
Systems Reference Library

IBM System/360
Disk and Tape Operating Systems
COBOL Language Specifications

COBOL (Common Business Oriented Language) is
similar to English. It was developed by the
Conference of Data Systems Languages (CODASYL).
COBOL provides a convenient method of coding
programs to handle commercial data processing
problems.

This publication provides the programmer with
rules for writing programs in COBOL for IBM
System/360 Disk and Tape Operating Systems. Users
unacquainted with COBOL should first familiarize
themselves with the publication: COBOL: General
Information Manual, Form F28-8053-2.

The titles and abstracts o~ related
publications are listed in the IBM System/360
Bibliography, Form A22-6822.

File Number 5360-24
Fonn C21l-3433-3 DOS

T05

Fourth Edition, November 1966

This edition, Form C24-3433-3, is a major revision
of Form C24-3433-2 and obsoletes it and all earlier
editions. It should be reviewed in its entirety.

Changes are indicated by a vertical line to the
left of the affected text and to the left of
affected parts of figures. A dot Ce) next to a
figure title or page number indicates that the
entire figure or page should be reviewed.

Significant changes and additions to the
specifications contained in this publication will be
reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for readers'
comments. If the form has been removed, comments may be addressed to
IBM Corporation, programming Publications, Endicott, New york 13760.

©International Business Machines Corporation 1965

PREFACE

This reference publication describes COBOL as implemented for the IBM
System/360 Disk and Tape Operating Systems, discusses the four divisions
of a COBOL program, and describes the following special features of IBM
System/360 Disk and Tape Operating Systems COBOL:

1. Source Program Library Facility

2. Specifications for the Sterling Currency Feature and International
Considerations

3. COBOL Debugging Language

Five appendixes are included:

1. A list of definitions of terms in COBOL formats

2. A COBOL word list

3. A discussion of intrarecord slack bytes, and record alignment
within block files.

4. A discussion of intermediate results in arithmetic operations

5 •. Example of a COBOL calling program and a subprogram.

All disk I/O operations can be compiled on the disk system only.

The following features are not currently available for Disk or Tape
Operating Systems, and are so identified at the appropriate places in
this,publication with an asterisk.

1. The RERUN clause

2. The Sterling CUrrency feature

The following features are not currently available for Tape Operating
System, and are so identified at the appropriate places in this
publication with two asterisks.

1. The APPLY WRITE ONLY clause

2. The USE AFTER STANDARD ERROR clause

The restrictions described under the PERFORM ••• VARYING option that
are identified by three asterisks apply to Tape operating System only.

The following features are IBM extensions to COBOL for IBM System/360
Disk and Tape Operating Systems, and are marked adjacent to the
applicable features in this publication by the word -Ext- at their first
appearance in the publication.

1. The ORGANIZATION clause

2. Internal and external floating-point items and floating-point
literals

3. The overflo~name test-condition

4. The RECORD-KEY clause

5. The Linkage Section of the Data Division

6. Options 1 and 2 of the USE sentence

7. The REWRITE statement

8. The TRANSFORM statement

9. The Debugging Language

10. Sterling Currency feature

ACKNOWLEDGEMENT

The following extract from Government Printing Office Form Number
1962-0668996 is presented for the information and guidance of the user:

"This publication is based on the COBOL System developed in 1959 by a
committee composed of government users and computer manufacturers. The
organizations participating in the original development were:

Air Material Command, United States Air Force
Bureau of Standards, United states Department of Commerce
Burroughs Corporation
David Taylor Model Basin, Bureau of Ships, United States

Navy
Electronic Data Processing Division,

Minneapolis-Honeywell Regulator Company
International Business Machines Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
UNIVAC Division of Sperry Rand Corporation

"In addition to the organizations listed above, the following other
organizations participated in the work of the Maintenance Group:

Allstate Insurance Company
The Bendix Corporation, Computer Division
Control Data corporation
E. I. du Pont de Nemours and Company
General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
The National Cash Register Company
Philco Corporation
Royal McBee Corporation
Standard oil Company (New Jersey)
United States Steel Corporation

"This COBOL-61 manual is the result of contributions made by all of
the above-mentioned organizations. No warranty, expressed or implied,
is made by any contributor or by the committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in
connection therewith.

"It is reasonable to assume that a number of improvements and
additions will be made to COBOL. Every effort will be made to insure
that the improvements and corrections will be made in an orderly
fashion, with due recognition of existing users' investments in program­
ming. However, this protection can be positively assured only by
individual implementors.

"Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures and the methods for proposing
changes should be directed to the Executive Committee of the Conference
on Data Systems Languages.

"The authors and copyright holders of the copyrighted material used
herein: FLOW-MATIC, * Programming for the UN IVAC * I and II, Data
Automation Systems 1958, 1959, Sperry Rand Corporation; IBM Commercial
Translator, Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell, have specifi-

cally authorized the use of this material, in whole or in part, in the
COBOL specifications. such authorization extends to the reproduction
and use of COBOL specifications in programmdng manuals or similar
publications.

-Any organization interested in reproducing the COBOL report and
initial specifications, in whole or in part, using ideas taken from this
report or utilizing this report as the basis for an instruction manual
or any other purpose is free to do so. However, all such organizations
are requested to reproduce this section as part of the introduction to
the document. Those using a short passage, as in a book review, are
requested to mention 'COBOL' in acknowledgement of the source, but need
not quote this entire section.-

* Trademark ot Sperry Rand corporation

SECTION 1: BASIC FACTS. • 9

Machine Requirements. 9

Character Set. • • • 10

Punctuation. • • • • 11

Word Formation. • • 11

• 12
• • 12

Types of Names • •
Data-Names. •
External-Names.
Procedure-Names
Paragraph-Names

• • • • • • 12
• 12
• 13

Qualification of Names • • • 13

COBOL Program Sheet. • • 13
Sequence Number: (columns 1-6) •••• 14
Continuation Indicator: (Column 7) •• 14
Source Program Statements: (Columns

8-72) ••••••••••••
Program Identification Code:

(Columns 73-80) ••••••
Margin Restrictions • • • •
Continuation of Non-Numeric
Literals •••

Format Notation..

SECTION 2: COBOL PROCESSING
CAPABILITIES. • • • • •

Input/Output Processing.
Data Organization • • • • •
Access Methods.

• 14

• • 14
• 14

• 15

• 15

• • 17

• •• 17
• • 17

• 18

Keys • • • • • • • • 18
Accessing a Direct File Randomly. • • 18
Accessing an Indexed File Randomly. • 19
Accessing an Indexed or Direct File
Sequentially • • • • • • • • 19

Creation of an Indexed File • • • • • 20
Creation of a Direct File • • • • • • 20

SECTION 3: IDENTIFICATION DIVISION • • • 22

SECTION 4: ENVIRONMENT DIVISION. •

General Description. •

Configuration Section.

Input-Output Section • •
File-Control Paragraph. • •
1-0 Control Paragraph •

SECTION 5: DATA DIVISION

23

• • 23

• • 23

• 24
• • 25

• 28

• • 31

General Description.. •

Organization Of The Data Division.
File Section. • • • • •
Working Storage Section •
Linkage Section • • • • • •

concepts of Data Description
Levels of Data Items. • • • • •
Condition-Names
Data-Names. • • • • • •
Literals. • • • • • • •
Figurative Constants. •
Types of Data Items • •

Alignment of Data Fields •

File Section • • • • • • • • • • •
File and Record Handlinq.
File Section Entries. •

CONTENTS

• 31

• 31
• 31
• 32

• • • 32

• 32
• 32
• 33
• 34
• 35
• 36
• 37

• 41

• 41
• • • 41

• 43

Record Description Entry • • • • • • 46
Group Item. • • • • • • • 47
Elementary Items. • • • • 47
Item Information Clauses. • 50

Working-Storage Section. • • 61

Linkage Section. • • .• • •

SECTION 6: PROCEDURE DIVISION

Purpose ••

Syntax • •
Sections ••
Paragraphs. •
Sentences • • • • •
Expressions
Statements. • • • • •
Conditionals. • •

• 61

• 63

• 63

• • • 63
• 63
• 63
• 64
• 64
• 64
• 65

Compiler-Directing Declaratives
Continued Processing of File. • •

• 74
• • 76

COBOL Verbs. • • • • • • • • 77
Input/Output Statements • • 77
Data Manipulation Statements. • 85
Arithmetic Statements and Options • • 92
Procedure Branching Statements. • • • 96
Compiler-Directing Statements • .104

SECTION 7: SOURCE PROGRAM LIBRARY
FACILITY. • • • •••

Copy Clause • • • • • • • •
INCLUDE Statement. • • •

.107
• •• 107

.108

SECTION 8: STERLING CURRENCY FEATURE
AND INTERNATIONAL CONSIDERATIONS •••• 109

Ster1ing Currency Feature •••••••• 109
sterling Non-Report. • • • • • .110
Sterling Sign Representation. • • • .110
Sterling Report • • • • • • • • • •• 111
International Considerations. • • • .114

SECTION 9: COBOL DEBUGGING LANGUAGE ••• 115
TRACE • • • • • • • • • • • • • • • .115
EXHIBIT • • • • • • • • • • • • • • .115
ON (Count-conditional Statement) •• 116

Compile-Time Debugging Packet. • • .117

APPENDIX A: GLOSSARY OF LOWER-CASE
WORDS IN COBOL FO~S ••••••••• 118

APPENDIX B: DISK AND TAPE OPERATING
SYSTEMS COBOL WORD LIST • • • • • • • .124

APPENDIX C: INTRARECORD SLACK BYTES
AND RECORD ALIGNMENT IN BLOCK FILES •• 126

Intrarecord Slack Bytes. • • • •
Coding for a Usage C1ause:. •
Coding of an OCCURS Clause. •

• .126
• .127
• .128

Record A1ignment Within Block Files. • .129
Block Files Example Coding •••••• 130
Block File Example Coding ShOwing
the Filler for Alignment (Repeated
Here for Clarity) •••••••••• 131

Some Rules to Remember. •• • • • • .131

APPENDIX D: INTERMEDIATE RESULTS IN
ARITHMETIC OPERATIONS • • • • • • • • .133

Intermediate Results ••••••••• 133
Compiler Treatment of Intermediate
Results. • .135

APPENDIX E • • .136

INDEX- • • .140

SECTION 1: BASIC FACTS

This section defines the minumum machine requirements for COBOL, the
COBOL character set, and describes the formation of COBOL words. It
also includes special topics such as punctuation, name qualification,
and rules for writing COBOL source programs on a program sheet.

MACHINE REQUIREMENTS

Disk Operating System COBOL operates in a 32K byte environment if the
disk compiler is allocated 14K bytes of storage.

Tape Operating System COBOL operates in a 16K byte environment if the
compiler is allocated 10K bytes of storage.

A summary of all the devices supported by function, including
intermediate (work) storage, is as follows:

UNITS USED
BY COBOL
PROCESSOR

1403
1404*
1442
1443
2501
2520
2540
2311**
2400-series**

Notes:

FUNCTIONS

Input

X

X
X
X
D
X

Work

D
X

Output

X

X
X
D
X

D-Indicates Disk Operating System COBOL only.
* - For continuous forms only.

List

X
X

X

D
X

•• For work files three logical files are required and they must be
the same device type.

Compile and execute is provided in all systems if sufficient
intermediate storage is available.

Intermediate (work) storage devices may not be mixed.
series magnetic tape units are used, a minimum of three (3)
required.

Where 2400
units are

Expanded instruction sets may be required depending on the specific
.requirements of the language program utilized as follows:

Section 1: Basic Facts 9

For COBOL:

SYSTEM REQUIRES:

OBJECT PROGRAM
REQUIRES:

Standard instruction set, decimal arithmetic set.
(Floating-point option is required if floating-point
literals are used.

Standard instruction set, decimal arithmetic option.
(Floating-point option is required if non-integer
exponents or floating-point numbers are used.)

The device type dependency of problem programs is established at compile
time. Problem programs compiled by COBOL support the following units:

1403
1404.
1442
1443
1445
2501
2520
2540
2400-series (7 or 9 track)
2311.·
2321··

.For continuous forms only •

•• For Disk Operating System only.

CHARACTER SET

The complete COBOL character set consists of the following 51
characters:

Digits 0 through 9
Letters A through Z
Special characters:

Blank or space
+ Plus sign

Minus sign or hyphen
• Check protection symbol, asterisk
/ Slash
= Equal sign
> Inequality sign (greater than)
< Inequality s1gn (less than)
$ Dollar sign
, Comma

Period or decimal point
QUotation mark

(Left parenthesis
) Right parentheSis
; Semicolon

Of the previous set, the following characters are used for words:

o through 9
A through Z
- (hyphen)

The following characters are used for punctuation:

10 IBM 5/360 DOS and TOS COBOL Lang. Specs.

•
(
)

,

· •

Quotation mark
Left parenthesis
Right parenthesis
Comma
Period
Semicolon

The following characters are used in arithmetic expressions:

+ Addition
Subtraction

• Multiplication
/ Division
•• Exponentiation

The following characters are used in relation tests:

> Greater than
< Less than
= Equal to

All of the preceding characters are contained in the COBOL character
set. In addition, the programmer can use, as characters in non-numeric
literals, any characters (except the quotation mark) included in the IBM
Extended Binary-Coded-Decimal Interchange Code; however, such characters
may be unacceptable to COBOL for other computers.

PUNCTUATION

The following general rules of punctuation apply in writing COBOL
source programs:

1. When any punctuation mark is indicated in a format in this
publication, it is required.

2. A period, semicolon or comma, when used, must not be preceded by a
space, but must be followed by a space.

3. A left parenthesis must not be followed immediately by a space; a
right parenthesis must not be preceded immediately by a space.

II. At least one space must appear between two successive words and/or
parenthetical expressions and/or literals. Two or more successi ve
spaces are treated as a single spac~, except in non-numeric
literals.

5. When an arithmetic operator or an equal sign is used, it must be
preceded by a space and followed by another space.

6. When the period or conna, or arithmetic operator characters are
used in the PICTURE clause as editing characters, they are governed
by rules for report items only.

7. A COllllBCl may be used as a separator between successive operands of a
statement. A COlIma or semicolon may be used to separate a series
of clauses , and a semicolon or the word THEN may be used to
separate a series of statements.

WORD FORMATION

A word is composed of a combination of not more than 30 characters,
chosen from the following set of 37 characters:

o through 9 (digits)
A through Z (letters)
- (hyphen)

Section 1: Basic Facts 11

A word must not begin or end with a hyphen. A word is ended ~ a
space, or by proper punctuation. Embedded hyphens are permitted. All
words in COBOL are either re3erved words, which have preassigned
meanings in COBOL, or programmer-supplied names. Each type of name is
discussed in the section of this publication in which it is first
mentioned.

TYPES OF NAMES

There are a number of name types used in writing a COBOL source program;
each of which must conform to specific format requrements to be
compatible. The name types and their respective formats are:

DATA-NAMES

A data-name must contain at least one alphabetic character, and must be
formed according to the rules for word formation.

EXTERNAL-NAMES

An external-name consists of quotation marks enclosing no more than
eight alphabetic and numeric characters, the first of which must be an
alphabetic character.

PROCEDURE-NAMES

Procedure-names follow the rules for word formation. They may be
composed solely of numeric characters, in which case they are equivalent
only if they are composed of identical digits and have the same numeric
value.

12 IBM S/360 DOS and TOS COBOL Lang. Specs.

PARAGRAPH-NAMES

Paragraph-names are procedure-names and therefore follow the rules for
formation of procedure-names.

Other Names

The following name types take the same format used in the formation
of data-names:

• FILE-NAMES

• CONDITION-NAMES

• RECORD-NAMES

• OVERFLOW-NAMES

QUALIFICATION OF NAMES

EVery name used in a COBOL source program must be unique within the
source program, either because no other name has the identical spelling,
or because the name exists within a hierarchy of names (so that the name
can be made unique by mentioning one or more of the higher levels of the
hierarchy). The higher levels are called qualifiers when used in this
way, and the process is called qualification.

The following rules apply to the qualification of names:

1. The word OF or IN must precede each qualifying name, and the names
must appear in ascending order of hierarchy.

2. A qualifier must be of a higher level and within the same hierarchy
as the name it is qualifying.

3. The same name must not appear at two levels in a hierarchy in such
a manner that it would appear to qualify itself.

4. The highest level qualifier must be unique. Each qualifying name
must be unique at its own level within the hierarchy of the
immediately higher qualifier.

S. Qualification when not needed is permitted.
6. Qualifiers must not be subscripted, although the entire qualified

name may be subscripted.
7. The total number of characters x cannot exceed 300 where:

x = T + 4N
T is the number of characters in all names, and
N is the number of data names, including their qualifiers.

8. Regardless of qualification, procedure names and data names must
not be the same.

COBOL PROGRAM SHEET

The purpose of the program sheet is to provide a standard way of
wri ting COBOL source programs.

The Identification, Environment, Data, and Procedure Divisions which
constitute a COBOL source program are written in the stated order. This

Section 1: Basic Facts 13

program sheet, despite its necessary restrictions, is of a relatively
free form. The programmer should note, however,. that the rules for
using it are precise and must be followed exactly. These rules take
precedence over any other rules, with respect to spacing.

SEQUENCE NUMBERz (COLUMNS 1-6)

The sequence number must consist on1y of digits; letters and special
characters should not be used. The sequence number has no effect on the
source program and need not be written. If the programmer supplies
sequence numbers in each program card, the compiler will check the
source program cards and will indicate any errors in their sequence. If
these columns are blank, no sequence error will be indicated.

COtn'INUATION INDICATOR: (COLUMN 7)

See Continuation of Non-Numeric Literals.

SOURCE PROGRAM STATEMENTSz (COLDMNS 8-72)

These columns are used for writing the COBOL source program.

PROGRAM IDENTIFICATION CODE: (COLUMNS 73-80)

These columns can be used to identify the program. Any character
from the COBOL character set may be used, including the blank. The
program identification code has no effect on the object program or the
compiler.

MARGIN RESTRICTIONS

There are two margins on the COBOL program sheet: Margin A (columns
8-11), and Margin B (columns 12-72).

A division-name must begin in Margin A, and be followed by a space,
the word DIVISION, and a period. This entry must appear on a line by
itself.

A section-name must begin in Margin A, and be followed by a space,
the word SECTION, and then a period. This entry must appear on a line
by itself, except in declarations and the INCLUDE verb.

A paragraph-name must also begin in Margin A, and must be followed
immediately by a period and a space. Statements within a paragraph may
start on the same line as the paragraph-name. Succeeding lines of the
paragraph must begin in Margin B.

When a statement spans more than one line, and column 72 of the
line-to-be-continued is used, the continuation line may begin at the
Margin B column (no space is required).

14 IBM S/360 DOS and TOS COBOL Lang. Specs.

The FD level indicator in the Data Division, must begin at Margin A.
Names and clauses within these entries must not begin before column 12.
The level numbers (01-49, 77, 88) of data description ~tries may begin
in Margin A; however, the names and/or clauses of this entry (data-names
and/or clauses) must not begin before column 12.

CONTINUATION OF NON-NUMERIC LITERAJ:.q

When a non-numeric literal is of a length such that it cannot be
contained on one line of a coding sheet, the following rules apply:

1. On every line containing a portion of a literal to be continued,
the portion of the literal that is to be continued must not be
terminated with a quotation mark.

2. On every line containing a portion of a literal being continued,
the portion of the literal being continued must be immediately
preceded by a quotation mark. This quotation mark may appear
anywhere in Margin B, and may not be preceded by anything but
spaces.

3. A hyphen must be punched in column 7 of each line in which the
literal is being continued.

FORMAT NOTATION

Throughout this publication, basic formats are prescribed for various
elements of COBOL. These generalized descriptions are intended to guide
the programmer in writing his own statements. They are presented in a
uniform system of notation, explained in the following paragraphs. This
notation is useful in describing COBOL, although it is not part of
COBOL.

1. All words printed entirely in capital letters are reserved words.
These are words which have preassigned meanings in the COBOL
language and are not to be used for any other purpose. In all
formats, words written in capital letters selected for use must be
duplicated.

2. All underlined reserved words are required unless the portion of
the format containing them is itself optional. These a.re key
words. If any such word is missing or is incorrectly spelled, it
is considered an error in the program. Reserved words not
underlined may be included or omitted at the option of the
programmer. These words are used only for the sake of readability,
and are called optional words.

3. All punctuation and special characters (except those symbols cited
in the following paxagrapbs) represent the actual occurrence of
those characters. Punctuation is essential where it is shown.
Additional punctuation can be inserted, according to the rules for
punctuation specified in this publication.

4. Lower-case words in formats represent information that must be
supplied by the programmer. All lower-case words that appear in a
format are defined in the accompanying text or in Appendix A.

5. In order to facilitate references to them in text, some lower-case
words are followed by a hyphen and a digit, or letter. This
modification does not change the syntactical definition of the
word.

6. Certain hyphenated words in the formats consist of capitalized
portions followed'by lower-case portions. These designate clauses
or statements that are described in other formats, in appropriate
sections of the text.

Section 1: Basic Facts 15

7. Square brackets ([]) are used to indicate that the enclosed item
may be used or omitted, depending on the requirements of the
particular program. When two or more items are stacked within
brackets, one or none of them may occur.

8. Braces ({ }) enclosing vertica1ly stacked items indicate that one
of the enc10sed items is obligatory.

9. The e1lipsis (•••) indicates that the immediately preceding unit
may occur once, or any number of times in succession. A unit means
either a single lower-case word, or a group of lower-case words and
one or more reserved words enclosed in brackets or braces. If a
term is enclosed in brackets or braces, the entire unit, of which
it is a part, must be repeated when repetition is specified.

10. Comments, restrictions, and clarifications on the use and meaning
of every format are contained in the appropriate portions of the
text.

16 IBM S/360 DOS and TOS COBOL Lang. specs.

SECTION 2: COBOL PROCESSING CAPABILITIES

INPUT/OUTPUT PROCESSING

IBM System/360 Disk and Tape Operating Systems COBOL support various
data organizations, record formats, and access methods. The facilities
available to the COBOL user are specified in this section.

In this publication, the term IOCS (Input/Output Control System) can
be considered equivalent to the term WData Management RoutinesW used in
other IBM System/360 Disk and Tape Operating Systems publications.

DATA ORGANIZATION

IBM System/360 Disk and Tape Operating Systems COBOL provide three
types of data organization: standard sequential, indexed, and direct.

The number and type of control fields used to locate logical records
in a file differ, depending on which of these three types of data
organization is used. Consequently, each type of data organization is
incompatible with the other two. For example, records created on a
standard sequential file cannot also be read as an indexed file. That
is, organization of an input file must be the same as the organization
of the file at creation time.

Standard sequential Data Organization

When standard sequential data organization is used, the logical
records in a file are positioned sequentially in the order in which they
are created. and are read sequentially in the order in which they were
created (or in sequentlally reversed order if the REVERSED option of the
OPEN statement is written for tape files). This type of data organiza­
tion must be used for tape or unit-record files and may be assigned to
direct-access devices.

Indexed Data Organization

When indexed data organization is used, the position of each logical
record in a file is determined by indexes maintained by the system and
created with the file. The indexes are based on symbolic keys provided
by the user. Indexed files must be assigned to direct-access devices.

Direct Data Organization

When direct data organization is used, the positioning of the logical
records in a file is determined by keys supplied by the user. ACTUAL
keys are used to specify the track. SYMBOLIC keys are used in
conjunction with actual keys to identify a record on a track.

Section 2: COBOL Processing Capabilities 17

On each track, records are positioned in the order in which they are
written. Direct files must be assigned to direct-access devices.

ACCESS METHODS

There are two access methods provided by System/360 COBOL:

SEQUENTIAL ACCESS: This is the method of reading and writing records of
a file in a serial manner, the order of references is implicitly
determined by the position of a record in the file, except when indexed
data organization is specified.

RANDOM ACCESS: This is the method of reading and writing records of a
file in a non-sequential manner; the control of successive references to
the files is determined by specifically defined keys supplied by the
user.

When accessing indexed or direct files randomly, the user must
provide information to identify the specific record desired. For both
organizations, direct and indexed sequential, the user must provide a
key to identify the desired record. These keys are defined as follows:

SYMBOLIC KEY: The SYMBOLIC KEY is a unique storage resident value that
distinguishes a record from all other records in the file (for example,
a stock-number in an inventory file or an employee's name or man-number
in a payroll file).

RECORD KEY: The RECORD KEY is a unique value within the record that
distinguishes it from all other records in the file.

ACTUAL KEY: The ACTUAL KEY is the location on the disk at which the
record is located. Thus it is the actual track address.

These values are used by IOCS to determine where the record is
located or where' it should be placed. For a random1y accessed file, the
values of the data-names for the symbolic and actual keys are never
automatically modified by IOCS. The user has complete responsibility
for ensuring that the correct values are in the data-names before
reading, writing, or rewriting.

Depending on the type of random file organization, identification of
a record is accomplished through the use of the SYMBOLIC, RECORD, or
ACTUAL keys as follows:

ACCESSING A DIRECT FILE RANDOMLY

When accessing a direct file, the ACTUAL and SYMBOLIC KEYS are
required.

IOCS uses the value of the ACTUAL KEY as the actual track address.
After locating the track, for a read or rewrite operation, IOCS searches
the track for a record that is preceded by a "key area" equal to the
SYMBOLIC KEY. When a match is found, the data portion of the record is
read or, if a rewrite operation, replaced by the new record. If, for a

• 18 IBM S,'360 DOS and TOS COBOL Lang. Specs.

read, the desired record cannot be found on the specified track, IOCS
searches the entire cylinder for the record. When APPLY RESTRICTED
SEARCH option is used, the search is limited to the specified track.

For a write operation, after locating the actual track. IOCS searches
for the last record on the track, and writes the new record (with
control fields including a key field equal to the SYMBOLIC KEY
provided) •

For a direct organization file, before a read, write. or rewrite, the
track number must be moved into the data-name specified by the ACTUAL
KEY clause, and the symbolic key must be moved into the SYMBOLIC KEY
clause.

ACCESSING AN INDEXED FILE RANDOMLY

When accessing an indexed file, the RECORD and SYMBOLIC KEYS are
required.

For blocked files. a -key areaw precedes the block that Ioes uses to
determine which record keys are in the block. For unblocked files, a
-key area- precedes each record that IOCS uses to identify the RECORD
KEY within the record.

When reading or writing records. the track containing the record
desired is determined by using the SYMBOLIC KEY and searching the file'S
index table. When the track has been determined for unblocked records,
the record is identified by comparing the SYMBOLIC KEY to the key area
preceding the record. When the track has been determined for blocked
records, the record is identified by comparing the SYMBOLIC KEY to the

. key area preceding the block, and then to the RECORD KEY of the record
itself.

Before reading or rewriting an indexed file. the symbolic and record
keys for the desired record must be moved into the data-names specified
by the SYMBOLIC and RECORD KEY clauses.

ACCESSING AN INDEXED OR DIRECT FILE SEQUENTIALLY

When creating an indexed file sequentially, a RECORD KEY is required,
and the SYMBOLIC KEY is optional.

When creating a direct file sequentia~y. the ACTUAL and SYMBOLIC
KEYS are required.

processing indexed or direct files sequentially is similar to that
for a standard sequential file. Thus, IOCS determines where a record is
to be found based solely upon the logical sequence in which records were
placed in the file previously. For direct files, this logical sequence
corresponds exactly to the physical sequence of the records; for indexed
files, this logical sequence corres.ponds to the sequence of keys, which
must be in collating sequence. If the user accesses an indexed file
sequentially, and specifies binary zeros in the SYMBOLIC KEY, retrieval
begins with the first record of the file.

It should be noted that the preceding discussion applies specifically
to files accessed or created by a COBOL program. It is possible in
lower level languages to create ot~er types of files. In general, such
files may not be used by COBOL programs.

section 2: COBOL Processing Capabilities 19 •

CREATION OF AN INDEXED FILE

Indexed files may be created as follows:

1. Describe files with the following clauses:

• ORGANIZATION IS INDEXED
• [ACCESS IS SEQUENTIAL]
• ASSIGN TO DIRECT ACCESS
• [SYMBOLIC KEY IS]
• RECORD KEY IS

2. Open the file-name as OUTPUT, and WRITE the records in ascending
key sequence; close the file.

3. This file name may not be opened in any other OPEN" statement in the
program.

. .
CREATION OF A DIRECT FILE

A direct file may be created sequentially by:

1. Describing files with the following clauses:

• ORGANIZATION IS DIRECT
• [ACCESS IS SEQUENTIAL]
• ASSIGN TO DIRECT ACCESS
• SYMBOLIC KEY IS
• ACTUAL KEY IS

2. O'pening a file as an output file

3~ Writing each record sequentially. specifying its SYMBOLIC KEY

An end-of-file record is automatically placed on the last track of
the file at CLOSE.

Figure 1 summarizes the clause and statement specifications allowed
for each of the three data organizations. Also, each file-name must be
specified in a SELECT clause in the Environment Division and must be
defined by an FD entry in the File Section of the Data Division.

20 IBM S/360 DOS and TOS COBOL Lang. Specs.

I'Ij
~.

~
d
t-i
~

~
•

~

~
~.
en
en
~.

C'
~
~

~
I

en ~
~

0 ~ t-i
~.

0 '2
ts ts

~.

tv N .. ~
rt'
~.

g g
0 ()
1:"4

~
~ d
t-i en
0 to
n en
to
en PI
en 8. ..,.
~ en
() ~
PI rt'
ttj i PI
C'
~ . ~ en
rt
CO
en

tv
1-\

•

DISK AND TAPE DEVICE
OPER. SYSTEMS ACCESS
ORGANIZATION

TYPE

DTFCD READER [SEQUENTIAL]

DTFCD PUNCH (SEQUENTIAL]

DTFPR PRINTER [SEQUENTIAL]

DTFMT TAPE (SmUENTlAL]

DTFSD DISK ~EQUENTlAL]

DTFIS DISK [SEQUENTIAL]

DTFDA DISK [SEQUENTIAL]

DTFIS DISK RANDOM

DTFDA DISK RANDOM

I - For 1-0 Option of OPEN clause
2 - For OUTPUT Option

RECORDING OPEN ORGANIZATION
MODE

INPUT - F

OUTPUT - F

OUTPUT - F

r'UT I [NO-REWIND]

[~] (REVERSED] -
OUTPUT

(NO-REWIND]

j INPUT }
l ~gTPUT - [~]
{INPUT }

OUTPUT INDEXED F
·1-0

INPUT
DIRECT { ~ } OUTPUT

{INPUT}
1-0

INDEXED F

{ INPUT}
1-0 DIRECT {~}

-- -

BLOCK RESERVE LABEL READ
ALTERNATE WRITE APPLY KEY CLOSE ASSIGN

CONTAINS
AREA

RECORDS
REWRITE

[~oJ OMITTED
READ [INTO]

CLOSE
UNIT-- ATEND - - RECORD

[~oJ
WRITE

UNIT-- OMITTED [FROM] - - CLOSE
(ADVANCING] RECORD

[~oJ
WRITE UNIT-- OMITTED [FROM] - - CLOSE

(ADVANCING]
RECORD

[~O]
I STANDARD} READ AT END INO REWIND]

(n (except for U) I OMITTED WRITE I FROM] (WRITE ONLy]2 - [LOCK] UTILITY
d - name [ADVANCING] !UNIT]

[~oJ {STANDARD}
READ AT END

[WRITE ONLy]2
CLOSE UTILITY

(n (not with U)] WRITE [FROM] - IUNITI DIRECT-
d - name REWRITE ACCESS

READ AT END [SYMBOLICI DIRECT-[n] [NO] STANDARD REWRITE 1(1 NVALID KEY -
WRITE 2

RECORD CLOSE
ACCESS

- [NO! {STANDARD} READ AT END ACTUAL CLOSE DIRECT--d - name WRITE SYMBOLIC ACCESS

READ INVALID KEY
SYMBOLIC (n] (NO] STANDARD WRITE II NVALID KEY! CLOSE DIRECT-

REWRITE [INVALID KEY! RECORD ACCESS
--_._------- --

{ STANDARD}
READ INVALID KEY [RESTRICTED SYMBOLIC - [NO]

d - name WRITE !INVALID KEY] SEARCH] ACTUAL CLOSE DIRECT-
REWRITE (INVALID KEY! ACCESS

- - ----- -- - - - --- ---

SECTION 3: IDENTIFICATXON DIVISION

The Identification Division is used to identify a program and to
provide other pertinent information concerning the program. The format
of the Identification Division is:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. sentence ••• l
[INSTALLATION. sentence •••]
[DATE-WRITTEN. sentence •••]
[DATE-COMBILED. sentence ••• l
[SECURITY. sentence •••]
[REMARKS. sentence ••• l

An examp1e of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B
---Y--r-r
1 1 61 7 18
---+--+--111---

1 I 1

12

00110011 IIDENTIFICATION DIVISION.
00110021 IPROG~ID. 'CALLPRGM'.
00110031 IREMARKS. EXAMPLE OF A CALLING

1 1 1
I I I
I I 1
1 1 I
I I 1
I I 1

PROGRAM.

Refer to Appendix E, Figure 34, for the relationship between the
example above, and the sample program given therein.

Program-name is an external-name and must follow the rules for
external name formation. Proqra~name identifies the object program to
the Control PrograBk

IDENTIFICATION and the other COBOL words in the Identification
Division must begin in Margin A. If sentences are written, they must be
contained within Margin B. They may consist of any characters in the
EBCDIC set.

22 IBM S/360 DOS and TOS COBOL Lang. Specs.

SECTION 4: ENVIRONMENT DIVISION

GENERAL DESCRIPTION

The function of the Environment Division is to centralize the aspects
of the total data processing problem that are dependent upon the
physical characteristics of a specific computer. It provides a linkage
between the logical concept of files and their records, and the physical
aspects of the devices on which files are stored.

The Environment Division must begin in Margin A with the heading
ENVIRONMENT DIVISION followed by a period.

The Environment Division is divided into two sections - the Configu­
ration Section and the Input-Output Section.

The Configuration Section, which deals with the over-all specifi­
cations of computers, is divided into two paragraphs. They are: the
Source-Computer paragraph, which defines the computer on which the COBOL
compiler is to be run, and the Object-Computer paragraph, which defines
the computer on which the program produced by the COBOL compiler is to
be run.

The Input-Output Section deals with the definition of the external
media (input/output devices> and information needed to create the most
efficient transmission and handling of data between the media and the
object program. This section is divided into two paragraphs. They are
the File-Control paragraph, which names and associates the files with
the external media; and the I-o-Control paragraph, which defines special
input-output techniques.

CONFIGURATION SECTION

The format of the Configuration Section is:

CONFIGURATION SECTION.

[SOURCE-COMPUTER. IBM-360 [model-number].]

[OBJECT-COMPUTER. IBM-360 [model-number].]

section 4: Environment Division 23

An example of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B
---r---,.-,.------------------------------------
1 1 61718 12
---+---+-+ -------------------------

1 1 1
00110041 IENVIRONMENT DIVISION.
00110051 ICONFIGURATION SECTION.
00110061 I SOURCE-COMPUTER. IBM-360 D30.
00110071 I OBJECT-COMPUTER. IBM-360 D30.

I 1 I
1 1 1
1 1 I
I 1 1
1 1 I
1 1 I
Refer to Appendix E, Figure 34, for the relationship between the

example above, and the sample program given therein.

INPUT-OUTPUT SECTION

The format of the Input-Output Section is:

INPUT-OUTPUT SECTION.
FILE-CONTROL.

[SELECT file-name ASSIGN-clause
[RESERVE-clause] •••
[ACCESS-clause]
(ORGANIZATION-clause]
[SYMBOLIC KEY-clause]
[ACTUAL KEY-clause]
[RECORD KEY-clause].]

I -o-CONTROL.
[SAME-clause.] •••
[RERUN-clause.]
[APPLY-clause.]" •••

24 IBM S/360 DOS and TOS COBOL Lang. Specs.

An example of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B

---T--~-Y--
1 1 61718 12
---+---+-+--

1
001 0041 ENVIRONMENT DIVISION.

I
1
I

001 0081 INPUT-OUTPUT SECTION.
FILE-CONTROL. 001 0091

001 0101
001 0111

I
I
I

SELECT FILEA ASSIGN TO • SYS004' UTILITY 2400 UNITS.
SELECT FILEB ASSIGN TO • SYS005' UNIT-RECORD 2540R
RESERVE NO ALTERNATE AREA.

I
I

Refer to Appendix E, Figure 34, for the relationship between the
example above, and the sample program given therein.

The individual optional clauses that compose the File-Control and
I-O-Control paragraphs may appear in any order within their respective
sentences or paragraphs. They are described in the following text. The
Input-OUtput Section may be omitted if there are no files used in the
program.

I-O-CONTROL may be omitted if none of the clauses in the paragraph
are written. A period must follow the last clause in each SELECT
sentence written in the File-Control paragraph, and must follow each
clause written in the I-O-Control paragraph.

FILE-CONTROL PARAGRAPH

SELECT Sentence

The SELECT sentence must begin with the words SELECT file-name and
must be given for each file named in the File-Control paragraph.

The name of each file must be unique within a program and must have a
File Description (FD) in the Data Division of the source program.
Conversely, every file named in an FD entry must be named in a SELECT
sentence.

ASSIGN Clause

The format of the ASSIGN clause is:

I ASSIGN TO external-name r ~~ii;ACCESS} device-number UNIT [S] l UN.IT-RECORD

Section 4: Environment Division 25

The ASSIGN clause is used to assign a file to a particular device.

External-name specifies the name by which the file is known to the
Control Program.

External-name for files in the assign clause .. must be of the format
'SYSnnn' where nnn is a 3-digit number between 001 and 254.

DIRECT-ACCESS, UNIT-RECORD, and UTILITY specify device classes. Each
file must be assigned to a device class. Files assigned to UTILITY or
UNIT-RECORD have sequential access only, and data contained on these
files is organized in the standard sequential fashion.

Files assigned to DIRECT-ACCESS may have standard
indexed. or direct organization. When organization is
direct, access may be either sequential or random.

sequential,
indexed or

Device-number is used to specify a particular device type within a
device class and is required.

The allowable device-numbers are:

UNIT-RECORD
1442R, 1442P, 1403. 1404 (continuous forms only>. 1443, 1445, 2501,

2520R, 2520P, 2540R, 2540P

-RW indicates reader.
-P- indicates punch.

UTILITY
2400, 2311, 2321

DIRECT ACCESS
2311, 2321

ACCESS Clause

The format of the ACCESS clause

tACCESS is {~IAL}J
is:

The ACCESS clause indicates the manner in which the records of a file
are read or written.

If this clause is not written, ACCESS IS SEQUENTIAL is assumed. If
ACCESS IS RANDOM is written, the file must be assigned to a DIRECT­
ACCESS device and must be indexed or direct.

Extl ORGANIZATION Clause

The format of the ORGANIZATION clause is:

[ORGANIZATION IS [INDEXEQ'll
L \pIRECT jJ
This clause may only be written for files assigned to direct-access

devices in a SELECT sentence.

26 IBM S/360 DOS and TOS COBOL Lang. Specs.

If the ORGANIZATION clause is omitted, a standard sequential file is
assumed.

INDEXED specifies indexed data organization.

DIRECT specifies direct data organization.

RESERVE Clause

The format of the RESERVE clause is:

[RESERVE{~O] ALTERNATE AREA[Sl]
This clause specifies the number of buffers reserved for a sequential

file in addition to the standard minimum of one requir~ for a file. If
this clause is omitted, one additional buffer is assumed. If NO is
written, no additional buffer will be reserved.

I SYMBOLIC KEY Clause

The format of the SYMBOLIC KEY clause is:

[SYMBOLIC KEY IS data-name]

The symbolic key identifies a record.

This clause is allowed only when the ORGANIZATION clause is
specified, and is required if ACCESS IS RANDOM is specified.

Data-name must not be defined in the file for which it is the
symbolic key.

I If the SYMBOLIC KEY clause is used for an ACCESS SEQUENTIAL file
having an ORGANIZATION IS DlREcr clause, the symbolic identity of the
record will be placed into data-name whenever a READ statement is
executed for the file. Any changes the programmer may make to data-name
will not affect the order in which records are read from the file.

If the file is specified as ACCESS IS RANDOM, the symbolic identity
of the desired record to be read or written must be placed in data-name
before the READ or WRITE statement for the record is executed. The
symbolic identity wil1 be used by IOCS to determine the physical
location of the record.

Data:name may be any fixed length working storage item less than 256
bytes 1n length, with the exception of floating-point or report items.
A discussion of data items is contained in Section 5.

ACTUAL KEY Clause

The fozmat of the ACTUAL KEY clause is:

[ACTUAL KEY IS data-name]

Section 4: Environment Division 27

The actual key specifies the track address at which the record is to
be placed, or at which the search for the record is to start.

This clause is required for a file when ORGANIZATION IS DIRECT is
specified for it. This clause must not be specified for a file under
any other circumstances.

The functions of this clause are similar to those of the SYMBOLIC KEY
clause, except that this clause specifies a data item that will contain
the track address on which a record is to be found or placed.

Data-name must be defined as an 8-byte data item.

The actual key in operating System/360 specifies a relative track
address. In Disk and Tape Operating Systems it specifies the actual
track or hardware address. The actual key field must be 8 bytes long
and contain the track address as specified in the Data Management
Concepts publication for the system.

Extl RECORD KEY C1ause

The format of the RECORD KEY clause is:

[RECORD KEY IS data-name]

This clause is used
Data-name specifies the
key for the record.

with files whose organization is indexed.
item within the data record that contains the

The item specified by data-name must be defined to exclude the first
byte of the record in the following types of files:

1. Files whose records are unblocked

2. Files from which records are to be deleted

3. Files anyone of whose keys might start with a delete-code
character (high-value).

With these exceptions, the item specified by data-name may appear
anywhere within the record.

When more than one record description is associated with a file, a
similiar field must appear in each description, and must be in the same
relative position from the beginning of the record although the same
name need not be used.

Data-name may be any fixed-length item less than 256 bytes in length,
with the exception of floating-point or report items.

1-0 CONTROL PARAGRAPH

SAME Clause

The format of the SAME clause is:

[SAME AREA FOR file-name-1 file-name-2 [file-name-3 •••].1

28 IBM S/360 DOS and TOS COBOL Lang. Specs.

The SAME clause is used to specify that two or more files are to use the
same main storage area for buffers.

On1y one of the files named in this clause may be open at any time,.

More than one SAME clause may appear in a COBOL program, but anyone
file-name may appear in only one SAME clause.

* RERUN Clause

The format of the RERUN clause is:

[RERUN ON external-name EVERY END OF {REEL}
UNIT

of file-name.]

This clause specifies that checkpoint records are to be written on
the unit specified by an external name. Only one checkpoint device is
permitted in any given program.

A checkpoint record is a recording of the status of the computer at a
given point in the execution of the object program. It contains all of
the information necessary to restart the program from that point.

Checkpoint records will be written whenever a change of volume occurs
for the file named by file-name. File-name must be the name of a
standard sequential file. The term volume is defined in the Supervisor
and Input/Output Macros publication for the system.

Format of external-name is the same as that in the ASSIGN clause.

APPLY Clause

The formats of the APPLY clause are:

Option 1

[APPLY overflow-name TO FORM-OVERFLOW ON fil.e-name.l

This option is used to specify overfl.ow-name, which may be used in
tests for fo~overflow of a printer to which the file named b¥
file-name is assigned. The condition is true when channel 12 is sensed
by an on l.ine printer.

OVerflow-names fol.low the rules for data-name formation. Data name
formation is discussed in Section 1. Data names are discussed in
Section 5; overflow tests are discussed in Section 6.

An overfl.ow-name may be written in conjunction with a WRITE statement
with an ADVANCING option in order to control. spacing of printed records.
Thus, the foll.owing statement could be written (with a programmer­
supplied overfl.ow-name):

IF overflow-name WRITE X AFTER
ADVANCING 0 LINES ELSE WRITE X
AFTER ADVANCING 2 LINES

Section 4: Environment Division 29

** Option 2

[APPLY WRITE-ONLY ON fi1e-name...]

This option may be used for blocked V type records (which are only
permitted on standard sequential files). Records must be built in a
work area, and written with a WRITE .••• FROM clause.

The only reference to the record may be in a WRITE ••• FROM clause.
This clause permits records to be added to a buffer even though the
maximum size record cannot fit.

Subfields of these records may never be referenced.

Option 3

[APPLY RESTRICTED SEARCH OF integer TRACKS ON file-name...]

Integer can only be 1.

This clause is used to control the extent of the search made for a
specified record. This option may only refer to files specified as
ACCESS IS RANDOM and ORGANIZATION IS DIRECT. In normal operation,
execution of a READ statement for a file causes the entire cylinder to
be searched for the specified record when the record cannot be found on
the specified track. When RESTRICTED SEARCH is written, the search is
limited to the specified track. If the desired record cannot be found
in the case of a READ or REWRITE, the INV~D KEY option of the READ, or
REWRITE statement will be executed.

The INVALID KEY option will also be executed when the specified track
is outside the limits of the last cylinder containing the file. It is
the programmer's responsibility to determine which condition produced
the invalid key condition.

30 IBM S/360 DOS and TOS COBOL Lang. Specs.

SECTION 5: DATA DIVISION

GENERAL DESCRIPTION

The Data Division of a COBOL source program describes ttre information
to be processed by the object program. This information falls into the
following categories:

1. Data contained in files, entering or leaving the internal storage
of the computer.

2. Data developed internally and placed in intermediate or working
storage, and constant data defined by the user.

3. Linkage data descriptions for communication between main program
and subprograms.

The Data Division must begin in Margin A with the header DATA
DIVISION followed by a period. Each of the sections of the Data
Division begins with a fixed section-name, and is followed by the word
SECTION and a period, as follows:

DATA DIVISION.
FILE SECTION.

File Description entries
Record Description entries

WORKING-STORAGE SECTION.
Record Description entries

LINKAGE SECTION.
Record Description entries

The sections must appear in this order. If any section is not
required, both it and its section-name may be omitted.

ORGANIZATION OF THE DATA DIVISION

The Data Division is subdivided into sections, according to types· of
data. Each section consists of entries, rather than sentences and
paragraphs. An entry consists of a level indicator, a data-name or
file-name, and a series of clauses which may be separated by commas or
semicolons. The clauses may be wri tten in any sequence (except the
REDEFINES clause). Each entry must terminate with a period and a space.

FILE SECTION

The File Section describes the content and organization of files.
Each such entry is followed by related Record Description entries.

The Record Description entries used in conjunction with a File
describe the individual items contained in a data record of a file.

Section 5: Data Division 31

WORKING STORAGE SECTION

The Working-Storage Section consists solely of Record Description
entries. These entries describe the areas of storage where intermediate
results are stored at object-program execution time, and constants along
with their values.

Ext LINKAGE SECTION

The Linkage Section is a required part of any COBOL subprogram that
contains an ENTRY statement with USING option, and serves as a
data-linking mechanism between the main program and the subprogram. It
consists only of Record Description entries that provide dummy names for
linkage to data in the main program. This is the only Data Division
section whose entries do not cause object program data storage areas to
be allocated.

When passing computational, computational-1 or computational-2
fields, refer to Appendix C for a discussion on alignment requirements .•

CONCEPTS OF DATA DESCRIPl'ION

The following material defines the basic terms and concepts used in
describing data. Rules which govern the writing of data descriptions
appear later in this section.

LEVELS OF DATA ITEMS

Level indicators are used to show how data items are related to each
other. The most inclusive'grouping of data is the file. The level
indicator for a .file is FD .•

For purposes of processing, the cOntents of a file are divided into
logical records, with level number 01 specifying a logical record. The
object program locations of all logical records are assumed adjusted to
double-word boundary. Subordinate data items that constitute a logical
record are grouped in a hierarchy, and identified with level numbers 02
to 49.

Level number 77 identifies a record description entry in the Linkage
Section or the Working-Storage Section. The level number 77 cannot
appear in the file section.

Level number 88 is used to define a condition-name for a related
conditional variable. A level number less than 10 may be written as a
single digit preceded by a blank.

Levels, allowing specification of subdivisions of a record are
necessary for referring to data. Once a subdivision is specified, it
may be subdivided further to permit more detailed data reference. This
may be illustrated by the following weekly time-card record, which is
divided into four major items: name, employee-number, date, and hours,
with more specific information appearing for name, and date.

32 IBM S/360 DOS and TOS COBOL Lang. Specs.

{ Last-Name
Name First-Initial

Middle-Initial
Employee-Number

Time-Card

{ Month
Date Day

Year
Hours

subdivisions of a record, that are not themselves further subdivided,
are called elementary items. Data items that contain subdivisions are
known as group items. When a Procedure Division statement makes
reference to a group item, the reference applies to the area reserved
for the entire group. Less inclusive groups are assigned higher level
numbers. Level numbers of items within groups need not be consecutive .•
A group includes all groups and elementary items described under it
until a level number less than or equal to the level number of the group
is encountered. Separate entries are written in the source program for
each level. To illustrate level numbers and group items, the weekly
time-card record in the previous example may be described by Data
Division entries having the following level numbers and data-names
described in Figure 2.

r------------------,
101 TIME-CARD I
104 NAME I
I 06 LAST-NAME I
106 FIRST-INITIAL I
106 MIDDLE-INITIAL I
I 04 EMPLOYEE-NUMBER I
104 DATE I
105 MONTH I
105 DAY I
105 YEAR I
104 HOURS I L __________________ J

Figure 2. Example of Data Levels

Only the level number and data-name of each entry have been given in
Figure 2, data defining clauses were omitted ••

Throughout the Data Division, level 01 items are adjusted to a
double-word boundary; level 77 binary or internal floating-point items
are adjusted to the next available half-word, full-word, or double-word
boundary, as appropriate. For blocked files refer to the discussion on
Intra-Record Slack bytes in Appendix C.

CONDITION-NAMES

The general form of a condition-name entry is:

88 condition-name VALUE IS literal.

Section 5% Data Division 33

Each level 88 entry must be preceded by either another level 88 entry
(in the case of several consecutive condition-names pertaining to an
elementary item), or by an elementary item.

Every condition-name pertains to an elementary item in such a way
that the condition-name may be qualified by the name of the elementary
item and the elementary item'S qualifiers. A condition-name is used in
the Procedure Division in place of a simple relational condition.

A condition-name may pertain
variable) requiring subscripts. In
written in the Procedure Division,
same requirements of the associated
discussed later in this text.

to an elementary item (a conditional
this case the condition-name, when
must be subscripted according to the
elementary item. Subscripting is

The literal in a condition-name entry must be consistent with the
data type of the conditional variable.

Figure 3 is an example of Data Division entries and
Division statement that might be written using level
condition-name-test. (Details on the condition-name-test
Section 6 under the subsection Test Conditions.)

Data Division Portion:

r--,
101 TIME-CARD. I
102 NAME, PICTURE X(20). I
102 PAY-CODE, PICTURE 9. I
I 88 MONTHLY, VALUE IS 1. I
I 88 HOURLY, VALUE IS 2. I
I 88 SUBCONTRACTOR, VALUE 3. I
102 SALARY, PICTURE 9999. I
102 RATE-PER-HOUR, REDEFINES SALARY PICTURE 9V999, I
I DISPLAY. I
102 PER-DIEM, REDEFINES RATE-PER-HOUR PICTURE 99V99, I
I DISPLAY. 1 L ___ ~ __ J

Procedure Division Portion:

r--,
IIF HOURLY COMPUTE GROSS = 40 * RATE-PER-HOUR, 1
IELSE IF MONTHLY COMPUTE GROSS = SALARY / 4.334, I
IELSE IF SUBCONTRACTOR COMPUTE GROSS = 5 * PER-DIEM, I
IELSE PERFORM ERROR-PROCESS. 1 L __ J

Figure 3. Condition-name Example

DATA-NAMES

a Procedure
88 and the
appear in

Data-names are names assigned by the programmer to identify data
items used in a program. They always refer to a kind of data, not to a
particular value, and the items they refer to usually assume a number of
values during the course of a program.

34 IBM S/360 DOS and TOS COBOL Lang. Specs ..

A data-name or the key word FILLER must be the first word following
the level number in each Record Description entry, as shown in the
following general format:

1eve1-number (~~~e)
This data-name is the defining name of the entry, and is the means by

which references to the associated data area (containing t~e value of a
data item) are made.

If some of the characters in a record are not used in the processing
steps of a program, then the data description of these characters need
not include a data-name. In this case, FILLER is written in lieu of a
data-name after the level number.

If the same data-name is assigned to more than one item in a program,
it must be qualified in all references to it in the Procedure Division,
Data Division, or Environment Division, except in the REDEFINES clause.

A data-name is qualified by writing either IN or OF after it,
followed by the name of one or more groups, or the record or file in
which it is contained. A highest level qualifier must, however, be
unique.

Any combination of qualifiers that will ensure uniqueness may be
used. More qualifiers may be used than are absolutely needed.' In
Figure 2, if YEAR OF DATE is needed to make YEAR unique, YEAR OF DATE IN
TIME-CARD is also permitted.

A data-name cannot be subscripted when it is used as a qualifier.
However, the entire qualified data-name may be subscripted.

LITERALS

A literal is a constant that is not identified by a data-name in a
program, but is completely defined b7 its own identity. A literal is
either non-numeric (alphabetic or alphanumeric), numeric, or floating­
point.

Non-Numeric Literals

A non-numeric literal must be bounded by quotation marks and may
consist of any combination of characters in the IBM EBCDIC set, except
quotation marks. All spaces enclosed by the quotation marks are
included as part of the literal. A non-numeric literal may not exceed
120 characters in length.

The following are examples of non-numeric literals:

'EXAMINE CLOCK NUMBER'
'12565'
'PAGE 144 MISSING'

Numeric Literals

A numeric literal must contain at least one and not more than 18
digits. A numeric literal may consist of the characters 0 through 9,
the plus sign or the minus sign, and the decimal point. It may contain
only one sign character and only one decimal point. The sign, if
present, must appear as the leftmost character in the numeric literal.
If a numeric literal is unsigned, it is assumed to be positive.

Section 5: Data Division 35

A decimal point may appear anywhere within the numeric literal,
except as the rightmost character. If a numeric literal does not
contain a decimal point, it is considered to be a whole number.

The following are examples of numeric literals:

1506798
+12572.6
-256.75
.16

Ext Floating-Point Literals

A floating-point literal must have the form:

[:]DWltiSSa E[~exponent
The plus or minus signs preceding the mantissa and exponent are the

only optional characters within the format. The mantissa consists of
one to 16 digits with a required decimal point.

Immediately to the right of the mantissa, the exponent is represented
by the symbol E, followed by a plus or minus sign (if a sign is given),
and one or two digits. The magnitude of the number represented by a
floating-point literal must not exceed .72*(10**76). A zero exponent
must be written as 0 or 00.

The value of the literal is the product of the mantissa and ten
raised to the power given by the exponent. A floating-point literal
must appear as a continuous string of characters with no intervening
spaces.

The following are examples of floating-point literals:

12.3E2
-.34566E+17
+2. 56E-6

FIGURATIVE CONSTANTS

Figurative constants are a special type of literal. They are values
that have been assigned fixed data-names. Figurative constants must not
be bounded by quotation marks.

ZERO may be used in many places in a program as a numeric literal.
It may not, however, be used in an arithmetic statement. The use of
ZERO as a non-numeric literal is permitted. All other figurative
constants are considered non-numeric. The singular and plural forms of
figurative constants are equivalent and may be used interchangeably.

ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

Represents one or more zeros.

Represents one or more blanks or spaces.

Represents one or more appearances of
the highest value in the computer's
collating sequence. (Hexadecimal 'FF')

36 IBM S/360 DOS and TOS COBOL Lang. Specs.

LOW-VALUE
LOW-VALUES

ALL 'character-

QUOTE
QUOTES

Represents one or more appearances of
the lowest value in the computer's
collating sequence. (Hexadecimal -00')

Represents one or more occurrences of
the single character bounded by
quotation marks. Character may not be
a quotation mark.

Represents the character '. Note
that the use of the word QUOTE
to represent the character '
at object time is not equivalent to
the use of the symbol' to bound
a no~numeric literal.

When a figurative constant is used in such a way that the exact
number of characters required cannot be determined, only one character
is generated. For example, the statement DISPLAY ZEROES would produce
one zero character since, in this case, the length of the sequence of
zeros to be displayed cannot be determined.

TYPES OF DATA ITEMS

Several types of data items can be described in a COBOL source
program. These data items are described in the following text. The
format of the Record Description entry used to describe each of these
items appears under the discussion of Record Description entries.

Group Items

A group item is defined as one having further subdivisions, so that
it contains one or more elementary items. In addition, a group item may
contain other groups. An item is a group item if, and only if, its
level number is less than the level number of the immediately succeeding
item, unless the latter level is 88. If an item is not a group item,
then it is an elementary item, or, in the case of level 88, it is a
condition-name.

The maximwn length for any group item or elementary item in a tape
system is 4092 bytes. whereas for a disk file it is 3625 bytes, except
for a fixed-length Working-Storage group item, which may be as long as
32,767 bytes.

Elementary Items

Elementry items are items not further subdivided.

Alphabetic Item

An alphabetic item may contain any combination of the characters A
through Z and space. Each alphabetic character is stored in a separate
byte.

Section 5: Data Division 37

Alphanumeric Item

An alphanumeric item consists of any combination of characters in the
IBM EBCDIC set. Each alphanumeric character is stored in a separate
byte.

Report Item

A report item is an alphanumeric item containing only digits and/or
special editing characters. It must not exceed 127 characters in
length. A report item can be used only as a receiving field for numeric
data. Each report character is stored in a separate byte. (See PICTURE
and BLANK WHEN ZERO clauses.)

Fixed-Point Items

Fixed-point items may be defined as external decimal, internal
decimal, or binary. External decimal corresponds to the form in which
information is represented initially for card input, or finally for
printed or punched output. such items may be converted (by moving) to
the internal machine formats described as internal decimal or binary.
Except when an item is a single digit in length, these formats require
less storage than the external decimal format and can be used to save
space on volumes. The binary mode of representation is particularly
efficient for data-names used as subscripts. Computational results are
the same, regardless of the particular format selected provided the
intermediate computational results do not require more than 18 digit
positions.

EXTERNAL DECIMAL ITEM: Decimal numbers in the System/360 zoned format
are external decimal items.Each digit of a number is represented by a
single byte, with the four low-order bits of each eight-bit byte
containing the value of a digit. The four high-order bits of each b7te
are zone bitsJ the zone bits of the low-order byte represent the sign of
the item. The maximum length of an external decimal item is 18 digits.
For items whose PICTURE does not contain an S, the sign position is
occupied by a bit configuration interpreted as positive but which does
not represent an overpunch.

The codes used in the illustrations are as follows:

Z = Zone
Hexidecimal F = non-printing plus sign(1111)
9 = A digit
S = The sign position of a numeric field
b = A blank

38 IBM S/360 DOS and TOS COBOL Lang. Specs.

Examples of external decimal items are shown in Figure 4.

If number is -1234 and,

Picture and Usage Are: Machine ReEresentation Is:

PICTURE 9999 DISPLAY. IZ liZ 21Z 31F 41
'----'

BYTE
or

PICTURE S9999 DISPLAY. IZ 11Z 21Z 310 41

'----'
BYTE

Hexadecimal F is arithmetically treated as plus in low-order byte.
The character 0 represents a negative sign.

Figure 4. Examples of External-Decimal Items

INTERNAL DECIMAL ITEM: An internal decimal item consists .> of numeric
characters 0 through 9 plus a sign, and represents a value not exceeding
18 digits in length. It appears in storage as ·packed- decimal. One
byte contains two digits with the low-order byte containing the
low-order digit followed by the sign of the item. For items whose
PICTURE does not contain an S, the sign position is occupied by a bit
configuration interpreted as positive but which does not represent an
overpunch.

Examples of internal-decimal items are shown in Figure 5,.

If number is +1234 and,

Picture and Usage Are: Machine Representation Is:

PICTURE 9999 COMPUTATIO~3. 10 112 314 FI
'----'

BYTE
or

PICTURE 89999 COMPUTATIONA~3. 10 112 314 CI

'----'
BYTE

Hexadecimal F is arithmetically treated as plus .•
The character C represents a positive sign.

Figure 5. Examples of Internal-Decimal Items

BINARY ITEM: A binary item may be considered decimally as consisting of
numeric characters 0 through 9 plus a sign. It occupies two bytes (a
half-word), four bytes (a full-word), or eight bytes (two words),
corresponding to specified decimal lengths of 1 to 4 digits, 5 to 9
digits, and 10 to 18 digits, respectively. The leftmost bit of the
reserved area is the operational sign.

I If the item is used as a resultant data name in an arithmetic
statement, and no ON SIZE ERROR option is specified, the area may be set
to a number greater than that specified in the PICTURE clause.

Section 5: Data Division 39

If the item is used as an operand, it is assumed that the area
contains a number 1ess than or equa1 to that specified in the PICTURE
c1ause.

An Examp1e of binary represented decimal item is shown in Figure 6.

If the number is +1234 and,

Picture and Usage Are: Machine Representation Is:

PICTURE 59999 COMPUTATIONAL. 10 0001010011101100101
S "----v-----'

BYTE

S=Sign a ·1· in position S means number is negative.

a ·0· in position S means number is positive.

Figure 6. Example of Binary Represented Decimal Item

Ext Floating Point Items

External and internal floating-point formats define data items whose
potentia1 range of value is too great for fixed-point representation.
The magnitude of the number represented by a floating-point item must
not exceed .72 • (10 •• 76).

Ext EXTERNAL FLOATING-POINT ITEM: An external floating-point item consists
of a combination of the characters +, -. blank, decimal point. and
digits 0 through 9, appearing in a specific format which represents a
number in the form of a decimal number followed by an exponent. The
exponent specifies a power of ten that is used as a multiplier..
External floating-point items (also called scientific decimal items) are
scanned at object time for conversion to the equivalent internal
floating-point value. when used as numeric operands. (See fp-form of
PICTURE clause.) Each character of the PICTURE. except v. represents a
single byte of storage reserved for the item.

An Example of an External Floating-Point item (literal) is shown in
Figure 7.

If number is +12.34E+2 and.

Picture and Usage Are:

PICTURE +99.99E-99 DISPLAY.

Machine Representation Is:

1+11121.1314IElbI0121
'-vJ

BYTE

Figure 7. Example of External Floating-Point Item

Ext INTERNAL FLOATING-POINT ITEM: An internal floating-point item may be
considered equivalent to an external floating-point item in capability
and purpose. Internal floating-point numbers occupy four or eight
bytes, depending on the length of the fractions.

In the short-precision format. the fraction appears in the rightmost
three bytes: in the 1ong-precision format, the fraction appears in the
rightmost seven bytes. The sign of the fraction is the leftmost bit in
either format. and the exponent appears in bit positions 1 through 7.

lJO IBM S/360 DOS andTOS COBOL Lang. Specs.

Examples of internal floating-point items are shown in Figure 8.

For COMPUTATIONAL-l (short form), the machine representation is:

3 BYTES

r"'----'''''' \
r~--------------T------------'
ISICharacteristicl Fraction I L-~ _____________ ' ____________ J

o 1 7 8 31

For COMPUTATIONAL-2 (long form), the machine representation is:

7 BYTES
(~----------~ ,

r~--------------T----------------------'
ISICharacteristicl Fraction I
L-~ ____________ ~ ____________________ -J

o 1 7 8 63

For a discussion of
numbers, refer to IBM
A22-6821-1.

internal·
System/360

representation of
Principles of

floating-point
Operation Form

Figure 8. Examples of Internal Floating-Point Item

ALIGNMENT OF DATA FIELDS

The compiler assigns storage so that the starting byte of a binary or
internal floating-point item is on the next available half-word,
full-ward, or double-word boundary, as appropriate. In this way, an
internal floating-point or binary item is properly aligned at the
storage location required by the computer.

If a data hierarchy contains binary or floating
mixed with other elementary items, there may
introduced to assure the necessary byte
synchronization).

point items inter­
exist ·slack bftes·
alignment (implicit

Slack b¥tes exist in a record not only in main storage but on files.
The compiler inserts slack bytes on output and expects them on input.

A further discussion of slack bytes is contained in Appendix c.

FILE SECTION

The File Section is used to define data 'that is contained in files.

FILE AND RECORD HANDLING

For purposes of processing, the contents of a file are divided into
logical records. It is important to note that several logical records
may occupy a block (i~e., a physical record).

In COBOL there are two classes of files;

Section 5: Data Division 41

1. A file for which there is only one Ot-Ievel record description
subordinate to the FD entry. called a single-record file.

2. A file for which there is more than one 01-level record description
subordinate to the FD entry. called a multiple-record file.

There are also two classes of records that may be contained in a
file, fixed-length records and variable-length records. Variable-length
records contain an OCCURS clause with a DEPENDING ON option; fixed­
length records do not.

A SINGLE-RECORD file may contain either:

1. Fixed -length records, or
2. Variable-length records.

A MULTIPLE-RECORD file may contain records with three different
characteristics:

1. EQUAL Each record described is fixed in length and all the
lengths are equal.

2. DIFFERING - Each record described is fixed in length, but at least
two record descriptions have different lengths.

3. VARIABLE One or more of the records described is variable in
length.

Record Types

Three record types are available to COBOL users:

1. Fixed type (Format F): Can be used only when all logical records in
a file are the same length; may be blocked, and may use the first
character to control the printer carriage or punch stacker
selection.

2. Variable type (Format V): Can be used for fixed, differing or
variable records; records are preceded by a 4-byte count control
field; may use the first character to control the printer carriage
or punch stacker selection; may be blocked; may contain differing
or variable .length records. The control field is handled by COBOL
and Data Management automatically.

The control field is not available to the user.

Figure 9 is a typical example of a control field used in format V
records.

CONTROL
FIELD

FIELD DESCRIBED
IN COBOL

Figure 9. Typical Example of Control Field Used in Format V Records

3. Unspecified type (Format U>, can be used for unblocked records.

If no recording mode is specified, records processed by COBOL object
programs are format V records. If F or U recording mode is written,
then either Format F or Format U records are assumed by the compiler.

42 IBM 8/360 DOS and TOS COBOL Lang. Specs.

FILE SECTION ENTRIES

FD file-name
[CHARACTERS}

[BLOCK CONTAINS integer~RECORDS]

[RECORDING MODE IS mode]

[RECORD CONl'AINS [integer-1 TO] integer-2 CHARACTERS]

J ~STANDARD }
RECORD IS OMITTED

LABEL{kcoRDS ARE data-name·

f..REOORD IS 1
DATA~CORDS AREjrecord-name., •••

An example of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B

----r--~~--
1 I 61 7 18 12
--+--+-+--

I I 1
00110121 IDATA
00110131 IFILE
00110141 FD
00110151

1 1
001 0161 01

1
1

001 0181 FD
1

001 0191 01
1
I
I
1
I
I

DIVISION.
SECTION.

FILEA, DATA RECORD IS RECORD-l, LABEL RECORDS
ARE STANDARD, BLOCK CONTAINS 5 RECORDS, RECORDING
MODE IS F.

FILEB DATA RECORD IS RECORD-2, LABEL RECORDS
ARE OMITTED.

Refer to Appendix E, Figure 34, for the relationship between the
example above, and the sample program given therein.

Notes

1. The FD entry must describe each data file to be processed by the
object program .•

2. File-name is the highest level qualifier for its record description
entries.

Section 5: Data Division 43

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause specifies the number of logical records of
maximum length or the maximum number of characters (bytes) in a physical
record. The format for this clause is:

BLOCK CONTAINS integer{RECORDS 1
lCHARAcTERsj

The BLOCK CONTAINS clause must not be written if the UNIT-RECORD
clause is specified in the Environment Division, or if U type records
are used.

If CHARACTERS is written, integer must include the number of bytes
occupied by slack bytes or control words contained in the physical
records.

If this clause is omitted, it is assumed that records are not
blocked.

RECORD CONTAINS Clause

The RECORD CONTAINS clause is used to specify the maximum size of
logical records. The format for this clause is:

[RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS

Inteqer-l and inteqer-2 are used to specify minimum and maximum
record sizes respectively. If the file contains only fixed-length
records, inteqer-l (if specified) and integer-2 must be equal to the
sizes of the smallest and largest records described for the file
respectively. If the file contains variable-length records, inteqer-l
is ignored and integer-2 is assumed to be the maximum size that any
record in the file will have. Record lengths are determined by the
compiler regardless of whether or not the clause is specified.

The RECORD CONTAINS clause is not necessary for a file having equal
length records.

LABEL RECORDS Clause

This clause specifies the presence of standard or non-standard labels
on a file, or the absence of labels. The format of this clause is:

OMITTED
{

STANDARD}

LABEL RECORDS ARE data-name

No labels
Non-standard labels
Standard labels
Standard and user labels

OMI'rrED
OMI'rrED
STANDARD
data-name

The OMITTED option must be specified for a file assigned to unit

I record devices. It may be specified for files assigned to magnetic tape
units. Use of the OMITTED option does not result in automatic bypassing
of non-standard labels on input. It is the user's responsibility to

44 IBM S/360 DOS and TOS COBOL Lang. Specs.

either process or bypass non-standard labels on input, and create them
on output.

The STANDARD option must be specified for files with indexed
organization. It may be specified for any files except as noted in the
preceding text.

The data-name option may be specified for files with standard
sequential organization, with the exception of unit-record files, or for
files with direct organization. The use of this option indicates that,
in addition to standard labels, user labels are to be processed (see
Options 1 and 2 of the Procedure Division USE section). Data-name, in
this option, is a 01 or 77 level data-name in the Linkage Section of the
Data Division which describes the label. This data-name is then
available for reference b¥ a declarative procedure written by the user
for label processing. Label processing declarative procedures are
discussed in Section 6. Data-name may not be subscripted.

A user label is 80 characters in length. A user header label is
characterized by the appearance of UHL in character positions 1 through
3; a user trailer label has UTL in character positions 1 through 3. For
both types, the relative position (1 through 8) of the label within the
user label group is in character position 4. The remaining 76
characters are formatted according to user choice.

DATA RECORDS Clause

This clause specifies the names of the logical records in a file .•

Its format is:

[RECORD IS }
DATA tRECORDS ARE record-name •••

Record-name is a data-name described with a 01 level-number in this
section.

RECORDING MODE Clause

The RECORDING MODE clause specifies the format of the logical records
comprising the file. The format for this is:

[RECORDING MODE IS model

Mode may be specified as either U,F or V.

The F mode (fixed-length format) may be specified when all the
logical records in a file are the same length. This implies that no
OCCURS DEPENDING ON clauses are associated with. any entries in the data
record descriptions. If more than one data record description is given
allowing the FD entry, all record length calculated from the data record
descriptions must be equal.

All UNIT-RECORD files must be F mode (fixed format).

The V mode (variable-length format) may be specified for any
combination of record descriptions. A logical record of this format has
a control field precedingf it containing the length of the logical
record.

Section 5: Data Division 45

The U mode (unspecified format) may be used with any combination of
record descriptions. It may be compared to V mode records which are not
blocked and without the preceding count control field.

The RECORDING MODE clause must be specified for files with F or U
type records. If this clause is omitted, V type records are assumed.

RECORD DESCRIPTION ENTRY

A Record Description entry specifies the characteristics of each item
in a data record. Every item must be described in a separate entry in
the same order in which the item appears in the record. Each Record
Description entry consists of a level-number, a data-name, and a series
of independent clauses followed by a period.

The general format of a Record Description entry is:

leVel-number~~~ame}[REDEFINES-ClaUSe]
[PICTURE-clause] [BLANK-clause]

[OCCURS-clause] [VALUE-clau.se]

[JUSTIFIED RIGHT]

[USAGE-clause] •

An example of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B

01

001 019 01

RECORD-1.
02 SUB-FIELDA PICTURE IS X(68).
02 SUB-FIELDB PICTURE IS X(12).

RECORD-2 PICTURE IS X(SO).

Refer to Appendix E, Figure 34,. for the relationship between the
example above, and the sample program given therein.

When this format is applied to the various specific items of data, it
is limited by the nature of the data being described. The allowable
format for the description of each data type appears below. Clauses

46 IBM S/360 DOS and TOS COBOL Lang. Specs.

which are not shown in a format are specifically forbidden in that
format. Clauses that are mandatory in the description of certain data
items are written without brackets.

GROUP ITEM

Format:

{data-name}
level-number~FILLER [REDEFINES-clause]

[OCCURS-clause] [USAGE-clause]

Example:

01. GROUP-NAME.
02 FIELD-B PICTURE X.
02 FIELD-C PICTURE 9.

ELEMENTARY ITEMS

Alphabetic Item

Format:

{
data-namet

level-number FILLER j[REDEFINES-clause] [OCCURS-clause]

PICTURE IS alpha-form [USAGE IS DISPLAY]

[VALUE IS alphabetic-literal] [JUSTIFIED RIGHT].

Example:

02 EMPLOYEE-NAME PICTURE A(20).

Alphanumeric Item

Format:

{data-name}
level-number lr ILLER [REDEFINES-clause] [OCCURS-clause]

PICTURE IS an-form [USAGE IS DISPLAY]

[VALUE IS non-numeric-literall [JUSTIFIED RIGHT].

Examples:

02 MISC-l PICTURE X(53).

02 MISC-2 PICTURE XXXXXXXX.

Section 5: Data Division 47

Report Item

Format:

level-number {~~name}[REDEFINES-claUSe] [OCCURS-clause]

{
numeric-form BLANK WHEN ZERO)

PICTURE IS report-form [BLANK WHEN ZERO]}

[USAGE IS DISPLAY].

Example:

02 TOTAL PICTURE $999,999.99-.
02 RLT PICTURE 999 BLANK ZERO.

External Decimal Item

Format:

level-number {~~~~[REDEFlNES-claUSe] [OCCURS-clause]

[USAGE IS DISPLAY] PICTURE IS numeric-form

[VALUE IS numeric-literal].

Example:

02 HOURS-WORKED PICTURE 99V9, DISPLAY.

02 HOURS-SCHEDULED PICTURE 99V9.

Internal Decimal Item

Format:

{
data-name)

level-number FILLER } [REDEFINES-clause] [OCCURS-clause]

PICTURE IS numeric-form USAGE IS COMPUTATIONAL-3

[VALUE IS numeric-literal].

Example:

02 YEAR-TQ-DATE PICTURE S99999999V99 COMPUTATIONAL-3.

48 IBM S/360 DOS and TOS COBOL Lang. Specs.

)

Binary Item

Format:

1evel-number {~~~am~[REDEFINES-C1aUSe] [OCCURS-c1ause]

PICTURE IS numeric-form USAGE IS COMPUTATIONAL

[VALUE IS numeric-literal].

Example:

03 SUBSCRIPT PICTURE S999 COMPUTATIONAL.

Ext External Floating-Point Item

Format:

1evel-number (~~ame) [REDEFINES-clause] [OCCURS-clause]

PICTURE IS fp-f orm [USAGE IS DISPLAY].

Example:

02 GAMMA PICTURE +.9(S)E+99.

Ext Internal Floating-Point Item

Foxmat:

(
data-name\'

level-number FILLER J[REDEFINES-Clause] [OCCURS-clause]

r rCOMPUTATION~~\.J L USAGE IS \:COMPUTATION~ 2 j

[VALUE IS floating-point-literal] •

Example:

02 DEVIATION COMPUTATIONAL-i.

Section 5: Data Division 49

ITEM INFORMATION CLAUSES

Each entry consists of one or more clauses that provide information
about the item. Listed below are the options available.

USAGE Clause

The USAGE clause describes the form in which data is represented.

The USAGE clause may be written at any level. At a group level, it
applies to each elementary item in the group. The usage of an
elementary item must not contradict the usage explicitly stated for a
group to which the item belongs. If USAGE is not specified, the usage
of an item is assumed to be DISPLAY. The format of the USAGE clause is:

DISPLAY}] COMPUTATIONAL
COMPUTATIONAL-l
COMPUTATIONAL-2
COMPUTATIONAL-3

The DISPLAY option specifies that the item is stored in character
form, one character per byte.

The COMPUTATIONAL option specifies a binary data item occupying two,
four, or eight character positions corresponding to specified decimal
lengths of 1-4, 5-9, and 10-18, respectively. The leftmost bit of the
reserved area is the operational sign. computational items are aligned
at the next half-word or full-word boundary, as appropriate.

The COMPUTATIONAL-l option specifies a data item stored in short­
precision floating-point format.

The COMPUTATIONAL-2 option specifies a data item stored in long­
precision floating-point format.

The COMPUTATIONAL-3 option specifies that the item is stored in
packed decimal format: two digits per character position, with the
low-order half character containing the sign.

PICTURE Clause

The PICTURE clause specifies a detailed description of an elementary
level data item and may include specification of special report editing.

50 IBM S/360 DOS and TOS COBOL Lang. Specs.

. J

The general format of the PICTURE clause is:

~ {

alpha-form }] an-form
PICTURE IS numeric-form

report-form
fp-form

An example of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B
---T---y-y--
1 I 61 7 18 12
---+---+-+--
003 008

003 013
003 014

DATA DIVISION.

02
02

A PICTURE X(68).
B PICTURE X(12).

Refer to Appendix E, Figure 35, for the relationship between the
example above, and the sample program given therein.

The options are described in the following text.

ALPHA-FORM OPTION: This option represents an alphabetic item. The
PICTURE of an alphabetic item can contain only the character A. An A
indicates that the c4aracter position will always contain one of the 26
letters of the English alphabet or a space.

~FORM OPTION: This option applies to alphanumeric items. The
PICTURE of an alphanumeric item can contain only the character X. An X
indicates that the character position will always contain a character
from the EBCDIC set.

NUMERIC~FORM OPTION: This option refers to a fixed-point numeric item.
The PICTURE of a numeric item may contain a valid combination of the
following characters:

CHARACTER

9

MEANING

The character 9
conceptual digit
character .•

indicates
position

that the actual or
contains a numeric

V The character V indicates the position of an
assumed decimal point. Since a numeric item
cannot contain an actual decimal point, an assumed
decimal point is used to provide the compiler with
information concerning the decimal alignment of
items involved in computations. Storage is never
reserved for the character V •

Section 5: Data Division 51

P The character P represents a numeric digit posi­
tion for which storage is never reserved and which
always is treated as if it contained a zero. P
(or a group of Ps) is used to indicate the
location of an assumed decimal point. For exa~
pIe, an item composed of the digits 123 would be
treated by an arithmetic procedure statement as
123000 if its PICTURE were 999PPPV; or as .000123
if its PICTURE were VPPP999. The character V may
be used or omitted as desired. When used, V must
be placed in the position of the assumed decimal
point, to the left or right of the P or Ps that
have been specified.

S The character S indicates the presence of an
operational sign. If used, it must be the left­
most character of the PICTURE. For a binary item
a sign is always present in the item; hence, the
presence of S in a numeric-form PICTURE is
required. For internal and external decimal items
used as input, an S must be written if and only if
the item contains a sign. For internal and
external decimal items developed by the execution
of COBOL statements, the compiler will develop a
sign if and only if an S is written in the
PICTURE. If an S is not written, the sign
position is occupied by a bit configuration inter­
preted as positive, but which does not represent
an overpunch.

REPORT-FORM OPTION: This option refers to a report item. The editing
characters that may be combined to describe a report item are: 9 V P
Z * CR DB , 0 B $ + -. The characters 9, P, and V have the same meaning
as for a numeric item. The meanings of the other allowable editing
characters are described in the following text.

CHARACTER MEANING

The decimal point character (.) specifies that an
actual decimal point is to be inserted 1n the
indicated poSition and the source item is to be
aligned accordingly. Numeric character positions
to the right of an actual decimal point in a
PICTURE must consist of characters of one type
(i.e., * or Z or 9 or $ or + or -).

Z The character Z is the zero suppression character.
Each Z in a PICTURE represents a digit position.
Leading zeros to be placed in positions defined h¥
Z are suppressed, leaving the position blank.
Zero suppression also terminates upon encountering
the decimal point (. or V). Z may appear to the
right of the decimal point only if all digit
positions are represented by Zs. (A Z cannot
appear to the right of a 9 anywhere.) The PICTURE
ZZZ.ZZ is equivalent to a combination of the BLANK
clause and the PICTURE ZZZ.99.

* The asterisk is the ·check protection· replacement
character which is similar to Z, except that
leading zeros are replaced by asterisks. An *
must not appear anywhere to the right of a 9. The

52 IBM S/360 DOS and TOS COBOL Lang. Specs.

CR
DB

,
o
B

BLANK WHEN ZERO clause may not be applied to an
item having an * in its PICTURE.

CR and DB are called credit and debit symbols and
may appear only at the right end of a picture.
These symbols occupy two character positions and
indicate that the specified symbol is to appear in
the indicated positions if the value of a source
item is negative. If the value is positive or
zero, spaces will appear instead.

The comma, zero, and B specify insertion of comma,
zero, and space, respectively. Each insertion
character is counted in the size of the data item,
but does not represent a digit position. The
presence of zero suppression(Z) or check protec­
tion (*> ind~cates that suppression of leading
insertion characters also takes place with asso­
ciated space or asterisk replacement. These char­
acters may also appear in conjunction with a
floating string. as described in the following
text.

A floating string is defined as a leading, continuous series of
either $, + or -, or a string composed of one such character interrupted
by Bs and/or commas and/or V or actual decimal point. For example:

$$,$$$,$$$
++++
-- -- -
$$$B$$$
+(S)V++
$$,$$$.$$

A floating string containing n+1 occurrences of $, + or - defines n
digit positions. When moving a numeric value into a report item, the
appropriate character floats from left to right, so that the developed
report item has exactly one actual $, + or - immediately to the left of
the most significant nonzero digit, in one of the positions indicated by
$, + or - in the PICTURE. Blanks are placed in all character positions
to the left of the single developed $, + or -. If the most significant
digit appears in a position to the right of positions defined by a
floating string, then the developed item contains $, + or - in the
rightmost position of the floating string, and nonsignificant zeros may
follow. The presence of an actual or implied decimal point in a
floating string is treated as if all digit positions to the right of the
point were indicated by the PICTURE character 9, and a BLANK WHEN ZERO
clause was written for the item. In the follOwing examples, b
represents a blank in the developed items.

PICTURE

$$$999
--,---,999

Numeric Value

14
-456

Developed Item

bb$014
bbbbbb-456

A floating string need not constitute the entire PICTURE of a report
item, as shown in the preceding examples. Restrictions on characters
that may follow a floating string are given later in this description.

When B, comma, or zero appear to the right of a floating string, the
string character floats through these characters in order to be as close
to the leading digit as possible.

Section 5: Data Division 53

The character B in a floating string indicates that an embedded blank
is to appear in the indicated position, unless the position immediately
precedes the nonzero, leading significant digit. Embedded Bs in a
PICTURE need not be s.ingle characters. Thus, $$BB$$$ is a valid PICTURE
for a report item. The character comma in a floating string operates
similarly, except that the app~priate character appears in the devel­
oped item instead of a blank.

The character V in a floating string serves merely to indicate
alignment of the assumed decimal point.

$
+

The character $, + or - may appear in a PICTURE
either singly or in a floating string. As a fixed
sign control character, the + or - must appear as
either the first or last symbol in the PICTURE,
but not both. The plus sign indicates that the
sign of the item is indicated by either a plus or
minus placed in the character position, depending
on the algebraic sign of the numeric value placed
in the report field. The minus sign indicates
that blank or minus is placed in the character
position, depending on whether the algebraic sign
of the numeric value placed in the report field is
positive or negative, respectively. As a fixed
insertion character, the dollar sign may appear
only once in a PICTURE.

Other rules for a report item PICTURE are as follows:

1. The appearance of one type of floating string precludes any other
floating string.

2. There must be at least one digit poSition character.
3. If there are no 9s, BLANK WHEN ZERO is implied unless all numeric

positions are *.
4. The appearance of a floating sign string or fixed plus or minus

insertion characters precludes the appearance of any other of the
sign control insertion characters, namely, + - CR or DB.

5. The characters in a PICTURE to the left of an actual decimal point
(or in the entire PICTURE if no decimal point is given), excluding
the characters that ~omprise a floating string, are subject to the
following restrictions:
a. Z may not follow * or 9 or a floating string.
b. * may not follow 9 or Z or a floating string.

6. The characters to the right of a decimal point up to the end of a
PICTURE, excluding the fixed insertion characters + - CR DB (if
present>, are subject to the following restrictions:
a. Only one type of digit position character may appear. That is,

asterisks, Zs, 9s, and floating string digit position charac­
ters $ + - are mutually exclusive.

b. If any of the numeric character positions to the right of a
decimal point is represented by + or - $ or Z or * , then all
the numeric character positions must be represented by the same
characters.

7. A floating string must begin with at least two consecutive
appearances of + or - or $ •

8. The PICTURE character 9 can never appear to the left of a floating
or replacement character.

9. Floating or replacement characters + - Z $ or * cannot be mixed in
a PICTURE description. They may appear with fixed characters as
follows:
a. * or Z with fixed $
b. $ (fixed or floating) with fixed rightmost + or -
c. * or Z with fixed leftmost + or -
d. * or Z with fixed rightmost + or -

54 IBM S/360 DOS and TOS COBOL Lang. Specs.

Ext FP-FORM OPTION: This option refers to an external floating-point item.
The PICTURE of an external floating-point item consists of all of the
following:

1. + or - (+ indicates that a plus sign represents positive values and
that a minus sign represents negative values; - indicates that a
blank represents posi ti ve values and that a minus sign represents,
negative values).

2. One to sixteen 9s representing mantissa with a decimal point or V
3. The letter E
4. + or - (see note 1 above)
5. Two 9s representing the exponent

General Notes: The following considerations pertain to use of the
PICTURE clause.

1. A PICTURE clause must only be used at the elementary level.
2. An integer enclosed in parentheses and following A X 9 Z • 0 P - B

$ or + indicates the number of consecutive occurrences of the
PICTURE character.

3. All characters, except P V and S are counted in the total size of a
data item. CR and DB occupy two character positions.

4. A maximum of 30 character positions is allowed in a PICTURE
character string. For example, PICTURE A(79) consists of five
PICTURE characters.

5. A PICTURE must consist of at least one of the characters A X 9 * Z
or at least a pair of one of the characters + or - or $.

6. ~e characters. S V CR and DB can appear only once in a picture.
CR and DB may not both appear in the same PICTURE.

7. An item can possess only one sign.

The examples in Figure 10 illustrate the use of PICTURE to edit data.
In each example a movement of data is implied, as indicated by the
column headings.

Section 51 Data Division 55

r-- -,.------------.
I 50urce Area I Receiving Area 1
I----,.---+--------,.--------~
1 PICTURE I Data IPICTURE IEdited Data I
1 1 Value I 1 1
I---+---+------+--------~
1599999 1-12345 -ZZ,ZZ9.99 -12,345.00
1599999V 00123 $ZZ,ZZ9.99 $ 123.00
159(5) 00100 $ZZ,ZZ9.99 $ 100.00
19(5) 00000 $ZZ,ZZZ.99 $.00
19(5) 00000 $ZZ,ZZZ.ZZ
1 999V99 123.45 $ZZ,ZZ9.99 $ 123.45
IV99999 .12345 $ZZ,ZZ9.99 $ 0.12
19(5) 12345 $**,.*9.99 $12,345.00
19(5) 00123 $**,.*9.99 $*.*123.00
19(5) 00000 $**, •• *.99 $******.00
19(5) 00000 $**,***,** ** •• ******
1 99V999 12.345 $**,.*9.99 $****12.34
19(5) 12345 $$$,$$9.99 $12,345.00
19(5) 00123 $$$.$$9.99 $123.00
19(5) 00000 $$$.$$9.99 $0.00
19(4)V9 1234.5 $$$,$$9.99 $1,234.50
V9(5) .12345 $$$,$$9.99 $0.12
599999V -12345 -ZZZZ9.99 -12345.00
59(5)V 12345 -ZZZZ9.99 12345.00
59(5) -00123 -ZZZZ.99 - 123.00
599999 12345 ZZZZ9.99- 12345.00
59(5) -12345 ZZZZ9.99- 12345.00-
59(5) 01234 ------.99 1234.00
S9(5) -00001 ------.99 -1.00
S9(5} 12345 +ZZZZZ.99 +12345.00
S9(5) -12345 +ZZZZZ.99 -12345.00
S9(5) 12345 ZZZZZ.99+ 12345.00+
S9(5) -12345 ZZZZZ.99+ 12345.00-
S9(5) 00123 ++++++.99 +123.00
S9(5) 00001 ------.99 1.00
9(5) 00123 ++++++.99 +123.00
9(5) 00123 ------.99 123.00
9(5) 12345 BB999.00 345.00
S9(5) -12345 $$$$$$.99CR $12345.00CRI

IS9(5) 12345 $$$$$$.99CR $12345.00 I L ______ ~ _______ ~ ___________ ~ ___________ J

Figure 10. Editing Applications of the PICTURE Clause

BLANK Clause

This clause specifies that the item being described is filled with
spaces whenever the value of the item is zero. The BLANK clause may
only be used for report items specified at an elementary level.

The format of the BLANK clause is:

[BLANK WHEN ZERO]

56 IBM S/360 DOS and T05 COBOL Lang. Specs.

VALUE Clause

The VALUE clause defines condition-name values and specifies the initial
value of Working-Storage items. The format of this clause is:

[VALUE IS literal]

The size of a literal given in a VALUE clause must be less than or
equal to the size of the item as given in the PICTURE clause, with the
provision that the literal must also include leading or trailing zeros
to reflect Ps in the PICTURE. The positioning of the literal within a
data area is the same as the positioning that would result from
specifying a MOVE of the literal to the data area. The type of literal
written in a VALUE clause depends on the type of data item.

When an initial value is not specified, no assumption should be made
regarding the initial contents of an item in Working-Storage.

The VALUE clause can only be specified for elementary items other
than report and external floating point.

In the File Section and Linkage Section the VALUE clause can only
appear in conjunction with a level 88 item.

The VALUE clause must not be written in a Record Description entry
that also has an OCCURS or REDEFINES clause, or in an entry that is
subordinate to an entry containing an OCCURS or REDEFINES clause. In
the latter case,an 88 level VALUE clause may be subordinate to the
OCCURS or REDEFINES clause.

REDEFINES Clause

This clause specifies that the same area is to contain different data
items, or provides an alternative grouping or description of the same
data. The format of the REDEFINES clause is:

data-name-1 [REDEFINES data-name- 2]

When written, the REDEFINES clause must be the first clause following
the data-name that defines the entry.

When an area is redefined, all descriptions of the area remain in
eff ect. Thus, if Band C are two separate items that share the same
storage area due to redefinition, the procedure statements MOVE X TO B
or MOVE Y TO C could be executed at any point in the program. In the
first case, B would aSS'Wlle the value of X and take the form specified by
the description of B. In the second case, the same physical area would
receive Y according to the description of C. A redefinition does not
cause any data to be erased and does not supersede a previous
description.

The REDEFINES clause must not be used for logical records associated
with the same file (i.e., it must not be used at the 01 level in the
File Section), since implied redefinition exists. The level number of
data-name-2 must be identical to that of the item containing the
REDEFINES clause.. Redefinition starts at data-name-2, and ends when a
level-number less than or equal to that of data-name-2 is encountered.

The entries giving the new description of the area must immediately
follow the entries describing the area being redefined. However,
additional entries that redefine the same area may intervene.

Section 5: Data Division 57

If data-name-1 is desc:r:ibed as COMPUTATIONAL, COMPUTATIONAL-1, or
COMPUTATIO~2. then data-name-2 must start on a half-word, full-word,
~. double-word boundary, as appropriate.

A REDEFINES clause may be specified for an item within the scope of
an area being redefined; that is, REDEFINES clauses may be specified for
items subordinate to items containing REDEFINES c1auses.

Except for condition-name entries, entries containing or subordinate
to a REDEFINES clause must not contain any VALUE clauses ..

The description of data-name-1 or of any item subordinate to
data-name-1 may not contain an OCCURS clause with a DEPENDING ON o~ion.
Data-name-1 may not be subordinate to an item containing an OCCURS
clause. Data-name-2 may :not contain an OCCURS clause in its description
nor may it be subordinate to an item described by an OCCURS clause. No
item subordinate to data-name-2 may be described by an OCCURS clause
with a DEPENDING ON option.

Between data-name-2 and data-name-1 there may be no entries having a
lower level nUmber than the level number of data-name-2 and data-name-1.

The 1ength of data-name-1, multiplied by the number of occurrences of
data-name-1, must be equal to the length of data-name-2.

Data-name-2 need not be written with qualifiers to ensure uniqueness.

Examples of the REDEFINES clause are contained in Figure 3.

OCCURS Clause

The OCCURS clause is used in defining related sets of repeated data,
such as tables, 1ists, vectors, matrices, etc. It specifies the number
of times that a data item with the same format is repeated. Record
Description clauses associated with an item whose description includes
an OCCURS clause apply to each repetition of the item being described.
When the OCCURS clause is used, the data-name that is the defining name
of the entry must be subscripted whenever it appears in the Procedure
Division. If this data-name is the name of a group item, then all
data-names belonging to the group must be subscripted whenever they are
used.

The OCCURS c1ause must not be used in any Record Description entry
having a leve1 number 01 or 88. The OCCURS clause has the fo1lowing
formats:

Option 1

(OCCURS integer TIMES]

In Option 1, integer represents the exact number of occurrences.

Option 2

[OCCURS integer TIMES DEPENDING ON data-name]

58 IBM S/360 DOS and TOS COBOL Lang. Specs.

In option 2, integer refers to the maximum number of occurrences.
The use of option 2 does not imply that the 1ength of the data item is
variab1e, but that the number of occurrences of the item may vary. ~he
record containing ~e variable number of occurrences of the item is,
however, of variable 1enqth, as is any group ~ontaining the variable
number of occurrences.

In option 2, the actual number of occurrences is equal to the value
at object-time of the e1ementary item called data-name. This value must
be a positive integer. Bence, the PICTURE for data-name must describe
an integer _ Data-name must be an internal decimal. external decimal. or
binary item. If data-name appears ldthin the -.. record in whlm- the
current Record Description entry also appears, then- data-name-- must
precede the variable portion of the record which depends on it.
Data-name should be qualified, when necessary, but subscripting is not
permitted.

option 2 has the following restrictions.

1. Only one such clause per 10gical record is allowed.
2. The c1ausetnUSt appear in the description o£either a group that

contains the last elementary item of the record, or in the
description of the last elementary item itself.

3. The item baving an OCCURS clause with a DEPENDING ON option may not
itself be contained in a group having any OCCURS clause.

Subscripting: Subscripting provides the facility for referring to data
items in a table or list that have not been assigned individual
data-names. Subscripting is determined by the appearance of an OCCURS
clause in a data description. If an item has an OCCURS clause or
belongs to a group having an OCCURS clause, it must be subscripted
whenever it is used.

A subscript is a positive nonzero integer whose value determines to
which element a reference is being made within a table or list. The
subscript may be represented either by a literal or a data-name that has
an integral value. Whether the subscript is represented by a literal or
a data-name, the sUp8cript is enclosed in parentheses and appears after
the texminal space of the name of the element. A subscript must be an
internal decimal, external decimal, or binary i'tem.

Binary subscripting of data-names, in general. results in more
efficient coding.

Tables may be defined so that Blore than one 1evel of subscripting is
required to locate an eleJllent within them. Such a case exists when a
group itan described with ali OCCURS clause contains one or more items
also described with OCCURS clauses. A maximum of three 1evelsof
subscripting is permitted by COBOL. Mu1.tilevelsubscripts are always
written from left to right. in decreasing order ~f inc1usiveness -of the
groupings in the table. Subscripts are written within a single pair of
parentheses and are separated by a CODDDa followed by a space. For
example,

01
02

03

ARRAY.
VEC'l'OR, OCCURS 2 TIMES.

ELEMENT, OCCURS 3, PIC'l'URE S9 (9) •
USAGE IS COMPUTATIONAL.

The preceding example would be allocated storage, as shown in Figure 11.

Section Sa Data Division S9

Byte number
of element 4 bytes

r -,
0 I ELEMENT (1, 1) I

~ ----I
4 I ELEMENT (1. 2) I VECTOR (1)

~ -----I
8 I ELEMENT (1. 3) I ARRAY

~ --I
12 I ELEMENT (2. 1) I

~ --I
16 I ELEMENT (2, 2) I VECTOR (2)

~---------------I
20 I ELEMENT (2. 3) I

L J

FigUre 11. An Example of Subscripting for a Defined Array

1.
2.
3.
4.
5.

1
6.

7 .•

A data-name may not be subscripted under the following circumstances:

When it is being used as a subscript.
When it is being used as a qualifier.
When it appears as the defining name of a record description entry.
When it appears as data-name-2 in a REDEFINES clause.
When it appears as data-name in the DEPENDING ON option of the
OCCURS clause or GO TO clause.
When it is data-name in a SYMBOLIC KEY. ACTUAL KEY. and RECORD KEY
clause.
When it is data-name in a LABEL RECORDS clause.

JUSTIFIED RIGHT Clause

This clause may be written only for an elementary alphabetic or
alphanumeric item. Its format is:

[JUSTIFIED RIGHT]

When non-numeric data is moved to a field for which JUSTIFIED RIGHT
has been specified. the rightmost character of the source field is
placed in the rightmost position of the receiving field. The moving of
characters continues from right to left until the receiving field is
filled. If the length of the source field is greater than that of the
receiving field, truncation terminates the move after the leftmost
position of the receiving field is filled. If the source field is
shorter, the remaining leftmost positions of the receiving field are
filled with spaces.

60 IBM S/360 DOS and TOS COBOL Lang. Specs.

WORKING-STORAGE SECTION

The Working-storage Section is used to describe areas of storage
reserved for intermediate processing of data. This section consists of
a series of Record Description entries, each of which describes an item
in a work area.

An independent Working-Storage entry describes a single item that is
not subdivided and is not itself a subdivision of same other item. Each
of these items is defined in a separate Record Description entry, which
begins with the special level number 77. All independent Working­
Storage entries must precede any items having any of the level numbers
01 through 49.

Data items in the Working-Storage Section that bear a definite
relationship to each other must be grouped into records according to the
rules for formation of record descriptions. All clauses that are us ed­
in Record Description entries may be used in Working-Storage record
descriptions. Each data-name in the WOrking-Storage Section that
identifies a record (01 or 77 level) must be unique, since it cannot be
qualified by a file-name. Subordinate data-names need not be unique, if
they can be made unique ~ qualification.

No assumption should be made about the initial values of Working­
Storage items when these items have not had their initial values defined
in a VALUE clause.

An example of the use of this format is:

COBOL PROGRAM SHEET

--------,--------------- ----,---------
SEQUENCE A B

---~~--------------------
1 I 61 7 18 12
---+--+-+--

I 1 1
00310081 IDATA DIVISION.
00310091 IWORKING-STORAGE SECTION.
00310101 177 MODIFICATION PICTURE X (12), VALUE IS • PUT ANY DATA'.

I I I
I I I
I I I
I I I
1 I 1
Refer to Appendix E, Figure 35, for the relationship between the

example above, and the sample program given therein.

Ext LINKAGE SECTION

The Linkage Section describes data passed from another program, or
user label record areas.

Record description entries in the Linkage Section provide names and
descriptions but storage within the program is not reserved, since the
data exists elsewhere. Any Record Description clause may be used to
describe items in the Linkage Section, with one exception: the VALUE
clause may not be specified for other than level 88 items. In the
Linkage Section, level 01 items are assumed to start on a double-word
boundary. Refer to Appendix C for a discussion of record alignment.

Section 5: Data Division 61

The Linkage Section is required in any program in which a LABEL
RECORDS clause with a data-name option or an ENTRY statement with a
OSING option appears. A complete discussion of ENTRY is contained in
Section 6.

An example of the use of this format is:

COBOL PROGRAM SHEET

---SEQUENCE A B
-,---,-,-
1 I 6171a 12

Ii t I
0031 0081" I DATA DIVISION ..

t I I
I I 1
I I I

003,0111 LINKAGE SECTION.
00310121 01 PASS FIEID.

I• 00310131 02 A PICTURE X(68).
" 00310141 02 B PICTURE X(12).

I I
I I
, I
1 1
I I
1 I
Refer to Appendix E, Figure 35, for the relationship between the

example above, and the sample program 9i yen therein.

62 IBM S/360 DOS and TOS COBOL Lang. Specs.

SECTION 6: PROCEDURE DIVISION

PURPOSE

The Procedure Division of a source program specifies those procedures
needed to solve a given problem. These steps (computations, logical
decisions, input/output, etc.) are expressed in meaningful statements,
similar to English, which employ the concept of verbs to denote actions,
statements and sentences to describe procedures. The Procedure Division
must begin in Margin A with the header PROCEDURE DIVISION followed by a
period on a line by itself.

SYNTAX

The format of the Procedure Division is straight forward and
exacting. Its consti tuent parts, in order of hierarchy, are:

• Section

• Paragraph

• Sentence

• Expression

• Statement

The discussion that follows describes the units of expression that
constitute the Procedure Division and the way in which they may be
combined.

SECTIONS

A section is composed of one or more successive paragraphs and must
begin w1th a section-head~ beginning in Margin A. A section-header
consists of a unique section-name conforming to the rules for procedure­
name formation, followed by the word SECTION and a period. A section
header must appear on a line by itself, except in the Declaratives
portion of the Procedure Division, where it may only be followed
immediately by a USE sentence or an INCLUDE statement. The INCLUDE
statement is discussed in section 7.. A section-name need not
illlllediately follow the words PROCEDURE DIVISION or END DECLARATIVES. A
section ends at the next section-name or at the end of the Procedure
DiVision, or, in the case of Declaratives, at the next section-name or
at END DECLARATIVES.

PARAGRAPHS

Paragraphs are logical entities consisting of one or more sentences.
Each paragraph must begin with a paragraph-name which must start in
Margin A.

Section 6: Procedure Division 63

A paragraph-name must not be duplicated within the same section.
When used as operands in Procedure Division statements, nonunique
paragraph-names may be uniquely qualified by writing IN or OF after the
paragraph-name, followed by the name of the section in which the
paragraph is contained. A paragraph ends atthe next paragraph-name or
section-name, or at the end of the Procedure Division. In the case of
Declaratives, a paragraph ends at the next paragraph-name, section-name,
or at END DECLARATIVES.

SENTENCES

A sentence is a single statement or a series of statements terminated
by a period and followed by a space. A single comma or semicolon or the
word THEN may be used as a separator between statements. A sentence
must be contained within Margin B.

EXPRESSIONS

An expression may be defined as a meaningful combination of names,
literals, COBOL words, and/or operators which may be reduced to a single
value. This definition will become clear after the reader has studied
the two types of expressions employed in COBOL, the "arithmetic"
expression and the "conditional" expression.

STATEMENTS

A statement consists of a COBOL verb or the word IF or ON, followed
by any appropriate operands (data-names, file-names, or literals> and
other COBOL words that are necessary for the completion of the
statement. The three types of statements are: compiler-directing,
imperative, and conditional.

Types of Statements

COMPILER-DIRECTING STATEMENT: A compiler-directing statement directs
the compiler to take certain actions at compilation time. A compiler­
directing statement contains one of the compiler-directing verbs and its
operands. Compiler-directing statements (except for NOTE, COPY, and
INCLUDE> must appear as separate single sentences.

IMPERATIVE STATEMENT: An imperative statement specifies an
unconditional action to be taken by the object program. An imperative
statement consists of a COBOL verb and its operands, excluding the
Compiler-Directing verbs and the conditional statements. An imperative
statement may also consist of a series of imperative statements.

CONDITIONAL STATEMENT: A conditional statement is a statement contain­
ing a condition that is tested to determine which of the alternate paths
of program flow is to be taken.

The following are conditional statements:

64 IBM 8/360 DOS and TOS COBOL Lang. Specs.

1. A READ statement

I

2. A WRITE statement with the INVALID KEY option

Ext 3. A REWRITE statement with the INVALID KEY option

4. An arithmetic statement with the SIZE ERROR option

Ext 5. An ON statement

6. An IF statement

Although IF and ON are not verbs in the grammatical sense, they are
regarded as such in COBOL, inasmuch as they are the key words associated
with a particular statement form.

The conditions evaluated in conditional statements are:

1... AT END or INVALID KEY in a READ statement

2. INVALID KEY in a WRITE or REWRITE statement

3. SIZE ERROR in a ari thmetic statement

4. The count-condition in an ON statement

5. One of four tests in an IF statement

The conditions in 1 to 4 above are called ' event-conditions. ' The
conditions in 5 above are called 'test-conditions.'

The formats for the conditions named in 1 to 4 above are discussed in
the text for their respective statements. The types of conditions
evaluated in an IF statement are discussed in the section
-Test-Conditions.-

CONDITIONALS

IF Statement

The fonnat of the IF statement is:

IF condition [i·BEN] r statement-1 ••• }
\.: NEXT SENTENCE

[{~WXSE} C=~·}J
ELSE (or OTHERWISE) NEXT SENTENCE may be omitted if it inmediately
precedes the period for the sentence.

Examples of IF Statementz
IF SALES ARE NOT EQUAL TO SALES-QUOTA COMPUTE STANDARD-RATE = SALES *
BASE

.(IF AMOUNT IS LESS THAN 200000 MOVE' INVENTORY-COUNT' TO PRINTER-AREA.
IF MONTH EQUAL TO 100 GO TO HIT ELSE GO TO LOOP.

Section 6: Procedure Division 65

EVALUATION OF CONDITIONAL STATEMENTS ~
the following action is takena

When a condi tion is evaluated

1. If the condition is true, the statements immediately following the
condition are executed .•

2. If the condition is false the next sentence or the statements
following ELSE or OTHERWISE (or the next sentence) are executed.

The AT END, INVALID KEY, and SIZE ERROR conditions are followed by a
series of imperative statements. In an ON count-conditional statement,
the count- condition is followed by a series of imperative statements
(or NEXT SENTENCE) and may be followed by the words ELSE or OTHERWISE
followed by a series of statements (or NEXT SENTENCE). The formats of
the IF statement describe what may follow the condition in the IF
statement.

A series of imperative statements is terminated by one of the
following:

1. A period.
2. ELSE or OTHERWISE associated with a previous IF or ON.

In a series of imperative statements executed if a condition is true,
only the last statement may be an Option 1 GO TO statement or a STOP RUN
statement; otherwise the series of statements would contain statements
to which control cannot flow.

For example, in the following paragraph, the statement MOVE A TO B
could never be executed whether or not the AT END condition were found
to be false.

w. READ PAYROLL-RECORD AT END GO TO Y MOVE A TO B.

Figure 12 is a flowchart showing how an IF or ON condi tional
statement is evaluated.

Figure 13 is a flowchart showing how a conditional statement other
than IF or ON is evaluated.

Statement - 1
{or Next
Sentence}

TRUE

Start

FALSE Statement - 2 •••
{or Next
Sentence}

Figure 12. EValuation of IF or ON Conditional Statement

66 IBM S/360 DOS and TOS COBOL Lang. Specs.

Imperative
Statement •••

TRUE

Start

FALSE
Next Sentence

Figure 13. EValuation of conditional Statement other than IF or ON

NESTED IF STATEMENTS: Statement-1 and statement-2 in IF statements may
consist of one or more imperative statements and/or a conditional
statement. If a conditiona1 statement appears as statement-1 or as part
of statement-·1, it is said to be nested. Nesting statements is much
like specifying subordinate arithmetic expressions enclosed in
parentheses and combined in larger arithmetic expressions.

IF statements contained within IF statements must be considered as
paired IF and ELSE combi~ations, proceeding from left to right. Thus,
any ELSE encountered must be considered to apply to the immediate1y
preceding IF that has not already been paired with an ELSE. In the
conditiona1 statement in Figure 14, C stands for condition; S stands for
any number of imperative statements; and the pairing of IF and ELSE is
shown by the lines connecting them.

Section 6: Procedure Division 67

Figure 15 is a flowchart indicating the logical f low of the
conditional statement in Figure 14.

1 l 1 1 l 1
IF1. C1. S1. IF2 C2 IF3 C3 S2 ELSE S3

ELSE l~ IF£t r IFs C5 S5 ELSE S6
~ ~

c1 c2 e1 e2

"'" : d1

"'" b1 b2

al

a1 - Statement-1 for IF:1.
(If Cl. is false, the next sentence is executed, since there is no
ELSE for it.)

h1 - Statement-1 for IF2
b2 - Statement-2 for IF2
cl - Statement-1 for IF3
c2 - Statement-2 for IF3
d1 - Statement-1 for IF£t

(If C is false, the next sentence is executed, since there is no
ELSE for it.)

e1 - Statement-1 for IFs
e2 - Statement-2 for 1F6

Figure 14. Conditional Statements with Nested IF Statements

68 IBM S/360 DOS and TOS COBOL Lang. Specs.

Start

FALSE

TRUE

FALSE FALSE

FALSE FALSE

TRUE

Next Sentence

Figur~ 15. Logical Flow of Conditional Statement with Nested :IF
Statements

TES~CONDXTXONSs A test-condition is an expression that, taken as a
whole. may be either true or fa1se, depending on the circumstances
existing when the expression is evaluated.

Section 6: Procedure Division 69

There are five types of simple test-conditions. When preceded by the
word IF. each constitutes one of five types of tests: relation test,
sign test, class test, condition name test, overflow test.

The word NOT may be used in any simple test-condition to make the
relation specify the opposite of what it would express without the word
NOT. For example, AGE NOT GREATER THAN 21 is the opposite of AGE
GREATER THAN 21. NOT may also precede an entire condition, as in NOT
(AGE GREATER THAN 21). AGE NOT GREATER THAN 21 and NOT (AGE GREATER
THAN 21) are identical in meaning.

Relation Test: A relation test involves
either of which can be a data-name,
expression. The comparison of two
figurative constant may be used instead
in a relation test.

The format for a relation test

arithmetic-expression-1

is:

>
<
=

the comparison of two operands,
a literal, or an arithmetic

literals is not permitted. A
of either literal-lor literal-2

{

data-name-l }

figurative-constant-l IS [NOT]
literal-1

GREATER THAN
LESS THAN
EQUAL TO

{

data-name-2 }
arithmetic expression-2
figurative constant-2
literal-2

The symbol > is equivalent to the reserved words GREATER THAN. The
symbol < is equivalent to the reserved words LESS THAN. The equal sign
is equivalent to the reserved words EQUAL TO.

COMPARISON OF NUMERIC ITEMS: For numeric items, a relation test
determines that the value of one of the items is less than, equal to, or
greater than the other, regardless of the length. Numeric items are
compared algebraically after alignment of decimal points. Zero is
considered a unique value, regardless of length, sign, or imp1ied
decimal-point location of an item.

COMPARISON OF NON-NUMERIC ITEMS: For non-numeric itens, a comparison
results in the determination that one of the items is less than, equal
to, or greater than the other, with respect to the binary collating
sequence of characters in the IBM Extended BCD Interchange Code.

If the non-numeric items are of the same length, the comparison
proceeds by comparing characters in corresponding character positions,
starting from the high-order position and continuing until either a pair
of unequal characters or the low-order position of the item is compared.
The first pair of unequal characters encountered is compared for
relative position in the collating sequence. The item containing the
character that is positioned higher in the collating sequence is the
greater item. The items are considered equal after the low-order
position is compared.

If the non-numeric items are of unequal length, comparison proceeds
as described for items of the same length. If this process exhausts the
characters of the shorter item, the shorter item is less than the
1onger, unless the remainder of the longer item consists solely of
spaces, in which case, the items are equal.

70 IBM S/360 DOS and TOS COBOL Lang. Specs.

•

Figure 16 indicates the characteristics of the items being compared
and the type of comparison made. A blank box in Figure 16 indicates
that the test is not permitted.

r--------------------------~----------------------,
I SECOND OPERAND I
.----T----T----T----~---T---~----T----T----T----~
I GR I AL I AN I ED I ID I BI I EF I IF I RP I FC I

r---~---------------------+----+_---+----+_---+----+----+--~-+_---+----+_---~
I Group Item (GR) I NN I NN I NN I NN I NN I NN I NN I NN I NN I NN I
.----------------------+----+----+----+----+----+----+----+----+----+----~
I Alphabetic Item (AL) I NN I NN I NN I I I I I I I NN11
.----------------------+----+----+----+----+----+----+----+----+----+----~
I Alphanumeric (non- I I I I I I I I I I I

F I report) Item (AN) I NN I NN I NN I NN5 1 I I I I NN I NN I
I .----------------------+----+_---+----+_---+_---+----+----+_---+----+----~
R I External Decimal I I I I I I I I I I I
S I Item (ED) I NN I I NNsl NU I NU I NU I NU I NO I I NN31
T .----------------------+----+----+----+_---+----+----+----+_---+----+---~

I Internal Decimal I I I I I I I I I I I
Q I Item (ID) I NN I I I NU I NU I NO I NU I NO I I NUal
p .----------------------+----+_---+----+----+----+----+----+__--+----+----i
E I Binary Item (BI) I NN I I I NU I NO I NO I NO I NO I I NOal
R .--------------------+----+----+----+---+_---+----+--+__--+---+---~
A I External Floating- I I I I I I I I I I I
N I point Item (EF) I NN I I I NU I NO I NO I NU I NO I I NOal
D .---------------------+----+_---+----+----+----+----+---+__--+----+---~

I Internal Floating- I I I I I I I I I I I
I point Item (IF) I NN I I I NU I NU I NU I NU I NO I I NUal
.----------------------+----+----+----+----+----+----+----+----+----+----~
I Report Item (RP) I NN I I NN I I I I I I NN INN-I
.----------------------+----+----+---+----+----+----+----+----+----+----~
I Figurative Constant I NN I NN11 NN I NN31 NU2 1 NU21 NU2 1 NU2 1 NN-I I
I (FC) I I I I I I I I I I I

L-__ ~ _____________________ ~---~----~----~----~----~---~----~--_~ ____ ~ ___ -J

Abbreviations for Types of Comparison

NN Comparison as described for non-numeric items.
NU Comparison as described for numeric items.

1 Permitted with the figurative constants SPACE and ALL 'character'
where character must be alphabetic.

2 Permitted only if figurative constant is ZERO.
3 Permitted only if figurative constant is ZERO or ALL 'character'

where character must be numeric.
- Not permitted with figurative constant QUOTE.
S External decimal field must consist of integers.

Figure 16. Permissible comparisons

Sign Test: This type of condition tests whether or not the value of a
numeric item is less than zero (NEGATIVE), greater than zero (POSITIVE),
or is zero (ZERO). The value zero is considered neither positive nor
negative.

The format for a sign test is:

{:1~:~c-expr.ession } IS (NOT] {,=TIVE}
NEGATIVE

Class Test: When a class test is specified, determination is made as
to whether or not an item consists solely of the following:

Section 6: Procedure Division 71

1. The characters 0 through 9 (NUMERIC>
2. The characters A through Z and space (ALPHABETIC>

The ALPHABETIC test may be performed on elementary alphabetic or
alphanumeric items.

The NUMERIC test may be performed on elementary alphanumeric,
internal decimal, or· external decimal items.

The format for the class test is:

data-name IS [NOT] {
NUMERIC }
ALPHABETIC

If the last character of an otherwise numeric field contains a digit
with a sign over punch, the field is considered numeric. For a single
character alphanumeric field containing a digit with a sign overpunch,
the tests IF NUMERIC and IF ALPHABETIC will both be considered true
while the NOT form of the tests will both be false.

Condition-name Test: The format for condition-name test is:

[NOT] condition-name

A condition-name test is one in which a conditional variable is
tested to see whether or not its value is equal to the value specified
for a condition-name associated with it. For example, in a program
processing a payroll, the data item MARIT~STATUS (the conditional
variable> might be a code indicating whether an employee is married,
divorced, or single. Assume that if MARITAL-STATUS has the value of 1,
the employee is single; if it has the value of 2, he is married; and if
it has the value of 3, he is divorced. To determine whether or not an
employee is married, the programmer could test this condition h¥ using a
simple relational condition in a conditional statement such as IF
MARIT~STATUS = 2 SUBTRACT MARRIED-DEDUCTION FROM GROSS. Alternative­
ly, he can associate a condition-name with each value that MARITAL­
STATUS might assume. ThUS, in the Data DiVision, the condition-names
SINGLE, MARRIED, and DIVORCED might be associated with values 1, 2, and
3, respectively. For example:

02 MARITAL-STATUS PICTURE 9.
88 SINGLE VALUE IS 1.
88 MAREIED VALUE IS 2.
88 DIVORCED VALUE IS 3.

Then, as a shorthand form of the simple relational condition
MARITAL-STATUS = 1, the programmer could write the single condition-name
SINGLE. Therefore, the following two statements would produce identical
results:

IF MARITAL-STATUS = 1 GO TO Z.
IF SINGLE GO TO Z.

The condition-name test,
certain conditions which could
condition.

then, is an alternative way of expressing
be expressed by a simple relational

Ext Overflow Test This type of condition tests for form overflow of a
printer to which a file named in an option 1 APPLY clause is assigned.

The format for the overflow test is:

[NOT] overflow-name

72 IBM S/360 DOS and TOS COBOL Lang. Specs.

"

overflow-name is true if a 'form-overflow' situation exists. Form­
overflow exists when an end of page is sensed by an on-line printer.
OVerflow-name follows the rules for data-name formation.

COMPOUND OONDITXO~ Simple test-conditions can be combined with
logical operators according to specified rules to form compound
conditions,. The logical operators are AND, OR, and NOT. Two or more
simple conditions combined by AND and/or OR make up a compound
condition.

The word OR is used to mean either or both. Thus, the expression A
OR B is true if: A is true, B is true, or both A and B are true. The
word AND is used to mean both. Thus, the expression A AND B is true
only if both A and B are true. The word NOT is used in the manner
described in the subsection "Test-Conditions." Thus, the expression NOT
(A OR B) is true if A and B are false; and the expression NOT (A AND B)
is true if A is false, B is false, or if both A and B are false.

The logical operators and truth values are shown in Figure 17, where
A and B represent simple test-conditions.

r--------------~--1 I Condition I Related Conditions I
~--------T-------+------~-------T------~---------------T--------------i
I A I B I not a la and bl a or b I not (a and b) I not (a or b) I
~-------+-------+-------+-------+-------+---------------+--------------i
I True I True I False I True I True I False I False I
I False I True I True I False I True I True I False I
I True I False I False I False I True I True I False I
I False I False I True I False I False I True I True I L-_______ ~ ______ ~ ______ ~ ______ ~ _______ ~ _____________ ~ ______________ J

Figure 17. Truth Table

Parentheses may be used to specify the order in which conditions are
evaluated. Parentheses must always be paired. Logical evaluation
begins with the innermost pair of parentheses and proceeds to the
outermost. If the order of evaluation is not specified by parentheses,
the expression is evaluated in the following way:

1. AND and its surrounding conditions are evaluated first, starting at
the left of the expression and proceeding to the right.

2. OR and its surrounding conditions are then evaluated, also working
from left to right.

Thus. the expression: A IS GREATER THAN B OR A IS EQUAL TO C AND D IS
POSITIVE would be evaluated as if it were parenthesized as follows:

(A IS GREATER THAN B) OR «A IS EQUAL TO C) AND (D IS POSITIVE».

The rules for formation of symbol pairs are shown in Figure 18. The
letter C stands for conditional expression. P means that the combina­
tion is permissible. A dash means that the combination is not
permissible.

Section 6: Procedure Division 73

r ,
I Second Symbol I
1-, i --r~--Y---r--~
I I C lOR lAND 1 NOT 1 (1) 1

r--+--+--+--t-+--+---t--~
F IC I - IP IP 1- I - 1 P I
i .-+--+--+--+--+--+--~
r lOR I P 1- 1- IP 1 P 1 - 1
s .--+---+---t---t-+--t--~
t I AND I P 1- 1- IP I P I - I
.--+--+--+-f--+---t--~

S I NOT I P 1- 1- 1- I P I - I
y .--+--+---t-+-+--+--~
m I (I P 1- 1- IP 1 P I - I
b .--+--+--+---+--+--t--~
o I) I - IP IP 1- I - 1 P I
11 I I I 1 I I I __ ~~L-__ L-~_-L---L __ J

Figure 18. Formation of Symbol Pairs

COMPILER-DIRECTING DECLARATlVES

Declarative sections are identified by compiler-directing statements
that specify the circumstances under which a procedure is to be executed
in the object program. Declaratives consist of a section-name, followed
by the word SECTION and a period, and a USE sentence followed by
procedural statements. Declarative sections must be grouped together at
the beginning of the Procedure Division, preceded by the key word
DECLARATIVES in Margin A, and followed by the key words END DECLARA­
TIVES, where END must also appear in Margin A. DECLARATIVES and END
DECLARATIVES must be followed by a period.

The general form for declaratives is:

PROCEDURE DIVISION.
DECLARATIVES.

{section-name SECTION. USE-sentence.
{paragraph-name. sentence... .} ••• }

END DECLARAXIVES.

The occurrence of another section or the words END DECLARATIVES
terminates a previous USE section. If there are two or more logical
paths within a declarative procedure, these paths must lead to a common
path within the section containing them. For options 1 and 2, an ALTER,
PERFORM, or GO TO statement within a declarative section must not refer
to paragraph-names or section-names outside that declarative section,
except that a GO TO statement in an Option 1 or Option 2 USE section may
refer to the reserved word MORE-LABELS. For option 3, a GO TO statement
within a declarative section can refer to paragraph-names or section
names outside that declarative section.

A declarative section may not be referred to by any PERFORM or GO TO
statement outside the declarative. Within a given declarative section,
there may be no reference to a point outside the declarative.

74 IBM S/360 DOS and TOS COBOL Lang. Specs.

USE Statement

The USE statement identifies the type of declarative.

There are three options of the USE statement. Each is associated
with the following types of procedures.

1. Label-writing procedures

2. Label-checking procedures

3. Error-checking procedures

The formats of the USE statements are:

Ext Option 1

USE FOR CREATING rBEGINNINGJ LABELS ON OUTPUT file-name •••
LENDING

Ext Option 2

USE FOR CHECKING r~EGINNINGJ LABELS ON INPUT file-name •••
LENDING

For options 1 and 2. Records associated with the file being opened
or closed cannot be referenced within the declarative section. Con­
versely, the LABEL records can be referenced only while the declarative
is being executed.

Options 1 and 2 are used to provide user label processing procedures.
CHECKING refers to an input file; CREATING refers to an output file.. In
this context, -input- means all files opened as INPUT.

The file can be either an input or output file but not both.

The word BEGINNING refers to user header labels; the word ENDING
refers to user trailer labels. Absence of either word indicates that
the USE section will process both headers and trailers.

ENDING is not supported for direct-access files, as these do not have
trailer labels.

The exit from an option 1 or option 2 USE section is inserted ~ the
compiler following the last statement in the section. All logical
program paths within the section must lead to this point. One exception
to this rule is allowed: a special exit may be specified by the
statement GO TO MORE-LABELS. When an exit is made from a label
processing USE section by means of this statement, IOCS is directed to
do one of the following:

1. Read an additional user header label or user trailer label and then
re-enter the USE section for further checking of labels. In this
case, IOCS will only re-enter the USE section if there exists
another user label to check. Hence, there need not exist a program
path that flows through the last statement in the section. The
point of return to the USE section, after exit by means of a GO TO
MORE-LABELS statement, is the beginning of the section.

2. Write the current user header label or user trailer label and then
re-enter the USE section for further creating of labels. A label
is written each time an exit from the USE section takes place. The
label is created in an IOCS area.

Section 6: Procedure Division 75 •

If no GO TO MORE-LABELS statement is executed. then the USE section
is not re-entered to check or create any immediately succeeding user
labels.

The user label is contained in an IOCS area. If label processing is
desired. the label must be described as a data item in the Linkage
Section of the Data Division and must be listed as a data-name in the
LABEL RECORDS clause in the File Description entry for the file.

In a declarative section containing an option 1 USE statement. there
must be a path of program flow through the last statement of the
section. so that writing of user labels can be terminated •

•• Option 3

USE AFTER STANDARD ERROR PROCEDURE ON file-name.

Option 3 is used to provide user input/output error-processing
procedures in addition to the procedures supplied b¥ IOCS for tape or
disk.

Within the section. the file associated with the USE sentence cannot
be referred to by an OPEN. READ. WRITE, or REWRITE statement. Only a
CLOSE statement can be given for the file.

An exit from this type of declarative section can be effected by
executing the last statement in the section (normal return>. or by means
of a GO TO statement. Figure 19 summarizes the facilities and
limitations associated with each file-processing technique when an error
occurs.

File- Processing Technique No Error- Processing
Type of I/O

Error- Processing Declarative Section Written
Declarotive Section
Written

Statement
ACCESS ORGANIZATION Normal Return GO TO Exit

SEQUENTIAL Standard sequential End of job READ Continue Processing User limited to CLOSE
(or not speci- tape of file permitted for file- ndme
fied)

Standard sequential Diagnostic error READ
disk message is printed,

job is terminated WRITE Not applicable

REWRITE

INDEXED
READ

DIRECT
WRITE
REWRITE

RANDOM
INDEXED

READ

DIRECT
WRITE
REWRITE

Figure 19. Error-Processing Summary

CONTINUED PROCESSING OF FILE

Refer to Figure 19 normal return. Continued processing of a file is
permitted under the following conditions.

1. An error processing procedure exists in the declarative section •

• 76 IBM S/360 DOS and TOS COBOL Lang. Specs.

2. Detection of a standard error resu1ts in an automatic transfer to
the error processing procedure, which enables the user to examine
the error condition before continuing to process.

3. At the conclusion of processing an error, it is the programmer's
responsibility to update the parameters normally returneq by IOCS
to the programmer (such as the ACTUAL KEY, in the . case of
sequential retrieval of a direct file).

COBOL VERBS

The COBOL verbs are the basis of the Procedure Division of a source
program.

The organization of the remainder of this section is based on the
classifications used in the following list:

Input/Output Verbs
OPEN
READ
WRITE

Ext REWRITE
CLOSE
ACCEPT
DISPLAY

Data Manipulation Verbs
MOVE
EXAMINE

Ext TRANSFORM

Arithmetic Verbs
ADD
SUBTRACT
MULTIPLY
DIVIDE
COMPUTE

Procedure-Branching Verbs
STOP
GO TO
ALTER
PERFORM

Compiler-Directing Verbs
ENTER
EXIT
NOTE

INPUT/OUTPUT STATEMENTS

OPEN Statement

The OPEN statement initiates the processing of files. When applica­
ble, execution of an OPEN statement initiates label checking for input
and output fi1es, and label creation for output files. At this time,
appropriate label-handling procedures specified by a USE declarative are
executed.

Section 6: Procedure Division 77

The format of an OPEN statement is:

INPUT {file-name [WITH NO REWIND] [REVERSED]} •••
[OUTPUT {file-name [WITH NO REWIND]} ••••]

[1-0 {file-name} •••]
OUTPUT-rfile-name (WITH NO REWIND]} •••

[INPUT {file-name [WITH NO REWIND] [REVERSED]} •••]
[1-0 {file-name} •••]

1-0 {file-name} ••• [OUTPUT {file-name [WITH NO REWIND]} •••]
---[INPUT {f1Ie-name [WITH NO REWIND] [REVERSED]} •••]

An example of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B
---~-~~--
1 1 61718 12
---+---+-+---

I I I
00110201 IPROCEDURE DIVISION.
00110211 I START. OPEN INP'UT FILEB OUTPUT FILEA.

1 I I
I I I
I I I
I I I
I I I
I I I

Refer to Appendix E, Figure 34, for the relationship between the
example above, and the sample program given therein.

The OPEN statement must be executed prior to any other input/output
statement for any file. The OPEN statement, by itself, does not make an
input record available for processing; a READ statement must be executed
to obtain the first data-record. For an output file, an OPEN statement
makes available an area for development of the first output record. A
second OPEN statement for a given file cannot be executed prior to the
execution of a CLOSE statement for that file.

The 1-0 option permdts the opening of a direct-access file for both
input and output operations .•

An OPEN statement for an 1-0 file performs the same label checking
functions as for an input file.

The NO REWIND option should only be written for files assigned to
UTILITY device-numbers for which rewinding is possible, e.g., 2400.
This option suppresses the rewinding normally associated with opening a
file.

The REVERSED option can only be applied to files assigned to specific
devices for which the reverse-read feature is available. The REVERSED
option may only be used for a file containing type F records.

An example of the OPEN statement is:

OPEN OUTPUT X-FILE, INPUT Y-FILE REVERSED, Z-FILE.

Note that Z-FILE is not opened REVERSED.

78 IBM S/360 DOS and TOS COBOL Lang. Specs.

READ statement

The functions of the READ statement are:

1. For sequential. file processing, to make available the next logical
record from an input file and to allow performance of specified
imperative statements when end-of-file is detected.

2. For nonsequential file processing; to make available a specific
record from a direct-access file and to allow execution of
statements if the contents of the associated symbolic and/or actual
key is found to be invalid.

The format of the READ statement is:

READ file-name RECORD [INTO data-name]

{
AT END l
INVALID KEY]

imperative statement .•••

An example of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B
I i I ---

1 1 61718 12
---+---+-+------------------------------------ ----------------

1 1 1
00110201 IPROCEDURE DIVISION.

1 I 1
1 1 I

00110221 ISTART2. READ FILEB AT END GO TO LABA.
1 1 I
I 1 I
I 1 I
1 1 I
1 1 I
1 I I

Refer to Appendix E, Figure 34, for the relationship between the
example above, and the sample program given therein.

When a READ statement is executed, the next logical record in the
named file becomes accessible in the input area defined by the
associated Record Description entry. The file-name must be defined by a
File Description entry in the Data Division.

The record remains available in the input area until the next READ
statement (or a CLOSE statement) for that file is executed. No
reference can be made by any statement in the Procedure Division to
information that is not actually present in the current record. Thus,
it is not permissible to refer to the ~th occurrence of data that
appears fewer than ~ times. If such a reference is made, no assumption
should be made about results in the object program.

If more than one logical record is described for the file, implicit
redefinition of the area exists. It is the progranuner's responsibility
to identify which record is present in the area at any given time.

The INTO data-name option is equivalent to a READ statement and a
MOVE statement. The data-name specified must be the name of a Working­
Storage or a previously opened output record. When this option is used,
the current record becomes available in the input area, as well as in

Section 6: Procedure Division 79

the area specified by data-name. Data will be moved into the data-name
area in accordance with the COBOL rules for moving an item into the
first record specified for that FD.

The AT END option is required for files for which access is
sequential. The AT END portion of the READ statement is executed when
an end-of-file condition is detected.

Once the AT END portion of a READ statement has been executed for a
file, any subsequent attempt to read from that file or to refer to
logical records in that file constitutes an error, unless subsequent
CLOSE and OPEN statements have been executed.

If the INVALID KEY option is specified, the statements following
INVALID KEY are executed when the contents of actual key and/or symbolic
key are invalid.

If ACCESS RANDOM is specified for the file, the symbolic key and/or
the actual key of the file must be set to the desired values prior to
the execution of the READ statement.

Each time an end-of-volume condition occurs on a file, the READ
statement causes the following operations to take place:

1. The volume trailer label checking procedure of IOCS is executed.
The user trailer label checking procedures specified in a USE
Option 2 sentence are executed, if such labels exist.

2. A volume switch occurs.
3. The volume header label checking procedure subroutine of IOCS is

executed. The user header label checking procedures specified in a
USE Option 2 sentence declarative are executed, if such labels
exist.

q. The next logical record in the file is made available for
processing.

If the end-of-volume is
operations specified in item
following AT END are executed.

WRITE Statement

also
1

the logical
are done and

end of file, only the
then the statements

The function of the WRITE statement is to release a logical record
for a file specified as OUTPUT or 1-0 in an OPEN statement.

The formats for the WRITE statement are:

Option 1

WRITE record-name [FROM data-name-11
[INVALID KEY imperative statement •••]

80 IBM S/360 DOS and TOS COBOL Lang. Specs.

Option 2

WRITE record-name [FROM data-name-1]

[
[data-name-2}

AFTER ADVANCINGlinteger LINES]
An example of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B
--~T--~-T--
1 1 61718 12
---+---+-+--

1
001 0201 PROCEDURE DIVISION.

I
1
1

002 0051 WRITE RECORD-1 FROM RECORD-2. GO TO START2.
1
I
1
1
1
1

Refer to Appendix E, Figure 34, for the relationship between the
example above, and the sample program given therein.

An OPEN statement must be executed prior to executing the first WRITE
statement for a file. After the WRITE statement is executed, the
logical record named by record-name is no longer available.

Data-name-1 must not be the name of an item in the file containing
record-name. When FROM data name is written, it is equivalent to the
statement MOVE data-name-1 TO record-name followed by the statement
WRITE record-name. Moving takes place according to the COBOL rules.

After execution of a WRITE statement with the FROM option, the
information in record-name is no longer available, but the information
in data-name-1 is available.

When the end-of-volume condition occurs, the WRITE statement causes
the following operations to take place in addition to the WRITE.

1. The volume trailer label writing procedure of Ioes is executed.
The user trailer label creating procedure, if specified in a USE
Option 1 declarative, is executed.

2. A volume switch occurs.
3. The volume header label writing procedure of IOCS is executed. The

user header label writing procedure, if specified in a USE option 1
declarative, is executed.

4. The next logical record area in the output file is made available.

If ACCESS RANDOM is specified, the record and/or actual key must be
set to the desired values prior to the execution of the WRITE statement.

The INVALID KEY option allows performance of specified imperative
statements if, for random access files, the contents of the associated
actual key and/or record key is found to be invalid.

The AFTER ADVANCING option is used for output destined to be printed
or punched. When this option is used, the first character in each

Section 6: Procedure Division 81

logical record for the file must be reserved for the control character.
It is the user's responsibility to see that the appropriate channels are
punched in the carriage control tape. If a WRITE statement with an
ADVANCING option is written for a record in a file, every WRITE
statement for records in the same file must contain an ADVANCING option.
When the AFTER ADVANCING option is used, integer must be unsigned and
have the value 0, 1, 2, or 3. The value 0 designates a carriage-control
'eject' (i.e., skip to next page). The value 1 designates single
spacing; the value 2, double spacing; and the value 3, triple spacing .•
If ·0· is used, COBOL will skip to a ·1- punch in the carriage tape.

Data-name-2 must be an alphanumeric item of length one (i.e., must
have PICTURE X). The following chart shows the values that data-name-2
may assume and their interpretations.

Value

b (blank)
o

+
1 through 9
A,B,C
V,W

Ext REWRITE Statement

Interpretation

single spacing
double spacing
triple spacing
suppress spacing
skip to channell through 9, respectively
skip to channel 10, 11, 12, respectively
pocket select 1 or 2, respectively on the IBM
1442 or 2520, and Pl or P2 on the IBM 2540

The function of the REWRITE statement is to replace a logical record
on a direct-access device with a specified record, if the contents of
the associated actual key and/or symbolic key is found to be valid.

The format of the REWRITE statement is:

REWRITE record-name [FROM data-name]
[INVALID KEY imperative-statement •••]

The READ statement for a file must
statement for a file can be executed.
written for files opened as 1-0.

be executed before a REWRITE
A REWRITE statement can only be

When the
item in a
statement is
followed by
according to

FROM option is used, data-name must not be the name of an
file containing record-name. This form of the REWRITE
equivalent to the statement MOVE data-name TO record-name
the statement REWRITE record-name. Moving takes place

COBOL rules for moving.

For direct access files, the INVALID KEY procedure is executed when
the contents of the actual key and/or the symbolic key are invalid for
the file.

If ACCESS RANDOM is specified for the file, the actual key and/or the
symbolic key must be set to the desired values prior to the execution of
the REWRITE statement.

CLOSE statement

The CLOSE statement is used to terminate the processing of one or
more units or files. The format of the CLOSE statement is:

82 IBM 5/360 DOS and TOS COBOL Lang. Specs.

CLOSE {file-name [UNIT][WITH {NO REWIND~l} •••
[REEL] LOCK jJ

An example of the use of this fonnat is:

COBOL PROGRk~ SHEET

SEQUENCE A B
---T---y-T--
1 I 61718 12
---+---+-+--

I 1 I
00110201 IPROCEDURE DIVISION.
001 0211 START. OPEN INPUT FlLEB OUTPUT FlLEA.
001 0221 START2. READ FlLEB AT END GO TO IABA.

1
1
I

002 0061 LABA. CLOSE FlLEA, FILEB STOP RUN.
I
1
I
I
I
I

Refer to Appendix E, Figure 34, for the relationship between the
example above, and the sample program given therein.

When a CLOSE statement is specified, IOCS closing procedures are
executed for the current unit of the file. The CLOSE statement may only
be specified for a file that is open. After a CLOSE statement has been
executed for a file, an OPEN statement must be executed before any other
reference can be made to that file.

If the UNIT or REEL option is specified, the IOCS volume switching
procedures are instituted.

A CLOSE statement with the UNIT or REEL option or with the UNIT or
REEL WITH LOCK option should only be written for files assigned to tape.
The LOCK option causes the current reel of the tape file to be rewound
and unloaded. '

The NO REWIND option should only be written for files assigned to
UTILITY device-numbers for which rewinding is possible, e.g,., 2400.
This option suppresses rewinding normally associated with closing a
file.

DISPLAY Statement

The function of the DISPLAY statement is to display data on an output
device. The format of the DISPLAY statement is:

{
data-name} [UPON CONSOLE]

.DISPLAY literal ••• UPON SYSPUNCH

When UPON SYSPUNCH or UPON CONSOLE is omitted, system list (SYSLST)
is assumed. When UPON SYSPUNCH is written, the system logical punch
device is assumed.

When UPON SYSPUNCB or UPON CONSOLE is written, the sum of
of the operands may not exceed 72 character positions.

the sizes
iihen UPON

Section 6: Procedure Division 83

SYSPUNCB and UPON CONSOLE are omitted, the sum of the sizes of the

I operands may not exceed the maximum logical record length for the system
logical. printing device (SYSLST). The number of data names displayed
per print line on SYSLST is 20 if the total number of characters in
these words does not exceed 120. If the system logical printing device
used in a display statement is also used for file, results are
unpredictable.

Any spaces desired between displayed multiple operands must be
explicitly specified.

When SYSPUNCB is written, an 80 character output record is p~oduced,
with positions 73 through 80 of the record containing the identification
of the originating program (progra~ID). If the message size exceeds 72
characters, it is truncated; if less than 72, the remaining positions
are filled with spaces.

Data-names described as USAGE COMPUTATIONAL,
COMPUTATIONAL- 2, or COMPUTATIONAL-3 are converted
external format as follows:

COMPUTATIONAL-l,
automatically to

1. Internal decimal and binary i terns are converted to external
decimal. Only negative values cause a low-order sign overpunch to
be developed.

2. Internal floating point items are converted to external floating
point. No other data items require conversion.

For example, if two binary items have values -32 and 32, then they
will be displayed as 3K and 32, respectively.

ACCEPT Statement

The function of the ACCEPT statement is to obtain data from the
system logical input device (SYSIPT) , or from the console.

The f onnat of the ACCEPT statemEmt is:

ACCEPT data-name [FROM CONSOLE]

Data-name may be either a fixed-length group item or an elementary
alphabetic, alphanumeric, external decimal or external floating-point
item. One logical record is read and the appropriate number of
characters are transferred from left to right into the area reserved for
data-name. No editing or error-checking of the incoming data is done.

If the input/output
same one as designated
unpredictable.

device specified by an ACCEPT statement is the
for a READ statement, the results may be

When FROM CONSOLE is specified data-name may not exceed 72 character
positions in length.

84 IBM S/360 DOS and TOS COBOL Lang. Specs.

When an ACCEPT statement with the FROM CONSOLE option is executed,
the following action is taken:

1. A system-generated message' AWAITING REPLY' is automatically dis­
played.

2. Execution is sus~nded. When a console input message is identified
by the Control Program, execution of the ACCEPT statement is
resumed and the message is transferred to the specified data-name.

When the FROM CONSOLE option is not written, one logical record is
read from the system logical input device (SYSIPT).

If the system logical input device used in an accept statement is
also used for a file, the results are unpredictable.

Figure 20 states restrictions of input-output statements. Y means
that the statement may appear; B indicates it may appear with "restric­
tions; ~ indicates that it must not.

r-------------~--~ I Statement I Appearing In: I
I ~-----------T----------~------------T------~
I I Label I Label IMain Body of IDe bug I
I I Checking I Creating I Procedure I Packet I
I I Declarative I Declarative I Division I I
~-------------+-----------+-----------+------------+------~
I OPEN I R* I R* I Y I Y I
I CLOSE I I I I I
~-----------+---------+--------+----------+------~
I READ I R* I R* I Y I Y I
I WRITE I I I I I
I REWRITE I I I I I
~--------+-------+--------+-----------+------~
I DISPLAY I Y I Y I Y I Y I
~-------+------+--------+-----------+-----~
I ACCEPT I I I I I
I FROM I Y I Y I Y I Y I
I CONSOLE I I I I I
~---- +-------+--------+-----------+----~
I ACCEPT I I I I I
I (from I Y I Y I Y I Y I
I SYSIPT) I I I I I L ___________ ~ _______ ~ ________ ~ _________ ~ _____ J

*Only permitted for files other than the one for which entry into the
declarative was made.

Figure 20. Restrictions for Input/Output Statements

DATA MANIPULATION STATEMENTS

MOVE Statement

The MOVE statement is used to move data from one area of main storage
to another and to perform conversions and/or editing on the data that is
moved. The l«>VE statement has the following format:

Section 6: Procedure Division 85

{
data-name-1t
literal JTO data-name-2 •••

An example of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B

---T--~-T--
1 1 61718 12
---+---+-+---
00310151 IPROCEDURE DIVISION.

I 1 1
I 1 I
I 1 I

00310191 IMODIFY. MOVE MODIFICATION TO B.
1 1 I
1 1 I
I I I
I 1 1
I I 1
I 1 I

Refer to Appendix E, Figure 35, for the relationship between the
example above, and the sample program given therein.

The data represented by data-name-1 or the specified literal is moved
to the area designated by data-name-2. The same information is also
moved to any additional receiving areas mentioned in the statement.

When a group item is involved in a simple move, the data is moved as
a group, and without regard to descriptions of items subordinate to the
group (i.e. without editing, data conversion etc.).

The following considerations pertain to moving items:

1. Numeric (external decimal, internal decimal, binary, external
floating, internal floating, numeric literals, and ZERO) to numeric
or report:
a. The items are aligned by decimal points, with insertion of

zeros or truncation on either end, as required.
b. When the USAGE of the source field and receiving field differs,

conversion to the USAGE of the receiving field takes place.
c. The items may have special editing performed on them with

suppression of zeros, insertion of a dollar sign, commas, etc.,
and decimal point alignment, as specified by the receiving
area.

2. All other permissible combinations:
a. The characters ~re placed in the receiving area from left to

right, unless the receiving field is specified as JUSTIFIED
RIGHT.

b. If the rece1v1ng field is not completely filled by the data
being moved, the remaining positions are filled with spaces.

c. If the source field is longer than the rece1v1ng field, the
move is terminated as soon as the receiving field is filled.

Figure 21 contains several examples illustrating MOVE.

86 IBM S/360 DOS and TOS COBOL Lang. Specs.

r-----------,.-------------------------,
1 Source Field 1 Receiving Field I
~----------+-----~-----__ -----r----------~
I I I Value I Value I
1 PICTURE Value I PICTURE 1 before MOVE 1 after MOVE I
~----------+-----+--------+----------~
I 99V99 1234 1 99V99 1 9876 11234 I
I 99V99 1234, 99V9 I 987 1123 I
19V9 12 I 99V999 1 98765 101200 1
I XXX A2B I XXXXX I Y9X8W I A2Bbb I
19V99 123 I 99.99 1 87.65 101.23 1
I AAAAAA REPORT I AAA I JKL I REP I L __________ J.-______ .1. _________ .1. _________ J

Figure 21. Examples of Data Movement

Note that, in the fourth example, the information in any excess
positions of a non-numeric receiving area is replaced by spaces at the
right.

Figure 22 i11ustrates a11 permissible
classifications. -Y·, means ·yes·, the move
·No·, the move is not permitted.·

moves for the various data
is permitted;- N means

Section 6: Procedure Division 87

r-----------------------------------, I ,
, Receiving Field ,

r-------------' ---~-T--~---~---T--~---~---T---T---' , . I , I , I , , , , ,
'Source Field , GR I AL I AN I ED I ID I BI I EF I IF , RP ,
, , , I , I , I , , ,
~--------------------+----+----+----+----+----+---+----+---+----~ , I I I , , I , , I ,
'Group (GR) I y I y I y 'N IN' N IN' N 'N ,
I I , I , I , , , , ,
I------------+--+---+----+----+----+--+----+---+---~
, I I I , I I , , I ,
IAlphabetic (AL) ,y ,y I yiN 'N 'N IN' N IN,
, I I I , , I , I I ,
~------------------+----+---+----+----+----+----+----+---+---~
, , I I , I , , , I I
,Alphanumeric (AN) ,y I y I yiN 'N 'N IN' N 'N ,
I I I I , , , I I I ,
~--------------------+---+---+----+----+----+----+----+----+----~ , I I , , I , , , , ,
'External Decimal (ED) I yiN I y1 I y I y ,y ,y ,y I y ,
, I , I , I I I , , ,
~------------------+----+---+----+----+----+----+----+--+---~
, I I I , I I I , I ,
,Internal Decimal (ID) I YiN I y1 I y I y I y ,y I y I y I
I I I I , I I , , I ,
~----------------+---+----+----+----+----+---+----+---+---~
J t I I I I I I , I ,
,Binary (BI) I YiN I y1 I y I y I y ,y ,y I y ,
II ·1 J I I II , I I
t---------------------+_--+---+----+_---+----+---+__--+---+_---~
lExternal Floating- I . I I I I , , I I I
IPoint (EF) I yiN I N I y ,y ,y ,y I y ,y ,
I I I I I , I , , I ,
~----------------+--+---+----+----+----+--+----+----+---~
,Internal Floating- I I I I , , I I I ,
1Point (IF) I YiN IN' Y ,y I y I y ,y ,y I
I I , I I , I , , , I
~--------------------+----+----+----+---+-~--+----+----+----+---~ , I I I I , , , , , ,
'Report (RP) ,y 'N I YiN 'N 'N IN' N 'N I
I I , , , , , , I I ,
~----------------------+----+---+----+----+----+----+----+----+----~ , , , , , , , , , , ,
, ZEROS I YiN I y ,y ,y ,y ,y ,y ,y ,
, , , , , I , , , , ,
~---------------------+----+----+----+----+----+----+----+---+---~ , , , , I , I I I , I
, SPACES ,y I y ,y 'N I N I N I N IN, N ,
, , , I , , , I , , ,
~---------------------+----+----+----+----+----+----+----+----+---~
'All 'character', HIGH- I I , , , , I I , I
,VALUES, LOW-VALUES, ,y, N ,y 'N 'N 'N 'N 'N 'N ,
I QUOTES '" I , , I , , I L __________________ ~ ___ ~ ___ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ___ J

1 For integers only.

Figure 22. Permissible Moves

88 IBM S/360 DOS and TOS COBOL Lang. Specs.

EXAMINE Statement

The EXAMINE statement is used to replace certain occurrences of a
given character and/or to count the number of such occurrences in a data
item.

The EXAMINE statement has the fo1lowin9 two formats:

Option 1

EXAMINE data-name TALLYING {~ING } 'character-i'
UNTIL FIRST

[REPLACING BY • character-2 I]

Option 2

EXAMINE data-name REPLACING

BY 'character-2'

~ING ~'Character-l'
UNTIL FIRST
FIRST

Data-name in each option must refer to a data item whose USAGE is
DISPLAY.

Character-i and character-2 must be sing1e-character non-numer~c
literals (i.e., enclosed in quotation marks) alid members of the set of
allowable characters for the data item. For example, a '2' cannot
replace an 'A' in an alphabetic item, but may do so in an alphanumeric
item.

The use of figurative constants instead of character-lor character-2
is permitted.

When Option 1 is used, a count is made at object time of the
of occurrences of the specified character in data-name, and this
replaces the value of the special binary data item TALLY, whose
is five decimal digits. TALLY may also be used as a data-name in
procedural statements.

number
count

1ength
other

The count at object time depends on which of the following three
TALLYING options is employed:

1. If ALL is specified, all occurrences of character-l in the data
item are counted.

2. If LEADING is specified, the count represents the number of
occurrences of character-l prior to encountering a character other
than cha,racter-l. Examination proceeds from left to right.

3. If UNTIL FIRST is specified, the count represents the number of
characters other than character-l encountered prior to the first
occurrence of character-i. Examination proceeds from left to
right.

When the REPLACING option is used (either in option 1 or option 2),
the replacement of characters depends on which of the following four
REPLACING options is employed:

1. If ALL is specified, character-2 is substituted for each occurrence
of character-i.

Section 6: Procedure Division 89

2. If LEADING is specified~ the substitution of character-2 for
character-l terminates when a character other than character-l is
encountered, or when the righthand boundary of the data item is
reached~ Examination proceeds from left to right.

3. If UNTIL FIRST is specified, the substitution of character-2
terminates as soon as the first character-l is encountered, or when
the right hand boundary is reached. Examination proceeds from left
to right.

4. If FIRST is specified, only the first occurrence of character-l is
replaced by character-2. Examination proceeds from left to right.

Sample EXAMINE statements showing the effect of each statement on the
associated data item and the TALLY are shown in Figure 23.

r--------------y-----T T ------,

I I I I I
I I I I Resulting I
I IITEM-IIData IValue of 1
I EXAMINE Statement I Before 1 After I TALLY 1
~---------------+----+----+_------_4
1 1 I I I
I EXAMINE ITEM-1 TALLYING 1 1 I I
IALL '0' 110101011010101 3 1
~--------------------+_----+----+--------_4
I EXAMINE lTEM-1 TALLYING 1 I 1 I
IALL '1' REPLACING BY '0'110101010000001 3 I
~----------- +_----+----+------_4
1 EXAMINE ITEM-1 REPLACING I I 1 1
ILEADING '*' BY SPACE 1**70001 7000 1 unchanged I
~------------+----+---+_------_4
I EXAMINE ITEM-1 REPLACING I I I I
IFIRST '*' BY '$' 1**1.94 1$*1.94 1 unchanged I L L ~ _____ ~ _____ -J

Figure 23. Examples of Data Examination

Ext TRANSFORM Statement

The TRANSFORM statement is used to alter characters according to a
transformation rule. For example, it may be used to change the
characters in an item to a different collating sequence.

The format of the TRANSFORM statement is:

TRANSFORM data-name-3 CHARACTERS

(

figurative-constant-1)
FROM non-numeric-literal-l

data-name-1 (

figurative-constant-2)
TO non-numeric-literal-2

data-name-2

Data-name-3 must be an elementary alphabetic, alphanumeric, or report
item, or a group item.

The combination of the FROM and TO options determines what the
transformation rule is. These combinations are:

FROM
figurative-constant-l
TO
figurative-constant-2

TRANSFORMATION RULE

All characters in
single character
replaced by the
constant-2.

data-name-3 equal to the
figurative-constant-l are

single character figurative-

90 IBM S/360 DOS and TOS COBOL Lang. Specs.

FROM
figurative-constant-l
TO
non-numeric-literal-2

FROM
figurative-constant-l
TO
data-name- 2

FROM
non-numeric-literal-l
TO
figurative-constant-2

FROM
non-numeric-literal-l
TO
non-numeric-literal-2

FROM
non-numeric-literal-l
TO
data-name-2

FROM
data-name-l
TO
figurative-constant-2

FROM
data-name-l
TO
non-numeric-literal-2

All characters in data-name-3 equal to the
single character figurative-constant-l are
replaced by the single character non-numeric­
literal-2.

All characters in data-name-3 equal to the
single character figurative-constant-l are
replaced by the single character in data­
name-2.

All characters in data-name-3 that are equal
to any character in non-numeric-literal-l are
replaced by the single character figurative­
constant-2.

Non-numeric-literal-l and non-numeric-literal-2
must be equal in length or non-numeric-literal
2 must be a single character. If equal in
length, any character in data-name-3 equal to a
character in non-numeric-literal-1 is replaced
by the character in the corresponding position
of non-numeric-literal-2.

If the length of non-numeric-literal-2 is one,
all characters in data-name-3 that are equal to
any character appearing in
non-numeric-literal-l are replaced by the sin­
gle character given in non-numeric-literal-2.

Non-numeric-literal-l and data-name-2 must be
equal in length or data-name-2 must be a
single-character item.

If equal in length, any character in
data-name-3 equal to a character in
non-numeric-literal-l is replaced by the char­
acter in the corresponding position of
data-name-2.

If the length of data-name-2 is one, all
characters in data-name-3 that are equal to any
character appearing 1n non-numeric-literal-l
are replaced by the single character given in
data-name-2.

All characters in data-name-3 that are equal
to any character in data-name-1 are replaced by
the single character figurative-constant-2.

Data-name-l and non-numeric-literal-2 must be
of equal length or non-numeric-literal-2 must
be one character.

If equal in length, any character in
data-name-3 equal to a character in data-name-1
is replaced by the character in the correspond­
ing position of non-numeric-literal-2.

If the length of non-numeric-literal-2 is one,
all characters in data-name-3 that are equal to
any character appearing in data-name-l are

Section 6: Procedure Division 91

FROM
data-name-1
TO
data-name-2

replaced by the single character given in
non-numeric-literal-2.

Any character in data-name-3 equal to a charac­
ter in data-name-l is replaced by the character
in the corresponding position of data-name-2.
These items can be one or more characters, but
must be equal in length.

The following rules pertain to the operands of the FROM and TO options:

1. The non-numeric-literals require enclosing quotation marks, as
specified in the section, ftLiterals. ft

2. Data-name-1 and data-name-2 must be elementary alphabetic, or
alphanumeric items, or fixed length group items less than 257
characters in length.

3. A character may not be repeated in non-numeric-literal-1 or in the
area defined by data-name-1. If a character is repeated the
results will be unpredictable.

4. The allowable figurative-constants are: ZERO, ZEROS, ZEROES, SPACE,
SPACES, QUOTE, QUOTES, HIGH-VALUE, HIGH-VALUES, LOW-VALUE, and
LOW-VALUES.

When either data-name-1 or data-name-2 appear as a determinant of the
transformation rule, the user can change the transformation rule during
Object time.

Figure 24 contains examples of data-name-3 results, using the
fiqurative-constant-l to figurative-constant-2, non-numeric-literal-1 to
non-numeric-literal-2, and data-name-1 to data-name-2 combinations,
respectively. (The small b represents a blank.)

r-----------~---------~----------T-----------~
I Data-name-3 I I I Data-name-3I
I Before I FROM I TO I After I
~-----------+-----------+-----------+----------~
11b7bbABC I SPACE I QUOTE 11' 7 ' , ABC I
11b7bbABC 1'17CB' I'QRST' I QbRbbATS I
11b7bbABC Ib17ABC ICBA71b I BCACC71b I
I 1234WXY89 I 98YXW4321 IABCDEFGHI IIHGFEDCBA I L ___________ ~ __________ ~ __________ ~ __________ _J

Figure 24. Examples of Data Transformation

ARITHMETIC STATEMENTS AND OPTIONS

The following rules apply to the arithmetic statements:

1. All data-names used 1n arithmetic statements must represent elemen­
tary numeric data items that are defined in the Dat~ Division of
the program, except when they are the operands of the GIVING
option.

Operands of the GIVING option can be either elementary numeric or
report.

2. The maximum size of any data-name or literal is 18 decimal digits .•
3. Intermediate result fields generated for the evaluation of fixed­

point arithmetic expressions assure the accuracy of the result
field, except where high order truncation is necessary.

4. Decimal point alignment is supplied automatically throughout
canputations.

92 IBM S/360 DOS and TOS COBOL Lang. Specs.

The ROUNDED and SIZE ERROR options apply to all the arithmetic
statements. The GIVING option applies to all arithmetic statements but
COMPUTE.

OPTIONS:

GIVING Option: If the GIVING option is written. the value of the
data-name that follows the word GIVING will be made equal to the
calculated result of the arithmetic operation. The data-name that
follows GIVING is not used in the computation and may contain editing
symbols.

If the GIVING option is not written. the operand following the words
TO. FROM, BY. and INTO in the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements, respectively, must be a data-name. This data-name is used
in the computation and is made equal to the result.

ROUNDED Option: If, after decimal-point alignment, the number of
places in the calculated result are greater than the number of places
associated with the data-name whose value is to be set equal to the
calcu1ated result, truncation occurs unless the ROUNDED option has been
specified.

When the ROUNDED option is specified, the least significant digit of
the resultant data-name has its value increased by 1 whenever the most
significant digit of the excess is greater than or equal to 5.

Rounding of a computed negative result is performed by rounding the
absolute value of the computed result and then making the final result
negative (unless the final result is zero).

Figure 25 illustrates the relationship between a calculated result
and the value stored in an item that is to receive the calculated
result.

r---------------------------------,
lItem to Receive Calculated Resultl
I I r----------y-------y-----------y-------------,

I Calculated 1 IValue AfterlValue After I
I Resu1t I PICTURE I Rounding I Truncating I
~--------t----t---------t--------~
112.36 I 99V9 I 12.4 112.3 I
18. 432 I 9V9 1 8. 4 I 8.4 I
135.6 1 99V9 I 35.6 I 35.6 I
165.6 I 99V I 66 I 65 I
1 .0055 1 V999 I .006 1·005 I L _________ ~ _____ ~ __________ _L ____________ J

Figure 25. Rounding or Truncation of Calculations

SIZE ERROR Option: Whenever the number of integral p1aces in the
ca1cu1ated resu1t exceeds the number of integral places specified for
the resultant data-name. a size error condition arises.

If the SIZE ERROR option has been specified and a size error
condition arises, the va1ue of the resu1tant data-name is not altered
and the series of imperative statements specified for the condition is
executed.

If the SIZE ERROR option has not been specified and a size error
condition arises, no assumption should be made about the final result;
but the program flow is not interrupted.

It should be noted that the SIZE ERROR option applies only to final
calculated results.. When a size error occurs in the handling of

Section 6: Procedure Division 93

intermediate results, no assumption should be made about the final
resu1t.

An arithmetic statement, if written with a SIZE ERROR option, is not
an imperative statement. Rather, it is a conditional statement and is
prohibited in contexts where only imperative statements are allowed.

Refer to Appendix D for a discussion on significant positions
retained in arithmetics.

ADD Statement

The ADD statement adds two or more numeric values and substitutes the
resulting sum for the current value of an item. The ADD statement has
the following format:

ADD floating-point-literal ••• TO ~umeric-literal ~ {)

--- data-name-l GIVING data-name-n

[ROUNDED] [ON SIZE ERROR imperative-statement •••]

When the TO option is used, the values of all the data-names
(including data-name-n) and literals in the statement are added, and the
resulting sum replaces the value of data-name-n. At least two data­
names and/or numeric literals must follow the word ADD when the GIVING
option is written.

SUBTRACT Statement

The SUBTRACT statement subtracts one or a sum of two or more numeric
data items from a specified item and sets the value of a data item equal
to the difference.

The SUBTRACT statement has the following format:

{
data-name-l }

SUBTRACT numeric-literal-l •••
floating-point-literal-l

~
data-name-m [GIVING data-name-n] }

FROM numeric-literal-m GIVING data-name-n
---- floating-point-literal-m GIVING data-name-n

[ROUNDED] [ON SIZE ERROR imperative statement ••• l

The effect of the SUBTRACT statement is to add the values of all the
operands that precede FROM and then to subtract the sum from the value
of the item following FROM. A literal can follow FROM only when the
GIVING option is specified.

94 IBM S/360 DOS and TOS COBOL Lang. Specs.

MULTIPLY Statement

The MULTIPLY statement multiplies two numeric data items and sets the
value of data-name-2 (unless data-name-3 is specified) equal to the
product.

The format of the MULTIPLY statement is:

{
data-name-l }

MULTIPLY numeric-literal-l
floating-point-literal-l

{
data-name-2 (GIVING data-name-3])

BY numeric-literal-2 GIVING data-name-3
-- floating-point-literal-2 GIVING data-name-3

[ROUNDED] (ON SIZE ERROR imperative statement •••]

DIVIDE Statement

The DIVIDE statement divides one numeric data item into another and
sets the value of data-name-2 (unless data-name-3 is specified) equal to
the quotient.

The format of a DIVIDE statement is:

DIVIDE {::a~~~i~eral-l }
floating-point-literal-l

{
data-name-2 [GIVING data-name-3] }

INTO numeric-literal-2 GIVING data-name-3
floating-point-literal-2 GIVING data-name-3

[ROUNDED] (ON SIZE ERROR imperative statement •••]

Division by zero results in a SIZE ERROR condition.

COMPUTE Statement

The COMPUTE statement assigns to a data item the value of a numeric
data item. literal. or arithmetic expression. The format of a COMPUTE
statement is:

~
aata-name-2 }

COMPUTE data-name-l [ROUNDED] = numeric-litera1
floating-point-literal
arithmetic-expression

(ON SIZE ERROR imperative statement ••• l

The data-name. specified to the left of the equal sign. must be an
e1ementary report. binary, interna1 decimal. externa1 decimal, internal
f1oating-point, or extexna1 floating-point item.

Section 6: Procedure Division 95

The ON SIZE ERROR option applies only to the final result and not to
any of the intermediate results.

Example: COMPUTE ANNUAL-PREMIUM = AGE * RATE * YEAR + BASE.

Arithmetic Expressions

An arithmetic expression consists
names, and/or literals representing
performed.

of arithmetic operators, data­
items on which arithmetic may be

The following five arithmetic operators may be used in arithmetic
expressions:

Operator Operation

+ Addition
subtraction

* Multiplication
/ Division
** Exponentiation

Parentheses may be used to indicate the hierarchy of operations on
elements in an arithmetic expression.

When the hierarchy of operations in an expression is not completely
specified by parentheses, the order of operations is assumed to be
exponentiation, then multiplication and division, and finally addition
and subtraction. Thus, the expression A + B / C + D ** E * F - G is
taken to mean A + (B / C) + «D ** E) * F) ~ G.

When the order of a sequence of consecutive operations on the same
hierarchical level (i.e., consecutive multiplications and divisions or
consecutive additons and subtractions) is not completely specif·ied by
parentheses, the order of operation is assumed to be from left to right.
Thus, certain expressions ordinarily considered ambiguous are permitted
in COBOL. For example, A /~ B * C and A / B / C are taken to mean (A /
B) * C and (A / B) / C, respectively. The expression A * B / C * D is
taken to mean «A * B) / C) * D. The expression A ** B ** C is taken to
mean (A ** B) ** C.

Exponentiation of a negative value is allowed only if the exponent is
a literal or data-name having an integral value.

Exponentiation is performed in floating-point when an exponent is a
fractional literal or is a data-name whose PICTURE describes a
fractional number.

Plus and minus are allowable unary operators (having only one
o~rand). The unary Sign must be the first character of an arithmetic
expression or must be immediately preceded by a left parenthesis. Two
operators may not be adjacent to each other.

PROCEDURE BRANCHING STATEMENTS

In the GO TO, ALTER, and PERFORM statements, procedure-name signifies
paragraph-name or section-name.

96 IBM S/360 DOS and TOS COBOL Lang. Specs.

STOP statement

The STOP statement is used to terminate or delay execution of the
object program. The format of this statement is:

STOP {RUN)
literal

The STOP RUN statement terminates execution of the object program and
returns control to the operating system.

The STOP literal statement causes the specified literal to be
displayed on the console and causes the object program to pause. The
program may be resumed only by operator intervention. End of block must
be keyed on the console to resume execution. The size of the literal is
restricted to 72 characters.

GO TO Statement

The GO TO statement transfers control from one portion of the program
to another. The GO TO statement has the following formats:

Option 1

GO TO [procedure-name]

Option 1 of the GO TO statement provides a means of transferring the
path of flow of a program to a designated paragraph or section.

When Option 1 (unconditional GO TO) is used and a procedure-name is
not specified, the GO TO statement must be preceded by a paragraph-name,
must be the only statement in the paragraph, and must be modified by an
ALTER statement prior to the first execution of the GO TO statement.
The paragraph-name assigned to the GO TO statement is referred to by the
ALTER statement in order to modify the sequence of the program. If
procedure-name is omitted and the GO TO statement has not been preset by
an ALTER statement prior to the first execution of the GO TO statement,
execution of the program is terminated.

Option 2

GO TO procedure-name-1 [procedure-name-2 •••] DEPENDING ON data-name

In Option 2, data-name must be an elementary integra1 numeric item
whose length does not exceed four digits and, whose usage is either
DISPLAY. COMPUTATIONAL, or COMPUTATIONAL-3.

Option 2 specifies alternative branch points; control is transferred
to the point specified by the value of data-name. Control goes to the
1st, 2nd •••• ,nth procedure-name as the value of data-name is 1. 2, ••• ,n.
If data-name has a value outside the range 1 to n. no transfer takes
place. and control passes to the next statement after the GO TO
statement.

ALTER Statement

The ALTER statement is used to modify an
statement elsewhere in the Procedure Division.
sequence in which program steps are to be executed.

unconditional GO TO
thus changing the

Section 6: Procedure Division 97

The format of the ALTER statement is:

ALTER {procedure-name-1 TO PROCEED TO procedure-naine-2} .•••

Procedure-name-1 designates a paragraph containing a single sentence
consisting only of an Option 1 GO TO statement. The effect of an ALTER
statement is to replace the procedure-name specified in Option 1 of the
GO TO statement with procedure-name-2 of the ALTER statement, where the
paragraph-name containing the GO TO statement is procedure-name-l in the
ALTER statement.

PERFORM Statement

The PERFORM statement specifies a transfer of control from one
portion of a program to another, in order to execute some procedure a
specified number of times, or until a condition is satisfied. It
directs that control is to be returned to the statement inmediately
following the point from which the transfer was made.

The PERFORM statement has the following four formats:

Option 1

PERFORM procedure-name-l [THRU procedure-name-21

Option 1 is the simple PERFORM statement. A procedure referred to by
this type of PERFORM statement is executed once,and then control passes
to the next statement after the PERFORM statement. All statements in
the paragraphs or sections named by procedure-name-l through
procedure-name-2 constitute the range of the PERFORM statement.

Option 2

PERFORM procedure-name-l [THRU procedure-name-21

{
integer }
data-name TIMES

Option 2 is the TIMES opeion. When the TIMES option is used, the
procedure is performed the number of times specified by data-name or
integer. Control is then transferred to the statement following the
PERFORM statement. Data-name must have an integral value and data-name
or integer must have a positive non-floating point value, less than
32,768. If the value of the data-name is negative, zero, or greater
than 32,767, control is passed immediately to the statement follOwing
the PERFORM statement.

Option 3

PERFORM procedure-name-l [THRU procedure-name-21

UNTIL test-condition

Option 3 is the UNTIL option. Test-condition may be simple or
compound. The procedures specified by the procedure-names are performed
until the condition specified ~ the UNTIL option is true. At this
time, control is transferred to the statement following the PERFORM
statement. If the condition specified by the UNTIL option is true at
the time the PERFORM statement is encountered, the specified procedure
is not executed.

98 IBM S/360 DOS and TOS COBOL Lang. Specs.

option 4

PERFORM procedure-name-l [THRU procedure-name-2]

VARYING data-name-l

BY{numeric-literal-3)
data-name-3

[AFTER data-name-4

BY{numeric-literal-6)
data-name-6

[AFTER data-name-7

BY{numeric-literal-9)
data-name-9

FROM{nUmeric-literal-2)
data-name-2

UNTIL test-condition-l

FROM{nUmeric-literal-4)
data-name-S

UNTIL test-condition-2]

FROM{nUmeric-literal-S)
data-name-8

UNTIL test-condition-3]

Option 4 is the VARYING option. Test-condition may be simple or
compound.

This option is used to augment the value of one or more data-names in
an orderly fashion during the execution of a PERFORM statement. When
one data-name is varied, data-name-1 is set equal to its starting value
(FROM) when commencing the PERFORM statement. Then, test-condition-1 is
evaluated: if it is true, control passes to the next statement following
the PERFORM statement; if false, procedure-name-1 through
procedure-name-2 is executed once. The value of the increment (BY) is
added to data-name 1, and the condition (UNTIL) is evaluated again. The
cycle continues until test-condition-1 is true, at which point control
is passed to the statement following the PERFORM statement.

All data-names and literals used must represent non-floating point
numeric values; they may be positive, negative, or zero.

Data-name-1. data-name-4, and data-name-7 must not be alternate names
for the same data items. For all options, the first statement of
procedure-name-1 is the point to which sequence control is transferred
by the PERFORM statement.

When two data-names are varied, the value of data-name-4 goes through
a complete cycle (FROM. BY, UNTIL) each time that data-name-1 is
augmented with its BY value. For three data-names, the value of
data-name-7 goes through a complete cycle (FROM, BY, UNTIL) each time
that data-name-4 is augmented with its BY value, which in turn goes
through a complete cycle each time data-name-1 is varied.

Regardless of the number of data-names being varied, as soon as
test-condition-1 is found to be true, control is transferred to the next
statement after the PERFORM statement.

The return of control is from a point determined as follows:

1. If procedure-name-1 is a paragraph-name and procedure-name-2 is not
specified. the return is made after the last statement of the
procedure-name-l paragraph.

2. If procedure-name-1 is a section-name and procedure-name-2 is not
specified, the return is made after the last statement of the last
paragraph of the procedure-name-1 section.

3. If procedure-name-2 is specified and is a paragraph-name, the
return is made after the last statement of the procedure-name-2

Section 6: Procedure Division 99

paragraph.
4. If procedure-name-2 is specified and is a section-name, the return

is made after the last statement of the last paragraph of the
procedure-name-2 section.

GO TO statements and other PERFORM statements are permitted between
procedure-name-l and the last statement of procedure-name-2. Further­
more, the time sequence of execution of exits established by PERFORM
statements must be in the inverse order in which they were established.

***1 For Tape Operating System only, the exact range of a PERFORM
statement must not be activated again while the range is currently
active. An active PERFORM statement, whose execution point begins
within the range of another PERFORM, must not contain the exit point of
the other active PERFORM, except when the exit points are common. If
the logic of a procedure requires a conditional exit prior to the final
sentence, the EXIT sentence must be used. In this case,
procedure-name-2 must be the name of the paragraph that consists solely
of the EXIT sentence.

A procedure referred to by one PERFORM statement can be referred to
by other PERFORM statements. Moreover, a procedure referred to by one
or more PERFORM statements can also be executed by -dropping through,­
that is, by entering the procedure through the normal passage of control
from one statement to the next, in sequence. Accordingly, if
procedure-name-l were the next statement following the PERFORM state­
ment, the procedure would be executed once more than specified b¥ the
PERFORM statement because, after execution of the PERFORM statement,
control would pass to procedure-name-l in the normal continuation of the
sequence.

Figures 26, 27, and 28 illustrate the logical flow of option 4
PERFORM statements, varying one, two, and three data-names, respective­
ly.

Figure 29 states restrictions on the appearance of procedure­
branching statements. ! means that the statement may appear; !
indicates that it must not; text indicates the outcome if the statement
does appear.

100 IBM 5/360 DOS and TOS COBOL Lang. Specs.

Entrance

Set Data - Name -
1 Equal to its
From Value

FALSE

Execute
Procedure - Name -
1 Thru
Procedure - Name -
2

Augment Data­
Name -1 With
Its By Value

Exit

Figure 26. Logical Flow of Option 4 PERFORM Statement Varying One
Data-name

section 6: Procedure Division 101

Entrance

Set Data-Name-1
And Data-Name-
4 To Initial From
Value

Execute Procedure­
Name -1 Thru
Procedure - Name-
~.

Augment
Data - Name - 4
With Its
By Value

Exit

Set Data - Name - 4
To Its Initial
From Value

Augment
Data - Name - 1
With Its
By Value

C3

Figure 27. Logical Flow of Option 4 PERFORM Statement Varying Two
Data-names

102 IBM S/360 DOS and TOS COBOL Lang. Specs.

C2

Entrance

Set Data - Name - i
Data - Name -4,
Data- Name-7 To
Initial From Value

02 J------~~

Execute
Procedure - Name -
1 Thru
Procedure - Name -
2

Augment
Data - Name -7
With Its
By Value

Exit

Set Data - Name -7
To Its Initial
From Value

Augment
Data - Name - 4
With Its
By Value

02

Set Data - f\lame - 4
To Its Initial
From Value

Augment
Data - Name - 1
With Its
By Value

C2

Figure 28. Logical Flow of Option 4 PERFORM Statement Varying Three
Data-names

Section 6: Procedure Division 103

r---------~--,
'Statement I Appearing In: I
1 I---------~---------___,_----------~---------- ..
I 1 Label I Label t Main Body I Debug I
I I Checking ,Creating 1 of Procedure 1 Packet I
1 I Declarative I Declarative I Division 1 I
~-------+-----------+---------+----------+--------------..
IGO TO I 1 I I I
, PERFORM' y* I y* I y** I y*** I
I ALTER I I I I I
~-----+ +--------+------------+-----------~
I" STOP RUN I N I N I end of I abnormal I
1 I I I execution I end of 1
I I I I I execution I
~-------+-------+-----------+---------+------------~
I STOP I I I I I
I Li teral 1 Y I Y I Y I Y I L _________ ~ ________ --~ ____________ ~ ___________ ~ ___________ J

* Operands of these statements must be procedure-names appearing in
the declarative containing the statement.

** Operands of these statements must be procedure-names appearing in
the main body of the Procedure Division.

*** Operands of these statements may be procedure-names appearing
either in the main body or in any debug packet.

Figure 29. Restrictions for Procedure-Branching Statements

COMPILER-DIRECTING STATEMENTS

Compiler-directing statements must be separate sentences.

ENTER Statement

The ENTER statement, used in conjuction with CALL or ENTRY
statements, permits communication between a COBOL object program and
COBOL subprograms or other language subprograms.

The ENTER statement has the following two formats:

Option 1 (Used in calling program)

ENTER LINKAGE.
CALL entry-name [USING argument •••].
ENTER COBOL.

Option 2 (Used in a COBOL subprogram)

ENTER LINKAGE.
ENTRY entry-name [USING data-name •••].
ENTER COBOL.

subprogram statements

ENTER LINKAGE.
RETURN.
ENTER COBOL.

104 IBM S/360 DOS and TOS COBOL Lang. Specs.

An example of the use of this format is:

COBOL PROGRAM SHEET

SEQUENCE A B
---T--~~--
1 I 61718 12
---+---+-+--

I I
001 0201 PROCEDURE DIVISION.

I
I
1

002 0011
002 0021
002 0031

1
I
1
1
1

ENTER LINKAGE
CALL 'SUBPRGM' USING RECORD- 2.
ENTER COBOL.

Refer to Appendix E, Figure 34, for the relationship between the
example above, and the sample program given therein.

Entry-name is an external name and must follow the rules for external
name formation.

Option 1 is used to effect transfer of control to a subprogram.
Entry-name represents the name of the subprogram's entry point.

In the USING option, an argument may be one of the following:

1. A data-name when calling a COBOL subprogram
2. A data-name, file-name, or a procedure-name when calling a

subprogram written in a language other than COBOL.

Option 2 is used to establish an entry point in a COBOL subprogram.
Control is transferred to the entry point by a CALL statement in another
program. Entry-name defines the entry point where parameters are saved
for eventual return and address parameters are obtained.

I Entry-name must not be the same as the Program-10.

Each data-name in the USING portion of the ENTRY statement must be
defined in the Linkage Section of the Data Division, and must have level
number 01 or 77.

Computer base addresses of data items named in the USING list of an
ENTRY statement are obtained from the USING list of the associated CALL
statement. Names in the two USING lists (that of the CALL in the main
program, and that of the ENTRY in the subprogram) are paired in
one-to-one correspondence.

There is no necessary relationship between the actual names used for
such paired names, but the data descriptions must be eqUivalent. When a
group data item is named in the USING list of an ENTRY statement, names
subordinate to it in the subprogram's Linkage Section may be employed in
subsequent subprogram procedural statements, when elementary items in
the group are utilized.

RETURN enables restoration of the necessary registers saved at an
entry point. The return from a subprogram is always to the first
instruction follOWing the last instruction in the calling sequence of
the main program.

Section 6: Procedure Division 105

There must be no path of program flow to an ENTRY statement within
the program containing the ENTRY· statement. Hence, the statement should
not have a paragraph-name.

EXIT Statement

The EXIT statement may be used when it is necessary to provide an end
point for a procedure that is to be executed by means of a PERFORM
statement or for a procedure that is a declarative .•

The format for the EXIT statement is:

paragraph-name. EXIT.

EXIT must appear' in the source program as a one-word paragraph
preceded by a paragraph-name.

When the PERFORM statement is used, an EXIT paragraph-name may be the
procedure-name given as the Object of the TBRU option. In this case, a
statement in the range of a PERFORM being executed may transfer to an
EXIT paragraph, bypaSSing the remainder of the statements in the PERFORM
range. In all other cases, EXIT paragraphs have no function and control
passes sequentially through them to the first sentence of the next
paragraph.

NOTE Statement

The NOTE statement permits the programmer to write explanatory
comments, in the Procedure Division of a source program, which will be
produced on the listing but serve no other purpose. The format of the
NOTE statement is:

NOTE conment •••

NOTE, when used. must begin a sentence. Following the word NOTE, any
combination of the characters from the COBOL character set may appear.
If NOTE is the first word of a paragraph, any remaining sentences within
the paragraph are also considered notes. Proper format rules for
paragraph structure must be observed.

106 IBM 5/360 DOS and TOS COBOL Lang. Specs.

SECTION 1: SOURCE PROGRAM LIBRARY FACILITY

Prewritten source program entries can be included in a COBOL program
at compile time. Thus, an installation can utilize standard file
descriptions, record descriptions, or procedures without having to
repeat programming them. These entries and procedures are contained in
a user-created library. They are included in a source program by means
of a COpy clause or an INCLUDE statement.

COpy CLAUSE

The COpy clause permits the user to include prewritten Data
entries or Environment Division clauses in his source program.
clause is written in one of the following forms:

(option 1
(Within the Input-Output Section)

{
FILE-CONTROL.} COpy library-name.
1-0 CONTROL.

Option 2
(~ithin the File-Control Paragraph)
SELECT file-name COpy library-name.

Option 3

Division
The COpy

(within a file area description entry or within the Working Storage or
Linkage section)
01 data-name COpy library-name.

Option"
(Within the Working Storage or Linkage Section)
11 data-name COPY library-name.

Option 5
(Within the file section)
FD file-name COPY library-name.

Library-name is contained in the user's library and identifies the
entries to be copied. It is an external-name and must follow the rules
for external-name formation.

The words preceding COpy library-name must follow the rules for COBOL
margination. On a given source program card containing the completion
of a COpy clause, there must be no information beyond the claus e­
terminating period.. The material introduced into the source program by
the COpy statement will follow the COpy statement on the listing,
beginning on the next line.

No COPY clause may be contained in the information copied from the
library.

When options 1, 2, or 5 are written, the words COpy library-name are
replaced by the information identified by library-name. This
information comprises the sentences or clauses needed to complete the
paragraph, sentence, or entry containing the COpy clause.

Section 7: Source Program Library Facility 107

When options 3 and 4 are written, the entire entry is replaced ~ the
information identified by library-name except that the data-name speci­
fied, and replaces the corresponding data-name in the library and any
references to the corresponding data-name in the information copied.
This information comprises a 01 or 77 level entry and any immediately
subsequent entries with level numbers higher than 01 or 77.

The data-name replacement is for the compilation, but is not shown on
the listing_

A COpy clause may be preceded by other information on a source
program card, and may be written on more than one card; however on a
given card, containing the completion of a COpy clause, there must be no
information beyond the clause-terminating period. The material intro­
duced into the source program by the COpy statement will follow the COpy
statement on the listing, beginning on the next line.

INCLUDE STATEMENT

The INCLUDE statement permits the user to include prewritten proce­
dures in the Procedure Division of his source program. The INCLUDE
statement has the following formats:

option 1 (For insertion of a paragraph):
paragraph-name. INCLUDE library-name.

Option 2 (For insertion of a section):
section-name SECTION. INCLUDE library-name.

Library-name is contained in the user's library and identifies the
entries to be copied. It is an external name and must follow the rules
for external name formation.

The words preceding INCLUDE library-name must follow the rules for
COBOL margination. On a given source program card, containing the
completion of an INCLUDE statement, there must be no information beyond
the clause-terminating period. The material from the library will
follow the INCLUDE statement on the listing.

When the INCLUDE statement is written, the words INCLUDE library-name
are replaced by the information identified by library-name. This
information comprises the paragraphs or sentences needed to complete the
section or paragraph containing the INCLUDE statement.

The library entries for paragraphs and sections must not contain
INCLUDE statements.

Refer to IBM DOS and TOS/360 System Control and System Service
Programs for a description of library facilities.

(text deleted)

108 IBM S/360DOS and TOS COBOL Lang. Specs.

Ext SECTION 8: STERLING CURRENCY FEATURE AND INTERNATIONAL CONSIDERATIONS
*

STERLING CURRENCY FEATURE

Disk and Tape Operating Systems COBOL provide facilities for handling
sterling currency items by means of an expansion of the PICTURE clause.
Additional o~ions and formats, necessitated by the non-decimal nature
of sterling, and by the conventions by which sterling amounts are
represented in punched cards, are also available.

Sterling amoUnts are normally expressed in pounds, shillings and
pence, in that order. There are twenty shillings in a pound, and twelve
pence in a shilling. Though sterling amounts are sometimes expressed in
shillings and pence only (in which case the number of shillings may
exceed 99), within machine systems shillings will always be expressed as
a two-digit field. Pence, when in the form of integers, likewise will
be expressed as a two-digit field. However, provision must be made for
pence to be expressed as decimal fractions as well, as in the form
17s. 10.237d.

The IBM method for representing sterling amounts in punched cards
uses two columns for shillings and one for pence. Tenpence (10d.) is
represented by an '11' punch and elevenpence (11d.) by a '12' punch.
The British Standards Institution (B.S.I.) representation uses single
columns for both shillings and pence. B.S.I. pence representation for
tenpence and elevenpence is the reverse of that of IBM: an '11' punch is
used for Ild. and a '12' punch for lOde B.S.I. representation for
shillings consists of a '12' punch for 10 shillings and double punches A
to I for eleven to nineteen shillings.

The indicated representations may be used separately or in combina­
tion, resulting in four possible conventions.

1. IBM pence and IBM shillings
2. IBM pence and B.S.I. shillings
3. B.S.I,. pence and B.S.I. shillings
q. B.S.I. pence and IBM shillings

Any of these conventions may be associated with any number of digits,
or no digits, in the pound field; and any number of decimals, or no
decimals, of pence. In addition, sign representation may be present as
an overpunch in one of several allowable positions in the amount, or may
be separately entered from another field.

Two formats are p~oYided by Disk and Tape Operating Systems COBOL in
the PICTURE clause for the representation of sterling amounts, Sterling
Non-Report format and Sterling Report format. In the formats that
follow, n stands for a positive nonzero integer. When such an integer
is used, it must be parenthesized. The characters 6 7 8 9 D * , £ / B Z
V • s d CR - are the PICTURE characters used to describe sterling
items.

Throughout the following text, parentheses are used to denote
multiple successive occurrences of a picture character. With the
exception of the pound sign , there is no difference between the
parenthesized form and multiple successive occurrences of a picture
character.

Section 8: Sterling Currency Feature 109

STERLING NON-REPORT

The format for Sterling non-report is:

USAGE IS DISPLAY-ST

PICTURE IS 9[(n)]D[8]8D [[v]9(n)]
{

6 [6])

1[1]

The representation for pounds is 9(n)D where:

1. The character 9 indicates that a character position will always
contain a numeric character, and may extend to n positions.

2. The character D indicates the position of an assumed pound
separator.

3. An entry must always appear in the pound field for a picture to be
valid.

The representation for shillings is [8]80 where:

1. The characters (8] 8 indicate the position of the shilling field,
and the convention by which shillings are represented in punched
cards. 88 indicates IBM shilling representation occupying a two
column field. 8 indicates B.S.I. single column shilling represen­
tation. An entry must always appear in the shilling field for a
picture to be valid.

2. The character D indicates the position of an assumed shilling
separator.

The representation for pence is 6 [6] [[V] 9 (n)]

1[1]

1. The character 6 indicates IBM single column pence representation
wherein 10d. is represented by an '11' punch and 11d. by a '12'
punch. The characters 66 indicate two column representation of
pence, usually from some external medium other than punched cards.

2. The character 1 indicates B.S.I. single column pence representa­
tion wherein lOde is represented by a '12' punch and 11d. by an
'11' punch. The characters 11 indicate two column representation
of pence. Consequently, 66 and 11 serve the same purpose and are
interchangeable. An entry must always appear in the pence field
for a picture to be valid.

3. The character V indicates the position of an assumed decimal point
in the pence field. Its properties and use are identical with that
of V in dollar amounts. Decimal positions in the pence field may
extend to ~ positions.

STERLING SIGN REPRESENTATION

Signs for sterling amounts may be entered as overpunches in one of
several allowable positions of the amount. A sign is indicated by an
embedded S in the non-report picture immediately to the left of the
position containing the overpunch. Allowable overpunch positi~ns are
the high order and low order positions of the pound field, the high
order shilling digit in two column shilling representation, the low
order pence digit in two column pence representation, or the least
significant decimal position of pence. Examples of such a picture are:

110 IBM S/360 DOS and TOS COBOL Lang. Specs.

9S9D8n6V99

9 (3)D8D6S6V9

STERLING REPORT

The format for Sterling report is:

USAGE IS DISPLAY-ST

PICTURE IS

[po~d-report-str11lg {

B(n) } 1{99} • (n) [B (n)] D Z 9
: [B(n)] ZZ
/ Z8
B/B

Ild] [.] 1 l: 9 (n) [dJ [. lJ

o

[B(n)]

The picture for STERLING REPORT is composed of a sequence of characters
representing the fields for, respectively, (i) pounds (ii) pound separa­
tors. (ili) shillings (i v) shilling separators (v) pence integers (vi)
pence decima~ fractions and pence terminators. The USAGE IS DISPLAY-ST
clause is necessary to enable the compi1er to distinguish between
sterling and decimal data in cases where their formats may be the same.

1. a. Pound-report-string for the representation of pounds is similar
to the report-form option for decimal fields. The editing
characters that may be combined to describe a pound report item
are: 9 Z * , B £. -. with the exception of the pound sign (£)
the editing characters have the same meaning in pound-report­
string as the report form for decimal fields.

Wi th one exception, the pound sign may be equated to the
dollar sign in terms of function and manner of use.
Specifica11y, the pound sign may be used as a floating string
character and, as with the dollar sign, may be floated through
BS and/or commas, should they be embedded in the floating
string. Examples of such strings are:

3. ,£££,£99

£.£B££9

b. The exception to equating the pound and dollar signs consists
of an option available in pound-report-strings. with this
option the floating pound sign may be suppressed when the value
of the pound field is zero. Such suppression is the pound­
report-string equivalent of the BLANK WHEN ZERO clause. The
floating pound string may be described in either of two
formats:

Section 8: Ster1ing Currency Feature 111

Format Values of EQunds field outEut

(1) £. • . .£ 1 b£1
0 bb
\ ,

(2) £ (n) 1
(b£.1

0 bbb

The use of parenthesis to indicate multiplicity of pound
signs in a picture, as in format 2, indicates the pound sign
suppression option is desired.

c. The single character £ indicates the position containing a
fixed pound sign.

2. The representation for pound separators is:

{~~:~ [B(n)]} D
: [B(n)]
/
B/B

a. The characters B(n) specify n character positions in which
blanks will be inserted. B-or multiples of B may not be used
alone as pound separators.

b. The characters :[B(n)] specify a colon which may be followed by
~ character positions containing blanks.

c. The characters .(n) [B(n)] specify ~ character positions
containing periods which may be followed by ~ character
positions containing blanks.

d. The character / may stand alone as a separator, or it may be
preceded by one blank and followed by another.

e. The character D must be used. Its use is internal only and
enables the compiler to properly align pound and shilling
fields.

f. In cases where the pound sign suppression option has been
specified, and the pound field is equal to zero, suppression
will be extended to include the pound separator. Stated
generally, under the pound sign suppression option the
suppression of all digits to the left of a separator will
result in the suppression of the separator as well. Conse­
quently, an amount equal to zero will result in output
consisting only of spaces.

3. The representation for shillings is:

The character 8 is identical to z when all digits to the left,
including those in the pound field, have been suppressed, and is
identical to 9 if they have not been.

4. The representation for shilling separators is:

B(n)
.(n) [B(n)]
: [B (n)]

/ D
B/B
s[.] [B(n)]

a. Those characters which are used also as pound separators are
discussed under that heading.

112 IBM S/360 DOS and TOS COBOL Lang. Specs.

5.

b.

c.

The

The characters s or s. may stand alone as separators, followed
immediately by the high order pence digit, or they may be
followed by ~ spaces, when written in the formats sB(n) and
s.B(n).
The character D must be used. Its use is internal only and
enables the compilkr to properly align pounds and shillings.
representation for pence integers is:

a. The character 8 is identical to Z when all digits to the left,
including those in the pound and shilling fields, have been
suppressed, and is identical to 9 when they have not been. The
remaining characters have been explained under other headings.
If there are no positions of pence decimals, the pence
terminator follows immediately. If there are decimals, the
terminators follow the low order decimal position.

6. The representation for pence decimal fractions and terminators is:

fldJ [.1 1 [B(n) {CR }~
l:9 (n) [dJ [.1J - J

a. The upper set of characters d and • represents pence termina­
tors which may be used if there is no pence decimal fraction.
The characters 9(n) indicate the number of positions the pence
decimal fraction will occupy, should there be one. The second
set of characters d and. indicates that these pence terminators
may also be used following a pence decimal fraction.

b. The characters B(n) CR and - indicate terminators which may
follow those discussed above. The characters CR or may
append to an amount to indicate adehit and may immediately
follow a previous pence terminator or low order pence digit, or
they may be preceded by ~ spaces. The + sign is not used in
sterling amounts.

The user may use sterling non-report items as operands in
connection with other numeric operands in MOVE, ADD, and
SUBTRACT statements only.

Decimal items moved to sterling report and sterling non­
report are considered as pence.

Some examples of the sterling report picture are:

ZZBZ(3)/DZS/D99
99S.BD99d.B-

££,£(3) ,£(3) .DZS •• DZ9.
*(7)D99D99.99.CR

Section 8: Sterling Currency-Feature 113

INTERNATIONAL CONSIDERATIONS

1. Installations may interchange the function of the comma and decimal
point characters in numeric literals and the PICTURE clause.

2. Installations may alter the compiler's character set for non­
English language requirements, so that, for example, data-names may
be composed of letters of a particular national alphabet.

3. The PICTURE of report items may terminate with the currency symbol
in cases where the graphic $ is supplanted by a particular national
currency symbol.

4. Sentences may be substituted to allow translation (by modification)
of output messages into any non-English language.

114 IBM 5/360 DOS and TOS COBOL Lang. Specs.

Ext SECTION 9: COBOL DEBUGGING LANGUAGE

The following statements are provided for program
may appear anywhere in a OOS and TOS/360 COBOL
compile-time debugging packet.

TRACE

The format of the TRACE statement is:

debugging. They
program or in a

After a READY TRACE statement is executed, each time execution of a
paragraph or section begins, a message is written of arrival at such a
point. The message is written on the system logical printing device
(SYSLST).

The execution of a RESET TRACE statement terminates the functions of
a previous READY TRACE statement.

EXHIBIT

The format of the EXHIBIT statement is:

EXHIBIT {:: NAMED] {:~~=~iC-1itera1 } ...
The execution of an EXHIBIT NAMED statement causes a formatted

display of the data-names (or non-numeric literals) listed in the
statement. The system logical printing device (SYSLST) is used. The
format of the output for each data-name listed in the NAMED or CHANGED
NAMED form of an EXHIBIT statement is:

blank
original data-name (including qualifiers, if written)
blank
equal sign
blank
value of data-name

Literals listed in the statement are preceded by a blank, when
displayed.

The sum of the sizes of the operands of an EXHIBIT statement may not
exceed the maximum logical record length for the system logical printing
device (SYSLST).

I

The EXHIBIT NAMED option statement is exhibited with up to four data
names and their data per print line. The sum of the size of the
operands of each group of data names cannot exceed the maximum logical
record length for the system logical printing device (SYSLST).

Section 9: COBOL Debugging Language 115

Each "EXHIBIT statement must be the last stateme.l'lt in a sentence.

The CHANGED form of the EXHIBIT statement provides for a display of
items when they change value, compared to the value at the previous time
the EXHIBIT CHANGED statement was executed. The initial time such a
statement is executed, all values are considered changed; they are
displayed and saved for purposes of comparison.

Note that, if two distinct EXHIBIT CHANGED data-name statements
appear in a program, changes in data-name are associated with the two
separate statements. Depending on the path of program flow, the values
of data-name saved for comparison may differ for the two statements.

Only one data-name may be listed in an EXHIBIT CHANGED statement.

The CHANGED NAMED form of the EXHIBIT statement causes a printout of
each changed value for items listed in the statement. Only those values
representing changes and their identifying names are printed. A fixed
columnar format for the data to be displayed cannot be created with
EXHIBIT CHANGED NAMED.

ON (COUNT-CONDITIONAL STATEMENT)

The fonnat of the ON statement is:

ON integer-1 [AND EVERY integer-21 [UNTIL integer-31

{
imperative-statement ••• }
NEXT SENTENCE

~{ELSE
~ OTiiERWISE

statement •••)~
NEXT SENTENCE ~

The ON statement is a conditional statement. It specifies when the
statements it contains are to be executed. ELSE (OR OTHERWISE) NEXT
SENTENCE may be omitted if it immediately precedes the period for the
sentence.

The count-condition (integer-1 AND EVERY integer-2 UNTIL integer-3)
is evaluated as follows:

Each ON statement has a compiler-generated counter associated with
it. The counter is initialized in the object program with a value of
zero.

Each time the path of program flow reaches the ON statement, the
counter is advanced by 1. Where K is any positive integer, if the value
of the counter is equal to integer-l +(K*integer-2), but is less than
inteqer-3 if specified, the imperative statements (or NEXT SENTENCE) are
executed. otherwise, the statements after ELSE (or NEXT SENTENCE) are
executed. If the ELSE option does not appear, the next sentence is
executed.

If integer-2 is not given, it is assumed that inteqer-2 has a value
of 1. If inteqer-3 is not giVen, no upper limit is assumed for it.

If neither integer-2 nor integer-3 is specified, the imperative
statements are executed only once.

Examples:

116 IBM S/360 DOS and TOS COBOL Lang. Specs.

ON 2 AND EVERY 2 UNTIL 10 DISPLAY A ELSE DISPLAY B.

On the second, fourth, sixth, and eighth times, A is displayed.
B is displayed at all other times.

ON '3 DISPLAY A.

On the third time through the count-conditional statement, A is
displayed. No action is taken at any other time.

COMPILE-TIME DEBUGGING PACKET

Debugging statements for a given paragraph or section in a program
may be grouped together into a debugging packet. These statements will
be compiled with the source language program, and will be executed at
object time. Each packet refers to a specified paragraPh-name or
section-name in the Procedure Division. Compile-time debugging packets
are grouped together and are placed immediately preceding the source
program.

Each compile-time debug packet is headed by the control card *DEBUG.
The general form of this card is

1 8
*DEBUG location

where the parameters are described as follows:

Location is the COBOL section-name or paragraph-name (qualified, if
necessary) indicating the point in the program at which the
packet is to be executed. Effectively, the statements in the
packet are executed as if they were physically placed in the
source program .following the section-name or paragraph-name,
but preceding the text associated with the name. The same
location must not be used in more than one *DEBUG control card.

Location cannot be a paragraph name within any DEBUG packet.

A debug packet may consist of any procedural statements conforming to
the requirements of Disk and Tape Operating Systems COBOL. A GO TO,
PERFORM, or ALTER statement in a debug packet may refer to a procedure­
name in any debug packet or in the main body of the Procedure Division .•

Section 9: COBOL Debugging Language 117

APPENDIX A: GLOSSARY OF LOWER-CASE WORDS IN COBOL FORMATS

In this appendix, definitions are provided for certain elements of the
COBOL language. These definitions are presented in a uniform system of
notation, explained in the following paragraphs. This notation is
useful in describing the COBOL language, although it is not part of
COBOL. All definitions presented in this notation are syntactical
definitions. They define the structure, rather than the meaning, of the
defined element.

1. All words printed entirely in capital letters are reserved words.
These are words that have preassigned meanings in the COBOL
language_ Words in capital letters represent an actual occurrence
of those words.

Example: ADD

When this is specified, the letters ADD are indicated.

2. All punctuation and special characters (except those symbols
described in the following paragraphs) represent the actual
occurrence of those characters. punctuation is essential where it
is shown. Additional punctuation can be inserted, according to the
rules for punctuation specified in this publication.

3. Lower-case words that appear in a definition are themselves defined
under the proper entry.

Example: integer

This specifies the appearance of an item of the class "integer."

4. 1 (the or sign) The or sign indicates a choice.

Example: +1-

This specifies a plus sign or a minus sign.

5. ::=(the defined-as symbol) This symbol means "defined as."

Example: digit ::=1121314151617181910

6. • •• (the ellipsis) The ellipsis indicates that the immediately
preceding unit may occur one or more times in succession. A unit,
in this and succeeding paragraphs, means either a single reserved
word, a single lower-case word, or a group of lower-case words and
one or more reserved words enclosed in brackets or braces. If an
item is enclosed in brackets or braces, the entire unit of which it
is a part must be repeated if repetition is specified.

Example: uDSigned-integer::=digit •••

This defines an unsigned integer as any number of sequential
digits.

7. [] (brackets) Brackets are used to indicate that an item is
optional. The programmer may use the item or not, depending on the
requirements of his program.

Example: non-negative-integer::= [+] digit.

118 IBM 5/360 DOS and TOS COBOL Lang- Specs.

This defines a non-negative integer as a series of digits optional­
ly preceded by a plus sign.

8. When brackets surround items separated by the or sign, anyone of
the items enclosed, or none of them, may be chosen.

Example: integral-number::= [+1-] digit.

This specifies that an integral number is a series of digits
preceded h¥ a minus sign, a plus sign, or neither.

9. {} (braces) When braces surround items separated by the or sign,
one of the items shown must be chosen.

Example: signed-integer::= {+I-ldigit.

This defines a signed integer as a series of digits that must be
preceded by either a plus sign or a minus sign.

10. Braces may also be used to indicate that the enclosed items are to
be treated as a unit.

Example: [letter] {digit letterl •

This specifies a sequence of any length consisting of digits
alternating with letters.

11. not (the not symbol) This symbol indicates that the unit following
it may not occur.

Example: digit not 0

This specifies any member of the class digit except O. Combined
with the definition of digit used above, it specifies the equival­
ent of

11213141516171819

12. min (the minimum symbol) This indicates the minimum number of times
that a unit may occur. When it is used without an accompanying
maximum symbol (defined below), the implied maximum of times the
unit may occur is infinity.

Example: min 3 digit

This specifies a sequence of no less than three digits .•
no upper limit on the length of this sequence.

Example: min S{digitlletter}

There is

This specifies a sequence of at least five letters and digits, in
any order.

13. max (the maximum symbol) This specifies the maximum number of times
that the following unit may appear in succession. When max appears
without an associated min, a minimum of zero occurrences is
assumed.

Example: max 18 digit

This specifies that no digits, one digit, or a sequence of up to 18
digits may be indicated at this point by the programmer.

Example: min 2 max 6{digitlletterl

APPENDIX A: Glossary of Lower-Case Words in COBOL Formats 119

This specifies that digits and letters, intermixed in any succes­
sion, must occur in a sequence at least two long, or at most six
long.

Example: min 7 max 7 digit

This specifies a sequence of exactly seven digits.

14. blank This symbol represents the occurrence of a space.

Example: {.Iblank}

This specifies that either a period or a space must occur at this
point.

15. Further restrictions and explanations will be found in the text.

16. certain special restrictions and definitions that apply only to the
Sterling CUrrency Feature are not included in this glossary. They
are discussed in Section 8.

alphabetic-literal::= 'Min 1 max 120{ letterlblank }'

alpha-form::= min 1 max 30 A[Cinteger)]

The sum of the value of integer plus the number of As must not exceed
30.

alphanumeric-literal::= 'min 1 max 120{character not ' } ,

an-form::= min 1 max 30 X[Cinteger)]

The sum of the value of integer plus the number of Xs must not exceed
30.

argument::=

arithmetic expression::=

data-name I file-name 1 procedure-name

[C] {{{numeric-literallfloating­
point-literal I data-name 1 arithmetic­
expression}arithmetic-operator}+I-}
{numeric-literal I floating-point-literal 1
data-namelarithmetic-expression}[)]

The use of the) is obligatory if the C has been used. Data-names used
in arithmetic-expressions must refer to numeric data.

arithmetic-operator::=

character::=

clause::=

COBOL-character::=

comment::=

compound-condition::=

+1-1*1/1**

COBOL-character I
{EBCDIC-character not COBOL-character}

Individual clauses are described in
appropriate sections of the text.

letter Idigitl+I-I/I*I=I$I,1
(1)1·1;1<1>lblank

COBOL-character ••• { • blank}

[NOT] {test-condition {AND/OR}
test-condition}

compiler-directing-statement::=See ·Compiler-Directing Statements·
in text.

120 IBM S/360 DOS and TOS COBOL Lang. Specs.

condition::=

condition-name::=

conditional-statement::=

data-name: : =

The sum of m plus n is 28.

device-number::=

digit: :=

division-name::=

EBCDIC-character

elementary item::=

entry-name::=

event-condition::=

exponent: : =

external-name::=

figurative-constant: :=

file-name: :=

floating-point-literal::=

fp-form: :=

test-condition I event-condition

data-name

See ·Conditional statements·
in text.

{[{digitlletter}max n{digitl-I
letter}]letter[max m{digitl-I
letter}{digitlletterl]lnot
reserved-word

unit-record-devicel utility-device I
direct-access-device

DATAl PROCEDURE I ENVIRONMENT I
IDENTIFICATION

Any character in the IBM Extended Binary
Coded Decimal Interchange Character set.

alphabetic-item I alphanumeric-item I
report-item I external-decimal-item I
internal-decimal-item I binary-item I
external-floating-point-iteml
internal-floating-point-item

external-name

{[AT]ENDll{ON[EVERY]}
I {[ON]SIZE ERRORl

min 1 max 2 digit

'letter max 7{digitlletterl'

{BIGB-VALDEIBIGH-VALUESll{LOW-VALUEI
LOW-VALUESll{QUOTEIQUOTES}I{SPACEI
SPACES} I ALL' {character not 'l' I
{ZEROIZEROESIZEROSl

data-name

(+I-]mantissa E(+I-J exponent

{+I-lmax n9[integer-1] [VI.]
max m9"[(integer-2) JE{+ l-l99

The sum of m plus n plus the values of integer-l plus integer-2 must
not exceed 16.

imperative-statement::=

integer: :=

The sum of m plus n is 17.

See ·Imperative Statements· in text.

[max n digit] digit not 0 [max m
digit]

APPENDIX A: Glossary of Lower-Case Words in COBOL Formats 121

letter::=

level-indicator::=

level-number::=

library-name::=

literal: :=

logical operator::=

mantissa: :=

The sum of m plus n is 16.

mnemonic-name::=

mode: :=

model-number::=

name: :=

non-numeric-literal::=

numeric-form: : =

AIBICIDIEIFIGIHIIIJI
KILIMINIOIPIQIRISITI
UIVIWIXIYIZ

FDllevel-number

{{bI012131 4}digit}177188

external-name

numeric-literallnon-numeric-literall
floating-point-literal

ANDIORINOT

max m digit • max n digit

data':""'name

FIUIV

The model number of an IBM 360/
series computer.

data-name I procedure-name I external­
name

alphabetic-literal I alphanumeric­
literal

{min 1 9[P •••][V]}1
{[V][P •••] min 1 9}1
{9 ••• [V] 9 ••• }

The form (integer) placed after a 9 or a P specifies the equivalent of
the appearance of that character integer times. The sum of all 9s and
Ps plus the value of all integers must not exceed 18.

numeric-literal::=

The sum of m plus n is 17.

operand: :=

overflow-name::=

paragraph::=

paragraph-name::=

proce~ure-name::=

program-name::=

qual if ier: : =

record-name::=

[+I-]max m digit[.]digit max n
digit

literal I figurative-constant I data­
namelaritbmetic-expression

data-name

[paragraph-name.] sentence •••

I-O CONTROLIFILE-CONTROLISOURCE­
COMPUTER I OBJECT-COMPUTER I procedure­
name

{{digiti letter} [max 28 [digitlletterl-J
{digitlletter}]}not reserved-word

external-name

{OFIIN} {data-namelsection-name}

data-name

122 IBM. S/360 DOS and TOS COBOL Lang. Specs.

relational-operator::=

report-form::=

{GREATER [TBANl I>}I {EQUAL TOI=}I
{LESS [THAN11<}

{ + I-I $1 [* I Z] I PI. 1 B I 0 19 I [VI • 1 1
[CRIDB]} •••

The valid combinations of these characters
-Report-Form Option.- The form (integer)
characters except V. CR and DB specifies
appearance of-that character integer times.

are described under
placed after any of these
the equivalent of the

reserved-word::=

section: :=

section-header::=

section-name: : =

sentence: : =

simple-condition::=

sta tement: : =

Any word in the System/360 COBOL Word
List. Appendix B in this publication.

section-header paragraph

section-name SECTION.

CONFIGURATION 1 INPUT-OUTPUT 1 FILE
I WORKING-STORAGE I LINKAGE 1 procedure-name

{statement ••• I USE-sentence 1
SELECT-sentence}.

[NOT 1 {relation-test I sign-test
I class-test I condition-name-test I overflow-test}

imperative-statement I conditional-statement
Icompiler-directing-statement

These types of statements are defined in the appropriate portions of the
text.

test-condition::=

word: :=

simple-condition I compound-condition

name I reserved-word

APPENDIX A: Glossary of Lower-Case Words in COBOL Formats 123

APPENDIX B: DISK AND TAPE OPERATING SYSTEMS COBOL WORD LIST

The words listed below make up the complete Disk and Tape Operating
Systems COBOL vocabulary of reserved words.

ACCEPl' DATA IBM-360
ACCESS DATE-COMPILED IDENTIFICATION
ACTUAL DATE-WRI'rl'EN IF
ADD DE IN
ADVANCING DECLARATlVES INCLUDE
AFTER DEPENDING INDEXED
ALL DESCENDING INDICATE
ALPHABETIC DETAIL INITIATE
ALTER DIRECT INPUT
ALTERNATE DIRECT-ACCESS INPUT-OUTPUT
AND DISPLAY INSTALlATION
APPLY DISPLAY-ST INTO
ARE DIVIDE INVALID
AREA DIVISION 1-0
AREAS I-o-CONTROL
ASCENDING IS
ASSIGN ELSE
AT END
AT-END ENDING JUSTIFIED
AUTHOR ENTER

ENTRY KEY
BEFORE ENVIRONMENT
BEGINNING EQUAL LABEL
BLANK ERROR LABELS
BLOCK EVERY LAST
BY EXAMINE LEADING

EXHIBIT LEFT
CALL EXIT LESS
CF LIBRARY
CH FD LINE-COUNTER
CHANGED FILE LINE
CHARACTERS FILES LINES
CHECKING FILE-CONTROL LINKAGE
CLOCK-UNITS FlLE-ID LOCK
CLOSE FILLER LOW-VAWE
COBOL FINAL LOW-VALUES
CODE FIRST
COLUMN FOOTING MORE- LABELS
COMPUTATIONAL FOR MOVE
COMPUTATIONAL-1 FORM-OVERFLOW MULTIPLY
COMPUTATIONAIr2 FROM
COMPUTATIONAL-3 NAMED
COMPUTE GENERATE NEGATIVE
CONFIGURATION GIVING NEXT
CONSOLE GO NO
CONSOLE GO NO
CONTAINS GREATER NOT
<;ONTROL GROUP NOTE
CONTROLS NUMERIC
COpy HEADING
CORRESPONDING HIGH-VALUE OBJECT-COMPUTER
COUNT HIGH-VALUES OCCURS
CREATING OF
CYCLES

124 IBM S/360 DOS and TOS COBOL Lang. Specs.

OH SA

IOMI'l'TED SAME
ON SD
OPEN SEARCH
OR SECTION
ORGANIZATION SECURITY
OTHERWISE SELECT
OUTPUT SENTENCE
OV SEQUENTIAL
OVERFLOW SIZE

SORT
PAGE SOURCE
PAGE-COUNTER SOURCE-COMPUTER
PERFORM SPACE
PF SPACES
PH STANDARD
PICTURE STOP
PLUS SUBTRACT
POSITIVE SUM
PRINT-SWITCH SYMBOLIC
PROCEDURE
PROGRAM-ID SYSPUNCH
PROCEED
PROCESSING TALLY
PROTECTION TALLYING

TERMINATE
QUOTE THAN
QUOTES THEN

TBRU
RANDOM TIMES
RD TO
READ TRACE

TRACK
READY '.rRACKS
RECORD TRANSFORM
RECORDS TYPE
REDEFINES
RELATIVE
RELEASE UNIT
REMABKS UNIT-RECORD
REPLACING UNITS
REPORT UNTIL
REPORl'ING UPON
REPORTS USE
RERUN USING
RESERVE UTILITY
RESET
RESTRICTED VALUE
RETUBN VARYING
REVE.RSED
REWIND WHEN
REWRITE
RF WITH
RH WITHOUT
RIGHT WORKING-STORAGE
ROUNDED WRITE
RUN

ZERO
ZEROES
ZEROS

Appendix B 125

APPENDIX C: INTRARECORD SLACK BYTES AND RECORD ALIGNMENT IN BLOCK FILES

In IBM System/360, storage is organized into bytes. Four bytes comprise
a word of storage. Two bytes comprise a half-word; eight bytes comprise
a double-word. certain types of processing operations require that data
be aligned on a certain type of boundary--half-word, full-word, or
dou~e-word. In order to insure correct alignment in such cases, it is
sometimes necessary to insert bytes containing no meaningful data
between data-items or between records. These are called slack bytes.
In certain cases, they are inserted by the compiler; in other cases, it
is the responsibility of the user to insert them.

INTRARECORD SLACK BYTES

For ease of programing and efficient object code, the COBOL compilier:

• Provides automatic field alignment within working-storage section,
and unblocked files.

• Provides the facility of working with input and output records
directly in a buffer.

• Provides efficient use of file space by packing succeeding blocked
records without regard to alignment.

Whenever the USAGE is defined as COMPUTATIONAL, COMPUTATIONAL-1, or
COMPUTATIONAL-2 within an 01 record description, slack bytes, if
required, are automatically added to the record by the compiler in order
to ensure proper synchronization of these computational data items.
These slack bytes are added on the assumption that all 01 levels are
aligned on a double word boundary. It is the user's responsibility to
ensure that the data item is aligned on a double word boundary when:

• The argument of a CALL statement corresponds to a data name defined
with an 01 level in the LINKAGE SECTION of the subprogram.

• The record names are associated with a file where logical records
are blocked.

The user can ensure this double word boundary alignment by moving the
data item to an 01 level defined in working storage, or by adding
interrecord slack bytes to force proper alignment of succeeding records
in the b1ock. (See Record Alignment Within Block Files.)

To determine the intrarecord slack bytes required, the compiler:

• Sums up the size of all elementary data items preceding a
COMPUTATIONAL, COMPUTATIONAL-lor COMPUTATIONAL-2 field including
any slack bytes previously added.

• Divides this sum by K where:
K = 8 for COMPUTATIONAL-2
K = 4 for COMPUTATIONAL-1, or COMPUTATIONAL (5 digits or greater)
K = 2 for COMPUTATIONAL (4 digits or smaller)

• If the remainder (R) = 0, no slack bytes are required.

126 IBM S/360 DOS and TOS COBOL Lang. Specs.

If R :I; 0, K--R slack bytes are added, these slack bytes are inserted
after the last elementary data item (B in Figure 30) preceding the
computational entry. Following the last elementary item (B) is a filler
with a level number equivalent to the next entry (E).

Note: The filler is shown in the coding to illustrate the point.. In
reality. the filler is not listed as shown, but is generated by the
compiler internally.

Figure 30 is an illustration of how slack bytes
filler when USAGE is defined as COMPUTATIONAL,
COMPUTATIONAIr2.

CODING FOR A USAGE CLAUSE:

01 A.

02 B PICTURE X(S).

Implied Filler 02 FILLER PICTURE X(3).

3
Slack

02 E COMPUTATIONAL.

03 F PICTURE 9(6).

03 G PICTURE 9(4).

B Bytes F G
,----'k -----..,~,--A--...

DWB

Bytes = 5
K =4
Q = Quotient
R = Remainder

I I I I I
I I I I I I I I I I I i I t I I t

FWB DWB DWB

Bytes/K = Q + R
5/4 = 1 + 1 Therefore, Q=l, R=l then
K-R = Slack Bytes Required

DWB = Double Word Boundary
FWB = Full Word Boundary

The filler implied would be:
02 FILLER PICTURE X(3);
as ill ustrated above

Figure 30. Use of Implied Filler as Slack Bytes

are inserted as a
COMPUTATIONAL-lor

Slack h7tes may also be added (automatically) whenever a group field is
defined with an OCCURS clause and contains a data item whose usage is
COMPUTATIONAL, COMPUTATIONAL-1, and COMPUTATIONAL-2.

To determine if slack bytes are required:

• Calculate the size of the group up to the point where adjustment is
required including all necessary intrarecord slack bytes.

• Divide this sum by the largest K required by an elementary item
within the group.

Appendix C 127

• If R=O. no slack bytes are required. If R*O. K-R slack bytes are
added.

The slack bytes are added at a level number equal to that of the
group + 1 at the end of the group with the OCCURS.

See Figure 31 and the discussion that follows for an illustration of
the use of slack bytes with an OCCURS clause.

CODING OF AN OCCURS CLAUSE

01 A.

02 B PICTURE is X(7).

02 C OCCURS 3 TIMES.

03 D •

04 E PICTURE IS X.

04 F USAGE COMPUTATIONAL-2.

03 G.

04 H PICTURE IS XX.

Implied Filler 03 FILLER PICTURE IS X(S).

02 I PICTURE IS X.

128 IBM S/360 DOS and TOS COBOL Lang. Specs.

Fields A, B,and C can be represented as shown in Figure 31.

I

C3 I 1~<---02 Level
~-... ----~

I I
I

~----+-~v~-----~

A~Ol Level

A<-Ol Level

<;'1

G1

B
r-I Slack
I I I

F1 I H 1 I Bytes I E2 F2
_---A""---...,~.~---t--"'------.:

i
DWB

DWB = Double Word Boundary
FWB = Full Word Boundary

I I I
I I I

Figure 31. Use of Slack Bytes as a Filler When a Group Field is Defined

To compute the number of slack bytes, calculate the size of the
group(C~):

BYTES = U
K = 8

BYTES=Q+R
K

11 = 1 + 3. K - R = NUMBER OF SLACK BYTES
8
8 - 3 = 5 Slack Bytes. therefore,

The filler is implied as:

03 FILLER PICTURE IS X(S).

RECORD ALIGNMENT WITHIN BLOCK FILES

Because the processing is done in a buffer, a~d not deblocked to a work
area, the user must follow record alignment procedures within blocked
files. When working with blocked files, slack bytes are not automat-

Appendix C 129

ically added as when working with data. However. diagnostics will
inform the user·of the number of slack bytes required for fixed-length 1
record alignment.

For purposes of adding intrarecord slack bytes to assure proper
alignment of COMPUTATIONAL. COMPUTATIONAL-i. and COMPUTATIONAL-2 fields.
all 01 levels are assumed to start on a double-word boundary.

Valid alignment of records can be accomplished by:

• Moving to an 01 in working-storage

• Adding the necessary slack bytes.

The compiler assures the user that all 01 levels in WORKING-STORAGE
SECTIONS and all I/O buffers (not including any control bytes required
by data management) will be aligned on a double-word boundary.

When processing records in the buffer or on a file where the logical
records are blocked and contain COMPUTATIONAL, COMPUTATIONAL-i and
COMPUTATIONAL-2 fields. the user must add the necessary slack bytes to
ensure proper alignment of the logical records within the buffer.

To determine if interrecord slack bytes are required:

• Sum up the size of the record (include all intrarecord slack bytes).

• Divide this sum by maximum K required in anyone of the elementary
items.

• If R = 0, no slack bytes are required.
If R *, K-R slack bytes are required.

For alignment, the record should be expanded by the required number of
slack bytes.. Figure 32 (parts A and B) and the following text,
illustrate invalidly aligned. and appropriately aligned. blocked files
respectively.

Blocked V-type records containing COMPUTATIONAL-2 entries must be
moved for proper alignment.

BLOCK FILES EXAMPLE CODING

FD A BLOCK CONTAINS 3 RECORDS LABEL RECORDS ARE OMITTED. DATA RECORDS
IS B.

01 B.

02 C COMPUTATIONAL-1.

02 D PICTURE X.

Note the invalid alignment for a COMPUTATIONAL-1 field in Figure 32,
Part A.

To rectify this condition, (invalid alignment), move field B to an 01
in WORKING-STORAGE where automatic alignment will be provided, or
compute and add the required filler as shown in the following.

130 IBM S/360 DOS and TOS COBOL Lang. Specs.

BLOCK FILE EXAMPLE CODING SHOWING THE FILLER FOR ALIGNMENT (REPEATED
HERE FOR CLARITY).

FD A BLOCK CONTAINS 3 RECORDS LABEL RECORDS ARE OMITTED, DATA RECORDS IS B.

01 B.

02 C COMPUTATIONAL-1.

02 D PICTURE X.

02 FILLER PICTURE X(3).

Note how fillers pad records to provide alignment of all 01's in the
buffer, Figure 32, Part B.

A

I B B B

I C DI
~~I ~ ~~~& __ ~~
I 1 I ' I I I
1 I I I I ,
I I I

t i
DWB FWB DWB FWB

v

Port A Invalid alignment for a COMPUTATIONAL-1 field

A
"

B B B ... " & , ..

B Byte I B Byte: B Byte I
C D Fi lIer I C D Filler I C D Fi lIer I

r FWB FWB FWB

DWB DWB DWB DWB

"
Port B Fi" ers pad records to provide a I ignment of

o lis in the buffer.

DWB = Double Word Boundary FWB = Full Word Boundary

Figure 32. Invalidly Aligned and Appropriately Aligned File A Buffer

Appendix C 131

SOME RULES TO REMEMBER

Linkage Section

In Linkage Section all 01's are assumed to be on a double-word
boundary. It is the user's responsibility to ensure proper alignment
between an argument in CALL, and the corresponding data name in an ENTRY
statement.

In File Section

INPUT FILES: It is the us er' s responsibility to ensure that the logical
records contain the necessary intrarecord slack bytes. If the file is
blocked, and processing is done in the buffer, he must have added the
necessary interrecord slack bytes when the file was created.

OUTPUT FILES: The compiler adds the necessary intra record slack bytes.
The user defines the necessary interrecord slack bytes as required by
input.

132 IBM S/360 DOS and TOS COBOL Lang. Specs.

APPENDIXD: INTERMEDIATE RESULTS IN ARITHMETIC OPERATIONS

In the case of an arithmetic statement containing only a single pair
of operands, no intermediate results are generated. Intermediate
results are possible in the following cases:

1. In an ADD or SUBTRACT statement containing multiple operands
immediately following the verb

2. In a COMPUTE statement specifying a series of arithmetic operations

3. In arithmetic expressions contained in IF or PERFORM statements

In concept the compiler treats a statement as a succession of
operations. For example, the following statement:

COf'.tPUTE Y = A + B * C -
MULTIPLY B BY C
ADD A TO irl
DIVIDE E INTO D
SUBTRACT 1r3 FROM ir2
** F BY G
ADD ir4 TO irS

o / E + F ** G is replaced by
GIVING ir1
GIVING ir2
GIVING ir3
GIVING ir4
GIVING irS
GIVING Y

This appendix contains
determining the number of
intermediate results.

a discussion of the compiler algorithms for
integer and decimal places reserved for

The following abbreviations will be used in this discussion and in
Figure 33.

i--number of integer places carried for an intermediate result

g--number of decimal places carried for an intermediate result

d1,d2--number of decimal places defined for op1 or op2, respectively.

df--number of decimal places in final result field

ir--intermediate result field obtained from the execution of a generated
- arithmetic statement or operation. ir1, ir2, etc. , represent

successive intermediate results. These intermediate results are
generated either in registers or in storage locations. Successive
intermediate results may have the same location.

fr--number of integer and deciFal places in final result field.

INTERMEDIATE RESULTS

The number of integer and decimal places contained in an ir is
calculated as shown in Figure 33.

Appendix 0 133

r---------------------T-----------T----------------~----------------l I I Statement I I I
I Operation I Type IDecimal Places IInteger Places I
~--------------+-----------+---------------+--------------I
1+ or - Arithmetic dl or d2, which- lil + 1 or
I (internal ever is greater li2 + 1, which-
Idecimal) 1 lever is greater
. I
+ or - d1 or d2, which- lil + 1 or
(binary) 1 ever is greater li2 + 1

Iwhichever is
I greater
I

* dl + d2 il + i2

/
if (i2+max(df+l , d2)
+dl)~30

/
if (i2+max(df+l,d2)
+d1) >30

df+l or d2,
whichever is
greater

d2-dl

i2+dl

i2+dl

** df fr - df
~--------------------+---------+-----------------+------------~
1+ or - IIF or Idl or d2, which- 130 - d I
I I PERFORM I ever is greater I I
I I I I I
I * I I dl+d2 130-d I
I I I I I
1/ I Id2 130-d I
I I I I I
1** I 112 118 I L ______________________ ~ ___________ ~ _________________ ~ ________________ J

1 The user should assume that i will increase by one in all + or
operations if either field is binary or packed.

Figure 33. calculating Intermediate Results

134 IBM S/360 DOS and TOS COBOL Lang_ Specs.

COMPILER TREATMENT OF INTERMEDIATE RESULTS

The following indicates the action of the compiler when handling
intermediate results.

If Value of
i + d
is

<30

=30

>30

The Action Taken
is

i integer and d

decimal places are
carried for ire (If
operation is / or •• ,
i + d never exceeds 30)

30 - df integer and df
decimal places are carried

Note: If ROUNDED is specified, the value of df is df + 1.

Appendix D 135

APPENDIX E

This appendix contains two sample COBOL programs, Figures 34 and 35.
One is a cal1ing program, the other is a subprogram which is linked by
the calling program. The individual statements comprising the programs
were extracted and interspersed throughout the main body of the manual
for illustrative purposes. The linkage subprogram illustrated need not
be a COBOL progralo. However. COBOL assumes option 2 of the standard
CALL, SAVE, and RETURN macros.

IBM COBOL PROGRAM SHEET Form No. X28-' <664
p' ted USA nn ,n .

Sy.tem rSM 1JOs/~o P.-IIIII, In.tructiOn. s t 1 of %.
P,.- EXAMPLE OF A CALlrNG "'OGRAM Graphic I I I I I I I Card Form- * Identificotion

Prooramlller lOate Punch I I I I I I I ~3j I t8~
SE~UENCE SA I.

IPaGE) ISEllaL)
'12 I 34 6 78 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

~01 .~ I I DENiTI F 1 IrRTI ON 0 I VIS ION.
;~ 2 PROGIIlAIIf- 110. 'CAL LPR6 M'
'43 rl_E "'R~-"S • EXA MPLE OF iJ CR LLING PR 1o_6RA M •

• C 4 tNVI:RONM £NT DIVI 5 LON •
I

1< 5 rONFkGUR ATIO N SE crIO N.
Ie 6 SOUR!CElIoC OMPU TER IBN .-36; 030 •
14 7 O_BJE:CT-C "(JMPU 7 ER. IBM -.3641l D3~ •
148 I NPU:T- OU TPUT SEC TION.
I~ 9 F I LE~-CON TROLl.

1 ~ :SElE ~T F;r L £ A ASS IGN TO ' SYSf It4' IUTIL 11 TY 24 •• UN! T_S. , , !SELE CT FILf8 ASS IGN TO • SYS; 1~5 ' UNIT -REC ORD 254; R IlE SEn E NO
IALTE RNAT E IIR ER.

~/2 OATRl DIV 1510 N.
;/3

I
FIl!) SEC rrION

~/~ FD iF 1 L EiA ~ATR IRECO ~D I 5 PE C OIlD - I LASE lL fiE CORDS ARE ST l.aAlna Ion

:SlO(II(CO INTAJ INS 5 REe ORDS RE CORD 11116 IMODE IS F

"5 ./ ~ECO RD -, •

'/6 :;2 S UB-F II ELDA PI CTURE IS Xl6 81-
;,7 :~2 S U8-F IIELD i8 PI '(TUR E. IS XCI 2) •

dJ L8 FD IF I L E 8 OA TA R ECORO IS RE(iO RD- 2 LABEL REC o RDS: AREI OMI iTTEDi

019 61 ~~ECO RD-2 PIC TURE X{B :; } I

;2; PROCIEDtJ~ E Dr VISI ON. I

21 ~TAR:T • OPEN INPUT FI LEB OUTP UT F II LEA l
iii '-22 STAR:T2. READ FIL E8 AT EN o (30 TO LABA. I ,

I

• i\ s.andard eard form, IBM d"erro <:61897, is availabl" foe punehinll soure" s.a."m"n's loom .his form.

Figure 34. Example of a Calling Program (Part 1 of 2)

136 IBM 8/360 DOS and T08 COBOL Lang. Specs.

IBM COBOL PROGRAM SHEET
Syst.m IBM 805/360 PUllChinglnltructionl

PrOl,lram EXAM PLf OF' A CALLING PROGRAM Graphic I I I I I I ICard Form#

Prol,lramm.r I Oat. Punch 11Jllli
SE~UENCE I-' I SA IB

(PAGE) ISERIAL)
112 I 34 6 78 16 20 24 28 32 36 40 44 48 52

;e 2 rtI0' :eNTER LI NKAG E •

~'2 :CALL \ SU BPRG M' USING ~EC ORD- 2.
~4 3 ENTER co BOL..
~. 4 ~OTE SUB PR06 RAM MODI f1E5 INf" ORMA TIO" IN IHCO

1.4 5 WRITE RE CORD -I FROM ~E(O R D-2. 60 TO STAR T2.

:
•• 2 .'6 .ABA:. CL OSE FILE ,,~ FIL£B 5TO P RU N.

I

I

I

I

:
I
I
I
I

:
I
I
I
I
I
I
I
I
I
~

I

I
I
I
I
I
I

I

• A standard card form, IBM rlrctro C61897, is available for punchinlt source statrments from this form.

*

56 60

RD-2.

I

She.t!

form No. X28-14~
P t d 'n USA (In e I

of Z
Identification

I I t8~ 73]

64 68 7

Figure 34. Example of a Calling Program (Part 2 of 2)

Appendix E 137

COBOL PROGRAM SHEET
5,.tllll ISM 805/.360 P-'lin. Inatruc:tioila

P.,.... EXAM PLE OF A SUBPROGRAM GroplliC I I I Itt (Card Fo'III-
Protnllll"" IDola Puncll I I I I I I I
SEQUENCE

~A la
I.A.I ISI.,ALI

'12 IS 20 24 2. 52 56 I 34 S 78 40 44 48 52

•• 3 '., r DENiTI FI CATI ON D IVIS ION
~th PROC;ifUM- lID ' SUB PROG '

"3 REMA:RKS. EXA MPLE OF A SU BPRO 6RA~.

~U4 "'NVI'RONM ENT DIVI SION.

"5 rONF~IG UR IATIO IN SE CTIO 1'1. r--

e.6 'SOUR:CE - C OMPlJ ITER IBM -364 D3'

'.7 08.1 e'CT-C OMPU TER. IBM -3b' D3; , ,
;;8 OATA~ D_IV II_S_I_Cl III.
6;'9 l1li01'1(:1 NG- STOR AGE SECT 10111 ,
,,6 77 ~ODI FICA TION PIC TUflE XCI 2) • \I ALUE IS ' PUT ANY .. " INIC~'E SECl ION.
612

.,
:PASS -FIE LO. .,3 '2, A P ICTIJ RE)c Ie 68)

614 .2: B P IICTU IRE X i(I Z) .•
I ,

15 PRoC:eOUR Ie 01 IVISI ION
LEt STAR:T. E NTER LIN ~AGE
17 'ENTR Y 's UBPR 16M' USING PA SS-F lELl:

18 ~NTE R CO 80L.
19 MODI'FY MOVE MOO IFIC ATION T·O B

.2. :ENTE R LI NKAfi E.

I. 3'21 !RETU RN. ,
• A sraada,d card fora, IBM elecrro C61897, is .. ailable for puachiD8 source Srare_Drs &_Ihis fonl.

Figure 35. Example of a Subprogram (Part 1 of 2)

138 IBM 5/360 DOS and TOS COBOL Lang. Specs.

•

5&

OAT

Form No. X21·1464
Printed in U S /II" ...

511Nt 1 of Z
Identification

73] [80

80 64 61 72

A'

COBOL PROGRAM SHEET
Punching Inltructionl

Form No. X28-1.t6.t
Printed In U S.A.

Sheet 1. of Z
OF A SUB PROGRAM Graphic Cord Form. * Identification

Date Punch

SEOUENCE iA lB
l~aKIIH.'A&.I

112 16 24 72 I ·34 6 18 20 28 32 36 40 44 48 52 56 60 64 68

.~. ';1 ~NTE l' CO BOL.
004 002 flOTE TJlA T PA 5S -F lELO IN THIS PRO GIlA~ IS TU£ IOEN IT Ie AL

:"RER .O£F INEO liS REeD ~D-2 IN THE ~RLL ING PR06 RRM.
I

1
I

I
I
I : I
I

!
l
I

I

I
I
I
I

:
I i I
I

: 1 I I
I I j ! I
I i
I
I 1
I I

I I I
i I J

I :
I

1 I

-.l
I ! i

I i

• A standard card form, IBM .. I"ctro C61897, is available for pUDchlD8 source statements from this form.

Figure 35. Example of a Subprogram (Part 2 of 2)

Appendix E 139

INDEX

A (PICTURE character) 51
ACCEPT 84
ACCESS Clause 26

SEQUENTIAL 26
RANDOM 26

Accessing a Direct File Randomly
Accessing an Indexed File Randomly
Accessing an Indexed or Direct File

Sequentially 19
Access Methods 18
Actual Decimal Point (PICTURE) 52
ACTUAL KEY Clause 18, 27
ADD 94
Addition Arithmetic Operator 96
AFTER 99
AFTER ADVANCING LINES WRITE 81
Alignment of Data Fields 41
ALL

Character 37
EXAMINE 89

Alpha-form (PICTURE) 51
ALPHABETIC

Class Test 71
Alphabetic Item 37

Format 47
PICTURE 51

Alphanumeric Item 38
Format 47
PICTURE 51

ALTER (See Go To) 97
Alternate Area(s) 27
An-form (PICTURE) 51
AND (Logical Operator) 73
APPLY Clause 29

RESTRICTED-SEARCH 30
WRITE-ONLY 30

Arithmetic Expressions 96
COMPUTE 95

Arithmetic Operators 96
Arithmetic Statements and Options
Arithmetic Verbs 77
Argument 104
Arrays 59
ASSIGN Clause 25
Assumed Decimal Point (V PICTURE

Character) 51
Asterisk (PICTURE Character) 52
AT END

READ 79, 65
Author 23

B (PICTURE Character) 53
Basic Facts 9
BEGINNING 75
Binary I tern 39

Format 49
Subscripting 59

BLANK Clause 56, 46
BLANK (B PICTURE Character) 53
BLANK WHEN ZERO 53, 56
BLOCK CONTAINS 43, 44
Braces in Formats 16
Brackets in Formats 16

• 140

18
19

92

Branching (See GO TO and PERFORM) BY
(PERFORM)

EXAMINE 89
PERFORM 99

BY
Multiply 95

CALL 104
Carriage Control 82
CHANGED (EXHIBIT) 115
Character Meaning (PICTURE)

9 51
V 51
P 52
S 52

Z

*
CR
DB
,
o
B
$
+

52
52
52

53
53

53
53
53
53
54
54

Character Set 10
Check Protection (PICTURE)
Checking Labels 75
Class Test 71
CLOSE 20, 82, 85
COBOL Character Set 10

52

COBOL Debugging Language 115
COBOL Processing Capabilities
COBOL Program Sheet 13
COBOL VERBS 77
COMMA (PICTURE Character)

Punctuation 11
Comments (NOTE) 106
Comparison

Non-Numeric Items 70

53

17

Numeric Items 70
Compiler-Directing Declaratives
Compiler-Directing Statements
Compiler-Directing Verbs 77
Compile-Time Debugging Packet

74
64, 104

Compound Conditions 73
COMPUTATIONAL (DISPLAY)
COMPUTATIONAL-l 50
COMPUTATIONAL-2 50
COMPUTATIONAL-3 50
COMPUTE 95

50

Concepts of Data Description
Conditions

Compound 73
Event Conditions 65
Test Conditions 69

Condition-Names 13, 33
Condition-Name Test 72
Condition-Name Values 57
Conditionals 65

117

32

Conditionals Statement Evaluation 64

Configuration Section Format 23
CONSOLE

ACCEPT 84
DISPLAY 83

Concepts of Data Division 32
Constants (See Litera-Is)
Continuation Indicator 14
Continuation of Non-Numeric Literals
Control Characters 81
Control Field 42
COpy clause 107
Count-Conditional Statement 117
Creating Labels 75
Creation of Direct Files 20
Creation of Indexed Files 20
Credit Symbol (CR PICTURE Character)

Data Description Concepts 32
Data Division 31

Organization 31
Data Division Entry 31
Data Division Sections

File Section 41
Linkage Section 61
Working-Storage Section 61

Data Items 32
Data Manipulation Statements 85
Data Manipulation Verbs 77
Data-Names 12, 34

Qualification 13
Data Organization 17
DATA RECORDS 43, 45
Date-Compiled 22
Date-Written 22
Debit Symbol (DB PICTURE Character)
Decimal Point (e PICTURE Character)
Device Number 2,6
DIRECT-ACCESS 2~, 26
Direct Data Organization 17
DIRECT Organization 26
DISPLAY 83

USAGE 50
DISPLAY Statement 83
DISPLAY-ST 110
DIVIDE 95
Division Arithmetic Operator 96
Division-Names (Margins) 14
Dollar Sign (PICTURE Character) 54

E (Floating-Point Literal) 36
Editing

MOVE 86
PICTURE 50

Elementary Items 37
Format 47

Ellipsis in Formats 16
ELSE

IF 65
ON 116

End of Volume
READ 80
WRITE 81

ENDING' 75
ENTER Statement 104
ENTER COBOL 104
ENTER LINKAGE 104
ENTRY 104
Entry-Name 104

15

53

53
52

Entry Point 104
Environment Division 23
EQUAL TO 70
Evaluation of Conditional Statement
Event-Conditions 65
EXAMINE 89
EXHIBIT 115
EXIT Statement 106
Exponent 36
Exponentiation Arithmetic Operator
Expressions 64
External Decimal Item 38

Format 48
External Floating-Point Item 40

Format 49
PICTURE 55

External~Name 12, 26
COpy (Library-Name) 107
ENTER 104
INCLUDE (Library-Name) 108

FD 43
FD (COPY) 107
F Format Record 42
Figurative Constants 36
File and Record Handling 41
FILE-CONTROL 25, 107
File-Control Paragraph 24, 25

24
ACCESS Clause 24
ACTUAL KEY Clause
ASSIGN Clause 24
ORGANIZATION Clause
RECORD KEY Clause
RESERVE Clause 24
SELECT Sentence 24
SYMBOLIC KEY Clause

24
24

File-Name 13
File Section 31, 41

FD Entry 43
File Section Entries
FIRST 89
Fixed Length Record
Fixed Point Items

Binary 39

43

42
38

External Decimal 38
Internal Decimal 39

24

Floating-Point Item 40
Floating-Point Literal 36
Floating String (PICTURE)
Format Notation 15
Format F 42
Format U 42
Format V 42
FORM-OVERFLOW

APPLY 29
Fp-Form (PICTURE)
FROM

ACCEPT
SUBTRACT
TRANSFORM
WRITE 80

Giving 93
GIVING

84
94

90

ADD 94
SUBTRACT 94
MULTIPLY 95
DIVIDE 95

55

53

66

96

Index 141 •

GO TO 97, 104
GREATER THAN 70
Group Item 37

Format 47
Maximum Length 37

Group Move 86

Header Labels
LABEL RECORDS 43
USE 75

HIGH-VALUES 36
Hyphenated Words 15
Hyphens 15

Identification Division 22
IF 65

Evaluation 66
Nested 67
Test-Condition 69

Imperative Statement 64
IN 13
INCLUDE Statement 108
Indexed Data Organization 17
INDEXED Organization 26
INPUT 75
Input/Output Processing 17
Input/Output Section 24
Input/Output Statements 77
Input/Output Verbs 77
1-0 CONTROL 107
1-0 Control Paragraph 24, 28

APPLY Clause 24, 29
RERUN Clause 24, 29
SAME Clause 24, 28

IOCS 83, 75, 18
Installation 22
Internal Decimal Item 39

Format 48
Internal Floating-Point Item

Format 49
International Considerations
INTO

DIVIDE 95
READ 79

INVALID KEY
READ 79, 65
REWRITE 82, 65
WRITE 80, 65

Item Information Clauses 50

JUSTIFIED RIGHT Clause 60

Keys 18
ACTUAL 27
RECORD 28
SYMBOLIC 27

Key Words 15

LABEL RECORDS 43, 44
Labels

Checking 75
Creating 75

LEADING 89
LESS THAN 70
Level Numbers 32

Record Description 46
Levels of Data Items 32
Library Facility 107

• 142

40

14

Library-Name 107
Linkage Section 61, 32
Literals

Floating Point 36
Non-Numeric 35
Numeric 35

LOCK 83
Logical Operators 73
Long-Precision 40

COMPUTATIONAL-2 50
Looping (PERFORM) 98
LOW-VALUES 37
Lower-Case Words 15

Machine Requirements 9
System Requirements 10
Object Program Requirements 10

Mantissa 36
Margin Restrictions 14
Minus Sign

Arithmetic Operator 96
PICTURE Character 54

Mode 45
MORE-LABELS 76
MOVE 85
Multiplication Arithmetic Operator
Multiple Record File 42
MULTIPLY 94

Name Qualification 13
NAMED (EXHIBIT) 117
Name Types

Data-Names 12, 34
External-Names 12
Procedure-Names 12
Paragraph-Names .13
Other-Names 13

NEGATIVE 71
Nested IF Statements 67
NEXT SENTENCE

IF 65
ON 116

Nine (9-PICTURE Character) 51
Non-Numeric

Comparison 70
Literals 35
Move 87

NO (RESERVE) 27
No Labels (Records) 44
Non-Standard Label Records 44
Non-Numeric literal 35
NO REWIND 83
NOT

Conditions 72
Logical Operators 73

Notation Format 15
NOTE Statement 106
Nwneric

Class Test 71
Comparison 70
Literals 35
Move 86
PICTURE Character 51

Numeric-Form (PICTURE) 51

OBJECT-COMPUTER
OCCURS Clause
OF 13

23
58, 46

96

OMITTED Labels (Records) 44
ON 116

Count-Condition 65, 116
ON SIZE ERROR 93
OPEN 78, 85
OPEN Statement 77
Operational Sign 52
Operators (See Logical Operators,
Arithmetic Operators, Relational
Operators)

Optional Words 15
OPTIONS 93
OR 73
ORGANIZATION Clause

INDEXED 26
DIREC'1' 26

Organization of Data Division 31
Other Names 13
OTHERWISE

IF 65
ON 116

OUTPUT 75
Overflow-Names 13
Overflow Test 72

P (PICTURE Character) 52
Packed Decimal 39

COMPUTATIONAL-3 50
Paragraph-Name 12, 63

Margins 13
Parenthesis

Arithmetic Expressions 96
Compound Conditions 73

Pence Decimal Fractions (Sterling) 114
Pence (Sterling) 114
Pence Terminators (Sterling) 114
PERFORM Statement 98, 104
Period 11
PICTURE Clause 50, 46

Considerations 55
Sterling Non-Report 110
Sterling Report 111

Plus Sign
Arithmetic Operator 93
PICTURE Character 54

POSITIVE 71
Pound-Report-String 111
Pound Separators (Sterling) 112
Pound (Sterling) 111
Prewritten Source Program 107
Procedure Branching Statements 96
Procedure Branching Verbs 77
Procedure Division 63
Procedure-Name 12, 63
PROGRAM-I 0 22
Program Identification Code 14
Program-name 22
Program Sheet 13
Punctuation 11, 15

Qualification of Names 13
Qualifiers 13
QUOTE 37
Quotient 95

RANDOM-ACCESS 18, 26
READ Statement 65, 79, 85
READY 115

RECORD CONTAINS 43, 44
Record Description Entry

Format 46
Record size 37

RECORDING MODE 43, 45
RECORD KEY Clause 18, 19, 28
Record length 37
Record-Name 13
Record Types 42
REDEFINES Clause 57, 46
REEL

CLOSE 83
RERUN 29

Relational Operands 70
Relational Operators 70
Relation Test 70
Remarks 22
REPLACING 89
Report-Form (PICTURE) 52
Report Item 38

Format 48
PICTURE 51

RERUN Clause 29
RESERVE Clause 27
Reserved Words 15
RESET (TRACE) 115
RESTRICTED SEARCH

APPLY 30
RETURN (ENTER) 104
REWRITE Statement 82, 85, 65
ROUNDED 93

ADD 94
COMPUTE 95
DIVIDE 95
MULTIPLY 95
SUBTRACT 95

Rules for Notation 15
RUN (STOP) 97

S (PICTURE Character) 52
SAME Clause 28
Sections 63

Name Qualification 13
Security 22
SELECT (Copy) 107
SELECT Sentence 25
Sentences 64
Separator 11
Sequence Number 14
SEQUENTIAL-ACCESS 18, 26
Series of Imperative Statements 65
Shilling Separator (Sterling) 112
Shillings (Sterling) 112
Short-Precision 50, 40

COMPUTATIONAL-ISO
Sign Test 71
Simple Condition 69
Single Record File 42
SIZE ERROR 93, 65

ADD 94
COMPUTE 95
DIVIDE 95
MULTIPLY 95
SUBTRACT 94

SOURCE-COMPUTER 23
Source Program Library Facility 107
Source Program Statements 14
SPACE 36

Index 143 •

Space (S PICTURE Character) 53
Special Characters 10
Square Brackets in Formats 16
Standard and User Labels 44
Standard Error 76
STANDARD Label Records 44
Standard Sequential Data Organization 17
Statements 64

Arithmetic 92
Compiler-Directing 64
Conditional 64, 65
Data Manipulation 85
Imperative 64
Procedure Branching 96

Sterling Currency Feature 109
Sterling Non-Report 110
Sterling Report III
Sterling Sign Representation 110
STOP Statement 97, 104
STOP literal 104
Structure of COBOL Source Program 13
Subscripting 59
SUBTRACT 94
Subtraction Arithmetic Operator 96
SYMBOLIC KEY Clause 18, 19, 27
Syntax 63
SYSPUNCH 83

Tables 59
TALLYING 89
Test-Conditions 65,
THEN (IF) 65
THRU (Perform) 98
TIMES (Perform) 98
TO

ADD 94
ALTER 98
GO 97
MOVE 86
TRANSFORM 90

TRACE 115
Trailer Labels (USE)
Transfer (GO TO) -97
TRANSFORM 90
Truncation 93
Types of Data Items
Types of Names 12
Types of Statements

Unary Sign
UNIT

CLOSE 83
RERUN 29

96

69

75

37

64

UNIT-RECORD 25, 26
Unspecif~ed Format Record
UNTIL (Perform) 98
UNTIL FIRST (EXAMINE)
UPON

83
83

CONSOLE
DISPLAY
SYSPUNCH 83

50,·46
III

USAGE Clause
DISPLAY-ST

User Labels
LABEL RECORDS
USE 75

USE Statement
USING

• 144

44

74

89

42

CALL 104
ENTRY 104

UTILITY 25, 26

V (PICTURE Character) 51
VALUE Clause 57, 46

LINKAGE SECTION 61
WORKING-STORAGE SECTION 61

Variable Format Record 42
Variable Record Length 42
VARYING (Perform) 98

Word Formation 11
Word List 124
Working Storage Section
WRITE 65, 80, 85
WRITE-ONLY

APPLY 30

X (PICTURE Character) 51

Z (PICTURE Character) 52
ZERO

61, 32

Figurative Constant 36
Sign Test 71

ZERO (0 PICTURE Character) 53
Zero Suppression (Z PICTURE
Character) 52

Zoned Format 38

,

~ .

~ .

READER'S COMMENT FORM

IBM System/360
Disk and Tape Operating Systems
COBOL Language Specifications C24-3433-3

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. H your answer to a question is "No" or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confi­
dential basis. Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

Yes No

• Does this publication meet your needs? c::J CJ

• Did you find the material:
Easy to read and understand? c::J CJ
Organized for convenient use? c:::J c::J
Complete? c:J c::J
Well illustrated? CJ c::J
Written for your technical level? c::J c::J

• What is your occupation? __________________________ _

• How do you use this publication?
As an introduction to the subject? c:J As an instructor in a class? c::J
For advanced knowledge of the subject? c::J As a student in a class? c::J
For information aoout operating procedures? c:J As a reference manual? c::J

Other ___ __

• Please give specific page and line references with your comments when appropriate.

COMMENTS:

• Thank you for your cooperation. No postage necessary if mailed in the U. S. A.

) C24-3433-3 Staple

Fold Fold

---------~----------~--------------------------------------

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Publications, Dept. 157

POSTAGE WILL BE PAID BY •••

IBM Corporation

P. O. Box 6

EndicoH, N. Y. 13760

FIRST CLASS
PERMIT NO. 170
ENDlcon, N. Y.

-~-----~-------------~--------------------------------------
Fold

Internationar Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.lOBOl
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

t
I
I
I
I
I
I.

• .!

C24-3433-3

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.IOBOI
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

o w
C w w

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	replyA
	replyB
	xBack

