ::> ~ ::r: 
u z u Z Z LL. U 

F NP NP NP NP 1,4 
1,4, 

1,10 1,6 
1,4, 

1,8 NP 12 14 
V) 

1,4, 1,4, ~ E NP NP NP NP 1,4 1,10 1,6 1,8 NP w 12 14 !:: 
I- A NP NP NP NP NP NP NP NP NP NP X 
~ 
~ 

0 B NP NP NP NP NP NP NP NP NP NP NP LL. 

CODED FIXED DECIMAL 2,3 2,3 NP NP IL 12 3,10 3,6 l4 IL NP 

NUMERIC FIXED DECIMAL 2,3, 2,3, NP NP 11 11,12 3,10, 3,6, 11, 1~ 11 IL 11 11 11 11 

CODED FLOAT 2,9 2,9 NP NP 4,9 4,9, IL 6,9 4,9, 18 NP 12 14 

NUMERIC FLOAT 2,5 2,5 NP NP 4,5 4,5, 5,10 5,6 4,5, 5,8 IL 12 14 

NUMERIC STERLING 2,3 2,3 NP NP 13 12,13 3,10, 3,6, 
13,1~ 13 IL 13 13 13 13 

FIXED BINARY 2,7 2,7 NP NP IL 12 17 6,7 14 IL NP 

CHARACTER STRING NP NP X NP NP NP NP NP NP NP IL 

BIT STRING NP NP NP 16 IL 12 IL 6,7 14 IL 16 

LABEL NP NP NP NP NP NP NP NP NP NP NP 

POINTER NP .NP NP NP NP NP NP NP NP NP NP 

Legend: NP - Not permitted. 

IL - Done directly in-line; no subroutine required. 

X - Contained as part of edit-directed I/O package to be discussed in I/O chapter. 

The numbers indicate the applicable conversion subroutines listed in Appendix A. 

94 

(.!) 
Z a::: w c.:: l-
I- -I 
V) w Z 

I:Q (5 !:: < I:Q -I Q.. 

NP NP NP 

NP NP NP 

NP NP NP 

15 NP NP 

IL NP NP 

11 NP NP 

18 NP NP 

5,8 NP NP 

13 NP NP 

IL NP NP 

15 NP NP 

IL NP NP 

NP IL NP 

NP NP IL 



r--T--------------.-------------------T---------T--------T------------------------------, 
I 1 I I I Size 1 I 
INolName IArgument(s) IInternal 1 in 1Restrictions and ~dditional I 
I I I 1 Name (s) I Bytes I Information I 
~--+--------------+-------------------+---------+--------t-----------------------·-------~ 
I I Ibit string 1 IJKRBK~ I 292 I I 
I I I I IJKREKEI IResult must not exceed max. I 
119 I REPEAT .------~------------+---------+--------~string length I 
I I I character string 1 IJKRGKM I 84 I I 
t--~--------------t-------------------+---------t--------t------------------------------i 
1201 I bi t string I IJKRBIM I 292 I I 
t--~INDEX .-------------------+---------+--------~ I 
1211 Icharacter string IIJKRGIM I 108 I I 
t--~--------------+-------------------+---------t--------t------------------------------i 
1221 BOOL I I IJKREBM 1 424 I I 
~--t-----------~--+-------------------+---------+--------+------------------------------i 
J I I character str ing I in-l ine I I I 
I 231SUBSTR ~-------------------+---------+--------~ 1 
1 I I bi t string I IJKVIIM I· 180 I 1 
~--+--------------+-------------------+---------+--------+------------------------------~ 
1241UNSPEC I bit string lin-line 1 IArgument must not exceed I 
I 1 I I I I 8 byt es 1 
~--t--------------+----------~--------+---------+--------+------------------------------~ 
126 I DATE I IIJKSDTM I 58 I I 
t--+--------------t-------------------+---------t--------t------------------------------i 
1271 STRIN3 I lin-line I I I 
t--t--------------t-------------------+---------+--------+------------------------------~ 
I I I fixed tinary 1 IJKRUBM I 148 I I 
1281 ROUND Ifixed decimal lin-line 1 I 1 
I I .-------------------+---------+--------~ I 
I I I float lin-line I -- I I 
t--~--------------t-------------------+---------+--------t------------------------------f 
1291 lall fixed binary IIJKRMBX I 278 1 
I J 1 I IJKRMBNI I 
~--f ~-------------------+---------+--------~Argum€nt with differing data 
1301 I all fixed decimal I IJKRMPX I 386 I attritutes causes sone of the 
I 1 I I IJKRMPNI Idata to be ccnverted to one of 
t--fM~X/MIN r-------------------+---------+--------ithe four permissible types. 
1311 lall short float IIJKRMSX I 132 IThe choice depends on the 
I I I I IJKRMSNI lelement of. the highest 
~--f ~-------------------+---------+--------istringency lev~l. 
1321 lall long float IIJKRMLX 1 172 I 
I I I I IJKRMLNI 1 
r--+--------------+-------------------+---------+--------+------------------------------f 
1331 SI3N 1 lin-line I -- I I 
t--t--------------+-------------------+---------+--------t------------------------------~ 
I I I fixed binary IIJKRWBM I 356 I 1 
I I r-------------------+---------+--------i I 
I I Ifixed decimal IIJKRWPM I 580 lIn-line code for TRUNe of I 
1341TRUNC t-------------------t---------t--------tfixed decimal data. IJKRWPM isl 
I I Ishort float IIJKRWSM I 236 lused only for FLOOR and CEIL. I 
I 1 r-------------------+---------+--------i I 
I I Ilong float I IJKRwLM I 244 I I 
.--t--------------+-------------------~---------+--------~------------------------------~ 
135 I FLOOR IContained inrRUNC. Entry points are IJKRT.. I 
r--+--------------+---------------------------------------------------------------------i 
1361CEIL IContained in TRUNe. Entry points are IJRRV.. I L __ ~ ______________ i _____________________________________________________________________ J 

Appendix C. Built-in Functions, Pseudo Variables, and Other Implied Subroutine Calls 95 



r--T--------------T-------------------T---------T--------T------------------------------, 
I I I I I Size I I 
INolName IArgument(s} IInternal I in IRestrictions and ~dditional I 
I I I IName(s} I Bytes I Information I 
~--t--------------+-------------------t---------+--------+------------------------------~ 
I I 1 fixed l:inary I IJKRSBM I 200 1 I 
I I ~-------------------+---------+--------~ 1 
I I Ifixed decimal I IJKRSPM I 265 I I 
1371MOD ~-------------------+---------+--------~ I 
1 I I short float I IJKRSSM I 184 I 1 
I I ~-------------------+---------+--------~ I 
I I Ilong float IIJKRSLM I 192 I I 
~--t--------------+-------------------t---------+--------+------------------------------~ 
138 I PRECISION I 1 in-l ine I I I 
r--i--------------t-------------------+---------+--------+------------------------------i 
139 1 HIGH I lin-line I -- I I 
~--t--------------+-------------------t---------+--------+------------------------------~ 
140 I LOW 1 1 in -1 in e r I 1 
r--i--------------+-------------------t---------+--------+------------------------------~ 
1411 FIXED 1 I 1 1 Attributes of argunents must 1 
~--t_--------------~ I I Ipermit conversion Sfecified byl 
1421 FLOAT I I I Ibuilt-in function name .• Nc I 
r--t--------------~ I I Isubroutine is called if I 
1431 BIN1iRY I 1 1 I argument is already in re- I 
~--t--------------~ I 1 Iquested forrr. Affrofriate 1 
144 I DECIMAL 1 I I Isubroutines 1-18 are used.. 1 
r--i--------------i I I IChoice depends on attributes I 
1451 BIT I 1 1 lof argument and buil t-in 1 
~--t--------------~ I I Ifunction narre~ (See I 
1461 CHAR I I 1 IAppendix A. 1 
r--i--------------+-------------------t---------+--------+------------------------------~ 
1471 SUM I lin-line 1 I 1 
~--t--------------+-------------------+---------t--------t------------------------------~ 
1481PROD I lin-line I -- I I 
r--i--------------+-------------------f---------+--------+------------------------------~ 
14911iLL I lin-line I 1 I 
~--t--------------+-------------------+---------+--------+------------------------------~ 
150lANY 1 I in-line I -- 1 I 
r--i--------------+--~----------------t---------+--------+------------------------------~ 
1511ABS I lin-line I I I 
~--t_--------------+-------------------t---------+--------+------------------------------~ 
I I lexpr.l fixed binarylIJKREBM I 92 IjResultl S 231 -1 I 
1521 lexpr.2 integer I I I I 
I I I constant 1 I I (IHEXIE) 1 
r--f r-------------------t---------+--------t------------------------------i 
I I lexpr.l fixed deci- IIJKREPM" 1 140 IIResultl S 1015-1 I 
1531 Imal, expr.2 integerl I I I 
I I 1 constant I I I ( IHEXID) I 
~"-~ ~-------------------+---------+--------+------------------------------~ 
1 I lexpr.l short float,IIJKRESM I 144 IIResultl S 7.2x1075 I 
1541 lexpr.2 fixed binary I I 1 I 
I I I with- scale ~actor 01 I I (IHEXIS) I 
r--fexpr.1**expr.2~-------------------t---------t--------+------------------------------f 
I 1 lexpr.l long float, IIJKRELM I 152 IIResultl S 7.2x1075 I 
155 1 I ex pr • 2 fix e d bin ary 1 I I I 
I 1 I wi th scale factor 0 I I I (IHEXIL) 1 
.--~ .-------------------t---------t--------t------------------------------~ 
1 I lexpr.1 short float IIJKRXS~ I 152 IExpr.1 > 0; eXfr.2 not integerl 
I 561 I I I (60,62) * I constant or fixed binary; I 
1 I 1 I I Ilresultl :s 7.2x1075 I 
I I I I I I ( IHEXXS ) 1 
.--~ .-------------------t---------+--------+------------------------------~ 
I I lexpr.1 long float IIJKRXLM I 168 IExpr.1 > 0; eXfr.2 not integerl 
I 571 I I I (61,63) * I constant or fixed binary; I 
I I 1 I I Ilresultl :s 7.2x1075 I 
I I I I I I ( IHEXXL) I L __ ~ ______________ ~ ___________________ ~_~ _______ ~ ________ ~ ______________________________ J 

96 



r--T--------------7-------------------7---------T--------T------------------------------, 
I I I I 1 Size I I 
INolName IArgument(s) IInternal I in IRestrictions and ~dditional I 
I \ I \Name(s) I Bytes I Information I 
~--t--------------+-------------------+---------+--------t------------------------------~ 
I I Ishort float IIJKQQSM I 176 IArgument = 0 cr 2.4x10-78 ~ 1 
1581 1 I I I argument ~ 7. 2x10 75 I 
I I I I I I CIHESCS) I 
r--fSQRT r-------------------t---------t--------t------------------------------f 
I I Ilong float IIJKQQLM I 160 IArgument = 0 or 2.4xl0- 78 ~ I 
j591 I I I largument ~ 7.2x1075 I 
I I I I I I ( IHESSQL) I 
~--~--------------+-------------------t---------t--------t------------------------------~ 
1601 lshort float IIJKQASM I 232 lArgument $ 174.6 I 
I I I I I I ( IHEEXS) I 
~--~EXP t-------------------t---------t--------t------------------------------~ 
1611 Ilong float IIJKQ~LM J 456 IArgument $ 174.6 I 
I I I I I I ( IHEEXL) I 
~--t--------------+-------------------t---------t--------t------------------------------~ 
I I Ishort float IIJKQLSA I 272 IArgument $ 7.2x1075 I 
1621 I I IJKQLSEI I (IHELNS) I 
I I I I IJKQLSC I I I 
r--fLOG/L0310/LOG2r-------------------t---------t--------t------------------------------f 
I t Ilong float IIJKQLLA I 384 IArgument ~ 7.2xl075 I 
1631 I 1 IJKQLLBI I CIHELNL) 1 
I I I 1 IJKQLLCI I I 
~--t--------------+-------------------+---------+--------t------------------------------~ 
I I I short float I IJKQSSD I 304 II Radian Arg I < 218xpi I 
16 41 I I IJKQSSEI II Degree Argl < 218x180 I 
I I I I I JKQSSC I 1 I 
I I I I IJKQSSA I I ( IHES NS ) I 
t--~SIN/COSI i-------------------+---------+--------+------------------------------~ 
I ISIND/COSD Ilong float IIJKQSLD I 416 I IRadian Argl < 250xpi I 
1651 I I IJKQSLEI II Degree Argl < 250x180 I 
I I I 1 I JKQS LC I I . 1 
I I I I IJKQSLAI I (IHESNL) I 
~--t--------------+-------------------t---------+--------t------------------------------~ 
I I I short float I IJKQTSB I 280 I I Radian Arg I < 218xpi I 
1661 I I IJKQTSAI II Degree Argl < 218x180 I 
I I I I I I (IHE'IN S) I 
r--fT~N/T~ND r-------------------t---------t--------t------------------------------f 
I I Ilong float IIJKQTLE I 360 I I Radian Argl < 250x~i I 
1671 1 I IJKQTLAI IIDegree Arg I < 250x180 I 
I I I I I I (IHETNL) I 
~--t--------------+-------------------+---------+--------t------------------------------i 
I I I short float IIJKQNSD 1 400 10 < I X, Y I ~ 7.'2x10 75 I 
1681 I 1 IJKQNSEI I I 
I IATAN(X) I I IJKQNSCI I 1 
I I~T~N(Y,X) I I IJKQNSAI I (IHEATS) I 
.--~ATAND(X) f-------------------+---------+--------+------------------------------i 
I IATAND(Y,X) Ilong float IIJKQNLD I 536 10 < IX,YI $ 7.2x1075 I 
I 1 I I IJKQNLEI I I 
1691 I I IJKQNLCI I I 
I I I I IJKQNLA I j (IHEATL) I 
t--~--------------+-------------------+---------+--------+------------------------------i 
170 I I short float I IJKQCSA I 208 jlArg I $ 174.6 I 
I I I I IJKQCSEI (60) *1 (IHESHS) I 
.--~SINH/COSH t-------------------t---------t--------t------------------------------~ 
1711 Ilong float IIJKQCLA I 288 IIArgl $ 174.6 I 
I I 1 I IJKQCLEI (61)*1 (IHESHL) I 
t--t--------------+-------------------t---------t--------t------------------------------~ 
1721 Ishort float IIJKQDSA I 212 IIArgl $ 7.2x1075 I 
I I I I I ( 60 ) * I ( IHET HS ) I 
~--~TANH t-------------------+---------+--------t------------------------------~ 
1731 Ilong float IIJKQDLA I 288 IIArgl $7.2xl075 I 
I I I I I (61) *1 (IHE'rHL) I L __ ~ ______________ ~_~ _________________ ~ _________ ~ ________ L ______________________________ J 

~ppendix c. Built-in Functions, Pseudo Variables, and ether Implied Subroutine Calls 97 



r--T--------------T-------------------T---------T--------T------------------------------, 
1 I I I I Size I I 
INolName IArgument(s) IInternal I in IRestrictions and A.dditional I 
I I I I Name(s) I Bytes IInformation I 
~--~--------------+-------------------+---------t--------f------------------------------f 
1741 Ishort float IIJKQESA I 208 IIArgl < 1 I 
I I I I I (62)*1 <IHEH'IS) I 
~--fA.TA.NH ~-------------------+---------t--------t------------------------------f 
1751 Ilong float IIJKQELA I 280 IIArgl < 1 I 
I 1 I I I (63)*1 <IHEHTL) I 
~--+--------------+-------------------+---------t--------t------------------------------f 
1761 I short float I IJKQRSE t 408 II Argl S 7. 62x10 37 I 
I I I I IJKQRSAI (60)* 1 <IJEEFL) 1 
r--fERF/ERFC ~-------------------+---------t--------t------------------------------f 
1771 Ilong float 1 IJKQRLE 1 776 II Argl S 7.62xl037 I 
I I I I IJKQRLAI (61)*1 <IHEEFL) I 
~--+--------------+-------------------+---------t--------f------------------------------f 
i 781 A.DDR I lin-line I I I 
~--t--------------t-------------------+---------+--------+------------------------------~ 
1791NULL I I in-line I I I 
~--~--------------+-------------------+---------f--------t------------------------------f 
J 801 A.DD I I in-line I I I 
~--t--------------+-------------------+---------+--------+----.-------------------.-------~ 
1811DIVIDE I I in-line I I I 
r--~--------------+-------------------+---------t--------f------------------------------f 
1821 MULTIPLY I lin-line I I I 
~--~--------------~-------------------~---------~--------~------------------------------~ 
I *The subroutine, the num1:er of which is given in parentheses" is also used by I 
I this routine. I L _______________________________________________________________________________________ J 

r---------------------------------------------------------------------------------------, 
I BUILT-IN FUNCTICNS CONTAINED IN THE FULL-SET LANGUAGE, BUT NCT IMPLEMENTEr; I 
I IN THE D-LEVEL :OMPILER I 
~---------------------------------------------------------------------------------------f 
I A.LLO:A.TION DATAFIELD LBOUND ONCHAR CNSOURCE I 
I COMPLETION DIM LENGTH ONCODE POINTER I 
I :OMPLEX EMPTY LINENO CNCCUNr PCLY I 
1 CONJG HBOUND NULLO ONFILE PRIORI'IY I 
I COUNT IMAG OFFSET CNKEY REAL I 
I ONLOC S 'IA. 'IUS I L _______________________________________________________________________________________ J 

98 



r------T-------------I---------~---------------------T----------------------------T-----' 

I I IInternal I I Reason for Incl usion in I I 
I NurrberlName IName(s) I Description ICbject Frograrr 1 Eytesl 
r------+-------------+---------+---------------------+----------------------------+-----~ 
I 1 l pa gesize IIJKTPSM IControls number of IThe PAGESIZE option appears 1 72 1 
1 1 1 Ilines on printed pagelin an OPEN state~ent I 1 
r------+-------------+---------+---------------------+-----------~----------------+-----~ 
I 21 I Stream IIJKTSTM IConstructs a logical IAlways present for files 1674* 1 
I IConstructor II IJKTSTNlstream from physical Ideclared with the STREAM I I 
1 \ 1 IJKTSTRlrecord and vice versal attritute I I 
t------+-------------+---------t------------~--------+----------------------------+----~~ 
I 3 1 Istream IIJKTLCM Isame as Stream Con- IAlways present fer files 1876* I 
I IConstructorII I IJKTSTMlstructor I exce~ Iwith the STREAM attribute, I I 
I I I IJKTSTNlthat LINE or COLUMN Iwith format list containing I I 
I I I IJKTSTR I is used III NE or CClUMN, or with PUT I I 
1 I I I Istatement containing the 1 1 
I I I I III NE option I I 
t------+-------------+---------~---------------------+----------------------------+-----~ 
J 42 IFormat I IIJKTFDM IAssociates a variablel'GET/PUT FILE EDIT statement 1480 I 
I I 1 I with its editing I appears in source frograro 1 1 
I I I Idescriptor I 1 I 
t------t----------~--+---------t---------------------+----------------------------+-----~ 
I 52 IForroat II IIJKTGDI ISame as Format I IGET/FUT STRING EDIT state- 1414 I 
I I I IJKIGDO I I ment appears in source I I 
I I I I I program I I 
r------~-------------+---------+---------------------+----------------------------+-----~ 
i ~ I Consecutive IIJKTCBM ITransmits data to/ IREAD/WRITE/LCCATE/REWRITE 1552* I 
I I Euffered I I from the buffer from/ I sta tement is used f or a I I 
I I Transmitter I Ito a record variable I consecutive buffered file I I 
I I I I for consec. files I I I 
r------~-------------+---------+---------------------+----------------------------+-----~ 
I 7 I Consecutive IIJKTCO~ ITransmits data IREAD/WRITE/REWRITE statementl252* I 
I IUnbuffered I I directly from/to an lis used for a ccnsecutive I I 
I 1 Transmitter I lexternal device lunl::uffered file I I 
I I I I directly to/from a I I I 
I I I I record variable I I I 
t------t-------------+---------+---------------------+----------------------------+-----~ 
I 8 I Regional IIJKTRGM I Transmits data to and I READ/WRIT'E staterrent is used 1398 I 
I I Transmitter I Ifrom a regional de- Ifor a regional file I I 
I I I I vice via a hidden I I I 
I I I I buffer I I I 
t------t~------------+---------+---------------------t----------------------------+-----~ 
I 9 IRegional IIJKTXRM 1 Determines extent of IA regional file exists 1356 1 
I I Extent III regional file at openl for 2311 or 2314 I I 
I I I I time and serves a s I I I 
I I I Ifile addressing rou- I I I 
I 1 I I tine to subroutine 8 I I I 
r------~-------------+---------+---------------------+----------------------------+-----~ 
I 10 I Regional IIJKTXRN tsame as 9 IA regional file exists 1378 I 
I 1 Extent II 1 I 1 for 2321 1 I 
r------+---------~---+---------+-------~-------------+----------------------------+-----~ 
I 11 I Indexed \IJKTSIM I'Transmits data to/ I READIWRITE statement is usedl652 I 
I I sequential I I from indexed da ta I for inde xed sequential fi Ie I I 
I I Transmitter I Isets in seq.. access I I I 
I I I I access I I I 
r------~-------------+---------+---------------------+--~------~------------------+-----~ 
I 12 I Indexed IIJKTDIM ITransmits data to/ IREAD/WRITE statement is usedl540 I 
I 1 Direct I I from indexed data Ifor indexed direct file I I 
I I Transmitter I Isets in direct access I I I L ______ ~ _____________ ~ _________ ~ _____________________ ~ ____________________________ ~ _____ J 

1/0 Subroutines, Part 1 of 2 

Appendix D. I/O Subroutines 99 



r------T-------------T---------r---------------------T----------------------------T-----' 
I I IInternal t I Reason for Incl usion in I I 
I Nurr,ber ,I Name I~ame(s) I Description ICbject Prograrr I EytesI 

~------~-------------+---------+---------------------+----------------------------t-----i 
I 13 1 Display IIJKTDPD IHandles DISPLAY I DISPLAY statement appears 1184 I 
I I I IJKTDPRI statement and REPLY I in source prograrr I I 
I I I I option I I I 
~------+-------------+---------t---------------------+----------------------------t-----~ 
I 14 I LIST- 1/0 IIJK'ILIM I Handl es I ist-directed I GE'I (FILE/S'IRING] LIST 110 68 1 
I I I Ii nput 1 I I 
~------+-------------+---------+---------------------+----------------------------t-----~ I 15 ILIST-I/O I IJK'ILOM I Handles list-directed I PU'I' [FILE/S'IRING] LIS'I' 11076 I 
I I I I output I I I 
~------~-------------~---------~---------------------~----------------------------~-----~ 
I I 
I 1 
I 1Subroutines 2 and 3 are never both used in any object prograrr.. I 
1 I 
I 2Requires a 200-byte format scanner. May be required by either subrcutine 4 or 5# I 
I but is present only once. I 
I I 
I *Requires an additional subroutine of 100 bytes,. May be required by several I 
I subroutines but is present only once. I 
I I L _______________________________________________________________________________________ J 

1/0 Subroutines" Part 2 of 2 

100 



..... 
o 
..... 

Field rFile Label Number 

3 4 5 

File Volume 
File Identifier Serial Sequence 

.-Iumber Number 

Identifier 

6 

File 
'Sequence 

Number' 

c 
~ D e..o 
II E c :> 

~Z 

7 8 

'-..-' 
Version 

Number of 
Generation 

The standard tape fi Ie labe I format and contents are as follows: 

FIELD NAME AND LENGTH DESCRIPTION 

1. LABEL IDENTIFIER Identifies the type of label 
3 bytes, EBCDIC HDR'" Heoder -- beginning of a data file 

EOF = End of File -- end of a set of data 
EOV= End of Volume -- end of the physical reel 

2. FILE LABEL NUMBER Alwoysa 1 

3. FILE IDENTIFIER Uniquely identifies the entire file, may contain only 
17 bytes, EBCDIC printable characters. 

". FILE SERIAL NUMBER Uniquel)· identifies a file/volume relationship. This 
6 bytes, EBCDIC field is identical to the Volume Serial Number in the 

volume label of the first or only'volume of a multi-
volume file or a multi-file set. This field will normally 
be numeric (000001 to 999999) but may contain any six 
alphameric characters. 

5. VOLUME SEQUENCE NUMBER Indicates the order of a volume in a given file or 

" bytes multi-file set. The first must be numbered 0001 ond 
subsequent numbers must be in proper numeric sequence. 

6. FILE SEQUENCE NUMBER Assigns numeric sequence to a file within 0 multi-file 

" bytes set. The first must be numbered 0001. 
--

7. GENERATION NUMBER Uniquely identifies the various editions of the fi Ie. 
4 bytes May be from 0001 to 9999 in proper numeric sequence. 

8. VERSION NUMBER OF Indicates the version of a generation of a file. 
GENERATION 2 bytes 

9 10 11 12 

Creation Expiration Block 
Date Date Count 

t 
File Security 

FIELD NAME AND LENGTH 

9. CREATION DATE 
6 bYtes 

10. EXPIRATION DATE 
6 bytes 

11. FILE SECURITY 
1 byte 

12. BLOCK COUN~ 
6 bytes 

13. SYSTEM CODE 
13 bytes 

14. RESERVED 
7 bytes 

13 14 

System Code Reserved 

DESCRIPTION 

Indicates the year and the day of the year that the 
file was created: 

Position Code Meaning ---
1 blank none 
2-3 00-99 Year 
4-6 001 - 366 Day of Year 

(e.g., January 31, 1965 would be entered as 65031) 

Indicates the year and the day of the year when the 
file may become a scratch tape. The format of this 
field is identical to Field 9. On a multj-file reel, 
processed sequentially all files are considered to ex-
pire on the same day. 

Indicates security status of the file. 
o = no security protection 
1 = security protection. Additional identification of 
the file is r~uired before it can be processed. 
(Not used bv DOS / TOS) 

Indicates the number of data blocks written on the file 
from the last header labe,l to the first trailer label ex-
elusive of tape marks. Count does not include check-
point recordh This field is used in Trailer Labels. 

Uniquely identifies the progranvnit'19 system. 

Reserved. Should be recorded as blanks. 

1::t:I 
lIT:! 
I I'd 
Itzj 
12 
10 
IH 
I>:: 
I 
Itzj 
I· 
I 
I 
I~ 
IH 
It"i 
Itzj 
I 
11:"'1 
1:l:I 
I tIl 
Igl 
I 

I~ 
l!:d 
I::S: 

I~ 
len 



.... en 
0 rt 
N OJ 

~ 
0. 
OJ 
rt 
0. 

0 
iJ=" 
en 
0 

I"J:l 
1-" 
..... 
(1) 

t"I 
OJ 
n-
(1) 
..... ... 

I"J:l 
0 
rt 
3 
OJ 
rt 

.... 
Itj 
OJ 
t1 
rt 

.... 
0 
Hl 

w 

Field 

File Name 

9 10 1112 13 14 1~ 16 11 18 19 20 
First Extent .... ; 

-£ .~ I: j~ P "2.c 1 '0 
Reserved ~ ~ o~ .9 ..! "2 g u ~ 

...It .:~ :; ii: 0'- S >-
:~ ~ • CD ~ 

~II III l&t l3lc& :9CS Iic)IIS 8tli 0: S!IS? 

~g 

ii Last 212:.1 23 24 

o S Record ! Lower Upper 
u- Pointer &. Limit Limit ~~ V'I 

at ~III~ ~IIII~ ~12 ~2 ~I II:: ~I 1 I:: 
L Data Set 

Indicators 

f~L-Extent 
Type 
Indicator 

t Exten 
Sequence 
Number 

Format 1: This format is cammon to all data files on Direct Access Storage Devices. 

FIELD NAME AND LENGTH DESCRIPTION 

1. FILE NAME This field serves as the key portion of the file label. 
..u bytes, alphameric 
EBCDIC Each file must have a unique file name. Duplication of 

file naIne will cause retrieval errors. The file nome can 
consist of tree sections: 

1. File 10 is an alphameric name assigned by the user 
and identifies the file. Can be 1 -35 bytes if gene-
ration and version numbers are used, or 1 -44 bytes 
if they are not used. 

2. Generation Number. If used, this field is separated 
from File 10 by a period. It has the format Gnnnn, 
where G identifies the fie Id as the generation number 
and nnnn (in decimal) identifies the generation .of 
the file. 

3. Version Number of Generation. If used, this section 
immediately follows the generation number and has 
the format Vnn, where V identifies the field as the 
version of generation number and nn (in decimal) 
identifies the version of generation of the file. 

Note: The Disk Operation System compares the entire 
field against the file-ID given in the DLBL statement. 
The generation and version numbers are treated 
differently by Operati~ System /360. 

1 2 

File 
Serial 

Number 

LFormat 
Identifier 

3 4 
l? a o 

5 6 77 7 
ABC 

System Codt 

Extent --.J L Bytes used in last 
Count block of directory 

Additional Extent Additional Extent 33 

125 28 ~ 32 
Poi~ter 

~~ =III~ ~III~ -0 " ~III~ ~III~ !IIII~ ~~ 

FIELD NAME AND LENGTH DESCRIPTION 

The ... maini~ fields comprise the DATA portion of the file labe .. 

2. FORMAT IDENTIFIER 1 = Format 1 
1 byte, EBCDIC numeric 

3. FILE SERIAL NUMBER Uniquely identifies a file/volume relationship. It is 
6 byt~, alphameric ,EBCDIC identh::al to the Volume Serial Number of the first or 

only volume of a multi-volume file. 

4. VOLUME SEQUENCE NUMBER Indicates the order of a volume relative to the first 
2 bytes, binary volume on which the dat" file/resides. 

5. CREATION DATE Indicates the year and the day of the year the fi Ie was 
3 bytes, discontinuous binary created. It is of the form YDD, where Y signifies the 

year (0-99) and DO the day of the year (1 -366). 

6. EXPIRATION DATE Indicates the year and the day of the year the file 
3 bytes, discontinuous binary may be deleted. The form of this field is identical to 

that of Field 5. 

7A EXTENT COUNT Contains a count of the number of extents for this file 
on this volume. If user labels are used, the count does 
not include the user label trock. This field is maintained 
by the Disk Operati~ System programs. 



I-rj 
~. 

I-' 
(1) 

t"t 
s:u 
tr 
~ 
I-rj 
o 
11 
3 
s:u 
rt 
CI) 

to-' 
o 
w 

o 
HI 

W 

FIELD 

7B 

7C 

8 

9 

10. 

11. 

12. 

NAME AND LENGTH 

BYTES USED IN LAST BLOCK 
OF DIRECTORY 
1 byte, binary 

SPARE 
1 byte 

SYSTEM CODE 
13 bytes 

RESER'lED 
7 bytes 

FILE TYPE 
2 bytes 

RECORD FORMAT 
1 byte 

OPTION CODES 
1 byte 

DESCRIPTION 

Used by Operating System /360 anly for partitioned 
(library Structure) data sets. Not usee :'i the Disk 
Operating System. 

Reserved. 

Uniquely identifies the pragrommi~ system. The churac-
ter codes that can be used in this field are limited to 
0-9, A-Z; or blanks. 

Reserved 

The contents of this field uniquely identify the type of 
data file: 

Hex 4000 = Consecutive organization 

Hex 2000 = Direct-occess organization 

Hex 8000 = Indexed-sequential organization 

Hell: 0200 = Library organization 

Hex 0000= Organization not defined in the file label. 

The contents of this field indicate the type of records 
contained in the file: 

Bit 
Position Content Meaning ---
o and 1 01 Variable length records 

10 Fixed length records 

11 Undefined format 

2 0 No trock overflow 

1 File is organized using 
track overflow (Opero-
ting System/360 only) 

3 0 Unblocked records 

1 Blocked records 

.. 0 No truncated records 

1 Truncated records in file 

5 and 6 01 Control character ASA 
code 

10 Control character 
machine code 

00 Control character not 
stated 

7 0 Records hove no keys 

1 Records are written 
with keys. 

Bits within this field are used to indicate various options 
used in building the file. 

Bit 

0= If on, indicates data file was created using Write 
Validitv Check. 

1-7 = unused 

FIELD NAME AND LENGTH DESCRIPTION 

13. BLOCK LENGTH Indicates the black length for fixed length records or 
2 bytes, binary maximum block size for variable length blocks. 

14. RECORD LENGTH Indicates the record length for fixed length records or 
2 bytes. binary the maximum record length for variable length records. 

15. KEY LENGTH Indicates the length of the key portion of the data 
1 byte, binary records in the file. 

-

16. KEY LOCATION Indicates the high order posTion of the data record. 
2 bytes, binary 

17. DATA SET INDICATORS Bits within this field are used to indicate the following: 
1 byte Bit 

0 If on, indicates that this is the lost volume on which 
this file normally resides. This bit is used by the 
Disk Operating System 

1 If on, indicates that the data set described by this 
file must remain in the same absolute location on 
the direct access device. 

2 If on, indicates that Block Length must always be 
a multiple of 7 bytes. 

3 If on, indicates that this data file ist security pro-
teeted, a password must be provided in order to 
access it. 

.. - 7 Spore. Reserved forfuture use. 

18. SECONDARY ALLOCATION Indicates the amount of storage to be requested for this 
4 bytes, binary data file at End of Extent. This fie Id is used by Opera-

ting System /360 only. It is not used by the Disk Ope-
rating System routines. The first byte of this field is 
on indication of the type of allocation request. Hex 
code C2 (EBCDIC B) blocks (physical records), hex 
code E3 (EBCDIC T) indicates trocks, and hex code 
C3 (EBCDIC q indicates cylinders. The next three 
bytes of this field is a binary number indicating how 
many bytes, tracks or cyli nders are requested. 

19. LAST RECORD POINTER Points to the last record written in a sequential or 
5 bytes, discontinuoUs binary partition-organization data set. The format is TTRLL, 

where TT is the relative oddress of the track contai-
ning the lost record, R is the 10 of the lost record, 
and LL is the number of bytes remaining on the track 
following the last record. If the entire field contains 
binary zeros. the last record pointer does not apply. 

20. SPARE Reserved 
2 bytes 

21. EXTENT TYPE INDICATOR Indicates the type of extent with which the following 
1 byte fie Ids are associated: 

HEX CODE 

00 Next three fields do not indicate any extent. 

01 Prime area (Indexed Sequential); or Consecutive 
area, etc., (i.e., the extent containing the 
user's data records.) 

02 Overflow area of an Indexed Sequential file. 

04 Cylinder Index or master Index area of an 
Indexed Sequential file. 



~ C/) 
0 rt FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH DESCRIPTION 
+:" III 

~ 
Q, 
III 
11 

40 User label track area. 25-28. ADDITIONAL EXTENT These fields have the same format as the fields 21 -24 
10 bytes above. 

8n Shared cylinder indicator, where n= 1,2, or 4. 
Q, 29-32. ADDITIONAL EXTENT These fields have the same format as thefMkls 21 -24 

tj 
!:b' 
C/) 

t:l 

22. EXTENT SEQUENCE NUMBER Indicates the extent sequence in a multi-extent file. 10 bytes above. 
1 byte, bi nary 

33. POINTER TO NEXT FILE LABEL The address (format CCHHR) of a continuation label if 
23. LOWER LIMIT The cylinder and the track address specifying the WITHIN THIS LABEL SET needed to further describe the file. If field 10 indicates 

I'Zj 
~. 

4 bytes, discontinuous binary starting point (lower limit) of this extent coinponent. 5 bytes, discontinuous binary Indexed Sequential organizotion, this field will point 
This field has the format CCHH. to a Format 2 file label within this label set. Other-

~ 
CD 

I:"i 
III 

The cylinder and the track address specifying "the ending 
wise, it points to a Format 3 file label, and then only 

24. UPPER LIMIT if the file contains more than three extent "Segments. 
:)Oint (upper limit) of this extent component. This field This field contains all binary zeros if no additional 
has the format CCHH. file label is pointed to. 

t"r 
(I) 
~ .. 
I'Tj 
0 
11 
:3 
III 
rt 

~ 

~ 
III 
t1 
rt 

w 

0 
I-tI 

W 



Field Name 

1. DLBL-EXTENT Indicator 

2. Filename 

3. OA/IS Switch 

4. File 10 

5. Format 10 

6. File Serial Number 

7. Volume Sequence Number 

8. Creation Date 

9. Expiration Date 

10. Reserved 

11. Open Code 

12. System Code 

13. Volume Serial Number 

14. EXTENT-Type 

15. EXTENT Sequence Number 

16. EXTENT Lower Limit 

17. EXTENT 4lper Limit 

18. System U,it Class 
System Unit Order 

19. 2321 Lower Call 
2321 4lper Call 

Description 

X'80' = Next EXTENT on new pack. 
X'40' = Last EXTENT 
X'20' = Bypass EXTENT (SO), or number of EXTENTS (DA or ISFMS). 
X'lO' = New value on same unit. 
X'08' = EXTENT limits omitted. 
X'04' = EXTENT converted to OASO address. 

Same as field 1 except that only bits 4 and 5 are used for OA or ISFMS. 

File identifier including generatioo and version numbers. 
If field is missing on DLSL card, filename padded with blanks is inserted. 

Numeric 1 is inserted. 

Volume serial number from first EXTENT. 

Always initialized to X'OOOl' • 

Initialized with 3 bytes of X'OO'. 

If date is in the form YYOOO, it is converted to YOO. 
If date is in retention period form, 1 to 4 characters, the field is padded with 
binary zeros. 

The retention period, if specified, is converted to a 2-byte number and 
inserted in this field. 

OLBL type: 
5 = Sequential 
o = Oi rect Access 
C or E = Indexed Sequential File Management System 

Initialized to contain: 
DOS/360 VER 3. This field is not processed by DOS. 

Volume serial number for EXTENT. 

Same codes as in Format 1 label: 
X'OO' = Next three fields do not indicate any extent. 
X'Ol' = Prime area (ISFMS) or consecutive area, etc., (i.e., the extent 

containing the user's data records). 
X'02' = Overflow area of an ISFMS file. 
X'04' = Cylinder index or master index of an ISFMS file. 
X'40' = User label track area. 
X'8n' = Shared cylinder indicator, where n = I, 2, or 4. 

Number of extents as determined by the EXTENT card sequence. 

Relative extent converted to the form HHnn T for / / DLBL job control statement, or 
CCHH from / / OLAB job control statement. 

Same ':IS field 16, but for upper limit. 

Device class and unit numbers. 

2321 EXTENT lower and upper limit bin numbers. 

Note: For Sequential ~isk files, a complete 104-byte block is repeated for each new EXTENT. For Direct Access and ISFMS files, 
only fields 13 through 18 are repeated for each EXTENT. 

Format of DASD Label Information in Label Area Reserved l::y LABTYP Card 

Appendix E. File Label F~rmats 105 



In the list of diagnostic messages below, 
the message text is preceded by the message 
nurrber and the applicatle severity code. 
Where necessary, the messages are followed 
by an explanation, an example, a descrip­
tion ~f the action taken by the systerr., and 
the response required from the user. 
Explanation, Example, and System Action are 
given only when the text of the message is 
not sufficiently self-explanatory. 

cessary for him to do sc.. However" even 
when system action successfully corrects an 
error, the user should rerrerrber that~ if he 
subsequently recompiles the same program, 
he will get the same diagnostic message 
again unless he has corrected the source 
error. 

N2~~: Cne or more of the following four 
diagnostic messages may appear after one of 
the messages 5C003I thrcugh 5C030I in order 
to give additional informati~n. These four 
messages are printed withcut rressage num­
bers and severity codes. 

when no User Response is stated, the 
user should assume that he must correct the 
error in his source program unless the 
action taken by the system makes it unne-

C~~R~CTER MARKED BY ASTERISK IS NOT IN 60 CHAR. SET. 

~2t~1 This diagnostic message will only be printed for errcrs in DECLARE 
statements. 

THE PRECEDING ERROR CONCERNS THE VARIABLE NAMED variable narre 

TEE PRECEDING ERROR CONCERNS THE ATTR. FACTCRIZATICN BEGINNING WITH declare­
sta tement item 

REPRESENTS CHARACTER STRING CONSTANT. 

~~f!~n~t!Q~: Illegal use of character-string constant. Since external repre­
sentation of the character-string constant is not available~ the ccnstant is 
replaced by four periods. 

]~~~!~: DECLARE N PICTURE A'99999'. Due to the illegal character 'A' the 
string '99999' is not recognized as numeric picture tut as character-string 
constant. The following messages will be issued where xx represents the sta­
tement number: 

5C019I xx S INVALID ATTRIBUTE{S) IGNORED •. A' •••• ' 
REPRESENTS CHARACTER STRING CONSTANT. 

THE PRECEDING ERROR CONCERNS THE VARIABLE NAMED N. 

5~001I T NO COMPILER CUTPUT SPECIFIED IN OPTION STATEMENT. 

5A002I T NOT TEE SAME OR WRONG MEDIUMTYPES FOR SYS001, SYS002~ SYS003. 

l~e!~g!t!Qg: SYS001~ SYS002, and SYS003 must be assigned tc the same device 
ty~e, i.e., either to magnetic tape drives, or to 2311 or 2314 DASD extents. 

5~003I T P~RTITION SIZE rec SMALL FOR THE 12K VARIANT. 

5A004I W ~STERISK IS NCr FOLLOwED BY BLANK. CARD IGNORED. 

]~f!~n~t!2~: Refers to PL/I PROCESS card. A plus sign is treated as an 
asterisk. 

5A0051 W ~STERISK AND BLANK{S) NOT FOLLO~ED BY KEYWORD PROCESS. 

106 

~~E!~~~~!2~: Refers to PL/I PROCESS card. A plus sign is treated as an 
asterisk. 



5~006I W OPTION invali1 option UNKNOWN. FOLLOWING TEXT IGNCRED. 

~~e!~~~E!Q~: Refers to PLII PROCESS card. 

5~007I W KEYWORD PROCESS NOT FOLLOwED BY ELANK. CARD INGORED. 

];~f1~.n~~!2!!: Refers to PLII PROCESS card. 

SAOOS I W' PROCESS LIST TOO LONG. IGNORED IS invalid option 

~~e!~!!~E!Q!!: Refers to PLII PROCESS card. 

SA009I W' PROCESS LIST TOO LONG. 

~~e!~!!~E!Q~: Refers to PL/I PROCESS card. 

SA010I W' COMMA NOT FOLLOWED BY OP~ION. 

~~ela!!~EiQ!!: Refers to PLII PROCESS card. 

SA011I W' OPTION ~OT FOLLOWED BY COMM~. 

~~ela~~E!Q~: Refers to PLII PROCESS card. 

5C003I E LEVELNUMBER OF S~'RUCTURE I~EM TOO HIGH. ASSUMED TO BE level number 

~~e!~!!~E!Q!!: Level number must not be higher than 25S. 

SC004I S NO OPTIONS LIST WITH ENVIRONMENT ATTRIBUTE. 

~~~~f1~: DECLARE FIL FILE ENVIRONMENT INPUT; 

SCOOSI S OPTION LIST NOT CLOSED BY). PARENTHESIS INSERTED A'I END OF ST~TEMENT.

];~f1~.n~ti2!!: This message concerns the ENVIRONMENl and the INITI~L
attributes.

~~~~e!~: DECLARE FIL FILE PRINT ENV(MEDIUM(SYSLST,1403) F(SO) ; 

5C006I S NO POINTER SPECIFIED FOR BASED ITEM. 

~~~~e!~: DECLARE VAR BASED; 

SC007I S ERROR IN SPECIFICATION OF POINTER FOR BASED ITEM. IGNORED IS based data item

~~~~!~§: 1. DECLARE B BASED (A,D); 
2. DECLARE C BASED (F(I»; 

5COOSI S NO BASE SPECIFIED FOR DEFINED ITEM. 

~~~~f1~: DECLARE X DEFINED; 

5C009I S ERROR IN SPECIFICATION OF EASE FOR DEFINED Il'EM. IGNORED IS defined data item

5C010I S ERROR IN RETURNS LIST. IGNORED IS invalid elements

~~~~1~: DECLARE FUNCT EN1RY RETURNS (7); 

SCOllI E NO LENGTH SPECIFIED FOR S~'RING. LENGTH ASSUMED TO BE maxirourr value 

SC012I S ERROR IN STRING LENGTH SPECIFICATION. IGNORED IS invalid element 

~~~~f1~: DECLARE CHARA CHARACTER (STU); 

SC013I S ERROR IN PRECISION ATTRIBUTE. IGNORED IS invalid element

~~~~f1~: DECLARE VAR FIXED (XYZ); 

~ppendix F. Compile-T ime Diagnostic Messages 107 



5C014I E VA.LUE OF ARRAY BOUND MUST Nor BE O. ASSUMED 'I'O BE 1. 

5C015I E VALUE OF ARRAY BOUND TOO HIGH. ~SSUMED TO BE maximum value 

5C016I S ERROR IN DIME~SION AT'IRIBUTE. IGNORED IS invalid element 

~!~~Q!~: DELCARE AC7 ,I,J); 

5C017I E RIGHT PAR~NTHESIS MISSING. CORRESPONDING LEF'I ONE IGNORED BEFORE declare_sta­
tement item 

5C018I S NESTING OF ATTRIBUTE F~C'IORIZATIONS TOO DEEP. DECLARATICNS FROM NESTING LEVEL 
9 ON IGNORED 

5C019I E INVALID ATTRIBUTECS) IGNORED •• invalid attribute [,invalid attribute ••• ] 

5C020I E SYNTACTICALLY ILLEGAL CHARACTER(S) IGNORED •• ignored characterCs) 

~!~~Q!~: DECLARE PP FIXED $; 

5c 0211 S DECL. TOO LONG. I'rEMS EXCEEDING LIMIT ARE IGNORED BEGINNING WITH declare sta­
tement item 

5C 0221 S NO NAME OR FACTORIZATION FOR LEVELNUMBER.. level number 

~!~~Q!~: DECLARE 1 STR, 2, 3 STR1; 

5C023I S NO INITIALIZATION WITH INITIAL ATTRIBUTE. 

~~~mE!~: DECLARE VAR INITIAL STATIC; 

5C024I S LEVELNUMBER MUST NOT BE O. ASSUMED TO BE 1.

5C025I E STRINGLENGTH MUST NOT BE O. ASSUMED TO BE maximum value

5C026I E PRECISION TOO LARGE. SE'I 'IO 53.

5C027I E SCA.LEFACTOR TOO GREAT. ASSUMED TO BE maximum value

5c028I E STRINGLE~GTH TOO GREAT. ASSUMED TO BE maximum value

5C029I E LIST OF I~I'I'IALIZATIONS NO'I CLOSED BY). PARENTHESIS INSERTED AT ENl: OF
STATEMENT.

5C030I E NUMBER OF DIGITS I~ PRECISION ATTRIBUTE MUST NC'I BE O. DEFAULT VALUE ASSUMEt.

5C OU4I S SYNTAX ERROR IN INITIALLIS'I. NO INITIALI ZATI CN CF variabl e name

108

~!Q!~!!§!':!:!Q.!H..rhe INITIAL-list is composed of the following elenents: con­
stants, iteration-factors, left and right parentheses, and ccmmas. Error
number 44 will be issued if

• the succession of these elements is incorrect, or
• the constants or iteration-factors are incorrect.

Examples of incorrect succession:

1 • I NI TI AL (1,2,)
2. INITIAL (1,(2,3»
3. INITIAL (1,(10) (2,3)4)

Examples of incorrect constants:

1. 1013B
2. 123E
3. 1.21. 2L

Examples of incorrect iteration-factors:

1. INITIAL «-3)0)
2 . IN IT IAL « 0) (1, 2))
3. INITIAL (10(1,2»

Moreover, message number 44 will be issued~ if there is an illegal character
within the INITIAL-list, e.g., INITIAL (2 * 3).

5:0451 S NESTING DEPTH EXCEEDS 8. NO INITIALIZATION OF variable name

5e046I S ITERATION FACTOR NOT ALLOWED FOR SCALAR VARIABLE. NC INITIAL. OF variable
name

~~!!E!~: DECLARE Z FIXED INITIAL «3)4):

5:0471 S ITERATION FACTOR GREATER rHAN 32K. NO INITIALIZATION OF variable name

5e048I S WRONG DATA TYPE. NO INITIALIZATION OF variable name

~~E!~~~~!Q~l Tbis error message will be issued, if the type of a constant
within the INITIAL-list is not compatible with the type of the variable to be
initializ ed.

I 5C049I S

~!~me!~: DBCLARE A DECIMAL FIXED INITIAL ('ABC'):

INITIAL VALUE IS NOT A LABEL :ONST. WITHIN THE seOPE CF LABEL VARIABLE.
INITIAL. CF variable name

NO

~~E!!~!~!Q~: The label constant is internal to a procedure cr begin block
internal to the clock in which the label-variable is declared.

~~!!E!~: P: PKOCEDURE:
DECLARE LAB LABEL INITIAL (L2):

BEGIN:

L 2: END;
END P;

5e050I S MORE THAN ONE CONST. FOR SCALAR VARIABLE. NC INITIAIIZATICN OF variable name

~!~m2!~: DECLARE Y INITIAL (3E + 01" 33 E + 2);

5e051I w TOO MANY CONSTANTS FOR ARRAY. EXCESS ONES IGNCRED FCR array name

5C052I S INITIALLIST TOO LONG. INITIAL ATTRIBUTE IGNCRED FCR variable name

5:0531 T MULTIPLE DECLARATION OF NAME name

~~E!!~!~!Q~l Tnis message only occurs if a STATIC structure containing ele­
ments with INITIAL attribute is multiply declared.

5:0541 E ERROR IN F-OPTION OF FILE filename

5:0551 E LEFT PARENTHESIS INSERTED IN FILE filename

5C056I E ILLEGAL ELEMENr IGNORED IN FILE filename

5C057I E RIGHT PARENTHESIS INSERTED IN FILE filename

5:0581 S ILLEGAL USAGE OF REGIONAL OPTION. OPTION IGNCRED IN FILE filenane

Appendix F. Compile-Time Diagncstic Messages 109

520591 W KEYED ATTRIBUTE INSERTED FOR DIRECT AND/OR INDEXED FILE filename

~~El~Q~~!Q~: Files with the attributes DIRECT and/or INDEXED must have the
attribute KEYED.

5C060I T KEYLENGTH SPECIFICATION MISSING IN FILE filename

~~Qlag~~!Qg: KEYLENGTH must be specified in files having the KEYED attribute.

520611 T ERROR IN KEYI.ENGTH SPECIFICATION FOR FILE filename

520621 T ERROR IN BLOCKSIZE SPECIFICATION FOR FILE filename

5C063I E ERROR IN BUFFERS OPTION. BUFFERS(l) ASSUMED FOR FILE filenarre

5C064I E ERROR IN OFLTRACKS SPECIFICA.TION.. OFLTRACKS IGNCRED FeR FILE filenarr.e

5C065I T ERROR IN MEDIUM OPTION FOR FILE filename

5C066I T INVA.LID LOGICAL DEVICE NAME IN FILE filename

~~~~E1~: DECLARE FILE2 FILE INPUT ENVIRONMENT (MEDIUM (SYSRDR, 2540) ••• ); 
SYSRDR is an invalid logical unit (choice must be made between SYSIPT and SYS­
nnn [nnn=001-222]). 

5C067I T INVALID DEVICE 'IYPE SPECIFICA.'rION IN FILE filename 

~!amE!~: DECLARE FILE3 FILE ••• ENVIRONMENT (MEDIUM( ••• ,2020) ••. ); 

5C068I T DEVICE TYPE OR FUNC. A'I'IR. CONFLICTS WITH LOG. DEVICE NAME IN FILE filename 

~~~~!~: DECLARE FILE4 FILE INPUT ENVIRONMENT (~EDIUM (SYS001, 1403} ••• ); 
Input from Printer 1403 impossible.

5C069I T CONFLICTING ATTRIBUTES AND/OR OPTIONS IN FILE filename

~~~mEl~:!: 1. DECLARE FILES FILE INPUT RECORD UPDATE ••• ; 

2. DECLARE FILE6 FILE OUTPUT ENVIRONMEN'I (MEDIUM (SYS002, 1403) 
LEAVE NOLABEL F (81»; 

5C070I T INPUT, OUTPUT, OR UPDA.TE A.'ITRIBUTE MISSING IN FII.E filename 

5C071I E DIRECT ATTRIBUTE INSERTED FOR REGIONAL FILE filename 

5C072I E NOLABEL OPTION INSERTED FOR UNBUFFERED TAPE FILE filename 

5C073I T ENVIRONMENT ATTRIBUTE MISSING IN FILE filename 

520741 T MEDIUM OPTION MISSING IN FILE filename 

5C075I T BLOCKSIZE NOT DIVISIBLE BY RECORDSIZE IN FILE filename 

5C076I W RECORDSIZE OF RECORD NOT DIVISIBLE BY 8 IN FILE filename 

~~Q!~g~~!Qg: The record size must be divisible by 8 if blocked records are to 
be transferred by a REA.D SET or LOCA.TE statement. 

5C077I W DIVISION OF BLOCKSIZE BY B DOES NOT YIELD REMAINDER OF 4 IN FILE filename 

~~ElaQ~~!Q~: If the V option is used, the record size of records t:) be trans­
ferred by a READ SET or LOCATE statement must yield a remainder :)f 4 after 
di vision by 8. 

500781 T BLOCKSIZE B~YOND DEVICE DEPENDENT LIMITS IN FILE filename 

5C079I T F, U~ OR V OPTION MISSING IN FILE filename 

110 



SC0801 T ADDITIONAL ERROR(S) IN FILE filename 

~~E!~n~~!2~: The maximum number of error messages issued fer one file 
declaration is 7. If the file declar~tion contains more than 7 errors~ this 
message is printed. 

5C0811 E INVALID AT'IRIBUTE IGNORED IN FILE filename 

5C084 I T ERROR IN EXTENT NUMBER SPECIFICA.TION FOR FI iE filename 

5C0851 E EXTENTNUMBER SET TO 3 IN DECLARATION OF FILE filename 

5C082I W PRINT ATTRIBUTE ASSUMED FOR PHYSICAL DEVICE PRINTER IN FILE filename 

5COg61 S INVALID DEVICE rYPE SPECIFIED FOR HIGHINDEX IN FILE filename 

~~el~!!'~!:!Q!!: Only the device types 2311 and 2314 are allow.ed. 2321 may be 
specified if the device type in the-corresponding MEDIUM option is also 2321. 

§Y~!:~~_~£~!Q~: The invalid device type is used for execution. 

5C087I S NUMBER OF OFLTRACKS EXCEEDS DEVICE DEPENDENT LIMITS IN FILE filename 

~~E!~n~~!2~: rhe number n of overflow tracks specif·ied in the OFLTRACKS 
option must be within the following limits: 

a $ n $ 8 for 2311 
o $ n ~ 18 for 2314 and 2321 

§y~!:~~_~£tiQ!!': The value in error is used for execution. 

SC088I S KEYLOC BEYOND RECORDSIZE LIMITS IN FILE filename 

~~ela!!.~E!Q!!: The key location n specified in the KEYLCC option must be wi thin 
the following limits: 

1 ~ n ~ record size - keylength + 1 

The message is issued if n > record size - keylength + 1. If n 
SC092I is printed. 

§.Y;:I~~!!!_~£tiQ!!': The val ue in error is used for execution. 

o message 

I 5C089I S ADDBUFF AREA LESS THAN MINIMUM OR GREATER THAN MAXIMUM IN FILE filename 

~~el~!!'~!:!Q!!: The number n of bytes specified in the ADDBUfF option must be 
within the following limits: 

64 + block size + keylength $ n < 32K 

§Y~!:~~_~£!:!Q!!': The value in error is used for execution. 

SC090I S RECORDSIZE NOT GREATER THAN KEYLENGTH IN FILE filename 

~~e'l~!!'~!:!'Q!!: For bloc ked records, the record s iz e must be greater than the 
keylength. If KEYLOC is specified, this also applies for unblocked records. 

§.Y~~~!!!_~£~!Q!!': The value in error is used for execution. 

5C091I W RECORDSIZE EXCEEDS LIMIT FOR OVERFLOW RECORD IN FILE filenarre 

~~el~!!'~!:!Q!!: The lengths n of the records on the overflow tracks are 
restricted as follows: 

n ~ 360S - keylength - 10 bytes for 2311 
n $ 7249 - keylength - 10 bytes for 2314 
n ~ 1984 - keylength - 10 bytes for 2321 

A.ppendix F. Compile-Time Diagnostic Messages 111 



5C092I E INDEXAREA" ADDBUFF, HIGHINDEX OR KEYLOC OPTION IGNORED IN FILE filename 

~~E1.~!!~t!2!!: One of the options INDEXAREA, ADDBUFF" HIGHINDEX or KE YLOC is 
either not followe1 by a parenthesized specification or is fcllowed by an 
invalid specification. 

I 5C093I S INDEXAREA LESS rHAN MINIMUM OR GREATER THAN MAXIMUM IN FILE filename 

~~El~!!~t!2!!: The number n of bytes specified in the INDEXAREA option must not 
exceed the following limits: 

3 + (keylength + 6) $ n < 32K 

2l~t~~_~£~!Q~: The value in error is used for execution. 

5C 0951 E MORE THAN ONE INITIAL ATTRIBUrE FOR variable name 

2l~te~_~£~!2~: Cnly the first INITIAL attribute is used. 

5C096I E MORE THAN ONE DIMENSION A'rTRIBUTE FOR variable name 

§Y§~~~_~£!~Q~: Only the first dimension attribute is used. 

5C097I E MORE THAN ONE LEVELNUMBER FOR STRUCTURE ITEM structure iterr name 

2y§tem_~£!~Q~: The first level number is used. 

5C098I E MORE THAN ONE PRECISION OR STRING LENGTH SPECIFIED FOR variable name 

§y~t~~_~2t!Q~: The first precision or length is used. 

5C 0991 E MORE THAN CNE PICTURE ATTRIBU'rE SPECIFIED FOR variable name 

2Y~t~~_~£!:.!2~: Only the first PICTURE attribute is used,. 

5C100I E MORE THAN ONE BASE OR POINTER SPECIFIED FOR variable name 

~~~~E.!~: DECLARE NAME EASED(X) DECIMAL FIXED(7) BASED(Y); 

5C101I E STRUCT. NOT START. WITH LEVELNUMEER 1, ASS. TO BE MAJCR STRUCr. NAME IS struc­
ture name

~~~!!!E.!~: DECLARE 2A" 2B, 2C; A. is assumed to be the major-structure name. 

5C102I E NON-FILETYPE A'I'TRIBUTES IGNORED FOR FILE filename 

5C103I E NON-APPLICABLE A'ITRIBUTE <S) IGNORED FOR STRUCTURE structure name 

~!~mE!~: DECLARE 1 A1 FIXED, 2B, 2C; 

5C104I S INVALID INITIALIZATION IGNORED FOR variable name 

~~El~!!~t!2!!: Initialization with INITIAL-attribute is conflicting with tYfe 
or attributes of the variable. 

~!~!!!E.!~: DECLARE E ENTRY INITIAL (SUBPRO); 

5C105I E ALI:iNMENT PERFORMED FOR EITSTRING bitstring-variable name 

~~El~!!~t!2!!: Bit strings contained in structures and bitstring-arrays are 
aligned by the D-compiler. 

5C1061 E MORE THAN 12 DIFF. PARAMETERS TO BE PASSED TO OR FROM BLOCK NUMBER block 
number 

~!E.!~~~~~Q!!: Number of parameters is limited to 12. 

112 



SC1071 E TOO MANY DIGITS SPECIFIED IN PREC. ATTR. DEFAULT VALUE ASSUMED FOR variable 
name 

SC1081 E NO SCALE ALLCWED WITH FLOAT OR BIN FIXED. DFLT.PRECIS. ASSUMED FOR variable 
name 

~~Ql~~~!!Q~: A scale factor must not be specified within the precision attri­
bute of BINARY FIXED or FLOAT variables. The whole precision attribute will 
be ignored and the default precision is assumed for that variable. 

Illegal: 

BINARY FIXED (15,3) 
BINARY FIXED (31,0) 
DECIMAL FLOAT (3,2) 
DECIMAL FLCAT (6,0) 
BINARY FLOAT (53, 8) 
BINARY FLOAT (S3,0) 

Assumed: 

BINARY FIXED (lS) 
BINARY FIXED (15) 
DECIMAL FLOAT (6) 
DECIMAL FLOAT (6) 
BINARY FLOAT (21) 
BINARY FLOAT (21) 

SC109 I E ENTRY INTO EXT. PROC. IS OF TYPE EXTERNAL. INTERNAL A'I'IR. IGN. FOR entry name 

SCllOI T MORE THAN 32K BYTES REQUIRED FOR ARRAY array name 

SClllI T POINTER AND/OR BASE IDEN'!. NOT OR INCORRECTLY DECL. FCR ARRAY array name 

~~~~El~: DECLARE 0, BAS(lO) BASED (U); U is not a pointer. 

SCl131 T REFERENCED VARIABLE OR RELATED BASE/POINTER INCORR. FOR ARRAY array name

g~~~El~: DECLARE 1 A, 2 (B(lO),C), X(lO) DEFINED B;
Defining on elements of structures is not allowed.

SCllSI E REPLICATION FACTCR OF ZERO IGNORED IN INITIAL LIST CF variable name

SCl161 E STRIN~ CONSTANTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable name

5Cll?I E EXPONENTS TRUNCATED ON RIGHT IN INITIAL LIST OF variable narre

5el18I E FLOAT. eONSTAN'IS 'IRUNCA'IED ON RIGHT IN INITIAL LIST CF variable name

SCl19I E ZERO ASSUMED FOR INVALID FLOAT. CONSTANTS IN INITIAL LIST CF variable name

5C120I E MAX. VALUE ASSUMED FOR INVALID FI .. OAT. CONSTANTS IN INITIAL LIS'! OF variable
name

5C1211 E STERLI NG CONSTANTS TRUNCATED ON RIGHT IN IN I'!'IAL LIS'I uF v:ariable name

5 C1221 E BINARY FIXED CONSTANTS TRUNCA:TED ON RIGHT IN INI'IIAL LI S'I OF variable name

5C1231 E DECIMAL FIXED CONSTANTS 'IRUNCATED ON RIGHT IN INITIAL LIS'T CF' variable name

SC124I E RESULT OF CONST. CONV. UNDEF. DUE TO SIZE ERROR. CHECK INITIAL LIST OF vari­
able name

SE001I T ILLEGAL CHARACTER IN LABEL PREFIX OR STATEMENT BEGINNING ..

1. LB1: +B2: LB3: ABC = 50;
Second label is not an identifier.

2. LAB: +BC = 50;
Statement begins with an illegal character.

§y§te!:!L[!£:!:!Q~: 'Ihe error statement is replaced ty a dummy statement.

Appendix F. Compile-Time Diagncstic Messages 113

SE002I T STA.TEMENT TYPE CANNer BE IDENTIFIED.

!~f1~!!~~!QQ: An identifier at statement beginning is neither a statement
identifier nor followed by the assignment symbol =.

];~~!!!E1~: PUTT SKIP EDI'I (B) (A.); PUTT is not a statement identifier ..

§~~~~~_~~~~Qn: The error statement is replaced by a duremy statement.

SE003I T NESTING OF BLOCKS EXCEEDS 3 LEVELS.

~~Q!.!!!!!!!:!Q!!: Implementation restriction. The depth of nested blocks is
restricted to 3 levels. The external proceduce is the first level.

§Y§!:~~_~£!!Q!!: The flagged statement is replaced ty the required number of
END statements. The sutsequent statements are ignored.

SE004I T NUMBER OF BLOCKS EXCEEDS 63.

~~QlaQ!!!:!Q!!: Implementation restriction. The total number of blocks in an
external procedure (including the external procedure) must not exceed 63.

§Y§!~~_~£!!Q!!: The flagged statement is replaced ty the required number of
END statements. The subsequent statements are ignored.

Q~~!_g~~fQ!!~~: Reduce number of blocks in one compilation by generating
external procedures.

SE005I T SEMICOLON FOUND IN IF-STATEMENT BEFORE' THEN' IS DE'IECTED.

!~~~1~: IF A = 1; THEN GOTO LA.B;

§Y~~~~_~£~!QQ: The incorrect IF statement is replaced by a dummy statement.

5E006I T NO LABEL IS PERMI'ITED BEFORE A.N ELSE-CLAUSE.

~~~mQ!.~: IF A = 1 THEN ••• : LA.B: ELSE B = 5: 

SEOD7I T ELSE FOLLOWED BY INVALID UNIT. 

~~~~!~: IF A = 1 THEN ••• ; ELSE S = B; where B is a correctly declared 
variable

§Y§!:~~!L~£!!QQ: The invalid ELSE clause is replaced by a dummy staterrent.

5EDD8I T DO-GROUP NESTING EXCEEDS 12 LEVELS.

~~Qla!!~!:!Q!!: Implementation restriction. The maximum depth of a nested set
of DO statements (including repetitive specifications in GET or PUT state­
ments) is 12.

§Y~~~!!!_~£~!QQ: The flagged DO statement is replaced by a durrmy statement and
the following text is ignored.

SEDD9I T INVA.LID END STATEMENT.

114

!~f1~!!~~!QQ: The keyword END is not followed by a semicolon or by the label
of its associated PROCEDURE, BEGIN, or DO statement.

~~!!mQ!.~: LAB: PROCEDURE;

END LAS;

SEOlor T LO::irCAL END OF PROGRAM DETECTED BEFORE END Of SOURCE TEXT.

~~Q!'!!!!~!!Q!!: 'rext follows the logical end of the program. The programmer
seems to have made an error in matching END statements with PROCEDURE, BEGIN"
or DO statements.

2~~t~m_~£1iQn: All text following the flagged statement is ignored.

SE011I T MORE THAN ONE LABEL BEFORE PRO:EOURE OR ENTRY STArEMENT.

~~Q!~n~~!Qn: PROCEDURE and ENTRY statements must have one and only one label.

SEOl2I T NO LABEL BEFORE PROC. OR ENTRY STATEMENT. LABEL B INSERTED.

~~flE!!!E!!::.!Q!!: PRCCEDURE and ENTRY statements must have one and only one label.

§~~!~ill~~£!!Qn: The compiler inserts the label 'B:' before the flagged state­
ment. This may cause further error messages (e.g., multiple declaration).

SEOl31 T FIRST STMNT NO'I PROCEDURE STMNT. FOLLOWING TEXT IGNORED ..

§~~!~ill_~£!iQn: Further error messages may result (e.g., SE0121 and SE01SI).

SE014I T STATEMENT TOO LONG. STA'IEMENT TRUNCATED.

~~Q!.!!n~~!Q!!: Internal buffer overflow.

Y~~~_S~§EQ!!§~: subdivide statement and recompile.

SE01SI T END OF SOURCE MODULE FOUND BEFORE LOGICAL END OF PROGRAM.

~~flE!!!E!!::.!Q!!: Problem causing the errOr may be:

1. Missing final semicolon.

~~~mQ!'~: LAB: PROCEDURE OPTIONS (MAIN); 

END 

2. Missing END statement(s). 

~~~mE!~: LAB: PROCEDURE OPTIONS (MAIN); 

/*

DO I = 1 TO_ 5;
END;

SE016I T RI::iHT PARENTHESIS MISSING IN THIS STATEMENT.

~~~~!~: A<2,3,1 = 15; where A is declared as a three-dimensional array. 

SE01?I T END OF SOURCE MODULE FOUND IN PARENTHESIZED LIS'I-. 

SE020I T ELEMENT IN PREFIX LIST IS NOT A LEGAL CONDITION NAME. 

~~Q!!!!!~!::.iQ!!l The prefix list contains either an illegal condition name or no 
condition name at all. 

): LAB: statement; 

2. (ZERODIVIDE,+UNDERFLOW): LAB: statement; 

3. (ZERODIDIVE, UNDERFLOW): LAB: statement; 

Appendix F. Compile-Time Diagncstic Messages 115 



§y~te~_~£1!Q~: The entire prefix list is ignored. 

5E0211 iT NAME I N PREFIX LI ST NO'! FOLLOWED BY COMMA OR PARENTHESIS. 

§.~~!!!E!,g§: 1. (ZERODIVIDE UNDERFLOW): stat ement; 

2. (OVERFLOW+CONVERSION) : st at ement; 

§Y§.~~~_8£!=.!Q~: The entire prefix list is ignored. 

5E0221 T CONFLICTiNG CONDI'IION NAMES IN PREFIX LIST. 

~~~~2!~: (NOCONVERSION,CONVERSION): statement; 

§y§.~g~_8£~iQ~: The conflicting names are ignored.

5E0231 T COLON AFTER PREFIX LIST IS MISSING.

5E0251 r RIGHT PARENTHESIS IS MISSING IN DATA OR FORMAT LIST

5E0261 T MAIN PROCEDURE HAS INCORRECT OPTION LIST.

~~E!~~~~!2~: For the D-level compiler, the option list of a main prccedure is
defined as

MAl N [, ONSYSLOG]

It must be enclosed in parentheses immediately followed by a semicclcn. The
problem ca. using the error may be:

1. Missing cumma or right parenthesis.

~~~!!!Ele:, TEST: PROCEDURE OPTIONS (MAl N; 

2. Element in list ~hich is not an identifier. 

§.~~!!!2le: TES'!: PROCEDURE OPTIONS (+AI N) ; 

3. Identifier in list which is neither MAIN nor ONSYSLOG. 

§.~~!!!21e: TEST: PROCEDURE OPTIONS (MIAN); 

4. Option list not followed by semicolon. 

5E 0341 T TWO OR MORE IDEN'IICAL IDEN'IIFIERS IN ONE PARAMETER LIST. 

5E0411 T MAJOR OR MINOR STRUCTURE IN IF STATEMENT. 

5 EO 42 I T ARRAY IN EI.EMENT- EXPRESSION OF IF-STATEMENT 

5E0431 T INCORRECT SYNTAX IN THIS STATEMENT. 

5E0451 T EXTERNAL NAME(S) OF THIS PROGRAM LONGER THAN 8 CHARACTERS. 

§.~Fla~~tiQ~: See explanation of message 5E046I. 

5E0461 E EXTERNAL NAME(S) OF THIS PROGRAM LONGER THAN 6 CHARACTERS. 

~~Ela~~~!2~: Implementation restriction. The length of external identifiers 
must not exceed 6 characters,. This also applies to names that are external ty 
default such 3.S filenames, names of external procedures" etc. If an identifi­
er has 7 or 8 characters, the object program can still be executed but errors 
may possibly occur- If tne external identifier is longer than 8 characters 
the compilation is terminated (message 5E0451 is issued). The statement in 
error indicated in this message need not be the statement in which the error 
is detected. 

5E0471 T TOO MANY IDENTIFIERS IN THIS STATEMENT. 

116 



Q~g!_Rg~Eon~~: subdivide statement and recompile. 

5E049I T POINTER AND/OR BASE IDENTIFIER NOT OR INCORRECTLY DECLARED. 

~~~~E1~~: 1. DECLARE G CHARACTER (4); 
DECLARE K CHARACTER (4) BASED (G):
K = 'TEST':

2. DECLARE P DECIMAL FLOAT POINTER:
DECLARE A BASED (P):
A = A+l;

In both examples, the third statement is flagged,.

5 E050 I T ATTRIBUTE TABLE OVERFLOW • roo MANY VARIABLES IN THIS S'IMN'I.

Q~~I-R~~E2~~~: subdivide statement and recompile.

5E051I T INVALID DEFINING

§~~!!!Qlg: DECLARE 1 A"
2 B DEFINED D,
2 C:

DECLARE Dj
B = 4:

The third statement causes the error message.

5E053I T OPERAND IN A GOrO STATEMENT IS NOT A LABEL.

~~f1.:~!!~!:.i2!!: The operand in a GOTO sta temen t must a lways be a labe 1 canst ant
or an element label variable.

5E055I S ZERO-REPLICATION FACTOR FOR S'rRING CONSTANT IGNORED.

5E056I S STRING CONSTANT 'T'OO LONG. TRUNCATED.

~~Qlag~!iQg: Implementation restriction. The length of bit-string constants
is restricted to 64 bits: the length of character-string constants is
restricted to 255 characters.

§Y~!:.~~_~£!:.!2!!: Bit strings exceeding 64 bits and character strings exceeding
255 characters are truncated on the right.

5E057I E EXPONENT TOO IoONG. TRUNCATED.

~~E1.:~!!~!:.!2!!: Implementation restriction. The exponent subfield of a decimal
floating point constant is restricted to 2 digits, and that of a binary float­
ing point constant to 3 digits.

§Y§!~!!!_~£!iQ!!: The exponent is truncated on the right.

5E058I E FLOATING-POINT CONSTANT TOO LONG. TRUNCATED.

~~El~!!~~!2~: Implementation restriction. The length of binary floating-point
data is restricted to 53 bits: the length of decimal floating-point data is
restricted to 16 digits.

§Y§!~!!!-~£!iQ!!: Decimal and binary floating-point constants exceeding 16
digits or 53 bits, respectively, are truncated on the right, and the exponents
are increased by the number of digits or bits truncated.

5E 0591 E FLOATI NG-PCI NT CONSTAN'I '100 SMALL. SET TO ZERO.

5E060I E FLOATING-POINT CONSTANT TOO LARGE. MAXIMUM VALUE ASSUMED.

5E061I E STERLING CONSTANT TRUNCA'TED.

Appendix F. Compile-Time Diagnostic Messages 117

~~£la!}~!:.iQ!!: The sterl ing constan t is converted to and stored as decimal
fixed-point pence. Tne converted constant must not exceed 15 significant
digits.

2y~te!!!_~.£!:.:iQ!!: 'Ihe converted decimal fixed-point pence number is truncated on
the right.

5EOh?I E BINA.RY FIXED-POINT CONSTANT TOO LONG. TRUNCATED.

~!£!!!}!!:.iQ!!: Implementat~on restriction. The length of binary fixed-point
numbers must not exceed 31 bits.

2Y§~~~_~£~iQ!!: The constant is truncated on the right.

5E063I E DECIMAL FIXED-POINT CONSTANT TOO LONG. TRUNCATED.

~!£!!!}!!:.iQ!!: Implementation restriction. The length of decimal fixed-point
numbers must not exceed 15 digits.

§y~t~!!!_~.£!:.iQ!!: The constant is truncated on the right.

5E064I E RESULT OF CONSTAN'I CONVERSION UNDEFINED DUE Te SIZE ERRCR.

~~~l~!!~~io!!: The number of significant digits resulting from the c~nstant 
conversion is greater than the precision specified for the target. 

~!!~!~: DECLARE X FIXED BINA.RY (10); 
X = 2.444E5; 

5E0651 T TOO MANY CONSTANTS IN THIS COMPILATION. 

~!£!~!}~!:.iQ!!: Internal cuffer or constant-counter overflow. 

5E067I E INVALID CHARACTER STRING. ONE BLANK ASSUMED. 

~~~!.~!!~!iQ!!: The apostrophe opening the character string is imnediately fol­
lowed by the closing apostrophe.

2y~te!!!_~.£!:.iQ!!: The compiler assumes the character string tc consist of one
blank.

5E068I T QUALIFIED NAME NO~ DECLARED.

~~~~~l~: LAB: PROCEDURE OPTIONS (MAIN); 
STRUCT.SUBl = 50; 
END; 

5E0691 T REFERENCED VARIABLE OR RELA'TED BASE/POINTER INCORREC'I. 

!!!!!!E!~: DECLARE A CHARACTER (3) BASED (P); 
A = • XYZ' ; 

If P is not declared, the assignment statement causes the error 
message. 

5E070I E A) HAS BEEN INSERTED IN ARGUMENT OR FORMAL, FARA~ETER LIST. 

~~~mEl~: CALL DYNDUMP (A,B ; 

5E071I T UNSPECIFIED SYNTACTICAL ERROR.

~~~!!!E1~: DO A = ( B TO C BY D wHILE (E»; where A is a variable and B, C, 0, 
E are valid expressions. The parentheses enclosing the specificati~n of the 
DO statement are illegal. 

5E072I T INTERNAL BUFFER CVERFLOW. (PROBABLY TOO MANY PARENTHESES). 

118 



Q§~~_B~§~Q~§~: subdivide statement and recompile. 

5E0731 E ONE OR MORE ) INSERTED ~o OBT~IN ~ VALID EXPRESSION. 

g!~!!!~!.~: DECLARE (A,B,C,D,E) DECIMAL FIXED; 
A = B** (C+D*E i 

5E0741 E ACTIOl~ FOR SEO?31 MAY CAUSE ~DDITIONAL ERROR MESSAGES. 

SE0751 T 2ND OPERAND IN DISPLAY S~'A~EMENT INVALID. 

g~E1~D~~!2~: The second operand of the DISPLAY statement must be a character­
string element variable enclosed in parentheses. 

5 E076 I T SHILLING FIELD OF STERLING CONST~NT GREATER THAN 19. 

SE0771 T ERROR IN PARAMETER, OR SUBSCRIPT, OR ARGUMENT LIST. 

5E0791 T WHILE FOLLOWED BY INVALID EXPRESSION. 

5E0801 T 1ST OPERAND IN DISPLAY STA'rEMENT INVALID. 

~~~1~~~~!2~: The first operand in a DISPLAY statement must be an element 
expression enclose1 in parentheses.

SE0811 T INV~LID OR MISSING CONDITION NAME.

~~E1~~~~!2!!: The keyword ON is not followed by a valid condition narr,e and/or
filename.

~~~~E1~~: 1. ON +ONVERSION GOTO LAB; 
2. ON CNVERSION GOTO LAB; 
3. ON ENDFILE GOTO LAB; (filename missing) 
4. ON ENDPAGE(?RArE)GOTO LAB; (invalid filename) 

5E082I T INVALID OR MISSING OPERAND AFTER GOTO IN ON S'I'ATEMENTi 

E;~e!.~!!~~!Q!!: The keyword Ga'lO in an ON statement is not fcllowed by an 
identifier. 

~~~~E1~~: 1. ON CONVERSION GOTO; 
2. ON CONVERSION GOTO +AB;

SE083I T UNSPECIFIED ERROR IN ON STA~EMENT.

g!~la~~~!Q~: The ON statement has the following format:

ON condition {SYSTEM; ION-unit}

The compiler detected that the ON~condition is neither follcwed by the keyword
SYSTEM nor by a valid ON-unit.

~!~~~1~: ON CONVERSION +5;

SE084I T INVALID CALL STATEMENT.

~~.Ela~~~!2!!: No identifier" especially no entry name" is following the key­
word CALL.

~~~~E1~~: 1. CALL +AB; 
2. CALL; 

5E085I T ERROR IN CLOSE LIST. 

~~E1~~~~!2!!: The CLOSE statement has the following format: 

CLOSE FILE (filename) r, FILE (filename)] ••• ; 

Appendix F. compile-rime Diagnostic Messages 119 



Either the keyword CLOSE or one of the commas in the list is not followed by 
the keyword FILE. 

~~~!!!e!~~: 1. CLOSE FLE (OUT); 
2,. CLOSE (OUT);
3. CLOSE FILE (OUT), (IN);

5E086I T ERROR IN FILE OPTION

~!E!2n2~!2n: Syntax error. The file option consists of the keyword FILE fol­
lowed by the file name enclosed in parentheses.

~~~!!!2!~~: 1. OPEN FILE (+-*); 
2. OPEN FILE IN); 
3. CLOSE FILE (IN; 

where I N is a vaIi::l fi Ie name. 

SE087I T ERROR IN OPEN LIST. 

~~E!~n~~!2~: The OPEN statement has the following format: 

OPEN FILE (filename) options group L,FILE (filename) opticns grouf] ••• ; 

Either the keyword OPEN or one of the commas in the list is not followed by 
the keyword FILE. 

~!~!!!E!~~ : 1. 
2. 
3. 

OPEN FLE (IN); 
OPEN (IN); 
OPEN FILE (IN)" (OUT); 

5E088I T WRONG FILE OPTION IN READ" WRITE, OR REWRITE STMNT. 

~~~la~~~!Q~: The keyword READ, WRITE, or REWRITE is not followed by the key­
word FILE.

5E089I T INVALID OR MISSING OPER~ND IN P~GESIZE OPTICN.

5E090I T NO SET OPTION IN LOC~TE ST~TEMENT.

~~~la~~~iQ~: The file option in a LOCATE statement is not followed by the 
keyword SET. 

~~~!!!E!~~: 1. LOCA'IE ~ FILE (OUT); 
2. LOC~TE ~ FILE (OUT) SE (P);

5E091I T INV~LID OR MISSING OPERAND IN KEY OPTION.

~~E!~n~~!2~: Syntax error. The KEY option must consist of the keywcrd KEY
followed by a parenthesized expression representing a character string.

5E092I T INV~LID FROM, FILE~ OR INTO OPTION.

~~Ela!!~!:!2~: Syntax error. FROM, FILE, or INTO is not followed by a valid
operand# or the operand is not enclosed in parentheses.

~~~!!!E!~: PUT FILE OUT EDIT (BUFFER) (A); 

I 5E093I T INVALID OR MISSING OPER~ND IN SET OR STRING CPTICN. 

120 

~~e!~g~!:!Qg: Syntax error. E.g., the SET option consists of the keyword SET 
followed by the name of a pointer variable enclosed in parentheses. 

~~2!!!E!~~: 1. LOC~TE ~ FILE (OUT) SET (P1 where P1 is a pointer variable. 
2. LOC~TE ~ FILE (OUT) SET (1); 



5E0941 T INV~LID OR MISSING OPERAND IN KEYFROM OPTICN. 

§~Q~~g~f1QQ: Tne keyword KEYFROM must be followed cyan element ex~ression 
enclosed in parentheses. 

5E096I T ERROR IN FORMAT LIS'! 

1. Left parenthesis of one of the format lists is missing. 
2. A left parenthesis or one of the commas in the list is neither followed ty 

an iteration factor nor by a valid format item. 
3. An iteration factor in the list is neither followed by a valid forrrat item 

nor by a format list. 

SE0971 E MISSING) INSERTED IN FORMAT LIST. 

SE098I T MISSING OR INVAL,ID CONTROLVARIABLE IN DC-STATE~ENT. 

§~~~Q~~: DO CIS) = 1 TO 7; 
The control variable C must hot be subscripted. 

SE0991 T INVALID LINE, COLUMN, OR X FORMAT ITEM. 

~~Q±'~Q~f!Qg: Missing or invalid operand in a LINE, COLUMN, or X-forrrat item. 

,g~~!!!El~ : P U'I SKIP EDIT (B UFFER) (X (S" A); 

In the above example, the right parenthesis enclosing the operand of the x­
format item is missing. 

SE100I T INVALID R FORMAT ITEM. 

];~E!~!E~!::i2!!: Missing or invalid operand in an R-format iterr. 

SE101I T MISSING ( IN E OR F FORMAT ITEM. 

5El02I T MISSING INTEGER IN E OR F FORMAT ITEM. 

SE103I T MISSING) IN E OR F FORMAr ITEM. 

SE1041 'I COMMA MISSING AFTER 1ST INTEGER IN E FORMAT ITEM. 

SE1051 T BUILT-IN FUNCTION AS ARGUMENT OF PSEUDO-VARIABLE. 

SE1081 T INVALID OPTION LIST IN READ OR WRITE STATEMENT. 

5E1091 S MAl N PROCEDURE MUSr NOT RETURN AN EXPRESSION VALUE. 

5Ell01 S CHARACTER OR BIT EXPRESSION IS roo LONG. 

E~21~Q~!::iQQ: The number of characters resulting from the evaluation of a 
character-string expression must not exceed 255. For bit-string expressions, 
the number of resulting bits must not exceed 64. 

I 5Elll1 T DATA, OPTION, OR FORMAT LIST CONTAINS INVALID ITEM(S). 

~~~~El~§: 1. PUT SKIP EDIT {BUFFER (A); 
Right parenthesis missing after BUFFER.

2. PUT EDlr SKIP (BUFFER) (A);
Tne keyword EDIT must immediately be followed by the data
specification.

5El121 T INVALID DATA ELEMENT.

5El13I T INVALID REPETITIVE SPECIFICATION.

Appendix F. Compile-Time Diagnostic Messages 121

5El14I S INCORRECT ENTRY DECLARATION.

5El16I T MISSING OR WRONG BASED VAR. OR FILE OPTION IN LCCATE STMNr.

~~E~~n~!!Qn: Syntax error. The LOCATE statement has the following format:

LOCATE based variable FILE (filename) SET (pointer variable);

The based variable must be unsubscripted and must not be a rrinor struc,ture or
an element of a structure.

~~~mE!~~: 1,. LOCATE +1 FILE (OUT) SET (P1); 
2. LOCATE Al (OUT) SET (Pl); 

5El17I T INVALID EXP~ESSION. 

~~E~~n~!!Q~: The error may be caused by: 

1. Missing operand. 
2. 'Iwo infix operators not separated by operand. 

SE118I E WARNING FOR INCOPRECT PREFIX IN ENTRY STATEMENT. 

SEll9I T TOO MANY ENTRY POINTS AND/OR ON CONDITIONS IN BLOCK. 

SE120I S ILLEGAL NULL STATEMENT IN ON-UNIT. 

~~E~~~~~!Q~: The null on-unit must not be specified for the conditicns CONV­
ERSION,. ENDFILE, and KEY. 

5E121I T END OF INVALIDLY NESTED DO GROUP. NESTING EXCEEDS 12 LEVELS. 

~~£12n2~iQQ: Implementation restriction. The maKimum depth of a nested set 
of DO statements (including repetitive specifications in GE~ or PU~ state­
ments) is 12. This message is issued as a follow-up to message 5E008I. 

§Y§!~~_~£!!Q~: The flagged END statement is replaced by a dummy statement. 

5E122I S ILLE3AL FILENAME IN ON CONDITION. 

SE123I S ILLEGAL LABEL IDENTIFIER IN ON UNIT. 

~~~mE1~: DECLARE C DECIMAL FIXED; 
ON CONVERSION GOTO C;

5E124I E REVERT STATEMENT WITHOUT CORRESPONDING ON STATEMEN~.

SE126I E INCORRECT NUMBER OF ARGUMENTS.

~~~~E~~: B = SUBSTR(A, 1 1) ; 
Due to a missing comma in the argument list, the compiler recognizes only two 
arguments. 

SE127I E OPTIONS MAY NOT BE SPEC. FOR SUBPROCEDURES. CPTIONS IGNORED4 

SE128I T BUILT-IN FUNCTION NAME IN INCORRECT CONTEXT. 

~~E!~!!~~!Qn: A built-in function name has explicitly been declared with the 
BUILTIN attribute, but is used in a non-function-reference ccntext. 

~~~mE!~: DECLARE ABS BUIL'IIN; 
ABS = ABS + 1;

~Q!~: Built-in functions without arguments or ~hich have been declared con­
textually only are not concerned.

SE129I S CONVERSION OF ARITH. DATA TO BIT STRING YIELDS RESULT G'I 31.

122

5 E130 I T INVALID KEY.

5E131I T MORE THAN 65534 VARIABLES AND/OR CONSTANTS.

~!~lag~~!Qg: An internal overflow of the variacle and constant counte~ of the
comFiler occurred.

5E132I T STACK OVERFLOW. (J;F-NEST TOO DEEP).

~~~!~g~~!Q~: Implementation restriction: The maximum number of IF statements 
in a nest is 100. 

5E133I T PROBABLY BAD IF-NEST. 

5E134I T ELSE IMMEDIATELY FOLLOWS IF. 

5E135I T ELSE IMMEDIATELY FOLLOWS ANOTHER ELSE. 

5E137I T ILLEGAL STATEMENT USED AS UNIT IN AN IF STATEMENT. 

~~~mQ!~~: 1. IF element expression THEN FCRMAT (format-list); 
2. IF element expression THEN unit-l ELSE FCRMAT (format-list);

The FORMAT statement is not permitted as unit in an IF statement,.

5E138I T ELSE WITHOUT CORRESPONDING IF.

5E140I S INCORRECT SPECIFICATION OF CONSTANT ARGUMENT.

5E141I T TOO MANY ST'RUCTURES IN STRUCTURE ASSIGNMENT.

5E142I T NUMBER OF INTERMEDIATE RESULTS IS TOO BIG. STACK OVERFLOW.

5E1431 T NON-IDENTICAL STRUCTURING IN STRUCTURE ASSIGNMENT.

5E144I T ARRAY IN PSEUDO-VAR OR OPERAND IN ARRAY-ASSIGN IS NCT ARRAY,.

5E145I T OPERAND ON THE LEFT SIDE OF STRUCTURE-ASSIGNMENT IS 'NO STRUCT.

5E146I T INVALID CONVERSION OR ILLEGAL COMBINATION OF DATA TYPES.
~~~mQ!~: P = Ai where A is a character string and P is a pointer variable. 

5E147I T NON-IDENTICAL NUMBER OF ARRAY ELEMENTS IN ARRAY-ASSIGNMENT'. 

5E148I T UNPERMITTED ASSIGNMENT TO FUNCTION VALUE. 

~~~!~n~~!Q~: Tne left side of an assignment statement is a built-in function 
which is neither a STRING built-in function nor a pseudo variable.

5E1491 S NUMBER OF ARGUMENTS IS GREA'I'ER THAN TWELVE.

5E150I T TOO MANY REPETI'I'IVE SPECIFICATIONS.

~!E!~TI~~!2~: Implementation restriction. The number of iteration specifica­
tions must not exceed 50.

~~~!!)E!~: DO I = 1 TO 2, 2 '10 3, 3 TO 4, ••• " 51 TO 52; 

§Y~!:.~!!!_~£!:.!.Q!!: 'I'he flagged DO statement is replaced by a dUlrmy statement and 
the following text is ignored. 

5E152I T PROCESSING OF STATEMENT TERMINATED. (TABLE OVERFLOW). 

~~Elan~!:.!2!!: An internal table overflow occurred during the Frocessing of a 
DO statement. 

Since the DO statement will be deleted from the text string, there will be a 
surplus END statement in the source program. 

Appendix F. compile-Time Diagnostic Messaaes 123 



Q~~f_R~~~QQ~~: Subdivide statement and recompile. 

5E153I T POINTER AS ELEMENT OF DATA LIST. 

5E154I W POSSIBLE ERROR IN FORMA'I I'I'EM IF USED FOR OUTPUT. 

5E155I S INCORRECT ARGUMENT IN BUILT-IN FUNCTION. 

~~~illE!§: DECLARE (A,B) CHARACTER (2); 
B = SUBSTR(A,5,4);

Since A and B are only two characters long, the arguments 5 and 4 in the argu­
ment list are invalid.

5E0156I S INV~LID NUMBER OF DIMENSIONS.

~~~!!!~!§: A (2 3,1) = 15; where A is declared as a three-dirrensional array,. 
The error is caused by a missing comma between the integers 2 and 3. 

5E157I W ERROR IF USED FOR OUTPU'I. 

5E158I T ENTRY N~ME OR LABEL ON LEF'I SIDE OF ASSIGNMENT STATEMENT. 

~~~ill2b§: LAB: N = 3; DO LAB = A TO B; where A and B are valid expressions. 

5E159I T R FORMAT ITEM IN ITERATION LIST AT DEPTH GREATER THAN 'TWO.

5 E16 0 I T STATEMENT TOO LCNG. STATEMENT DELET ED.

Internal buffer overflow.
Subdivide statement and recompile.

5E161I T TOO MANY IDENTIFIERS IN PROGR~M.

5E162I S CONTROL ITEMS NO'I ~LLOWED FOR THIS STATEMENT.

5E163I T NO ~BEL DESIGNATOR IN REMOTE FORMAT ITEM.

5E164I E LABEL CONST. IN R FORMAT ITEM NOT INTERNAL TO CRRN'I BLOCK.

~~E!~,!!~!:.iQQ : The R format item and the specified FCRMAT statement must be
internal to the same block.

5E165I S NO POINTER VARIABLE IN SEr OPTION.

5E166I S INCORRECT RECORD VARIABLE.

5E167I W RECORD VARIABLE ON WRONG BOUND~RY.

~~Ela!!~EiQ!!: The variable is Lot on a double-word toundary. An error may
occur if later a READ statement with the SET option is issued, and a similar
variable is used.

5E168I S RECORD VARIABLE ON WRONG BOUNDARY.

5E169I S RECORD VARIABLE LENGTH NOr IN ACCORDANCE WITH RECORDSIZE.

5E170I S INCORRECT VARIABLE IN STRING OPTION.

5E171I T INCORRECT NAME IN FILE OPTION.

~~Ela!!~EiQ!!: r'ile name not or incorrectly declared.

5E172I S STATEMENT NOT IN ACCORDANCE WITH FILE DECLARATION.

124

SE173I T INCORRECT ITEM IN DATA LIS'I.

SE174I T NO STRI NG VARIABLE IN SUBS'IR PSEUDO-VARIABLE.

SE17SI T FORMAT LIST Toe LONG.

~~f1~~~~!gQ: Int~rnal cuffer overflow.

SE176I S FORMAT STATEMENT NOT PRECEDED BY LABEL. STATE~ENr DELE'IED.

~~e!~Q~!!QQ: A FORMAT statement must be preceded by at least one label.

SE177I T TOO MANY FORMAT LABELS IN PROGR~M.

~~e!~g~!!QQ: Implementation restriction. The number of labels preceding FOR­
MAT statements in one program is restricted to 127.

SE178I T NESTING OF ITERATION LIST IN FORMAT LIST TOO DEEP.

SE179I S REMOTE FORMAT ITEM IN FORMA 'I' ST~TEMENT. STATEMENr DELE'lED.

~~e!~Q~!!QQ: A FORMAT statement cannot contain an R format iten.

§.y§.~g!!!_~£tiQg: The error statement is deleted from the text string.

SE180I S INCORRECT A,B FORMAT ITEM IN GET STATEMENT.

SE181I S VIOLATION OF FORMA'I' ITEM RESTRICTION.

SE182I W MOD (LENGTH OF RECORD VARIABLE,8) IS UNEQUAL TO FOUR.

~~fla~~!!gQ: If the V option is used, the record size of records to be trans­
ferred by a READ SET or LOCATE statement must yield a remainder of 4 after
division by 8.

SE183I S INCORRECT VARIABLE IN REPLY OPTION.

SE184I S WRONG VARIABLE IN SET OR KEYTO OPTION.

SE186I T TOO MANY REPETITIVE SPECIFICATIONS IN DATA SPECIFICATION.

SE187I S LENGTH OF RECORD VARIABLE GREATER THAN MAXBLCCKSIZE.

SE218I S ILLEGAL EXPRESSION IN ASSIGNMENT STATEMENT.

SE219I S MORE THAN TWELVE PARAMETERS IN PROCEDURE/ENTRY S'IATEMEN'I.

§.Y§'~~!!!_~£~!QQ: The parameter list is truncated on the right.

SE228I E CHARACTER STRING IN DISPLAY STATEMENT LONGER THAN 80 BY'IES.

SE229I E EVALUATIOL'l OF OP'I'IM. SUBSCR. YIELDS DISPLACE~. GREATER 32K

~~e!~g~!!QQ: At least one subscripted variacle in this statement is outside
the declared bound of the array.

~~~~!~: 'rae semantically wrong statement A(I) = A(I+3S000)i where A is de­
clared as A(10), will cause tais diagnostic message. This error is only 
detected if OPT is specified. 

SE230I W IMPLEMENTATION DEFINED SUBROUTINE. 

~~e~~Q!!!QQ: This warning message will appear for each statement using one of 
the facilities DYNDUMP, OVERLAY, IJKTRON, IJKTRCF, IJKEXHC. 

Appendix F. Compile-Time Diagnostic Messages 12S 



5E2311 E TOO MANY ARGUMENTS FOR IJKEXHC IN ONE BLOCK. 

5E2321 E INVALID ARGUMENTCS) FOR EXHIBIT CHANGED IGNCRED. 

5E233I E UNPERMITTED VALUE OF CONSTANT SUESCRIPT(S). 

~~Ela~~!i2~: Constant subscript{s) too large. The absolute value of the dis­
~lacement to the origin of the array is greater than 32767. 

5E234I E NO SCALE FACTOR GIVEN IN BUILT-IN-FUNCT. 

~~e!!!!!~!:!Q~: concerning the built in functions ADD'I MULrI FLY " DIVIDE for 
fixed-scale arguments. 

5E235I S INTERMED. RESULr IN ADD-FUNCT. TOO LONG. STATEMT. IGNORED 

E~E1~~~!;i2!!: Length of necessary working .fpace (resulting from precision and 
scale of the arguments) greater than hardware defined limits (only fer fixed 
scale arguments). 

5E236I S INTERMED SCALE-FACT. EXC~EDS PERMITTED RANGE 

~~e!~!!~!:!Q~: The intermediate scale factor in the built-in-functions ADD, 
MULTI PLY" or DIVIDE is greater than 127 or less than -128 (cnly f::> r fixed­
scale arguments). 

5E238I E TIME/DATE/OR NULL ASSUMED TO NAME PL/I BUILT-IN-FUNCTION 

~~E1~~~!;i2~: Builtin functions without arguments should be ex~licitely de­
clared with the BUILTIN attribute. 

5E239I E UNKNOWN FUNCTION OR SUBROUTINE. ATTR. ENTRY ASSUMED 

5G01I 

5G02I 

5G03I 

5G04I 

5G05I 

5G06I 

5G07I 

SW01I 

SW02I 

126 

E~Ela~~ti2n: Entry names must be explicitly declared with the attribute 
ENTRY. 

PR03RAM BLOCK GREATER THAN 32K. COMPILATION TERMINATED. 

SOURCE PROGRAM TOO LONG. COMPILATION TERMINATED. 

STATIC STORAGE OVERFLOW. COMPILATION TERMINATED. 

AUTOMATIC STORAGE OVERFLOW. COMPILATION TERMINATED. 

MORE THAN 256 ESID NUMBERS NECESSARY. COMP ILATION TERMINA TED. 

MORE THAN 65,534 VARIABLES AND/OR CONSTANTS. COMPILATION TERMINA'IED. 

POSSIBLE RECURSIVE USE OF EXTERNAL PROCEDURE. CCMPILA'rICN TERMINATEC. 

SUCCESSFUL COMPILATION. 

COMPILATION IN ERROR. 



STREAM 

TYPE OF FILE 

VALID INPUT/'1UTPUT 
STATEMENT FORMATS 
AND APPLICABLE 
, 'N-CONDITIONS 

FILE (filename) 

OPEN 
FILE {filename} INPUT 

FILE (filename) 6UTPUT 

FILE {filename} PAGESIZE {n} 

CLOSE FILE {filename} 

GET' 
FILE {filename} EDIT (data) {format} ](datallformat}] ... 

FILE (filename) LIST (data) 

FILF (filename) EDIT (data) I~ormat) I(data)(farmat}] ... 

FILE (filename) L1'ST (data) 

FILE {filename} PAGE ]L1NE{n)] 

PUT' FILE (filenamel{PAGEILlNE (n)]SKIP (n)} 

FILE (filename}{PAGEILINE (n)ISKIP (n}}EDIT (data}(format)(doto) (formot)] 

FILE {filename}{PAGEILINE (n)ISKIP en)} LIST {data} 

FILE {filename} INTO (variable) 

FILE (filename) SET {pointer} 

READ FILE {filename} INTO {variable} KEY {expression} 

FILE {filename} INTO (variable) KEYTO (variable) 

FILE (filename) 

REWRITE FILE (filename) FROM (variable) 

FILE (filename) FROM (variable) KEY (expression) 

LOCATE variable FILE (filename) SET (pointeI') 

WRITE 
FILE (filename) FROM {variable} 

FILE (filename) FROM (variable) KEYFROM (expression) 

CONVERSION 

SIZE 

CONDITIONS ENDFILE (filename) 

WHICH MAY ENDPAGE (filename) 
OCCUR 

KEY (filename) 

RECORD (filename) 

TRANSMIT (filename) 

Symbols used: M = Use of this statement is mandatory 

0= For I/o statements: Use of this statement format is optional 
For ON conditions: This condition may occur 

I-
::::> 

~ 
0 

0 

0 

0 

0 

0 

0 

0 

, = Note that GET/PUT STRING is not an I/o statement and may be used without 

Input/Output Statement Formats and ON-Conditions 

I-z 
~ 
0-

0 I-
z 

Z ~ 
~' ~ !5 ~ 
0 0 

0 0 

0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

0 0 

0 0 

0 

0 0 

CONSE-
CUTIVE 
BUFFERED 

~ 
w 

~ 
I-« 

~ ~ 
0 

~ 0 

M M M 

0 0 0 

0 0 

0 0 

0 

0 

0 

0 

0 0 

0 0 0 

0 0 0 

RECORD 

SEQUENTIAL DIRECT 

CONSECUTlVt 
REG- REG-

INDEXED 10NAL 10NAL 
UNBUFFERED SEQ (1) (3) 

S 
I- ~ 

8 ~ ~ 
0< ~ 0 
« 

~' 8' ..J 

~ 
0 ~ ~ 
0 ~ ~ 
Z 0 0 

~ 
I- 0 8 fa 
0 

8 ~ z Z 
0:: 0:: I-0:: ~ ~ ~ ~ ~ ~ ~ 

V'> 

u 0 ~ I-
0 0 < ::::> 

~ ~ w 0 0 
~ w I- w ~ w 

~ 
I- :; ;::::. ;::::. l- I- I- ::::> < l- I-

~ « ~ ::::> ::::> ::::> ~ « ::::> ~ ::::> ~ « 
~ ~ 0 u 

~ ~ ~ ~ 
0 

~ ~ 
0 

~ 5 0 

~ ~ ~ ~ ~ 0 0 0 ::::> 0 

M M M M M M M M M M M M 

MM 

M 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 o 0 0 0 

0 0 0 0 0 0 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 0 

0 o 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Appendix G. I/O Statement Format and ON-condition Checklist 

IN-
DEXED 
DIRECT 

w 
I- < ::::> 

~ 
0 

~ 

M M 

0 0 

0 0 

0 

0 

0 0 

0 0 

0 0 

127 



STREAM RECC RD 
CONSECUTIVE REGIONAL I INDEXED 

INPtJI' OUTPUT OUll'UT BUFFERED UNBUFFERED (1) (3) SEQUENTIAL DIRECT 
TYPE OF FILE NOT PRINT 

PRINT INPtJI' OtJl'PtJI' lJ'D. DASD ONLY 

"" ~ I:! 5 5 I!:! ~ V'I 

~ 5 5 ~ z V'I 0 
FILE eo:: 0 ~ ~ ~ g ~ ~ "" "" 5 5 5 ATTRIBUTES ~ ..... « w~ 05 5 It! 5 It! 5 l= 5 It! 
AND OPTIONS 0 ~ 0 ~ z ~ 0 w~ ~ 0 w ~ ~ w::l ~ 5 (5 5 « 5 .;( (5 

6 n. 6 n. n. 6 n.U 
~ n. 

~~ ~~ ~ ~ 
0 

~ 
0 

~ ~ C§ ~ ~ ~ ~ C§ ~2 ~:i C§ ~ C§ C§ ~ 0 ~ 0 ~ 0 !5 ~ 

filename [1-6 characters] S S S S S S S S S S S S S S S S S S S 5 S 5 5 S 5 S S S 5 S 5 

FILE D '0 I 0 0 0 0 0 0 0 0 0 D D 0 0 D 0 D 0 D D D D D D D D D D D D 

RECORD 5 S S S S S S S S S S S S S S S S S S· S S S 

STREAM 0 0 0 0 0 D 0 0 0 

INPUT 5 S S S S S S E E S S S S 

OtJl'PUT S S 5 D 0 0 S S 5 E E S S S 

UPDATE S S S S S S 

SEQUENTIAL D 0 0 D D 0 D 0 D D D D 0 0 

DIRECT S 5 S S S S S S 

KEYED S S S S S S S S S 5 5 

BACKWARDS S 0 

PRINT S S S 

BUFFERED D D D D D D 0 D U D D 

UNBUFFERED S S S 

ENVIRONMENT ( S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S 

MEDllJM ( S S S S 5 S S S S S S S S S S S S S S S S S S S S S S 5 5 S S 

SYSIPT, C C C C C C 

SYSPCH, C C C C C C 

SYSlST, C C C C C C C C C 

SYSnnn, [nnn = 000-222] C c C C C C C C C C C S C C C C S S S S S S S S S S S S S S s 

2501125201254011442) 5 C S C 

14031140411443(1445) C S c 
2400) 5 S 5 5 S S S 

2311/2314/2321) 5 S S S S S S* S* S S S S S S 5 S S S S 

U (maxblacksize) C C C C C C C C C 

F (block size} S S S S S S S S S S C C C S C C C C C C S 5 S 5 S 5 C C C C C 

F (block size, recsize) C C C C C C C C C C C 

V (maxblocksize) C C C C C 

BUFFERS (I) D D D D D D D D D D 0 0 D 0 D D D 

BUFFERS (2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CTLASA I CTL 360 0 

LEAVE 0 0 0 0 0 0 0 

NOLABEL 0 0 0 '0 0 0 S 

NOTAPEMK 0 0 0 

VERIFY 0 0 0 0 0 0 0 0 0 0 0 0 0 

CONSECUTIVE D 0 D D D D D 0 D D D 0 0 D D D D D D 0 

REGIONAL (I) S s S 

REGIONAL (3) S S S 

INDEXED S S S S S 

KEY LENGTH (n) [n = 9 - 255 for REGIONAL (3) S S S S 5 S S S 
n = 1 - 255 for INDEXED 

EXTENTNUMBER (n) •• 0 0 0 0 0 0 S S S S S 

I NOEXMULTIPLE 0 0 0 0 0 

HIGHINDEX ({23111231412321:) 0 0 0 0 0 

} [n=0-8 for 2311 ] 0 0 OFLTRACKS (n n = 0 _ 18 for all other DASDs 
KEYlOC (n) [1~ n 5. recsize-keylength +1] 8 B B B B 

INOEXAREA (n}[n<32K] 0 0 

ADOBUFF (n}[64+blockslze+keylengthS' n< 32K 0 

) S S S S S S S S S S S S S S S S S S S S S S S S S S 5 S S S S 

EXTERNAL D 0 0 D D D D D D D D D D D D D D D D D D D D D D D D D D D D 

S = Attribute or option must be specified. No entry is permitted whe .. a blank appears. 
D ~ Default attribute or option if not specified. * UNBlJFFERED Is not permitted for files residing on a 2321 Data Cell DrIve. 
0= Optional attribute or option. Specify if applicable. **For INDEXED files, EXTENTNUMBER (n) must be lpeclfTed [2 ~ n < 256J. 
C ~ Chaice must be made between the!8_options. For REGIONAL mes, EXTENTNLMBER en) Is optional [0< n < 256]. 
[ = Must be specified he .. or in the OPEN statement (but not in both places). 
6 ~ Optional for unblocked files. The default value for blocked files is n = 1. 

128 



DECLARED ATTRIBUTES DEFAULT ATTRIBUTES 

DECIMAL FIXED (5,0) 

DECIMAL FLOAT (6) 

BINARY FIXED (15) 

BINARY FLOAT (21) 

DECIMAL FLOAT (6) 

BINARY FLOAT (21) 

FIXED DECIMAL (5,0) 

FLOAT DECIMAL (6) 

None - initial character I - N BINARY FIXED (15) 

None - all others DECIMAL FLOAT (6) 

Appendix I. Default Attributes of Coded Arithmetic Variables 129 



Must not be specified for minor-structure 
names. 

Any embedded blanks in arithmetic constants 
will be deleted from toe number string and 
no error message will be given. However, 
embedded blanks in repetition-factor fields 
of PICTURE items are not deleted. 

The maximum number of arrays in a source 
module is 32. 

~rrays of structures are not implemented. 

The maximum attribute factorization depth 
is 8. 

Binary fixed-point numbers may have a 
.length between 1 and 31 bits. This also 
applies to all intermediate results in 
binary fixed-point form. 

Binary floating-faint data may have a 
length between 1 and 53 bits. 

Bit strings may have a length between 1 and 
64 bits. The default alignment attribute 
is not implemented; bit strings are aligned 
by the D-Compiler. A warning message is 
given if a bit string associated with the 
default alignment attribute occurs within a 
structure. 

Blanks embedded in arithmetic constants 
will be deleted (see also ~!i~b~~~i£ 
~2!'1~!::~!'1!::~)· 

Blanks between operators will also be 
deleted. E.g., X * * Yi will be inter­
preted as X**Y. Similarly, ·xxx· 'YYY' 
will be interpreted as 'XXX"YYY', result­
ing in a character-string value of XXX·YYY. 

130 

The size of any internal cr external pro­
gram block (exclusive of data) is 
restricted to 32K. The size of an external 
block plus all of its internal blocks 
(exclusive of data) must not exceed 64K. 

The depth of nested blocks is restricted 
to 3, The external procedure ccunts 'as 
depth 1. 

The total number of blocks in an extern­
al procedure (including the external Froce­
dure) must not exceed 63. 

The block length must be at least 1 byte 
(at least 18 bytes for magnetic tape files·) 
and must not exceed 32" 767 bytes. The 
device types and correspcnding maxirrurr 
block lengths are as follows: 

2540 80 
2540 (CTIASA., CTL360) 81 
1442 80 
1442 (CTlASA, CTl360 ) 81 
2520 80 
2520 (CTLASA, C'IL360) 81 
2501 80 
1403 (PRINT attribute or CTLAS~ or 133 

CTl360) 
1403 (no PR IN'T attr ibute) 132 
1404 (PRINT attribute or CTLASA or 133 

CTL360 ) 
1404 (no PRINT attribute) 132 
1443 (PRI NT attribute or CTLASA cr 145 

CTL360) 
1443 (no PRINr attribute) 144 
1445 (PRINT attribute or CTLASA cr 114 

CTL360) 
1445 (no PRINr attribute) 113 
2400 (no PRINT attribute) 32,767 
2400 (PRINT attribute) 145 
2311 (no key, no PRINr attribute) 3625 
2311 (PRINT attribute) 145 
2311 (including key) 3605 
2314 (no key, no PRINT attribute) 7294 
2314 (PRI NT attribute) 145 
2314 (including key) 7249 
2321 (no key, no PRINT attribute) 2000 
2321 (PRINT attribute) 145 
2321 (including key) 1984 

The block size option V rrust include the 
control words for the blocks and records. 

Only fixed-length unblocked records are 
permitted for STREAM files. 



The block size options V and U and the F 
option with the record size option are per­
mitted for magnetic tape files and disk 
fi les only. 

String arguments must not be used in the 
ROUND built-in function. 

Bit arguments must not be used with the 
UNSPE~ built-in function. 

~haracter strings may have a length between 
1 and 255. 

1. A GOTO statement which branches direct­
ly into an iterative DO loop will n2~ 
be diagnosed as an error by the D Com­
piler, although such a statement is not 
allowed in the language, and is flagged 
as illegal by the F Compiler. 

2. Certain statements are not recognized 
by the F Compiler (see Q!~lliI~~L 
!~~~~~fL_~~~ in this Appendix). 

3. The 1/0 ENVIRONMENT attributes are not 
recognized by the F Compiler. 

Arithmetic to bit string: 
The scale factor must be less than the 
precision. 

Bit string to arithmetic: 
rhe maximum length of the bit string to be 
converted is 31. 

Static - internal: 
The static storage for any external proce­
dure (excluding external data) must be less 
than 64K. 

Automatic: 
The automatic storage area per block rrust 
be less than 64K. 

Data aggregates: 
Each individual data aggregate must be less 
than 32K. 

Decimal fixed-point numbers nay have a 
length between 1 and 15 digits. This also 
applies to all intermediate results in 
decimal fixed-point forrr. 

Decimal floating-point numbers may have a 
length between 1 and 16 digits. 

The length of a DECLARE statenent is unre­
stricted; hOwever, the length of one 
declaration-unit appearing in a DECLARE 
statement is restricted to 

• 136 syntactical elements, if 10K bytes 
are available to the ccmpiler, and to 

• 2000 syntactical elements, if 46K bytes 
are available to the compiler. 

One declaration-unit is delimited by 

• the keyword DECLARE and a semicolon~ or 

• the keyword DECLARE and a first-level 
comma, or 

• two first-level commas, or 

• a first-level comma and a semicolon. 

Each parenthesis~ identifier~ comma, 
attribute" and constant is counted as one 
syntactical element. A character-string 
constant in an INI'IIAL-list counts as two 
syntactical elements. Consider the follow­
ing example: 

DECLARE (X FIXED, D FLCAT) STATIC, 
(A INI'IIAL (7)" B(10» EXTERNAL/, 
NAME CHARACTER (4) INITIAL 
(' ABCD') ; 

The above DECLARE statement consists of 
three declaration-units, the first of which 
contains 8, the second 13, and the third 10 
syntactical elements. 

A bit class variable must not be a DEFINED 
item. The attributes for the ~EFINED item 
and the base identifier will not be checked 
to determine whether they correspond to the 
rules for overlay defining. 

The maximum number of dimensions is 3. 
Each bound must be an unsigned integer less 
than 32,768. The dimensicn attribute may 
be factored. 

Appendix J. Restrictions to the PL/I Subset Language 131 



rhe result in the message expression in the 
DISPL~Y statement must not exceed 80 chara­
cters. If the REPLY option is used~ the 
message must be followed by the EOB (End of 
Block) ccndition by pressing the appropri­
ate keys. For an example see the SRL pub­
lication !g~_§Y~~~m~1&Q_~QQ~~_1QL_f~~£~1Q~~ 
al Characteristics, Form A24-3231, Altern-ate-Code-Key:-----

The number of iteration specifications in a 
DO nest must not exceed 50. 

The maximum depth of a nested set of DO 
statements is 12. For details on repeti­
tive specification see §~!~i~te~~~~. 

The names DYNDUMP, IJKEXHC, IJKTRON, IJK­
rROF, and OVERLAY are not recognized by the 
OS PL/I compiler. Consequently., the CALL 
statement referring to one of these names 
will result in an unresolved external 
reference from the linkage editor under the 
os PL/I compiler. Under the D-Ievel com­
piler, a warning message is issued for each 
statement using one of ~hese names. 

If a label follows the END statement, it 
must be the label of the nearest unmatched 
PROCEDURE, BEGIN, or DO statement. If a 
BEGIN or DO statement is preceded by rrore 
than one label, only the one closest to the 
statement identifier may be used with the 
END statement. 

The exponent subfield for decimal and 
binary floating-point constants is 
restricted to 3 digit positions for binary 
and 2 digits for decimal constants. 

f11~~_i~DQ~!!~!~gl 

For unbuffered files the RECORD condition 
will not be raised for records of incorrect 
length, because for the implementation of 
unbuffered files the system work files have 
been used (compiler enters the DTFSD para­
meter TYPEFLE=WORK in the DTF table). 

Replication factors: 
The replication factor in a FORMAT state­
ment may range between 1 and 255. 
rhe depth of nested replication factors in 
a format list of a FORMAT statement is 
lilf;ited to 2. 

132 

Format constants: 
The format constants must be such that w~ 
d~ s, and p are decimal integer censtants. 
Only p may be signed (positive or nega­
tive). The A~ X, LINE~ and COLUMN field 
widths must be less than 256. The B field 
width must be less than 65. 
The ~ and F field width must be less than 
33. This width includes the sign fer cut­
put fields even when they are fositive, 
i.e., written as a blank. A SKIP must be 
less than 4. 
The exponent subfield for infut data 
described by the E format Sfecificaticn is 
limited to 2 digit positions. 
The exponent subfield fer output data 
described by the E format specification is 
always written with 2 digit positions. 

The replication factor in a format list in 
GET or PUT statements may range between 1 
and 255. 

The depth of nested replication factors 
in a format list of GET cr PUT statements 
is restricted to 5. If the format list 
contains a remote format item that is ccn­
tained in a replication nest, it must not 
be at a depth greater than 2. 

The depth of a nested set of repetitive 
specifications as well as the total number 
of repetitive specifications in SET and PUT 
statements are restricted to 11. 

The l.ength of EXTERNAL identifiers must not 
exceed 6 characters. This alsc afflies tc 
names that are external by defaul t, such as 
file names, names of external frocedures, 
etc. 

The maximum number of IF statements in a 
nest is 100. 

The identifiers DATE, NULL, and TIME shculd 
always be declared explicitly. If they are 
~ot explicitly declared a warning message 
is issued, and the BUILTIN attribute is 
assumed. 

~~~!~~b_~~~E1f~!~ 

The length of the INITI~L-list for a
character-string array is restricted by the
following formula:

NC * LE + 14 * NF < NI

where

NC

LE

NF

the number of constants in the
INITIA.L-list

the length of one array element

the number of iteration factors

NI 1500 (if 10K are available to the
compiler)

18000 (if 46K are available to the
compiler)

Consider the following example:

DE2LA.RE CH(10) CHARACTER(250) INITIA.L
((3) (2) , A. ' , , B' " (2) 'C' , '0' " 'E', 'F',
'G','H');

~he INITIA.L-list in the above DECLARE
statement contains eight constants and one
iteration factor. String repetition fac­
tors (as in (2)'A' and (2) 'C') are not
counted. The length of one array element
is 250.

A.pplication of the above formula yields
a result of 2014 which is in error if NI =
1500.

rhe KEY c~ndition will not be raised for
REGIONA.L files if an attempt is made to add
a du~licate key by a WRITE statement.

The total numher of labels for all remote
FORMAT st~tements in an external procedure
must not exceed 127. This restriction is
independent of the size of the availahle
background program area.

The statement PUT LIST(NULL); - where NULL
is declared as tne tuilt-in function - will
not be diagnosed as an error, but will be
executed giving unpredictable output data.

Internal names:
rhe maximum number of names in all DECLA.RE
staterr.ents of a program block is 3048. rhe
maximum number of names given all its
attributes by default is 3048.

Note: The above restrictions are applic­
able only if the source program is compiled
on a 16K system. The restrictions are

, eased ccnsiderably with the availability of
additional core storage.

External names:
The number of external names must not

exceed 255. Names of external structures
count as two names. This restriction is
independent of the size cf the available
background program area.

Note: The number 255 includes the names of
all-library subroutines used by this
external procedure.

Tot al numter of names:
The total number of distinct internal and
external names in a source pr~gram must not
exceed 32,000. lhis restriction is inde­
pendent of the size of the available
background

While an I/C statement is active~ no other
I/O statement must be activated (GET and
PUT STRING are considered I/O statements in
this connection). Thus, in the following
example the second pu'r statement is net
allOwed since it is 'nested' in the first
one.

PUT FILE (X) EDIT (FUNCr(PAR1"PAR2, ••••)
(forma t list);

FUNCT: PROCEDURE (PARA1,PARA2" ••••)
RETURNS (CHAR(120»;

DCL Y CHAR (120);

PUT STRING (Y) ZOIT (data list) (format
list) ;

RETURN (Y);
END FUNCT;

If the condition of the ON statement is
CONVERSICK, ZNDFiLE, or KEY, the action
must not be the null statement. A. prefix
is not allowed in an CN statement.

When a key error occurs in a wRITE sta­
tement, the KEY condition is raised during
execution of the current staterrent or the
next I/O operation.

The standard system action for FIXEDO­
VERFLOW is comment and raise the ERROR
condition.

The default condition is the size specified
by the line count of the sy3~em.

Appendix J. Restrictions to the PL/I Subset Language 133

The number of distinct parameters of a pro­
cedure must not exceed 12. The same para­
meter appearing in a number of parameter
lists of the same procedure (one PROCEDURE
statement and several ENTRY statements"
each with parameter lists> is considered as
only one parameter.

Entry name parameters must be explicitly
declared with the ENTRY attribute.

~ PI2TURE specification must have at least
one PICTURE character other than M, VJ K~
or G. Arithmetic pictures must not have
more than 32 characters excluding Mi, V, K,
and G. PICTURE character strings must not
have more than 255 characters. A PICTURE
character precede~ by the replication fac­
tor k is considered as k PICTURE
characters.

Data declared with the PICTURE attribute
must not have more than 15 digit-characters
for numeric fixed-point data and 16 digit­
characters for the mantissa and two for the
exponent ~f numeric floating-point data.

Pictures with the fill character * pre­
ceded or followed by one of the characters
+, -, S, or $ cause these characters to be
replaced by * when tne variable has a value
of zero. Similarly, CR or DB are replaced
by **.

~he picture character B is implemented
as a conditional insertion character when
used in conjunction with a drifting
character.

The default ccndition for all procedures
excluding built-in functions and library
subroutines is IRREDUCIBLE. rhe default
condition for all data is ABNORMAL in the
DOS/TOS PL/I compiler.

The PL/I Subset language does not have
the attributes REDUCIBLE, IRREDUCIBLE,
NORMAL, and ABNORMAL. Therefore, the user
should familiarize himself with these items
if he wishes to run programs written in the
PL/I Subset language under OS control. For
details on these attributes see the SRL
pub Ii cati on !..~!=Lel!!~~!!!~1§'Q.L_2E~!:~!:'!!:!9_ey!!:
:!:;~~.L_~~~!.i[1_!:an9!:!~.9~_g~!~!:~!!~~_!1~!!~~!..,
Form G228-8201.

The OPTIONS attribute permits an options
list, the form of which is (MAIN [,

134

ONSYSLCG). The MAIN option specifies this
procedure to be the initiaL procedure.. The
ONSYStCG option specifies that all cut put
as a result of action taken due to an ON
condition is to be printed on the device
assigned to SYSLCG. If bo.th options are
used, they must appear in the order given
above. Procedures declared with the
OPTIONS attribute cannot be called frcm
other procedures.

If a qualified name i8 truncated on the
right, the remaining part of the gualified
name must be unique. For example, in the
structure

DECLARE 1 A~R"
2 Al,

3 Bl,
3 B2,

4 D1,
4 D2,

2 A2,
3 B1,

4 D3,
4 D4,

3 B3;

the qualifica tion ATR .. Bl. D3 is not allowed
since ATR.B1 is not unique. The correct
qualification would be ATR.A2.B1.D3. Ambi­
guous names may not be flagged by the com­
piler, and the code produced for sucn ambi­
guous references is unpredictanle.

A repetition factor roust be an unsigned
decimal integer. Its length iscestr icted
to three digits. Its value must not exceed
255. The two examples belcw are in errcr:

DECLARE A FICTURE '(0010)X';
DECLARE B PICTURE' {260>X';

No embedded blanks are allowed in the
repetition factor. E.g. DECLARE C PICTURE
, (1 2)9'; is invalid. However, preceding
or following blanks are allowed~ as e.g. in
DECLARE D PICTURE'(4)X';

Declaration of a scale factcr is ~ermitted
only with decimal fixed-point data. It may
range between 0 and 15 and nust be
uns igned.

The total number of identifiers, ccnstants,
and delimiters (excluding insignificant

blanks and comments) containej in a state­
ment must not exceed 230.

The number of different identifiers and
constants (excluding constants not con­
tained in an expression) is limited to 90
for each statement.

~2i§: The above restrictions are applic­
able only if the program is compiled on a
16K system. Each adjitional ~K available
to the compiler allows an equivalent
increase.

The maximum logical depth of a structure is
8. The maximum level number is 255. The
nurrber of names in a structure is
restricted to 62, if 10K are available to
the compiler (766 if 46K are available).
This includes the major-structure name~
minor-structure name(s). and structure­
element names.

Any embedded blanks in level numbers will
be deleted from the number string during

compilation and no error message will be
given. Level numbers rray only be factored
for elements of a structure, i.e., if fac­
torizatIon-occurs in a structure declara­
tion, the corresponding items are reco­
gnized a s structure e lerrents.

For example, in the declarati~n

DCL 1 A,
2 (B,e ,D) •
3(E,F,G);

B, C, D, E, F and G will all be assumed to
be elements of structure A~ and will be
assigned the logical level 2.

In order to cbtain the structure

DCI 1 A I
2 B,
2 e,
2 0,

3 E"
3 F,
3 G;

the dec lara tion of D must be rerrioved from
the fact ariz ation trackets.

Appendix J. Restrictions to the FL/I Subset Language 135

(Where more than one page reference is given, rr.ajor reference appears first.)

ABNORMAL attribute •••••••••••••••••••••
Access methods ••••• ' •••••••••••••••••••••
AC~ION statement ••••••••••••••••••••••••

134
30
17

ALIGNED •••••••••••••••••••••••••••••••• 130
Alignment requirements •••.•••••••••••••• 62
Appendage •••••••••••••••••• ~ •••••••••••• 69
Arguments, passing of ••••••••••••••••••• 41
Arithwetic constants ••••••••••••••••••• 130
Arithmetic data ••••••••••••••••••••••••• 55
Array bounds •••••••••••••••••••••••••••• 59
Arrays •••••••••••.••••••••••••••••••••• 130
Arrays of structures •••••••••••••.•• 46,,130
Assembler modules ••••••••••••••••••••••• 41
Assembler modules calling PL/I •••••••.•• 41
Assembler modules, linking of........... 39
ASSGN statement ••••••••••••••••••••••••• 12
Attribute factorization •••••••••••• ~ •••
Attributes, redefining •••••••••••••••.••
Autolink feature •••••• ~ •••••••••••••••••

130
48
18

AU'IOMATIC da ta storage.................. 5'8
Autorratic storage ••••••••••••••••••••••
A U'IOMA 'IIC var iables ••••••••.•••••..••••••

131
41

Background partition ••••••••••••••••• 10,17
Background 'processing.. • • • • • • • •• • • • • • • •• 10
BACKWARDS attribute •••••••••••••••••• ~ •• 35
BACKWARDS files ••••••••••••••.•••••••••• 34
BASED attribute ••••••••••••••••••••••••• 47
BASED data storage....................... 58
Based ~tructures ••••••••.••••••• '
Based variables •••••••••••••••.•••••••••
Based 'variables with structures •••••••••
Binary

46
47
47

fixed and float variatles ••••••••••••• 62
fixed data ••• ~ ••••••••••••••••••.• 55,130
float data •••••••••••••••••••••••• 56,,130

Bit str in gs •.•••••••••••••• '. • • • •• 130,57, 62
Blanks ••••••••••••••••••••••••••••••••• 130
Block (of data) •••••••••••••.••••••••••• 24
Blocks Ccf program) •••••••••••••••••••• 130
Block length ,. • • • • . • • • • •• 130
Block prclogue •••••••••••••••••••••••••• 76
Block size •••••••••••••••••••••••••••••• 29
Block table listing ••••••••••••••••••••• 87
Blocked records............................ 29
Blocking •••••••••••••••••••••••••••••••• 46
Blocksize option •••••••••••••••••••••••
Boundary requirements •••••••••••••••••••
Bounds of an array~ ••••••.•••••••.••••••
Buffer (length)
BUFFERED attribute ••••••••••••••••••••••
Buffers •••••••••••••••••••••••••••••••••
Buffering •••••••••••••••••••••••••••••••

130
60
59
30
30
67
30

Buffering attributes •••••••••••••••••••• 30
Buil t- in functions .,. • • • • • • •• • • • •• 95,131,65

136

CALL statement ..•••••••••••••••••••.. 39,41
calling Assembler modules ••••••••••••••• 39
CATAL option (OPTICN stmnt) ••••••••••••• 13
catalog control statements •••••••••••••• 21
Cat aloging ••• ' •••••••••••• ,. • • • • • • • • • • • • •• 21

foreground programs ••••••••••••••.•••• 23
into core-image litrary •••••••••••• I." 21
into relocatable library •••••••••••••• 21
label informat ion •••••••••••••••••• '. •• 36
relocatable modules ••••••••••••••••••• 18

CATALR statement •••••••••••••••••••••••• 21
Chain-back word .•••••••••••••••.•••••••• 53
Chaining of DSA~s ••••••••••••••••••••••• 54
Character strings ••.•••••••.•••••••• 131~57
CHARACTER variatles ••••••••••••••••••••• 62
Checkpointing ••.•••••••••••••••••••••••• 42
CLOSE statement (PI/I) •••••••••••••••••• 31
CNTRL macro •.•.•••••••••••••••••••••••••
COBOL subroutines •••••••••••••••••••••••
Cede generation •••••••••••.•••••••••••••
Coded arithmetic data •••••••••••••••••••
Coded arithmetic variatles, default
attributes of •••••••••••••••••••••••••

42
39
78
55

129
Comrrents statement •••••••••••••••••••••• 15
Compatibility ••••••••••••••••••••••• 131~65
compilaticn requirements ••••••••••••••••• 5
compilation under DOS/'IOS ••••••••••••••• 16
Ccmpile and catalog •••••••••••••••••• 22,15
compile and link •••••••••••••••••••••••• 21
Compile-time diagnostics •••••••••••• 106~87
compile-time options •••••••••••••• 13.14~15
CONSECUTIVE files ••••••••••••••••••••••• 24
Constants, representation of .••••••••••• " 59
Control field, ••.•.••• ' '., •••••••• 29
Control routine, PL/I ••••••••••••••••••• 77
CONVERSICK condition •••••••••••••••• 133,35
Conversion •.•••••••••••••••••••••••• 45,131

possible combinations cf •••••••••••••• 94
requirements. . • • • • • • • • • • • • • • • ••• • • • • •.• 65
subroutines •••••••••••••••••••••••• 92,65

core-image litrary •••••••••••••••• 10,12,21
correspondence defining ••••••••••••••••• 47
Cross-reference listing ••••.•••••••••••• 85
Cylinder. , ••••••• ' •••• ' ' •••• ' ••••••• I. 28
Cylinder index •••••••••••••••••••••••••• 26

DA (DIEI statement) •••••••••••••••••••••
DASD file label for~ats ••••••••••••••••
DASD latel information ... I." •••••••••••••
Data

aggregates ' ••••. ' ••••••
area
descriptor
files •••••••••••••••••••••••••••••••••
items •••••••••••••••••••••••••••••••••

32
101
105

131
32
55
24
55

storage ••.••.•••••••••••••••••••••••• 131
storage mapping ••••••••••••••••••••••• 60
storage requirements •••••••••••••.•••• 55
conversion, possitle combinations ••••• 94

DA~E •••••••••••••••••••••••••.•••.••.•• 132
Decirral

data, precision of •••••.•••••••••••••• 48
fixed and flcat variatles ••••••••••••• 62
fixed data •••••••••••••••••••••.•• 131,56
flcat data •••••••••••••••••••••••• 131,56

DECLARE statement •••••••••••.•••••••••• 131
DEFINED attribute ••••••••••••••••.•• 47,131
DELETe statement •••••••••••••••••••••••• 21
Deleting frarr libraries •••••.••••••••.•• 21
DELE~R statement •••••••••••••.•••••••••• 22
Device s~ecification for tapes •••••••••• 12
Diagnostic messages

ccrr.~ile-tirre •••••••••••••••••••••• 106,87
object-time ••••••••••••••••.•••••••••• 88

Dirrensicn attribute •••••••••••••••••••• 131
Direct access method •••••••••.••.•••. 24,30
Disk and Ta~e O~erating Systems •••••••••• 9
Disk files ••••••••••••••.•••.•••..•••••• 31
Disk file ~rccessing •••••••••••••••••••• 35
Disk labels ••••••••••••••••••••••••••••• 31
Disk organizaticn ••••••••••••••••.•••••• 28
DISPLAY statement ••••••••••••••••••. 132,48
Displaying intermediate results

(DYNDUMP) ••••••••• '.. • • • • • • • • • • • • • • • • • . .• 53
DLAB statement •••••••••••••••••••.••.••• 32
DLEL statement 32~31
DO loops

optimizaticn of ••••.•••.•••••••••••••• 49
DO statement •••••••••••••.•••••.•.••••• 132
DSA •••••••••.•••••••••• , •••••••• 39,40,,53,75
DSA chaining............................... 54
D~F ~rogram ••.•••••••••••••••••••.•••••• 67
DTF table ••••••••••••.•••••••••••. 42,67,53
D~FCD •••••••••••••••••••••••••••••••• 68,67
DTFDA ••••••••••••••••••••••••••••.••• 70,69
D~F:CI .••••••.•••••••••• '., •••••••••••••••• 71
DTFIS............ .•••••.••••••. ••• ••••••• 70
D!FM! ••••••••••••••••••••••••.•••.••• 69~68
DT FPR ••••••••••••••••••••.•••.•.••••• ,; .. •• 68
D!FSD ••••••••.•••••••••••.••••••••••. 69,68
Dump interpretation..................... 53
Dynamic storage area (DSA) •••.. 39,40,53,75
DYN:CUMP routine ••••••••••.•••••••••• 53,132

E-forrrat output ••••••••••••••.•••••••••• 49
Edit-directed data transmission ••.••.••• 49
END statement (PL/I) •.•••••••.•••.••••. 132
ENDFILE condition .•••••••.••..••. 133,35,20
End-cf-data-file statement ••••••••••• 15,22
End-of-job statement •••••••••••••••••••• 15
EN:CPAGE with rrultiple-line PUT •••••••••• 50
Entry name parameter •.•••.•••.•••.••••• 134
Entry ~cints ••••••••••••••••..•••.•••.•• 19
ENTRY statement •••••••• ' •••••..••...••.•• 19
Error mess ages

compile-time ' ••••••••••.•• 106, 87
cbject-time ••••••••••••.•••••••••••••• 88

Error statistics •••••••••••••••••••••••• 65
EXEC statement ••••••.••••.•••••••.•••••• 12
Execution requirements •••••••••••.••••••• 6
EXHIBIT CHANGED •••••.••••••••.•••.•••••• 51
Expiration date ••••••••••••••••••. 32,33,31
Exponent subfield ••••••••.•••••••.••••• 132
Extent •••••••••••••••••••••••••••••••••• 28
EXTENT statement •••••••••.•••••••.••• 28,32
External

attribute •••••••••••••••••••••••••. 45,80

data ••••.•.•.••••••••••••••••••••••••• 42
data storage •.•••••••••••••••••••••••• 58
procedure •••.•••••••.••••••••••••••••• 19
structures •••.••••••••••••••••••••••• 133
syrrbcl tatle listing •••••••••••••••••• 86

F-fcrmat output •••.•••••.•• , •••••••••••••• 49

Factorization of attributes ••••• ~ ••.••• 130
File ••••••••••..•••.••.••••••••••••••••• 24

appendage ••••••••• ' •••••••• ' •••••••• '. ••• 42
arguments .•••••••••••••••••••••••••••• 42
attritutes ••••..•.••••• ' ••.•• ,. , ••••. 128,,30
declaration checklist •••••••••••••••• 128
declarations •••••••••••••..••.••••• , 67

10 32~33
label formats •••.•••••••••••••••••••• 101
labels 31
module ••..•••••••••••••••••••••••••••• 21
organization •••.••.••••••••••••••••••• 24
parameters •••••.•••••.••••••••••••••.• 42
sequence number ..••••••••••••••••••••• 33
serial numter 33
unbuffered •••••.••••••••.• ' •• ' '. 132

Fixed blooked records '. • • .. •• 29
Fixed unblocked records ••••••••••••••••• 29
FIXEDOVERFICW , •••••••• ' ••• 133
Floating-point registers •••••••••.•••••• 39
Foreground part it ion. • •• • • • • • • • • • • • .• 17, 10
Foreground prograrr ••••••••••••••••••••.• 10
Foreground s ave area..................... 17
Format constants ••••••••••••••••••••••• 132
FORMAT statement •••••••••••.••••••••••• 132
FORTRAN subroutines ••••••••••••••••••••• 39
Function reference~ 41

Generated catalog control statements •••• 22
Generation number ••.•••••••••••••••••••• 33
GET statement ••.••••••••.• , •• , .•• ,. ' ••• , •.••• 132

Hardware interrupts •••.••••••••••••••••• 89
Header label ••..••••••.••••• , ••••••.• _ •• , •• 31
Housekeeping errors .•••••••••••••••••••• 89

Identifiers .••..••..•••••••.••••.••••••.• 132
IF nesting ••••••••••••••••••••••••••••• 132
IJKEXHC •••••••..•••••••••••••••••••• 51,132
IJKSZCI 43
IJKSZCN .•••.•••.••••••.••••••••••••••••• 41
IJKTROF •••••••.•••.••••••••.•••••••. 51,132
IJKTRON •••..••...••••••••••••••••••• 51,132
IJKZI maoro instruction •••••••••••••• 48,49
IJKZWSI •••.•.••••••.•••••••••••••••••••• 43
Implicit declaration 132
Irr~lied sutroutine calls •••••••••••.• 95~65
Including

by com~ilation •••••••••••••••••••••••• 18
from the relocatable library •••••••••• 18
object card decks .•••••••••••••••.•••• 18
object modules •••.••••••••••.•••••••• ~ 18

Independent overflow area 27
Inde~ ••••••..•..•.•••••••••.•••••••••••. 26
Index area •.••.••••••••••••.••••••••. 26,32
indexed files ••••••.•••••••••••••••••••. 26
Indexed-sequential

Index 137

file, creation of ••••••••••••••••••••• 26
fi les. • .. • • ... 30
organization •••••••••••••••••••••••••• 26

INI~IAL attritute 132
Initial Program Loader ••••••••••••••••••• 9
I/O device assignment ••••••••••••••••••• 10

listing of ••••••• _ •••••••••••••••••••• 11
I/O errcrs 90
I/O processing •••••••••••••••••••••••••• 30
I/O statement format checklist ••••••••. 127
I/O storage requirements •••••••••••••••• 67
I/O subroutines •••••••• 4 •••••••••••••••• 99
IOCS logic mcdule ••••••••••••••••••••••• 71
IPL, •••••••••••••••••• '. • • • • • • • • • • • • • • • • • •• 9
IRREDUCIELE attribute 134
ISC {DLBL statement) •••••••••••••••••••• 32
ISE {DLEL staterrent) •••••••••••••••••••• 32
Iteration specification {DO nest) •••••• 132

Job. • • • • • • • • • • • • • • • • • • • .. • • • • • • • • • • • .. • • ... 11
Job Centrol ~rogram _ 11
Job Control statements 11
JOB statement •••••• ' 13
Job ste~ 11

Key •••••••••••••••••••• , ••••••••• _ • • •• 24" 3 0
KEY condition •••••••••••••••••••••••••• 133
KEY opticn ••••••••••••••••••••••••••• 26,28
KEYFROM option ••..••••••••••••••••••• 26,28
KEYLENGTH option 26,28
KEYTO option 28

Lab el •••• ' •••••••••••••••••••••••• 31,133,24
area •••••••••••••••••• '
constants (storage)
contrcl staterrents ••••••••••••••••••••
data•....................... ,.
{END statement) ••••••••••••••••••••••
information, cataloging of ••••••••••••
precessing

35
58
31
58

132
36
24

-program communication •••••••••••••••• 36
statement exarr~les ••••••••••••••••• 33,34
variables •••••••••••••••••••••••••. 62,58

Labeled files, link-editing ••••••••••••• 36
Labeled tape files ••••••••••••••••••• 31,35
LEL~YP staterrent •••••••••••••••••••••••• 35
Lea f • • • • • • • • • • • • • • • • • • ' ••••• ,. • • • • • • • • • • • '. 8 0
LEAVE o~tion •••••••••••••••••••••••••••• 34
Level number (structures) •••••••••••••• 135
Librarian ••••••••••••••••••••••••••••• 9,10

control statements •••••••••••••• 21,22,23
Library rraintenance {TOS) ••••••••••••••• 23

maintenance runs ••• , ••••••••••••••••••• 22
standard save area {ISSA) ••••••••••••• 53
subroutines 7

LINK option (OPTION stmnt) •••••••••••••• 13
Linkage Editor ••••••••••••••••••••••••••• 9

control statements ••••••••••••••••. 17,21
~rogram 16
storage map •••••••••••••••••••••••• 53,17

Link-editing
foreground programs 17
labeled files ••••••••••••••••••••••••• 35
multiphase foreground programs •••••••• 83
overlays •••••••••••••••••••••••••••••• 82

Linking Assembler modules •••••••••••• 39,41
Linking conventions ••••••••••••••••••••• 39
LIOCS table ••••••••••••••••••••••••••••• 36

138

List-directed data transmission ,. • •• •• 49
List I/O ••••••••••••••••••••••••••••••• 133
Listing of I/C assignments •••••••••••••• 13
Listings~ program ••••••••••••••••••••••• 85
LISTIO statement •••••••••••••••••••••••• 13
Locating execution-time errors •••••••••• 53
LODIS macro ••••••••••••••••••••••••••••• 34
Legical de~th ••••••••••••••••••••••••••• 61
Logical device address ••••••••••••••. 10~11
Logical units ••••••••••••••••••••••••••• 12

Machine features ' •••••• '. '. • • • • •• •• 6
Maehine requirements ••••••••••••••••••••• 6
Magnetic tape, positioning of ••••••••••• 35
MAIN option ••••..•••••.•••••• 4 •••••• 134,41
MA I N pro c e du r e. • • • • • • .. • • ,. '. • • .. • • • .. • • • • • •• 41
Ma,pping •• ' •••••••• ' ' ••••••••••••••••••• 61
Master index •••••••••••• ' •• ' •• ' ••• ,. • • • • • ••• 27
Modu 1 e names •••••••• ' ••••• ' ••• ' •••••••• ,. • •• 21
M~C statement ••••••••••••••••••••• 34,35,13
Multi-extent file ••••••••••••••••••••••• 32
Multi-file volume ••••••••••••••••••••••• 34
Multiprogramming •••••••••••••••••••••••• 10
Multi-reel file ••••••••••••••••••••••••• 24
Multi-volume file ••••••••••••••••••••••• 33

Names •••••••••••••••••••••••••••••••••• 133
Nested blocks •••••••••••••••••••••••••• 130
Nested I/C statements •••••••••••••••.••
NEWVOL statement ••••••••••••••••••••••••

133
23

NOAUTO •• ' ••••• '. ' •• '. , ••••••••• , ,. • • • •• 18
NORMAL attribute ••••••••••••••••••••••• 134
Normaliz ed data. ' ••••••••••••••••• '. • • • • •• 46
NULL ' •• 'O. ' ' ••••••• ' •••• 132
Numeric data (storage) •••••••••••••••••• 57
Numeric fields in edit-directed I/O ••• , •• 46

Object code listing 87
01:j ect modul e •.• ,. ' •••• , ••••••••• ' •••• ' ••••• '.. 7
Object-time diagnostics ••••••••••••••••• 88
01:ject-tiree storage layout ••••••••••••• 7~9
Offset table listing ••••• 4 ••••••••••• 86~53
ON-conditions •.•••••••••••••••••••• 127,133
ON-condition comments ••••••••••••••••••• 88
ON statement ••••••••••••••••••••••••••• 133
ONSYSLOG option •••••••••••••••••••••••• 134
OPEN statement '.. • •• ••• 31
Optimization •••••••••••••••••••••••••••• 15
OPTICN statement •••••••••••••••••• 13,10~14
OPTIONS attribute •••••••••••••••••••••• 134
O~tions list ••.•••.•••••••••••••••••••• 134
Overflow area ••••••••••••••••••••••••••• 27

independent •••••••••••••••••••••••• 27,32
Overhead •••••••••••••••••••••••••••••• 74~7
overlap, seek time •••••••••••••••••••••• 42
Overlapping I/O operations •••••••••••••• 30
Overlay •••••••••••••••••••••••• 80,46,132,7

defining •••••••••••••••••••••••••••••• 47
example ••••••••••••••••••••••••••••••• 82
ru 1 es for us in g ••• , ' •• ,.. 80

P-forma t items ••••••• ' ••• ' •••••••••••• ' •••• 46
Padding ••••••••••••••••••••••••••••• ~ ••• 60
PAGESIZE option •••••••••••••••••••••••• 133
Pararreters ••••••••••••••••••••••••••••• 134
Partition, foreground/backgreund •••••••• 10
PAUSE statement ••••••••••••••••••• 4 • ' ••• ,. 13

Phase ••••••••••••••••••••••••••••••••• 80,7
loading ••••••••••••••••••••••••••••••• 81
names ••••••••••••••••••••••••••.••. 21,80

PHASE statement •••••••••••••••••••••• 17,82
Physical device address ••••••••••••••••• 10
PICTURE attribute •••••••••••••.•••.••.• 134

data ••••••••••••••••••••••••••••••••. 134
specifications •••••••••••••••••••••••• 50

Picture-specified
character strings ••••••••••••••.•••••• 57
data (storage) ••••••••••.••••••••••••• 57

PICTURE variables ••••••••••••••••••••••• 62
Pictures, use with stream-oriented

data transmission •••••••••••••••••••••• 49
PLII control routine •••••••••••••.•••••• 77
Pointer variables •••••••••••••••••••. 58,62

storage. • • • • • • • • • • • • • •• • • • •• • • • . • • • • •• 58
Positioning of rragnetic tapes ••••••••••• 35
Precision of arithmetic constants ••••••• 59
Precisicn of decimal data ••••••••••••.•• 48
Preformatting REGIONAl files ••••••.•. 25,26
Prirre data area ••••••••••••••••••••••••• 26
Private relocatable library •••••••••• 18,23
Procedure

contained in relocatable library •••••• 84
default ·condition ••••••.••••••••••••. 134
module ••••••••••••..•••••• & ••••••••• 7,21

PRCCEDURE staterrent •••.•••••••••••••••. 134
PROCESS statement •••••••••••••.••••••••• 15
Program expansicn •••••••••.••••••••••••• 45
Program segmentation •••••••••••••••••••• 45
Prcgrarr storage requirements •••••••••••• 79
Programme~ logical units •••••••••• ~ ••••• 12
Pseudo variables ••••••.••.••••••••••• 65~95
PUT statement •••••••••••••••••••••••••• 134

Qualified names •••••••••••••••••••.•••• 134

Re-assigning logical units •••••••.•••••• 12
Record •••••••••••••••••••••••••••••••••• 24

types. • • • • • • • • • • • • • • • • • • • .• • • • • • . • • • • •• 29
Redefinition of attributes •••••••••••••• 48
REDUCIBLE attribute ••••••••••••••.••••• 134
REGIONAL files ••••••••••••••••••••••• 24,25
Register usage for linking •••••••••••••• 39
Relative track number ••••••••••••••••••• 33
Relocatable library •••••••••••••••••. 10,21

rrivate ••••••••••••••••••••••••••••••• 18
Remote fcrmat item •••••••••••.••••••••• 132
Remote FORMA~ statement •••••••••••••••. 132
Refetiticn factor •••••••••••••••••••••. 134
Repetitive specification ••••••••••••••• 132
Reflication factor ••••••••••••••••••••• 132
~EPLY option •••••••••••••••••••••••• 132,48
RESET state~ent ••••••••••••••••••••••••• 13
Restarting •••••••••••••••••••••••••••••• 42
Restrictions on PL/I language ••••••••• ~ 130
Retention period ••••••••••••••••••••. 32,33
RETURN rracro •••••••••••••••••••••.•••••• 40
Returning registers •••••••.••••••••••••• 40
Rewind oFeration •••••••••••••••••••••••• 35
Root. • • • • • • • • • • • • • • • . • • • • • • • • • .• • • • • • • •• 80
Rounding on output •••••••••••••••••••••• 49
RSTRT staterrent ••••••••••••••••••••••••• 42

Save area •••••.••.•••••••••••••••••••• ~ •• 41
SAVE macro ••••• ' •••••••••••••••••••••••.•• 40
Savi ng registers ••••••• ' •• ' ••••••••• '. • • ••• 39

Scale factor ••••••••••••••••••••••••••• 134
S1: (CLBL statement) •••••••••• , ••.••••.•••• 32
secondary entry points ••••••.••••••••••• 84
Seek time overlap ••••••••••••••••••••••• 42
segmentation of programs •••••••••••.•••• 45
self-relocating programs.~ •••••••••••••• 18
Sequence number .•••••••••••••••••••••••• 32
Sequential access method ••••••••••••• 24,30
serial number ••••••••••••••••••••••••••• 32
SIZE over flow •••••••• ' ,. '. • • • • • 48
SKIP 132
Scurce

module ••.•••••••••••••••••••••••••••••• 7
program listing ••••••••••••••••••••••• 85
statement library ••••••••••••••••••••• 10
te~t and object prograrr •••••••••.••••• 78

Split-cylinder technique •••••••••••••••• 28
Split cylinder track 33
Standard IIC assignments •••••••••••.•••• 11
S ta t em en t s . • • .. • • • • . • ,. • • • .• • • • • • • • • • • • .. •• 13 4
Statement format •••• , ••.••••••••• , •••• 45,134
Statement offset listing •••••••••••••••• 87
STATIC data storage. ' •••• ,. , ,. 58
Static storage •••••••••••••••••••••• ~ •• 131
Static storage area .•••••••••••••••••••• 74
Storage layout •••••••••••••••••••••.••• 7.9
Storage mapping

arrays •••.•••.••••••••••••••••••••••••
e leroent dat a •••••••••• ' ' ••••• ' ••••

60
60

structures •••••••••••••••••••••••••••• 61
Storage requirements ••••••••••••••••• 55,79
STREAM files ••••••• ~ ••.•••••••••••••••• 130
String data, storage of •• ' •••• , •••.•••• ' 57
Stringency level ••••••••••••••••••••• 61,62
St ru ct u r e. • • • • • • • • • • • • • • '. • • • • • • • .. • • ,. .. • •• 4 7

declaration •••••••••••••••••••••••••• 135
external ••••.•••••••••••••••••••••••• 133
level numbers 135
maFPing •••••••••••••••••••••••••••• 61,47
mapping rules ••••••••••••••••••••••••• 62
maximum depth ,. '. • • •• 135
maximum level nuRber •••••.••••••••••• 135

STXIT macro ••••••••••••••••••••••••••••• 43
Subrout,ine calls, irrplied •••••••• ' •• '.. 95,,65
Subrcutine storage requirements, ••••••••• 65
Subroutines, called by 1/0

statements •••••••• '.,. ••• ' •••••• ' ' •••• 66
sUFervisor ... ' ••• ' ••.•••. ' •••••••.•• ' '.... •• 9
Symbol table listing •••••••••••••••••••• 85
Symbolic unit •..•••••••••••••••••••• ~ ••• 32
SySIN ••••••••••••••••••••••••••••• 12.31~73

SYSIPT .• Ie ' •••••••••••••• ~ ••••••••• ' ••••••• 12
10 12 SYSLNK ••••••••.••••.••.••••••••••••••

assignments for ••••••••••••••••••••••• 17
SYSLOG •••••.••• ; ••••••••••••••••••••••••
SySIST
SYSPCH •••••..•••••••••••••••••••••••••••

12
12
12

SySPRINT ••••••••••••••••••••••••••••• 31~73
SySRCR ••••••••••••• ~ ••••••••• ~ •••••••••• 12
SySRES _ 12
SySRLE ••••••••••.•••••••••••••••••••• 10~18
SYS 001- 003 ••.•••. ~ ' •••••• '. ' '. • • • •• 12
System control programs •••••••••••••• ~ ••• 9
System logical units •••••••••••••••••••• 12
system service programs •• , ••••• , ••••• , ••••• 10
Sy~tem units •••••••••••••••••••••••• ~ ••• 73

Index 139

Tab ccntrol tatle ••••••••••••••••••••••• 48
Tab positions ••••••••••••••••••••••••••• 48
TaFe

drive control operation ••••••••••••••• 34
file Frocessing ••••••••••••••••••••••• 35
labels •••••••••••••••••••••••••••••••• 31

TIME ••••••••••••••• ~ ••••••••••••••••••• 132
TLEL statement ••••••••••••••••••••••• 32,33
TPLAB staterrent ••••••••••••••••••••••••• 32
TRACING ••••••••••••••••••••••••••••••••• 51
Track •••••••••••••••.••••••••••••••••••• 28

index
number of •••••••••••••••••••••••••••••

Trailer label •••••••••••••••••••••••••••
Tree structure ••••••••••••••••••••••••••

26
33
31
81

ueL statement ••••••••••••••••••••••••••• 26
UNALIGNE~ •••••••••••••••••••••••••••••• 130
UNBUFFERED attribute ••••••••••• ~ •••••••• 30
Undefined reccrds ••••••••••••••••••••••• 30
Unlabeled files •••••••• ~ •••••••••••••••• 28

140

Unlabeled tape files •••••••••••••••••••• 35
UNSPEC •••••••••••••••••••••••••••••••••• 46
UPSI byte •••••••••••••••••••••••••••• 14,21
UPSI statement •.•••• , ••.•••••••••• ,.' ••• 14,,21
User Program Switch Indicator ••••••••••• 14

v 0 pt i on • '. • •• • • • '. • • • '. • • • .• • '. • • ,. • • • • • •.• •• 13 0
Variable blocked records •••••••••••••••• 29
Variable untlocked records •••••••••••••• 30
Version n~mber ••••••••••••••••••••••••••
VOL statement, ••••••••••• ' •• '. ' •• ,
Volume •••••.••••••••••••••••••••••••••••

33
32
31

latel ••••••••••••••••••••••••••••••••• 31
serial number •••••••••••••••••••••• 31~32
sequence number ••••••••••••••••••••••• 33
Table of Contents (VTOC) ••••••••••• 31,36

VTOC ••••••••••••••••••••••••••••••••• 31,36

XTENT statement ••••••••••••••••••••••••• 32

READERIS COMMENT FORM

IBM Systern/360
005/105 PI/I
Programmer's Guide

• How did you use this publication?

As a reference source 0
As a classroom text 0
As a self-study text 0

• Based on your own experience, rate this publication

As a reference source:

As a text:

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

Very
Poor

Very
Poor

• What is your occupation?

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

• Thank you for your cooperation. No postage necessary if mailed. in the U.S.A.

GC24-900S-S

GC24-9005-5

YOUR COMMENTS, PLEASE ••.

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold Fold

(")
C
-I
l>
r
o
Z
C)

-I
I
en
r
Z
m

•••••••••••••••• e· •• .

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains. N. Y. 10601

Attention: D~partment 813 BP

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS. N. Y.

..

Fold

International Busine •• Machines Corporation
Data Pracassing Division
112 East Past Road, White Plains, N.Y. 10601
[USA Only)

IBM World Trade Carparatian
.821 United Natiana Plaza, NawYark, NawYark 10017
I International !

Fold

GC24-9OO5-5

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

G)
c
f

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	replyA
	replyB
	xBack

