
Systems Reference Library

IBM System/360

Disk and Tape Operating Systems
FORTRAN IV Programmer's Guide

File Number S360-25
Form C24-5038-0

This pUblication describes the procedures for compiling
and executing FORTRAN IV programs under control of
the Disk Operating System or Tape Operating System.
Its purpose is to guide the programmer with examples
and techniques of the FORTRAN IV language. It also
exposes the user to the components of the Control
Program and facilities of the System/360 Disk and
Tape Operating Systems.

DOS
TOS

PREFACE

This publication is intended for FORTRAN
programmers and for systems programmers who
require information about the FORTRAN com­
piler that is contained in the Disk Operat­
ing System or the Tape Operating System.
The presentation of information in this
publication assumes that the reader is
thoroughly familiar with the FORTRAN lan­
guage as described in the following
publication:

IBM System/360 Disk and Tape Operating
Systems FORTRAN IV Specifications,
Form C24-50l4

The following publications listed con­
tain information a programmer may require
under certain circumstances. When such
information is required, the text refers
to the proper publication and also to this
Preface, which contains the full title and
form number of the required publication.

IBM System/360 Tape Operating System,
Supervisor and Input/Output Macros,
Form C24-3432

IBM System/360 Tape Operating System,
Data Management Concepts, Form C24-3430.

SIMPLIFIED TERMINOLOGY

IBM System/360 Tape Operating System,
System Control and System Service
Programs, Form C24-343l.

IBM System/360 Tape Operating System,
Operating Guide, Form C24-502l.

IBM System/360 Disk Operating System,
Supervisor and Input/Output Macros
Form C24-3429

IBM System/360 Disk Operating System,
Data Management Concepts
Form C24-3427

IBM System/360 Disk Operating System,
System Control and System Service Programs
Form C24-3428

IBM System/360 Disk Operating System,
Operating Guide, Form C24-5022

IBM System/360 Disk and Tape Operating
Systems Specifications, utility Programs
Form C24-3465

IBM System/360 Bibliography, Form A22-6822.

The titles of some" IBM programming systems have been simplified as shown
below:

former: IBM System/360 Basic Operating System (8K Disk)
new: IBM System/360 Basic Operating System

former: IBM System/360 Basic Operating System (16K Tape)
new: IBM System/360 Tape Operating System

former: IBM System/360 Basic Operating System (16K Disk)
new: IBM System/360 Disk Operating System

First Edition, May 1966

Significant changes and additions to the specifications contained in this
publication will be reported in subsequent revisions or Technical News­
letters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for readers' comments.
If the form has been removed, comments may be addressed to IBM Corporation
Programming Publications, Endicott, New York 13760. '

~ International Business Machines Corporation 1966

IBM SYSTEM/360 DISK AND TAPE OPERATING
SYSTEMS, FORTRAN.IV PROGRAMMER'S GUIDE

INTRODUCTION
Structure of DOS or TOS •

Control Program
System Service Programs
Processing Programs

Use of the DOS or TOS for FORTRAN .
Compiling with the DOS or TOS
Linkage Editing with the DOS or TOS.
Executing a Program with the DOS
or TOS • • .

Control Cards used with the DOS
or TOS • . •

BUILDING FORTRAN PROGRAMS .
FORTRAN Language . . •

Program Features . . . •
Data for FORTRAN Programs

FORTRAN Library • .
Mathematical Subprograms . . . • . .
Service Subprograms
Summary of Mathematical

Subprograms • . . .
Use of Assembler Language Subprograms •

Called and Calling Programs
FORTRAN Linkage Conventions
Lowest Level Subprograms . .
In-line Parameter Area . .

PROCESSING FORTRAN Programs . .
Compilation of a FORTRAN Program

Source Programs • • . •
Control Cards for Compilation
Diagnostic Aids . . • . . . • .

Linkage Editing a FORTRAN Program.
Control Cards for Linkage Editing

5

5
5
5
6
7
7
7
7

7

7

12
12
12
12
12
13
14

15
20
20
21
25
25

26
26
26
26
27
29
30

CONTENTS

FORTRAN Program Executing
Considerations

Job Control Cards for Execution
Execution Time Interruptions

and Errors . . . • • .
FORTRAN Unit Assignment
Programming for a Card Read Punch
Label Processing
Programming Considerations for
Direct Access Files

Library Procedures
Cataloging a Program in the

Relocatable Library
Cataloging a Program in the

Core-Image Library

PROGRAMMING SUGGESTIONS . .
Program Optimization

Arithmetic Statements
IF Statements . •
DO Loops
READ and WRITE Statements
Program Structure .

Compiler Restrictions

APPENDIX A: PROGRAMMING EXAMPLE

APPENDIX B: FORTRAN LIBRARY
SUBPROGRAMS

APPENDIX C: MESSAGES ...

APPENDIX D: STANDARD DASD FILE LABELS,
FORMAT 1

INDEX . . .

30
31

32
32
35
36

38
39

39

39

41
41
41
41
42
42
43
44

45

46

60

65

67

System
Service
Programs

Initiate Loading
Manually

Supervisor

Job Control
For Next Job

Job Control for
Next Job Step

Language
Translators

Service
Programs

YES NO

No More Jobs

User
Problem
Programs

Figure 1. DOS or TOS System Flow

IBM SYSTEM/360 DISK AND TAPE OPERATING SYSTEMS,FORTRAN IV PROGRAMMER'S GUIDE

This publication describes the compilation
and execution of FORTRAN programs under
control of the Disk Operating System (DOS)
or Tape Operating System (TOS). This intro­
duction is intended for those readers who
are not familiar with operating systems.
Readers with a knowledge of an operating
system may skip this section. No attempt
is made to describe all of the features and
uses of the Disk or Tape Operating System.
Only that information required by a FORTRAN
programmer is included.

An operating system is used to control
the operation of a computing system. There
are many reasons for using an operating
system. Some of these are:

1. To keep the computer busy.

2. To reduce the chance for operator
errors.

3. To handle unusual conditions (for ex­
ample: division by zero).

The Disk or Tape Operating System keeps
the computer busy by initiating the com­
pilation and/or execution of a program as
soon as the processing of the previous pro-
gram has been completed. In addition to
saving the time that the computer would be
idle while waiting for the operator to
initiate the next operation, this procedure
eliminates the chance of the operator mak­
ing an error while initiating the next
operation. The DOS or TOS handles unusual
conditions either by producing a message
noting the error or by correcting it (for
example: rereading a tape record if a read
error has occurred).

The Disk or Tape Operating System, which
is diagrammed in Figure 1, consists of a
group of processing programs, together with
the Control Program needed to maintain their
continuous operation, and system service
programs. The processing programs include
language translators, service programs, and
any problem programs written by the user.
The Control Program consists of three com­
ponents (see Control Program) that prepare
and control the execution of all processing
programs and problem programs within the·
DOS or TOS. The system service programs
consist of two components (see System Ser­
vice Programs) that are used to generate the
system and to create, edit, and maintain

STRUCTURE OF DOS OR TOS

Figure 2 shows the structure of the Disk or
Tape Operating System. Each component of
the system is described separately below.

CONTROL PROGRAM

To provide optimum operating efficiency,
some programmed control over the operation
of the system is required. Without such
programmed control, the system is frequently
idle and requires the intervention of an
operator to locate and load successive
programs and to perform other required set­
up functions (for example: changing tape
reels). An orderly and efficient flow of
jobs through the system is maintained by
using a control program that provides the
job-to-job transition.

The control program contained in the DOS
or TOS provides automatic transition from

Control
Program

IPL Loader I
Supervisor I

Job Control I

Disk or Tape Operating System

System Service
Programs

I Librarian

Processing
Programs

Language
Translators

Assembler
COBOL
FORTRAN
RPG
PL/l

Service Programs

Autotest
Sort/Merge
Utilities

User - wri tten
Problem Programs

the libraries within the system. Figure 2. Structure of the Disk or Tape
Operating System

Introduction 5

program phase to program phase within a
processing program, and from processing pro­
gram to processing program within the system.
Once the system has been initialized, job
after job can be entered into the system
for processing.

The three components of the Control Pro­
gram are:

1. The Initial Program Loading Loader
(IPL Loader)

2. The Supervisor

3. Job Control.

Each component of the Control Program is
described in the following sections.

IPL Loader

Operation of the Disk or Tape Operating Sys­
tem is initiated through an initial program
loading procedure. The IPL Loader is loaded
into main storage from tape or disk storage
simply by selecting the address of the unit
in the load unit switches on the System/360
console and pressing the load key. The
loader than reads the nucleus of the Super­
visor from the resident unit into the lower
portion of main storage. After sucessfully
reading the Supervisor nucleus into main
storage, the IPL Loader performs certain
initializing and housekeeping functions
before control is transferred to the Sup­
ervisor, which uses the System Loader to
issue a call for Job Control.

Supervisor

The Supervisor is the component of the Con­
trol Program that operates with the problem
programs. It consists of:

1. Permanent routines that are loaded into
main storage during the IPL process and
remain there throughout system opera­
tion until main storage is cleared.

2. Transient routines that remain on the
system tape or disk unit until needed
and are then retrieved and loaded into
a common transient area.

During the execution of a processing
program, control alternates between the
processing program and the Supervisor.
Figure 3 shows the major division of main
storage and the position of the Supervisor.

Job Control

System. It is called into main storage to
prepare each job step to be run. (One or
more programs can be executed within a sin­
gle job. Each such execution is called a
job step.) The Job Control program performs
its functions between job steps and is not
present while a problem program is being
executed.

SYSTEM SERVICE PROGRAMS

The system service programs provide the
functions of:

1. Generating the system.

2. Creating and maintaining the library
sections.

3. Editing programs on tape before
execution.

The system service programs are the:

1. Linkage Editor

2. Librarian

Linkage Editor

All programs to be linkage edited (put into
executable form) are written onto symbolic
unit SYSOOO, which is used as the input unit
for the Linkage Editor. The output of the
Linkage Editor is also SYSOOO.

Librarian

This is actually a group of programs used
for maintaining DOS or TOS libraries and
for providing printed and punched output
from the libraries. The libraries are:

1. The core image library

2. The relocatable library

Supervisor

Problem
Program
Area

Transient Area

f-------------

Supervisor Nucleus

Upper Limit of
Ma inS torage

Lower Limit of
Ma inS torage

The Job Control program provides job-to-job
transition within the Disk or Tape Operating Figure 3. Major Divisions of Main Storage

6 FORTRAN IV Programmer's Guide

CORE IMAGE LIBRARY: All permanent programs
in the system (IBM-supplied and user pro­
grams) are loaded from this library by the
Program Fetch routine of the Supervisor.
The core image library is required for each
resident system. The core image library
contains any number of programs each of
which is edited to run with the Supervisor.
Each program is made up of one or more sepa­
rate phases, which are executable, nonrelo­
catable sections of a program in core image
form. Associated with each phase is a
header record that contains a complete des­
cription of the phase.

RELOCATABLE LIBRARY: This library is used
for the storage of object modules that are
the output of a language translator(s) and
can be used for subsequent linkage with
other program modules. A module also can
be a complete program. The relocatable li­
brary is not required for operating a
system.

The purpose of the relocatable library
is to allow the user to retain frequently
used routines and combine them with other
modules without requiring recompilation.
The routines from the relocatable library
are edited onto SYSOOO by the Linkage
Editor.

The relocatable library contains any
number of modules. Each module is a com­
plete object deck in the relocatable format.

LIBRARIAN FUNCTIONS: Maintenance and ser­
vice are the major functions performed for
the libraries by the librarian programs.
Maintenance includes the addition, deletion,
or copying of items in the library. Service
includes the translation of information in
a library to printed or punched form. In­
formation in a library directory and in
header records can also be displayed.

PROCESSING PROGRAMS

The three types of processing programs in
the Disk or Tape Operating System are:

1. Language translators

2. Service programs

3. Programs written by the user

Each type of processing program is des­
cribed in the following sections.

Language Translators

Several translators are available for trans­
lating user-written source programs into
relocatable object programs. All of the

translators requested by the user are con­
tained in the Relocatable Library when the
system tape arrives at an installation. The
assembler (required for system generation)
is in both the relocatable library and the
core image library. When the system is
tailored at the installation, the desired
translators must be cataloged into the core
image library. All translators take advan­
tage of the IOCS included in the Disk or
Tape Operating System.

The language translators available for
the DOS or TOS are: Assembler, COBOL,
FORTRAN, RPG (Report Program Generator),
and PL/l.

Service Programs

These programs perform such independent op­
erations as sorting and tape to printer.
Refer to the publication IBM System/360
Bibliography, listed in the preface, for
publications describing service programs.

Programs Written by the User

A user may insert programs he writes into
the Relocatable Library so they can be link­
age edited with the other programs whenever
required. Which of his programs to place
in the library will be determined by the
user. The choice depends upon conditions
existing at his installation and upon the
program. For example, a program that cal­
culates stresses in beams might be placed
in the library because it could be used in
programs for many types of designs, (bridges,
buildings, etc.). On the contrary, a pro­
gram that produces a listing of prime num­
bers probably would not be placed into the
library because it might be run only once
and have no use in other programs.

USE OF THE DISK AND TAPE OPERATING SYSTEMS
FOR FORTRAN

The processing of programs under control of
the Disk or Tape Operating System is speci­
fied in control cards, which specify
whether a program is to be compiled, linkage
edited, and/or executed. Each form of proc­
essing is described briefly in the following
sections. Details of the control cards and
complete information for processing pro­
grams, together with examples of each form,
appear in the section Processing Jobs.

COMPILING WITH THE DOS OR TOS

Compilation is the process by which a group
of source language statements is converted
by a language translator into a group of

Introduction 7

machine language instructions. ® of
Figure 4 shows the compilation of FORTRAN
statements. The group of statements that
form the input to the compilation is called
a source module. The output produced by
the compilation is called an object module,
which is in a form that is acceptable as
input by the Linkage Editor.

A group of FORTRAN statements is called
'a FORTRAN source module, which is processed
by the FORTRAN compiler.

The object module produced by the FORTRAN
compiler is a block of relocatable machine
instructions assigned to contiguous main­
storage locations. An object module con­
sists of an associated control dictionary
and one or two control sections. The
control dictionary contains information
needed by the Linkage Editor to handle cross
references between different object modules.
The control section contains the actual
instructions and data fields that perform
the operations required by the FORTRAN
source language statements.

® Compi lation

Execute
FORTRAN
Compiler

------------- ------------

® linkage Editing

© Execution

Execute
Object
Program

Relocatable
Library

Figure 4. Processing of FORTRAN Programs

8 FORTRAN IV Programmer's Guide

LINKAGE EDITING WITH THE DOS OR TOS

An object module produced during compilation
(see Compiling with the DOS or TOS) cannot
be executed without further processing. To
convert it into executable form, and object
module must be processed by the Linkage
Edi tor. ® of Figure 4 sh,ows the linkage
editing of an object module. The output
produced by the Linkage Editor is called a
program phase, which is in executable,
nonrelocatable, core image form. A program
phase is a program or a portion of a program
that is loaded ,into storage (by the Program
Fetch) when a LOAD or FETCH macro instruc­
tion is executed.

As shown in ® of Figure 4 the Linkage
Editor can obtain i~put from the library,
which contains items in object module form.

EXECUTING A PROGRAM WITH THE DOS OR TOS

To execute a program, the DOS or TOS obtains
a program phase, loads it into main storage,
and executes the machine language instruc­
tions contained in the phase. If the pro­
gram consists of more than one phase, the
preceding procedure is repeated for each
phase until the end of the program is
reached. Execution takes place under con­
trol of the Supervisor and Job Control.
© of Figure 4 shows the execution of an

object program.

CONTROL CARDS USED WITH THE DOS OR TOS

Through the use of control cards, the pro­
grammer indicates what action he wants the
Disk or Tape Operating System to take.
Control cards may be combined with source
modules, programs, and/or input data de­
pending upon the action the user desires.

The formats of the control cards are
given in the following sections. No attempt
has been made to describe all of the control
cards that are recognized by the DOS or TOS.
Only those control cards that are most use­
ful to FORTRAN programmers are described.
Readers interrested in other control cards
are referred to the publication System
Control and System Service Programs men­
tioned in the Preface.

JOB Card

The beginning of every job is specified by
a JOB card. A job consists of,all modules
and control cards between a JOB card and
the next /& card (the end-of-job card). A
job may be executed as one or more job steps
depending upon the number of EXEC cards
within the job. Job steps are explained in
EXEC Card.

The format of the JOB card is. as follows: EXAMPLES: The following are samples of the
various forms of EXEC cards.

II JOB jobname [comments]

The II characters must be in columns 1
and 2. They must be followed by at least
one blank column. The letters JOB must
appear after the blank co1umn(s), and they
must be followed by at least one blank
column. A symbolic name of from one
through eight characters must follow the
blank column(s). This is the symbolic
name of the job.

If the programmer desires to place com­
ments in the JOB card, he must leave at
least one blank column following the sym­
bolic name. Any comment must end before
column 72.

EXAMPLE: The following is a sample of a
JOB card:

II JOB PRlMENOS DEPT908 SMITH

This card specifies that the name of the
job is to be PRlMENOS. The oetiona1 com­
ments indicates that the job 1S for depart­
ment 908 and was written by Smith.

If the system is equipped with the timer
feature (must be requested at system gen­
eration time), the time of day prints on
SYSLST (if present) and SYSLOG. Refer to
the IBM publication Supervisor and 1/0
Macros referred to in the Preface for the
method of setting in the time of day.

EXEC Card

The beginning of every job step is specified
by an EXEC card, which causes the execution
of a program. A program step consists of
control cards that apply to the execution
of a program. All control cards for a
paricu1ar job step must precede the EXEC
card for that job step.

The format of the EXEC card is as follows

II EXEC_ [progname]

The II characters must be in columns 1
and 2. They must be followed by at least
one blank column. The letters EXEC must
appear after the blank column(s), and they
must be followed by at least one blank
column. If the program to be executed was
processed by the Linkage Editor in the pre­
ceding job step, the remainder of the EXEC
card must be blank. If the program to be
executed is in the core image library, the
pame of the program (from one through
eight characters) must be placed in the
EXEC card.

1. To compile a FORTRAN source module:

I I EXEC FORTRAN

2. To linkage edit an object module:

II EXEC LNKEDT

3. To execute a program in the core image
library:

II EXEC PRIMENOS

4. To execute a program immediately after
it has been linkage edited:

II EXEC LNKEDT

II EXEC

DATA FOR EXECUTED PROGRAMS: The data re­
quired by the program step to be executed
can be placed following the EXEC card. For
example, the cards for compiling a FORTRAN
source program can be arranged as follows:

II EXEC FORTRAN

READ (3,8)K

8 FORMAT (120)

75 L = K**2

END

1*

Similarly, the data for an Object pro­
gram to be executed can be placed after the
EXEC card as follows:

II EXEC STRESS

212 415 555

782 425 227

897 435 383

1*

(Card 1)

(Card 2)

(Card 3)

Note that the end of the data must be
indicated by the use of an end-of-data card
(see 1* Card). If the program step does
not use any input data or if the input data
is read from a different input unit, no
end-of-data card is required.

Introduction 9

1* Card

The data for a program that is executed
must be followed by a /* card unless it is
the last card of a job. In this case a /&
card must Qe used and the /* card is not
required. For example, a FORTRAN source
module must be followed by a /* card. Illus­
trations of the use of 1* cards are given
in Data for Executed Programs.

The format of the /* card is as follows:

options listed must follow the blank
column(s). If more than one option is
specified, they must be separated by commas.

The options apply to the use of the Disk
or Tape Operating System for FORTRAN pro­
grams. A complete list of all options is
given in the publication System Control and
System Service Programs mentioned in the
Preface. The options are listed in alpha­
betical order. They may appear in any order
in an OPTION card.

/* Option Purpose

The / character must be in column 1 and CATAL
the * character must be in column 2. In-
formation in any other columns is ignored.

1& Card

The last card of every job must be a /&
card. All modules and control cards
between this card and the preceding JOB
card constitute a job.

The format of the /& card is as follows:

/&

The / character must be in column 1 and
the & character must be in column 2. In-

DECK

formation in any other columns is ignored. ERRS
When this card is read by the system, an
end-of-job message in the form of EOJ
JOBNAME is written on SYSLST and SYSLOG.
If the timer feature is present the time of
day is printed with this message.

OPTION Card

When the operating system for an installa-
tion is generated, certain options regard-
ing listing, and punching are selected as
standard. To use other options temporarily, LINK
OPTION cards can be included in a job. An
option selected by an OPTION card remains
in effect until the Disk or Tape Operating
System detects either an OPTION card that
changes the option or a JOB card. When a
JOB card is detected, all options are reset
to the standard options. If no OPTION cards
are included in a job, the standard options
are used.

The format of the OPTION card is as
follows: LIST

II OPTION option [,option, ...]

The II characters must be in columns 1
and 2. They must be followed by at least
one blank column. The letters OPTION must
appear after the blank column(s), and they
must be followed by at least one blank
column. One or more of the following

10 FORTRAN IV Programmer's Guide

This option causes the
output of the FORTRAN com­
piler to be written on
symbolic unit SYSOOO.
Following the execution
of the linkage editor, if
the librarian is executed,
the program will be cata­
loged into the core-image
library.

To cause the object pro­
gram to be written on
symbolic unit SYSPCH.
However, if the LINK op­
tion is in effect, the
DECK option is ignored.

To cause erroneous source
program statements, their
associated error messages,
and summary error mes­
sages to be written on
symbolic unit SYSLST.
Data storage summaries and
correct source program
statements are not listed.
Note that if the LIST
option is in effect, the
ERRS option is ignored.

This option causes the
output from the FORTRAN
compiler (an object mod­
ule) to be written on
symbolic unit SYSOOO.
Note that the Disk or
Tape Operating System
will ignor~ this option
if the FORTRAN compiler
detects errors in the
FORTRAN source program.

To cause the soruce pro­
gram listing, diagnostic
messages, error summaries,
and storage map to be
written on symbolic unit
SYSLST.

Option

NODECK

NOERRS

NOLINK

NOLIST

Purpose

To cause the DECK option
to be ignored. However,
if the LINK option is not
specified, an object deck
will always be punched.

To cause the ERRS option
to be ignored. When the
NOERRS and NOLIST options
are used, nothing is
written on symbolic unit
SYSLST except the stor~
age map unless the com­
pilation is terminated
as the result of source
program errors, when an
appropriate message is
written

To cause the LINK option
to be ignored.

To cause the LIST option
to be ignored. FORTRAN
compiler will supress the
printing of all informa­
tion except the compila­
tion terminated message.

Note: These three cards indicate the
meaningful combinations of listing output:

II OPTION LIST,LINK
II OPTION NOLIST,ERRS,LINK
II OPTION NOLIST,NOERRS,LINK

Introduction 11

BUILDING FORTRAN PROGRAMS

A programmer can build a FORTRAN program as
one sequence of FORTRAN source language
statements or as a combination of FORTRAN
statements and subprograms. The subpro­
grams may be compiled and stored in the
relocatable library of the Disk or Tape
Operating System.

FORTRAN LANGUAGE

The source language statements for writing
FORTRAN programs are described in the pub­
lication IBM System/360 Disk and Tape Opera­
ting Systems, FORTRAN IV Specifications -
see Preface of this' ,publication. We assume
the reader is thoroughly familiar with that
publication.

Information that will help the FORTRAN
programmer to write better FORTRAN programs
is contained in the section Programming
Suggestions.

PROGRAM FEATURES

Programs to be compiled by the FORTRAN
compiler must be written so that they do
not violate the conditions stated in
Figure 5. If a problem requires a source
program that would exceed the maximum con­
ditions stated in Figure 5, we suggest the
program be divided into one or more
segments.

DATA FOR FORTRAN PROGRAMS

The data that can be processed by FORTRAN
programmers must conform to the require­
ments stated in the FORTRAN language pub­
lication. Records are described in the
explanation of the FORMAT statement, and
storage areas are described by specifica­
tion statements.

FORTRAN LIBRARY

The FORTRAN library, which is supplied with
DOS or TOS FORTRAN as part of the Relocat­
able Library, contains subprograms that may
be used by a programmer to perform frequently
needed tests and computations. The Linkage
Editor combines these subprograms with the
output of the FORTRAN compiler to form the
desired object program.

12 FORTRAN IV Programmer's Guide

Item
Maximum
Number

Size of data area in COMMON 65,532 bytes

Size of data not in COMMON (see Note) 65,532 bytes

Size of object program 65,532 bytes

Variables 500

Arrays 500

Variables and Arrays in COMMON 500

Names plus EQUIVALENCE lists in
500 EQUIVALENCE statements

Statement numbers (including one additional
statement number for each DO or implied 500
DO in an input/output list)

Names in REAL statements 500

Names in INTEGER statements 500

Names in DOUBLE PRECISION statements 500

Unique rea I constants 500

Unique integer constants 500

Unique double- precision constants 500

References to unique subprogram entry
500 point names (explicit and implicit)

Arithmetic statement function definitions 500

Dummy arguments for a subprogram 500

Total arguments to all subprograms and
500 arithmetic statement functions

Nesting DO statements 25

Nesting function subprogram references 15

Note: The size of data not in COMMON includes the area
for non- COMMON variables, arithmetic and address
constants, and the constants and work areas created
by the compiler.

Figure 5. Maximum Source Program Items

The library subroutines are divided into
two groups, mathematical subprograms and
service subprograms. A mathematical sub­
program corresponds to a subprogram defined
with a FUNCTION statement in a FORTRAN
source program, and a service subprogram
corresponds to a subprogram defined with
a SUBROUTINE statement. Therefore, a
mathmatical subroutine is called when one
of its entry names appears in an arithmetic
expression in a source statement, and a
service subroutine is called when one of
its entry names appears in a CALL statement.

MATHEMATICAL SUBPROGRAMS

The mathematical subprograms contained in
the FORTRAN library relieves the FORTRAN
programmer of the task of writing routines
for calculating frequently used mathemati­
cal functions. These subprograms perform
calculations for such items as sines,
cosines, and logarithms. A mathematical
subprogram can be called either explicitly
or implicitly. Subprograms are called
explicitly by using an entry name of a
subprogram in a FORTRAN source program
statement. They are called implicitly when
exponentiation is used in a statement.

The most frequently needed information
about mathematical sub~outines is given
in this section. Readers who are interested
in performance statistics and the algorithms
of these subprograms are referred to
Appendix B.

Explicitly Called Subprograms

An explicitly called subprogram performs
one or more mathematical functions. When
a subprogram performs more than one func­
tion, each function is called bya unique
entry name.

To explicitly call a subprogram, the
FORTRAN programmer uses the appropriate
entry name in a source language statement.
The programmer must also supply one or
more arguments, enclosed in parentheses,
immediately following the entry name; if
two or more arguments are supplied, they
must be separated from each other by commas.
The arguments must agree in type and num­
ber with the definition of the subprogram.

The following source statements illus­
trate the use of explicitly called subpro­
grams:

RESULT = SIN (ANGLE)
ANS = STOCK + SQRT(AMNT)

In the first statement, the sine of the
value of ANGLE is computed (using subpro­
gram IJTSSCN) and that value becomes the
value of RESULT.

In the second statement, the square root
of the value of AMNT is computed (using
subprogram IJTSSQT), that value is added to
the value of STOCK, and the total becomes
the value of ANS.

Figure 6 contains a list of all explicitly
called mathematical subprograms. It shows
the subprogram and entry names for each
function. Figure 6 contains references
to other figures that contain details
about each entry name. The figures that
contain the details (arranged alphabetically
by entry name) are described in Summary of
Mathematical Subprograms.

Subprogram Entry
Reference

Function to
Name Name{s)

Summary

Arctangent IJTLTAN DATAN Figure 9
IJTSTAN ATAN

Common Logarithms UTLLOG DLOG10 Figure 8
IJTSLOG ALOG10

Cosine IJTLSCN DCOS Figure 9
UTSSCN COS

Exponentia I UTLEXP DEXP Figure 8
IJTEXPN EXP

Hyperbolic Tangent IJTLTNH DTANH Figure 9
IJTSTNH TANH

Maximum Value IJTSMXO AMAXO Figure 10
MAXO

IJTMAXD DMAX1
IJTSMX1 AMAX1

MAX1

Minimum Value IJTSMXO AMINO Figure 10
MINO

UTMAXD DMIN1

IJISMXl ~~-

--~~-----~---

AMINI

MIN1

Modular Arithmetic IJTMODI AMOD Figure 10
IJTMODR DMOD

MOD

Natural Logarithms IJTLLOG DLOG Figure 8
IJTSLOG ALOG

Sine IJTLSCN DSIN Figure 9
IJTSSCN SIN

Square Root UTLSQT DSQT Figure 8
IJTSSQT SQRT

Truncation UTSINT AINT Figure 10
UT\FIX IDINT

INT

Figure 6. Explicitly Called Mathematical
Subprograms

Building FORTRAN Programs 13

Implicitly Called Subprograms

An implicitly called subprogram raises a
number to a power (such as in performing
exponentiation). A subprogram is called
implicitly when two asterisks indicating
exponentiation appear in a FORTRAN source
language statement.

The following source statement illustrates
the use of an implicitly called subprogram:

ANS = BASE ** EXPON

If the values of BASE and EXPON are real,
the subprogram IJTARXR is used to raise
the value of BASE to the power specified
by the value of EXPONi the result becomes
the value of ANS. If the values of BASE
and EXPON are not both real, a different
subprogram will be called.

Figure 7 contains a list of all impli­
citly called mathematical subprograms. It
shows the subprogram and entry name for
each function. Figure 7 also contains a
reference to Figure 11, which contains de­
tails about each entry name. Figure 11,
containing entry names arranged alphabeti­
cally, is described in Summary of Mathe­
matical Subprograms.

SERVICE SUBPROGRAMS

The service subroutines contained in the
FORTRAN library are described in two groups:
one group tests machine indicators and the
other group performs utility services.
Each service subprogram is called by using
its entry name in a CALL statement.

Reference
Function Subprogram Entry to

Name Name Summary

Raise an integer to IJTAIXI IJTAIXI Figure 11
an integer power

Raise a real number IJTARXI IJTARXI Figure 11
to an integer power

Raise a double pre- IJTADXI IJTADXI Figure 11
cision number to an
integer power

Ra ise a rea I number IJTARXR IJTARXR Figure 11
to a rea I power

Raise a double pre- IJTADXD IJTADXD Figure 11
cision number to a
double precision
power

Figure 7. Implicitly Called Mathematical
Subprograms

14 FORTRAN IV Programmer's Guide

Machine Indicator Test Subprograms

A machine indicator test subprogram tests
the status of a pseudo machine indicator,
and may return a value to the program that
called it. Each psuedo machine indicator,
which occupies one storage location, is re­
garded as ON or OFF depending upon the con­
tents of the indicator. If the indicator
contains a zero, it is considered to be OFF.
If it contains anything but zero, it is con­
sidered to be ON.

In the following descriptions of the
psuedo machine test subprograms, i repre­
sents an integer expression and j represents
an integer variable.

DIVIDE CHECK SUB~ROGRAM (IJTDVCK). The
entry name for this subprogram is DVCHK.
The divide check subprogram tests for a
divide check exception, returns a value of
1 or 2 to indicate the condition that
exists, and then turns the divide check in­
dicator off. The following source language
statement shows the method of calling this
subprogram:

CALL DVCHK (j)

The value of j is set to 1 if the divide
check indicator was ON, or to 2 if the indi­
cator was OFF.

A description of the divide check excep­
tions is given in Execution Time Interrup­
tions and Errors.

OVERFLOW INDICATOR SUBPROGRAM (IJTOVRF).
The entry name for this subprogram is
OVERFL. The overflow indicator subprogram
tests for an exponent overflow or underflow
exception, returns a value of 1, 2, or 3 to
indicate the condition that exists, and
then turns the overflow indicator off. The
following source language statement shows
the method of calling this subprogram:

CALL OVERFL (j)

The value of j is set to 1 if a floating
point overflow condition exists, to 2 if no
overflow or underflow condition exists, or
to 3 if a floating point underflow condi­
tion exists.

A description of exponent overflow and
underflow exceptions is given in Execution
Time Interruptions and Errors.

PSEUDO SENSE LIGHT SUBPROGRAM (IJTSLIT).
The entry names for this subprogram are
SLITE and SLITET. The pseudo sense light
subprogram can be used to alter, test, and/
or record the status of the pseudo sense
lights. The action required determines
which of the entry names must be used when
calling this subprogram.

If either all pseudo sense lights are
to be turned OFF or one pseudo sense light
is to be turned ON, the subprogram should
be called as follows:

CALL SLITE (i)

If the value of i is 0, all four pseudo
sense lights will be turned off. If the
value of i is 1, 2, 3, or 4, the corres­
ponding pseudo sense light will be turned
on. If i assumes any value other than 0,
1, 2, 3, or 4, an error message is pro­
duced and execution of the program is
discontinued.

If one pseudo sense light is to be
tested and its status recorded, the sub­
program should be called as follows:

CALL SLITET (i, j)

The value of i must be 1, 2, 3, or 4 to
specify the pseudo sense light to be tested.
The value of j is set to 1 if the specified
light was on, or to 2 if it was off. If i
assumes any value other than 1, 2, 3, or 4,
an error message is produced and execution
of the program is discontinued.

utility Subprograms

A utility subprogram can be used to end the
execution of a program or to list the con­
tents of specified storage locations.

END EXECUTION SUBPROGRAM (IJTFXIT). The
entry name for this subprogram is EXIT.
The end execution subprogram performs the
same functions as the STOP statement, that
is, execution is terminated and control is
returned to the DOS or TOS supervisor. The
following source language statement shows
the method of calling this subprogram:

CALL EXIT

STORAGE DUMP SUBPROGRAM (IJTFDMP). The en­
try names for this subprogram are DUMP and
PDUMP. The storage dump subprogram can be
used to list the contents of storage areas
specified by limits placed in parentheses
following the entry name. The format in
which the data is listed can also be
specified by the programmer. The entry
name used depends on whether execution of
the program is to end or continue after the
storage dump has occurred.

If execution is not to continue after
the storage dump has been made, the sub­
program should be called as follows:

•.• , an ' b , f ,)
n n

The values of a and b specify the limits
of storage area to be dumped, and f speci­
fies the format in which the contents of the
area are to be dumped. If only one word is
to be dumped, a and b must be the same.
The permitted values of fare:

Value of f

o
4
5
6

Format of Dumped Data

Hexadecimal
Integer
Real
Double Precision

If execution is to continue after the
storage dump has been made, the subprogram
should be called as follows:

... , a, b, f)
n n n

The values of a, b, and f are the same
as described for DUMP.

The following is an example of a state­
ment that calls for a storage dump:

CALL DUMP (A, C, 5, D(l,l) ,D(5,5), 4, E, E, 0)

This example assumes that A, C, and E are
real variables and that D is an array de­
fined by the following statement:

INTEGER D (5,5)

The example would cause the contents of
locations from A through C to be dumped in
real format, array D to be dumped in integer
format, and variable E to be dumped in hexa­
decimal format. The format under which a
variable is to be dumped must be either in
hexadecimal or the same as the defined type
of the variable. Otherwise a program check
may occur.

SUMMARY OF MATHEMATICAL SUBPROGRAMS

Figures 8 through 11 contain a summary of
information about the subprograms in the
FORTRAN library. Information for each sub­
program includes: the entry name, the pro­
gram name, the mathematical definition, the
arguments required, the type of value re­
turned, the assembler requirements, and
the error message. The following sections
describe the information contained in each
column (according to column headings used
in Figures 8 through 11).

Entry Name

This column gives the entry name that the
programmer must use to call the subprogram
for a certain computation. Note that a
subprogram may have more than one entry

Building FORTRAN Programs 15

Entry
Sub-
program

Name Name

ALOG JJTSLOG

ALOGIa JJTSLOG

DEXP IJTLEXP

DLOG IJTLLOG

DLOGI0 IJTLLOG

DSQRT JJTLSQT

EXP IJTEXPN

SQRT IJTSSQT

DP = Double Precision
R' = Real

Definition

y = logex or
y = In x

y == log x
10

y =ex

y = logex or
y = Ine

y = log10 X

y =..r;:- or
y = x 1/2

y =ex

y =vx or
y = X 1/2

Argument(s) Function
Value

No. Type Range Returned

1 R x>O R

1 R x>o R

1 DP x<174.673 DP

1 DP x>O DP

1 DP x>O DP

1 DP x>O DP

1 R x<174.673 R

1 R x<O R

Figure 8. Summary of Logarithmic and Exponential Subprograms

16 FORTRAN IV Programmer's Guide

Assembler
Requirements

Error

Registers Save Message

Area

0(2) 3D IJT253 I

0(2) 3D I JT253 I

0(2) 5D IJT262 I

0(2) 5D IJT263 I

0(2) 5D IJT263 I

0(2,4) 3D IJT2611

0 6D IJT252 I

0(4) 3D IJT2511

Assembler

Entry
Sub- Argument{s) Function Requirements
program Definition Value Error

Name Name No. Type Range Returned Registers Save Message

Area

ATAN IJTSTAN y = arctan{x) 1 R Any real ar- RIR 0{2,4,6) 3D None
gument

COS IJTSSC N y = cos{x) 1 RIR Ixl < 21 8{'/I-) R 0{2,4) 3D IJT2541

DATAN IJTLTAN y = arctan{x) 1 DP Any double DPIR 0{2,4,6) 3D None
precision ar-
gument

DCOS IJTLSCN y = cos{x) 1 DPIR Ixl<250{7r) DP 0{2,4) 3D IJT2641

DSIN IJTLSCN y = sin{x) 1 DPIR Ixl< 250{7r) DP 0(2,4) 3D IJT2641

DTANH IJTLTNH eX-e-x 1 R Any real ar- RIR 0(4) 3D None
y = eX+e-X gument

y = sin{x)
18

0{2,4) SIN IJTSSCN 1 RIR Ixl<2 (7r) R 3D IJT2541

TANH IJTSTNH eX-e-x 1 R Any real ar- DPIR 0(4) 3D None
y eX+e-x gument

DP Double Precision
DPIR Double Precision, expressed in radians
R Real
RIR Real, expressed in radians

Figure 9. Summary of Trigonometric Subprograms

Building FORTRAN Programs 17

Assembler

Entry
Sub- Arg ument (s) Function Requirements

Error
Name

program Definition Value
Message

Name No. Type Range Returned Registers Save
Area

AINT UTSINT y = (sign of x)(n) 1 R Any real ar- R 0 5D None
where n is the gument
largest integer less
than or equal to I x I

AMAXO IJTSMXO y =max(x 1 ,··· ,~) ~2 I Any integer R 0 5D None
arguments

AMAXI IJTSMXI y = max (x l' ••• ,><n) ~ 2 DP Any real ar- DP 0 5D None
guments

AMINO IJTSMXO y =min(x 1"" ,xn) ~ 2 I Any integer R 0 5D None
arguments

AMINI IJTSMXI y=min(x 1 ,··· ,><n) ~ 2 R Any real ar- R 0 5D None
guments

AMOD IJTMODI y=x 1 (module x 2) 2 R x#:O R 0 5D None
See Note

DMAXI IJTMAXD y=max(x 1 ,··· ,xn) ~ 2 DP Any real ar- DP 0 5D None
guments

DMINI UTMAXD y = min (x 1 , •.. , xn) ~ 2 DP Any real ar- DP 0 5D None
guments

DMOD IJTMODR y=x, (module x 2) 2 DP x#:O DP 0 5D None
See Note

IDINT UTiFIX y = (sign of x)(n) 1 DP Any double DP 0 5D None
where n is the precision ar-
largest integer less guments
than or equal to I x I

INT IJTlFIX y= (sign of x)(n) 1 R Any real ar- I 0 5D None
where n is the guments
largest integer less
than I x I

MAXO IJTSMXO y=max(x 1"" ,xn) ~2 I Any integer I 0 5D None
arguments

MAXI IJTSMXI y =max(x 1"" ,xn) ~ 2 R Any real ar- I 0 5D None
guments

MINO IJTSMXO y=min(x1 , "',><n) ~ 2 I Any integer I 0 5D None
arguments

MINI IJTSMXI y=min(x1""'~) ~ 2 R Any real ar- I 0 5D None
guments

MOD IJTMODR y=X1 (module x
2

) 2 I xt-O I 0 5D None
See Note

DP = Double Precision
I = Integer
R = Real

Note: The expression x 1 (module x
2

) is defined as x1 - [::] (x
2

), where the brackets indicate that an integer is used. The magnitude

of integer does not exceed the magnitl,Jde of.2.2 and the sign of the integer is the same as the sign of ~
X 2 x

2

Figure 10. Summary of Miscellaneous Mathematical Subprograms

18 FORTRAN IV Programmer's Guide

Assembler

Entry Sub- One Method of Argument{s) Function Requirements Error
Name program Implicit Function Value Message

Name Reference No. Type Range Returned Registers Save
Area

IJTADXD IJTADXD y = r**p 2 r=DP DP 0 9D IJT2451
p=DP

IJTADXI IJTADXI y = r**n 2 r=DP DP 0 9D IJT2431
n=1 R #0 and P =

to any value
IJTAIXI IJTAIXI y = m**n 2 m=1 or I 0 9D IJT2411

n =1 R = 0 and P>O

IJTARXI IJTARXI y = r**n 2 r=R R 0 9D IJT2421
n=1

IJTARXR IJTARXR y = r**p 2 r=R R 0 9D IJT2441
p=R

DP = Double Precision
I Integer
R Real

Figure 11. Summary of Implicitly Called Subprograms

name. The computation that is done depends
upon the entry name used in the source pro­
gram. For example, subprogram IJTSSCN has
two entry names, SIN and COS. If a sine
is to be computed, entry name SIN must be
used. If a cosine is to be computed, entry
name COS must be used.

Subprogram Name

This column gives the name of the subpro­
gram called by the entry name in the pre­
ceding column. Note that there may be more
than one subprogram associated with a speci­
fic mathematical function. For example,
subprogram IJTSSQT or IJTLSQT can be used
to compute the square root of a value. The
type of the argument will probably deter-

,mine which subprogram the programmer uses.
It is possible to send a double precision
argument to a routine that is programmed
to receive a single precision argument but
it is unsafe to send a real argument to a
routine programmed to receive a double
precision argument.

Definition

by the subprogram. For example, the equa­
tion for the square root subprogram is
y = vx. An alternate equation is shown if
there is another way of representing the
computation. For example, y = xl/2 is given
as another equation for the square root
subprogram.

One Method of Implicit Function Reference

This column appears only In Figure 11, in
place of the Definition column (see the
preceding Definition section). For each
implicitly called subroutine, this column
shows a source language statement in which
the subprogram is called. Note that this
is a sample statement and does not represent
the only way by which the subprogram can be
called.

Argument (s)

This column is divided as follows:

1. No. This column specifies the number
of arguments that the pr.ogrammer must
supply to the subprogram.

This column, which applies only to explicitly 2.
called subprograms, contains the mathemati-

~. This column specifies the type
of argument (such as: real, integer,

cal equation that shows the computation done or double precision) that the programmer

Building FORTRAN Programs 19

must supply. When more than one sub­
program is available for the same cal­
culation, the type of argument and type
of result determines which subprogram
must be used. For example, if the
square root of a real value is to be
computed, subprogram IJTSSQT must be
used. If the argument is a double
precision value, the subprogram IJTLSQT
must be used if a double precision result
is desired. If a real result is desired,
IJTSSQT may be used.

3. Range. This column specifies the valiu
range of the argument(s). If an argu­
ment is not within this range, an error
message (see Appendix C) is issued and
the execution of the job is ended. For
example, both square root subprograms
treat a negative argument as an error.
When this column specifies "any argu­
ment", it means that any argument of
the specified type can be used, pro­
vided it is within the acceptable range
specified by the FORTRAN language for
that particular type. For example, if
any integer argument is acceptable, the
argument must not be greater than
2147483647 (that is, 231_1).

Note: It is physically impossible
to exceed this value.

Function Value Returned

This column gives the type of function value
(such as: real, integer, or double preci­
sion) that is produced by the execution of
the subprogram.

Assembler Requirements

This column gives the information necessary
to use the subprogram in an assembler lan­
guage program and, therefore, is of concern
to a FORTRAN programmer who wishes to use
the assembly language. This column is
divided as follows:

1. Registers. This column specifies the
floating-point registers used by the
subprogram to contain the function
value produced and may be followed by
one or more numbers in parentheses.
The numbers within parentheses specify
registers that are used for intermediate
computations within the subprogram.

2. Save Area. This column specifies the
minimum size of the save area. The
letter D indicates a double word, (for
example, 5D means five double words.

20 FORTRAN IV Programmer's Guide

Error Message

This column gives the message that is issue
when an argument is not within the valid
range. The message is written in the data
set associated with the system output. An
explanation of all error messages is given
in Appendix C.

USE OF ASSEMBLER LANGUAGE SUBPROGRAMS

This section provides information needeq to
prepare and use relocatable subprogram writ
ten in assembler language with a FORTRAN
job.

CALLED AND CALLING PROGRAMS

Any subprogram that is referred to by
another program is considered a called pro­
gram. If this called subprogram refers to
another subprogram then it is both a called
and calling subprogram. In Figure 12, for
example, if program A calls program Band
program B calls program C then:

1. A is considered a calling program by B.

2. B is considered a called program by A.

3. B is considered a calling program by C.

4. C is considered a called program by B.

There are three basic FORTRM~ job struc­
tures that can be formed using assernbler­
written subprograms in a FORTRAN job:

1. A FORTRAN program (or subprogram) call­
ing an assembler-written subprogram.

2. An assembler-written subprogram calling
a FORTRAN subprogram.

A

Calling
program
of B

B

Called
program
of A

Calling
program
of C

C

Called
program
of B

Figure 12. Called and Calling Programs

3. An assembler-written subprogram calling
another assembler-written subprogram.

From these combinations, more complicated
structures may be formed. For example, a
FORTRAN program can call an assember­
written subprogram which then could call
another assembler-written subprogram.

The Disk and Tape Operating Systems
FORTRAN IV has established certain conven­
tions which must be considered when giving
and returning control to assembler-written
subprograms. These conventions, called
linkage conventions, are described.

FORTRAN LINKAGE CONVENTIONS

When a FORTRAN subprogram calls another
FORTRAN subprogram, certain save and return
routines are generated in addition to a
calling sequence that actually transfers

Entry •
Save Routine

User-Wri tten
Subprogram

Calling Sequence
to Another
Subprogram

Remainder of
User-Written
Subprogram

Return Routine

Paramater List
Area

control. Figure 13 shows a typical sub-
program configuration generated by a calling Figure 13. Calling Subprograms Configuration
subprogram.

Assembler-written subprograms need not
be constructed with save and return routines
exactly as the FORTRAN system generates
them; However, there are basic conventions
of the FORTRAN system to which the assembler
programmer must adhere. These conventions
include:

1. Utilizing the proper registers in
establishing a linkage.

2. Reserving a parameter area in the call­
ing program in which the called program
may refer to the parameter list.

Register
Register Name Contents Number

3. Reserving a save area in which the
registers used in the linkage may be
saved.

Register Use

The Disk and Tape Operating Systems FORTRAN
IV has assigned roles to certain registers
used in linkages. Figure 14 specifies the
fucntion of each linkage register.

0 Result Register Used for function subprograms only. The result is
returned in general or floating-point register 0,
depending on the type of function (e.g., integer,
real, and double-precision). For subrouti ne sub-
programs, the result (s) is returned in the variables
specified by the programmer.

1 Parameter List Register Address of the parameter I ist passed to the called
program.

13 Save Area Register Address of the area reserved by the program being
executed (called or call ing) in which the contents
of certain registers are stored.

14 Return Register Address of the location in the calling program to
which control should be returned after execution
of the called program.

15 Entry Point Register Address of the entry point in the called program.

-

Figure 14. Linkage Registers

Building FORTRAN Programs 21

Parameter Area

Every assembled subprogram that calls
another subprogram must reserve an area of
storage (parameter area) in which the
parameter list used by the called subpro­
gram is located. Each entry in the param­
eter area occupies four bytes at a full­
word boundary.

The first byte (bits 0 through 7) of
each entry in the parameter area contains
zeros. However, bit 0 may contain 1 to
indicate the last entry.

The last three bytes of each entry con­
tain the 24-bit address of the argument.

:A parameter may be one of the following:

1. The address of a variable.

2. The address of the first element in an
array.

3. The address of the word containing the
address of a subprogram.

Save Area

An assembled subprogram that calls another
subprogram must reserve an area of storage
(save area) in which certain registers
(i.e., those used in the subprogram and
those used in the linkage to the subpro­
gram) are saved.

22 FORTRAN IV Programmer's Guide

The maximum amount of storage reserved
by the subprogram is 9 double words.
Figure 15 shows the layout of the save area
and the contents of each word.

An assembled subprogram which does not
call another subprogram need not establish
a save area. However, if registers 13 or
14 are used by the subprogram, that subpro­
gram should save their contents in a de­
sired location and restore them before
returning control to the calling program.

Sample Calling Subprogram Linkage

Figure 16 shows the linkage conventions used
by an assembled subprogram that calls
another subprogram.

The coding does not have to conform ex­
actly to that shown in Figure 16. However,
the linkage should include:

1. The calling sequence by which an
assembled subprogram may reference
another subprogram.

2. The save and return routines by which
the appropriate save area is establish­
ed and control is returned to the call­
ing program.

3. The out-of-line parameter area by which
an assembled subprogram may pass param­
eters. (An in-line parameter area may
be used instead; see the section, In­
line Parameter Area.)

AREA (word 1) ----+-r- _-,
This word is a part of the standard linkage convention established under $ystem/360. The space I
must be reserved for proper addressing of the succeeding entries. However, an assembled I
program may use the space for any desired purpose. ,

AREA+4 (word 2) ---~~ -,
The address of the previous save area; that is, the save area of the subprogram that called I
this one. I

----------------~
The address of the next save area; that is, the save area of the subprogram to which this sub- I
program refers. I

AREA+12 {word 4)------I~ ----------------------------1
I The contents of register 14 containing the address to which return is made. ,

AREA+16 {word 5)------I·~1 -------------------:----,
I The contents of register 15 containing the address to which entry into this subprogram is made. I

AREA+8 (word 3) ---~

AREA+20 {word 6)----.~1f- ----------------------------~
I The contents of register 0 I
I I
I I

AREA+24 (word 7) --...... ·~I -----------------------------------i
I The contents of register 1 I
I I
I I

AREA+28 (word 8) -----1J I--~ l The contents of register 2 I
I I
I I
r------~-----------------------------------I
I I
I I
I I l __ J
I I
I I
I I
I I
~---~
I I
I I
I I

AREA+68 {word 18)--.... ·+1 ---1
I The contents of register 12 I
I I
I I L ___ ~

Figure 15. Save Area Layout and Contents

Building FORTRAN Programs 23

deckname START 0
EXTRN name

USING * ,2

* Save Routine
STM 14,r1,12(13)

*
*

LR 2,15
LR r2,13

*
*

LA 13,AREA
*

ST 13,8(0,r2)
*

ST r 2 ,4(0,13)

*
*

BC 15,prob 1
AREA DS 9D
*
prob 1 User-written program

* Calling Sequence
LA 1,ARGLST
L 15,ADCON
BALR 14,15

The contents of registers 14, 15 and 0 through r1
are stored in the save area of the calling program
(previous save area). r1 is any number from 0
through 12.
Loads the entry point into the base register.
Loads register 13, which points to the save area
of the calling program, into any general register,
r 2 , except 0 and 13.
Loads the address of this program's save area into
register 13.
Stores the address of this program's save area into
word 3 of the save area of the calling program.
Stores the address of the previous save area (i.e.,_
the same area of the calling program) into word 2
of this program's save area.

Reserves 9 double words for the save area. This is
the last statement of the save routine.

statements

First statement in calling sequence.

* Remainder c£ user-written program statements

* Return Routine
L

*
LM

*
L

*
MVI

*
*

BCR
ADCON DC

* Parameter Area
ARGLST DC

DC

DC
DC

13,AREA+4

2 ,r1 ,28 (13)

14,12(13)

12(13),X'FF'

15,14
A(name}

AL4 (arg 1)
A14 (arg2)

x' 80'
AL3 (argn)

First statement in return routine. Loads the address
of the previous save area back into register 13.
The contents of registers 2 through r1 are restored
from the previous save area.
Loads the return address, which is in word 4 of the
calling program, into register 14.
Sets flag FF in the save area of the calling program
to indicate that control has returned to the calling
program.
Last statement in return routine.
Contains the address of subprogram name.

First statement in parameter area setup.

First byte of last argument.
Last statement in parameter-area setup.

Figure 16. Sample Linkage Routines Used with a Calling Subprogram

24 FORTRAN IV Programmer's Guide

LOWEST LEVEL SUBPROGRAMS

If an assembled sUbprogram does not call
any other program (that is, if it is at the
lowest level), the programmer should omit
the save routine, calling sequence, and
parameter area shown in Figure 16. Figure
17 shows the appropriate linkage conven­
tions used by an assembled subprogram at
the lowest level.

IN-LINE PARAMETER AREA

The assembler programmer may establish an
in-line parameter area instead of an out­
of-line area. In this case, he may sub­
stitute the calling sequence and parameter
area shown in Figure 18 for that shown in
Figure 16.

Referencing COMMON

If an assembler-written subprogram is to
share data in COMMON with a FORTRAN program,
the assembler program must:

1. Define a blank common control section.

2. Load a general register with an address
constant containing the address of the
blank common control section.

This is done as shown in Figure 19.

deckname START 0
USING * ,15
STM 14,r,12(13)
•
•
•

User - written program statements
•
•
•

LM 2,r1,28(13)
MVI 12 (13) , X ' FF '
BCR 15,14

Note: If registers 13 and/or 14 are used in
the called subprogram, their contents
should be saved and restored by the
called subprogram.

Figure 17. Sample Linkage for Lowest Level
Subprograms

LA 14,RETURN
L 15,ADCON
CNOP 2,4
BALR 1,15
DC AL4 (arg1)
DC AL4(arg

2
)

DC X'80'
DC AL3 (argn)

RETURN NOP 0

ADCON DC A (prob1)

Figure 18. Sample of In-Line Parameter
Area

deckname START 0
•
•
•

L 4,COMADCON
•
•
•
•
•

COMADCON DC A (STARTCOM)
•
•
•
•

COM
STARTCOM DS D

Figure 19. Referencing COMMON

Building FORTRAN Programs 25

PROCESSING FORTRAN PROGRAMS

The three types of processing provided by
the Disk or Tape Operating System are com­
pilation, linkage editing, and execution.
Each type of processing may be done sepa­
rately in a job of its own or they may be
done together in one job. Examples of
combined processing are compiling and
linkage editing, linkage editing and execut­
ing, or compiling, linkage editing, and
exe~uting. Each type of processing is
described separately in this section and
includes examples of how it can be combined
with other types of processing.

COMPILATION OF A FORTRAN PROGRAM

The process of converting FORTRAN language
statements, which make up a source module,
into an object module is called compilation.
This translation of FORTRAN statements into
machine-language instructions, plus the
preparation of information required by the
Linkage Editor, is done by the FORTRAN
compiler. A brief description of the cards
contained in an object module is given in
Linkage Editing a FORTRAN Program.

SOURCE PROGRAMS

The statements that may be used in source
programs to be processed by the FORTRAN
compiler are described in the language
publication FORTRAN IV Specifications
mentioned as a prerequisite in the Preface.
Additional information regarding source
programs appears in the section Building
FORTRAN Programs. Program decks using
statements as described in these publica­
tions are the source modules for the FORTRAN
compiler.

An assortment of suggestions for im­
proving program efficiency is given in the
section Programming Suggestions. These
suggestions do not constitute additions or
changes in the FORTRAN language; they only
point out refinements in the usage of source
language statements.

CONTROL CARDS FOR COMPILATION

Compilation is specified by a control card
that causes the FORTRAN compiler to be
executed. Other control cards may be used
to specify what is to be done with the
results of the compilation. The examples
given in the sections Compilation with
Punched Output and Compilation for Linkage
Editing illustrate combinations of control
cards for various compilations.

26 FORTRAN IV Programmer's Guide

Note that the formats of the control
cards shown in the examples are given in
detail in Control Cards.

Compilation with Punched Output

If the object module is to be punched into
cards, the input to the compilation depends
on the type of card punch used for output.

EXAMPLE 1: The following cards, which
cause the object module to be punched, can
be used when a separate unit is used for
card punching. That is, it cannot be a
card read punch that is also used for in­
put to the compiler (see Example 2 for
combined reading and punching):

II JOB PRIME

II OPTION DECK,NOLINK

II EXEC FORTRAN

source program

1&

EXAMPLE 2: The following cards can be used
when output is to be punched using the same
card read punch (for example, IBM 1442)
from which the input is read:

II JOB PRIME

II OPTION DECK,NOLINK

II EXEC FORTRAN

source program

blank cards (for object module)

1*

1&

Note that the blank cards into which the
object module will be punched must be placed
between the END statement of the source
program (its last card) and the 1* or 1&
card.

Compilation for Linkage Editing

An object module(s) can be linkage edited
as part of the job in which the object
module is produced. When this is done, no
object module is punched into cards.

EXAMPLE 1: The following control cards
cause one object module to be linkage edited
immediately after compilation:

II JOB PRIME

II OPTION LINK

II EXEC FORTRAN

source program

1*

II EXEC LNKEDT

1&

EXAMPLE 2: The following control cards
cause two source modules to be compiled and
then linkage edited together as part of the
same job:

II JOB TWOPROGS

II OPTION LINK

II EXEC FORTRAN

source program A

1*

II EXEC FORTRAN

source program B

1*

II EXEC LNKEDT

1&

DIAGNOSTIC AIDS

The Disk and Tape Operating Systems FORTRAN
IV compiler produces diagnostic aids that
can be used by the programmer for locating
errors in his program. These aids consist
of messages and a storage map.

To give the programmer as much informa­
tion about program errors as possible dur­
ing each compilation, the compiler has been
designed to continue compilation as long as
possible in spite of source program errors.
If an error is encountered during the proc­
essing of a source statement, the compjler
flags the error and attempts to skip the
portion of the statement that is in error
and compile the remainder of that statement.
This technique is particularly applicable
to specification (nonexecutable) statements
such as a DIMEMSION statement. Similarly,
the compiler continues processing a program
even when entire source statements must be
ignored because of errors in them. Although

any syntactic error in the source program
will ultimately result in the termination
of the compilation, the compiler continues
until all source program statements have
been inspected and an attempt has been made
to allocate storage for all variables in
the program. Therefore, the programmer
receives complete diagnostic information
for each compilation of his source program.

Whenever a source program error(s) causes
compilation to be terminated, a message is
printed on the listing before any object
program cards are punched. (This message
is printed even if no listing was requested
with the compilation.)

Diagnostic Messages

Diagnostic messages are printed on the
source program listing, which is produced
by the compiler when requested in an OPTION
card. There are two kinds of diagnostic
messages: summary error messages and state­
ment error messages. All of the messages
are explained in Appendix C. The following
sections describe the appearance of the
messages in the source program listing.

SUMMARY ERROR MESSAGES: These are printed
at the end of the source program listing;
that is, following the listing of the source
program cards and the statement error mes­
sages (if any). Summary error messages
indicate errors that the compiler cannot
associate with a specific source program
statement. For example, undefined labels
are listed following an appropriate summary
error message (see Figure 20).

STATEMENT ERROR MESSAGES: These are printed
following the source program statement that
contains the error to which the message
refers.

When a source program listing is re­
quested, one FORTRAN source card is printed
on each line. If the source card contains
an error(s), the line below it is used to
indicate the position of the error(s) with­
in the statement. A dollar sign ($) is
pri"nted under each position when an error
is detected by the compiler. Depending
upon the type of the error, the dollar sign
will appear under one of the following:

1. The character or location causing the
error.

2. The location at which a character is
missing.

3. The character preceding the one causing
the error.

For examples of the placement of the
dollar sign, refer to Sample Source Program
Listing.

Processing FORTRAN Programs 27

One or more lines that follow the line
containing the dollar sign error markers
are used for the printing of statement
error messages. Up to six error messages
are printed on each line. Each error mes­
sage is preceded by a number separated from
the message by a right parenthesis. The
number specifies which dollar sign (count­
ing from left to right) identifies the
error stated in the error message.

Note: If a dollar sign appears following
a comment card(s), the error refers to
the preceding noncornrnent statement.

Card
Number

1
2

3
4
5
6

7
8
9

10
11

12
13

14
15

16
17

18
19
20
21

22

23

00001

00001

SYMBOL
A
112345

SYMBOL
X

®

Sample Source Program with Storage Map

Figure 20 shows a sample of a source pro­
gram listing with a corresponding storage
map. This sample program has forced errors

II JOB ERRSAMP
II OPTION LIST,LINK
II EXEC FORTRAN

DISK OR TAPE OPERATING SYSTEM FORTRAN

PRIME NUMBER PROBLEM

360B-FO-409 19

C
REAL Z(SI X(41

$
011 COMMA

100 WRITE (3,81
8 FORMAT (S2H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 10001

119X,lH1/19X,lH2/19X lH31

011 SYNTAX

1 B 1 1=5
S

3 A=I
102 A=SQRTf AI
103 J=A
104 DO 1 K=3,J,2
105 L=I1234S K1234S

$
011 NAME LENGTH

106IF(L*K-Ill,2,4
CONTINUE

$

011 LABEL

011 LABEL

011 SYNTAX

011 SYNTAX

107 WRITE (3,51 I
FORMAT (1201

$

2 1= 1+2
108 IF(1000-I17,4

$

WRITE (3,9)
9 FORMAT (14H PROGRAM ERRORI
7 WRITE (3,61
6 FORMAT (31H THIS IS THE END OF THE PROGRAM

S

100 STOP
$

01 I DUP. LABEL
END

03110/66 FORTMAIN

UNCLOSED DO LOOP TARGETS

00004

LOCATION
OOSC
0070

LOCATION
0074

00005

SYMBOL
1

SYMBOL
Z

LOCATION
0060

LOCATION
0084

UNDEFINED LABELS

SCALARS

SYMBOL LOCATION SYMBOL
J 0064 K

ARRAYS

SYMBOL LOCATI ON SYMBOL

COMPILATION TERMINATED

0002

LOCATION
0068

LOCATION

SYMBOL LOCATI ON
L 006C

SYMBOL LOCATION

Figure 20. Sample Source Program with Storage Map

28 FORTRAN IV Programmer's Guide

I

to illustrate the appearance of diagnostic
nessages. The program used to create this
sample listing is the same as the one shown
in Appendix A, with errors inserted to pro­
juce some of the error messages listed in
I\.ppendix c.

The following list indicates the types
:::>f errors shown in ® of Figure 20.

Card
Number

2

6

11

13

15

17

21

22

Error

There is a comma missing

Statement number is not
numerical

An operator missing, causing
two variables to be treated
as a single name giving the
NAME LENGTH message

Statement number is missing

FORMAT statement must be
numbered

IF statements must have three
branch points

Right parenthesis missing

Duplicate statement number

~ of Figure 20 shows a storage map for
the above sample program. In the sample
program, there is no statement numbered 1.
Since statement number 1 is referred to in
a DO statement, the first message under
QNCLOSED DO LOOP TARGETS is produced.
Statement number 1 is also referred to in

I

02/15/66 FORTMAIN

SCALARS

an IF statement that caused the message
under UNDEFINED LABLES to print out. State­
ments 4 and 5 are also undefined.

'Diagnostic Storage Map

The compiler also prints a storage map as a
disgnostic aid. The storage map indicates
the storage locations.assigned to each vari­
able, the subroutines called within the
program, and the locations assigned to each
numbered source program statement. Figure
21 is a sample storage map of the program
shown in Appendix A.

The numbers printed in the storage map
are in decimal and hexadecimal form. The
numbers showing locations are in hexadecimal
form. The two numbers showing the amount
of common and the amount of core are in
decimal form. The symbol locations shown
on the storage map are relative to the
ADDRESS BASE TABLE number. The statement
locations are relative to O. To find the
absolute location of a symbol, the base
address of the program (assigned by linkage
editor) is added to the relative address.

LINKAGE EDITING A FORTRAN PROGRAM

The process of preparing one or more object
modules for execution is called linkage
editing. To prepare a program phase, which
is the output of a linkage editing opera-'
tion, the Linkage Editor uses information
contained in the control dictionaries that
are a part of every object module.

0002

SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
I 006C A 0070 J 0074 K 0078 L 007C

CALLED SUBROUTINES

IJTAPST IJTACOM IJTSSQT SQRT

LABEL LOCATION LABEL LOCATION LABEL LOCATION LABEL LOCATION LABEL LOCATION
00100 0078 00008 0088 00101 0008 00003 OOEO 00102 '0100
00103 010E 00104 012C 00105 0134 00106 0144 00001 015E
00107 0172 00005 0190 00002 019A 00108 01A6 00004 018C
00009 0100 00007 01E8 00006 01FC 00109 0226

COMPILATION COMPLETE AMOUNT OF COMMON 000000 AMOUNT OF CORE 000692 ADDRESS BASE TABLE 0200

figure 21. Storage Map

Processing FORTRAN Programs 29

Each object module consists of four
groups of cards that are identified by a
special character in column 1 and an iden­
tifier in columns 2 through 4. The contents
of each group of cards and the order in
which the groups must be read is as follows:

Identifier Type of Card(s)

ESD External Symbol Dictionary Cards

TXT Text Cards (machine instructions)

RLD Relocation Dictionary Card

END End Card

The control dictionaries contain infor­
mation that the Linkage Editor requires for
producing a program phase. For a more de­
tailed description of the cards produced
by the Linkage Editor, refer to the publi­
cation System Control and System Service
Programs mentioned in the Preface.

CONTROL CARDS FOR LINKAGE EDITING

An EXEC card specifying the execution of
LNKEDT is the only card required to produce
a program phase. However, other control
cards used in the same job can determine
what is linkage edited. The examples illus­
trate combinations of control cards for
various linkage editing operations.

Details regarding the formats of the
various control cards are given in Control
Cards.

Linkage Editing One Object Module

The following cards cause the linkage edit­
ing of one object module into one program
phase:

II JOB PRIME

II OPTION LINK

}6INCLUDE

object module

1*

II EXEC LNKEDT

1&

30 FORTRAN IV Programmer's Guide

Linkage Editing Two Object Modules

The following cards cause two object mod­
ules to be linkage edited into one program
phase:

II JOB AANDB

II OPTION LINK

}6INCLUDE

object module for A

object module for B

1*

II EXEC LNKEDT

1&

Linkage Editing Multiple Object Modules

A job can specify that more than one obj'ect
module be linkage edited to form one pro­
gram phase.

EXAMPLE 1: The following cards cause too
source modules to be compiled and linkage
edited into one program phase:

II JOB AANDB

II OPTION LINK

II EXEC FORTRAN

source program A

1*

II EXEC FORTRAN

source program B

1*

II EXEC LNKEDT

1&

FORTRAN PROGRAM EXECUTING CONSIDERATIONS

Execution is the process of obtaining a
program phase, loading it into main storage,
and executing the machine language instruc­
tions contained in that program phase. The
program phase to be executed is specified
in a job control card. Execution of the
program phase occurs under control of the
Supervisor and Job Control.

JOB CONTROL CARDS FOR EXECUTION

The number of control cards required to
execute a program depends upon:

1. The number of program phases in the
program.

2. Whether execution is to be done as a
separate job or as part of a job.

3. Whether or not data for the program is
to be read from the same device as the
job control cards.

Examples of combinations of control
cards for program execution under various
conditions are given. Details regarding
the formats of job control cards appear in
Control Cards.

Execution as a Separate Job

These examples assume that the FORTRAN
source program has been previously compiled
and linkage edited and placed in the core­
image library.

EXAMPLE 1: The following cards cause the
execution of a program name PRIME from
SYSRES:

II JOB PNUMBERS

II EXEC PRIME

1&

EXAMPLE 2: The following cards cause the
sequential execution of three programs
within a single job:

II JOB REASONAN

II EXEC CREACT

II EXEC LREACT

II EXEC SUMSQS

1&

EXAMPLE 3: The following cards cause the
execution of a job consisting of three pro­
grams using data contained among the job
control cards for two of the programs:

II JOB RESNAN

II EXEC CAPAC

data for CAPAC

1*

II EXEC INDUCT

data for INDUCT

1*

II EXEC PATHAG

1&

The programs will be executed in the
order CAPAC, INDUCT, and PATHAG.

Execution as Part of a Job

These examples assume that at least one of
the program phases to be executed is com­
piled and linkage edited as part of the
job.

EXAMPLE 1: The following cards cause the
compilation, linkage editing, and execution
of a source program:

II JOB PRIME

II OPTION LINK

II EXEC FORTRAN

source program

1*

II EXEC LNKEDT

II EXEC

1&

Processing FORTRAN Programs 31

EXAMPLE 2: The following cards cause the
compilation, linkage editing, and execution
of one program and the execution of another
program (both use data contained among the
job control cards):

II JOB XEQPROGA

II OPTION LINK

II EXEC FORTRAN

source program for PROGA

1*

II EXEC LNKEDT

II EXEC

data for PROGA

1*

II EXEC PROGB

data for PROGB

1&

EXAMPLE 3: The following cards cause action
similar to that for Example 2, except that
the program compiled as part of the job is
to be executed second:

II JOB XEQPROGB

II OPTION LINK

II EXEC FORTRAN

source program for PROGB

1*

II EXEC LNKEDT

II EXEC PROGA

data for PROGA

1*

II EXEC

data for PROGB

1&

EXECUTION TIME INTERRUPTIONS AND ERRORS

The execution of an object program may be
discontinued because an interruption caused
by the computer has occurred, or an error
in the argument of a subprogram has been
detected.

32 FORTRAN IV Programmer's Guide

Interruptions

An interruption occurs when the computer
det'ects that either an invalid ari thmetic
operation has been attempted, or the result
of an arithmetic operation cannot be fully
contained in a floating-point register.
These interruptions are due specifically to
one of the following conditions:

1. Exponent overflow exception.

2. Exponent underflow exception.

3. Divide exceptions.

An exponent overflow exception is rec­
ognized when the result of a floating point
addition, subtraction, multiplication, or
division is equal to or greater than 16 63
(approximately 7.2 x 10 75).

An exponent underflow exception is rec­
ognized when the result of a floating point
addition, subtraction, multiplication, or
division is less than than 16-63 (approxi­
mately 5.4 x 10-79).

A division exception is recognized when
an attempt to divide by zero is made.

When any of these interruptions occur,
an indicator is set and a message is wriuten
~in the data set used for system output (see
,message number 225). After the interrup­
tion has been handled, the execution of the
object program continues from the point at
which the interruption occurred.

Errors

The execution of the object program is
terminated and control returned to the DOS
or TOS supervisor whenever an argument
cannot be handled by a mathematical sub­
program. These subprograms do not check
for errors in the argument (such as:
wrong type, invalid characters, wrong
length, etc.) and, therefore, a computation
done with an erroneous argument produces an
unpredicatable result. However, some
mathematical functions require that the
argument be within a specific range (see
Figures 8 through II). If an argument is
not within the valid range, a message (see
Appendix C) is written in the data set used
for system output, and control is returned
to the DOS or TOS supervisor. For example,
an attempt to take the square root of a
negative number is regarded as an error.

FORTRAN UNIT ASSIGNMENT

In a FORTRAN source program, input and out­
put devices are referred to by a logical
unit number. By using this form of

reference, an object program compiled from
a FORTRAN source program is not dependent
upon the availability of any specific input/
output device. Therefore, an available
device can be assigned for use by the ob­
ject program at execution time.

The assignment of available input/output
devices is done by the computer operator at
execution time. To make the assignment,
the operator must know which symbolic units
of the Disk or Tape Operating System are to
be used. There is a fixed correspondence
between these symbolic units and the logic
unit numbers used in a FORTRAN source pro­
gram. Figure 22 shows the DOS or TOS sym­
bolic unit name for each FORTRAN logical
unit. The FORTRAN programmer references
input/output devices by logical unit num­
bers. However, the computer operator must
assign the input/output devices to the DOS
or TOS by their equivalent symbolic unit
names.

FORTRAN DOS or TOS Disk File Type of Device
Unit Symbolic NAME Permitted
Number Unit Name

For example, if a FORTRAN program reads
input data from logical unit 5, the program­
mer might instruct the computer operator to
IImount the input data tape on SYS002 11

• To
obey this instruction, the operator would
mount a tape on an available magnetic tape
unit and indicate to the DOS or TOS that the
unit he selected is to be used as SYS002.
The operator would then mount the tape con­
taining the input data on the unit selected
to by SYS002. During the execution of the
FORTRAN object program, all references to
logical unit 5 will refer to the tape unit
selected by the computer operator. In the
listing that shows the control cards used
for a job, the units assigned by the op­
erator using control cards will appear in
// ASSGN cards located between the JOB card
and the EXEC card.

There are several FORTRAN logical unit
numbers that can be, assigned only to spe­
cific types of units. These units (1, 2, 3,

Type of
BACKSPACE,
END FILE,

Operation and REWI ND
Permitted

Permitted

1 SYSIPT None Card Reader or Tape Unit Input only No

2 SYSPCH None Card Punch or Tape Unit Output only No

3 SYSLST None Printer or Tape Unit Output only No

4 SYSOOl IJSYS01

5 SYSOO2 IJSYS02

6 SYSOO3 IJSYS03
Yes for Tape Units

7 SYS004 I JSYS04
No for Punch Card

8 SYSOO5 IJSYS05 Tape Units Devices
or

9 SYS006 I JSYS06 Punch Card Devices Input and Output Yes for Sequential

t
or Disk files

10 SYSOO7 IJSYS07 Disk Storage Units
No for Direct Access

11 SYS008 IJSYS08 Files

12 SYS009 I JSYS09

13 SYSOlO IJSYS10

14 SYS0l1 IJSYSll

15 SYSLOG None Console Typewriter or Output only No
Printer

Figure 22. Devices Assigned to FORTRAN Units

Processing FORTRAN Programs 33

and IS} and their specified uses are shown
in Figure 22. For example, an attempt to
read input data from logical unit 3 will
result in program termination.

The control operations BACKSPACE, END
FILE, and REWIND apply to tape files and
disk files; they have no meaning for files
on other devices. However, as shown in
Figure 22 these control operations are not
permitted for FORTRAN logical units 1, 2,
and 3. For example, if a FORTRAN program
uses logical unit 3 for tape output, an
attempt to backspace the tape will result
in termination of the job.

Execution of Control Commands

Under certain conditions REWIND, BACKSPACE,
and END FILE statements are not executed.
Whether or not they are executed depends
upon the execution of a READ or WRITE state­
ment preceding them. Before a REWIND or
BACKSPACE statement can be executed, a
READ, WRITE, or END FILE statement for that
file must have been executed. One of these
statements must be executed first so that
the Disk or Tape Operating System can deter­
mine the type of device being used for the
file and thereby determine what statements
are legal for that device.

If a READ, WRITE, or END FILE statement
has not been executed for a file when a
REWIND or a BACKSPACE statement for that
file is encountered, the statement will be
ignored; that is, no attempt to rewind or
backspace the file will be made and no mes­
sage will be produced if the operation is
not valid for the logical unit.

Execution of END FILE

An END FILE statement will be ignored if it
is preceded by the execution of a READ
statement for that file. For tape files,
if the END FILE statement follows a WRITE
statement or is the first statement refer­
ring to the file, a tapemark will be written.
For sequential disk files, the END FILE
statement causes an end-of-file record to
be written. An END FILE statement referring
to a direct access file is not legal.

Execution of REWIND

Unless a REWIND statement is preceded by
the execution of a READ, WRITE, or END FILE
statement, it is ignored. If the statement
preceding the REWIND statement was a READ
or END FILE statement, the rewinding op­
eration is done immediately. If a WRITE
statement preceded the REWIND statement, a
tapemark (for tape files) or an end-of-file

34 FORTRAN IV Programmer's Guide

record (for sequential disk files) is
written before the rewinding operation
occurs.

After the execution of a REWIND state­
ment, the file is positioned at the begin­
ning of the first data record in the file;
that is, the next record read from the file
will be the first data record in the file
or the next record written will become the
first data record in the file.

If a REWIND statement is illegal for the
device (see Execution of Initial READ and
WRITE and Figure 22), an error message is
issued and the program is terminated.

Execution of BACKSPACE

Unless a BACKSPACE statement is preceded
by the execution of a READ, WRITE, or END
FILE statement, it is ignored. If the
statement preceding the BACKSPACE statement
was a WRITE statement, a tapemark (for the
tape files) or an end-of-file record (for
sequential disk files) is written and a
backspace operation occurs. (Note that
everything is positioned just as it was
before these operations occurred. These
steps are taken to ensure that the end of a
sequential file will always be marked.)
After these steps have been taken or if the
statement preceding the BACKSPACE statement
was a READ statement, the Disk or Tape
Operating System checks the record count
of the file. If the record count is zero
(indicating that the next record to be
read from or written into the file will be
the first data record of the file), a warn­
ing message is issued. If the record count
is not zero, the file is backspaced one
logical record.

After the execution of any BACKSPACE
statement, the file is positioned at the
beginning of a logical record. Backspacing
is done according to logical records to
agree with READ and WRITE operation, which
read or write logical records.

If a BACKSPACE statement is illegal for
the device (see Execution of Initial READ
and WRITE and Figure 22), an error message
is issued and the program is terminated.

LENGTH OF LOGICAL RECORDS: The relation
betwee~ the length of logical records and
physical records depends upon whether or
not reading and writing are done according
to a FORMAT statement. If a FORMAT state­
ment is used, logical records and physical
records are the same length.

The following chart shows the maximum
length of a physical record read or written
by FORTRAN programs for various I/O devices.
They are:

Device

Card Reader
Card Punch
Printer

Magnetic Tape
Disk

Sequential Access
Direct Access

Number of Bytes

80
80
Number of print
positions

255

255
As specified in the DA
statement and must be
less than 1726.

When a FORMAT statement is not used, a
logical record may contain more than 255
bytes and, therefore, may comprise more
than one physical record. Because a READ
or WRITE statement processes logical rec­
ords and can produce more than one physical
record under these conditions, the execution
of the BACKSPACE statement has been de­
signed to backspace over a logical record.

PROGRAMMING FOR A CARD READ PUNCH

If the programmer intends to use the IBM
1442 Card Read Punch for both input and
output, the programming technique given
should be studied. If in anyone source
program a card read punch is to be used only
for input or only for output, no special
programming techniques need be followed.
That is, programming is the same as for a
separate card reader or card punch.

Special programming techniques are re­
quired when using a card read punch because
the cards from which data is read and into
which data is punched are fed from the same
hopper. Figure 23 shows that the cards
travel from the input hopper through the
read station and then through the punch
station to an output stacker.

Because a card passes through the punch
station after it passes the read station,
it is possible to punch output data into
the same card from which the input data was

Figure 23. Card Flow in a Card Read Punch

re~d .. The pr~gr~ing technique for doing
th1s 1S descr1bed 1n Punching Output into
Input Cards. However, the programmer may
not want the output data punched into the
cards that contain the input data (or
p7rh~ps there is~tqo much output data to
f1t 1nto the unus~ columns of the input
data cards). To punch data into blank cards
refer to Punching Output into Blank Cards. '

Note: The IBM 2520 Card Read Punch
must be either an input or an output
device.

Punching Output Into Input Cards

Input data is obtained by using a READ
statement, which causes one card from the
input hopper to pass through the read
station. After being read, the card stops
before the punch station. If a WRITE state­
ment is the next statement that refers to
the card read punch, the output data
specified by the WRITE statement will be
punched into the input card.

Assuming that logical unit 5 is a card
read punch, the following sequence of
statements will cause output data to be
punched into cards from which input data
was read:

10 FORMAT (IlO,F10.3,I5,F15.6)

11 FORMAT (T4l,4IlO)

READ (5, 10) I, A , J , B ,

no statements that refer to
. unit 5

WRITE (5,11) K,L,M,N

These above statements cause the data in
the first 40 columns of a card to be read
as variables I, A, J, and B. Then the data
'from variables K, L, M, and N is punched
into the last 40 columns of the same card.

Punching Output Into Blank Cards

If the output data is to be punched into
separate cards, rather than into the input
cards, blank cards must be inserted with
the input cards. That is, each input card
must be followed bya blank card. After
input data has been read from an input
card, that card must be moved past the
punch station without punching anything in

Processing FORTRAN Programs 35

it. Moving the input card past the punch
station will also place the blank card,
which follows it, in position to receive
the output data. The movement of the input
card past the punch station is done using
a dummy operation, which causes cards to
move but does not read or write data. The
dummy operation can be specified in the
FORTRAN source program in either of the
following ways:

1. By placing a READ statement with no
input list between the READ statement
that reads the input data and the WRITE
statement.

2. By placing a / character (slash) at the
end of the list of format codes in the
FORMAT statement that controls the
reading of the input data.

The following sequence of instructions
uses an extra READ statement to move an
input data card past the punch station:

10 FORMAT (I20,F20.3,IlO,Fll.7,E19.6)

11 FORMAT (4120)

READ (5,10) I,A,J,B,C

READ (5,10)

no statements that
refer to unit 5

WRITE (5,11) K,L,M,N

Assuming that logical unit 5 is a card
read punch, the statements in this section
cause the data in one aO-column card to be
read as variables I, A, J, B, and C. Then
the data from variables K, L, M and N is
punched in the blank card that follows the
input card.

The following sequence of instructions
uses a / character in the FORMAT statement
to move an input data card past the punch
station:

36 FORTRAN IV Programmer's Guide

10 FORMAT (I20,F20.3,IlO,Fll.7,E19.6,

11 FORMAT (4120)

READ (5,10) I,A,J,B,C

no statements that
refer to unit 5

WRITE (5,11) K,L,M,N

Read Only and Write Only

There are no special programming require­
ments for using a card read punch for
reading only or writing only. For example,
two READ statements in sequence will read
data from two cards in sequence. Similarly,
two WRITE statements in sequence will punch
data into two cards in sequence.

LABEL PROCESSING

In object programs produced by the FORTRAN
compiler, both volume and file labels for
tapes are processed by the Disk or Tape
Operating System, and, therefore, are not
made available to the FORTRAN programmer.
READ and WRITE statements in a source pro­
gram always refer to data records. For
most programs, therefore the programmer
need not be concerned about labels.

If it becomes necessary to do additional
label processing, access to the label rec­
ords must be made by using some other source
language (for example, assembler language),
not FORTRAN. Information regarding labels
and label processing is described in the
publications Data Management Concepts and
Supervisor and Input/Output Macros men­
tioned in the Preface.

For disk files the user .must provide the
Disk Operating System with label information
for the files he is using. The user must
supply the following statements:

VOL Statement

The volume statement is used when checking
or writing standard labels for a DASD or
tape file. A VOL statement must be used
for each file on a multifile volume. Its
format is:

II VOL SYSxxx,filename

SYSxxx Symbolic unit name.

filename The filename that appears in the
VOL statement is IJSYSdd where
dd is the ten and unit positions
of the Disk Operating System
symbolic unit.

DLAB Statement

The DASD-label statement (completed in a
continuation statement) contains file label
information for DASD-label checking and
creation. This statement must immediately
follow the volume (VOL) statement. The
DLAB statement and the continuation state­
ment have the following format.

II DLAB 'label fields 1-3', c
xxxx,yyddd,yyddd,'systemcode' [C,NDS]

'label fields 1-3' The first three fields
of the Format 1 DASD
file label are con­
tained just as they
appear in the label.
This is a 51-byte
character string, con­
tained within single
quotes and followed by
a comma. The entire
51-byte field must be
contained in the first
of the two statements.
Column 72 must contain
a continuation charac­
ter. The Format 1
label is shown in
Appendix D. Fields
1-3 are:

File Name. 44-byte
alphameric including
file ID and, if used,
generation number and
version number of
generation.

Format Identifier.
I-byte, EBCDIC 1.

File Serial Number.
6-byte alphameric,
must be the same as
the volume serial
number in the volume
label of the first or
only pack of the file.

xxxx

yyddd,yyddd

'systemcode'

NDS

XTENT Statement

Volume Sequence Num­
ber. This 4-digit
EBCDIC number is the
EBCDIC equivalent of
the 2-byte binary
volume sequence number
in field 4 of the
Format 1 label. This
number must begin in
column 16 of the con­
tinuation statement.
Columns 1-15 are
blank.

The File Creation
Data, followed by the
File Expiration Date.
These two 5-digit
numbers are the EBCDIC
equivalent of the
3-byte discontinuous
binary dates in fields
5 and 6 of the Format
1 label. yy is the
year (00-99), and ddd
is the day of the year
(001-366) .

System Code is a 13-
character string,
within single quotes.
For an output file, it
is written in field 8
of the Format 1 label.
It is ignored when
used for an input
file. This field is
never used by the
System/360 Disk Operat­
ing System label proc­
essing routines, but
is essential in order
for the files to be
processable by Operat­
ing System.

Indicates that a sin­
gle nonsequential
DASD label block is to
be composed. This is
never used in FORTRAN
programs.

The extent statement defines each area, or
extent, of a DASD file. One XTENT state­
ment must follow each DLAB statement. The
XTENT statement has the fo1.lo~ing format.

II XTENT type,sequence,lower,upper,
'serial no. ' ,SYSxxx [,B

2
]

type Extent Type. 1 or 3
columns, containing:

1 = data area (no
split cylinder)
128 = data area (split

Processing FORTRAN Programs 37

sequence

lower

upper

'serial no.'

SYSxxx

cylinder). If type
128 is specified, the
lower head is assumed
to be H1H2H2 from
lower, and the upper
head is assumed to be
H1H2H2 from upper.

Extent Sequence Num­
ber must always be
000.

Lower Limit of Extent.
9 columns, containing
the lowest address of
the extent in the form
B1C1C1C2C2C2H1H2H2'
where:

B1 = initially
assigned cell number.

a for 2311

Subcell number.

00 for 2311

C2C2C2 = cylinder
number.

000 to 199 for
2311

H1 = head block
position.

a for 2311

head number.

00 to 09 for

Currently assigned
cell number.

a for 2311

This field is optional.
If missing, Job Control
assigns B 1 =B 2

The following example illustrates how
the user can supply label information to
the Disk Operating System for disk files.

//j:6JOBj:6EXAMPLE

//j:6VOLj:6SYSOlO,IJSYSlO

//j:6DLABj:6'STRESSj:6INTERMEDIATEj:6 ••• j:6100635l',j:6 ••• j:6C
(Col. 54)---.:...1 (Col. 72)~

j:6 ••• j:6000l,66l85,66l85,'16Kj:6DOSj:6DISKj:6'
(Col. 16)---.J

//j:6XTENTj:6l,O,000006000,000006009,'00635l' ,SYSOIO

(Note: j:6 is equal to a blank)

PROGRAMMING CONSIDERATIONS FOR DIRECT
ACCESS FILES

When programming for direct access files,
the programmer must consider the following:

2311 1. The area defined by the ex~ents must

Upper Limit of Extent.
9 columns containing
the highest address of
the extent, in the
same form as the lower
limit. If Extent Type
equals 1 the H1H2H2must
be 009. 2.

Volume Serial Number.
This is a 6-byte
alphameric character 3.
string, contained
within single quotes.
The number is the same 4.
as in the volume label
(volume serial number)
and the Format 1 label
(file serial number) . 5.

This is the symbolic
address of the DASD
drive.

be preformatted. (Have the correct
number of record areas of the correct
size written on the disk.) This disk
area can be preformatted by using the
Clear Disk Utility program described in
the Utility Programs publication listed
in the Preface.

An unformatted WRITE statement may
cause only one physical record to be
written.

Any number of logical units may be
assigned to a single physical unit.

Only one direct access file may be
defined for a single logical unit in a
single program.

A file written by a direct access
WRITE may not be read by a sequential
READ statement.

38 FORTRAN IV Programmer's Guide

6. The associated variable will be updated The implicit inclusion is performed by
to the value of the expression appearing referring to the module name in a FORTRAN
after the quote mark in a FIND statement. program.

LIBRARY PROCEDURES

The DOS and TOS contain two libraries:
relocatable and core image. As their names
imply, relocatable ,object programs are
stored in the relocatable library, and
executable programs (core image format)
are stored in the core image library.

CATALOGING A PROGRAM IN THE RELOCATABLE
LIBRARY

To enter a program in the relocatable
library, the source program must be compiled
and and object program deck must be punched.
To obtain an object program deck the pro­
grammer must supply an OPTION card (see
OPTION card). Using the object program
deck in card form as input, the programmer
can enter the program into the relocatable
library by following the procedure given
under Librarian Functions: Relocatable
Library in the publication System Control
and System Service Programs mentioned in
the Preface.

EXAMPLE:

II JOB MATINVl Compile matrix invert
subroutine

II OPTION DECK,NOLINK

II EXEC FORTRAN

SUBROUTINE MATINV

END

1&

II JOB MATINV2 Catalog matrix invert
subroutine

I I EXEC MAINT

)zSCATALR MATINV

1&

object deck of MATINV

A module which has been cataloged to the
relocatable library may be included in a
program either implicitly or explicitly.

The explicit inclusion is performed by
use of the linkage editor statement INCLUDE.
The following example illustrates both
methods.

EXAMPLE:. PROG A is a FORTRAN main program.
PROG'B is a FOR~RAN subroutine. PROG A
references the name PROGB. Both PROGA and
PROGB have been cataloged to the relocatable
library. The following statements cause
the linkage editing of a program, PROGA,
and a subroutine, PROGB. The explicit
reference to PROGA will cause both PROGA
and PROGB to be included in the program.

II JOB EXAMPLE

I I OPTION LINK

INCLUDE PROGA

I I EXEC LNKEDT

I I EXEC

1&

CATALOGING A PROGRAM IN THE CORE IMAGE
LIBRARY

To enter a program that has been compiled
and linkage edited into the core image
library, the programmer must supply an
OPTION card specifying CATAL and a 1& card
following an EXEC card specifying LNKEDT.

EXAMPLE 1: The following cards cause two
source modules to be compiled and linkage
edited into a program. The program will
be cataloged into the core image library.

II JOB EXAMPLE

II OPTION CATAL

PHASE PROG,*

I I EXEC FORTRAN

source program

1*

II EXEC FORTRAN

source program

1*

II EXEC LNKEDT

1&

A

B

Processing FORTRAN Programs 39

~XAMPLE 2: The following cards cause
PROGA to be linkage edited and cataloged
into the core image library. PROGA has
been previously cataloged to the relocat­
able library.

II JOB RTOC

II OPTION CATAL

PHASE PROG,*

INCLUDE PROGA

II EXEC LNKEDT

1&
To execute a program that has previously

been cataloged to the core-image-library,
the following statements must be provided:

II JOB XCIL

II EXEC PROG

1&

40 FORTRAN IV Programmer's Guide

Various suggestions for improving the effi­
ciency of FORTRAN progr~s are given in
this section. Limitatio~ of the compiler
are also included.

PROGRAM OPTIMIZATION

By following the suggestions regarding the
use of FORTRAN statements as given in this
section, a programmer can optimize com­
pilation and execution speed, and can re­
duce the size of the object module.

ARITHMETIC STATEMENTS

These suggestions apply to programs using
exponentiation, square roots, and mixed­
mode expressions.

Exponentiation or Multiplication

The use of multiplication instead of the
exponential function is recommended when
the exponent is a small integer. For ex­
ample, the following two statements perform
the same function:

VOL
VOL

(4.*R*R*R)/3.
(4.*R**3)/3.

The first statement is more efficient
than the second 'because the exponential
function requires a library subprogram.
When multiplication is used, storage may be
conserved and both compiler and linkage
editor processing time may be decreased.

Square Root or Exponentiation

When the programmer wants to calculate the
square root, the square root library sub­
program should be used instead of the ex­
ponential function. For example, the fol­
lowing two statements specify the same
calculation:

HYPOT=SQRT(A*A+B*B)
HYPOT=(A*A+B*B) **0.5

The first statement is more accurate
than the second because the SQRT function
is faster and more accurate than the ex­
ponential function.

PROGRAMMING SUGGESTIONS

Mixed Mode Expressions

The mixed mode arithmetic expression is
provided to reduce errors because of unin­
tentional use of different modes in arith­
metic statements. However, when mixed mode
arithmetic statements are used, extra in­
structions are generated.

An in-line subprogram is generated to
perform changes in the mode of a variable.

The statements A=A+l and A=A+l.O produce
identical code. Thus, accuracy and speed
are also identical.

IF STATEMENTS

An arithmetic IF statement contains three
statement numbers to which branching can
occur. One of those numbers should be the
number of the statement immediately fol­
lowing the IF statement. This eliminates
unnecessary branching within the program
phase. For example, the following state­
ments minimize branching:

IF (A-B)20,30,30

30 A=O.

20 B=O.

This sequence of statements is more
efficient than the fo~lowing statement:

IF (A-B) 20,30,30

10 X=2.+Y

30 A=O.

20 B=O.

Programming Suggestions 41

DO LOOPS

The suggestions in this section apply to
DO loops containing unchanging variables,
unvarying subscripts, and subscript
calculations.

Unchanging Variables in DO Loops

Values for expressions that remain constant
within a DO loop should be calculated be­
fore entry into the loop, instead of cal­
culating the expression each time through
the loop. For example, in the following
statements the expression 2.0*(G+ALPHA)
must be calculated each time the DO loop
is executed:

DO 10 1=1,100

X(I)=2.0*(G+ALPHA)+Y(I)

10 CONTINUE

For greater efficiency, the following
statements should be substituted:

BETA=2.0*(G+ALPHA)

DO 10 1=1,100

X(I)=BETA+Y(I)

10 CONTINUE

Because the expression 2.0*(G+ALPHA) is
calculated only once, the execution time
is decreased.

,Unvarying Subscripts in DO Loops

Any subscripts that remain constant within
the range of a DO should not be used in the
DO loop. For example, in the following
statements a subscript calculation for Z(J)
if performed each time the DO loop is ex­
ecuted, even though Z(J) remains constant
for each execution of the loop:

DO 10 1=1,50

X(I)=Y(I)+Z(J)

10 CONTINUE

42 FORTRAN IV Programmer's Guide

By substituting the following statements,
only one subscript calculation is made for
Z(J), and execution time is decreased:

B=Z(J)

DO 10 1=1,50

X(I)=Y(I)+B

10 CONTINUE

Subscript Calculations in DO Loops

Extra subscript calculation within the
range of a DO should be avoided. For ex­
ample in the following statements two intri­
cate subscript calculations are made each
time statement 5 is executed:

DO 10 1=1,10

5 X(3*I+4)=Y(3*I+4,3*I+4)+B

10 CONTINUE

The DO loop should be rewritten as
shown in the following statements to reduce
the subscript calculation to simpler terms
and allow faster execution of the DO loop:

DO 10 1=7,34,3

5 X(I)=Y(I,I)+B

10 CONTINUE

READ AND WRITE STATEMENTS

These suggestions apply to READ and WRITE
statements that are used for arrays or that
contain subscript calculations.

Reading and Writing Arrays

To read or write an array, an implied DO in
a READ/WRITE statement should be used in­
stead of a DO loop. For example, five rec­
ords, each containing two values, are
written by the following statements:

10 FORMAT (F20.5,IlO)

DO 15 1=1,5

15 WRITE (5,10)A(I),J (I)

In the following statements, only one
record containing ten values is written:

10 FORMAT (5(F20.5,IlO»

WRITE(5,10) (A(I) ,J(I) ,1=1,5)

The use of an implied DO saves both pro­
gram phase execution time and space on the
input/output media.

If the entire array is to be read or
written, the array should be used instead
of an implied DO. The entire array is
written by the following statements:

20 FORMAT (5F20.5)

2 5 WRI T E (5 , 2 0) « A (I , J) , 1=1 , 1 0) , J = 1 , 1 0)

or

25 WRITE (5,20)A

The latter WRITE statement is preferred.

Subscript Calculations for READ or WRITE

Extra subscript calculation within the
range of an implied DO should be avoided
for the same reasons given in Subscript
Calculations in DO Loops. For example, the
following statements contain a complex sub­
script calculation:

2 FORMAT('0',10F12.6)

READ(1,2)A(3*I+l),I=1,10)

If the following statements are sub­
stituted, the subscript calculation is
simplified and the program phase execution
time is reduced:

2 FORMAT('O' ,10F12,6)

READ(1,2) (A(I) ,1=4,31,3)

PROGRAM STRUCTURE

These suggestions concern variables for
called programs, and the order of data in
common.

Variables for Called Programs

If a large number of variables are to be
passed among calling and called programs,
some of the variables should be placed in
the COMMON area. Consider the following
sequence of statements:

DIMENSION E(20),I(15)

READ (lO)A,B,C

CALL EXAMPL (A,B,C,D,E,F,I)

END

SUBROUTINE EXAMPL (X,Y,Z,P,Q,R,J)

DIMENSION Q(20) ,J(15)

RETURN

END

In the main program and subroutine EXAMPL,
time and storage are wasted by allocating
storage for variables in both the main
program and subprogram and also by the
subsequent instructions required to transfer
variables from one program to another.

The two programs should be written using
a COMMON area, as follows:

COMMON A,B,C,D,E(20),F,I(15)

READ (lO)A,B,C

CALL EXAMPL

END

SUBROUTINE EXAMPL

COMMON X,Y,Z,P,Q(20),R,J(15)

RETURN

END

Programming Suggestions 43

Storage is allocated for variables in
COMMON only once, and fewer instructions
are needed to cross-reference the variables
between programs.

Order of Data in COMMON

The efficiency in referencing data in
COMMON is affected by the order in which
the data appears. For the most efficient
usage of COMMON, variables and one dimen­
sional arrays should be the first items
of data in COMMON.

COMPILER RESTRICTIONS

Figure 24 shows the average number of source
statements that can be handled by the
FORTRAN compiler, and the size of the table
area used by the compiler. The table area
is used by the compiler to contain infor­
mation concerning variables, arrays, sub­
scripts, functions, data set reference
numbers, statement numbers, etc.

44 FORTRAN IV Programmer's Guide

Main Storage Average Number Table Area
Available of Source (in bytes)
(in bytes) Statements

10,000 200 1,500

24,000 2,000 15,000

50,000 6,000 32,380

204,800 6,000 32,380

Figure 24. Source Module Size Restriction

A listing of a FORTRAN program is shown.
This listing was obtained by specifing
LIST in an OPTION card. The listing shows
a program that contains no errors detect­
able by the FORTRAN compiler.

APPENDIX A: PROGRAMMING EXAMPLE

DISK OR TAPE OPERATING SYSTEM FORTRAN 360B-FO-409 10

C PRIME NUMBER PROBLEM
100 WRITE (3,8)

8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 10001
119X,lH1/19X,lH2/19X,lH3)

101 1=5
3 A=l

102 A-=SQRTCA)
103 J=A
104 DO 1 K=3,J,2
105 L=I/K
106 IF(L*K-I) 1 ,2,4

1 CONTINUE
107 WRITE (3,5)1

5 FORMAT (120)
2 1=1+2

108 IF(1000-I)7,4,3
4 WRITE (3,9)
9 FORMAT (14H PROGRAM ERROR)
7 WRITE (3,6)
6 FORMAT (31H THIS IS THE END OF THE PROGRAM)

109 STOP
END

02115/66 FORTMAIN

SCALARS

SYMBOL LOCATION SYMBOL LOCATION SYMBOL
I 006C A 0070 J

CALLED

IJTAPST IJTACOM I JTSSQT SQRT

lABEL LOCATION LABEL LOCATION LABEL
00100 0078 00008 0088 00101
00103 OlOE 00104 012C 00105
00107 0172 00005 0190 00002
00009 0100 00007 01E8 00006

lOCATION
0074

SUBROUTINES

lOCATION
0008
0134
019A
01FC

$4090001
$4090002
$4090003
$4090004
$4090005
$4090006
$4090007
$4090008
$4090009
$4090010
$4090011
$4090012
$4090013
$4090014
$4090015
$4090016
$4090017
$4090018
$4090019
$4090020
$4090021
$4090022

SYMBOL
K

LABEL
00003
00106
00108
00109

0002

lOCATION

LOCATION
OOEO
0144
01A6
0226

SYMBOL lOCATION
L 007C

lABEL lOCATION
00102 0100
00001 01SE
00004 01BC

COMP I lA TI ON COMPLETE AMOUNT OF COMMON 000000 AMOUNT OF CORE 000692 ADDRESS BASE TABLE 0200

Appendix A 45

APPENDIX B: FORTRAN LIBRARY SUBPROGRAMS

This section contains information to help
the programmer select the proper subpro­
gram for solving his problem.

DEFINITION OF SYMBOLS

The symbols used throughout this appendix
are:

Symbol

g (x)

f(x)

Explanation

The result given by the subprogram.

The correct extra precision result.

The symbols used in describing the effect
of an argument error on the accuracy of
the result given by the subprogram are:

Symbol Explanation

I f (x) - g (x) I
I f (x) I

The relative error of the result
given by the subprogram.

The relative error of the argument.

Elf (x) - g (x) I

The absolute error of the result
given by the subprogram.

~ The absolute error of the argument.

The symbols used in describing the accu­
racy of the result given by the subprogram
are:

Symbol

M(E)

M (e:)

Explanation

Max 1 f (x) - g (x) I

The maximum absolute error produced
during testing.

I f (x) - g (x) 1

Max 1 f (x) I

0" (e:) = /~Nl Li,1 f (Xi) f - g (Xi) 12
ji (x.) 1

1

The root-mean-square (standard
deviation) relative error.

MATHEMATICAL SUBPROGRAM DESCRIPTIONS

To facilitate quick reference, the follow­
ing description of the mathematical sub­
programs are arranged in the order in which
they appear on the FORTRAN system tape
supplied by IBM. The description of each
mathematical subprogram includes the:

1. Purpose.

2. Permissible entry points.

3. Symbolic name of the subprogram.

4. Range.

5. Accuracy.

6. Considerations that should be noted in
using the subprogram.

7. Method by which each subprogram is
derived.

8. Calling sequence.

ACCURACY

Because the size of a machine word is
limited, small errors may be generated by
mathematical subroutines. In an elaborate
computation, slight inaccuracies can accu­
mulate and become large errors. Thus, in
interpreting final results, the user should
take into account any errors introduced
during the various intermediate stages.

The accuracy of an answer produced by a
subroutine is influenced by two factors:

The maximum relative error produced 1. The accuracy of the argument, and
during testing.

r< (E) _/l L.I f (x .) - g (xi) I 2
U - N 11 1 1

The root-mean-square (standard
deviation) absolute error.

46 FORTRAN IV Programmer's Guide

2. The performance of the subroutine.

The Accuracy of the Argument

Most arguments contain errors. An error
in a given argument may have accumulated
over several steps prior to the use of the
subroutine. Even data fresh from input
conversion contain slight errors. Because
decimal data cannot usually be exactly
converted into the binary form required by
the processing unit the conversion process
is usually only approximate. Argument
errors always influence the accuracy of
answers. The effect of an argument error
on the accuracy of an answer depends solely
on the nature of the mathematical function
involved and not on the particular coding
by which that function is computed within a
subroutine. In order to assist users in
assessing the accumulation of errors, a
guide on the propagational effect of argu­
ment errors is provided for each function.
Wherever possible, this is expressed as a
simple formula.

The Performance of the Subroutine

The performance statistics supplied in
this appendix are based upon the assumption
that arguments are perfect (that is, with­
out errors, and therefore having no argu­
ment error propagation effect upon answers).
Thus the only errors in answers are those
introduced by the subroutines themselves.

For each subroutine, accuracy figures
are given for one or more representative
segments within the valid argument range(s).
In each case the particular statistics
given are those most meaningful to the
function and range under consideration.

For example, the maximum relative error
and standard deviation of the relative
error of a set of answers are generally
useful and revealing statistics, but use­
less for the range of a function where its
value becomes 0, since the slightest error
of the argument value can cause an unbound­
ed fluctuation on the relative magnitude of
the answer. Such is the case with sin (x)
for x near IT, and in this range it is more
appropriate to discuss absolute errors.

METHOD

Some of the formulas are widely known.
Others not so widely known are derived from
more common formulas. In such cases, the
steps leading from the common formula to
the computational formula are sketched with
enough detail so the derivation may be
reconstructed by anyone with a basic under­
standing of mathematics and with access to
the common texts on numerical analysis.

Any of the cornmon numerical analysis
texts may be used as a reference. One such
text is:

Hildebrand, F.B., - Introduction to
Numerical Analysis, McGraw-Hill
New York, N.Y., 1956.

Background information for algorithms
involving continued fractions may be found
in:

Wall, H.S., - Analytic Theory of
Continued Fractions, Van Nostrand,
Princeton, N.J., 1948.

ALOG Subprogram

PURPOSE: To compute the natural (ALOG) or
the common (ALOGIO) logarithm of a real
number.

ENTRY POINTS: ALOG and ALOGIO

MODULE NAME: IJTSLOG

RANGE: O<x

ACCURACY: The accuracy of the ALOG sub­
program is shown in Figures 25 and 26.

CONSIDERATIONS: Checking is done at ob­
ject time to ensure that the argument is
within the valid argument range; if it is
not, an error message is printed and ex­
ecution is terminated.

METHOD:

1. Wri te x = (16 P)(m) ,i6 ~ m < 1

q(E) M (E)
ARGUMENT ROOT -MEAN-SQUARE MAXIMUM
RANGE Absolute Absolute

ERROR ERROR

ALOG

0.5~ x ~ 1.5 8.62 x 10
-8 3.46 x 10- 7

ALOG10

0.5~x~1.5 4.78 x 10- 8
1.64 X 10- 7

These statistics are based on a uniformly distributed
argument sample.

Figure 25. ALOG Subprogram, Absolute Error

Appendix B 47

u(E) M (E)
ARGUMENT ROOT-MEAN-SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

ALOG

x outside 1.20 x 10- 7 8.32 X 10- 7

(0.5, 1.5)

ALOG10

x outside - 2. 17 X 10- 7 1.05 X HI 6

(0.5, 1.5)

These statistics are based on an exponentially
distributed argument sample.

Figure 26. ALOG Subprogram, Relative
Error

2. Define 2 constants a, b (a=base point,
2- b=a)

3.

4.

as follows:

If 1
16

If .! 8

If .! 2

Write z

1 =::; m <S'

1 =::; m <'2'

=::; m <1,

m-a
m+a

1
and I zi =::; "3

1
and b a = 16

1
and b a = 4"

a = 1 and b =

Then m = (a) (i~~),

4

2

O.

Now x =(2 LloP - b) (l+Z)
l-z Hence loge x

(l+Z)
l-z

(l+Z) . d' h Log e l-z 1S compute uS1ng t e

Chebyshev interpolation polynomial of l degree 4 in Z2 for the range 0 =::; Z2 =::; 9

The maximum relative error of this

approximation is 2- 27
•
e

5. Log10 X = (10g10 e) (loge x

The effect of an argument error is

CALLING SEQUENCE: Out-of-line.

SQRT Subprogram

PURPOSE: To compute the square root of a
real number.

ENTRY POINT: SQRT

MODULE NAME: IJTSSQT

RANGE: O=::;x

ACCURACY: The accuracy of the SQRT sub­
program is shown in Figure 27.

CONSIDERATIONS: Checking is done at object
time to ensure that the argument is within
the valid argument range. If it is not, an
error message is printed and execution is
terminated.

METHOD:

1. If x=Q, IX = o. Otherwise write x =
1

(16 2P)(m)where p is an integer and 256

Sm<l. Then IX = (l6 P)(/ffi) and p and 1m
are the exponent and the mantissa of
the answer respectively.

2. For the 1st approximation of /ffi, take
one of the following two hyperbolic
approximations of the form a + b/(c +
m) :

a.
1

For 16 =::; m < 1, the values a=

1 • 80 713 , b = -1. 57 7 27, c= O. 9 5 418 2
minimize the maximal relative
error £ 0 over the range while mak­
ing the exact fit at m=l. The
exact fitting at m=l minimizes
the computational loss of the
last hexadecimal digit for the
values of m slightly less than
1. £0<2- 5 • 44

U(E) M (E)
ARGUMENT ROOT -MEAN-SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

The full range 1.68 x 10- 7 8.70 X 10- 7

These statistics are based on an exponentially
distributed argument sample.

E '" 6 • In particular, if 6 is the minimal
round-off error of the argument, say(6}(10-e)
then E -(6)(10-). This means that if the
argument 1S close to 1, the relative error
can be very large, since the function value
there is very small. Figure 27. SQRT Subprogram, Relative

Error

48 FORTRAN IV Programmer's Guide

b. For 2;6 $ m <'h, the values a =
~

0.428795, b=-OJ. 0214398, c=O. 0548470
minimize (m1/B) (£0) over the range
where £0 denotes the relative error.

£ 0 < (2 -6. 5) (m -1 / 8)

3. Apply Newtown-Raphson iteration, Y = n+1

i (yn + ~n) twice to the 1st approxima-

1
tion Yo For 16 ~ m < 1, the final re-

lative error is theoretically less

-21.j..7 1 < 1
than 2 For 256 - m < 16' the

final absolute error is theoretically

less than 2-29 •

The effect of an argument error is
£",1/20

CALLING SEQUENCE: Out-of-line.

ATAN Subprogram

PURPOSE: To compute the principal value
(in radians) of the arctangent of a real
number.

ENTRY POINT: ATAN

SYMBOLIC NAME: IJTSTAN

RANGE: Any size real argument is accepta­
able to this subprogram.

ACCURACY: The accuracy of the ATAN subpro­
gram is shown in Figure 28.

q (E) M (E)
ARGUMENT ROOT-MEAN-SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

The full range 4.54 x 10- 7 9.75 X 10- 7

These statistics are based on tangents of uniformly

distributed numbers between -¥ and ~.

Figure -28~ ATAN Subprogram, Relative
Error

METHOD:

1. Reduce computation of ATAN(x) to the
case 0 $ x $1 by using Atan (-x) =

-Atan (x), Atan (1;1) = ~ - Atan IXI •

2. Reduce further to the case Ixl $ tan
150 = 0.26795 by Atan(x) 300 + Atan

I3x-l l/3""x-ll --- 1---1 $ tan 15° if tan 15° <
x+ 13 IX+ 131

x $ 1.
Here compute /Tx-l as (13"-1) x-l+x to
avoid the loss of significant digits.

3. For I xl $ tan 15°, use the approxim.ation
formula:

Atan (x) ~0.603l0579 - 0.OS1604S4x 2 +
X

0.55913709
x 2+l.40878l2

(*)

This formula can be obtained by trans­
forming the continued fraction:

.!.x2

Atan (x) = 1 1 x2 +.,;..5 ___ _
x -"3 5

-.L 2 yX
, after

-w

substi tuting (- ~~ x- 2 +

(4) (5) I (43
for w = (7) (7) (9) (7) (11)

-2) + X + •••

The original continued fraction can be
obtained by transforming the Taylor
series into a continued fraction form.
The relative error of the formula (*)
is less than 2~27.1 •

The effect of an argument error is
E'" 11 / (1+x2). For small x, £,... 0; and as x
becomes large, the effect of.o on £ diminishes.

CALLING SEQUENCE: Out-of-line.

TANH Subprogram

PURPOSE: To compute the hyperbolic tangent
of a real number.

ENTRY POINT: TANH

MODULE NAME: IJTSTNH

RANGE: Any size real argument is accepta­
ble to this subprogram.

Appendix B 49

ACCURACY: The accuracy of the TANH subpro­
gram is shown in Figure 29.

CONSIDERATIONS: The subprogram EXP is used
by this subprogram.

METHOD:

1. For Ixl::;; 2- 12 , give tanh x ~ x.

2. For 2- 12 < Ixl < 0.54931, use the
following fractional approximation:

tanh x x 2+35.1535
x = 1 - x2+45 .1842+105.4605

X2

This formula can be obtained by trans­
forming the continued fraction:

with an approximate value 0.0307 for
w.

The relative error of this approxima­
tion is less than 2- 27 .

3. For 0.54931::;; x <9.011, use tanh x =
1 - 2/(e 2x +l).

4. For 9.011 ~ x, use tanh x ~ 1.

5. For x ::;; -0.54931, use tanh x =

- tanh (-x).

6. The exponential subroutine is used in
the case 3 above.

The effect of an argument error is E""" (1
- tanh2 x)1'., 21'./sinh 2x. Thus, for small
x, E: '" 0, and as x gets larger, the effect
of 0 on E: diminishes.

CALLING SEQUENCE: Out-of-line.

EXP Suprogram

PURPOSE: To compute the value of "e"
raised to the power ofa real argument.

IT (E) M (E)
ARGUMENT ROOT -MEAN-SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

Ix I ~ 0.54931 1.66 x 10- 7 8. 12 X 10- 7

0.54931<lxl~5 7.53 x 10- 8 5.74 x 10- 7

These statistics are based on a uniformly distributed
argument sample.

Figure 29. TANH Subprogram, Relative
Error

50 FORTRAN IV Programmer's Guide

ENTRY POINT: EXP

MODULE NAME: IJTEXPN

RANGE: x<174.673

ACCURACY: The accuracy of the EXP subpro­
gram is shown in Figure 30.

CONSIDERATIONS: Chec"king is done at object
time to ensure that the argument is within
the valid argument range. If it is not, an
error message is printed and execution is
terminated.

METHOD:

1. If x< -180.218, give 0 as the answer.

2. If Ixl <2- 28 , give 1 as the answer.

3. Otherwise, divide x by loge2 and write
y = x/loge2 = 4a-b-d, where a, bare
integers, 0::;; b ~ 3, 0 ~ d < 1. Then
eX = 2 Y = (16 a) (2- b) (2- d)

4. Compute 2- d by the following fractional
approximation:

2-d ""

2d
1- 0.034657359d2+d+9.9545958-617.97227

d2+87.417497

This formula can be obtained by trans­
forming the well known continued
fraction:

e ~

z z z
2" "7 + 2"

The maximum relative error of this
approximation is 2- 29 .

5. Multiply 2- d by 2- b by a right shift,
and give the hexadecimal exponent of a
to obtain 2 Y .

IT (E) M (E)
ARGUMENT ROOT -MEAN-SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

Ixl~l 1.28 x 10- 7 4.65 X 10- 7

Ixl~170 1.17x 10- 7 4.69 x 10- 7

These statistics are based on a uniformly distributed
argument sample.

Figure 30. EXP Subprogram, Relative Error

6. Computations are carried out in fixed
point to insure accuracy.

The effect of an argument error is E", f:,. •

Since b =(8)(x),for the larger value of x,
even the round-off error of the argument
causes a sUbstantial relative error in the
answer.

CALLING SEQUENCE: Out-of-iine.

COS Subprogram

PURPOSE: To compute the trigonometric sine
(SIN) or the trigonometric cosine (COS) of
a real argument representing an angle (in
radians) .

ENTRY POINTS: COS and SIN

MODULE NAME: IJTSSCN

RANGE:

ACCURACY: The accuracy of the COS subpro­
gram is shown in Figures 31 and 32.

CONSIDERATIONS: Checking is done at object
time to ensure that the argument is within
the valid argument range. If it. is not, an
error message is printed and execution is
terminated.

METHOD:

1. Define z =(*) (I xl) Separate z into

the integer part q and the fraction

part r z = q + r

long form multiplication is used to
obtain accuracy.

2. If cosine is desired, add 2 to q. If
sine is desired and if x is negative,
add 4 to q.

q(E) M (E)
ARGUMENT ROOT-MEAN-SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

A

SIN 2.02xlO- 7 1.59xlO-6

Ixl < II
- 2 2.02xlO- 7 1.59xlO-6

These statistics are based on a uniformly distributed
argument sample.

Figure 31. COS Subprogram, Relative Error

This reduces the general case to the
computation of sin (x) for x ~ 0, since

cos (±x)

sin (-x) sin (II+x) .

3. Let qo == q mod 8.
sin(~r) Then for qo = 0, sin (x)

for qo 1, sin (x) cos (~)(l-r)

for qo 2, sin (x) cos (~r)

for q 0 3, sin (x) sin(~)(l-r)

for qo 4, sin (x) =-sin (* r)

for q 0 = 5, sin (x)

for q 0 6, sin (x)

for q 0 = 7, sin (x) = - sin(~)(l-r)

These formulas reduce the case to the

computation of (sin t r1) or cos(~r1)

(T (E) M (E)
ARGUMENT ROOT-MEAN-SQUARE MAXIMUM
RANGE Absolute Absolute

ERROR ERROR

SIN

II
Ixl ~2 5.55xlO- s 1.31x1o-7

1!< Ixl ~ 10
2

5.53xlO- s 1.41xlO- 7

10 < Ixl ~100 5.61xlO- B 1.46x10- 7

COS

O~ x~ II 5.A8xlO- B 1.47x1o- 7

-lO~x<O,II<x~ 10 5.67xlO- B 1.42xlO-7

10< Ixl ~ 100 5.61xlO- B 1.35xlO-7

These statistics are based on a uniformly distributed
argument sample.

Figure 32. COS Subprogram, Absolute Error

Appendix B 51

where r 1 = r or l-r O:s; r :s; 1

4. Sin (~r 1) and cos(~r 1) are computed

using the Chebyshev interpolation
polynomials of degree 3 in r2 for the
respective functions. The maximum
relative error of the sine polynomial
is 2- 28 .1 and that of the cosine
polynomial is 2- 2'f..6 •

The effect of an argument error is E-!J. .
As the argument gets larger, !J. grows, and
since the function value is periodically
dimishing, no consistent relative error
control can be maintained outside the prin­
cipal range:

(_ II.]I)
2.' 2 Similar observation

holds true for cosine as well.

CALLING SEQUENCE: Out-of-line.

DLOG Subprogram

PURPOSE: To compute the natural (DLOG) or
the common (DLOGlO) logarithm of a double­
precision number.

ENTRY POINTS: DLOG and DLOGIO

MODULE NAME: IJTLLOG

RANGE: O<x

ACCURACY: The accuracy of the DLOG Sub­
program is shown in Figures 33 and 34.

CONSIDERATIONS: Checking is done at object
time to ensure that the argument is within
the valid argument range. If it is not, an
error message is printed and execution is
terminated.

0- (E) M (E)
ARGUMENT ROOT-MEAN-SQUARE MAXIMUM
RANGE Absolute Absolute

ERROR ERROR

DLOG

0.5~ x~ 1.5 7.29xlO- 17 1.85xl 0- 16

DLOG10

0.5~x~1.5 3.09xlO- 17 8.23xlO- 17

These statistics are based on a uniformly distributed
argument sample.

Figure 33. DLOG Subprogram, Absolute Error

52 FORTRAN IV Programmer's Guide

METHOD:

1. Write x =(16P)·(2- q) (m)where p is the
exponent, O:S; q :s; 3 and 1/2 :s; m < 1.

2.

3.

4.

Define 2 constants a, b (a = base
point, 2- b = a) as follows:

If i ::; m < A a = i, b = 1

1
If 12 :s; m < 1, a = 1, b = 0

Obtain Z =(~) m+a (l+Z) Then m =(a) l-z and

\Z\ < 0.1716

Now x = 2'f.-q- b

(
l+Z)
l-z

(
l+Z)
l-z

(4p-q-b) loge2 + loge

(
l+Z) Log e l-z is computed by using the

Chebyshev interpolation polynomial of
degree 7 in Z2 for the range
O:S; Z2,:s; 0.02944. The maximum relative
error of this polynomial is 2- 59 • 6 •

5. If the common logarithm is wanted, use
log10 x =(log1o e) (loge x)

The effect of an argument error is E", 0 .
This means that if the argument is close to
1, the relative error can be very large,
since the function value there is very
small.

o-(*,) M (E)
ARGUMENT ROOT-MEAN-SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

DLOG

x outside 5.46xlO- 17 3.31xlO- 16

(0.5,1.5)

DLOG10

x outside 9. 96xlO- 1 7 6.14x10- 16

(0.5, 1.5)

These statistics are based on an exponentially distributed
argument sample.

Figure 34. DLOG Subprogram, Relative Error

CALLING SEQUENCE: Out-of-line.

DSQRT Subprogram

PURPOSE: To compute the square root of a
double-precision number.

ENTRY POINT: DSQRT

MODULE NAME: IJTLSQT

RANGE: O~x.

ACCURACY: The accuracy of the DSQRT Sub­
program is shown in Figure 35.

CONSIDERATIONS: Checking is done at object
time to ensure that the argument is within
the valid argument range. If it is not, an
error message is printed and execution is
terminated.

METHOD:

1. If x = 0, the answer is o.

a. Twice in the short form, and then

b. Twice in the long form.

The last step is performed as

1 (x Y = Y3 +- - -
q. 2 Y 3 y 3) to minimize the

computational truncation error. The
maximum relative error of the final
result is theoretically 2- 65 • 7

The effect of an argument error is e: -1/2 <5

CALLING SEQUENCE: Out-of-line.

DATAN Subprogram

PURPOSE: To compute the principal value
(in radians) of the arctangent of a double­
precision number.

ENTRY POINT: DATAN

MODULE NAME: IJTLTAN

RANGE: Any size double-precision argument
2. is acceptable to this subprogram. Write x = 16 2P- q (m) , where 2p-q is

the exponent, q = 0 or 1, and m is

the mantissa, 1
~ m 1 Then 16 < x =

3. Construct the 1st approximation of IX

as follows : Yo = (2 - .2 q) (16 p) (~ + ~ m)

Multiplication of 2- 2 for the odd
characteristic case is accomplished by
the use of the halve instruction. The
maximum relative error of this approx-

imation is }

4. Apply Newton-Raphson iteration, Y n+-1 =

} (yn + ~n)' 4 times to Yo as follows:

(1 (e) M (e)
ARGUMENT ROOT-MEAN-SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

The fu II range 2.17xlO- 17 1.08xlO- 16

These statistics are based on an exponentially distributed
argument sample.

Figure 35. DSQRT Subprogram, Relative
Error

ACCURACY: The accuracy of the DATAN Sub­
program is shown in Figure 36.

METHOD:

1. Reduce the general case to the case
o ~ x ~ 1 by using atan(-x) =

1 II
atan (x), atan TXT = 2" -atan I xl

2. Reduce further to the case IXI ~ tan

15° by atan (x) = 30° + atan (v'3X-l)
x+/3

Extra care is taken to avoid a loss of
significant digits in computing 13 x-I.

(1(£) M (e)
ARGUMENT ROOT-MEAN-SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

The full range 6.64xlO-17 2. 08xl 0- 16

These statistics are based on tangents of uniformly distributed
numbers between - II and II.

2 2

Figure 36. DATAN Subprogram, Relative
Error

Appendix B 53

3. For the basic range Ixl ~ tan 15
0

, use
a continued fraction of the form:

t a
1

x 2 a 2 a 3
aanx=l+ + ___ + +

x b
1

+x2 b 2 +x2 b 3 +x 2

(*)

The coefficients were derived by
transforming the continued fraction:

atan x
x

(16) (25)
(7) (81) (11)
59 2

(9) (13) +x-

(3) (4)
(25) (7)

l +x-2
5

23 -2
(5) (9) +x

(4) (3) (49)
(5) (11) (169)
(3) (37) 2
(13) (17) +x- -w

Here take the approximation (5) (11)~13) (17)

(_x- 2 + 40) for the value of w where
the true w is:

(64) (27)

w (x)
(5) (289) (19)

179 -2 h
(3) (7) (17) +x furt er terms

The relative error of the formula (*)
is less than 2- 57 • 9 •

METHOD:

1.

2.

3.

For Ixl < 0.54931, use the following

tanh (x)
fractional approximation: x

1 - (*)
x 8

where a 1
a

2
a

3

676440.765 b o
45092.124 b 1
594.459 b 2

b

2029322.295
947005.55
52028.55
630.476

3

This formula was obtained by trans­
forming the continued fraction,

tanh (x) 1 2 2 2
X = T + j + ~ + . . . + 15 x + w

with an approximate value 0.017 for

The maximum relative error of the for­
mul a (*) is 2 - 64 • 5.

For 0.54931 20.101,

2
tanh (x) = 1 - --------

e 2X + 1

use

For 20 .101 ~ x, use tanh (x) ~ 1.

The effect of an argument error is E '"
6/(1+x 2). For small X,E~O; and as x be- 4. For x ~ -0.54931, tanh (x) = - tanh (-x).

comes large, the effect of 0 on E diminishes.

CALLING SEQUENCE: Out-of-line.

DTANH Subprogram

PURPOSE: To compute the hyperbolic tangent
of a double-precision number.

ENTRY POINT: DTANH

MODULE NAME: IJTLTNH

RANGE: Any size double precision argument
is acceptable to this subprogram.

ACCURACY: The accuracy of the DTANH Sub­
program is shown in Figure 37.

CONSIDERATIONS: The subprogram DEXP is
used by this subprogram.

54 FORTRAN IV Programmer's Guide

5. The long form exponential function is
used in the case 2 above.

CT(€) M (E)
ARGUMENT ROOT -MEAN-SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

Ixl ~ 0.54931 4.45xlO -17 2.00x10- 16

0.54931 < Ixl ~5 2.54x10-17 1. 99x1 0- 16

These statistics are based on a uniformly distributed
argument sample.

Figure 37. DTANH Subprogram, Relative
Error

The effect of an argument error is E­
(1-tanh2x) ~ ,E - 2~/sinh 2x. Thus, for
small x, E "" [) , and as x gets larger, the
effect of 0 on E diminishes.

CALLING SEQUENCE: Out-of-line.

DCOS Subprogram

PURPOSE: To compute the sine (DSIN) or
cosine (DCOS) of a double-precision argu­
ment representing an angle (in radians).

ENTRY POINTS: DCOS and DSIN

MODULE NAME: IJTLSCN

RANGE:

ACCURACY: The accuracy of the DCOS Subpro­
gram is shown in Figures 38 and 39.

CONSIDERATIONS: Checking is done at object
time to ensure that the argument is within
the valid argument range. If it is not,
an error message is printed and execution
is terminated.

METHOD:

1.

2.

II Divide Ixl by 4 and decompose the quo-

tient into the integer part and frac­
tion part.

y = Ixl (%)= q+r, q integer, 0 ::;; r < 1.

If cosine entry, add 2 to q.
entry with negative argument
q. Let qo~q mod 8.

cos (x) = sin (IXI + ~),

sin (-x) = sin (Ixl +II).

<T(€)
ARGUMENT ROOT-MEAN:"'SQUARE
RANGE Relative

ERROR

If sine
add 4 to

M (€)
MAXIMUM
Relative
ERROR

DSIN

II
Ixl ::;"2 4.85xlO -1 7 4.08xlO- 16

These statistics are based on a uniformly distributed
argument sample.

Figure 38. DCOS Subprogram, Relative Error

3. Now the answer is

II
sin "4 (qo +r)

sin
II

if Compute 4" r qo 0 or 4

II
cos 4" (l-r) if qo 1 or 5

II.
if 2 or6 cos 4 r qo

sin II (l-r) if 4" qo = 3 or

1
sin II

ro 4 ro ,where ro is r or l-r, is

computed by the use of the Chebyshev
interpolation polynomial of degree 6
in ro 2 in the range 0:5 ro2 ::;; 1. The
maximum relative error of this poly­
nomial is 2- 58 •

II Cos 4" r 0 is computed

by using the Chebyshev interpolation
polynomigl of degree 7 in r 0 2 in the
range 0:5ro

2 :51. The maximum relative
error of this polynominal is 2- 64

• 3 •

4. If q :5 4, give negative sign to the
result.

cr (E) M (E)
ARGUMENT ROOT-MEAN-SQUARE MAXIMUM
RANGE Absolute Absolute

ERROR ERROR

DSIN

rr
1 x 1::;2 2.17x10- 17 9.10x10-17

rr
2<l x l::;lO 6.35 X 10- 17 1.64 x10-16

10<l x l::;100 1.03 x10- 15 2.69x10- 15

DCOS

O::;)(::;rr 6.40x10- 17 1.79x10-16

-10::;X<0, rr<)(::;lO 5.93x10- 17 1.76x10- 16

lO<l x l::;100 1.01x10-15 2.65x10-15

These statistics are based on a uniformly distributed
argument sample.

7

Figure 39. DCOS Subprogram, Absolute Error

Appendix B 55

The effect of an argument error is
E !J.. As the argument gets larger, !J.
grows, and since the function value is
periodically dimishing, no consistent
relative error control can be maintained

outside the principal range (-~,~) .

This holds for both sine and cosine.

CALLING SEQUENCE: Out-of-line.

DEXP Subprogram

PURPOSE: To compute the value of "e"
raised to the power of a double-precision
argument.

ENTRY POINT: DEXP

MODULE NAME: IJTLEXP

RANGE: x<174.67309

ACCURACY: The accuracy of the DEXP subpro­
gram is shown in Figure 40.

CONSIDERATIONS: Checking is done at object
time to ensure that the argument is within
the valid argument range. If it is not, an
error message is printed and execution is
terminated.

METHOD:

1. If x< -180.2183, give 0 as the
answer.

2. Divide x by loge2 and decompose the
quotient as:

c
4a - b - 16 - d

where a, b, and c are integers,
1 o ::;; b ::;; 3, 0 ::;; c ::;; 15 and 0 ::;; d < 16

0'(() M (E)
ARGUMENT ROOT - MEAN- SQUARE MAXIMUM
RANGE Relative Relative

ERROR ERROR

I x I $1 7.49x1O- 17 2.27x1O- 16

1<I X I$20 8.69x1O- 16 2.31x1O- 15

2°<I X I$170 9.33x1O-16 2.33x1O- 15

These statistics are based on a uniformly distributed
argument sample.

Figure 40. DEXP Subprogram, Relative Error

56 FORTRAN IV Programmer's Guide

3. Compute 2- d by using the Chebyshev in­
terpolation polynominal of degree 6

1
over the range 0::;; d < 16 The maximum

relative error of this polynominal is
2- 57 •

4. If c > 0, multipll 2-d by 2- C
(16. The

15 constants 2- c 16 , 1:5 c:5 15 are
included in the subroutine.

5. If b > 0, halve the result b - times.

6. Multiply by 16 a by adding a to the
characteristic of the result.

The effect of an argument error is £ -l:!..
Since l:!. =(£) (x), for the larger value of x,
even the round-off error of the argument
causes sUbstantial relative error in the
result.

CALLING SEQUENCE: Out-of-line.

MOD Subprogram

PURPOSE: To compute the result of the
first integer argument modulo the second
integer argument. Modulo is a mathematical
operator which yields the remainder func­
tion of division. Thus, 9 modulo 6 == 3.

ENTRY POINTS: MOD

MODULE NAME: IJTMODI

RANGE: Any arguments, except as noted
under considerations, are acceptable to
this subprogra,m.

ACCURACY: No error is produced by the
computation in this subprogram.

CONSIDERATIONS: Checking is done at object
time to ensure that the second argument is
not zero. If it is zero, the first argument
is given as the result.

METHOD: MOD (x,y)=x-(x/y)*y

The result is calculated according to
the above formula. If this result is
negative, the absolute value of modulus y
is added to it, giving a nonnegative value
less than y.

CALLING SEQUENCE: Out-of-line.

AMOD Subprogram

PURPOSE: To compute the result of the
first real-number argument (AMOD) or
double-precision argument (DMOD) modulo the
second argument. Modulo is a mathematical
operator which yields the remainder func­
tion of division. Thus 3=39 modulo 6.

ENTRY POINTS: AMOD and DMOD.

MODULE NAME: IJTMODR

RANGE: Any arguments, except as noted
under considerations, are acceptable to
this subprogram.

ACCURACY: No error is proauced by the
computation in this subprogram.

CONSIDERATIONS: Checking is done at object
time to ensure that the second argument is
not zero. If it is zero the first argument
is given as the result.

METHOD: AMOD or DMOD (x,y) = x - (x/y) * y

The result is calculated according to
this formula. If this result is negative,
the absolute value of modulus y is added
to it. giving a nonnegative value less
than y.

CALLING SEQUENCE: Out-of-line.

MAXO Subprogram

PURPOSE: To select the maximum (AMAXO or
MAXO) or the minimum (AMINO or MINO) inte­
ger value from a list of integer numbers,
with the option of converting the result
(AMAXO or AMINO) to a real number or giving
an integer result (MAXO or MINO).

ENTRY POINTS: MAXO, AMAXO, MINO, and AMINO

MODULE NAME: IJTSMXO

RANGE: Any size argument is acceptable to
this subprogram.

ACCURACY: No error is produced by the
computation in this subprogram.

CONSIDERATIONS: None.

METHOD: Starting with the second argument
and proceeding to the end of the argument

list, each argument is algebraically com­
pared to the maximum (AMAXO and MAXO) or to
the minimum (AMINO and MINO) of the pre­
vious arguments to yield a new maximum or
minimum. For AMAXO or AMINO the result is
then converted to a real number.

CALLING SEQUENCE: Out-of-line.

MAXI Subprogram

PURPOSE: To select the maximum (AMAXI or
MAXI) or the minimum (AMINI or MINI) real
value from a list of real numbers, with the
option of converting the result (MAXI or
MINI) to an integer number or giving a
real-number result (AMAXI or AMINI).

ENTRY POINTS: MAXI, AMAXl, MINI, and AMINI

MODULE NAME: IJTSMXI

RANGE: Any size argument is acceptable to
this subprogram.

ACCURACY: No error is produced by the
computation in this subprogram.

CONSIDERATIONS: None.

METHOD: Starting with the second argument
and proceeding to the end of the argument
list, each argument is algebraically com­
pared to the maximum (AMAXI and MAXI) or to
the minimum (AMINI and MINI) of the pre­
vious arguments to yield a new maximum or
minimum. For MAXI or MINI the result is
then converted to an integer number.

CALLING SEQUENCE: Out-of-line.

DMAXI Subprogram

PURPOSE: To select the maximum (DMAXI) or
the minimum (DMINI) double-precision value
from a list of double-precision numbers.

ENTRY POINTS: DMAXI and DMINI

MODULE NAME: IJTMAXD

RANGE: Any s'ize argument is acceptable to
~subprogram.

ACCURACY: No error is produced by the
computation in this subprogram.

CONSIDERATIONS: None.

Appendix B 57

METHOD: Starting with the second argument
and proceeding to the end of the argument
list, each argument is algebraically com~
pared to the maximum (DMAXl) or to the
minimum (DMINl) of the previous arguments
to yield a new maximum or minimum.

CALLING SEQUENCE: Out-of-line.

The fractional portion of the argument
is deleted.

CALLING SEQUENCE: Out-of-line.

SERVICE SUBPROGRAM DESCRIPTIONS

The FORTRAN service subprograms are all out­
of-line subprograms. The description of

IFIX Subprogram each service sUbprogram includes:

PURPOSE: To convert a single real number
to an integer number (IFIX) and to truncate
the fractional portion of the mantissa of a
real number and convert the modified real
value to an integer number.

ENTRY POINTS: IFIX, INT and IDINT.

MODULE NAME: IJTIFIX

RANGE: IXI::;; (2**31)

ACCURACY: There is a loss of precision
when absolute x is greater than 2**24.

CONSIDERATIONS:

1. The library subprogram IFIX is used to
convert the modified value.

2. If the value exceeds the valid argu­
ment range, the result is given as
zero.

METHOD: An unnormalized add of floating
point zero is used to shift the fractional
part of the absolute value of the argument
out of the register. The exponent is
discarded and the sign of the argument is
transferred to the result.

CALLING SEQUENCE: In-line.

AI NT Subprogram

PURPOSE: To truncate the fractional por­
tion of the mantissa of a real number.

ENTRY POINT: AI NT

MODULE NAME: IJTSINT

RANGE: Any size argument is acceptable to
this subprogram.

ACCURACY: No error is produced by the
computation in this subprog~am.

CONSIDERATIONS: If the absolute value of
the argument is less than one the result is
zero.

METHOD: AINT (x) sign of x times the
largest integer ~ Ixl .

58 FORTRAN IV Programmer's Guide

1. Purpose.

2. Permissible entry points.

3. Symbolic name of subprogram.

4. Format.

5. Storage requirements.

6. Considerations that should be noted in
using the subprogram.

7. Usage.

In the following descriptions , i repre­
sents an integer expression and j repre­
sents an integer variable.

EXIT Subprogram

PURPOSE: To terminate the execution of a
program and returns control to the system
director.

ENTRY POINT: EXIT

MODULE NAME: IJTFXIT

FORMAT: CALL EXIT

CONSIDERATIONS: This subprogram performs
the same function as the STOP statement. A
program written in assembler language may
use the EXIT subprogram. A program written
in FORTRAN may use either the STOP state­
ment or the EXIT subprogram.

USAGE: Control is given to a routine which
performs internal services and returns con­
trol to the Disk or Tape Operating System.

DUMP Subprogram

PURPOSE: To dump the indicated limits of
storage in the specified format with (DUMP)
or without (PDUMP) program termination.

ENTRY POINTS: DUMP and PDUMP

MODULE NAME: IJTFDMP

FORMAT: CALL DUMP or CALL PDUMP
(A l' B l' F 1 , ••• ,An' Bn' F n)

Where A and B are variable data names in­
dicating the limits of storage to be dump­
ed, either A or B may represent the upper
or lower limits of storage to be dumped,
and F is an integer that indicates the for­
mat of the dump.

CONSIDERATIONS: None.

USAGE: Each set of A, B, and F parameters
are treated separately. If no parameters
are given, all storage is dumped in hexa­
decimal. The A and B parameters are exam­
ined to determine which indicates the lower
limit and which indicates the upper limit
of storage to be dumped.

The value of F is used to determine the
format of the dump as follows:

a specifies a hexadecimal dump format
4 specifies an integer dump format
5 specifies a real dump format
6 specifies a double-precision dump

format.

If F is not specified, the dump is in
hexadecimal format. The appropriate con­
version routine is then called to format
the records to be dumped and these records
are written by the input/output routine.

SLITE Subprogram

PURPOSE: To turn sense lights on or off
(SLITE), and test whether a sense light is
on or off (SLITET).

ENTRY POINTS: SLITE and SLITET

MODULE NAME: IJTSLIT

SLITE SUBPROGRAM: This subprogram turns
sense lights on or off.

FORMAT: SLITE (i) where i is 0, 1, 2, 3,
or 4.

CONSIDERATIONS: If the value of i is not
0, 1, 2, 3, or 4 a message is printed and
execution is terminated.

USAGE: The value of i is tested and the
oorDesponding sense light turned on. If
the value of i is zero, all sense lights
are turned off. Each sense light occupies
one byte of storage. When the byte contains
zeros it is off. When it does not contain
zeros, it is on.

SLITET SUBPROGRAM: This subprogram tests
whether a sense light is on or off.

FORMAT: SLITET (i,j), where i is 1,2,3,
or 4; j is set to 1 or 2.

CONSIDERATIONS: If the value of i is not
1, 2, 3, or 4 a message is printed and
execution is terminated.

USAGE: The value of i is tested and the
corresponding sense light is examined. j
is then set to 1 if the sense light was on
or 2 if the sense light was off. The sense
light that was tested is then turned off.
Each sense light occupies one byte of
storage. When the byte contains zeros it
is off; when it does not contain zeros it
is on.

OVERFL Subprogram

PURPOSE: To test for'exponent overflow or
underflow.

ENTRY POINT: OVERFL

MODULE NAME: IJTOVRF

FORMAT: OVERFL (j) Where j is set to 1, 2,
or 3.

CONSIDERATIONS: None.

USAGE: The status of the overflow indica­
tor is examined. j is set to 1 if a
floating-point overflow condition exists
(that is, if the result of an arithmetic
operation is greater than 16 63

). j is set
to 2 if no overflow condition exists. j
is set to 3 if a floating-point underflow
condition exists (that is, if the result
of an arithmetic operation is not zero but
less than 16- 63). After j is set, the
machine is left in a no overflow condition.

DVCHK Subprogram

PURPOSE: To test for divide check
interruptions.

ENTRY POINT: DVCHK

MODULE NAME: IJTOVCK

FORMAT: DVCHK (j) where j is set to 1 or
2.

CONSIDERATIONS: None.

USAGE: The status of the divide check
indicator is examined. j is set to 1 if
the indicator is on, or 2 if the indicator
is off. After j is set, the indicator is
turned off. The divide check indicator
occupies one byte of storage. When the
byte contains zeros, it is off. When it
contains any other bit pattern, it is on.

Appendix B 59

APPENDIX C: MESSAGES

The diagnostic messages produced during the
compilation and execution of a FORTRAN
program have been divided into two groups,
unnumbered and numbered. The unnumbered
messages are listed flrst in alphabetical
order. The numbered messages are in
numerical order.

UNNUMBERED MESSAGES

These messages, which can appear in the
source program listing, indicate errors in
the source program. Some of them print
following the statement containing the
error. These are called statement error
messages. The other messages print at the
end of the program listing. These are
called summary error messages and pertain
to errors that the compiler cannot attribute
to one particular statement.

In the listing of these errors, the
word following Explanation indicates the
type of error. The word Statement identi­
fies a statement error message. Summary
identifies a summary error message.

ALLOCATION

Explanation: Statement. The storage allo­
cation indicated by the preceding source
program statement cannot be done. Either
the name of a variable has been used im­
properly, or there is an inconsistancy
between the present usage of the name of a
variable and some previous usage of that
same name. The following are examples of
this type of statement error:

1. A name in a COMMON statement is a
dummy variable or has been listed in a
previous COMMON statement.

2. A variable in an EQUIVALENCE statement
is followed by more than three
subscripts.

3. A name in an explicit specification
statement has already been defined in
an explicit specification.

ARRAY ERRORS

Explanation: Summary. The array names
listed following this message have been
difined as requiring more than 32,768 bytes.

60 FORTRAN IV Programmer's Guide

COMMA

Explanation: Statement. A comma is missing
from the preceding source program statement.
This error message can occur for a DEFINE
FILE statement, an EQUIVALENCE statement,
a DIMENSION statement, a computed GO TO
statement, or any explicit specification
statement.

COMMON ALLOCATION ERRORS

Explanation: Summary. An error in the
allocation of the COMMON storage area
has been detected. This message is fol­
lowed by a list of the variables for which
storage could not be allocated because of
the error. The following are examples of
this type of error:

1. There is a contradiction between
COMMON and EQUIVALENCE statements. For
example, an EQUIVALENCE statement ·sets
(A,B (6), C (2) and (B (8), C (1)), where

A is a variable in a COMMON statement.

2. An attempt to extend the beginning of
the COMMON area has been made. For
example, COMMON A,B,C and EQUIVALENCE
(A,F(lO)).

3. An attempt has been made to allocate a
double-precision variable to a location
that is not on a double word boundary
with the COMMON area (Note that the
COMMON area begins on a double word
boundary). This error can be produced
by either a COMMON or an EQUIVALENCE
statement.

COMPILATION TERMINATED

Explanation: Summary. Source program
errors caused the compiler to stop com­
pilling before any cards were punched.
This message is printed regardless of the
print option selected by the programmer.
Whenever this message is printed, it is
the last one on the listing.

COMPILATION TERMINATED, DATA OVERFLOW

Explanation: Summary. The program requires
more than 65,532 bytes of storage for the
data area(s), excluding the COMMON area.
When this message is printed, some cards
of the object program have already been
punched.

COMPILATION TERMINATED, PROGRAM OVERFLOW

Explanation: Summary. The program requires
more than 65,532 bytes of storage for object
program instructions. When this message is
printed, some cards of the object program
have already been punched.

DATA OVERFLOW

Explanation: Summary. Too much space has
been allocated for variables (as opposed to
object program instructions). This message
indicates one of the following conditions:

1. More than 65,532 bytes of storage have
been allocated for COMMON.

2. More than 65,532 bytes of storage have
been allocated for variables not in
COMMON.

Note that this message will be printed
twice if both of the above conditions occur
during the compilation.

DUP. LABEL

Explanation: Statement. The label of the
preceding source program statement has been
used as the label of a statement earlier in
the program.

FUNCTION NAME NOT REFERENCED

Explanation: Summary. The source program
being compiled is a FUNCTION subprogram,
but no unsubscripted variable with the
same name as the function has been set.

ID CONFLICT

Explanation: Statement. The name of a
variable or subprogram is used improperly.
That is, the type of the variable is in­
correct for the present usage as determined
either by some previous source program
statement or by a previous part of the
present statement. The following are ex­
amples of this type of statement error:

1. The name of a SUBROUTINE subprogram
appears as a part of the arithmetic
expression.

2. The DO statement controls for an input/
output list are either not scalar
(nonsubscripted) variables or not
integers.

3. The same name appears more than once in
the dummy list of an arithmetic function
definition statement.

4. A name listed in an EXTERNAL statement
has already been defined by the program
as a variable or an array.

ILLEGAL LBL

Explanation: Statement. A defined label
is used illegally in the preceding source
program statement. Either the statement
specifies a branch to a FORMAT statement
or the statement does not use the label of
a FORMAT statement where one is required.

LABEL

Explanation: Statement. A label has been
omitted from the preceding IF, GO TO,
RETURN, or STOP statement. This is the
only statement error detected by the com­
piler that does not cause compilation to
be terminated.

NAME LENGTH

Explanation: Statement. A name in the
preceding source program statement is not
usable as is. This message indicates one
of the following conditions:

1. The name of a variable or subprogram
consists of more than six characters.

2. Two variable names appear in an arith­
metic expression without a separate
operation symbol.

3. The name of a variable is followed by
a number without an intervening symbol
to separate them.

NO CORE

Explanation: Statement. There is not
enough main storage to compile the state­
ment or the program. If this error is
caused by a single statement, compilation
may be possible if the programmer rewrites
that statement to form two or more state­
ments. If this error occurs throughout the
source program, the programmer must reduce
either the number of variables or the num­
ber of statements in the source program.

NO MORE CORE d

Explanation: Summary. The compiler does
not have enough main storage to complete
the compilation of the source program.
The value of d indicates the section of the
table area that is too small.

Appendix C .61

Value of d

1

2

3-4

Meaning

The dynamic table area is
completely full.

The source program ex­
ceeds one of the limits
given under Program
Features if the error is
not covered by another
message.

One of the two fixed
sized tables has been
exceeded. This is caused
by source statements that
are too long.

NON-COMMON EQUIVALENCE ERRORS

Explanation: Summary. An error in alloca­
tion caused by the arrangement of
EQUIVALENCE sets that do not refer to var­
iables in the COMMON area has been detected.
This message is followed by a list of the
variables for which storage could not be
allocated because of the error. This mes­
sage indicates one of the following
conditions:

1. There is a conflict between two
EQUIVALENCE sets. For example,
(A, B (6) , C (3» and (B (8) , C (1)) .

2. An attempt has been made to allocate a
double precision variable to a loca­
tion that is not on a double word
boundary (Note that the first double
precision variable in the EQUIVALENCE
statement is forced to a double word
boundary) .

ORDER

Explanation: Statement. The preceding
source language statement is used in an
incorrect sequence. This message indicates
one of the following conditions:

1. Either a FUNCTION or a SUBROUTINE

SIZE

Explanation: Statement. A number, includ­
ing a label used in a statement, is outside
the legal range of values for its type.
This error message may indicate that the
decimal point has been omitted from a
floating point constant.

SUBSCRIPT

Explanation: Statement. An incorrect
number of subscripts has been on an array
variable in the preceding source program
statement.

SYNTAX

Explanation: Statement. The preceding
source program statement or part of it
does not conform to the rules of FORTRAN
or the statement cannot be identified at
all. The following are some additional
conditions that cause this message to be
printed:

1. The label contains a character that
is not a digit.

2. The variable in a DO statement is
not followed by an equal sign.

3. Extraneous information follows a com­
plete statement on a card.

4. There are less than three labels fol­
lowing the arithmetic expression in
an IF statement.

5. The left and right parentheses in an
arithmetic expression do not match.

6. The dimensions of a dimensional var­
iable are not integers.

7. A constant that begins with a decimal
point does not have a digit as its
second character.

statement appears after the first state- UNCLOSED DO LOOP TARGETS
ment of the program.

2. A specification statement appears after
the first active statement of the
program.

The statement that caused this error
message is not processed. Therefore, the
information contained in the statement is
not available to the compiler. For example,
if this type of error occurs in a DIMENSION
statement, the array definitions in the
statement are ignored.

62 FORTRAN IV Programmer's Guide

Explanation: Summary. Labels referred to
in DO statements have not been defined
(that is, used as labels) in the source
program. This message is followed by a
list of the labels that were used in DO
statements but not defined.

UNDEFINED LABELS

Explanation: Summary. The source program
contains undefined labels. This message
is followed by a list of the undefined
labels.

UNDIMENSIONED

Explanation: Statement. A variable name
that is not a defined array variable is
followed by a left parenthesis. If the
variable name is on the left-hand side of
an assignment statement, the message may
indicate that an arithmetic statement
function definition is misplaced.

NUMBERED MESSAGES

These messages indicate errors that occur
during the execution of the object program.
Each message consists of a message number
that is written on SYSLST when the error is
detected. The messages appear in the form
IJTnnnI, where nnn is the message number.

In the listing of these messages, the
word following Explanation indicates the
source of the error. If the source is a
subroutine, the word is the symbolic name
of a subprogram. Note that all errors,
except those marked with an asterisk, cause
the job to terminate.

Message
Number

212

213

214

215

216

217

218

Explanation: Data. An input or
output record for which a FORMAT
statement has been specified is
more than 255 bytes long.

Explanation: Data. The data read
from a logical record for which
no FORMAT statement has been
specified does not fill the input
list.

Explanation: Program. The output
list 1S too long. The writing of
a logical record for which no
FORMAT statement has been speci­
fied produces a logical record
containing more than 255 physical
records.

Explanation: Program. An attempt
has been made to execute direct
access statements while operating
under control of Tape Operating
System.

Explanation: Program. An attempt
has been made to read from a device
that can be used for output only.

Explanation: Program. An attempt
has been made to write on a device
that can be used for input only.

Explanation: Program. The num­
ber of a FORTRAN logical unit is
not between 1 and IS, inclusive.

219

220

221

222*

223

224

225*

227

228

229

Explanation: Data. An end of
file has been read on a disk, tape
or card reader.

Explanation: Data. The physical
end of the tape has been
encountered.

Explanation: Program. An END
FILE, REWIND, or BACKSPACE opera­
tion refers to a device on which
these operations cannot be done.

Explanation: Data. An attempt
has been made to backspace a file
that has a record count of zero.

Explanation: Data. An input or
output record for which a FORMAT
statement has been specified con­
tains an illegal character.

Explanation: Program. The number
of a reference sense light is not
I, 2, 3, or 4.

Explanation: Data. An arithmetic
program interruption has occurred.
This message is followed by the
old PSW, which has the following
format:

xxxxxxxixxxxxxxx

The values of x do not apply to
this message. The value of i •
indicates the cause of the arith­
metic program interrupt.

Value of i

9

B

C

D

F

Cause of Interrupt

Fixed-point divide
exception

Decimal divide
exception

Exponent overflow
exception

Exponent underflow
exception

Floating-point divide
exception

Explanation: Program. The unit
number, record size, or number of
records in a define file statement
are equal to zero or negative.

Explanation: Program. The record
length is greater than 1726.

Explanation: Program. A find or
a direct read/write statement
without a define file statement.

Appendix C 63

Message
Number

230

231

232

233

234

235

236

237

241

242

243

Explanation: Program. A find or
a direct read/write statement ad­
dressed a device that is not a disk.

Explanation: Program. A direct
access record number in a find or
read/write statement is less, or
equal to 0, or greater than the
maximum number of records in the
file.

Explanation: Program. An attempt
to position the disk pointer
below cylinder MIN, or Tract MIN,
or Record 1.

Explanation: Program. The end
of the extent on disk has been
reached using a sequential
Write.

Explanation: Program. An unfor­
matted direct write statement is
writing more than one physical
record.

Explanation: Program. The direct
I/O record size is too large to
fit in the unused main storage.

Explanation: Program. There is
not enough main storage to assign
a buffer area.

Explanation: Program. No record
found. An attempt to read a record
on disk that did not exist or
write a record on disk that could
not be performed.

Explanation: Data. While attempt­
ing to raise an integer base to an
integer power, the routine has
found the base to be equal to
zero and the exponent to be nega­
tive or zero.

Explanation: Data. While attempt­
ing to raise a real base to an
integer power, the routine has
found the base to be equal to
zero and the exponent to be nega­
tive or zero.

Explanation: Data. While attempt­
ing to raise a double precision
base to an integer power, the
routine has found the base to be
equal to zero and the exponent to
be negative or zero.

64 FORTRAN IV Programmer's Guide

Message
Number

244

245

251

252

253

254

Explanation: Data. While attempt­
ing to raise a real base to a real
power, the routine has found the
base to be equal to zero and the
exponent to be negative or zero.

Explanation: Data. While attempt­
ing to raise a double precision
base to a real power, the routine
has found the base to be equal to
zero and the exponent to be nega­
tive or zero.

Explanation: Data. The argument
for the single precision square
root function is negative.

Explanation: Data. The argument
for the sing~e precision expo­
nential function is too large;
that is, greater than 174.673.

Explanation: Data. The argument
for a single precision logarithmic
function is zero or ne9at~ve~
This message may also be given
to implicit calls to the ex~
ponential function.

Explanation: Data. The absolute
value of the argument for the
single precision sine or cosine
function is too large, that is,
equal to or greater than IT *2**18.

261 Explanation: Data. The argument
for the double precision square
root function is negative.

262 Explanation: Data. The argument
for the double precision expo­
nential function is too large;
that is, greater than 174.67309.

263 Explanation: Data. The argument
for the double precision logarithmic
function is zero or negative.
This message may also be given
to implicit calls to the ex­
ponential function.

264 Explanation: Data. The absolute
value of the argument for the
double precision sine or cosine
function is too large; that is,
equal to or greater than IT *2**50.

Note: There are other messages that may
occur during the execution of a FORTRAN
object program. However, those messages
are produced by other components of the
Disk or Tape Operating System, rather than
by FORTRAN. For additional messages, refer
to the Tape or Disk Operating Guide listed
in the Preface.

APPENDIX D.

File Name

Option Re'cord Key
Cades Length locotion

f J , Space
Remaining

J
Reserved Last Used First Extent

For Future Secondary Track &
File

Allocatior Record On Lower
Use Type Thot Trock limit

I I I Ig 1&1 '11:" 0000 ~~ ">100 0000 :i)1~ o:l~~ ~~I I I~ g:1 I I I§ ~I~ ~I§: £1 I 1=
Reserved eJ f t t

lDota Set
,J L~xtent

For Future Record Black Key Extent Type Sequence
Use Format Length length Indicators Indicator Number

Format 1: This format is common to all data files on disk.

I.

NAME AND LENGTH

FILENAME
44 bytes, alphameric

EBCDIC

DESCRIPTION

This field serves as the key portion of
the file label. It can consist of
three sections:

I. File 10 is on alphameric ossigned
by the user and identifies the
file. Can be 1-35 bytes if
generation ond version numbers
are used, or 1-44 bytes if they
are not used.

2. Generation Number. If used,
this field is separated from File
10 by a period. It has the format
Gnnnn, where G identifies the
field as the generation number
and nnnn (in decimal) identifies
the generation of the file.

3. Version Number of Generation.
If used, this section immediately
follows the generation number
and has the format Vnn, where
V identifies the field-as the
version of generation number and
nn (in decimal) identifies the
version of generation of the file.

Note: Disk or Tape Operating
System compares the entire
field against the fi Ie name
given in the DLAB card.
The generation and version
numbers are treated differently
by System/360 Operating
System.

The remaining fields comprise the DATA portion of the file label:

2. FORMAT IDENTIFIER 1 = Format 1
1 byte, EBCDIC numeric

3. FILE SERIAL NUMBER Uniquely identifies a file/volume
6 bytes, alphameric EBCDIC relationship. It is identical to the

Volume Serial Number of the first
or only volume of a multi-volume
file.

VOLUME SEQUENCE NUMBER Indicates the order of a volume
2 bytes, binary relative to the first volume on

which the data file resides.

CREATION DATE Indicates the year and the day of the
3 bytes, discontinuous binary year the file was created. It is of

the form YDD, where Y signifies the
year (0-99) and DD the day of the
year (1-366).

EXPIRATION DATE Indicates the year and the day of the
3 bytes, discontinuous binary year the file may be deleted. The

form of this field is identical to that
of Field 5.

7A EXTENT COUNT Contai ns a count of the number of
I byte, binary extents for this file on this volume.

Upper
limit

=1 I 1= =

7C

.10

II

STANDARD DASD FILE LABELS, FORMAT 1

File
Serial
Number

Extents

System Code

of di rectory

Additional Extent Additional Extent

I II I I IE~ ! I I

NAME AND LENGTH

BYTES USED IN LAST BLOCK
OF DIRECTORY
1 byte, binary

SPARE
1 byte

SYSTEM CODE
13 bytes

RESERVED
7 bytes

FILE TYPE
2 bytes

RECORD FORMAT
1 byte

Pointer

II I~ I I II~

DESCRIPTION

If user labels are used, the count
includes the user label track as a
seporate extent. This field 'is,
maintained by the Disk or Tape
Operating System programs.

Used by System/360 Operating
System only for portioned
(library structure) data sets.
Not used by Disk or Tape
Operating System.

Reserved for future use.

Uniquely identifies the programming
system.

This, field is reserved for future use.

The contents of this field uniquely
identify the type of data file:

Hex 4000 = Consecutive organiza­
tion

Hex 2000 = Direct-access organiza­
tion

Hex 8000 = Indexed-sequential
organization

Hex 0200 = library organizati on

Hex 0000 = Organization not
defined in the file
label.

The contents of this field indicate
the type of records contained in the
file:

Bit
Position Content Meaning

o and 1 01 Variable-length
records

10 Fixed-length
records

1 1 Undefi ned format

No track
overflow

File is organized
using track overflow
(System/360 Operating
System only)

o Unblocked
records

Blocked records

Appendix C 65

12

13.

14.

15.

16.

17.

NAME AND LENGTH

OPTION CODES
1 byte

BLOCK LENGTH
2 bytes, binary

RECORD LENGTH
2 bytes, binary

KEY LENGTH
1 byte, bi nary

KEY LOCATION
2 bytes, binary

DATA SET INDICATORS
1 byte

Bit
Position

DESCRIPTION

No truncated
records

Truncated
records in file

5 and 6 01 Control character
ASA code

7

10 Control Character
machine code

00 Control Character
not stated

Records have no
keys-

Records are
written with
keys.

Bits within this field are used to
indicate vari ous opt ions used in
building the file.

BIT

0= If on, indicates data file was
created using Write Validity
Check.

1-7 = unused

indicates the block length for fixed
length records or maximum block
size for variable length blocks.

indicates the record length for fixed
length records or the maximum record
length for variable length records.

indicates the length of the key portion
of the data records in the file.

indicates the high order positi an of
the data record.

Bits within this field are used to
indicate the fallowi ng:

If on, indicates that th is is the
last volume on which this file
normally resides. This bit is
used by the Disk or Tape Op­
erating System DTFSR routine
only. None of the other bits
in this byte are used by Disk
or Tape Operating System.

If on, indicates that the data
set described by this file must
remain in the same absolute
I ocat i an on the di rect access
device.

If on, indicates that Block
Length must always be a multiple
of 8 bytes.

If on, indicates that this data
file is security protected; a
password must be provided in
order to access it ..

4-7 Spare. Reserved for future use.

66 FORTRAN IV Programmer's Guide

18.

19.

20

21.

22.

23.

24

25-28

29-32

33

NAME AND LENGTH

SECONDARY ALLOCATION
4 bytes, binary

LAST USED TRACK AND
RECORD ON THAT TRACK
5 bytes discontinuous binary

AMOUNT OF SPACE
REMAINING ON LAST TRACK
USED 2 bytes, binary

EXTENT TYPE INDICATOR
1 byte

EXTENT SEQUENCE NUMBER
1 byte, binary

LOWER LIMIT
4 bytes, discontinuous binary

UPPER LIMIT
4 bytes

ADDITIONAL EXTENT
10 bytes

ADDITIONAL EXTENT
10 bytes

POINTER TO NEXT FILE LABEL
WITHIN THIS LABEL SET
5 bytes, discontinuous binary

DESCRIPTION

indicates the amount of storage to be
requested for th is data fi Ie at End of
Extent. Th is fie Id is used by
System/360 Operating System only.
It is not used by Disk or Tape Operaing
System routines. The first byte of this
field is an indication of the type of
a lIoc,ation request. Hex code "C2"
(EBCDIC "B") indicates bytes, hex
code "E3" (EBCDIC "T") indicates
trocks, and hex code "C3" (EBCDIC
"cn) indicates cylinders. The next
three bytes of th is field is a binary
number indicating how many bytes,
tracks or cylinders are requested.

indicates the last occupied track in a
consecutive file organization data file.
This field has the format CCHHR. It
is all binary zeros if the last track in a
consecutive data file is not on this
volume or if it is not consecutive
organization.

A count of the number of bytes of
available space remaining on the last
track used by this data file on this
volume.

indicates the type of extent with which
the following fields are associated:

00 Next three fields do not indicate
any extent.

01 Prime area (Indexed Sequential);
or Consecutive area, etc., (i.e.,
the extent containing the user's
data records.)

02 Overflow area of an Indexed
Sequential file.

04 Cylinder index or master index area
of an Indexed Sequentia I fi Ie.

40 User label track area

80 Shared cylinder indicator.

indicates the extent sequence in a
multi-extent file.

the cyl i nder and the track address
specifying the starting point (lower
limit) of this extent component. This
field has the format CCHH.

the cyl i nder and the track address
specifying the ending point (upper
limit) of this extent component.
This field has the format CCHH.

These fields have the same format as
the fields 21-24 above.

These fields have the same format as
fields 21-24 above.

the disk address (format CCHHR) of a
continuation label if needed to fur­
ther describe the fi Ie. If fiel d 9
i ndi cates Indexed Sequenti 01
organization, this field will point to
a Format 2 file label within this
label set. Otherwise, it points to a
Format 3 file label, and then only
if the file contains more than three
extent segments. This field contains
all binary zeros if no additional file
label is pointed to.

/& Card 10
/* Card 10

Accuracy 46
AINT Subprogram 58
Allocation 60
ALOG Subprogram 47

Absolute Error 47
Relative Error 48

AMOD Subprogram 57
APPENDIX A. Programming Example 45
APPENDIX B. FORTRAN

Library Subprograms 46
APPENDIX C. Messages 60
APPENDIX D. Standard DASD File Labels,

Format 1 65
Argument(s) 19
Arithmetic Statements 41
Array Errors 60
Assembler Requirements 20
ATAN Subprogram, Relative

Error 49

Building FORTRAN Programs 12

Called and Calling Programs 20
CATAL, OPTION 10
Cataloging a Program in the

Core Image Library 39
Relocatable Library 39

Card, OPTION 10
Comma 60
COMMON Allocation Errors 60
Compilatiop.

for Linkage Editing 26
of a FORTRAN Program 26
Terminated 60
Terminated, Data Overflow 60
Terminated, Program Overflow
with Punched Output 26

Compiling with the DOS or TOS 7
Compiler Restrictions 44
Control Cards

for Compilation 26
for Linkage Editing 30
used with the DOS or TOS 8

Control Program
Core Image Library 7
COS Subprogram 51

Absolute Error 51
Relative Error 51

Data for FORTRAN Programs 12
Data Overflow 61
DATAN Subprogram 53

Relative Error 53
DCOS Subprogram 55

Absolute Error 55
Relative Error 55

DECK, OPTION 10
Definition 19
Definitions of Symbols 46

61

INDEX

Device Assignment (see FORTRAN Unit
Assignment)

DEXP Subprogram 56
Relative Error 56

Devices Assigned to FORTRAN Units 33
Diagnostic Aids 27

Messages 27
Storage Map 29

Divide Check Subprogram (IJTDVCK) 14
DLAB Statement 37
DLOG Subprogram 52

Absolute Error 52
Relative Error 52

DMAXI Subprogram 57
DO Loops 42
DOS or TOS System Flow 4
DSQRT Subprogram 53

Relative Error 53
DTANH Subprogram 54

Relative Error 54
DUMP Subprogram 58
Dup. Label 61
DVCHK Subprogram 59

End Execution Subprogram (IJTFXIT)
En try Name 15

15

Error Message 20
Errors 32
ERRS, OPTION 10
EXEC Card 9
EXIT Subprogram 58
Execution

as a Separate Job 31
a Program with the DOS or TOS
as Part of a Job 31
of BACKSPACE 34
of Control Commands 34
of·END FILE 34
of REWIND 34
Time Interruptions and Errors

EXP Subprogram 50
Relative Error 50

Explicitly Called
Mathematical Subprogram 13
Subprogram 13

Exponentiation or Multiplication

FORTRAN
Language 12
Library 12
Linkag~ Convention 21
progr~ Execution Considerations
Unit Assignment 33

Function Name not Referenced 61
Function Value Returned 20

ID Conflict 61
IFIX Subprogram 58
IF Statements 41
Illegal LBL 61
Implicitly Called

Mathematical Subprograms 14

8

32

41

30

Index 67

Subprograms 14
In-Line Parameter Area 25
Introduction 5
Interruptions 32
IPL Loader 6

JOB Card 8
Job Control 6
Job Control for Execution 31

Label 61
Label Processing 36
Lanquage Translators 7
Length of Logical Records 34
Librarian 6
Library

Functions 7
Procedures 39

Linkage Editing
a FORTRAN Program 29
Multiple Object Modules 30
One Object Module 30
Two Object Modules 30
With the DOS or TOS 8

Linkage Editor 6
LINK, OPTION 10
LIST, OPTION 10
Lowest Level Subprograms 25

Machine Indicator Test Subprograms
Main Storage 6
Major Divisions of Main Storage 6
Ma~hematical Subprograms 13
Mathematical Subroutine Entry Points

AINT 58
ALOG 47
ALOGIO 47
AMAXO 57
AMAXI 57
AMINO 57
AMINI 57
AMOD 57
ATAN 49
COS 51
DATN 53
DCOS 55
DEXP 56
DLOG 52
DLOGIO 52
DMAXI 57
DMINI 57
DMOD 57
DSIN 55_

·DSQRT 53
·DTANH 54

DUMP 58
DVCHK 59
EXIT 58
EXP 50
IDINT 58
IFIX 58
INT 58
MAXO 57
MAXI 57
MINO 57
MINI 57
MOD 56
OVERFL 59

68 FORTRAN IV Programmer's Guide

14

PDUMP 58
SIN 51
SLIT 59
SLITET 59
SQRT 48
TAHN 49

Mathematical Subprogram Descriptions
MAXO Subprogram 57
MAXI Subprogram 57
Maximum Source Program Items 12
Method 47
Mixed Mode Expressions 41
MOD Subprogram 56

N arne Length 61
No Core 61
NODECK, OPTION 11
NOERRS, OPTION 11
NOLINK, OPTION 11
NOLIST, OPTION
No More Core d 61
Non-COMMON Equivalence Errors 62
Number Messages 63

One Method of Implicit Function
Reference 19

OPTION Card 10
Order 62
Order of Data in COMMON 44
OVERFL Subprogram 59
Overflow Indicator Subprogram (IJTOVRF)

Parameter Area 22
Processing FORTRAN Programs 8, 26
Processing Programs 7
Programming

Considerations for Direct Access
Files 38

for a Card Read punch 35
Suggestions 41

Program Optimization 41
Program Structure 43
Programs Written by the User 7
Punching Output Into

Blank Cards 35
Input Cards 35

Pseudo Sense Light Subprogram (IJTSLIT)

Read and Write Statements 42
Reading and Writing Arrays 43
Read Only and Write Only 36
Referencing COMMON 25
Registers 20
Register Use 21
Relocatable Library 7

Sample
Calling Subprogram Linkage 22
Linkage for Lowest Level Subprograms
Linkage Routines Used with Calling

Subprograms 24
of In-Line Parameter Area 25
Source Program with Storage Map 28

Save Area 20, 22
Save Area Layout and Contents 23
Service

Programs 7
Subprograms 14

46

14

14

25

Subprogram Description 58
Size 62
SLITE Subprogram 59
Source Module Size Restrictions 44
Source Programs 26
SQR~ Subprogram 48

Relative Error 48
Square Root or Exponentiation 41
Statement Error Messages 27
Storage Dump Subprogram (IJTFDMP) 15
Structure of DOS or TOS 5
Subprogram Name 19
Subscript 62

Calculations for Read or Write 43
Calculations in DO Loops 42

Summary
Error Messages 27
of Implicitly Called Subprograms 19
of Logarithmic and Exponential

Subprograms 16
of Mathematical Subprograms 15
of Micellaneous Mathematical

Subprograms 18
of Trigonometric Subprograms 17

Supervisor 6
Syntax 62
System Service Programs

TANH Subprogram 49
Relative Error 50

The Accuracy of the Argument 47
The Performance of the Subroutine 47

Unchanging Variables in DO Loops 42
Unclosed DO Loop Targets 62
Undefined Labels 62
Undimensioned 63
Unnumbered Messages 60
Unvaring Subscripts in DO Loops 42
Use of Assembler Language Subprogram
Use of Disk and Tape Operating Systems
for FORTRAN 7

Utility Subprograms 15

Variables for Called Programs 43
VOL Statement 37

XTENT Statement 37

20

Index 69

.,
READER'S COMMENT FORM

IBM System/360
Disk and Tape Operating Systems
FORTRAN IV Programmer's Guide

C24-5038-0

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confi­
dential basis. Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

Yes No

• Does this publication meet your needs? CJ r::::J

• Did you find the material:
Easy to read and understand? CJ CJ
Organized for convenient use? c:::::J CJ
Complete? c:::::J CJ
Well illustrated? CJ CJ
Written for 'your technical level? c:::::J CJ

• What is your occupation? ____________________________ _

• How do you use, this publication?
As an introduction to the subject? c:::::J As an instructor in a class? c::::::J
For advanced knowledge of the subject? c:::::J As a student in a class? c::::::J
For information about operating procedures? c::J As a reference manual? c::::::J

Other _____________________________________ ___

• Please give speCific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS:

• Thank you for your cooperation. No postage necessary if mailed in the U. S. A.

C24-5038-0

Fold

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM Corporation

P. O. Box 6

Endicott, N. Y. 13760

Atte~tion: Programming Publications, Dept. 157

---r--

FIRST CLASS
PERMIT NO. 170

ENDICOTT, N. Y.

fold

-- ... _-----... --
Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold

• c
::i

CD
C
o

::(...
~
u

C24-5038-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I06ot
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	replyA
	replyB
	xBack

