File Number S$360-21 !
Form C24-3414-4 Das
TOS

(

Systems Reference Library

IBM System/360
Disk and Tape Operating Systems
Assembler Language

This reference publication contains specifications
for the IBM System/360 Disk and Tape Operating
Systems Assembler Language (including macro .
instructions and conditional assembly facilities). .

The assembler language is a symbolic
programming language used to write programs for
the IBM System/360. The language provides a
convenient means for representing the machine
instructions and related data necessary to program
the IBM System/360. The IBM System/360 Disk and
Tape Operating Systems Assembler Programs process
the language and provide auxiliary functions
useful in the preparation and documentation of a
program, and include facilities for processing
macro instructions.

Part 1 of this publication is an introduction
to the assembler language.

Part 2 describes the basic functions of the
assembler language.

Part 3 describes the conditional assembly and
macro facilities in the assembler language.

PEY

R E

ex 11111

PREFACE

This publication is a reference manual for
the programmer using the assembler language
{including macro instructions).

Part 1 of this publication presents
information common to all partez of the
language. Part 2 contains specific infor-
mation concerning the symbolic machine
instruction codes and the assembler program
functions provided for the programmer's
use. Part 3 of this publication describes
the conditional assembly and macro facili-
ties in the assembler language.

Appendices A through J follow Part 3.
Appendices A through F are associated with
Parts 1 and 2 and present such items as a
summary chart for constants (Appendix F),
instruction listings, character set rep-
resentations, and other aids to program-
ming. Appendix G contains macro-facility
summary charts, and Appendix H discusses
table capacities for various elements of
the language. Appendix I is a sample pro-
gram. Appendix J is a features comparison
chart of System/360 assemblers. Appendix K
contains information required for assembling
a program. Appendix L contains self-reloca-
ting program techniques.

Prerequisite for a thorough understanding
of this publication is a basic knowledge of
System/360 machine concepts. The publica-
tions most closely related to this one are:

1. 1IBM System/360 Principles of Operation,
Form A22-6821.

*

Minor Revision (March, 1967)

2. 1IBM System/360 Disk Operating System:
Data Management Concepts, Form C24-3427,
or

IBM System/360 Tape Operating System:
Data Management Concepts, Form C24-3430.

3. IBM System/360 Disk Operating System:
Supervisor and Input/Output Macros,
Form C24-5037 or

IBM System/360 Tape Operating System:
Supervisor and Input/Output Macros,
Form C24-5035.

4. IBM System/360 Disk Operating System:
System Control and System Service Pro-
grams, Form C24-5036 or

IBM System/360 Tape Operating System:
System Control and System Service Pro-
grams, Form C24-5034.

5. IBM System/360 Disk Operating System:
System Generation and Maintenance,
Form C24-5033 or

IBM System/360 Tape Operating System:
System Generation and Maintenance,
Form C24-5015.

6. IBM System/360 Disk and Tape Operating
Systems Utility Macro Specifications,
Form C24-5042.

Titles and abstracts of other related
publications are listed in the IBM
System/360 Bibliography, Form A22-6822.

This publication, C24-3414-4, is a reprint of C24-3414-3, incorporating changes

released in Technical Newsletters N26-0516, N26-0520, and N26-0533.
These publications are not obsoleted by this revision.

Specifications contained herein are subject to change from time to time. Any such

change will be reported in subsequent revisions or Technical Newsletters.
-

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
A form has been provided at the back of this publication for readers’ comments. If
the form has been detached, comments may be directed to: IBM Programming

Publications, Department 232, San Jose, California 95114,

© International Business Machines Corporation, 1965

PART 1 -— INTRODUCTION TO THE
ASSEMBLER LANGUAGE. . .

e o o @& ® o o

SECTION 1: INTRODUCTION. . o « « « «

MACHINE FEATURES REQUIRED. « <« « =« <« o
compatibility. « ¢ 2 o o o « o o o o o
The Assembler language « « « « <

Machine Operation Codes. .

Assembler Operation Codes.
Macro-Instructions

L I B Y)
[2 B B
o o 8 0

The Assembler Program. . « « « « « = o
The Macro Generation and

conditional Assembly Section. .

The Assembly Section « . « « « =

Programmer AidS. « « « ¢ o ¢ ¢ o o o .
Assembler - DOS/TOS Relationships. . .

SECTION 2: GENERAL INFORMATION
Assembler Language Coding Conventions.
Coding Form. « . « «
continuation Lines . . .
Statement Boundaries . .
Statement Format
Summary of Instruction Format.
Comments Statements. .
Identification-Sequence Field.
Character Set. .

e o e e e

¢ o
L I)

e o @ o @ o e

Assembler Language Structure

Terms and Expressions. . -
Terms - L] - - L d - - - -
Symhols. e o o o o -
Self-Defining Terms. .
Location Counter Referenc
Literals « « « « « « o o
Symbol Length Attribute
Reference . . .
Expressions . . < .
Evaluation of Expressions. .
Absolute and Relocatable
Expressions . .

lm.l..

e @ ® e & © o o

PART 2 -- BASIC FUNCTIONS OF THE
ASSEMBLER LANGUAGE. .

e o @& o & o o o

SECTION 3: ADDRESSING
SECTIONING AND LINKING .

-——

PROGRAM

Addr% s ing - - - - - - - - - - - - L]
Addresses -- Explicit and Implied .
Base Register Instructions.

USING -- Use Base Address
Reg ister. - L] - - - - L] - - - -
DROP -- Drop Base Register . . .

-
r-J

® ¢ 0 s 0 0
N
o

0 VY 0 WO N N NN

=
- o

b e b b b b
ERE W

[
(%)

(b b e b
[N XSNE NV |

NN
N b o

[
N

24

24

24
24
24

24
25

CONTENTS

Programming with the USING
Instruction. . . e o o o o
Relative Addressing « « « . « . &«

o & o

Program Sectioning and Linking « . . .
control Sections. . . .
Control Section Location
Assignment. « « « « « = o o o
First Control Section . . .
START -- Start Assembly.
CSECT -- Identify Control
SEeCtiOn ¢« o« o ¢ « @ o = o o o o
Unnamed Control Section. . . -
DSECT -- Identify Dummy Sect1on.
COM -- Define Blank Common Control
section‘ - - - - - - L - - - - - -
Symbolic Linkages . « ¢« « o « o o o
ENTRY -~ Identify Entry-Point
symbol - L] - - - - - - - - - -
EXTRN -- Ident1fy External Symbol .
Addressing External Control
Sections. .

L]
.
L]

® ® e ® o e o o o =

SECTION 4: MACHINE-INSTRUCTIONS.

Machine-Instruction Statements . . .
Instruction Alignment and
Checking. . . e o o o o o o
Operand Fields and Subflelds. . o
Lengths -- Explicit and Implied

Machine-Instruction Mnemonic Codes
Machine~Instruction Examples.
RR Format. « « « « «

RX Format. .

RS Format. .

SI Format.
8S Format.

¢ o 0 0

s o @

s & 0

s 8 o @

o 0 o @

o & 3 @

¢ o 6 o o @
e 0 9 0 0 ¢
e« 6 & 6 & 0o

Extended Mnemonic CodeS. « « o o« o o «

SECTION 5: ASSEMBLER INSTRUCTION
STATEMENTS. . . .

® & e @ o ©o & & = o

Symbol Definition Instruction. .
EQU -— EQUATE SYMBOL. « « « « « <« «
Data Definition Instructions
DC =~ DEFINE CONSTANT . 2 « « «
Operand Subfield 1: Duplxcat1on
Factor. . . .
Operand SUbfield 2.
Operand Subfield 3:
Operand Subfield 4:
DS -- Define Storage. .
Special Uses of the Duplication
Factor. . . . o
CCW -- Define Channel Command Word.

Type - - -
Modifiers.
Constant .

e ® e o o

Listing Control Instructions . . . « &
Title -- Identify Assembly Output .
EJECT -- Start New Page « « « « - «

o 6 0 & 0o o o

L] ¢ & 0 0 [

26
26

27
27

28
28
28

28
29
29

30
31

31
31

32
33
33

33
33
34

35
35
35
36
36
36
36

36

SPACE -- Space Listing. .
PRINT -- Print Optioral Data. .

Program Control Instructions . . .
ICTL -- Input Format Control. .
ISEQ -- Input Sequence Checking
PUNCH -- Punch a Card . .

¢ 0 o 8

REPRO -- Reproduce Following Card

ORG -~ Set location Counter . .
LTORG -- Begin Literal Pool . .

s o 8 & 0 8 o

Special Addressing Consideration
CNOP -- Conditional No Operation. .

COPY -- Copy Predefined source
Coding - - - - - - - - - > - -
END - Bnd Assenlb].y *® @ e o o e

PART 2 -- CONDITIONAL ASSEMBLY AND
MACRO FACILITIES IN THE ASSEMBLER
LANGUAGE. .

SECTION 6: INTRODUCTION TO THE

MACRO
The Macro-instruction Statement. .

The Macro-definition

The Assembler Source Statement Library

Varying The Generated Statements .
Variable SymbolS « ¢« o« o « « « o
Types of Variable Symbols. .
Assigning values to variable

Symbols . .

Global SET Symbols - -

Organization of this Part of the
Publication . .

e« & ® ¢ e o o @

SECTION 7: HOW TO PREPARE
MACRO-DEFPINITIONS @« 2 2 « « = o o
MACRO -- Macro-Definition Header .
MEND -- Macro-Definition Trailer .

Macro-Instruction Prototype. . . .
Alternate Statement Form . .

Model Statements « « « « « « o o o

Symbolic ParametersS. « « « « « « «
Concatenating Symbolic
Parameters with Other
Characters or Other
Parameters. e o
Comments Statements.

o e ® & o o

Copy StatementS. . « « « <« « « «

SECTION 8: HOW TO WRITE
MACRO-INSTRUCTIONS: « « « « « s« «

Macro-Instruction Operands

Statement FPOIM « « « o « « o o o o

Symbolic

@ 0 & & o ¢ o & o LI 3

52
52

53
53
53
54
54
55
55
55

56
57

58

58
58
58
59
59

59
59

59
59
60

61
61
61
61

62
63

64
65

65

66
66
67

Omitted Operands « « o o o « « « =
Ooperand Sublists « < « ¢« ¢« 2« o « &
Inner Macro-instructions
Levels Of Macro-Instructions . . .

SECTION 9:
ASSEMBLY INSTRUCTIONS ¢« ¢ o« o «
SET Symbols. . . . o o
Defining SET Symbols .
Using Variable Symbols

Attributes . . .
Type Attrlbute (T*)e ¢ o =«
Length (L'), Scaling (s8%),

Integer (I') Attributes . .
Count Attribute (K*) . . . -
Number Attribute (N*). . .
Assigning Integer Atttibutes

Symbols . .
Sequence SymboOlS « « « « « ¢ « o«

® o o e s ® o e

ICLA,LCLB,LCLC -- Define SET

SETA -- Set Arithmetic

Evaluation of Arithmetic
Expressions. . e o s & o =
Using SET.. Symbols

SETC -- Set Character. .
Type Attribute. . . .
Character Expression.
substring Notation .

Using SETC Symbols

¢ 8 o 3 @
¢ o & o 2
¢ & & a2
a0 8 3 0

SETB -- Set Binary ® © ® ® o @ o o
Evaluation of Logical

Expressions . .

Using SETB Symbols

AIF -- Conditional Branch. . . . «
AGO -- Unconditional Rranch. . . .

ACTR -- Conditional Assembly
counter . . « . o

®« ®© o e » » o e

ANOP -- Assembly No Operation. . .
conditional Assembly Elements. . .
SECTION 10: ADDITIONAL FEATURES. .
MEXIT -- Macro-Definition Exit . .

MNOTE Statement. . « « « «

Global and Local Variable Symbols.

Defining Local and Global SET

symmls - » - - - - - - - -
Using Global and Local SET

Symmls - - - - - - - -
Subscripted SET Symbols. . .

HOW TO WRITE CONDITIONAL

Symbols

» o 8 o 0

.

L]

67
67
68
69

70
70
70

71
72

72
73
73
73
74
75
75

76
76

77
77
78
80
80

81
82

82
83

84
84
85
86
86
86
87
88

88
90

SYSTEM VARIABLE SYMBOLS:. « « © « = = «
§SYSNDX -- Macro-Instruction
INAEX o o o o o o o o = o o « =
§SYSECT -- Current Control
Section « « o o o = = « « »
€SYSLIST -- Macro-Imstruction
Operand « « « o o « o o o o o =

Keyword Macro-Definitions And
InStructionS. « « + ¢ ¢ « o o o o « o
Keyword Prototype. « « o« « « = -
Keyword Macro-Instruction. . . .

Mixed-Mode Macro-Definitions and
INSEXUCtIiONS. v « o 2 « 2 2 o o = « «
Mixed-Mode Prototype « « . « « «
Mixed-Mode Macro-Instruction . .
CONDITIONAL Assembly compatibility .

APPENDIX A: EXTENDED BINARY CODED
DECIMAL INTERCHANGE CODE (EBCDIC) . .

APPENDIX B: HEXADECIMAL-DECIMAL NUMBER
CONVERSION TABLE. « & o o o o o = « o
APPENDIX C: MACHINE-INSTRUCTION FORMAT

APPENDIX D: MACHINE-INSTRUCTION
MNEMONIC OPERATION CODES. o« =« o « = o
APPENDIX E: ASSEMBLER INSTRUCTIONS . .

APPENDIX F: SUMMARY OF CONSTANTS . . .

- 91
. 91
- 92
- 93
. 93

- 94
- 9%

. 96
.« 96
. 96

-« 97

- 98

-101

-106

.108
.117

.120

Form C24-3414-2, -3, -4
Page Revised 4/26/67

By TNL N26-0536

APPENDIX G: MACRO FACILITY SUMMARY .

APPENDIX H: DICTIONARY AND SOURCE
STATEMENT SIZES . . .

Part 1: Dictionaries Used in Macro
Generation. . .« ¢« ¢« ¢ ¢ « ¢ o « o .

Part 2: Macro Mnemonic Table
Part 3: Source Statement Complexity-
Conditional Assembly and Macro

Generation.

Part 4: Source Statement Complexity;
Assembler StatementSe . « <« < . . .

Part 5: Print Control Statement Listing

Restrictions.

APPENDIX I: SAMPLE PROGRAM AND
ASSEMBLER LISTING DESCRIPTION . . .

APPENDIX J: ASSEMBLER LANGUAGES--
FEATURES COMPARISON CHART

APPENDIX K: ASSEMBLING A PROGRAM . .
DIAGNOSTIC ERROR MESSAGES.

APPENDIX L: SELF-RELOCATING PROGRAM
TECHNIQUES. . . . « « « ¢ « o & «

INDEX. + ¢« « ¢ o ¢ v o o o o « o o« &

.121

.126

.126

.128

.128

129

.130

.131

.135
.138

.145

.156

.158

Form C24-3414-2,-3, -4
Page Revised 4/26/67
By TNL N26-0536

PART 1 -- INTRODUCTION TO THE ASSEMBLER LANGUAGE

SECTION 1: INTRODUCTION

Ccomputer programs may be expressed in
machine language, i.e., language directly
interpreted by the computer, or in a sym-
bolic language, which is much more meaning-
ful to the programmer. The symbolic lan-
guage, however, must be translated into
machine language before the computer can
execute the program. This function is
accomplished by an associated processing
program called an assembler or a compiler.

Of the various symbolic programming
languages, assembler languages are closest
to machine language in form and content.

The assembler language discussed in this
manual is a symbolic programming language
for the IBM System/360. It enables the
programmer to use all IBM System/ 360
machine functions, as if he were coding in
System/360 machine language.

The assembler program that processes the
language translates symbolic instructions
into machine-lanquage instructions, assigns
storage locations, and performs auxiliary
functions necessary to produce an executa-
ble machine-language program.

MACHINE FEATURES REQUIRED

e 16,384 bytes of main storage. At least
10,240 contiguous bytes must be availa-
ble to the Assembler. Additional stor-
age, if available to the Assembler, is
used to allocate area for expanding
Assembler tables.

NOTE: If at least 14,336 contiguous
bytes of storage are available to the
assembler, a larger variant of the
assembler can be incorporated. For
details see Appendix K and the publica-
tions for DOS and TOS system generation
(see preface).

e Standard instruction set

® One I/O Channel (either multiplexor or

selector)

® One Card Reader (1442N1, 2501, 2520B1,
or 2540)1

® One Card Punch (1442N1, 1442N2, 2520,

or 2540)1, if punched output is
desired

® One Printer (1403, 1404 - continuous
forms only, or 1443)1, if a printed
listing is desired

® One 1052 Printer-Keyboard

This has

One 2311 Disk Storage Drive.
the DOS resident system pack.

or
® One 2400-series Magnetic Tape Unit
(either 7-track or 9-track). This has
the TOS resident system.
® Three work files. These can be:
Three 2311 Disk Storage extents. (Disk
system only.) These extents may be on

the same device that contains the DOS
resident system;

or
Three 2400-series Magnetic Tape Units
(either 7-track or 9-track: If 7-track,
the data conversion feature is required
and the tape must be set converter on,
translator off, odd parity). These can
be used for either the disk or tape
system.

The assemble-and-execute option is

an alternative to the DECK option; both
are not supported for the same assem-
bly. If the assemble-and-execute
option is chosen, SYSINK is a
2400-series Magnetic Tape Unit (9-track
or 7-track with the data conversion
feature) for the tape-resident system,
or a 2311 Disk Storage extent (which
may be on the system resident device)
for the disk-resident 'system.
NOTE: Either 2401, 2402, 2403, 2404,
or 2415 Magnetic Tape Units apply to
any reference to 2400-series Magnetic
Tape Units.

COMPATABILITY

Within the Disk and Tape Operating Systems
the assemblers can be used on System/360
Models 30, 40, 50, 65, and 75, provided
that main storage and input/output require-
ments are satisfied. The assemblers (disk
and tape) will both accept the same source
language input and produce identical object
output.

lA 2400-series Magnetic Tape Unit may be sub-
stituted for this device. (It may be 7-track
or 9-track. If 7-track is used the data con-
version feature is required and the tape must
be set converter on, translator off, odd
parity.) The 1052 Printer-Keyboard must be
operable if device assignment is tape.

Introduction 7

The System/360 Disk and Tape Operating
Systems Assembler assembles source programs
written in the System/360 Basic Programming
Support Basic Assembler Language, the Basic
Programming Support Assembler (8K Tape)
Language, the IBM 7090/7094 Support Package
for IBM System/360 Assembler Language, and
the Basic Operating System/360 Assembler
(8K Disk) Language, with the following
exceptions:

1. The XFR assembler instruction, which is
considered an invalid mnemonic opera-
tion code in DOS/TOS Operating Systems
is not allowed.

2. Additional cards may be required in
Macro definitions (if used by the
source program) to satisfy DOS/TOS
Operating Systems macro requirements.

3. System macro instructions are changed,
where necessary, to conform with the
proper DOS/TOS requirements.

4. An MNOTE assembler instruction whose
operand entry consists solely of a
message enclosed in apostrophes is
given a severity code of one.

5. AIF operand.entries must not contain
explicit binary zeros or ones.

The DOS/TOS Operating Systems assembler
language is a subset of the Operating
System assembler language. Source programs
written in DOS/TOS assembler language will
be acceptable to the Operating System
assemblers provided that system macro
instructions are changed, where necessary,
to conform with the proper Operating System
requirements.

Note: The assignment, size, and order-
ing of literal pools may differ among the
assemblers.

Differences in conditional assembly
instructions for System/360 assemblers are
described in Section 10 of this publica-
tion.

THE ASSEMBLER LANGUAGE

The basis of the assembler language is a
collection of mmemonic symbols which rep-
resent:

1. System/360 machine-language operation
codes.

2. Operations (auxiliary functions) to be
performed by the assembler program.

The language is augmented by other sym-
bols, supplied by the programmer, and used
to represent storage addresses or data.
Symbols are easier to remember and code
than their machine-language equivalents.
Use of symbols greatly reduces programming
effort and error.

Machine Operation Codes

The assembler language provides mnemonic
machine-instruction operation codes for all
machine instructions in the IBM Systen/360
Universal Instruction Set, and extended
mnemonic operation codes for the condi-
tional branch instruction.

Assembler Operation Codes

The assembler language also contains
mnemonic assembler-instruction operation
codes, used to specify auxiliary functions
to be performed by the assembler program.
These are instructions to the assembler
program itself and, with a few exceptions,
do not result in the generation of any
machine-language code by the assembler
program. Certain assembler instructions,
i.e., conditional assembly instructions,
affect the order of source statement assem-
bly and macro generation or the content of
generated instructions.

Macro-Instructions

The assembler language enables the program-
mer to define and use macro instructions.
Macro instructions are represented by an
operation code which, in turn, actually
stands for a sequence of machine and/or
assembler instructions that accomplish the
desired function.

Macro-instructions used in preparing an
assembler language source program fall into
two categories: system macro-instructions,
provided by IBM, which relate the object
program to components of the Basic Operat-
ing System, and macro-instructions created
by the programmer specifically for use in
the program at hand, or for incorporation
in a library, available for future use.

Programmer-created macro-instructions
are used to simplify the writing of a pro-
gram and/or to ensure that a standard
sequence of instructions is used to accom—
plish a desired function.

For instance, the logic of a program may
require the same instruction sequence to be
executed again and again. Rather than code

this entire sequence each time it is need-
ed, the programmer creates a macro-
instruction to represent the sequence, and
then each time the segquence is needed, the
programmer simply codes the macro-
instruction statement. During assembly,
the sequence of instructions represented by
the macro-instruction is inserted in the
object program.

Part 3 of this publication discusses the
conditional assembly and macro facilities.

THE ASSEMBLER PROGRAM

The assembler program, also referred to as
the “assembler,” processes gource
statements written in the assembler lan-
guage. The assembler is separated into an
assembly Section and a conditional assembly
and macro generation section.

The Macro Generation and Conditional
Assembly Section

Before source statements can be translated
into actual machine language, macro-
instructions and conditional assembly
statements within the source program must
be processed. The source program is read.
Any programmer macro-definitions which
appear before the main portion of the pro-
gram are stored for use when the macro is
referenced. (System macro-definitions are
retrieved from the source statement library
and handled in the same way.)

The main portion of the program is then
processed. Whenever macro generation or
conditional assembly is required, the gen-
erated or conditionally assembled text is
inserted in the original source program.
The resultant augmented source program is
ready for input to the assembly section.

The Assembly Section

Processing a source program involves the
translation of source statements into
machine language, the assignment of storage
locations to instructions and other ele-
ments of the program, and the performance
of the auxiliary assembler program func-
tions designated by the programmer. The
output of the assembler program is the
object program, a machine-language equival-
ent of the source program. The assembler
program furnishes a printed listing of the
source statements and object program state-

ments and additional information useful to
the programmer in analyzing his program,
such as error indications. The object
program is in the format required by the
linkage editor component of DOS/TOS.

The amount of main and secondary storage
allocated to the assembler program for use
during processing determines the maximum
number of certain language elements that
may be present in the source program. For
a discussion of these dependencies, see

Appendix H.

PROGRAMMER AIDS

The assembler program provides auxiliary
functions that assist the programmer in
checking and documenting programs, in con-
trolling address assignment, in segmenting
a program, in data and symbol definition,
in generating macro-instructions, and in
controlling the assembly program itself.
Mnemonic codes, specifying these functions,
are provided in the language.

Variety in Data Representation: Decimal,
binary, hexadecimal, or character represen-
tation of machine-language binary values
may be employed by the programmer in writ-
ing source statements. The programmer
selects the representation best suited to
his purpose.

Base Register Address Calculation: As
discussed in the IBM System/360 Principles
of Operation manual, the System/360
addressing scheme requires the designation
of a base register (containing a base
address value) and a displacement value in
specifying a stcrage location. The assem-
bler assumes the clerical burden of calcu-
lating storage addresses in these terms for
the symbolic addresses used by the program-
mer. The programmer retains control of
base register usage and the values entered
therein.

Relocatability: The object programs pro-
duced by the assembler are in a format
enabling relocation from the originally
assigned storage area to any other suitable
area.

Sectioning and Linking: The assembler
language and program provide facilities for
partitioning an assembly into one or more
parts called control sectioms. Control
sections may be added or deleted when locad-
ing the object program. Because control
sections do not have to be loaded contigu-
ously in storage, a sectioned program may
be loaded and executed even though a con-
tinuous block of storage large enough to

Introduction 9

accommodate the entire program may not be
available.

The linking facilities of the assembler
language and program allow symbols to be
defined in one assembly and referred to in
another, thus effecting a link between
separately assembled programs. This per-
mits reference to data and/or transfer of
control between programs. A discussion of
sectioning and linking is in Section 3

under Program Sectioning and Linking.

Program Listings: A listing of the source
program statements and the resulting object
program statements may be produced by the
assembler for each source program it assem-
bles. The programmer can partly control
the form and content of the listing.

Error Indications: As a source program is
assembled, it is analyzed for actual or
potential errors in the use of the assem-

10

bler language. Detected errors are indi-
cated in the program listing.

ASSEMBLER - DOS/TOS RELATIONSHIPS

The assembler program is a component of IBM
disk and tape operating systems and func-
tions under their control. DOS/TOS provides
the assembler with input/output, library,
and other services needed in assembling a
source program. In a like manner, the
object program produced by the assembler
will normally operate under control of DOS/
TOS and depend on it for input/output and
other services. 1In writing the source pro-
gram, the programmer must include statements
requesting the desired functions from DOS/
TOS. (See the Supervisor and Input/Output
Macros publications listed in the Preface.)

This section presents information about
assembler language coding conventions,
assembler source statement structure,
addressing, and the sectioning and linking
of programs.

ASSEMBIER LANGUAGE CODING CONVENTIONS

This subsection discusses the general cod-
ing conventions associated with use of the
assembler language.

Coding Form

A source program is a sequence of source
statements that are punched into cards.
These statements may be written on the
standard coding form, X28-6509 (Figure
2-1), provided by IBM. One line of coding
on the form is punched into one card. The
vertical columns on the form correspond to
card columns.

Space is provided on the form for pro-
gram identification and instructions to
keypunch operators. None of this informa-
tion is punched into a card.

The body of the form (Figure 2-1) is
composed of two fields: the statement
field, columns 1-71, and the
identification-sequence field, columns
73-80. The identification-sequence field
is not part of a statement and is discussed
following the subsection Statement Format.

The entries (i.e., coding) composing a
statement occupy columns 1-71 of a

SECTION 2: GENERAL INFORMATION

statement line and, if needed, columns
16-71 of successive continuation lines.

Continuation Lines

When it is necessary to continue a state-
ment on another line the following rules

apply.

1. Enter any nonblank character in the
continuation column (end column plus
one) of the statement line.

2. Continue the statement on the next line,
starting in the continue column.
Columns to the left of the continue
column must be blank.

Only one continuation line is allowed
except for source macro-instructions and
macro prototype statements, which may have
more than one continuation line (see Part
3.

Statement Boundaries

Source statements are normally contained in
columns 1-71 of statement lines and columns
16-71 of any continuation lines. There-
fore, columns 1, 71, and 16 are referred to
as the "begin,” "end,” and "continue”
columns, respectively. This convention may
be altered by use of the Input Format Con-
trol (ICTL) assembler instruction discussed
later in this publication.

General Information 11

N T 8 | B | 7T
t : — T
” |
|
i {
: i
H i | T
i : |
i | |
i
I
i I
| |
i
N i
-
i
|
08 €L 13 33 s [3 4 3 [$T [3 9l ” ol 1
osuenbag. Husuoy pusiadoy wojjoued0y owon
Huep| AINIWILYLS
HONNd ilva FTWWYIOON¥d
YIEWNN O¥1D3TT Qivd SNOMDMILSNI
40 ovd DlHdv¥O ONIHONNG WIS Oud

*¥'s°n o pempd
o0s9-92X

o Bupa] sejquisssy pgE/waisig WAl

nai1

Coding Form

Figure 2-1.

12

Statement Format

There are two types of
statements--instructions and comments.

Instructions may consist of one to four
entries in the statement field. They are,
from left to right: a name entry, an
operat ion eniry, an operand entry, and a
comments entry. These entries must be
separated by one or more blanks, and must
be written in the order stated. Total
statement size is limited to 187 charac-
ters. If this limit is exceeded, the
assembly listing may be incorrect for that
statement.

The coding form (Figure 2-1) is ruled to
provide an eight-character name field, a
five-character operation field, and a
56-character operand and/or comments field.

If desired, the programmer may disregard
these boundaries and write the nane,
operation, operand, and comment entries in
other positions, subject to the following
rules:

1. The entries must not extend beyond
statement boundaries (either the con-
ventional boundaries, or as designated
by the programmer via the ICTL
instruction).

2. The entries must be in proper sequence,
as stated above.

3. The entries must be separated by one or
more blanks.

4, If used, a name entry must be written
starting in the begin column.

5. The name and operation entries must be
completed in the first line of the
statement, including at least one blank
following the operation entry.

A description of the name, operation,
operand, and comments entries follows:

Name Entries: The name entry is a symbol,
eight characters or fewer, created by the
programmer to identify a statement. A name
entry is usually optional, but, if present,
must be entered with the first (or only)
character appearing in the begin column.

If the begin column is blank, the assembler
program assumes no name has been entered.
Blanks must not appear within a name entry,
whether the symbol was introduced directly
by the programmer or indirectly by condi-
tional assembly or macro generation.

Operation Entries: The operation entry is
the mnemonic operation code specifying the
desired machine operation, macro, or assem-

bler function. An operation antry is man-
datory and must appear in the first state-
ment line, starting at least one position
to the right of the begin column. Valid
mnemonic operation codes for machine and
assembler operations are contained in
Appendices D and E of this publication.
Valid operation codes consist of five char-
acters or fewer for machine or assembler
operation codes, and eight characters or
fewer for macro-instruction operation
codes. No blanks may appear within the
operation entry.

Operand Entries: Operand entries are the
coding that identifies and describes data
to be acted upon by the instruction, by
indicating such things as storage loca-
tions, masks, storage-area lengths, or
types of data.

Depending on the needs of the instruc-
tion, one or more operands may be written.
Operands are required for all machine
instructions.

Operands must be separated by commas.
Blanks must not intervene between operands
and the commas that separate them.

The operands may not contain embedded
blanks except as follows:

If character representation is
used to specify a constant, a
literal, or immediate data in an
operand, the character string may
contain blanks, e.g., C'AB D'.

Comments Entries: Comments are descriptive
items of information about the program that
are to be inserted in the program listing.
All 256 valid characters, including blanks,
may be used in writing a comment. The
entry cannot extend beyond the end column
(normally column 71), and a blank must
separate it from the operand.

In instructions where an operand entry
is not present but a comments entry is
desired, the absence of the operand entry
must be indicated by a comma preceded and
followed by one or more blanks, as follows:

& k) . T 1
| Name | Operation |Operand]
L 3 i) i
1 3 T 1 1
| | CSECT |, COMMENT i
| - | |
i -] |
| | - | |
| | END |, COMMENT |
i i L]

Instruction Example: The following example
illustrates the use of name, operation,
operand, and comments entries. A compare

General Information 13

instruction has been named by the symbol
COMP; the operation entry (CR) is the mne-
monic operation code for a register-to-
register compare operation, and the two
operands (5,6) designate the two general
registers whose contents are to be
compared. The comments entry reminds the
programmer that he is comparing "new sum®
to "o0ld" with this instruction.

T k4 v
|Name |Operation |Operand
5 1 3

1]
|5.6 NEW SUM TO OLD
L

b s it sees 0

¥
COMP |CR
i

Summary of Instruction Format

The entries in an instruction must always
be separated by at least one blank and must
be in the following order: name, operation,
operand(s), comment.

Every statement requires an operation
entry. Name and comment entries are
optional. Operand entries are required for
all machine instructions and most assembler
instructions.

The name and operation entries must be
completed in the first statement line,
including at least one blank following the
operation entry.

The name and operation entries must not
contain blanks. Operand entries must not
have blanks preceding or following the
commas that separate them.

A name entry must always start in the
"begin® column.

If the column after the end column is
blank, the next line must start a new
statement. If the column after the end
column is not blank, the following line
will be treated as a continuation line.

All entries must be contained within the

designated begin, end, and continue column
boundaries.

Comments Statements

Comments statements are used to include a
programmer®’s notes on an assembly listing.
{These notes can be helpful during debug-
ging and maintenance of a program.) Com-
ments statements have no effect in the
assembled program; they are only printed in
the assembly listing and, therefore, may

14

appear at any point. Extensive notes, or
comments, may be written by using a series
of comments statements.

There are two types of comments state-
ments. One type, written with an asterisk
{*) in the begin column, is used for com-
ments on the source program. The other
type, written with a period in the begin
column and followed by an asterisk, is used
for comments on a macro-definition. This
type is further described in Section 7.

An example of the comments statement is:

T ¥
Name |Operation |Operand
i i

*THIS COMMENT IS CONTINUED ON
ANOTHER LINE.

s
PR Ng———
T R

Identification-Sequence Field

The identification-sequence field of the
coding form {columns 73-80) is used to
enter program identification and/or state-
ment sequence characters. The entry is
optional. If the field, or a portion of
it, is used for program identification, the
identification is punched in the statement
cards, and reproduced in the printed list-
ing of the source program.

To aid in keeping source statements in
order, the programmer may code an ascending
sequence of characters in this field or a
portion of it. These characters are
punched into their respective cards, and,
during assembly, the programmer may request
the assembler to verify this sequence by
use of the Input Sequence Checking (ISEQ)
assembler instruction. This instruction is
discussed in Section 5 under Program Con-
trol Instructions.

Character Set

Source statements are written using the
following characters:

Letters A through Z, and §, #, a

Digits 0 through 9
Special

Characters + - , = . * () * / & blank
These characters are represented by the
card punch combinations and internal bit
configurations listed in Appendix A. In
addition, any of the 256 punch combinations
may be designated anywhere that characters

may appear between paired apostrophes, in
comments, and in macro-instruction oper-
ands.

ASSEMBLER LANGUAGE STRUCTURE

The basic structure of the language can be
stated as follows.

A source statement is composed of:

A name entry (usually optional).

An operation entry (mandatory).

An operand entry (usually required).
A comments entry {optional).

A name entry is:
s A symbol.
An operation entry is:

e A mnemonic operation code representing
a machine, assembler, or macro instruc-
tion.

An operand entry is:

s One or more operands composed of one or
more expressions, which, in turn, are
composed of a term or an arithmetic
combination of terms. 1In general, an
operand entry should contain 50 or
fewer terms (see Appendix H).

Operands of machine instructions gener-
ally represent such things as storage loca-
tions, general registers, immediate data,
or constant values. oOperands of assembler

instructions provide the information needed
by the assembler program to perform the
designated operation.

Figure 2-2 depicts this structure.
Terms shown in Figure 2-2 are classed as
absolute or relocatable. Terms are abso-
lute or relocatable due to the effect of
program relocation upon them. (Program
relocation is the loading of the object
program into storage locations other than
those originally assigned by the assembler
program.) A term is absolute if its value
does not change upon relocation. A term is
relocatable if its value changes upon relo-
cation.

The following subsection, Terms and

Expressions, discusses these items as out-
lined in Figure 2-2.

TERMS AND EXPRESSIONS

TERMS

Every term represents a value. This value
may be assigned by the assembler program
(symbols, symbol length attribute, location
counter reference) or may be inherent in
the term itself (self-defining term,
literal).

An arithmetic combination of terms is
reduced to a single value by the assembler
program.

The following material discusses each
type of term and the rules for its use.

General Information 15

%

?

¢

Name Entry Operation Entry Operand Entry
One or more
Is a Sy{nbol Is a Mnemonic Operands that
which is an Operation Code are composed
of an
| I r]
Machine Assembler Macro Ex Ex Exp(Exp, Ex
Instruction |®| Instruction or Instruction P or Ep(Exp) or P(Exp, Exp)
Exp = Expression
Ordinary
[~ Symbol (RT)
] or 1
o Arithmeti
rithmetic
. Term Combination
- ;’;;ﬁle of Terms
or I
which may be
" any one of
L g;::;’l'“ the following
l l A l Symbol l
Location . ymbol Length
A Symbol A Sel.f- Counter Refer- A L"’“". . Attribute Refer-
e.g.,BETA defining ence i.e. * e.g.,=F'1259 ence e
(AT or RT) Term (AT) o RT) . T
RT) L'Symbol(AT)
which may be
any one of
the following
L AT =Absolute Term
r l I l RT=Relocatable Term
Decimal Hexadecimal Binary Character
e.g., 15 e.g.,X'C4* e.g.,8'101" e.g.,C'ABY"

Fiqure 2-2.

16

Assembler Language Structure--Machine and Assembler Instructions

Symbols

A symbol is a character or combination of
characters used to represent locations or
arbitrary values. Symbols, through their
use in name fields and in operands, provide
the programmer with an efficient way to
name and reference a program element.

There are three types of symbols:

1. Ordinary symbols.
2. Variable symbols.
3. Sequence symbols.

Ordinary symbols consist of one to eight
letters and/or numbers, the first of which

must be a letter. Such symbols are used to
identify machine locations or arbitrary
values. In the following sections, the
occurrence of symbol refers to this type of
term. Absolute symbols are ordinary sym-
bols whose values do not change upon pro—
gram relocation. Relocatable symbols are
ordinary symbols whose values change upon
relocation.

The following are valid ordinary sym—

bols:
READER
A23456
X4F2
nOOP2
N
S4
aBY
$a1
#56

It is advisable to avoid using symbols
beginning with IJ; they may conflict with
I0CS symbols {(which begin with IJ).

It is also advisable to avoid using
symbols which are identical to a file name
(name field) in a DTF statement with a
single character suffix. For example, for
the file name RECIN, IOCS generates the
symbols: RECIN1, RECIN2, RECIN3, etc.

The following ordinary symbols are
invalid, for the reasons noted:

256B First character is not
alphabetic.

RECORDAREA2 More than eight characters.

BCD#*34 Contains a special character
- an asterisk. |

IN AREA Contains a blank.

Variable symbols must begin with an
ampersand (&) followed by one to seven
letters and/or numbers, the first of which
must be a letter. Variable symbols are
used within the macro definition to allow

different values to be assigned to one
symbol. A complete discussion of variable
symbols appears in Part 3.

Sequence symbols consist of a .period (.)

followed by one to seven letters and/or
nunmbers, the first of which must be a let-
ter. Sequence symbols are used to indicate
the position of statements within the
source program or macro definition.
Through their use the programmer can vary
the sequence in which statements are proc-
essed by the assembler program. (See the
complete discussion in Part 3).

DEFINING SYMBOLS: The assembler assigns a
value to each symbol appearing as a name
entry in a source statement. The values
assigned to symbols naming storage areas,
instructions, constants, and control sec-
tions are the addresses of the leftmost
bytes of the storage fields containing the
named items. Since the addresses of these
items may change upon program relocation,
the symbols naming them are considered
relocatable terms.

A symbol used as a name entry in the
Equate Symbol (EQU) assembler instruction
is assigned a value designated in the oper-
and entry of the instruction. . Since the
operand entry may represent a relocatable
value, or an absolute (i.e., nonchanging)
value, the symbol is considered a relocata-
ble term or an absolute term, depending on
the value to which it is equated.

The value of a symbol may not be nega-
tive and may not exceed 224%-1.

A symbol is said to be defined when it
appears as the name of a source statement.
(A special case of symbol definition is
discussed in Section 3, under "Program
Sectioning and Linking").

Symbol definition also involves the
assignment of a length attribute to the
symbol. (The assembler maintains an inter-
nal table - the symbol table - in which the
values and attributes of symbols are kept.
When the assembler encounters a symbol in
an operand, it refers to the table for the
values associated with the symbol.) The
length attribute of a symbol is the length,
in bytes, of the storage field whose
address is represented by the symbol.
example, a symbol naming an instruction
that occupies four bytes of storage has a
length attribute of 4. Note that there are
exceptions to this rule; for example, in
the case where symbol has been defined by
an equate to location counter value (EQU *)
or to a self-defining term, the length
attribute of the symbol is 1. These and
other exceptions are noted under the
instructions involved. The length attri-
bute

For

General Information 17

is never affected by a duplication factor.

PREVIQUSLY DEFINED SYMBOLS: The assembler
language requires that symbols appearing in
the operand entry of some instructions be
previously defined. This simply means that
the symbols, before their use in an oper-
and, must have appeared as the name entry
of a prior statement. For example: '

Sym1 MwC
Sym2 EQU

LI R I /> 15 - I B
-
Ew
(oY

would be a valid sequence of coding. The
same two instructions in reverse order
would be invalid.

GENERAL RESTRICTIONS ON SYMBOLS: A symbol
may be defined only once in an assembly.
While the same symbol may appear as the
name of two or more statements before macro
generation and conditional assembly, only
one such statement should be generated. 1In
addition, a symbol may be used in the name
field more than once as a control section
name (i.e., defined in the START, CSECT, Or
DSECT assembler statements described in
Section 3) because the coding of a control
section may be suspended and then resumed
at any subsequent point. The CSECT or
DSECT statement that resumes the section
must be named by the same symbol that ini-
tially named the section; thus, the symbol
that names the section must be repeated.
Such usage is not considered to be duplica-
tion of a symbol definition.

Self-Defining Terms

A self-defining term is one whose value is
inherent in the term. It is not assigned a
value by the assembler program. For exam-
ple, the decimal self-defining term -- 15
-~ represents a value of fifteen.

There are four types of self-defining
terms: decimal, hexadecimal, binary, and
character. Use of these terms is spoken of
as decimal, hexadecimal, binary, or charac-
ter representation of the machine language
binary value or bit configuration they
represent.

Self-defining terms are classed as abso-
lute terms because the values they rep-
resent do not change upon program reloca-
tion.

18

USING SELF-DEFINING TERMS: Self-defining
terms are the means of specifying machine
values or bit configurations without equat-
ing the values to symbols and using the
symbols. Self-defining terms may be used
to specify such program elements as immedi-
ate data, masks, registers, addresses, and
address increments.

The use of a self-defining term is quite
distinct from the use of data constants or
literals. When a self-defining term is
used in a machine-instruction statement,
its value is assembled into the instruc-
tion. When a data constant or literal is
specified in the operand of an instruction,
its address is assembled into the instruc-
tion.

Decimal Self-Defining Term: A decimal term
is simply an unsigned decimal number writ-
ten as a sequence of decimal digits. High-
order zeros may be used (e.q.,007).
Limitations on the wvalue of the term depend
on its use. For example, a decimal term
that designates a general register must
have a value between 0 and 15 inclusively;
one that represents an address must not
exceed the size of storage. 1In any case, a
decimal term may not consist of more than
eight digits or exceed 16,777,215 (224-1).
A decimal term is assembled as its binary
equivalent. Some examples of decimal self-
defining terms are: 8, 147, 4092, 00021,

Hexadecimal Self-defining Term: A
hexadecimal self-defining term is an

unsigned hexadecimal number written as a
sequence of hexadecimal digits. The digits
must be enclosed in single apostrophes and
preceded by the letter X: X°'C49°.

Each hexadecimal digit is assembled as
its four-bit binary equivalent. Thus, a
hexadecimal term used to represent an
eight-bit mask would consist of two hexa-
decimal digits. The maximum value of a
hexadecimal term is X'FFFFFF'.

The hexadecimal digits and their bit
patterns are as follows:

0~ 0000 4~ 0100 8- 1000 C- 1100
1- 0001 5- 0101 9- 1001 D- 1101
2- 0010 6~ 0110 A- 1010 E- 1110
3- 0011 7- 0111 B~ 1011 F~ 1111

A table for converting from hexadecimal
representation to decimal representation is
provided in Appendix B .

Binary Self-Defining Term: A binary self-
defining term is written as an unsigned
sequence of 1's and 0°'s enclosed in
apostrophes and preceded by the letter B,
as follows: B'10001101'. This term would
appear in storage as shown, occupying one
byte. A binary term may have up to 24 bits

represented. Padding with binary zeros is
on the left.

Binary representation is used primarily
in designating bit patterns of masks or in
logical operations.

The following example illustrates a
binary term used as a mask in a Test Under
Mask (TM) instruction. The contents of
GAMMA are to be tested, bit by bit, against
the pattern of bits represented by the
binary term.

r T v
| Name |operation |operand
b 1 I

b ot el e o

L] T T
|ALPHA |TM | GAMMA,B*10101101°*
L [R 1

Character Self-Defining Term: A character
self-defining term consists of one to three
characters enclosed by apostrophes. It
must be preceded by the letter C. All
letters, decimal digits, and special char-
acters may be used in a character term. In
addition, any of the remainder of the 256
punch combinations may be designated in a
character self-defining term. Examples of
character self-defining terms are as fol-
lows:

c's* c' ' (blank)

c*aBcC* c'13*

Because of the use of apostrophes in the
assembler language and ampersands in the
macro language as syntactic characters, the
following rule must be observed when using
these characters in a character term.

For each apostrophe or ampersand desired
in a character term, two apostrophes or
ampersands must be written. For example,
the character value A'# would be written as
C'A*''#*, while an apostrophe followed by a
blank and another apostrophe would be writ-
ten as C**'* ',

Each character in the character sequence
is assembled as its eight-bit code equiva-
lent (see Appendix A). The two apostrophes
or ampersands that must be used to rep-
resent a single apostrophe or ampersand
within the character sequence are assembled
as a single apostrophe or ampersand.

Location Counter Reference

A Location Counter is used to assign
storage addresses to program statements.
It is the assembler program's equivalent of
the instruction counter in the computer.

As each machine instruction or data area is
assembled, the Location Counter is first
adjusted to the proper boundary for the
item, if adjustment is necessary, and then
incremented by the length of the assembled
item. Thus, it always points to the next
available location. If the statement is
named by a symbol, the value assigned to the
symbol is the value of the Location Counter
after boundary adjustment, but before addi-
tion of the length.

The assembler maintains a Location
Counter for each control section of the
program and manipulates each Location
Counter as previously described. Source
statements for each section are assigned
addresses from the Location Counter for
that section. The Location Counter for
each successively declared control section
assigns locations in consecutively higher
areas of storage., If a program has multi-
ple control sections, all statements iden-
tified as belonging to the first control
section will be assigned from the Location
counter for section 1, the statements for’
the second control section will be assigned
from the Location Counter for section 2,
etc. This procedure is followed whether
the statements from different control sec-
tions are interspersed or written in con-
trol section sequence.

The Location Counter setting can be
controlled by using the START and ORG
assembler instructions, which are described
in Sections 3 and 5, respectively. The
counter affected by either of these assem-
bler instructions is the counter for the
control section in which they appear. The

maximum value for the Location Counter is
226-1,

The programmer may refer to the current
value of the Location Counter at any place
in a program, by using an asterisk in an
operand. The asterisk represents the loca-
tion of the first byte of currently availa-
ble storage (i.e., after any required
boundary adjustment). Using an asterisk in
a machine-instruction statement is the same
as placing a symbol in the name field of
the statement and then using that symbol as
an operand of the statement. Because a
Location Counter is maintained for each
control section, a Location Counter ref-
erence designates the Location Counter for
the section in which the reference appears.

A reference to the Location Counter may
be made in a literal address constant
(i.e., the asterisk may be used in an
address constant specified in literal
form). The address of the instruction
containing the literal is used for the
value of the Location Counter. A Location
Counter reference may not be used in a
statement which requires the use of a

General Information 19

predefined svmbol, with the exception of
the EQU and ORG assembler instructions.

Literals

A literal term is one of three basic ways
to introduce data into a program. It is
simply a constant preceded by an equal sign
(=).

A literal represents data rather than a
reference to data. The appearance of a
literal in a source statement directs the
assembler program to assemble the data
specified by the literal, store this data
in a "literal pool”, and place the value
(address) of the storage field containing
the data in the operand field of the assem-
bled statement.

Literals provide a means of entering
constants (such as numbers for calculation,
addresses, indexing factors, or words or
phrases for printing out a message) into a
program by specifyir.g the constant in the
operand of the instruction in which it is
used. This is in contrast to using the DC
assembler instruction to enter the data
into the program, and then using the name
of the DC instruction in the operand. Only
one reference to a literal is allowed in a
machine-instruction statement.

A literal term may not be combined with
any other terms.

A literal may not be used as the receiv-
ing field of an instruction that modifies
storage.

A literal may not be specified in an
address constant (see Section 5, DC--Define
Constant).

A literal may not have an explicit base
or an explicit index when specified in an
instruction.

The instructicocn coded below shows one
use of a literal.

¥ T
| Name peration |Operand
[5]

bt e ool e s

(o]
3 T
|GAMMA |L {10,=F*274°
i i

TS Sy

The statement GAMMA is a load instruc-
tion using a literal as the second operand.
when assembled, the second operand of the
instruction will be the address at which
the binary value represented by F°'274' is
stored.

20

In general, literals may be used wherev-
er a storage address is permitted as an
operand. They may not, however, be used in
any assembler instruction. Literals are
considered relocatable, because the address
of the literai, rather than the literal
itself, will be assembled in the statement
that employs a literal. The assembler
generates the literals, collects them, and
places them in a specific area of storage,
as explained in the subsection "The Literal
Pool."” A literal is not to be confused
with the immediate data in an SI instruc-
tion. Immediate data is assembled into the
instruction.

Literal Format: The assembler requires a
description of the type of literal being
specified as well as the literal itself.
This descriptive information assists the
assembler in assembling the literal cor-
rectly. The descriptive portion of the
literal must indicate the format in which
the constant is to be assembled. It may
also specify the length the constant is to
occupy.

The method of describing and specifying
a constant as a literal is nearly identical
to the method of specifying it in the oper-
and of a DC assembler instruction. The
major difference is that the literal must
start with an equal sign (=), which indi-
cates to the assembler that a literal fol-
lows. See the discussion of the DC assem-
bler instruction operand format (Section 5)
for the means of specifying a literal. The
type of literal designated in an instruc-
tion is not checked for correspondence with
the operation code of the instruction.

Some examples of literals are:

=A(BETA) - address constant literal.

=pP*1234" - a fixed-point number with
a length of four bytes.

=C*ABC* - a character literal.

The Literal Fool: The literals processed
by the assembler are collected and placed
in a special area called the literal pool,
and the location of the literal, rather
than the literal itself, is assembled in
the statement employing a literal. The
positioning of the literal pool may be
controlled by the programmer, if he so
desires. Unless otherwise specified, the
literal pool is placed at the end of the
first control section.

The programmer may also specify that
multiple literal pools be created. Howev-
er, the sequence in which literals are
ordered within the pool is controlled by
the assembler. Further information on
positioning the literal pool(s) is in Sec-
tion 5 under LTORG--BEGIN LITERAL POOL.

Duplicate Literals: If duplicate literals
occur within one literal pool, only one
literal is stored. Literals are considered
duplicates only if their specifications are
identical. A literal will be stored, even
if it appears to duplicate another literal,
if it is an A-type address constant con-
taining any reference to the Location
Counter.

The following examples illustrate the
foregoing rules:

X'FO*

Both are stored
c'o°
XL3'0°*

Both are stored
HL3*0*
A(*+Y)

Both are stored
A(*+Y)
X* FFFP*

Identical; the first is stored
X' FFFF*

Symbol Length Attribute Reference

The length attribute of a symbol may be
used as a term by coding L' followed by the
syabol, as in:

L*'BETA

The length attribute of BETA will be
substituted for the term. The following
example illustrates the use of L'symbol in
moving a character constant into either the
high-order or low-order end of a storage
field.

For ease in following the example, the
length attributes of Al and B2 are men-
tioned.

r T 1
| Name |Operation |Operand |
} R popt 1
ja1 | DS | CL8 |
B2 |pC |CL2'AB' i
|HIORD |MVC |A1(L'B2),B2 |
| LOORD |MVC |A1+L'A1-L'B2(L'B2),B2}
| S IR o —— L]

Al names a storage field eight bytes in
length and is assigned a length attribute
of eight. B2 names a character constant
two bytes in length and is assigned a
length attribute of two. The statement
named HIORD moves the contents of B2 into

the leftmost two bytes of Al. The term
L*'B2 in parentheses provides the length
specification required by the instruction.
When the instruction is assembled, the
length is placed in the proper field of the
machine instruction.

The statement named LOORD moves the
contents of B2 into the rightmost two bytes
of Al. The combination of terms
Al1+L'A1-L'B2 results in the addition of the
length of Al to the beginning address of
Al, and the subtraction of the length of B2
from this value. The result is the address
of the seventh byte in field Al. The con-
stant represented by B2 is moved into Al
starting at this address. L'B2 in
parentheses provides length specification
as in HIORD.

Note: The length attribute of #* is equal
to the length of the instruction in which
it appears, except in an EQU to * instruc-
tion where the length attribute is 1.

EXPRESSIONS

Expressions, which are used in coding oper-
and entries for assembler language state-
ments, are composed of either a single term
or an arithmetic combination of terms (see
Figure 2-2). Arithmetically combined
terms, enclosed in parentheses, may be used
in combination with terms outside the
parentheses. For example:

14+BETA~ (GAMMA- LAMBDA)

When terms in parentheses occur in com-
bination with other terms, like
(GAMMA-LAMBDA) in the example, the paren-
thesized terms are reduced first to a sin-
gle value. This value may be absolute or
relocatable, depending on the combination
of terms. This value then is used in
reducing the rest of the combination to
another single value.

Parenthesized terms may be included
within another set of terms in parentheses.
For example:

A+B~- (C+D— (E+F) +10)

This expression has two levels of
parentheses. A level of parentheses is a
left parenthesis and its matching right
parenthesis. One level of parentheses
surrounds E+F. The next higher level of
parentheses surrounds C+D-(E+F)+10. The
innermost set of terms in parentheses (the
lowest level) is evaluated first.

The following are examples of valid
expressions:

General Information 21

* BETA#*10
AREA1+X'2D’ B*101°

*+32 c*ABC'

N-25 29

FIELD+332 L*'FIELD
FIELD LAMBDA+GAMMA
(EXIT-ENTRY+1) +GO TEN/TAO
=F'1234"*

ALPHA-BETA/ (10+AREA*L'FIELD)-100
Ax (A (A% (A+1) +3%(B-3)))

The rules for coding expressions are:

1. An expression may not start with an
arithmetic operator, that is, +-/%
Therefore, the expression -A+BETA is
invalid. However, the expression
O0-A+BETA is valid.

2. An expression may not contain two terms
or two operators in succession.

3. An expression may not consist of more
than 16 terms.

4. An expression may not have more than
five levels of parentheses.

5. A multi-term expression may not contain
a literal.

Evaluation of Expressions

A single term expression, e.g., 29, BETA,
*, L'SYMBOL, takes on the value of the term
involved.

A multi-term expression, e.g., BETA+10,
ENTRY-EXIT, 25%10+A/B, is reduced to a
single value, as follows:

1. Each term is given its value.

2. Arithmetic operations are performed
left to right. Multiplication and
division are done before addition and
subtraction, e.g., A+B#C is evaluated
as A+(B*C), not (A+B)*C. The computed
result is the value of the expression.

3. Every expression is computed to 32
bits.

4. Dpivision always yields an integer
result; any fractional portion of the
result is dropped. E.g., 1/2#%10 yields
a zero result, whereas 10%1/2 yields 5.

5. Division by zero is valid and yields a
zero result.

Parenthesized expressions used in an
expression are processed before the rest of
the terms in the expression, e.g., in the
expression A+BETA* (CON-10), the term CON-10

22

is evaluated first and the resulting value
used in computing the final value of the
expression.

Final values of expressions must be
between -22% and 22%-1 (inclusive). Inter-
mediate results may have a value between
-231 and 23%*-1 (inclusive).

Absolute and Relocatable Expressions

An expression is called absolute if its
value is unaffected by program relocation.

An expression is called relocatable if
its value changes upon program relocation.

The two types of expressions, absolute
and relocatable, take on these charac-
teristics from the term or terms composing
them. The following material discusses
this relationship.

Absolute Expression: An absolute expres-—
sion may be an absolute term or any arith-
metic combination of absolute terms. An
absolute term may be an absolute symbol,
any of the self-defining terms, or the
length attribute reference. As indicated
in Figure 2-2, all arithmetic operations
are permitted between absolute terms.

An absolute expression may contain relo-
catable terms (RT) -- alone or in combina-
tion with absolute terms (AT) -- under the
following conditions:

1. There must be an even number of reloca-
table terms in the expression.

2. The relocatable terms must be paired.
Each pair of terms must have the same
relocatability attribute, i.e., they
appear in the same control section in
this assembly (see "Program Sectioning
and Linking," Section 3). Each pair
must consist of terms with opposite
signs. The paired terms do not have to
be contiguous, e.g., RT+AT-RT.

3. No relocatable expression may enter
into a multiply or divide operation.
Thus, RT~RT+*10 is invalid. However,
(RT-RT) *10 is valid.

The pairing of relocatable terms (with
opposite signs and the same relocatability
attribute) cancels the effect of reloca-
tion. Therefore the value represented by
the paired terms remains constant, regard-
less of program relocation. For example,
in the absolute expression A-Y+X, A is an
absolute term, and X and Y are relocatable
terms with the same relocatability attri-
bute. If A equals 50, Y equals 25, and X
equals 10, the value of the expression

would be 35. If X and Y are relocated by a
factor of 100 their values would then be
125 and 110. However, the expression would
still evaluate as 35 (50-125+110=35).

An absolute expressin reduces to a
single absolute value.

The following examples illustrate abso-
lute expressions. A is an absolute term; X
and Y are relocatable terms with the same
relocatability attribute.

A-Y+X

A

A*A

X-Y+A

*~-Y (a reference to the Location Counter
must be paired with aneother relocata-
ble term from the same control sec-
tion, i.e., with the same relocatabil-
ity attribute)

Relocatable Expressions: A relocatable
expression is one whose value would change
by n if the program in which it appears is
relocated n bytes away from its originally
assigned area of storage.

A relocatable expression may be a relo-
catable term. A relocatable expression may
contain relocatable terms -- alone or in
combination with absolute terms -- under
the following conditions:

1. There must be an odd number of reloca-
table terms.

2. All the relocatable terms but one must
be paired. Pairing is described in
Absolute Expression.

3. The unpaired term must not be directly
preceded by a minus sign.

4. No relocatable term may enter into a
multiply or divide operation.

A relocatable expression reduces to a
single relocatable value. This value is
the value of the odd relocatable term,
adjusted by the values represented by the
absolute terms and/or paired relocatable
terms associated with it.

For example, in the expression W-X+W-10,
W and X are relocatable terms with the same
relocatability attribute. If initially W
equals 10 and X equals 5, the value of the
expression is 5. However, upon relocation
this value will change. If a r2location
factor of 100 is applied, the value of the
expression is 105. Note that the value of
the paired terms, W-X, remains constant at
5 regardless of relocation. Thus, the new
value of the expression, 105, is the result
of the value of the odd term (W) adjusted
by the values of W-X and 10.

The following examples illustrate relo-
catable expressions. A is an absolute
term, W and X are relocatable terms with
the same relocatability attribute, Y is a
relocatable term with a different relocat-
ability attribute.

Y-32+A W-X+* =F'1234" (literal)
W-X+Y A*A+W-W+Y
* (reference to W-X+W

Location Counter) Y

General Information 23

PART 2 -— BASIC FUNCTIONS OF THE ASSEMBLER LANGUAGE

SECTION 3: ADDRESSING -- PROGRAM
SECTIONING AND LINKING

ADDRESSING

The System/360 addressing technique
requires the use of a base register, which
contains the base address, and a displace-
ment, which is added to the contents of the
base register. The programmer may specify
a symbolic address and request the assem—
bler to determine its storage address in
terms of a base register and a displace-
ment. The programmer may rely on the
assembler to perform this service for him
by indicating which general registers are
available for assignment and what values
the assembler may assume each contains.

The programmer may use as many or as few
registers for this purpose as he desires.
The only requirements are that, at the
point of reference, a register containing
an address from the same control section is
available, and that this address is less
than or equal to the address of the item to
which the reference is being made. The
difference between the two addresses may
not exceed 4095 bytes.

ADDRESSES -~ EXPLICIT AND IMPLIED

An address is composed of a displacement
plus the contents of a base register. ({(In
the case of RX instructions, the contents
of an index register are also used to der-
ive the address.)

The programmer writes an explicit
address by specifying the displacement and
the base register number. In designating
explicit addresses a base register may not
be combined with a relocatable symbol.

He writes an implied address by speci-
fying an absolute or relocatable address.
The assembler has the facility to select a
base register and compute a displacement,
thereby generating an explicit address from
an implied address, provided that it has
been informed (1) what base registers are
available to it and (2) what each contains.
The programmer conveys this information to

24

the assembler through the USING and DROP
assembler instructions.

BASE REGISTER INSTRUCTIONS

The USING and DROP assembler instructions
enable programmers to use expressions rep-
resenting implied addresses as operands of
machine-instruction statements, leaving the
assignment of base registers and the calcu-
lation of displacements to the assembler.

In order to use symbols in the operand
field of machine-instruction statements,
the programmer must (1) indicate to the
assembler, by means of a USING statement,
that one or more general registers are
available for use as base registers, (2)
specify, by means of the USING statement,
what value each base register contains, and
(3) load each base register with the value
he has specified for it.

Having the assembler determine base
registers and displacements relieves the
programmer of separating each address into
a displacement value and a base address
value. This feature of the assembler will
eliminate a likely source of programming
errors, thus reducing the time required to
check out programs. To take advantage of
this feature, the programmer uses the USING
and DROP instructions described in this
subsection. The principal discussion of
this feature follows the description of
both instructions.

USING —- Use Base Address Register

The USING instruction indicates that one or
more general registers are available for
use as base registers. This instruction
also states the base address values that
the assembler may assume will be in the
registers at object time. Note that a
USING instruction does not load the reg-
isters specified. It is the programmer's
responsibility to see that the specified
base address values are placed into the
registers. Suggested loading methods are
described in the subsection Programming
with the USING Instruction. The typical
form of the USING instruction statement is:

1 H . T 1
| Name |operation |Operand |
L i I 3 ; |
L) 1 T bl
| Not { USING |From 2-17 expressions|
| used | |of the form v,ril,]
| | |r2,r3,...,r16 |
L 1 L d

operand v must be an absolute or reloca-
table expression with a value ranging from
=224 to +224-]1. No literals are permitted.
operand v specifies a value that the assem-
bler can use as a base address. The other
operands must be absolute expressions. The
operand rl specifies the general register
that can be assumed to contain the base
address represented by operand v. Operands
r2, r3, r4, . . . specify registers that
can be assumed to contain v+4096, v+8192,
v+12288, . . ., respectively. The values
of the operands ri, r2, r3, ..., rl6 must
be between 0 and 15. For example, the

statement:

1) T . ¥ 3
| Name |Operation |Operand |
1 4+ i d
T 1 1 1
| | USING 1*#,12,13 |
1 1 A 3

tells the assembler it may assume that the
current value of the Location Counter will
be in general register 12 at object time,
and that the current value of the Location
counter, incremented by 4096, will be in
general register 13 at object time.

If the programmer changes the value in a
base register currently being used, and
wishes the assembler to compute displace-
ment from this value, the assembler must be
told the new value by means of another
USING statement. In the following sequence
the assembler first assumes that the value
of ALPHA is in register 9. The second
statement then causes the assembler to
assume that ALPHA+1000 is the value in
register 9.

3 T . T 3
|Name |Operation |Operand |
5 + + 1
| jUSING | ALPHA, 9 |
| l- | !
| P | |
] | USING | ALPHA+1000,9 |
L i L ¥ |
If the programmer has to refer to the
first 4096 bytes of storage, he can use
general register 0 as a base register sub-
ject to the following conditions:
1. The value of operand v must be either

absolute or relocatable zero or simply
relocatable, and

. NOTE :

Form C24-3414-2, -3, 4
Page Revised 4/26/67
By TNL N26-0536

2. register 0 must be specified as operand
rl.

The assembler assumes that register 0
contains zero. Therefore, regardless of the
value of operand v, it calculates dis-
placements as if operand v were absolute
or relocatable zero. The assembler also
assumes that subsequent registers specified
in the same USING statement contain 4096,
8192, etc.

If register 0 is used as a base
register, the program is not relocatable,
despite the fact that operand v may be
relocatable. The program can be made re-
locatable by:

1. Replacing register 0 in the USING
statement.
2. Loading the new register with a re-

locatable wvalue.

3. Reassembling the program.

DROP -- Drop EFase Register

The DROP instruction specifies a. previously
available register that may no longer be
used as a base register. The typical form
of the DROP instruction statement is as
follows:

T T - T 2]
| Name |Operation |Operand |
L 1 i d
1 3 1 R}
|Not | DROP |Up to 16 absolute]
|used | |expressions of the]
|] |form ri,r2,]
| | 1r3,00.,1r16 I
L 1 L J

The expressions indicate general reg-
isters previously specified in a USING
statement that are now unavailable for base
addressing. The following statement, for
example, prevents the assembler from using
registers 7 and 11:

T T
Name |Operation |Operand
i 1

}
| DROP
L

- e Oy e oy
W SRS

T
17.11
L

It is not necessary to use a DROP state-
ment when the base address in a register is
changed by a USING statement; nor are DROP
statements needed at the end of the source
programe.

Addressing -- Program Sectioning and Linking 25

A register made unavailable by a DROP
instruction can be made available again by
a subsequent USING instruction.

PROGRAMMING WITH THE USING INSTRUCTION

The USING (and DROP) instructions may be
used anywhere in a program, as often as
needed, to indicate the general registers
that are available for use as base reg-
isters and the base address values the
assembler may assume each contains at ex-
ecution time. Whenever an address is spec-
ified in a machine-instruction statement,
the assembler determines whether there is
an available register containing a suitable
base address. A register is considered
available for a relocatable address if it
was assigned a relocatable value that is in
the same control section as the address. A
register assigned an absolute value is
available for addressing absolute locations
only. In either case, the base address is
considered suitable only if it is less than
or equal to the address of the item to
which the reference is made. The differ-
ence between the two addresses may not

. exceed 4095 bytes. In calculating the base
register to be used, the assembler always
‘uses the available register giving the
smallest displacement. If there are two
registers with the same value, the highest
numbered register is used.

In the preceding sequence, the BALR
instruction loads register 2 with the
address of the first storage location
immediately following. In this case, it is
the address of the instruction named FIRST.
The USING instruction indicates to the
assembler that register 2 contains this
location. When employing this method, the
USING instruction must immediately follow
the BALR instruction. No other USING or .
load instructions are required if the loca-
tion named LAST is within 4095 bytes of
FIRST.

In Figure 3-1, the BALR and LM instruc-
tions load registers 2-5. The USING
instruction indicates to the assembler that
these registers are available as base reg-
isters for addressing a maximum of 16,384
consecutive bytes of storage, beginning
with the location named HERE. The number
of addressable bytes may be increased or
decreased by altering the number of reg-
isters designated by the USING and LM
instructions and the number of address
constants specified in the DC instruction.

RELATIVE ADDRESSING

Relative addressing is the technigue of

addressing instructions and data areas by
designating their location in relation to
the Location Counter or to some symbolic

location. This type of addressing is
r - T 1 always in bytes, never in bits, words, or
| Name |Operation |Operand | instructions. Thus, the expression #+4
} } $ 4 specifies an address that is four bytes
|BEGIN | BALR 12,0 | greater than the current value of the Loca-
] | USING |*,2 | tion Counter. 1In the sequence of instruc-
| FIRST | . | i tions shown in the following example, the
] | -] | location of the CR machine instruction can
] | . | | be expressed in two ways, ALPHA+2 or
| LAST | . | | BETA-4, because all of the mnemonics in the
| | END | BEGIN } example are for 2-byte instructions in the
L i L 1 RR format.
L 3 T T R
| Name |Operation |Operand |
1 i 1 b]
L 1) 1)L
|BEGIN | BALR 12,0]
] |USING | HERE, 2, 3, 4,5 |
| HERE JLM 13,5, BASEADDR |
	B	FIRST
BASEADDR	DC JA(HERE+4096 ,HERE+8192, HERE+12288)	
FIRST	-	
	- i I	
[- I	
LAST	- i i	
	END	BEGIN
L L i J
Figure 3-1. Multiple Base Register Assignment

26

r T N T 1
!Name lOPeratxon iOperand 3
)) ¥ 1
ALPHA	LR 13,4
	CR 14,6
	BCR 11,14
BETA	AR 12,3
H i i J

PROGRAM SECTIONING AND LINKING

It is often convenient, or necessary, to
write a large program in sections. The
sections may be assembled separately, then
combined subsequently into one object pro-
gram. The assembler provides facilities
for creating multisectioned programs and
symbolically linking separately assembled
programs or program Sections. The combined
number of control sections and dummy sec-
tions plus the number of unique symbols in
EXTRN statements and v-type address con-
stants may not exceed 255. (EXTRN state-
ments are discussed in this section; V-type
constants in Section 5 under the DC --
Define Constant assembler instruction.) If
the same symbol appears in a V-type address
constant and in the name field of a CSECT
or DSECT statement, it is counted as two
symbols.,

Sectioning a program is optional, and
many programs can best be written without
sectioning them. The programmer writing an
unsectioned program need not concern him-
self with the subsequent discussion of
program sections, which are called control
sections. He need not employ the CSECT
instruction, which is used to identify the
control sections of a multisection program.
similarly, he need not concern himself with
the discussion of symbolic linkages if his
program neither requires a linkage to nor
receives a linkage from another program.

He may, howevér, wish to identify the pro-
gram and/or specify a tentative starting
location for it, both of which may be done
by using the START instruction. He may
also want to employ the dummy section fea-
ture obtained by using the DSECT instruc-
tion.

Note: Program sectioning and linking is
closely related to the specification of
base registers for each control section.
Sectioning and linking examples are provid-
ed under the heading Addressing External
control Sections.

CONTROL SECTIONS

The concept of program sectioning is a
consideration at coding time, assembly
time, and load time. To the programmer, a
program is a logical unit. He may want to
divide it into sections called control
sections; if so, he writes it in such a way
that control passes properly from one sec-
tion to another regardless of the relative
physical position of the sections in stor-
age. A control section is a block of cod-
ing that can be relocated, independently of
other coding, at load time without altering
or impairing the operating logic of the
program. It is normally identified by the
CSECT instruction. However, if it is
desired to specify a tentative starting
location, the START instruction may be used
to identify the first control section.

To the assembler, there is no such thing
as a program; instead, there is an assem-
bly, which consists of one or more control
sections. (However, the terms assembly and
program are often used interchangeably.)

An unsectioned program is treated as a
single control section. To the linkage
editor, there are no programs, only control
sections that must be fashioned into an
object program.

The output of the assembler consists of
the assembled control sections and a con-
trol dictionary. The control dictionary
contains information the linkage editor
needs in order to complete cross-
referencing between control sections, as it
combines them into an object program. The
linkage editor can take control sections
from various assemblies and combine them
properly with the help of the corresponding
control dictionaries. Successful
combination of separately assembled control
sections depends on the techniques used to
provide symbolic linkages between the con-
trol sections.

Whether the programmer writes an unsec-
tioned program, a multisection program, or
part of a multisection program, he still
knows what eventually will be entered into
storage, because he has described storage
symbolically. He may not know where each
section appears in storage, but he does
know what storage contains. There is no
constant relationship between control sec-
tions. Thus, knowing the location of one
control section does not make another con-
trol section addressable by relative
addressing techniques.

Addressing -~ Program Sectioning and Linking 27

control Section location Assignment

control section contents can be intermixed
because the assembler provides a Location
Counter for each control section. Control
sections are assigned starting locations
consecutively, in the same order as the
control sections first occur in the pro-
gram. Each control section subsequent to
the first begins at the next available
double-word boundary.

FIRST CONTROL SECTION

The first control section of a program has
the following special properties.

1. The initial value of its location coun-
ter may be specified as an absolute
value.

2. It normally contains the literals
requested in the program, although
their positioning can be altered. This
is further explained under the discus-
sion of the LTORG assembler instruc-
tion.

START —-- Start Assembly

The START instruction may be used to give a
name to the first (or only) control section
of a program. It may also be used to spec-
ify the initial value of the location coun-
ter for the first control section of the
program. The typical form of the START
instruction statement is as follows:

¥ v . T k|
| Name |operation |Joperand i
1 4 1 3
1 3 ¥ T b
|A symbol |START |A self-defining }
jor not | |term or not |
| used | |used |
t 1 i 3

If a symbol names the START instruction,
the symbol is established as the name of
the control section. 1If not, the control
section is considered to be unnamed. All
subsequent statements are assembled as part
of that control section. This continues
until a CSECT instruction identifying a
different control section or a DSECT
instruction is encountered. A CSECT
instruction named by the same symbol that
names a START instruction is considered to
identify the continuation of the control
section first identified by the START.
Similarly, an unnamed CSECT that occurs in

28

a program initiated by an unnamed START is
considered to identify the continuation of
the unnamed control section.

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the con-
trol section. It has a length attribute of
one.

The assembler uses the self-defining
term specified by the operand as the ini-
tial value of the location counter of the
program. This value should be divisible by
eight. For example, either of the follow-
ing statements:

L T T 1
| Name |Operation |Operand |
L 1 1 J
¥ T ¥ 3
|PROG2 |START |2040 |
|PROG2 | START |X*7F8* |
L i i |

could be used to assign the name PROG2 to
the first control section and to indicate
an initial assembly location of 2040. If
the operand is omitted, the assembler sets
the initial value of the location counter
to zero. The location counter is set at
the next doubleword boundary when the value
of the START operand is not divisible by 8.

Note: The START instruction may not be
preceded by any type of assembler language
statement that may either affect or depend
upon the setting of the lLocation Counter.

CSECT ~- Identify Control Section

The CSECT instruction identifies the begin-
ning or the continuation of a control sec-
tion. The typical form of the CSECT
instruction statement is as follows:

¥ LA k) 1
| Name |Operation |Operand l
L 4 1 4
¥ T t ']
|a symbol |CSECT |Not used; must {
|or not] |not be present |
{used | |]
1 1 L J

If a symbol names the CSECT instruction,
the symbol is established as the name of
the control section; otherwise the section
is considered to be unnamed. All state-
ments following the CSECT are assembled as
part of that control section until a state-
ment identifying a different control sec-
tion is encountered (i.e., another CSECT or
a DSECT instruction).

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the con-
trol section. It has a length attribute of
one.

several CSECT statements with the same
name may appear within a program. The
first is considered to identify the begin-
ning of the control section; the rest iden-
tify the resumption of the section. Thus,
statements from different control sections
may be interspersed. They are properly
assembled (assigned contiguous storage
locations) as long as the statements from
the various control sections are identified
by the appropriate CSECT instructions.

Unnamed Control Section

If neither a named CSECT instruction nor
START instruction appears at the beginning
of the program, the assembler determines
that it is to assemble an unnamed control
section as the first (or only) control
section. There may be only one unnamed
control section in a program. If one is
initiated and is then followed by a named
control section, any subseguent unnamed
CSECT statements are considered to resume
the unnamed control section. If it is
desired to write a small program that is
unsectioned, the program does not need to
contain a CSECT instruction.

DSECT -- Identify Dummy Section

A dummy section represents a control sec-
tion that is assembled but is not part of
the object program. A dummy section is a
convenient means of describing the layout
of an area of storage without actually
reserving the storage. (It is assumed that
the storage is reserved either by some
other part of this assembly or else by
another assembly.) The DSECT instruction
identifies the beginning or resumption of a
dummy section. More than one dummy section
may be defined per assembly, but each must
be named. The typical form of the DSECT
instruction statement is as follows:

1] T . L) 3
| Name jOoperation |Operand |
4 3 {

1 1
A symbol |DSECT {Not used; must |
| jnot be present |
i 1 3

The symbol in the name field is a valid
relocatable symbol whose value represents
the first byte of the section. It has a
length attribute of one.

Program statements belonging to dummy
sections may be interspersed throughout the
program or may be written as a unit. In
either case, the appropriate DSECT instruc-
tion should precede each set of statements.
When multiple DSECT instructions with the
same name are encountered, the first is
considered to initiate the dummy section
and the rest to continue it.

Symbols that name statements in a dummy
section may be used in USING instructions.
Therefore, they may be used in program
elements (e.g., machine-instructions and
data definitions) that specify storage
addresses. An example illustrating the use
of a dummy section appears subseqguently
under "Addressing Dummy Sections.”

Note: A symbol that names a statement in
a dummy section may be used in an A-type
address constant only if it is paired with
another symbol (with the opposite sign)
from the same dummy section.

Dummy Section Location Assignment: A Loca-
tion Counter is used to determine the rela-
tive locations of named program elements in
a dummy section. The Location Counter is
always set to zero at the beginning of the
dummy section, and the location values
assigned to symbols that name statements in
the dummy section are relative to tne ini-
tial statement in the section.

Addressing Dummy Sections: The programmer

may wish to describe the format of an area
whose storage location will not be deter-
mined until the program is executed. He
can describe the format of the area in a
dummy section, and he can use symbols
defined in the dummy section as the oper-
ands of machine instructions. To effect
references to the storage area, he does the
following:

1. Provides a USING statement specifying
both a general register that the assem-
bler can assign to the machine-
instructions as a base register and a
value from the dummy section that the
assembler may assume the register con-
tains.

2. Ensures that the same register is load-
ed with the actual address of the stor-
age area.

The values assigned to symbols defined
in a dummy section are relative to the
initial statement of the section.

Addressing -- Program Sectioning and Linking 29

Thus, all machine-instructions which
refer to names defined in the dummy section
will, at execution time, refer to storage
locations relative to the address loaded
into the register.

An example is shown in the following
coding. Assume that two independent assem—
blies {assembly 1 and assembly 2) have been
loaded and are to be executed as a single
overall program. Assembly 1 is an input
routine that places a record in a specified
area of storage, places the address of the
input area containing the record in general
register 3, and branches to assembly 2.
Assembly 2 processes the record. The cod-
ing shown in the example is from assembly
20

The input area is described in assembly
2 by the DSECT control section named INAR-
EA. Portions of the input area (i.e.,
record) that the programmer wishes to work
with are named in the DSECT control section
as shown. The assembler instruction USING
INAREA,3 designates general register 3 as
the base register to be used in addressing
the DSECT control section, and that general
register 3 is assumed to contain the
address of INAREA.

Assembly 1, during execution, loads the
actual beginning address of the input area
in general register 3. Because the symbols
used in the DSECT section are defined rela-

¥ R 2 ¥ 3
| Name |Operation |Operand |
L. i 3 ¥}
] ¥ 1 § 1
ASMBLY2 |CSECT |]

BEGIN | BALR 12,0 |

| USING 1*.2 |

l 1 - | |
| I - | |
| USING | INARER, 3 |

JCLI | INCODE,C*A°*]

|BE | ATYPE |

| - { %
| ATYPE MVC | WORKA, INPUTA |
Mve | HORKB, INPUTB |

1 - | |

I - | |

| WORKA jps jCcL20 |
WORKB DS jcris |

. | |

| . | |
INAREA DSECT | |

INCODE |Ds jc11]

INPUTA |DS jcL20 |

INPUTB |DS jcLis |

| - | |

| | END |]
1 i . } § J

30

tive to the initial statement in the sec-
tion, the address values they represent,
will, at the time of program execution, be
the actual storage locations of the input
area.

COM -- DEFINE BLANK COMMON CONTROL SECTION

The COM assembler instruction identifies
and reserves a common area of storage that
may be referred to by independent assem-
blies that have been linked and loaded for
execution as one overall program.

Only one blank common control section
may be designated in an assembly. However,
more than one COM statement may appear
within a program. The first identifies the
beginning of the control section; the rest
identify the resumption of the section.

When several assemblies are loaded, each
designating a common control section, the
amount of storage reserved is equal to the
longest common control section. The form
is:

¥ T B |
| Name |Operation |Operand |
%, 1 i ;|
¥ v ¥]
| Not fcoM |Not used; must not i
jused | |be present }
L. i L § |

The common area may be broken up into
subfields through use of the DS and DC
assembler instructions. Names of subfields
are defined relative to the beginning of
the common section, as in the DSECT control
section.

It is necessary to establish address-
ability relative to a named statement with-
in COM since the COM statement itself can-
not have a name. In the following example,
addressability to the common area of stor-
age is established relative to the named
statement XYZ.

'Name ~|Operation | Operand 1
b—————— N e 4
I | . | |
I ; . I I
' | L | 1,=a(xvz) :
| | USING | Xvz,l |
: I MVC I PDQ(16) ,=4C'ABCD' }
|
| A |
| | ° |
I | CcOM i |
| XYZ I DS | 16F !
| PDQ : DS I 16C :
| | . I |
[I . I |
Lmmeeee L i J

No instructions or constants appearing
in a common control section are assembled.
Data can only be placed in a common control
section through execution of the program.

If the assignment of common storage is
done in the same manner by each independent
assembly, reference to a location in common
by any assembly results in the same loca-
tion being referenced. When assembled,
blank common location assignment starts at
zero.

SYMBOLIC LINKAGES

Symbols may be defined in one program and
referred to in another, thus effecting
symbolic linkages between independently
assembled programs. The linkages can be
effected only if the assembler is able to
provide information about the linkage sym-
bols to the linkage editor, which resolves
these linkage references at load time. The
assembler places the necessary information
in the control dictionary on the basis of
the linkage symbols identified by the ENTRY
and EXTRN instructions. WNote that these
symbolic linkages are described as linkages
between independent assemblies; more spe-
cifically, they are linkages between inde-
pendently assembled control sections.

In the program where the linkage symbol
is defined {(i.e., used as a name), it must
also be identified to the Linkage Editor
and Assembler by means of the ENTRY assem—-
bler instruction. It is identified as a
symbol that names an entry point, which
means that another program may use that
symbol in order to effect a branch opera-
tion or a data reference. The assembler
places this information in the control
dictionary.

Similarly, the program that uses a sym-
bol defined in some other program must
identify it by the EXTRN assembler instruc-
tion. Since the definition of the symbol
appears in another program, the assembler
arbitrarily assigns a length attribute of 1
and a value of 0., The assembler places
this information in the control dictionary.

Another way to obtain symbolic linkages
is by using the V-type address constant.
The subsection "Data Definition
Instructions” in Section 5 contains the
details pertinent to writing a V-type
address constant. It is sufficient here to
note that this constant may be considered
an indirect linkage point. It is created
from an externally defined symbol, but that
symbol does not have to be identified by an
EXTRN statement. The V-type address con-
stant is intended to be used for external

branch references (i.e., for effecting
branches to other programs). Therefore, it
should not be used for external data ref-
erences (i.e., for referring to data in
other programs).

ENTRY -- IDENTIFY ENTRY-POINT SYMBOL

The ENTRY instruction identifies linkage
symbols that are defined in this program

but may be used by some other program. The
typical form of the ENTRY instruction
statement is as follows:

T T T k]
| Name |Operation |Operand |
t i 1 3

b ¥

{Not |ENTRY |One or more reloca- }
| used j |table symbols, |
| { | separated by i
| i |commas, that also |
| } | appear as state- |
{ i |ment names |
L 1 L J

A program may contain a maximum of 100
ENTRY symbols. ENTRY symbols which are not
defined (not appearing as statement names),
although invalid, will also count towards
this maximum.

An ENTRY statement operand may not con-
tain a symbol defined in a dummy section or
blank common. An ENTRY statement containing
a symbol defined in an unnamed control sec-
tion can be processed by the assembler, but
the DOS/TOS Linkage Editor will not process
the resulting deck. The following example
identifies the statements named SINE and
COSINE as entry points to the program.

T L
Name |Operation |Operand
L 1

por wos e v sy
e e S s el

b] 1§
| ENTRY | SINE, COSINE
i i

Note: The name of a control section does
not have to be identified by an ENTRY
instruction when another program uses it as
an entry point. The assembler automat-
ically places information on control sec-
tion names in the control dictionary.

EXTRN —- IDENTIFY EXTERNAL SYMBOL

The EXTRN instruction identifies linkage
symbols that are used by this program but
defined in some other program. Each exter-
nal symbol must be identified; this
includes symbols that name control sec-

Addressing -—- Program Sectioning and Linking 31

tions. The typical form of the EXTRN
instruction statement is as follows:

[T N T 1
| Name |Operation |Operand |
L i 1 ¥
¥ T T 1
| Not | EXTRN jOne or more relocata- |
j used | |ble symbols, separated|
! l {by commas. }

The symbols in the operand field may not
appear as names of statements in this pro-
gram. The following example identifies
three external symbols that have been used
as operands in this program but are defined
in some other program.

v N T 1
| Name |operation |Operand |
i § & i g |
1] 1 T 1
] | EXTRN |RATEBL, PAYCALC]
} | EXTRN |WITHCALC |
L L i 3

An example that employs the EXTRN
instruction appears subsequently under
"addressing External Control Sections.”

Note 1: A V-type address constant does
not have to be identified by an EXTRN
statement.

Note 2: When external symbols are used
in an expression they may not be paired.
Each external symbol must be considered as
having a unique relocatability attribute.

Addressing External Control Sections

A common way for a program to link to an
external control section is to:

1. Create a V-type address constant with
the name of the external symbol.

2. Ioad the constant into a general reg-
ister and branch to the control section
via the register.

32

Ll T T 1
!Name IOPetation iOperand J
L 1]] a
| MAINPROG | CSECT } |
| BEGIN | BALR 12,0 i
i | USING 1*,2 |
{ | % {
] |L |3, VCON |
} :BALR {1,3 ;
| I -]]
| vCON |DC |V{(SINE) |
i : | END | BEGIN |
L } 1 3

The combined number of control sections
and dummy sections plus the number 5>f uni-
que symbols in EXTRN statements and V-type
address constants may not exceed 255.
(EXTRN statements are discussed in this
section; V-type constants in Section 5
under DC -~ Define Constant.) If the same
symbol appears in a V-type address constant
and in the name entry of a CSECT or DSECT
statement, it is counted as two symbols.

For example, to link to the control
section named SINE, the preceding coding
might be used.

An external symbol naming data may be
referred to as follows:

1. Identify the external symbol with the
EXTRN instruction, and create an
address constant from the symbol.

2. Load the constant into a general reg-
ister, and use the register for base
addressing.

For example, to use an area named
RATETBL, which is in another control sec-
tion, the following coding might be used:

T 1
Name Operation |Operand }

5 & ¥ |

¥ 1
MAINPROG |CSECT | j
| BEGIN BALR 12,0 |
| | USING |*.2 i
| I - | |
| I . | |
| | EXTRN | RATETBL]
I -		
	.]	
L	4, RATEADDR	
	UsSING	RATETBL, 4
1a	3, RATETBL]	
]	-	
RATEADDR	DC	A(RATETBL)
	END	BEGIN
L i L 3

This section discusses the coding of the
machine-instructions represented in the
assembler language. The reader is reminded
that the functions of each machine-
instruction are discussed in the principles
of operation manual (see Preface).

MACHINE-INSTRUCTION STATEMENTS

Machine-instructions may be represented
symbolically as assembler language
statements. The symbolic format of each
varies according to the actual machine-
instruction format, of which there are
five: RR, RX, RS, SI, and S5S. Within each
basic format, further variations are
possible.

The symbolic format of a machine-
instruction is similar to, but does not
duplicate, its actual format. Appendix C
illustrates machine format for the five
classes of instructions. A mnemonic opera-
tion code is written in the operation
field, and one or more operands are written
in the operand field. Comments may be
appended to a machine-instruction statement
as previously explained in Section 1.

Any machine-instruction statement may be
named by a symbol, which other assembler
statements can use as an operand. The
value attribute of the symbol is the
address of the leftmost byte assigned to
the assembled instruction. The length
attribute of the symbol depends on the
basic instruction format, as follows:

Basic Format Length Attribute

RR 2
RX &
RS 4
sI 4
Ss 6

Instruction Alignment and Checking

All machine-instructions are aligned
automatically by the assembler on half-word
boundaries. If any statement that causes
information to be assembled requires align-
ment, the bytes skipped are filled with
hexadecimal zeros. All expressions that
specify storage addresses are checked to
insure that they refer to appropriate
boundaries for the instructions in which

SECTION 4: MACHINE-INSTRUCTIONS

they are used. Register numbers are also
checked to make sure that they specify the
proper registers, as follows:

1. Floating-point instructions must spec-
ify floating-point registers 0, 2, 4,
or 6.

2. Double-shift, full-word multiply, and
divide instructions must specify an
even-numbered general register in the
first operand.

OCPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a
single field and other operands are written
as a field followed by one or two sub-
fields. For example, addresses consist of
the contents of a base register and a dis-
placement. An operand that specifies a
base and displacement is written as a dis-
placement field followed by a base register
subfield, as follows: #0(5). In the RX
format, both an index register subfield and
a base register subfield are written as
follows: 40(3,5). In the SS format, both a
length subfield and a base register sub-
field are written as follows: 40(21,5).

Appendix C shows two types of addressing
formats for RX, RS, SI, and SS instruc-
tions. In each case, the first type shows
the method of specifying an address expli-
citly, as a base register and displacement.
The second type indicates how to specify an
implied address as an expression.

For example, a load multiple instruction
{RS format) may have either of the follow-
ing symbolic operands:

R1,R3,D2(B2) - -
R1,R3,S2 - -

explicit address
implied address

Whereas D2 and B2 must be represented by
absolute expressions, S2 may be represented
either by a relocatable or an absolute
expression.

In order to use implied addresses, the
following rules must be observed:

1. The base register assembler instruc-
tions (USING and DROP) must be used.

2. An explicit base register designation

must not accompany the implied
address.

Machine-Instructions 33

For example, assume that FIELD is a
relocatable symbol, which has been assigned
a value of 7400. Assume also that the
assembler has been notified (by a USING
instruction) that general register 12 cur-
rently contains a relocatable value of 4096
and is available as a base register. The
following example shows a machine-
instruction statement as it would be
written in assembler language and as it
would be assembled. Note that the value of
D2 is the difference between 7400 and 4096
and that X2 is assembled as zero, since it
was omitted. The assembled instruction is
presented in hexadecimal:

Assembler statement:
ST 4,FIELD
Assembled instruction:

Op.Code R1 X2 B2 D2
50 4 0 C CES8

An address may be specified explicitly
as a base register and displacement (and
index register for RX instructions) by the
formats shown in the first column of Table
4-1. The address may be specified as an
implied address by the formats shown in the
second column. Observe that the two stor-
age addresses required by the SS instruc-
tions are presented separately; an implied
address may be used for one while an expli-
cit address is used for the other.

Table 4-1. Details of Address Specifi-
cation
L} T .. T 1
| Type |Explicit Address] Implied Address |
L 1 3]
L g T T 1
| RX {D2(xX2,B2) | s2(x2) |
| |p2(,B2) } s2 {
| RS }D2(B2)] s2 |
| s1 |D1(B1) | s1 |
| ss {p1{L1,B1) | s1(1L1) |
| |p1(L,Bl) j s1(L) {
| {D2{L2,B2) | s2(12) {
i 4 i]
A comma must be written to separate
operands. Parentheses must be written to

enclose a subfield or subfields, and a
comma must be written to separate two sub-
fields within parentheses. When parenthe-
ses are used to ‘enclose one subfield, and
the subfield is omitted, the parentheses
must be omitted. In the case of two sub-
fields that are separated by a comma and
enclosed by parentheses, the following
rules apply:

1. If both subfields are omitted, the

separating comma and the parentheses
must also be omitted.

34

L 2,48(4,5)

L 2,FIELD {implied address)

2. If the first subfield in the sequence
is omitted, the comma that separates
it from the second subfield is writ-
ten. The parentheses must also be
written.

MvC 32(16,5),FIELD2
MVC BETA(,5),FIELD2 (implied length)

3. If the second subfield in the sequence
is omitted, the comma that separates
it from the first subfield must be

omitted. The parentheses must be

written.

MvC 32(16,5),FIELD2

MVC FIELD1(16),FIELD2 ({(implied
address)

Fields and subfields in a symbolic oper-
and may be represented either by absolute
or by relocatable expressions, depending on
what the field requires. (An expression
has been defined as consisting of one term
or a series of arithmetically combined
terms.) Refer to Appendix C for a detailed
description of field requirements.

Note: Blanks may not appear in an oper-
and unless provided by a character self-
defining term or a character literal.

Thus, blanks may not intervene between
fields and the comma separators, between
parentheses and fields, etc.

LENGTHS -- EXPLICIT AND IMPLIED

The length field in SS instructions can
be explicit or implied. To imply a length,
the programmer omits a length field from
the operand. The omission indicates that
the length field is either of the
following:

1. The length attribute of the expression
specifying the displacement, if an
explicit base and displacement have
been written.

2. The length attribute of the expression
specifying the effective address, if
the base and displacement have been
implied.

In either case, the length attribute for
an expression is the length of the leftmost
term in the expression. The length attri-
bute of asterisk (#) is equal to the length
of the instruction in which it appears,
except that in an EQU to * statement, the
length attribute is 1.

By contrast, an explicit length is writ-
ten by the programmer in the operand as an
absolute expression. The explicit length
overrides any implied length.

Whether the length is explicit or
implied, it is always an effective length.
The value inserted into the length field of
the assembled instruction is one less than
the effective length in the machine-
instruction statement.

Note: If a length field of zero is
desired, the length may be stated as zero
or one.

To summarize, the length required in an
SS instruction may be specified explicitly
by the formats shown in the first column of
Table 4-2 or may be implied by the formats
shown in the second column. Observe that
the two lengths required in one of the Ss
instruction formats are presented separate-
ly. An implied length may be used for one
while an explicit length is used for the
other.

Table 4-2. Details of Length Specification
in SS Instructions

1
| Explicit Length | Implied Length |
L 3 4
L} T]
D1(L1,B1)	D1(,B1)
s1(L1)	s1
D1(L,B1)	D1(,B1)
1 s1(L)	s1 i
{ D2(L2,B2)	D2¢(,B2)
S2(L2)	s2
' i 3

MACHINE-INSTRUCTION MNEMONIC CODES

The mnemonic operation codes (shown in

endix D) are designed to be easily
remembered codes that indicate the func-
tions of the instructions. The normal
format of the code is shown below; the
items in brackets are not necessarily pre-
sent in all codes:

VerbIModifierl [Data Typel [Machine Format)

The verb, which is usually one or two
characters, specifies the function. For
example, A represents Add , and MV rep-
resents Move. The function may be further
defined by a modifier. For example, the
modifier I, indicates a logical function, as
in AL for Add Logical and MV is modified by
C (MVC) to indicate Move Characters.

Mnemonic codes for functions involving
data usually indicate the data types, by

letters that correspond to those for the
data types in the DC assembler instruction
{see Section 5). Furthermore, letters U
and W have been added to indicate short and
long, unnormalized floating-point opera-
tions, respectively. For example, AE indi-
cates Add Normalized Short, whereas AU
indicates Add Unnormalized Short. Where
applicable, full-word fixed-point data is
implied if the data type is omitted.

The letters R and I are added to the
codes to indicate, respectively, RR and SI
machine instruction formats. Thus, AER
indicates Add Normalized Short in the RR
format. Functions involving character and
decimal data types imply the SS format.

MACHINE-INSTRUCTION EXAMPLES

The examples that follow are grouped
according to machine-instruction format.
They illustrate the various symbolic oper-
and formats. All symbols employed in the
examples must be assumed to be defined
elsewhere in the same assembly. All sym-
bols that specify register numbers and
lengths must be assumed to be equated else-
where to absolute values.

Inmplied addressing, control section
addressing, and the function of the USING
assembler instruction are not considered
here. For discussion of these considera-
tions and for examples of coding sequences
that illustrate them, refer to Section 3,
Program Sectioning and Linking, and Base
Register Instructions.

RR Format

T T - - 1
1Name 10perat10n LOperand !
T T) 1
ALPHA1	LR 11,2	
ALPHA2	LR	REG1, REG2
BETA	sPM 115	
GAMMAL	SVC 1 250	
GAMMA2	SVC	TEN]
L 1 L]

The operands of ALPHAl, BETA, and GAMMAl
are decimal self-defining values, which are
categorized as absolute expressions. The
operands of ALPHA2 and GAMMA2 are symbols
that are equated elsewhere to absolute
values.

Machine-Instructions 35

RX Format

SI Format

T T T h] T T T 1
| Name |Operation |Operand] | Name |Operation |}|Operand |
! l l J iALPHAl TCLI Tuots) X'40° i
1 3 T k) 1 .

JALPHAl |L 11,39¢4,10) | JALPHA2 |CLI | 40 (REG9) , TEN |
|ALPHA2 |L |REG1,39 (4, TEN)] | BETAL |CLI | ZETA, TEN]
BETA1 IL 12, ZETA(4)		BETA2 jcLr	ZETA,C*A"		
BETA2	L	REG2, ZETA(REGY)		GaMMAl1	SIO 140(9)
caMMAl	L 12,ZETA] jeaMMA2	SIO [0(D			
GAMMA 2 L	REG2,ZETA]]GAMMA3	SIO]40(0)		
GAMMA3 L 12,=F*1000°*		GAMMAL4	SIO	ZETA	
LAMBDA1	L 13,20¢(,5)	L L L 3			
L 1 i P

Both ALPHA instructions specify explicit
addresses; REGl and TEN are absolute sym-
bols. Both BETA instructions specify
implied addresses, and both use index reg-
isters. 1Indexing is omitted from the GAMMA
instructions. GAMMA1 and GAMMA2 specify
implied addresses. The second operand of
GAMMA3 is a literal. LAMBDAl specifies no
indexing.

RS Format

i T T 1
!Name QOperation 10perand !
L 3 ¥ k) 1
|ALPHA1 |BXH 11,2,200(14) |
|ALPHA2 |BXH | REG1 ,REG2, 20 (REGD) |
:iggggg {BXH :ggg;,ggsz,zzTA :
SLL .
|ALPHAS |SLL | REG2,0(15) |
[| i J

Wwhereas ALPHAl1 and ALPHA2 specify ex-
plicit addresses, ALPHA3 specifies an
implied address. ALPHA4 is a shift
instruction shifting the contents of REG2
left 15 bit positions. ALPHAS is a shift
instruction shifting the contents of REG2
left by the value contained in general
register 15,

36

The ALPHA instructions and GAMMA1l-GAMMA3
specify explicit addresses, whereas the
BETA instructions and GAMMAY4 specify
implied addresses. GAMMA2 specifies a
displacement of zero. GAMMA3 does not
specify a base register.

SS Format

T T T 1
| Name |operation|}operand |
L 4 1 |
L ¥ T 1
|ALPHA1 |AP |40¢9,8),30(6,7) |
|ALPHA2 |AP] 40 (NINE, REG8) ,30(L6,7)
ALPHA3	AP	FIELD2,FIELD1
ALPHA4	AP	FIELD2 (9) , FIELD1 (6)
BETA	ap	FIELD2 (9), FIELD1
GAMMA1	MVC	40¢9,8),30(7)
GAMMA2	MVC	40 (NINE, REG8) ,DEC(7)
GAMMA3	MVC	FIELD2,FIELD1
GaMMAL	MVC	FIELD2(9), FIEID1
L 1 L 3

ALPHAl, ALPHA2, GAMMAl, and GAMMA2 spec-
ify explicit lengths and addresses. ALPHA3
and GAMMA3 specify both implied length and
implied addresses. ALPHA4 and GAMMAU4 spec-
ify explicit length and implied addresses.
BETA specifies an explicit length for
FIEID2 and an implied length for FIELD1;
both addresses are implied.

EXTENDED MNEMONIC CODES

For the convenience of the programmer, the
assembler provides extended mnemonic codes,
which allow conditional branches to be
specified mnemonically as well as through
the use of the BC machine-instruction.
These extended mnemonic codes specify both
the machine branch instruction and the
condition on which the branch is to occur.
The codes are not part of the universal set
of machine-instructions, but are translated

iExtended code Meaning

B D2(X2,B2) Branch Unconditional

Used After Compare Instructions

BH D2(xX2,B2)
|BL D2(X2,B2)
|BE D2(xX2,B2)

Branch on High
Branch on Low
Branch on Equal

|BNH D2(X2,B2) Branch on Not High
|BNL D2(X2,B2) Branch on Not Low
|BNE D2(X2,B2) Branch on Not Equal

Used After Arithmetic Instructions

Branch on Overflow
Branch on Plus
Branch on Minus
Branch on Zero

[BO D2(x2,B2)
BP D2(X2,B2)
BM D2(X2,B2)
{Bz D2(X2,B2)

BNP D2(X2,B2) Branch on Not Plus
BNM D2({X2,B2) Branch on Not Minus
|BNZ D2(X2,B2) Branch on Not Zero

| Used After Test Under Mask Instructions

Branch if Ones
Branch if Mixed
Branch if Zeros
Branch if Not Ones

|[BO D2(X2,B2)
|BM D2(X2,B2)
iBZ D2(X2,B2)
|BNO D2(x2,B2)
i

BR R2 Branch Unconditional (RR format) BCR 15,R2
|NOP D2(X2,B2) No Operation BC 0,D2{(X2,B2)
| NOPR R2 No Operation (RR format) BCR 0,R2

Machine-Instruction

BC 15,D2(X2,B2)

BC 2,D2{(X2,B2)
BC 4,D2(X2,B2)
BC 8,D2(X2,B2)
BC 13,D2(X2,B2)
BC 11,D2(X2,B2)
BC 7,D2{X2,B2)

BC 1,D2(X2,B2)
BC 2,D2{X2,B2)
BC 4,D2(X2,B2)
BC 8,D2(X2,B2)
BC 13,D2(X2,B2)
BC 11,D2(X2,B2)
BC 7,D2(X2,B2)

BC 1,D2(X2,B2)
BC 4,D2(X2,B2)
BC 8,D2(X2,B2)
BC 14,D2(X2,B2)

b s e s e st s, Wt st i S S — — —— — — — —— —— — t—— —— _— T— T— — {o— w— — ———, G,]

Figure 4-1. Extended Mnemonic Codes

by the assembler into the corresponding
operation and condition combinations.

The allowable extended mnemonic codes
and their operand formats are shown in
Figure 4-1, together with their machine-
instruction equivalents. Unless otherwise
noted, all extended mnemonics shown are for
instructions in the RX format. Note that
the only difference between the operand
fields of the extended mnemonics and those
of their machine-instruction equivalents is
the absence of the R1 field and the comma
that separates it from the rest of the
operand field. The extended mnemonic 1list,
like the machine-instruction list, shows

- explicit address formats only. Each
address can also be specified as an implied
address.

In the following examples, which illus-
trate the use of extended mnemonics, it is
to be assumed that the symbol GO is defined
elsewhere in the program.

¥ T A T 1
|Name |Operation |Operand |
b 3- + 4
] |B 140 (3,6) |
] |B |40 (,6) i
| | BL 1GO(3)]
| | BL |Go |
| | BR 4 |
L L L J

The first two instructions specify an
unconditional branch to an explicit
address. The address in the first case is
the sum of the contents of base register 6,
the contents of index register 3, and the
displacement 40; the address in the second
instruction is not indexed. The third
instruction specifies a branch on low to
the address implied by GO as indexed by the
contents of index register 3; the fourth
instruction does not specify an index reg-
ister. The last instruction is an uncondi-
tional branch to the address contained in
register 4.

Machine-Instructions 37

SECTION S5: ASSEMBLER INSTRUCTION STATEMENTS

Just as machine instructions are used to
request the computer to perform a sequence
of operations during program execution
time, sO assembler instructions are
requests to the assembler to perform cer-
tain operations during the assembly.
Assembler-instruction statements, in
contrast to machine-instruction statements,
do not always cause machine-instructions to
be included in the assembled program.

Some, such as DS and DC, generate no
instructions but do cause storage areas to
be set aside for constants and other data.
Others, such as EQU and SPACE, are effec-
tive only at assembly time; they generate
nothing in the assembled program and have
no effect on the Location Counter.

The following is a list of all the
assembler instructions.

Symbol Definition Instruction
EQU - Equate Symbol

Data Definition Instructions

DC - Define constant

DS - pefine Storage

CCW - Define Channel Command Word

* Program Sectioning and Linking Instruc-
tions
START - Start Assembly
CSECT - Identify cControl Section
DSECT - Identify Dummy Section
ENTRY - Identify Entry-proint Symbol
EXTRN - Identify External Symbol
COM - Identify Blank Common Control
Section

* Base Register Instructions
USING -~ Use Base Address Register
DROP - Drop Base Address Register

Listing Control Instructions
TITLE - Identify Assembly Output
EJECT - Start New Page

SPACE Space Listing

PRINT - Print Optional Data

Program control Instructions

ICTL - Input Format Control

ISEQ - Input Sequence Checking

ORG - Set location Counter

LTORG ~ Begin Literal Pool

CNOP Conditional No Operation
COPY - Copy Predefined Source Coding
END - End Assembly

PUNCH Punch a Card

REPRO Reproduce Following Card

* Discussed in Section 3.

38

SYMBOL DEFINITION INSTRUCTION

EQU -- EQUATE SYMBOL

The EQU instruction is used to define a
symbol by assigning to it the length,
value, and relocatability attributes of an
expression in the operand field. The typi-
cal form of the EQU instruction statement
is as follows:

T
| Name
L

{A symbol iEQU
1 L

T T
|Operation |Operand
EN i

e e i o o

k3
{An expression
i 8

The expression in the operand field may
be absolute or relocatable. Any symbols
appearing in the expression must be pre-
viously defined.

The symbol in the name field is given
the same attributes as the expression in
the operand field. The length attribute of
the symbol is that of the leftmost {or
only) term of the expression. When that
term is * or a self-defining term, the
length attribute is 1. The value attribute
of the symbol is the value of the expres-
sion.

The EQU instruction is the means of
equating symbols to register numbers,
immediate dzta, and other arbitrary values.
The following examples illustrate how this
might be done:

1]] ¥ 1
!Name loperation lOperand J
3 L)) 1
|REG2 |EQU |2 (general register) |
|TEST |EQU | X*3F' (immediate datal) |
L L L 4

To reduce programming time, the program-
mer can equate symbols to frequently used
expressions and then use the symbols as
operands in place of the expressions.

Thus, in the statement

FIELD is defined as ALPHA-BETA+GAMMA and
may be used in place of it. Note, however,
that ALPHA, BETA, and GAMMA must all be
previously defined.

.DATA DEFINITION INSTRUCTIONS

There are three data definition instruction

__statements: Define Constant {DC), Define

Storage (DS), and Define Channel Command
Word (CCW).

These statements are used to enter data
constants into storage, to define and re-
serve areas of storage, and to specify the
contents of channel command words. The
statements may be named by symbols so that
other program statements can refer to the
fields generated from them. The discussion
of the DC instruction is far more extensive
than that of the DS instruction, because
the DS instruction is written in the same
format as the DC instruction and may speci-
fy some or all of the information that the
DC instruction provides.
and treatment of the statements vary. For
this reason, the DC instruction is present-
ed first and discussed in more detail than
the DS instruction.

DC -- DEFINE CONSTANT

The DC instruction is used to provide con-
stant data in storage. It may specify one
constant or a series of constants, thereby
relieving the programmer of the necessity
to write a separate data definition state-
ment for each constant desired. Further-
more, a variety of constants may be speci-
fied: fixed-point, floating-point, decimal,
hexadecimal, character, and storage
addresses. (Data constants are generally
called constants unless they are created
from storage addresses, in which case they
are called address constants.) The typical
form of the DC instruction statement is as
follows:

only the function

[S T EJ 1 ¥ L3 ¥ 3
|Name jOperation |Operand | | Name |Operation |Operand }
i 4 4 { L 5 X] 3
L] 1] L] 1] ¥ 1
| { | | |A symbol |DC |One operand in i
|FIELD | EQU | ALPHA~BETA+GAMMA } jor not 1 |the format |
t . 1 4 |used | |described in the |

]] |following text. |

L 1 L]

Each operand consists of four subfields;
the first three describe the constant, and
the fourth subfield provides the constant
or constants. The first and third sub-
fields may be omitted, but the second and
fourth must be specified. Note that more
than one constant may be specified in the
fourth subfield for most types of con-
stants. Each constant so specified must be
of the same type; the descriptive subfields
that precede the constants apply to all of
them. No blanks may occur within any of
the subfields (unless provided as charac-
ters in a character constant or a character
self-defining term), nor may they occur
between the subfields of an operand.

The subfields of the DC operand are
written in the following sequence:

Subfield
1 2 3 4

s o sy

Ll ¥ T
|Dupli- | Type|Modifiers|Constant(s)
jcation]

|
| Factor | | |
L) 3 1 1

b ot s e S s e @

The symbol that names the DC instruction
is the name of the constant (or first con-
stant if the instruction specifies more
than one). Relative addressing (e.g.,
SYMBOL+2) may be used to address the var-
ious constants if more than one has been
specified, because the number of bytes
allocated to each constant can be deter-
mined.

The value attribute of the symbol naming
the DC instruction is the address of the
leftmost byte (after any necessary
aXignment) of the first, or only, constant.
The length attribute depends on two things:
the type of constant being defined and the
presence of a length specification.

Implied lengths are assumed for the various
constant types in the absence of a length
specification. If more than one constant
is defined, the length attribute is the
length in bytes (specified or implied) of
the first constant.

Boundary alignment also varies according
to the type of constant being specified and
the presence of a length specification.
Some constant types are only aligned to a
byte boundary, but the DS instruction can

Assembler Instruction Statements 39

be used to force any type of word boundary
alignment for them. This is explained
under "DS -- Define Storage."™ Other con-
stants are aligned at various word boundar-
ies (half, full, or double) in the absence
of a length specification. If length is
specified, no boundary alignment occurs for
such constants.

Bytes that must be skipped in order to
align the field at the proper boundary are
not considered to be part of the constant.
In other words, the Location Counter is
incremented to reflect the proper boundary
(if any incrementing is necessary) before
the address value is established. Thus,
the symbol naming the constant will not
receive a value attribute that is the loca-
tion of a skipped byte.

Any bytes skipped in aligning statements
that do not cause information to be assem-
bled are not zeroed. Thus bytes skipped to
align a DC statement are zeroed, and bytes
skipped to align a DS statement are not
zeroed.

Appendix F summarizes, in chart form,
the information concerning constants that
is presented in this section.

LITERAL DEFINITIONS: The reader is remind-
ed that the discussion of literals as
machine-instruction operands (in Section 2)
referred him to the description of the DC
operand for the method of writing a literal
operand. All subsequent operand specifi-
cations are applicable to writing literals,
the only differences being:

1. The literal is preceded by an = sign.

2. Unsigned decimal values must be used
to express the duplication factor and
length modifier values.

3. The duplication factor may not be
zero.

4, S-type address constants may not be
specified.

5. Signed or unsigned decimal values must
be used for exponent and scale modifi-
er values.

Examples of literals appear throughout

the balance of the DC instruction discus-
sion.

Operand Subfield 1: Duplication Factor

The duplication factor may be omitted. If
specified, it causes the constant(s) to be
generated the number of times indicated by
the factor. The factor may be specified
either by an unsigned decimal self-defining
term or by a positive absolute expression
that is enclosed by parentheses. The

40

duplication factor is applied after the
constant is assembled. All symbols in the
expression must be previously defined.

Note that a duplication factor of zero
is permitted except in a literal and
achieves the same result as it would in a
DS instruction. A DC instruction with a
zero duplication factor will not produce
control dictionary entries. See "Forcing
Alignment®™ under "DS -- Define Storage."

Note: If duplication is specified for an
address constant containing a Location
Counter reference, the value of the Loca-
tion Counter used in each duplication is
incremented by the length of the operand.

Ooperand Subfield 2: Type

The type subfield defines the type of con-
stant being specified. From the type
specification, the assembler determines how
it is to interpret the constant and trans-
late it into the appropriate machine for-
mat. The type is specified by a single-
letter code as shown in Figure 5-1.

Further information about these
constants is provided in the discussion of
the constants themselves under "Operand
Subfield 4: Constant.”

Operand Subfield 3: Modifiers

Modifiers describe the length in bytes
desired for a constant (in contrast to an
implied length), and the scaling and expo-
nent for the constant. If multiple modifi-
ers are written, they must appear in this
sequence: length, scale, exponent. Each is
written and used as described in the fol-
lowing text.

LENGTH MODIFIER: This is written as Ln,
where n is either an unsigned decimal self-
defining term or a positive absolute
expression enclosed by parentheses. Any
symbols in the expression must be previous-
ly defined. The value of n represents the
number of bytes of storage that are assem—
bled for the constant. The maximum value
permitted for the length modifiers supplied
for the various types of constants is sum-
marized in Appendix F. This table also
indicates the implied length for each type
of constant; the implied length is used
unless a length modifier is present. A
length modifier may be specified for any
type of constant. However, no boundary
alignment will be provided when a length
modifier is given.

——— —— — — — ———— — — — — —— — — — —— — —— {—— — — —— — —— — — — — — —— ——— — — —

r 1
| Code Type of Constant Machine Format |
I]
| C Character 8-bit code for each character |
| X Hexadecimal 4-bit code for each hexadecimal digit]
| B Binary binary format |
| F Fixed-point Signed, fixed-point binary format; }
| normally a full word |
| H Fixed-point Signed, fixed-point binary format; {
| normally a half word I
| E Floating-point Short floating-point format; {
i normally a full word

| D Floating-point Long floating-point format;

| normally a double word

| P Decimal Packed decimal format

| 2 Decimal Zoned decimal format }
| A Address Value of address; normally a full word

| Y Address Value of address; normally a half word

| s Address Base register and displacement value; |
| a half word |
| v Address Space reserved for external |
| symbol addresses; each

| address normally a full word

i]
Figure 5-1. Type Codes for Constants

SCALE MODIFIER: This modifier is written
as Sn, where n is either a decimal value or
an absolute expression enclosed by paren-
theses. Any symbol in the expression must
be previously defined. The decimal value
or the parenthesized expression may be
preceded by a sign; if none is present, a
plus sign is assumed. The maximum values
for scale modifiers are summarized in
Appendix F.

A scale modifier may be used with fixed-
point (F, H) and floating-point (E, D)
constants only. It is used to specify the
amount of internal scaling that is desired,
as follows.

Scale Modifier for Fixed-Point Constants:
the scale modifier specifies the power of
two by which the constant must be
multiplied after it has been converted to
its binary representation. Just as multi-
plication of a decimal number by a power of
10 causes the decimal point to move, multi-
plication of a binary number by a power of
two causes the binary point to move. This
multiplication has the effect of moving the
binary point away from its assumed position
in the binary field; the assumed position
being to the right of the rightmost posi-
tion.

Thus, the scale modifier indicates ei-~
ther of the following: (1) the number of
binary positions to be occupied by the
fractional portion of the binary number, or
(2) the number of binary positions to be
deleted from the integral portion of the
binary number. A positive scale of x

shifts the integral portion of the number x
binary positions to the left, thereby re-
serving the rightmost x binary positions
for the fractional portion. A negative
scale shifts the integral portion of the
number right, thereby deleting rightmost
integral positions. If a scale modifier
does not accompany a fixed-point constant
containing a fractional part, the fraction-
al part is lost.

In all cases where positions are lost
because of scaling (or the lack of
scaling), rounding occurs in the leftmost
bit of the lost portion. The rounding is
reflected in the rightmost position saved.

Scale Modifier for Floating-Point Con—
stants: Only a positive scale modifier may
be used with a floating-point constant. It
indicates the number of hexadecimal posi-
tions that the fraction is to be shifted to
the right. Note that this shift amount is
in terms of hexadecimal positions, each of
which is four binary positions. (A posi-
tive scaling actually indicates that the
point is to be moved to the left. However,
a floating-point constant is always con-
verted to a fraction, which is hexadeci-
mally normalized. The point is assumed to
be at the left of the leftmost position in
the field. Since the point cannot be moved
left, the fraction is shifted right.)

Thus, scaling that is specified for a
floating-point constant provides an assem-
bled fraction that is unnormalized, i.e.,
contains hexadecimal zeros in the leftmost
positions of the fraction. When the frac-

Assembler Instruction Statements 41

tion is shifted, the exponent is adjusted
accordingly to retain the correct magni-
tude. When hexadecimal positions are lost,
rounding occurs in the leftmost hexadecimal
position of the lost portion. The rounding
is reflected in the rightmost hexadecimal
position saved.

EXPONENT MODIFIER: This modifier is writ-
ten as En, where n is either a decimal
self-defining term or an absolute expres-
sion enclosed by parentheses. Any symbols
in the expression must be previously
defined. The decimal value or the paren-
thesized expression may be preceded by a
sign; if none is present, a plus sign is
assumed. The maximum values for exponent
modifiers are summarized in Appendix F.

An exponent modifier may be used with
fixed-point (F, H) and floating-point (E,
D) constants only. The modifier denotes
the power of 10 by which the constant is to
be multiplied before its conversion to the
proper internal format.

This modifier is not to be confused with
the exponent of the constant itself, which
is specified as part of the constant and is
explained under "Operand Subfield 4: con-
stant.” Both are denoted in the same
fashion, as En. The exponent modifier
affects each constant in the operand,
whereas the exponent written as part of the
constant only pertains to that constant.
Thus, a constant may be specified with an
exponent of +2, and an exponent modifier of
+5 may precede the constant. 1In effect,
the constant has an exponent of +7.

Note that there is a maximum value, both
positive and negative, listed in Appendix F
for exponents. This applies to the expo-
nent modifier and to the sum of the expo-
nent modifier and the exponent specified as
part of the constant.

Operand Subfield 4: Constant

This subfield supplies the constant (or
constants) described by the subfields that
precede it. A data constant (all types
except A,Y,S,and V) is enclosed by apos-
trophes . An address constant (types A, Y,
S, and V) is enclosed by parentheses. To
specify two or more constants in the sub-
field, the constants must be separated by
commas and the entire sequence of constants
must be enclosed by the appropriate delimi-
ters (i.e., apostrophes or parentheses).
Thus, the format for specifying the
constant(s) is one of the following:

Single Multiple
Constant Constants#*

42

*constant,...,constant’
{constant,...,constant)

*constant’
{constant)

* Not permitted for character, hexadecimal,
and binary constants.

All constant types except character (C),
hexadecimal (X), binary (B), packed decimal
(P), and zoned decimal (2), are aligned on
the proper boundary, as shown in Appendix
F, unless a length modifier is specified.
In the presence of a length modifier, no
boundary alignment is performed. If the
operand specifies more than one constant,
any necessary alignment applies to the
first constant only. Thus, for an operand
that provides five full-word constants, the
first would be aligned on a full-word
boundary, and the rest would automatically
fall on full-word boundaries.

The total storage requirement of the
operand is the product of the length times
the number of constants in the operand
times the duplication factor (if present)
plus any bytes skipped for boundary align-
ment.

If an address constant contains a Loca-
tion Counter reference, the location Count-
er value that is used is the storage
address of the first byte the constant will
occupy. Thus, if several address constants
in the same instruction refer to the Loca-
tion Counter, the value of the lLocation
Counter varies from constant to constant.
Similarly, if a single constant is speci-
fied (and it is a Location Counter
reference) with a duplication factor, the
constant is duplicated with a varying Loca-
tion Counter value.

E and H constants are converted as if
they were D and F, respectively, and then
shortened.

The subsequent text describes each of
the constant types and provides examples.

Character Constant -- C: Any of the valid
256 punch combinations may be designated in
a character constant. Only one character
constant may be specified per statement.

Special consideration must be given to
representing apostrophes and ampersands as
characters. Each apostrophe or ampersand
desired as a character in the constant must
be represented by a pair of apostrophes or
ampersands. Only one apostrophe or amper-
sand appears in storage.

The maximum length of a character con-
stant is 256 bytes. No boundary alignment
is performed. Each character is translated
into one byte. Double apostrcphes or dou-
ble ampersands count as one character. 1I1f

no length modifier is given, the size in
bytes of the character constant is equal to
the number of characters in the constant.
If a length modifier is provided, the
result varies as follows:

1. If the number of characters in the
constant exceeds the specified length,
as many rightmost bytes as necessary
are dropped.

2. If the number of characters is less
than the specified length, the excess
rightmost bytes are filled with
blanks.

In the following example, the length
attribute of FIELD is 12:

[3 T E
| Name |Operation |Operand
i i 4

¥ H
|FIEID |DC
i L

e

¥
|C* TOTAL IS.110°
E R

However, in this next example, the
length attribute is 15, and three blanks
appear in storage to the right of the zero:

i Bl L)
| Name | Operation |Operand
L i L

e s el e

r T T
| FIELD |DC |CL15* TOTAL IS 110°
L i i

In the next example, the length attri-
bute of FIELD is 12, although 13 characters
appear in the operand. The two ampersands
count as only one byte.

-
|Operation
5

FIELD |DC

1 3 T
| Name | Operand
i i

wd

1
|C*TOTAL IS ££10°
|

i

N
it
et o coan e e b

Note that in the next example, a length
of four has been specified, but there are
five characters in the constant.

been specified as six instead of four, the
generated constant would have been:

ABCDE ABCDE ABCDE

Note that the same constant could be
specified as a literal.

T T
Name |Operation |Operand
b R 1

o e s ammme
el TR

k]
MVC iAREA(lZ),=3CLQ'ABCDE'
1 1

Hexadecimal Constant -- X: A hexadecimal
constant consists of one or more of the
hexadecimal digits, which are 0-9 and A-F.
Only one hexadecimal constant may be speci-
fied per statement. The maximum length of
a hexadecimal constant is 256 bytes (512
hexadecimal digits). No word boundary
alignment is performed.

constants that contain an even number of
hexadecimal digits are translated as one
byte per pair of digits. If an odd number
of digits is specified, the leftmost byte
has the leftmost four bits filled with a
hexadecimal zero, while the rightmost four
bits contain the odd (first) digit.

If no length modifier is given, the
implied length of the constant is half the
number of hexadecimal digits in the con-
stant (assuming that a hexadecimal zero is
added to an odd number of digits). If a
length modifier is given, the constant is
handled as follows:

1. If the number of hexadecimal digit
pairs exceeds the specified length,
the necessary leftmost bits (and/or
bytes) are dropped.

2. If the number of hexadecimal digit
pairs is less than the specified
length, the necessary bits (and/or
bytes) are added to the left and
filled with hexadecimal zeros.

An eight-digit hexadecimal constant
provides a convenient way to set the bit
pattern of a full binary word. The con-
stant in the following example would set
the first and third bytes of a word to 1's.

1 T . ¥ 3
| Name |Ooperation |Operand |
I t t 1o T T |
|FIEID |DC | 3CL4°*ABCDE* | |Name |Operation |Operand |
' L L ik t $ i
} | DS | OF |
|TEST |DC | X*FFOOFF00* |
The generated constant would be: L L 1 J

ABCDABCDABCD

On the other hand, if the length had

The DS instruction sets the location
counter to a full word-boundary.

Assembler Instruction Statements 43

The next example uses a hexadecimal
constant as a literal and inserts 1s into
bits 24 through 31 of register 5.

T ¥
Name |Operation |Operand
1 S

St S

e e

T T
|1C | 5,=X*FF' INSERT CHAR.
i 1

In the following example, the digit A
would be dropped, because five hexadecimal
digits are specified for a length of two
bytes:

- T
ame Operation |Operand
1

- T
DC | 3XL2* A6FUE"
|

1

LPHACON

o e e g v
A

o o s i o

b s coeere el et

The resulting constant would be 6FA4E,
which would occupy the specified two bytes.
It would then be duplicated three times, as
requested by the duplication factor. 1If it
had merely been specified as X'A6F4E', the
resulting constant would have had a hexa-
decimal zero in the leftmost position:

OA6F4E

Binary Constant -- B: A binary constant is
writter using 1i°s and 0°'s enclosed in apos-
trophes. Only one binary constant may be
specified in a statement. Duplication and
length may be specified. The maximum
length of a binary constant is 256 bytes.

The implied length of a binary constant
is the number of bytes occupied by the
constant including any padding necessary.
Padding or truncation takes place on the
left. The padding bit used is a 0.

The following example shows the coding

used to designate a binary constant. BCON
would have a length attribute of one.
r T v K
| Name |operation |Operand |
1 1 3 ¥ |
¥ 1 1
{BcoN |pC |B*11011101° |
|BTRUNC |DC | BL1°100100011"]
| BPAD |uc |BL1*101"]
i | i J

BTRUNC would assemble with the leftmost
bit truncated, as follows:

00100011
BPAD would assemble with five zeros as

padding, as follows:

4y

00000101

Fixed-Point Constants -— F and H: A fixed-
point constant is written as a decimal
number, which may be followed by a decimal
exponent if desired. The number may be an
integer, a fraction, or a mixed number
(i.e., one with integral and fractional
portions). The format of the constant is
as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be
omitted, in which case the number is
assumed to be an integer. A positive
sign is assumed if an unsigned number
is specified. Unless a scale modifier
accompanies a mixed number or frac-
tion, the fractional portion is lost,
as explained under Subfield 3: Modifi-
ers.

2. The exponent is optional. If speci-
fied, it is written immediately after
the number as En, where n is an
optionally signed decimal value speci-
fying the exponent of the factor 10.
The exponent may be in the range -85
to +75. If an unsigned exponent is
specified, a plus sign is assumed.

The exponent causes the value of the
constant to be adjusted by the power
of 10 that it specifies. The exponent
may exceed the permissible range for
exponents provided that the sum of the
exponent and the exponent modifier do
not exceed that range.

The number is converted to a binary
number. The binary number is then rounded
and assembled into the proper field,
according to the specified or implied
length. If the value of the number exceeds
the length specified or implied, the sign
is lost, the necessary leftmost bits are
truncated to the length of the field and
the value is then assembled into the whole
field. Any duplication factor that is
present is applied after the constant is
assembled. A negative number is carried ir
2's complement form. The resuiting number
will not differ from the exact value by
more than one in the last place.

An implied length of four bytes is
assumed for a full-word (F) and two bytes
for a half-word (H), and the constant is
aligned to the proper full-word or half-
word boundary, if a length is not
specified. However, any length up to and
including eight bytes may be specified for
either type of constant by a length modifi-
er, in which case no boundary alignment
occurs.

Maximum and minimum values, exclusive of
scaling, for fixed-point constants are:

Length Max Min
8 263-31 -263
4 231-1 -23a
2 215~ -218
1 27-1 -27

A field of three full-words is generated
from the statement shown below. The loca-
tion attribute of CONWRD is the address of
the leftmost byte of the first word, and
the length attribute is four, the implied
length for a full-word fixed-point con-
stant. The expression CONWRD+4 could be
used to address the second constant (second
word) in the field.

§ T k2
| Name |Operation |Operand
L i i

bt e it e

|CONWRD | DC [3F* 658474°
i i. i

The next statement causes the generation
of a two-byte field containing a negative
constant. Notice that scaling has been
specified in order to reserve six bits for
the fractional portion of the constant.

] 1
| Name Operation |}|Operand
'S 1

e Y
S

§ T
| HALFCON DC |HS6°~25.46"
H i

The next constant (3.50) is multiplied
by 10 to the -2 before being converted to
its binary format. The scale modifier
reserves twelve bits for the fractional
portion.

L)
| Name
Lt

T T
|Operation |Operand
i 'l

b s it e 2

T T
| FULLCON |DC |HS12*3.50E-2"
| - i 1

The same constant could be specified as
a literal:

[3 T
|Name |Operation |Operand
5

s e s oo
e s ot oo

AH 17,=Hs12°3.50E- 2"
i

The final example specifies three con-
stants. Notice that the scale modifier
requests four bits for the fractional por-
tion of each constant. The four bits are

provided whether or not the fraction
exists.

k]
Name |Operation |Operand
1

b e cltt o o

b
| THREECON | DC |FS4*10, 25.3,100°
) 1 i

Floating-Point Constants -—- E and D: A
floating-point constant is written as a
decimal number, which may be followed by a
decimal exponent, if desired. The number
may be an integer, a fraction, or a mixed
number (i.e., one with integral and frac-
tional portions). The format of the con-
stant is as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be omit-~
ted, in which case, the number is
assumed to be an integer. A positive
sign is assumed if an unsigned number
is specified.

2. The exponent is optional. If speci-
fied, it is written immediately after
the number as En, where n is an
optionally signed decimal value speci-
fying the exponent of the factor 10.
The exponent may exceed the permissi-
ble range for exponents, provided that
the sum of the exponent and the expo-
nent modifier does not exceed that
range. If an unsigned exponent is
specified, a plus sign is assumed.

Machine format for a floating-point
number is in two parts: the portion con-
taining the exponent, which is sometimes
called the characteristic, followed by the
portion containing the fraction, which is
sometimes called the mantissa. Therefore,
the number specified as a floating-point
constant must be converted to a fraction
before it can be translated into the proper
format. For example, the constant 27.35E2
represents the number 27.35 times 10 to the
2nd. Represented as a fraction, it would
be .2735 times 10 to the 4th, the exponent
having been modified to reflect the shift-
ing of the decimal point. The exponent may
also be affected by the presence of an
exponent modifier, as explained under Oper-
and subfield 3: Modifiers.

The exponent is then translated into its
binary equivalent, and the fraction is
converted to a binary number. Scaling is
performed if specified; if not, the frac-
tion is normalized (leading hexadecimal
zeros are removed). Rounding of the frac-
tion is then performed according to the
specified or implied length, and the number

Assembler Instruction Statements 45

is assembled into the proper field. Within
the portion of the floating-point field
allocated to the fraction, the hexadecimal
point is assumed to be to the left of the
leftmost hexadecimal digit, and the frac-
tion occupies the leftmost portion of the
field. Negative fractions are carried in
true representation, not in the 2's comple-
ment form. The resulting number will not
differ from the exact value by more than
one in the last place.

An implied length of four bytes is
assumed for a full-word (E) and eight bytes
is assumed for a double~word (D). The
constant is aligned at the proper word ox
double word boundary if a length is not
specified. However, any length up to and
including eight bytes may be specified for
either type of constant by a length modifi-
er, in which case no boundary alignment
occurs.

Any of the following statements could be
used to specify 46.415 as a positive, full-
word, floating-point constant; the last is
a machine-instruction statement with a
literal operand. Note that the last two
constants contain an exponent modifier.

t D ¥ B3 1
|Name |Operation |Operand |
b t t 4
| jpc |E* 46. 415" i
| jpcC JE* 46415E-3° i
| |pC |E* +464,15E-1" |
] bl |E*4.46415E+2° |
| |bC |E22'.46415" |
{ 'AE |6,=EE2'.46415" |
g i i 3

The following would each be generated as
double-word floating-point constants.

¥ v Al
| Name |operation |Operand
L i A

b et ol e

L 3 v 1
|FLOAT |DC |DE+4°* +46,-3.729,+473"
1 1 i

Decimal Conctants -- P and Z: A decimal
constant is written as a signed or unsigned
decimal value. If the sign is omitted, a
plus sign is assumed. The decimal point
may be written yherever desired or may be
omitted. Scaling and exponent modifiers
may not be specified for decimal constants.
The maximum length of a decimal constant is
16 bytes. No word boundary alignment is
performed.

The placement of a decimal point in the
definition does not affect the assembly of
the constant in any way, because, unlike
fixed-point and floating-point constants, a
decimal constant is not converted to its
binary equivalent. The fact that a decimal

46

constant is an integer, a fraction, or a
mixed number is not pertinent to its
generation. Furthermore, the decimal point
is not assembled into the constant. The
programmer may determine proper decimal
point alignment either by defining his data
so that the point is aligned or by select-
ing machine-instructions that will operate
on the data properly (i.e., shift it for
purposes of alignment).

If zoned decimal format is specified
(z), each decimal digit is translated into
one byte. The translation is done accord-
ing to the character set shown in Appendix
A. The rightmost byte contains the sign as
well as the rightmost digit. For packed
decimal format (P), each pair of decimal
digits is translated into ons byte. The
rightmost digit and the sign are translated
into the rightmost byte. The bit configqu-
ration for the digits is identical to the
configurations for the hexadecimal digits
0-9 as shown in Section 3 under
"Hexadecimal Self-Da2fining Value."™ For
both packed and zoned decimals, a plus sign
is translated into the hexadecimal digit C,
and a minus sign into the digit D.

If an even number of packed decimal
digits is specified, one digit will be left
unpaired, because the rightmost digit is
paired with the sign. Therefore, in the
leftmost byte, the leftmost four bits will
be set to zeros and the rightmost four bits
will contain the odd (first) digit.

If no length modifier is given, the
implied length for either constant is the
number of bytes the constant occupies
(taking into account the format, sign, and
possible addition of zexo bits for packed
decimals). If a length modifier is given,
the constant is handled as follows:

1. If the constant requires fewer bytes
than the length specifies, the neces-
sary number of bytes is added to the
left. For zoned decimal format, the
decimal digit zero is placed in each
added byte. For packed decimals, the
bits of each added byte are set to
zero.

2. 1If the constant requires more bytes
than the length specifies, the neces-
sary number of leftmost digits or
pairs of digits is dropped, depending
on which format is specified.

Examples of decimal constant definitions
follow.

[T v 1
{Name |Operation |[Operand |
L i d |

L]] 1
] IpC |P*41.25° i
i ipC |z*-543* |
] IDC |2*79.68° |
i |DC |PL3*79.68" |
L i L 3

The following statement specifies three
packed decimal constants. The length modi-
fier applies to each packed decimal con-
stant.

1} T T
| Name | Operation|Operand
[L i

bt s ol e wd

v |
| DECIMALS|DC |PL8* +25.8,-3874,42.3"
i i - i

The last example illustrates the use of
a packed decimal literal.

T E]
Name |Operation |Operand
i i

" e cnhe s

e

1) § q
| UNPK | OUTAREA, =PL2*+25"*
i i

ADDRESS CONSTANTS: An address constant is
a storage address that is translated into a
constant. Address constants are normally
used for initializing base registers to
facilitate the addressing of storage.
Furthermore, they provide the means of
communicating between control sections of a
multisection program. However, storage
addressing and control section communi-
cation are also dependent on the use of the
° USING assembler instruction and the loading
of registers. coding examples that illus-
trate these considerations are provided in
Section 3 under "Programming with the Using
Instruction.”

An address constant, unlike other types
of constants, is enclosed in parentheses.
If two or more address constants are speci-
fied in a statement, they are separated by
commas, and the entire sequence is enclosed
by parentheses. There are four types of
address constants: A, Y, S, and V.

Complex Relocatable Expressions: A complex
relocatable expression can only be used in

an A-type or Y-type address constant.

These expressions contain two or more
unpaired relocatable terms and/or a nega-
tive relocatable term in addition to any
absolute or paired relocatable terms that
may be present. 1In contrast to relocatable
expressions, complex relocatable expres-
sions may represent negative values. A

complex relocatable expression might con-
sist of external symbols (which cannot be
paired) and designate an address in an
independent assembly that is to be linked
and loaded with the assembly containing the
address constant.

The value of the expression is deter-
mined when the referenced control sections
are loaded. Complex relocatable expres-
sions can be used to determine the distance
between two control sections after they are
loaded into main storage.

A-Type Address Constant: This constant is

specified as an absolute, relocatable, orx
complex relocatable expression. (Remember
that an expression may be single term or
multiterm.) The value of the expression is
calculated to 32 bits as explained in Sec-
tion 2, with one exception: the maximum
value of the expression may be 23*-1. The
value is then truncated on the left, if
necessary, to the specified or implied
length of the field and assembled into the
rightmost bits of the field. The implied
length of an A-type constant is four bytes
and alignment is to a full-word boundary
unless a length is specified, in which case
no alignment will occur. The length that
may be specified depends on the type of
expression used for the constant; a length
of 1-4 bytes may be used for an absolute
expression, while a length of 3 or 4 bytes
may be used for a relocatable or complex
relocatable expression.

In the following examples, the field
generated from the statement named ACONST
contains four constants, each of which
occupies four bytes. Note that there is a
Location Counter reference in one. The
value of the Location Counter will be the
address of the first byte allocated to the
fourth constant. The second statement
shows the same set of constants specified
as literals (i.e., address constant
literals).

1 g ¥ s L L}
|Name |Operation |Operand |]
[l i 1 1 |
1 | T T T 1
|ACONST |DC |A{108,LOOP, 1 X |
| | | END-STRT, #+4096) |]
| jLM |4,7,=A(108,LOOP, | X |
| | | END-STRT, *+4096) | i
i] L 1 3

Note: When the Location Counter ref-
erence occurs in a literal, as in the LM
instruction above, the value of the Loca-
tion Counter is the address of the first
byte of the instruction.

Y-type Address Constant: A Y-type address
constant has much in common with the A-type
constant. It, too, is specified as an
absolute, relocatable, or complex relocata-

Assembler Instruction Statements 47

Form C24-3414-2, -3, 4
Page Revised 4/26/67
By TNL N26-0536

ble expression. The value of the expres-
sion is also calculated to 32 bits as
explained in Section 2. However, the maxi-
mum value of the expression may be only
213-1, The value is then truncated, if
necessary,. to the specified or implied
length of the field and assembled into the
rightmost bits of the field. The implied
length of a Y-type constant is two bytes
and alignment is to a half-word boundary
unless a length is specified, in which case
no alignment occurs. The maximum length of
a Y-type address constant is two bytes. 1If
length specification is used, a length of
two bytes may be designated for a relocata-
ble or complex expression and 1 or 2 bytes
for an absolute expression.

Warning: Specification of relocatable
Y-type address constants should be avoided
in programs destined to be executed on
machines having more than 32,767 bytes of
storage capacity.

S-Type Address Constant: The S-type
address constant is used to store an
address in base-displacement form.

The constant may be specified in two
ways:

1. As an absolute or relocatable expres-
sion, e.g., S(BETA).

2. As two absolute expressions, the first
of which represents the displacement
value and the second, the base reg-
ister, e.g., S{400(13)).

The address value represented by the
expression in (1) will be broken down by
the assembler into the proper base register
and displacement value. An S-type constant
is assembled as a half word and aligned on
a half-word boundary. The leftmost four
bits of the assembled constant represents
the base register designation, the remain-
ing 12 bits the displacement value.

If length specification is used, only
two bytes may be specified. S-type address
constants may not be specified as literals.

V-Type Address Constant: This constant is
used to reserve storage for the address of
an external symbol that is used for effect-
ing branches to other programs. The con-
stant may not be used for external data
references. The constant is specified as
one relocatable symbol, which need not be
identified by an EXTRN statement. Whatever
symbol is used is assumed to be an external
symbol by virtue of the fact that it is
supplied in a V-type address constant.

48

Note that specifying a symbol as the
operand of a V-type constant does not con-
stitute a definition of the symbol for this
assembly. The implied length of a V-type
address constant is four bytes, and bound-
ary alignment is to a full word. A length
modifier may be used to specify a length of
either three or four bytes, in which case
no such boundary alignment occurs. In the
following example, 12 bytes will be res-
erved, because there are three symbols.

The value of each assembled constant will
be zero until the program is loaded.

r

T k)
| Name |Operation |Operand
1 1 1

b e it e,

L3 T T
] VCONST |DC | V (SORT, MERGE , CALC)
L L 4

DS -~ DEFINE STORAGE

The DS instruction is used to reserve areas
of storage and to assign names to those
areas. The use of this instruction is the
preferred way of symbolically defining
storage for work areas, input/output areas,
etc. The typical form of the DS statement
is:

LS 1]
Name |operation |Operand
i i i
A symbol |DS
or
not used

-t

1

|One operand
|written in the
|format described
jin the following
| text

L

P et et st G e
ot s s s it s it e 0

P e e .

The format of the DS operand is identi-
cal to that of the DC operand; exactly the
same subfields are employed and are written
in exactly the same sequence as they are in
the DC operand. Although the formats are
identical, there are two differences in the
specification of subfields. They are:

1. The specification of data (subfield &)
is optional in a DS operand, but it is
mandatory in a DC operand. If a con-
stant is specified, it must be valid.

2. The maximum length that may be speci-
fied for character (C) and hexadecimal
(X) field types is 65,535 bytes rather
than 256 bytes.

If a DS operand specifies a constant in
subfield 4, and no length is specified in
subfield 3, the assembler determines the
length of the data and reserves the
appropriate amount of storage. It does not

assemble the constant. The ability to
specify data and have the assembler calcu-
late the storage area that would be
required for such data is a convenience to
the programmer. If he knows the general
format of the data that will be placed in
the storage area during program execution,
all he needs to do is show it as the fourth
subfield in a DS operand. The assembler
then determines the correct amount of stor-
age to be reserved, thus relieving the
programmer of length considerationms.

If the DS instruction is named by a
symbol, its value attribute is the location
of the leftmost byte of the reserved area.
The length attribute of the symbol is det-
ermined in the same manner as for a DC.

Any positioning required for aligning the
storage area to the proper type of boundary
is done before the address value is deter-
mined. Bytes skipped for alignment are not
set to zero.

Each field type (e.g., hexadecimal,
character, floating-point) is associated
with certain characteristics (these are
summarized in Appendix F). The associated
characteristics will determine which field-
type code the programmer selects for the DS
operand and what other information he adds,
notably a length specification or a
duplication factor. For example, the E
floating-point field and the F fixed-point
field both have an implied length of four
bytes. The leftmost byte is aligned to a
full-word boundary. Thus, either code
could be specified if it were desired to
reserve four bytes of storage aligned to a
full-word boundary. To obtain a length of
eight bytes, one could specify either the E
or F field type with a length modifier of
eight. However, a duplication factor would
have to be used to reserve a larger area,
because the maximum length specification
for either type is eight bytes. Note also
that specifying length would cancel any
special boundary alignment.

In contrast, packed and zoned decimal (P
and 2), character (C), hexadecimal (X), and
binary (B) fields have an implied length of
one byte. Any of these codes, if used,
would have to be accompanied by a length
modifier, unless just one byte is to be
reserved. Although no alignment occurs,
the use of C and X field types permits
greater latitude in length specifications,
the maximum for either type being 65,535
bytes. (Note that this differs from the
maximum for these types in a DC instruc-
tion.) Unless a field of one byte is
desired, either the length must be speci-~
fied for the C, X, P, Z, or B field types,
or else the data must be specified (as the
fourth subfield), so that the assembler can
calculate the length.

To define four 10-byte fields and one
100-byte field, the respective DS state-
ments might be as follows:

3 T v
|Name |Operation [|Operand
i 1

1
| 4cL10
{cL100
1

T
FIELD |DS
AREA |DS
i

ot cosess o b e il

Although FIELD might have been specified
as one 40-byte field, the preceding defini-
tion has the advantage of providing FIELD
with a length attribute of 10. This would
be pertinent when using FIEID as a SS
machine-instruction operand.

Additional examples of DS statements are
shown below:

L ¥ k]
|Name |Operation|Operand
i i 5§

R]
ll
¥ T T t
{ONE |DS | CL80 (one 80-byte field, |
| |] 1length attribute of 80 |
|TWO |DS |80C(80 one-byte fields, |
| l length attribute of onej
| THREE| DS |]6F({six full words, lengthj|
| attribute of four) }
|FOUR |DS |D{one double word, length}
1) | attribute of eight)
|FIVE |DS J4H{four half-words,

|

| | 1length attribute of i

|] |
L i 3

| two)
1

Note: A DS statement causes the storage
area to be reserved but not set to zeros.
No assumption should be made as to the
contents of the reserved area.

Special Uses of the Duplication Factor

FORCING ALIGNMENT: The Location Counter
can be forced to a double-word, full-word,
or half-word boundary by using the
appropriate field type (e.g., D, F, or H)
with a duplication factor of zero. This
method may be used to obtain boundary
alignment that otherwise would not be pro-
vided. For example, the folliowing state-
ments would set the lLocation Counter to the
next double-word boundary and then reserve
storage space for a 128-byte field (whose
leftmost byte would be on a double-word
boundary).

Assembler Instruction Statements 49

f T - T 3
|Name |Operation |Operand |
—t ¢ {
| |{DS | 0D |
|AREA |DS jcri2s |
L L L 3

DEFINING FIELDS OF AN AREA: A DS instruc-
tion with a duplication factor of zero can
be used to assign a name to an area of
storage without actually reserving the
area. Additional DS and/or DC instructions
may then be used to reserve the area and
assign names to fields within the area (and
generate constants if DC is used).

For example, assume that 80-character
records are to be read into an area for
processing and that each record has the
following format:

Pogsitions 5-10

Positions 11-30
Positions 31-36
Positions 47-54
Positions 55-62

Payroll Number
Employee Name
Date

Gross Wages
Withholding Tax

The following example illustrates how DS
instructions might be used to assign a name
to the record area, then define the fields
of the area and allocate the storage for
them. Note that the first statement names
the entire area by defining the symbol
RDAREA; the statement gives RDAREA a length
attribute of 80 bytes, but does not reserve
any storage. Similarly, the fifth state-
ment names a 6-byte area by defining the
symbol DATE; the three subsequent state-
ments actually define the fields of DATE
and allocate storage for them. The second,
ninth, and last statements are used for
spacing purposes and, therefore, are not
named.

CCW -- DEFINE CHANNEL COMMAND WORD

The CCW instruction provides a convenient
way to define and generate an eight-byte
Channel Command Word aligned at a double-
word boundary. The internal machine format
of a Channel Command Word is shown in Table
5-1. CCW will cause any bytes skipped to
be zeroed. The typical form of the CCW
instruction statement is:

L) v T
| Name | Operation|Operand 1
i 3 1 ;|
L 3 T T 1
|A symbol|CCW | Four operands, }
Jor not | | separated by commas, |
Jused | |specifying the con- |
| | |tents of the channel |
] | | command word in |
|] |the format }
} | |described in the }
| | |following text |
i i i 3
All four operands must appear. They are

written, from left to right, as follows:

1. An absolute expression that specifies
the command code. This expression'’s
value is right-justified in byte 1.

2. An expression specifying the data
address. The value of this expression
is in bytes 2-4,

3. An absolute expression that specifies
the flags for bits 32-36 and zeros for
bits 37-39. The value of this expres-—
sion is right-justified in byte 5.
(Byte 6 is set to zero.)

4. An absolute expression that specifies
the count. The value of this expres-
sion is right-justified in bytes 7-8.

The following is an example of a CCW
statement:

L] ¥ R} 3
|Name |Operation |Operand |
¥ T 1 jf % 1
Name |Operation |Operand I | ccw | 2, READAREA, X* 48°,80 |
- ;] 4 1 d
L] 1
RDAREA |DS {oCcL8o }
|DS {cLY i
|PAYNO |DsS jcré Note that the form of the third operand
| NAME }|Ds {CL20 sets bits 37-39 to zero, as required. The
DATE jDs jocLeé bit pattern of this operand is as follows:
DAY |ps jcL2
MONTH |DS jcL2 32-35 36-39
| YEAR] jcL2 | 0100 1000
|ps |C110
GROSS |Ds JCL8 If there is a symbol in the name entry
{FEDTAX |DS jcLs of the CCW instruction, it is assigned the
| {Ds jcLis | address value of the leftmost byte of the
- L 3 4 channel command word. The length attribute

50

of the symbol is eight.

Table 5-1.

Channel Command Word

T 3

{Byte 1 Bits 1 Usage }
- T T 1
11 | 0-7 | Command code }
{2-4 | 8-31 | Data address]
15 | 32-36 | Flags |
] | 37-39 | Must be zero]
{6 } 40-47 | Set to zero |
17-8 | 48-63 | Count |
1 1 3

LISTING CONTROL_INSTRUCTIONS

The listing control instructions are used
to identify an assembly listing and assem-
biy output cards, to provide blank lines in
an assembly listing, and to designate how
much detail is to be included in an assem—
bly listing. In no case are instructions
or constants generated in the object pro-
gram. Listing control statements except
PRINT are never printed.

TITLE -~ IDENTIFY ASSEMBLY OUTPUT

The TITLE instruction enables the program-
mer to identify the assembly listing and
assembly output cards. The typical form of
the TITLE instruction statement is as fol-
lows:

However, both ampersands and apostrophes
are printed and are counted in the total
number of operand characters. The contents
of the name and operand field are printed
at the top of each page of the assembly
listing.

A program may contain more than one
TITLE statement. Each TITLE statement
provides the heading for pages in the
assembly listing that follow it, until
another TITLE statement is encountered.
Each TITLE statement encountered after the
first one causes the listing to be advanced
to a new page (before the heading is
printed).

For example, if the following statement
is the first TITLE statement to appear in a
program:

T T
|Name |Operation |Operand
L }

b e ot s 0

|
1
| *FIRST EEADING'
L.

LB T
{PGML |TITLE
L 4

then PGM1 is punched into all of the output
cards (column: 73-76) and this heading
appears at the top of each page: FIRST
HEADING.

If the following statement occurs later
in the same program:

r T N T 1
{Name !Operatlon lOperand J
r T = It Bt 1 1 3 T 1 1
|Name |Operatior |Operand | | | TITLE | '"A NEW HEADING' |
—————— + } 1 1 —deeeee i
|Name |TITLE |One to 100 char- |
| or | |acters, enclosed in |
{Not | |single apostrophes i then, PGM1 is still punched into the output
|used | | 1 cards, but each following page begins with
L i i M]

The name entry may contain a name of
from one to four alphabetic or numeric
characters in any combination. The con-
tents of the name entry are punched into
columns 73-76 of all the output cards for
the program except those produced by the
PUNCH and REPRD assembler instructions.
Oonly the first TITLE statement in a program
may have a name in the name entry. The
name field of all subsequent TITLE state-
ments must be blank.

The operand field may contain up to 100
characters enclosed in apostrophes. Any
ampersands or apostrophes enclosed within
the surrounding apostrophes must be rep-
resented by two ampersanids or apostrophes.

the heading: A NEW HEADING.

Note: The sequence numbez of the cards
in the output deck is contained in columns
77-80, except those produced by the PUNCH
and REPRO assembler instructions.

EJECT ~- START NEW PAGE

The EJECT instruction causes the next line
of the listing to appear at the top of a
new page. This instruction provides a
convenient way to separate routines in the
program listing. The typical form of the
EJECT instruction statement is as follows:

Assembler Instruction Statements 51

T T T 1
| Name |Operation |Operand }
f $--- : 1
| Not |EJECT |Not used; should i
jused | |be blank |
i L1 PR]

If the next line of the listing would
appear at the top of a new page without the
EJECT instruction, the EJECT instruction
has no immediate effect. If one or more
EJECT statements appear after the first
EJECT, one or more pages are skipped. A
TITLE instruction followed immediately by
an EJECT instruction will result in a page
with a title line and a statement heading
line. Text following the EJECT instruction
will begin at the top of the next page.

SPACE —-- SPACE LISTING

The SPACE instruction is used to insert one
or more blank lines in the listing. The
typical form of the SPACE instruction
statement is as follows:

r T N T 1
| Name | Operation |Operand |
_______ $ 3
T 1

| Not | SPACE |A decimal value |
jused | jor not used)
L - —— B S — ¥l

A decimal value is used to specify the
number of blank lines to be inserted in the
assembly listing. A blank operand causes
one blank line to be inserted. If this
value exceeds the number of lines remaining
on the listing page, the statement will
have the same effect as an EJECT statement.

PRINT -- PRINT OPTIONAL DATA

The PRINT instruction controls the content
of the assembly listing. The typical form
of the PRINT instruction is:

erand

r
| Name Operation
i

One to three of the following operands
are used:

ON
or
OFF -

A listing is printed.
No listing is printed.
GEN - All statements generated by
macro-instructions are printed.

or
NOGEN - Statements generated by macro-
instructions are not printed,
except MNOTE messages (with a
severity code other than *)
which print regardless of NOGEN.
However, the outer macro-
instruction itself will appear
in the listing.
DATA - Constants are printed out in
full in the listing.

or
NODATA

Oonly the leftmost eight bytes
(16 hexadecimal digits) are
printed.

A program may contain any number of
PRINT statements. . The conditions set by a
PRINT statement are in effect until another
PRINT statement is encountered.

If an operand is omitted, it is assumed
to be unchanged and continues according to
its last specification.

wWhen OFF is specified, GEN and DATA have
no effect. When NOGEN is specified, DATA
has no effect for generated constants.

Until the first PRINT statement (if any)
is encountered, the following is assumed:

L R T b
|Name |Operation |Operand i
L $ 3) |
¥ T T X 1
i | PRINT | ON, NODATA, GEN |
i L 5 X |
For example, if the statement:
r T N T H
|Name |Operation |}Operand |
I t } {
] |pC [XL256° 00"]
4. 1o 5 |

appears in a program, 256 bytes of zeros
are assembled. If the statement:

One to three operands

o et e e s

e o e oadagy e s

¥
]
r ~+-
| Not | PRINT
|used |
i -d

52

h T
Name |Operation |Operand
i k&

oo vt S . iy
b wwon iy crvmrns sl

T T
|PRINT {DATA
L L.

is the last PRINT statement to appear
before the DC statewent, all 256 bytes of
zeros are printed in the assembly listing.
However, if there are no previous PRINT
statements, or:

T T -
Name |Operation |Operand
1 L

o e Sy e
bt cnn. st o

1 T
| PRINT | NODATA
i i

is the last PRINT statement to appear
before the DC statement, only eight bytes
of zeros are printed in the assembly list-
ing.

PROGRAM CONTROL INSTRUCTIONS

The program control instructions are used
to specify the end of an assembly, to set
the Location Counter to a value or halfword
boundary, to insert previously written
coding in the program, to specify the
placement of literals in storage, to check
the sequence of input cards, to indicate
statement format, and to punch a card.
Except for the CNOP and COPY instructions,
none of these assembler instructions gener-
ate instructions or constants in the object
programe.

ICTL -- INPUT FORMAT CONTROL

The ICTL instruction allows the programmer
to alter the normal format of his source
program statements. The ICTL statement
must precede all other statements in the
source program and may be used only once.
The form of the ICTL instruction statement
is as follows:

r T H
| Name | Operation | Operand |
i I {
¥ T

Not used,	ICTL	1-3 decimal
must not		values of the
be present		form b,e,c
L 1 i b]

Operand b specifies the begin column of
the source statement. It must always be
specified, and must be from 1-40, inclu-
sive. Operand e specifies the end column
of the source statement. The end column,
when specified, must be from 41-80, inclu-
sive; when not specified, it is assumed to
be 71. The column after the end column is

used to indicate whether the next card is a
continuation card. Operand c specifies the
continue column of the source statement.
The continue column, when specified, must
be from 2-40 and must be greater than b.

If the continue column is not specified, or
if column 80 is specified as the end
column, the assembler assumes that there
are no continuation cards, and all state-
ments must be contained on a single ~ard.
Th= operand forms b,,c and b, are invalid.

If no ICTL statement is used in the
source program, the assembler assumes that
1, 71, and 16 are the begin, end, and con-
tinue columns, respectively.

The next example designates the begin
column as column 25. Since the end column
is not specified, it is assumed to be
column 71. No continuation cards are rec-
ognized because the continue column is not
specified.

T T
Name |Operation |[Operand
1 3

o s g s Wy
PRSI Sp—

T T
| ICTL 125
1 i

ISEQ -~ INPUT SEQUENCE CHECKING

The ISEQ instruction is used to check the
sequence of input cards. The typical form
of the ISEQ instruction statement is as
follows:

H T . k3 3
| Name | Operation | Operand |
b + $ {
|Not used, | ISEQ | Two decimal }
jmust not i | values of the |
|be present | | form 1,r, or |
i | | not used |
i i 1 3

The operands 1 and r, respectively,
specify the leftmost and rightmost columns
of the field in the input cards to be
checked. Operand r must be equal to or
greater than operand 1. Columns to be
checked must not be between the "begin" and
"end"” columns.

Sequence checking begins with the first
card following the ISEQ statement. Compar-
ison of adjacent cards makes use of the
eight-bit internal collating sequence.
Each card checked must be higher than the
preceding one.

Assembler Instruction Statements 53

An ISEQ statement with a blank operand
terminates the operation. Checking may be
resumed with another ISEQ statement.

Sequence checking is only performed on
statements contained in the source program.
Statements inserted by the COPY
assembler-instruction or generated by a
macro-instruction are not checked for
sequence.

PUNCH —-— PUNCH A CARD

The PUNCH assembler-instruction causes the
data in the operand to be punched into a
card. One PUNCH statement produces one
punched card. As many PUNCH statements may
be used as are necessary. The typical form
is:

3 E . T]
!Name 10perat10n lOperand }
1 1 T]
|Not | PUNCH {1 to 80 characters |
| used | jenclosed in |
! 1 !aposttophes J

Using character representation, the
operand is written as a string of up to 80
characters enclosed in apostrophes . All
characters, including blank, are valid.

The position immediately to the right of
the left apostrophe is regarded as column
one of the card to be punched. The assem-
bly program does not process the data in
the operand of a PUNCH statement other than
causing it to be punched in a card. For
each apostrophe or ampersand desired in the
operand, two apostrophes or ampersands must
be written. The two apostrophes or amper-
sands are reduced to a single apostrophe or
ampersand. However, they count as only one
character in the operand.

PUNCH statements may occur anywhere
within a program, except before macro-
definitions. They may occur within a
macro-definition but not between a MEND
statement and the beginning of the next
macro. If a PUNCH statement occurs before
the first control section, the resultant
card will precede all other cards in the
object program card deck; otherwise the
card will be punched in place. No segquence
number or identification is punched in the
card.

54

REPRO -- REPRODUCE FOLLOWING CARD

The REPRO assembler-instruction causes data
on the following statement line to be
punched into a card. The data is not proc-
essed; it is punched in a card and no sub-
stitution is performed for variable sym-
bols. No sequence number or identification
is punched in the card. One REPRO instruc-
tion produces one punched card. The REPRO
instruction may not appear before a macro-
definition.

REPRO statements that occur before all
statements composing the first or only
control section will punch cards which

precede all cards of the object deck. The
form is:

¥ T . e B 1
| Name |Operation |Operand |
IS 3 i 5 |
L] ¥ ¥ 1
|Not | REPRO | Not used, should |
|used | | not be present |
L i L]

The line to be reproduced may contain
any combination of up to 80 characters.
Characters may be entered starting in
column 1 and continue through column 80 of
the line. Column 1 of the line corresponds
to column 1 of the card to be punched.

ORG -- SET LOCATION COUNTER

The ORG instruction is used to alter the
setting of the Location Counter for the
current control section. The typical form
of the ORG instruction statement is:

Ll ¥ T 3
| Name |Operation |Operand |
I8 1) 3
L 3 1] T 1
{Not |ORG |A relocatable ex- |
jused | | pression or not used |
L i 1 3]

Any symbols in the expression must have
been previously defined. The unpaired
relocatable symbol must be defined in the
same control section in which the ORG
statement appears.

The Location Counter is set to the value
of the expression in the operand. If the
operand is omitted, the Location Counter is
set to a location that is one byte higher
than the maximum location assigned for the
control section up to this point.

An ORG statement must not be used to
specify a location below the beginning of
the control section in which it appears.
For example, the statement:

¥ T
|Name |Operation operand
1 B

e st ol sz wd

o

T
|ORG | *-500
i i

is invalid if it appears less than 500
bytes from the beginning of the current
control section.

If it is desired to reset the Location
Counter to the next available location in
the current control section, the following
statement would be used:

e b

L T
|Name |[Operation |Operand
3

T
|
3
1]
i
[§

]
| ORG
1

I1f previous ORG statements have reduced
the location Counter for the purpose of
redefining a portion of the current control
section, an ORG statement with an omitted
operand can then be used to terminate the
effects of such statements and restore the
Location Counter o its highest setting.

LTORG —- BEGIN LITERAL POOL

The LTORG instruction causes all literals
since the previous LTORG or beginning of
the program to be assembled at appropriate
boundaries starting at the first double-
word boundary following the LTORG
statement. If no literals follow the LTORG
statement, alignment of the next instruc-
tion will occur. Bytes skipped are not
zeroed. The typical form of the LTORG

Special Addressing Consideration

Any literals used after the last LTORG
statement in a program are placed at the
end of the first control section. If there
are no LTORG statements in a program, all
literals used in the program are placed at
the end of the first control section. 1In
these circumstances the programmer must
ensure that the first control section is
always addressable. This means that the
base address register for the first control
section should not be changed through usage
in subsequent control sections. If the
programmer does not wish to reserve a reg-
ister for this purpose, he may place a
LTORG statement at the end of each control
section, thereby ensuring that all literals
appearing in that section are addressable.

CNOP -- CONDITIONAL NO OPERATION

The CNOP instruction allows the programmer
to align an instruction at a specific word
boundary. If any bytes must be skipped in
order to align the instruction properly,
the assembler insures an unbroken instruc-
tion flow by generating no-operation
instructions. This facility is useful in
creating calling sequences consisting of a
linkage to a subroutine followed by parame-
ters such as channel command words (CCW).

The CNOP instruction insures the align-
ment of the Location Counter setting to a
half-word, word, or double-word boundary.
If the Location Counter is already properly
aligned, the CNOP instruction has no
effect. If the specified alignment
requires the Location Counter to be incre-
mented, one to three no-operation instruc-
tions are generated, each of which uses two
bytes.

The typical form of the CNOP instruction
statement is as follows:

1] RS ¥ 1
instruction statement is: | Name |Operation |Operand |
1. 1 ER |
1) ¥ 1 a
| Not | CNOP | Two absolute]
. + - jused ! | expressions of |
| Name |Operation |Operand] | |the form b,w
'1_ i 3 L 1 1 J

L]

| Not used, should
| |not be present
| |
i

1

¥
|A symbol | LTORG
|or not
|used
i

b et s o el s e

The symbol represents the address of the
first byte of the literal pool. It has a
length attribute of one.

Any symbols used in the expressions in
the operand field must have been previously
defined.

Operand b specifies at which byte in a

word or double word the Location Counter is
to be set; b can be 0, 2, 4, or 6. Operand

Assembler Instruction Statements 55

¥ 1
| Double Word i
F T 4
| wWord] Word]
18 1 ; |
] T T T t
| Half word | Half word | Half word | Half word |
F T t T 1 T + T .
| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte]|
L i i } §) 8 i 1 1 3
| |
|

10,4 2,4 0,4 2, |
10,8 2,8 4,8 6, |
L 3
Figure 5-2. CNOP Alignment

w specifies whether byte b is in a word
(w=4) or double word (w=8). The following
pairs of b and w are valid:

b, w Specifies

0,4 Beginning of a word

2,4 Middle of a word

0,8 Beginning of a double word

2,8 Second half word of a double word

4,8 Middle (third half word) of a dou-
ble word

6,8 Fourth half word of a double word

Figure 5-2 shows the position in a dou-
ble word that each of these pairs speci-
fies. Note that both 0,48 and 2,4 specify
two locations in a double word.

Assume that the Location Counter is
currently aligned at a double-word bounda-
rY. Then the CNOP instruction in this
sequence:

~ T A T 3
|Name |Operation |Operand |
p-——t 4 4
] |cNoP 10,8 |
| | BALR 12,14 |
L | i ¥ |
has no effect. However, this sequence:

¥ T ¥ k|
|Name |Operation |[Operand |
F i + i
| |cNop 16,8 |
| | BALR 12,14]
1 1 i ; |

causes three branch-on-conditions
(no-operations) to be generated, thus
aligning the BALR instruction at the last
half-word in a double word as follows:

56

¥ T T 1
| Name 10peration lOperand J
1

1 3 T 1 1
| | BCR 10,0 i
	BCR 10,0
	BCR 10,0
	BALR 12,14
i } & L 3

After the BALR instruction is generated,
the Location Counter is at a double-word
boundary, thereby insuring an unbroken
instruction flow.

Note: If the location counter is on an
odd-numbered byte-boundary when a CNOP
instruction is encountered, normal align-
ment occurs before the CNOP is processed.

COPY —-- COPY PREDEFINED SOURCE CODING

The COPY instruction obtains source-
language coding from a system library
(Assembler source statement library) and
includes it in the program currently being
assembled. The form of the COPY
instruction statement is as follows:

¥ R} kJ b |
| Name | Ooperation | Operand |
F = + '
|Not used, | COPY | One symbol]
jmust not | | |
|be present |] |
L 1 1. 3

The operand is a symbol that identifies
the section of coding to be copied. The
symbol must not be the same as the mnemonic
operation code of a definition in the macro
library.

The assembler inserts the requested
coding immediately after the COPY statement
is encountered. The requested coding may
not contain another COPY statement.

If identical COPY statements are encoun-
tered, the coding they request is brought
into the program each time.

COPYed text is always in the normal
format and is not governed by ICTL usage.
See Copy Statements in Section 7 for furth-
er information. The procedure for placing
source language coding in the system
library is described in the System Control
and system Service Programs publication
listed in the Preface.

END -- END ASSEMBLY

The END instruction terminates the assembly
of a program. It may also designate a
point in the program or in a separately
assembled program to which control may be
transferred after the program is loaded.
The END instruction must always be the last
statement in the source program.

The typical form of the END instruction
statement is as follows:

r T 2 -
{Name | Operation | Operand |
L L 1 |
1] T L 1
|A sequence | END | A relocatable |
|symbol or | | expression or |
jnot present| | not present |
L. ' i)

The operand specifies the point to which
control may be transferred when loading is

complete. For example:

¥ k2 3
| Name |Operation |Operand l
i 1 L ¥ |
3 k) 1 L}
NAME	CSECT	
AREA	DS	SOF
BEGIN	BALR 12,0	
	GSING 1*.2 i	
	- I	
	-	
l -		
	END	BEGIN
L 1 1 3
NOTE: If macro-instructions are included

in an assembly, errors detected during
macro editing will be printed after the END
statement and will be flagged. The error
messages do not follow the macro-instruc-
tions, because the source statements are
not available to the assembler during macro
editing.

Assembler Instruction Statements 57

PART 3 -- CONDITIONAL ASSEMBLY AND MACRO FACILITIES IN THE ASSEMBLER LANGUAGE

SECTION 63
FACILITIES

INTRODUCTION TO THE MACRO

The DOS/TOS conditional assembly and macro
facilities are part of the DOS/TOS assem-—
bler language.

Conditional assembly allows one to spec-
ify assembler language statements which may
or may not be assembled, depending upon
conditions evaluated at assembly time.
conditional assembly statements are used to
define, set, change, and test values during
the course of the assembly itself.

The conditional assembly instructions
may be used to vary the sequence of state-
ments generated for each occurrence of a
macro-instruction. Conditional assembly
instructions may also be used outside
macro-definitions, i.e., among the assem-
bler language statements in the program.

The macro facilities provide the pro-
grammer with a convenient way to write a
macro-definition that can be used to gener-
ate a desired sequence of machine instruc-
tions and certain assembler instructions
many times in one or more programs.

This macro-definition is written only
once, and a single statement, a macro-
instruction statement, is written each time
a programmer wants to generate the desired
sequence of statements.

This facility simplifies the coding of
programs, reduces the chance of programming
errors, and ensures that standard seqguences
of statements are used to accomplish
desired functions.

THE MACRO-INSTRUCTION STATEMENT

A macro-instruction statement (also called
a macro-instruction) is a source program
statement used to provide information for
generating machine and assembler instruc-
tions from a macro-definition. The gener-
ated instructions are source statements
which are then processed by the assembler
program.

Three types nf macro-instructions may be

written. Each type has a different form of
operard. They are:

58

1. Positional {Sections 7 and 8).
2. Keyword (Section 10).
3. Mixed-mode (Section 10).

Pogitional macro-instruction operands
are written in a fixed order.

Keyword macro-instruction operands can
be written in any order.

Mixed-mode macro-instruction operands
are a combination of both positional and
keyword operands. That is, certain operand
entries (positional) must be written in a
fixed order; other operand entries
{keyword) can be specified in any order.

THE MACRO-DEFINITION

Before a macro-instruction can be assem-
bled, a macro-definition must be available
to the assembler.

A macro-definition is a set of state-
ments that provide the assembler with:

1. The name entry, mnemonic operation
code, and the form of the macro-
instruction operand, and

2. The sequence of statements the
assembler uses when the macro-
instruction appears in the source
program.

Every macro-definition consists of a
macro-definition header statement, a macro-
instruction prototype statement, a sequence
of model statements, COPY statements,
MEXIT, MNOTE, or conditional assembly
instructions, and a macro-definition trail-
er statement.

The macro-definition header and trailer
statements denote the beginning and end,
respectively, of a macro-definition.

The macro-instruction prototype state-
ment specifies the name entry, mnemonic
operation code, and the type of the macro-
instruction operand.

The model statements contained in a
macro-definition may be used by the
assembler to generate machine instructions
and certain assembler instructions that
replace each occurrence of the macro-
instruction.

The COPY statements may be used to copy
model statements, MEXIT instructions, MNOTE
instructions, and conditional assembly
instructions from a system library
(Assembler source statement library) into a
macro-definition.

The MEXIT instruction can be used to
terminate processing of a macro-definition.

The MNOTE instruction can be used to
generate a message.

The conditional assembly instructions
may be used to vary the sequence of
statements generated for each occurrence of
a macro instruction. Conditional assembly
instructions may also be used outside
macro-definitions, i.e., among the assem-
bler language statements in the program.

If a macro-definition is in-line‘with an
assembly, it is called a programmer macro.

THE ASSEMBLER SOURCE STATEMENT LIBRARY

The same macro-definition may be made avail-
able to more than one source program by
placing the macro-definition in the assem-
bler source statement library. The macro-
definition then becomes a system macro.

This system library is a collection of macro-

definitions that can be used by all the
assembler language programs in an installa-
tion. Once a macro-definition has been
placed in the source statement library it
may be used by writing a corresponding
macro-instruction in a source program.
Macro-definitions must be in the assembler
source statement library under the same
name as the prototype. The procedure for
placing macro-definitions in the source
statement library is described in the Sys-
tem Control and System Service Programs
publication listed in the Preface.

System macro instructions provided by
IBM, are described in the Supervisor and
Input/Output Macros publication, also
listed in the Preface.

Editing errors in user-supplied system
macros are found at the time the macro is
read from the source statement library,
i.e., after the END card. To determine
where these errors are, it is necessary to
punch all such macros, including inner
macros, and insert them then in the source
program as programmer macros. To aid in
debugging it is advisable to run all macros
as programmer macros before incorporating
them as system macros.

VARYING THE GENERATED STATEMENTS

BEach time a macro instruction appears in
the source program, it is replaced by the

Form C24-3414-2,-3, -4
Page Revised 4/26/67
By TNL N26-0536

same sequence of assembler language state-
ments. Conditional assembly instructions,
however, may be used to vary the number and
format of the generated statements.

VARIABLE SYMBOLS

A variable symbol is a type of symbol that
is assigned various values by either the
programmer or the assembler. Thus, varia-
ble symbols allow different values to be
assigned to one symbol. When the assembler
uses a macro-definition to determine what
statements are to replace a macro-
instruction, variable symbols in the model
statements are replaced with the current
values assigned to them.

A variable symbol is written as an
ampersand followed by from one to seven
letters and/or digits, the first of which
must be a letter.

Types of Variable Symbois

There are three types of variable symbols:
symbolic parameters, system variable sym—
bols, and SET symbols. The SET symbols are
further broken down into SETA symbols, SETB
symbols, and SETC symbols. The three types
of variable symbols differ in how they are
assigned values.

Assigning Values to Variable Symbols

Symbolic parameters are assigned values by
the programmer each time he writes a macro-
instruction.

System variable symbols are assigned
values by the assembler each time it proc-
esses a macro-instruction.

SET symbols are assigned values by the

programmer by means of conditional assembly
instructions. ‘

Global SET Symbols

The values assigned to SET symbols in one
macro-definition may be used in other
macro-definitions. All SET symbols used
for this purpose must be defined as global
SET symbols. All other SET symbols must be
defined by the programmer as local SET
symbols. Local SET symbols and the other
variable symbols (that is, symbolic param—
eters and system variable symbols) are
local variable symbols. Global SET symbols
are global variable symbols.

Introduction to the Macro Facilities 59

ORGANIZATION OF THIS PART OF THE
PUBLICATION

Sections 7 and 8 describe the basic rules
for preparing macro-definitions and for
writing macro-instructions.

Section 9 describes the rules for writ-
ing conditional assembly instructions.

Section 10 describes additional features
including rules for defining global SET

60

symbols, preparing keyword and mixed-mode
macro-definitions, and writing keyword and
mixed-mode macro-instructions.

Appendix G contains a reference summary
of the complete macro facilities.

Examples of the use of the features of
the language appear throughout the remain-
der of the publication. These examples
illustrate the use of particular features.
However, they are not meant to show the
full versatility of these features.

A macro-definition consists of:

1. A macro-definition header statement.

2. A macro-instruction prototype state-
ment.

3. Zero or more model statements, COPY
statements, MEXIT, MNOTE, or condi-
tional assembly instructions.

4. A macro-definition trailer statement.

Except for MEXIT, MNOTE, and conditional
assembly instructions, this section of the
publication describes the statements that
may be used to prepare macro-definitions.
Conditional assembly instructions are des-
cribed in Section 9. MEXIT and MNOTE
instructions are described in Section 10.

Macro-definitions in a source program
must appear before all PUNCH and REPRO
statements which appear in the main pro-
gram. Specifically, only the 1listing con-
trol instructions (EJECT, PRINTI, SPACE, and
TITLE), ICTL and ISEQ instructions, and
comments statements may occur before the
macro-definitions. All but the ICTL
instruction may appear between macro-
definitions if there is more than one
definition in the source program.

MACRO -- MACRO-DEFINITION HEADER

The macro-definition header statement
denotes the beginning of a macro-
definition. It must be the first statement
in every macro-definition. The form of
this statement is:

r T T L
| Name | Operation | Operand |
b + ¢ {
Not used,	MACRO	Not used, must
must not		not be present
be present		
. 1 i 5]		

MEND --_ MACRO-DEFINITION TRAILER

The macro-3definition trailer statement
denotes the end of a macro-definition. It
must be the last statement in every macro-

SECTION 7: HOW_ _TO PREPARE MACRO-DEFINITIONS

definition. The form of this statement is:

T T
| Name |Operation |Operand
L 1 3

T

|Not used, must not
|be present

X

|) T
|Not | MEND

jused |
ER 1

e

MACRO-INSTRUCTION PROTOTYPE

The macro-instruction prototype statement
(also called the prototype statement)
specifies the name entry, mnemonic opera-
tion code, and the form of all macro-
instructions that refer to the macro-
definition. It must be the second state-
ment of every macro-definition. The
typical form of this statement is:

T B £ . B 1
!Name 109erat10n loperand !
r T - T 1
A symbolic	A symbol	Zero to 100 sym—
parameter		bolic parameters,
or not		separated by com-
used		mas
L i 1]

The symbolic parameters are used in the
macro-definition to represent the name
entry and operands of the corresponding
macro-instruction. A description of sym-
bolic parameters appears following Model
Statements.

The name entry of the prototype state-
ment may be unused or it may contain a
symbolic parameter.

The symbol in the operation entry is the
mnemonic operation code that must appear in
all macro-instructions that refer to this
macro-definition. The mnemonic operation
code must not be the same as the mnemonic
operation code of another macro-definition
in the source program or of a machine
instruction or assembler instruction.

The operand entry may contain zero to

100 symbolic parameters separated by com~
mas.

How to Prepare Macro-Definitions 61

~

The following is a prototype statement. r -+ ¥ -
| Name | Oper-|Operand Comments| |
| |ation} }
i ER 1 11

1 T T 3 ¥ T 1 § T1
| Name |Operation |Operand | | NAME1 |oP1 |OPERAND1,OPERAND2, OPERAN| X|
¥ - } i i | |D3 THE NORMAL FORM I
| ENAME | MOVE | §TO, § FROM) b +-4
L i L i |NAME2 {OP2 |OPERAND1, THIS IS THE AL|X|
|] | OPERAND2, OPERAND3, TERNA|X|
] | | TE STATEMENT 1X|
] | | FORM |1
e e e -4
|NAME3 |OP3 |OPERAND1, THIS IS A COMB|X|
] | |OPERAND2, OPERAND3, OPERAN| X |
Alternate_ Statement Form | | |D4,0PERANDS INATION OF |XI
] | | BOTH STATEMENT FORMATS | |
i 1 1 ;1

The prototype statement may be written in a
form different from that used for machine
or assembler instructions. The normal form
is described in Part 1 of this publication.
The alternate form described here allows
the programmer to write an operand on each
line, and allows the interspersing of oper-
ands and comments in the statement.

In the alternate form, as in the noxmal
form, the name and operation entries must
appear on the first line of the statement,
and at least on- blank must follow the
operation entry on that line. Both types
of statement foims may be used in the same
prototype statemenc.

The rules for using the alternate state-
ment form are:

1. If an operand is followed by a comma
and a blank, and the column after the
erd column contains a nonblank charac-

" ter, the operand entry may be contin-
ued on the next line starting in the
continue column. More than one oper-
and may appear on the same line.

2. Comments may appear after the biank
that indicates the end of an operand,
up to and including the end column.

3. If the next line starts aftex the
continue column, the information
entered on that line is considered to
be comments, and the operand field is
considered terminated. Any subsequent
continuation lines are considered to
contain only comments.

Note: A prototype statement may be
written on as many continuation lines as is
necessary to contain 100 operands and asso-
ciated comments.

The following examples illustrate: (1)
the normal statement form, (2) the alter-
nate statement form, and (3) the combina-
tion of both statement forms.

62

MODEL_STATEMENTS

Moudel statements are the macro-definition
statements from which the desired sequences
of machine instructions and certain assem-
bler instructions are generated. Zero or
more model statements may follow the proto-
type statement. A model statement consists
of one to four entries. They are, from
left to right, the name, operation, oper-
and, and comments entries.

The name entry may be unused, or it may
contain an ordinary symbol, a sequence
symbol or a variable symbol, depending on
the particular statement. (Neither * nor
.* may be substituted in the begin column
of a model statement.)

The operation entry may contain any
machine, assembler, or macro instruction
mnemonic operation code, except COPY, END,
ICTL, ISEDQ, and PRINT; or it may contain a
variable symbol. Variable symbols may not
be used to generate the following mnemonic
operation codes, nor may variable symbols
be used in the name and operand entries of
these instructions: COPY, END, ICYL, or
ISEQ. Variable symbols may not be used to
generate CSECT, DSECT, PRINT, REPRO, START,
MACRO, MEND, MEXIT, LCLA, LCLB, LCLC, GBLA,
GBLB, GBLC, SETA, SETB, SETC, AIF, AIFB,
AGO, AGOB, ANOP, or macro-instruction mne-
monic operation codes. Variable symbols
may not be used to generate the name and
operation code of the ACTR instruction.

Variable symbols may also be used out-
side of macro-definitions to generate mne-
monic operation codes with the preceding
restrictions.

Although COPY statements may not be used
as model statements, they may be part of a
macro-definition. The use of COPY state-
ments is described under COPY Statements.

The operand entry may contain ordinary
symbols or variable symbols. After substi-
tution, the operand must not be greater
than 127 characters. Model statement
fields must follow the rules for paired
. apostrophes, ampersands, and blanks, as
macro-instruction operands. (See
"Macro-Instruction Operands® in Section 8.)
Sequence symbols must appear in the operand
entry of AGO and AIF instructions.

The comments entry may contain any
combination of characters. Substitution by
the use of variable symbols is not allowed.

If a REPRO statement is used as a model
statement, it must be explicitly written in
the operation entry. It may not be gener-
ated as a result of replacing a variable
symbol by its value. Also, the line fol-
lowing it may not contain variable symbols.
Substituted statements may not have blanks
in any fields except between paired apos-
trophes. They may not have leading blanks
in the name or operand fields.

SYMBOLIC PARAMETERS

A symbolic parameter is a type of variable
symbol consisting of an ampersand followed
by one to seven letters and/or numbers, the
first of which must be a letter. Symbolic
parameters appear in prototype and model
statements. They are assigned values by
the programmer when he writes a macro-
instruction. The programmer may vary
statements that are generated for each
occurrence of a macro-instruction by vary-
ing the values assigned to symbolic param-
eters.

The programmer should not use §SYS as
the first four characters of a symbolic
parameter.

The following are valid symbolic param-
eters:

§READER §LOOP2
EA23456 &N
EXUF2 &SU

The following are invalid symbolic pa-
rameters:

CARDAREA (first character is not an
ampersand)

£€256B (first character after
ampersand is not a
letter)

§AREA2456 (more than seven characters
after the ampersand)

§BCD(34) (contains a special charac-

ter other than initial
ampersand)

€IN AREA (contains a special charac-
ter, i.e., blank, other

than initial ampersand)

The following is an example of a macro-
definition. Note that the symbolic
parameters in the model statements appear
in the prototype statement.

T T T R |
| Name |Operation |Operand |
L 4 ;3 1
1
Header f | MACRO I]
Prototype|§NAME |MOVE | §TO, SFROM |
Model | ENAME | ST |2, SAVE |
Model I |L 12, EFROM |
Model] |sT 12,&TO |
Model [L 12, SAVE |
Trailer | | MEND | |
L L 4 J

Symbolic parameters in model statements
are replaced by the characters of the
macro-instruction operand that correspond
to the symbolic parameters.

In the following example the characters
HERE, FIELDA, and FIELDB of the MOVE macro-
instruction correspond to the symbolic
parameters SNAME, 6TO, and &§FROM,
respectively, of the MOVE prototype state-
ment.

T T T
|Name |Operation |Operand
L 1 3

bt s st s

L 1 T T
|HERE |MOVE | FIELDA,FIELDB
L i i

Any occurrence of the symbolic parame-
ters ENAME, &§TO, and §FROM in a model
statement will be replaced by the charac-
ters HERE, FIELDA, and FIELDB, respective-
ly. If the preceding macro-instruction was
used in a source program, the following
assembler langunage statements would be
generated:

i T T 3
!Name !Operation 10perand l
r T T 1
HERE	ST	2,SAVE
	L	2,FIELDB
	sT	2,FIELDA
1L 12,SAVE		
L i L 3

The example below illustrates another
use of the MOVE macro-instruction using
different operands than those that appear
in the preceding example.

How to Prepare Macro-Definitions 63

L3 E T 1
| Name |Ooperation |Operand]
Lt i 1 |
1 3) T 1
Macro |LABEL | MOVE] IN, OUT |
L i i ;|
{ i] 1
Generated | LABEL |ST | 2,SAVE }
Generated| |L 12,00T |
Generated|] |sT |2, IN |
Generated| |L | 2, SAVE |
i 1 1 F |

If a symbolic parameter appears in the
comments field of a model statement, it is
not replaced by the corresponding charac-
ters of the macro-instruction.

Concatenating Symbolic Parameters with
Other Characters or Other Symbolic
Parameters

Concatenation is the process of linking or
joining together in a sequence, with a
specified order. To concatenate is to join
together in a specified order.

If a symbolic parameter in a model
statement is immediately preceded or fol-
lowed by other characters or another sym-
bolic parameter, the characters that cor-
respond to the symbolic parameter are com-
bined, in the order given, in the generated
statement, with the other characters or the
characters that correspond to the other
symbolic parameter. This process is called
concatenation.

The macro-definition, macro-instruction,
and generated statements in the following
example illustrate these rules.

L 3 e T |
| Name |Operation|Operand |
} + { 1
Header | | MACRO] |
Prototype | §NAME|MOVE | €TY, §P, §TO, 6FROM|
Model | ENAME| STETY |2, SAVEAREA |
Model | | LETY |2, SPEFROM i
Model | | STETY |2, 8PETO]
Model | | LETY |2, SAVEAREA]
Trailer | | MEND | |
b=-———+ + 4
Macro |HERE | MOVE |D, FIELD, A, B |
L i L d
T] LD 1
Generated | HERE |STD | 2, SAVEAREA i
Generated] | LD |2,FIELDB |
Generated| | STD {2,FIELDA }
Generated| | D } 2, SAVEAREA]
Lt 1 8 3

The symbolic parameter &TY is used in
each of the four model statements to vary
the mnemonic operation code of each of the

64

generated statements. The character D in
the macro-instruction corresponds to sym-
bolic parameter §TY. Since §TY is preceded
by other characters (i.e., ST and L) in the
model statements, the character that cor-
responds to &§TY (i.e., D) is concatenated
with the other characters to form the oper-
ation fields of the generated statements.

The symbolic parameters &P, §TO, and
§FROM are used in two of the model state-
ments to vary part of the operand fields of
the corresponding generated statements.

The characters FIELD, A, and B correspond
to the symbolic parameters §P, &TO, and
§FROM, respectively. Since &P is followed
by &€FROM in the second model statement, the
characters that correspond to them (i.e.,
FIELD and B) are concatenated to form part
of the operand field of the second generat-
ed statement. Similarly, FIELD and A are
concatenated to form part of the operand
field of the third generated statement.

If the programmer wishes to concatenate
a symbolic parameter with a letter, digit,
left parenthesis, or period following the
symbolic parameter he must immediately
follow the symbolic parameter with a per-
iod. A period is optional if the symbolic
parameter is to be concatenated with anoth-
er symbolic parameter, or a special charac-
ter other than a left parenthesis or anoth-
er period that follows it.

If a symbolic parameter is immediately
followed by a period, then the symbolic
parameter and the period are replaced by
the characters that correspond to the sym-
bolic parameter. A period that immediately
follows a symbolic parameter does not
appear in the generated statement.

The following macro-definition, macro-
instruction, and generated statements
illustrate these rules.

L T T R]
| Name |Operation|Operand |
i N i 3
) 1 ¥ 3
Header } | MACRG | |
Prototype |&NAME|MOVE |6P,65,86R1,6R2 |
Model | ENAME| ST |6R1,6S. (§R2) }
Model | |L |6R1,6P.B |
Model | |ST |6R1,E6P.A |
Model | 1L |6R1,€6S. (6R2) |
Trailer | | MEND | |
p=———t ¢ '
Macro |HERE |MOVE | FIELD, SAVE, 2,4 |
3 3 ;) 3
L 3 T T R
Generated |HERE |ST 12,SAVE(4) |
Generated | |L |2,FIEIDB |
Generated | |sT |2, FIELDA]
Generated | IL |12,SAVE(4) 1
i i i J

The symbolic parameter &P is used in the
second and third model statements to vary
part of the operand field of each of the
corresponding generated statements. The
characters FIELD of the macro-instruction
correspond to &P. Since &P is to be conca-
tenated with a letter (i.e., B and A) in
each of the statements, a period immediate-
ly follows &P in each of the model state-
ments. The period does not appear in the
generated statements.

Similarly, symbolic parameter &S is used
in the first and fourth model statements to
vary the operand fields of the correspond-
ing generated statements. §S is followed
by a period in each of the model state-
ments, because it is to be concatenated
with a left parenthesis. The period does
not appear in the generated statements.

Comments Statements

A model statement may be a comments state-
ment. A comments statement consists of an
asterisk in the begin column, followed by
comments. The comments statement is used
by the assembler to generate an assembler
language comments statement, just as other
model statements are used by the assembler
to generate assembler language statements.

The programmer may also write comments
statements in a macro-definition which are
not to be generated. These statements must
have a period in the begin column, immedi-
ately followed by an asterisk and the com-
ments.

The first statement in the following
example will be used by the assembler to
generate a comments sStatement; the second
statement will not.

T
| Name | Operation |oOperand
L

F
|* THIS STATEMENT WILL BE GENERATED
|.* THIS ONE WILL NOT BE GENERATED

L

o s e i s

Form C24-3414-2, -3, -4
Page Revised 4/26/67
By TNL N26-0536

The use of variable symbols for substi-
tution in comments statements is not
allowed. The * or .* of a comment state-
ment, therefore, cannot be created by sub-
stitution for a variable symbol.

COPY STATEMENTS

A COPY statement is not a model statement.
COPY statements may be used to copy model
statements and MEXIT, MNOTE, and condi-
tional assembly instructions into a macro-
definition from a system library, just as
they may be used outside macro-definitions
to copy source statements into an assembler
language program.

The form of this statement is:

L} T N T h)
|Name | Operation | Operand {
L 4. 4 3
¥ 13 1 1
|Not used, | COPY | A symbol [
|mast not | | |
|be present |] |
1 i i J

The symbol in the operand entry
identifies the section of coding to be
copied. The symbol must not be the same as
the operation mnemonic of a definition in
the Source Statement Library. Any state-
ment that may be used in a macro-definition
may be part of the copied coding, except
MACRO, MEND, COPY, and prototype statements.

Statements COPYed into the program must
obey the restrictions on ordering of state-
ments. For example, COPY must be between
global and local declarations in the macro-
definition or in the main program if the
COPYed text contains global and local
declarations.

How to Prepare Macro-Definitions 65

SECTION 8: HOW TO WRITE MACRO-INSTRUCTIONS

The typical form of a macro-instruction is:

1 3 ¥ T
| Name |Operation |oOperand
L i 1

s T T

|A symbol, |Mnemonic jZero to 100 op-

| sequence |operation |erands, separated
| symbol, orj]code | by commas.

|not used |]
t i

bt s e et menes sl omses wod

The name entry of the macro-instruction
may contain a symbol. The symbol will not
be defined in the generation process unless
a symbolic parameter appears in the name
entry of the prototype and the same param-
eter appears in the name entry of a gener-
ated model statement.

The operation entry contains the mnemon-
ic operation code of the macro-instruction.
The mnemonic operation code must be the
same as the mnemonic operation code of a
macro-definition in the source program or
in the source statement library.

The macro-definition with the same mne-
monic operation code is used by the assem-
bler to process the macro-instruction. If
a macro-definition in the source program
and one in the source statement library
have the same mnemonic operation code, the
macro-definition in the source program is
used.

The placement and order of the operands
in the macro-instruction may be determined
by the placement and order of the symbolic
parameters in the operand entry of the
prototype statement.

MACRO-INSTRUCTION OPERANDS

Any combination of up to 127 characters may
be used as a macro-instruction operand
provided that the following rules concern-
ing apostrophes , parentheses, equal signs,
ampersands, commas, and blanks are
observed.

Paired Apostrophes: An operand may contain
one or more sequences of characters, each
of which is enclosed within single apos-
trophes. (The sequence of characters
itself may contain an even number of
apostrophes). The single apostrophes,
which enclose the sequence of characters,
are called paired apostrophes.

66

The first sequence of characters starts
with the first apostrophe in the operand.
Subsequent character sequences start with
the first apostrophe after the apostrophe
that ends the previous sequence of charac-
ters.

In the following example, there are two
sequences of characters enclosed within
single apostrophes. Therefore, there are
two sets of paired apostrophes: the first
and fourth apostrophes, and the fifth and
sixth apostrophes.

'A' .B.C.D'

An apostrophe (not within paired
apostrophes), immediately followed by a
letter, and immediately preceded by the
letter L (when L is preceded by any special
character other than an ampersand), is not
considered in determining paired apostroph-
es. For instance, the apostrophe in the
following example is not considered.

L*' SYMBOL
*AL'SYMBOL' is an invalid operand.

Paired Parentheses:
number of left and right parentheses.
nth left parenthesis must appear to the
left of the nth right parenthesis.

There must be an equal
The

Paired parentheses are a left parenthe-
sis and a following right parenthesis with-
out any other parentheses intervening. If
there is more than one pair, each addition-
al pair is determined by removing any pairs
already recognized and reapplying the above
rule for paired parentheses. For instance,
in the following example the first and
fourth, the second and third, and the fifth
and sixth parentheses are each paired pa-
rentheses. .

(A(B)C)D(E)

A parenthesis that appears between
paired apostrophes is not considered in
determining paired parentheses. For
instance, in the following example the
middle parenthesis is not considered.

)"

Equal Signs: An equal sign can only occur
as the first character in an operand or
between paired apostrophes or paired pa-
rentheses. The following examples illus-
trate these rules.

=F'32'

c=p*
E(F=G)

: Except as noted under "Inner
Macro-Instructions,” each sequence of con-
secutive ampersands mast be an even number
of ampersands. The following example
illustrates this rule.

§6123868¢

commas: A comm2a indicates the end of an
operand, unless it is placed between paired
apostrcphes or paired parentheses. The
following example illustrates this rule.

(A,B)C*,*

Blanks: Except as noted under Statement
Form, a blank indicates the end of the
operand entry, unless it is placed between
paired apostrophes . The following example
illustrates this rule.

*‘ABC'

The following are valid macro-
instruction operands:

SYMBOL A+2

123 (TO(8), FROM)
X*189A° 0(2,3)

* =F'4096"

L' NAME AB§E9

TEN = 10° *PARENTHESIS IS)°*

COMMA Is ,° *APOSTROPHE Is'"'*

The following are invalid macro-
instruction operands:

W*NAME (odd number of apostrophes)

5a)B (number of left parentheses
does not equal number of
right parentheses)

(15 B) {(blank not placed between
paired apostrophes)

*ONE' IS *1' (blank not placed between

paired apostrophes)

STATEMENT FORM

Macro-instructions may be written using
the same alternate form that can be used to
write prototype statements. If this form
is used, a blank does not always indicate
the end of the operand entry. The
alternate form is described in Section 7,
under the subsection "Macro-Instruction
Prototype.*

OMITTED_OPERANDS

If an operand that appears in the prototype
statement is omitted from the macro-
instruction, then the comma that would have
separated it from the next operand must be
present. If the last operand(s) is omitted
from a macro-instruction, then the comma{s)
separating the last operand(s) from the
next previous operand may be omitted.

The following example shows a macro-
instruction preceded by its corresponding
prototype statement. The macro-instruction
operands that correspond to the third and
sixth operands of the prototype statement
are omitted in this example.

T T T h]
|Name |[Operation |Operand]
1 1 4

1 3 1) T 4
i | EXAMPLE | A, €B, £C, &D, &E, §F |
| | EXAMPLE |17, %+4,,AREA,FIELD (6) |
L i L 3

If the symbolic parameter that
corresponds to an omitted operand is used
in a model statement, a null character
value (not a blank) replaces the symbolic
parameter in the generated statement, i.e.,
in effect the symbolic parameter is
removed.

For example, the first statement below
is a model statement that contains the
symbolic parameter §C. If the operand that
corresponds to §C was omitted from the
macro—-instruction, the second statement
below would be generated from the model
statement.

T T
Name |Operation |Operand
4 1

T

| THERE&C. 25, THIS
‘i THERE25, THIS

L

L)
{MvC
|MVC
i

fro s e Gy s any
R S

OPERAND SUBLISTS

An operand of a macro-instruction may be a
sublist.

Sublists provide the programmer with a
convenient way to refer to: (1) a collec-
tion of macro-instruction operands as a
single operand, or (2) a single operand in
a collection of operands.

A sublist consists of one or more oper-
ands (suboperands) separated by commas and

How to Write Macro-Instructions 67

enclosed in paired parentheses. The entire
sublist, including the parentheses, is
considered to be one macro-instruction
operand.

Omitted suboperands are handled in the
same way as omitted operands. If ()
appears as an operand, however, it is
treated as a character string, not as a
sublist with all suboperands omitted.

If a macro-instruction is written in the
alternate statement format, each sublist
operand may be written on a separate line;
the macro-instruction may be written on as
many lines as there are operands, including
sublist operands.

The limit of 127 characters per operand
applies to an entire sublist including
suboperands, parentheses, and commas within
these parentheses.

1f §P1 is a symbolic parameter in a
prototype statement, and the corresponding
operand of a macro-instruction is a sub-
list, then §P1(n) may be used in a model
statement to refer to the nth operand of
the sublist, where n may be any arithmetic
expression allowed in a SETA instruction.
The SETA instruction is described in Sec-
tion 9. If &P1 is a symbolic parameter,
and the corresponding operand of a macro-
instruction is a sublist, then &P1 refers
to the entire sublist (including
parentheses).

If the sublist notation is used, but the
operand is not a sublist, then §P1(1)
refers to the operand and &§P1(2) through
§P1(100) refer to a null character value.
I1f an operand has the form (), it is
treated as a character string and not as a
sublist.

For example, consider the following
macro-definition, macro-instruction, and
generated statements.

f T T k|

|Name |Operation|Operand |

t 1 1 1
Header | | MACRO | |
Prototype| |ADDNUM | ENUM, §REG, §AREA |
Model | |L " |$REG, §NUM(1) |
Model | {A | § REG, §NUM(2) |
Model | A | REG, ENUM(3) }
Model | |sT | SREG, §AREA |
Trailer | | MEND | |

b t t |
Macro | |ADDNUM | (A,B,C),6,SUM |
Generated] L 16,A |
Generated| |A |6,B }
Generated| A {6,C |
Generated|] |sT {16, SUM |

L 8 [} 1

68

The operand of the macro-instruction
that corresponds to symbolic parameter §NUM
is a sublist. One of the operands in the
sublist is referred to in the operand entry
of three of the model statements. For
example, §NUM(1) refers to the first oper-
and in the sublist corresponding to symbol-
ic parameter §NUM. The first operand of
the sublist is A. Therefore, A replaces
ENUM(1) to form part of the generated
statement.

Note: When referring to an operand in a
sublist, the left parenthesis of the sub-
list notation must immediately follow the
last character of the symbolic parameter,
e.g., 6NUM(1). A period should not be
placed between the left parenthesis and the
last character of the symbolic parameter.

A period may be used between these two
characters only when the programmer wants
to concatenate the left parenthesis with
the characters that the symbolic parameter
represents. The following example shows
what would be generated if a period
appeared between the left parenthesis and
the last character of the symbolic parame-
ter in the first model statement of the
above example.

¥ T
Name| Operation|Operand
i 4

1 1

|ADDNUM |§NUM, 6REG, §AREA
L | sREG, §NUM. (1)

ER

Prototype
Model

—

T
Macro | ADDNUM (a,B,C),6,SUM
4

r

Generated 6,(a,B,C) (1)

v = DU S

|
’
l
|
b
!
i

T
| L
H

s e o

The symbolic parameter E§NUM is used in
the operand entry of the model statement.
The characters (A,B,C) of the macro-
instruction correspond to ENUM. Since &NUM
is immediately followed by a period, &§NUM
and the period are replaced by (A,B,C).

The period does not appear in the generated
statement. The resulting generated
statement is an invalid assembler language
statement.

INNER MACRO-INSTRUCTIONS

A macro-instruction may be used as a model
statement in a macro-definition. Macro-
instructions used as model statements are
called inner macro-instructions.

A macro—-instruction that is not used as
a model statement is referred to as an
outer macro-instruction.

Any symbolic parameters used in an inner
macro-instruction are replaced by the
corresponding operands of the outer macro-
instruction.

The macro-definition corresponding to an
inner macro-instruction is used to generate
the statements that replace the inner
macro-instruction.

The ADDNUM mecro-instruction of the
previous example is used as an inner macro-
instruction in the following example.

The inner macro-instruction contains two
symbolic parameters, &S and &T. The
characters (X,Y,2) and J of the macro-
instruction correspond to &S and §T,
respectively. Therefore, these characters
replace the symbolic parameters in the
operand entry of the inner macro-
instruction.

The assembler then uses the macro-
definition that corresponds to the inner
macro-instruction to generate statements to
replace the inner macro-instruction. The
fourth through seventh generated statements
have been generated for the inner macro-
instruction.

f T -T 3
|Name |Operation|Operand |
L u 3 4
1 3 1 ¥) h]
Header i |MACRO } i
Prototypej jcomp }6R1,6R2, 6S,ET,6U |
todel | |SR j&R1, 6R2
Model | ic |6R1,8T
Model] | BNE [0 I
| | + 1
Inner } | ADDNUM 18S,12,6T|
1 t 4
Model &§U |A |E6R1, &T |
Trailer | MEND i |
| MACRO {
{ADDNUM | ENUM, §REG, §AREA
| L | 6REG, §NUM{1) |
i |a | SREG, ENUM(2) |
A | §REG, ENUM(3)
jsT | EREG, §AREA
] | MEND | |
1 1 1]
¥ kl ¥ L
Outer |IK |coMp {10,11,(X,Y,2),J3,K|
1 i b
T L] 1
Generated |SR j10,11 |
Generated Ic }10,J l
Generated| |BNE 3.4 |
| $ 1 |
Generated |L 112,X | |
Generated| A 112,Y | I
Generated |A 112,2 | |
Generated |ST 12,3 | |
| + 4 |
Generated|K {a {10,J]
L 1 1 J

Note: An ampersand that is part of a
symbolic parameter is not considered in
determining whether a macro-instruction
operand contains an even number of
consecutive ampersands.

LEVELS OF MACRO-INSTRUCTIONS

A macro—-definition that corresponds to an
outer macro-instruction may contain any
number of inner macro-instructions. The
outer macro-instruction is called a first
level macro-instruction. Each of the inner
macro-instructions is called a second level
macro~instruction.

The macro-definition that corresponds to
a second level macro-instruction may con-
tain any number of inner macro-
instructions. These macro-instructions are
called third level macro-instructions, etc.

The number of levels of macro-
instructions that may be used depends upon
the complexity of the macro-definition and
the amount of storage available. This is
described in detail in Appendix H.

How to Write Macro-Instructions 69

SECTION 9: HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

The conditional assembly instructions allow
the programmer to: (1) define and assign
values to SET symbols that can be used to
vary parts of generated statements, and (2)
vary the sequence of generated statements.
Thus, the programmer can use these
instructions to generate many different
sequences of statements from the same
macro-definition.

There are 13 conditional assembly
instructions, 10 of which are described in
this section. The other three conditional
assembly instructions -- GBLA, GBLB, and
GBIC -- are described in Section 10. The
instructions described in this section are:

LCIA SETA AIF ANOP
LCLB SETB AGO
LCIC SETC ACTR

The primary use of the conditional
assembly instructions is in macro-
definitions. However, all of them may be
used in an assembler language source
program.

Where the use of an instruction outside
macro-definitions differs from its use
within macro-definitions, the difference is
described in the subsequent text.

The LCLA, LCLB, and LCLC instructions
are used to define and assign initial
values to local SET symbols.

The SETA, SETB, and SETC instructions
may be used to assign arithmetic, binary,
and character values, respectively, to SET
symbols. The SETB instruction is described
after the SETA and SETC instructions,
because the operand of the SETB instruction
is a combination of the operands of the
SETA and SETC instructions.

The AIF, AGO, and ANOP instructions may
be used in conjunction with sequence sym—
bols to vary the sequence in which state-
ments are assembled. The programmer can
test attributes assigned by the assembler
to symbols or macro-instruction operands to
determine which statements are to be proc-
essed. The ACTR instruction may be used to
limit the number of AIF and AGO branches
executed in any assembly.

Examples illustrating the use of condi-
tional assembly instructions are included
throughout this section. A chart summariz-
ing the elements that can be used in each
instruction appears at the end of this
section.

70

SET SYMBOLS

SET symbols are one type of variable sym-
bol. The symbolic parameters discussed in
Section 7 are another type of variable
symbol. SET symbols differ from symbolic
parameters in three ways: (1) where they
can be used in an assembler language source
program, {(2) how they are assigned values,
and (3) how the values assigned to them can
be changed.

Symbolic parameters can only be used in
macro-definitions, whereas SET symbols can
be used inside and outside macro-
definitions.

SET symbols are assigned values by SETA,
SETB, and SETC conditional assembly
instructions and by local or global dec-
larations.

Each symbolic parameter is assigned a
single value for one use of a macro-
definition, whereas the values assigned to
each SETA, SETB, and SETC symbol are not so
restricted.

Defining SET Symbols

SET symbols must be defined by the
programmer before they are used. When a
SET symbol is defined it is assigned an
initial value. SET symbols may be assigned
new values by means of the SETA, SETB, and
SETC instructions. A SET symbol is defined
when it appears as an operand of an ICLA,
ICLB, or LCILC instruction.

Using Variable Symbols

The SETA, SETB, and SETC instructions may
be used to change the values assigned to
SETA, SETB, and SETC symbols, respectively.
When a SET symbol appears in the name or
operand entry of a statement, the current
value of the SET symbol (i.e., the last
value assigned to it) replaces the SET
symbol in the statement. When a SETC sym—
bol appears in the operation entry of a
statement, the current value of the SETC
symbol replaces the SET symbol in the
statement.

For example, if &A is a symbolic parame-
ter, and the corresponding characters of
the macro-instruction are the symbol HERE,
then HERE replaces each occurrence of §A in
the macro-definition. However, if §A is a
SET symbol, the value assigned to §A can be
changed, and a different value can replace
various occurrences of &A in the macro-
definition.

The same variable symbol may not be used
as a symbolic parameter and as a SET symbol
in the same macro-definition.

The following illustrates this rule.

r
| Name
i

1 B T
| ENAME | MOVE
1)

k2 T
|Operation |Operand
L N

L

}
| €TO, EFROM
i

If the statement above is a prototype
statement, then S§NAME, &TO, and &§FROM may
not be used as SET symbols in th2 macro-
definition.

The same variable symbol may not be used
as two different types of SET symbols in
the same macro-definition. Similarly, the
same variable symbol may not be used as two
different types of SET symbols outside
macro-definitions.

For example, if €A is a SETA symbol in a
macro-definition, it cannot be used as a
SETC symbol in that definition. similarly,
if €A is a SETA symbol outside macro-
definitions, it cannot be used as a SETC
symbol outside macro~-definitions.

The same variable symbol if declared
local may be used in two or more macro-
definitions and outside macro-definitions.
If such is the case, the variable symbol
will be considered a different variable
symbol each time it is used.

For example, if €A is a wvariable symbol
{either SET symbol or symbolic parameter)
in one macro-definition, it can be used as
a variable symbol (either SET symbol or
symbolic parameter) in another definition.
Similarly, if 8A is a variable symbol (SET
symbol or symbolic parameter) in a macro-
definition, it can be used as a SET symbol
outside macro-definitions.

All variable symbols may be concatenated
with other characters in the same way as
symbolic parameters. The rules for
concatenation are in Section 7 under the
subsection Model Statements.

Variable symbols in macro-instructions
are replaced by the values assigned to
them, immediately prior to the start of

processing the definition. If a SET symbol
is used in the operand entry of a macto-
instruction, and the value assigned to the
SET symbol is in the form of sublist
notation, the operand is not considered a
sublist.

ATTRIBUTES

The assembler assigns attributes to macro-
instruction operands and to symbols in the
program. These attributes may be referred
to only in conditional assembly
instructions.

There are six kinds of attributes.
are: type, length, scaling, integer,
count, and number.

They

If an outer macro-instruction operand is
a symbol before substitution, then the
attributes of the operand are the same as
the corresponding attributes of the symbol.
The symbol must appear in the name entry of
an assembler language statement or in the
operand entry of an EXTRN statement in the
program. The statement must be outside
macro-definitions and must not contain any
variable symbols. '

If an inner macro-instruction operand is
a symbolic parameter, then attributes of
the operand are the same as the attributes
of the corresponding outer macro-
instruction operand.

Each attribute has a notation associated

with it. The notations are:
Attribute Notation
Type T*

Length L'

Scaling Ss*

Integer I

Count K'

Number N*

If a macro-instruction operand is a
sublist, the programmer may refer to the
attributes of either the sublist or each
operand in the sublist. The type, length,
scaling, and integer attributes of a
sublist are the same as the corresponding
attributes of the first operand in the
sublist.

All the attributes of macro-instruction
operands may be referred to in conditional
assembly instructions within macro-
definitions. However, only the type,
length, scaling, and integer attributes of
symbols may be referred to in conditional
assembly instructions outside macro- defi-
nitions. Symbols appearing in the name
entry of generated statements are not
assigned attributes.

Writing Conditional Assembly Instructions 71

The programmer may refer to an attribute
in the following ways:

1. In a statement that is outside macro-
definitions, he may write the notation
for the attribute immediately followed
by a symbol. (E.g., T'NAME refers to
the type attribute of the symbol NAME.)

2. In a statement that is in a macro-
definition, he may write the notation
for the attribute immediately followed
by a symbolic parameter. (E.g.,

L' §SNAME refers to the length attribute
of the characters in the macro-
instruction that correspond to symbolic
parameter ENAME; L°®ENAME(2) refers to
the length attribute of the second
operand in the sublist that corresponds
to symbolic parameter ENAME.)

Type Attribute (T*')

The type attribute of a macro-instruction
operand or a symbol is a letter.

The programmer may refer to a type
attribute in the operand of a SETC instruc-
tion, or in character relations in the
operands of SETB or AIF instruction, or in
other instructions where use of the charac-
ter is valid.

The following letters are used for sym-
bols that name DC and DS statements and for
outer macro-instruction operands that are
symbols that name DC or DS statements.

A-type address constant,
implied length, aligned.
Binary constant.

Character constant.

Long floating-point constant,
implied length, aligned.

Short floating-point constant,
implied length, aligned.
Full-word fixed-point constant,
implied length, aligned.
Fixed-point constant, explicit
length.

Half-word fixed-point constant,
implied length, aligned.
Floating-point constant,
explicit length.

Packed decimal constant.

A-, S-, V-, or Y-type address
constant, explicit length.
S-type address constant,
implied length, aligned.
V-type address constant,
implied length, aligned.
Hexadecimal constant.,

Y-type address constant,
implied length, aligned.

Zoned decimal constant.

N KX < 0 wWww xR m @ =" O UOWw

~
V]

The following letters are used for sym-
bols (and outer macro-instruction operands
that are symbols) that name statements
other than DC or DS statements, or that
appear in the operand field of an EXTRN
statement.

Machine instruction
control section name
Macro-instruction
External symbol

CCW assembler instruction

EHRUH

The following letters are used for inner
and outer macro-instruction operands only.

N Self-defining term
o Omitted operand

The letter U (Undefined) is used for
inner and outer macro-instruction operands
that cannot be assigned any of the above
letters. The type attribute of all liter-
als appearing as macro—instruction operands
is U. This also is true for inner macro-
instruction operands that are ordinary
symbols or variable symbols. Because the
attributes are not available at the
necessary time, this letter is also
assigned to symbols that name EQU and LTORG
statements, to any symbols occurring more
than once in the name entry of source
statements, and to all symbols naming DC
and DS statements with expressions or vari-
able symbols as modifiers. The type attri-
bute also is undefined when the modifier
expression consists solely of self-defining
terms.

The attributes of A, B, C, and D in the
following examples are undefined:

A DC 3FL(A-B)'15*
B DC (A-B)F'15°
C DC &Xx*'1°

D DC FL{(3-2)°'1’

Length (L'), Scaling (S'), and Integer (I°)

Attributes

The length, scaling, and integer attributes
of macro-instruction operands and symbols
are numeric values.

The length attribute of a symbol (or of
a macro-instruction operand that is a
symbol) is as described in Part I of this
publication. Reference to the length
attribute of a variable symbol is illegal
except for symbolic parameters in SETA,
SETB, and AIF statements. If the basic L*
attribute is desired, it can be obtained as
follows:

&§A SETC *'Z°

'Ll.!

&€B SETC
MVC §A.{&BgA),X
After generation, this would result in
MVC Z(L'2) ,X

Reference must not be made to the length
attributes of symbols or macro-instruction
operands whose type attributes are the
letters M, N, O, T, or U.

Scaling and integer attributes are pro-
vided for symbols that name fixed-point,
floating-point, and decimal DC or DS state-
ments.

Fixed and Floating Point: The scaling
attribute of a fixed point or floating
point number is the value given by the
scale modifier. The integer attribute is a
function of the scale and length attributes
of the number.

Decimal: The scaling attribute of a deci-
mal number is the number of decimal digits
to the right of the decimal point. The
integer attribute of a decimal number is
the number of decimal digits to the left of
the decimal point.

Scaling and integer attributes are
available for symbols and macro-instruction
operands only if their type attributes are
H, F, and G (fixed point); D, E, and K
{floating point); or P and Z (decimal).

The programmer may refer to the length,
scaling, and integer attributes in the
operand field of a SETA instruction, or in
arithmetic relations in the operand fields
of SETB or AIF instructions.

Count Attribute (K*)

The programmer may refer to the count
attribute of macro-instruction operands
only.

The count attribute is a value equal to
the number of characters in the macro-
instruction operand after substituting for
variable symbols, excluding commas. If the
operand is a sublist, the count attribute
includes the beginning and ending

The programmer may refer to the count
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF instruc-
tions that are part of a macro-definition.

Number Attribute (N')

The programmer may refer to the number
attribute of macro-instruction operands
only.

The number attribute is a value equal to
the number of operands in an operand sub-
list. The number of operands in an operand
sublist is equal to one plus the number of
commas that indicate the end of an operand
in the sublist.

The following examples illustrates this
rule.

(4A,B,C,D,E) 5 operands
(p,,C,D,E) 5 operands
(A,B,C,D) 4 operands
(,8,C,D,E) 5 operands
(p,B,C,D,) 5 operands
(a,B,C,D,,) 6 operands

If the macro-instruction operand is not
a sublist, the number attribute is one. 1If
the macro-instruction operand is omitted,
the number attribute is zero.

The programmer may refer to the number
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF instruc-
tions that are part of a macro-definition.

Assigning Integer Attributes to Symbols

The integer attribute is computed from the
length and scaling attributes.

Fixed Point: The integer attribute of a
fixed-point number is equal to eight times
the length attribute of the number minus
the scaling attribute minus one; i.e.,

- k|
I'=8+L*-5'~1.

list. The count attribute of an omitted
operand is zero.

If a macro-instruction operand contains
variable symbols, the characters that
replace the variable symbols, rather than
the variable symbols, are used to determine
the count attribute.

Each of the following statements defines
a fixed-point field. The length attribute
of HALFCON is 2, the scaling attribute is
6, and the integer attribute is 9. The
length attribute of ONECON is 4, the scal-
ing attribute is 8, and the integer attri-
bate is 23.

Writing Conditional Assembly Instructions 73

¥ T R3]
| Name |Operation |Operand
[b 1

¥ ¥ R 3

|HALFCON |DC |HS6*~25.93°
JORECON |DC | FS8°100.3E-2"
| = i i

B et spust b s W08

Floating Point: The integer attribute of a
floating-point number is equal to two times
the difference between the length attribute
of the number and one, minus the scaling
attribute; i.e., I'=2*%(L'-1)-S'.

Each of the following statements defines

a floating-point value. The length attri-
bute of SHORT is 4, the scaling attribute

is 2, and the integer attribute is 4. The
length attribute of LONG is 8, the scaling
attribute is 5, and the integer attribute

is 9.

r T v)
| Name |Ooperation |Operand |
b ¢ ¢ !
| SHORT |{DC |ES2°86.415"° |
JLONG |DC |DS5°-3.729° 1
i L 1 3
Decimal: The integer attribute of a packed

decimal number is equal to two times the
length attribute of the number minus the
scaling attribute minus one; i.e.,
I'=2%*L'-S'-1. The integer attribute of a
zoned decimal number is equal to the dif-
ference between the length attribute and
the scaling attribute; i.e., I'=L'-S'.

Each of the following statements defines
a decimal field. The length attribute of
FIRST is 2, the scaling attribute is 2, and
the integer attribute is 1. The length
attribute of SECOND is 3, the scaling
attribute is 0, and the integer attribute
is 3. The length attribute of THIRD is 4,
the scaling attribute is 2, and the integer
attribute is 2. The length attribute of
FOURTH is 3, the scaling attribute is 2,
and the integer attribute is 3.

r T L
{ Name |operation |Operand
L 1 1

1

]
k + + i
|FIRST |DC |P*+1.25° |
| SECOND |DC jz'-543° I
|THIRD |DC |Z*79. 68" I
| FOURTH |DC |P*79.68°]
i 1 1 d

74

SEQUENCE SYMBOLS

The name entry of a statement may contain a
sequence symbol. Sequence symbols provide

the programmer with the ability to vary the
sequence in which statements are processed

by the assembler.

A sequence symbol is used in the operand
entry of an AIF or AGO statement to refer
to the statement named by the sequence

symbol.

A sequence symbol may be used in the
name entry of any statement that does not
contain a symbol or SET symbol, except a
prototype statement, or a MACRO, ICLA,
ILCLB, LCLC, GBLA, GBLB, GBLC, ACTR, ICTL,
ISEQ, or COPY instruction.

A sequence symbol consists of a period
followed by one through seven letters
and/or digits, the first of which must be a
letter.

The following are valid sequence sym-
bols:

-READER .A23456
« LOOP2 «X4F2
N .54

The following are invalid sequence sym—
bols:

CARDAREA (first character is not
a period)
-.2468 (first character after

period is not a letter)
-.AREA2456 (more than seven characters
after period)

.BCD%8Y4 {contains a special character
other than initial period)
.IN AREA (contains a special

character, i.e., blank,
other than initial period)

If a sequence symbol appears in the name
entry of a macro-instruction, and the cor-
responding prototype statement contains a
symbolic parameter in the name entry, the
sequence symbol does not replace the sym
bolic parameter wherever it is used in the
macro-definition.

The following example illustrates this
rule.

¥ T T 1
|Name jOperation |Operand |

F $ } 1

| | MACRO | |

1 {E§NAME |MOVE 1 6TO, 6 FROM |
2 |ENAME. |ST |2, SAVEAREA |
| L |2, §FROM]

| {sT 12,&T0 |

| |L |2, SAVEAREA]

| | MEND | I

$ ¢ :

3 |.SYM | MOVE | FIELDA, FIELDB |
1 $ i

L | - |ST |2, SAVEAREA]
| |L |2,FIELDB |

} }sT {2,FIELDA |

| L |2 ,SAVEAREA {

L i i 3

The symbolic parameter ENAME is used in
the name entry of the prototype statement
(statement 1) and the first model statement
(statement 2). 1In the macro-instruction
(statement 3) a sequence symbol (.SYM)
corresponds to the symbolic parameter
§NAME. &NAME is not replaced by .SYM, and,
therefore, the generated statement
(statement 4) does not contain a name
entrye.

LCLA,LCLB,LCLC -~ DEFINE SET SYMBOLS

The typical form of these instructions is:

L T T
| Name | Operation| Operand
i 1 41

L B

T T
| Not used, | LCLA, |One or more variable
|must not |LCLB, or |symbols, that are

bt s e s st s 4l e o

| be |LCLC |to be used as SET
| present | |symbols, separated
| | | by commas

L) § 1

The LCLA, LCLB, and LCLC instructions
are used to define and assign initial
values to SETA, SETB, and SETC symbols,
respectively. The SETA, SETB, and SETC
symbols are assigned the initial values of
0, 0, and null character value, respective-

ly.

The programmer should not define any SET
symbol whose first four characters are
§SYS.

All LCLA, LCLB, or LCLC instructions in
a macro-definition must appear immediately
after the prototype statement and all GBLA,
GBLB or GBLC instructions, or another LICLA,
ICLB, or LCLC instruction. All ILCLA, LCLB,
or LCLC instructions outside macro-
definitions must appear after all macro-
definitions in the source program, after

all GBLA, GBLB, and GBLC instructions
outside macro-definitions, before all con-
ditional assembly instructions, and PUNCH
and REPRO statements outside macro-
definitions, and before the first control
section of the program.

SETA -- SET ARITHMETIC

The SETA instruction may be used to assign

an arithmetic value to a SETA symbol. The
form of this instruction is:

1 T T 1
| Name |Operation |Operand |
L i 4 4
L 1 ¥

|A SETA |SETA |A SETA arithmetic]
|symbol | | expression !
L 1 | § 3

The expression in the operand entry is
evaluated as a signed 32-bit arithmetic
value which is assigned to the SETA symbol
in the name entry. The minimum and maximum
allowable values of the expression are -231
and +232-1, respectively.

The expression may consist of one term
or an arithmetic combination of terms. The
terms that may be used alone or in
combination with each other are self-
defining terms, variable symbols, and the
length, scaling, integer, count, and number
attributes. Self-defining terms are
described in Part 1 of this publication.

Note: A SETC variable symbol may appear
in a SETA expression only if the value of
the SETC variable is one to eight decimal
digits. The decimal digits will be con-
verted to a positive arithmetic value.

The arithmetic operators that may be
used to combine the terms of an expression
are + (addition), - (subtraction),

*+ {(multiplication), and / (division).

An expression may not contain two terms
or two operators in succession, nor may it
begin with an operator.

The following are valid operand fields
of SETA instructions:

EAREA+X* 2D’ I*EN/25
E§BETA*10 S§EXIT-S* §ENTRY+1
L*&HERE+32 29

The following are invalid operand fields
of SETA instructions:

Writing Conditional Assembly Instructions 75

§AREAX'C’ (two terms in succession)
E§FIELD+- (two operators in succession)
- EDELTA*2 (begins with an operator)
*+32 (begins with an operator;

two operators in succession)
NAME/15 (NAME is not a valid term)

EVALUATION OF ARITHMETIC EXPRESSIONS

The procedure used to evaluate the arith-
metic expression in the operand of a SETA
instruction is the same as that used to
evaluate arithmetic expressions in assem-
bler language statements. The only
difference between the two types of arith-
metic expressions is the terms that are
allowed in each expression.

The following evaluation procedure is
used:

1. Each term is given its numerical
value.

2. The arithmetic operations are per-
formed moving from left to right.
However, multiplication and/or divi-

sion are performed before addition and

subtraction.

3. The computed result is the value
assigned to the SETA symbol in the
name entry.

The arithmetic expression in the operand
entry of a SETA instruction may contain one

or more sequences of arithmetically com-
bined terms that are enclosed in parenthe-
ses.
appear within another parenthesized
sequence.

The following are examples of SETA
instruction operands that contain parenthe-
sized sequences of terms.

(L*S§HERE+32) %29
EAREA+X* 2D* / (§EXIT-S* §ENTRY+1)
EBETA*10#(I"EN/25/(€EXIT-S'EENTRY+1))

The parenthesized portion or portions of
an arithmetic expression are evaluated
before the rest of the terms in the expres-
sion are evaluated. If a sequence of
parenthesized terms appears within another
parenthesized sequence, the innermost
sequence is evaluated first.

The SETA arithmetic expression can only
have three levels of parentheses. The
parentheses required in subscripting,
substring, and sublist notation count when
determining these levels. A counter is
maintained for each SETA statement and

76

A sequence of parenthesized terms may

increased by one for each occurrence of a
variable symbol as well as the operation
entry. The maximum value this counter may
attain is 35. (See Appendix H).

Using SETA Symbols

The arithmetic value assigned to a SETA
symbol is substituted for the SETA symbol
when it is used in an arithmetic relation.
If the SETA symbol is not used in an arith-
metic expression, the arithmetic value is
completely converted to an unsigned inte-
ger, with leading zeros removed. If the
value is zero, it is converted to a single
zZero.

The following example illustrates this
rule:

T k3 k]
ame peration peran
N Operati o a

3 $ + .|

| |MACRO | |

| SNAME | MOVE | §TO, § FROM l

) = }nga }:%,sa,sc,so {

&A SETA

2 |&B |SETA 112 |
3 |sC | SETA | §A-§B |
4 |&D |SETA | sA+&C |
| ENAME |ST | 2,SAVEAREA I

5 | L | 2,8 FROMEC \
6 | |ST |2,8TO&D |
| L 12,SAVEAREA i

MEND

I | :
|HERE |MOVE | FIELDA, FIELDB |

1 1 i 3

1 8 T ¥)
|HERE |ST | 2,SAVEAREA |

i L |2,FIELDB2 i

| |ST | 2, FIELDAS i

i L | 2, SAVEAREA |

i i i 3

Statements 1 and 2 assign to the SETA
symbols A and &B the arithmetic values +10
and +12, respectively. Therefore, state-
ment 3 assigns the SETA symbol &C the
arithmetic value -2. When &C is used in
statement 5, the arithmetic value -2 is
converted to the unsigned integer 2. When
€C is used in statement 4, however, the
arithmetic value -2 is used. Therefore, &D
is assigned the arithmetic value +8. When
€D is used in statement 6, the arithmetic
value +8 is converted to the unsigned inte-
ger 8.

The following example shows how the
value assigned to a SETA symbol may be
changed in a macro-definition.

T T T 1
| Name |Operation |Operand]
= + + 1
I | MACRO l |
| §NAME | MOVE | §TOE FROM]
| | LCLA | 8A |
1 |&a | SETA |15 |
| §NAME | ST | 2, SAVEAREA]
2 | |L |12, FROMEA l
3 |&a | SETA 8 {
4 | | ST |2, 8TOSA |
| |L |2, SAVEAREA |
| | MEND | |
- t 4 {
|HERE | MOVE |FIELDA, FIELDB]
p-————1 $ 1
| HERE |sT | 2, SAVEAREA |
i L |2, FIELDB5S |
| | ST |2,FIELDAS |
| |L | 2, SAVEAREA]
t— 1 1]

Statement 1 assigns the arithmetic value
+5 to SETA symbol EA. 1In statement 2, §A
is converted to the unsigned integer 5.
Statement 3 assigns the arithmetic value +8
to §A. In statement U4, therefore, &A is
converted to the unsigned integer 8,
instead of 5.

A SETA symbol may be used with a symbol-
ic parameter to refer to an operand in an
operand sublist. If a SETA symbol is used
for this purpose it must have been assigned
a value in the range 1 to 100.

r T T
|Name |Operation |Operand
5 + +
i | MACRO |
1 | ADDX | §NUMBER, §REG
| | LCLA | LAST
2 | 8LAST |SETA | N* ENUMBER
| |L | éREG, §NUMBER (1)
3] A | §REG, §NUMBER { §LAST)
] |sT | 6REG, ENUMBER (1)
l | MEND I
1 1 i
r T T
4 | | ADDX |(a,B,C,D,E),3
t. 1 3
] T 1
| 1L 13,A
| 1A |3,E
| | ST 13,A
i i i

e s [DRI IINI S S e |

ENUMBER is the first symbolic parameter
in the operand entry of the prototype
statement (statement 1). The corresponding
characters, (A,B,C,D,E), of the macro-
instruction (statement 4) are a sublist.
Statement 2 assigns to SLAST the arithmetic
value +5, which is equal to the number of
operands in the sublist. Therefore, in
statement 3, S§NUMBER(ELAST) is replaced by
the fifth operand of the sublist.

SETC —-- SET CHARACTER

The SETC instruction is used to assign a
character value to a SETC symbol. The form
of this instruction is:

T T T 1

Any expression that may be used in the | Name |Operation |Operand |
operand of a SETA instruction may be used t } + 4
to refer to an operand in an operand sub- |A SETC | SETC |One operand, of |
list. | symbol] |the form described |
| | | below]

L 1 i d

Sublists are described in Section 8
under Operand Sublists.

The following macro-definition may be
used to add the last operand in an operand
sublist to the first operand in an operand
sublist and store the result at the first
operand. A sample macro-instruction and
generated statements follow the macro-
definition.

The operand may consist of the type
attribute, a character expression, a
substring notation, or a concatenation of
substring notations and character expres-
sions. A SETA symbol may appear in the
operand of a SETC statement. The result is
the character representation of the decimal
value, unsigned, with leading zeros
removed. If the value is zero, one decimal
zero is used.

TYPE ATTRIBUTE

The character value assigned to a SETC
symbol may be a type attribute. If the
type attribute is used, it must appear

Writing Conditional Assembly Instructions 77

alone in the operand field. The following
example assigns to the SETC symbol §TYPE
the letter that is the type attribute of
the macro-instruction operand that corre-
sponds to the symbolic parameter §ABC.

T T T
| Name jOoperation |Operand
1. 3 L

e cesn el e ol

¥ T T
| STYPE | SETC | T*§ABC
L i 1

CHARACTER EXPRESSION

A character expression consists of any
combination of characters enclosed in apos-
trophes. The maximum length of a character
expression is 127 characters.

The character value enclosed in apos—-
trophes in the operand field is assigned to
the SETC symbol in the name entry. The
maximum length character value that can be
assigned to a SETC symbol is eight charac-
ters. If a value greater than 8 is speci-
fied, the leftmost 8 characters will be
used.

EVALUATION OF CHARACTER EXPRESSIONS: The
following statement assigns the character
value AB%U4 to the SETC symbol &ALPHA:

L} T T
| Name |Operation |Operand
} i 1

e s s

3 T 1
| éALPHA | SETC | *ABRY4®
L 1 L

More than one character expression may
be concatenated into a single character
expression by placing a period between the
terminating apostrophe of one character
expression and the opening apostrophe of
the next character expression. For exam-
ple, either of the following statements may
be used to assign the character value
ABCDEF to the SETC symbol EBETA.

L] T T
| Name |Operation |Operand
1 }

T

| * ABCDEF'

| * ABC'. ' DEF"
1

l

B T

| EBETA | SETC
|€BETA |SETC
L L

e e s o et

Two apostrophes must be used to rep-
resent a apostrophe that is part of a char-
acter expression.

The following statement assigns the

character value L'SYMBOL to the SETC symbol
§ LENGTH.

18

T

| Name
1

& 1
|SLENGTH |SETC
L 1

T T
|operation |Operand
i

et s oot s 2

]
1
] *L* * SYMBOL®
L

Variable symbols may be concatenated
with other characters in the operand field
of a SETC instruction according to the
general rules for concatenating variable
symbols with other characters {(see Section
. '

If S6ALPHA has been assigned the charac-
ter value AB%Y4, the following statement may
be used to assign the character value
ABRZURST to the variable symbol §GAMMA.

¥ h k] 1
| Name |Operation |Operand]
b + ¥ :
| §GAMMA | SETC | * 6ALPHA.RST* |
L L ' R 5]
F T . 1
| Name |Operation |Operand |
L 3 i b |
i T L] L
| EDELTA | SETC | * §ALPHA’ . *RST' |
L i g L 3

Two ampersands must be used to represent
an ampersand that is not part of a variable
symbol. Both ampersands become part of the
character value assigned to the SETC sym-
bol. They are not replaced by a single

ampersand.

The following statement assigns the
character value HALF§§ to the SETC symbol
§AND.

T T T
| Name |Operation |Operand
L 4 g |

[& P

¥ T]
|6AND |SETC | "HALFE§"
L b & i

In this example,

] T T
| Name |Operation |Operand
L. J 1

el T

1 3 T T
| €A | SETC | *86BETA’ (2, 5)
L 1 L

*§EBETA' (2,5) produces &BETA which is
considered a character string, not a varia-
ble symbol.

SUBSTRING NOTATION

The character value assigned to a SETC
symbol may be a substring character value.
Substring character values permit the pro-

grammer to assign part of a character value
to a SETC symbol.

If the programmer wants to assign part
of a character value to a SETC symbol, he
must indicate to the assembler in the oper-
and of a SETC instruction: (1) the charac-
ter value itself, and (2) the part of the
character value he wants to assign to the
- SETC symbol. The concatenation of (1) and
{2) in the operand of a SETC imnstruction is
called a substring notation. The character
value that is assigned to the SETC symbol
in the name entry is called a substring
character value.

Substring notation consists of a charac-
ter expression, immediately followed by two
arithmetic expressions that are separated
from each other by a comma and are enclosed
in parentheses. These parentheses count
when determining the number of levels of
parentheses. The two arithmetic expres-
sions may be any expression that is allowed
in the operand of a SETA instruction.

The first expression indicates the first
character {in the character expression)
that is to be assigned to the SETC symbol
in the name entry. The second expression
indicates the number of consecutive charac-
ters in the character expression (starting
with the character indicated by the first
expression) that are to be assigned to the
SETC symbol. 1If a substring specifies more
characters than are in the character
string, the number of available characters
will be supplied.

The maximum size character expression
the substring character value can be chosen
from is 127 characters.

The following are valid substring nota-
tions:

*§ALPHA' (2, 5)

ABX4 (§AREA+2,1)
*§ALPHA® . *RST' (6, §A)
*ABCEGAMMA® (§A, EAREA+2)

The following are invalid substring
notations:

*EBETA' (4,6)
{blanks between character value
and arithmetic expressions)
L'*SYMBOL" {142-£XY2)
(only one arithmetic expression)
*ABX 48ALPHA® (8 EFIELD*2)
(arithmetic expressions
not separated by a comma)
'BETA' 4,6)
(arithmetic expressions
not enclosed in parentheses)
*EALPHA" (2,4)(1,1)

(double substring notation is not
permitted)

CONCATENATING SUBSTRING NOTATIONS AND CHAR-
ACTER EXPRESSIONS: Substring notations may
be concatenated with character expressions
in the operand of a SETC instruction. If a
substring notation follows a character
expression, the two may be concatenated by
placing a period between the terminating
apostrophe of the character expression and
the opening apostrophe of the substring
notation.

For example, if &ALPHA has been assigned
the character value ABX4, and &BETA has
been assigned the character value ABCDEF,
then the following statement assigns EGAMMA
the character value ABX4BCD.

r T N T 1
| Name |Operation |Operand |
1. gl 4 F |
L N T T 1
| §GAMMA | SETC | *6ALPHA . *6BETA’ (2,3) |
L 1 i 3

If a substring notation precedes a char-
acter expression or another substring nota-
tion, the two may be concatenated by writ-
ing the opening apostrophe of the second
item immediately after the closing paren-
thesis of the substring notation.

The programmer may optionally place a
period between the closing parenthesis of a
substring notation and the opening apos-
trophe of the next item in the operand.

If EALPHA has been assigned the charac-
ter value AB%4, and EABC has been assigned
the character value 5RS, either of the
following statements may be used to assign
§WORD the character value ABR45SRS.

¥ v . T 3
|Name |Operation]Operand }
L 1 i]
LB T 1
| EWORD | SETC { " 6ALPHA® (1,4) "6ABC’ i
| §WORD |SETC | * EALPHA® (1,4) *6ABC" (1,3) |
L i L 3

If a SETC symbol is used in the operand
of a SETA instruction, the character value
assigned to the SETC symbol must be one to
eight decimal digits.

1f a SETA symbol is used in the operand
of a SETC statement, the arithmetic value
is converted to an unsigned integer with
leading zeros removed. If the value is
zero, it is converted to a single zero.

Writing Cconditional Assembly Instructions 79

Using SETC Symbols

The character value assigned to a SETC
symbol is substituted for the SETC symbol
when it is used in the name, operation, or
operand of a statement.

For example, consider the following
macro-definition, macro-instruction, and
generated statements.

1 8 T N v R |
| Name |Operation |Operand |
= + t {
| | MACRO | |
| ENAME |MOVE | §T0, §FROM |
| |LCLC | § PREFIX i
1 |§PREFIX |SETC |* FIELD® |
| §NAME isT |2 ,SAVEAREA]
2 | L 12, EPREFIXEFROM |
3| |sT - 12,EPREFIXETO i
] |L |2, SAVEAREA l
| | MEND |]
i ' 3
1 ¥ B
HERE jMOVE |A,B }
i 3 .‘
L) T
HERE |sT |2, SAVEAREA]
| L |2, FIELDB i
| |sT |2,FIELDA |
| L |2, SAVEAREA]
i i i b]

Statement 1 assigns the character value
FIELD to the SETC symbol S§PREFIX. In
statements 2 and 3, SPREFIX is replaced by
FIELD.

The following example shows how the
value assigned to a SETC symbol may be
changed in a macro-definition.

B T k3 1
| Name |Operation |Operand i
= + + 8|
| | MACRO | i
| § NAME | MOVE | §TO, §FROM l
| |LCLC | §PREFIX |
1 |€PREFIX |SETC |*FIELD® |
| §NAME |ST | 2, SAVEAREA |
2] 1L {2, SPREFIX6FROM |
3 {SPREFIX |SETC {*AREA"* |
4 | |ST |2, EPREFIXETO |
1 L | 2, SAVEAREA |
| | MEND | |
- + t i
| BERE | MOVE |A,B |
- ¢ ¢ 4
| HERE |sT |2, SAVEAREA i
| L {2,FIELDB i
| |ST 12, AREAA |
| L |2, SAVEAREA]
i j i E]

Statement 1 assigns the character value
FIELD to the SETC symbol §PREFIX. There-
fore, §PREFIX is replaced by FIELD in

80

statement 2. Statement 3 assigns the char-
acter value AREA to §PREFIX. Therefore,
§PREFIX is replaced by AREA, instead of
FIELD, in statement 4. '

The following example illustrates the
use of a substring notation as the operand
field of a SETC instruction.

T T T 1
| Name joperation |Operand |
b + $ 1
	MACRO	
SNAME	MOVE	§ TO, §FROM
	LCLC { § PREFIX	
1	&PREFIX	SETC]'&TO" (1,5)
ENAME	sT	2,SAVEAREA i
2		L
	sT	12,6TO
L	2, SAVEAREA	
	MEND]
b t = '		
HERE	MOVE	FIELDA, B
[i 4 y i		
L 3) T 1		
HERE	ST	2,SAVEAREA i
	L }2,FIELDB }	
	sT	2,FIELDA l
L {2,SAVEAREA		
L Y i 3

Statement 1 assigns the substring char-
acter value FIELD (the first five charac-
ters corresponding to symbolic parameter
£TO) to the SETC symbol &PREFIX. There-
fore, FIELD replaces EPREFIX in statement
2,

SETB_-- SET BINARY

The SETB instruction may be used to assign
the binary value 0 or 1 to a SETB symbol.
The form of this instruction is:

[3 L s k2 1
| Name loperationloperand |
b= ‘ . 1
{A SETB |SETB jA 0 or ail1,(0) or (1),}
}symbol | lor a logical ex- |
i | | pression enclosed in |
} [| parentheses |
L ;8 i 3

The operand may contain a 0 or a 1 or a
logical expression enclosed in parentheses.
(No explicit binary zeros or ones are
allowed in parentheses other than in the
form (0) or (1).) A logical expression is
evaluated to determine if it is true or
false; the SETB symbol in the name entry is
then assigned the binary value 1 or 0 cor-
responding to true or false, respectively.

Note: The parentheses enclosing a logi-
cal expression do not count towards the
parenthesis level limit.

A logical expression consists of one
term or a logical combination of terms.
The terms that may be used alone or in
combination with each other are arithmetic
relations, character relations, and SETB
symbols. The logical operators used to
combine the terms of an expression are AND,
OR, and NOT.

A logical expression may not contain two
terms in succession. A logical expression
may contain two operators in succession
only if the first operator is either AND or
OR and the second operator is NOT. A logi-
cal expression may begin with the operator
NOT. It may not begin with the operators
AND or OR.

An arithmetic relation consists of two
arithmetic expressions connected by a rela-
tional operator. A character relation
consists of two character strings connected
by a relational operator. The relational
operators are EQ (equal), NE (not equal),
LT (less than), 3T (greater than), LE (less
than or equal), and GE (greater than or
egqual).

Any expression that may be used in the
operand of a SETA instruction, may be used
as an arithmetic expression in the operand
of a SETB instruction. Anything that may
be used in the operand of a SETC instruc-
tion, may be used as a character string in
the operand of a SEIB instruction. This

includes substring and type attribute nota-

tions. The makimum size of the character
values that can be compared is 127 charac-
ters. If the two character values are of
unequal length, then the shorter one will
always compare less than the longer one,
regardless of the characters present.

The relational and logical operators
must be immediately prec2ded and followed
by at least one blank or other special
character. Each relation may or may not be
enclosed in parentheses. If a relation is
not enclosed in parentheses, it must be
separated from the logical operators by at
least one blank or other special character.

A relation enclosed in parentheses must
not be separated from the parentheses by
any blanks.

The following are valid operand fields
of SETB instructions:

1

(6AREA+2 GT 29)
(*ABZ4*' EQ °*'&ALPHA')
(T*6ABC NE T'EXYZ)
(T*EP12 EQ 'F")

(§AREA+2 GT 29 OR &B)
(NOT &B AND EAREA+X'2D' GT 29)
(*§C'EQ'MB')

The following are invalid operand fields
of SETB instructions:

EB (not enclosed in parentheses)

(T*6P12 EQ 'F' §B)
(two terms in succession)
(*AB%4* EQ °ALPHA' NOT &B)
(the NOT operator must be
preceded by AND or OR)
(AND T'€P12 EQ 'F*")
(expression begins with AND)

Evaluation of Logical Expressions

The following procedure is used to evaluate
a logical expression in the operand field
of a SETB instruction:

1. Each term (i.e., arithmetic relation,
character relation, or SETB symbol) is
evaluated and given its logical value
(true or false).

2. The logical operations are performed
moving from left to right. However,
NOTs are performed before ANDs, and
ANDs are performed before ORs.

3. The computed result is the value
assigned to the SETB symbol in the
name field.

The logical expression in the operand of
a SETB instruction may contain one or more
sequences of logically combined terms that
are enclosed in parentheses. A sequence of
parenthesized terms may appear within
another parenthesized seguence.

The following are examples of SETB
instruction operands that contain parenthe-
sized sequences of terms.

(NOT(E§B AND E&AREA+X'2D' GT29))
(6B AND(T'EP12 EQ'F'OREB)

The parenthesized portion or portions of
a logical expression are evaluated before
the rest of the terms in the expression are
evaluated. 1If a sequence of parenthesized
terms appears within another parenthesized
sequence, the innermost sequence is evalu-
ated first.

Logical expressions may have only five
levels of parentheses. Subscripting,
substring notation, and logical expression
nesting count when determining the level of
parentheses. The parentheses surrounding
the SETB operand do not count. A counter
is maintained for each statement and is

Writing Conditional Assembly Instructions 81

increased by one for each occurrence of a
variable symbol and an operation entry.

The maximum value this counter may attain
is 35.

Using SETB Symbols

The logical value assigned to a SETB symbol
is used for the SETB symbol appearing in
the operand of an AIF instruction or anoth-
er SETB instruction.

If a SETB symbol is used in the operand
of a SETA instruction, or in arithmetic
relations in the operands of AIF and SETB
instructions, the binary values 1 (true)
and 0 (false) are converted to the arith-
metic values +1 and +0, respectively.

If a SETB symbol is used in the operand
of a SETC instruction, in character rela-
tions in the operands of AIF and SETB
instructions, or in any other statement,
the binary values 1 (true) and 0 (false),
are converted to the character values 1 and
0, respectively.

The following example illustrates these
rules. It is assumed that L'6TO EQ 4 is
true, and S*'&€TO EQ O is false.’

r=m===== S bty T : |

| Name |Operation |Operand |

I e 1

| | MACRO | |

| ENAME | MOVE | 6T0, §FROM |

] jLcLa 1881 |

| | LCLB 1681, B2 |

| | LCLC 181 1

1 j&8B1 | SETB | (L"6TO EQ) |
2 |&B2 | SETB] (s'6£TO EQ 0) |
3 j&a1 | SETA |£B1 |
4 j&cl | SETC |'6B2" 1
] |sT 12, SAVERREA |

] |L | 2, §FROMS A1 1

] |sT 12, 6TO&CL |

| IL |2, SAVEAREA |

| | MEND | |
------- e |
|HERE | MOVE | FIELDA,FIELDB 1
$- —— -~ i

|HERE |ST | 2, SAVEAREA]

| |L |12,FIELDB1 i

| |sT {2, FIELDAO |

] |L }2, SAVEAREA]

| S L i 3

Because the operand of statement 1 is
true, &Bl1 is assigned the binary value 1.
Therefore, the arithmetic value +1 is sub-
stituted for é€B1 in statement 3. Because
the operand of statement 2 is false, &B2 is
assigned the binary value 0. Therefore,

82

the character value 0 is substituted for
EB2 in statement 4.

AIF -- CONDITIONAL BRANCH

The AIF instruction is used to alter condi-
tionally the sequence in which source pro-
gram statements are processed by the assem-

bler. The typical form of this instruction
is:

- T - 1
| Name | Operation| Operand |
t + + ---
|A se- |AIF |A logical expression |
| quence | |enclosed in paren- |
|symbol or| jtheses, immediately |
|not used | |followed by a |
]] | sequence symbol]
L L .y 3

Any logical expression that may be used
in the operand of a SETB instruction may be
used in the operand of an AIF instruction.
However, the forms

AIF (0), sequence symbol and

AIF (1), sequence symbol
are invalid. The sequence symbol in the
operand must immediately follow the closing
parenthesis of the logical expression. AIF
operand entries must not contain explicit
Zeros or ones.

Note: The parentheses enclosing the
logical expression do not count toward the
level limit.

The logical expression in the operand is
evaluated to determine if it is true or
false. If the expression is true, the
statement named by the sequence symbol in
the operand is the next statement processed
by the assembler; however, sequence check-
ing is not affected. If the expression is
false, the next sequential statement is
processed by the assembler.

The statement named by the sequence
symbol may precede or follow the AIF
instruction.

If an AIF instruction is in a macro-
definition, then the sequence symbol in the
operand must appear in the name entry of a
statement in the definition. If an AIF
instruction appears outside macro-
definitions, then the seguence symbol in
the operand must appear in the name entry
of a statement outside macro-definitions.

The following are valid operands of AIF
instructions:

(EAREA+X'2D' GT 29).READER
(T*&P12 EQ °F').THERE

The following are invalid operands of
AIF instructions:

(T'EABC NE T®&XY2)
< XUF2
({T*&ABC NE T*&XYZ)

(no sequence symbol)
{no logical expression)
. XUF2
{blanks between logical
expression and se-
quence symbol)

The following macro-definition may be
used to generate the statements needed to
move a full-word fixed-point number from
one storage area to another. The
statements will be generated only if the
type attribute of both storage areas is the
letter F.

¥ T k3 1
| Name |[Operation|Operand |
k { + |
| | MACRO i }
| &N | MOVE | 8T, &F |
1} {AIF f(T*ET NE T*EF) .END {
2] |AIF | (T*6€T NE °*F*).END l
3 | &N |sT | 2, SAVEAREA |
| 1L |2,¢&F |
| |sT 12,8T]
} |L ~ }2,SAVEAREA }
4 | .END |MEND 1 |
1 1 3

The logical expression in the operand of
statement 1 has the value true if the type
attributes of the two macro-instruction
operands are not equal. If the type attri-
butes are equal, the expression has the
logical value false.

Therefore, if the type attributes are
not equal, statement 4 (the statement named
by the sequence symbol .END) is the next
statement processed by the assembler. If
the type attributes are equal, statement 2
(the next sequential statement) is proc-
essed.

The logical expression irn the operand of
statement 2 has the value true if the type
attribute of the first macro-instruction
operand is not the letter F. If the type
attribute is the letter F, the expression
has the logical value false.

Therefore, if the type attribute is not
the letter F, statement 4 (the statement
named by the sequence symbol .END) is the
next statement processed by the assembler.
If the type attribute is the letter F,
statement 3 (the next sequential statement)
is processed.

AGO -- UNCONDITIONAL BRANCH

The AGO instruction is used to uncondi-
tionally alter the sequence in which source
program statements are processed by the
assembler. The typical form of this
instruction is:

g T ¥)

|Name |09eration|09erand

Lt X

1 } T

A seqnence]AGO |A sequence symbol
|symbol or | |

|not used | |

L i & i g |

The statement named by the sequence
symbol in the operand is the next statement
processed by the assembler.

The statement named by the sequence
symbol may precede or follow the AGO
instruction.

If an AGO instruction is part of a
macro-definition, then the sequence symbol
in the operand must appear in the name
entry of a statement that is in that defi-
nition. If an AGO instruction appears
outside macro-definitions, then the
sequence symbol in the operand must appear
in the name entry of a statement outside
macro-definitions.

The following example illustrates the
use of the AGO instruction.

& T T 3
{Name |Operation|Operand |
F + + 1
| | MACRO | |
| ENAME |MOVE | €T, 6F |
1 |AIF | (T*E€T EQ *F*).FIRST |
2 | |AGO | .END |
3 | .FIRST|AIF | (T*&T NRE T*&F).END |
| NAME | ST { 2, SAVEAREA |
| 1L |2,6F 1
| |sT |2,6T |
1 L | 2, SAVEAREA]
4 |.END |MEND]]
L 1 L 5]

Statement 1 is used to determine if the
type attribute of the first macro-
instruction operand is the letter F. If
the type attribute is the letter F,
statement 3 is the next statement processed
by the assembler. If the type attribute is
not the letter F, statement 2 is the next
statement processed by the assembler.

Statement 2 is used to indicate to the
assembler that the next statement to be

Writing Conditional Assembly Instructions 83

processed is statement 4 (the statement
named by sequence symbol .END).

ACTR -- CONDITIONAL ASSEMBLY LOOP COUNTER

The ACTR instruction is used to limit the
number of AGO and AIF branches executed
within a macro-definition or within the
main source program.

A separate ACTR statement may be used in
each macro-definition and in the main pro-
gram. These counters are independent.

The form of this instruction is:

¥ kS N k3 1
| Name |operation |Operand |
i i s 1 5 |
L} 1) 1]) |
|Not used |ACTR |Any valid SETA |
|must not | |expression]
| be present| } |
L i i J

This statement must immediately follow
any global or local declarations, if any.
This statement causes a counter to be set
to the value in its operand. Each time an
AGO or AIF branch is executed, the counter
is decremented by one. 1If the count is
zero before decrementing, the assembler
takes one of two actions:

1. If a macro definition is being proc-
essed, the processing of it and any macros
above it in a nest is terminated, and the
next statement in the main portion of the
program is processed.

2. If the main portion of the program is
being processed, conditional assembly is
terminated, and the portion of the program
generated so far is assembled.

If an ACTR statement is not given, the
assumed value of the counter is 150.

ANOP -- ASSEMBLY NO OPERATION

The ANOP instructjion facilitates condi-
tional and unconditional branching to
statements named by symbols or variable
symbols.

84

The typical form of this instruction is:

T L] T 1
!Name 109eration lOperand }
T k] 1 Bl
jA se- | ANOP |Not used, must not |
}quence | | be present |
|symbol | | |
i i i d

If the programmer wants to use an AIF or
AGO instruction to branch to another state-
ment, he must place a segquence symbol in
the name entry of the statement to which he
wants to branch. However, if the program-
mer has already entered a symbol or varia-
ble symbol in the name entry of that state-
ment, he cannot place a sequence symbol in
the name entry. Instead, the programmer
must place an ANOP instruction before the
statement and then branch to the ANOP
instruction. This has the same effect as
branching to the statement immediately
after the ANOP instruction.

The following example illustrates the
use of the ANOP instruction.

¥ T i b 3 3
| Name |Operation |Operand |
b } $- i
i | MACRO | |
| SNAME |MOVE | 6T, 6F |
! JLCLC | §TYPE |
1] |AIF | (T*&T EQ °"F').FTYPE |
2 |6TYPE |SETC |*E* |
3 |.FTYPE |ANOP | |
4 |ENAME |ST&TYPE | 2 ,SAVEAREA |
O | LETYPE 12,¢F |
] |STeTYPE |2,8T |
] | LETYPE | 2 ,SAVEAREA |
| | MEND | i
i L i 4

Statement 1 is used to determine if the
type attribute of the first macro-
instruction operand is the letter F. If
the type attribute is not the letter F,
statement 2 is the next statement processed
by the assembler. If the type attribute is
the letter F, statement 4 should be
processed next. However, since there is a
variable symbol (§NAME) in the name field
of statement 4, the required segquence sym-
bol (.FTYPE) cannot be placed in the name
field. Therefore, an ANOP instruction
{statement 3) must be placed before state-
ment 4.

Then, if the type attribute of the first
operand is the letter F, the next statement
processed by the assembler is the statement
named by sequence symbol .FTYPE. The value
of ETYPE retains its initial null character
value because the SETC instruction is not
processed. Since .FTYPE names an ANOP

instruction, the next statement processed
by the assembler is statement 4, the state-
ment following the ANOP instruction.

CONDITIONAL ASSEMBLY ELEMENTS

The following chart summarizes the elements
that can be used in each conditional assem-
bly instruction. Each row in this chart
indicates which elements can be used in a
single conditional assembly instruction.
Each column is used to indicate the condi-
tional assembly instructions in which a
particular element can be used.

The intersection of a column and a row
indicates whether an element can be used in
an instruction, and if so, in what fields
of the instruction the element can be used.
For example, the intersection of the first
row and the first column of the chart indi-
cates that symbolic parameters can be used
in the operand field of SETA instructions.

Ll T 1
i Variable Symbols | | i
| | Attributes | |
| | SET Symbols | | |
i r t t i
| S.P. | SETA | SETB | SETC | T' | L' | 8' | I* | K* | N* | S.S. |
% T T T lr T T B T T % %
| | | | | | | | I] | | |
| SETA | O | NoO | O | O3 | o Jo Jo (o |o | |
| | | | | | | | | | I | !
i ’ R 4 i 3 i | 4 B i 1 i 1
[) T T L] i v T T T T T 1
| | | | | | | I | | | | |
| SETB | O] ©O | N0 | O | 0+ | 02 | 02 | 02 | 02 | 02 | |
]] | |] | | | | | | | |
t 4 b & | 4 4 $ 3 4] 1 i 4
¥ T T T T T A} T T) 1 T 1
| | | | | | | | | | | | |
iserc | o | o | o | NO | O | | | |] | |
] | | ! | | | I | | | | |
1 4 4 4 i 4 4 4 4 i i i d
1 1] 13 1 k) 1 1 T 1] T T 1 h
| | | | I | | |] | | | |
| AIF | O | ©O | © | O | O+ 1] 02 | 02) 02 | 02 | 02 | N,O |
I | | | | . | | | | | | |
[® 1 I 1 1 1 e b 1 L 1 b i 3
8 T L] T Ll 1] 1 T 1 ¥ T 1
]]	
aco			1							N,O
										i
Lt i 4 4 4 4 4. 1 4 i 1 3 b]										
L o L)] L) T Bl T L] T 1 1 T b}										
					1					
AaNoP					I			I	N	
L i 1 p & L 1 5§ i 3 1 i H {										
L T T 1 T) H i T 1 1 1										
ACTR	©	o	o	o3	o o jo o	o	i			
					I]	
L L L L L i L 1 L i 1 i 3										
I ‘										
* only in character relations										
2 only in arithmetic relations.										
] ® oOnly if one to eight decimal digits										
Abbreviations										
]										
N is Name L' is Length Attribute K° is Count Attribute }										
O is Operand S' is Scaling Attribute N° is Number Attribute i										
S.P. is Symbolic 1I' is Integer Attribute S.S. is Sequence Symbol)										
Parameter]										
L 3

Writing Conditional Assembly Instructions

85

Form C24-3414-2, -3, -4
Page Revised 4/26/67
By TNL N26-0536

SECTION 10: ADDITIONAL FEATURES

The additional features of the assembler
language allow the programmer to:

1. Terminate processing of a macro-
definition.

2. Generate error messages.

3. Define global SET symbols.

4. Define subscripted SET symbols.

5. Use system variable symbols.

6. Prepare keyword and mixed-mode macro-
definitions and write keyword and
mixed-mode macro-instructions.

MEXIT -- MACRO-DEFINITION EXIT

The MEXIT instruction is used to indicate
to the assembler that it should terminate
processing of a macro-definition. The
typical form of this instruction is:

¥ T . v 3
| Name |Operation |Operand |
L 1 1 ,‘
1 3 ¥ T

A sequence	MEXIT	[Not used,
symbol or		must not be
not used		present
i i i J

The MEXIT instruction may only be used
in a macro-definition.

If the assembler processes an MEXIT
instruction that is in a macro-definition
corresponding to an outer macro-
instruction, the next statement processed
by the assembler is the next statement
outside macro-definitions.

If the assembler processes an MEXIT
instruction that is in a macro-definition
corresponding to a second or third level
macro-instruction, the next statement proc-
essed by the assembler is the next state-
ment after the second or third level macro-
instruction in the macro-definition,
respectively.

MEXIT should not be confused with MEND.
MEND indicates the end of a macro-
definition. MEND must be the last
statement of every macro-definition,
including those that contain one or more
MEXIT instructions.

The following example illustrates the
use of the MEXIT instruction.

86

] T T 1
| Name |Operation |Operand |
F + t :
| | MACRO l |
| ENAME |MOVE |6T,&F |
1 |AIF] (T*&T EQ "F').OK]
2} |MEXIT |]
3 |.OK |ANOP | |
| ENAME |ST | 2, SAVEAREA i
I IL 12,6F |
| |ST [2,6T |
| |L | 2, SAVEAREA]
| | MEND | I
L 5 N P]

Statement 1 is used to determine if the
type attribute of the first macro-
instruction operand is the letter F. 1If
the type attribute is the letter F, the
assembler processes the remainder of the
macro-definition starting with statement 3.
If the type attribute is not the letter F,
the next statement processed by the
assembler is statement 2. Statement 2
indicates to the assembler that it is to
terminate processing of the macro-
definition.

MNOTE STATEMENT

The MNOTE instruction may be used to generate
a message and to indicate what error severity

code, if any, is to be associated with the
message. The severity code is for. the
programmer's information only and is not
used by the DOS assembler or control pro-

gram. The typical form of this instruction
is:

L1 R g . v

| Name |Operation| Operand

L 1 i

F

T

|A sequence|MNOTE
|symbol or | |
|not used | |
L i 1

T
| See examples below.

et e T

The operand entry of the MNOTE
assembler-instruction may be written in one
of the following forms:

1. severity-code, 'message*
2. ,'message’
3. ‘'message*

For 2 and 3 above, the severity code is
assumed to be one.

The MNOTE instruction may only be used
in a macro-definition. Variable symbols
may be used to generate the MNOTE mnemonic
operation code, the severity code
indicator, and the message.

The resulting severity code indicator
may be a decimal integer 0 to 255, blank,
or an asterisk. The integers indicate the
severity of the error. (0 is the least
severe; 255 is the most severe). If the
severity code indicator is blank or omit-
ted, 1 is assumed. If the severity code is
an asterisk, the MNOTE is not considered an
error message, and the message is consid-
ered a comment. Messages can be generated
with substitution using variable symbols.

The MNOTE statement appears in the list-
ing with a statement number at the point
where it was generated. If the severity
code indicator was an integer or a blank,
this statement number is placed in a list
of statement numbers of MNOTE and other
error statements near the end of the assem-
bly listing. If the severity code is an
asterisk, the statement number is not
placed in this list.

Since the message portion of the MNOTE
operand is enclosed in apostrophes, two
apostrophes must be used to represent a
single apostrophe. Any variable symbols
used in the message operand are replaced by
values assigned to them. Two ampersands
must be used to represent a single amper-
sand that is not part of a variable symbol.

The following example illustrates the
use of the MNOTE instruction.

f g T 1
| Name }Operation|operand |
1. i i 3
] 1] L) |
| | MACRO | |
| ENAME | MOVE | $T , 6F i
1 JAIF |(T*&T NE T*'§F). M1
2 {AIF | (T*&T NE °*F*).M2
3 | ENAME|ST | 2, SAVEAREA
| |L 12, 6F
|sT |2, 8T
L | 2, SAVEAREA
4 | MROTE | *, * MOVE GENERATED'
|MEXIT
5 {.M1 |MNOTE |8, *TYPE NOT SAME®
| | MEXIT |]
6 |.M2 |MNOTE |18, *TYPE NOT F* |
Y L)

Statement 1 is used to determine if the
type attributes of both macro-instruction
operands are the same. If they are, state-
ment 2 is the next statement processed by
the assembler. 1If they are not, statement
$ is the next statement processed by the

assembler. Statement 5 causes an error
message -- 8,TYPE NOT SAME -- to be printed
in the source program listing.

Statement 2 is used to determine if the
type attribute of the first macro-
instruction operand is the letter F. If
the type attribute is the letter F,
statement 3 is the next statement processed
by the assembler. If the attribute is not
the letter F, statement 6 is the next
statement processed by the assembler.
Statement 6 causes an exror message --

8, TYPE NOT F -- to be printed in the source
program listing. Statement 4 is an MNOTE
which is not treated as an error message.

GLOBAL_AND LOCAL VARIABLE SYMBOLS

The following are local variable symbols:

1. Symbolic parameters.
2. Local SET symbols.
3. System variable symbols.

Global SET symbols are the only global
variable symbols.

The GBLA, GBLB, and GBLC instructions
define global SET symbols, just as the
ICLA, LCLB, and ICIC instructions define
the SET symbols described in Section 9.
Hereinafter, SET symbols defined by LCLA,
ICLB, and LCLC instructions will be called
local SET symbols.

Global SET symbols may communicate
values between statements in one or more
macro-definitions and statements outside
macro-definitions. However, local SET
symbols communicate values between state-
ments in the same macro-definition, or
between statements outside macro-
definitions.

If a local SET symbol is defined in two
or more macro-definitions, or in a macro-
definition and outside macro-definitions,
the SET symbol is considered to be a
different SET symbol in each case. Howev-
er, a global SET symbol is the same SET
symbol each place it is defined.

A SET symbol must be defined as a global
SET symbol in each macro-definition in
which it is to be used as a global SET
symbol. A SET symbol must be defined as a
global SET symbol outside macro-
definitions, if it is to be used as a glo-
bal SET symbol outside macro-definitions.

If the same SET symbol is defined as a
global SET symbol in one or more places,
and as a local SET symbol elsewhere, it is
considered the same symbol wherever it is

Additional Features 87

defined as a global SET symbol, and a dif-
ferent symbol wherever it is defined as a
local SET symbol.

Defining lLocal and Global SET Symbols

Local SET symbols are defined when they
appear in the operand entry of an ICLa,
ICIB, or LCLC instruction. These instruc-
tions are discussed in Section 9 under

Defining SET Symbols.

Global SET symbols are defined when they
appear in the operand entry of a GBla,
GB1B, or GBLC instruction. The typical
forms of these instructions are:

r

| Name Operation Operand
1

3

| Not used, GBLA, one or more
|must not GBLB, or variable

| be present GBLC symbols that

are to be used
as global SET

symbols, sepa-
rated by commas

v e o o e s s et st e 0]
P————--———-—-}F s oof

o s s e s s st s el e e

[ot S S cun

The GBLA, GBLB, and GBLC instructions
define global SETA, SETB, and SETC symbols,
respectively, and assign the same initial
values as the corresponding types of local
SET symbols. However, a global SET symbol
is assigned an initial value by only the
first GBLA, GBLB, or GBLC instruction proc-
essed in which the symbol appears. Subse-
quent GBLA, GBLB, or GBLC instructions
processed by the assembler do not affect
the value assigned to the SET symbol.

The programmer should not define any
global SET symbols whose first four charac-
ters are §SYS.

If a GBLA, GBLB, or GBLC instruction is
part of a macro-definition, it must immedi-
ately follow the prototype statement, or
another GBLA, GBLB, or GBLC instruction.
GBLA, GBLB, and GBLC instructions outside
macro-definitions must appear after all
macro-definitions in the source program,
before all conditional assembly instruc-
tions and PUNCH and REPRO statements out-
side macro-definitions, and before the
first control section of the program.

All GBLA, GBLB, and GBLC instructions in
a macro-definition must appear before all
LC1A, ICLB, and ICIC instructions in that
macro-definition. All GBLA, GBLB, and GBLC
instructions outside macro-definitions must
appear before all ICLA, LCLB, and ICLC
instructions outside macro-definitions.

88

Using Global and Local SET Symbols

The following examples illustrate the use
of global and local SET symbols. Each
example consists of two parts. The first
part is an assembler language source pro-
gram. The second part shows the statements
that would be generated by the assembler
after it processed the statements in the
source program.

Example 1: This example illustrates how
the same SET symbol can be used to communi-
cate (1) values between statements in the
same macro-definitions, and (2) different
values between statements outside macro-
definitions.

L3 T T 1
| Name |Operation |Operand i
b + + {
[[MACRO | |
| ENAME | LOADA | |
1| | LcLA £3.\ l
2 |SNAME |LR |15,6A]
3 |&A | SETA | 6a+1 I
| | MEND] |
! I I |
4 | |LCLA | 6A |
|FIRST |LOADA] |
5 i]LR 115,87 |
] | LOADA | |
6 | |LR |15,6A |
| | END | FIRST |
F + + i
| FIRST |LR |15,0 |
] | LR 115,0 |
| |LR |15,0 |
| |LR |15,0]
} | END | FIRST |
L 1 L 4

6A is defined as a local SETA symbol in
a macro-definition (statement 1) and
outside macro-definitions (statement 4).
6A is used twice within macro~definition
(statements 2 and 3) and twice outside
macro~definitions (statements 5 and 6).

Since §A is a local SETA symbol in the
macro-definition and outside macro-
definitions, it is one SETA symbol in the
macro-definition, and another SETA symbol
outside macro-definitions. Therefore,
statement 3 (which is in the
macro~-definition) does not affect the value
used for §A in statements 5 and 6 (which
are outside macro-definitions).

Example 2: This example illustrates how a
SET symbol can be used to communicate
values between statements that are part of
a macro-definition and statements outside
macro-definitions.

3 T b b |

| Name |Operation |Operand |

$ % |

| MACRO | |

§NAME |LOADA !]
1] | GBLA |6a |
2 |§NAME |LR 115,8A |
3 |&A | SETA [6na+1 |
| MEND | |

|] |

4 | GBLA |sa |
FIRST |LOADA | |

5 |LR {15, &a |
| LOADA | |

6 JLR j15,8A |
| END |FIRST |

1 i i N |

1] ¥)
|FIRST |LR {15,0 |

| LR j15,1 |

| | LR 115,1 |

| | LR 115, 2]

] | END |FIRST |

L i i J

8A is defined as a global SETA symbol in
a macro-definition (statement 1) and out-
side macro-definitions (statement 4). §&A
is used twice within the macro-definition
(statements 2 and 3) and twice outside
macro~-definitions (statements 5 and 6).

Since &A is a global SETA symbol in the
macro-definition and outside macro-
definitions, it is the same SETA symbol in
both cases. Therefore, statement 3 (which
is in the macro-definition) affects the
value used for &€A in statements 5 and 6
(which are outside macro-definitions).

Example 3: This example illustrates how
the same SET symbol can be used to
communicate: (1) values between statements
in one macro-definition, and (2) different
values between statements in a different
macro-definition.

€A is defined as a local SETA symbol in
two different macro-definitions (statements
1 and 8). &A is used twice within each
macro-definition (statements 2,3,5 and 6).

Since &A is a local SETA symbol in each
macro-definition, it is one SETA symbol in
one macro—~definition, and another SETA
symbol in the other macro-definition.
Therefore, statement 3 (which is in one
macro-definition) does not affect the value
used for &A in statement 5 (which is in the
other macro—-definition). Similarly, state-
ment 6 does not affect the value used for
§A in statement 2.

) k) R 1
| Name |Operation |Operand |
F + + : .|
i | MACRO]]
| ENAME | LOADA] i
1| JLCLA | 8A |
2 |SNAME |LR }15,¢éA |
3 |&A | SETA |6A+1 |
] | MEND | |
] | | |
i | MACRO } !
] |LOADB] |
4 | |LCLA | 8A |
5 | |LR 115, €A 1
6 |&A | SETA jeAa+1 |
] | MEND } |
| | | |
| FIRST {LOADA | |
[| LoaDB [l
| |LOADA | |
| | LOADB | |
] | END | FIRST |
L i i 3
] k] T]
|FIRST |LR 115,0]
| JLR |15,0 |
| |LR j15,0 |
| |LR 115,0 1
| |END | FIRST |
L i i J

Example 4: This example illustrates how a
SET symbol can be used to communicate
values between statements that are part of
two different macro-definitions.

¥ T T ;]
| Name |Operation |Operand]
b t + !
| |MACRO i |
| ENAME |LOADA | |
1] |GBLA | 6A |
2 |ENAME |LR {15,¢8A |
3 |sa | SETA |EA+1 |
] |MEND | |
| | | i
| |MACRO i |
| |LOADB | |
4 | |GBLA | €A
5 | |LR j15,¢a
6 |EA | SETA |6A+1 |
| | MEND]
| | l
| FIRST |LOADA
| LOADB
| LOADA
| LOADB i
| END | FIRST
b + t {
|FIRST |IR 15,0 |
| LR 15,1]
| LR 115,2 |
} LR }15,3 {
{ | END | FPIRST |
L I 3 [y]

«©
-}

Additional Features

§A is defined as a global SETA symbol in
two different macro-definitions (statements
1 and 4)., §A is used twice within each
macro~definition (statements 2,3,5, and 6).

Since &A is a global SETA symbol in each
macro-definition, it is the same SETA sym-
bol in each macro-definition. Therefore,
statement 3 {(which is in one
macro-definition) affects the value used
for &A in statement 5 (which is in the
other macro-definition). Similarly, state-
ment 6 affects the value used for &A in
statement 2.

Example 5: This example illustrates how
the same SET symbol can be used to communi-
cate: (1) values between statements in two
different macro-definitions, and (2) 4if-
ferent values between statements outside
macro~-definitions.

] " T T 3
| Name jOperation |Operand |
I + ¢ 4
] | MACRO | |
| ENAME | LOADA } |
1]]GBLA 1ea |
2 |ENAME |LR {115,¢€A |
3 |&A } SETA |82+1 |
] | MEND | |
| | |]
I | MACRO | |
| | LOADB | |
4 | |GBLA | 6A i
5 | LR 115,862]
6 |&A | SETA jeA+1 |
| | MEND | |
] | | |
7 | {LCLA jea |
| FIRST |LOADA i]
| { LOADB } |
8 | LR 115,6A |
| } LOADA i |
| | LOADB | |
9 | |LR }15,8A |
| | END | FIRST B
H i h | F |
¥ T 1] 1
|FIRST |LR 115,0 |
| LR 115,1 |
	LR 15,0
	LR {15,2
	LR 15,3
	LR 115,0]
	END
t L 1 J

§A is defined as a global SETA symbol in
two different macro~definitions (statements
1 and 4), but it is defined as a local SETA
symbol outside macro-definitions (statement
7). &A is used twice within each macro-
definition and twice outside macro-
definitions (statements 2,3,5,6,8, and 9).

920

Since §A is a global SETA symbol in each
macro~-definition, it is the same SETA
symbol in each macro-definition. However,
since &A is a local SETA symbol outside
macro-definitions, it is a different SETA
symbol outside macro-definitions.

Therefore, statement 3 {(which is in one
macro~-definition) affects the value used
for €A in statement 5 (which is in the
other macro-definition), but it does not
affect the value used for &A in statements
8 and 9 (which are outside
macro-definitions). Similarly, statement 6
affects the value used for €A in statement
2, but it does not affect the value used
for EA in statements 8 and 9.

Subscripted SET Symbols

Both global and local SET symbols may be
defined as subscripted SET symbols. The
local SET symbols defined in Section 9 were
all nonsubscripted SET symbols.

Subscripted SET symbols provide the
programmer with a convenient way to use one
SET symbol plus a subscript to refer to
many arithmetic, binary, or character
values.

A subscripted SET symbol consists of a
SET symbol immediately followed by a sub-
script that is enclosed in parentheses.

The subscript may be any arithmetic expres-
sion that is allowed in the operand of a
SETA statement in the range of 1 to the
specified dimension.

Only five levels of parentheses are
permitted in a SETA or SETB operand.

The following are valid subscripted SET
symbols.

6READER(17)
£A23456(£s4)
EXUF2(25+8A2)

The following are invalid subscripted
SET symbols.

§XUF2 (no subscript)
(25) {no SET symbol)
EXUF2 (25) (subscript does not

immediately follow
SET symbol)

Defining Subscripted SET Symbols: If the
programmer wants to use a subscripted SET
symbol, he must write in a GBLA, GBLB,
GBIC, LCLA, LCLB, or LCLC instruction, a
SET symbol immediately followed by an
unsigned decimal integer enclosed in paren-
theses. The decimal integer, called a

dimension, indicates the number of SET
variables associated with the SET symbol.
Every variable associated with a SET symbol
is assigned an initial value that is the
same as the initial value assigned to the
corresponding type of nonsubcripted SET

symbol.

If a subscripted SET symbol is defined
as global, the same dimension must be used
with the SET symbol each time it is defined
as global.

The maximum dimension that can be used
with a SETA, SETB, or SETC symbol is 255.

A subscripted SET symbol may be used
only if the declaration was subscripted. A
nonsubscripted SET symbol may be used only
if the declaration had no subscript.

The following statements define the
global SET symbols &SBOX, &§WBOX, and E&PSW,
and the local SET symbol &€TSW. §&SBOX has
50 arithmetic variables associated with it,
§WBOX has 20 character variables, &PSW and
E§TSW each have 230 binary variables.

1] k] T 1
|Name |Operation |Operand }
1 } L 3
¥ LB T]
| {GBLA | 8SBOX (50)]
| |GBLC | EWBOX (20) |
| |GBLB | EPSW(230) i
| jLCLB | §TSW(230) |
1 i L 3

Using Subscripted SET Symbols: After the
programmer has associated a number of SET

variables with a SET symbol, he may assign
values to each of the variables and use
them in other statements.

If the statements in the previous exam-
ple were part of a macro-definition, {(and
tA was defined as a SETA symbol in the same
definition), the following statements could
be part of the same macro-definition.

L] T T 1
|Name |Operation |Operand |
- | : !
1 |éA | SETA |5 j
2 |&PSW(EA) |SETB {(6 LT 2) |
3 |&TSW(9) | SETB { (6PSW{EA)) |
4 | 1A |2,=F*ESBOX(45)" |
5 | |CLI | AREA,C* EWBOX (17)* |
L L L 3

Statement 1 assigns the arithmetic value
5 to the nonsubscripted SETA symbol &A.
Statements 2 and 3 then assign the binary
value 0 to subscripted SETB symbols &PSW (5)

and &TSW(9), respectively. Statements 4
and 5 generate statements that add the
value assigned to §SBOX(45) to general
register 2, and compare the value assigned
to EWBOX{17) to the value stored at AREA,
respectively.

SYSTEM VARIABLE SYMBOLS

System variable symbols are local variable
symbols that are assigned values automat-
ically by the assembler. There are three
system variable symbols: ESYSNDX, &SYSECT,
and &SYSLIST. System variable symbols may
be used in the name, operation and operand
entries of statements in macro-definitions,
but not in statements outside macro-
definitions. They may not be defined as
symbolic parameters or SET symbols, nor may
they be assigned values by SETA, SETB, and
SETC instructions.

§SYSNDX -- Macro-Instruction Index

The system variable symbol &§SYSNDX may be
combined with other characters to create
unique names for statements generated from
the same model statement.

§SYSNDX is assigned the four-digit
number 0001 for the first macro-instruction
processed by the assembler, and it is
incremented by one for each subsequent
inner and outer macro-instruction proc-
essed.

If £6SYSNDX is used in a model statement,
SETC or MNOTE instruction, or a character
relation in a SETB or AIF instruction, the
value substituted for &§SYSNDX is the four-
digit number of the macro-instruction being
processed, including leading zeros.

If ESYSNDX appears in arithmetic
expressions (e.g., in the operand of a SETA
instruction), the value used for &SYSNDX is
an arithmetic value.

Throughout one use of a macro defini-
tion, the value of E§SYSNDX may be consid-
ered a constant, independent of any inner

macro-instruction in that definition.

The example in the next column illus-
trates these rules. It is assumed that the
first macro-instruction processed, OUTER 1,
is the 106th macro-instruction processed by
the assembler.

Additional Features 91

Statement 7 is the 106th macro-
instruction processed. Therefore, §SYSNDX
is assigned the number 0106 for that macro-
instruction. The number 0106 is
substituted for &ESYSNDX when it is used in
statements 4 and 6. Statement 4 is used to
assign the character value 0106 to the SETC
symbol §NDXNUM. Statement 6 is used to
create the unique name B0106.

1] T v |
| Name |Operation |Operand |
1 i d
1§ ” 1 h)
| MACRO i |
| INNER1 | |
| 6BIC | § NDXNUM |
1 |AESYSNDX |SR 12,5 |
|CR 12,5 |
2] | BE | BENDXNUM |
3 B | A6SYSNDX |
MEND } |
| |
MACRO | }
| ENAME OUTER1 i }
GBIC | § NDXNUM }
4 | ENDXNUM | SETC | * §SYSNDX"* |
§NAME } SR 12,4 }
| AR 12,6]
5 | INNERL | i
6 | BESYSNDX s 12,=F*'1000°* i
} MEND | l
| . 1 3 4
T R) 1
7 |ALPHA | OUTER1) |
8 |BETA | OUTER1 | |
+ + |
|ALPHA | SR |2, 4 |
| | AR 12,6 |
jA0107 ISR 12,5]
| | CR 2,5 |
} | BE B0106 |
| |B A0107
|B0106 Is 2,=F'1000°*
| BETA | SR 2,14
|] AR 12,6
|a0109 | SR 2,5 |
| |CR 2,5 |
} | BE | BO108
| |B |A0109
{B0108 s |2,=F*1000°" }
L i i b
Statement 5 is the 107th macro-
instruction processed. Therefore, §SYSNDX

is assigned the number 0107 for that macro-
instruction. The number 0107 is
substituted for &€SYSNDX when it is used in
statements 1 and 3. The number 0106 is
substituted for the global SETC symbol
ENDXNUM in statement 2.

Statement 8 is the 108th macro-
instruction processed. Therefore,each
occurrence of §SYSNDX is replaced by the
number 0108. For example, statement 6 is
used to create the unique name B0108.

92

- 4§ is processed.

When statement S is used to process the
108th macro-instruction, statement 5
becomes the 109th macro-instruction proc-
essed. Therefore, each occurrence of
€SYSNDX is replaced by the number 0109.
For example, statement 1 is used to create
the unique name A0109.

§SYSECT -- Current Control Section

The system variable symbol §SYSECT may be
used to represent the name of the control
section in which a macro-instruction
appears. For each inner and outer macro-
instruction processed by the assembler,
ESYSECT is assigned a value that is the
name of the control section in which the
macro-instruction appears.

When §SYSECT is used in a macro-
definition, the value substituted for
E§SYSECT is the name of the last CSECT,
DSECT, or START statement that occurs
before the macro-instruction. If no named
CSECT, DSECT, or START statements occur
before a macro-instruction, &SYSECT is
assigned a null character value for that
macro-instruction.

CSECT or DSECT statements processed in a '
macro-definition affect the value for
E§SYSECT for any subsequent inner macro-
instructions in that definition, and for
any other outer and inner macro-
instructions.

Throughout the use of a macro-
definition, the value of ESYSECT may be
considered a constant, independent of any
CSECT or DSECT statements or inner macro-
instructions in that definition. §SYSECT
will take on the name of the last CSECT,
DSECT, or START statement regardless of
whether or not that statement is correct.

The next example illustrates these
rules.

Statement 8 is the last CSECT, DSECT, or
START statement processed before statement
9 is processed. Therefore, ESYSECT is
assigned the value MAINPROG for macro-
instruction OUTER1 in statement 9.

MAINPROG is substituted for &SYSECT when it
appears in statement 6.

Statement 3 is the last CSECT, DSECT, or
START statement processed before statement
Therefore, &SYSECT is
assigned the value CSOUT1 for macro-
instruction INNER in statement 4. CSOUT1
is substituted for §SYSECT when it appears
in statement 2,

Statement 1 is used to generate a CSECT
statement for statement 4. This is the
last CSECT, DSECT, or START statement that
appears before statement 5. Therefore,
§SYSECT is assigned the value INA for
macro~-instruction INNER in statement 5.
INA is substituted for &SYSECT when it
appears in statement 2.

¥ T T 1

| Name |Operation |Operand |

% 1. 4 J

] T 1 1

] |MACRO | |

| | INNER | SINCSECT |

1 | EINCSECT |CSECT] |
2| |pc |A (§SYSECT) |
| e {

| | MACRO | I

| |OUTER1 | |

3 |csouTi |CSECT | |
| IDS j100C |

4 | | INNER |INA |
5 | | INNER |INB |
6 | |pC |A(§SYSECT) |
I |
| | MACRO | |

I JOUTER2 | |

7 | |DC |A(ESYSECT) |
| e | ,'

1 T 1] 1

8 |MAINPROG |CSECT | |
| |DS j200C |

9 | |OUTERL | |
10 | |OUTER2 | |
§ t t i

| MMAINPROG | CSECT | |

| |DS |200C |

| csouT1 |CSECT |
o e |

S

I |pc |A(CSOUT1) |

| INB |CSECT | i

| |pc ja(INA)]

| ipc |A (MAINPROG) |

| |DC |A(INB) |

L i i P |

Statement 1 is used to generate a CSECT
statement for statement S. This is the
last CSECT, DSECT, or START statement that
appears before statement 10. Therefore,
¢SYSECT is assigned the value INB for
macro-instruction OUTER2 in statement 10.
INB is substituted for &SYSECT when it
appears in statement 7.

§SYSLIST -- Macro-Instruction Operand

The system variable symbol &SYSLIST pro-
vides the programmer with an alternative to
symbolic parameters for referring to macro-
instruction operands.

€SYSLIST and symbolic parameters may be
used in the same macro-definition.

§SYSLIST(n) may be used to refer to the
nth macro-instruction operand. In
addition, if the nth operand is a sublist,
then &SYSLIST{(n,m) may be used to refer to
the mth operand in the sublist, where n and
m may be any arithmetic expressions allowed
in the operand field of a SETA statement.

When n is equal to zero, a null operand
results. When n is from 1 to 100, the
value of the operand is given (providing an
operand exists corresponding to n). An
error results when n is greater than 100.

The type, length, scaling, integer, and
count attributes of &SYSLIST{(n) and
£§SYSLIST(n,m) and the number attributes of
ESYSLIST(n) and &§SYSLIST may be used in
conditional assembly instructions.
N*ESYSLIST may be used to refer to the
total number of operands in a macro-
instruction statement. N'ESYSLIST{(n) may
be used to refer to the number of operands
in a sublist. If the nth operand is
omitted, N' is zero; if the nth operand is
not a sublist, N' is one.

The following procedure is used to
evaluate N®'ESYSLIST:

1. A sublist is considered to be one
operand.

2. The number of operands equals one plus
the number of commas indicating the
end of an operand.

Note: §SYSLIST can be used to access
parameters without a corresponding symbolic
parameter appearing in the prototype.-

Attributes are discussed in Section 7
under Attributes.

KEYWORD MACRO~-DEFINITIONS AND INSTRUCTIONS

Keyword macro-definitions provide the pro-
grammer with an alternate way of preparing
macro-definitions.

A keyword macro-definition enables a
programmer to reduce the number of operands
in each macro-instruction that corresponds
to the definition, and to write the oper-
ands in any order.

The macro-instructions that correspond
to the macro-definitions described in Sec-
tion 7 (hereinafter called positional
macro—-instructions and positional macro—-
definitions, respectively) require the
operands to be written in the same order as
the corresponding symbolic parameters in

Additional Features 93

Form C24-3414-2,-3,-4
Page Revised 4/26/67
By TNL N26-0536

the operand entry of the prototype
statement.

In a keyword macro-definition, the pro-
grammer can assign values to any symbolic
parameters that appear in the operand of
the prototype statement. The value
assigned to a symbolic parameter is substi-
tuted for the symbolic parameter, if the
programmer does not write anything in the
operand of the macro-instruction to corres-
pond to the symbolic parameter.

When a keyword macro-instruction is
written, the programmer need only write one
operand for each symbolic parameter whose
value he wants to change.

Keyword macro~definitions are prepared
the same way as positional macro-
definitions, except that the prototype
statement is written differently, and
§SYSLIST may not be used in the definition.
The rules for preparing positional macro-
definitions are in Section 7.

Keyword Prototype

The typical form of this statement is:

L T T 1
| Name |Operation |Operand |
L i i {
r T T

|]A symbolic |A symbol |One to 100 |
| par ameter } |operands o? the |
Jor not used | |form described |
| { |below, separated|
[| |by commas |
i L H]

Each operand must consist of a symbolic
parameter, immediately followed by an equal
sign and optionally followed by a value.
Nested keywords are not permitted.

A value that is part of an operand must
immediately follow the equal sign.

Anything that may be used as an operand
in a macro-instruction except variable
symbols, may be used as a value in a
keyword prototype statement. The rules for
forming valid macro-instruction operands
are detailed in Section 8.

The following are valid keyword proto-
type operands.

§ READER=

§ LOOP2=SYMBOL
ESH==F*' 4096"*

94

L) 13 L
llA symbol, |Mnemonic | Zero to 100 operands

The following are invalid keyword proto-
type operands.

CARDAREA (no symbolic parameter)
§TYPE (no equal sign)
§TWO =123 (equal sign does not

immediately follow

symbolic parameter)
EAREA= X'189A' (value does

not immediately follow

equal sign)

The following keyword prototype state-
ment contains a symbolic parameter in the
name entry and four operand entries in the
operand. The first two operand entries
contain values. The mnemonic operation
code is MOVE.

r T Ll
|Name |Operation |Operand
L 1 4

R SRR

L] T T
| 6N | MOVE | R=2, §A=S, 6T=, §F=
L N L

Keyword Macro-Instruction

After a programmer has prepared a keyword
macro-definition he may use it by writing a
keyword macro-instruction.

The typical form of a keyword macro-
instruction is:

T
| Name

T T
| Operation|Operand
1] 4.

et e oad

|sequence |operation|of the form described
| symbol ,or | code | below, separated by

|not used | | commas
L i L

R ——

Each operand consists of a keyword
immediately followed by an equal sign and
an optional value. Nested keywords are not
permitted. Anything that may be used as an
operand in a positional macro-instruction
may be used as a value in a keyword macro-
instruction. The rules for forming valid
positional macro-instruction operands are
detailed in Section 8.

A keyword consists of one through seven
letters and digits, the first of which must
be a letter.

The keyword part of each keywoxrd macro-
instruction operand must correspond to one
of the symbolic parameters that appears in
the operand of the keyword prototype
statement. A keyword corresponds to a

symbolic parameter if the characters of the
keyword are identical to the characters of
the symbolic parameter that follow the
ampersand.

The following are valid keyword macro-
instruction operands.

LOOP 2=SYMBOL
S4==F' 4096
TO=

The following are invalid keyword macro-
instruction operands.
£EXU4F2=0(2,3) (keyword does not begin
with a letter)
{keyword is more than
seven characters)
=(T0(8), (FROM)) (no keyword)

CARDAREA=A+2

The operands in a keyword macro-
instruction may be written in any order.
If an operand appeared in a keyword
prototype statement, a corresponding oper-
and does not have to appear in the keyword
macro-instruction. If an operand is omit-
ted, the comma that would have separated it
from the next operand need not be written.

The following rules are used to replace
the symbolic parameters in the statements
of a keyword macro-definition.

1. If a symbolic parameter appears in the
name entry of the prototype statement,
and the name entry of the macro-
instruction contains a symbol, the
symbolic parameter is replaced by the
symbol. If the name entry of the
macro-instruction is unused or contains
a sequence symbol, the symbolic param-
eter is replaced by a null character
value.

2. 1If a symbolic parameter appears in the
operand of the prototype statement, and
the macro-instruction contains a key-
word that corresponds to the symbolic
parameter, ‘the value assigned to the
keyword replaces the symbolic paramet-
er.

3. If a symbolic parameter was assigned a
value by a prototype statement, and the
macro-instruction does not contain a
keyword that corresponds to the symbol-
ic parameter, the standard value
assigned to the symbolic parameter
replaces the symbolic parameter. oOth-
erwise, the symbolic parameter is
replaced by a null character value.

Note: If a symbolic parameter value is a
self-defining term the type attribute
assigned to the value is the letter N. If
a symbolic parameter value is omitted the
type attribute assigned to the value is the

letter O. All other values are assigned
the type attribute U,

The following keyword macro-definitionm,
keyword macro-instruction, and generated
statements illustrate these rules.

Statement 1 assigns the values 2 and S
to the symbolic parameters &R and €A, res-
pectively. Statement 6 assigns the values
FA, FB, and THERE to the keywords T, F, and
A, respectively. The symbol HERE is used
in the name entry of statement 6.

Since a symbolic parameter (§N) appears
in the name entry of the prototype state-
ment (statement 1), and the corresponding
characters (HERE) of the macro-instruction
(statement 6) are a symbol, &N is replaced
by HERE in statement 2.

T T T 1
| Name |Operation |Operand |
L 4 4 4
1] T T 1
| | MACRO | |
1 |&N | MOVE | 8R=2, §A=S, £T=, §F= |
2 |eN |ST | 6R, A |
3| |L | R, §F |
4 | |ST] 6R, 6T |
5 | |L | éR, €A |
| | MEND] |
e + '
6 |HERE |MOVE | T=FA,F=FB, A=THERE |
F + 1 4
|HERE |ST | 2, THERE |
| |L |2,FB |
] |sT |2,FA |
I IL |2, THERE |
L L L J

Since &T appears in the operand of
statement 1, and statement 6 contains the
keyword (T) that corresponds to &T, the
value assigned to T (FA) replaces &T in
statement 4. Similarly, FB and THERE
replace &éF and §A in statement 3 and in
statements 2 and 5, respectively. Note
that the value assigned to €A in statement
6 is used instead of the value assigned to
éA in statement 1.

Since &R appears in the operand of
statement 1, and statement 6 does not con-
tain a corresponding keyword, the value
assigned to &R (2), replaces &R in state-
ments 2, 3, 4, and 5.

Operand Sublists: The value assigned to a
keyword and the value assigned to a symbol-
ic parameter may be an operand sublist.
Anything that may be used as an operand
sublist in a positional macro-instruction
may be used as a value in a keyword macro-
instruction and as a value in a keyword
prototype statement. The rules for forming
valid operand sublists are detailed in
Section 8 under "Operand Sublists.®”

Additional Features 95

Form C24-3414-2, -3, -4
Page Revised 4/26/67
By TNL N26-0536

Keyword Inner Macro-Instructions: Keyword Mixed-Mode Macro-Instruction

and positional inner macro-instructions may

be used as model statements in either

keyword or positional macro-definitions. The typical form of a mixed-mode macro-
instruction is:

r T ¥ 1

| Name |operation|Operand]

k + + i

MIXED-MODE MACRO-DEFINITIONS AND |A symbol, |Mnemonic |Zero to 100 operands |
INSTRUCTIONS | sequence |operation|of the form described]
| symbol, or| code |below, separated by |

|not used | | commas |

|

J

Mixed-mode macro-definitions allow the | | |
programmer to use the features of keyword L L L
and positional macro-definitions in the

same macro-definition.

The operand consists of two parts. The
first part corresponds to the positional

Mixed-mode macro-definitions are pre- prototype operands. This part of the
pared the same way as positional macro- operand is written in the same way that the
definitions, except that the prototype operand entry of a positional macro-
statement is written differently, and instruction is written. The rules for
ESYSLIST may not be used in the definition. writing positjonal macro-instructions are
The rules for preparing positional macro- in Section 8.

definitions are in Section 7.

The second part of the operand
corresponds to the keyword prototype oper-
ands. This part of the operand is written
in the same way that the operand entry of a

Mixed-Mode Prototype keyword macro-instruction is written. The
rules for writing keyword macro-
instructions are described under Keyword

The typical form of this statement is: Macro-Instruction.

The following mixed-mode macro-
definition, mixed-mode macro-instruction,

[} T - k]
| Name |Ooperation |Operand | and generated statements illustrate these
b + + i facilities.
jA symbolic |A symbol |Two to 100 oper- | :
|parameter | |ands of the form |
jor not used] |described below, | r T+ T 1
| | | separated by | | Name |Operation|] Operand [
| I | commas I k t + i
t 1 1 3 | |MACRO | I
1 | &N | MOVE | &TY,EP,&R,ETO=,6F= |
| 8N |STeTY | &R,SAVE |
The operands must be valid operands of } | L&TY | &R,EPEF |
positional and keyword prototype | | STETY | &R,EPETO |
statements. All the positional operands | | LETY | &R,SAVE |
must precede the first keyword operand. b $ 4 4
The rules for forming positional operands 2 |HERE |MOVE | H,.2,F=FB,TO=FA |
are discussed in Section 7 under Macro- [$ -4 |
Instruction Prototype. The rules for | HERE |STH | 2,SAVE |
forming keyword operands are discussed | | LH | 2,FB |
under Keyword Prototype. | | STH | 2,FA |
| | LH | 2,SAVE |
L L i J

The following sample mixed-mode proto-
type statement contains three positional
operands and two keyword operands.

The prototype statement (statement 1)
contains three positional operands (&TY,é&P,
and éR) and two keyword operands (&§TO and

T R T 1

| Name |Operation|Operand | §F). In the macro-instruction (statement
b $ $ | 2) the positional operands are written in
| &N | MOVE | €TY, &P, ER, §TO=, §F= | the same order as the positional operands
L L i 4 in the prototype statement (the second

96

operand is omitted). The keyword operands
are written in an order that is different
from the order of keyword operands in the
prototype statement.

Mixed-mode inner macro-instructions may
be used as model statements in mixed-mode,
keyword, and positional macro-definitions.
Keyword and positional inner macro-
instructions may be used as model
statements in mixed-mode macro-definitions.

COND ITIONAL ASSEMBLY COMPATIBILITY

Macro-definitions prepared for use with the
other System/360 assemblers having macro
language facilities may be used with the

DOS/TOS Assembler provided that all SET
symbols are defined in an appropriate LCLB,
GBLA, GBLB, or GBLC statement. The AIFB
and AGOB instructions are processed by the
DOS/TOS Assembler the same way that the
AIF and AGO instructions are processed.
AIFB and AGOB instructions cause the count
set up by the ACTR instruction to be decre-
mented exactly like the AGO and AIF
instructions.

Additional Features 97

APPENDIX A: EXTENDED BINARY CODED DECIMAL INTERCHANGE CODE {EBCDIC)

The following charts and the associated key
show the bit configurations of the 256
possible codes (characters) of the Extended
BCD Interchange Code. To write a given
character in binary, locate the character
on the chart. The top row of coordinates
equates to bit positions 0 and 1, the sec-
ond row to bit positions 2 and 3, and the
left row of coordinates equates to bit
positions 4, 5, 6 and 7.

Examples:

Character A equals:
top row ~ 11 (bit positions 0, 1)
2nd row - 00 (bit positions 2, 3)

left row - 0001 (bit positions 4, 5, 6
and 7)

Therefore, character A is shown as: 1100

0001.

Character $ equals:
top row - 01 (bit positions 0, 1)
2nd row - 01 (bit positions 2, 3)

left row - 1011 (bit positions 4,
and 7)

98

Therefore,
0101 1011.

character $§ is shown as:

The coordinates on the bottom of the
chart are the three zone punches required
to reproduce the character in a punched
card; the coordinates on the right side
represent the numeric punches.

Examples:

Character A = bottom row - 12 punch
right row - 1 punch

Therefore, Character A is shown by a 12
and a 1 punch in the same card column.

Character $ = bottom row - 11 punch
right row - 8 and 3 punches

Therefore, Character § is shown by 11,
8, and 3 punches in the same card column.

There are fifteen exceptions to the
punching equated to bit positions. These
exceptions are shown in the chart by cir-
cled numbers 1 through 15, and the substi-
tuted punching is shown below the chart

under Exceptions.

O

Bit Positions 4, 5, 6, 7

A

Bit Positions 4, 5, 6, 7

SM ¢!®:
$ | | #

K| *s|%|@

Yyl - |

+ > =

| 2"

12-0-9-8-1
12-11-9-8-1
11-0-9-8-1
12-11-0-9-8-1

®
®
®
®

Extended Binary Coded Decimal Interchange Code (Part 1 of 2)

Zone Punches

@

No Punches

Bit Positions
0,1

Bit Positions
2,3

Digit Punches

Bit Positions 4, 5, 6, 7

Bit Positions
0,1

Bit Positions

9) (o) (1)f (2) ;
0
. 14

a | A) O 1

b | k|s B |K|s |2
c |11t cle!lt]s 2
S
d mi| u D MU 4 S
.
e | n|v E|N|V|S o
(=)

f o w F O| W, 6

9 |p| x G|P| x| 7

hiajy H Q|Y]|s

ilr|z 11 R|Z|9

Bit Positions
0,1

Bit Positions
2,3

A

Digit Punches
Bit Positions 4, 5, 6, 7

® 1270
11-0
@) o-s-2

@2 o

'4——— Zone Punches —-"

Bit Positions
0,1

Bit Positions

Dlgut;unches

|‘———' ne Punches

@ o
11-0-9-1
@ 12-n

Appendix A

99

Control Characters

PF Punch Off

BS Backspace

PN Punch On

HT Horizontal Tab IL Idle RS Reader Stop
LC Lower Case BY Bypass UC Upper Case
DL Delete LF Line Feed ET End of Transmission
RE Restore EB End of Block SM Set Mode
NL New Lline PR Prefix SP Space
DS Digit Select SOS Start of Significance FS Field Separator
Special Graphic Characters
N
¢ Cent Sign * Asterisk > Greater-than Sign
* Period, Decimal Point)} Right Parenthesis ? Question Mark
& Less-than Sign ; Semicolon : Colon
(Left Parenthesis — Logical NOT # Number Sign
+ Plus Sign = Minus Sign, Hyphen @ At Sign
| Vertical Bar, Logical OR / Slash + Prime, Apostrophe
& Ampersand + Comma = Equal Sign
1 Exclamation Point % Percent " Quotation Mark
$ Dollar Sign _ Underscore
Bit Pattern Hole Pattern
Examples Type Bit Positions
01 23 4567 Zone Punches Digit Punches
PF Control Character 00 00 0100 12-9-4
% Special Graphic 01 10 1100 0 7 8-4
R Upper Case 11 01 1001 11-9
a Lower Case 10 00 0001 12-0 -1
Control Character, 00 11 0000 12-11-0 4%8-1
function not yet I
assigned |

Extended Binary Coded Decimal Interchange Code (Part 2 of 2)

100

APPENDIX B: HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

The table in this appendix provides for
direct conversion of decimal and hexadeci-
mal mumbers in these ranges:

Hexadecimal Decimal

¥
|
k
| 000 to FFF

T
]
+
| 0000 to 4095
i

bt s cnlies e

L

Decimal numbers (0000-4095) are given with-
in the S-part table. The first two charac-
ters (high-order) of hexadecimal numbers
(000-FFF) are given in the lefthand column
of the table; the third character (x) is
arranged across the top of each part of the
table.

To find the decimal equivalent of the
hexadecimal number 0C9, look for 0C in the
left column, and across that row under the
column for x = 9. The decimal number is
0201.

To convert from decimal to hexadecimal,
look up the decimal number within the table
and read the hexadecimal number by a combi-
nation of the hex characters in the left
column, and the value for x at the top of
the column containing the decimal number.

For example, the decimal number 123 has the
hexadecimal equivalent of 07B; the decimal
number 1478 has the hexadecimal equivalent
of 5Cé6.

For numbers outside the range of the
table, add the following values to the
table

¥ R3 1
| Hexadecimal | Decimal |
L il 3
1 T a
i 1000] 4096 |
2000	8192
3000	12288
4000	16384
5000	20480
6000	24576
7000	28672
8000 i 32768]	
9000	36864
A000 { 40960	
B00O	45056
c000	49152
D000 i 53248	
] E0O0O	57344
F000	61440
L 1]

Appendix B 101

0 1 2 3 4 5 6 7 8 9 A B c D E F
00x 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
01x 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02x 0032 0033 0034 0035 0036 0037 0038 0039 0040 o041 0042 0043 0044 004S 0046 0047
03x oous 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
04x 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
05x 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
06x 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 01N
07x 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
08x 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09x 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAx 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0Bx 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
0Cx 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0Dx 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEx 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFx 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255
10x 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
11x 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12x 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13x 0304 0305 0306 0307 0308 0309 0310 0311 0512 0313 0314 0315 0316 0317 0318 0319
1ux 0320 0321 0322 0323 0328 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15x 0336 0337 0338 0339 0340 0381 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16x 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17x 0368 0369 0370 037 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
18x 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
19x 0400 0401 0402 0403 o404 0405 ouoe 0407 0408 0409 0410 ou11 o412 0413 Q414 0415
1Ax 0416 0417 0418 041° 0420 0421 0422 0423 0424 0425 0426 0427 0428 G429 0430 o431
1Bx 0432 0433 0434 0435 0436 0437 0438 0439 0440 o4yt 0442 o043 o4uy o445 ouue o447
1Cx ouus 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1Dx ouel 0465 0466 0467 oues 0469 0470 0471 472 0473 o474 0475 0476 0477 0478 0479
1Ex 0480 0481 o482 0483 ousy 0485 Ousé6 0u87 o488 0489 0490 0491 0492 0493 0494 0495
1Fx 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
20x 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21x 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22x 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23x 0560 0561 0562 5563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
28x 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 059
25x 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26x 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27x 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28x 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29x 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2Ax 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2Bx 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2Cx 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2Dx 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2Ex 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2Fx 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
30x 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31x 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32x 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33x 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34x 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 08uy 0845 0846 0847
35x 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36x 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37x 0880 0881 0882 0883 o088u 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38x 0896 0897 0898 0899 0900 0901 0902 0903 904 0905 0906 0907 0908 0909 0910 09N
39x 0912 0913 0914 0915 0916 0917 0918 0919 1920 0921 0922 0923 0924 0925 0926 0927
3Aax 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3Bx 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3Cx 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3Dx 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3Ex 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3Fx 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

102

0 1 2 3 4 5 6 7 8 9 A B c D E F
“80x 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41x 1040 1041 1042 1043 1084 1085 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42x 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43x 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44x 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45x 1104 1105 1106 1107 1108 1109 1110 111 1112 1113 1114 1115 1116 117 1118 1119
46x 1120 121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47x 1136 1137 1138 1139 1180 1141 1142 1143 1148 1145 1146 1147 1148 1149 1150 1151
48x 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49x 1168 1169 170 1mn 1172 1173 1174 1175 1176 1177 1178 179 1180 1181 1182 1183
8Ax 1184 1185 1186 187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4Bx 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 21 1212 1213 1214 1215
4Cx 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4Dx 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4Ex 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4Px 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
50x 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51x 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52x 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53x 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 138 1342 1343
S4x 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 |
$5x 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 13N 1372 1373 1374 1375
S56x 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57x 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58x 1408 1409 1410 1\ 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59x 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SAx 1440 1441 1442 1443 1444 1445 46 1447 1448 1449 1450 1451 1452 1453 1454 1455
SBx 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 wn
5Cx 1872 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5Dx 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
SEx 15084 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
SFx 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
60x 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61x 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62x 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63x 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64x 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65x 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66x 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67x 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68x 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69x 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AX 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 171
6Bx 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6Cx 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6Dx 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6Ex 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1M 1772 1773 1774 1775
6Fx 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
70x 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71x 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72x 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73x 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
T4x 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75x 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76x 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
T7x 1904 1905 1906 1907 1908 1909 1910 191 1912 1913 1914 1915 1916 1917 1918 1919
78x 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79x 1936 1937 1938 1939 1940 1941 1942 1943 1344 1945 1946 1947 1948 1949 1950 1951
TAx 1952 1953 1954 1955 1956 1957 1958 1952 1960 1961 1962 1963 1964 1965 1966 1967
7Bx 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7Cx 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7Dx 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 201 2012 2013 2014 2015
TEx 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7Fx 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 20482 2043 2044 2085 2046 2047

Appendix

103

9 1 2 3 4 5 6 7 8 9 A B C D E F
80x 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81x 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82x 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
33x 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 211
84x 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85x 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86x 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87x 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 217N 2172 2173 2174 2175
88x 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89x 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2296 2207
8Ax 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8Bx 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8Cx 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8Dx 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 22N
8Ex 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8Fx 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
90x 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91x 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92x 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93x 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94x 2368 2369 2370 2371 2372 2373 2374 2375 2376 23717 2378 2379 2380 2381 2382 2383
95x 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96x 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97x 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2u31
98x 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2u45 2446 2447
99x 2448 2449 2450 2451 2052 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9Ax 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9Bx 2480 2u81 2482 24383 2484 2485 2486 2487 2488 2u89 2490 2491 2492 2493 2494 2495
9Cx 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 251
9Dx 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9Ex 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9Fx 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
AO0x 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Alx 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2x 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3x 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
Alx 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
AS5x 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6x 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7x 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8x 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 27¢0 2701 2702 2703
A9x 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2718 2715 2716 2717 2718 2719
AAx 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABx 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACx 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 276t 2765 2766 2767
ADx 2768 2769 2770 277 2772 2773 27174 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEx 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFx 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
BOx 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bix 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2x 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3x 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
Bix 2880 2881 2882 2883 2884 z885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
BSx 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6x 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7x 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8x 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9x 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2978 2975
BAx 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBx 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCx 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDx 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEx 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFx 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

104

0 1 2 3 4 s 6 7 8 9 a B c D E F
COx 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 suoo 3086 3087
Cix 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
c2x 3106 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3x 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
c4x 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
CSx 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
céx 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7x 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
c8x 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9x 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAx 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBx 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CcCx 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDx 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEx 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 331
CFx 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
DOx 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
DIx 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2x 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3x 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
Dlx 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5x 3508 3409 3410 3411 3612 3413 3414 3815 3416 3417 3418 3419 3420 3421 3422 3423
Déx 3824 3425 3426 3827 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7x 3440 3641 34482 3443 3444 3445 3046 3647 3448 3449 3450 3451 3852 3453 3454 3455
p8x 3456 3857 3458 3459 3460 3461 3862 3463 3u64 3465 3466 3467 3468 3469 3470 3471
D9x 3472 3473 3474 3475 3476 3477 3478 3879 3480 3481 3482 3483 3484 3485 3486 3487
DAX 3488 3489 34890 3891 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBx 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DCx 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDx 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEx 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFx 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
EOx 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
Elx 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2x 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3x 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
Eux 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
ES5x 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6x 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7x 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8x 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9x 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAx 37648 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBx 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECx 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDx 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEX 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 38§23
EFx 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOx 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3352 3853 3854 3855
Fix 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2x 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3x 3888 3889 3890 3891 3892 3893 3894 3895 3896 3597 3898 3899 3900 3901 3902 3903
Flix 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
PSx 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
Fé6x 3936 3937 3938 3939 3940 3981 3942 3943 3944 3945 3946 3347 3948 3949 3950 3951
F7x 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8x 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9x 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAX 4000 4001 4002 4003 40048 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBx 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FCx 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 LO44 W4O4S 4O46 4047
FDx 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEx 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FPx 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
Appendix B 105

APPENDIX C: MACHINE-INSTRUCTION FORMAT

3 E 2 T 1
| | ASSEMBLER OPERAND | |
BASIC MACHINE FORMAT } FIELD FORMAT | APPLICABLE INSTRUCTIONS |
! 1 i b)
[) T 1] T 3
| | |] |
P11 8 a s | |
| | |operation] | | R1,R2 |21l RR instructions |
|) | code [R1}|R2} i |except SPM and SVC |
[o] | | |
I 1 or 71— B | |
R LN | ;
|RR}] |Operation] | | R1 | SPM |
} } |l Code]lR].]L ‘I ‘ { =
1 | r T 1 | | |
I 11 8 | 8 | |] |
| | |operation] | | | |
[Code | I | | 1 |svc i
] | ¢ L 3 | (See Notes 1, 6, 8, and 9) |
-+ + + i
| 1 | | |
I 11 8 (& {8 |s J12] | R1,D2(X2,B2) 1 1
|RX|] |Operation] | | | | | R1,D2(,B2) |all RX instructions |
1 11 Code |R1}X2|B2]|D2}| } R1,82(x2) 1]
O e e SIS } (See notes 1-4%, 7, and 9)| ~ |
b+ }- 4 :
‘ | k) k] k3 v k] k] ' ' I
[| 8 |8 |8 |8 J12] | | |
} | {operation] | | | | | R1,R3,D2(B2) | BXH, BX1LE, LM, STM |
| [Code |R1|R3|B2|D2} { R1,R3,S2 } |
‘ l i 1 1 lk 1.1 ’ l l
|RS | | |
l T v T k] k) k]] ' l
| | 8 ¢ 1 |4 |12} | | |
| |operation| | | | | | R1,D2(B2) |21l shift instructions |
1 11 Code |R1] |[B2|D2] | R1,82 |]
] 1t T s N |] (See Notes 1-3,7, and 8) | |
-+ + + i
| | | |
| | 8 | 8 |& |12] I |All SI instructions i
| | Operation| L | | D1{(B1),1I2 |except LPSW,SSM, 1
| i Code | 1I2 |B1|D1} | s1,12 | H10,S810,TIO,TCH, TS]
' l L | & Leind J l ' ‘
Ist | | |
] r T =711 1] |
| | 8 | 14 112} | | |
| | Operation| | | 1 | D1(B1l) | LPSW, SSM,HIO,SIO, |
11 Code | |B1|D1}] s1 |T10,TCH,TS i
| ¢ i | I S | (See Notes 2, 3, and 6-8)| i
i i R 1 1 5 |
[] 1 § 2 3 T 1
| | |]
| 8 & |u (e [12]4 [12] | | |
} joperation} | | {t |} { | | pifi1,B1),D2(L2,B2) | PACK, UNPK, MVO, AP, |
1 1 Code |L1}jLr2|B1{D1}B2{D2] | S1(1L1),S52(L2) |cp,DP,MP, SP, ZAP
' l t 1 i | Gy 1. } RS | : ||
SS
¥ v T R} k2 T k] ' l
| 8 | 8 |& 124 |12} |]
| Operation] | i 1] | | p1(L,B1),D2(B2) jNC,0C,XC,CLC, MVC, MVN,
| | Code | L |B1}D1]B2|{D2| | Si{1L),S2 | MVZ, TR, TRT, ED, EDMK
I 1 be—d-i__1__.3 | (See Notes 2,3,5, and 7) |
L IR L

L

106

Notes for Appendix C :

1.

R1, R2, and R3 are absolute expressions that specify general or floating-point reg-
isters. The general register numbers are 0 through 15; floating-point register num-
bers are 0, 2, 4, and 6.

D1 and D2 are absolute expressions that specify displacements. A value of 0 - %095
may be specified.

Bl and B2 are absolute expressions that specify base registers. Register numbers are
0—150

X2 is an absolute expression that specifies an index register. Register numbers are
0 - 15.

L, L1, and L2 are absolute expressions that specify field lengths. An L expression
can specify a value of 1 - 256. Ll and L2 expressions can specify a value of 1 - 16.
In all cases, the assembled value will be one less than the specified value.

I and I2 are absolute expressions that provide immediate data. The value of the
expression may be 0 - 255,

S1 and S2 are absolute or relocatable expressions that specify an address.

RR, RS, and SI instruction fields that are blank under BASIC MACHINE FORMAT are not
examined during instruction execution. The fields are not written in the symbolic
operand, but are assembled as binary zeros.

R1 specifies a 4-bit mask in the BC and BCR machine instructions.

Appendix C 107

APPENDIX D: MACHINE-INSTRUCTION MNEMONIC OPERATION CODES

This appendix contains a table of the mnemonic operation codes for
all machine instructions that can be represented in assembler
language, including extended mnemonic operation codes. It is in
alphabetic order by instruction. Indicated for each instruction are
both the mnemonic and machine operation codes, explicit and
implicit operand formats, program interruptions possible, and condition
code set.

The column headings in this appendix and the information each
column provides follow.

Instruction: This column contains the name of the instruction
associated with the mnemonic operation code.

Mnemonic Operation Code: This column gives the mnemonic
operation code for the machine instruction. This is written in the
operation field when coding the instruction.

Machine Operation Code: This column contains the hexadecimal
equivalent of the actual machine operation code. The operation code
will appear in this form in most storage dumps and when displayed on
the system control panel. For extended mnemonics, this column also
contains the mnemonic code of the instruction from which the extended
mnemonic is derived.

108

Operand Format: This column shows the symbolic format of the
operand field in both explicit and implicit form. For both forms,
R1, R2, and R3 indicate general registers in operands one, two, and
three respectively. X2 indicates a general register used as an index
register in the second operand. Instructions which require an index
register (X2) but are not to be indexed are shown with a 0 replacing
X2. L, L1, and L2 indicate lengths for either operand, operand one,
and operand two respectively .

For the explicit format, D1 and D2 indicate a displacement and
B1 and B2 indicate a base register for operands one and two.

For the implicit format, D1,B1 and D2,B2 are replaced by S1
and S2 which indicate a storage address in operands one and two.

Type of Instruction: This column gives the basic machine format of
the instruction (RR, RX, SI, or SS). If an instruction is included

in a special feature or is an extended mnemonic, this is also indicated.

Program Interruptions Possible: This column indicates the possible
program interruptions for this instruction. The abbreviations used are:
A - Addressing, S - Specification, Ov - Overflow, P - Protection,
Op - Operation (if feature is not installed) and Other - other
interruptions which are listed. The type of overflow is indicated by:
D - Decimal, E - Exponent, or F- Floating Point.

Condition Code Set: The condition codes set as a result of this
instruction are indicated in this column. (See legend following
the table).

Appendix D 109

. Mnemonic | Machine
Instruction Operation | Operation Operand Format
Code Code Explicit Implicit
Add A 5A R1,D2(X2,82) or R1, D2(,B2) | R1,S2(X2)or R1,S2
Add AR 1A R1,R2
Add Decimal AP FA DI(L1,B1), D2(L2, B2) S1(L1), S2(L2)or S1,S2
Add Halfword AH 4A R1,D2(X2,B2)or R1, D2(,B2) R1,S52(X2)or R1, 52
Add Logical AL 5 R1,D2(X2, B2)or R1, D2(,B2) R1,S2(X2)or R1,S2
Add Logical ALR 1E R1,R2
Add Normalized, Long AD 6A R1,D2(X2, B2)or R1, D2(, B2) R1,S2(X2)or R1, 52
Add Normalized, Long ADR 2A R1,R2
Add Normalized, Short AE 7A R1, D2(X2, B2)or R1, D2(,B2) R1,S2(X2)or R1, S2
Add Normalized, Short AER 3A R1,R2
Add Unnormalized, Long AW 6E R1,D2(X2,B2)or R1, D2(,B2) R1,S2(X2)or R1,S2
Add Unnormalized, Long AWR 2E R1,R2
Add Unnormalized, Short AU 7E R1,D2(X2, B2)or R1, D2(,B2) R1,52(X2)or R1, S2
Add Unnormalized, Short AUR 3E R1,R2
And Logical N 54 R1, D2(X2, B2)or R1, D2(,B2) R1,S2(X2)or R1,52
And Logical NC D4 DI1(L,B1),D2(B2) S1(L),S2 or S1,S2
And Logical NR 14 R1,R2
And Logical Immediate NI 94 D1(81),12 S1,12
Branch and Link BAL 45 R1,D2(X2,B2)or R1, D2(, B2) R1,S2(X2)or R1, 52
Branch and Link BALR 05 R1,R2
Branch on Condition BC 47 R1,D2(X2,B2)or R1, D2(,B2) R1,52(X2)or R1,S2
Branch on Condition BCR 07 R1,R2
Branch on Count BCT 46 R1,D2(X2, B2)or R1, D2(,B2) R1,52(X2)or R1,S2
Branch on Count BCTR 06 R1,R2
Branch on Equal BE 47(BC 8) |D2(X2, B2)or D2(, B2) S2(X2) or S2
Branch on High BH 47(BC 2) |D2(X2, B2)or D2(, B2) S$2(X2) or S2
Branch on Index High BXH 86 R1,R3, D2(B2) R1,R3,52
Branch on Index Low or Equal BXLE 87 R1,R3, D2(B2) R1,R3,S2
Branch on Low BL 47(BC 4) |D2(X2, B2)or D2(, B2) S2(X2) or S2
Branch if Mixed BM 47(BC 4) |D2(X2, B2)or D2(,B2) S$2(X2) or S2
Branch on Minus BM 47(BC 4) |D2(X2, B2)or D2(, B2) S2(X2) or S2
Branch on Not Equal BNE 47(BC 7) |D2(X2, B2)or D2(,82) S2(X2) or S2
Branch on Not High BNH 47(BC 13)|D2(X2, B2)or D2(, B2) S2(X2) or 2
Branch on Not Low BNL 47(BC 11)|D2(X2, B2)or D2(,B2) S2(X2) or S2
Branch on Not Minus BNM 47(BC 11)|D2(X2, B2)or D2(, B2) S2(X2) or S2
Branch on Not Ones BNO 47(BC 14)|D2(X2, B2)or D2(, B2) S2(X2) or S2
Branch on Not Plus BNP 47(BC 13)|D2(X2, B2)or D2(, B2) S2(X2 or S2
Branch on Not Zeros BNZ 47(BC 7)|D2(X2, B2)or D2(, B2) S2(X2) or S2
Branch if Ones BO 47(BC 1) |D2(X2, B2)or D2(, B2) S2(X2) or S2
Branch on Overflow BO 47(BC 1) |D2(X2, B2)or D2(,B2) S2(X2) or S2
Branch on Plus BP 47(BC 2) |D2(X2, B2)or D2(, B2) S2(X2) orS2
Branch if Zeros BZ 47(BC 8) |D2(X2, B2)or D2(,B2) S2(X2) or S2
Branch on Zero BZ 47(BC 8) [D2(X2, B2)or D2(, B2) S2(X2) or 82
Branch Unconditional B 47(BC 15)|D2(X2, B2)or D2(, B2) S2(X2) or 2
Branch Unconditional BR 07(BCR 15§R2
Compare Algebraic C 59 R1,D2(X2, B2)or R1, D2(,B2) R1,S2(X2 or RI,S2
Compare Algebraic CR 19 R1,R2
Compare Decimal cp F9. D1(L1,B1), D2(L2, B2) S1(L1), S2(L2)or S1,S2
Compare Halfword CH 49 R1, D2(X2,B2)or R1, D2(, B2) R1,52(X2)or R1,S2
Compare Logical CL 55 R1,D2(X2,B2)or R1, D2(,B2) R1, S2(X2)or R1, 52
Compare Logical CLC D5 D1(L, B1), D2(B2) S1(L), S2 or S1,52
Compare Logical CLR 15 R1,R2
Compare Logical Immediate CLl 95 D1(B1),12 S1,12
Compare, Long cb 69 R1,D2(X2, B2)or R1, D2(,B2) R1,52(X2)or R1, 52
Compare, Long CDR 29 R1,R2
Compare, Short CE 79 R1,D2(X2,B2)or R1, D2(, B2) R1, $2(X2)or R1, 52
Compare, Short CER 39 R1,R2
Convert to Binary Cvs 4F R1, D2(X2, B2)or R1, D2(, B2) R1,52(X2)or RY, 52
Convert to Decimal CcvD 4E R1,D2(X2, B2)or R1, D2(, B2) R1,S2(X2)or R1,$2

Operand Format (Add)

110

Program Interruption

Instruction Type ?f Possible Condition Code Set
Instruction BTSTOVP [Op [Other] 00 o1 10 m

Add RX x | x| F Sum=0 Sum<0 Sum>0 Overflow
Add RR F Sum=0 Sum<0 Sum>0 Overflow
Add Decimal SS, Decimal x Dix | x| Data {Sum=0 Sum<0 Sum>0 Overflow
Add Halfword RX x | x| F Sum=0 Sum <0 Sum >0 Overflow
Add Logical RX x | x sum=0@{ Sum O0@| Sum=0®| swm o@D
Add Logical RR Sum=0@| Sum=0@] Sum=0D| sum 0Q
Add Normalized, Long RX,Floating Pt. |x |x]| E x| 8C IR L M P

Add Normalized, Long RR, Floating Pt. x| E x| B,C |R L M P

Add Normalized, Short RX,Floating Pt. |x |x]E x| B,C |R L M P

Add Normalized, Short RR,Floating Pt. x| E x| 8,C |R L M P

Add Unnormalized, Long 1RX,Floating Pt. |x|x]|E x| C R L M P

Add Unnormalized, Long RR,Floating Pt. x| E x| C R L M P

Add Unnormalized, Short RX,Floating Pt. |x [x]E x| C R L M P

Add Unnormalized, Short RR, Floating Pt. x| € x| C R L M P

Add Logical RX x | x J K

And Logical SS x x J K

And Logical. RR J K

And Logical Immediate Sl x x J K
" Branch and Link RX N N N N

Branch and Link RR N N N N

Branch on Condition RX N N N N

Branch on Condition RR N N N N

Branch on Count RX N N N N

Branch on Count RR N N N N

Branch on Equal RX, Ext.Mnemonic N N N N

Branch on High RX, Ext. Mnemonic| N N N N

Branch on Index High RX, Ext.Mnemonic| N N N N

Branch on Index Low or Equal | RX, Ext.Mnemonic| N N N N

Branch on Low RX, Ext Mnemonic N N N N

Branch if Mixed RX, Ext.Mnemonic| N N N N

Branch on Minus RX, Ext.Mnemonic N N N N

Branch on Not Equal RX, Ext.Mnemonic| N N N N

Branch on Not High RX, Ext.Mnemonic] N N N N

Branch on Not Low RX, Ext. Mnemonic N N N N

Branch on Not Minus RX, Ext .Mnemoni¢] N N N N

Branch on Not Ones RX, Ext. Mnemoni¢] N N N N

Branch on Not Plus RX, Ext. Mnemonic] N N N N

Branch on Not Zeros RX, Ext. Mnemonid] N N N N -

Branch if Ones RX, Ext. Mnemonic N N N N

Branch on Overflow RX, Ext.Mnemonid N N N N

Branch on Plus RX, Ext.Mnemonic N N N N

Branch if Zeros RX Ext. Mnemonic N N N N

Branch on Zero RX, Ext.Mnemonig N N N N

Branch Unconditional RX, Ext.Mnemonid N N N N

Branch Unconditional RR, Ext. Mnemonic N N N N

Compare Algebraic RX x| x z AA BB

Compare Algebraic RR z AA BB

Compare Decimal SS, Decimal X x| Data]Z AA BB

Compare Halfword RX x| x z AA BB

Compare Logical RX x| x 4 AA BB

Compare Logical SS x| x z AA BB

Compare Logical RR x z AA 88

Compare Logical Immediate | Si x z AA B8

Compare, Long RX,Floating Pt. | x| x x z AA BB

Compare, Long RR,Floating Pt. | x| x x zZ AA BB

Compare, Short RX,Floating Pt. | x| x x z AA BB

Compare, Short RR,Floating Pt. x| x V4 AA BB

Convert to Binary RX x| x Data, F| N N N N

Convert to Decimal RX x| x| x N N N N

Condition Code Set (Adqd)

Appendix D

111

Mnemonic

Instruction Operation | Operation Operand Format
Code Code Explicit Implicit

Divide D 5D R1,D2(X2,82) or R1,D2(,B2) | R1, S2(X2) orR1,S2
Divide DR 1D R1,R2
Divide Decimal DP FD D1,(L1,B1),D2(L2,82) S1(L1), S2(L2)or S1,S2
Divide, Long DD 6D R1,D2(X2,B2),0or R1,D2(,B2) | R1,S2(X2) orR1,S2
Divide, Long DDR 2D R1,R2
Divide, Short DE 7D R1,D2(X2, B2)or R1,D2(,B2) R1,52(X2) orR1,52
Divide, Short DER 3D R1,R2
Edit . ED DE 1D1(L, B1), D2(82) S1(L), S2 or S1,52
Edit and Mark EDMK DF DI{L, B1), D2(B2) S1(L), S2 or S1,52
Exclusive Or X 57 IR1,D2(X2, 82) or R1,D2(,B2) | R1,52(X2) or R1,52-
Exclusive Or XC D7 D1(L,B81), D2(82) SI(L), S2 or 51,52
Exclusive Or XR 17 R1,R2
Exclusive Or Immediate X1 97 Di1(B1),12 $1,12
Execute EX 44 |R1,D2(X2,B2) or R1, D2(,B2) | R1,S2(X2) R1,S2
Halve, Long HDR 24 R1,R2
Halve, Short HER 34 R1,R2
Halt 1/0 HIO 9€ uDI(BI)
Insert Character IC 43 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orR1,S2
Insert Storage Key I1SK 09 R1,R2
Load L 58 RY,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orR1,S2
Load LR 18 R1,R2
Load Address LA 4] R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orR1,S52
Load and Test LTR 12 R1,R2
Load and Test, Long LTDR 22 R1,R2
Load and Test, Short LTER 32 R1,R2
Load Complement LCR 13 R1,R2
Load Complement, Long LCDR 23 R1,R2
Load Complement, Short LCER 33 R1,R2
Load Halfword LH 48 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI1,S2
Load, Long LD 68 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI,S2
Load, Long LDR 28 R1,R2
Load Multiple LM 98 R1,R3,D2(B2) R1,R3,S2
Load Negative LNR 11 R1,R2
Load Negative, Long LNDR 21 R1,R2
Load Negative, Short LNER 31 R1,R2
Load Positive LPR 10 R1,R2
Load Positive, Long LPDR 20 R1,R2
Load Positive, Short LPER 30 R1,R2
Load PSW LPSW 82 D1(81)
Load, Short LE 78 R1,D2(X2,B2) or R1,D2(,B2) R1,52(X2) orRI1,S2
Load, Short LER. 38 R1,R2
Move Characters MVC D2 DI1(L, B1), D2(B2) S1(L),S2- or §1,52
Move Immediate MVI 92 D1(B1), 12 S1,12
Move Numerics MVN D1 DI(L,B1),D2(B2) S1(L), S2 or 1,52
Move with Offset MVO F1 DI(L1,B1),D2(L2,B2) S1(L1), S2(L2)or S1,52
Move Zones MvVZ D3 D1(L,B1), D2(B2) S1(L), S2 or 1,52
Multiply M 5C R1,D2(X2, B2)or R1, D2(,B2) R1,52(X2) orR1,S2
Multiply MR 1C R1,R2
Multiply Decimal MP FC DI(L1,B1),D2(L2,B2) S1(LY), S2(L2) or S1,52
Mulitply Halfword MH 4C R1,D2(X2.B2) or R1,D2(,B2) | R1,S2(X2) orR1,52
Multiply, Long MD 6C R1,D2(X2,B82) or R1,D2(,B2) R1, S2(X2) or R1,52
Multiply, Long MDR 2C R1,R2
Multiply, Short ME 7C R1,D2(X2,82) or R1,D2(,B2) | R1,S2(X2) orR1,S2
Multiply, Short MER 3C R1,R2
No Operation NOP 47(BC 0)|D2(X2, B2) or D2(,B2) $2(X2) or $2

Operand Format (Divide)

112

Program [nterruptions

Instruction i nsIryu‘:iz: | Possible Condition Code Set
S OV P |Op| Other 00 01 10 1
Divide RX x| x F N N N N
Divide RR x F N N N N
Divide Decimal SS, Decimal x| x x| x| D,Data| N N N N
Divide, Long RX,Floating Pt. { x| x|E x| B,E N N N N
Divide, Long RR, Floating Pt. | x|E x| B,E N N N N
Divide, Short RX, Floating Pt. { x| x {E x| B,E N N N N
Divide, Short RR, Floating Pt. x|E x| B,E N N N N
| Edit ' SS, Decimal x x| x| Data S T U
1 Edit and Mark S§S, Decimal x x| x| Data S T U
Exclusive Or RX x| x - J K
Exclusive Or SS x x | J K
Exclusive Or v RR J K
Exclusive. Or Immediate St x x J K
Execute RX x| x G (May be set by this instruction)
Halve, Long RR, Floating Pt. x x N N N N
Halve, Short RR, Floating Pt. x x N N N N
Halt 1/O Si A DD cC GG KK
Insert Character RX x N N N N
Insert Storage Key RR x| x x| A N N N N
Load RX x| x N N N N
Load RR N N N N
Load Address RX N N- N N
Load and Test RR J L M
Load and Test, Long RR, Floating Pt. x x R L M
Load and Test, Short RR, Floating Pt. x x R L M
Load Complement RR F P L M o
Load Complement, Long RR, Floating Pt. x x R L M
Load Complement, Short RR, Floating Pt. x x R L M
Load Halfword RX x {x N N N N
Load, Long RX, Floating Pt. | x |x x N N N N
Load, Long RR, Floating Pt. x x N N N N
Load Multiple RS x | x N N N N
Load Negative RR J L
Load Negative, Long RR, Floating Pt. x x R L
Load Negative, Short RR, Floating Pt. x x R L
Load Positive RR F J M o
Load Positive, Long RR, Floating Pt. x x R L M
Load Positive, Short RR, Floating Pt. x x R L M
Load PSW SI x | x A QQ QQ QQ QQ
Load, Short RX, Floating Pt. | x|x x N N N N
Load, Short RR, Floating Pt. x x N N N N
Move Characters SS x x N N N N
Move Immediate Sl x x N N N N
Move Numerics SS x x N N N N
Move with Offset SS x x N N N N
Move Zones SS x x N N N N
Multiply RX x | x N N N N
Multiply RR x N N N N
Multiply Decimal SS, Decimal x| x x | x{ Data N N N N
Multiply Halfword RX x| x N N N N
Multiply, Long RX, Floating Pt. |x [x |E x| B N N N N
Multiply, Long RR, Floating Pt. x |E x| B N N N N
Multiply, Short RX, Floating Pt. |xx |E x| B N N N N
Multiply, Short RR, Floating Pt. x |E x| B N N N N
No Operation RX, Ext.Mnemonic| N N N N

Condition Code Set (Divide)

Appendix D

Instruction g:;?::: cg:; f_:;?:n Operand Format
Code Code Explicit Implicit

No Operation NOPR | 07(BCR 0) | R2
Or Logical (o] 56 R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI1,6S2
Or Logical ocC Dé D1(L,B1), D2(B2) S1(L), S2 or §1,52
Or Logical "OR 16 R1,R2
Or Logical immediate (o] 96 D1(B1),12 s1,12
Pack PACK | F2 DI(L1,B1),D2(L2,B2) S1(L1), S2(L2) or S1,52
Read Direct RDD 85 D1(B1),12 S1,12
Set Program Mask SPM 04 R1
Set System Key SSK 08 R1,R2
Set System Mask SSM 80 DI1(B1) S1
Shift Left Double Algebraic SLDA | 8F R1, D2(B2) R1,S2
Shift Left Double Logical SLDL | 8D R1,D2(B2) R1,S2
Shift Left Single Algebraic SLA 8B R1,D2(B2) R1,S2
Shift Left Single Logical SLL 89 R1,D2(B2) R1,S2
Shift Right Double Algebraic SRDA | 8E R1,D2(B2) R1, 2
Shift Right Double Logical SRDL | 8C R1,D2(B2) R1,52
Shift Right Single Algebraic SRA 8A R1,D2(B2) R1,S2
Shift Right Single Logical SRL 88 R1,D2(B2) R1,52
Start 1/0 SIO 9C D1(B1) S1
Store ST 50 R1,D2(X2, B2) or R1, D2(,B2) R1,52(X2) orRI1,S2
Store Character STC 42 R1,D2(X2, B2) or R1, D2(,B2 R1,D2(X2) orR1,S2
Store Halfword STH 40 R1,D2(X2, B2) or R1,D2(,B2) | R1,S2(X2) orR1,S2
Store Long STD 60 R1,D2(X2, B2) R1,52(X2) orRI1,S2
Store Multiple STM 90 R1,R2, D2(B2) R1,R2, S2
Store Short STE 70 R1,D2(X2,B2) or R1,D2(,B2) |} R1,52(X2) orRI1,S2
Subtract S 5B R1,D2(X2 R1,52(X2) orRI,S2
Subtract SR 1B R1,R2
Subtract Decimal SP FB D1(L1,B1), D2(L2, B2) S1(L1), S2(L2) or S1,52
Subtract Halfword SH 48 R1,D2(X2, B2) or R1,D2(,B2) | R1,52(X2) orRI,S2
Subtract Logical SL 5F R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI1,S2
Subtract Logical SLR 1F R1,R2
Subtract Nomalized, Long SD 6B R1,D2(X2, B2) or R1,D2(,B2) | R1,S2(X2) orRI,S2
Subtract Normalized, Long SDR 28 R1,R2
Subtract Normalized, Short SE 78 R1,D2(X2,B82) or R1,D2(,B2) | R1,52(X2) orRI1,S2
Subtract Normalized, SER 3B R1,R2
Subtract Unnormalized, Long SW 6F R1,D2(X2,B2) or R1,D2(,B2) | R1,52(X2) orRI1,S2
Subtract Unnormalized, Long SWR 2F R1,R2
Subtract Unnormalized, Short SuU 7F R1,D2(X2,B2) or R1, D2(,B2) | R1,52(X2) orRIl,S2
Subtract Unnormalized, Short| SUR 3F R1,R2
Supervisor Call svC 0A |
Test and Set TS 93 D1(B1) S1
Test Channel TCH 9F D1(B1) S1
Test |/O TIO 9D Di(B1) S1
Test Under Mask ™ 91 DI1(B1),12 S1,12
Translate R DC D1(L,B1),D2(B2) S1(L), S2 orS1,S2
Translate and Test TRT DD D1(L,B1),D2(B2) S1(L), S2 orS1, S2
Unpack UNPK | F3 DI1(L1,B1), D2(L2, B2) S1(L1), S2(L2)or S1,S2
Write Direct WRD 84 D1(B1),12 St,12
Zero and Add Decimal ZAP F8 D1(L1,B1), D2(L2, B2) S1(L1), S2(L2)or S1,S2

Operand Format (No Operation)

114

Type of

|Program Interruptions

Instruction . Possible Condition Code Set
Instruction L [OvIP [Op [Other | 00] 10 T

No Operation RR, Ext.Mnemonic N N N N
Or Logical RX x |x J K
Or Logical SS x x J K
Or Logical RR J K
Or Logical Immediate Sl x x J K
Pack SS x x N N N N
Read Direct Sl x x| x| A N N N N
Set Program Mask RR RR RR RR RR
Set Storage Key RR x | x x | A N N N N
Set System Mask Sl x A N N N N
Shift Left Double Algebraic |RS x| F J L M o]
Shift Left Double Logical RS x N N N N
Shift Left Single Algebraic |RS F J L M o
Shift Left Single Logical RS N N N N
Shift Right Double Algebraic |RS [x J L M
Shift Right Double Logical RS x N N N N
Shift Right Single Algebraic |RS J L M
Shift Right Single Logical RS N N N N
Start 1/0 Sl A MM CcC EE AA
Store RX x | x X N N N N
Store Character RX x x N N N N
Store Halfword RX x | x x N N N N
Store Long RX, Floating Pt. | x | x x| x N N N N
Store Multiple RS x fx x N N N N
Store Short RX, Floating Pt. | x | x x| x N N N N
Subtract RX x |x|F \ X Y (o]
Subtract RR F v X Y o
Subtract Decimal SS, Decimal x D|x| x | Data \ X Y (o]
Subtract Halfword RX x|x}F \Y X Y (o]
Subtract Logical RX x [x W,H v, W, 1
Subtract Logical RR W,H v, A
Subtract Normalized, Long RX,Floating Pt. | x |x| E x | B,C R L M Q
Subtract Normalized, Long | RR,Floating Pt. x| E x { B,C R L M Q
Subtract Normalized, Short | RX,Floating Pt. | x | x| E x | B,C R L M Q
Subtract Normalized, Short RR, Floating Pt. x| E x | B,C R L M Q
Subtract Unnormalized, Long | RX,Floating Pt. | x | x| E x| C R L M Q
Subtract Unnormalized, Long | RR, Floating Pt. x| E x| C R L M Q
Subtract Unnormalized, Short|RX,Floating Pt. | x | x| E x| C R L M Q
Subtract Unnormalized, Short|RR, Floating Pt. x| E x| C R L M Q
Supervisor Call RR N N N N
Test and Set Sl x x SS 1T
Test Channel Si A JJ] FF HH
Test 1/0 Sl A LL CcC EE KK
Test Under Mask Si x uu vv ww
Translate SS x x N N N N
Translate and Test SS x PP NN (o]0
Unpack SS x x N N N N
Write Direct Sl x x| A N N N N
Zero and Add Decimal SS, Decimal x D{x | x | Data J L M (o]

condition Code Set (No Operation)

Appendix E

115

Program Interruptions Possible

Under Ov: D = Decimal

E = Exponent
F = Fixed Point

Under Other:

PNXXE<CH0wRPPO0ZEr AT

Condition Code Set

A Privileged Operation
B Exponent Underflow
C Significance
D Decimal Divide
E Floating Point Divide
F Fixed Point Divide
G Execute

No Carry

Carry

Result =0

Result is Not Equal to Zero

Result is Less Than Zero

Result is Greater Than Zero

Not Changed

Overflow

Result Exponent Underflows

Result Exponent Overflows

Result Fraction = 0

Result Field Equals Zero

Result Field is Less Than Zero

Result Field is Greater Than Zero

Difference =0

Difference is Not Equal to Zero

Difference is Less Than Zero

Difference is Greater Than Zero

First Operand Equals Second Operand

First Operand is Less Than Second Operand

First Operand is Greater Than Second Operand

CSW Stored

Channel and Subchannel not Working

Channel or Subchannel Busy

Channel Operating in Burst Mode

Burst Operation Terminated

Channel Not Operational

Interruption Pending in Channel

Channel Available

Not Operational

Available

1/O Operation Initiated and Channel Proceeding With its Execution
Nonzero Function Byte Found Before the First Operand Field is Exhausted
Last Function Byte is Nonzero

All Function Bytes Are Zero

Set According to Bits 34 and 35 of the New PSW Loaded
Set According to Bits 2 and 3 of the Register Specified by R1
Leftmost Bit of Byte Specified =0

Leftmost Bit of Byte Specified =1

Selected Bits Are All Zeros; Mask is All Zeros

Selected Bits Are Mixed (zeros and ones)

Selected Bits Are All Ones

Program Interruptions Possible

116

APPENDIX E:

ASSEMBLER INSTRUCTIONS

by commas

¥ g k] 1
| Operation | | |
| Entry 1 Name Entry ! Operand Entry }
1

¥ T T R}
| ACTR | Not used, must not be present | An arithmetic SETA expression i
L i 1 J
1 3 1] 1 1
| aGo | A sequence symbol or not present | A sequence symbol {
. 1 1 ¥ |
) T]
| AIF | A sequence symbol or not present | A logical expression enclosed in |
| } | parentheses, immediately followed by a}
] 1 | sequence symbol |
b t + !
| ANOP | A sequence Symbol } Not used, must not be present |
1 i } 4
| 1 1 1
| ccw | Any symbol or not present | Four operands, separated by commas |
L 1 i 3
[] 1 L] 1
| CNoP | A sequence symbol or not present | Two absolute expressions, separated by]
] I | a comma I
I { + 4
| CoM | A sequence symbol or not present | Not used, must not be present |
1 i 4 J
'} 1 T 1
| copy | Not used, must not be present | A symbol |
[1 i 4
[]] T |
| CSECT | Any symbol or not present | Not used, must not be praseant |
L) 4 4
1 3 ¥]]
| DC | Any symbol or not present | One operand i
[l ;. | 1 3
3 1] i L] 1
| DROP | A sequence symbol or not present | One to sixteen absolute expressions, |
| 1 | separated by commas |
L i } 4
1 3 1 1 g |

DS Any symbol or not present | One operand
t 3 L p 4
¥ 1 T 1
| DSECT | A variable symbol or an | Not used, must not be present |
ordinary symbol
| o | 4
i EJECT | A sequence symbol or not present | Not used, must not be present }
1 1 EN 4
{ 1) 1) h)
| END i A sequence symbol | A relocatable expression |
| | or not present | or not presant |
[i 4 b |
1) T T 1
| ENTRY | A segquence symbol or not present | One or more relocatable symbols, sepa-|
| | | rated by commas |
b f a '
| EQU | A variable symbol or an | An absclute or relocatable expression |
ordinary symbol

SO ; |
| EXTRN | A sequence symbol or not present | One or more relocatable symbols, sepa-|
] | ' | rated by commas |
1 kS 1 3
F H H 1
GB1LA	Not used, must not be present] One or more variable symbols that are	
		to be used as SET symbols, separated
		by commas?2
p-==- } ¢ '		
GBLB	Not used, must not be present	One or more variable symbols that are
}	} to be used as SET symbols, separated	
		by commas2
+ t 4
| GBIC | Not used, must not be present | One or more variable symbols that are |
| | | to be used as SET symbols, separated |
| | | by commas? |
b + v t !
| ICTL | Not used, must not be present | One to three decimal values, separated}
| I I |
t L i 4

Appendix E 117

5 . ¥ k) 1
| Operation | | |
| Entry | Name Entry | Operand Entry {
L i

i)
f ISEQ Not used, must not be present | Two decimal values, separated by a
] } comma [
k - i
| ICLA |} Not used, must not be present | One or more variable symbols that are
i } | to be used as SET symbols, separated
} I | by commas3
b t t
{ ICLB | Not used, must not be present | One or more variable symbols that are
} i | to be used as SET symbols, separated
} i | by commas3
k } ¢ 4
} Ic1C | Not used, must not be present | One or more variable symbols separated|
I | | by commas3 |
b t + 4
} LTORG] Any symbol or not present | Not used, must not be present]
L 4 . } 3
v ¥ 1] ¥
} MACRO* | Not used, must not be present | Not used, must not be present i
L i 1 3

| T h

f MEND? | A sequence symbol or not present | Not used, must not be present |
IS 1 ¥

) L}
i MEXIT* A seguence symbol or not present | Not used, must not be present |
L 1]
] 1 B
| MNOTE2 A sequence symbol, a variable | A severity code, followed by a comma, |
i symbol or not present | followed by any combination of charac-|
| } | ters enclosed in apostrophes |
1 L L |
L] 1} y 1 k]
] ORG { A sequence symbol or not used | A relocatable expression or not used |
1 i1 1 4
1])) ¥ h
| PRINT | A segquence symbol or not present | One to three operands I
L iy 4 |
¥ v ¥ i 1 g 9
| PUNCH | A sequence symbol or not present | One to eighty characters enclosed in |
| i | apostrophes |
1 4)
1 3 T
] REPRO A sequence symbol or not used | Not used, must not be present }
i 4 b |
1 T 1
| SETA | A SETA symbol | An arithmetic expression |
L] i ¥ |
1 3 T T L]
| SETB | A SETB symbol] A0 or a1, or logical expression 1
! i | enclosed in parentheses |
L i 1 4
1 § 1] 1 1
| SETC } A SETC symbol | A type attribute, a character expres- |
] | | sion, a substring notation, or a con- |
| | | catenation of character expressions |
{ | | and substring notatiomns |
1 1 4 b
L3 1 T 1
| SPACE | A Sequence symbol or not present | A decimal self-defining term or not |
| } | used |
- + :
| START | Any symbol or not present A self-defining term or not used |
I }) |
[3 1 3
| TITLE? | A special symbol (0 to 4 charac- | One to 100 characters, enclosed in |
| | ters), a sequence symbol, a | apostrophes |
] |} variable symbol, or not present | |
[EN 1 4
r T t |
| USING | A sequence symbol or not present | An absolute or relocatable expression |
] | | followed by 1 to 16 absolute expres- |
i } | sions, separated by commas }
1. 1 1 J
1] R
| *May only be used as part of a macro-definition. {
| 2SET symbols may be defined as subscripted SET symbols. I
| 3See Section 5 for the description of the name entry. |
L J

118

ASSEMBLER STATEMENTS

oy -

INSTRUCTION NAME ENTRY

o amems of

T
| OPERAND ENTRY
S

|
1
|
|

JEND, ICTL, ISEQ, and PRINT |characters that is equivalent|

T Rl
Model Statements3 ¢ |An ordinary symbol, variable |Any combination of char-

(A variable symbol or any |symbol, sequence
assembler language mnemonici{symbol, a combination of
operation code except COPY, |variable symbols and other

|to a symbol, or not used

jacters (including variable
| symbols)
|

+-

1

|

|

|

|

|

|

|
| |
k 1 i
|Pprototype Statement? |A symbolic parameter or {Zero or more operands that |
i |not used lare symbolic parameters, |
| | |separated by commas, followed|
] { |by zero or more operands |
| | | {separated by commas) of the |
) | |form symbolic parameter, |
| | jequal sign, optional standardj]
| | |value I
I , ¢ = :
Macro-Instruction	An ordinary symbol, a	Zero or more positional
Statement?	variable symbol, a sequence	operands separated by commas,
]symbol, a combination of	followed by zero or more
	variable symbols and other	keyword operands (separated
	characters that is equivalent	by commas) of the form
	to a symbol,2 or not used j keyword, equal sign, value?	
L 1 & 3		
§ T 1 . 1		
Assembler Language	an ordinary symbol, a var-	Any combination of characters
Statement3 %	iable symbol, a sequence	{including variable symbols)
}	symbol, a combination	
{	of variable symbols and	
	other characters that is	
]	equivalent to a symbol,	
1	or not ‘used)]	
L) X L. J		
1 May only be used as part of a macro-definition.		
] 2 variable symbols appearing in a macro-instruction are		
replaced by their values before the macro-instruction is		
processed.		
3 yariable symbols may not be used to generate the follow-		
ing mnemonic operation codes: ACTR, COPY, END, ICTL,]		
CSECT, DSECT, ISEQ, PRINT, REPRO, and START. Variable		
] symbols may not be used in the name and operand entries		
of the following instructions: COPY, END, ICTL, and ISEQ.		
! Variable symbols may not be used in the name entry of the		
ACTR instruction.		
} “ The line following a REPRO statement may not contain		
1 variable symkols.]		
3		

Appendix E 119

X3

SUMMARY OF CONSTANTS

APPENDIX F:

o T ST D Sy S S e S e M S e e SO s S S e T S SR S S S S i S S S G S S, SR ot S S, S G S O G i . b s, o s Y S e S S S e s P — s —
N O
-
WmME M + 4 - + M m 4 & P » +
LI T E R R IR TR A & &
B0 A v 4 | - o~] ~ ~ ! ~ -4 "l
[s e oo s e s v . = e s Sraie v w—— . w—catt, W — . S . S— . e s w—— i — ————— — c— i e S s " — ot S——— — S S— — — — — . —
(o] = r
" v - -t
O MO 0 | O o)
mm o |oI | P -
Q - |e-m
0 I+ |+ |© (=]
Y!l.l.-..l-lllllllTII..I-IT|l.ll1l|l.Iljl-I-llil'l..Il!leTlllLr.ll-lllW!.lll.l'lllll'Jllllll.ll-l-lll-l-ll..ll,llll:l.l!ll'll
(2
Xm [¢) Q (o] (o)
[OR] + + - +
MRM M YL VY Oy
Mmo oMt~ oo~ o~ o~
o |+ 1+ (2 "+
o e . e e S s S e s e s e e e G s Al e e e S s W e, i ey, T ol g S o v e g S qrvms S st G s castes W G S — — ot w— oo T S—— — o S w— oo W2}
5 ola i e e A A q 1A -
0w B 2 13 |3 14 |3 12 |4 2 1% B
L B 2 1S 1% 18 |2 {8 I3 eI p
SEVEIE 1 %1% 13 13 13 13 13 1% 213 3
om o116 (o 16 & |8 |8 |&8 |8 |E |8 E | E g
P e o e e o e e st o s . e e e e . i i . e e e et . . . e s . e v o e s P e e e s S e s o s s e, S e o S o o e e e . e e o
[} bn. [}
) [N R N ~
0 P SalRxdeld B30 RR Saldxds
3 1§ |3 581832812 1d8gdl 5152|5258
Eo e 1S e Bl HalBalEe Galgalon 5880 8 180608 §i801828Y
AT EA R AR ERE ERR ERR ERR ERR ERE EAE L LA R E R LR AL L
3] o Xl s ObjooriO %9 Qo O Q| M rd Qi | e Q O E Q Q| M =~
] £ Dol | oef ol Q - Q = D -~ L) @ o~ [(-] N O M Q S M OMLDLON -3 MO M
[%2] © ST | AU ity |t oo v iloo oD o 9O MO (S} OO0~ 0O0D O [R] LRV
o s oo o e o sy s o o e, S s s s e e S s e s s S i o S Sl e e W s e e . s e Bt S e e o weres S o v S " i Y sy S, S . T g e i . s 2
o D - [© ® ® Ed E g E 4 > o~ oy
BaEB o 1o 1o o 1o Q 0 0 0 " O w |
mDIM 0 HO | PO m + + + + o e o] (o} o o} o
O fu W n T3] ¥ o
HE £ JedN | =N) =N |~ - -t - el | et | (o] (] ~ - o~
o e s e o e s S St S s S — G G A — T a— —] — g——— V—— — o C——— o—p— Gt o oo iy T—t— L o c—— s e v s e ok oo v st v wnf
| [}
w @ Q [Lo W | Md Q Q Lo} o] W Lol
G215 1% 1% 19 1881e 188y 15 ¢ s |98 T 9
< Q Q 2 NI I TE Il Q 3 k] a3 ~ 3
fro s oo oo e e s . e s o el s s, s ey e sl e e . e e s S e W e it o et e g S e S . . ey G o et o o e e ey S s e S e e, . S e e e
8ra o o ol
uTm T o} [E]]
L) o] Le) o) Lo} o]
PmY [Q 1] Q Q
= [+¢] 0o nao no n e n o
Hw | 0Q © o we | ~N = © [- oR | E o~ N
o s e o e welper e e (e e, e Yfre e v e s o s .t el . s S . e W s S e e o o S ——— — — — T {— — S ————— — s ol Gt e <o e e s S el
2
[[$] bl m fy 2]] [] Ay ~N < > 0 >
bt e s s o clion v e iy e e gy S . gy w— c— g — — ey w— — ol v " D w— — gy Sr— —— ol ew— —a—— —— — — onhis e e e e - s, wn —— — oy e w— vo— " v——a—— el e e o o

to 65535.

{1) In a DS assembler instruction, C and X type constants may have length specification

120

The four charts in this appendix summarize
the macro facility described in Part 2 of
this publication.

~ Chart 1 indicates which macro facility
elements may be used in the name and oper-
and entries of each statement.

Chart 2 is a summary of the expressions
that may be used in macro-instruction
statements.

APPENDIX G: MACRO FACILITY SUMMARY

Chart 3 is a summary of the attributes
that may be used in each expression.

Chart 4 is a summary of the variable
symbols that may be used in each expres-
sion.

Appendix G 121

Chart 1. Macro Facility Elements
Variable Symbols
Globol SET Symbols Local SET Symbols System Variable Symbols Attributes
Symbolic . Sequenc:
Statement | Parameter SETA SETB SETC SETA SETB SETC &SYSNDX | &SYSECT | &SYSLIST Type Length Scaling Integer Count Number Symbol
MACRO
Prototype Name
Statement Operand
GBLA Operand
GBLB Operand
GBLC Operand
LCLA Operand
LCLB Operand
LCLC Operand
Model Name Name Name Name« Name Name Name Name Name Name Name
Statement Operation | Operation | Operation | Operation | Operation | Operation | Operation [Operation | Operation|Operation
Operand | Operand Operand | Operand | Operand | Operand Operand | Operand Operand |Operand
copY Name
SETA Name Nome
Opemndz Operand Opemm‘l3 Operund9 Operand Operand3 Opemnd9 Operand Op_erund2 Operand | Operand Operand | Operand | Operand
SET8 Name Name .
Open:m!'6 Operand® | Operand | Operand® Operund6 Operand Opemmi6 Opemnd‘S Opewnd‘ Operand® Operand* OP'"’"ds Operand® | Operand® | Operand® Operand®
SETC Name 5 Name
Operand | Operand” Opercmda Operand Opevvnd7 Operand Operand | Operand Operand |Operand Operand
AIF . " 5 5 5 5 5 | oome
Operorvcl6 Opertmd6 Operand Operund6 Opemnd" Operond Operand Opemnd6 Opemnd4 Operumi6 Operand” | Operand” | Operand Operand” | Operand” |Operand” | Operond
AGO Name
Operand
ACTR Opemndz Operand Operﬂnd3 Opefond2 Operand Operund3 Opemndz Operand Operundz Operand Operand Operand [Operand | Operand
ANOP Name
MEXIT Name
MNOTE Operand | Operand Operand | Operand | Operand | Operand Operand | Operand Operand |Operand Nome
MEND Nome
Outer Name Name Nome Name Name Name Name
Macro Operand Operand | Operond | Operond | Operand Operand
Inner Name Name Name Name Nome Name Name Nome Name Name Name
Macro Operand | Operand Operand | Operand | Operand | Operand Operand | Operand Operand [Operand
Assembler Name Name Name Name Name Name Name
Language Operati Operati Operati Operati Operation | Operation
Statement Operand Operand | Operand | Operand | Operand Operand
1. Variable symbols in macro-instructions are replaced by their values before processing.
2. Only if value is self-defining term.
3. Converted to arithmetic + or 0.
4. Only in character relations.
5. Only in arithmetic relations.
6. Only in arithmetic or character relations.
7. Converted to unsigned number.
8. Converted to character 1 or 0.
9. Only if one to eight decimal digits.

122

o N s S o S e S S

1 An arithmetic

tors GT, LT, EQ, NE, GE, or LE.

2 A character relation consists of two character expressions related by the operator
The type attribute notation and the substring notation
The maximum length of the character

If the two character expres-

GT, LT,

longer.

EQ, NE,
may also be used in character relations.
expressions that can be compared is 127 characters.
sions are of unequal length, then the shorter one will always compare less than the

GE, or LE.

+
relation consists of two arithmetic expressions

3 Maximum of eight characters will be assigned.
4 If one to eight decimal digits.

related by the opera-

Chart 2. Expressions
[3 T B ¥ ;)
{ Expression | Arithmetic Expressions | cCharacter Expressions | Logical Expressions|
[N i 1 i]
i] T) 1 1
i May | 1. Self-defining terms | 1. Any combination of] 1. SETB symbols |
| contain | 2. Length, scaling, | characters enclosed | 2. Arithmetic re- |
| integer, count, and | in apostrophes | lations?
| number attributes] 2. Any variable symbol | 3. Character re-
| 3. SETA and SETB symbols]| enclosed in apos- | lations?2
| 4. SETC symbols whose] trophes |
1 value is 1-8 decimal 3. A concatenation of |
| digits variable symbols and |
| 5. Symbolic parameters | other characters |
| if the corresponding enclosed in apos- }
| | operand is a self- trophes] |
| defining term 4. A request for a type | |
| 6. &SYSLIST(n) if the attribute. | {
] corresponding operand | i
| I is a self-defining 1 |
i term | |
| 7. §SYSLIST{(n,m) if the } i
| corresponding operand | |
{ is a self-defining | I
| term | |
| 8. &SYSNDX | |
t t 1 + 4
| Operators | +¢—¢%, and / | concatenation , with a | AND, OR, and NOT i
| are | parentheses permitted period (.) | parentheses per- |
] | | mitted ‘ |
¢ + $ 1 4
| Range] —-232 to +23:-1 | 0 through 127 characters | 0 (false) or |
| of values } | | 1 (trued }
k + t 1 4
| May be | 1. SETA operands | 1. SETC operands3® | 1. SETB operands |
used in | 2. Arithmetic relations | 2. Character relations? | 2. AIF operands |
| 3. Subscripted SET | 3. SETA operands* i }
1 | symbols | | |
4. &SYSLIST		
5. Substring notation]	
6. Sublist notation	i	
{ 7. SETC operands]		
	8. ACTR operands]	
1 1] b |
T T b]

bt s et st s S e Wo— v—— p—

Appendix G 123

Chart 3.

Attributes

1 ¥
|Attribute |Notation

May be used with:

e - s

iuay be used only if
|type attribute is:
i

May be used in

Y e e e e e e sy e
=
~
g
@

T'

|symbols outside
{macro-definitions;
|symbolic parameters,
| 6SYSLIST{(n), and

| 6SYSLIST(n,m) inside
|macro-definitions

H :

o

| {May always be used)

o s o s s S

fields

- .Character
relations
(SETB)

1]
]
]
1
1
1
|
|

1. SETC operand
2

Length

L'

4

| Ssymbols outside
|macro-definitions;
|symbolic parameters,
} 6SYSLIST(n), and

| 6SYSLIST(n,m) inside
|jmacro-definitions

,

Any letter except
M,N,0,T, and U

1
|Arithmetic
|expressions

Scaling

SI

| Symbols outside
|macro-definitions;

| symbolic parameters,
| 6SYSLIST(n), and

| €SYSLIST(n,m) inside
|macro-definitions

H -

4,F,G,D,E,K,P, and 2

Arithmetic
expressions

— s e wllits s as ot worns vmten st S et . S, s srstats arveret O s e Wi

P .

Integer

I!

T

| Symbols outside
|macro-definitions;
|symbolic parameters,
| §SYSLIST(n), and

| 6SYSLIST(n,m) inside
|macro-defiritions

L

H,F,G,D,E,K,P, and 2

Arithmetic
expressions

— v i o s . contan St shamt s .

r———-—-—

= y—

Count

KO

¥

| Ssymbolic parameters
| corresponding to
jmacro-instruction
{operands, &SYSLIST

|{r), and &SYSLIST(n,m)

|inside macro-
|definitions
b s

Any letter

rithmetic
xpressions

o P

Number

P et et st W e s et e) et e G Sl s S St 200 QD S . S o, et St G S s i ot

o et e e St St S e e s 20 i St e e e s e e S S e S A et e St S, A S e et el s b S i it S48 s e

N'

T

| symbolic parameters,
| ESYSLIST, and
|€SYSLIST{(n) inside
|macro-definitions

i

Any letter

i e v s s i e e i st s e S S s A S o, s st S S e . St S s S S St S e ot

Arithmetic
expressions

e s e e s anbion s e S s et camens i s

e el L AP ——

124

Chart 4. Variable Symbols
L 3 T Ll v 1] R}
|Variable |Defined by: |Initialized, |value changed |May be used in: |
| symbol | |or set to: jby: | |
b } } t t 1
| Symbolic? |Prototype |Corresponding | (Constant {1. Arithmetic expressions|
| parameter |statement jmacro-instruction|throughout | if operand is self- }
i | joperand fdefinition) } defining term |
] | |] }12. Character expressions |
I t + t { :
| SETA |LCLA or GBLA |0 | SETA |1. Arithmetic expressions|
} |instruction |] instruction |2. Character expressions |
[J 1 i 3 ;|
1 i 1 T h i
{SETB |1C1LB or GBLB |0 | SETB |1. Arithmetic expressions|
} |instruction | | instruction |2. Character expressions |
| |) | |3. Logical expressions i
b ¢ + + + {
| SETC |LCLC or GBLC |Null character | SETC |1. Arithmetic expressionsj|
} jinstruction |value | instruction | if value is one to i
| ! | | | eight decimal digits |
i) l | {2. Character expressions |
b + + { t 4
| ESYSNDX* |The assembler|Macro-instruction| (Constant {1. Arithmetic expressions}]
| | jindex | throughout |2. Character expressions |
| | | |definition; |]
| | I |unique for | |
])] j{each macro- | |
| i | Jinstruction) | }
b t ; { f :
| §SYSECT® |The assembler|Control section |{Constant jCharacter expressions |
| | |in which macro- |throughout | i
| | }instruction jdefinition; i I
		appears	set by CSECT,	
]		DSECT, and]		
			START)	
- | + t + {
| €SYSLIST® |The assembler|Not applicable :|Not applicable|N®'&SYSLIST in arithmetic |
| | | | | expressions |
b + t { + '
| 6SYSLIST(n)2* |The assembler|corresponding | (Constant |1. Arithmetic expressionsj
] 6SYSLIST(n, m)1 | |macro-instruction|throughout | if operand is self- |
| | |operand |definition) | defining term |
i { | | |2. Character expressions |
b + . + t '
| * May only be used in macro-definitionms. |
L J

Appendix G 125

APPENDIX H: DICTIONARY AND SOURCE STATEMENT SI2ES

PART 1: DICTIONARIES USED IN MACRO GENERATION

A.

126

Dictionaries at Collection Time

For the Macro Generator portion of the Assembler to accomplish macro generation and
conditional assembly, two or more dictionaries must be constructed: a Global Dic-
tionary and one or more Local Dictionaries.

Global Dictionary

One Global Dictionary is built for the entire program. It contains macro-instruction
mnemonics and global SET variable names. The capacity of the Global Dictionary is 64
blocks of 256 bytes each. An entry is made for each unique macro-instruction mnemon-
ic and each unique global SET variable name. Each block contains complete entries.
Any entry not fitting into a block is placed in the next block with the remaining
bytes in the present block unused. There is a further limit of 400 distinct global
symbols. The entries are as follows:

Macro Mnemonic Operation Code 10 bytes plus mnemonic*

Global SET Variable Name 6 bytes plus name* (A dimensioned global
SET variable is counted only once)

Fixed Overhead 8 bytes for first block

4 bytes for each succeeding block
5 bytes for last block

Iocal Dictionary

For the main portion of the program, one Local Dictionary is constructed in which
ordinary symbols (relevant to macro generation and conditional assembly), sequence
symbols, and local SET variable names are entered. 1In addition, one Local Dictionary
is constructed for each different macro definition used in the program. These Local
Dictionaries contain one entry for each local SET variable name, sequence symbol, and
prototype symbolic parameter declared within the macro definition. The capacity of
each Local Dictionary is 64 blocks of 256 bytes each. Each block contains complete
entries. Any entry not fitting into a block is placed in the next block with the
remaining bytes in the present block unused. The following table indicates the size
of each type of entry and will serve to relate dictionary capacities to the structure
of any given program:

Sequence Symbol Names 10 bytes plus name* (A reference to
sequence symbols after definition,
a backwards branch, causes an
additional entry to be made
in the local dictionary.)

Local SET Variable Names 6 bytes plus name* (A dimensioned local
SET variable is counted only once)

Prototype Symbolic Parameters 5 bytes plus name*

Relevant ordinary symbols 10 bytes plus name#*

appearing in the main
portion of the program

Fixed Overhead 8 bytes for first block
(32 bytes if a macro
local dictionary)
4 bytes for each succeeding block
5 bytes for last block

One byte is used for each character in the name or mnemonic

Dictionaries at Generation Time

To conserve storage during the actual conditional assembly and macro generation, the
contents of the Global Dictionary and lLocal Dictionaries are restructured as follows:

Global Dictionary

Fixed Overhead bytes plus word alignment

4
Macro Mnemonic Operation Code 3 bytes
Global SETA dimensioned 1 byte plus 4N
Global SETA undimensioned 4 bytes
Global SETB dimensioned 1 byte plus (N/8)
{N/8 is rounded to the next highest integer)
Global SETB undimensioned 1 byte
Global SETC dimensioned 1 byte plus 9N
Global SETC undimensioned 9 bytes

Local Dictionary

Fixed Overhead 20 bytes plus word alignment

Sequence Symbols 5 bytes

Local SETA dimensioned 1 byte plus 4N
Local SETA undimensioned 4 bytes
Local SETB dimensioned 1 byte plus (N/8)
[N/8 is rounded to the next highest integerl
Local SETB undimensioned 1 byte
Local SETC dimensioned 1 byte plus 9N
Local SETC undimensioned 9 bytes

Relevant ordinary symbols appearing in
the main portion of the program 5 bytes

N = dimension

Note: Only those symbols which appear in macro instruction operands or whose attri-
butes are referenced are included in this table. These entries are required only
for the main program Local Dictionary.

The restructured Global Dictionary and the restructured Local Dictionary for the
main portion of the program must be resident in main storage.

In addition, if the program contains any macro-instructions, main storage is
required for the largest Local Dictionary of the macro-definitions being processed.
Furthermore, if any macro-definitions contain inner macro-instructions, main storage
is required for all the restructured Local Dictionaries of all the macros in the
nest.

In addition to those requirements specified above for the lLocal Dictionary of the main

Appendix H 127

portion of the program, each macro-definition local Dictionary requires the following for
the parameter table:

1. Fixed Overhead 22 bytes

2. Table Entries
a. Character string 3 bytes plus L
b. Hexadecimal, binary,
decimal, and character

self-defining values 7 bytes plus L
‘C. Symbol 9 bytes plus L
d. sSublist 10 bytes plus 2N bytes plus Y

I=Length of entry
N=Number of entries in sublist
¥=Total length of table entries of a., b., and c. formats

Each nested macro-instruction also requires the following:

- Parameter pointer 1list ' 2 bytes plus 2N (N = the number of operands)
Pointers to list in table 8 bytes plus word alignment

PART 2: MACRO MNEMONIC TABLE

As the source text is scanned, a table of macro mnemonics is constructed. There is an
entry for each macro used or defined as a programmer macro in the program. The entries
are made under the premise that every undefined operation is a system macro mnemonic.
This table is then subsetted to locate and edit system macros from the library.

An entry in this subsetted table consists of 9 bytes. With 10,240 or 14,336 contigu-
ous bytes of main storage available (see Machine Features Requlred) approx1mately 450
distinct macro mnemonics can be handled. When this table overflows, proce351ng continues
with only those macros defined at that point. If additional storage is available, this
table is expanded accordingly.

PART 3: SOURCE STATEMENT COMPLEXITY - CONDITIONAL ASSEMBLY AND MACRO GENERATION

For any statement except macro-prototype or macro instructions, a counter is increased by
one for each literal occurrence of the following:

1. Ordinary Symbol

a. Name, operation, or operand entry (when the operand count starts, the counter
is decremented by one), or

b. Operand of an EXTRN statement, or

c. Operand of an attribute operator (L',T',I', etc. in a SETA, SETB or SETC
expression, or

d. operand of a machine or assembler instruction {only if in the main portion of
the program)

2. Variable Symbol

3. Sequence Symbol

Note 1: The maximum value the counter may attain is 35.

Note 2: This restriction applies to the name and operation entry of a macro-instruction
aor prototype taken as a unit. Each macro-instruction or prototype operand (in sub-
list, each sublist operand) is also subject to the counter restriction.

Examples of counts

128

1. §&B2 SETB (T*NAME EQ'W®' OR °*EC*'.°'A' EQ'AA")
count=3

2. EXTRN A, B, C, §C
count=4§

?ART 4: SOURCE STATEMENT COMPLEXITY; ASSEMBLER STATEMENTS

With 10,240 or 14,336 contiguous bytes of main storage available (see Machine Features
Required), the size of any statement must be less than a certain limit. This limit is:

1. 727 bytes for DC or DS statements.
2. 743 bytes for all other statements.

There are two formulas used to estimate the size (in bytes) of a statement.. The greater
of the two calculated values (S, or S;) determines whether the statement is less than the
given limit. In general, all statements can be processed if they contain 50 or fewer
terms. .If a statement contains more than 50 terms, the formulas should be used to deter-
mine if the statement can be processed, or if the statement should be shortened using EQU
assembler instructions. (In the example for S;, if A+(B-C)*3 were equated to a symbol,
that symbol could be used as the displacement field of the first operand.) The formulas
for statement size, Sy and S;, follow.

S5 = N#Np+U(Npo+Ngn) +6(NeN)

Ny = the total number of bytes in name, operation, operand, and comments entries.
(The maximum value of Ny is 187.)

N = the number of operators and delimiters in the operand entry lexcept equal (=),
period (.), and apostrophe (*)]

N; = the number of references to length attribute (L®'SYMBOL),
Ngp = the number of self-defining terms,

Ng = the number of symbolic terms (including #),

Ny,
Example:

the number of literal operands. (The maximum is 1.)

NAME MVC A+ (B-C)*3(L'D,5),=15CLS5*'ABCDEFG"
S;=39+9+4(1+4)+6(3+1)
=92 bytes

Sz = Np + 9(Wy + W, *“""'*wi.*NE)*NED

Np = the total namber of bytes in name, operation, operand, and comments entries.
(The maximum value of Nz is 187). ’

Wy+Wzeeooo.+W; = a weight associated with the 1st, 2nd,,ithexpression.
W: = 1, if the expression is:
a. absolute,

b. simply relocatable, or
c. in error.

i

If the expression is complexly relocatable, W; depends on the number of
unpa’j sed control section numbers (Npgp).

] 1w |
Ngsp i

t $-—-1
11 |1 |
12, 3, 4, or S | 2 |
|6, 7, 8, or 9 | 3 1|
j10, 11, 12, or 13| 4 |
{14, 15, or 16 1 5 |
L L 3

Appendix H 129

Ny = the number of expressions.
Ngp = the number of expression delimiters.

The rules for counting the number of expressions (Ng) and the number of expression delim-

iters (Ngp) are:

1. Expression delimiters are commas and the terminating blank of an operand.

2. 1eft and right parentheses can be part of an expression or can be expression delimi-
ters. A left or right parenthesis is an expression delimiter if it ends an expres-
sion. Otherwise, it is part of an expression.

Example 1: The operand is:

5,6,A+20%B(6,7)

The expression delimiters are the three commas, the left parenthesis [(], the
right parenthesis [)], and the terminating blank.

The first, second, fourth, and fifth expressions all have a weight of 1. The
third expression in the operand [A+20%#B] has a weight of 1 (either B is abso-
lute, making the result absolute or simply relocatable or, B is relocatable
so the expression is in error.

Sz = Ng + 9(W,; + Wy + Wy + Wy + Wy + Np) + N,

N, +9(1 +#1 +1+1+1+5) +6

Sa B

Sa NB + 96 bytes

Example 2: The operand is:
A+17%(C-D), (A+20)

The number oOf expressions (Ng) is 2. The first expression is A+17*(C-D).
The second expression is (A+20).

The number of expression delimiters (Npp is 2 (the comma and the terminating
blank) .

Example 3: The operand is:
20(5,3),16(5)

There are 5 expressions and 7 expression delimiters.

Expression 1 = 20 Expression Delimiter 1 = (
Expression 2 = 5 Expression Delimiter 2 =,
Expression 3 = 3 Expression Delimiter 3 =)
Expression 4 = 16 Expression Delimiter 4 = ,
Expression 5 = 5 Expression Delimiter 5 = (
Expression Delimiter 6 =)
Expression Delimiter 7 = blank

PART 5: PRINT CONTROL STATEMENT LISTING RESTRICTIONS

TITLE, SPACE and EJECT statements will not appear in the source listings unless the statement is continued
onto another card. Then the first card of the statement will be listed. If any of these three statements are
generated by macro expansion, they will not be listed (regardless of continuation) if the current PRINT option
is NOGEN.

130

Form C24-3414-2, -3, -4
Page Revised 4/26/67
By TNL N26-0536

APPENDIX I: SAMPLE PROGRAM AND ASSEMBLER LISTING DESCRIPTION

The assembler listing consists of five table; and diagnostic messages.
sections, ordered as follows: external The following sample program illustrates
symbol dictionary items; the source and an actual assembler listing. Several
object program statements; relocation errors have been included to show their
dictionary items; symbol cross-reference affect on an assembly.

Given:

1. A TABLE with 15 entries, each 16 bytes long, having the following format:

......... - - _————————— e g

r T T
] NUMBER of items] SWITCHes | ADDRESS I NAME I
4L

3 bytes 1 byte 4 bytes 8 bytes

2. A LIST of items, each 16 bytes long, having the following format:

- ———————— ——— - ——

r T T T ! 1
| NAME | SWITCHes | NUMBER of items | ADDRESS |
L 4

8 bytes 1 byte 3 bytes 4 bytes

Find: Any of the items in the LIST which occur in the TABLE and put the SWITCHes,
NUMBER of items, and ADDRESS from that LIST entry into the corresponding TABLE
entry. If the LIST item does not occur in the TABLE, turn on the first bit in
the SWITCHes byte of the LIST entry.

The TABLE entries have been sorted by their NAME.

e Appendix I 131

Form C24-3414-2, -3, -4
Page Revised 4/26/67
By TNL N26-0536

O 00O O ©

SYMBOL TYPE ID ADDR LENGYH LD 1D

PC 01 000000 0001D8
SEARCH LD 00003E 01

EXTERNAL SYMBOL DICTIONARY

PAGE 1

EXTERNAL SYMBOL DICTIONARY (ESD)

This section of the listing contains the
external symbol dictionary information
passed to the linkage-editor in the object
module. The entries describe the control
sections, external references, and entry
points in the assembled program. There are
five types of entries, shown along with
with their associated fields. The circled
numbers refer to the corresponding head-
ing in the sample listing.

| @ INO) 1 HEOX
| SYMEOL | T‘@: { 1D | Q)R i L;Q:TH | LDID|
1 [1 1 I [,
v T T 1 T + “
I x | s | X | X | X -
p-—--——-% S a $----—4
I x | w |- | x | - x|
¢ + ~4-—4 } i
I x | ER | X | - | - -
b 1 $--—1 } $--—-—4
I - | pC | X | X | X =
T $--—-14 1 $-—--—
I - 1 e x| X | X |
I,,_-__ 1 1 4 iy L %
| The X 1indicates entries accompanying|

| each type designation.
L

e 132

This column contains symbols that

appear in the name field of CSECT or
START statements, as operands of ENTRY
and EXTRN statements, or in the operand
field of v-type address constants.

(:>This column contains the type designator
for the entry, as shown in the table.
The type designators are defined as:

SD -- names section definition. The
symbol appeared in the name
field of a CSECT or START state-
ment.

LD -- The symbol appeared as the oper-
and of an ENTRY statement.

ER -- external reference.
appeared as the operand of an
EXTRN statement, or was defined
as a V-type address constant.

The symbol

PC -- unnamed control section defini-
tion.

CM -- common control section defini-
tion.

(:>This column contains the external symbol
dictionary identification number (ID).
The number is a unique two digit hexa-
decimal number identifying the entry.

Form C24-3414-2,-3,-4 ~
Page Revised 4/26/67
By TNL N26-0536

@

EXAM SAMPLE PROGRAM PAGE 1
LOC OBJECTY CODE ADDR1 ADDR2 STMT SOURCE STATEMENT DOS CL2-1 03/@/67
2 FEEKERERkEEEE e Rk *&k & *% ‘t SAMPTL 001
3 ¢ THIS IS THE MACRD DEFINITION SAMPLO02
4 *EEEK £EEE SAMPLOO3
5 MACRD SAMPLOO4
6 MOVE &£T0,EFROM SAMPLOOS
T .+ SAMPLODOS
8 .¢ DEFINE SETC SYMBOL SAMPLOOT
9 .k SAMPLDOS
10 LCLC ETYPE SAMPLOO9
11 .« SAMPLO10
12 % CHECK NUMBER OF OPERANDS SAMPLO11
13 .« SAMPLOL2
14 AIF {N*ESYSLIST NE 2).ERROR1 SAMPLO13
15 .¢ SAMPLO14
16 .* CHECK TYPE ATTRIBUTES OF OPERANDS SAMPLO1S
17 . SAMPLO16
18 AIF (T*ET0 NE T*EFROM).ERROR2 SAMPLO17
19 AlF (T*ETO EQ *C* OR T*&T0 EQ *6* OR TV'E&T0 EQ'K*).TYPECGK SAMPLO18
20 AIF (T*ET0 EQ *D* OR T*&TO EQ *E® OR T*&TO EQ'H*).TYPEDEH SAMPLO19
21 AIF (T*ET0 EQ *F*).MOVE SAMPLO20
22 AGO « ERROR3 SAMPLO21
23 .TYPEDEH ANOP SAMPLO22
24 L% SAMPLO23
25 oF ASSIGN TYPE ATTRIBUTE TD SETC SYMBOL SAMPLO 24
26 ¥ SAMPLO25
27 &TYPE SETC TVe*gYO SAMPLO26
28 .MOVE ANOP SAMPLO27
29 * NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO SAMPLO28
30 LETYPE 2+6FROM SAMPLO29
31 STETYPE 2+&T0 SAMPLO30
32 MEXIT SAMPLO31
33 .« SAMPLO32
34 .¥ CHECK LENGTH ATYTRIBUTES OF OPERANDS SAMPLO33
35 .« SAMPLO34
36 TYPECGK AIF (L*ETO NE L'&FROM DR L*ET0 GT 256).ERROR% SAMPLO3S
*¥& ERROR *%k
37 = NEXT STATEMENT GENERATED FOR MOVE MACRO SAMPLO36
38 MVC ETO,EFROM SAMPLO37
39 MEXIT SAMPLO38
40 .« SAMPLO39
41 ok ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIODNS SAMPLO40
42 .F SAMPLO41
43 .ERROR1 MNOTE 1,*IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED®* SAMPLO42
464 MEXIT SAMPLO43
45 .ERROR2 MNOTE 1,'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED® SAMPLO44
46 MEXIT SAMPLO45
47 .ERROR3 MNOTE 1,*IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED® SAMPLO46
48 MEXIT ’ SAMPLO47
49 .ERROR4 MNOTE 1, IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED® SAMPLO48
50 MEND SAMPLD49

It is used by the LD entry of the ESD
and by the relocation dictionary to
cross reference to the ESD.

<:>The colunin contains the address of the
symbol (hexadecimal notation) for SD and
LD type entries, and zeros for ER type
entries. For PC and CM type entries, it
indicates the beginning address of the
control section.

This column contains the assembled
length, in bytes, of the control section
(hexadecimal notation).

(:)Thls column contains, for 1D type
entries, the identification (ID) number
assigned to the ESD entry that identi-
fies the control section in which the
symbol was defined.

SOURCE AND OBJECT PROGRAM

listing documents
and the resulting

This section of the
the source statements
object program.

<:>This is the deck identification. It is
the symbol that appears 1in the name
field of the first TITLE statement.

This is the information taken from the
operand field of a TITLE statement.

<:>Listing page number.

This column contains the assembled
address (hexadecimal notation) of the
object code.

This column contains the object code .

produced by the source statement. The
entries are always left-justified. The
notation 1is hexadecimal. Entries are

® Appendix I 133

Form C24-3414-2,-3,-4
Page Revised 4/26/67
By TNL N26-0536

EXAM SAMPLE PROGRAM PASE 2
g oauc@cow ADDR@DDRZ ;@-n SOURCE STATEMENT 00S CL2-1 oa/é_-%/u
52 SXEEEKEERERRAE SRS EERERABRARERER KRB ARS SRS SE XA LSS EES RS RS IEXLE NS E S5 S8 SAMPLOSD
53 & MAIN ROUTINE & SAMPLOS1
54 SEEREEREERERESREES (22227 SEESEEEESEEBELESESEEE LSS EE SAMPLOS2
000000 55 CSECT SAMPLOS3
56 ENTRY SEARCH SAMPLOS54
000000 05C0 57 BEGIN BALR R12,0 ESTABLISH ADDRESSABILITY OF PROGRAM SAMPLOS5S
000002 58 USING #*,R12 AND TELL THE ASSEMBLER SAMPLOS6
000002 9857 C1BE oolco 59 LM RS5eR79=A(LISTAREA,16,L ISTEND} LOAD LIST AREA PARAMS SAMPLOS7
000000 60 USING LIST,RS REGISTER 5 POINTS 1O THE LIST SAMPLOSS8
000006 45E0 CO3C 0003E 61 MORE BAL R14,SEARCH FIND LIST ENTRY IN TABLE SAMPLO59
00000A 9180 CO03A 0003C 52 ™ SWITCH,NONE CHECK TO SEE IF NAME WAS FOUND SAMPLO60
0000OF 4710 €030 00032 63 80 NOT THERE BRANCH IF NOT SAMPLO61
000000 64 USINS TABLE,.RL REGISTER 1 NOW POINTS TD TABLE ENTRY SAMPLO62
65 MOVE TSWITCH,LSWITCH MOVE FUNCTIONS SAMPLO63
#%x ERROR *¢%
66 1, IMPROPER OPERAND TYPES, ND STATEMENTS GENERATED
67 * NEXT STATEMENT GENERATED FOR MOVE MACRO SAMPLOG4
000012 D200 1003 5008 00003 00008 68 MVC TSWITCH,LSWITCH SAMPLO65
69 MOVE TNUMBER, LNUMBER FROM LIST ENTRY SAMPLO66
70 1,OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED
71 & NEXT STATEMENT GENERATED FOR MOVE MACRO SAMPLO67
000018 D202 1000 5009 00000 00009 72 MVC TNUMBER,LNUMBER SAMPLO68
73 MOVE TADDRESS,LADDRESS TO TABLE ENTRY SAMPLO69
Tase NEXT TWO STATEMENTS GENERATED FOR MOVE MACRD
00001E 5820 500C 0000C 75+ L 2,LADDRESS
000022 5020 1004 00004 T6+ ST 2,VADDRESS
77+ NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO SAMPLOTO
000026 5820 500C 0000C 78 L 2.LADDRESS SAMPLOTL
00002A 5020 1004 00004 79 ST 2,TADDRESS SAMPLOT2
00002E 8756 CO04 ' 00006 80 BXLE RS5,R64MORE LOOP THROUGH THE LIST SAMPLOT73
81 sYop END OF PROGRAM, USER LIBRARY MACRO SAMPLGT4
*%& ERROR ***
000032 9680 5008 00008 82 NOTTHERE Of LSWITCHe NONE TURN ON SWITCH IN LIST ENTRY SAMPLOT7S
000036 8756 (004 “00006 83 BXLE R5,R6,MORE LOOP THROUGH THE LIST SAMPLOT6
84 EDJ END OF PROGRAM, USER LIBRARY MACRO SAMPLOT7
85¢% 360N-CL-453 EOJ CHANGE LEVEL 2-0
00003A OAOE 86+ SVC 14
00003C 87 SWITCH DS X SAMPLOTS
000080 88 NONE EQU X'80° SAMPLOT9
89 ERERRRKEEEEEEERERE R R LKA R KR ARREEEEERR SRR SRS EE SRS RS SR RS E AL SR K4S SAMPLOBO
90 ¢ BINARY SEARCH ROUTINE * SAMPLOBIL
91 KEFEEEERREEEEKKEREXREESEE 5% SESXRRREREEEKEERRSEEE SAMPLOSB2
000030 00
00003E 947F CO3A 0003C 92 SEARCH NI SHWITCH, 255-NONE TURN OFF NOT FOUND SWITCH SAMPLOS3
000042 9813 CI1CA 001cCC 93 LM R1sR3,=F*128+4,128" LOAD TABLE PARAMETERS SAMPLOS84
000046 4111 COSE 00060 94 LA R1, TABLAREA-16(R1) GET ADDRESS OF MIDDLE ENTRY SAMPLO8S
00004A 8830 0001 00001 95 LOOP SRL R3,1 OLVIDE INCREMENT BY 2 SAMPLOB6
00004E DSO7 5000 1008 00000 00008 96 cec LNAME, TNAME COMPARE LIST ENTRY WITH TABLE ENTRY SAMPLOSB7
000054 4720 L0662 0006% 97 8H HIGHER BRANCH IF SHDOULD BE HIGHER IN TABLE SAMPLOSS
000058 O78E 98 BCR 8.R14 EXIT IF FOUND SAMPLO8Y
99 SR R1¢R3 OTHERWISE IT IS LOMER IN THE TABLE XSAMPLO90
machine instructions or assembled con- (:)This column contains the statement num-
stan@s. Machlpe 1nstruct19ns are print- ber. A plus sign (+) to the right of
ed in full with a blank inserted after the number indicates that the statement
every four digits (two bytes). Con- was generated as the result of macro-
stants may be only partially printed instruction processing.
(see the PRINT assembler instruction in

Assembler Instruction Statements).

This column contains the source program

. . statement. The following items apply to
These two columns contain effective this section of tne listing:
addresses (the result of adding together
a baie register value and displacement a. Source statements are 1listed,
value):

including those brought into the
program by the COPY assembler

1. The column headed ADDR1 contains the instruction, and macro-definitions
effective address for the first submitted with the main program
operand of an SS or an SI instruction. for assembly. Listing control

2. The column headed ADDR2 contains the ;2@2;2Ct§g§s thzrefolngingrlgzggz
effective address of the second PRINT is 1listed when PRINT ON is
gperand of any instruction referenc- in effect and a PRINT statement is
ing storage. encountered.

Both address fields contain six digits;

however, if the high order digit is a zero, b. Macro-definitions for system

it is not printed.

e 134

macro-instructions are not listed.

Form C24-3414-2,-3, 4
Page Added 4/26/67
By TNL N26-0536

EYAM SA4VLE DRQOGRAM PAGE 3
COC QBJECT CODE AJD1 ADDR2 STMT SOURCE STATEMENT DOS CL2-1 03/23/67
222254 1213 SO SUBTRACT INCREMENT SAMPLO91
332258 4620 €048 0004a 100 MORE BCT R2,LD3P LOOP & TIMES SAMPL092
&%& ERRADOR *«%
200060 %7F0 C25% 07954 101 B NATFOUND ARGUMENT [S NOT IN THE TABLE SAMPLO93
332354 1213 107 HIZHER AR R1,R3 ADD INCREMENT SAMPLO94
233056 4620 C04R 00044 103 BCT R2,LDDP L00P 4 TIMES SAMPLOSS
230354 9680 €034 00232 104 NITFOUND DI SWITCH, NONE TURN ON NOT FOUND SWITCH SAMPLO96
J2234% J7FE 105 B8R R1% EXIT SAMPLO9T
107 * SAMPLO99
108 = THIS IS THE TABLE SAMPL100
109 ¢ SAMPL101
330070 110 DS) SAMPL102
220373 2£77777000000000 111 TABLAREA OC XL810* SAMPL103
230378 £1D307CRC1474049 112 DC CLBYALPHA® SAMPL104
220533 07239757202370272 113 oC XL8'0" SAMPL105
320038 C2C5E32140424240 114 oC CLBYRETA® SAMPL106
203220 $202022233222200 115 pC XLB10* SAMPL107
377298 C42503E3C1604060 115 ocC CLB'DELTA* SAMPL108
A28 2007202920002002 117 e XL8*0* SAMPL109
31272489 £5D7E2CIN3IDSEN54? 118 DC CLB*EPSILON® SAMPL110
333082 80CC0729070000000 119 oC XL3eD" SAMPL111
790733 CSE3C14047604740 120 aC CLBYETA? SAMPL112
377007 0520200370000000 121 2 XL310°* SAMPL113
330008 C7C10404CL14C4040 122 e CL3*GAMMA®L SAMPL114
337300 2939202070002070 123 oC XL3'0* SAMPL11S
237208 £9D4AFAC1404042470 124 DC CL8*IOTAY SAMPL116
2792F3 0939320730990227 125 oC XL8'D* SAMPLLLT
327088 D2C19707C1404742 126 oc CL3*KAPPAY SAMPL11S
ACOTEI £200029922309229 127 oC XL8O* SAMPL119
330058 93717452067514%40 128 bl CLS*LAMBDA® SAMPL120
AZ£12D 2000309307009C20 129 DC XL8*0® SAMPL121
100128 362640426604247 130 bls CLB MU* SAMPL122
207113 2039599%923007029 131 bl XLBYOY SAMPL123
19011 ° ISE469604060404C 132 DC cL8NY? SAMPL124
370120 070C000022220002 133 o XL810* SAMPL125
370128 NANLNAC3IDINED5EN 134 oC CLB*OMICRON® SAMPL126
320130 S0424046240424040 135 nc cL3'0" SAMPLL27
231132 DTCBC940404040642 136 e CLB'PHI® SAMPL128
227140 2000007200700900 137 nC XL8 0" SAMPL129
AAATAR E2090774014064040 138 Y CLB*SIGMA* SAMPL130
213152 90I09C3997920990 139 1 XLB*O* SAMPL131
337153 EITSEIC14040406D 140 o CL8*ZETA® SAMPL132
141 * SAMPL133 -
142 * THIS IS THE LIST SAMPL134
143 * SAMPL13S
04N15 D2C1D4C2C4C 14040 144 LISTAREA DC CLB*LAMBDA® SAMPL136
000158 "4 145 oC X10A* SAMPL137
100169 007910 146 e FL3*29¢ SAMPL138
00015C 99250773 167 bC A{BEGIN}) SAMPL139
c. The statements generated as the format is: severity code, message
result of a macro-instruction fol- text.
low the macro-instruction in the
listing. g. The MNOTE * form of the MNOTE
statement results in an in-line
d. Assembler or machine instructions message only. An MNOTE indicator
in the source program that contain does not appear in the diagnostic
variable sympbols are listed twice: section of the listing.
as they appear in the source
input, and with values substituted h. When an error is found in a pro-
for the variable symbols. grammer macro-definition, it is
treated 1like any other assembly
e. Diagnostic messages are not listed error: the error indication
in-line in the source and object appears after the statement in
program section. An error indica- error, and a diagnostic is placed
tor, **+EKROR*¥#**, appears follow- in the 1list of diagnostics. How-
ing the statement in error. The ever, when an error is encountered
message appears in the diagnostic during the expansion of a macro-
section of the listing. instruction (system or programmer
defined), the error indication
f. HMNOTE messages are listed in-line appears in place of the erroneous
in the source and object program statement, Wwhich 1is not listed.
section. An MNOTE indicator The error indication appears fol-
appears in the diagnostic section lowing the last statement listed
of the listing. The MNOTE message before the erroneous statement was

e Appendix I 134.1

Form C24-3414-2,-3,-4
Page Added 4/26/67
By TNL N26-0536

EXAM SAMPLE PROGRAM PAGE 4
LOC O0OBJECT CODE ADDR1 AODDR2 STMT SOURCE STATEMENT D0S CL2-1 03/23/5%7
000170 E9C5E3[140404040 148 2C CLBTZETA" SAMPLL40
000178 0S5 149 oC Xt35¢ SAMPL14]
000179 D000DS 159 bC FL3*5* SAMPL142
00017C 00000044 151] AL{LOOP) SAMPL143
000180 E3C8C5E3C1404040 152 oC CL8*THETA® SAMPL] 44
000188 02 153 DC x*02°* SAMPL14S
000189 00002D 154 DC FL3%*45? SAMPLL46
J0018C 20000000 155 DcC A{BEGIN) SAMPL147
000130 E3C1F44040404040 155 3¢ CL3*TAVY" SAMPL148
n00198 00 157 nec xepo* SAMPL149
000199 000000 158 bc FL3%0" SAMPL150
00019C 00000001 159 (]9 Atl) SAMPLLS1
0001AO0 D3C9E2E340404040 150 oc CLBTYLIST® SAMPL1S2
2001A8 161 oC X*1G' SAMPL153
fxk ERROR X%
900148 0001C8 162 nC FL3'6456¢ SAMPLLS4
J0D1AB 00
9001AC 00000000 163 DC A(D) SAMPL155
500180 C1D3D7C8L1404040 154 LISTEND DC CLB*ALPHA®" SAMPLLSH
200188 00 165 oc X100° SAMPL1S7
000189 000001 156 oC FL3*1* SAMPL1S8
00013C 00000078 157 DeC Al123) SAMPL159
168 * SAMPL160
169 * THESE ARE THE SYMBOLIC REGISTERS SAMPL161
170 * SAMPL162
000001 171 R1 EQU 1 SAMPLL163
000002 172 R2 EQU 2 SAMPL1 64
000003 173 R3 EQU 3 SAMPL165
000005 174 RS EQU 5 SAMPL166
000006 175 RS EQU 5 SAMPLLG7
000007 176 R7 EQU 7 SAMPL168
Q0000C 177 R12 EQU 12 SAMPL169
00000F 178 RlG €QU 14 SAMPLL1 70
179 * SAMPLLT1
189 * THIS IS THE FJIRMAT DEFINITION OF LIST ENTRIES SAMPLLT2
181 = SAMPLLT73
000000 182 LIST DSECT SAMPL1T4
000000 183 LNAME 2S ciLs SAMPL175
000008 184 LSWITCH 9IS c SAMPL176
000009 185 LNUMBER DS FL3 SAMPL1TT
00000C 186 LADDRESS DS F SAMPL1T8
187 * SAMPL1T9
188 ¥ THIS IS FORMAT DEFINITION OF TABLE ENTRIES SAMPL18B0O
189 & SAMPL181
000000 190 TABLE DSECY SAMPL182
00Q000 131 TNUMBER 23S EL3 SAMPLL B3
000003 192 TSWITCH 0S c : SAMPL184
000004 193 VYADDRESS DS F SAMPL18S
000008 194 TNAME oS cLs SAMPL186
000000 195 END BESIN SAMPL187
0001CO 00D0016000000010 196 =A(LISTAREA,16,LISTEND)
0001CC 0000008000000004 197 =F*128,4%,128*
encountered, and the associated m. For LTORG and ORG statements, the
diagnostic message 1is placed in location field contalns.the loca-
the list of diagnostics. tion assigned to the literal pool
or the value of the ORG operand.
i. Literals will appear in the listing n. For an EQU statement the location

following an LTORG or the END

statement or both. Literals are

identified by the equals (=) sign o. Generated statements always print

preceding them. in normal statement format. Be-
cause of this, it is possible for
a generated statement to occupy

field contains the value assigned.

j. If the END statement contains an two or more continuation lines on
operand, the transfer address the listing. This is unlike
appears 1in the location column source statements which are re-
(LoC) . stricted to one continuation line.

k. In the case of COM, CSECT, gnd C:)This field indicates the assembler level
D?ECT state@ents, the lo§at}on and version number, e.g., DOS CL2-1 i
field contains the beglnplng reads as DOS assembler level 2, version
address of these control sections 1.

i.e., the first occurrence.
! Current date obtained from SET card.

1. For a USING statement, the loca-

tion field contains the value of (:)Identification-sequence field from the
the first operand. source statement.

e 134.2

Form C24-3414-2,-3,-4
Page Added 4/26/67
By TNL N26-0536

. RELOCATION DICTIONARY . PAGE 1
POS.ID REL.ID FLAGS ADDRESS
01 01 oc 00016C
o1 21 oc 00017¢C
01 o1 oc 00018C
ot 01 oc 0001C0
ot o1 oc 0001C8
RELOCATION DICTIONARY First Digit -- a zero indicates that the

This section of the listing contains the
relocation dictionary information passed to
the 1linkage editor 1in the object module.
The entries describe the address constants

in the assembled program that are affected

by relocation.

This column contains the external symbol
dictionary ID number assigned to the ESD
entry that describes the control section
in which the address constant is used as
an operand.

This column contains the external symbol
dictionary ID number assigned to the ESD
entry that describes the control section
in which the referenced symbol is
defined.

The two-digit hexadecimal number in this
colunn is interpreted as follows:

entry describes an A-type,
a Y-type, or a CCW address
constant.

~-- a one indicates that the
entry describes a V-type
address constant.

Second Digit -- the first three bits of
this digit indicate the
length and sign of the
address constant as fol-

lows:

Bits 0 and 1 Bit 2
00 = 1 byte 0=+
01 = 2 bytes 1=-
10 = 3 bytes

11 = 4 bytes

This column contains the assembled
address of the field where the address
constant is stored.

e Appendix I 134.3

Form C24-3414-2,-3,-4
Page Added 4/26/67
By TNL N26-0536

CROSS-REFERENCE

@ 6 6

SYMBOL LEN VALUE DEFN

BEGIN 0p0NN2 000000 0057 0147 0155 0195
HIGHER 00002 000064 0102 0097

LADDRESS 00004 000000 0186 0075 0078

LISY 00001 030000 0182 0060

LISTAREA 00008 000160 0144 0059 0196
LISTEND 00008 0001B0 0164 0059 0196

LNAME 00008 000000 0183 0096

LNUMBER 00003 000009 0185 0072

LDOP 00004 92004A 0095 2100 0103 9151
LSWITCH 00001 020008 0184 0768 17082

MQORE 00004 000006 0061 0080 0083

MORE 00004 000006 0100

NONF 000Nt 020280 0088 0062 2082 0092 92104

NOTFOUND 00004 0000N6A 0104 0101
NOTTHERE 20004 0020032 0082 0063

SEARCH 00004 HDO0O3E 0092 0056 0061
SWITCH 20001 00003C 0087 0062 0292 D104
TABLAREA 020298 000070 0Otl1l 0094

TABLE 00001 £00N0ND 0190 0064

TADDRESS 00004 003004 0193 0076 0079

TNAME 00008 0OONDE 0194 0096

TNUMBER 00N03 NO00DC 0191 0072

TSWITCH 00001 037003 0192 0068

/1. 03001 020001 0171 0064 0093 0094 0094 0099 0122
R12 00001 297000C 0177 0057 0058

R14 00001 O00NNE 0178 0061 0098 90105

R2 00001 530002 2172 0100 0103

R3 0C001 200003 0173 0093 0095 90099 D102

RS 20001 200005 0174 0059 0060 2080 0083

RS 00001 0932026 0175 0080 0783

RT 90001 0N000T 0176 0059

PAGE 1

CROSS—-REFERENCE

This section of the listing information
concerns symbols -- where they are defined
and used in the program.

(:)This column contains the symbols.

This column states the 1length (decimal
notation), in bytes, of the field occu-
pied by the symbol value.

This column contains either the address
the symbol represents, or a value to
which the symbol is equated.

(:>'rnis column contains the statement num-

e 134.4

ber of the statement in which the symbol
was defined.

This column contains the statement num-
bers of statements in which the symbol
appears as an operand.

The following notes apply to the cross-

referencing section:

Symbols appearing in V-type address
constants do not appear in the cross-
reference listing.

A PRINT OFF listing control instruction
does not affect the production of the
cross-reference section of the listing.

Undefined symbols appear in the cross-
reference section. However, only the
symbol column and the reference column
have entries.

Page C24-3414-2, -3, -4
Page Added 4/26/67
By TNL N26-0536

Exam DIAGNOSTICS PAGE 1
STNT SRROR CODE MESSAGE
£l 132073 ILLEGAL NAME FIELD
55 130953 UNDEFINED SEQUENCE SYMBOL
66 110037 MNOTE STATEMENT
70 112737 MNOTE STATEMENT
81 1100RR UNDEFINED OPERATION CODE
100 12023 PREVIOUSLY DEFINED NAME
161 133030 INVALID DELIMITER
> STATEMENTS FLASGED IN THIS ASSEMBLY
DIAGNOSTICS TJQOxxxX
150 s . .
This section contains the diagnostic identifies the issuing agent as DOS/
messages issued as a result of error TOS assembler
conditions encountered in the program.
XXX

Explanatory notes for each message are
contained in Appendix K.

This column contains the number of the
statement in error.

This column contains the message iden-
tifier.

This column contains the message.

The following
nostics section:

notes apply to the diag-

e An MNOTE indicatcr of the form MNOTE
STATEMENT appears 'in the diagnostic
section, if an MNOTE statement is
issued by a macro-instruction. The
VNOTE statement itself is in-line in
the source and object program section
of the listing.

e A message identifier consists of six
characters and is of the form:

is a unique number assigned to the
message.

e Two statistical messages may appear in

the listing.

NO

They are:

A message indicating the total number
of statements in error. If no state-
ments are in error, the message

STATEMENTS FLAGGED IN THIS ASSEMBLY

is printed following the Cross-Reference
section and no diagnostic section is
printed.

A message if one or more Y-type address
constants appear in the program.

AT LEAST ONE RELOCATABLE Y-TYPE
CONSTANT IN ASSEMBLY.

This message if issued, appears before
the diagnostic section.

e Appendix I 134.5

Features not shown below are common to all assemblers. In the chart:

Dash = Not allowed.
X = As defined in Operating System/360 Assembler Language Manual .
Model 20 llz.:ig(:umming ;090/7094 BPS 8K Tape,
Feature Basic Sup-porf/360: P:Zﬁ;te BOS 8K Disk REZ:’;JSSS 2sss£ii?er
Assembier | Basic Assembler Assemblers
Assembler
No. of Continuation Cards/Statement 0 0 0 1 1 2
(exclusive of macro-instructions)
Input Character Code EBCDIC EBCDIC BCD & EBCDIC| EBCDIC EBCDIC EBCDIC
ELEMENTS:
Maximum Characters per symbol 4 -] 6 8 8 8
Character self-defining terms 1 Char.only] 1 Char.only | X X X X
Binary self-defining terms - - -~ - - X X X
Length aftribute reference - - -- - - X X X
Literals - - - - - - X X X
Extended mnemonics - - - - X X X X
Maximum Location Counter value 241 216 2243 224 224 | 224
Multiple Control Sections per assembly - - - - - - X X X
EXPRESSIONS:
Operators + - + =% +-*/ +-*/ + -/ + -/
Number of terms 3 3 16 3 16 16
Levels of parentheses - - - - - - 1 5 5
Complex relocatability - - - - - - X X X
ASSEMBLER INSTRUCTIONS:
DC and DS
Expressions allowed as modifiers - - -- - - - - X X
Multiple operands - - -~ - - - - -- X
Multiple constants in an operand - - -- - - Except X X
Address
Consts.
Bit length specifications - - - - - - - - - - X
Scale modifier -- - - - - X X X
Exponent Modifier - - - - - X X X
DC types Only Except Except X X X
C, X, B,P,Z B, V
H, Y V.Y, S
DC duplication factor Except Y Except A X Except § X X
Appendix J 135

Basic

Model 20 | Programming 2390/:,094 BPS 8K Tape, DOS, TOS 05/360
Feature Basic Support/360: PGZEO - BOS 8K Disk As "bl Assembler
Assembler | Basic °9 Assemblers semblers
Assembler
Assembler
DC duplication factor of zero Except Y - - - - Except § X X
DC length modifier Except Except X X X X
H, Y H, E, D
"Only Only C, Only C,
DS types H, C H, F, D H, F, D X X X
DS length modifer Only C Only C Only C X X X
DS maximum length modifier 256 256 256 256 65,535 65,535
DS constant subfield permitted - - - - - - X X X
corY - - - - - - -- X X
CSECT -- -- - - X X X
DSECT - - -- X X X
1SEQ - - - - - - X X X
LTORG - - - - - - X X X
PRINT - - - - -- X X X
TITLE - - - - X X X X
COM - - - - - - - - X X
ICTL -- 1 operand 1 operand X X X
(Tor25
only)
- USING 2 operands 2 operands | 2-17 operands| 6 operands X X
(operand 1 (operand 1 | (operand 1
relocatable:| relocatable | relocatable
only) only) only)
DROP 1 operand 1 operand X 5 operands X X
only only
ccw - operand 2 X X X X
(relocatable
only)
ORG no blank no blank no blank X X X
operand operand operand
ENTRY 1 operand 1 operand 1 operand 1 operand X X
only only only only
EXTRN 1 operand 1 operand 1 operand 1 operand X X
only only (max 14)] only only
CNOP -- 2 decimal 2 decimal 2d | X X
digits digits digits
PUNCH -- -- -- X X X
REPRO -~ -- - X X X
Macro Instructions S/360 -- -- X X X
Model 20
10CS only

136

BPS 8K Tape,

Macro Facility Features BOS 8K Disk DOS, 10S zs/%b?
Assemblers Assemblers semuler

Operand Sublists - - X X
Attributes of macro-instruction operands inside macro definitions and symbols used in - - X X
conditional assembly instructions outside macro definitions.

Subscripted SET symbols : - - X X
Maximum number of operands 49 100 200
Conditional assembly instructions outside macro definitions - - X X

Maximum number of SET symbols

global SETA 16 *
global SETB 128 *
global SETC 16 *
local SETA 16 *
local SETB 128 *
local SETC 0 *

*The number of SET symbols permitted by the Disk and Tape Operating Systems Assemblers and the Operating
System Assembler is variable, dependent upon the available main storage.

Note: The maximum size of a character expression is 127 in DOS and TOS and 255 characters in OS.

Appendix J 137

APPENDIX K: ASSEMBLING A PROGRAM

Figure 1 lists the control cards necessary to assemble a program. The card groups are
listed in the order in which they must appear. All job control cards enter the system

via SYSRDR, all others via SYSIPT. The same device may be assigned for both SYSRDR and
SYSIPT. If this device is a disk file, the combined file must be designated as SYSIN.

Job Control statements are described in the publications: IBM System/360 Disk Operating
System, System Control and System Service Programs or IBM System/360 Tape Operating System,
System Control and System Service Programs. The form numbers are listed in the preface.

B T T -=1
| Card Group jCard Arrangement | Comments }
1 L i - {
¥ 1 T
| Job Control }7/ JOB |First card in group, always |
| } | required. |
| |
|77 ASSGN SYSS1LB,.. |Tape system only. Used when |
} | | the source statement library |
| | | 1is on a separate tape. i
77 ASSGN SYSIPT,..	Source program input
1	/7 ASSGN SYSLST,..
	1 i
7/ ASSGN SYS001,...	}
77 ASSGN SYS002,...1 Work files	
177 ASSGN SYS003,... 1)	
1	
7/ BSSGN SYSPCH,..	Required except when
i	
]] specified.	
	1
	7/ ASSGN SYSLNK,..
} {7/ OPTION DECK,...	Optional. Used to indicate
	7/ EXEC ASSEMBLY
b Y 1 3	
[3 T ==7 1	
{Assembler	Source Deck
Input	
] } tions).	
I ! | i
i |7* |Indicates end-of-data set]
1 1 | |
—— } } -
jJob Control j78& }End of job statement |
L i i i

NOTE 1: Only those assignments and options not already in effect are required.

NOTE 2: Assignments for SYSIN and/or SYSOUT must be accomplished by permanent assign-
ments. For details see the publications for DOS and TOS system control and system ser—
vice programs (see preface).

Figure 1. Card Input for an Assembly

138

Symbolic Unit |

SYSRDR
(Required if the SYSIN op-
Irion is not used)

SYSIPT
(Required if the SYSIN op~
tion is not used)

SYSIN
I(Required for combined
disk input. Optional for
Icombined card or tope
input)

v — —

'(Required if the SYSOUT
option is not used)

b —

Form C24-3414-2,-3,-4
Page Revised 4/26/67
By TNL N26-0536

—— o —— s —— — — — — ——— —— —— ———— ———y

Function aond Device
Job control statement input device. May be the same device as SYSIPT except for combined input from IBM 2311 Disk Storage
(see SYSIN),
IBM 1442, 2520, or 2540 Card Read Punch, IBM 2501 Card Reader, IBM 2400-series Magnetic Tape Unit, or IBM 2311 Disk Storage!
Drive for the disk system.

Source program input device. May be the same device as SYSRDR except for combined input from IBM 2311 Disk Storage (see l
SYSIN).

1BM 1442, 2520, or 2540 Card Read Punch, IBM 2501 Card Reader, IBM 2400-series Magnetic Tape Unit (7- or 9-track), or I
1BM 2311 Disk Storage Drive for the disk system. [f the Data Conversion feature was used to prepare the 7-track tape, it must
also be used to read the tape. The tape or disk records must be 80-byte unblocked records.

Used for a combined input file for SYSRDR and SYSIPT,

IBM 1442, 2520, or 2540 Card Read Punch, IBM 2501 Card Reader, IBM 2400-series Magnetic Tape Unit, or IBM 2311 Disk Sforugel
Drive for the disk system.

SYSIN can be used in lieu of the SYSRDR and SYSIPT designation when the file is card or tape input. It must be used when the |
file is disk input (disk system only).

Program listing device. I

1BM 1403, 1404 (continuous forms only), or 1443 Printer. IBM 2400-series Magnetic Tape Unit (9-track, or 7-track with or with-
out the Data Conversion feature) or IBM 2311 Disk Storage Drive for the disk system.

Listing on tape or disk appears as 121-character print images (a single forms-control byte followed by a 120-character line image).

Object program output device.

18BM 1442, 2520, or 2540 Card Read Punch. [BM 2400-series Magnetic Tape Unit (9-track, or 7-track with the Data Conversion
feature), or IBM 2311 Disk Storage Drive for the disk system.

Output on tape or disk is in 81-byte unblocked records.

Not used when the Assemble-and-Execute or the NODECK option is specified. _I

Used for a combined output file for SYSLST and SYSPCH to a single tape unit.

| (Optional) IBM 2400-series Magnetic Tape Unit (9-track, or 7-track with the Data Conversion feature). J
SYSLNK Used for temporary storage of assembler output. Required only when the Assemble-and-Execute option is ipecified. I

I(Opﬁonul) IBM 2400-series Magnetic Tape Unit (9-track, or 7-track with the Data Conversion feature) for the tape system or IBM 2311 Disk

Storage Drive for the disk system. This extent may be on the some device that contains the DOS resident system.

|_ SYS001 Used for temporary work area during assembly.

I SYS002 IBM 2400-series Magnetic Tape Unit (9-track, or 7-track with the Data Conversion feature) for either the tape or disk systems or
SYS003 three IBM 2311 Disk Storage Drives for the disk system. These extents may be on the same device that contains the DOS resi-

I (Required) dent system. I

For details of work file assignment see the publication for DOS system generation (see preface).
I- SYSSLB Used for the source statement library for the tape system only. _|
(Optional) | IBM 2400-series Magnetic Tape Unit.

SYSRLB Used for the relocatable library for the tape system only. —1

'(Opﬁonal) |

IBM 2400-series Magnetic Tape Unit. I

NOTE: The 2311 can be used for one or more of the symbolic units SYSRDR, SYSIPT, SYSIN, SYSPCH, or SYSLST only if a supervisor has been SYSGEN‘d
that can accomodate input from disk storage or output to disk storage for these units. For details see the DOS system generation manual (see preface)

Figure 2. Device Assignments

—1

[T\put and Output Using an IBM 1442 or 2520 Card Read Punch: Whenever an 1BM 1442 or 2520 Card Read Punch is assigned to SYSRDR, SYSIPT, or SYSIN and also |
i to SYSPCH, a number of blank cards sufficient for punching the output deck must follow the /* card which follows the assembler END statement in the source |
deck. This is to prevent erroneously punching the cards of @ following job step. Any extra cards that are not needed are automatically bypassed. 1

®Figure 3. Operating Considerations

Appendix K 139

An assembler variant suiting the System/360
configuration and the core storage avail-
able can be selected by the programmer.
Figure 3.1 shows the Job Control cards re-
quired to bring a particular assembler
variant from the Relocatable Library into
the Core Image Library. Figure 3.2 shows
the valid assembler variant names. The
variant is then loaded into core with the
Job Control cards listed in Figure 1.

// JOB CONDENSE

// EXEC MAINT
DELETC ASSE.ALL > This job not needed in TOS
CONDS CL

/&

// JOB LINKASM

// OPTION CATAL
INCLUDE name*
// EXEC LNKEDT

/&

* ‘name’ selected from those listed in Figure 3.2.

Card Input for Selecting
Assembler Variant

Figure 3.1.

Variants IJQT16, IJQD16TW, and IJQD16DW
must be used if the assembler is to be run

140

in less than 14K of available core. Vari-
ants IJQT32 and IJQD32 may be used if avail-
able core is never less than 14K. IJQT32
and IJQD32 are generally faster because they
have text I/0 buffering and can use the
additional core to build larger symbol
tables. The difference in speed varies with
both the amount of additional core and the
number of symbols in the assembly.

Thus, if the assembly has few symbols or
if only a small amount of additional core
is available to a larger variant, the larger
and smaller variants will be nearly equal in
speed.

Name System Work Files! Minimum Core?
1JQD16DW DOS Disk 10, 240
1JQD16TW DOS Tape 10, 240
1JQD32 DOS Mixed 14,336
LJQT16 TOS Tape 10,240
1JQT32 TOS Tape 14,336

1. Mixed work files mean any combination of 2400-series
tapes and/or 2311 disk extents for SYSO01, SYS002, and
SYS003. In general, the assembler uses SYS001 and
SYS002 as serial files and SYSO03 as a random access
file.

2. Minimum core refers to the minimum number of contigu-
ous bytes necessary for the particulor assembler variant
to function correctly.

Figure 3.2. Assembler Variants

Note:

/ -~
Broken lines indicate N
where the Assembler m \
input would be placed (/ 7N
if SYSIPT were the ~ I \\
same unit as SYSRDR. {// EXEC ASSEMBLY \ J
ASSGN SYSRLB,..] [*— ——————=-a
Optional {/ / SYSRL 7 ('_ \ _/ _
{// ASSGN SYSSLB,... / | E svsiN
~(// ASSGN SYSPCH, . .. / [I (Optional)
{7/ ASSGN SYS003,... padll
(// ASSGN 5Y5002, ... /
(// ASSGN sYS001, . .. /
Optional =={// ASSGN SYSLNK,... /
(// ASSGN SYSLST, ... /
{// ASSGN SYSIPT, ... / N
Optional =={// OPTION ... / e \
7/ JOB)
/ /
SYSRDR yA -
—— —_ J
/ \ 7 AN
/ | / \
/ \ S
\ ource
\ -~ ~ 4 Statements
SYSRLB SYSSLB
SYSIPT
7=
—_— / \\
Ve { J
\\._4{_
Sysh SYSOUT
Tope | 7 (Optional)
System /360 SYSLST
Ve
/
[}
[—\--'l /
v
r‘— ——
[
TN SYS001 SYSPCH
SYSLOG / \ SYS002 (Optional)
() SY 5003
/
N —= — SYSLNK
(Optional)
Figure 4. I/O Units Used by the Tape Assembler Program

Appendix K 141

Note: /7 \
Broken lines indicate L " |
where the Assembler {/& ’ |
input would be placed 0 LS —— -7
if SYSIPT were the Optional / EXEC ASSEMBLY -
same unit as SYSRDR. // ASSGN SYSPCH, . .. -
If SYSIPT and 7
SYSRDR are the same {// ASSGN 5YS003, .. /
disk unit, they must be o /
combined file assigned {// ASSGN 5YS002,.. . /
as SYSIN. /
Optional (// ASSGN SYS001, ... /
\0/ ASSGN SYSLNK, ..)/
{7/ AssGN systs, ... / =y
— —— A
Optional [/ AssaN sysier, .. .)/ K t\‘\ -
// OPTION ... // !) :
/
// JOB ... / e
/ .
|Assembler End Card
SYSRDR
Source
Statements
———
~N
// -= \r\\ —_——— /I
\ |
]
5 L
System System/360 /l_\ -
Pack SYSLST

Three
Disk

Extents

S
RN I
1\ sYs001
= ./ !svysom
SYSLNK ~z=—_7 $Ys003
(Optional) —-—

SYSLOG 4

Figure 4.1. I/O Units Used by the Disk Assembler Program

Appendix K 141A

-~
7N
,/____-_L_-l /l
{umbe T
4T e
| |
L ,,lsvsm

T

(Required if SYSRDR
and SYSIPT are a
combined disk file.
Optional if SYSRDR
and SYSIPT are a
combined card or
tape file.)

N~

SYSOUT
(Optional)

Figure 5 lists the card groups that make up the output deck produced by the assembler.
The groups are listed in the order in which they appear in the output deck. Note: No
output deck will be produced when NODECK appears in the OPTION card.

Figure 6 gives the format of assembler output cards.

Card Group Remarks

!
}Reproduced Cards These reproduced cards result

1 from REPRO or PUNCH instructions
i located before START.

l
| Symbol Table (SYM) Produced when SYM appears in the
} OPTION card.

|
|External Symbol Dictionary
| (BSD)

Consists of text (TXT) and
reproduced cards. The repro-
duced cards result from REPRO
or PUNCH instructions located
after START.

jProblem Program

S s e B (s, T iy ST et W g, W G . SO it sl e]

Relocation Dictionary (RLD)|Produced if relocatable constants
} are present.

]
END Card } Produced as the last card of the
} output deck.

-

Object Deck Identification

JThe 4-character assembly identification label punched into

j the name entry of the first TITLE card in the source program
lis punched into columns 73-76 of each record im the object
|deck. If there is no label, these columns are left blank.

. " Y A et Gt St B G Ao it S

t
{Object Deck Seguencing Numbering
|

|An assembler-generated sequence number is punched into
jcolumns 77-80 of each card in the object deck.
1

U s qpms s s gl s s, Gt it S e D D gy, S it D s S g, D ey Sl D i, SO iy WS e, S e, S St Y e 0

Figure 5. Assembler Output Deck

142

The information in each card is in Extended Binary Coded Decimal Interchange Code.

T -
Columns |Punched |
e 1
ESD Card |
Tm===- -4
1 {Multiple punch (12-2-9). Iden-
|tifies this as a loader card.
|
2-4 | ESD--External Symbol Dictionary
| card.
|
11-12 |Number of bytes of information
|contained in this card.
|
15-16 |External symbol identification
|number (ESID) of the first SD,
|PC, or ER on this card. Relates
|the Sp, PC, or ER to a particu-

|

17-72 |variable information.
] 8 positions. Name.
| 1 position. Type code to
|indicate sb, PC, LD, or ER.
| 3 positions. Assembled
|origin.
| 1 position. Blank.
| 3 positions. Control section
|length, if an 3D-type or a PC-
jtype. If an LD-type, this field

— s S S e St S s it S S S — —— —— S {——A— ettt S P ot Gt et

|contains the external symbol
{identification number (ESID) of
|the SD or PC containing the
|1label.

73-76 |Program identification taken
|from the name field of the first

r
|

}

]

b

|

|

|

|

|

|

|

]

|

|

|

|

|

| |1ar control section.
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| |TITLE statement.
|
|

|
|
|
|
|
|
|
|
|
|
]
| TXT Card |
b T {
| 1 |Multiple punch (12-2-9). 1
) |]Identifies this as a loader |
| jcari. |
| | |
] 2-4 | TXT--Text card.]
| l
|] 6-8 |Assembled origin (address of]
| |first byte to be loaded from |
| jthis card).]
11-12	Number of bytes of text to be
	1o0aded.
15-16	External symbol identification
	number (ESID) of the controsl
	section (SD) containing the
jtext.	
17-72	Up to 56 bytes of text--data or
	instructions to be loaded.
A e —————— B	

Figure 6. Format of Assembler Output Cards

v) b]
| Columns |Punched |
F + .|
| 73-76 |Program identification taken i
	from the name field of the first
	TITLE statement.
77-80	Sequence number.
L 1L]	
L 3 1	
RLD Card	
F T i	
] 1	Multiple punch (12-2-9).
]	
2-u4	RLD--Relocation Dictionary card.
]	
] 11-12	Number of bytes of information
	contained in the card.
]	
17-72	Variable information (multiple
]	items).
	2 positions. Pointer to the
	relocation factor of the con-]
	tents of the load constant.]
	2 positions. Pointer to the
	relocation factor of the control}
	sections in which the load con-
	stant occurs.
	1 position. Flag indicating
Jtype of constant.	
	3 positions. Assembled }
	address of load constant.
73-76	Program identification taken
Jfrom the name field of the first]	
	TITLE statement.
77-80	Sequence number.
F L !	
END Card	
fmm=mm =g m e	
I 1	Multiple punch (12-2-9).
I	
2-4	END }
]
6-8	Assembled origin of the label
	supplied to the Assembler in the
JEND card (optional).	
]	
15-16	ESID number of the control sec-
jtion to which this END card	

	refers.
17-22	Symbolic label supplied to the
	Assembler if this label was not
	defined within the assembly. }
73-76	Program identification taken
	from the name field of the first
]TITLE statement.	
77-80	Sequence number.
R, S 1	

BAppendix K 143

Form C24-3414-2,-3,-4
Page Deleted 4/26/67
By TNL N26-0536

luy

DIAGNOSTIC ERROR MESSAGES

Diagnostic error messages are printed fol- has the form IJQnnn, where nnn is the actual
lowing the cross reference listing, in message number. Figure 7 lists the diag-
statement number order. The message code nostic messages and their error codes.
T
Hessage! i
code |Message Meaning
1JQ001 jDUPLICATION FACTOR ERROR Duplication factor:

la. is zero in a literal.
b. is not a positive abso-
lute expression.

|
RELOCATABLE DUPLICATION FACTOR |Duplication factor is relo-

| register is greater
than 15.

2. 044 register is speci-
fied where an even

register is required. |

———— —

4) |
{ |
| |
1 d
L] 1
1 |
] | |
]I3Q002	
} } catable.	
I3Q003	LENGTH ERROR 1. Out of permissible
i }2. Invalid specification.	
} 130004	RELOCATABLE LENGTH Length is relocatable.]
] I3Q005	S-TYPE CONSTANT IN LITERAL S-type constant in literal.
]	
{ 130006	INVALID ORIGIN]Location counter has been
Jreset to a value less than	
i i	the starting address of the
§ control section.	
] i	
{I30007	LOCATION COUNTER ERROR Location Counter has
jexceeded 231-1.	
]] 1	
]13Q008	INVALID DISPLACEMENT
	address is not within
) § 0-4095.	
} IJQ009	MISSING OPERAND Operand is missing.
} 100010	INCORRECT REGISTER SPECIFICATION
] !	

|

|

|

|

|

| |
I3Q011 |SCALE MODIFIER ERROR |Scale modifier is:
a. too large.
b. not an absolute expres-

ja. out of range.
b. not specified as an
absolute expression.

} i sion.
| {
130012 |RELOCATABLE SCALE MODIFIER Scale modifier is relocata-

} {ble.

i |

113Q013 |EXPONENT MODIFIER ERROR Exponent is:
|
|
|
Iy

1

Figure 7. Assembler Diagnostic Error Messages (part 1 of 10)

aAppendix X 143

k)
Messagel

Code |Message Meaning
]

JO-FOR—

1 3
I1JQ014% |RELOCATABLE EXPONENT MODIFIER |Exponent modifier is reloca-
| table.

— s o

|
INVALID LITERAL USAGE |A valid literal is used ille-
|gally, e.g., specifies a
|receiving field or a reg-
ister.

1JQ015

13Q016 |INVALID NAME Name entry incorrectly speci

fied —

a. contains more than 8

{ characters.

|{b. does not begin with a
letter.

¢. has a special character

| imbedded.

|
DATA ITEM TOO LARGE | The constant is too large
| for:
{a. the data type.
|b. the explicit length.

13J3Q017

]
INVALID SYMBOL | The symbol specification is
}invalid, e.g., longer than 8

|
|
I
| characters. |
|
|
I
|

]
|
i
I
!
!
|
I
|
I
I
|
I
|
I
!
|
|
I
I
I
I
|
130018
I

1
EXTERNAL NAME ERROR }1. Identical name entry
in a CSECT and a DSECT
statement.
Identical operands in one}
or more EXTRN statements.

g
©Q
(=]
ford
o

Dl T X e R R R ———

N
.

Immediate field data:

is greater than 255.
requires more than 1 byte
of storage.

is not an acceptable type

1J0020 ,INVALID IMMEDIATE FIELD

oo

Q

lIJQOZl | SYMBOL NOT PREVIOUSLY DEFINED
| |

At least one symbol in a
critical expression has not
Jbeen previously defined.

— —— S—— ——— — ——— — V" oo——— dn—

|
1JQ022 |ESD TABLE OVERFLOW | The total number of control
| |sections, dummy sections, and
junique symbols in EXTRN
|statements and V-type con-
| | stants exceeds 255.

|
13Q023 | PREVIOUSLY DEFINED NAME |The symbol in the name entry
|has appeared in the name
jentry of a previous state-
jment.
1

s ot it o G S S—— Y —— ———— . S

o oot e S gt it —
e

Figure 7. Assembler Diagnostic Error Messages (part 2 of 10)

146

v
Message]

Code |Message
B N

e i e s A > o e o b

T

|

| Meaning

T
1JQ024 |UNDEFINED SYMBOL

|
1J3Q025 |RELOCATABILITY ERROR

IJQ026 |TOO MANY LEVELS OF
| PARENTHESES

]
IJQ027 |TOO MANY TERMS

P e S s S e S i . A (i O o SO G, G S T et S S S St . S D, T . S s, St WSl W e St ey S i, Bt st i T g S S, W St WO s S o S Uy

]
[}

{
1J0028 |REGISTER NOT USED
|
1J0028 |CCW ERROR
l
1JQ030 | INVALID CNOP
|
1JQ031 |UNKNOWN TYPE
#
130032 |OP-CODE NOT ALLOWED TO
| BE GENERATED
|
|'
130033 |ALIGNMENT ERROR
I
{
130034 |INVALID OP-CODE
|
I
|
IJQ035 |ADDRESSABILITY ERROR
}
130036 |NO OPERAND ALLOWED
|
130037 |MNOTE STATEMENT
I
|
|
L

$--—-

|A symbol being referenced has not
|been defined in the program.

1. A relocatable or complex
relocatable expression is speci-
fied where an absolute expres-
sion is required.

|Expression specifies more than
|5 levels of parentheses.

| More than 16 terms specified in an
|expression.

|

|A register specified in a DROP

| statement is not currently in use.

|
|Bits 37-39 of the Channel Command
|Word are set to nonzero.

|Invalid range

|

| Incorrect type designation in a DC,
|DS, or literal.

|Operation code allowed only in

| source statement has been obtained
| through substitution of a value

| for a variable symbol.

|Referenced address is not aligned to
| the proper boundary for this
|instruction.

|

|Invalid operation code:

|a. More than eight characters.

|b. Operation entry not followed by
| a blank on same card.

i

|The referenced address is not within
{the range of a USING instruction.

I

|Operand found for an operation

|code which does not allow operands.

%An MNOTE statement has been generat-
|]ed from a macro definition. The
|text and severity code of the MNOTE
|statement is in-line in the listing.
i

e et v i, S s S ey S ey o i, o S G, e G . e A il T, S b e e et e S e M e W . i, O . S ot A et W e, G, e, et S sttt O e s, S asssien i}

Figure 7. Aassembler Diagnostic Error Messages (part 3 of 10)

Appendix K

147

| y-TYPE CONSTANT IN
| ASSEMBLY

IIJQ047 | SEQUENCE SYMBOL

I stants in assembly; relocation may
lresult in address greater than 2
|bytes in length.

1

| Sequence symbol previously

¥ T T -1
| Message| | |
| code |[Message | Meaning |
4 + t : 4
{13Q038 |ENTRY ERROR]1. More than 100 ENTRY operands]
i | i in this program. i
} i }|2. A symbol in the ENTRY operand: |
1 | i a. appears in more than one }
| | | ENTRY statement. I
} | | b. is undefined. |
| } { c. 1is defined in a dummy sec- |
| n | tion.]
| |] d. is defined in blank common. |
| } | e. 1is equated to a symbol i
| } | defined by an EXTRN state- |
Lo | e |
]IJQ039 |INVALID DELIMITER }Any syntax error, e.g., character {
|] | invalid at point encountered in 1
i | left-to-right scan, missing or {
[jillegal delimiter. §
| |
IJQO406 |STATEMENT TOO LONG |Record has more than 187 characters.}
% #

IJQ041 |UNDECLARED VARIABLE jvariable symbol is not declared |
SYMBOL }in a define SET symbol statement or |

| | }]in a macro prototype. |
| | |

IJQ042 |SINSLE TERM LOGICAL {Single term logical expression |
| | EXPRESSION IS NOT A lis not a SETB symbol. |
i | SEFTB SYMBOL i |
| | i |
}IJQO43 |SET SYMBOL PREVIOUSLY |[SET symbol previously defined. i
| | DEFINED i i
| | |
JI3JQ044 | VARIABLE SYMBOL |A SET symbol has been declared as: |
} } SUBSCRIPT EXCEEDS 11. undimensioned but it is |
| | THE DECLARED | subscripted. |
| | DIMENSION 2. subscripted but it is]
| | { undimensioned. |
| | |]
j{I3Q045 |ILLEGAL SYMBOLIC |Attribute requested for a |
1 | PARAMETER jvariable symbol which is not a sym- |
| | | bolic parameter - \
| ' |
|IJQ046 'AT LEAST 1 RELOCATABLE lOne or more relocatable Y-type con- I
| l
1 |
|

|

_J

L- _lPREVIOUSLY DEFINED

Figure 7.

148

" — — — —— — — g— —

_Ldeflned.

—— —— — — — — a— — —— — ——— —— — —

Assembler Diagnostic Error Messages (part 4 of 10)

Meaning

snds st e

defined.
. System variable symbol declared |
as a symbolic parameter.

| PREVIOUSLY DEFINED OR
| SYSTEM VARIABLE

| SYMBOL DECLARED AS

| SYMBOLIC PARAMETER

k)
|
|
- + ~
IJQ048 |SYMBOLIC PARAMETER |1. sSymbolic parameter previously
|
12
|
|

|
IJQO49 |VARIABLE SYMBOL MATCHES|Variable symbol matches a parameter.
| A PARAMETER |

| |
IJQ050 | INCONSISTENT GLOBAL |A global SET variable that is

| DECLARATIONS defined in more than one macro defi-|
| nition, or in a macro definition and
| in the source program, is inconsis-
| tent in SET type or dimension.
| |
1JQ051 |MACRO DEFINITION |Prototype operation entry is
| PREVIOUSLY DEFINED |identical to a: |
| a. machine instruction.
i b. assembler instruction.
] C. previous prototype. |
l
I1JQ052 |NAME FIELD CONTAINS SET symbol in name entry does
}ILLEGAL SET SYMBOL not correspond to SET statement
l | |
1JQ053 |GLOBAL DICATIONARY FULL{Global dictionary is full. Assembly|
i {is terminated. |
| |]
130054 |LOCAL DICTIONARY FULL |Local dictionary is full. Assembly |
jis terminated. |
IJQ056 |ARITHMETIC OVERFLOW Intermediate or final result of an
arithmetic operation is_less than
-231 or greater than 231-1.
I1JQ057 | SUBSCRIPT EXCEEDS 1. &SYSLST or symbolic parameter
| MAXIMUM DIMENSION | subscript:]
a. exceeds 100.
b. is negative.
| c. is zero.
{2. SET symbol subscript exceeds
i | dimension.
| |
13Q058 'ILLEGAL LTORG |LTORG statement occurs within blank |
i jcommon (COM) or a dummy section |
i { | {DSECT) . }
| | | |
}I3Q059 | UNDEFINED SEQUENCE jUndef ined sequence symbol. |
| [smwor 1 !

Figure 7. Assembler Diagnostic Error Messages (part 5 of 10)

Appendix K 149

¥ ¥ 1
|Message |
| Code |[Message Meaning |
[i
1] ¥ . "'
}I3Q060 |ILLEGAL ATTRIBUTE L', 8', or 1I*' requested for a |
i NOTATION parameter whose type attribute does
i not allow these attributes to be
| | requested.
|]
]IJQ061 |ACTR COUNTER EXCEEDED ACTR counter exceeded.
| | i
1130062 |GENERATED STRING GREATER |Generated string is greater |
} THAN 127 CHARACTERS jthan 127 characters. |
| |
]I3Q063 |EXPRESSION 1 OF SUBSTRING |Expression 1 of substring is
| IS ZERO OR MINUS } zero or minus, |
|]
]I3Q064 |EXPRESSION 2 OF |Expression 2 of substring is i
} | SUBSTRING IS ZERO OR {zero or minus. i
| MINUS | |
| | I
| I3Q065 |INVALID OR ILLEGAL TERM |1. The parameter is not a |
] {IN ARITHMETIC RELATIONAL | self-defining term. |
| | EXPRESSION |]2. The value of the SETC]
| 1 | symbol used in the arithmetic |
| l expression is not composed of i
	decimal digits.
]	
IJQ066	UNDEFINED OR DUPLICATE]1. A keyword operand occurs
l	KEYWORD OPERAND OR
	EXCESSIVE POSITIONAL 1 instruction.
	OPERANDS }2. Keyword is not defined in
}	} prototype.
}	3. In a mixed-mode macro
{ i instruction, more positional	
1 operands are specified than }	
are specified in the	
{ prototype.	
l	
1JQ067	EXPRESSION 1 OF SUBSTRING
GREATER THAN LENGTH OF greater than length of	
	CHARACTER EXPRESSION
]
130068	GENERATION TIME DICTIONARY
AREA OVERFLOWED	
]IJ0069	EXPRESSION 2 OF SUBSTRING
I	GREATER THAN 8 CHARACTERS
! I	
] IJQ070	FLOATING POINT CHARACTER-
{	ISTIC OUT OF RANGE
	lhas caused loss of all significant
	laigits.
1I3Q071	ILLEGAL OCCURRENCE OF jordering error.]
	LCL, GBL, OR ACTR
	STATEMENT
{1JQ072 |ILLEGAL RANGE ON ISEQ |Operand of ISEQ statement has |
i | STATEMENT jan illegal range. |
L i i 1
Figure 7. Assembler Diagnostic Error Messages {(part 6 of 10)

150

L) T T)
Message| | |
Code |[Message | Meaning 1
L L i 4
1] : 1] 1] 1
1130073 |ILLEGAL NAME FIELD |1. Statement is not allowed to)
i I have a name.]
H]2. Name entry of statement is miss-—|
% | l
IJQ074 |ILLEGAL STATEMENT IN }Illegal statement in COPY code |
i jcorPy CODE OR SYSTEM |or system macro.]
e | |
}IJQ075 |ILLEGAL STATEMENT |Illegal statement outside of a i
| |OUTSIDE OF A MACRO macro definition. |
} | DEFINITION |
| | |
| IJQ076 |} SEQUENCE ERROR Sequence error.]
| | |
} 130077 |ILLEGAL CONTINUATION |1. Too many continuation cards. |
} |CARD 2. Non blanks occur between the |
| } begin and continue columns of |
| } the continuation card. i
| l |
|1JQ078 |MACRO MNEMONIC OP-CODE |Macro mnemonic operation code |
| | TABLE OVERFLOW table has an overflow. See Appendix|
L - !
]13Q079 |ILLEGAL STATEMENT IN This operation is not allowed |
i |MACRO DEFINITION jwithin a macro definition. }
1 1 |)
130080 |ILLEGAL START CARD |Statements affecting, or depending
| |upon, the location counter have been|
i |encountered before a START state-
1) | ment.
| |
130081 |ILLEGAL FORMAT IN GBL |An operand is not a variable symbol.|
OR LCL STATEMENT) I
|
100082 |ILLEGAL DIMENSION |pimension is other than 1-255.
| SPECIFICATION IN GBL |
JOR LCL STATEMENT | }
| |
IJQ083 |SET STATEMENT NAME | The name entry of the SET
JFIELD NOT VARIABLE | statement is not a variable
| | SYMBOL | symbol.
|
130084 | ILLEGAL OPERAND FIELD | syntax invalid, e.g., AIF
| FORMAT }|statement operand does not start
| |with a left parenthesis or, operand
] lof AGO is not a sequence symbol.
i | i 3
Figure 7. Assembler Diagnostic Error Messages (part 7 of 10)

Appendix K

151

Message

|
|

8

|
|

1
|
Code |Message Meaning |
IJQ085 |INVALID SYNTAX IN 1. Invalid delimiter. 1
EXPRESSION 2. Too many terms in expression.
3. Too many levels of parentheses.
4. Two operators in succession.
130086 |ILLEGAL USAGE OF SYSTEM|1. System variable symbol

13Q087

1JQ088

13Q089

IJQ090

130091

130092

IJQ093

IJQ094

VARIABLE SYMBOL

!
NO ENDING APOSTROPHE

UNDEFINED OPERATION
CODE

INVALID ATTRIBUTE
NOTATION

INVALID SUBSCRIPT
|
|
|

INVALID SELF-DEFINING
| TERM
|

INVALID FORMAT FOR
VARIABLE SYMBOL

|

| ONBALANCED PARENTHESES
}OR EXCESSIVE LEFT
PARENTHESES

INVALID OR ILLEGAL

| NAME OR OPERATION IN
| PROTOTYPE STATEMENT
i

| appears in:
a. the name entry of a SET
statement.

c. a keyword macro definition.
i d. a GBL or ICL statement.

}2. &SYSLIST in context other than
N*§SYSLIST.

statement.

|Syntax error, e.g., the argument of

{the attribute reference is not a symbol-
]ic parameter inside a macro definition.

{Syntax error, e.g., no right parenthesis

b. a mixed-mode macro definition.

There is an unpaired apostrophe in the

Symbol in operation code field does not
correspond to a valid machine or assem-~
bler operation code or to any operation
lcode in a macro prototype statement.

jafter subscript, double subscript where |
|single subscript is required, or single |

jsubscript where double subscript is
| required.

j1. Value is too large.
|2. Value is inconsistent with
| the data type.

|

{1. variable symbol is longer

{ than 8 characters.

2. First character after the
ampersand is not alphabetic.

Unbalanced parentheses or
|excessive left parentheses.

Invalid or illegal name or
operation in prototype
|statement.

%

FPigure 7.

152

Assembler Diagnostic Error Messages (part 8 of 10)

§

-
Message}
Code {[Message

Meaning

|
|
|

130096 |MACRO INSTRUCTION OR
PROTOTYPE OPERAND
EXCEEDS 127 CHARACTERS
| IN LENGTH

lﬁacxo instruction or prototype
operand exceeds 127 characters
in length.

|]
IJQ097 |INVALID FORMAT IN MACRO|1l. 1Illegal equal sign (=).

PROTOTYPE PARAMETER

INSTRUCTION OPERAND OR |2. A single ampersand (§) appears

| somevhere in the standard
value assigned to a
prototype keyword parameter.
3. First character of a prototype
parameter is not an ampersand.
4. Prototype parameter is a
subscripted variable symbol.
|5 Invalid usage of alternate
| format in prototype (see example)
|6 Nonsense prototype parameter,
e.g., §A% or §AEE.

Note: Occurrence of this error will
cause only syntax to be checked for
jthe remainder of the macro

|
H definition.
|
Example:
1) v v N 1
| Continuation}
| Name |Operation| Operand|Column }
g |]
: }- . . |
| PROTO 1 6a,8B, |
| | or |
| PROTO |&a,8B, X |
] | & | |
1o =4 i]

1JQ098 |EXCESSIVE NUMBER OF
OPERANDS OR PARAMETERS
|

|

I1JQ099 |POSITIONAL MACRO
INSTRUCTION OPERAND,
PROTOTYPE PARAMETER,
OR EXTRA COMMA FOLLOWS

}1. The prototype has more
than 100 parameters.

2. The macro instruction has
more than 100 operands.

Positional macro instruction
operand, prototype parameter,
or extra comma follows keyword.

|

— o

| KEYWORD

13Q100 |STATEMENT COMPLEXITY See Appendix H.

i | EXCEEDED | |
L i L. J
Figure 7. Assembler Diagnostic Error Messages (part 9 of 10)

PO S—

Appendix K

153

r—rr——-"——"—"-= T T T T T T T _-—"——.-_'_'—--]
| Messagel | |

specified COPY text which cannot be
! |found in the library.

Code |Message |Meaning 4
F—-— e e e o o ——— ——— e —— —— —— — —— . — — — ——
| IJQ101 ,EOD ON SYSIN OR SYSIPT.1%nd-of-data reached before an END
i : statement was encountered.

} I1JQ102 | INVALID OR ILLEGAL ICTLll. Operands of ICTL statement are
| 1 out of range.

| | 2. ICTL is not the first statement

I | : in the input deck.

| IJQ103 IILLEGAL NAME IN OPERAND|Syntax error, e.g., symbol has an

| |FIELD OF coPY CARD |illegal character or has more than

| | |8 characters.

} I1JQ104 lCOPY CODE NOT FOUND IThe operand of a COPY statement

|

|

I

IJQ1l05 |EOD ON SOURCE STATEMENTlEnd—of-data reached before a MEND

|field not long enough to contain it.

|LIBRARY |statement was encountered.
| I1JQ107 lINVALID OPERAND |Unrecognizab1e operand in PRINT
: Istatement.
| 130108 |PREMATURE EOD |Indicates a machine error or an
| |internal assembler error.
| 1JQ109 =PRECISION LOST 'High order information lost by
| lattempting to express constant in a
|

|

I

I

I

|

|

|

|

|

|

|

|

|

|

|

I

:

I

NOTE: Messages IJQ110I through IJQ114I are |

printed on both SYSLST AND SYSLOG. IJQl1l0I I
and IJQl11lI errors can be detected at any

point during assembly--job is terminated and |

amount of assembly listing printed is unpre- |

dictable. 1IJQ112I, ;JQll?I, and I1JQ114I |

| errors are detected immediately upon assembly |

|

I

|

|

|

I

:

|

|

|

|

i

|

|

|

I

|

|

I

|

|

.

| attempt--job is terminated and no assembly
| listing is printed.

IJQ110I|ABORT--PERM I/0 ERROR =An unrecoverable error on the desig-

ION SYSxxx nated unit prevents further processing.
IJQlllI'ABORT—-UNEXPECTED EOF |The assembler does not support multi-
| |ON SYSxxx lvolume work files. Determine the
|] cause of EOF (usually short tape) and
' rerun with adequate storage for work
| | files.

| IJQllZI|ABORT-—INADEQUATE CORE An attempt has been made to use the
|FOR 32K ASSEMBLER |32k design point assembler in less
Ithan 14K of core. Allocate more core
| lfor the background program or link edit
' Ione of the 16K design point assemblers.

IJQ113I|ABORT--INVALID PHYSICAL|An attempt has been made to use tape
JUNIT FOR SYSxxx |work file(s) on an assembler link edited
| | for disk or to use disk work file(s)

1 lon an assembler link edited for tape.
Only the first invalid unit detected
| lwill be named. Check all unit assign-
| Iments and rerun.
IJQll4I=ABORT--NO UNIT ASSIGNED}Self explanatory. Either use OPTION
FOR SYSPCH lNODECK, OPTION LINK, or assign a
unit for SYSPCH.

Figure 7. Assembler Diagnostic Error Messages (part 10 of 10)

154

e e e e e e e e e e e e e e e e

Card Group Card Arrangement IComments 1

Job Control // JOB ... First card in group, always required.

// ASSGN SYSRLB... | Tape system only. Used when the relo-
Jcatable library is on a separate tape
land modules are to be -included.

// ASSGN SYSSLB... ITape system only. Used when the source
statement library is on a separate
| tape.

|
// ASSGN SYSIPT... lSource program input
// ASSGN SYSLST... =Program listing

// ASSGN SYSLNK... | Required for assemble-and-execute.

// ASSGN SY3001...=
// ASSGN SYS002... I Work files
// ASSGN SYS003...

// OPTION LINK.... | Required. Used to indicate LINK option
] and any additional assembler functions
|desired.

| // exec assemBLy | Required
Assembler Input Source Deck] source statements (machine-, assembler- I
] and macro-instructions). NOTE: If the
operand of the END statement is omit-
|ted, a PHASE card must precede the //

| EXEC ASSEMBLY card or an ENTRY card |

I must follow the END statement (tape

| system only). |

L_ I /* |Indicates end-of-data set |
=Job Control I ENTRY ... | '-{
|

| | // EXEC LNKEDT :Calls the Linkage Editor |
| | |

EXEC

:Data I Data, if any " :
I 1 /* | End-of-data set indicator I

NOTE 1l: Only those assignments and options not already in effect are
required.

NOTE 2: Assignments for SYSIN and/or SYSOUT must be accomplished by
permanent assignments. For details see the publications for DOS and
TOS system control and system service programs (see preface).

Figure 8. Card Input for Assemble-and Execute

Appendix K 155

T T T -
| Assemble-and-execute |Assemble-and-execute|Assemble-and-execute

|
|7/ EXEC 177 EXEC |77 EXEC |77 EXEC
b i 3 i

¥]
| |
|Assemble-and-execute| (Include object | (Include object | {Include object |
} | routines from the |routines from cards) |[routines from the |
| |relocatable library) | |relocatable library |
| | | jand from cards) |
i i 1 1 4
1 4 LS 1] k) A
77 JoB ... }|77 JOB ... |/7 JOB ... |77/ JOB ...]
| | | | |
{7/ ASSGN SYSIPT,.. |// ASSGN SYSIPT,.. |// ASSGN SYSIPT,.. |// ASSGN SYSIPT,... |
] | | | |
7/ ASSGN SYSLST,...	// ASSGN SYSLST,...	// ASSGN SYSLST,..	// ASSGN SYSIST,...
7/ ASSGN SY¥S001,..	// ASSGN sYs001,..	7/ ASSGN SYS001,..	7/ ASSGN SYS001,..
7/ ASSGN SYS002,..	// ASSGN SYSs002,..	// ASSGN SYS002,..	// ASSGN SYs002,..]
77 ASSGN SYS003,..	// ASSGN sYs003,..	77/ ASSGN SYS003,..	7/ ASSGN SYS003,..
	I		
7/ ASSGN SYSLNK,...	// ASSGN SYSLNK,...	// ASSGN SYSLNK,..	7/ ASSGN SYSLNK,..
{7/ OPTION LINK,...	// OPTION LINK,..	77 OPTION LINK,..	7/ OPTION LINK,...)
] !]		
/7 EXEC ASSEMBLY	// EXEC ASSEMBLY	77/ EXEC ASSEMBLY	77 EXEC ASSEMBLY }
1 3 i L]			
T T T 1			
source Deck	Source deck	Source deck	source deck
7%	7*	7+	7+
I t + + {			
	INCLUDE SUBR1	INCLUDE] INCLUDE SUBR1	
		1	
	INCLUDE SUBR2	object deck(s)	INCLUDE

| |7* Jobject deck(s) !

| | | |

| | |7+ |

| | | |

| | | INCLUDE SUBR2 1

| I | |

| 1 1 INCLUDE SUBRT |

I | | |

| ENTRY | ENTRY | ENTRY | ENTRY |
| | | |

// EXEC LNKEDT |77 EXEC LNKEDT |77 EXEC LNKEDT |7/ EXEC LNKEDT }
| | | }

Any Job Control cards needed for the programs to be executed. |

|

|

|

t

|

|

| § i ¥ 1]

}Bita' if any ;Data, if any }Bata. if any :Data, if any
/% * Vi)

I i + $

178 178 178 178

i i 1 i

+
|If SYSRDR and SYSIPT are different units, a /§ card must be placed after the last
|EXEC card in SYSRDR, and should be placed after the last /#* in SYSIPT.

lNote: If the operand of the END statement is omitted, a PHASE card must precede the
127 EXEC ASSEMBLY card or an ENTRY card must follow the END statement.

——— — —— ———— — —— — —— —— — . —— —— —— —

Figure 9. cCard Input for Variations of Assemble-and-execute

156

APPENDIX L: SELF-RELOCATING PROGRAM TECHNIQUES

Self-relocating programs are executed in a
multiprogramming environment and at any
location in main storage. These programs
may be located in either foreground area of
main storage. A program that is self-
relocating must initialize its address
constants, including Channel Command Words
(CCWs), at execution time. The user must
code his own self-relocating routine for
execution after it is linkage edited and
loaded into main storage.

When coding a self-relocating program,
the programmer should take these points
into consideration:

1. All A-type address constants must be
relocated.

2. The I/0 area addresses in all CCwWs must
be relocated.

3. Address constants generated by Physical
JOCS macros (EXCP, WAIT, etc.) must be
relocated.

4. Logical IOCS macros cannot be self-
relocated.

The following example program shows how
a user may code a self-relocating program.
This example uses the A-type constant and
registers 1 and 2 although the user may use
any of the other available registers if he
chooses.

This program contains six address
constants. Two are A-type and two each are
contained in the Command Control Block
(CCB) and the Channel Command Word (CCW)
macros. This procedure is used:

1. The absolute addresses of the contents
of the two A-type constants (EOFTAPE
and CHA12) and the CCW for each CCB
(PRINTCCW and TAPECCW) are loaded into
a work register (Register 1).

2. The work register is stored in the
address constants [A(EOFTAPE) and
A(CHA12)] and in their respective CCBs
(PRINTCCB+8 and TAPECCB+8).

3. The command code for the CCWs shares a
full word with the 1/0 area address and
must be reset after the I/0 area
address has been stored. This is done
here by two methods: (a) saving the
command code for the PRINTCCW in Reg-
ister 2 and then restoring it; (b)
using the Move Immediate (MVI) instruc-
tion for the TAPECCW to set the command
code.

In the main routine of this program,
note that register notation has been used
with the EXCP and WAIT macros to avoid the
generation of address constants by the
macros themselves. The example of a self-
relocating program follows:

Appendix L 156A

SOURCE STATEMENT

PRINT NOGEN

RELOCATE CCW ADDRESS
IN CCB FOR PRINTER
RELOCATE CCW ADDRESS
IN CCB FOR INPUT TAPE
SRELOCATE#*##¢#%
* PROGRAM *
* ADDRESS *
+%+ *CONSTANTS #
SAVE PRINT CCW OP CODE
RELOCATE OUTPUT AREA ADDRESS
IN PRINTER CCW
RESTORE PRINT CCW OP CODE
RELOCATE INPUT AREA ADDRESS
IN TAPE CCW
SET TAPE CCW OP CODE TO READ
RECORDS
GET CCB ADDRESS
READ ONE RECORD FROM TAPE
WAIT FOR COMPL. OF I/0
GET ADDRESS OF TAPE EOF ROUTINE
GO TO UNIT EXCEPTION SUBROUTINE
EDIT RECORD
IN
OUTPUT AREA
GET CCB ADDRESS
PRINT EDITED RECORD
WAIT FOR COMPL. OF I/0
GET ADDRESS OF CHAN 12 ROUTINE
GO TO UNIT EXCEPTION SUBROUTINE

CHECK FOR UNIT EXC. IN CCB
YES-GO TO PROPER ROUTINE
NO-RETURN TO MAINLINE

SET SK TO CHAN 1 OP CODE

SK TO CHAN 1 IMMEDIATELY

WAIT FOR COMPL. OF I/0

SET PRINTER OP CODE TO WRITE

RETURN TO MAINLINE

END OF JOB

ALIGN CCB'S TO FULL WORD

PROGRAM START 0
BALR 15,0
USING *,15
* ROUTINE TO RELOCATE ADDRESS CONSTANTS
1A 1, PRINTCCW
ST 1, PRINTCCB+8
LA 1, TAPECCW
ST 1, TAPECCB+8
1A 1, EOFTAPE
ST 1,AEOFTAPE
1A 1, CHA12
ST 1,ACHA12
Ic 2, PRINTCCW
LA 1,0UTAREA
ST 1, PRINTCCW
STC 2, PRINTCCW
1A 1,INAREA
ST 1, TAPECCHW
MVI TAPECCW,2
* MAIN ROUTINE...READ TAPE AND PRINT
READTAPE LA 1, TAPECCB
EXCP (1)
WAIT (1)
L 10,AEOFTAPE
BAL 14,CHECK
MVC OUTAREA(10),INAREA
MVC OUTAREA+15{70),INAREA+10
MVC OUTAREA+90(20) , INAREA+80
1A 1, PRINTCCB
EXCP (1)
WAIT (1)
L 10,ACHA12
BAL 14,CHECK
B READTAPE
CHECK ™ 4(1),1
BCR 1,10
BR 14
CHA12 MVI PRINTCCW,X'8B*
EXCP (1)
WAIT (1)
MVI PRINTCCW, 9
BR 14
EOFTAPE EOJ
CNOP 0,4
PRINTCCB CCB SYS004, PRINTCCW,X*0400"*
TAPECCB CCB SYS001, TAPECCW
PRINTCCW CCW 9, OUTAREA,X*20°,110
TAPECCW CCW 2,INAREA,X'20",100
AEOFTAPE DC A{EOFTAPE)
ACHA12 DC A(CHA12)
OUTAREA DC CL110* *
INAREA DC CL100°* *
END PROGRAM

1568

&SYS, restrictions on use, 63, 75, 88
&SYSECT (See Current control section name)
&SYSLIST (see Macro-instruction operand)
&SYSNDX (see Macro-instruction index)
7090/7094 Support Package Assembler, 8, 135

Absolute terms, 15
ACTR instruction 84
Address constants, 47
A-type, 47
Complex relocatable expressions,
Literals not allowed, 20
S-type, 48
V-type, 48
Y-type, 47
Address specification, 34
Addressing 24
Dummy sections, 29
Explicit, 24
External control sections, 32
Implied, 24
Relative, 26
AGO instruction 83
Example, 83
Form of, 83
Inside macro-definitions, 83
Operand field of, 83
Outside macro-definitions, 83
Sequence symbol in, 83
Use of, 83
AIF instruction 82
Example of, 82
Form of, 82
Inside macro-definitions, 82
Invalid operand fields of, 83
Logical expression in, 82
Operand field of, 82
Outside macro-definitions, 82
Sequence symbols in, 82
Use of, 82
Valid operand fields of, 83
Alignment, boundary
CNOP instruction for, 55
Machine instruction, 33
Ampersands in
Character expressions, 79
Macro-instruction operands, 66
MNOTE instruction, 87
Symbolic parameters, 63
Variable symbols, 59
ANOP instruction 84
Example of, 84
Form of, 84
Sequence symbol in, 84
Use of, 84
Apostrophes in
Character expressions, 78
Macro-instruction operands, 66
MNOTE instruction, 87
Arithmetic expressions
Arithmetic relations, 81
Evaluation procedure, 76
Invalid examples of, 76

47

Operand sublists, 77
Operators allowed, 75
Parenthesized terms in 76
evaluation of, 76
examples of, 76
SETA instruction, 75
SETB instruction, 80
Substring notation, 78
Terms allowed, 75
Valid examples of, 75
Arithmetic relations, 81
Arithmetic variable, 91
Assembler instructions
Statement, 38
Table, 117
Assembler language 8

INDEX

Basic Programming Support, 8, 135

Comparison chart, 135
Macro facilities, relation to,
Statement format, 13
Structure, 15, 16

Assembler program
Basic functions, 9
Output, 27

Assembling a Program 138
Assemble-and-execute 155, 156
Card Input 138, 155, 156
bevice Assignments 139
Diagnostic Error Messages 145
I/0 Units Used (16K Tape) 141
Operating Considerations 140
Output 142, 143

Assembly, terminating an, 57

Assembly no operation (see ANOP
instruction)

Attributes 71
How referred to, 72
Inner macro-instruction operands,
Kinds of, 71
Notations, 71
Operand sublists, 71
Outer macro-instruction operands,
Summary chart of, 124
Use of, 71
(see also specific attributes)

Basic Programming Support Assembler,
Base registers
Address calculation, 9, 32, 34
DROP instructions, 24
Loading of, 24
USING instructions, 24
Binary constant, 44
Binary self-defining term, 18
Binary variable, 91
Blanks
Logical expressions, 80
Macro-instruction operands, 67

CCW instruction, 50

58

71

71

8, 135

157

Channel command word, defining, 50
Character codes, 98
. Character constant, 42
Character expressions, 78
Ampersands in, 78
Character relations, 81
Examples of, 78
Periods and, 78
Apostrophes in, 78
SETB instructions, 80
SETC instructions, 77
Character relations, 81
Character self-defining term, 19
Character set, 15, 98
Character variable, 91
CNOP instruction, 55
Coding form, 12
COM instruction, 30
Commas, macro-instruction operands, 67
Comments statements
Examples of, ‘14, 65
Model statements, 65
Not generated, 65
Comparison chart, 135
Compatibility
Assembler language, 7
Macro-definitions, 97
Complex relocatable expressions, 47
Concatenation
Character expressions,
Defined, 64
Examples of, 64
Substring notations, 78
Conditional assembly elements, summary
charts of, 85, 123
Conditional assembly instructions
How to write, 70
Summary of, 85
Use of, 70
(see also specific instructions)
Conditional branch (see AIF instruction)

Constants (see also specific types)
Defining (see DC instructions)
Summary of, 120

Continuation lines, 11

Control dictionary, 27

Conditional branch instruction, 36
Operand format, 37

Control section location assignment, 28

Control sections
Blank common, 30
CSECT instruction, 28
Defined, 27
First control section, properties of

28
START instruction, 28
Unnamed, 29

COPY instruction, 56

COPY statements in macro-definitions
Form of, 65
Model statements, contrasteéd, 65
Operand field of, 65
Use of, 65

Count attribute
Defined, 73
Notation, 71
Operand sublists, 73
Use of, 73

78, 79

158

Variable symbols, 73
CSECT instruction, symbol in, length
attribute of, 28
Current control section name (&SYSECT)
Affected by CSECT, DSECT, START, 93
Example of, 93
Use of, 93

Data definition instructions, 39
Channel command words, 50
Constants, 39
Storages, 48

DC instruction, 39
Duplication factor operand subfield, 40
Operand subfield Modifiers, 40
Type operand subfield, 40

Length modifier, 40
Scale modifier, 41
Exponent modifier, 42
Constant operand subfield, 42
Address-constants)see Address
constants)
Binary constant, 44
Character constant, 42
Decimal-constants, 46
Fixed-point constants, 44
Floating-point constants, 45
Hexadecimal constant, 43
Type codes for, 41

Decimal constants, 46
Length modifier, 46
Length, maximum, 46
Packed, 45
Zoned, 45

Decimal field, integer attribute of, 74

Decimal self-defining terms, 78

Defining constants (see DC instruction)

Definina storaqe (see DC instruction,

DS instruction)

Defining symbols, 17, 70

Diagnostic Error Messages 145

Dimension, subscripted SET symbols, 91

Displacements, 34

Double-shift instruction, 33

DROP instruction, 25, 33

DS instruction, 48
Defining areas, 49
Forcing alignment, 49

DSECT instruction, 29

Dummy section location assignment,

Duplication factor, 40
Forcing alignment, 49

29, 31

Effective address, length, 35

EJECT instruction, 51

END instruction, 57

ENTRY instruction, 31

Entry point symbol, identification of, 31

EQU instruction, 38

Equal signs, as macro-instruction operands,
66

Error message (see MNOTE instruction)

Error Messages 145

Explicit addressing, 24, 34
Length, 34

Exponent modifiers, 42
Expressions, 21, 31
Absolute, 34
Evaluation, 22
Relocatable, 34
Summary chart of, 124
Extended mnemonic codes, 36
Operand format, 37
Table, 108
External control section, addressing of,
31
External symbol, identification of, 31
EXTRN instruction, 31

First control section, 28
Fixed-point constants, 44
Format, 44
Positioning of, 44
Scaling, 44
Values, minimum and maximum, 44, 45
Fixed-point field, integer attribute of,
74
Floating-point constants, 45
Alignment, 46
Format, 45
Scale modifiers, 45
Floating-point field, integer attribute
of, 74
Format control, input, 53

GBLA instruction
Form of, 88
Inside macro-definitions, 88
Outside, macro-definitions, 88
Use of, 88
GBLB instruction
Form of, 88
Inside macro-definitions, 88
Outside macro-definitions, 88
Use of, 88 '
GBLC instruction
Form of, 88
Inside macro-definitions, 88
Outside, macro-definitions, 88
Use of, 88
General register zero, base register
usage, 25
Generated statements, examples of, 64
Global SET symbols
Defining, 88
Examples of, 88, 90
Local SET symbols, compared, 87
Using, 88
Global variable symbols
Types of, 87
(see also global SET symbols, sub-
scripted SET symbols)

Hexadecimal constants, 43
Hexadecimal-decimal conversion chart, 298
Hexadecimal self-defining terms, 18

I' (see Integer attribute)

ICTL instruction, 52

Identification-sequence field, 14

Identifying blank common control section,
30

Identifying assembly output, 51
Identify dummy section, 29
Implied addressing, 24, 34

Length, 34
Implied length specification, 34
Inner macro-instruction

Defined, 68

Example of, 69

Symbolic parameters in, 69
Instruction alignment, 33
Integer attributed

Decimal fields, 74

Examples of, 74

Fixed-point fields, 73

Floating-point fields, 74

How to compute, 74

Notation, 71

Restrictions on use, 74

Use of, 74
ISEQ instruction, 53

K' (see Count attribute)
Keyword
Defined, 94
Keyword macro-instruction, 94
Symbolic parameter and, 94
Keyword, inner macro-instructions used
in, 95
Keyword macro-definition
Positional macro-definitions, compared,
94
Use, 94
Keyword macro-instruction
Example of, 95
Format of, 94
Keywords in, 94
Operands, 58, 94
Invalid examples, 95
Valid examples, 95
Operand sublists in, 95
Keyword prototype statement
Examples of, 94
Format of, 94
Operands, 94
Invalid examples, 94
valid examples, 924
Standard values, 94

L' (see Length attribute)
LCLA instruction
Form of, 75
Use of, 75
LCLB instruction
Form of, 75
Use of, 75
LCLC instruction
Form of, 75
Use of, 75
Lengths explicit and implied,
Length attribute
Defined, 34, 72

34, 35

159

Examples, 73
Notation, 71
Restrictions on use, 73
Symbols, 17, 73
Use of, 73
Length modifier, 40
Length subfield, 33
Level of parentheses, 21
Library, copying coding form, 56
Linkage symbols (see also ENTRY instruc-
tion, EXTRN instruction)
Entry point symbol, 31
External symbol, 31
Linkage editor, and
use of, 31
Listing, spacing, 52
Listing control instructions, 52
Literal pools, 20, 54
Literals, 20
Character, 34
DC instruction, used in, 20
Duplicate, 21
Format, 20
Literal pool, beginning, 55
Literal pools, multiple, 20
Local SET symbols
Defining, 88
Examples of, 88-90
Global SET symbols, compared 87
Using, 88
Local variable symbols
Types of, 87
(see also local SET symbols)
(see also subscripted SET symbols
Location counter 38, 42, 47

Predefined symbols, 19
References to, 19
Setting, 54
Logical expressions
AIF instructions, 82
Arithmetic relations, 81
Blanks in, 81
Character relations 81
Evaluation of, 81
Invalid examples of 81
Logical operators in, 81
Parenthesized terms in
Evaluation of, 8l
Examples of, 81
Relation operators in, 81
SETB instructions, 80
Terms allowed in, 81
Valid examples of, 81
LTORG instruction, 55

Machine features required, 7
Machine-instructions, 33
Alignment and checking, 33
Literals, limits on, 20
Mnemonic operation codes, 35
Operand fields and subfields, 33
Symbolic operand formats, 35

Machine-instruction mnemonic codes, 35
Alphabetical listing, 108
MACRO

Form of, 61

160

Use, 61
Macro-definition
Compatibiltiy, 97
Defined, 61
Example of, 63
How to prepare, 61
Keyword (see Keyword macro-definition)
Mixed-mode (see Mixed-mode macro-
definition)
Placement in source program, 61
Use, 61
Macro-definition exit (see MEXIT instruc-
tion)
Machine-instruction examples and format
RR, 33, 35
RX, 33, 36
RS, 33, 36
SI, 33, 36
ss, 33, 36
Summary table, 106
Macro-definition header statement (see
MACRO)
Macro-definition trailer statement (see
MEND)
Macro facility
Additional features 86
Comparison chart, 137
Relation to assembler language 58
Summary 85, 121
Macro-instruction
Defined, 58
Example of, 67
Form of, 66
How to write, 66
Levels of, 69
Mnemonic operation code, 66
Name entry of, 66
Omitted operands, 67
Example of, 67
Operand entry of, 66
Operands
Ampersands, 66
Blanks, 67
Commas, 67
Equal signs, 66
Paired parentheses, 66
Paired apostrophes, 66
Operand sublists, 67
Operation entry of, 66
Statement form, 67
Types of, 58
Used as model statement, 68
Macro-instruction index (&SYSNDX)
AIF instruction, 91
Arithmetic expressions, 91
Character relation, 91
Example, 92
MNOTE instruction, 91
SETB instruction, 91
SETC instruction, 91
Use of, 91
Macro-instruction operand (&SYSLIST)
Attributes of, 93
Use of, 93
(see also symbolic parameters)
Macro-instruction prototype statement
(see Prototype statement)

Macro-instruction statement (see Macro-
instruction)
MEND
Form of, 61
MEXIT instruction, contrasted, 86
Use of, 61
MEXIT instruction
Example of, 86
Form of, 86
MEND, contrasted, 86
Use of, 86
Mixed-mode macro-definitions
Positional macro-definitions,
contrasted, 96
Use, 96
Mixed-mode macro-instruction
Example of, 96
Form of, 96
Operand field of, 58, 96
Mixed-mode prototype statement
Example of, 96
Form of, 96
Operands of, 96
Mnemonic operation codes, 35
Extended, 37
Machine-instruction, 35
Macro-instruction, 61
MNOTE instruction
Ampersands in, 86
Error message, 86
Example of, 86
Operand entry of, 86
Apostrophes in, 86
Severity code, 86
Use of, 86
Model statements
Comments field of, 63
Comments statements, 65
Defined, 62
Name field of, 62
Operation field of, 62
Operand field of, 63
Use of, 62

N' (see Number attribute)

Name entries, 13

Number attribute
Defined, 73
Notation, 73
Operand sublist, 73

Operands
Entries, 13
Fields, 33
Subfields, 33, 34
Symbolic, 31, 33, 35
Operand Sublist
Alternate statement form, 67
Defined, 67
Example of, 68
Use of, 67
Operation field, 33
Ordinary symbol, 17
ORG instruction, 54
Outer macro-instruction defined, 68

Paired parentheses, 66
Paired apostrophes, 66
Parentheses in
Arithmetic expressions, 76
Logical expressions, 81
Macro- instruction operands, 66
Operand fields and subfields, 34
Paired, 66
Period in
Character expressions, 78
Comments statements, 65
Concatenation, 65
Sequence symbols, 74
Positional macro-definition (see Macro-
definition)
Positional macro-instruction (see Macro-
definition)
Positional macro-instruction (see Macro-
instruction) 58
Previously defined symbols, 18
PRINT instruction, 52
Program control instructions, 53
Program listings, 10
Program sectioning and linking, 24
Prototype statement
Example of, 62
Form of, 61
Keyword (see Keyword prototype state-
ment)
Mixed-mode (see Mixed-mode prototype
statement)
Name entry of, 6l
Operand entry of, 61
Operation entry of, 61
Statement form, 61
Symbolic parameters in, 61
Use of, 61
PUNCH instruction, 54

Relational operators, 81
Relative addressing, 26
Relocatability, 15, 10
Attributes, 31
Program, general register zero, 25
Relocatable expressions, 23, 33
In USING instructions, 25
Relocatable symbols, 17
Relocatable terms
Pairing of, 22
In relocatable expressions, 23
REPRO instruction, 54
RR machine-instruction format, 33
Length attribute, 33
Symbolic operands, 35
RS machine~instruction format, 33
Address specification, 34
Length attribute, 33
Symbolic operands, 35
RX machine-instruction format, 33
Address specification, 34
Length attribute, 33
Symbolic operands, 35

S' (see Scaling attribute)
Sample program, 131
Scale modifier

161

Fixed-point constants, 41 Arithmetic expressions in, 79

Floating-point constants, 41 Character expressions in, 79
Scaling attribute Invalid examples of, 79
Decimal fields, 73 Valid examples of, 79
Defined, 73 Type attribute in, 77
Fixed-point fields, 73 Example of, 78
Floating-point fields, 73 SETA symbol
Notation, 89 - Assigning values to, 70
Restrictions on use, 73 Defining, 70
Symbols, 73 SETA instruction, 76
Use of, 73 Using, 76
Self-defining terms, 18 SETB symbol
(see also specific temms) AIF instruction, 82
Sequence checking, 53 Assigning values to, 70
Sequence symbols, 17, 74 Defining, 70
AGO instruction, 83 N SETA instruction, 82
AIF instruction, 82 SETB instruction, 82
ANOP instruction, 84 SETC . instruction, 82
How to write, 73 Using, 82
Invalid examples of, 74 SETC symbol
Macro instruction, 74 Assigning values to, 70
Use of, 74 Defining, 70
Valid examples of, 74 SETA instruction, 81
Set symbols Using, 80
Assigning values to, 70 Severity Code 144
Defining, 70 Severity code in MNOTE instruction, 87
Symbolic parameters, contrasted, 70 SI machine-instruction format, 39
Use, 70 Address specification, 34
(see also local SET symbols) Length attribute, 33
(see also global SET symbols) Symbolic operands, 35

(see also subscripted SET symbols)
SET variable, 90
SETA instruction

Examples of, 76, 77

Source statement library defined, 59

SPACE instruction, 52

SS machine-instruction format, 33
Address specification, 34

Form of, 75 Length attribute,: 33
Operand entry of, 75 Length field, 34
Evaluation procedure, 76 Symbolic operands, 35
Operators allowed, 75 START instruction
Parenthesized terms, 76 Positioning of, 27
Terms allowed, 75 Unnamed control sections, 28
Valid examples of, 75 Statements, 11, 13
Operand sublist, 77 Boundaries, 11

gxample,. 77 Examples, 13
SETB instruction Macro-instructions, 66
Example of, 82 Prototype, 61
Form of, 80 . Summary of, 119
Logical expression in, 81 Storage, defining (see DS instruction)
Arithmetic relations, 81 S-type address constant 48

Blanks in, 81 Sublist (see Operand sublist)

Character relations, 8l Subscripted SET symbols
Evaluation of, 81 Defining, 90
Operators allowed, 81 Examples, 91
Operand entry of, 80 Dimension of, 91
Invalid examples of, 81 How to write, 90

Valid examples of, 81

Invalid examples of, 90
SETC instruction

Subscript of, 91

Apostrophes, 78 Using, 91

Character expressions in, 78 Examples, 91
Ampersands, 78 Valid examples of, 90
Periods, 78 Substring notation

Concatenation in Arithmetic expressions in, 79
Character expressions, 79 Character expression in, 79
Substring notations, 79 How to write, 79

Examples of, 77-80 Invalid example of, 79

Form of, 717 SETB instruction, 81

Operand entry of, 77 SETC instruction, 79

Substring notations in, 78 Valid examples of, 79

162

Symbol definition, EQU instruction for,

Symbols
Defining, 17
Length attribuytes, 33
Referring to, 21
Length, maximum, 18
Previously defined, 18
Restrictions, 18
Symbol table capacity, 126
Types of, 17
Value attributes, 33
Symbolic linkages, 31
Symbolic operand formats, 35
Symbolic parameter
Comments field, 63
Concatenation of, 64
Defined, 63
How to write, 63
Invalid examples of, 63
Model statements, 63
Prototype statement, 62
Replaced by, 63
Valid example of, 63
System variable symbols
Assigned values by assembler,
Defined, 91

(see also specific system variable

symbols)

T' (see Type attribute)

Tables, internal, capacity of,
Terms
Expressions composed of, 15
Pairing of, 22
TITLE instruction, 51
Type attribute
Defined, 72
Literals, 72
Macro-instruction operands,
Notation, 71
SETC instruction, 77
Use, 72

Unconditional branch (see AGO instruction)

Unnamed control section 28
USING instruction, 24, 33

Variable symbols, 17
Assigning values to, 59
Defined, 59
How to write, 59
Summary chart of, 125
Types of, 59
Use, 59

(see also specific variable symbols)

V-type address constant, 48

XFR instruction, 8

Y-type address constant, 47

163

C24-3414-4

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

READER'S COMMENT FORM

IBM System/360

Disk and Tape Operating Systems Form C24-3414-4
Assembler Language

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes
® Does this publication meet your needs?
® Did you find the material:

Easy to read and understand?
Organized for convenient use?
Complete?

Well illustrated?

Written for your technical level?

oooog O
ooooo Oz

® What is your occupation?
® How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class? O
For information about operating procedures? [] As a reference manual? O

Other
® Please give specific page and line references with your comments when appropriate.

COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24-3414-4

YOUR COMMENTS, PLEASE...

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of
this form together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

BUSINESS REPLY MAIL -

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY . . .

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 232

JIBIM,

International Business Machines Carporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only}

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

f

{

IBM Technical Newsletter File Number $360-21

Re: Form No. Cc24-3414-2,-3,-4
This Newsletter No. N26-0536
Date April 26, 1967

Previous Newsletter Nos. (24-3414-2:
N24-5054, N24-5057

C24-3414-2,-3: N26-0516, N26-0520
C24-3414-2,-3,-4: N26-0533

IBM System/360 Disk and Tape Operating Systems, Assembler Language

The attached pages bring the above publication up to date. Changes
are indicated by a vertical line at the left of affected text, a
bullet (e) at the left of the title of a changed illustration, and
a bullet beside the page number of a page that should be reviewed
in its entirety. Pages that contain changes are coded in the upper
outside corner.

Replace the following pages:

5 and 6

7 and 8

25 and 26

47 and 48

59 and 60

65 and 66

85 and 86

93 through 96
131 through 134
139 and 140
143 and 144

Add the following pages:

134.1 through 134.5

Summary of Amendments:

° Combine sample problem with program listing explanation
° Removal of restrictions on combined input files
° Clarification or correction of various sections of manual

File this Newsletter at the back of the manual. It will provide a
reference to changes, a method of determining that all amendments
have been received, and a check for determining if the manual
contains the proper pages.

IBM Corporation, Programming Publications, Dept. 232, San Jose, Calif. 95114

PRINTED IN U.S.A. N26-0536 (C24-3414-2,-3,-4)

