File No.

§360-24

Form GC28-6398-1

Systems Reference Library

IBM System/360 Disk Operating System

_ American National Standard COBOL

Programmer's Guide

Program Number 360N-CB-482

This publication describes how to compile an American
National Standard COBOL X3.23-1968 program using the
IBM System/360 Disk Operating System American National
Standard Full COBOL Compiler Version 2. It -also
describes how to linkage edit the resulting object
module, and execute the program. Included is a
description of the output from each of these three
steps: compile, linkage edit, and execute. In
addition, this publication explains features of the
compiler and available options of the operating system.
RAmerican National Standard COBOL was formerly known as
USA Standard COBOL.

DOS

s s e ot 3 s

(prem— e s~ =~

PREFACE

This publication is logically and
functionally divided into two parts.
I contains information useful to
programmers who are running IBM American
National Standard COBOL programs, i.e.,
programs compiled on the Version 2
Compiler, under the control of the IBM
System/360 Disk Operating System. Part I
covers such topics as job control language,
library usage, interpreting output, and
program debugging. Part I is intended
solely as object-time reference material.

Part

Part II contains supplemental
information on the use .of the language as
specified in the publication IBM System/360

Disk .Operating System: American National
Standard COBOL, Form GC28-6394, and should
be used in conjunction with this
publication for coding IBM American
National Standard COBOL programs. Part II
covers in detail such topics as file
organization, file label handling, and
record formats. Part II is intended as
source-time reference material for language
features that are primarily
system-dependent.

Second Edition (February 1970) -

Wider and more detailed discussions of

the Disk Operating System are given in the
following publications:

IBM System/360 Disk Operating System:
System Control and System Service
Programs, Form GC24-5036

IBM System/360 Disk Operating System:
Supervisor and Input/Output Macros, Form
GC24-5037

IBM System/360 Disk Operating System:
Data Management Concepts, Form GC24-3427

IBM System/360 Disk Operating System:

System Generation and_ Maintenance, Form
GC24-5033

IBM System/360 Principles of Operation,
Form GA24-6821

The titles and abstracts of related

publications are listed in the publication
IBM System/360 Bibliography, Form

GA22-6822.

This edition is a major revision of Form GC28-6398-0 and makes that

edition and its associated Technical Newsletter, Form N28-0263,
The specifications in this publication correspond to Release
This edition

obsolete.
22/23 of the IBM System/360 Disk Operating System.

contains changes and additions that reflect the Version 2 Compiler's

support of the following features:

relative track addressing for direct

files, spanned records on sequential tape files and on direct files, and
forced end-of-volume for a sequentially organized file on a direct

access device.
publication to correct and clarify specific items.

In addition, changes have been made throughout the
All technical

changes are indicated by a vertical line to the left of the change;
revised or new illustrations are denoted by the symbol e to the left of

the caption.

Changes are continually made to the specifications herein; any such

changes will be reported in subsequent revisions or Technical
Before using this publication in connection with the

Newsletters.

operation of IBM systems, refer to the latest SRL Newsletter, Form

GN20-0360, for editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM

representative or the IBM branch office serving your locality.

A form for readers®' comments is provided at the back of this
If the form has been removed, comments may be addressed to

publication.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, o

New York, New York 10020.

© Copyright International Business Machines Corporation 1969, 1970

PART T

INTRODUCTION ¢« o o o o« o
Control Program . « « e
SUpervisor . . . « o
Job Control Processor
Initial Program Loader
Processing Programs . .
System Service Programs
Application Programs « « « « o
IBM-Supplied Processing Programs
Multiprogramming . . « « o« o « « «
Background vs. Foreground Programs

" 6 o 8 s o
* e o 0 o o o

e o 8 3 8 s &

s & & 2 & 2 8 ¢ &
e o 8 o o 8 3 o ¢ &

JOB DEFINITION « « o « o o o o o
Job Steps e ¢ 6 & o o o o s o
Compilation Job Steps .« .« &
Multiphase Program Execution
Types Of JObS 4 ¢ o o o o o @
Job Definition Statements . .
Other Job Control Statements .

JOB PROCESSING «

Compilation e« « ¢ ¢ ¢ o 0.0 o o o &

Editing L] L] L] a L] L] . - L] - - - L] Ll

Phase Execution . « o« « ¢ o o o o o
Multiphase Programs .« « « « « o « o &
PREPARING COBOL PROGRAMS FOR PROCESSING

Assignment of Input/Output Devices . .
JObContrOl e © e © e o o & e & o o oo
Job Control Statements . « . « .
Comments in Job Control Statements
Statement Formats o o o e o o ‘8 o
Sequence of Job Control Statements
Description and Formats of Job
Control Statements . .
ASSGN Statement
CLOSE Statement
DATE Statement .
TLBL Statement .
DLBL Statement .
EXTENT Statement
VOL Statement .
DLAB Statement .
TPLAB Statement
XTENT Statement
JOB Statement .
LBLTYP Statement
LISTIO Statement
MTC Statement .
OPTION Statement
PAUSE Statement
RESET Statement
RSTRT Statement
UPSI Statement . .
CBL Statement -- COBOL
Control Card « « « .«
Job Control Commands « « « o o
Linkage Editor Control Statements
Control Statement Placement .
PHASE Statement . o ¢ o o o &

8 o 8 5 & & » 8 " 8 ¢ e s s 0 o @
® 8 8 8 5 9 8 o 2 0 & s 8 0 s 0 s v 0
® & & & 0 6 & o 5 9 & 8 0o o & ¢ 5 o
8 8 5 & s 6 0 o & 0+ & s 8 9 & 3 6 4 o b
S & & 8 & 6 86 o 8 o 6 o & o 6 s 0 0 s
@ & o 6 ¢ &6 & 5 & 0 & 2 8 o 6 s 0 o 0

|58

¢ O e o o 0 s 06 5 s 0 s 06 s 06 3 0 s s 0 s

n

e

s Oe o o 8 5 o 6 s 0 8 & s s 8 0 s s s e
® (te o o 8 o 5 06 s e 8 8 s 8 s 2 s s s s 0

CONTENTS

INCLUDE Statement
ENTRY Statement .
ACTION Statement .
Autolink Feature . .

LIBRARIAN FUNCTIONS « o« o ¢ ¢ o o ¢ &«
Librarian o« o o« o« o o « o o o o o « o
Core Image Library . . « o o o
Cataloging and Ret1ev1ng Program
Phases -- Core Image Library . . .
Relocatable Library ¢ @ © e o s o ¢ o
Maintenance Functions
Cataloging a Module -- Relocatable
Library =« o o o o o o o o s o o @
Source Statement Library « « ¢ « o o« o
Maintenance Functions

Cataloging a Book -- Source
Statement Library . « « ¢« .« ¢ o« &
Updating Books -- Source Statement

Library =« o« o o o o o o o s o @
Logical Unit Assignment and Control
Statement Placement:
UPDATE Function -- Invalid Operand
Defaults ¢« « o o o o o o o o o o« o
Private Libraries e o e e ® ¢ ¢ e e @
Source Language Considerations . . .
Extended Source Program Library
FAacility o o o o ¢ o o o o o o o o o o«

PROGRAM CHECKOUT 4 2o ¢ = o o o o o o o
Debug Language « « o « o o« o s o o o o
Flow of Control .« « « « &« o« o o
Displaying Data Values Durlng
Executlon e @ e ® ¢ e o e ¢ & e s o
Testing a Program Selectively . . .
Testing Changes and Additions to
Programs « « « = « o o o o o =

DuInpS L] L] L] L] - L] L] L] - - L] L] e L] . L]
How to Use a DUmMpP . « « « o « o o «
Errors That Can Cause a Dump . « « «
Locating @ DTF o « o o o o ¢ o o o o
Locating Data e ®© o e e e o o s o o

Diagnostic MeSSagesS =« « o o o o o o o
Working with Diagnostic Messages . .
Generation of Diagnostic Messages .

Linkage Editor Output . « « « o« o o o

Execution Time MeSsages . « « o « o »

Recording Program StatusS « « o o« ¢ o o
RERUN ClaUS€ « « o o o o o« ¢« o o o o
Taking a Checkpoint . . « ¢« « . . &

Restarting a Program « « « « ¢ o o o o

INTERPRETING OUTPUT .
Compiler Output . . &
Object Module . . «
Linkage Editor Output .
Comments on the Phase Map
Linkage Editor Messages
COBOL Phase Execution Output
Operator Messages . « « .
STOP Statement « « « « &
ACCEPT Statement . « « &

* o o @
* o o o

e ® o @ ® 8 9 o 0 @
e & o & ¢ 5 & o o o
e o o & o & 9 & O o
e o o & o & o+ a o @

e o © o o & o % 2 & 0 2 0 b e

39
39
39
40
41
41
41
42
42
43
43
45

47

System OUtput « « « ¢ o o o o o o s« o o 719

CALLING AND CALLED PROGRAMS . « . « « o 81
Linkage « « o« o o o o o o o o o = o o « 81
Linkage In A Calling Program . « « « « 81
Linkage In A Called -Program » 82
Entry POIntS « e o« « o « o o ¢ o ¢« o o« 82
Correspondence of Arguments and
PArametersS o« o« e« ¢« o o o o o « o o o« o 82
Linkage Editing Without Overlay ‘83
Assembler Language Subprograms . . . « « 84
Register US€ . o« + o« o o o « « o« « = » 84
S ave Area e L] L] . - L] L] . L] L] - - Ll - 8 u
Argument List . ¢« o ¢ o o ¢ ¢ o o o o 84
In-Line Parameter List « ¢« « « « « « 85
Lowest Level Program « « « o o o « o o 87
OVerlaysS o« s o ¢ o s o o o o o o « « o« o 87
Special Considerations When Using
Overlay Structures . « « « « o ¢« o« « o « 87

Assembler Language Subroutine for

Accomplishing Overlay . . « « « » « « 88
Linkage Editing with Overlay « « « « 89
Job Control for Accomplishing Overlay 90

USING THE SORT FEATURE « « « « o = o « o« 95
Sort Job Control Requirements « « « o« « 95
Sort Input and Output Control
Statements « « ¢ « o o 2 ¢ o o a &« o o 95

Sort Work File Control Statements .+ . 96
Amount of Intermediate Storage
Required e ¢ o o o o o o« o o e o o o 96
Improving Performance . « « « « « « 96
Sort Diagnostic MesSSagesS « « « « « « ¢« « 96
Linkage with the Sort Feature 96
Ccompletion COdeSs « « « « « o o o o o 97
Checkpoint/Restart During a Sort 97
USING THE SEGMENTATION FEATURE . . 99

Operation @ & ¢ e & o o e e =
Output From a Segmented Program
Compiler Output . "« . . . &
Linkage Editor Output . « « o &
Cataloging a Segmented Program
Determining the Priority of the
Last Segment Loaded into the
Transient Area @ o e o o o o o o o <101
Sort in a Segmented Program101

¢ & o .
* & o & o

L]

Jury

o

o

PART II
PROCESSING COBOL FILES ON MASS STORAGE
DEVICES - L] - - . L] L] L] L * L] L] - L] L] L] 1 07
File Organization . . « . ¢ ¢« ¢ « » o .107
Sequential Organization107
Direct Organization .« « o« « ¢« o ¢ « 4107
Indexed Organization . « « ¢« « « - « 107
Data Management CONCeptsS « « « o« « ¢ « 0108
Sequential Organization (DTFSD)109
Processing a Sequentially Organized
File « ¢ o ¢ o ¢ o o & e o s o s » o109
Direct Organization (DTFDA) « ¢« ¢ o« o <109
Accessing a Directly Organized File .110
ACTUAL KEY ClauSe =« o o s o o o« o o o111
Randomizing Techniques . «112

Actual Track Addressing

Considerations for Specific Devices .125
Randomizing for the 2311.Disk Drive 125
Randomizing for the 2321 Data Cell .126

Indexed Organization (DTFIS) .
Prime Area
IndexesS « « o o «

Track Index . .
Cylinder Index .
Master Index . .
Overflow Area . .
Cylinder Overflow Area .
Independent Overflow Area .
Adding Records to an Indexed File
Accessing an Indexed File (DTFIS) .
Key Clauses . o o o » o o o o &
Improving Efficiency . . « . . .

"« 5 e 8 v o o
s o o o o s o o
e % o o o * o o+ o
e ® 8 o 8 5 o o o
e o o o o » o o o

ADVANCED PROCESSING CAPABILITIES
DTF Tables . L] L] * - . . - - L] -
Pre-DTF Switch . « ¢ o ¢ o &«
Error RECOVELY « « o o « o o .
Volume and File Label Handllng .
Tape Labels « o o ¢ ¢ o o o o
Volume Labels . . e o o
Standard File Labels « o o @
User Labels . . « ¢ o & o «
Nonstandard Labels
Label Processing Considerations
Mass Storage File Labels . . .
Volume Labels o« ¢« « ¢ « o «
Standard File Labels
User Labels ¢ « o o« o o o «
Label Processing Considerations
Files on Mass Storage Device
opened as InNput .« « « o o o « &
Files on Mass Storage Devices
Opened as Output « « o « « o o »
Unlabeled Files e e o ¢ e e o @

RECORD FORMATS « o o « & . . .
Fixed-length (Format F) Records -
Undefined (Format U) Records . . .
Variable-length (Format V) Records
APPLY WRITE-ONLY Clause .+ . &
Spanned (Format S) Records . « « «
S-Modé Capabilities . « . . & .
Sequentially Organized S-Mode Flles
on Tape Or Mass Storage Devices . .
Source Language Considerations . .
Processing Sequentially Organized
S-Mode Files « e o
Directly Organized S- Mode Flles .« o
Source Language Considerations . .
Processing Directly Organized
S-Mode FileS o o« « o o « o o o o &«
OCCURS Clause with the DEPENDING ON
OPtiON v o o « o o o e o o o o o o o &

e o 8 o o o
® & » & 0* 8 o

PROGRAMMING TECHNIQUES + « o« &
General Considerations « « « o
Spacing the Source Program
Environment Division « « «
SELECT Sentence . .« ..
APPLY WRITE-ONLY Clause
Data Division . « « « o « &
Overall Considerations . .
PrefixXes o« o« o o o o o o
Level Numbers . « « »

o+

e o o o s % s s v s e

[N

& o & o s o 0 & s 0 N6 o

=]
Q

File Section « « « o«
RECORD CONTAINS Clause
Working-Storage Section

e o o o s o s o 0 s (He o

.
-
L]

.
3
.
-
-
.
3

e o o o o ° o o v @

«127
. 127
128
.128
.128
.128
<128
.128
.128
. 128
<130
«130
131

.133
.133
.138
.138
L1448
L144
.14y
.14l
.14y
L1448
.148
.149
.149
.149
.150
.150

.150

.150
<151

.153
«153
153
<154
.157
«157
.158

.159
«159

.159
.161
161

.162
.162

.165
<165
.165
+165
.165
«165
<165
.165
<165
.166
<166
.166
2166

e’

)

O

<166

Separate MOAUleS « « « « o o o o
Locating the Working-Storage

Section in DUMPS « « « ¢« o o o o o ¢166
Data Description . « o« « « o o o = o« 167
REDEFINES ClauS€ « o« « « « « o » « 167
PICTURE ClauSe€ « « ¢ « o« o o o o o 167
USAGE ClauSe « o« « o « o « o o ¢ « o169
SYNCHRONIZED Clause . e e o o o o172
Special Considerations for DISPLAY
and COMPUTATIONAL Fields . « « « « 172
Data Formats in the Computer « « « 172
Procedure Division « « « o « o o o o o 174
Modularizing the Procedure Division .174
Main-Line Routine . « « o « « o o o174
Processing Subroutines . « . . « « 174
Input/Output Subroutlnes e o o o« o 175
Intermediate ReSUltS . « o'« ¢ o « « o175
Intermediate Results and Binary
Data Items « . « « e o o e o o #2175
Intermediate Results and COBOL
Library Subroutines . . . « « . « 175
Intermediate Results Greater Than
30 DigitS .+ o o « o o o o o = o = o175
Intermediate Results and
Floating-point Data Items . . « . 175
Intermediate Results and the ON
SIZE ERROR Option . « « o o o o « o176
Procedure Division Statements . « . 176
COMPUTE Statement ‘e« o« o ¢ o ¢ ¢ ¢ o176
IF Statement . . ¢« « o ¢ ¢ » o o - 2176
MOVE Statement . L] L] L] L] L] . L] L] L] L] 176
NOTE Statement « « . « ¢ o o o o « o176
PERFORM Statement « « « ¢« « ¢« o « «176
READ INTO and WRITE FROM Options176
TRACE Statement o« o « o« o « « o ¢ o177
TRANSFORM Statement . . ¢« o« o » o« 177
Using the Report Writer Feature . « « 177
REPORT Clause in a File |
Description (FD) Entry ¢« « « o« o ¢ 177
Summing Techniques . « ¢ o« o o o o o177
USe Of SUM ¢« o« o o o o o s @« « o o o177
SUM Routines « « « « o« « « o « » « o178
output Line Overlay o« « « o« « « o« 179
Page BreakS .« « o o o o o o o « « 2179
WITH CODE ClauSe€ « « o« « o o o ¢ o o179
Control Footings and Page Format . .180
NEXT GROUP Clause e o o o e o o o o181
Floating First Detail <« « « « o« « <181
Report Writer Routines . . « « . . o181
Table Handling Considerations . « « « 0181
SubscriptsS « « ¢ o ¢ ¢ o o o o + o 2181
Index-names e o o o o o o o o o o o182
Index Data Items . . « o « « « « « 0182
OCCURS Clause e o o o o o e e o o o182
DEPENDING ON Option . « « « « - « .182
SEARCH ALL Statement « ¢« « ¢« « « « 183
SET Statement . « o o« ¢« o « o o o 183
SEARCH Statement « « « « « o« « ¢ o ¢185
Building Tables . . ¢« ¢« ¢ o « « « 186
APPENDIX A: SAMPLE PROGRAM OUTPUT . . .187
APPENDIX B: STANDARD TAPE FILE LABELS .201
APPENDIX C: STANDARD MASS STORAGE
DEVICE LABELS =« « o o o o o « o o« » « 2203

APPENDIX D: TRACK FORMATS FOR THE
2311, 2314, AND 2321 DIRECT-ACCESS
STORAGE DEVICES & o« o o ¢ « o o o o o« 2209
APPENDIX E: COBOL LIBRARY SUBROUTINES .211
Input/Output Subroutines211
Printer Spacing . . e o <211
Tape and Sequential Dlsk Labels e 211
CLOSE WITH LOCK Subroutine « « « « 211
WRITE Statement Subroutines211
READ Statement Subroutines211
REWRITE Statement Subroutines . . 4211
DISPLAY (EXHIBIT and TRACE)
Subroutines . . « o ¢ <211

ACCEPT and STOP (llteral) Statement

Subroutines e ¢ e ¢ s e o o o o o 212
CLOSE Subroutine « « « o o ¢ ¢ o o 2212
Multiple File Tape Subroutine . . .212
Input/Output Error Subroutines . . .212
Disk Extent Subroutines . « « « « <212
Auxiliary Subroutines . . . « o o« »212
conversion Subroutines « « « « « « « o212
Arithmetic Verb Subroutines214
Sort Feature Interface Routine . . . 214
Checkpoint (RERUN) Subroutine214
Segmentation Feature Subroutine . . .214
Oother Verb Routines .« « « « « o « o o214
compare Subroutines . . . « . . - o214
MOVE Subroutines « « « o« « ¢« o o o 215
TRANSFORM Subroutine - .215
Class Test Subroutine . « « « « ¢ 215
SEARCH Subroutine . . « « « « « « o215
Main Program or Subprogram
Subroutine 4 e o & o o +215
APPENDIX F: DIAGNOSTIC MESSAGES217
Compiler Diagnostic Messages . + « « «217
Object Time Messages . . . e o <234
COBOL Object Program Unnumbered
MEeSSages « « o o« o o s « o o« o » o 4235
APPENDIX G: MACHINE CONSIDERATIONS . . .237
Minimum Machine Requirements for the
Compiler « o« « o« o o o o o o o o o « «237
Execution Time Considerations237
Sort Feature Considerations =« « o« « 237
APPENDIX H: COMMUNICATION REGION + « « 239
Communication Region . « « =« &« « o . . 2239
APPENDIX I: SAMPLE JOB DECKS . . « » .« 241
Direct Files L] - L] L L] L] . . e - . e L] 2“2
Creating a Direct File o 2U42
Retrieving and Updating a Dlrect
File o o o o o o o o o o o o o o o« 2242
Indexed Files . L] L] L] - .V . L] L] . L . 243
Creating an Indexed File . . « . « 243
Retrieving and Updating an Indexed
File L] L] L] - L] L] - L] L] L] L] L] L] (] Ll L] 244
Files Used in a Sort Operation244
Sorting an Unlabeled Tape File . « «244
INDEX « o o o o s o o o o o« o o o o o o245

ILLUSTRATIONS

FIGURES

Figure 1. Sample Structure of Job Deck

for Compiling, Linkage Editing, and
Executing a Main Program and Two
Subprograms . . . e o o o s« o o o 13
Figure 2. Sample Loglcal Unit
Assignments...'......-...19
Figure 3. Possible Specifications for
X'ss' in the ASSGN Control Statement . 24
Figure 4. sSample Label and File

Extent Information for Mass Storage

Files .+ ¢ o o & - ¢« ¢« ¢« o o o o o 28
Figure 5. Job Deflnltlon -~ Use of
thelerarlan......‘...-..38
Figure 6. Sample Coding to Calculate
FICA e o o o s o s o o o s o o a o o o U9
Figure 7. Altering a Program from

the Source Statement Library Using

INSERT and DELETE Cards . . o« o ¢ o o« o U9
Figure 8. Effect of INSERT and

DELETE Cards e o o o o o o o o ¢ o o o 50
Figure 9. Sample Output of EXHIBIT
Statement with the CHANGED NAMED

Option e o o o o o » o o o e e & s o & 53
Figure 10. Sample Dump Resulting from
Abnormal Termination . . ¢« ¢ o o o » . 58

Figure 11. Examples of Compiler Output . 68
Figure 12. Linkage Editor Output . . . 76
Figure 13. Output from Execution Job

Stepsl.....l.‘...78
Figure 14. Calling and Called

Programs e o« o o ¢ s o o s e o e o o o 81
Figure 15. Example of Data Flow Logic
inaCall Structure e o e o o o e o o
Figure 16. Sample Linkage Routines
Used with a Calling Subprogram 86
Figure 17. Sample In-line Parameter
List e ® e e o e o e e o e & o o o o
Figure 18. Sample Linkage Routines
Used with a Lowest Level Subprogram . . 87
Figure' 19. Example of an Assembler
Language Subroutine for Accomplishing
OVEeXrlay « o o o o o o o o « s o o« ¢« o o 88
Figure 20. Flow Diagram of Overlay
LOgiC.ucoooo-cc--.'..osg
Figure 21. Job Control for

Accomplishing Overlay o« « « « « o « 90
Figure 22. Calling Sequence to Obtaln
Overlay Between Three COBOL Subprograms 91
Figure 23. Segmenting the Program

SAVECORE e ® e @ o ¢ @ o o o 0'..99

« 83

. 87

Figure 24. Storage Layout for SAVECORE 100
Figure 25. Compiler Output for

SAVECORE . L3 L3 L] L . * L] o L] L L] L L] .101
Figure 26, Linkage Editing a

Segmented Program e o e e o e @« e o e «102
Figure 27. Location of Sort Program

in a Segmentation Structure . . « « o 103
Figure 28. Structures of the Actual
Key.---'--o-.o-'.o.-olll

Figure 29. Permissible Specifications
for the First Eight Bytes of the
ACtual Key . e . L] . . L] . L] L] L] L] L]
Figure 30. Creating a Direct File
Using Method B ¢« « o « ¢ o ¢ o o ¢ o o
Figure 31. Creating a Direct File
with Relative Track Addressing Using
Method B e o o s o o & o & = s e o @
Figure 32. Formats of Blocked and
Unblocked ReCOXrds . « « « o o « o o &«
Figure 33. Adding a Record to a Prime
Track e« o 5 o o o o 6 o s s s o o @
Figure 34. Standard Tape File Label
and TPLAB Cards . L] o . L] L] L] - L]
Figure 35. Standard Tape File Label
and TLBL Card (Showing Maximum
Specifications) . . o o e e o .
Figure 36. Standard Tape Flle Label
and TLBL Card (Showing Minimum
Requirements) o« o o o o o o o o o o.°
Figure 37, Standard, User, and Volume
Labels o L] L] L] L] L] L] L e - L] L] - L] L] L]
Figure 38. Nonstandard Labels
Figure 39, Fixed-Length (Format F)
RECOYAS o o ¢ o o o o o » o o o o« = =
Figure 40. Undefined (Format U)
ReCOTAS o o o o o o o o o o o o o & &«

Figure 41. Unblocked V-Mode Records
Figure 42, Blocked V-Mode Records .
Figure 43, Fields in Unblocked V-Mode

RECOXAS o o o o o o o o o o o o o o @
Figure 44, Fields in Blocked V-Mode
RecOrds =« ¢ o o o o o o 2 o o o o o o
Figure 45. First Two Blocks of
VARIABLE-FILE-2 . . & . o o .
Figure 46. Control Flelds of an
S-Mode RecOrd .« « o o o o o o « o o o
Figure 47. One Logical Record
Spanning Physical Blocks o o e s o
Figure 48, First Four Blocks of
SPAN-FILE . . . o o o o o o o
Figure 49, Advantage of S-Mode
Records Over V-Mode Records . « « . «
Figure 50, Direct and Sequential
Spanned Files on a Mass Storage Device
Figure 51. Calculating Record Lengths
When Using the OCCURS Clause with the
DEPENDING ON Option . « o ¢ o« ¢ « « o«
Figure 52. Treatment of Varying
Values in a Data Item of PICTURE S9 .
Figure 53, Sample of GROUP INDICATE
Clause and Resultant Execution Output
Figure 54. Format of a Report Record
When the CODE Clause is Specified . .
Figure 55. Activating the NEXT GROUP
Clause e o o ® o 5 8 s s o 6 s o o o
Figure 56. Table Structure in Core
StOrage o o o o o o o o o o o o o o o
Figure 57. Track Format e s s o s o
Figure 58. Communication Region in
the Supervisor e s o o o s o o o o @

<112

<116

.121
-127
129

145

146

<147

.148
.1u48

.153
. 154
154
.155
-.156
.156
. 157
.158
159
.160
160

161

.164
<174
179
.180
.181

.184
«210

. 239

Table 1. Job Control Statements . . « 16
Table 2. Symbolic Names, Functions,

and Permissible Device TYPES « o « « o « 20
Table 3. Glossary Definition and
Usage.....-...-.......73
Table U4, Symbols Used in the Listing

and Glossary to Define

Compiler-Generated Information « « « « « 74
Table 5. System Message

Identification Codes « o s e o« « « « « « 19
Table 6. Conventional Use of Linkage
Registers ® o @ e e e ¢ @ e e © o s o o 84
Table 7. Save Area Layout and Word
ContentS'. L] e e L] - L] L] e e ' e o L] L] L] L] 85

Table 8. Recording Capacities of Mass
Storage Devices e o o6 e e o s o o o 107
Table 9. Partial List of Prime

Numbers . .11“
Table 10. Fields Preceding DTFMT and

DTFSD L] L] L] * * o e L IR] L] L] L] L] L] L] L] .13“
Table 11. Fields Preceding DTFDA -

ACCESS IS RANDOM - Actual Track

Addressing « . o e o o o134
Table 12. Fields Precedlng DTFDA -

ACCESS IS RANDOM - Relative Track
Addressing». e e e o s ¢ o o o o o o o 135

TABLES

Table 13, Fields Precedina DTFDA -
ACCESS IS SEQUENTIAL - Actual Track
Addressing . . e o o o o o o o e o
Table 14. Flelds Preceding DTFDA -
ACCESS IS SEQUENTIAL -~ Relative Track

AdAreSSIing e e o o ¢ o ¢ ¢ o e e 0-9 o

Table 15. Fields Preceding DTFIS . .
Table 16. Meaning of Pre-DTF Switch .-
Table 17. Errors Causing an Invalid

Key Condition e © e o o ® o o o o & o
Table 18, Meaning of Error Bytes for
GIVING Option of Error Declarative . .

Table 19. Location and Meaning of
Error Bits for DTFMT « o« o « « » o
Table 20, Location and Meaning of
Error Bits for DTFSD . « « « « » . .
Table 21, Location and Meaning of
Error Bits for DTFDA ¢ « o o ¢ o o o »
Table 22, Location and Meaning of
Error Bits for DTFIS « « o o o o o o «
Table 23. Data Format Conversion . .-
Table 24. Relationship of PICTURE to

Storage Allocation e - «- - e a o

Table 25. Rules for the SET Statement
Table 26. Functions of COBOL Library
conversion Subroutines - -
Table 27. Functions of COBOL L1brary
Arithmetic Subroutines . « « « « o o o

136

«137
137
«138
139
. 140
142
142
.142

«143
«170

«173
185

.213

<214

C

INTRODUCTION

JOB DEFINITION

JOB PROCESSING

PREPARING COBOL PROGRAMS FOR PROCESSING
LIBRARIAN FUNCTIONS

PROGRAM CHECKOUT

INTERPRETING OUTPUT

CALLING AND CALLED PROGRAMS

USING THE SEGMENTATION FEATURE

USING THE SORT FEATURE

PART I

In the years since 1959, COBOL has
undergone considerable refinement and
standardization. Now, an extensive subset
for a standard COBOL has been specified by
the American National Standards Institute,
an industry-wide association of computer
manufacturers and users. This standard is
called American National Standard COBOL.

JIBM American National Standard COBOL is

compatible with American National Standard
COBOL and includes a numbexr of extensions
to it as well.

An IBM American National Standard COBOL
program may be processed by the IBM
System/360 Disk Operating System. Under
control of the operating system, a set of
IBM American National Standard COBOL source
statements is translated to form a module.
In oxrder to be executed, the module in turn
must be processed to form a phase. The
reasons for this will become clear later.
For now it is sufficient to note that the
flow of an IBM American National Standard
COBOL (herein, simply termed COBOL) program
through the operating system is from source
statements to module to phase,

The Disk Operating System consists
essentially of a control program and a
number of processing programs.

CONTROL PROGRAM

The components of the control program
are: the Supervisor, Job Control
Processor, and the Initial Program Loader.

SUPERVISOR

The main function of the Supervisor is
to provide an orderly and efficient flow of
jobs through the operating system. (A job
is some specified unit of work, such as the
processing of a COBOL program.) The
Supervisor loads into the computer the
phases that are to be executed. During
execution of the program, control usually
alternates between the Supervisor and the
processing program. The Supervisor, for
example, handles all requests for
input/output operations.

INTRODUCTION

JOB CONTROL PROCESSOR

The primary function of the Job Control
Processor is the processing of job control
statements. Job control statements
describe the jobs to be performed and
specify the programmer's requirements for
each job. Job control statements are
written by the programmer using the job
control language. The use of job control
statements and the rules for specifying
them are discussed later.

INITIAL PROGRAM LOADER

The Initial Program loader (IPL) routine
loads the Supervisor into main storage when
system operation is initiated. Detailed
information about the Initial Program
Loader need not concern the COBOL
programmer. Anyone interested in this
material, however, can find it in the
publication IBM System/360 Disk Operating
System: System Control and System Service

Programse.

PROCESSING PROGRAMS

The processing programs include the
COBOL compiler, service programs, and
application programs.

SYSTEM SERVICE PROGRAMS

The system service programs provide the
functions of generating the system,
creating and maintaining the library
sections, and editing programs into disk
residence before execution. The system
service programs are:

1. Linkage Editor. The Linkage Editor
processes modules and incorporates
them into phases. A single module can
be edited to form a single phase, or
several modules can be edited or
linked together to form one executable
phase. Moreover, a module to be
processed by the Linkage Editor may be
one that was just created (during the
same job) or one that was created in a
previous job and saved.

Introduction 11

The programmer instructs the Linkage
Editor to perform these functions
through job control statements. In
addition, there are several linkage
editor control statements.
Information on their use is given
later.

2. Librarian. The Librarian consists of
a group of programs used for
generating the system, maintaining and
reorganizing the disk library areas,
and providing printed and punched
output from the libraries. The three
system libraries are: the core image
library, the relocatable library, and
the source statement library. In
addition, the Librarian supports
private relocatable and source
statement libraries. Detailed
information on the Librarian is given
later.

APPLICATION PROGRAMS

Application programs are usually
programs written in a higher-level
programming language (e.g., COBOL).
application programs within the Disk
Operating System are executed under the
supervision of the control program.

A1l

IBM-SUPPLIED PROCESSING PROGRAMS
The following are examples of
IBM-supplied processing programs:

1. Language translators, e.g., COBOL
compiler

2. Sort/Merge
3. Utilities

4. Autotest

MULTIPROGRAMMING

For those systems with main storage
equal to or in excess of 24K bytes, the
Disk Operating System offers
multiprogramming support. In addition to
at least 24K bytes of main storage,

12

multiprogramming support requires the
storage protection feature.

Multiprogramming refers to the ability
of the system to control more than one
program concurrently by interleaving their
execution. This support is referred to as
fixed partitioned multiprogramming, since
programs are assigned to fixed locations
when they are cataloged to the system.

Each program occupies a contiguous area of
main storage. The amount of main storage
allocated to programs to be executed may be
determined when the system is generated, or
it may be determined by the operator when
the program is loaded into main storage for
execution.

BACKGROUND VS. FOREGROUND PROGRAMS

There are two types of problem programs
in multiprogramming: background and
foreground. Background programs are
initiated by the Job Control Processor from
batched-job input streams. Foreground
programs may operate in either the
batched-job mode or in the single-program
mode. Single-program foreground programs
are initiated by the operator from the
printer-keyboard. When one program is
completed, the operator must explicitly
initiate the next program.

Background and foreground programs
initiate and terminate independently of one
another. Neither is aware of the other's
status or existence.

The system is capable of concurrently
operating one background program and one or
two foreground programs. Priority for CPU
processing is controlled by the Supervisor
with foreground programs having priority
over background programs. Control is taken
away from a high priority program when that
program encounters a condition that
prevents continuation of processing, until
a specified event has occurred. Control is
taken away from a lower priority program
when an event for which a higher priority
program was waiting has been completed.
Interruptions are received and processed by
the Supervisor.

COBOL source modules must,be compiled as
background programs. COBOL program phases
can be executed as either background or
foreground programs.

-~

\,
o

-

NS

C\
o

A job is a specified unit of work to be
performed under control of the operating
system. A typical job might be the
processing of a COBOL program -- compiling
source statements, editing the module
produced to form a phase, and then
executing the phase. Job definition ~- the
process of specifying the work to be done
during a single job -- allows the
programmer considerable flexibility. A job
can include as many or as few job_steps as
the programmer desires.

JOB STEPS

A job step is exactly what the name
implies -- one step in the processing of a
job. Thus, in the job mentioned above, one
job step is the compilation of source
statements; another is the linkage editing
of a module; another is the execution of a
phase. In contrast to a job definition,
the definition of a job step is fixed.

Each job step involves the execution of a
program, whether it be a program that is
part of the Disk Operating System or a
program that is written by the user. A
compilation requires the execution of the
COBOL compiler. Similarly, an editing
implies the execution of the Linkage Editor
Finally, the execution of a phase is the
execution of the problem program itself.

Cdmpilation Job Steps

The compilation of a COBOL program may
necessitate more than one job step (more
than one execution of the COBOL compiler).
In some cases, a COBOL program consists of
a main program and one or more subprogramse.
To compile such a program, a separate job
step must be specified for the main program
and for each of the subprograms. Thus, the
COBOL compiler is executed once for the
main program and once for each subprogram.
Each execution of the compiler produces a
module. The separate modules can then be
combined into one phase by a single job
step -- the execution of the Linkage
Editor.

For a COBOL program that consists of a
main program and two subprograms,
compilation and execution require five
steps: (1) compile (main program), (2)
compile (first subprogram), (3) compile

JOB _DEFINITION

(second subprogram), (4) linkage edit
(three modules combined into one phase),
and (5) execute (phase). Figure 1 shows a
sample structure of the job deck for these
five job steps. Compilation and execution
in three job steps -- compile, linkage
edit, and execute -- is applicable only
when the COBOL source program is a single
main program.

r
|77 JOB PROG1

|7/ EXEC FCOBOL
| {source deck - main program}

|// EXEC FCOBOL
{source deck - first subprogram}

|7/ EXEC FCOBOL
{source deck - second subprogram}

/ EXEC LNKEDT

—
L]
L s oo s s e e o e — — — —— —— —— — b e e, e s S g . . e, e o)

Sample Structure of Job Deck
for Compiling, Linkage Editing,
and Executing a Main Program
and Two Subprograms

Multiphase Program Execution

The execution of a COBOL program has
thus far been referred to as the execution
of a phase. It is possible, however, to
organize a COBOL program so that it is
executed as two or more phases. Such a

program is known as a multiphase programe.

By definition, a phase is that portion
of a program that is loaded into main
storage by a single operation of the
Supervisor. A COBOL program can be
executed as a single phase only if there is
an area of main storage available to

Job Definition 13

accommodate all of it. A program that is
too large to be executed as a single phase
must be structured as a multiphase program.
The technique that enables the programmer
to use subprograms that do not fit into
main storage (along with the main program)
is called overlay.

The number of phases in a COBOL program
has no effect on the number of job steps
required to process that program. As will
be seen, the Linkage Editor can produce one
or more phases in a single job step.
Similarly, both single-phase and multiphase
programs require only one execution job
step. Phase execution is the execution of
all phases that constitute one COBOL
programe.

Detailed information on overlay
structures, as well as information on using
the facilities of the operating system to
create multiple phases and to execute them,
can be found in the chapter "cCalling and
Called Programs."

TYPES OF JOBS

A typical job falls into one of several
categories. A brief description of these
categories follows; a complete discussion
is found in the chapter "Preparing COBOL
Programs for Processing."

Compile-Only: This type of job involves
only the execution of the COBOL compiler.
It is useful when checking for errors in
COBOL source statements. A compile-only
job is also used to produce a module that
is to be further processed in a subsequent
job.

A compile-only job can consist of one
job step or several successive job steps.

Edit-Only: This type of job involves only
the execution of the Linkage Editor. It is
used primarily to combine modules produced
in previous compile-only jobs, and to check
that all cross references between modules
have been resolved. The programmer can
specify that all modules be combined to
form one phase; or he can specify that some
modules form one phase and that others form
additional phases. The phase output
produced as the result of an edit-only job
can be retained for execution in a
subsequent job.

14

Compile and Edit: This type of job
combines the functions of the compile-only
and the edit-only jobs. It requires the
execution of both the COBOL compiler and
the Linkage Editor. The job can include
one or more compilations, resulting in one
or more modules. The programmer can
specify that the Linkage Editor process any
or all of the modules just produced; in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing.

Execute-Only: This type of job involves
the execution of a phase (or multiple
phases) produced in a previous job. Once a
COBOL program has been compiled and edited
successfully, it can be retained as one or
more phases and executed whenever needed.
This eliminates the need for recompiling
and re-editing every time a COBOL program
is to be executed.

Edit_and Execute: This type of job
combines the functions of the edit-only and
the execute-only jobs. It requires the
execution of both the Linkage Editor and
the resulting phase(s).

Compile, Edit, and Execute: This type of
job combines the functions of the compile

and edit and the execute-only jobs. It
calls for the execution of the COBOL
compiler, the Linkage Editor, and the
problem program; that is, the COBOL program
is to be completely processed.

When considering the definition of his
job, the programmer should be aware of the
following: if a job step is cancelled
during execution, the entire job is
terminated; any remaining -job steps are
skipped. Thus, in a compile-edit-and
execute job, a failure in compilation
precludes the editing of the module(s) and
phase execution. Similarly, a failure in
editing precludes phase execution.

For this reason, a job usually should
(but need not) consist of related job steps
only. For example, if two independent
single-phase executions are included in one
job, the failure of the first phase
execution precludes the execution of the
second phase. Defining each phase
execution as a separate job would prevent
this from happening. If successful
execution of both phases can be guaranteed
before the job is run, however, the
programmer may prefer to include both
executions in a single job.

JOB DEFINITION STATEMENTS

once the programmer has decided the work
to be done within his job and how many job
steps are required to perform the job, he
can then define his job by writing job
control statements. Since these statements
are usually punched in cards, the set of
job control statememts is referred to as a
job_deck. In addition to job control
statements, the job deck can include input
data for a program that is executed during
a job step. For example, input data for
the COBOL compiler -- the COBOL program to
be compiled -- can be placed in the job
deck.

The inclusion of input data in the job
deck depends upon the manner in which the
installation has assigned input/output
devices. Job control statements are read
from the unit named SYSRDR (system reader),
which can be either a card reader, a
magnetic tape unit, or a disk extent.

Input to the processing programs is read
from the unit named SYSIPT (system input),
which also can be either a card reader, a
magnetic tape unit, or a disk extent. The
installation has the option of assigning
either two separate devices for these units
(one device for SYSRDR, a second device for
SYSIPT) or one device to serve as both
SYSRDR and SYSIPT. If two devices have
been assigned, the job deck must consist of
only job control statements; input data
must be kept separate. If only one device
has been assigned, input data must be
included within the job deck.

There are four job control statements
that are used for job definition: +the JOB
statement, the EXEC statement, the
end-of-data statement (/#%¥), and the
end-of-job statement (/&). In this
chapter, the discussion of these job
control statements is limited to the
function and use of each statement. The
rules for writing each statement are given
in the chapter "Preparing COBOL Programs

‘for Processing."

The JOB statement defines the start of a
job. One JOB statement is required for
every job; it must be the first statement
in the job deck. The programmer must name
his job on the JOB statement.

The EXEC statement requests the
execution of a program. Therefore, one
EXEC statement is required for each job
step within a job. The EXEC statement
indicates the program that is to be
executed (for example, the COBOL compiler,
the Linkage Editor). As soon as the EXEC
statement has been processed, the program
indicated by the statement begins
execution.

The end-of-data statement, also referred
to as the /* (slash asterisk) statement,
defines the end of a program's input data.
When the data is included within the job
deck (that is, SYSIPT and SYSRDR are the
same device), the /* statement immediately
follows the input data. For example, COBOL
source statements would be placed
immediately after the EXEC statement for
the COBOL compiler; a /* statement would
follow the last COBOL source statement.

wWhen input data is kept separate (that
is, SYSIPT and SYSRDR are separate
devices), the /* statement immediately
follows each set of input data on SYSIPT.
For example, if a job consists of two
compilation job steps, an editing job step,
and an execution job step, SYSIPT would
contain the source statements for the first
compilation followed by a /% statement, the
source statements for the second
compilation followed by a /% statement, any
input data for the Linkage Editor followed
by a /% statement, and perhaps some input
data for the problem program followed by a
/% statement.

The end-of-job statement, .also referred
to as the /& (slash ampersand) statement,
defines the end of the job. A /& statement
must appear as the last statement in the
job deck.

Job Definition 15

OTHER JOB CONTROL STATEMENTS

The four job definition statements form
the framework of the job deck. There are a
number of other job control statements in
the job control language; however, not all
of them must appear in the job deck. The
job control statements are summarized
briefly in Table 1.

The double slash preceding each
statement name identifies the statement as
a job control statement. Most of the
statements are used for data management --
creating, manipulating, and keeping track
of data files. (Data files are externally
stored collections of data from which data
is read and into which data is written.)

16

—-

Table 1. Job Control Statements
L T
| statement| Function

L

T

// ASSGN | Input/output assignments.

|

// CLOSE | Closes a logical unit assigned
to magnetic tape.

| |

// DATE Provides a date for the
Communication Region.

// DLAB Disk file label information.

// DLBL Disk file label information.

| |

77/ EXEC Execute program.

// EXTENT| Disk file extent.

// JOB Beginning of control

| information for a job. |

|

|7/ LBLTYP| Reserves storage for label

| information.

|

|77/ LISTIO| Lists input/output

| assignments.

|

|77 MTC Ccontrols operations on

| magnetic tape.

|

|// OPTION| Specifies one or more job

| control options.

| |

|7/ PAUSE | Creates a pause for operator

| intervention,

// RESET | Resets input/output
assignments to standard i
assignments.

// RSTRT | Restarts a checkpointed
program.

// TLBL Tape label information.

// TPLAB | Tape label information.

// UPSI Sets user-program switches.

/7 VoL Disk/tape label information.

// XTENT | Disk file extent.

|

/* End-of-data-file or
end-of-job-step.

/& End-of-job.

Comments.

e e

~

—

This chapter describes in greater detail
the three types of job steps involved in
processing a COBOL program. Once the
reader becomes familiar with the
information presented here, he should be
able to write control statements by
referring only to the next chapter,
"Preparing COBOL Programs for Processing."

COMPILATION

Compilation is the execution of the
COBOL compiler. The programmer requests
compilation by placing in the job deck an
EXEC statement that contains the program
name FCOBOL, the name of the COBOL
compiler., This is the EXEC FCOBOL
statement.

Input to the compiler is a set of COBOL
source statements, consisting of either a
main program or a subprogram. Source
statements must be punched in Extended
Bi-iary-Coded-Decimal Interchange Code
(EBCDIC). The COBOL source statements are
read from SYSIPT. The job deck is read
from SYSRDR. If SYSRDR and SYSIPT are
assigned to the same unit, the COBOL source
statements should be placed after -the EXEC
FCOBOL statement in the job deck.

Output from the COBOL compiler is
dependent upon the options specified when
the system is generated. This output may
include a listing of source statements
exactly as they appear in the input deck.
The source listing is produced on SYSLST,
In addition, the module produced by the
compiler may be written on SYSLNK, the
linkage editor input unit, and punched on
SYSPCH. Separate Data and/or Procedure
Division maps, a symbolic cross-referenge
list, and diagnostic messages can also be
produced. The format of compiler output is
discussed and illustrated in the chapter
"Interpreting Output."”

The programmer can override any of the
compiler options specified when the system
was generated, or include some not
previously specified, by using the OPTION
control statement in the compile job step.
Compiler options are discussed in detail in
the chapter "Preparing COBOL Programs for
Processing."

JOB PROCESSING

EDITING

Editing is the execution of the Linkage
Editor. The programmer requests editing by
placing in the job deck an EXEC statement
that contains the program name LNKEDT, the
name of the Linkage Editor. This is the
EXEC LNKEDT statement.

Input to the Linkage Editor consists of
a set of linkage editor control statements
and one or more modules to be edited.
These modules include any of the following:

1. Modules that were compiled previously
in the job and placed at that time on
the linkage editor input unit, SYSLNK.

2. Modules that were compiled in a
previous job and saved as module
decks. The module decks must be
placed on SYSIPT. Linkage editor
control statements are read from
SYSRDR.

3. Modules that were compiled in a
previous job step and cataloged in the
relocatable library. The relocatable
library is a collection of frequently
used routines in the form of modules,
that can be included in a program
phase via the INCLUDE control
statement in the linkage editor job
step.

Output from the Linkage Editor consists
of one or more phases. A phase may be an
entire program or it may be part of an
overlay structure (multiple phases).

A phase produced by the Linkage Editor
can be executed immediately after it is
produced (that is, in the job step
immediately following the linkage editor
job step), or it can be executed later,
either in a subsequent job step of the same
job or in a subsequent job. In either of
the latter cases, the phase to be executed
must be cataloged in the core image libary.
Such a phase can be retrieved in the
execute job step by specifying the phase
name in the EXEC statement, where phase
name is the name under which it was
cataloged. Otherwise, the phase output is
retained only for the duration of one job
step following the linkage editor job step.
That is, if the module that was just
linkage edited is to be executed in the
next job step, it need not have been
cataloged. An EXEC statement will cause
the phase to be brought in from the

Job Processing 17

temporary part of the core image library
and will begin execution. However, the
next time "such a module is to be executed,
the linkage editor job step is required
since the phase was not cataloged in the
core image library.

In addition to.the phase, the Linkage
Editor produces a phase map on SYSLST.
Linkage editor diagnostic messages are also
printed on SYSLST. If the NOMAP option of
the linkage editor ACTION control statement
is specified, no phase map is produced and
linkage editor diagnostic messages are
listed on SYSLST, if assigned. Otherwise,
the diagnostic messages are listed on
SYSLOG. The .contents of the phase map are
discussed and illustrated in the chapter
"Interpreting Output."

Linkage editor control statements direct
the execution of the Linkage Editor.
Together with any module decks to be
processed, they form the linkage editor
input deck, which is read by the Job
control Processor from SYSIPT and written
on SYSLNK.

There are four linkage editor control
statements: the ACTION statement, the
PHASE statement, the ENTRY statement, and
the INCLUDE statement. These statements
are discussed in the next chapter.

PHASE EXECUTION

Phase execution is the execution of the
problem program, for example, the program
written by the COBOL programmer. If the
program is an overlay structure (multiple
phase), the execution job step actually
involves the execution of all the phases in
the program.

The phase(s) to be executed must be
contained in the core image library. The
core image library is a collection of
executable phases from which programs are
loaded by the Supervisor. A phase is

written in the temporary part of the core

i8

image library by the Linkage Editor at the
time the phase is produced. It is

erma retained (cataloged) in the
core image library, if the programmer has
so requested, via the CATAL option in the
OPTION control statement.

The programmer requests the execution of
a phase by placing in the job deck an EXEC
statement that specifies the name of the
phase. However, if the phase to be
executed was produced in the immediately
preceding job step, it is not necessary to
specify its name in the EXEC statement.

MULTIPHASE PROGRAMS

A COBOL program can be executed as a
single phase as long as there is an area of
main storage available to accommodate it.
This area, known as the problem program
area, must be large enough to contain the
main program and all called subprograms.
When a program is too large to be executed
as a single phase, it must be structured as
a multiphase program.

The overlay structure available to the
COBOL programmer for multiphase programs is
known as root phase overlay, and is used
primarily for programs of three or more
phases. One phase of the program is
designated as the root_ phase (main program)
and, as such, remains in the problem
program area throughout the execution of
the entire program. The other phases in
the program -- subordinate phases -- are
loaded into the problem program area as
they are needed. A subordinate phase may
overlay any previously loaded subordinate
phase, but no subordinate phase may overlay
the root phase. One or more subordinate
phases can reside simultaneously in main
storage with the root phase.

Use of the linkage editor control
statements needed to effect overlay are
discussed in the chapter "Calling and
Called Programs."

(”

()

@

This chapter provides information about
preparing COBOL source programs for
compilation, linkage editing, and
execution.

ASSIGNMENT OF INPUT/OUTPUT DEVICES

Almost all COBOL programs include
input/output statements calling for data to
be read from or written into data files
stored on external devices. COBOL programs
do not reference input/output devices by
their actual physical address, but rather
by their symbolic names. Thus, a COBOL
program is dependent on the device type and
not on the actual device address. The
COBOL programmer need only select the
symbolic name of a device from a fixed set
of symbolic names. At execution time, as a
‘job control function, the symbolic name is
associated with an actual physical device.
The standard assignment of physical
addresses to symbolic names may be made at
system generation time., However, job
control statements and operator commands
can alter the standard device assignment
before program execution. This is
discussed later in this chapter.

To simulate an installation environment,
all the examples in this publication assume
that the symbolic units and their physical
and logical assignments are as shown in
Figure 2.

The symbolic names are divided into two
classes: system logical units and
programmer logical units.

The system logical units (SYSIPT,
SYSLNK, SYSLOG, SYSLST, SYSPCH, SYSRES,
SYSSLB, SYSRLB, and SYSRDR) are used by the
control program and by IBM-supplied
processing programs. SYSIPT, SYSLST,
SYSPCH, and SYSLOG can be implicitly

‘referenced by certain COBOL procedural

statements. Two additional names, SYSIN
and SYSOUT, are defined for background
program assignments. The names are valid
only to the Job Control Processor, and
cannot be referenced in the COBOL program.
SYSIN can be used when SYSRDR and SYSIPT
are the same device; SYSOUT must be used
when SYSLST and SYSPCH are assigned to the
same magnetic tape unit.

Programmer logical units are those in
the range SYS000 through S¥S221 and may be
referenced in the COBOL source language
ASSIGN clause.

PREPARING COBOL PROGRAMS FOR PROCESSING

|
'{Logical I Physical Device i
!Unit | Onit ' Type }
[SYSRES [X'190' |2311 Disk unit i
L] 4
L] v 1
SYSLNK |X*191* 2311 Disk unit |
3 4
T 1
SYSRDR, [X'0o0cC' 2540 card reader |
SYSIPT i |
i
SYSLST |X'00E" 1403 Printer h
Jd
1
SYSPCH |X'00D' 2540 card punch
L
+ :
SYSLOG X'01F* 1052 Printer keyboard
SYSSLB X*3191* [2311 Disk unit
SYSRIB X*191°" 2311 Disk unit
1
1 §
|sYys001 jx*391* {2311 Disk system
[1] work file
I 1 L
L v T
SYs002 X*191°* 12311 Disk system
| work file
L
+
[SYs003 |x*'190" 12311 Disk system i
| work file]
(| J
Bl 1
SYsoo4 |x'281* | 2400 Tape work file |
3
)|
SYS005 |X*00E* 1403 Printer |
1}
SYS006 = [X'191' |2311 Disk unit
SYS007 X*'191" 2311 pisk unit
SYS008 |X'282" | 2400 Tape unit i
SYS009 X'283" 2400 Tape unit
| S¥S010 |Xx*284° 2400 Tape unit |
N L J
h]
[SYs011 |x*285' |2400 Tape unit |
1
SYS012 |X'00E' [1403 Printer
sys013 |x"'00c* 2540 Card reader
] 4
v 1
SYSs014 | X'01F* 1052 Printer keyboard|
SYs01S X*192¢ 2314 Disk unit
SYS016 X'192" 2314 Disk unit
SYsS017 |Unassigned| |
| through |
|s¥s221 | |
L d L

Figure 2. Sample Logical Unit Assignments

Preparing COBOL Programs for Processing 19

A COBOL programmer uses the source control statement. However, if the

language ASSIGN clause to assign a file programmer wishes to use the assignments
used by his problem program to the made at system generation time for his own
appropriate symbolic name. Although data files in the COBOL program, ASSGN
symbolic names may be assigned to physical control statements are unnecessary.
devices at system generation time, the

programmer may -alter these assignments at Table 2 is a complete list of symbolic
execution time by means of the ASSGN * names and their usage.

Table 2. Symbolic Names, Functions, and Permissible Device Types

L)] 1

) 3
| Symbolic | Permissible
| Name | Function Device Types
L. J 4
¥) 1
| SYSRDR |Input unit for control statements. Card reader
| | Magnetic tape unit
| | Disk extent
L 1
¥ v
|SYSIPT | Input unit for programs. card reader
t 1 Magnetic tape unit |
| 1 Disk extent
1 4
r T
| SYSPCH (Main unit for punched output. card punch
| | Magnetic tape unit
| | | Disk extent |
L s - 4 B |
T 1 L] 1
| SYSLST |Main unit for printed output. Printer
| | Magnetic tape unit
| | Disk extent
F 1 {
| SYSLoG |Receives operator messages and logs in job control | Printer keyboard
| | statements. | Printer
1 [1
v 1B T
| SYSLNK }Input to the Linkage Editor. | Disk extent
I !
| SYSRES [contains the operating system, the core image | Disk extent
| { 1library, relocatable library, and source state- |
| | ment library. |]
: ,
v
| SYSSLB A private source statement library. Disk extent
3 .
¥
| SYSRLB |A private relocatable library.] Disk extent |
I 1 - 1 d
T | Ll
| SYSIN Must be used when SYSRDR and SYSIPT are assigned@ Disk
i to the same disk extent. May be used when they Magnetic tape unit
I are assigned to the same card reader or magnetic Card reader
| tape. |
1 "y
L)
|

SYsouT This name must be used when SYSPCH and SYSLST are
assigned to the same magnetic tape unit., It
must be assigned by the operator ASSGN command.

Magnetic tape unit

e — a— el c—

SYSmax These units are available to the programmer as Any unit

work files or for storing data files. They

are called programmer logical units as opposed

| to the above~mentioned names which are always

referred to as system logical units. The

largest number of programmer logical units

available in the system is 222 (SYsS000 through -

SYS221). The value of SYSmax is determined by the

distribution of the programmer logical units

among the partitions. |
L

——— . v S — Y —— — — N gt S cm—

o . o e
-

r
L

20

)

—

e

JOB CONTROL

The Job Control Processor for the Disk
Operating System prepares the system for
execution of programs in a batched job
environment. Input to the Job Control
Processor is in the form of job_control
statements and job _control commands.

JOB CONTROL STATEMENTS

Job control statements are designed for
an 80-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form. Job
control statements conform to these rules:

1. Name. Two slashes (//) identify the
statement as a job control statement.
They must be in columns 1 and 2. At
least one blank immediately follows
the second slash.

Exceptions: The end-of-job statement
contains /& in columns 1 and 2; the
end-of-data file statement contains /#*
in columns 1 and 2; the comment
statement contains * in column 1 and a
blank in column 2.

2. Operation. This identifies the
operation to be performed. It can be
up to eight characters long. At least
one blank follows its last character.

3. Operand. This may be blank or may
contain one or more entries separated
by commas. The last term must be
followed by a blank, unless its last
character is in column 71.

4, comments. Optional user comments must
be separated from the operand by at
least one space.

Continuation cards are not recognized by
the Job Control Processor, For the
exception to this rule, see the
descriptions of the DLAB and TPLAB
statements,

All job control statements are read from

the device identified by the symbolic name
SYSRDR.

comments in Job Control Statements

Comment statements (i.e., statements
preceded by an asterisk in column 1
followed by a blank) may be placed anywhere
in the job deck. The remainder of the card

may contain any character from the EBCDIC
set. Comment statements are designed for
communication with the operator;
accordingly, they are written on the
console printer-keyboard, SYSLOG, in
addition to being written on SYSLST. If
followed by a PAUSE control statement, the
comment statement can be used to request
operator action.

Statement Formats

The following notation is used in the
statement formats:

1. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For example,
JOB in the operation field of the JOB
statement should be punched exactly as
shown,

2. BAll lower-case letters represent
generic terms that are to be replaced
in the actual statement. For example,
jobname is a generic term that should
be replaced by the name that the
programmer is giving his job.

3. Hyphens are used to join two or more
words in order to form a single
generic term. For example,
device-address is one generic term.

4, Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [typel indicates that the
programmer's replacement for the
generic term, type, may Or may not
appear in the statement, depending on
the programmer's requirements.

5. Braces enclosing stacked items
indicate that a choice of 22§<item
must be made by the programmer. For
example:

SYS
PROG
ALL
SYSxXxX

indicates that either S¥S, PROG, ALL,
or SYSxxx must appear in the actual
statement.

Preparing COBOL Programs for Processing 21

6. Brackets enclosing stacked items
indicate that a choice of one item
may, but need not, be made by the
programmer. For example:

¢ X'ss"*

'AIJT
indicates that either ,X'ss' or ,ALT
but not both, may appear in the actual

statement, or the specification can be
omitted entirely.

7. All punctuation marks shown in the
statement formats other than hyphens,
brackets, and braces must be punched
as shown. This includes periods,
commas, and parentheses. For example,
, [date]l means that the specification,
if present in the statement, should
consist of the programmer's
replacement for the generic term date
preceded by the comma with no
intervening space. Even if the date
is omitted, the comma must be punched
as shown. . :

‘ 8. The ellipsis (...) indicates where
repetition may occur at the user's
optien. The portion of the format
that may be repeated is determined as
follows:

a. Scanning right to left, determine
the bracket or brace delimiter
immediately to the left of the
ellipsis.

b. cContinue scanning right to left
and determine the logically
matching bracket or brace
delimiter.

Cce. The ellipsis applies to the words

and punctuation between the pair
of delimiters.

Sequence of Job Control Statements

The job deck for a specific job always
begins with a JOB statement and ends with a
/& (end-of-job) statement. A specific job
consists of one or more job steps. The
bedinning of a job step is indicated by the
appearance of an EXEC statement. When an
EXEC statement is encountered, it initiates
the execution of the job step, which
includes all preceding control statements
up to, but not including, a previous EXEC
statement.

The only limitation on the sequence of
statements within a job step is that which
is discussed here for “the label information
statements.

22

The label statements must be in the
order:

VOL
TPLAB
or
VOL
DLAB
XTENT (one for each area or file in
the volume)
or
DLBL
EXTENT (one for each area or file in
the volume)
or
TLBL
and must immediately precede ihe EXEC

statement to which they apply.

DESCRIPTION AND FORMATS. OF JOB CONTROL
STATEMENTS

This section contains descriptions and
formats of job control statements.

Job control statements, with the
exception of /%, /&, and *, contain two
slashes in columns 1 and 2 to identify
them.

ASSGN Statement

The ASSGN control statement assigns a
logical input/output unit to a physical
device. An ASSGN control statement must be
present in the job deck for each data file
assigned to an external storage device in
the COBOL program where these assignments
differ from those established at system
generation time. Data files are assigned
to programmer logical units in COBOL by
means of the source language ASSIGN clause.
The ASSGN control statement may also be
used to change a system standard assignment
for the duration of the job. The format of
the ASSGN control statement is as follows:

s X'ss’
// ASSGN SYSxxx,device-address
JALT

N

o

SYSxxx
is one of the logical devices listed
in Table 2.

Exception: SYSOUT must be assigned
using the ASSGN job control -command.
Job control commands are described in
detail in the publication IBM
Systenv/360 Disk Operating System:
System Control and System Service -

Programs.

device-address - -
allows three different formats:

X*'céuu’
where ¢ is the channel number and uu
the unit number in hexadecimal
notation. The values of *c¢uu' lare
determined by each installation.

c = 0 for multiplexor channel,
1 through 6 for selector
channels 1 through 6.

uu = 00 to FE (0 to 254) in

hexadecimal.

UA
indicates that the logical unit is
to be unassigned. Any source
language input/output operation
attempted on this device causes
cancellation of the job.

IGN
indicates that the logical unit is
to be unassigned. References to
this logical unit are ignored during
program execution. However, if
OPTIONAL has been specified in the
SELECT sentence for an input file,
the first READ statement for that
file causes control to be
transferred to -the
imperative-statement following the
AT END option of the READ statement.
The IGN option is not valid for
SYSRDR, SYSIPT, and SYSIN. This
option is useful in program
debugging since source language
input or output references to files
residing on symbolic units for which
IGN has been specified are ignored.

X'ss!
is the device specification. It is
used for specifying mode settings for
7-track and dual density 9-track
tapes. If X'ss'.is not specified, the
system assumes X'90':for 7-track tapes
and X*'c0' for 9-track tapes. The
possible specifications for X'ss' are
shown in Figure 3.

must be specified in the control
statement that assigns an alternate
magnetic tape unit which is used when
the capacity of the original
assignment is reached. The
specifications for the alternate unit
must be the same as those of the
orginal unit, since X'ss' . cannot be
specified. The characteristics of the
alternate unit must be the same as
those of the original unit. Multiple
alternates can be assigned to a
symbolic unit.

Device assignments made by the ASSGN
control statement are considered temporary.
They are in effect until another ASSGN
control statement or a RESET statement for
that logical unit, or the next /& or JOB
statement is read, whichever occurs first.
If a RESET, /&, oxr JOB statement is
encountered, the assignment reverts to the
standard assignment established at system
generation time plus any modification by an
ASSGN command.

The COBOL programmer may assign only the
programmer logical units (SY¥S000 through
SYS221) to data files used in his program.
For example, if the following ASSIGN clause
is used,

SELECT IN-FILE ASSIGN TO SYSO04-UR-2540R-S

an ASSGN control statement must appear in
the job deck which assigns SYS004 to a
physical device if the physical device
differs from the permanent assignment. In
this case, the physical device must be a
2540 card reader. An example of such a
control statement is:

// ASSGN SYsSO0O0u4,Xx*o00c*®

Physical unit X'00C" was permanently
assigned to a 2540 Card Reader at system
generation time.

Note: The ASSGN control statement is
necessary only when the symbolic unit
assignment is being made to a physical
device address which differs from that
established at system generation time.

"Appendix I: Sample Job Decks" contains
illustrations of ASSGN statement usage.

Preparing COBOL Programs for Processing 23

r R} L 1)
| | | 7-Track Tape | may only be used for magnetic tape and
| | Bytes} T T 4 may be specified as SYSPCH, SYSLST,
| | per | | Translate | Convert| SYSOUT, or SYS000 through S¥YS221.
| ss | Inch | Parity | Feature | Feature|
[(| 1 4 1 J x" cuu‘l
r 1) L) v T 1
] 10 | 200 | odd | off | on specifies that after the logical unit
| 20 | 200 | even | off | off is closed, it will be assigned to the
| 28 1 200 | even | on | off channel and unit specified. (See
| 30 | 200 | odd | off | off | "ASSGN control Statement" for an
| 38 | 200 | odd | on | off explanation of '¢uu'.) When
| 50 | 556 | odd | off | on reassigning a system logical unit, the
| 60 | 556 | even | off | off new unit will be opened if it is
| 68 | 556 | even | on | off either a mass storage device or a
] 70 | 556 | odd | off | off magnetic tape at load point.
| 78 | 556 | odd | on | off
| 90 | 800 | odd | off | on X'ss'
| AO | 800 | even | off | off represents device specification for
| a8 | 800 | even | on | off | mode settings on 7-track and 9-track
| BO | 800 | odd | off | off | tape. (See "ASSGN Control Statement"
| B8 | 800 | odd | on | off | for an explanation of 'ss'.;) If X'ss'
| | : 1 A is not specified, the mode settings
| | 9-Track Tape remain unchanged.
| |
| cO | 800 single density 9-track UA
| co | 1600 single density 9-track specifies that the logical unit is to
| cCO | 1600 | dual density 9-track be closed and unassigned.
| c8 | 800 | dual density 9-track |
L i L] IGN
Figure 3. Possible specifications for specifies that the logical unit is to
X*'ss' 'in the ASSGN Control be closed and unassigned with the
Statement ignore option. This operand is
invalid for SYSRDR, SYSIPT, or SYSIN.
ALT .
CLOSE_Statement specifies that the logical unit is to
be closed and an alternate unit is to
be opened and used. This operand is
The CLOSE control statement is used to valid only for system logical output
close either a system or programmer logical units (SYSPCH, SYSLST, or SYSOUT)
unit assigned to tape. As a result of the currently assigned to a magnetic tape
CLOSE control statement, a standard unite.
end-of-volume label set is written and the
tape is rewound and unloaded. The CLOSE
statement applies only to a temporarily
assigned logical unit, that is, a logical
unit for which an ASSGN control statement DATE Statement

has been specified within the same job.
The format of the CLOSE control statement

is as follows:
dat

SYSxxx

The DATE control statement contains a
e that is put in the Communication

Region of the Supervisor. A complete

L]
| } description of the fields of the
) yX'cuu' [,X'ss'] I Communication Region is given in "Appendix
| «UA | H: Communication Region." The DATE
|7/ CLOSE SYSxxx|,IGN | statement is in one of the following
| ¢ ALT | formats:
| . J
r ™ 1
The logical unit can optionally be |77/ DATE mm/dd/yy |
reassigned to another device, unassigned, F 4
or switched to an alternate unit. |7/ DATE dd/mm/yy l
| J
Note that when SYSxxx is a system
logical unit, one of the optional where:
parameters must be specified. When closing mm = month (01 to 12)
a programmer logical unit, no optional dd = day (01 to 31)
parameter need be specified. yy = year (00 to 99)

24

/‘

-

The format to be used is the format
selected when the system was generated.

When the DATE statement is used, it
applies only to the current job being
executed. The Job Control Processoxr does
not check the operand except to ensure that
its length is eight characters. If no DATE
statement is specified in the current job,
the Job Control Processor supplies the date
given in the last SET command. The SET
command is discussed in detail in the
publication IBM System/360 Disk Operating
System: System Control and System Service

Programs.

A DATE statement should be included in
every job deck that has as one of its job
steps the execution of a COBOL program that
utilizes the special register CURRENT-DATE,
if the date desired is other than that
designated in the previous SET command.

TLBL Statement

The TLBL control statement replaces the
VOL and TPLAB combination used in previous
versions of the system. However, the
current system will continue to support
these statements. The TLBL control
statement contains file label information
for tape label checking and writing., Its
format follows:

// TLBL filename,
[*file-identifier"], [datel,
(file-serial~number],
[volume-sequence-number],
[file-sequence-number],
[generation-numberl,
[version-number]

[e — e — — —r o)
O i P p—

filename
identifies the file to the control
program. It can be from one to seven
characters in length. If the
following SELECT sentence appears in a
COBOL program:

SELECT NEWFILE ASSIGN TO
SYs003-UT-2400-S-OUTFILE

the filename operand on control
statements for this file must be
OUTFILE. If the SELECT clause were
coded:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-s

the filename operand on the control
statement for the file must be SYS003.

*file-identifier':
consists of from 1 to 17 characters,
contained within apostrophes,
indicating the name associated with
the file on the volume. This operand
may contain embedded blanks. If this
operand is omitted on output files,
the filename will be used. If this
operand is omitted on input files, no
checking will be done.

date
consists of from one to six
characters, in the format yys/ddd,
indicating the expiration date of the
file for output or the creation date
for input. (The day of the year may
consist of from one to three
characters.) For output files, a one
to four character retention period
(d-dddd) may be specified. If this
operand is omitted, a 0-day retention
period will be assumed for output
files. For input files, no checking
will be done if this operand is
omitted or if a retention period is
specified.

file~-serial-number
consists of from one to six characters
indicating the volume serial number of
the first (or only) reel of the file.
If fewer than six characters are
specified, the field will be
right-justified and padded with zeros.
If this operand is omitted on output
files, the volume serial number of the
first (oxr only) reel of the file will
be used. If the operand is omitted on
input files, no checking will be done.

volume-sequence-number
consists of from one to four
characters in ascending order for each
volume of a multivolume file. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If
omitted on input files, no checking is
done.

file-sequence-number
consists of from one to four
characters in ascending order for each
file of a multivolume file. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used, If it
is omitted on input files, no checking
will be done.

generation-number
consists of from one to four numeric
characters that modify the
file-identifier. If this operand is
omitted on output files, BCD 0001 is

Preparing COBOL Programs for Processing 25

w'

used, If it is omitted on input
files, no checking will be done.

version-number
consists of from one to- two numeric
characters that modify the generation
number. If this operand is omitted on
output files, BCD 01 will be used. If
it is omitted on input files, no
checking will be done.

Note: If a tape file with standard labels
is opened two different ways in the same
COBOL program, and that file resides on a
multifile volume, the programmer should use
two separate TLBL cards with different
filenames specified on each.

DLBL .Statement

The DLBL control statement, in
conjunction with the EXTENT statement,
replaces the VOL, DLAB, and XTENT
combination used in previous versions of
the Disk Operating System. However, the
current system will continue to support the
VoL, DIAB, and XTENT statements. The DLBL
statement has the following format:

r
|7/ DLBL filename

| s ["file-identifer'], [datel, [codes]
L

S PR——

filename
identifies the file to the control
program. It can be from one to seven
characters in length. . If the
following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYS005-DA-2311-A-INPUTA

the filename operand on control
statements for this file must be
INPUTA. If the SELECT sentence is
coded:

SELECT INFILE ASSIGN TO
SYS005-DA-2311-A

the filename operand .on control
statements for the file must be
SYS005.

file-identifier:

is the name associated with the file
on the volume. This can consist of
from 1 to 44 alphanumeric characters
contained within apostrophes,
including the file-identifier and, if
used, generation-number and version-
number of generation. If fewer than
44 characters are used, the field is

26

left-justified and padded with blanks.
If this operand is omitted, filename
will be used.

date
consists of from one to six characters
indicating either the retention period
of the file in the format 4 through
dddd (1-9999), or the absolute
expiration date of the file in the
format yy/ddd. Wwhen the 4 through
dddd format is used, the file is
retained for the number of days
specified as dddd. For example, if
date is specified as 31, the file will
be retained a month from the day of
creation. When the yy/ddd format is
used, the file is retained until the
day (ddd) in the year (yy) specified.
For example, if date is specified as
69/200, the file will be retained
through the 200th day of the year
1969.)

If date is omitted when the file is
created, a 7-day retention period is
assumed. If this operand is present
for a file opened as INPUT or I-O, it
is ignored.

codes
is a 2- or 3-character field .
indicating the type of file label, as

follows:
SD = Sequential Disk
DA = Direct Access
ISC = Indexed Sequential using Load
Create
ISE = Indexed Sequential using Load

Extension, Add, or Retrieve
If code is omitted, SD is assumed.

"Appendix I: Sample Job Decks" contains
illustrations of DLBL statement usage.

EXTENT Statement

The EXTENT control statement defines
each area (or extent) of a DASD file -- a
file assigned to a mass storage device.
One or more EXTENT control statements must
follow each DLBL statement.

The EXTENT control statement replaces
the XTENT statement used in previous
versions of the Disk Operating System.
However, XTENT will continue to be
supported in the current system.

o)

c

/

The format of the EXTENT control
statement is:

o e s e s w2y

// EXTENT [symbolic-unitl], [serial-number]

s [typel, [sequence-number]
s [relative-track]l, [number-of-tracks]
s [split-cylinder-trackl, [B=bins]

et e e s s 0]

symbolic-unit

is a 6-character field indicating the
symbolic unit (SY¥sxxx) of the volume
for which this extent is effective.
If this operand is omitted, the
symbolic unit of the preceding EXTENT
statement will be used. When '
specified, symbolic-unit may be any
S¥Sxxx assigned to the device type
indicated in the SELECT sentence for
the file. For example, if the
following coding appears in a COBOL
program:

SELECT OUTFILE ASSIGN TO
SYS004-DA~2311-A

the symbolic unit in the EXTENT
control statement can by any SYSxxx
assigned to a 2311 disk pack. The
symbolic unit operand is not required
for an IJSYsxx filename, where xx is
IN, PH, LS, RS, SL, or RL. If SYSRDR
or SYSIPT is assigned, this operand
must be included.

serial-number

type

consists of from one to six characters
indicating the volume serial number of
the volume for which this extent is
effective. If fewer than six
characters are used, the field will be
right-justified and padded with zeros.
If this operand is omitted, the volume
serial number of the preceding EXTENT
control statement will be used. If no
serial number was provided in the
EXTENT control statement, the serial
number will not be checked and it will
be the user's responsibility if files
are destroyed as a result of mounting
the incorrect volume.

consists of one character indicating
the type of the extent, as follows:

1 -- Data area (no split cylinder)

2 -- Overflow area (for an indexed
file)

4 -- Index area (for an indexed file)

8 -- Data area (split cylinder)

If this operand is omitted, 1 is
assumed.

sequence-number

consists of from one to three
characters containing a decimal number
from 0 to 255 indicating the sequence
number of this extent within a
multi-extent file. Extent sequence 0
is used for the master index of an
indexed file. If the master index is
not used, the first extent of an
indexed file has the sequence number
1. The extent sequence number for all
other types of files begins with 0.

If this operand is omitted for the
first extent of ISFMS files, the
extent will not be accepted. For SD
or DA files, this operand is not
required. Direct files can have up to
five extents. Indexed files can have
up to eleven data extents (nine prime,
one cylinder index, one separate
overflow).

relative-track

consists of from one to five
characters indicating the sequential
number of the track, relative to zero,
where the data extent is to begin. If
this field is omitted on an ISFMS
file, the extent will not be accepted.
This field is not required for DA
input or for SD input files (the
extents from the file labels will be
used).

Formulas for converting actual to
relative track addresses (RT) and
relative track to actual for the DASD
devices follow.

Actual to Relative:

2311 10 x cylinder number + track
nunber = RT

2314 20 x cylinder number + track
number = RT

2321 1000 x subcell number + 100 x
strip number + 20 x block
number + track number = RT

Relative to Actual:

2311 RT quotient is cylinder,
10 remainder is track

2314 RT quotient is cylinder,

20 remainder is track
2321 RT = quotient is subcell,
1000 remainderl

remainderl = quotient is strip,
100 remainder2

remainder2 = quotient is block,
20 remainder is track

Preparing COBOL Programs for Processing 27

Example: Track 5, cylinder 150 on
a 2311 = 1505 in relative track.

numbexr-of-tracks
consists of from one to five
characters indicating the number of
tracks to be allocated to the file.
For SD input files, this field may be
omitted. The number of tracks for a
split cylinder file must be a multiple
of the number of cylinders specified
for the file and the number of tracks
specified for each cylinder.

split-cylinder-track
consists of from one to two
characters, with a value of 0 through
19, indicating the upper tack number
for the split cylinder in SD files.

bins
consists of from one to two characters
identifying the 2321 bin that the
extent was created for, or on which
the extent is currently located. If
the field is one character, the
creating bin is assumed to be zero.
There is no need to specify a creating
bin for sD or ISFMS files. If this
operand is omitted, bin 0 is assumed
for both bins. If the operand is
included and positional operands are
omitted, only one comma is required
preceding the keyword operand. If any
operands preceding the bin
specification are omitted, one comma
for each operand is acceptable, but
unnecessarye.

Figure 4 shows examples of using the
DLBL statement in conjunction with the
EXTENT statement. "Applendix I: Sample
Job Decks" contains illustrations of EXTENT
statement usage.

VOI, Statement

The VOL control statement is used when
standard labels for a DASD or tape file are
checked. It is used in conjunction with
TPLAB or DLAB and XTENT statements. The
VOL and TPLAB or VOL, DLAB and XTENT
statements must appear in that order and
must immediately precede the EXEC statement
to which they apply. The format of the VOL
control statement is:

]
|7/ VOL SYSxxx,filename
L

e e o

SYSxxx
is the symbolic unit name. The
symbolic unit name is the same name
that appears in the XTENT statement
for the file.

filename
identifies the file to the control
program. It can consist of from one
to seven characters. The' appearance
of two identical operands is
characteristic of COBOL object
modules, since filename might be the
logical unit which is assigned to a
device.

Note that filename, as used in this
context, does not refer to the COBOL
file-name, but to filename as it is used by
the system.

For example, if the following COBOL
coding appeared as part of a complete
program, MASTERX is the name by which the
file is known to the control program.

)
|
|Direct file:
|
|tracks, beginning on relative track 10.
// DILBL MASTER,,75/001,DA
// EXTENT S¥s015,111111,1,0,10, suo

Indexed file:

|tracks, beginning on relative track 1106.
cylinder index.

// DLBL MASTER,,75/001,ISC
// EXTENT SY¥S015,111111,4,1,1106,4
// EXTENT SYS015,111111,1,2,1110,76

The following DLBL and EXTENT statements describe a direct file occupying 840

The following DLBL and EXTENT statements describe an indexed file occupying 80
The first EXTENT allocates a 4-track
The second EXTENT allocates a 76-track data area.

— —]

Figure 4.

28

Sample Label and File Extent Information for Mass Storage Files

()

ENVIRONMENT DIVISION.
FILE-CONTROL.
SELECT MASTER-FILE ASSIGN TO
SYsS004-UT-2400-S-MASTERX

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE

The VOL control statement for the file
could be coded as follows:

// VOL SYsS004,MASTERX

If the COBOL SELECT sentence had been
coded as:

SELECT MASTER-FILE ASSIGN TO
SYS004-UT-2400-S

SYS004 would be the name by which the file
is known to the control pragram and the VOL
statement could be coded as follows:

// VOL SYS00u4,syYsoou

The filename, as used in the VOL control
statement format, is identical to the
symbolic name of the program DTF that
identifies the file. Although, in COBOL,
displacement is from the symbolic name
MASTER-FILE when referencing the DTF, the
system interprets this to be MASTERX in the
first case, and SYS004 in the second case.

When coding the VOL control statement
for files assigned to mass storage devices,
there is an additional consideration. If
the following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYS001-DA-2311-A-INPUTA

the symbolic unit name on the control
statements for the file can be any SY¥Sxxx
assigned to a 2311 disk pack.
on control statements for the file must be
INPUTA.

For example, the VOL control statement
might be:

// VOL SYS021,INPUTA
If the SELECT sentence were coded:

SELECT INFILE ASSIGN TO
SYS004-DA-2311-A

the symbolic unit name on control
statements for the file can be any SYSxxx
assigned to a 2311 disk pack. The filename

The filename

on control statements for the file must be
SYS004. Both of the following VOL control
statements are acceptable:

// VOL sYs004,sYs004
// VOL SYS005,sSYs004

DIAB Statement

The DLAB control statement contains
information for label checking and creation
of files assigned to mass storage devices.
This statement must immediately follow a
VOL control statement. (Disk label formats
are given in "Appendix C: Standard Mass
Storage Device lLabels."™) The format of the
DLAB control statement is:

o

r
{// DIAB 'label fields 1-3¢,
1 XxxX,yyddd,yyddd, ' systemcode" [, typel

T

‘label fields 1-3°
The first three. fields of the
disk-file label are contained just as
they appear in the label. This is a
51-character string contained within
apostrophes and followed by a commae.

The DLAB statement requires two cards
for completion; therefore, column 72
of the first card requires a character
punch other than a blank. The columns
between the comma and the continuation
character must be blank,

XXXX
is the volume-sequence-number in field
4 of the Format 1 label and must begin
in card column 16 of the second card.

yyddd,yyddd .
is the file creation date followed by
the file expiration date. It is
recommended that this field be left
blank.

'systemcode’
is ignored by the Disk Operating

System. The dummy field specified

must be 13 characters long.

type

indicates the type of file label:

SD = Sequential Disk

DA = Direct Access

ISC = 1Indexed Sequential (used when
creating the file)

ISE = Indexed Sequential (used when
updating or retrieving the
file)

SD is assumed if this entry is

omitted,

Preparing COBOL Programs for Processing 29

TPLAB Statement

The TPLAB control statement contains
file label information for tape label
checking and creation. It must immediately
follow a VOL control statement. The TPLAB
control statement contains an image of a
portion of the standard tape file label.
The format and contents of a standard tape
label are given in "Appendix B: Standard
Tape File Labels."™ The format of the TPLAB
control statement is as follows:

*label fields 3-10"
// TPLAB

‘label fields 3-13';

o et e oy
R e e

*label fields 3-10'
is a 49-byte character string
contained within apostrophes,
identical to positions 5 through 53 of
the tape file label. These fields can
be included in one line and are the
only ones used for label checking.

'label fields 3-13'
is a 69-byte character string
contained within apostrophes,
identical to positions 5 through 73 of
the tape file label. These fields are
too long to be included on a single
line. The character string must
extend into column 71, a continuation
character (any character) must be
placed in column 72, and the character
string is completed on the next line.
The continuation line starts in column
16. Fields 3 through 13 are written
in the corresponding fields when the
output label is created. When
specified for an input file, fields 11
through 13 are ignored. However, even
for output files, fields 11 through 13
are never used by the Disk Operating
System label processing routines.

XTENT Statement

The XTENT control statement is used to
define an area of a file on a mass storage
device, Each DASD file (file assigned to a
mass storage device) requires one or more
XTENT control statements. The format of
the XTENT control statement is:

r
// XTENT type,sequence, lower, upper

|
l - '*serial no',SsYSxxx(,Bs]

b s e e

type
Each XTENT type identifies the funtion
of the defined area.

30

Extent Type -- occupies one or three

columns containing: (’)
1 = Data area (no split cylinder)
2 = overflow area (for an indexed
file)
4 = Index area (for an indexed file)
128 = Data area (split cylinder). If
type 128 is specified, the lower
head is assumed to be H® H2 H=2
in lower, and the upper head is
assumed to be Hy H, H> in upper.
(See the discussion of the lower
and upper fields.)
sequence Extent Sequence Number --

lower

indicates the sequence number
of this extent within a
multi-extent file. The
sequence number occupies one
to three columns and contains
a decimal number from 0 to
255. Extent sequence 0 is
used for the master index of
an indexed file. If the
master index is not used, the
first extent of an indexed
file contains sequence number
1. The extent sequence for
all other types of files
begins with 0. Direct files
can have up to five extents.
Indexed files can have up to
eleven data extents (nine
prime, one cylinder index, one
separate oOverflow).

Lower Limit of Extent --
occupies nine columns and
contains the lowest address of
the extent in the form

B4 C4C1Ca2CCoH HoH,

where:

B, is the initially assigned
cell number. It is equal to:

0 for 2311 and 2314
0 to 9 for 2321

C41C; is the subcell number.
It is equal to:

00 for 2311 and 2314
00 to 19 for 2321

C2C2Co is the cylinder number.
It can be:

000 to 199 for 2311 and
2314

or strip number:

/ﬁ

000 to 009 for 2321

Hy is the head block position.
It is equal to:

0 for 2311 and 2314
0 to 4 for 2321

HzH, is the head number.’' It
can be:

00 to 09 for 2311
00 to 19 for 2321 and

2314
A lower extent of all zeros is
invalid.
Note: For 2321, the last five

strips of subcell 19 are
reserved for alternate tracks.

Upper Limit of Extent --
occupies nine columns
containing the highest address
of the extent in the same form
as the lower limit.

upper

Volume Serial Number =- This
is a 6-byte alphanumeric
character string, contained
within apostrophes. The
number is the same as in “the
volume label (volume serial
number) and the Format 1 label
(file serial niumber).

*serial no'

SYSxxx This is the symbolic address
of the DASD drive. If more
than one symbolic address is
to be specified on separate
XTENT cards for the same file,
the symbolic addresses must be
in consecutive order. See
"EXTENT Statement" for details
on SYSxxx assignments.

B Currently assigned cell
number. Its value is:

0 for 2311 or 2314
0 to 9 for 2321

This field is optional. If

missing, the Job Control
Processor assigns By = B,.

JOB Statement

The JOB control statement indicates the
beginning of control information for a job.
The JOB control statement is in the
following format:

|
|77/ JOB jobname
L

jobname
is a user-defined name consisting of
from one to eight alphanumeric
characters. Any user comments can
appear on the JOB control statement
following the jobname (through column
72). If the timer feature is present,
the time of day appears in columns 73
to 80 when the JOB statement is
printed on SYSLST. The time of day is
also printed in columns 1 through 8 on
the next line of SYSLOG.

If a job is restarted, the jobname
must be identical to that used when
the checkpoint was taken.

Note: The JOB statement resets the effect
of all previously issued OPTION and ASSGN
control statements.

LBLTYP Statement

The LBLTYP control statement defines the
amount of storage to be reserved at linkage
edit time in the problem program area of
main storage in order to process tape and
nonsequential DASD file labels. It applies
to both background and foreground object
programs, and is required if the file
contains standard labels.

The LBLTYP control statement immediately
precedes the // EXEC LNKEDT statement in
the job deck, with the exception of
self~-relocating programs for which it is
instead submitted immediately preceding the
// EXEC statement for the program. The
format of the LBLTYP control statement is:

TAPE[(nn)]
// LBLTYP
NSD (nn)

o e - e =
S ——

TAPE((nn)]
is used only if tape files requiring
label information are to be processed
and if no nonsequential DASD files are
to be processed. nn is optional and
is present only for future expansion.
It is ignored by the Job Control
Processor.

NSD(nn)
is used if any nonsequential DASD
files are to be processed, regardless
of other type files that are used. nn
specifies the largest number of
extents to be used for a single file.

Preparing COBOL Programs for Processing 31

LISTIO Statement

The LISTIO control statement causes the
system to print a list of input/output
assignments on SYSLST. The format of the
LISTIO control statement is:

0

<

/2]
PR

r
|
|
|
|// LISTIO | ALL
|
[
|
|
|
1

SYS
causes the physical units assigned to
all system logical units to be listed.

PROG
causes the physical units assigned to
all background programmer logical
units to be listed.

F1
causes the physical units assigned to
all foreground-one logical units to be
listed.

F2 .
causes the physical units assigned to
all foreground-two logical units to be
listed.

ALL
causes the physical units assigned to
all logical units to be listed.

SYSxxx
causes the physical units assigned to
the logical unit specified to be
listed.

UNITS
causes the logical units assigned to
all physical units to be listed.

DOWN
causes all physical units specified as
inoperative to be listed.

UA

causes all physical units not
currently assigned to a logical unit
to be listed.

32

X*'cuu'
causes the logical units assigned to
the physical unit specified to be
listed.

MTC_Statement

The MTC control statement controls 2400
series magnetic tape operations. The
format is as follows:

r
|7/ MTC opcode, SY¥Sxxx[,nn]
L 5

= e ol

opcode .
specifies the operation to be
performed. opcode can be chosen from
the following:

BSF -- Backspace to tapemark

BSR -- Backspace to interrecord gap
ERG -- Erase gap (write blank tape)
FSF -- Forward space to tapemark

FSR -- Forxrward space to interrecord
gap

RUN -- Rewind and unload
REW -- Rewind
WTM -- Write tapemark

SYSxxx
represents any logical unit assigned
to magnetic tape upon which the MTC
control statement is to operate.

[,nn)
is the decimal number (01 through 99)
which, if specified, represents the
number of times the operation is to be
performed. If nn is omitted, the
operation is ‘performed once.

OPTION Statement

The OPTION control statement is used to
specify one or more of the options of the
Job Control Processor. The format of the
OPTION statement is:

// OPTION optionl([,option2]...

b o ol

Y

C

O

The orxrder in which the selected options
appear in the operand field is arbitrary.
Options are reset to the standard
established at system generation time upon
encountering the next JOB statement or the
/7§ statement.

The options are:

LOG ‘

causes the listing of columns 1
through 80 of all control statements
on SYSLST. If LOG is not the standard
established at system generation time,
control statements are not listed
until a LOG option is encountered.
Once a LOG option statement is read,
logging continues from job step to job
step until a NOLOG option is
encountered or until either the JOB or
/& control statement is encountered.

NOLOG
suppresses the listing of all control
statements on SYSLST until a LOG
option is encountered, or until either
the JOB or /& control statement is
encountered.

DUMP .
causes a dump of the registers and
main storage to be printed on SYSLST
in the case of an abnormal program
termination (such as a program check).

NODUMP
suppresses the DUMP option.

LINK
indicates that the object module is to
be linkage edited. When the LINK
option is used, the output of the
COBOL compiler is written on SYSLNK.
The LINK option must always precede an
EXEC LNKEDT statement in the job deck.
(CATAL also causes the LINK option to
be set.) LINK is not acceptable to
the Job Control Processor operating in
the foreground.

NOLINK
suppresses the LINK option. The COBOL
compiler can also suppress the LINK
option if the program contains an
error that would preclude the
successful execution of the program.

DECK
causes the COBOL compiler to punch an
object module on SYSPCH., If both DECK
and LINK are specified, the output of
the compiler is written on both SYSPCH
and SYSLNK.

NODECK
suppresses the DECK option.

LIST
causes the compiler to write the COBOL
source statements on SYSLST.

NOLIST
suppresses the LIST option.

LISTX
causes the COBOL compiler to write a
Procedure Division map on SYSLST.

NOLISTX
suppresses the LISTX option.

XREF .
causes the COBOL compiler to write a
symbolic cross-reference list on
SYSLST.

NOXREF }
suppresses the XREF option.

SYM
causes the COBOL compiler to write a
Data Division map on SYSLST.

NOSYM
suppresses the SYM option.

ERRS
causes the COBOL compiler to write the
diagnostic messages related to the
source program on SYSLST.

NOERRS
suppresses the ERRS option.

CATAL .
causes the cataloging of a phase or
program in the core image library upon
completion of a linkage editor job
step. CATAL also causes the LINK
option to be set. CATAL is not
accepted by the Job Control Processor
operating in a batched-job foreground
environment. .

STDLABEL
causes the standard label track to be
cleared and all DASD or tape labels
submitted after this point to be
written on the standard label track.
This option is reset to the USRLABEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the STDLABEL option
are available to any program in any
area until another set of standard
file definition statements is
submitted. STDLABEL is not accepted
by the Job Control Processor operating
in a batched-job foreground
environment. All file definition
statements following OPTION STDLABEL
are included in the standard file
definition set until one of the
following occurs:

Preparing COBOL Programs for Processing 33

End-of-job step

e~ End-of-job

OPTION USRLABEL is specified

OPTION PARSTD is specified

USRLABEL
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the user
label tracke.

PARSTD
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the
partition standard label track. The
PARSTD option is reset to the USRLABEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the PARSTD option will
be available to any program in the
current partition until another set of
partition standard file definition
statements is submitted. All file
definition statements submitted after
OPTION PARSTD will be included in the
standard file definition set until one
of the following occurs:

End-of-job step

End-of-job

OPTION USRLABEL is specified

OPTION STDLABEL is specified

For a given filename, the sequence of
search for label information during an
OPEN is the USRLABEL area, followed by
the PARSTD area, followed by the
STDLABEL area.

The options specified in the OPTION
statement remain in effect until a
contradictory option is encountered or
until a JOB control statement is read. In
the latter case, the options are reset to
the standard that was established at system
generation time.

Any assignment for SYSLNK, after the
occurrence of the OPTION statement, cancels
the LINK and CATAL options. These two
options are also canceled after each
occurrence of an EXEC statement with a
blank operand.

34

PAUSE_Statement

The PAUSE control statement allows for
operator intervention between job steps.
The format of the PAUSE control statement
is:

¥ 1
|7/ PAUSE [comments]]
L s 4

The PAUSE control statement is effective
just before the next input control
statement in the job deck is read. The
PAUSE control statement always prints on
SYSLOG and SYSLST.

An example of this statement is:

// PAUSE SAVE SYS004, SYS005, MOUNT
NEW TAPES

This sample statement instructs the
operator to save the output tapes and mount
two new tapes.

When the PAUSE statement is encountered
by the Job Control Processor, the printer
keyboard (IBM 1052) is unlocked for
operator-message input. The
end-of-communication indicator, B, causes
processing to continue, If an IBM 1052
Printer is not available, the PAUSE control
statement is ignored.

RESET Statement

The RESET control statement resets
input/output assignments to the standard
assignments. The standard assignments are
those specified at system generation time
plus any modifications made by the operator
by means of the ASSGN command without the
TEMP option. The RESET command is
discussed in detail in the publication IEM
System/360 Disk Operating System: System
Control and System Service Programs. The

format of the RESET statement is:

[| R |
I SYs |
{7/ RESET PROG |
| {ALI- |
| SYSxxx |
L H
SYS
resets all system logical units to
their standard assignments.
PROG

resets all programmer logical units to
their standard assignments.

ALL
resets all system and programmer
logical units to their standard
assignments.

SYSxxx

resets the logical unit specified to
its standard assignment.

RSTRT Statement

A restart facility is available for
checkpoint programs. A programmer can use
the source language RERUN clause in his
program to cause checkpoint records to be
written, This allows sufficient
information to be stored so that program
execution can be restarted at a specified
point. The checkpoint information includes
the registers, tape positioning
information, a dump of main storage, and a
restart address.

The restart facility allows the
programmer to continue execution of an
interrupted job at a point other than the
beginning. The procedure is to submit a
group of job control statements including a
RSTRT control statement. The format is as
follows:

)
|7/ RSTRT S¥YSxxx,nnnnl(,filename] |
L)

SYSxxx
is the symbolic unit name of the
device on which the checkpoint records
are stored. This unit must have been
assigned previously.

nnnn
is the identification of the
checkpoint record to be used for
restarting. This serial number
consists of four characters. It
corresponds to the checkpoint
identification used when the
checkpoint was taken. The serial
number is supplied by the checkpoint
routine,

filename

is the symbolic name of the 2311 or
2314 disk checkpoint file used for
restarting. It must be identical to
the SYSxxx of the system-name
specified in the RERUN clause. This
operand applies only when specifying a
2311 or 2314 disk as the checkpoint
file.

When a checkpoint is taken, the
completed checkpoint is noted on SYSLOG.
Restarting can be done from any checkpoint
record, not just the last. The jobname
specified in the JOB statement must be
identical to the jobname used when the
checkpoint was taken. The proper
input/output device assignments must
precede the RSTRT control statement.

Assignment of input/output devices to
symbolic unit names may vary from the
initial assignment. Assignments are made
for restarting jobs in the same manner as
assignments are made for normal jobs.

See the chapter "Program Checkout" for
further details on taking checkpoints and
restarting a program for which checkpoints
have been taken.

UPSI Statement

The UPSI control statement allows the
user to set program switches that can be
tested by problem programs at execution
time. The UPSI control statement has the
following format:

'
|7/ UPSI nnnnnnnn
1

e s o

nnnnnnnn
consists of from one to eight
characters of 0, 1, or X. Positions
containing 1 are set to 1; positions
containing X are unchanged.
Unspecified rightmost positions are
assumed to be X.

The UPSI byte is the 24th byte in the
Communication Region of the Supervisor. 2a
complete description of the fields of the
Communication Region is given in "Appendix
H: Communication Region." The Job Control
Processor clears the UPSI byte to binary
zeros before reading control statements for
each job. When the UPSI control statement
is read, the Job Control Processor sets
these bits to the user's specifications.
Any combination of the eight bits can be
tested in the COBOL source program at
execution time by means of the source
language switches UPSI-0 through UPSI-7.

CBL STATEMENT —-- COBOL OPTION CONTROL CARD

Although most options for compilation
are specified either at system generation
time or in the OPTION control statement,

Preparing COBOL Programs for Processing 35

the COBOL compiler provides an additional
statement, the CBL statement, for the
specification of compile-time options
unique to COBOL.

The CBL card must be placed between the
EXEC FCOBOL statement and the first
statement in the COBOL program. The CBL
card cannot be continued. However, if
specification of options will continue past
column 71, multiple CBL cards may be used.

- The options shown in the following
format may appear in any order. No blanks
may appear in the operand field.
Underscoring indicates the default case.

[,SE Q] [,FLAGW]
CBL [BUF=nnnnn]} |,NOSE ¢ FLAGE

[, SUPMAP] [,SPACEn] (,CLIST] [,STXIT]

o o s e e o o e e
R ———

+ QUOTE . LIBR + TRUNC
,APOST ,NOLIBR] + NOTRUNC

&
£

must begin in column 2 and be preceded
and followed by at least one blank.

BUF=nnnnn
the BUF option specifies the amount of
storage to be assigned to each
compiler work file buffer. nnnnn is a
decimal number from 256 to 32,767. If
this option is not specified, 256 is
assumed.

SEQ
NOSEQ
indicates whether the compiler will
sequence-check source statements.

FLAGW

FLAGE
FILAGW indicates that both warning and
error diagnostic messages are to be
listed; FLAGE indicates that only
error diagnostic messages are to be
listed.

SUPMAP)
causes the LINK, DECK, CLIST, and
LISTX options to be suppressed if an
E-level diagnostic message is produced
by the compiler.

SPACEn
indicates the type of spacing to be
used on the output listing. n can be
specified as either 1 (single
spacing), 2 (double spacing), or 3
(triple spacing). If the SPACEn

36

option is omitted, single spacing is
provided.

CLIST
indicates that a condenseua listing is
to be produced. The Procedure
Division portion of the object listing
will contain the address of the first
generated instruction for each verb.
The CLIST option overrides the LISTX
or NOLISTX options. The LISTX or
NOLISTX options are either established
at system generation time or specified
in the OPTION control statement.

STXIT
enables a user error declarative to
get control when an input/output error
occurs on a unit record device.

QUOTE

APOST
QUOTE indicates to the compiler that
the double quotation marks (") should
be accepted as the character to
delineate literals; APQST indicates
that the apostrophe ('} should be
accepted. The compiler will generate
the specified character for the
figurative constant QUOTE(S).

LIBR

NOLIBR
LIBR specifies that the BASIS card
and/or the COPY statement are used in
the source program. NOLIBR allows
additional table space to be available
during compilation.

NOTRUNC

TRUNC

NOTRUNC specifies nonstandard
truncation of COMPUTATIONAL items.
With nonstandard truncation, an item
is truncated on the basis of the
amount of storage it occupies, rather
than on the basis of its PICTURE
clause.

For example, suppose that the
programmer using the NOTRUNC option
describes two Data Division items as
follows:

A PICTURE S9999 USAGE
COMPUTATIONAL.)
B PICTURE S9 USAGE COMPUTATIONAL.

After the following Procedure Division
statement is executed, B contains the
value of A, since each item occupies
one halfword of storage.

MOVE A TO B
With the TRUNC option, standard

truncation of COMPUTATIONAL items
occurs. Standard truncation is based

(M

e

on the PICTURE clause of the item
being moved.

For example, with standard truncation,
after the MOVE described above is
executed, B contains only the
low-order digit of A. According to
the rules of standard truncation,-
COMPUTATIONAL items are converted to
internal decimal, moved with decimal
alignment, and truncated.

JOB CONTROL COMMANDS

Job control commands are distinguished
from job control statements by the absence
of // blank in positions 1 through 3 of
each command. They permit the operator to
adjust the system according to day-to-day
operating conditions. This is particularly
true in the area of device assignment,
where the operator may need to (1)
communicate to the system that a device is
unavailable, or (2) designate a different
device as the standard for a given symbolic
unit. Therefore, these commands normally
are not a part of the regular job deck for
a job. Job control commands tend to be
effective across jobs, whereas job control
statements are confined within a job.

Job control commands are discussed in
detail in the publication IBM System/360
Disk Operating System: System Control and
System Service Programse.

LINKAGE EDITOR CONTROL STATEMENTS

Object modules used as input to the
Linkage Editor must include linkage editor
control statements. There are four linkage
editor control statements: PHASE, INCLUDE,
ENTRY, and ACTION.

The discussion of these statements in
this publication applies only to background
programs. For foreground programs, see the
publication IBM System/360 Disk Operating
System: System Control and System Service

Programs.

Linkage editor control statements
initially enter the system through the
device assigned to SYSRDR as part of the
input job stream. PHASE and INCLUDE
statements may also be present on SYSIPT or
in the relocatable library. All four
statements are verified for operation
(INCLUDE, ACTION, ENTRY, or PHASE) and are
copied to SYSLNK to become input when the
Linkage Editor is executed.

Linkade editor control statements must
be blank in position 1 of the statement.
The operand field is terminated by the
first blank position. It cannot extend
beyond column 72,

The Linkage Editor is executed as a
distinct job step. Figure 5 shows how the
linkage editor function is performed as a
job step in three kinds of operations.

1. cCatalog Programs in Core Image
Library. The linkage editor function
is performed immediately preceding the
operation that catalogs programs into
the core image library. Wwhen the
CATAL option is specified, programs
edited by the Linkage Editor are
cataloged in the core image library by
the Librarian after the editing
function is performed. The sequence
of this operation is shown in Part (&
of Figure 5. Note that the input for
the LNKEDT function could contain
modules from the relocatable library
instead of, or in addition to, those
modules from the card reader, tape
unit, or mass storage unit extent
assigned to SYSIPT. This is
accomplished by naming the module(s)
to be copied from the relocatable
library in an INCLUDE statement.

2., Load-and-Execute. The sequence of
this .operation is shown in Part (B of
Figure 5. Specifying OPTION LINK
causes the Job Control Processor to
open SYSLNK, and allows the Job
control Processor to place the object
module(s) and linkage editor control
statements on SYSLNK. As with the
catalog operation, the input can
consist of object modules from the
relocatable library instead of, or in
addition to, those modules from the
card reader, tape unit, or disk extent
assigned to SYSIPT. This is accom-
plished by specifying the name of the
module to be included in the operand
of an INCLUDE statement. After the
object modules have been edited and
placed in the core image library, the
program is executed. The blank
operand in the EXEC control statement
indicates that the program that has
just been linkage edited and
temporarily stored in the core image
library is to be executed.

3. compile-and-Execute. Source modules
can be compiled and then executed in a
single sequence of job steps. In
order to do this, the COBOL compiler
is directed to write the object module
directly on SYSLNK. This is done by
using the LINK option in the OPTION
control statement. Upon completion of
this output operation, the linkage

Preparing COBOL Programs for Processing 37

@A) CATALOG AS PERMANENT PROGRAM

LOAD AND EXECUTE

————
Source
Module

EXEC FCOBOL

OPTION CATAL
PHASE PROGA,*
e INCLUDE

{ object module}
ENTRY

Linkage

Editor Image

Library

EXEC PROGA

EXEC LNKEDT

SYSLNK

Core
Image
Library

Linkage
Editor

System
Loader

Core
Storage
Execution

OPTION LINK
INCLUDE
{object module}

COBOL
Compiler

Linkage
Editor

OPTION LINK
EXEC FCOBOL
ENTRY

Figure 5.

ENTRY
EXEC LNKEDT
EXEC

Core
Storage
Execution

Core
Image
Library

System
Loader

R N

EXEC LNKEDT
EXEC

editor function is performed. The
program is linkage edited and tem-
porarily stored in the core image
library. The sequence of this
gperation is shown in Part (0 of Figure

Control Statement Placement

The placement of linkage editor control

statements is subject to the following
rules:

1.

2.

3.

38

The ACTION statement must be the first
linkage editor control statement
encountered in the input stream;
otherwise, it is ignored.

The PHASE statement must precede each
object module that is to begin a
phase.

The INCLUDE statement must be
specified for each object module that
is to be included in a program phase.

Job Definition -- Use of the Librarian

4. A single ENTRY statement should follow
the last object module when multiple

object modules are processed in a
single linkage editor run.

ACTION and ENTRY statements, when
present, must be on SYSRDR. PHASE and
INCLUDE statements may be present on
SYSRDR, SYSIPT, or in the relocatable
library.

PHASE Statement

The PHASE statement must be specified if

the output of the Linkage Editor is to

consist of more than one phase or if the

program phase is to be cataloged in the
core image library. Each object module

that begins a phase must be preceded by a

PHASE statement. Any object module not
preceded by a PHASE statement will be
included in the current phase.

The statement provides the Linkage
Editor with a phase name and an origin
point for the phase.
is in the following format:

The PHASE statement

O

I PHASE name,origin [, NOAUTO]

name
is the symbolic name of the phase. It
is the name under which the program
phase is to be cataloged. This name
does _not have to be the name specified
in the PROGRAM-ID paragraph in the
Identification Division of the source
program and, in the case of overlay
and sort, it should not be the same.
It must consist of from one to eight
alphanumeric characters. Phases that
are to be executed in an overlay
structure should have phase names of
from five to eight alphanumeric
characters, the first four of which
should be the same. An asterisk
cannot be used as the first character
of a phase name.

origin
indicates to the Linkage Editor the
starting address of this specific
phase. BAn asterisk may be used as an
origin specification to indicate that
this phase is to follow the previous
phase. This origin specification
format of the PHASE statement covérs
all applications that do not include
setting up overlay structures., See
the chapter "cCalling and Called
Programs™ for information on the PHASE
statement for overlay applications.

NOAUTO
indicates that the Automatic Library
Look-Up (AUTOLINK) feature is
suppressed for both the private
relocatable library and the system
relocatable library. (The use of
NOAUTO causes the AUTOLINK process to
be suppressed for that phase only.)
The AUTOLINK feature is discussed
later in this chapter.

INCLUDE Statement

The INCLUDE statement must be specified
for each object module deck or object
module in the relocatable library that is
to be included in a program phase. The
format of the INCLUDE statement is as
follows:

i INCLUDE [module-namel [, (namelist)] i

The INCLUDE statement has two optional
operands. When both operands are used,
they must be in the prescribed order. When
the first operand is omitted and the second

operand is used, a comma must precede the
second operand.

module-name
must be specified when the object
module is in the relocatable library.
It is not specified when the module to
be included is in the form of a card
deck being entered from SYSIPT.
module-name is the name under which
the module was cataloged in the
library, and must consist of from one
to eight alphanumeric characters.

(namelist)
causes the Linkage Editor to construct
a phase from the control sections
specified in the list. Since control
sections are of no interest to the
COBOL programmer, users interested in
this option should refer to e
description of the INCLUDE statement
in the publication IBM System/360 Disk
Operating System: System Control and
System Service Programs.

ENTRY Statement

The ENTRY statement is required only if
the user wishes to provide a specific entry
point in the first phase produced by the
Linkage Editor. When no ENTRY statement is
provided, the Job Control Processor writes
an ENTRY statement with a blank operand on
SYSLNK to ensure that an ENTRY statement
will be present to halt linkage editing.
The transfer address will be the load
address of the first phase. The ENTRY
statement is described further in the
publication IBM System/360 Disk Operating
System: System Control and System Service

Programse.

ACTION Statement

The ACTION statement is used to indicate
linkage editor options. When used, the
statement must be the first linkage editor
statement in the input stream. The format
of the ACTION statement is as follows:

CLEAR
MAP
NOMAP
NOAUTO
CANCEL
Fi

F2

ACTION

o s s e . s caae oo g

S

Preparing COBOL Programs for Processing 39

CLEAR

indicates that the entire temporary
portion of the core image library will
be set to binary zero before the
beginning of the linkage editor
function. CLEAR is a time-consuming
function and should be used only when

necessary.

indicates that SYSLST is available for
diagnostic messages. In addition, a
main storage map is output on SYSLST.

NOMAP

indicates that SYSLST is unavailable

-when performing the linkage-edit

function. The mapping of main storage
is not performed, and all linkage
editor diagnostic messages are listed
on the printer-keyboard (SYSLOG).

NOAUTO

suppresses the AUTOLINK function for
both the private and system
relocatable libraries during the
linkage editing of the entire program.
AUTOLINK is discussed later in this
chapter. C

CANCEL

40

causes an automatic cancellation of
the job if any of . the linkage editor
errors 2100I through 2170I occur..

These diagnostic messages can be found
in the publication IBM System/360 Disk
Operating System: System Control and

System Service Programs.

Fl and F2

are options used in conjunction with
programs executed in the foreground

area. See the publication IBM
System/360 Disk Operating System:

System Control and System Service
Programs.

AUTOLINK FEATURE

If any references to external-names are

still unresolved after all modules have

been read from SYSLNK, SYSIPT, and/or the
relocatable library, AUTOLINK collects each

unresolved external reference from the
phase. It then searches the private
relocatable library (if SYSRLB has been
assigned) and the system relocatable

library for module names identical to the
unresolved names and includes these modules
This feature should

in the program phase.
not be suppressed (via PHASE or ACTION
statemen*s) in linkage editor job steps

which include COBOL subroutines' cataloged

in the relocatable library. See the

chapter "Calling and Called Programs" for

additional Qdetails.

o

)

4

®

\

The system residence device (SYSRES) for
the Disk Operating System can contain three
libraries: the core image library, the
relocatable library, and the source
statement library. Executable programs
(core image format) are stored in the core
image library; relocatable object modules
are stored in the relocatable library; and
source language routines are stored in the
source statement library.

The core image library is required for
each disk resident system. The relocatable
library and the source statement library
are not required.

In addition to the three system
libraries located on SYSRES, the user may
also request creation of private source
statement and relocatable libraries. These
libraries are discussed under "Private
Libraries" in this chapter.

LIBRARIAN

The Librarian is a group of programs
that perform three major functions:

1. Maintenance
2. Service
3. Copy

Maintenance functions are used to
catalog (that is, add), delete, or rename
components of the three libraries, condense
libraries and directories, set a condense
limit for an automatic condense function,
reallocate directory and library extents,
and update the source statement library.

The copy function is used either to
completely or selectively copy the disk on
which the system resides. Service
functions are used to translate information
from a particular library to printed
(displayed) or punched output.

only the catalog maintenance function of
the Librarian is discussed in this
publication for the three system libraries.,
In addition, the update function of the
source statement library is discussed. A
complete description of librarian functions
can be found in the publication IBM
Systen/360 Disk Operating System: System
Control and System Service Programs.

library

LIBRARIAN FUNCTIONS

CORE IMAGE LIBRARY

The core image library may contain any
number of programs. Each program consists
of one or more separate phases. Associated
with the core image library is a core image
directory which contains a unique
descriptive entry for each phase in the
core image library. These entries in the
core image directory are used to locate and
retrieve phases from the core image
library.

Cataloging and Retieving Program Phases -~-
Core Image Library

If a program is to be cataloged in the
core image library, the job control
statement // OPTION with the CATAL option
must be specified prior to the first
linkage editor control card, and must
precede the first PHASE card of the program
to be cataloged. Upon successful
completion of the linkage editor job step,
output from the linkage editor is placed in
the core image library as a permanent
member. The program phase is cataloged
under the name specified in the PHASE
statement.

If a phase in the core image library is
to be replaced by a new phase having the
same name, only the catalog function need
be used. The previously cataloged phase of
the same name is implicitly deleted from
the core image directory by the catalog
function, and the space it occupies in the
can later be released by the
condense function.

Note: The necessary ASSGN control
statements must follow the // JOB control
statement if the current assignments are
not the following:

1. SYSRDR -- Card reader, tape unit, or
disk extent

2, SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST -- Printer, tape unit, or disk
extent

4., SYSLOG -- Printer keyboard

5. SYSLNK +- Disk extent

Librarian Functions 41

The following is an example of
cataloging a single phase, FOURA, into the
core image library. (The program phase
FOURA can be executed in the next job step
by specifying the // EXEC statement with a
blank name field.))

// JOB CATALOG

// OPTION CATAL
PHASE FOURA, *
INCLUDE

{object deck}
/%
// LBLTYP TAPE
// EXEC LNKEDT
// EXEC
/&

To compile, linkage edit, and catalog
the phase FOURA into the core image library
in the same job, the following job deck
could be used:

// JOB CATALOG

// OPTION CATAL
PHASE FOURA, *

// EXEC FCOBOL

{source deck}?}
/%
// EXEC LNKEDT
/%
/&

When the phase is executed in a
subsequent job, the EXEC statement that
calls for execution must specify FOURA,
i.e., the name by which the phase has been
cataloged.

// JOB EXJOB

// EXEC FOURA
/&

RELOCATABLE LIBRARY

The relocatable library contains any
number of modules, Each module is a
complete object deck in relocatable format.
The purpose of the relocatable library is
to allow the user to maintain frequently
used routines in residence and combine them
with other modules without recompiling.

Associated with the relocatable library
is the relocatable directory. The
directory contains a unique, descriptive
entry for each module in the relocatable
library. The entries in the relocatable
directory are used to locate and retrieve
modules in the relocatable library.

42

MAINTENANCE FUNCTIONS

To request - -a maintenance function for
the relocatable library, the following
control statement is used:

// EXEC MAINT

Cataloging a Module -- Relocatable Library

The catalog function adds a module to
the relocatable library. A module in the
relocatable library is the output of a
complete COBOL compilation.

The catalog function implies a delete
function. Thus, if a module exists in the
relocatable library with the same name as a
module to be cataloged, the module in the
library is deleted by deleting reference to
it in the relocatable directory.

The CATALR control statement is required
to add a module to the relocatable library.
The format of the CATALR control statement
is:

r
| CATALR module-name [,V.m]
L

be cne o

module-name
is the name by which the module is
known to the control program. The
module~name consists of from one to
eight characters , the first of which
must not be an asterisk.

specifies the change level at which
the module is to be cataloged. v may
be any decimal number from 0 through
127. m may be any decimal number from
0 through 255, If this operand is
onitted, a change level of 0.0 is
assumed. A change level can be
assigned only when a module is
cataloged.

All control statements required to
catalog an object module must be read from
SYSIPT. For the catalog function, device
assignments must be as follows:

1., SYSRDR -“- Card reader, tape unit, or
disk extent

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST +- Printer, tape unit, or disk

extent

4. SYSLOG =- Printer keyboard

TN
"

7
.

N

N

Note: If SYSRDR and/or SYSIPT are assianed
to a tape unit, the MAINT program assumes
that the tape is positioned to the first
input record. The tape is not rewound at
the end of the job.

The following is an example of compiling
a source program and cataloging the
resultant module in the relocatable
library. The job deck is read from SYSIPT.

// JOB NINE
// OPTION DECK
// EXEC FCOBOL

{source deck}
/%
// PAUSE PLACE DECK AFTER CATALR CARD
// EXEC MAINT
CATALR MOD9

(punched deck goes here)
/%
/8

In the above example, as a result of the
compile step, the object module is written
on SYSPCH. The next job step catalogs the
object module (MOD9) into the relocatable
library. Since the object module must be
cataloged from SYSIPT, a message to the
operator instructs him to place the object
module on SYSIPT behind the CATALR
statement.

The following is an example of
cataloging two previously created object
modules in the relocatable library:

// JOB EIGHT
// EXEC MAINT
CATALR MODS8A

{object deck}
CATALR MODS8B

{object deck}

VZs
/8

SOURCE STATEMENT LIBRARY

The source statement library contains
any number of books. Each book in the
source statement library is composed of a
sequence of source language statements.

The purpose of the source statement library
is to allow the COBOL programmer to
initiate the compilation of a book into the
source program by using the COPY statement
or BASIS card.

Each book in the source statement
library is classified as belonging to a
specific sublibrary. Sublibraries are
defined for two programming languages:
Assembler and COBOL. Individual books are
classified by sublibrary names. Therefore,
books written in each of these languages
may have the same name.

Associated with the source statement
library is a source statement directory.
The directory contains a unique descriptive
entry for each book in the source statement
library. The entries in the source
statement directory are used to locate and
retrieve books in the source statement
librarye.

MAINTENANCE FUNCTIONS

To request a maintenance function for
the source statement library, the following
control statement must be used:

// EXEC MAINT

Cataloging a Book -—- Source Statement
Library

The CATALS control statement is required
to add a book to a sublibrary of the source
statement library.

A book added to a sublibrary of the
source statement library is removed by
using the delete function. When a book
exists in a sublibrary with the same name
as a book to be cataloged in that
sublibrary, the existing book in the
sublibrary is deleted. The following is
the format of the CATALS control statement:

3

r 1
| CATALS sublib.library-namel,v.m[,C]l] |
1 d

The operation field contains CATALS.
sublib

represents the sublibrary to which a

book is to be cataloged and can be:

Any alphanumeric character (0-9, A-Z,

#, §, and 3) representing source

statement libraries. The characters A

and C have special uses:

A is used for the Assembler sublibrary

C is used for the COBOL sublibrary

Librarian Functions 43

The sublib qualifier is required. If
omitted, the operand will be flagged as
invalid and no processing will be done on
the book.

library-name
represents the name of the book to be
cataloged. The library-name consists
of from one to eight alphanumeric
characters, the first of which must be
alphabetic. It is the name the
programmer uses to retrieve the book
when using the source language COPY
statement or BASIS card.

specifies the change level at which
the book is to be cataloged. v may be
any decimal number from 0 through 127;
m may be any decimal number from 0
through 255. If this operand is
omitted, a change level of 0.0 is
assumed. The v.m operand becomes part
of the entry in the directory for the
specified book. Its value is
incremented each time an update is
performed on the book.

indicates that change level
verification is required before
updates are accepted for this book.

See the UPDATE control statement,
discussed later in this chapter, for its
relationship to the v.m and C operands of
the CATALS control statement.

In addition to the CATALS control
statement, a control statement of the
following form must precede and follow the
book to be cataloged:

A
BKEND [sublib,library-namel, [SEQNCE], |
{count], [CMPRSD] |

J

e

All operand entries are optional. When
used, the entries must be in the prescribed
order and need appear only in the BKEND
statement preceding the book to be
cataloged.

The first entry in the operand field is
identical to the operand of the CATALS
control statement.

SEQNCE
specifies that columns 76 to 80 of the
card images constituting the book are
to be checked for ascending sequence
numbers. If an error is detected in
the sequence checking, an error
message is printed. The errxor can be
corrected, and the book can be
recataloged.

I

count
specifies the number of card images in
the book. When the count operand is
used, the card input is counted,
beginning with the preceding BKEND
statement and including the subsequent
BKEND statement. If an error is
detected in the card count, an error
message is printed. The error can be
corrected, and the book can be
recataloged.

CMPRSD
indicates that the book is to be
cataloged in the library in compressed
format.

Card input for the catalog function is
from the device assigned to SYSIPT. The
CATALS control statement is also read from
the device assigned to SYSIPT. For the
catalog function, device assignments must
be as follows:

1. SYSRDR -- Card reader, tape unit, or .
disk extent '

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST =- Printer, tape unit, or disk
extent

4, SYSLOG -- Printer keyboard

Frequently used Environment Division,
Data Division, and Procedure Division
entries can be cataloged in the COBOL
sublibrary of the source statement library.
A book in the source statement library
might consist, for example, of a file
description of the Data Division or a
paragraph of the Procedure Division.

The following is an example of
cataloging a file description in the COBOL
sublibrary of the source statement library.

// JOB ANYNAME
// EXEC MAINT
CATALS C.FILEA
BKEND C.FILEA
BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS RECA.
BKEND
/¥
/&

Retrieving a Cataloged Book =-- COBOL COPY
Statement: The preceding file description
can be included in a COBOL source program
by writing the following statement:

FD FILEB COPY FILEA.

///_~ -
|‘

'

O

Note that the library entry does not
include FD or the file-name. It begins
with the first clause that is actually to
follow the file-name. This is true for all
options of the COPY statement. However,
data entries in the library may have a
level number (01 or 77) identical to the
level number of the data-name that precedes
the COPY statement. In this case, all
information about the library data-name is
copied from the library and all references
to the library data-name are replaced by
the data-name in the program if the
REPLACING option is specified. For
example, assume the following data entry is
cataloged under the library-name DATAR,

01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9
OCCURS 1 DEPENDING ON CALC OF
PAYFILE.

and the following statement is written in a
COBOL source module:

01 GROSS COPY DATAR REPLACING PAYFILE
BY GROSS.

The compiler interprets this as:

01 GROSS USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9
OCCURS 1 DEPENDING ON CALC OF
GROSS.

Note also that the library-name is used
to identify the book in the library. It
has no other use in the COBOL program.

Text cataloged in the source statement
library must conform to COBOL margin
restrictions.

The COBOL COPY statement is discussed in

detail in the section "Extended Source
Program Library Facility."

Updating Books -- Source Statement Library

The update function is used to make
changes to properly identified statements
within a book in the source statement
library. Statements are identified in the
identification field, columns 73 through
80, which is fixed in format as follows:
Columns 73-76 Program identification
which must be constant
throughout the book.

Columns 77-80 Sequence number of the
statement within the
book.

One or more source statements may be
added to, deleted from, or replaced in a
book in the library without the necessity
of replacing the entire book. The update
function also provides these facilities:

1. Resequencing statements within a book
in the source statement library

2. Changing the change level (v.m) of the
book

3. Adding or removing the change level
requirement

4, cCopying a book with optional retention
of the o0ld book with a new name (for
backup purposes)

The UPDATE control statement is used for
the update function and has the following
format:

.

1
UPDATE sublib.library-name, [s.bookl], |

{veml, [nnl |
J

[~

The operation field contains UPDATE,

sublib
represents the sublibrary that
contains the book to be updated. It
may be any of the characters 0 through
9, A through Z, #, §, or a.

s.bookl
provides a temporary update option.
The o0ld boock is renamed s.bookl and
the updated book is named
sublib.library-name. s indicates the
sublibrary that contains the old,
renamed book. It may be one of the
characters 0 through 9, A through %z,
#, §, or a. If this operand is not
specified, the old book is deleted.

represents the change level of the
book to be updated. v may be any
decimal number from 0 through 127; m
may be any decimal number from 0
through 255. This operand must be
present if change level verification
is to be performed. Use of the
optional entry C in the CATALS control
statement at the time the book is
cataloged in the library determines
whether change level verification is
required before updating. If the
directory entry specifies that change
level verification is not required
before updating, the change level
operand in the UPDATE control
statement is ignored.

Librarian Functions 45

If the change level is verified, the
change level in the book's directory
entry is increased by 1 by the system
for verification of the next update.
If m is at its maximum value and an
update is processed, m is reset to 0
and the value of v is increased by 1.
If both v and m are at their maximum
values and an update is processed,
both v and m are reset to 0.

represents the resequencing status
required for the update. nn may be a
1- or 2-character decimal number from
1 through 10, or it may be the word
NO. If nn is a decimal number, it
represents the increment that will be
used in resequencing the statements in
the book. If nn is NO, the statements
will not be resequenced. If nn is not
specified, the statements will be
resequenced with an increment of 1.
When a book is resequenced, the
sequence number of thefirst statement
is 0000. For example, if a book is
cataloged in the source statement
library with sequence numbers ranging
from 0010 through 1000 with increments
of 5 for each statement:

and nn is not 'specified when the
update function is performed, the book
is resequenced with numbers 0000,
0001, 0002, ... etc.

and NO is specified, insertions,
deletions, and/or replacements are
made with no effect on the original
sequence numbers,

and nn is specified as 2, the book is
resequenced with numbers 0000, 0002,
0004, ... etc., regardless of the
original sequencing of the book in the
library or the sequence numbers of the
added or replacement cardse.

The UPDATE control statement is followed
by ADD, DEL (delete), and/or REP (replace)
control statements as required, followed by
the terminating END statement. The ADD,
DEL, REP, and END statements are identified
as update control statements by a right
.parenthesis in the first position (column 1
in card format). This is a variation from
the general librarian control statement
format; thus, it clearly identifies these
control statements as part of the update
function.

ADD .Statement: The ADD statement is used
for the addition of source statements to a
book. The format is:

r

|) ADD seg-no
L

e e =

46

ADD indicates that source statements
following this statement are to be added to
the book.

seg-no
represents the sequence number of the
statement in the book after which the
new statements are to be added. It
may be any decimal number consisting
of from one to four characters.

DEL Statement: The DEL statement causes
the deletion of source statements from the
book. The format is:

r 1
|) DEL first-seg-nol,last-seq-nol |
! :

DEL indicates that statements are to be
deleted from the book.

first-seq-no

last-seqg-no
represent the sequence numbers of the
first and last statements of a section
to be deleted. Each number may be a
decimal number consisting of from one
to four characters. If last-seg-no is
not specified, the statement
represented by first-seg-no is the
only statement deleted.

REP Statement: The REP statement is used

when replacement of source statements is
required in a book. The format is:

b e el

r
|) REP first-seqg-nol,last-seg-nol
L

REP indicates that source statements
following this statement are to replace
existing statements in a book.

first-seg-no

last-seqg-no
represent the sequence numbers of the
first and last statements of a section
to be replaced. Each number may be a
decimal number consisting of from one
to four characters. Any number of new
statements can be added to a book when
a section is replaced. (The number of
statements added need not equal the
number of statements being replaced.)

Sequence number 9999 is the highest
number acceptable for a statement to be
updated. If the book is so large that
statement sequence numbers have "wrapped
around" (progressed from 9998, 9999, to
0000,0001), it will not be possible to
update statements 0000 and 0001.

//*‘\

END Statement: This statement indicates
the end of updates for a given book. The
format is:

|) END [v.m[,C]] ‘ i
L (]

represents the change level to be
assigned to the book after it is
updated; v may be any decimal number
from 0 through 127. m may be any
decimal number from 0 through 255.
This operand provides an additional
means of specifying the change level
of a book in the library. (The other
method is through the use of the v.m
operand in the CATALS statement.)

indicates that change level
verification is required before any
subsequent updates for a given book.

If vem is specified and C is omitted,
the book does not require change level
verification before a subsequent update.
This feature removes a previously specified
verification requirement for a particular
book.

If both optional operands are omitted,
the change level in the book's directory
entry is increased as a result of the
update, and the verification requirement
remains unchanged.

Logical Unit Assignment and Control

Statement Placement:

For the update function, SYSIN must be
assigned to a card reader, a tape unit, or
a disk unit. SYSLST must be assigned to a
printér, a tape unit, or a disk extent;
SYSLOG must be assigned to the printer
keyboard.

Control statement input for the update
function, read from the device assigned to
SYSIN, must be in the following order:

1. The JOB control statement.

2. The ASSGN control statements, if the
current assignments are not those
required. The ASSGN control
statements that can be used are SYSIN,
SYSLST, and SYSLOG.

3. The EXEC MAINT control statement.

4. The UPDATE control statement.

5.) ADD,) DEL, or) REP statements with
appropriate source statements.

6,) END statement.
7. The /* control statement.

8. The /& control statement, which is the
last control statement of the job.

The source statement library can also be
updated by using the DELETE and INSERT
cards. These are discussed in "Extended
Source Program Library Facility" in this
chapter, and in the publication IBM
System/360 Disk Operating System: American
National Standard COBOL.

UPDATE Function -- Invalid Operand Defaults

UPDATE Statement:

1. If the first or second operand is
invalid, the statement is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their wvalidity.

2. If change level verification is
required and the incorrect change
level is specified, the statement is
flagged, the book is not updated, and
the remaining control statements are
checked to determine their wvalidity.

3. If the resequencing operand is
invalid, resequencing is done in
increments of 1.

ox_ REP Statements:

ADD, DEL,

1. If there is an invalid operation or
operand in an ADD, DEL, or REP
statement, the statement is flagged,
the book is not updated, and the
remaining control statements are
checked to determine their validity.
All options of the UPDATE and END
statements are ignored.

2. The second operand must be greater
than the first operand in a DEL or REP
statement. If not, the statement is
considered invalid and is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their wvalidity. All options
of the UPDATE and END statements are
ignored.

3. All updates to a book between an
UPDATE statement and an END statement
must be in ascending sequential order
of statement sequence numbers. The

Librarian Functions 47

first operand of a DEL or REP
statement must be greater than the
last operand of the preceding control
statement. The operand of an ADD
statement must be equal to or greater
than the last operand of the preceding
control statement., Consecutive ADD
statements must not have the same
operand. If these conditions are not
met, the default is the same as for
items 1 and 2.

END Statement: If the first operand of the
END statement is invalid, the statement is
flagged, both operands are ignored, and the
book is updated as though no operands were
specifieds If the second operand is
invalid, the statement is flagged, the
operand is ignored, and the book is updated
as though the second operand were not
specified.

out-of-Sequence Updates: If the source
statements to be added to a book are not in
sequence or do not contain sequence
numbers, the book is updated, and a message
indicating the error appears following the
END statement.. If the resequencing option
has been specified in the UPDATE statement,
the book is sequenced by the specified
value, and subsequent updating is possible.
If the resequencing option is not
specified, the book is resequenced in
increments of 1, and subsequent updating
will be possible. If the resequencing
option NO is specified, the book will be
out of sequence, and subsequent updating
may not be possible.

PRIVATE LIBRARIES

Private libraries are desirable in the
system to permit some libraries to be
located on a disk pack other than the one
used by SYSRES.

Private libraries are supported for the
relocatable library and for the source
statement library on both the 2311 and 2314
mass storage devices. However, the
following restrictions apply:

1. The private library must be on the
same type of disk device as SYSRES.

2. Reference may be made to a private
relocatable library only if SYSRLB is
assigned. If SYSRLB is assigned, the
system relocatable library cannot be
changed.

3. Reference may be made to a private
source statement library only if
SYSSLB is assigned. If SYSSIB is
assigned, the system source statement
library cannot be changed.

48

4, Private libraries cannot be

reallocated.

5. The COPY function is not effective for
private libraries except when they are
being created.

An unlimited number of private libraries
is possible. However, each must be
distinguished by a unique file
identification in the DIBL statement for
the library. No more than one private
relocatable library and one private source
statement library may be assigned in a
given job.

The creation and maintenance of private
libraries is discussed in the publication
IBM System/360 Disk Operating System:

System Control and System Service Programs.

SOURCE LANGUAGE CONSIDERATIONS

To use the private source statement
library for COPY, BASIS, INSERT, and DELETE
(see "Extended Source Program Library
Facility" for further details), the ASSGN,
DLBL, and EXTENT control statements that
define this private library must be present
in the job deck for compilation. When
present, a search for the book is made in
the private library. If it is not there,
the system library is searched. If the
statements for the private library are not
present, the system library is searched. A
programmer may create several private
libraries, but only one private library can
be used in a given job.

EXTENDED SOURCE_PROGRAM LIBRARY FACILITY

A complete program may be included as an
entry in the source statement library by
using the catalog function. This program
can then be retrieved by a BASIS card and
compiled in a subsequent job.

The following control statements would
be used to catalog the program SAMPLE as a
book in the COBOL sublibrary of the source
statement library: ’

// JOB CATALOG

// EXEC MAINT
CATALS C.SAMPLE
BKEND C.SAMPLE

{source program}
BKEND

/%
/&

—

When compiling a program that has been
cataloged in the COBOL sublibrary of the
source statement library, a BASIS card
brings in an entire source program. The
following control statements could be used
to compile the cataloged program SAMPLE:

// JOB PGM1

// OPTION LOG,DECK,LIST,LISTX, ERRS
// EXEC FCOBOL

BASIS SAMPLE

Ve

/&

INSERT or DELETE cards may follow the
BASIS card if the user wishes to modify the
book SAMPLE before it is processed by the
compiler. The original source program must
have been coded with sequence numbers in
columns 1 through 6 of each source card.

The INSERT statement will add new source
statements after the specified sequence
numbers. The DELETE statement will delete
the statements indicated by the sequence
numbers, or will delete more than one
statement when the first and last seguence
numbers to be deleted are specified,
separated by a hyphen. Source program
cards may follow a DELETE card for
insertion before the card following the

last one deleted. The sequence numbers in
colummns 1 through 6 are used to update
COBOL source statements at compilation
time, and are in effect for the one run
only.

Assume that a company runs its payroll
program each week as a source program taken
from the source statement library. The
name of the program is PAYROLL. During the
year, social security tax (FICA) is
deducted at the rate of 4-2/5% each week
for all personnel until earnings exceed
$7800. The coding to accomplish this is
shown in Figure 6.

At the beginning of the year, the test
for earnings over $7800 is taken out of the
program until a more appropriate time later
in the year. In addition, at the beginning
of the year, a union contract dictates that
all draftsmen receive a 5% pay increase.
Assume that records for all personnel
contain an occupation code. The code
identifying draftsmen is DR. The
programmer can program these changes as
shown in Figure 7.

The altered program will contain the
coding shown in Figure 8.

i

1000730

1000735

|000740 FICA-PAYR. COMPUTE FICA-PAY = BASE-PAY * .04l
1000745 MOVE FICA-PAY TO OUTPUT-FICA.
|000750 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE.
{000755 ADD BASE-PAY TO ANNUAL-PAY.

I L] L]

II L] .

000850 STOP RUN.

L

IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE.
IF ANNUAL~PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-FICA.

N U ——

Figure 6. Sample Coding to Calculate FICA

|7/ JOB PGM2

|// OPTION LOG,DECK,LIST,LISTX,ERRS
|7/ EXEC FCOBOL

| CBL QUOTE

|BASIS PAYROLL

|DELETE 000730, 000735

|
|INSERT 000850

| PAY-INCREASE. MULTIPLY 1.05 BY BASE-PAY,.

| EX1.
V43
L

EXIT.

IF OCCUPATION-CODE = "DR"™ PERFORM PAY-INCREASE THRU EX1.

b s s s s S e G— ——c— —]

Figure 7.
Cards

Altering a Program from the Source Statement Library Using INSERT and DELETE

Librarian Functions 49

r .
IF OCCUPATION-CODE = "DR" PERFORM PAY-INCREASE THRU EX1.

000740° FICA-PAYR. COMPUTE FICA-PAY = BASE-PAY * .044
000745 MOVE FICA-PAY TO OUTPUT-FICA.
000750 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE.
000755 ADD BASE-PAY TO ANNUAL-PAY.

1000850 STOP RUN.

| PAY-INCREASE. MULTIPLY 1.05 BY BASE-PAY.

I EX1. EXIT.

b e s . e et . . . s e v

Figure 8. Effect of INSERT and DELETE Cards

50

L/

(

A programmer using the American National
Standard COBOL compiler under the IBM
Systenv360 Disk Operating System has
several methods available to him for
testing, debugging, and revising his
programs for increased operating
efficiency.

The COBOL debugging language can be used
by itself or in conjunction with other
COBOL statements. A dump can also be used
for program checkout.

DEBUG LANGUAGE

The COBOL debugding language is designed
to assist the COBOL programmer in producing
an error-free.program in the shortest
possible time. The following sections
discuss the use of the debug language and
other methods of program checkout.

The three debug language statements are
TRACE, EXHIBIT, and ON. Any one of these
statements can be used as often as
necessary. They can be interspersed
throughout a COBOL source program, or they
can be contained in a packet in the input
stream to the compiler.

Program checkout may not be desired
after testing is completed. A debug packet
can be removed after testing to eliminate
the extra object program coding generated
for the debug statements.

The output produced by the TRACE and
EXHIBIT statements is listed on the system
logical output device (SYSLST).

The following discussions describe
methods of using the debug language.

FLOW OF CONTROL

The READY TRACE statement causes the
compiler-generated card numbers for each
section-name and paragraph-name to be
displayed. ' These card numbers are listed
on SYSLST at execution time when control
passes to these sections and paragraphs.
Hence, the output of the READY TRACE
statement appears as a list of card
numbers.

PROGRAM CHECKOUT

To reduce the length of the 1list and the
time taken to generate it, a trace can be
stopped with a RESET TRACE statement. The
READY TRACE/RESET TRACE combination is
helpful in examining a particular area of
the program where the flow of control is
difficult to determine, e.g., code consists
of a series of PERFORM statements or nested
conditional statements. The READY TRACE
statement can be coded so that the trace
begins before control passes to that area.
The RESET TRACE statement can be coded so
that the trace stops when the program has
passed beyond the area.

Use of the ON statement with the TRACE
statement allows conditional control of the
tracing. When the COBOL compiler
encounters an ON statement, it creates a
counter which is incremented during
execution, whenever control passes through
the ON statement. For example, if an error
occurs when a specific record is processed,
the ON statement can be used to isolate the
problem record. The statement should be
placed where control passes through it only
once for each record that is read. When
the contents of the counter equal the
number of the record (as specified in the
ON statement), a trace can be taken on that
record. The following example shows a
method in which the 200th record could be
selected for a TRACE statement.

Col.
1 Area A

RD-REC.

DEBUG RD-REC
PARA-NM-1. ON 200 READY TRACE.

ON 201 RESET TRACE,

If the TRACE statement were used without
the ON statement, every record would be
traced.

An example of a common program error is
failing to break a loop or unintentionally
creating a loop in the program. If many
iterations of the loop are required before
it can be determined that a program error
exists, the ON statement can be used to
initiate a trace after the expected number
of iterations has been completed.

Program Checkout 51

Note: If an error occurs in an ON
statement, the diagnostic message may refer
to the previous statement number.

DISPLAYING DATA VALUES DURING EXECUTION

A programmer can display the value of a
data item during program execution by using
the EXHIBIT statement. The EXHIBIT
statement has three options:

1. EXHIBIT NAMED -- Displays the names
and values of the data-names listed in
the statement.

2. EXHIBIT CHANGED -- Displays the value
of the data-names listed in the
statement only if the value has
changed since the last execution of
the statement.

3. EXHIBIT CHANGED NAMED -- Displays the
names and the values of the data-names
only if the values have changed since
the last execution of the statement.

Data values can be used to check the
accuracy of the program. For example,
using EXHIBIT NAMED, the programmer can
display specified fields from records,
compute the calculations himself, and
compare his calculations with the output
from his program. The coding for a payroll
problem might be:

Col.
1 Area A
GROSS-PAY-CALC.
COMPUTE GROSS~PAY =
RATE-PER-HOUR * (HRSWKD
+ 1.5 * OVERTIMEHRS).
NET-PAY-CALC.
DEBUG NET-PAY~-CALC

SAMPLE-1. ON 10 AND
EVERY 10 EXHIBIT NAMED
RATE-PER-HOUR, HRSWKD,
OVERTIMEHRS, GROSS-PAY.

52

This coding will cause the values of the
four fields to be listed for every tenth
data record before net pay calculations are
made. The output could appear as:

RATE-PER-HOUR = 4.00 HRSWKD = U40.0
OVERTIMEHRS = 0.0 GROSS-PAY = 160.00

RATE-PER-HOUR = 4.10 HRSWKD = 40.

o

OVERTIMEHRS = 1.5 GROSS-PAY 173.23
RATE-PER-HOUR = 3.35 HRSWKD = 40.0
OVERTIMEHRS = 0.0 GROSS-PAY = 134.00

Note: Decimal points are included in this
example for clarity, but actual printouts
depend on the data description in the
program. '

The preceding was an example of checking
at regular intervals (every tenth record).
A check of any unusual conditions can be
made by using various combinations of COBOL
statements in the debug packet. For
example:

IF OVERTIMEHRS GREATER THAN 2.0
EXHIBIT NAMED PAYRCDHRS...

In connection with the previous example,
this statement could cause the entire pay
record to be displayed whenever an unusual
condition (overtime exceeding two hours) is
encountered.

SN

e

N

)

The EXHIBIT statement with the CHANGED The EXHIBIT statement with the CHANGED

option also can be used to monitor option in the program might be:
conditions that do not occur at regular 4
intervals. The values of data-names are EXHIBIT CHANGED STATE CITY RATE
listed only if the value has changed since
the last execution of the statement. For The output from the EXHIBIT statement
example, suppose the program calculates with the CHANGED option could appear as:
postage rates to various cities. The flow
of the program might be: 01 01 10
02 15
- 03
. o4 10
. 02 01
———————— 02 20
|READ INPUT | 03 15
| DATA FOR |<——(B o4
| CITY | 03 01 10
| F———— .
| .
| .
v
———————— The first column contains the code for a
| CALCULATE | state, the second column contains the code
| RATE FOR | for a city, and the third column contains
| CITY | the code for the postage rate. The value
O S ——— of a data-name is listed only if it has

| changed since the previous execution. For
| example, since the postage rate to city 02

v and city 03 in state 01 are the same, the
——————— — rate is not printed for city 03.
| EXHIBIT |
| CHANGED | The EXHIBIT statement with the CHANGED
L s Tttt NAMED option lists the data-name if the

i value has changed. For example, the

| program might calculate the cost of various
methods of shipping to different cities.
After the calculations are made, the
following statement could appear in the

NO——-> programs

YES EXHIBIT CHANGED NAMED STATE CITY RAIL
BUS TRUCK AIR

The output from this statement could appear
as shown in Figure 9. ©Note that a
data-name and its value are listed only if
the value has changed since the previous
execution,.

00 e

STATE = 01 CITY = 01 RAIL = 10 BUS 14 TRUCK = 12 AIR = 20
CITY = 02

CITY = 03 BUS = 06 AIR = 15

04 RAIL = 30 BUS = 25 TRUCK 28 AIR = 34

CITY

STATE = 02 CITY 01 TRUCK = 25 |

20 AIR = 30

02 TRUCK

CITY

[o S o = e S . Gt s . . S st . e S

Figure 9. sSample Output of EXHIBIT Statement with the CHANGED NAMED Option

Program Checkout 53

TESTING A PROGRAM SELECTIVELY

A debug packet allows the programmer to
select a portion of the program for
testing. The packet can include test data
and can specify operations the programmer
wants to be performed. When the testing is
completed, the packet can be removed. The
flow of control can be selectively altered
by the inclusion of debug packets, as
illustrated in the following example of
selective testing of B:

| ettt |
| I
| START |
I I
|
L
1
I
v
S — - T -
| I | DEBUG |
| a | | PACKET |
i I | FORA |
| ISP | I._--_T__.._.l
|
J
r
|
v
=== -
[|
| B |
I |
L-_-..T..._....J
I
L
1
I
7
r~———"""" r==—=—="""
|] | DEBUG |
I c I | PACKET |
]] | FOR C |
| IS — | l.__.._.r-_-_J
|
|
3
I
I
v
| e |
|]
| stoP |
| ROUN l
| ISR |

In this program, A creates data, B
processes it, and C prints it. The debug
packet for A simulates test data. It is
first in the program to be executed. In
the packet, the last statement is GO TO B,
which permits A to be bypassed. After B is
executed with the test data, control passes
to the debug packet for C, which contains a
GO TO statement that transfers control to
the end of the program, bypassing C.

54

TESTING CHANGES AND ADDITIONS TO PROGRAMS

If a program runs correctly, and changes
or additions might improve its efficiency,
a debug packet can be used to test changes
without modifying the original source
program.

If the changes to be incorporated are in
the middle of a paragraph, the entire
paragraph with the changes included must be
written in the debug packet. The last
statement in the packet should be a GO TO
statement that transfers control to the
next procedure to be executed.

There are usually several ways to
perform an operation. Alternative methods
can be tested by putting them in debug
packets.

The source program library facility can
be used for program checkout by placing a
source program in a library (see the
chapter "Librarian Functions"). Changes or
additions to the program can be tested by
using the BASIS card and any number of
INSERT and DELETE cards. Such changes or
additions remain in effect only for the
duration of the run.

A debug packet can also be used in
conjunction with the BASIS card to debug a
program or to test deletions or additions
to it. The debug packet is inserted in the
input stream immediately following the
BASIS card and any INSERT or DELETE cards.

DUMPS

If a serious error occurs during
execution of the problem program, the job
is abnormally terminated; any remaining
steps are bypassed; and a program phase
dump is generated. The programmer can use
the dump for program checkout. (However,
any pending transfers to an external device
may not be completed. For example, if a
READY TRACE statement is in effect when the
job is abnormally terminated, the last card
number may not appear on the external
device.) In cases where a serious error
occurs in other than the problem program
(e.g., Supervisor), a dump is not produced.
Note that program phase dumps can be
suppressed if the NODUMP option of the
OPTION control statement has been specified
for the job, or if NODUMP was specified at
system generation time and is not
overridden by the DUMP option for the
current job.

/”\

b»

HOW TO USE A DUMP

When a job is abnormally terminated due
to a serious error in the problem program,
a message is written on SYSLST which
indicates the:

1. Type of interrupt (e.g., program
check)

2. Hexadecimal address of the instruction
that caused the interrupt

3. cCondition code

4. Reason for the interrupt (e.g., dat
exception)

The instruction address can be compared
to the Procedure Division map. The
contents of LISTX provide a relative
address for each statement. The load
address of the module (which can be
obtained from the map of main storage
generated by the Linkage Editor) must be
subtracted from the instruction address to
obtain the relative instruction address as
shown in the Procedure Division map. If
the interrupt occurred within the COBOL
program, the programmer can use the error
address and LISTX to locate the specific
statement in the program which caused a
dump to be taken. Examination of the

statement and the fields associated with it

may produce information as to the specific
nature of the error.

Figure 10 is a sample dump which was
caused by a data exception. Invalid data
(i.e., data which did not correspond to its
usage) was placed in the numeric field B as
a result of redefinition. The following
discussion illustrates the method of
finding the specific statement in the
program which caused the dqump. Letters
identifying the text correspond to letters
in the program listing.

(® The program interrupt occurred at HEX
LOCATION 00373A. This is indicated in
the SYSLST message printed just before
the dump.

The linkage editor map indicates that
the program was loaded into address
003000. This is determined by
examining the load point of the
control section TESTRUN. TESTRUN is
the name assigned to the program
module by the source coding:

PROGRAM-ID. TESTRUN.

C) The specific instruction which caused
the dump is located by subtracting the
load address from the interrupt
address (i.e., subtracting 3000 from
373A). The result, 733, is the
relative interrupt address and can be
found in the object code listing. In
this case the instruction in question
is an AP (add decimal).

(©) The left-hand column of .the object
code listing gives the compiler-
generated card number associated with
the instruction. It is card 69. Bas
seen in the source listing, card 69
contains the COMPUTE statement.

Additional details about reading a dump
are found in the chapter "Interpreting
Output. "

ERRORS THAT CAN CAUSE A DUMP

A dump can be caused by one of many
errors. Several of these errors may occur
at the COBOL language level while others
can occur at the job control level.

The following are examples of COBOL
language errors that can cause a dump:

1. A GO TO statement with no
procedure-name following it may have
been improperly initialized with an
ALTER statement. The execution of
this statement will cause an invalid
branch.

2. Arithmetic calculations or moves on
numeric fields that have not been
properly initialized.

For example, neglecting to initialize
the object of an OCCURS clause with
the DEPENDING ON option, or
referencing data fields prior to the
first READ statement may cause a
program interrupt and a dump.

3. 1Invalid data placed in a numeric field
as a result of redefinition.

4, Input/output errors that are
nonrecoverable.

Program Checkout 55

5. Items with subscripts whose values
exceed the defined maximum value can
destroy machine instructions when
moved.

6. Attempting to execute an invalid
operation code through a system or
program error.

7. Generating an invalid address for an
area that has address protection.

8. Subprogram linkage declarations that
are not defined exactly as they are
stated in the calling program.

9. Data or instructions can be modified
by entering a subprogram and
manipulating data incorrectly. A
COBOL subprogram can acquire invalid
information from the main program,
€.g., a CALL statement using a
procedure-name and an ENTRY statement
using a data-name.

10. An input file contains invalid data
such as a blank numeric field or data
incorrectly specified by its data
description.

The compiler does not generate a test
to cHeck the sign position for a valid
configuration before the item is used
as an operand. The programmer can
test for valid data by means of the
numeric class test and, by using the
TRANSFORM statement, convert it to
valid data under certain conditions.

For example, if the units position of
a numeric data item described as USAGE
IS DISPLAY contained a blank, the
blank could be transformed to a zero,
thus forcing a valid signe

LOCATING A DTF

One or more DTF's are generated by the
compiler for each file opened in the COBOL
program. All information about that file
is found within the DTF or in the fields
preceding the DTF. See the chapter
"Advanced Processing Capabilities" for the
type of information available and its
location.

A particular DTF may be located in an
execution-time dump as follows:

1. Determine the order of the DTF address
cells in the TGT from the DTF numbers
shown for each file-name in the
glossary.

56

Note: Since the order is the same as
the FD's in the Data Division, the
order can be determined from the
source program if the SYM option was
not used (i.e., no glossary was
printed).

2. Find the relative starting address of
the block of DTF cells from the TGT
listing in the Memory Mape.

3. Calculate the absolute starting
address of the block by adding the
hexadecimal relocation factor for the
beginning of the object module as
given in the linkage editor MAP.

4. Allowing one fullword per DTF cell,
count off the cells from the starting
address found in step 3, using the
order determined in step 1 to locate
the desired DTF cell.

5. If more than one DTF is generated for
a file, the above procedure should be
followed using the PGT and the SUBDTF
cells rather than the TGT and the
DTFADR cells. The order of multiple
DTF's in core is dependent on the OPEN
option as follows:

a. INPUT
b. OUTPUT

c. I-O0 or INPUT REVERSED

The following discussion illustrates the
method of finding the DTF's in the sample
program in Figure 10. Letters identifying
the text refer to letters in the program
listing.

(® The DTF for FILE-1 precedes the DTF
for FILE-2.

(® DTFADR CELLS begin at relative
location 5CO0.

C) Since the relocation factor is 3000,
the DTFADR CELLS begin at location
35¢c0 in the dump.

The DTF for FILE-1 begins at location
3158, and the DTF for FILE-2 begins at
location 31EO0.

e

LOCATING DATA

The location assigned to a given
data-name may similarly be found by using
the BL number and displacement given for
that entry in the glossary, and then
locating the appropriate one fullword BL
cell in the TGT. The hexadecimal sum of
the glossary displacement and the contents
of the cell should give the relative
address of the desired area. This can then
be converted to an absolute address as
described above.

Since the problem program in Figure 10
interrupted because of a data exception,
the programmer should locate the contents
of field B at the time of the interrupt.
This can be done as follows:

Locate data-name B in the glossary.

It appears under the column headed
SOURCE-NAME, Source-name B has been
assigned to base locator 3 (i.e.,

BL =3) with a displacement of 050,

The sum of the value of base locator 3
and the displacement value 50 is the
address of data-name B.

-

(®) The Register Assignment table lists
the registers assigned to each base
locator. Register 6 has been assigned
to BL =3,

(@ The contents of the 16 general
registers at the time of the interrupt
are displayed at the beginning of the

dump. Register 6 contains the address
000030ES8.

The location of data-name B can now be
determined by adding the contents of
register 6 and the displacement value
50. The result, 3138, is the address
of the leftmost byte of the U-byte
field B.

Note: Field B contains F1F2F3C4.

This is external decimal
representation and does not correspond
to the USAGE COMPUTATIONAL-3 defined
in the source listing.

The location assigned to a given
data-name may also be found by using
the BL CELLS pointer in the TGT Memory
Map. Figure 10 indicates that the BL
cells begin at location 35B4 (add 5B4
to the load point address, 3000, of
the object module). The first four
bytes are the first BL cell, the
second four bytes are the second BL
cell, etc. Note that the third BL
cell contains the value 30E8., This is
the same value as that contained in
register 6.

Note: Some program errors may destroy
the contents of the general registers
or the BL cells. In such cases,
alternate methods of locating the
DTF'sS are useful.

Program Checkout 57

caoccl 000010
00002 000020
00003 000030
00004 000040
00005 000050
000C6 Q00060
00007 000C70
00008 000080
000Qs QCCC90
coc1c0 00010¢C
00011 000110
00012 geoi2c
00013 ‘000130
00014 cool4cC
00015 CCQ15C
00016 000160
00C17 000170
00018 000180
0001s 000190
oocac cceacc
00021 000210
0cc22 000220
00022 00023c¢C
00024 0cez240
00025 000250
00C2¢ 000255
00027 000260
goczée 0co270
00029 ccoz2s8c
c0030 000290
00C31 cco3oce
poc22 00031¢C
00033 000320
00024 0CC33C
00035 000340
0003¢ CcC035C
00C37 000360
Figure 10.

58

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTRUN.
AUTHOR. PRCGRANMMER NAME.
INSTALLATICN. NEW YORK PROGRAMMING CENTER.
DATE-WRITTEN. SEPTEMBER 10, 1968,
DATE-CCMPILED. 06/20/69

REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR
COBOL USERS. IT CREATES AN OQUTPUT FILE AND READS IT BACK AS

INPUT.

ENVIRCNMENT CIVISICN.

CONFIGURATION SECTIOCN.

SOURCE-COMPUTER. IBM-360-H50.

GBJECT-COMPUTER. IEM-360-H50.

INPUT-OUTPUT SECTIGN. ’

FTLE-CONTROL .
SELECT FILE-1 ASSIGN TO SYSO008-UT-2400-S.
SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S.

DATA DIVISION.
FILE SECTION.
FD FILE-1
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 5 RECORDS
RECORDING MCDE IS F
RECORD CONTAINS 20 CHARACTERS
DATA RECORD IS RECORD-1. ’
01 RECORD-1.
05 FIELD-A PIC X(201. C)
FD FILE-2
LABEL RECORCS ARE STANDARD
BLOCK CONTAINS 5 RECORDS
RECORD CONTAINS 20 CHARACTERS
RECORDING MODE IS F
CATA RECORD IS RECORD-2.
01 RECORD-2.
05 FIELD-A PIC X(20).

Sample Dump Resulting from Abnormal Termination (Part 1 of 6)

o

ooc2e 6Cco37¢C
(::j\ 00C35 0C0380
/ 00040 000390
00041 000400
00C42 0co41C
00043 000420
00044 cC0430
00045 0C0440
0C04¢€ 0C0450
00C41 CC0460
00048 00047C
0004S 000480
gooco 00046C
00051 000500
000E2 gco51cC
00053 000520
00054 €00530
00055 €00534
00056 000535
00057 000536
00058 000540
00059 0C0550
c006¢C 000560
00061 000570
C00£2 000580
00063 00059C
00064 000600
000¢€5 CCCé10
00066 00062¢C
00CeT 000¢é3C
00068 000640
0CCé9 000645
cocic 0C0065C
“T '\ 00071 000660
(\v‘/ 00c72 0Co67cC
‘00073 000680
00074 cgo6sC
00075 c00700
00C7¢ ccov1ic
coci7 coo72C
00078 000730
00076 000740
(e10103:10] 00075¢C
00081 000760
00082 00077C
00083 000780
00CE4 €Ccc79cC
Figure 10.

WORKING-STORAGE SECTION.
Cl FILLER.
02 COUNT PIC SSS COMP SYNC.
02 ALPHABET PIC X(26) VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWXYZ™,
C2 ALPHA REDEFINES ALPHABET PIC X OCCURS 26 TIMES.
02 NUMBR PIC S99 COMP SYNC.
02 DEPENDENTS PIC X(26) VALUE "01234012340123401234012340".
02 DEPEND REDEFINES DEPENDENTS PIC X OCCURS 26 TIMES.
Cl WORK-RECORD.
05 NAME-FIELD PIC X.
05 FILLER PIC X.
05 RECCRD-NO PIC 9999.
C5 FILLER PIC X VALUE IS SPACE.
05 LOCATION PIC AAA VALUE IS "NYCw,
C5 FILLER PIC X VALUE IS SPACE.
05 NO-OF-DEPENDENTS PIC XX.
05 FILLER PIC X(7) VALUE IS SPACES.
Cl RECORDA.
02 A PICTURE SS(4) VALUE 1234,
02 B REDEFINES A PICTURE S9(7) COMPUTATIONAL-3.

PROCEDURE DIVISION.
BEGIN. READY TRACE.

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
AND INITIALIZES COUNTERS.

STEP-1. OPEN OUTPUT FILE-1. MOVE ZERO TO COUNT, NUMBR.
NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
CONTAINED IN THE FILE, WRITES THEM ON TAPE, AND DISPLAYS
THEM ON THE CONSOLE.

STEP=2. ADD 1 TO COUNT, NUMBR. MOVE ALPHA (CQUNT)} TO

NAME-FIELD .
COMPUTE B = & + 1. <~—®

MOVE DEPEND (COUNT) TO NO-OF-DEPENDENTS.
MOVE NUMBR TO RECURD-NO.

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE., WRITE RECORD-1 FROM
WORK-RECORD.

STEP—-4. PERFORM STEP-2 THRU STEP-3 UNTIL COUNT IS EQUAL TO 26.
NOTE THAT THE FOLLOWING CLOSES THE OUTPUT FILE AND REOPENS
IT AS INPUT.

STEP-5. CLOSE FILE-1. DPEN INPUT FILE-2.
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES
OUT EMPLOYEES WITH NO DEPENDENTS.

STEP-6. READ FILE-=2 RECORD INTO WORK-RECORD AT END GC TO STEP-8.

STEP-7. IF NOQ-OF-DEPENDENTS IS EQUAL TO "0" MOVE wzn 7O

~ NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECCRD. GC TO STEP-6.

STEP-8. CLOSE FILE-2.

STOP RUN.

Sample Dump Resulting from Abnormal Termination (Part 2 of 6)

Program Checkout

59

INTRNL NAME LVL SOURCE NAME BASE DIspt INTRNL NAME DEFINITION USAGE

DNM=1-148 FD FILE-1 CTF=01 DNM=1-148 DTFMT
DNM=1-178€ Cl RECORD-1 BL=1 000 DNM=1-~178 DS oCL20 GROUP
DNM=1-199 02 FIELD-2 BL=1 000 DNM=1-199 DS 20C DI SP
DNM=1-21¢ FD FILE-2 DTF=02 DNM=1-216 DTFMT
DNM=1-24¢ 01 RECORD-2 BL=2 000 DNM=1-246 DS oCL20 GROUP
DNM=1=-267 €2 FIELD-A © BL=2 000 DNM=1-267 DS 20C DIsP
DNM=1-287 Cl FILLER BL=3 000 DNM=1-287 DS 0OCL56 GROUP
DNM=1-306 02 COUNT BL=3 000 DNM=1-306 DS 1H cQme
DNM=1-321 €2 ALPHABET BL=3 002 DNM=1-321 DS 26C DISP
ONM=1-339 C2 ALPHA BL=3 002 DNM=1-339 DS 1C DISP
DNNM=1-357 02 NUMER BL=3 olc DNM=1-357 DS 1H CcOmMP
DNM=1-372 C2 DEPENDENTS BL=3 OlE DNM=1-372 DS 26C pISpP
DNM=1-392 02 DEPEND BL=3 OlE DONM=1-392 DS 1C DISP
DNM=1-408 01 WORK~RECCRC BL=3 038 DNM=1-408 DS o0CcL20 GROUP
DNM=1-432 02 NAME=FIELD BL=3 038 DNM=1-432 DS 1C DISP
DNM=1-452 02 FILLER BL=3 039 DNM=1-452 DS 1C DISP
ONM=1-471 €2 RECORD=-NO BL=3 03A DNM=1-471 DS 4C DISP-NM
DNM=1-490 €2 FILLER BL=3 Q3E DNM=1-490 DS 1cC DISP
ONM=2-000 02 LOCATICN BL=3 03F DNM=2-000 DS 3C pISP
DNM=2-C1E€ €2 FILLER 8L=3 042 DNM=2-018 DS 1C pIse
DNM=2-037 02 NO-OF-DEPENDENTS BL=3 c43 DNM=2-037 DS 2C nIse
DNM=2-C63 02 FILLER BL=3 045 DNM=2-063 DS 7C nISP
DNM=2-082 01 RECORDA BL=3 050 DNM=2-082 DS OCL4 GROUP
DNM=2-102 02 A y BL=3 050 DNM=2-102 DS 4C DISP-NM
DNM=2-113 02 B 1—-——(:) BL=3 050 DNM=2-113 DS 4P COoMP-3
VEMORY MAP
TGT 003F8

SAVE AREA 003F8

SWITCH 00440

TALLY 00444

SORT SAVE 00448

ENTRY=SAVE 0044C

SORT CORE SIZE 00450

NSTD-REELS 00454

SCRT RET 00456

WORKING CELLS 00458

SORT FILE SIZE 00588

SORT MODE SIZE 00s58¢C

PGT-VN TBL 00590

TGT=-VN TBL 00594

SORTAB ADDRESS 00598

LENGTH OF VN TBL 0059cC

LNGTH OF SORTAR 0059E

PGM ID 005A0

ACINITL) 005A8

UPSI SWITCHES 005AC

OVERFLOW CELLS — 00584

BL CELLS <——1:) 00584

DTFADR CELLS 005C0 =—®)

TEMP STORAGE 005Cc8

TEMP STORAGE-2 00500

TEMP STORAGE-3 00500

TEMP STORACE-4 00500

BLL CELLS 00500

VLC CELLS 00504

SBL CELLS 005D4

INDEX CELLS 00504

SUBACR CELLS 00504

CNCTL CELLS 005DC

PFMCTL CELLS 005DC

PFMSAV CELLS 0050C

VN CELLS 005E0

SAVE AREA =2 005E4

XSASW CELLS 005E4

XSA CELLS 005E4

PARAM CELLS 005E 4

RPTSAV AREA GOS5ES

CHECKPYT CTR 005E8

IOPTR CELLS Q05ER

REGISTER ASSIGNMENT

REG 6 BL =3 =—(X)

REG 7 BL =1
REG 8 BL =2

Figure 10. Sample Dump Resulting from Abnormal Termination (Part 3 of 6)

60

A AN AL IS NSNS NSNS

N A A AN AN IINA SIS NI NI I ISPt

“ 000708 S4 CF D 1D6 N1 106(13),Xx10F" TS=01+6
i 00070C 4F 30 D 1DO cve 3,1p0(C,y13) TS=01
0CC71C 40 3C 6 01C STH 3,01C{0,6) DNM=1-357
67 000714 41 4C 6 002 LA 4,002(0,46) DNM=1-339
000718 48 20 6 000 LH 24000(0,6) DNM=1-306
00071C 4C 2C C 042 MH 2+042(0,12) LIT+2
000720 1A 42 AR 4,2
000722 5B 4C C 040 s 4,040(0412) LIT+0
000726 50 40 D 1DC ST 4,1DC(0,13) $BS=1
00072A 58 EC D 1DC L 14510C(0,13) $8S=1
OCO72E D2 CC & 038 E 000 mVe 038(1,6),000(14) DNM=1-432 DNM=1-339
69 000734 F8 70 D LDO C 044 . IAP 1DO(8,13),044(1,12) TS=01 LIT+4
00073A FA 42 D 1D3 6 050 C)—a-AP 103(5,413),050(4,6) TS=04 DNM=2-113
0C0740 F8 33 6 050 D 1D4 LAP 050(4,6)41D4(4413) DNM=2-113 TS=04+1
7C 000746 41 4C 6 OlE LA 4y 01E(0,6) DNM=1=-392
OCC74A 48 2C 6 000 LH 2,000(C,6) DNM=1=-306
00074E 4C 20 C G42 MH 2,C42(0,12) LIT+2
000752 1A 42 AR 442
CCC754 5B 4C C 040 s 4,040(0,12) LIT+0
000758 50 40 D lEO ST 441E0(0,13) $BS=2
0CC75C 58 EC D 1EOQ L 1441E0(0,13) SBS=2
000760 D2 OC €& 043 E 000 MVC 043(1,6),000(14) DNM=2-37 DNM=1-392
000766 92 40 6 U44 MVI 044(6), X140 DNM=2=3T7+1
71 0CO76A 48 3C & 01C LH 3,01C(0,6) DNM=1-357
00076E 4E 3C D 100 CVD 3,100(0,13) TS=01
000772 F3 31 6 03A D 1D6 UNPK 03A(44+6),1D6(2,13) DNM=1-471 T$=07
000778 S6 FC € 03D cI 030(6),X'FO* DNM=1-471+3
72 00077C 58 FC C 004 L 154C04(0,12) V{ILBDDSPO)
PHASE XFR=AD LOCORE HICURE DSK=—-AD ESD TYPE LABEL LOADED REL-FR
TEST CC300C 0030C0 0048E3 50 07 2 CSECT TESTRUN 003000 003000
CSECT I1JFFBZIN 0039D8 002908
% ENTRY IJFFZZIN 0039D8
- ‘w‘ * ENTRY [IJFFBZZZ 003908
(\\’ Y * ENTRY 1JFFZZ1Z 0039D8
A CSECT ILBDSAEO 0047F0 0047F0
ENTRY ILBOSAEL 004810
CSECT ILBDMNSO O0C47E8 OC4TE8
CSECT ILBDCSPO O03FA8 OC3FA8
% ENTRY ILBDCSPl 0044F8
* ENTRY ILBDDSP2 004590
% ENTRY ILBDCSP3 004748
CSECT ILBDIMLO 004780 004780
CSECT 1J4JCPD1 003DEO 003DEO
ENTRY TI1JJCPDIN 0O3CEO
* ENTRY 1JJCPD2 003DEO
Figure 10, Sample Dump Resulting from Abnormal Termination (Part 4 of 6)

Program Checkout 61

0S03I PROGRAM CHECK INTERRUPTION — HEX LOCATION 00373A - CONDITION CODE O - DATA EXCEPTION
CANCELED

0S00I JOB SAMPLE

SAMPLE

06/20/65

©

GR C-7 000035C0 000036D8 00CCCCO1 00000001 000030EA 5000399A 000030E8 000032C0O
GR 8-F 00003328 0CC0396A 00CC3CCC 00003000 CQO0035F0 000033F8 000030EA 00003FAS8
FP REG 00000000 00000000 00CCCCOQ CO000000 00C000CC 0CO00000 0COCO000 00000000
COMREG BG ACCR IS 000LlFO

..BG-

002F 80 DsDe4CBS C1D4C540 FF1500C7 CC003740 00003S6A 00003000
002FAG 00CC300C 000C25F0 000033FE& CO0030EA 000C3FA8 0CCO35C0 0CQC36D8 00000001
002FCQ 0CCOCCO1 CCCO30EA 50CC399A CUO0030ES8 000C32C0 00003328 Q0OCCOCCO OCOE607D
0C2FEC CCCC000C —-SAME--

0030C0 OOE2E8E2 FOFOF840 OQE3CILC7 C5C6C9D3 C54C404C 4C4C4040 404CF1F1 F1F1F1F1
00302C FCFOFOF1 FOFOFOF1 FOFOFQOF1 FOFl40F6 FOF1F7Fl 4CF6F9F3 F6FSFOF0 FOFOFOFO
003204C FCC4CEE2 61E2DEE2 €E1F3FEFC 40400000 F1F240C1 (3C3C5C7 E3C5C461 61D5D640
003C€60 E5C1D3C9 C440D6D7 C5D540C6 C6DI40CE C9D3C54B 4CC6CID3 C57E02C2 D3D6C3D2
003C8C E2CSESCS 58CO0F0C6 58EQCCCC 58DOFOCA 9500E000 4770F0A2 9610D048 92FFEOQOQC
0030A0 47FOFQAO 98CEF02A 90ECDCCC 185D989F FOBA9110 D048CT719 QT7FFOT700 0000396A
CC3CCC 0CCC30CO 0CCC3000 0O00035FC 0Q00033F3 000C3664 00002950 C3D¢C2C6 FOFOFOQFQ
O03CE0 E3CS5E2E3 DSE4D54C CCC1C1C2 C3C4C5C6 C7C8C9D1 D2D30C4D5 C6C7D8DY9 E2E3E4ES
003100 E6ETES8E9 0001FOF1 F2F3F4FC FlF2F3F4C>l:OF1F2F3 F4FCF1F2 F3F4FQF1 F2F3F4FC
00212C C1lC3C5D7 E3C540C5 EBC340E3 (5404040 404C C6L560D9 F1F2F3C4| 0C0C0000
00314C C1lC1C014 0OcCcCcCCCCC coCcccce 00000000 130C00CC CC000000 p0OO0C9200 00000108
003160 00003190 00C00000 10C03908 1260E2ESB E2FCFCF8 4C400166 900C0C00 04000000
0C31€6C CCCOCO00 86BCF018 41ECECC1 58201044 01003258 2C000064 00CC32C0 000C32CO
0031AC 00000C14 00002322 00€4CC€&€3 C0000000 0O0O0OCOF1lFl F1F1FlFl FOFOFOFl FOFOFOF1
0031C0 _010047F0 0CCO0000 0101CO014 00000000 000C00CC OCCOO000 0COCOCCO 0CO00000
0031EC C82C0 COCOCLlC8 0QcCC3218 C0000000 100039C8 1468E2E8 E2FCFCF8 40400276
0032CC 800C0000 2CCOOCCO 00CCCOCO 86BCFO18 41ECEOC1 58201044 02003328 00000064
003z20 000(C336C 0CCOCOCO 00000014 00000000 00640063 CCCOCO0CO0 0000481C 0CO047FC
003240 COCCCCOC QCcCCCCCC occccooo 00000000 0000C3C5 4CC6C9C5 L3C440C9 D3D3C5CY
003260 ClC34BTE 15E2E3C5 DSL3C9CS5 C740D5D6 D56CD9C5 D7D6DIE3 4CDT7C9C3 E3E4DICS
002280 4C6C40F6 4CD6D940 FT740C9C5 40C9D3D3 C5C7C1D3 40C7D6E2 CSE3C9D6 DS4BTELS
0032A0 E2E3C5DS D3C9D5C7 4CD5D6DS 60D9C5D7T D6DSE340 C7C9C3E3 E4DSC540 6040E4E2
0032CC C1C7C540 D5D6E340 C4C9E2D07 D3ClE860 E2E34B7E 16E2E3CS5 DSD3CSD5 C740D5D¢
0C22E0C D56CD9C5 D7D6D9E3 40D7CSC3 E3E4D9CS 406040E5 4CC9D540 C9D3D3C5 C7C1D340
003200 D7D6E2C9 E3C9D6D5 4BTE1EE2 E3C5D9D3 C9D5CT40 05060560 DSCSD7D6 D9E340D7
003220 CSC3E3E4 DSC54060 40E240C9 C540C9D3 D3C5C7C1 C34007D6 E2CSE3C9 D6DS54BTE
0032240 15CC4770 S4€A45EC E2E3C5DS C3C9D5C7 40D5D6C5 6CC9C5D7 D6DY9E340 DTC9C3E3
003360 E4D9CE40 604CC4CY9 CTC9E340 C3C5D5C7 E3C840C7 E340F1F8 4BTE15E2 E3C5D9D3
003380 C9D5C740 DEC6DS€0 DSCS5DTC6 DYE34007 CY9C3E3E4 CSC54060 40E2C8C9 D3D3C9DS
0032A0 C74CCECY C5D3C440 C7E34CF2 4BTEL15E2 E3C509D3 C9C5CT740 C5CeD560 D9CSDTD6
0033CC [9E340C7 C9C3E3E4 D9C54C€C 40D7C5D5 C3CE40C6 CSCS5D3C4 4CCTE340 F24B7EL1S
OC32EO0 E2E3CSDY9 D3C9ID5CT 40D5D6CS €0D9C507 Do DSE340 C7C9C3E3 E4DSC540 6040D5D6
Figure 10. Sample“Dump Resulting from Abnormal Termination (Part 5 of 6)

62

/’\

@ I’ R

003400 40D7D6E4 DSC44CE2 C5D7C1C9 ClE3D6D9 4BTE15C6 C5D3E840 E3C8C540 D9CS5DSC1
003420 D4CS5E24C C3D3C1E4 E2CE54CD4 ClEB40C2 C54CE2D7 C5C3C9C6 00000048 0C000000
003440 7C00004B 0CCO00CO 00CCCOCO0 00003664 00000000 COC0O0000 000C3158 0COC32CC
0034¢C O0CCC3COC 00C03158 500C3SSA 40C9D3D3 C5C7C1C3 40D7D6E2 C9E3C9D6 D54BTELG
003480 C5E4C4CS DSC9C340 D7C9C3E3 E4DIC540 604CD740 CSD540C9 D3D3C5CT C1D34007
0034A0 D6E2C9E3 (C9C6C54B TE1EDS5E4 D4C5D9C9 C34CC7C9 C3E3E4D9 C54C6C4C ES540C9D5
0034CC 4CCSD3D3 C5C7C1D3 40D7DEE2 C9E3C9D6 D54B7E16 CS5E4D4C5 D9CSC340 DTC9C3E3
0034E€0 E4D9C540 6040D5D6 4CF940C9 D540D7C9 C3E2E4D9 CcCCC36D0 06CC32C0O0 0100C340
CC35C0 7GCCC3€AC OCCO3FA8 000035C0 000036D8 000C32¢0 00003000 00003158 5000399A
0C3520 CCOO030E8 0000322CC 000C2328 0000396A 00003000 CC0O03000 00OC35F0 000036D8
003540 O0CO03FA8 000035C0 000C44F8 000032C0 00C1C5C7 0C0036D0 E4D4C5DS C9C340D7
C035€0 C9C3E3E4 DSCE4CEC 4CC4C9CT C9E340D3 C505C7E3 C840C7E3 40F1F84B TE16D5E4
003£80 C€CCOCO0O0 00000000 OOCCCOCQO coO0O00OQO C4C9C7C9 E340D3C5 DS5CTE3C8 404E40E2
@D 0C3EA0 00003000 E2C3ClC3 00C03000 COOOOZBCDC)OOOCCBZﬁ [fC0032C0] 00003328 JOCOO3CER |
0035C0 (00003158 OCCC31EC]OCCCOOCO 0000001C 00000000 OCOO030EA C540D5D6 E340C4C9
0035EQ@ 000037C2 E84B/E2D 000047CO COOO0O3F90 000C47E8 CCCO3FA8 0C0C478C 000036C8
C03€00 C€00037C2 00CO3864 000038BO 00003910 000037BC 0C0037€E2 COOC37F6 000038AA
0C362z0 OCOC3€EC CCCC28D6 000C37C2 COlA8B5B 000C00C1 1CCOCO01A 5BS5BC2Ds D7C5D54C
00364C 5B5B8C2C3 C3C6E2C5 5B5BC2C6 C3D4E4D3 FOESOOCO CCCOCOCO E6D6DID2 60DICSC3
003€6Q DEDSC4FT 58FCCCC4 O51FQ0CL 4004F6F0 404040C1 9640C048 58F0C004 051FC001
003680 4004F6F2 404040F0 411CC048 5800D1C8 184C05FQ 5CCOF008 4500F00C 00003158
0C3€A0 0AC24100 C1C858F0 COO805EF 5810D1C3 961C1020 5C20D1BC 587CD1BC D201€000
003€CO CQC4CD201 6C1CC04C 58F0CCC4 051F0001 4004F6F7 4C4040D0 4830C042 4A3060C0
0036EQ 4E3CC1CC D7CSC1CC D1DCS4CF D1D64F30 D1DC403C €CCC4830 CC424A30 601C4E3C
0037C0 DLDCD7C5 DLCOD1DO 940FD1C6 4F30D1DO 4030601C 41406002 48206000 4C20C042
003720 1A425B4C CC4CEC40 DIDCS5EEC D1DCD200 6038E000 F87CD1DO CO44Fp43 D1D36050
(003740 F8336050 D1C44140 601E4820 60004C20 C0421A42 5B40C040 504CD1EO 58EOD1EO
\\dj 003760 D20C6C43 ECCCS240 6C444830 601C4E30 D1DOF331 6C3AC1D6 96F0603D 58F0CO004
003780 C51F0001 4004F7F2 40404CC8 58F0C004 051F00C2 0C00CO0l4 CDO001C4 OO38FFFF
0037A0 C[2137000 60285810 D1C81841 58F01010 45ECFOCC 5020D1BC 587CD1BC 5810D1ES8
0C37C0 O7F1c58FC CCC4C51F CCC140C4 F7F44040 408F5800 D1EB5000 D1E458C0 CC245000
0037E0 D1E84830 £00C4930 CC4658FC C028078F 5810C00C 07F15800 D1E45000 D1E858FC
CC3800 CO04051F CCC140C4 F7F74C4C 40005810 D1C894EF 10201801 184C4110 CC5005F0
003820 50CCFCOE& 45COFCCC ocCcCCCCCC 0A025800 D1C84110 CC580A02 4110C048 5800C1CC
003840 184005F0 5000F008 45COFCCC 06000000 0A0241CC C1CCS58F0 CCCBO5EF 5810D1CC
003€€0 $61C1020 58FOCCO4 O51FCCCL 4004F8F0 404C40F0 5810D1CC 58F0C02C 91201010
0C3€80 C71F1841 41F0CC2C D2C2102% FOOL58F0 101C45E0 FCC85020 D1CC5880 D1COD213
0038AQ 6388000 58F0C018 O07FF5810 CO1CO7F1 58FCCC04 O51FC001 4004F 8F1 4040405F
0038C6 581CCC34 5€2CCC30 DS5CCCCED €0430772 95406044 C7720200 6043C061 92406044
0038E0C 5810CC64 5010D1EC 4120D1EC 58FOCO04 051F80C1 1C00000B 0C000068 0000000C
CC39C0 00140D0C C1C40038 FFFF5810 C0l407F1 58FCC004 CE1FCOCL 4CC4F8F3 404040CC
003S20 581CD1CC 94EF1020 18011840 4110C050 070005F0 5CCOF008 4500F00C 00000000
003940 0A02580C C1lCC4110 CC58CAC2 CAOEOAQE 50D050C€E 5C50D0C4 582CCOC0 9500200¢C
0039€0 C77992FF 200C9610 DO4850EC D0O5405F0 9120D048 47EOFO0l6 580CBC48 982DBOSO
003980 58ECDC54 CIFES62C DC48416C C0044110 C00C4170 CC40C670 055C5840 10001E4R
0039A0 50401000 871650C0 4180D1BC 4170D1CF 051058CC 8CCOLlEOB 5CC£8000 87861000
0C3SCO0 D2C3DlEE C038586C D1C45870 C1BC5880 D1CC58EQ CO5407FE 4TFOFQTC 47FOFOAQ
O039E0 4T7FOF046& 47FOF02A 47FCF272 47FOF052 4TFOF0OCE 4TFOF150 C9D1C6C6 C2E9EIDS
0C3AC0 F3F490AE F3D09620 103C45A0 FOB8YISAE F3D044C0 1C3249101 1C1E078E, OAO990AE
003A20 F3DC4EAC F(CBB4TFC FO03690AE F3DO058A0 10445BA0 1C404780 F03640A0 1C3E45AC
003A40 F32E45A0 FCC645A0 F32ED2C1 103E1050 47FO0F02€¢ S5CACF3D0 45ACF32E 42001038
003468 CAQC4S5AC F32ED2CO 103€101E C7011000 100058AQ F3COO0O7TFE 91041015 4710F0BC
003AE0 D7031C4C 1C4COTFE D7C31C44 104407FE 98801044 4400102C 50B01044 07FA9110
0032A0 1003471C F37C9140 1005471C F33A9180 1015478C F37C9120 1C15471C FOE8OAQO
003ACO 50A0F400 45A0F32E S58ACF400 91011004 4710F282 58E01028 440C1030 S0E01028
OC3AEQ 48BC1000 41E01058 12BB47EC F1349640 10051288 41E01058 4740F1A2 948F1005
003BCO 58E01048 10EE1BRE 47FCF110 91401005 4710F1A2 S1101003 41E0105C 4710F1A2
0C3B20 91201C02 4710F1A2 58BOL1C3E€ S48F1005 D2021039 1C41418B 000C5080 10409104

S

(\/) Figure 10. Sample Dump Resulting from Abnormal Termination (Part 6 of 6)

Program Checkout 63

DIAGNOSTIC MESSAGES

Diagnostic messages are generated by the
compiler and listed on SYSLST when errors
are found in the source program.

Note: Diagnostic messages are suppressed '
when the NOERRS option is in effect.

WORKING WITH DIAGNOSTIC MESSAGES

1. Approach the diagnostic messages in
the order in which they appear on the
source listing. .It is possible to get
compound diagnostic messages.
Frequently, an earlier diagnostic
message indicates the reason for a
later diagnostic message. For
example, a missing quotation mark for
an alphabetic or alphanumeric literal
could involve the inclusion of some
clauses not intended for that
particular literal. This could cause
an apparently valid clause to be
diagnosed as invalid because it is not
complete, or because it is in conflict
with something that preceded it.

2. Check for missing or superfluous
punctuation, or other errors of this
type.

3. Frequently, a seemingly meaningless
message is clarified when the valid
syntax or format of the clause or
statement in question is referenced.

GENERATION OF DIAGNOSTIC MESSAGES

The compiler scans the statement,
element by element, to determine whether
the words are combined in a meaningful
manner. Based upon the elements that have
already been scanned, there are only
certain words or elements that can be
correctly encountered.

If the anticipated elements are not
encountered, a diagnostic message is
produced, Some errors may not be uncovered
until information from various sections of
the program is combined and the
inconsistency is noted. Errors uncovered
in this manner can produce a slightly
different message format than those
uncovered when the actual source text is
still available. The message that is made
unique through that particular error may
not contain, for example, the actual source
statement that produced the error.

64

Errors that appear to be identical are
diagnosed in a slightly different manner,
depending on where they were encountered by
the compiler and how they fit within the
context of valid syntax. For example, a
period missing from the end of the
Working-Storage section header is diagnosed
specifically as a period required. There
is no other information that can appear at
that point. However, if at the end of a
data item description entry, an element is
encountered that is not valid at that-
point, such as the digits 02, it is
diagnosed as invalid. Any clauses
associated with the 02 entry which conflict
with the clauses in the previous entry (the
one that contained the missing period), are
diagnosed. Thus, a missing period produces
a different type of diagnostic message in
one situation than in the other.

LINKAGE EDITOR_ OUTPUT

The Linkage Editor produces diagnostic
messages, console messages, and a storage
map. For a complete description of output
and error messages from the Linkage Editor,
see the publication IBM System/360 Disk
Operating System: System Control and
System Service Programs. Output resulting
from the linkage editing of a COBOL program
is discussed in the chapter "Interpreting
Output,. "

EXECUTION TIME MESSAGES

When an error condition that is
recognized by compiler-generated code
occurs during execution, an error message
is written on SYSLST and SYSLOG. No
messageé is written on SYSLST when an error
occurs in the foreground and SYSLST is
assigned to a disk.

Messages that normally appear on SYSLOG
are provided with a code indicating whether
the message originated in a foreground or
background program. These messages are
listed in "Appendix F: Diagnostic
Messages. "

RECORDING PROGRAM STATUS

When a program is expected to run for an
extended period of time, provision should
be made for taking checkpoint information
periodically during the run. A checkpoint
is the recording of the status of a problem
program and main storage (including

()

@

N

C

input/output status and the contents of the
general registers). Thus, it provides a
means of restarting the job at an
intermediate checkpoint position rather
than at the beginning, if for any reason
processing is terminated before the normal
end of the program. For example, a job of
higher priority may require immediate
processing, or some malfunction (such as a
power failure) may occur and cause an
interruption. Checkpoints are taken using
the COBOL RERUN clause.

Restart is a means of resuming the
execution of the program from one of the
checkpoints rather than from the beginning.
The ability to restart is provided through
the RSTRT job control statement.

RERUN CLAUSE

The presence of the RERUN clause in the
source program causes the CHKPT macro
instruction to be issued at the specified
interval. When the CHKPT macro instruction
is issued, the following information is
saved:

1. Information for the Restart and other
supervisor or job control routines.

2. The general registers.

3. Bytes 8 through 10, and 12 through 45
of the Communication Region.

4, The problem program area.

5. Aall file protection extents for files
assigned to mass storage devices if
the extents are attached to logical
units contained in the program for
which checkpoints are taken.

Since the COBOL RERUN clause provides a
linkage to the system CHKPT macro
instruction, any warnings and restrictions
on the use of this macro instruction also
apply to the use of the RERUN clause., See
the publication IBM System/360 Disk
Operating System: Supervisor and
Input/Output Macros for a complete
description of the CHKPT macro instruction.

TAKING A CHECKPOINT

In order to take a checkpoint, the
programmer must specify the source language
RERUN clause and must define the file upon
which checkpoint records are to be written
(e«g., ASSGN, EXTENT, etc.) Checkpoint
information must be written on a 2311 or

2314 mass storage device or on a magnetic
tape -- either 7- or 9-track. Checkpoint
records cannot be imbedded in one of the
problem program's output files, i.e., the
program must establish a separate file
exclusively for checkpoint records.

In designing a program for which
checkpoints are to be taken, the user
should consider the fact that, upon
restarting, the program must be able to
continue as though it had just reached that
point in the program at which termination
occurred. Hence, the user should ensure
that:

1. File handling is such as to permit
easy reconstruction of the status of
the system as it existed at the time
of checkpoint was taken. For example,
when multifile reels are used, the
operator should be informed (by
message) as to which file is in use at
the time a checkpoint is to be taken.
He requires this information at
restart time.

2. The contents of files are not altered
between the time of the checkpoint and
the time of the restart. For
sequential files, all records written
on the file at the time the checkpoint
is taken should be unaltered at
restart time. For nonsequential
files, care must be taken to design
the program so that a restart will not
duplicate work that has been completed
between checkpoint time and restart
time. For example, suppose that
checkpoint 5 is taken. By adding an
amount representing the interest due,
account XYZ is updated on a
direct-access file that was opened
with the I-0 option. If the program
is restarted from checkpoint 5 and if
the interest is recalculated and again
added to account XYZ, incorrect
results will be produced.

If the program is modular in design,
RERUN statements must be included in all
modules that handle files for which
checkpoints are to be taken. (When an
entry point of a module containing a RERUN
statement is encountered, a COBOL
subroutine, ILBDCKPO, is called. ILBDCKPO
enters the files of the module into the
list of files to be repositioned.)
Repositioning to the proper record will not
occur for any files that were defined in
modules other than those containing RERUN
statements. Moreover, a restart from any
given checkpoint may not reposition other
tapes on which checkpoints are stored.
Note, too, that only one disk checkpoint
file can be used.

Program Checkout 65

RESTARTING A PROGRAM

If the programmer requests checkpoints
in his job by means of the COBOL RERUN
clause, the following message is given each

time a checkpoint is taken:
2.

0C001 CHKPT nnnn HAS BEEN TAKEN ON
SYSxxx

nnnn .
is the 4-character identification of
the checkpoint record.

To restart a job from a checkpoint, the
following steps are required:

Replace the // EXEC statement with a
// RSTRT statement. The format of the
RSTRT statement is discussed in the
chapter "Preparing COBOL Programs For
Processing." All other job control
statements applicable to the job step

1.
3'

4.

66

should be the same as when the job was
originally run. If necessary, the
channel and unit addresses for the //
ASSGN control statements may be
changed.

Rewind all tapes used by the program
being restarted, and mount them on
devices assigned to the symbolic units
required by the program. If
multivolume files are used, mount (on
the primary unit) the reel being used
at the time that the checkpoint was
taken, and rewind it. If multifile
volumes are used, position the reel to
the start of the file referenced at
the time the checkpoint is being
taken.

Reposition any card file so that only
cards not yet read when the checkpoint
was taken are in the card reader.

Execute the jobe.

N

P

The American National Standard COBOL
compiler, COBOL object module, Linkage
Editor, and other system components can
produce output in the form of printed
listings, punched card decks, diagnostic or
informative messages, and data files
directed to tape or to mass storage
devices. This chapter gives the format of
and describes this output. The same COBOL
program is used for each example.
"Appendix A: Sample Program Output” shows
the output formats in the context of a
complete listing generated by the sample
program.

COMPILER OUTPUT

The output of the compilation job step
may include:

e A printed listing of the job control
statements

e A printed listing of the statements
contained in the source program

e A glossary of compiler-generated
information about data

e A printed listing of the object code

¢ A condensed listing containing only the
first generated instruction for each
verb

e Compiler diagnostic messages

e A cross-reference listing

e System messages

An object module

The presence ar absence of the
above-mentioned types of compiler output is
determined by options specified at system
generation time. These options can be
overridden or additiomnal options specified
at compilation time by using the OPTION
control statement and the CBL card.

The level of diagnostic message printed
depends upon the FLAGW or FLAGE option of
the CBL card.

All output to be listed is written on
the device assigned to SYSLST. Line
spacing of the source listing is controlled
by the SPACEn option of the CBL card and by
SKIP 1/2/3 and EJECT in the COBOL source

INTERPRETING OUTPUT

program. The number of lines per page can
be specified in the SET command. In
addition, a listing of input/output
assignments can be printed on SYSLST by
using the LISTIO control statement.

Fiqure 11 contains the compiler output
listing shown in "Appendix A: Sample
Program Output.” Each type of output is
numbered, and each format within each type
is lettered. The text following the figure
is an explanation of the figure.

() The listing of the job control
statements associated with this dob
step. These statements are listed
because the LOG option was specified
at system generation time.

Compiler options. The CBL card, if
specified, is printed on SYSLST unless
the LIST option is suppressed.

The source module listing. The
statements in the source program are
listed exactly as submitted except
that a compiler-generated card number
is listed to the left of each line.
This is the number referenced in
diagnostic messages and in the object
code listing. It is also the number
printed on SYSLST as a result of the
source language TRACE statement. The
source module is not listed when the
NOLIST option is specified.

The following notations may appear on
the listing:

C Denotes that the statement was inserted
with a COPY statement.

** Denotes that the card is out of

sequence. NOSEQ should be specified on

the CBL card if the sequence check is

to be suppressed.

I Denotes that the card was inserted with
an INSERT or BASIS card.

If DATE-COMPILED is specified in the
Identification Division, any sentences in
that paragraph are replaced in the listing
by the date of compilation. It is printed
in one of the following formats depending
upon the format chosen at system generation
time.

DATE-COMPILED. month/day/year or

DATE-COMPILED. day/month/year

Interpreting Output 67

// JCB SAVPLE
// CPTICN NODECKLINKsLIST,LISTX,SYMsERRS (:)
PHASE TEST.*
// EXEC FCOBCL

cBL cucTe (2)
00007 0c001C IDENTIFICATION DIVISION.
000C2 0C002C PROGRAM-ID. TESTRUN.
00003 000030 AUTHOR. PROGRAMMER NAME.
00CC4 000040 INSTALLATICN. NEW YORK PROGRAMMING CENTER.
00005 000050 DATE-WRITTEN. SEPTEMBER 10, 1968.
000C6 000060 DATE-CCMPILED. 06/20/69
00CcC7 00007C REMARKS. THIS PRCGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR
000C8 000080 CCBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS
00CC9 000090 INPUT.
0001C CcCOlcCC
00011 000110 ENVIRONMENT DIVISION.
00012 €0012C CCNFIGURATION SECTION,
00013 00013C SOURCE-COMPUTER. IBM=-360-H50.
00014 000140 CBJECT~COMPUTER. IEM=360-H50.
0001¢ CCO015C INPUT=-CUTPUT SECTICN.
0001¢ GCO160 FILE-CONTROL.
00017 000170 SELECT FILE-1 ASSIGN TO SYS008-UT-24CC-S.
000le 000180 SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S.
0001S 000190
WMM/W\NWV\AN\MMWWWMMMNW e N e
00056 C0055C PROCEDURE DIVISION.
00057 000560 BEGIN. READY TRACE.
00058 00057C NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
00055 C€CO58C AND INITIALIZES COUNTERS.
00060 000590 STEP-1. OPEN OUTPUT FILE-1. MOVE ZERO TO COUNT, NUMBR,

WWWMWWWNWWMM

00C73
00074
00075
0007¢
00077
occ7e
00c79
ccoeo

0co720
000730
cac74cC
000750
CC0760
600770
cco780
cco79C

STEP-5. CLOSE FILE-l. OPEN INPUT FILE-2.
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES
OUT EMPLCYEES WITH NU DEPENDENTS,
STEP=6. READ FILE-2 RECORD INTO WORK-RECORD AT END GC TO STEP-8.
STEP-7. IF NC-OF-CEPENDENTS IS EQUAL TQ "O" MOVE "z" T0
NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO STEP-6.
STEP-8. CLOSE FILE-2.
STaGP RUN.

Figure 11. Examples of Compiler Output (Part 1 of 4)

68

(

@ © ©)

®

INTRNL NAME LVL SOURCE NAME BASE DISPL
DNM=1~148 FD FILE-1 DTF=01
DNM=1-178 01 RECORD-1 BlL=1 000
DNM=1-199 02 FIELD-A BL=1 0co
DNM=1-21¢ FD FILE-2 DTF=02
DNM=1-24¢ 01 RECORD-2 BL=2 0Cco
DNM=1=~267 C2 FIELD-A BL=2 000
DNNM=1-287 01 FILLER BL=3 oco
DNM=1-306 C2 COUNT BL=3 000
DNM=1-321 C2 ALPHABET BL=3 002
DNM=1-339 C2 ALPHA BL=3 ocz2
DNM=1-357 €2 NUMBR BL=3 olc
MEMORY MAP
T @ 003F0
SAVE AREA 003F0
SWITCH 00438
TALLY 0043C
SORT SAVE 00440
ENTRY-SAVE 00444
SORT CORE SIZE 00448
NSTD-REELS 0044C
LITERAL POCL (HEX)
00628 (LIT+C) C0000001 001A5B58B C206D7C5

0C64C (LIT+24) C2C6C3D4 E4D3FCES COQ00000

DISPLAY LITERALS (BCD)

00€4C (LTL+3€) WCRK-RECORD!

PGT C)

CVERFLOW CELLS
VIRTUAL CELLS
PROCECURE NAME CELLS
GENERATED NAME CELLS
SUBETF ACDRESS CELLS
VNI CELLS

LITERALS

CISPLAY LITERALS

005E8

005E8
005E8
005F4
00608
00620
00620
00628
0064C

®

INTRNL NAME
DNM=1-148
DNM=1-178
DNM=1-199
DNM=1-216
DNM=1-246
DNM=1-267
DNM=1-287
DNM=1-306
DNM=1-321
DNM=1-339
DNM=1-357

DEFINITION

DS 0CL20
DS 2ccC

DS 0CL20
DS 20C
DS 0OCLS56
DS 1H

DS 26C
DS 1iC

DS 1H

D54C5B58 C2C3D3C6 FE2C55B58

Figqure 11. Examples of Compiler Output (Part 2 of 4)

®

USAGE
DTFEMT
GROUP
DISP
DTFMT
GROUP
D1sPp
GROUP
coMp
DIsSP
DIse
comp

Interpreting Output 69

REGISTER ASSIGNMENT

REG 6 BL =3
REG 7 BL =1 @
REG & BL =2
©
57 000658
0CCe58 58 FC C 004
00065C 05 1F
CCCE5E CCOl40
000€€1 04F5F 7404040
57 000668 96 40 D 048
60 0C0&6C 58 FC C 004
000670 05 1F
00C672 0CO0140
000675 C4FEFC4C4040
60 00067C 41 10 C 046
0goe8C 58 CC D 1C8
000684 18 40
000686 C5 FO
C00¢88 50 CC F 008
00068C 45 00 F 00C
000¢90 0ccccooo
00C694 O0A C2
000696 41 oC D 1C8
CCCE9A 58 FC C 008
00069E 05 EF
0006A0 58 10 D 1C38
CCCéA4 S6 1C 1 020
0006A8 50 20 D 1BC
0006AC 58 7C D 1BC
60 0C06B0 D2 01 6 000 C 040
000686 D2 01 6 01C C 040
64 000¢€BC
0CO06BC 58 FC C 004
0006CC C5 1F
000&6C2 ccOl4cC
0006C5 C4F6F4404040
64 000&6CC 48 30 C 042
0C0eDC 4A 3C 6 000
000604 4E 3C D 1DO
0CCeD8 D7 €5 D 10O D LDO
0006DE 94 OF D 1D6
0006E2 4F 30 D 1DO
CCOo6E6 4C 3C 6 000
O006EA 48 3C C 042
OCC6EE 4A 3C 6 01C
000€F2 4E 3C D 1DO
0006F6 D7 05 D 1D0 D 100

Figure 11.

70

Examples of Compiler Output (Part 3 of 4)

START

®

PN

ol

EQU
L
BALR
cc
bC
CI

L
BALR
bC
oC
LA

L

LR
BALR
ST
BAL
ccC
svec
LA

L
BALR
L

CI
ST

L
Mve
MveC
ECU

BALR
cc
DC
LH
AH
CcvD
XC
N1
cvs
STH
LH
AH
cvD
xc

®

*
15,004(0,12)
1,15

X1000140°

XY 04F5F7404040"
048(13),X'40"
15,004(0,12)
1,15

X*000140°"

X1 04F6F0404040"
1,046(0,12)
0,1C8(0,13)

4'0

15,0

0,008(0,15)
0,00C(0,15)
X'00000000*

2

0,1C8(0,13)
15,008(0,12)
14,15
1,1C8(0,13)
020(1),X'10*
2,1RC(0,13)
7,18C¢0,13)
000(2,6),040(12)
01C(2,6),040(12}
*

15,004(0,12)

1,15

X1000140"

X1 04F 6F 4404040
3,042(0412)
3,000(0,6)
3,1D00(0,13)
1D0(6,413),1D0(13)
1D6(13),X'OF"
3,100(0,13)
3,000(0,6)
3,042(0,12)
3,01C(0,6)
3,100(0,+13)
100(6,13),1D0(13)

®

V(ILBDDSPO)

SWT+0
V(ILBDDSPO)

LIT+6
DTF=1

DTF=1
V(ILBDIMLO)

DTF=1

BL =1
BL =1
DNM=1-306
DNM=1-357

V(ILBDDSPO)

LIT+2
DNM=1-306
TS=01
TS=01
TS=01+6
TS=01
DNM=1-306
LIT+2
DNM=1-357
7S=01
TS=01

LIT+0
LIT+0

TS=01

TS=01

®

DATA NAMES

FILE-1
RECCRD-1
FILE-2
RECCRD=-2
COUNT

ALPHA

NUMBR
DEPEND
WORK-RECORD
NAME-FIELD
RECORD-NQ
NC-0F-DEPENDENTS

PROCEDURE NAMES
STEP-2

STEP-¢
STEP-8

CARD ERROR MESSAGE

® ® ©.

64 ILAS0111-W
64 ILASO11I-W

DEFN

00017
00028
00018
00036
00040
00042
00043
00045
CCo46
00047
00049
00053

BEFN
00064

00076
00079

CROSS-REFERENCE DICTIONARY

REFERENCE

0006C CO06C CO068 0C073

00068

00073 00073 00076 00076 00079
0007¢

0006C 00064 00064 00064 00066
00064 CCO64

0006C CCOE4 00064 o0CC67

00066 00066

00068 00068 (0076 o0cCO78

000¢€4

00067 00067

00066 00066 00077 0CO77 00077

REFERENCE
0007C

00078
0007¢

HIGH ORDER TRUNCATION MIGHT OCCUR.
HIGH ORDER TRUNCATIJUN MIGHT OCCUR.

© lo
S

Figure 11. Examples of Compiler Output (Part 4 of 4)

00070

Q0077

Interpreting Output 71

72

Glossary. The glossary is listed
when the SYM option is specified.
The glossary contains information
about names in the COBOL source
program.

@and@ The internal-name
generated by the compiler.
This name is used in the
compiler object code listing
to represent the name used in
the source program. It is
repeated in column F for
readability.

A normalized level number.
This level number is
determined by the compiler as
follows: the first level
number of any hierarchy is
always 01, and increments for
other levels are always by
one. Only level numbers 03
through 49 are affected;
level numbers 66, 77, and 88,
and FD, SD, and RD indicators
are not changed.

C) The data-name that is used in
the source module.

Note: The following Report Writer
internally-generated data-names
can appear under the SOURCE NAME
column:
CTL.LVL Used to coordinate
control break
activities.
GRP.IND Used by coding for GROUP
INDICATE clause.
TER.COD Used by coding for
TERMINATE clause.
FRS.GEN Used by coding for
GENERATE clause.

Generated report record
associated with the file
on which the report is
to be printed.

-nnnn

RPT.RCD Build area for print

record.
CTL.CHR First or second position
of RPT.RCD. Used for
carriage control
character.
RPT.LIN Beginning of actual
information which will
be displayed. Second or
third position of
RPT.RCD.

®and(®

CODE- Used to hold code

CELL specified.

E.nnnn Name generated from
COLUMN clause in
02-level statement.

S.nnnn Used for elementary
level with SUM clause,
but not with data-name.

Ne.nnnn Used to save the total

number of lines used by
a report group when
relative line numbering
is specified.

For data—-names, these columns
contain information about the
address in the form of a base and
displacement. For file-names, the
column contains information about
the associated DTF, if any.

This column defines storage for
each data item. It is represented
in assembler-like terminology.
Table 3 refers to information in
this column.

Usage of the data-name. For FD
entries, the DTF type is
identified (e.g., DTFDA). For
group items containing a USAGE
clause, the usage type is printed.
For group items that do not
contain a USAGE clause, GROUP is
printed. For elementary items,
the information in the USAGE
clause is printed.

A letter under column:

R - Indicates that the data-name
redefines another data-name.

O - Indicates that an OCCURS
clause has been specified for
that data-name.

Q - Indicates that the data-name
is or contains the DEPENDING
ON object of the OCCURS
clause.

M - Indicates the record format.
The letters which, may appear
under column M are:

F

fixed-length records
- undefined records

U
V - variable-length records
S

spanned records

C

e

C

Note:

Under the definition column, N = size in bytes, except in group variable-length
where it is a variable cell number.

Table 3. Glossary Definition and Usage

{ 1 L)]

| Type | Definition | Usage]

L 1 1 . |
1

i Group Fixed-Length | DS O0CLN i GROUP]

| Alphabetic ! DS NC | DISP |

| Alphanumeric | DS NC DISP

| Alphanumeric Edited | DS NC AN-EDIT

| Numeric Edited | Ds NC NM-EDIT

| Index-Name | Ds 1H INDEX—-NM |

| Group Variable-Length | DS VLI=N GROUP |

| Sterling Report | DS NC RPT-ST |

| External Decimal | DS NC DISP-NM

| External Floating-Point | DS NC DISP-FP

| Internal Floating-Point | DS 1F | COMP-1

| | Ds 1p | COMP-2

| Binary | Ds 1H, 1F, OR 2F COMP

| Internal Decimal | DS NP COMP-3

| Sterling Non-Report | DS NC DISP-ST

| Index-Name | BLANK INDEX-NAME |

| File (FD) | BLANK DTF TYPE |

| condition (88) | BLANK | BLANK |

| Report Definition (RD) | BLANK | BLANK |

| Sort Definition (SD) | BLANK | BLANK |

b : A '.

I |

| |

L J

®

Global tables and literal pool:
Global tables are listed when the
LISTX option is specified, unless
SUPMAP is also specified and an
E-level errxor is encountered. A
global table contains easily
addressable information needed by the
object program for execution. For
example, in the Procedure Division
output coding (3), the address of the
first instruction under STEP-1 (OPEN
OUTPUT FILE-1) is found in the
PROCEDURE NAME CELLS portion of the
Program Global Table (PGT).

(®) The Task Global Table (TGT).
table is used to record and save
information needed during the
execution of the object program.
This information includes
switches, addresses, and work
areas.

The Literal Pool. This lists all

literals used in the program, with

duplications removed. These
literals include those specified
by the programmer (e.g., MOVE
"ABC" TO DATA-NAME) and those
generated by the compiler (e.g.,
to align decimal points in
arithmetic computations). The
literals are divided into two
groups:
by instructions (marked "LITERAL
POOL") and those that are
parameters to the display object

This

those that are referenced

time subroutine (marked "DISPLAY
LITERALS").

(© The Program Global Table (PGT).
This table contains literals and
the addresses of procedure-names
referenced by Procedure Division
instructions.

Register assignment: This lists the
register assigned to each base locator
in the object program.

Object code listing. The object code
listing is produced when the LISTX
option is specified, unless SUPMAP is
also specified and an E-level error is
encountered. The actual object code
listing contains:

(® The compiler-generated card
-number. This number identifies
the COBOL statement in the source
deck which contains the verb that
generates the object code found in
column C.

The relative location, in
hexadecimal notation, of the
object code instruction in the
module.

(© The actual object code instruction
in hexadecimal notation.

Interpreting Output 73

The procedure-name number. A

Cross-reference Dictionary:

The cross

number is assigned only to
procedure-names referred to in

reference dictionary is produced when
the XREF option is specified.

.

It

other Procedure Division consists of two parts: N~
statements.,

C) The XREF dictionary for data-names
consists of data-names followed by
the generated card number of the

C) I'he object code instruction in the statement which defines each
form that closely resembles data-name, and the generated card
assembler language. (Displacements number of statements where each
are in hexadecimal notation.) data-name is referenced.

The XREF dictionary for
procedure-names consists of the

C) Compiler-generated information procedure-names followed by the
about the operands of the generated card number of the
generated instruction. This statement where each
includes names and relative proced