File Numpver s360-24 | DOS
Form C24-5025-3 TDS

Systems Reference Library

IBM System/360
Disk and Tape Operating Systems
COBOL Programmer's Guide

This publication is designed to aid the COBOL
programmer. Its purpose is to provide guidance
and examples in the techniques of COBOL
programming in the Disk and Tape Operating
Systems, and to expose the user to the components
of the Control Program and facilities of IBM
System/360 Disk and Tape Operating Systems.

The prerequisites for a thorough understanding
of the COBOL language are:

IBM System/360 Disk and Tape Operating Systems
COBOL Language Specifications, Form C24-3433.

Publications closely relate to this one are:

IBM System/360 Disk Operating System, System
Control :and System Service Programs, Form C24-5036.

IBM System/360 Tape Operating System, System
Control and System Service Programs, Form C24-5034.

IBM System/360 Disk Operating System, Supervisor
and Input/Output Macros, Form C24-5037.

IBM System/360 Tape Operating System, Supervisor
l and Input/Output Macros, Form C24-5035.

IBM System/360 Disk~5perating System, Data
Management Concepts, Form C24-3427.

IBM System/360 Tape Operating System, Data
Management Concepts, Form C24-3430.

IBM System/360 Disk Operating System, System
Generation and Maintenance, Form C24-5033.

IBM System/360 Tape Operating System, System
Generation and Maintenance, Form C24-5015.

IBM System/360 Principles of Operation,
Form A22-6821.

The titles and abstracts of related
publications are listed in the IBM System/360

Bibliography, Form A22-6822,

X 11111

Fourth Edition, January 1967

This edition, Form C24-5025-3, is a major revision of Form C24-5025-2
and obsoletes it and Technical Newsletter N24-5189. It should be
reviewed in its entirety. Changes are indicated in two ways:

1. A dot (e) next to a figure title or page number indicates that
the entire figure or page should be reviewed.

2. A vertical line appears to the left of the affected text and to
the left of affected parts of figures.

Significant changes and additions to the specifications contained in
this publication will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for readers’
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Publications, Dept. D39, 1271 Avenue of the Americas,
New York, New York 10020.

© International Business Machines Corporation 1966

PREFACE

This edition incorporates Direct Access Storage Device (DASD)

capabilities and multiprogramming for Disk and Tape Operating
Systems. Where material applies only to Disk Operating System,
it is so defined. A

The purpose of this publication is to help COBOL programmers
Iusing COBOL for Disk and Tape Operating Systems. Several basic
examples are given with the idea that the beginning programmer
is interested in preparing his deck for processing as quickly as

possible with a minimum of effort.

Section I describes the information needed in preparation for proc-
essing COBOL programs within the framework of Disk and Tape Operating
Systems.

Section II contains examples of processing COBOL programs using the
Tape Operating System.

Section III contains examples of processing COBOL programs using the
Disk Operating System.

Section IV contains information on the types of output that can be
expected from IBM System/360 Disk and Tape Operating Systems.

Section V describes how to use the COBOL debugging language.

Section VI discusses the use of Disk and Tape Operating Systems
libraries at the COBOL language level.

Section VII discusses calling routines, subprograms and overlay
structures.

I Section VIII discusses multiprogramming and direct-access

data organization considerations as well as techniques and hints
for producing effective COBOL coding, which help reduce main
storage requirements, execution time, and/or linkage editing time.

Section IX describes the environment within which the COBOL program
must operate. Included is a brief discussion of the concepts and
configuration of Disk and Tape Operating Systems.

Appendix A contains the subroutine that effects program overlays
and a discussion of assembler language subprograms. Included are
Disk and Tape Operating Systems linkage conventions for COBOL programs
when using assembler language subprograms.

Appendix B contains a table of COBOL reference formats.

Appendix C illustrates Tape Operating System standard tape file
labels.

Appendix D illustrates Disk Operating System standard disk file
labels.

Appendix E contains a list of options for IBM System/360 Disk and
Tape Operating Systems OPTION Job-Control statement.

Appendix F contains examples of COBOL programs.

Appendix G contains a table of subroutines used by COBOL and
related operations that cause the subroutines to be invoked.

Appendix H contains a list of compiler diagnostic messages, their
descriptions, and the action taken. Also included in this section are
a list of object time messages, debugging error messages and an
illustration of object storage layout.

INTRODUCTION . « o & ¢ « ¢ o o o &

SECTION I. PREPARATION FOR
PROCESSING COBOL PROGRAMS
System Libraries
Stages of Program Development. . .
Structure of a COBOL Program . . .
IMultlprogrammlng e e s e e 4 e e
Basic Types of Processing.
Compilation . « « « « ¢ « & o .
Linkage Editor.
Execution
Symbolic Input/Output A551gnment .
Job-Control Statements
Sequence of Job-Control
Statements
Introduction to Job- Control
Statements . .
Format of Job- Control
Statement. . . « . . - .
Continuation of Job Control
Statement.

e o o o e e

SECTION II. DECK STRUCTURES FOR

PROCESSING COBOL PROGRAMS IN A TAPE

| OPERATING SYSTEM .,
Assumed Tape Resident System
Configuration.
Examples of Processing Using
Tape Configuration
Compile and Punch (Example l) .
Cataloging an Object Module to

Relocatable Library (Example 2).

Compile, Linkage Edit, and Execute

(Example 3).
Executing a Program (Exampl° 4)

.

-

Cataloging Source Modules to Source

Statement Library (Example 5).
Compile (Using Source Statement

Library), Linkage Edit and Execute

(Example 6). . . « « « .« . . .

SECTION III. DECK STRUCTURE FOR

PROCESSING COBOL PROGRAMS IN A DISK

| OPERATING SYSTEM.
Assumed Disk Resident System
Configuration. . . . « « « . .

Examples of Processing Using Disk

Configuration.
Compile and Punch (Example l) .
Cataloging an Object Module to

Relocatable Library (Example 2).

Compile,
(Example 3). « . « « « « + &
Executing A Program (Example 4)

Cataloging Source Modules to
Source Statement Library
(Example 5). « « « ¢« « o « .+ &

Compile (Using Source Statement
Library), Linkage Edit, and
Execute (Example 6).

Linkage Edit, and Execute

25
25

27
27

28

28
30

30

31

34

34

37

38

38

39

39

40

CONTENTS

SECTION IV. INTERPRETING OUTPUT .
Source Listing (LIST).
Data Maps (SYM).
Procedure Maps (LISTX) . . « « . .
Error Messages (ERRS).
Working with Diagnostics. . . .
How Diagnostic Messages are
Determined
Examples of How Diagnostics
Generated.
Linkage Editor Output.
Object Time Messages
Object Program Dumps
Typical Source Program Errors
Initiating Dumps at Execution Time
How to Use a Dump. « « . .
Object Storage Layout.

SECTION V. THE DEBUGGING LANGUAGE

Debugging Techniques
TRACE . . + . ¢ ¢ o« o o « o o »
EXHIBIT . . . « ¢ ¢ ¢ « ¢ o « &«
ON. e e o 4 e e e o e

The Debug Packet e e e e . . .
Job Control Setup for 051ng
Debug Packets.

SECTION VI. USE OF LIBRARIES AT

COBOL LANGUAGE LEVEL. . . . « . .
Source Statement Library. . . .
Relocatable Library

SECTION VII. SUBPROGRAMS AND
OVERLAY STRUCTURES.
Linkage Editor
Calling A Subprogram.
Accessing Call Parameters . .
Restrictions of the Using
Statement.
Overlay Structures
Considerations for Overlay.
Linkage Editing Without Overlay
Overlay Processing
Linkage Editing with Overlay. .
Passing Parameters to Assembler
Language Routine

e s s e

SECTION VIII. PROGRAMMING
CONSIDERATIONS. +. « & « o o o « @
Conserving Storage . . . « .
Basic Principles of Effectlve
COBOL Coding. . « « « o o o o o &
General Programming Suggestions.
Decimal-Point Alignment.
Unequal-Length Fields.
Mixed-Data Formats
Sign Control « . .
Conditional Statements
Other Considerations When U51ng
Display and Computatlonal Fields.
Data Forms . . . ¢ « ¢ ¢« & o« o o o«
Numeric Data Format Usage.

o s e e

* s s

74
74

75
75
76
76
77
79
80

80
81
83

Machine Representation of

Data Items. « « & « « . . 84
Examples Showing Effect of Data
Declarations. . + « « « « « « « « « « 85
MOVE. « ¢ &+ «¢ ¢« o o o« o o s o« « « « 85
Relationals « 86
Arithmetics « + ¢« &« ¢« . . . 87
General Techniques for Coding. 87
Intermediate Results in Complex
Expressions. . « « « « + « 87
Arithmetic Suggestions. 88
Subscripting. . . e+« « + . . . 89
Binary Subscrlptlng « e e s s <« « -« 90
Comparisons . . « « « « « « « « - + 90
Redundant Coding. « « + « « « « « « 90
Editing . « « ¢« ¢ ¢ ¢ ¢« ¢ ¢ ¢ « « . 90
Opening Files +« « « « « 091
ACCEPT Verb e e e e e s e e .« &« 91
Paragraph Names 91
Trailing Characters 91
Redefinition. . . . e e e e . 92
Alignment and Slack Bytes . 93
General Information -- File Handllng . 96
Buffers . . . e e s e e« e . s « 96
Record Blocklng e e 4+ s e « e+ e <« .« 96
Processing Buffers. 97
Variable Record Alignment
Containing OCCURS DEPENDING
ClausSe . . « o « « o o o o o« o« o« « 97
I/0 Error Processing Considerations --
Use After Standard Error. 98
Sequential Tape File Organization . 98
Sequential Disk File Organization . 99
Direct Access File Organization . . 99
Indexed Sequential File
Organization « « . «. . . 100
Labeling Considerations. 100
Procedure for Bypassing Non—Standard
Labels . . « ¢« ¢« ¢« ¢ ¢ & « « « « « 100
|Multiprogramming Considerations, , ., . 101
Processing Indexed and Direct Files. . 102
Creating a Sequential, Indexed
Sequential File. 102
Sequential Retrieval of an Indexed
Sequential File or Updating an
Indexed Sequential File. 103
Random Retrieval of an Indexed
Sequential File. « « « « « 105
Creating a Direct Organization
File . . « ¢ ¢ v v « v v « « « « . 106
Sequential Retrieval of a Direct
Organization File. 107

Random Retrieval, Updating and

Adding to a Direct File.

Direct Access Data Organization

Considerations. . . .
Multiple Entry Points

-

Coding Actual Key For 2311 DlSk

Pack and 2321 Data Cell.

e e

Example Of Updating Actual Key. . .
Altering DTF (Define The File) Table

(Disk System Only). .

SECTION IX.
SYSTEMS ENVIRONMENT . .
Functional Relationships
System Components . . .
Control Program. .
IPL Loader.

Supervisor. . .

Job Control
System Service Program .
Linkage Editor
Librarian.
Processing Programs. . .
Installation -- Tailored

e o e

APPENDIX A.

OVERLAYS. . « « « « « .

APPENDIX B.
FORMATS

SYSTEMS COBOL

APPENDIX C.
LABELS. « « ¢ o ¢ « « .

APPENDIX
LABELS,

D.
FORMAT 1. . . .

APPENDIX E.

CONTROL OPTION STATEMENT.

APPENDIX F.
PROGRAMS.

APPENDIX G.
COBOL . . « « « .« .

APPENDIX H.
COMPILER DIAGNOSTICS. .

INDEX. ¢« o ¢ ¢ « « & o =«

.

-

of the

TABLE OF REFERENCE
FOR DISK AND TAPE OPERATING

STANDARD TAPE FILE

STANDARD DASD FILE

EXAMPLES OF COBOL

.

Systems

CONSIDERATIONS WHEN
USING ASSEMBLER WITH COBOL FOR

.

LIST OF OPTIONS FOR
AND TAPF OPERATING SYSTEMS, JOB

SUBROUTINES USED BY

IBM SYSTEM/360 DISK
AND TAPE OPERATING SYSTEMS

o« o .

DISK AND TAPE OPERATING

o e e

108

108
110

111
113

113

115
117
117
117
118
118
118
119
120

121
122

123

131

140

141

143

145

149

156

181

INTRODUCTION

Many powerful parameters can be used in the job control cards. Few are
required to be used. Generally, only the essential control cards needed
(and their basic parameters) for simpler, complete executions are
illustrated.

The advanced programmer, who may wish to use some of the options
available, but not used in the examples, may refer to the complete list
of options in Appendix E.

Where considered necessary, reference is made to the appropriate pub-
lication for clarification of a subject.

Introduction 7

SECTION I. PREPARATION FOR PROCESSING COBOL PROGRAMS

This section is devoted to preparing a COBOL source statement deck
suitable for execution on Disk and Tape Operating Systems. The pro-
grammer who wishes to prepare his deck for basic executions should
find this section easy to interpret, and fulfilling the requirements
for getting his job executed. The examples included illustrate how
some of the facilities of Disk and Tape Operating Systems are used.
Only a few of the many powerful options available to the programmer
are included.

The examples show what types of processing are accomplished at the
COBOL Disk and Tape Operating Systems level. When required, Disk and
Tape Operating Systems terminology is discussed. Where a programmer
wishes to use options not illustrated, reference is made to the
appropriate publication in which a complete, detailed discussion on
the subject can be found.

SYSTEM LIBRARIES

The three libraries in the system are the core image library,
source statement library, and the relocatable library.

All programs in the system (IBM-supplied and user programs) are
loaded from the core image library.

The source statement library is used to store source modules. It
provides extended program—-compilation capability.

The relocatable library is used to store object modules that can

be used for subsequent linkage with other program modules. (A module
also can be a complete program.)

STAGES OF PROGRAM DEVELOPMENT

In program development, the programmer codes sets of source statements
that may be a complete program or part of a program. These source
stateiments are then compiled, or assembled, into a relocatable
machine-language program which, in turn, must be edited into an
executable program and may be combined with other programs.

A set of source statements pirocessed by a language translator
(Assembler, COBOL, FORTRAN, RPG, or PL/I) is referred to as a source
module.

The output of a language translator is referred to as an object
module. All object modules must be further processed by the linkage
editor before they can be executed in the Disk and Tape Operating
Systems.

The output of the linkage editor is called a program phase. (Output
may consist of more than one phase.)

A program consists of at least one phase and may be composed of
many phases. Successive phases of a multi-phase program are often
called overlays.

For disk, the output of the linkage editor consists of one or more
program phases in the temporary part of the core image library. A
phase is in executable, nonrelocatable, core image form.

8 DOS and TOS COBOL Prog. Guide

For tape, the output of the linkage editor consists of one or more
[Erogram phases on SYSLNK, in executable, nonrelocatable core-image form.

STRUCTURE OF A COBOL PROGRAM

Refer to Figure 1 for an illustration of the procedure for development
of a COBOL program.

A COBOL source module is a group of codes, statements, and clauses
in the COBOL language which the COBOL compiler accepts as input. When
the source module is compiled, the output, which is called an object
module, consists of one control section. This control section is a
block of machine instructions assigned to contiguous main-storage
locations, and consists of control dictionaries and the text of one
control section. The control dictionaries contain the information
necessary for the linkage editor to resolve cross references between
different object modules, and the text is the actual instructions and
data fields of the object module. The object module is in relocatable
form. The input to the linkage editor for building a phase must
consist of at least one complete control section. A phase is a
program section loaded as a single overlay, and may be a complete
program.

Debug packets, appropriately positioned in the input job stream,
automatically become merged with the COBOL source statements before
compilation.

Any source statements (modules) that are part of the source statement
library, and copied from the library by use of the COBOL library facility
statements, automatically become part of the input stream to the COBOL
compiler during compilation.

All these statements, combined, are processed by the COBOL compiler
to become an object module(s).

The object module(s) [control section(s)], along with any assembler
object modules and modules from the relocatable library included in the
input job stream through the job-control facility are processed by the
linkage editor to become program phases. They can then be executed as
a complete program.

Preparation for Processing 9

Source Module(s)
Programmer’s

Source
r -: Statements !— R e —l
;DebuQ Packet(s) i - — Statement |
SN | by |

COBOL

Compiler

y

'-_A— _J——i Object Modules —————
: I:ZTde:r | | Modules From |
| Object e | Relocatable |
! !) | Library |
| Modules | | ey N

Linkage Editor

y

Program Phase(s)

)

Execute
Program

Figure 1. Stages of Development of a COBOL Program

10 DOS and TOS COBOL Prog. Guide

MULTIPROGRAMMING

There are two types of problem programs in multiprogramming: background
and foreground. Background programs are initiated by job control from
the batch-job input stream. Foreground programs are initiated by the
operator from the printer-keyboard. Foreground programs do not execute
from a stack. When one is completed, the operator must explicitly
initiate the next program. :

Background and foreground programs initiate and terminate asynchronously
from each other. Neither is aware of the other's existence. Main storage
equal to or in excess of 32K is required for multiprogramming support.

COBOL source programs cantiot be compiled as foreground programs. COBOL
object programs can be executed as foreground programs (with certain
restrictions), and as background programs with no restrictions. Refer to
Multiprogramming Considerations in Section VIII for these restrictions.

At linkage edit time, the program to be executed becomes either a
background or a foreground program.

For further details about multiprogramming, refer to the publication
System Control and System Service Programs listed on the front cover of
this manual.

BASIC TYPES OF OPERATIONS

The three basic operations that can be done are:
® Compilation
® Linkage Editing
e Execution

These operations can be combined to produce a comprehensive program.
The discussions that follow explain each of these operations.
COMPILATION
Compilation is a process by which a source module(s) (in thé case of
COBOL, clauses, sentences, paragraphs, etc) are converted by a language

translator (disk and tape COBOL compilers) into an object module (machine
language text), which is a form acceptable to the linkage editor.

LINKAGE EDITING

Before the object module from the compiler is executed by System/360,

it must be altered (edited) into a form acceptable for execution. This
is accomplished by the linkage editor. The control dictionaries (output
by the compiler as part of the object module) contain the information
needed by the linkage editor to edit the module into executable form.
The control dictionaries are resolved (by the linkage editor) to produce
an executable program section. The linkage editor recognized these
dictionaries and other card types by a 12-2-9 punch in column 1 and the
identifier found in columns 2-4 of the following types of object module
cards:

Preparation for Processing 11

Identifier Contents or Meaning

ESD External Symbol Dictionary Card
TXT Text Cards (Object Code)

RLD Relocation Dictionary Card

END End Card

All of these cards must be present in an object module in the indicated
order.

For a more detailed description of the card types produced by the
language translator, refer to the IBM publication, System Control and
System Service Programs, listed on the cover of this manual.

EXECUTION

Execution is the process of obtaining a program phase, loading it into
main storage, and executing the machine-language instructions contained
in the phase. The first phase is called for by an execute (EXEC) job-
control card. The following phases are called for by a FETCH (a super-
visor call) within a phase. FETCH is not a facility available through
the COBOL language. The control program prepares and controls the exe-
cution of all COBOL programs.

SYMBOLIC INPUT/OUTPUT ASSIGNMENT

Job control is responsible for assigning physical I/O units. Programs
do not reference I/0 devices by their actual physical addresses, but
rather by symbolic names. The ability to reference an I/0 device by a
symbolic name rather than by a physical address provides advantages to
both programmers and machine operators. The symbolic name of a device
is chosen by the programmer from a fixed set of symbolic names. He

can write a program that is dependent only on the device type and not
on the actual device address. At execution time, the operator or pro-
grammer determines the actual physical device to be assigned to a given
symbolic name. He communicates this to job control by a control state-~
ment (ASSGN). Job control associates the physical device with the
symbolic name by which it is referenced.

A fixed set of symbolic names is used to reference I/0 devices. No
other names can be used. They are:

SYSRDR Card reader, magnetic tape unit, or disk
drive used for job control statements.

SYSIPT Card reader, magnetic tape unit, or disk
drive used as the input unit for programs.

SYSPCH Card punch, magnetic tape unit, or disk
drive used as the main unit for punched
output.

SYSLST Printer, magnetic tape unit, or disk
drive used as the main unit for printed
output.

SYSLOG Printer-keyboard used for operator messages
and to log job control statements. Can
also be assigned to a printer.

SYSLNK Disk extent used as input to the linkage
editor. i

12 DOS and TOS COBOL Prog. Guide

SYSRES System residence tape unit or area on a
disk drive.

SYSSLB (Tape System only) Tape unit used for the source statement
library.

SYSRLB (Tape System only) Tape unit used for the relocatable library.
SYS000-5YS244 All other units in the system.

The first nine of the above names, termed system logical units, are

used by the system control program and system service programs. Of these
nine units, user background programs may also use SYSIPT for input, SYSLST
and SYSPCH for appropriate output, and SYSLOG for operator communication.
Normally, SYSRDR and SYSIPT both refer to the same device. Any addi-
tional devices in the system, termed programmer logical units, are
referred to by names ranging consecutively from SYS000 to SYS244, with
SYS000 to SYS009 being the minimum provided in any system.

Only SYS000-5YS244 are used by COBOL programs. The number of logical
assignments that can be made depends on how many the generated system
can accommodate. Examples of symbolic assignments for the tape resident
system and the disk resident system are given in Figure 2.

For Disk Operating System, programmer logical units are defined at
system generation time for each class of program (background, foreground-
one, and foreground-two) to be run in the system. For example, in a
multiprogramming environment, a unique SYS000 is defined for each class
of program, a unique SYS001 is defined for each class of program, etc.
The combined number of programmer logical units defined for the system
may not exceed 245.

For the convenience of the user, two additional system logical unit
names are defined for background programs. These names are used only
in job control statements. Reference within a program (such as those
given in Sections II and III) must name the particular logical unit to
be used (SYSLST or SYSPCH, SYSRDR or SYSIPT). The additional system
logical units are:

SYSIN Name that can be used when SYSRDR and
SYSIPT are assigned to the same card
reader or magnetic tape unit. This name
must be used when SYSRDR and SYSIPT are
assigned to the same disk extent.

SYSOUT Name that must be used when SYSPCH and
SYSLST are assigned to the same magnetic
tape unit.

With the exception of SYSLOG, foreground programs cannot reference
any system logical unit. (System units are reserved for the exclusive
use of background programs operating in a stacked-job environment.)
Foreground programs may reference any programmer logical unit,
SYS000-SYSnnn.

JOB-CONTROL STATEMENTS

Job control reads all control statements from the device identified as
SYSRDR. Not all job control statements are needed by COBOL. Those
required are JOB, EXEC, /* and /&. If disk labels are used, the VOL,
XTENT, and DLAB statements are required. If tape labels are used, the
VOL and TPLAB statements are required. All other statements are
optional.

Preparation for Processing 13

FOR TAPE SYSTEM FOR DISK SYSTEM

—
2540 Card SYSRDR, SYSIPT, SYSPCH
Read-Punch
—
SYSLST 2540 Card SYSRDR, SYSIPT, SYSPCH
. - o —
1403 Printer Read-Punch SYSIN
SYSLST
1052 1403 Printer
Printer- Keyboard SYSLOG \—/_d

1052 Printer- SYSLOG
. SYSSLB . SYSRES, SYS001, SYS002
. SYSRLB
' @ SYSLNK
L

‘ SYS004
SYS001

. SYS005
‘ SYS002
. SYS003

Figure 2. Example of Symbolic Device Assignment

14 DOS and TOS COBOL Prog. Guide

A complete list of statements recognized is given in the IBM publica-
tion, System Control and System Service Programs, listed on the cover of
this manual. A list of the statements most likely to be used by the
COBOL user follows:

Operation

JOB

EXEC

ASSGN

LBLTYP

VOL

DLAB (Disk only)
XTENT (Disk only)
TPLAB

Meaning

Job name

Execute program

I/0 assignments

Reserve storage for label information
Volume information

Disk file label information

Disk file extent

Tape file label information

OPTION Option

PAUSE Pause (for message to operator)
/* End of data file

/& End of job

* Comment

SEQUENCE OF JOB-CONTROIL STATEMENTS

The job control statements for a specific job always begin with a JOB
statement and end with a /& (end of job) statement. A specific job con-
sists of one or more job steps. Each job step is initiated by an EXEC
statement. Preceding the EXEC statement are any job-control statements
necessary to prepare for the execution of the specific job step. The
only limitation on the sequence of statements preceding the EXEC state-
ment is that discussed here for the label information statements. The
following statements can precede the EXEC statement for a job step, and
will be found most useful to the COBOL programmers.

ASSGN DLAB

LBLTYP XTENT

VOL TPLAB
OPTION
PAUSE

The label statement must be in the order:

VOL VOL
TPLAB or DLAB
XTENT (one for each area of file in volume)

and must immediately precede the EXEC statement to which they apply.

INTRODUCTION TO JOB CONTROL STATEMENTS

Preparation of a COBOL source deck for executicn on disk and tape
operating systems entails combining required job control statements
(and optional statements) with the source deck in a specific order.

The examples given are typical. Required statements are so indi-
cated. No attempt is made to illustrate all of the options available
to the programmer. For a full discussion of the options, refer to the
IBM publication, System Control and System Service Programs, listed
on the cover of this manual.

Preparation for Processing 15

FORMAT OF JOB CONTROL STATEMENTS

All job-control statements are free form, with a few restrictive rules.
The restrictions are pointed out within the examples that follow.

Certain rules must be followed when filling out control statements.
The job control statement rules are:

1. Name. Two slashes (//) identify the statement as a control state-
ment. They must be in columns 1 and 2. The second slash must be
immediately followed by at least one blank. Exceptions to these
rules are: the end-of-job statement (contains /& in columns 1 and
2), the end-of-file statement (contains /* in columns 1 and 2), and
the comment statement (contains * in column 1 and a blank in
column 2).

2. Operation. This field describes the type of control statement (the
operation to be performed). It can be up to eight characters long.
At least one blank follows its last character.

3. Operand. This field may be blank or may contain one or more entries
separated by commas. The last term must be followed by a blank,
unless its last character is in column 71.

CONTINUATION OF JOB CONTROL STATEMENT

Information starts in column 1 and cannot extend past column 71. The
exceptions to this are the file-~label statements (TPLAB and DLAB).
Information for file-label statements can be specified on more than
one card, in which case a continuation statement is required. Any
non-blank character present in column 72 specifies that information
is contained in the card image that follows. Columns 1-15 of the
continuation statement are ignored (leave them blank). Begin con-
tinuation statement information in column 16. Note that the job-
control continuation statements are used only for label statements
(no other statements are checked for continuation).

JOB Statement: The format of the JOB card is:

// JOB jobname
Examples of the job statement follow:
// JOB ANYNAME

The // identifies the statement as a control statement and must always
be in columns 1 and 2, and JOB indicates the type of control statement
(the operation to be performed). 1In this case, it is a JOB card.
ANYNAME is the symbolic name given the JOB. It is the operand of this
card and must be one to eight characters in length.

If the system is equipped with the timer feature (must have been
requested at system generation time), the time of day will be printed
at the beginning and end of each job, automatically. Refer to the IBM
publication System Generation and Maintenance listed on the cover of
this manual for the method of setting the time of day. The time is
printed on SYSLOG, and SYSLST, if present.

This means that the printer-keyboard (IBM 1052), and the printer
(1403, etc) print the time of day after printing the JOB card, or the
/& card.

The printer-keyboard skips to the next line to print the time of day

(at the very beginning of the line), whereas the printer records the
time of day beginning with print position 73 on the same line.

16 DOS and TOS COBOL Prog. Guide

The programmer could take advantage of this, and use the available
space for comments.

An example of a job control statement follows.
// JOB ANYNAME JOHN DOE, CALLPROG

This card is the same as the first except the operand is followed by
comments.

EXEC Statement: The format of the EXEC statement is:

// EXEC [progname]
An example of this statement is:
// EXEC CBLPROG

EXEC is the execute control statement. It must be the last statement
processed before a job step is executed. It indicates the end of job
control statements for a job step, and that execution of the program

is to begin. The program name, CBLPROG, is the name of the program

to be executed, and must be one to eight alphameric characters long. If
a program to be executed was just processed by the linkage editor (which
means it is in executable format) the operand of the EXEC statement

is left blank. For a COBOL program the program name in the EXEC card
must be the phase name specified in a PHASE card of the first phase

to be executed.

When control is given to a fetched phase, general register 2
contains the address of the uppermost byte of the appropriate program
area.

ASSGN Statement: The format of the ASSGN statement is:

// ASSGN SY¥Sxxx,deviceaddress B,X'ss‘ﬂ
,ALT

An example of this statement is:
// ASSGN SYsS004,x'00C'

During compilation, programs use these symbolic names (SYSIPT, etc)
to refer to the I/0 devices used in a system configuration. At execu-
tion time, the ASSGN statement is used to assign a symbolic unit
(logical device SYS004) to a specific physical device (located at the
address X'00C').

For example, an object program is to process card input. The pre-
ceding ASSGN statement could be used to assign the symbolic unit SYS004
to a card reader at address X'00C'. The first digit in the device
address (X'00C') specifies the channel number in hexadecimal. A '0'
means multiplexor channel; 1-6 means selector channels 1-6. The
second and third digits designate the unit number in hexadecimal. 254
are allowed (00 to FE hexadecimal). For the example given, X'00C', the
first 0 specifies the multiplexor channel, and the 0C specifies the
unit number.

Example: // ASSGN SYs005,x'181',X'90'

Preparation for Processing 17

This example is the same as the first except that the X'ss' specification
is given. It determines the device specifications for seven-track tape.
The X'90' specifies that: -

® the number of bytes per inch = 800
e parity is odd

® the translate feature is off

® the convert feature is on

For the example given, X'181', the first 1 specifies selector channel
1, and 81 specifies the unit number.

When the COBOL SELECT statement is used, i.e., SELECT FILEA ASSIGN
TO 'SYS005' UTILITY 2400. COBOL assigns a file (FILEA) to a logical
device (SYS005).

In this example, the job control ASSGN statement assigns logical
device SYS005 to the specific physical device located at the address
X'1is81l'.

The specific address of each device is determined by the system
configuration.

The symbolic unit names that may be used with the ASSGN statement are:

SYSRDR
SYSIPT
I SYSIN
SYSPCH
SYSLST
SYSLOG
I SYSLNK
SYSSLB (Tape System only)
SYSRLB (Tape System only)
SYS000--SYS244

Note that the assignment for SYSOUT must be permanent, i.e., it is not
reset between jobs. For this reason, it is not included in the
preceding list. (Also note that COBOL source programs can only use
SYS000--SYs244.)

For descriptions of the ALT parameter, refer to the publications
Disk or Tape Operating System, System Control and Service
Programs, as listed on the cover of this manual.

LBLTYP Statement: The format of the LBLTYP statement is:

// LBLTYP (TSPEE(nr)l)]}
NSD (nn

An example of this statement is:

// LBLTYP TAPE

This statement is required if the programmer's files contain
standard labels.

18 DOS and TOS COBOL Prog. Guide

The LBLTYP statement applies to both
background and foreground programs.

It is used to define the amount of
main storage to be reserved at linkage
edit time for processing tape and
nonsequential disk-file labels in the
problem program area of main storage.

TAPE (nn) For Tape Operating System, (nn) is
used to specify the decimal number
of pairs of VOL, TPLAB statements
that appear immediately before the
execution of the linkage edited
program.

TAPE[(nn)] For Disk Operating System, TAPE
is used only if tape files requiring
label information are to be processed,
and no nonsequential DASD files are to
be processed. nn is optional, and is
present only for future expansion
(it is ignored by job control).

NSD (nn) Used if any nonsequential DASD files
(Disk are to be processed, regardless of
only) other file types to be used. nn

specifies the largest number of
extents to be used for a single file.

VOL Statement: The format of the VOL statement is:

// VOL SYSxxx,filename
An example of the VOL statement is:
// VOL SYS004,SYS004

VOL identifies this statement as the volume statement. It is used
to check standard labels for tape or disk files. This statement is
required for each file on a multiple volume file.

SYSxxx (the first operand) is the logical unit referenced. Filename
(the second operand) identifies the file for the control program. The
occurrence of two identical operands is peculiar to COBOL object pro-
grams, because SYS004 is both the filename by which the file is known
to the control program, and the logical unit which is assigned to a
device.

Preparation for Processing 19 e

DLAB Statement (Disk System only): The format of the DLAB statement is:

// DLAB 'label fields 1-3', C
xxXxx,yyddd,yyddd, 'systemcode' [, type]

Examples of DLAB statements are given in Section III, under Examples
of Processing Using Disk Configuration. DLAB identifies this card as
the disk-label statement. The disk-label statement contains file
label information for disk label checking and creation. This card
must immediately follow the VOL card. The DLAB statement requires (in
the case of card input) two cards for completion, therefore, column 72
of the first card requires a character punch other than a blank. The
disk-label is known as a FORMAT 1 disk file label. 1Its format is
given in Appendix D.

'label fields 1-3' are defined in Appendix D.

xxxx is the volume sequence number in field 4 of the FORMAT 1 label,
and must begin in card column 16.

yyddd,yyddd is the file creation date followed by the file expira-
tion date.

‘systemcode' is ignored by Disk and Tape Operating Systems but is
required by Operating System. It must be 13 characters long.

[,type] indicates the type of file label

SD - sequential disk

DA - direct access

Isc indexed sequential (used when creating a file)

ISE indexed sequential (used when updating or retrieving a file).

XTENT Statement (Disk System only): The format of the XTENT statement is:

// XTENT type,sequence,lower,upper,
'serial no.',SYSxxx[,Bj]

Examples of XTENT statements are given in Section III, under Examples
of Processing Using Disk Configuration.

This statement is used to define an area in a direct access storage
device (DASD). Each DASD statement requires one or more XTENT state-
ments. There are three extent types. Each is identified by a code
that informs the control program what the defined area is to be used
for.

type Extent Type - occupies 1 or 3 columns, containing:
1 = data area (no split cylinder)
2 = overflow area (for indexed sequential file)
4 = index area (for indexed sequential file)
128 = data area (split cylinder). If type 128 is specified,

the lower head HjHoHy is taken from lower, and the
upper head HHyHy is taken from upper.

20 DOS and TOS COBOL Prog. Guide

sequence

lower

upper

'serial no.'

SYSxxx

Extent Sequence Number - indicates the sequence number
of this extent within a multi-extent file. The sequence
number occupies 1 to 3 columns and contains a decimal
number from 0 to 255. Extent sequence 0 is used for

the master index of an indexed sequential file. If

the master index is not used, the first extent of an
indexed sequential file has sequence number 1. The
extent sequence for all other types of files begins

with 0.

Lower Limit of Extent - occupies 9 columns and
contains the lowest address of the extent in the
form BjC;C1C2CyCoH HoHy where:

By is the initially assigned cell number. It is
equal to:

0 for 2311

0 to 9 for 2321
C1Cq is the sub-cell number. It is equal to:

00 for 2311
00 to 19 for 2321

C,CyCy is the cylinder number. It can be:
000 to 199 for 2311
or strip number:
000 to 009 for 2321
Hy is the head block position. It is equal to:

0 for 2311
0 to 4 for 2321

HoHy is the head number. It can be:

00 to 09 for 2311
00 to 19 for 2321

A lower extent of all zeros is invalid.

Note: For 2321, the last 5 strips of sub-cell 19 are
reserved for alternate tracks.

Upper Limit of Extent - occupies 9 columns containing
the highest address of the extent, in the same form
as the lower limit.

Volume Serial Number - This is a 6-byte alphameric
character string, contained within apostrophies. The
number is the same as in the volume label (volume serial
number) and the Format 1 label (file serial number).

This is the symbolic address of the DASD drive.
Currently assigned cell number. Its value is: 0 for

2311, 0-9 for 2321. This field is optional. If
missing, job control assigns By = Bj.

Preparation for Processing 21

TPLAB Statement: The formats of the TPLAB statements are:

// TPLAB 'label fields 3-10'
// TPLAB 'label fields 3-13'

The statement contains file label information for tape label check-
ing and writing, and must immediately follow the VOL statement.

TPLAB identifies the tape-label statement and can be written two
ways:

1. Input labels require only one statement, and contain fields 3-10 of
the standard tape file label. Refer to Appendix C for an illustra-
tion of STANDARD TAPE FILE LABELS. These are the only fields used
for checking the label of an input file.

2. When writing output labels, additional fields may be included by
use of a continuation statement. The additional fields are 11-13.
(These fields are not required for output files.) Refer to the
publication, System Control and System Service Programs, listed
on the cover of this manual for details on these fields.

OPTION Statement: The format of the option statement is:

// OPTION optionl[,option2,...]
An example of this statement is:
// OPTION LIST,DUMP,LINK

This statement specifies one or more of the job control options
available. The order in which they appear in the operand field is
arbitrary. A complete list of options useful to the COBOL user is
listed in Appendix E.

The options specified in the OPTION statement remain in effect until
a contrary option is encountered or until a JOB control statement is
read. In the latter case, the options are reset to the standard that
was established when the system was originally generated.

Any assignment for SYSLNK, after the occurrence of the
OPTION statement, cancels the LINK and CATAL options. These
two options are also canceled after each occurrence of an
EXEC statement with a blank operand.

PAUSE Statement: The format for the PAUSE statement is:

// PAUSE [comments]
An example of this statement is:
// PAUSE SAVE SYS004, SYS005, MOUNT NEW TAPES
This statement can be used for operator action between jobs. Any
messages to the operator can appear in the operand of a PAUSE

statement.

In the example given, the operator is directed to save the output
tapes, and mount two new tapes.

When the PAUSE statement is encountered by job control, the
printer-keyboard (IBM 1052) is unlocked for operator-message input.
The end-of-communication indicator, (= alter code 5), causes
processing to continue.

22 DOS and TOS COBOL Prog. Guide

The PAUSE statement is always printed on SYSLOG. If no 1052 is
available, the PAUSE statement is ignored.

/* -— End-of-Data-File Statement: This statement must be the last
statement of each input data file on SYSRDR and SYSIPT. It is used
for separating job steps within a program and testing for end-of-file
condition. Its format is:

/* ignored

Columns 1 and 2 contain a slash and an asterisk.
Column 3 must be blank.

/& —= End-of-Job Statement: This statement must be the last statement
of each job. Its format is:

/& ignored

Columns 1 and 2 contain a slash and an ampersand (l2-punch).
Column 3 must be blank. If job control attempts to read past the /&,
the job is terminated. If the system is equipped with the timer fea-
ture this statement can be used for comments. Comments can begin in
column 14.

* —- Comments Statement: This statement is a job-control comments
statement. Its format is:

* any user comments

Column 1 contains an asterisk. Column 2 is blank. The remainder of
the statement (through column 72) contains any user comments. The con-
tent of the comment statement is printed on SYSLOG. If followed by a
PAUSE statement, the statement can be used to request operator action.

COBOL OPTIONS (COBOL Control Card): Most options are supplied by the
job~control OPTION card (see Appendix E).

The compiler has a CBL option card to provide additional flexibility.
l Its position in the job stream is between the EXEC COBOL statement and
the COBOL IDENTIFICATION DIVISION statement. The format of this card is:

CBL [DMAP = h]
[,PMAP = h]
[,BUFFSIZ = d]
[,DISPCHK = gyes%]
no
[, INVED]

where:

|l. CBL must begin in column two, be preceded by a blank, and
followed by at least one blank.

2. DMAP and PMAP set the listing (not object module) relocation factor,
i.e. the addresses of both the data division map and procedure
division map are incremented by the number h. If both DMAP and
PMAP are specified, the value specified for the last parameter
(DMAP or PMAP) is that which is used. h is a hexadecimal number
of from one to eight hex digits; the assumed value is zero.

3. BUFFSIZ sets the size of each compiler buffer to the number d. d
is a decimal number from 170 to 32,760; the assumed values are 170
on a 16K System/360 and 1,024 on a 32K or larger System/360. Double
buffers are always used.

Preparation for Processing 23

| 5.

DISPCHK determines whether or not a diagnostic check is made at
object time for DISPLAYed items. If YES is specified, all items

are length checked before moving them to the DISPLAY buffer. If
they are too long, they are truncated (no message given). If NO is
specified, no length check is made and items are moved directly to
the DISPLAY buffer. If they are too long, they exceed the buffer
size and destroy the information in the following storage area. The
assumed value is NO.

INVED : When the INVED option is not specified,

the character "." represents a decimal point and the character
"," represents an insertion character. When the INVED option is
specified, the above roles of these characters ".", "," is
reversed.

24 DOS and TOS COBOL Prog. Guide

SECTION II. DECK STRUCTURES FOR PROCESSING COBOL PROGRAMS IN A TAPE

OPERATING SYSTEM

For each type of processing, certain combinations of job control cards

are needed.

The examples given illustrate typical basic types of

processing within an all tape system configuration.

The examples assume a given tape system confiquration, and that the
COBOL Tape Compiler is used for processing.

Figure 3 is a diagram of the I/0 units used by COBOL in a tape con-
figuration, and should help the user to visualize the logical struc-
ture of a configuration.
in the order they are presented follows:

1. Compile and punch

A list of the types of processing discussed,

2. Cataloging to the relocatable library

3. Compiling,

linkage editing, and executing

4. Executing a previously linkage edited program

5. Cataloging to the source statement library

6. Compiling,

linkage editing, and executing.

Examples 3 and 6 differ in that example 3 illustrates how job control
is used to link with a module cataloged to the relocatable library,
while example 6 illustrates how COBOL copies source statement modules
cataloged to the source statement library.

ASSUMED TAPE RESIDENT SYSTEM CONFIGURATION

The processing examples given herein assume that the following Tape
Operating System was generated at system generation time:

The system includes:

One IBM 1403 Printer
One IBM 2540 Card/Read/Punch

One IBM 1052 Printer-Keyboard

Four IBM Magnetic Tape Units (excluding the resident tape drive)

Assume physical assignments at system generation time are:

1403 Printer assigned to physical unit X'OOE'
2540R Reader assigned to physical unit X'00C'
2540P Punch assigned to physical unit X'00D'
Printer-Keyboard assigned to physical unit X'01f'

1052
2402
2402
2402
2402
2402

Magnetic
Magnetic
Magnetic
Magnetic
Magnetic

(This unit is

Tape Unit
Tape Unit
Tape Unit
Tape Unit
Tape Unit

The hexadecimal 90 (X'90")
the device specifications for a seven-track tape.

assigned to physical unit X'180'
assigned to physical unit X'181',X'90"'
assigned to physical unit X'182'
assigned to physical unit X'183'
assigned to physical unit X'184'

the resident tape drive.)

in the tape assigned to X'1l8l' determines

Deck Structures for Processing in TOS 25

If libraries on
private tapes

Cards
(if required)

If different from

1
standard assignments ,'
[

COBOL
Source
Statements

~—— Optional

System
SYSIPT

Tape

SYSRDR

7’z N
’ \\
! |
1
/
System/360 ~—eZ_
SYSLST
N
\
‘, Note: Broken lines indicate where
i the COBOL input would be placed
s if SYSIPT were the same unit as SYSRDR.
SYSPCH
(Optionat)

Figure 3. I/O Units Used by COBOL Program in a Tape System

26 DOS and TOS COBOL Prog. Guide

Assume logical assignments at system generation time are:

// BSSGN SYSIPT,X'00C'

// ASSGN SYSRDR,X'00C' IBM 2540
// ASSGN SYSPCH,X'00D'

// ASSGN SYSLST,X'0OE' IBM 1403
// ASSGN SYSLOG,X'O0lF' IBM 1052

// ASSGN SYSLNK,X'180"

// ASSGN SYS001,X'181',X'90°

// ASSGN SYS002,X'182' IBM 2400's
// ASSGN SYS003,X'183"

Notice that SYSIPT, SYSRDR, and SYSPCH are assigned to the same physical
unit (they need not be), and that SYS00l is a 7-track tape. Observe
also that four logical tape assignments are made. The COBOL compiler
requires three logical work files to compile. The fourth can be used
for compile-and-execute functions.

The user can change these assignments by the use of ASSGN cards
following his JOB card. Examples of overriding assignments are given
in the text that follows. In the examples that follow, whenever an
optional statement is used it is identified by the words (optional
card) .

EXAMPLES OF PROCESSING USING TAPE CONFIGURATION

COMPILE AND PUNCH (EXAMPLE 1)

Assuming that source statements are card input (SYSIPT), and job-
control statements are card input (SYSRDR), the set of job-control
cards required (and some helpful options) to compile and punch are:

// JOB SUBROTNE

// OPTION LOG,DECK,LIST,LISTX,ERRS % Input from SYSRDR

// EXEC COBOL
SUBROTNE } Input from SYSIPT
SOURCE STATEMENTS

/*

/&

// PAUSE REMOVE OBJECT DECK FROM HOPPER Input from SYSRDR

(optional card))

The options selected on the option card specify:

LOG -- Requests a listing of all control statements on SYSLST.

DECK -- Requests that a deck (object module) be punched on SYSPCH.

LIST -- Causes compiler to write source statements on SYSLST.

LISTX --, Causes compiler to write a procedure division map on SYSLST
in hexadecimal. '

ERRS -- Causes compiler to write all diagnostics related to the source

program on SYSLST.

Deck Structures for Processing in TOS 27

CATALOGING AN OBJECT MODULE TO RELOCATABLE LIBRARY (EXAMPLE 2)

In this example, an object module generated by the compiler (refer to
example 1) is cataloged to the relocatable library. It is assumed that
the relocatable library is on SYSRES (similarly for the source statement
library). Another tape drive may be used as a private library for the
relocatable library, in which case the system logical unit SYSRLB is used.

The job-control cards required to catalog an object module to an
existing relocatable library are:

// JOB RELOCATE
// EXEC MAINT
CATALR SUBROTNE
§Object deck to be g
cataloged goes here.

/*

/&

* OBJECT: MODULE ‘SUBROTNE' IS NOW

* . CATALOGED TO NEW SYSRES TAPE ON

// PAUSE 5Ys5002 (Optional Card)

When an object module is cataloged to the relocatable library
residing on SYSRES, the following points must be considered.

1. SYS002 is the device on which the newly updated library is located
(SYSRES is now outdated).

2. If SYS002 is to be established as new SYSRES, it must be mounted
on the tape drive assigned to "old" SYSRES, and initial program
loaded (IPL). This automatically establishes it as "new" SYSRES.
SYs002 can then be reassigned.

8YS001 is used as a work file.

COMPILE, LINKAGE EDIT, AND EXECUTE (EXAMPLE 3)

This example illustrates how an object module cataloged to the relo-
catable library is included in a compilation, linkage edited with the
main program and executed.

The job control statements required to compile, linkage edit, and
execute are:

// JOB CALLPROG
// OPTION LINK,LIST,LISTX,ERRS

PHASE MAIN,*
// EXEC COBOL

{COBOL SOURCE STATEMENTS }
/'l:

INCLUDE SUBROTNE ({Retrieves SUBROTNE from relocatable library}
// EXEC LNKEDT
// EXEC

gDATA DECK%

(if any)
/*
/&
This program consists of one phase that includes the object module
SUBROTNE and permits immediate execution of the program. {The name

provided in the PHASE statement (MAIN) has no relationship to the
external-name given in the COBOL Program-ID statement.)

28 DOS and TOS COBOL Prog. Guide

It is possible to process this program with only three work files;
however, the procedure requires special instructions to the operator
for making two passes through the system. In this example, such
instructions are conveyed to the operator on comment cards.

The output of the first pass (Pass 1) is a punched object deck,
which is used in the second pass (Pass 2). To accomplish Pass 2,
linkage edit and execute, the punched object deck must be
positioned in the job stream to precede the EXEC LNKEDT and EXEC
statements. (This is done when the PAUSE statement is encountered.)

The complete job stream to accomplish both Pass 1 and Pass 2 is

as follows:

// JOB CALLPROG h
// ASSGN SYS001,X'180"' Work
// ASSGN SYS002,X'182' Files
// ASSGN SYS003,X'183'
// OPTION DECK,LIST,LISTX,ERRS > Pass 1
// EXEC COBOL
[COBOL SOURCE STATEMENTS]
/* J
// ASSGN SYS001,X'180" Assignments

// ASSGN SYS002,X'182'
// ASSGN SYSLNK,X'183'

// OPTION LINK

For Linkage
Edit and Execute

* PLACE THE OUTPUT OF SYSPCH INTO SYSRDR.
* PLACE THE INCLUDE SUBROTNE STATEMENT
* THROUGH THE /& STATEMENT, INCLUSIVE,
* (LABELED PASS 2 IN THIS EXAMPLE)
* BEHIND THE PUNCHED OBJECT DECK JUST
* PUT INTO SYSRDR.
* CONTINUE
// PAUSE
 INCLUDE
PHASE MAIN, *
The punched object deck will be
positioned here in the job stream
/*
Retrieves SUBROTNE
INCLUDE SUBROTNE {from RELOCATABLE }W
LIBRARY

// EXEC LNKEDT
// EXEC

PPass 2

DATA DECK
(if any)
/*
/&

P

The new option card is needed to accomplish the linkage editing.
The entire set of control statements, and source statements from // JOB
card through /& card are submitted as one job.

Note that. the SYS001l, SYS002 and SYSLNK are required to execute

the linkage editor.

Deck Structures for Processing in TOS 29e

EXECUTING A PROGRAM (EXAMPLE 4)

The job control statements required to simply execute a program, assum-
ing it is in the core image library, are:

// JOB CALLPROG
// ASSGN SYS006,X'00C'
// ASSGN SYS004,X'182'
// ASSGN SYS005,X'183'
// EXEC MAIN
[DATA]
DECK
/*
/&
// PAUSE MESSAGE TO OPERATOR IF ANY. (optional card)

The example can be used for validating data, or test runs, where
many runs might be made with different sets of data decks.

CATALOGING SOURCE MODULES TO SOURCE STATEMENT LIBRARY (EXAMPLE 5)

The procedural steps, and the job control statements required to cata-
log two source statement routines to the source statement library
follow.

It is assumed that a source statement library is on the system
residence volume, SYSRES.

The job control statements are:
// JOB CATLSORC

// EXEC MAINT
CATALS C.DATAIN

BKEND C.DATAIN
FILEB, DATA RECORDS ARE CAPACITOR—RECORD%

INDUCTOR-RECORD1,
LABEL RECORDS ARE STANDARD, BLOCK ROUTINE 1
CONTAINS 12 RECORDS, RECORDING MODE IS F.
BKEND C.DATAIN
CATALS C,INOUT
BKEND C.INOUT
BEGIN. OPEN INPUT FILEB, FILED OUTPUT FILEA.
DATA. READ FILEB AT END GO TO CYCLE.
MASTER. READ FILED AT END GO TO LABA. ROUTINE 2
GO TO PROCESS.
LABA. CLOSE FILEA, FILEB, FILED, STOP RUN.
BKEND C.INOUT
/*
/&
// PAUSE REMOVE NEW SYSRES ESTABLISHED ON X'182'.

The open and close routine is now cataloged to the source statement
library under the name 'INOUT', and the file description under the name
'DATAIN'. Notice that DATAIN is cataloged before INOUT. This is
because books to be cataloged must be in alphanumeric sequence.

The message is an interruption in the job stream to inform the opera-

tor to perform some task. In this example he is instructed to remove
the tape for protection.

30 DOS and TOS COBOL Prog. Guide

COMPILE (USING SOURCE STATEMENT LIBRARY), LINKAGE EDIT, AND EXECUTE
(EXAMPLE 6)

This example illustrates:

1. How two.previously written routines, that were cataloged in the
source statement library, are utilized. 1In this example, the
source statement library is on SYSRES.

2. How assignments can be made to process an inventory file with
four tapes (not including SYSRES).

Assume an electronics firm stocks quantities of electrical components
that are to be maintained at a minimum guantity level, and an input data
file is used to check against a master file to determine stock item re-
order points.

For the purposes of illustration, only two of its many components
are treated here. They are:

CAPACITORS QUANTITY REORDER
PART NUMBER VALUE ON HAND POINT
cé6l .010MFD 47 50
Cc62 .020MFD 60 50
C65 .050MFD 50 50
cl21 . 001 MMFD 90 50
cl22 .002MMFD 100 50
Cl25 .005MMFD 22 50
INDUCTORS QUANTITY REORDER
PART NUMBER VALUE ON HAND POINT
L1l0 .10H 18 35
L20 .20H 15 35
L40 .40H 30 35
161 10.00MH 60 35
162 20.00MH 70 35
164 40.00MH 69 35

Assume further, that an input update file called "DATAIN" (example 5,
ROUTINE 1) was created on tape and cataloged to the source statement
library, and its records look like:

01 CAPACITOR-RECORDI.
02 CAPACITOR OCCURS 6.
03 PART-NUMBER PICTURE XXXX.
03 VALUEl1l PICTURE V999.
03 VALUE2 PICTURE XXXX.
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

01 INDUCTOR-RECORD1.
02 INDUCTOR OCCURS 6.
03 PART-NUMBER PICTURE XXXX
03 VALUE1l PICTURE 99V99.
03 VALUE2 PICTURE XX,
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

Also assume a program called ORDERPT (to be compiled) was written to

process these records (against the master file) to reorder parts when
their respective QUANTITY-ON-HAND falls below REORDER-PT.

Deck Structures for Processing in TOS 31

The following source statements portray, in skeleton form, the
program ORDERPT. Included is the INPUT-OUTPUT section for the program.

IDENTIFICATION DIVISION.

PROGRAM-ID. 'ORDERPT'.

ENVIRONMENT DIVISION.

INPUT-QUTPUT SECTION.
FILE-CONTROL.

SELECT FILEB ASSIGN TO 'SYS004' UTILITY 2400 UNITS.

SELECT FILEA ASSIGN TO 'SYS005' UTILITY 2400 UNITS, RESERVE NO
ALTERNATE AREA. :
SELECT FILEC ASSIGN TO 'SYS006' UNIT~RECORD 1403.

SELECT FILED ASSIGN TO 'SYS007' UTILITY 2400 UNITS.

Notice that FILEC is assigned to an IBM 1403 Printer. This enables
printing out the REORDER-PT, PART NUMBER of the component, and its
VALUE (in MFD or MH) when the QUANTITY-ON-HAND falls below REORDER-PT.

In order to do this, a file description or FD must be written for
FILEC in the data division:

DATA DIVISION.
FD FILEC....

01 REORDER.
02 REORDER-PT PICTURE IS 99 USAGE IS DISPLAY.
02 VALUE-OF-PART PICTURE IS ZZ.999.
02 PART-NUMBER PICTURE IS XXXX.
02 QUANTITY PICTURE IS 999.

Before printing out FILEC, the appropriate values are moved into
REORDER-PT (50 or 35), VALUE-OF-PART (.999MFD or 2Z7.999H) PART-
NUMBER (CXXX or LXXX), and QUANTITY (999).

Specifically, four files are required to process this problem:

FILEA Updated master file.

FILEB Updating input file (DATAIN).
FILEC Output print file.

FILED Master file.

32 DOS and TOS COBOL Prog. Guide

The control cards to compile, link edit, and execute the problem are:

// JOB INVNTORY
// OPTION LINK,LIST,DUMP

PHASE INVNTORY, *

// EXEC COBOL

DATA DIVISION.
FD FILEB COPY 'DATAIN'.< Example 5

Refer to

. for expansion

PROCEDURE DIVISION.
START. INCLUDE 'INOUT'. Refer to
. Example 5
. 1for expansion

PROCESS.

/*

(Records on FILEB are processed)

// LBLTYP TAPE (03)
EXEC LNKEDT

//

ASSGN
ASSGN
ASSGN
ASSGN

PAUSE

EXEC

SYS004,X'181',X'90"
SYS005,X'182"
SYS006,X'00E’
SYS007,X'183"

(DATAIN)

(OUTPUT FILE,NEW MASTER)
(PRINT FILE)

(MASTER FILE)

MOUNT INPUT (SYS004) ON X'181',
OUTPUT (SYS005) ON X'182',

MASTER (SYS007) ON X'183',.

VOL SYS004,SYS004
TPLAB HDR,1,DATAIN, etc.....
VOL SYS007,SYS007
TPLAB HDR,1,MASTER, etc.....
VOL SYS005,5YS005
TPLAB HDR,1,NEWMASTER, etc.....

PAUSE SAVE SYS007 ON X'183' and SYS005 ON X'182'

Note that the program that processes the files takes advantage of
two previously written routines (routine 1, and routine 2) that were
cataloged to the source statement library.

Note also that the VOL and TPLAB job-control statements were used to
check header records and write trailer labels on input and output files.

Deck Structures for Processing TOS 33

SECTION III. DECK STRUCTURES FOR PROCESSING COBOL PROGRAMS IN A DISK
OPERATING SYSTEM

For each type of processing, certain combinations of job control cards
are needed. The examples given illustrate basic types of processing
within a Disk Operating System.

The examples assume a given Disk Operating System configuration that
includes tape, and that the COBOL disk compiler is used for processing.

Because the COBOL disk compiler permits the use of disk or tape work
files, some of the examples given in this section use tape work files
while others use disk work files. Figure 4 is a diagram of the I/0
units used by COBOL in a disk configuration with tape, and should help
the user to visualize the logical structure of such a configuration.

Preceding the types of processing discussed is a procedure for estab-
lishing labels for COBOL disk work files and SYSLNK on the Standard
Label Track. A list of the types of processing discussed, in the order
they are presented, follows:

1. Compile and punch

2. Cataloging to the relocatable library

3. Compiling, linkage editing, and executing

4. Executing a previously linkage edited program

5. Cataloging to the source statement library

6. Compiling, linkage editing, and executing.

Examples 3 and 6 differ in that example 3 illustrates how job control
is used to link with a module cataloged to the relocatable library,

while example 6 illustrates how COBOL copies source statement modules
cataloged to the source statement library.

ASSUMED DISK RESIDENT SYSTEM CONFIGURATION

The processing examples given here assume that the following Disk Opera-
ting System configuration with tape was generated at system generation
time for the COBOL disk compiler.
The system includes:
® One IBM 2540 Card/Read/Punch
® One IBM 1052 Printer-Keyboard
e One IBM 1403 Printer
e Two IBM 2311 Disk Drives

e Four IBM 2400 Magnetic Tape Units

34 DOS and TOS COBOL Prog. Guide

// ASSGN SYSIPT

If different
from standard
assignments

Optional

S

4
’

!
-
)
\

/
~———ta”

g

————r

Figure 4. 1I/0 Units Used by COBOL

-

SYSLST (Optional)

Note: Broken lines indicate where
the COBOL input would be placed
if SYSIPT were the same unit as SYSRDR.

Program in a Disk System

Deck Structures for Processing in DOS 35

Assume physical assignments at system generation time are:
® 2540R Reader assigned to physical unit X'00C’
® 2540P Punch assigned to physical unit X'00D'
® 1052 Printer-keyboard assigned to physical unit X'01F'
@ 1403 Printer assigned to physical unit X'OOE'
e 2311 bisk pack assigned to physical unit X'190'
® 2311 Disk pack assigned to physical unit X'191'
e 2402 Magnetic tape unit assigned to physical unit X'281'
® 2402 Magnetic tape unit assigned to physical unit X'282'
® 2402 Magnetic tape unit assigned to physical unit X'283'
® 2402 Magnetic tape unit assigned to physical unit X'284', X'90'

The hexadecimal 90 (X'90') in the last tape assignment determines the
device specifications for a seven-track tape.

Assume logical assignments at system generation time are:

// ASSGN SYSRDR,X'00C'
// ASSGN SYSPCH,X'00D'
// ASSGN SYSLST,X'00E' IBM 1403
// BASSGN SYSLOG,X'0lF' IBM 1052
// ASSGN SYSLNK,X'190'

// ASSGN SYS003,x'190'{ 1IBM 2311's
// ASSGN SYS001,x'191'

// ASSGN SYS002,X'191'

// ASSGN SYSIPT,X'00C'
IBM 2540

When logical assignments are made at system generation time for the
disk compiler, the following must be considered:

® SYSLNK must be assigned to disk.

® SYS001, SYS002, and SYS003 (work files) can be assigned to disk or
tape, but must all be assigned to the same device type.

e When the linkage editor function is being performed, work file SYS001
can be assigned to either disk or tape.

When tape work files are to be used instead of the given logical
assignments for disk work files (SYS001l, SYS002, SYS003), the user must
assign tape work files at system generation time. For example:

// ASSGN SYS001,X'281"
// ASSGN SYS002,X'282'
// ASSGN SYS003,X'283"

Notice that SYSIPT, SYSRDR and SYSPCH are assigned to the same physical
unit.

The programmer can change these assignments using ASSGN cards follow-
ing his JOB card. Examples of overriding assignments are given in the
text that follows. In the examples that follow, whenever an optional
statement is used it is identified by the words "optional card."

36 DOS and TOS COBOL Prog. Guide

EXAMPLES OF PROCESSING USING DISK CONFIGURATION

When processing programs with the COBOL disk compiler, the information
provided by the VOL, DLAB, and XTENT statements for the work files
SYS001, SYS002 and SYS003 must be available for each job processed.
This information can be supplied by the programmer with each job proc-
essed, or is provided for the programmer on the Standard Label Track
for each job processed as required. In addition to establishing the
labels required for the disk work files SYS001l, SYS002, and SYS003, the
lables required for SYSLNK can also be established on the Standard
Label Track, where they will be available for subsequent use.

The following procedure enables setting up the Standard Label Track
for COBOL disk compiler work files and SYSLNK. Once established, the
labels remain in effect for use with subsequent jobs processed, until
overridden. ‘

/ JOB BUILD STANDARD LABELS
ALL VOL, DLAB, AND XTENT STATEMENTS SUBMITTED IN THIS JOB
WILL BE PERMANENTLY WRITTEN ON TRACK O OF THE LABEL STORAGE
CYLINDER OF DOS SYSTEM RESIDENCE FILE SYSRES. THUS THESE
LABELS NEED NOT BE SUBMITTED FOR EVERY JOB THAT REQUIRES
SYSLNK AND SYSO01-SYS003
// OPTION STDLABEL
// VOL SYS000,I14SYS00
// DLAB 'SYSTEM WORK FILE SYSLNK ne, C
0001,66001,66001,'DISK OPER SYS',SD
// XTENT 1,0,000190000,000198009,*111111"',SYSLNK
// VOL SYS001.1JSYSO1
// DLAB 'SYSTEM WORK FILE NO. 1 immmye, C
0001,66001,66001,'DISK OPER SYS',SD
// XTENT 128,0,000142000,000189003,'111111',SYS001
// NOL SYS002,1JSYS02
// DLAB 'SYSTEM WORK FILE NO. 2 02.G60000v001111111', C
0001,66001,66001,'SYSTEM CODE 1',SD
// XTENT 128,0,000142004,000189007,'111111',5YS002
// VOL SYS003,I1J4SYS03
// DLAB 'SYSTEM WORK FILE NO. 3 02.G60000VOO1111111, C
0001,66001,66001,'SYSTEM CODE 1',SD
// XTENT 128,0,000142008,000189009,'111111',5YS003

%k K\

.

COMPILE AND PUNCH (EXAMPLE 1)

Assuming_ that source statements are card input (SYSIPT), and job control
statements are card input (SYSRDR), the job control cards required (and
some helpful options) to compile and punch are:

// JOB SUBROTNE

// OPTION LOG,DECK,LIST,LISTX,ERRS } Input from SYSRDR
// EXEC COBOL

SUBROTNE
SOURCE STATEMENTS

/* i
|

Input from SYSIPT

/&
// PAUSE REMOVE -OBJECT DECK FROM HOPPER

Input from -SYSRDR
(Optional card)

The options selected specify:
LOG - Requests a listing of all control statements on SYSLST.
DECK - Requests that a deck (object module) be punched on SYSPCH.

LIST - Causes the compiler to write source statements on SYSLST.

Deck Structures for Processing in DOS 37

LISTX - Causes the compiler to write a procedure division map on SYSLST
in hexadecimal.

ERRS - Causes the compiler to write all diagnostics related to the
source program on SYSLST.

CATALOGING AN OBJECT MODULE TO RELOCATABLE LIBRARY (EXAMPLE 2)

In this example, an object module generated by the compiler (refer
to example 1) is cataloged to the relocatable library.

Note: The relocatable library is on SYSRES.

The job control cards required to catalog an object module to an
existing relocatable library are:

// JOB RELOCATE
// EXEC MAINT
CATALR SUBROTNE
{Object deck to be }
cataloged goes here

/%
/&

* OBJECT MODULE 'SUBROTNE' IS

* NOW CATALOGED TO THE RELOCATABLE

// PAUSE LIBRARY ON SYSRES (optional card)

COMPILE, LINKAGE EDIT, AND EXECUTE (EXAMPLE 3)

This example illustrates how an object module cataloged to the reloca-
table library is included in a compilation, linkage edited with the
main program and executed.

// JOB CALLPROG

// OPTION LINK,LIST,LISTX,ERRS
PHASE MAIN,*

// EXEC COBOL
{COBOL SOURCE STATEMENTS }

/*
INCLUDE SUBROTNE {Retrieves SUBROTNE from relocatable library}
// EXEC LNKEDT

// EXEC
%DATA DECK%
(if any)
/*
/&
This program consists of one phase that includes the object module
SUBROTNE, and can be executed immediately. (The name provided in the

PHASE statement (MAIN) has no relationship to the external-name given
in the COBOL Program-ID statement.)

38 DOS and TOS COBOL Prog. Guide

EXECUTING A PROGRAM (EXAMPLE 4)

The job control statements required to simply execute a program, assum-
ing it has been cataloged into the core image library, are:

// JOB CALL PROG
// ASSGN SYS006,X'00C'
// ASSGN SYS004,X'191’
// ASSGN SYS005,X'19l'
// VOL SYS004,SYS004
// DLAB 'THIS IS THE JOB INPUT FILE etc, ...
// XTENT Enter track specification here ...
// VOL SYS005,SYS005
// DLAB 'THIS IS THE JOB OUTPUT FILE etc, ...
// XTENT Enter track specification here ...
// EXEC MAIN

[DATA DECK]

// PAUSE MESSAGE TO OPERATOR, IF ANY (optional card)

The example can be used for validating data, or for test runs, where
many runs might be made with different sets of data. Note that the VOL,
DLAB and XTENT statements specify areas in the disk pack (assigned to
X'191') that are used by the job input and output files, SYS004 and
SYS005 respectively.

CATALOGING SOURCE MOOULES TO SOURCE STATEMENT LIBRARY (EXAMPLE 5)

The procedural steps and the job-control statements required to catalog
two source statement modules to the source statement library follow.

Note: The source statement library is on the system residence volume
SYSRES.

The job control statements are:

// JOB CATLSORC
// EXEC MAINT
CATALS C.INOUT
BKEND C.INOUT
BEGIN. OPEN INPUT FILEB, FILED OUTPUT FILEA.
DATA. READ FILEB AT END GO TO CYCLE.
MASTER. READ FILED AT END GO TO LABA. ROUTINE 1
GO TO PROCESS.
LABA. CLOSE FILEA, FILEB, FILED, STOP RUN.
BKEND C.INOUT
CATALS C.DATAIN
BKEND C.DATAIN
FILEB, DATA RECORDS ARE CAPACITOR-RECORDI,
INDUCTOR-RECORD1,
LABEL RECORDS ARE STANDARD, BLOCK ROUTINE 2
CONTAINS 12 RECORDS, RECORDING MODE
IS F.
BKEND C.DATAIN
/*
/&

The open and close routine is now cataloged to the source statement
library under the name 'INOUT', and the file description under the name
'DATAIN'.

Deck Structures for Processing in DOS 39

COMPILE (USING SOURCE STATEMENT LIBRARY), LINKAGE EDIT, AND EXECUTE
(EXAMPLE 6)

This example illustrates:

1. How two previously written routines, that were cataloged in the
source statement library, are utilized. In this example, the
source statement library is on SYSRES.

2. How assignments can be made to process an inventory file using
disk.

Assume an electronics firm stocks guantities of electrical components
that are to be maintained at a minimum quantity level, and an input data
file is used to check against a master file to determine stock item
reorder points.

For the purposes of illustration, only two of its many components
are treated here. They are:

CAPACITORS QUANTITY REORDER
PART NUMBER VALUE ON_HAND POINT
Cel .010MFD 47 50
C62 .020MFD 60 50
Cé65 .050MFD 50 50
Cl21 .001MMFD 20 50
Ccl22 .002MMFD 100 50
Cl25 .005MMFD 22 50
INDUCTORS QUANTITY REORDER
PART NUMBER VALUE ON HAND POINT
Lio .10H 18 35
L20 .20H 15 35
L40 .40H 30 35
L6l 10.00MH 60 35
L62 20.00MH 70 35
L64 40.00MH 69 35

Assume further, that an input update file called "DATAIN" (example 5,
ROUTINE 2) was created on disk and cataloged to the source statement
library, and its records look like:

I 01 capacITOR-RECORDI.
02 CAPACITOR OCCURS 6.
03 PART-NUMBER PICTURE XXXX.
03 VALUEl PICTURE V999.
03 VALUE2 PICTURE XXXX.
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

| 01 InDUCTOR-RECORDI.
02 INDUCTOR OCCURS 6.
03 PART-NUMBER PICTURE XXXX.
03 VALUE1 PICTURE 99V99.
03 VALUE2 PICTURE XX.
03 QUANTITY-ON-HAND PICTURE IS S999.
03 REORDER-PT PICTURE IS 99.

Also assume a program called ORDERPT (to be compiled) was written to

process these records (against the master file) to reorder parts when
their respective QUANTITY-ON-HAND falls below REORDER-PT.

40 DOS and TOS COBOL Prog. Guide

The following source statements portray in skeleton form, the program
ORDERPT. Included is the INPUT-OUTPUT section for the program.

IDENTIFICATION DIVISION.

PROGRAM-ID. 'ORDERPT' .

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILEB ASSIGN TO 'SYS004' UTILITY 2400 UNITS.
SELECT FILEA ASSIGN TO 'SYS005' UTILITY 2311 UNITS, RESERVE NO
ALTERNATE AREA. _

SELECT FILEC ASSIGN TO 'SYS006' UNIT-RECORD 1403.

SELECT FILED ASSIGN TO 'SYS007' UTILITY 2311 UNITS.

Notice that FILEC is assigned to an IBM 1403 Printer. This enables
printing out the REORDER-PT, PART NUMBER of the component, and its VALUE
(in MFD or MH) when the QUANTITY~ON-HAND falls below REQRDER-PT.

In order to do this, a file description or FD must be written for
FILEC in the data division:

DATA DIVISION.
FD FILEC....

01 REORDER.
02 REORDER-PT PICTURE IS 99 USAGE IS DISPLAY.
02 VALUE-OF-PART PICTURE IS ZZ.999.
02 PART-NUMBER PICTURE IS XXXX.
02 QUANTITY PICTURE IS 999.

Before printing out FILEC, the appropriate values are moved into
REORDER-PT (50 or 35), VALUE-OF-PART (.999 MFD or Z%Z.999H) PART-
NUMBER (CXXX or LXXX), and QUANTITY (999).

Specifically, four files are required to process this problem:

FILEA Updated master file.

FILEB Updating input file (DATAIN).
FILEC Output print file.

FILED Master file.

Deck Structures for Processing in DOS 41

The control cards to compile, link edit, and execute the problem are:

// JOB INVNTORY

// OPTION LINK,LIST,DUMP
PHASE INVNTORY,*

// EXEC COBOL

DATA DIVISION. Refer to
FD FILEB COPY 'DATAIN'. Example 5
. for expansion
PROCEDURE DIVISION.
START. INCLUDE 'INOUT'. Refer to
. Example 5
. for expansion

PROCESS. (Records on FILEB are processed)

// LBLTYP TAPE
// EXEC LNKEDT

// ASSGN SYS004,X'284",X'90" (DATAIN)

// ASSGN SYS005,X'190"' (OUTPUT FILE, NEW MASTER)
// ASSGN SYS006,X'00E’ (PRINT FILE)

// ASSGN SYS007,X'191' (MASTER FILE)

* MOUNT INPUT (SYS004) ON X'284°',

// PAUSE X'90°'.

// VOL SYS004,SYS004

// TPLAB HDR,1,DATAIN, etc,

// VOL SYS005,SYS005

// DLAB 'THIS IS THE JOB NEW MASTER FILE etc,
// XTENT Enter the track specification here

// VOL SYS007,SYS007

// DLAB 'THIS IS THE JOB(OLD) MASTER FILE etC, .-.-.-.
// XTENT Enter the track specification here ...

// EXEC

Note that the program that processes the files takes advantage of
two previously written routines (routines 1 and 2) that were cataloged to
to the source statement library.

Note also that the LBLTYP job control statement was used (for SYS004)

because it is required when label information for tape files is
processed.

42 DOS and TOS COBOL Prog. Guide

SECTION IV. INTERPRETING OUTPUT

This section describes what the output from the computer and compiler
looks like and how to use it for debugging. Included are examples of
the types of output the compiler provifles. Where output from the link-
age editor is concerned, reference to the appropriate publication is
made.

Included are:

1. Examples of compiler output and related explanations.

2. Reasons for initiating a program dump.

3. A discussion of how to use a dump (what to do when a dump occurs).

4. An explanation of diagnostic error messages (how they are deter-
mined, and how to work with them).

A complete list of the error messages (pre-compile time (debug packet),

compile time and object time) are included in Appendix H. Also
included in Appendix H is an illustration of object storage layout.

SOURCE LISTING (LIST)

Figure 5 is an example of a source module listing. It is obtained when
LIST is specified on the job-control OPTION card. The listing is given
on SYSLST.

GENERATED COBOL SOURCE LISTING (The heading appearing at the top of
the listing is for explanation purposes only, and does not actually
appear on the listing.)

The components of a source listing are:

1. A compiler generated line number which is shown in the left-
most column. This line number is used in diagnostic and LISTX
references. The generated line numbers for the sample program
are 11-391).

The programmer provides the statement sequence numbers. They
appear in the second column (SEQ. NO.).

2. All COBOL words and punctuation. Words, punctuation, and other
groups of characters on each line are referenced as elements on
the line in LISTX listings so that a specific entry may be defined.

3. Sequence numbers out of order. If columns 1-6 of the source state-
ment are not blank, they are sequence checked. The character "S"
is placed beside a number not in logical ascending order. Example:
Assume that in the sample listing, statement number 26 (generated
line number) was out of sequence. The compiler would list the
source statement as:

S26 000250 WRITE A AFTER ADVANCING 3 LINES.
4. Debug packet card inserts. Cards inserted as part of a DEBUG
packet are identified with the character "D" alongside the gen-
erated sequence number.

Interpreting Output 43

GENERATED COBOL SOURCE LISTING

LINE NO. SEQ. NO, SOURCE STATEMENT D 12MAR66 0u/21/66
1 000010 IDENTIFICATION DIVISION.
2 000020 PROGRAM-ID. 'CARRRCTL'.
3 000030 ENVIRONMENT DIVISION.
4 000040 INPUT-OUTPUT SECTION.
5 000050 FILE-CONTROL.
6 000060 SELECT PRINTO ASSIGN TO 'SYSOO4'
7 000070 UNIT-RECORD 1403 UNIT RESERVE
8 000080 NO ALTERNATE AREAS.
9 000090 DATA DIVISION.

10 000100 FILE SECTION. .
n 000110 FD PRINTO RECORDING MODE F LABEL RECORDS

12 000120 ARE OMITTED DATA RECORD IS RECORD A.
13 000130 01 A.

4 000140 02 C-C PICTURE X.

15 000150 02 GARB PICTURE X(20).

16 000160 02 FULLER PICTURE X(112).

17 000170 WORKING-STORAGE SECTION.

18 000180 77 B8 PICTURE X(20) VALUE 'THIS IS A RECORD'.,
19 000190 01 O PICTURE S§99.

20 000200 01 E REDEFINES D.

21 000210 02 FILLER PICTURE X.

22 000220 02 F PICTURE X.

23 000230 PROCEDURE DIVISION.

24 000240 START. OPEN OUTPUT PRINTO. MOVE B TO GARB,

25 000260 WRITE A AFTER ADVANCING 1 LINE.
§26 000250 WRITE A AFTER ADVANCING 3 LINES.

27 000270 WRITE A AFTER ADVANCING 2 LINES.

28 000280 MOVE ' ' TO C-C. WRITE A AFTER ADVANCING C-C.
29 000290 MOVE '0' TO C-C. WRITE A AFTER ADVANCING C-C.
30 000300 MOVE *'~-' TO C-C. WRITE A AFTER ADVANCING C-C.
31 000310 MOVE '#' TO C-C. WRITE A AFTER ADVANCING C-C.
32 000320 MOVE '1' TO C-C. WRITE A AFTER ADVANCING C-C.
33 000330 MOVE 'C*' TO C-C. WRITE A AFTER ADVANCING C-C.
3y 000340 MOVE 'TRICK COMING UP' TO FULLER.

35 000350 WRITE A AFTER ADVANCING C-C.

36 000360 MOVE 'EOJ' TO A.

37 000370 WRITE A AFTER ADVANCING 3 LINES.

38 000380 CLOSE PRINTO.

39 000390 STOP RUN.

Figure 5. Example of a COBOL Source Listing

44 DOS and TOS COBOL Prog. Guide

5. Library cards. Cards coming from the library as a result of a
COPY or INCLUDE statement are noted with an asterisk.

DATA MAP (SYM)

Figure 6 is an example of a data map. It is a portion of the data map
generated for the program given in Figure 5, and is obtained when SYM
is specified on the job-control OPTION card. The data map is output
by SYSLST.

This optional listing shows the name of each non-procedure name
defined in the program. File-names, record-names and condition names
are identified in the column headed TYPE. (In this particular example
no condition names were used, therefore, none are listed.) The rela-
tive location of each entry is shown (column headed LOCATION). Linkage
and file entries are relative to the 01 or 77. Working storage is
relative to 0. The addresses given are 24-bit addresses.

The column headed DATA NAME gives the names of the non-procedure
name specified in the program.

The working-storage addresses may be offset by CBL option card
parameter. If the load address is known, it may be used as the hexa-
decimal offset parameter in a CBL option card parameter (DMAP = h).
This would result in adjusted addresses on the listing.

DATA DIVISION MAP

TYPE LOCATION DATA NAME

FILE PRINTO

REC 0000000 A
0000000 c-C
0000001 GARB
0000021 FULLER
0000000 8

REC 0000024 D

REC 0000024 E
0000025 F

Figure 6. Example of a Data Map Generated for a COBOL Program

Interpreting Output 45

PROCEDURE MAP (LISTX)

Figure 7 is an example of a procedure map. It is a portion of the
procedure map generated for the program given in Figure 5, and is ob-
tained when LISTX is specified on the job-control option card. The
listing is obtained on SYSLST. The details of LISTX are given for
their debugging value.

LINE/POS - Contains the generated line number and the position
of the COBOL verb on the line. (These numbers are
decimal numbers.}) The actual instruction(s) used
to accomplish the COBOL statement is identified by
the compiler-generated internal line number(s). If
more than one instruction was generated, the
compiler-generated line number for that COBOL state-
ment would be repeated for each instruction listed.
A look at source statement 28 shows that MOVE is
the first COBOL verb on the line, hence, its loca-
tion is 28 01. Counting from left to right, each
element on the line (for definition of an element,
refer to the discussion, Error Messages (ERRS)) it
is found that the COBOL verb "WRITE" occupies posi-
tion 6 on the line, hence, it is location 28 06.
The MOVE verb required only one System/360 machine
instruction to effect its action. However, the
WRITE verb required five System/360 machine instruc-
tions to effect its action. This accounts for
"28 06" appearing five times in the listing. It
should be noted that qualified words count as one
element. The line counter cannot exceed 4095. At
this point it resets to 0.

ADDR - Contains the relative address of each instruction in
: the procedure division in hexadecimal. The addresses
are relative to the program's load point. The address
may be offset as described for the data map.

INSTRUCTION - Contains the actual instruction (in hexadecimal) gen-
erated for the COBOL statement.

LINE/POS ADDR INSTRUCTION
00028 01 003270 D2 00 5 000 4 14D
00028 06 003276 p2 00 5 000 5 000
00028 06 003270 41 10 4 088

00028 06 003280 58 FO 1 010

00028 06 003284 45 €0 F 00C

00028 06 003288 58 50 4 088

00029 01 00328C D2 00 5 000 4 14E
00029 06 003292 D2 00 5 000 5 000
00029 06 003298 L1 10 4 088

00029 06 00329C 58 FO 1 010

00029 06 0032A0 45 EO F 00C

00029 06 0032A4 58 50 4 088

Figure 7. Example of a Procedure Map for a COBOL Program

46 DOS and TOS COBOL Prog. Guide

ERROR MESSAGES (ERRS)

Figure 8 is an example of a list of error messages that are obtained when
ERRS is specified on the job-control option card. These diagnostics

were generated by the compiler for the program shown in Figure 5. The
list is generated on SYSLST.

LINE/POS

ER CODE

MESSAGE
NUMBER

~ Contains the internal line numbers of the source
statements, and the position of the COBOL verb or
element on the line where the error was detected. An
element is a word, punctuation, picture, name, literal,
or any other similar unit of COBOL syntax.

When the compiler cannot locate the item in error
on the line, it identifies the line at fault by gen-
erating the SEQUENCE NUMBER X-O.

When the compiler generates the line number 0-0,
it is referring to an entire section (the section
may be missing).

- Contains a message number and the severity level of

the erro

- The format

message

Severity

Code,

w

CLAUSE

CONDITIONAL -

ERROR -

~ This column identifies either the particular COBOL clause
being processed at the time the diagnostic was discovered

r:

of the message number, and the associated

is described in Appendix H.

WARNING - This calls attention to a condition that

can cause a problem, but should permit a
successful run.

The error statement is dropped or corrective
action is taken. The compilation is con-
tinued as it may have debugging value, but
the statement should not execute as intended.

This condition seriously affects execution

of the job.

Execution is not attempted.

or the basic area that was involved, such as ALIGNMENT,
FD, I/0 CONTROL, or similar items.

DIAGNOSTICS

LINE/POS

ER CODE

CLAUSE

MESSAGE

15-1

1JS063W

ALIGNMENT

TO ALIGN BLOCKED RECORDS ADD 3 BYTES 1O
THE 01 CONTAINING DATANAME .FULLER.

18-1

1JSOSuW

ALIGNMENT

FOR PROPER ALIGNMENTy A 4 BYTE LONG
FILLER ENTRY IS INSERTED PRECEDING D.

Figure 8.

Example of Source Module Diagnostics

Interpreting Output 47

MESSAGE - The actual message is given here. For specific
details of these messages, refer to Appendix H.

WORKING WITH DIAGNOSTICS

1. Handle the diagnostics in the order in which they appear on the
source listing. It is possible to get compound diagnostics.
Frequently, an earlier diagnostic indicates the reason for a
later diagnostic. For example, a missing quote for an alphabetic
or alphameric literal could involve the inclusion of some clauses
not intended in that particular literal. This could cause some
apparently valid clause to be diagnosed as invalid because it is
not complete, or is in conflict with something that preceded it.

2. Check for missing or extra punctuation, or other errors of this
type.

3. Frequently, a seemingly meaningless message is clarified when the
valid syntax or reference format is referenced. Diagnostics are
coded directly from the reference format and are designed for use
in conjunction with the particular type of reference.

HOW DIAGNOSTIC MESSAGES ARE DETERMINED

The compiler scans the statement element by element to determine whether
the words are combined in a meaningful manner. Based upon the elements
that have already been scanned, there are only certain words or ele-
ments that can be correctly encountered.

If the anticipated elements are not encountered, a diagnostic mes-
sage is produced. Some errors may not be uncovered until information
from various sections of the program are combined and the inconsistency
indicated. Diagnostics uncovered in this manner can produce a slightly
different format than those uncovered when the actual source text is
still available. The message that is made unique through that par-
ticular error may not have, for example, the actual source statement
that produced the error. The position and sequence reference, however,
indicates the place at which the error was uncovered.

Errors appearing to be identical are diagnosed in a slightly dif-
ferent manner, depending on where they were encountered by the com-
piler and how they fit within the context of valid syntax. For example,
a period missing from the end of the working-storage section clause, is
diagnosed specifically as a period required. There is no other infor-
mation that can occur at that point. However, if at the end of a
record description entry, an element is encountered that is not valid
at that point, such as the digits 02, they are diagnosed as invalid.
Any clauses associated with the clause at that entry, that conflict
with the entries in the previous entry (the one that had the missing
period), are diagnosed. Thus, a missing period produces a different
type of diagnostic in one case than in another.

If a given compilation produces more than 25 diagnostic messages,
they are presented in a batched sequence. The first 25 mesdages are
sorted in order, followed by the second series, which is also sorted
in order.

EXAMPLES OF HOW DIAGNOSTICS ARE GENERATED
Each message has a general or skeleton form. Unique words for each

message are inserted to identify the specific error that was en-
countered. The following two examples illustrate this form.

48 DOS and TGS COBOL Prog. Guide

Example 1:
COBOL format is MOVE {data—name} TO data-name ...

literal
Error 1 MOVE FIELDA TOO FIELDB
023
ERROR #178
INSERT1 TO Information
passed to
INSERT 2 TOO diagnostic

out of phase

Skeleton Message #178 C SYNTAX REQUIRES WORD
"Insertl"”. FOUND "Insert2".

Message appears as: 23-3 IJS178I C SYNTAX

REQUIRES WORD "TO". FOUND "TOO".
Example 2:
Error 2
023 NOVE FIELDA TO FIELDB
ERROR #549

INSERT1 NOVE

Skeleton Message #549 E WORD INSERT1 WAS EITHER INVALID OR
SKIPPED DUE TO ANOTHER DIAGNOSTIC.

Message appears as: 23-1 IJS549E "NOVE" UNHANDLED. WORD NOVE
WAS EITHER INVALID OR SKIPPED DUE TO ANOTHER DIAGNOSTIC.

LINKAGE EDITOR OUTPUT

The linkage editor also produces error diagnostic messages and
console messages. For a description of output and error messages
from the Linkage Editor see the IBM publication, System Control and
System Service, referenced on the cover of this manual.

OBJECT TIME MESSAGES

When an error condition that is recognized by compiler generated code
occurs during execution, an error message is written on SYSLST or
SYSLOG. Any messages normally written on SYSLST that result from an
errcr in the foreground program are written on SYS000. Messages
normally appearing on SYSLOG are provided with a code indicating
whether the message originated in a foreground or background

program. These messages and their descriptions are contained

in Appendix H.

OBJECT PROGRAM DUMPS

An object program may dump as part of an abort procedure. A dump is
caused by one of many errors. Several of these errors may occur at
the COBOL language level while others can occur at the job-control
level.

Interpreting Output 49

TYPICAL SOURCE PROGRAM ERRORS INITIATING DUMPS AT EXECUTION TIME

A dump canvoccur at the COBOL language level for the following
reasons.

1.

3.

4.

10.

11.

A GO TO statement with no procedure name following it may not have
been properly initialized with an ALTER statement. The execution
of this statement would cause an invalid branch.

Performing arithmetics or moves on numeric fields that have not
been properly initialized could cause an interrupt and a dump.

For example, neglecting to initialize an OCCURS DEPENDING ON name,
or referencing data fields prior to the first read may cause an
interrupt and a dump.

Invalid data in a numeric field resulting from redefinition.
Input/output errors that are nonrecoverable.

Moving data fields into the procedure division could destroy a
machine instruction in the program. This could happen, for
example, when using a subscript whose value exceeds its defined
maximum value.

Attempting to execute an invalid operation code through a systems
error or invalid program.

Generating an invalid address to an area that has address
protection.

Subprogram linkage declarations that are not defined exactly as
they are stated in the calling program.

Data or instructions can be modified by entering a subprogram and
manipulating data incorrectly. A COBOL subprogram could acquire
invalid information from the main program e.g., a CALL using a
procedure-name and ENTRY using a data name.

Incorrect tape record length. Causes the compiler to generate an
invalid supervisor call SVC32. This initiates the dump terminating
the job.

An input file contains invalid data such as a blank numeric field
or data incorrectly specified by its data description.

The compiler does not generate a test to check the sign position
for a valid configuration before the item is used as an operand.
The programmer can test for valid data by means of the numeric
class test and, by use of the TRANSFORM statement, convert it to
valid data under certain circumstances.

For example, if the units position of a numeric data item described
as USAGE IS DISPLAY contained a blank, the blank could be trans-
formed to a zero, thus forcing a valid sign.

HOW TO USE A DUMP

Information regarding the location of the error and the reason for an
interrupt precedes the dump.

The instruction address can be compared to the procedure division

map.

Such a map is produced in the listing by the LISTX option. The

load address of the module (can be obtained from the map -of main storage
generated by the linkage editor) must be subtracted from the instruction

50 DOS and TOS COBOL Prog. Guide

address to obtain the relative instruction address as shown in the pro-
cedure map. The contents of LISTX provides a relative address for

each statement. By use of the error address and LISTX, the programmer
can locate a specific statement appearing within a line of the source
program, if the interrupt was within the COBOL program. Examination

of the statement and the fields associated with it may produce infor-
mation as to the specific nature of the error. A more involved analysis
would involve a deeper knowledge of Disk and Tape Operating Systems and
control programs.

OBJECT STORAGE LAYOUT

The relative position, in main storage, of all the components of a
COBOL program is illustrated in the object storage layout given in
Appendix H.

Interpreting Output 51

SECTION V. THE DEBUGGING LANGUAGE

DEBUGGING TECHNIQUES.

The DEBUG option in the COBOL Disk and Tape Operating Systems
language allows the programmer to use three new verbs for the purpose
of debugging COBOL source programs. These verbs are EXHIBIT, TRACE,
and ON. They can appear anywhere in the disk and tape COBOL pro-
gram or in a compile-time debugging packet. The formats used for
them and a description of their use is contained in the IBM publica-
tion, COBOL Language Specifications, listed on the cover of

this manual. However, this section is included in the publication
to give the programmer an idea of when to use the debugging language,
how to construct a debugging packet, and what job control cards are
needed to use the debugging packet. A complete list of precompile
error messages is included in Appendix H. These messages reflect
errors in the debug packet(s) only. They are not associated with
compiling.

TRACE

When a job fails to execute correctly, and the diagnostic messages
fail to indicate how to correct the error, a READY TRACE statement
can be inserted at a point known to be prior to the trouble area.
The TRACE displays each paragraph name as control passes into that
paragraph. To reduce the volume of such a trace, it is possible to
turn on the trace with a READY TRACE statement and turn it off with
a RESET TRACE if the area can be localized. The TRACE function can
be used any number of times within the program. It would reduce
the volume if RESET were issued upon entering a loop (containing a
paragraph-name) and READY were issued upon leaving the loop.

It is sometimes difficult to determine what the specific path of
program logic is. This is especially true with a series of PERFORMS
or nested conditions. A TRACE statement can be very beneficial as an
aid to this problem. Also, if values are inconsistent, a TRACE state-
ment will again aid in determining whether or not a program is actually
going through a certain point.

EXHIBIT

To find out what specifically caused the error within the paragraph,
additional data can be obtained from the fields within the specific
paragraph by use of the EXHIBIT statement. The EXHIBIT statement dis-
plays the field and the source name for identification purposes. Its
use may be restricted to display the field only if it has changed since
the last time the program fell through that point. This permits the
programmer to check on the value of the subscript name or other fields
that are pertinent to a given field, and check out logic errors. An
example of the various forms of this statement follows:

DATA DIVISION.
77 NO-CHANGE-NAME PICTURE XX VALUE 'AB'.
77 SUB-SCRIPT-NAME PICTURE S999 COMPUTATIONAIL VALUE 30.

PROCEDURE DIVISION.

52 DOS and TOS COBOL Prog. Guide

TEST-LOOP.
EXHIBIT NAMED NO-CHANGE-NAME.
EXHIBIT CHANGED NAMED SUB-SCRIPT-NAME.
EXHIBIT CHANGED SUB-SCRIPT-NAME.
EXHIBIT CHANGED NO-CHANGE-NAME.
ADD 10 TO SUB-SCRIPT-NAME. IF SUB-SCRIPT-NAME = 100 NEXT SENTENCE
ELSE GO TO TEST-LOOP.

The printout for this example is:

NO-CHANGE-NAME = AB
SUB~SCRIPT-NAME = 30
30
AB
NO-CHANGE-NAME = AB
SUB-SCRIPT-NAME = 40
40
NO-CHANGE-NAME = AB
SUB-SCRIPT-NAME = 50
50

ON

It is possible, where large volumes of data are involved, to sample
specific portions of a program by use of the ON statement. The ON
statement allows the programmer to perform a series of operations at
certain times when a program passes a particular point. For example,
a series of operations could be performed the 110th time through a
loop and every 5th time thereafter until the 275th time. This allows
the programmer to determine whether or not a given loop gets out of
the expected range for a particular program. There can be any number
of these statements, and there is a compiler counter generated for
each one. The counter starts at zero, and is increased by one each
time the path of program execution falls through that specific point.
For example, if the programmer knows that the error occurs on the
500th record processed, the ON statement can be used to count records.
Then a READY TRACE can be set as the counter approaches the point
where the error occurred. This eliminates tracing each statement up to
that point.

Note: This type of example could also have been done by a counter or
a PERFORM, but this method is easier.

THE DEBUG PACKET

The debug packet can only be used in background type processing. It
is a tool used for debugging COBOL object modules, and is positioned
in the job input stream before the COBOL source module. The packet
is combined (merged) with the COBOL source module before compilation
begins. Where the packet is positioned within the COBOL source
module is determined by the procedure division name specified in the
*DEBUG card of the packet.

JOB CONTROL SETUP FOR USING DEBUG PACKETS

Debug packets for a given compilation are processed as separate job
steps immediately preceding the job step that executes the COBOL com-
piler program.

The Debugging Language 53

A number of debugging packets are permitted for a program depending on
the size of the machine used. In practice, the number of packets
required by a programmer should not exceed Disk and Tape Operating
Systems storage facilities.

Each compile-time debugging packet is headed by the control card:

1 8
*DEBUG location

An example of the deck setup for executing a debugging packet, including
all the required job control cards is given in Figure 9.

Note that the deck setup provides for the assignment of SYSIPT (for
the COBOL compilation) to the drive currently assigned to SYS004 for
the packet. This must be assigned to a tape unit. This is required
by job control, because SYSIPT (card reader or magnetic tape unit) is
used as the input for the COBOL program.

If a disastrous error occurs, a message followed by "RUN TERMINATED"
is displayed and listed. If the job runs to completion, a message
saying that SYSIPT for the COBOL compilation should be assigned to the
current SYS004 is displayed and listed.

At the conclusion of a compilation, SYSIPT should be reassigned
to the original device if the job stream contains additional job

steps.
(/&
(// EXEC COBOL
(// ASSGN SYSIPT
(/*

/

_(COBOL SOURCE
LCBL (Optional)

[~ Source
Statements
| to be Debugged

'(ON (---)
(TRACE

fEXHIBIT

*DEBUG Location

/

{ Debug Packets

(// EXEC DEBUG

(// ASSGN SY5004
// JOB

Figure 9. Example of a Debugging Packet

54 DOS and TOS COBOL Prog. Guide

var wow OF LIBKARIES AT COBOL LANGUAGE LEVEL

SOURCE STATEMENT LIBRARY

Incorporated in the COBOL language are facilities for utilizing the
source statement library.

Prewritten source program entries in the source statement library
can be included in a COBOL program at compile time. Thus, standard
file descriptions, record descriptions, or procedures can be used with-
out having to restate them. They are included in a source statement
program by means of a COPY clause (in the case of the data division)
or an INCLUDE clause (in the case of the procedure division). Examples
of cataloging are given in Sections II and III.

COPY (Data Diwvision)

The COBOL COPY clause permits the user to include prewritten data-
division entries or environment-division clauses in this source program
at compile time. An example, which illustrates what actually gets
copied when the COBOL COPY clause is written, follows:

Assume a book called 'CFILEA' is in the source statement library, and
the source module statements written to have made this entry were:

// JOB ANYNAME
// EXEC MAINT
CATALS C.CFILEA
BKEND C.CFILEA
BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS.
BKEND C.CFILEA
/*
/&
Note: This will be copied in an FD entry. The library entry does
not include either FD or the file-name, but instead begins with the
first clause following the file-name.

To retrieve the cataloged entry 'CFILEA' from the source statement
library, the source COBOL statement written is:

FD FILEA COPY 'CFILEA',

Copy 'CFILEA' is replaced by the actual entries i.e., BLOCK CONTAINS
13 RECORDS, etc within the compiler for compilation purposes.

The output listing would show the following:
FD FILEA COPY 'CFILEA'.
* BLOCK CONTAINS 13 RECORDS
* RECORD CONTAINS 120 CHARACTERS.
Internally (to the compiler) the output would look like:

FD FILEA BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS.

Use of Libraries By COBOL 55

The source statement referencing the library is followed by the
actual library entries, except for data entries which have a duplicate
level number and dataname. Explicitly, CFILEA identifies the entries
actually recorded in the library. This is the library name. It is the
header record required for identification of the entries, and is not
itself retrieved (not copied internally by the compiler).

All entries associated with the library name are copied.

In the case of data entries which have a duplicate level number and
dataname, the following results are obtained when issuing a COBOL COPY
statement.

Assume the statements written to catalog a file are:

// JOB ANYNAME
// EXEC MAINT
CATALS C.XFILEY
BKEND C.XFILEY
01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9
OCCURS 1 DEPENDING ON CALC OF PAYFILE.
BKEND C.XFILEY
/*
/&

and, the source statement is written:
01 GROSS COPY 'XFILEY'
On the output listing, the statements would look like:
01 GROSS COPY 'XFILEY'.
01 PAYFILE USAGE IS DISPLAY.
* 02 CALC PICTURE 99.
* 02 GRADE PICTURE 9 OCCURS 1
DEPENDING ON CALC OF PAYFILE.
Internally (within the compiler), the statements would look like:
01 GROSS USAGE IS DISPLAY,
02 CALC PICTURE 99.

02 GRADE PICTURE 9
OCCURS 1 DEPENDING ON CALC OF GROSS.

INCLUDE (Procedure Division)

The procedure for copying from the source statement library from within
the procedure division is the same as that described for the data divi-
sion. The results are identical.

Assume a book named PROCESS is in the source statement library, and
was cataloged as follows:

56 DOS and TOS COBOL Prog. Guide

// JOB ANYNAME
// EXEC MAINT
CATALS C.PROCESS
BKEND C.PROCESS
COMPUTE QTY-ON-HAND = TOTAL-USED-NUMBER-ON-HAND.
BKEND C.PROCESS
/*
/&

To retrieve catalog entry PROCESS, write:
Paragraph-name. INCLUDE 'PROCESS'.

It is the user's responsibility to supply the name for paragraph-
name.

RELOCATABLE LIBRARY

Linkage editor must be used to retrieve object modules from the
relocatable library. Before execution, an object module must be
linkage edited. It can be linkage edited with:

e I/0 modules

e COBOL subroutine modules

® Subprogram modules

e Main program modules (where this module is a subprogram)

These modules can be located in the relocatable library, from which one

can be retrieved and combined with the object module by the linkage
editor at linkage edit time.

Use of Libraries By COBOL 57

SECTION VII. SUBPROGRAMS AND OVERLAY STRUCTURES

LINKAGE EDITOR

The output of a COBOL compilation is an object module. Before the pro-
gram can be executed it must be altered to a form acceptable for execu-
tion. The linkage editor edits the object module and produces a program
phase. The structure of a program phase makes it suitable for execu-
tion. The COBOL program itself is produced as one control section.
However, there may be external references, such as entry points to
subroutines or subprograms to be resolved. The subroutines that the
COBOL compiler calls for in the object program e.g., for conversion
from COMPUTATIONAL to COMPUTATIONAL-3, are obtained from the relocat-
able library. The subprograms that a user CALLS in his COBOL source
program can be obtained from SYSIPT or from the relocatable library.

CALLING A SUBPROGRAM

Figure 10 illustrates how a subprogram is called and what data defini-
tions are required to support the CALL.

IBM COBOL PROGRAM SHEET Frpeet 1 DaA
System [BM SYSTEM / 360 COBOL Punching Instructions Sheet ot

program CALLING PROGRAM Graphic Card Form# * Identitication
Programmer J. DOE ‘Dcu | Punch M

(pace) |iseriav) H

1 34 6 #* 16 20 24 28 32 36 40 44 48 52 56 60 64 68 7
¢1L¢| LDENTIFI[CATIION DJIVISION. B

- 1002] PROGRAM-|ID. ["caLlLPROlG' .

- 03] REMAIRKS .| EXAMPLE| OF [A CAJLLIN|G PRIOGRAM.

~CO

SEQUENCE [2 A 1
8

N

.
.

- lob8] IDATA! PIVIISION.
]

. . 1 .

L
ORKIING-ISTORAGE [SECT]ION.

- 1Sl 01 'RECORDI .

- e é2' JoNES-J|.

¥ 103 SIALARly PI|CTURE IS| 9¢5)) v99..
- b8 w3 RATE lpicTlure [1s 9lves.

- 1o pa HFURS PICTURE[IS [99v9l.

hd]

- 020 [PROCIEDURIE DIVISION.
-)

1
. - ! .

YY) ‘ENTER LINKAGIE .
- 26 ICALL| ‘PAIYMSTIER’ | USIING JIONES|-V.
oo1l027 'ENTER cojpoL.

* A standard card form, IBM electro C61897, is ilable for hing source from this form.

Figure 10. Example of a Calling Subprogram (Part 1 of 3)

58 DOS and TOS COBOL Prog. Guide

IBM COBOL PROGRAM SHEET e 4

syeen THBM SY5 Tiend,/360 COBOL Punching Instructions Sneet of
#rogram DAT/A PASS ING SUBROUTINE Graphic Cord Form™® * Identitication

programmer J . DOE] Date Punch M

SEQUENCE §
7

A ‘B

(PAGE)Y(SEMAL) i B
| 314 €178 i2 168 Eg 24 28 32 3=6 40 44 48 52 ge 80 64 €8 72
w¢|L¢| ToENTIFICATI[ON olivislion.
- oozl [PRoGRAM-[ID. ['PAYROLL]', ’
R]

- [0®5] PATA' DIVISION.
]

i)
- loos| [77 ISALARYX PICTIURE {IS 9/(5)vi99 VIALUE| 15 [6060/000.

]
1.

. . H

2| [LINK'AGE SECTION.| .
P!

5 [0t PAYOFF.
6 02, PAY IPICTURE IS 9[(5)V[99.
7 92, RATEX PLICTURE IS/ 9v99.
02 HOUR|S PIICTURE IS| 99vio
25| [PROCIEDURE DIVISIION.

LY 'ENTER LINKAGE. : i

- B4 JENTRY 'PAYMSTER'| USING PAYOFF,
¢1104 2 ENTER coBoL. |

* A standard card form, IBM electro C61897, is available for punching source statements from this form.

Figure 10. Example of a Calling Subprogram (Part 2 of 3)

The calling program 'CALLPROG' calls the subprogram 'PAYROLL',
handing 'PAYMSTER' the address of the group item, JONES-J. The elemen-
tary data items subordinate to JONES-J i.e., SALARY, RATE, HOURS can be
operated on by 'PAYMSTER' through its using statement parameter,
PAYOFF.

In effect, JONES-J is "equated" to PAYOFF. Any operation performed
on data items subordinate to PAYOFF are really done to those items sub-
ordinate to JONES-J.

Be sure the PICTURE descriptions of equated data items are identical.
There is no necessary relationship between the names of data items
between calling programs and subprograms.

3~ Mham dm ~and anmhhmd ~vna
Al e LILLD 40 YUUU LTl uT .

Notice that the PICTURES for the data items under JONES-J and PAYOFF
; s
It is not required, necessarily, that the number of characters in a
PICTURE of a data item be identical to its related data item, but it is
required that the number of characters per record description be equal
to its associated record. (The record in the calling program and the
record in the called subprogram.)

Note: The entry-name (ENTRY 'PAYMSTER') must not be the same as the
Program-ID ('PAYROLL').

Subprograms and Overlay Structures 59

IBM COBOL PROGRAM SHEET Yomat

sptem IBM SYSTEM/360 COBOL Punching Instructions Sheet of
programn DATA PASSING SUBROUTINE Graphic Card Form# * 1dentification

programmer J, DOE IDM. Punch .';'SJ—‘-L‘-'—'-EJO

SEQUENCE |2 i
(PAGE) tl!!lAL)iA :
| 314 6]718 12 [} Eg 24 28 32 36 40 44 48 52 38 80 64 €8 73
02i044] lcoMPi. COMPUTIE SAILARYIX = WOURIS % RATEX.

1

T

]
+ 47 IMOVE| SALIARYX| TO [PAY.
. . [
. . : .
- Bs5o 'ENTER LIINKAGE. }
- b5 '‘RETURRN. ;
bé2lds 2 'ENTER CoBoL.

SR TR PR SN ENDUNY SIS PO SRpUS BUpU SURDOS SRy SR MO SN S S S

* A scandard card form, IBM electro C61897, is available for punching source statements from this form.

Figure 10. Example of a Calling Subprogram (Part 3 of 3)

ACCESSING CALL PARAMETERS

When a call is issued, the address of JONES-J is passed forward to a
special table generated by COBOL and reserved for USING statement
parameters. (The user need not declare storage for this table because
it is taken care of by COBOL.) Control is then transferred to the sub-
program (entry point) which accesses a special register that contains
the address of the generated table. The table contains all the
addresses of USING statement items declared hy the calling program
(JONES-J). The subprogram, having obtained the address of the param-
eter table, can operate on any parameter (JONES-J) in the table.
(Therefore, it can operate on any item subordinate to a parameter.)

60 DOS and TOS COBOL Prog. Guide

Any procedural statements referencing using parameters written in
the subprogram actually operate on the data items declared in the
calling program as though they (data items) were located within their
own data division. The subprogram makes a salary computation: COMP.
COMPUTE SALARYX = HOURS * RATEX and moves SALARYX into the elementary
item called PAY. Since JONES-J is equated to PAYOFF; SALARY (under
JONES-J) is equated to PAY, and SALARY (under JONES-J) contains the
result of the computation COMP.

As illustrated, procedures previously written as subprograms can
be used by employing the calling statement. This eliminates the need
for repeated coding of frequently used procedures.

A programmer may want to prepare subprograms written in assembler
language for use with COBOL programs. For a description of the con-
ventions used in System/360 for preparing and using assembler language
subprograms with COBOL, refer to Appendix A.

RESTRICTIONS OF THE USING STATEMENT

The maximum number of parameters permitted in a USING statement is
40. The total number of distinct paragraph names used in all the
USING statements in the entire program is limited to 90. There is
no upper limit to the number of data-names and file-names used
throughout the program although 40 parameters per USING statement
also applies to data name. Exceeding the limits specified causes
diagnostics.

OVERLAY STRUCTURES

The following discussion illustrates the procedures available for
processing COBOL subprograms: The first technique employs the linkage
editor without using the overlay facility. The second technique employs
the linkage editor using the overlay facility. This technique allows
the programmer to specify, at linkage edit time, the overlays required
for a program. During execution of a program overlays are performed
automatically for the programmer by the control program.

CONSIDERATIONS FOR OVERLAY

Assume. a COBOL main program exists, called COBMAIN, that contains calls
at one or more points in its logic to COBOL subprograms: SUBPRGA,
SUBPRGB, SUBPRGC, SUBPRGD, and SUBPRGE. Also assume that the module
sizes for the main program and the subprograms given are:

PROGRAM MODULE SIZE (IN BYTES)
COBMAIN 20,000
SUBPRGA 4,000
SUBPRGB 5,000
SUBPRGC 6,000
SUBPRGD 3,000
SUBPRGE 4,000

Through the linkage mechanism, ENTER LINKAGE, CALL SUBPRGA..., all
subprograms plus COBMAIN must be linkage edited together to form one
module 42,000 bytes in size. Therefore, COBMAIN would require 42,000
bytes of storage in order to be executed.

Subprograms and Overlay Structures 61

Normally, all subprograms referenced by the COBOL source program,
including the main program, will fit into main storage. Therefore, the
linkage editor nonoverlay technique of processing can be used to execute
the entire program.

Figure 11 illustrates the storage layout for nonoverlay processing.

COBOL MAIN PROGRAM

SUBRTNX

SUBPROGRAM A

SUBPROGRAM B

SUBPROGRAM C

Figure 1l. Storage Layout for Nonoverlay

TLINKAGE EDITING WITHOUT OVERLAY

;ollowing is an example of the job control cards needed for the COBOL
call structure without overlay. In this example all the subprograms
(including the main program NOVERLAY) fit into main storage.

62 DOS and TOS COBOL Prog. Guide

Figure 12 portrays the flow of data as a result of the call structure.

// JOB NOVERLAY

// OPTION LINK,LIST,DUMP
ACTION MAP
PHASE EXAMP1,*
INCLUDE

%Object Module A E

/*
INCLUDE SUBRTNC
INCLUDE SUBRTND
INCLUDE

SUBRTN
OBJMOD B

SYSIPT

Main Program
Object Module A

(SUBRTN
OBJMOD B
Relocatable
Library | SUBRTN C
SUBRTN D Job Control
Execute
LNKEDT l
Linkage
Editor
SYSLNK

Main Program
OBJ MOD A

SUBRTNC
SUBRTND

SUB PROG
OBJ MOD B

Storage
Layout

Figure 12. Example of Data Flow Logic in a Call Structure

Subprograms and Overlay Structures 63

/*

ENTRY
// EXEC LNKEDT
// EXEC

{ DATA FOR PROGRAM }

/*
/&

Note: For the example given, it is assumed that SYSLNK is a standard
assignment. The flow diagram illustrates how the various program
segments are linkage edited into storage in a sequential arrangement.

OVERLAY PROCESSING

If the subprograms needed do not fit into main storage, it is still
possible to use them. The technique that enables using subprograms

that do not fit into main storage (along with the main program) is
called overlay.

Figure 13 illustrates storage layout for overlay processing.

COBOL MAIN PROGRAM

SUBRTNX

SUBPROGRAM

AorBorcC

Figure 13. Storage Layout for Overlay Processing

64 DOS and TOS COBOL Prog. Guide

Linkage Editing with Overlay

The linkage editor facility permits the reuse of storage locatic.is
already occupied. By judiciously segmenting a program, and using the
linkage editor overlay facility, the programmer can accomplish the
execution of a program too large to fit into storage at one time.

In using the overlay technique the programmer specifies, to the
linkage editor, which subprograms are to overlay each other. The
subprograms specified are processed, as part of the program, by the
linkage editor so they can be automatically placed in main storage for
execution when requested by the program. The resulting output of the
linkage editor is called an overlay structure.

It is possible, at linkage edit time, to set up an overlay structure
by using the COBOL source language statement ENTER LINKAGE and an
assembler language subroutine (such as the assembler language sub-
routine OVRLAY given in Appendix A). These statements enable a users:
to call a subprogram that is not actually in storage. The details
for setting up the linkage editor control statements for accom-
plishing this procedure can be found in the System Control and System
Service publication listed on the cover of this manual.

In a linkage editor run, the programmer specifies the overlay points
in a program by using PHASE statements. The linkage editor treats
the entire input as one program, resolV1ng all symbols and inserting
tables into the program.

These tables are used by the control program to bring the overlay
subprograms into storage automatically, when called. BAn example is
given to illustrate how the overlay facility is used.

The intent of the overlay example given is merely to show how an
overlay structure is coded; therefore, no processing of the related
parameters are illustrated.

In order to process the parameters in the respective subprograms,
the USING parameters specified therein must be appropriately defined
in the pertinent working storage sections. Procedural statements
can then be written in each subprogram for the respective parameters.

It is the programmer's responsibility to write the entire overlay
procedure i.e., the COBOL main (or calling) program, an assembler
language subroutine that fetches and overlays the subprograms desired,
and the overlay subprograms themselves. The linkage conventions for
using assembler language subroutines with COBOL subprograms are given
in Appendix A. A calling sequence to obtain an overlay structure
between two COBOL programs follows.

COBOL Program Main (Root or Main Program) :

IDENTIFICATION DIVISION.
PROGRAM-ID. 'OVERLAY'.

ENVIRONMENT DIVISION.

Subprograms and Overlay Structures g5

DATA DIVISION.

WORKING-STORAGE SECTION.

77 PROCESS-LABEL PICTURE IS X(8) VALUE IS 'OVERLAYB'.
77 PARAM-1 PICTURE IS X.
77 PARAM-2 PICTURE IS XX.
77 COMPUTE-TAX PICTURE IS X(8) VALUE IS 'OVERLAYC'.
01 NAMET.
02 EMPLY-NUMB PICTURE IS 9(5).
02 SALARY PICTURE IS 9(4)V99.
02 RATE PICTURE IS 9(3)V99.
02 HOURS-REG PICTURE IS 9(3)V99.
02 HOURS-OT PICTURE IS 9(2)V99.
01 COMPUTE-SALARY PICTURE IS X(8) VALUE IS 'OVERLAYD'.
01 NAMES.
02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.

66

ENTER LINKAGE.
CALL 'OVRLAY' USING PROCESS-LABEL, PARAM-1, PARAM-2.
ENTER COBOL.

ENTER LINKAGE.
CALL 'OVRLAY' USING COMPUTE-TAX, NAMET.
ENTER COBOL.

ENTER LINKAGE.
CALL 'OVRLAY' USING COMPUTE~-SALARY, NAMES.
ENTER COBOL.

ENTER LINKAGE.
CALL 'OVRLAY' USING COMPUTE-TAX, NAMET.
ENTER COBOL.

DOS and TOS COBOL Prog. Guide

COBOL Subprogram B:

IDENTIFICATION DIVISION.
PROGRAM-ID. 'OVERLAYL'.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE-SECTION.
01 PARAM-10 PICTURE IS X.
01 PARAM-20 PICTURE IS XX.
PROCEDURE DIVISION.
ENTER LINKAGE.
ENTRY 'OVERLAYX' USING PARAM-10
ENTER COBOL.

ENTER LINKAGE.
RETURN.
ENTER COBOL.

COBOL Subprogram C:

IDENTIFICATION DIVISION.
PROGRAM~-ID 'OVERLAY2'.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 NAMEX.
02 EMPLY-NUMBX PICTURE IS 9(5).
02 SALARYX PICTURE IS 9(4)V99.
02 RATEX PICTURE IS 9(3)V99.

, PARAM-20.

02 HOURS-REGX PICTURE IS 9(3)V99.
02 HOURS-OTX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.

Subprograms and

Overlay Structures 67

ENTER LINKAGE.
ENTRY 'OVERLAYY' USING NAMEX.

ENTER COBOL.

ENTER LINKAGE.
RETURN.
ENTER COBOL.

COBOL Subprogram D:

IDENTIFICATION DIVISION.
PROGRAM-ID. 'OVERLAY3'.

ENVIRONMENT DIVISION.

DATA DIVISION.
LINKAGE SECTION.

01 NAMES.
02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.
PROCEDURE DIVISION.
ENTER LINKAGE.
ENTRY 'OVERLAYZ' USING NAMES.
ENTER COBOL.

ENTER LINKAGE.
RETURN.
ENTER. COBOL.

68 DOS and TOS COBOL Prog. Guide

An assembly program called OVRLAY effects the overlay. It FETCHES the
COBOL subprogram called by the COBOL main program and puts it in the
overlay area.

Appendix A contains the assembly routine that accomplishes the
overlay. Figure 14 is a flow diagram of the overlay logic.

Notice: If OVERLAYB were known to be in storage the CALL would be:

CALL 'OVERLAYX' USING PARAM-1, PARAM-2. But when using the OVRLAY
subroutine it becomes:

CALL 'OVRLAY' USING PROCESS-LABEL, PARAM-1, PARAM-2.

where PROCESS-LABEL contains the external name 'OVERLAYB' of the
subprogram.

However, the ENTRY statement of the subprogram is the same for both
cases i.e. ENTRY' OVERLAYX' USING PARAM-10, PARAM-20, whether it is
called indirectly by the main program through the OVERLAY program oOr
called directly by the main program.

Note: An ENTRY which is to be called by OVRLAY must precede the first
executable statement in the subprogram.

The job control statements required to accomplish overlay follow.
The PHASE statements specify to the linkage editor that the overlay
structure to be established is one in which subprograms OVERLAYB,
OVERLAYC and OVERLAYD overlay each other when called during execution.

COBOL
@ Main or Root

Overlay Routine

@E Overlay Area @

>

OVERLAY B =
Subprogram ;9

OVERLAY C
Subprogram

OVERLAY D

Figure 14. Flow Diagram of Overlay Logic

Subprograms and Overlay Structures 69

// JOB OVERLAYS
// OPTION LINK
PHASE OVERLAY , ROOT
// EXEC COBOL
COBOL Source for
Main Program }
'OVERLAY'
/*
PHASE OVERLAYB, *
// EXEC COBOL
COBOL Source for"l
{Subprogram
'OVERLAYB' 5

/*
PHASE OVERLAYC,OVERLAYB
// EXEC COBOL

COBOL Source for l
Subprogram
'OVERLAYC' 5

/*
PHASE OVERLAYD,OVERLAYB
// EXEC COBOL
5COBOL Source for
Subprogram
"OVERLAYD' 5
/*
// EXEC LNKEDT
// EXEC
/%
/&

Note: PHASE cards reorigin C and D overlays at the same origin as
OVERLAYB. The sequence of events is:

1. The main program calls the overlay routine.

2. The overlay routine fetches the particular COBOL subprogram and
puts it in the overlay area, and then

3. Transfers to the first instruction of the subprogram.

4. The subprogram returns to the COBOL calling program (not the over-
lay subroutine).

The sequence of PHASE statements given in this example causes the
linkage editor to structure a module as follows:

OVERLAY

OVERLAYB OVERLAYC OVERLAYD

70 DOS and TOS COBOL Prog. Guide

The phase name specified in the PHASE card must be the same as the
value contained in the first argument for CALL 'OVRLAY' i.e.,
PROCESS-LABEL, COMPUTE-TAX etc contain OVERLAYB, OVERLAYC, respect-
ively, which are the names given in the PHASE card.

PASSING PARAMETERS TO ASSEMBLER LANGUAGE ROUTINE

A subprogram may be written in assembler language to take advantage of
the systems FETCH function or other control program options not availa-
ble directly through the COBOL language. Thus, a main program in COBOL
may link to a subprogram in assembler language, passing a data name that
contains the name of the specific entry point desired.

An example of a COBOL program passing parameters to the assembler
language follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. 'COBOL'.

DATA DIVISION.

WORKING STORAGE.
01 FIELD-1.
02 FIELD1A PICTURE IS XXX.
02 FIELD2A PICTURE IS XXX, VALUE IS 'ABC'.

PROCEDURE DIVISION.
MOVE 'ABC' TO FIELDIA.

ENTER LINKAGE.

CALL 'ASC' USING FIELD1A, FIELD2A.
ENTER COBOL.

Subprograms and Overlay Structures 71

SQRT START O

USING #, 15
RI14 EQU 14
R1 EQU 1
R2 EQU 2
R3 EQU 3
RO EQU O
R15 EQU 15
ENTRY ASC

SAVE R4, R12

L 2,0(R1
L 3,u(RY)
cLC 0(3,R2)4,0(R3)
BE CORRECT
CORRECT - - -

RETURN R14,R12

Note: 1If SQRT is in the relocatable library, an INCLUDE SQRT card
must be added to the input job stream.

If the assembler program were named ASC (the same as its ENTRY
point) instead of SQRT, no INCLUDE card would be needed.

In this example the COBOL program calls an assembler program, pass-—
ing it two parameters (FIELD1A and FIELD2A). The assembler program
compares them logically (for any reason) finds them logically equal,
and then returns to the COBOL program.

The purposes of register R1l, R14, and R15 are:

Register R1 - Points to table of parameter addresses supplied by
COBOL call statement.

Register R1l5 - Points to first executable instruction of assembler
program.
Register R14 - Points to return statement in calling program.

72 DOS and TOS COBOL Prog. Guide

The results of the assembler instructions in the SQRT routine are:

Start 0 - Informs the assembler to start assembling the program
instruction, at the first available storage location for problem
program.

USING *,15 - Specifies that the next instruction address be stored
in the first operand (*) of this instruction.

R14 EQU 14 - Equates the Symbol R1l4 to the number 14 allowing user's
coding to be more descriptive.

ENTRY ASC - Is the entry point into the assembler program.

SAVE R14,R12 - A macro instruction that saves the contents of all
the general registers. (This protects any data the user might want
to use when the COBOL program is re-entered.)

L 2,0(Rl) - Loads the address of FIELD1A into register R2 (since
FIELDIA is the first parameter in the table of parameters).

L 3,4(R1) - Loads the address of FIELD2A into register R3. (The
second parameter in the table.)

CLC 0(3,R2),0(R3) - Compares first three characters of FIELDlA to
first three characters of FIELD2A.

BE CORRECT - A conditional branch instruction that transfers to the
address CORRECT if the CLC instruction proves true.

RETURN R14,R12 -~ Restores the general registers with their original
contents (that which they contained at ENTRY time), and returns to
the next statement after the CALL in the COBOL program.

Subprograms and Overlay Structures 73

SECTION VIII. PROGRAMMING CONSIDERATIONS

This section is intended to help the programmer reduce the amount of
storage required for a program, which should result in a reduction of
execution time, and/or linkage editing time for that program.
Discussed are:

® General COBOL programming suggestions for effective coding.

® Descriptions of data forms, numeric data format usage and other re-
lated factors affecting the use of main storage.

® Specific examples (of data definitions, relationals, arithmetics and
complex instructions) to illustrate the effect they have on main
storage.

e Specific examples of good and bad coding techniques along with some
important considerations when using certain types of data.

e Effective techniques for handling files along with I/O considerations.

® Labeling considerations, multiprogramming considerations and DASD
considerations.

® A technique for altering the DTF (Define the File) table.
Application of the techniques and suggestions discussed should result in

a more efficient program.

CONSERVING STORAGE

The data division is important in that the definition of data can affect
the number of program steps generated in the procedure division.

The definition of data used in computationals is also important.

The saving of one byte in the data division can cause a significant in-
crease in the number of instructions generated in the procedure divi-
sion. Conversely, a meaningful addition of one byte in the data divi-
sion can result in a savings of 20 or more bytes of generated instruc-
tions for the procedure division. By judicious choice of such items as
decimal-point alignment, sign declaration, and usage, the object code
produced for the procedure division is more efficient. The compiler
resolves all of the allowable mixed data usages encountered. If the
programmer is unconcerned about the program's efficiency, the required
additional instructions are generated and additional storage is used.

A programmer, coding according to the suggestions set forth here,
can effect a substantial savings in storage. Attention to decimal
alignment (one of the suggestions) saves storage as follows.

To execute a statement, data must be aligned. Neglecting decimal
alignment when defining data, forces the compiler to align decimal
points, which costs 18 or more bytes for each alignment procedure
executed, thus using storage unnecessarily.

To give the programmer an idea of the effect data has on storage
when data is defined without regard to optimization of data declarations,
consider the following percentages and the ensuing example.

In a typical source statement deck, the frequency of the most common

verbs written in the procedure division of a COBOL program, averaged
over a number of programs, is:

74 DOS and TOS COBOL Prog. Guide

MOVES - 50%

GO TO - 20%

IF - 15%

Miscellaneous (arithmetics, I/0, PERFORMS, etc) - 15%

Assume that the number of move statements, out of a total of 250
procedural statements, is 125 and that all the sending fields and
related receiving fields are defined without decimal alignment (worst
case). ’

An example of one pair of fields is:

77 A PICTURE 99vV9 COMPUTATIONAL-3. (sending field)
77 B PICTURE 999Vv99 COMPUTATIONAL-3. (receiving field)

Because the receiving field is one decimal position larger than the
sending field, decimal alignment must be performed.

The cost in bytes of decimal alignment for these moves is: 125 moves
times 18, or 2,250 bytes of storage. Each time these moves are executed
2,250 bytes of storage are used.

A programmer aware of the cost of nonalignment can conserve great
amounts of storage by simply aligning decimals. Using one additional
byte to align decimals in the data sending or receiving fields is small
in cost, considering the savings possible in the procedure division.

The programming suggestions given in the ensuing text should result
in a savings in storage and/or faster compilations.

BASIC PRINCIPLES OF EFFECTIVE COBOL CODING

The techniques described in this section will help the programmer write
efficient programs. If followed, the suggestions will reduce the number
of bytes used by his program. The basic principles for writing effi-
cient COBOL programs are:

® Match decimal places in related fields (decimal-point alignment).

® Match integer places in related fields (unequal-length fields).

® Do not mix usage of data formats (mixed-data formats).

® Include an S (sign) in all numeric pictures (sign control).

® Keep arithmetic expressions out of conditionals (conditional

statements).

GENERAL PROGRAMMING SUGGESTIONS

The following is a list of general coding suggestions to aid the pro-
grammer in writing COBOL programs. Simple examples are given here to
illustrate the use of the suggestions listed. The vast number of ways
data can be defined and used makes it prohibitive to illustrate the cost
(in bytes) of handling each situation. The values in number of bytes in
the examples given are representative. They vary widely according to
the way data is defined and used.

Specific costs in number of bytes for several different methods of
representing data are given in Examples Showing Effect of Data
Declarations.

Programming Considerations 75

DECIMAL-POINT ALIGNMENT

The number of decimal positions should be the same whenever possible.
If they are not, additional moves for padding, sign movement, and
blanking-out result. The impact on storage is illustrated under, Con-
serving Storage.

Statements involving fields with an unequal number of digits require
intermediate operations for decimal-point alignment.

Define data efficiently, or move it to a work area to align data
used in multiple operations.

To get efficient code, the programmer should align decimal points
wherever possible. As a general rule, two or four additional instruc-
tions (12 to 18 bytes) are required in basic arithmetic statements and
IF statements when decimal-point alignment is necessary to process two
COMPUTATIONAL-3 fields.

Example: 77 A PICTURE S999Vv99 COMPUTATIONAL-3.
77 B PICTURE S99V9 COMPUTATIONAL-3.

By adding one more decimal place to FIELD B, (PICTURE S999V99), the
need for alignment instructions is eliminated, and no more bytes are
required for field B. (Remember, hardware requires an odd number of
digits for internal decimal fields. Use an odd number of nines when
defining data in COMPUTATIONAL-3 format. This practice results in more
efficient object code without using additional storage for the item
defined.)

Example: ADD 1 TO A.

The literal is compiled in internal decimal form, but decimal-point
alignment instructions are necessary (4 instructions, 18 bytes). 1If
instead, the literal is written 1.00, only one byte is added in the
literal area. The 18 bytes required for alignment of decimal points
are eliminated.

UNEQUAL-LENGTH FIELDS

Use the same number of integer digits in a field. An intermediate op-
eration may be required when handling fields of unequal length. For
example, zeros may have to be inserted in numeric fields and blanks in
alphabetic or alphameric fields in order to pad out to the proper length.
To avoid these operations, be sure that the number of integer digits in
fields used together are equal. Any increase in data field size is more
than compensated for by the savings in generated object code.

For example, if data is defined as:

SENDFLD PICTURE S999.
RECEIVEFLD PICTURE S99999.

and SENDFLD is moved to RECEIVEFLD, the cost of zeroing high-order posi-
tions (numeric fields are justified right) is 10 bytes. To eliminate
these 10 bytes define SENDFLD as:

SENDFLD PICTURE S99999.

76 DOS and TOS COBOL Prog. Guide

MIXED-DATA FORMATS

Do not mix data formats. When fields are used together in move, arith-
metic, or relational statements, they should be in the same format when-
ever possible. Conversions require additional storage and execution
time. Any operations involving data items of different formats require
conversion of one of the items to a matching data format before the op-
eration can be executed. For example, when comparing a DISPLAY field
to a COMPUTATIONAL-3 field, the code generated by the COBOL processor
moves the DISPLAY field to an internal work area, converting it to a
COMPUTATIONAL-3 field. It then executes the compare. This usage, al-
though valid in COBOL, has the effect of reducing the efficiency of the
program, by increasing its size. For maximum efficiency, avoid mixed
data formats or use a onetime conversion; that is, move the data to a
work area, thus converting it to the matching data format. By refer-
encing the work area in procedural statements, the data is converted
only once instead of for each operatioh.

The following example illustrates the conversions that take place
when the components of a COMPUTE are defined:

A COMPUTATIONAL-1.
B PICTURE S99V9 COMPUTATIONAL-3.
C PICTURE S9999V9 COMPUTATIONAL-3.

and the following computation is specified,
COMPUTE C = A * B.

the internal decimal data (COMPUTATIONAL-3) is converted to floating-
point format and then the COMPUTE is executed.

The result (which is in floating point) is converted to internal
decimal. The required conversion routines are time consuming and use
storage unnecessarily.

The following examples show what must logically be done, before the
indicated operations can be performed, when working with mixed-data
fields.

DISPLAY TO COMPUTATIONAL-3

To Execute a MOVE: No additional code is required (if proper alignment
exists) because one instruction can both move and convert the data.

To Execute a COMPARE: Before a COMPARE is executed, DISPLAY data must
be converted to COMPUTATIONAL-3 format.

To Perform Arithmetics: Before arithmetics are performed, DISPLAY data
is converted to COMPUTATIONAL-3 data format.

DISPLAY TO COMPUTATIONAL

To Execute a MOVE: Before the MOVE is executed, DISPLAY data is con-
verted to COMPUTATIONAL-3 format, and then the COMPUTATIONAL-3 data to
COMPUTATIONAL data format.

To Execute a COMPARE: Before a COMPARE is executed, DISPLAY data is
converted to COMPUTATIONAL-3 data format, and the COMPUTATIONAL data to
COMPUTATIONAL-3 format.

Programming Considerations 77

To Perform Arithmetics: Before arithmetics are performed, DISPLAY data
is converted to COMPUTATIONAL-3 format, and then the COMPUTATIONAL-3
data to COMPUTATIONAL format.

COMPUTATIONAL-3 TO COMPUTATIONAL

To Execute a MOVE: Before a MOVE is executed, COMPUTATIONAL-3 data is
moved to a work field, and thén converted to COMPUTATIONAL data format.

To Execute a COMPARE: Before a COMPARE is executed, COMPUTATIONAL data
is converted to COMPUTATIONAL-3 data format.

To Perform Arithmetics: Before arithmetics are performed, COMPUTATIONAL-
3 data 1s converted to COMPUTATIONAL data format.

COMPUTATIONAL TO COMPUTATIONAL-3

To Execute a MOVE: Before a MOVE is executed, COMPUTATIONAL data is
converted to COMPUTATIONAL-3 data format.

To Execute a COMPARE: Before a COMPARE is executed COMPUTATIONAL data
is converted to COMPUTATIONAL-3 data format.

To Perform Arithmetics: Before arithmetics are performed, COMPUTATIONAL
data is converted to COMPUTATIONAL-3 data format.

COMPUTATIONAL TO DISPLAY

To Execute a MOVE: Before a MOVE is executed, COMPUTATIONAL data is
converted to COMPUTATIONAL-3 data format, and then the COMPUTATIONAL-3
data to DISPLAY data format.

To Execute a COMPARE: Before a COMPARE is executed, COMPUTATIONAL data
is converted to COMPUTATIONAL-3 data format, and DISPLAY data to
COMPUTATIONAL-3 data format.

To Perform Arithmetics: Before arithmetics are performed, COMPUTATIONAL
data is converted to COMPUTATIONAL-3 data format, and DISPLAY data to
COMPUTATIONAL-3 data format. The result is generated in a COMPUTATIONAL-
3 work area, which is then moved to the DISPLAY result field.

COMPUTATIONAL-3 TO DISPLAY

To Execute a MOVE: Before a MOVE is executed, COMPUTATIONAL-3 data is
converted to DISPLAY data format.

To Execute a COMPARE: Before a COMPARE is executed, DISPLAY data is
converted to COMPUTATIONAL-3 data format.

To Perform Arithmetics: Before arithmetics are performed, DISPLAY data
is converted to COMPUTATIONAL-3 data format. The result is generated
in a COMPUTATIONAL-3 work area, which is then converted and moved to
the DISPLAY result field.

78 DOS and TOS COBOL Prog. Guide

DISPLAY TO DISPLAY

To Perform Arithmetics: Before arithmetics are performed, all DISPLAY
data is converted to COMPUTATIONAL-3 data format. The result is gener-
ated in a COMPUTATIONAL-3 work area, which is then converted and moved
to the DISPLAY result field.

CONVERSION OF COMPUTATIONAL-1 OR -2 DATA

For efficient object code, use of floating-point (COMPUTATIONAL-1l or
~2) numbers mixed with other usages should be held to a minimum. The
conversion from internal to external floating point and vice-versa is
done by subroutines. Fields used in conjunction with a floating-point
number are converted to floating point, causing the object program to
perform conversions. For example, assume a COMPUTE is specified as:

COMPUTE A =B * C + D + E.

Assume B is COMPUTATIONAL-1l or -2 data and all other fields are defined
as COMPUTATIONAL-3 data. Fields C, D, and E are converted to
COMPUTATIONAL-1 or -2 data format, the calculation performed, and the
result converted back from COMPUTATIONAL-1l or =2 data format to
COMPUTATIONAL-3 data. If field B is defined as COMPUTATIONAL-3, no
conversion is necessary. Use of floating-point numbers is more effi-
cient when used in programs with computational data that is practically
all COMPUTATIONAL-1 or -2 type. If it is necessary to use floating-
point data, be careful not to mix data formats.

SIGN CONTROL

For numeric fields specified as unsigned (no S in the picture clause of
decimal items), the COBOL processor attempts to ensure that a special
positive sign (F) is present so that the values are treated as absolute.

The processor moves in a hexadecimal F whenever the possibility of
the sign changing exists. Examples are: Subtracting unsigned fields,
moving a signed field to an unsigned field, or an arithmetic operation
on signed fields where an unsigned result field is specified.

The sign is not checked on input data or on group level moves. The
programmer must know what type of data is being used, under those
circumstances.

The use of unsigned numeric fields increases the possibility of error
(an unintentional negative sign could cause invalid results) and re-
quires additional generated code to control the sign. The use of un-
signed fields should be limited to fields that are to be treated as
absolute values.

Note: The hexadecimal F, while treated as a plus, does not cause the
digit to be printed or punched as a signed digit.

The programmer should include a sign in numeric pictures unless
absolute values are desired. The following example illustrates the
additional instructions generated by the compiler each time an unsigned
field is modified.

Programming Considerations 79

If data is defined as:
A PICTURE 999.
B PICTURE S999.
C PICTURE S999.
and the following moves are made,

MOVE B TO A.
MOVE B TO C.

moving B to A causes four more bytes of storage to be used than moving
B to C, because an absolute value is specified for receiving field A.

CONDITIONAL STATEMENTS

Keep arithmetic expressions out of conditional statements. Computing
arithmetic values separately and then comparing them may produce more
accurate results than including arithmetic statements in conditional
statements. The final result of an expression included in a conditional
statement is limited to an accuracy of six decimal places. The follow-
ing example shows how separating computations from conditional can
improve accuracy.

If data is defined as:

77 A PICTURE S9V9999 COMPUTATIONAL-3.
77 B PICTURE S9V9999 COMPUTATIONAL-3.
77 C PICTURE S999V99999999 COMPUTATIONAL-3.

and the following conditional statement is written,
IF A * B = C GO TO EQUALX.

the final result will be 99V999999. Although the receiving field for
the final result (C) specifies eight decimal positions, the final re-
sult actually obtained in this example contains six decimal places.

For increased accuracy, define the final result field as desired, per-
form the computation, and then make the desired comparison as follows.

77 X PICTURE IS S999V99999999 COMPUTATIONAL-3.

COMPUTE X = A * B.
IF X = C GO TO EQUALX.

OTHER CONSIDERATIONS WHEN USING DISPLAY AND COMPUTATIONAL FIELDS

DISPLAY (Non-Numeric and External Decimal) Fields

Zeros and blanks are not inserted automatically by the logical instruc-
tion set. A move requires coding to insert zeros or blanks. On com-
pares, the smaller item must be moved to a work area where zeros or
blanks are inserted before the compare.

COMPUTATIONAL-3 (Internal Decimal) Fields

The decimal feature provides for the automatic insertion of high-order
zeros on adds, subtracts, and compares.

80 DOS and TOS COBOL Prog. Guide

When a blank field (40) is moved into a field defined as
computational-3, the sign position is not changed. Thus, the invalid
sign bits of the blank field are retained. An arithmetic operation
with such a field results in a program check. Before moving a blank
field into a computational-3 field to be operated on, the sign position
must be converted to a wvalid COBOL sign (F0).

COMPUTATIONAL Field

System/360 furnishes a large repertoire of halfword and fullword in-
structions. Binary instructions require one of the operands to be in a
register where a halfword is automatically expanded to a fullword.
Therefore, handling mixed halfword and fullword fields requires no addi-
tional coperations.

COMPUTATIONAL 1 and 2 Fields

A full set of short- and long-precision instructions are provided which
enables operations involving mixed precision fields to be handled with-
out conversion.

DATA FORMS

In order to conserve storage, the programmer must know COBOL data forms,
and how they affect storage. Equally important is the way he organizes
his data. The following information illustrates the various types of
COBOL data forms, and their respective costs in alignment. Character-
istics and requirements are described for the possible usages of numeric
data, along with symbolic illustrations of what forms they take within
the machine. Also included is a brief discussion of how to organize
data efficiently.

ELEMENTARY ITEMS

The number of bytes occupied by data in main storage depends on its for-
mat (or mode). Figure 15 illustrates the number of bytes required for
each class of elementary item.

If files and working storage are organized so that all halfwords,
fullwords, and doublewords are grouped together, essentially no addi-
tional storage is used. However, if these items are not grouped to-
gether properly, the amount of storage required for alignment is:

Halfword - 1 byte
Fullword - 1 to 3 bytes
Doubleword - 1 to 7 bytes

GROUP ITEM

Group moves of 256 or less bytes cost less than a series of single
alphanumeric moves of the elementary items within the group item. Any
move of a group or elementary item greater than 256 bytes in size re-
sults in a subroutine being executed.

When computational usage is specified in COBOL, slack bytes are
inserFed to give proper half-word, or full-word boundary alignment.
This is necessary for the elementary item to be handled properly in

binary arithmetic. However, using group items that include slack bytes
could cause problems.

Programming Considerations 81

TYPE OF ITEM CALCULATION OF REQUIRED BYTES FROM PICTURE
DISPLAY

Alphabetic Bytes = Number of A's in picture
Alphanumeric Bytes = Number of X's in picture
External Decimal Bytes = Number of 9's in picture
External

floating Bytes = Number of characters in picture
peint

Report Bytes = Number of characters in picture

except P, V

COMPUTATIONAL-3

Internal Decimal Bytes = (Number of 9's +1 divided by 2,
rounded up)
Size Alignment
COMPUTATIONAL
2 if 1<N=4 Halfword Machine Address
{Binary } Bytes = 4 if 5<N<9 Fullword Machine Address
8 if 10s<N<18 Fullword Machine Address
Where N=Number of 9's in picture
COMPUTATIONAL-1 or r4 if short-
COMPUTATIONAL-2 precision Fullword Machine Address
Internal (computa-
{floating} Bytes = tional-1l)
point 8 if long
precision Doubleword Machine Address
(computa-
tional-2

Figure 15. Number of Bytes Required for Each Class of Elementary Item

It is possible for two group items defined exactly the same to have
a different number of slack bytes because they begin in different
places, relative to word boundaries. Because group items use slack
bytes as normal data, a move of the smaller of these to the larger can
cause a loss of data. For example assume two groups are defined as
follows:

01 RECORD-1.
02 GOLD PICTURE XX DISPLAY.
02 MINERALS COMPUTATIONAL.
Case 1 03 OPAL PICTURE 99.
03 QUARTZ PICTURE 99999.

01 RECORD-1.
02 MINERALS COMPUTATIONAL.
Case 2 03 OPAL PICTURE 99.
03 QUARTZ PICTURE 99999.

Case 1 group (02 MINERALS) consists of a total of six bytes (it dees
not contain slack bytes).

Case 2 group (02 MINERALS) consists of a total of eight bytes,
including two slack bytes.

In case 2, 03 QUARTZ will be preceded by two slack bytes, thus if case 2
group (02 MINERALS) is moved to case 1, the last two bytes of data will
be lost.

If case 1 group (02 MINERALS) is moved to case 2 group, no data will be
lost but the elementary 03 QUARTZ will be improperly aligned.

82 DOS and TOS COBOL Prog. Guide

SUOT3}RISPTISUO) buTtumreiboig

€8

*9T 2anbta

e3e@ OTISUMN JO SOT3ISTISIORIRYD

Boundary
. Converted in Alignment
Type of Data Bytes Required Typical Usage Arithmetics Required Special Characteristics
DISPLAY 1 per digit Input from cards Yes No May be used for ngmgric
(External decimal) Output to cards, list- fields up to 18 digits
ings long.
Fields over 15 digits re-
quire extra instructions
if used in computations.
COMPUTATIONAL-3 1 byte per 2 Input to a report item | Not normally No Requires less space than
(Internal decimal) | digits after display.
the first byte | Arithmetic fields
for low order Convenient form for deci-
digit Work areas mal alignment.
The natural form contains
an odd number of digits.
* x K
COMPUTATIONAL 2 if 1<N<4 Subscripting Yes/No--for mixed Yes Rounding and on size
(Binary) *k usages error tests are cumber-
4 if 5<N<9 Arithmetic some .
*k No--for unmixed
8 if 10<N<18 usage Always must be signed.
Fields of over 8 digits
require more handling.
COMPUTATIONAL-1 4 Fractional exponentia- Tends to produce less
tion, or accuracy. Computational-2
COMPUTATIONAL-2 8 very large or very No Yes is more accurate than Com-

(Floating Point)

small values

putational-1l.

Requires floating-point
feature.

‘e3lRp OTIDUMU JO

SOT3STI9O3OoRIRYD TeTOoods puP SOTISTISIORARYD UOUWMOD 9Y3 S$3ISIT 97 oanbrg

HOV¥SN LVWIOA WILVd DIVHEWNN

MACHINE REPRESENTATION OF DATA ITEMS

The following examples are machine representations of the various data
items in COBOL.

DISPLAY (External Decimal)

If value is -1234, and:

Picture and Usage are: Machine Representation is:
PICTURE 9999. |r1 | p2 | 3| 4|
N~
or Byte
PICTURE 59999. |F1 | r2 | 3] D4 |
N
Byte

The sign position of an unsigned receiving field is changed to a
hexadecimal F.

Hexadecimal F is arithmetically treated as plus in low order byte.
The character D represents a negative sign.

This form of data is referred to as external decimal.

COMPUTATIONAL-3 (Internal Decimal)

If value is +1234, and:

Picture and Usage are: Machine Representation is:

PICTURE S9999 COMPUTATIONAL-3. | o1 | 23 | 4c]

\.v—/
or Byte

PICTURE 9999 COMPUTATIONAL-3. [o1 | 23 | 4r |

S
Byte

Hexadecimal F is arithmetically treated as plus.
The character C represents a positive sign.
This form of data is referred to as internal decimal.

COMPUTATIONAL (Binary)

If value is 1234, and:

Picture and Usage are: Machine Representation is:
PICTURE S9999 COMPUTATIONAL. | oooo | o100 | 1101 | o010
+ N
sign Byte

A 1l in sign position means number is negative.
A 0 in sign position means number is positive.

This form of data is referred to as binary.

84 DOS and TOS COBOL Prog. Guide

COMPUTATIONAL-1 or COMPUTATIONAL-2 (Internal Floating Point)

If value is +1234, and:

Picture and Usage are: Machine Representation is:

COMPUTATIONAL-1. | 0 | 1000011 0100 1101 0010 0000, 0000 0000
S 1 7 8 31
S is the sign position of the number.

A 0 in the sign position indicates that the sign is plus.
A 1 in the sign position indicates that the sign is minus.

This form of data is referred to as floating point. The example is one
of short precision. In long precision, the fraction length is 56 bits.
For a detailed explanation of floating-point representation, refer to
IBM System/360 Principles of Operation listed on the cover of this
manual. '

EXAMPLES SHOWING EFFECT OF DATA DECLARATIONS

The specific series of instructions that are generated vary widely with
the description of the data fields involved. Some examples of the
range to be expected by slight differences in the data descriptions
follow. The examples of possible expansions used are illustrative and
should not be used for estimates of storage.

MOVE

Assume that data items A,B,C, and D are defined for the purpose of be-
ing moved as COMPUTATIONAL-3 fields or DISPLAY fields.

A PICTURE S99V99.
B PICTURE S99V99.
C PICTURE S99V9.
D PICTURE S99.

COMPUTATIONAL-3 Fields

If items A, B, C and D are defined as COMPUTATIONAL-3 fields, then the
cost in bytes to:

Move A to B is: (when both integer and decimal places are equal)
6 bytes for a simple move.

Move C to B is: (The sign position must be moved, and the original sign
changed.)

6 bytes for a simple move, and

18 bytes for decimal alignment.

Total = 24 bytes.

Move C to D is: (The sign requires a separate move.)
6 bytes for a simple move, and
18 bytes for decimal alignment.
Total = 24 bytes.

Programming Considerations 85

DISPLAY Fields

If data items A, B, C, and D are defined as DISPLAY fields, then the
cost in bytes to:

Move A to B is: (when both integer and decimal places are equal)
6 bytes for a simple move

Move C to D is:
6 bytes for a simple move, and
6 bytes for decimal alignment.
Total = 12 bytes.

MOVE DISPLAY TO COMPUTATIONAL-3

The cost in bytes of moving DISPLAY data to a COMPUTATIONAL-3 field is:
6 bytes for conversion, and up to 24 bytes for decimal alignment.

MOVE COMPUTATIONAL-3 TO REPORT

The cost in bytes of moving COMPUTATIONAL-3 data to a REPORT field is:
24 bytes for a simple move,
12 bytes for floating insertion character,
24 bytes for non-floating digit position.
18 bytes for decimal alignment,
24 bytes for trailing characters,
12 bytes for unmatched digit positions.

RELATIONALS

IF COMPUTATIONAL-3 = COMPUTATIONAL-3

The cost in bytes to execute an IF statement when all data is defined

as COMPUTATIONAL-3 is:
6 bytes for the compare and branch instruction (no decimal alignment).
42 bytes for the compare and branch with decimal alignment.

IF DISPLAY = COMPUTATIONAL-3

The cost in bytes to execute an IF statement when data is defined as
DISPLAY and COMPUTATIONAL-3 is:
18 bytes for conversion and for the compare and branch instruction,
and
18 bytes for decimal alignment.

IF COMPUTATIONAL = COMPUTATIONAL

The cost in bytes to execute an IF statement when all data is defined
as COMPUTATIONAL is:
18 bytes for the compare and branch instruction, when the number of
decimal digits is 1 to 9.

The number of bytes required to execute the IF statement is unpredicta-
ble when the number of decimal digits is from 10 to 18.

86 DOS and TOS COBOL Prog. Guide

IFA*B=C*D, ETC

For optimum use of storage when writing any IF statement, first make
all computations, and then compare results.

ARITHMETICS

ADD COMPUTATIONAL-3 TO COMPUTATIONAL-3

The cost in bytes to execute an ADD statement when all data is defined
as COMPUTATIONAL-3 is:
6 bytes to execute the add, up to 56 bytes for alignment of decimals,
and 4 bytes for blanking the sign.

GENERAL TECHNIQUES FOR CODING

The following examples illustrate how COBOL data fields can be manipu-
lated. Some of the techniques illustrated are basic, and can be used
in most programs, while others are designed to give the programmer an
insight into techniques applicable to more sophisticated programs.

INTERMEDIATE RESULTS IN COMPLEX EXPRESSIONS

The compiler can process complicated statements, but not always with
the same efficiency of storage utilization as the source programmer.
Because truncation may occur during computations, unexpected intermedi-
ate results may be obtained. The rules for truncation are in the pub-
lication, COBOL Language Specifications, listed on the cover of this
manual.

A method of avoiding unexpected intermediate results is to make
critical computations by assigning maximum (@&r minimum) wvalues to all
fields and analyzing the results (by testing critical computations for
results expected).

Because of concealed intermediate results, the final result is not
always obvious.

Alternate Method of Solution (Unexpected Intermediate Results)

The necessity of computing worst case (or best case) results can be
eliminated by keeping statements simple. This can be accomplished by
splitting up the expression, and controlling intermediate results to
be sure unexpected final results are not obtained. Consider the fol-
lowing example:

COMPUTE B = (A + 3) / C + 27.600.
First define adequate intermediate result fields, i.e.:

02 INTERMEDIATE-RESULT-A PICTURE S9(6)V999.
02 INTERMEDIATE-RESULT-B PICTURE S9 (6)V999.

Then, split up the expression as follows.
ADD A,3 GIVING INTERMEDIATE-RESULT-A.

Then write:
DIVIDE C INTO INTERMEDIATE-RESULT-A GIVING INTERMEDIATE-RESULT-B.

Then, compute the final result by writing:
ADD INTERMEDIATE-RESULT-B, 27.600 GIVING B.

Programming Considerations 87

ARITHMETIC SUGGESTIONS

Arithmetic Fields

Initialize arithmetic fields before using them in computations. If the
user attempts to use a field without it being initialized, the contents
of the field are unpredictable: therefore, invalid results might be
obtained, or the job might terminate abnormally.

Exponentiation

Avoid exponentiation to a fractional power. For example: V ** (P / N).

This requires the use of the floating-point feature. Use of floating
point can be avoided by dividing the statements into separate computa-
tions. The first example given requires the use of the floating-point
feature. The second example restates the problem, illustrating how the
use of floating point can be circumvented.

Assume data is defined:
DATA DIVISION.
WORKING-STORAGE SECTION.
77 FLD PICTURE S99V9, COMPUTATIONAL-3.
77 EXPO PICTURE S99, COMPUTATIONAL-3.
77 P PICTURE S99.
77 N PICTURE S99.
77 VALUEl PICTURE S99.

Assume values used in the example were appropriately moved into their
respective symbolic names as follows: VALUElL =5, P = 10, and N = 5.
Example 1

COMPUTE FLD = VALUEl ** (P / NJ).
Because (P/N) = 10/5 = 2.00 (with decimal places), the floating-point
feature is required to solve this statement even though the exponent is
an integer. The use of this type of statement involves the floating-

point feature because it is not known whether decimal digits are pres-
ent when the exponent is developed.

Example 2
The statement in example 1 can be solved by writing:
COMPUTE EXPO = (P / N).
The result is truncated to two significant digits (S99).
Then write:
COMPUTE FLD = VALUEl ** EXPO.
Thus, the statement written in example 1 can be solved by dividing it
into two separate computations, avoiding the need for floating-point

instructions.

Another occurrence that can affect final results is intermediate
result truncation. For example:

88 DOS and TOS COBOL Prog. Guide

Assume that VALUEl = 10, and N = 2

I1f COMPUTE FLD = (VALUEl ** N) - 2 is written, by substitution the
result is:

FLD = (VALUEl ** N) - 2
S99V9 = (S99 ** 599) - 2
S99V9 = (10 ** 2) -~ 2
§99v9 = 100.0 - 2 By the rule for truncation:

S99vV9 = 100.0 - 2.
The most significant digit is truncated. The final result is then:

FLD
FLD

00.0 - 2
02.0, could be an unexpected result.

o

The situation can be corrected by expanding the target field (FLD) as
follows:

77 FLD PICTURE S999V9.
Then, when the statement is wfitten (assuming VALUEl = 10, and N = 2):
COMPUTE FLD = (VALUEl ** N) - 2,

The result is:

FLD = (VALUEl ** N) - 2
5999V9 = (S99 ** 599) - 2
S999V9 = (10 ** 2) - 2,

By the rule for truncation:
——

S999V9' = '100.0 - 2.

The result is,
+

FLD = 098.0, which is the expected result.
SUBSCRIPTING
Use a constant subscript instead of a variable (data-name) subscript
whenever possible. Constant subscripts are resolved during compile

time, whereas variable (data-name) subscripts are resolved at object
time.

Example

Instead of NAME (S1, S2) use: NAME (1,23) where Sl=1, and S2=23.

The address of NAME (in the latter case) is resolved at compile
time, based on the given constant subscripts.

When variable subscripting is used, the address of the field is com-
puted each time a subscripted field is referenced.

For efficient coding, frequently referenced subscripted fields
should be moved to a work area, manipulated, and if necessary, returned.

Programming Considerations 89

Example

ADD D TO TAB-FIELD (A,B,C).
IF TAB-FIELD (A,B,C) = LIMIT-FLD GO TO ERR.
Bad)MOVE TAB-FIELD (A,B,C) TO F.
Code:(COMPUTE TAB-FIELD (A,B,C) = TAB-FIELD (A,B,C) + F / G.

This coding could be improved, by writing:

MOVE TAB-FIELD (A,B,C) TO WORK-FLD. ADD
D TO WORK-FLD. IF WORK-FLD = LIMIT-FLD
Good /GO TO ERR.
Code:
MOVE WORK-FLD TO F, COMPUTE TAB-FIELD
(A,B,C) = WORK-FLD + F / G.

BINARY SUBSCRIPTING

Use binary mode items for subscripting. Data-name subscripts not in
binary are converted to binary at object time.

COMPARISONS

Numeric comparisons are usually done in COMPUTATIONAL-3 format; therefore,
COMPUTATIONAL-3 is usually the most efficient data format.

Because compiler inserted slack bytes can contain meaningless data,
group compares should not be attempted when slack bytes are within the
group unless the programmer knows the contents of the slack bytes.

REDUNDANT CODING

To avoid redundant coding of usage designators, use computational des-
ignators at the group level (this does not affect the object program).

Example

Instead of:
02 FULLER.
03 A COMPUTATIONAL-3 PICTURE 99V9.
03 B COMPUTATIONAL-3 PICTURE 99V9.
03 C COMPUTATIONAL-3 PICTURE 99V9.

Write:
02 FULLER COMPUTATIONAL-3.
03 A PICTURE 99V9.
03 B PICTURE 99V9.
03 C PICTURE 99V9.
EDITING

A high-order nonfloating digit position involves more instructions than
a floating digit position.

Example

nonfloating floating
999.99 wvs $$8$9.99

90 DOS and TOS COBOL Prog. Guide

The blank-when-zero is implied in certain pictures. For example:
222.22

If blank-when-zero is not required for low-order characters, much
more efficient coding is generated by pictures such as:

227.99

OPENING FILES

Ogen does not require a work area. Less storage is used if multiple
files are opened with one open than when an open statement is used for

each file. A single open requires approximately 100 bytes of additional
storage for each file-name.

To conserve storage, use:
OPEN INPUT FILEA, FILEB.

rather than:
OPEN INPUT FILEA OPEN INPUT FILEB.

ACCEPT Verb

The ACCEPT verb does not provide for recognition of the last card being
read from a card reader. When COBOL detects a /* card it drops through

to the next statement. Because no indication of this is given by COBOL,
an end of file detection requires special treatment. Thus, the programmer
must provide his own end card (some card other than /*) which he can

test to detect an end-of-file.

PARAGRAPH NAMES

Paragraph names use storage when the PERFORM verb is used in the pro-
gram. Use of paragraph names for comments requires more storage than
the use of NOTE or a blank card. Use NOTE and/or a blank card for

identifying in-line procedures where paragraph names are not required.

Example: Avoid.

MOVE A TO B.

PERFORM JOES-ROUTINE.
JOES-ROUTINE. COMPUTE A =D + E * F.

Recommended;

MOVE A TO B.

PERFORM ROUTINE.

NOTE JOE'S ROUTINE.
ROUTINE. COMPUTE A = D + E * F,

TRAILING CHARACTERS

Pictures with a trailing period or comma require that punctuation fol-
low, or the trailing picture character is treated as punctuation.

Example
77A PICTURE IS 999., USAGE IS DISPLAY.

Programming Considerations 91

REDEFINITION

The results of moving a field to itself through the use of redefinition
are unpredictable. To manipulate unusual data forms, use REDEFINES.
For example, a technique for isolating one binary byte follows.

02 A PICTURE S99 COMPUTATIONAL.
02 FILLER REDEFINES A.

03 FILLER PICTURE X.

03 B PICTURE X.

Explanation:

COMPUTATIONAL sets up a binary halfword:

| I |
sl 7 8 15
i N
} Byte 1 Byte 2

02 FILLER REDEFINES A., states that A is to be redefined as follows.
® Ignore first byte (03 FILLER PICTURE X).
® Name second byte B. (03 B PICTURE X).

Now byte B can be moved to a work area, and operated on logically at
the assembler level, or compared logically at the COBOL level. It can
be stored on a file, and later moved back to its point in a similarly
. defined field.

Use of data in this manner can present problems regarding signs and
numeric values. These problems require a knowledge of both System/360,
and COBOL.

Another illustration of using REDEFINES to manipulate data concerns
the test IF NUMERIC. A field is considered numeric (under normal lan-
guage usage) if all the positions of the field are numeric with the
exception of the sign position.

If a field is to be considered numeric only when it is unsigned, the
sign position must be tested. A technique for relocating the sign (or
"shifting") so that it can be tested as an unsigned numeric value
follows.

Assume a field is defined: e
02 IF-NUM-FIELD PICTURE X(5) VALUE '00000'. %
02 CHANGE-FIELD REDEFINES IF-NUMB-FIELD. '
03 REAL-FIELD, PICTURE S9(4).
03 FILLER, PICTURE X.
IF-NUM-FIELD defines a 5-byte alphanumeric field.
REAL-FIELD redefined this field to be 4 bytes numeric.
The fields appear in storage as follows:

IF-NUM-FIELD £t

r — N
lo]o]o]o]o]

1 2 3 4 5 Byte positions
—

REAL-FIELD FILLER

92 DOS and TOS COBOL Prog. Guide

To make an IF NUMERIC, test true for only unsigned fields.

1. Move the 4-byte value to be tested into REAL-FIELD. The value
and its sign occupy bytes 1-4.

For example:

If +1234 is moved to REAL-FIELD, the resultant field appears in
storage as follows:

IF-NUM-FIELD

'S —" N

Case A |[FL]| F2 | P3| ca| Fo]
d 2 3 4, 5 Byte position
REAL-FIELD FILLER

Note that the low-order byte {(righmost byte) of IF-NUM-FIELD retains
its initial value of 0.

If 1234 is moved to REAL-FIELD, the resultant field appears in
storage as follows:

IF-NUM-FIELD
e

r N ~
case B |F1] F2| F3| Fa| Fo|
Jd 2 3 4, 5 Byte position

—_——

REAL-FIELD FILLER

2. Test IF-NUM-FIELD FOR NUMERIC.

All four bytes of REAL-FIELD will be tested as an unsigned numeric
value because the sign position was "shifted left one position,"
and is no longer in the units position of IF-NUM-FIELD. If the
value is unsigned, a hexadecimal F appears in the sign position or

fourth byte of the 4-byte field, and it appears as an unsigned
numeric. '

Thus in the preceding example, when the fourth byte is tested
in case A, the numeric test fails, but when tested in case B the
numeric test is satisfied.

ALIGNMENT AND SLACK BYTES. - (A CONSIDERATION WHEN USING BINARY OR
FLOATING POINT DATA.)

Unless binary or floating-point data is used, the user need not be con-
cerned with slack bytes. The number of bytes of main storage necessary
for the data division must include bytes added to produce wvalid boundary
alignment for binary and floating-point data fields.

Slack bytes required to align data are generated by the compiler.

Example:

01 RECORD.
02 FLD-1 PICTURE IS X(2).
02 FLD-2 PICTURE IS S99999 COMPUTATIONAL.

Because FLD-2 is binary and five digits in length, the compiler sets
aside one fullword which must be aligned on a fullword boundary. In

this example, two slack bytes are required. The compiler inserts them
automatically.

Programming Considerations 93

A warning diagnostic is given when slack bytes are inserted by the
compiler.

Because COBOL alignes computational fields on output files and
expects them to contain slack bytes (where required) on input files, a
problem could exist when reading or writing a file.

A file that is to be read that contains computational fields without
slack bytes must be coded in'the same manner. That is, it must be coded
with the knowledge that it does not contain slack bytes. If the file
contains computational data without slack bytes, the data will not be
properly aligned when read from the file, thus it cannot be processed by
the compiler.

The following is a technique for manipulating computational data not
containing slack bytes so that it may be processed by the compiler.

Assume a group record called RECORD-C exists on a file and consists
of 2-bytes of alphanumeric data called GOLD, and 4-bytes of binary data
called SILVER. The record on the file would appear as follows:

GOLD SILVER

RECORD-C

If an FD were defined:
01 RECORD-C.
02 GOLD PICTURE XX.
02 SILVER PICTURE S99999 COMPUTATIONAL.

The compiler assumes the following structure:

\\\\\\
GOLD \‘;‘L?\C?/*SILVER

BYTES

RECORD-C

When the record on the file is read, it is placed in the area defined,
left justified. The area thus contains the following:

\,\/‘\/‘
GOLD SLACK SILVER (This is the compiler
BYTES generated address for
RECORD-C SILVER)

94 DOS and TOS COBOL Prog. Guide

Thus the first 2-bytes of the 02 SILVER are lost because of improper
alignment. Hence, when the 02 SILVER is accessed, only the last 2-bytes
are available.

To circumvent this problem, define, RECORD-C as follows:

01 RECORD-C
02 GOLD PICTURE XX.
02 SILVER PICTURE XXXX.

and a GROUP item such as:

01 LEAD.
02 DIAMOND PICTURE S99999 COMPUTATIONAL.

Now, access RECORD-C. This places it in the buffer, properly aligned.
Then move the 4-byte elementary 02 SILVER (definéd as alphanumeric but

is actually binary data) to the record 01 LEAD. Because the 01 LEAD is

a group item, the data moved retains its original form (no data conversion
takes place) and the elementaries 02 SILVER and 02 DIAMOND are properly
aligned. Thus, by accessing DIAMOND, the binary data can be operated on
as desired.

Assuming the same record (RECORD-C) out on the file, there is an
alternate method of obtaining proper alignment when reading the record.

Define a record in an FD as follows:
01 RECORD-C.
02 GOLD PICTURE XX.
02 SILVER PICTURE XXXX.

The area defined would appear:

A

GOLD SILVER

RECORD-C

Then define a record in the WORKING-STORAGE section as:
01 BRASS.
02 LEAD PICTURE XXXX.
02 DIAMOND REDEFINES LEAD PICTURE S99999 COMPUTATIONAL.

As before, when the record is accessed, it is placed properly aligned
in the buffer.

Its structure in the buffer would be:

GOLD SILVER

RECORD-C

Programming Considerations 95

Now move the 4-byte elementary 02 SILVER to the elementary 02 LEAD.

Because the 02 SILVER and 02 LEAD elementaries are both defined as display,
the data retains its original form and the elementaries are properly
aligned. By accessing the REDEFINES (DIAMONDS) the binary data can be
operated on as desired. The same problem could exist when reading or
writing floating-point data.

For a complete discussion of slack bytes, refer to the publication,
COBOL Language Specifications listed on the cover of this manual.

GENERAL INFORMATION--FILE HANDLING

BUFFERS

In IBM System/360 COBOL, a buffer is a designated area in main storage
for I/0 transactions. When a file is read, a block is read into a buf-
fer where the records are addressed directly as they are accessed. Use
of a READ or WRITE statement directs a pointer to the appropriate record,
or record area, of interest in the buffer.

RECORD BLOCKING

The size of the buffer area is computed by multiplying the number of
records specified in the BLOCK CONTAINS clause by the maximum record
size (slack bytes and control fields included). When fixed-length
records are written, each physical record contains the number of rec-
ords specified in the BLOCK CONTAINS clause. The last physical record
may be short. No padding records are generated for short records. As
many variable-length records as can fit into the buffer area are written,
providing that there is sufficient room for a maximum-length record.
For example, where the number of records is 6 and the maximum record
size is 500, a 3,000-position buffer is provided. Records are located
in the buffer until such time as less than 500 positions remain.

For Example:

1 2 3 4 5 6 7
500 250 375 500 375 375 250 3000

Because the records occupy 2,625 positions of the buffer, and it is
not known if the next record is greater than 375 positions, these seven
records are written out as a 2,625-character block. Record eight is
generated as the first record in an empty buffer. This means that the
actual blocking is variable, depending on record size. Again, no pad-
ding records are provided.

This technique provides for good utilization of storage buffers in
most cases. Efficiency is lost if a small blocking factor is specified
and there is a large variability in record size. For example, if a
'BLOCK CONTAINS 2000 CHARACTERS' clause is written with a maximum rec-
ord size of 1,000 characters, the following situation could exist.

1 2 3 4

250 250 250 300 2000

The four records total 1,050 characters, but since a 1,000-character
maximum size must be anticipated, the 4-record 1,050-character block
has to be written. Note that in any event, the records per block at
least equal the number of records specified in the BLOCK CONTAINS clause.

96 DOS and TOS COBOL Prog. Guide

«

IApply Write Only
This clause permits maximum use of a variable block.

When this clause is specified, the compiler checks each record
before it is written to determine if the record can fit into the
area remaining in the block. If it fits, the record is written
into the block. If the record is too large, the block is written
out and a new one is started. Thus, use of the APPLY WRITE ONLY
results in ignoring the maximum record size specified.

PROCESSING BUFFERS

Files can be processed using multiple buffers. Logical records are ref-
erenced in the proper block by adjusting registers (using them as
pointers).

This technique eliminates the need for moving a record from the buf-
fer area to a separate record work area, as well as the record work area
itself. The record can be operated on directly in the buffer area.

When processing records in a buffer, the next read results in the
previous record not being available. Because the previous record is no
longer available, the technique of moving a high value to the control
field of the last record (to force the processing of records remaining
on the other file) cannot be used. '

Here are several alternate approaches:

l. A GO TO statement, prior to the compare, can be altered during the
AT END procedure to GO TO the low compare procedure, thus bypassing
the compare.

2. A dummy record having a high value in its control field can be pro-
vided as the last logical record. This automatically causes the
associated files to compare low. However, this can result in the
AT END condition never occurring.

3. The control field can be moved to a separate work area following
the read, and compared in the work area. The control field is
then available in the work area following an AT END condition.

The AT END procedure can move a high value into the control field.

VARIABLE RECORD ALIGNMENT CONTAINING OCCURS DEPENDING CLAUSE

Records are processed in the file's buffer area. The first record
starts on a doubleword boundary. If there is no OCCURS DEPENDING
clause, a diagnostic is given indicating the padding to be added to the

record to assure proper alignment of succeeding records.

To align blocked V-type records containing an OCCURS DEPENDING clause
in the buffer:

1. Determine the largest alignment factor within the recgord.

Alignment factor is For
2 COMPUTATIONAL (1-4 digits)
4 COMPUTATIONAL-1 or COMPUTATIONAL (5-18 digits)
8 COMPUTATIONAL-2
0 OTHER

Programming Considerations 97

For alignment factors of four or less, pad both the fixed and the
variable portions of the record to an even multiple of the align-
ment factor.

For an alignment factor of eight, move the record, as a group,bto
a 01 in the working storage section.

I/0 ERROR PROCESSING CONSIDERATIONS--USE AFTER STANDARD ERROR

The USE AFTER STANDARD ERROR clause .provides the programmer with a
means for investigating input/output processing errors. Depending
upon the presence or absence of the declarative section, I0CS provides
certain error processing procedures when an I/0 error occurs. The
following points should be considered when the USE AFTER STANDARD
ERROR is used with the various types of file organization.

SEQUENTIAL TAPE FILE ORGANIZATION

1.

98

If the declarative section is not included in the program and a
wrong length record occurs, IOCS issues an illegal supervisor CALL
of 32 which causes a storage dump.

If the declarative section is not included in the program and a
parity error is detected when a block of tape records is read, the
tape is backspaced and reread 100 times. If the parity error
persists, the tape block within which the error occurred is
considered a tape error block, and the block is added to the block
count found in the DTF table. IOCS indicates an I/0 error (by

a diagnostic) and cancels the job.

If the declarative section is included in the program and a parity
error is detected when a block of tape records is read (described
in 1 above), the tape is backspaced and reread 100 times. If the
error persists, the tape block is considered a tape error block,
and the block is added to the block count found in the DTF table.
However, instead of canceling the job (this occurs when a
declarative section is not included in the program), IOCS transfers
control to the declarative section procedures to be followed on

an error condition.

The address of the tape error block is stored by COBOL in register
3 + 192, and is accessible through an assembler subprogram.

Normal return (to the main program) from the declarative section is
through the IOCS subroutine invoked, thus bringing the next
sequéential block into main storage and permitting continued
processing of the file (the bad block is bypassed).

The programmer can interrogate the DTF table further, and display
any pertinent data desired (such as block number) by using a CALL
statement USING filename.

A return through the use of GO TO does not bring the next block
into main storage, therefore continued processing of the file is
impossible.

In the case of tapes, the error declarative is only entered for

read errors. For write errors, IOCS automatically retries 15 times
(including skips and erases) and then cancels the job.

DOS and TOS COBOL Prog. Guide

SEQUENTIAL DISK FILE ORGANIZATION

1. If the declarative section is not included in the program and a
parity error occurs when a block of records is read, the disk
block is reread 10 times. If the read error persists, the disk
block within which the error occurred is considered a disk error
block, and the job is terminated. If a parity error occurs when a
block of records is written, IOCS attempts to write the block on
an alternate track, and continued processing of the file is
permitted.

If the declarative section is not included in the program and a
wrong length record occurs, IOCS issues an illegal supervisor CALL
of 32 which causes a storage dump.

2. If the declarative section is included in the program, and a read
or write error occurs that the programmer does not want canceled,
the declarative section is entered.

If a parity error occurs when a block of records is read (described

in 1 above), the disk block is reread 10 times. If the read error
persists, the disk block within which the error occurred is considered
a disk error block and a READ operation cannot be issued to the

error block. IOCS transfers control to the declarative section
procedures to be followed on an error condition.

In the case of a READ operation, normal return from the declarative
is to the IOCS subroutine invoked, thus bringing the next sequential
block into storage and permitting continued processing of the file.

If a parity error occurs when a block of records is written, IOCS
transfers control to the declarative section procedures to be
followed on an error conditien.

In the case of a WRITE operation, normal return from the
declarative is to the next instruction in the problem program.
The disk block that was to be written is bypassed.

3. In the case of a READ error, a return from the declarative
through the use of GO TO does not bring the next block into main
storage. Continued processing of the file is impossible and the
file must be closed.

In the case of a WRITE error, a return from the declarative through
the use 0of GO TO permits continued processing of the file. A
normal return from the declarative results in the record to be
written being bypassed.

DIRECT ACCESS FILE ORGANIZATION

1. If the declarative section is not included in the program and an
error is detected in the execution of a direct access operation,
the error is normally handled by COBOL object time subroutine
IHD03400. A diagnostic message is output indicating the type of
error and the file on which the error occurred.

2. If the declarative section is included in the program and an error
is detected in the execution of a direct access operation, the
programmer can interrogate bytes 254 and 255 of the DTF table to
determine the type of error. (See Altering DTF Table for a
technique of accessing the DTF table.) Interrogation can be
accomplished by using the CALL statement USING filename (thus
exiting from the declarative) and processing the error in a
subprogram. The user is responsible for writing the error checking
subprogram.

Programming Considerations 99

The error indications are:

For byte 254: X'40' - wrong length record
X'08' - no room found

For byte 255: X'80' - data check count
X'10' - data check in key
X'08' - no record found

Normal return from the declarative is to the next sequential
instruction in the problem program following the I/O operation.

Return from a declarative through the use of GO TO can be to any
location but the programmer should be aware that the record for the
last I/0 operation is not located.

INDEXED SEQUENTIAL FILE ORGANIZATION

1.

If the declarative section is not included in the program and an
error is detected in the execution of an indexed sequential access
operation, the error is normally handled by COBOL object time
subroutine IHD03500. A diagnostic message is output indicating
the type of error and the file on which the error occurred.

If the declarative section is included in the program and an error
is detected in the execution of an indexed sequential access
operation, the programmer can interrogate byte 30 of the DTF table
to determine the type of error. (See Altering DTF Table for a
technique of accessing the DTF table.) Interrogation can be
accomplished by using the CALL statement USING filename (thus
exiting from the declarative) and processing the error in a sub-
program. The user is responsible for writing the error checking
subprogram.

The error indications are:

byte 30 ADD, RETRVE, ADDRTR LOAD

X'80" Direct access device error Direct access device
error

X'40' Wrong length record Wrong length record

X'20! End of file Prime data area full

xX'10! No record found Cylinder index area
full

X'08" Master index area
full

X'o02" Overflow area full

Normal return from the declarative is to the next sequential
instruction in the problem program following the I/O operation.

Return from a declarative through the use of GO TO can be to any
location but the programmer should be aware that the record for the
last I/O operation is not located.

LABELING CONSIDERATIONS

PROCEDURE FOR BYPASSING NON-STANDARD LABELS

COBOL requires that labels be either standard or omitted. When non-
standard labels are used, a technique is required to bypass (or process)
them. To bypass non-standard labels on input, the following procedure
could be used:

100 DOS and TOS COBOL Prog. Guide

® Include an MTC FSF SYSnnn job control statement before the EXEC
statement in the job control stream.

® Specify LABELS ARE OMITTED and OPEN NO REWIND statements in the
COBOL source program.

An example of, COBOL statements and the job control statements for
bypassing non-standard labels follows:

COBOL Statements.

DATA DIVISION.

FD FILEA DATA RECORD IS RECORD-A, LABEL RECORDS ARE OMITTED,
RECORDING MODE IS F.

PROCEDURE DIVISION.
OPEN INPUT FILEA WITH NO REWIND.

Job Control Statements

// JOB MAIN
// ASSGN SYSnnn ...
// EXEC COBOL
COBOL Source statements
// EXEC LNKEDT
// MTC FSF,SYSnnn[,01]
// EXEC
/*
/&

Note: The parameter 01 in the MTC statement implies that the tape mark
following the file label will be detected.

IMULTIPROGRAMMING CONSIDERATIONS

When the COBOL programmer uses the multiprogramming capability, the
following points must be considered.

1. The COBOL compiler must always be executed as a background program.

2. Object programs produced by the COBOL compiler (linkage edited) can
operate as foreground programs with the following restrictions.

® With the exception of SYSLOG, no system logical units can be
referenced in foreground programs.

® The EXHIBIT and TRACE statements cannot be used in foreground
programs. (The output of these statements is given on the
system logical unit SYSLST.)

e The CONSOLE option of the ACCEPT and/or DISPLAY statements
nust be specified when these statements are used.

Note: 1In addition to the restrictions given above, object time messages
are output on SYS000 instead of SYSLST.

Programming Considerations 101

The programmer interested in the structure of main storage, and
storage requirements related to multiprogramming should read the
discussion Main Storage Organization given in Section IX.

PROCESSING INDEXED AND DIRECT FILES

Following is a discussion of what happens in Disk Operating System
COBOL when creating, retrieving, adding, or updating a file whose
data organization is specified as indexed or direct.

CREATING A SEQUENTIAL, INDEXED SEQUENTIAL FILE

To create a sequential, indexed sequential file, the following clauses
are required:

® ORGANIZATION IS INDEXED
® ACCESS IS SEQUENTIAL

® ASSIGN TO DIRECT-ACCESS
® RECORD KEY IS data-name

(The SYMBOLIC KEY may be specified.)

The programmer must then specify:
® OPEN OUTPUT file-name
® WRITE record-name [INVALID KEY]

® CLOSE file-name

OPEN Statement

The OPEN causes the label information for the file to be recorded in a
Volume Table of Contents (VTOC). It then initiates a checking proce-
dure that prevents writing on an existing file that might still be
active. 1In addition, OPEN establishes the area that is to be read on
the disk as specified in the XTENT statement (by the LOWER and UPPER
parameters). Finally, OPEN initializes the cylinder and track index
tables, which are eventually filled with the RECORD keys provided by
the programmer when the file is being created.

WRITE Statement

The WRITE enters into the track and cylinder index tables the keys
(RECORD KEY'S)} specified by the programmer and writes the actual data
on the portion of the track defined by the XTENT parameters (see OPEN
statement discussion for these parameters). The records are placed on
the track sequentially in an area referred to as the "prime data area".

If the user specifies INVALID KEY, control is given to the invalid

key routine whenever a duplicate record or a record out of sequence is
detected. The user is responsible for writing the invalid key routine,

102 DOS and TOS COBOL Prog. Guide

CLOSE Statement

The CLOSE removes the reference to the labels in the VTOC, updates
indexes (track and cylinder) and writes the end-of-file record. Once
the reference to the labels is removed from the VTOC, the file must be
opened again to be accessed. The index tables are updated each time a
block is written out (in the case of blocked records) or each time a
record is written (in the case of unblocked records). For a short
block, the CLOSE results in truncation of the area not used in the
block and in updating of the indexes (with the RECORD KEYs of those
records in the block).

Key Handling

During the creation of a sequential, indexed sequential file, the user
can control the ,RECORD KEY with certain restrictions:

® The RECORD KEY must be provided before execution of the WRITE. It
is part of the record and identifies the particular record in the
file.

e The RECORD KEY values must be given in ascending collating sequence.
e No two keys can be the same.

To extend a file previously created, the same clauses and control
statements (VOL, XTENT) used to create the file are required, with
the following exception: the parameter ISE should be used for the
'type' code in the DLAB statement instead of ISC (used for creating
the file).

Note that the record to be added must fit within the limits origi-
nally specified for the file by the XTENT statement. If it does not
fit, the file must be recreated.

The SYMBOLIC KEY is not required when creating a sequential, in-
dexed sequential file.

SEQUENTIAL RETRIEVAL OF AN INDEXED SEQUENTIAL FILE OR UPDATING AN
INDEXED SEQUENTIAL FILE

Sequential Retrieval

To retrieve an indexed sequential file sequentially, the following
clauses are required:

® ORGANIZATION IS INDEXED
® ACCESS IS SEQUENTIAL
e RECORD KEY IS data-name
(The SYMBOLIC KEY may be specified.)
To simply read the file, the programmer must specify:
e OPEN INPUT file-name
® READ file-name AT END

® CLOSE file-name

Programming Considerations 103

OPEN Statement: OPEN checks the labels of the files to be opened and
initializes the VTOC to indicate an active file. It also establishes
the area to be read as specified by the LOWER and UPPER limit parameters
of the XTENT statement. This initializes processing of the file as
follows:

e If the SYMBOLIC KEY is omitted, processing begins with the first
record of the file, and progresses sequentially.

e If the SYMBOLIC KEY is used and binary zeros are specified therein,
processing begins with the first record of the file, and progresses
sequentially.

e If the SYMBOLIC KEY is used and other than binary zeros are specified,
processing begins with the specified key and progresses sequentially.

READ Statement: The READ causes sequential retrieval of logical records
from the file until the end-of-file record is detected. At this time
control is given to the user routine specified by the AT END statement.

CLOSE Statement: The file is reset for future use.

Updating

To update an existing indexed sequential file, the same clauses needed
to retrieve the file are required (ORGANIZATION IS INDEXED, ACCESS IS
SEQUENTIAL, RECORD KEY IS) and the programmer must specify:

e OPEN I-O file-name

® READ file-name AT END

® REWRITE record-name [INVALID KEY]
@ CLOSE file-name

The OPEN and CLOSE statements function the same as for sequential
retrieval of an indexed sequential file. The READ also functions the
same (as for sequential retrieval) but must be used in conjunction with
the REWRITE as follows.

REWRITE Statement: The REWRITE writes the logical record (read by a
preceding READ statement) -back into the same physical location from
which it was originally retrieved. Thus, the REWRITE provides the
facility to update records in a file. Under no circumstances should
the user modify the RECORD KEY of the record being updated. Because
the INVALID KEY check is not exercised for sequential retrieval of an
indexed sequential file, results caused by modification of the RECORD
KEY prior to return of the record to the file are unpredictable.

Key Handling

During sequential retrieval of a file, limited control of the SYMBOLIC
and RECORD KEY is permitted. Thus, the SYMBOLIC KEY can be set before
the OPEN is executed, allowing processing to begin with any record
within the file. (Once the OPEN is completed, the SYMBOLIC KEY is not
needed.) The RECORD KEY, which must not be modified when updating a
file, can be referenced when retrieving a record for the purpose of
recognizing a particular record in the file.

104 DOS and TOS COBOL Prog. Guide

RANDOM RETRIEVAL OF AN INDEXED SEQUENTIAL FILE

To retrieve, randomly update, or add to an indexed sequential file, the
following clauses are required:

® ORGANIZATION IS INDEXED
® ACCESS IS RANDOM
® SYMBOLIC KEY IS data-name

® RECORD KEY IS data-name

Random Retrieval

To retrieve randomly, the following clauses must be specified:
e OPEN INPUT file-name
® READ file-name INVALID KEY
® CLOSE file-name
The OPEN and CLOSE statements function the same as for sequential
retrieval of an indexed sequential file. The clauses specified allow

random retrieval only. Before retrieval of each record, the SYMBOLIC
KEY must be provided.

Updating Randomly

To update an indexed sequential file randomly, the following clauses
must be specified:

® OPEN I-O file-name

® READ file-name INVALID KEY

® REWRITE record-name [INVALID KEY]
® CLOSE file-name

The OPEN and CLOSE statements function the same as for sequential
retrieval of an indexed sequential file. The READ retrieves the record
identified by the SYMBOLIC KEY. This key must be specified for every
READ and must be within the limits of the file (UPPER and LOWER limits
of XTENT), otherwise a 'NO RECORD FOUND' condition results. If this
occurs, control is given to the user's INVALID KEY routine.

The REWRITE clause permits random updating of records in a file. It
must be preceded by a READ, and the SYMBOLIC and RECORD KEYs must not
be modified before the REWRITE is executed. (NO INVALID KEY check is
available for the update function.)

Adding Randomly

To add to an indexed sequential file randomly, the same clauses needed
to retrieve the file are required, and in addition, the programmer must
specify:

® OPEN I-O file-name

® WRITE record-name [INVALID KEY]

® CLOSE file-name
Programming Considerations 105

The OPEN and CLOSE statements function the same as for sequential
retrieval of an indexed sequential file. Records can be added to an
existing file by means of the WRITE clause. The WRITE requires that
the RECORD KEY be initialized before the operation.

A duplicate key error results when a record being added has the same

RECORD KEY value as a record already in the file. This condition causes
control to be given to the user's invalid key routine.

Key Handling

The programmer must initialize the SYMBOLIC KEY with a key value prior
to every READ. The value must be equal to the record key within the
record to be retrieved. This key must be within the file limit (UPPER
and LOWER of XTENT), otherwise a 'NO RECORD FOUND' error condition
results. The RECORD KEY can only be used for record reference during
the retrieve and update functions. For the add function, this key must
be initialized before each write.

CREATING A DIRECT ORGANIZATION FILE
To create a direct file, the following clauses are required:
® ORGANIZATION IS DIRECT
® ACCESS IS SEQUENTIAL
® SYMBOLIC KEY IS data-name
® ACTUAL KEY IS data-name
The programmer must then specify:
e OPEN OUTPUT file-name
® WRITE record-name [INVALID KEY]

® CLOSE file-name

' OPEN Statement

The OPEN initializes the VTOC to indicate the presence of the labels
and checks the label area for a vaild output file. It also establishes
the limits of the file as defined in the XTENT statement. It checks

to be sure that the file limits specified do not overlap with an
existing file and completes the DTF (Define The File) table for the
file opened. Thus, it enters the system logical unit specified for

the file into the table. In addition, the OPEN initializes the
capacity records (RO) over the entire area of the XTENT(s) for the
output file.

WRITE Statement

The WRITE transfers the record to the DASD address specified in the
ACTUAL KEY. The specified SYMBOLIC KEY becomes a part of the record
in the file.

106 DOS and TOS COBOL Prog. Guide

Key Handling

When handling keys, the following restrictions are imposed:

1. The programmer must provide the SYMBOLIC KEY for every record
loaded.

2. When creating a file, no provision is made to prevent the addition
of a duplicate record.

CLOSE Statement

The CLOSE returns the track address of the end-of-file record in the
ACTUAL KEY.

SEQUENTIAL RETRIEVAL OF A DIRECT ORGANIZATION FILE

To retrieve a direct file sequentially, the following clauses are
required:

® ORGANIZATION IS DIRECT
® ACCESS IS SEQUENTIAL
® SYMBOLIC KEY IS data-name
® ACTUAL KEY IS data-name
The programmer must then specify:
® OPEN INPUT file-name
® READ file—-name AT END

® CLOSE file-name

READ Statement

The READ retrieves the file sequentially beginning with the lower XTENT.

OPEN, CLOSE
The OPEN checks labels on the label track and initializes the VTOC.

The limits of the XTENTs are established at this time. CLOSE is a
no-operation.

Key Handling

During sequential retrieval of a direct file, the SYMBOLIC and ACTUAL
KEY are ignored.

RANDOM RETRIEVAL, UPDATING AND ADDING TO A DIRECT FILE

To retrieve a direct file randomly, the following clauses are required:
® ORGANIZATION IS DIRECT

® ACCESS 1S RANDOM

® SYMBOLIC KEY IS data-name
Programming Considerations 107

e ACTUAL KEY IS data-name

The programmer must then specify:
e OPEN INPUT file-name
® READ file-name INVALID KEY

® CLOSE file-name

Random Retrieval

The READ retrieves a record from the information given in the SYMBOLIC
KEY. The search begins at the DASD address specified in the ACTUAL KEY.

Updating Randomly

To update randomly, the programmer must specify:
® OPEN I-O file-name

® READ file-name INVALID KEY

® REWRITE record-name [INVALID KEY]

® CLOSE file-name

When updating a file, the keys must not be modified.

Adding Randomly

The WRITE allows new records to be added to the file. When adding
records to an existing file, both the ACTUAL and SYMBOLIC KEYs must

be supplied. The record is written into the specified location. When
adding randomly to a direct file, no provision is made to prevent the
addition of a duplicate record.

OPEN, CLOSE
For random retrieval, the OPEN and CLOSE functions are the same as for

sequential retrieval of a direct file.

Key Handling

When a file is accessed randomly, both the ACTUAL and SYMBOLIC KEYs
must be initialized by the user before the READ or WRITE is specified.
The ACTUAL KEY contains the DASD address and the SYMBOLIC KEY identifies
the record within the file.

DIRECT ACCESS DATA ORGANIZATION CONSIDERATIONS

When the COBOL programmer defines files for direct access storage
devices (DASD) the following points must be considered.

1. For processing a file whose organization is direct, up to five
extents are permitted. For processing a file whose organization
is indexed, up to 11 extents are permitted.

2. When sequential retrieval is indicated, a record must appear on
the first track of every cylinder.

108 DOS and TOS COBOL Prog. Guide

For direct organization files, an end-of-file (EOF) is written
on the last track if the last extent specified for the file.

The verify option assumed by the compiler (verification consists
of IOCS checking to be sure that a record written out is correct)
can be changed so that verification is suppressed. Suppression
of the verify option could result in improved program performance.
Prior to OPEN, the fourth byte of the Define The File (DTF)] table
controls the verify option for direct access and indexed
sequential organized files. Changing the value of the fourth
byte to X'00' suppresses the verify option. See Altering DTF
Table for the procedure to change this byte.

For an indexed sequential file, COBOL presumes the absence of a
master cylinder index. 1Its presence can be indicated by changing
the value in the twenty-first byte of the DTF table prior to
OPEN. For a 2311, change the contents of the twenty-first byte
to X'F2', and for 2321 change its contents to X'02'.

Prior to open, the twenty-second byte of the DTF table for
indexed sequential data organization contains the number of over-
flow tracks assumed per cylinder. The number of overflow tracks
is equal to 20% of the tracks per cylinder. The programmer may
change this value if he wishes by writing a subprogram that
changes the value of the twenty-second byte in the DTF table
before the OPEN. See Altering DTF Table for the procedure to
change this byte.

For direct files, the ACTUAL KEY must be provided before the record
is processed. (See Coding ACTUAL KEY for 2311 Disk Pack and 2321
Data Cell, and Updating ACTUAL KEY for 2321 Data Cell.)

When processing files, the following IOCS error indications will
cause COBOL to go to the INVALID KEY routine.
When organization is direct and:
a. no room is found during an update (WRITE or REWRITE).
b. no record is found during retrieval (READ).
When organization is indexed sequential and:
a. a duplicate record exists (duplicate key) (WRITE).

b. when building a file, a record is out of sequence
(sequence check) (WRITE).

c. no record is found during retrieval (READ).

Programming Considerations 109

MULTIPLE ENTRY POINTS

When more than one type of retrieval is specified for direct access files
in a program, an indication of duplicate entry points may be given at
linkage edit time. If duplicate entry points occur, the user must con-
struct and include a supersetted LIOCS module that contains the individual
modules.

The following example shows how:

1. The module containing the duplicate entry point can be identified,
and

2. the supersetted module is built, and included in the COBOL object
program in place of the individual modules.

If a number of direct files are defined to be used by the same pro-
gram, the following linkage editor diagnostics might be obtained (they
are included in the DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT).

JOB CEFII002 10/27/66 DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT

ACTION TAKEN MAP
LIST PHASE COMPLDGO,»

LIST INCLUDE IHDO2800 CEF10001
LIST INCLUDE IJJCPD1 . . .

LIST INCLUDE 1HDO03500 (!nformation supplied by COBOL compiler CEF10002
LIST INCLUDE IHDO3700 CEF10003

LIST AUTOLINK I1JFFBCZZ

LIST AUTOLINK 1JHUARZZ
LIST AUTOLINK IJHZLZZZ} Information supplied by Linkage Editor

LIST AUTOLINK 1JHZRBZIZ
21431 15050027 ESD u0uO40 0010 0001 IJHZRBZZ O 000000 009500 IJHZRRZZ 1 000000 000010 IJHZRSZZ 1 000000 000001
e/

LIST AUTOLINK I JHZRSZZ Duplicate entry point
LIST ENTRY

10/27/66 PHASE XFR-AD LOCORE HICORE OSK-AD ESD TYPE LABEL LOADED REL-FR

COMPLDGO 007000 005080 O0OAO7F 3A 7 2 CSECT 1JJCPDI 005080 005080
ENTRY TJJCPDIN 005080
= ENTRY 1JJCPD3 005080

CSECT IHD02800 005240 005240
ENTRY I1HD02801 005240
ENTRY 1HD02802 005270

CSECT IHDO3500 0053A8 005348
ENTRY IHDO3501 0053A8
ENTRY 1HD03502 0053BC

CSECT IHDO3700 005680 005680
ENTRY IHDO3701 005680
ENTRY IHDO3702 005690

CSECT CEFII002 0057A0 0057A0
CSECT IJFFBCZZ 00B4FO0 0QO0BUFO
+ ENTRY 1JFFBZZZ O0OBLFO
ENTRY IJFFZCZZ O0O0BLFO
ENTRY [IJFF2Z2Z O0O084FO
CSECT I1JHZRSZZ 009C70 009C70
CSECT 1JHZRBZZ 0095D0 009500

Module containing duplicate entry point o ¢ ooy 1JHUARZZ 008820 008820

ENTRY 1JHZRRZZ 008820
Duplicate entry point =5 ENTRY 1JHUIZZZ 008820

CSECT 1JHZLZZZ 0092A0 009240

110 DOS and TOS COBOL Prog. Guide

Notice that the LIOCS modules are separately included in the program
{see AUTOLINK IJ..... entries near the top of the listing). When the
modules are linkage edited with the COBOL program, an indication of a
duplicate entry point may be given. The duplicate entry point is in-
cluded in the line of print identified by the message number 2143I and
belongs to the module IJHZRBZZ. This message number is listed in the
operating guide for the system, and indicates an invalid duplication
of entry point label.

The user can identify the module containing the duplicate entry
point and build a supersetted module as follows.

Compare the IJH..... (entry points) given in the line next to the
message number, to the ENTRY points given in the LABEL column part of
the listing.

In this§ example, the duplicate ENTRY point is ENTRY IJHZRRZZ (the
second one in the 2143I line of print, and the third one from the
bottom in the LABEL column listing). Thus, this duplicate entry point
is in the module CSECT IJHUARZZ (see the entry just above IJHZRRZZ in
the LABEL column listing). The module should also be among those
given in the AUTOLIST list.

From this module (IJHUARZZ) and module IJHZRBZZ, a supersetted
module must be formed as follows. Use the first three characters of
the module name for the functions used. In this case, they would
by IJH. Then use the lowest letter, between the two modules, for
each of the next five character positions, as follows:

IJHEHUARZIZ
v
IJHUABZ?1Z Supersetted module
t
I JHZRBZ1Z

Thus, the name of the supersetted LIOCS module that contains the
individual modules (IJHUARZZ and IJHZRBZZ) is IJHUABZZ.

The supersetted module can then be included with the COBOL object
program at linkage edit time instead of the individual modules
(IJHUARZZ and IJHZRBZZ) by inserting an INCLUDE card before the
linkage edit function as follows:

INCLUDE IJHUABZZ

// EXEC LNKEDT
CODING ACTUAL KEY FOR 2311 DISK PACK AND 2321 DATA CELL.

When creating or processing direct access files, the programmer is
responsible for providing the ACTUAL KEY, in binary, for each record to
be processed. The ACTUAL KEY is an eight-byte field that contains
specific byte specifications and limits depending on whether the device
used is a 2311 Disk Pack or 2321 Data Cell.

The ACTUAL KEY field must be defined before a record can be processed.
The structure and examples of code for the eight-byte ACTUAL KEY field
for both the 2311 and 2321 direct access devices follow.

Specification for 2311 Disk Pack:

Pack Ceil Cylinder Head Record
Number | (BB) (ce) (HH) (R)
(M)

Byte 0 12 3 4 5 6 7

Position |
0-244 00 0 0-199 0 0-9 0-255

Programming Considerations 111

An example of a method of coding the eight-byte ACTUAL KEY in
binary, using COBOL, for the 2311 Disk Pack is:

01 BINARY-KEY-RECORD.
02 MM USAGE IS COMPUTATIONAL PICTURE IS 999 VALUE IS O.
02 BB USAGE IS COMPUTATIONAL PICTURE IS 9 VALUE IS 0
02 CC USAGE IS COMPUTATIONAL PICTURE IS 999 VALUE IS 10.
02 HH USAGE IS COMPUTATIONAL PICTURE IS 9 VALUE IS 0.
02 REC-R PICTURE IS X VALUE IS LOW-VALUE.
01 KEY-AS-ACTUAL REDEFINES BINARY-KEY-RECORD.
02 FILLER PICTURE IS X.
02 THE-ACTUAL-KEY PICTURE IS X(8).

Although the ACTUAL KEY field consists of eight bytes, nine bytes are
defined by the given code. The 02 MM defines two bytes, the first

byte of which is disposed of by the 02 FILLER PICTURE IS X in the
REDEFINITION statement. Thus, the code defines an eight-byte binary field
called THE-ACTUAL-KEY which is used by IOCS to access records. A picto-
rial structure of THE-ACTUAL-KEY field defined by the code follows:

Pack Cell Cylinder Head Record
Number (BB) (ce) (HH) (R)
(M)
0 1 2 3 4 5 6 7
0 0 o 0 10 0 O 0

Specification for 2321 Data Cell is:

Pack Cell Cylinder Head Record
Number (BB) (cc) (HH) (R)
(M)
Sub Strip | Head|Head
Cell Bar |Element
Byte 0 1 2 3 4 5 6 7
Position
0-244 0 |0~-9 0-19 | 0-9 0-4 |0-19 0~255

An example of a method of coding the eight-byte ACTUAL KEY in binary,
using COBOL, for the 2321 Data Cell is:

01 BINARY-KEY-RECORD.
02 MM USAGE IS COMPUTATIONAL PICTURE IS 999 VALUE IS 0.
02 BB USAGE IS COMPUTATIONAL PICTURE IS 9 VALUE IS 0.
02 CC USAGE IS COMPUTATIONAL PICTURE IS 9999 VALUE IS 1.
02 HH USAGE 1S COMPUTATIONAL PICTURE IS 999 VALUE IS 0.
02 REC-R PICTURE IS X VALUE IS LOW-VALUE.

01 KEY-AS-ACTUAL REDEFINES BINARY-KEY-RECORD.
02 FILLER PICTURE IS X.
02 THE-ACTUAL-KEY PICTURE IS X(8).

Notice that just as for the 2311, nine bytes are defined and then
redefined to eliminate the first byte, leaving eight bytes. Thus, the
code defines the ACTUAL KEY which is used by IOCS to access records.

A pictorial structure of THE-ACTUAL-KEY field as defined by the given
code follows:

Pack Cell j Cylinder Head Record
Number | (BB) (cc) (HH) (R)
(M)
Sub | Strip | Head | Head
Byte Cell Bar Element
Position 0 1 2 3 4 5 6 7
0 01{0 0 1 0 0 0

112 DOS and TOS COBOL Prog. Guide

As records are processed, IOCS automatically updates Record (R)
(REC-R). When the desired number of records are processed within the
defined area of a strip, or no more room is available in a strip area,
the next head element must be accessed in order to continue processing
on that strip. When all head elements have been used, the next head
bar must be accessed, making 20 new head elements available. Thus, 256
records can be accessed per head element and 20 head elements per head
bar. Also, 5 head bars can be accessed per strip, 10 strips per sub-
cell, and 10 subcells per pack. The number of packs available are 255.

EXAMPLE OF UPDATING ACTUAL KEY

Once the programmer defines an ACTUAL KEY for the 2311 Disk Pack or
2321 Data Cell, it must be updated before each record is processed.
The ACTUAL KEY for the 2311 can be updated by conventional methods of
incrementing (adding one to the byte position of interest). However,
when updating the ACTUAL KEY for the 2321, conventional methods of
incrementing do not allow use of the high order byte positions for the
head bar, strip etc. These can be accessed only by forcing a binary
overflow into their high order byte positions. The following is an
example of a method for updating the ACTUAL KEY for the 2321 (which
must be a binary number). Assume that an ACTUAL KEY was defined so that
cylinder strip byte position 4 equals 1, and all other bytes are equal
to zero, the code to increment the head element is:

A2.

ADD 1 TO HH. (Increments the head element. This is defined as the
head element in the code defining the ACTUAL-KEY for
the 2321 Data Cell.)

A3.
PERFORM A2 20 TIMES. (The maximum number of head elements is 20.)
ADD 236 TO HH. (This causes a binary overflow from head element
. byte position 6 to head bar position 5.)
Ad,

PERFORM A3 4 TIMES. (The maximum number of head bars is 5.)

ADD 1 TO CC. (Increments strip.)

MOVE ZERO TO HH. (Resets head element to zero.)

When all the strips are used (there are 10 strips), the next subcell
must be accessed. This can be done by forcing a binary overflow similar
to that demonstrated for the head (HH). To accomplish this add 236 to
10 (strips), forcing a one into byte position 3 (subcell). Cells (BB),
and Packs (M) can be accessed through conventional methods of increment-
ing.

ALTERING DTF (DEFINE THE FILE) TABLE (Disk System Only)

The programmer interested in suppressing the verify option or changing
the number of overflow tracks per cylinder may do so by changing the
appropriate byte(s) in the DTF table in one of the following ways:

® Writing a COBOL main program to access the DTF table and a COBOL
subprogram to change the DTF table.

® Writing a COBOL main program to access the DTF table and an
assembler subprogram to change the DTF table.

Programming Considerations 113

Example Using COBOL

Define, CALL and operate on a dummy DTF table as follows.

In a COBOL subprogram called 'CHGPRG', define a dummy DTF and entry
point:

In the LINKAGE SECTION, write:
01 DTF-FOR-FILEA
Dummy DTF
02 BYTE PICTURE X OCCURS 125.

In the PROCEDURE DIVISION, write:

ENTER LINKAGE.
ENTRY 'CHGPRG' USING DTF-FOR-FILEA.
ENTER COBOL.

MOVE ZERO TO BYTE(4),
In the main COBOL program define and CALL the subprogram:

In the DATA DIVISION, write:
FD FILEA.

In the PROCEDURE DIVISION, write:
ENTER LINKAGE.

CALL 'CHGPRG' USING FILEA.

ENTER COBOL.

When the CALL is executed, the address of the first byte of the DTF
table is stored in the location for FILEA. The MOVE ZERO TO BYTE(4)
statement in the COBOL subprogram initializes the fourth byte in the
DTF table. To alter the twenty-second byte of the DTF table, a similar
MOVE statement could be written. For example:

MOVE ANY-VALUEX TO BYTE(22).

Note: The byte count of a DTF table begins with zero, thus byte 22
is actually the twenty-third byte of the table.

Example Using Assembler

Define and CALL a file in a COBOL main program.

In the DATA DIVISION, write:
FD FILEA (Defined file)

In the PROCEDURE DIVISION, write a CALL that specifies the file in
the USING portion of the CALL statement:

PROCEDURE DIVISION.

ENTER LINKAGE. (Call that links to
CALL 'CHGPRG' USING FILEA. assembler subprogram
ENTER COBOL. ' CHGPRG')

When the CALL is executed, the first address of the DTF table is stored
at the storage location for FILEA. Access to any byte in the DTF table
can be accomplished by an assembler subprogram. It is the programmers
responsibility to write all the code (assembler language subprogram
included) for both methods of accessing and altering the COBOL DTF table.

114 DOS and TOS COBOL Prog. Guide

SECTION IX. DISK AND TAPE CPERATING SYSTEMS ENVIRONMENT

The Disk and Tape Operating Systems are a group of processing programs
with the control programs necessary to maintain their continuous opera-
tion. They are self-contained systems and require a minimum of operator
intervention. Figure 17 is a flow diagram of Disk and Tape Operating

Systems.
(Manual IPL >
IPL Loader
Supervisor
Job Control
(Next Job) | SYSRDR Empty)
Job Control
(Next Job Step)

y) y
System Language Service User
Service Translators Programs Problem
Programs Programs

YES /8 Card \\NO

Figure 17. Disk and Tape Operating System Flow

DOS & TOS Environment 115

The processing programs consists of language translators and service
programs. The group of processing programs can be expanded by adding
user-written problem programs (Figure 18). The control program, which
constitutes the framework of the Disk and Tape Operating Systems, con-
sists of three components: supervisor, job control, and initial program
loading (IPL) loader. These components prepare and control the execu-
tion of all processing programs and problem programs within the system.
The system service programs consists of the linkage editor and the
librarian. These programs are used in generating the systems, and
creating, editing, and maintaining the libraries in the resident
systems.

For disk and tape operating systems having a main storage equal to or
in excess of 32K, multiprogramming support is available. There are
two types of problem programs in multiprogramming: background and fore-
ground.

Foreground programs do not execute from a stack, but are expicitly
initiated by the operator. Background and foreground programs begin
and end asynchronously from each other. The systems are capable of
concurrently operating one background and one or two foreground
programs.

The structure of the control program, system service programs, and
processing programs is depicted in Figure 18.

Basic Operating System

CONTROL SYSTEM SERVICE PROCESSING
PROGRAM PROGRAMS PROGRAMS
IPL LINKAGE LANGUAGE
LOADER EDITOR TRANSLATORS

i SUPERVISOR L LIBRARIAN] Assembler

COoBOL

FORTRAN
| JOB CONTROLI RPG

PL/T

SERVICE PROGRAMS

Autotest
Sort/Merge
Utilities

USER-WRITTEN
PROBLEM PROGRAMS

Figure 18. Disk and Tape Operating Systems

116 DOS and TOS COBOL Prog. Guide

FUNCTIONAL RELATIONSHIPS OF THE SYSTEM COMPONENTS

To make full use of the Disk and Tape Operating Systems COBOL, the pro-
grammer should be familiar with:

1. Each system component
2. The function of each component
3. The interaction of the components in the total system.

The remainder of this section is intended to acquaint the reader
with each of these three. For a thorough understanding of these
components, the user should familiarize himself with the publication,

System Control and System Service Programs, listed on the cover of this
manual.

CONTROL PROGRAM

To provide optimum operating efficiency, some programmed control over
the operation of the system is required. Without such programmed con-
trol, the system is frequently idle and requires the intervention of an
operator to locate and load successive programs in addition to perform-
ing other required setup functions, such as changing tape reels. An
orderly and efficient flow of jobs through the system is maintained by
using a control program that provides the job-to-job transition.

Disk and Tape Operating Systems contain such a control program. It
provides automatic transition from program phase to program phase within
a processing program, and from processing program to processing program
within a continucus processing environment. Once the system has been
initialized, job after job can be included in the input job stream.

The component parts of the control program are:
& IPL Loader
® Supervisor

e Job Control.

IPL LOADER

Operation of IBM System/360 Disk and Tape Operating Systems is initi-
ated through an initial program load (IPL) procedure from the resident
system. The IPL loader is loaded into main storage from the resident
system simply by selecting the address of the unit in the load-unit
switches on the system console, and pressing the load key. The loader
then reads the nucleus of the supervisor into low main storage from the
resident system. After successfully reading in the supervisor nucleus,
the IPL loader performs certain initializing and housekeeping functions,
then, control is transferred to the supervisor, which uses the system
loader routine to issue a call for job control.

DOS & TOS Environment 117

SUPERVISOR

The supervisor is the control program that operates with the problem
programs. It consists of two types of routines: Permanent, which are
loaded into main storage during the IPL process and remain there
throughout system operation until main storage is cleared, and tran-
sient routines, which remain on the disk or tape system until needed,
and are then retrieved and loaded into a common transient area. For
example: The interruption prqQcessing routines are permanent, and the
OPEN and CLOSE routines are transient.

During execution of a processing program, control alternates between
the processing program and the supervisor.

In a mgltiprogramming environment, control always passes to the
progrgm_w1th the highest priority. Priority is assigned according to
classification of programs as follows:

1. Supervisor (highest priority)

2. Operator communication routine

3. Foreground-one program

4. Foreground-two program

5. Background program (lowest priority)

The area occupied by the background program begins just past the
transient area. The background program area must be a minimum of 10K
bytes. '(Disk Operating System COBOL requires a minimum of 14K bytes to
perform its functions.) Following the background program area is the
foreground-two program area. This area must be defined in increments
of 2K. (Storage protection requires that main storage be divided into
blocks of 2K bytes.) Following the foreground-two program area is the
foreground-one program area. The foreground-one area must also be
defined in increments of 2K. The minimum size of a foreground area is
O0K; the maximum is 510K. Figure 19 illustrates the relationship between
the supervisor and the problem program areas.

JOB CONTROL

The job control program provides job-to-job transition within Disk and
Tape Operating Systems. It also is called into main storage to prepare
each job step to be run. (One or more programs can be executed within a
single job. Each such execution is called a job step.) It performs its
functions between job steps and is not present while a problem program
1s being executed.

SYSTEM SERVICE PROGRAM

The system service programs provide the functions of generating the
system, creating and maintaining the library sections, and editing pro-
grams on disk or tape before execution. Minimum systems can be built
that do not include the system service program. Such minimum systems
will require disk or tape residence.

118 DOS and TOS COBOL Prog. Guide

Low Limit of
Supervisor Nucleus Main Storage

Super visor D S

Transient Area

Label Areas
Reserved if Any

Background - Program Area

Foreground - Two
Program Area

Foreground - One . L
Program Area High Limit of

Main Storage

Figure 19. Major Divisions of Main Storage for Disk and Tape
Operating System
The system service programs are:
1. Linkage Editor
2. Librarian
a. Core Image Library
b. Source Statement Library

c. Relocatable Library

LINKAGE EDITOR

Disk Operating System

All programs executed in the Disk Operating System environment must be
edited by the linkage editor. The linkage editor reads the relocatable
output of the language translators and edits it into executable, non-
relocatable programs in the core image library. Once a program has
been edited, it can be executed immediately, or it can be cataloged as
a permanent entry in the core image library. When a program has been
cataloged in the core image library, the linkage editor is no longer
required for that program. The program is run as a distinct job step
and is loaded directly from the resident pack by the system loader.

DOS & TOS Environment 119

Tape Operating System

Programs executed in the Tape Operating System environment are processed
the same as those residing in the disk system enviromment with the fol-
lowing exception.

All programs to be linkage edited in the Tape Operating System are
written onto SYSLNK tape. This tape is the input to linkage ed%tor.
After all programs are linked and edited, these programs are written-back
onto SYSLNK for execution.

LIBRARIAN

This is actually a group of programs used for maintaining tape libraries,
and providing printed and punched output from the libraries.

The three libraries are:
Core image library

Source statement library
Relocatable library.

Core Image Library

All permanent programs in the system (IBM-supplied and user programs)
are loaded from this library by the system loader routine of the super-
visor. The core image library is required for each disk or tape resi-
dent system. The core image library contains any number of programs,
each of which is edited to run with the resident supervisor. Each pro-
gram is made up of one or more separate phases (defined in Section I).
Associated with each phase is a header record that contains a complete
description of the phase.

Source Statement Library

This library is used to store IBM-supplied macro definitions and user-
defined source statements (such as COBOL data definitions) on the disk
or tape built to provide extended program compilation capability. The
source statement library is not required for operating a system. The
purpose of the source-statement library is to provide such information
as standard installation file descriptions to reduce the required
amount of coding for each individual program. The source statement
library contains any number of books. Each book in the source state-
ment library is made up of a sequence of source language statements.
Each book is classified as belonging to a specific sub-library. Sub-
libraries are defined for two programming languages, assembler and
COBOL. Books entered into the source statement library are copied into
the source program when the COPY or INCLUDE function of a COBOL language
compiler are used.

Associated with the source statement library are a source statement
directory and a header record for each book in the library. Entries
in the directecry define each sub-library and the books associated with
each sub-library. Associated with each book is a header record that
contains a complete description of the book.

Relocatable Library

This library is used to store object modules (defined in Section I)
that can be used for subsequent linkage with other program modules. A
module also can be a complete program. The relocatable library is not
required for operating a system.

120 DOS & TOS COBOL Prog. Guide

The purpose of the relocatable library is to allow the user to main-
tain frequently used routines in residence and combine them with other
modules without requiring recompilation. The routines from the reloca-
table library are edited on SYSLNK by the linkage editor.

The relocatable library contains any number of modules. Each module
is a complete object deck in the relocatable format.

Librarian Functions

Each system-residence device contains one to three libraries: core
image (required), relocatable, and source statement. As their names
imply, executable programs (core-image format) are stored in the core
image library; relocatable object decks are stored in the relocatable
library; and, source language routines are stored in the source state-
ment library. :

The librarian is a group of routines that maintain and service the
libraries of the system. The maintenance routine in both systems, disk
and tape, provides for cataloging (adding) and deleting. In the disk
system, the maintenance function also provides the ability to rename,
condense, and reallocate. The service routines provide for displaying
(printing) and punching elements of the relocatable and source statement
libraries. Since the system does not load absolute card decks, no
facility is provided for punching or displaying elements of the core
image library. Both systems provide for copying any or all of the
library components.

PROCESSING PROGRAMS

Three types of processing programs are contained in the Disk and Tape
Operating Systems:

e Language translators
® Service programs

e User programs

Language Translators

Several translators are available for translating user-written source
programs into relocatable object programs. All of the translators re-
quested by the user are stored in the Relocatable Library when the sys-
tem disk or tape arrives at an installation. The assembler (required
for system generation) is in both the Relocatable Library and the Core
Image Library. Wwhen the system is tailored at the installation, the
desired translators must be cataloged into the core image library. All
translators take advantage of the IOCS included in the Disk and Tape
Operating Systems.

The language translators for the disk/tape system are: assembler,
COBOL, FORTRAN, RPG (report program generator), and PL/I.

DOS & TOS Environment 121

Service Programs

The service programs are initially contained in the relocatable
library. They must be cataloged into the core image library before
being executed.

1. Autotest: The autotest program provides debugging functions within
the Disk and Tape Operating Systems. The COBOL user would not be
concerned with autotest because COBOL makes available to the user
its own debugging packet in a form familiar to COBOL users. The
COBOL debugging language is described in the publication COBOL Lan-
guage Specifications, listed on the cover of the manual. For a
complete description of the autotest program, see IBM System/360
Disk and Tape Operating Systems, Autotest Specifications,” Form
C24-3441.

2. Sort/Merge: The IBM System/360 Disk and Tape Operating Systems Tape
Sort/Merge Programs enable the user to sort files of random records,
or merge multiple files of sequenced records, into one sequential
file. The program is designed to satisfy the sorting and merging
requirements of disk or tape-oriented installations with 16K and
above bytes of main storage. For a basic understanding of the use
of this program see IBM System/360 Disk and Tape Operating Systems
Tape Sort/Merge Program Specifications, Form C24-3438, or IBM System/
360 Disk Operating System, Sort/Merge Program Specifications, Form
C24-3444.

3. Utility Programs: These programs provide for file-to-file transi-
tion for data files of almost any format. They are generalized
programs and must be tailored by control-statement information to
fit specific data files. For a complete description of the utility
programs, see IBM System/360 Disk and Tape Operating Systems Utility
Programs Specifications, Form C24-3465.

User Programs

These programs, supplied by the user, are programs written in the
language of the user's choice.

INSTALLATION--TAILORED SYSTEMS

The value of the Disk and Tape Operating Systems depends to a large ex-
tent on the specific requirements of an installation and how closely the
services provided by the system meet such requirements. If a facility
provided by a system is not required for a particular application, it
need not use storage space. Therefore, the disk and tape systems are
designed to enable individual facilities to be selected on the basis of
whether they are required at a particular installation or for a parti-
cular application within an installation.

The optimum system for a given application or group of applications
is influenced by a number of factors. Foremost among these factors is
the system configuration.

The larger systems, those with a disk or tape drive allocated pri-
marily to system residence, permit the user to take full advantage of
the complete Disk and Tape Operating Systems.

For a complete description of the features included in a system re-
fer to the IBM publication System Generation and Maintenance listed on
the cover of this manual.

122 DOS and TOS COBOL Prog. Guide

APPENDIX A. CONSIDERATIONS WHEN USING ASSEMBLER WITH COBOL FOR
OVERLAYS

This appendix contains:

® An example of a printout of an assembler routine effecting overlays
specified by a COBOL Disk and Tape Operating Systems program.

® Explanations of the functions performed by the assembler overlay sub-
routine instructions. The explanations are keyed to the instructions
in the listing.

® Information needed to prepare and use subprograms written in assem-~
bler language with a main program written in COBOL.

ASSEMBLER ROUTINE FOR EFFECTING OVERLAYS

The following overlay subroutine is an example and is governed by the
following restrictions:

1. The example is a suggested technique, and not the only technique.

2, It can be used for assembler overlays if statement 30 is deleted and
if the user has a desired entry point in his end card.

3. The subroutine cannot be used for entry points other than at the
first instruction of the procedure division. A suggested technigque
for diverse entry points is a table lookup employing V-type constants.

4. Deletion of statement 30, i.e., LA 15,40(15) could result in looping
or a process error in the subprogram.

5. The number of bytes of initialization generated by the compiler
(i.e., the 40 in statement 30 of the example) may change in subsequent
modification of the compiler. This number was 32 in version 1 of
DOS/TOS COBOL.

STMNT SOURCE STATEMENT

0001 OVRLAY START 0
0002 ENTRY OVRLAY

0003 * AT ENTRY TIME

0004 * . Rl = POINTER TO ADCON LIST OF USING ARGUMENTS FIRST ARGUMENT
0005 * IS PHASE OR SUBROUTINE NAME, MUST BE 8 BYTES

0006 * R13 = ADDRESS OF SAVE AREA

0007 * R14 = RETURN POINT OF CALLING PROGRAM

0008 * R15 = ENTRY POINT OF OVERLAY PROGRAM

0009 * AT EXIT

0010 * Rl = POINTER TO SECOND ARGUMENT OF ADOCN LIST OF USING ARGUMENTS
0011 * Rl14 = RETURN POINT OF CALLING PROGRAM~--NOT THIS PROG

0012 * R15 = ENTRY POINT OF PHASE OR SUBPROGRAM

0013 * RO IS DESTROYED BY THIS ROUTINE

0014 USING *,15

0015 ST 1,sAvE

0016 L 1,0(1) R1 = ADDRESS OF PHASE NAME

0017 CLC 0(8,1) ,CORSUB IS IT IN CORE

0018 BE SUBIN YES

0019 MVC CORSUB (8) ,0 (1) NO, CORSUB = PHASE NAME

0020 SR 0,0 RO =0

0021 * LOAD REQUIRES RO = 0 IF LOAD ADDRESS
0022 * ISNT SPECIFIED, Rl = ADDRESS OF
0023 * PHASE NAME. Rl = PHASE ENTRY
0024 * UPON RETURN

Appendix A 123

STMNT SOURCE STATEMENT

0025 svC 4 LOAD PHASE

0026 ST 1,ASUB ASUB=ENTRY POINT OF PHASE

0027 SUBIN L 1,SAVE Rl = POINTER TO SECOND ADCON OF

0028 LA 1,4(1) USING LIST--BYPASSES PHASE NAME
0029 L 15,ASUB R15 = ENTRY POINT OF PHASE

0030 LA 15,40(15) BYPASS COBOL INITIALIZATION IN SUBPROGRAM
0031 BR 15 BRANCH TO SUBROUTINE, RETURN WILL BE
0032 * TO PROGRAM WHICH CALLED OVRLAY
0033 DS OF

0034 SAVE DC 4AX'FF' REGISTER SAVE AREA

0035 ASUB DC 4X'FF'! ADDRESS OF SUBROUTINE

0036 CORSUB DC 8X'FF' NAME OF SUBROUTINE IN CORE

0037 END

FUNCTIONS OF OVERLAY ROUTINE INSTRUCTIONS

The instructions of the overlay routine perform the following functions:

0015 - Saves the address of the PARAMETER LIST

0016 - Loads the address of the PARAMETER LIST

0017 - Checks to see if program is already in overlay area

0018 - If it is, OVERLAY branches directly to subprogram

0025 - OVERLAY the issues OVERLAY CALL

0026 - Saves lst address of overlaying and subprogram

0027 - Loads address of parameter table

0028 - Indexes and loads address of first parameter

0029, 0030, 0031 - Branches to subprogram to execute procedural steps

0033,37 - Defines storage, defines constants and end of routine
instruction.

ASSEMBLER LANGUAGE SUBPROGRAMS

CALLED AND CALLING PROGRAMS

Any program referred to by another program is a called subprogram. If
this called subprogram refers to another subprogram, it is both a called
and calling subprogram. In Figure 20, program A calls subprogram B;
subprogram B calls subprogram C; therefore:

1. A is considered a calling program by B.

2. B is considered a called subprogram by A.

3. B is considered a calling subprogram by C.

4. C is considered a called subprogram by B.

A B C

Calling Called

program subpro-

of B - gram of
A
Calling Called
subpro- > subpro-
gram of gram of
C B

Figure 20. Called and Calling Programs
124 DOS and TOS COBOL Prog. Guide

There are three basic ways to use assembler-written subprograms with
a main program written in COBOL:

1. A COBOL main program or subprogram calling an assembler-written
subprogram.

2. An assembler-written subprogram calling a COBOL subprogram.

3. An assembler-written subprogram calling another assembler-written
subprogram. -

From these combinations, more-complicated structures can be formed.
The Disk and Tape Operating Systems have established certain conven-~
tions to give control to and return control from assembler-written sub-

programs. These conventions, called linkage conventions, are described
in the following text.

LINKAGE CONVENTIONS

The save and return routines for assembler subprograms need not be
written exactly the same as those generated by the COBOL compiler.
However, there are basic conventions for COBOL programs to which the
assembler programmer must adhere. These conventions include:

1. Using the proper registers to establish linkage.

2. Reserving, in the calling program, an area that is used by the
called subprogram to refer to the argument list.

3. Reserving, in the calling program, a save area in which the regis-
ters may be saved.

Register Use.

The Disk and Tape Operating Systems have assigned functions to certain
registers used in linkages. The function of each linkage register is
shown in Figure 21.

REGISTER REGISTER NAME FUNCTION
NUMBER
1 Argument List Address of the argument list passed
Register to the called subprogram.
13 Save Area Address of the area reserved by the
Register calling program in which the contents

of certain registers are stored by
the called program.

14 Return Register Address of the location in the cal-
ling program to which control is
returned after execution of the
called program.

15 Entry Point Address of the entry point in the
Register called subprogram.

Figure 21. Linkage Registers

Appendix A 125

Argument List

Every assembler-written subprogram that calls another subprogram must
reserve an area of storage (argument list) in which the argument list
used by the called subprogram is located. Each entry in the parameter
list occupies four bytes and is on a full-word boundary.

In the first byte of each entry in the parameter list, bits 1 through
7 contain zeros. However, bit 0 may contain a 1 to indicate the last
entry in the parameter area.

The last three bytes of each entry contain the 24-bit address of the
argument.

Save Area

An assembler subprogram that calls another subprogram must reserve an
area of storage (save area) in which certain registers (i.e., those
used in the called subprogram and those used in the linkage to the
called subprogram) are saved.

The maximum amount of storage reserved by the calling subprogram is
18 words. Figure 22 shows the layout of the save area and the contents
of each word.

AREA
(word 1) This word is a part of the standard linkage
convention established under the disk and
tape operating systems. The word must be
reserved for proper addressing of the succeed-
ing entries. However, an assembler subpro-
gram may use the word for any desired purpose.
AREA+4
(word 2) The address of the previous save area; that
is, the save area of the subprogram that
called this one.
AREA+8
(word 3) The address of the next save area; that is,
the save area of the subprogram to which
this subprogram refers.
AREA+12
(word 4) The contents of register 14; that is, the
return address.
AREA+16
(word 5) The contents of register 15; that is, the
entry address.
AREA+20
(word 6) The contents of register 0.
AREA+24
(word 7) The contents of register 1.
AREA+68
(word 18) The contents of register 12.

Figure 22. Save Area Layout and Word Contents

126 DOS and TOS COBOL Prog. Guide

A called COBOL subprogram does not save floating-point registers.
The programmer is responsible for saving and restoring the contents of
these registers in the calling program.

Example

The linkage conventions used by an assembler subprogram that calls
another subprogram are shown in Figure 23. The linkage should include:

1. The calling sequence.

2. The save and return routines.

3. The out-of-line parameter list. (An in-line parameter list may be
used; see In-line Parameter List.)

4. A save area on a fullword boundary.

Appendix A 127

deckname START O
ENTRY name,
EXTRN name,
USING *,15
* Save Routine
name, STM 14,r,,12(13) the contents of registers 14, 15, and
* 0 through r: are stored in the save
* area of the calling program (previous
* save area). I, is any number from 0
through 12.
LR ry,13 loads register 13, which points to the
* save area of the calling program, into
* any general register, r2, except 0 and
13.
LA 13,AREA loads the address of this program's
* save area into register 13.
ST 13,8(0,r2) store the address of this program's
* save area into word 3 of the save area
* of the calling program.
ST r,,4(0,13) stores the address of the previous
* save area (i.e., the same area of the
* calling program) into word 2 of this
* program's save area.
BC 15,prob,
AREA DS 18F reserves 18 words for the save area.
* This is last statement of save routine.
prob, User-written program statements
* Calling Sequence
LA 1,ARGLST first statement in calling sequence.
L 15,ADCON
BALR 14,15
* Remainder of user-written program statements
* Return Routine
L 13,AREA+4 first statement in return routine.
* Loads the address of the previous save
* area back into register 13.
LM 2,R4,28(13) the contents of registers 2 through r,,
* are restored from the previous save area
L 14,12 (13) loads the return address, which is in
* word 4 of the calling program's save
* area, into register 14.
MVI 12(13) ,X'FF' sets flag FF in the save area of the
* calling program to indicate that con-
* trol has returned to the calling program.
) BCR 15,14 last statement in return routine.
ADCON DC A(name,) contains the address of subprogram
names .
* Parameter List
ARGLST DC AL4 (arg4) first statement in parameter area setup.
DC AL4 (argz)
DC X'80"' first byte of last argument sets bit 0 to 1.
DC AL3 (argn) last statement in parameter area setup.

Figure 23. Sample Linkage Routines Used with a Calling Subprogram

128 DOS and TOS COBOL Prog. Guide

LOWEST LEVEL SUBPROGRAM

If an assembler subprogram does not call any other subprogram (i.e., if
it is at the lowest level), the programmer should omit the save routine,
calling sequence, and parameter list shown in Figure 23. If the assem-
bler subprogram uses any registers, it must save them. Figure 24 shows
the appropriate linkage conventions used by an assembler subprogram at
the lowest level.

deckname START ‘ 0
ENTRY name
USING *,15
name STM 14,r,,12(13)

User-written program statements

LM 2,1’.‘1,28(13)
MVI 12(13) ,X'FF!
BCR 15, 14

Note: 1If registers 13 and/or 14 are used in the called subprogram,
their contents should be saved and restored by the called subprogram.

Figure 24. Sample Linkage Routines Used with a Lowest Level Subprogram

Appendix A 129

In-Line Parameter List

The assembler programmer may establish an in-line parameter list instead
of out-of-l1line list. 1In this case, he may substitute the calling se-
quence and parameter list shown in Figure 25 for that shown in Figure 23.

Data Format of Arguments

Any assembler-written subprogram must be coded with a detailed knowledge
of the data formats of the arguments being passed. Most coding errors
will probably occur because of the data-format descrepancies of the
arguments.

If one programmer writes both the main program and the subprogram,
the data formats of the arguments should not present a problem when
passed as parameters. However, when the programs are written by dif-
ferent programmers, the data-format specifications for the arguments
must be clearly defined for the user.

ADCON DC A(prob.)
LA 14, RETURN
L 15, ADCON
CNOP 2,4
BALR 1,15
DC AL4 (arga)
DC AL4 (arga)
DC X'80"
DC AL3(argn)
RETURN BC 0,X'isn’

Figure 25. Sample In-line Parameter List

130 DOS and TOS COBOL Prog. Guide

APPENDIX B. TABLE OF REFERENCE FORMATS FOR DISK AND TAPE OPERATING

SYSTEMS COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. 'program-name'.
[AUTHOR. sentence...]
[INSTALLATION. sentence...]
[DATE-WRITTEN. sentence...]
[DATE-COMPILED. sentence...]
[SECURITY. sentence...]
[REMARKS. sentence...]

ENVIRONMENT DIVISION.
[%ONFIGURATION SECTION.]

[SOURCE-COMPUTER. IBM-360 [model-number].]
[OBJECT-COMPUTER. IBM-360 [model-number].]

FENPUT—OUTPUT SECTION.
FILE-CONTROL. [COPY library-name.]
SELECT file-name [COPY library-name.]

PIRECT-ACCESS)
ASSIGN TO external-name{UTILITY ;device—number UNIT[S]

UNIT-RECORD
NO R
[RESERVE integer ALTERNATE AREA([S]

[ACCESS IS)SEQUENTIAL (]
RANDOM

[ORGANIZATION IS yINDEXED(]
DIRECT

[SYMBOLIC KEY IS data-name]
[ACTUAL KEY IS data-name]
L_ [RECORD KEY IS data-namel]

I-0 CONTROL.

{SAME AREA FOR file-name-1 file-name-2 [file-name-3...].]
REEL

[RERUN ON external-name EVERY END OF %ﬁﬁff% of file-name.]

[APPLY overflow-name to FORM-OVERFLOW ON file-name.]

[APPLY WRITE-ONLY ON file-name.....]

[APPLY RESTRICTED SEARCH OF integer TRACKS ON file-name.....]

DATA DIVISION.

FILE SECTION.

FD file-name [COPY library-name.]

[BLOCK CONTAINS integer CHARACTERS (1
RECORDS

Appendix B 131

U
[RECORDING MODE IS 5 F;l
- v

[RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

RECORD IS STANDARD
LABEL)RECORDS ARE OMITTED
data-name

DATA RECORDS ARE|(record-name...
RECORDS 1S

Record Description Entry.

WORKING-STORAGE SECTION.

Record Description entries

LINKAGE SECTION.

Record Description entries

level-number data-name([REDEFINES data-name-2]
FILLER

alpha-form
San—form
PICTURE IS {numeric-form
Zreport—form
fp~-form

[OCCURS integer TIMES [DEPENDING ON data-name]]

[JUSTIFIED RIGHT]

[BLANK WHEN ZERO]
[VALUE IS literall

* DISPLAY
SCOMPUTATIONAL

USAGE IS COMPUTATIONAL-1

2COMPUTATIONAL-2

COMPUTATIONAL-3

PROCEDURE DIVISION

DECLARATIVES.
section-name SECTION. USE-sentence.
paragraph-name. Sentence... .} ... | ...

END DECLARATIVES.

[COPY library-name.]

USE FOR CREATING [BEGINNING] LABELS ON OUTPUT file~name...

ENDING

ENDING

USE FOR CHECKING [BEGINNING] LABELS ON INPUT file-name...

USE AFTER STANDARD ERROR PROCEDURE ON file-name.

132 DOS and TOS COBOL Prog. Guide

Conditionals.

IF Statement.

{statement—l... {ELSE statement-2...
_]_ZE condition [THEN] NEXT SENTENCE OTHERWISE NEXT SENTENCE
Relation Test. (w
> data-name-2
<
data-name-1 = arithmetic
arithmetic-expression-1 IS [NOT] GREATER THAN expression-2
figurative-constant-1l LESS THAN
literal-1 EQUAL TO figurative
constant-2
literal-2 J
N
Sign Test.
data-name POSITIVE
arithmetic-expression IS [NOT] ZERO
NEGATIVE

Class Test.

gdata—name Is [NOT]‘ {NUMERIC }

ALPHABETIC

Condition Name Test.

[NOT] condition-name

Overflow Test.

[NOT] overflow-name

Open and Close Statements.

™~

INPUT {file-name [WITH NO REWIND [REVERSED]]}...
[OUTPUT {file-name [WITH NO REWINDI}]
[i-0 {file-name}...]

OPEN OUTPUT {file-name [WITH NO REWIND]}...
[INPUT {file-name [WITH NO REWIND [REVERSED]]}...]
[T-0 {file-name}...]

1-0 {file-name ... [OUTPUT {file-name [WITH NO REWIND]}...]
[INPUT {file-name [WITH NO REWIND [REVERSED]]} ...]
q — J

f [UNIT] NO REWIND |
CLOSE {file-name [REEL] [WITH LOCK 5] ..

1

Input/Output Verbs

READ file-name RECORD [INTO data-name] AT END
imperative statement...

Appendix B 133

READ file-name RECORD [INTO data-name]

WRITE

WRITE

AT END

imperative statement...

INVALID KEY

record-name [FROM data-name-1]
[INVALID KEY imperative statement...]

record-name [FROM data-name-1]

[AFTER ADVANCINGVfdata—name—Z} LINES]

| integer

permissible values for data-name-2

Value

b (blank)

0

+

1 through 9
AI Bl CI

vV, W

Interpretation

single spacing

double spacing

triple spacing

suppress spacing

skip to channels 1 through 9, respectively
skip to channels 10, 11, 12, respectively
pocket select 1 or 2, respectively on

the IBM 1442, or 2540 and Pl or P2 on

the IBM 2540

Permissible Integer

WO

skip to next-page

skip 1 1line
skip 2 lines
skip 3 lines

REWRITE record-name [FROM data-name]
[INVALID KEY imperative-statement...]

DISPLAY {

ACCEPT data-name

literal

UPON SYSPUNCH

data—name} I:UPON CONSOLE]

[FROM CONSOLE]

Data Manipulation Verbs

MOVE

fdata-name-1

\literal

Option 1

} TO data-name-2 ...

ALL

EXAMINE data-name TALLYING 5LEADING l '‘character-1"'

UNTIL FIRST5

[REPLACING BY 'character-2']

Option 2

ALL
LEADING

EXAMINE data-name REPLACING)UNTIL FIRST(‘character-1'

134

FIRST

BY 'character-2'

DOS and TOS COBOL Prog. Guide

TRANSFORM data-name-3 CHARACTERS

figurative-constant-1 figurative-constant-2 l
FROM non-numeric-literal-1 TO non-numeric-literal-2
data-name-1 data-name-2 j

Arithmetic Verbs

numeric-literal l
ADD floating-point-literal e TO
data-name-1 S GIVING data-name-n

[ROUNDED] [ON SIZE ERROR imperative-statement...]

data-name-1
SUBTRACTsnumeric-literal-1
floating-point-literal-1

jdata—name—m [GIVING data-name-n] l
FROM<numeric-literal-m GIVING data-name-n
floating-point~-literal-m GIVING data—name—nS

[ROUNDED] [ON SIZE ERROR imperative statement...]

data~name-1 l

MULTIPLY<{numeric—literal-l
floating—point—literal—l5

numeric-literal-2 GIVING data-name-3

data-name-2 [GIVING data-name-3] }
floating-point-literal-2 GIVING data-name-3

Ezl
[ROUNDED] [ON SIZE ERROR imperative statement...]

data-name-1
DIVIDE numeric-literal-1
floating-point-literal-1

numeric-literal-2 GIVING data-name-3

INTO
floating-point-literal-2 GIVING data-name-3

{data—name—2 [GIVING data-name-3] }

[ROUNDED] [ON SIZE ERROR imperative statement...]

data-name-2

COMPUTE data-name-1 [ROUNDED] = numeric-literal
floating-point-literal

arithmetic-expression

[ON SIZE ERROR imperative-statement...]

Procedure Branching Statements.

STOP (RUN
literal

Appendix B 135

Option 1

GO TO [procedure-name]

Option 2
GO TO procedure-name-1 [procedure-name-~2...] DEPENDING ON data-name

ALTER ({procedure-name-1l TO PROCEED TO procedure-name-2 } cee

Option 1

PERFORM procedure-name-1 [THRU procedure-name-2]

Option 2

PERFORM procedure-name-1 [THRU procedure-name-2] {integer } TIMES
- data-name

Option 3

PERFORM procedure-name-1 [THRU procedure-name-2]
UNTIL test-condition

Option 4
PERFORM procedure-name-1 [THRU procedure-name-2]

VARYING data-name-l1 FROM numeric—litera1—2}
data-name-2

BY {numeric-literal—3} UNTIL test-condition-1
data-name-3

[AFTER data-name-4] FROM {numeric-literal-4 }
data-name-5

BY {numeric-literal-6} [UNTIL test-condition-2]
data-name-6

[AFTER data-name-7 FROM {numeric-literal—s }
data-name-8

BY {numeric—literal—9} UNTIL test-condition-3]
data-name-9

Compiler-Directing Statements.

ENTER LINKAGE.
CALL entry-name [USING argument...].
ENTER COBOL.

ENTER LINKAGE.
ENTRY entry-name [USING data-name...].
ENTER COBOL.

ENTER LINKAGE.
RETURN.
ENTER COBOL.

136 DOS and TOS COBOL Prog. Guide

EXIT Statement.

paragraph-name. EXIT.

NOTE Statement.

NOTE comment...

Option 1.

paragraph-name. INCLUDE library-name.
Option 2.

section-name SECTION. INCLUDE library-name.

COPY Statement.

(Within the Input-Output Section):

FILE-CONTROL. COPY library-name.
I-0-CONTROL.

(Within the File-Control paragraph):

SELECT file-name COPY library-name.

(Within the File Section):

FD file-name COPY library-name.

(Within a File, Working Storage or Linkage Section):
01 data-name COPY library-name.

(Within Working Storage or Linkage Section):

77 data-name COPY library-name.

COBOL Debugging Statements.

TRACE Statement.

READY |
RESET / TRACE

EXHIBIT Statement.

NAMED
EXHIBIT < CHANGED NAMED {data—name
CHANGED non-numeric-literal e

On (Count-Conditional) Statement

ON integer-1 [AND EVERY integer-2] [UNTIL integer-3]

{ imperative—statement...} ELSE statement...
NEXT SENTENCE OTHERWISE NEXT SENTENCE

Debug Packet Statement.

1 8
*DEBUG location

Appendix B 137

PERMISSIBLE COMPARISONS

SECOND OPERAND
GR | AL {AN {ED |ID |BI |EF | IF [RP ! FC
Group Item (GR) NN | NN { NN | NN [{NN | NN | NN | NN | NN | NN
Alphabetic Item (AL) NN | NN | NN NNl
Alphanumeric (non-
F report) Item (AN) NN | NN | NN | NN° NN | NN
i External Decimal 5
s Item (ED) NN NN~|{ NU |NU |NU | NU |NU NN3
T Internal Decimal
o | Item (1D) NN NU |NU |NU |NU |NU NU?
g Binary Item (BI) NN NU [NU |{NU |NU |[NU NU2
i External Floating-
N point Item (EF) NN NU |NU |{NU ;NU |NU NU2
Dl tnternal Floating-
point Item (IF) NN NU |NU |[NU |{NU |NU NU2
Report Item (RP) NN NN NN NN4
Figurative Constant
(FC) an | nntnw | en3 |vo? | no? | no? |no? e

Abbreviations for Types of Comparison
NN--Comparison as described for non-numeric items
1NU——Comparison as described for numeric items
Permitted with the figurative constants SPACE and ALL 'character'
where character must be alphabetic.
2permitted only if figurative constant is ZERO.
3permitted only if figurative constant is ZERO or ALL ‘character’
where character must be numeric.
Not permitted with figurative constant QUOTE.
SExternal decimal field must consist of integers.

138 DOS and TOS COBOL Prog. Guide

PERMISSIBLE MOVES

Receiving Field

Source Field GR | AL AN [ED | ID | BI { EF | IF | RP
Group (GR) Yy {Yy |Y |[N [N [N |N I[N |N
Alphabetic (AL) Y Y Y N N N N N N
Alphanumeric (AN) Y |y Y N | N N |N |N N
External Decimal (ED) | Y |N |Y' |y |y |v |¥ [¥ |¥
Internal Decimal (ID) | Y N Yl Y Y Y Y Y Y
Binary (BI) vy |§ [vily |y |y ¥y |¥ |¢¥
External Floating-
Point (EF) Y N N Y Y Y Y Y Y
Internal Floating-
Point (IF) Y N N Y Y Y Y Y Y
Report (RP) Y N Y N N N N N N
Zeros Y N Y Y Y Y Y Y Y
Spaces Y Y Y N N N N N N
ALL 'character',

HIGH-VALUES, Y N Y N N N N N N

LOW-VALUES,

QUOTES

1 For integers only.

Appendix B 139

9pTno *Hoixd 10900 SOL pue sod O%T

The standard tape file label format and contents are as follows:

EIELD

1.

8,

NAME AND LENGTH

LABEL IDENTIFIER
3 bytes, EBCDIC

FILE LABEL NUMBEFR
1 byte, EBCDIC

FILE IDENTIFIER
17 bytes, EBCDIC

FILE SERIAL NUMBER
&6 bytes, EBCDIC

VOLUM® SEQUENCE
NUMBEK 4 bytes

FILE SEQUENCE NUMBER
4 bytes

GENERATION NUMBER
4 byter

VERSION NUMBER OF
GENERATION 2 byte:

DESCRIPTION

identifies the type of label

HDR = Header -~ beginning of a data
file

ECF = End of File -~ end of a set of
dota

EOV = End of Volume -- end of the
physical reel

Always a |

uniquely identifies the entire file,
may contain only printable characters.

uniquely identifies a file/volume
relationship. This field is identical
to the Volume Serial Number in the
volume label of the first or only
volume of a multi-volume file or o
multi-file set. This field will
normally be numeric (000001 to
999999) but may contain any six
alphameric characters,

indicates the order of a volume in a
given file or multi-file set. The
first must be numbered 0001 and
subsequent numbers must be in proper
numersic sequence.,

assigns numeric sequence to a file
within a multi-file set, The first
must be numbered 0001,

uniquely identifies the various
editions of the file. May be from
0001 to 9999 in proper numeric
sequence .

indicates the version of a generation
of afile.

FIELD

12,

NAME AND LENGTH

File
Label
Number
f Fil i i
ile Volume |File 2,
File ldentifier Serial Sequence |Sequence| 5 3 Creation Expiration Block System Code Reserved
Number |Number | Number 05 zg Date Date Count For A.S.A,
T T T TR T TR e A | Bl [T Re T [T e [T B [EE TR
Labe‘l Version File'
Identifier Number of Security
Generation

CREATION DATE

6 bytes

EXPIRATION DATE

6 bytes

FILE SECURITY
1 byte

BLOCK COUNT
& bytes

SYSTEM CODE
13 bytes

RESERVED
7 bytes

DESCRIPTION

indicates the year and the day of
the year that the file was created:

Position Code Meaning

1 blank none

2-3 00-99 Year

4-6 001-366 Day of Year

le.g., January 31, 1965 would
be entered as 65031)

indicates the year and the day of

the year when the file may become

a scratch tape, The format of this
field is identical to Field 9, On a
multifile reel, processed sequentially
all files are considered to expire on
the same day,

indicates security status of the file,
0 = no security piotection
1 = security protection, Addit-
ional identification of the
file is required before it
can be processed,

indicates the number of data blocks
written on the file from the last
header label to the first trailer label
exclusive of tape marks., Count does
not include checkpoint records,
This field is used in Trailer Labels.

uniquely identifies the programming
system.

Reserved for American Standards
Association (A.S.A.). At present,
should be recorded as blanks.

AdV.L QIYANVLS O XIANI4ddV

STHIVT HITA

APPENDIX D.

STANDARD DASD FILE LABELS, FORMAT

Creation Date. Expiration Spare
7 e
File
File Name Serial System Code
Number
—_— o] d
II!IIILHHILIHHIIHHIIHJIHJ_LIIH_LHH’?*TH_I“%I%HMII%S A LI [IITTT]TIR
Format Voluml Counf_l Bytes Used
N Identifier Sequence of in last block
Option Record Key Space -
Cofies Lenfn. LTuﬁon Remaining Number Extents of directory
Reserved Last Used First Extent Additional Extent Additional Extent
For Fut . |Secondary | Track & "
Uo; vivre :.'I' Allocation| Record On Lower Upper Pointer
vpe That Track Limit Limit
[[[1o] [slesiskebpleal=pisl] | =] [[[sislsieie] [=] [Tl [[T [IRRITT[(TTTI8 {18
Reserved —f Extent
For Future Record Block Key Data Set Extent Type Sequence
Use Format Length Length Indicators Indicator Number
Format 1: This format is common to all data files on disk.
FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH DESCRIPTION
1. FILE NAME This field serves as the key portion of If user labels are used, the count
44 bytes, alphameric the file label. It can consist of includes the user label track as a
EBCDIC three sections: separate extent. This field is
maintained by the Disk and Tape
1. File ID is on alphameric assigned Operating Systems programs.
by the user and identifies the
file. Can be 1 - 35 bytes if 7 BYTES USED IN LAST BLOCK Used by Operating System/360 only
generation and version numbers OF DI RY for partitioned (library structure) data
are used, or 1- 44 bytes if they 1 byte, binary sets. Not used by Disk and Tape
are not used. Operating Systems.
2. Generation Number. If used, 7C SPARE Reserved for future use.
this field is separated from File 1 byte
ID by a period. It has the format
Gnnnn, where G identifies the 8 SYSTEM CODE Uniquely identifies the programming
field as the generation number 13 bytes system,
and nnna {in decimal) identifies R
the generation of the file. 9 RESERVED This field is reserved for future use.
7 bytes
3. Version Number of Generation.
If used, this section immediately 10 FILE TYPE The contents of this field uniquely
follows the generation number 2 bytes identify the type of data file:

ond has the format Vnn, where
V identifies the field as the
version of generation number and
nn (in decimal) identifies the
version of generation of the file.

Note: IBM System/360 Disk and Tape
Operating Systems compares
the entire field against the
file nome given in the DLAB
card. The generation ond
version numbers are treated
differently by Operating
System/360.

The remaining fields comprise the DATA portion of the file label:

2.

3.

7A

FORMAT IDENTIFIER
1 byte, EBCDIC numeric

FILE SERIAL NUMBER
6 bytes, alphameric EBCDIC

VOLUME SEQUENCE NUMBER
2 bytes, binary

CREATION DATE
3 bytes, discontinuous binary

EXPIRATION DATE,
3 bytes, discontinuous binary

EXTENT COUNT
1 byte, binary

1 = Format 1

Uniquely, identifies a file/volume
relationship. It is identical to the
Volume Serial Number of the first
or only volume of a multi~volume
file. It is the disk pack number
identification.

Identifies each volume in @ multi-
volume file. Each volume is
relative to the first volume on which
the data file resides.

Indicates the year and the day of the
year the file was created. It is of
the form YDD, whare Y signifies the
year (0- 99) and DD the day of the
year (1- 366).

Indicates the year and the day of the
yeor the file may be deleted. The
form of this field is identical to that
of Field 5.

Contains a count of the number of
extents for this file on this volume.

RECORD FORMAT
1 byte

Hex 4000 = Consecutive organiza—

. tion

Hex 2000 = Direct - access organiza—
tion

Hex 8000 = Indexed - sequential
organization

Hex 0200 = Library organization

Hex 0000 = Organization not
defined in the file
labe!.

The contents of this field indicote
the type of records contained in the
file:

it
Position Content Meaning

Oand1 01 Variable - length

records

10 Fixed - length

records
Undefined format

No track
overflow

1 File is organized
using track overflow
{Operating System/
360 only)
Unblocked records

1 Blocked records

Appendix D 141

FIELD NAME

12 OPTION CODES
1 byte

13. BLOCK LENGTH

2 bytes, binary

14, RECORD LENGTH
2 bytes, binary

15. KEY LENGTH
Tbyte, binary

l6. KEY LOCATION
2 bytes, binary

17. DATA SET INDICATORS
1 byte

142 DOS and TOS COBOL Prog. Guide

DESCRIPTION
Bir
Position Content Meqn‘m
4 0 No truncated
records
1 Truncated
records in file
Sand & o1 Control choracter
ASA code
10 Confrol Character
machine code
00 Control Character
’ not stated
7 0 Records have no
keys
1 Records are

writhen with keys

Bits within this field ore used to
indicate various options used in
building the file.

BIT

0 Ifon, indicates data file was
created using Write Validity
Check.

1-7 unused

Indicates the block length for fixed
length records or maximum block
size for variable length blocks.

Indicates the record length for fixed
length records or the maximum record
length for variable length records.

Indicates the length of the key portion
of the data records in the file.

Indicates the high order position of
the dota record.

Bits within this field are used to
indicate the following:

Bt

0 If on, indicates that this is the
last volume on which this file
normally resides. This bit is
used by the Disk and Tape
Operating Systems DTFSR
routine only. None of the
other bits in this byte are used
by Disk ond Tape Operoting
Systems.

1 If on, indicates that the data
set described by this file must
remain in the some absolute
locotion on the direct access
device.

2 If on, indicates that Block
Length must always be o multiple
of 8 bytes.

3 If on, indicctes that this dato
file is security protected; o
password must be provided in
order to access it.

4-7 Spare. Reserved for future use.

|

18.

20.

22.

23.

24,

25-28

29-32

33

NAME

SECONDARY ALLOCATION
4bytes, binary

LAST USED TRACK AND
RECORD ON THAT TRACK
5 bytes discontinusus binary

AMQUNT OF SPACE
REMAINING ON LAST TRACK
USED_ 2 bytes, binary

EXTENT TYPE INDICATOR
1 byte

TENT SEQUE INUMBE|
1 byte, binary

LOWER LMIT__
4 bytes, discontinuous binary

UPPER LIMIT
Thytes

ADDITIONAL EXTENT
10 bytes

ADDITIONAL EXTENT
&5

POINTER TO NEXT FILE LABEL
g bytes, discontinuaus binary

DESCRIPTION

Indicates the amount of storage to be
requested ffor this data file at End of
Extent. This field is used by Operating
System, 360 only. It is not used by

Disk and Tape Operating Systems routines.
The first byte of this field is an indication
of the type of allocation request. Hex
code "C2" (EBCDIC "B") i
hex code "E3" (EBCDIC
tracks, and hex code "C3" (EBCDIC "C")
indicates cylinders. The next three bytes
of this field is a binary number indicating
how many bytes, tracks or cylinders are
requested.

Indicates the fast occupied trock ina
consecutive file organization data file.
This field has the format CCHHR. It

is all binary zeros if the last track in a
consecutive data file is not on this
volume or if it is not consecutive
organization.

A count of the number of bytes of
available space remaining on the lost
track used by this data file on this
volume,

Indicates the type of extent with which
the following fields are associated:

HEX CODE

00 Next three fields do not indicate
any extent.

0

Prime area (indexed Sequential);
or Comecutive orea, etc., (i.e.,
the extent containing the user's
data records.)

02 Overflow area of an indexed
Sequential file.

04 Cylinder index or master index area
of an Indexed Sequential file.

40 User label trock area
80 Shored cylinder indicator.

Indicates the extent sequence in a
mylti- extent file.

The cylinder and the track address
specifying the starting point (lower
limit) of this extent component. This
field has the format CCHHN.

The cylinder and the trock oddress
specifying the ending point (upper
limit) of this extent component.
This freld hos the format CCHH.

These f elds have the same format as
the fields 21 - 24 above .

These fields have the some format as
fields 21 - 24 above.

The disk address (format CCHHR) of o
continuotion label if needed to further
describe the file. If field 9 indicotes
Indexed Sequential orgenization, this
field will point to a Format 2 file tabe!
within this label set. Otherwise, it
points to o Format 3 file label, and then
only if the file contains more than three
extent segments, This field contains all
binary zeres if no odditional file labe!
is pointed to.

APPENDIX E. LIST OF OPTIONS FOR DISK AND TAPE OPERATING SYSTEMS,

JOB CONTROL OPTION STATEMENT

The options that can appear in the operand field of the OPTION state-
ment are as follows. Selected options can be in any order. Options
are reset to the standards established at system generation time upon
encountering a JOB and a /& statement.

LOG

NOLOG

DUMP

NODUMP

LINK

NOLINK

DECK

NODECK
LIST
NOLIST

LISTX

NOLISTX

ERRS

NOERRS

CATAL

48C

Causes the listing of columns 1-80 of all control statements

on SYSLST. Control statements are not listed until a LOG option
is encountered. Once a LOG options statement is read, logging
continues from job-step to job-step until a NOLOG option is
encountered or until either the JOB or /& control statement is
encountered.

Suppresses the listing of all control statements on SYSLST
except JOB and /& statements until a LOG option is
encountered.

Causes a dump of the registers and main storage to be output
on SYSLST in the case of an abnormal program end (such as
program check).

Suppresses the DUMP option.

Indicates that the object module is to be linkage edited after
compilation or assembly. When the LINK or CATAL option is

used, the output of the compiler is written on SYSLNK. The

LINK option must always precede an EXEC LNKEDT statement
containing a compiler step.

Suppresses the LINK option. The compiler can also suppress the
LINK option if the problem program contains an error that would
preclude the successful execution of the problem program. An
EXEC statement with a blank operand also suppresses the LINK
option.

Causes the compiler to output object modules on SYSPCH. If LINK
is specified, the DECK option is ignored. '

Suppresses the DECK option.
Causes the compiler to write source statements on SYSLST.
Suppresses the LIST option.

Causes the compiler to write the procedure division map in hexa-
decimal on SYSLST.

Suppresses the LISTX option.

Causes the compiler to write the diagnostics related to the
source program on SYSLST.

Suppresses the ERRS option.

Causes the cataloging of a phase or program in the core image
library at the completion of a linkage-editor run. CATAL also
causes the LINK option to be set.

Specifies the 48-character set on SYSIPT (for PL/I).

Appendix E 143

60C

MINSYS
(Tape
only)
| co
(Tape
only)

STDLABEL
(Disk
only)

USRLABEL
(Disk
only)

SYM

Specifies the 60-character set on SYSIPT (for PL/I).

Causes the linkage editor to output minimal modules for later
runs on systems when linkage editing on systems greater than
16K.

Indicates that a linkage-edited program exists on SYSLNK. The
program either can be cataloged in the core image library or
executed. To catalog the program, specify GO, CATAL in the
OPTION statement. To execute the program, specify GO in the
OPTION statement and follow it with an EXEC statement with a
blank operand. When GO is specified, job control does not open
SYSLNK or check the content of SYSLNK.

Causes all disk labels submitted after this point to be
written on the standard label track. Reset to USRLABEL option
at end-of-job step.

Causes all disk labels submitted after this point to be
written at the beginning of the user label track.

Causes the compiler to output the data division map on SYSLST.

144 DOS and TOS COBOL Prog. Guide

APPENDIX F. EXAMPLES OF COBOL PROGRAMS

This appendix contains two sample COBOL programs. Figure 26 is a
calling program, the other, Figure 27, is a subprogram which is linked
by the calling program. The linkage subprogram illustrated need not be

a COBOL program, However, COBOL assumes option 2 of the standard CALL,
SAVE, and RETURN macros.

IBM CcoOBOL PROGRAM SHEET Premed w1 GA
System IBM SVSTEM/36O Punching Instructions Sheet of

Program EXAMPLE OF A CALLING PROGRAM Graphic Card Form % * ldantiticotion
Programmer “Toate Panch 73] 80

SEQUENCE [& N s
lEElTls e e 20 24 28 = 3840 a4 a8 52 56 60 &4 68 __ 72
b0 1 0o 1| [IoenTirticaTifon Dlivislion. ‘

oo 2] ProGRAM-[1D. |' CALILPRGM', !
3] REMAIRKS.| EXAMPLE| OF |A CALLING PRIOGRAM. '
b®4] [ENVIIRONMENT DI VI/STON|. I
P&5| [CONFIIGURATION SEICTION. :
9d6] SOURICE-ClOMPUITER .| LBM-3¢64] D3¢]. |
lbo 7 losuelcT-clompulTer.| IBM-364] D3¢l ‘
dP8) INPUIT-OUTPUT] SECITION].
09| [FILE}-CONTROL|.

10 ISELEICT FIILEA| ASS|IGN |Y0 ‘|svsdip4’' JUTIL|ITY (2449 UNIITS.
Tois 'SELEICT FILEB| ASS|IIGN [TO ‘|SYS4i05' WNIT|-RECIORD (2548 RESERVE NO
1 WLTERNATIE AR[EA.
161 2] [paTal DIV[ISTON. |

lor sl lr1Lel secirron. \
le14] o IF1LEla, plaTa |RECORD I|s REjcoRD-1, [LABE|L RE[CORDS AR sT[ANDARD.
| IBLOoClK cONTAINS 5| REclorRDs|, RElcorD|I N6 [MODE| 15 |F. |
lois] o1 iRecorp -1i]. |

16 102 sjue-FIeLp/a PrlcTurlE 15| x(el8).
17 ‘o2 sug-Firerole prlcturle rs| x(i2).

018/ Fp 'FILEB DATA RECORD 15| REclorp-|2, LIABEL| RECORDS! ARE| omITTED,.
IEIR] J'QECORD-Z PICITURE] X (8¥).
l026] IPrROCEDURE DIlVISIjON.
l@ZI STAR:T. OPEN |INPUIT FI|ILEB |OUTPUT FILEA. [

y
dd1lo22] IsTarlr2. [READ| FILIER AT END Gof To [(LABAL

[| 1

* A standard card form, 1BM electro C61897, is available for punching source statements from this form.

Figure 26. Example of a Calling Program (Part 1 of 2)

Appendix F 145

IBM COBOL PROGRAM SHEET e At

System [BM SYSTEM / 360 Punching Instructions Sheat of
Program EXAMPLE OF A CALLING PROGRAM Graphic Card Form# * Identification
Programmer TDan Punch 73} 80
SEQUENCE 'g' :B
l(p‘GEB)I(:Em‘é)? 8 l;.l_g 16 20 24 28 32 36 40 449 48 52 56 60 64 88 73
Iy i
02|00 1 ENTER LINKAGE .
kb(bﬁ ICALL] ‘' SUBPRGIM' UISING REC|ORD-|2.
o3 ENTER cogoL.
—IQQ‘F NOTE| SUBIPROGIRAM MODIIFTIES| INFIORMAITTION IN [RECORD-2|.
;Ms MRITIE RE|CORD|-1 FROM RECORD-2|. GO/ TO |START2.
1

|
2}
-

092109 6] |LABA,. SE |FILEA, FIILEB| STOP RUN.

r-rn-v-b-r—-—--—-—---—--rs‘-h-h-u-.-:-

* A standard card form, 1BM electro C61897, is available for punching source statemeats from this form.

Figure 26. Example of a Calling Program (Part 2 of 2)

146 DOS and TOS COBOL Prog. Guide

IBM COBOL PROGRAM SHEET Form M. X20-1454

Printed in U.S.A.

System [BM SYSTEM /350 Punching Instructions Sheet of
Program EXAMPLE OF A SUBPROGRAM Graphic Card Form¥ * Identification
Programmer I Date Punch 73 iso

SEQUENCE [2 N ie
g‘f""é’ ?7’ 8 e 6 20 24 28 2 36 40 a4 a8 52 56 60 64 68 74
bo3lod 1| IDENTIFI[cATION DlIvisiioN.
o 2| [PRoGiRAM-[1D. ['SUBPROG’.
63| REMAIRKS.| EXAMPLE| OF |A SUBPROJGRAM|.
oo 4] ENVIRONMENT [DIVIISION.
o5 [CoNFIGuRATION SElCTION.
00 6] souriceE-cloMPulTER.| 1BM-36d D36
loo7] losJElcT-clomPulTER.| 1BM-36¢] D34[.
)

-

[
bds] DATA! DIVIISION.
d99! WORKIING-{STORAGE |[SECT|ION.
1

016l [77 !MODIIFI CATION PLCITURE| X(1[2),VIALUE| 1S ['PUT| ANY| DATA'.
b1 1] [LINKIAGE [SECT|LON.
W12 (! PASS-FIELD.

613 ®2, A PICTURE X(68)!.
014 92 B PIICTURE x|(12)].

]

]
15| IPROCIEDURE DIVISI1|ON.
b1 6| [STARIT. ENTER| LINKAGE|

b1 7 ‘ENTRY 'SUBPRGM' WWSING PA[SS-FIIELD.
b1 8 'ENTER ColBOL. |
$1 9] MODI!IFY. MOVE| MODIFICATION TO| B.
¢ 10260 ENTER LINKAGE .
b3ldp2 1 'RE TURN.

* A standard card form, IBM electro C61897, is available for punching source statements from this form.

Figure 27. Example of a Subprogram (Part 1 of 2)

Appendix F 147

IBM COBOL PROGRAM SHEET iy

System IBM SYSTEM/360 Punching Instructions Sheet of
Progrem EXAMPLE OF A SUBPROGRAM Graphic Card Form# * Identitication
Progrommer Jban Punch 73 Iso
SEQUENCE

B s
(pace) [sEmiaL) 1
| 3la__6}7]8 g2 16 20 24 28 32 36 40 449 48 52 56 60 64 68 7

004l0¢ 1 ENTER co‘aon.. : T 7

62 WoTE| THAlT palss-FlieLo] In [Turs| ProlsrAM 1s [THE [TOENT 1CA)

:AREA DEFIINED| AS [RECOIRD-2] IN |[THE [CALLIING [PROGIRAM

B e e

* A standard card form, IBM electro CG1897, is available for punching source statements from this form.

Figure 27. Example of a Subprogram (Part 2 of 2)

148 DOS and TOS COBOL Prog. Guide

APPENDIX G. SUBROUTINES USED BY COBOL

A table of subroutines used by COBOL to accomplish the statements or
actions specified follows. The table should guide the programmer in
his efforts to conserve storage and isolate a trouble to a specific

reason (debugging).

TABLE OF COBOL SUBROUTINES

Converts an external
floating-point number
to an internal floating-
point number

SUBROUTINE
NAME ACTION
IHD0000O Required for manipulation of exter-

nal floating-point data in:

MOVE - When send field is exter-
nal floating point in MOVE
statement.

COMPUTATIONAL - When one field is
external, and one field is
internal floating point in
computational statement.

IHD00100
Floating-point
exponential subroutine.

Required for exponentiation to non-
integer power,

IHD00200

It divides 16-byte 30-
character dividend by

a l-byte 30-character
divisor producing a 16-
byte 30-character quo-
tient. No registers are
used.

Packed divides subroutine.

Required for division of complex
computes, COMPUTATIONAL of over 9
digits, and COMPUTATIONAL-3 of
over 16 digits.

IHD00300

It multiplies two 30-
character packed fields

packed product.

Packed multiply subroutine.

and produces a 60-character

Required for complex computes,
COMPUTATIONAL fields of over 9, or
COMPUTATIONAL-3 of over 16 digits.

IHD00400
Error message subroutine.
It outputs object time
messages.

Required with floating-point and
non-integer exponentiation.

THD00500 Required for exponentiation to an
Packed exponentiation integer power. (Used with IEP00700
subroutine. [floating-point exponentiation]

subroutine.)
L

Appendix G 149

SUBROUTINE
NAME

ACTION

IHD0O060O

Floating-point
logarithm subroutine.

Required whenever floating conversion
is needed. Used with IEP00700 (float-
ing-point exponentiation) subroutine.

IHD00700

Floating-point exponen-
tiation subroutine.

Required to set up floating-point con-
version routines for non-floating
point exponentiation.

IHDO00800

Converts packed decimal to
floating point. Conversion
is accomplished by calling
two other subroutines
IHD01600 (TOBIN), which
converts the number from
packed decimal to binary,
and IHDO01500 (BINFL), which
converts the binary number
to floating point and then
returns.

May be required when floating-point
and/or non-integer exponentiation is
used.

ARITHMETIC ~ Required when packed
and floating-point opera-
tion are in the same
statement.

Required if the sending

field is packed and the

receiving field is float-
ing point in a move
statement.

COMPUTATIONAL - Required if one
field is packed, and one
field is floating point in
a computational statement.

MOVE -

IHD00900

Converts floating-point
numbers to zoned decimal
numbers. Conversion is
accomplished by calling
two other subroutines;
IHD01100 (FRFLPT), which
converts the number from
floating point to binary,
and IHD01800 (BINZN), which
converts the binary number
to zoned decimal and
returns.

ARITHMETIC - Required when there
is a floating-point operand,
and the receiving field is
zoned in an arithmetic
statement.

Required if the sending
field is floating point,

and the receiving field is
zoned in a move statement.

MOVE -

IHD01000

Converts a binary number to
a packed decimal number.
Used with IHD01300 (floating
point to packed decimal)
subroutine.

Required for:

ARITHMETIC - Required when mul-
tiplying a binary field
by a packed field or visa
versa.

- Required if multiplication is

done in binary.

MOVE - (Special Class) - If send-
ing field is internal
floating point, and receiv-
ing field is binary. The
binary number must fall
within the limits speci-
fied. (9 decimal digits
<binary number <18 decimal
digits.)

~ If sending field is binary and

receiving field is binary.

- If sending field is less than 9

and Receiving field is less than or

equal to 9, or both are greater
then 9 decimal digits.

150

DOS and TOS COBOL Prog.

Guide

SUBROUTINE
NAME

ACTION

- If sending field is binary and
receiving field is packed, and
sending field is greater than 9
decimal digits.

COMPUTATIONAL - If one field is
binary and the other is
zoned.

- If one field is binary and the

other is packed.

- If both fields are binary and

A is less than 10, and B is less

than 10 and the scales of both

fields are equal.

- If the scale of the sending

field is greater than the scale

of the receiving field, and the
real or implied integer positions
of the receiving field plus the
scale of the sending field is

less than 10.

- If the scale of the sending

field is less than the scale of

the receiving field, and the

real or implied decimal positions

plus the scale of the receiving

field is less than 10.

IHD01100
Converts an external
floating-point number
to a binary number.
Used with IHD00900 (float-
ing point to zoned decimal)
subroutine, IEP01300
(floating point to packed
decimal) subroutine,
IHD01400 (floating point
to binary) subroutine and
IHD01900 (miscellaneous
fields to external float-
ing point) subroutine.

MOVE - Required when send field
is external or internal
floating point, and re-
ceiving field is external
floating point.

IHD01200
Converts a zoned decimal
number to a floating point
number. Conversion is
accomplished by calling
the same subroutine used
by FLPZND (IHD00900).

MOVE - Required when send field
is zoned and receiving
field is floating point.
COMPUTATIONAL - Required when
one field is zoned and the
other field internal float-
ing point.

Appendix G 151

SUBROUTINE
NAME

ACTION

IHD01300
Converts a floating point
number to packed decimal
format. Conversion is
accomplished by calling
IHD01100 (FRFLPT), which
converts a floating-point
number to binary, and
IHD01000 (BINPK), which
converts the binary num-
ber to packed decimal
and then returns.

MOVE - Required when send field
is external or internal
floating point and re-
ceiving field is packed.

IHD01400
Converts an internal float-
ing-point number to a
binary format. Conversion
is accomplished by calling
subroutine IHD01100
(FRFLPT), which does the
actual converting of the
floating-point number to a
binary number format.

‘"MOVE - Required when sending field
is external or internal
floating point and receiving
field is binary.

THD01500
Converts a binary number
into double precision
floating point. May be
required when floating-
point and/or non-integer
exponentiation are used.
Used with IHD00800 (packed to
floating point) subroutine,
IHD0O0000 (external floating
point) subroutine, IHD01200
(zoned decimal to floating
point) subroutine, IHD01900
(miscellaneous field type
to external floating point)
subroutine.

MOVE - Required when sending
field is binary and receiv-
ing field is floating point.

ARITHMETIC - Required when one
operand is binary and one
operand is floating point.

COMPUTATIONAL - Required when one
field is binary and one is
internal floating point.

IHD01600"
Converts either a packed
decimal or a zoned deci-
mal number to a binary
number when receiving
field is greater than
9 digits.

MOVE - Required for: If the send-
ing field is external decimal,
and receiving field is packed,
receiving field must be 9
decimal digits.

COMPUTATIONAL - If one field is
binary or zoned and one field
is packed.

- If both fields are binary and the

following conditions are not met:

e the length of the fields
are unequal

® A and B are both less than
10, and the scales of the
fields are equal

- If the scale of the sending field

is greater than the scale of the

receiving field and the real or
implied integer positions of the
receiving field plus the scale of

the sending field is less than 10.

152 DOS and TOS COBOL Prog. Guide

SUBROUTINE
NAME

ACTION

- If the scale of the sending
field is less than the scale of
the receiving field and the real
or implied decimal positions
plus the scale of the receiving
field is less than 10.

IHDO01700
Compares two alphabetic

fields of different lengths,

no restriction on maximum
length, when either or both
fields are greater than 255
bytes.

COMPUTATIONAL - Required when
either or both fields are
255 bytes.

IHD01800
Converts a binary number
to a zoned decimal number,
Used with IHD00900
(floating-point zoned
decimal) subroutine.

ARITHMETICS - Required when opera-
tions are performed in bin-
ary and the receiving field
is zoned.

MOVE - Required when sending field
is binary and receiving
field is zoned, zoned field
is 9.

MISCELLANY - Required if user
displays binary item.

IHD01900
Converts a field of any of
the following formats to
external floating point:
external decimal, internal
decimal, binary, internal
floating point, figurative
constant of zero. Con-
version is accomplished in
some cases by calling
IHD01100 (FRFLPT) which
converts internal floating

point to binary, and IHD01500
(BINFL) which converts binary

to external floating point.

MOVE - Required when receiving
field is external floating
point.

MISCELLANY - Required if user
displays interal floating
point.

IHD02000

Used to move group items longer than
256 bytes.

IHD02100

Performs the class test on alpha-
meric fields, as specified in the
IBM publication, Specifications
COBOL Language, listed on the
cover of this manual.

IHD02200
Converts a packed deci-
mal number to a zoned
decimal number.

ARITHMETIC - Required when the
operations are performed in
packed, and the receiving
field is zoned.

MISCELLANY - Required if user
displays packed format.

Appendix G 153

SUBRTUTINE
NAME

ACTION

IHD02300

This subroutine consists of three
parts:

1. The first part builds a table of
the beginning and end addresses
of the PERFORM or nested PERFORMS
and the return address. It checks
the validity of addresses.

2. The second part checks to see if
the PERFORM is complete by com-
paring return addresses.

3. The third part deletes or elimi-
nates the table entries by
resetting pointers and counters.

Required when linkage editing a
version I object deck with a
version II system.

IHD02400

Used to move fields when either, or
both fields are variable groups.
Requirements:
Rl points to 'sending' field
R2 points to 'receiving' field
WORKA is length of 'sending'
field
WORKA+2 is length of 'receiving'
field
WORKA+4 is '0l' if 'receiving'
field is right justified.

IHD02500

Used to compare two fields either or
both of which are group variable.
Used with fields defined with occurs
depending on
Requirements:
Rl points to FIELDI.
R2 points to FIELD2.
WORKA is the same length as
FIELDl.
WORKA+2 is the same length as
FIELD2.

IHD02600

Checks length of field to be displayed
to be sure it fits into defined field,
and moves display data to an output
buffer. Used if a display data fit
check is specified at object time.
Requirements:
WORKW - must be address of byte
after buffer.
WORKA+4 - must be number of bytes
to move minus 1.
Rl - points to next available
buffer byte.
R2 - points to data to be moved.

IHD02700

Writes out display data on SYSPCH.
Used when display on SYSPCH is
specified.

154 DOS and TOS COBOL Prog. Guide

SUBROUTINE
NAME ACTION

IHD02800 Writes out display data on SYSLST.

Required when EXHIBIT, TRACE, or
standard DISPLAY statements are
used (i.e., not UPON CONSOLE or
UPON SYSPCH) .

IHD02900 Reads a record from SYSIPT and moves
data to the field specified by data-
name.

Required when ACCEPT is specified
(not ACCEPT FROM CONSOLE) .

IHD03000 Used for display on console.

IHD03100 Used for execution of direct-
access statements.

Required when any direct-access
statement is used.

THD03200 If problem program has user labels,
this subroutine is the linkage with
the declaratives section.

IHD03300 1f one field is divided by another
and the divisor is zero, this sub-
routine links to the on size error
routine.

IHD03400 Prints out object time diagnostics
when errors are encountered in
direct-access processing.

Required when IHD03100 is used.

IHD03500 Produces object time diagnostics
for indexed sequential organiza-
tion of files.

Required when indexed sequential
data organization is indicated.

IHD03600 Required to write record number zero
on all tracks for an output opera-
tion when using direct access
method.

IHD03700 . Used for initializing tape or disk
when using read and write operations.

Appendix G 155

APPENDIX H. IBM SYSTEM/360 DISK AND TAPE OPERATING SYSTEMS COMPILER
DIAGNOSTICS

This appendix contains a detailed description of diagnostics. They
consist of:

® Compiler diagnostic messages
® Object time messages
® Debug packet error messages
These messages are produced during compilation.
Certain condition; that are present when a module is being processed
can cause linkage editor diaghostics. For a complete description of

these messages, refer to the publication, System Control and System
Service Programs listed on the cover of this manual.

Also included in this appendix is an illustration of object storage
layout.

COMPILER DIAGNOSTIC MESSAGES

Explanations and the action taken on compiler diagnostic messages®are
placed, in each case, after the particular error message. Where no
action is indicated, the statement causing the message may be

dropped. Although the messages are arranged in ascending numeric order,
they are not necessarily numbered consecutively.

UNEXPECTED DIAGNOSTICS

It is possible for the user to write COBOL source statements that can
result in diagnostics being generated that do not appear in the list
given. These diagnostic messages cover features of the compiler not
supported at this time.

All messages preceded by a # are self-explanatory.
IJS001I C - LITERAL EXCEEDS 120 CHARACTERS.

The element count begins following the next quote on the
line, if there is one, or following the element beginning
after the 120th character.

IJS002I W - LITERAL CONTINUATION QUOTE INVALID IN MARGIN A.
Continuation is allowed.

IJS003I C - LITERAL IMPROPERﬁ?,CONTINUED OR CONTINUATION QUOTE IS
MISSING.

The non-numeric literal is truncated at the end of the pre-
ceding line. The syntax scan resumes with the first element
on the next line. This may be the result of a missing quote
sign on the preceding line.

#IJS004I C - SYNTAX REQUIRES A BLANK AFTER A PERIOD OR PERIOD IS
INVALID DECIMAL POINT.

156 DOS and TOS COBOL Prog. Guide

1Js0051

1Js0061I

IJs0071

1Js008I

#IJS009I

#IJS010T

#IJS0111

T13s0121

$IJS013I.

IJs0231

IJs0241

C - XXX EXCEEDS 30 CHARACTERS.

Any element that is not a non-numeric literal is truncated
after 30 characters.

C - QUALIFICATION - XXX REQUIRES QUALIFICATION.

This indicates that the name is defined in more than one
location, and requires qualification in order to be unique.
The first name defined is assumed.

C - QUALIFICATION - XXX HAS UNDEFINED QUALIFICATION.

One or more of the names in the qualification hierarchy are
not defined as a group containing the data-name. This may
have resulted from the dropping of a data-name because of an
error at its point of declaration, or because of a misspelling.
The first name defined is assumed.

C - QUALIFICATION - XXX REQUIRES MORE QUALIFICATION.

The number of gualifiers or the names are not sufficient to
make the subject name unique. Another name could have the
same qualification. The first name defined is assumed.

E - SUBSCRIPTED 88 MUST HAVE A RIGHT PARENTHESIS. WILL BE
TREATED AS A DATA NAME.

W — SYNTAX REQUIRES A BLANK AFTER A RIGHT PAREN, SEMICOLON
AND OR COMMA.

C - XXX IS UNDEFINED.
E - XXX HAS MORE SUBSCRIPTS THAN DECLARED IN THE DATA DIVISION.

The PROCEDURE DIVISION reference to the data-name has too
many subscripts. The number of subscripts must match the
number of OCCURS clauses in the definition hierarchy in
the DATA DIVISION.

C - RECORD NAME IS ASSOCIATED WITH INVALID FD.

C - COPY/INCLUDE - COPY AND INCLUDE MUST NOT BE USED WITHIN
LIBRARY ENTRIES.

Words following the library name are diagnosed according
to the clause being processed, up to the next required
clause.

C - COPY/INCLUDE - PERIOD MISSING FOLLOWING XXX. THE NEXT
CARD MAY BE SKIPPED.

A period should be inserted following library book name.
Any other entry follow1ng the name is diagnosed as the m1351pg
period, and the return is made to the phase. The phase diag-
noses all entries up to the next period according to the cur-
rent clause string.

Appendix H 157

1JS025 C - COPY - XXX IS AN INVALID LIBRARY NAME OR NOT FOUND ON LIBRARY

Any word other than period immediately following the 1li-
brary name is diagnosed according to the current clause string
up to the next period. This includes the current card and
the next card, if read.

IJS026I C - VALUE -~ FLOATING-POINT NUMBER XXX IS BELOW OR ABOVE
VALID RANGE.

The value of zero is assumed.

1JS0271 W - VALUE - NUMBER OF DECIMALS IN LITERAL XXX AND DATA ENTRY
DISAGREE.

Truncation or padding is performed according to the rules
governing the MOVE verb.

IJs028I C - VALdE - LITERAL XXX IS INVALID AND IS DROPPED.

The value clause conflicts with the description of the
entry and is dropped.

IJS029I W - VALUE - LITERAL XXX AND PICTURE SIZES DISAGREE.

This diagnostic points out a literal larger than its
picture. The literal is truncated to picture size from
left to right, unless right justification is specified.
The scan is continued as if no error occurred.

IJS030I W - VALUE - LITERAL XXX WAS SIGNED, ENTRIES PICTURE WAS
UNSIGNED.

The literal encountered in this entry contains a sign, it
does not appear as part of the entry because the picture is
unsigned.

iIJs0311 W - VALUE - NUMBER OF INTEGERS IN LITERAL XXX AND DATA ENTRY
DISAGREE.

Same as message 27.

$#IJS032I C - INCLUDE - LIBRARY NAME IS AN 7. 7ALID EXTERNAL NAME OR NOT
IN THE LIBRARY.

#IJS041I C - OCCURS - THIS CLAUSE IGNORED AT THE 01 LEVEL IN XXX ENTRY.

#I3S042I C - OCCURS - THIS CLAUSE IGNORED IN XXX ENTRY AS IT PROVIDES
MORE THAN 3 LEVLES OF SUBSCRIPTING.

IJS043I C - OCCURS - DEPENDING ON OPTION IN XXX ENTRY IS IGNORED DUE
TO PRIOR USE.

The occurs depending-on option can appear only once in a
given record and it must contain the last entry within that
01.

#I3S044I C - OCCURS - DEPENDING ON OPTION IN XXX ENTRY IS IGNORED
BECAUSE IT IS SUBORDINATE TO A PREVIOUS OCCURS CLAUSE.

IJS045I C - OCCURS - THE LEVEL OF XXX ENTRY INVALIDATES THE DEPENDING

OPTION AT THE PRECEDING XXX ENTRY. THE DEPENDING OPTION IS
DROPPED.

158 DOS and TOS COBOL Prog. Guide

)

IJs0461I

1Js0471

#IJ50481
IJs0491I

IJS0501

I1Js0511

IJs0521

IJS0531

1Js0541

IJS0551

The level number just encountered indicates that there was
an occurs depending that did not include the last entry within
the 01.

C - XXX ENTRY CONTAINS AN ILLEGAL LEVEL NUMBER OR REDEFINES
CLAUSE WHICH IS IGNORED.

A redefines clause must redefine an entry at the same
level number.

E - INTERNAL QUALIFIER TABLE OVERFLOWED WHEN HANDLING XXX.
RESTARTED QUALIFIERS WITH XXX.

Qualification: The sum of all thé characters in the data-
nane and all its qualifiers + 4 times (the number of quali-
fiers + 1) must not exceed 300.

W - REDEFINES - ENTRY PRECEDING XXX IS OF VARIABLE LENGTH.
W - REDEFINES - XXX IS LARGER THAN ENTRY REDEFINED.

The current entry is larger than the area redefined. The
area is assumed to be expanded.

W - REDEFINES - XXX ENTRY PRECEDING XXX IS LARGER THAN ENTRY
REDEFINED.

Same as for message 049, only for a group entry.

C - REDEFINES - THIS CLAUSE INVALID IN XXX ENTRY AS REDEFINED
AREA IS SUBSCRIPTED.

It is invalid to redefine an area containing an occurs
clause. The redefinition clause is dropped.

C - VALUE - THIS CLAUSE IGNORED IN XXX ENTRY DUE TO REDEFINES
OR OCCURS CLAUSE IN PRECEDING XXX LEVEL.

A value clause cannot appear in an entry subordinate to a
redefines clause. The value clause is dropped.

W - ALIGNMENT - FOR PROPER ALIGNMENT, A XXX BYTE LONG FILLER
ENTRY IS INSERTED PRECEDING XXX.

Binary and floating-point data are aligned on an appro-
priate boundary by the compiler. The alignment is performed
by inserting an assumed filler entry preceding the item
requiring alignment. The number of slack bytes required
can be reduced by the use of a different data format such
as: packed, grouping aligned items to the beginning of a
record, or otherwise positioning them so that they will
have the proper alignment within the record. A discussion
of slack bytes can be found in the publication, COBOL
Language Specifications listed on the cover of this manual.

W - ALIGNMENT - FOR PROPER ALIGNMENT, A XXX BYTE LONG XXX
FILLER ENTRY IS INSERTED PRECEDING XXX.

Groups are aligned according to the alignment requirements
of the first elementary within that group. The level number
indicated in the diagnostic message shows exactly where the
implied filler entry was inserted. Refer to message 53.

E - XXX ENTRY PRECEDING XXX EXCEEDS MAXIMUM SIZE OF 4092
BYTES.

Appendix H 159

1Js0561

IJ80571

IJs0581

IJS0601I

I1JS0611

1Js0621

IJs063I

IJS064I

The group defined at the indicated level preceding the
point where this message was generated exceeded the maximum
size permitted in the file or linkage section.

W - XXX ENTRY PRECEDING XXX EXCEEDS MAXIMUM LENGTH OF 32,768
BYTES.

Same as 55 except for the working storage section.
E - PROGRAM EXCEEDS 240 BASE LOCATORS MAXIMUM AT XXX.

A base locator is assigned for each file for each 01 or
77 in the linkage section, and for every 4,096 bytes in the
working storage section. The base locator counter wraps
around and the results are unpredictable.

E - ERRONEOUS OR MISSING DATA DIVISION.

No data division entries were present or all data division
entries were dropped because of errors.

W - REDEFINES - XXX LEVEL PRECEDING XXX IS OF VARIABLE
LENGTH.

The entry, defined at the level indicated, that preceded
this clause, contained an occurs depending clause. The re-
defined clause is dropped because it is illegal to redefine
a variable-length entry.

C - XXX ENTRY EXCEEDS MAXIMUM LENGTH FOR ITS DATA TYPE.

The maximum permitted length of an entry depends on the
type of data defined for that entry. Numeric data cannot
exceed 18 digit positions, report entries cannot exceed 127
character positions. The maximum size is assumed.

W - REDEFINES - XXX REQUIRED ALIGNMENT AND STARTS XXX BYTES
PAST THE START OF THE ENTRY IT REDEFINED.

The entry containing the redefines clause requires align-
ment that differs from the alignment of the clause redefined.
If alignment is required, insert a filler the size of the num-
ber of bytes indicated in the message before the item being
redefined.

W - ALIGNMENT - TO ALIGN BLOCKED RECORDS ADD XXX BYTES TO THE
01 CONTAINING DATANAME XXX.

The first record in a buffer is aligned on a double word
boundary. All 01l's are assumed to start on a double word
boundary. If binary or floating-point numbers are used in
the record and if the records are blocked in a buffer, the
succeeding records may not be properly aligned. Alignment
can be obtained by padding each record by the indicated
number of bytes and processing in the buffer, or by moving
each record, as a group, to an 0l in the working storage
section before processing the computational field. The
pointer to this diagnostic indicates the last element within
a record. The padding must go into the preceding 01 record,
not the 01 that may immediately follow the indicated data
name.

W - ALIGNMENT - IF THE PRECEDING RECORD IS BLOCKED, IT MAY BE
ALIGNED BY MOVING TO AN 01 IN THE WORKING-STORAGE SECTION.

160 DOS and TOS COBOL Prog. Guide

IJs0761

$#1JS0771

IJs0781

#1JS0791

#IJS0801

IJs081lI

IJs0821

IJS083I

1Js0841

IJs0851

IJs086I

When records are variable and blocked, only the first
record can be aligned.

W = RERUN - INTEGER OPTION IS NOT PERMITTED.

This clause is dropped.
E - USER LABELS NOT SUPPORTED IN THIS VERSION.

C - SELECT - INTERNAL FILE-NAME AND DESCRIPTION TABLE OVERFLOWED.
XXX NOT PROCESSED.

There is a fixed number of files that can be handled by a
given COBOL compilation. If additional files must be handled,
they can be processed in a subprogram and accessed via the
linkage facility. Any files that are encountered after the
maximum permitted are dropped.

C - APPLY - RESTRICTED SEARCH INTEGER TOO LARGE ON XXX.
CLAUSE DROPPED.

C - APPLY - MORE THAN THREE FORMS OVERFLOW CLAUSES. OVERFLOW-
NAME XXX ENTRY IS DROPPED. :

W - SAME - XXX APPEARED PREVIOUSLY IN A 'SAME' CLAUSE.
REMAINDER OF SAME CLAUSE DROPPED.

A given filename can appear in only one same-area clause.
If a duplication is encountered, the entire same-area clause
is dropped.

W - SAME - INTERNAL ‘SAME' TABLE OVERFLOW. ENTRIES AFTER XXX
DROPPED.

A fixed number of filenames and combinations of filenames
are allowed in an internal same-area table. If reducing the
number of filenames or the number of same-area clauses does
not relieve the situation, it may require an entry to a
subprogram to permit a large number of files to be referenced
in this manner.

W - RECORD - RECORD LENGTH SPECIFIED DISAGREES WITH CALCULATED
MAX. RECORD LENGTH OF XXX ON XXX. CALCULATED RECORD LENGTH
ASSUMED.

The actual length of each record is calculated during
compilation time by totaling all its components. If the
length disagrees with the specified maximum, this warning
diagnostic is given to indicate that the specified record
size is ignored.

W - BLOCK - BLOCK SIZE FOR XXX TOO BIG. 32K ASSUMED.

The integer specifying block size for the referenced
files is too large. The maximum size allowed is assumed.

E ~ INDEXED - SYMBOLIC KEY MUST BE SPECIFIED FOR XXX IF INPUT.

This message is used for a direct access storage device
only.

E - RELATIVE - ACTUAL KEY MUST BE SPECIFIED FOR XXX.

This message is used for a direct access storage device
only.

Appendix H 161

IJS0871I

1Js088I

#1JS0891I

IJ3S090I

IJ3S0911

IJs0921

#IJS093T

1350941

#IJS095T

#I1JS0961
#IJS097I

#1J350981I

#IJS0991

$#IJ3S100T

IJs101lr

C - THE XXX FILE MUST BE DESCRIBED IN A SELECT CLAUSE.
CURRENT ENTRY IGNORED.

The subject file was referenced in the environment divi-
sion or in an FD clause. There is no select clause to de-
fine this file. The filename referenced may be an invalid
entry encountered at the point that a filename was expected.

C - LABEL - LABEL-RECORD DATA-NAME MUST BE DEFINED IN
LINKAGE SECTION.

Label records are assumed standard.
C - ASSIGN - UNIT IS MISSING FOR XXX FILE. 2400 IS ASSUMED.

C - I/0 FD - THE DESCRIPTION OF XXX FILE CONFLICTS ON THE
FOLLOWING POINTS --- XXX.

The description of the file referenced contains factors
that conflict with each other. The factors can be in the
description of the file in the environment division, in the
FD of the file section, or in other areas such as the rec-
ord description for that file. The points in conflict are
defined by the trailing clauses of the diagnostic.

E - INDEXED - INDEXED ORGANIZATION ON XXX NOT VALID FOR THIS
LEVEL COMPILER.

This message is used for a direct access storage device
only.

E - DIRECT - DIRECT ORGANIZATION ON XXX NOT VALID FOR THIS
LEVEL COMPILER.

This message is used for a direct access storage device
only.

E - XXX NOT HANDLED WITH PRESENT RELEASE.
E - SELECT - XXX FILE WAS NOT DEFINED BY AN FD ENTRY.

No DTF is built for this file, therefore, it cannot be
used.

C - IF - ARITHMETIC EXPRESSION CANNOT BE USED IN NON-NUMERIC
COMPARISON. TEST IS DROPPED.

W - RERUN - ONLY ONE CHECKPOINT FILE MAY BE SPECIFIED.

E DIRECT ACCESS - STANDARD LABELS ARE REQUIRED ON XXX FILE.
C - ASSIGN - XXX FILE ASSUMED ASSIGNED TO UTILITY.

C - ASSIGN - XXX FILE UNIT MISSING AND ASSUMED TO BE 1403
PRINTER.

E - ASSIGN - DIRECT-ACCESS ASSIGNED TO XXX NOT SUPPORTED IN
THIS VERSION.

C - RECORDING - XXX FILE IS ASSIGNED TO UNIT RECORD AND MUST
BE RECORDING MODE IS F.

162 DOS and TOS COBOL Prog. Guide

I1Jslo021

IJS103I

$#IJS1041

#IJS1051I

#IJS10671 -

#I1JS1071
$1351081
$13S109T
#IJS1101
$I3S111I
$1JS112T

#IJS1131

#1Js1141
I1Js176I

#IJS177I

IJs178I

IJs1791I

IJS1801

IJS181lI

IJS183I

Unit record must be fixed length. Largest described
length is assumed.

C - RESERVE - A MAXIMUM OF 1 ALTERNATE AREA IS ALLOWED FOR
XXX FILE.

One alternate area is reserved.
E - ASSIGN ~ XXX IS NOT A VALID SYSTEM ASSIGNMENT.
Must be SYS001l - SYS244, SYS00l1 is assumed.
E - RECORD/BLOCK SIZE ON XXX IS GREATER THAN 3625.
E - INVALID DEVICE NUMBER SPECIFIED. DISK 2311 ASSUMED.

W - ONLY ONE AREA SUPPORTED FOR INDEXED OR DIRECT ORGANIZATION.
ONE AREA ASSIGNED FOR XXX.

C - RECORD KEY REQUIRED FOR INDEXED ORGANIZATION FILE XXX.

- LENGTH OF SYMBOLIC/RECORD KEY GREATER THAN 256.

Q =
1

LENGTH OF ACTUAL KEY IS GREATER/LESS THAN 8.
- INCORRECT DATA ITEM TYPE SPECIFIED FOR KEY.

- TRACK AREA CLAUSE NOT SUPPORTED IN DOS.

ORGANIZATION - RELATIVE ORGANIZATION ASSIGNED TO XXX NOT

E

W

C - SYMBOLIC AND RECORD KEY LENGTH FOR XXX DISAGREE.

E

SUPPORTED IN THIS VERSION. COMPLETE SELECT STATEMENT DROPPED.

E - RECORD/BLOCK ON XXX IS GREATER THAN 2000.
C - WORD RECORD OR RECORDS IS REQUIRED. FOUND 'ZXXX.'

Syntax skips until the next clause, level number, or period
at the end of the file description is encountered.

W - FILE - PERIOD REQUIRED AFTER WORD 'SECTION'.
C - SYNTAX REQUIRES 'XXX'. FOUND 'XXX'.

This élause is ignored.
W - FD - '"XXX' IS AN INVALID FILE-NAME FORMAT.

A filename must follow the format rules for data-names.
Invalid names are truncated to 30 characters and assumed to
be valid.

E - XXX EXCEEDS 30 CHARACTERS AND IS DROPPED.

The picture is too long, therefore, it is dropped.

W - THE OPTION WORD IS MISSPELLED OR OMITTED. FOUND XXX.

Usage is assumed DISPLAY.

C - 'XXX' IS AN INVALID OR EXCESSIVE INTEGER.

The integexr indicated in this clause is determined to be
invalid and, therefore, not used. ’

Appendix H 163

IJS184I W - XXX IS AN INVALID LEVEL NUMBER.

The level number found is changed to 01, syntax scanning
proceeds. : .
N

#1JS185I W - LABEL RECORD IS OMITTED. LABELS ASSUMED STANDARD.
IJS186I W - SYNTAX REQUIRES DATA RECORD CLAUSE.
Syntax scanning proceeds.

IJS187I C - MODE MUST BE 'V', 'F', or 'U'. FOUND XXX.

If V, F, or U was specified, check the element number on
this line for a misspelled optional word.

IJS190I W - LABEL - 'XXX' IS AN INVALID DATA-NAME FORMAT.

Invalid data-names are truncated to 30 characters and
assumed valid.

IJS191I W - SD OR SA ENTRY REQUIRES F LEVEL COMPILER.
Syntax skips to next margin A entry.

#I1J8192T W - 'XXX' IS AN INVALID RECORD NAME FORMAT.

TJS194I C - 'XXX' IS INVALID AT THIS POINT. CHECK FOR SYNTAX ERROR
ON CURRENT/PREVIOUS STATEMENT.

While processing a given clause or:sentence, an unex-
pected element was encountered. The clause may be wvalid
but misplaced. Check for prior diagnostics, extra or
missing period, invalid continuation of non-numeric literals,
or a misspelled word. This diagnostic is also given for
clauses that are not valid source input to this level
compiler.

#IJS195I E SYNTAX REQUIRES AN FD ENTRY. FOUND XXX.

#IJS196T W

SYNTAX REQUIRES AN 01 LEVEL ENTRY. FOUND XXX.

#IJS1971 W

NOT VALID FOR THIS LEVEL COMPILER.

IJs2011 C XXX IS AN INVALID DATA-NAME FORMAT BUT ASSUMED VALID.

Invalid data-names are truncated to 30 characters and
assumed valid.

$TJS202I C - 'XXX' IS INVALID AT THIS POINT. CHECK FOR SYNTAX ERROR
ON CURRENT/PREVIOUS STATEMENT.

#IJS203I C - THIS USAGE XXX CONFLICTS WITH THE GROUP USAGE AND IS
IGNORED.

IJS204I C - XXX IS AN INVALID OR EXCESSIVE INTEGER.

Invalid integer is dropped.
#IJS205I W - XXX IS AN INVALID DATA-NAME FORMAT, BUT ASSUMED VALID.
IJS2061 W - WORD ZERQ REQUIRED. FOUND XXX.

The clause is ignored.

164 DOS and TOS COBOL Prog. Guide

I1JS207I W - WORD RIGHT IS REQUIRED. FOUND XXX._

The clause is ignored. Right justified.

1JS210I C - THIS ENTRY CONFLICTS WITH THE FOLLOWING DESCRIPTIONS--XXX.

Various clauses specified for a data entry are compared.
with previous specifications for the entry. If there is
any factor that conflicts with the subject clause, it is
listed as a trailer to this entry. Factors included that
are not themselves clauses would be elementary or group
item usage, specified at a group level in previous clauses.
This message can appear if a period is missing at the end
of a data entry. This diagnostic could be produced when
(for example) the picture clause for the second entry is
encountered, and automatically conflicts with the picture
clause for the previous entry.

#IJS211T C - XXX EXCEEDS 30 CHARACTERS AND IS TRUNCATED.

IJS212I C - ONLY LEVELS 77 OR 01 ARE PERMITTED AT THIS POINT. FOUND
XXX.

Syntax skips until a section name or level number is
found.

IJS2131 W - THE FOLLOWING DESCRIPTIONS INVALID AT GROUP LEVEL---XXX.

The data entry described is determined to be a group,
although the entries specified as trailers to this diagnostic
are invalid at the group level. This diagnostic can be pro-
duced by an invalid level number that was changed to an 01,
or a misunderstanding as to how a group is defined and what
clauses are valid at the group level. A missing period can
also produce this diagnostic.

TJS214I C - ELEMENTARY - XXX DATA ENTRY REQUIRES A PICTURE, COMPUTATIONAL-1
OR COMPUTATIONAL-2.

This diagnostic can be produced by an error in the fol-
lowing level number which caused its level to be changed to
an 01, thereby making this entry an elementary. Check for
missing periods or other diagnostic messages. Any statement
in the procedure division containing a reference to this entry
is diagnosed and dropped.

IJS215I W - SYNTAX REQUIRES AN ENTRY IN MARGIN A. FOUND XXX IN
MARGIN B.

Following certain entries in a source program, a specific
clause must be encountered in margin A. If it is found in
margin B, it is diagnosed but handled by the compiler.

IJS216I W - SYNTAX REQUIRES AN ENTRY IN MARGIN B. FOUND XXX IN
MARGIN A. CHECK FOR MISSING PERIODS.

All entries in margin A must be preceded by a period.
The compiler was in the middle of processing a clause or
sentence and encountered the indicated word in margin A.
A diagnostic is given and the word is processed as if valid.

$#IJS217I W - LEVEL 77 ENTRIES MUST PRECEDE OTHER LEVELS AND ARE
ASSUMED TO BE 01 LEVEL.

#IJS218I W - SYNTAX PERMITS ONLY LEVELS 77, 88, OR 01 AFTER A 77
LEVEL. THE LEVEL WAS CHANGED XXX TO 01l.

Appendix H 165

1Js2211

IJs2221

#1JS2271

IJs228I

#I1J52291
#1JS231I
#IJS2331
#IJS2341I
#1J3S2351

1Js2381I

#IJs52391

»JS2411

#1J3S2421

IJs301I

1Js3021

C - SYNTAX FOR ALL REQUIRES XXX BE A SINGLE CHARACTER IN
QUOTES.

The wvalue clause is dropped.

C - PICTURE XXX WAS FOUND INVALID WHILE PROCESSING XXX. THE
PICTURE IS DROPPED.

Any element that follows the word picture in a data des-—
cription, other than the word that is dropped, is assumed to
be a picture, and is passed to a later phase for analysis.
The analysis proceeds from left to right on a character-by-
character basis. The character identified in the message is
the one processed at the time the picture is determined to be
invalid. The specific character itself may be invalid or may
have indicated that a previous character or condition is in-
valid. For example, an E encountered in an external floating-
point picture may indicate that a preceding decimal was
omitted in the mantissa. The picture is dropped, and the
entry identified as an error.

E - FILE SECTION OUT OF SEQUENCE.
E — SYNTAX PERMITS ONLY ONE XXX IN SOURCE PROGRAM.

Syntax proceeds.

WORKING STORAGE SECTION OUT OF SEQUENCE.

ENVIRONMENT DIVISION MISSING.

REPORT SECTION REQUIRES F LEVEL COMPILER.

WORD 'SECTION' MISSING.

'PERIOD' MUST FOLLOW WORD SECTION.

E
E
c
W
W
W

- 'XXX' IS AN INVALID SECTION NAME OR INVALID/MISPLACED LEVEL
INDICATOR.

Syntax skips until a valid section-name or level number
is found.

W - SYNTAX REQUIRES WORD 'DIVISION'.
C - 88-LEVEL PRECEDING 88 MUST BE AN ELEMENTARY.

Any level number preceding an 88 must be an elementary.
If it is not, it is assumed to be an elementary and is
processed.

W - THE 88 ENTRY DOES NOT HAVE A VALUE, THEREFORE, IT IS
DROPPED.

W - SYNTAX REQUIRES 'XXX' IN MARGIN A. FOUND 'XXX'. RESTART
WITH 'XXX'.

Syntax requires the specific entry indicated to be in
margin A. If the entry is found in margin B, compilation
resumes.

C - SYNTAX REQUIRES 'XXX'. FOUND 'XXX'. RESTART WITH 'XXX'.
IF WORDS REQUIRED AND FOUND ARE THE SAME, THE ENTRY IS IN THE
WRONG MARGIN.

Syntax skips to the restart clause.

166 DOS and TOS COBOL Prog. Guide

#IJS3031T

IJs3041

IJS305TI

#1J53061

IJs3071

IJS308I

IJS3091I

IJs3101

IJS311T

IJs3121

IJs3131

IJs3141

IJS3151

W - 'XXX' IS AN INVALID CONDITION-NAME FORMAT

E - '"XXX' IS AN INVALID EXTERNAL-NAME FORMAT. RESTART WITH 'XXX'.
An external name was expected at this point in the scan of

the subject clause. An external name must be enclosed in

quotes. It must start with an alphabetic character, cannot

contain more than eight characters, and the only valid

characters are letters and numerals. A dash is not

permitted.

C - SYNTAX REQUIRES SAME, RERUN, APPLY, OR 'XXX' DIVISION.
FOUND 'XXX'. RESTART WITH 'XXX'.

Check for invalid sequence of source program cards or extra
periods.

W - SYNTAX REQUIRES 'ENVIRONMENT' OR 'XXX' DIVISION IN
MARGIN A. FOUND 'XXX'. RESTART WITH 'XXX'.

E - SYNTAX REQUIRES I-O-CONTROL, INPUT-OUTPUT, OR 'XXX'
DIVISION IN MARGIN A. FOUND 'XXX'. RESTART WITH 'XXX'.

Same as 305.
W - '"XXX' IS AN INVALID DATA~NAME FORMAT. RESTART WITH 'XXX'.
A data-name was expected at this point in the scan of the
subject clause. Invalid format is truncated to 30 characters
and processed as if wvalid.
C - ENVIRONMENT PARAGRAPHS OUT OF ORDER.
Statements are handled anyway.
W - 'XXX' IS AN INVALID 360 MODEL-NUMBER. RESTART WITH 'XXX'.

Syntax skips to the restart clause.

E - SYNTAX REQUIRES 'FILE-CONTROL', 'XXX' OR 'DATA DIVISION'
IN MARGIN A. FOUND 'XXX', RESTART WITH 'XXX'.

Same as 305.

C - 'XXX' IS AN INVALID OR EXCESSIVE INTEGER. RESTART WITH 'XXX'.
The syntax at this point of scan of the specified clause

requires an integer. The element found was invalid and

dropped.

W - 'XXX' IS AN INVALID FILE-NAME FORMAT. RESTART WITH 'XXX'.
The syntax scan of the subject clause requires a filename

at this point. The element found was invalid. It was

truncated to 30 characters and used as if wvalid.

E - 'XXX' IS AN INVALID LIBRARY-NAME FORMAT. RESTART WITH 'XXX'.

A library name is required at this point. It is an invalid
format, and is dropped.

W - APPLY - MORE THAN THREE OVERFLOW OPTION CLAUSES ARE USED.

An internal table permits a maximum of three form overflow
names to be assigned in any compilation. Any more are dropped.

Appendix H 167

IJS316I C - SYNTAX REQUIRES 'INDEXED' OR 'XXX'. FOUND 'XXX'. RESTART
WITH 'XXX'.

This message is used for a direct access storage device
only.

IJS317I C - SYNTAX REQUIRES 'SEQUENTIAL' OR 'XXX'. FOUND 'XXX'.
RESTART WITH 'XXX'.

This message is used for a direct access storage device
only.

IJS3181I E - SYNTAX REQUIRES 'XXX' OR DATA DIVISION IN MARGIN A. FOUND
'XXX'. RESTART WITH 'XXX'.

The syntax for the subject clause requires specific entries
at this point. Check for misspelled words.

IJS319I C - SYNTAX REQUIRES 'UTILITY', 'DIRECT-ACCESS' OR 'XXX'.
FOUND 'XXX'. RESTART WITH 'XXX'.

See message 318.

I1JS320I W - 'XXX' IS AN INVALID I-O-DEVICE-NUMBER. RESTART WITH 'XXX'.
See message 318.

IJS321I E - NO PROCESSING OF THIS MULTIPLE SPECIFIED DIVISION OR
SECTION. RESTART WITH 'XXX'.

A section or division was encountered more than once. It
was dropped, rather than disturb the internal sequence of
the compilation.

$IJS322I W - FILE-NAME OR DATA-NAME EXCEEDS 30 CHARACTERS. TREATED AS
30-CHARACTER NAME.

IJS323I W - SYNTAX REQUIRES 'XXX' OR CLAUSE-NAME, FOUND 'XXX'. RESTART
WITH 'XXX'.

Syntax skips to the restart clause.

IJS3241 E - SYNTAX REQUIRES 'REEL' OR 'XXX'. FOUND 'XXX'. RESTART WITH 'XXX'.
Syntax skips to the restart clause.

IJS401I C - SYNTAX REQUIRES A DATA-NAME. FOUND 'XXX'.

The syntax of the indicated clause requires data-name.
The element found was not defined as a valid data-name. The
element may be indicated here, or, an indication given that
it was an invalid name such as, filename, condition name,
figcon, or overflow name. Check for misspelled data name
in diagnostics, ‘which would nullify the definition of a
valid data-name, or the use of a COBOL word as a data-name.

IJS402I C - SYNTAX REQUIRES NEXT ITEM BE 'XXX'.

The syntax for this clause requires a specific word that
was not found. The item encountered was probably a data-name.
The next item indicates that the syntax requires a specific
word or words. None were found. The element found is dis-
played unless it was a name, in which case the word invalid
name or data name is indicated. The reference format for
the clause specified should be consulted if the meaning of
the message is not immediately clear. Also check for:
missing periods, preceding diagnostic messages, invalid
non-numeric literals, COBOL words used as data names.

168 DOS and TOS COBOL Prog. Guide

IJS403T

IJs4041

IJs4051I

IJS4061

IJs4071

TJS4081

1JS4091

1JS4101I

IJs411r

IJs4121

IJS4131

I1Js4141

IJs4151

IJs416I

IJS4171

~C - SYNTAX REQUIRES A DATA-NAME OR NUMERIC-LITERAL. FOUND 'XXX'.

See message 402.
C - SYNTAX REQUIRES EITHER WORD 'TO', OR 'GIVING'. FOUND 'XXX.
See message 402.

C - SYNTAX REQUIRES A SINGLE CHARACTER IN QUOTES OR A FIGCON.
FOUND 'XXX'.

See message 402.
C - SYNTAX REQUIRES A FILE-NAME. FOUND 'XXX'.
See message 402.
C - SYNTAX REQUIRES DATA-NAME OR INTEGER. FOUND 'XXX'.

See message 402.

C - SYNTAX REQUIRES WORD 'INPUT', 'OUTPUT', OR 'I-O'. FOUND 'XXX'.
See message 402.
C - SYNTAX REQUIRES A PROCEDURE-NAME. FOUND 'XXX'.

See message 402.
C - SYNTAX REQUIRES A DATA-NAME OR LITERAL. FOUND 'XXX'.
See message 402.

C - SYNTAX REQUIRES WORD 'CALL', 'ENTRY', OR 'RETURN'. FOUND
' XXX,

See message 402.
E - SYNTAX REQUIRES AN EXTERNAL-NAME. FOUND 'XXX'.

See message 402.

C - SYNTAX REQUIRES '=', FOUND 'XXX'.
See message 402.
C - SYNTAX REQUIRES EXPRESSION TO BEGIN WITH EITHER A DATA-

NAME, NUMERIC-LITERAL, '+', '-' OR '('. FOUND 'XXX'. TWO
OPERATORS MAY NOT APPEAR ADJACENT TO ONE ANOTHER.

See message 402.

C - SYNTAX REQUIRES CALL PARAMETERS TO BE EITHER DATA-~NAME,
PROCEDURE-NAME OR FILE-NAME. FOUND 'XXX'.

See message 402.

C - SYNTAX REQUIRES DATA-NAME, LITERAL FIGCON, '+', '=', '('
OR 'NOT'. FOUND 'XXX'.

See message 402.

C - SYNTAX REQUIRES AN ARITHMETIC OPERATOR OR RELATIONAL.
FOUND '"XXX'.

See message 402.
Appendix H 169

I1JS418I C - SYNTAX REQUIRES A DATA-NAME, NUMERIC-LITERAL, OR ' (' AFTER
AN OPERATOR. FOUND 'XXX'.

See message 402.

IJS4191 C - SYNTAX REQUIRES A DATA-NAME, LITERAL, FIGCON, '(', '+' OR
. '=' AFTER A RELATIONAL. FOUND 'XXX',

See message 402.

IJS420I C - SYNTAX REQUIRES A VERB, PERIOD, ELSE OR OTHERWISE. FOUND
XXX.

The end of a valid clause was encountered. The element
that followed the valid termination of this clause is not
valid. If the preceding clause had some options, check the
reference format to determine if the options were specified
incorrectly. A COBOL word used as a data-name, or an extra
period, can also produce this diagnostic.

IJS4211I C - ENTRY PARAMETER MUST BE A DATA-NAME. FOUND XXX.

The only parameters that can be passed to a COBOL sub-
program are data-names. The data-names must be defined in
the linkage section of the subprogram.

IJS422I C - SYNTAX REQUIRES A RELATIONAL. FOUND XXX.

Syntax requires that the next element be a relational.
Check for invalid punching or a preceding error.

#IJS423I C - SYNTAX REQUIRES WORD 'INPUT' OR 'OUTPUT'. FOUND XXX.
IJS4241 C - SYNTAX REQUIRES WORDS 'TO PROCEED TO'. FOUND XXX.
See message 402.
IJS425I C - SYNTAX REQUIRES WORD 'CONSOLE' OR 'SYSPCH'. FOUND XXX.
See message 402.
$#I054261 E - SYNTAX REQUIRES 'AT END' OR 'INVALID KEY'. FOUND XXX.

IJS427I C - SYNTAX REQUIRES A DATA-NAME, FIGCON OR NON-NUMERIC
LITERAL. FOUND XXX.

See message 402.

IJS428I C - SYNTAX REQUIRES A PROCEDURE-NAME AFTER 'GO TO' NOT
PRECEDED BY A PARAGRAPH-NAME. FOUND XXX.

See message 402.

IJS429I C - SYNTAX REQUIRES 'ALL', 'LEADING', 'UNTIL', OR 'FIRST'.
FOUND XXX.

See message 402.

IJS430I C - SYNTAX REQUIRES WORD 'TALLYING' OR 'REPLACING'. FOUND XXX.
See message 402.

IJS431I C - SYNTAX REQUIRES WORD 'DEPENDING ON'. FOUND XXX.
See message 402.

IJS4321 C - DATA TYPE MUST BE ED, ID, OR BI.

Valid syntax for the subject verb permits only specific
170 DOS and TOS COBOL Prog. Guide

*1JS4331

*1JS4341

*1JS4351

*TJS4361

*T1JS4371

*1JS4381

1Js4391

1JS4401

IJS4411

IJs4421

IJS4431

data types. The data type as determined by the definition
in the data division is invalid for its use here. The
statement is dropped. AN

C - SYNTAX REQUIRES WORD TRACE. FOUND XXX.
See message 402.

C - SYNTAX REQUIRES THAT A PERIOD OR 'SECTION' FOLLOWS
PARAGRAPH-NAME.

See message 402.

E - DATA NAME AND ANY QUALIFIER MUST APPEAR WITHIN THE FIRST
SEVEN OPERANDS OF STATEMENT FOR CHANGED OPTION.

See message 402.

C - SYNTAX REQUIRES A DATA-NAME, FIGCON OR LITERAL. FOUND
XXX.

See meséage 402.

C - SYNTAX REQUIRES A FIGCON. FOUND XXX.
See message 402.

C - SYNTAX REQUIRES DATA-ITEM TO BE NO LONGER THAN FOUR.
See message 402.

c - WRONG SUBSCRIPT SPECIFICATION.

Data names and condition names can be subscripted to a
depth of three. A subscript is required for each occurs
clause specified at the specified data name or in groups
containing that data name. There cannot be fewer or more
subscripts than occurs clauses in the hierarchy. Sub-.
scripts must be enclosed in parentheses, and separated from
each other by a comma or a blank.

C - INCORRECT SPECIFICATION IN DECLARATIVE-SECTION. FOUND XXX.
See message 402.
C - SYNTAX REQUIRES AN INTEGER NOT LONGER THAN 5. FOUND XXX.

The integer exceeds the size permitted by language speci-
fications. The statement is dropped.

C - THE DECLARATION OF THIS DATA-NAME CAUSES IT TO BE FLAGGED
AS AN ERROR.

The data-name encountered was flagged by the data division
as containing an error in its declaration. Correct the declar-
ation as indicated by the data division diagnostics and re-
compile. The statement in the procedure division is dropped.

E - SYNTAX REQUIRES A VERB. FOUND XXX.

A point was reached where a verb was required, and was
missing. For example 'IF A = B.' requires a verb between
B and the period. The statement is skipped from the point
of the error.

* The entire statement from the point of error is dropped, and is not
compiled. This applies to messages IJS433I, IJS434I, IJS4361I - IJS438I.

Appendix H 171

IJS4441 E - SYNTAX REQUIRES A RECORD NAME. - FOUND XXX.
See message 402.

IJS500I W - DISPLAY - AN OPERAND'S LENGTH EXCEEDS AND IS TRUNCATED TO
256 BYTES.

A maximum of 256 bytes can be displayed.

IJS501I W - DISPLAY - IF THIS VARIABLE-LENGTH ENTRY EXCEEDS 256,
RESULTS WILL BE UNPREDICTABLE.

A maximum of 256 bytes can be displayed.
IJS502I W - STOP - LITERAL EXCEEDS AND IS TRUNCATED TO 72 BYTES.

In a stop-literal statement only the first 72 bytes of a
longer field are typed on the console.

IJS503I W - ACCEPT - DATA EXCEEDS AND IS TRUNCATED TO 72 BYTES.

A maximum of one line (72 bytes) can be retrieved using
the ACCEPT FROM CONSOLE statement.

IJS504I W - ACCEPT - DATA EXCEEDS AND IS TRUNCATED TO 256 BYTES.
A maximum of 256 bytes can be accepted from SYSIPT.

IJS505I C - RELATIONAL - FILENAMES OR STERLING-DATATYPE NOT ALLOWED
IN COMPARE.

See message 506.

IJS506I C - RELATIONAL - USAGE OF DATA-TYPES CONFLICT. THE TEST
DROPPED.

Only certain data types can be compared to each other.
The types specified are invalid. Reference can be made to
the compared table to determine the valid combinations.
Logical compares of fields that are classified asﬂinvalid
compares can often be made through a redefinition, and a
description of one or both of the fields as alphameric.
#IJS507I W - EXIT MUST BE ONLY STATEMENT IN PARAGRAPH.
#IJS508I E -~ THE STATEMENT CONTAINS AN UNDEFINED DATANAME.
See message 402.
#IJS509I C - AN ALPHABETIC DATANAME CAN BE TESTED ONLY FOR ALPHABETIC
OR NOT ALPHABETIC, AND NUMERIC DATANAME ONLY FOR NUMERIC OR
NOT NUMERIC.
IJS510I C - COMPARISON OF TWO LITERALS OR FIGCONS IS INVALID.
See message 506.

IJS511T C - DATA-TYPE IN ARITHMETIC STATEMENT IS NOT NUMERIC OR
RECEIVING FIELD IS NOT NUMERIC OR REPORT.

See message 506.
IJS5121 C - DATA-NAME IN CLASS-TEST MUST BE AN, ED, OR ID.

See message 506.

172 DOS and TOS COBOL Prog. Guide

IJS513I C - DATA-NAME IN SIGN-TEST MUST BE NUMERIC.
See message 506.
IJS514I W - DISPLAY - DATA EXCEEDS AND IS TRUNCATED TO 72 BYTES.

If the data is longer than 72 bytes, only the first 72
bytes are printed for a DISPLAY ON CONSOLE statement.

IJS5151 W - DISPLAY - DATA EXCEEDS AND IS TRUNCATED TO 120 BYTES.

If the data is longer than 120 bytes, only the first 120
bytes are printed for a DISPLAY statement.

#IJS516I C - OPEN 'NO REWIND' OR 'REVERSED' CANNOT BE SPECIFIED FOR A
UNIT-RECORD OR DISK UTILITY FILE.

#IJS5171 C - CLOSE - 'NO REWIND' OR 'LOCK' CANNOT BE SPECIFIED FOR A
UNIT RECORD OR DISK UTILITY FILE.

#I1JS518I E - MORE THAN 40 PARAMETERS ARE NOT ALLOWED WITH THE
STATEMENT.

IJS519I C - SYNTAX ALLOWS ZERO AS ONLY VALID FIGCON IN A COMPARISON
WITH BI, ID, EF, AND IF.

See message 506.

IJS520I C - SYNTAX ALLOWS SPACE OR ALL AS ONLY VALID FIGCONS IN
COMPARISON WITH AN ALPHABETIC FIELD.

See message 506.
IJS521I C - DATATYPE MUST BE ED, EF, AL, AN OR GF. FOUND XXX.

The data tvpes indicated are the only valid ones that can
be used in the clause indicated.

IJS522I C - SYNTAX REQUIRES WORD RUN OR LITERAL. FOUND XXX.
Syntax skips the rest of the statement.
IJS523I C - RECEIVING FIELD IN PRECEDING STATEMENT IS A LITERAL.

A procedure division literal cannot be changed as the
result of arithmetic or a move. The statement, SUBTRACT
data name FROM literal, would specify invalid action of
this type.

IJS5241 C - SYNTAX REQUIRES AT LEAST TWO OPERANDS BEFORE GIVING
OPTION.

For example, APD A GIVING B. The statement is skipped.

IJS525I C - THE EXPRESSION HAS MORE RIGHT PARENS THAN LEFT PARENS
TO THIS POINT. FOUND XXX.

The number of right parentheses and left parentheses
in a statement must agree. At no point in time can there
be more right parentheses than left parentheses. Check for
extra periods or missing periods, an error in a non-numeric
literal, or mispunched operators or subscripted fields that
are invalidly packed together without an intervening blank,

Appendix H 173

IJs5261

IJs5271

I1Js5281

IJS5291

IJS5301

#IJS5311

IJs5321

IJS5331

IJs5341

IJS5351

IJs5361

#IJS5371

IJ3S5491

IJsS5501I

C - THE EXPRESSION HAS UNEQUAL NUMBER OF RIGHT AND LEFT
PARENS.

See message 525.
C - DATA-TYPE MUST BE ED, ID, OR BI. FOUND XXX.
The statement is skipped from the point of error.
C - VARYING OPTION EXCEEDS THREE LEVELS.

With the varying option of the PERFORM verb, a maximum
of three levels is permitted. The statement is dropped.

C - DATA~TYPE MUST BE ED, 1D, BI, EF, OR IF.

The data types shown are the only valid ones. The data-
name found is not one of these types.

C - NUMBER OF ELSES EXCEEDS NUMBER OF IFS.

Nested ifs must balance out with the appropriate number of
else or otherwise. Recount and make corrections.

E - OCCURS TABLE - INTERNAL OCCURS - DEPENDING - ON TABLE
OVERFLOWED AVAILABLE CORE.

E - STATEMENT HAS TOO MANY OPERANDS.

The statement referenced is too large or complex for the
internal tables needed for compilation. The statement should
be divided into more than one statement.

E - PARENTHESIZING REQUIRES SAVING TOO MANY OPERANDS.

See message 532.

E - PARENTHESIZING REQUIRES SAVING TOO MANY INTERNALLY
GENERATED TABELS.

See message 532,
E - PARENTHESIZING REQUIRES SAVING TOO MUCH OF STATEMENT.
See message 532.

E - ARITHMETIC EXPRESSION REQUIRES MORE THAN 9 INTERMEDIATE
RESULT FIELDS.

See message 532,
C - USE - NOT HANDLED IN THIS VERSION.

E - WORD XXX WAS EITHER INVALID OR SKIPPED DUE TO ANOTHER
DIAGNOSTIC.

The majority of these messages will probably be caused by
words skipped because of another diagnostic that occurred
earlier in the statement. Correct the previous error. This
diagnostic will also occur because of misspelled words.
Correct the misspellings.

C - A FIGURATIVE CONSTANT IS NOT ALLOWED AS A CALL OR ENTRY
PARAMETER.

The statement is skipped from the point of the error.

174 DOS and TOS COBOL Prog. Guide

IJs5511

IJS5521

#IJS5531I

IJS5541

IJS5551I

#ILJS5561

IJS5571

#IJS558I

IJS5591

IJS560I

IJS561I

IJs562I

#IJS563I

#I1JS5641

IJS5651

#IJS5661
$IJS5671

#IJS5681

C ~- SYNTAX REQUIRES WORD TO. FOUND XXX.
Syntax skips the rest of the statement.

C - RECEIVING FIELD MUST BE A DATA-NAME. FOUND XXX.

The statement is skipped from the point of the error.

E - A FIGURATIVE CONSTANT IS NOT AILOWED AS A RECEIVING
FIELD.

C - THE XXX DATA-TYPE IS NOT A LEGAL RECEIVING FIELD.
The statement is skipped from thHe point of the error.
C - OVERFLOW NAME IS NOT A VALID SENDING FIELD.

The statement is skipped.

.E - END DECLARATIVES IS MISSING IN PROGRAM.

W - FLOATING-POINT CONVERSION MAY RESULT IN TRUNCATION.

Conversion of floating-point numbers can result in trun-
cation of low-order digits.

E - I-O OPTION FOR FILE CONFLICTS WITH NO REWIND.
E - OUTPUT OPTION FOR FILE CONFLICTS WITH 'REVERSED'.

The output option conflicts with an opening of a file,
reversed.

C - SYNTAX REQUIRES WORD 'NAMED',
NAMED'. FOUND XXX.

'CHANGED', OR 'CHANGED

The statement is skipped from the point of error.

C - DATA TYPE MUST BE ED, 1D, BI, EF,
FOUND XXX.

IF, RP, AL, AN, OR GF.

A filename, condition name, figcon, or variable-length
group is not valid at this point.
C - DATA ENTRY MUST NOT EXCEED 120 CHARACTERS.

The data entry specified exceeds the maximum permitted

‘for this type of output.

C - DATA ENTRY MUST BE DISPLAY.

C - SYNTAX REQUIRES ONE OF THE ALLOWABLE CHARACTERS.
XXX.

FOUND

C - AN IF STATEMENT MUST BE TERMINATED BY A PERIOD.

This diagnostic is obtained when the IF statement is the
last statement of a paragraph and a label is detected.
instead of a period.

C - DATA TYPE MUST BE AL, AN, RP, OR GROUP.
C - DATA TYPE MUST BE AL, AN, FIGCON OR FIXED-LENGTH GROUP.

C - DATA ITEM MUST NOT EXCEED 256 CHARACTERS.

Appendix H 175

#IJS5691

#IJS5701

#IJS5711

#IJS5721

IJS5731

IJS6011

IJs602I

#IJS6031
I1JS6041

IJS605I

I1Js6061I

I1JS6071

1JS608I

#1JS6091I

C - DATA ENTRIES MUST BE OF EQUAL LENGTH.

C - THE LENGTH OF THE SECOND OPERAND MUST BE EQUAL TO THE
FIRST OR A SINGLE CHARACTER.

E - A RECORD NAME MUST BE ASSOCIATED WITH THIS FILE. FOUND
XXX.

C - ONLY ONE DATA-NAME MAY BE ASSOCIATED WITH THE CHANGED
OPTION.

C - DATA TYPE MUST BE ED, ID, BI, EFP, IFP, SNR, SR, RI, AL,
AN, FIGCON, OR GROUP. FOUND XXX.

The statement is skipped from the point of error.

W - NO SIGNIFICANT POSITION MATCHES BETWEEN SENDING AND
RECEIVING FIELDS IN MOVE. RECEIVING FIELD IS SET TO ZERO.

There are no digit positions in common between the send-
ing and receiving fields. This can be illustrated by moving
a field with picture 99 to a receiving field with picture
V99. Receiving field is set to zeros.

W - DESTINATION FIELD DOES NOT ACCEPT THE WHOLE SENDING FIELD
IN MOVE.

The sending field is larger than the receiving field in
either its integer or decimal positions or both. Truncation
of the sending field results.

C - AFTER ADVANCING OPTION NOT ALLOWED WITH REWRITE.
E - SOURCE PROGRAM EXCEEDS LIMITS.
The program is too large. The user should do one of the

following and then try again.

® Divide the program into two or more parts
e Simplify compound conditional statements.

E - PROCEDURE NAME XXX MULTIPLY DEFINED.

Procedure name indicated was multiply defined and was not
qualified properly by the appropriate section name when used.

E - PROCEDURE-NAME XXX NOT DEFINED.

The name indicated was incorporated into a GO TO or a
PERFORM statement, and was never defined. Procedure names
must begin in columns 8 through 11 at the point at which
they are defined.

E - LITERAL - INVALID, LITERAL XXX.

Check for multiple decimal points, non-numeric characters
not enclosed in quotes.

E - IT IS NOT ALLOWED TO HANDLE MORE THAN 25 FILES IN ONE
STATEMENT.

The rest of the statement is skipped. Only 25 files are
handled.

E - PROCEDURE-NAME XXX HAS ILLEGAL CONTENT AND IS DROPPED.

176 DOS and TOS COBOL Prog. Guide

(D)

(T)

(D)

(T)
(D)

#IJS610TI

I#IJSGllI
#IJ56121

I#IJ8614I

#IJS700I
#1J3S7011
#1JS7021

I1Js7031

#I1Js704I
#1Js705I
#1JS7061

I3s7071

#IJS7081
#IJS7081

#IJS7091
#I1IJs7101
#IJS7111

#I1Js7121

#IJS7131

E - XXX WAS EITHER NOT ALLOWED IN THIS STATEMENT OR SKIPPED
DUE TO ANOTHER DIAGNOSTIC.

E - TOO MANY PARAGRAPH NAMES HAVE BEEN USED IN CALL STATEMENTS.

W - OPEN STATEMENT CONTAINS MORE THAN 9 FILENAMES. OPEN WILL
SPLIT.

E - THIS CONDITIONAL HAS A MISSING CONDITIONAL OPERATOR.

E - SOURCE PROGRAM NOT FOUND.
E - DATA DIVISION NOT FOUND.
E - PROCEDURE DIVISION NOT FOUND.

E - SOURCE PROGRAM EXCEEDS INTERNAL LIMITS.

COMPILATION CANCELED.
COMPILATION CANCELED.
COMPILATION CANCELED.

COMPILATION

CANCELED.

The above messadge is printed on SYSLST when the size

of the assembler phase tables exceeds the core storage

available for these tables.

When this message appears,

the programmer may be able to modify the source program

to allow compilation on the
essentially three variables

E - DATA-NAME TABLE OVERFLOW.

type of device.

source computer. There are
that can be modified.

The length and number of source labels could be
reduced as the table for source labels must reserve
(3 + L) bytes per source label.
The number of literals could be
reserved for each literal.

The size of the buffer can be reduced in machines above
16K storage size.

reduced as 3 bytes are

COMPILATION CANCELED.
NO DIAGNOSTICS IN THIS COMPILATION.

EXECUTION CANCELED DUE TO E LEVEL DIAGNOSTIC.
CONFLICTING I/O ASSIGNMENTS.

SYS001, SYS002 and SYS003 are not assigned to the same
Compilation is canceled. This message

applies to Disk Operating System only.

= = = =

W

STORAGE ALLOCATED TO THE COMPILER IS LESS THAN 1l0K.
COMPILATION CANCELED.

STORAGE ALLOCATED TO THE COMPILER IS LESS THAN 14K.
COMPILATION CANCELED.

INCORRECT COBOL OPTION 'XXX'.
BUFFSIZ CANNOT BE LESS THAN 170. ASSUMED 170.
BUFFSI1IZ CANNOT BE GREATER THAN 32000. ASSUMED 32000.

BUFFSIZ CANNOT BE GREATER THAN 3625 FOR WORK FILES ON
DISK. ASSUMED 3625.

BUFFSIZ IS TOO LARGE FOR SIZE OF STORAGE ALLOCATED TO
THE COMPILER. ASSUMED XXX.

A (T) preceding a message indicates that the message is applicable
to Tape Operating System only.

A (D) preceding a message indicates that the message is applicable
to Disk Operating System only.

Appendix H 177

OBJECT STORAGE LAYOUT

Each COBOL program written is positioned in main storage in a pre-
scribed manner. The relative position in storage of all the com-
ponents of a program follows.

COBOL SUBROUTI! &S

WORKING STORAGE AND DATA LITERALS

EDIT MASKS

DTF TABLES

BUFFERS

PROCEDURE LITERALS

WORK AREA & GLOBAL TABLE

INSTRUCTIONS

SUBROUTINES (I1/0)

SUBPROGRAMS

178 DOS and TOS COBOL Prog. Guide

OBJECT TIME MESSAGES

A list of object time messages follows. Most of them are self-explana-
tory. Where deemed necessary, examples are included to explain the
message. When COBOL is operating as a foreground program, these messages
are output on SYS000.

#IHD901I* AN UNCORRECTABLE DASD ERROR HAS OCCURRED.

#IHD902I* WRONG LENGTH RECORD.

#IHD903I* NO RECORD FOUND.

#IHD904I* ILLEGAL ID SPECIFIED.

#IHDY905I* DUPLICATE RECORD.

#IHD906I* CYLINDER OVERFLOW AREA FULL.

$#IHD907I# PRIME DATA AREA FULL.

#IHD908I* CYLINDER INDEX AREA FULL.

#IHD909I* MASTER INDEX AREA FULL.

#IHD910I* RECORD OUT OF SEQUENCE.

#IHD911TI WRONG LENGTH RECORD.

#IHD912T NO MORE ROOM FOUND ON TRACK.

#IHD913I DATA CHECK IN COUNT AREA.

#IHD914I DATA CHECK WHEN READING KEY OR DATA.

#IHD915T NO RECORD FOUND.

#IHD993I ZERO BASE-MINUS EXPONENT-PACKED RESULT MADE ALL NINES.

#IHD996I RESULT TOO BIG-FLOATING POINT RESULT MADE MAX FP NUMBER.

#IHD997I ZERO BASE-MINUS EXPONENT-FLOATING POINT RESULT IS MAX FP
NUMBER.

#IHDS98I ZERO BASE-PLUS EXPONENT-FLOATING POINT RESULT MADE ZERO.

$#IHD999T MINUS BASE MADE PLUS AND FLOATING POINT EXPONENTIATION

*These messages pertain to indexed sequential data organization only.

CONTINUED.

AWAITING REPLY.

DEBUG PACKET ERROR MESSAGES

The following is a complete list of precompile error messages.

They

apply to errors in the debugging packet only.

Appendix H

179

I1JS8501

1Js851I

1Js852T

1JS8531

IJS8541

IJS8551

TABLE OF DEBUG REQUESTS OVERFLOWED. RUN TERMINATED.

THE FOLLOWING CARD DUPLICATES A PREVIOUS *DEBUG CARD. THIS
PACKET WILL BE IGNORED.

THE FOLLOWING PROCEDURE DIVISION NAMES WERE NOT FOUND.
INCOMPLETE DEBUG EDIT IS NOT TERMINATED.

THE FOLLOWING *DEBUG CARD DOES NOT CONTAIN A VALID LOCATION
FIELD. THIS PACKET WILL BE IGNORED.

IDENTIFICATION DIVISION NOT FOUND. RUN TERMINATED.

DEBUG EDIT RUN COMPLETE. INPUT FOR COBOL COMPILATION ON
SYS004.

180 DOS and TOS COBOL Prog Guide

ACCEPT Verb 91
Accessing Call Parameters 60
ADDR (LISTX) 46
Alignment and (Slack Bytes) 93
Alignment, Decimal 76
Alignment Factor, Records 97°
ALT (ASSGN statement) 17
Altering DTF (Define the File) Table 113
Alternate Method of Solution
(Intermediate Results) 87
Appendix A. Considerations When Using
Assembler with COBOL for Overlays 123
Appendix B. Table of Reference Formats
for Disk and Tape Operating
Systems COBOL 131
Appendix C. Standard Tape File Labels 140
Appendix D. Standard DASD File Labels,
Format 1 141
Appendix E. List of Options for Disk
and Tape Operating Systems Job-Control
Option Statement 143
Appendix F. Examples of COBOL
Programs 145
Appendix G. Subroutines Used by COBOL 149
Appendix H. IBM System/360 Disk and
Tape Operating Systems Compiler
Diagnostics 156
Apply Write Only 97
Argument List 126
Arithmetic Fields 88
Arithmetics 87
Arithmetic Suggestions 88
ASSGN Statement 15, 17
Assembler Language Subprograms 124
Assembler Routines for Effecting
Overlays 123
Assumed Configuration i
Disk Resident System 34
Tape Resident System 25
Assumed Logical Assignments at System
Generation Time
Disk Resident System 36
Tape Resident System 27
Assumed Physical Assignments at System
Generation Time
Disk Resident System 36
Tape Resident System 25
AT END 97
Autotest 122

By (Currently Assigned Cell Number -
Extent) 21

Basic Principles of Effective COBOL
Coding 75

-Basic Types of Operations 11

Binary Subscripting 90

Blocked V-Type Records, Alignment 97
Buffers 96

BUFFSIZ (COBOL Option) 23

Called and Calling Programs 124
Calling a Subprogram 58

INDEX

CATAL 142
Cataloging 28, 38
Cataloging an Object Module to
Relocatable Library
Disk 38
Tape 28
Cataloging Source Modules to Source
Statement Library
Disk 39
Tape 30
Clause (ERRS) 47
COBOL Control Card 23
COBOL Option (COBOL Control Card) 23
COBOL Program Main (Root or Main
Program) 65
COBOL Subprogram B 67
COBOL Subprogram C 67
COBOL Subprogram D 68
Coding Actual Key For 2311 Disk Pack
and 2321 Data Cell 111
Comments Statement 15, 23
Comparisons 90
Compilation 11
Compile and Punch (Example 1)

Disk 37
Tape 27
Compile, Linkage Edit, and Execute
(Example 3)
Disk 38
Tape 28

Compile (Using Source Statement), Linkage
Edit, and Execute (Example 6)
Disk 40
Tape 31
Computational (Binary) 84
Computational-l or Computational-2
(Floating Point) 85

Computational-3 (Internal Decimal) 84
Conditional (Severity Code) 47
Conditional Statements 80

Configuration, Assumed 25, 34
Conserving Storage 74
Considerations for Overlay 61
Continuation of Job-Control Statement 16
Control Cards Required for Overlay 70
Control Program 117
Conversion of Computational-l or -2
Data 79
COPY (Data Division) 55
Core Image Library 120
Creating .a Direct Organizational File 106
CLOSE Statement 107
Key Handling 107
OPEN Statement 106
WRITE Statement 106
Creating a Sequential, Indexed Sequential
File 102
CLOSE Statement 103
Key Handling 103
OPEN Statement 102
WRITE Statement 102

Index 181

Data Area (XTENT Statement) 20
Data Format of Arguments 130
Data Forms 81 .
DATA MAP (SYM) 45
Debug Packet 9, 53
Debug Packet Error Messages 179
Debugging Techniques 52
Decimal-Point Alignment 76
DECK 143
Deck Structures for Processing COBOL
Programs
Disk Resident System 34
Tape Resident System 25
Diagnostic Messages, Explanation of 48
Direct Access Data Organization
Considerations 108

Direct Access File Organization 99
Disk and Tape Operating Systems
Environment 115

Disk Operating System 119

DISPCHK (COBOL Options) 23

Display (External Decimal) 84
DISPLAY Fields 86

DLAB Statement 15, 20

DMAP (COBOL Option) 23

DUMP 142

Editing 90

Elementary Items 81
End-of-Data-File Statement 15, 23
End-of-Job Statement 15, 23

ER CODE (ERRS) 47
Error Messages, Debug Packet 179
Error Messages (ERRS) 47

Error (Severity Code) 47
ERRS 47, 143
Examples of how Diagnostics are
Generated 48
Examples of Processing
Disk Configuration 37
Tape Configuration 27
Example of Updating Actual Key 113
Examples Showing Effect of Data
Declarations 86
EXEC Statement 15, 17
Executing a Program (Example 4)
Disk 39
Tape 30
Execution 12
EXHIBIT 52
Exponentiation 88
Extent Sequence Number 21
Extent Type 20

Filename (VOL Statement) 19

Format of Job-Control Statement 16
Functional Relationships of the System
Components 117

General Information -- File Handling 96
General Programming Suggestions 75
General Techniques for Coding 87
Generated COBOL Source Listing 43

GO (Tape Only) 144

GO TO (DEPENDING ON) 97

Group Item 81

How Diagnostic Messages are Determined 48
How to Use a Dump 50

182 DOS and TOS COBOL Prog. Guide

IF NUMERIC Test 92
IF (Relationals) 86
INCLUDE (Procedure Division) 56
In-Line Parameter List 130
Index Area (XTENT Statement) 20
Indexed Sequential File Organization 100
Insertion of Slack Bytes 93
Installation -- Tailored Systems 122
INSTRUCTION (LISTX) 46
Intermediate Results In Complex
Expressions 87
Interpreting Output 43
Introduction to Job-Control Statements 15
INVED (COBOL Option) 23, 24
I/0 Error Processing Considerations --
USE AFTER STANDARD ERROR 98
IPL Loader 117

Job Control 118

Job Control Setup for Using Debug
Packets 53

Job-Control -Statements 13

JOB Statement 15, 16

Labeling Considerations 100
Language Translators 121
LBLTYP Statement 15, 18
Librarian 120

Librarian Functions 121

LINE/POS
(ERRS) 47
(LISTX) 46
LINK 143

Linkage Conventions 125
Linkage Edit with Overlay 65
Linkage Edit without Overlay 62
Linkage Editing 11, 58, 119
Linkage Editor Output 49

LIST 43, 143
LISTX 46, 143
LOG 143

Lower Limit of Extent 21
Lowest Level Subprogram 129

Machine Representation of Data Items 84

Maintenance Function 121

Message (ERRS) 48

Message Number (ERRS) 47

MINSYS (Tape Only) 144

Mixed Data Formats 77
COMPUTATIONAL to COMPUTATIONAL-3 78
COMPUTATIONAL TO DISPLAY 78
COMPUTATIONAL-3 TO COMPUTATIONAL 78
COMPUTATIONAL-3 TO DISPLAY 78
DISPLAY TO COMPUTATIONAL 77
DISPLAY TO COMPUTATIONAL-3 717
DISPLAY TO DISPLAY 79

Move COMPUTATIONAL-~3 Fields 86
DISPLAY Fields 86

Move COMPUTATIONAL-3 to REPORT 86

Move DISPLAY to COMPUTATIONAL-3 86

Multiple Buffers 97

Multiple Entry Points 110

Multiprogramming 11

Multiprogramming Considerations 11, 101

Name (Job Control Statement) 16

NODECK 143
NODUMP 143

NOERRS 143
NOLINK 143
NOLIST 143
NOLISTX 143
NOLOG 143

NOTE, Use of 91

NSD (nn) (LBLTYP Statement) 19
Numeric Comparisons 90

Numeric Data Format Usage 83

Object Module Cards 12
Object Modules 8, 28, 38
Object Program Dump 49
Object Storage Layout
Object Time Messages
OCCURS DEPENDING 97
ON 53
Opening Files 91
Operation (Job Control Statement) 16
Operand (Job Control Statement) 16
OPTION Statement 15, 22
Other Considerations When Using Display
and Computational Fields 80
COMPUTATIONAL (Binary) 81
COMPUTATIONAL-1 and -2 (Floating
Point) 81
COMPUTATIONAL-3 (Internal Decimal)
Fields 80
Display (Non-Numeric and ED) Fields
Overflow Area (XTENT Statement) 20
Overlay 70
Overlay Processing 64
Overlay Structures 61

51, 178
49, 179

Paragraph Names 91

Passing Parameters to Assembly Language
Routine 71

PAUSE Statement 15, 22
Permissible Comparisons (COBOL)

Permissible Moves (COBOL) 139
PMAP (COBOL Option) 23
Preparation for Processing COBOL
Programs 8

Procedure For Bypassing Non-Standard
Labels 100

Procedure Map (LISTX) 46
Processing Buffers 97

Processing Indexed and Direct Files
Processing Programs 121

Programming Considerations 74
Program Phase 8

Punch, Compile and

138

Disk 37

Tape 27
Random Retrieval of An Indexed Sequential
File 105

Adding Randomlv 105

Key Handling 106

Updating Randomly 105

Random Retrieval 105

Random Retrieval, Updating and Adding to
a Direct File 107

Adding Randomly 108
Key Handling 108
OPEN, CLOSE 108
Random Retrieval 108
Updating Randomly 108

102

80

Record Alignment 97

Record Blocking 96

REDEFINES 92

Redefinition 92

Redundant Coding 920

Reference Work Areas for Efficiency
(Mixed-Data Formats) 77

Register Use 125

Relationals 86

Relocatable Library 57, 120

Restrictions of Using Statement 61

Save Area 126
Sequence of Job-Control Statements 15
Sequential Disk File Organization 99
Sequential Retrieval of a Direct
Organization File 107
Key Handling 107
OPEN, CLOSE 107
READ Statement 107
Sequential Retrieval of an Indexed
Sequential File or Updating an Indexed
Sequential File 103
Sequential Retrieval
Key Handling 104
Updating 104
Sequential Tape File Organization 98
Service Programs 122
Severity Code 47
Sign Control 79
Slack Bytes in the Data Division 93
Sort/Merge 122
Source Listing (LIST) 43
Source Modules 8
Split Cylinder (XTENT Statement) 20
Source Statement Library 55, 120
Stages of Program Development 8
STDLABEL (Disk Only) 144
Structure of a COBOL Program 9
Subprograms 58
Subprograms and Overlay Structures 58
Subscripting 89
Supervisor 118
SYM 45, 143
Symbolic Input/Output Assignment 12
SYSIPT 12, 18

103

SYSLNK 12, 18
SYSLOG 12, 18
SYSLST 12, 18
SYSPCH 12, 18
SYSRDR 12, 18
SYSRES 13
SYSRLB 13, 18
SYSSLB 13, 18
SYS000-SYS244 13
SYSIN 13, 18
SYSOUT 13, 18

Symbolic Units 12,
System Libraries 8
System Service Program 118
SYSxxx (VOL Statement) 19

13, 18

TAPE[(nn)] (LBLTYP Statement) 19
Tape Operating System 120

The Debug Packet 53

The Debugging Language 52

TPLAB Statement 15, 22

Index 183

TRACE = 52

Trailing Characters 91

Truncation, Intermediate Results 89
Typical Source Program Errors Initiating
Dumps at Execution Time 50

Unequal-Length Fields 76

Upper Limit .of Extent 21
Unexpected Intermediate Results 87
Use of Floating~-Point Numbers in Mixed
Mode Expressions 79

Use of Libraries at COBOL Language
Level 55

Use Same Number of Integer Digits in
Fields 76

User Programs 122

USRLABEL (Disk Only) 144

‘Utility Programs 122

Variable Record Alignment Containing
Occurs Depending Clause 97

VOL .Statement 15, 19

Volume Serial Number 21

Warning (Severity Code) a7
Working with Diagnostics 48

XTENT Statement 15, 20
X'SS' (ASSGN Statement) 17

184 DOS and TOS COBOL Prog. Guide

READER'S COMMENT FORM

IBM System/360
Disk and Tape Operating Systems
COBOL Programmer's Guide C24-5025-3

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No'' or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confi-
dential basis. Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

Yes No
® Does this publication meet your needs?] /
® Did you find the material:
Easy to read and understand? — /
Organized for convenient use ? — —
Complete ? | —
Well illustrated? — 3
Written for your technical level? { -
® What is your occupation?
® How do you use this publication?
As an introduction to the subject? — As an instructor in a class?]
For advanced knowledge of the subject? — As a student in a class? /
For information about operating procedures? [As a reference manual? —

Other
® Please give specific page and line references with your comments when appropriate.

te e

R R N I I

COMMENTS:

e Thank you for your cooperation. No postage necessary if mailed in the U. S. A.

C24-5025-3

Fold

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

IBM CORPORATION

1271 AVENUE OF THE AMERICAS
NEW YORK, N.Y. 10020

ATTENTION: PUBLICATIONS, DEPT. D39

Fold

BV

International Business Machinas Corporation
Data Processing Division

112 East Post Road, White Plains, N Y. lDGUl
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

:SJUSUWIIO)) [BUOHIPPY

Cut Along Line

09€/S Wi

V'S "N up pejuud

€-920S-¥TD

C24-5025-3

TIBIM

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	replyA
	replyB
	xBack

