
Systems Reference Library

IBM System/360
Disk and Tape Operating Systems
COBOL Programmer's Guide

Program Number 360N-CB-4S2
360M-CB~402

File Number S360-24
Form C24-5025-4

This publication describes how to compilf, linkage
edit, and execute a Disk and Tape COBOL program. The
text also describes the output from each of these
steps. In addition, it explains options of the compil­
er and many available features of the operating system.

DOS
TOS

PREFACE

The purpose of this publication is to enable programmers to compile, linkage edit, and
execute COBOL programs under control of IBH System/3GO Disk and Tape Operating Systems.
The Disk and Tape COBOL language is described in the publication IBM sy stem,360 Disk and
Ta e 0 eratin S stems: COBOL Lan ua e S ecifications, Form C24-3433, Wh1C 1S a
corequ1s1te to t 1S P 1cat10n.

Programmers unfamiliar with the Disk and Tape Operating SystemR should read the
Introduction and Sections I, II, and III for detailed information about preparing COBOL
programs and deck structures for processing by the system.

Programmers who are familiar with the Disk and Tape Operating Systems and wish to
know how to run COBOL programs should read Section I. This section contains the control
card parameters and specific options needed to prepare deck structures for processing.

Sections IV, V, and VI contain information that is intended to aid programmers in
writing efficient programs and in debugging programs that do not execute properly. The
remaining sections discuss optional features of the Disk and Tape Operating Systems that
are available to COBOL programmers.

This revision provides a new section about using the direct-access methods of the
Disk Operating System. It also provides information about the new control cards and a
discussion of variable length records.

Wider and more detailed discussions of the Disl: and Tape Operating System are given
in the following publications:

Im1 system£360 Disk and Tape Operating System: COBOL Language Specifications,
Form c24-3 33.

Publications closely related to this one are:

stem Control and S stem Service Pro rams,

IBH Sestem~360 Ta;ee O~eratin~ S~stem: S~stem Control and Sxstem Service Programs,
Form 24-5 34.

IBH S~stemL360 Disk O;eeratin~ S~stem: SUEervisor and In12ut/Out12ut Hacros, Form

IBM SlstemL360 Ta;ee °12eratin~ Slstem: SU12ervisor and In;eut/Out12ut HacroR, Form

IBM S~stem/360 Disk °12erating S~stem: Data Hanasrement Conce12ts, Form C24-3429.

IBU S~stemL360 TaI2e °12eratin2 S~stem: Data r1ana~ement Conce~ts, Form C2 Il-3430.

IBl1 Slstem/3GO Disk °12eratin~ Sxstem : Sxstem Generation and Haintenance, Form

IBH S~stemL360 TaI2e 0I2eratin~ S~stem: S~stem Generation and Haintenance, Form

IBM Slstem/360 Principles of Operation, Form A24-682l.

The titles and abstracts of related publications are listed in the publication
IBM SystemL360 BibliograI2hy, Form A22-6822.

Fifth Edition

This is a major revision of, and makes obsolete, C2ij-S02S-3 and Technical
Newsletters N24-S264 and N28-0221. A new section has been added to explain the
use of indexed sequential and direct file organizations for DOS. A new Appendix
E has been added to describe the track formats of the 2311, 2314, and the 2321.
Other changes to the text are indicated by a vertical line to the left of the
change 1 revised illustrations are denoted by the symbol • to the left of the
caption.

Significant changes or additions ~o the specifications contained in this
publication are continually being made. When using this publication in connection
with the operation of IBM equipment, check the latest SRL Newsletter for revisions
or contact the local IBM branch office.

Requests for copies of IB~1 publications should be made to your IBM representative
or to the IB~1 branch office serving your locality.

Address comments concerning the contents of this publication to IBM Corporation,
Publications Department, 1271 Avenue of the Americas, New York, New York 10020.

o International Business Machines Corporation 1966.

C24-S037.

C24-S03S.

C24-5033.

C24-50l5.

INTRODUCTION • • • • •
Data Organization • • • •
Executing a COBOL Program •

Compilation • • •
Linkage Editing •
Execution • • • •

Libraries • • • • •
Core Image Library
Source Statement Library
Relocatable Library • • •

Multiprogramming • • .. • •

. . ..

SECTION I: PREPARING COBOL PROGRAMS FOR PROCESSING
Input/Output Device Assignment
Job Control Statements •••• • •

Sequence of Job Control statements
Format of Job Control Statements
Continuation of Job Control Statement

The ASSGN Statement • • • • • •
The EXEC Statement
The JOB Statement •
LBLTYP Statement
VOL Statement • • •
TPLAB Statement • •
OPTION Statement
PAUSE Statement • •• • • •
OLAB Statement (DOS only> • • ,. ••
XTENT Statement (DOS Only> • • • • • • • •
The RESET Statement • • • • • • • ..
The End-of-Oata-File Statement
The End-of-Job Statement
The Comments Statement
CBL Statement (COBOL Option control Card> •
OLBL Statement • • • •
TLBL Statement • • • •
EXTENT -- DASO Extent Information w

The Linkage Editor • • • • •
Linkage Editor Control Statements

The PHASE Statement • •
The INCLUDE Statement •

The Autolink Feature • • • • • • • ..
Librarian Functions • • • • • • • •

Cataloging Program Phases--Core Image Library • '.
Cataloging Object Modules--relocatable Library
Cataloging Books--source Statement Library
Cataloging Books--User Private Library

Checkpointing a Program • .. ~.. • • _ • •

TABLE OF CONTENTS

9
9

• • • • • • • 10
• 10

• • • • Ie I. • 10
• 10

• • 10
• 11

• • 11
• 11
• 11

• • • • • 13
• 13
• 14
• 15
• 16

• • • • • 16
• 16
• 18
• 18
• 18

• • • 19
• 19

• • • • • 19
• • • .. • 21

• • • • • • 22
• • • '. . . 22

• • • • • .. _ • • 24
• • • • • 24

24
• • • 24

• • 25
• 26
• 26
• 27

• • 29
• 29

• • • • • • • 30
30

• • 30
• 31
• 32

• • 32
• • • • • 33

• • • 34
• • 35

SECTION II: DECK STRUCTURES FOR PROCESSING COBOL PROGRAMS IN A TAPE
OPERATING SYSTEM • • • • • • • • .. •• • '. • • .. • '. • 37
Assumed Tape Resident System Configuration • • • • • 37
Examples of Processing Using Tape Configuration •••• • 39

Example 1--Compile and Punch • • • ,. • • • • • • • .. • • • 39
Example 2--Cataloging an Object Module in Relocatable Library • 39
Example 3--COMPILE, LINKAGE EDIT" and EXECUTE • • • • .. • • • '. • • 40
Example 4--Executing a Program • '. • .. ,. • '. • • • • '. • • • • • • 41
Example 5--Cataloging Source Modules to Source Statement Library • 42
Example 6--COMPILE (Using Source statement Library>, LINKAGE
EDIT, and EXECUTE • • • • • • • .. • '. ,. .. • • • • • • '. ,. • '. • '. • 43

SECTION III: DECK STRUCTURES FOR PROCESSING COBOL PROGRAMS IN A DISK
OPERATING SYSTEM • • • • • • • •.• • • • • • • • '. • 46

Assumed Disk Resident System Configuration • 47
Examples of Processing Using Disk Configuration • • • • • • 48
Example 1--COMPILE and PUNCH • • • • '. • • • • • • • • • • 49
Example 2--Cataloging an Object Module in Relocatable Library • • • 49
Example 3--COMPILE, LINKAGE EDIT, and EXECUTE • • • • • • • • • 49
Example 4--Executing a Program • • • • • • • • • • • • • • • • 50
Example 5--Cataloging Source Modules in Source Statement Library • 50
Example 6--COMPILE (Using Source statement Library), LINKAGE
EDIT, and EXECUTE • • • • • • • • • • • • 51

SECTION IV: INTERPRETING OUTPUT
Compiler output • 0 • •

Source Listing (LIST) .. • .. •
Data Map (SYM)
Procedure mAp (LISTX) .. • •
Diagnostic Messages (ERRS)

Working with Diagnostic Messages
How Diagnostic Messages Are Determined
Examples of How Diagnostic Messages Are

Linkage Editor Output • • .. • • • _
Execution Time Messages • • .. 0

Program PHASE Dumps • • .. • • • •
How to Use a Dump • •

Object Storage Layout

SECTION V: THE DEBUGGING LANGUAGE •
TRACE Statement •
EXHIBIT Statement
ON Statement • ~ • 0

The Debug Packet • .. • •
Job Control setup For Using Debug Packets

• 54
• 54

• • 54
• • • • • • • 55

• 57
• • • .. • 58

_ _ • • • .. • _ • 59
• • • • 59

Generated • • • • .. • 60
• • '. • • 60

• • • • '. • 60
• • .. • • 61

• • 62
62

• 63
.. 63
• 63
.. 64
• 64
• 65

SECTION VI: PROGRAMMING CONSIDERATIONS • • • • • a ••• 67
Conserving Storage • 67

Decimal-Point Alignment ~ • • • • • • • • .. 0 .. 68
Unequal-Length Fields • 0 • • • .. '. • • • .. 68
Mixed-Data Formats • • • • • • • .. • 69

DISPLAY to COMPUTATIONAL-3 .. • • _ • 69
DISPLAY to COMPUTATIONAL .. 70
COMPUTATIONAL-3 to COMPUTATIONAL. w .. • • .. 0 • 70
COMPUTATIONAL to COMPUTATIONAL-3 .. • • • • 70
COMPUTATIONAL to DISPLAY • • • • • • • • • • .. 70
COMPUTATIONAL-3 to DISPLAY • • • • .. 71
DISPLAY to DISPLAY • • • • • • • .. • 71
Conversion of COMPUTATIONAL-lor COMPUTATIONAL-2 Data • • • 71

Sign Control • • .. • • .. • a .. 0 • • _ • • • • • • .. • • • • 71
Conditional Statements • • .. • .. • .. _ • • • • • • • .. • • • 72
Other Considerations Using DISPLAY and COMPUTATIONAL Fields '. • 73

DISPLAY (Non Numeric and External Decimal) Fields • • .. • • • 73
COMPUTATIONAL-3 (Internal Decimal) Fields • • .. 73
COMPUTATIONAL Field • .. • • • • • • • .. 73
COMPUTATIONAL-1 and COMPUTATIONAL-2 Fields • 73

Data Forms • • 0 • • • • • • 73
Elementary Items ... • 0 • • • 74
Group Item 74

Numeric Data Format Usage • 75
Machine Representation of Data Items • • .. • .. 76

Examples Showing Effect of Data Declarations • • • • 78
MOVE Statement • • • • • • • • • .. 78

COMPUTATIONAL-3 Fields • • • .. • 78
DISPLAY Fields ••• ft 79

Move DISPLAY to COMPUTATIONAL-3 • • • • .. • .. • .. 79
Move COMPUTATIONAL-3 to REPORT .. • • • • 79
Relationals • • .. • .. • • • • • • 79
Arithmetic Computations • • • • • 80

General Techniques for Coding • • • • 0 • • • • _ • • 80
Intermediate Results In Complex Expressions • • • 80

Alternate Method of Solution (Unexpected Intermediate Results) • 81

Arithmetic suggestions • • • • • • • • 81
Ari thmetic Fields •• '. • • • • 81
Exponentiation • • • • • • • .. • • • 81

Comparisons • • • • • 83
Redundant Coding • • • • • • • 83
Editing • • • • • • .. • • • • • 83
Opening Files • • .. • .. • • • • • • 84
ACCEPT Verb • .. • • • .. '. • 84
Paragraph Names .. • • • .. • 84
Trailing Characters • • • 85
Redefinition • • .. • • • .. '. • 85

Alignment and Slack Bytes • • • 87
Variable Length Records • .. • .. • • • • • 89

Blocking Variable Length Records .. • • • • 90
Processing Buffers • • .. • • • .. • • • 91
Variable Record, Alignment Containing OCCURS ••• DEPENDING ON Clause. 91
MultiVolume Input File with Standard Labels, Alternate Tape Drive
Specified • • • .. • • • .. • .. • • • • • • • • • • • 92

Input/Output Error Processing considerations .. • • .. • • 92
Sequential Tape File Organization • .. • • • • • • .. • • 92
Sequential Disk File Organization • • • .. • • • • • 93

SECTION VII: SUBPROGRAMS AND OVERLAY STRUCTURES
Linkage Editor • '. • • • •• • •

Calling a Subprogram • .. • • • ..
Accessing Call Parameters • .. • • • •
Restrictions on the Using Statement

Overlay_structures • '. • .. • '. • •
Linkage Editing without Overlay

Overlay Processing • • • •
Linkage Editing with Overlay

Passing Parameters to Assembler Language Routine

• 95
• 95
• 95
• 98
• 98
• 98
• 99
.100
.101
.106

SECTION VIII: PROCESSING COBOL FILES ON DIRECT ACCESS DEVICES •• 110
Indexed Sequential •• • .. • • • '. .111

Prime Areas and Overflow Areas • • .. • • • .. • .111
Index Areas. .. • • • • • .. • • • • • • • • .112

Cobol Statements Used to Specify an Indexed Sequential File •• 115
Creating an Indexed Sequential File ••• 115
OPEN Statement • • • .. • •••• 115
WRITE Statement • • • • .. • • .. '. • '. .116
CLOSE Statement. .. • '. • • • .116
Sequential Retrieval of an Indexed Sequential File .116
Updating Sequentially. • • • • • • • • •••• 117
Random Retrieval of an Indexed Sequential File •• 118
Updating Randomly • • • • • • • .. • • .. • .. • .118
Adding Randomly • • • .. • .. • .. • • • • .119

Error Recovery Techniques for Indexed Sequential Files .119
INVALID KEY Errors '. ," • • • • • .. • • • • • • • • • .. .121
USE AFTER STANDARD ERROR Routines • • '. • .. • • •121

Modifying the DTF Table for Indexed Sequential Organization Files .123
Example of COBOL Main Program and COBOL Subprogram Modifying DTF 125

Coding Examples Using Indexed sequential Files 125
Creating an Indexed Sequential File. • .126
Random Retrieval .128
Sequential Retrieval • • • .. • .130

Direct Organization .. co • .. • •132
Specifying Keys. • .. • • •• 132
A Randomizing Technique. •• • .. • .. • • .134
Randomizing • • • • • .135

Randomizing for the 2311 Disk Pack ... 135
Randomizing for the 2321 Data Cell ••••• 136

COBOL Statements Used to Specify Direct Organization Files .138
Creating a Direct Organization File 138
Sequential Retrieval of a Direct Organization File ••• 139
Random Retrieval, Updating and Adding to a Direct File ... 139
Random Retrieval • • • • .140
Updating Randomly • • •• • •• • .. • .. •• • .. • • .. • • .140

Adding Randomly • • • • • • • • • • • •
Multiple Entry Points • • • • • • • • • •
Error Recovery Techniques for Direct Files

INVALID KEY • • • • • • • • • • • • • •
USE AFTER STANDARD ERR0R • • • • .. • ..

Modifying The Dtf Table for Direct Files
Coding Examples For Direct Organization Files

Creating the File • • • • • • • • • • • • •
Random Retrieval -- Direct Organization .. •
sequential Retrieval -- Direct Organization • •

'. .140
.141
.143
.. 144
.144
.145
.146

• '. • .. .146
• •••• 150

• .152

APPENDIX A: CONSIDERATIONS WHEN USING ASSEMBLER WITH COBOL FOR
OVERLAYS • • • • • • • • • • .• • • .. • .. •
Assembler Routine for Effecting Overlays
Functions of Overlay Routine Instructions ..
Assembler Language Subprograms

Called and Calling Programs •
Linkage Conventions •

Register Use ••
Argument List • •
Save Area • • • •

Lowest Level Subprogram •
In-Line Parameter List
Data Format of Arguments

. ...

.154

.154
• .155

.155

.155
• •••• 156

• .156
• .157

• • • '. .157
• •• 160

.160

.160

APPENDIX B: REFERENCE FORMATS FOR DISK AND TAPE OPERATING SYSTEMS
COBOL • • • • .. • • • • • • .162

APPENDIX C: STANDARD TAPE FILE LABELS 0 .171

APPENDIX D: STANDARD DASD FILE LABELS -- FORMAT 1 •

APPENDIX E: TRACK FORMAT FOR THE 2311, 2314, AND 2321 •

APPENDIX F: EXAMPLES OF COBOL PROGRAMS

APPENDIX G: SUBROUTINES USED BY COBOL •

APPENDIX H: DIAGNOSTIC MESSAGES •
Compiler Diagnostic Messages
Execution Time Messages • •
Debug Packet Error Messages • •

.172

.174

.176

.178

.186

.186

.213

.. 214

ILLUSTRATIONS

FIGURES

Figure 1. Symbolic Names, Their Function, and Permissable Device
Type • • • • • • ~ ~ ~ • ~ • • • • • • • • ~ ~ • • • _ .. • • .. • • • 14
Figure 2. Possible Specifications for X'ss' in the ASSGN Statement 17
Figure 3. Input/output units Used by COBOL Program in a Tape
System • • • • • • • • • • • • • ~ • • • • • • • .. • 38
Figure 4. Input/Output Units Used by COBOL Program in a Disk
System •• • • • • • • • • • • • • • • .. ~ • • 46
Figure 5. Example of a COBOL Source Listing • • • • 56
Figure 6. Example of a Data Map • • • • • • • • .. • • • 56
Figure 7. Example of a Procedure Map for a COBOL Program •• 57
Figure 8. Example of Source Module Diagnostics 58
Figure 9. Example of a Debug Packet •• ... • ~ • • • • 66
Figure 10,. Number of Bytes Required for Each Class of Elementary
Item • • • • • • ~ • • • ~ • • • .. • .. • • • • • • • • • • • 74
Figure 11. Characteristics of Numeric Data •• • • • ~ .. • • 76
Figure 12. Example of a Calling Program (Part 1 of 3).
Figure 12. Example of a Calling Program (Part 2 of 3).
Figure 13. Storage Layout for Nonoverlay ••••
Figure 14. Example of Data. Flow Logic in a Call Structure

• 96
• • .. • • • 96

• • .. • • 99
• • .. • .100
•• .101 Figure 15. Storage Layout for Overlay Processing

Figure 16. Flow Diagram of Overlay Logic '. • .. • ..
Figure 17. Indexed Sequential File Without Overflow
Figure 18. Indexed Sequential File With Overflow

• 105

Figure 19. Called and Calling Programs • • • '.
Figure 20. Linkage Registers
Figure 21. Save Area Layout and Word Contents

• .113
• •114

.156
157

Figure 22. Sample Linkage Routines Used with a Calling Subprogram
Figure 23. Sample Linkage Routines Used with a Lowest Level

.158

.159

Subprogram • • • • • • • • • • .. • • • •
Figure 24. Sample In-line Parameter List
Figure 26. Example of a Ca~lling Program (Part
Figure 26,. Example of a Calling Program (Part
Figure 27. Example of a Subprogram (Part 1 of
Figure 27. Example of a Subprogram (Part 2 of

TABLES

Table 1. Error Functions · .. . · .. '. . '. Table 2. Error Indicators · . . ·
Table 3 .• Contents of Skeleton DTF Table .
Table 4. Linkage Editor Diagnostic output .
Table 5. Error Functions · . .. · .. ' . .

1 of 2) •
2 of 2) •
2)
2)

. .

. .
..

..
Table 6. Skeleton DTF Table for Direct Organization File

..
·
..
·

.160
• .161

.176

.176

.177
• .. • • .177

.120

· .122

· .. '. .. .124

· .142
.144

· .145

INTRODUCTION

A Disk and Tape Operating Sys~ems COBOL program is processed by the IBM
System/360 Disk and Tape Operating Systems. The operating system con­
sists of a number of processinq programs and a control proqram. The
processing programs include the COBOL compiler, service programs, and
user-written programs. The control program supervises the execution of
the processing programs; controls the location, storage, and retrieval
of data; and schedules jobs for continuous processing.

A request to the operating system for facilities and scheduling of
program execution is called a job. For example, a job could request
execution of the COBOL compiler to compile a program. A job consists of
one or more job steps, each of which specifies execution of a program.
A programmer makes these requests to the operating system by use of job
control statements that may be punched into cards.

Each job is preceded by a JOB statement that identifies the job.
Each job step is preceded by an EXEC statement that names the program to
be executed and calls for execution. Included in each job step and pre­
ceding the EXEC statement are other job control statements (such as
ASSGN and XTENT) that describe data or request allocation of input/
output devices.

The data processed by execution of any processing program must be in
the form of a data file. A data file is a named, organized collection
of one or more records that are logically related. Information in a
data file mayor may not be restricted to a specific type, purpose" or
storage medium. A data file may be a source program, a library of sub­
routines, or a file of data records that is to be processed by a COBOL
program.

A data file resides in one or more volumes. A volume is a unit of
external storage that is accessible to an input/output device. For
example, a volume may be a reel of tape or a disk pack.

In the Disk and Tape Operating Systems, input/output devices are
given standard symbolic names. A programmer can refer to an input/
output device in his program by using the appropriate symbolic name, and
the program is not dependent on an actual device address. The actual
device address is supplied by a job control statement when the program
is executed or at system g:eneration time.

DATA ORGANIZATION

A data file used by a COBOL program can have one of three types of
organization: sequential, indexed sequential, or direct. The first
type (sequential) may be on any input/output device. All other types
must be on direct-access devices.

1. A sequential data file is one in which records are organized solely
on the basis of their successive physical positions, as on tape.

2. An indexed sequential: data file is one in which records are
arranged in logical sequence (according to a key that is part of
every record) on the tracks of a direct-access device.. A separate
index or set of indexes maintained by the system indicates the
location of each record. This permits random, as well as sequen­
tial, access to any record.

Introduction 9

3. A direct data file in COBOL is one in which records are referred to
by use of keys. An actual key specifies the actual track address.
A symbolic key identifies the record on the track.

EXECUTI~G A COBOL PROGRAM

Three basic operations are performed to execute a COBOL program: com­
pilation, linkage editing, and actual execution.

COMPILATION

Compilation is the process of translating a COBOL source program into a
series of instructions comprehensible to the computer, i.e., machine
language. In operating system terminology, the input to the compiler,
the source program, is called the source module. The output from the
compiler, the compiled source program, is called an object module.

LINKAGE EDITING

The linkage editor is a service program that prepares object modules for
execution. It can also be used to combine two or more separately com­
piled object modules into a format suitable for execution as a single
program. During the process of linkage editing. external references
between different modules are resolved. The executable output of the
linkage editor is called a program phase. The output may consist of one
or more program phases.

EXECUTION

Actual execution is under supervision of the control program, which
obtains a program phase from the core image library, loads it into main
storage, and initiates execution of the machine language instructions
contained in the program phase.

LIBRARIES

Another service program in -the Disk and Tape Operating Systems is called
the librarian. The librarian consists of a group of maintenance rou­
tines that service the three system libraries. The maintenance routines
provide such operations as adding, deleting, or copying portions of a
library,

The three system libraries are: the core image library, the source
statement library, and the relocatable library.

10 Disk and Tape Operating systems COBOL Programmer's Guide

CORE IMAGE LIBRARY

All permanent programs in the Disk and Tape Operating system must be
added to the core image library. The core image libr~ry is required,
and the programs are stored in the library in the form of program
phases. Unless the program phase has been linkage edited in the pre­
vious job step, the core image library is searched at execution time to
obtain the program phase named in the EXEC statement.

SOURCE STATEMENT LIBRARY

The source statement library is used to store portions of COBOL source
programs that are to be copied into a source program when the COpy or
INCLUDE clauses of the COBOL language are used. The source statement
library is not required. However, use of the source statement library
can reduce the amount of coding needed for each individual program" that
is, if standard file descriptions are added to the source statement
library, they need not be coded again.

RELOCATABLE LIBRARY

The relocatable library is used to store object modules that can be sub­
sequently linkage edited with other object modules. Each object module
may also be a complete program that can be linkage edited and then
executed. The relocatable library contains the COBOL library subrou­
tines and the input/output modules used by the COBOL compiler.

MULTIPROGRAMMING

The DOS provides the capability of simultaneously processing two or
three batched job streams for systems with at least 32K of main storage.
This support is referred to as fixed partitioned multiprogramming
because each job stream i~; assigned a different area or partition of
main storage. The number and size of the partitions are allocated dur­
ing system generation and may be altered by the operator.

There are two types of problem programs that can be run in a multi­
programming system: batch job processing and SPI (Single Program
Initiator). Batched job processing is initiated by job control from the
batched-job input stream. This capability is extended to all three pro­
gramming partitions (BG, F1, and F2) if sufficient storage and separate
input/output devices are available. The batched-job foreground option
is selected when the system is generated by specifying MPS=BJF in the
supervisor macro instructions. Programs run under SPI do not execute
from a stack, but are initiated by the operator from the printer­
keyboard. When an SPI program completes processing, the operator must
explicitly initiate the next program.

The linkage editor determines whether the program to be executed is
either a background or a foreground program. Both types of programs are
initiated and terminated asynchronously of the other. Neither is aware
of the other's existence.

Introduction 11

COBOL source modules must be compiled as background programs. COBOL
program phases can be executed as either background or foreground
programs.

In a multiprogramming environment, control always passes to the pro­
gram with the highest priority. Priority is assigned according to
classification of programs as follows:

l~ Supervisor

2. Operator communication routine

3. Foreground-one program

4. Foreground-two program

5. Background program

The background program must be a minimum of 10K. The foreground pro­
gram areas must be in increments of 2K. The maximum size of a fore­
ground program area is 510K.

12 Disk and Tape Operating Systems COBOL Programmer's Guide

SECTION I: PREPARING COBOL PROGRAMS FOR PROCESSING

This section provides information about preparing COBOL source programs
for compilation, linkage editing, and execution. Included are discus­
sions of frequently used job control statements, linkage editor control
statements, and librarian control statements. Some individual examples
are given, but Sections II and III should be scrutinized for complete
examples of deck setups.

A complete list of job control, linkage editor, and librarian control
statements and other options can be found in the publications IB~
System/360 Disk Operating System: System Control and System service
Programs and IBM System/360 Tape Operating System: System Control and
System Service Programs~

INPUT/OUTPUT DEVICE ASSIGNMENT

The input/output devices used for compilation, linkage editing, and
execution are referred to by a standard set of symbolic names. These
symbolic names are used in COBOL programs and i~ job control statements
instead of actual physical device addresses. This provides several
advantages for the programmer. For example, a programmer uses the
ASSIGN TO clause to assign a file to the appropriate symbolic name.
Such a program is not dependent on the physical device address and, as
such, does not have to be recompiled unless the device type changes.
The symbolic names and their usage are shown in Figure 1.

The symbolic names are assigned to physical devices at system genera­
tion time, by the operator, or by means of the job control ASSGN
statement.

If a programmer wishes -to use the assignments made at system genera­
tion time, he need not include any ASSGN statements in his job unless he
is using his own data files in the COBOL program.

section I: Preparing COBOL Programs for Processing 13

r----------T---T------------------------,
I SYMBOLIC I I I
I NAME I FUNCTION IPERMISSABLE DEVICE TYPES I
~----------+---t------------------------~
I SYSRDR I Input unit for control statements I Card reader I
I I IMagnetic tape unit I
I I I Disk drive I
~----------+---t------------------------i
ISYSIPT IInput unit for programs ICard reader I
I I IMagnetic tape unit I
I I I Disk drive I
~----------+---t------------------------~
ISYSPCH IMain unit for punched output ICard punch I
I I IMagnetic tape I
I I IDisk drive I
~-,---------+---+------------------------i
ISYSLST IMain unit for printed output I Printer I
I I IMagnetic tape I
I I IDisk drive I
~----------+---+------------------------~
ISYSLOG IOperator messages and to log job control I Printer-keyboard I
I I statements I Printer I
~----------+---t------------------------~
ISYSLNK IInput to the linkage editor IDisk extent I
I I IMagnetic tape unit I
~----------+---t------------------------~
ISYSRES IContains the operating system, the core image ITape unit or I
I Ilibrary, relocatable library, and source statement IArea of a disk drive I
I I library I I
~----------+---+------------------------i
I SYSSLB I The private source statement library IMagnetic tape unit I
I I IDisk drive I
~----------+---t------------------------i
ISYSRLB IPrivate relocatable library IMagnetic tape unit I
I I IDisk drive I
~----------+---+------------------------i
ISYSIN IMust be used when SYSRDR and SYSIPT are assigned IDisk I
I Ito the same disk extent. May be used when they I Tape I
I lare assigned to the same card reader or magnetic ICard reader I
I Itape. This name can only be specified in a job I I
I Icontrol statement. COBOL SELECT statement must I I
I luse the other names. I I
~----------+---f------------------------i
ISYSOUT IThis name must be used when SYSPCH and SYSLST are I Tape I
I lassigned to the same magnetic tape unit. It IDisk I
I Imust be assigned by the operator ASSGN command. I Punch I
~-,---------+---+------------------------i
ISYSOOO IThese names are available to the programmer as IAny unit I
Ito Iwork files or for storing data files. These names I I
ISYS222 lare called programmer logical units as opposed to I I
I I the remaining names which are always referred to as I I
I Isystem logical units. I I L __________ ~ _____________________ • ______________________________ ~ ________________________ J

• Figure 1. Symbolic Names, Their Function, and Permissable Device Type

JOB CONTROL STATEMENTS

Job control statements are read from the device identified as SYSRDR.
Not all job control statements are needed by COBOL. Those required are
JOB, EXEC, /*, and /&. If disk labels are used, the VOL, XTENT" and
DLAB statements are required. If tape labels are used, the VOL and
TPLAB statements are required. All other statements are optional.

14 Disk and Tape Operating Systems COBOL Programmer's Guide

statements most likely to be used by the COBOL user are:

Operation
JOB

EXEC

ASSGN

LBLTYP

VOL

DLAB (Disk only)

DLBL

XTENT (Disk only)

EXTENT

TPLAB

TLBL

OP'1'ION

Meaning
Job name

Execute program

Input/output assignments

Reserve storage for label
information

Volume information

Disk file label information

Disk file label information

Disk file extent

Disk file extent

Tape file label information

Tape file label information

Option

PAUSE Pause (for message to operator)

/* End of data file

/& End of job

* Comment

SEQUENCE OF JOB CONTROL STATEMENTS

The job control statements for a specific job always begin with a JOB
statement and end with a /& (end-of-job) statement. A specific job con­
sists of one or more job steps. Each job step is initiated by an EXEC
statement. Preceding the EXEC statement are any job control statements
necessary to prepare for the execution of the specific job step. The
only limitation on the sequence of statements preceding the EXEC state­
ment is that which is discussed here for the label information state­
ments. The following statements can precede the EXEC statement for a
job step and will be frequently used by COBOL programmers.

ASSGN
LBLTYP
VOL

DLAB
XTENT
TPLAB
DLBL
EXTENT
TLBL
OPTION
PAUSE

The label statements must be in the order:

VOL VOL
TPLAB or DLAB

XTENT (one for each area or
or TLBL

DLBL
EXTENT (one for each area or

file in volume)

file in a volume)

and must immediately precede the EXEC statement to which they apply.

Section I: Preparing COBOL Programs for Processing 15

FORMAT OF JOB CONTROL STATEMENTS

All job control statements are free form, except for a few restrictive
rules.

The general format of the job control statements is, as follows:

1. Name. Two slashes (//) identify the statement as a control state­
ment. They must be in columns 1 and 2. The second slash must be
immediately followed by at least one blank. Exceptions to these
rules are:

a. The end-of-job statement contains /& in columns 1 and 2.
b. The end-of-file statement contains /* in columns 1 and 2.
c. The comment statement contains * in column 1 and a blank in

column 2.

2. Operation. This field describes the type of control statement. It
can be up to eight characters long. At least one blank follows its
last character,

3. Operand. This field may be blank or may contain one or more
entries separated by commas. The last term must be followed by a
blank, unless its last character is in column 71.

4. Comments. Comments are permitted anywhere after the trailing blank
of the operand field.

CONTINUATION OF JOB CONTROL STATEMENT

Information starts in column 1 and cannot extend past column 71. The
exceptions to this are file-label statements (TPLAB and DLAB). Informa­
tion for file-label statements can be specified on more than one card,
in which case a continuation statement is required. Any non-blank
character present in column 72 specifies that information is contained
in the card image that follows. Columns 1 through 15 of the continua­
tion statement are ignored. Begin continuation statement information in
column 16.

The ASSGN statement is used to assign a logical device address to a
physical device. The format of the ASSGN statement is as follows:

// ASSGN SYSxxx,device-address

SYSxx~ is one of the logical devices listed in Figure 1 (with the excep­
tion of SYSOUT, which cannot be assigned by means of ASSGN state­
ments). The system permits programmer logical units in the range
from SYSOOO to SYS222. The number of units actual~y permitted in
a specific installation is defined at system generation time and,
normally, is less than 223. Units SYSOOO through SYS009 are the
minimum configuration provided by the system.

16 Disk and Tape Operating Systems COBOL Programmer's Guide

Devi~~-a~§. permits three different formats:

X'cuu'

UA

IGN

where c is the channel number and uu the unit number in
hexadecimal notation. The values of cuu are determined
by each installation.

Unassign. The job will be canceled if a file attached
to this logical unit is referred to by one of the input/
output statements OPEN, CLOSE, READ, wRITE, or REWRITE.

Ignore... References to this logical unit are ignored.
(This does not apply to SYSRDR and SYSIPT.) This format
may be used in program debugging to ignore files.

X'ss~ is the device specification. It is used for specifying mode set­
tings for 7-track and dual-density 9-track tapes. If X'ss' is not
specified, the system assumes X'90' for 7-track tapes and X'CO'
for 9-track tapes. The possible specifications for X'ss' are
shown in Figure 2.

r-------T-----------T------------T----------------T--------------------,
I I Bytes I I I I
I I per I I Translate I Convert I
I ss I inch I Parity I Feature I Feature I
~-------+-----------+------------+----------------+--------------------~

10 200 odd off on I
20 200 even off off I
28 200 even on off I
30 200 odd off off I
38 200 odd on off I
50 556 odd off on I
60 556 even off off I
68 556 even on off I
70 556 odd off off I
78 556 odd on off I
90 800 odd off on t
AO 800 even off off I
A8 800 even on off I
BO 800 odd off off I
B8 800 odd on off I
co 800 single-density 9-track I
co 1600 dual-density 9-track I
co 1600 single-density 9-track I
C8 800 dual-density 9-track I _______ ~ ___________ ~ _____________________________ ~ ____________________ J

• Figure 2. possible specifications for X'ss' in the ASSGN Statement

ALT indicates an alternate magnetic tape unit that is used when the
capacity of the original assignment is reached. The characteristics of
the alternate unit must be the same as those of the original unit. Mul­
tiple alternates may be assigned to a logical unit.

Note~ All device assignments made with ASSGN statements are reset
between jobs to the configuration specified at system generation time
plus any modifications that may have been made by the operator (see the
section liThe JOB statemeni").

When preparing ASSGN statements for a compilation job step, the pro­
grammer uses the system logical units (SYSIPT, etc.) to refer to input/
output devices used in the system configuration. When preparing the
ASSGN statement for execution time job steps, the programmer uses the
programmer logical units {SYSOOO through SYS222) to assign a symbolic
unit to a specified physical device. For example,

Section I: Preparing COBOL Programs for Processing 17

// ASSGN SYS004,X'OOC'

This example could be used to assign the symbolic unit SYS004 to a
card reader at address X'OOC'. The first digit specifies the multi­
plexor channel and the Oc specifies the unit number.

To specify this file in a COBOL program, the programmer writes

SELECT filename ASSIGN TO 'SYS004'

Note that only the programmer logical units (SYSOOO through SYS222) can
be used in a COBOL program.

The EXEC Statement

The execution of a job step is initiated by the following job control
statement:

// EXEC name

Name is the name of the first phase of the program to be fetched for
execution from the core-image library. Therefore, execution of a
COBOL compilation would be initiated by the statement

// EXEC COBOL

The name must be omitted if a program that was processed by the
linkage editor in the previous job step of the same job is to be
executed from SYSLNK.

The JOB Statement

Each job begins with the following job control statement:

// JOB job-name

Job-name is a user-defined name of 1 to 8 characters, the first of which
must be alphabetic.

Note: The JOB statement resets the effect of all previously issued
OPTiON and ASSGN statements.

LBLTYP Statement

THE LBLTYP statement is used to define the amount of main storage to be
reserved at linkage edit time for processing tape and nonsequential
disk-file labels in the COBOL program area of main storage. It applies
to both background and foreground programs and is required if the file
contains standard labels. The format of the LBLTYP statement is:

// LBLTYP {TAPE[(nn)]}
NSD (nn)

TAPEnn For the Tape Operating System, nn is used to specify the
decimal number of pairs of VOL, TPLAB statements that appear
immediately before the execution of the linkage edited
program.

18 Disk and Tape Operating Systems COBOL Programmer's Guide

TAPE[(nn)J For the D~sk Operating System. TAPE is used only if tape
files req~iring label information are to be processed, and
no nonsequential DASD files are to be processed. nn is
optional, and is present only for future expansion (it is
ignored by job control).

NSD(nn) Used if any nonsequential DASD files are to be processed,
(Disk only) regardless of other file types to be used. nn specifies the

largest number of extents to be used for a single file.

VOL Statement

The VOL statement is used to check standard labels for tape or disk
files. It is required for each file on a multiple volume file. The
format of the VOL statement is:

// VOL SYSxxx,filename

SYSxxx (the first operand) is the logical unit referenced.

filename (the second operand) identifies the file for the control
program.

The occurrence of two identical operands is peculiar to COBOL object
modules" because SYS004 is both the filename by which the file is known
to the control program, and the logical unit which is assigned to a
device.

TPLAB Statement

The TPLAB statement contains file label information for tape label
checking and writing and must immediately follow the VOL statement. The
formats of the TPLAB statements are:

// TPLAB 'label fields 3-10'
// TPLAB 'label fields 3-13'

TPLAB identifies the tape-label statement and can be written two
ways:

1. Input labels require only one statement, and contain fields 3-10 of
the standard tape file label. These are the only fields used for
checking the label of an input file. Refer to Appendix C for an
illustration of standard tape file labels.

2. When writing output labels, additional fields 11 through 13 may be
included by use of a continuation statement. (These fields are not
required for output files.) Refer to the publication IBM
System/360 Disk Operating Systenl: system Control and System Ser­
vice Program~, for details about these fields.

OPTION Statement

This statement specifies one or more of the job control options avail­
able. The order in which they appear in the operand field is arbitrary.
The format of the option statement is:

// OPTION option1 [,option2, ••• 1

section I: Preparing COBOL Programs for ProceSSing 19

where the options are:

LOG

NOLOG

DUMP

NODUMP

LINK

NOLINK

DECK

NODECK

LIST

NOLIST

LISTX

NOLISTX

XREF

NOXREF

ERRS

NOERRS

CATAL

MINSYS
(TOS only>

GO
(TOS only>

Causes the listing of columns 1 through 80 of all control
statements on SYSLST. Control statements are not listed
until a LOG option is encountered. Once a LOG option state­
ment is read, logging continues from job-step to job-step
until a NOLOG option is encountered or until either the JOB
or /& control statement is encountered.

Suppresses the listing of all control statements on SYSLST
except JOB and /& statements until a LOG option is
encountered.

Causes a dump of the registers and main storage to be
printed on SYSLST in the case of an abnormal program end
(such as program check).

Suppresses the DUMP option.

Indicates that the object module is to be linkage edited
after compilation. When the LINK or CATAL option is used,
the output of the compiler is written on SYSLNK. The LINK
option must always precede an EXEC LNKEDT statement contain­
ing a compiler step.

Suppresses the LINK option. The compiler can also suppress
the LINK option if the program contains an error that would
preclude the successful execution of the program. An EXEC
statement with a blank operand also suppresses the LINK
option.

Causes the compiler to punch object modules on SYSPCH. If
LINK is specified, the DECK option is ignored.

Suppresses the DECK option.

Causes the compiler to write source statements on SYSLST.

Suppresses the LIST option.

Causes the compiler to write the procedure division map in
hexadecimal on SYSLST.

Suppresses the LISTX option.

Causes the Assembler to writer the symbolic cross-reference
list on SYSLST.

Suppresses the XREF option.

Causes the compiler to write the diagnostic messages related
to the source program on SYSLST.

Suppresses the ERRS option.

Causes the cataloging of a phase or program in the core
image library at the completion of a linkage-editor run.
CATAL also causes the LINK option to be set.

Causes the linkage editor to generate minimal modules for
later runs on systems when linkage editing on systems
greater than 16K.

Indicates that a linkage edited program program exists on
SYSLNK. The program either can be cataloged in the core
image library or executed. To catalog the program, specify

20 Disk and Tape Operating Systems COBOL Programmer's Guide

STDLABEL
<DOS only)

USRLABEL
<DOS only)

SYM

PARSTD

GO, CATAL in the OPTION statement. To execute the program,
specify GO in the OPTION statement and follow it with an
EXEC statement with a blank operand. When GO is specified"
job control does not open SYSLNK or check the content of
SYSLNK.

Causes all disk labels submitted after this point to be
written on the standard label track. Reset to USRLABEL
option at end-of-job step.

Causes all disk labels submitted after this point to be
written at the beginning of the user label track.

Causes the compiler to print the data division map on
SYSLST.

Causes all DASD or tape labels submitted after this point to
be written at the beginning of the partition standard label
track. Reset to USRLABEL option at end-of-job or end-of-job
step. All file definition statements submitted after this
option will be available to any program in the current par­
tition until another set of partition standard file defini­
tion statements is submitted. All file definition state­
ments submitted after OPTION PARSTD will be included in the
standard file definition set until one of the following
occurs:

1. End-of-job step

2. End-of-job

3. OPTION USRLABEL is specified.

4. OPTION STDLABEL is specified.

For a given filename, the sequence of search for label
information during an OPEN is the USRLABEL area, followed by
the PARSTD area, followed by the STDLABEL area.

The options specified in the OPTION statement remain in effect until
a contrary option is encountered or until a JOB control statement is
read. In the latter case, the options are reset to the standard that
was established when the system was originally generated.

Any assignment for SYSLNK, after the occurrence of the OPTION state­
ment, cancels the LINK and CATAL options. These two options are also
canceled after each occurrence of an EXEC statement with a blank
operand.

PAUSE Statement

This statement can be used for operator action between jobs. Any mes­
sages to the operator can appear in the operand of a PAUSE statement.
The format for the PAUSE statement is:

// PAUSE [comments]

An example of this statement is:

// PAUSE SAVE SYS004, SYS005, MOUNT NEW TAPES

This statement tells the operator to save the output tapes, and mount
two new tapes.

Section I: Preparing COBOL Programs for Processing 21

When the PAUSE statement is encountered by job control, the printer­
keyboard (IBM 1052) is unlocked for operator-message input. The end-of­
communication indicator, B (B = alter code 5), causes processing to
continue.

The disk-label statement contains file label information for disk label
checking and creation. This card must immediately follow the VOL card.
The DLAB statement requires (in the case of card input) two cards for
completion, therefore, column 72 of the first card requires a character
punch other than a blank. The disk-label is known as a FORMAT 1 disk
file label. Its format is given in Appendix D. The format of the DLAB
statement is:

// DLAB 'label fields 1-3', C
xxxx,yyddd,yyddd,'systemcode' [,type]

xxxx is the volume sequence number in field 4 of the FORMAT 1 label,
and must begin in card column 16.

yyddd,yyddd is the file creation date followed by the file expiration
date.

'~~temcode' is ignored by Disk and Tape Operating Systems but is
required by Operating System. It must be 13 characters
long.

[,type] indicates the type of file label:

SD - sequential disk
DA - direct access
ISC - indexed sequential (used when creating a file)
ISE - indexed sequential (used when updating or retrieving a

file)

XTENT Statement (DOS onlyl

This statement is used to define an area in a direct-access storage
device (DASD). Each DASD statement requires one or more XTENT state­
ments. There are three extent types. Each is identified by a code that
informs the control program what the defined area is to be used for.
The format of the XTENT statement is:

// XTENT type,sequence,lower,upper
'serial no.',SYSxxx[,B2]

type Extent T~~~ -- occupies 1 or 3 columns, containing:

1 data area (no split cylinder)

2 = overflow area (for indexed sequential file)

4 index area (for indexed sequential file)

128 = data area (split cylinder). If type 128 is spe­
cified~ the lower head H~H2H2 is taken from
lower, and the upper head H~H2H2 is taken from
~per.

22 Disk and Tape Operating Systems COBOL Programmer's Guide

sequence

lower

Extent S§guence Number -- indicates the sequence num­
ber of this extent within a multi-extent file. The
sequence number occupies 1 to 3 columns and contains a
decimal number from 0 to 255. Extent sequence 0 is
used for the master index of an indexed sequential
file. If the master index is not used, the first
extent of: an indexed sequ.ential file has sequence num­
ber 1. The extent sequence for all other types of
files begins with o. Direct files can have up to 5
extents. ISAM files can have up to 11 data extents (9
prime, 1 cylinder index, 1 separate overflow).

Lower Limit of Extent -- occupies 9 columns and con­
tains the lowest address of the extent in the form
B~C~C~C2C2C2H~H2H2

where:

B~ is-the initially assigned cell number. It is equal
to:

o for 2311 and 2314
o to 9 for 2321

C~C~ is the subcell number. It is equal to:

00 for 2311 and 2314
00 to 19 for 2321

C2C2C2 is the cylinder number. It can be:

000 to 199 for 2311 and 2314
2!: strip number:

000 to 009 for 2321

H~ is the head block position. It is equal to:

o for 2311 and 2314
o to 4 for 2321

H2H2 is -the head number. It can be:

00 to 09 for 2311
00 to 19 for 2321 and 2314

A lower extent of all zeros is invalid.

Note: For 2321, the last 5 strips of subcell 19 are
reserved for alternate trachs.

upper ~er Limit of Extent -- o.ccupies 9 columns containing
the highest address of thet extent, in the same form as
the lower limit.

'serial no.' Volume serial Number -- 1J2his is a 6-byte alphanumeric
character string, contained within apostrophes. The
number is the same as irlthe vol~me label (volume
serial number) and the 'format 1 label (file serial
number).

SYSxxx This is the symbolic a.ddress of the DASD drive. If
more than one symbolic address is to be specified on
separate XTENT cards for the same file, the symbolic
addresses must be in consecutive order.

Section I: preparing COBOL Programs for Processing 23

Currently assigned cell number. Its value is:

o for 2311 or 2314
0-9 for 2321

This field is optional. If missing, job control
assigns B,2 = B1 •

The RESET Statement

The RESET statement resets input/output assignments to the standard
assignments. The standard assignments are those specified at system
generation time plus any modifications made by the operator by means of
an ASSGN command (as opposed to using an ASSGN control statement)
without the TEMP option. The format of the RESET statement is as
follows:

// RESET
SYS
PROG
ALL
SYSxxx

SY~ resets all system logical units to their standard assignments.

PROG resets all programmer logical units to their standard assignments.

~ resets all programmer and system logical units to their standard
assignments.

§YSxx~ resets the specified logical unit to its standard assignment.

The End-of-Data-File Statement

The end-of-data-file statement (/* in columns 1 and 2) serves as a de­
limiter for the input read from the device assigned to SYSIPT. There­
fore, COBOL programs mus·t be terminated by an end-of-data-file state­
ment. This statement is also recognized on the programmer logical units
that are assigned to a cc\rd reader. This causes the ENDFILE condition
to be raised for a COBOL input file.

The End-of-Job Statement

The end-of-job statement (/& in columns 1 and 2) indicates that a job
has been completed. If this statement is omitted, the Job Control pro­
gram may skip the next job st:acked on the device assigned to SYSRDR and/
or SYSIPT. If SYSRDR and SYSIPT are different units, the end-of-job
statement must appear on both.

The Comments Statement

A special comments statemen·t (* .jLn column 1 and blank in column 2, fol­
lowed by the desired comments) is' available for longer messages. The
comments are printed on SYSLOG, b\'lt no halt is effected by this
statement.

24 Disk and Tape Operating Systems; COBOL Programmer's Guide

CBL statement <COBOL Optioa Control Card)

Although most options for compilation are speci.fied in the job control
OPTION statement, the COBOL compiler provides an additional option
statement to increase flexibility. The CBL card must be placed between
the EXEC COBOL statement and the first statement in the COBOL program.
The CBL card cannot be continued. However, if specification of options
will continue past column 71, two CBL cards may be used. The format of
this card is:

CBL [DMAP=h] (, PMAP=h] [, BUFFSIZ=d] (,DISPCHK=YES]
NO

[, INVED] [, NOEXIT= ([E] , [C])]

CBL

DMAP=h
PMAP=h

BUFFSIZ=d

DISPCHK=YES
NO

INVED

NOEXIT

CBL must begin in column 2, be preceded and followed
by at least one blank.

DMAP and PMAP specify that the addresses which appear
in the coding of both the data division map and the
procedure division are to be incremented by the number
h. This is only for the listing not for the object
module. h is a hexadecimal number of from 1 to 8
digits and is assumed to be zero i.f one of these
options is not specified.. If both. options are speci­
fied, the value for the last h is the value that is
used. h is called a relocation factor.

BUFFSIZ specifies the size of the compiler buffer. d
is a decimal number from 170 to either 32,760 for mag­
netic tape or the maximum size of a track for disk ..
If this option is not specified, 170 is assumed for
16K systems and 1,024 is assumed on 32K or larger sys­
tems. Double buffers are always used.

DISPCHK specifies whether or not a diagnostic check is
to be made at execution time for displayed items. If
YES is specified, the length of all items to be dis­
played is checked before moving them to the buffer.
If an item is too long , it is truncated" but no mes­
sage is printed. If NO is specified, no check is made
and items are moved directly to the buffer. If an
item is 'too long and thus exceeds the buffer size, it
will destroy the contents of the storage area follow­
ing the buffer. The default 'value is NO.

INVED specifies that the roles of the characters "."
and ",n are to be reversed. This affects report items
in the data division, value clauses in the data divi­
sion, and numeric literals in t.he procedure division.
If this option is not specified" the character n. n

represents a decimal point and the character ","
represents an insertion character.

If NOEXIT is specified the compiler does not generate
code for program checks. If C is specified, code for
program checks is suppressed for CALL coding and if E
is specified coding is suppressed for ENTRY coding.
specification of this option will greatly improve the
time needed for execution of the program. However,
the programmer must be responsible for handling inter­
rupts which occur for an ON SIZE ERROR condition.. If
this option is not specified, the compiler will handle
program checks for arithmetic statements in the
program.

Section I: Preparing COBOL Programs for Processing 25

DLBL statement

This statement replaces the VOL and DLAB statement combination used in
previous versions of the system. It contains file label information for
DASD label checking and creation. (This release of the system will con­
tinue to support the VOL" DLAB, and XTENT combinations currently in
use.) The DLBL statemen-t has the following format.

// DLBL filename~['file-ID'], [datel,[codes]

filename This can be from 1 to 7 characters and is identical to
the symbolic name of the program DTF which identifies
the file.

'file-ID' The name associated with the file on the volume. This
can be from 1 to 44 bytes of alphanumeric data, con­
tained within apostrophes, including file-ID and, if
~sedr generation number and version number of genera­
tiion. If fewer than 44 characters are used, the
field will be left-justified and padded with blanks.
If this operand is omitted, "filename" will be used.

date

codes

This can be from 1 to 6 characters indicating either
the retention period of the file in the format d-dddd
or the absolute expiration date of the file in the
format yy/ddd. If this parameter is omitted, a a-day
retention period is assumed. If this operand is pre­
sent on an input file, it is ignored.

This is a 2 or 3 character field indicating the type
of file label, as follows:

SD for Sequential Disk or for DTFPH with
MOUNTED-SINGLE

DA for Direct Access or for DTFPH with MOUNTED=ALL

ISC for Indexed Sequential using Load Create

ISE for Indexed Sequential using Load Extension, Add~
or Retrieve

TLBL Statement

This statement replaces the VOL and TPLAB statement combination used in
previous versions of the system. (This release will continue to support
the VOL, TPLAB combination cu'rrently in use.) The TLBL statement con­
tains file label information for tape label checking and writing. Its
format follows:

// TLBL

filename

, file-ID'

filename,I'file-ID'],[date],[file-serial-number], [volume­
sequence-number],£file-sequence-numberl,
[generation-number], [version-number]

This can be from 1 to 7 characters and is identical to the
symbolic name of the program DTF which identifies the file.

One to 17 characters, contained within apostrophes, indicat-­
ing the name associated with the file on the volume. This
operand may contain embedded blanks. On output files~ if
this operand is omitted, the "filename" will be used. On
input files, if the operand is omitted" no checking will be
done.

26 Disk and Tape Operating Systems COBOL Programmer's Guide

date

file
serial
number

volume
sequence
number

file
sequence
number

generation
number

version
number

Four to 6 characters, in the format yylddd, indicating the
expiration date of the file for output or the creation date
for input. (The day of the year may have from 1 to 3 char­
acters.) For output files, a 1 to 4 character retention
period (d-dddd) may be specified. If this operand is
omitted, a 0 day retention period will be assumed for output
files. For input files, no checking will be done if this
operand is omitted or if a retention period is specified.

One to 6 characters indicating the volume serial number of
the first (or only) reel of the file. If less than 6
characters are specified, the field will be right-justified
and padded with zeros. If this operand is omitted on out­
put, the volume serial number of the first (or only) reel of
the file will be used. If the operand is omitted on input,
no checking will be done.

One to 4 characters in ascending order for each volume of a
multiple volume file. This number is incremented auto­
matically by OPENICLOSE routines as required. If this
operand is omitted on output, BCD 0001 will be used. If

i ed i
One to 4 characters in ascending order for each file of a
multiple file volume. This number is i.ncremented auto­
matically by OPENICLOSE routines as required. If omitted on
output, BCD 001 will be used. If omitted on input, no
checking will be done.

One to 4 characters ttat modify the file-IDe If omitted on
output, BCD 0001 is used. If omitted on input, no checking
will be done.

One or 2 characters that modify the generation number. If
omitted on output, BCD 01 will be used. If omitted on
input, no checking will be done.

For output files~ the current date will be used as the creation date
and "DOS/TOS/360" will be used as the system code.

EXTENT -- DASD Extent Info:r:.'mation

The EXTENT command or statement defines each area, or extent, of a DASD
file. One or more EXTENT commands or statements must follow each DLBL
command or statement except, for single volume inp·ut files for Sequential
Disk or Direct Access, on either a 2311 or a 2314, for which the DEVADDR
parameter has been specified in the DTF table.

This command or statement replaces the XTENT command or statement
used in previous versions of the system. (Programming support for XTENT
will be continued.>

[Ill EXTENT, [symbolic-unitl., [serial-numberl,
[typel, [sequence-numberl, [relative­
track], [number-of-tracksl,[split­
cylinder-trackl,[B=binsl

Accepted by SPI

II EXTENT [symbolic-unitlr, [serial-numberl,
[typel, [sequence-numberl, [relative­
trackl, [number-of-tracksl, [split­
cylinder-trackl,[B=binsl

Section I: Preparing COBOL Programs for Processing 27

Accepted by JC

symbolic
unit

serial
number

type

sequence
number

relative
track

A 6-character field indicating the symbolic unit (SYSxxx) of
the volume for which this extent is effective. If this
operand is omitted, the symbolic unit of the preceding EXTENT
will be used. (This operand is not required for an IJSYSxx
filename or for a file defined with the DTF DEVADDR=SYSnnn.)

From 1 to 6 characters indicating the volume serial number of
the volume for which this extent is effective. If fewer than
6 characters are used, the field will be right-justified and
padded with zeros. If this operand is omitted, the volume
serial number of the preceding EXTENT will be used. If no
serial number was provided in the EXTENT command or state­
ment, the serial number will not be checked and it will be
the user's responsibility if files are destroyed due to
mounting the wrong volume.

One character indicating the type of the extent~ as follows:

1 - data area (no split cylinder)
2 - overflow area (for indexed sequential file)
4 - index area (for indexed sequential file)
8 - data area (split cylinder)

If this operand is omitted, type 1 will be assumed.

One to 3 characters containing a decimal number from a to 255
indicating the sequence number of this extent within a multi­
extent file. Extent sequence a is used for the master index
of an indexed sequential file. If the master index is not
used, the first extent of an indexed sequential file has the
sequence number 1. The extent sequence nurr~er for all other
types of files begins with O. If this operand is omitted for
the first extent of ISFMS files~ the extent will not be
accepted. For SD or DA files, this operand is not required.

One to 5 characters indicating the sequential number of the
track, relative to zero, where the data extent is to begin.
If this field is omitted on an ISFMS file, the extent will
not be accepted. This field is not required for DA input or
for SD input files (the extents from the file labels will be
used) •

Formulas for converting actual to relative track (RT) and
relative track to actual for the DASD devices follow.

Actual to Relative

2311
2314
2321

10 x cylinder number + track number = RT
20 x cylinder number + track number = RT
1000 x subcell number + 100 x strip number +
20 x block number + track number = RT

Relative to Actual

2311 RT quotient is cylinder, remainder
10

2314 RT quotient is cylinder" remainder
20

2321 _RT_ quotient is subcell, remainderl
1000
remainderl quotient is strip, remainder2

100
remainder2 quotient is block, remainder is
--~-

is track

is track

track

28 Disk and Tape Operating Systems COBOL Programmer's Guide

Example: Track 5, cylinder 150 on a 2311
track.

1505 in relative

number of One to 5 characters indicating the number of tracks to be
tracks allotted to the file. For SD input or DA input~ this field­

may be omitted. For split cylinders, the number of tracks
must be an even multiple of the number of tracks per cylinder
specified for the file.

split
cylinder
track

bins

One or 2 characters, from 0-19. indicating the upper track
number for the split cylinder in SD files.

One or 2 characters identifying the 2321 bin that the extent
was created for or on which the extent is currently located.
If the field is one character, the creating bin is assumed to
be zero. There is no need to specify a creating bin for SD
or ISFMS files. If this operand is omitted, bin zero is
assumed for both bins. If the operand is included and posi­
tional operands are omitted, only one comma is required pre­
ceding the key-word operand. (One comma for each omitted
positional operand will be acceptable, but not necessary.)

THE LINKAGE EDITOR

The linkage editor prepares an object module for execution. It can also
be used to combine two or more separately compiled object modules into a
format suitable for execution. The output of the linkage editor con­
sists of one or more program phases.

If linkage editor processing is desired, the job control OPTION
statement specifying the LINK or CATAL option must precede the first
linkage editor control card and the first EXEC statement in the job.
The linkage editor is called for processing by specifying LNKEDT in an
EXEC statement. Processing by the linkage editor is suppressed if
severe programming errors are detected during compilation.

Input to the linkage editor may consist of any combination of the
following:

1, Object modules compiled in previous job steps (SYSLNK)

2~ Object modules from the relocatable library (SYSRES) or (SYSRLB)

3. Object modules in the form of card decks (SYSIPT)

output from the linkage editor is placed in the core image library as
a permanent member if the CATAL option has been specified on the job
control OPTION statement. If CATAL has not been specified, the program
phase is placed in the temporary part of the core image library for DOS
or on SYSLNK for TOS.

LINKAGE EDITOR CONTROL STATEMENTS

The execution of the linkage editor is initiated by linkage editor con­
trol statements read from SYSRDR. The general format of linkage editor
control statements is similar to that of the job control statements
except that the linkage editor control statements must have a blank in
column 1 instead of // in columns 1 and 2. The PHASE card and the
INCLUDE card are of specia.l interest in preparing object modules to be
linkage edited.

Section I: preparing COBOL Programs for Processing 29

The PHASE statement must be specified if the output of the linkage edi­
tor is to consist of more than one phase or if the program phase is to
be cataloged in the core image library. Each object module that is to
begin a phase must be preceded by a PHASE statement of the following
format:

PHASE phase-name,origin

The phase-n~ is the name under which the program phase is to be
cataloged. This name does not have to be the program-id name, and in
the case of overlay it should not be the same. It must consist of 1 to
8 alphanumeric characters, the first of which must be alphabetic.

Th~rigi~ indicates to the linkage editor the begin address of this
specific phase. An asterisk may be used as an origin specification to
indicate that this phase is to follow the previous phase or the Supervi­
sor at the next double-word boundary. This simple format of the PHASE
statement covers all applications that do not include setting up overlay
structures. See Section YII: Subprograms and Overlay for information
on the PHASE statement for overlay applications.

The INCLUDE Statement

The INCLUDE statement must be specified for each object module deck or
object module in the relocatable library that is to be included in a
program phase. The format of the INCLUDE statement is as follows:

INCLUDE [module-name]

module-namg is not specified when the module to be included is in
the form of a card deck being entered from SYSIPT. If
the object module is being included from the relocat­
able library, the module-name is the name under which
the module was cataloged in the library.

THE AUTOLINK FEATURE

If any references to external names are still unresolved after all
modules have been read from SYSLNK, SYSIPT, and/or the relocatable
library, the autolink feature of the linkage editor searches the relo­
catable library for module-names identical to the unresolved names and
includes these modules in the program phase. This feature is required
in which to include COBOL subroutines that are cataloged in the relocat­
able library.

Examples:

1. Linkage edit one object module compiled in a previous job step.

30 Disk and Tape Operating Systems COBOL Programmer's Guide

II JOB N0123
II OPTION LINK

PHASE EXAMPLE, *
II EXEC COBOL

COBOL
source module

1*
II EXEC LNKEDT
II EXEC

data

1*
1&

2. Linkage edit three object modules and catalog the phase (one module
f·rom previous compilation, one from SYSIPT and one named R from the
relocatable library).

II JOB
II OPTION CATAL

PHASE EXAMPLE, *
II EXEC COBOL

COBOL
source module

1*
INCLUDE

(object module)
INCLUDE R

1*
II EXEC LNKEDT
1&

LIBRARIAN FUNCTIONS

The service program called the librarian takes care of all maintenance
functions (such as adding, deleting, and copying or renaming) for the
system libraries. cataloging (which simply means adding) of frequently
used program phases, object modules, or source language statements in
one of the system libraries greatly reduces the time required for card
reading and linkage editor processing. Object modules are cataloged in
the relocatable library. Program phases are cataloged in the core image
library. Source module statements are cataloged in the source statement
library. Each sequence of source statements cataloged in the source
statement library is called a book.

The name of a phase, module, or book must be unique for each library.
When a phase, module or book is cataloged in a library, any module,
phase, or book already contained in the respective library and having
the same name is automatically deleted. This necessitates some naming
conventions for each installation in order to prevent a programmer from
unintentionally deleting programs that are part of the library.

A complete description of the library maintenance functions and deck
set ups used to specify them is included in the publication IBM Systeml
360 Tape or Disk Operating system: System control and System Service
Programs. The following discussions show how to catalog.

Section I: Preparing COBOL Programs for Processing 31

CATALOGING PROGRAM PHASES--CORE IMAGE LIBRARY

If a program is to be cataloged in the core image library, the job con­
trol statement // OPTION with the CATAL option must be given prior to
linkage editor processing and it must precede the first PHASE card of
the program to be cataloged in the case of compile and link edit runs.
Upon successful completion of the linkage editor job step, the program
phase(s) are automatically cataloged. The program phase can be executed
in the next job step in the same job by specifying the // EXEC statement
with a blank name field. When it is executed in a subsequent job, the
EXEC statement that calls for execution must specify the name under
which it has been cataloged. Note that the phase is cataloged under the
name specified in the PHASE statement. The following is an example of
cataloging a single phase in the core image library.

// JOB FOURA // JOB FOURB
// OPTION CATAL // OPTION CATAL

PHASE FOURA,* PHASE FOURB,*
INCLUDE INCLUDE MOD4B

// LBLTYP NSD(nn) or TAPE
// EXEC LNKEDT

object deck /&
/*
// LBLTYP NSD(nn) or TAPE
// EXEC LNKEDT
/&

CATALOGING OBJECT MODULES--RELOCATABLE LIBRARY

Object modules are cataloged in the relocatable library in a job step
that specifies execution of a library maintenance program. This program
is called by specifying MAINT in the operand field of the EXEC state­
ment. Each object module to be cataloged must be preceded by the CATALR
control statement. The format of this statement is:

CATALR module-name

where:

module-name
must be used in the linkage editor INCLUDE statement. The module
may be preceded but not followed by linkage editor control
statements.

The object modules named in CATALR statements must be on SYSIPT. If
a programmer wishes to compile and catalog in one job, he could assign
SYSPCH to a magnetic tape drive and reassign the same drive to SYSIPT
for the catalog step. This would eliminate unnecessary card handli~g.

Note that CATALR statements are read from SYSIPT for DOS and SYSRDR
for TOS. Therefore, the CATALR statements must be put on SYSRDR in the
same sequence as the object modules on SYSIPT. The following is an
example of cataloging two modules in the relocatable library.

32 Disk and Tape Operating systems COBOL Programmer's Guide

// JOB EIGHT
// EXEC MAINT

CATALR MOD8A

/*
/&

object deck

CATALR MOD8B

object deck

The following is an example of compiling and cataloging a module in the
relocatable library.

// JOB NINE
// ASSGN SYSPCH,X'183' (TAPE DRIVE)
// OPTION DECK
/~ EXEC COBOL

source deck

/*
CLOSE SYSPCH,X'OOD' (CARD PUNCH)

// ASSGN SYSIPT,X'183' (TAPE ABOVE)
// EXEC MAINT

/*
/&

CATALR MOD9

CATALOGING BOOKS--SOURCE STATEMENT LIBRARY

Frequently used data division, environment division, and procedure divi­
sion entries can be cataloged in the source statement library. A book
in the source statement library might consist, for example, of a file
description or a paragraph of the procedure division. such source lan­
guage statements are cataloged in the source statement library by using
the library maintenance program MAINT. Each part to be entered must be
preceded by a control statement of the format:

CATALS C.library-name

In addition, a control statement of the form BKEND C.library-name
must precede and follow the book to be cataloged. Note that the CATALS
statement is read from SYSIPT for DOS and SYSRDR for TOS but the BKEND
statements are entered on SYSIPT before and after the book. The
library-name must follow the rules for external-names in the COBOL
language.

The following is an example of cataloging a file description in the
source statement library.

/1 JOB ANYNAME
// EXEC MAINT

CATALS C.FILEA
BKEND C.FILEA

/*
/&

BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS

BKEND C.FILEA

section I: Preparing COBOL Programs for Processing 33

This file description can be included in a COBOL source module by
writing the following statement:

FD FILEB COPY 'FILEA'

Note that the library entry does not include FD or the filename. It
begins with the first clause that is actually to follow the filename.
This is true for all options of COpy or INCLUDE. However, data entries
in the library may have level numbers (Ol or 77) identical to the level
number of the data'name that precedes the COpy clause. In this case,
all information about the library data-name is copied but the library
data-name and all references to it are replaced by the data-name in the
program. For example, assume the following data entry is cataloged
under the library name DATAR.

01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF PAYFILE.

and the following statement is written in a COBOL source module

01 GROSS COpy 'DATAR'

The compiler interprets this as:

01 GROSS USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF GROSS.

Note also that the library-name is used to identify the book in the
library. It has no other use in the COBOL program.

For both the relocatable library and the source statement library,
several library maintenance operations can be performed in one job step.
Except in the case of adding, this is also true for the core image
library.

CATALOGING BOOKS--USER PRIVATE LIBRARY

The procedure for cataloging books in a private library is the same as
the procedure for cataloging books in the source statement library
except that the logical device SYSSLB must be assigned and defined by
DLBL, EXTENT or VOL, DLAB, and XTENT control statements. SYSSLB is the
logical device used for private libraries.

A private library is defined by the CORGZ program. The following
example defines a private library on physical unit 191.

// JOB PRIVLIB
// ASSGN SYSSLB,X'191'
// DLBL IJSYSSL, 'DATASET ID', DATE INFORMATION, SD
// EXTENT extent information
// EXEC CORGZ

/*
/&

where:

NEWVOL SL=cylin (tracks)

cylin=number of cylinders allocated to the library and tracks=
number of tracks allocated to the directory.

34 Disk and 'Ilape Operating Systems COBOL Programmer's Guide

To use this private library for COpy and INCLUDE, the ASSGN, DLBL,
and EXTENT job control statements which define the private library must
be included in the deck structure for compilation. When these cards are
present, a search for the book is made in the private library. If it is
not there, the system library is searched. If the cards for the private
library are not there, only the system library is searched. A programm­
er may create several private libraries~ but only one private library
can be used in a given job.

CHECKPOINTING A PROGRAM

When a program is expected to run for an extended period of time, provi­
sion should be made for taking checkpoint information periodically dur­
ing the run. This information describes the status of the job and the
system (main storage, input/output status, general and floating-point
registers) at the time the records are written. Thus, it provides a
means of restarting at a checkpoint position rather than at the begin­
ning of the entire job, if processing is terminated for any reason
before the normal end-of-job. CheckpOints are taken using the COBOL
RERUN statement.

In designing a program for which checkpoints are to be taken, the
user should consider the fact that, upon restarting, the program must be
able to continue as though it had just reached that point in the program
at which termination occurred. Hence, the user should ensure that:

1. File handling is such as to permit easy reconstruction of the sta­
tus of the system as it exists at the time of each checkpoint. For
example, when multifile reels are used" the operator should be
informed (by message) as to which file is in use at checkpoint
time. He requires this information at restart time.

2. The contents of files are not significantly altered between the
time of the checkpoint and the time of the restart:

• For sequential files, all records written on the file at check­
point time should be unaltered at restart time.

• For nonsequential files, care must be taken to design the pro­
gram so that a restart will not duplicate work that has been
completed between checkpoint time and restart time. !For
example, suppose that Checkpoint 5 is taken. By adding an
amount representing interest due, account XYZ is updated on a
direct-access file that was opened with the input/output
clause. If the program is restarted from Checkpoint 5 and if
the interest is recalculated and again added to account XYZ,
incorrect results will be produced.

If the program is modular in design, RERUN statements must be
included in all modules that handle files for which checkpoints are to
be taken. (When an entry point of a module containing a RERUN statement
is encountered, a COBOL subroutine -- IHD03800 -- is called. IHD03800
enters the files of the module into the list of files to be reposi­
tioned~) Repositioning to the proper record will not occur for any
files that were defined in modules other than those containing RERUN
statements. Moreover, a restart from any given checkpoint may not repo­
sition other tapes on which checkpoints are stored. Note, too, that
only one disk checkpoint file can be used.

Restarting a Program: If the programmer includes checkpoints in his job
by means of the COBOL RERUN statement, the message

OCOOI CHKPT nnnn HAS BEEN TAKEN ON SYSxxx

section I: Preparing COBOL Programs for Processing 35

is given each time a checkpoint is taken. (nnnn is the 4-character
identification of the checkpoint record.) To restart a job from a
checkpoint, the following actions are required:

1. Replace the // EXEC statement with a // RSTRT statement whose for­
mat is:

// RSTRT SYSxxx,nnnn [,SYSxxx]

where:

SYSxxx is the symbolic name of the device on which the'checkpoint
records a're stored

!!.!ill!! is the 4-character identification of the checkpoint record to
be used for restarting

SYSxxx can be any value from SYSOOO through SYS222. (If the
checkpoint records are recorded on a direct-access device,
SYSxxx must be repeated following the four-character identi­
fication of the checkpoint record.) All other job control
statements applicable to the job step should be the same as
when the job was originally run. If necessary, the channel
and unit addresses for the // ASSGN statements may be
changed.

2. Rewind all tapes used by the program being restarted and mount them
on devices assigned to the symbolic units required by the program.
(If multireel files are involved, mount (on the primary unit) the
reel in use at the time that the checkpoint was taken and rewind
it. If multifile reels are involved, position the reel to the
start of the file referred to at the time of the checkpoint.}

3. Reposition any card file so that only cards not yet read when the
checkpoint was taken are in the card reader.

4. Execute the job.

Disk and Tape Operating System COBOL provides a linkage to the system
checkpoint routine and re-entry point to the COBOL program from the sys­
tem restart routine. Therefore, any restrictions applying to these sys­
tem routines also apply to COBOL's restart procedures except as noted
above. These restrictions are outlined in the publications IBM
System/360 Disk Operating System: Supervisor and Input/Output Macros
and IBM System/360 Tape Operating System: Supervisor and Input/Output
Macro§..

36 Disk and Tape Operating Systems COBOL P~ogrammer's Guide

SECTION II: DECK STRUCTURES FOR PROCESSING COBOL PROGRAMS IN A TAPE
OPERATING SYSTEM

For each type of processing, certain combinations of job control cards
are needed. The examples given illustrate typical basic types of pro­
cessing within an all tape system configuration.

The examples assume a given tape system configuration, and that the
COBOL Tape Compiler is used for processing.

Figure 3 is a diagram of the input/output units used by COBOL in a
tape configuration, and should help the user to visualize the logical
structure of a configuration. A list of the types of processing dis­
cussed, in the order they are presented~ follows:

1. Compile and punch

2. Cataloging to the relocatable library

3. Compiling, linkage editing, and executing

4. Executing a previously linkage edited program

5. Cataloging to the source statement library

6. Compiling, linkage editing, and executing

Examples 3 and 6 differ in that example 3 illustrates how job control
is used to link with a module cataloged to the relocatable library"
while example 6 illustrates how COBOL copies source statement modules
cataloged to the source statement library.

ASSUMED TAPE RESIDENT SYSTEM CONFIGURATION

The processing examples given herein assume that the following Tape
Operating System was generated at system generation time:

The system includes:

One IBM 1403 Printer
One IBM 2540 Card/Read/Punch
One laM 1052 Printer-I{eyboard
Four IBM Magnetic Tape Units (excluding the resident tape drive>

Assume physical assignments at system generation time are:

1403
2540R
2540P
1052
2402
2402
2402
2402
2402

Printer assigned to physical unit X'OOE'
Reader assigned to physical unit X'OOC'
Punch assigned to physical unit X'OOD'
Printer-Keyboard assigned to physical unit X'OlF'
Magnetic Tape Unit assigned to physical unit X'180'
Magnetic Tape Unit assigned to physical unit X'181',X'90'
Magnetic Tape Unit assigned to physical unit X'182'
Magnetic Tape Unit assigned to physical unit X'183'
Magnetic Tape Unit assigned to physical unit X'184' (This

unit is the resident tape drive.>

The hexadecimal 90 (X'9()') in the tape assigned to X'181' determines
the device specifications for a 7-track tape.

Section II: Deck Structures for Processing COBOL in TOS 37

/

,
\
I

I

--::::::-

"'---------...JSYSPCH
(Optional)

/
I

I
\

,,- ,

/

\
\
I

/

-------..,
I
I

.ij- If required "
I
I PHASE

II OPTION LINK ...

II ASSGN SYSRLB

II ASSGN SYSSLB

II ASSGN SYSOO3

-------"1
I

I ,
I ,

I

II ASSGN SYS002 ""7 If .Iibraries on "
prrvate tapes "

I
I

II ASSGN SYSPCH

/1 ASSGN SYSIPT

17 DATE

I
I

If different from "

I
I " --,

I /'
I f \

I : 1
~--:I-* ------3'----...... 11 I

L l Dat=a =========::::;"/

Cards r--
(if required)

II

II JOB

standard assignments L fi_I_* ____ ~

IfcoBOL
SYSRDR

System/360

-- Optional

" ""-- ,
I ,

I \

r--------~ I

I ,,-
/

....... -..:--

SYSLST

Source
Statements

SYSIPT

Nate: Braken lines indicate where
the COBOL input would be placed
if SYSIPT were the same unit as SYSRDR.

Figure 3. Input/output Units Used by COBOL Program in a Tape System

38 Disk and Tape Operating Systems COBOL Programmer's Guide

Assume logical assignments at system generation time are:

// ASSGN SYSIPT,X'OOC'~
// ASSGN SYSRDR,X'OOC' IBM 2540
// ASSGN SYSPCH, X' 000'
// ASSGN SYSLST,X'OOE' IBM 1403
// ASSGN SYSLOG, X' 01F' IBM 1052
// ASSGN SYSLNK.X'180' J
// ASSGN SYS001,X'181',X'90'
// ASSGN SYS002,X'182' IBM 2400's
// ASSGN S YS 0 03 , X ' 183 '

Notice that SYSIPT, SYSRDR, and SYSPCH are assigned to the same phys­
ical unit (they need not be), and that SYSOOl is a 7-track tape.
Observe also that four logical tape assignments are made. The COBOL
compiler requires three logical work files to compile. The fourth can
be used for compile-and-execute functions.

The user can change these assignments by the use of ASSGN cards fol­
lowing his JOB card. Examples of overriding assignments are given in
the text that follows. In the examples that follow" whenever an option­
al statement is used it is identified by the words (optional card).

EXAMPLES OF PROCESSING USING TAPE CONFIGURATION

EXAMPLE l--COMPILE AND PUNCH

Assuming that source statements are card input (SYSIPT) and job-control
statements are card input (SYSRDR), the set of job-control cards
required (and some helpful options) to compile and punch are:

// JOB SUBROTNE
// OPTION LOG,DECK,LIST"LISTX,ERRS
// EXEC COBOL

Input from SYSRDR

/*
/&

SUBROTNE
SOURCE STATEMENTS

Input from SYSIPT

// PAUSE REMOVE OBJECT DECK FROM HOPPER
(optional card)

Input from SYSRDR

The options selected on the option card specify:

LOG
DECK
LIST
LISTX

ERRS

Requests a listing of all control statements on SYSLST.
Requests that a deck (object module) be punched on SYSPCH.
Causes compiler to write source statements on SYSLST.
Causes compiler to write a procedure division map on SYSLST in
hexadecimal.
Causes compiler to write all diagnostics related to the source
program on SYSLST.

EXAMPLE 2--CATALOGING AN OBJECT MODULE IN RELOCATABLE LIBRARY

In this example, an object module generated by the compiler (see Example
1) is cataloged in the relocatable library. It is assumed that the
relocatable library is on SYSRES (similarly for the source statement
library). Another tape drive may be used as a private library for the
relocatable library" in which case the system logical unit SYSRLB is
used.

section II: Deck structures for Processing COBOL in TOS 39

The job-control cards required to catalog an object module to an
existing relocatable library are:

// JOB RELOCATE
// EXEC MAINT

CATALR SUBROTNE
(Object deck to be
cataloged goes here.)

/*
/&

*
* // PAUSE

(optional card)

OBJECT MODULE 'SUBROTNE' IS NOW
CATALOGED TO NEW SYSRES TAPE ON
SYS002

When an object module is cataloged to the relocatable library resid­
ing on SYSRES, the following points must be considered.

1. SYS002 is the device on which the newly updated library is located
(SYSRES is now outdated).

2. If SYS002 is to be established as new SYSRES, it must be mounted on
the tape drive assigned to ftold ft SYSRES, and initial program loaded
(IPL). This automatically establishes it as a ftnewft SYSRES. SYS-
002 can then be reassigned.

SYS001 is used as a work file.

EXAMPLE 3--COMPILE, LINKAGE EDIT, AND EXECUTE

This example illustrates how an object module cataloged in the relocat­
able library is included in a compilation" linkage edited with the main
program and executed.

The job control statements required to compile, linkage edit., and
execute are:

// JOB CALLPROG
// OPTION LINK,LIST,LISTX,ERRS

PHASE MAIN,*
// EXEC COBOL

{COBOL SOURCE STATEMENTS}
/*

INCLUDE SUBROTNE {Retrieves SUBROTNE from relocatable library}
// EXEC LNKEDT
// EXEC

/*
/&

{
DATA DECK}

(if any)

This program consists of one phase that includes the object module
SUBROTNE and permits immediate execution of the program. [The name pro­
vided in the PHASE statement (main) has no relationship to the external­
name given in the COBOL Program-ID statement.]

It is possible to process this program with only three work files;
however, the procedure requires special instructions to the operator for
making two passes through the system. In this example, such instruc­
tions are conveyed to the operator on comment cards.

The output of the first pass (Pass 1) is a punched object deck, which
is used in the second pass (Pass 2). To accomplish Pass 2 (linkage edit
and execute), the punched object deck must be positioned in the job

40 Disk and Tape Operating Systems COBOL Programmer's Guide

stream to precede the EXEC LNKEDT and EXEC statements. (This is done
when the PAUSE statement is encountered.)

The complete job stream to accomplish both Pass 1 and Pass 2 is, as
follows:

// JOB CALLPROG
// ASSGN SYS001,X'180'} Work
/ / ASSGN SYS002, X'182". Files
/ / ASSGN SYS003,X'183,'
// OPTION DECK,LISTX,ERRS Pass 1
// EXEC COBOL

[COBOL SOURCE STATEMENTS]

/*
// ASSGN SYS001,X'180'} Assignments
// ASSGN SYS002,X'182' For Linkage
// ASSGN SYSLNK,X'183 i ' Edit and Execute
// OPTION LINK
* PLACE THE OUTPUT OF SYSPCH INTO SYSRDR.
* PLACE THE INCLUDE SUBROTNE STATEMENT
* THROUGH THE /& STATEMENT, INCLUSIVE,
* (LABELED PASS 2 IN THIS EXAMPLE)
* ~EHIND THE PUNCHED OBJECT DECK JUST
* PUT INTO SYSRDR.
* CONTINUE
// PAUSE

INCLUDE
PHASE MAIN,*

(The punched objiect deck will be
positioned here in the job stream.)

/*

INCLUDE SUBROTNE

// EXEC LNKEDT
// EXEC

{
DATA DECK}
(if any)

/*
/&

{

Retrieves SUBROTNE}
from RELOCATABLE
LIBRARY

Pass 2

The new option card is needed to accomplish the linkage editing. The
entire set of control statements and source statements from // JOB card
through /& card are submitted as one job.

Note that the SYS001, SYS002, and SYSLNK units are required to
execute the linkage editor.

EXAMPLE 4--EXECUTING A PROGRAM

The job control statements required simply to execute a program, assum­
ing it is in the core image library, are:

section II: Deck Structures for Processing COBOL in TOS 41

// JOB CALLPROG
// ASSGN SYS006,X'OOC'
// ASSGN SYS004,X'18Z'
// ASSGN SYSOOS,X'183'
// EXEC MAIN

/*
/&

DATA
DECK

// PAUSE MESSAGE TO OPERATOR IF ANY.
(optional card)

The example can be used for validating data, or making test runs,
where many runs might be mad·e with different sets of data decks.

EXAMPLE S--CATALOGING SOURCE MODULES TO SOURCE STATEMENT LIBRARY

The procedural steps and the job control statements required to catalog
two source statement routines in the source statement library follow.

It is assumed that a source statement library is on the system resi­
dence volume, SYSRES.

The job control statements are:

/*
/&

// JOB CATLSORC

// EXEC MAINT
CATALS C.DATAIN
BKEND C.DATAIN

FILEB, DATA RECORDS ARE CAPACITOR-RECORD1, ~
INDUCTOR-RECORD1,

LABEL RECORDS ARE STANDARD, BLOCK
CONTAINS 12 RECORDS, RECORDING MODE IS F.
BKEND C.DATAIN
CATALS C.INOUT
BKEND C.INOUT
BEGIN. OPEN INPUT FILEB, FILED OUTPUT FILEA.)
DATA. READ FILEB AT END GO TO CYCLE. {~.
MASTER. READ FILED AT END GO TO LABA.

GO TO PROCESS.
LABA. CLOSE FILEA, FILEB, FILED, STOP RUN.
BKEND C.INOUT

// PAUSE REMOVE NEW SYSRES ESTABLISHED ON X'182'.

ROUTINE 1

ROUTINE 2

The open and close routine is now cataloged in the source statement
library under the name INOUT and the file description under the name
DATAIN. Notice that DATAIN is cataloged before INOUT. This is because
books to be cataloged must be in alphanumeric sequence.

The message is an interruption in the job stream to inform the opera­
tor to perform some task. In this example, he is instructed to remove
the tape for protection.

42 Disk and Tape Operating systems COBOL Programmer's Guide

EXAMPLE 6--COMPILE (USING SOURCE STATEMENT LIBRARY), LINKAGE EDIT, AND
EXECUTE

This example illustrates:

1. How two previously written routines, that were cataloged in the
source statement library, are utilized. In this example, the
source statement library is on SYSRES.

2. How assignments can bE~ made to process an inventory file with four
tapes (not including SYSRES).

Assume an electronics firm stocks quantities of electrical components
that are to be maintained at a minimum quantity level, and an input data
file is used to check against a master file to determine stock item
reorder points.

For the purposes of illustration, only two of its many components-­
capacitors and inductors--are treated here. They are:

CAPACITORS QUANTITY REORDER
PART NUMBER VALUE ON HAND POINT

C61 .010MFD 47 50
C62 .020MFD 60 50
C65 .050MFD 50 50
C121 .001MMFD 90 50
C122 .002MMFD 100 50
C125 .005MMFD 22 50

INDUCTORS QUANTITY REORDER
PART NUMBER VALUE ON HAND POINT

L10 .10H jT- 35
L20 .20H 15 35
L40 .40H 30 35
L61 10.00MH 60 35
L62 20.00MH 70 35
L64 40.00MH 69 35

Assume further, that an input update file called DATAIN (Example 5,
ROUTINE 1) was created on ·tape and cataloged the source statement
library. Assume its records are, as follows:

01 CAPACITOR-RECORD1.
02 CAPACITOR OCCURS 6.

03 PART-NUMBER PICTURE XXXX.
03 VALUE1 PICTURE V999.
03 VALUE2 PICTURE XXXX.
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

01 INDUCTOR-RECORD1.
02 INDUCTOR OCCURS 6.

03 PART-NUMBER PICTURE XXXX.
03 VALUEl PICTURE 99V99.
03 VALUE2 PICTURE XX.
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

Also assume a program called ORDERPT (to be compiled) was written to
process these records (aga'inst the master file) to reorder parts when
their respective QUANTITY-ON-HAND falls below REORDER-PT.

The following source statements portray, in skeleton form, the pro­
gram ORDERPT. Included is the INPUT-OUTPUT section for the program.

section II: Deck Structures for Processing COBOL in TOS 43

IDENTIFICATION DIVISION.

PROGRAM-ID.'ORDERPT'.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FILEB ASSIGN TO 'SYS004' UTILITY 2400 UNITS.
SELECT FILEA ASSIGN TO 'SYS005' UTILITY 2400 UNITS, RESERVE NO

ALTERNATE AREA.
SELECT FILEC ASSIGN TO 'SYS006' UNIT-RECORD 1403.
SELECT FILED ASSIGN ~ro 'SYS007' UTILITY 2400 UNITS.

Notice tha~ FILEC is assigned to an IBM 1403 Printer. This enables
printing out the REORDER-PT, PART NUMBER of the component, and its 'VALUE
(in MFD or MH) when the QUANTITY-ON-HAND falls below REORDER-PT.

In order to do this, a file description or FD must be written for
FILEC in the data division:

DATA DIVISION.

FD FILEC ••••

01 REORDER.
02 REORDER-PT PICTURE IS 99 USAGE IS DISPLAY.
02 VALUE-OF-PART PICTURE IS ZZ.999.
02 PART-NUMBER PICTURE IS XXXX.
02 QUANTITY PICTURE IS 999.

Before printing out FILEC, the appropriate values are moved into
REORDER-PT (50 or 35), VALUE-OF-PART (.999MFD or ZZ.999H) PART-NUMBER
(CXXX or LXXX), and QUANTITY (999).

Specifically, four files are required to process this problem:

FILEA
FILEB
FILEC
FILED

Updated master file.
Updating input file (DATAIN).
Output print file.
Master file.

The control cards to compile, linkage edit, and execute the problem
are:

44 Disk and Tape Operating Systems COBOL Programmer's Guide

/ / JOB INVNTORY
// OPTION LINK,LIST,DUMP

PHASE INVNTORY,*
// EXEC COBOL

DATA DIVISION. (see
FD FILEB COPY ·DATAIN·. Example 5

for expansion)

PROCEDURE DIVISIONu

START. INCLUDE ·INOUT·. (see
Example 5
for expansion)

PROCESS. (Records on FILEB are processed)

/*
// LBLTYP TAPE (03)
/1 EXEC LNKEDT
// ASSGN SYS0004,X'181',X'90' (DATAIN)
// ASSGN SYS005,X'182' (OUTPUT FILE,NEW MASTER)
// ASSGN SYS006 ,X' OOE,t (PRINT FILE)
/ / ASSGN SYS007, X'183" (MASTER FILE)
* MOUNT INPUT (SYS004) ON X'18l",
* OUTPUT (SYS005) ON X'182',
// PAUSE MASTER (SYS007) ON X·183'.
// VOL SYS004,SYS004
// TPLAB ·DATAIN,etc ••• •
// VOL SYS007,SYS007,
// TPLAB ·MASTER,etc ••• •
// VOL SYS005,SYS005
// TPLAB ·NEWMASTER,etc ••• •
// EXEC
// PAUSE SAVE SYS007 ON X'183' and SYS005 ON X'182'
,(*

/&

Note that the program that processes the files takes advantage of two
previously written routines (routine 1 and routine 2) that were cata­
loged to the source statement library.

Note also that the VOL and TPLAB job-control statements were used to
check header records and w;rite trailer labels on input and output files.

Section II: Deck Structures for Processing COBOL in TOS 45

SECTION III: DECK STRUCTURES FOR PROCESSING COBOL PROGRAMS IN A DISK
OPERATING SYSTEM

For each type of processing, certain combinations of job control cards
are needed. The examples given illustrate basic types of processing
within a Disk Operating System.

The examples assume a given Disk Operating system configuration that
includes tape,. and that the COBOL disk compiler is used for processing.

Because the COBOL disk compiler permits the use of disk or tape work
files,. some of the examples given in this section use tape work files
while others use disk work files. Figure 4 is a diagram of the input/
output units used by COBOL in a disk configuration with tape. and should
help the user to visualize the logical structure of such a
configuration.

Preceding the types of processing discussed is a procedure for estab­
lishing labels for COBOL disk work files and SYSLNK on the standard
Label Track. A list of the types of processing discussed,. in the order
they are presented, follows:

1. Compile and punch

2. Cataloging in the relocatable library

3. Compiling, linkage editing, and executing

4. Executing a previously linkage edited program

5. cataloging in the source statement library

6. compiling, linkage editing, and executing.

Examples 3 and 6 differ in that example 3 illustrates how job control is
used to link with a module cataloged in the relocatable library, whereas
example 6 illustrates how COBOL copies source statement modules cata­
loged to the source statement library •

.,--- ...
~'- I

/ f'~:'\--~l
~--->--, \~-d--~}

) SYSIPT

Note: Broken linellndlcotewhere
the C080linpui would be placed
if SYSIPT were the same unit as SYSRDr

Figure 4. Input/Output Units Used by COBOL Program in a Disk System

46 Disk and Tape Operating Systems COBOL Programmer's Guide

Assumed Disk Resident system Configuration

The processing examples given here assume that the following Disk
Operating System configuration with tape was generated at system genera­
tion time for the COBOL disk compiler.

The system includes:

• One IBM 2540 Card/Read/Punch

• One IBM 1052 Printer-Keyboard

• One IBM 1403 Printer

• Two IBM 2311 Disk Drives

• Four IBM 2400 Magnetic Tape Units

Assume physical assignments at system generation time are:

• 2540R Reader assigned to physical unit X'OOC'

• 2540P Punch assigned to physical unit X'OOD'

• 1052 Printer-keyboard assigned to physical unit X'OlF'

• 1403 Printer assigned to physical unit X'OOE'

• 2311 Disk pack assigned to physical unit X'190"

• 2311 Disk pack assigned to physical unit X'191'

• 2402 Magnetic tape unit assigned to physical unit X'281'

• 2402 Magnetic tape unit assigned to physical unit X'282'

• 2402 Magnetic tape unit assigned to physical unit X'283'

• 2402 Magnetic tape unit assigned to physical unit X'284', X'90'

The hexadecimal 90 (X'90') in the last tape assignment determines the
device specifications for a 7-track tape.

Assume logical assignments at system generation time are:

II ASSGN SYSIPT,X'OOC'
II ASSGN SYSRDR,X'OOC' IBM 2540
II ASSGN SYSPCH,X'OOD'
II ASSGN SYSLST,X'OOE' IBM 1403
I/- ASSGN SYSLOG, X, 01F' IBM 1052
/1 ASSGN SYSLNK,X'190'

1
II ASSGN SYS003,X'190' IBM 2311's
II ASSGN SYS001,X'191'
II ASSGN SYS002,X'191'

When logical assignments are made at system generation time for the
disk compiler, the following must be considered:

• SYSLNK must be assignE~d to disk.

• SYS001, SYS002, and SYS003 (work files) can be assigned to disk or
tape, but must all be assigned to the same device type.

Section III: Deck Structures for Processing COBOL in DOS 47

• When the linkage editor function is being performed, work file SYS-
001 can be assigned to either disk or tape.

When tape work files are to be used instead of the given logical
assignments for disk work files (SYS001, SYS002, SYS003), the user must
assign tape work files at system generation time. For example:

// ASSGN SYS001,X'281'
// ASSGN SYS002,X'282'
// ASSGN SYS003,X'283'

Notice that SYSIPT, SYSRDR, and SYSPCH are assigned to the same physical
unit.

The programmer can change these assignments using ASSGN cards follow­
ing his JOB card. Examples of overriding assignments are given in the
text that follows. In the examples that follow, whenever an optional
statement is used, it is identified by the words "optional card."

EXAMPLES OF PROCESSING USING DISK CONFIGURATION

When processing programs with the COBOL disk compiler, the information
provided by the VOL, DLAB, and XTENT statements for the work files SYS-
001, SYS002 and Sys003 must be available for each job processed. This
information can be supplied by the programmer with each job processed,
or is provided for the programmer on the Standard Label Track for each
job processed as required. In addition to establishing the labels
required for the disk work files SYS001, SYS002, and SYS003, the labels
required for SYSLNK can also be established on the Standard Label Track,
where they will be available for subsequent use.

The following procedure enables setting up the standard Label Track
for COBOL disk compiler work files and SYSLNK. Once established, the
labels remain in effect for use with subsequent jobs processed, until
overridden.

// JOB BUILD STANDARD LABELS
* ALL VOL, DLAB, AND EXTENT STATEMENTS SUBMITTED IN THIS JOB
* WILL BE PERMANENTLY WRITTEN ON TRACK 0 OF THE LABEL STORAGE
* CYLINDER OF DOS SYSTEM RESIDENCE FILE SYSRES. THUS THESE
* LABELS NEED NOT BE SUBMITTED FOR EVERY JOB THAT REQUIRES
* SYSLNK AND SYS001-SYS003
// OPTION STDLABEL
// VOL SYSOOO,IJSYSOO
// DLAB 'SYSTEM WORK FILE SYSLNK 1111111',

0001,66001,66001, 'DISK OPER SYS' " SD
// XTENT 1,0,000190000,000198009,'111111',SYSLNK
// VOL SYS001,IJSYSOl
//OLAB 'SYSTEM WORK FILE NO.1 1111111',

0001,66001,66001,'OISK OPER SYS',SD
// XTENT 128,0,000142000,000189003,'111111',SYS001
// VOL SYS002,IJSYS02
//OLAB 'SYSTEM WORK FILE NO.2 02.GOOOOV001111111',

0001,66001,66001,'SYSTEM CODE l',SD
// XTENT 128,O,000142004,000189007,'111111',SYS002
// VOL SYS003,IJSYS03
//OLAB 'SYSTEM WORK FILE NO.3 02.GOOOOVOOll11111',

0001,66001,66001, 'SYSTEM CODE l',SO
// XTENT 128,O,000142008,000189009,'111111',SYS003

48 Disk and Tape Operating Systems COBOL Programmer's Guide

C

C

C

C

EXAMPLE 1--COMPILE AND PUNCH

Assuming that source statements are card input (SYSIPT) and job control
statements are card input (SYSRDR)~ the job control cards required (and
some helpful options) to compile and punch are:

II JOB SUBROTNE
} Input from SYSRDR I I OPTION LOG,. DECK" LIST" LISTX" ERRS

II EXEC COBOL

1*
1&

I'

ISUBROTNE
SOURCE STATEMENTS Input from SYSIPT

/1 PAUSE REMOVE OBJECT DECK FROM HOPPER

}
} Input from SYSRDR

(Optional card)

The options selected specify:

LOG

DECK

LIST

LISTX

ERRS

Requests a listing of all control statements on SYSLST.

Requests that a deck (object module) be punched on SYSPCH.

Causes the compiler to write source statements on SYSLST.

Causes the compiler to write a procedure division map on SYSLST
in hexadecimal.

Causes the compiler to write all diagnostics related to the
source program OIll SYSLST.

EXAMPLE 2--CATALOGING AN OBJECT MODULE IN RELOCATABLE LIBRARY

In this example, an object module generated by the compiler
(see Example 1) is cataloged to the relocatable library.

Note: The relocatable library is on SYSRES.

The job control cards required to catalog an object module to an
existing relocatable library are:

II JOB RELOCATE
II EXEC MAINT

1*
1&

*
*

CATALR SUBROTNE
(Object deck to be
cataloged goes here.)

OBJECT MODULE 'SUBROTNE' IS
NOW CATALOGED TO THE RELOCATABLE

II PAUSE LIBRARY ON SYSRES (optional card)

EXAMPLE 3--COMPILE" LINKAGE EDIT, AND EXECUTE

This example illustrates how an object module cataloged to the relocat­
able libeary is included in a compilation, linkage edited with the main
program., and executed.

Section III: Deck Structures for Processing COBOL in DOS 49

// JOB CALLPROG
// OPTION LINK,LIST,LISTX,ERRS

PHASE MAIN, *
/(EXEC COBOL

{COBOL SOURCE STATEMENTS}

INCLUDE SUBROTNE
// EXEC LNKEDT

{Retrieves SUBROTNE from relocatable library}

// EXEC

/*
/&

{
DATA DECK}

(if any)

This program consists of one phase that includes the object module
SUBROTNE and can be executed immediately. [The name provided in the
PHASE statement (MAIN) has no relationship to the external-name given in

EXAMPLE 4--EXECUTING A PROGRAM

The job control statements required simply to execute a program, assum­
ing it has been cataloged in the core image library~ are:

// JOB CALL PROG
// ASSGN SYS006,X'00C'
// ASSGN SYS004,X'191'
// ASSGN SYS005,X'191'
// VOL SYS004,SYS004
// DLAB 'THIS IS THE JOB INPUT FILE etc, •••
// XTENT Enter track specification here •••
// VOL SYS005,SYS005
// DLAB 'THIS IS THE JOB OUTPUT FILE etc, •••
// XTENT Enter track specification here •••
// EXEC MAIN

/*
/&

[DATA DECK]

// PAUSE MESSAGE TO OPERATOR, IF ANY (optional card)

The example can be used for validating data, or for making test runs,
where many runs might be made with different sets of data. Note that
the VOL, DLAB, and XTENT statements specify areas in the disk pack
(assigned to X'191') that are used by the job input and output files
SYS004 anq SYS005, respectively.

EXAMPLE 5--CATALOGING SOURCE MODULES IN SOURCE STATEMENT LIBRARY

The procedural steps and the job-control statements required to catalog
two source statement modules in the source statement library follow.

Note: The source statement library is on the system residence volume
SYSRES.

The job control statements are:

50 Disk and Tape Operating systems COBOL Programmer's Guide

// JOB CATLSORC
// EXEC MAINT

CATALS C. I NOUT
BKEND C.INOUT

/*
/&

BEGIN. OPEN INPUT FILEB, FILED OUTPUT FILEA.
DATA. READ FILEB AT END GO TO CYCLE.
MASTER. READ FILED AT END GO TO LABA.

GO TO PROCESS.
LABA. CLOSE FILEA, FILEB, FILED, STOP RUN.
BKEND C.INOUT
CATALS C.DATAIN
BKEND C.DATAIN
FILEB, DATA RECORDS ARE CAPAClTOR-RECORD1,

INDUCTOR-RECORD1,
LABEL RECORDS ARE STANDARD, BLOCK
CONTAINS 12 RECORDS, RECORDING MODE IS F.
BKEND C.DATAIN

} ROUTINE 1

ROUTINE 2

The open and close routine is now cataloged to the source statement
library under the name INOUT, and the file description under the name
DATAIN.

EXAMPLE 6--COMPILE (USING SOURCE STATEMENT LIBRARY), LINKAGE EDIT, AND
EXECUTE

This example illustrates:

1. How two previously written routines, that were cataloged in the
source statement library" are utilized. In this example, the
source statement library is on SYSRES.

2. How assignments can be made to process an inventory file using
direct-access storage.

Assume an electronics firm stocks quantities of electrical components
that are to be maintained at a minimum quantity level, and an input data
file is used to check against a master file to determine stock item
reorder points.

For the purposes of illustration, only two of its many components-­
capacitors and inductors--are treated here. They are:

CAPACITORS QUANTITY REORDER
PART NUMBER VALUE ON HAND POINT

C6l .010MFD 47 50
C62 .020MFD 60 50
C65 .050MFD 50 50
C121 "OOlMMFD 90 50
C122 .002MMFD 100 50
C125 .005MMFD 22 50

INDUCTORS QUANTITY REORDER
PART NUMBER VALUE ON HAND POINT

Ll0 .10H 18 35
L20 .20H 15 35
L40 .40H 30 35
L61 10.00MH 60 35
L62 20.00MH 70 35
L64 40.00MH 69 35

Assume further than an input update file called DATAIN (Example 5,
ROUTINE 2), was created on disk and cataloged to the source statement
library. Assume that the records are, as follows:

Section III: Deck Structures for Processing COBOL in DOS 51

01 CAPACITOR-RECORD1.
02 CAPACITOR OCCURS 6~

03 PART-NUMBER PICTURE XXXX.
03 VALUE1 PICTURE V999.
03 VALUE2 PICTURE XXXX.
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

01 INDUCTOR-RECORD1.
02 INDUCTOR OCCURS 6.

03 PART-NUMBER PICTURE XXXX.
03 VALUE1 PICTURE 99V99.
03 VALUE2 PICTURE XX.
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

Also assume a program called ORDERPT (to be compiled) was written to
process these records (against the master file) to reorder parts when
their respective QUANTITY-ON-HAND falls below REORDER-PT.

The following source statements portray in skeleton form, the program
ORDERPT. Included is the INPUT-OUTPUT section for the program.

IDENTIFICATION DIVISION.

PROGRAM-ID. 'ORDERPT'.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILEB ASSIGN TO 'SYS004' UTILITY 2400 UNITS.
SELECT FILEA ASSIGN TO 'SYS005' UTILITY 2311 UNITS,

RESERVE NO ALTERNATE AREA.
SELECT FILEC .ASSIGN TO 'SYS006' UNIT-RECORD 1403.
SELECT FILED ASSIGN TO 'SYS007' UTILITY 2311 UNITS.

Notice that FILEC is assigned to an IBM 1403 Printer. This enables
printing out the REORDER-PT, PART NUMBER of the component, and its VALUE
(in MFD or MH) when the QUANTITY-ON-HAND falls below REORDER-PT.

In order to do this, a file description or FD must be written for
FILEC in the data division:

DATA DIVISION.

FD FILEC ••••

01 REORDER.
02 REORDER-PT PICTURE IS 99 USAGE IS DISPLAY.
02 VALUE-OF-PART PICTURE IS ZZ.999.
02 PART-NUMBER PICTURE IS XXXX.
02 QUANTITY PICUTRE IS 999.

Before printing out FILEC, the appropriate values are moved into
REORDER-PT (50 or 35), VALUE-OF-PART (.999 MFD or ZZ.999H) PART-NUMBER
(CXXX or LXXX), and QUANTITY (999).

Specifically, four files are required to process this problem:

FILEA
FILEB
FILEC
FILED

Updated master file.
Updating input file (DATAIN).
Output print file.
Master file.

52 Disk and Tape Operating Systems COBOL Programmer's Guide

The control cards to compile" linkage edit, and execute the problem
are:

// JOB INVNTORY
// OPTION LINK,LIST,DUMP

PHASE INVNTORY,*
// EXEC COBOL

/*
//
//
//
//
//
//

*
//
//
//
//
//
//
//
/*
/&

DATA DIVISION.
FD FILEB COpy 'DATAIN'.

PROCEDURE DIVISION.

START. INCLUDE ·INOUT·.

(see
Example 5
for expansion.)

(see
Example 5
for expansion.)

PROCESS. (Records on FILEB are processed)

LBLTYP TAPE
EXEC LNKEDT
ASSGN SYS004,X'284',X'90'
ASSGN SYS005,X'190'
ASSGN SYS006,X'00E'
ASSGN SYS007,X'191'

MOUNT INPUT (SYS004)
PAUSE X, 90' •
TLBL DATAIN

(DATAIN)
(OUTPUT FILE, NEW MASTER)
(PRINT FILE)
(MASTER FILE)

ON X'284',

DLBL SYS005, 'THIS IS THE NEW JOB MASTER FILE etc.,
EXTENT Enter the track specification here
DLBL SYS007, 'THIS IS THE JOB(OLD) MASTER FILE etc., ••••
EXTENT Enter the track specification here
EXEC

Note that the program that processes the files takes advantage of two
previously written routines (Routines 1 and 2) that were cataloged in
the source statement library.

Note also that the LBLTYP job control statement was used (for SYS004)
because it is required when label information for tape files is
processed.

Section III: Deck Structures for Processing COBOL in DOS 53

SECTION IV: INTERPRETING OUTPUT

The compiler, linkage editor, COBOL program phases, and other system
components can produce output in the form of printed listings, punched
card decks, diagnostic or informative messages, and data files directed
to tape or direct-access devices. This section describes the output
listings that can be used to document and debug programs. Included are
explanations of compiler output, a list of conditions that can cause a
dump, a brief discussion of how to best use a dump, and an explanation
of how diagnostic messages are determined. A complete list of diagnost­
ic messages is contained in Appendix H.

COMPILER OUTPUT

The output of the compilation job step may include:

• A printed listing of the control statements

• A printed listing of the statements contained in the source module

• A printed listing of a data map

• A printed listing of a procedure map

• Compiler diagnostic messages

• An object module

All forms of output must be requested by means of the job control
OPTION statement. For example, DECK specifies that the object module is
to be punched. A complete list of the options for this statement is
given in Section I. All output to be listed is printed on the device
whose symbolic name is SYSLST.

SOURCE LISTING (LIST)

Figure 5 is an example of a source module list~ng. It is obtained when
LIST is specified on the job-control OPTION statement. The listing is
given on SYSLST.

GENERATED COBOL SOURCE LISTING (The heading that appears at the
top of the listing is explanatory only. It does not actually
appear on the listing.)

The source listing consists of:

LINE NO.

SEQ. NO

A compiler generated line number that is shown in the left­
most column. This line number is used in diagnostic messages
and LISTX references. The generated line numbers for the
sample program are 1 through 39.

The programmer provides the statement sequence numbers. They
appear in the second column.

SOURCE All COBOL words and punctuation. Words, punctuation, and
STATEMENT other groups of characters on each line are referenced as

54 Disk and Tape Operating Systems COBOL Programmer's Guide

S

D

*

elements on the line in LISTX listings so that a specific
entry may be defined.

Sequence numbers out of order. If columns 1 through 6 of the
source statement are not blank" they are sequence checked.
The character S is placed beside a number not in logical
ascending order. Example: assume that in the sample listing
statement number 26 (generated line number) was out of
sequence. The compiler would list the source statement as:

S26 000250 WRITE A AFTER ADVANCING 3 LINES.

Debug packet card inserts. Cards inserted as part of a DEBUG
packet are identified with the character D alongside the
generated sequence number.

Library cards. cards coming from the library as a result of
a COpy or INCLUDE statement are noted with an asterisk.

DATA MAP (SYM)

Figure 6 is an example of a data map. It is a portion of the data map
generated for the program given in Figure 5, and is obtained when SYM is
specified on the job-control OPTION statement. The data map is printed
on the SYSLIST unit.

The data map shows the name of each nonprocedure name defined in the
program. File-names, record-names, and condition names are identified
in the column headed TYPE. (In this example, no condition names were
used; therefore, none are listed.) The relative location of each entry
is shown (column headed LOCATION). Linkage and file entries are rela­
tive to the level 01 or 77.. Working storage is relative to O. The
addresses given are 24-bit addresses.

The column headed DATA NAME gives the names of the nonprocedure name
specified in the program.

If the load address is known, it may be used as the hexadecimal off­
set parameter in a CBL option card parameter (DMAP=h). This would
result in adjusted addresses on the listing.

section IV: Interpreting output 55

r--·---, I GENERATED COBOL SOURCE LISTING I
~---~
LINE NO. SEQ. NO.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

S26
27
28
29
30
31
32
33
34
35
36
37
38
39

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000260
000250
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390

SOURCE STATEMENT

IDENTIFICATION DIVISION.
PROGRAM-ID. 'CARRRCTL'.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

D 12MAR66 04/21/66

SELECT PRINTO ASSIGN TO 'SYS004'
UNIT-RECORD 1403 UNIT RESERVE
NO ALTERNATE AREAS.

DATA DIVISION.
FILE SECTION.
FD PRINTO RECORDING MODE F LABEL RECORDS

ARE OMITTED DATA RECORD IS A.
01 A.

02 C-C PICTURE X.
02 GARB PICTURE X(20).
02 FULLER PICTURE X(112).

WORKING-STORAGE SECTION.
77 B PICTURE X(20) VALUE 'THIS IS A RECORD'.
01 D.PICTURE S99.
01 E REDEFINES D.

02 FILLER PICTURE X.
02 F PICTURE X.

PROCEDURE DIVISION.
START. OPEN OUTPUT PRINTO. MOVE B TO GARB.

WRITE A AFTER ADVANCING 1 LINE.
WRITE A AFTER ADVANCING 3 LINES.
WRITE A AFTER ADVANCING 2 LINES.
MOVE' , TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE '0' TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE '_I TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE '+' TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE '1' TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE 'c' TO C-C. WRITE A AFTER ADVANCING C-C.
MOVE 'TRICK COMING UP' TO FULLER.
WRITE A AFTER ADVANCING C-C.
MOVE 'EOJ' TO A.
WRITE A AFTER ADVANCING 3 LINES.
CLOSE PRINTO.
STOP RUN .. ___ J

Figure 5. Example of a COBOL Source Listing

r---------------------------------·--, I DATA DIVISION MAP I
~---~ I ~rYPE LOCATION DATA NAME
I
I FILE PRINTO
I REC 0000000 A
I 0000000 C-C
, 0000001 GARB
I 0000021 FULLER
I 0000000 B
I REC 0000024 D
I REC 0000024 E
I 0000025 F L ___ _

Figure 6. Example of a Data Map

56 Disk and Tape Operating Systems COBOL Programmer's Guide

PROCEDURE MAP (LISTX)

Figure 7 is an example of a procedure map. It is a portion of the pro­
cedure map generated for the program given in Figure 5 and is obtained
when LISTX is specified on the job-control OPTION card. The listing is
printed on the SYSLST unit. The details of LISTX are given for their
debugging value.

LINE/POS

ADDR

INSTRUCTION

Contains the generated line number and the position
of the COBOL verb on the line. (These numbers are
decimal numbers.) The actual instruc- tion(s) used
to accomplish the COBOL statement is identified by
the compiler-generated internal line number(s). If
more than one instruction was generated, the
compiler-generated line number for that COBOL
statement would be repeated for each instruction
listed. A look at source statement 28 shows that
MOVE is the first COBOL verb on the line, hence,
its location is 28 01. Counting each element in
the line from left to right (for definigion of an
element, see "e (for definigion of an element, see
"Error Messages (ERRS)"), it is found that the
COBOL verb WRITE occupies position 6 on the line,
hence" it is location 28 06. The MOVE verb
required only one System/360 machine instruction to
effect its action. However, the WRITE verb
required five System/360 machine instructions to
effect its action. This accounts for the fact that
"28 06" appears five times in the listing. It
should be noted that qualified words count as one
element. The line counter cannot exceed 4095. At
this point, it resets to o.

Contains the relative address of each instruction
in the procedure division in hexadecimal. The
addresses are relative to the program's load point.
The address may be offset by specifying PMAP=h on
the COBOL CBL option statement.

Contains the machine language instruction (in hexa­
decimctl) generated for the COBOL statement.

r--, LINE/POS ADDR INSTRUCTION

00028 01 003270 02 00 5 000 4 140
00028 06 003276 02 00 5 000 5 000
00028 06 003270 41 10 4 088
00028 06 003280 58 FO 1 010
00028 06 003284 45 EO F OOC
00028 06 003288 58 50 4 088
00029 01 00328C 02 00 5 000 4 14E
00029 06 003292 D2 00 5 000 5 000
00029 06 00329B 41 10 4 088
00029 06 00329C 58 FO 1 010
00029 06 0032AO 45 EO F OOC
00029 06 0032A4 58 50 4 088 ----__ J

Figure 7. Example of a Procedure Map for a COBOL Program

Section IV: Interpreting Output 57

DIAGNOSTIC MESSAGES (ERRS)

Figure 8 is an example of a list of error messages that are obtained
when ERRS is specified on the job-control OPTION card. These diagnostic
messages were generated by the compiler for the program shown in Figure
5. The list is generated on SYSLST.

LINE/POS

ER CODE

CLAUSE

MESSAGE

Contains the internal line numbers of the source
statements, and the position of the COBOL verb or
element on the line where the error was detected.
An element is a word, punctuation, picture, name,
literal, or any other similar unit of COBOL syntax.

When the compiler cannot locate the item in error
on the line, it identifies the line at fault by
generating the SEQUENCE NUMBER x-a.

When the compiler generates the line number 0-0, it
is·referring to an entire section (the section may
be missing).

Contains a message number and the severity level of
the error:

MESSAGE NUMBER The format of the message number, and
the associated message is described in
Appendix H.

Severity
Cod~ __
W = WARNING

Explanation
This calls attention to a condi­
tion that can cause a problem,
but should permit a successful
run.

C CONDITIONAL The error statement is dropped or
corrective action is taken. The
compilation is continued as it
may have debugging value, but the
statement should not execute as
intended.

E ERROR This condition seriously affects
execution of the job. Execution
is not attempted.

This column identifies either the particular COBOL
clause being processed at the time the diagnostic
message was discovered or the basic area that was
involved, such as ALIGNMENT, Fo, or similar items.

The actual message is given here. These messages
are listed in Appendix H.

r--,
\ DIAGNOSTIC MESSAGES I
~--------T-------T---------T---~
ILINE/POSIER CODE \ CLAUSE I MESSAGE I
~--------+-------+---------+---~ I 15-1 IIJS063WIALIGNMENTITO ALIGN BLOCKED RECORDS ADD 3 BYTES TO THE I
I I \ 101 CONTAINING DATANAME FILLER. I
~--------+-------+---------+---~ I 18-1 IIJS054WIALIGNMENTIFOR PROPER ALIGNMENT, A 4 BYTE LONG FILLER I
\ I I IENTRY IS INSERTED PRECEDING D. I L ________ ~ _______ ~ _________ ~ ___ J

Figure 8. Example of Source Module Diagnostics

58 Disk and Tape Operating Systems COBOL Programmer's Guide

Working with ·Diagnostic Messages

1. Handle the diagnostic messages in the order in which they appear on
the source listing. It is possible to get compound diagnostic mes­
sages. Frequently, an earlier diagnostic indicates the reason for
a later diagnostic message. For example, a missing quote for an
alphabetic or alphameric literal could involve the inclusion of
some clauses not intended in that particular literal. This could
cause an apparently valid clause to be diagnosed as invalid because
it is not complete, or because it is in conflict with something
that preceded it.

2. Check for missing or extra punctuation, or other errors of this
type.

3. Frequently, a seemingly meaningless message is clarified when the
valid syntax or reference format is referenced. Diagnostic mes­
sages are coded~irectly from the reference format and are designed
for use in conjunction with the particular type of reference.

How Diagnostic Messages Are Determined

The compiler scans the statement, element by element, to determine
whether the words are combined in a nleaningful manner. Based upon the
elements that have already been scanned, there are only certain words or
elements that can be correctly encountered.

If the anticipated elements are not encountered, a diagnostic message
is produced. Some errors may not be uncovered until information from
various sections of the program are combined and the inconSistency indi­
cated. Errors uncovered in this manner can produce a slightly different
message format than those uncovered when the actual source text is still
available. The message that is made unique through that particular
error may not have, for example, the actual source statement that pro­
duced the error. The position and sequence reference, however, indi­
cates the place at which the error was uncovered.

Errors that appear to be identical are diagnosed in a slightly dif­
ferent manner, depending on where they were encountered by the compiler
and how they fit within the context of valid syntax. For example, a
period missing from the end of the working-storage section clause, is
diagnosed specifically as a period required. There is no other informa­
tion that can occur at that point. However, if at the end of a record
description entry, an element is encountered that is not valid at that
point such as the digits 02, they are diagnosed as invalid. Any clauses
associated with the clause at that entry, which conflict with the
entries in the previous entry (the one that had the missing period), are
diagnosed. Thus, a missing period produces a different type of diag­
nostic message in one case than in another.

If a given compilation produces more than 25 diagnostic messages,
they are presented in a batched sequence. The first 25 messages are
sorted in order, followed by the second series, which is also sorted in
order.

If an error occurs after the 4095 source statement, the line sequence
of the source statement in error can usually be determined by adding
4095 to the sequence number given in the diagnostic message. A message
frequently suggests the divison of a COBOL source program in which the
error occurred.

Section IV: Interpreting Output 59

Examples of How Diagnostic Messages Are Generated

Each message has a general or skeleton form. Unique words for each mes­
sage are inserted to identify the specific error that was encountered.
The following two examples illustrate this form.

Example 1:

COBOL format is MOVE data-name
literal

TO data-name •••

Error 1
023

Example 2:

Error 2
023

MOVE FIELDA TOO FIELDB

ERROR #178

INSERTl TO

INSERT2 TOO

Information
passed to
diagnostic
out of phase 119

Skeleton Message #178 CSYNTAX REQUIRES WORD "Insertl".
FOUND "Insert2".

REQUIRES WORD "TO". FOUND "TOO".

NOVE FIELDA TO FIELDB

ERROR #549

INSERTl NOVE

Skeleton Message #549 E WORD INSERTl WAS EITHER INVALID
OR SKIPPED DUE TO ANOTHER DIAGNOSTIC.

Message appears as: 23-1 IJS549E "NOVE" UNHANDLED.
WORD NOVE WAS EITHER INVALID OR SKIPPED DUE TO ANOTHER
DIAGNOSTIC.

LINKAGE EDITOR OUTPUT

The linkage editor produces diagnostic messages, console messages and a
storage map. For a description of output and error messages from the
linkage editor see the IBM publications IBM System/360 DOS System Con­
trol ~nd_System Service Programs and IBM System/360 TOS System Control
and System Service Program~.

EXECUTION TIME MESSAGES

When an error condition that is recognized by compiler generated code
occurs during execution, an error message is written on SYSLST or SYS­
LOG. Any messages normally written on SYSLST that result from an error

60 Disk and Tape Operating Systems COBOL Programmer's Guide

in the foreground program are written on SYSOOO. Messages that normally
appear on SYSLOG are provided with a code indicating whether the message
originated in a foreground or background program. These messages and
their descriptions are listed in Appendix H.

PROGRAM PHASE DUMPS

Execution of a program phase may produce a dump as part of an abort pro­
cedure. A dump is caused by one of many errors. Several of these
errors may occur at the COBOL language level while others can occur at
the job-control level.

Examples of COBOL language errors that can cause a dump follow.

1. A GO TO statement with no procedure name following it may have been
in properly initialized with an ALTER statement. The execution of
this statement will cause an invalid branch.

2. Arithmetic calculations or moves on numeric fields that have not
been properly initialized can cause an interrupt and a dump.

For example, neglecting to initialize an OCCURS ••• DEPENDING ON
clause, or referencing data fields prior to the first read may
cause an interrupt and a dump.

3. Invalid data placed in a numeric field as a result of redefinition.

4. Input/output errors that are nonrecoverable.

5. Subscripts whose values exceed the defined maximum value will., when
moved into the procedure division, can destroy machine instructions
in the program.

6. Attempting to execute an invalid operation code through a systems
error or inva lid prog;ram.

7. Generating an invalid address for an area that has address
protection.

8. subprogram linkage declarations that are not defined exactly as
they are stated in the calling program.

9. Data or instructions can be modified by entering a subprogram and
manipulating data incorrectly. A COBOL subprogram could acquire
invalid information from the main program, e.g., a CALL using a
procedure-name and an ENTRY using a data name.

10. Incorrect tape record length.
invalid s·upervisor ca:ll SVC32.
ing the job.

Causes the compiler to generate an
This inititates the dump terminat-

11. An input file contains invalid data such as a blank numeric field
or data incorrectly specified by its data description.

The compiler does not generate a test to check the sign position
for a valid configura,tion before the item is used as an operand.
The programmer can test for valid data by means of the numeric
class test and, by us:e of the TRANSFORM statement, convert it to
valid data under certain circumstances.

For example, if the units position of a numeric data item described
as USAGE IS DISPLAY contained a blank, the blank could be trans­
formed to a zero, thus forcing a valid sign.

section IV: Interpreting output 61

HOW TO USE A DUMP

Information regarding the location of the error and the reason for an
interrupt precedes the dump.

The instruction address can be compared to the Procedure Division
map. such a map is produced in the listing by the LISTX option. The
load address of the module (can be obtained from the map of main storage
generated by the linkage editor) must be subtracted from the instruction
address to obtain the relative instruction address as shown in the pro­
cedure map. The contents of LISTX provides a relative address for each
statement. By use of the error address and LISTX, the programmer can
locate a specific statement appearing within a line of the source pro­
gram, if the interrupt was within the COBOL program. Examination of the
statement and the fields associated with it may produce infromation as
to the specific nature of the error. A more detailed analysis would
involve a deeper knowledge of Disk and Tape Operating Systems and con­
trol programs.

Object Storage Layout

The relative position, in main storage, of all the components of a COBOL
program is, as follows:

• COBOL subroutines

• Working storage data items

• Edit masks

• DTF tables

• Buffers

• Procedure literals

• Work area and global table

• Instructions

• Input/output subroutines

• Subprograms

62 Disk and Tape Operating Systems COBOL Programmer's Guide

SECTION V: THE DEBUGGING LANGUAGE

The DEBUG option in the COBOL Disk and Tape Operating systems language
,allows the programmer to use three new verbs for the purpose of debug­
ging COBOL source programs. These verbs are EXHIBIT, TRACE, and ON.
They can appear anywhere in the COBOL program or in a compile-time
debugging packet. Their formats and a description of their use is con­
tained in the publication ~M System/360 DOS-TOS COBOL Language Specifi­
cations. However, this sec'tion is included in the publication to give
the programmer an idea of when to use the debugging language, how to
construct a debugging packet, and what job control cards are needed to
use the debugging packet. A complete list of precompile error messages
is included in Appendix G. These messages reflect errors in the debug
packet(s) only. They are not associated with compiling.

TRACE STATEMENT

When a job does not execute properly and the diagnostic messages fail to
indicate how to correct the error, a READY TRACE statement can be
inserted at a point known to be prior to the trouble area. The TRACE
displays each paragraph name as control is passed to that paragraph. To
reduce the volume of such a trace, it is possible to turn on the trace
with a READY TRACE statement and turn it off with a RESET TRACE if the
area can be localized. The TRACE function can be used any number of
times within the program. It would reduce the volume if RESET were
issued upon entering a loop (containing a paragraph name) and READY were
issued upon leaving the loop.

It is sometimes difficult to determine what the specific path of pro­
gram logic is. This is especially true with a series of PERFORMS or
nested conditions. A TRACE statement can be very beneficial as an aid
to this problem. Also, if values are inconsistent, a TRACE statement
will again aid in determining whether or not a program is actually going
through a certain point.

EXHIBIT STATEMENT

To find out what specifically caused the error within the paragraph,
additional data can be obtained from the fields within the specific
paragraph by use of the EXHIBIT statement. The EXHIBIT statement dis­
plays the field and the source name for identification purposes. Its
use may be restricted to display the field only if it has changed since
the last time the program fell through that point. This permits the
programmer to check on the value of the subscript name or other fields
that are pertinent to a given field, and to check out logic errors. An
example of the various forms of this statement follows.

DATA DIVISION.
77 NO-CHANGE-NAME PICTURE XX VALUE 'AB'.
77 SUB-SCRIPT-NAME PICTURE S999 COMPUTATIONAL VALUE 30.

Section V: The Debugging Language 63

PROCEDURE DIVISION.

TEST-LOOP.
EXHIBIT NAMED NO-CHANGE-NAME.
EXHIBIT CHANGED NAMED SUB-SCRIPT-NAME.
EXHIBIT CHANGED SUB-SCRIPT-NAME.
EXHIBIT CHANGED NO-CHANGE-NAME.

ADD 10 TO SUB-SCRIPT-NAME. IF SUB-SCRIPT-NAME = 100 NEXT SENTENCE
ELSE GO TO TEST-LOOP.

The printout for this example is:

NO-CHANGE-NAME =AB
SUB-SCRIPT-NAME = 30
30
AB
NO-CHANGE-NAME =AB
SUB-SCRIPT-NAME = 40
40
NO-CHANGE-NAME = AB
SUB-SCRIPT-NAME = 50
50

ON STATEMENT

It is possible, where large volumes of data are involved, to sample spe­
cific portions of a program by use of the ON statement. The ON state­
ment allows the programmer to perform a series of operations at certain
times when a program passes a particular point. For example, a series
of operations could be performed the 110th time through a loop and every
5th time thereafter until the 275th time. This allows the programmer to
determine whether or not a given loop gets out of the expected range for
a particular program.

There can be any number of these statements, and there is a compiler
counter generated for each one. The counter starts at zero and is
increased by one each time the path of program execution falls through
that specific point. For example, if the programmer knows that the
error occurs on the SOOth record processed, the ON statement can be used
to count records. Then a READY TRACE can be set as the counter
approaches the point where the error occurred. This eliminates tracing
each statement up to that point. This type of example could also have
been done by a counter or a PERFORM statement, but this method is
easier.

Note: An ON statement with an UNTIL or ELSE option cannot be used in an
IF statement.

THE DEBUG PACKET

The debug packet can be used only in background type processing. It is
a tool used for debugging COBOL object modules and is positioned in the
job input stream before the COBOL source module. The packet is combined
with the COBOL source module before compilation begins. Where the pack-

64 Disk and Tape Operating Systems COBOL Programmer's Guide

et is positioned within the COBOL source module is determined by the
procedure division name specified in the *DEBUG card of the packet.

JOB CONTROL SETUP FOR USING DEBUG PACKETS

Debug packets for a given compilation are. processed as separate job
steps immediately preceding the job step that executes the COBOL compil­
er program.

A number of debugging packets are permitted for a program depending
on the size of the machine used. In practice, the number of packets
required by a programmer s,hould not exceed Disk and Tape operating Sys­
tems storage facilities.

Each compile-time debugging packet is headed by the control card:

1 8
*DEBUG location

An example of the deck setup for executing a debugging packet, including
all the required job control cards is given in Figure 9.

Note that the deck setup provides for the assignment of SYSIPT (for
the COBOL compilation) to the drive currently assigned to SYS004 for the
packet. This is required by job control, because SYSIPT is used as the
input for the COBOL program.

If a disastrous error occurs, a message followed by "RUN TERMINATED"
is displayed and listed. If the job runs to completion, a message say­
ing that SYSIPT for the COBOL compilation should be assigned to the cur­
rent SYS004 is displayed and listed.

At the conclusion of a compilation" SYSIPT should be reassigned to
the original device if the job stream contains additional job steps.

Section V: The Debugging Lanauaqe 65

1&
I I EXEC COBOL

II ASSGN SYSIPT

1*

COBOL SOURCE

Debug Packets

II EXEC DEBUG
II ASSGN SYSOO4

II JOB

Figure 9. Example of a Debug Packet

L{source
Statements
to be Debugged

ON (---)

66 Disk and Tape Operating Systems COBOL Programmer's Guide

SECTION VI: PROGRAMMING CONSIDERATIONS

This section is intended to aid the programmer in preparing efficient
COBOL programs. Also included are discussions on error declaratives,
variable length records, and processing buffers.

CONSERVING ST9RAGE

Entries in the data division can significantly affect the amount of core
storage required by the program.

For example, saving one byte in the data division can cause a signi­
ficant increase in the number of instructions generated in the procedure
division. Conversely, a meaningful addition of one byte in the data
division can result in saving 20 or more bytes of generated instructions
for the procedure division. By judicious choice of such items as
decimal-point alignment, sign declaration, and usage, the object code
produced for the procedure division is more efficient. The compiler
will resolve all of the allowable mixed data usages encountered. The
required additional instructions are generated and additional storage is
used.

However" if a programmer uses the methods illustrated in the follow­
ing discussions, a significant amount of storage can be saved. For
example, attention to decimal alignment saves storage, as follows:

1. To execute a statement, data must be aligned. Neglecting decimal
alignment when defining data forces the compiler to align decimal
points, which costs 18 or more bytes for each alignment procedure
executed, thus using s'torage unnecessarily.

2. To give the programmer an idea of the effect data has on storage
when data is defined without regard to optimization of data
declarations, consider the following percentages and the following
COBOL statements.

In a typical source statement deck, the frequency of the most common
verbs written in the procedure division of a COBOL program" averaged
over a number of programs, is:

MOVES - 50%
GO TO - 20%
IF - 15%
Miscellaneous (arithmetic calculations, input/output, PERFORMS,

etc ..) - 15%

Assume that the number of move statements, out of a total of 250 pro­
cedural statements, is 125 and that all the sending fields and related
receiving fields are defined without. decimal alignment (worst case).

An example of one pair of fields is:

77 A PICTURE 99V9 C0MPUTATIONAL-3.
77 B PICTURE 999V99 COMPUTATIONAL-3.

(sending field)
(receiving field)

Because the rece~v~ng field is one decimal position larger than the
sending field, decimal alignment must be performed ..

The cost in bytes of decimal alignment for these moves is: 125 moves
times 18, or 2,250 bytes of storage. Each time these moves are executed
2,250 bytes of storage are used.

Section VI: Programming Considerations 67

A programmer aware of t:he cost of nonalignment can conserve great
amounts of storage simply by aligning decimals. Using one additional
byte to align decimals in the data sending or receiving fields is small
in cost, considering the savings possible in the procedure division.

The examples given in the following discussion illustrate efficient
coding techinques to conserve core storage.

DECIMAL-POINT ALIGNMENT

The number of decimal positions should be the same whenever possible.
If they are not, additional moves for padding, sign movement, and
inserting blanks result. statements involving fields with an unequal
number of digits require intermediate operations for decimal-point
alignment.

To get efficient code, the programmer should align decimal points
wherever possible. If he cannot align data in the data division, he can
move it to a work area. As a general rule, two or four additional
instructions (12 to 18 bytes) are required in basic arithmetic state­
ments and IF statements when decimal-point alignment is necessary to
process two COMPUTATIONAL-3 fields.

77 A PICTURE S999V99
77 B PICTURE S99V9

COMPUTATIONAL-3.
COMPUTATIONAL-3.

By adding one more decimal place to FIELD B (PICTURE S999V99), the
need for alignment instructions is eliminated. No additional bytes are
required for field B. (Note that System/360 hardware requires an odd
number of digits for internal decimal fields. Use an odd number of
nines when defining data in COMPUTATIONAL-3 format. This practice
results in more efficient object code without using additional storage
for the item defined.)

ADD 1 TO A.

The literal is compiled in internal decimal form, but decimal-point
alignment instructions are necessary (4 instructions, 18 bytes). If
instead, the literal is written 1.00, only one byte is added in the lit­
eral area. The 18 bytes required for alignment of decimal points are
eliminated.

UNEQUAL-LENGTH FIELDS

Use the same number of integer digits in a field. An intermediate
operation may be required when handling fields of unequal length. For
example, zeros may have to be inserted in numeric fields and blanks in
alphabetic or alphanumeric fields in order to pad out to the proper
length. To avoid these operations, the number of integer digits in
fields used together should be equal. Any increase in data field size
is more than compensated for by the savings in generated object code.

For example, if data is defined as:

SENDFLD PICTURE S999.
RECEIVEFLD PICTURE S99999.

68 Disk and Tape Operating Systems COBOL Programmer's Guide

and SENDFLD is moved to RECEIVEFLD, the cost of inserting zeros in the
high-order positions (numeric fields are justified right) is 10 bytes.
To eliminate these 10 bytes, SENDFLD should be defined as:

SENDFLD PICTURE S99999.

MIXED-DATA FORMATS

Do not mix data formats. When fields are used together in move, arith­
metic, or relational statements, they should be in the same format
whenever possible. Conversions require additional storage and longer
execution time. Any operations involving data items of different for­
mats require conversion of one of the items to a matching data format
before the operation can be executed. For example, when comparing a
DISPLAY field to a COMPUTATIONAL-3 field, the code generated by the
COBOL processor moves the DISPLAY field to an internal work area, con­
verting it to a COMPUTATIONAL-3 field. It then executes the comparison.
This usage, although valid in COBOL, has the effect of reducing the
efficiency of the program, by increasing its size. For maximum effi­
ciency, avoid mixed data formats or use a one-time conversion; that is,
move the data to a work area, thus converting it to the matching data
format. By referencing the work area in procedural statements, the data
is converted only once instead of for each operation.

The following example illustrates the conversions that take place
when the components of a COMPUTE statement are defined:

A COMPUTATIONAL-i.
B PICTURE S99V9 COMPU1.~TIONAL-3.
C PICTURE S9999V9 COMPUATIONAL-3.

and the following computation is specified"

COMPUTE C = A * B.

The internal decimal data I(COMPUTATIONAL-3) is converted to floating­
point format and then the COMPUTE is executed.

The result (which is in floating-point format) is converted to
internal decimal. The required conversion routines are time consuming
and use storage unnecessarily.

The following examples show what must logically be done, before the
indicated operations can be performed, when working with mixed-data
fields.

DISPLAY to COMPUTATIONAL-3

To Execute a MOVE: No additional code is required (if proper alignment
exists> because one instruction can both move and convert the data.

To Execute aCO~PARE: Before a COMPARE is executed, DISPLAY data must
be converted to COMPUTATIONAL-3 format.

To Perform Arithmetic Calculations: Before arithmetics are performed,
DISPLAY data is converted to COMPUTATIONAL-3 data format.

section VI: Programming considerations 69

DISPLAY to COMPUTATIONAL

To Execute a MOVE: Before the MOVE is executed, DISPLAY data is con­
verted to COMPUTATIONAL-3 data to COMPUTATIONAL data format.

To Execute a COMPARE: Before a COMPARE is executed" DISPLAY data is
converted to COMPUTATIONAL-3 data format, and the COMPUTATIONAL data to
COMPUTATIONAL-3 format~

To Perform Arithmetic Calculations: Before arithmetic calculations are
performed, DISPLAY data is converted to COMPUTATIONAL-3 format, and then
the COMPUTATIONAL-3 data to COMPUTATIONAL format.

COMPUTATIONAL-3 to COMPUTATIONAL

To Execute a MOVE: Before a MOVE is executed, COMPUTATIONAL-3 data is
moved to a work field, and then converted to COMPUTATIONAL data format.

To Execute a COMPARE: Before a COMPARE is executed" COMPUTATIONAL data
is converted to COMPUTATIONAL-3 data format.

To Perform Arithmetic Calculations: Before arithmetics calculations are
performed, COMPUTATIONAL-3 data is converted to COMPUTATIONAL data
format.

COMPUTATIONAL to COMPUTATIONAL-3

To Execute a MOVE: Before a MOVE is executed, COMPUTATIONAL data is
converted to COMPUTATIONAI~-'3 data format.

To Execute a COMPARE: Before a COMPARE is executed COMPUTATIONAL data
is converted to COMPUTATIONAL-3 data format.

To Perform Arithmetic Calculations: Before arithmetic calculations are
performed, COMPUTATIONAL data is converted to COMPUTATIONAL-3 data
format.

COMPUTATIONAL to DISPLAY

To Execute a MOVE: Before a MOVE is executed, COMPUTATIONAL data is
converted to COMPUTATIONAL-3 data format, and then the COMPUTATIONAL-3
data to DISPLAY data format.

To Execute a COMPARE: Before a COMPARE is executed, COMPUTATIONAL data
is converted to COMPUTATIONAL-3 data format, and DISPLAY data to
COMPUTATIONAL-3 data format.

To Perform Arithmetic Calculations: Before arithmetic calculations are
performed, COMPUTATIONAL data is converted to COMPUTATIONAL-3 data for­
mat, and DISPLAY data to COMPUTATIONAL-3 data format. The result is
generated in a COMPUTATIONAL-3 work area, which is then moved to the
DISPLAY result field.

70 Disk and Tape Operating Systems COBOL Programmer's Guide

COMPUTATIONAL-3 to DISPLAY

To Execute a MOVE: Before a MOVE is executed, COMPUTATIONAL-3 data is
converted to DISPLAY data format.

To Execute a COMPARE: Before a COMPARE is executed" DISPLAY data is
converted to COMPUTATIONAL-3 data format.

To Perform Arithmetic Calculations: Before arithmetic calculations are
performed, DISPLAY data is converted to COMPUTATIONAL-3 data format.
The result is generated in a COMPUTATIONAL-3 work area" which is then
converted and moved to the DISPLAY result field.

DISPLAY to DISPLAY

To Perform Arithmetic Calculations: Before arithmetic calculations are
performed, all DISPLAY data is converted to COMPUTATIONAL-3 data format.
The result is generated in a COMPUTATIONAL-3 work area, which is then
converted and moved to the DISPLAY result field.

Conversion of COMPUTATIONAL-lor COMPUTATIONAL-2 Data

For efficient object code" use of floating-point (COMPUTATIONAL-lor
COMPUTATIONAL-2) numbers mixed with other usages should be held to a
minimum. The conversion from internal to external floating point and
vice versa is done by subroutines. Fields used in conjunction with a
floating-point number are converted to floating-point format, causing
the object program to perform conversions. For example, assume a COM­
PUTE is specified as:

COMPUTE A = B * C + D + E.

Assume B is COMPUTATIONAL--1 or COMPUTATIONAL-2 data and all other fields
are defined as COMPUTATIONAL-3 data. Fields C, D, and E are converted
to COMPUTATIONAL-lor COMPUTATIONAL-2 data format, the calculation per­
formed, and the result converted back from COMPUTATIONAL-lor
COMPUTATIONAL-2 data format to COMPUTATIONAL-3 data. If field B is
defined as COMPUTATIONAL-3, no conversion is necessary. Use of
floating-point numbers is more efficient when used in programs with com­
putational data that is practically all COMPUTATIONAL-lor
COMPUTATIONAL-2 type. If it is necessary to use floating-point data, be
careful not to mix data formats.

SIGN CONTROL

For numeric fields specified as unsigned (no S in the picture clause of
decimal items), the COBOL compiler attempts to ensure that a special
positive sign (F) is present so that the values are treated as absolute.

The compiler moves in a hexadecimal F whenever the possibility of the
sign changing exists. Examples are: substracting unsigned fields, mov­
ing a signed field to an unsigned field, or an arithmetic operation on
signed fields where an unsigned result field is specified. The sign is
not checked on input data or on group level moves. The programmer must
know what type of data is being used, under those circumstances.

Section VI: Programming Considerations 71

The use of unsigned numeric fields increases the possibility of error
(an unintentional negative sign could cause invalid results) and
requires additional generat.ed code to control the sign. The use of
unsigned fields should be limited to fields that are to be treated as
absolute values.

Note: The hexadecimal F, while treated as a plus, does not cause the
digit to be printed or punched as a signed digit.

The programmer should include a sign in numeric pictures unless abso­
lute values are desired. The following example illustrates the addi­
tional instructions generated by the compiler each time an unsigned
field is modified.

If data is defined as:

A PICTURE 999.
B PICTURE S999.
C PICTURE S999.

and the following moves are made,

MOVE B TO A.
MOVE B TO C.

moving B to A causes four more bytes of storage to be used than moving B
to C, because an absolute value is specified for receiving field A.

CONDITIONAL STATEMENTS

Keep arithmetic expressions out of conditional statements. Computing
arithmetic values separately and then comparing them may produce more
accurate results than including arithmetic statements in conditional
statements. The final result of an expression included in a conditional
statement is limited to an accuracy of six decimal places. The follow­
ing example shows how separating computations from conditional state­
ments can improve accuracy.

If data is defined as:

77 A PICTURE S9V9999 COMPUTATIONAL-3.
77 B PICTURE S9V9999 COMPUTATIONAL-3.
77 C PICTURE S999V99999999 COMPUTATIONAL-3.

and the following conditional statement is written;,

IF A * B = C GO TO EQUALX.

the final result will be 99V999999. Although the receiving field for
the final result (C) specifies 8 decimal positions, the final result
actually obtained in this example contains 6 decimal places. For
increased accuracy, define the final result field as desired, perform
the computation, and then make the desired comparison, as follows.

77 X PICTURE IS S999V99999999 COMPUTATIONAL-3.
COMPUTE X = A * B.
IF X = C GO TO EQUALX.

72 Disk and Tape Operating Systems COBOL Programmer's Guide

OTHER CONSIDERATIONS USING DISPLAY AND COMPUTATIONAL FIELDS

DISPLAY (Non Numeric and External Decimal) Fields

Zeros and blanks are not inserted automatically by the logical instruc­
tion set. A move requires coding to insert zeros or blanks. On com­
parisons, the shorter item must be moved to a work area where zeros or
blanks are inserted before the COMPARE statement can be executed.

COMPUTATIONAL-3 (Internal Decimal) Fields

The decimal feature provides for the automatic insertion of high-order
zeros on additions, subtractions, and comparisons.

When a blank field (40) is moved into a field defined as
COMPUTATIONAL-3, the sign position is not changed. Thus, the invalid
sign bits of the blank field are retained. An arithmetic operation with
such a field results in a program check. Before moving a blank field
into a COMPUTATIONAL-3 field to be operated on, the sign position must
be converted to a valid COBOL sign (FO).

COMPUTATIONAL Field

System/360 furnishes a lax::ge number of halfword and fullword instruc­
tions. Binary instructions require one of the operands to be in a
register where a halfword is automatically expanded to a fullword.
Therefore, handling mixed halfword and fullword fields requires no addi­
tional operations.

COMPUTATIONAL-l and COMPUTATIONAL-2 Fields

A full set of short- and long-precision instructions is provided that
enables operations involving mixed precision fields to be handled
without conversion.

DATA FORMS

In order to'conserve storage, the programmer must know COBOL data forms,
and how they affect storage. Equally important is the way he ol:"ganizes
his data. The following information illustrates the various types of
COBOL data forms, and their respective costs in alignment. Characteris­
tics and requirements are described for the possible usages of numeric
data, along with symbolic illustrations of what forms they take within
the machine. Also included is a brief discussion of how to organize
data efficiently.

section VI: Programming considerations 73

Elementary Items

The number of bytes occupied by data in main storage depends on its for­
mat (or mode). Figure 10 illustrates the number of bytes required for
each class of elementary items.

If files and working storage are organized so that all halfwords,
fullwords, and double words are grouped together, essentially no addi­
tional storage is used. However, if these items are not grouped togeth­
er properly, the amount of storage required for alignment is:

Halfword - 1 byte
Fullword - 1 to 3 bytes

Double word - 1 to 7 bytes

Group Item

Group moves of 256 or less bytes cost less than a series of single
alphanumeric move9 of the elementary items within the group item. Any
move of a group or elementary item greater than 256 bytes in size
results in a subroutine being executed.

When computational usage is specified in COBOL, slack bytes are
inserted to give proper half-word, or full-word boundary alignment.
This is necessary for the elementary item to be handled properly in
binary arithmetic. However, using group items that include slack bytes
could cause problems.

r--------------------------·--,
ITYPE OF ITEM CALCULATION OF REQUIRED BYTES FROM PICTURE I
~--i
DISPLAY

Alphabetic
Alphanumeric
External Decimal

{
External}
floating
point

Bytes
Bytes
Bytes

Bytes

Number of
Number of
Number of

= Number of

A's in picture
Xes in picture
9's in picture

characters in picture

I
I
I
I
I
I
I
I
I

Report Bytes Number of characters in picture except P, VI

COMPUTATIONAL-3
I
I

Internal Decimal Bytes = (Number of 9' s +1 divided by 2" rounded up) I
I

COMPUTATIONAL £ize Alignment I

{Binary} Bytes
2 if 1~N~4 Halfword Machine Address
4 if 5~N~9 Fullword Machine Address
8 if 10~N~18 Fullword Machine Address
Where N=Number of 9's in picture

COMPUTATIONAL-lor 4 if short- 1
ICOMPUTATIONAL-2 precision Fullword Machine Address
I { Internal} (computa-
I fl?ating Bytes tional-l)
I pOlnt 8 if long ~

"

I precision Double word Machine Address
(computa-
tional-2) L ___ _

Figure 10. Number of Bytes Required for Each Class of Elementary Item

74 Disk and Tape Operating Systems COBOL Programmer's Guide

It is possible for two group items defined in exactly the same way to
have a different number of slack bytes because they begin in different
places, relative to word boundaries. Because group items use slack
bytes as normal data, a move of the smaller of these to the larger can
cause a loss of data. For example, assume two groups are defined, as
follows:

Case 1

Case 2

01 RECORD-i.
02 GOLD PICTURE XX DISPLAY.
02 MINERALS COMPUTATIONAL.

03 OPAL PICTURE 99.
03 QUARTZ PICTURE 99999.

01 RECORD-i.
02 MINERALS COMPUTATIONAL.

03 OPAL PICTURE 99.
03 QUARTZ PICTURE 99999.

Case 1 group (02 MINERALS) consists of a total of 6 bytes (it does not
contain slack bytes).

Case 2 group (02 MINERALS) consists of a total of 8 bytes" including 2
slack bytes.

In case 2, 03 QUARTZ will be preceded by 2 slack bytes; thus, if case 2
group (02 MINERALS) is moved to case 1, the last 2 bytes of data will be
lost.

If case 1 group (0 2 MINERA~LS) is moved to case 2 group, no data will be
lost but the elementary 03 QUARTZ will be improperly aligned.

NUMERIC DATA FORMAT USAGE

Figure 11 lists the common characteristics and special characteristics
of numeric data.

Section VI: Programming Considerations 75

r---------------T--------------T----------T-----------T---------T-----------------------,
I I I I Converted I I I
I I I lin I Boundary I I
I INo. of ITypical IArithmetic IAlignmentlspecial I
IType of Data IBytes RequiredlUsage ICalculationlRequired ICharacteristics I
~---------------+--------------+--.--------+-----------+---------+-----------------------i
I DISPLAY 11 per digit IInput froml Yes I No IMay be used for numeric I
I (External I I cards I I I fields up to 18 digits I
I decimal) I IOutput to I I I long • I
I I I card. I I I I
I I I listings I I IFields over 15 digits I
I I I I I Irequire extra instruc- I
I I I I I Itions if used in I
I I I I I I computations. I
~---------------+--------------+--.--------+-----------+---------+-----------------------~
ICOMPUTATIONAL-311 byte per 2 IInput to alNot I No IRequires less space I
I (Internal Idigits after I report I normally I Ithan DISPLAY. I
I decimal) Ithe first byte litem I I I I
I Ifor low-order IArithmetic I Iconvenient form for I
I I digi t I fields I I I decimal alignment. I
I I I I I I I
I I IWork areas I I IThe natural form I
I I I I I Icontains an odd number I
I I I I I lof digits. I
~---------------+--------------+----------+-----------+---------+-----------------------~
I COMPUTATIONAL 12 if 1~N~4 ISubscript-IYes/No--forl Yes IRounding and on size I
I (Binary) I I ing I mixed I I error tests are cumber-I
I I I I usages I I some. I
I 14 if 5~N~9 I Arithmetic I I I I
I I I I No--for I IAlways must be signed. I
I I I I unmixed I I I
I 18 if 10~N~18 I I usage I IFields of over 8 digits I
I I I I I Irequire more handling. I
~---------------+--------------+----------+-----------+---------+-----------------------~
I COMPUTATIONAL-l I 4 I Fractional I No I Yes ITends to produce less I
I I lexponenti-I I I accuracy. COMPUTA- I
ICOMPUTATIONAL-21 8 lation, or I I ITIONAL-2 is more I
I (Floating- I Ivery largel I laccurate than COMPUTA- I
I Point) I lor very I I ITIONAL-l. I
I I I small I I I I
I I I values I I IRequires floating-point I
I I I I I I feature. I L _______________ ~ ______________ ~ __________ ~ ___________ ~ _________ ~ _______________________ J

Figure 11. Characteristics of Numeric Data

MACHINE REPRESENTATION OF DATA ITEMS

The following examples are machine representations of the various data
items in COBOL.

Display (External Decimal)

If value is -1234, and:

76 Disk and Tape Operating Systems COBOL Programmer's Guide

Picture and Usage are: Machine Representation is:

PICTURE 9999. I Fl I F2 I F3 I F4 I

or

PICTURE S9999.

L ____ ~ ______ ~ _____ ~~J

Byte

I Fl I F2 I F3 I D4 I L ____ ~ ______ ~ _____ ~ ______ J

~
Byte

The sign position of an unsigned receiving field is changed to a hexade­
cimal F.

Hexadecimal F is arithmetically treated as plus in the low-order byte.

The character D represents a negative sign.

This form of data is referred to as external decimal.

COMPUTATIONAL-3 (Internal Decimal)

If value is +1234, and:

Picture and Usage are: Machine Representation is:

PICTURE S9999 COMPUTATIONAL-3. I 01 I 23 I 4C I L ______ ~ ______ ~

Byte
or

PICTURE 9999 COMPUTATIONAL-3. I 01 I 23 I 4F I L ______ ~ ______ ~~

Byte

Hexadecimal F is arithmetically treated as plus. The character C repre­
sents a positive sign.

This form of data is referred to as internal decimal.

COMPUTATIONAL (Binary),

If value is 1234, and:

Picture and Usage are:, Machine Representation is:

PICTURE S9999 COMPUTATIONAL. I 0000 I 0100 I 1101 I 0010l
L ________ ~ ________ ~--~~~---~~

Sign . 'Byte

A 1 in sign position means number is negative.
A 0 in sign position means number is positive.

This form of data is referred to as binary.

COMPUTATIONAL-lor COMPUTATIONAL-2 (Internal Floating Point)

If value is +1234, and:

Picture and Usage are: Machine ReEresentation is:

COMPUTATIONAL-l. I 011000011 10100 1101 0010 0000 0000 0000 I L __ ~ ________ ~ __________________________________ J

S 1 7 8 31

section VI: Programming considerations 77

S is the sign position of the number.
A 0 in the sign position indicates that the sign is plus.
A 1 in the sign position indicates that the sign is minus.

This form of data is referred to as floating point. The example is
one of short precision. In long precision, the fraction length is 56
bits. For a detailed explanation of floating-point representation~
refer to the publication IBM System/360 Principles of Operation listed
in the preface of this manual.

EXAMPLES SHOWING EFFECT OF DATA DECLARATIONS

The specific series of instructions that are generated vary widely with
the description of the data fields involved. Some examples of the range
to be expected by slight differences in the data descriptions follow.
The examples of possible expansions used are illustrative and should not
be used for estimates of storage.

MOVE STATEMENT

Assume that data items A, B, C, and D are defined for the purpose of
being moved as COMPUTATIONAL-3 fields or DISPLAY fields.

A PICTURE S99V99.
B PICTURE S99V99.
C PICTURE S99V9.
D PICTURE S99.

COMPUTATIONAL-3 Fields

If items A, B, C, and D are defined as COMPUTATIONAL-3 fields, the bytes
used to:

Move A to B is: (When both integer and decimal places are equal)

6 bytes for a simple move.

Move C to B is:
changed.)

(The sign position must be moved, and the original sign

6 bytes for a simple move, and
18 bytes for decimal alignment.
24 bytes total

Move C to D is: (The sign requires a separate move.)

6 bytes for a simple move, and
18 bytes for decimal alignment.
24 bytes total

78 Disk and Tape Operating Systems COBOL Programmer's Guide

DISPLAY Fields

If data items A, B, C, and D are defined as DISPLAY fields, the bytes
used to:

Move A to B is: (when both integer and decimal places are equal)

6 bytes for a simple move

Move C to Dis:

6 bytes for a simple move, and
6 bytes for decimal alignment

12 bytes total

MOVE DISPLAY TO COMPUTATIONAL-3

The bytes used for moving DISPLAY data to a COMPUTATIONAL-3 field is:

6 bytes for conversion., and up to 24 bytes for decimal alignment.

MOVE COMPUTATIONAL-3 TO REPORT

The bytes used for moving COMPUTATIONAL-3 data to a report field is:

24 bytes for a simple move,
12 bytes for floating insertion character,
24 bytes for non-floating digit position.
18 bytes for decimal alignment,
24 bytes for trailing characters,
12 bytes for unmatched digit positions.

RE~TIONALS

IF COMPUTATIONAL-3 = COMPUTATIONAL-3

The cost in bytes to execu.te an IF statement when all data is defined as
COMPUTATIONAL-3 is:

6 bytes for the compare and branch instruction (no decimal
alignment).

42 bytes for the compare and branch with decimal alignment.

IF DISPLAY = COMPUTATIONAL-3

The bytes used to execute an IF statement when data is defined as DIS­
PLAY and COMPUTATIONAL-3 is:

18 bytes for conversion and for the compare and branch instruction,
and

18 bytes for decimal alignment.

Section VI: Programming considerations 79

IF COMPUTATIONAL COMPUTATIONAL

The bytes used to execute an IF statement when all data is defined as
COMPUTATIONAL is:

18 bytes for the compare and branch instruction, when the number of
decimal digits is 1 to 9.

The number of bytes required to execute the IF statement is unpre­
dictable when the number of decimal digits is from 10 to 18.

For optimum use of core storage when writing an IF statement, first make
all computations and then compare results.

ARITHMETIC COMPUTATIONS

ADD COMPUTATIONAL-3 TO COMPUTATIONAL-3

The bytes used to execute an ADD statement when all data is defined as
computational-3 is:

6 bytes to execute the add, up to 56 bytes for alignment of deci­
mals, and 4 bytes for blanking the sign.

GENERAL TECHNIQUES FOR CODING

The following examples illustrate how COBOL data fields can be manipu­
lated. Some of the techniques illustrated are basic and can be used in
most programs, whereas others are designed to give the programmer an
insight into techniques applicable to more sophisticated programs~

INTERMEDIATE RESULTS IN COMPLEX EXPRESSIONS

The compiler can process complicated statements, but not always with the
same efficiency of storage utilization as the source programmer.
Because truncation may occur during computations, unexpected intermedi­
ate results may be obtainedo The rules for truncation are in the publi­
cation IBM System/360 COBOL Language specifications.

A method of avoiding unexpected intermediate results is to make crit­
ical computations by assigning maximum (or minimum) values to all fields
and analyzing the results (by testing critical computations for results
expected).

Because of concealed intermediate results, the final result is not
always obvious.

80 Disk and Tape Operating Systems COBOL Programmer's Guide

Alternate Method of Solution (Unexpected Intermediate Results)

The necessity of computing worst case (or best case) results can be eli­
minated by keeping statements simple. This can be accomplished by
splitting up the statement and controlling intermediate results to be
sure unexpected final results are not obtained. consider the following
example:

COMPUTE B = (A + 3) / C + 27.600.

First define adequate intermediate result fields, i.e.,:

02 INTERMEDIATE-RESULT-A PICTURE S9(6)V999.
02 INTERMEDIATE-RESULT-B PICTURE S9(6)V999.

Then, split up the expression, as follows.

ADD A,3 GIVING INTERMEDIATE-RESULT-A.

then write:

DIVIDE C INTO INTERMEDIATE-RESULT-A GIVING
INTERMEDIATE-RESULT-B.

then, compute the final result by writing:

ADD INTERMEDIATE-RESULT-B, 27.600 GIVING B.

ARITHMETIC SUGGESTIONS

Initialize arithmetic fields before using them in computations. If the
programmer attempts to use a field without it being initialized, the
contents of the field are unpredictable: thus, invalid results might be
obtained, or the job might terminate abnormally.

Exponentiation

Avoid exponentiation to a fractional power. For example:

V ** (p / N)

This requires the use of the floating-point feature,. Use of floating
point can be avoided by dividing the statements into separate computa­
tions. Example 1 requires the use of the floating-point feature.
Example 2 restates the problem, illustrating how the use of floating
point can be circumvented.

Assume data is defined:

DATA DIVISION.
WORKING-STORAGE SECTION.
77 FLD PICTURE S9'9V9, COMPUTATIONAL- 3.
77 EXPO PICTURE 8<99, COMPUTATIONAL-3.
77 P PICTURE S99.
77 N PICTURE S99.
77 VALUE1 PICTURE S99.

Section VI: Programming Considerations 81

Assume values used in the example were appropriately moved into their
respective symbolic names, as follows:

VALUEl = 5, P = 10, and N = 5.

Example 1:

COMPUTE FLO = VALUEl ** (p / N).

Because (P/N) = 10/5 = 2.00 (with decimal places), the floating­
point feature is required to solve this statement even though
the exponent is an integer. The use of this type of statement
involves the floating-point feature because it is not known
whether decimal digits are present when the exponent is
developed.

Example 2:

The statement in example 1 can be solved by writing:

COMPUTE EXPO = (P / N).

The result is truncated to two significant digits (599), then write:

COMPUTE FLO = VALUEl ** EXPO.

Thus" the statement written in example 1 can be solved by dividing it
into two separate computations, avoiding the need for floating-point
instructions.

Another occurrence that can affect final results is intermediate
result truncation. For example, assume that

VALUEl = 10, and N = 2

If COMPUTE FLO = (VALUEl ** N) - 2 is written, by sUbstitution the
result is:

FLO
599V9
599V9
599V9

(VALUEl ** N) - 2
(599 ** 599) - 2
(10 ** 2) - 2
100.0 - 2

By the rule for truncation:

599V9 = 100.0 - 2.

The most significant digit is truncated. The final result is then:

FLO = OO.Q - 2

An unexpected result could be:

FLD = 02.0

The situation can be corrected by expanding the target field (FLO),
as follows:

77 FLD PICTURE 5999V9.

then, when the statement is written (assuming VALUEl 10, and N 2) :

COMPUTE FLD = (VALUEl ** N) - 2.

the result is:

82 Disk and Tape Operating systems COBOL Programmer's Guide

FLD = (VALUEl ** N) - 2
S999V9 = (S99 ** S99) - 2
S999V9 = (10 ** 2) - 2.

By the rule for truncation:

S999V9 = 100.0 - 2.

the result is,

FLO = 098.0

which is the expected result.

COMPARISONS

Numeric comparisons are usually done in COMPUTATIONAL~3 format; there­
fore, COMPUTATIONAL-3 is usually the most efficient data format,.

Because compiler inserted slack bytes can contain meaningless data,
group comparisons should not be attempted when slack bytes are within
the group unless the programmer knows the contents of the slack bytes.

REDUNDANT CODING

To avoid redundant coding of usage designators, use computational desig­
nators at the group level (this does not affect the object program).

Example:

Instead of:

02 FULLER.
03 A COMPUTATIONAL-3 PICTURE 99V9.
03 B COMPUTATIONAL-3 PICTURE 99V9.
03 C COMPUTATIONAL-3 PICTURE 99V9.

write:

EDITING

02 FULLER COMPUTATIONAL-3.
03 A PICTURE 99V9.
03 B PICTURE 99V9.
03 C PICTURE 99V9.

A high-order nonfloating digit position involves more instructions than
a floating digit position..

Example:

nonfloating floating
999.99 vs $$$9.99

section VI: Programming Considerations 83

The blank-when-zero is implied in certain pictures. For example:

zzz.zz

If blank-when-zero is not required for low-order characters, much
more efficient coding is generated by pictures such as:

ZZZ.99

OPENING FILES

The OPEN statement does not require a work area. Less storage is used
if multiple files are opened with one OPEN statement rather than speci­
fying an OPEN statement for each file. A single OPEN requires approxim­
ately 100 bytes of additional storage for each file-name.

To conserve storage, use:

OPEN INPUT FILEA, FILEB.

rather than:

OPEN INPUT FILEA OPEN INPUT FILEB.

ACCEPT VERB

The ACCEPT verb does not provide for recognition of the last card being
read from a card reader. When COBOL detects a /* card, it drops through
to the next statement. Because no indication of this is given by COBOL~
an end-of-file detection requires special treatment. Thus, the pro­
grammer must provide his own end card (some card other than /*> which he
can test to detect an end-of-file condition.

PARAGRAPH NAMES

Paragraph names use storage when the PERFORM verb is used in the pro­
gram. Use of paragraph names for comments requires more storage than
the use of NOTE or a blank card. Use NOTE and/or a blank card for iden­
tifying in-line procedures where paragraph names are not required.

Example:

Avoid writing the following:

MOVE A TO B.
PERFORM JOES-ROUTINE

JOES-ROUTINE. COMPUTE A = D + E * F.

84 Disk and Tape Operating Systems COBOL Programmer's Guide

The recommended coding is:

MOVE A TO B.
PERFORM ROUTINE.

NOTE JOES-ROUTINE.
ROUTINE. COMPU'I:'E A = D + E * F.

TRAILING CHARACTERS

Pictures with a trailing period or comma require that punctuation fol­
low, otherwise the trailing picture character is treated as punctuation.

Example:

77A PICTURE IS 999., USAGE IS DISPLAY.

REDEFINITION

The results of moving a field to itself through the use of redefinition
are unpredictable. To manipulate unusual data forms, use the REDEFINES
clause. For example, a technique for isolating one binary byte follows,.

02 A PICTURE S99 COMPUTATIONAL.
02 FILLER REDEFINES A.

03 FILLER PICTURE X.
03 B PICTURE X.

Explanation:

COMPUTATIONAL sets up a binary halfword:

I I I I L ____ ~ _____ ~ _________ J

t
S~r--3 ~5

Byte 1 Byte 2

A

02 FILLER REDEFINES A. , states that A is to be redefined
as follows:

• Ignore first byte (03 FILLER PICTURE X) •

• Name second byte B. (03 B PICTURE X).

Now byte B can be moved to a work area, and the assembler can perform
logic operations operated on logically at the assembler level, or logic­
al comparisons can be made by the COBOL program. It can be stored in a
file, and later moved back to its pOint in a similarly defined field.
However, using data in this manner can present problems regarding signs
and numeric values. These problems require a knowledge of both
System/360 and COBOL.

Another illustration of using the REDEFINES clause to manipulate data
concerns the test IF NUMERIC. A field is considered numeric (under

section VI: Programming considerations 85

normal language usage) if all the positions of the field are numeric
with the exception of the sign position.

If a field is to be considered numeric only when it is unsigned, the
sign position must be tested. A technique for relocating the sign (or
"shifting") so that it can be tested as an unsigned numeric value
follows.

Assume a field is defined:

02 IF-NUM-FIELD PICTURE XeS) VALUE '00000'.
02 CHANGE-FIELD REDEFINES IF-NUMB-FIELD.

03 REAL-FIELD, PICTURE S9(4).
03 FILLER, PICTURE X.

IF-NUM-FIELD defines a 5-byte alphanumeric field.
REAL-FIELD redefined this field to be 4 bytes numeric.

The fields appear in storage, as follows:

IF-NUM-FIELD
~ ,,-""A ~

101 0 I 0 I 0 101 L ___ ~ ___ ~ ___ ~ ___ ~ ___ J

I 2 3 4 S Byte positions
~

REAL-FIELD FILLER

To make an IF NUMERIC test true for only unsigned fields:

1. Move the 4-byte value to be tested into REAL-FIELD. The value and
its sign occupy bytes 1-4.

For example:

If +1234 is moved to REAL-FIELD, the resultant field appears in
storage as follows:

IF-NUM-FIELD
....- -..-." - -.......

Case A I Fl I F2 I F3 I C4 I FO I L ____ i ____ ~ ____ ~ ____ i ____ J

123 4 S
~

Byte Positions -
REAL-FIELD FILLER

Note that the low-order byte (rightmost byte) of IF-NUM-FIELD
retains its initial value of o.
If 1234 is moved to REAL-FIELD, the resultant field appears in
storage, as follows:

IF-NUM-FIELD
~ _...A--_---____

Case B I Fl I F2 I F3 I F4 I FO I L ____ i ____ ~ ____ ~ ____ i ____ J

1 2 3 4 5
~

Byte Position

REAL-FIELD FILLER
2. Test IF-NUM-FIELD FOR NUMERIC.

All four bytes of REAL-FIELD will be tested as an unsigned numeric
value because the sign position was "shifted left one position,"
and is no longer in the units position of IF-NUM-FIELD. If the
value is unsigned, a hexadecimal F appears in the sign position or
fourth byte of the 4-byte field, and it appears as an unsigned
numeric character.

86 Disk and Tape Operating Systems COBOL Programmer's Guide

Thus, in the preceding example, when the fourth byte is tested in
case A, the numeric test fails, but when tested in case B the num­
eric test is satisfied.

ALIGNMENT AND SLACK BYTES

Unless binary (COMPUTATIONAL) or floating-point data (COMPUTATIONAL-1 or
COMPUTATIONAL-2) is used, the programmer need not be concerned with
slack bytes and alignment. Slack bytes are bytes inserted either by the
programmer or the compiler in order to align data items.

Slack bytes required to align data are generated by the compiler.

01 RECORD.
02 FLD-1 PICTURE IS X(2).
02 FLD-2 PICTURE IS S99999 COMPUTATIONAL.

Because FLD-2 is binary and five digits in length, the compiler sets
aside one fullword which must be aligned on a fullword boundary. In
this example, two slack bytes are required. The compiler inserts them
automatically.

A warning diagnostic message is given when slack bytes are inserted
by the compiler.

Because COBOL aligns computational fields on output files and expects
them to contain slack bytes (where required) on input files, a problem
could exist when reading or writing a file.

A file that is to be read that contains computational fields without
slack bytes must be coded in the same manner. That is, it must be coded
with the knowledge that it. does not contain slack bytes. If the file
contains computational data without slack bytes, the data will not be
properly aligned when read from the file, thus it cannot be processed by
the compiler.

The following is a technique for manipulating computational data not
containing slack bytes so that it may be processed by the compiler.

Assume a group record called RECORD-C exists on a file and consists
of 2 bytes of alphanumeric data called GOLD" and 4 bytes of binary data
called SILVER. The record in file would appear, as follows:

r----T----T----T----T----T----'
I I I I I I I
I I I I I I I
Lf---~----t---~~----~----~----J

GOLD SILVER

LRECORD-C

If an FD were defined:

01 RECORD-C.
02 GOLD PICTURE XX.
02 SILVER PICTURE S99999 COMPUTATIONAL.

section VI: Programming considerations 87

The compiler assumes the following structure:

r----T---- ----T----T----T----'
I I I I I I
I I ,;: ":'::: I I I I \----.1----~ ___ .1 ____ .1 ____ .1 ____ J

GOLD SLACK SiLVER
I BYTES

RECORD-C

When the record on the file is read, it is placed in the area
defined, left justified. The area thus contains the following:

r----T---- -----T----'
I I I I
I I I I t-----L---- --- ____ J

GOLD

R~CORD-C
SLACK
BYTES

SILVER (This is the compiler­
generated address for
SILVER)

Thus, the first 2 bytes of the 02 SILVER are lost because of improper
alignment. Hence, when the 02 SILVER is accessed, only the last 2 bytes
are available.

To circumvent this problem, define RECORD-C, as follows:

02 GOLD PICTURE XX.
02 SILVER PICTURE XXXX.

and a GROUP item such as:

01 LEAD.
02 DIAMOND PICTURE S99999 COMPUTATIONAL.

Now, access RECORD-C. This places it in the buffer, properly aligned.
Then move the 4-byte 02 SILVER (defined as alphanumeric but which is
actually binary data) to the record 01 LEAD. Because the 01 LEAD is a
group item, the data moved retains its original form (no data conversion
takes place) and the 02 SILVER and 02 DIAMOND are properly aligned.
Thus, by accessing DIAMOND, the binary data can be operated on as
desired.

Assuming the same record (RECORD-C) out on the file, there is an
alternate method of obtaining proper alignment when reading the record.

Define a record in an FD, as follows:

01 RECORD-C.
02 GOLD PICTURE XX.
02 SLIVER PICTURE XXXX.

r----T----T----T----T----T----'
I I I I I I I
I I I I I I I L ___ -.1-___ .1 ____ .1 ____ .1 ____ .1 ____ J

t
GOLD SILJER

RECORD-C

88 Disk and Tape Operating-Systems COBOL Programmer's Guide

then define a record in the WORKING-STORAGE section as~

01 BRASS.
02 LEAD PICTURE XXXX.
02 DIAMOND REDEFINES LEAD PICTURE S99999 COMPUTATIONAL.

As before, when the record is accessed, it is placed properly aligned in
the buffer.

Its structure in the buffer would be:

r----T----T----T----T----T----'
I I I I I I I
I I I I I I I
L----~----l----~----~----~----J

1
GOLD ILVER

RECORD-C

Now move the 4-byte 02 SILVER to the 02 LEAD. Because the 02 SILVER and
02 LEAD are both defined as display, the data retains its original form
and are properly aligned. By accessing the REDEFINES (DIAMONDS) the
binary data can be operated on as desired. The same problem could exist
when reading or writing floating-point data.

For a complete discussion of slack bytes, refer to the publication
IBM System/360 COBOL Language Specifications.

VARIABLE LENGTH RECORDS

Variable length records can be specified for standard sequential files
only. The OCCURS ••• DEPENDING ON clause describes the part of the record
that is to be variable. &1 example of specifying a variable length
record is, as follows:

01 VARIABLE-REC.
05 FIXED.

10 A PICTURE X(46).,
10 CONSTANT PICTURE 99.

05 VARIABLE-PART OCCURS 10 TIMES DEPENDING ON CONSTANT.
10 V-1 PICTURE X(38).
10 V-2 PICTURE 9(10).

The record consists of a fixed portion and a variable portion. The
variable portion must be the last part of the r~cord. The variable por­
tion in the example can occur a maximum of 10 times depending on
CONSTANT. In this example, CONSTANT is part of the record but it need
not be. However, the prog:cammer is always responsible for initializing
and updating the value of CONSTANT before referring to data items that
are part of the variable portion of the record (such as V-1 and V-2 in
the example). The value o:f CONSTANT may be 0, in which case only the
fixed portion of the record exists. However, the value of CONSTANT can­
not be negative.

References to the variable portion must always be subscripted. For
example, V-l (1) refers to the first occurrence of the field in the
record. If the subscript is a data-name, for example V-l (N), the pro­
grammer must be sure that N has the appropriate value. He may wish to
initialize it to 1, increment it to refer to subsequent portions of the
r'ecord, and check it for maximum size.

section VI: Programming considerations 89

If a subscript is represented by a literal, the location of the sub­
scripted data item is resolved at compile time. If a subscript is
represented by a data name, the location is resolved at execution time
for each occurrence of the data item. Thus., if a data item subscripted
by a variable is to be used frequently, it is more efficient to move the
data item to a work area. It is also more efficent to define subscripts
as COMPUTATIONAL with pictures of not more than five integers.

BLOCKING VARIABLE LENGTH RECORDS

When blocking variable length records, the programmer must consider how
much the records will vary and the size of the buffer area. A buffer is
a designated area in main storage used for input/output transactions.
When file processing begins, a block is placed into a buffer where the
records are directly addressed. Execution of a READ or WRITE statement
directs a pointer to the appropriate record in the buffer. When writing
a file, the buffer is filled and then written out as a block.

When a variable length record is written, it actually contains the
record itself and a 4-byte control field indicating the record length.
An additional A-byte control field containing the block size precedes
each block. The following illustration shows the layout of both blocked
and unblocked records.

UNBLOCKED BLOCKSIZEIRECORDSIZEIRECORD IIRGIBLOCKSIZEIRECSIZEIRECORD
---------+----------+-------+---+---------+-------+-------

4-bytes I 4-bytes lx-bytes I I 4-bytes 14-byteslx-bytes

BLOCKED BLOCKSIZEIRECORDSIZEIRECORD IRECORDSIZEIRECORD IRECSIZEIRECORD
---------+------_._--+-------+----------+-------+-------+-------

4-bytes I 4-bytes I x-bytes I 4-bytes I x-bytes I 4-bytes lx-bytes

These control fields are supplied by the system and are not available
to the programmer. However, they are a consideration when determining
the buffer size which is specified by means of the BLOCK CONTAINS
clause. If the BLOCK CONTAINS integer CHARACTERS form of the clause is
used, integer must equal the size of the largest record defined for the
file (RECORD CONTAINS) plus an additional 4-bytes for each ,record for
the control field that precedes each record. (The compiler adds the
4-byte block count field. The programmer does not include this field in
his count.) Note that if the file contains records with COMPUTATIONAL,
COMPUTATIONAL-i, or COMPUTATIONAL-2 entries, it is the programmer's
responsibility to add necessary intra-record slack bytes. These slack
bytes are part of the record description and must be included in the
value of the integer.

Thus, if two types of records are to be written, one of 400 charac­
ters in length and the other 200 characters in length (RECORD CONTAINS
200 TO 400 CHARACTERS>, the minimum integer that can be specified is 404
(BLOCK CONTAINS 404).

However, if a record 200 characters long was placed in the block spe­
cified, there would not be enough space allocated for another record
even if the next record was also 200 characters long, because the 4-byte
count field preceding each variable length record could not be accommo­
dated. Therefore, given the above facts, the prograrrlmer should at least
specify BLOCK CONTAINS 408 optimum ang use the APPLY WRITE-ONLY option.
This option is specified to make optimum use of buffer space. When it

90 Disk and Tape Operating Systems COBOL Programmer's Guide

is specified, the length of the next record to be written is checked
against the space remaining in the buffer. If the space is sufficient,
the record is written. If APPLY WRITE-ONLY is not specified, the buffer
is truncated and the block is written out whenever the space remaining
in the buffer is not sufficent for the maximum record (400 characters in
the above example) defined for the file,.

The programmer can use "the RECORDS option instead of the CHARACTERS
option in the BLOCK CONTAINS clause to specify how many maximum size
records are to fit into a block. The compiler then computes the buffer
size by multiplying the length of the maximum size record by the number
of records specified and adding 4 bytes for the block count field and 4
bytes for a count field for each record. This option is more efficient
if the records do not vary in size considerably. However, if the fol­
lowing is specified:

RECORD CONTAINS 200 TO 400 CHARACTERS
BLOCK~CONTAINS 3 RECORDS

f

the compiler reserves a buffer area of 1216 characters. Depending on
the actual size of the records, more records could probably be contained
in the buffer area. Given the above facts/, it is possible for a block
to contain five 200-charac'ter records (5*204+4<1216).

PROCESSING BUFFERS

Files can be processed using mUltiple buffers. Logical records are
referenced in the proper biock by adjusting registers (using them as
pOinters).

This technique eliminates the need for moving a record from the buff­
er area to a separate record work area, as well as the record work area
itself. The record can be operated on directly in the buffer area.

When processing records in a buffer, the next read results in the
previous record not being available. Because the previous record is no
longer available, the technique of moving a high value to the control
field of the last record (to force the processing of records remaining
on the other file) cannot be used.

Here are several alternatives:

1. A GO TO statement, prior to the compare, can be altered during the
AT END procedure to GO TO the low compare procedure, thus bypassing
the compare.

2. A dummy record having a high value in its control field can be pro­
vided as the last logical .record. This automatically causes the
associated files to compare low. However, this can result in the
AT END condition never occurring.

3. The control field can be moved to a separate work area following
the read, and compared in the work area. The control field is then
available in the work area following an AT END condition. The AT
END procedure can move a high value into the control field.

'" VARIABLE RECORD ALIGNMENT CONTAINING OCCURS ••• DEPENDING ON CLAUSE

Records are processed in the file's buffer area. The first record
starts on a doubleword boundary. If there is no OCCURS ••• DEPENDING ON

section VI: programming Considerations 91

clause, a diagnostic message is given indicating the padding to be added
to the record to assure proper alignment of succeeding records.

To align blocked V-type records containing an OCCURS ••• DEPENDING ON
clause in the buffer:

1. Determine the largest alignment factor with the record.

~lignmeni facto.f is
2
4
8
o

For
COIvlPUTATIONAL (1-4 digits)
COMPUTATIONAL-lor COMPUTATIONAL (5-18 digits)
COMPUTATIONAL-2
OTHER

2. For alignment factors of four or less, pad both the fixed and the
variable portions of the record to an even multiple of the align­
ment factor.

3. For an alignment factor of eight, move the record, as a group, to
01 in the working storage section.

MULTIVOLUME INPUT FILE WITH STANDARD LABELS, ALTERNATE TAPE DRIVE
SPECIFIED

When volume switching occurs for a multivolume file with standard
labels, the volume just completed will not rewind.

INPUT/OUTPUT ERROR PROCES§JNG CONSIDERATIONS

The USE AFTER STANDARD ERROR clause provides the programmer with a means
for investigating input/output processing errors. Depending upon the
presence or absence of the declarative section, IOCS provides certain
error processing procedures when an input/output error occurs. The fol­
lowing points should be considered when the USE AFTER STANDARD ERROR
clause is used with the various types of file organization.

SEQUENTIAL TAPE FILE ORGANIZATION

1. If the declarative section is not included in the program and a
wrong length record occurs, the program is abnormally terminated
and a storage dump is produced.

If the declarative section is not included in the program and a
parity error is detected when a block of tape records is read~ the
tape is backspaced and reread 100 times. If the parity error per­
sists, the tape block within which the error occurred is considered
a tape error block, and the block is added to the block count found
in the DTF table. Ioes indicates an input/output error (by a diag­
nostic message) and cancels the job.

2. If the declarative section is included in the program and a parity
error is detected when a block of tape records is read (described
in 1 above), the tape is backspaced and reread 100 times. If the
error persists~ the tape block is considered a tape error block,
and the block 1S added to the block count found in the DTF table.
However, instead of canceling the job (this occurs when a dec lara-

92 Disk and Tape Operating Systems COBOL Programmer's Guide

tive section is not included in the program), IOCS transfers con­
trol to the declarative section procedures to be followed on an
error condition.

3. The address of the tape error block is stored by COBOL in register
3 + 192, and is accessible through an assembler subprogram.

Normal return (to the main program) from the declarative section is
through the IOCS subroutine invoked, thus bringing the next sequen­
tial block into main storage and permitting continued processing of
the file (the bad block is bypassed).

The programmer can interrogate the DTF table further, and display
any pertinent data desired (such as block number) by using a CALL
statement USING filename.

A return through the use of GO TO does not bring the next block
into main storage, therefore continued processing of the file is
impossible.

4. In the case of tapes, the error declarative is entered only for
read errors. For write errors, IOCS automatically retries 15 times
(including skips and erases) and then cancels the job.

SEQUENTIAL DISK FILE ORGANIZATION

1. If the declarative section is not included in the program and a
parity error occurs when a block of records is read, the disk block
is reread 10 times. If the read error persists, the disk block,
within which the error occurred is considered a disk error block,
and the job is terminated. If a parity error occurs when a block
of records is written., IOCS attempts to write the block on an
alternate track, and continued processing of the file is permitted.

If the declarative section is not included in the program and a
wrong length record occurs, IOCS issues an invalid supervisor CALL
of 32 which causes a storage dump.

2. If the declarative section is included in the program, and a read
or write error occurs that the programmer does not want canceled,
the declarative section is entered.

If a parity error occurs when a block of records is read (described
in 1 above), the disk block is reread 10 times. If the read error
persists, the disk block within which the error occurred is consi­
dered a disk error block and a READ operation cannot be issued to
the error block. IOCS transfers control to the declarative section
procedures to be followed on an error condition.

In the case of a READ operation, normal return from the declarative
is to the IOCS subroutine invoked, thus bringing the next sequen­
tial block into storage and permitting continued processing of the
tile.

If a parity error occurs when a block of records is written, IOCS
transfers control to the declarative section procedures to be fol­
lowed on an error condition.

In the case of a WRITE operation, normal return from the declara­
tive is to the next instruction in the problem program. The disk
block that was to be written is bypassed.

3. In the case of a READ error, a return from the declarative through
the use of GO TO does not bring the next block into main storage.

section VI: Programming considerations 93

continued processing of the file is impossible and the file must be
closed.

In the case of a WRITE error, a return from the declarative through
the use of GO TO permits continued processing of the file. A norm­
al return from the declarative results in the record to be written
being bypassed.

Refer to Section VIII: Processing COBOL Files on Direct Access
Devices for information on error processing for other direct access
organizations.

94 Disk and Tape Operating Systems COBOL Programmer's Guide

f~CTION VII: SUBPROGRAMS AND OVERLAY STRUCTURES

LINKAGE EDITOR

The output of a COBOL compi.lation is an object module. Before the pro­
gram can be executed, it must be altered to a form acceptable for execu­
tion. The linkage editor edits the object module and produces a program
phase. The structure of a program phase makes it suitable for execu­
tion. The COBOL program itself is produced as one control section.
However" there may be external ref erences, such as entry points to sub­
routines or subprograms to be resolved. The subroutines that the COBOL
compiler calls for in the object program, e.g., for conversion from COM­
PUTATIONAL to COMPUTATIONAI.-3, are obtained from the relocatable
library. The subprograms that a user CALLS in his COBOL source program
can be obtained from SYSIPT or from the relocatable library.

CALLING A SUBPROGRAM

Figure 12 illustrates how a subprogram is called and what data defini­
tions are required to support the CALL.

The calling program 'CALLPROG' calls the subprogram 'PAYROLL', hand­
ing 'PAYMSTER' the address of the group item, JONES-J.

The elementary data items subordinate to JONES-J" i.e., SALARY, RATE"
HOURS, can be operated on by 'PAYMSTER' through its using statement
parameter, PAYOFF.

In effect, JONES-J is "equated" to PAYOFF. Any operation performed
on data items subordinate to PAYOFF are really done to those items sub­
ordinate to JONES-J.

Be sure the PICTURE descriptions of equated data items are identical.
There is no necessary relationship between the ~ of data items
between calling programs and subprograms.

Notice that the PICTURES for the data items under JONES-J and PAYOFF
are identical. This is good technique.

It is not required, necessarily, that the number of characters in a
PICTURE of a data item be identical to its related data item, but it is
required that the number of characters per record description be equal
to its associated record. (The record in the calling program and the
record in the called subprogram.)

Note: The entry-name (ENTRY 'PAYMSTER') must not be the same as the
Program-ID ('PAYROLL').

section VII: Subprograms and Overlay Structures 95

I COBOL PROGRAM SH~ET
Punching Inl'ructlonl

GrophlC Cord Form.

Proorommtr J. DOE Do'l Punch

SE~UENCE

I~ : ~B
(PAGE) (SERIAL)

ll2 20 I 34 6 16 24 28 32 36 40 44 48 52 56

ti¢1 4> , ID ENiT IF 1 C AT ION DJ VI $I ON •
• ~Z Pit G;R AIM - I D. I/" AI. LP It", G' •

'3 RE ~A:A K~ • EX ~~ PL.E [oF A CA Ll IN G PR O~ RA M.
· I .

I

· I •
~ . .8 DA rr A: 01 VI 51 ON.

· : .
1 .

· ~~ RK'l NG -5 ITo RA ~E SE t"T 1 0 N.

· , 5 ~I :R E" Pit 01.

· , , I~ 2' JO NE s- J .

· , 7 :.3 SA LA RV PI ~T URE IS 9(5} V9 9 •

· 18 :.3 .RA TE PI CT URE IS 9V 99.

· 19 ~~ foiO URS PI CT URE IS 99 lV' • , · ,
· 2. Pit 1'l~:E DU RE 01 VI 51 ON.

· · l .

· : .
· 25 lEN TER. Ll Nk AG ~.

· 26 leA LL ' P ~v MS TE R' US I N6 Jo NIl: 5- J.
IcjI~1 27 'EN TE~ en 80 L.

I
I

· · I •

· · , .
• A IIItandatd card form, IBM electro C61897, is avail.ble fot puncbing source statements from tbis form.

Figure 12. Example of a Calling Program (Part 1 of 3).

96 Disk and Tape Operating Systems COBOL Programmer's Guide

Form No. X28-1 ~64
PrInted In U.S.A.

Shit' of

* Id.nllflcotlon

80

eo 64 68 7;

II., COBOL PROGRAM SHEET Form No. X28-1464
Printed In U.S.A.

Syet"" IBM SVSTEM/.36(J) COBOL Punching Inltructlonl Sh .. t of

Pr09fGm DA.TA PASSING SUBROUTINE Graphlo I I I I I I ICard Form. * Identification

Praorammer J. DOe IDote I I I I I I I
I

Punch 73] IJO

SEQUENCE

I~ : le
t"o!~ '.lIIlIA6' '12 18 20 24 28 ~ 36 40 f4 48 52 56 eo 64 68 7ii

41., ~, ID EMiT IF Ie ~ TJ ON 01 VIS loiN. I I II I ! i I i

1412 PR nGiR ~M -I o. • P AV RO ILL' I ! 1 i i !
,

Ii : i . i

· · : I! I I I I I ! I ,
! i ;

i : ! ! 1

· · I I ! . i !
I I ! i : I ! 1 ! i I I I

· I I I i i ! i i J I i I !
I ; I !

· ~~ OA ~ A~ 01 VI 510 Ni.1 Iii I I. I ; i !

! I : i

· · : 1 : I I I Ii i: ! I . , I
i

· 148 77 :S ~L ~R YX PIC TU RE IS 9{ 51)' V 9·'9 IV~'L:U:E IS: .. t_ ~':.i . 1
; I i I I

· · ~ i ! I ! ! i ,
i i i ~ : ! 1 :

· · : ! I 1 ; , i i I i I : : ! ~

· 12 Ll NK:A GE SEiC Tl ONi. i ! I I i I I i ! i i I 1

· · : i I I I , I j ! ,
i

· IS ~I :PA VIO FF .' 1 I I! i
,

! ,
I I ' j

16 tZ: p~rt PI CT URE IS , (!Sj),V ':9'. ~ ! ! I , : i j I : I I

· 17 .2: R~ rrEX PI CTU RE I,S '9iVi9 9 1.[I : i !

· .2: M~ URS PI IeITIU RE :I~ 1919 1y 9.: i ; : i ! ;
i I

· 25 PR nC:E DU Rr; PI VI 51 ON!. ! I ! I i : ! ; ii 1, ,
i

· I ! ! 1 I 1 i ~ i I I : ~ I !

· · I I ! Ii I' i I I j i; i • 1 i

· : I I ! i ! ! I I I ! : i I i

· l I i i i I! : I i i :

· : !
i ! I I : i I I .

· 4~ :ew il'ER LI NK "G E. i Ii : ! !

· 141 ~E Nil' RV ' P AV MS TE Rt. u~ IN~ Pia. '('rt FF. I ! I ! i
~"'l ~2 !E N[r' ER co ~~ L. I Ii ! i ,

! i

• A ataodard card form, IBM elecuo C61897, is available fqc UDchin source statements &om this form.

Figure 12. Example of a Calling Program (Part 2 of 3).

11'4 COBOL PROGRAM SHEET Form No. X28~ 1464
Printed In U.S

Syetem 16M SV5TE.M/360 COBOL Punching Inltructlonl She.t of

Pro\lram t)AT~ PASSING SUBROUTIN E' Graphlo I l I U Card Form# * Identification

Proorammer J. DOe Date Punch I I I U 73] 1J0

SEQUENCE

I~ : le
:'AIIE~ ~EIIIA61 :12 16 20 24 28 ~ 36 40 44 48 52 ~6 ~ 64 68 7ii

4'4'2 4r4 ~O ~pi. ·1 ~M PD TI: S~ LA RYX = lot 0 UR S ~ RA TIE >C.
0 0 : .
· 47 IMO VE SA LA RVi)(T~ PA v.
· · I . I

· · J • !

0 5~ lEN 'TE~ Ll NK "6 Elo' ! I

· , , 'RE TU R.N. I

!'~2 5'2 :EN TEIQ CIr1 SO lo 11 I- v-... --... i.-"''''
--.... __ 1.--'

! 1--.......... V'-l...- I0::""V -.......... / - ,,-
.... - --
Figure 12. Example of a Calling Program (Part 3 of 3).

section VII: Subprograms and Overlay Structures 97

ACCESSING CALL PARAMETERS

When a call is issued, the address of JONES-J is passed to a special
table generated by COBOL and reserved for USING statement parameters.
(The user need not declare storage for this table because it is taken
care of by COBOL.) Control is then transferred to the subprogram (entry
point) which accesses a special register that contains the address of
the generated table. The table contains all the addresses of USING
statement items declared by the calling program (JONES-J). The subpro­
gram, having obtained the address of the parameter table, can operate on
any parameter (JONES-J) in the table. (Therefore, it can operate on any
item subordinate to a parameter.)

Any procedural statements referencing using parameters written in the
subprogram actually operate on the data items declared in the calling
program as though they (data items) were located within their own data
division. The subprogram makes a salary computation:

COMP. COMPUTE SALARYX HOURS * RATEX

and moves SALARYX into the elementary item called PAY. Since JONES-J is
equated to PAYOFF, then SALARY (under JONES-J) is equated to PAY, and
SALARY (under JONES-J) contains the result of the computation COMP.

As illustrated, procedures previously written as subprograms can be
used by employing the calling statement. This eliminates the need for
repeated coding of frequently used procedures.

A programmer may want to prepare subprograms written in assembler
language for use with COBOL programs. For a description of the conven­
tions used in System/360 for preparing and using assembler language sub­
programs with COBOL, refer to Appendix A.

RESTRICTIONS ON THE USING STATEMENT

The maximum number of parameters permitted in a USING statement is 40.
The total number of distinct paragraph names used in all the USING sta­
tements in the entire program is limited to 90. There is no upper limit
to the number of data-names and file-names used throughout the program
although 40 parameters per USING statement also applies to data name.
Exceeding the limits specified causes diagnostic error messages.

OVERLAY STRUCTURES

The following discussion illustrates the procedures available for pro­
cessing COBOL subprograms. The first technique employs the linkage edi­
tor without using the overlay facility. The second technique employs
the linkage editor using the overlay facility. This technique allows
the programmer to specify, at linkage edit time, the overlays required
for a program. During execution of a program, overlays are performed
automatically for the programmer by the control program.

98 Disk and Tape Operating Systems COBOL Programmer's Guide

Normally, all subprograms referenced by the COBOL source program,
including the main program, will fit into main storage. Therefore, the
linkage editor nonoverlay technique of processing can be used to execute
the entire program.

Figure 13 illustrates the storage layout for nonoverlay processing.

r---,
I COBOL MAIN PROGRAM I
~---~ I SUBRTNX I
~---~ I SUBPROGRAM A I
~---~
I SUBPROGRAM B I
~---~
I SUBPROGRAM C I L ___ J

Figure 13. Storage Layout for Nonoverlay

Following is an example of the job control cards needed for the COBOL
call structure without oveI:lay. In this example, all the subprograms
(including the main program NOVERLAY) fit into main storage.

Figure 14 portrays the flow of data as a result of the call
structure.

// JOB NOVERLAY
// OPTION LINK, LIST, DUMP

ACTION MAP
PHASE EXAMP1,*
INCLUDE

{Object Module A}

/*
INCLUDE SUBRTNC
INCLUDE SUBRTND
INCLUDE

SUBRTN
OBJMOD B

/*
ENTRY

// EXEC LNKEDT
// EXEC

(data for program)
/*
/&

section VII: Subprograms and Overlay structures 99

SYSIPT

Main Program
Object Module A

SUBRTN
OBJMOD B

J---~ SUBRTN C ...---...

SUBRTN D

Execute
LNKEDT

Linkage
Editor

Main Program
OBJ MOD A

SUBRTNC

SUBRTND
SUB PROG
OBJ MOD B

Job Control

Storage
Layout

Figure 14. Example of Data Flow Logic in a Call structure

Note: For the example given, it is assumed that SYSLNK is a standard
assignment. The flow diagram illustrates how the various program seg­
ments are linkage edited into storage in a sequential arrangement.

OVERLAY PROCESSING

If the subprograms needed do not fit into main storage, it is still
possible to use them. The technique that enables the programmer to use
subprograms that do not fit into main storage (along with the main pro­
gram) is called overlay.

100 Disk and Tape Operating Systems COBOL Programmer's Guide

Figure 15 illustrates storage layout for overlay processing.

r---,
I COBOL MAIN PROGRAM I
~---~ I SUBRTNX I
~---~
I SUBPROGRAM I
~---i
I AQ!:BQ!:C I L ___ J

Figure 15. Storage Layout~ for Overlay Processing

Link~~Editing with Overl~

The linkage editor facility permits the reuse of storage locations
already occupied. By judiciously segmenting a program and using the
linkage editor overlay facility, the programmer can accomplish the
execution of a program too large to fit into storage at one time.

In using the overlay technique, the programmer specifies, to the lin­
kage editor, which subprog'rams are to overlay each other. The subpro­
grams specified are processed, as part of the program, by the linkage
editor so they can be automatically placed in main storage for execution
when requested by the program. The resulting output of the linkage edi­
tor is called an overlay structure.

It is possible, at linkage edit time, to set up an overlay structure
by using the COBOL source language statement ENTER LINKAGE and an
assembler language subroutine (such as the assembler language subroutine
OVRLAY, given in Appendix A). These statements enable a user to call a
subprogram that is not actually in storage. The details for setting up
the linkage editor control statements for accomplishing this procedure
can be found in the publication System Control and System Service listed
in the preface of this manual.

In a linkage editor run, the programmer specifies the overlay points
in a program by using PHASE statements. The linkage editor treats the
entire input as one program, resolving all symbols and inserting tables
into the program.

These tables are used by the control program to bring the overlay
subprograms into storage automatically, when called. An example is
given to illustrate how the overlay facility is used.

The intent of the overlay example given is merely to show how an
overlay structure is coded; therefore, no processing of the related
parameters are illustratedq

In order to process the parameters in the respective subprograms, the
USING parameters specified therein must be appropriately defined in the
pertinent working storage sections. Procedural statements can then be
written in each subprogram for the respective parameters.

It is the programmer's responsibility to write the entire overlay
procedure, i.e., the COBOL main (or calling) program, an assembler lan­
guage subroutine that fetches and overlays the subprograms desired, and
the overlay subpro'grams themselves. The linkage conventions for using
assembler language subroutines with COBOL subprograms are given in
Appendix A. A calling sequence to obtain an overlay structure between
two COBOL programs follows.

Section VII: Subprograms and Overlay Structures 101

COBOL Program Main (Root or Main Program):

IDENTIFICATION DIVISION.
PROGRAM-ID. 'OVERLAY'.

ENVIRONMENT DIVISION.

WORKING-STORAGE SECTION.
77 PROCESS-LABEL PICTURE IS XeS) VALUE IS 'OVERLAYB'.
77 PARAM-l PICTURE IS X.
77 PARAM-2 PICTURE IS XX.
77 COMPUTE-TAX PICTURE IS xes) VALUE IS 'OVERLAYC'.
01 NAMET.

02 EMPLY-NUMB PICTURE IS 9(5).
02 SALARY PICTURE IS 9(4)V99.
02 RATE PICTURE IS 9(3)V99.
02 HOURS-REG PICTURE IS 9(3)V99.
02 HOURS-OT PICTURE IS 9(2)V99.

01 COMPUTE-SALARY PICTURE IS xes) VALUE IS 'OVERLAYD'.
01 NAMES.

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.

ENTER LINKAGE_
CALL 'OVRLAY' USING PROCESS-LABEL, PARAM-1" PARAM-2.
ENTER COBOL.

ENTER LINKAGE.
CALL 'OVRLAY' USING COMPUTE-TAX, NAMET.
ENTER COBOL.

ENTER LINKAGE.
CALL 'OVRLAY' USING COMPUTE-SALARY, NAMES.
ENTER COBOL.

ENTER LINKAGE.
CALL 'OVRLAY' USING COMPUTE-TAX, NAMET.
ENTER COBOL.

102 Disk and Tape Operating Systems COBOL Programmer's Guide

COBOL Subprogram B:

IDENTIFICATION DIVISION.
PROGRAM-ID. 'OVERLAY1'.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.
01 PARAM-IO PICTURE IS X.
01 PARAM-20 PICTURE IS XX.
PROCEDURE DIVISION.

ENTER LINKAGE.
ENTRY 'OVERLAYX' USING PARAM-IO, PARAM-20.
ENTER COBOL.

ENTER LINKAGE.
RETURN.
ENTER COBOL.

COBOL Subprogram C:

IDENTIFICATION DIVISION.
PROGRAM-ID 'OVERLAY2'.

ENVIRONMENT DIVISION.

DATA DIVISION.
LINKAGE SECTION.
01 NAMEX.

02 EMPLY-NUMBX PICTURE IS 9(5).
02 SALARYX PICTURE IS 9(4)V99.
02 RATEX PICTURE IS 9(3)V99.
02 HOURS-REGX PICTURE IS 9(3)V99.
02 HOURS-OTX PICTURE IS 9(2)V99.

PROCEDURE DIVISION~

ENTER LINKAGE.
ENTRY 'OVERLAYY' USING NAMEX.
ENTER COBOL.

ENTER LINKAGE.
RETURN.
ENTER COBOL.

Section VII: Subprograms and Overlay Structures 103

COBOL Subprogram D:

IDENTIFICATION DIVISION.
PROGRAM-ID. 'OVERLAY3'.

ENVIRONMENT DIVISION.

DATA DIVISION.
LINKAGE SECTION.
01 NAMES.

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
ENTER LINKAGE.
ENTRY 'OVERLAYZ' USING NAMES.
ENTER COBOL.

ENTER LINKAGE.­
RETURN.
ENTER COBOL.

An assembly program called OVRLAY effects the overlay. It fetches
the COBOL subprogram called by the COBOL main program and puts it in the
overlay area.

Appendix A contains the assembly routine that accomplishes the over­
lay. Figure 16 is a flow diagram of the overlay logic.

Note that if OVERLAYB were known to be in storage the CALL would be:

CALL 'OVERLAYX' USING PARAM-l, PARAM-2.

But, when using the OVRLAY subroutine, it becomes:

CALL 'OVRLAY' USING PROCESS-LABEL, PARAM-l" PARAM-2.

where PROCESS-LABEL contains the external name 'OVERLAYB' of the
subprogram.

However, the ENTRY sta·tement of the subprogram is the same for both
cases, i.e., ENTRY 'OVERLAYX' USING PARAM-l0, PARAM-20, whether it is
called indirectly by the main program through the OVERLAY program or
called directly by the main program.

Note: An ENTRY that is to be called by OVRLAY must precede the first
executable statement in the subprogram.

104 Disk and Tape Operating systems COBOL Programmer's Guide

COBOL

CD Main or Root
@

Overlay Routine

® Overlay Area 0

Subprogram

Figure 16. Flow Diagram of Overlay Logic

The job control statements required to accomplish overlay follow.
The PHASE statements specify to the linkage editor that the overlay
structure to be established is one in which subprograms OVERLAYB, OVER­
LAYC, and OVERLAYD overlay each other when called during execution.

// JOB OVERLAYS
// OPTION LINK

PHASE OVERLAY,ROOT
// EXEC COBOL

/*

COBOL Source for
Main Program

'OVERLAY'

// EXEC ASSEMBLY
(source deck for OVRLAY)

/*
PHASE OVERLAYB,*

// EXEC COBOL

/*

COBOL Source for
Subprogram
'OVERLAYB'

PHASE OVERLAYC,OVERLAYB
/1. EXEC COBOL

/*

COBOL Source for
Subprogram

'OVERLAYC'

PHASE OVERLAYD,OVERLAYB
// EXEC COBOL

/*

COBOL Source for
Subprogram
'OVERLAYD'

// EXEC LNKEDT
// EXEC
/*
/&

Section VII: Subprograms and Overlay Structures 105

The PHASE cards indicate the begin address of each phase. The phases
OVERLAYC and OVERLAYD will have the same begin address as OVERLAYBu The
sequence of events is:

1. The main program calls the overlay routine.

2. The overlay routine fetches the particular COBOL subprogram and
puts it in the overlay area, and then

3. Transfers to the first instruction of the subprogram.

4. The subprogram returns to the COBOL calling program (not the over­
lay subroutine).

The sequence of PHASE statements given in this example causes the
linkage editor to structure a module, as follows:

OVERLAY

Assembler Routine
for OVRLAY

OVERLAYS OVERLAYC

{
{

OVERLAYD

The phase name specified in the PHASE card must be the same as the value
contained in the first argument for CALL 'OVRLAY', i.e., PROCESS-LABEL,
COMPUTE-TAX, etc., contain OVERLAYB, OVERLAYC, respectively, which are
the names given in the PHASE card. The phase name specified in the
PHASE statement and the ENTRY name in the called subprogram must not be
the same.

PASSING PARAMETERS TO ASSEMBLER LANGUAGE ROUTINE

A subprogram may be written in assembler language to take advantage of
the system's FETCH function or other control program options not avail­
able directly through the COBOL language. Thus" a main program in COBOL
may link to a subprogram in assembler language, passing a data name that
contains the name of the specific entry point desired.

106 Disk and Tape Operating Systems COBOL Programmer's Guide

An example of a COBOL program passing parameters to the assembler
language and the assembler language routine follow:

r-------~--,
IDENTIFICATION DIVISION.

PROGRAM-ID. 'COBOL' ..

DATA DIVISION.

WORKING-SECTION.
01 FIELD-1.

02 FIELD1A PICTURE IS XXX.
02 FIELD2A PICTURE IS XXX, VALUE IS 'ABC'.

PROCEDURE DIVISION.
MOVE 'ABC' TO FIELD1A.

ENTER LINKAGE.
CALL 'ASC' USING FIELD1A,FIELD2A.
ENTER COBOL.

L ___ _

Section VII: Subprograms and Overlay Structures 107

r--,
SQRT START 0

USING *, 15
R14 EQU 14
Rl EQU 1
R2 EQU 2
R3 EQU 3
RO EQU 0
R15 EQU 15
ENTRY ASC

SAVE R14, R12

L 2,0(Rl}

L 3,4(Rl)

CLC 0(3,R2),O(R3)

BE CORRECT

CORRECT
RETURN R14,R12

Note: If SQRT is in the relocatable library, an INCLUDE SQRT card must
be added to the input job stream.

If the assembler program were named ASC (the same as its ENTRY point)
instead of SQRT, no INCLUDE card would be needed.

In this example the COBOL program calls an assembler program~ passing
it two parameters (FIELD1A and FIELD2A). The assembler program compares
them logically (for any reason) ,finds them logically equal, and then
returns to the COBOL program.

The purposes of register Rl, R14 and R15 are:

Register Rl - Points to table of parameter addresses supplied by
COBOL call statement.

Register R15 - Points to first executable instruction of assembler
program~

Register R14 - Points to return statement in calling program.

The results of the assembler instructions in the SQRT routine are:

start 0 - Informs the assembler to start assembling the program instruc­
tion, at the first available storage location for problem program.

USING~ - Specifies that the next instruction address be stored in
the first operand (*> of this instruction.

108 Disk and Tape Operating Systems COBOL Programmer's Guide

R14 EQU 14 - Equates the Symbol R14 to the number 14 allowing user's
coding to be more descriptive.

ENTRY ASC - Is the entry point into the assembler program.

SAVE R14,R12 - A macro instruction that saves the contents of all the
general registers. (This protects any data the user might want to use
when the COBOL program is re-entered.)

~(Rl)- Loads the address of FIELD1A into register R2 (since FIELD1A
is the first parameter in the table of parameters).

~(R1) - Loads the address of FIELD2A into register R3. (The second
parameter in the table.)

CLC 0(3,R2),0(R3)- Compares first three characters of FIELD1A to first
three characters of FIELD2A.

BE CORRECT - A conditional branch instruction that transfers to the
address CORRECT if the CLC instruction proves true.

RETURN R14,R12 - Restores the general registers with their original con­
tents (that which they contained at ENTRY time), and returns to the next
statement after the CALL in the COBOL program.

section VII: Subprograms and Overlay structures 109

SECTION VIII: PROCESSING COBOL FILES ON DIRECT ACCESS DEVICES

The data management facilities of the Disk Operating System are provided
by routines that are referred to as the input/output control system
(IOCS). A distinction is made between two types of routines:

1. Physical loes (PIOCS) -- Input/output routines that are included in
the supervisor. -

Physical IOCS controls the actual transfer between the external
medium and main storage. It performs the functions of initiating
the execution of channel commands and handling associated input/
output interrupts.

2. Logical (LIOCS) -- Input/output routines that are linked with a
COBOL program.

LIOCS performs those functions that a programmer needs to locate
and access a logical record for processing. A logical record is
one unit of information in a file of similar units -- for example,
one employee's record in a master payroll file, one part-number
record in an inventory file, or one customer account record in an
account file. One o.r more logical records may be included in one
physical record. LIOCS refers to the routines that perform the
following functions:

a. Blocking and deblocking records.

b. Switching between input/output areas when two areas are speci­
fied for a file.

c. Handling end-of-file and end-of-volume conditions.

d. Checking and writing labels.

An understanding of how LIOCS functions may be of help to a COBOL
programmer preparing files. Briefly, certain input/output statements
and file description entries in the Data Division of the COBOL program
such as ACCESS IS, RECORD KEY IS, etc., are used to build a unique DTF
(Define the File) table 'for each file. The information in this table
will be different based on what is stated in the COBOL program; or bas-
ically, it will contain the information particular to the file for pro­
ceSSing input/output and a series of constants that describe the charac­
teristics of a particular file, such as record size~ block size~ record
format, etc.

One of the constants in the DTF table names a logic module that is to
be used at execution time ·to process that file. A logic module is a
generalized routine that modifies itself based on the constants stored
in the DTF tables. It contains the coding necessary to perform data
management functions required by the file such as blocking and deblock­
ing, initiating label checking, etc.

Generally, these logic modules are separately assembled and cataloged
in the relocatable library under a standard name. Then, at linkage
editing time, the linkage editor searches the relocatable library using
the name in the DTF table to find the logic module. The logic module is
then included as part of the program phase. Note that the autolink fea­
ture of the linkage edit takes care of including the logic modules. The
COBOL programmer does not specify any INCLUDE statements.

110 Disk and Tape Operating Systems COBOL Programmer's Guide

The type of DTF table prepared by the compiler depends on the data
organization of the file. COBOL provides two types of data organization
that are used for direct-access files only •

• Indexed Sequential -- direct-access only •

• Direct -- direct-access only.

The rest of this section provides information on preparing files with
indexed sequential and direct data organizations. Included for both are
general descriptions of the organization, the COBOL statements that must
be specified in order to build the correct DTF tables, error recovery
techniques, how to modify 1:he DTF tables, and coding examples.

INDEXED SEQUENTIAL

Files having indexed sequential organization may be processed randomly
or sequentially. Indexed sequential files may be created, added to,
read from. or updated.

The records of an indexed sequential file are organized on the basis
of a collating sequence determined by control fields called keys. A key
precedes the data portion of a record and is from 1 to 255 bytes in
length.

An indexed sequential file exists in space allocated on direct-access
volumes as prime areas, overflow areas, and index areas.

Prime Areas and Overflow A~eas

Prime areas are areas on a cylinder allotted for data records which con­
sist of a key and the actual data. The track format for the 2311 or
2314 Disk Storage Drive and the 2321 Data Cell Drive shown in Appendix E
may be helpful in visualizing the formats of the records for an indexed
sequential file.

A new record added to an indexed sequential file is placed into a
location on a track determined by the value of its key field. If
records were inserted in precise physical sequence, insertion would
require shifting all records of the file with keys higher than that of
the one inserted. However, because an overflow area exists, indexed
sequential file organization allows a record to be inserted into its
proper position with only the records on the track in which the inser­
tion is made being shifted.

Overflow areas are areas on the disk reserved to accommodate addi­
tions to the file. When a record is to be inserted, the records already
on the track that are to follow the new record are written back on the
track after the new record. The last record on the track is written
onto an overflow track. Track index entries (see the next discussion)
are adjusted to indicate records in an overflow area. The COBOL pro­
grammer may choose among three options in determining where records will
be placed. They are:

1. £Ylinder Overflow Ar~a Only -- When creating an indexed sequential
file two 2311 tracks or four 2314 or 2321 tracks will automatically
be reserved by the COBOL compiler for cylinder overflow. These
tracks will accommodate overflow records that occur within the spe­
cified cylinder. To decrease or increase the number of tracks
reserved for overflow, the user must modify a DTF table entry (see

section VIII: Processing COBOL Files on Direct Access Devices 111

"Modifying the DTF Table" and the coding examples at the end of
this section}.

2. Independent Overflow Area -- An additional extent for the exclusive
purpose of storing overflow records can be implemented by submit­
ting the proper job control EXTENT cards. IOCS will then create
this independent overflow area. No COBOL entry is needed to imple­
ment it. If, however, the programmer wishes an independent over­
flow area only (that is, no cylinder overflow area), the DTF table
must be modified to specify no cylinder overflow (see "Modifying
the DTF Table" and the coding examples at the end of this section).

3. Both Cylinder and Inde~ndent Overflow Areas -- In this case, the
cylinder overflow will be used until it becomes full. At that
time, further additions to the file will result in overflow records
being placed in the independent overflow area. This option again
can be implemented by specifying job control EXTENT cards.

The advantage of the cylinder overflow area is that of time. Arm
motion is minimized during sequential or random retrieval and when mak­
ing additions to the file.

The advantage of the independent overflow area is that of space. The
number of tracks allocated to an independent overflow area may justi­
fiably be less than the total number of tracks allocated by the cylinder
overflow option. This alternative would then minimize the total disk
pack area obligated for overflow records.

Index Areas

The ability to read and write records from anywhere in a file with
indexed-sequential organization is provided by indexes that are part of
the file itself. There are always two types of indexes: a cylinder
index for the whole file, and a track index for each cylinder. A third
type of index, the master index, can be created and used if desired~

Cylinder Index: For each cylinder of data, an entry is made to the
cylinder index. This entry consists of the address of the track index
for that cylinder and the highest key of a record on the entire
cylinder.

The cylinder index will have its own extents that must be defined by
job control EXTENT cards. These extents must be outside the limits of
any data extents. (Note that at least two sets of extent information
must be defined. They are a data extent and a cylinder index extent.
If the file exceeds one disk pack, additional data extents will be pro­
vided and, at the user's option, an independent overflow area extent may
be defined.) The cylinder extent must be on-line when the file is proc­
essed. It may be on the same pack as the data file, or it may be on a
separate pack.

Track Index: A track index exists for each cylinder of the file. The
track index always begins on track o. For each track of data, an entry
is made to the track index. The entry consists of two parts: (1) for
the prime area, the entry is the address of the lowest record on that
track and the highest key of a record on that track; (2) for the over­
flow area, the entry consists of the highest key associated with that
track and the address of the lowest record in the overflow area. If no
overflow entry has been made, the address is X'FF'.

Master Index: If a file occupies many cylinders, a search of the
cylinder index for a key is inefficient. Thus, the user can create a
master index (by specification on the EXTENT card) that indexes the
cylinder index. An entry for the master index consists of the address

112 Disk and Tape Operating Systems COBOL Programmer's Guide

of the cylinder index track and the highest key of a data record on that
cylinder index track. One entry is made to the master index for each
track of data on the cylinder index. It is advantageous to construct a
master index if the cylinder index occupies four or more tracks,.

Figure 17 shows an indexed sequential file with two levels of index­
ing and no overflow records. The entries for track 1 of the cylinder
are shown. The address of the first record on the track is track 1,
record-O at the beginning of track 1. The highest key on track 1 is 8.
The address of the lowest record in the overflow area is FF because
there are no overflow records. The entry to the cylinder index for
track 1 shows the address of the track index and the highest key on the
cylinder which is 32. The COCR (cylinder overflow control record),
which is maintained in the data portion of record zero, indicates that
no records are in the cylinder overflow area after loading. (Note that
if the track index does not occupy all of track 0, track 0 will also
contain data records).

Cylinder Index

Only First Entry Shown

1
Track Index

Entries for Only
Track 1 Shown

Prime Data

Highest Key on Cylinder I
32

Track Index Address

Data
I

NORMAL ENTRY

~-----------~--------------~

Highest Key on Trackc.-J
8

Track 1

Track 2

Address of First
Record on Track

Track-l
Record-O

Cylinder Overflow

OVERFLOW ENTRY

Highest Key Associated
with Track

,
Address of lowest Record I

I in Overflow Chain
FF

• Figure 17. Indexed sequential File without Overflow

Figure 18 shows what happens when another record, record 7, is added"
and forces record 8 into an overflow area. In this case, the key of the
normal entry is changed to 7 and the address of the overflow entry indi­
cates the location of record 8, which is on track 8 record 1. No other
changes to the indexes are required. The COCR will be updated to indi­
cate that the last record in the cylinder overflow area is on track 8,
record 1.

section VIII: Processing COBOL Files on Direct Access Devices 113

Cylinder Index 32 Track Index Address

Points to Track Index Key I Data

NORMAL ENTRY OVERFLOW ENTRY ... 1 G) Track Index
Track-l
Record-O

,
Track-8

'--____ Re_c.._or,;;;.,d-"""l, ----1
Points to Data Tracks Key Data Key Data

o

Track 1

Track 2

Prime Data

Cylinder Overflow

• Figure 18. Indexed sequential File with Overflow

The indexed sequential organization enables the programmer to:

1. Read or write (in a manner similar to that for sequential organiza­
tion) logical records whose keys are in ascending collating
sequence.

2. Read or write individual logical records randomly.

3. Add logical records wit.h new keys. The system locates the proper
position in the file for the new record and makes all necessary
adjustments to the indexes.

The important advantages are the ability to retrieve records randomly
as well as sequentially, and to make additions to the file without hav­
ing to sort and merge the additions while copying the entire file.

These advantages are possible because overflow areas are available to
provide the additional space required when additions are made to the
file, and indexes which are built and maintained by LIOCS.

114 Disk and Tape Operating Systems COBOL Programmer's Guide

COBOL STATEMENTS USED TO SPECIFY AN INDEXED SEQUENTIAL FILE

The following is a list of the COBOL statements required for creating,
adding, or updating an indexed sequential file. In addition, the list
is followed by a brief explanation of the functions IOCS performs as a
result of executing these statements.

Creating an Indexed SeguentialFile

To create a sequential, indexed sequential file" the following
clauses are required:

• ORGANIZATION IS INDEXED

• ACCESS IS SEQUENTIAL

• ASSIGN TO DIRECT-ACCESS

• RECORD KEY IS data-name

(The SYMBOLIC KEY may be specified.)

The programmer must then specify:

• OPEN OUTPUT file-name

• WRITE record-name [INVALID KEY]

• CLOSE file-name

OPEN Statement

The OPEN statement causes the label information for the file to be
recorded in a Volume Table of contents (VTOC). It then initiates a
checking procedure that prevents writing on an existing file that might
still be active. In addi,tion, the OPEN statement establishes the area
that is to be written on ,the disk as specified in the EXTENT statement
by the LOWER and UPPER parameters. Finally, the OPEN statement initia­
lizes the cylinder and track index tables, which are eventually filled
with the record keys provided by the programmer when the file is being
created.

Section VIII: Processing COBOL Files on Direct Access Devices 115

WRITE statement

The WRITE statement enters the record keys specified by the programmer
into the track and cylinder index tables and writes the actual data on
the portion of the track defined by the EXTENT parameters. The records
are placed on the track sequentially in the prime data area.

If the programmer specifies INVALID KEY, control is given to the
invalid key routine whenever a duplicate record or a record out of
sequence is detected. The programmer is responsible for writing the
invalid key routine (see the coding examples).

CLOSE Statement

The CLOSE statement removes the reference to the labels in the VTOC,
updates indexes (track and cylinder), and writes the end-of-file record.
Once the reference to the labels is removed from the VTOC" the file must
be opened again to be accessed. The index tables are updated each time
a block is written out (in the case of blocked records) or each time a
record is written (in the case of unblocked records). For a short
block, the CLOSE statement results in truncation of the area not used in
the block and in updating of the indexes with the record keys of those
records in the block.

Key Handling: During the creation of an indexed sequential file, the
programmer can control the RECORD KEY with certain restrictions:

• The RECORD KEY must be provided before execution of the WRITE st.ate­
ment. It is part of the record and identifies the particular record
in the file.

• The RECORD KEY values must be given in ascending collating sequence.

• No two keys can be the same.

To extend a file previously created, the same clauses and control
statements (DLBL, EXTENT) used to create the file are required, with the
following exception: the parameter ISE should be used for the 'type'
code in the DLBL statement instead of ISC used for creating the file.

Note that the record to be added must fit within the limits original­
ly specified for the file by the EXTENT statement. If it does not fit,
the file must be recreated.

The SYMBOLIC KEY is not required when creating an indexed sequential
file.

Seguential Retrieval of an Indexed Seguential File

To retrieve an indexed sequential file sequentially, the following
clauses are required:

116 Disk and Tape Operating Systems COBOL Programmer's Guide

• ORGANIZATION IS INDEXED

• ACCESS IS SEQUENTIAL

• RECORD KEY IS data-name

(The SYMBOLIC KEY may be specified.)

To simply read the file, the programmer must specify:

• OPEN INPUT file-name

• READ file-name AT END

• CLOSE file-name

OPEN Statement: The OPEN statement checks the labels of the files to be
opened and initializes the VTOC to indicate an active file. It also
establishes the area to be read as ,specified by the LOWER and UPPER
limit parameters of the EXTENT statement. This initializes processing
of the file, as follows:

• If the SYMBOLIC KEY is omitted, processing begins with the first
record of the file, and progresses sequentially.

• If the SYMBOLIC KEY is used and binary zeros are specified therein"
processing begins with the first record of the file, and progresses
sequentially.

• If the SYMBOLIC KEY is used and other than binary zeros are speci­
fied, processing begins with the specified key and progresses
sequentially.

READ Statement: The READ causes sequential retrieval of logical records
from the file until the end-of-file record is detected. At this time,
control is given to the user routine specified by the AT END statement.

CLOSE Statement: The file is reset for future use.

Updating Sequentially

To update an existing indexed sequential file, the same clauses needed
to retrieve the file are req~ired (ORGANIZATION IS INDEXED, ACCESS IS
SEQUENTIAL, RECORD KEY IS) used for creating the file.

• OPEN' I-O file-name

• READ file-name AT END

• REWRITE record-name [INVALID KEY)

• CLOSE file-name

The OPEN and CLOSE statements function in the same manner for updat­
ing as they do for retrieving an indexed sequential file. The READ
statement also functions in the same manner (as for sequential retriev­
al) but must be used in conjunction with the REWRITE statement, as
follows.

REWRITE Statement: The REWRITE statement writes the logical record read
by a preceding READ statement back into the same physical location from
which it was originally retrieved. Thus, the REWRITE statement provides
the facility to update records in a file. Under no circumstances should
the user modify the RECORD KEY of the record being updated. Because the

section VIII: Processing COBOL Files on Direct Access Devices 117

INVALID KEY check is not exercised for sequential retrieval of an in­
dexed sequential file, results caused by modification of the RECORD KEY
prior to return of the record to the file are unpredictable.

Key Handling: During sequential retrieval of a file, limited control of
the SYMBOLIC KEY and RECORD KEY is permitted. Thus, the SYMBOLIC KEY
can be set before the OPEN statement is executed, allowing processing to
begin with any record within the file. Once the OPEN statement is com­
pleted, the SYMBOLIC KEY is not needed. The RECORD KEY, which must not
be modified when updating a file, can be referred to when retrieving a
record for the purpose of recognizing a particular record in the file.

Random Retrieval of an Indexed Sequential File

To retrieve, randomly update, or add to an indexed sequential file, the
following clauses are required:

• ORGANIZATION IS INDEXED

• ACCESS IS RANDOM

• SYMBOLIC KEY IS data-name

• RECORD KEY IS data-name

• OPEN INPUT file-name

• READ file-name INVALID KEY

• CLOSE file-name

The OPEN and CLOSE statements function in the same manner for updat­
ing as they do for retrieving an indexed sequential file. The clauses
specified allow random retrieval only~ Before retrieval of each record,
the SYMBOLIC KEY must be provided.

Updating Randomly

To update an indexed sequential file randomly the following clauses must
be specified:

• OPEN 1-0 file-name

• READ file-name INVALID KEY

• REWRITE record-name [INVALID KEY]

• CLOSE file-name

The OPEN and CLOSE staotements function in the same manner as for
sequential retrieval of an indexed sequential file. The READ statement
retrieves the record identified by the SYMBOLIC KEY. This key must be
specified for every READ statement and must be within the limits of the
file; otherwise, a 'NO RECORD FOUND' condition results. If this occurs,
control is given to the user's INVALID KEY routine.

The REWRITE clause permits random updating of records in a file. It
must be preceded by a READ" and the SYMBOLIC KEY and RECORD KEY must not
be modified before the REWRITE is executed. NO INVALID KEY check is
available for the update function.

118 Disk and Tape Operating systems COBOL Programmer's Guide

Adding Randomly

To add to an indexed sequential file randomly, the same clauses as are
needed to retrieve the file, are required and, in addition, the programm­
er must specify:

• OPEN 1-0 file-name

• WRITE record-name [INVALID KEY]

• CLOSE file-name

The OPEN and CLOSE statements function in the same manner as for
sequential retrieval of an indexed sequential file. Records can be
added to an existing file by means of the WRITE statement clause. The
WRITE requires that the RECORD KEY be initialized before the operation.

A duplicate key error results when a record that is being added has
the same RECORD KEY value as a record already in the file. This condi­
tion causes control to be given to the programmer's INVALID KEY routine.

Key Handling: The programmer must initialize the SYMBOLIC KEY with a
key value prior to every READ statement. The value must be equal to the
record key within the record to be retrieved. This key must be within
the file limits; otherwise ll a 'NO RECORD FOUND' error condition results.
The RECORD KEY can be used only for record reference during the retrieve
and update functions. When adding to the file;, this key must be
initialized before each write.

ERROR RECOVERY TECHNIQUES FOR INDEXED SEQUENTIAL FILES

Recovery from input/output error conditions raised for an indexed
sequential file may be attempted in three ways. They are:

1. The INVALID KEY clause in the COBOL program.

2. A COBOL library subroutine (IHD03500).

3. The USE AFTER STANDARD ERROR clause in the COBOL program.

The relationship among these three types of recovery attempts is
shown in the flowchart that follows. If an INVALID KEY error is raised,
the INVALID KEY routine is executed. If it is not, the COBOL subroutine
will analyze the other error indicators., If no USE AFTER STANDARD ERROR
is specified, the job is terminated after printing a message that iden­
tifies the type of error. If a user Declarative Section does exist,
control is given to that routine. The COBOL programmer can prepare such
a routine to make a further analysis of the DTF table to determine
further information about the error status. Note that program execution
can continue only if an INVALID KEY or USE AFTER STANDARD ERROR clause
exists.

Table 1 summarizes the error conditions by function and indicates
which errors will raise an INVALID KEY, which will be analyzed by the
subroutine, and which errors could be profitably analyzed by a USE AFTER
STANDARD ERROR routine (see supervisor and Input/Output Macro Instruc­
tions for complete list of error conditions).

Section VIII: Processing COBOL Files on Direct Access Devices 119

Does error raise
INVALID KEY?

NO

Execute
'-_______ 'statements

following
INVALID KEY

YES

[lxecute
COBOL sub­
routine
IHD03500

Branch to
User Error ...----<:
Routine YES

Table 1. Error Functions

Print Error
~~ ____________ ~Message on

NO SYSLST or

Does a declarative
section exist in

the program?

SYSOOO

ABORT

r------------------T-----------T------------T-----------T--------------,
I Function I I I Random I Sequential I
I Error I Create IAdd I Retrieval I Retrieval I
~------------------t-----------+------------+-----------t--------------i
IDuplicate Record I INVALID KEY1INVALID KEY I I I
~------------------t-----------+------------+-----------t--------------i
ISequence Check IINVALID KEYI I I I
~------------------t-----------~------------~-----------~--------------i
IDASD error I USE AFTER STANDARD ERROR I
~------------------+---i
IWrong length I USE AFTER STANDARD ERROR I
fRecord I I
~------------------t-----------T------------T-----------T--------------i
IPrime data IUSE AFTER I I I I
lArea Full I STANDARD I I I I
I I ERROR I I I I
~------------------+-----------t------------t-----------t--------------i
ICylinder Index IUSE AFTER I I I I
I Full I STANDARD I I I I
I I ERROR I I I I
~------------------t-----------t------------+-----------+-----------·---i
IMaster Index IUSE AFTER I I I I
I Full I STANDARD I I I I
I I ERROR I I I I
~------------------t-----------+------------+-----------t--------------i
INO Record I I IINVALID KEYIUSE AFTER I
I Found I I I I STANDARD ERROR I
~------------------t-----------t------------+-----------+--------------~
I Overt low I I USE AFTER I I I
IArea Full I I STANDARD I I I
I I I ERROR I I . I
IArea Full I I I I I L __________________ ~ ___________ ~ ____________ ~ ___________ ~ ______________ J

120 Disk and Tape operating Systems COBOL Programmer's Guide

INVALID KEY Errors

The invalid key is raised when:

1. A duplicate record exists (duplicate key) (WRITE).

2. When building a file, a record is out of sequence (sequence check)
(WRITE).

3. No record is found during retrieval (READ).

These are the conditions from which the programmer can most logically
recover. In almost all other cases, the only choice is to abort the
job; therefore, most programmers should be able to handle almost all of
their error recovery procedures within the INVALID KEY routines.

When creating the file, the program will execute the imperative sta­
tements following the INVALID KEY clause for either a duplicate record
or sequence check. In either case the record is not added to the file.
The INVALID KEY routine could identify the error record, and either
close the files, or continue with the next tr.ansaction.

When adding to the file, the INVALID KEY is raised for a duplicate
record. In this case, the record will not be added. The user could
identify the error record and continue with the next transaction in his
INVALID KEY routine.

For random retrieval, the INVALID KEY is raised if the record cannot
be found on the file. The INVALID KEY routine could identify the mis­
sing record and continue with the next transaction.

During sequential retri.eval no INVALID KEY IS raised. The user must
specify the AT END option to branch to end-of-job steps when the end of
file is encountered.

USE AFTER STANDARD ERROR ~outines

When creating a file, prime data area full would be indicated if the
user did not reserve a large enough extent for all data records. In
this case, the user could close the file in his USE AFTER STANDARD ERROR
routine. He could then submit new job control EXTENT cards reserving
more room for prime data, and extend the file with the remaining data
cards by resubmitting the same program.

DASD errors and wrong-length records could be bypassed, if feasible"
in the USE AFTER STANDARD ERROR routine. However, in most cases, the
job must be terminated.

When adding to the file, if the cylinder overflow area cannot contain
the overflow record, an Overflow Area Full error will be indicated. The
record will not be added. The user could continue with the next trans­
action in his STANDARD ERROR routine by going to a routine to read the
next input transaction, since it may be possible to add records that
will be located on a different cylinder. However, the best procedure
would be to close the f ile~ and stop the run.

Note that a programmer may elect to start sequential retrieval at a
specified key rather than at the beginning of the file. If the key spe­
cified is not in the file, and if there is no error declarative section~
the COBOL subroutine will print a message indicating this and abort the
job.

Section VIII: Processing COBOL Files on Direct Access Devices 121

INVALID KEY Errors

The invalid key is raised when:

1. A duplicate record exists (duplicate key) (WRITE).

2. When building a file, a record is out of sequence (sequence check)
(WRITE).

3. No record is found during retrieval (READ).

These are the conditions from which the programmer can most logically
recover. In almost all other cases, the only choice is to abort the
job; therefore, most programmers should be able to handle almost all of
their error recovery procedures within the INVALID KEY routines.

When creating the file, the program will execute the imperative sta­
tements following the INVALID KEY clause for either a duplicate record
or sequence check. In either case the record is not added to the file.
The INVALID KEY routine could identify the error record, and either
close the files, or continue with the next transaction.

When adding to the file, the INVALID KEY is raised for a duplicate
record. In this case, the, record will not be added. The user could
identify the error record and continue with the next transaction in his
INVALID KEY routine.

For random retrieval, the INVALID KEY is raised if the record cannot
be found on the file. The INVALID KEY routine could identify the mis­
sing record and continue with the next transaction.

During sequential retrieval no INVALID KEY IS raised. The user must
specify the AT END option to branch to end-of-job steps when the end of
file is encountered.

USE AFTER STANDARD ERROR Routines

When creating a file, prime data area full would be indicated if the
user did not reserve a large enough extent for all data records. In
this case, the user could close the file in his USE AFTER STANDARD ERROR
routine. He could then submit new job control EXTENT cards reserving
more room for prime data, and extend the file with the remaining data
cards by resubmitting the same program.

DASD errors and wrong-l.ength records could be bypassed, if feasible"
in the USE AFTER STANDARD ERROR routine. However, in most cases, the
job must be terminated.

When adding to the file, if the cylinder overflow area cannot contain
the overflow record, an Overflow Area Full error will be indicated. The
record will not be added. The user could continue with the next trans­
action in his STANDARD ERROR routine by going to a routine to read the
next input transaction, since it may be possible to add records that
will be located on a diffe:rent cylinder. However, the best procedure
would be to close the file and stop the run.

Note that a programmer may elect to start sequential retrieval at a
specified key rather than at the beginning of the file. If the key spe­
cified is not in the file, and if there is no error declarative section"
the COBOL subroutine will print a message indicating this and abort the
job.

Section VIII: Processing COBOL Files on Direct Access Devices 121

In general, a declarative section may be included in a program in
order to find out more information about an error condition that occurs.
Such a routine can interrogate byte 30 of the DTF table to determine the
type of error that exists. (For more information and a coding example,
see "Modifying the DTF Table.") The error indicator can be passed to a
subprogram by specifying the CALL statement including USING file-name.
The programmer is responsible for writing the error checking subprogram.
The error indicators are shown in Table 2. Normal return from the
declarative is to the next sequential instruction in the program follow­
ing the input/output operation. Return by means of a GO TO statement
may be made to any location. Note that the programmer must realize that
the record of the last input/output operation was not located.

Table 2. Error Indicators
r---------T---------------------------T--------------------------------, I BYTE 30 I Add, Retrieve, or Both I Create ,
~---------+---------------------------+--------------------------------i
'X'SO' ,Direct Access Device Error, Direct Access Device Error ,
~---------+---------------------------+--------------------------------~ I X'40' I Wrong Length Record l Wrong Length Record I
~---------+---------------------------+--------------------------------i I X'20' I End of File I Prime Data Area Full I
~---------+---------------------------+--------------------------------i
I X'10' I No Record Found I Cylinder Index Area Full I
~---------+---------------------------+--------------------------------i
I X'OS' I I Master Index Area Full I
~---------+---------------------------+--------------------------------1 I X'02' I Overflow Area Full I I L _________ ~ ___________________________ ~ ________________________________ J

The following example illustrates a declarative routine when combin­
ing random retrieval and additions. Assuming that INVALID KEY clauses
were written, control will be given to the declarative section in this
example only when DASD, wrong-length record, or Overflow Area Full error
indicators are raised. The purpose of the routine is to continue pro­
cessing in the case of an Overflow Area Full indicator and to close the
file and end the job for DASD and wrong-length record indicators.

MAIN PROGRAM

WORKING-STORAGE SECTION.
01 INDICATOR PICTURE 9.

PROCEDURE DIVISION.

SUBPR~

DECLARATIVES.
ERR-TEST SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON IS-FILE.
'ENTER LINKAGE.
CALL 'ERRSUB' USING IS-FILE, INDICATOR.
ENTER COBOL.

IF INDICATOR IS EQUAL TO 1 GO TO READ-ROUTINE.
GO TO END-JOB.
END DECLARATIVES.

WORKING-STORAGE sECTION.
77 FULL PICTURE 9 USAGE COMPUTATIONAL VALUE 2.

LINKAGE SECTION.
01 DTF-FOR-DISK.

02 BYTE PICTURE 9 OCCURS 31 TIMES.
01 INDICATOR PICTURE 9.

122 Disk and Tape Operating Systems COBOL Programmer's Guide

PROCEDURE DIVISION.
ENTER LINKAGE.
ENTRY 'ERRSUS' USING DTF-FOR-DISK, INDICATOR.
ENTER COBOL.
MOVE LOW-VALUE TO I.NDICATOR.
IF BYTE (31) IS NOT EQUAL TO FULL GO TO EXT.
MOVE 1 TO INDICATOR.
EXT.
ENTER LINKAGE.
RETURN.
ENTER COBOL ..

When a DASD error, wrong~length record, or Overflow Area Full error
occurs on the IS-FILE, cont,rol is given to the first instruction after
the USE AFTER STANDARD ERROR clause. The subprogram is called. The
address of the IS-FILE DTF table and the working storage indicator are
passed to the subprogram ..

The subprogram sets the indicator in working storage to zeros. If
byte 30 contains an X'02' indicating an Overflow Area Full error, a 1 is
moved to the working storage indicator. Return is made to the main pro­
gram. The main program che:cks to see if the indicator is a 1. If it
is, a branch is made to read the next transaction. If the indicator is
not a 1, a DASD error or wrong-length record error has occurred, and the
program branches to the end·of-job routine to close the files and stop
the run.

Note that the COBOL subr:outine will also print out an error message
that provides another sourc,e of information about the type of error that
has occurred. (See "Modifying the DTF Table" for more information about
using COBOL and assembler language subprograms to modify the DTF table.)

MODIFYING THE DTF TABLE FOR INDEXED SEQUENTIAL ORGANIZATION FILES

The DOS COBOL compiler builds a skeleton DTF table. At execution time
when the file is opened, a transient routine is called to construct the
complete table.. The programmer may wish to change the contents of the
skeleton DTF table prior to execution of the OPEN statement in order to
change the overflow tracks, suppress the verify option, etc. The con­
tents of the skeleton DTF table are shown in Table 3.

The COBOL programmer can change the contents of a certain byte in the
DTF table in one of two ways" as follow:

1. By writing statements in the main COBOL program to refer to the DTF
table and by writing a COBOL subprogram to change the DTF table.

2. By writing statements in the COBOL main program to refer to the DTF
table and by writing an assembler language subprogram to change the
DTF table ..

Section VIII: Process:ing COBOL Files on Direct Access Devices 123

Table 3. Contents of Skeleton DTF Table
r--,
r--~
I I
I COBOL TRANSIENT PREPHASE TO OPEN. THIS ROUTINE WILL ,
I BUILD THE DTFIS TABLES AT OPEN-TIME I
I I
~--~
~--~
I
I
I
I
I
I
I
I
I
I

INPUT TO THIS ROUTINE IS AS FOLLOWS
SPACE MUST BE RESERVED FOR THE BIGGEST POSSIBLE TABLE
THIS IS DEPENDING ONLY ON THE KEYSIZE, THE TOTAL NUMBER OF
BYTES USED BY THE TABLE IS 600&KEYSIZE. THE CONTENTS OF
THIS TABLE IS BEFORE THIS ROUTINE

X@OO@#RANDOM
X.00@#2311 and 2314
X@OO@#UNBLOCKED
X@OO@#NO VERIFY
RECORD SIZE

X@FO@#SEQUENTIAL
X@FO@#2321
X@FO@#BLOCKED
X@FO@#VERIFY

NUMBER OF RECORDS IN BLOCK
KEYLOCATION %FIRST BYTE IN RECORD 31
RECORD KEY-LENGTH
ADDRESS OF IOAREAL
ADDRESS OF WORKL

(PRIME DATA)
BYTE 0
BYTE 1
BYTE 2
~XTE 3
BYTE 4-5
BYTE 6-7
BYTE 8-9
BYTE 10-11
BYTE 12-15
BYTE 16-19
BYTE 20
BYTE 21
BYTE 22-29
BYTE 30-31
BYTE 32-35

X@OO@#INDEX ON 2321 OI 2314 X@FO@#INDEX
NUMBER OF OVERFLOW-TRACKS IN CYLINDER
FILENAME

ON 2311

DUMMY
ADDRESS OF KEYARG (SYMBOLIC KEY)

THE REST OF THE TABLE MUST BE SET TO X@OO@
NOTICE THAT BYTES 3,20,21 MAY BE CHANGED BY THE USER
BEFORE THE OPEN STATEMENT IS EXECUTED

The following are examples of the options in the DTF table that can
be changed. (Note that the byte count of a DTF table begins with zero;
thus, for example, byte 22 actually is the 23rd byte of the table.)

1. Byte 3 (the 4th byte) of the DTF table controls the verify option.
Changing the value of the 4th byte to X'OO' suppresses this option.
Verification consists of IOCS checking to be sure that the record
written out is correct. Suppression of the verify option can
result in improved program performance.

2. The presence of a master index can be i'ndica ted by changing the
value of byte 20 (the 21st byte) to X'F2' for the 2311, X'82' for
the 2314, and X'02' for the 2321.

3. Byte 21 (the 22nd byte) of the DTF can be altered to change the
number of overflow tracks assumed per cylinder. The number of
overflow tracks assumed by the compiler is 2 for the 2311 or 4 for
the 2321 or the 2314. The programmer may change this to a maximum
of 8 for the 2311, 16 for the 2314. or 18 for the 2321. If the
value is changed to LOW VALUE, cylinder overflow is suppressed.

4. By replacing the contents of byte 20 (the 21st byte) with X'FO' the
user can locate his indexes on the 2311 or the 2314 when the prime
data is on the 2321.

124 Disk and Tape Operating Systems COBOL Programmer's Guide

Example of COBOL Main Pro~am and COBOL Subprogram Modifying DTF

In the COBOL main program, define and call the subprogram, as follows:

1. Data Division

FD ISFILE

2. Procedure Division

ENTER LINKAGE.
CALL 'CHGDTF' USING ISFILE.
ENTER COBOL.
OPEN OUTPUT ISFILE.

When the call is executed, the address of the skeleton DTF is passed
to the subprogram. Note that COBOL permits only data names to be passed
to a COBOL subprogram. In this case, a filename is passed but only to
use the address of the D~F for the file. No input/output operations can
be performed on the file in the subprogram.

The subprogram could move an appropriate value into one or more bytes
that the programmer wishes to modify. For example, the following sub­
program will eliminate the verify option.

DATA DIVISION.
LINKAGE SECTION.
01 DTF-FOR-DISK.

02 BYTE PICTURE X OCCURS 35 TIMES.

PROCEDURE DIVISION.
ENTER LINKAGE.
ENTRY 'CHGDTF' USING DTF-FOR-DISK.
ENTER COBOL
MOVE LOW-VALUE TO BYTE (4).
ENTER LINKAGE.
RETURN.
ENTER COBOL.

DUMMY DTF TABLE

The LINKAGE SECTION in the subprogram defines a DTF table. Control
is passed to byte 3 to eliminate the verify option and then control is
returned to the main program at the OPEN statement.

Note that an assembler language subprogram can be called by using the
same coding in the main COBOL program.

CODING EXAMPLES USING INDEXED SEQUENTIAL FILES

The following examples illustrate how a COBOL program can be prepared in
order to create and retrieve an indexed sequential file. The job con­
trol cards specifying label information for these examples follow. They
define a cylinder index located on cylinder 196, and a small prime data
extent located on cylinders 197 and 198.

// ASSGN SYS004,X'19'

// DLBL SYS004,'INDEXED SEQ FILE,' 67365,ISC

// EXTENT SYS004,111111,4,1,00010,00196

/1 EXTENT SYS004,111111,1,2,00020,00197

II EXEC

section VIII: Processing COBOL Files on Direct Access Devices 125

Creating an Indexed sequential File

This program example shows how to create an indexed sequential file from
the card reader. The file consists of records of 100 characters, 5
records in a block.

When the file is opened, the labels are checked" the track indexes
are formed, and the extents are reserved for the cylinder index.

After the files are opened, cards are read and data is moved to the
print file and disk file. Movement of the KEY-ID in the cards to the
REC-ID of disk is mandatory since the REC-ID is the data name specified
by the RECORD KEY clause.

A branch to the INVALID KEY routine will occur on sequence errors or
duplicate records. This routine identifies the error type and error
record, and then gets the next transaction.

The COBOL error subroutine identifies all other errors and aborts the
job. If the INVALID KEY routine were not present, it would also identi­
fy and abort the job for sequence errors. It would identify the error
and continue with the next sequential instruction f'or duplicate records.

At end-of-job, the files are closed and the job terminated.

01 001001 IDENTIFICATION DIVISION.
02 1 PROGRAM-ID. 'LOADIS'.
03 3 AUTHOR.
04 4 INSTALLATION.
05 5 DATE WRITTEN.
06 6 REMARKS. ILLUSTRATE CREATING OF INDEXED SEQUENTIAL FILE.
07 8 ENVIRONMENT DIVISION.
08 9 CONFIGURATION SECTION.
09 10 SOURCE-COMPUTER. IBM-360.
10 11 OBJECT-COMPUTER. IBM-360.
11 002001 INPUT-OUTPUT SECTION.
12 2 FILE-CONTROL.
13 3 SELECT IS-FILE ASSIGN TO 'SYS004' DIRECT-ACCESS 2311
14 4 ACCESS IS SEQUENTIAL ORGANIZATION IS INDEXED
15 5 RESERVE NO ALTERNATE AREA
16 7 RECORD KEY IS REC-ID.
17 10 SELECT CARD-FILE ASSIGN TO 'SYS005" UNIT-RECORD 2540R
18 11 RESERVE NO ALTERNATE AREA.
19 12 SELECT PRINT-FILE ASSIGN TO 'SYS006' UNIT-RECORD 1403
20 13 RESERVE NO ALTERNATE AREA.
21 003001 DATA DIVISION.
22 002 FILE SECTION.
23 4 FD IS-FILE DATA RECORD IS DISK
24 5 RECORDING MODE IS F
25 6 LABEL RECORDS ARE STANDARD
26 7 BLOCK CONTAINS 5 RECORDS.
27 10 01 DISK.
28 11 02 DISK-FL01 PICTURE X(10).
29 12 02 REC-ID PICTURE X(10).
30 13 02 DISK-NAME PICTURE X(20).
31 14 02 DISK-BAL PICTURE 99999V99.
32 15 02 FILLER PICTURE X(53).
33 004001 FD CARD-FILE DATA RECORD IS CARDS
34 2 RECORDING MODE IS F
35 3 LABEL RECORDS ARE OMITTED.
36 5 01 CARDS.
37 6 02 KEY-ID PICTURE X(10).
38 7 02 CD-NAME PICTURE X(20).
39 8 02 CD-BAL PICTURE 99999V99.
40 005001 FD PRINT-FILE DATA RECORD. IS PRINTER
41 2 RECORDING MODE IS F

126 Disk and Tape Operating Systems COBOL Programmer's Guide

42
43
44
45
46
47
48

3 LABEL RECORDS ARE OMITTED.
6 01 PRINTER.
7 02 PRINT-ID PICTURE
8 02 FILLER PICTURE
9 02 PRINT-NAME PICTURE

10 02 FILLER PICTURE

X(10).
X(10).
X(20).
X(10).
ZZZ,ZZZ.99-.

49 006001
02 PRINT-BAL PICTURE

PROCEDURE DIVISION.
50 3
51 4
52 6
53 7
54 9
55 10
56 11
57
58
59
60
61
62
63

13
17

START.

RD.
OPEN INPUT CARD-FILE PRINT-FILE OUTPUT IS-FILE.

READ CARD-FILE AT END GO TO END-JOB.
MOVE KEY-ID TO PRINT-ID REC-ID.
MOVE CD-NAME TO PRINT-NAME DISK-NAME.
MOVE CD-BAL TO PRINT-BAL DISK-BAL.
WRITE DISK INVALID KEY GO TO ERR.
WRITE PRINTER.
GO TO RD.

ERR.
DISPLAY 'DUPLICATE OR SEQ-ERR' UPON CONSOLE.
DISPLAY KEY-ID UPON CONSOLE.
GO TO RD,

64
65
66
67

19 END-JOB.
20 CLOSE CARD-FILE PRINT-FILE IS-FILE.
21 DISPLAY 'END JOB' UPON CONSOLE.
22 STOP RUN.

Section VIII: Processing COBOL Files on Direct Access Devices 127

Random Retrieval

This program illustrates random retrieval and updating for the IS-FILE
created in the previous example.

The Data Division is basically the same as in loading the file except
for the ACCESS IS RANDOM clause. Both the SYMBOLIC KEY and the RECORD
KEY clause are required.

The IS-FILE is opened as input. This allows both retrieval and
updating. The OPEN verb does label checking, and it also stores sta­
tistic fields from the format 2 label into the DTF table.

The SYMBOLIC KEY clause data name (KEY-ID) is defined within the card
read area. Reading the IS-FILE causes a search of the indexes for a
record matching the KEY-ID. If the record is found, data is moved to
the print-file and printed, the IS-FILE is updated, and a branch is made
to the next transaction.

If a matching record is not found, the COBOL subroutine turns control
to the INVALID KEY routine (No-Record). This routine identifies the
error and branches to the next transaction.

If for some reason the record retrieved cannot be located again when
the REWRITE verb is issued, control will be passed to ERR-ROUTINE. This
condition should never occur.

The end of job routine closes the files# and terminates the job. The
CLOSE verb also returns the updated statistics in the DTF table back to
the format 2 label. Additions could have been made to the file in the
same program if the IS-FILE were opened as 1-0.

01 IDENTIFICATION DIVISION.
02 001002 PROGRAM-ID. 'RANDOMIS'.
03 3 AUTHOR.
04 4 INSTALLATION. 360 PROGRAMMING CENTER.
05 5 DATE WRITTEN.
06 001006 REMARKS. ILLUSTRATE RANDOM RETRIEVAL FROM IS-FILE.
07 8 ENVIRONMENT DIVISION.
08 9 CONFIGUR.A'IION SECTION.
09 10 SOURCE-COMPUTER. IBM-360.
10 11 OBJECT-COMPUTER. IBM-360.
11 002001 INPUT-OUTPUT SECTION.
12 2 FILE-CONTROL.
13 3 SELECT IS-FILE ASSIGN TO 'SYS004' DIRECT-ACCESS 2311
14 002004 ACCESS IS RANDOM ORGANIZ~TION IS INDEXED
is 5 RESERVE NO ALTERNATE AREA
16 6 SYMBOLIC KEY IS KEY-ID
17 7 RECORD KEY IS REC-ID.
18 10 SELECT CARD-FILE ASSIGN TO 'SYSOOS' UNIT-RECORD 2S40R
19 11 RESERVE NO ALTERNATE AREA.
20 12 SELECT PRINT-FILE ASSIGN TO 'SYS006' UNIT-RECORD 1403
21 13 RESERVE NO ALTERNATE AREA.
22 003001 DATA DIVISION.
23 002 FILE SECTION.
24 4 FD IS-FILE DATA RECORD IS DISK
25 5 RECORDING MODE IS F
26 6 I.ABEL RECORDS ARE STANDARD
27 7 BLOCK CONTAINS 5 RECORDS.
28 10 01 DISK.
29 11 02 DISK-FLDl PICTURE X(10).
30 12 02 REC-ID PICTURE X(10).
31 13 02 DISK-NAME PICTURE X(20).
32 14 02 DISK-BAL PICTURE 99999V99.
33 15 02 FILLER PICTURE X(53).
34 004001 FD CARD-FILE DATA RECORD IS CARDS

128 Disk and Tape Operating Systems COBOL Progran~er's Guide

35 2 RECORDING MODE IS F
36 3 LABEL RECORDS ARE OMITTED.
37 5 01 CARDS.
38 6
39 7
40 8
41 004009
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

005006
005007
005008
005009
002010
005011
005012
005013
005014
005015
006001
006003
006004
006005
006006
006007
006009
006010
006011
006012
006013
006014
006015
006017
006019
006021
007001
007002
007003
007004
007008
007009
007010
007011
007017
007018
007019
007020

02 KEY-ID
02 CD-NAME
02 CD-AMT
02 CD-CODE

PICTURE X(10).
PICTURE X(20).
PICTURE 99999V99.
PICTURE X.

FD PRINT-FILE DATA'RECORD IS PRINTER
RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.

01 PRINTER.
02 PRINT-ID PICTURE X(10).
02 FILLER PICTURE X(10).
02 PRINT-NAME PICTURE X(20).
02 FILLER PICTURE X(10).
02 PRINT-BAL PICTURE $ZZZ,999.99-.
02 FILLER PICTURE X(10).
02 PRINT-AMT PICTURE $ZZZ,ZZZ.99-.
02 FILLER PICTURE X(10).
02 PRINT-NEW-BAL PCITURE $ZZZ,ZZZ.99-.

PROCEDURE DIVISION.
START.

RD.

OPEN INPUT CARD-FILE IS-FILE
OUTPUT PRINT-FILE.

READ CARD-FILE AT END GO TO END-JOB.
READ 'IS-FILE INVALID KEY GO TO NO-RECORD.
MOVE REC-ID TO PRINT-ID.
MOVEDISK-NAME TO PRINT-NAME.
MOVEDISK-BAL TO PRINT-BAL.
MOVECD-AMT TO PRINT-AMT.
ADD CD-AMT TO DISK-BAL.
MOVE DISK-BAL TO PRINT-NEW-BAL.
WRITE PRINTERu
REWRITE DISK INVALID KEY GO TO ERR-ROUTINE.
GO TO RD.

NO-RECORD.
DISPLAY 'NO RECORD FOUND' UPON CONSOLE.
DISPLAY KEY-lID UPON CONSOLE.
GO TO RD.

ERR-ROUTINE.
DISPLAY 'NO UPDATE' UPON CONSOLE.
DISPLAY KEY-ID UPON CONSOLE.
GO TO RD.

END-JOB.
CLOSE CARD-FILE PRINT-FILE IS-FILE.
DISPLAY 'END JOB' UPON CONSOLE.
STOP RUN.

Section VIII: Processing COBOL Files on Direct Access Devices 129

Sequential Retrieval

This program illustrates a sequential retrieval of the IS-FILE in order
to print its contents.

The Data Division is basically the same as before. The file is
opened as input. To update, it would have been opened as an INPUT­
OUTPUT file.

Prior to opening the file, the program requests the operator to enter
the starting key. The information he types will enter the KEY-ID data
name specified by the SYMBOLIC KEY clause.

The OPEN verb will then open the file and start sequential retrieval
based on the entered key. If the operator enters blanks or zeros~
retrieval will start at the beginning of the file. If he enters a key
that is not on the file, the COBOL error subroutine will identify the
error and abort the job.

During execution of the job, the COBOL error subroutine will identify
any DASD error or WLR indication and abort the job.

When the end-of-file indicator is detected, a branch is made to the
END-JOB procedures.

01 001001
02 001002
03 3
04 4
05 5
06 001006
07 8
08 9
09 10
10 11
11 002001
12 2
13 3
14 002004
15 5
16 6
17 7
18 12
19 13
20 003001
21 002
22 4
23 5
24 6,
25 7

IDENTIFICATION DIVISION.
PROGRAM-ID. 'SEQIS'.
AUTHOR.
INSTALLATION. 360 PROGRAMMING CENTER.
DATE WRITTEN.
REMARKS. ILLUSTRATE SEQUENTIAL RETRIEVAL FROM IS-FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION~
SOURCE-COMPUTER. IBM-360.
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IS-FILE ASSIGN TO 'SYS004' DIRECT-ACCESS 2311
ACCESS IS SEQUENTIAL ORGANIZATION IS INDEXED
RESERVE NO ALTERNATE AREA
SYMBOLIC KEY IS KEY-ID

RECORD KEY IS REC-ID.
SELECT PRINT-FILE ASSIGN TO 'SYS006' UNIT-RECORD 1403

RESERVE NO ALTERNATE AREA.
DATA DIVISION.
FILE SECTION.
FD IS-FILE DATA RECORD IS DISK

RECORDING MODE IS F
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 5 RECORDS.

26 10 01 DISK.
27 11
28 12
29 13
30 14
31 15

02 DISK-FLDl
02 REC-ID

PICTURE X(10).
PICTURE X(10).
PICTURE X(20).
PICTURE 99999V99.
PICTURE X(53).

32 005001 FD

02 DISK-NAME
02 DISK-BAL
02 FILLER
PRINT-FILE DATA RECORD IS PRINTER

RECORDING MODE IS F 33 2
34 3
35 6
36 7
37 8
38 9
39 10
40 11
41

LABEL RECORDS ARE OMITTED.
01 PRINTER.

02 PRINT-ID PICTURE
02 FILLER PICTURE
02 PRINT-NAME PICTURE
02 FILLER PICTURE
02 PRINT-BAL PICTURE

WORKING-STORAGE SECTION.

X(10).
X(10).
X(20).
X(10).
$ZZZ, ZZZ. 99-,.

130 Disk and Tape Operating Systems COBOL Programmer's Guide

42 6 77 KEY-ID PICTURE X(10).
43 PROCEDURE DIVISION.
44 001000 START.
45 DISPLAY 'ENTER STARTING KEY' UPON CONSOLE.
46 ACCEPT KEY-ID FROM CONSOLE.
47 001002
48 001003 OPEN OUTPUT PRINT-FILE
49 001004 INPUT IS-FILE.
50 001006 RD.
51 001007 READ IS-FILE AT END GO TO END-JOB.
52 001008
53 001009 MOVE REC-ID TO PRINT-ID.
54 001010 MOVE DISK-NAME TO PRINT-NAME.
55 001011 MOVE DISK-BAL TO PRINT-BAL.
56 001013 WRITE PRINTER.
57 001015 GO TO RD.
58 001017 END-JOB.
59 001018 CLOSE PRINT-FILE IS-FILE.
60 001019 DISPLAY 'END JOB' UPON CONSOLE.
61 001020 STOP RUN.

Section VIII: Processing COBOL Files on Direct Access Devices 131

DIRECT ORGANIZATION

When files are created using direct organization, the positioning of the
logical records in a file is determined by keys.

The two important characteristics of direct files are:

1. Records are stored at a physical address on disk that has some
mathematical relationship to the record key (in COBOL this is
supplied by the SYMBOLIC KEY clause).

2. The records are not arranged in any logical sequence by key.

Some tracks may be only partially filled, or they may have no
records at all.

SPECIFYING KEYS

Both the SYMBOLIC KEY clause and the ACTUAL KEY clause must be specified
for files having direct organization.

The SYMBOLIC KEY must be specified for every record and actually
becomes part of that record. The ACTUAL KEY specifies the physical
track address. It must be specified as an eight-byte field, and it must
be defined before a record can be processed. The structure and examples
of code for the 8-byte ACTUAL KEY field for both the 2311 and 2321
direct access devices follow.

The elements of the field for the 2311 are:

M

BB

M indicates the relative number of a disk pack.
It will be 0 for the first disk pack, 1 for the
second disk pack, etc.

It corresponds to the symbolic address (SYSOOO­
SYSxxx), which is specified on the EXTENT card
for the file. Thus, if three EXTENT cards with
SYSOll, SYS012, and SYS013, respectively, are
specified, M can range from 1 to 3.

This 16-bit field will always be zero for the
2311 or 2314. It refers to the cell number when
addressing the data cell (2321).

CC=0-199 This 16-bit field must contain the cylinder numb­
er in binary notation.

HH=0-9 for 2311
=0-19 for 2314

This 16-bit field must contain the head number in
binary notation.

R=O R refers to the record number or sector number.
When using COBOL, this field will always be zero.

An example of a method of coding the 8-byte ACTUAL KEY in binary
using COBOL for the 2311 disk pack is, as follows:

01 BINARY-KEY-RECORD
02 MM USAGE IS COMPUTATIONAL PICTURE IS 999 VALUE IS O.
02 BB USAGE IS COMPUTATIONAL PICTURE IS 9 VALUE IS O.
02 CC USAGE IS COMPUTATIONAL PICTURE IS 999 VALUE IS 10.
02 HH USAGE IS COMPUTATIONAL PICTURE IS 9 VALUE IS O.

132 Disk and Tape Operating systems COBOL Programmer's Guide

02 REC-R PICTURE IS X VALUE IS LOW-VALUE.
01 KEY-AS-ACTUAL REDEFINES BINARY-KEY-RECORD.

02 FILLER PICTURE IS X.
02 THE-ACTUAL-KEY IS PICTURE IS X(8).

Although the ACTUAL KEY field really consists of 8 bytes" 9 bytes are
defined by the given code. The 02 MM defines 2 bytes, the first byte of
which is disposed of by the 02 FILLER PICTURE IS X in the redefinition
statement. Thus, the code defines an 8-byte binary field named THE­
ACTUAL-KEY, which is used by IOCS to access records. A pictorial struc­
ture of the THE-ACTUAL-KEY field defined by the code is, as follows:

r-------T---------T-----------T-------T---------,
I Pack I Cell I Cylinder I Head I Record I
I Number I (BB) I (CC) I (HH) I (R) I
I (M) I I I I I
~-------+---------+-----------+-------+---------~

Byte 10 I 1 2 I 3 4 I 5 6 I 7 I

~-------+---------+-----------+-------+---------i
I 0 I 0 0 I 0 10 I 0 0 I 0 I L _______ ~ _________ ~ ___________ ~ _______ ~ _________ J

The elements of the fiel,d are the same for the 2311 Data Cell except
that CC (bytes 3 and 4) is divided into subcell and strip, and HH (bytes
17175 and 6) is divided into headbar and head element.

An example of a method of coding the 8-byte ACTUAL KEY in binary
using COBOL for the 2321 Da'ta cell is, as follows:

01 BINARY-KEY-RECORD.
02 MM USAGE IS COMPUTATIONAL PICTURE IS 999 VALUE IS O.
02 BB USAGE IS COMPUTATIONAL PICTURE IS 9 VALUE IS O.
02 CC USAGE IS COMPUTATIONAL PICTURE IS 999 VALUE IS 1.
02 HH USAGE IS COMPUTATIONAL PICTURE IS 999 VALUE IS O.
02 REC-R PICTURE IS X VALUE IS LOW-VALUE.

01 KEY-AS-ACTUAL REDEFINES BINARY-KEY-RECORD.
02 FILLER PICTURE IS X.
02 THE-ACTUAL-KEY PICTURE IS X(8).

Notice that just as for the 2311" 9 bytes are defined and then rede­
fined to eliminate the first byte, leaving 8 bytes. Thus, the code
defines the ACTUAL KEY that is used by IOCS to access records. A pic­
torial structure of THE-ACTUAL-KEY field as defined by the code is, as
follows:

r-------T-----T------------T-------------T------,
I Pack I Cell I Cylinder I Head I Recordl
I Number I (BB) I (CC) I (HH) I (R) I
I (M) I I I I I
~-------+-----+----T-------+-----T-------+------i
I I ISub Istrip I HeadlHead I I
I I Icelll I Bar I Element I I

Byte I 0 11 2 I 3 II, I 5 I 6 I 7 I
~-------+-----+----+-------+-----+-------+------i
10 10 0 10 11 I 0 10 10 I
~_--____ ~ _____ ~ ____ ~ _______ ~ _____ ~ _______ ~ ______ J

As records are processed, IOCS automatically updates Record (R) (in
the example, it is defined by REC-R). When the desired number of
records is processed within the defined area of a strip, or no more room
is available in a strip area, the next head element must be accessed in
order to continue processing on that strip. When all head elements have
been used, the next head bar must be accessed, thus making 20 new head
elements available.

Space is allocated on the 2321, as follows:

Section VIII: Processing COBOL Files on Direct Access Devices 133

• 256 records per head element

• 20 head elements per head bar

• 5 head bars per strip

• 10 strips per subcell

• 10 subcells per pack

• 255 packs are available

The examples in the foregoing discussion may be used to specify the
fields of the actual key.. Another point of consideration is how to
determine what the value of the ACTUAL KEY should be and then how to
update it. One method is to prepare what is called a directly addressed
file. With direct addressing, every symbolic key must convert to a
unique address that is used as the value of the actual key. To use this
method, records must be of fixed length and the symbolic key must be a
numeric character.

Direct addressing disk time when processing is random. It is also
convenient when processing is sequential because the records are written
in key sequence. A possible disadvantage is that there may be a large
amount of unused direct-access storage because a location must be
reserved for every key in the file's range even though many of the
possible keys may not be used.

Another method of determining the value of the ACTUAL KEY is called
indirect addressing. Indirect addressing generally is used when the
range of keys for a file includes a high percentage of unused ones so
that direct addressing is not feasible. For example, employee numbers
may range from 0001 to 9999, but only 3000 of the possible 9999 numbers
are actually assigned. Indirect addressing is also used for nonnumeric
keys.

Indirect addressing means that the symbolic key is converted to a
value for the actual key by use of some algorithm intended to compress
the range of addresses. Such an algorithm is usually called a randomiz­
ing technique. Randomizing techniques need not produce a unique address
for every record and, in fact, such techniques usually produce synonyms.
Synonyms are records whose symbolic keys randomize to the same address.

Two objectives must be considered in selecting a randomizing
technique:

1. Every possible key in the file must randomize to an address in the
allotted range.

2. The addresses should be distributed evenly across the range so that
there are as few synonyms as possible.

Note that one way to minimize synonyms is to allot more space for the
file than is actually required to hold all the records. For example,
the percentage of locations that are actually used might be 80%-85% of
the allotted space.

A RANDOMIZING TECHNIQUE

This randomizing technique is sometimes referred to as the division/
remainder method. For examples of other randomizing techniques~ refer
to the publication Introduction to IBM System/360 Direct Access Storage
Devices and Organization Methods, Form C20-1649.

134 Disk and Tape Operating Systems COBOL Programmer's Guide

RANDOMIZING

The ACTUAL KEY field can be thought of as a "discontinuous binary
address." This is important to the programmer because it describes two
conditions of which he must be aware. First, the cylinder and head
number must be in binary notation, so the results of the randomizing
formula must be in binary format. Second" the address is "discon­
tinuous" because a mathematical overflow from one element (e.g.~ head
number) does not increment ithe adjacent element (e.g., cylinder number),.

Randomizing for the 2311 Disk Pack

When randomizing to a 2311" it is possible to circumvent the discon­
tinuous binary address, by coding the randomizing formula in decimal
arithmetic, and then converting the results to binary. This can be done
by setting aside a decimal field with the low-order byte reserved for
head number, and the high-order bytes reserved for cylinder number. A
mathematical overflow from the head number will now increment the
cylinder number and produce a valid address. The low-order byte should
then be converted to binary and stored in the HH field, and the high­
order bytes converted to binary and stored in the CC field of the ACTUAL
KEY field.

Randomizing to the 2311 should present no significant problems if the
programmer using direct organization is completely aware that the
cylinder and head number gives him a unique track number. To illus­
trate, the 2311 could be thought of as consisting of tracks numbered as
follows:

Track
numbers

Cylinder 0

o

9

Cylinder 1 Cylinder 2

10

19 29

Now if the randomizing formula resulted in an address of Cylin~er
001. Head 9:

o 0 1 9

Cylinder Head

this would be a reference to track 19. This fact allows the programmer
to ignore the discontinuous cylinder and head number. If his formula
resulted in an address of 0 0 2 0, this would result in accessing
cylinder 2, head 0, and this is where track 20 is located.

section VIII: Processing COBOL Files on Direct Access Devices 135

The programmer can make another use of this decimal track address.
He may wish to reserve the bottom track of each cylinder for synonyms.
If this is the case, he is, in effect, redefining the cylinder to con­
sist of 9 tracks rather than 10 tracks. The 2311 cylinder could then be
thought of as consisting of tracks numbered" as follows:

cylinder 0 Cylinder 1 Cylinder 2

o 9 18

19

20

8 17 26

If he randomizes to relative track number 20, he can access it by
dividing the track address by the number of tracks in a cylinder.

2=Cylinder number

9 I~~;~
18

r;=Head number

The quotient now becomes the cylinder number, and the remainder
becomes the head number. As can be seen from the illustration, relative
track number 20 is on cylinder 2, head 2.

To simplify randomizing,an algorithm must be developed to generate a
decimal track address. This track address can then be converted to a
binary cylinder number and head number. In addition, tracks can be
reserved by dividing the track address by the number of tracks in a
cylinder. The same concepts will hold true for devices such as the
2314. For example, an algorithm can be developed using 20 tracks per
cylinder and dividing by an approximate prime number.

Randomizing for th~ 2321 Data Cell

The track reference field for the data cell is composed of the following
discontinuous binary address:

0-9
I

0-19 0-9
I

0-4 0-19
I

M J BIB I C I C I H I H I R I ______ ~ ____ ~ ____ ~ ______ ~ _____ ~ _____ ~ _____ ~ ______ J

cell sub strip cyl. Head Record
cell

At first glance, this presents an almost impossible randomizing task,
but since each strip comprises 100 tracks that are accessible through
cylinder and head number, the 2321 can be considered to be composed of
consecutively numbered tracks.

136 Disk and Tape Operating Systems COBOL Programmer's Guide

Tracks
0 99

100/ ,199

900 ,999

1000 /'1099

1900 -1999

1000~10099

19900L19999

199900/.199999

Strip'
o

1

etc ..

On inspection, it can be seen that relative track 20 is located on
cylinder 1, head 0 of some particular strip. Its address can be calcu­
lated by dividing by 20

l=Cylinder #

20 r;~
20

r~=Head #.

Thus, relative track number 120 will be located on strip 1, cylinder
1, head 0 of some subcell. Note that the strip number is given by the
hundreds digit, and the cylinder and head number is derived by dividing
the low-order two digits by 20.

The same relationship holds true for relative track number 900. It
is located on strip 9, cylinder 0, track O. Again the hundreds digit
gives the strip number" and dividing the low-order two digits by 20
results in a quotient and remainder of zero.

This relationship holds true through a relative track number of
19999" which is the number of tracks that can be contained on one cell
of a data cell array. By applying the foregoing rules" an address of
subcell 19, strip 9, cylinder 4, Head 19 is derived.

19
subcell

9
strip

99
4=Cylinder #

20 99
80

19=Head #

Thus" by randomizing to a 5-digi t decimal track number" the programm­
er will be able to access the 20,000 tracks (40,000,000 characters> con­
tained in a cell.

The thousands digits would represent the subcell number, the hundreds
digit, the strip number, and the quotient and remainder of the two low­
order digits divided by 20 would represent the cylinder and head number.
Each one of these resulting decimal digits would then be converted to
binary and placed in the appropriate place in the track reference field.

There is a total of 200,000 tracks per data cell array. To derive
valid addresses that cross cell boundaries, the user should randomize to
a 6-digit decimal track address. The highest address possible should be
199,999. To convert this to a data cell address, similar rules apply.
In this case, the user must divide the three high-order digits by 20:

Section VIII: Processing COBOL Files on Direct Access Devices 137

9=Cell

20 G:~~
180

r~~=subcell
The quotient becomes the cell number and the remainder becomes the

subcell number. The hundreds digit is still the strip number, and the
cylinder and head number can be derived as before. The resulting
address would be:

I
I 0 I 0 I 9 I 19 I 9 I 4 I 19 I 0 I L ____ ~ ____ ~ ___ ~ ____ ~ ______ ~ ____ ~ _____ ~ ____ J

M B B C C H H R
------------T----T----T-----T----T---------

I I I I I
I I I I I
cell sub strip cyl. Head

cell

Randomizing to the data cell can be accomplished by developing an
algorithm to generate decimal track addresses. The use of the foregoing
rules makes it possible to convert these generated track addresses to
the appropriate discontinuous binary address.

COBOL STATEMENTS USED TO SPECIFY DIRECT ORGANIZATION FILES

The following discussions show the COBOL statements required to create,
retrieve, or update a direct organization file. Also included are dis­
cussions of what functions the operating system performs when each
statement is executed.

Creating a Dir~rganization File

To create a direct file, the following clauses are required:

• ORGANIZATION IS DIRECT

• [ACCESS IS SEQUENTIAL]

• SYMBOLIC KEY IS data-name

• ACTUAL KEY IS data-name

The programmer must then specify:

• OPEN OUTPUT file-name

• WRITE record-name [INVALID KEY]

• CLOSE file-name

OPEN Statement: -The OPEN statement initializes the VTOC to indicate the
presence of the labels and checks the label area for a valid output
file. It also establishes the limits of the file as defined in the
EXTENT statement. It checks to be sure that the file limits specified
do not overlap with an existing file and completes the DTF (Define the
File) table for the file that was opened. Thus~ it enters the system

138 Disk and Tape Operating systems COBOL Programmer's Guide

logical unit specified for the file into the table.. In addition" the
OPEN statement initializes the capacity records (RO) over the entire
area of the EXTENT for the output file.

WRITE statement: The WRITE statement transfers the record to the DASD
address specified in the ACTUAL KEY. The specified SYMBOLIC KEY becomes
a part of the record in the file.

Key Handling: When handling keys" the following restrictions are
imposed:

1. The programmer must provide the SYMBOLIC KEY for every record
loaded.

2. When creating a file;, no provision is made to prevent the addition
of a duplicate record.

CLOSE Statement: The CLOSE statement returns the track address of the
end-of-file record to the ACTUAL KEY.

seguential Retrieval of a Direct Organization File

To retrieve a direct file sequentially" the following clauses are
required:

• ORGANIZATION IS DIRECT'

• ACCESS IS SEQUENTIAL

• SYMBOLIC KEY IS data-name

• ACTUAL KEY IS data-name

The programmer must then specify:

• OPEN INPUT file-name

• READ file-name AT END

• CLOSE file-name

READ Statement: The READ statement retrieves the file sequentially
beginning with the lower EXTENT.

OPEN,. CLOSE Statements: The OPEN statement checks labels on the label
track and initializes the VTOC. The limits of the extents are estab­
lished at this time. The CLOSE statement is a no-operation.

Key Handling: During sequenti'al retrieval of a direct field" the SYM­
BOLIC KEY and ACTUAL KEY Cllre ignored.

Random Retrieval, UpdatinC[I and Adding to a Direct File

To retrieve a direct file randomly, the following clauses are required:

• ORGANIZATION IS DIRECT

• ACCESS IS RANDOM

Section VIII: Processing COBOL Files on Direct Access Devices 139

• SYMBOLIC KEY IS data-name

• ACTUAL KEY IS data-name

The programmer must then specify:

• OPEN INPUT file-name

• READ file-name INVALID KEY

• CLOSE file-name

Random Retrieval

The READ statement retrieves a record from the information given in the
SYMBOLIC KEY. The search begins at the DASD address specified in the
ACTUAL KEY,.

Updating RandomlY

To update randomly, the programmer must specify:

• OPEN 1-0 file-name

• READ file-name INVALID KEY

• REWRITE record-name [INVALID KEY]

• CLOSE file-name

When updating a file, the keys must not be modified.

Adding Randomly

The WRITE statement allows new records to be added to the file. When
adding records to an existing file, both the ACTUAL KEY and SYMBOLIC KEY
must be supplied. The record is written into the specified location.
When adding randomly to a direct file, no provision is made to prevent
the addition of a duplicate record.

QPENL-fLOSE Statements: For random retrieval, the OPEN and CLOSE func­
tions are the same as for sequential retrieval of a direct file.

~Handling: When a file is accessed randomly, both the ACTUAL KEY and
SYMBOLIC KEY must be initialized by the user before the READ or WRITE
statement is specified. The ACTUAL KEY contains the DASD address and
the SYMBOLIC KEY identifies the file.

140 Disk and Tape Operating systems COBOL Programmer's Guide

MULTIPLE ENTRY POINTS

When more than one type of retrieval is specified for direct access
files in a program~ an indication of duplicate entry points may be given
at linkage edit time. If duplicate entry points occur" the programmer
must construct and include a supersetted LIOCS module that contains the
individual modules.

The following example shows how (1) the module containing the duplic­
ate entry point can be identified and (2) the supersetted module is
built and included in the COBOL object module in place of the individual
modules.

If a number of direct files are defined to be used by the same pro­
gram, the linkage editor diagnostic messages shown in Table 4 might be
obtained (they are included in the DISK LINKAGE EDITOR DIAGNOSTIC OF
INPUT).

Section VIII: Processing COBOL Files on Direct Access Devices 141

Table 4. Linkage Editor Diagnostic Output
r~--,
I JOB CEFI1002 10/27/66 DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT
I ,
'I
I
I
I
I
J
I
I
I
I

ACTION
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LINK
LINK

TAKEN MAP
PHASE COMPLDGO,*

INCLUDE IHD02800
INCLUDE IJJCPDl
INCLUDE IHD03500
INCLUDE IHD03700
AUTOLINK IJFFBCZZ
AUTOLINK IJHUARZZ
AUTOLINK IJHZLZZZ
AUTOLINK IJHZRBZZ

Information supplied by COBOL compiler
CEFIOOOl

CEFI0002
CEFI0003

Information supplied by Linkage Editor

I 21431
I

IS050021 ESD 404040 0010 0001 IJHZRBZZ 0 000000 0095DO IJHZRRZZ 1 000000
000010 IJHZRSZZ 1 000000 000001 .

I
I LIST
I LIST

AUTOLINK
ENTRY

IJHZRSZZ Duplicate entry point

I
I

10/27/66 PHASE XFR-AD LOCORE HICORE DSK-AD ESD TYPE LABEL LOADED REL-FR

COMPLDGO 007000 005080 00A07F 3A 7 2 CSECT IJJCPDl 005080 005080
ENTRY IJJCPD1N 005080

* ENTRY IJJCPD3 005080

CSECT IHD02800 005240 005240
ENTRY IHD02801 005240
ENTRY IHD02S02 005270

CSECT IHD03500 0053A8 0053.AS
ENTRY IHD03501 0053AS
ENTRY IHD03502 00538C

CSECT IHD03700 0056S0 005680
ENTRY IHD03701 005680

ENTRY IHD03702 005690

CSECT CEFI1002 0057AO 0057AO

CSECT IJFFBCZZ 0084FO 0084FO
* ENTRY IJFFBZZZ 0084FO
* ENTRY IJFFZCZZ 0084FO
* ENTRY IJFFZZZZ 0084FO

CSECT IJHZRSZZ 009C70 009C70

CSECT IJHZRBZZ 0095DO 0095DO
Module containing duplicate entry point

CSECT IJHUARZZ 008820 008820
ENTRY IJHZRRZZ 008820

Duplicate entry point * ENTRY IJHUIZZZ 008820

CSECT IJHZLZZZ 0092AO 0092AO

Note that the LIOCS modules are separately included in the program
(see AUTOLINK IJ • entries near the top of the listing). When
the modules are linkage edited with the COBOL program, an indication of
a duplicate entry pOint may be given. The duplicate entry point is
included in the line of print identified by the message number 21431 and

142 Disk and Tape Operating Systems COBOL Programmer's Guide

belongs to the module IJHZRBZZ. This message number is listed in the
operating guide for the system and indicates an invalid duplication of
an entry point label.

The programmer can identify the module containing the duplicate entry
point and build a supersetted module, as follows:

Compare the IJH • (entry points) given in the line next to
the message number thE! ENTRY points given in the LABEL column part
of the listing.

In this example, the duplicate ENTRY point is ENTRY IJHZRRZZ (the
second one in the 21431 line of print" and the third one from the
bottom in the LABEL column listing). Thus, this duplicate entry
point is in the module CSECT IJHUARZZ (see the entry just above
IJHZRRZZ in the LABEL column listing),. The module should also be
among those given in the AUTOLIST list.

From this module (IJHUARZZ) and module IJHZRBZZ, a supersetted module
must be formed, as follows::

Use the first three characters of the module name for the functions
used... In this case, they would be IJH. Then use the lowest let­
ter, between the two modules, for each of the next five character
positions~ as follows:

I J H U A R Z Z

I J H U A B Z Z Supersetted module

I J H Z R B Z Z

Thus, the name of the supersetted LIOCS module that contains the
individual modules (IJHUARZZ and IJHZRBZZ) is IJHUABZZ.

The supersetted module can then be included with the COBOL object
module at linkage edit time instead of the individual modules
(IJHUARZZ and IJHZRBZ:Z) by inserting an INCLUDE card before the
linkage edit function, as follows:

INCLUDE IJHUABZZ

// EXEC LNKEDT

ERROR RECOVERY TECHNIQUES FOR DIRECT FILES

As with indexed sequential files, error recovery may be attempted in one
of three ways" as follows:

1. The INVALID KEY clause

2. COBOL error subroutine (IHD03400)

3. The USE AFTER STANDARD ERROR clause

Table 4 summarizes, by function" the conditions that cause control to
be passed to the INVALID KEY I which error conditions are analyzed by the
COBOL subroutine, and, optionally. those error conditions for which a
USE AFTER STANDARD ERROR routine can be useful.

section VIII: processing COBOL Files on Direct Access Devices 143

Table 5. Error Functions
r--------------------T----------------T----------------T---------------,
I FUNCTION I Create I I I
I I or I Random I Sequential I
I ERROR I Add I Retrieve I Retrieve I

~--------------------+----------------+----------------t---------------i
I No Room Found I INVALID KEY I I I
I I I I I
~--------------------t----------------t----------------t---------------i
I No Record Found I I INVALID KEY I I
I I I I I
~--------------------t----------------~----------------~---------------i
I Wrong Length I I
I Record I USE AFTER STANDARD ERROR I
I I I
~--------------------+---i I Data Check I USE AFTER STANDARD ERROR I
I I I
~--------------------t----------------T----------------T---------------~ I End of File I I I AT END I
I I I I I ~-___________________ ~ ________________ ~ ________________ ~ _______________ J

INVALID KEY

When creating or adding to a file, the INVALID KEY is raised if the
track does not contain room enoug-h for the record to be written. A user
routine could contain coding to place the synonym on some other track
based on the randomizing technique being used.

During random retrieval, an INVALID KEY error is raised if the record
is not found. Depending upon how the file was created, this condition
could mean that the record may be located on some other track or cylind­
er" or it could mean that t.he record is truly missing. The INVALID KEY
routine could determine this.

During sequential retrieval, there is no INVALID KEY. The AT END
option after the READ statement is used to determine when the end-of­
file condition is reached.

USE AFTER STANDARD ERROR

For data check and wrong-length record error conditions, the user may
wish to have control passed to him by writing a USE AFTER STANDARD ERROR
routine in the Declarative Section of his program. This routine can
interrogate bytes 244 and 255 of the DTF in a subprogram to determine
the type of error that has occurred. These error indicators are:

Byte 254

Byte 255

X, 40'
X'OS'

X'SO'
x'10'
X'OS'

wrong-length record
no room found

data check in count
data check in key or data
no record found

144 Disk and Tape Operating Systems COBOL Programmer's Guide

Note that the "no room found" and the "no record found" conditions
should normally be handled by INVALID KEY routines.

Normal return from the Declarative section is to the next sequential
instruction following the input/output operation (which caused the
interrupt). Return by means of a GO TO statement may be made to any
location within the program. It is important to remember that the last
input/output operation was not completed.

Refer to the "Use After Standard Error" discussion under indexed
sequential for an example showing how to interrogate the DTF table.
Also, see the following discussion "Modifying the DTF Table for Drect
Files."

MODIFYING THE DTF TABLE FOR DIRECT FILES

The COBOL compiler builds a skeleton DTF table for files having direct
organization. When the OPEN statement is executed, a transient routine
uses this information to build a complete DTF table. The contents of
the skeleton DTF table are illustrated in Table 6.

Table 6. Skeleton DTF Table for Direct Organization File
r--,
BYTE 0 -X'OO'=RANDOM ACCESS

1

2

3

4-7
8-11

12-15
16-19
20-21
22-29
30
31

32-35
36

37

X'FO'=SEQUENTIAL ACCESS
-X'00'=2311

X'FO'=2321
-X'OO'=RESTRICTED SEARCH

X'FO'=SEARCH MULTIPLE
-X'OO'=NO VERIFY

X'FO'=VERIFY
-I/O AREA ADDRESS
-SYMBOLIC KEY ADDRESS
-ACTUAL KEY ADDRESS
- USER LABEL,
-LENGTH OF DATA FIELD
-SYMBOLIC FILE-NAME
-SYMBOLIC KEY LENGTH
-X'OO'=INP'UT

X'FO'=OUTPUT
X'FF'=I/O

-GLOBAL TABLE ADDRESS
-X'OO'=FIXED LENGTH

RECORDS
X'FF'=UNDEFINED LENGTH

RECORDS
- X" FF' =USER LABELS

X'OO'=NO USER LABELS

The programmer may modify the skeleton DTF table prior to execution
of the OPEN statement in one of two ways.

1. By writing statements in the main COBOL program to access the DTF
table and by writing a COBOL subprogram to modify the DTF table.

2. By writing statements in the COBOL main program to access the DTF
table and by writing an assembler language subprogram to change the
DTF table.

section VIII: Processing COBOL Files on Direct Access Devices 145

See the discussion "Modifying the DTF Table" under indexed sequential
for an example of a COBOL main program and COBOL subprogram that modi­
fies the DTF table.

Byte 3 (the 4th byte) can be changed to X'OO' to suppress the verify
option. verificatiop consists of IOCS checking to be sure that a record
written out is correct. suppression of the verify option could result
in improved program performance.

CODING EXAMPLES FOR DIRECT ORGANIZATION FILES

The following examples illustrate how to create and retrieve, sequen­
tially or randomly, a file with direct data organization.

The following job control cards can be used for the examples:

// DLBL SYS004',DIRECT ACCESS FILE',67300,DA

// EXTENT SYS004,111111,1,1,OOOOl,00030

// EXEC

Creating the File

This example illustrates how to create a direct organization file from
cards. The DA-FILE is composed of unblocked 100 character records that
are preceded by a 10-byte key. The key qontains the customer identifi­
cation and the data portion contains customer name balance.

The file control section defines the DA-FILE. The SYMBOLIC KEY
clause defines the data name KEY-ID, which is a field in the CARD-FILE.
This field will become the record key used by LIOCS to create the key
portion of the disk record.

The ACTUAL KEY clause defines the data name address that is in work­
ing storage. This field will contain the binary disk address used by
LIOCS for its track reference field.

To properly align the binary CC and HH portions of this track
reference field on a half-word boundary, the data name address is pre­
ceded by a 01 FILLER. This forces FILLER to begin on a double-word
boundary. The M portion of the address is not aligned" but the BB, CC

" and HH portions of the address are all on half-word or full-word
boundaries.

The M, BB, and R portions of the address are assigned a picture of X
with a value of LOW-VALUE to cause a binary zero to be inserted in these
portions of the address. The BB and R portions should always be binary
zeros in 2311 applications. The M portion is always zero in this
example, since the data file is contained on one disk pack.

If the data file extends over several disk packs, the M portion of
the address would have to be changed to access the correct disk pack.
For example, if the fil~ required 250 cylinders, it could be contained
on two disk packs. The first 199 cylinders could be located on the
first pack (assuming that cylinder zero contains the VTOC) '. A cylinder
address in excess of 199 would indicate that the record is to be located
on the second disk pack. To illustrate, a cylinder address of 229
should be located on cylinder 30 of pack 2. This can be accomplished by
subtracting 199 from the cylinder address. If the results are positive,

146 Disk and Tape Operating systems COBOL Programmer's Guide

move a binary one to the .M portion of the address, and to the results of
the subtraction to the CC portion of the address. This results in an
address, as follows:

1
11101 0 1310101010 I L ___ ~ ___ ~ ___ i ___ ~ ___ ~ ___ ~ ___ ~ ____ J

M B B C C H H R

To assure that a binary one is moved to the M field, the following
procedure may be used.

WORKING-STORAGE SECTION.
01 M-FLD PICTURE99USAGE COMPUTATIONAL.
01 M-FLD-2 REDEFINES M-FLD.

02 FILLER PICTURE X.
02 M-2 PICTURE.

M-FLD defines a half-word binary field. Move 1 to M-FLD. Then move
M-2 to M. This will move~ the eight low-order bits of M-FLD to M.

If the literal 1 were moved directly to M, it would be stored there
as a display item with a hexadecimal notation of ~Fl'. This will pro­
duce an invalid address. The recommended procedure will cause a X'Ol'
to be stored in M field, yeilding the desired result.

The PROCEDURE DIVISION starts by opening the files. This will cause
the transient open routine to construct the complete DTF table. In
addition to the open functions of checking labels and creating VTOC
entries, COBOL subroutinEl IHD03600 is entered at this time,. The purpose
of this subroutine is to issue the WRITE RECORD ZERO macro-instruction
to all the tracks specified by the EXTENT cards for the DA-FILE. This
will assure that the track is cleared and that record zero is initial­
ized with the correct information.

This subroutine relieves the user of the responsibility of running
clear disk utilities or of rerunning the Initialize Disk program.

After the card is read, the randomizing routine is entered. This
routine uses division by prime number. It is assumed that this small
file fits on 2 cylinders, and a prime number of 19 is used as a divisor.
The results of the routine (the remainder) are stored in TRACK, g1v1ng a
decimal track address. Ten is added to the track address to avoid any
references to cylinder zero.

The low-order byte must now be moved to the binary HH field of the
ACTUAL KEY and the three high-order bytes to the binary CC field. This
is done by redefining the 4-digit track address into a 3-byte cylinder
number and a l-byte head number. The move is then accomplished by
accessing the appropriate data-names.

If there is room for the record on the accessed track" the record is
wri tten" an audit trail is printed" and a branch is made to get the next
transaction.

If there is no room on the track, a branch to the synonym routine is
made. This synonym routine uses the "spilling" technique. It checks
the HH field for 9 to determine whether or not the end of cylinder has
been reached. If it has not been reached, 1 is added to the head number
and the write is repeated; this time" attempting to write the synonym on
the following track.

If the end of cylinder is reached without successfully writing the
record" a branch is made to the end-of-cylinder routine. This routine
will write synonyms on an overflow track located on cylinder 3" head O.
If the overflow track becomes full" the job is terminated. Abnormal

section VIII: Processing COBOL Files on Direct Access Devices 147

termination, for this reason, would indicate the need for a better ran­
domizing f'ormula or more track reserved for overf'low •

The END-JOB routine closes the file~ and terminates the run. It will
also use information obtained by COBOL subroutine IHD03100 to write an
end of file record. This subroutine has kept track of the last record
location. It will write the EOF record on either the last track of the
extent~ or after the last record~ whichever is greater.

01
02
03
04
OS
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

148

001001 IDENTIFICATION DIVISION.
PROGRAM-ID,. ' LOADDA' •
REMARKS. ILLUSTRATE CREATION OF DIRECT ACCESS FILE.

3 AUTHOR.
4 INSTALLATION. 360 PROGRAMMING CENTER.

002001

003002

ENVIRONMENT DIVISION~
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360.
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DA-FILE ASSIGN TO 'SYS004' DIRECT-ACCESS 2311
ACCESS IS SEQUENTIAL ORGANIZATION IS DIRECT
RESERVE NO ALTERNATE AREA
SYMBOLIC KEY IS KEY-ID
ACTUAL KEY IS ADDRESS.

SELECT CARD-FILE ASSIGN TO ·SYSOOS· UNIT-RECORD 2540R
RESERVE NO ALTERNATE AREA.

SELECT PRINT-FILE ASSIGN TO 'SYS006' UNIT-RECORD 1403
RESERVE NO ALTERNATE AREA.

DATA DIVISION.
FILE SECTION.
FD DA-FILE

01 DISK.

DATA RECORD IS DISK
RECORDING MODE IS F
LABEL RECORDS ARE STANDARD.

02 DISK-NAME PICTURE X(20).
02 DISK-BAL PICTURE 99999V99.
02 FILLER PICTURE X(73).

004001 FD CARD-FILE DATA RECORD IS CARDS
RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.

01 CARDS.
02 KEY-ID PICTURE 9(10).
02 CD-NAME PICTURE X(ZO).
02 CD-BAL PICTURE 99999V99.

005001 FD PRINT-FILE DATA RECORD IS PRINTER
RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.

01 PRINTER.
02 PRINT-ID PICTURE
02 FILLER PICTURE
02 PRINT-NAME PICTURE
02 FILLER PICTURE

02 PRINT-BAL PICTURE
WORKING-STORAGE SECTION.

77 NINE PICTURE
77 SAVE PICTURE
77 QUOTIENT PICTURE
77 PRODUCT PICTURE
01 TRACK PICTURE
01 TRACK2

03 CYL PICTURE
03 HEAD PICTURE

01 FILLER.
02 FILLER PICTURE X.
02 ADDRESS.

03 M PICTURE

X(10).
X(10).
X(20).
X(10).
$ZZ,ZZ9.99-.

99
S9(10)
S9999
S9999
S9999.

999.
9.

USAGE COMPUTATIONAL VALUE 09.
USAGE COMPUTATIONAL-3.
USAGE COMPUTATIONAL-3.
USAGE COMPUTATIONAL-3.

REDEFINES TRACK.

X VALUE LOW-VALUE.

Disk and Ta~e Operating systems COBOL Programmer's Guide

59
60
61
62
63 006001
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86 007001
87
88
89
90
91
92
93
94
95
96
97
98
99
00

03 BB
03 CC
03 HH
03 R

PICTURE
PICTURE
PICTURE
PICTURE

XX VALUE LOW-VALUE.
999 USAGE COMPUTATIONAL.
99 USAGE COMPUTATIONAL.
X VALUE LOW-VALUE.

PROCEDURE DIVISION.
START.

RD.

PRT,.

OPEN INPUT CARD-FILE
OUTPUT PRINT-FILE DA-FILE.

READ CARD-FILE AT END GO TO END~JOB.
MOVE KEY-ID TO SAVE.
DIVIDE 19 INTO SAVE GIVING QUOTIENT.
MULTIPLY QUOTIENT BY 19 GIVING PRODUCT.
SUBTRACT PRODUCT FROM SAVE GIVING TRACK.
ADD 10 TO TRACK.
MOVE HEAD TO HH.
MOVE CYL TO CC.
MOVE CD-NAME TO DISK~NAME.
MOVE CD-BAL TO DISK-BAL.

WRITE DISK INVALID KEY GO TO SYNONYMN-ROUTINE.

MOVE CD-NAME TO PRINT-NAME.
MOVE CD-BAL TO PRINT-BAL.
MOVE KEY-ID TO PRINT-ID.
WRITE PRINTE:R.
GO TO RD.

SYNONYMN-ROUTINE.
IF HH IS EQUAL TO NINE GO TO END-OF-CYLINDER.
ADD 1 TO HH.
GO TO WR.

END-OF-CYLINDER.
MOVE 3 TO CC.
MOVE ZERO TO HH.
WRITE DISK INVALID KEY GO TO NO-ROOM.
GO TO PRT.

NO-ROOM.
DISPLAY "CYLINDER OVERFLOW FULL' UPON CONSOLE.

END-JOB.
CLOSE CARD-FILE PRINT-FILE DA-FILE
DISPLAY 'END JOB" UPON CONSOLE.
STOP RUN.

section VIII: Processing COBOL Files on Direct Access Devices 149

Random Retrieval -- Direct organization

This coding example illustrates random retrieval from the file created
in the previous example.

The Data Division contains basically the same information as that in
the previous example. The DA-FILE is opened as input, which permits
updating. By opening the file as INPUT-OUTPUT, additions to the file
could be made in the same run" or in a separate processing program ..

The same randomizing formula is used as in loading the file. The
SYMBOLIC KEY data-name (KEY-ID) within the card file specifies the key
of the record to be found. The READ verb starts a search for an equal
key on the track specified by the ACTUAL KEY address.

If the record is found, data is printed, the disk record is updated,
and the next transaction is read.

Since the search was not restricted~ the record will be found if it
is either on the track specified or on any following tracks of the same
cylinder. Only if the record is not located prior to reaching the end
of the cylinder does a "no record found" condition occur. This will
cause a branch to the END-OF-CYLINDER routine.

The END-OF-CYLINDER routine initiates a search for the record on the
overflow cylinder. If the record is located" a branch is made to the
processing routine. If another "no record found" condition occurs, the
error and error record are identified~ and processing continues with the
next transaction.

The END-JOB routine terminates the run .•

01 001001 IDENTIFICATION DIVISION.
02 PROGRAM- ID. • RANDA • •
03 REMARKS. ILLUSTRATE RANDOM RETRIEVAL FROM DA FILE.
04 3 AUTHOR.
05 4 INSTALLATION. 360 PROGRAMMING CENTER.
06 ENVIRONMENT DIVISION.
07 CONFIGURATION SECTION.
08 SOURCE-COMPUTER. IBM-360.
09 OBJECT-COMPUTER. IBM-360.
10 002001 INPUT-OUTPUT SECTION.
11 FILE-CONTROL.
12 SELECT DA-FILE ASSIGN TO 'SYS004' DIRECT-ACCESS 2311
13 ACCESS IS RANDOM ORGANIZATION IS DIRECT
14 RESERVE NO ALTERNATE AREA
15 SYMBOLIC KEY IS KEY-ID
16 ACTUAL REY IS ADDRESS.
17 SELECT CARD-FILE ASSIGN TO 'SYS005· UNIT-RECORD 2540R
18 RESERVE NO ALTERNATE AREA.
19 SELECT PRINT-FILE ASSIGN TO 'SYS006' UNIT-RECORD 1403
20 RESERVE NO ALTERNATE AREA.
21 003002 DATA DIVISION.
22 FILE SECTION.
23 FD DA-FILE DATA RECORD IS DISK
24 RECORDING MODE IS F
25 LABEL RECORDS ARE STANDARD.
26 01 DISK.
27 02 DISK-NAME PICTURE X(20).
28 02 DISK-BAL PICTURE 99999V99.
29 02 FILLER PICTURE X(73).
30 004001 FD CARD-FILE DATA RECORD IS CARDS
31 RECORDING MODE IS F
32 LABEL RECORDS ARE OMITTED.

150 Disk and Tape Operating Systems COBOL Programmer's Guide

33 01 CARDS.
34 02 KEY-ID PICTURE 9(10).
35 02 CD-NAME PICTURE X(20).
36 02 CD-AMT PICTURE S99999V99.
37 005001 FD PRINT-FILE DATA RECORD IS PRINTER
38 RECORDING MODE IS F
39 LABEL RECORDS ARE OMITTED.
40 01 PRINTER.
41 02 PRINT-ID PICTURE X(10).
42 02 FILLER PICTURE X(10).
43 02 PRINT-NAME PICTURE X(20).
44 02 FILLER PICTURE X(10).
45 02 PRINT-BAL PICTURE $ZZ,ZZ9.99-.
46 02 FILLER PICTURE X(10).
47 02 PRINT-AMT PICTURE ZZ,ZZ9.99-.
48 02 FILLER PICTURE X(10).
49 02 PRINT-NEW-BAL PICTURE ZZ,ZZ9.99-.
50 WORKING-STORAGE SECTION.
51 77 NINE PICTURE 99 USAGE COMPUTATIONAL VALUE 09.
52 77 SAVE PICTURE S9(10) USAGE COMPUTATIONAL-3.
53 77 QUOTIENT PICTURE S9999 USAGE COMPUTATIONAL-3.
54 77 PRODUCT PICTURE S9999 USAGE COMPUTATIONAL-3.
55 01 TRACK PICTURE S9999.
56 01 TRACK2 REDEFINES TRACK.
57 03 CYL PICTURE 999.
58 03 HEAD PICTURE 9.
59 01 FILLER.
60 02 FILLER PICTURE X.
61 02 ADDRESS.
62 03 M PICTURE X VALUE LOW-VALUE.
63 03 BB PICTURE XX VALUE LOW-VALUE.
64 03 CC PICTURE 999 USAGE COMPUTATIONAL.
65 03 HH PICTURE 99 USAGE COMPUTATIONAL.
66 03 R PICTURE X VALUE LOW-VALUE.
67 006001 PROCEDURE DIVISION.
68 START,.
69 OPEN INPUT CARD-FILE
70 OUTPUT PRINT-FILE
71 INPUT DA-FILE.
72 RD.
73 READ CARD-FILE AT END GO TO END-JOB.
74 MOVE KEY-ID TO SAVE.
75 DIVIDE 19 INTO SAVE GIVING QUOTIENT.
76 MULTIPLY QUOT]ENT BY 19 GIVING PRODUCT.
77 SUBTRACT PRODUCT FROM SAVE GIVING TRACK.
78 ADD 10 TO TRACK.
79 MOVE HEAD TO HH.
80 MOVE CYL TO CC.
81 READ DA-FILE INVALID KEY GO TO END-OF-CYLINDER.
82 ADD.
83 MOVE DISK-BAL TO PRINT-BAL,.
84 ADD CD-AMT TO DISK-BAL.
85 MOVE CD-AMT TO PRINT-AMT,.
86 MOVE DISK-NAME TO PRINT-NAME.
87 MOVE DISK-BAL TO PRINT-NEW-BAL.
88 MOVE KEY-ID TO PRINT-ID.
89 WRITE PRINTER.
90 REWRITE DISK.
91 GO TO RD,
92 END-OF-CYLINDER.
93 MOVE 3 TO CC.
94 MOVE ZERO TO HH.
95 READ DA-FILE INVALID KEY GO TO NO-RECORD.
96 GO TO ADD.
97 NO-RECORD.
98 DISPLAY 'NO RECORD FOUND' UPON CONSOLE.
99 DISPLAY KEY-ID UPON CONSOLE.
00 GO TO RD.

Section VIII: Processing COBOL Files on Direct Access Devices 151

01
02
03
04

END-JOB,.
CLOSE CARD-FILE PRINT-FILE DA-FILE
DISPLAY "END JOB' UPON CONSOLE.
STOP RUN.

sequential Retrieval -- Direct Organization

This program illustrates sequential retrieval of the direct-access
records in their physical sequence~

The starting disk address" Cylinder 1" Head 0, is moved to the ACTUAL
KEY address.

The READ statement fetches the first record and locates the address
of the next record. Both the key and data portion of the DASD record
are read since the SYMBOLIC KEY clause is specified.

A listing is made of the DA-FILE. Each READ statement issued to the
DA-FILE retrieves another record and locates the following record. This
continues until the end-of-file record is reached, at which time the
program branches to the END-JOB routine.

01 001001
02

IDENTIFICATION DIVISION.
PROGRAM-ID. 'SEQDA'.

03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

REMARKS. ILLUSTRATE SEQ. RETRIEVAL OF DIRECT ACCESS FILE.
3 AUTHOR.
4 INSTALLATION. 360 PROGRAMMING CENTER.

002001

003002

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360.
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CA-FILE ASSIGN TO 'SYS004' DIRECT-ACCESS 2311
ACCESS IS SEQUENTIAL ORGANIZATION IS DIRECT
RESERVE NO ALTERNATE AREA
SYMBOLIC KEY IS KEY-ID
ACTUAL KEY IS ADDRESS.

SELECT PRINT-FILE ASSIGN TO 'SYS006' UNIT-RECORD 1403
RESERVE NO ALTERNATE AREA.

DATA DIVISION.
FILE SECTION.
FD DA-FILE

01 DISK.

DATA RECORD IS DISK
RECORDING MODE IS F
LABEL RECORDS ARE STANDARD.

PICTURE X(20).
PICTURE 99999V99.
PICTURE X(73).

005001 FD

02 DISK-NAME
02 DISK-BAL
02 FILLER
PRINT-FILE DATA RECORD IS PRINTER

RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.

01 PRINTER.
02 PRINT-ID PICTURE

02 FILLER PICTURE
02 PRINT-NAME PICTURE
02 FILLER PICTURE
02 PRINT-BAL PICTURE

WORKING-STORAGE SECTION.
77 KEY-ID PICTURE

01 FILLER.
02 FILLER PICTURE X.
02 ADDRESS.

03 M
03 BB

PICTURE
PICTURE

X(10).
X(10).
X(20).
X(10).
$ZZ.,ZZ9.99-.

X(10).

x
XX

VALUE LOW-VALUE.
VALUE LOW-VALUE.

152 Disk and Tape Operating Systems COBOL Programmer's Guide

44
45
46
47 006001
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

03 CC
03 HH
03 R

PICTURE
PICTURE
PICTURE

999 USAGE COMPUTATIONAL,.
99 USAGE COMPUTATIONAL.
X' VALUE LOW-VALUE,.

PROCEDURE DIVISION.
START.

RD.

PRT.

MOVE ZERO TO HH.
MOVE 1 TO Cc,.
OPEN INPUT DA-FILE

OUTPUT PRINT-FILE,.

READ DA-FILE AT END GO TO END-JOB.
MOVE DISK-NAME TO PRINT-NAME.
MOVE DISK-BAI.. TO PRINT-BAL,.
MOVE KEY-ID TO PRINT-ID.

WRITE PRINTER.

GO TO RD.
END-JOB,.

DISPLAY 'END OF JOB I UPON CONSOLE.
CLOSE DA-FILE PRINT-FILE.
STOP RUN.

Section VIII: Processing COBOL Files on Direct Access Devices 153

APPENDI.X A: CONSIDERATIONS WHEN USING ASSEMBLER WITH COBOL FOR OVERLAYS

This appendix contains:

• An example of a printout of an assembler routine effecting overlays
specified by a COBOL Disk and Tape Operating systems program.

• Explanations of the functions performed by the assembler overlay
subroutine instructions. The explanations are keyed to the instruc­
tions in the listing.

• Information needed to prepare and use subprograms written in
assembler language with a main program written in COBOL.

ASSEMBLER ROUTINE FOR EFFECTING OVERLAYS

The following overlay subroutine is an example and is governed by the
following restrictions:

1. The example is a suggested technique and not the only technique.

2. It can be used for assembler overlays if statement 30 is deleted
and if the user has a desired entry point in his end card.

3,. The subroutine cannot be used for entry points other than at the
first instruction of the Procedure Division. A suggested technique
for diverse entry points is a table lookup employing V-type
constants.

4. Deletion of statement 30" i.e .• , LA 15,48(15) could result in loop­
ing or a process error in the subprogram.

5. The number of bytes of initialization generated by the compiler
(i.e,." the 48 in statement 30 of the example) may change in subse­
quent modification of the compiler.

STMNT

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

!0016

\
0017
0018
0019
0020

154

SOURCE STATEMENT

OVRLAY START 0
ENTRY OVRLAY

* AT ENTRY TIME
* Rl = POINTER TO ADCON LIST OF USING ARGUMENTS FIRST ARGUMENT

*
*
*
*

IS PHASE OR SUBROUTINE NAME, MUST BE 8 BYTES
R13 = ADDRESS OF SAVE AREA
R14 = RETURN POINT OF CALLING PROGRAM
R15 = ENTRY POINT OF OVERLAY PROGRAM

* AT EXIT

*
*
*

Rl = POINTER TO SECOND ARGUMENT OF ADCON LIST OF USING ARGUMENTS
R14 = RETURN POINT OF CALLING PROGRAM--NOT THIS PROG
R15 = ENTRY POINT OF PHASE OR SUBPROGRAM

* RO IS DESTROYED BY THIS ROUTINE
USING *,,15

ST 1,SAVE
L 1,0(1) Rl
CLCO(8,1),CORSUBIS
BE SUBIN
MVCCORSUB(8).0(1)
SR 0,0 RO

= ADDRESS OF
IT IN CORE

YES
NO,CORSUB =

= 0

PHASE NAME

PHASE NAME

Disk and Tape Operating Systems COBOL Programmer's Guide

0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037

*
*
*
*

SVC4
ST l,ASUB

SUBLN l,SAVE
LA 1,4(1)
L 15,ASUB
LA 15,48(15)
BR 15

*
DS OF

SAVDC 4X'FF'
ASODC 4X'FF'
CORDCB8X'FF'

END

LOAD REQUIRES RO = 0 IF LOAD ADDRESS
ISNT SPECIFIED" Rl = ADDRESS OF
PHASE NAME. Rl = PHASE ENTRY

LOAD PHASE
ASUB=ENTRY POINT OF PHASE
Rl = POINTER TO SECOND ADCON OF

USING LIST--BYPASSES PHASE NAME
R15 = ENTRY POINT OF PHASE
BYPASS COBOL INITIALIZATION IN SUBPROGRAM
BRANCH TO SUBROUTINE" RETURN WILL BE

TO PROGRAM WHICH CALLED OVRLAY

REGISTER SAVE AREA
ADDRESS OF SUBROUTINE
NAME OF SUBROUTINE IN CORE

!!!~CTIONS OF OVERLAY ROU'l'INE INSTRUCTIONS

The instructions of the overlay routine perform the following functions:

0015 - Saves the address of the PARAMETER LIST
0016 - Loads the address of the PARAMETER LIST
0017 - Checks to see if program is already in overlay area
0018 - If it is, OVERLAY branches directly to subprogram
0025 - OVERLAY then issues OVERLAY CALL
0026 - Saves 1st address of overlaying and subprogram
0027 - Loads address of parameter table
0028 - Indexes and loads address of first parameter
0029, 0030" 0031 - Branches to subprogram to execute procedural steps
0033,0037 - Defines storage, defines constants and end of routine

instruction.

ASSEMBLER LANGUAGE SUBPROGRAMS

CALLED AND CALLING PROGRAMS:

Any program referred to by another program is called subprogram. If
this called subprogram refers to another subprogram" it is both a called
and calling subprogram. In. Figure 19. program A calls subprogram B;
subprogram B calls subprogram C; therefore:

1. A is considered a calling program by B.

2,. B is considered a called subprogram by A.

3. B is considered a calling subprogram by C.

4,. C is considered a called subprogram by B.

Appendix A: Considerations when Using Assembler with COBOL for Overlays 155

r--, r---------------, r·--------------, r---------------,
I A I I B I I C I
I I I I I I
I Calling .------->1 Called I I I
I program I I subprogram I I I
I of Btl of A I I I
I I ~--------.-------~ 1 I
I 1 1 Calling .----->1 called 1
I I I subprogram I I subprogram I
I I I of C I I of B 1 L _______________ J L _______________ J L _______________ J

Figure 19. Called and Calling Programs

There are three basic ways to use assembler-written subprograms with
a main program written in COBOL:

1. A COBOL main program or subprogram calling an assembler-written
subprogram.

2. An assembler-written subprogram calling a COBOL subprogram.

3. An assembler-written subprogram calling another assembler-written
subprogram.

From these combinations" more complicated structures can be formed.

The Disk and Tape Operating Systems have established certain conven­
tions to give control to and return control from assembler-written sub­
programs. These conventions, called linkage conventions. are described
in the following text.

LINKAGE CONVENTIONS

The save and return routines for assembler subprograms need not be writ­
ten exactly the same as those generated by the COBOL compiler. However"
there are basic conventions for COBOL programs to which the assembler
programmer must adhere. These conventions include:

1. Using the proper registers to establish linkage.

2. Reserving, in the calling program, an area that is used by the
called subprogram to refer to the argument list.

3. Reserving. in the-calling program. a ~ave area in which the regis­
ters may be saved.

Register Use

The Disk and Tape Operating Systems have assigned functions to certain
registers used in linkages. The function of each linkage register is
shown in Figure 20.

156 Disk and Tape Operating systems COBOL Programmer's Guide

r--------T---------------T---,
I REGISTER I I I
I NUMBER I REGISTER NAME I :f!'UNCTION I
~--------+---------------+---~
I 1 IArgument List IAddress of the argument list passed to the I
I IRegister Icalled subprogram. I
~--------+---------------+---~
I 13 Isave Area IAddress of the area reserved by the calling I
I I Reg ister I program in which the contents of certain I
I I I :registers are stored by the called program. I
~--------+---------------+---~
I 14 IReturn RegisterlAddress of the location in the calling pro- I
I I I gram to which control is returned after I
I I lexecution of the called program~ I
~--------+---------------+---i
I 15 IEntry Point IAddress of the entry point in the called I
I IRegister I subprogram. I L ________ ~ _______________ ~ ___ J

Figure 20. Linkage Registers

Argument List

Every assembler-written subprogram that calls another subprogram must
reserve an area of storage (argument list) in which the argument list
used by the called subprog:ram is located. Each entry in the parameter
list occupies four bytes aind is on a full-word boundary.

In the first byte of each entry in the parameter list, bits 1 through
7 contain zeros. However. bit 0 may contain a 1 to indicate the last
entry in the parameter area.

The last three bytes of: each entry contain the 24-bi t address of the
argument.

Save Area

An assembler subprogram that calls another subprogram must reserve an
area of storage (save area) in which certain registers (i. e. '. those used
in the called subprogram and those used in the linkage to the called
subprogram) are saved.

The maximun amount of storage reserved by the calling subprogram is
18 words. All registers are saved. Figure 21 shows the layout of the
save area and the contents of each word.

Appendix A: Considerations when Using Assembler with COBOL for Overlays 157

r--, AREA
(word 1)

AREA+4
(word 2)

AREA+8
(word 3)

AREA+12
(word 4)

AREA + 16
(word 5)

AREA+20
(word 6)

AREA+24
(word 7)

AREA+68
(word 18)

r--, IThis word is a part of the standard linkage convention I
lestablished under the disk and tape operating systems. I
IThe word must be reserved for proper addressing of thel
Isucceeding entries. However, an assembler subprogram I
Imay use the word for any desired purpose. I
~--~
I The address of the previous save area; that is" the I
Isave area of the subprogram that called this one. I
~--~ I The address of the next save area; that is" the save I
larea of the subprogram to which this subprogram I
Irefers. I
~---~----~
IThe contents of register 14; that is, the return I
I address. I
~--i IThe contents of register 15; that is, the entry I
laddress. I
~--~
IThe contents of register o. I
~--~-------i
IThe contents of register 1. I
I I
I I
I 1
I I
I I
~--i
IThe contents of register 12. I L __ J

_____ ----------------___ J

Figure 21. Save Area Layout and Word Contents

A called COBOL subprogram does not save floating-point registers.
The programmer is responsible for saving and restoring the contents of
these registers in the calling program.

Example

The linkage conventions used by an absembler subprogram that calls
another subprogram are shown in Figure 22. The linkage should include:

~. The calling sequence.

2. The save and return routines.

3. The out-of-line parameter list. (An in-line parameter list may be
used; see n In-line Parameter List,. n)

4. A save area on a full-word boundary.

158 Disk and Tape Operating Systems COBOL Programmer's Guide

r---, deckname START 0 I
ENTRY name1 I
EXTRN name2 I

USING
* Save Reutine
name, STM

*
*
*

*
*

*
*
*
*
*
*
AREA

* preb1
/ Calling

LR
DROP
USING
LR

LA

ST

ST

BC
DS

name1,r3
r2,,13

13, AREA

13,,8(0,r2)

r 2 .4(0,13)

15 .. preb1
18F

User-written pregram
Sequence

1"ARGLST
L 15,ADCON
BALR 14,.15

The centents .of registers 14, 15, and
o threugh r1 are stored in the save
area .of the calling pregram (previeus
save area). r1 is any number frem 0
threugh 12.

where r3 and r2 have been saved
Leads register 13, which peints te the
save area .of the calling pregram, inte
any general register, r2, except 0 and
13.
Leads the address .of this pregram's
save area inte register 13,.
Steres the address .of this pregram's
save area inte werd 3 .of the save area
.of the callng pregram.
steres the address .of the previeus
save area (i.e., the same area .of the
calling pregram) inte werd 2 .of this
pregram's save area.

Reserves 18 werds fer the save area.
This is last statement .of save reutine,.

statements

First statement in calling sequence,.

* Remainder .of user-written pregram statements
* Return

*
*
*
*
*
*
*
ADCON

Reutine
L

LM

L

MVI

BCR
DC

* Parameter List
ARGLST DC

DC
DC
DC

13,.4 (0,,13)

2, r1" 28 (13)

14,,12(13)

12 (13) I, X • FF'

15,,14
A (name2)

AL4(arg1)
AL4(arg2)
X'80'
AL3(argn)

First statement in return reutine.
Leads the address .of the previeus save
area back inte register 13.
The centents .of registers 2 threugh r1.
are restered frem the previeus save a~ea
Leads the return address, which is in
werd 4 .of the calling pregram" s save
area, inte register 14~
Sets flag FF in the save area .of the
calling pregram te indicate that cen­
trel has returned te the calling pregram.
Last statement in-return reutine.
centains the address .of subpregram
name2,·

First statement in parameter area setup.

First byte .of last argument sets bit 0 te 1,.
last statement in parameter area setup.

Figure 22~ Sample Linkage Reutines Used with a Calling Subpregram

Appendix A: Censideratiens when Using Assembler with COBOL fer Overlays 159

I
I
I
I
I
I
I
1
I
J
I
I
I

LOWEST LEVEL SUBPROGRAM

If an assembler subprogram does not call any other subprogram (i.e., if
it is at the lowest level), the programmer should omit the save routine"
calling sequence" and parameter list shown in Figure 22. If the
assembler subprogram uses any registers, it must save them. Figure 23
shows the appropriate linkage conventions used by an assembler subpro­
gram at the lowest level.

r-------------------------'---,
deckname START 0

name

ENTRY name

USING
STM

*,,15
14, r~,,12 (13)

User-written program statements

LM 2" r ~ , 28 (13)
MVI 12(13),X'FF'
BCR 15, 14

.-------------~--~
JNote: If registers 13 and/or 14 are used in the called subprogram" I
Itheir contents should be saved and restored by the called subprogram. I l __ ------J
Figure 23. Sample Linkage Routines Used with a Lowest Level Subprogram

In-Line Parameter List

The assembler programmer may establish an in-line parameter list instead
of an out-of-line list. In this case, he may substitute the calling
sequence and parameter list shown in Figure 24 for that shown in Figure
22.

Data Format of Arguments

Any assembler-written subprogram must be coded with a detailed knowledge
of the data formats of the arguments being passed.. Most coding errors
will probably occur because of the data-format descrepancies of the
arguments.

If one programmer writes both the main program and the subprogram~
the data formats of the arguments should not present a problem when
passed as parameters. However" when the programs are written by dif­
ferent programmers, the data-format specifications for the arguments
must be clearly defined for the user.

160 Disk and Tape Operating Systems COBOL Programmer's Guide

r--, ADCON DC A(prob1)

RETURN

LA
L
CNOP
BALR
DC
DC

DC
DC

BC

Figure 24,. Sample In-line Paramet~r List

14. RETURN
15.. ADCON
2,4
1,,15
AL4(arg1)
AL4(arg;a)

X'SO'
AL3(argn)

O,X'isn'

Appendix A: Considerations when Using Assembler with COBOL for Overlays 161

APPENDIX B: REFERENCE FORMATS FOR DISK AND TAPE OPERATING SYSTEMS COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. 'program-name'.

[AUTHOR. sentence •••]
[INSTALLATION. sentence •••]
[DATE-WRITTEN. sentence •••]
[DATE-COMPILED. sentence •••]
[SECURITY. sentence •••]
[REMARKS. sentence •••]

ENVIRONMENT DIVISION.

[

CONFIGURATION SECTION. J.
[SOURCE-COMPUTER. IBM-360 [model-number].]
[OBJECT-COMPUTER. IBM-360 [model-number].]

INPUT-OUTPUT SECTION.
FILE-CONTROL. [COpy library-name.]

SELECT file-name [COpy library-name.]

ASSIGN TO external-name UTILITY device-number
{

DIRECT-ACCESS ~
UNIT-RECORD

[RESERVE{fO} ALTERNATE ARE-;:[S]]

[ACCESS IS{SEQUENTIAL}]
RANDOM

[ORGANIZATION IS{INDEXED}]
DIRECT

[SYMBOLIC KEY IS data-name]
[ACTUAL KEY IS data-name]
[RECORD KEY IS data-name]

I-O-CONTROL

[SAME AREA FOR file-name-l file-name-2 [file-name-3 •••].]

UNIT [S]

RERUN ON external-name IDIRECT-ACCEsst device-number UNIT[S]]
YTILITY ~

EVERY integer RECORDS OF file-name

[APPLY overflow-name TO FORM-OVERFLOW ON file-name.]

[APPLY WRITE-ONLY ON file-name •••••]

[APPLY RESTRICTED SEARCH OF integer TRACKS Q!! file-name •.• ']

DATA DIVISION.

FILE SECTION,.

FD file-name [COpy library·-name.]

[~ CONTAINS integerlCHARACTERst]
RECORDS ~

(RECORDING MODE IS {~} J

162 Disk and Tape Operating Systems COBOL Programmer's Guide

[RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

{
RECORD IS} {STANDARD}

LABEL RECORDS ARE OMITTED
, data-name

DATA {RECORDS ARE} record-name •••
RECORD IS

Record Description Entry.

WORKING-STORAGE SECTION.

Record Description entries

LINKAGE SECTION.

Record Description entries

level-number
{

data-name}[REDEFINES data~name-2] (COpy library-name.]
FI~LEB

[PICTURE IS ~ alpha-form (]
an-form

l
nu, meric-form~
report-form
fp-form ,

(OCCURS integer TIMES [DEPENDING ON data~name]]

(JUSTIFIED RIGHT]

(BLANK WHEN ZERO]

[~ IS literal]

1
g~;~t~!TIONAL !]

IS COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3

PROCEDURE DIVISION

DECLARATIVES.
section-name SECTION. USE-SENTENCE.
paragraph-name. sentence... .} }

END DECLARATIVES.

USE FOR CREATING [BEGINNING] LABELS ON OUTPUT
ENDING

file-name, •••

USE FOR CHECKING [BEGINNING] LABELS ON INPUT file-name, •••
ENDING

USE AFTER STANDARD ERROR PROCEDURE ON file·name.

Conditionals.

IF Statement.

Appendix B: DOS/TOS Reference Formats 163

IF condition (~] {
statement-i, ••• } [{ ELSE } {statement-2, ••• }]
NEXT SENTENCE OTHERWISE NEXT SENTENCE .

Relation Test.

ldata-name-1 }
arithmetic-expression-1
figurative-constant-1
literal-1

sign Test.

{
data-name }
arithmetic-expression IS

Class Test.

IS [NOT] IGREAT~R THANl

[NOT]

LESS THAN
EQUAL TO

{
POSITIVE}
ZERO
NEGATIVE

{data-name IS [NOT]}
{

NUMERIC }
ALPHABETIC

Condition Name Test.

[NOT] condition-name

overflow Test.

[NOT] overflow-name

Open and Close Statements.

data-name-2

arithmetic
expression-2

figurative
constant-2

literal-2

INPUT {file-name [WITH NO REWIND [REVERSED]}}
-----[OUTPUT{file-name (WITH NO REWIND]} ••••]

[1-0 {file-name} ••• l

OUTPUT {file-name [WITH NO REWIND]} •••
[INPUT {file-name [WITH NO REWIND [REVERSED]]} •••]
[1-0 {file-name} •••]

{file-name} ••• [OUTPUT{file-name [WITH NO REWIND]} •••]
[INPUT {file-name [WITH NO REWIND[REVERSED]]C.]

[UNIT]
(REEL]

Input/Output Verbs

WITH LOCK ••• [{
NO REWIND}] }

~ file-name RECORD [INTO data-name] AT END
imperative statement •••

~ file-name RECORD [INTO data-name]

{
AT END } imperative statement •••
INVALID KEY

WRITE record-name [FROM data-name-1]
[INVALID KEY imperative statement •••]

164 Disk and Tape Operating Systems COBOL Programmer's Guide

~ record-name[~ data-name-l]

[~ ADVANCING {da~a-name-2} LINES]
:Lnteger

permissible values for data-name-2

b (blank)
o

+

Interpretation

single spacing
double spacing
triple spacing
suppress spacing

1 through 9
A" B, C
V, W

skip to channels 1 through 9~ respectively
skip to channels 10, 11~ 12, respectively
pocket select 1 or 2, respectively on
the IBM 1442'1, or 2540 and Pl or P2 on
the IBM 2540

Permissible integer

o - skip to next-page
1 - skip 1 line
2 - skip 2 lines
3 - skip 3 lines

REWRITE record-name [FROM data-name]
[INVALID KEY impera'tive-statement,. ,. '.]

{
data-name} [UPON CONSOLE]

DISPLAY literal... UPON SYSPUNCH

ACCEPT data-name [FROM CONSOLE]

Data Manipulation Verbs

{
data-name-l}

MOVE literal TO data-name'-'2

Option 1

EXAMINE data-name TALLYING: {~DING } 'character-i'
UNTIL FIRST

[REPLACING BY 'character-2']

Option 2

EXAMINE data-name REPLACING ~ *~i.N;IRST 1 ~~ ~ 'character-i'

~ 'character-2'

TRANSFORM data-name-3 CHARACTERS

{

figurative-constant-i }
non-numeric-literal-i
data-name-l

{
figurative-constant-2}
non-numeric literal-2
data~name-2

Appendix B: DOS/TOS Reference Formats 165

Arithmetic Verbs

{

numeric-Ii teral
floating point literal
data-name ... 1

} ••• { TO }
GIVING

data-name-n

(ROUNDED] (ON SIZE ERROR imperative-statement •• ,.]

{

data-name-l }
SUBTRACT numeric-literal-l

floating-point-literal-1

{

data-name-m (GIVING data-name-n] }
FROM numeric-literal-m GIVING data-name-n
---- floating-point-literal-m GIVING data-name-n

(ROUNDED] (ON SIZE ERROR imperative statement •••]

{

data-name-1 }
MULTIPLY numeric-literal-1

floating-point-literal-l

{

data-name-2 (GIVING data-name-3] }
BY numeric-literal-2 GIVING data-name-3
-- floating-point-li'teral-2 .§IVING data-name-3

(ROUNDED] (ON SIZE ERROR imperative statement •• 4]

{

data-name-1 }
DIVIDE numeric-literal-l

floating-point-literal-1

{

data-name-2 (GIVING data-name-3] }
!li!Q numeric-literal-2 GIVING data-name-3

floating-point-literal-2 GIVING data-name-3

(ROUNDED] (ON SIZE ERROR imperative statement •••]

COMPUTE data~name-1 [ROUNDED] = numeric-literal
{

data-name-2 }

floating-point-literal
arithmetic-expression

[ON SIZE ERROR imperative-statement., ••]

Procedure Branching Statements.

§!QE { B!:lli }
literal

Option 1

[procedure-name]

Option 2

~ procedure-name-l [procedure-name-2] DEPENDING ON data-name

ALTER {procedure-name-1 TO PROCEED TO procedure-name-2}

Option 1

PERFORM procedure-name-1 [THRU procedure-name-21

166 Disk and Tape Operating Systems COBOL Programmer's Guide

Option 2

PERFORM procedure-name-1

Option 3

[!!!!ill procedure-name-21 {integer } TIMES
data-name

PERFORM procedure-name-1 [THRU procedure-name-2]
yNTIL test-cond,i tion

Option 4

PERFORM procedure-name-1 [THRU procedure-name-2J
VARYING data-name-1 FROM lnumeric-literal-2}

1 data-name ... 2

{
numeric-literal-3}

data-name-3
UNTIL test-condition-1

[AFTER data-name-4] FROM {numeric-literal-4}
data-name-5

~x {numeric-literal-6}
data-name-6

[UNTIL test-condition-2]

[~ data-name-7 ~ {numeric-literal-a}
data-name- a

BY {numeric-literal-9}
data-name-9

Compiler-Directing Statements.

ENTER LINKAGE.

~ test-condition-3

CALL entry-name [USING argument ••• l
ENTER COBOL ..

ENTER LINKAGE.
ENTRY entry-name [!!§!N§ data-name •••]
ENTER COBOL.

ENTER LINKAGE.
RETURN.
ENTER COBOL.

EXIT Statement~

paragraph-name. ~.

NOTE Statement.

~ comment •• '.

Option 1.

paragraph-name,. INCLUDE library-name .•

Option 2.

section-name SECTIO~. INCLUDE library-name.

Appendix B: DOS/TOS Reference Formats 167

COpy Statement.

(within the Input-Output Section):

{
FILE-CONTROL. } COpy library-name.
I-O-CONTROL.

(within the File-Control Paragraph):

SELECT file-name QQEX library-name.

(within the File Section):

FD file-name COpy library-name.

(within a file" Working Storage or Linkage Section):

01 data-name £OPY library-name.

(within Working Storage or Linkage Section):

77 data-name QQEX library-name.

COBOL Debugging Statements.

TRACE Statement.

EXHIBIT Statement.

{
NAMED }

EXHIBIT 'CHANGED NAME {data-name }
CHANGED non-numeric-literal

ON (Count-Conditional) Statement

ON integer-1 (AND EVERY integer-21 [UNTIL Integer-31

{
imperative-statement ••• }[{~
NEXT SENTENCE OTHERWISE

Debug Packet Statement

1 8
*DEBUG location

statement ••• }]
NEXT SENTENCE

168 Disk and Tape Operating Systems COBOL Programmer's Guide

PERMISSIBLE COMPARISONS

r---, I SECOND OPERAND I
.---T----T----T----T----T----T----T----T----T-~---~
I GRI AL I AN I ED I IO I BI I EF I IF I RP I FC I

r-T---------------------+---+----+----+----+----+----+----+----+----+-----~
IGroup Item (GR) I NNI NN 1 NN I NNI NN I NN I NN I NN I NN I NN I
.---------------------+---+----+----+----+----+----+----+----+----+-----~
IAlphabetic Item (AL) I NNI NN I NN I I I I I I I NN~ I
.---------------------+---+----t----+----+----+----+----+----+----+-----~
IAlphanumeric (non- I I I I I I I I I I I

Flreport) Item (AN) I NNI NN I NN I NN5 1 I I I I NN I NN I
I.---------------------+---+----+----+----+----+----+----+----+----+-----~
RIExternal Decimal I I I I I I 1 I I I I
SIItem (ED) I NNI I NN51 NU I NU I NU I NU I NU I I NN3 I
T.---------------------+---t----+----+----t----+----+----+----+----t----~

IInternal Decimal I I 1 I I I I I I I I
olItem (IO) I NNI I I NU I NU I NU I NU I NU I I NU2 I
p.---------------~-----t---+----+----+----+----+----t----+----t----+-----~
EIBinary Item (BI) I NNI I I NU I NU I NU I NU I NU t I NU2 I
R.---------------------+---+----+----+----+----+----+----+----+----+-----~
AIExternal Floating- I I I I I I I I I I I

INlpoint Item (EF) I NNI I I NU I NU I NU I NU I NU I I NU2 I
10.---------------------+---+----+----+----+----+----+----+----+----+-----~
I IInternal Floating- I I I I I I I l I I I
~ Ipoint Item (IF) I NNI I I NU I NU I NU I NU I NU I I NU2
I .---------------------+---+----+----+----+----+----+----+----+----+-----~
I IReport Item (RP) I NNI I NN I I I I I I NN I NN4 I
I .---------------------+-,--+----t----+----t----t----+----+----+----t-----~
I IFigurative Constant I I I I I I I I I I I
I I (FC) I NNI NN~I NN I NN31 NU21 NU 21 NU 21 NU 2 1 NN41 I
.-~---------------------~-,--~----~----~----~----~----~----~----~----~----~
IAbbreviations for Types of Comparison I
INN - Comparison as described for non-numeric items I
INU - Comparison as described for numeric items I
I~Permitted with the figurative constants SPACE and ALL 'character' I
I where character must be~ alphabetic. I
12permitted only if figurative constant is ZERO. I
13permitted only if figurative constant is ZERO or ALL • character' I
I where character must be numeric. I
14Not permitted with figurative constant QUOTE. I
15External decimal field must consist of integers. I L ___ J

Appendix B: DOS/TOS Reference Formats 169

PERMISSIBLE MOVES

r---, I Receiving Field ,
r------------------------f----T----T----T----T----T----Y----T----T-'----J
'Source Field I GR I AL I AN I ED , ID t BI , EF , IF 'RP ,
~------------------------f----f----+----f----+----+----+----+----+----~~
'Group (GR) I Y ,Y I Y ,N 'N 'N 'N 'N 'N I
~------------------------+----+----+----+----+----+----+----+----+-,----~
tAlphabetic (AL) l Y I Y ,Y IN' N 'N IN' N 'N I
~------------------------+----+----+----+----+----+----+----+----+-----~
,Alphanumeric (AN) ,Y I Y I YIN 'N 'N IN' N 'N ,
~------------------------+----+----+----+----+----+----+----+----+-----i
'External Decimal (ED) ,Y I N I Y~ ,Y I Y ,Y ,Y ,Y I Y ,
~------------------------+----+----+----+----+----+----+----+----+-----~
,Internal Decimal (10) I YIN I Y~ I Y ,Y I Y I Y I Y I Y I
~---------~--------------+----+----+----+----+----+----+----+----+-----~
IBinary (BI) ,Y 'N 'Y~' Y ,Y I Y I Y ,Y I Y ,
~------------------------+-.---+----+----+----+----+----+----+----+-----~
'External Floating- , , , , I I I I I ,
,Point (EF) I Y ,N 'N I Y ,Y ,Y ,Y I Y ,Y I
~------------------------+----+----+----+----+----+----+----+----+-----~
IInternal Floating- I I I I , , , I I ,
,Point (IF) ,Y 'N IN' Y ,y ,Y ,Y ,Y ,y ,
~------------------------+----+----+----+----+----+----+----+----+-----~
,Report (RP) I Y 'N ,Y IN' N 'N 'N 'N IN'
~------------------------+----+----+----+----+----+----+----+----+-----~
'Zeros ,Y 'N ,Y ,Y ,Y ,Y ,Y ,Y I Y ,
~------------------------+----+----+----+----+----+----+----+----+-----~
, Spaces ,Y ,Y ,Y IN' N 'N 'N 'N 'N ,
.------------------------+----+----+----+----+----+----+----+----+-----~
I ALL 'character' " 'I I , I , , , I I
I HIGH-VALUES, I"" I I , , I
I LOW-VALUES, l' I , I I , , t ,
, QUOTES f Y ,N I Y 'N 'N 'N I N I N IN' • ________________________ ~ ____ i ____ i ____ i ____ i ____ i ___ -i----i----i-----1

I~For integers only. I L __ J

170 Disk and Tape Operating Systems COBOL Programmer's Guide

APPENDIX c: STANDARD TAPE FILE LABELS

File
Lobel
Number

Label
Identifier

File Identifier
File
Serial
Number

Volume File
Sequence Sequence
Number Number

Version
Number of
Generation

Creation
Date

The standard tope file label format and contents are as follows:

I.

2.

3.

4.

5.

6.

7.

a.

NAME AND LENGTH

LABEL IDENTIFIER
3 bytes, EBCDIC

FILE LABEL NUMBER
1 byte, EBCDIC

FILE IDENTIFIER
17 bytes, EBCDIC

FILE SERIAL NUMBER
6 bytes, EBCDIC

VOLUME SEQUENCE
NUMBER 4 bytes

FILE SEQUENCE NUMBER
4 bytes

GENERATION NUMBER
4 bytes

VERSION NUMBER OF
GENERATION 2 bytes

DESCRIPTlOI"

identifies the type of label
HDR = Header -- beginning of a data

file
EOF = End of File -- end of a set af

data
EOV =.fnd of Volume -- end of the

physical reel

Always a 1

uniquely Identifies the entire file,
may contain only printable characters.

uniquely identifies a file/volume
relationship. This field Is identical
to the Volume Serial" Number in the
volume label of the first or only
volume of a multi-vol"ume file or a
multi-file set. Thisfield wi II
normally be numeric (000001 to
999999) but may contain any six
alphameric characters.

indicates the order of a volume in a
given file or multi-file set. The
first must be numbered 0001 and
subsequent numbers rnust be in proper
numerl c sequence.

assigns numeric sequence to a file
within a multi-file set. The first
must be numbered 0001.

uniquely identifies the various
editions of the file. May be from
0001 to 9999 in proper numeric
sequence.

Indicates the version of a generatlon
ofa file.

9.

10.

11.

12.

13.

14.

Appendix c:

Expiratlan
Date

File
Security

Black
Count

NAME AND LENGTH

CREATION" DATE
6 bytes

EXPIRATION DATE
6 bytes

FILE SECURITY
1 byte

BLOCK COUNT
6 bytes

SYSTEM CODE
13 bytes

RESERVED
~

System Cade Reserved
For A.S.A.

DESCRIPTION

indicates the year and the day of
the year that the file was created:

Position Code Meaning

blank none
2-3 00-99 Year
4-6 001-366 Day of Year

(e.g., January 31, 1965 would
be entered as 65031)

i "ei cates the year and the day of
the year when the fi Ie may become
a scratch tape. The format of this
field is identical to Field 9. On a
multifile reel, processed sequentiall~
all files are considered to expire an
the same day.

indicates security status of the file.
o = no security protection
1 = security protection. Addit­

ional identification of the
file is required before it
can be processed.

indicates the number of data blocks
written on the file from the last
header label to the first trailer label
exclusive of tape marks. Count does
not include checkpoint records.
This field Is used in Trailer Labels.

uniquely identifies the programming
system.

Reserved far American Standards
Assoclatlan (A.S.A.). At present,
should be recorded as blanks.

Standard Tape File Labels 171

APPENDIX D: STANDARD DASD FILE LABELS -- FORMAT 1

Option Record Key
Codes Length Location

~. r ~
Reserved
For Future File Secondary
Use [Allocation Type

La,t U .. d
Track &

Spoce
Remaining

~

Record On
That Track

First Extent

Lower Upper
Limit Limit

I I I Ig Ill'! &II;;!; :ll~ S31~ g;~ o:~l~ O!:~I 1 I~ g:1 1 1 I~ SiISl ~S! ~I 1 I;:: =11 1:=:
R ... rved ,J
For Future RJord JIOCk Ke~ LData Set

eJ L Extent
Extent Type Sequence

U .. Format length length Indicators Indicator Number

Format 1: This format i. comman to all data files on disk.

NAME AND LENGTH

FILE NAME
44 bytes, alphamoric
EBCDIC

This field serves as the key portion of
the file label. It can consist of
three sections:

1 • .El!.!..K> is an alphameric assigned
by the user and identifies the
file. Can be 1 - 35 bytes if
generation and version numbers
are used, or 1- 44 bytes if they
ore not used.

2. Generation Number. If used,
this field is seporated from File
10 by a period. It has the format
Gnnnn, where G identifies the
field as the generation number
and nnnn (In decimal) identifies
the generation of the file.

3. Version Number of Generation.
If used, this section immediately
follows the gene rot ion number
and· has the formal Vnn, where
V Identifies the field as the
version of generation number and
nn (in decimal) identifies the
version of generation of the file.

Note: IBM System/360 Disk and TQj)II
Operating Systems compares
the entire field against the
file name given in the DLAB
card. The generation and
version numbers are treated
differently by Operating
System/360.

The remaining fields comprise the DATA portion of the file label:

2.

3.

7A

FORMAT IDENTIFIER
I byte, EBCDIC numeric

FILE SERIAL NUMBER
6 bytes, alPhameric EBCDIC

VOLUME SEQUENCE NUMBER
2 bytes, binary

CREATION DATE
3 bytes, discontlnuous binary

EXPIRATION DATE
3 bytes, dlscontinuou. binary

EXTENT COUNT
1 byte, binary

I : Format 1

Uniquely identifies a file/volume
relationship. It is Identical to the
Volume Serial Number of the first
or only volume of a multi-volume
fi Ie. It is the disk pock number
identiflcation.

Identifies each volume in a multi­
volume file. Each volume is
relative to the first volume on which
the data file res ides.

Indicates the year and the day of the
year the file was created. It is of
the farm YDD, where Y signifies the
year (0- 99) and DD the do)' of the
year (1- 366).

Indicate. the year and the day of the
year the file may be deleted. The
farm of thi. field is identical to that
of Field 5.

Contains a count of the number of
extents for this file an this volume.

7C

10

11

Extent.

Additional Extent Additional Extent

III 1 1 I~;§ III

NAME AND LENGTH

BYTES USED IN LAST BLOCK
OF DIRECTORY
1 byte, binary

SPARE
1 byte

SYSTEM CODE
13 bytes

~
7 bytes

FILE TYPE
2 bytes

RECORD FORMAT
1 byte

II Il:l

Pointer

III I§:

DESCRIPTION

If user lobels are used, the count
includes the user label track as a
separate extent. Th is field is
maintained by the Disk and Tape
Operating Systems program ••

Used by Operating System/360 only
for portltloned (I ibrary structure) data
sets. Not used by Disk and T~pe
Operating Systems.

Reserved for future use.

Uniquely identifies the programming
system.

This field is reserved for future use.

The contents of this field uniquely
identify the type of data file:

Hex 4000 : Consecutive organiza­
tion

Hex 2000 : Direct - access organiza­
tion

Hex 8000 : Indexed - sequentla I
organization

Hex 0200 : Library organization

Hex 0000 : Organization not
defined in the file
label.

The contents of this field indicate
the type of records contained in the
file:

Bit
~ Content Meaning

o and 1 01

10

11

Variable - length
records

Fixed - length
records

Undefined format

No track
overflow

File is organized
using track overflow
(Operating System/
360 only)

Unblocked records

B locked records

172 Disk and Tape Operating Systems COBOL Programmer 1l s Guide

12

13.

14.

15.

16.

17.

OPTION CODES
I byte

BLOCK LENGTH
2 bytes, binary

RECORD LENGTH
2 bytes, binary

KEY LENGTH
I byte, binary

KEY LOCATION
2 bytes, binary

DATA SET INDICATORS
I byte

DESCRIP'TION

Bit

~

No truncated
records

Truncated
records in file

5 and 6 01 Control character
ASA code

10

00

Contro I Character
mach ine code

Control Character
nat stated

Records have no
keys

Records are
written with keys

Bits within this field are used to
indicate various optians used in
building the file.

BIT

o ; If on, Indicates data file was
created using Write Validlly
Check.

1- 7; unused

Indicates the block length for fixed
length records or moximum block
size for variable length blocks.

Indicates the record length·for fixed
length records or the maximum record
length for variable length records.

Indicate. the length of the key· part Ion
of the data recards In the file.

Indicates the high order pasltlon of.
the data recard.

Bits within this field are used to
indicate the following:

If on, Indicates that this Is the
last volume on wh Ich th Is file
normally resides. This bit Is
used by the Disk and Tape
Operating Systems DTFSR
routine only. None of th ..
other bits in this byte are used
by Disk and Tape Operating
Systems.

If on, Indicates that the dClta
set described by th is file must
remoln In the same absolut ••
location on the direct access
device.

If on, Indicates that Block
Length must always be a multiple
of 8 bytes.

If on, Indicates that this data
file Is security protected; a
password must be provided in
order to access It.

4-7 Spare. Reserved for future-use.

18.

19.

20.

21.

22.

23.

24.

25-28

29- 32

33

SECONDARY ALLOCATION
4 bytes, binary

LAST USED TRACK AND
RECORD ON THAT TRACK
5 bytes discontinuous binary

AMOUNT OF SPACE
REMAINING ON LAST TRACK
lJ1§2.. 2 bytes, binary

EXTENT TYPE INDICATOR
I byte

EXTENT SEQUENCE NUMBER
1 byte, binary

LOWER LIMIT
4 bytes, discontinuous binary

UPPER LIMIT
~

ADDITIONAL EXTENT
10 bytes

ADDITIONAL EXTENT
10 bytes

POINTER TO NEXT FILE LABEL
WiTHiN tHis LABEL set
5 bytes, discontinuous binary

DESCRIPTION

Indicates the amount of storage to be
requested for this data file at End of
Extent. This field is used by Operating
System/360 only. It i. not used by
Disk and Tape Operating Systems routines.
The. first byte of this field is an indication
of the type of allocation request. Hex
code "C2" (EBCDIC "B") indicates bytes,
hex code "E3" (EBCDIC "T") indicates
tracks, and hex code "C3" (EBCDIC "C")
Indicates cylinders. The next three bytes
of this field is a binary number indicating
how many bytes, tracks or cylinder.; are
requested.

Indicates the last occupied track in a
consecutive file organization data file.
This field has the format CCHHR. It
is all binary zeros if the last track in a
consecutive data file is nat on this
volume or if it is not consecutive
organization.

A count of the number of bytes of
available space remaining on the last
track used by this data file on this
volume.

Indicates the type of extent with which
the following fields are associated:

00 Next three fields do not Indicate
any extent.

01 Prime area (indexed Sequential);
or ConsecutIve area, etc., (i.e.,
the extent containing the user's
data records.)

02 Overflow area af an indexed
Sequential file.

04 Cylinder Index or moster Index area
of an Indexed Sequentla I file.

40 Uter label track area

80 Shared cylinder indicator.

Indicates the extent sequence In a
multl- extent file.

The cylinder and the track address
specifying the starting paint (lower
limit) of this extent companent. This
field has the format CCHH.

The cylinder and the track address
specifying the ending paint (upper
limit) of this extent companent.
This field has the format CCHH.

These fie ids have the same format as
the fields 21- 24 above.

These fields have the same format as
fields 21 - 24 above.

The disk address (format CCHHR) of a
contlnuotion label if needed to furth.r
describe the file. If field 9 indicate.
Indexed Sequential organization, this
field wi II paint to a Formot 2 fll. label
within this label set. Otherwise, It
paints to a Format 3 file label, and then
only if the fi Ie contains more than three
extent segments. This field contains all
binary zeroS If no additional file label
is painted to.

Appendix D: Standard DASD File Labels -- Format 1 173

APPENDIX E: TRACK FORMAT FOR THE 2311, 2314, AND 2321

The track format for the 2311, 2314, and 2321 is illustrated in Figure
25. The names of the fields are described in the following discussion.

Index Marker: All tracks start with an index marker. It is a signal to
the hardware indicating the beginning of the track.

Home Address: The home address, preceded by a gap, follows the index
marker. The home address uniquely identifies each track by specifying
the cylinder and head number.

Track Descriptor Record (Record Zero): Record zero consists of two
parts: a count portion and a data portion. The count portion is the
same as it is for any other record (see the following description of
count for record one). The a-byte data portion is used to record infor­
mation used by LIOCS. The information in the data portion depends on
the data organization (direct or indexed sequential) that is being used.

For direct organization~ this portion in the form of CCHHR contains
the address of the last record on the track and the number of bytes
remaining on the track. This information is used to determine if there
is room for another record on the track. For indexed sequential" the
data portion contains the address of the last record in the cylinder
overflow area and the number of tracks remaining in the cylinder over­
flow area. Record zero i.s then used as the cylinder overflow control
record.

Address Marker: All records after record zero will be preceded by a
2-byte address marker. The address marker is a signal to the hardware
that a record is starting.

Data Records: Data records (see R1 in Figure 25) can consist of a count
and data portion for sequential organization, or a count" key" and data
portion for direct and indexed sequential organizations.

1. Count Portion. The count portion contains the identification of
each record, the key length, and the data length.

Identification~ Each record is identified with its cylinder
number, head number, or record number. The cylinder and head num­
bers will be the same as those of the home address. The record
number will indicate which record this is on the track. That is"
the first record after record zero will be record 1, followed by
record 2, etc. This 5-byte binary field in the form of CCHHR is
often referred to as the record ID.

Key Length. The key length is specified in an a-bit byte; its
length can range from zero to 255. This field will contain a zero
if there is no key.

Data Length. The data length is specified in the 16 bits of the
next 2 bytes.

Note: It is the count portion that identifies the presence or
absence of a key" as well as indicates the data length. In this
way, each record is unique and self formatting.

2,. Key Portion. The key portion of the record is normally used to
store the control field of the data record such as a man number.
Direct and indexed sequential files must have a key portion.

3. Data Portion. The data portion of the record contains the data
record.

174 Disk and Tape Operating Systems COBOL Programmer's Guide

Note that all records, including the data record/ end with a 2-byte
cyclic check. The hardware uses this cyclic check to assure that it
correctly reread what it had written. The cyclic check is cumulative
and is appended to each record when it is written. Upon reading the
record, the cyclic check is again accumulated and then compared with the
appended cyclic check. If they do not agree, a data check is initiated.

The first byte of the count portion of each record and the home
address is reserved for a flag byte. If a track becomes defective, a
utility may be used to transfer the data to an alternate track. (Cylin­
ders 200 through 202 are reserved for alternate tracks on the 2321.
Strips 6 through 9 of subcell 19 of each cell are reserved for alternate
tracks on the 2321.) In this case, a flag bit within the byte is set on
to indicate that this is a defective track and the address of an -
alternate track will be placed in the record ID of record zero. Subse­
quent references to this defective track will result in the supervisor
accessing record zero for the address of the alternate track.

G r+J G ~ G P£J G ~~ G 4J G ,,-,-I :::R_l-_--_C-o:::u_n-t_...J_I_G_I_R_l--.,- K,--ey_I_G_I_R_l -_Da_ta ___ tG 0 G ~
I I Count Data I T

Index Home Address First Data
Marker Address Marker Record

G=Gap

1
Track 1 Descriptor

Record

IFICIC,H,H,C,C I ,F,C,C,HIHIRIKLIDlIDLICIC, G

I
F,a~ ~I N~Uemabder I Fla~ '-r 'HJ;;;' IKeJ y~ ~

I Number ILength 1 Check

Cylinder Cyclic Cylinder Record Data
Number Check Number Number Length

Bits L 0,0 J 0 10 I 0 I 0, 1 J

o Good Track)~J
1 Defective

o Original)
1 Alternate >-

~~ '--....,--l-LJ
Key

CD Optional o Variable
Length

1 F I C, C, H, H I R IKLIDLIDLI C , C I

I~III
G
A
P
~~,C,CI

I By;es Remaining
Flag Record Key Data Cyclic

I D Length Length Check
After "Initialize Disk"

• Figure 25. Track Format

Data

CD Variable
Length

Appendix E: Track Format for the 2311, 2314~ and 2321 175

APPENDIX F: EXAMPLES OF CO~OL PROGRAMS

This appendix contains two sample COBOL programs. Figure 26 is a cal­
ling program, the other, Figure 27, is a subprogram which is linked by
the calling program. The linkage subprogram illustrated need not be a
COBOL program. However., COBOL assumes option 2 of the standard CALL,
SAVE, and RETURN macros.

II COBOL PROGRAM SHEET Form No. X28-1464
Printed In U.S.A.

Syltem IBM SVSTE 60 Punching Inltrucllonl Sh .. t of

I-P_ro...;;lIr_am--=E~X~A..;.;.M..;.;.P...;:L;..=E;...O;::;.:..F.:..A:...C=.:..:A=LL::;':.;,.N;;.:G=-:..P.;..;R=O.y;.&=A~M.:.:--_+-Gr....;.ap_hl_c -+-+-+-+-+-+-+-fl-Co_r_d _Fo_rm_ ___ *-I Id.ntlflcotlon
Programmer Oate Punch 80

SEQUENCE I§ A !B
tAGE~ '.t!RIA~ 78 !12 18 20 24 28 52 38 40 44 48 112 118 80 84 68 7~

~ I " I D EMiT IF Ie AT I~ N. DI VI !II ON.
f2 PR "G:R A~ - 1 O. ' C AL LIP. R6 M'
413 ~f ~A:R KS. EX ~M PLE OF A CA LL !NG PR be RA M. I
4>4 EN ~l:~ QNN ENT 01 'II 51 ON. t I
4>5 11"0 NFII GUR AT tON S~ elf" In N. !
4»& SO 'lJQ'e f-C OM PU TE R. 16 M- 3'~ 03 jp. I I ,
~7 Q81J S:C T-!C Q'MP.U T. f- R.. 16 M- 3'41 03 41 • ! I !
1P8 I NP U:T -OU TPUT Si CT 10 N.

+
!

4J9 FIlL E'- C~N TRio L. I

I~ 'Sf L,E clTl FI'L,e,A AS 51 GN TO 's vis dllb 4' UT IL lTV 2+ ~~ UN IT s. I
I 'I I 'SiS,LiE CIT, F IiCE:S iA 55 1GN TO \ S i~S 414> 5' UN IT -R EC ORO 25 441 RE Sf IWE NO
! 'AL;T:E RiNAT E AR E1A.'

I 12 DA ITA\ Dliv I's 10 N. ; ! i i i
, 3 FI L E: SiEIC T:(ON.

, ! , i !

14 FD :F I L'E Ai.' DATA REeO R,O; ;1 Si 'RE CII'! IreD - I., L A.& Eli iRE C O;R DS ARE 9T AN DA RD.
i :~L o!e I(co NTAl NS 5 'RiEC 0:R:D'SI9 RiE CO R'D I iNia MODE I'sl F •

4>1 \5 Ict>ll. i IRE;c.o IlDI-I. Ii I: \
,

! : ! i , ! ;

! ~II 6 l4>,2, 5 U:B:_IF l'e LD A PI CT:UiR EI i1:S X(D 8),. J i

1 : ~1)7 :4>2 IS U 8- F IE LD S· ·PI CTUR el iris x (I 2) .1 1 I i I
: i .18 FD . :FI ;Le 8 DA TA RECORD 1'5 IRleic loiRD- 2, LA;S:EiL iREiC 01R;O:S :ARE 10M [T,T ED .1

i I .;, :9 cP' : IJlEeo 1l0-2 PlC, T,U:QS' X:(8 ~!)! •.
;

i ; : i i I I
i i .214> P·JlOClf~D OR ~. Dr v I SI O·M..

, . ;
i I I I I

i 41211 SiTiA!R:r:. i 0 PS"N I NPU T FI Lf8 O·UTP IJT FI L fA .: ! : ! ! ! ! i I i
Itll I 12- 'rAIR:-r:2'. ' R'EAD FIL ES: 4T .ENO· &·0 1"0 LA&A. , I

I i i I I· i
i I i I I i I ,

• A a,aodard card form, IBM electro 61897, i. avaijalile for puocbio8 source sUltemeo's from tbis form.

Figure 26. Example of a Calling Program (Part 1 of 2)

Ilf!I COBOL PROGRAM SHEET Form No. X28-1464
Printed In U.S.A.

Syetem IBM SVSTEM/360 Punching Inllructlonl Sh .. t of

Program E'XAMPLE. OFA C~LLING PR06RAM Graphic I I ACord Form * Identification

I I
I I

Programm., Oat. Punch 73] [80

SEQUENCE I§ A !B
tAGr~ '.lr"IA~ 78 !12 18 20 24 21 52 38 40 44 48 112 58 80 84 68 7&

l I
4» 2 ~I :e ~T ER LI NK AG E. J

4>1 lc ~LL ' S U8 PR GM' US I N:G Rf ~O Ric -2. I
~3 ~e tJT ER C B 1... I
414 IN bTe su ~P RD eR ~M "10 D~ FI ES IN FlO RM ~T liON IN RE clo RD -2.
415· ~ RI TE RE CO RO - I FR OM RE rO R!n -2. Gh T~ S;T'A RT 2.i I

: ' I : 1 I i , !
t 2 ~, LA @A:. CL OS! FI LE 4)J iF 1 LiES $;T" OP Irw IN. i i i i i ~ ,.....-L!... i- ... 10.... 10....'-"'1.-"

: JJ-Io....ll I ! /---!...;..., I :,...V ~V
-"",,

-- i.- '-L. -10.... i--" =::::t::::7' ~-

Figure 26. Example of a Calling Program (Part 2 of 2)

176 Disk and Tape Operating Systems COBOL Programmer's Guide

IBJt1 COBOL PROGRAM SHEET Form No. X28-1464
Printed in U.S.A.

Sy,tem '16M SV9TEM/360 Punching In,tructlon, Sheet 3 of 4
Program eXAMPLE OF' A SU BPROGQAM Graphic I I I I I I II Card Form# * Identification

Proorammer 100te Punch I I I I I I II 73] [80

SE~UENCE
Ii A Ie

tAGE~ ',\EIIIAil 78 IIi! 18 20 24 28 32 36 40 44 48 52 56 6(64 88 7~

~ 3 ~I ID ENiT IF 1 C Art" rON nIl VI ~I ON~
00

I 1

02 PR It'lGIR AM - I D. \ 5 UB PR- OG ' . ! ! ! ! I I
~3 RE IMA:R KS. EX AM PL c OF A SU BP RO GR AM. I ! : i I ! ' I· I

cP4 EM V l~R ON ME NT Dt VI 51 lOIN. I ! I! I 1

¢'5 CO NFll GU RA Tl /'IN SE CT 110 N. i! I I I 1

06 ~O IIR~C E- Ct'I MP UT E~. 1 g M- 3~4 O~ cI>. ! : I
,

i i ! ! ' I I 1 ! I

~7 OB JE:C IT- c~ MP OT ER. I B I~ - 364> D3 cI>. i, I Iii I I i I I I Tr i
I ! ! ! I I

! ! I II ! +++ I I I
,

i~8 TAl vrt 9'1 ~~. I . I
i I ! I

.
OA D1 I I i I I ! i

1419 WO RKII NG -s TO IRA 6E ~E CiT 110 IN. I
;

I ! ! , ! I ~ : I I I i I I
I ! I ! i 0

;
~ I ! i

I~ 77 INO Dl FI ciA TI o~ PI CT URE X(IZ) , VA L;U:E !liS' I !P~U;T iAIN~ iD:A!T A:' .0

, 1 Ll N K~A GE Sf CT t9 ,III. I I ,
! i ! ; ; : ! ! i I

I

12- ell 1 :PA 5S -F lie LO. ! ! ! I I ! i !

.' 3
cJ Z: A PI CT URE IX C ,~) . ! 1 i : 1 1

I 1 I I
i I

14 42: 8 PI CT URE ~I(12) . iii ! i
I ! : i! '; i i ! , I

15 PR ocle DlI RE: 01 VI 51 QN~ i I I I I I
r, str AR:-r • EN TER Ll INK AGE ! 1

I Ii ! IT I ! I !

17 'EN TRY , s U8 PR GM' US ING PA ss -F te LD I I i
18 ~E N TE R C" 8P l.. I

19 t.t~ ~l:F v. tAp ~E Mlo D~ Ft I"A T1 iON T~ ~ . i I I \ I
24» :EN Ir~ R LI NK ~~ ~ . 1 i

I. 3 21 :RE T~ RN.
I
I

• /I. standard card farm, IBM electro C61897, is available far puocbio, source statemeots from this form.

Figure 27. Example of a Subprogram (Part 1 of 2)

IBM COBOL PROGRAM SHEET Form No. X28-1-t6-4-1
Printed In U.S.A.

5y,tem taM SYSTEM/36Q Punching In,tructlona Shltt 4 of 4
Program EXAMPLE OF A SUBPROGRAM Graphic I I I U Card Form# * Identification

Pragrammer Date Punch I I I H hj I
I t8~

SE~UENCE I~ A Ie
tAGE~ ',\ERI~1 78 112 16 20 24 28 32 36 4 44 48 52 56 80 64 68 _",Ii
~~ 4~ 9 t iE NIT ~R --10 80 L. I 11++ ' --,- .. L J!
"'~ 1.1.1"'2 tNb lIE TH AT PA S6 ~f IE' IL' D IfN TJ.4 115 PR 0'" RAM lIs T HIE IIOIENT l,C.

AI, 11 r ~~ E~ DE FI NED AS RE CO RD -2 IN THE CA LL ING PRio GI~IAIM. i
I I ' ~~~11 ~~JiiL I

l !,.... I
io-'" I I--'

-'-..... 1--' -........... ""' / -.............. ~V _'-;....., '-lY

Figure 27. Example of a Subprogram (Part 2 of 2)

Appendix F: Examples of COBOL Programs 177

APPENDIX G: SUBROUTINES USED BY COBOL

A table of subroutines used by COBOL to accomplish the statements or
actions specified follows. The table should guide the programmer in his
efforts to conserve storage and to isolate a troublespot (debugging).

r----------------------------------T-----------------------------------,
I SUBROUTINE I I
I NAME I ACTION I
~----------------------------------t-----------------------------------~
IIHDOOOOO IRequired for manipulation of I
I Converts an external lexternal floating-point data in: I
I floating-point number I MOVE - When send field is I
I to an internal floating- I external floating point in MOVE I
I point number I statement. I
I I I
I I COMPUTATIONAL - When one field isl
I I external, and one field is I
I I internal floating point in I
I I computational statement. I
~----------------------------------t-----------------------------------~
IIHD00100 IRequired for exponentiation to non-I
I Floating-point I integer power,. I
I exponential subroutine. I I
~----------------------------------+-----------------------------------~
IIHD00200 IRequired for division of complex I
I Packed divides subroutine. Icomputations, COMPUTATIONAL of l
I It divides 16-byte 30-char- lover 9 digits, and COMPUTATIONAL-3 I
I acter dividend by a lof over 16 digits. I
I 16-byte 30-character I I
I divisor producing a 16-byte I I
I 30-character quotient. I I
I No registers are used. I I
~----------------------------------t-----------------------------------i
I IHD00300 I Required for complex computations., I
I Packed multiply subroutine. ICOMPUTATIONAL fields of over 9, or I
I It multiplies two 30-char- ICOMPUTATIONAL-3 of over 16 digits. I
I acter packed fields and I I
I produces a 60-character packed I I
I product. I I
~----------------------------------t-----------------------------------~
IIHD00400 IRequired with floating-point and I
I Error message subroutine. Inon-integer exponentiation. I
I It generates execution time I I
I messages. I I
~----------------------------------t-----------------------------------i
IIHD00500 IRequired for exponentiation to an I
I Packed exponentiation linteger power. [Used with IEP00700 I
I subroutine. I (floating-point exponentiation) I
I I subroutine.] I
~----------------------------------+-----------------------------------i
IIHD00600 IRequired whenever floating-point I
I Floating-point Iconversion is needed. Used with I
I logarithm subroutine. IIEP00700 (floating-point I
I lexponentiation) subroutine. I
~----------------------------------+-----------------------------------i
IIHD00700 IRequired to set up floating-point I
I Floating-point exponen- Iconversion routines for nonfloatingl
I tiation subroutine. Ipoint exponentiation. I L __________________________________ ~ ___________________________________ J

178 Disk and Tape Operating Systems COBOL Programmer's Guide

r-----------------------------------T-----------------------------------,
lSUBROUTINE I I
I NAME lACTION I
~-------------------------,---------+----------------------------------~
IHD00800 May be required when floating-point I

converts packed decimal to and/or non-integer exponentiation I
floating point. Conversion is used. I
is accomplished by calling ARITHMETIC - Required when packedl
two other subroutines and floating-point operation I
IHD01600 (TOBIN), which are in the same statement. I
converts the number from MOVE - Required if the sending I
packed decimal to binary, field is packed and the I
and IHD01500 (BINFL)~ which receiving field is floating I
converts the binary number point in a move statement.. I
to floating point and then COMPUTATIONAL - Required if one I
returns. field is packed, and one I

field is floating pOint in I
a computational statement.. I

~----------------------------------+-----------------------------------~
IHD00900 ARITHMETIC - Required when there

Converts floating-point is a floating-point operand,
numbers to zoned decimal and the receiving field is
numbers.. Conversion is zoned in an arithmetic
accomplished by calling statement.
two other subroutines; MOVE - Required if the sending
IHDOll00 (FRFLPT), which field is floating point.,
converts the number from and the receiving field is
floating point to bina,ry" zoned in a move statement.
and IHD01800 (BINZN), which
converts the binary number
to zoned decimal and returns.

~---------------------~------------+-----------------------------------~
lIHD01000 Required for:
I Converts a binary number to ARITHMETIC - Required when
I a packed decimal number. mUltiplying a binary field
I Used with IHD01300 (floating by a packed field or visa
I point to packed decima!l) versa.
I subroutine. - Required if multiplication is
I done in binary.

1
1 MOVE - (Special Class) - If send~

ing field is internal
floating point~ and receiving
field is binary. The
binary number must fall
within the limits speci­
fied. (9 decimal digits
<binary number <18 decimal
digits .•)
- If sending field is binary
and receiving field is binary. I
- If sending field is less thanl
9 and Receiving field is less I
than or equal to 9, or both arel
greater than 9 decimal digits. I
- If sending field is binary I
and receiving field is packed, I
and sending field is greater t
than 9 decimal digits. I

COMPUTATIONAL - If one field is I
binary and the other is zoned. I
- If one field is binary and I
the other is packed. I
- If both fields are binary and I
A is less than 10, and B is I
less than 10 and the scales of I
both fields are equal. I L __________________________________ ~ ___________________________________ J

Appendix G: Subroutines Used by COBOL 179

r----------------------------------T-----------------------------------, I SUBROUTINE I I
I NAME I ACTION I
~----------------------------------+-----------------------------------i I - If the scale of the sending I
I field is greater than the scalel
I of the receiving field~ and the
I real or implied integer posi-
I tions of the receiving field
I plus the scale of the sending
I field is less than 10.
I - If the scale of the sending
I field is less than the scale of
I the receiving field~ and the
I real or implied decimal posi-
I tions plus the scale of the
I receiving field is less
I than 10.
~----------------------------------+-----------------------------------i IHDOll00 MOVE - Required when send field

Converts an external is external or internal
floating-point number floating point, and
to a binary number. receiving field is external
Used with IHD00900 (floating floating point.
point to zoned decimal)
subroutine, IEP01300
(floating point to packed
decimal) subroutine,
IHD01400 (floating point
to binary) subroutine and
IHD01900 (miscellaneous
fields to external floating
point) subroutine.

~----------------------------------+-----------------------------------i
IIHD01200 I MOVE - Required when send field I
I Converts a zoned decimal I is zoned and receiving I
I number to a floating point I field is floating point. I
I number. Conversion is I COMPUTATIONAL - Required when I
I accomplished by calling lone field is zoned and the I
I the same subroutine used I other field internal floating I
I by FLPZND (IHD00900). I point. I
~----------------------------------+-----------------------------------i
IIHD01300 MOVE - Required when send field I
I Converts a floating point is external or internal I
I number to packed decimal floating point and receiving t
I format. Conversion is field is packed. I
I accomplished by calling I
I IHDOll00 (FRFLPT), which I
I converts a floating-point I
I number to binary, and I
I IHD0100 (BINPK), which ,
I converts the binary number I
I to packed decimal and then I
I returns. I
~----------------------------------+-----------------------------------i
IIHD01400 I MOVE - Required when sending I
I Converts an internal floating- I :field is external or internal I
I point number to a binary I :floating point and receiving I
I format. Conversion is I field is binary. I
I accomplished by calling t I
I subroutine IHDOll00 (FRFLPT)~ I I
I which does the actual I I
I converting of the floating I I
I point number to a binary I I
I number :forma t. I I L_--------------_-_________________ ~ ___________________________________ J

180 Disk and Tape Operating Systems COBOL Programmer's Guide

r------~---------------------------T----------------------------------., I SUBROUTINE I I
I NAME I ACTION I
~----------------------------------+----~------------------------------~ IHD01500 MOVE - Required when sending I

converts a binary number field is binary and receiving I
into double pre£ision field is floating point. I
floating point. May be ARITHMETIC - Required when one I
required when floating,- operand is binary and one I
point and/or non-integer operand is floating point. I
exponentiation are used. COMPUTATIONAL - Required when onel
Used with IHD00800 (packed to field is binary and one is I
floating point) subroutine, internal floating point. I
IHDOOOOO (external floating I
point) subroutine. IHD01200 I
(zoned decimal to floating I
point) subroutine, IHD01900 I
(miscellaneous field type I
to external floating point) I
subroutine. I

~----------------------------------+-----------------------------------~
IHD01600 Required for: I

Converts either a packed MOVE - Required if the sending I
decimal or a zoned decimal field is external decimaL. and I
number to a binary receiving field is packed, I
number when receiving receiving field must be 9 I
field is greater than decimal digits. I
9 digits. COMPUTATIONAL - If one field is I

binary or zoned and one field I
is packed. I
- If both fields are binary andl
the following conditions are I
not met: I
• the length of the fields are I

unequal I
• A and B are both less than 101

and the scales of the fields I
are equal I

- If the scale of the sending I
field is greater than the scalel
of the receiving field and the I
real or implied integer posi- I
tions of the receiving field I
plus the scale of the sending I
field is less than 10. I
- If the scale of the sending I
field is less than the scale ofl
the receiving field and the I
real or implied decimal posi- I
tions plus the scale of the I
receiving field is less I

I than 10. I L _________________________ . _________ ~ _______ ~---------__________________ J

Appendix G: Subroutines Used by COBOL 181

r----------------------------------T-----------------------------------, I SUBROUTINE I I
I NAME I ACTION I
.----------------------------------+-----------------------------------i IIHD01700 I COMPUTATIONAL - Required when I
I Compares two alphabetic I either or both fields are I
l fields of different lengths, I 255 bytes,. I
I no restriction on maximum I I
I length, when either or both I I
I fields are greater than 255 I I
I bytes. I I
~----------------------------------+-----------------------------------~
IIHD01800 I ARITHMETICS - Required when I
I Converts a binary number I operations are performed in I
I to a zoned decimal number. I binary and the receiving I
I Used with IHD00900 I field is zoned. I
I (floating-point zoned I MOVE - Required when sending I
~ decimal) subroutine. I field is binary and receiving I
I I field is zoned, zoned I
I I field is 9. I
I I MISCELLANY - Required if user I
I I displays binary item. I
~----------------------------------+-----------------------------------~ IHD01900 MOVE - Required when receiving

Converts a field of any of field is external floating
the following formats to point.
external floating point: MISCELLANY - Required if user
external decimal, internal displays internal floating
decimal, binary, internal point.
floating point, figurative
constant of zero. Conversion
is accomplished in same cases
by calling IHD01100 FRFLPT)
which converts internal
floating point to binary, and
IHD01500 (BINFL) which converts
binary to external floa.ting
point •

• ----------------------------------+-----------------------------------~
IIHD02000 Iused to move group items longer I
I Ithan 256 bytes. I
.----------------------------------+-----------------------------------i
IIHD02100 IPerforms the class test on alpham- I
I leric fields, as specified in the I
I I IBM publication IBM system/360 Diskl
I land Tape Operating Systems: COBOL I
I ILanguage Specifications, Form I
I IC24-3433. I L __________________________________ i ___________________________________ J

182 Disk and Tape Operating Systems COBOL Programmer's Guide

r----------------------------------T-----------------------------------, I SUBROUTINE I I
I NAME I ACTION I
~----------------------------------+-----------------------------------~ IIHD02200 I ARITHMETIC - Required when the I
I Converts a packed decimal I operations are performed in I
I number to a zoned I packed decimal and the I
I decimal number. I receiving field is zoned. I
I I MISCELLANY - Required if user I
I I displays packed decimal format. I
~----------------------------------+-----------------------------------i
IHD02300 This subroutine consists of three I

parts: I
I

1. The first part builds a table I
of the beginning and end I
addresses of the PERFORM or I
nested PERFORM statements and I
the return address. It checks
the validity of addresses.

2. The second part checks to see
if the PERFORM is complete by
comparing return addresses.

3. The third part deletes or eli­
minates the table entries by
resetting pointers and
counters.

Required when linkage editing a
version I object deck with a ver­
sion II system.

~----------------------------------+-----------------------------------i
IIHD02400 IUsed to move fields when either or I
I Iboth fields are variable groups. I
I I Requirements: I
I I Rl points to 'sending' field I
1 I R2 points to ~receiving' fieldl
I I WORK A is length of 'sending' I
t I field I
I I WORKA+2 is length of 'receiv- I
I I ing' field I
I I WORKA+4 is '01' if • receiving" I
I I field is right justified. I
~----------------------------------+-----------------------------------~
IHD02500 IUsed to compare two fields either

lor both of which are group vari­
lable. Used with fields defined
Iwith OCCURS ••• DEPENDING ON clauses.
I Requirements:
I Rl points to FIELD1.
I R2 points to FIELD2.
I WORKA is the same length as
I FIELD1.
I WORKA+2 is the same length as
I FIELD2.

----------------------------------~-----------------------------------

Appendix G: Subroutines Used by COBOL 183

r----------------------------------T-----------------------------------,
I SUBROUTINE I I
I NAME I ACTION I
~----------------------------------t-----------------------------------~ IHD02600 Checks length of field to be dis- I

played to be sure it fits into I
defined field, and moves DISPLAY I
data to an output buffer. Used if I
a display data fit check is spec i- I
fied at execution time. I

Requirements: I
WORKW - must be address of I

byte after buffer. I
WORKA+4 - must be number of I

bytes to move minus 1. I
R1 - points to next available I

buffer byte. I
R2 - points to data to be I

moved. I
~-----------------~----------------+-----------------------------------~
IIHD02700 IWrites out display data on SYSPCH. I
I IUsed when display on SYSPCH is I
I I specified. I
~----------------------------------+-----------------------------------i
IIHD02800 IWrites out display data on SYSLS'I. I
I I I
1 IRequired when EXHIBIT, TRACE, or I
I Istandard DISPLAY statements are I
1 lused (i.e., not UPON CONSOLE or I
I IUPON SYSPCH). I
~----------------------------------+-----------------------------------i
IIHD02900 IReads a record from SYSIPT and I
I Imoves data to the field specified I
I Iby data-name. I
I I I
I IRequired when ACCEPT is specified I
I I (not ACCEPT FROM CONSOLE). I
~----------------------------------+--------~--------------------------i
IIHD03000 IUsed for display on console. I
~----------------------------------+-----------------------------------i IIHD03100 IUsed for execution of direct-access I
I I statements. I
I I I
1 IRequired when any direct-access I
1 Istatement is used. I
~----------------------------------+-----------------------------------~
I IHD03200 I If problem program has user labels" I
I lthis subroutine is the linkage withl
I Ithe declaratives section. I L __________________________________ ~ ______________ - ____________________ J

184 Disk and Tape operating Systems COBOL Programmer's Guide

r----------------------------------T-----------------------------------,
I SUBROUTINE I I
I NAME I ACTION I
~----------------------------------+-------------~---------------------~
IIHD03300 IIf one field is divided by another I
I land the divisor is zero~ this sub- I
I Iroutine links to the ON SIZE error I
I I routine. I
~------.---------------------------+-----------------------------------~
IIHD03400 IPrints out object time diagnostic I
I Imessages when errors are encoun- I
I Itered in direct-access processing4 I
I I I
I IRequired when IHD03100 is used. I

t~;~03500--------------------------t;;~d~~;;-~bj;~;-;i~;-di;~~~;;i~----1
I Imessages for indexed sequential I
I lorganization of files. I
I I I
I IRequired when indexed sequential I
I Idata organization is indicated. I
~----------------------------------+-----------------------------------i IIHD03600 IRequired to write record number ~
I Izero on all tracks for an output I
I loperation when using direct-access I
I I method. I
~----------------------------------+-----------------------------------i
1IHD03700 IUsed for initializing tape or disk I
I Iwhen using read and write I
j I operations. I
~----------------------------------+-----------------------------------~
IIHD03800 IUsed for maintaining a list of I
I Itapes to be repositioned, linking I
I I to the system' s checkpoint routine, I
I land providing a restart entry 1
I I point. I
.--~-------------------------------+-----------------------------------i IIHD03900 IConverts internal decimal to sterl-I
I ling non-report. I
~----------------------------------+-----------------------------------~ IIHD04000 IConverts sterling non-report to I
I linternal decimal. I
.------------------------_._--------+----------------------------------~
IIHD04100 IEdits internal decimal into sterl- I
I I ing report. I L __________________________________ ~ ___________________________________ J

Appendix G: Subroutines Used by COBOL 185

APPENDIX H: DIAGNOSTIC MESSAGES

This appendix contains a detailed description of the diagnostic messages
that are generated during processing. They consist of:

• Compiler diagnostic messages

• Execution time messages

• Debug packet error messages

Certain conditions that may occur when a module is being processed
will generate linkage editor diagnostic messages. For a complete
description of these messages. see the publications IBM System/360 Disk
Operating System, system Control and System Service Programs" Form C24-
5036, and IBM System/360 Tape Operating System. System Control and Sys­
tem Service Programs, Form C24-5034.

COMPILER DIAGNOS~IC MESSAGES

IJS001I C

IJS002I W

IJS003I C

IJS004I

LITERAL EXCEEDS 120 CHARACTERS.

System Action: The element count begins following the next
quote on the line if there is one. or following the element
beginning after the 120th character.

User Response: Change the length of the literal so it doe~
not exceed the allowed maximum, or insert the missing
quote, or define the literal with two statements; execute
the compilation again.

LITERAL CONTINUATION QUOTE INVALID IN MARGIN A.

EXElanation: The literal continuation quote should appear
in margin B.

System Action: The continuation is allowed.

LITERAL IMPLY CONTINUED OR CONTINUATION QUOTE IS MISSING.

Explanation: This may be the result of a missing quote
sign on the preceding line.

System Action: The non-numeric literal is truncated at the
end of the preceding line. The syntax scan resumes with
the first element of the next line.

User Response: Check for missing quote, column 7 continua­
tion hyphen, or improper formation of the non-numeric
literal.

SYNTAX REQUIRES A BLANK AFTER A PERIOD OR THIS PERIOD IS
INVALID DECIMAL POINT.

system Actionl The inverted print edit word with the
invalid decimal pOint is dropped, and processing continues
with the next word.

User Responsel Check syntax of statement in error, and try
again.

186 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS005I C

IJS006I C

IJS007I C

IJS008I C

IJS009I E

IJS010I W

IJS011I B

IJS012I C

XXX EXCEEDS 30 CHARACTERS.

Explanation: Any element that is not a non-numeric literal
is truncated ,after 30 characters,.

System Action.!. Normal processing continues with a literal
made up of the first 30 characters.

User Response: Alter the length of the literal to conform
with the specIfications for this class of literal.

XXX REQUIRES QUALIFICATION.

Explanation: This indicates that the name is defined in
more than one location, and requires qualification in order
to be unique.

System Action: The first name defined is used and the com­
pilation continues. If it is the name desired, the run
compiles as desired. For further system action, see mes­
sage IJS013I. It explains the handling for the procedure
division statement.

User Response: Correct the procedural statements in error"
or change the duplicate data names so they are unique.
Execute the jab again.

XXX HAS UNDEFINED QUALIFICATION.

Explanation: One or more of the names in the qualification
hierarchy are not defined as a group containing the data­
name. This may have resulted from the dropping of a data­
name because olf an error at its point of declaration" or
because of a misspelling.

System Action: The first name defined is used. If it is
the name desired, the run compiles as desired.

User Response: Check for misspelling of the data-name, or
the data-name's qualifier in the hierarchy order,.

XXX REQUIRES MORE QUALIFICATION.

Explanation: The number of qualifiers or the names are not
sufficient to make the subject name unique. Another name
could have the same qualification.

system Action: The first name defined is used and the com­
pilation continues. If it is the name desired, the run
compiles as desired. For further system action, see mes­
sage IJS013I. It explains the handling for the procedure
division statement.

SUBSCRIPTED 88 MUST HAVE A RIGHT PARENTHESIS. WILL BE
TREATED AS A DATA NAME.

SYNTAX REQUIRES A BLANK AFTER A RIGHT PAREN" SEMICOLON AND
OR COMMA.

Explanation: Normal processing continues,.

XXX IS UNDEFINED",

XXX HAS MORE SUBSCRIPTS THAN DECLARED IN THE DATA DIVISION,.

Explanation: The procedure division reference to the data­
name has too many subscripts. The number of subscripts

Appendix H: Diagnostic Messages 187

IJS013I C

IJS023I C

IJS0241 C

IJS0251 C

IJS0261 C

IJS0271 W

IJS0281 C

must match the number of OCCURS ••• DEPENDING ON clauses in
the definition hierarchy in the Data Division.

System Actiont Normal processing continues with the next
word.

RECORD NAME 'XXX' IS ASSOCIATED WITH INVALID FD ENTRY.

Explanation: The FD associated with the SELECT clause is
invalid.

system Action: The error attribute for the record is
generated, and normal processing continues with the next
wo:d.

User Response: Check FD entries for proper device labels,
required clauses, missing period terminator. etc.

COPY AND INCLUDE MUST NOT BE USED WITHIN LIBRARY ENTRIES.

System Aotion: Words following the library name are diag­
nosed according to the clause being processed, up to the
next required clause.

PERIOD MISSING FOLLOWING XXX. THE NEXT CARD MAY BE
SKIPPED.

system Action~ For the Data Division COpy statement -- Any
other entry following the name is diagnosed as the missing
period and the return is made to the phase. The phase dia­
gnoses all entries up to the next period according to the
current clause string. Normal processing continues.

For the Procedure Division INCLUDE statement -- Interroga­
tion of the library name continues to determine its validi­
ty and whether or not it is in the library. If the library
name is valid and it is found" normal processing continues.

User Response: A period should be inserted following
library book name.

XXX IS AN INVALID LIBRARY NAME OR NOT FOUND ON LIBRARY.

Explanation: The library name may have been misspelled"
not previously cataloged or not properly terminated with a
quote.

system Action: Any word other than period immediately fol­
lowing the library name is diagnosed according to the cur~
rent clause string up to the next period. This includes
the current card and the next card if read.

User Response: Check for the possible causes given in the
explanation.

FLOATING-POINTING NUMBER XXX IS BELOW OR ABOVE VALID RANGE.

system Action: The value zero is assumed.

NUMBER OF DECIMALS IN LITERAL XXX AND DATA ENTRY DISAGREE.

System Action: Truncation or padding is performed accord­
ing to the rules governing the MOVE verb.

LITERAL XXX IS INVALID AND IS DROPPED.

Explanetion~ The value clause conflicts with the descrip­
tion of the entry.

188 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS029I W

IJS030I W

IJS031I W

IJS032-I C

IJS041I C

IJS042I C

IJS043I C

IJS044I C

IJS045I C

IJS046I C

System Action: The value clause is dropped.

LITERAL XXX AND PICTURE SIZE DISAGREE.

Explanation: This message indicates a literal that is
larger than its picture.

System Action: The literal is truncated to picture size
from left to right, unless right justification is speci­
fied. The scan is continued as though no error occurred.

LITERAL XXX WAS SIGNED, ENTRIES PICTURE WAS UNSIGNED.

Explanation: The literal encountered in this entry con­
tains a sign~ it does not appear as part of the entry
because the picture is unsigned.

NUMBER OF INTEGERS IN LITERAL XXX AND DATA ENTRY DISAGREE.

System Action: Same as for message IJS027I.

LIBRARY NAME IS AN INVALID EXTERNAL NAME OR NOT IN THE
LIBRARY.

1l;lill~tion: The library name may have been misspelled.,
not cataloged, or not properly terminated with a quote.

System Action: The invalid or not found library name is
dropped and the next card is read.

THIS CLAUSE IGNORED AT THE 01 LEVEL IN XXX ENTRY.

Explanation: The OCCURSu. DEPENDING ON clause not valid as
a level 01 or level 88 entry~

System Actiont The clause is dropped.

User Response :~ Alter the clause level number to one that
is valid or remove the OCCURS ••• DEPENDING ON clause from
the statement in error.

THIS CLAUSE IGNORED IN XXX ENTRY AS IT PROVIDES MORE THAN 3
LEVELS OF SUBSCRIPTING.

DEPENDING ON OPTION IN XXX ENTRY IS IGNORED DUE TO PRIOR
USE.

DEPENDING ON OPTION IN XXX ENTRY IS IGNORED BECAUSE IT IS
SUBORDINATE TO A PREVIOUS CLAUSE.

THE LEVEL OF XXX ENTRY INVALIDATES THE DEPENDING OPTION AT
THE PRECEDING XXX ENTRY. THE DEPENDING OPTION IS DROPPEn.

Expla~tion: The level. number just encountered indicates
that there was an OCCURS •• ,DEPENDING ON clause that did not
include the last entry within the level 01.

system Action: The OCCURS ••• DEPENDING ON option is
dropped.

XXX ENTRY CONTAINS AN ILLEGAL LEVEL NUMBER OR REDEFINES
CLAUSE WHICH IS IGNORED.

Explanation: A redefines clause must redefine an entry at
the same level number,.

System Action: The level number or the redefines clause is
ignored.

Appendix H: Diagnostic Messages 189

IJS047I E

IJS048I W

IJS049I W

IJS050I W

IJS051I W

IJS052I C

IJS053I W

User Response: Alter the level number or relocate the
redefines clause to conform with the specification.

INTERNAL QUALIFIER TABLE OVERFLOWED WHEN HANDLING XXx..
RESTARTED QUALIFIERS WITH XXX.

Explanation: The sum of all the characters in the data­
name and all its qualifiers + 4 times (the number of quali­
fiers + i) must not exceed 300.

ENTRY PRECEDING XXX IS OF VARIABLE LENGTH.

XXX IS LARGER THAN ENTRY REDEFINED.

Explan?tion: The current entry is larger than the area
redefined.

System Action: The area is assumed to be expanded.

User ReSponS!: The redefined area may be expanded.

XXX ENTRY PRECEDING XXX IS LARGER THAN ENTRY REDEFINED.

Explanation: Same as for message IJS049I" only for a group
entry.

system Action: Same as for message IJS049I.

THIS CLAUSE INVALID IN XXX ENTRY AS REDEFINED AREA IS
SUBSCRIPTED.

Explanation: It is invalid to redefine an area containing
an OCCURS ••• DEPENDING ON clause.

system Action: The redefinition clause is dropped.

THIS CLAUSE IGNORED IN XXX ENTRY DUE TO REDEFINES OR OCCURS
CLAUSE IN PRECEDING XXX LEVEL.

Explanation: A value. clause cannot appear in an entry sub­
ordinate to a redefines clause.

system Actio~: The value clause is dropped.

FOR PROPER ALIGNMENT, A XXX BYTE LONG FILLER ENTRY IS
INSERTED PRECEDING XXX.

Explanation: Binary or floating-point data improperly
aligned for computations.

System Action: Binary and floating-point data are aligned
on an appropriate boundary by the compiler. The alignment
is performed by inserting an assumed filler entry preceding
the item requiring alignment.

User Respons~: The number of slack bytes required can be
reduced by the use of a different data format such as:
internal decimal~ grouping aligned items to the beginning
of a record, or otherwise positioning them so that they
will have the proper alignment within the record. A dis­
cussion of slack bytes can be found in the publication IBM
System/360 Disk and Tape Operating System: COBOL Language
Specifications~ Form C24-3433.

190 Disk and Tape Operat1ng systems COBOL Programmer's Guide

IJS054I W

IJS055I E

IJS056I W

IJS057I E

IJS058I E

IJS060I W

IJS061I C

FOR PROPER ALIGNMENT" A XXX BYTE LONG XXX FILLER ENTRY IS
INSERTED PRECEDING XXX.

Explanation: Binary or floating-point data is improperly
aligned for computations.

§ystem Action: Groups are aligned according to the align­
ment requirements of the first elementary within that
group. The level number indicated in the diagnostic mes­
sage shows exactly where the implied filler entry was
inserted. For further explanation, see message IJS053I.

XXX ENTRY PRECEDING XXX EXCEEDS MAXIMUM SIZE OF 4092 BYTES.

Explanation: The group defined at the indicated level pre­
ceding the point where this message was generated exceeded
the maximum size permitted in the file or linkage section.

System Action: The compilation is continued., but execution
is not attempted.

User Response: Reduce the record size to the allowable
maximum size.

XXX ENTRY PRECEDING XXX EXCEEDS MAXIMUM LENGTH OF 32,768
BYTES.

Explanation: See message IJS055I. It applies to working~
storage section.

System Action: See message IJS055I. It applies to
working-storage section.

PROGRAM EXCEEDS 240 BASE LOCATORS MAXIMUM AT XXX.

Explanation: A base locator is assigned for each file for
each level 01 or level 77 in the linkage section, and for
every 4,096 bytes in the working-storage section.

System Action: The base locator counter wraps around and
the results are unpredictable~

User Response: Reduce the number of base locators.

ERRONEOUS OR MISSING DATA DIVISION.

Explanation: No data division entries were present,.

System Action: All data division entries were dropped
because of errors.

XXX LEVEL PRECEDING XXX IS OF VARIABLE LENGTH.

EXRlanation: The entry" defined at the level indicated,
that preceded this clause contained an OCCURS~ •• DEPENDING
ON clause.

System Action: The redefined clause is dropped because it
is invalid to redefine a variable-length entry.

XXX ENTRY EXCEEDS MAXIMUM LENGTH FOR ITS DATA TYPE.

Explanation: The maximum permitted length of an entry
depends on the type of data defined for that entry. Numer­
ic data cannot exceed 18 digit positions, report entries
cannot exceed 127 character positions.

System Action: The maximum size is used.

Appendix H: Diagnostic Messages 191

IJS062I W

IJS063I W

IJS064I W

IJS076I W

IJS078I C

IJS079I C

IJS080I C

IJS081I W

XXX REQUIRED ALIGNMENT AND STARTS XXX BYTES PAST THE START
OF THE ENTRY IT REDEFINED.

Explanation: The entry containing the redefines clause
requires alignment that differs from the alignment of the
clause redefined. If alignment is required. insert a fill­
er the size of the number of bytes indicated in the message
before the item being redefined.

TO ALIGN BLOCKED RECORDS ADD XXX BYTES TO THE 01 CONTAINING
DATANAME XXX.

Explanation: The first record in a buffer is aligned on a
double-word boundary. All level 01 records are assumed to
start on a double-word boundary. If binary or floating­
point numbers are used in the record and if the records are
blocked in a buffer. the succeeding records may not be
properly aligned. Alignment can be obtained by padding
each record by the indicated number of bytes and processing
in the buffer. or by moving each record, as a group. to a
level 01 record in the dorking-storage section before
processing the computational field. The pointer to this
diagnostic message indicates the last element within a
record. The padding must go into the preceding level 01
record, not the level 01 record that may immediately follow
the indicated data name.

IF THE PRECEDING RECORD IS BLOCKED. IT MAY BE ALIGNED BY
MOVING TO AN 01 IN THE WORKING-STORAGE SECTION.

~~lan~tion: When records are variable and blocked, only
the first record can be aligned.

INTEGER OPTION IS NOT PERMITTED.

system Action: The clause is dropped.

INTERNAL FILE-NAME AND DESCRIPTION TABLE OVERFLOWED. XXX
NOT PROCESSED.

Explanation: There is a fixed number of files that can be
handled by a given COBOL compilation (25). If additional
files must be handled, they can be processed in a subpro­
gram and accessed via the linkage facility.

system Action: Any files encountered after the maximum
permitted are dropped. The maximum permitted is 25.

RESTRICTED SEARCH INTEGER TOO LARGE ON XXX. CLAUSE
DROPPED.

MORE THAN THREE FORMS OVERFLOW CLAUSES. OVERLOW-NAME XXX
ENTRY IS DROPPED.

XXX APPEARED PREVIOUSLY IN A • SAME' CLAUSE. REMAINDER OF
'SAME' CLAUSE DROPPED.

Explanation: A given filename can appear in only one same­
area clause. Any duplication encountered is dropped .•

system Action: The entire same-area clause is dropped.

User Respons~: Eliminate the duplicate statement .•

192 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS0821 W

IJS0831 W

IJS0841 W

IJS0851 W

IJS0861 E

IJS0871 C

IJS0881 C

IJS0891 C

IJS0901 C

IJS0911 E

IJS0921 E

INTERNAL 'SAME' TABLE OVERFLOW. ENTRIES AFTER XXX DROPPED.

Explanation: A fixed number of filenames and combinations
of filenames are allowed in an internal same-area table.
If reducing th€~ number of filenames or the number of same­
area clauses does not relieve the situation, it may require
an entry to a subprogram to permit a large number of files
to be referenced in this manner.

RECORD LENGTH SPECIFIED DISAGREES WITH CALCULATED MAX.
RECORD LENGTH OF XXX ON XXX. CALCULATED RECORD LENGTH
ASSUMED.

Explanation: The actual length of each record is calcu­
lated during compilation time by totaling all its com­
ponents. If the length disagrees with the specified maxi­
mum, this warning message is given to indicate that the
specified record size is ignored.

BLOCK SIZE FOR XXX TOO BIG. 32K ASSUMED.

Explanation: The integer specifying block size of the
referenced files is too large.

system Action: The maximum size allowed is used.

SYMBOLIC KEY MHST BE SPECIFIED FOR XXX IF INPUT.

Note: This message is used only for a direct-access
storage device,.

ACTUAL KEY MUST BE SPECIFIED FOR XXX.

Note: This message is used only for a direct-access
storage device.

THE XXX FILE MUST BE DESCRIBED IN A SELECT CLAUSE. CURRENT
ENTRY IGNORED.

Explanation: The subject file was referenced in the
Environment Di'vision or in an FD clause. There is no
select clause to define this file. The filename referenced
may be an invalid entry encountered at the point that a
filename was expected.

LABEL RECORD D~TA-NAME MUST BE DEFINED IN LINKAGE SECTION.

System Action: Label records are assumed standard.

UNIT IS MISSING FOR XXX FILE. 2400 IS ASSUMED.

THE DESCRIPTION OF XXX FILE CONFLICTS ON THE FOLLOWING
POINTS -- XXX.

Explanation: The description of the file referenced con­
tains factors that conflict with each other. The factors
can be in the description of the file in the Environment
Division, in the FD of the file section, or in other areas
such as the record description for that file.

System Action: The points in conflict are defined by the
trailing clauses of the diagnostic message.

INDEXED ORGANIZATION ON XXX NOT VALID FOR THIS LEVEL
COMPILER.

DIRECT ORGANIZATION ON XXX NOT VALID FOR THIS LEVEL
COMPILER.

Appendix H: Diagnostic Messages 193

IJS093I E

IJS094I E

IJS096I W

IJS097I E

IJS098I C

IJS099I C

IJS100I E

IJS101I C

IJS102I C

IJS103I E

IJS104I E

IJS105I C

IJS106I W

IJS107I C

IJS108I E

IJS109I E

IJS110I E

IJS111I W

IJS112I C

IJSl13I E

IJSl14I E

IJS117I E

IJS118I W

IJS176I C

XXX NOT HANDLED WITH PRESENT RELEASE.

XXX FILE WAS NOT DEFINED BY AN FD ENTRY.

Explanation: No DTF table is built for this file, there~
fore. it cannot be used.

ONLY ONE CHECKPOINT FILE MAY BE SPECIFIED.

STANDARD LABELS ARE REQUIRED ON XXX FILE~

XXX FILE ASSUMED TO BE UTILITY.

XXX FILE UNI'r MISSING AND ASSUMED TO BE 1403 PRINTER..

DIRECT-ACCESS ASSIGNED TO XXX NOT SUPPORTED IN THIS
VERSION.

XXX FILE IS ASSIGNED TO UNIT RECORD AND MUST BE RECORDING
MODE IS F.

Explanation: Unit record must be fixed length.

system Action: The largest described length is assumed.

A MAXIMUM OF 1 ALTERNATE AREA IS ALLOWED FOR XXX FILE.

System Action: One alternate area is reserved.

XXX IS NOT A VALID SYSTEM ASSIGNMENT.

Explanation: Must be SYSOOO to SYS244.

system Action: SYSOOO is assumed.

RECORD/BLOCK SIZE ON XXX GREATER THAN 3625.

INVALID DEVICE NUMBER SPECIFIED. DISK 2311 ASSUMED.

ONLY ONE AREA SUPPORTED FOR INDEXED OR DIRECT ORGANIZATION.
ONE AREA ASSIGNED FOR XXX.

RECORD KEY REQUIRED FOR INDEX ORGANIZATION FILE XXX.

LENGTH OF SYMBOLIC/RECORD KEY GREATER THAN 255.

LENGTH OF ACTUAL KEY IS GREATER/LESS THAN 8.

INCORRECT DATA ITEM TYPE SPECIFIED FOR KEY.

TRACK AREA CLAUSE NOT SUPPORTED IN DOS.

SYMBOLIC AND RECORD KEY LENGTH FOR XXX DISAGREE.

RELATIVE ORGANIZATION ASSIGNED TO XXX NOT SUPPORTED IN THIS
VERSION. COMPLETE SELECT STATEMENT DROPPED.

RECORD/BLOCK ON XXX IS GREATER THAN 2000.

SYMBOLIC KEY MUST BE SPECIFIED FOR XXX,

DIRECT ACTUAL KEY MUST BE SPECIFIED FOR OUTPUT FILES.

WORD RECORD OR RECORDS IS REQUIRED. FOUND 'XXX'.

Explanation: Syntax skips until the next clause~ level
number, or period at the end of the file description is
encountered.

194 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS1771 W

IJS1791 W

IJS1801 E

IJS1811 W

IJS1831 C

IJS1841 W

IJS1851 W

IJS1861 W

IJS1871 C

IJS1901 W

IJS1911 W

IJS1921 W

IJS1941 C

IJS1961 W

PERIOD REQUIRED AFTER WORD 'SECTION'.

'XXX' IS AN INVALID FILE-NAME FORMAT .•

Explanation: A filename must follow the format rules for
data-names.

system Action: Invalid names are truncated to 30 charac­
ters and treated as valid names.

XXX EXCEEDS 30 CHARACTERS AND IS DROPPED.

System Action: The picture is too long and is dropped.

THE OPTION WORD IS MISSPELLED OR OMITTED. FOUND XXX.

System Action: The usage assumed is DISPLAY.

"xxx' IS AN INVALID OR EXCESSIVE INTEGER.

Explanation: The integer indicated in this clause is
determined to be invalid.

system Action: The integer is not used.

XXX IS AN INVALID LEVEL NUMBER.

LABEL RECORDS IS OMITTEo,. LABELS ASSUMED STANDARD.

SYNTAX REQUIRES DATA RECORD CLAUSE.

System Action: Syntax scanning proceeds,.

MODE MUST BE "V', 'F" " OR • U· • FOUND XXX.

User Response: If V. F, or U was specified. check the ele­
ment number on this line for a misspelled optional word.

'XXX, IS AN INVALID DATA-NAME FORMAT.

sbstem Action: The invalid data-name(s) are truncated to
3 characters and used.

SO OR SA ENTRY REQUIRES F LEVEL COMPILER.

System Action: Syntax skips to next margin A entry.

'XXX' IS AN IN,VALID RECORD-NAME FORMAT.

System Action: Invalid record names are truncated to 30
characters and treated as valid names.

'XXX' IS INVALID AT THIS POINT. CHECK FOR SYNTAX ERROR ON
CURRENT/PREVIOUS STATEMENT.

Explanation: 'While processing a given clause or sentence ..
an unexpected element was encountered. The clause may be
valid but misplaced, This message is also given for
clauses that are not valid source input to this level
compiler.

User Response: Check for prior diagnostic messages, an
extra or missing period, invalid continuation of non­
numeric literals, or a misspelled word.

SYNTAX REQUIRES AN 01 LEVEL ENTRY. FOUND XXX.

Appendix H: Diagnostic Messages 195

IJS1971 W

IJS2011 C

IJS2021 C

IJS2031 C

IJS2041 C

IJS2051 W

IJS2061 W

IJS2071 W

IJS2101 C

IJS2111 C

IJS2121 C

IJS2131 W

IJS2141 C

NOT VALID FOR THIS LEVEL COMPILER.

XXX IS AN INVALID DATA-NAME FORMAT BUT ASSUMED VALID.

system Action: Invalid data-names are truncated to 30
characters and treated as valid names.

Same as diagnostic message IJS194I.

THIS USAGE XXX CONFLICTS WITH THE GROUP USAGE AND IS
IGNORED.

XXX IS AN INVALID OR EXCESSIVE INTEGER.

System~cti2n: The invalid integer is dropped.

XXX IS AN INVALID DATA-NAME FORMAT, BUT ASSUMED VALID.

WORD ZERO IS REQUIRED. FOUND XXX.

system Actio~: The clause is ignored.

WORD RIGHT IS REQUIRED. FOUND XXX.

system Action: The clause is ignored.

THIS ENTRY CONFLICTS WITH THE FOLLOWING
DESCRIPTIONS --- XXX.

Explanation: Various clauses specified for a data entry
are compared with previous specifications for the entry.
If there is any factor that conflicts with the subject
clause, it is listed as a trailer to this entry. Factors
included that are not themselves clauses would be elemen­
tary or group item usage~ specified at a group level in
previous clauses. This message can appear if a period is
missing at the end of a data entry or (for example) when
the PICTURE clause for the second entry is encountered and
automatically conflicts with the PICTURE clause for the
previous entry.

XXX EXCEEDS 30 CHARACTERS AND IS TRUNCATED.

ONLY LEVELS 77 OR 01 ARE PERMITTED AT THIS POINT. FOUND
XXX.

system Action: Syntax skips until a section name or level
number is found.

THE FOLLOWING DESCRIPTIONS INVALID AT GROUP LEVEL --- XXX.

Explanation: The data entry described is determined to be
a group, although the entries specified as trailers to this
message are invalid at the group level. This diagnostic
message can be produced by an invalid level number that was
changed to a level 01_ or because of a misunderstanding as
to how a group is defined and what clauses are valid at the
group level. A missing period can also produce this diag­
nostic message.

XXX DATA ENTRY REQUIRES A PICTURE" COMPUTATIONAL-lOR
COMPUTATIONAL-2.

Explanation: This diagnostic message can be produced by an
error in the following level number that caused its level
to be changed to a level 01, thereby making this entry an
elementary.

196 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS215I W

IJS216I W

IJS217I W

IJS218I W

IJS221I C

IJS222I C

IJS277I W

IJS228I E

IJS229I E

IJS2311 E

IJS233I C

SysteID-Actio~: Any statement in the Procedure Division
containing a reference to this entry is diagnosed and
dropped.

User Response: Check for missing periods or other diag­
nostic messages.

SYNTAX REQUIRES AN ENTRY IN MARGIN A. FOUND XXX IN MARGIN
B.

System Action': Following certain entries in a source pro­
gram« a specific clause must be encountered in margin A.
If it is found in margin B, it is diagnosed but handled by
the compiler.

SYNTAX REQUIRES AN ENTRY IN MARGIN B,. FOUND XXX IN MARGIN
A CHECK FOR MISSING PERIOD.

Explanation: All entries in margin A must be preceded by a
period.

System Action~ The compiler was in the middle of proces­
sing a clause or sentence and encountered the indicated
word in margin A. Thus, a diagnostic message is issued and
the word is processed as though it were valid.

LEVEL 77 ENTRIES MUST PRECEDE OTHER LEVELS AND ARE ASSUMED
TO BE 01 LEVEL.

SYNTAX PERMITS ONLY LEVELS 77, 88, OR 01 AFTER A 77 LEVEL.
CHANGED XXX TO 01.

SYNTAX FOR 'ALL' REQUIRES 'XXX' BE A SINGLE CHARACTER IN
QUOTES ..

System Action: The value clause is dropped ..

PICTURE XXX WAS FOUND INVALID WHILE PROCESSING XXX. THE
PICTURE IS DROPPED ..

Explanation: Any element that follows the word PICTURE in
a data description, other than the word that is dropped, is
assumed to be a PICTURE and is passed to a later phase for
analysis.. The analysis proceeds from left to right on a
character-by-character basis. The character identified in
the message is the one processed at the time the PICTURE is
determined to be invalid. The specific character itself
may be invalid or may have indicated that a previous
character or condition is invalid,. For example, an E
encountered in an external floating-point PICTURE may indi­
cate that a preceding decimal was omitted in the mantissa.

system Action: The PICTURE is dropped and the entry iden­
tified as an error.

FILE SECTION OUT OF SEQUENCE.

SYNTAX PERMITS ONLY ONE XXX IN SOURCE PROGRAM.

System Action: Syntax proceeds.

WORKING STORAGE: SECTION OUT OF SEQUENCE.

ENVIRONMENT DIVISION MISSING.

REPORT SECTION REQUIRES F LEVEL COMPILER.

Appendix H: Diagnostic Messages 197

IJS234I W

IJS235I W

IJS237I E

IJS238I W

IJS239I W

IJS240I C

IJS241I C

IJS242I W

IJS301I W

IJS302I C

IJS303I W

IJS304I E

WORD 'SECTION' MISSING.

'PERIOD' MUST FOLLOW WORD SECTION,.

'XXX, IS MISPlACED.

EXElanation: The statement is probably out of place in the
source deck: t:hat is, FD is working-storage.

System Action: The statement is processed as it is: howev­
er, execution may not be as desired.

User Response~ Properly locate the misplaced statement.

'XXX' IS AN INVALID SECTION NAME, A MISSING FD OR AN
~NVALID/MISPLACED LEVEL INDICATOR.

System Action: Syntax skips until a valid section-name or
level number is found,.

SYNTAX REQUIRES WORD 'DIVISION'.

'UNIT' OR 'RE,EL' CANNOT BE SPECIFIED FOR UNIT-RECORD FILE,.

LEVEL PRECEDING 88 MUST BE AN ELEMENTARY.

Explanation: Any level number preceding a level 88 entry
must be an elementary.

System Action: If the level number preceding the level 88
entry is not an elementary, it is assumed to be one and is
processed as such.

THE 88 ENTRY DOES NOT HAVE A VALUE, THEREFORE, IT IS
DROPPED.

SYNTAX REQUIRES 'XXX, IN MARGIN A. FOUND 'XXX'. RESTART
WITH 'XXX'.

Explanation: Syntax requires the specific entry indicated
to be in margin A. If the entry is found in margin B, com­
pilation resumes.

SYNTAX REQUIRES 'XXX'. FOUND 'XXX'. RESTART WITH 'XXX'.
IF WORDS REQUIRED AND FOUND ARE THE SAME, THE ENTRY IS IN
THE WRONG MARGIN.

system Action: Syntax scan skips to the restart clause.

'XXX, IS AN INVALID CONDITION-NAME FORMAT.

Explanation: The name shown is an invalid condition name.

§ystem Action: The name is truncated to 30 characters and
processed as though it were valid.

'XXX' IS AN INVALID EXTERNAL-NAME FORMAT. RESTART WITH
'XXX' •

Explanation: An external name was expected at this point
in the scan of the subject clause. An external name must
be enclosed in quotes. It must start with an alphabetic
character, cannot contain more than eight characters, and
letters and numerals are the only valid characters. A dash
is not permitted.

198 Disk and Tape Operating systems COBOL Programmer's Guide

IJS3051 C

IJS3061 W

IJS3071 E

IJS3081 W

IJS3091 C

IJS3101 W

IJS3111 E

IJS3121 C

IJS3131 W

IJS3141 E

IJS3151 W

SYNTAX REQUIRES SAME" RERUN" APPLY, OR 'XXX, DIVISION.
FOUND 'XXX". RESTART WITH 'XXX' ..

User Response: Check for invalid sequence of source pro­
gram cards or extra periods~

SYNTAX REQUIRES ENVIRONMENT OR "XXX, DIVISION IN MARGIN A.
FOUND 'XXX'. RESTART WITH 'XXX'.

User Response1 Same as for message IJS305I.

SYNTAX REQUIRES I ... O-CONTROL" INPUT-OUTPUT, OR 'XXX' DIVI­
SION IN MARGIN A. FOUND' XXX" • RESTART WITH 'XXX' ..

User Response: Same as for message IJS305I.

'XXX, IS AN INVALID DATA-NAME FORMAT. RESTART WITH 'XXX'.

Explanation: A data-name was expected at this point in the
scan of the subject clause.

System Action~ Invalid format is truncated to 30 charac­
ters and processed as though it were valid.

ENVIRONMENT PARAGRAPHS OUT OF ORDER.

system Action:' Statements are handled anyway.

'XXX' IS AN INVALID 360 MODEL-NUMBER. RESTART WITH 'XXX'.

system Action: Syntax scan skips to the restart clause.

SYNTAX REQUIRES 'FILE-CONTROL'" 'XXX, OR 'DATA DIVISION' IN
MARGIN A. FOUND 'XXX'. RESTART WITH 'XXX'.

User Response: Same as for message IJS305I.

'XXX, IS AN INVALID OR EXCESSIVE INTEGER. RESTART WITH
'XXX, •

Explanation: The syntax at this point of scan of the spe­
cified clause requires an integer,.

§ystem Action: The element found was invalid and is
dropped.

'XXX, IS AN INVALID FILE-NAME FORMAT. RESTART WITH 'XXX'.

Explanation: The syntax scan of the subject clause
requires a file name at this point.

System Action: The element found was invalid. It was
truncated to 30 characters and processed as though it were
valid,.

'XXX, IS AN INVALID LIBRARY-NAME FORMAT. RESTART WITH
'XXX' •

Explanation: A library name is required at this point.

system Action: The format is invalid,. It is dropped.

MORE THAN 'THREE OVERFLOW OPTION CLAUSES ARE USED.

Explanation: An internal table permits a maximum of three
form overflow names to be assigned in any compilation.

Appendix H: Diagnostic Messages 199

IJS3161 C

IJS3111 C

IJS3181 W

IJS319I C

IJS320I W

IJS3211 E

IJS322I W

IJS3231 W

IJS324I E

IJS401I C

system Action: All form overflow names in excess of the
maximum allowed (three) are .dropped.

SYNTAX REQUIRES 'INDEXED' OR 'XXX'. FOUND 'XXX'. RESTART
WITH 'XXX'.

Explanation: This message applies to a direct access
storage device only.

SYNTAX REQUIRES 'SEQUENTIAL' OR 'XXX'. FOUND 'XXX'.
RESTART WITH 'XXX'.

~xplan~tion: This message applies to a direct access
storage device only.

SYNTAX REQUIRES 'XXX' OR DATA DIVISION IN MARGIN A, OR
SELECT IN MARGIN B. FOUND ·XXX'. RESTART WITH 'XXX'.

Explanation: The syntax for the specific clause requires
specifi~ entries at this point.

~~espon~~: Check for misspelled words, or excessive
periods.

SYNTAX REQUIRES 'UTILITY'" 'DIRECT-ACCESS' OR 'XXX'. FOUND
'XXX'. RESTART WITH 'XXX'.

Explanation: Same as for message IJS316I.

'XXX' IS AN INVALID I-O-DEVICE-NUMBER. RESTART WITH 'XXX'.

Explanation: Same as for message IJS316I.

NO PROCESSING OF THIS MULTIPLE SPECIFIED DIVISION OR SEC­
TION. RESTART WITH 'XXX, '.

Explanation: A section or division was encountered more
than once.

system Action: The additional section or division is
dropped~ rather than disturb the internal sequence of the
compilation.

FILE-NAME OR DATA-NAME EXCEEDS 30 CHARACTERS. TREATED AS
30-CHARACTER NAME.

SYNTAX REQUIRES 'XXX' OR CLAUSE-NAME. FOUND "XXX'.
RESTART WITH 'XXX'.

system Action: Syntax scan skips to the restart clause.

SYNTAX REQUIRES 'REEL' OR 'XXX'. FOUND 'XXX'. RESTART
WITH 'XXX'.

system Action: Syntax scan skips to restart clause .•

SYNTAX REQUIRES A DATA-NAME. FOUND 'XXX'.

Explanation: The syntax of the indicated clause requires a
data-name. The element found was not defined as a valid
data-name. The element may be indicated here, or an indi­
cation given that it was an invalid name such as., file
name, condition name, figure configuration, or overflow
name.

System Actio~: The compilation continues at the next verb
or paragraph label.

200 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS402I C

IJS403I C

IJS404I C

IJS405I C

IJS406I C

IJS407I C

IJS408I C

IJS409I C

IJS410I C

IJS411I C

IJS412I E

User Response:: Check for misspelled data-name in diagnost~
ic messages, which would nullify the definition of a valid
data-name, or the use of a COBOL word as a data-name.

SYNTAX REQUIRES NEXT ITEM BE 'XXX".

EXE~ation: The syntax for this clause requires a
specific word that was not found. The item encountered was
probably a data-name. The next item indicates that the
syntax requires a specific word or words. None were found.

system Action: The element found is displayed unless it
was a name, in which case the word invalid name or data
name is indicated. Compilation continues at the ne~erb
or paragraph label.

User Response: The reference format for the clause speci­
fied should be consulted if the meaning of the message is
not immediately clear. Also check for: missing periods,
preceding diagnostic messages, invalid non-numeric
literals, and COBOL words used as data-names.

SYNTAX REQUIRES A DATA-NAME OR NUMERIC-LITERAL. FOUND
• XXX'.

Explanation: See message IJS402I~

SYNTAX REQUIRES EITHER WORD • TO " OR 'GIVING". FOUND
'XXX' •

Explanation: See message IJS402I.

SYNTAX REQUIRES A SINGLE CHARACTER IN QUOTES OR A FIGCON.
FOUND 'XXX'.

Explanation: See message IJS402I.

SYNTAX REQUIRES A FILE-NAME. FOUND 'XXX'.

Explanation: See message IJS402I.

SYNTAX REQUIRES DATA·NAME OR INTEGER. FOUND 'XXX'.

Explanation: See message IJS402I.

SYNTAX REQUIRES WORD • INPUT'" 'OUTPUT"., OR '1-3'. FOUND
'XXX, •

Explan~: See message IJS402I .•

SYNTAX REQUIRES A PROCEDURE-NAME. FOUND 'XXX'.

Explanation: See message IJS402I.

SYNTAX REQUIRES A DATA-NAME OR LITERAL. FOUND' XXX" •

Explanation: See message IJS402I.

SYNTAX REQUIRES WORD 'CALL'" 'ENTRY'., OR 'RETURN'. FOUND
'XXX" •

Explanation: See message IJS402I.

SYNTAX REQUIRES AN EXTERNAL-NAME. FOUND 'XXX'.

E!planation: See message IJS402I~

Appendix H: Diagnostic Messages 201

IJS413I C

IJS414I C

IJS415I C

IJS416I C

IJS417I C

IJS418I C

IJS419I C

IJS420I C

IJS421I C

IJS422I C

SYNTAX REQUIRES ,- , - . FOUND 'XXX'.

Explanation: See message IJS402I.

SYNTAX REQUIRES EXPRESSION TO BEGIN WITH EITHER A DATA­
NAME, NUMERIC-LITERAL" '+', '-" " OR '('. FOUND" XXX" • TWO
OPERATORS MAY NOT APPEAR ADJACENT TO ONE ANOTHER.

Explanation: See message IJS402I.

SYNTAX REQUIRES CALL PARAMETERS TO BE EITHER DATA-NAME,
PROCEDURE-NAME OR FILE-NAME. FOUND 'XXX'.

Explanation: See message IJS402I.

SYNTAX REQUIRES DATA-NAME" LITERAL, FIGCON, '+',
OR 'NOT'. FOUND 'XXX'.

Explanation: See message IJS402I.

'-' " , (,

SYNTAX REQUIRES ARITHMETIC OPERATOR OR RELATIONAL,. FOUND
'XXX'.

Explanation: See message IJS402I.

SYNTAX REQUIRES A DATA-NAME" NUMERIC-LITERAL" OR '(' AFTER
AN OPERATOR. FOUND 'XXX'.

Explan~tion: See message IJS402I.

SYNTAX REQUIRES A DATA-NAME, LITERAL" FIGCON" '(' I, " +' OR
'-' AFTER A RELATIONAL. FOUND 'XXX'.

Explanation: See message IJS402I.

SYNTAX REQUIRES A VERB, PERIOD, 'ELSE' OR 'OTHERWISE'.
FOUND 'XXX'"

Explanation: The end of a valid clause was encountered.
The element that followed the valid termination of this
clause is not valid.

System ~ction: Compilation continues at the next verb or
paragraph label.

User Response: If the preceding clause had some options.
check the reference format to determine whether or not the
options were specified correctly. A COBOL word used as a
data-name or an extra period can also produce this diag­
nostic message.

ENTRY PARAMETER MUST BE A DATA-NAME. FOUND 'XXX'.

Explanation: The only parameters that can be passed to a
COBOL subprogram are data-names. The data-names must be
defined in the linkage section of the subprogram.

system Action: Compilation continues at the next verb or
paragraph label.

SYNTAX REQUIRES A RELATIONAL. FOUND XXX.

Explanation: syntax requires that the next element be a
relational.

system Action: Compilation continues at the next verb or
paragraph label,.

202 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS423I C

IJS424I C

IJS425I C

IJS426I E

IJS427I C

IJS428I C

IJS429I C

IJS430I C

IJS431I C

IJS432I C

IJS433I C

IJS434I C

IJS435I E

yser Response~ Check for invalid punching or a preceding
error.

SYNTAX REQUIRES WORD' INPUT:' OR 'OUTPUT'. FOUND XXX.

Explanation: See message IJS402I.

SYNTAX REQUIRES WORDS 'TO PROCEED TO'. FOUND XXX.

Explanation: See message IJS402I.

SYNTAX REQUIRES WORD 'CONSOLE' OR 'SYSPCH'. FOUND XXX.

Explanation: See message IJS402I4

SYNTAX REQUIRES 'AT END' OR 'INVALID KEY', FOUND 'XXX'.

SYNTAX REQUIRES A DATA-NAME, FIGCON OR NON-NUMERIC LITERAL,.
FOUND XXX.

Explanation: See message IJS402I.

SYNTAX REQUIRES A PROCEDURE-NAME AFTER 'GO TO' NOT PRECEDED
BY A PARAGRAPH-NAME. FOUND XXX.

E~planation: See message IJS402I.

SYNTAX REQUIRES 'ALL' I, 'LEADING' '. 'UNTIL' I, OR 'FIRST'.
FOUND XXX.

Explanation: See message IJS402I.

SYNTAX REQUIRES WORD "TALLYING' OR 'REPLACING'. FOUND XXX.

Explanation: See message IJS402I.

SYNTAX REQUIRES WORD 'DEPENDING ON'. FOUND XXX.

Explanation: See message IJS402I.

DATA TYPE MUST BE ED, ID OR BI.

~xplanation: Valid syntax for the subject verb permits
only specific data types. The data type as determined by
the definition in the Data Division is invalid for its use
here.

system Action: The statement is dropped from the point of
error.

SYNTAX REQUIRES WORD 'TRACE'. FOUND XXX.

Explanation: See message IJS402I.*

SYNTAX REQUIRES THAT A PERIOD OR SECTION FOLLOWS PARAGRAPH­
NAME. FOUND XXX.

Explanation: See message IJS402I.*

DATA NAME AND ANY QUALIFIER MUST APPEAR WITHIN THE FIRST
SEVEN OPERANDS OF STATEMENT FOR CHANGED OPTION.

Explanation: See message IJS402I.

*Also, the entire statement, from the point of error is dropped and is
not compiled.

Appendix H: Diagnostic Messages 203

IJS436I C

IJS437I C

IJS438I C

IJS439I C

IJS440I C

IJS441I C

IJS442I C

IJS443I E

IJS444I E

SYNTAX REQUIRES A DATA-NAME, FIGCON OR LITERAL. FOUND XXX.

Exp~tion: See message IJS402I.*

SYNTAX REQUIRES A FIGCON. FOUND XXX.

Explanation: See message IJS402I,. *

SYNTAX REQUIRES DATA-ITEM TO BE NO LONGER THAN FOUR.

WRONG SUBSCRIPT SPECIFICATION.

Explanation: Data names and condition names can be sub­
scripted to a depth of three. A subscript is required for
each OCCURS ••• DEPENDING ON clause specified at the speci­
fied data-name or in groups containing that data-name.

§Y2tem_Action: The compilation continues at the next verb
or paragraph label.

User Response: Check for fewer or more subscripts than
OCCURS ••• DEPENDING ON clauses in the hierarchy. Subscripts
must be enclosed in parentheses and separated from each
other by a comma or a blank.

INCORRECT SPECIFICATION IN DECLARATIVE-SECTION. FOUND XXX .•

Explanation: See message IJS402I.

SYNTAX REQUIRES AN INTEGER NOT LONGER THAN 5. FOUND XXX.

Explanation: The integer exceeds the size permitted by
language specifications.

System Action: The compila~ion continues at the next verb
or paragraph label.

THE DECLARATION OF THIS DATA-NAME CAUSED IT TO BE FLAGGED
AS AN ERROR.

Explanation: The data-name encountered was flagged by the
data division as containing an error in its declaration.

System Action: Compilation continues at the next verb or
paragraph label.

User Response: Correct the declaration as indicated by the
data division diagnostics and recompile.

SYNTAX REQUIRES A VERB. FOUND XXX.

Explanation: A pOint was reached where a verb was required
and was missing. For example" 'IF = B.' requires a verb
between the B and the period.

System Action: The statement is skipped from the point of
the error.

SYNTAX REQUIRES A RECORD NAME. FOUND XXX.

Explanation: See message IJS402I.

*Also., the entire statement from the point of error is dropped and is
not compiled.

204 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS500I W

IJS501I W

IJS502I W

IJS503I W

IJS504I W

IJS505I C

IJS506I C

IJS507I W

IJS508I E

IJS509I C

IJS510I C

IJS511I C

AN· OPERAND'S LENGTH EXCEEDS AND IS TRUNCATED TO 256 BYTES.

Explanation: The maximum number of bytes that can be dis­
played is 256.

System Action: The operand is truncated to 256 bytes and
displayed.

IF THIS VARIA,BLE-LENGTH ENTRY EXCEEDS 256, RESULTS WILL BE
UNPREDICTABLE.

Explanation: A maximum of 256 bytes can be displayed.

System Action;: The entry is truncated to 256 bytes and
displayed.

LITERAL EXCEEDS AND IS TRUNCATED TO 72 BYTES.

System Action!: In a stop-literal statement only the first
72 bytes of a longer field are typed on the console.

DATA EXCEEDS AND IS TRUNCATED TO 72 BYTES.

Explanation: A maximum of one line (72 bytes) can be
retrieved using the ACCEPT FROM CONSOLE statement.

DATA EXCEEDS AND IS TRUNCATED TO 256 BYTES.

Explanation: A maximum of 256 bytes can be accepted from
SYSIPT.

FILENAMES OR STERLING-DATA TYPE NOT ALLOWED IN COMPARE.

Explanation: See message IJS506I.

USAGE OF DATA-TYPES CONFLICT. THE TEST DROPPED.

Explanation: Only certain data types can be compared to
each other. The types specified are invalid. Reference
can be made to the compared table to determine the valid
combinations. Logical comparisons of fields that are
classified as invalid comparisons can often be made through
a redefinition and a description of one or both of the
fields as alphameric.

EXIT MUST BE ONLY STATEMENT IN PARAGRAPH.

System Action~ Compilation continues normally.

THE STATEMENT CONTAINS AN UNDEFINED DATA NAME.

Explanation: See message IJS402I.

AN ALPHABETIC DATA-NAME CAN BE TESTED ONLY FOR ALPHABETIC
OR NOT ALPHABETIC" AND NUMERIC DATA-NAME ONLY FOR NUMERIC
OR NOT NUMERIC. THE TEST IS DROPPED.

COMPARISON OF TWO LITERALS OR FIGCONS IS INVALID.

Explanation: See message IJS506I.

DATA-TYPE IN ARITHMETIC STATEMENT IS NOT NUMERIC OR RECEIV­
ING FIELD IS NOT NUMERIC OR REPORT.

Explanation: See message IJS506I.

Appendix H: piagnostic Messages 205

IJS5121 C

IJS5131 C

IJS5141 W

IJS515I W

IJS5161 C

IJS5171 C

IJS5181 E

IJS5191 C

IJS5201 C

IJS5211 C

IJS5221 C

IJS5231 C

IJS5241 C

DATA-NAME IN CLASS-TEST MUST BE AN., ED, OR 10.

Explanation: See message IJS506I.

DATA-NAME IN SIGN-TEST MUST BE NUMERIC.

Explanation: See message IJS506I.

DATA EXCEEDS AND IS TRUNCATED TO 72 BYTES.

System Action: If the data is longer than 72 bytes., only
the first 72 bytes are printed for a DISPLAY ON CONSOLE
statement.

DATA EXCEEDS AND IS TRUNCATED TO 120 BYTES.

System Action: If the data is longer than 120 bytes, only
the first 120 bytes are printed for a DISPLAY statement.

OPEN 'NO REWIND' OR 'REVERSED' CANNOT BE SPECIFIED FOR A
UNIT RECORD, DIRECT-ACCESS OR DISK/DATA CELL UTILITY FILE.

System Action~ The options are ignored.

'NO REWIND' OR 'LOCK' CANNOT BE SPECIFIED FOR A UNIT
RECORD, DIRECT-ACCESS OR DISK/DATA CELL UTILITY FILE.

System Action: The options are ignored.

MORE THAN FORTy'PARAMETERS ARE NOT ALLOWED WITH THE
STATEMENT.

SYNTAX ALLOWS ZERO AS ONLY VALID FIGCON IN A COMPARISON
WITH BI, 10, EF, AND IF.

Explanation: See message IJS506I.

SYNTAX ALLOWS SPACE OR ALL AS ONLY VALID FIGCONS IN COM­
PARISON WITH AN ALPHABETIC FIELD.

Explanation: See message IJS506I.

DATATYPE MUST BE ED., EF, AL, AN OR GF. FOUND XXX.

Explenation: The data types indicated are the only valid
ones that can be used in the clause ind~cated.

SysteID_~ction: Compilation continues at the next verb or
paragraph label.

SYNTAX REQUIRES WORD RUN OR LITERAL. FOUND XXX.

System Action: The syntax scan skips the rest of the
statement.

RECEIVING FIELDS IN PRECEDING STATEMENT IS A LITERAL.

Explan~!ion: A Procedure Division literal cannot be
changed as the result of arithmetic or a move. The state­
ment, SUBTRACK data name FROM literal, would specify
invalid action of this type.

System Action~ Compilation continues at the next verb or
paragraph label.

SYNTAX REQUIRES AT LEAST TWO OPERANDS BEFORE GIVING OPTION.

Explanation: For example, ADD A GIVING B.

206 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS5251 C

IJS5261 C

IJS5271 C

IJS5281 C

IJS5291 C

IJS5301 C

IJS5311 E

IJS5321 E

System Action: The statement is skipped.

THE EXPRESSION HAS MORE RIGHT PARENS THAN LEFT PARENS TO
THIS POINT. FOUND XXX.

Explanation: The number of right parentheses and left
parentheses i,n a statement must agree. At no point in time
can there be more right parentheses than left parentheses.

System Actio~: The statement is skipped from the point of
the error.

User Respons@: Check for extra periods or missing periods~
an error in a non-numeric literal" mispunched operators, or
subscripted fields that are invalidly packed together
without an intervening blank.

THE EXPRESSION HAS UNEQUAL NUMBER OF RIGHT AND LEFT PARENS.

Explanation: See message IJS525I.

DATA-TYPE MUST BE En. ID r, OR BI. FOUND xxx.

system Action: The statement is skipped from the point of
ensor.

VARYING OPTION EXCEEDS THREE LEVELS.

Explanation: A maximum of three levels is permitted with
the varying option of the PERFORM verb.

System Action: The statement is dropped from the point of
error.

DATA-TYPE MUST BE ED~ ID~ BI_ EE, OR IF.

Explanation: The data types shown are the only valid ones.
The data-name found is not one of these types.

SysteID-~ction: The statement is skipped from the point of
error.

NUMBER OF ELSES EXCEEDS NUMBER OF IFS.

Explanation: Number of ELSE clauses must balance out with
the appropriate number of ELSE or OTHERWISE clauses.

System Action: Statement is skipped from the point of
error.

User R~ponse:: Recount and make corrections.

INTERNAL OCCURS-DEPENDING-ON TABLE OVERFLOWED AVAILABLE
CORE.

STATEMENT HAS TOO MANY OPERANDS.

Explanation: The statement referenced is too large or com­
plex for the internal tables needed for compilation.

System Action:: The statement is skipped from the occur­
rence of this condition.

User Responsg:: The statement should be divided into more
than one statement.

Appendix H: Diagnostic Messages 207

IJS533IE

IJS534I E

IJS535I E

IJS536I E

IJS538I W

IJS539I C

IJS540I W

IJS549I E

IJS550I C

I'JS551I C

IJS552I C

IJS553I E

IJS554I C

PARENTHESIZING REQUIRES SAVING TOO MANY OPERANDS.

Explanation: See message IJS532I.

PARENTHESIZING REQUIRES SAVING TOO MANY INTERNALLY
GENERATED LABELS.

Explanation: See message IJS532I.

PARENTHESIZING REQUIRES SAVING TOO MUCH OF STATEMENT.

Explanation: See message IJS532I.

ARITHMETIC EXPRESSION REQUIRES MORE THAN 9 INTERMEDIATE
RESULT FIELDS ..

Explanation: See message IJS532I.

'OUTPUT' CANNOT BE SPECIFIED FOR INDEX/DIRECT ORGANIZATION
WITH RANDOM ACCESS. '1-0' IS ASSUMED.

'1-0' IS AN INVALID SPECIFICATION FOR DIRECT ORGANIZATION
WITH SEQUENTIAL ACCESS.

-NO REWIND' CANNOT BE SPECIFIED WITH 'REVERSED' OPTION.
'REVERSED' IS ASSUMED.

WORD XXX WAS EITHER INVALID OR SKIPPED DUE TO ANOTHER
DIAGNOSTIC.

Explanation: The majority of these messages will probably
be caused by words skipped because of another diagnostic
message that occurred earlier in the statement. This diag­
nostic message also occurs because of misspelled words.

User Response: In the case of words skipped;, correct the
previous error~ or correct the current misspellings.

A FIGURATIVE CONSTANT IS NOT ALLOWED AS A CALL OR ENTRY
PARAMETER.

System Action: The statement is skipped from the point of
error.

SYNTAX REQUIRES WORD 'TO'. FOUND XXX.

system Action: Syntax scan skips the rest of the
statement.

RECEIVING FIELD MUST BE A DATA-NAME. FOUND XXX.

System Action: The statement is skipped from the pOint of
error.

FIGURATIVE CONSTANT IS NOT ALLOWED AS A RECEIVING FIELD.

system Actio~: The statement is skipped from the point of
the error.

THE 'XXX' DATA-TYPE IS NOT LEGAL RECEIVING FIELD.

system Action: The statement is skipped from the point of
the error.

User Response: Check the table of permissible moves in the
COBOL specification.

208 Disk and Tape Operating systems COBOL Programmer's Guide

IJS555I C

IJS556I E

IJS557I W

IJS558I E

IJS559I E

IJS560I C

IJS561I C

IJS5621 C

IJS5631 C

IJS5641 C

IJS5651 C

OVERFLOW NAME IS NOT A VALID SENDING FIELD.

system Action: The statement is skipped from the point of
the error.

END DECLARATIVES IS MISSING FROM PROGRAM.

Explanation: The entire Procedure Division is treated as a
declarative section.

FLOATING-POINT CONVERSION MAY RESULT IN TRUNCATION.

Explanation: Conversion of floating-paint numbers can
result in truncation of low-order digits.

1-0 OPTION FOR. FILE CONFLICTS WITH NO REWIND.

System Action: The statement is skipped from the point of
the error.

OUTPUT OPTION FOR FILE CONFLICTS WITH REVERSED.

Explanation: The OUTPUT option conflicts with an opening
of a file that has a reversed option specified.

System Action: The statement is skipped from the point of
the error.

SYNTAX REQUIRES WORD 'NAMED', 'CHANGED', OR 'CHANGED
NAMED'. FOUND XXX.

System Action: The statement is skipped from the point of
error.

DATA TYPE MUST BE ED" ID" BI, EF, IF, RP, AL, AN, OR GF.
FOUND XXX.

Explan~: A file-name" condition name" figure config­
uration, or variable-length group is not valid at this
point.

system Action: The statement is skipped from the point of
the error ..

DATA ENTRY MUST NOT EXCEED 120 CHARACTERS.

Explanation: The data entry specified exceeds the maximum
permitted for this type of output ..

system Action: The statement is skipped from the point of
the error.

DATA ENTRY MUST BE DISPLAY.

system Action:: The statement is skipped from the point of
the error.

SYNTAX REQUIRES ONE OF THE ALLOWABLE CHARACTERS. FOUND
XXX.

System Actionr. The statement is skipped from the point of
the error.

IF STATEMENT MUST BE TERMINATED BY A PERIOD ..

Explanation: This message is obtained when the IF state­
ment is the last statement of a paragraph and a label is
detected instead of a period.

Appendix H: Diagnostic Messages 209

IJS566I C

IJS567I C

IJS568I C

IJS569I C

IJS570I C

IJS571I E

IJS572I C

IJS573I C

IJS601I W

IJS602I W

System Action: The statement is skipped from the point of
error.

DATA TYPE MUST BE AL" AN, RP" OR GROUP.

System Action: The statement is skipped from the point of
error.

DATA TYPE MUSrr BE AL" AN" FIGCON OR FIXED-LENGTH GROUP.

System Action: The statement is skipped from the point of
the error.

DATA ITEM MUST NOT EXCEED 256 CHARACTERS.

System Action: The statement is skipped from the point of
the error.

DATA ENTRIES MUST BE OF EQUAL LENGTH.

System Action: The statement is skipped from the point of
the. error.

THE LENGTH OF THE SECOND OPERAND MUST BE EQUAL TO THE FIRST
OR A SINGLE CHARACTER.

system Action: The statement is skipped from the point of
the error.

A RECORD NAME MUST BE ASSOCIATED WITH THIS FILE. FOUND
XXX.

System Action: The statement is skipped from the point of
the error.

ONLY ONE DATA-NAME MAY BE ASSOCIATED WITH THE CHANGED
OPTION.

System Action: The statement is skipped from the point of
the error.

DATA TYPE MUS'r BE ED, 10" BI" EF" IF, SN, SR, RP, AL" AN,
FC, OR GROUP.

System_Action: The stat~ment is skipped from the point of
error.

NO SIGNIFICA~r POSITION MATCHES BETWEEN SENDING AND RECEIV­
ING FIELDS IN MOVE. RECEIVING FIELD IS SET TO ZERO.

Explanation: There are no digit positions in common
between the sending and receiving fields. This can be
illustrated by moving a field with PICTURE 99 to a receiv­
ing field with PICTURE V99.

system Action: The receiving field is set to zero.

DESTINATION FIELD DOES NOT ACCEPT THE WHOLE SENDING FIELD
IN MOVE.

Explanation: The sending field is larger than the receiv­
ing field in either its integer or decimal positions, or
both.

System Action: The sending field is truncated.

210 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS603I C

IJS604I E

IJS605I E

IJS606I E

IJS607I E

IJS608I E

IJS609I E

IJS610I E

IJS611I E

IJS612I W

IJS613I W

IJS614I E

IJS615I E

IJS617I E

IJS618I E

IJS621I E

AFTER ADVANCING OPTION NOT ALLOWED WITH REWRITE.

system Action': The statement is skipped from the point of
the error.

SOURCE PROGRAM EXCEEDS INTERNAL LIMITS.

Explanation: The program is too large.

User Response: The user should do one of the following,
then retry:

• Divide the program into two or more parts

• Simplify compound conditional statements.

PROCEDURE NAME MULTIPLY DEFINED.

Explanation: Procedure name indicated was multiply defined
and was not qualified properly by the appropriate section­
name when used.

PROCEDURE-NAME XXX NOT DEFINED.

Explanation: The name indicated was incorporated into a GO
TO or a PERFORM statement, and was never defined. Proce­
dure names must begin in columns 8 through 11 at the point
where they arle def ined.

INVALID LITERAL XXX.

User Response: Check for multiple decimal points" non­
numeric charalcters that have not been enclosed in quotes.

XXX IS NOT ALLOWED TO HANDLE MORE THAN 25 FILES IN ONE
STATEMENT.

System Action: The rest of the statement is skipped,. Only
25 files are handled.

PROCEDURE-NAME XXX HAS ILLEGAL CONTENT AND IS DROPPED.

'CONDITION NAME' WAS EITHER NOT ALLOWED IN THIS STATEMENT
OR SKIPPED DUE TO ANOTHER DIAGNOSTIC.

TOO MANY PARAGRAPH NAMES HAVE BEEN USED IN CALL STATEMENTS.

OPEN STATEMENT CONTAINS MORE THAN 9 FILENAMES. OPEN WILL
SPLIT .•

system Action: Handles multiple OPEN statements each con­
taining nine filenames.

USING STATEMENT HAS BEEN INCORRECTLY SPECIFIED.

THIS CONDITIONAL HAS A MISSING RELATIONAL OPERATOR.

System Action: The statement is skipped from the point of
the error.

READ 'AT END' REQUIRED FOR FILES WITH ACCESS SEQUENTIAL.

WRITE 'FROM' REQUIRED WITH APPLY WRITE ONLY.

REWRITE INVALID ON DIRECT OR RELATIVE SEQUENTIAL FILES.

OPEN '1-0' INVALID FOR DIRECT OR RELATIVE SEQUENTIAL FILES.

Appendix H: Diagnostic Messages 211

IJS6221 E

IJS6231 E

IJS6251 E

IJS6261 E

IJS6271 E

IJS6281 E

IJS7001 E

IJS7011 E

IJS7021 E

IJS7031 E

IJS7041 E

IJS7051

IJS7061 E

IJS7071 E

IJS7081 E

IJS7081 E

IJS7091 W

IJS7101 W

IJS7111 W

OPEN 'OUTPUT' INVALID FOR FILES WITH ACCESS RANDOM, I-O
ASSUMED.

OPEN 'REVERSED' VALID ONLY ON STANDARD SEQUENTIAL FILES.

OPEN 'REVERSED' INVALID FOR FILES WITH FORMAT V RECORDS.

CLOSE 'UNIT' OR 'REEL' VALID ONLY FOR STANDARD SEQUENTIAL
FILES.

'INVALID KEY' INVALID FOR STANDARD, DIRECT, OR RELATIVE
SEQUENTIAL FILES, OR FOR REWRITE ON INDEXED SEQUENTIAL
FILES.

OPEN 'ACTUAL KEY' REQUIRED FOR DIRECT SEQUENTIAL OUTPUT
FILES.

SOURCE PROGRAM NOT FOUND. COMPILATION CANCELED.

DATA DIVISION NOT FOUND. COMPILATION CANCELED.

PROCEDURE DIVISION NOT FOUND. COMPILATION CANCELED.

SOURCE PROGRAM EXCEEDS INTERNAL LIMITS. COMPILATION
CANCELED.

Explanation: The size of the assembler phase tables
exceeds the core storage available for these tables.

User Response: Modify the source program to allow compila­
tion on the source computer. There are essentially three
variables that can be modified:

• The length and number of source labels could be reduced
as the table for source labels must reserve 3 + L bytes
per source label •

• The number of literals could be reduced as 3 bytes are
reserved for each literal.

• The size of the buffer can be reduced in machines above
16K storage size.

DATA-NAME TABLE OVERFLOW. COMPILATION CANCELED.

NO DIAGNOSTICS IN THIS COMPILATION.

EXECUTION CANCELED DUE TO E LEVEL DIAGNOSTIC.

CONFLICTING I/O ASSIGNMENTS.

~~lanation: SYS001, SYS002, and SYS003 are not assigned
to the same type of device.

System Action: Compilation is canceled.

STORAGE ALLOCATED TO THE COMPILER IS LESS THAN 10K. compi­
lation canceled .•

STORAGE ALLOCATED TO THE COMPILER IS LESS THAN 14K. COMPI­
LATION CANCELED.

INCORRECT COBOL OPTION 'XXX'.

BUFFSIZ CANNOT BE LESS THAN 170. ASSUMED 170.

BUFFSIZ CANNOT BE GREATER THAN 32000. ASSUMED 32000.

212 Disk and Tape Operating Systems COBOL Programmer's Guide

IJS712I W BUFFSIZ CANNOT BE GREATER THAN 3625 (7294) FOR WORK FILES
ON DISK. ASSUMED 3625 (7294).

Explanation: 3625 for 2311
7294 for 2314

IJS713I W BUFFSIZ IS T00 LARGE FOR SIZE OF STORAGE ALLOCATED TO THE
COMPILER. ASSUMED XXX.

EXECUTION TIME MESSAGES

A list of execution time messages follows. Most of them are self­
explanatory. Where deemed necessary, examples are included to explain
the message.

#IHD901I* AN UNCORRECTABLE DASD ERROR HAS OCCURRED.

#IHD902I* WRONG LENGTH RECORD.

#IHD903I* NO RECORD FOUND.

#IHD904I* ILLEGAL ID SPECIFIED.

#IHD905I* DUPLICATE RECORD.

#IHD906I* CYLINDER OVERFLOW AREA FULL.

#I8D907I* PRIME DATA AREA FULL.

#IHD908I* CYLINDER INDEX AREA FULL.

#I8D909I* MASTER INDEX AREA FULL.

#IHD910I* RECORD OUT OF SEQUENCE.

#I8D911I WRONG LENGTH RECORD.

#I8D912I NO MORE ROOM FOUND ON TRACK.

#IHD913I DATA CHECK IN COUNT AREA.

#I8D914I DATA CHECK WHEN READING KEY OR DATA.

#IHD915I NO RECORD FOUND.

#IHD993I ZERO BASE-MINUS EXPONENT-PACKED RESULT MADE ALL NINES.

#I8D996I RESULT TOO BIG--FLOATING POINT RESULT MADE MAX FP NUMBER.

#IHD997I ZERO BASE-MINUS EXPONENT-FLOATING POINT RESULT IS MAX FP
NUMBER.

#I8D998I ZERO BASE-PLUS EXPONENT-FLOATING POINT RESULT MADE ZERO,.

#IHD999I MINUS BASE MADE PLUS AND FLOATING POINT EXPONENTIATION
CONTINUED.

------- AWAITING REPLYo

*These messages pertain to indexed sequential data organization only.

Appendix H: Diagnostic Messages 213

DEBUG PACKET ERROR MESSAGEq

The following is a complete list of precompile error messages. They
apply to errors in the debugging packet only.

IJS8501

IJS8511

IJS8521

IJS8531

IJS8541

IJS8551

TABLE OF DEBUG REQUESTS OVERFLOWED. RUN TERMINATED.

THE FOLLOWING CARD DUPLICATES A PREVIOUS *DEBUG CARD. THIS
PACKET WILL BE IGNORED.

THE FOLLOWING PROCEDURE DIVISION NAMES WERE NOT FOUND.
INCOMPLETE DEBUG EDIT IS NOT TERMINATED.

THE FOLLOWING *DEBUG CARD DOES NOT CONTAIN A VALID LOCATION
FIELD. THIS PACKET WILL BE IGNORED.

IDENTIFICATION DIVISION NOT FOUND. RUN TERMINATED.

DEBUG EDIT RUN COMPLETE. INPUT OR COBOL COMPILATION ON
SYS004.

214 Disk and Tape Operating Systems COBOL Programmer's Guide

ACCEPT Verb 84
Accessing Call Parameters 98
ADDR (LISTX) 57
Alignment and Slack Bytes 87
Alignment, Decimal 68
Alignment Factor, Records 92
ALT (ASSGN Statement) 16
Alternate Method of solution (Intermediate Results) 81
Apply Write Only 91
Argument List 157
Arithmetic Fields 81
Ari thmetic Computations 8:0
Arithmetic Suggestions 81
ASSGN Statement 16
Assembler Language Subprograms 155
Assembler Routines for Effecting Overlays 154
Assumed Configuration

Disk Resident System Q7
Tape Resident System 37

Assumed Logical Assignments at System Generation Time
Disk Resident System 47
Tape Resident System 39

Assumed Physical Assignments at System Generation Time
Disk Resident System 47
Tape Resident System 37

AT END 91
Autolink Feature 30

Basic Types of operations 10
BUFFSIZ (COBOL Option) 25

Called and Calling Programs 96,97
Calling a Subprogram 95
CATAL 173
Cataloging 39,49
Cataloging an Object Module in the Relocatable Library

Disk 49
Tape 39

Cataloging Books -- Source Statement Library 33
Cataloging Books -- User Private Library 34
Cataloging Program Phases Core Image Library 32
Cataloging Source Modules to Source Statement Library

Disk 50
Tape 42

CBL Statement 25
Checkpointing a Program 35
COBOL Control Card 25
COBOL Option (COBOL Control Card) 25
COBOL Program Main (Root or Main Program) 102
COBOL Statements Used to Specify an Indexed sequential File 115
COBOL Statements Used to Specify Direct Organization Files 138
Coding Examples for Direct Organization Files 146
Coding Examples Using Indexed Sequential Files 125
Comments Statement 24
Comparisons 83
Compilation 10
Compile and Punch

Disk 49
Tape 39

Compile, Linkage Edit, and Execute
Disk 49-50
Tape 40

Index 215

Compile (Using Source statement), Linkage Edit, and Execute
Disk 51
Tape 43

Computational (Binary) 77
COMPUTATIONAL-lor COMPUTATIONAL-2 (Internal Floating Point) 77-78
COMPUTATIONAL-3 (Internal Decimal) 77
Conditional (Severity Code) 58
Conditional Statements 72
Configuration, Assumed 37,47
Conserving Storage 67
Considerations when Using Assembler with COBOL for Overlays 154
continuation of Job-Control Statement 16
Control Cards Required for Overlay 105
Conversion of COMPUTATIONAL-lor COMPUTATIONAL-2 Data 71
COpy (Data Division) 34
Core Image Library 11
Creating a Direct Organizational File 138

CLOSE Statement 139
Key Handling 139
OPEN Statement 138
WRITE Statement 139·

Creating an Indexed sequential File 115,126
CLOSE Statement 116
Key Handling 116
OPEN Statement 115
WRITE Statement 116

Cylinder Index 112

Data Area (XTENT Statement) 22
Data Format of Arguments 160
Data Forms 73
DATA MAP (SYM) 55
Data Organization 9
Debug Packet 64,66
Debug Packet Error Messages 214
Debugging Language 63
Decimal-Point Alignment 68
DECK 20
Deck Structures for Processing COBOL Programs

Disk Resident System 46
Tape Resident System 37

Diagnostic Messages
ERRS 58
Examples of 60
Sequential listing 186

Direct Organization 132
DISPCHK (COBOL Options) 25
Display (Non-Numeric External Decimal) 73
DISPLAY Fields 79
DLAB Statement 22
DLBL StatemeQt 26
DMAP (COBOL Option) 25
Dumps 61

Editing 83
Elementary Items 74
End-of-Data-File Statement 24
End~of-Job Statement 24
ER CODE (ERRS) 58
Error Messages, Debug Packet 214
Error Messages (ERRS) 58
Error Recovery Techniques for Direct Files 143
Error Recovery Techniques for Indexed Sequential Files 119
Error (Severity Code) 58
ERRS 20,58
Examples of Processing

Disk Configuration 48
Tape Configuration 39

216

Example of Updating Actual Key 134
Example of COBOL Main Program and COBOL Subprogram Modifying DTF 125
Examples of COBOL Programs 176
Examples Showing Effective Use of of Data Declarations 78
EXEC Statement 18
Executing a COBOL Program 10
Executing a Program

Disk 50
Tape 41

Execution 10
Execution Time Messages 60
EXHIBIT 63
EXIT 25
Exponentiation 81
EXTENT -- DASD Extent Information 27
Extent Sequence Number 23
Extent Type 22

Filename (VOL Statement) 19
Format of Job-Control Statement 16

Generated COBOL Source Listing 54
GO (Tape Only) 20
GO TO (DEPENDING ON) 91
Group Item 74

IF NUMERIC Test 86
IF (Relationals) 79
INCLUDE (Procedure Division) 34
INCLUDE Statement (Linkage Edit Statement) 30
In-Line Parameter List 160
Index Area (XTENT Statement) 22
Index Areas 112
Indexed Sequential File Organization 111-131
Input/Output Device Assignment 13
Insertion of Slack Bytes 81
INSTRUCTION (LISTX) 51
intermediate Results In Complex Expressions 80
Interpreting Output 54
INVALID KEY 144
INVALID KEY Errors 121
INVED (COBOL Option) 25
Input/Output Error Processing Considerations

Direct (DAM) 143-145
Indexed Sequential (ISAM) 119-121
sequential Disk 93
sequential Tape 92

Job Control setup for Using Debug Packets 65
Job-Control Statements 14
JOB statement 18

Labeling Considerations 92
LBLTYP Statement 18
Librarian 10,31
Librarian Functions 31
Libraries 10
LINE/POS

(ERRS) 58
(LISTX) 57

LINK 20
Linkage Conventions 156
Linkage Edit with Overlay 101
Linkage Edit without Overlay 99
Linkage Editing 10,29,31
Linkage Editor 29,95
Linkage Editor Control Statements 29
Linkage Editor Output 60

Index 217

LIST 20,54
LISTX 20,57
LOG 20
Lower Limit of Extent 23
Lowest Level Subprogram 160

Machine Representation of Data Items 76
Maintenance Function 31
Master Index 112
MESSAGE (ERRS) 58
Message Number (ERRS) 58
MINSYS (Tape Only) 20
Mixed Data Formats 77

COMPUTATIONAL to COMPUTATIONAL-3 70
COMPUTATIONAL to DISPLAY 70
COMPUTATIONAL-3 to COMPUTATIONAL 70
COMPUTATIONAL-3 to DISPLAY 71
DISPLAY to COMPUTATIONAL 70
DISPLAY to COMPUTATIONAL-3 69
DISPLAY to DISPLAY 71

Modifying the DTF Table for Direct Files 145
Modifying the DTF Table for Indexed sequential Organization Files 123
Move COMPUTATIONAL-3 Fields 78

DISPLAY Fields 79
lvlove COMPUTATIONAL- 3 to REPORT 79
Move DISPLAY to COMPUTATIONAL-3 79
MOVE Statement 78
Multiple Buffers 91
Multiple Entry Points 141
Multiprogramming 11
Multiprogramming Considerations 11,101

Name (Job Control Statement) 16
NODECK 20
NODUMP 20
NOERRS 20
NOEXIT 25
NOLINK 20
NOLIST 20
NOLISTX 20
NOLOG 20
NOTE, Use of 84
NSD (nn) (LBLTYP Statement) 18 •
Numeric Comparisons 83
Numeric Data Format Usage 75

OCCURS ••• DEPENDING ON Clause 91
ON 64
Opening Files 84
Operation (Job Control Statement) 16
Operand (Job Control Statement) 16
OPTION Statement 19
Overflow Area (XTENT Statement) 22
Overlay 105-106
Overlay Processing 100
Overlay Routine Instructions, Functions of 155
Overlay Structures 98

paragraph Names 84
Passing Parameters to Assembler Language Routine 106
PAUSE Statement 21
Permissible Comparisons (COBOL) 169
Permissible Moves (COBOL) 170
PHASE Statement 30
PMAP (COBOL Option) 25
Prime Areas and Overflow Areas 111
Procedure for Bypassing Non-Standard Labels 92
Procedure Map (LISTX) 57

218

processing Buffers 91
processing COBOL Files on Direct Access Devices 110
processing Indexed and Direct Files 110
Program Phase Dumps 61
Programming Considerations 67
Punch, compile and

Disk 46,49
Tape 37,39

Randomizing 135
Randomizing for the 2311 Disk Pack 135
Randomizing for the 2321 Data Cell 136
Randomizing Technique, A 134
Random Retrieval 128
Random Retrieval of an IndeJc:ed Sequential File 118

Adding Randomly 119
Key Handling 119
Updating Randomly 118
Random Retrieval 118

Random Retrieval, Updating~ and Adding to a Direct File 139,150
Adding Randomly 139
Key Handling 139
OPEN, CLOSE 139
Random Retrieval 140
Updating Randomly 140

Record Alignment 92
Record Blocking 90
REDEFINES 85
Redefinition 85
Redundant Coding 83
Reference Formats for Disk and Tape Operating Systems COBOL 162
Reference Work Areas for Efficiency (Mixed-Data Formats) 69
Register Use 156
Relationals 79
Relocatable Library 11
RESET Statement 24
Restrictions on the Using statement 98

Save Area 157
Sequence of Job-Control Statements 15
Sequential Disk File Organization 93
sequential Retrieval 130
sequential Retrieval of a Direct Organization File 139,152

Key Handling 139
OPEN, CLOSE 139
READ Statement 139

sequential Retrieval of an Indexed Sequential File or Updating an
Indexed Sequential File 116

Sequential Retrieval 116
Key Handling 118
Updating 117

Sequential Tape File Organization 92
Service Programs 9
severity Code 58
Sign Control 71
Slack Bytes in the Data Division 87·
Source Listing (LIST) 54
Source Modules 10
Specifying Keys 132
Split Cylinder (XTENT Statement) 22
Source Statement Library 11
Standard DASD File Labels, Format 1 172
Standard Tape File Labels 171
Subprograms 95
Subprograms and Overlay Structures 95
Subroutines Used by COBOL 178
SYM 21,55
Symbolic Input/Output Assignment 14

Index 219

$,

SYSIPT 14
SYSLNK 14
SYSLOG 14
SYSLST 14
SYSPCH 14
SYSRDR 14
SYSRES 14
SYSRLB 14
SYSSLB 14
SYSOOO-SYS222 14

SYSIN 14
SYSOUT 14
Symbolic Units 13-14
System Libraries 10,11
System Service Program 9
SYSxxx (VOL Statement) 19

TAPE(nn)] (LBLTYP Statement) 19
Techniques for Coding 80
TLBL Statement 26
TPLAB Statement 19
TRACE 63
Track Format for the 2311, 2314 and 2321 174
Track Index 112
Trailing Characters 85

Unequal-Length Fields 68-69
Upper Limit of Extent 23
Unexpected Intermediate Results 81
USE AFTER STANDARD ERROR 144
USE AFTER STANDARD ERROR Routines 121
USRLABEL (Disk Only) 21

Variable Length Records 89
Variable Length Records, Blocking of 90
Variable Record Alignment Containing OCCURS ••• DEPENDING ON Clause
VOL Statement 19
Volume Serial Number 23

Warning (Severity Code) 58
Working with Diagnostic Messages 59

XTENT Statement 22
X'SS' (ASSGN Statement) 17

220

W3 •

91

"

IIA •

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223

