
Systems Reference Library

DO'S System Programmer's Guide

File Number S360-50
Order No. GC24-5073-2

This reference publication is intended primarily
for the system programmer who is involved in
making decisions relating to the components of the
installation's supervisor, file organization and
program design. To form a single publication,
this manual brings together and expands upon
information from many sources. Major topics
discussed are:

1. Supervisor Planning Concepts

2. Data Management

3. Program Design

4. Debugging Aids

For each major section, the Preface lists the most
closely related publications. For a complete list
of available publications, see the IBM System/360
and System/310 Bibliography, GA22-6822.

DOS

Third Edition (September 1971)

This publication was formerly titled IBM System/360 Disk
operating System: System Programmer's Guide. Although
titles of some DOS publications (including this one) have
been simplified, the change does not affect the contents of
the publications.

This edition replaces and obsoletes GC24-5073-1. Changes are
continually made to the specifications herein; before using
this publication in connection with the operation of IBM
systems, consult the latest System/360 and System/370 SRL
Newsletter, GN20-0360, for the editions that are applicable
and current.

summary of Amendments

For a list of changes made in this edition, see page 3.

Changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this

I publication. If the form has been removed. comments may be
addressed to IBM Laboratory, Publications Dept., P.O. Box 24,
Uithoorn, Netherlands.

@ Copyright International Business Machines Corporation 1969, 1970, 1971

NEW FUNCTIONS

This edition documents support for these
system control and service functions:

• Independent Directory Read-In Area
(IDRA)

• On-Line Test Executive Programs
(OLTEP)

• Job Accounting Interface

• Data Set Security

• ISAM Track Hold

• Private Core Image Library (PCIL)

• Label Cylinder Display (LSERV)

• Recovery Management Support (RMS) for
System/370, which consists of Machine
Check Analysis and Recording (MCAR)
and Channel Check Handler (eCH)

• Reliability Data Extractor (RDE)
function for System/370

• RETAIN/370 for. system/370

PROGRAM ENHANCEMENTS

This edition also documents the
enhancements to these programs:

• Error Statistics by Tape ,Volume
(ESTV)

• Environmental Recording, Editing, and
Printing (EREP)

• DOS Stand-Alone Dump Generator
(DUMPGEN)

• Problem Determination Serviceability
Aids (PDAID)

• Forced End-of-Volume for Disk macro
(FEOVD)

Summary of Amendments
for GC24-S073-2

• Directory Service Display (DSERV)

• Linkage Editor (LNKEDT)

NEW DEVICES

This edition also documents support for
these new devices:

• IBM 1255 Magnetic Character Reader

• IBM 2319 Disk Storage

• IBM 3210 Console Printer-Keyboard

• IBM 3211 Printer

• IBM 3215 Console Printer-Keyboard

• IBM 3420 Magnetic Tape Unit

MISCELLANEOUS CHANGES

Rewritten sections: The section on hard
waits is expanded and rewritten. The
section on COBOL ANS replaces the COBOL D
section. A glossary is included.

ORGANIZATION OF PUBLICATION

The manual has been reorganized and
reformatted. Information in Appendixes A
- L in the previous edition has been
incorporated into the appropriate
sections in this edition. The total
publication has a General Contents, a
Figure list, and an Index. Each section
has a section Outline and a separate
figure list. Figure numbers throughout
the publication are in the form: Figure
1.3, where 1 is the section number and 3
is the figure number within that section.
A tab in the upper right-hand corner of
the beginning of each section identifies
the section by number.

3

4 DOS System Programmer's Guide

This publication is divided into the
following four major sections:

1. supervisor Planning Concepts

2. Data Management

3. Program Design

4. Debugging Aids

The supervisor Planning Concepts section
describes system residence organization,
some supervisor tables, optional supervisor
facilities at a conceptual level, and
presents guidelines for their
implementation. The Data Management
section explains the concepts of file
organization and data manipulation at the
physical and logical IOCS levels. The
Program Design section contains suggestions
for efficient programming. The topics
discussed are link editing functions,
overlay structure, self-relocating
programs, checkpoint/restart facility, the
3211 Printer support, and macro writing.
The Debugging Aids section contains aids
for debugging problem programs written in
assembler language, PL/I, FORTRAN, COBOL,
and RPG.

Multitasking and link editing examples,
and physical IOCS, STXIT support,
self-relocating, and language translator
sample programs are included.

Closely related publications by section
follow.

Note: Although titles of some DOS
publications have been simplified, the
change does not affect the contents of the
publications.

Supervisor Planning Concepts

DOS System Generation, GC24-5033.

DOS System Control and service,
GC24-5036.

DOS Operating Guide, GC24-5022.

DOS Messages, GC24-5074~

Preface

Data Management

DOS Data Management Concepts, GC24-3427.

DOS Supervisor and I/O Macros, GC24-5037.

DOS DASD Labels, GC24-5072.

Tape Labels for BPS, BOS, TOS and DOS,
GC24-5070.

IBM System/360 Principles of Operation.
GA22-6821.

IBM System/370 Principles of Operation.
GA22-7000.

Program Design

DOS System Control and Service,
GC24-5036.

DOS Supervisor and I/O Macros, GC24-5037.

IBM System/360 Disk and Tape Operating
systems, Assembler Language, GC24-3414.

Debugging Aids

DOS OLTEP, GC24-5086.

IBM System/360 Disk and Tape Operating
systems, COBOL Programmer's Guide,
GC24-5025.

IBM Svstem/360 Disk and Tape Operating
systems, PL/I Programmer's Guide,
GC24-9005.

IBM System/360 Disk Operating System,
FORTRAN IV Programmer's Guide, GC28-6397.

IBM System/360 Disk and Tape Operating
systems, Report Program Generator
Specifications. GC26-3570.

IBM System/360 Disk and Tape Operating
systems, Assembler Language, GC24-3414.

DOS Messages, GC24-5074.

For further information concerning terms
referenced in this publication, see the IBM
Data Processing Glossary, GC20-1699.

Preface 5

6 DOS System Programmer's Guide

Contents

Introduction • • • • • • • • • • • • • • • 11

Section 1: Supervisor Planning Concepts •
System Residence Organization
SUPVR Macro • • • •
FOPT Macro ••
ALLOC Macro • • • •
IOTAB Macro
DVCGEN Macro •

• • 13
• • 15
• • 18
• • 56
• • 84

84
• • 87

Section 2: Data Management • • • • • • • • 91
Concepts of Data Management •• • • • • 93
Physical Input/Output Control System
(PIOCS) •••••••••••••••• 99
Logical Input/Output Control system
(LIOCS) ••••••••••••••• .111

Section 3: Program Design • •
Link Editing • • • • • • •
Self-Relocating Programs •
Linkage Editor Examples • • • •
Checkpoint/Restart • • • •
IBM 3211 Printer Support •
Macro Writing • • • • • •

Section 4: Debugging Aids • • •
Gathering Documentation
Wait States • • • • • • • •
Debugging Assembler Programs
Debugging COBOL Programs·.
Debugging FORTRAN Programs •
Debugging RPG Programs • •
Debugging PL/I Programs • • • •

• .139
.141

• .149
.154

•••• 166
.173
.175

• .187
.189
.202
.204

• ••• 204
.234

• .243
.255

Glossary •••••••••••••••• 283

Index •••••••••••••••••• 289

Contents 7

/

;. OOS system Programmer's Guide

Figure 1.1. system Residence
Organization •••••••••••••• 17
Figure 1.2. MPS storage Map ••••• 19
Figure 1.3. supervisor Calls (Part 1
of 2) • • • • • • • • • • • • 21
Figure 1.4. Processing and I/O
Requests Relationship • • • • • • 24
Figure 1.5. First Example of
Processing and I/O Requests with I/O
Interrupts •••••••••• • • 25
Figure 1.6. Second Example of
Processing and I/O Requests with I/O
Interrupts •••••••••• • 26
Figure 1.7. system Communications
Region (Part 1 of 5) • • • • • • • • • • 30
Figure 1.8 Background Communications
Region Extension (BGXTNSN) • • 35
Figure 1.9. Tables for MICR DTF
Addresses and Pointers • • • •• • • 37
Figure 1.10. Example of Multitasking
Priorities •••••••••••• 38
Figure 1.11. Event Control Block
(ECB) • • • • • • • • • • 41
Figure 1.12. Resource Control Block
(RCB) • • • • • • • • • 41
Figure 1.13. Option Tables • 57
Figure 1.14. I/O Table
Interrelationship • • • • • 59
Figure 1.15. Tape Error Block •• 60
Figure 1.16. TEBV Table Showing
status Block and Error Blocks 61
Figure 1.17. Console Buffering Table
and Work Areas ••••••••• • 64
Figure 1.18. Example Using CCHAIN
Support • • • • • • • • • • • • • • 65
Figure 1.19. Processing of STXIT
Condi ti ons •••••••••••••• 67
Figure 1.20. STXIT Sample Program ••• 69
Figure 1.21. Logical Unit Block (LUB)
Table • • • • • • • • • • • • • • 71
Figure 1.22. Job Information Block
(JIB) Table • • • • • • • • • • • 72
Figure 1.23. DASD File Protect Logic
Flow • • • • • • • • • • • • • • • 74
Figure 1.24. Disk Information Block
(DIB) Table • • • • • • • • • • • 75
Figure 1.25. Example of Dedicated
peIL in a Multiple Partition
Environment • • • • • • • • • • • • • • 78
Figure 1.26. Example of PCIL in a
Single Partition Environment ••••• 79
Figure 1.27. Identification of SYSLNK
Files • • • • • • • • • • • • • • 80
Figure 1.28. Job Accounting Table • 83
Figure 1.29. CHANQ, LUBID, REQID,
LUBDSP, and TKREQID Tables • 85
Figure 1.30. Physical Unit Block
(PUB) Table ••• • • • • • • • • • 89
Figure 1.31. Device Type Codes • 90'
Figure 2.1. Fixed Length Unblocked
Record Format • • • • • • • • • • • • • 94

Figures

Figure 2.2. Fixed Length Blocked
Record Format •••••• • • 95
Figure 2.3. Variable Length Unblocked
Record Format •••••• • • • • • • • 97
Figure 2.4. Variable Length Blocked
Record Format •• • • • • • • • • • • • 98
Figure 2.5. I/O Operation Using PIOCS 101
Figure 2.6. Command Control Block
(CCB) (Part 1 of 3) ••••••• 104
Figure 2.7. Format of the CCW .106
Figure 2.8. Flowchart for EXCP Coding
Example • • • • • •• • • .109
Figure 2.9. Physical IOCS Sample
Program • • • • • • • • • • • .110
Figure 2.10. Retrieving a Record
Using Logical IOCS • • • • • • • • .112
Figure 2.11. Generated Name Structure
for Logic Modules (Part 1 of 2) .116
Figure 2.12. DOS Relocatable Library
Module Name Prefixes .118
Figure 2.13. DTF and Module Macro
Relationships • • • • .118
Figure 2.14. Coding Example of DTF and
Module Relationship ••••••• 119
Figure 2.15. Logical IOCS Imperative
Macros and DTFs •••••••••••• 120
Figure 2.16. Logical IOCS Imperative
Macros and Devices • • • • • '. • 121
Figure 2.17. Direct Access Address
Chaining • • • • • • • • • • • • • • • .127
Figure 2.18. DASD Address Formats ••• 128
Figure 2.19. Example of Track Index .130
Figure 2.20. Example of Track Index
after Addition to File. • • • • • .131
Figure 2.21. File Organization on a
Disk/Tape System •••••••••••• 135
Figure 2.22. Indexed Sequential
Versus sequential File Organization •• 137
Figure 3.1. Linkage Editor System Flow 142
Figure 3.2. Module Dependency ••••• 148
Figure 3.3. Overlay Tree Structure •• 148
Figure 3.4. Relocating Address
Constants in a Calling List .151
Figure 3.5. Self-Relocating Sample
Program • .. • • • • • • • • .153
Figure 3.6. Using Checkpoint Facility
on Disk •••••••••••••• 169
Figure 3.7. Procedure for Building
Tape Repositioning Tables ••••••• 170
Figure 3.8. Procedure for Building
DASD Operator Verification Table .172
Figure 3.9. Format of the Checkpoint
Header/Trailer Records •••• .172
Figure 3.10. 3211 Error Status
Indicator Bits in the CCB • • • • .175
Figure 3.11. Operand Field Formats •• 176
Figure 3.12. Keyword Macro
Instruction • • • • • • • • • • .176
Figure 3.13. Positional Macro
Instruction • • '. • • • • • • • • 1 77
Figure 3.14. Macro Instruction with
Prototype ••••••••••••••• 177

Figures 9

Figure 3.15. Mixed Macro Instruction .177
Figure 3.16. Mixed-Mode Definition •• 177
Figure 3.17. Sublist Illustration •• 179
Figure 3.18. Format of Globals and
Locals • • • • • • • • • • • .180
Figure 3.19. Format of SETA
Instruction • • • • • • • • •
Figure 3.20. Format of SETB
Instruction •••••••••
Figure 3.21. Format of SETC
Instruction • • • • • • • • •
Figure 3.22. Concatenation and

• .180

• .180

• •• 181

Generated Coding •••••••••• .182
Figure 3.23. Conditional Branch
Instruction • • • • • • • • • • • .182
Figure 3.24. Unconditional Branch
Instruction • • • • • • • • • • • • • .183
Figure 3.25. Assembly No Operation
Instruction • • • • • • • • •
Figure 3.26. Macro Definition Exit

• .183

• .184 Instruction • • • • • • • • • •
Figure 3.27. MNOTE Instruction •••• 184
Figure 3.28. Sample MNOTE
Figure 3.29. Sample MSG Macro
Figure 3.30. sample MSG Coding

• • .184
• .185

.186
Figure 4.1. SDR Communications Region
(Part 1 of 2) •••••••••••• .190
Figure 4.2. Machine Check Recording
and Recovery (MCRR) Linkage Table .192
Figure 4.3. RMS Linkage Area (RASLINK) 193

10 DOS ,system Programmer's Guide

Figure 4.4. First Part of Program
Information Block (PIB) Table •• 195
Figure 4.5. PIB Flag Expansions •••• 196
Figure 4.6. Second Part of Program
Information Block (PIB) Table ••••• 197
Figure 4.7. Causes for Message 05041
(Cancel Code X' 21')200
Figure 4.8. Low Core Error Bytes ••• 203
Figure 4.9. COBOL Sample Program
(Part 1 of 27)207
Figure 4.10. FORTRAN Sample Program
(Part 1 of 8) ••••••••••••• 235
Figure 4.11. Using RPG Pointers to DTF 243
Figure 4.12. Halt Indicator (HO)
Analysis Aid ••••••••• .244
Figure 4.13. RPG Sample Program (Part
1 of 10) ••••••••••••••• 245
Figure 4.14. PL/I Program Structure •• 255
Figure 4.15. PL/I Storage Areas ••• 256
Figure 4.16. Entry Point Table .257
Figure 4.17. Object Time Core Usage .258
Figure 4.18. Library Work Space •••• 259
Figure 4.19. Communications Area
Switches ••••••••••••••• 260
Figure 4.20. Dummy DSA and DSA Layout 260
Figure 4.21. Block Description .261
Figure 4.22. DSA Chaining ••••••• 262
Figure 4.23. PL/I Consecutive File
DTF-A Appendage •••••••••••• 263
Figure 4.24. PL/I Regional File DTF-A .263
Figure 4.25. PL/I sample Program
(Part 1 of 18) • • • • • • • • • • • • .265

As a system progranuner~ you make decisions
involving the components of your
installation's supervisor, file
organization, program design, and so forth.
From time to time, you may be called upon
to advise other programmers concerning DOS.
In order to assist you in this task, this
publication brings together and expands
upon information from many sources. It is
divided into four major sections:
supervisor Planning Concepts, Data
Management, Program Design, and Debugging
Aids.

The Supervisor Planning Concepts section
is of interest to the person(s) responsible
for tailoring the IBM-supplied Disk
Operating system to meet the needs of the
installation. This section describes in
detail optional supervisor facilities
available under DOS. Using the information
presented in this section together with the
information on main storage requirements
and implementation procedures found in the
DOS system Generation listed in the
Preface, the system progranuner can decide
whether or not to include a particular
facility within the installation's
supervisor. Guidelines for implementing
these facilities at system generation time
are also presented.

The Data Management section is of
interest to the person(s) responsible for
choosing the type of file organization best
suited for an application. This section
discusses data management concepts, the
advantages and disadvantages of each type
of file organization (sequential, direct
access and indexed sequential) and criteria
for choosing the best file organization and
retrieval method.

In addition, data manipulation is
described at both the physical and logical
IOCS levels. Detailed information for
coding at the physical IOCS level is
included. This section also defines the

Introduction

macros for implementing logical IOCS and
describes the interrelationships of the DTF
and logic module generation macros.

The Program Design section is of
interest to the person(s) responsible for
program design and imp1ementation. The
Disk Operating System offers the programmer
a great deal of flexibility in the
generation of his system and in its
operation. This section discusses
effective use of the linkage editor and the
checkpoint/restart facility. In addition,
system programming techniques such as macro
coding, overlay structure and
self-relocating programs are discussed.
The IBM 3211 Printer support is also
discussed.

The Debugging Aids section is of
interest "to both the application and system
programmer. This section describes system
action on a cancel condition, gives
register conventions for following program
flow, describes the types of documentation
to be gathered for debugging purposes and
the action to be taken when a hard wait or
program loop is encountered. Problem
determination aids are briefly described.
Aids for debugging problem programs written
in assembler language, COBOL, FORTRAN, PL/I
and RPG are given.

r---,
I

Note: In case of difference between thel
conventions given in this manual I
for control program functions andl
those appearing in IBM-supplied I
DOS component publications (such I
as guides for language I
translators, sorts, utilities, I
specifications manuals, etc). I
observe the specific restrictions I
of the component. I

I ___ J

Introduction 11

•

12 DOS System Programmer's Guide

r

Section 1: Supervisor Planning Concepts

Section Outline

System Residence Organization • • • • • 15
IPL (Cylinder 0, Track 0, Records
1 and 2) • • • • • • • • • • • • • • 15
Volume Label (Cylinder 0, Track 0,
Record 3) • • 15
System Directory (Cylinder 0,
Track 1) • • • • • • • • •
System Work Area (Cylinder 0,
Tracks 2, 3 and 4) • • • •
Transient Directory (Cylinder 0,

15

• 15

Track 5) • • • • • • • • • • • • • • 15
Open Directory (Cylinder 0, Track
6) • • • • • • • • • • • •
Library Routine Directory
(Cylinder 0, Track 7)
Foreground Program Directory
(Cylinder 0, Track 8) ••••
Phase Directory (Cylinder 0, Track

15

15

16

9) • • • • • • • • • • • 16
Core Image Library Directory 16
Core Image Library • • • • • • • 16
Relocatable Library Directory • 16
Relocatable Library • • • • • • 18
Source Statement Library Directory • 18
Source statement Library • • • 18
Label Information Cylinder • 18

SUPVR Macro • • • • • 18
Multiprogramming Support (MPS) 18

Partitioning • • • • 20
Control Method • • • • • 20
Task Selection • • • • • • 20
System Considerations • • • • • 27
Concurrent Peripheral Operation
(CPO) •••••••••• 27
Operational Considerations • • • • • 27
programming Considerations • • • • • 28

American National Standard Code for
Information Interchange (ASCII)
Support • • • • • • • • • • • 28

System Considerations •••• • 28
System Generation Guidelines • • • • 29

Magnetic Ink Character Recognition
Support (MICR) • • • • • • •

system Considerations
Asynchronous Processing (AP)

system Considerations
Multitasking Macro Usage •

36
• 36

38
• 38

39
Subtask Initiation and Normal
Termination • • • • • • • • • • • • 39
ATTACH Macro Considerations • • • • 39
DETACH Macro Considerations • • 40
Resource Protection • • • 41
ENQ Macro Considerations • • • 42

DEQ Macro Considerations • • • 42
Intertask Communication • 42
POST Macro Considerations •••• • 42
Summary of Multitasking
Considerations • • • • 43

Multitasking Examples
ATTACH Macro Example ••
DETACH Macro Example •

• • 45
• • 45

• 41
ENQ/DEQ and RCB Macros Examples
POST Macro Example • •

• • 48
51

WAITM Macro Example • • • • • • •
STXIT AB Macro Example • • • • • •
Track Hold and Reentrant Modules
Example • • • • • • • • • •

FOPT Macro • • • • • • • • • • • • • •
Operator Communications Support (OC)

Operational Considerations •
Interval Timer Support (IT) ••••
Program Check support (PC) • •
Tape Error Recording • • • • •
Seek separate Support (SKSEP)
Physical Transient OVerlap Support

• 52
• 53

• 55
• 56
• 56
• 56
• 56

58
• 58
• 62

(PTO) •••••••••••••••• 62
Console Buffering Support (CBF) • 63
Independent Directory Read-In Area
(IDRA) • • • • • • • • • • • • • • • • 64

System Generation Considerations • • 64
Command Chaining support (CCHAIN) •• 64
Track Hold support (TRKHLD) ••••• 65

supervisor Considerations ••••• 65
LIOCS Considerations • • • • • • • • 66

Abnormal Termination Support (AB) 67
STXIT Macro Considerations • • 67

Multiple Wait support (WAITM) • 70
Multiple Wait Considerations • 70

DASD File Protect Support (DASDFP) • • 70
Mode of Operation • • • • • • • • • 70

System Files On Disk Support (SYSFIL) 74
Considerations When Using System
Files on Disk •• • • • • • • 75

Private Core Image Libraries • • • 76
system considerations •••• • 76
System Generation Guidelines • • • • 81

Job Accounting Interface Support • 81
Programming Considerations • • 81
System Generation Guidelines • • • • 82

ALLOC Macro • • • • • • • • 84
System Considerations ••• • • 84

IOTAB Macro • • • • • • • • • • • 84
Job Information Block (JIB) ••••• 84
Channel Queue (CHANQ) •••• • 84

Determining Size of the CHANQ • 84
DVCGEN Macro • • • • • • • • • • • • • • 87

Channel Rescheduling Considerations • 87

Section 1: supervisor Planning Concepts 13

J Section Figures

Figure 1.1. System Residence
Organization •••••••••••••• 17
Figure 1.2. MPS storage Map ••••• 19
Figure 1.3. supervisor Calls (Part 1
of 2) • • • • • • • • • • • • 21
Figure 1.4. Processing and I/O
Requests Relationship • • • • • • • 24
Figure 1.5. First Example of
Processing and I/O Requests with I/O
Interrupts •••••••••• 25
Figure 1.6. Second Example of
Processing and I/O Requests with I/O
Interrupts •••••••••• • 26
Figure 1.7. System Communications
Region (Part 1 of 5) • • • • • • • • • • 30
Figure 1.8 Background Communications
Region Extension (BGXTNSN) •••••• 35
Figure 1.9. Tables for MICR DTF
Addresses and Pointers • • • • • • • • • 37
Figure 1.10. Example of Multitasking
Priorities •••••••••••••• 38
Figure 1.11. Event Control Block
(ECB) • • • • • • • • • 41
Figure 1.12. Resource Control Block
(RCB) • • • • • • • • • 41
Figure 1.13. Option Tables •••••• 57
Figure 1.14. I/O Table
Interrelationship • • • • • • • • 59
Figure 1.15. Tape Error Block •• 60
Figure 1.16. TEBV Table Showing
Status Block and Error Blocks • • • 61
Figure 1.17. Console Buffering Table
and Work Areas ••••••••• • 64
Figure 1.18. Example Using CCHAIN
Support • • • • • • • • • • • • • • 65
Figure 1.19. Processing of STXIT
Conditions •••••••••••••• 67
Figure 1.20. STXIT Sample Program ••• 69
Figure 1.21. Logical Unit Block (LUB)
Table • • • • • • • • • • • • • • 71
Figure 1.22. Job Information Block
(JIB) Table • • • • • • • • • • • 72
Figure 1.23. DASO File Protect Logic
Flow • • • • • • • • • • • • • • • 74
Figure 1.24. Disk Information Block
(OIB) Table • • • • • • • • • • • 75
Figure 1.25. Example of Dedicated
PCIL in a Multiple Partition
Environment • • • • • • • • • • • • 78
Figure 1.26. Example of PCIL in a
Single Partition Environment • 79
Figure 1.27. Identification ofSYSLNK
Files • • • • • • • • • • • • • • 80
Figure 1.28. Job Accounting Table • • • 83
Figure 1.29. CRANQ, LUBID, REQID,
LUBDSP, and TKREQID Tables • • 85
Figure 1.30. Physical Unit Block
(PUB) Table • • • • • • • • • • • 89
Figure 1.31. Device Type Codes •• 90

14 DOS System Programmer's Guide

To assist you in planning a supervisor
tailored to meet the nee9s of your
installation, this section presents the
organization of a disk resident system as
received from Program Information
Department (PID), describes optional
supervisor facilities at a conceptual
level, and presents guidelines for their
implementation. Those optional facilities
requiring special consideration are
described in the order in which they appear
as parameters within the supervisor
generation macros. For information on the
other optional supervisor facilities, see
the DOS system Generation listed in the
Preface.

System Residence Organization

Figure 1.1 describes the organization of
the DOS disk resident system. The disk
resident system may be on an IBM 2311 Disk
Storage Drive, an IBM 2314 Direct Access
Storage Facility, or an IBM 2319 Disk
Storage Facility. The organization of the
disk pack is as follows:

IPL (Cylinder 0, Track 0, Records 1 and 2)

This area contains the IPL bootstrap
program.

Volume Label (Cylinder 0, Track 0, Record
11

The volume label contains the address of
the Volume Table of Contents (VTOC)
established when the pack was initialized.

System Directory (Cylinder 0, Track 1)

This directory consists of five records
that make up the system master directory,
Records 1 through 4 are 80 bytes in length.

Record 1 contains information describing
the core image library and directory.
Records 2 and 3 contain the starting
address of the relocatable library
directory and the source statement library
directory, respectively. Record 4 is not
used. Record 5 is the IPL loader program
($$A$IPL2).

system Work Area (Cylinder 0, Tracks 2, 3
and 4)

This 3-track area is reserved as a work
area for the librarian programs and linkage
editor. The format of the records in the
librarian area depends on the program using
the area at a specific time.

Transient Directory (CYlinder 0, Track 5)

This single track directory contains
entries for the A- and B-transient routines
that are located in the core image library.
The entries in this directory are taken
from the core image library directory.

The core image library phases referenced
in this directory have phase names prefixed
by $$A (A-transients) or $$B
(B-transients). This directory has a
maximum capacity of 144 entries for the
2311, or 270 entries for the 2314/2319.
Track format is identical to the core image
library directory.

Open Directory (Cylinder 0, Track 6)

This single track directory contains
entries for the LIOCS open phases located
in the core image library. The entries in
this directory are taken from the core
image library directory. The core image
library phases referenced in this directory
have phase names prefixed by the characters
$$BO. This directory has a maximum
capacity of 144 entries for the 2311, or
270 entries for the 2314/2319.

Library Routine Directory (CYlinder 0,
Track 7)

This single track directory contains
entries for frequently used core image
library phases, such as job control,
linkage editor, and so forth. The entries
in this directory are taken from the core
image library directory. The core image
library phases that are placed in this
directory have phase names prefixed by a $
(for example, $LNKEDT). This entry has a
maximum capacity of 144 entries for the
2311, or 270 entries for the 2314/2319.

section 1: supervisor Planning Concepts 15

Foreground Program Directory (Cylinder 0,
Track 8)

This single track directory contains
entries for the foreground program phases
located in the core image library. The
entries in this directory are taken from
the core image library directory. The core
image library phases referenced in this
directory have phase names prefixed by the
characters FGP. This directory has a
maximum capacity of 144 entries for the
2311, or 270 entries for the 2314/2319.

Phase Directory (cylinder 0, Track 9)

This single track directory contains
entries for the phases of the current BG
problem program. The entries in this
directory are constructed by job control
before each job step is executed in the
background partition only. They are taken
from the core image library directory.

The phase naming conventions that permit
the use of the phase directory are:

1. All program names must be unique in
the first four characters.

2. The first four characters of the name
of each phase of a program must be
identical to the first four characters
of the program name. All eight
characters of the first phase name
must be identical to the program name.

Example: WXVZPROG
WXVZPROG - phase 1
WXVZPH1 - phase 2
WXVZPH2 - phase 3

The maximum capacity of this directory is
144 entries for the 2311 or 270 entries for
the 2314/2319.

Core Image Library Directory

This directory consists of one or more
tracks, depending on the allocation
specified by the user. It contains one
entry for each of the phases in the core
image library.

Note: A phase is an overlay of a
multiphase program or a complete program if
not multiphase.

Each directory entry describes one phase
in the core image library and contains:

16 DOS System Programmer's Guide

• Phase name

• Loading address

• Number of blocks

• Entry point

• Starting disk address in the core image
library

• Length of last block

Core Image Library

The core image library consists of five or
more tracks, depending on the allocation
specified by the user. For the 2311, each
track contains two blocks with a maximum
capacity of 1728 bytes. For the 2314/2319',
each track contains four blocks with a
maximum capacity of 1688 bytes~ The number
of programs (phases) and the size of each
program to be contained in the core image
library dictates the number of cylinders
that must be allocated. Each program
starts with a new block and only the last
block of a program can contain less than
1728 bytes of data for the 2311 or 1688
bytes of data for the 2314/2319.

Note: A phase is an overlay of a
mUltiphase program or a complete program if
not multiphase.

Relocatable Library Directory

This directory consists of one or more
tracks, depending on the allocation
specified by the user. It contains two
types of information:

1. System directory information for the
relocatable directory and library.
This information occupies the first
five entries of the first record in
the relocatable directory.

2. An entry that describes each module in
the relocatable library and contains:

a. Module name

b. Total number of text-record blocks
required to contain this module

c. Starting disk address of the first
text-record of this module

d. Change level identification.

NO. COMPONENT

IPL Bootstrap Record 1 (AIPLl)

IPL Bootstrap Record 2 (AIPLA)
1

Volume Lobel

User Volume Label

Record 1
System Record 2
Directory Record 3

2 Record 4

IPL Retrieval Program ($$A$IPL2)

3 System Work Area (Librarian Area)

4 Transient Directory ($$A and $SB Transients)

5 Open Directory (SSBO)

6 Library Routine Directory ($ Phasenames)

7 Foreground Program Directory (FGP)

8 Phose Directory (For Problem Program Phases)

9 Core Image Library Directory

10 Core Image Library

11 Relocatable Library Directory

12 Relocatable Library

13 Source Statement Libra ry Directory

14 Source Statement Library

15 Volume Area File Definition Storage Area

16 User Area

*Allocation Dependent On User Requirements
X=Ending CC of the Preceding Directory
Y = Ending HH of the Preceding Directory
Z = Ending CC of the Preceding Library

BB

00

00

00

00

00
00
00
00

00

00

00

00

00

00

00

00

00

00

00

00

00

Figure 1.1. System Residence Organization

STARTING DISK ADDRESS NUMBER
R=REQUIRED

OF TRACKS
CC HH R (A Ilocat ion)

O=OPTIONAL

00 00 1 R

00 00 2 R
1

00 00 3 R

00 00 4 0

00 01 1 R
00 01 2 R
00 01 3 1 R
00 01 4 R

00 01 5 R

00 02 1 3 R

00 05 1 1 R

00 06 1 1 R

00 07 1 1 R

00 08 1 1 R

00 09 1 1 R

01 for 2311 00for2311
00 for 2314/ 1 a for 2314/

1 * R
2319 2319

End of CI Directory 1 * R
X Y +1

End of CI Library 1 * 0
Z+l 00

End of RL Directory 1 * 0
X Y+l

End of RL Library 1 * 0
Z+l 00

End of SS Directory 1 * 0
X Y+1

End of SS Library 2311:10
R

Z+l 00
1 2314/2319:20

End of Volume Area 1 * 0
Z+2 l 00

section 1: Supervisor Planning Concepts 17

Relocatable Library

The relocatable library consists of five or
more tracks, depending on the allocation
specified by the user. The number of
modules and the size of each module to be
contained in this library dictates the
number of tracks that must be allocated.
Each allocated track contains 9 blocks
(2311) or 16 blocks (2314/2319), and each
block has a fixed length of 322 bytes.
Each module starts with a new block but not
necessarily a new track.

Source Statement Library Directory

'(This directory consists of one or more
/ tracks, depending on the allocation

specified by the user. It contains two
types of information:

1. System directory information for the
source statement directory and
library. This information occupies
the first five entries of the first
record in the source statement
directory.

2. An entry that describes each book (see
Note 1) in the source statement
library and contains:

a. A sublibrary prefix: any
alphameric character, $, i, or Q,
except A and C (see Note 2).

b. Book name.

c. Starting disk address of the first
block of this book.

d. Total number of blocks required to
contain this book in the source
statement library.

e. Change level identification.

Note 1: A book is a sequence of source
language statements, in compressed card
image format, accessed by a single name.

Note 2: A and C are reserved for assembler
and COBOL, respectively.

Source Statement Library

The source statement library consists of
five or more tracks, depending on the
allocation specified by the user. The
number of books and the size of each book
to be contained in this library dictates

18 DOS System Programmer's Guide

the number of tracks that must be
allocated. Each track contains 16 blocks
(2311) or 27 blocks (2314/2319), and each
block has a fixed length of 160 bytes.
Each book starts with a new block but not
necessarily a new track. Each book in the
source statement library contains
compressed card images of the source
language input to the assembler or language
translators. A compressed card image can
overflow from one block to another.

Label Information Cylinder

The label information cylinder (10 tracks
for 2311 or 20 tracks for 2314/2319)
contains background and foreground user and
standard label information.

SUPVR Macro

MULTIPROGRAMMING SUPPORT (MPS)

Multiprogramming is the ability to run
multiple programs concurrently, provision
for which must be included in the DOS
supervisor at system generation time. Each
program resides in a different area of main
storage called a partition. The three
problem program partitions are designated
background (BG), foreground 1 (Fl), and
foreground 2 (F2).

The background partition must be at
least 10K because job control runs in the
background partition and requires 10K bytes
of main storage. However, 14K allows
faster assemblies and linkage editing.

The remaining main storage is divided
between the two foreground partitions. To
satisfy the requirements for the storage
protect special feature, these partitions
must begin and end on 2K boundaries.
Because the MPS supervisor requires a
minimum of 8K and the background partition
requires a minimum of 10K, MPS will not
function on systems with less than 24K of
main storage (see Figure 1.2).

MPS operates under the principle that in
most commercial installations, the CPU is
heavily I/O bound. Much of the CPU running
time is spent waiting for a printer, a
reader or a punch to complete a previous
operation before the subsequent one can be
started. With MPS, when a partition
becomes I/O bound (that is, it cannot
continue until the completion of some I/O
operation), a task selection routine in the
MPS supervisor attempts to give CPU control
to the next partition that is ready to run.

Supervisor Nucleus

I/O Tables and Information Blocks ,.--------.,

F2 Save Area 0- 88 Bytes
(120 with Floating Point)

F1 Save Area@- 88 Bytes
(120 with Floating POint)

80 Bytes (112 with Floating Point)

Background Program Area
10K Minimum

Foreground 2 Program Area
Multiple of 2K

Foreground 1 Program Area
Multiple of 2K

General Registers 9 through 8
64 Bytes

General Registers 9 through 8
64 Bytes

Figure 1.2. MPS Storage Map

Section 1: Supervisor Planning Concepts 19

The partition to which control is given
is determined by a priority system. Fl has
highest priority followed by F2 and BG. A
partition cannot be interrupted by one of
lower priority. When an Fl program is
ready to run, the task selection routine
seizes control from a program of lower
priority. One of the disadvantages in such
an arrangement is the possibility of a high
priority program never relinquishing
control to other partitions. This can
happen if the high priority program has few
I/O requests. In general, the program with
the largest number of I/O operations or
wait time should reside in the highest
priority partition. A compute (CPU) bound
program should reside in a low priority
partition (for example, BG).

Because the channel scheduler attempts
to keep devices and channels busy
asynchronously, it is an advantage for all
programs to use SUfficient I/O G~eas to
keep the channel queue stacked with
requests. A lower priority partition is
more likely to require multiple I/O areas
to achieve this than is a higher priority
partition.

Partitioning

Multiprogramming has been defined as a
technique whereby two or more programs may
operate concurrently, sharing system
resources between them. The DOS
multiprogramming support requires that such
programs be co-resident in main storage.
To achieve this, storage is divided into 3
sections termed partitions (BG, Fl, and
F2). Each partition is capable of holding
a distinct problem program. When a
partition contains a program that is in
course of execution, the partition is said
to be active. When a partition does not
contain such a program, or is not
physically present in the system, then it
is said to be inactive.

Each partition is of fixed physical size
and is defined by fixed boundaries. For
this reason, DOS multiprogramming is termed

20 DOS System Programmer's Guide

fixed partition multiprogramming,.
Partition boundaries may be altered in any
manner when all partitions are inactive
(minimum background size is 10K). When any
partitions are active. boundaries can be
altered only if the lower limit of each
active partition is unchanged and the size
of each active partition is not reduced.

Each partition is allotted its own
unique storage protection key; for this
reason the size of any partition must be an
integral multiple of 2K. Thus, a program
contained in anyone partition can read but
not alter the contents of core locations
contained in any other partition.

Control Method

Multiprogramming increases system
efficiency by making better use of the
available system resources than is possible
in a single partition batched job
environment.

Multiprogramming support is written in
such a way that the central processing unit
does not enter the wait state if useful
processing can be performed in any
partition. Multiprogramming allows the
input and output functions of one program
to overlap with the processing functions of
other programs.

Task Selection

A program yields control by issuing a
supervisor call instruction to pass control
to the supervisor routines. The SVC
instruction contains a code that indicates
its purpose. The most numerically
significant of these codes in a
multiprogramming context are those
associated with input and output
operations; therefore, only these codes are
described. A complete list of DOS
supervisor calls is given in Figure 1.3.

SVC
Macro Supported Function

Dec. Hex.

EXCP 0 0 Execute channel programs.

FETCH 1 1 Fetch any phase.
2 2 Fetch a logical transient (B-transient).
3 3 Fetch or return from a physical transient (A - transient).

LOAD 4 4 Load any phase.

MVCOM 5 5 Modify supervisor communications region.

CANCEL 6 6 Cancel a problem program or task.

WAIT 7 7 Wait for a CCB or TECB.

8 8 Transfer control to the problem program from a logical transient (B - transient.)

LBRET 9 9 Return to a logical transient (B - transient) from the problem program after an
SVC 8.

SETIME 10* A Set timer interval.

11 B Return from a logical transient (B - transient).
12 C Logical AND (Reset) to second job control byte (displacement 57 in communi-

cations region).
13 D Logical OR (Set) to second job control byte (displacement 57 in communications

region) .

EOJ 14 E Cancel job and go to job control for end of job step.

15 F Same as SVC 0 except ignored if CHANQ table is full. (Primari Iy used by ERP.)

STXIT (PC) 16* 10 Provide supervisor with I inkage to userls PC routine for program check interrupts.

EXIT (PC) 17* 11 Return from userls PC routine.

STXIT (IT) 18* 12 Provide supervisor with I inkage to userls IT routine for interval timer interrupts.

EXIT (IT) 19* 13 Return from userls IT routine.

STXIT {OC} 20* 14 Provide supervisor with I inkage to userls OC routine for external or attention
interrupts (operator communications).

EXIT {OC} 21* 15 Return from userls OC routine.

22* 16 The first SVC 22 seizes the system for the issuing program by disabling multi-
program operation. The second SVC 22 releases the system {enables multi program
operat ion} •

23* 17 Load phase header. Phase load address is stored at userls address.

SETIME 24* 18 Provide supervisor with linkage to user·ls TECB and set timer interval.

25* 19 Issue HALT I/O on a teleprocessing device, or HALT I/O on any device if issued
by OLTEP.

26* 1A Val idate address limits.
27* 1B Specia I H 10 on teleprocessing devices.

* = optional

Figure 1.3. Supervisor Calls (Part 1 of 2)

section 1: supervisor Planning Concepts 21

SVC
Macro Supported

Dec. Hex.
Function

EXIT (MR) 28* 1C Return from user's stacker select routine (MICR type devices only).

29* 10 Provide return from multiple wait macros WAITF and WAITM (except MICR type
devices) •

QWAIT 30* 1E Wait for a QTAM element.

QPOST 31* lF Post a QTAM element.

32 20 (Reserved)
33 21 Reserved for internal macro COMRG •
34 22 Reserved for internal macro G ETIME .

HOLD 35* 23 Hold a track for use by the requesting task onl y.

FREE 36* 24 Free a track held by the task issuing the FREE.

STXIT (AB) 37* 25 Provide supervisor with I inkage to user's AB routine for abnormal termination of
a task.

ATTACH 38* 26 Initialize a subtask and establish its priority.

DETACH 39* 27 Perform normal termination of a subtask. It includes calling the FREE routine to
free any tracks held by the subtask.

POST 40* 28 Inform the system of the termination of an event and ready any waiting tasks.

DEQ ' 41* 29 Inform the system that a previously enqueued resource is now avai lable.

ENQ 42* 2A Prevent tasks from simultaneous manipulation of a shared data area (resource).

43* 2B Provide supervisor support for external creation and updating of SDR records.
44* 2C Provide supervisor support for external creation of OBR records.
45* 20 Provide emulator interface.
46* 2E Provide OlTEP with the facility to operate in supervisory state.
47* 2F Provide return from wait multiple WAITF for MICR type device.
48 30 (Reserved)
49 31 (Reserved)
50 32 Reserved for LlOCS error recovery.
51* 33 Return phase length at OlTEP request.

* = optional

Figure 1.3. Supervisor Calls (Part 2 of 2)

22 DOS system Programmer's Guide

SVC Code 0 (EXCP)

This code requests the supervisor to
initiate an input or output operation. The
address of a Command Control Block (CCB)
located in the requesting program is also
passed to the supervisor via register 1.
This block contains information that
describes the precise nature of the
operation to be performed.

When the supervisor receives the EXCP
request but is unable to initiate the
required operation, it places the request
in a queue for later action. The traffic
bit in the relevant CCB is then set 0 to
whether or not an operation can be started
when requested. The supervisor then
returns control to the p~ogram that
requested the operation.

SVC Code 7 (WAIT)

This code informs the supervisor that the
program is unable to proceed further until
a previously requested operation has been
completed, and that the operation is still
in progress because the relevant traffic
bit is still set to O. The program is
placed in the wait state. Note that the
instructions immediately preceding the
supervisor call instruction form a test of
the traffic bit so that, if the traffic bit
is set to 1, the supervisor call is

I bypassed. When the SVC 7 is recognized,
the program return address is reduced so
that the instructions generated by the WAIT
macro will be issued.

When the supervisor recognizes an SVC 7
interrupt, it records that the program is
in the wait state. The supervisor then
gives control to the next partition of the
highest priority that is ready to run. If
such a partition does not exist, the
supervisor causes the central processing
unit to enter the wait state until an
interrupt occurs.

A program loses control to the
supervisor whenever an interrupt occurs.
Only the input/output interrupts are
described in the following text because
they are the most significant interrupts in
a multiprogramming environment.

When an input/output interrupt occurs,
the supervisor identifies the operation in
question and checks whether it has been
satisfactorily performed. If it has, the
traffic bit in the related CCB is set to 1;
the owning partition is made ready to run,
that is, if it was in a wait state it is
removed from that state; and any further
input/output operation pending for this
channel or device is initiated. The task
selection routine in the supervisor then
gives control to the next partition of the
highest system priority that is ready to
run.

The following three figures show the
relationship between six different
operations while operating under MPS. All
three partitions are active.

Figure 1.4 assumes that programs were
initiated at some prior point in time in
all three partitions. The first part of
Figure 1.4 shows that foreground 1 has
control of the CPU and is processing. At
some point in time, the program in F1
returns control of the CPU to the
supervisor by issuing an I/O wait (SVC 7).

The supervisor goes through a task
selection process, determines that
foreground 2 is ready to run and gives CPU
control to it. F2 processes its program
until it requires I/O, and then returns
control of the CPU to the supervisor by
issuing an I/O wait (SVC 7).

The supervisor goes through a task
selection process, determines that F1 is
not ready to run but the background is
ready to run, and gives CPU control to the
background. BG processes its program until
it requires I/O and then returns control of
the CPU to the supervisor by issuing an I/O
wait (SVC 7).

The supervisor goes through a task
selection process, determines that no
partitions are ready to run, and gives
control of the CPU to a task called All
Bound. This task loads a PSW that puts the
system in the wait state with all
interrupts enabled. Note that no I/O
interrupts have occurred.

section 1: Supervisor Planning Concepts 23

.Foreground 1 (Fl)

Foreground 2 (F2)

Background (BG)

Supervisor

System in Wait State

I/O Interrupts

NOTES

5

Processing

~
I/O Wait* :

I
I

Task
ISelectio

I
I

Inactive State I

2 3 4 5 6

I
Waiting for I/o ~ompletion

I

I I

Waiting for I/O Completion

Task
Selection

Active State

I
I/O Wait* I

I

Task
Selection

I

* I/O Wait means an SVC 7 is issued (WAIT Macro)

Figure 1.4. Processing and I/O Requests Relationship

24 DOS system Programmer's Guide

All
Bound

letion

j

2

Foreground 1 (Fl)
J

Waiting for I/O

Foreground 2 (F2) Waiting for I/O

Background (BG) Waiting for I/O

Supervisor
j \ I

3 4

U
I
I
I
I

I

I
I
I

Q

5

Waiting to be Selected

I
Waiting to be Selected I

I
I
I

~
Posting Traffic Bit and Performing Task Selection

J
I I I

I I
All Bound I

System in Wait State I I

I I I
I I I

Fl BG F2

I/O Interrupts
J 1\ 1\ 1\ J

I/O INTERRUPT SEQUENCE

1. Flls I/O Interrupt Occurs
2. BG IS I/O I nterrupt Occurs
3. F2 1s I/O Interrupt Occurs

Figure 1.S. First Example of Processing and I/O Requests with I/O Interrupts

Figure 1.5 starts with all partitions
waiting for I/O, and the system in the wait
state with interrupts enabled.

When the first I/O interrupt occurs, the
supervisor I/O interrupt routine gets
control of the CPU, and turns on the
traffic bit in theCCB associated with the
device causing the I/O interrupt (Fl
partition). The supervisor task selection
routine then gets control, determines that
Fl is through waiting, and gives CPU
control to it. Fl starts processing its
program.

An I/O interrupt occurs and control
passes to the supervisor I/O interrupt
routine. It turns on the traffic bit in
the CCB associated with the device causing
the I/O interrupt (BG partition). The
supervisor task selection routine gets
control, determines that Fl is still the

highest priority program ready to run, and
gives CPU control to it. Note that BG is
still waiting, but now is ready to run
because its I/O wait is complete.

While Fl is processing, another I/O
interrupt occurs and control passes to the
supervisor I/O interrupt routine. It turns
on the traffic bit in the CCB associated
with the device causing the I/O interrupt
(F2 partition). The supervisor task
selection routine then gets control of the
CPU, determines that Fl is still the
highest priority program that is ready to
run, and gives CPU control to it. Note
that both BG and F2 are now ready to run,
but control of the CPU is retained by the
highest priority partition (Fl) until it
issues an SVC or until one of the four
other system interrupts occurs.

Section 1: Supervisor Planning Concepts 25

Foreground 1 (F 1)

Foreground 2 (F2)

Background (BG)

2
I
I
I
I
I

3

Waiting for I/O I

I
I
I
I

Waiting for I/O J

I
Waiting for I/O

4 5 6 7

I

I

I
Waiting to be Reselected

Processing

Waiting to be Reselected

Supervisor
J \ lot 1/ J

Posting Traffic Bit and Performing Task Selection
I I
J I

All Bound I I
I
I System in Wa it State

J I
I J

BG F2 Fl

I/O Interrupt Jt-------'~~----I\~I\----------i5
I/O INTERRUPT SEQUENCE

1. BG IS I/O Interrupt Occurs
2. F2 1s I/O Interrupt Occurs
3. Flls I/O Interrupt Occurs

Figure 1.6. Second Example of Processing and I/O Requests with I/O Interrupts

Figures 1.4 and 1.5 show a simplified
version of what actually occurs. In actual
practice, the process time for F1 would be
longer than F2 or BG, and the sequence of
I/O interrupts would probably be staggered.

Figure 1.6 starts with all partitions
waiting for I/O, and the system in the wait
state with interrupts enabled.

When the first I/O interrupt occurs, the I
supervisor I/O interrupt routine gets
control of the CPU, and turns on the
traffic bit in the CCB associated with the
device causing the I/O interrupt (BG
partition). The supervisor task selection
routine gets control, determines that the
BG partition is the highest priority task
ready to run, and gives CPU control to it.
The BG partition starts processing with the
instruction 6 bytes before the I/O wait
(SVC 7).

26 DOS system Programmer's Guide

When the second I/O interrupt occurs,
the supervisor I/O interrupt routine gets
control of the CPU, and turns on the
traffic bit in the CCB associated with the
device causing the I/O interrupt (F2
partition). The supervisor task selection
routine gets control of the CPU, determines
that the F2 partition is now the highest
priority partition ready to run, and gives
CPU control to it. The F2 partition starts
processing with the instruction 6 bytes
before the I/O wait (SVC 7).

When the third I/O interrupt occurs, the
supervisor I/O interrupt routines gets
control of the CPU, and turns on the
traffic bit in the CCB associated with the
device causing the I/O interrupt (F1
partition). The supervisor task selection
routine gets control of the CPU, determines
that the F1 partition is now the highest

priority partition ready to run, and gives
CPU control to it.

The foreground 1 partition remains in
control of the CPU until it issues an SVC
or until one of the four other system
interrupts occurs.

system Considerations

Any program that is process-bound
(compute-bound) completely suppresses any
event from taking place in any partition of
lower priority, regardless of the
utilization of channels and devices. Thus,
if the program in the foreground 1
partition is process-bound,
multiprogrammdng cannot take place because
a partition of lower priority cannot get
control. In general, a foreground program
should never be process-bound in a
multiprogramming environment.

Because the slowest devices are those
that are associated with unit record­
equipment (e.g., card readers, card
punches, line printers and terminals), unit
record and teleprocessing devices in a
multiprogramming environment should be
associated with the partitions of highest
system priority.

In general, the slowest input/output
devices should run with maximum efficiency,
because loss of efficiency on such devices
is more serious in terms of system
throughput than on faster devices.

Note: I/O bound programs with the slowest
system devices should be allocated to the
highest priority partitions.

The efficiency of a low priority program
depends on the quantity and frequency of
processing time made available to it. The
most advantageous high priority program (in
terms of overall system efficiency)
combines lengthy input and output
operations with a minimum of processing.

Every time an input/output interrupt
occurs, it must be interrogated for all
partitions of higher priority than the
partition to which it relates. Therefore,
a reduction in the number of such
interrupts (which may be achieved by
increasing blocking factors of tape and
disk files), promotes greater
multiprogramming efficiency because it
lowers system overhead. Increased blocking
factors, however, result in increased core
storage requirements.

Another important system consideration
is the use of two input or output areas in
connection with one file (double
buffering>. Double buffering increases
computer utilization by allowing the
overlap of input/output operations with
processing. Multiprogramming has the same
purpose. In double buffering, input/output
operations are overlapped with processing
relating to the same program; in
multiprog~amming, input/output operations
are overlapped with processing relating to
a different program. Therefore, the more
efficiently double buffering operates in
relation to a given foreground program, the
less time will be freed for use by the
background program.

In a multiprogramming environment, it
may prove more efficient in terms of total
system throughput to dispense with double
buffering for programs operating in
foreground partitions. In most cases, main
storage can be better applied to the
accommodation of greater block sizes than
to the accommodation of double input/output
areas.

Concurrent Peripheral Operation (CPO)

The CPO (Concurrent Peripheral Operation)
concept is the application of
multiprogramming techniques to the basic
utility operations of card-to-tape,
tape-to-punch, tape-to-printer, and their
disk equivalents. Such operations are
performed in a separate storage partition.

A typical CPO program is a file-to-file
utility containing a minimum amount of
processing. Blocking and deblocking
operations and some data selection can be
performed, but this is all. Thus, CPO fits
the specifications for an efficient high
priority program. A CPO program is
normally associated with a unit record
device and the greater part of its
input/output time is likely to utilize
subchannels of the multiplexor channel.
Therefore, channel contention with other
concurrent programs is greatly reduced.
CPO is one of the most efficient practical
applications of the multiprogramming
technique.

Operational Considerations

Two methods used to initialize and operate
programs in the foreground partitions are:

1. Batch Job Foreground (BJF): This
method uses the job control program.

Section 1: Supervisor Planning Concepts 27

The foreground partition(s)
essentially operates like the
background partition (i.e., batched
processing automatic job-to-job
transition). The foreground
partition(s) must be a minimum of 10K.

2. Single Program Initiator (SPI): This
method uses the IBM 1052
Printer-Keyboard for System/360 or the
IBM 3210 or 3215 Console
Printer-Keyboards for System/370 to
initialize single programs in the
foreground partition(s). When the
single program is terminated (either
under its own control by issuing an
EOJ, DUMP or CANCEL macro, or through
operator action, a program error or
certain I/O failures), a terminating
message is printed on the console and
the foreground partition becomes
inactive. To run the next single
program in the foreground partition,
the operator must again initialize it
from the 1052, 3210, or 3215 console.
The major advantage of SPI is that the
foreground partition size can be a
minimum of 2K bytes.

Programming Considerations

The output of the language compilers can be
link-edited to run in any partition,
provided enough core storage is available.

In a system that supports both
batched-job foreground and private core
image libraries (see Private Core Image
Libraries), the function of compiling can
be run in the foreground partitions as well
as the background partition, providing
enough core storage is available in which
to execute the compiler. The linkage
editor can execute in any batched-job
partition. A private core image library is
required when executing the linkage editor
in a foreground partition.

system Generation Guidelines

The multiprogramming facility is specified
at system generation time by the
MPS= keyword parameter in the SUPVR macro.

MPS={~~}
.BJFJ

NO This option automatically creates
a background partition consisting
of all available main storage
above the supervisor and negates

28 DOS system Programmer's Guide

any and all multiple partition
operation. NO is the assumed
value.

YES When yes is specified, one, two,
or three problem program
partitions may exist. The
foreground partitions may only be
initialized using the single
program initiator (SPI).

BJF Under this option, one, two, or
three problem program partitions
may exist and the foreground
partition(s) may be controlled
either by job control or the
single program initiator (SPI).

The parameter YES or BJF must be
specified if the supervisor is to be
generated to support QTAM.

AMERICAN NATIONAL STANDARD CODE FOR
INFORMATION INTERCHANGE (ASCII) SUPPORT

In addition to processing EBCDIC data
files, DOS can process magnetic tape files
written in ASCII (American National
Standard Code for Information Interchange),
a 128-character, 7-bit code. The
high-order bit in the System/360 8-bit
environment is zero. ASCII tape files may
be either unlabeled or labeled according to
the specifications of the American National
Standards Institute, Inc. (ANSI).

System Considerations

ASCII tape files may be processed in either
a foreground or background partition.
Because internal processing of ASCII files
is performed in EBCDIC, the data is
translated at I/O time. Input files
containing ASCII data are translated to
EBCDIC as soon as the record is read into
the I/O area. Output files described as
ASCII are translated from EBCDIC to ASCII
just prior to writing the record.

Two translate tables (providing for the
conversion from ASCII to EBCDIC and from
EBCDIC to ASCII) are generated at system
generation time by specifying the ASCII=YES
parameter in the SUPVR macro. These tables
are located immediately before the Seek
Address Blocks in the supervisor. The
address of the ASCII-EBCDIC translate table
is in locations 44-47 (decimal) of the
communications region extension. Add 256
(decimal) to this table to get the address
of the EBCDIC-ASCII translate table. The
address of the communications region

extension is in bytes 136-139 (decimal) of
the communications region. Figures 1.7 and
1.8 show the system and background
communications regions.

system Generation Guidelines

To generate supervisor support for handling
ASCII tape files, ASCII=YES must be
specified in the SUPVR macro.

ASCII={~~S}

YES

When ASCII=NO is specified, or if
the parameter is omitted or
incorrectly specified, the
translate tables are not
generated. The system will then
process EBCDIC files only.

When YES is specified, the two
translate tables are generated in
the supervisor. The address of
the first table (ASCII-EBCDIC) is
inserted in each communication
region extension to enable
accessibility by any task in any
partition.

Section 1: Supervisor Planning Concepts 29

COMREG*

Displacement
hexadecimal

Displacement
decimal

D i spl acemen t
hexadecimal

Displacement
decimal

0 8 OA

0 8 10

Address of Address of
Date PPBEG EOSSP

XXXXXXXX XX XX

2E 30 34 35

r46 48 52 53

PIK End of Machine System
(PI D) Storage Confg. Confg.

Address Byte Byte

XX XXXX X X

~O 42 44 46 48

04 66 68 70 72

OC

12

Problem Program Use

XXXXXXXXXXX

36 37

54 55

Standard Dump,
Language Log and
Translator

ASCII
I/O
Options Options

X X

"

4A 4C

74 76

17 18 20 24 28 2C

23 24 32 36 40 44
Highest End Address

Address of
UPSI Storage Uppermost Label
Byte Job Name Address

of Last Phase
Byte of Phase Area

of the
Fetched or

with Highest Length
Partition Loaded

Ending Address

X XXXXXXXX XXX X XXXX XXXX XX

38 39 3A 3B 3C 3E

56 57 58 59 60 62

Job Linkage Language Job Disk Address
Control Control Translator Duration Address of of
Byte Byte Control Indicator Label FOCL

Byte Byte Cylinder

X X X X XX XX
~ ...

Job Control Switches

4E 4F 58 5A 5C

78 79 88 90 92

Displacement
hexadecimal

Displacement
decimal Address Address Address Address Address Address Address Line System Date LlOCS Address of ID Number

of of of of of of of Count C6mm. 1 st Part of of Last

Displacement
hexadecimal

Displacement
decimal

Displacement
hexadecimal

Displacement
decimal

PUB FAVP JIB TEB FICL

XX XX XX XX XX

5E 60 62

94 96 98

Length of LUB Address of Address of
ID Queue = Disk Error
No. of Channel Information Recovery
Queue Entries Block (DIB) Block

XX XX XX

70 7C

112 ·124

Address of

Supervisor Constants
2nd
Part of
PIB Table

XXXXXXXXXXXX XX

NICL LUB for
SYSLST

XX XX X

64 66

100 102

Address of Address of
PC Option IT Option
Table less Table less
8 bytes 8 bytes

XX XX

7E 80

126 128

Address of Address of
MICR DTF QTAM
Table Vector
(PDTABB) Table

XX XXXX

* The address of the communications region is in fixed location X'14' - X'17'.

Bytes

XXXXXXXXX XX

68 6A

104 106

Address of Key of
OC Option Program
Table less with Timer
8 bytes Support

XX XX

84 86 87

132 134 135

Address of Op- System
BG Comm. tion Config·
Region Indi- uration

cator Byte 2

XX X X

Displacement values illustrated can be used to access the listing and/or the key that follows the figure.
The key offers more detailed information about each area when necessary.

Figure 1.7. System Communications Region (Part 1 of 5)

30 DOS System Programmer's Guide

PIB Table Checkpoint

XX XX

6C 6E

108 110

Address of Logical
the LUBID Transient
Queue Key

XX XX

88

136

Pointer to
Comm.
Region
Extension

XXXX

)

Key to Communications Region Displacements:

MM/DD/YY or DD/MM/YY obtained from the job control date statement. Format controlled by COMREG + 53
(System Configuration Byte, date convention bit 0).

Address of the problem program area.

Address of the beginning of the problem program area. Y (EOSSP)=Y (PPBEG) if the storage protection option has not
been selected. Y (EOSSP) equals the first main storage location with a storage protection key of 1, if storage protection
is supported.

User area. If seek separation option is specified, bytes 12 and 13 are used at IPL time for the address of the seek
address block.

User program switch indicator.

Job name set by the job control program from information found in the job statement.

Address of the uppermost byte of the problem program area as determined by the IPL program (Clear storage routine
determines the address, ENDRD routine of $$A$IPL2 stores it.), or the address of the uppermost byte of the partition
as determined during processing of the ALLOC statement.

Address of the uppermost byte of the last phase of the problem program fetched or loaded. The initial va lue (as shown)
is overlaid by the first fetch or load to the problem program area.

Highest ending main-storage address of the phase among all the phases having the same first four characters as the
operand on the EXEC statement. For the background partition only, job control builds a phase directory of these
phases. The address value may be incorrect if the program loads any of these phases above its I ink-edited origin
address. If the EXEC statement has no operand, job control places in this location the ending address of the program
just link-edited.

Length of the problem program label area.

Program Interrupt Key - PIK (if asynchronous processing is not supported): Value is equal to the displacement from the
start of the PIB table to the PI B for the task.

OR
Partition Identifier - PID (if asynchronous processing is supported): Value is hex 10, 20, or 30 to identify the partition
in which a maintask or a subtask is running. (See the communications region extension, displacement 18, for the PIK
in an asynchronous processing supervisor.)

First byte - always zero.
Second byte - contains the key of the program that was last enabled for interrupts, or the partition identifier in

an AP supervisor.

Task PIK (PID) Value

*AII Bound X'OO'
BG X'lO'

*F2 X'20'
*F1 X'30'
Attn Rtn X'40'
Quiesce I/O X'50'
Supervisor X'60'

*These tasks do not exist in a non - MPS supervisor.

~ Logical end of main storage address.

Figure 1.7. system Communications Region (Part 2 of 5)

section 1: supervisor Planning Concepts 31

Key to Communications Region Displacements:

Machine Configuration Byte (Values set at supervisor generation time.)

Bit 0: 1 = Storage protect feature
o = No storage protect feature

1: 1 = Decimal feature
o = No decimal feature

2: 1 = Floating-point feature
o = No floating-point feature

3: 1 = Physical transient overlap option
o = No physical transient overlap option

4: 1 = Timer feature
o = No timer feature

5: 1 = Channel switching device
0= No channel switching device

6: 1 = Burst mode on multiplex channel support
0= No burst mode on multiplex channel support

7: Reserved

System Configuration Byte

Bit 0:

1:

2:

3:

4:

5:

6 : ~~~~~~} (Date convention bit set at generation time by STDJC)

1 = Multiprogramming environment
o = Batch job environment
1 = DASD file-protect supported
o = No file-protect support for DASD
1 = DASD SYSIN - SYSOUT
0= No DASD SYSIN - SYSOUT
1 = Teleprocessing
o = No teleprocessing
1 = Batch job in foreground
0= No BJF

6: 1 = Asynchronous processing
0= No AP

7: 1 = Track Hold
o = No Track Hold

This byte contains the standard language translator I/O options (set by the STDJC macro).

Bit 0:
1:
2:
3:
4:
5:
6:
7:

DECK option
LIST option
LlSTX option
SYM option
XREF option
ERRS option
CHARSET option
Reserved

1 = yes, output object modules on SYSPCH
1 = yes, output source module listings and diagnostics on SYSLST
1 = yes, output hexadecimal object module listings on SYSLST (compilers only)
1 = yes, output symbol tables on SYSLST/SYSPCH
1 = yes, output symbolic cross reference list on SYSLST
1 = yes, output diagnostics on SYSLST (compilers only)
1 = 48, input on SYSIPT is 48 or 60 character set

This byte contains the standard supervisor options for abnormal EOJ and control statement display, and the indicator
for the presence of the ASCII-EBCDIC and EBCD IC-ASCII translation tables.

Bit 0:
1:
2:
3:

Figure 1.7.

4-6:
7:

Always on
DUMP option
Reserved
LOG option
Reserved
ASCII option

= yes, dump registers and storage on SYSLST

= yes, I ist all control statements on SYSLST

= yes, ASCII supported

system Communications Region (Part 3 of 5)

32 DOS System Programmer's Guide

Key to Communications Region Displacement:

Job control byte

Bit 0: 1 = Job Accounting
Interface (JA) not supported

0= Job Accounting
Interface (JA) is supported

1: 1 = Return to caller on LlOCS disk open failure
0= Do not return to caller on LlOCS disk open failure

2: 1 = Job control input from SYSRDR
0= Job control input from SYSLOG

3: 1 = Job control output on SYSLOG
0= Job control output not on SYSLOG

4: 1 = Cancel job
o = Do not cancel job

5: 1 = Pause at end-of-job step
0= No pause at end-of-job step

6: 1 = SYSLOG is not a 1052
o = SYSLOG is a 1052

7: 1 = SYSLOG is assigned to the same device as SYSLST
0= SYSLOG is not assigned to the same device as SYSLST

linkage control byte

Bit 0: 1 = SYSLN K open for output
o = SYSLN K not open for output

1: 1 = $ or FG program phase deleted, renamed, or cataloged (flag bit for $MAINEOJ)
2: 1 = Allow EXEC

o = Suppress EXEC
3: 1 = Catalog linkage editor output

0= Do not catalog linkage editor output
4: 1 = Supervisor has been updated

o = Supervisor has not been updated
5: 1 = Executing in AUTOTEST mode

o = Not executing in AUTOTEST mode
6: 1 = R,eallocate or condense in progress
7: 1 = Fetch $MAINEOJ at end of job to update system directory

0= Do not fetch $MAINEOJ at end of job for update

Language processor control byte. This is a set of switches used to specify nonstandard language translator options.
The switches within the byte are controlled by job control OPTION statements and when set to 1, override standard
options. The format of this byte is identical to the stnadard option byte (displacement 54) with one exception:
Bit 7 in this byte is used to indicate to LlOCS that the rewind a'nd unload option has been specified.

Job duration indicator byte

Bit 0:

Figure 1.7.

1:

2:

3:

4:

5:

6:
7:

1 = Within a job condition
o = Outside a job condition
1 = Dump on an abnormal end-of-job condition
0= No dump on abnormal EOJ
1 = Pause at EOJ step } '. .
O N t EOJ

Set by Attention Routine for Job Control = 0 pause a
1 = Job control output on SYSLST
o = Output not on SYSLST
1 = Job is being run out of sequence with a temporary assignment for SYSRDR
o = Conditions for 1 setting not met
1 = PCIL is being condensed
o = PCIL is not being condensed
Reserved
1 = Batch command just issued
o = Condition for 1 setting did not occur

system Communications Region (Part 4 of 5)

Section 1: Supervisor Planning Concepts 33

Key to Communications Region Displacements:

~ Binary disk address of the volume label area (label cyl inder).

~ As illustrated (Figures for information blocks, I/O tables, and pointers
begin at Figure 1.14 which refers to more detailed Figures).

o o
G
G
~
G
G
G

Set to the value nn specified in the LINES = nn parameter of the STDJC macro.

The format of the system date contained within this field is determined by the IPL program from information supplied
in the date convention byte (displacement 53). Bytes 85 - 87 contain the day count.

Bytes reserved for use by LlOCS. Transient dump programs insert a key to indicate to the LlOCS end-of-volume
routine, $$BCMT07, that it was called by a B-transient.

Address of the first part of the program information block (PIB) table. (See Figures 4.4, and 4.5.)

ID number of the last checkpoint. Temporary indicator of file protected DASD. Used at IPL time, when
DASDFP is specified.

Length of the LUBID queue (in bytes). This equals the number of channel queue entries. It can also be used to
access the REQID, LUBDSP, and TKREQID queues: (See Figure 1.29.)

Address of disk I/O position data. This is the starting address of the disk information block{DIB)table (See Figure I .24).

Address of the beginning of the error recovery block. The error recovery block contains addresses of error recovery
exits, error recovery queue information that can be used by physical transients routines, and defines storage for the
error queue entries

As illustrated (See Figure 1.13).

Key of the program (BG, F2, or FI) that has timer support.

As illustrated (See Figure I .29).

Logical Transient Key (LTK) contains the same value as the PIK (PID) (Displacement 46) when the logical transient is
requested. When the transient area is not in use, LTK is equal to zero. The SVC 2 routine sets the LTK. The
SVC II routine resets the LTK.

Supervisor constants:

DOLLARBO
SSKADR
LTAREA

(4 bytes) = C'$$BO'
(5 bytes) = XL5'O'
(3 bytes) = Adcon of LTSVPT, logical transient save pointer

Address of second part of program information block (PIB) table (See Figure 4.6).

Address of PDT ABB, table of DTF addresses for MICR support (See Figure I .9).

Address of OT AM vector table (IJLQTT AD).

Address of background communications region.

Option Indicator Byte

Bit 0: I = MCRR indicated for OBR writer
o = No MCRR indicated for OBR writer

I : I = EU interface acti ve
o = EU interface not active

2: I ~ Teleprocessing request
o = No teleprocessing request

3: I = Supervisor support for only 9-track tape
0= Supervisor does not support 9-track tape exclusively

4: Reserved
5: J = RETAIN/370 support generated

0= RETAIN/370 support not generated
6-7: Reserved

System Configuration Byte 2

Bit 0: I = PCIL supported
0= PCIL not supported

I -7: Reserved

Pointer to communications region extension (See Figure 1.8).

Figure 1.7. System Communications Region (Part 5 of 5)

34 DOS System Programmer's Guide

BGXTNSN (See Note)

o (Hexadecimal 4 8 OC 10 12 14
Displacement)

o (Decimal 4 8 12 16 18 20
Displacement)

Difference ID of
CE Table Track Hold Between 1st AB Termin- Task ID of Task Re-

Address Table Address and 2nd Part ation Table Owning Task quester ID
(THTABAD) of PIB Table Address -8 LTA Running Tab I e Address

(PIBDtFF) (ABPTR) (LID) (PIK) (TKIDPTR)

XXXX XXXX XXXX XXXX XX XX XXXX

24 (Hexadecimal 28 2C 30 34 38 3C
Displacement)

36 (Decimal 40 44 48 52 56 60
Displacement)

OLTEP RMS ASCII-EBCDIC JAI Common JAI Partition &SYSPARM
Linkage Linkage Translation (Reserved) Table Address Table Address Field
Address Address Table Address (ACCTCOMN) (ACCTxx) Address

(RASLlNK)

XXXX XXXX XXXX XXX X XXXX XXXX XXXX

Key to displacements:

G CE Table Address.

~ Track Hold Table Address (THTABAD).

~ Difference between addresses of first part of PIB table and second part of PIB table (PIBDIFF).

G Abnormal Termination Table Address (minus 8) (ABPTR).

18 lC

24 28

Address SDR
Used by Communications
QTAM Address
(MVCFLD) (SDRTABLE)

XXXX XXXX

G Identification (LID) of the task owning the Logical Transient Area. Contciins same value as PIK (displacement 18) when LTAis in use.
Contains zero when LTA is not in use.

~ Program Interrupt Key (PIK) if asynchronous processing is supported. Value is equal to the displacement of the start of the PIB table
to the PIB of the main task or subtask being selected (running).

First byte - zero
Second byte - contains the displacement into the PIB table for a maintask or a subtask.

Maintask - PIK value is hex 10, 20, or 30.
Subtask - PIK value is hex 70, 80, 90, FO.

~ Task Requester ID Table Address (TKIDPTR).

~ MVCFLD address used by QTAM.

~ Statistical Data Recorder Tcible Address (SDRTABLE).

~ Tape Error Blocks by Volume Tobie Address (TEBVTAB).

~ Pointer to OLTEP Linkage Addresses

~ RMS Linkage Area Address (RASLlNK)

B ASCII-EBCDIC Translation Table Address.

~ (Reserved)

o JAI Common Table Address (ACCTCOMN)

~ JAI Partition Table Address (ACCTxx; where xx = BG, F2, or Fl).

~Address of&SYSPARM Field.

Note: If communications regions are generated for the foreground partitions, the labels in those extensions will be F2XTNSN
and F1XTNSN. The extensions, wherever used, are generated by the COMMNEX macro. Following the background
extension (and immediately preceding the MCRR Linkage Table) is a six-byte area. The first four bytes are the address of
the background save area (BGSAV), and the last two bytes are the value 4,096, used to restore base registers.

Figure 1.8 Background Communications Region Extension (BGXTNSN)

20

32

TEBV
Table
Address
(TEBYTAB)

XXXX

section 1: Supervisor Planning Concepts 35

MAGNETIC INK CHARACTER RECOGNITION SUPPORT
(MICR)

A Magnetic Character Reader, such as an IBM
1255, 1259, 1412, or 1419, can be attached
to a channel for reading
magnetically-inscribed data on checks and
other banking documents. They differ
mainly in document reading rates. The 1255
reads at speeds as high as 500
six-inch-Iong documents per minute on its
Model 1, and 750 documents per minute on
its Models 2 and 3; the 1259 reads at
speeds as high as 600 six-inch-Iong
documents per minute; the 1412, at speeds
as high as 950 documents per minute; the
1419, at speeds as high as 1,600 per
minute. Specific speeds depend on document
length as well as on the program.

system Considerations

The DOS supervisor support allows operation
of Magnetic Ink Character Recognition
(MICR) devices in either a foreground or
background area. An extension to the DOS
supervisor monitors, by means of external
interrupts, the reading of documents into a
user-supplied I/O area (document buffer
area). All MIC~ documents must be accessed
through logical IOCS. Logical IOCS gives
you the next sequential document and
automatically engages and disengages the
devices, as necessary, to provide a
continuous stream of input. Detected error
conditions and information are passed to
you in each document buffer.

The magnetic character readers are
unique in that documents must be read at a
rate dictated by the device rather than by
the program. To ensure time for necessary
processing (including determination of
pocket selection) a MICR device generates
an external interrupt at read completion of
each MICR document. The supervisor gives
highest priority to external interrupt
processing.

In an MPS system with MICR document
processing, any partition (background or
foreground) can use MICR devices. For
programs with one MICR device, GET macro

36 DOS System Programmer's Guide

instructions are provided. For multiple
MICR processing, READ, CHECK, and WAITF
macro instructions allow processing to
continue as long as one of the files has
documents ready for processing. Figure 1.9
shows the tables for MICR DTF addresses and
pointers.

System Generation Guidelines

To specify supervisor support for MICR
devices, the MICR= parameter must be
included in the SUPVR macro.

1. If both 1412s and 1419s are present,
specify MICR=1419. If 1255s or 1259s
are to be supported, also specify
MICR=1419. MICR=1419D indicates Dual
Address Adapter 1419s.

2. 1419 support gives 1255/1259/1270/1275
capability. The 1270/1275 are optical
reader/sorters.

3. If 1255/1259/1270/1275/1412/1419s are
attached to the multiplexor channel,
the PIOCS parameter BMPX=YES is not
supported.

4. If MICR support is required on a Model
65, specify MODEL=65 in the CONFG
macro.

5. For MICR support on selector channel,
specify MRSLCH=YES in the PIOCS macro.

MICR processing requires at least two I/O
channels. If MICR devices are attached to
the multiplexor channel, no burst mode
devices are supported on the multiplexor
channel. MICRs should be attached as the
highest priority devices on the multiplexor
channel. Single addressing 1412s or 1419s
are supported on any selector channel, but
device performance is maintained only if a
selector channel is dedicated to a single
MICR device. Also note that the Dual
Address 1419 is not attachable to selector
channels.

In addition, MICR processing requires
either the direct control feature or the
external interrupt feature.

The table of DTF addresses (PDTABB) contains six 8- byte entries; one for each external line of the
direct control feature on the system.

PDTABB

Byte ---+- 0 1 2 3 4 5 6 7

+ DTF address for MICR:
0 NI PDSTAT + 1 X'FE ' .9- Device on line 7
8 NI PDSTAT + 1 X'FD ' ...!: Device on line 6

NI PDSTAT + 1 X'FB '
~

Device on line 5 16 Q) VI

24 NI PDSTAT+l X' F7 1
s:: C>

Device on line 4 3: 0

32 NI PDSTAT + 1 X'EF '
au:: Device on line 3

40 NI PDSTAT+l, X'DF ' Device on line 2

Background =10
Foreground 2 = 20
Foreground 1 = 30

• Bytes 0- 3 - - Contain an lAND I instruction that is executed in main I ine coding to turn off the
external line status after its detection.

PDSTAT + 1 contains one or more of the following interrupt codes:

PSW Interrupt Interrupt Code External
Code Bit (PSW Bits 26- 31)* Interrupt Cause

31 nnnnnnnl External signal 7
30 nnnnnnln External signal 6
29 nnnnnlnn External siRnal 5
28 nnnnlnnn External signal 4
27 nnnlnnnn External signal 3
26 nnlnnnnn External signal 2

• Byte 4- - Contains the flag of the partition containing the DTF.

• Bytes 5- 7 - - Contain the address of the DTF table.

Table of pointers (PDTABA) to DTF addresses associated with the external interrupt line. The table
contains the status in descend ing order from Bit 31 to Bit 26 of the external old PSW.

PDTABA

Byte~ 0 1 2 3 4 5 6 7

+ I I

0 00 08 00 10 00 08 00 18
8 00 08 00 10 00 08 00 20

16 00 08 00 10 00 08 00 18
24 00 08 00 10 00 08 00 28
32 00 08 00 10 00 08 00 18
40 00 08 00 10 00 08 00 20
48 00 08 00 10 00 08 00 18
56 00 08 00 10 00 08 00 I

*n =other external - interrupt cond itions.

Bytes 126 and 127 (X'7E'- '7F') of the communications region contain the address of these
tables. Label PDTABB identifies the first byte of the first table.

Figure 1.9. Tables for MICR DTF Addresses and Pointers

Section 1: supervisor Planning Concepts 31

ASYNCHRONOUS PROCESSING (AP)

The asynchronous processing function, also
known as multitasking, provides greater use
of system resources at the partition level.
Multitasking provides the ability to
execute more than one program in a
partition, that is, the ability to do
multiprogramming within a partition (or in
all three partitions) of the DOS system.
Just as multiprogramming between partitions
can increase the system throughput,
multitasking can increase overlap of I/O
activity and computer processing for a
given job.

To perform multiprogramming within a
partition, the program must consist of a
main program (main task) and one or more
subprograms (subtasks).

Because multitasking is a logical
extension of the current task selection
mechanism, a maximum of nine subtasks can
exist in the system at any given time.
These nine subtasks can all reside in one
partition, or can be spread among the three
available partitions. A total of 12 tasks
(a task can be considered either a main
task or a subtask) can be executed
concurrently in the system.

The subtasks share the same partition
~ith their associated main task. The main
task initiates (attaches) execution of the
subtasks. The ability of the main task to
attach subtasks minimizes operator
intervention. Storage within the partition
may be allocated to the main task and its
associated subtasks in any way desired by
the user. Subtasks have the same storage
protect key as the main task.

When subtasks are attached to a given
partition, they retain the priority of that
partition. Priorities are also established
within the partitions. The priority within
a partition is determined by the order in
which a subtask is initiated. The first
subtask to be attached has the highest
priority, and as each subsequent subtask is
attached, it has the next highest priority,
followed by the main task which has the
lowest priority. When a subtask is
attached, it receives control from the
system before control is returned to the
main task. See Figure 1.10 for an example
describing priority structure in a
multitasking environment. If the Fl
partition has two attached subtasks, the F2
partition has four attached subtasks, and
the BG partition has three attached
subtasks (a maximum of nine subtasks),
their priority would be as shown (with 1
being the highest priority and 12 the
lowest priority).

38 DOS System Programmer's Guide

A subtask can operate independently of
its main task and has its own save area for
registers. The subtask can communicate
with other subtasks and main task via a set
of macro instructions (see Intertask
Communication).

r----------------------T------------------, I Partition I Priority I
~----------------------+------------------~ I Fl Subtask 1 I 1 I
I Subtask 2 I 2 I
I Main Task I ~ I
~----------------------+------------------~ I F2 Subtask 1 I 4 I
I Subtask 2 I 5 I
I Subtask 3 I 6 I
I Subtask 4 I 7 I
I Main task I 8 I
~----------------------+------------------~ I BG Subtask 1 I 9 I
I Subtask 2 I 10 I
I Subtask 3 I 11 I
I Main Task I 12 I L _____________________ ~ __________________ J

Figure 1.10. Example of Multitasking
Priorities

When a subtask is no longer required, it
can be detached from the system. The
subtask can either detach itself or be
detached by its main task. When one or
more subtasks are detached, subtasks with
lower priorities receive the next highest
priority. If a detached subtask is later
attached, it becomes the lowest priority
subtask in the partition, but it still has
higher priority than the main task.

system Considerations

Under DOS there are additional optional
components and specifications that greatly
enhance multitasking operations.

Track Hold: The track hold facility
prevents two independent subroutines in the
same partition or in two different
partitions from simultaneously trying to
update the same record or write a new
record on the same track when processing
DTFDA, DTFIS, and DTFSD files. When this
facility is used, a second routine
requesting an I/O operation on a track
being held must wait for that track to be
freed by the first routine. Because track
hold is implemented by programming rather
than hardware, all routines processing the
same DASD files must use this facility to
ensure proper protection. This facility
can be used without specifying AP=YES and
is specified at system generation time.
See discussion of TRKHLD parameter under
FOPT Macro for more information.

Multiple Wait: Under DOS, a number of
independent logical IOCS operations
(requiring explicit waiting for completion)
can be initiated before waiting for the
completion of any particular operation.
Once all logical IOCS operations have been
initiated, you must determine the sequence
in which you will wait for their
completion. Once you wait for a particular
operation, you no longer have control, even
though one of the remaining operations
completes before the one on which the wait
occurs and useful processing could have
been done. This can be avoided at the
physical IOCS level, but requires some
additional coding effort on your part.

The multiple wait facility allows you to
wait asynchronously for anyone of a number
of I/O operations to complete at either the
logical or physical IOCS level for the
above situation. This facility provides
increased I/O overlap processing and is
specified at system generation time. See
discussion of WAITM parameter under FOPT
Macro for more information.

Abnormal Termination: Under DOS, your
program is canceled when certain error
conditions occur. In many cases, it is
desirable to perform certain termination
functions (e.g., close files) to minimize
any problems that may occur. The abnormal
termination facility allows for these
situations via a user exit. This function
is specified at system generation time and
implemented via the AB operand of the STXIT
macro.

When the supervisor determines that the
task has been abnormally terminated,
control passes to the task's abnormal
termination routine. In this routine, you
may close data files (such as an indexed
sequential ADD) or perform other operations
that are necessary to minimize any possible
damage. Abnormal termination exits can be
established for both main tasks and
subtasks or, if desired, subtasks can share
the coding of their main task's abnormal
termination routine. It is strongly
suggested that in the shared abnormal
termination routine no I/O be performed.
If I/O is attempted and causes cancelation,
all tasks in the partition are canceled.
Any abnormal termination within the
abnormal termination routine causes the
task (or job if in the main task) to be
canceled without regard to an abnormal
termination exit. This facility of sharing
an abnormal termination routine can be used
even if the multitasking function (AP=YES)
is not used. See AB parameter under FOPT
Macro for more explanation.

Reentrant Modules: Reentrant modules for
CDMOD, DAMOD, ISMOD, MTMOD, PRMOD, SDMOD,
and DIMOD allow a module to be shared by

the same device type DTFs in a multitasking
environment. For example, one PRMOD can
support several subtasks using multiple
printers within a partition. One DAMOD can
support several subtasks within a
partition.

MultitaskinqMacro Usage

Although these four functions (asynchronous
processing, track hold, mUltiple wait and
abnormal termination) can be used
independently, they are discussed under the
heading where they are most frequently
used. The multitasking macros are designed
to handle three basic situations: subtask
initiation and normal termination"
resource protection and intertask
communication. See Supervisor and I/O
Macros listed in the Preface for a
description of the macro formats·. Some
examples using the multitasking macros are
included.

Subtask Initiation and Normal Termination

Subtask initiation can only be performed by
a main task that issues an ATTACH macro
instruction. Normal subtask termination
can be performed by either a main task or a
subtask that issues a DETACH macro
instruction.

ATTACH Macro Considerations

Only a main task can attach subtasks. A
maximum of nine subtasks can be attached in
the system at any given time. They can all
reside in one partition or be spread among
the three partitions in any combination.
If a main task attempts to attach a tenth
subtask to the system, a supervisor Event
Control Block (SPVECB) is unposted
(SPVECB+2, bit 0, set to zero), the address
of the ECB is stored in general register 1
of the main task, and bit 0 of register 1
is set to 1 giving the register a negative
value. The main task can test register 1
for a negative value and, if found, wait on
register 1 until one of the nine subtasks
is detached. Figure 1.11 illustrates the
ECB.

When a subtask is successfully attached,
it has a higher priority than its main
task. Therefore, control is passed to the
subtask before it is returned to the main
task. In addition, the registers of the
subtask contain the same values as the

Section 1: Supervisor Planning Concepts 39

registers of the main task (both the
general registers and floating point
registers if specified), with the following
two exceptions:

1. Register 1 of the subtask contains the
address of the save area for the main
task.

2. Register 0 of the main task contains
the address of the byte immediately
following the save area of the subtask
(save area+96 if no floating point
registers, or save area+128, if
floating point registers).

The passing of the main task's registers
to its attached subtask(s) is worth noting,
because the subtask(s) can be under control
of .and use the main task's base register
without initializing it. In addition:

1. The subtask ID (a value from X'70'to
X'FO') is stored in the subtask's save
area (save area+88, if no floating
pOint registers or save area+120, if
floating point registers)

2. The address of the subtask's entry
point is stored in the save area (save
area+13),and

3. Byte 2 bits 0 and 1 of the subtask's
ECB are set to 0 (unposted).

You should store the subtask name in the
first eight bytes of the save area to be
used for subtask identification when
messages are printed on SYSLOG.

In certain instances, a routine to be
attached may not be in main storage. In
this case, the entry point could be the
label of a FETCH or LOAD routine that
fetches the desired routine into storage.

The following conditions cause
cancelation of a main task (or possibly a
subtask).

1. A main task has not issued the ATTACH
macro (issued by another subtask).

2. The subtask save area is not aligned
on a doubleword boundary.

3. The save area of the subtask being
attached is not within the partition.

4. The entry point of the subtask itself
is not within the partition.

5. The ABSAVE save area, if any, is not
within the partition.

6. The Event Control Block (ECB) of the
subtask is not within the partition.

40 DOS system Programmer's Guide

If a main task is canceled, all subtasks
in that partition are canceled.

DETACH Macro Considerations

A main task can detach any subtask (within
its partition), but a subtask can only
detach itself. In addition, a subtask can
be detached by issuing the CANCEL, EOJ and
DUMP macros. If a subtask is detached, all
pending I/O operations are completed before
the DETACH operation is completed. In
addition, any tracks being held by the
subtaskjare freed.

If the subtask has an ECB, the ECB is
posted (ECB+2, bit 0 set to one) and any
tasks waiting on the ECB are removed from
wait state. The task with the highest
priority then gains control. The
supervisor ECB is also posted (SPVECB+2,
bit 0 set to one) and any main task waiting
on it is removed from wait state.

Although a main task can detach a
subtask, it is generally more desirable for
a subtask to detach itself. The entire
system could be put into wait state if two
(or all three) main tasks attempted to
attach more than the nine subtasks allowed
by the system. The following two examples
show what could happen if the main task is
allowed to detach its subtasks.

Example 1: All partitions attempt to
attach five subtasks apiece. Each set of
subtasks is independent and processing is
such that each main task has a chance to
attach a subtask before anyone main task
has attached all its subtasks. The entire
system could then be placed in wait state,
because the main task is not able to get to
the routine to detach a subtask when it has
successfully completed (it is waiting to
attach another subtask).

Example 2: Placing one or two of the three
partitions in wait state is another
situation that could occur, if all
partitions attempted to attach five
subtasks each. The F1 partition may attach
all five of the subtasks. F2 partition may
attach four of its five subtasks, and the
BG partition may not attach any of its
subtasks and, therefore, be in wait state.
The main task of the F2 partition would
also be in wait state because it still has
one more subtask to attach. These subtasks
remaining to be attached have to wait until
one or more of the attached subtasks are
detached. In addition, if the five
subtasks in the F2 partition are dependent
upon each other, the entire F2 partition
could also be in wait state. Thus, only
the tasks in the F1 partition may be
executing.

The following conditions cause
cancelation of a main task or a subtask:

1. The main task detaches and does not
pass the address of the subtask save
area (if a subtask detaches and passes
the save area address, it is ignored).

2.

3.

The main task detaches and the subtask
is already canceling or canceled.

The limits of the save area specified
in the DETACH macro do not reside in
the partition of the main task. If
the main task is canceled, all
subtasks within the partition are
canceled.

4. The subtask 10 stored in the save area
is not a valid subtask 10 (hexadecimal
70-FO).

In the last case, a check cannot be made
if the value has been altered to that of
another subtask 10. In this case, it would
be possible for the wrong subtask to be
detached because this is the only way the
system can locate the task being detached.
(This is also the reason why the main task
must specify the save area of the subtask.)
In addition, the system sets the invalid 10
to binary zeros.

Resource Protection

2.
I

a resource protected by an enqueue in
one partition is not protected in
another partition because an RCB is
generated in its own partition and
cannot be accessed by other
partitions. Figures 1.11 and 1.12
show the ECB and RCB.

The second technique can only be
applied to DTFDA, DTFIS, and DTFSD
DASD files or those files you created
using physical IOCS (EXCP/WAIT
macros). This is the track hold
facility previously discussed. In
contrast to the first technique, track
hold applies across partitions.

The resource may be a file, an I/O device,
a DTF, a work area or I/O area, or a set of
non-reentrant code, etc. In general, it is I Figure 1.11. Event Control Block (ECB)
anything that has the possibility of being
shared by two or more tasks. A means of
protection has been provided so that two
tasks sharing the same resource don't
access the resource at the same time.

Resource protection can be accomplished
in one of two ways, depending upon the
resource to be protected.

1. The first technique applies to the
types of resources just stated and
requires three macro instructions
(RCB, ENQ, DEQ). The RCB macro
generates a Resource Control Block
(RCB) that is associated with the
resource to be protected, but is not
necessarily a part of that resource.
When a resource is to be protected, an
ENQ macro must be issued to enqueue an
RCB. This places a hold on the RCB
associated with the resource until the
enqueuing task releases the RCB by
issuing a DEQ macro to dequeue the
RCB. These resource protection macros
apply only within a partition and not I Figure 1.12. Resource Control Block (RCB)
across partition boundaries. That is,

Section 1: Supervisor Planning Concepts 41

ENQ Macro Considerations

A resource can only be protected within a
partition.

Every subtask that enqueues a resource
must have an ECB specified in its ATTACH
macro (issued by the main task) and that
ECB should not be used for any other
purpose while a resource is enqueued. The
address of the ECB is stored in the RCB. A
main task does not require an ECB and has
no means of specifying that it has an ECB
(the address of which could be stored in
the RCB). When a main task enqueues a
resource, the ECB address field of the RCB
is set to binary zeros which identifies the
resource owner as being the main task.

A task requesting use of a resource is
either enqueued and executed or put into
wait state if the resource has already been
enqueued by another task (byte 0 of the RCB
contains binary ones). In the latter case,
the flag byte is turned on in the RCB (byte
4, bit 0 is set to one) and the ECB address
of the current resource owner is stored in
general register 1 of the task placed into
wait state.

The following conditions can cause
cancelation of a task:

1. A subtask does not have an ECB.

2. A previous owner of a resource
terminated without having dequeued the
resource. (If the main task
terminated, the entire partition was
terminated.)

3. A task issued two consecutive ENQs for
the same RCB without having issued an
intervening DEQ.

4. The limits of the RCB specified in the
ENQ do not reside in the partition of
the enqueuing task.

DEQ Macro Considerations

A resource can only be dequeued within a
partition. Only the current owner of a
resource can dequeue that resource.

When an RCB is dequeued, byte 0 is reset
to binary zeros, and all tasks waiting for
that resource are removed-from wait state.
The task with the highest priority obtains
control. If no other tasks are waiting for
the RCB, control returns to the dequeuing
task.

42 DOS System Programmer's Guide

The following conditions cause
cancelation of a task:

1. The RCB has the wait bit on in its
flag byte (byte 4) and no waiting task
which has been enqueued can be found
for the RCB. This could be caused by
the flag byte being inadvertently
altered while a resource was enqueued.

2. A subtask does not have an ECB.

3. The limits of the RCB specified in the
DEQ do not reside in the partition of
the dequeuing task.

Intertask Communication

In certain situations, tasks may be
dependent on other tasks within a
partition. In these cases, macro
instructions (POST, WAIT and WAlTH) have
been provided to permit synchronization of
tasks for intertask communication. To use
these macros, each task must have an Event
Control Block (ECB) associated with it.

When a particular task is performing a
function and other tasks are waiting for
its completion, it can indicate completion
via the ECB by issuing a POST macro
instruction. The tasks waiting for the
completion may indicate this by issuing the
WAIT macro instruction, designating the ECB
on which the waiting is to be done. If a
task is waiting for completion of a number
of events (in which the order of completion
is of no importance), it can issue the
multiple wait macro instruction (WAITM)
designating a number of ECBs.

POST Macro Considerations

The tasks removed from wait state are those
placed in wait state by ENQ, WAIT, or
WAITM. When the SAVE parameter is omitted
in the POST macro instruction, all tasks
waiting on the specified ECB are removed
from wait state. By specifying a SAVE
parameter, only the task identified by the
save area is removed from wait state. This
parameter can be used for synchronizing the
order in which tasks are to receive
control. The synchronization technique
prevents the priority task within a
partition from gaining control.

Be careful with this technique when the
ECB to be posted is the ECB specified in
the ATTACH macro and ENQ/DEQ macros are
used, because DEQ also removes all waiting
tasks from wait state. When the posting

task dequeues, all tasks waiting for the
RCB are removed from wait state.

A similar situation exists if the
posting task dequeues before posting. The
DEQ removes all tasks waiting for the RCB
from wait state. Then, if it issues a POST
to a particular task, the POST acts as a
NOP because task selection gives control to
the highest priority task ready to use the
cpu. Although the task being posted is
removed from wait state, the posting task
is still active. If the posting task
issues another POST to the same or another
ECB, all other tasks waiting on the posted
ECB are removed from wait state. To avoid
this situation, use a second ECB when
synchronizing tasks. It is your
responsibility to reset the wait bit in the
second ECB that is to be posted (MVI
ECB+2,X'OO'), so that tasks testing that
ECB can be put in wait state.

If a task associated with the specified
save area cannot be found, the post
operation is ignored and control passes to
the highest priority task that is ready to
run.

A task can be canceled if the ECB
specified in the POST macro instruction
does not reside within the partition.

Summary of Multitasking Considerations

Maximum Number of Tasks: A maximum of 9
subtasks can be attached to the system.
They can all reside in one partition or be
spread among the three partitions. Thus, a
total of 12 tasks can be executed
concurrently in the system.

Subtask Priority: Each subtask must be
initiated by a main task. A subtask has a
higher priority than its main task.
Subtask priority within a partition is
determined by the order of attachment. The
first subtask attachment has the highest
priority in the partition, the next subtask
has the second highest priority in the
partition, etc. Of course, the priority of
the partitions remains the same (i.e., Fl,
F2, and BG). If the highest priority
subtask is terminated and later reattached,
it will then be the lowest priority subtask
within the partition, but still higher in
priority than its main task, or any
subsequent subtask that may be attached
within that partition.

Storage Protection: Because subtasks are
subprograms within a partition, they have
the sam~ storage protect key as the main
task. Therefore, the main task and its
subtasks do not have storage protection

from each other. The ENQ, DEQ, and RCB
macros offer protection of resources, but
only if all subtasks enqueue and dequeue
before using the resource. They do not
protect against inadvertent coding errors.
In addition, the user must be careful when
using ENQ/DEQ. If a higher priority
subtask dequeues an RCB and does not enter
wait state before enqueuing the RCB again,
a lower priority task does not gain control
of that RCB on which it has also enqueued.
Thus, the lower priority task has to wait
until the higher priority task terminates,
before it can enqueue the RCB.

Access To Communications Region: Only one
communications region exists in a
batched-job partition. Therefore, it is
likely that only one task per partition has
meaningful access to it.

System Logical Units: Only one set of
system logical units exist per partition
(SYSLST, SYSRDR, etc). Therefore,
interspersed usage by several independent
tasks is not practical, although, if either
the resource protection facilities or the
intertask communication macros are
employed, it can be done.

Operator Intervention: While operator
intervention is minimized for subtask
initiation, SYSLOG will probably be used by
all tasks within all partitions. The
additional number of messages possible on
one SYSLOG could possibly increase the
responsibility of the operator and require
more careful operation than in the past.

STXIT Macro Usage: Subtasks may only
provide their own AB and PC routines via
the STXIT macro. IT and OC operations must
be performed via the main task. An AB exit
is not taken for a task when it is already
in its AB routine (prevents looping on
abnormal termination condition). The task
is canceled.

Checkpoint Consideration: Only main tasks
can issue checkpoints.

Track Hold Facility: Files being shared on
DASD are not protected unless the HOLD
option is specified by the various users

I (only applies to DTFDA, DTFIS, DTFSD, and
DTFPH files).

Register Usage: Although a subtask has the
register values (2-15) of its main task
upon being attached, the registers cannot
be used for passing information between
tasks once attached. (It is possible for a
task to access the register save areas of
other tasks within its partition.)

Process Bound Tasks Considerations:
Because subtasks are executed in priority
order, a process-bound task can degrade

Section 1: supervisor Planning Concepts 43

performance of lower priority tasks, or in
extreme cases, even prevent execution of
lOwer priority tasks until it has
terminated.

Task Synchronization: Task synchronization
is normally performed by POST, WAIT, and
WAITM macros. This can also be done by
ATTACH/DETACH or ENQ/DEQ providing you are
careful, particularly when intermixing
POST, ENQ/DEQ, and ATTACH/DETACH macros.
While POST may be used to free one waiting
task, DEQ and DETACH can free all tasks
waiting on the ECB posted, if the ECB is
the same one specified in the ATTACH.

Resource Protection: The POST, WAIT, and
WAITM macros are also used for resource
protection, providing you are careful in
your synchronization techniques.

Resource contention: The problem of
resource contention cannot be over
emphasized in this system. It has already
been pointed out that you can interlock two
or more tasks, or even put the system into
wait state when two or more partitions are
concurrently attaching more than 9 subtasks
or when two or more tasks (or partitions)
are contending for the same sets of tracks
while using track hold. In addition, a
similar problem can exist when two or more
tasks within a partition are enqueuing and
dequeuing on the same set of RCBs. For
example, if task A enqueues RCB 1 and task
B enqueues RCB 2, task A is put in wait
state when it attempts to enqueue RCB 2.
The same is true when task B attempts to
enqueue RCB 1. Neither task is able to get
out of wait state to release the resource
it has enqueued.

This problem can be avoided by having
each task, which shares common resources
with other tasks, enqueue on the same
resources in order. For example, task A
enqueues on RCB 1 and then task B enqueues
on RCB 1 (instead of RCB 2 first); task B
goes into wait state. Task A can now
enqueue on RCB 2 without entering wait
state. When task A dequeues RCB 1, task B
has the chance of enqueuing RCB 1
(providing task A does not enqueue RCB 1
again, before task B has a chance to
reattempt its ENQ).

Another possibility of task interlock is
for two tasks to wait on ECBs, with each
task assuming that the other task will post
the ECB on which it is waiting.

Subtask Cancelation: While the cancelation
of a subtask frees tracks being held, and
posts the subtask's ECB (as. specified in
the ATTACH macro) it does not dequeue any
RCBs enqueued by that subtask.
(Cancelation of a subtask executes the
DETACH routin~s of the supervisor as well

44 DOS system Programmer's Guide

as the cancel routines.) Therefore, when
the abnormal termination routine is
entered, you should dequeue all RCBs that
the subtask could have enqueued.

If the subtask issues a DEQ for an RCB
on which it has not enqueued, the DEQ is
ignored and the supervisor returns to the
subtask's abnormal termination routine.

Wait Considerations: Although tasks can
wait on ECBs to be posted by other tasks or
on the ECBs of other tasks (in their own
partition), they cannot wait on the CCB of
another task when that task has initiated
the I/O operation. This does not mean that
two tasks cannot share a CCB as a resource.
It only means that the system identifies
the CCB with the task dOing the I/O
operation. Therefore, only that task can
be removed from wait state by the system.
Any other task waiting on another task's
CCB can only be removed from wait state by
having the task that started the I/O
operation issue a POST to the CCB. In this
case, the CCB would function like an ECB.
Also, note that the task doing the I/O
operation must issue the POST macro after
the WAIT macro rather than before the WAIT
macro. Otherwise it would never enter the
wait state or determine when the I/O
operation is completed.

Abnormal Termination: In all abnormal
termination conditions where an exit is
taken to an abnormal termination routine,
the register values are stored in the
ABSAVE save area before the appropriate
error code is stored in the low-order byte
of register O. To have this value
available when looking at a storage dump,
you should store (STC or ST) register 0 in
another save area upon entry into the
abnormal termination routine. You will
find that the SVC code shown in the wOS04I
ILLEGAL SVC-., •• w message along with the
error codes in register 0 will be helpful
in tracing program errors. See Debugging
Aids section for add1tional information on
abnormal termination codes.

System Generation Guidelines

The multitasking facility is provided at
system generation time by specifying AP=YES
in the SUPVR macro. When AP=YES is
specified, MPS=YES and WAITM=YES are
implied. To implement the other facilities
related to multitasking, the following
additional specifications are required at
system generation time:

• For abnormal termination support,
AB=YES must be specified in the FOPT
macro. AP=YES in the SUPVR macro is
not required to utilize this function,.

)

• For multiple wait support, WAITM=YES
must be specified in the FOPT macro.
Although the multiple wait function can
be used without specifying AP=YES,
AP=YES cannot be used without
specifying WAITM=YES.

MULTITASKING EXAMPLES

ATTACH Macro Example

The normal procedure for attaching subtasks is as follows:

1. MAINTASK
2.

3.
4. ATSTl
5.
6.
7.
8.
9. ATST10K

10.

11. SUBTASKl
12.
13.
14. MTABENO
15.
16.

17. STlABENO

18.
19. ST1SAV

20. ST1ABSV
21. ST1ECB
22. MTSVAR

23. ST1SVENO

24. SUB1NAME
25. ABSVCOOE
26. MTSAVE

BALR
USING
•
•
STXIT
MVC
ATTACH
LTR
BNM
WAIT
B
BCTR
ST

•
•
BALR
USING
ST
STC
C
BE
•
•

2,0
*,2

AB,MTABEND,MTSAVE
SUB1SAV(8),SUB1NAME Initialize subtask 1 save area
SUBTASK1,SAVE=ST1SAV,ECB=ST1ECB,ABSAVE=STlABSV
1,1 Test if ATTACH is successful
ATST10K BR if successful
(1) WAIT to retry ATTACH
ATSTl BR to retry
0,0 Get end of subtask 1 save area
0,ST1SVEND Store ending address of subtask 1 save

area

3,0
*,3
1,MTSVAR
O,ABSVCOOE
1,=A(ST1ABSV)
ST1ABENO

Store address of main task save area
Save ABTERM code
Test if subtask 1 ABTERM
BR if YES

EQU *
•
•
OS
OC

OC
OC
OC

O~

DC
OC
OS

00
160'0'

90'0'
FlO'
F'O'

F'O'

C'SUBTASK1'
X'O'
90

Align on doubleword boundary
Subtask 1 save area
with floating point
registers
Subtask 1 AB save area
Subtask 1 ECB
Address of main task
save area
Ending address of
subtask 1 save area
Subtask 1 name

Main task save area
used by STXIT

Section 1: supervisor Planning Concepts 45

Explanation for ATTACH Macro: Statement 3 initializes the subtask save area with the
name of the subtask which is used for messages for subtask identification when messages
are written on SYSLOG.

statement 4 is the ATTACH of the subtask. SUBTASK1 is the entry point of the subtask,
ST1SAV is the save area for the subtask, ST1ECB is its ECB, and ST1ABSV is the ABTERM
save area for the subtask. In this case, the subtask is using the main task's abnormal
termination routine.

statements 5 and 6 test for a successful ATTACH. If the ATTACH was not successful
(nine subtasks already attached), the main task waits until another subtask is detached
and retries the ATTACH. If the ATTACH was successful, the main task stores the ending
address of the subtask's save area for later reference, if necessary. The main task can
then continue to do other processing.

statement 11 is the entry point to the subtask. In this example, the subtask and the
main task use different base registers. This may not be necessary, depending on program
design. The subtask could have omitted the BALR and USING statements because
addressability is available through the main task register (register 2). The values in
the main task registers are passed to the task. Therefore, register 2 wou1d still be
initialized.

Statement 13 saves the address of the main task's save area for reference by the
subtask (if it is necessary for the subtask to name the main task in the POST macro
instruction). Statement 14 stores the ABTERM code when the abnormal termination routine
is entered. This routine is shared by both the main task and subtask 1. Statements 15
and 16 determine which task abnormally terminated (ABTERM save area of the task in error
is stored in register 1). Statement 18 aligns the save areas on a doubleword boundary.

Statement 21 is the user-coded ECB for the subtask.

46 DOS System Programmer's Guide

c

DETACH Macro Example

A subtask may detach itself or be detached by the main task.
1. MAINTASK BALR 2, 0
2. USING *,2

•
•

3. ATSTl ATTACH ST1,SAVE=ST1SAV,ECB=ST1ECB
•
•

4. ATST2 ATTACH ST2,SAVE=ST2SAV,ECB=ST2ECB
•
•

5. DETACH SAVE=ST1SAV Detach subtask 1
•
•

6. STl ST 1,MTSVAR1
•
•

7. B ST1+4
8. ST2 ST 1,MTSVAR2

•
•

9. * DETACH Subtask 2
10. DETACH

Explanation for DETACH Macro: The main task attaches two subtasks. When subtask 1
completes processing, it indicates this to the main task. The main task then detaches
subtask 1 by issuing a DETACH macro and specifying the save area for subtask 1 (statement
5). When subtask 2 completes its processing, it detaches itself (statement 10). Note
that an operand was not specified when subtask 2 detached itself, and that the comment
was placed in a comments card (statement 9). The comment would have acted as an operand,
resulting in an error.

Section 1: Supervisor Planning Concepts 47

ENQ/DEQ and RCB Macros Examples

EXAMPLE 1: When two subtasks share the same resource within a partition, they can use
the resource protection macros as follows:

1. MAINTASK BALR
2. USING

•
•

3. SUBTASKl EQU
•
•

4. SBTASKlA ENQ
5. BAL
6. DEQ

•
•

7. B
•
•

8. SUBTASK2 EQU
•
•

9. SBTASK2A ENQ
10. BAL
11. DEQ

•
•

12. B
•
•

13. RCBl RCB

2,0
*,2

*

RCBl
4,WRITEDTA
RCBl

SBTASK1A

*

RCBl
4,WRITEDTA
RCBl

SBTASK2A

Protect resource.
Write a record.
Release resource.

Protect resource.
Write a record.
Release resource.

Resource control block for WRITEDTA

Explanation for Example 1: Both subtask 1 and subtask 2 are sharing the same file using
a common subroutine. The subroutine is not reentrant, and the file cannot use track
hold. Therefore, it is necessary for each subtask to enqueue on the RCB associated with
the resource and dequeue when the resource can be released for a waiting subtask.

48 DOS system Programmer's Guide

EXAMPLE 2: In the following example, two subtasks are sharing a common processing
routine defined in the first subtask.

1. MTASK START 0
•
•

2. ATTACH STASK1,SAVE=SAVE1,ECB=ECB1
•
•

3. ATTACH STASK2,SAVE=SAVE2,ECB=ECB2
•
•

4. STASK1 ENQ RCBA Protect resource TOTAL.
•
•

5. * Process TOTAL Used by STASKl and STASK2.
•
•

6. DEQ RCBA Release resource TOTAL.
•
•

7. STASK2 EQU * •
•

8. B STASK1 Process TOTAL
•
•

9. RCBA RCB RCB for resource TOTAL
10. TOTAL DS Shared resource

Explanation for Example 2: The resource (TOTAL) in STASK1 is protected by the resource
control block named RCBA. The protection remains in effect only if every segment of
coding within the partition referring to TOTAL issues the ENQ macro before executing that
selection of coding and subsequently dequeues that resource with the DEQ macro. This is
effectively accomplished by branching to the same physical set of code.

Note that the coding from statements 4-6 does not necessarily have to be reentrant,
but you should ensure that values for constants associated with the subroutine do not
have to be retained from one reference to the next, whenever the resource is used. If
so, these values should be saved with the appropriate subtask and then later restored.

Section 1: Supervisor Planning Concepts 49

EXAMPLE 3: In this example, the subtasks again share the same resource, but use
different subroutines for processing that resource.

1. MTASK START 0
•
•

2. ATTACH ST1,SAVE=SAVE1,ECB=ECBl
•
•

3. ATTACH ST2,SAVE=SAVE2,ECB=ECB2
•
•

4. STASKl EQU * •
•

5. ENQ ReBA Protect resource RES RCA
•
•

6. * Update RESRCA Process using RESRCA
•
•

7. DEQ ReBA Release resource RES RCA
•
•

8. STASK2 EQU * •
•

9. ENQ ReBA Protect resource RES RCA
•
•

10. * Updat.e RES RCA Process using RESRCA
•
•

11. DEQ RCBA Release resource RES RCA
•
•

12. RCBA RCB RCB for resource RESRCA
13. RESRCA OS or DTF Shared resource

Explanation for Example 3: RESRCA can be simply an area in main storage or a file
defined by a declarative macro. In either case, RESRCA is protected from subtask 2 while
subtask 1 is operating on it. Thus, if all tasks enqueue and dequeue each reference to
RESRCA, then RESRCA is protected during the time it takes to process instructions from
that task's ENQ instruction to its DEQ instruction. This is readily apparent if RESRCA
is in main storage. However, if it is a file, the record being operated upon is
protected while in main storage, but it is not necessarily protected on the external
storage device.

If the file is on DASD, the HOLD function should be utilized, if possible. In any
such situation, the priorities of subtasks must be considered for proper operation.

50 DOS System Programmer's Guide

)

POST Macro Example

The POST macro can be used by one task to inform another task of the completion of some
event, or it can release a number of tasks from wait state.

1. MAINTASK BALR 2,0
2. USING *,2

•
•

3. ATTACH ST1,SAVE=AREA1,ECB=ECB1
•
•

4. ATTACH ST2,SAVE=AREA2,ECB=ECB2
•
•

5. ATTACH ST3,SAVE=AREA3,ECB=ECB3
•
•

6. WAIT ECBl Wait for completion of subtask 1
7. DETACH SAVE=AREAl Detach subtask 1

•
•

8. EOJ
9. ST1 ST 1,MTSVAR Store address of main task save area

•
•

10. WAITM ECB2,ECB3 Wait for subtask 2 or subtask 3
11. NI 2(1),X'7F' Turn off WAIT bit

•
•

12. ST1EOJ L O,MTSVAR Get address of main task save area
13. POST ECB1,SAVE=(O) POST ECB for main task
14. WAIT ECB1A WAIT to be detached

•
•

15. ST2 EQU *
•
•

16. ST2A EQU *
•
•

17. POST ECB2 POST ECB for subtask 1
•
•

18. B ST2A
•
•

19. ST3 EQU *
•
•

20. ST3A EQU *
•
•

21. POST ECB3
•
•

22. B ST3A
•
•

23. MTSVAR DC F'O' Save area address for main task
24. ECB1A DC F'O' Dummy ECB for subtask 1
25. ECBl DC F'O' ECBs for subtasks
26. ECB2 DC F'O'
27. ECB3 DC F'O'

section 1: supervisor Planning Concepts 51

Explanation for POST Macro: Subtask 1 (ST1) is dependent on input from subtask 2 (ST2)
and subtask 3 (ST3). Therefore, it issues a WAITM on the ECBs for those subtasks.
Notice that statement 11 resets the wait bit (set to 0) in the ECB that satisfies the
wait condition. This ensures that the wait bit is off before reissuing the WAITM.
(Subtask 1 is the highest priority task and, therefore, would gain control before subtask
2 and subtask 3. The result is that the WAITM is always satisfied from the first
operation.) Initially, subtask 1 is placed in wait state by the WAITM. Control is then
passed to subtask 2 and then to subtask 3. When either of the two subtasks has the
necessary data for subtask 1, it posts its ECB that removes subtask 1 from wait state.
when subtask 1 finishes its processing, it posts its ECB causing the main task to be
taken out of wait state which then detaches subtask 1.

WAITM Macro Example

A task issuing the WAITM macro should ensure that if an event has the possibility of not
occurring (perhaps the task posting the event was terminated), the waiting task should
allow an eventual outlet. This outlet, as shown in the following example, can also wait
on the terminating ECB of the task that was to perform the preferred event.

1. MAINTASK BALR 2,0
2. USING *,2

•
•

3. ATTACH ST1,SAVE=SAVE1,ECB=ECBl
•
•

4. WAITM ECB2,ECBl Wait for preferred or secondary event
5. NI 2(1),X'7F' Turn off WAIT bit
6. B 4(1) BR to branch in vector table

•
•

7. PREVENT EQU * Main task preferred event
•
•

8. TEVENT EQU * Main task secondary event
•
•

9. EOJ Main task end of job
•
•

10. STl EQU *
•
•

11. POST ECB2 POST completion of preferred event.
12. ECBl DC F'O' ECB for secondary event
13. B TEVENT Vector BR to secondary event
14. ECB2 DC F'O' ECB for preferred event
15. B PREVENT Vector BR to preferred event

Explanation for WAITM Macro: In this example, the WAITM macro contains a preferred event
as the first operand and a secondary event as the second operand. The preferred event is
the posting of ECB2 after subtask 1 completes its calculation. If subtask 1 terminated
before its calculation is completed, the supervisor posts the ATTACH macro ECB of subtask
1, ECB1, and the secondary event can satisfy the WAITM macro. In either event, after the
WAITM macro is satisfied, the address of the posted ECB is contained in register 1. This
address can select a problem program routine.

In this particular case, a branch instruction points to a table containing a.list of
ECBs with corresponding branch instructions to the routine to be given control when the
ECB is posted. This table can easily be expanded to include up to a maximum of 16 ECBs
(due to the WAITM format used).

52 DOS System Programmer's Guide

~

«

STXIT AB Macro Example

The STXIT AB macro instruction establishes linkage to an abnormal termination routine for
either a main task or a subtask.

1. MAINTASK BALR 2,0
2. USING *,2
3. STXIT AB,MTABEND,MTABSV Initialize AB exit

•
•

4. ATTACH ST1, SAVE=SAVE1, ECB=ECB1,ABSAVE=ST1ABSV
•
•

5. ATTACH ST2,SAVE=SAVE2,ECB=ECB2
•
•

6. ATTACH ST3, SAVE=SAVE3, ECB=ECB3
•
•

7. MTABEND STC O,MTABCODE Save AB code
8. C 1, A (ST1ABSV) Test if ST1ABTERM
9. BE ST1ABEND BR if YES

•
•

10. CANCEL CANCEL for main task cancels all tasks
11. STlABEND EQU *

•
•

12. CANCEL ALL CANCEL ALL for subtask 1
•
•

13. ST1 EQU * •
•

14. ST2 STXIT AB,ST2ABEND,ST2ABSV Initialize subtask 2 AB exit
•
•

15. ST2ABEND STC O,ST2ABCOD Save AB code
•
•

16. CANCEL CANCEL for subtask 2
•
•
•

17. ST3 STXIT AB,ST3ABEND,ST2ABSV Initialize subtask 3 AB exit
•
•

18. ST3ABEND STC 0,ST3ABCOO Save AB code
•
•

19. CANCEL
•
•

20. OC OD Align on doubleword boundary
21. MTABSV DS 9D'0' Main task AB save area
22. ST1ABSV OC 90'0' Subtask 1 AB save area
23. ST2ABSV OS 9D'0' Subtask 2 AB save area
24. ST3ABSV OS 90'0' Subtask 3 AB save area
25. MTABCODE DC X'O' Save area for AB codes
26. ST2ABCOO DC X'O'
27. ST3ABCOD OC X'O'

section 1: Supervisor Planning Concepts 53

Explanation for STXIT Macro: statement 3 establishes linkage to the abnormal termination
routine for the main task. statement 4 attaches subtask 1 and indicates to the
supervisor that it will use the main task's abnormal termination routine by specifying
the ABSAVE parameter. Note that the main task's abnormal termination routine tests for a
main task or subtask 1 abnormal termination by comparing the address in register 1 to the
address of subtask l's AB save area.

When the main task or subtask 1 cancels (CANCEL ALL), the entire partition is
canceled. Subtasks 2 and 3 initialize their own abnormal termination exits because they
use their own abnormal termination routines. When either subtask 2 or subtask 3 cancels,
only that subtask is terminated; the other tasks within the partition continue
processing.

54 DOS System Programmer's Guide

Track Hold and Reentrant Modules Example

Although track hold applies across partitions, this example only shows two subtasks
sharing the same DA file and the same DA modules. It is possible that a similar set of
routines could be executing in a second partition also sharing the file with the first
partition, but that partition would have its own DA module.

1. MAINTASK START 0
•
•

2. ATTACH ST1,SAVE=AREA1,ECB=ECB1
•
•

3. ATTACH ST2,SAVE=AREA2,ECB=ECB2
•
•

4. ST1 OPEN DAFILE1 OPEN DA master file
•
•

5. LA 13,DASAVE1 Initialize register 13 with DA save area
6. READ DAFlLE1,KEY Read and hold record

•
•

7. WAITF DAFILE1
•
•

8. WRITE DAFILE1,KEY Write updated record
9. WAITF DAFILE1

10. FREE DAFILEl Release track
•
•

11. DAFILE1 DTFDA HOLD=YES,RDONLY=YES, •••
•
•

12. ST2 OPEN DAFlLE2 OPEN DA master file.
•
•

13. LA 13,DASAVE2 Initialize register 13 with DA save area
14. READ DAFlLE2,KEY Read and hold record
15. WAITF DAFILE2 From DA master file

•
•

16. WRITE DAFILE2.KEY Write updated record
17. WAITF DAFILE2

•
•

18. FREE DAFILE2 Release track
•
•

19. DAFILE2 DTFDA HOLD=YES.RDONLY=YES ••••
•
•

20. DAMOD HOLD=YES.RDONLY=YES, •••
•
•

21. DASAVE1 DS 8D'0' Save areas used by DAMOD
22. DASAVE2 OS 8D' 0' when shared and reentrant

Section 1: Supervisor Planning Concepts 55

Explanation for TRACK HOLD and REENTRANT Modules: Because both subtasks share the same
file, HOLD=YES and RDONLY=YES must be specified in both DTFs and in the DAMOD. In
addition, before any I/O operation is issued (READ, WRITE, or WAITF), register 13 must
contain the address of a unique save area to store the registers used by the module.
Register 13 is not altered between I/O operations executed by a given subtask, and
therefore, only needs to be initialized once. If other reentrant access methods were
used by the subtask, register 13 would have to be initialized for each LIOCS function.

FOPT Macro

OPERATOR COMMUNICATIONS SUPPORT (OC)

Operator Communications (OC) refers to the
processing of an external interrupt by a
problem program. In a multitasking
environment, only the main task can
communicate via the OC linkage. By
specifying OC=YES, a table (OC option
table) is generated within the supervisor
(see Figure 1.13). When the problem
program issues the STXIT macro, the address
of its external interrupt routine is moved
to the OC option table. The user's routine
is terminated by issuing the EXIT macro.
When OC=YES is specified, support is
available to all partitions. Figure 1.20
illustrates a sample program using this
support.

The Tape Compare Utility program
requires this support. OC=YES is also
required if emulator program operator
services are to be requested through the
INTERRUPT key.

Operational Considerations

To cause an external interrupt for the
background partition, the operator presses
the INTERRUPT key on the CPU console. To
cause an external interrupt for the

56 DOS system Programmer's Guide

foreground partitions, the operator presses
the REQUEST key on the 1052 console and. in
reply to the ATTN routine statement 'READY
FOR COMMUNICATIONS', types 'MSG Fl' or'MSG
F2'.

INTERVAL TIMER SUPPORT (IT)

This parameter generates programming
support for the hardware timer feature.
The timer consists of two parts. The first
part keeps track of the time-of-day and is
used to time-stamp system time. The second
part of the timer allows a problem program
to set a time interval (via SETIME macro).
By using the STXIT, EXIT, and TECB macros,
a specific routine within the problem
program is entered when this time interval
elapses. In a multitasking environment,
only the main task can set a Timer Event
Control Block (TECB).

The interval timer is in addition to and
separate from the time-of-day support
generated by the specification of the
TIMER= parameter of the CONFG macro. When
interval timer support is specified (i.e.,
IT=BG, Fl, or F2), TIMER=YES is assumed for
the CONFG macro. Support is only available
to one partition at a tim~_as defined at
system generation time. The TIMER command
can change the assignment from one
partition to another after the supervisor
has been generated. QTAM requires IT=Fl.

~

0

0

PC Option Table and OC Option Table:

A

::11-----: -----1-1 -: -------II
1-1 ---- word -~---+I -,----- word -----+II

No STXIT given: a = 0
STXIT issued: a = address of the user program check (operator communications) routine
STXIT issued when the user routine is already in use: a = complement of user program check (operatar communications)

routine address

No STXIT given: b = 0
STXIT issued: address of the user save area

IT Option Table

C D

I c I d I
11------ word -----+--I ---- word -----il

No TECB or STXIT issued: c = 0
TECB issued: c = addr.ess of the timer event control block
STXIT issued: c = address of the user interval timer routine
STXIT issued when user routine is already in use: c = complement of the user interval time routine address

No TECB or STXIT issued: d = 0
TECB issued: d = complement of the TECB address
STXIT issued: d = address of the user save area

AB Option T abl~

E F

I
e

I
f

I
e f

e f

1 word I word 1

No STXIT given: e = 0
STXIT issued and rtnaddr parameter passed: e=address of entry point of user's abnormal termination routine. If AP

(asynchronous processing) .is supported, the main task and subtasks may have the same or different AB routines.
When a subtask is attached after a STXIT AB macro has been issued by the main task, the subtask will receive
the AB routine address specified by the main task only if the ATTACH macro for that subtask has the ABSAVE
parameter specified. The subtask can override this by issuing its own STXIT AB macro.

No STXIT given or no save area parameter passed: f = 0
STXIT issued and save area parameter passed: f=address of a 72- byte save area used by the supervisol" to store the

old PSW and general registers 0-15.

Each table address (less 8 bytes) is found in the communications region at the byte locations specified below. The labels
shown identify the first byte of the corresponding table.

Table Bytes in COM REG Label --
PC 100- 101 (X'64'- '65') PCTAB
IT 102-103 (X'66'- '67') ITTAB
OC 104- 105 (X'68'- '69') OCTAB
AB 12-13 (X'OC'- 'OD') ABTAB

of extension
--

Figure 1.13. Option Tables

Section 1: supervisor Planning Concepts 57

PROGRAM CHECK SUPPORT (PC)

Program Check (PC) support generates a PC
table within the supervisor (see Figure
1.13). The PC table contains the address
of a user program check routine. This
address is placed in the table via the
STXIT macro issued by the problem program.
If the STXIT PC linkage is established and
a program check within this program occurs,
the supervisor gives control to the user's
routine instead of canceling the job being
run in this partition. The support is
extremely advantageous when using LIOCS
(e.g., files can be closed before job
termination). If a program check occurs in
a routine being executed from the logical
transient area (LTA), only the task
associated with that routine is abnormally
terminated.

In a multitasking environment each
subtask and main task may have its own PC
routine. A PC routine can be shared by
more than one task within a partition.
This can be done by issuing a STXIT macro
in each task with the same routine address
but with separate save areas. To
successfully share the same PC routine it
must be reentrant (capable of being used
concurrently by two or more tasks).

Figure 1.20 shows a sample program using
this support. Refer to supervisor and I/O
Macros listed in the Preface for fUrther
information on problem program macro
formats and their use.

TAPE ERROR RECORDING

The three options and their system
generation specifications for tape error
recording are:

• Tape Error Block (TEB) by unit,
TEB=n.

• Error statistics by Tape Volume (ESTV),
TEBV=(DASD,n) or TEBV=(SYSLOG,n).

• Error Volume Analysis (EVA),
EVA=(r,w,n).

Anyone or any combination of these options
may be selected. If more than one is
included, the n must be the same for each.
A TEB table is generated for the TEB
option~ A TEBV table is generated for the
ESTV and EVA options. Status information
contained in these tables is shown in
Figure 1.15 and 1.16. Figure 1.14 shows
the I/O interrelationship.

58 DOS System Programmer's Guide

TEB: The system generates the number of
tape unit error blocks specified by n. TEB
support automatically collects and writes
magnetic tape unit status on SYSLOG at the
end of every job utilizing these units.
The n must be at least equal to the number
of tape units and/or tape cartridge readers
attached to the system. (TEB is the only
one of the three options supporting the
tape cartridge reader.) Additional TEBs
should be specified for possible future
expansion.

ESTV: The system generates a TEBV table
with a status block and the number of error
blocks specified by the n in
TEBV=(DASD,n) I (SYSLOG,n). ESTV transients
format and write the error records on DASD
or SYSLOG each time a particular volume is
ended by CLOSE, EOVi EOJ, or abnormal
termination.

For TEBV=(DASD,n), the ESTV recorder
file (ESTVFLE) must be formatted and opened
for the collection of statistics using
ESTVFMT, the ESTV format program. SYSREC
is the system logical unit used to collect
ESTV statistics. The information written
on ESTVFLE may be retrieved by executing
the ESTV dump program, ESTVUT.

For TEBV=(SYSLOG,n), ESTV transients
format and write the data on SYSLOG and do
not access any intermediate storage device.

EVA: The system generates a TEBV table and
prints a message on SYSLOG when the
temporary read error threshold (r) or
temporary write error threshold (w) has
been exceeded on a currently accessed tape
volume. The number of SIOs is also
included in the message. EVA can be used
for both labeled and unlabeled tape
volumes. Only the first four bytes of the
status block portion of the TEBV table are
generated if TEBV is not specified also.
The status block is followed by the number
of error blocks specified by the n
parameter.

system Generation Guidelines

The FOPT macro checks the options in the
following order: TEB, TEBV, EVA. An
invalid specification for any option (n is
outside the range 0-254) results in NO
being assumed for that option. If TEB has
been validly specified, the TEBV n will
take on the value of the TEB n. If either
TEB or TEBV has been validly specified, the
EVA n will take on the value of the
previously set n. If any n does not have
the same value as an earlier valid n, an
MNOTE is issued.

NICL FICL LUB JIB

Sy.em ~ ~.- :1 BG n +- -y ~r-
F2 n +-FI n I

~

n = number of un its

~~ i = index displacement
within LUB table ~r- FAVP

/"

L r-r- (~
II'

TEBV
'--'--

h I I I I I I I I I I I I 1
111111111111

Y I I I I I I I I I I L.I J
PUB L TEB

FOCL I I I II I - THFLPTR TKHDTAB -. r 1 1 1 1 1 1 1 -
l1li ~~r I 1 I 1 1 I 1 (- SAB ..
L-:: 1 I -

~r'::: ;:...-- l ::::;? -
-

!>.
If'

"
FLPTR ...
K~

r

KEY.

NICL (Number in Class)

FICL (First in Class)

LUB (Logical Unit Block) Table

PUB (Physical Unit Block) Table

FOCL (First on Channel List)

TEB (Tape Error Block by Unit)

TEBV (Tape Error Block by Volume)

FAVP (First Available Pointer)

JI B (Job I nformation Block)

CHANQ (Channel Queue) Table

LUBID (LUB Identification)

REQID (Requestor Identification)

LUBDSP (LUB Displacement)

FLPTR (Free List Pointer)

SAB (Seek Address Block)

TKHDTAB (Track Hold Table)

THFLPTR (Track Hold Free List Pointer)

TKREQID (Track Requestor Identification)

LUB REQ LUB TKREQ I h
CHANQ 10 10 DSP 10 ~;:--

~ ~ ~ ~
If' Jir=:?

t.-::::;:;--
i.-:~

C

The first byte contains the number of system class units. The second, third, and fourth bytes contain the number of
programmer class units (BG, F2, Fl) (Figure 1.21).

The first byte points to the first system class unit in the LUB table. (Always the first LUB table entry.) The second byte
points to the first programmer class unit in the LUB table BG area. The third points to the first programmer class unit in
the LUB table F2 area. The fourth points to the first programmer class unit in the LUB table Fl area (Figure 1.21).

The first byte points to a PUB table entry (if the logical unit is assigned) or contains X'FF'. The second byte points to a
JIB table entry or contains X'FF' (Figure 1.21).

The first two bytes contain the channel and unit address of the physical device; the third a CHANQ pointer; the fourth
a TEB pointer; the fifth device type codes; the sixth a device characteristic code or a SAB pointer; the seventh the
channel scheduler flag; and the eighth has the job control flag (Figure 1 .30).

The first byte points to the first PUB (highest priority) on channel zero. The next byte points to the first PUB (highest
priority) on channel one, etc. A hexadecimal FF indicates the associated channel is not supported.

One TEB is built for each tape unit at supervisor generation time if tape error statistics by unit are required (Figure 1.15).

One TEBV is built for each tape unit at supervisor generation time if tape error statistics by volume or error volume
analysis are required (Figure 1 .16).

A one - byte pointer to the next available JI B entry.

The first two bytes contain extent or LUB information. The third contains ownership and JIB flags. The fourth contains
JIB chaining information (Figure 1.22).

The first byte contains the chain field (a pointer to the next in queue). The last three bytes contain the CCB address
(Figure 1.29).

A ane - byte pointer to the LUB making the I/O request.

A one - byte pointer to the program containing the CCB (Figure 1.29).

A one - byte value equal to the absolute LUB number (CCB byte 7).

A one - byte pointer to the next free entry in the channel queue (Figure 1.29).

A four - byte (BCCH) address that is the current disk address of the device plus a fifth byte that contains a Track Hold
Table pointer or X'FF'. If the Track Hold function is not supported, the fifth byte contains X'OO'.

The first byte contains a pointer to the next available entry (or X'FF'); bytes 2 -4 have CCB address of the requesting
task; bytes 5 - 10 have disk address (BBCCHH) of track being held; byte 11 has key of owning track; and byte 12 has
two uses: bit 0 = 1 means a task is waiting for the track, and bits 4 - 7 count the number of holds on the track. Note
that the number of holds is one greater than the value v~ bits 4-7 of the last byte.

A one - byte pointer to the next free entry in the Track Hold Table.

A one - byte pointer to the PI B of the task requesting I/O.

Figure 1.1'1. I/O Table Interrelationship

Section 1: Supervisor Planning Concepts 59

TEB Table

TEBTAB TEB 1

TEB 2

TEB 4

TEB 5

TEB 6

Byte
o - Error recovery retry count.
1 - Permanent read data check error count.
2 - Number of times the read data check error routine is entered.
3 - Number of times the write data check error routine is entered.
4 - Write skip (erase gap) count.
5 - Noise record count.

One TEB is generated for each 2400 series or 3420 magnetic tape or 2495 Tape Cartridge Reader unit if the FOPT macro con­
tains the TEB = n parameter. Job control resets each TEB at normal or abnormal End-of-Job. An unused TEB contains
HEX'FFOOOOOOOOOO'. A TEB is referenced from byte 3 of a magnetic tape unit PUB.

Bytes 70 and 71 (X'46'-'47') of the communications region contain the address of the TEB table entry. Label TEBTAB
identifies the first byte of the table.

Figure 1.15. Tape Error Blpck

60 DOS system Programmer's Guide

Decimal
Displacement Label

TEBVTAB

Byte
Length

Symbolic address of the TEBV Table

Description

(TEBV Status Block portion of TEBV Table - Note 1)

o
1
2
3 r.--- 4 ---

---~---
6
7

11
12
17 ------

TEBLEN 1 Length of TEBV Error Block (for each Error Block generated)
TSBLEN 1 Length of TEBV Status Block (4, 6, or 22 bytes - see Note 1)
EVARTH 1 EVA Read Error Threshold
EVAWTH 1 EVA Write Error Threshold
TEBsTAr - -1"- -DASD ESTVFil;Stat;;s ---

!..E~~C ___ .! _ ~IY ~b~I"y~~e_C~~e!.. ______________, ____________ _

TEBDEV 1 Data Set Device Code
UPXTNT 4 Disk Address of Upper Extent of Data Set (cchh)
TEBRPT 1 Number of Records per Track
NXTESR 5 Disk Address of Next Available Space for Data Record (cchhr)
~ST'y~B.!: __ 5 __ P~inter19 .E,.ST'yF.!:E la!?.elJ!l '{J~C ~c~rL _____________________ _

(TEBV Error Block Portion of TEBV Table - Note 2)

22 TEBV 1
1
1
1
1
1
1
1
1
1
2
6

Status Indicator (giving status of posting and writing error conditions)
23
24
25
26
27
28
29
30
31
32
34

Usage Indicator (X'OO'=TEBV Error Block in use; X'FF'=Error Block generated but not serving any tape unit)
Retry Counter
Permanent Read Errors
Temporary Read Errors
Temporary Write Errors
Erase Gaps
Noise Blocks
Permanent Write Errors
Clearer Actions
Number of Start I/Os

1---------- I-V~I~m~ S~~I Nu~b..:..r ~~~ JPl _______ _ -- --- - - - ------
40 (Begin repeating bytes 22 - 39 for second TEBV Error Block)

I I I

Note 1: The TEBV Table is composed of one Status Block and (n) Error Blocks and is addressed symbolically by TEBVTAB. The table is
generated if EVA and/or ESTV are included in the system.

The size of the TEBV Status Block is determined by supervisor options in the FOPT macro at generation time:
• When EVA is chosen without ESTV, the TEBV Status Block is four bytes long (bytes 0-3), followed by TEBV Error Blocks,

so that bytes 4 - 21 are omitted.
• When ESTV output is on SYSLOG, the TEBV Status Block is six bytes long (bytes 0 - 5), followed by TEBV Error Blocks,

so that bytes 6 - 21 are omitted.
• When ESTV output is on DASD, the TEBV Status Block is 22 bytes long (bytes 0 - 21), followed by TEBV Error Blocks.

Note 2: The number of TEBV Error Blocks generated corresponds to the (n) parameter in the FOPTmacro for TEB, TEBV, or EVA options.
A TEBV Error Block always contains 18 bytes, as shown in bytes 22-39 of this figure. The TEBV Table, therefore, is composed
of one TEBV Status Block (with the length dependent upon supervisor generation options as described in Note 1), followed by
(n) number of 18 - byte TEBV Error Blocks.

Figure 1.16. TEBV Table Showing Status Block and Error Blocks

Section 1: Supervisor Planning Concepts 61

SEEK SEPARATE SUPPORT (SKSEP)

When DASD devices are command chained, they
monopolize the channel until channel end
for the device associated with the last CCW
in the chain is reached. This means that
the channel is unavailable for use by other
partitions requiring I/O operation of other
DASD devices on the channel.

The seek separation feature was designed
to improve the performance of systems
running under DOS. This feature enables
the supervisor to separate a seek from its
associated read or write so that the seek
can be separately scheduled. This means
that multiple seeks can be issued to
devices on a channel, and the reads and
writes scheduled as the seeks are
completed. As this is a supervisor
function, it automatically applies to
programs written at any language level
and/or operated in any of the three
partitions. As the number of devices on a
channel increases, the benefits derived
from this feature increase. The
implementation of this feature is such that
when a seek has been issued to a device,
the arm cannot again be shifted until the
I/O operation that initiated the seek has
been completed. In other words, arm
stealing has been prevented. After seek is
issued, the channel is available for
scheduling any other I/O operations. In a
multiprogramming environment, this feature
is particularly important when the
different partitions have a mix of
input/output requests for a single channel
with multiple direct access devices.

The seek separation capability is
provided by unchaining the user's seek and
by posting the seek separation bit (X'10'
of the 13th byte of the user's CCB) and the
"Wait for Device End" bit in the user's
CCB. When START I/O is performed on the
new unchained seek, channel end is
immediately sent back from the control
unit, thereby freeing the channel for
performing seeks to other units on the
channel. When the device end interrupt
occurs at the completion of a seek, the
seek separation and ·Wait for Device End"
bits are turned off, the seek is rechained
to the remaining CCWs for the I/O request,
and the device is not dequeued. A START
I/O is now performed on this unit that has
its arm already positioned at the correct
cylinder.

Specifying this feature generates a Seek
Address Block (SAB) within the supervisor
(refer to Figure 1.14). Each DASD device
has an entry in the SAB containing the
current disk address for that device. Each
time the user performs a seek, his seek
address is compared with the entry for that

62 DOS System programmer's Guide

device in theSAB. If they are equal, no
seek separation is performed. If they are
not equal, the seek address replaces the
current entry in theSAB, and seek
separation is performed. Each user's DASD
ccw chain must start with a long seek
(X'07') in order to use this feature.

System Generation Guidelines

Specifying SKSEP=YES indicates support for
all DASD devices specified by the DVCGEN
macro at system generation time. N is the
number of DASD devices to be supported and
cannot be less than the number of DASD
devices specified at system generation.

PHYSICAL TRANSIENT OVERLAP SUPPORT (PTO)

Physical Transient Overlap (PTO) support
allows the system to:

• Overlap I/O operations in the error
recovery routines (ERP) with problem
program processing.

• Overlap I/O time required to fetch user
programs and system transient routines
into main storage with problem program
processing.

The PTO option allows other tasks to be
selected when an I/O operation is being
performed during one of the following:

• Fetching a phase (SVC 1)

• Fetching a logical ($$B) transient (SVC
2)

• Fetching a physical ($$A) transient
(SVC 3)

• Loading a phase (SVC 4)

• Loading a phase header (SVC 23)

• Modifying the system communications
region via MVCOM macro (SVC 5)

• Fetching of the ATTN routine

• performing ERP I/O operations

For example, if an error occurs in the
background partition while reading a tape
record, an error recovery routine is called
into the physical transient area to reread
the record up to 100 times. Each reread
operation requires time to read the record
itself plus time to backspace the record
before reading it again. Without PTO, the

)

entire 100 rereads by the error recovery
routine would not be overlapped with other
processing and other tasks would not
receive control during this interval. with
PTO, I/O time is overlapped and available
to the foreground partitions for processing
until another error recovery routine or
system transient routine is required.

Another advantage of PTO involves fetch
I/O time. Fetching requires one or more
searches of the library directory on
SYSRES, reading of the directory into the
physical transient area, and searching for
and reading one or more records of the
program or transient into the proper area
of main storage. This involves several
disk I/O operations. PTO allows the fetch
I/O time to be overlapped with processing
by any partition requiring CPU time (in
priority sequence) until another fetch or
other use of the physical transient area is
required.

CONSOLE BUFFERING SUPPORT (CBF)

Previously, a system component could Qold
up the system and degrade throughput
performance whenever an I/O operation was
issued to the console typewriter (1052),
followed by a WAIT. The console buffering
option (CBF) alleviates this situation by
queuing write operations to a 1052, 3210,
or 3215 and returning control immediately
to the routine that issued the write with
the WAIT bit posted. The user's WAIT is
satisfied immediately, rather than at
actual I/O completion. Each message is
assigned a buffer containing the message
itself and control blocks for I/O interrupt
handling (Figure 1.17). The system writes
the message from the buffer on the 1052,
3210, or 3215 as soon as possible while
user-processing continues.

The CBF facility is used only for write
operations which require no user error
handling. Only those messages that meet
the following criteria are -buffered:

1. Messages cannot exceed 80 characters.

2. Data chaining and command chaining are
not used.

3. The CCB associated with the operations
does not request any sense information
(CCB+12 set to X'20') and/or does not
have either "accept unrecoverable I/O
error", "post at device end", or "user
error routine" bits on (CCB+2 set to
X'15' or any combination of these).
In other words, no error checking is
required.

4. The CCW must have either an X'Ol' or
X'09 1 command code (i.e., only a WRITE
operation).

5. For user messages, the CCW and the
message must reside within the
partition issuing the write operation.

If these conditions are not met, the
console operation is handled in a normal
manner.

You have the option of specifying the
number of buffers required for queuing
messages, but the total may not exceed 50.
If a buffer is not available, your WAIT is
not satisfied until a buffer is freed. At
least one buffer should be specified for
each partition or task issuing messages so
that buffers are available and the task can
continue processing while the message is
being printed. Job control often issues
several console messages in succession;
therefore several additional buffers should
be specified for partitions that use job
control frequently.

Another factor to be considered in the
selection of the CBF option is extra
channel usage. Specification of the CBF
option and selection of the CBANQ default
(6 channel queue entries), results in the
number of buffers specified being added to
the CHANQ default. However, when both the
CBF and CHANQ options are specified, it is
recommended that the number of CHANQ
entries desired be increased by the number
of buffers specified. Otherwise, the
number of entries generated in the channel
queue will be less than desired.

Section 1: Supervisor Planning Concepts 63

CBTAB

xx
CBINUSE ,,/"

r---C-B-N-E-X-T (/

Po i nts to next
available buffer

a
CBCCW

2

3

n

7 8 20 21 23 24 103
CBCCB CBPREX CBDATA

CBTABND

The Buffer Table is a 104 multiplied - by- n byte area of main storage, where n is 1 -50. Each buffer entry in the table is 104 bytes.
CBNEXT is a halfword constant that points to the next available buffer entry. It is initialized with the address of CBTAB and is
incremented by 104 every time a buffer is used, so that it points to the next entry. When its val ue becomes greater than CBTABND,
it is reinitialized with the value CBTAB.

CBINUSE is a one- byte counter that contains the number of entries currently in use. It is incremented whenever a buffer is used and
is decremented at dequeue time when the buffer becomes free.

Each buffer entry contains the fol lowing fields:

Displacement: a CCW moved from requestor core. The data address portion of the CCW is modified to
point to the data portion of the buffer.

8 CCB moved from requestor core. The CCW address in the CCB is modified to point to
the CCW in the buffer.

21 Prefix. SYSLOG ID moved from problem program PIB. The prefix is printed with the
data to identify BG, F1, or F2 partitions.

24 Data moved from requestor core.

Figure 1.17. Console Buffering Table and Work Areas

I INDEPENDENT DIRECTORY READ-IN AREA (IDRA)

An independent directory read-in area
(IDRA) can be included if the option is
specified at system generation time. The
funcion of this area is to enhance
performance by reducing contention for the
physical transient area (PTA) on fetches'
from the core image library. During the
time the physical transient area is busy,
fetches from other partitions can be
processed.

system Generation Considerations

The YES option causes generation of the
IDRA area in the supervisor. IDRA requires
MPS=YES or BJF, and PTO=YES.

If IDRA=NO, the core image library
directories are loaded and scanned in the

64 DOS System Programmer's Guide

PTA. If IDRA=YES, the core image library
directories are loaded and scanned in the
IDRA. The IDRA is used for all supervisor
calls that require reading of directories.

COMMAND CHAINING SUPPORT (CCHAIN)

Command chaining support (CCBAIN=YES)
allows the DOS error routines to retry ~n
I/O operation starting with the last ccw
executed rather than at the beginning of
the chain. Under normal error recovery
procedures, the entire CCW chain is
reexecuted. To utilize the CCHAIN support,
you must indicate in the CCB macro
instruction that you want the error
procedures to retry the I/O operation
starting with the CCW in error by setting
byte 3, bit 7 on (third operand of
CCB=X·0001'). In addition, bytes 8-11 of
the CCB must be initialized with the
address of the first CCW in the chain each
time the chain is executed. See Figure
1.18 for an example using CCHAIN support.

r--,
BEGIN START 0

DO

READCCB

READ

BALR 4,0

USING *,4
•
•
LA

ST

EXCP

WAIT
•
•

1, READ

1,READCCB+8

READCCB

READCCB

BCT 3,DO
•
•
CCB SYS004,READ, X'0001 1

CCW 2,DATA,X'60',100

CCW 2,DATA+l00,X'60',100

CCW 2,DATA+200,X'20',100

Initializes Bytes 8-11 of CCB
with address of first CCW in
chain each time chain is executed.

Indicates Command Chain Retry.

----__ J

Figure 1.18. Example Using CCHAIN Support

CCHAIN=YES must be specified if data or
command chaining of IBM 2495 Tape Cartridge
Reader input is performed.

TRACK HOLD SUPPORT (TRKHLD)

The track hold feature allows tasks within
the same partition or tasks outside of a
partition to-share DASD data files when
using the direct access method or the
sequential method of file organization.
This track protection facility can be used
with or without multitasking to provide
protection between partitions. By
definition, track protection means a DASD
track that is being modified by some task
in main storage is prevented from being
accessed by another task in that partition
or in any other partition.

Any programs using DTFSD/SDMODXX,
DTFIS/ISMOD, or DTFDA/DAMOD can use the
track protection macros when performing the
following functions.

• DTFIS - all functions except LOAD

• DTFSD - updating with work files

• DTFSD - updating without work files

• DTFSD - other functions with work files

• DTFDA - all functions

The actual holding of a track is a
combination of supervisor (PIOCS) and data
management (LIOCS). Track hold involves
the actual request that a track be held and
the request to free a track. The hold
request is generated if you specify
parameters in the DTFs and logic modules
for the program(s) involved.

Supervisor Considerations

At system generation time, you must specify
the number of unique tracks that can be
held at anyone time (255 maximum and 10
minimum). A table for the number of
entries specified is built into the
supervisor for storing the necessary
information required for track protection.

The maximum number of holds (without
intervening frees) that a task can issue
for a given track is 16. If more than 16
holds are attempted, the task is canceled.

Section 1: Supervisor Planning Concepts 65

If the DASD channel program does not
start with a long seek, track hold is not
implemented.

If multiple track search operations are
issued, only the first specified track is
held but it is not necessarily the same
track on which the search is satisfied. In
this case, the track on which the search is
satisfied is not protected.

If a task requests a track already held
by another task, the requesting task is
placed in wait state (until the track
becomes available). In addition, if the
task requests a hold on the 256th unique
track or exceeds the limit specified at
system generation time, the requesting task
is placed in wait state until a previously
held track is freed. In either of these
cases, especially in the first situation
which has a greater chance of occurring
than the latter, make sure that the
following conditions do not occur.

1. If more than one track is being held,
it is possible for a task to put the
entire system into wait state. This
occurs if one task is waiting for a
track that is already held by another
task. In the first case, if task A
holds track 1 on drive 1 and attempts
to hold track 2 on drive 2 while task
B is holding it, task A is placed in
wait state until task B frees that
track. Then, if task B attempts to
hold track 1 on drive 1, it enters the
wait state until task A frees that
track. Because task A is already in
wait state, neither task ever regains
control. If they are the only two
tasks running in the system, the
entire system is in wait state.

2. A similar situation can occur if two
or more tasks attempt to hold more
tracks than the maximum number
allowed. For example, assume a
maximum of 20 unique tracks can be
held by the system. Task A issues 15
DASD I/O operations and task B issues
15 DASD I/O operations (altogether
requiring track hold for 30 unique
tracks). If both task A and task B
are alternately issuing DASD I/O
operations, then when each task issues
its 11th track hold (at this point
both task A and task B have held the
maximum of 20 unique tracks), it is
placed into wait state. Again,
neither will regain control, and if
they are the only two tasks running in
the system, the entire system is in
wait state.

In both examples, if the operator is not
aware of what has occurred, he may decide
to cancel the tasks. If the lockout is

66 DOS System Programmer's Guide

between two subtasks within a partition,
the partition is canceled. If the lockout
is between two partitions, one partition is
canceled, its tracks are freed and the
second partition is removed from wait
state.

When a task issues a free for a
particular track, one of two conditions
occurs:

1. If a task has more than one hold on
the track (16 maximum), a counter
associated with that track is
decreased by one, the task retains its
hold on the track and control is
returned to the task issuing the free.

2. If the task has only one hold on the
track, the track is'-freed by removing
its entry from the supervisor table.
Any tasks waiting for the track or an
available entry in the table are
removed from wait state. The task
with the highest priority gains
control of that track or puts a hold
on another track.

Track hold only occurs for DOS-supported
DASDs. Otherwise, the I/O operation is
issued, but no track-hold function is
involved. (This is true for any device,
including non-DASDs.)

The following conditions cause
cancelation of a task:

1. A free was issued to a non-DASD type
or a nonsupported DASD,

2. Bolds were not issued to that track,

3. A task attempts to free a track held
by another task.

In the last case, when the main task
detaches a subtask, any track held by that
subtask is freed.

LIOCS Considerations

Track hold is only supported for DTFIS,
DTFSD and DTFDA files. Support of the
track hold feature requires specification
of a HOLD parameter in both the
DTFIS/DTFDA/DTFSD and the ISMOD/DAMOD/SDMOD
macros. In addition, a FREE macro must be
issued for all DTFDA or DTFIS files and for
DTFSD work files without update.

A maximum of 16 holds can be applied to
one track. A free issued for a track with
more than one hold decrements the track
hold count, but does not release the track.
A free issued for a track not held,
terminates the task.

The track hold functions can be used in
five specific situations:

1. Using DTFSD for updating with work
files (via the WRITE macro).

2. Using DTFSD for updating without work
files (via the PUT macro).

3. Using DTFSD with work files, when no
WRITE is issued for updating.

4. For all DTFDA files.

5. For all DTFIS files except for LOAD.

In the first two situations, the tracks
being held are freed automatically by the
system. For the last three situations, the
task must issue the FREE macro instruction
for each hold placed on a track by the READ
macro. It should be noted that for DTFDA,
a FREE macro need not be given wben only
WRITE macros are issued. If BOLD=YES and
ERREXT=YES, you must issue tbe ERET macro
to return to the ISAM module to free any
held tracks.

System Generation Guidelines

TRKBLD=n

The maximum number of tracks that can be
held at one time is 255. The default is 10
if n is an invalid parameter (nonnumeric or
outside the range 1-255). MPS=YES or BJF
must be specified if TRKHLD=n. If a task
attempts to hold an additional track after
the maximum has been reached, the task goes
into the wait state until a previously held
track has been freed.

ABNORMAL TERMINATION SUPPORT (AB)

Abnormal termination exits are available
for main tasks and/or subtasks, allowing
you to gain control before an abnormal
condition removes the task from the system.
For example, in the abnormal termination
routine, you can close your files. This
function is provided by the AB operand of
the STXIT macro. See Supervisor and I/O
Macros listed in the Preface for detailed

information on the format and use of the
STXIT macro.

STXIT Macro Considerations

If an IT (Interval Timer) condition occurs
while executing the OC (Operator
Communication) or PC (program Check)
routines, these routines should not use the
same save area (see Figure 1.19).

r---,
I

r-------------~-----------------------,I
IRoutine Being I Condition Occurring II
I Processed r-----,._---~---,._-.. I
I I AB I IT , OC I PC I
~------------+------+------+------+----~
I I I I I I
lAB I T I I I I I I I
I I I I I I
I IT , S I I I B I H I
I I I I I I
10C : S : H : IbEf: H:
IPC I S I H I BIT I L ____________ L-_____ ~ ______ ~ ______ ~ ____ J

E -
f

B -

I -b

I -

S -

Error message issued in foreground
program and control returns to
interrupted OC routine.

Condition honored. When
processing of new routine
completes, control returns to
interrupted routine.

Condition ignored for all
partitions.

Interrupt ignored in a background
partition.

Execution of the routine being
processed is suspended and control
is transferred to the AB routine.

T - Job abnormally terminated. If AB
routine is present and it has not
been interrupted by itself, its
exit is taken; otherwise, a system
abnormal termination occurs. L--______________________________________ _

Figure 1.19. Processing of STXIT
Conditions

Section 1: Supervisor Planning Concepts 67

When a supervisor is not generated to
handle the requested facility, the task is
abnormally terminated if a STXIT macro is
used. This also applies to a program that
requests the timer interrupt and has not
been allocated the timer.

If an AB or PC condition occurs and
linkage has not been established for a main
task abnormal termination routine, the
partition is abnormally terminated.
However, if the AB or PC condition occurs
in a subtask without exit linkage
established, only the subtask is
terminated.

Only one main task at a time can use the
STXIT IT macro. The partition of the main
task is specified at system generation time

'

but can be changed by the operator with the
TIMER command. There are two distinct
methods for using the STXIT IT macro. Only
one method can be used at a time.

1. The first method allows the main task
to set the timer and enter a routine

68 DOS System Programmer's Guide

when the time elapses. The SETIME,
STXIT, and EXIT macros are used for
this. However, only the main task of
the partition owning the timer can
issue these instructions.

2. The second method allows a given
routine to be performed at timed
intervals. The time set is a real
time interval, and is not stopped or
adjusted when the task using the timer
does not have control. The SETIME,
TECB, and WAIT macros are used.
However, if multitasking, only one
task within the partition can use the
method and the WAIT on the TECB must
appear in that task. Consideration
should be given to the priority of the
task assigned to process interval
timer interrupts. Subtasks can use
this method.

Figure 1.20 contains a coding example
using STXIT support.

PAGE 1

LOC OBJECT CODE

000000

ADDR1 ADDR2 STMT SOURCE STATEMENT FOOS CL 3-5 10130169

000000 0520
000002

1 STXEXAM
2
3
4
5

11
17 GOAGAIN
23 PRINT
21
33
39
43

00005A 9263 2058 ~005A 49 CHK
50 *

00005E 41FO 2014

00009C
0000E4

000110
000118
000180
000188

000190

0001F4

000258

0002SC
000000
000320
000324
000328
00032C
000330
000334
000338

0900019000000064
090001F400000064
0900025800000064
090002BCOOOOO064

E3C8C540E3C904C5

E3C8 C9 E240 03C905

E3C8C9E240D3C9D5

Cl E240C14009C5E2

0000009C
00000062
000000E4
00000018
OOOOOOOA
00012COO
0000012C

00016 51 LOOP
52 PRGCK

(See ~below)
56
62
65 COMMUN

(See~ below)
69
15
80
85
88 DONE
91 PCSAVE
92 OCSAVE
93 TIMEBLK
96 CCB1

107 CCB2
118 CCB3
129 CCB4
140 CCW1
141 CCW2
142 eCW3
143 CCW4
144 MSG1

145 MSG2

146 MSG3

141 MSG4

148
149
150
151
152
153
154
155

START 0
BALR ?oIO
USING .',2
PRINT NDGEN
STXfT PC,PRGeK,PCSAVE
STXIT OC,COMMUN,OCSAVE
SETIME 10,TIMEBLK
EXCP CCB1
WAIT CCB1
WAIT TIMEBLK
EXCP tCB2
WAIT CCB2
MVI *,99

B GOAGAIN
EXCP CCB3

WAIT CCB3
EXIT PC
EXCP CCB4

WAIT
STXIT
STXIT
EXIT
EOJ
OS

CCB4
PC
DC
OC

CL12
CL 12

SYSOOO,CCW1
SYSOOO,CCW2
SYSOOO fCC W3
SYSOOO,CCW4
9,MSG1,X'00',100
9,MSG2,X·OQ',100
9,MSG3,X'00' ,100
9,MSG4,X~00',100

Acn,VATE US ERS PROG CHECK RTN
ACTIVATE USERS OPER.COMM. RTN
SET INTERVAL TIMER TO 10 SECONDS
PRINT TIMER BEGINNING MESSAGE

WAIT FOR TIMER INTERRUPT
PRINT TIMEOUT MESS_GE

THIS WILL CAUSE A PROG CHECK THE
NEXT TIME THROUGH THIS RTN

PRINT PROGRAM CHECK MESSAGE

RETURN FROM PROGRAM CHECK ROUTINE
PRINT EXTERNAL INTERRUPT MESSAGE

DEACTIVATE PROGRAM CHECK EXIT
DEACTIVATE EXTERNAL INTERRUPT EXIT
RETURN FROM EXTERNAL INTERRUPT RTN

OS
TECB
CCB
CeB
CCB
cca
CCW
CCW
CCW
CCW
DC

DC

DC

CL100'THE TIME HAS JUST BEEN SET TO A VALUE OF TEN SECONO
DS,THIS LINE lS PRINTING WHILE THE TIMER IS RUNNING.'
CL100'THIS LINE HAS PRINTED AS A RESULT OF A TIMER INTERX
RUPT IE. THE TIMER VALUE HAS GONE THROUGH ZERO.'
CL100'THIS LINE HAS PRINTED DUE TO THE FORCED PROGRAM CHX
ECK AT LABEL *CHK*.'

DC

END

CllOO'AS A RESULT OF THE INTERR"UPT KEY. THIS PROGRAM HAS X
GONE TO NORMAL END OF JOB;'
STXEXAM
=A IPCSAVE)
=AIPRGCK)
=A(OCSAVE)
=A ICOMMUN)
=A(lO) ,
sF '16800'
=AITIMEBLK)

- -= :::::=: -::-: - ..::::: --
- -- - - - - - -;.. --- - -- - - - - - - - - - - -- ---

[

LOC OBJECT C(10E

00033C 00000130
000340 00000140
000344 00000150
000348 00000160

AOOR1 ADDR2 STMT

156
151
158
159 ------

SOURCE STATEMENT

-

=A(CCB11
=AICCB2)
=A(CCB31
=A(CCB4} --

Note: If LlOCS or other CSECTS that might alter the base register are used, then' a base register must be establ ished as the first step
in the interrupt routine. For example:

BALR 3,0
USING *,3

Figure 1.20. STXIT Sample Program

PAGE 2

FOOS CL3-5 10130169

-: :=;..-

J

Section 1: Supervisor Planning Concepts 69

MULTIPLE WAIT SUPPORT (WAITM)

The multiple wait facility allows a task to
be put into the wait state until one of a
number of events occur before proceeding.
Control passes to a task when one of the
ECBs specified in the WAITM macro has been
posted. The multiple wait facility can be
used without specifying AP=YES. However,
AP=YES cannot be used without WAITM=YES
being specified.

An Event Control Block (ECB) is a task
communications block written by the problem
programmer (see Figure 1.11). When a
subtask is successfully attached, byte 2
bits 0 and 1 are set to o. When the
subtask terminates, the supervisor posts
(sets a bit to 1) byte 2 bit 0 of the ECB
after processing of the abnormal
termination routine. In addition, byte 2
bit 1 is posted if the subtask abnormally
terminates; that is, if task termination is
not the result of issuing the CANCEL,
DETACH, DUMP, or EOJ macro instructions.
See supervisor and I/O Macros listed in the
Preface for more detailed information.

Multiple Wait Considerations

When control passes to the waiting task,
its register 1 points to the address of the
ECB that had byte 2, bit 0 set.

The user may use CCBs or TECBs in place
of ECBs. This is possible because the
posting of byte 2, bit 0 occurs upon their
event completions. BTAM/QTAM ECBs, QTAM
control blocks, and RCBs cannot be waited
on because their format would never satisfy
a WAITM, i.e., byte 2, bit 0 will never be
posted. When waiting on only one ECB, the
WAIT macro can be used.

When using WAITM, a provision should be
made for ultimate outlet if none of the
events being waited on occur. For example,
an abnormal ending of all the tasks on
which a multiple wait was dependent would
never allow the multiple wait to be
satisfied.

The user may specify a preferred event.
Consider the f~llowin9 example:

WAITM ECBA, ECBB, ECBC.

ECBA is considered the preferred event
because it appears first on the list. For
the same reason, ECBB is considered the

70 DOS system Programmer's Guide

second most preferable event. The user may
use this to his advantage in task
synchronization. The system checks the
ECBs in the order written in the WAITM
macro.

DASD FILE PROTECT SUPPORT (DASDFP)

The DASD file protect facility provides
read/write file protection for DASDs. All I seeks issued by a problem program are
monitored by the supervisor to ensure that
the seeks do not stray outside of limits
that were validated at file open time.
(This could occur during the loading of a
direct access file.) DASDFP functions on a
cylinder basis for the 2311, 2314, and
2319, and on a strip basis on the 2321.
DASDFP routines are not executed when the
current PSW has a storage protect key of
zero. This occurs for supervisor, job
control, and transient routines ($$A, $$B,
$$R).

Mode of Operation

Job control or the foreground initiator
reads the DLBL/EXTENT (or VOL/DLAB/XTENT)
control commands or statements from the
input job stream. This information is
reformatted and written on the label
information cylinder on SYSRES as one or
more DASD records. Each of these DASD
records is preceded by a key created from
the filename (DTF name) entry in the
DLBL/VOL command or statement.

When the problem program opens the file
(DTF), the OPEN transient routine extracts
an a-byte alphameric constant from the
generated DTF table. This constant is
called the filename, and is an exact
replica of the DTF name.

The OPEN transient routine searches the
label information cylinder on SYSRES to
find a key equal to this DTF filename
constant. When it finds a match, it reads
the data portion of this job control DASD
record into the label save area in main
storage.

The extent information is extracted from
this job control DASD record, and is stored
in the JIB table. A 2311/2314/2319 extent
requires one JIB entry; a 2321 extent
requires two JIB entries (see Figures 1.21
and 1.22).

~
~.

IQ

~
(I)

I-' .
II.)

I-' .
b

IQ
~.
(')
S»

§l
~.

rt
0:1
.....
0
(')
~

8
d
0:1 -
~
t:r
(I)

en
(I)
(')
rt
~.

0
::s
I-' ..
en
£:l
~
(I)

~
~.

en
0
t1

I'd
S»
::s
::s
~.

::s
IQ

n g
(')
(I)
~
rt en

....a
~

Number in
Class List
(NICL) LUB Table

First
Class List
(FICL) LUB Table for any Partition

--,-

\ SYSRDR

SYSIPT

CDiSYSPCH
SYSLST

<i) SYSLOG

SYSLNK

SYSRES

SYSSLB

SYSRL13

@ SYSUSE

SYSREC

SYSOOO

SYS001

SYSOO2

SYS003

SYS004 's
'}

® SYS221
; .. ~

® SYSCLB F1~ F2

BG

00000000 - Points to first PUB
0000000 1 - Points to second PUB
00000010 - Points to third PUB
• I' .1./ , o~ • ;""..
•
1 1 1 1 1 1 1 0 - Ignore ----
11111111 - Null Pointer, the LUB is Unassigned

When a logical unit is assigned, the system inserts a
pointer to the PUB for the physical device specified.

JIB Index (Multiply by 4 = displacement into JIB Table) or X'FF' = Null
Pointer, no JIB for this LUB

A LUB has a JIB pointer when:
1. The logical unit is temporarily assigned.
2. The logical unit assignment is alternate (AL T).
3. A DASD file (except a system 1/0 file on disk) is opened .

Bytes 76 and 77 (X'4C' - '4D') of the communications region contain the address of the LUB table entry.
Label LUBT AB identifies the first byte of the table.

<D When in Single Program Initiation mode (Foreground 1 or 2): Must be unit record device and can be referenced by the program.

<ID When in Single Program I nitiation mode (Foreground 1 or 2): Can be referenced by the program.

@ SYSUSE may be called SYSCTL in error recovery messages.

@) The maximum number of programmer logical units in the system is 222 if MPS = BJF, or 244 if MPS = YES or NO.

<ID The SYSCLB (Private Core Image Library) LUB entry functions the same as other LUB entries, but is not part of the LUB Table. To locate the SYSCLB LUB in supervisor, perform the
following steps:

1. Divide the PI K by 8.
2. Subtract the result in step 1 from the address of the PIB extension block.
3. If option AP = YES, the result of step 2 is the location of SYSCLB LUB. If option AP = NO, add 16 (for the all-bound PIBX) to the result of step 2.

JIB Table

JIB 1

JIB 2

JIB 3

JIB 4

JIB 5

JIB 6

Number (length of JI B table)
determined at supervisor generation

Type of Entry

Stored standard
assignment

Alternate
assignment

CD 2321 Extent

LU B entry of stored
standard assignment
(PUB and JI B pointers)

PUB pointer
of alternate X'OO'

CD Only when file - protect on DASD

CD Lower Cyl inder
Upper Cylinder

@ Cell or combined sub - cell and strip

Contents

Note: Two JIBs are required for a 2321 extent; one for lower
limit and one for upper limit. The lower limit defining
JIB must be chained to the upper limit defining JIB.
Byte 1 of this type JIB contains the subcell number
times 10 plus the strip number in binary.

Chain Byte.
Confains the displace­
ment index of the next
JI B. A hexadecimal
'FF' defines the end of
the chain.

Ownership

Bytes 68-69 (X '44' -'45') of the communications region contain the address
of the JIB table entry. Label JIBTAB identifies the first byte of the table.

Figure 1.22. Job Information Block (JIB) Table

72 DOS System Programmer's Guide

An EXTENT/VOL command or statement names
the symbolic unit containing the extent.
The $$BOFLPT OPEN transient stores each
extent into a JIB entry that is related or
linked to a specifi~ symbolic unit.

When the problem program requests an I/O
operation on DASD, the supervisor extracts
the symbolic unit and the seek channel
command word (CCW) from the command control
block (CCB). The current DASD seek address
is compared to the extent limits stored in
the JIB table for this specific symbolic
unit. If the DASD seek address falls
outside the range of extents, the job is
canceled.

For a 2311/2314/2319 extent, the upper
and lower cylinder numbers comprise the
protection boundaries for the named
symbolic unit. A 2321 is only protected on
strip boundaries.

Note: This is a programmed check to
determine if the problem program is trying
to access data outside the allowed cylinder
or strip limits.

Next, the supervisor builds and executes
a small channel program containing three
commands: a seek that is identical to the
problem program seek, a Set File Mask that
prevents any other long seeks (X'07') from
being executed, and a TIC that transfers
control to the command following the
problem program's seek (see Figure 1.23).

Note: This is a hardware check to prevent
the problem program's channel from moving
the read/write head outside the cylinder or
strip limits that were validated by the
programmed check.

DASDFP provides file protection on the
basis of symbolic unit. It does not
provide protection by access method, file,
or DTF. However, if each DTF in a problem
program is assigned to a different symbolic
unit, file protection can prevent one DTF
from accessing the data belonging to
another DTF.

Also, DASDFP does not prevent file
contention between partitions. Thus, more
than one partition may access the same file
at the same time (and both partitions may
attempt to update the same record
simultaneously). When using DASDFP, follow
these guidelines:

1. For complete protection, files should
begin and end on cylinder/strip
boundaries.

2. File protection is ensured only if the
DASD labels involved are unexpired.

3. In anyone program, each DTF should
use a different symbolic unit, even if
the files reside on the same physical
volume.

4. The system residence file must reside
on a protected channel. If it does
not reside on a protected channel, you
will not be able to IPL your system.

system Generation Guidelines

n, n specifies the range of channels on
which DASD may be attached. If either 2311
or 2314/2319 is specified, protection for
both is provided. If 2321 is specified,
2311, 2314, 2319, and 2321 are supported.

If the parameter for a 2311. 2314 or
2321 is omitted, both 2311 and 2314/2319
protection is assumed.

Example:

DASDFP=(1,3,2321)

Protection is available on channels 1, 2,
and 3 for 2321s, 2311s, and 2314s/2319s.

Section 1: supervisor Planning Concepts 73

NO

NOTE1. Check JIB for this file.

NOTE2. Supervisor moves user's seek address to a CCW chain in supervisor.

NOTE3. The following CCW's are in the supervisor, one set for each channel that has DASD file protect.
07, User seek address, X '60' , 6
31,File mask,X'40', 1
08, User CCW (2nd or TIC address from 2nd),X'40',O

Figure 1.23. DASD File Protect Logic Flow

SYSTEM FILES ON DISK SUPPORT (SYSFIL)

In systems with at least 24K bytes of main
storage, the system logical units SYSRDR,
SYSIPT, SYSIN, SYSLST and/or SYSPCH may be

I assigned to an extent on 2311 or 2314/2319
disk storage.

The system files when used on disk are
supported by use of the ASSGN and CLOSE job
control statements, and by the supervisor
channel scheduler routines.

Job control, via the standard ASSGN
statement, opens the file and initializes

74 DOS System Programmer's Guide

the disk information block (DIB table)
within the supervisor. Figure 1.24 shows
the DIB table (also, see Figure 1.21).

Each time a problem program requests I/O
on a system logical unit, the supervisor
checks the DIB table for a valid seek
address. (Note that the job information
block is not used for system files on
disk). After each successful access to the
file, the supervisor updates the current
address field in the affected DIB.

)

Current Address End Address R U.L. L.L.
1 1 I I ! I I

SYSLNK B B C C H H R P This area not used for SYSLN K D IB

SYSIN

SYSPCH

SYSLST

Number
of Bytes

B B

KEY: Current Add ress:
End Address
R
U.L.
L.L.
R.C.

P
KDD

C C H H R K D D B B C C

The next address to be used (for both input and output).
The last address within the limits of the extent.
Maximum number of records per track.
Upper head limit
Lower head limit

H H X

Record Count - residual capacity for beginning of operator notification.
This is set at system generation time with the SYSFIL parameter, or after

IPL with the SET statement (RCLST and/or RCPCH operands). A warning
message is issued by job control after end - of- job step when the minimum
number of remaining records has been reached or exceeded during the
previous job.
Starting cylinder of private core image library, if assigned.
Key and data length for the symbolic device.

KDD for SYSIN = XI 000050 1

KDD for SYSPCH = X'000051 I
KDD for SYSLST = X '000079 1

H

Bytes 96 and 97 (X ' 60' - 1611) of the communications region contain the address of the SYSLNK entry.
Label DSKPOS identifies the first byte of the table.

Figure 1.24. Disk Information Block (DIB) Table

H

R.C. Reserved
1

* XX XX

*

*

When a problem program issues an open to
a system file that is currently assigned to
disk, the LIOCS open routines transfer the
extent information to the DTF table from
the DIB instead of from the file label in
the volume table of contents. This causes
the current address field in the DIB to be
used as the beginning extent for the DTF of
the file being opened.

Considerations When Using system Files on
Disk

When a problem program closes a system
file that is assigned to disk, the LIOCS
close routine posts the file closed and
does not disturb the DIB.

Job control, via the CLOSE statement,
closes the system files on disk and
deactivates the DIB.

1. The system logical units of SYSIPT,
SYSRDR, SYSIN (SYSIN is both SYSIPT
and SYSRDR), SYSPCH. and SYSLST can be
assigned to disk for any batched job
partition.

2. Record lengths for these assignments
are:

• 80 for SYSRDR

• 80 or 81 for SYSIPT on the IBM 2~~~
(80 for the IBM 2314)

• 121 for SYSLST

• 81 for SYSPCH

Section 1: su~ervisor Planning Concepts 75

3. The creation of files for use as
system input, and the printing or
punching of system output files is
done by user-written programs.
(Utility programs are available to
simplify this.)

4. Predefined symbolic filenames have
been established for all system files
that can be assigned to disk. The
filenames (used in the DLBL statement
and associated with the SYSxxx entry
of the accompanying EXTENT statement)
are IJSYSIN for SYSRDR, SYSIPT, or
SYSIN; IJSYSPH for SYSPCH; IJSYSLS for
SYSLST.

5. When SYSRDR and SYSIPT are both
assigned to disk, they must reside in
the same extent and be referred to as
SYSIN. The filename specified in the
DLBL/VOL command or statement must be
IJSYSIN.

6. Because SYSPCH and SYSLST have
di£ferent size records, SYSOUT cannot
be assigned to disk.

1. Job control issues operator warning
messages when the area assigned to
disk approaches a predefined residual
capacity.

8. The residual capacity for operator
warning is established at supervisor
generation time with the FOPT macro
(SYSFIL parameter). These values can
be changed after IPL by the SET job
control command (RCLST, RCPCH
operands).

System Generation Guidelines

SYSFIL= {~~~~!}(.n1.n2])}

I
Specification of either 2311 or 2314 gives
support for 2311/2314/2319. If MPS=BJF in
the SUPVR macro, this parameter supports
foreground logical units when running in
batched mode. If the emulator program
parameter SYSIO=222 or SYSIO=333 is
indicated, a value must be specified for
SYSFIL.

n~ = residual capacity for beginning of
operator notification when SYSLST is
assigned to disk. 100<n~<65535. If
n~ is omitted, 1000 is assumed.

n2 = residual capacity for beginning of
operator notification when SYSPCH is
assigned to disk. 100<n2<65535. If
n2 is omitted, 1000 is assumed.

16 DOS System Programmer's Guide

PRIVATE CORE IMAGE LIBRARIES

The ability to create and maintain private
core image libraries provides the single
partition (no MPS or BJF) and the multiple
partition users with the ability to
maintain all the installation programs in
core image format. It also augments the
multiprogramming facility. A private core
image library may reside (starting on any
cylinder boundary) on any volume. The
organization of the first ten tracks and
the private core image directory and
library is similar to that portion of the
system residence volume from cylinder 0, up
to and including the core image library
itself (see Figure 1.1).

The areas containing the bootstrap
records, volume labels, system directory
records 2-4, and the IPL loader program are
formatted but unused in a private core
image library. The system work area and
all directories (transient, open, etc) are
formatted, used, and maintained for a
private core image library in the same
manner as these areas are used and
maintained for the system core image
library. Multiple private core image
libraries may reside on one volume or they
may be created on separate volumes.

A private core image library may be
assigned to any partition. Output from the
linkage editor may be placed in a private
core image library. Librarian functions
are available to create and maintain this
type of library.

If a catalog function is attempted in
the foreground partition, the supervisor
will be cataloged in the private core image
library, and the IPL routine cannot access
a private core image library.

System Considerations

In a disk system supporting both
batched-job foreground and private core
image libraries, several choices are
available to the user as to the partition
in which his programs are to be link-edited
and in which they are to execute. A
program may be:

1. Link-edited in the background to
execute within the background and
placed in the system core image
library or a private core image
library.

2. Link-edited in the background to
execute within a foreground partition
and placed in the system core image

c

library or a private core image
library.

3. Link-edited in a foreground partition
to execute within the background and
placed in a private core image
library, which will be assigned to the
background at execute time.

4. Link-edited in a foreground partition
to execute within that foreground
partition and placed in a private core
image library assigned to that
partition.

User programs written in Assembler should
avoid the use of Y-type address constants
if they are to properly execute within a
foreground partition. Most IBM-supplied
language translators can execute in a
batched-job foreground partition, providing
enough main storage is available in which
to execute the translator. For a list of
IBM-supplied programs that can execute in
the foreground, refer to DOS Concepts and
Facilities listed in the Preface.

The selection of both the batched-job
foreground and private core image library
options provides the most efficient
multiprogramming environment. The
following is a suggested procedure for
creating such an environment. Figure 1.25
shows a private library dedicated to each
partition. Figure 1.26 shows the use of
private libraries in a single partition
environment.

1. For maximum efficiency, the system
core image library can be reserved for
system program phases.

2. Link-edit the assembler and other
language translators in the background
and place them in a private core image
library. See Note.

3. Repeat this process in each desired
foreground partition, cataloging the
output from the linkage editor to a
private core image library assigned to
that foreground partition.

Some language translators require a
partition size of more than 10K to
execute.

4. self-relocating programs may be
cataloged in the system core image
library or a private core image
library.

5. If a non-self-relocating program is to
be run. only in one partition it should
be link-edited and cataloged in a
private core image library that will
be assigned to that partition. See
Note.

6. If a non-self-relocating program is to
be run in more than one partition, it
should be link-edited and cataloged to
the core image library for each
partition.

Note: If it is not desired to
dedicate a private core-image library
to the background partition, these
programs must be placed in the system
core image library.

In the environment just created, it is
possible to execute a compile, link edit,
and go job in any partition. To execute
such a job in a foreground partition, a
private core image library must be assigned
to that partition. When executing the
linkage editor in a foreground partition,
output must be placed in a private core
image library. When executing in the
background partition, output from the
linkage editor can be permanently placed in
either the system core image library or a
private core image library, if assigned.

A unique SYSLNK, as well as other work
files (for example, SYS001, SYS002), is
required for each partition. If the
language translators are to execute
concurrently, then each work file must be
uniquely identified. For example:

// DLBL IJSYSLN, 'DOS.BG.SYSLNK'
// EXTENT ",,10,200
// DLBL IJSYS01,'OOS.BG.SYS001'
// EXTENT ",,410,200

// DLBL IJSYSLN,'DOS.F1.SYSLNK'
// EXTENT ",,210,200

If the SYSLNK for each partition is
assigned to a different drive, no unique
identification is necessary. Figure 1.27
illustrates these two cases.

Section 1: Supervisor Planning Concepts 77

II JOB COMPILl, L1NK­
EDIT-EXEC

Fl SYSIN

II JOB COMPIL2, LlNK­
EDIT-EXEC

F2 SYSIN

I Figure 1.25. Example of Dedicated pelL in a Multiple Partition Environment

78 DOS System Programmer's Guide

SUPVR

BG

CUU ::::233

~ Accounts
~----I ~ Receivable

~ Data File

(/&
(/ /EXEC I NV078

(ASSGN SYSCLB, X'2341

(/ /DLBL IJSYSCL, 'INVENTORY '
11/ JOB INVENTRY

(ASSGN SYSCLB, UA

{/&
(//EXEC PAY 103

{//EXEC PAY 092

L ASSGN SYSCLB, X 12331 OPEN FI LE

(//DLBL IJSYSCL, 'PAYROLL'
/// JOB PAYROLL

-
I-

-
-

co
"'-__ -I U Inventory

~ Data File
Vl

i_

-
1-

-
-

-
'-

I Figure 1.26. Example of PCIL in a Single Partition Environment

CUU ::::234

section 1: supervisor Planning Concepts 79

002

003

004

LNK
I
I
I
I

l '-IDOS. Fl. SYSLNK I

' IDOS. BG. SYSLNK I

SYSOOl

SYS002

SYS003

SYS004

SYSLNK

SYSOOl
SYS002

SYS003

SYS004

SYSLNK

SUPVR

BG

ANS COBOL

Fl

ANS COBOL

SUPVR

ANS COBOL

ANS COBOL

ANS COBOL

I Figure 1.27. Identification of SYSLNK Files

80 DOS System Programmer's Guide

LOAD
•

CATAL

LINK

LOAD

CATAL LINK

In a batched-job multiprogramming
environment the assembler and linkage
editor functions can execute simultaneously
in different partitions, each with its own
assigned private core image library.
Non-self-relocating programs are not
limited to execute in only one partition
because a version may be link edited for
each partition and stored in the core image
library for that partition.

Note that in fetching or loading a phase
into main storage, if a private core image
library is assigned, it is searched first.
If the phase is not found in the private
core image library, the system core image
library is searched. The one exception to
this sequence is for $ and $$ phases, in
which case the system core image library is
searched first.

The multiprogramming system just
described requires a minimum of 32K of
positions of main storage.

system Generation Guidelines

PCIL={NO }
YES

To specify supervisor support for private
core 1mage libraries, the PCIL=YES keyword
parameter must be included in the FOPT
macro. If PCIL=YES is specified and MPS=NO
or MPS=YES, private core image library
partition support is provided for the
background only.

JOB ACCOUNTING INTERFACE SUPPORT

The Job Accounting Interface facility
provides job step and job information that
you can use for charging system use,
supervising system operation, planning new
applications, etc.

When this option is selected (JA=YES or
n~,n2,n3)' system functions build
accounting tables in the supervisor and
accumulate accounting information. (See
Figure 1.28 for the job accounting table.)
To utilize this information, the user must
write a self-relocating routine to store or
print the desired portions of the table.
This routine must be cataloged in the core
image library under the name $JOBACCT.
One user job accounting table is built for
each partition when MPS=BJF~ otherwise,
only one table is reserved (for the
background). When the system is running in
the Single Program Inititation (SPI) mode,
tables for the foreground partitions cannot
be accessed.

Programming Considerations

If the user I/O routine ($JOBACCT) is
written using LIOCS with label processing
(for example, standard label tapes, DTFDA,
or DTFPB with MOUNTED=ALL), the JALIOCS
parameter also must be specified. This
parameter is used to reserve a user save
area and a label area in the supervisor.
The label area replaces the one normally
used by LIOCS label processing routines.

$JOBACCT can be as large as 4,096 bytes,
but may use overlay loading if more storage
is needed. For more efficient loading it
should not exceed one core image library
block (1728 bytes on an IBM 2311, or 1688
bytes on an IBM 2314/2319). With the
one-block length, only one LOAD is required
to get the routine into main storage.

Because $JOBACCT is called in at the end
of each job step, it should only perform
data gathering and recording, but not data
reduction and formatting if additional
system overhead is to be held to a minimum.
Overhead depends largely upon the
efficiency of $JOBACCT. The optional SIO
accounting (JA=n~,n2,n3) also causes
additional overhead.

LIOCS uses registers 13-15. If $JOBACCT
needs any of these registers when any LIOCS
function has been performed, save and
restore the desire registers (register 14
should always be saved when using LIOCS
because it is necessary to return to job
control via BR 14).

If $JOBACCT uses LIOCS, it should save
at least part of the DTF information
<status switches, extent information,
pointers) in the user save area. If more
than one DTF is used, information from each
should be saved. The user save area may be
used to save any type of information as
well as accumulate step to step statistics
for end of job accounting. This
accumulation reduces the rate of scheduled
output records caused by writing a step
accounting record for each job step. The
user save area is not accessed by system
functions.

If an error occurs that causes $JOBACCT
to be canceled, $JOBACCT is not called
again until the system is re-IPLed. "JOB
ACCT" appears in the cancel message, and
the problem program name appears in the EOJ
message. The STXIT option also may be used
to inform the operator that an error
occured in $JOBACCT rather than in the
problem program. The job in that partition
is terminated and normal processing
continues with the next job.

Section 1: Supervisor Planning Concepts 81

The system passes registers 11-15 to the
user's I/O routine ($JOBACCT). These
registers contain the following
information:

• Register 11: length of the job
accounting table. Each table may vary
in length according to the number of
SIO counts specified at system
generation time.

• Register 12: base register for
$JOBACCT (this eliminates the need for
the user to load the base register):

• Register 13: address of the user save
area;

• Register 14: link register ($JOBACCT
must exit via BR 14 to return to job
control);

• Register 15: address of the
partition's job accounting table.

Because some of the job step information
(see fields 4, 5, and 10-16 in Figure 1.28)
is cleared in the step-to-step transition,
job control calls $JOBACCT at the end of
each step. If $JOBACCT does not save or
accumulate this information, it is lost.

system Generation Guidelines

specification of either YES or (n1,n2,n3)
gives Job Accounting Interface support. If
MPS=BJF (in the SUPVR macro) Job Accounting
Interface is supported for all partitions.
(The foreground job accounting tables
cannot be accessed when running in the SPI
mode.)

Specification of (n1,n2,n3) gives the
additional support of SIO accounting. The
value of each n may range from 0-255 and
indicates the number of devices available
for SIO accounting for each partition (BG,
F2, and Fl, respectively). These numbers
are independent of the system generation

82 DOS System Programmer's Guide

option of the number of devices attached to
the system. If more I/O devices are
accessed than the number specified for that
partition, SIO accounting for the
additional devices will not be performed.

JALIOCS={NO }
(s, t)

No indicates that no special LIOCS support
is required. Specification of (s, l)
indicates that a user save area and a label
area are to be reserved.

s is the decimal number of bytes to be
reserved for the user save area (located in
the supervisor). This save area may be
used to save DTF information or for any
other purpose desired by the user. The
system does not access this area. (The
address of the save area is available in
register 13 when $JOBACCT is called.) The
range of valid s is 0-1024, with a default
of 16.

l is the decimal number of bytes
needed for a label area. This label area
replaces the one normally used by LIOCS
label processing. It is required when
$JOBACCT uses LIOCS for such things as
standard tape labels. DTFDA, and DTFPH with
MOUNTED=ALL. The valid range of l is
0-224 with a default of zero. The value
that is substituted for l is normally the
number of bytes that would be allocated by
a given parameter on the LBLTYP statement.
See DOS System Control and Service listed
in the Preface, to determine the number of
bytes allocated for any given LBLTYP
statement.

If the JA parameter is specified and
JALIOCS is not, Job Accounting Interface is
generated but no alternate label area is
reserved (16 bytes are reserved for the
save area). The routine $JOBACCT must then
use a device or method that does not
require LIOCS label processing. If the JA
parameter is not specified. the JALIOCS
parameter is ignored.

When the JA parameter is included. timer
support is automatically included. If the
CPU is not equipped with a timer. or if the
timer is disabled, time fields in the
accounting table will not be meaningful.

Contents

8- byte character string taken from

User Information. 16 characters of information
taken from the JOB card.

5 27 Type of Record. S=job step; L=last step of job.

6 28- 35 8 Date. mm/dd/yy or dd/mm/yy depending on
supervisor option.

7 36- 39

8 40- 43

10 48- 55

11 56-59

12 60- 63

13 64-67

14 68-71

15 72-

16

4

4

8

4

4

4

4

Start Time. OhhmmssF, where h=hours, m=minutes,
s=seconds, F is a sign (in packed decimal format).

Stop Time. zeros except in last record, which has
job stop time (in same format as start time).

Phase Name. 8 - byte character stri ng taken from the
EXEC card.

High Core: Hex address of uppermost byte of any
program fetched or loaded (taken from the communi­
cations region).

CPU Time. 4 binary bytes given in 300ths of a second.
Time is calculated from exit of the user- written
routine called during job control to next entry of the
routine. Time used by the user- written output routine
is charged to overhead of the next record.

Overhead Time. 4 binary bytes given in 300ths of a
second. Includes time taken by functions that
cannot be charged readily to one partition (such as
attention routine and error recovery). System
overhead time is divided by the number of active
batch partitions and recorded in each accounting
table.

All Bound Time. 4 binary bytes in 300ths of a second.
This is the time the system is in the wait state divided
by the number of partitions running.

SIO Tables. Variable number of bytes. Six bytes are
reserved for each device specified in the JA param­
eter. First two bytes are X 10CUU I, next four are hex
count of SIOs for job step. Unused entries contain
X I 101 followed by five bytes of zeros. Stacker select
commands for MICR devices are not counted. Error
recovery SIOs are not charged to the Job Accounting
Table. Devices are added to the table as they are
used.

Overflow. Norma II y X 1201. Set to X 130 1 if more
devices are used than set by the JA parameter at
system generation time.

Note: The difference between Start and Stop times will not necessarily
equal the sum of CPU, All Bound, and Overhead times. All Bound
and Overhead times will vary, depending on the number of active
partitions and the type of partition activity. CPU time is accurate
for each partition, but it may not be reproducible (recreatible).
That is, the same job being executed under different system con­
ditions (varying number of active partitions, logical transient
availability, etc) may show differences in CPU time.

I Figure 1. 28. Job Accounting Table

10
17

18

19-
lA
lB­
lC
lD
lE-"
IF-"
20
21-
22
23
24-
25-

26
27

28
30
31

32
33
34-

35
40
80
FF

Normal EOJ
Program Request. Same as 23 but causes dump
because subtasks were attached when maintask
issued CANCEL macro.
Eliminates cancel message when maintask issues
DUMP macro with subtasks attached.
I/O operator option.
I/O error.
Channe I fa i lure.
CANCEL ALL macro issued.
Maintask termination.
Unknown ENQ requestor.
CPU failure.
Program check.
Illegal SVC.
Phase not found.
Program request.
Operator intervention.
Invalid address or insufficient core allocation
to partition.
SYSxxx not assigned (unassigned LUB code).
Undefined logical unit (invalid LUB code in
CCB).
QTAM cancel in progress.
Read past /& on SYSRDR or SYSIPT.
I/O error queue overflow (error queue
overflow or no CHANQ entry available for ERP).
Invalid DASD address (disk).
No long seek (disk).
I/O error during fetch (irrecoverable I/O
error during fetch of non- $ phase).
Job control open failure.
Load $$BEOJ.
Cancel occurred in Logical Transient Area (LTA).
Unrecognized cancel code, or, if the system
is placed in the wait state and no further
processing is done by the terminator, supervisor
catalog failure.

Section 1: supervisor Planning Concepts 83

ALLOC Macro

Fl=nK, F2=nK

This macro is optional. It specifies the
partition sizes for the foreground areas.
Because the foreground partition is storage
protected, n must be a multiple of 2. The
allocation of the foreground partitions is
dependent upon core size and the fact that
the background area must be at least 10K.
(14K is required if the 14K variants are
used in the Assembler or COBOL.) The
allocation for the foreground partition may
be altered after supervisor generation by
the use of the ALLOC control statement.

system Considerations

If the system residence pack is to be used
on more than one system, specify the
partition sizes for the smallest system in
the ALLOC statement. Then, if the system
residence pack is used on a system with a
larger amount of main storage available,
the partition boundaries can be changed by
submitting an ALLOC statement after IPL has
been completed.

IOTAB Macro

JOB INFORMATION BLOCK (JIB)

The job information block (JIB) table
(Figure 1.22) is used by the supervisor to
store the permanent LUB assignments for the
duration of a temporary assignment
(// ASSGN). It is also used to store
extent information if the DASDFP feature is
implemented, and to handle alternate
assignments.

One JIB entry is required for each
logical unit temporarily reassigned by a
// ASSGN statement. One JIB is required
for each alternate logical unit assignment.

lOne JIB is required for each open
2311/2314/2319 extent with the DASD file
protect feature (except for system
input/output extents). Two JIBs are
required for each open 2321 extent with the
DASD file protect feature. The minimum

84 DOS system Programmer's Guide

value generated is 5 and the maximum value
is 255.

CHANNEL QUEUE (,CHANQ)

CHANQ={6 or
n

6+CBF}

The channel queue (CHANQ) table is used by
the supervisor to schedule I/O operations.
The table consists of four byte entries
containing a pointer to the next CBANQ
entry for that device followed by the CCB
address of the specified device. The n
parameter specifies the number of entries
in the channel queue table. The minimum
value generated is 6. If the assumed value
is taken and the console buffering (CBF)
option is specified, the assumed value is
six more than the CBF value. The maximum
number of CBANQ entries that can be
specified is 255. Figure 1.29 shows the
CBANQ table.

Determining Size of the CHANQ

When determining the size of the CHANQ at
system generation time consider the
following: -

1. In a teleprocessing environment with
many lines and terminals, the size of
the CBANQ could become exceedingly
large (see the following discussion
and Note 1).

2. If multifile volumes are used on the
system, one CHANQ entry is required
for each file being accessed at the
same time.

3. When the supervisor finishes with an
entry in the queue, this entry can be
used for some other device. Thus, the
first entries in the CBANQ are most
often used while the entries near the
end of the table are seldom used.

4. If there are not enough entries
specified in the CBANQ (the last entry
in the table is in use when another
I/O request is made), the requesting
task or partition must wait in a
compute loop until an entry is free to
allow scheduling of the I/O operation.

Fl.:PTR

8

PUB
Byte 2

8
D

D

KEY

o

The length of
the queue is
determined at
supervisor gen­
eration time.

B

Chain
Byte

Chain
Byte

Chain
Byte

Chain
Byte

Chain
Byte

Chain
Byte

Chain
Byte

Chain
Byte

Chain
Byte

Byte 0

CHANQ LUBID REQID LUBDSP TKREQID

C D G H

2 3

The free list pointer contains a displacement index to a free list entry within the channel queue.
The free list is a group of entries that function in essentially the same manner as a device queue.
When the free list pointer contains a hexadecimal FF, it indicates that no more free list entries
are available.

The first byte of the channel queue entry (chain byte) contains a pointer (displacement index)
to the next channel queue entry for that device. A hexadecimal FF indicates the last channel
queue entry for that device. New requests on a given device are queued at the end of a given
device queue.

CCB address for the specified device.

A pointer (displacement index) to the entire LUB table identifying the logical unit making the
I/O request. This is doubled to get the actual displacement into the full LUB table.

Contains a pointer (displacement index) to the first channel queue entry for a specific device
(Figure 19).

Contains a code identifying the program making the I/O request. The one- byte entry is called
a RID (Requestor Identification). The RID indicates what program the CCB belongs to. The
RID is in the form X'nk'.

n = user-storage protection key (supervisor = 0, BG = 1, F2 = 2, Fl = 3).
k = 0 for all user requests and all supervisor CCBs, where n = O.
k = 1 for supervisor CCBs to SYSLOG that bypass ID prefix.
k = 2 for a fetch CCB.

nk = FF for any unused channel queue entries.

Contains X'FF' if the LUB is nonsystem class, or contains the displacement index within. the
partition LUB if it is a system class LUB.

Contains X'FF', or the displacement into the PIB table for the PIB of the task requesting I/O.

Bytes 108-109 (X' 6C -16D') of the communications region contain the address of the LUBID Table. Label LUBIDTAB identifies the first
byte of the table. Bytes 98-101 (X I 62' - '63 ') of the communications region contain the address of the Error Recovery Block (ERR BLOC);
ERRBLOC +6 bytes is the address of the channel queue table (CHANQ). The addresses of the other tables are not at fixed locations.
They can be found in the program listing cross-reference by using the labels REQIDTAB, LUBDSPTB, and TSKIDTAB. CHANQ can also
be found in this way.

Figure 1.29. CHANQ, LUBID, REQID, LUBDSP, and TKREQID Tables

section 1: supervisor Planning Concepts 85

The following two approaches are
presented as an aid in determining the
number of CHANQ entries to specify.

1. Using the total number of devices on
the system as a base, add one to that
value for each file (other than the
first) on any DASD. For example:

Number of CHANQ
CHANQ Files After Entry

Device Entries First File Total

2540 Card Reader 1 0
(X' OOC')

2540 Card Punch 1 0
(X'OOD')

1403 Printer 1 0
(X' OOE')

1052 Printer-
Keyboard (X' 01F') 1 0

2311 Disk Drive 1 1
(X'190')

2311 Disk Drive 1 1
(X'191')

2311 Disk Drive 1 1
(X'192')

TOTAL

2. Generate your system using 10 as a
value for the CHANQ parameter.

3. Run your worst case or heaviest
workload against the system. Then
take a storage dump.

1

1

1

1

2

2

2

10

4. Determine how many of the channel
queue entries were used in the worst
case environment.

As an aid in determining the number
of entries used, let us examine the
contents.of the CHANQ for the same
system after IPL and after running our
worse case workload. First, assuming

86 DOS System Programmer's Guide

the start of the table at X'2D24', the
contents of the CHANQ after an IPL
would be:

r----------------------------,
Hex
Location Value

2D24 02002ECO
2D28 FF0043F8
2D2C 03000000
2D30 04000000
2034 05000000

2D38 06000000
2D3C 07000000
2D40 08000000
2D44 09000000
2D48 FFOOOOOO

____________________________ J

Note that during the IPL only two of
the CHANQ entries were used (i.e.,
only the first two entries in the
table have CCB addresses in bytes
1-3). For the same system after
running our worst case workload and
taking a storage dump, the contents of
the CHANQ appear as follows:

r----------------------------,
Hex
Location Value

2D24 01004020
2D28 050040B8
2D2C 00002F90
2D30 FF0043F8
2034 06005898

2038 040036DO
203C 07000000
2040 08000000
2044 09000000
2048 FFOOOOOO

Note 1: Only six of the entries were used.
There were sufficient entries in the table
to handle the I/O requests with a reserve
of 4. You would have to decide whether or
not you should reduce the amount of
entries. In this case, there are only 16
extra bytes involved.

I Note 2: In a te~eprocessing environment if
you had 100 channel queue entries and only
used 50 of them, you would have to do some
careful evaluation.

I Note 3: If the tenth entry in the table
had a CCB address, it would indicate the
possibility that a task or partition may
have been waiting for a place in the table.
If this occurs, you should add more entries
to the table and repeat the procedure until
the last entry contains no CCB address.

If the CHANQ value is too large, storage
space is wasted. If too small, the
supervisor must wait for an entry in the
CBANQ table to clear before enqueuing the
next request. If the CHANQ table entries
are filled after taking a dump, reassemble
your supervisor with a larger CHANQ value.
The following approach gives a more
efficient way of determining the number of
CHANQ entries to specify.

1. Generate your system using the total
number of logical units (Line Control
Blocks -LCB- or Channel Control Blocks
-CCB) as the maximum number of logical
I/O requests that can be enqueued. It
is unnecessary for the CBANQ parameter
value to be larger than the total
number of system and programmer units.
The value for the CHANQ parameter may
be that number or smaller.

2. Run the programs that use the largest
number of logical I/O units against
the system. If your system supports
multiprogramming, have as many
partitions running as represent your
heaviest workload. Use programs that
use logical double buffering or that
handle dynamic buffering
(teleprocessing). Then use the PDAID
DUMPGEN program to print a dump that
formats the CHANQ.

3. Determine how many of the channel
queue entries were used in this worst
case environment.

An as aid in determining the number of
entries used, let us examine the contents
of the CHANQ. After running our worst case
workload (the program that is running with
the most double buffered I/O devices), and
using DUMPGEN, the contents of the CHANQ
might appear as follows:

r-----------------------------,
CHANNEL QUEUE TABLE

DOS CHAIN
PTR

00 02
01 FF
02 03
03 04
04 05
05 06
06 07
07 08
08 09
09 OA
OA OB
OB OC
OC OD
OD OE
OE OF
OF 10
10 11
11 12
12 13
13 FF

CCB ADDR

001CF8
006398
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

CUU

OOE

_____________________________ J

Only two of the entries were used.
Therefore, we can reduce the amount of
entries. In this example, the minimum
CHANQ number, six, can be specified.

DVCGENMa~o

CHANNEL RESCHEDULING CONSIDERATIONS

The type of supervisor generated is an
important factor in establishing the order
of DVCGEN statements within each channel
definition in the PUB table. See Figure
1.30. Figure 1.14 shows the I/O
relationship.

When rescheduling a selector channel,
the non-MPS supervisor channel scheduler
always begins at the first device
definition for the channel within the PUB
table. Rescheduling a channel is the
channel scheduler's way of locating the
next device on the channel that has an
outstanding I/O request in the CHANQ
(Figure 1.29). The channel scheduler
examines the third byte in the PUB table
entry for a device. If a null pOinter (all
bits on) is found, the scheduler steps to
the next device within that channel in the
PUB table. For a non-MPS system, this scan
always starts at the first PUB entry for .
the channel that has just completed an' I/O
operation. Figure 1.31 lists the device
type codes.

Section 1: Supervisor Planning Concepts 87

When rescheduling a selector channel in
an MPS system, the channel scheduler uses a
rotating scanning technique to ensure that
each device on a channel gets an equal
opportunity of being started. The channel
scheduler in a MPS system retains the
address of the last PUB entry started for
each channel. After an I/O interrupt has
been serviced, the supervisor determines
that the channel is free, and reschedules
the channel by going to the last PUB entry
started for that channel and stepping to
the next entry. A test determines if that
device has an outstanding request. If
there are no outstanding requests for that
device, the scheduler steps to the next PUB
entry for that channel. If no requests are
found, the scheduler steps to the first PUB
entry for the channel and the scan
continues until an outstanding request is
located. If no outstanding requests are
located, the scan stops after the PUB entry
for the last device started on that channel
is checked.

When rescheduling a multiplexor channel
with no burst mode devices running, the
channel scheduler starts another I/O
operation for this device (if there is
another request pending in the CHANQ). If
burst mode devices are running (BMPX=YES is
specified in the PIOCS macro), a rotating
scanning technique as described for a
selector channel determines the next I/O
request to be initiated.

system Generation Guidelines

The following rules must be used when using
DVCGEN macro statements:

88 DOS System Programmer's Guide

1.

2.

3.

4.

5.

One DVCGEN macro instruction must be
used for each device on system. For a
2314/2319, each individual unit needs
a DVCGEN statement.

The device generated by these macros
can be changed with ADD and/or DEL
cards at IPL time.

In a non-MPS supervisor, DVCGEN macros
must be in ascending channel address
sequence. SYSRES should be the first
DVCGEN statement for its channel if it
is to have the highest priority in a
non-MPS supervisor. In an MPS
supervisor, sequence is not important
since each device on a channel gets an
equal opportunity at being started.

Switchable units (attached to more
than one selector channel) are defined
once on the lowest channel by which
they are addressable. They may not be
re-defined as non-switchable units on
the higher channels. Any switchable
units must be the last devices
specified for each channel and must be
on consecutive channels.

The total number of DVCGEN statements
must not exceed the total number of
devices specified in the IODEV
parameter of the IOTAB macro.

IBM 1052 Printer-Keyboards and IBM
3210 or 3215 Console Printer-Keyboards
that are not on-line but were defined
by DVCGEN statements must be deleted
by DEL statements when performing IPL
from the card reader.

PUBEND
STOPPR

PUB - TABLE

Channel

PUB.s

Channel 7

FF

PUBs

PUB - table
del imiter

BYTE 0 - Channel number. (Hex 0-7, FF=NULL)

BYTE 1 - I/O device unit number. (HEX 1F= 1052,
HEX 80= magnetic tape unit 0 ...)

BYTE 2 - HEX 0, 1, 2, ... points to the first
channel queue entry for this device.

BYTE 3 - If device is a magnetic tape unit* and TEBs
and/or TEBVs are specified, this byte is a
TEB/TEBV pointer (HEX 1, 2, 3 ...)

If device is a magnetic tape unit* but
neither TEBs nor TEBVs are specified,
this byte is an error counter.

If device is not a magnetic tape unit*, this
byte is an error counter.

BYTE 4 - See Figure 1 .31 for device type codes.

BYTE 5 - SS of the MODE= parameter in the DVCGEN
macro for tape unit.

For DASD with seek separation, this byte is
used as the SAB pointer. With track hold but
not seek separation supported, this byte con­
tains a pointer to the Track Hold Table entry
or X'FF' (with both SKSEP and TRKHLD specified,
the track hold pointer is found in the SAB entry).

For MICR type devices, this byte indicates the
external interrupt line is in use.

Cha
it

, Job Control Flags

2 3 4 5 6 7

BYTE 6 -
Bit 0:

1:
2:
3:
4:
5:
6:
7:

BYTE 7-

1 = Devi ce busy
1 = Switchable device
1 = EOJ for SYSRDR or SYSIPT
1 = I/o error queued for recovery
1 = Operator intervention required
1 = Device end posting required
1 = Burst device on MPX
1 = 7 - track tape unit

Bit 0 -4: standard MODE assignment for 7 -track tape
(all ones if not tape, all zeros if device is
down).

5: device is assigned to a background job
6· device is assigned to a foreground 1 job
7: device is assigned to a foreground 2 job

NOTE: A null is generated for each device to be supported by the supervisor.
Standard physical unit assignments are made to the PUB table at supervisor generation time. PUBs are ordered by
channel and priority within a channel.

Bytes 64 and 65 (X '40' - '41') of the communications region contain the address of the PUB table entry.
Label PUNTAB identifies the first byte of the table.

*2400 series or 3420 Magnetic; Tape vnitsGr 2495 Tape Cartridge Reader (TEBs); 2400 series or 3420 Magnetic Tape units or.lly (TEBVs)

Figure 1.30. Physical Unit Block (PUB) Table

Section 1: Supervisor Planning Concepts 89

Card Code Actual Device
Dev. Type

Device Type
X'nn'

2400T9 9-track 2400 Series Magnetic To e Units
9 - track 3420 Magnet i c T ape Un i ts

50 Magnetic Tape Units
2400T7 7 - track 2400 Series Magnetic Tape Units

7-track 3420 Magnetic To e Units
2495TC 2495 Tape Cartridge Reader 51 T ape Cartridge Reader
1442N1 1442N 1 Card Read Punch 30 Card Readers - Punches
2520B1 2520B1 Card Read Punch 31
2501 2501 Card Reader 10

Card Readers
254m 2540 Card Reader 11
2540P 2540 Card Punch 21
2520B2 2520B2 Card Punch 20

Card Punches
1442N2 1442N2 Card Punch 22
2520B3 2520B3 Card Punch 20
1403 1403 Pr inter 40
1403U 1403 Printer with UCS Feature 42
3211 3211 Printer 43
1404 1404 Printer 40 Printers
1443 1443 Pr inter 41
1445 1445 Pr inter 41
1050A 1052, 3210, or 3215 Printer - Keyboard 00
UNSP Unsupported Device FF Unsupported. No burst mode on multiplexor channel
UNSPB Unsupported Device FF Unsupported wi th-b~-rs-t-mocre-on --mu ItTpTex-or channe I

2311 2311 Disk Storage Drive 60
2314 2314 Direct Access Storage Facility 62 DASD

2319 Disk Storage Facil ity
2321 2321 Data Cell Drive 61
1412H 1412 Magnetic Character Reader 75
1419 H 1419 Magnetic Character Reader

1255 Magnetic Character R~_<:ld_er 72
1259MagnetL~ Cha!~c:~_~ Reader MICR - Magnetic Ink Character Recognition Devices

1419P ** 1419 Dual Address Adapter Primary Control 73 and Optical Reader/Sorters
Unit

1419S ** 1419 Duo I Address Adapter Secondary 74
Control Unit

2701 * 2701 Data Adapter Unit DO Teleprocessing lines

H A = SADO command when enabling the line

2702 D1 B == SAD1 command when enabling the line
C = SAD2 command when enabling the line

D D = SAD3 command when enabl ing the line
2703 2703 Transmission Control D2
2955 2955 Data Adapter Unit D7 Data link for RET AI N/370
2671 2671 Paper Tape Reader 70 Paper Tape Reader

--
1285 1285 Optical Reader 76

.. --

1287 1287 Optical Reader Optical Readers
-- 77

1288 1288 Optical Page Reader

1017
1017 Paper Tape Reader with 2826

78 Paper Tape Reader
Control Unit Modell -

1018
1018 Paper Tape Punch with 2826 Control

79 Paper Tape Punch
Unit Modell

2260 2260 or 2265 Display Station CO Display Station
7770 7770 Audio Response Unit D3

Audio Response Units
7772 7772 Audio Response Unit D4

1017TP
1017 Paper Tape Reader with 2826

D5 Paper Tape Reader
Control Unit Model 2

1018TP
1018 Paper Tape Punch with 2826 Control

D6 Paper Tape Punch
Unit Model 2

Note: The codes used in the DVCGEN macros ore the same codes used in IPL statements.

* For other teleprocessing devices, see ISM System/360, DOS ST AM and OT AM PLMs, GY30 - 5001 and GY30 - 5002.

** This device type code is also used for the 1270/1275 optical reader/sorters.

Figure 1.31. Device Type Codes

90 DOS System Programmer's Guide

Section 2: Data Management

Section Outline

Concepts of Data Management
Data Files and Records •
Blocking Records • • • • •
Logical File vs Physical Unit
Data Manipulation • • • • • •

93
• • • • 93

• 99
• • • • 99

• • 99
Physical Input/Output Control system
(PIOCS) •••••••••••• • 99

Command Control Block (CCB) .102
Channel Command Word (COW) ••••• 106

Logical Input/Output Control system
(LIOCS) • • • • • • • • • • .111

Logical IOCS Processing Methods ••• 111
sequential Processing ••••••• 111
Direct Access Method (DAM) ••••• 112
Indexed sequential File Management
System (ISFMS> ••••••••••• 112

Main Storage Requirements •• 113
Modular/Tabular System •••••••• 113

DTF (Define the File) Macros •••• 113
MOD (Module Generation) Macros ••• 114
Reentrant Modules ••••••••• 118
Interrelationships of the DTF and
Module Macro Instructions •• 118

Imperative Macros •• • • • • • • • .119
Sequential File Organization. • .122

Card Files • • • • • • • • •• 122
Console Typewriter • • • • • • .122
Line Printers •• 122
Paper Tape Files • • • •• 122
Magnetic Tape Files •• 122
sequential Disk •• 123

Direct Access Method (DAM) File
Organization • • • • • • •

Random Addressing Techniques •
Random Addressing Formula
Prime Number Division
Synonym Records •• • • •
DASD Address Specification For

• .124
• • • 124
• • .125

• .126
• .127

Read/Write Operations •• 128
Relative Track Addressing ••• 128

Indexed sequential File Management
System (ISFMS) • • • • • • • • • • • .129

Loading an Indexed Sequential File .131
Adding Records to the File ••••• 132
Random Retrieval •••••••••• 132
Sequential Retrieval •••••••• 132

Choosing the Right File Organization
and Retrieval Method ••••••••• 133

Criteria. • • • ••• 133
Sample Files. • .136
Summary • • • • .138

Section 2: Da~a Management 91

Section Figures

Figure 2.1. Fixed Length Unblocked
Record Format • • • • • • • • • • • 94
Figure 2.2. Fixed Length Blocked
Record Format • • • • • • 95
Figure 2.3. Variable Length Unblocked
Record Format •••••• • • • • • • • 97
Figure 2.4. Variable Length Blocked
Record Format •• • • • • • • • • • • • 98
Figure 2.5. I/O Operation Using PIOCS 101
Figure 2.6. Command Control Block
(CCB) (Part 1 of 3) ••••••• 104
Figure 2.7. Format of the CCW .106
Figure 2.8. Flowchart for EXCP Coding
Example • • • • • • • • • .109
Figure 2.9. Physical IOCS Sample
Program • • • • • • • • • • • .110
Figure 2.10. Retrieving a Record
Using Logical IOCS ••••••••••• 112
Figure 2.11. Generated Name Structure
for Logic Modules (Part 1 of 2) .116
Figure 2.12. DOS Relocatable Library
Module Name Prefixes .118
Figure 2.13. DTF and Module Macro
Relationships • • • • .118
Figure 2.14. Coding Example of DTF and
Module Relationship •••••••••• 119
Figure 2.15. Logical IOCS Imperative
Macros and DTFs •••••••••••• 120
Figure 2.16. Logical IOCS Imperative
Macros and Devices ••••••• 121
Figure 2.17. Direct Access Address
Chaining •••••••••••••••• 127
Figure 2.18. DASD Address Formats ••• 128
Figure 2.19. Example of Track Index .130
Figure 2.20. Example of Track Index
after Addition to File. • • • • • .131
Figure 2.21. File Organization on a
Disk/Tape System • • • • • • • • • • • .135
Figure 2.22. Indexed Sequential
Versus Sequential File Organization • .137

92 DOS System programmer's Guide

)

Concepts of Data Management

This section is written for the reader who
seeks a general understanding of the
functions and concepts of data structures
and storage media. It explains the basic
concepts of data organization and defines
some of the terms that will be encountered
in subsequent sections of this and other
IBM publications.

The experienced programmer may find this
section of interest, but it is written
primarily for the reader whose experience
with tape and disk files is limited.

DATA FILES AND RECORDS

Data files stored on such media as paper,
cards, tapes, or disk storage devices, are
encountered in practically every business
activity. These files provide the basis
for most manual, mechanical, and electronic
data processing. Data files are composed
of individual records ranging from a few
records up to thousands or millions of
records.

A record can be defined as a collection
of information comprised of alphameric
and/or nonalphameric characters related to
a common identifier. The common identifier
is known as a record's control field or
key. Usually one of the prime information
elements (fields) present within a record
is used to identify the record. For
example, man number could be used as the
key or identifier for a payroll record, and
policy number could be the key of an
insurance policy file.

The size or length of records varies
from file to file because the size can
range from a single character up to
thousands of characters.

A data field is a sequence of one or
more characters treated as a processing
unit of information. A single record
usually includes one or more logical data
fields. An individual data field is
normally identified by its location within
a record.

The logical structure of records and of
fields within records has become
increasingly important since the advent of
computers and high-speed recording media
such as magnetic tapes and disks. This
logical structure is strongly affected by
whether a record is fixed or variable
length.

Data records of an ASCII tape file may
include a block prefix and/or padding
characters. These options are in addition
to the fields contained in data records
written in EBCDIC mode. When present, the
block prefix is the first field of a
physical record, and it may be 0-99 bytes
long. DOS can use this field to check the
length of the physical record only with
ASCII variable length records. For fixed
length and undefined records, DOS ignores
the block prefix on input and does not
restore this field on output.

The length of an ASCII physical record
includes the block prefix field and the
number of padding characters. Padding
characters ensure that all blocks conform
with the required length. DOS accepts
these padding characters (corresponding to
EBCDIC X'SF') on ASCII input but does not
perform any padding operation on output.

section 2: Data Management 93

Fixed lenqth,unblocked (Figure 2.1): Each
logical record is the same length as the
physical record.

For ASCII fixed length, unblocked
records, the block prefix and padding
characters are optional. Regardless of the

IRG = Inter-Record Gap

Physical
Record

IRG = Inter-Record Gap
BLPR = Block Prefix (optional)
PADDI NG = Padding Characters (optional)

Data Area
1

TAPE RECORDS

ASCII TAPE RECORDS

presence of these optional fields. ASCII
fixed length with only one logical record
per physical record is considered to be
unblocked. The number of padding
characters must always be less than the
size of the logical record.

Data Area
2

Data Area
3

G = Gap, Area Separator DISK RECORDS - WITH KEY AREA

Data Record
1

Data Record
2

Data Record
3

G = Gap, Area Separator DISK RECORDS - WITHOUT KEY AREA

Figure 2.1. Fixed Length Unblocked Record Format

94 DOS System P~ogrammer's Guide

Data Record
4

c

)

Fixed length, blocked (Figure 2.2):
Blocked records are usually considered to
be two or more logical records within one
physical record. The number of records in
each block (blocking.factor) is usually
kept constant. For example, the
illustrations show blocked records with a
blocking factor of 3 meaning there are
three logical records within each block
(physical record).

Each physical record in ASCII fixed
length, blocked format may contain a block
prefix and/or padding characters. The
number of padding characters must be less
than the size of the logical record.
Physical records are deblocked until the
number of bytes remaining in the physical
record is less than the specified logical
record length.

r Physical Record 1~ rPhysical Record 2~ r-PhYSiCal Record 3--1

logical
Record

1

logical
Record

2

I RG = Inter - Record Gap

logical
Record

3

logical
Record

4

logical
Record

5

logical
Record

6

TAPE RECORDS

logical
Record

7

'"""�.1----- Physical Record l----I .. ~I '"""1.~--PhYSiCal Record 2 ----1 .. ~1

logical
Record

1

logical
Record

2

IRG = Inter- Record Gap
BlPR = Block Prefix (optional)

logical
Record

3

PADDING = Padding Characters (optional)

logical
Record

4

logical
Record

5

ASCII TAPE RECORDS

logical
Record

6

Logical
Record

8

logical
Record

9

logical
Record

7

logical
Record

10

logical
Record

11

Logical
Record

8

logical
Record

9

I '""" .f---------- Physical Record 1 -----------111 '"""14.....------ Physical Record 2 ------~ .. I

G = Gap, Area Separator

log i ca I Record
Data Area

1

logical Record
Data Area

2

logical Record
Data Area

3

DISK RECORDS- WITH KEY AREAS

logical Record
Data Area

4

log i ca I Record
Data Area

5

Physical Record 1-------.....,~~ ,..I.f-----~---="-'---Physical Record 2-------~.1

log i ca I Record
Data Area

1

logical Record
Data Area

2

logical Record
Data Area

3

Logical Record
Data Area

4

log i ca I Record
Data Area

5

logical Record
Data Area

6

G = Gap, Area Separator DISK RECORDS- WITHOUT KEY AREAS

Figure 2.2. Fixed Length Blocked Record Format

Section 2: Data Management 95

Variable length, unblocked (Figure 2.3):
Each physical reco~d contains one logical
record that can vary in length. Each
record must contain both a block length
field (BL) and a record length field (RL)
giving the size of the block and the size
of the logical record respectively. The
first two characters (XX) of the block
length field (BL) specify the actual block
length in 16-bit binary form. The la~t two

I characters (indicated by bb) are binary
zero. For variable length unblocked
records, BL specifies the logical record
length plus 4 bytes (the size of BL) •.

The first four bytes following the block
length field must contain the record length
field (RL). The first two bytes (XX)
specify the length of the logical record
including the bytes used for RL field

I itself. The remaining two bytes (bb) are
binary zero.

For ASCII variable length, unblocked
records, each physical record may contain a
block prefix. If the block prefix is four
bytes long, it may contain the length of
the physical record that DOS can use for
checking purposes. Each logical record
must contain a record length field (dddd)
giving the size of the logical record in
unpacked decimal format. If a padding
character is found in the first position of
a record length field, all remaining bytes
in that block are bypassed, and the next
logical record is retrieved from the next
block.

Variable length, blocked (Figure 2.4): One
or more logical records are contained
within each physical record. The first
four bytes (block length field) of each

96 DOS System Programmer's Guide

physical record (block) specifies the total
number of bytes in the block. The first
two bytes (XX) specify the length of the
block (including the four bytes for the
block length field itself). The remaining
two bytes (bb) are blank. The size of each
logical record must be placed in a record
length field (RL). The RL must be the
first four bytes of the logical record.
The first two bytes (XX) of RL specify the
length of the logical record including the

I bytes used for the RL field. The remaining
two bytes (bb) are binary zero.

For ASCII variable length, blocked
records, each physical record may contain a
block prefix. For checking purposes, the
block prefix may contain the length of the
physical record (in unpacked decimal
format) if the block prefix is four bytes
long. The length of each logical record,
also in unpacked decimal format (dddd),
must be placed in the first four bytes of
the logical record. If a padding character
is found in the first position of a record
length field, all remaining bytes in the
block are bypassed, and the next logical
record is retrieved from the next block.

Undefined: When file records do not
conform to any of the four previous
formats, they are classified as undefined. ~
For example, any variable length record not ,
conforming to IBM's variable length format
is considered undefined.

ASCII undefined records may include a
block prefix and/or·padding characters.
DOS will not attempt to distinguish padding
characters from the physical record. The
entire physical record is passed on to the
user.

(

If Phys;col Record ~ r-Log ical Record ~

Data Data

Record 1 Record 2

7 7 103
1

RL = 80 RL = 100 1

BL = Block Length }' b' h If rd (b') f I bl k b
L R rd L h

m mary a wo 16 It ormat, p us two an ytes
R = eco engt

IRG = Inter- Record Gap
G = Gap

~ Physical Record-l

I 1"-- Logical Record-l I

Data

Record 1

IRG = Inter- Record Gap
BLPR = Block Prefix (optional)
PADDING = Padding Characters (optional)

TAPE RECORDS

Data

Record 2

DDDD = length of the physical record if BLPR is 4 bytes long (unpacked decimal)
dddd = length of logical record in unpacked decimal format
RL = Record Length

ASCII TAPE RECORDS

Physical Record ---=I r-- Logical Record

Data

Record

RL = 80

BL = Block Length }
RL = Record Length in binary halfword (16 bit) format I plus two binary zero bytes

IRG = Inter- Record Gap
G = Gap

DISK RECORDS

Figure 2.3. Variable Length Unblocked Record Format

7

Data

Record 2

RL = 100

Data

Record 3

53 1

RL = 50
1
I

Data

103 I
I
I

Record 3

Data

Record 3

7
RL = 50

section 2: Data Management 97

"

Physical Record

Logical Record ---1
Data Data Data

RL RL
Record 1 Record 2 Record 3

xxbb xxbb

o 3 14 7 83 :84 87 1831184187
BL = 234: 1 RL = 80 1 RL = 100 RL = 50

BL = Block Length }. • .
RL = Record Length m bmary halfword (16 bit) format, plus two blank bytes.

IR G = I nter-record gap
G =Gap

TAPE RECORDS

233' , 0
,

.-------------- Physical Record ------------~
t--- Log i co I Record

Data

Record 1

IRG = Inter-Record Gap
BLPR = Block Prefix (optional)

RL

dddd

PADDING = Padding Characters (optional)

Data

Record 2
RL

dddd

Data

Record 3

DODD = Length of the physical record if BLPR is 4 bytes long (unpacked decimal)
dddd = Length of logical record in unpacked decimal format
R l = Record Length

ASCII TAPE RECORDS

r.-----------..,..---- Physical Record --------------I·~I I-Logical Record-l

Data Data

RL RL

xxbb xxbb

83184 87 183 184 187
1 RL = 100

1
I I RL = 80

BL = Block length }. b' h If d (16 b') rib' b t
RL

- R d L h m mary a wor It format, p us two mary zero yes.
- ecor engt

IR G = I nter-record gap
G =Gap

DISK RECORDS

Figure 2.4. Variable Length Blocked Record Format

98 DOS System Programmer's Guide

Data

233 1

RL = 50
,
1

Data

Record 4

7
RL = 56

BLOCKING RECORDS

The length of individual data records
varies with the type of data and the
application requiring such data. The
format design of a data record is very
significant to the efficient use of the

I

various storage media available on the
system/360 and System/370. One important
element in the design of data records
involves what is commonly called blocking
and deblocking. Input/output units
(storage media) are relatively inefficient
when used to store short blocks of
information. TO increase the efficiency of
input/output units, data records are
assembled into blocks of records with size
convenient and efficient for processing.
Each physical record on either tape or disk
requires interrecord gaps. These gaps are
blank areas that distinguish beginning and
ending points of a record. If records are
blocked before loading onto a tape or disk,
many of these gaps can be eliminated. One
of the most important advantages of blocked
records is the increased channel/CPU
processing time overlap. The average
number of reads required to locate a record
can usually be reduced by increasing the
blocking factor (number of records per
block). The greater the blocking factor,
the greater the chance that the next record
required will be in the same block. This
is an important consideration when
designing jobs that involve file searching
either on tape or disk. It is particularly
important when using disk storage
techniques that develop overflow records.
overflow records occur when there are more
items' assigned to a disk track than can be
stored on that track.

Blocked records normally require more
main storage than unblocked records because
main storage has to contain the block of
records being read or written on a storage
device. Also, more main storage is
required to hold blocking and deblocking
program instructions. The LIOCS macro
instructions are designed to handle the
blocking and deblocking of records so that
the user need only design the most
efficient blocking factor for his
particular data file and equipment
specifications.

LOGICAL FILE VS PHYSICAL UNIT

A logical file consists of one record for
each item of a group (i.e., an inventory
file would contain one record for each
inventory item). A physical unites) is

I used to store a logical file. For example,
the IBM 2400 Magnetic Tape Unit, the IBM

I 3420 Magnetic Tape Unit, the IBM
2311/2314/2319/2321 Direct Access storage
Devices (DASD) and the IBM 2540 Card Read
Punch can be considered physical units when
data records punched into cards are being
read into the system.

A logical file may be of such a size
that it requires several reels of tape or
disk packs to contain it. Such a file
would be referred to as a multivolume file.
(Each reel of tape, disk pack or each cell
within the 2321 is considered to be a
volume.) If a small file does not require
an entire reel of tape or disk pack to
contain it, the remaining space on the
volume could be utilized by another
complete or partial file. This volume
would be referred to as a multifile volume.

DATA MANIPULATION

Data manipUlation with DOS is implemented
at two distinct levels. The first level,

I physical IOCS requires extensive knowledge
of System/360 and/or System/370
input/output devices, as well as a detailed
understanding of the basic assembler
language. The second level, logical IOCS,
uses a series of IBM-supplied macros to
construct and process data files. Logical
IOCS requires a minimum knowledge of the
hardware I/O devices and is easily
implemented within the problem program by
the coding of macros. This system is also
used by most of the DOS high-level
languages to control I/O operations.

Physical Input/Output Control System
(PIOeS)

Physical IOCS consists of input/output
(I/O) routines that handle the actual
transfer of data records between external
storage devices (cards, tape, disk, etc.)
and main storage. Program routines
incorporated in the channel scheduler
portion of the supervisor handle the
following functions of PIOCS:

• Building a schedule of I/O operations
for all devices on the system (CHANQ
table).

• Starting the actual I/O operations on a
device (SIO).

• Scheduling the start of all I/O
operations and monitoring all events
assQciated with I/O.

section 2: Data Management 99

• performing error recovery procedures
(ERP) for all DOS supported devices,
when necessary.

A user's problem program normally uses
logical IOCS for file processing. Logical
IOCS, in turn, uses physical IOCS to
perform actual data transfers. There are
occasions, however, when a user may need to
bypass the logical IOCS routines to perform
a particular I/O operation. (Physical IOCS
is implemented at the assembler language
level.) Three macro instructions are
provided to allow the user to communicate
directly with physical Ioes.

CCB This macro instruction creates a
command control block. This is
also considered an event control
block (ECB). The CCB contains
the user's information about
special considerations and/or
options that he has chosen for
this I/O operation. It is
comprised of constant statements
(OS) that are used in two-way
communications with the
supervisor.

EXCP

WAIT

This macro instruction is
converted to the proper SVC
instruction (SVC 0) to request
execution of a channel program.
It supplies the location of the
corresponding CCB to the
supervisor.

The EXCP macro instruction
provides more freedom in
controlling devices than the
logical IOCS macros, yet retains
many of the operational
advantages of the Disk Operating
system. DOS provides scheduling
and queuing of I/O requests,
efficient use of channels and
devices, data protection,
interruption procedures, and
error recognition and retry. To
use physical IOCS, however, the
programmer needs detailed
knowledge of device control and
system functions. He must supply
his own channel programs, using
the COW (channel command word)
assembler instruction statement
(See Channel Command Word
section).

This macro instruction tests CCB
byte 2, bit 0 (traffic bit) to
determine when an I/O operation
has been completed. If the
operation is not completed, the
supervisor gets control until
physical IOCS within the
supervisor sets the traffic bit
to indicate completion of the

100 DOS System Programmer's Guide

operation. The WAIT macro should
always be issued for each
requested I/O operation.

Whenever physical IOCS macro
instruction~ are used, the programmer must
construct the channel command words (CCW)
for his input/output operations. He uses
the assembler COW statement to do this.
See Channel Command Word for detailed
information on the cow. Figure 2.5 and the
following text shows how an I/O operation
can be traced through physical IOCS.

A request is made to physical IOCS to
start an I/O operation by means of the EXCP
macro instruction in the problem program.
From information in the CCB, physical IOCS
determines the channel for which the
request was made and places the request on
a queue for that device. If the channel(s)
or device is not busy, the I/O is started
and control returns to the problem program.
If the channel is busy, control returns to
the problem program, but the I/O request
waits in the channel queue. When the
request reaches the top of the channel
queue, the I/O is started.

Control returns to the program
requesting the I/O unless there was an
error condition detected on the START I/O
(SIO) instruction. The problem program
normally continues processing until it
requires that the requested I/O operation
be complete (either the information being
read into main storage is needed or the
output area must be freed on an output
operation). At this time, the WAIT macro
should be issued. The WAIT macro causes
the now waiting task to be removed from
task selection until the proper interrupt
is processed for this device by the
supervisor.

Any problem program that is running will
be interrupted when the I/O operation is
complete (all data transferred to or from
main storage and the external device and no
permanent errors have been detected). At
this point, the request is removed from the
channel queue and normal task selection
resumes.

If an error was detected that could not
be corrected by the device error routines,
the problem program or the computer
operator would be notified via a message on
SYSLOG. User error routines can be
notified via the CCB to handle conditions
such as wrong length record.

Physical IOCS always attempts to perform
its function so that the time for executing
an I/O operation is overlapped with the I/O
operations on other channels and also
allows the I/O operations to be overlapped
with processing.

SUPERVISOR
PROBLEM PROGRAM

CHANNEL
SCHEDULE
ROUTINE

I/O REQUEST
TABLE (CHANQ)

• • / · " .(
/

• \

• \ · \ \ -- \ ." \ .',', \
START
I/O

• ,~ I
• " \ , '" I/O INTERRUPT

,\ " ROUTINE · , '. · " WAIT READCCB' , •
r·--- , , •
I \ '
I • /,. I ,,/', .-----,

TEST I ." , • 'I · / ' I / • I

I READCCB C~B; SYSIPT, RDCCW I
L-_ --~ .. --- ---, I '

~_~ ____ ..J

: I
RDCCW CCW 2,INAREA, X'20',80
INAREA OS Cl80

• •
Figure 2.5. I/O Operation Using Ploes

I
/

I
/

CHANNEL
INTERFACE I/O DEVICE

Section 2: Data Management 101

Command Control Block (CCB)

The CCB establishes communication between
the problem program and physical IOCS. The
CCB is two doublewords in length with eight
major fields, as shown in Figure 2.6. The
optional 8 bytes are generated if the user
requests that a sense operation be
performed, on an I/O error. Data
transferred from the device to main storage
during a sense operation provides
information concerning both unusual
conditions detected in the last operation
and the status of the device. All data in
the CCB is in the hexadecimal format. The
eight fields of the CCB are listed and
described as follows:

1. Count Field (Bytes 0,1): Contains the
residual count from the channel status
word (CSW), that is stored by PIOCS
when the CCB is removed from the
queue.. The residual count in
conjunction with the original count
specified in the last ccw used,
indicates the number of bytes
transferred to or from the area
designated by the Ccw. When an input
operation is terminated, the
difference between the original count
in the CCW and the CSW is equal to the
number of bytes transferred to main
storage. For an output operation, the
difference is equal to the number of
bytes transferred to the I/O device.

2. Transmission Information (Bytes 2 and
1L: Used for two-way communication
between the supervisor and the problem
program. Each bit within these two
bytes represents either a condition
that was detected by the supervisor
and posted to the user, or a user
option to be communicated to the
supervisor. Refer to Figure 2.6. The
designation pr.pr. indicates those
bits that the problem programmer may
set and are not reset by the
supervisor for each I/O request.
PIOCS indicates those bits that the
supervisor is capable of
setting/resetting just before each I/O
operation associated with this CCB.

The user options may be initialized
at assembly time by specifying the
third operand of the CCB macro. (See
supervisor and I/O Macro listed in the
Preface for detailed information for
coding the CCB). A third operand with
a value X'OlOO' instructs PIOCS to
return to the user after each I/O
operation for this CCB whether or not
any errors have occurred. It is then
up to the user to handle all aspects
of error recovery and/or retry, even
to the point of determining if an

102 DOS System Programmer's Guide

error does exist. The only,additional
information that the supervisor
provides under this circumstance is
the CSW status information posted in
bytes 4 and 5 of the user CCB. If the
user specifies the fourth operand
(sense Address), the sense information
is present in the sense area that the
user has specified (if an error
condition existed at the end of the
I/O operation).

Note: Bytes 2 through 5 are ANDed off
(mask setting is X'lF050000') by PIOCS
when the CCB is placed in the queue.
Communication bits that were set on by
the problem program are left on
because an AND instruction is used by
PIOCS for resetting bytes 2 through 5.

3. CSW Status Bits (Bytes 4,5): Contains
the CSW status information that is
stored by PIOCS before control returns
to the problem program.

Note: The particular bits that are
turned on in bytes 2 through 5
indicate the conditions that were
detected by PIOCS and/or the problem
program by the specification of the
third operand of the CCB macro.

4. Symbolic Unit Number (Bytes 6,7):
Contains the 2-byte hexadecimal
representation of SYSnnn (symbolic
unit). This value represents the
location of the logical unit in the
LUB table (see Figure 1.19) and is
placed in the CCB by the problem
programmer's specification of the
symbolic unit to be used for this I/O
operation. The symbolic unit is
converted to a 2-byte hexadecimal
representation by the CCB macro. The
first byte indicates the class of the
symbolic unit (system class=X'OO',
programmer class=X'Ol'). The second
byte of the representation indicates
the number of the unit within one of
the previously mentioned classes. An
example of such a conversion can be
illustrated with the symbolic unit
SYS007, which converts to X'0107'.

5. Byte 8: Contains the length of the
block prefix. This length is
X'00'-X'63' for ASCII input tapes and
X'OO' or X'04' for ASCII output tapes.
For EBCDIC tape files, this byte is
always X'OO'.

6. CCW Address (Bytes 9-11): Contains
the address of the CCW that is
associated with this CCB. This
address is placed in the CCB by the
specification of the second operand of
the CCB macro. In the case of chained

CCWs, this operand specifies the
address of the first ccw.

7. Byte 12: Contains information used by
physical IOCS that must not be
modified by the user.

8. CCW Address in CSW (Bytes 13-15):
Contains the CCW address from the CSW
stored by PIOCS before control returns
to the problem program. A CCB that
has been queued by PIOCS to service a
problem program I/O request cannot be
used for a second problem program I/O
request until the first request has
been completed.

9. Optional Sense CCW (Bytes 16-23):
Bytes 16-23 are appended to the CCB by
the CCB macro expansion when the user
wants sense information on

unrecoverable I/O errors returned. If
the user specifies a sense address by
coding the fourth operand of the CCB,
an 8-byte CCW for reading sense
information is generated as t~e last
field of the CCB. The name field
(sense address) of the area that the
user supplies must have an assigned
length attribute of at least one byte.
Physical IOCS uses this length
attribute in the ccw to determine the
number of bytes of sense information
the user wants at this sense address.
For more detailed information
concerning this sense information see
the Principles of Operation listed in
the Preface. For detailed information
regarding the actual coding of the
physical IOCS macros refer to
Supervisor and I/O Macros listed in
the Preface.

section 2: Data Management 103

~ ~
0
&: \Q

s::
11

t1 <n
0
ell tv .
til 0\
'< en
rt
<n ()
IS i ttl a PI

::s
I.Q Q..
11

i ()
0

<n ~
11 11 . 0
en ...,
G'l tx:I s:: ...,
..... g Q..
<n ~

-(')
()
III --ttl
PI
11
rt
....
0
HI

W -

~

...-------r-------,r---------,-------r--------., - - - - - -_._,
Optional I
Sense CCW I

Bytes-.\O 112 314 51 6 71 19 III 12 113 15\16 ____ 1~
Used for_: Residual Count: Transmition i (Note J) _ _ Hexadecimal; Buffer Offset: : Address of CCW,X'80'-CCB being I Address of CCW I 8 Bytes I

~

Traffic Bit
(Wait)

(Note 5)

I Information I B te 4 Byte 5 -- __ Representation I ASCII Input Tapesl Associated with lused by ERP : in the CSW I Appended to the I
I Between Physical BIT DESIGNATION BIT DESIGNATION of SYSnnn I X'00'-X'63' I this CCB I I Stored at I CCB when Sense I
I 10CS and : SYSRDR = 0000 I I IX'40'-Channel I Channel End, I Information is I
I Problem Program 132 Attention 40 Program -controlled SYSIPT: 0001 : ASCII <?utput IApp~ndage: or Address of : Desired I

I

j

End -of - File
(/* or /&)
3211 -
UCSB Parity
Check (Line
Complete)

(Note 2)

133 Status modifier interruption SYSPCH = 0002 I T~pe~ FIxed: I IRoutlne Present. I the Channel I I
34 Control unit end 41 Incorrect length SYSLST - 0003 I X 00 , ' I for Teleprocessing Appendage I

: 35 Busy 42 Program check SYSLOG : 0004 I Variable: X:OO, orr I Device : Routine for. I
I 36 Channel end 43 Protection check SYSLNK = 0005 X 04 I I , , I Tele'processlng
I 37 Device end 44 Channel data check SYSRES = 0006 I . " I I X 20 - S~nse DeVIces
1 38 Unit check 45 Channel control check ~~~~~: = 0007 1 Undefined: X 00 I I'nfo.rmatlon

I 39 Unit exception 46 Inte~f~ce control check SYSUSE: ~~~~ I I I DeSired

l. 47 Chaining check , SYSREC =OOOAI IX'IO'-Message

Byte 2

Unrecoveroble
Accept

I/O Error
Unrecoverable
I/o

SYSCLB = OOOB I I Writer
SYSOOO = 0100 I
SYSOOI = 0101 I IX'08'-EU Tape

, SYS221 = 01 DDI I Error

~

Return DASD
Data Checks
2671 errors, or
1017/1018
errors to the
user

I I

........ I

Post at
Device End

(Note 5)

Return Tape Read
Dota Check, 1018
Data Check, 2540
or 2520 Equipment
Check, DASD
Data Checks on
Read or Verify
Command, or 321 I
Passback Requested

(Notes 3 & 6)

IX'02'-Tape ERP
IRead Opposite
,Recovery ,
IX'OI'-Seek
I Separation or
I Console Buffering

User Error
Routine

Bits-,
Set On By-i

0

PIOCS

I
PIOCS

2
-

PIOCS
_3 _____ 4__ ,,-._ ~ __

-
6 7

- -

Pro Pro Pro Pr. Pr. Pro Pr. Pr. Pr. Pro

Byte 3

DASD - DASD- DASD - 2540, 2520- Non - Recovery No-Record - Carriage Command
Data Check in T rack Overrun End of Cylinder Equipment Check Questionable Found Condition Channel 9 Chaining
Count Area MICR- MICR - Tape - Condition: {Retry on 231 I , Overflow or Retry from

MICR- Intervention (Note 4) Read Data Check Card- 2314, or 2319) Verify Error the next CCW
SCU Not Required 1287/1288- DASD - Unusual for DASD to be executed
Operational 1285/1287- Hopper Empty Any Data Check Command

1285/1287/1288 Keyboard in Document 1285/1287 Sequence 1287 Document
Data Check Correction in Mode Equipment Check DASD- Mode -Late

3211 - Journal Tape 3211- 1017/1018 No Record Found Stacker Select
Print Check/ Mode Line Position Data Check 1285/1287/1288 -
Equipment Check 1017- Error 3211- Document Jam 1288 - End of

Broken Tape (Note 7) Print Check/ or Torn Tape Page
3211- Data Check 321 1-
Print Quality/ UCSB Parity Check

I
Equipment Check (Command Retry)

0 I 2 3 4 5 6 7 Bits -

Set On By-/ PIOCS I PIOCS PIOCS PIOCS PIOCS Pr. Pr. PIOCS Pr. Pr.

PIOCS = Physical 10CS
Pr. Pr. = Problem Program

Note I. Bytes 4 and 5 contain the status bytes of the Channel Status Word (Bits 32 -47). If byte 2, bit 5 is on and device end results as a separate interrupt, device end will be ORed into CCB byte 4.
Note 2. Indicates /* or /& statement encountered on SYSRDR or SYSIPT. Byte 4, bit 7 (unit exception) is also on.
Note 3. DASD data checks on count not returned.
Note 4. For 1255/1259/1270/1275/1412/1419, disengage. For 1275/1419D, I/O Error in external interrupt routine (channel dota check or busout check).
Note 5. The traffic bit (Byte 2, bit 0) is normally set on at channel end to signify that the I/O was completed. If byte 2, bit 5 has been set on, the traffic bit and bits 2 and 6 in byte 3 will be set on

at device end. Also see Note I •
Note 6. 1018 ER P does not support the Error Correction Function.
Note 7. This error occurs as an equipment check, data check, or FCB parity check.

Condition Indicated On Values Mask for

. Byte Bit for Third T est Under
1 (ON) o (OFF) Operand in Mask

CCB Macro I nstruc ti on

2 0 Traffic Bit (WAIT). I/O Completed. Normally set I/O requested and not X'80'
at Channel End. Set at Device completed.
End if bit 5 is ON.

1 End of File on System Input. /* or /& on SYSRDR or SYSIPT . X'40'
Byte 4, Unit Exception Bit is
also ON.

3211 UCSB Parity Check (line complete) Yes No

2 Unrecoverable I/O Error I/O error passed back due to No program or operator X'20'
program option or operator option error was passed
option. back.

3 1 Accept Unrecoverable I/O Error Return to user·after physical Operator Option: X'1000' X'10'
(Bit 2 is ON) 10CS attempts. to correct I/O Dependent on the Error

error .2

4 1 2671 data check. Operator Options: Operator Option: X'0800' X'08'
Ignore, Retry, or Cancel. Retry or Cancel.

1017/1018 data checks. Ignore or Cance I • Cancel.
Return any DASD data checks. Return to user.

51 Post at Dev i ce End. Device End condition is posted; Device End conditions are X'0400' X'04'
that is, byte 2, bit 0 and byte not posted. Traffic bit is
3, bits 2 and 6 set at Device set at Channel End.
End. Also byte 4, bit 5 is set.

6
1 Return: Uncorrectable tape read data Return to user after physical Operator Option: X'0200' X'02'

check (2400-series, 3420, or 2495); 10H 10CS attempts to correct 3211, Ignore or Cancel for tapps,
data check; 2540 or 2520 punch equip- tape, or DASD error. Return punches, or paper tape
ment check; DASD read or verify data to user when 1018 data check. '+ punch (1018). Retry or
check; 3211 passback requested. cancel for DASD.
(Data checks on count not returned.)

7 1 User Error Routine User hand les error recovery.3 A physical 10CS error X'0100' X'Ol'
routine is used unless the
CCB sense address operand
is specified. The latter re-
quires user error recovery.

3 0 Data check in DASD count Field. Yes - Byte 3, bit 3 is OFF; No X'80'
Byte 2, bit 2 is ON.

Data check - 1285, 1287, or 1288. Yes No
MICR - SCU not operational. Yes No
3211 Print Check (equipment check). Yes No

1 DASD Track overrun. Yes No X'40'
1017 broken tape. Yes No
Keyboard correction 1285 or 1287 in Yes No
Journa I Tape Mode.
3211 print quality error (equipment Yes No
check) .
MICR intervention required. Yes No

2 End of DASD Cyl inder. Yes No X'20'
Hopper Empty 1287/1288 Document Yes No
Mode.
MICR -1255/1259/1270/1275/1412/ Document feeding stopped. No

1419, disengage.
-1275/14190, I/O error in Channel data check or

external interrupt routine. Busout check.
3211 line position errc;>r.5 Yes No

-

Figure 2.6. command Control Block (CCB) (Part 2 of 3)

Section 2: Data Management 105

Condition Indicated On Values Mask for
for Third Test Under

Bit Byte
1 (ON) o (OFF) Operand in Mask

CCB Macro Instruction

3 3 T ape read data check (2400 - series or Operation was unsuccessful. No X'JO'
2495); 2540 or 2520 punch equipment Byte 2, bit 2 is also ON.
check; or any DASD data check. Byte 3, bit 0 is OFF.
1017/1018 data check. Yes No
1285, 1287, or 1288 equipment check. Yes No
3211 data check (print check). Yes No

4 Questionable Condition. Card: Unusual command X'08'
sequence (2540) . DASD:
No record found.

Nonrecovery 1285/1287/1288: Document
jam or torn tape.

UCSB parity check (command retry). Yes No

51 No record found condition Retry command if no record Set the questionable X '0004' X'04'
found condition occurs (disk) . condition bit ON and

return to user.

6 Verify error for DASD or Carriage Yes. (Set ON when Channel 9 No X'02'
Channel 9 overflow is reached only if Byte 2, bit 5

is ON).
1287 document mode -late stacker Yes No
select.
1288 End - of - Page (EOP). Yes No

7 1 Command Chain Retry Retry begins at last CCW Retry begins at first CCW X'OOOI' X'OI'
executed. of channel program.

User Option Bits. Set in CCB macro. Physical 10CS sets the other bits OFF at EXCP time and ON when the condition specified occurs.
2 I/O program check, command reject, or tape equipment check always termi nates the program.
3 For System/360, the user must handle all error or exceptional conditions except Channel Control Check, Interface Control Check,

I/O Program Check, and I/O Protection Check. For System/370, the user may handle Channel Control Checks and Interface Control
Checks. The occurrence of a channel data check, unit check, or chaining check causes a byte 2, bit X'20' of the CCB to turn on,
and completion posting and dequeuing to occur .1/0 program and protection checks always cause program termination. Incorrect
length and unit exception are treated as normal conditions (posted with completion). Also, the user must request device end posting
(CCB byte 2, bit X'04') in order to obtain errors after channel end.

.. Error correction feature for 1018 is not supported by physicallOCS. When a 1018 data check occurs and CCB byte 2, bit X'02' is on,
control returns directly to the user with CCB byte 3, bit X'10' turned on.

5 A line position error can occur as a result of an equipment check, data check, or FCB parity check.

Figure 2.6. Command Control Block (CCB) (Part 3 of 3)

Channel Command Word (CCW)

To aid the programmer in using physical
IOCS, an assembler instruction statement,
CCW (channel command word), is provided.
This ccw assembler instruction statement is
a convenient means to define and generate
the a-byte channel command words needed for
the channel program. See Figure 2.7 for
the format of the CCW assembler
instruction.

r------T---------~-----------------------,
IName I Operation I Operand I
~------+---------+------------------------~
I Any ICCW IFour operands separated I
I Symbol I Iby commas specifying the I
lor Not I Icommand code, data ad- I
I Used I I dress, flags, and count. I L ______ ~ _________ ~ ______________________ ~-~

Figure 2.7. Format of the CCW

106 DOS System Programmer's Guide

Command Code

The ccw command code (1 byte) may be
expressed as a decimal number, hexadecimal
representation, or as a symbol that has
been equated to the proper hexadecimal or
decimal value (e.g., 19, X'13', PR, where
PR EQU 19 respectively). The assembler
moves, or converts and moves, the command
code to the first byte of the machine
language CCW it is generating. Each I/O
device has a specific set of commands to
which it will respond; any other commands
to that device are rejected.

Data Address

This field must contain a data address
unless the CCW command is a control command
(for example, skip to channel 1 for a
printer). Normally this field is expressed

as a symbol for ease of program relocation
and reflects the address of the
input/output area.

The third field of the CCW mnemonic is used
to communicate special considerations to
the channel regarding this CCW. The value
of the flag byte may be expressed as a
decimal number, hexadecimal character or as
a symbol that has been equated to the
proper decimal or hexadecimal value.
Although it is referred to as the flag
byte, only the five high order bits (bits
32-36 of the resultant CCW) represent
individual flags. The three low order bits
must be zero in their final hexadecimal
form. The function of each flag bit is as
follows:

Bit 32 (High Order Bit of the Flaq Field):
This is the chain data (CD) flag. Chaining
refers to a series of CCWs in contiguous
(consecutive) doubleword storage locations
that are linked to each other forming a
chain.

Data chaining permits the reading or
writing of an I/O record from different
areas of main storage.

If the CD flag bit is set to 1 (CD flag
on), the data address and count in the next
sequential CCW are also used in storing a
data record. Both CCWs pertain to the same
I/O record.

When data chaining, the command bytes of
successive CCWs are ignored (unless it is a
transfer in channel (TIC», but the field
must contain a valid command. only the
first CCW's command byte is used. It is
important to note that data chaining
pertains to only one I/O operation or data
record. This could be one punch card or
one tape record or one line of print and so
forth.

Example: TO read columns 1-30 of a punch
card into storage beginning at location ONE
and columns 31-S0 into storage beginning at
location TWO, two CCWs could be used. The
first CCW would have its CD flag bit set to
1 as shown:

CCW1 CCW
CCW

2,ONE,X'SO',30
2,TWO,X'00',50

CCW1 causes thirty bytes to be read into
storage starting at location ONE. The
second CCW causes the next fifty bytes of
the card to be read into storage starting
at location TWO.

Note: The ability to data chain is
dependent upon device and channel speeds.

J &00
Q (oO

o I) 10
r\ til'"

Bit 33: Bit position 33 of the CCW is the
command chaining (CC) flag. This bit when
set to one causes the next sequential CCW
to initiate another operation on the same
I/O device.

For example, it is possible to read two
cards into main storage as a result of one
EXCP macro instruction. Two CCWs with the
CC flag set in the first CCW are required.

CCW1 CCW 2,DATA,X'40',SO
CCW 2,DATA+SO,X'OO',SO

In this example, CCWl initiates a read
command. The first card is read into
storage locations DATA through DATA+79.

Because the CC flag bit in the first CCW
is set to one, the second CCW is used to
initiate another card read operation. The
next card is read into storage locations
DATA+80 through DATA+159.

Note that when data chaining, only one
I/O operation occurs. The data from the
one I/O record is placed in main storage
under control of two or more CCWs.

When command chaining, each CCW controls
a different I/O operation. The commands
that are chained do not need to be the
same. For instance, it is possible using
one EXCP macro instruction to do a
write-backspace-read combination with a
magnetic tape unit by command chaining with
three CCWs in one EXCP macro instruction.

When command chaining, an I/O interrupt
cannot occur at the end of each command,
but can occur when the last command is
executed.

When command chaining, each command
processes one physical record. If the byte
count of the record does not agree with the
count field of the CCW, an incorrect length
indication results.

Bit 34: Bit position 34 of the CCW is the
suppress incorrect length indication (SLI)
flag. The SLI bit may be turned on to
prevent an indication to channel of an
unequal compare between the byte count
specified in the CCW and the actual bytes
read from the record.

Example of Incorrect Length: If you want
to read columns 1-50 of a card into main
storage starting at location BUFFER and
bypass the remaining 30 columns, the
following CCW can be used:

CCW1 CCW 2,BUFFER,X'20',50

An incorrect length indication results
because one CCW causes the device to
process one complete record and the device

section 2: Data Management 107

could not be stopped on the 51st byte.
When an incorrect length indication occurs,
the status bit in the CCB is set for
testing by the programmer.

If the SLI flag bit is on, it suppresses
the incorrect length indication for each
data record. For example, if you want to
read columns 1-40 of a card into main
storage starting at location BUFFER1 and
columns 41-60 into main storage starting at
location BUFFER2, the following two CCws
could be used:

CCW1
CCW2

CCW 2,BUFFER1,X'SO',40
CCW 0,BUFFER2,X'20',20

CCW1 causes 40 bytes to be read into main
storage starting at location BUFFER1. CCW2
causes the next 20 bytes of the card to be
read into storage starting at location
BUFFER2. A breakdown of the flag bytes
would be:

CCW1 Data Chaining

CCW2 Suppress incorrect length indication

Note that the SLI flag is not required for
the first CCW. The incorrect length
indication is relevant to an entire data
record and not to a given ccw. The SLI
flag is present in the second CCW because
it is the last CCW for the record and the
total value of the two CCW count fields
does not equal the actual record length.

Bit 35: Bit position 35 of the CCW is the
SKIP flag. The SKIP flag suppresses the
transfer of information into main storage.
It can be used together with the data
chaining feature to read selected portions
of an I/O record into main storage. To do
this, the CD flag is used along with bit 35
of the CCW. For example, if columns 51-SO
of a punch card are to be read into
locations DATA through DATA+29, the card
reader reads all SO columns of information
and attempts to transfer SO bytes of data
into main storage. The channel needs 2
CCws.

CCW1 CCW 2,DATA,X'90',50
CCW 2,DATA,X'00',30

CCW1 has both the CD and the SKIP flag bits
on.

Because the skip flag bit is on, CCW1 is
used to suppress the transfer of data into

lOS DOS System Programmer's Guide

main storage. The count field causes 50
bytes to be bypassed.

Because the CD flag bit is on, the
second CCW is fetched after the first 50
bytes have been skipped. The second CCW
causes bytes 51 through SO to be read into
storage starting at location DATA.

Bit 36: Bit position 36 of the CCW is the
program control interrupt (PCI) flag. CPU
normally receives an I/O interrupt at the
end of the I/O operation. However, bit
position 36 of the CCW can be used to
signal an I/O interrupt before the end of
the operation.

When a CCW is fetched that has its PCI
flag bit on, CPU receives an I/O interrupt
as soon as it can accept it. In this way,
CPU is notified of the progress of an I/O
operation. This notification could be used
to initiate the processing of the data
records that have been read into main
storage by the preceding CCws in the chain.

I/O interrupts normally occur at the end
of the operation. An interrupt caused by
PCI would not affect the I/O operation.
The interrupt is taken by the CPU and the
I/O operation continues in the same manner
as if the interrupt had not occurred.

The PCI-caused interrupt occurs as soon
as possible after start of execution of the
command containing the PCI flag. The
occurrence of the interrupt may be delayed,
depending on the model of system/360 and/or
the particular device that it is operating.

A more detailed explanation of the CCW
flags can be found in Principles of
Operation listed in the front of this
manual.

The count field gives the total number of
bytes in the storage area (the physical
size of the records being read or written).
The count field specifies any number of
bytes up to 65,535. Except for a CCW
specifying a transfer in channel, the count
field cannot contain the value zero.

To illustrate the use of physical IOCS,
Figures 2.S and 2.9 show a sample program
with a related flowchart,.

Figure 2.8. Flowchart for EXCP Coding Example

Section 2: Data Management 109

PAGE 1

LOC OBJECT CODE AOOR1 AOOR2 SHIT SOURCE STATEMENT FOOS CL3-5 10/31/69

0010 000000

OOOOOQ
000002 0'540
600002 4130 0006 00006

OOI'lOtA 0204 4002 410B 00002 0010B

1)0005C 4361) 4006
00('1060 4166 0001
000064 4260 4006
000068 4630 4034

00006F 0700

01)00110 0700000040000006
1)001)81l 2900000760000004
I)OOOCO 0800ooB800000000
Doooe8 0600010020000050
00':'01)(' 00000000000000
00(01)7 E50503F1
000(1)8 0('100000000
00001'0 0700000040000006
O,,00E8 3100000260000005
OOOOFO 080000E800000000
OOOOFIl OE0001002000008C
000100
00010('1
000101'1
OOr:'12C
')onll~C E506D3E404C54003
00019A E5E306C34002C5EI!
0"01 AO E5E31l6040 C4C1 E3

1'101'11 A9 00000000000000
0001110 0900018C6000000C
000188 -1 0 00010020000050

00006
00001
00006
00034

1 01 SKR EAO STAR T 0
2 PR I NT NOGEN
3 BALR 4,0
4 U5I-NG ~,4

5 .lA 3,6
6 REAOVOL EXCP VOLREAO READ THE VOLUME LABEL

10 WAIT VOLREAO WAIT FOR THE. READ TO COMPLETE
16 MVC SEEK+2(51,VOLUME+ll SET UP SEEK/SEARCH ARGUMENT
17 PRTVOL EXCP VOLPRT PRINT THE VOLUME LABEL
21 WAIT VOLPRT WAIT FOR PRINT TO COMPLETE
27 REAOVTOC EXCP VTOCREAD READ THE VTOC
31 WAIT VTOCREAO WAIT FOR THE READ TO COMPLETE
37 PRTVTOC EXCP VTOCPRT PRINT A VTOC RECORD, KEY AND DATA
41 WAIT VTOCPRT WAIT FOR PRINT TO COMPLETE
47 IC 6,SEEK+6 UPDATE THE RECORD COUNT IN THE
48 LA 6,1(61 SEEK/SEARCH ARGUMENT
49 STC 6,SEEK+6 STORE UPDATED 10 INTO SEEK/SEARCH ARG.
50 BCT 3,REAOVTOC
51 EOJ EOJ
54 CNOP
55 VOLREAO CCB
66 VTOCREAO CCB
77 VOLPRT CCB
88 VTOCPRT CCB
99 VOLCCW CCW

100 SEARCHKY CCW
101 CCW
102 CCW
103 SEEK DC
104 KEYSCH DC

0,4
SYS004,VOLCCW
SYS004, VTOCCCW
SYS006, VOLPTCCW
SY S006, VTOC PCCW
LONGSEEK,SEEK,CC,6 SEEK TO CYLINDER 0, .HEAO 0
SRCHKEYE ,KEYSCH,CC+SLl ,4 SEARCH KEY EQUAL (VOL11
TIC,SEARCHKY,O,O TIC BACK TO SEARCH
REAOOATII,VOLUME,SLl ,L'VOLUME REIID VOL LABEL DATA FIELD
X' 00000000000000'
CL4'VOLl'

105 VTOCCCW CCW LONG SEEK ,SEEK,CC ,6 SEEK TO THE VTOC CYL INOER/HEAD
106 SEARCHIO CCW SRCHIDE,SEEK+2,CC+SLI,5 SEARCH 10 EQUAL FOR VTOC RCD
107 CCW TIC,SEARCHIO,O,O TIC BACK TO SEARCH
108 CCW REAOKOTII,VTOCRCO,SLI,L'VTOCRCO READ KEY/OATil FROM VTOC
109 VTOCRCO OS OC1140
110 VOLUME OS OCL80
111 KEY OS CL44
112 DATIl OS CL96
113 VOLHEAO OC C'VOLUME LABEL'
114 KEYHEAO DC C'VTOC KEY'
115 DATAHEAO OC C'VTOC DATA'
116 *. **
117 * PRINT VOLUME HEADER AND SPACE ONE
118 * PRINT VOLUME LABEL AND SPACE THREE
119 * **

120 VOLPTCCW CCW PRINTSP1,VOLHEAO,CC+SLI ,L'VOLHEIID
121 CCW PRINTSP3,VOLUME,SLl ,L'VOLUME
122 * **.****************************
123 * PRINT VTnc KEY HEIIOING

0030
0020

00005

0070
0080
0090
0100
0110
0120

0140

0180

0190

0210
0220

0270

0330
0340
0350
0360-
0370
0380
0390

- --

[

PAGE 2

LOC OBJt=CT CODE AOOR1 AOOR2 STMT SOURCE STIITEMENT FOOS CL3-5 10/31/69

0001CO 090'1019860000008
0001C8 190001006000002C
00011)0 0900(11 A060000009
000108 1900012C2(1(100060

000007
1'100029
001'(01)8
0000')6
(1)1)0~1

OOOO!'F

1)00009
01'1001 °

000080
000040
OOOO:?O
0('0010
OOOOn.'!
000000

01)1)11'(1 00000(170
oonlE4 0001)0090
OnC11'8 (1)('(1')080
(\''''11'r onn('Hl(' 40

124 * PRINT KEY OF VTOC RECORD
125 * PRINT DATA HEADING
126 * PR INT DATA POll TI ON OF VTOC RECORD
127 * **
128 VTOCPCCW CCW PRINTSP1 ,KEYHEAO,CC+SLl ,L' KEYHEAD
129 CCW PR I "lTSP3 ,KE Y ,CC+S LI ,L' KEY
130 CCW PRINTSP1,DATAHEAO,CC+SLI,L'OATAHEAO
131 CCW PRINTSP3,OATA,SLl,L'OATA
132 * **
133 * ,SAMPLE OASO CHANNH COMMAND EQUATES
134 * **
135 LO"lGSEEK EQU 07
136 SRCHKEYE EQU 41
137 TIC EQU 08
138 REAOOATA EOU 06
139 SRCHIOE EQU 49
140 READKOTA EQU 14
141 * **
142 * SAMPLE 1403 OR 1443 PRINTER COMMAND EQUATES
143 * **
144 PRINTSP1 EOU 09
145 PRINTSP3 EQU 25
146 * **
147 * FLAG OPEIIANOS
148 * ** ADO SYMBOLS TOGETHER FOR COMBINATIONS SUCH AS CO+SL 1*************
149 * **
150 CO EOU 128 CHAI N DATA
151 CC EQU 64 COMMAND CHAIN
152 SLI ~QU 32 SUPPRESS LENGTH INDICATION
153 SKIP EQU 16 SKIP PORTIO"lS OF THE RECORD
154 PCI EQU 8 PROGRAM CONTROLLED INTERRUPT
155 ENOCCWS EOU 0 END ,OF CCW LI ST
156 END 0460
157 =A (VOLREAOI
158 =A (VOLPRT)
15<1 =A(VTOCREAOI
16(1 =AIVTnCPRT) -

Figure 2.9. Physical Ioes Sample Program

110 DOS System Programmer's Guide

Logical Input/Output Control System
(LIOCS)
Logical Ioes (LIOCS) provides data
management functions required to locate and
access logical records in a file (just as
the problem programmer would). LIOCS uses
physical IOCS to accomplish actual data
transfer and device control. The data
management functions include:

• Organization (blocking and deblocking)
of logical records.

• Control (switching) of I/O areas when
more than one area is used.

• Handling of the open and close
requirements, and end-of-file and
end-of-volume conditions.

• Resolving symbolic references to
physical I/O devices.

• Translating data in the I/O areas from
ASCII to EBCDIC (on input) and from
EBCDIC to ASCII (on output).

with IBM-supplied macro instructions,
logical IOCS eliminates the repetitive
detail coding required for standardized
input and output routines. These logical
IOCS macros, referred to as imperative
macros, supply the facilities for reading,
writing, blocking and deblocking records,
file labeling, and error checking. To make
use of these facilities, logical IOCS
imposes certain requirements that must be
handled by the problem programmer. These
include descriptive entries in other
IBM-supplied macros, called declarative
macros, to specify the characteristics of a
file that is to be processed by logical
IOCS. The IBM assembler program uses the
descriptive information when processing the
macro statements to tailor the logical IOCS
routines for the specific application.

Logical IOCS handles data transferred to
or from I/O devices as logical files of
data. When logical IOCS determines that an
I/O area contains no logical record (or
records, in the case of blocked records)
needing processing, it issues a physical
IOCS macro to execute the actual data
transfer. Figure 2.10 shows the
relationship between logical and physical
IOCS for a logical IOCS imperative GET
macro issued to an input file when one I/O
area is used.

Logical IOCS is a generative system that
uses the capabilities of a macro language.
It is this generative nature that provides
the problem programmer with the ability to
include only those routines needed for a
specific job or job step.

LOGICAL IOCS PROCESSING METHODS

The IBM Disk Operating System provides
logical IOCS routines to process records in
sequential order, in random order by the
Direct Access Method (DAM), or randomly and
sequentially by the Indexed Sequential File
Management System (ISFMS). Sequential
processing applies to all files on serial
I/O devices (such as card reader, tape,
printer, etc), and to records on IBM 2311,
2314, and 2319 disk or 2321 data cell
devices when they are processed serially.
The types of processing performed by DAM
and ISFMS apply only to files of Direct
Access storage Device (DASD) records.

Logical disk files can be data set
secured. A data-secured file cannot be
accessed accidentally by problem programs.
The data set security function provides a
record on the system log each time a
data-secured file is opened. It is the
user's responsibility to insure data
security.

In addition, logical disk files can have
the track hold option. When track hold is
specified in the DTF, a track that is being
modified by a task in one partition cannot
be concurrently accessed by a task or
subtask in the same or another partition
provided that all programs competing for a
track specify the track hold option. Any
program that does not use the track hold
option will not be denied access to a
track, and can modify a track that is being
held by another program. Therefore, all
programs accessing the same file should
have the track hold option.

Sequential Processing

Sequential processing reads, writes and
processes successive records in a logical
file. For example, card records are
processed in the order the cards are fed.
Tape records are processed starting with
the first record after a header label and
continuing through the records to the
trailer label. DASD records are processed
starting with a beginning DASD address and
continuing in order through the records on
successive tracks and cylinders to the
ending address.

A sequential file on DASD is contained
within one or more sets of limits called
extents that are specified by the user in
job control EXTENT/XTENT statements or
commands. If the logical file consists of
more than one set of limits, logical IOCS
automatically processes each set as
required by the user. The records within

Section 2: Data Management 111

Problem Program Partition Supervisor

I
Problem I Physical lacs

I/o
Program Logical lacs

I
(Channel

Device
Scheduler)

I
Issue GET Provide record I

(deblock) and I
return to the
Problem Program, I

I I
or I

If I/O required,
I

issue EXCP macro I Determine channel
and:

and

WAIT mtcro
a) If channel is not
~busy, start I/O Start Device

t b) If channel is busy, 1 Return to the place in channel
Problem Program queue and return I/O Complete
when I/O is to LlOCS. I
comple~e, or, if an I

When I/O'is complete,
Next ASCII input file, return to LlOCS via
instruction translate data to J nterrupt Rou ti ne •
after GET EBCDIC in I/O area I
macro and return to

expansion problem. program.

Figure 2.10. Retrieving a Record Using Logical IOCS

each set must be adjacent and contained
within one volume (disk pack or data cell).
The sets are not required to be adjacent or
on the same volume. sequential processing
of a DASD file written by the Direct Access
Method can be performed if the physical
structure of a sequential file is present.

Direct Access Method (DAM)

The Direct Access Method (DAM) processes
records contained on IBM 2311, 2314, 2319,
or 2321 DASD devices that are usually
organized in a random manner.

Logical IOCS locates a DASD record for
processing by referring to a record
location reference supplied by the problem
program. The location reference consists
of two parts: a track reference and a
record reference. The track reference
specifies the track (or the first of
multiple tracks) to be searched for the
record. The record reference may be the

112 DOS system Programmer's Guide

record key, if records contain key areas,
or the record identifier (ID) that is in
the count area of each DASD record.
Logical IOCS seeks the specified track and
searches for the record on that track, or
on the succeeding tracks in the cylinder.

Indexed Sequential File Management System
(ISFMS)

DASD records contained within an indexed
sequential file can be processed in a
random order or in sequential order by
control information. Both orders use the
control information of the records (such as
employee number, part number, etc), that is
available in the key area of each DASD
record. Any record stored at any location
in the logical file can be processed by the
random me~hod. The user supplies ISFMS
with the key (control information) of the
desired record. ISFMS searches for the
record and makes it available for
processing.

In sequential processing, ISFMS makes a
series of records available. The records
are available one after the other in order
by the control information (key) in the
records. The user specifies the first
record to be processed. ISFMS retrieves
the succeeding records (on demand) from the
logical file, in key order, until the
problem program terminates the operation.

ISFMS creates an organized file and then
adds to, reads from, and updates records in
that file. The file is organized from
records that are presorted by control
information. As the DASD records are
loaded, ISFMS constructs indexes for the
logical files. The indexes permit
individual records to be found in
subsequent processing operations. The
indexes are created in such a way that
records can be retrieved randomly or
sequentially. If records are added to the
file at a later date, ISFMS updates the
indexes to reflect the new records.

MAIN STORAGE REQUIREMENTS

Logical IOCS routines are generated as part
of the problem program. Imperative macro
expansions, that serve as linkages to the
logical or physical IOCS routines, are
generated in-line at the point the macro is
used in the problem program. The open,
close, EOF/EOV, and other special purpose
routines are called into the B-transient
(logical transient) area as required. The
physical IOCS routines used by logical IOCS
are generated as part of the supervisor
program.

MODULAR/TABULAR SYSTEM

The terms modular and tabular mean that the
system uses tables in conjunction with data
handling modules to implement its
functions.

The modular/tabular system has the
following advantages:

• Saves assembly time by allowing the
data handling modules to be generated
separately and stored in the
relocatable library for subsequent use.

• Uses one module for many files if the
device types are the same and the files
are similar.

The major advantage is the ability to use
one logical IOCS module with many different
files. It not only saves a large portion

of main storage but also makes the system
more versatile.

The modular/tabular combination for a
specific file is generated by two macros:
the file definition macro in the form
DTFxx, and the module generation macro in
the form xxMOD.

The file definition macros describe the
logical file, indicate the type of
processing to be used for the file, and
specify main storage areas (work area, I/O
area, etc.) for the file,. A number of
file definition macros define the files
processed by logical IOCS, and one defines
files processed by physical IOCS (DTFPB).
The file to be processed determines the
type of file definition macro to use.

The module generation macros generate
the data handling logic modules. These
modules contain generalized routines needed
to perform the functions of the logical.
IOCS imperative macros. The generalized
routines in the logic modules are altered
and made more specific through various
parameters (specified by the problem
programmer) included in the xxMOD macro
statements. It is possible, therefore, to
generate many variations of a particular
type of logic module, each specifically
suited to the need of the problem
progranuner.

DTF (Define the File) Ma.cros

Whenever logical IOCS imperative macro
instructions are used in a problem program
to control the transfer of records in a
file, that file must be defined by a
declarative DTF macro instruction. The DTF
macro instruction describes (through
various parameters specified by the problem
programmer) the characteristics of the
logical file, indicates the type of
processing for the file, and specifies the
main storage areas and routines. Detailed
descriptions of the logical IOCS file
definition (DTF) macros and their
parameters appear in Supervisor and I/O
Macros listed in the Preface.

In general, the IBM-supplied file
definition (DTF) macros are device
oriented. In addition, three macros,
DTFSR, DTFBG and DTFEN are supported by the
Disk Operating system to provide upward
compatibility from the IBM System/360 Basic
Operating System (SK system). A brief
description follows for each of the DTF
macros available to users of the IBM Disk
Operating system.

Section 2: Data Management 113

DTFCD: Define The File for a Card Device.
To define a file associated with the
records on a card unit.

DTFCN: Define The File for a CoNsole. To
define a file associated with the console

I (1052, 3210, 3215) printer.

DTFDA: Define The File for Direct Access
I method. To define a file when DASD (Direct

Access Storage Device) records are to be
processed by the Direct Access Method.

DTFDI: Define The File for Device
Independent system files. To define files
assigned to the device independent system
logical units SYSRDR, SYSIPT, SYSPCH, and
SYSLST.

DTFIS: Define The File for Indexed
sequential file management system. To
define a file organized and processed by
the indexed sequential file management
system.

DTFMR: Define The File for Magnetic
Recognition. To define a file associated
with a magnetic ink character recognition
(MICR) device.

DTFMT: Define The File for Magnetic Tape.
To define a file associated with a magnetic
tape device.

DTFOR: Define The File for an Optical
Reader. To define a file associated with
an optical character reader device.

DTFPH: Define The File for processing by
PHysical IOCS. To define a magnetic tape
or DASD file with standard labels that is
to be processed by physical IOCS when the
OPEN and CLOSE macros are used for label
processing. DTFPH parameters define the
magnetic tape and DASD files. No other
files processed by physical IOCS require
definition.

Only the following logical loeS
functions can be performed for files
defined by a DTFPH macro:

• Check the header labels on input files,
and close these files when requested.

• For ASCII tape files only:
Translate labels to EBCDIC for input
files and check them. Create labels
and translate them to ASCII for output
files.

• Create header labels on output files,
and create trailer labels when the file
is closed.

• Force end-of-volume on an output file
when requested.

114 DOS System Programmer's Guide

When a DTFPH macroinstruction is
encountered at assembly time, the assembler
builds a DTF table that includes only the
parameters needed for the OPEN, CLOSE(R),
FEOV, and FEOVD routines. The OPEN,
CLOSE(R), FEOV, andFEOVD macro expansions
call the open and close routines into the
supervisor B-transient area at object time.

DTFPR: Define The File for a PRinter. To
define a file associated with a printer
device.

DTFPT: Define The File for Paper Tape. To
define a file associated with a paper tape
device.

DTFSD: Define The File for Sequential
DASD. To define sequential files on a
direct access storage device (DASD).

DTFSR: Define The File in a SeRial type
file device. To define a file for
sequential processing of records on any
IOCS supported I/O device.

The DOS DTFSR macro definition accepts
either the BOS or BPS DTFSR macro as valid
input. After determining the device type
reqUired, the DOS DTFSR macro calls the
appropriate DOS DTF macro from the source
statement library. The DTF macro called by
the DOS DTFSR then sets up a DTF t~ble in
the usual manner.

The DOS DTFSR macro definition only
allows upward compatibility and should not
be used as a statement in the user's DOS
source deck.

DTFBG: Define The File for
BeGin-definition. Must be punched with
DTFBG in the operation field and DISK in
the operand field. The name field is left
blank. DTFBG is included in DOS to provide
compatibility with the BOS DTFSR macro
instruction.

DTFEN: Define The Field ENd. To show
there are no more DTF source statements to
process. The DOS DTFEN macro definition
allows upward compatibility for BOS and BPS
users.

MOD (Module Generation) Macros

Each DTF (except DTFCN, DTFPH andDTFSR) is
linked to a logical IOCS module generated
by an xxMOD macro instruction. These
modules provide the necessary instructions
to perform the input/output functions
required by the problem program. For
example, the module can read or write data,
test for unusual input/output conditions,
block or deblock records, or place logical
records in a work area.

Some of the module functions are
provided on a selective basis, according to
the parameters specified in the xxMOD macro
instruction. The problem programmer has
the option of selecting (or omitting) some
of these functions according to the
requirements of his program. Omitting some
of these functions results in smaller maip
storage requirements for a particular
module.

There are two options for MOD macros.
The user can:

1. Insert the MOD macro instruction with
its file parameters in the problem
program source deck. In this case,
the logic module is assembled in-line
with the problem program.

2. Choose at system generation time to
generate the logic modules needed for
his file formats and system
configuration. To do this, source
decks using macro parameters to
describe the file attributes are
punched for each MOD macro statement.
The logic module macro definition
generates its own unique name, or the
user can name the module in the name
field of the MOD macro statement. The
user name overrides the name the macro
definition normally generates.

For each type of xxMOD macro, the problem
programmer can generate many logic modules
by issuing the macro with varying
parameters for each required module. The

logic modules can be cataloged in the
relocatable library. The CATALR control
cards are automatically generated when the
module is assembled.

At assembly time, the assembler produces
an EXTRN (External Symbol) card for every
V-type constant (or EXTRN statement), in
the user program. The assembler expansion
of the DTF statement produces an EXTRN card
with the name of the logic module needed to
support the parameters that were specified
in the DTF macro. The IBM-generated module
names indicate the type of file and the
support that each is capable of supplying
for the DTF. Refer to Figure 2.11 for ~
breakdown of these names. Because of the
descriptive nature of the IBM standard
names, the programmer should be careful
when specifying his own names for the logic
modules or overriding the IBM standard
names. At the time this program is
link-edited, the linkage editor resolves
these EXTRN symbols (AUTOLINK). If the
program is not to be executed immediately,
the linkage editor catalogs the program
into the core image library.

Figure 2.12 gives the module name
prefixes used in the IBM-supplied programs.
Figure 2.13 shows the relationship of the
DTFxx and the xxMOD macros. The DTFCN
macro is unique in that it generates its
own logic module and combines it with the
DTF table. The logic module for DTFCN is
always punched in the object deck, along
with the DTF table (A of Figure 2.13).

Section 2: Data Management 115

Subsetting/
Logic

Prefix
4th 5th 6th 7th 8th Supersetting

Module Character Character Character Character Character + Permitted
* Not Permitted

CDMOD IJC F RECFORM=FIXUN B A CTLCHR=ASA B RDONL Y=YES and Z Neither WORKA nor 0 DEVICE=2540 * * * * *
V RECFORM=VARUNB Y CTLCHR=YES TYPEFLE=CMBN 0 IOAREA2 specified I DEVICE=1442 IJC FA880
U RECFORM=UNDEF C CONTROL=YES C TYPEFLE=CM8ND W WORKA=YES 2 DEVICE=2520 VYC I I

Z Neither CTLCHR nor H RDONL Y=YES and I IOAREA2=YES 3 DEVICE=2501 U+HW2
CONTROL specified TYPEFLE=lNPUT 8 80th WORKA=YES and 4 DEVICE=2540 and CIZ3

I TYPEFLE=INPUT IOAREA2=YES CRDERR=RETRY ZN 4
N RDONL Y=YES and Z WORKA=YES not 5 DEVICE=2520 and 0 5

TYPEFLE=0UTPUT specified (CM8ND CRDERR=RETRY
o TYPEFLE=0UTPUT file only)

PRMOD IJD F RECFORM=FIXUN 8 A CTLCHR=ASA C = 8 if ERROPT=YES I IOAREA2=YES V RDON L Y=YES and * * + * *
V RECFORM=VARUN 8 Y CTLCHR=YES (ERROPT=name in Z IOAREA2 not specified WORKA=YES IJD F AB I V
U RECFORM=UN DEF C CONTROL=YES DTFPR) and W WORKA=YES VYEZ W

S STLlST=YES PRINTOV=YES Y RDONL Y=YES US+ Y
Z Neither CTLCHR nor = P if PRINTOV=YES Z Neither RDONLY nor + P Z

CONTROL nor and ERROPT is not WORK A specified CZ
STLIST specified specified (ERROPT= Z

RETRY or is omitted
in DTFPR)

= E if ERROPT=YES
(ERROPT=name in
DTFPR)

= Z if neither ERROPT
(ERROPT=RETRY or
is omitted in
DTFPR) nor
PRINTOV is
specified

PTMOD IJE S SCAN=YES T TRANS=YES and F RECFORM=FIXUNB I DEVICE=1017 Z * * * *
Z SCAN not specified SCAN not specified and SCAN=YES 2 DEVICE=IOJ8 IJE ZZZZZ

Z TRANS not specified U RECFORM=UNDEF Z DEVICE=2671 or not ZTZZ
and SCAN=YES specified S Z F Z

Z SCAN not specified SZUZ
and/or DEVICE=I 018 ZZZI

Z T Z I
S Z F I
S Z U I
S Z Z 2
Z T Z 2

MTMOD IJF F RECFORM=F.IXUN8 8 READ=8ACK C CKPTREC=YES W WORKA=YES M ERREXT=YES and * + + + +
(GET/ or FIX8LK Z READ =FORWARD or Z CKPTREC not Z WORKA not specified RDONLY=YES IJF F 8 C WM
PUT) N RECFORM=UNDEF not specified specified N ERREXT=YES NZZZY

(ASCII files) Y RDONLY=YES R +
V RECFORM=VARUN8 Z Neither ERREXT' nor U N

or VAR8LK (E8CDIC RDONLY specified X Z
mode) +

U RECFORM=UNDEF S
(E8CDIC mode) V

X RECFORM=FIXUNB or
FIXBLK (ASCII files)

R RECFORM=VARUN8 or
VAR8LK (ASCII mode)

S RECFORM=SPN UN 8
or SPN8LK (spanned
records)

MTMOD IJE W TYPEFLE=WORK E ERROPT=YES N NOTEPNT=YES Z M ERREXT=YES and + + +
(Work Z ERROPT not specified S NOTEPNT=POINTS RDONLY=YES IJF WE N Z M
Files) Z NOTEPNT not N ERREXT=YES Z S Y

specified Y RDONL Y=YES Z +
Z Neither ERREXT nor N

RDONLY specified Z

Figure 2.11. Generated Name Structure for Logic Modules (Part 1 of 2)

116 DOS System Programmer's Guide

Subsetting/
Logic

Prefix
4th 5th 6th 7th 8th Supersetting

Module Character Character Character Choracter Character + Permitted
* Not Permitted

SDMOD IJG C SDMODFx specifies U SDMODxU C ERROPT=YES and M TRUNCS=YES and B CONTROL=YES and + * + * +
(GET/ HOLD=YES I SDMODxl ERREXT=YES FEOVD=YES RDONLY=YES IJG C U C T B
PUT) F SDMODFx does not o SDMODxO E ERROPT=YES T TRUNCS=YES C CONTROL=YES FIE Z Y

specify HOLD=YES Z Neither ERROPT nor W FEOVD=YES Y RDONLY=YES +OZ +
R SDMODUx specifies ERREXT specified Z Neither TRUNCS nor Z Neither RDONLY nor R C

HOLD=YES FEOVD specified CONTROL specified U Z
U SDMODUx does not +

specify HOLD=YES P
P SDMODVx specifies Q

HOLD=YES (spanned V
records) +

Q SDMODVx does not P
specify HOLD=YES 5
(spanned records) V

5 SDMODVx specifies
HOLD=YES

V SDMODVx does not
specify HOLD=YES

SDMOD IJG T HOLD=YES C ERROPT=YES and N NOTEPNT=YES C CONTROL=YES T RDONLY=YES and + + + + +
(Work W HOLD=YES not ERREXT=YES R NOTEPNT=POINTRW Z CONTROL not UPDATE=YES IJG T C NC T
Files) specified E ERROPT=YES Z NOTEPNT not specified U UPDATE=YES WERZY

Z Neither ERROPT nor specified Y RDONLY=YES ZZ +
ERREXT specified Z Neither RDONLY nor U

UPDATE specified Z

ISMOD IJH A RECFORM=BOTH and A IOROUT=ADDRTR B TYPEFLE=RANSEQ B CORINDX=YES and F CORDAT A=YES, + + + + +
IOROUT=ADD or I IOROUT=ADD G IOAREA2=YES and HOLD=YES ERREXT=YES and IJH AABBF
ADDRTR L IOROUT=LOAD TYPEFLE=SEQNTL or C DORINDX=YES RDONLY=YES B I ROO

B RECFORM=FIXBLK R IOROUT=RETRVE IOROUT=LOAD o HOLD=YES G CORDAT A=YES and Z + + + +
and IOROUT=ADD R TYPEFLE=RAN DOM Z Neither CORINDX ERREXT=YES + ABC 5
or ADDRTR 5 TYPEFLE=SEQNTL nor HOLD is specified 0 CORDAT A=YES and A R 5 Z Y

U RECFORM=FIXUNB Z Neither TYPEFLE nor RDONLY=YES U * + +
and IOROUT=ADD or IOAREA2 specified P CORDATA=YES ZLG G
ADDRTR (IOROUT=ADD or 5 ERREXT=YES and 5 P

Z RECFORM not LOAD) RDONLY=YES + +
specified (lOROUT T ERREXT=YES G T
specifies LOAD or Y RDONLY=YES Z Z
RETRVE) Z Neither CORDATA

nor RDONLY nor
ERREXT specified

DAMOD IJI F RECFORM=FIXUNB A AFTER=YES I IDLOC=YES H ERREXT=YES and W HOLD=YES and +++++
B RECFORM=U NDEF Z AFTER not specified E IDLOC=YES and RELTRK=YES RDONLY=YES IJI BAEHW

(handles both UNDEF FEOVD=YES P ERREXT=YES X HOLD=YES F ZIP X
and FIXUNB) R FEOVD=YES R RELTRK=YES Y RDONLY=YES + ZZZ

5 RECFORM=SPNUNB Z Neither FEOVD nor Z Neither ERREXT nor Z Neither HOLD nor 5 +++
V RECFORM=V ARUN B IDLOC specified RELTRK specified RDONLY specified V EHW

R R Y
ZZZ

DIMOD IJJ F Fixed unblocked C ASA and System/360 B TYPEFLE=OUTPUT I IOAREA2=YES C RDONLY=YES + + *
record format control character I TYPEFLE=INPUT Z IOAREA2 not specified D RDONLY not IJJ FCBI C

support for printers specified IZD
and punches

ORMOD IJM F RECFORM=FIXUNB C CONTROL=YES I IOAREA2=YES T Device is in tope mode Z * + * *
X RECFORM=FIXBLK Z CONTROL not W WORKA=YES D Device is in document IJM DCBDZ
U RECFORM=UNDEF specified B IOAREA2=YES and mode F ZIT
D RECFORM=UNDEF WORKA=YES U W

and BLKFAC=YES Z Neither IOAREA2 nor X Z
WORKA specified

MRMOD IJU 5 5 ing Ie address adopter Z Z Z Z *
D Duo I address adapter IJU DZZZZ

S

Figure 2.11. Generated Name Structure for Logic Modules (Part 2 of 2)

section 2: Data Management 117

IHD

{
:~~
IJD
IJE

DATA IJF
MANAGEMENT IJG

IJH
IJI
IJJ
IJK

DATA IJL
MANAGEMENT -IJM

IJN
IJO
IJP
IJQ
IJR
IJS

DATA IJT
MANAGEMENT -IJU

IJV
IJW
IJX
IJY
IJZ
IKL
ILA
ILB
ILC
ILF
ILH

I Figure 2.12.

S/360 COBOL processing subroutines
System Service and System Control
Card logic
Printer logic
Paper tape logic
Magnetic tape logic
Sequential DASD logic
Indexed Sequential DASD logic
Direct Access DASD logic
Device independent logic
PL/I processing subroutines
Teleprocessing routines
Optical Reader logic
Audio Response Vocabulary File Utility
Disk Sort/Merge
Tape Sort/Merge
D-Ievel Assembler
RPG compiler
S/360 COBOL compiler
Basic FORTRAN, and FORTRAN subroutines
Magnetic Readers logic
Autotest
Utilities
PL/I compiler
F-Ievel Assembler
OLTEP
COBOL LCP
ANS COBOL compiler
ANS COBOL processing subroutines
CE Serviceability Programs
F-Ievel FORTRAN IV and FORTRAN IV subroutines
Tape and Disk Sort/Merge

DOS Relocatable Library
Module Name Prefixes

Reentrant Modules

A reentrant module is a logic module that
can be used asynchronously, or shared by
more than one file. The RDONLY=YES
parameter in the module generation macro
generates a reentrant logic module. The
RDONLY (read only) parameter implies that
the generated logic module is never
mOdified in any way regardless of the
processing requirements of any file(s)
using the module. To provide this feature,
unique save areas external to the logic
module are established, one for each task
using the module. Each save area must be
72 bytes and doubleword aligned. Before a
logic module is entered or an imperative
macro is issued to the file, the task must
provide the address of its unique save area
in register 13.

Reentrant modules include: CDMOD,
DAMOD, DIMOD, ISMOD, MTMOD, and SDMOD.

118 DOS System Programmer's Guide

Interrelationships of the DTF and Module
Macro Instructions

The DTFCD, DTFDA, DTFDI, DTFIS, DTFMR,
DTFMT, DTFOR, DTFPR, DTFPT, and DTFSD
declarative macros are similar in that they
each generate a DTF table that references
an IOCS logic module (refer to B of Figure
2.13). The first 20 bytes of each table
have the same format, that is, a command
control block (CCB) and a logic module
address. The remainder of each table is
tailored to the particular device and file
type.

The description that follows is general
and includes all of the DTF types included
in B of Figure 2.13.

DTF Table and
Logic Module

DTFCD

DTFDA

DTFDI

DTFIS

DTFMR

DTFMT

DTFOR

DTFPR

DTFPT

DTFSD

I

CDMOD

DAMOD

DIMOD

ISMOD

MRMOD

MTMOD

ORMOD

PRMOD

PTMOD

SDMOD

I
DTF Tables Logic Modules

Partial
DTF Table

DTFEN

DTFSR

DTFBG

I
8K BOS
Compatibility

Figure 2.13. DTF and Module Macro
Relationships

When one of these DTF macro instructions
is encountered at assembly time, the
assembler builds a DTF table tailored to
the DTF parameters. The table contains:

• Device CCB (Figure 2.6).

• A V-type statement used by the Linkage
Editor to resolve the linkage to the
logic module associated with this DTF.

• Logic indicators, that is, one I/O
area, two I/O areas, device type, etc.

• Addresses of all of the areas and
controls used by this device (except
work files).

Regardless of the method of assembling
logic modules and DTF tables (with the main
program or separately), a symbolic linkage
results between the DTF table and the logic
module. The Linkage Editor resolves these
linkages at edit time.

To accomplish the linkage between the
DTF table and the logic module, the
assembler generates a V-type address
constant in the DTF of a named CSECT in the
logic module. To resolve this linkage, the
linkage symbols (module names) must be
identical.

Figure 2.14 shows the relationship of
the program, the DTF and the logic module.
It also shows a DTFDA macro with a filename
of DISK. The assumed parameters have
generated a request for a DAMOD named
IJIFZIZZ. Based on this name, the linkage
editor was able to locate the module. The
read statement generated coding to load the
address of the DTF table into register 1.
This gives the program access to the DAMOD
address, and the program branches to the
required routine within the module.

IMPERATIVE MACROS

The problem programmer issues imperative
logical IOCS macro instructions to initiate
such functions as opening a file, making
records available for processing, writing
records that have been processed,
controlling physical device operations,
etc.

For each imperative macro issued by the
problem programmer, the assembler program

DISK DTFDA

DC V(IJIFZIZZ)

IJIFZIZZ CSECT

READ DISK, KEY
*L 1,=A(DISK)
*L 15,16(1)

*BAL 14,24(15)

* Macro generated coding

Get DTF table address.
Get logic module address
located 16 bytes from
start of DTF table.
Branch to read routine in
logic module.

Figure 2.14. Coding Example of DTF and
Module Relationship

generates an in-line expansion that links
the instruction to the DTF table (thus the
logic module) for the specified file. For
an operand, the imperative macro
instruction must always contain the
filename in the DTFxx macro describing the
file.

Figure 2.15 summarizes the macro
instructions provided by IBM for logical
IOCS. Figure 2.16 further defines the
general function of each of the macro
instructions and indicates the devices with
which they are used. The Supervisor and
I/O Macros listed in the Preface gives a
detailed explanation of each of the
imperative macros.

Section 2: Data Management 119

MACROS DTFCD DTFCN DTFDA DTFDI DTFIS DTFMR DTFMT DTFOR DTFPH DTFPR DTFPT DTFSD DTFSR
CHECK X X X
CLOSE(R) X X X X X X X X X X X X
CNTRL X X X X X X X
DISEN X
DSPLY X
ENDFL X
ERET X X X
EXETL X
FEOV X X X
FREE X Xl
GET X X X X X X X X X X
LBRET X X X X
LITE X
NOTE X X
OPEN(R) X X X X X X X X X X X X
POINTR Xl Xl
POINTS Xl Xl
POINTW Xl Xl
PRTOV X X
PUT X X X X X X X X X
RDLNE X
READ X X X X X
RELSE X X X
RESCN X
SEOV X
SETFL X
SETL X
TRUNC X X X
WAITF X X X X
WRITE X X X X

1. Work files only.

Figure 2.15. Logical Ioes Imperative Macros and DTFs

120 DOS System Programmer's Guide

TYPE OF PROCESSING WITH LOGICAL IOCS

Sequential Indexed Sequential File
Management System

Macro Instruction

Initial ize

Process

Set Mode

Non Data
Operations

Work Files
for DASD
and
Magnetic
Tape

Complete

OPEN(R)
LBRET 1

GET
PUT
READ
WRITE
CHECK
RELSE 5

TRUNC"
WAITF
RDLNE
RESCN
DSPLY
SETFL
ENDFL
SETL
ESETL
CNTRL
CHNG 7

PRTOV
DISEN
LITE
ERET
READ
WRITE
CHECK
NOTE
POINTR
POINTW
POINTS
CLOSE(R)
FEOV
FEOVD
FREE
LBRET 1

SEOV

I
Q)

]~
... c

a.. 0
N...o
l/"') >.. o Q)
~~

x
x

"0
u

~ o
Q)

l/"')"'O
co C
N Q)
~~

x

x

x

x

x

"0
.~
a. o ...

Q)
1'-."'0
co C
N Q)
~~

x

X

X

X
x
X
X

X

X

x x

X
X

X

X

X

X

X
x

X X

x

X

X

x

X

X

X

~
l/"')

~ o
N
l/"')

~....c:
N U
~ §
~a..

x

x

X

X

x x
x
x
X 3

x
x
x
x
x

X X

X
X
X
X
X
X
X
X

X X

X
XB
X

--
Q)

U
c
C
o
N
(")

N

x
X
X
X

X

X

X

X

X

x
X
X
X
X
X
X
X
X

X
X

X
X
X
X
X
X
X
X
X
X

X
x

Notes: 1. Applies only if DTFSR, DTFMT, DTFDA, or DTF PH LABADDR or XTNTXIT is specified.

x

x

X

Qj
a.
c

a......c:
co U
~ c: o ::>
~a..

x

x

X

X

'" :G
U
U «

x
x

x
x

x

x

x

~
u..
"'0
g
-l

x

x

x

x
x

x

x

'" ~
o
U
Q)
~

"'0
"'0 «

Q)

>

~
~
E o

"'0
c:
~

x X

X
X X

X X

X

X X

X X

2. In the 2520 or 2540, GET normally reads cards in the read feed. If TYPEFLE =CMBND is specified, GET reads cards at the
punch - feed - read station.

3. PUT rewrites on input DASD record if UPDATE is specified.

4. In the 1442, 2520, or 2540, PUT punches an input card with additional information if TYPEFLE = CMBND is specified.

5. Applies only to blocked input records.

6. Applies only to blocked output records.

7. Provided only for upward compatibility for BPS and BOS.

8. Workfi les on Iy •

9. Applicable to 1419 and 1275 with the Pocket Light Feature.

Figure 2.16. Logical IOCS Imperative Macros and Devices

X

X
X

X

X

X

Section 2: Data Management 121

SEQUENTIAL FILE ORGANIZATION

Card Files

The DTFCD/CDMOD macros provide the user
with the ability to read (GET) a record
from a card reader or punch (PUT) a record
on a card punch (up to 80 characters in
both cases). The user has the option of
specifying one or two I/O areas (IOAREA1
and IOAREA2), also called buffer areas, to
hold the data transferred to main storage
from the device, or vice versa. The second
buffer area allows the user to overlap
processing while the following record is
read or the previous record is punched.
The user can process the data read (or data
to be punched) in the buffer area if only
one area is specified. If two buffer areas
are specified, a register (IOREG) can be
specified to point to the start of the data
field (leftmost position) in the current
buffer area, or the data can be placed into
a work area (WORKA) for processing (or
punching). In the latter case, DTFCD/CDMOD
transfers the record from the buffer area
to the work area or vice versa. The
capability for reading a card record and
punching information into the same card
(CMBND) is also provided if the user has an
IBM 1442, and IBM 2520, or an IBM 2540 with
the punch-feed-read (PFR) feature. Many
data processing installations use the
stacker selection capabilities made
available by the following three methods:

1.

2.

3.

The user may issue a CNTRL macro
instruction after a GET or before a
PUT to select the desired stacker,

First character control (CTLCHR) may
be used, where the first character of
a record may be an ASA (American
standard Association) or System/360
control character for stacker
selection, and

The selection for a given file may be
specified (SSELECT) when the DTF table
is generated.

Console Typewriter

The DTFCN macro allows reading and writing
of a record from or to an IBM 1052
Printer-Keyboard or an IBM 3210 or 3215
Console Printer-Keyboard by issuing a GET
or PUT macro instruction. The record may
be processed in the buffer area or in a
work area (WORKA). Only one buffer area
can be used.with this access method. This
file does not require the use of OPEN and
CLOSE routines.

122 DOS System Programmer's Guide

Line Printers

The DTFPR/PRMOD access method provides the
ability to print a record by issuing a PUT
macro instruction. The record to be
printed can be presented to the access
method via a work area (WORKA) or can be
placed in the buffer area. Two buffer
areas (IOAREA1 and IOAREA2) can be
specified to allow overlap processing. In
this case, a work area or a general
register must be used to indicate the
proper buffer area. Three types of
printer-form control are provided by the
access method:

• CNTRL macro instruction for line
spacing or page skipping.

• PRTOV (printer overflow) macro
instruction for page skipping or
exiting to a user-supplied routine
(indicated in the macro instruction)
that can perform certain end-of-page
and/or start-of-page functions.

• First character control (CTLCHR) that
can be used where the first character
of a record may be an ASA or system/360
control character for line spacing or
page skipping.

Paper Tape Files

The DTFPT/PTMOD access method provides the
ability to retrieve a data record from a
supported Paper Tape device. Two buffer
areas (IOAREA1 and IOAREA2) can be used for
overlap processing. In this case, a
general register must be specified to point
to the record in the buffer area currently
being used. This access method also
handles shifted code for figure shift
(FTRANS and SCAN) and/or letter shift
(LTRANS and SCAN), or nonshifted code to be

I translated into system/360 and System/370
code (TRANS). The user must supply the
various translation tables needed.

Magnetic Tape Files

The DTFMT/MTMOD access method provides the
ability to create or retrieve magnetic tape
records in sequential order. The file is
created by indicating via the DTFMT
parameters that it is an output file
(TYPEFLE) and then issuing PUT macro
instructions. If the records are to be
retrieved, an input file (TYPEFLE) is
indicated and a GET macro instruction is
issued. In either case, the records may be

processed in a work area (WORKA) or in the
buffer area by using a general register
(IOREG). When an input file is to be
processed, the access method can also
support the read-backward feature for
magnetic tape units.

When an ASCII file is to be processed,
each record read into the I/O area is
translated from ASCII to EBCDIC. When an
ASCII file is to be created, the record in
the output area is translated from EBCDIC
to ASCII just before it is written on the
tape.

Other optional features that greatly
enhance the DTFMT/MTMOD access method are:

• Specifying two buffer areas for overlap
processing capabilities (IOAREA1 and
IOAREA2).

• Alternate tape switching between two
tape units.

• Bypassing of checkpoint records on
input files (CKPTREC). An ASCII file
must not contain checkpoint records.

Other macro instructions allow the user
to rewind, rewind and unload, execute
various other magnetic tape device
functions (CNTRL), or release (SKIP) the
remaining records in an input block
(RELSE). This can be useful if records are
grouped by specific categories. An inverse
function of RELSE allows the programmer to
truncate or write short blocks of records
(TRUNC) for an output file.

In addition to GET/PUT functions,
DTFMT/MTMOD provides the highly useful
feature of issuing READ/WRITE macro
instructions ~o create a file or retrieve
records from a work file (WORK). OVerlap
processing can take place while the I/O
operation is being performed. The user
awaits the READ/WRITE operation by issuing
a CHECK macro instruction that ensures
completion of the operation. The
particular features that enhance this
facility are the NOTE and POINT macro
instructions. By issuing a NOTE macro
instruction, the location of the data block
in the file can then be obtained. POINT
macro instructions provide the ability to
reposition to a given block in the file.
POINTR can position the tape to the block
indicated, POINTW can position the tape
after the block indicated, and POINTS can
position the tape to the beginning of the
file.

Sequential Disk

Records can be created or retrieved and
updated from a direct access device by
using the DTFSD/SDMOD access method. The
file can be created by specifying an output
file (TYPEFLE) and issuing PUT macro
instructions. If the records are to be
retrieved, an input file is indicated
(TYPEFLE) and GET macro instructions are
issued. It is also possible to update
those records in the same location on DASD
that were retrieved by a GET macro
instruction. In this case, a PUT macro
instruction must be issued for the file
after the GET for the record to be updated
and preceding the GET for the next record.
The access method also provides double
buffering (IOAREA1 and IOAREA2) ability for
overlap processing. The user can either
process the record in a work area (WORKA)
or use a general register to point to the
record in the current buffer area. Another
macro instruction allows the user to skip
the remaining records in an input block
(RELSE). This can be useful if records are
grouped by specific categories. An inverse
function of RELSE, allows the programmer to
truncate or write short blocks of records
(TRUNC) for an output file. The CNTRL
macro instruction may also be used to seek
the track address of the next record to be
processed. In the case of a data cell,
CNTRL can restore a strip if the user knows
that processing on it has been completed.

DTFSD/SDMOD also provides the
READIWRITE, CHECK, NOTE, and POINT macro
instructions described earlier under
magnetic tape files, although an IBM I 2311/2314/2319/2321 DASD is used as an I/O
device in this case. NOTE/POINT uses
cylinder, track, and record identification
for noting and locating blocks in the file.
Also, if a NOTE follows a WRITE, the unused
space on a track can be returned when the
file is being created or when records are
to be written in the count, key, and data
format of DASD. If a POINTR or POINTW is
issued before a READ or WRITE (UPDATE), the
READ or WRITE macro instruction processes
the block indicated. If a formatting WRITE
(write count, key, and data) is issued, the
WRITE macro instruction writes a new record
after the block indicated.

Another feature available with this
access method that can be used in either of
the two mentioned processing modes, is the
split cylinder mode. This mode allows two
or more files to share the same cylinder.
Each file occupies the same track positions
through the range of assigned cylinders.
The technique has the advantage of
minimizing access-arm movement when cross
referencing among two or more files that
perform similar functions. The use of this

Section 2: Data Management 123

facility is indicated in one of the job
control statements (XTEN'I'/EXTENT) needed at
execution time of the user's program. See
System Control and system service listed in
the Preface for detailed information on the
job control statements.

DIRECT ACCESS METHOD (DAM) FILE
ORGANIZATION

Great flexibility in reading or writing a
record from or to a direct access device is
achieved by the DTFDA/DAMOD access method.
with the WRITE (AFTER) macro instruction,
the user may create a file in any manner
desired. For example, a part number or
control field can be converted to a DASD
address using a randomizing algorithm, and
the record can be written at that disk
address. Also, the user can create a
sequential file with keys (control fields)
to be processed later in a skip-sequential
fashion.

In skip-sequential processing, a file
that has been sorted on a key control
information field is created in a
sequential manner. Records are retrieved
by scanning or searching the file using the
key of each record desired. In this way,
only these records are retrieved and the
job throughput is improved when a large
percentage of the file is processed.

Record retrieval is accomplished by
issuing a READ macro instruction. Two
types of READ macro instructions may be
issued for record retrieval. The user may
read the record by simply supplying the
track and record location (ID), or by
supplying the track location along with the
record key (KEY) to be used for record
retrieval. Record updating is performed by
two corresponding WRITE macro instructions
(ID and KEY). They work in the same way as
the READ macro instructions.

In addition to the READ/WRITE macro
instructions, there is a WAITF macro
instruction. This macro instruction is
issued after each READ/WRITE. The WAITF
macro instruction serves a two-fold
purpose:

1. It allows overlap processing or
issuing of another I/O device macro
instruction (within the limitations of
the system configuration) while the
present I/O operation is taking place,
and

2. It communicates termination of the
READ/WRITE operation with which it was
associated, and returns any
error/status information indicating

124 DOS System Programmer's Guide

whether the I/O operation was
successful to the problem program in
the field specified by DTFDA ERRBYTE.

Three other options, enhancing the
capabilities of the access method, are:

1. The ability to utilize the multiple
track search facility of a DASD
(SRCHM).

2. The ability to return the record
location (the first five bytes of the
record identification, namely CCHHR)
when retrieving a record by its key
(IDLOC). These features facilitate
skip-sequential processing. For
example, by issuing a READ (KEY) macro
instruction and starting at the
beginning of the file, the direct
access device searches multiple tracks
until the record is found. The record
location is returned and is used as a
reference point in starting the search
for the next record to be retrieved.
In this manner of processing, only the
required records are read, whereas in
the normal sequential mode of
processing, all records are read even
if they are not all processed.

3. The ability to seek ahead by issuing a
CNTRL macro instruction (or restore a
strip to an IBM 2321 Data Cell) and
then continue normal processing or
issue other I/O device macro
instructions.

When creating a file using the WRITE
(AFTER) macro instruction, the access
method automatically maintains the amount
of space available on each track on which
the records are stored along with the
address of the last record on each track
(provided the DASD has been properly
initialized). This access method does not
provide blocking and deblocking facilities.
They must be performed by the user.

Random Addressing Techniques

In addition to the specification of the
DTFDA and DAMOD macros, the problem
programmer must supply the DASD address of
the record to be read or written before
issuing each READ/WRITE imperative macro.
The following discussion presents various
methods for determining a DASD address from
a record control field.

File addressing involves the file of
records that must be stored and retrieved
in a data processing system, and the direct
access storage device itself. The data
records that must be stored in a direct

c

access storage device are usually
identified by a control field, such as part
number, and employee number. Normally, the
numbers or characters in the control field
are unevenly distributed. For example, a
seven-positioned control field may be used
to identify 25,000 items in a parts master
file. However, with a seven-position
number, it is possible to identify ten
million items. In this example, only 0.25%
of the available numbers are used.

The direct access storage devices, on
the other hand, are usually composed of
physical locations that are identified by
an evenly distributed set of numbers. The
addressing problem converts an unevenly
distributed set of numbers to an evenly
distributed sequential set of numbers
within the address limits of the direct
access device. Many addressing techniques
have been developed to accomplish this
task. In choosing a technique for address
conversion, it is important to remember
that an ideal distribution of control
fields is a completely uniform one.
Uniform distribution means that the
difference between any pair of successive
control fields taken in ascending order is
constant.

The worst distribution of control fields
is a random one. There is no way to
transfer from random keys to addresses with
better than random distribution. In
practice, purely random control field sets
and completely uniform ones are rare. A
data file is likely to have control fields
that distribute in groups or clusters of
irregular length and separation. This kind
of grouping of numbers introduces a degree
of uniformity. The irregular length and
separation of the number groups implies a
degree of randomness. A well chosen
conversion technique produces an address
set that reflects both elements and has a
distribution intermediate between random
and uniform. TO be ideal for use in direct
access storage devices, the conversion
technique should produce a unique storage
address for every record in a file. This
is seldom possible. Most control-field
conversion routines result in assigning
some address to more than one record.
These duplicate addresses are sometimes
referred to as synonyms. The selected
conversion routine should convert the
control fields (keys) of the records in a
data file to a series of addresses with a
minimum number of synonyms and within the
desired storage address range. The
following sections discuss briefly the most
successful conversion routine, followed by
a discussion of synonym handling.

Random Addressing Formula

The simplest method of file organization is
that in which a unique DASD address is
obtained from the control data of each
record. This is referred to as the random
addressing method. If the control numbers
of a set of data records in a file are
consecutive numbers without gaps, they may
be converted to DASD addresses by simple
arithmetic. For example, if the account
numbers for a customer file run from 10000
to 17563 (7564 account numbers), and ten
account records can be stored on each disk
track, 757 tracks are needed. By
subtracting 10,000 from an account number
and then dividing by 10, a numeric address
in the range 000 to 756 is obtained. To I place this file on a 2311/2314/2319 disk
drive, starting at track address 1200
(cylinder 120 head 0), a constant 1200 is
added to the quotient and a constant (1) is
added to the remainder. This constant (1)
is required because record zero (RO) of
each track is reserved to facilitate the
handling of defective recording areas that
may occur during the life of the disk pack.
Using this approach, a record containing
the data for account number 16349 would be
stored at track reference 1834 in
record-reference ten, calculated as
follows:

16349 - 10000 = 6349

6349 • 10 = 634 with remainder 9

634 + 1200 = 1834 = track reference

9 (remainder + 1) = 10 = record reference

When processing this file randomly, any
record can be found with a single seek.
When it is possible to process
sequentially, only one seek is needed per
cylinder. Record retrieval time is thus at
a minimum. This is an optimum situation,
and it rarely occurs in actual practice.

Normally, the control data of a file of
records can seldom be used directly as DASD
addresses. If a file does not have control
fields that can be used directly as DASD
addresses, it is sometimes possible to
preassign addresses. For example. the item
number 513XP could become 513XP-13472, that
could then be converted to a track and
record reference.

Section 2: Data Management 125

Prime Number Division

If the control fields of a file of records
are not consecutive or contain numerous
unused numbers, as is usually the case, the
random addressing technique under the topic
Random Addressing Formula makes inefficient
use of storage locations. All possible
numbers are assigned locations, and those
numbers not used leave empty record areas
in the storage unit. Files established
with control numbers composed of coded
information usually have a much higher
potential range of items than is required
for storage. To handle this situation,
initial conversion is made on the control
numbers to reduce the range to a practical
size. This conversion is often referred to
as randomizing.

Randomizing generally refers to the
techniques developed to convert a set of
control numbers with numerous unused
numbers to a tightly packed set, to result
in very few unused storage areas. There
are many techniques used for this
conversion of numbers, a few being:
folding, extracting, squaring, and radix
transformation. One method, sometimes
called prime number division* or divide
remainder, is adaptable and usually
satisfactory for converting a file of
numbers.

To illustrate the prime number division
technique, suppose the customer file in the
example under the topic Random Addressing
Formula used a coded control number of ten
digits. The first three could be a
geographical code (branch office number),
the next two could describe the nature of
the business, the next one could be a
size-of-customer code, and the final four
could be sequentially assigned within
class.

Thus, account number 139 457 0307 would
be the 307th account assigned branch office
139. It would belong to a customer-of-size
code 7 in industry class 45. Because this
ten-digit number cannot be used efficiently
to describe 7564 accounts, it is converted
by dividing by the closest prime number to
the number of storage locations available.
Assume 10,000 locations available, then
divide by 9973. The remainder serves as
the control number and a technique similar
to the example under the topic Random
Addressing Formula calculates a track and
record reference.

* A prime number is a number divisible only
by itself, or one.

126 DOS System Programmer's Guide

1394570307
of 5825.

9973 = 139834 with a remainder

This remainder is operated on as in the
example, under the topic Random Addressing
Formula, assuming 10 records per track.

5825 10 582 with a remainder of 5.

To load the file starting at track address
1100, add 1100 to 582 for a sum of 1682.
The track reference for this record is
1682, and the record is the sixth record on
the track (remainder of 5 + 1 = 6).

TO summarize prime number division:

1. Select a divisor equal to or greater
than the number of records to be
stored (10 to 20% greater is
recommended). The best divisors are
primes. Even numbers or multiples of
five should never be used - divisors
must end in 1, 3, 7, or 9. The
divisor is called the range.

2. Divide the control number by the range
and use the remainder to generate the
track address.

Prime number division always works; that
is, it always converts control numbers into
the desired range because in division, the
remainder is always less than the divisor
and the highest valued remainder is the
divisor-I. Dividing any number, no matter
what size, by a desired range, always
produces remainders in the desired range.
Using a prime number as the divisor usually
results in relatively few duplicate
remainders, and therefore relatively few
address synonyms.

A prime number is not always the best
choice of divisor for a given set of keys.
Also, it is not necessarily true that all
primes produce equally good results.
However, primes avoid serious
maldistribution and may be safely used with
little analysis of the control field set of
the data files.

Synonym Records

The transformation of record control fields
to direct access storage device addresses
usually produces some synonym records.

The file organization used with a data
file employing indirect addressing
(addresses converted by a random addressing
formula) must be able to accommodate the
synonyms or duplicate addresses.

The first consideration in organizing
the file is sometimes called the packing
factor. The number of synonyms produced by
a random addressing conversion routine can
be reduced by assigning more DASD storage
space than is actually required by the
file. The percentage of the file area
actually used for record is called the
packing factor. The packing factor for an
efficiently organized file can vary from
65% to 95~. A packing factor of 80%
usually proves to be a good starting point.
After all efforts have been made to design
a file conversion technique with few
synonyms, an approach to handling the
remaining synonyms must be chosen.

One such technique is often referred to
as the chaining method. As each record is
read into the computer for loading into a
direct storage access device, its control
field or key is converted to a physical
address. These converted addresses are
called home addresses.

Note: The home addresses discussed here
are-not directly related to the track home
address used to control the "physical
operation of the DASD. These home
addresses are related to the record
identifier (ID) associated with DAM.

The first record converted to a
particular address is stored in the home
address location. The additional records
converted to this address are stored in
synonym locations. The address of the
first synonym location is stored in the
home address location. The address of the
second synonym location is stored in the
first synonym location, etc. Chaining
requires that in the home address and all
synonym locations, space be reserved for
the address of the next location or link in
the chain (Figure 2.17).

Retrieval of records is accomplished by
converting the control information (record
key) to the home address. The record in
the home address location is read into main
storage, and its control information is
compared to that of the record being
sought. If the control fields are not
equal, the address of the first overflow
record is extracted from the home record,

and another read command is issued using
this address. The process is repeated
until the desired record is found.

Record Reference Overflow
Address Field

CC HH R
73 06 1 CC HH R

74 02 3

74 02 3

74 09 2

74 09 2

69 06 4

69 06 4

I 74 35 6

74 35 6

I Blank

CC = cylinder
HH = head

R = record

Figure 2.17. Direct Access Address
Chaining

Two other techniques that solve the
synonym problem are similar in concept to
the chaining method but do not require a
chaining field to be present in each
record.

1. Preassigned tracks synonym technique.
When there is not room to store a
record in its home location, a
specific preassigned synonym track is
used. The synonym track(s) should be
defined to be in the same cylinder
containing the home location to reduce
the number of seeks required to locate
a record.

2. Consecutive spill synonym technique.
When a synonym occurs, a sequential
search is made starting at the next
record within the cylinder until an
empty record storage location is
found. If the last track in a given
cylinder overflows, a return is made
to the first track. This technique
does not require the use of a chaining
field, nor is a seek required to
locate the synonym record (must be on
same cylinder).

Section 2: Data Management 127

DASD Address Specification For Read/Write
Operations

The direct access method requires DASD
addresses for all read/write operations.
These addresses may be supplied in one of
two ways: as an actual physical address
(MBBCCHHR) or as a relative track address
(see Relative Track Addressing).

The actual physical address can be
specified as an 8-byte binary address (see
Figure 2.18) in the form MBBCCHHR. These
8-byte addresses are used either as the
starting point for a search on record key
or as the actual address for a READ or
WRITE ID. When searching for a record key,
the programmer may specify that the search
be only within the specified track, or from
track to track, starting at the address
given and continuing either until the
record is found or until the end of the
cylinder is reached.

Bytes_

May __

Contain

Volume
Number

(M)

0

0-221 :

1

0

Cell
(BB)

I
I 2

1 0
1
I

0-221 : 0 1 0-9

1
0-221 I 0

t
Address Specified by
SEEKADR=Name

I

: 0
1

Cylinder
(CC)

I
3 1 4 5

1 I
r 0 : 0-1991 0
I I
I I

10-19.1 0-9 I 0-4
1 1 I
r I 1
I 0 10-1991 0
I , ,

---,
1

Head Record:
(HH) (R) r

I 1
1 6 7 I

1
---I

1 0-9 10- 255 1
1 I

2311

I 1 1
10-19 10-2551 2321

I r

1 0 - 1 9 1 0 - 255 1 2314
1 , J

.t
ReqUired for Record
Reference by I D

Figure 2.18. DASD Address Formats

For certain types of operations, the
system can be requested to return the ID
(CCHHR) of the record read or written or of
the next record following the one read or
written. The programmer can place these in
the 8-byte address field to either READ or
WRITE a new record or to update the one
read. For example, to delete a record from
a random file with keys, the programmer can
randomize the record key to a starting
location, search on key to read the record,
and then use the ID returned to write a
blank or zeroed record (key and data) back
into the same location. The descriptions
of the READ and WRITE macro instructions
explain when the ID can be returned and
whether the ID returned is that of the same
or of the next record. See Data Management
Concepts listed in the Preface for a
description of these macros.

128 DOS System Programmer's Guide

When the ID returned is that of the next
record, the system obtains the ID by
chaining to a read-count command. This
command skips to the next track if the
record read or written was the last
currently on the track. The system does
not read the next ID if the end of a
cylinder is reached. In this case, it adds
one to the CC portion of the previous ID,

I
forces the HH portion to 0, and forces R to
1 for a 2311, 2314, or 2319 file. For a
2321 file, it adds one to the high order H,
forces the low order H to zero, and forces
R to one. An overflow from the high order
H increases the low order C by one, forces
both Hs to zero, and forces R to one.
Subsequent overflows of address locations
cause increases in the next higher
positions of the addresses. (It is the
user's responsibility to check the validity
of the address returned in IDLOC.)

Relative Track Addressing

The required DASD addresses may also be
given as a relative address. This address
is then converted by IOCS to the actual
physical address (see Figure 2.18).
Relative track addressing is more
convenient to use than the actual physical
address for the following reasons:

1. The data in the file appears to be one
logically-continuous area, although it
may be physically noncontiguous.

2. The user needs to know only the
relative position of the data within
the file; its actual physical address
is not required.

The relative address may be specified by
the user in either of two/ formats:
hexadecimal (in the form TTTR), or zoned
decimal (in the form TTTTTTTTRR).

In both the hexadecimal and zoned
decimal format, the Ts represent the track
number relative to the start of the data
file, and the Rs represent the record
number on that track. The hexadecimal
format requires 4 bytes, while the zoned
decimal format require~ 10 bytes. Relative
track addressing is implemented through the
DTFDA macro. Parameters in this macro .
specify the number of extents in the file.
the form of relative addressing used
(hexadecimal or zoned decimal), and other
required information. For specific
information on the implementation of
relative track addressing, see the
Supervisor and I/O macros listed in the
Preface.

INDEXED SEQUENTIAL FILE MANAGEMENT SYSTEM
(ISFMS)

The DTFIS/ISMOD facility is both an access
method and a DASD file organization
technique. Facilities are provided for you
to create a file, add new records in any
order to a previously created file, and
retrieve all records in the file either
randomiy or sequentially.

The track hold facility is also provided
for protecting DASD tracks that are
currently being processed. Track hold
prevents two or more programs from updating
the same record at the same time provided
all the programs use the facility.

The file is created in ascending
sequential order from the input that has
been previously sorted on the record keys.

As the file is created, an index
hierarchy is developed. The ~owest level
is called the track index and occupies the
first track (in the case of an IBM 2321,
one or possibly more tracks) of each
cylinder that is contained in the file area
called the prime data area. This index
includes a pair of index entries for each
track of the cylinder containing the user's
data records. The first entry of each pair
indexes the highest record key on the
appropriate track being referenced. The
second entry locates overflow records that
can occur from that track when new records
(additions> are added to the file.

The second level of index, called a
cylinder index, is generated on a DASD area
separate from the prime data area. An
entry is made in the cylinder index for the
highest record key of each cylinder in the
prime data area, and each entry points to
the track index on the appropriate
cylinder.

A third, optional level of index, the
master index, is generated in the same area
as the cylinder index and precedes it. The
master index has an entry for the highest
key on each track within the cylinder index
area. For a small file, this level of
index is generally not needed because
searching a cylinder index of two or three
tracks is as fast as searching the master
index and then the cylinder index.

An index entry is composed of a key and
an address. The track index is composed of
two types of entries, a normal entry and
overflow entry for each prime data track
within that cylinder. In the example
illustrated in Figure 2.19, the normal
entry indicates that the highest key on
track 1 is 8, and the address is at the
beginning of track 1. The overflow entry
indicates the same key after loading as the
normal entry. The address of hexadecimal
Fs indicates no entries for this track in
the overflow area.

Note: If the track index does not occupy
all of track 0, track 0 also contains data
records.

Section 2: Data Management 129

Cylinder Index I Highest Key on Cylinder I Track Index Address

Only First Entry Shown 32 Data

_-----N-O-R-M-~'-E-N-T-R-Y----____.,~ OVERFLOW_EN_TR_Y _____ _ (
Track Index r, I Address of First 'I 1 H.ighest Key Associated 1 Address of Lowest Recor I

Highest Key on Track Record on Track .. With Track . in Overflow Chain .

Entries for Only
Track 1 Shown

8 Track 1
Record a

8 FF

~------------------------------------- ----------------------------------) V

Figure 2.19. Example of Track Index

If record 7 is added to the file as
illustrated in Figure 2.20, record 8 would
be forced into the overflow area, and
record 7 would be the highest record on
track 1. In this case, the key of normal
entry is changed to 7, and the address of
the overflow entry indicates the location
of record 8, which is on track 8 record 1.
No other changes to the indexes are
required.

The cylinder overflow control record
(COCR), that is maintained in the data
portion of record zero, would indicate that
no records were in the cylinder overflow
area after loading. After the addition of
record 7, it would be updated to indicate
that the last record in the cylinder
overflow area was on track 8, record 1.

The cylinder index indicates that record
32 is the highest key on the cylinder, and
its address points to the track index. The
cylinder index has its own extents that
must be defined at job control time. These

130 DOS System Programmer's Guide

extents must be outside the limits of any
data extents. (Note that at least two sets
of extent information must be defined at
job control time. These would define a
data extent and a cylinder index extent.)
If the file exceeds one disk pack,
additional data extents are provided, and
at the user's option, an independent
overflow area extent may be defined. The
cylinder index extent must be on-line when
the file is processed. It may be on the
same pack as the data file, or it may be on
a separate pack.

Because the file is sequential with a
hierarchy of indexes, it is called an
indexed sequential file. The indexes
provide direct reference to records,
allowing their random retrieval with a
minimum of search time. The sequential
order of the data records, coupled with the
ability to reference overflow records in
sequence via the track index, provides
sequential retrieval capability. The
indexed sequential method consists of four

Cylinder Index

Points to Track Index

I Highest Key on Cyl inder ,

32

NORMAL ENTRY

Track Index Address

Data

OVERFLOW ENTRY

r--------------~'-------------_
(Address of First \

----------------~~-----------------
(Highest Key Associated Address of Lowest Recor~

_____ T_r_ac_k_ln_d_e_x_---" I Highest Key on Track I Record on Track I I with Track I in Overflow Chain I
Points to Data Track 7 Track 1

Record 0
8 Track 8

Record 1

~---------------------------------- ---------------------------------) y

Prime Data

Cylinder Overflow

o
1

2

7

8

9

Figure 2.20. Example of Track Index after Addition to File

basic functions that provide capabilities
for creating a file, adding new records to
it, and retrieving the records. A
description of each function follows.

Loading an Indexed Sequential File

A file and its associated indexes are
created by the load function. In addition
to the DTFIS macro instruction specifying
IOROUT=LOAD, there are three other macro
instructions used to create the file. The
first one to be issued is a SETFL macro
instruction (set file load mode) that does
the initializing needed for file creation.
When the WRITE (NEWKEY) macro instruction
is issued, the key and data record placed
by the user in a work area (WORKL) are
moved to an output block in the buffer area

(IOAREAL) and then written in the prime
data area. The appropriate index entries
are also made. After the user has
presented all the data records needed to
create the file, an ENDFL macro instruction
(end file load mode) is issued to terminate
the load.

Facility is provided for protecting DASD
tracks that are currently being accessed.
For ISAM. the hold applies to both data
records and index records. Because track
hold cannot be performed on a LOAD file,
BOLD=YES cannot be specified when
IOROUT=LOAD.

Facility is also provided to extend the
file by adding new records higher in
collating sequence than the current last
(high) record in the file. Using the same
user program, this can be done by
specifying ISE in the DLBL/DLAB job control

Section 2: Data Management 131

statement (required at execution time of
the user's program) to indicate a file
extension is to take place.

The same macro instructions that load a
file originally can be used to extend the
file. If it is necessary to increase the
size of the file to contain records with
keys higher than the last key on the
original file, the records can be loaded at
the end of the file. A job control
XTENT/EXTENT statement extends the upper
limit of the prime data area of the file so
that the new records can be loaded into the
file. (Overflow area is not required
because the file is merely extended further
on the DASD.)

Adding Records to the File

The add function provides the ability to
insert new records in the file. In
addition to the DTFIS macro instruction
specifying IOROUT=ADD, there are two other
macros used for adding records to a file.
The first is a WRITE (NEWKEY), that
initiates the addition process (searching
the indexes, etc.) and returns control to
the user to allow overlap processing. To
complete the addition operation, a WAITF
macro instruction must be issued. This not
only ensures that all necessary I/O
operations have been completed but also
returns status conditions indicating any
abnormal operation. When additions are
made to the file, the user presents the key
and data record to be added in a work area
(WORKL). A search is made through the
index structure to determine where the
record is to be inserted in the file. The
record is either inserted in key sequence
in the prime data area, or placed in the
overflow area by use of a chaining
technique that maintains the proper
sequence of the file.

Two overflow area options that may be
used in any combination are provided. One
option allows the user to specify that one
or more tracks be reserved at the end of
each cylinder to store overflow records
(CYLOFL). The second option allows an
independent overflow area separate from the
prime data area to be reserved for storing
overflow records. The first option has the
advantage of reducing access time for the
retrieval of overflow records associated
with a given cylinder~ The second option
has the advantage of utilizing DASD space
more efficiently.

132 DOS System Programmer's Guide

Random Retrieval

The random retrieval function is used for
random retrieval and updating of records.
In addition to the DTFIS macro specifying
either IOROUT=RETRVE or IOROUT=ADDRTR and
TYPEFLE=RANDOM, there are three other
macros for randomly retrieving and updating
records. The first of three macro
instructions to be issued for this purpose
is a READ (KEY). The READ macro
instruction performs a search of the
indexes, using the key of the requested
record (KEYARG) provided by the user as the
search argument. While the I/O operations
that perform this function are taking
place, control returns to the user to allow
overlap processing. To complete the READ
function and receive the record, the user
must issue a WAITF macro instruction. If
the operation is completed successfully,
this macro instruction either places the
record into a work area (WORKR) or points
to the starting location (leftmost
position) of the record within the buffer
area by using a general register (IOREG).
If the operation was not successful,
indications of the resulting abnormal
conditions are given in the filenameC
status byte in the DTF.

If the user wants to update and return
the record to the file, he must issue a
WRITE (KEY) macro instruction. The WRITE
follows the READ of the record to be
updated and precedes the READ for the next
record. Again, processing can overlap
execution of the WRITE instruction. To
complete the operation, the user must issue
a WAITF macro instruction.

Sequential Retrieval

The sequential retrieval function makes it
possible to sequentially retrieve and
update records. In addition to the DTFIS
macro instruction specifying either
IOROUT=RETRVE or IOROUT=ADDRTR and
TYPEFLE=SEQNTL, there are four other macros
for sequentially retrieving and updating
records. The first of four macro
instructions to be issued for this purpose
is the SETL (set lower limit), that locates
the starting point where retrieval begins.
This macro instruction provides four
methods of starting retrieval:

• From the beginning of the file (BOF)

• At any record location in the prime
data area (ID)

• with any record in the file by
supplying the key of the desired
starting record (KEY)

• With the first record of a group of
records in the same class by supplying
the generic key for that class; a class
being any group of records that
contains identical control information
in the first few high-order bytes of
the record keys (GKEY, a key equal to
or lower than the first record of the
desired group)

After the SETL has been successfully
executed, the user can issue GET macro
instructions to retrieve each record in the
file in key sequence. The record can be
placed in a work area (WORKS), or a general
register can be used to point to the
starting location of the record in the
buffer area. If the user wants to update
the record and return it to the file, he
must issue a PUT macro instruction. This
POT must follow the GET of the record to be
updated and precede the GET of the next
record. After all of the desired records
have been processed, the sequential
retrieval function is terminated by issuing
an ESETL macro instruction. This process
of issuing the SETL. GET. PUT, and ESETL
macro instructions can be repeated as many
times as desired. By combining the macro
instructions of the sequential retrieval
and load functions, the file can be
reorganized. The user can retrieve the
current file in its proper sequence (both
prime data area records and the associated
overflow records) and recreate the file in
a new prime data area.

CHOOSING THE RIGHT FILE ORGANIZATION AND
RETRIEVAL METHOD

The flexibility of a disk system lends
itself to several different file
organization and processing methods. It is
important, therefore, to analyze each file
and the program(s) that process it to
ensUre that the chosen method constitutes
the optimum solution with respect to the
data processing requirements of the
installation.

In ma~y cases, the type of organization
and processing best suited to a file is
immediately evident. However, some
applications may require additional study,
because of their complexity, their unusual
processing requirements, or because of the
wide range of processing programs that use
a file. This is an important aspect of
planning for a data processing system.
Decisions in this area may affect system
configuration requirements and should be
made before programming begins. The
general level of efficiency of the data
processing installation may be affected.

There are no absolute rules for the
resolution of an uncertain situation
regarding the organization and retrieval
alternatives. However, there are several
criteria that may provide an indication of
the optimum solution.

Criteria

The following items form a basis for a
decision concerning the organization of a
file.

File Activity: Activity refers to the
number of records in a file for which there
are transactions. This is usually
expressed as a percentage.

For example. 10% activity in an
inventory file means that, during some
specific period, there are transactions to
be posted to 10% of the records contained
in the inventory file. As the activity
increases, sequential processing becomes
more efficient. Sequential processing
implies either sequential or indexed
sequential organization. Activity implies
batch processing. This means that.
transactions do not need to be posted the
moment they occur. In fact, the time that
may lag between the occurrence and the post
may vary from a few hours to weeks or even
months. depending on the application.

Although the activity of a file is
measured over time, there are applications
where transactions cannot be batched. An
example would be an on-line inventory file
where the transactions would have to be
handled as they occur.

Low activity may justify random instead
of sequential retrieval.

Another important consideration involves
the level of activity when sequential
processing becomes more efficient than
random processing. In order to make this
evaluation, you must know:

• the record length and the blocking
factor

• the average number of additions to the
file

• whether the input is sorted.

If the Indexed sequential File Management
System is being evaluated for random or
sequential processing, you must also know:

• the average time required for access to
the cylinder index.

Section 2: Data Management 133

• which overflow options were chosen.

• if the resident cylinder index facility
has been selected, and if so, what
percentage of the cylinder index can be
main storage resident.

During random processing with ISFMS it is
advantageous to presort the transactions if
the resident cylinder index facility has
been implemented.

File Volatility: Volatility refers to the
number of additions to and deletions from a
file. First, consider the effect of making
additions to or deletions from a
sequentially organized file. Two files
must be defined, and the operation must be
handled as it would be with tape, reading
from the input file and writing to the
output file. With high volatility (that
is, many additions and deletions), indexed
sequential organization provides a
practical solution. One of the advantages
of an indexed sequential file is that
additions and deletions can be handled
without copying the file. However, as the
number of additions increases, the
efficiency of processing an indexed
sequential file decreases. Additions cause
records to be placed in overflow areas.
Retrieval of·these records in the collating
sequence of the file requires more time
than simply retrieving the records from
contiguous tracks of the original file in
their physical sequence. This is due to
the additional access-arm movement required
to read from the separate overflow area(s)
and additional reads even when cylinder
overflow is used.

With relatively few additions, the
decrease in efficiency is minimal.
However, there is a point at which it
becomes advisable to reorganize the file.
Reorganization means building a new indexed
sequential file from the old one and, in
the process, physically excluding all
records that are tagged for deletion. In
the same operation, all records in the
overflow area are merged into the main
file. At this point, the cycle begins
again. Processing with the reorganized
file is highly efficient. As additions and
deletions occur, this high level of
efficiency gradually diminishes, until we
reach a point where reorganization again
becomes advisable.

Additions to a direct access file do not
necessitate the creation of a new file as
they do for sequential organization.
However, as the DA file extents fill up,
the randomizing algorithm and its
corresponding synonym processor is more
heavily taxed.

134 DOS System Programmer's Guide

Therefore, the following considerations
should be made:

• At what point is it most advantageous
to reorganize an indexed sequential
file?

• What level of volatility excludes
indexed sequential organization as a
practical method of file organization?

• What are the operational considerations
for each method of organization?

Many variables must be considered to answer
these questions. It is impossible to
provide direct answers except in terms of a
specific file and a well defined
application.

File Size: The user must consider the fact
that his on-line capacity is limited.
Three important file organization
considerations are affected by the size of
a file:

1. An indexed sequential file must be
entirely on-line for any type of
processing.

2. A sequential file on disk may be
written on any number of packs, that
are then mounted and processed
consecutively. Each disk pack may be
mounted as needed but the manual
intervention that is required is time
consuming.

3. A direct access file must be entirely
on-line for.any type of processing.

The fact that an indexed sequential or
direct access file must be entirely on-line
whenever it is to be processed imposes
obvious physical restrictions on maximum
file size. We have talked about the
necessity of periodically reorganizing an
indexed-sequential file. The user must
also consider how this requirement affects
file size. For the purpose of file
reorganization, two files must be defined:
the file to be reorganized and the newly
created file. If the user's installation
does not include tape units, and if the
user does not want to punch his entire file
into cards, the on-line disk capacity must
be sufficient to accommodate both these
files. If the installation includes tape
units, the reorganization can be
accomplished in two steps. The first
program sequentially retrieves records from
the indexed sequential file that is to be
reorganized and creates an output file of
these records on tape. The second program
uses this tape file as input and writes the
reorganized (output) file on disk. Thus,
the maximum size of an indexed sequential
file can be doubled by using magnetic tape

as an intermediate storage medium. (An
alternative would be a series of disk
volumes forming a sequential disk file and
sequentially sharing the same drive.)
Figure 2.21 illustrates organization on a
disk-tape system.

FILEl

SEQUENTIAL
RETRIEVAL

RUN 1

INDEXED -
SEQUENTIAL

LOAD PROGRAM

RUN 2

FILE 2

ORIGINAL
INDEXED -
SEQUENTIAL
FILE

REORGANIZED
INDEXED -
SEQUENTIAL
FILE

Figure 2.21. File Organization on a
Disk/Tape system

It is possible and frequently desirable
to divide a large indexed sequential file
into several smaller files. Although this
approach reduces the flexibility of
processing the records, it provides many
significant advantages for applications
with a low activity rate.

In many cases, if a disk file exceeds
the size limitations imposed by indexed

sequential organization it can be organized
sequentially.

First consider a DOS system with two
disk drives. In this case, a sequential
file may be contained on any number of
packs. When a processing program reaches
the record with the highest control
information of the disk packs on-line, it
stops. The operator can then mount the
next pack on the same drive and the
operation can be resumed. When a
multivolume file is assigned to a disk
drive, all subsequent volumes (disk packs)
of the file must be mounted on the same
drive.

Most sequential files are altered
periodically by additions and deletions.
In this case, two drives should be used
with multivolume files; one for the input
file volumes and one for the output file
volumes. Each time the end of the
available capacity of a pack on either
drive is reached, the system issues a
message on the console to alert the
operator that it is time to change disk
packs.

consider the one-drive system. In this
environment, multivolume sequential files,
that are retrieved only, or retrieved and
updated, can be processed on the single
drive. If records are to be added and
deleted, two files are involved: one input
and one output file. Both files must be
completely contained in one volume and the
area available to each of the two files
must be large enough to accommodate any net
increase in file size brought about by
subsequent additions and deletions. The
single-drive system does not readily
accommodate multivolume sequential files to
which additions and deletions must be made.

This limitation can be circumvented by
dividing a large-file into smaller
segments, each of which can be defined as a
complete file and accommodated within the
available portion of a single pack. This
area is less than half a pack. The user
must treat these segments consistently as
separate files, going through the normal
cycle of job-to-job transition and program
retrieval as each volume is mounted. This
approach, while solving one problem, may
create others. If totals or statistics
must be computed when processing the entire
file, a means must be devised for carrying
results forward from one volume (file
segment) and one program to the next. This
can be accomplished but it introduces an
additional programming complexity with
which the user of the two-drive system need
not be concerned.

section 2: Data Management 135

Response Time: One of the important
advantages of a computer system with a
direct access storage device is the ability
to answer inquiries. Not all applications
require the use of an inquiry capability.
In some data processing installations,
there are no inquiry applications at all.
Where it is required, response time to an
inquiry is a critical consideration. The
less critical the response time, the
greater the choice of organization and
retrieval options.

The user should consider the following:

• Can the answer to an inquiry wait until
the next batched, sequential updating
of the relevant file? If it can, then
inquiries become an additional
transaction type and are processed
sequentially with all other
transactions against the file. File
organization, in this case, could be
either sequential or indexed
sequential. If the response provided
by this method is not fast enough,
random access is required.

• Can the answer wait until the end of
the present computer run? If so, the
relevant file is mounted at the
completion of the current job; the
inquiry program is loaded; and the file
is processed to produce the required
answers. Obviously, the time delay
involved here varies considerably
depending on the job that is in
progress when the inquiry arrives.

Random Retrieval Consideration: Many files
that could be organized sequentially are
organized as indexed sequential files to
facilitate system design. It is often
possible to reduce the number of peripheral
operations by using random retrieval from
an indexed sequential file. This is true,
for example, of files that have fields
which are used in several jobs.

As an example, assume that invoice
summary cards are to be listed in the
sequence of invoices. Further assume that
the cards do not contain customer names,
but that these names are required in the
listing. Customer names may be obtained
from the customer master file by random
retrieval (if that file is organized as an
indexed sequential file) or by sequential
retrieval. Note that, in the latter case,
the invoice summary cards must first be
sorted into customer number sequence.
Figure 2.22 illustrates the two solutions
and shows the additional steps required if
the customer master file is organized
sequentially.

136 DOS System Programmer's Guide

The example for the sequential file is a
typical procedure for sequential processing
equipment. If this job were run
frequently, the system design
considerations would probably preclude the
use of a sequential file organization.

The considerations previously proposed
establish criteria for choosing the
organization and retrieval method for a
file. In the subsequent paragraphs, these
criteria are applied to a number of sample
files.

Sample Files

This part illustrates the choosing of file
organization and retrieval methods for some
typical sample files.

The characteristics of the sample file
are chosen arbitrarily. Different
characteristics could be attributed to
files of similar functions. The examples
are furnished to demonstrate the
application of the criteria we have just
discussed to certain specific file
characteristics; and to show, under these
circumstances, the optimum organization and
retrieval methods.

Example 1

File: table file

Characteristics: the file is stable and
requires few changes and infrequent
additions and deletions. When alterations
are required, the source card file is
altered and the file is reloaded onto disk.
Normal processing involves retrieval only.

Organization: sequential

Example 2

File: payroll file

Characteristics: the file has generally
low volatility; and a relatively low level
of additions and deletions. However, there
is a high activity rate. Processing for
each pay period involves updating of a high
percentage of the year-to-date master
payroll information. Batching of
transactions, (time cards, changes, etc.)
is normal. Fast response to inquiries is
not required.

Organization: sequential

RUN 1

RANDOM
RETRIEVAL

RUN 1

SORT CARDS
BY
CUSTOMER NO.

RUN 2

SEQUENTIAL
RETRIEVAL

RUN 3

SORT INVOICES
TO
ORIGINAL SEQUENCE

RUN 4

PRINT
REPORT

Figure 2.22. Indexed Sequential Versus Sequential File Organization

Section 2: Data Management 137

Example 3

File: wholesale inventory file

Characteristics: the file has moderate
volatility and moderate activity. Normal
transactions may be batched for posting
once or twice a day. Recurring stock
status, activity, and reorder reports are
sequential. Response to inquiries
concerning availability and stock level is
required within one hour.

Organization: indexed sequential

Example 4

File: on-line inventory, parts

Characteristics: the file has a low
volatility but a high activity.
Transactions are processed as they are
received. Responses to inquiries
concerning availability and stock level is
required within 2 minutes. Recurring stock
status, activity, and reorder reports are
sequential but are only produced bimonthly.

organization: random

Example 5

File: accounts receivable file

Characteristics: the file has low
volatility and low activity. Transactions
are combined in batches for daily posting.
Billing is cyclic. statements are written
throughout the month by sequentially
retrieving records from the file between
specific limits. Inquiries are processed
twice daily.

Organization: indexed sequential

summary

The method of organization best suited to a
particular file of disk records depends

138 DOS System Programmer's Guide

upon many factors. These factors must be
analyzed for each file in anyone
particular application. Often, more than
one organization scheme can be considered
for the same file. In one application,
records could be processed purely at
random; in another, the same records could
be processed in sequence by various control
fields. For example, records within a file
might be processed at random during an
updating run and sequentially within
certain groups such as branch office or due
date when producing reports or billing. A
file such as this would be analyzed to
determine whether it should be organized:

1. Randomly, thus keeping process time at
a minimum during one run but
destroying the advantage of the
sequential nature of the other.

2. Sequentially, thus minimizing the time
required to produce reports but
increasing updating time.

3. Randomly for updating, and then sorted
into sequence for reports.

The decision would depend on the nature of
the file. other considerations might be:

1. Can transactions be batched and sorted
before processing, or must they be
processed as they occur?

2. Is the activity distributed throughout
the file in such a manner as to
warrant passing the entire file when
updating?

3. Would the processing time saved by
sorting warrant the time and effort
required?

Questions of this kind apply to each file
in an installation. In choosing
organization methods, the over-all
processing objectives of the system must be
kept in mind at all times.

Section Outline

Link Editing • • • • • • • • • • .141
System Flow • • • • • • .141
Symbolic Units Required • • • • .143
Linkage Editor Control Statements •• 143

ACTION Statement • • • • • • .143
PHASE Statement •••• 144
INCLUDE statement ••••••••• 145
ENTRY Statement • • • • • .146
LBLTYP Job Control Statement • .146

Summary of Considerations for LINK
and CATAL Options •••••••••• 146
Linkage Editor Program Considerations 147
Program Overlay Structures. • .147

Overlay Tree Structure ••••••• 147
Overlay Tree Design .147
Overlay Communication • • • .149

Self-Relocating Programs •••••••• 149
Rules for Writing Self-Relocating
Programs. • • • • • • • • • • • .149
Advantages of Self-Relocating
Programs • • • • • • • • • • • • .150
Disadvantages of Self-Relocating
Programs • • • • • • • • • • • • .150
Programming Techniques • • • • • .150

Linkage Editor Examples •• • • • .154
Link Edit-and-Execute-Example •••• 154

Explanation for Link Edit and
Execute • • • • • • • • • • • • 154

Catalog to Core Image Library Example 156
Explanation for Catalog to Core
Image Library • • • • • • • .156

Execute Linkage Editor in Foreground
and Catalog to Private Core Image
Library Example •••• • •••••• 158

Explanation for Catalog to Private
Core Image Library ••••••••• 158

compile and Execute Example ••••• 160
Explanation for Compile and Execute 160

Catalog for Phase Overlay Example •• 162
Explanation for Catalog for Phase
Overlay • • • • • • • • • • • .162

Submodular Structure Example ••••• 163
Explanation for Submodular
structure •••••• • • • • .163

Section 3: Program Design

self-Relocating and Multiple Link
Edits Example •••••••••••• 165

Explanation for self-Relocating and
Multiple Link Edits • • • • • .165

Checkpoint/Restart. • • • • • • • .166
Problem Program Responsibilities .166

Use of CHKPT Macro. • • • • • .166
CHKPT Macro • • • • • • .167

Notes For DASD and MICR Files .168
Checkpoint File •••• .168

Checkpoints On Tape ••••• 168
Checkpoints On Disk ••••• 168

Repositioning I/O Files •• 170
Repositioning Magnetic Tape .170
DASD Operator Verification Table •• 171

Bypassing Embedded Checkpoint
Records on Tape with Physical IOCS •• 172
Bypassing Checkpoint Records on Tape
with Logical IOCS • • • • • • • .172
Restarting Checkpointed Programs .173

RSTRT Statement .173
IBM 3211 Printer support. • • .173

System Considerations .173
Error Recovery Techniques .174

Macro Writing •••• • •••••• 175
Macro Instruction • • • • • • .176
Macro Definition. • • • • • • .177

Elements of the Macro Definition •• 178
Attributes. • • .178
Sublist Notation. • • •••••• 179
Variable Symbols. • • ••• 179

Symbolic Parameter .179
SET Symbols •••• 180
system Variables. • •••••• 181

Concatenation ••••••• 181
Sequence symbols • • • ••••• 182
Conditional Assembly Instructions •• 182

AIF--Conditional Branch •••••• 182
AGO--Unconditional Branch ••••• 183
ACTR--Conditional Assembly Loop
Counter • • • • • • • • •• •• 183

.183
••• 183

.183
•• 184

ANOP--Assembly No Operation
Extended Capabilities • • • • •

MEXIT -- Macro Definition Exit
MNOTE Statement • • • • • • • •

Section 3: Program Design 139

Section Figures

Figure 3.1. Linkage Editor System Flow 142
Figure 3.2. Module Dependency ••••• 148
Figure 3.3. Overlay Tree Structure •• 148
Figure 3.4. Relocating Address
Constants in a Calling List
Figure 3.5. self-Relocating Sample

.151

Program ••••••••••• 153
Figure 3.6. Using Checkpoint Facility
on Disk • • • • • • • • • • • • • .169
Figure 3.7. Procedure for Building
Tape Repositioning Tables ••••••• 170
Figure 3.8. Procedure for Building
DASD Operator Verification Table
Figure 3.9. Format of the Checkpoint
Header/Trailer Records ••••
Figure 3.10. 3211 Error Status

.172

.172

Indicator Bits in the CCB •• 175
Figure 3.11. Operand Field Formats •• 176
Figure 3.12. Keyword Macro
Instruction • • • • • • • • • •
Figure 3.13. positional Macro

.176

Instruction •••••••••••••• 177
Figure 3.14. Macro Instruction with
Prototype ••••••••••••••• 177
Figure 3.15. Mixed Macro Instruction .177
Figure 3.-16. Mixed-Mode Definition • .177
Figure 3.17. Sublist Illustration •• 179
Figure 3.18. Format of Globals and
Locals • • • • • • • •
Figure 3.19. Format of SETA
Instruction • • • • • • • •
Figure 3.20. Format of SETB
Instruction • • • • • • • •
Figure 3.21. Format of SETC
Instruction • • • • • • • •
Figure 3.22. Concatenation and
Generated Coding •••••••

.180

.180

• • • .180

.181

.182
Figure 3.23. Conditional Branch
Instruction •••••••••••••• 182
Figure 3.24. Unconditional Branch
Instruction •••••••••••••• 183
Figure 3.25. Assembly No Operation
Instruction ••••• • • • •
Figure 3.26. Macro Definition Exit
Instruction • • • • • • • • • • •
Figure 3.27. MNOTE Instruction
Figure 3.28. Sample MNOTE
Figure 3.29. Sample MSG Macro
Figure 3.30. Sample MSG Coding

140 DOS system Programmer's Guide

• .183

.184
•• 184

.184

.185

.186

The following are included in this section
which presents techniques for the effective
use of some DOS facilities:

• Link Editing. Includes the linkage
editor control statements and overlay
structures, design and communication.
In addition, examples illustrating
module dependency and overlay tree
structure are included.

• self-Relocating Program. Explains how
to write a self-relocating program. It
presents the rules, advantages,
disadvantages, and techniques for
writing self-relocating code.

• Checkpoint/Restart. Includes the
programmer's responsibilities when a
checkpoint is taken during problem
program execution. This also explains
the CHKPT macro for checkpointing a
program and describes checkpoint
considerations for tape and disk, as
well as for repositioning of files and
restarting checkpointed programs.

• IBM 3211 Printer support. Includes the
error recovery techniques.

• Macro Writing. Includes the macro
language and its effective use. Also
included are examples illustrating how
to write and use macros.

Link Editing

Link editing provides the user with the
capability of combining separately
assembled or compiled program sections or
subprograms. To make this possible, the
output of the language translators must be
processed. At first, the separate program
sections are in relocatable form; that is,
the address constants are identified for
later modification to absolute execution
time values. The linkage editor (LNKEDT)
links and relocates separate program
sections into a single phase that can be
loaded by the control program and then
executed.

Every relocatable program must be
processed by the linkage editor before it
can be executed. Once a program is edited,
it can be executed immediately, cataloged
as a permanent entry in the core image
library, or both cataloged and executed
immediately. When a program is cataloged
in the core image library, the linkage
editor is no longer required for that
program, because it can be loaded directly
from the resident pack by the system loader

of the control program. On the other hand,
if a program is edited and executed
immediately without cataloging, the linkage
editor is required again the next time the
program is to be executed. Cataloging is a
system design decision based on such
factors as frequency of use and space
available in the core image library.

In a system having a minimum of 32K
positions of main storage, batched-job
foreground multiprogramming, and private
core image library support, the linkage
editor can execute in any partition. A
private core image library must be assigned
when executing the linkage editor in a
foreground partition. When executing the
linkage editor in the background partition,
if a private core image library is not
assigned, the default is to the system core
image library. Without the two options
specified the linkage editor can execute in
the background partition only.

SYSTEM FLOW

Figure 3.1 shows the system flow for the
linkage editor program. Before the linkage
editor program is executed, job control
must perform these functions:

• Process the OPTION statement. OPTION
LINK or CATAL turns on the control
program switches which cause job
control to open the SYSLNK file.
Unless these switches are on, the
linkage editor control statements are
invalid.

• Copy the linkage editor control
statements onto SYSLNK. The linkage
editor control statements are ACTION,
PHASE, INCLUDE, and ENTRY. The ACTION,
PHASE, and ENTRY statements are copied
directly on SYSLNK. There are two
forms of the INCLUDE statement.
INCLUDE statements with no operand are
not copied but cause the data (object
module) on SYSIPT to be written until
the end-of-data (/*) occurs. If the
object module to be linkage edited is
cataloged in the relocatable library,
the INCLUDE statement must have the
name of the module as an operand. The
format of the INCLUDE statement is
copied, but the module is not.

• Write an ENTRY statement with a blank
operand if the job stream does not
already contain one. When the EXEC
LNKEDT statement is encountered, an
ENTRY statement is created to ensure
termination of the link edit input.

Section 3: Program Design 141

CD
o
0)

o

// JOB

//OPTION
CATAL (or

LINK)

bPHASE

~
System loader brings in job control.

blNCLUDE

l
Job control reads and interprets job control statements.

Object module

l
Job control causes linkage editor (LE) control statements and
relocatable object modules to be placed on SYSLNKi object
modules may be either on SYSIPT or in the relocatable library.

~
When job control reads EXEC LNKEDT, it causes the system
loader to bring in the I inkage editor program.

+
Using SYSLNK (input) and SYSOOl (work file) the linkage
editor develops executable program •

• If OPTION CATAL is specified, linkage editor output is placed
permanently in the core image library (the core image directory
is updated). If OPTION LINK is specified, linkage editor out­
put is placed temporari Iy in the core image I ibrary (the core image
directory is not updated), and the next linkage editor output over­
lays the last temporarily placed linkage editor output.

Note: If a private core image library is assigned, output is placed in
the private I ibrary rather than in the system core image library
on SYSRES. Output can be placed in the system core image
library only when executing the linkage editor in the back­
ground partition.

~
If a program just link-edited is to be executed, the EXEC statement
causes the system loader to fetch it from core image I ibrary and
begin execution.

Figure 3.1. Linkage Editor System Flow

142 DOS System Programmer's Guide

SYSRD~ II EXEC

/ ~ 1-------' CD

CD
8)

®

00

LNKEDT

SYSRES

Core Image Library

Job control

Linkage editor

Program phase

Relocatable Library

Object Module

SYSLNK

Linkage editor
statements

Object modules

SYSOOl

Work file

8)

and/or

• Inform the system loader to load the
linkage editor program. The linkage
editor program uses the data on SYSLNK
as input. "It handles the relocatable
modules as directed by the PHASE and
INCLUDE statements to develop
executable program phases. Some of the
linkage editor program functions are:

1. Extracting the modules named in
INCLUDE statements from the
relocatable library. If, in
extracting a module, another
INCLUDE statement occurs, this
module is also retrieved. The
nesting of modules is possible up
to a depth of five (a level of
six).

2. Constructing composite
dictionaries for ESD and RLD data,
to resolve all linkages between
different control sections.

3. Relocating each control section as
necessary within a phase.

4. Assigning the entire phase to a
contiguous area in main storage.

5. Modifying all relocatable address
constants to contain the relocated
value of their symbols.

6. Searching the relocatable library
for a cataloged object module with
the same name as each unresolved
external reference. The automatic
library lookup feature (AUTOLINK)
is particularly useful for
retrieving IOCS modules. It may
be suppressed.

7. Building the core image directory
phase headers and cataloging to
the core image library, if CATAL
is specified.

If a phase by the same name was
cataloged previously, the old phase is
deleted and the new one is cataloged.
Deletion removes the item from the
directory, but it does not release the
space in the library until a condense
function occurs.

If a private core image library is
assigned, the linkage editor output is
placed in the private rather than the
system core image library, permanently if
OPTION CATAL is specified or temporarily if
OPTION LINK is specified (see Figure 3.1,
pOint 6). In this case, the library need
not .be on SYSRES as shown in Figure 3.1.
Output may be placed in the system core
image library (either permanently or
temporarily) only when executing the
linkage editor in the background partition.

SYMBOLIC UNITS REQUIRED

The symbolic units required by the linkage
editor are basically a subset of those
needed by the language translators:

SYSIPT

SYSLST

SYSLOG

SYSRDR

SYSLNK

SYSOOl

Module input

Programmer messages and
listings

Operator messages

Control statement input (via
job control)

Input to the linkage editor

Work file

Note that SYSRDR and SYSIPT may contain
input for the linkage editor. This input
is written on SYSLNK by job control.

If output from the linkage editor is to
be placed in a private core image library,
the following symbolic unit is required:

SYSCLB the private core image library
may be assigned anywhere in
the job stream but must be
before the // EXEC LNKEDT
statement.

LINKAGE EDITOR CONTROL STATEMENTS

Position 1 must be blank on linkage editor
control statements. Otherwise, they follow
the same format as job control commands.
Refer to DOS system Control and System
Service listed in the Preface for a
detailed explanation of the control
statements.

ACTION Statement

ACTION

CLEAR
MAP
NOMAP
NOAUTO
CANCEL
BG
Fl
F2

This statement specifies linkage editor
options. It is not required, but if used,
it must appear as the first linkage editor
statement in the input stream. If multiple
operands are required, they may be placed
on separate ACTION statements or on one

section 3: Program DeSign 143

I ACTION statement separated by·commas. The
ACTION statement is effective only for the
next linkage editor execution. The
parameters have the following meanings:

CLEAR

MAP

NOMAP

NOAUTO

CANCEL

BG
F1
F2

set the unused area of the core
image library to binary zeros.
The linkage editor clears from the
next available entry (taken from
the core image directory) to the
end of the core image library.
Because this is time-consuming,
use it only if the areas defined
by DS statements must be filled
with zeros.

Write main storage map and error
diagnostics on SYSLST. Whenever
SYSLST is assigned, MAP is
automatic unless NOMAP is
specified.

Nullify MAP action.

Suppress AUTOLINK function for the
entire program, not just one
phase.

Cancel the job if the content of
the linkage editor input is in
error. See messages 21001 to
21701 in the DOS Messages listed
in the Preface.

Causes the end of supervisor
address used in linkage editor
calculations to be set to the
beginning of the partition
specified, plus the length of the
label area and of the save area.
The end of supervisor address in
the communications region is not
changed.

The BG, Fl and F2 operands
provide the capability of link
editing a program to execute in a
partition other than that in which
the link edit function is taking
place. Programs that have a phase
origin of S (or * for the first
phase of a program) can be
origined to the specified
partition by use of the operands.

Use of the ACTION BG statement
is possible only in a system
supporting the batched-job
foreground and private core image
library options when the linkage
editor is executing in a
foreground partition. .

Use of the ACTION F1 (or F2)
statement in a mUltiprogramming
environment requires that the
partition be allocated. If these

144 DOS System Programmer's Guide

operands are used in a non-MPS
environment, they are ignored.

If none of these operands is
present, the program will be link­
edited to execute in the partition
in which the link edit function is
taking place, unless otherwise
specified on the PHASE statement.

An example of the use of the
ACTION F1 statement follows.
Assume a 64K machine with:

8K supervisor

24K background area

16K foreground 2 area

16K foreground 1 area.

When executing the linkage
editor in the background the
statement PHASE PHASE1,S causes
PHASE1 to be origined at 8K (the
end of the supervisor area). The
sequence

ACTION F1

PHASE PHASE1,S

causes PHASE1 to be origined at
48K (the beginning of the
foreground 1 area) plus the length
of the foreground save area.

When executing the linkage
editor in foreground 2, the
statement PHASE PHASE1,S causes
PHASE1 to be origined at 32K (the
beginning of the foreground 2
area) plus the length of the
foreground save area. The
sequence

ACTION BG
PHASE PHASE1,S

causes PHASE1 to be origined at
the end of the supervisor area.

PHASE Statement

PHASE name,origin[,NOAUTOl

A program phase is the section of a program
that is loaded by the system loader as a
single overlay with a single FETCH or LOAD.
The input for building a single phase
consists of the text from one or more
complete control sections. Therefore,
programs may consist of many phases, or a
phase may consist of many subprograms or
control sections.

The PHASE statement provides the linkage
editor with the phase name and an origin
point for the phase. The phase name
catalogs the phase in the core image
library and retrieves it for execution.
Job control uses the phase name to
construct a single track phase directory
before each job step is executed. This
phase directory is built for all background
program executions. If executing in the
foreground, this phase directory is built
under link, edit, and go conditions. The
entries to this directory are taken from
the core image directory for any phase
where the first four characters of the name
are identical to those in the name
specified in the EXEC statement. The
directory entry contains such information
as loading address, entry point, and
starting disk address in the core image
library. The separate phase directory
permits faster retrieval of the phases.

The entries in the operand field
represent the following:

name

origin

symbolic name of the phase,
consisting of 1 to 8 alphameric
characters. The first 4
characters of a multi phase program
should be the same to achieve
maximum retrieval efficiency.

Specification of the load address
of the phase. The load address
can be one of six forms:

1. S [+relocationJ. If link
editing in the background,
the origin point is at the
end of the supervisor, the
save areas, and the area
assigned to the COMMON pool,
if any. If link editing in
the foreground, the beginning
address of the partition is
substituted for the end of
supervisor address.

2. ROOT. This phase is
designated as the root phase,
which remains in main storage
throughout execution. Its
location is the same as with
format s.

3. +displacement. The origin
point is set at a specified
location; +0 must be used for
any self-relocating program.

4. F+address. This format is
used to begin the program at
the start of a foreground
partition when link editing
in the background and the
foreground partition is not
allocated. If the foreground

NOAUTO

partition is allocated,
ACTION F1 or F2 has the same
effect as F+address.

5. *[~relocation]. This is the
most frequently used format
and specifies an origin point
for a phase at the next
available· core location.

6. symbol [(phase)]
[±relocationJ. This format
specifies an origin point for
a phase at the same point as
previously defined symbol
(for overlays).

A detailed explanation of the
origin parameter is given in the
DOS System Control and system
Service listed in the Preface.
Also refer to Link Editing
Examples.

Suppress the AUTOLINK function for
this phase only.

INCLUDE Statement

INCLUDE [modulenamel [,enamelist)]

This statement specifies that an object
module is to be included for editing by the
linkage editor. The system assumes the
location of the module as follows:

1. Both operands missing. The object
module is on SYSIPT; it is copied onto
SYSLNK.

2. Modulename given. The object module
is cataloged in the relocatable
library under the same name.

3. Second operand only given. The object
module is in the input stream on
SYSLNK. The parameters represent the
following:

modulename Use this parameter only if the
module is cataloged in the
relocatable library. It
consists of 1 to 8 alphameric
characters and must be the same
as the name used when the module
was cataloged.

(namelist) This parameter provides the
ability to select particular
control sections from a given
module. It is expressed as
(csname1, csname2, •••).

Section 3: Program Design 145

ENTRY statement

ENTRY [entrypoint1

The ENTRY statement signals the end of
program input to the linkage editor. The
entrypoint operand indicates the transfer
address for the first phase as follows:

1. If omitted, the first significant
address in an END record encountered
during the generation of the first
phase is used; or, if no such operand
is found, the load address of the
first phase is used.

2. If given, it must be the name of a
CSECT or a label definition defined in
the first phase.

The ENTRY statement can be completely
omitted because job control automatically
writes an ENTRY statement with a blank
operand when it encounters the EXEC LNKEDT
statement.

LBLTYP Job Control Statement

/ / LBLTYP {TAPE (nn)}
NSD (nn)

The label storage records for standard
labeled tape files and nonsequential DASD
files (direct access, indexed sequential,
or DTFPH with all packs mounted) are
brought into the label save area of the
partition containing the processing
program. Therefore, main storage must be
reserved by the user whenever such files
are processed. Because this area is used
during OPEN for one file at a time, the
total area needed is that required by the
largest file.

Main storage reservation is accomplished
by the LBLTYP statement. The amount of
main storage reserved is governed by the
operand TAPE or NSD as follows:

• TAPE reserves 80 bytes of main storage.
This format is used when standard
labeled tape files and n2 nonsequential
DASD files are processed. nn is
ignored by job control. This same
80-byte area is used by all labeled
tape files.

• NSD reserves 84 bytes plus 20 bytes per
extent. The number of extents is
specified in the nn parameter for the
nonsequential file that has the largest
number of extents. This format is used
when nonsequential DASD files are
processed, regardless of whether

146 DOS System Programmer's Guide

labeled tapes are processed. This same
area is used by nonsequential DASD
files with fewer extents, and by
labeled tape files.

The LBLTYP statement is not required if
only unlabeled tape files and/or sequential
DASD files are being processed. Only one
LBLTYP statement is submitted. The
placement of the statement in the job
stream varies as shown:

• Non-self-relocating
(background/foreground). Immediately
preceding the EXEC LNKEDT statement at
linkage editor time.

• self-relocating
(background/foreground). Ahead of the
EXEC for the program.

Examples of various linkage editor
functions follow.

SUMMARY OF CONSIDERATIONS FOR LINK AND
CATAL OPTIONS

1. SYSLNK must be assigned, or LINK and
CATAL options are ignored (switches
are not set). If executing the
linkage editor in a foreground
partition, a private core image
library (SYSCLB) must be assigned.
This is possible only in a system
supporting the batched-job foreground
and private core image library
options.

2. Unless the switches are set by the
LINK or CATAL option, the linkage
editor control statements are ignored.

3. The CATAL option sets the LINK and
CATAL switches.

4. When the LINK switches are set, the
output of the language tr;anslators is
placed on SYSLNK.

5. LINK and CATAL switches are turned off
by:

a. /& or JOB statement

b. An error during compilation.

6. Completion of cataloging (update of
transient, library routine, and
foreground program directories, and
system status report) occurs when the
/& statement is read by job control.

7. If a successful link edit has not
occurred, cataloging does not take
place.

8. If multiple linkage editor job steps
are set up as one job, keep these
points in mind:

a. It is not possible to CATAL into
the core image library with
// OPTION CATAL and then have
another linkage editor job step
with // OPTION LINK in the same
job. Operator message lSlnD
(STATEMENT OUT OF SEQUENCE)
results.

b. If a compilation is being
performed, the link switches may
be turned off by an error. When
cataloging to the core image
library, therefore, it is
advisable to handle multiple job
steps as separate jobs (each with
/i) to be sure that the cataloging
operation is finished on the /&.

c. SYSLNK extents are reset each time
before Job Control writes a new
series of link edit control
statements onto SYSLNK. Core
image library directory and
subdirectory are updated at /& if
the CATAL option is included.

LINKAGE EDITOR PROGRAM CONSIDERATIONS

The linkage editor program consists of
eight phases. The efficiency of link
editing programs into the core image
library depends upon the amount of main
storage allocated to the partition where
the linkage editor is executing. If a
minimum of 14K of main storage is available
several phases of the linkage editor
program are contained within main storage
during linkage editor processing. If less
than 14K is available, only one linkage
editor processing phase may be resident in
the partition at one time. Some time is
lost fetching the additional phases as they
are needed.

PROGRAM OVERLAY STRUCTURES

Overlay is a programming technique that
minimizes the main storage requirements of
a program. To use overlay, the programmer
should be familiar with two related
techniques:

1. Organizing the program as an overlay
structure.

2. Communicating with the control program
during execution through FETCH and
LOAD macros.

Overlay Tree Structure

To place a program in an overlay structure,
the programmer should be familiar with the
following terms:

Phase: A phase is the smallest functional
unit (one or more control sections) that
can be loaded as one logical entity during
the execution of the program. A phase can
contain up to 524,288 bytes of text. The
root phase (first phase) remains in main
storage throughout execution.

Tree: A tree is the graphic representation
that shows how phases can use main storage
at different times. It does not imply the
order of execution, although the root phase
is the first to receive control.

The design of an overlay program
requires the organization of the control
sections of the program in an overlay tree
structure. The tree structure is developed
considering:

1. The amount of available main storage.

2. The frequency of use of each control
section.

3. The dependencies between control
sections.

4. The manner in which control should
pass within a path, from one path to
another, and from one region to
another.

When the overlay tree structure for a
program is determined, PHASE statements are
prepared which segment the program in that
manner.

Overlay Tree Design

To begin constructing an overlay tree, the
programmer should select those modules that
receive control at the beginning of
execution plus those that should always
remain in main storage; these form the root
phase. The rest of the tree can be
developed by determining the dependency of
the remaining phases and how they can use
the same main storage locations at
different times during execution.

Module dependency is determined by the
requirements of a control section or module
for a given routine in another control
section. A module depends upon a control
section to which it branches or whose data
it must process. The required control
section must be in main storage before

Section 3: Program Design 147

execution can continue beyond a given point
in the program. Figure 3.2 illustrates how
modules depend on each other, and the paths
that result from these dependencies.

The module containing control sections A
and B can be used to form the root phase.
The module containing control sections C
and 0 can use the same main storage as the
module containing control sections J and K.
Phases that use the same main storage area
can overlay each other during execution.
The module containing control section E can
use the same main storage as the module
containing control sections F and G. The
module containing control section H can use
the same main storage as the module
containing control section I. The module
containing control section L can use the
same main storage as the module containing
control sections M and N.

Path 1 Path 2 Path 3

A

B

Path 4

Note: A through N are Control Sections.

Figure 3.2. Module Dependency

Path 5

J

K

M

N

Figure 3.3 shows the resulting overlay
tree structure. The longest path in this
structure is formed by phases 1, 2, 4, and
5, because the program requires 21,000
bytes when they are in main storage. Thus,
the minimum main storage requirement for
the program is 21,000 bytes. The program
would require 46,000 bytes ·if not put in an
overlay structure. The linkage editor
assigns the relocatable origin of the root
phase (the origin of the program) at O.
The relative origin of each phase is

148 DOS System Programmer's Guide

determined by 0, plus the length of all
phases in the path. For example, the
origin of phases 3 and 4 is equal to 0 +
5,000 (the length of phase 2) + 6,000 (the
length of the root phase).

Root
Phase 1
(6000) ..

Phase 2 :' A Phase 7
(5000)!S·· (6000) .. ,.,.,., ,., ,.,.,.,.,.,.,.,.,., ... ,."., ,....... '" ,.,.,.,.,.,.,.,.,.,.,., .. ".", .. ".".,.,.,.,.,.,."."., •.. ,.,.,., ..
Ic iJ

P~;~;O~ 10 P~~~~O~ P~~~~O~ li"K' P~;~~O~
.' ,.,.,.,.".,.,.,., "" ,·e

F
"""""'.,.,."'., ,.,.,.,.,., ... ,.,., ,\.,"""""""', ... ,.,.,.,.,.,.,., ,.,., .•

;, Phase 5 IIG Ph 6 ..:
.: E (7000) ,,, .. , .. t,,..,, .. mw.' (;~~O)i L liM

••. I,..... :
H t

[t
Longest Path (Phases 1, 2, 4, 5) =21,000 bytes

Figure 3.3. Overlay Tree Structure

When a phase is in main storage, all
phases in its path are in main storage.
(Each time a phase is loaded, all phases in
its path are also loaded if they are not
already in main storage.) In Figure 3.3,
when phase 4 is in main storage, phases 1
and 2 are also in main storage. This does
not imply that phase 5 or 6 is in main
storage because neither phase is in the
path of segment 4.

The position of the phases in an overlay
tree structure does not necessarily imply
the order in which they are executed. A
phase can be loaded and overlaid as many
times as required by the logic of the
program. If a phase is modified during
execution, that modification remains only
until the phase is overlaid. However, a
phase cannot be overlaid by itself.

Phases that can be in main storage
simultaneously are considered to be
inclusive. Phases not in the same path are
considered to be exclusive: they cannot be
in main storage simultaneously.

Phases on which two or more exclusive
phases are dependent are called common
phases. A phase common to two other phases
is part of each. In Figure 3.3, phase 1 is
common to phases 8 and 9, but not to phase
2.

overlay Communication

The programmer must know how his program
can communicate with the control program
during execution. Two ways in which he can
overlay phases in his program are:

1. By a LOAD macro instruction, that
loads the named phase into main
storage and returns control to the
calling phase.

2. By a FETCH macro instruction, that
loads the specified phase into main
storage and passes control to the
entry address of the fetched phase.

Some of the advantages are:

1. The LOAD macro allows the programmer
to load his phases in violation of the
tree structure that was defined at
linkage editor time.

2. The LOAD macro allows the programmer
to load phases from other programs.

However, these responsibilities are
associated with the use of these macros:

1. The programmer must keep track of
which phases are in main storage.

2. The programmer must be aware of
overlay structure and he must know tne
phase names at compilation or assembly
time.

A phase that is loaded into main storage
by the FETCH macro is always relocated
unless the self-relocating option was
specified at linkage editor time. A phase
that is loaded into main storage by the
LOAD macro is relocated relative to the
same structure as when it was linkage
edited; i.e., LOADs can be made outside the
defined tree, but it is ·not possible for
the system to ensure that references
outside the tree will be valid.

Self-Relocating Programs

A system supporting multiprogramming has
the capability of executing self-relocating
programs. A self-relocating program is one
that can be executed at any location in
main storage. Writing a self-relocating
program is an efficient coding technique
because self-relocating programs are
link edited only once for execution in
any partition. When linkage editing, use
OPTION CATAL and a PHASE card such as:

PHASE Phasename,+O

This causes the linkage editor to assume
that the program is loaded at core location
zero, and to compute all absolute addresses
from the beginning of the phase. The job
control EXEC function recognizes a zero
phase address and adjusts the origin
address to compensate for the current
partition boundary save area and label area
(if any). It then gives control to the
updated entry address of the phase.

RULES FOR WRITING SELF-RELOCATING PROGRAMS

In general, if a problem program is written
to be self-relocating, the following rules
must be adhered to:

1. The supervisor must support
multiprogramming (that is, MPS=YES or
BJF must be specified as a parameter
in the SUPVR macro at system
generation time).

2. The PHASE card must specify an origin
of +0.

3. The program must relocate all address
constants used in the program.
Whenever possible, use the LA
instruction to load an address in a
register instead of using an A-type
address constant. For example,

Instead of using:

EOF

AEOF

Use:

EOF

USING
BALR
LA
BCTR
BCTR
LA
ST
•
•
L
•
•
EOJ
•
•
DC

USING
BALR
LA
BCTR
BCTR
•
•
LA

•
•
EOJ

*,12
12,0
12,0(12)
12,0
12,0
1,EOF
1,AEOF

10,AEOF

A (EOF)

*,12
12,0
12,0(12)
12,0
12,0

10,EOF

Section 3: Program Design 149

4. If logical IOCS is used, the program
must use the OPENR and CLOSER macros
to open and close files.

5. If physical IOCS is used, the program
must relocate all CCW address fields.

6. Register notation must be used when
issuing an imperative macro (I/O, I/O
control, and supervisor
communication). Register notation
utilizes less main storage and permits
faster execution.

The following rules apply to multimodule
programs.

7. The relocation factor should be
calculated and stored in a register
for future use. For register economy,
the base register can hold the
relocation factor.

For example:

USING
BALR
LA
BCTR
BCTR

*,12
12,0
12,0(12)
12,0
12,0

Register 12 now contains the
relocation factor and the program
base.

8. When branching to an external address,
use one of the following techniques:

a.

b.

L 15,=V(EXTERNAL)
BAL 14,0(12,15)

L
AR
BALR

15,=V(EXTERNAL)
15,12
14,15

where register 12 is the base register
containing the relocation factor.

150 DOS System Programmer's Guide

9. The calling program is responsible for
relocating all address constants in
the calling list(s). See Figure 3.4
for an example of calling program
relocating the address constants in a
calling list.

ADVANTAGES OF SELF-RELOCATING PROGRAMS

self-relocating programs have the ability
to run in anyone of the three problem
program partitions without needing linkage
editing again. The program can also be
loaded anywhere within a partition. The
restriction of specific partition
allocations need not be adhered to with a
self-relocating program because it
relocates itself.

DISADVANTAGES OF SELF-RELOCATING PROGRAMS

self-relocating programs are slightly more
time consuming to write and they usually
require slightly more main storage.

PROGRAMMING TECHNIQUES

A self-relocating program is capable of
proper execution, regardless of where it is
loaded. DTFDI should be used to resolve
device differences between partitions. A
self-relocating program must also adjust
all of its own absolute addresses to point
to the proper address. This must be done
after the program is loaded, and before the
absolute addresses are used.

r--,
// JOB A
// OPTION LINK
/ / EXEC ASSEMBLY
CSECTl START 0

USING *,12
BALR 12,0

Use load point value as the base to
find the load point value.

LA 12,0(12)
BCTR 12,0
BCTR 12,0
•
•

1,A
2,B

LA
LA
LA
LA
STM
LA
L
AA

3,C Modify the CALL address constant list.
4,D
1,4,LIST
13, SAVEAREA
15,=V(EXTERNAL)
15,12 Adjust CALL address by relocation

factor.
CALL (15),(A,B,C,D)

LIST EQU *-16 For address constants (4 bytes each).
EOJ

SAVEAREA DC
END

/* *

9D'0'

/ / EXEC. ASSEMBLY
CSECT2 START 0

ENTRY EXTERNAL
EXTERNAL SAVE (14,12)

USING *,12
BALR 12,0 Establish new base
•
•
RETURN(14,12)
END

/* *
I / / EXEC LNKEDT L ___ _

Figure 3.4. Relocating Address Constants in a Calling List

Within these self-relocating programs,
some macros generate self-relocating code.
For example, the MPS utility macros are
self-relocating (that is, they modify all
of their own address constants to their
proper values before using them). OPENR
and CLOSER macros are designed to be used
in self-relocating programs. OPENR and
CLOSER can be used in place of OPEN and
CLOSE, and adjust all of the address
constants in the DTFs opened and closed.
OPENR and CLOSER can be used in any program
because the OPENR macro computes the amount
of relocation. If relocation is 0, the
standard open is executed. In addition,
all of the module generation (xxMOD) macros
are self-relocating.

The addresses of all address constants
containing relocatable values are listed in
the relocation dictionary in the assembly
listing. This dictionary includes both
those address constants that are modified
by self-relocating macros, and those that

are not. The address constants not
mOdified by self~relocating macros must be
modified by some other technique. After
the program has been linkage edited with a
phase origin of +0, the contents of each
address constant is the displacement from
the beginning of the phase to the address
pointed to by that address constant.

The following techniques place relocated
absolute addresses in address constants.
These techniques are required only when the
LA instruction 'cannot be used.

Technique 1

Named A-type address constants:

ADCON

•
LA
ST
•
•
DC

4,ADCONAME
4,ADCON

A (ADCONAME)

Section 3: Program Design 151

Technique 2

A-type address constants in the literal
pool:

•
LA 3,=A(ADCONAME)
LA 4, ADCONAME
ST 4,0(3)
•
•
LTORG

=A(ADCONAME)

Technique 3

A-type address constants with a specified
length of three bytes, and a nonzero value
in the adjacent left byte (as in CCWs):

A. If CCW list dynamically changes during
program execution:

1.
•
IC 3,TAPECCW
LA 4,IOAREA
ST 4,TAPECCW
STC 3,TAPECCW
•

TAPECCW ccw 1,IOAREA,X'20',100
•
•

IOAREA DS ,CLI00

2.
•
USING *,12
BALR 12,0
LA 12,0(12)
BCTR 12,0
BCTR 12,0 Reg. 12 contains re-

location factor
•
L 11,TAPECCW
ALR 11,12
ST 11,TAPECCW
•

TAPECCW CCW 1,IOAREA,X'20',100
•

IOAREA DS CLI00

152 DOS System Programmer's Guide

B. If CCW list is static during program
execution:

•
LA 4, IOAREA
ST 4,TAPECCW
MVI TAPECCW,l
•
•

TAPECCW CCW 1,IOAREA,X'20',100
•
•
DS CLI00

Technique 4

Named V-type or A-type address constants:

•
LA 3,ADCONAST Determine
S 3,ADCONAST Relocation

factor
•
•
L 4,ADCON
AR 4,3 Add Relocation factor
ST 4,ADCON
•
•

ADCONAST DC A(*)
ADCON DC V (NAME)

Note that the load point of the phase is
not synonymous with the relocation factor
as developed in register 3 (technique 4).
If the load point of the phase is taken
from register 0 (or calculated by a BALR
and subtracting 2) immediately after the
phase is loaded, it may be added to address
constants with varying results. If the
phase was linkage edited with an origin of
+0, the correct results are obtained. If
the phase was linkage edited with an origin
of * or S, incorrect results are obtained
because, both the linkage editor and the
program itself have added the load point to
all address constants. See Figure 3.5 for
an example of a self-relocating program.

)

SOURCE STATEMENTS
REPRO

PROGRAM

PHASE EXAMPLE,+O
PRINT NOGEN
START 0
BALR 12,0
US I NG ~~, 12

ROUTINE TO RELOCATE ADDRESS CONSTANTS
LA 1,PRINTCCW
ST 1,PRINTCCB+8
LA 1,TAPECCW
ST 1,TAPECCB+8
IC 2,PRINTCCW
LA 1,OUTAREA
ST 1,PRINTCCW
STC 2,PRINTCCW
LA 1,.INAREA
ST 1,TAPECCW
MVI TAPECCW,READ

+0 ORIGIN IMPLIES SELF-RELOCATION

RELOCATE CCW ADDRESS
IN CCB FOR PRINTER

RELOCATE CCW ADDRESS
IN CCB FOR INPUT TAPE

SAVE PRINT CCW OP CODE
RELOCATE OUTPUT AREA ADDRESS

IN PRINTER CCW
RESTORE PRINT CCW OP CODE
RELOCATE INPUT AREA ADDRESS

IN TAPE CCW
SET TAPE CCW OP CODE TO READ

~ MAIN ROUTINE ... READ TAPE AND PRINT RECORDS
READTAPE LA 1,TAPECCB

EXCP (1)

CHECK

CHA12

EOFTAPE

PRINTCCB
TAPECCB

PRINTCCW
TAPECCW
OUTAREA
INAREA
SLI
READ
PRINT
SKIPT01

WAIT (1)
LA 10,EOFTAPE
BAL 14,CHECK
MVC OUTAREA(10),INAREA
MVC OUTAREA+15(70),INAREA+10
MVC OUTAREA+90(20),INAREA+80
LA 1,PRINTCCB
EXCP (1)
WAIT (1)
LA 10, CHA12
BAL 14,CHECK
B READTAPE
TM 4(1),1
BCR 1,10
BR 14
MVI PRINTCCW,SKIPT01
EXCP (1)
WAIT (1)
MVI PRINTCCW,PRINT
BR 14
EOJ
CNOP 0,4
CCB SYS004,PRINTCCW,X'0400'
CCB SYS001,TAPECCW

CCW PRINT,OUTAREA,SLI,L'OUTAREA
CCW READ,INAREA,SLI,L'INAREA
DC CL110"
DC CL100"
EQU X'20'
EQU 2
EQU 9
EQU X'8B'
END PROGRAM

Figure 3.5. Self-Relocating Sample Program

GET CCB ADDRESS
READ ONE RECORD FROM TAPE
WAIT FOR I/O COMPLETION
GET ADDRESS OF TAPE EOF ROUTINE
GO TO UNIT EXCEPTION SUBROUTINE
EDIT RECORD
IN
OUTPUT AREA
GET CCB ADDRESS
PRINT EDITED RECORD
WAIT FOR I/O COMPLETION
GET ADDRESS OF CHAN 12 ROUTINE
GO TO UNIT EXCEPTION SUBROUTINE

CHECK FOR UNIT EXEC. IN CCB
YES-GO TO PROPER ROUTINE
NO-RETURN TO MAINLINE

SET SEEK TO CHAN 1 OP CODE
SEEK TO CHAN 1 IMMEDIATELY
WAIT FOR I/O COMPLETION
SET PRINTER OP CODE TO WRITE
RETURN TO MAINLINE
END OF JOB
ALIGN CCB'S TO FULL WORD

Section 3: Program Design 153

Linkage Editor Examples

LINK EDIT-AND-EXECUTE-EXAMPLE

// JOB LINKEXEC

*
*

LINK EDIT AND EXECUTE IN BACKGROUND. SINGLE PHASE, SINGLE OBJECT MODULE
RELOCATABLE MODULE NOT CATALOGED, BACKGROUND PROGRAM

* NONSEQUENTIAL DASD & LABELED TAPE FILES TO BE PROCESSED
1. // ASSGN SYSLNK,X'190'
2. // OPTION LINK
3. PHASE PROGA, *

INCLUDE

4. Relocatable object deck

/*
5. // LBLTYP NSD(2)
6. // EXEC LNKEDT

7. Any job statements required for execution such as ASSGN or label statements.

8. // EXEC
Data input as required.

/*
/&

*
*
*

1.
2.

TO CATALOG AND EXECUTE, CHANGE STATEMENT 2 TO // OPTION CATAL.
TO CATALOG ONLY, CHANGE STATEMENT 2 TO / / OPTION CATAL AND
REMOVE ALL STATEMENTS FOLLOWING LNKEDT EXCEPT /&

*
*

3. TO USE MODULE FROM RELOCATABLE LIBRARY, CHANGE STATEMENT 3
TO INCLUDE MODULES AND REMOVE ALL STATEMENTS UP TO // LBLTYP.

Explanation for Link Edit and Execute

This example illustrates the basic concept
of linkage editing and executing by using a
single phase that is constructed from a
single relocatable object deck contained in
punched cards. The program is executed in
the background partition. Labeled tape and
nonsequential DASD files are to be
processed when the phase is executed. No
more than two extents are used by any DASD
file.

Statement 1: No assignments are necessary,
because the system units required for
linkage editing are in the assumed
configuration. However, an ASSGN for
SYSLNK is included to illustrate its
position relative to the OPTION statement
in case assignment is required.

statement 2: The OPTION LINK statement
sets switches to indicate that a linkage
editor operation is to be performed. If
SYSLNK has not been assigned, the statement
is ignored. Linkage editor control
statements are not accepted unless the

154 DOS System Programmer's Guide

I OPTION statement is processed. Because
option is LINK, not CATAL, only link
editing is performed; cataloging to the
core image library does not occur.

Statement 3.: The PHASE statement is copied
on SYSLNK, because position 1 is blank and
the LINK switch is on. The operands are
not examined until SYSLNK becomes input to
the linkage editor program.

When the PHASE statement is processed by
the linkage editor, only one phase is
constructed, because only one PHASE
statement is submitted for the entire
LNKEDT. The name of this phase is PROGA,
as specified in the first operand. The
second operand indicates the origin point
for the phase. Because an * has been used,
the phase begins in the next main storage
location available, with forced doubleword
alignment. Because this is the first and
only phase, it is located at the end of the
supervisor plus length of the label save
area (reserved by LBLTYP) plus length of
any area assigned to the COMMON pool (as
designated by a CM entry in the relocatable
module).

A relocation factor, either plus or
minus, is used with the *, such as *+1024.
This causes the origin point of the phase
to be set relative to the * by the amount
of the relocation term. This term can be
expressed as:

X'hhhhhh'
dddddddd
nK

1 to 6 hexadecimal digits
1 to e decimal digits
where K = 1024

*+1024 uses the second format and adds 1024
bytes to the origin location. +lK or
+X'400' gives the same result as +1024.

Statement 4: The INCLUDE statement has no
operands, so the system reads the records
from SYSIPT and writes them on SYSLNK until
SYSIPT has an end-of-data (/*) record. The
data on SYSIPT is expected to be the object
module in card image format that is used in
this linkage editor operation. If the
output of the language translator (SYSPCH)
is placed on 2311/2314/2319 instead of
cards, it cannot be used directly as SYSIPT
in a linkage editor operation because the
records contain a stacker select code in
position 1. SYSPCH must be converted to an
SO-position card image record.

Statement 5: The LBLTYP statement causes a
computation of the number of bytes that are
required for label storage data in the
program to be linkage edited. In this
example, 124 bytes are reserved (S4 +
[2x20]). The calculation is saved by job
control and passed on first to the linkage
editor and later to LIOCS.

Statement 6: The EXEC LNKEDT writes an
ENTRY statement with no operand on SYSLNK
and causes the system loader to bring in
the linkage editor program.

Using the data just placed on SYSLNK as
input, the linkage editor develops
executable code. The output is placed in
the next available space of the core image
library (immediately after the last
cataloged phase). This is true regardless
of whether the program is cataloged or not.
Cataloging causes the updating of the
directory to reflect a new ending point for
the library. If cataloging does not occur,
the next program that is linkage edited
overlays it. For this reason, a linkage
edited program that is not cataloged is
said to be placed in the temporary area of
the core image library. Also, a program
that is linkage edited without cataloging

must be linkage edited whenever it is used.
No ACTION options are specified.
Therefore, in resolving the external
references, the system makes use of the
AUTOLINK feature. Error diagnostics and a
main storage map are written on SYSLST,
because SYSLST is assigned.

Statement 7: Because the program is not
cataloged, it must be executed immediately.
Any pertinent job control statements are
entered at this point.

Statement S: An EXEC statement with no
operand indicates that the phase to be
executed was just linkage edited.
Therefore, no search of the core image
directory is required, and the system
loader brings the program into main storage
from the temporary area and transfers
control to its entry point. In this
example, the entry point is either the
address specified in the END record, or the
phase load address if the END address is
omitted, because the automatic ENTRY
statement is in effect.

This example can be modified to
illustrate the following:

1. Catalog and execute. To cause this
phase to be cataloged rather than
merely linkage edited, change the
OPTION (statement 2) from LINK to
CATAL. The core image library
directory still refers to the old
version of the program. It is not
updated until /& has been read.

2. Catalog only. To catalog only, change
the OPTION (statement 2) from LINK to
CATAL and remOve all data following
the EXEC LNKEDT (statement 6) up to
the /& statement.

3. Catalog Object module in relocatable
library. The name to catalog the
object module into the relocatable
library must be added to the INCLUDE
statement. If the name is RELOCA, the
statement becomes INCLUDE RELOCA. The
relocatable object deck and /*
statement are removed. This form of
the INCLUDE statement is written on
SYSLNK when it is read by job control.
The linkage editor retrieves the
object module when it encounters the
INCLUDE statement because it uses
SYSLNK for input.

Section 3: Program Design 155

CATALOG TO CORE IMAGE LIBRARY EXAMPLE

// JOB CATALCIL
* LINK EDIT AND CATALOG TO CORE IMAGE LIBRARY
*
*
*

1. //

SINGLE PHASE, MULTIPLE OBJECT MODULES, FOREGROUND PROGRAM
MIXTURE OF CATALOGED AND UNCATALOGED RELOCATABLE MODULES
LABELED TAPE FILES AND SEQUENTIAL DASD FILES TO BE PROCESSED
ASSGN SYSLNK,X'190'

2. //
3.
4.

/*

/*

OPTION CATAL
PHASE PROGB,F+32168
INCLUDE

Relocatable object deck

INCLUDE SUBRX
INCLUDE SUBRY
INCLUDE

Relocatable object deck

5. // LBLTYP TAPE
6. // EXEC LNKEDT
7. /&

Explanation for Catalog to Core Image
Library

This example illustrates the cataloging of
a single phase composed of multiple
relocatable object modules. These modules
are located in the input stream and in the
relocatable library. Labeled tape files
and sequential DASD files are processed
when the phase is executed. The program is
executed in a foreground partition. Assume
that the foreground partition begins at
location 32168.

Statement 1: The SYSLNK assignment
indicates the relationship to the OPTION
statement, although it is not required
because of the assumed configuration.

statement 2: The OPTION CATAL statement
sets the LINK switches, as well as a CATAL
switch. If SYSLNK is not assigned, the
statement is ignored. The linkage editor
control statements are not accepted unless
the OPTION statement is processed. Linkage
editing and cataloging to the core image
library will occur.

Statement 3: Only one PHASE is
constructed. It is cataloged to the core
image library and retrieved by the name
PROGB. Because this is to be a foreground

156 DOS System Programmer's Guide

phase, F plus the location address in the
foreground partition must be specified.

A program may be linkage edited to any
address that 7 falls within a foreground
partition. The load address does not have
to coincide with the partition address.
However, the program must be of such a size
that it can reside in the available core
defined from the load address to the end of
the partition.

The address may be expressed in one of
three forms:

X'hhhhhh'

dddddddd

nnnnK

A hexadecimal number of 4
to 6 digits
A decimal number of 5 to
8 digits
Where K = 1024 and n is 2
to 4 digits

+X'8000', +32168, and +32K are equivalent.
The actual origin point of the phase is
adjusted upward from the address.
specification to allow for the partition
save area, and the label information
CLBLTYP statement reservation>.

Statement 4: Four modules make up this
phase. The first and last are not
cataloged in the relocatable library;
therefore the object decks must be on

SYSIPT, and each must be followed by the
end-ef-data recerd (/*>. SUBRX and SUBRY
are cataloged previously to' the relocatable
library by these names. Jeb centrel puts
the uncataloged modules on SYSLNK in place
ef their INCLUDE statements. Jeb control
copies the INCLUDE statements for the
cataloged modules.

Statement 5: The LBLTYP statement has the
operand TAPE, rather than NSD because
labeled tapes and sequential DASD files are
precessed when the phase is executed.
Eighty bytes are reserved ahead of the
actual phase for label infermatien. LBLTYP
NSD is also. satisfactory because it
generates a minimum of 104 bytes and tapes
require only 80.

Statement 6: The EXEC LNKEDT statement
causes the system loader to' bring in the
linkage editor program. SYSLNK new becemes
input to' the linkage editer. It centains
the fellewing:

PHASE PROGB,F+32768
First uncataleged relecatable deck
INCLUDE SUBRX
INCLUDE SUBRY
Second uncataloged relocatable deck
ENTRY

The medules are linkage edited so that they
occupy contigueus areas in main storage in
the sequence in which they appear in the
input stream. When the linkage editing is
completed, cataloging to' the core image
library eccurs because ef the CATAL option.
The core image directery is checked to' make
sure the new phase entries fit. If net,
the job is canceled. The directory is
scanned fer any match to' a phase being

cataleged. A match is deleted frem the
directery. The system directery is updated
to' reflect the changes. Jeb contrel is
brought into main sterage.

Statement 7: Because CATAL was specified,
a special routine is executed when the /&
centrol statement is read by job centrel.
This reutine updates the transient,
library-routine, and foreground-pregram
directeries. A system status repert is
printed to reflect the usage and available
space in each ef the libraries and
directeries. These eperations de not occur
in a LINK situation. The /& resets the
CATAL eption, that is, it turns eff the
LINK and CATAL switches.

The example can be medified to
illustrate a cataleg-and-execute eperatien
by inserting the fellowing data between the
EXEC LNKEDT and /& statements:

1. Any job centrol statements required
fer executien er PROGB

2. A // EXEC statement

3. Any card reader input for PROGB

Note that the actual update ef the
directories and the system status report
are delayed until completien ef the
execution of PROGB, when /& is read. Frem
a system design standpeint this is net
desirable because ef possible eperatienal
problems. Making the execution ef PROGB a
separate job avoids any difficulties. All
cere image library directories are updated
at /&. This is time censuming and sheuld
net be done fer each module cataloged.

Section 3: Program Design 157

EXECUTE LINKAGE EDITOR IN FOREGROUND AND CATALOG TO PRIVATE CORE IMAGE LIBRARY tXAMPLE

// JOB CATLCIL
* LINK EDIT AND CATALOG TO PRIVATE CORE IMAGE LIBRARY
* LINKAGE EDITOR EXECUTING IN FOREGROUND
* SINGLE PHASE, MULTIPLE OBJECT MODULES, FOREGROUND PROGRAM
* MIXTURE OF CATALOGED AND UNCATALOGED RELOCATABLE MODULES
* LABELED TAPE FILES AND SEQUENTIAL DASD FILES TO BE PROCESSED

1. ASSGN SYSCLB,X'191'
2. // ASSGN SYSLNK,X'190'
3. // OPTION CATAL
4. PHASE PROGB,S
5. INCLUDE

Relocatable object deck

INCLUDE SUBRX
INCLUDE SUBRY
INCLUDE

Relocatable object deck

6. // LBLTYP TAPE
7. / / EXEC LNKEDT
8. /&

Explanation for Catalog to Private Core
Image Library

This exampl.,a_illustrates the execution of
the linkage editor in a foreground
partition and the cataloging of a phase to
a private core image library. This
function is possible only in a system
supporting the batched-job foreground and
private core image library options. The
phase being cataloged is the same as that
in the previous example where the link edit
was executed in the background.

Statement 1: The assignment of a private
library is accomplished by the ASSGN SYSCLB
statement. The label for SYSCLB must be
stored on PARSTD or STDLABEL cylinder, or,
if the DLBL statement is included in the
job stream, it must follow the ASSGN SYSCLB
statement.

Statement 2: The SYSLNK assignment
indicates the relationship to the OPTION
statement, although it is not required
because of the assumed configuration.

statement 3: The OPTION CATAL statement
sets the LINK switches, as well as a CATAL
switch. If SYSLNK is not assigned, the
statement is ignored. The linkage editor
control statements are not accepted unless

158 DOS System Programmer's Guide

the OPTION statement is processed. Linkage
editing and cataloging to the core image
library will occur.

Statement 4: Only one PHASE is
constructed. It is cataloged to the
private core image library and retrieved by
the name PROGB. An origin point of S
origins PROGB at the starting address of
the foreground partition, plus the length
of the save areas and the area aSSigned to
the COMMON pool, if any.

Statement 5: Four modules make up this
phase. The first and last are not
cataloged in the relocatable library;
therefore, the object decks must be on
SYSIPT, and each must be followed by the
end-of-data record (/*). SUBRX and SUBRY
are cataloged previously to the relocatable
library by those names. Job control puts
the uncataloged modules on SYSLNK in place
of their INCLUDE statements. Job control
copies the INCLUDE statements for the
cataloged modules.

Statement 6: The LBLTYP statement has the
operand TAPE, rather than NSD because
labeled tapes and sequential DASD files are
processed when the phase is executed.
Eighty bytes are reserved ahead of actual
phase for label information. LBLTYP NSD is
also satisfactory because it generates a

minimum of 104 bytes and tapes require only
80.

Statement 7: The EXEC LNKEDT statement
causes the system loader to bring in the
linkage editor program. SYSLNK now becomes
input to the linkage editor. It contains
the following:

PHASE PROGB,S
First uncataloged relocatable deck
INCLUDE SUBRX
Second uncataloged relocatable deck

The modules are link-edited so that they
occupy contiguous areas in main storage in
the sequence in which they appear in the
input stream. When the linkage editing is
completed, cataloging to the private core
image library occurs because of the CATAL
option. The private core image directory
is checked to make sure the new phase
entries fit. If not, the job is canceled.
The directory is scanned for any match to a
phase being cataloged. A match is deleted
from the directory. The system directory
is updated to reflect the changes. Job
control is brought into main storage.

Statement 8: Because CATAL was specified,
a special routine is executed when the /&
control statement is read by job control.
This routine updates the transient,

library-routine, and foreground-program
directories for the private core image
library. A system status report is printed
to reflect the usage and available space in
each of the libraries and directories •.
These operations do not occur in a LINK
situation. The /& resets the CATAL option,
that is, it turns off the LINK and CATAL
switches.

The example can be modified to
illustrate a catalog-and-execute operation
by inserting the following data between the
EXEC LNKEDT and /& statements:

1. Any job control statements required
for execution or PROGB

2. A // EXEC statement

3. Any card reader input for PROGB

Note that the actual update of the
directories and the system status report·
are delayed until completion of the
execution of PROGB, when /& is read. From
a system design standpoint this is not
desirable because of possible operational
problems. Making the execution of PROGB a
separate job avoids any difficulties. All
core image library directories are updated
at /&. This is time consuming and should
not be done for each module cataloged.

Section 3: Program Design 159

COMPILE AND EXECUTE EXAMPLE

// JOB COMPEXEC
* COMPILE OR ASSEMBLE, LINK EDIT AND EXECUTE
* SINGLE PHASE, MULTIPLE OBJECT MODULES, BACKGROUND PROGRAM
* SEQUENTIAL DASD FILES TO BE PROCESSED
* INPUT TO LINKAGE EDITOR FROM LANGUAGE TRANSLATOR, RELOCATABLE LIBRARY AND SYSIPT~

1. // ASSGN SYSLNK,X'190'
2. // OPTION LINK
3. PHASE PROGA,S
4. // EXEC COBOL

COBOL source statements

/*
INCLUDE SUBRX

5. INCLUDE

Relocatable object module

/*
6 • ENTRY BEGIN1

/ / EXEC LNKEDT

7. Any job control statements required for PROGA execution.

// EXEC

Any input data required for PROGA execution.

/*
/&

Explanation for compile and Execute

The language translators provide the option
of placing their output on SYSLNK rather
than SYSPCH. Because the linkage editor
uses SYSLNK for input, a program can be
assembled or compiled, then linkage edited
and executed. This operation, known as
assemble/compile and execute, is
illustrated by this example.

All three sources of object module input
to the linkage editor are used: SYSIPT,
the relocatable library, and the output
from a language translator. It is assumed
that the phase is executed in the
background partition, and that only
sequential DASD files or unlabeled tape
files are processed.

statement 1: The SYSLNK assignment is
given to illustrate the relationship to the
OPTION statement, although it is not
required because of the assumed
configuration.

160 DOS System Programmer's Guide

Statement 2: Because SYSLNK is assigned,
the OPTION LINK statement sets the link
indicator switches.

Statement 3: The PHASE statement,must
always precede the relocatable modules to
which it applies; therefore, it is written
on SYSLNK first for later use by the
linkage editor. S is the origin ,point,
that is, the phase originate~ with the
first doubl~word at the end of the
supervisor plus length of the label save
area (as defined ~ LBLTYP) plus length of
the area assigned to the COMMON pool (if
any). This gives the same effect as *
gives for a single phase or the first
phase. As with the *, the S may be used
with a relocation factor, for example,
S+1024. The factor must always be
positive, because a negative factor could
cause the origin point to overlay the
supervisor.

Statement 4: The appropriate language
translator is called (in this case, COBOL).
The normal rules for compiling are
followed; the source deck must be on the
unit assigned to SYSIPT and the /* defines

the end of the source data. Because the
LINK switches are set, the output of the
language translator is written on SYSLNK.
Except for PL/I, FORTRAN (F) and the
ASSEMBLER (F) and 14K variant, the DECK
option is ignored when SYSLNK is used.

Statement 5: The INCLUDE SUBRX statement
is written on SYSLNK. The linkage editor
retrieves the named module from the
relocatable library. Because the operand
is blank, the next INCLUDE statement
signifies that the relocatable module is on
SYSIPT. The data on SYSIPT is copied on
SYSLNK until the /* statement.

Statement 6: The ENTRY statement is
written on SYSLNK as the last linkage
control statement. The symbol BEGIN1 must
be the name of a CSECT or a label
definition defined in the first phase. The
address of BEGIN1 becomes the transfer
address for the first phase of the program.
The ENTRY statement is used because the
user wishes to provide a specific entry
point rather than to use the point
specified in the END record or the load
address of the phase. The ENTRY statement
affects the first, or onlYr-phase.

Statement 7: No LBLTYP statement is
required, because only sequential DASD

files are to be processed. The rest of the
statements follow the same pattern as
discussed in the Linkage Editing and
Execute example. The input from SYSLNK to
the linkage editor is:

PHASE PROGA, S
Relocatable module produced by COBOL

compilation
INCLUDE SUBRX
Relocatable module from SYSIPT
ENTRY BEGIN1

If an error is detected during
compilation of a source program, the LINK
option is suppressed. Under these
circumstances the EXEC LNKEDT and EXEC
statements are ignored in this example.
This LINK option suppression should be kept
in mind if a series of programs is to be
compiled and cataloged as a single job.
Failure of one job step would cause failure
of all succeeding steps. Remember that an
OPTION LINK cannot be given if OPTION CATAL
is in effect, because message lS1nD
(STATEMENT OUT OF SEQUENCE) results. This
is an error in instruction to the system
because CATAL has functions that must be
performed when the next /& statement is
read. Therefore, the CATAL switch must
remain on, and linkage editing only cannot
be performed.

Section 3: Program Design 161

CATALOG FOR PHASE OVERLAY EXAMPLE

// JOB MULTPHAS
* LINK EDIT AND CATALOG TO CORE IMAGE LIBRARY
* MULTIPLE PHASES, MULTIPLE OBJECT MODULES, BACKGROUND PROGRAM
* NO LABELED TAPE OR NONSEQUENTIAL DASD FILES TO BE PROCESSED
// ASSGN SYSLNK,X'190'

1. / / OPTION CATAL
2. PHASE PHASEA,ROOT

INCLUDE MOD1
3. PHASE PHASEB,*

INCLUDE MOD2
4. PHASE PHASEC, PHASEB

INCLUDE MOD3
5. / / EXEC LNKEDT

/&

Explanation for Catalog for Phase Overlay

Sometimes it is not possible to bring an
entire program into main storage because it
requires more bytes of main storage than
are available. To solve this problem the
program can be broken into separate phases
that can be brought into main storage as
required, overlaying all or part of another
phase if desired. The linkage editing of
three cataloged relocatable modules into
phases for overlay is illustrated by this
example.

Statement 1: The OPTION CATAL sets the
switches so that the phases can be linkage
edited and cataloged into the core image
library.

Statement 2: PHASEA is considered the ROOT
phase, that is, it is always resident in
main storage during program execution. The
origin point is the first doubleword
address after the supervisor plus length of
the label save area (if any) plus length of
the area assigned to the COMMON pool (if

162 DOS System Programmer's Guide

any). Only the first phase statement is
permitted to specify ROOT.

Statement 3: The * in the PHASE card for
PHASEB causes MOD2 to be 110kage edited at
the end of PHASEA.

Statement 4: Because PHASEB is specified
as the load address of PHASEC, it is
linkage edited into the same address as
PHASEB. The symbol that designates the
origin point may be a previously defined
phase name as in this example, a previously
defined control section, or a previously
defined external label. A plus or minus
relocation factor may be used (for example,
PHASE2+100).

statement 5: The EXEC LNKEDT causes all
three phases to be linkage edited and
cataloged. When the phases are executed,
the ROOT phase normally is loaded by the
system loader. The other phases would
probably be brought into main storage by
means of the FETCH or LOAD macro issued by
the calling phase.

SUBMODULAR STRUCTURE EXAMPLE

// JOB SUBMOD
• LINK EDIT AND CATALOG TO CORE IMAGE LIBRARY
• MULTIPLE PHASES, ONE OBJECT MODULE (SUBMODULAR STRUCTURE)
• BACKGROUND PROGRAM, NO LABEL STORAGE RESERVATION
// ASSGN SYSLNK,X'190'
/ / OPl'IONCATAL

1. PHASE PBASE1,ROOT
INCLUDE , (CSECT1,CSECT3)

2. PHASE PBASE2,.
INCLUDE , (CSECT2,CSECTS)

3. PHASE PHASE3, PHASE2
INCLUDE , (CSECT4,CSECT6)

4. INCLUDE

Relocatable object deck
/*
// EXEC LNKEDT
/f,

Explanation for Submodular Structure

Several relocatable modules are structured
into several phases. In this example, a
single object module is broken into several
phases. The object module is composed of
CSECT1-CSECT6. It is structured into three
phases with overlay. The module is not
cataloged in the relocatable library. Only
the PHASE AND INCLUDE statements are
discussed.

statement 1: The INCLUDE statement tells
the linkage editor to place CSECT1 and
CSECT3 into PHASE1. The sequence in which
the CSECTs are linkage edited is determined
by the sequence in the input module rather
than the sequence in the INCLUDE statement.
(CSECT3,CSECT1) would give the same result
as (CSECT1,CSECT3). The sequence can be
controlled by issuing separate INCLUDE
statements. For example, INCLUDE ,(CSECT3)
followed by INCLUDE , (CSECT1) causes CSECT3
to be linkage edited before CSECT1,
regardless of the sequence in the object
module.

Note that the first operand is missing
in the INCLUDE statement, as indicated by
the leading comma. This format of the
INCLUDE statement searches the next
succeeding object module on SYSLNK to
locate the named CSECTs. See Statement 4.

PHASE1 is located at the end of the
supervisor plus length of the label save
area, and the COMMON area (if any).

Statement 2: The INCLUDE statement causes
CSECT2 and CSECTS to be used for PHASE2.
This phase is located at the end of PHASE1.

Statement 3: PHASE3 is made up of CSECT4
and CSECT6 and overlays PHASE2 because its
origin point is at the same address as
PHASE2.

Statement 4: This INCLUDE statement with a
blank operand is required to write the
object module that follows in the card
reader onto SYSLNK, to satisfy the INCLUDE
statements with a blank first operand.

With the sequence of statements shown in
the example, the PHASE and INCLUDE
statements are read from SYSRDR. However.
it is permissible to read PHASE and INCLUDE
statements from SYSIPT. To do this.
Statement 4 (INCLUDE blank) is placed ahead
of Statement 1. The INCLUDE with the blank
operand directs job control to read the
following data (which includes the PHASE.
INCLUDE~ and then the object module) on
SYSLNK from SYSIPT to the /* statement. If
SYSRDR and SYSIPT are separate devices.
take care to place the PHASE and INCLUDE
statements on the correct device.

Section 3: Program Design 163

PHASE and INCLUDE statements can also be
in the relocatable library. If the object
module is in the relocatable library under
the name MODi, the following changes are
made:

1. Remove Statements 1 through 3, and add
module name to Statement 4.

// JOB SUBMOD
// OPTION CATAL

INCLUDE MODl
/ / EXEC LNKEDT

2. When the relocatable module is
cataloged to the library, precede it
with the following statements:

PHASE PHASE1, *
INCLUDE MODi, (CSECT1,CSECT3)
PHASE PHASE2, *
INCLUDE MOD1,(CSECT2,CSECTS)
PHASE PHASE3,PHASE2
INCLUDE MOD1,(CSECT4,CSECT6)
Relocatable object deck

164 DOS system programmer's Guide

This form of the INCLUDE statement causes
the linkage editor to search the module
that follows the last INCLUDE statement in
the library for the required control
sections.

SELF-RELOCATING AND MULTIPLE LINK EDITS EXAMPLE

// JOB MULTCATL
* SEVERAL LINK EDITS AS A SINGLE JOB
// OPTION CATAL

1. PHASE PROG1,+0
INCLUDE PROO1

// EXEC LNKEDT
2. PHASE PROG2, *

INCLUDE

Relocatable object module
/*
// EXEC LNKEDT

PHASE PROG3,*
INCLUDE PROO 3

// EXEC LNKEDT
/&
// JOB LINKGO

3. // OPTION LINK
PHASE PROG4, *
INCLUDE

Relocatable object module

/*
// EXEC LNKEDT

Any job control statements required for PROG4 execution.
// EXEC

Any input data required for PROG4.
/*

PHASE PROG5,*
INCLUDE PROG5

// EXEC LNKEDT

Any job control statements required for PROG5 execution.
// ,EXEC

/*
/&

Any input data required for PROG5.

Explanation for Self-Relocating and
Multiple Link Edits

The linkage editing reqUirements for a
self-relocating program and the combining
of several cataloging or link-and-execute
job steps into a single job are illustrated
in this example. Use discretion in
deciding how many steps should be combined
before a /&, because a failure in one step
can cause successive steps to be bypassed
unnecessarily.

Statement 1: The +0 displacement as the
origin part for PROG1 designates this
program as self-relocating. Once this
program is cataloged to the core image
library, it may be executed in any
partition. It can be initiated into the
background partition by job control, if the
supervisor was generated with

multiprogramming capabilities. A non-MPS
supervisor will give message OP77I
(CANCELED DUE TO INVALID ADDRESS).
However, the program can be loaded by using
the LOAD macro in a calling phase.

Statement 2: PROG2 and PROG3 are linkage
edited and cataloged as job steps within
the job MULTCATL. Note that OPTION CATAL
holds for these steps.

Statement 3: A new job is initiated
because the succeeding job steps are linked
and executed without cataloging. (OPTION
LINK cannot be issued when OPTION CATAL is
in effect.) Note that OPTION LINK need not
be reissued before the next job step.

Section 3: Program Design 165

Checkpoint/Restart

When a background program or a hatched-job
foreground program is expected to run for
an extended period of time, provision may
be made for taking checkpoint records
periodically during the run. The records
contain the status of the job and system at
the time the records were written. Thus,
they provide a means of restarting at some
midway point rather than at the beginning
of the entire job, if processing must be
terminated for any reason before the normal
end of job.

For example, some malfunction, such as a
power failure, may occur and cause such an
interruption. If checkpoint records are
written periodically, operation can be
restarted with a set of checkpoint records
written before the interruption. These
records contain everything needed to
reinitialize the system when processing is
restarted.

Any programmer logical unit
(SYSOOO-SYSmax) assigned to tape, or the
2311, 2314, or 2319 can be used for
recording checkpoints if the proper file
definitions are made and the correct label
statements are submitted. Checkpoints must
not be taken on ASCII tape files.

The Disk Operating system includes
routines to take checkpoint records and to
restart a job at a given checkpoint. The
checkpoint and restart routines are
included in the core image library when the
system is generated. The checkpoint
routine is executed in the logical
transient area and is called in response to
a CHKPT macro instruction in the problem
program. The restart routine is called by
job control when it reads a RSTRT control
statement. When a program is restarted,
the user must reissue any STXIT macro
instructions that are desired because the
STXIT linkages established before the
checkpoint was taken are destroyed.
Checkpoint/restart does not save or restore
floating point registers. (If needed,
these registers should be stored in the
problem program area before issuing CHKPT
macro, and restored in a user restart
routine.)

Only background programs or batched-job
foreground programs may be checkpointed.
Checkpoint records are written on a 2311,
2314, or 2319 DASD or on magnetic tape.
Each checkpoint is uniquely identified.
When it is restarted, the RSTRT control
statement specifies which checkpoint is to
be loaded. If multireel files are being
used, the operator must be aware of which
reels were being processed when the
checkpoint was taken.

166 DOS System Programmer's Guide

Multitasking users should only issue the
CHKPT macro in the main task with no
subtasks attached. In addition, no tracks
on any DASD should be in the hold state. A
multitasking abnormal termination routine
should not contain a CHKPT macro.
Checkpoints should be taken while a program
is running successfully, not while it is
canceling. Checkpointed programs must be
restarted in the same partition in which
they were checkpointed. Multiple jobs
maybe checkpointed on the same tape.

Checkpoint records written by previous
versions of the system are not acceptable
to the current version of the system.
However, if they are embedded on magnetic
tape, they are bypassed by the current
version.

It is possible to increase partition
allocation between the time the checkpoint
is taken and the time the program is
restarted, if the starting address of the
partition remains unchanged.

PROBLEM PROGRAM RESPONSIBILITIES

Use of CHKPT Macro

Any partition, except a foreground
partition in a single program mode, can
issue the CHKPT macro successfully. If
multitasking, only the main task can
successfully checkpoint. CHKPT is ignored
when issued by a subtask, a foreground
partition in single program mode, or in any
of the following additional conditions:

1. The device on which the checkpoint
records are to be written is not a
magnetic tape or a disk pack. (The
device must be a 2311, 2314, or 2319
disk if the filename operand is
present.)

2. End of reel is detected while writing
the checkpoint on tape.

3. The area on disk is not large enough
for a single checkpoint.

4. The macro is issued by a
teleprocessing program that has any
I/O operation(s) pending on a
teleprocessing device.

5. The user-specified end address is
greater than the end of the problem
program area.

6. The CHKPT macro is issued before the
disk checkpoint file is opened.

7. Any of the required DTFPH parameters
for the disk checkpoint file contain
errors.

8. If a subtask is attached in the
partition being checkpointed.

9. If any DASD track for the partition
being checkpointed is in the HOLD
state.

Note: Checkpoint records are not
permitted on ASCII tape files.

If a checkpoint is ignored, control
returns to the user with binary zeros in
register o. Otherwise, register 0 contains
the appropriate checkpoint number (in
unpacked decimal).

Checkpoints are usually taken after a
specified period of time has elapsed, or
after a certain volume of input is
processed. When multitasking, use the
following as a guide for selecting a
method:

1. The multitasking operation requires
checkpoints to be taken on a time
interval basis. Therefore, at main
task execution time, a STXIT macro
establishes linkage for an interval
timer interrupt. In the main task
interval timer routine, the problem
program issues WAIT macros to wait for
the detachment of each subtask in the
partition, and then takes the
checkpoint. If the main task must
take an immediate checkpoint, the
interval timer routine in the main
task must first detach all subtasks,
disregarding current processing,
before it can successfully issue the
CHKPT macro.

2. The multitasking operation requires
checkpoints to be taken on a volume
basis. Therefore, the main task
attaches the subtasks necessary to
perform the job, and then issues WAIT
macros to wait for each subtask in the
partition to detach. Each subtask
keeps a count on the unit of work to
be performed and detaches when it is
finished. When all subtasks are
detached, the main task can take the
checkpoint.

After the checkpoint is taken, the main
task can then either attach more, or the
same, subtasks to continue processing.

CHKPT Macro

r----T---------T--------------------------,
I Name I Operation I Operand I

~----+---------+--------------------------~
InamelCHKPT 1 sysnnn,{restart address} I
I I I (r1) I
I I I I I I I[,{ end address}] r, {tpointer:tll
I I I (r2) L (r3) fJI
I I I I
I I I r, {dPointer}] r, {Filename}] I
I I I L (r4) L (rS) I L ____ ~ _________ ~ __________________________ J

SYSnnn specifies the logical unit on which
the checkpoint information is stored. It
must be a magnetic tape or a disk pack.
(See Checkpoint File.)

Restart address (or r1) specifies a
symbolic name of the problem program
statement (or register containing the
address) at which execution is to restart
if processing must be continued later.

End address (or r2) is a symbolic name (or
register containing the address) of the
uppermost byte of the problem program area
required for restart. This address must
follow the logic modules being included
from the relocatable library.

If this operand is omitted, all of main
storage allocated to the partition are
checkpointed.

This operand provides two advantages:

1. Less time and space is required for
recording the checkpoint record set.

2. If a program using 24K of storage is
being run in a larger system and only
24K is checkpointed, that program can
be restarted, either on a 24K system
or as a 24K partition in a
multiprogramming system.

Tpointer (or r3) is the symbolic name of an
eight-byte field contained in the problem
program area. (See Repositioning Magnetic
Tape.)

Dpointer (or r4) is the symbolic name of a
DASD operator verification table that the
user can set up in his own area of main
storage. (See DASD Operator Verification
Table.)

Filename (or rS) is used only for
checkpoint records on disk. It is the name
of the associated DTFPH macro. (see
Checkpoint on Disk.) Special register
notation cannot be used with any of these
operands.

Section 3: Program Design 167

Information That Is and Is Not Saved: When
the CHKPT macro is issued, the following
information is saved:

• Information for the restart and other
supervisor or job control routines.

• The general registers.

• Bytes 8-10 and 12-45 of the
communication region.

• The problem program area (see End
Address Operand).

• All DASD file protection extents
attached to logical units belonging to
the checkpointed program.

The following information is not saved:

• The floating point registers. (If
needed, these registers should be
stored in the problem program area
before issuing CHKPT, and restored in a
user restart routine.)

• Any linkage to user routines set by the
STXIT macro. (If needed, STXIT should
be used in user's restart routine.>

• Any timer values set by the SETIME
macro. (If needed, SETIME should be
used in a user's restart routine.)

• The program mask in problem program
PSW. (If other than all zeros is
desired, the mask should be reset in
user's restart routine.)

NOTES FOR DASD AND MICR FILES

DASD system input or output files (SYSIPT,
SYSLST, etc.) must be reopened at restart
time. In the user's restart routine, the
programmer must be able to identify the
last record processed before checkpoint.

Magnetic Ink Character Reader (MICR)
files require the DTFMR supervisor linkages
to be initiated at restart time. This can
be accomplished by reopening the MICR file
in the user's restart routine. Because the
OPEN macro clears the docum~nt buffer, the
problem program must disengage the device
and process all follow up documents in the
document buffer before taking each
checkpoint.

168 DOS System Programmer's Guide

CHECKPOINT FILE

The checkpoint information must be written
on a disk pack or a magnetic tape (either
7- or 9-track, EBCDIC only). The 7-track
tape can be in either data conversion or
translation mode; however, the magnetic
tape unit must have the data conversion
feature. On 7-track tapes, the 20-byte
checkpoint header and trailer labels are
written in the mode of the tape (Figure
3.9). The data records are written in data
convert mode, odd parity.

Checkpoints On Tape

The programmer can either establish a
separate file for checkpoints or embed the
checkpoint records in an output data file
(EBCDIC only). When the data file is read
at a later time using logical IOCS, the
checkpoint records are automaticallY
bypassed. If physical IOCS is used, the
user must program to bypass the checkpoint
record sets.

If a separate magnetic tape checkpoint
file with standard labels is maintained,
the labels should be either checked by an
OPEN routine or bypassed by a MTC command
before the first checkpoint is taken.

Checkpoints On Disk

If checkpoints are written on disk, the
following must be observed:

1. Define area of disk to be used by
writing a DTFPH macro and using a
DLBL, EXTENT label set.

2. The number of tracks required is
computed as follows:

[

X + L]
n 1 + 30 20 + .£

18 z

where:
n = the number of sets of checkpoint

records to be retained. (When the
defined extent is full, the first
set of checkpoint records is
overlaid.)

c = The number of bytes to be
checkpointed in the user's problem
program up to the end address
specified in the CHKPT macro
operand.

x = The number of disk extents
including nonoverlapping
split-cylinder extents. If
split-cylinder extents overlap on
the same cylinder, the number of
extents counted is the one used by
the program. (This number is zero
if DASD file-protect is not used.)

y = same as preceding for 2321.

z = 3625, if checkpoint records are
written on a 2311. 7249, if
checkpoint records are written on
a 2314/2319.

For each division, the remainder is
rounded to the next highest whole
number before multiplying by n.

3. Open the area on disk by issuing an
OPEN to the DTFPH.

4. Issue a CHKPT macro that points to the
DTFPH to be used.

5. When restarting checkpointed jobs, the
DTFPH filename is specified in the
RSTRT job control card.

6. Each program can use a common
checkpoint file or define a separate
one. If a common file is used, only
the last program using the file can be
restarted.

See Figure 3.6 for an example using the
checkpointed facility on disk.

r----------T-----------T---,
PAYROLL START I

• I
• I CHKPDSK DTFPH DEVICE=2311,MOUNTED=SINGLE,TYPEFLE=OUTPUT I
• I
• I OPEN CHKPDSK I
• I
• I CHKPT SYS004,RSTRT,END"DVER,CHKPDSK I
• I
• I END I

~----------~-----------~---~
I
I / / JOB CHKPT
I
I ASSGN SYS004,X'190'
I
I ASSGN SYSOOO,X'180'
I
I ASSGN SYS001,X'181'
I
I ASSGN SYS002,X'182'
I
I // DLBL CHKPDSK,'CHECKPOINT FILE'",
I
I // EXTENT SYS004,DOS-II",1900,89
I
I / / EXEC PAYROLL L __ J

Figure 3.6. Using Checkpoint Facility on Disk

Section 3: Program Design 169

REPOSITIONING I/O FILES

The I/O files used by the checkpointed
program must be repositioned on restart to
the next record that the user wants to read
or write. The checkpoint facility does not
provide aids for repositioning unit record
files. The programmer must establish his
own repositioning aids and communicate
these to the operator, when necessary.
Some suggested ways are:

1. Take checkpoints at a logical breaking
point in the data, such as paper tape
end~of-reel.

2. Switch card stackers after each
checkpoint.

3. Print information at the time of
checkpoint to identify the record in
process.

4. Issue checkpoints on operator demand.

User sequential DASD input, output, or work
files require no repositioning.

When updating DASD records in an
existing file, the programmer must be able
to identify the last record updated at the
time of the checkpoint in case he needs to
restart. This can be done in various ways:

1. Create a history file to record all
updates by dumping an image of the
direct access record on tape as soon
as it has been read. When a restart
is initiated, these records can be
used to rewrite the file and establish
the status that existed when the
corresponding checkpoint was taken.
When this is completed, normal restart
procedures are accomplished and
reprocessing begins.

2. Create a field in updated records to
identify the last transaction record
that updated it. This field can be
compared with each transaction at
restart time.

Repositioning Magnetic Tape

Checkpoint provides some aid in
repositioning magnetic tape files at
restart. Files can be repositioned to the
record following the last record processed
at checkpoint.

The following discussion presents the
procedure in correlation with Figure 3.7.

110 DOS System Programmer's Guide

The fourth operand of the CBKPT macro
pOints to two V-type address constants that
the user specifies in his coding. The
order of these constants is important.

1. The first constant points to a table
containing the filenames of all the
logical IOCS magnetic tape files that
are to be repositioned.

2. The second constant points to a table
containing repositioning information
for physical IOCS magnetic tape files
that are to be repositioned.

3. If the first, second, or both
constants are zero, no tapes processed
by logical, physical, or both types of
IOCS, respectively, are repositioned.

Name

CHKPT

Operand

SYSOOx,(rl)" POINTER
I

r----------------------~ ,.
POINTER DC r - - - - - V(lOGICL)

I

V(PHYSCL)
I
I r---------'

I ,. r-----J
CNOP

LOGICL DC

DC

r- - - - - - - - - - ..J
I ,.

PHYSCL DC

2,4

H 'n' number of entries
as follows.

r - V(filename 1)
V(filename2)

•
•
•
V{filenamen}

symbolic DTF
name of each
tape file to
be repositioned
at restart

H 'n' number of entries
as follows.

3H six bytes (3 halfwords)
• for each tape fi Ie that
• is to be repositioned
• at restart.

r- - - - - - - - - - - - _J 3H
I
I

I ,
filename 1 DTfxx

Figure 3.1. Procedure for Building Tape
Repositioning Tables

If the tables are contained in the same
CSECT as the CHKPT macro, the constants may
be defined as A-type constants. The user
must build the tables discussed. Each
filename in the logical IOCS table points
to the corresponding DTF table where IOCS
maintains repositioning information. The
user should note the following:

1. Magnetic tapes with nonstandard labels
should be repositioned past the labels
at restart time (presumably the labels
are followed by a tapemark so that
foreward space file may be used).

2. If a tape that is to be repositioned
is processed with nonstandard labels
and is read backwards, the user must
keep a physical IOCS repositioning
table, because the physical record
count kept by loes will be incorrect.
The physical record count must be the
number of forward reads necessary for
restart to position the tape.

3. Restart does not rewind magnetic tapes
when repositioning them.

4. A multifile reel should be
prepositioned to the beginning of the
desired file.

5. The correct volume of a multivolume
file must be mounted for restart.

6. For tapes with a standard VOL label,
restart writes the file serial number
and volume sequence number on SYSLOG,
and gives the operator the opportunity
to verify that the correct reel is
mounted.

7. IOCS can completely reposition files
on system logical units (SYSIPT,
SYSLST, etc), if the tape is not
shared with any other program and if
the user keeps a physical IOCS
repositioning table. However, if a
system logical unit file is shared
with other programs, a problem exists.
output produced after the checkpoint
is duplicated at restart. Input
records must be reconstructed from the
checkpoint, or the user restart
routine must find the last record
processed before checkpoint.

The entries in the physical IOCS table are
as follows:

First halfword: hexadecimal representation
of the symbolic unit number of the tape
(copy from CCB bytes 6 and 7).

Second halfword: number of files within
the tape in binary notation. That is, the
number of tapemarks between the beginning
of tape and the position at checkpoint.

Third halfword: number, in binary
notation, of physical records between the
preceding tapemark and the position at
checkpoint.

DASD operator Verification Table

If the Dpointer operand in the CHKPT macro
is used, the user can build a table in his
own area of main storage to provide the
symbolic unit number and the bin (cell)
number of each DASD file used by his
program. At restart, the volume sequence
number of these files is printed on SYSLOG,
and the operator can verify them.

The entries in the DASD operator
verification table must consist of the
following two halfwords, in the order
stated:

1. The symbolic unit in hexadecimal
notation copied from CCB bytes 6 and
7.

2. The bin (cell) number in hexadecimal
notation is always zero, except for a
2321, in which case the bin number
varies with the cell (0-9) being
verified.

There must be one table entry for each
DASD unit to be verified by the operator.

section 3: Program Design 171

See Figure 3.8 for the procedure for
building a DASD operator verification
table.

Name Operation Operand
:~·:'.~"'h;~·:·:~~~·;·:·:·:·:·:~·:·:·}:·:·:·;·:·:~·:·:';';.;.:.; . :.>:~.:~.:.:.!.;.:.:.:.:.;.:~.:.:.:.;.:.~:.;.:.:.:.:.:.','

CHKPT SYSOOx, RSTRT, END" DVER, CHKPDSK
I I
I I

r----------------------~
I I

r---------------~
I

t
DVER

CNOP

DC

,.. _________ J

I
t

CHKPDSK DTFPH

2, 4

H'n' number of entries
as follows:

2H 4 bytes (2 halfwords)
• are required for each

DASD so that the
• operator can verify

each volume sequence
• number at restart time.

2H

Figure 3.8. Procedure for Building DASD
Operator Verification Table

BYPASSING EMBEDDED CHECKPOINT RECORDS ON
TAPE WITH PHYSICAL IOCS

The checkpoint information saved is written
as a set of magnetic tape records
consisting of a 20-byte header record, as
many core-image records as required to save
the necessary parts of main storage, and a
20-byte trailer record identical to the
header. See Figure 3.9 for the format of
header and trailer record.

If checkpoint sets are embedded in a
file being read with physical IOCS, they
must be recognized and bypassed. On any
mode input tape, checkpoint sets may be
identified by the first 12 bytes of the
header or trailer records. Note that when
reading backwards, the checkpoint header
occupies the 20 low-order bytes of the
input area.

172 DOS System Programmer's Guide

r-----T-------~---------------------------l I Bytes I Contents I
~-----+-----------------------------------~
0-11 /// CHKPT //

12-13 The number, in binary, of core
image records following the header •

14-15 The total number, in unpacked
hexadecimal, of records following
the header.

16-19 The serial number of the check
point. L _____ ~ ___________________________________ J

Figure 3.9. Format of the Checkpoint
Header/Trailer Records

When bypassing checkpoint sets, three
methods are possible:

1. Go into a read loop (forward or
backward) until the checkpoint trailer
(header if backward) is encountered.

2. Extract the count from bytes 12-13 of
the header (or trailer if backwards),
add 2 to this, and forward-space (or
backspace) that number of records.
Read commands could also be used.

3. Extract bytes 14-15 of the header (or
trailer if backwards), pack and
convert the field to binary, and
forward-space (or backspace) that
number of records. Read commands
could also be used.

When bypassing checkpoint sets on
7-track tapes in translate mode, only
method 3 can be used and only forward-space
(or backspace) record commands (not reads)
can be used. Reads would create data
checks.

BYPASSING CHECKPOINT RECORDS ON TAPE WITH
LOGICAL IOCS

When a tape input file contains checkpoint
records interspersed among the data
records, the DTFMT macro parameter
CKPTREC=YES is required. When this
parameter is specified, logical IOCS
bypasses the embedded checkpoint records.

RESTARTING CHECKPOINTED PROGRAMS

Job control prepares the system for
restarting from a checkpoint by loading the
restart program that repositions tape
units, reinitializes the communication
region, and stores the information from the
RSTRT statement. The restart program
handles the actual restarting of the
problem program.

RSTRT Statement

The restart facility allows the programmer
to continue execution of an interrupted job
at a point other than the beginning. The
procedure is to submit a group of job
control statements including a restart
(RSTRT) statement. The control statements
necessary to restart a job from a
checkpoint are:

1. JOB statement specifying the same job
name used when the checkpoint was
taken.

2. ASSGN statements for assigning I/O
devices to the symbolic unit names.

3. RSTRT statement specifying the unit
that contains the checkpoints and the
checkpoint ID number taken from the
message printed when the checkpoint
was taken. The format of the RSTRT
statement is:

// RSTRT SYsxxx,nnnn,filename

SYSxxx Symbolic unit name of the device
on which the checkpoint records
are stored. This unit must have
been previously assigned.

nnnn Identification of the checkpoint
record to be used for restarting.
This serial number is four
characters and corresponds to the
checkpoint identification used
when the checkpoint was taken.
The serial number is supplied by
the checkpoint routine.

filename symbolic name of the 2311 or 2314
disk checkpoint file to be used
for restarting. It must be
identical to the filename of the
DTFPH used to describe the disk
checkpoint file and the fifth
parameter of the CHKPT macro
instruction. This operand
applies only when specifying a
2311 or 2314 disk as the
checkpoint file.

When a checkpoint is taken, the
completed checkpoint is noted on SYSLOG.
Restarting can be done from any checkpoint
record. not just the last. The job name
specified in the JOB statement must be
identical to the job name used when the
checkpoint was taken. The proper 1/0
device assignments must precede the RSTRT
control statement.

Assignment of input/output devices to
symbolic unit names may vary from the
initial assignment. Assignments are made
for restarting jobs in the same manner as
assignments are made for normal jobs.

IBM 3211 Printer Support

The addition of tapeless forms control and
improvements in the use of the loadable
print character buffer required special
programming support for the IBM 3211
Printer. SYSBUFLD is the service program
that loads the Universal Character Set
Buffer (UCSB) and the Forms Control Buffer
(FCB) with buffer load programs for the
3211 printer. SYSBUFLD is self-relocating.
requires 2K of main storage. and is
executed as a job step under BJF or SPI.
It is initiated by the command:

// EXEC SYSBUFLD

$$BUFLDR is another 3211 program, called
by IPL to load the UCSB and FCB buffer
loads from the core image library.

system Considerations

When a 3211 PUB is encountered, the IPL
program calls the buffer load transient,
$$BUFLDR. $$BUFLDR in turn calls $$BUCB to
load the UCSB. and $$BFCB to load the FCB.
As supplied by IBM, these two phases
contain:

$$BFCB the configuration for a 66-line
page (at 6 lines per inch). with
56 lines available for printing.
a channel 1 for line 1, and a
channel 12 for line 56.

$$BUCB the character configuration for
the All train.

Also, $$BUFLDR sets the UCSB for folding
and suppressing data checks.

SYSBUFLD can be used to change the UCSB
or FCB configurations, or to reload these
buffers if a hardware failure occurs.

Section 3: Program Design 173

Only one FCB load is supplied in the DOS
system. Additional FCB loads can be
created using the procedure in the DOS
system Control and Service listed in the
Preface. FCB loads can be either cataloged
in the core image library or can be card
images. Any of your FCB loads can be
cataloged in the core image library as
$$BFCB to enable the IPL program to load
it. If a phase name is not specified
during an FCB load, SYSBUFLD loads the
buffer from SYSIPT.

All UCSB programs must be cataloged in
the core image library. They are loaded by
specifying them in the SYSBUFLD control
card.

The four rema1n1ng standard train
configurations (Gll, Hl1, P11, or T11) are
in the relocatable library under the name
IJBTRxll, where x is G, H, P, or T. These
can be cataloged in the CIL to be loaded
according to the train configuration.

Non-standard UCSB loads can be created
following the procedure in the DOS System
Control and Service listed in the Preface.
Any of these standard or nonstandard loads
can be cataloged as $$BUCB to enable the
IPL program to load that particular train
configuration.

174 DOS System Programmer's Guide

Error Recovery Techniques

The simplest error recovery technique for
the 3211 printer is specifying ERROPT=RETRY
in the DTFPR, which sets CCB byte 2, bit 5
(PRINTOV=YES also sets this bit). This
causes one automatic retry of the
equipment-check/command-retry error.

A more comprehensive technique is
specifying ERROPT=YES in the PRMOD and
ERROPT=name in the DTFPR, which sets eeB
byte 2, bits 5 and 6. These bits indicate
linkage to your error recovery routine
named in the DTFPR, and provide automatic
retry of the equipment-check/command-retry
error.

Return from your error recovery routine
is by register 14. Both registers 14 and
15 must be saved if LIoes is used during
error recovery.

PIoes users can provide linkage to error
recovery by testing the applicable bits in
the eeB. See Figure 3.10 for the error
indicators.

If PIoes or LIoes is used, the sense
information is not available to the user.
The sense command, issued by the DOS error
recovery routines, clears the 3211 sense
information.

CCB Byte Bit

2 1

3 0

3 1

3 2

3 3

3 4

Error

UCSB Parity Check - Line Complete:
There has been a parity error in at least one position of the UCSB. All characters in the I ine have been
printed and line spacing has taken place. The position in error has been cleared, so errors will not be
encountered during subsequent scans of the UCSB.
Printer speed is degraded as a result of this error. Full printing speed cannot be regained until the UCSB
is reloaded. You need a routine to reload the UCSB during the job step, or use SYSBUFLD to reload the
UCSB before the next job step.

Equipment Check/Print Check:
This is a hardware error that has resulted in an incomplete I ine, but I ine spacing has taken place. Check
for possible line position or print quality errors. The line in error must be either accepted or the page
reprinted (a user - written routine is needed).

Equipment Check/Print Quality:
This indicates a hardware error has occurred that caused light or blurred printing. Line spacing has
taken place. Check for possible print check or line position errors.
The line in error must be accepted or the page reprinted (a user-written routine is needed).

Line Position Error:
This can be a hardware error, a parity error in the FCB, or the result of a skip to a channel code not in
the FeB. Check for possible print check or print quality errors.
There is no way to tell where the carriage is positioned relative to the FBC; physical repositioning, as
well as reloading of the FCB, may be necessary.

Data Check/Print Check:
An unprintable character has been sent to the printer. The appl icable position (s) in the print line are
bl ank and the paper has been spaced.
The line in error must be either accepted or the page reprinted (a user-written routine is needed).
Note: Check or reload the UCSB to ensure that the correct load has been used.

USCB Parity Check/Command Retry:
There has been a parity error in at least one position of the UCSB. The appl icable position(s) in the
print line is blank, but the paper has not been spaced. Subsequent attempts to print the applicable
character will result in a data check/print check.
The UCSB can be reloaded (a user - written routine is needed), and the applicable command (s)
reissued.

I Figure 3.10. 3211 Error Status Indicator Bits in the CCB

Macro Writing

The macro-definition language discussed
here provides a systematic means by which
the oos/360 assembler language programmer
can develop macro instructions, thereby
expanding the set of machine-oriented
instructions that serve as the basis of the
assembler language. This enables the
programmer to reduce programming effort and
shorten the assembler language source
programs. With the aid of the macro
language, any sequence of statements can be
summarized into a single macro definition.
Once written, this definition can be stored
and referred to at any time, thus supplying
the programmer with precoded routines. The
programmer only writes a single statement,
a macro instruction, to access the macro

definition and retain access to all machine
facilities.

systematic use of macro instructions
simplifies the coding of programs, reduces
the frequency of programming errors, and
encourages the use of carefully
standardized sequences of assembler
language statements for routine functions.

There are two classes of macros in the
Disk Operating System: system macros,
which are IBM-written macros supplied with
the system, and user macros, which are
defined by the user. The user macros may
be included in the source program and/or
may be entered into the source statement
library.

Section 3: Program Design 175

The source statement library contains
both user and system macro definitions.
This library, which can be a part of system
Residence (SYSRES) or a private library,
eliminates the need for including
definitions in the source module.

MACRO INSTRUCTION

The macro instruction statement is in
assembler statement format. Symbols are
used as a shorthand method of representing
rules, definitions, etc. These macro
instructions result in a one-for-one
assembler statement.

The name field of the macro instruction
may contain a symbol that is not defined
unless a symbolic parameter appears in the
name field of the prototype and the same
parameter appears in the name field of the
generated model statement (see The Macro
Definition) •

The operation field contains the
mnemonic operation code of the macro

instruction and has to be the same as the
mnemonic operation code in the source
program or in the source statement library.

The placement and order of the operands
in the macro instruction statement is
determined by the placement and order of
the symbolic parameters in the operand
field of the prototype statement. The
operand field contains from 0-200 entries,
separated by commas (entries are commonly
referred to as parameters). Any
combination of up to 255 characters may be
used as a macro instruction operand if the
rules concerning apostrophes, parentheses,
equal signs, ampersands, commas and blanks
are observed. These are described in the
Tape Operating Systems Assembler Language
publication listed in the front of this
manual.

The operand maybe written in a format
different than that used for assembler
language statements. The alternate format
described here allows the programmer to
write an operand on each line and allows
the interspersing of operands and comments
in the statement. Figure 3.11 illustrates
the operand formats.

r------T---------~--------------------------------------T-----------,
I Name I OperationlOperand Comments I Col. 72 I
~------+----------+--------------------------------------+-----------~
I I I I I
I NAMEl I OPl I OPERAND1, OPERAND2, I x I
I I IOPERAND3 THIS IS THE NORMAL FORMAT I I
I I I I I
INAME2 I OP2 IOPERAND1, THIS IS THE I x I
I I I OPERAND 2 , OPERAND3 ALTERNATE FORMAT I I
I I I I I
INAMEJ I OP3 IOPERAND1, THIS IS A COMBINATION I x I
I I IOPERAND2,OPERAND3,OPERAND4, I x I
I I I OPERANDS OF BOTH FORMATS I I L ______ ~ _________ ~ ______________________________________ ~ ___________ J

Figure 3.11. Operand Field Formats

When a program is written in the Disk
Operating system macro language (an
extension of DOS assembler language), one
of three macro instruction formats can be
used: keyword, pOSitional, or mixed.

Figure 3.12 shows the typical form of a
keyword macro instruction to be used with a
keyword macro definition.

176 DOS System Programmer's Guide

r----------T--------~--------------------, I Name I Operation I Operand I
~----------+---------+~-------------------~
IA symbol, Imnemonic IZero to 100 or 200 I
I sequence I operation I operands, separated I
Isymbol, orlcode Iby commas. I
I not used I I I L _________ -L ________ -L ____________________ J

Figure 3.12. Keyword Macro Instruction

Each operand consists of a keyword
immediately followed by an optional value.
Nested keywords are not permitted. A
keyword consists of one to seven letters
and digits, the first of which must be a
letter. The operands of a keyword macro
instruction may be written in any order.
If an operand is omitted, the comma that
would have separated it from the next
operand need not be written.

The following are valid keyword macro
instruction operands:

A4=F'6041'
DUPE4=MEMBER
so=

The following are invalid keyword macro
instruction operands:

&X4.P3=O(1,4)

CARDAREA=B+l

Keyword does not begin
with a letter.

Keyword is more than seven
characters.

=(TO(S),(AFTER» No keyword.

.Thetypical macro instruction is .
positional unless otherwise indicated. The
positional macro instruction operands are
written in a fixed order. Figure 3.13
illustrates the positional macro
instruction.

r----------y---------T--------------------,
I Name I Operation I Operand I
~----------+---------+--------------------~
IA symbol, Imnemonic Izero to 100 or 200 I
I sequence loperationloperands, separated I
I symbol, or I code I by commas. I
I not used I I I L __________ ~ _________ ~ ____________ ~ _______ J

Figure 3.13. Positional Macro Instruction

The positional operands, if omi~ted from
the macro instruction but appear in the
prototype, are replaced by the comma that
would have separated them from the next
operand. If the last operand is omitted
from a macro instruction, then the comma(s)
separating the last operand from the
previous operand may be omitted.

Figure 3.14 shows a macro instruction
preceded by its corresponding prototype
statement. The third and sixth operands of
the macro instruction corresponding to the
third and sixth operands of the prototype
statement are omitted in this example.

r----y---------T--------------------------,
I Name I Operation I Operand I
~----+---------+--------------------------~
I IEXAMPLE liA,&B,&C,&D,&E,iF I
I I EXAMPLE 117,*+4"AREA,FIELD(6) I L ____ ~ _________ ~ __________________________ J

Figure 3.14. Macro Instruction with
Prototype

Mixed-mode macro instruction operands
are a combination of both positional and
keyword operands. Certain operand entries
(positional) must be written in a fixed
order: other operand entries (keyword) can
be specified in any order. Figure 3.15
illustrates the mixed-mode macro
instruction.

r---------~---------T--------------------,
I Name I Operation I Operand I
~----------+---------+--------------------~
IA symbol, Imnemonic Izero to 100 or 200 I
I sequence I operation I operands, separated I
I symbol or I code I by commas. I
Inot used I I I L _________ -L ________ -L ____________________ J

Figure 3.15. Mixed Macro Instruction

The operand consists of two parts. The
first part corresponds to the positional
operands. and is written in the same way
that the operand entry of a positional
macro instruction is written. The second
part of the operand corresponds to the
keyword operands. This part is written in
the same way that the operand entry of a
keyword macro instruction is written.
Figure 3.16 illustrates these facilities.

r----T---------T--------------------------,
I Name I Operation I Operand I
~----+---------+--------------------------~
I I MACRO I I
I&N IMOVE I iTY,&P,iR,iTO=,iF= I
liN IST&TY liR,SAVE I
I I LiTY I iR, &P , iF I
I IST&TY liR,iP,iTO I
I IL&TY liR,SAVE I L ____ ~ _________ ~ __________________________ J

Figure 3.16. Mixed-Mode Definition

MACRO DEFINITION

A macro instruction cannot be assembled
unless a macro definition is made available
to the assembler. A macro definition is a
set of statements that provide the
assembler with:

1. The name entry, the mnemonic operation
code, and the form of the macro
instruction operand, and

Section 3: Program Design 177

2. The sequence of statements that the
assembler uses when the macro
instruction appears in the source
program.

Elements of the Macro Definition

Every macro definition is made up of four
elements: header statement, prototype
statement, model statement, and a
macro-definition trailer statement.

The macro instruction header and trailer
statements denote the beginning and end of
a macro definition respectively. The
header statement's name field contains
blanks, the operation field contains the
word MACRO, and the operand field contains
blanks. The header statement is the first
statement of the macro definition. The
trailer statement follows the same general
outline as the header statement; only the
operation field, that contains the word
MEND, is different. The trailer statement
must be present to denote the end of the
macro definition.

A prototype is defined as an original
model on which something is patterned. The
prototype statement of a macro definition
specifies in the operation column, the name
of the macro and the format for the operand
of all macro instructions that make use of
this definition. This prototype statement
must be the second statement in the macro
definition.

Like the operand of the macro
instruction, the prototype statement may be
written in a form different from that used
for machine or assembler instructions. The
alternate form is described under The Macro
Language.

ATTRIBUTES

The assembler assigns attributes to macro
instruction operands and to symbols in the
program. These attributes may be referred
to in conditional assembly instructions
under Conditional Assembly Statements.

There are six kinds of attributes:

1. Type (T'): The type attribute of a
macro instruction is a letter. The
type attribute may be referred to in
the operand of a SETC instruction, or
in character relations in the operands
of SETB or AIF instruction. The
letters used with the type attribute
and their meanings can be found in the

178 DOS System Programmer's Guide

Assembler Language publication listed
in the front of this manual.

2. Length (L'): The length attribute of
a symbol (or ofa macro instruction
operand that is a symbol) is the
length of the specified operand.
Reference to the length attribute of a
variable symbol is illegal except for
symbolic parameters in SETA, SETB, and
AIF statements. Reference must not be
made to the length attributes of
symbols whose type attributes are the
letters M, N, 0, T, or U.

3 and 4. scaling (S') and Integer (I'):
Scaling and integer attributes are
provided for symbols that name fixed
point, floating point, and decimal DC
or OS statement. The programmer may
refer to the length, scaling, and
integer attributes in the operand
field of a SETA instruction, or in
arithmetic relations in the operand
fields ofSETB or AIF instructions.

5. Count Attribute (K'): The programmer
may refer to the count attribute of
macro instruction operands only. The
count attribute is a value equal to
the number of characters in the macro
instruction operand after substituting
for variable symbols excluding commas.
If the operand is a sublist, the count
attribute includes the beginning and
ending parentheses and the commas
within the sublist. The count
attribute of an omitted operand is
zero. The count attribute is one of
the following:

a. the operand field of a SETA
instruction, or

b. in arithmetic relations, the
operand field of SETB or AIF
instructions which are part of a
macro definition can be referenced
by the user.

6. Number Attribute (N'): The number
attribute of macro instruction
operands, only, is referenced. The
number attribute is a value equal to
the number of operands in an operand
sublist. The number of operands in an
operand sublist is equal to one, plus
the number of commas that indicate the
end of an operand sublist. If the
macro instruction operand is not a
sublist, the number attribute is one.
If the macro instruction operand is
omitted, the number attribute is zero.
Reference may be made to the number
attribute in the operand field of a
SETA instruction, or in arithmetic
relations in the operand fields of

SETB and AIF instructions that are
part of a macro definition.

SUBLIST NOTATION

A sublist is one or more operands,
separated by commas and enclosed in paired
parentheses. An operand of a macro
instruction may be a sublist. The entire
sublist, including all operands, commas and
parentheses is considered one macro
instruction operand. Each operand entry
within the parentheses is called a sublist
member.

Sublists provide the user with a
convenient way to refer to a collection of
macro instruction operands as a single
operand, or a single operand in a
collection of operands. For the accessing
of individual members, the left parenthesis
of the sublist notation must immediately
follow the last character of the symbolic
parameter. A period should not be placed
between the left parenthesis and the last
character of the symbolic parameter (Figure
3.17).

r----~--------T-----------------,
I NAME I OPERATION I OPERAND I
~----+---------+-----------------~

HEADER I I MACRO I I
Prototype I IADDNUM I&NUM,®,&AREA I
Model I IL I®,&NUM(l) I
Model I IA I®,&NUM(2) I
Model I IA I®,&NUM(3) I
Model liST I®,&AREA I
Trailer I I MEND I I

~----+---------+-----------------~
I I I I

MACRO I IADDNUM I (A,B,C),6,SUM I
Generated I IL 16,A I
Generated I IA 16,B I
Generated I IA 16,C I
Generated I 1ST 16,SUM I L ____ ~ _________ ~ _________________ J

Figure 3.11. Sublist Illustration

The operand of the macro instruction
that corresponds to symbolic parameter &NUM
is a sublist. One of the operands in the
sublist is referred to in the operand entry
of three of the model statements.

Model statements are the macro
definition statements from which the
desired sequences of machine instructions
and certain assembler instructions are
generated. Zero or more model statements
may follow the prototype statement. A
model statement consists of one to four
entries:

1. Name field entry which can contain
blanks, a symbol, a symbolic parameter
or a sequence symbol.

2. The operation entry may contain any
machine instruction, conditional
instruction, assembler instruction, or
symbolic parameter except COPY, END,
ICTL, ISEQ and PRINT; or it may
contain a variable symbol, depending
on the statement.

3. The operand entry may contain ordinary
symbols or variable symbols. After
substitution, the operand must not be
greater than 121 characters. Model
statements must follow the rules for
paired apostrophes, ampersands, and
blanks, as macro instruction operands.

4. The comments field entry which can
contain descriptive items of
information about the program is
inserted after the operand. All 256
valid characters, including blanks,
may be used in writing a comment. The
entry cannot extend beyond the end
column (normally column 11) and a
blank must separate it from the
operand.

VARIABLE SYMBOLS

The three types of variable symbols are
symbolic parameters, SET symbols and system
variables.

Symbolic Parameter

The symbolic parameter consists of an
ampersand (first character) followed by one
to seven letters and/or numbers, the first
of which must be a letter. Symbolic
parameters appear in prototype and model
statements. They are assigned values by
the programmer when he writes a macro
instruction. The programmer should not use
&SYS as the first four characters of a
symbolic parameter.

Example:
Valid Invalid

&LOOP2 &2BAC (first character
after & not letter)

'READER &AREA2456 (too long)

section 3: Program Design 119

SET Symbols

SET symbols follow the same rules for
structure as symbolic parameters. SET
symbols differ from symbolic parameters in
three ways:

1. their position in an assembler
language source program,

2. how they are assigned values, and

3. how their assigned values can be
changed.

Defining SET Symbols

A SET symbol must be defined by the
programmer before it can be used. It is
defined by appearing as an operand of a
global or local instruction (GBLA, GBLB,
GBLC, LCLA, LCLB, LCLC). Figure 3.18 shows
the typical format of global and local
instructions.

r----------T---------T--------------------,
I Name I Operation I Operand I
~----------+---------+--------------------~
Not used; IGBLA, lOne or more variable
must not IGBLB, Isymbols used as
be present GBLC, or ISET symbols and

LCLA,
LCLB,
LCLC

I separated by commas.
I(If more than one
Imacro defines one
Iglobal SET symbol
land these macros are
lassembled together,
Ithe global SET
Isymbol value is set
Iby the first macro,
Ibut is not altered
Iby subsequent
Imacros.) L __________ ~ _________ ~ ____________________ J

Figure 3.18. Format of Globals and Locals

A global instruction (GBLA, GBLB, GBLC)
defines one or more operands as names
associated with arithmetic, binary, or
character data. These operands are called
global SETA, SETB, or SETC symbols. If a
global instruction is part of a macro
definition, it must immediately follow the
prototype statement or another GBLA, GBLB,
or GBLC. The global definition of these
operands indicates that each SET symbol is
defined both inside and outside the
defining macro and enables communication
between discrete macros.

A local instruction (LCLA, LCLB, LCLC)
defines one or more operands as names
associated with arithmetic, binary, or

180 DOS System Programmer's Guide

character data. These operands are called
local SETA, SETB, or SETC symbols. If a
local instruction is part of a macro
definition, it must immediately follow the
prototype statement and any global
instructions or another LCLA, LCLB, or
LCLC. The local definition of these
operands indicates that each SET symbol is
defined only within the defining macro.

The GBLA or LCLA, GBLB or LCLB, GBLC or
LCLC operands are assigned initial values
of 0 (X'FO'), 0 (X'OO'), and null character
(no hexadecimal number), respectively.

The SETA, SETB, and SETC symbols are
assigned the initial values of 0, 0, and
null character value, respectively.

The SETA instruction in the operand
entry is evaluated as a signed 32-bit
arithmetic value that is assigned to the
SETA symbol in the name entry. Figure 3.19
shows the format of the SETA instruction.

r------T--------~------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I A SETA I SETA lone term, or I
I symbol I Ian arithmetic I
I I lexpression, not I
I I Iless than -23~ nor I
I I Igreater than +23~-1. I L ______ ~ _________ ~ ________________________ J

Figure 3.19. Format of SETA Instruction

The expression may consist of one term
or an arithmetic combination of terms, the
minimum and maximum values of which are
_23~ and +23~-1, respectively. The
arithmetic value assigned to a SETA symbol
is substituted for the SETA symbol when it
is used in an arithmetic expres~ion.

The SETB instruction may assign the
binary value 0 or 1 to a SETB symbol.
Figure 3.20 illustrates the format of this
instruction.

r------T---------T------------------------,
I Name I Operation I Operand I

~------+---------+------------------------~
IA SETBISETB IA 0 or a 1, (0) or (1), I
I symbol I lor a logical expression I
I I Iwithin parentheses I L ______ ~ _________ ~ ________________________ J

Figure 3.20. Format of SETB Instruction

The operand may contain a 0 or a 1 or a
logical expression enclosed in parentheses.
No explicit binary zeros or ones are
allowed in parentheses other than in the
form (O) or (1). A logical expression is
evaluated to determine if it is true or
false. The SETB symbol in the name entry
is then assigned the binary value 1 or 0

~ I

corresponding to true or false,
respectively.

The following are valid operand fields
of SETB instructions:

(&AREA+2 GT 29)

(T'&T02 EQ 'C')

The following are invalid:

&B (not enclosed in parentheses)

(T'&P12 EQ IF' &B) two terms in succession

The SETC instruction assigns a character
value to a SETC symbol. Figure 3.21 shows
the format of a SETC instruction.

r------T---------T------------------------,
I Name IOperationloperand I
~------+---------+------------------------~
I A SETC I SErC lOne operand of I
I symbol I I the type attribute, I
I I I character expression I
I I lor a substring I
I I I notation. A SETA I
I I I symbol may appear I
I I I here. I L ______ ~ _________ ~ ________________________ J

Figure 3.21. Format of SETC Instruction

The character value assigned to a SETC
symbol may be a type attribute. If the
type attribute is used, it must appear
alone in the operand field.

A character expression usually appears
in the operand field. A character
expression consists of any combination of
characters enclosed in apostrophes. The
maximum length of a character expression is
127 characters. The character value
enclosed in apostrophes in the operand
field is assigned to the SETC symbol in the
name entry. The maximum length character
value that can be assigned to a SETC symbol
is eight characters. If a value greater
than 8 is specified, the leftmost 8
characters are used.

system Variables

system variable symbols are assigned values
automatically by the assembler. There are
four system variable symbols: &SYSNDX,
&SYSPARM, &SYSECT, and &SYSLIST. System
variable symbols may be used in the name,
operation, and operand entries of
statements in macro definitions, but not in
statements outside of macro definitions
with the exception of &SYSPARM. They may
not be defined as symbolic parameters or

SET symbols, nor may they be assigned
values by SETA, SETB, and SErC
instructions.

The &SYSNDX symbol is assigned the
four-digit nwUber 0001 for the first macro
instruction processed by the assembler, and
it is incremented by one for each
subsequent inner and outer macro
instruction processed. &SYSNDX may be
combined with other characters to create
unique names for statements generated from
the same model statement. The &SYSECT
symbol carries a character value that is
the name of the last START, CSECT, or DSECT
statement encountered before the expansion
of the USING macro.

The &SYSPARM is specified in theSTDJC
macro at system generation time. &SYSPARM
allows the user to control conditional
assembly flow and source code generated
through the use of the parameter specified
in the job control OPTION statement.
&SYSPARM acts as a global SETC, except its
value is set by the job control OPTION
statement.

If no named CSECT, DSECT, or START
statements occur before a macro
instruction, &SYSECT is assigned a null
character value for that macro instruction.
The &SYSLIST symbol (not available in
keyword macro definitions) is the symbol
reference for the entire macro instruction
operand field. This symbol refers to the
nth macro instruction operand. If the nth
operand is a sublist, then &SYSLIST(n,m)
may refer to the mth operand in the
sublist, where nand m may be any
arithmetic expressions allowed in the
operand field of a SETA statement.

CONCATENATION

Concatenation is defined as a linking
together in a series or chain; a process of
linking or joining together in a sequence,
with a specified order.

If a symbolic parameter in a model
statement is immediately preceded or
followed by other characters or another
symbolic parameter, the characters that
correspond to the symbolic parameter are
combined, in the order given in the
generated statement, with the other
characters or the characters that
correspond to the other symbolic parameter.
This process is called concatenation. When
a symbolic parameter is concatenated with
any following character value, the extent
of the symbol must be defined (delimited).
If the first character of the following
character value is not a recognized

Section 3: Program Design 181

delimiter, a special delimiter character (a
period '.'), must be used when the first
character is a letter, digit, left
parenthesis or a period. A period is
optional when the first character is an
ampersand (&). See Figure 3.22.

r----~---------T----------------,
IName I Operation I Operand I
~-----+---------+----------------~

Header I I MACRO I I
Prototype I & NAME I MOVE I&P,&S,&R1,&R2 I
Model I&NAMEIST I&R1,&S.(&R2) I
Model I IL I&R1,&P.B I
Model liST I&R1,&P.A I
Trailer I IL I&R1,&S.(&R2) I

I I MEND I I
~-----+---------+----------------~

Macro IHERE IMOVE IFIELD,SAVE,2,4 I
I I I I

GeneratedlHERE 1ST 12,SAVE(4) I
Generated I IL 12,FIELDB I
Generated I 1ST 12,FIELDA I
Generated I IL 12,SAVE(4) I L _____ ~ _________ ~ ________________ J

Figure 3.22. Concatenation and Generated
Coding

SEQUENCE SYMBOLS

The name entry of a statement may contain a
sequence symbol that provides the
programmer with the ability to vary the
sequence in which the assembler processes
statements. These symbols are never
variables. They name a branch point in the
definition and consist of a period followed
by a letter and seven letters and/or
digits.

A sequence symbol in the operand entry
of an AIF or AGO statement (see Conditional
Assembly Statements) references the
statement named by the sequence symbol. It
can be used in the name entry of any
statement that does not contain a symbol or
SET symbol, except a prototype statement,
or a MACRO, LeLA, LCLB, LCLe, GBLA, GBLB,
GBLC, ACTR, ICTL, ISEQ, or COpy
instruction. For example, • READER, • LOOP2,
.A23456 and .X4F2 are valid sequence
symbols.

CONDITIONAL ASSEMBLY INSTRUCTIONS

The conditional assembly instructions
the programmer to:

allow I
1. Define and assign values to SET

symbols that can be used to vary parts
of generated statements and

182 DOS System Programmer's Guide

2. Vary the number and sequence of
generated statements.

These conditional assembly instructions
give true flexibility to the macro
definition language.

There are 13 conditional assembly
instructions: LCLA, LCLB, LCLC, GBLA,
GBLB, GBLC, SETA, SETB, and SETC, that are
discussed under SET Symbols, and AlF, AGO,
ACTR, and ANOP that are discussed in this
section.

AIF--Conditional Branch

The AIF instruction alters conditionally
the sequence in which source program
statements are processed by the assembler.
The conditional branch is located within or
outside of the macro definition. If the
logical expression in the operand field is
true, the macro generator branches to the
sequence symbol following the logical
expression. Figure 3.23 illustrates the
typical form of this instruction.

r----------y---------y--------------------,
I Name I Operation I Operand I
~----------+---------+--------------------~
IA sequencelAIF IA logical expression I
Isymbol or I lenclosed in paren- I
Inot used I Itheses, immediately I
I I Ifollowed by a I
I I Isequence symbol. I L __________ ~ ________ ~ ____________________ J

Figure 3.23. Conditional Branch
Instruction

The following are valid operands of AIF
instructions:

(&AREA+X'2D' GT 29).READER

(&NAME+FlVE GT 2).POSSIBLE

The following are invalid operands of
AIF instructions:

(T'&ABC NE T'&XYZ) No sequence symbol

(T'&ABC NE T'&XYZ).X4F2

.X4F2

Blank between
logical expression
and sequence symbol

No logical expression

AGO--Unconditional Branch

The AGO instruction causes an unconditional
branch to the sequence symbol in the
operand. Figure 3.24 illustrates the
typical form of this instruction.

r----------T---------T--------------------,
I Name I Operation I Operand I
~---------_+---------+--------------------f
IA sequencelAGO IA sequence symbol I
Isymbol or I I I
I not used I I I L __________ ~ _________ ~ ____________________ J

Figure 3.24. Unconditional Branch
Instruction

The statement named by the sequence
symbol in the operand is the next statement
processed by the assembler. The statement
named by the sequence symbol may precede or
follow the AGO instruction.

ACTR--Conditional Assembly LOop Counter

The ACTR limits the number of AGO and AIF
branches executed within a macro
definition. When used, the ACTR must
appear after the globals and locals symbol
definition statements and before any other
type of model statement. The ACTR
instruction assigns a maximum count to the
number of AGO and AIF branches executed
within the macro definition. When the
count reaches zero, an END card is
generated. If the count is zero before
decrementing, the assembler takes one of
two actions:

1. If a macro definition is being
processed, the processing of it and
any nested macros above it is
terminated, and the next statement in
the main portion of the program is
processed.

2. If the main portion of the program is
being processed, conditional assembly
is terminated, and the portion of the
program generated so far is assembled.
If an ACTR statement is not given, the
assumed value of the counter is 150.

ANOP--Assembly No Operation

The ANOP instruction facilitates branching
to a statement that has a symbol or
variable symbol in the name field. The
ANOP instruction causes no operation and is
inserted immediately before the statement

to be branched to. Figure 3.25 illustrates
the typical form of this instruction.

r----------T---------T--------------------,
I Name I Operation I operand , I
~----------+---------+-------------------.~
IA sequencelANOP INot used, must not I
I symbol I Ibe present. I L __________ ~ _________ ~ ___________________ J

Figure 3.25. Assembly No Operation
Instruction

If the programmer wants to use an AIF or
AGO instruction and has already entered a
symbol or variable symbol in the name entry
of the statement to which he wishes to
branch, he cannot place a sequence symbol
in the name entry. An ANOP instruction can
be placed before that instruction, and then
branched to. This has the same effect as
branching to the statement immediately
after the ANOP statement.

EXTENDED CAPABILITIES

The macro language provides additional
features that allows the system to:

1. Terminate processing of macro
definition

2. Generate error messages

3. Define global SET symbols (discussed
in the section SET symbols)

4. Use system variable symbols (discussed
under System Variable Symbols)

5. prepare keyword and mixed-mode macro
definitions and write keyword and
mixed-mode macro instructions
(discussed under Macro Instruct~on
Formats)

MEXIT -- Macro Definition Exit

The MEXIT instruction allows exit from the
macro definition at various points in the
definition. However, when this instruction
terminates the macro definition, it does
not signify the physical -end of the
definition. Figure 3.26 illustrates the
typical form of the instruction.

Section 3: Program Design 183

r----------T---------T--------------------, I Name I Operation I Operand I
~----------+---------+--------------------~
IA sequencelMEXIT INot used, must not I
Isymbol or I Ibe present. I
I not used I I I L __________ ~ _________ ~ ______ ~ _____________ J

Figure 3.26. Macro Definition Exit
Instruction

MEXIT should not be confused with MEND.
MEND indicates the physical end of the
macro definition. MEND must be the last
statement of every macro definition,
including those that contain one or more
MEXIT instructions.

MNOTE statement

The MNOTE instruction may generate a
message and indicate the level of severity
of the error. The severity code is for the
programmer's information only and is not
used by the DOS assembler or co~trol
program. This instruction requests a
message to be printed on the output
listing. Figure 3.21 illustrates the
typical form of this instruction.

r----------T---------~-------------------,
I Name I Operation I Operand I
~----------+---------+--------------------~
IA sequencelMNOTE Isee examples in text I
I symbol or I I I
I not used I I I L __________ ~ _________ ~ ____________________ J

Figure 3.21. MNOTE Instruction

184 DOS System Programmer's Guide

The operand entry of the MNOTE
instruction may be written in one of the
following forms:

1. severity code, 'message'

2. , 'message'

3. 'message'

For two and three, the severity code is
assumed as one.

The MNOTE statement appears in the
listing with a statement number at the
point where it was generated. Because the
message portion of the MNOTE operand is
enclosed in apostrophes, two apostrophes
must be used to represent a single
apostrophe. Two ampersands must be used to
represent a single ampersand that is not
part of a variable symbol (see Figure
3.28).

r----T------~----------------------------, I NamelOpera-loperand I
I Ition I I
~----+------+-----------------------------~ I IMNOTE 11,'ERROR**--NOT RECOVERABLE' I L ____ ~ ______ ~ ______ ~ ______________________ J

Figure 3.28. Sample MNOTE

Figures 3.29 and 3.30 are examples of
macro writing and usage. Figure 3.29
defines the MSG ~acro. There are no
locally defined symbols. All are globals.
Figure 3.30 is an example using the MSG
macro to write an appropria'te message
pertaining to a particular step of the
routine. The generated coding of the MSG
macro is indicated by a '+' after the
statement number.

STMT SOURCE STATEMENT

1
2 &NAME
3
4
5
6
7
8
9

10
11 .BADMSG
12
13 .SETREP
14 &REPGLB
15
16 .INORDER
17 &REPGLB
18 .BEGIN
19 ..
20 &NAME
21
22
23 . C
24 &MSGLTH
25
26
27
28 &NAME.A
29 . D
30
31
32 . B
33
34

MACRO
MSG
GBLA
GBLC
GBLB
AIF
AIF
AIF
MNOTE
MEXIT
MNOTE
MEXIT
ANOP
SETB
AGO
ANOP
SETB
ANOP
MSG MACRO
L
AIF
BAL
ANOP
SETA
DC
DC
AIF
DC
ANOP
DS
MEXIT
BAL
AGO
MEND

Figure 3.29. Sample MSG Macro

&A~&B
&MSGLTH PROTOTYPE
&LATBR
&REPGLB~&MSGGLB
('&A' EQ ").BADMSG
('&B' EQ 'REPLY').SETREP
('&B' EQ ").INORDER
1~'INVALID REPLY OPERAND~ I QUIT'

1~'NO MESSAGE CODED~ I QUIT'

1
.BEGIN

o

CHANGE LEVEL 2-0
15~=V(MSGRTN)
(&REPGLB).B
14~4(15) NON-REPLY HANDLER

K'&A-2
FL1'&MSGLTH.' MESSAGE LENGTH
C&A MESSAGE
(NOT &REPGLB).D
C' , ANSWER BYTE

OH RESTORE BOUNDARY

14~0(15) REPLY HANDLER
.C

PAGE 1

DOS CL3-4 06/09/69

MSG00010
MSG00020

MSG00030
MSG00040
MSG00050
MSG00060
MSG00070
MSG00080
MSG00090

MSG00110
MSG00120
MSG00130
MSG00140
MSG00150
MSG00160
MSG00170

Section 3: Program Design 185

STMT SOURCE STATEMENT DOS CL3-4

1176 ~
1177 xxx
117g ~

1179 ~

1180 ~

1181 ~

1182 ~

1183 ~

1184 ~

1185 ~

1186 ~

1187
1188 ~

THE FOLLOWING ROUTINE CHECKS THE RETURN CODE AFTER A
READ,WRITE,CONTROL COMMAND IS GIVEN
REGISTER EIGHT CONTAINS THE ADDRESS OF ROUTINE WHICH
JUST GAVE THE READ OR WRITE COMMAND. IF THE COMPLETION
IS BAD REG 8 IS USED TO TURN THIS DEVICE OFF CNO MORE
OPERATIONS WILL OCCUR ON THIS DEVICE),THE OPERATOR MUST
RELOAD THE PROGRAM INORDER TO RESTART THIS DEVICE

1190 CKCONDC LTR RF,RF CK CONDITION CODE
1191 BNZ CONTCK
1192 BR R2 EXIT BACK CK GOOD
1193 CONTCK MSG 'ERROR OCCURRED ON CKING RETURN CODE'
1194+x MSG MACRO CHANGE LEVEL 2-0
1195+CONTCK L 15,=VCMSGRTN)
1196+ BAL 14,4CI5) NON-REPLY HANDLER
1197+ DC FLl'35' MESSAGE LENGTH
1198+ DC C'ERROR OCCURRED ON CKING RETURN CODE' MESSAGE
1199+ DC OH RESTORE BOUNDARY
1200 LR R3,RF SWITCH REGS
1201 BAL R2,FORMAT
1202 STC R3,ERRMSG+28

GO FORMAT CONDITION CODE
INSERT CHAR

1203 LR R3 J RF
1204 BAL R2,FORMATI
1205 STC R3,ERRMSG+27

GO FORMAT SECOND CHAR
INSERT SECOND CHAR

1206 ERRMSG MSG 'CONDITION CODE =
1207+x MSG MACRO CHANGE LEVEL 2-0
1208+ERRMSG L 15,=VCMSGRTN)
1209+ BAl 14,4CI5) NON-REPLY HANDLER
1210+ DC FLl'21' MESSAGE LENGTH
1211+ DC C'CONDITION CODE = , MESSAGE
1212+ DS OH RESTORE BOUNDARY
1213 X MVC MSG2+27(7),OPERATIN
1214 MSG2 MSG 'LAST OPERATION -
1215+ x MSG MACRO CHANGE LEVEL 2-0
1216+MSG2 L 15,=VCMSGRTN)
1217+ BAL 14,4CI5) NON-REPLY HANDLER
1218+ DC FLl'36' MESSAGE LENGTH
1219+ DC C'LAST OPERATION - , MESSAGE
1220+ DS OH RESTORE BOUNDARY
1221 PDUMP PDUMP START END
1222+;: 360N-CL-453 PDUMP' CHANGE LEVEL 3-0

Figure 3.30. Sample MSG Coding

186 DOS System programmer's Guide

Section 4: Debugging Aids

Section Outline

Gathering Documentation .189
System Action Under Cancel •• 198

Wait States • • • • • • • • • .202
50ft Waits • • • • • • • • • • .202
Hard Waits. • • • • • • • • • .202

Debugging Assembler Programs • .204
Debugging COBOL Programs •••••••• 204

How to Use a Dump .205
Locating a DTF • • • • • • .205
Locating Data • • • • • • •• 206

Debugging FORTRAN Programs • .234
Debugging RPG Programs. • .243

Halt Analysis •••••••••••• 243
Causes of a Halt Zero Condition ••• 243

Debugging PL/I Programs • • • • .255
Summary of PL/I Debugging Aids •••• 263
Handling Compile Time Aborts. • .264

Section 4: Debugging Aids 187

Section Figures

Figure 4.1. SDR Communications Region
(Part 1 of 2) •••••••••••• .190
Figure 4.2. Machine Check Recording
and Recovery (MCRR) Linkage Table .192
Figure 4.3. RMS Linkage Area (RASLINK) 193
Figure 4.4. First Part of Program
Information Block (PIB) Table • .195
Figure 4.5. PIB Flag Expansions •••• 196
Figure 4.6. Second Part of Program
Information Block (PIB) Table ••••• 197
Figure 4.7. Causes for Message OS04I
(Cancel Code X'21') •••••••••• 200
Figure 4.8. Low Core E.rror Bytes .203
Figure 4.9. COBOL Sample Program
(Part 1 of 27)207
Figure 4.10. FORTRAN Sample Program
(Part 1 of 8) ••••••••••••• 235
Figure 4.11. Using RPG Pointers to DTF 243
Figure 4.12. Halt Indicator (HO)
Analysis Aid ••••••••• .244
Figure 4.13. RPG Sample Program (Part
1 of 10) ••••••••••••••• 245
Figure 4.14. PL/I Program Structure •• 255
Figure 4.15. PL/I Storage Areas ••• 256
Figure 4.16. Entry Point Table •• 257
Figure 4.17. Object Time Core Usage .258
Figure 4.18. Library Work Space •••• 259
Figure 4.19. Communications Area
switches ••••••••••••••• 260
Figure 4.20. Dummy DSA and DSA Layout 260
Figure 4.21. Block Description .261
Figure 4.22. DSA Chaining ••••••• 262
Figure 4.23. PL/I Consecutive File
DTF-A Appendage •••••••••••• 263
Figure 4.24. PL/I Regional File DTF-A .263
Figure 4.25. PL/I Sample Program
(Part 1 of 18) • • • • • • • • • • .265

188 DOS system Programmer's Guide

This section presents debugging aids
considered helpful to both the application
and system programmer. Information
contained in this section includes:

• System action on all cancel conditions

• Register conventions for following
program flow

• When a storage print is useful

• The types of documentation used in
locating program problems

• The action taken when a hard wait or
unending loop is encountered

• The importance of low-core messages and
system error messages as an aid in
determining a starting point for
approaching a programming problem.

Sample programs in COBOL, PL/I, FORTRAN,
and RPG, together with their respective
linkage editor maps to show how to locate
programs and partition save areas in main
storage are included.

Gathering Documentation

This is an explanation of the types of
documentation useful in debugging problem
programs. All SYSLOG and SYSLST error
messages, program listings, the supervisor
listing, linkage editor map, and a core
dump should be gathered.

A system dump of main storage should be
available, but if the system is in a hard
wait or an unending loop, a stand-alone
(self-loading) dump will have to be taken.

The DOS stand-alone dump generator,
DUMPGEN, produces a stand-alone dump
program tailored to system requirements.
The dump can either be a conventional dump
program or a formatting dump program. A
DSERV of the core image library directory
may be helpful when program checks occur in
the logical transient area. The directory
can be displayed by an alphamerically
sorted listing of the directory entries, or
a listing of the entries in the order they
appear in the directory.

The label cylinder display program
(LSERV) can also be used for error
analysis. LSERV displays the TLBL and the
DLBL and EXTENT information contained on
the SYSRES label cylinder. Information
about secured data files is not displayed.

DOS I/O error logging, MCRR (Machine
Check Recording and Recovery), RMS
(Recovery Management Support), and the DUMP
option of job control are additional
facilities for error analysis. The RMS
consists of two functions: MCAR (Machine
Check Analysis and Recording), and CCH
(Channel Check Handler).

Other facilities for error analysis are
EREP (Environmental Recording, Editing, and
Printing Program), ESTVUT and ESTVFMT
(Error Statistics by Tape Volume Utility
programs). EREP edits and prints data that
has been stored in the recorder file
(SYSREC) by the I/O error logging and/or
MCRR and/or MCAR/CCH functions. For the
IBM system/370, EREP creates and maintains
a history tape, and, if specified at system
generation time, RDE (Reliability Data
Extractor) of OBR/MCAR/CCH and, if
specified by the ROD command, IPL/EOD (End
of Day) data. Figures 4.1, 4.2, and 4.3
show the SDR communications region, the
MCRR linkage table, and the RMS linkage
area.

Section 4: Debugging Aids 189

0 1 2 3 4 10 11 17 18 24 25 31
SDK Parti- Number First SDR I D First OBR ID Current OBR ID Last 0 BR ID Flags tion of SDR BBCCHHR BBCCHHR BBCCHHR BBCCHHR

(SDR- ID Records

TABLE)

32 35 36 39 40 43 44 71

Address of Address of
SDR SDR Unit Reserved List Save Area
Accumulator Switches

72 75 76 95 96 103 104 107 108 111 112 115 116 117

T est Under
Mask SDR 1 Work Area Test Under Temporary Mask F'65536' SDR Queue
Bytes Mask Table Work Area I nstructi on Save Area

118 135 136 155 156 159

SDR2 Work Area Area Modified by A - Transients

168

Data Area for OBR/SDR Records

Key to SDR Communications Region Displacements:

~ SDR Flags:

Bit 0: Key of OBR
1: RDE option
2: Initial IPL time
3: RF option = NO, recording is suppressed

Set and tested by Job Control ..

Bit 4: RF option = CREA TE
5: RF option = YES
6: Error while recording
7: Recorder fi Ie ready

SDR Error
Message
Save Area

G Set by EREP transient SSBSDRUP to identify the partition making the call for EREP recording.

Settings: X'10' if EREP is running in BG.
X '20' if EREP is running in F2.
X'30' if EREP is running in Fl.
X'Ol' with one of the above if recorder file is ready.
X '00' with one of the above if recorder fi I e is not ready.

160 163 164

Branch
OBR/SDR
Flag Byte

Instruction Address

Initial number of SDR records specified. If SDR record count is not specified, the file is formatted for OBR records only
(SJOBCTLM, see IPL and Job Control PLM, GY24-5086).

Disk address of first SDR record.

Disk address of first OBR record.

Disk address of current OBR record.

Disk address of last OBR record.

Figure 4.1. SDR Communications Region (Part 1 of 2)

190 DOS system Programmer's Guide

167

250

Key to SDR Communications Region Displacements:

~ Address of SDR accumulator area which contains half - byte coutlTers and accumulated error conditions.

~ Address of SDR unit switches.

SDR switch byte (1 for each PUB):
X'80' - Update operations complete
X'40' - Counters on external file overflowed
X'20' - I/O error during write
X'08' - SDR update half - byte counters routine required
X'04' - Update SDR record routine required
Other - Reserved

When entry contains X '01000000', indicates MCRR, no SDR supported.

G Reserved.

G SDR1 register save area.

~ Mask formats for interpretive error accumulator, SDR1:

X'FF' - End of update
X'FE' - Bypass counter
X'FD' - Set up 'OR' condition to previous counter
X'FC' - Ignore list item
Other - Test bit in error queue

~ Used by the interpretive error accumulator routine to process list passed by OBR/SDR A -transient.

~ Used by the interpretive error accumulator routine.

11041 Used by the interpretive error accumulator routine for address alignment.

~ Executed by the interpretive error accumulator routine.

~ Loop counter for the SDR counter update.

§] Save area for pointers to entries in the SDR error queue.

~ Work area where half byte error counters are unpacked and updated.

~ list of devices passed to the SDR processor from $$AN ERAD .

11561 Used by SDR/OBR recorder phases to pass error message displacements and disk error addresses in event of 0'1 error.

1160 I Entry point from OBR/SDR A - transients. Branches to label SDRMM.

11641 Pointer into the OBR/SDR unit switches. Status posted by recorder phases. (See byte 36).

~ OBR and SDR records formatted by the recorder phases.

Figure 4.1. SDR Communications Region (Part 2 of 2)

Section 4: Debugging Aids 191

MCRRPSW1 (See Note)

o (Hexadecimal Displacement) 8 10 14

o (Decimal Displacement) 8 16 20

MCRR: PSW MCRR I PSW Address of Address of
I Reentrant I Channel Machine I Address of I Address of Failure Check
I MCRR Routine I MCRR Routine Routine Routine
I I

XXXXXXXX XXXXXXXX XXXX XXXX

Key to displacement:

Machine Check Recording and Recovery PSW. Loaded to enable machine check interrupts. Second word (displacement 4-7)
contains reentrant address (MCRETURN) to MCRR routine.

Machine Check Recording and Recovery PSW. Loaded to enable machine check interrupts. Second word (displacement 12-15)
contains initial address (MCRRRTN) of the MCRR routine.

Address of channel failure routine (MACHEKl).

Address of machine check routine (MACHEK).

Note: MCRRPSW1 is the label of the first byte of the MCRR Linkage Table.

Figure 4.2. Machine Check Recording and Recovery (MCRR) Linkage Table

192 DOS System Programmer's Guide

RASLINK

o (Decimal Displacement) 8 9 10 11 12

CPUID RASDMC RASFLAGS MCFLAGS RASMODEL RASTABA

Damaged RAS flag Machine CPU RAS Table
CPU ID field Channel byte Check Model (RASTAB)

byte flags address

XXXXXXXX X X X X XXXX

Key to RAS Linkage Area displacements:

CPU ID field.

Address of damaged channel, or X 'FF' if no channel damaged.

RAS F lag byte: bit

o
1
2
3
4
5
6
7

~ Machine Check Flags: bit

G Largest CPU Model.

0- 4
5
6
7

o Address of RAS Table (RASTAB).

flag

X'80'
X'40'
X'20'
X'lO'
X'08'
X'04'
X'02'
X'Ol'

flag

X'04'
X'02'
X'Ol'

description

RAS active
RAS SIO flag
RTA in control
RAS I/O delayed
Channel check on error SIO
Reserved
Channel check ~n SIO
I/O active for SIO

description

Reserved
Hard machine check
All machine records built
All channel check records built

G Address used for base register iii RAS Monitor Program.

I Figure 4.3. RMS Linkage Area (RASLINK)

16

RASBASE

Base add ress
for RAS
Monitor

XXXX

Section 4: Debugging Aids 193

Further documentation can be obtained by
executing the PDAID program, which records
(traces) certain events and either writes
·chem on the I/O device specified or
maintains them in the CE area (or alternate
address area). The program can trace:

1. fetching or loading of programs or
phases (Fetch/Load Trace).

2. input/output activity (I/O Trace).

3. supervisor calls (GSVC Trace).

4. QTAM input/output activity (QTAM
Trace).

The On-Line Test Executive Program
(OLTEP), together with the On-Line Tests
(OLTS), make up the On-Line Test System,
which tests I/O devices with minimum
interference to other programs running on
the system. RETAIN/370 is an OLTEP
function that allows the OLTEP programs to
be executed on the system/370 from a remote
location. RETAIN/370 is yet another
problem determination tool. See the DOS
OLTEP listed in the Preface for a detailed
description.

The facilities mentioned form the DOS
problem determination aids. Problem
determination is a process or a procedure
for<· determining the cause of an error. The
DOS Messages listed in the Preface
recommends a specific procedure to follow
when an error condition occurs; the DOS
system Control and service gives a detailed
explanation of problem determination aids.

Error messages are very important and
can supply useful information in
determining where to start looking for the

194 DOS System Programmer's Guide

trouble (i.e., in what partition the
failure tock place). A message number or
code is supplied to give further
information about the error. The program
check message gives the location of the
failing operation code and the condition
code from the program status word (PSW).
This gives you a starting point for
reconstructing the cause of the error.

The program listing is an extremely
useful tool in determining if the error
condition was caused by a logic error or a
particular condition that you had not
considered when the program was written.

The supervisor (SUPVR) listing allows
you to check facts at the time of failure
and to determine if the error indications
were valid. The listing and the main
storage dump allow you to locate the
Program Interrupt Key (PIK) to determine
the task in control of the system at the
time of failure.

By locating the Program Information
Block (PIB) table, you can easily locate
programs in main storage. See Figures 4.4,
4.5, and 4.6 for a description of the PIB
table. Using the information in the PIB
table, you can check the cancel code and
find the partition save area address. The
partition save area supplies. you with such
useful information as the PSW and register
values that you can use to locate the last
instruction executed.

The system communications region (Figure
1.7) within the supervisor contains the
address of the PIB table, and other useful
information for determining the nature of
the error.

Byte
Number

All
Bound
PIB

Problem
Program
PIB
(Note 1)

Attention
PIB

Quiesce
PIB

Supervisor
PIB

Subtask
PIB for AP
Note 3)

Note 1:

Cancel
Code

Cancel
Code

Cancel
Code

Cancel
Code

Cancel
Code

2 3

SP x

SYSLOG ID
(BG, F2, or Fl)

SYSLOG ID
(AR)

SP

SYSLOG ID
(BG, F2, or Fl)

PIB TABLE

4 5 6 7

NOP
Instruct-

ion Partition Save Area
(CR)

Branch
Active=Address of

Save Area
Code
(BC) Inactive = Remainder of

BC Instruction

General Exit Routine

NOP Address of the
Instruc- Save Area
tion

Switch
Byte

See F

Scratch
Byte

Logical Transient Bucket
(contains save
area address)

nnel PU

Address of
the Logical

Transient

X'OQ' X'OO' X'04' X'08' X'OC' X'lO' X'14' X'18'

Address of Length of Error Constants to Clear Bytes

SYSRES PUB Queue Entry 2 -5 of CCB

X'IF' X'05' X'OO' X'OO'

Number PIB
User Flag

Assign Core LUB of Byte
Flag Blocks Index LUBs See C

(Note 2) See D

Three problem program PIBs are built in this sequence when the MPS or BJF feature is selected as a generation option: Foreground 2 PIB I
Background PI B

Foreground 1 PIB
When a batch-only environment is established at generation time, the All Baund and Foreground PIBs are excluded from the table, and only
one (BG) problem program PIB is built. However, the X'20' bytes that F2 and Fl PIBs normally occupy (between PISSG and PIBAR) are
filled with 32 bytes of DIBs data.

Note 2: Number is in multiples of 2K for F2 and Fl. BG is always 10K (X' OA').

Note 3: Total of nine subtask PISs are generated, and only when AP is specified at generation time.

* See Figure 4.5 for flag byte expansions A, B, C, D, E and F.

Bytes 90 and 91 (X'5A'- '5B') of the communications region contain the address of the first part of the PIB Table. Label PIBTAB identifies the first
byte of the table.

E'igure 4.4. First Part of Program Information Block (PIB) Table

= 16
Byte
Length

Section 4: Debugging Aids 195

[;] Supervisor, Quiesce, and ALL Bound PIB Flags:

Bit 0: 1 = Always one
1-4 0 = Always zero

5 1 = Always one
6 1 = Active

0= Inactive
7 1 = Active

0= Inactive

Note: IfPTO=YES is specified, Bit 6 is a one in the
Quiesce I/o PIB when attached by the super­
visor. Otherwise it is always zero.

Problem Program PIB Flag (First Byte in PIB):

Bit 0: 1 = Registers stored
o = Registers not stored

1-3 0 = Always zero
4 1 == QTAM Wait active

0== QTAM Wait inactive
5 0 = Normal execution

1 == Program has 'seized the system
6 1 == Unbound

0= SVC 2-bound CB-transient in progress)
7 1 = Unbound

0= SVC 7-bound (waiting for an I/O interrupt)
X'80' indicates the program is not present in the system
X'87' indicates the program is PTO bound
X'89' indicates the program is IDRA bound

Problem Program PIB Flag (Last Byte in PIB):

Bit 0: 1 == Batched Job in Foreground
a == No BJF

1: Cancel in LTA and Device not Assigned
2: 1 == /& on SYSIN if DASD '

a = No /& on SYSIN
3-4: Reserved

5: 1 = Task is cancelled
a == Task not cancelling

6: 1 = Subtask (s) attached
a = No subtasks attached

7: 1 = In AB Routine
a -= Not in AB Routine

Figure 4.5. PIB Flag Expansions

196 DOS System Programmer's Guide

o PIB Assign Flag

X '80' = SYSRES DASD fi Ie protect inhibited (allow write
operation on SYSRES)

X'40' = Channel appendage exit allowed (BTAM)
X'20' = Cancel in progress (used in terminator function)
X' 10' = Cancel control (set on a foreground cancel)
X '08' = Hold-Release flag for foreground assignments
X '07' = Supervisor or Attention routine PIB assign flag setting
X'04' = Background program PIB assign flag setting
X' 02' = Foreground 1 program PI B assign flag setti ng
X 'a I' = Foreground 2 program PIB assign flag setting o Attention PIB Flag

Bit 0: 1 == Registers stored
a = Registers not stored

1-5 a = Always zero
6 1 = Attention routine active

a = Attention routine SVC 2-bound
7 1 = Active

a = SVC 7-bound

X'80' indicates the attention routine is not present in the system.
X'89' indicates the program is IDRA bound o Attention PIB Switch Byte

Bit 0-2: Reserved
3: 1 == PTAFTCH (Fetch $$ANERRY, Z, or 0) Switch ON

0= PTAFTCH (Fetch $$ANERRY, Z, or 0) Switch OFF
4: 1 = Detach Logical Attention Routine ($$BA TTNA)

Switch ON
0= Detach Logical Attention Routine ($$BATTNA)

Switch OFF
5: 1 == Physical Attention Recall Switch ON

a = Physical Attention Recall Switch OFF
6: 1 = Attention Request Switch ON

a = Attention Request Switch OFF
7: 1 = External Interrupt Request Switch ON

a = External Interrupt Request Switch OFF

Byte
Number

All Bound
PIB

Background
PIB

FG2
PIB

(Note 1)

FG1
PIB

(Note 1)

Attention
PIB

Quiesce
I/o PIB

Supervisor
PIB

Subtask
PIB

(Note 3)

System
LUB Index

System
LUB Index

o o

Note 1. Generated only if MPS is specified.

Note 2 •. Always background communications region except when MPS = BJF.

Note 3. Total of nine subtasks generated, and only when AP is specified.

Address of Termination
ECB, if any, or F'O'

ECB Address for

Note 4. Will be filled in with halfword indicating the relative priority of task in the system (range H'41 to H'15 1, the lower the
number the higher the priority).

Bytes 124 and 125 (X'7C-'7D') of the communications region contain the address of the second part of the PIB table. Label
PIB2AD identifies the first byte of the table. The second part of PIB table comes before the first part in storage allocation.

Figure 4.6. Second Part of Program Information Block (PIB) Table

= 16
Byte
Length

Section 4: Debugging Aids 197

SYSTEM ACTION UNDER CANCEL

The following lists all cancel codes and
their message prefixes. Some do not appear
in a foreground PIB, such as the X'FF' code
(supervisor catalog failure). This type of
function can be performed only in the
background partition. The linkage editor
and system maintenance functions must also
be performed in the background area.

Byte one of the PIB'table contains a
cancel code stored by the system any time a
cancel condition is encountered. The PIB
table can be located by displaying on the
console the communication region address
(located at X'16'~X'17') plus the
displacement of aX' SA' and X'5B'. This is
the address of the first part of the PIB
table. Remember each entry is 16 decimal
(X'10') bytes in length. Each byte of the
PIB is numbered starting with 0 and
continuing through 15. The layout of the
PLB table and the communications region can
be found in Figures 4.4-4.6 and Figure 1.7.

Cancel Code (Hexadecimal): 10

Message Code: None

Description, Action or Condition: This is
normal end of job (EOJ). Cancel code X'10'
is posted in byte 1 of the PIB for the
program issuing the SVC 14. The next time
the' canceled program is selected on general
exit, an SVC 2 is taken to call in a
B-transient program, which, in turn, ca~s
job control to perform the end-of-job step.

Cancel Code (Hexadecimal): 17

Message Code: OS021

Description, Action or Condition: This is
caused by the main task in a partition
issuing the CANCEL macro without detaching
all subtasks running under its control._

Cancel Code (Hexadecimal): 18

Message Code: None

Description, Action or Condition: This is
caused by the main task issuing the DUMP
macro with subtasks attached. It allows
the dump to take place without the error
cancel message being printed. All subtasks

198 DOS System Programmer's Guide

are detached and EOJ is taken after the
dump is complete.

Cancel Code (Hexadecimal): 19

Message Code: OP741

Description, Action or Condition: This is
caused by the operator responding to an I/O
error message with the cancel option on the
1052.

Cancel Code (Hexadecimal): 1A

Message Code: OP731

Description, Action or Condition: This is
caused by an I/O error that cannot be
handled by the program (task), thus causing
the program to be canceled. If the DUMP
option is specified at system generation
time, a dump of the supervisor and the
partition in which the program was running
will be taken.

Cancel Code (Hexadecimal): 1B

Message Code: OP821

Description, Action or Condition: This is
caused by a channel failure.

Cancel Code (Hexadecimal): 1C

Message Code: 05141

Description, Action or Condition: This is
caused by a subtask issuing the CANCEL ALL
macro. This causes all other subtasks to
be detached and canceled. The main task is
canceled, and a dump of the supervisor and
partition involved results.

Cancel Code (Hexadecimal): 1D

Message Code: 05121

Description, Action or Condition: This is
caused when the main task terminates before
all subtasks have been detached. This
indicates the subtasks were canceled before
they came to a normal EOJ. The subtasks
are detached, and the complete partition is
canceled.

Cancel Code (Hexadecimal): 1E

Message Code: OS13I

Description. Action or Condition: This is
caused by the combination of one task
issuing an enqueue for a resource, and
another task issuing a dequeue for that
same resource. As a result, the previous
owner cannot be identified because register
o in the s~ve area has been modified'.

Cancel Code (Hesadecimal): 1F

Message Code: OP81I

Description. Action or Condition: This is
caused bya CPU failure.

Cancel Code (Hexadecimal): 20

Message Code: OS03I or OS11I

Description. Action or Condition: This is
caused by a program check interrupt. The
program is canceled by the system. The
user may supply a PC or AB routine to
handle this condition via the STXIT macro.
This code is also used when a routine in
the transient area is canceled due to a
program check in the task or subtask using
it.

Cancel Code (Hexadecimal): 21

Message Code: OS04I or OS09I

Description. Action or Condition: This can
be caused by many user errors. See Figure
4.7 for a list of the causes.

Cancel Code (Hexadecimal): 22

Message Code: OS05I or OS06I

Description. Action or Condition: This is
caused by the issuing of a FETCH (SVC 1) or
a LOAD (SVC 4) macro whose phase name
cannot be found. This cancel code is also
used when a logical transient is canceled.

Cancel Code (Hexadecimal): 23

Message Code: OS02I

Description, Action or Condition: This is
caused by a program, task or subtask
issuing a CANCEL m~cro. If issued by a

program or task, the program or partition
is canceled. If issued by a subtask, the
subtask only is canceled.

Cancel Code (Hexadecimal): 24

Message Code: OSOlI

Description. Action or Condition: This is
a result of an operator entering CANCEL
from the 1052.

Cancel Code (Hexadecimal): 25

Message Code: OP77I

Description, Action or Condition: This is
a result of attempting to load a problem
program phase at an address outside main
storage or outside the requester's area
(background or foreground). This condition
also occurs:

1. if the program requires more main
storage than is allocated to the
partition where the program is to run
or

2. if an improper address is detected on
an SVC interrupt (i.e., CCW address in
CCB is invalid).

Cancel Code (Hexadecimal): 26

Message Code: OP71I

Description. Action or Condition: This is
a result of a program issuing an I/O
request for a logical unit that is not
assigned to a device. If a dump is taken,
general register 1 contains the address of
the CCB. If the CCB is unavailable, the
logical unit message contains SYSxxx.

Cancel Code (Hexadecimal): 27

Message Code: OP70I

Description, Action or Condition: This is
a result of a program issuing an I/O
request for a logical unit for which there
is no logical unit block (LOB) entry
(invalid LOB code in CCB). If a dump is
taken, general register 1 contains the
address of the CCB.

section 4: Debugging Aids 199

The complete text for message OS041 is:

ILLEGAL SVC - HEX LOCATION nnnnnn - SVC
CODE nn

where nn is in hexadecimal notation.

This message results from the following causes:

1. When nn is 02: The phase name given does not start
with $$B, or

For LlOCS, macros called in invalid sequence. As a
result, an SVC 8 is issued after an SVC 2 before an
SVC 9 has been issued to free the transient area, or

For other conditions, the user specified a temporary
exit (SVC 8) for a logical transient. In the temporary
exit routine, another routine is called (by an SVC 2)
before an SVC 9 is issued to free the transi ent area.

2. When nn is 05: The ·to· range specified in the MVCOM
macro is invalid, or

MVCOM macro was issued by a foreground program,
operating under single program initiation.

3. When nn is OA, 12, 13, or 18: The interval timer was
not allocated to this partition, or

The supervisor was generated without the timer option.

4. When nn is OB: The call was not given by a logical
transient routine.

5. When nn is 16,17, or 1A: The caller did not have a
PSW key of zero. This is applicable only in a
multiprogramming system.

6. When nn is 23: More than 16 holds have been issued
for the same track.

7. When nn i.s 24: Free a non - DASD or a track that is
not held.

8. When nn is 26: A subtask issued attach, or the save
area is not on a doubleword boundary.

9. When nn is 27: A main task issued detach without
SA VE = parameter, or

A main task issued detach, but the ID of the subtask in
the save area passed is not valid, or

If a main task attempts to detach an already terminating
subtask.

10. When nn is 29: A DEQ is issued by a task that did not
ENQ the resource. (This is valid in an AB routine.)

11. When nn is 2A: A subtask (without an ECB = parameter)
has issued an ENQ macro, or

A subtask has issued an ENQ macro to a resource that
has not been dequeued by another task that has been
terminated, or

A task has issued two ENQ macros to the same resource
without an intervening DEQ.

12. When nn is 2D: Emulator execution was attempted,
but the EU parameter of the SUPVR macro was
omitted or incorrectly specified during system
generation.

13. When nn is 32: For LlOCS:

a. An imperative macro (such as WRITE or PUT) was
issued to a module that does not contain the
requested function, or

b. A PUT was issued for an ISAM retrieve module
without a preceding GET, or

c. An inva I id ASA fi rst character for the printer
was used, or

d. A wrong length record indication occurred while
processing 1287 documents when
RECFORM= UNDEF, or

e. The 1287 program erroneously contained a CCW{s)
with the SLI flag bit ·OFF', or

For COBOL, a wrong length record was detected in
the object program.

14. When nn is any other value: The supervisor function
requested by the operand of the SVC is not defined
for the supervisor being used.

I Figure 4.7. Causes for Message OS04I (Cancel Code X'2i')

200 DOS System Programmer's Guide

Cancel Code (Hexadecimal): 28

Message Code: None

Description, .. Action or Condition:
cancel in progress)

Cancel Code (Hexadec~al): 30

Message Code: OP72I

(QTAM

Description, Action or Condition: This is
a result of a program ignoring the reading
of the /& statement on SYSRDR or SYSIPT.

Cancel Code (Hexadecimal): 31

Message Code: OP75I

Description, Action or Condition: This is
a result of the number of pending I/O
errors exceeding supervisor capacity.

Cancel Code (Hexadec~al): 32

Message Code: OP76I

Description, Action or Condition: This is
caused by DASD file-protect limits being
exceeded or by an incorrect record
reference for system files on disk. It
will also be posted for unrecoverable I/O
errors on tape.

Cancel Code (Hexadecimal): 33

Message Code: OP79I

Description, Action or Condition: This
occurs when a DASD command chain in a
file-protected environment does not start
with a command code of X'07'. This code
indicates a long seek and must be the first
command in the chain.

Cancel Code (Hexadecimal): 34

Message Code: OP84I

Description, Action or Condition: This is
caused by an unrecoverable I/O error during
a FETCH of a non-$ phase, thus resulting in
the job being canceled.

Cancel Code (Hexadecimal): FF

Message Code: OP78I

Description, Action or Condition: This
occurred when an IBM-supplied component
failed to post a valid cancel code.

All of these cancel codes cancel the
program, task, or subtask when they occur.
If multitasking is being used and a main
task is canceled, all of the subtasks
attached are detached and canceled as a
result of the main task being canceled,
with the exception of cancel code X'23'.
If a dump option was specified at system
generation time, the contents of the
supervisor and the partition in which the
cancel condition occurred is written on
SYSLST.

The linkage editor map can be a great
help in locating programs and subroutines
that are included in the programs at object
time. Common areas, load address,
relocation factors, low-core and high-core
addresses are also shown. In addition, the
PHASE card is displayed to show where the
phase was' loaded (i.e., directly following
the supervisor or at some other location).
This map is also helpful when working with
multiphase programs.

The system dump of main storage used
with these items allows the programmer to
relate all the information he has gathered
to the contents of main storage at the time
the error occurred. By using the dump and
the listing, the programmer can see how his
program appeared in main storage at the
time of the error. By using the values
found in the PIK and PIB table in the dump,
he 'can see partition save areas, registers,
and instructions to determine what actually
caused the error.

There are times when a system dump is
not available to the programmer, such as
hard waits and unending loops. When one of
these conditions occurs, the only way to
get a dump of main storage is to use a
stand-alone dump. Remember that the
address of the communication region (COMRG)
is lost when a stand-alone dump is taken.
Therefore, bytes X'16'-X'17' should be
displayed before taking a dump of main
storage to ensure that the programmer has
the correct communication region address to
use when he is analyzing the dump. If
bytes X'16'-X'17' are not displayed, the
communications region start address can
still be found by scanning the dump for the
date in the form MM/DD/YY or DD/MM/YY (this
indicates the start of COMRG). Although
the register values in a stand-alone dump
(register print area of the dump) may not
be valid, the partition save area values
most likely will be valid.

Section 4: Debugging Aids 201

Wait States

The system is said to be in a wait state
when the ·wait· light is continuously lit
and the ·system· light is off. wait states
are divided into hard waits and soft waits.

If the system is in a hard wait, the
wait bit in the current PSW (bit 14) is set
to one and the system mask is set to zeros,
thus disabling all interrupts. Because no
interrupts are allowed, a PSW swap cannot
occur and the system mUst be re-IPLed to
continue processing.

A soft wait occurs when the DOS
supervisor finds no in-core programs ready
to run and loads a PSW with the wait bit
set to one and the system mask set to all
ones. The first interrupt returns control
to the supervisor and processing may
continue.

A wait can easily be determined as hard
or soft by causing an interrupt. If the
system responds with some action, the wait
is softi if not, the wait is hard. The
most convenient way for the operator to
cause an interrupt is to press the 1052,
3210, or 3215 request key. If the wait is
soft, the attention routine responds with
the ·READY FOR COMMUNICATIONS· message.

SOFT WAITS

If the system is in a continuous soft wait,
it is waiting for an interrupt to signal
the completion of an event. Although the
expected interrupt may be from the timer or
external interrupt key, a missing
device-end caused by hardware is the most
frequent cause. The operator can make each
device not-ready, then ready, to generate a
device-end interrupt from each address.
The system light flashes briefly as the
supervisor examines and discards interrupts
for which it was not waiting. The
interrupt from the device waited for causes
normal processing to continue. (The
occurrence should be brought to the

202 DOS System Programmer's Guide

attention of the customer engineer as a
possible hardware failure.) If this
technique does not end the wait, take a
stand-alone dump to find what the system
was waiting for.

HARD WAITS

The DOS supervisor loads a hard-wait PSW
when a failure occurs that puts th~
integrity of the control program or system
data in doubt. The supervisor attempts to
place a message in low core bytes 0-4.
Figure 4.8 shows the explanation for each
error.

If a hard wait occurs, it is imperative
that this message be retrieved and
recorded. Effective diagnosis is extremely
difficult if this step is neglected.

If byte one of main storage contains an
S (X'E2'), the following information can be
obtained easily:

Check byte X'13' for, a X'OP'. This
indicates either a channel control check or
an interface control check. Bytes
X'3A'-X'3B'contain the device address. If
byte X'13' does n9t contain a X'OP', a
machine check must ha~e occurred.

Byte one may have a W. If a W (X'E6')
is found, a hard stop on SYSRES is
indicated.

If the CPU d~tects an error in its own
circuitry, or (in theSystem/360, model 50
or smaller) in the channel or interface
control circuits, it forces a machine check
interrupt. The system places anS in byte
1 and enters a hard,wait. The S is a
request to run the SEREP (system
Environmental Recording, Editing, and
Printing) dump to format and display the
contents of the CPU's hardware registers
and log-out area for use by the customer
engineer. (A SEREP dump configured for the
system should be available to th~ operator.
A copy can be obtained from the customer
engineer responsible for the CPU.)

Byte 0 Byte 1 Byte 2 Byte 3

SYSTEM/360 SEREP Codes:

X'OO' X'E2' Not used Not used

X'Ol' X'E2' Reserved Reserved

SYSTEM/370 SEREP Codes:

X'Cl' X'E2' A, I, S* Not used

X'C2' X'E2' Not used Not used

X'C3' X'E2' A, I, S* Not used

X'C4' X'E2' A, I, S* Not used

X'C5' X'E2' A, I, S* Not used

X'C6' X'E2' A, I, S* Not used

X'C7' X'E2' A, I, S* Not used

X'C8' X'E2' A, I, S* Not used

X'C9' X'E2' A, I, S* Not used

SYSTEM/360 and SYSTEM/370 WAIT Codes:

X'03' X'E6' Channel Unit

X'04' X'E6' Not used Not used

X'05' X'E6' Channel Unit

X,06' Not used Not used Not used

X'07' X'E6' Channel Unit

X'08' to Channel Unit
X'60'

Explanation

Machine check. Load SEREP. Re -IPL system.

Channel failure: interface or channel control check. Load SEREP. Re -IPL system.

Unrecoverable machine check.

Unrecoverable channel failure during RMS f",tch.

Channel failure on SYSLOG when RMS message scheduled.

Reserved (should not occur)

Channel failure: ERPI Bs exhausted.

Channel failure; two channels damaged or a damaged channel situation occurred while
RMS was executing an I/o operation.

Channel failure; system reset was presented by a channel.

Channel failure; system codes in ECSW are invalid.

Channel failure; channel address invalid.

DOS unrecoverable disk error during program fetch. The first six sense bytes are
placed in hex bytes 5-A. Re-IPL system.

Cancel condition has occurred while performing a Supervisor fundtion (not a Supervisor
detected problem -program error). Normally a Program Check while in Supervisor State.
This condition also occurs if a fetch has been issued for and IBM - suppl ied transient
which is not in the system core image library. IBM-supplied $$A, $$B, and $$R
transients cannot be placed in a private core image library. Take a stand -alone dump;
the name of the transient involved is in the first 8 bytes of the appropriate transient
area. Place the transient in the system core image library. Re -I PL system.

I/o Error Queue has overflowed as the result of an I/O error on a program fetch
channel program. Re -IPL system.

Reserved (shou I d not occ ur) •

IPL I/O error. Channel can unit indicate whether SYSRES or communication device.
Re -IPL system.

Error recovery messages. Refer to OP messages in DOS Messages, found in Preface.

* Note: A (X'Cl ') = SYSREC error recording unsuccessful.
I (X 'C9') = SYSREC error recording incomplete.
S (X'E2') = SYSREC error recording successful.

Figure 4.8. Low Core Error Bytes

Section 4: Debugging Aids 203

If a program check interrupt occurs
while the DOS supervisor is in control of
the system, the integrity of the control
program itself is in doubt. system
response is to put a message of 04W
(X'04E6') in bytes 0 and 1 and enter a hard
wait. Note that many programs may run in
the supervisor state and hence cause this
type of hard wait. These programs include
BTMOD (in its channel appendage routine),
SPOOLing programs such as POWER (which
alters the address of the SVC new PSW to
point to the POWER partition), most $$A and
some $$B transients.

After the 04W message has been noted. a
stand-alone dump should be taken. The
first diagnostic steps, as with any program
check. are to locate the failing
instruction and determine the program in
error. Use the supervisor assembly listing
to determine if the program check address
(location X'2D'-X'2F') falls within the
supervisor nucleus (address less than label
NUCEND), within the logical transient area
(label LTA to LTA+X'4BO'). the physical
transient area (label PTA to PTA+X'22S'),
or outside the supervisor (address greater
than label PPBEG).

In the first case. use the supervisor
listing to find what routine was being
executed and what function the supervisor
was attempting to perform. Use the I/O old
PSW to find the device involved in the last
I/O interrupt received and the SVC old PSW
for the last SVC executed.

In the second and third cases, the name
of the transient involved appears at the
beginning of the transient area involved.
Use the DOS system Generation listed in the
Preface to find the function of that
transient.

When the program check address is
outside the supervisor, find the partition
it falls in and use the program
documentation to locate the failure.

If W is not present in location 1,
record the communications region address
contained in locations X'16'-X'17' and take
a stand-alone dump. Check the PIK(located
at displacement X'2E' in the communications
region) to determine the task in control.
Then, locate and examine the PIB table
entry for the task in control.

The All Bound PIB is usually active,
indicating an I/O interrupt or event has
not occurred. The program or task save
areas indicate the device(s) or resource(s)
being waited on. The PIB supplies
information such as the cancel code and the
address of the partition save area. The
save area contains the PSW. The
instruction address portion of the PSW

204 DOS System Programmer's Guide

should be pointing to the last executed
instruction. The register values can also
be helpful at this point.

Register 14 is used as a standard return
from an IOCS module. Register 15 contains
the address of the IOCS module. . Register 1
points to an ECB, RCB. CCB. or last phase
or transient fetched or loaded.

Note: Certain unusual hardware and
software failures can cause the system to
halt processing with both the system light
and the wait light on continuously. This
indicates the current PSW has its wait bit
set on.but'the CPU is operating
(processing microprogram instructions). If
possible. the system should be left in this
state until a customer engineer has
arrived. A stand-alone dump can show the
I/O operations in progress. No low-core
message will be found. and a re-IPL is
necessary to continue processing_ .

By gathering all of the proper
documentation and using some of the aids
given in this section. most errors should
be resolved without too much difficulty.

Debugging Assembler Programs

The proper documentation and careful
interpretation of system messages is needed
to ensure that the programmer understands
the diagnostics provided by the system.
Internal pointers found in the system
communications region and PIB table allow
the programmer to analyze main storage
dumps. to locate programs and save areas.
and to determine the cause of the error.

The linkage editor map shows where
programs should be located in main storage.
where overlays are loaded. and whether the
program is relocatable or assembled for
operation in only one partition. Remember
that all relocatable programs are assembled
with a load address of zero in the Disk
Operating system.

See Figures 1.7 and 4.4-4.6 for the
format of the system communications region
and the PIB table and Figure 1.2 for the
format of the partition save areas.

Debugging COBOL Programs

Debugging information for the COBOL
programmer includes an example of a program
named TESTRUN, consisting of a source
statement listing. Data Division map.
Procedure Division map. diagnostic

messages, linkage editor map, and an
abnormal termination dump. The IBM Disk
Operating system FUll American National
standard COBOL Compiler is used for the
compilation job step. Figure 4.9 contains
the program output in its entirety.

The Data Division map provides the
internal name generated by the compiler for
data names and file names defined in the
program. This internal name is the same as
that used in the object code listing. An
address is provided for each name, in the
form of a base and a displacement.

The Procedure Division map is a listing
of the object code. Compiler-generated
card numbers identify the COBOL statement
in the source deck containing the verb that
corresponds to the object code. The object
code listing also contains the relative
address of the object code instruction. In
addition to the object code, a Task Global
Table (TGT), a Program Global Table (PGT),
a literal pool and register assignments are
provided when a Procedure Division map is
requested. The TGT is used to record and
save information needed during the
execution of the object program. The PGT
contains literals and the addresses of
procedure names and generated procedure
names referenced by Procedure Division
instructions.

The linkage editor map contains the load
address of the program and lists the names
and locations of COBOL subroutines in main
storage.

HOW TO USE A DUMP

When a job is abnormally terminated due to
a serious error in the problem program, a
message is written on SYSLST that indicates
the:

1. type of interrupt; for example, a
program check

2. hexadecimal address of the instruction
that caused the interrupt

3. condition code

4. reason for the interrupt: for example,
a data exception.

The instruction address can be compared
to the Procedure Division map, where a
relative address is provided for each
statement. The load address of the module
(which can be obtained from the map of main
storage generated by the Linkage Editor)
must be subtracted from the instruction
address to obtain the relative instruction

address as shown in the Procedure Division
map. If the interrupt occurred within the
COBOL program, the programmer can use the
error address and the Procedure Division
map to locate the specific statement in the
program that caused the dump to the taken.
Examination of the statement and the fields
associated with it may produce information
as to the specific nature of the error.

Figure 4.9 illustrates a dump caused by
a data exception. Invalid data, that is,
data that does not correspond to its usage,
is placed in the numeric field B as a
result of redefinition.

• The program interrupt occurred at
hexadecimal location 0039Bc. This is
indicated in theSYSLST message printed
just before the dump.

• The linkage editor map indicates that
the program was loaded into address
0032A0. This is determined by
examining the load point of the control
section TESTRUN. TESTRUN is the name
assigned to the program module by the
source coding: PROGRAM-ID. TESTRUN.

• The specific instructin which caused
the dump is located by subtracting the
load address from the interrupt address
(that is, subtracting 32A0 from 39BC).
The result, 71C, is the relative
interrupt address and can be found in
the object code listing. In this case,
the instruction in question is AP (add
decimal). '

• The left-hand column of the object code
listing gives the compiler-generated

.~.~ card number associated with the
instruction. It is card 69. As seen
in the source listing, card 6' contains
the COMPUTE statement.

LOCATING A DTF

One or more DTF's are generated by the
compiler for each file opened in the COBOL
program. All information about that file
is found within the DTF or in the fields
preceding the DTF. A particular DTF may be
located in a system dump as follows:

1. Determine the order of the DTF address
cells in the TGT from the DTF numbers
shown for each file name in the Data
Division map.

'Note: Since the order is the same as
the FD's (File Description) in the
Data Division, the order can be
determined from the source program if
the Data Division map is not
requested.

section 4: Debugging Aids 205

2. Find the relative starting address of
the block of DTF cells from the TGT.

3. Calculate the absolute starting
address of the block by adding the
hexadecimal relocation factor for the
beginning of the object module as
given in the linkage editor map.

4. Allowing one fullword per DTF cell,
count off the cells from the starting
address found in Step 3, using the
order determined in step 1 to locate
the desired DTF cell.

5. If more than one DTF is generated for
a file, the above procedure should be
followed using the PGT and the SUBDTF
cells rather than the TGT and the
DTFADDR cells. The order in which
multiple DTF's appear in main storage
is dependent on the OPEN option as
follows:

(a) INPUT

(b) OUTPUT

(c) I-O or INPUT REVERSED

206 DOS System Programmer's Guide

There can be two or three SUBDTF's for
each file"with multiple OPEN options.
The Data Division map sould be used to
determine the file and the number of
the SUBDTF CELL assigned to it.

LOCATING DATA

The location assigned to a given data name
may similarly be found by using the BL
(Base Locator) number and displacement
given for that entry in the Data Division
map, and then locating the appro~riate
fullword BL cell in the TGT. The sum of
the displacement and the contents of the
cell give the relative address of the
desired area. This can then be converted
to an absolute address as described for
locating a DTF.

en
~
rt
g
~

'='
~

g
~
~
~
)I
g,
CI1

N
o

"IJ
~
(1)

~

•
\D

n
o g
en

~
I-'
~

~

]
11

~
.....
~
01
11
rt

~

o
H\

N -

// JOB DT~CHK 11.49.30
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

1

CBL QUOTE, SEQ
00001 000010
00002 000020
00003 000030
00004 000040
00005 000050
00006 000060
00007 000070
00008 000080
00009 000090
00010 000100
00011 000110
00012 000120
00013 000130
00014 000140
00015 000150
00016 000160
00017 000170
00018 000180
00019 000190
00020 000200
00021 000210
00022 000220
00023 000230
00024 000240
00025 000250
00026 000255
00027 000260
00028 000270
00029 000280
00030 000290
00031 000300
00032 000310
00033 000320
00034 000330
00035 000340
00036 000350
00037 000360
00038 000370
00039 000380
00040 000390
00041 000400
00042 000410
00043 000420
00044 000430
00045 000440
00046 000450
00047 000460
00048 000470
00049 000480
00050 000490
00051 000500
00052 000510
00053 000520
00054 000530
00055 000534
00056 000535

IDENTIFIC~TION DIVISION.
PROGRAM-ID. TESTRUN.

IBM DOS AMERIC~N N~TIONAL STAND~D COBOL

AUTHOR. PROGR~MMER N~ME.

INSTALL~TION. NE~ YORK PROGRAMMING CENTER.
DATE-~RITTEN. FEBRU~RY 4, 1971

D~rE-COMPILED. 07/23/71
REM~RKS. THIS PROGRAM HAS BEEN WRITTEN ~S A SAMPLE PROGRAM FOR

COBOL USERS. IT CREATES AN OUTPUT FILE ~ND READS IT BACK AS
INPUT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-H50 •
OBJECT-COMPUTER. IBM-360-H50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-1 ASSIGN TO SYS008-UT-2400-S.
SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S.

D~T~ DIVISION.
FILE SECTION.
FD FILE-1

LABEL RECORDS ~RE OMITTED
BLOCK CONTAINS 5 RECORDS
RECORDING MODE IS F
RECORD CONTAINS 20 CHARACTERS
D~TA RECORD IS RECORD-1.

01 RECORD-1.
05 FIELD-~ PIC X(20).

FD FILE-2
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 5 RECORDS
RECORD CONT~INS 20 CH~R~CTERS
RECORDING MODE IS F
DATA RECORD IS RECORD-2.

01 RECORD- 2.
05 FIELD-~ PIC X(20).

~ORKING-STORAGE SECTION •
01 FILLER.

02 COUNT PIC S99 COMP SYNC.
02 ALPH~BET PIC X(26) V~LUE IS "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
02 ALPHA REDEFINES ALPHABET PIC X OCCURS 26 TIMES.
02 NUMBR PIC S99 COMP SYNC.
02 DEPENDENTS PIC X(26) VALUE "01234012340123401234012340".
02 DEPEND REDEFINES DEPENDENTS PIC X OCCURS 26 TIMES.

01 ~ORK-RECORD.
05 NAME-FIELD PIC X.
05 FILLER PIC X.
05 RECORD-NO PIC 9999 •
05 FILLER PIC X VALUE IS SPACE.
05 LOC~TION PIC AA~ V~LUE IS "NYC".
05 FILLER PIC X VALUE IS SPACE.
05 NO-OF-DEPENDENTS PIC XX •
05 FILLER PIC X(7) VALUE IS SPACES.

01 RECORD~.
02 A PICTURE S9(4) VALUE 1234.

CBF CL3-3 07/23/71

to.) ~ c ..,.
go IQ

8
~
(D

en 4:: .
en \Q
'< .
en
rt
(D n a 0

txI
~ 0
11 1:"1
0

IQ en
11

~ i ...,
(D (D
11 . ~ en 11

0
Cil IQ
~ 11 ..,. SlI
01 a
(D -~

SlI

~
to.)

0
HI

to.)

....a -

I I 2

00057 000536
00058 000540
00059 000550
00060 000560
00061 000570
00062 000580
00063 000590
00064 000600
00065 000610
00066 000620
00067 000630
00068 000640
00069 000645
00070 000650
00071 000660
00072 000670
00073 000680
00074 000690
00075 000700
00076 000710
00077 000720
00078 000730
00079 000740
00080 000750
00081 000760
00082 000770
00083 000780
00084 000790

02 B REDEFINES A PICTURE S9(7) COMPUTATIONAL-3.

PROCEDURE DIVISION •
BEGIN. READY TR~CE.

NOTE rHAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
AND INITIALIZES COUNTERS.

STEP-l. OPEN OUTPUT FILE-l. MOVE ZERO TO COUNT, NUMBR.
NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
CONTAINED IN THE FILE, WRITES THEM ON rAPE, AND DISPLAYS
THEM ON THE CONSOLE.

STEP-2. ADD 1 TO COUNT, NUMBR. MOVE ALPHA (COUNT) TO
NAME-FIELD.

COMPUTE B = B + 1.
MOVE DEPEND (COUNT) TO NO-OF-DEPENDENTS.
MOVE NUMBR TO RECORD-NO •

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. WRITE RECORD-l FROM
WORK-RECORD.

STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL COUNT IS EQUAL TO 26.
NOTE THAT THE FOLLOWING CLOSES THE OUTPUT FILE AND REOPENS
IT AS INPUT.

STEP-5. CLOSE FILE-l. OPEN INPUT FILE-2.
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES
OUT EMPLOYEES WITH NO DEPENDENTS.

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8.
STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO ·0· MOVE "Z" TO

NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO STEP-6.
STEP-8. CLOSE FILE-2.

STOP RUN.

en
CD
n
rt
~.

g
.c::

t::7

~
~
I.Q
~.

:::J
I.Q

~
~.

Q.
en

tv
o
\0

"':I
~.

I I 3 I.Q
~
Ii
CD I I
.c:: .

II \0 .
n
0
bj
0
t-t
CIl
$lI

~
~
CD

~
Ii
0

I.Q
Ii

~
-~
$lI

~
W

0
H\

tv
.....J

INTRNL NAME LVL SOURCE NAME

DNM=1-148 FD FILE-l
DNM=1-178 01 RECORD-l
DNM=1-199 02 FIELD-A
DNM=1-216 FD FILE-2
DNM=1-246 01 RECORD-2
DNM=1-267 02 FIELD-A
DNM=1-287 01 FILLER
DNM=1-306 02 COUNT
DNM=1-321 02 ALPHABET
DNM=1-339 02 ALPHA
DNM=1-357 02 NUMBR
DNM=1-372 02 DEPENDENTS
DNM=1-392 02 DEPEND
DNM=1-408 01 WORK-RECORD
DNM=1-432 02 NAME-FIELD
DNM=1-452 02 FILLER
DNM=1-471 02 RECORD-NO
DNM=1-490 02 FILLER
DNM=2-000 02 LOCATION
DNM=2-018 02 FILLER
DNM=2-037 02 NO-OF-DEPENDENTS
DNM=2-063 02 FILLER
DNM=2-082 01 RECORDA
DNM=2-102 02 A
DNM=2-113 02 B

BASE DISPL INTRNL NAME DEFINITION ·USAGE R 0 Q M

DTF=Ol DNM=1-148 DTFMT F
BL=l 000 DNM=1-178 DS OCL20 GROUP
BL=l 000 DNM=1-199 DS 20C DISP

DTF=02 DNM=1-216 DTFMT F
BL=2 000 DNM=1-246 DS OCL20 GROUP
BL=2 000 DNM=1-267 OS 20C DISP
BL=3 000 DNM=1-287 OS OCL56 GROUP
BL=3 000 DNM=1-306 DS lH COMP
BL=3 002 DNM=1-321 OS 26C DISP
BL=3 002 DNM=1-339 OS lC DISP R 0
BL=3 01C DNM=1-357 OS lH COMP
BL=3 OlE DNM=1-372 OS 26C DISP
BL=3 OlE DNM=1-392 DS lC DISP R 0
BL=3 038 DNM=1.-408 OS OCL20 GROUP
BL=3 038 DNM=1-432 DS lC DISP
BL=3 039 DNM=1-452 OS lC DISP
BL=3 03A DNM=1-471 DS 4C DISP-NM
BL=3 03E DNM=1-490 DS lC DISP
.BL=3 03F DNM=2-000 DS 3C DISP
BL=3 042 DNM=2-018 DS lC DISP
BL=3 043 DNM=2-037 OS 2C DISP
BL=3 045 DNM=2-063 OS 7C DISP
BL=3 050 DNM=2-082 OS OCL4 GROUP
BL=3 050 DNM=2-102 OS 4C DISP-NM
BL=3 050 DNM=2-113 OS 4P COMP-3 R

N "'iI
I. I

0 I.Q 4
s::
t1

8 CD

,f:: CI'l . MEMORY MAP

CI'l \D

'< . TGT 003E8
en
rt n SAllE AREA 003E8
CD

fi
SWITCH 00430 a TALLY 00434

..g 0 SORT SAVE 00438
t1 t"'I ENTRY-SAVE 0043C
0 en SORT CORE SIZE 00440

I.Q NSTD-REELS 00444
t1 ~
~ .§ SORT RET 00446

; WORKING CELLS 00448
~ SORT FILE SIZE 00578

CD CD SORT MODE SIZE 0057C
t1 ..g PGT-VN TBL 00580 . TGT-VN TBL 00584 en t1

0 SORTAB AODRESS 00588

en I.Q LENGTH OF IlN TBL 0058C
s:: t1 LNGTH OF SORTAB 0058E ~ PGM ID 00590
~ a A(INIT1) 00598
CD - UPS I SWITCHES 0059C

~ OVERFLOW CELLS 005A4
BL CELLS 005A4

t1 DTFADR CELLS 005BO
rt' TEMP STORAGE 005B8
,f:: TEMP STORAGE-2 005CO

TEMP STORAGE-3 OOSCO
0 TEMP STORAGE-4 005CO
HI BLL CELLS OOSCO

N
VLC CELLS 005C4

-..J SBL CELLS 005C4 - INDEX CELLS 005C4
SUBADR CELLS 005C4
ONCTL CELLS 005CC
PFMCTL CELLS 005CC
PFMSAV CELLS 005CC
VN CELLS 00500
SAllE AREA =2 00504
XSASW CELLS 00504
XSA·CELLS 00504
PARAM CELLS 005D4
RPTSAV ARE-A 00508
CHECKPT CTR 00508
IOPTR CELLS 00508

LITERAL POOL (HEXI

00618 \ LIT+O) 00000001 1COOO01A SB5BC2D6 D7CSDS40 5BSBC2C3 D3D6E2C5
00630 (LIT+24) 5BSBC2C6 C3D4E4D3 FOE90000 cooooooo

DISPLAY LITERALS (BCD)

00640 (LTL+40) , WORK-RECORD'

en
CD
0
rt
0 ::s
.c::
II

t:;
CD
tr
s::

I.Q
I.Q
::s

I.Q

)II
Q,
fA

N

tlIj
I.Q
s::
~
.c::
I

\Q
I

(')

~
en

~ ...,
CD

j
a
~
~
U1

o
N
~ -

I I

I I

5

PGT

OVERFLOW CELLS
VIRTUAL CELLS
PROCEDURE NAME CELLS
GENERATED NAME CELLS
SUBDTF ADDRESS CELLS
VNI CELLS
LITERALS
DISPLAY LITERALS

005EO

005EO
005EO
005EC
00600
00610
00610
00618
00640

REGISTER ASSIGNMENT

60

60
63

63

63

67

67

REG 6
REG 7
REG 8

BL =3
BL =1
BL =2

00064C
00064C
000650
000652
000655
00065C
000660
000664
000666
000669
000610
000614
000678
00061A
00061C
000680
000684
000688
00068A
00068E
000692
000694
000698
00069c
0006AO
0006A4
0006AA
0006BO
0006BO
0006B4
0006B6
0006B9
0006cO
0006C4
0006C8
0006CC
0006D2

START
58 FO C 004
05 1F
000140
04F6F0404040
96 40 D 048
58 FO C 004
05 1F
000140
04F6F3404040
41 10 C 040
58 00 D 1C8
18 40
05 FO
50 00 F 008
45 00 F OOC
00000000
OA 02
41 00 D 1C8
58 FO C 008
05 EF
58 10 D 1C8
96 10 1 020
50 20 D 1BC
58 10 D 1BC
D2 01 6 000 C 038
D2 01 6 01C C 038

PN=Ol
58 FO C 004
05 1F
000140
04F6F7404040
48 30 C 03A
4A 30 6 000
4E 30 D 1DO
D7 05 D 1DO D 1DO
94 OF D 1D6

EQU
L
BALR
DC
DC
01
L
BALR
DC
DC
LA
L
LR
BALR
ST
BAL
DC
SVC
LA
L
BALR
L
01
ST
L
MVC
MVC
EQU
L
BALR
DC
DC
LH
AH
CVD
XC
NI

* 15,004(0,12)
1,15
x' 000140'
X'04F6F0404040'
048 (13), x' 40'
15,004 (0,12)
1,15
X'OOO140'
X'04F6F3404040'
1,040(0,12)
O,lC8(O,13)
4,0
15,0
0,008(0,15)
0,00C(0,15)
X'OOOOOOOO'
2
0,lC8(0,13)
15,008(0,12)
14,15
l,lC8(O,13)
020(1),X'10'
2,lBC(Q,13)
7, 1BC(0, 13)
000(2,61,038(12)
01C(2,6),038(12)

* 15,004 (0,12)
1,15
X'OOO140'
X'04F6F7404040'
3, 03A(0, 12)
3,000(0,6)
3,lDO(0,13)
1DO(6,13I,lDO(13)
1D6(13), x' OF'

v (ILBDDSPO)

SWT+O
V<ILBDDSPO)

LIT+8
DTF=l

DTF=l
V (ILBDIMLO)

DTF=l

BL =1
BL =1
DNM=1-306
DNM=1-357

V<ILBDDSPO)

LIT+2
DNM=1-306
TS=Ol
TS=Ol
TS=01+6

LIl'+O
LIT+O

TS=Ol

~ I'Zj
J-A ~.

I I ~ I.Q 6

~
8 CD 0006D6 4F 30 D lDO CVB 3,lDO(0,13) TS=Ol

CIl ~
0006DA 40 30 6 000 srH 3,000(0,6) DNM=1-306
0006DE 48 30 C 03A LH 3,03ACO,12) L1T+2

CIl \l> 0006E2 4A 30 6 01C AH 3,01C<O,6) DNM=1-357
'< . 0006E6 4E 30 D lDO CVD 3,1))0(0,13) TS=Ol
en 0006EA D7 05 D lDO D lDO XC lDO(6,13),lDO(13) TS=Ol T8=01
rt 0006FO 94 OF D lD6 N1 lD6C13),X'OF' TS=01+6
CD ()
S ~

0006F4 4F 30 D lDO CVB 3,lDO(0,13) TS=Ol
0006F8 40 30 6 01C 8TH 3,01C(0,6) DNM=1-357

ttl 0 67 0006FC 41 40 6 002 LA 4,002(0,6) DNM=1-339
11 t:-t 000700 48 20 6 000 LH 2,000(0,6) DNM=1-306
0 000704 4C 20 C 03A MH 2, 03A(0, 12) L1T+~

I.Q CIl
11 DI 000708 lA 42 AR 4,2

i S 00070A 5B 40 C 038 S 4,038(0,12) L1T+O
"0 00070E 50 40 D lDC ST 4,lDC(O,13) SBS=l ..., 000712 58 EO D lDC L 14, lDC (0,13) SBS=l
CD 00b716 D2 00 6 038 E 000 MVC 038(1,6),000(14) DNM=1-432 DNM=1-339

11 69 00071C FA 30 6 050 C 03C AP 050(4,6),03C(1,12) DNM=2-113 L1T+4 . ttl
(J) 11 70 000722 41 40 6 OlE LA 4,OlE(0,6) DNM=1-3.92

0 000726 48 20 6 000 LH 2,000(0,6) DNM=1-306
In I.Q 00072A 4C 20 C 03A MH 2,03A(0,12) L1T+2
s: 11 00072E lA 42 AR 4,2
~. DI 000730 5B 40 C 038 S 4,038(0,12) L1T+O
Q., S 000734 50 40 D lEO ST 4,lEO(0,13) SBS=2
CD - 000738 58 EO D lEO L 14,lEO(O,13) SBS=2

is 00073C D2 00 6 043 E 000 MVC 043(1,6),000(14) DNM=2-37 DNM=1-392
000742 92 40 6 044 MV1 044(6),X'IjO' DNM=2-37+1

:+ 71 000746 48 30 6 01C LH 3, 01C(0, 6) DNM=1-357
00074A 4E 30 D lDO CVD 3,lDO(O,13) TS=Ol

'"
00074E F3 31 6 03A D lD6 UNPK 03A(4,6),lD6C2,13) DNM=1-471 TS=07
000754 96 FO 6 03D 01 03D(6),X'FO' DNM=1-471+3

0 72 000758 58 FO C 004 L 15,004 (0,12) V(ILBDDSPO)
~ 00075C 05 IF BALR 1,15

~
00075E 000140 DC X' 000140'

...a 000761 04F7F2404040 DC X'04F7F2404040' - 72 000768 58 FO C 004 L 15,004(0,12) V (ILBDDSPO)
00076C 05 IF BALR 1,15
00076E 0002 DC x'OO02'
000770 00 DC X'OO'
000771 000014 DC X'OOOO14'
000774 ODOO01C4 DC X'ODOO01C4' BL =3
000778 0038 DC X'0038'
00077A FFFF DC X'FFFF'

72 00077C D2 13 7 000 6 038 MVC 000(20,7),038(6) DNM=1-178 DNt-l=1-408
000782 58 10 D lC8 L 1, lC8(0, 13) DTF=l
000786 18 41 LR 4,1
000788 58 FO 1 010 L 15, 010 (0,1)
00078C 45 EO F OOC BAL 14,00C(0,15)
000790 50 20 D lBC ST 2, lBC(O, 13) BL =1
000794 58 70 D lBC L 7,lBC(O,13) BL =1
000798 58 10 D lE8 L 1,lE8(0,13) VN=Ol
00079C 07 Fl BCR 15,1

74 00079E PN=02 EQU *
00079E 58 FO C 004 L 15,004(0,12) V<ILBDDSPO)
0007A2 05 IF BALR 1,15
0007A.4 000140 DC x'OOO140'
0007A7 04F7F4404040 DC X'04F7F4404040'

~

I"IQ
7 \Q

c::
11
(I) 74 0007AE 58 00 D 1E8 L O,lE8(O,13) VN=Ol

~
0007B2 50 00 0 1E4 ST O,lE4(O,13) PSV=l . 000"7B6 58 00 C 020 L 0,020(0,12) GN=Ol

\Q 0001BA 50 00 0 1E8 ST O,lE8(O,13) VN=Ol . 0007BE GN=Ol EQU * 0007BE 48 30 6 000 LH 3,000(0,6) ONM=1-306

n 0007C2 49 30 C 03E CH 3,03E(O,12) LIT+6

5l
0"007C6 58 FO C 024 L 15,024(0,12) GN=02
0007CA 07 8F BCR 8,15

0 0007ce 58 10 C OOC L l,OOC(O,12) PN=Ol
t'"' 0007DO 07 F1 BCR 15,1

Cf.l
000702 GN=02 EQU *

SlI 000702 58 00 D 1E4 L O,lE4(0,13) PSV=l

~
000706 50 00 0 1E8 ST 0,lE8(O,13) VN=Ol

77 0007DA 58 FO C 004 L 15,004(0,12) V<ILBDDSPO) 00070E 05 1F BALR 1,15
(I) 0007EO 000140 DC X'000140'

"tI 0007E3 04F7F7404040 De X'04F7F7404040'

11 77 0007EA 58 10 D 1eS L l,lCS(0,13) DTF=l
0 0007EE 94 EF 1 020 N1 020 (1), x' EF'
\Q 0007F2 18 01 LR 0,1
11 0007F4 18 40 LR 4,0
SlI 0007F6 41 10 C 04S LA 1,048(0,12) L1T+16 B 0007FA 05 FO BALR 15,0 - 0007FC 50 00 F OOS ST 0,008(0,15)
"tI OOOSOO 45 00 F OOC BAL O,OOC(0,15)
SlI 000S04 00000000 DC X'OOOOOOOO'
11 OOOSOS OA 02 sve 2
rt 00080A 58 00 D 1e8 L O,lCS(O,13) DTF=l
....a OOOSOE 41 10 e 050 LA 1,050(0,12) L1T+24

000S12 OA 02 SVC 2
0 77 000814 41 10 e 040 LA 1,040(0,12) L1T+8
H\ 000S18 5S 00 D 1CC L 0",lCCCO,13) DTF=2

N
OOOSle lS 40 LR 4,0

-...I OOOSlE 05 FO BALR 15,0 - 000S20 50 00 F 008 ST 0,008(0,15)
000824 45 00 F OOC BAL O,OOC(O,15)
000828 00000000 De x'OOOOOOOO'
00082e OA 02 sve 2
00082E 41 00 0 lec LA 0,leC(O,13) DTF=2
000832 58 FO COOS L 15,008(0,12) V <ILBD1MLO)
000S36 05 EF BALR 14,15
000838 58 10 D 1CC L 1,lCC(O,13) DTF=2
00083C 96 10 1 020 01 020 (1), x' 10'

80 000840 PN=03 EQU * Cf.l 000840 58 FO e 004 L 15,004(0,12) V!ILBDDSPO) (I)
n 000844 05 1F BALR 1,15
rt 000846 000140 De X'OOO140' 000849 04F8F0404040 DC X'04F8F0404040'
0 80 000850 58 10 0 1ce L 1,lCC(0,13) DTF=2
::s 000854 58 FO C 028 L 15,028 (0,12) GN=03

~
000858 91 20 1 010 TM 010 (11, x' 20'
00085C 07 1F BeR 1,15
00085E 18 41 LR 4,1

~

II
000860 41 FO C 028 LA 15,028(0,12) GN=03

(I) 000864 02 02 1 025 FOOl MVC 025 (3,1),001<15)
t:r 00086A 58 FO 1 010 L 15,010(0,1) c::

\Q
\Q
::s
\Q

)II
Q,
en

N ...
W

N
"IiI I.Q I I 8

.t;:: ~
11

8
CD 00086E 45 EO F 008 BAL 14,008(0,15)
.t;:: 000872 50 20 D 1CO ST 2,lCO(0,13) BL =2

til 000816 58 80 D 1CO L 8,lCO(0,13) BL =2

til
\D 00081A D2 13 6 038 8 000 MVC 038(20,6),000(81 DNM=1-408 ONM=1-246

'<
. 000880 58 FO C 018 L 15,018(0,12) PN=04

en 000884 01 FF BCR 15,15
rt n 80 000886 GN=03 EQU * CD g 000886 58 10 C 01C L 1,01C(0,12) PN=05
S 00088A 01 F1 BCR 15,1

~
0 81 00088C PN=04 EQU *

11 t'"I 00088C 58 FO C 004 L 15,004 (0,12) VULBDDSPO)
0 til 000890 05 1F BALR 1,15

I.Q

~
000892 000140 DC X'OOO140'

11 000895 04F8F1404040 OC X'04F8F1404040'
QI '0 81 00089C 58 20 C 02C L 2, 02C(0, 12) GN=04

I ~ 0008M 05 00 C 058 6 043 CLC 058(1,12),043(6) LIT+32 DNM=2-31
CD 0008A6 01 12 BCR 1,2

11 ~ 0008A8 95 40 6 044 CLI 044(6),X'40' DNM=2-31+1
11 00'08AC 07 72 BCR 7,2

en 0 81 0008AE 02 00 6 043 C 059 MVC 043 <1, 6),059 <121 DNM=2-31 LIr+33

(j)
I.Q 0008B4 92 40 6 044 MVI 044(6),X'40' DNM=2-37+1
11 82 000888 GN=04 EQU * ~ QI

000888 58 10 C 05C L 1, 05C (0,12) LIT+36 S
~ 00088C 50 10 D 1EC ST 1,lEC(0,13) PRM=l
CD - 0008CO 41 20 D 1EC LA 2, 1EC(0, 13) PRM=l

~ 0008C4 58 FO C 004 L 15,004(0,12) V(ILBDDSPO)
PI 0008CS 05 1F BALR 1,15
11 0008CA 8001 DC X'8001' rt 0008CC 10 DC X'10'
00 0008CO 000008 DC X'OOOOOB'

000800 OCOOO060 DC X'OCOOO060' LIT+40
0 000804 0000 DC X'OOOO'
H\ 000806 00 DC X'OO'

N 000801 000014 DC X'000014'
o-.J 00080A ODOO01C4 DC X'ODOO01C4' BL =3 - 0008DE 0038 DC X'0038'

0008EO FFFF DC X'FFFF'
82 0008E2 58 10 C 014 L 1,014(0,12) PN=03

0008E6 07 F1 BCR 15,1
83 0008E8 PN=05 EQU * 0008E8 58 FO C 004 L 15,004(0,12) VULBDDSPO)

000.8EC 05 1F BALR 1,15
0008EE 000140 DC X'OOO140'
0008F1 04F8F3404040 DC X'04F8F3404040'

83 0008F8 58 10 D 1CC L 1,lCC(0,13) DTF=2
0008FC 94 EF 1 020 NI 020 (1), x' EF'
000900 18 01 LR 0,1
000902 18 40 LR 4,0
000904 41 10 C 048 LA 1,048(0,12) LIT+16
000908 01 00 BCR 0,0
00090A 05 FO BALR 15,0
00090C 50 00 F 008 ST 0,008(0,15)
000910 45 00 F OOC BAL 0, OOC(O, 15)
000914 00000000 DC X'OOOOOOOO'
000918 OA 02 SVC 2
000911\ 58 00 D 1CC L 0,lCC(0,13) DTF=2
00091E 41 10 COSO LA 1,050(0,12) LIT+24

-

I'IJ
I.Q 9
c:::
1"'1
CD

II
000922 OA 02 SVC 2

.t:: 84 000924 OA OE SVC 14 . 000926 OA OE SVC 14
\D 000928 50 DO 5 008 INIT2 ST 13,008(0,5) . 00092C 50 50 D 004 ST 5,004(0,13)

000930 58 20 C 000 L 2,000(0,12) VIR=l

n 000934 95 00 2 000 eLI 000(2),X'00'

0 000938 07 79 BCR 7,9
t:I:I 00093A 92 FF 2 000 MVI 000(2),X'FF'
0 00093E 96 10 D 048 01 048 (13), x' 10' SWT+O
1:"1 000942 50 EO D 054 INIT3 ST 14,054 (0,13)

til 000946 05 FO BALR 15,0

~
000948 91 20 D 048 TM 048(13),X'20' SWT+O
00094C 47 EO F 016 BC 14,016(0,15)
000950 58 00 B 048 L 0,048(0,11>

I-' 000954 98 2D B 050 LM 2,13,050 (11)
CD 000958 58 EO D 054 L 14,054(0,13)

'tI 00095C 07 FE BCR 15,14

1"'1 00095E 96 20 D 048 01 048 (13) , x, 20' SWT+O
0 000962 41 60 0 004 LA 6,004(0,0)

I.Q 000966 41 10 C OOC LA 1,00C(0,12) PN=Ol
tot 0009611. 41 70 C 038 LA 7,038(0,12) LIT+O
~ 00096E 0,6 70 BCTR 7,0 a 000970 05 50 BALR 5,0 - 000972 58 40 1 000 L 4,000(0,1>

~ 000976 1E 4B ALR 4,11
000978 50 40 1 000 ST 4,000(0,1>

1"'1 00097C 87 16 5 000 BXLE 1,6,000(5) rt 000980 41 80 D 1BC LA 8, 1BC(0, 13) OVF=l
\D 000984 41 70 D 1CF LA 7, 1CF<O, 13) TS=01-1

000988 05 10 BALR 1,0
0 00098A 58 00 8 000 L 0,000(0,8)

"'" 00098E 1E OB ALR 0,11

N 000990 50 00 8 000 ST 0,000(0,8)

.... 000994 87 86 1 000 BXLE 8,6,000(1) - 000998 D2 03 D 1E8 C 030 MVC 1E8(4,13),030(12) VN=Ol VtU=l
00099E 58 60 D 1C4 L 6,lC4(0,13) BL =3
000911.2 58 70 D 1BC L 7,lBC(0,13) BL =1
000911.6 58 80 D 1CO L 8,lCO(O,13) BL =2
000911.11. 58 EO 0 054 L 14,054(0,13)
0009AE 07 FE BCR 15,14
000000 05 FO INIT1 BALR 15,0
000002 07 00 BCR 0,0
000004 90 OE F 0011. STM 0,14,0011.(15)
000008 47 FO F 082 BC 15,082(0,15)

en OOOOOC os 30F
CD 000084 58 CO F OC6 L 12, OC6(0, 15) n
rt 000088 58 EO C 000 L 14,000(0,12) VIR=l 00008C 58 DO F OCA L 13, OCA-(0,15)
0 000090 95 00 E 000 CLI 000 (14), x' 00'
::s 000094 47 70 F OA2 BC 7,011.2(0,15)

000098 96 10 D 048 01 048 (13), X'10' SWT+O
.t:: 00009C 92 FF E 000 MVI 000(14),X'FF'

000011.0 47 FO F OAC BC 15,OAC(O,15)
t:j

II
OOOOM 98 CE F 0311. LM 12,14,0311.(15)

CD 000011.8 90 EC 0 OOC STM 14,12,00C(13)
t:r OOOOAC 18 50 LR 5,13
c:::
\Q
\Q
::s
\Q

)I'
Q,
en

N
~
U1

t\) I1Q
~ ..,.
'" ~ I I 10

d
t1

8 CD OOOOAE 98 9F F OBA LM 9,15,OBA<1S)

en ~ 0000B2 91 10 D 048 TM 048 (13), X' 10' SWT+O . 0000B6 07 19 BCR 1,9
en IQ 0000B8 07 FF BCR 15,15
~ . OOOOBA 07 00 BCR 0,0 en OOOOBC 00000942 ADCON L4(INIT3) tt
CD n OOOOCO 00000000 AOCON L4(INIT1)

S ~ 0000C4 00000000 AOCON L4 (INIT1)
0000C8 OOOOOSEO AOCON L4(PGT)

t'd 0 ooooce 000003E8 AOCON L4(TGT)
1'1 t"f 000000 0000064C AOCON L4(START)
0 en 000004 00000928 AOCON L4(INIT2)
~
t1 ~ 000008 c306C2C6FOFOFOFl DC X'C3D6C2C6FOFOFOF1'

i a OOOOEO E3CSE2E3D9E40S40 DC X'E3CSE2E309E40540'
to ...,

CD CD
1'1

t'd
en t1

0
(j') ~
d t1 ..,.

~ ~
CD -~

1'1
tt
~
0

0
H\

t\)
...a -

til
CD
(')
rt
~.

o ::s
.t;:

tj

l}
~

I.Q
I.Q
~.

::s
I.Q

)I
~.

Q,
en

IV ...
....a

I'Zj
IQ

~
CD

.t;: .
\Q .
n g
g
til

~
~
CD

I'd
11 o
IQ
11

~ -I'd
~

~
o
H\

IV
....a -

11

DATA NAMES

FILE-l
RECORD-l
FILE-2
RECORD-2
COUNT
ALPHA
NUMBR
DEPEND
WORK-RECORD
NAME-FIELD
RECORD-NO
NO-OF-DEPENDENTS
B

PROCEDURE NAMES

STEP-2
STEP-3
STEP-6
STEP-8

CROSS-REFERENCE DICTIONARY

DEFN REFERENCE

00017 00063 00063 00072 00077
00028 00072 00072
00018 00071 00077 00080 00080 00083
00036 00080
00040 00063 00067 00067 00067 00070 00074
00042 00061 00067
00043 00063 00067 00067 00011
00045 00070 00010
00046 00072 00012 00072 00080 00082
00041 00061
00049 00071 00071
00053 00010 00010 00081 00081 00081 00081
00051 00069

DEFN REFERENCE

00061 00074
00072 00074
00080 00082
00083 00080

IV
~
CO

8
Cf)

til
'< en
rt
CD
a
"C
11
0
~
11
01

~
CD
11 .
en
(j')
~
to'-
P,
(I)

tz;I
to'-
~

~
CD

,f:: .
\D .
n
0
to
0
t:t
til
01 a

'"0
CD

~
11
0
~
11
01 e -"C
01
11
rt

....
IV

0
H\

IV
~ -

12

CARD ERROR MESSAGE

56
67
67

ILA2190I-w
ILASOllI-W
ILA5011I-W

PICTURE CLAUSE IS SIGNED, VALUE CLAUSE UNSIGNED. ASSUMED POSITIVE_
HIGH ORDER TRUNCATION MIGHT OCCUR.
HIGH ORDER TRUNCATION MIGHT OCCUR.

til
Cb

~
g
~

~
Cb
t:r
d

\,Q
\,Q
~
>'
Q.a
en

N ...
\Q

~
\,Q
~
Ii
CD

~ .
\D .
n
g
o
tot
til

~
~
Cb

ttl a
\,Q

~
-~
~
...
w
o
H\

N
-.J -

// EXEC LNKEDT

JOB DTACHK 07/23/71

ACTION
LIST
LIST
LIST
LIST
LIST
LIST
LIST

TAKEN MAP'
AUTOLINK IJFFBZZN
AUTOLINK ILBDDSPO
INCLUDE IJJCPDl
AUTOLINK ILBDIMLO
AUTOLINK ILBDMNSO
AurOLINK ILBDSAEO
ENTRY

DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT

0001

IV "III ..,.
IV I..Q 01/23/71 PHASE XFR-AD LOCORE HICORE DSK-AD ESD TYPE LABEL LOADED REL-FR
0 s::

11 PHA.8E*** 0032AO 0032AO 004ADB 63 01 2 CSECT TESTRUN 0032AO 0032AO

8
(1)

.f= CSECT IJFFBZZN 003C50 003C50
en . * ENTRY IJFFZZZN 003C50

en \Q * ENTRY IJFFBZZZ 003C50

~ * ENTRY IJFFZZZZ 003C50
en
rt n CSECT ILBDSAEO 0049FO 0049FO
(1) 0 ENTRY ILBDSAE1 004A06 a t»
ttl 0 CSECT I LBDMNS 0 0049E8 0049E8

11 t"4
0 CI) CSECT ILBDDSPO 0041B8 0041B8
~

~
* ENTRY ILBDDSP1 004708

11 * ENTRY ILBDDSP2 0047AO

I * ENTRY ILBDDSP3 004958
~

(I)
(I) CSECT ILBDIMLO 004990 004990

11 ttl . 11 CSECT IJJCPD1 003FCO 003FCO en 0 ENTRY IJJCPD1N 003FCO

en ~ * ENTRY IJJCPD3 003FCO
s:: 11 ..,. ;
Q,
(I) -ttl

SlI
11
rt

~
.f=

0
H\

IV
...J ..,

co
o
o
en
:>i
en
z
(!lU
en iii
en><
..:t:iiI

" C"'ll'-
" V:>>D

I Figure 4. 9. COBOL Sample Program (Part 15 of 27)

Section 4: Debugging Aids 221

N

I Figure 4.9. COBOL Sample Program (Part 16 of 27)

222 DOS System Programmer's Guide

en
CD

~ ..,.
g
01::

i' g
\.Q
\.Q ..,.
~
lJII ..,.
ft
N
N
W

~

I'Ij ..,.
\.Q

~
CD

01:: .
\Q .
n o
I:J:' g
en

~
~
CD

~ o
\.Q
Ii

~
-~
Ii
rt
~
...,J

o
H\

N
...,J -

OTACBK 07/23/11

GR 0-1 00003850 00003960 00000001 00000001
GR 8-F .000035B8 00003BE2 000032AO 000032AO
FP REG 00000000 00000000 00000000 00000000
COMREG BG ADOR IS 000208

000000
000020
000040
000060
000080
OOOOAO
OOOOCO
OOOOEO
000100
000120
000140
000160
000180
0001AO
0001CO
0001EO
000200
000220
000240
000260
000280
0002AO
0002CO
0002EO
000300
000320
000340
000360
000380
0003AO
0003CO
0003EO
000400
000420
000440
000460
000480
0004AO
0004CO
0004EO
000500
000520
000540
000560
000580
0005AO
0005CO
0005EO
000600
000620
000640
000660

00000000 00000000 00000000 00000000
FF050001 40002E06 FF150001 E00039C2
00002F28 OCOOOOOO 00001038 00000000
00040000 00000336 00040000 0000141A
00000000 00000000 00000000 00000003
0146940F B41B41AO C0544510 OB8418A8
06B006BO 06B006BO 06B041BB 001141BB
AOOC4110 00EA9260 A00195E2 A0024180
010E9104 A0004180 010E9203 008F9281
C0440118 94F9103B 01011058 10589283
4570B218 01F842BO 00E148BO 02C847FO
C0441BAA 0006BEEE 000C43A1 000142AO
A0009140 A0014110 BB640201 01F09008
4BA00262 41AACOOO 02010016 A0009898
90309890 01F08200 00389284 COA40201
41100030 41FOB166 96030039 82000038
00003000 80001048 FOF161F2 F361F1F1
C4E3C1C3 C8024040 0007AFFF 00004ADB
A8A07COO 00C62111 21182269 226AOOOO
00002044 OOOOOOOC 22E21E4E 1EF41F04
01001F98 20000000 00000000 02080000
00001F2C 00000000 00000000 00000000
0000289C 00003228 100020CE 000010C8
48A00236 4AA00262 9180AOOO 47100306
410CBOOO 07F99601 A00048BO 02C841CB
48E001C8 0201BF50 E00094FO BF510213
02E04190 01B69500 00234180 03F49526
48661000 07F6181F 1B664121 000F4570
1B234140 03904130 00151B23 41B00392
00CA4230 04094820 02364322 C0031A23
960C1004 07F91858 41430002 43540000
03CC4284 000001F9 95FF04B1 07891BOO
95600237 47800366 0502A005 02814770
4121000F 4510BCAC 05021009 023941BO
92FF0409 02000440 A0004123 000B0500
20004810 02544338 10004930 BE3847BO
B60E0501 0022BB2c 4780B8E4 0501BE4C
00234180 04~9110 30064180 B2384180
02740200 04B14000 50104000 92FF4000
4780B62E 47F004EC 5880BF8C 44000CB8
02CC9507 60004170 05660202 02C06001
02004144 00000503 10014000 41800566
91406004 41800560 94BF6004 91101002
02034000 700195FF 30024710 03C64280
48603000 95003000 47800592 9F006000
50184180 08409101 100C4110 0500940F
95035018 41000634 9560C09C 4180061C
9C000184 41100,5F2 4032COB4 96803006
00454110 060C91AF 00440789 0201003A
58600048 4A60BOOC 50600040 4032COB4
47700654 45100B84 9120800F 41100094
47700500 45700B84 4B800262 4818COOO

0000338A 50003C12 00003388 00003550
00003880 00003688 0000338A 000041B8
00000000 00000000 00000000 00000000

00000000 00000208 FF050000 00000000
5B5BC2C5 0601F440 FF050184 80002EOO
F15A1COO 01BB0994 00040000 OF0014BA
00000000 OOOOOBBC 00040000 00000204
00050003 06B006BO 06B041BB 00134570
41900156 4180B2CE 41FOOOOA 06B006BO
00504510 01464180 01569640 A0019120
00C695C1 A0024180 00C69561 A0024180
A0004BAO 0262481A C00049AO 021641AA
A0009680 A0014400 04080188 941FA001
BC104510 BC700205 BEEEBEF5 OC05BEEE
023141AA C0444400 A0045890 A0044220
68009058 68209060 68409068 68609010
90108200 01F04400 A0045890 A0049818
01FOBF50 9890BF58 820001FO 9680AOOO
FF050001 40002E06 00001000 00002000
32A03000 00000000 00000000 00000000
00004ADB 00000010 0001FFFF F815EC01
25102514 25183CFO F7F2F3F7 F1F2FOF4
1F140020 214C0010 5B5BC206 00130001
00000294 00000000 000025AC 00000044
00000000 00000000 00000000 00000000
00002A9C 923801C9 909001FO 4190086C
58BOA004 9018B030 48B002C8 41CBBOOO
B000410C B00095FF AOOF0189 90EOBF6C
BF5801FO 01F99090 01F09220 01C94590
002341BO 00BE4860 00221A66 481002CA
BCAC4860 BE5C1B22 43201001 4130001F
1A234220 04094320 100141FO 04584120
950B1001 41F00454 412000C8 96801002
41455000 1A444A40 BE5495FF 40004110
5000BF14 95FF04B1 4180B238 48600236
04204111 00004910 BE3A41BO 04201B66
00C61B33 43301001 95011006 4110039E
1007AOOE 47BOOOCA 04031002 COB04182
03B88930 00034A30 024891FO 30044180
BE5A4720 04AE4930 BE144710 04AE950F
00014148 80001A44 4A40BE54 18584A50
42205000 4260500C 92035018 91F03004
9560C09C 41700566 020202CO 10095860
581002CC 1B444340 30054C40 BE485A40
9120100C 41100560 91051002 41100560
41800558 96401002 96141002 9601100C
30029198 30060119 43203000 4322C090
01694060 05E29550 30044180 080C9504
06FF91FO 500C4180 05000300 C09C3004
02020049 1009940F 07030300 0048500C
01F94130 OBC69106 00454110 OE9C913F
05E29550 30044110 06200202 00491009
41F0089A 950150184120065C 9560C09C
41F0065C 91203006 41100094 9560C09C
91401038 47100500 96F006FF 95003003

11.52.21

•••• •••••••••• B

••••••• - ••• S ••••

••••• 9 •• P •••••••
••••• 8 ••• X ••• B.0

••• • ••••• K •• 0 ••
•• ••• • •• K •••••••
••••• 0 •••••••• K.
••••• 0 ••••••••••
•••••••• 01/23/11
OTACBK
•• Gl •• F ••••••••••
••••••••• S ••• 4 ••

• •••••••••••••• B

••••• 9 ••••••• B ••
••• BK •• & •••••• K.
••••••••••••• 4 ••
••••• 6 ••••••••••

•• ••• R ••••••••••
• •••• 9 ••••••••••
• •••••• 9 ••••••••
.-•••••• N •••••••
• ••••••• N •••••••
••• RK ••••••••• N.

•• N •••••••• UN •• <

• .K •••• & ••••
• •••• 0 ••••••••••
•••• - ••••• K ••• -.
•••••• N ••••••••

- - .. -
K ••••••••••• F •• · - -.
&. • •• • •••••••••
• • & •••••• - ••••• Gl
••••••• 2 •••• ~ ••
•• •••• •• •••• K •••
• - ••• - •• &-.

PAGE 1

$$BEOJ4 ••••••••
7 •••••••••••••••
••••••••••••••• M

••••••••• O ••••••
• &. • •• • •• •• • •••
.F.A ••••• F./ ••••
•••••• K •••• 5 ••••

. -. . .. - ..
••••• o ••••••••••
• O. & ••••••• 0 ••••

•••••••••••• 8 •• J
••••••. 072311204
••••• < •• $$BO ••••

••••••. r ••. 0 ••••
••••••••••• B ••••

••• 0.9 ••• 0 ••• r •• -
• .. -. * .••••••.•.
••••• R ••••• 0 ••••
••••• 0 ••••• B •••• .. &....
& •••••••••••• - ••

• F ••••••••••••••
•••••••• M •••••••
••••••••••• 0 ••••

••• • •• • •• • •••• &
•• & •• -& ••• & •• 0 ••
• - •••••• K •••••• -
•• • • ••• •• < ••• -

-. S. & ••••••••
••• 0 & ••••• L •••••
K ••••••••• L ••• &.
.9 ••• F ••••••••••
.S. & •••••• K •••••
.0 •••• & •••• *.- ..
• O. *-••••••••• - ••

••••••• O ••••••

N
N
~

8
til

~
rt
CD a
to
11 o
\Q

i
CD
11

en
(j)
s= ..,.
Pol
CD

....-...

I7J ..,.
\Q

~
CD

~ .
\Q .
o

~
til

~
(1)

a
~

a
i
~
t-A
co
o
111

N
...a -

000680
0006AO
0006CO
0006EO
000700
000720
000740
000760
000780
0007AO
0007CO
0007EO
000800
000820
000840
000860
000880
0008AO
0008CO
0008EO
000900
000920
000940
000960
000980
000911_0
0009CO
0009EO
OOOAOO
OOOA2Q
000A40
000A60
000A80
OOOAAO
OOOACO
OOOAEO
OOOBOO
000B20
000B40
00-0B60
000B80
OOOBAO
OOOBCO
OOOBEO
OOOCOO
000C20
000C40
000C60
000C80
OOOCAO
OOOCCO
OOOCEO
000000
000020
000040
000060
000D80
OOOOAO

OTACHK 07/23/71

47700500 96FOB47B 45700B84 9180800C
BE3E0202 00491009 58600048 4870BOAC
4870BOAE 4070400A 96F00703 91406004
4770009A 02074000 60009508 60084770
07704700 08045876 00001B66 41870003
47800098 45400758 05008000 70004740
47F00728 41706008 47F006F6 95FF7003
00024A70 024C9130 700247AO 014C01F4
95025018 478001AO 4120079C 4188C044
41770018 41870018 01F6D506 8000800A
00080204 BE427000 95025018 474007F8
80024770 00985876 00180507 80027000
47F00604 940FB47B 47F00506 95015018
30050203 BEOC1008 5870BEOC 95047000
9501500C 47800500 9101100C 47100500
00480202 70091009 47F0050A 419001B6
lB224320 003A4322 C0904832 COB40500
0044B020 47800A42 05010044 B0224780
OC1495FF 30024110 OC149139 00454710
910A0241 07769500 30040776 9610C08C
95000044 07890602 00410041 47700A42
94713006 07F99477 30069104 30064780
47100948 92003003 96801002 9101100C
01529601 800047FO 09A894FE 100C91FO
47F009A8 944B1002 440004F8 586002CC
94BF1002 47F00A24 92FF500C 43703002
91103006 478009E8 4810BE5A 49307008
474009E8 47F009CC 95003000 41700AOO
4832COB4 02000All 003A0510 41330008
30060117 41100580 lB554350 30024145
07F195FF 30024780 09E8D201 10000046
47200AC6 0300C09C 30049560 C09C4170
02624878 ~0009140 70384710 OAC64560
92018006 06600500 80058011 47700ABA
70014270 60009501 50184720 OB185870
58770000 05017000 BEE04780 OB100501
45700B84 9620800F 47FOOB10 96203006
96803006 91041002 4780093C 96043006
02000B50 003A4832 COB695FF 30000789
070647FO OA004842 COB44832 COB64570
47FOOA1E 48800276 91F0500C 47800B9A
OBAA910F 500C4780 OB944180 006047FO
OBB88200 OBB80729 02010044 BEE20202
47800C08 440004F8 588002CC 95078000
96101002 94BF1002 92040C83 91090045
OCF49212 OC839104 30064780 OC5294FO
OCEC95FF 30024780 OC529110 100C4710
COAE4060 BE5AD715 60006000 02076000
OC839204 600A9690 30064186 000C4080
00450774 91020C83 4780000E 4180BO~8
C09C4780 00029560 30044780 B73E9562
9130500C 478000BC 47F00096 96201002
50800048 02021009 004947FO OC329120
002647FO 00F0940E 00449506 00444780
20009000 20004760 00424580 OE449102
500C4770 006E9520 60004770 00B295FF
100C4780 00A69101 600C4710 00F09130
02CC9640 60044190 01529287 C09447FO

47100604 lB444340 05E24C40 BE404A40
4010400A 50400048 95065018 477006CC
4710060C 940FB47B 47F00500 95076000
07445870 60085074 00109208 40104700
43605000 89600001 4A600254 95FF6001
00980500 80007001 47000804 4540014C
47800098 41670002 lB774376 00018970
4B800262 4878COOO 416007AA 48710060
9120800F 47100094 41F007A4 41770018
47200098 02020049 10095860 00485816
4340BE46 41440001 4240BE46 0504BE42
47700098 47F00804 4400010C 41100098
4720081C 91203006 47100094 0200B038
50100048 4110B038 47800862 47F0085E
45100B84 0201B035 80024170 B0285010
91060045 47700EA2 94F00039 4170089A
3001003B 078747FO OB3A4570 OA280501
OA429102 00444780 08CA9180 30064110
OC084160 08F89180 00440786 96040044
9603C084 41900152 91100044 47100910
91040044 47700926 95500044 47700AOO
09E80601 10040044 94733006 9180100C
4710096A 45700B84 198A4700 09624190
30044770 09844370 BF900670 4270BF90
96406004 91401002 478009AO 96101002
D2003002 40000200 400004Bl 427004Bl
41700908 9602700A 4B70COAE 4970BE4C
95FF3002 07899198 30064780 OA2407F9
95013000 47200B66 95FF3002 01879198
50001A44 4A40BE54 4A500214 58104000
02021000 00410601 10040044 95035018
OAC69101 100C4710 OAc64570 OB844B80
077C4160 80060500 80068010 47700ABA
02008005 80124160 80034370 60004170
00404B70 BOOC0502 70010239 47200B18
7000C096 47700B18 9560C09C 47700BOC
96401002 96011004 91270044 47700938
95003000 47700AOO 07F90200 OB53003B
05609582 30010187 41330008 95013000
OB7A4133 00081934 072995FF 30020181
4380500C 4188C044 07F79180 100C4110
OB940700 07000700 00E201E2 02010000
0041B009 9560C09C 47700C08 9101100C
47700C08 944B1002 91401002 47800C04
47800C42 92040C83 58800040 12884770
Oc839120 100C4110 OC429101 10024710
OCEC4860 BE5A4960 BE5847BO OC084A60
00404030 600895FF 30024770 OC829602
B04A4140 004A9102 00444710 OCA49130
45700E54 47F00026 0300C09C 30049540
30044180 B73E07F4 91020C83 47100802
47F00802 91011003 41800C32 4B80BOOC
100C4780 OCAC4181 00104570 OE5447FO
OE549220 600B4180 B0485080 00489COO
600A4710 00A69502 BE504770 006E9502
02414780 00B29560 C09C4770 00A69101
00454780 00A694FE 100C4400 04F85860
09E80205 0005600C 910600c7 970100C7

••••• 0 ••••••••••
•• K •••••• - ••••••

•• 0 ••• -
•••• K •• - ••• - •••

••••••• N ••••••
• 0 •••• - •• O. 6 ••••
••••• < ••••••• <.4
•• & •••••••••••••
••••••••• 6N •••••
•• K ••••••• & ••• 8
•••••••••• N •••••
• O. Me •••• O. o •• &.
•• K •••••••••••••
• • & •••••••••••••
• .K •••••• 0 ••••••
• ••••••••••••• N.
•••••••• N •••••••

•••••• 0 •••••••••
••••• 9 ••••••••••

••••••• 0 ••••••• 0
• 0 ••••••••• 8. - ••
••••• 0 •••• & •••••
• •••••• Y ••••••••

• Y.O ••••••••••
•••• K ••••.•••••••
•• • • • • • • • • • 6 ••••
•. 7 ••••••• YK •••••
•• • FL •••••• - ••••
••••••• ••••• F.­
••••• -N •••••••••
•••• - ••• & •••••••
•••• N ••••••••• N.
••••••••• O ••••••

K •••••••••••••••
.0. 0 ••••••••••••
.0 ••••••• 0& •••••
• ••• & •••••••• -. 0
•••••••• K •••• SK.
••••••• 8 ••••••••

.4 ••••••• ~ ••••••

•• - •• P. -. -. K. -.

••••• K. - ••••••••
•• & •••••• 0 ••••••
& ••• K •••••• 0 ••••
••• O. O •••••••••• -
& ••••••• - •••••••
• •.•••••• - •••• 0 ••
••• - •••••••••• 0

PAGE 2

••• M •••• S< •
• & •••• & •••••

••••••••• 0 •••• -.
•••• -.&
.-& •• - ••• - •••• -.
..N ••••••••••• <

... -
••••••••• O ••••••
•••• K •••••• - ••••

• •• • • •• •• N •••
••••• 0 ••••••••••
•••••••••••• K •••
& •••••••••••• 0 ••
• ••• K ••••••••• &.

••••••• 0 •••••• N.

••• -. 8 ••••••••••

••••••••• & ••••••
.YO •••••••••••••

K •••• K ••••••••
• •• Q ••••••••••• <
••••••••••••••• 9

& ••••••• & ••••
K ••••• 0 ••••••• &.
• F ••••••• F ••••••
.01. - •• N •••••••••
K •••••• - •••• - •••

• ••• N •••••••••

••••••••• 9K ••••• ·
•• & •••••• 7 ••••••
• •.••••••• S.SK •••
••• R.- ••••••••••

••• - ••• - ••••• Q.-

••••• O •• L ••••••
••••••• 4 ••••••• K
• O. K ••••••••••••
• •••••••••••••• 0
•••• - ••••• & •••••
-
••••••••••••• 8. -
• YK ••• - •••• G ••• G

~
~.

07/23/71 u::l OTACHK PAGE 3
s::
Ii OOODCO 02010002 30009204 000092E6 00018200 OBB89541 30044770 000E94F3 600C9501 K •••••••••• W •••• ••••••••••• 3-•••
CD OOOOEO 600C0774 91020C83 471000FO 96021003 02070040 60004580 OE1E47FO 08024400 - •••••••••• 0 •••• K •• - •••••• O.K ••

-= OOOEOO 00F04570 OE5C47FO OEOA4580 OE1E47FO 08B29104 600A4780 00F04180 09E847FO .0 ••• *.0 ••••••• 0 •••• - •••• O ••• y.O . 000E20 OE3496FO OE1F4830 BE740257 BE6CBE82 4400B2C8 4870BE5A 4B70COAE 4070BE5A ••• 0 •••••• K ••••• • •• H •••••••• . ..
'" 000E40 946F3006 1B224320 003A4322 C09D4570 OA2807F8 18284320 02360922 50800048 · ••• 8 •••••••• & ••• . 000E60 42200048 4820003A 9C002000 47400E7C 90002000 47200E70 47100032 91060045 ·iil ·

000E80 47700E9E 91390045 07779102 00440717 91080044 47170004 47FOOE68 18264020 · ••••••••• 0 ••••
() OOOEAO 003AD201 OOOOOBBA 920F0073 82000BB8 0501BE4C BE5A4720 OE0092C4 BE6B48FO •• K ••••••••••••• N •• < ••••••• D., .0

0 OOOECO BE749550 F0044780 OECE92C1 BE6BOA03 9284C094 47F00156 48FOCOAC 8000BE39 ••• SO •••••• A., •• • •••• O ••• O ••••••
tI' OOOEEO 9118F006 077E95FF F0024770 OEE007FE 48600236 4570BC70 9287AOOO 95000093 •• 0 ••••• 0 ••••••• · -
0 OOOFOO 4780B25C 94BFA001 9202BE50 92600237 4260B101 41201007 4570BCAC 5040B120 .~.* -.. • - •••••••••• & ••
t"" 000F20 4890BOFE D2079000 10001B44 05039000 02784780 OF6E0501 00309000 47800F72 •••• K ••••••• N ••• •••••• N •••••••••

CIl
000F40 955B9000 47800F6A 05029000 BE304780 OF669510 B1014700 OF625840 BE3447FO • $ •••••• N ••••••• · ••• 0

~
000F60 OF764144 01004144 01004144 01004144 01004144 05015040 BE240207 BOEOBOFO · •••••• & •• K •••• 0
000F80 4580B08A 18E94180 9168955C E00841FO 01564780 OFAE0507 9000E008 47800FBC • •••• Z ••••• * ••• 0 •••••• N •••••••••
OOOFAO 41EOE014 15E84740 OF8A47FO OF800503 B120B124 477000CO 47FOOFCE 0503B120 ••••• y •••• O •• N. • •••••••• 0 •• N •••

~ OOOFCO B1244770 OF041840 02024001 E0109200 BE5007FF 5880E014 88800008 5870E010 ••••• M. K •
CD OOOFEO 88700008 12004780 OFF41810 1B871A08 47FOOFF8 18081817 0202BE25 E0170200 ••••••••• 4 •••••• .0.8 •••• K ••••• K •

ttl 001000 BE24BE25 9200BE25 0201BOE6 B0961B99 4390E013 0201B094 E01A4880 B0964690 ••• •••• • K •• W •••• •••• K •••••••••••
Ii 001020 B02A4880 B0944080 BOE61821 4570BCA8 4880BOE6 06201A28 4570BCA8 5010BOEO · •• w •••••• • •• w •••••••• & •••
0 001040 9286BOEO 4580B08A 5810BOEO 41101000 4A10BOE6 12994720 B01A9500 B1014780 · • •• w ••••••••••••

u::l 001060 B07C4190 C0004A90 B1004899 00000610 49190008 4740B07C 50190024 5890A004 • iil •••••••••••••• • • • •• • iil& •••••••
Ii 001080 5840B120 9200BE50 07F45080 020445EO OE089190 F0064710 BOA29180 F0064710 ••• ••• • 4& ••••• • Q •• 0 ••••••• 0 •••
SlI 0010AO OEOC95FF 04B14780 BOA245EO B10441FO BE0092FO 04930AOO 92200493 9180BE02 ••• ••• •• • • • ••• • 0 ••• 0 •••••••••••• S 0010cO 4710BOC6 OA0748FO COAC95FF F0024770 B00645EO B1045880 02049203 00939120 ••• F ••• O •••• O ••• • O •••••••••••••• - 0010EO BE034780 BOF84370 BE244177 00014270 02700201 027FB056 0204BE23 027C4160 • •••• 8 •••••••••• •• K ••••• K •••• iil.-
ttl 001100 000007F8 80000058 48FOCOAC 0704F002 BE1C0704 BE1~F002 4400B10C 07FEOOOO • •• 8 ••••• 0 •• P. O. •• P ••• 0 •••••••••
SlI 001120 800011E4 00000000 4570BC70 1B004540 OEF05860 902C1266 4780B13E 18064170 • •• u ••••••••••• • O. - ••••••••••••

~ 001140 01565860 BF141266 4750B152 186947FO B15A5860 BF184170 01525000 600C0300 ••• - ••••• & ••••• 0 ••• - •••••• &. -. L •
001160 6009B101 07F74400 04084780 B1AA4111 00005510 023847BO 00C60507 1000B18C - •••• 7 •••••••••• ••••••••• FN •••••

~ 001180 4770B194 9604AOOF 47FOB194 5B5BC2C4 E4040740 95000093 47800EF4 95000277 ••••••••• O •• $$BD OMP ••••••• 4

'" OOllAO 4770B22A D200B1F5 02379500 00934780 OEF44570 BC7048FO C09290F1 BFC0180F •• •• K •• 5 •••••••• .4 ••••• 0 ••• 1 ••••
OOllCO 41FF0008 50FOBFA4 1B664111 00005510 023847BO 00C60502 10000030 477000BE • ••• &0 •••••••••• • •••• FN •••••••••

0 OOllEO 45400EF4 9140A001 47100152 95000277 47700156 92100277 47FOB210 44000408 · .4. ••••••••• 0 ••••••
H\ 001200 477000BE 9680AOOO 92000277 92FFBFAO 97030080 41700156 0702C08D A0050702 •••••••• P ••••• P •

"-> 001220 A005C080 4400B218 07F70500 02370277 478000BE 94FOAOOO 58800024 06800680 ••••••••• 7N ••••• ·
-...J 001240 50800024 9502BE50 47700152 9180AOOO 47800152 5080BF54 47F00152 9140A001 & ••••••••••••••• •••• & •••• O ••• .. - 001260 47100156 D501A004 B27E4780 01565880 00240680 06805890 A0045080 900C47FO •••• N ••••••••••• •••••••••• & •••• 0

001280 01569101 00214710 00BE9203 00939501 BE6B4720 B20E9284 COA4078F 9209BE6A ·, • •••••••••• R ••
0012AO 41900156 4160BE6C 940FOE1F 07FF9200 013358AO 01F44580 00EA41AO COA49280 · - ••••• 4 ••••••••••
OO12cO 013307F9 9601COA4 0201003A 30004580 OE4447FO 093892F1 BE6B4570 BC704110 • •• 9 •••• K ••••••• • • • 0 ••• 1. , ••••••
0012EO BE644800 BOFE1B66 45400EF4 18B09200 009347FB 00084860 02364570 BC704400 ·4 •••• -
001300 04084770 B3081B66 45400EF4 50009030 47F00156 58800024 4B80BOOE 50800024 · • 4& ••• • O •••••••••• & •••
001320 95600237 4770B33E 5080BF54 9180F002 07199284 A0009200 009347FO 01569180 • - •••••• & ••••• 0. • •••••••••• 0 ••••
001340 10020719 94FEAOOO 47F00152 02030024 BFC44570 BC7058EO BFA45880 C08C9001 ••••••••• O •• K ••• • O ••••••••••••••
001360 802C5800 800C50EO 800C4570 BC7047FO B2149204 B38247FO B37E9206 B3825860 •••••• & •••••••• 0 ••• M ••• O ••• O ••• -

m 001380 00140600 60391000 07F991FO 00214770 00BE1200 47AOB39E 03000021 02379706 •• 0.-•••• 9.0 •••• • ••••••• L •••••••
CD 0013AO A0009703 008F4200 002007F9 91FOO021 477000BE 4570BC70 1B444400 04084770 ••••••••••• 9. 0 •• ·
0 0013CO OEF01864 47FOOEF4 4570B424 18105870 A0045000 70304121 00034570 BCA4947F .0 ••• 0.4 •••••••• • • & •••••••••••••
rt' 0013EO 10021321 9012BF14 58200050 50300050 5520BEE4 4700B40C 92FOB4E3 13721B22 ••••••••••• && •• & ••• U ••••• O.T ••••
~. 001400 88700008 5E700054 50700054 88300008 88200008 5E300054 1F325030 005407F9 • ••••••• & ••••••• •••••••••• & •••• 9
0 001420 4170B3E8 18310500 02370273 078747FO 00BE91FO 00214770 00BE4111 00005510 ••• y •• N •••••••• O ••• 0 •••••••••••• ts 001440 023847BO 00C64570 BCA407F9 58610000 95001000 4770B468 91806002 4710B470 ••••• F ••••• 9./ •• -
-= 001460 41110004 47FOB44C 94FEAOOO 47FOB238 5810A004 50601030 07F94700 06049090 ••••• 0.< ••••• 0 •• •••• &- ••• 9 ••• M ••

001480 01F09228 01C94590 02E09530 02374720 00BC9500 02374780 00BC4140 BEF44570 • 0 ••• I •••••••••• ·4 ••

tj II
0014AO B5FC4880 02364188 C0444570 B55647FO 0.OBC47FO 00BC47FO 00BC9218 01C99090 • •••••••••••••• 0 ••• 0 ••• 0 ••••• 1 ••

CD 0014CO 01F04590 02E094FO 00199140 001B4780 B40A9601 C0849601 C08C9180 001B4780 • O. •• • • • • •• • ••• ·
t:r 0014EO 01524700 B4FE9856 00500203 0050BEE4 8A500008 1B655E60 BEE85060 00549200 •• • •••••• &K •• &. U • & ••••• -. Y&- ••••
s::

u::l • I
u::l
~.

ts
u::l

)t
~.
g,
en

"->
"->
U1

tv
tv
0\

8
CI:I

CI:I
"< en
rt
CD
lEI

I'd
11
o
~
11

i
CD
11

en

~
p"
CD

ITJ
~

~
CD

~

'" .
n g
g
CI:I

~
CD

I'd
11 o
~
11

~
-~
~
tv
o
o
I-h

tv
...... -

001500
001520,
001540
001560
001580
0015AO
0015CO
0015EO
001600
001620
001640
001660
001680
0016AO
0016CO
0016EO
001700
01} 172 0
001740
001760
001780
0017AO
0017CO
0017EO
001800
001820
001840
001860
001880
001'8AO
0018CO
0018EO
001900
001920
001940
001960
001980
0019AO
0019CO
0019EO
001ADO
001A20
001A40
001A60
001A80
001AAO
001ACO
001AEO
001BOO
001B20
001B40
001B60
001B80
001BAO
001BCO
001BEO
001COO
001C20

Dl'ACHK 07/23/71

B4E3940F B0014830 02724183 C0449510
4140BF14 4570B556 47F00152 9607C084
4780B54C 96805002 96018000 0707BF14
02764787 00089528 01C94780 B5809502
4570BC70 5893C048 02076000 90080223
47FOB5C6 4570B426 1B444570 B5F44570
9010602C 10355034 000047FO 01524570
12554740 B5C64121 00474570 BCA49001
18538850 00011A45 98564000 07F79056
BF949503 BF904780 B23847FO 04829056
BF945870 BF845970 BF7C4740 B6525870
41880001 4280BF90 020F7008 10004180
70085080 400092FF 40000207 70006000
70075886 000095FF B6B34770,B6B29200
92007001 45700B84 5870BF84 4B70BF88
700847FO 04E80202 BF801009 5860BF8C
95096000 4780B70E 95016000 077591CO
05016006 BF910725 58760000 41770000
30034177 00014270 30039220 B05C9102
58550000 02036012 50024170 B82C9108
B7C69101 600C4710 B7F09140 600C0717
07779102 60000717 9180600C 07149102
60050717 07F49102 60004710 B7F64550
91041003 4710B822 96081003 47FOOOFO
45700E54 47F00032 47FOOE12 4550B8B6
OE12950A 30030724 47FOOE12 95013003
BOOC5070 B0909208 B0904550 B8B29101
BE1B47BO B8CA9513 BE1B47BO B8CA5870
500C4780 B8A29210 B0859506 50184770
B8A69200 B0854180 B0684320 600047FO
00320203 6012BE11 07F59620 10030600
47F003F4 92000022 0300BB2E 30049560
BB249507 40004770 048C5844 00001B55
4780B958 0200BB29 50044870 BB284550
910F700B 471000BE 4340700B 41440001
41700000 42750004 4C70BB2A 5A700298
70044000 0200700A 023747FO 048C95FF
4C70BB2A 5A700298 0200B963 700047FO
B2389224 BB200203 BB241002 4540B80C
BB2F4780-B9EE4140 BB3047FO B9FC0202
43203005 4C20BE48 5A200200 95FF2004
47FOOOBE 0500700A 02374770 00BE910F
07F99140 BB2F4710 BA7C4340 B9630200
70009180 700B9200 700A9200 700B4710
4780BA9C 43407000 02007000 B9630200
B9630200 B9632004 92FF2004 47FOBA62
43430000 4A400262 95804000 4780BAB4
BB2C4770 BAB49200 500A9601 40004190
40007004 47850004 94BFBB2F 95FF7000
47FOBAF6 00000000 OOOOOOOC FF230000
00474570 BCA41810 18204570 BCA44840
000407F9 9680AOOO 9101AOOF 4710BC28
5840C08C 47F~BB94 9563A001 4780010C
58320000 12334780 010C5852 00040207
02024000 20010703 20002000 0703402C
20040200 2004A001 9200A001 9601AOOF
60004860 02368860 00014A60 02700707
BF14BF14 47F00152 94FEAOOF 48200236

800147BO 01529856 BF141266 4740B53C
9601C084 96FOB001 47F00152 95808000
BF1447FO 01521255 07079601 80004930
BE504770 B5800500 B1010273 47870004
6008902C 021B602C 90105050 900Cl135
BC700203 900C6004 0223902C 6008021B
B4264140 00014570 B5F41330 4780B5C6
400007F9 4A400022 4840425B 48300236
BF944550 B6E69856 BF9447FO 04829856
BF944550 B6E69856 BF9447FO 04E85850
BF781887 4A80BF88 5080BF84 4380BF90
70004080 70129200 70119601 70144180
43860007 06804280 B6B34188 00044280
B6B30211 70188000 41807015 40807002
02017015 80029240 70179680 10024110
5080BF8C 18764A70 BOOC5970 02380725
60040775 9115io02 07759120 100C0775
4A760006 59700238 072547F5 00084370
600A4710 B76AD202 BE191009 5850BE18
60050717 9110600C 07179108 60004710
9108600C 4710B80C 4170B822 9124600C
600C4710 S8369160 60004770 B8CE9101
B8B20501 BE186012 4770B7F6 9680600A
9180600C 0714950A 30030724 4180B050
95FF3003 0784910F 30034780 B7FC47FO
072447FO OE124400 00F05870 00404B70
BE104780 B87A9562 30044780 B8669509
BE184177 00015070 BE184570 OA2891FO
B8A64570 OB849240 B0859180 800C4780
00FE9240 B05C4180 B0584570 OE5447FO
10036000 47FOOOFO 4140B8F4 92FF0022
BB2E07F4 4770048C 0202BB25 10095840
43503005 4C50BE48 5A500200 95FF5004
BAF647FO B98E0500 700A0237 4770B9B2
4240700B 47F0048C 95FFB963 4780B9B6
0200B963 70005010 700092FF 70000205
B9634780 B9B60200 7000B963 4870B962
B9769680 700B94FE A00092FF 002247FO
02031002 BB249223 BB204770 00BE9180
BB251009 5840BB24 58440000 1B771B22
478000BE 43720004 9640BB2F 4550BAF6
700B4780 BA424360 700B0660 4260700B
B963BB29 5860BB24 02006000 70004240
BAB095FF 70004780 BAB007F9 95FF7000
B9632004 42420004 47FOBA62 02007000
4130BEF7 41330001 95003000 07891B44
91014000 4710BAB4 58504004 0501500A
015247FO BAB44C70 BB2A5A70 02980505
07850200 BB297000 5070BB24 4870BB28
00000000 00001831 12004780 BB4E4121
02368840 00015A40 02A05004 00005034
9550A001 4780010C 44000408 4770BB88
584A0004 48200236 88200001 5A2002AO
50004008 02235008 402C021B 502C4010
402C0200 402FA001 943F402F 02034030
48600236 88600001 4A60026C 07076000
60006000 05010272 02364770 BC240707
88200001 5A2002AO 0200A001 20049640

• T •••••••• , ••••••
••••••• 0 ••••••

••• < •• , ••••• P •••
• •••••••• I ••••••
•• •• •• •• K. - ••• K.
• O.F ••••••••• 4 ••
•• - ••• ' •••• 0 ••••
• •• • F ••••••••••
••• , •••••••• 7 ••
• •••••••••• O ••••
• •••••••• iii. • •••
• ••••••• K •••••••
•• , ••••• K ••• -.

• .'. O. YK •••••• - •• · . - -
N. - •••••••••••••
.••..•••.• ... * •.
•••• K. -. , •••••••
.F •• - •••• O. -.... - -
- •••• 4 •• - •••• 6.'
••••••••••••• 0.0
••••• 0 ••• 0 ••• ' ••
•••• •••• • 0 •••••• .. , ,
, , .. .
•••••••••••• - •• 0
•• K.- •••• 5 •••• 0.
• O. 4 •••• L •••••• -

• ••• K ••• , •••••• ,

•••••• •• < •••••••
•• • K •••••• 0 ••••
< ••••••• K •••••• O · K...... ..
•• ••••• • •• 0 •• K.
•••• < •••••••••••
• 0 •• N •••••••••••
.9 •••••• IiI ••• K.

•• K ••••• K.
•• K •••••••••• 0 ••

· ,.
• O. 6 ••••••••••••

••• 9 ••••••••••••
• ••• O ••••••••••
•••••••••••••• K.
K. • •• P ••••• P.
•• K •••••••••••••
- •• - ••• - ••• - •• P.
••••• 0 ••••••••••

PAGE 4

• •••• O ••• O ••••••
••• 0 ••••• P ••••••
• ••••• N •••••••••
- ••• K. - ••• " ••••
•• K ••• -.K ••• -.K.
••• • •••• 4 ••••• F
~. 9 ••••• $ ••••

• •• ,.W ••••• 0 ••••
••• ,.W ••••• O.Y., ,
•• K ••••••••••••
K.. •••• • ••••••• ,
• •••••••••• 5 ••••
- ••••• K •••••• , ••

.. - -.
-
•• N ••• - •••• 6 •• -. .. - •........... ,
• •••••••••••••• 0
••• 0 ••••• O. •• • •

•••••• , •••••••• 0

.* ••..•.••• 0
•• - •• 0.0 •• 4 ••••
••• 4 •••• K •••••• · , .. <, ... , ,.
.6.0 •• N •••••••••
• ••• 0 ••••••••••
K ••••• , ••••••• K •
• ••••• K •••••••••
• •••••••••••••• 0
K •••••••••••••••

.. '.6
••••• - •• K.- ••••
• •••••••••• 9 ••••
••••••••• O •• K •••
••• 7 ••••••••••••
•••••••• , • N. ,.
••• O •• < ••••••• N.
•• K ••••• ' •••••••

· , ... ,. · ,
,. .K. , •• K. ,.
.K ••••••• K.

• - ••• - ••• - •• P.- •
-.-.N ••••••••• P.
•••••••• K ••••••

en
(1)

~
o
::s

-=-
~

~
~

I.Q
I.Q
::s

I.Q

)I
01
en

tv
tv
....a

~

~
I.Q
~
11
m

-=-.
\£) .
n
~
g
en

~
m
I'd

8
I.Q
11
SlI
B

i
~
tv
~

o
HI

tv
....a -

001C40
001C60
001C80
001CAO
001CCO
001CEO
001000
001020
001040
001060
001080
0010AO
0010CO
0010EO
001EOO
001E20
001E40
001E60
001E80
001EAO
001ECO
001EEO
OOiFOO
001F40
001F60
001F80
001FAO
001FCO
001FEO
002000
002020
002040
002060
002080
0020AO
0020CO
0020EO
002100
002120
002140
002160
002180
0021AO
0021CO
0021EO
002200
002220
002240
002260
002280
0022AO
0022CO
0022EO
002300
002320
002340
002360
002380

OTACBK 07/23/71

A0015832 00044400 04084770 BC565840
021B4010 302C0223 402C3008 47FOOI0C
90246000 90586020 90606040 90686060
A00007F7 48600236 41220000 59200238
472000C6 4910BE3A 474000C6 IB881851
COB20985 19684770 00C607F7 9510AOOl
4700B502 4110BE28 9283AOOO 9103A008
OC000800 00000000 01001035 60000003
08002F20 60000001 04001E78 20000006
16001E18 20000004 07001E16 40000006
IFOOI085 60000001 lAOOlE10 50000005
IFOOIE3C 40000001 08003B38 lE3C1E30
080010CO 00000000 07001E21 40000006
86002B50 60000308 9200027C 20000005
00008000 OC000006 000010C8 000010FO
00000000 13000101 5B5BC2Cl E3E305Cl
00180000 00000000 00050000 lE6COE12
12C40156 5B5BCI05 C5090900 000010FO
00090000 00000000 00000000 00000000
00000000 --SAME--
00000000 00000000 00000000 00000000
615C44FO FFOOOOOO OOFFOOOO 01008484
00000000 --SAME-~
00000000 00000000 00000000 00000000
00001000 00002000 00003000 900010AE
00030000 000024A8 00680000 00000001
FF050007 40002E06 00003228 00002054
00002B50 00000007 00002F08 00000020
00000005 000002E4 00000000 00000006
00000000 00000000 00000000 00000000
2720001F 00000000 00000000 00000000
02080000 8500E207 47FOOIE8 00000000
240B1480 8000C6F2 1907BOOO 0507BOOO
023FOAOO 8000CI09 47FOBCEC 00003228
OCI01418 8400E207 47FOOICA 22100016
22682268 22682268 22682268 22682268
134C1420 I1FC1372 137AOOCE03E815D2
00BE1432 OOBEOOBE 144COOBE OOBEOOBE
00002F08 030045F8 04000000 05000000
OAOOOOOO OBOOOOOO FFOOOOOO 03030500
FFFFFFFF 030305FF FFFFFFFF FFFFFFFF
OOOCFFOO 110000FC OOOOFFOO 210000FC
001FFFOO 000000F8 0130FFOO 620000FB
0133FFOO 620300F8 0134FFOO 620400F8
0137FFOO 620700F8 0180FFOO 50930190
0183FFOO 50C300CO 0184FFOO 50C300C4
0192FFOO 600AOOFC 0193FFOO 600BOOFB
0282FFOO 50C300CO 0283FFOO 50C300CO
FFOOOOOO 00000000 FF020000 0005FFFF
00060000 00070000 00080000 00090000
OOOEOOOO OOOFOOOO 00100000 00110000
00160000 00170000 00180000 00190000
OOFFOOOO 00000000 00000000 00000000
00000050 00000000 00001900 00000000
00001900 000001F4 00000000 00000000
00000000 00000000 00000050 00000000
00000051 00000000 00001900 000001F4
00001300 00000700 00000000 00000000

C08C47FO BCSA584A 00040207 40083000
9180AOOO 07175890 A0044880 01C890EO
9070D-213 901001FO 02079008 80009680
472000C6 12660787 41110000 59100238
4350COB2 09851968 477000C6 18524350
47B0017E 92E9BE6B 9110A008 4710B20E
4770B166 9280AOOO 9200A008 47F00156
080020FO 60C2C740 C3001038 60000001
13001EI0 20000001 lAOOlE10 20000005
39001E18 60000004 08001070 00000000
08001090 030806CO 07003B51 60000006
070010BO 40000006 IFOOIE3C 40000001
3io01E23 40000005 08001000 0008000A
86003008 60000168 OOOOOOOQ 1E003000
0000Q400 00000000 00001DC8 FF006000
C6C70700 01000001 00FE32AO 10401080
OOFOOOFE 211C12AE lEC41E56 000012B2
OE000005 22100400 002000C8 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00002F20
80808083 85605040 30201000 00000000

00040007 400010BC 00000000 00002054
00001EOO 00002B50 00002308 0000250F
00005000 00002140 00000000 00000000
00000208 00000001 80002C4C 90002CFE
00002B08 00000008 00001FAO 00002B6A
00000000 00000000 00000000 00000000
02080000 00000000 00000000 00000000
27·B00034 0000000-0 00000000 00000000
OOOOOOFF 0310C2C7 19001F98 OA0032AO
012AOAOO 8000C6Fl 19070800 05070800
07002B50 84006150 47FOOEBO 50000408
IF050000 21782178 220821A8 22382238
11281166 128212F6 120600C2 1314135A
15A815CE lSA41502 15A8138A 13AC13C8
01B601B6 180819C2 IB360000 02004478
06000000 07000000 08000000 09000000
00000000 00000000 FFFFFFFF FFFFFFFF
00000618 FFFFFFFF 0009FFOO 000000F8
OOOEFFOO 420000FC OOOFFFOO 420000F8
0131FFOO 620100F8 0132FFOO 620200F8
0135FFOO 620500F8 0136FFOO 620600F8
0181FFOO 50C300CO 0182FFOO 50C300C4
0190FFOO 600800FC 0191FFOO 600900FC
0194FFOO 600COOF8 0281FFOO 50C300CO
FFOOOOOO 00000000 FFOOOOOO 00000000
80FFOOOO 00030000 00000265 28FFOOOO
OOOAOOOO OOOBOOOO OOOCOOOO 00000000
00120000 00130000 00140000 00150000
001AOOOO 001BOOOO 001COOOO 00100000
00000000 00000000 00000000 00000000
00000000 00000000 00000051 00000000
00000079 00000000 00001300 00000700
00001900 00000000 00000000 00000000
00000000 OOOOOOO~ 00000079 00000000
00000050 00000000 00001900 00000000

PAGE 5

•••••••••••• ~.. • •• O •••••• K.
K •••• K ••••• 0 •• - ••••••••••••• B •• .. - ... -.. -- .. --
••• 7. - •••••••••• ... F..... . F
••••••••• F. 7 ••••

.. - -.......... . · - , .. .
••• i-•• Q ••• lil ••••
· .0 •..••.... B ••• 0
•••••••• $$BATTNA

.O •• $$ANERR •••• O

/ •• 0 ••••••••••••

••• i ••••• ~ ••••••
• •••••• U ••••••••

• ••••• SP. O. Y ••••
••••• ~ F2 ••••••••
• ••••• AR. O ••••••
•••••• SP.O ••••••

• < ••••••••••• Y. K
••••••••• < ••••••
••••••• 8 ••••••••

••••••• 8 ••••••• 8
••••••• 8 ••••••• 8
••••••• 8 •••• i •••
•••• iC •••••• iC.O
• ~ •• - ••••••• - •• 8
•••• iC •••••• iC ••

••• i ••••••••••••
••••••• 4 ••••••••
••••••••••• i ••••
••• ~ ••••••••••• 4

•• K •••• OK •••••••
• •• F ••••••••••••
• i ••••••••• F ••• ,
• •••• Z ••••••••••
••••••••••••• 0 ••
••• O-BG C ••• - •••

• •••• Q •••••• - •••

. ... -
••••••••••• B •• -.
FGP ••••••••••
• O ••••••• O ••••••
••••••••••• R ••••

••••• -i ••••••••

•••••.• i ••• Q ••••
• • i •••••••••••••
••••••••••• < ••••
• •• Q ••••••••••••

· '
• ••••• BG ••••••••
• ••••• Fl •• Q ••• Q.
• •• i •• /i. O •• i •••

••••••• 6.0.B ••••
••••••• K ••••••• R
• •••• Q. B ••••••••

••••••••••••••• 8
••••••••••••••• 8
••••••• 8 ••••••• 8
••••••• 8 ••••••• 8
• ••• iC •••••• iC.O - -.. .
•••• - •• 8 •••• iC ••

••• i ••••••••••••

IV
IV
CO

8
en
CIl

~
t+
(I)
S
"tI a

I.Q
11

I
Ii .
en
(j)
~
~.
0,
(I)

...-..

"IiI
~.

I.Q

~
(I)

.r= .
\Q .
n
~
g
til

~
(I)

It! a
I.Q

a
~
:+
IV
IV

o
HI

IV
...,J -

0023AO
0023CO
0023EO
002400
002420
002440
002460
002480
002500
002520
002540
002560
002580
0025AO
0025cO
0025EO
002600
002620
002640
002660
002680
0026AO
002720
002740
002760
002780
0027AO
0027CO
0027EO
002800
002820'
'002840
002860
002880
0028AO
0028CO
0028EO
002900
002920
002980
0029AO
0029CO
0029EO
002AOO
002A20
002A40
002A60
002A80
002AAO
002ACO
002AEO
002B4"0

DTACHK 07/23171

00000000 00000000 00000051 00000000
00000079 00000000 00001300 00000700
00008000 08000004 000023D8 000023EO
40C3D6D4 D4E4D5C9 C3C1E3C9 D6D5E24B
00000000 --SAME--
09002455 20000015 00008000 08000004
E3E3D54B 40F040FO C34BOOOO OOOOOOO~
00000000 --SAME--
00000000 00000000 00000000 00000000
00FF1504 13FFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFF13FF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF OOFFFFFF 13FFFFFF
FFFFFFFF FFFFFFFFFFFF0014 01000000
00000000 03000000 00000000 00000000
00000000 00000000 06000000 00000000
08000000 00000000 00000000 09000000
00000000 OBOOOOOO 00000000 00000000
06000000 00000000 OEOOOOOO 00000000
10000000 00000000 00000000 11000000
00000000 13000000 00000000 00000000
00000000 --SAME--
FOF761F2 F361F7Fl 32A03000 00000000
0007D7FF 00003Fl0 00003Fl0 00000020
21782269 226AOOOO 25102514 25183CFO
232A1E4E 1EF41F04 1F140020 214C0020
00000000 02080000 0000283C 00000000
00000000 00000000 D5D640D5 C1D4c540
0007FFFF F875ECDl 8000EC50 00002171
F7F2F3F7 F1F2FOF4 00002044 OOOOOOOC
00000000 00000000 00000000 20000000
000025AC 00000044 00001F2C 00000000
00000000 00000000 0000289C 00000000
00000000 00000000 00000000 00000000
372D2E2F 1605250B OCODOEOF 10111213
5B6c507D 4D5D5C4E 6B604B61 FOF1F2F3
C4C5C6C7 C8C9D1D2 D3D4D5D6 D7D8D9E2
84858687 88899192 93949596 979899A2
3F3F3F3F --SAME--
3F3F3F3F 3F3F3F3F 3F3F3F3F 3F3F3F3F
lA091A7F lA1A1AOB OCODOEOF 10111213
lA0A171B lA1A1A1A lA050607 lA1A161A
lA1A1A1A lA1A5B2E 3C282B21 261A1A1A
lA1A1A1A 1A1A7C2C 255F3E3F lA1A1A1A
64656667 68691A1A lA1A1A1A lA6A6B6C
75767778 797A1A1A lA1A1A1A lA1A1A1A
444546.47 48491A1A lAiA1A1A' 7D4A4B4C
55565758 595A1A1A lA1A1A1A 30313233
FFOOOOOO OOFFOOOO OOOOFFOO OOOOOOFF
OOOOOOFF 00000000 FFOOOOOO OOFFOOOO
00000000 --SAME--
00000000 00000000 00000000 00000000

LBLTYP HEX LENGTH I~ 0000
--BG--
003220 D5064005 C1D4C540
003240 000032AO 00003880 00003688 0000338A
003260 00000001 0000338A 50003C12 00003388

00001900 000001F4 00000000 00000000
00000000 00000000 090023ED 20000023
F1C9FOFO C14040D9 C5C1C4E8 40C6D6D9
00000000 00000000 00000000 00000000

00002440 00002448 F1C3FOFO C14040Cl
00000000 00000000 00000000 00000000

000B2A3F OB140AOA 01FF01FF 02FF12FF
14FF15FF 14FF15FF FFFF03FF FFFF100l
FFFFFFFF FFFFFFFF FFFFFFFF FFFFOOFF
FFFFFFFF FFFFFFFF FFFFFFFF. FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000000 00000000 02000000 00000000
04000000 00000000 00000000 05000000
00000000 07000000 00000000 00000000
00000000 00000000 OAOOOOOO 00000000
OCOQOOOO 00000000 00000000 ODOOOOOO
000000.00 OFOOOOOO 00000000 00000000
00000000 00000000 12000000 00000000
FFOOOOOO 00000000 00000000 00000000

00000000 00000000 D5D640D5 C1D4C540
0007FFFF F875ECD1 8000EC50 00002171
F1F2F3F7 F1F2FOF4 00002044 OOOOOOOC
00000000 00000000 00000000 20000000
FOF761F2 F361F7Fl 32A03000 00000000
0007FFFF 00003Fl0 00003Fl0 00000030
21782269 226AOOOO 25102514 25183CFO
23721E4E lEF41F04 lF140020 214C0030
00000000 02080000 0000286C 00000000

-00000000 00000000 00000000 00000000
000.025AC 00000044 00001F2C 00000000
00000000 00000000 0000289C 00010203
3C3D3226 18193F27 lC1D1E1F 404F7F7B
F4F5F6F7 F8F97A5E 4C7E6E6F 7CC1C2C3
E3E4E5E6 E7E8E94A E05ASF6D 79818283
A3A4ASA6 A7A8A9CO 6ADOA107 '3F3F3F3F

3F3F3F3F 3F3F3F3F 3F3F3F3F 00010203
lA1A081A 18191A1A 1C1D1E1F 1A1A1A1A
1A1A1A04 lA1A1AlA 1415lA1A 201A1A1A
1A1A1A1A 1A1A5D24 2A293B5E 2D2F1A1A
1A1A1A1A lA603A23 40273D22 1A616263
6D6E6F70 71721A1A lA1A1A1A 1A7E7374
1A1A1A1A lA1A1A1A lA1AlAlA 7B414243
4D4E4F50 51521A1A lA1A1A1A 5C1AS354
34353637 383.91A1A 1A1AlA1A 00001300
00000000 FFOOOOOO OOFFOOOO OOOOFFOO
OOOOFFOO OOOOOOFF 00000000 FFFFOOOO

FF150007 E00039C2 00003BE2 000032AO
000041B8 00003850 00003960 00000001
00003550 000035B8 000050B1 00C2DF17

.................
• ••••• ••••• Q ••••

COMMUNICATIONS.

TTN. 0 OC •••••••

07/23/71 ••••••••
•• P •••••••••••••
••••••••••••••• 0
••••• 4 ••••••• < ••

•••••••• NO NAME
•••• 8 •• J ••• , ••••
72371204 ••••••••

$., ...•. ,-./0123
DEFGHIJKLMNOPQRS

·
•••••• $ •••••••••
•••••• i ••••••••• · , .
•••••••••••••.•• <

NO NAME ·
•••••••• i •••••••

PAGE 6

••••••• 4 ••••••••

1I00A READY FOR

•••.•••• 1COOA A

•••••••• NO NAME
•••• 8 •• J ••• i •.••
72371204 ••••••••
• a'e •••••••••••••

07/23/71.: ••••••

••••••••••••••• 0
• •••• 4 ••••••• < ••

456789 •• < ••• aABC
TUVWXYZ •••••••••

. -...... / ..

................
~ .. , ..•.....•...

•••••• • B ••• s
•••.•.• i •.. - .••. -... , '~.B ..

I'Ij
1-1'

07/23/11 PAGE 7 I.Q OTACHK
c::
t1 003280 00000000 --SAME--
CD 0032AO 05F00700 900EFOOA 47FOF082 000032AO 000032AO 0007AFFF 000032AO 0007AF24 • 0 •••• 0 •• 00 ••••• ·
.::: 0032CO FFFFFFDC 000032AO 00003238 00004DB6 OA0407F1 000032BO 000032BO 00004218 ••• 1 •••••••••••• . 0032EO 00005218 00000208 00000000 00000000 00000000 00000000 00000000 00000000 ·
ID 003300 00000000 --SA~£--. 003320 00000000 58COFOC6 58EOCOOO 58DOFOCA 9500EOOO 4770FOA2 9610D048 92FFEOOO •••••• OF •••••• O. • ••••• 0 •••••••••

003340 47FOFOAC 98CEF03A 90ECDOOC 185D989F' FOBA9110 D0480719 07FF0700 00003BE2 .00 ••• 0 ••••••••• 0 •••••••••••••• S

n 003360 000032AO 000032AO 00003880 00003688 000038EC 00003BC8 C3D6C2C6 FOFOFOF1 ••••••• HCOBFOO01

0 003380 E3C5E2E3 D9E4D540 0001C1C2 C3C4C5C6 C7C8C9Dl D2D30405 0607D809 E2E3E4E5 TESTRUN •• ABCOEF GHIJKLMNOPQRSTUV
t:I:I 0033AO E6E7E8E9 0001FOFl F2F3F4FO F1F2F3F4 FOF1F2F3 F4FOF1F2 F3F4FOFl F2F3F4FO WXYZ •• 0123401234 0123401234012340
0 0033CO el000000 000040D5 E8C34000 00404040 40404040 00000000 F1F2F3C4 00000000 A ••••• NYC •• •••• 123D ••••
I:"i 0033EO 01010014 00000000 00000000 00000000 10000000 04000000 00009200 00000108 · ·
en 003400 00003430 00000000 10003C50 1160E2E8 E2FOFOF8 40400162 10000000 04000000 ••••••••••• &.-SY S008
SlI 003420 00000000 86BCF018 ~lEOEOOl 58201044 010034E8 20000064 00003550 00003550 •••••• 0 ••••••••• • •• Y ••••••• & ••• &.

~
003440 00000014 000035B3 00640063 00000000 00000000 000049FO 01010014 00000000 · ••••••• 0 ••••••••
003460 00000000 00000000 00000000 04000000 00008200 00000108 000034A8 00000000 003480 10003C50 1168E2E8 E2FOFOF8 40400272 00000000 20000000 00000000 86BCF018 ••• & •• SYS008 • ••••••••••••• O •

CD 0034AO 41EOEOOl 58201044 020035B8 00000064 00003620 00000000 00000014 00000000
"'C 0034CO 00640063 00000000 00004A06 000049FO 00000000 00000000 00000000 00000000 • •••••••••••••• 0
t1 0034EO 00000000 --SANE--
a 0036CO 00000000 00000000 00000000 00000000 7000004B 00000000 00000000 000038EC ·

I.Q 0036EO 00000000 00000000 000033F8 00003550 000032AO 000033F8 50003C12 00000000 ••••••••••• 8 ••• & ••••••• 8& •••••••
t1 003700 00000000 --SAME--
SlI 003780 00000000 00003958 00003550 01000000 70003934 000041B8 00003850 00003960 • •••••••••• & •••• ••••••••••• & ••• -S 0037AO 00003550 000032AO 000033F8 50003C12 00003388 00003550 000035B8 00003BE2 ••• & ••••••• 8& ••• • •••••• & ••••••• S - 0037cO 000032AO 000032AO 00003880 00003960 000041B8 00003850 00004708 00003550 ••••••• & ••••••• &
"'C 0037EO 00010000 00003958 00000000 00000000 00000000 00000000 00000000 00000000 ·
SlI 003800 00000000 --SAME--
t1 003820 00000000 00000000 00000000 00000000 00000000 00000000 000032AO 00000000 · IT 003840 00000000 00003550 000035B8 00003388 000033F8 00003470 00000000 0000001C •• • • • • • & •••••••• ••• 8 ••••••••••••

'" 003860 00000000 0000338A 00000000 00000000 00003A3E 00000000 00000000 00000000 · ·
W 003880 000049E8 000041B8 00004990 00003950 00003A3E 00003AEO 00003B2C 00003B88 ••• Y ••••••••••• &

0038AO 00003A5E 00003A72 00003B26 00003B58 00003A3E 000032AO 00000001 lCOOO01A · a 0038cO 5B5BC2D6 07C50540 5B5BC2C3 D3D6E2C5 5B5BC2C6 C304E4D3 FOE90000 COOOOOOO $$BOPEN $$BCLOSE $$BFCMULOZ •••••• HI 0038EO E6D609D2 60D9C5C3 0609C400 58FOC004 051FOOOl 4004F6FO 40404000 9640D048 WORK-RECORD •• 0 ••60

'"
003900 58FOC004 051FOOOl 4004F6F3 40404000 4l10C040 5800D1C8 184005FO 5000F008 • 0 ••••••• 63 ... •. JH • .0&. O.

..,J 003920 4500FOOC 000033F8 OA024100 D1C858FO C00805EF 5810D1C8 96101020 5020D1BC •• 0 •••• 8 •••• JH. 0 •••••. JH •••• &.J., 003940 5870D1BC 02016000 C038D201 601CC038 58FOC004 051F0001 4004F6F7 40404000 •• J.K.- ••• K.-••• • 0 ••••••• 67
003960 4830C03A 4A306000 4E300100 07050100 Dl00940F D1D64F30 D1D04030 60004830 •••••• - ••• J.P.J. J ••• JO •• J. -...
003980 C03A4A30 601C4E30 0100D705 01DOD100 940FD1D6 4F30D1DO 4030601C 41406002 •••• - ••• J.P.J.J. ..JO •. J •• - •• -.
0039AO 48206000 4C20C03A 1A425B40 C0385040 D1DC58EO D1DCD200 6038EOOO K&306050 •• -.< ••••• $ •• & J ••• J.K. - ••••• -&
0039CO C03e~140 601E4820 60004C20 e03A1A42 5B40C038 504001EO 58EOD1EO D2006043 ••• - ••• -. < ••••• $ •• & J ••• J. K. -.
0039EO E0009240 60444830 601C4E30 D1DOF331 603AD1D6 96F0603D 58FCC004 051FOO01 ••• - ••• - ••• J.3. -.JO.O-•• O ••••••
003AOO 4004F7F2 40404000 58FOC004 051FOO02 00000014 000001C4 0038FFFF D2137000 .72 •• 0 •••••• ••••••• D •••• K •••
003A20 60385810 01C81841 58F01010 45EOFOOC 5020D1BC 587001BC 5810D1E8 07F158FO - ••• JH ••• 0 •••• O. &.J ••• J ••• JY.l.0
003A40 C004051F 00014004 F7F44040 40005800 D1E85000 D1E45800 C0205000 D1E84830 .74 JY&.Ju •••• &.JY ••

en 003A60 60004930 C03E58FO C024078F 5810COOC 07F15800 D1E45000 D1E858FO C004051F - •••••• 0 •••••••• • 1 •• JU&. JY. 0 ••••
CD 003A80 00014004 F7F74040 40005810 D1C894EF 10201801 18404110 C04805FO 5000F008 · . .77 ••• JH •• ••••• 0&. O.
0 003AAO 4500FOOC 00000000 OA025800 D1C84110 C0500A02 4l10C040 5800D1CC 184005FO •• 0 ••••••••• JH •• • & ••••• ..J •• .0
IT 003ACO 5000F008 4500Fooe 00000000 OA024100 D1CC58FO C00805EF 5810D1CC 96101020 &. 0 ••• 0 ••••••••• J •• 0 •••••• J ••••• 1-1' 003AEO 58FOC004 051F0001 4004F8FO 40404000 5810D1CC 58FOC028 91201010 071F1841 • 0 •••••• .80 •• J •• 0 •••••••••• a ::s 003BOO 41FOC028 02021025 F00158FO 101045EO F0085020 01C05880 D1COD213 60388000 .O •• K ••• O •• O •••• O.&.J ••• J.K.- •••

003B20 58FOC018 07FF5810 C01C07F1 58FOC004 051F0001 4004F8Fl 40404000 5820C02C • 0 ••••••••• 1. 0 •• ••••• 81
.::: 003B40 D500C058 60430772 95406044 07720200 6043C059 92406044 5810C05C 5010D1EC N ••• - •••• - ••• K. - •••• - •••• *&.J.

003B60 412001EC 58FOC004 051F8001 1000000B OC000060 00000000 00140DOO 01C40038 • .J •• 0 •••••••••• ••• - ••••••••• D ••

t7 II
003B80 FFFF5810 C01407Fl 58FOC004 051FOO01 4004F8F3 40404000 58l0D1CC 94EF1020 ••••••• 1. 0 •••••• .83 ••• J •••••

CD 003BAO 18011840 4110C048 070005FO 5000F008 4500FOOC 00000000 OA025800 01CC4110 •••••••••• 0&. O. • .0 ••••••••• J •••
tr 003BCO C0500A02 OAOEOAOE 50D05008 5050D004 5820COOO 95002000 077992FF 20009610 • & •••••• &. &. && •• ·
c::

I.Q
I.Q
1-1' ::s
~

~
1-1.
0.. en

IV

'" ID

"-> I'Zj
w ..,.

DTACHK 01/23/11 PAGE 8 0 ~

~ 003BEO D04850EO D05405FO 9120D048 41EOF016 5800B048 9820B050 58E00054 01FE9620 •• & •••• 0 •••••• 0. ••••••• & ••••••••

8 CD 003COO D0484160 00044110 COOC4110 C0380610 05505840 10001E4B 50401000 81165000 ... - • &. • ••• & •••• &.

CIl ~
003C20 418001BC 4110D1CF 05105800 80001EOB 50008000 87861000 0203D1E8 C0305860 •• J ••• J ••••••••• & ••••••• K.JY~ •• -. 003C40 D1C45810 01BC5880 D1C058EO D05407FE 41FOF088 47FOFOB2 41FOF046 47FOF02A JO •• J ••• J ••••••• .00 •• 00 •• 00 •• 00.

C/) \C 003C60 41FOF21A 41FOF052 41FOF260 47FOF114 C9D1C6C6 C2E9E9D5 F3F89011 F32c9620 .02 •• 00 •• 02-.01. 1JFFBZZN38 •• 3 •••
~ . 003C80 103C4510 FOCA9871 F32C4400 10349101 1015018E OA099011 F32C4510 FOCA41FO •••• 0 ••• 3 ••••••• •••••••• 3 ••• ·0 •• 0
rn 003CAO F0369011 F32c58CO 10445BCO 10404180 F0369180 10024710 F06COA01 40C0103E 0 ••• 3 ••••• $ •• 0 ••••••• 0 •••
rt 003CCO 4510F260 91801002 4110F01E OA010201 103El050 41FOF036 91801002 4110F092 •• 2-•••••• 0 ••• K. ••• &.00 ••••••• O.
CD C1
a g 003CEO OA014200 10384800 10000AOO 91801002 4710FOA6 OA074000 1000D200 1038101E • .·0 ••• ••• K •••••

003DOO 07FE9104 10154710 FOC2D703 104Cl04C 07FED703 10441044 07FE989B 10449104 •••••••• OBP •• <.< •• P •••••••••••••

"d 0 003D20 101541EO FODE819A F01B41FO FOE2B69A F01B5090 104407F1 91201015 4710FOF2 •••• O ••• O •• OOS •• 0.& •••• 1 •••••. 02
11 1:4 003D40 OA009180 10024110 FOFCOA01 91011004 4710F20C 58E01028 44001030 50E01028 •••••••• 0 ••••••• ..2 ••••••••• & •••
0 003D60 5BB01038 41BBOOOO 91041015 4110F194 50B01044 4AB01052 4BB01000 50B0104C •••••••••••••• 1. & ••••••••••• & •• <
\Q CIl 003D80 48B01000 58A01048 10AA12BB 4780F154 96401005 12BB4740 F154948F 10051BBA •••••••••••••• 1. • ••••• 1 •••••••
11 III

i t6 003DAO 4170F140 41E0105C 91201002 4110F1AA 41E01058 941Fl015 91401005 4710F1AA •• 1 ••• * •••••• 1. •••• 1 •
003DCO 96801015 948Fl005 58B01038 41BBOOOO D2021039 104150BO 10409120 10150181 · K ••••• & ••

~ 003DEO OA0001F7 189B4B90 10545090 10444BBO 10504ABO 100041FO F12C9541 EOO04170 ••• 1 •••••• & ••••• • & ••••• 01 •••••••
CD CD 003EOO F1B89108 1015071E 941Fl015 58EEOOOO 5010F328 981DF32C 91041015 4180F1E4 1 ••••••••••••••• &.3 ••• 3 ••••••. 1U
11 003E20 5810104e 41110001 5010F358 5810F354 41FOF1EA D203F358 10449110 10034780 •• • < •••• &.3 ••• 3. .01.K.3 ••••••••• . I'd
C/l 11 003E40 F1F6940F 10029108 10154110 F21A9512 10144770 F20A58EO 10684110 F35405EE 16 •••• ~ ••••• 2 ••• • ••• 2 ••••••• 3 •••

0 003E60 OA320000 OA320000 OA329110 10024180 F24E4110 F35405EE 47FOEOOA 41FOE012 · 2 ••• 3 •••• 0 ••• 0 ••
en \Q 003E80 OA3298Fl E12447FO E03098Fl E1249070 F32C5870 F3289680 101547FO F1745810 ••• 1 ••• 0 ••• 1 •••• 3 ••• 3 •••••• 01. ~.
s:: 11 003EAO F35805EE 98F1EOF8 9070F32e 5870F328 91801015 4710FOE8 96801015 91281015 3 •••• 1.8 •• 3 ••• 3. • ••••. OY •••••••• ..,. III 003ECO 47EOFOE8 OA0047FO FOE89610 10249001 F35050EO F35C94F7 10241801 4110F31E •• OY ••• OOY •••••• 3&&.3*.1 •••••• 3.
0, S 003EEO 41EOF296 OA029801 F3509110 10244710 F2BE907C F32e5870 F3289108 10154710 • .2 ••••• 3& •••••• 2 •• @3 ••• 3 ••••••• (I) ,.. 003FOO F2609120 10154710 Fl0441FO Fll0910C 101547BO F2D2D703 10441044 0703104C 2- •••••• 1 •• 01 ••• • ••• 2KP ••••• P •• <

I'd 003F20 104e58EO F35C94EF 102401FE 91011015 4710Fl04 5070F328 987CF32C 91401002 • < •• 3* •••••••••• •• 1.&.3 •• @3 •• ..
III 003F40 41BOF2FA 58E01024 07FE960B 10249108 10154710 F28A9120 10154710 F28658EO •• 2 ••••••••••••• •••• 2 ••••••• 2 •••
11 003F60 102B4400 103050EO 102847FO F2865B5B C2c3C5D6 E5Fl0000 00000000 00000000 • ••••• & •••• 02. $$ BCEOV1 ••••••••••
rt 003F80 00000000 --SAME--
"-> 003FCO 5B5BC2C5 09D9E305 41FOF02A 41FOF02A 01011052 10529026 F1CC4530 F13C9826 $$BERRTN.OO •• OO. P ••••••• 1 ••• 1 •••
~ 003FEO F1CC9104 1010071E OA099026 Flce5860 100895FF 101E4180 F03E4A60 104A9103 1 ••••••••••• 1 •• - •••••••• 0 •• - ••••

004000 102B4710 F13C4140 FOE85846 00000640 18304304 00004140 00094334 F1DF1930 •••• 1 •• OY ••••• •••• 1 •••
0 004020 4780F068 4640F05A 4940F1CA 47BOF078 920B6000 4530F1A8 9140102C 4780F088 •• 0 •• 0 •• 1 ••• O. •• - ••• 1 •• •••• O.
HI 004040 94BF102C 4530F1A8 4144F1E9 02006000 40000600 60001028 9108102C 4780FOE8 •••••• 1 ••• 1ZK.-. .O.-••••••••. OY

"-> 004060 91801002 4710FOAA OA079110 10034780 FOCC0501 1052F1C8 4770FOC2 96F01049 •••••• 0 ••••••••• O. N ••• lH •• OB. 0 ••

-.J 004080 07F31831 4110FOOO OA021813 02001040 10380200 10381030 024Fl098 10485830 .3 •••• 0 ••••• K •• • .K ••••• K ••••••• - 0040AO 1030024F 10483000 4530F1A8 9108102A 4780FOFC 92016000 4530F1A8 91011004 •• K ••••••• 1 ••••• •• 0 ••• - ••• 1 •••••
0040CO 4710FllE 9106102A 4750F132 58401010 41440000 05014000 F1F34170 F1329102 • .1 •••••• &1 •• .. • ••• N. .13 •• 1 •••
0040EO 102C4710 F1B69108 102A4710 F13258EO 10409826 F1CC9620 102C07FE 02001040 •••• 1 ••••••• 1 ••• • •• 1 ••••••• K ••
004100 1050D500 10401048 4770F192 18534800 10344120 00031843 4342103C 43321044 • &N •• •••• 1 •••••
004120 19434770 F1124202 103e8800 00084620 F1584144 00014242 103C1835 0503103C •••• 1 ••••••••••• 1 ••••••••••• N •••
004140 10364720 FOB20200 10401049 D203104C 103C4340 10404144 00014240 1050D501 •••• O.K •••• K •• < • &N.
004160 1052F1C8 4770FOEB OA009180 10024710 F1B40A07 07F31821 48020006 41101016 • .1H •• OY •••••••• 1' •••• 3 ••••••••••
004180 OA021812 47FOF132 00000004 00003550 000032AO 0000395A 00000004 000048EO ••••• 01 •••••••• & ·
0041AO F9C3F14E E5E660FO 400BCBE3 8B030141 lB130B61 5COOOOOO 47FOFOOE C9D3C2C4 gel. vw-o •• T •••• ••• /* •••• 00. 1LBO
0041CO C4E207FO F3F390Ee 010896FF F7C90201 D1581000 4580F200 47000004 47FOF030 OSP033 •• J ••• 71K. J ••••• 2 •••••• 00.
0041EO 416D007C 5810F7BC 9400Dl04 91801000 41110002 4710F426 94000105 95401000 ••• iii •• 7 ••• J ••••• • ••••• 4 ••• J •• ..
004200 4710F08A lBEE43El 00011AE1 41EEOO03 91011001 4710F064 41EEOOOl 50EOOl14 •• 0 ••••••••••••• •••••• 0 ••••• & •••
004220 9140D048 4780F1FA lB554351 00014141 00021B75 06704450 F1CA9601 010441FO •••• 1 ••••••••• ••••••• &1 ••• J •• 0
004240 F126D200 00601004 9640D060 43800060 4480F7CA 4A410006 91101000 4710FOAC 1.K •• - ••• - ... - •• 7 ••••••••••• O.
004260 58440000 4A410008 910F1000 4740F35C 91201000 4710F006 02030060 10005850 3* •••••• OOK •• - ••••
004280 00608950 00088850 000847FO FOFOD200 D0601004 96500060 43800060 4480F7CA • -. & ••• & ••• OOOK. .- ••• &.-••• - •• 7.
0042AO 4A510002 48550000 91020105 071E1957 47COF1A8 910F1000 4710Fl16 9101D15A •••••••••• J ••••• •• 1 ••••••• 1 ••• J.
0042CO 4710F116 12714780 F12647FO F1A25950 F7BC4720 Fl0C91FF F7C94710 Fl0C9012 •• 1 ••••• 1 •• 01 •• & 7 ••• 1 ••• 71 •• 1 •••
0042EO DOFC4580 F2004700 000247FO F1924110 00785830 F7BC1B37 4180007B 1A835090 •••• 2 •••••• 01 ••• •••• 7 ••••••••• & •
004300 015e4190 007C1989 47BOF162 95408000 4770F162 06804630 F14E5890 015C5030 • * ••• @ •••• 1 •• • .1 ••••• 1 •••• *&.
004320 F53C9200 F53C5010 015C4110 F5400AOO 91801002 4710F182 OA075810 015C58FO 5 ••• 5.& •• * •• 5 •• • ••••• 1 •••••• * ••

en
CD
g.
o
1:1
~

tj
CD
t:r s::
~
~
~
IJI'
g,
en

N
W ...

I7J
~

~
CD

~ .
~ .
n

~
en

~
CD

"C a
~

i
~
~
N
c.n
o
H\

N, -

orACHK 07/23/71

004340 010C416D 007C5870 F7BC9101 01044710
004360 18851288 47COF1BA 06804480 F1CA4188
004380 F126D200 60004000 94FE015A 9101Dl05
0043A.O 18E141EE 000250EO 01149601 010447FO
0043CO 4710F2E2 91020159 4710F33E 0203F7A4
0043EO 80034770 F2444810 F6000610 lB171211
004400 9101F7AO 4710F26E 9601F7AO 90E2D144
004420 014447FO F2844870 F6000670 91048003
004440 4870F600 91030159 47EOF2A2 5860F7A4
004460 F2B258Fl 001045EF 000C98E2 01445860
004480 01594710 F20A4166 00014177 000147FO
0044AO 0201F600 F6040203 F7BOF7B8 5810F7BO
0044CO 4110F700 4500F314 000047AO OA0298E2
0044EO F2845861 002C4166 00004170 00485810
004500 F5389209 F5385810 015C47F8 00080200
004520 4770F37C lB000201 00604000 48000060
004540 40005800 00604EOO 0060F395 00680062
004560 00605000 F7C04El0 00684EOO 0070F384
004580 00FC47FO F3FC1B88 43810001 07090060
0045AO 00690065 F1540060 0060F384 00600061
0045CO 96F04000 41440001 lB554851 00021B45
0045EO 01059400 F7C91233 4780F43C 94000106
004600 41900020 lEAA0690 4730F458 47FOF512
004620 96040105 lEAA4730 F4909101 01064710
004640 4710F4C4 47FOF4C8 45EOF08A 4140F7C6
004660 12774780 F51A9240 60004166 00010670
004680 96020105 45EOF08A 195747CO F4EA1277
0046AO F4EC1885 06809240 60004480 F50C45EO
0046CO 47FOF4A8 02006001 600089AO 000147FO
0046EO 47FOF1E8 4690F44C 47FOF440 00000000
004700 000046FO 00000000 00008000 OCOOOO03
004720 C2C304E3 FOF70000 00000000 00000800
004740 00000000 OOOOFFOO 00000000 00000000
004760 07004742 40000006 31004744 40000005
004780 0500480F 60000079 31004744 40000005
0047AO 00008400 08000002 000047F8 00000000
0047CO 00000000 00000800 002020F3 2400488E
0047EO 00000000 00000000 19000020 00000000
004800 3100470C 40000005 08004800 20000001
004820 3100470C 40000005 08004820 20000001
004840 01004898 20000050 00000000 00000000
004860 00000000 --SAME--
004880 00000000 00000000 00790079 0050E540
0048AO 40404040 --SAME--
004940 40404040 40404040 40404040 40404040
004960 0000480F 0000488F 00004708 00004708
004980 40FF1800 00000000 5B5BC206 07C5D540
0049AO 00605810 00140A21 18305823 00001832
0049CO 00044A30 10481B55 43530000 89500001
0049EO 98150060 07FE0008 FFOOOOOO 00000000
004A.OO lB0047FO F0184100 000105FO 9005FOA8
004A20 4710F022 91204002 071E5811 00044154
004A40 4780F08A 18350501 FOA23000 4780F04C
004A60 F09E4780 F0804403 00064403 000A1852
004A80 96015001 47FOF080 96015000 9805FOA8
004AAO 4110FOC4 OA021BOO OA060000 000005FO
004ACO 00000000 00000000 00000000 00000000
004AEO 00000000 --SAME--

PAGE 9

F1FA9812 00FC47FO FOF01887 47FOF1AA ••••• lil •• 7 ••• J ••• 1 •••••• 000 ••• 01.
00011A68 lB781B58 4780Fl00 lA4847FO •••••• 1 ••••• 1 ••• • ••••••••• 1 •••• 0
071E4111 000A0501 1000F7C4 4770F08A 1.K.- • ••• J ••• J. •••••• N ••• 70 •• O.
F12698EC 010807Fl 5010015C 91030159 •••••• & ••••• J •• O 1 ••• J •• 1& •• * •• J •
F7A80201 F600F602 0203F7BO F7B49104 •• 2S •• J ••• 3.K. 7. 7. K. 6. 6KK. 7. 7 •••
4770F244 91040105 4770F336 5810F7BO •••• 2 ••• 6 ••••••• • .2 ••• J ••• 3 ••• 7.
4110F700 4500F264 00004708 OA0298E2 •• 7 ••• 2 ••• 7 •• SJ. •• 7 ••• 2 •••••••• S
4780F284 4160F728 47FOF336 90E20144 J •• 02 ••• 6 ••••••• • • 2 •• - 7 •• 03 •• SJ.
58200118 02076048 20009104 80034710 •• 6 ••• J ••• 2 •• -7. •••• K. - •••••••••
F7A40670 06709240 60004470 F3569103 2 •• 1 ••••••• SJ •• - 7 •••••• - ••• 3 •••
F3364170 004847FO F3360203 F7A4F7AC J ••• 2 •••••••••• 0 3 •••••• 03. K. 7. 7.
9101F7Al 4710F322 9601F7Al 90E20144 K.6.6MK.7.7 ••• 7. ..7 ••• 3 ••• 7 •• SJ.
01444870 F60047FO F2A29104 80034780 •• 7~ •• 3 •••••••• S J ••• 6 •• 02 •••••••
015C47F8 00044110 00784111 00045010 2 •• / •••••••••••• • *.8 •••••••••• &.
60016000 91021000 4710F3CE 95021001 5 ••• 5 •••• *. 8 •• K. -. - ••••••• 3 •••••
47FOF38E 95041001 4770F39C 02030060 •• 3lil •• K •• - •••• - .03 ••••••• 3.K •• -
47FOF3FC 501000FC 02070060 40009801 •••• - ••• -3 ••••• .03.& ••• K •• -
0060006B 96F00068 F3840069 00735810 .- •• 7 ••••••••• 3. .-••• 0 •• 3 •••••••
00604150 006A1B58 06804480 F420F384 ••• 03 ••••••• P •• - • - •••••••••• 4.3.
96F00068 41400071 91304000 4740F40C •••• 1 •• -. -3 •• -. / • 0 •••••••• .. 4.
9601015A 47FOFOFO 02005000 40009201 • 0 ••••••••••••• •• J •• OOOK.&. ...
47FOF440 96010106 58A20000 41220004 J ••• 71 •••• 4 ••• J. .04 •• J •••••••••
91101000 4780F47E 910Fl000 4770F47E •••••••••• 4 •• 05. •••••• 4 ••••••• 4 •
F49047FO F4BC1EAA 4730F4C4 91010106 •• J ••••• 4 ••• J ••• 4 •• 04 ••••• 40 •• J •
41500003 45EOFOFO 4111000A 45EOF08A •• 4D. 04H •• 0 .. 7F • & •••• 00 •••••• O •
47FOF51A 4111000A 47FOF51A 47FOF4A4 •••• 5 •• -05 •••••• 05 •• 04.
4770F4E4 45EOF126 47FOF400 188747FO •• J ••• 0 ••••• 4 ••• •• 4U •• 1 •• 04 •••• 0
F1B61255 4780F504 47FOF400 94010105 4 •••••• - ••• 5 ••• 1 ••••• 5 •• 04 ••• J.
F4A44111 000A0501 1000F7C4 4770F52C .04. K. -. - •••••• 0 4 ••••• N ••• 70 •• 5.
090046FO 00000001 00000000 00000004 .01Y •• 4<.04 •••• • •• 0 ••••••••••••
00004778 00004780 00003FCO 32005B5B ••• 0 •••••••••••• •••••••••••••. $$
002010F1 2600480F 80000000 00000000 BCMT07 •••••••••• • •• 1 ••••••••••••
13000000 00000000 00000079 47000000
08004768 20000001 0100480F 20000079
08004788 20000001 lE004798 30000081 -
00003FCO 320007C3 C8C4E3C6 40400000 • •••••••••• 8 •••• • ••••. PCHO'IF
80000000 00000000 00000000 OOOOFFOO ••••••••••• 3 ••••
00000051 47000000 0700470A 40000006
100047EC A0000008 0500488E 60000051 -
lE004830 30000059 01004848 20000050 ••••••••••••••• &
00000000 00000000 00000000 00000000 • •••••• & ••••••••
40404040 40404040 40404040 40404040 ••••••••••••• &V

40404040 40404040 01000000 0000480F
000047AO 00000064 3B9ACAOO FFFF407E
47FOFOOE C903C2C4 C90403FO F3F39015 ••••••• $$BOPEN .00. 1LB01ML033 ••
4B20F056 1B444343 00074830 102E8830 .- •• 0 •••••••••••••
4A50104C 89400001 1A540200 20005000 • •••••••••••• & •• • &. <. •••• K ••• &.
05F047FO FOOEC9D3 C2C4E2Cl C5FOF3F3 -0.00.ILBDSAE033
41440000 91104014 4780F022 91084015 • •• 00 •••••• 0 •• O. • •• 0 •••
00004B50 FOCC5855 00004155 00001255 •• 0 ••• ••• &0 •••••••••••
41330002 47FOF03A 5050FOA4 D5033006 •• O ••• N.O ••••• O< • •••• 00. &&0. N •••
92F05000 02065001 50001200 4780F07C 0 ••• 0 ••••••••••• .0&.K.&.& ••••. Olil
58FOFOA4 07FF8900 00184B40 FOCE1604 • • & •• 00 ••• & ••• O. • 00 •• ; ••••• 0 •••
00000000 00000000 00000000 00000000 •• 00 ••••••••••• 0
5B5BC2C3 06C2C509 00040008 00000000 $$BCOBER ••••••••

------ -------~-------

0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

.... 0
r-- 0 , 0 ,., 0
N 0 , 0
r-- 0
0 0

0
0
0
0
0
0
0
0

0
0

:.:: 0
11:1 0

~ 0
0

Fo4 0
Q 0

0

0
I'l
r..
~ r--
0

Figure 4.9. COBOL Sample Program (Part 26 of 27)

232 DOS System Programmer's Guide

I Figure 4.9. COBOL Sample Program (Part 27 of 27)

Section 4: Debugging Aids 233

Debugging FORTRAN Programs

When debugging FORTRAN programs, gather the
program listing, linkage editor map, main
storage dump, and any system messages. The
linkage editor map is the most useful
documentation. Using this map together
wi th the main storage dump, the programmer
can locate such information as DTF tables,
I/O areas, logic modules and FORTRAN
subroutines used at object time.

A sample FORTRAN program, linkage editor
map, and storage map are included to show
the relationship between the linkage editor
map and the contents of main storage, and
to indicate where the DTF tables and I/O
areas are located (see Figure 4.10). The
DTF tables are built as they are opened,
starting from 'the end of main storage or
the end of the partition in which the
program is loaded. The I/O areas directly
follow the end of the problem program. The
FORTRAN program itself builds only one I/O
area.

234 DOS System Programmer's Guide

User-written code is always the first
item in main storage followed by the object
time FORTRAN subroutines to perform the
functions required by the problem program.
Only one logic module is accessed by all
FORTRAN I/O units (except console
typewriter) for each FORTRAN program. The
console typewriter uses its own DTFCN that
includes a logic module to handle all
console typewriter functions. Each FORTRAN
program includes an I/O unit table to
convert a FORTRAN unit to a DOS symbolic
unit.

FORTRAN uses the STXIT macro to handle
its own program checks. It also uses the
normal DOS register conventions. In
addition, register 13 is the base register
for the FORTRAN in-line code and points to
the register save area. Register 15 is the
base register for FORTRAN object time
subprograms.

en
(1)

~
~.

g
-'=
00

t='

~
c::
IQ
IQ

b'
IQ

:PI ..,.
Q,
C/)

tv
W
U'I

~

'1iI
~.

IQ
c::
t1
(1)

-'= .
~
0 .
~
~

~
en

~ ...
(1)

I'd
11

~
t1

~ -I'd
PI
t1
c+
~

0
H\

co -

II JOB ANYNAME
II OPTION DUMP,LINK
II EXEC ffORTRAN

II FTC LIS TX, NAME= SAHP2 • Refer to hex '18' in LISTX Map.

MAP YES

LOAD =4

DECK NO

LIST YES - Output A Listing

LIS T)(YE S - Output Object Module Listing

E8CDIC

t-.,) ~
w
0\ \Q

~
8 (1)

CIl ~ .
Ct:l ...
~ 0
en • rt
(1)

.~ s
0

"t1 ~ a ~ \Q
t; 2:

i CIl
III

(1) ~ t;
Ul (1)

en "t1
c:: t; s ~
(1) ~ s -"t1

III

~
t-.,)

0
H\

co -

~

DOS FORTRAN IV 360N-FO-1t19 3-0 SAMP2 OUE 11/11/68 TIME

C PRIME NU~BER GENERATOR
0001 WRITE (3,1)
0002 1 FOR~AT ('IFOLLOwING IS A LIST OF PRIME NUMBERS FROM 2 TO 1000'1

119X,lH2/19X,lH3)
0003 DO It I z 5,lOOO,2
0001t KaSQRTCFLOAT(I))
0005 DO 2 J=3,K,2
0006 IF C~OD(I,J) .EQ. 0) GO TO 4
0007 2 CONTINUE
C008 WRITE (l,l) I
0009 3 FOR~AT (120)
0010 4 CONTINUE
0011 WRITE (3,5)
0012 5 FORMAT (I THIS IS THE END OF THE PROGRAM')
0013 STOP
0014 END

Internal
Statement
Number
assigned by
FORTRAN
Compiler.

00.00.06 PAGE 0001

til
(I)

~
o ::s
-'=

'=' (I)
tr
~

IQ
IQ
!:S.
IQ

~
Q,
en

tv
W
...a

I'Ij
~
(1)

-'= •
~
o .
I'Ij
o
~
~
!2:

CI'l
PI

~
(1)

It!
t;

~
~
S

-I'tI
PI

~
w

o
H\

00 -

DOS FORTRAN IV 360N-FO-419 3-0 SAMP2 DATE 11/11/6B TIME: 00.00.06 PAGE 0002

SYMBOL
I

SYMBOL
IBCOM=

SYMBOL
1

LOCATION
AO

SCALAR MAP
SYMBOL LOCATION
K A4

SUBPROGRAMS CALLEO
LOCATION SYMBOL LOCATION

SYMBOL
J

SYMBOL

LOCATION
A8

LOCATION

SYMBOL LOCATION SYMBOL LOCATION

Locate these values in storage print.
P. P. begin = 2800 Variable = 2800 + DSP.

SYMBOL LOCATION SYMBOL LOCATION 1= SQRT 1- Displacement to an adcon containing the address of subprograms. Check in
storage- print and use Linkage Editor Map.

LOCH ION
(4

fORMAT STATEMENT MAP
SYM80L LOCATION SYMBUL

3 108 'j

LOCATION
10C

SYMBOL LOCATION SYMBOL LOCATION

Displacement to symbols used on FORMAT STATEMENTS. Locate the beginning of
Symbol 1 in dump and cross-reference to LISTX Map. Check the LISTX Map for the
internal statement numbers 2, 9, and 12. They are not there because a Format Source
Statement causes a constant to be assembled rather than machine instructions.

tv "IiI
IN
co ~

~
11

t:I (1)
0
en ~ .
en ~
'< 0
en .
rt
(1)
a "IiI

0
'tj ~
11 ~
0 ~ ~
11 Z
III

~ en
III

(1) a
11 10 . ~
en (1)

Cil "tj
~ 11

~ SJ,.
(1) 11

III a -'tj
III
11
rt
~

0
I-h

co -

DOS FORTRAN IV 360N-FO-419)-0 SAMP2 DATE 11/11/68 TIME 00.00.06 PAGE 000)

lOCHION
000000

Hex 000002

\
000006
OOOOOA
eOOOOE
000012
000014
000018
00001C
000020
000024
000028
000114
000178
00011C
000180
000184
000186
ooa18A
00018C
00018E
0001CJ2
000194
000198
00019C
aOOlAO
OOOlA4
OeOlA8
OOOlAC
0001BO
0001B4
0001B8
0001BA
0001RE
0001C2
0001C6
0001CS
0001CA
0001CE
000100
000104
000108
0001De
0001DE
0001E2
0001E4
0001E6
OOOlEA
0001EE
000lF2
OOOlF4
OOOlF6
OOOlFA

STA NUM

Internal
Statement
Number

3

LABEL OP OPERAND
8AlR 15,0
LM 2,3,34(15)
L 13,30(0.15)
lA 15,2(0,15)
ST 15,4(0,13)
BCR 15,2

BCD OPERAND

Establish Addr.essability
for Program

l!L. DC oocoooee J!J..

.Ag

A36

Inst uction
Gen rated
for nternal
Stat ment 1.

g~ ~g~A~~ Program Name
DC 00000000 No. of chars. A20
DC 00000000 that can be used A36
DC 00000000 in a CALL Stmt. A52
l 13,4(0.13) J
L 14,12'0.13J
LM 2,12.28(13)
MVI 12(13).255
BCR 15,14
L 15,128(0,13) IBCOM=
LR J.£,

lR 13,4
SAL 14.64(0,15)

Address constant labels are prefixed with an . A'.

Program Initialization
Example: IBCOM will issue STXIT macro so FORTRAN

can handle its own program checks.

l ~Al
, DC

15,128(0,13)
14,4(0.15)
00000003
000000e4
15,128(0,13)
14,16(0.15)

I BCOM= Subprogram address being loaded.

T Name of a subprogram (I/O) '1 DC

~ ~Al
L
ST

LPR
ST
LD
AO
LTR
BAlR
BC
lCO~
STE
LA
L
BALR
Be
SDR
LER
AW
STD
L
LTDR
BUR
BC
LeR

0,31610.13) Decimal
0,116(0.13)

•
1.0
1.28010.(3)
0,276(0,13)
0,260(0.13)
0,0
14.0
1l.6(0.l't)
0,0
0,320(0,13)
1 , 136« 0, 13)
15,132(0,13)
14.15
0,4(0,0)
2,2
2,0
2.29210,13)
2.284(0.13)
0.28BIO,13'
2,2
14,0
11.610.141
0.0

IBeOM=

seRT

Refer to internal statement 3.
Variable I is initialized to 5.
Look at storage print. Problem program
area begins at 2800. R13 = 282C
316 = 13C in hex and 116 =1!.in hex.

282C
+ 13C

282C

-1!..
2968 - Initialization

Value
28AO - Location

ofI
The easy way to locate variables is to use the Storage Map.

J-------SUbprogra.m address being loaded.

\ Name of a subprogram (square root).

INTERNAL ADCONS

en
(D

~
g
~
00

'=' (D

8'
\Q
\Q
::s
\Q

>'
0-m

to.,)

W
\C)

~

I'lr:j
\Q

~
(D

~
0 ...
0
•

~
0
~
~
21

en
III

~
~
(D

to
11

~
11
III
S -to
III

~
U'I

0
H\

CO -

DOS FORTtAN IV 360N-F ~-479]-0 SAHPZ

OOOlFt ST
000200 5 L
000204 J.Z.Q. ST
000208 b L
00020e SROA
000210 0
000214 H
000218- S
00021e LtR
OOOllE C
000222 l
000226 BCR
000228
00022e

7 Z \ ~
000230 LA
000234 L
000238 BXLE
00023t 8 L
000240 BAL
000244 DC
000248 DC
00024t L
000250 BAL
000254 DC
0002')8 SAl
0002lie 10 4 L
000260 L
000264 LA
000268 lA
00016t BXlE
000210 11 L
000214 BAl
000218 DC
00021e DC
000280 aAL
000284 13 L
000288 SAL
00028C DC
000290 DC

END
T~TAL MEMORY REQUIREMENTS 000291 BYTES

I

O.llOI O. U)
0,32410.13.
0,12410,13)
O,1l610,ln
0,321,0)
0,124(0,13)
0.12410,13)
1,11610,11)
1,1
1,16010, U.
14.9610.11'
8.14
O,l2'tIO,13)
l.ln4'n.11I
2,210,0)
3,12010, U)
0.2.0(1)
15,12810,13)
14,410,15)
OOCOOO03
00000108
15,12810,13.
14,810,15.
04500074
14.1610.151
0,11610.13)
1,10010,1))
Z,210.0)
3,100010,0.
O. Z.OI 1)

15,lZ810.13)
14,410.15)
00000001
0000010C
14,16(0,15)
15,IZ810,1))
14,52(0.15)
05404040
40FO

HIGHEST SEVERITY LEVEL OF ERRORS FOR THIS MODULE WAS D

DATE 1111 1/68 TIME 00.00.06 PAGE 0004

K

J
J

J
J
I

4

J
LZ!l Internal Adcon used in this case fer

the limits of a DO LOOP.
K

18COH=

IBCOM:

I

.1f-
IBCOH=

IBeOM=

Hex number of bytes.

'" ~
~ ..,.
0

~
tj CD
0
CIl ~ .
CIl ~
'< 0
CIl .
rt
CD
S ~

0
to ~ ...
0 ~ \.Q ... 2:

i CIl
PI

CD ~ I-'
CIl CD

(j) I'd s::,.
~ Q,

CD ~
S -to
PI ...
rt
0\

0
H\

00 -

-

11/11/68 PHASE XFR-AD LOCORE HICORE DSK-AD

PHAse... 002800 002800 005FF7 1A 06

The program name is contained at dis-t
placement of X'IS' in LIST X Map.

A member of the FORTRAN System
Library that performs object time
implementation of I/O source state­
ments and handles all abnormal or
normal termination of FORTRAN
object time programs.

A member of the FORTRAN System
Library used to calculate square roots.

A member of the FORTRAN System Library processes
arithmetic-type and speCification program interrupts
and continues EXECUTION. It also fixes any boundary
alie:nment error that occurs.

ESD TYPE

eSECT

... eSEe'
ENTRY

• ENTRY
ENTRY
ENTRY
ENTRY

1-. ENTRY

[eSEeT

.[eSEeT
EN

eSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
EI'HRY
ENTRY

=n
CSECT

A member of the FORTRAN System library ENTRY
that performs INPUT and OUTPUT data ~:~:~
conversion. • ENTRY

A member of the FORTRAN System Library that I rt= C SEC T
performs object time I/O data management. '-r CSEe T

A member of the FORTRAN System Library that
contains a Unit Table that is used to convert from
a FORTRAN unit to a DOS symbolic unit.

I/O LOGIC MODULE used by all I/O units except
console.

A control section in ILFFlOCS that is the logic
module for the console.

ENTRY

eSECT

LABEL

SAHP2
...:::::r-

ILFIBeOM
IBCOH=
OPSYS
INTSW
PDPAR
DUHPSW=
IJTlNTSW

ILFSSQRT
SQRT

ILFF INT
SAVERR

lLFADCDN
IlFFCVEO
ILFFCVLO
ILFFCVIO
[lFFeVeO
IlFFeVAO
ILFFeVlO
INT6SW

IlFFIOCS
ILFFBORG
ILFBFORG
IJSYSlO
AOIOCR=

LOADED

002/00

002A98
002A98
003750
0038At
0036e4
00365A
0038A1

005E48
005Ett8

004AC8
004FA8

0039FO
004406
003C82
003FD4
0046FO
003RF2
003B4C
004A80

005098
005AFC
005AF8
005B08
00,)A54

REL-FR Problem Program begin.

002800

002A98 Refer to FORTRAN storage map for address
-------------------ofsubprogram.

005E48] Refer to FORTRAN storage map for address
of subprogram.

004AC8

0039FO

005098

ILFU~TAB 005EF8 005EF8

IJJCPD1N 005e88 005C88
IJJCPD3 005C88

IJ2L0005 005C48 005098

CIl
CD
g.
~.

o
:::s

,f::

tj

~
~

t.Q
t.Q
~.

:::s
t.Q

)I
Q,
til

tv
,f::
~

I-z;I
~.

t.Q

~
CD

,f:: .
~
0 .
tor.!
0

~
~
2:

CIl
SlJ

~
CD

ttf
Ii

2
Ii
SlJ
S

-ttf
SlJ
Ii
rt'

""'" 0
H\

IX) -

........

(OR 0- 1
(OR 8-F
~P ReG
1>00000
vOOO)O
000060
0000'10
OOOOCO
OOOOFO
uOO120
0001.,0
000180
00011\0
0001EO
000210
000240
000210
0002AO
000200
000300
000330
000360
000390
0003CO
0003fO
000420
000450
000480
0004BO
0004EO
000510
000540
000570
'0005AO
(J00500
000600
000630
000660
000690
0006CO
0006FO
000720
000150
000780
0001BO
0001EO
000810
000840
000870
0008AO
000800
000900
000930
000960

OWERT 11111/«»8 PAGE

00001«»(4 00004FAO 00002986 00001974 0000FF74 FFfFFF8C 00002800 00002798
000040~8 OA0401FI 00002810 00002810 0000282C 0000282C 6200290f 00000000
41~00000 00000000 00000000 00000000 8EIA1000 00000000 48170F25 20000000

Ff050r07 40007048 FF150001 62000002
00000000 00000000 00000000 00000000 00000000 000001EO FF070000 00000000
5H~8C2C5 06DIF140 FFO~OOOE 80000000 00002120 08400000 0000211A 00000000 749017FF 007FE8S7 00040000 OFOOOF54

00040000 0000020E 00040000 00000FI2 00000000 000009F8 00040000 00000278 00000000 00000000 00000000 00002508

00000000 00010005 00010680 41880071 45700128 41A088BC 4510078~ 18484190 01384180 ODBC47FO 000806BO 06B006RO

0«»8006BO 068006BO 41BR0017 41BR0050 45100128 41800138 9640~001 9120AOOC 411000E8 9250A001 9281AOOO 920300Q5

9S~2A002 4780090C 48A0023A 49A0024E 41AAB8AC 071894F9 02180701 02380238 9680AOOI 9283AOOO 440003C8 078rl941F

AOOl4510 001A07F8 42ROOOE5 48800270 47F08JIA 4510B31A 0205B56F. 85150C05 856EB8AC 1BAA0006 856E0012 43410007

42A0020F 414A88AC 4400A004 5890A004 4220AOOO 9140AOOI 411001BO 02070lC8 90086800 90586820 90606840 90686860

90709898 90108200 01C84400 A0045890 A004Q818 9010989C 01C88200 00389284 B90COZ07 01C8B568 9~90B~CO 820001e8

9680AOOO 41100030 41FOOCA2 96020019 82000018 00000000 FF050001 400020A8 00001000 Ou002000 80000RSC 00000000
FIF161Fl F161F6F8 28002800 00000000 00000000 00000000 D8E6C50Q E3404040 OOOOFFFF 0000~F47 00005F41 00000010
OOOOFFfF E8401E90 AOA07EOO 00871997 198E19EF 19FOIA04 lA221A26 1A2A38Fl FIFIFIF6 F8F3F1F6 000018AC OOOOOOOK
1448148E 1574158C 15940010 19640010 5R5BC2D6 00020000 0100180r. IP680000 oeoooooo 01EOOOOO 00001AC8 00002188
10000000 00000000 92380190 909COIC8 47F0028C 5890008C 45A90060 4190054C 4840020E 44A00234 ~180AOOO 47100282
5880A004 90188030 48800270 41C88000 07F99601 A0004880 027041CR 0OO09SFF AOOF0789 90D0!35DO 481J0G19C 0207B5A8
000094FO 85B9D20F 85COOIC8 07f9909C 01C841FO 03089101 002341BO 03089500 00994780 03085890 008CD201 0090020E

418001C8 45A90064 92200190 45900290 41~0018A 95000023 41800384 95230023 418000B(4B600022 1A664866 R51807Fb
181F4860 849CIR22 43201007 4130001A 18234140 03504130 00101823 47800352 lA234220 04634320 100147FO 040E4720
00C84230 04634820 020E4322 68681A23 95081001 41F0040A 472000C6 96801002 960CI004 07F91858 41430002 43540000
41455000 lA444144 893895FF 40004110 038(4284 000001F9 95FF043R 07891800 5000B50(95FF043B 4780003A 4860020E
9560020F 47800330 0502A005 02594770 03E04111 00004910 B48A41BO 03E01H66 4121000F 4570B356 18334330 10079501
10064770 035E92FF 04630200 0403AOOO 41230008 05001007 AOOE4780 00C80403 10028918 41822000 4870022C 43387000
49308488 47B00378 89300003 4A300220 91F03004 47808076 41800001 41488000 lA444144 89381858 4A50024C 0200043B
40005010 40P092FF 40004220 50004260 500B9203 501691FO 30044180 B09647FO 04165880 87F895FF 30024170 03864280
30029198 30060779 43203000 43228905 48601000 95003000 418004A? 9F006000 07694060 04(49120 30064110 009A9504
50164780 05200202 00491009 03000048 50089(00 000E4170 04044037 891(9680 300601F9 473007AE 47F004F2 5880008C
90988050 18984860 300045A9 005C9898 90509106 00454770 09E4913F 004~4170 050891AF 00440789 40600034 58600048
4A608424 50600040 4032B91C 47F00514 9501~00B 41800486 9101100C 41100486 45100180 0201B305 80024110 83C85070
00480202 10091009 47F0048C 4190018A 91060045 471009EA 94F0003Q 18224320 003A4322 89054832 891C0500 30010036
41100722 457006AO 91020044 411001(8 91390045 4770078C91800044 418005BO 96040044 91040219 477005BO 95003004
47700580 9610B8F4 960388E(41900134 91100044 41100~CC 95000044 417005(2 01F90602 00410041 477006~A 91040044
417005~2 95500044 47700678 94713006 07F99411 30069104 3006478~ 06600601 10040044 94133006 9180100C 4710060C
9~503004 4180076A 92003003 96801002 9l01100(4710062E 45100780 198A4100 06264190 01349601 800047FO 064894F~
100C91FO 30044770 06484310 B7FC0670 4210R7F(41F00648 92FF5008 43703002 02003002 40000200 4000043B 42700438
95003000 41700678 95FF3002 01899198 30064180 069C01F9 4832891C 02000689 003AO~70 41330008 95013000 4720074C
95fF3002 07879198 30060771 41100490 IB5~4350 30024145 50001A44 41448938 4A50024C 58104000 07F7D201 10000046
02021000 00410601 10040044 95015016 47200100 58100040 4B70B424 58710000 05011000 855E4180 06F80501 100088FE
47100700 96203006 96401002 96011004 91210044 477005F4 96803006 91041002 47800~F8 96043006 95003000 47700618
07F90200 07390038 0200073F 003A4832 891E4110 05740560 950(3001 07819500 30004133 00080706 47F00678 4842B91C
4832891E 45700160 41330008 19340729 95FF3002 078147FO 06961871 43701003 4C70830E 4A100226 92007000 47F0060C
4880024E 91F0500B 41800796 43805008 4188R8A(01F19180 100C4110 01A6910f 50084780 07904180 006041FO 07900729
02010044 B5600202 0041B421 92040831 91090045 478007F6 92040831 58800040 12884770 07E69212 08319104 30064180
080694FO 08379120 100(4710 07F69101 10024710 08A095FF 3002478r. 08069110 100C4110 08A04860 B49A4960 849847BO
088C4A60 B9164060 849A0715 60006000 02076000 00404030 600895FF 30024110 08369602 08379204 600A9b90 30069102
00444710 084E9130 00454170 08009102 08374780 08A84186 000C4080 B3Dl4180 83D84510 099447FO 08C00300 B9041004
95408904 41800918 95603004 4180819A 95623004 4180B19A 47F008DO 91020837 47100588 91010039 47800902 47FOO09C
96201002 47F00588 9120100C 47800856 41810010 45100994 47F008CO 47F00930 940E0044 95060044 47800994 9220600B
45800984 9102600A 411008E(9502500B 418008F8 95FF0219 47800BFB 41900134 928788FC 47F00660 02050005 600C9706
09009701 09000201 00023000 92040000 92E60001 820009EO 94F3600(9501600(47100800 91020831 47100930 96021003
02070040 60004580 095E41FO 05884400 09304570 099C47FO 094A4580 Oq~f.41FO 05789104 600~4180 09304180 066047FO
091496FO 095F4830 84840257 84AC84C2 44000086 4870849A 4B708916 4070B49A 946F3006 1B224320 003A4122 R9054570

I'..)
<l=
I'..)

8
en
en
'< en
rt
(1)
e
I'd
Ii o

I.Q
Ii

I
Ii .
en
(j)
~
I:lI
(1)

"z:!
~
Ii
(1)

<l= .
~
o
•

"z:!

~
~
2:
Cf)
S1I

t6
~
I'd
Ii

~
~ a -I'd
S1I
Ii
rt

co

o
HI

co -

..-...

002360 5858(206 (4E201E5 00000001 00000002

002380 00000002 08020350 5858(206 C9E2FOF5

0023AO 04E3fOF2 00000001 00000002 09020451

0023(0 00010451 5858(206 04E3FOF6 00000001

0023EO 00000001 00000003 OlOlOOFO 5858(206

002400 5858(206 01C505F2 00000001 00000001

002420 00000003 02020190 5858C206 E2(406Fl

002440 E2C406F2 00000001 00000003 03020268

002460 TO THE NEXT LINE ADDRESS CONTAINS 00000000

002500 00000000 00000000 00002787 00001E30

002520 000002E2 00000856 OOOOOBCE 00000000

002540 TO THE NEXT LINE ADDRESS CONTAINS 00000000

002780 00000000 00000000 00000000 ooooeooo

0027AO 00005EF8 0000FF08 00005A68 92005302

0021CO 8200505E 00005E42 00000008 0000FF78

0027EO 421F9B61 00000000 4EOOOOOO OOOOOOIF

002800 05F09823 F0225800 FOIE41FO F00250FO

002820 0000282(00002986 00002914 C9CI0506

002840 09C540C5 05E309E8 40E2E3C1 E3C5D4C5

002860 0340C240 C905E2C5 09E3C5C4 48404040

08010182 5858C206 C60307E3 00000001

00000001 00000002 09010300 5858C206

5858C206 04E3fOf5 00000001 00000003

00000003 00020451 5858(2D6 06D9FOFl

07C505C3 00000001 00000003 010201E3

020101EC 5858C206 E2C4CQF3 00000001

00000001 00000003 03010308 5858C206

00000000 00000000 00000000 00000000

00000280 00000408 0000008C 00000F18

00000000 00000000 00000000 00000000

FF150001 420050F2 620050A2 00005F28

00005C88 62002040 0000FF08 000000lF

000000lE 00006089 00005810 00C0032A

8EI58000 00000000 92f84264 45504206

000401F2 00002814 06E2CI04 07F24040

00002804 E34003Cl fF00290E 00005E48

05E34004 C9E2E2C9 05C14840 03C1C2C5

E340C6C9 0000282C 00003824 0000481C

002880 00005814 06C3C5C4 E409C540 00002A5C 00007.980 00002A04 E6C905C7 00002A28

0028AO r I = 999,K /J.......-:- IBeOM SQRT
000003E 0000001f OOOOOOO~ 00002A98 00005E48~ 8000296C 80002974 800028EO

0028CO 80002898 021A34fl C6060303 06E6C905

0028EO OQC904C5 4005E404 C2C5DQE2 40C6D906

002900 F21E1813 lAOlF322 02101422 021AIF40

002920 06C640E3 C8C54001 0906C709 CI042209

002940 4EOOOOOO

002960 00000000

000003El

00000000

4EOOOOOO 0000001F
/Initial Value I

00000005 433EI000

002980 92FFOCOC 01FE58FO 008018CO 180445EO

0029AO 000028C4 58FOD080 45EOFOI0 580001lC

0029CO 01146AOO 01041200 05E041BO E0062300

0029EO 00042822 38206E20 01246020 011C5800

002AOO 58000144 5000007C 58000014 8E000020

C140C9E2 40C14003 C9E2E340 06C64001

D440F240 E30640Fl FOFOFOIE 18131AOl

E1C8C9E2 40C9E240 E3C8C540 C505C440

00000000 00000000 00000000 00000000

4EOOOOOO 00000000

00000003 58000004

00000000

58EOOOOC

00000000

982C001C

F040180C 58F00080 45EOF004 00000003

50000014 58000074 10105010 01186800

10000140 41100088 58F00084 05EF4100

01202222 05E041AO E0061300 50000018

S000007C 5COOOOIC 58100014 13115910

Debugging RPG Programs

The documentation for debugging RPG problem
programs is the source statement listing,
the linkage editor map and a core dump.
The memory map of the source statement
listing gives the displacement of a given
routine or pointer from the beginning of
the RPG program and can be used with the
linkage editor map to locate the DTF
tables, I/O areas, etc •• in main storage.

A discussion of Halt Analysis is
included to help determine the cause of an
HO (internal halt) condition. In addition,
Figure 4.11 shows how to find the DTF
pointer containing the address of the DTF
table of address pointe~s. Each address
pointer is four bytes and points to a DTF
table. Within the DTF table, the
programmer can locate the CCB that points
to the CCW chain, that in turn, points to
the I/O areas.

A sample source listing, linkage editor
map and a dump of main storage that
identifies all program areas can be found
in Figure 4.13.

HALT ANALYSIS

During the execution of an RPG object
program, the job is canceled if a halt
indicator is turned on and it is not turned
off before reading the next input record.
Before the job is canceled, RPG checks the
dump option switch in the communications
region. If the switch is on, a PDUMP of
the problem program area is given before
job cancelation. The message -JOB CANCELED
DUE TO PROGRAM REQUEST- is written on
SYSLOG whenever a halt indicator (HO-H9) is
left on.

When a RPG object program is canceled
with the preceding message, it must be
determined which of the halt indicators is
on. If one or more of the indicators Hl-H9
are on, the programmer must determine the
reason. For further information on the
halt indicators Hl-H9, refer to RPG
Specifications listed in the PretaCe.

If HO (RPG's internal halt indicator) is
on, RPG determines the reason. When HO is
on, a 7-byte area in main storage is

RPG
Program
Begin

CCB I ______ ...J

r ------,
IL CCW Chain J -- ------

File I/O Area

Figure 4.11. Using RPG Pointers to DTF

initialized by RPG to indicate what caused
the halt zero. This area is located at a
displacement of X'11C' from the beginning
of the RPG object program. Figure 4.12
shows the possible contents of the 7-byte
halt zero analysis area.

CAUSES OF A HALT ZERO CONDITION

The object program:

• Read an input record that was not
defined on the Input Specifications
sheet (columns 21-41).

Section 4: Debugging Aids 243

r--.-----------,
IDisplacements in Hexadecimal From Register 3 llC 120 121 122 I

~-------------------------------------~---------------T------_y_----------~-------------~
I I I Resulting Byte Combina-I
ICondition That Turned HO On I * I tions Set (Hexadecimal) I

~--+-------+-----.. ---T-------T---------~
Initialized on or is on due to programmer request N/A 00 00 00
Invalid chaining request (A) 02 N/A N/A
Undefined record type (B) 10 N/A N/A
Collating sequence error (matching records) N/A 04 N/A N/A
Record sequence error (predetermined sequence) N/A 08 N/A N/A
DAM (record not found) (C) N/A 80 N/A
DAM (data check) (C) N/A 40 N/A
DAM (wrong length record) (C) N/A 20 N/A
ISAM (invalid key length) (B) N/A N/A FF
ISAM (DASD error) (C) N/A N/A 80
ISAM (wrong length record) (C) N/A N/A 40
ISAM (illegal EOF--within limits) (C) N/A N/A 20
ISAM (duplicate record) (C) N/A N/A 04

IISAM (no record found) (C) N/A N/A 10

L;«:CB~)~-;~~~:~~~-::::----------------------------L--::-DlAM-::-Fl:1.:1-e:Js--0~nl_y] __ L ________ J

= Address of DTF table
N/A = Not applicable

Figure 4.12. Halt Indicator (HO) Analysis Aid

• Found an input record out of the
predetermined sequence of card type
specified by the entry in sequence
(columns 15-16) on the Input
Specifications sheet.

• Found an input record out of sequence
when the entry in Matching Fields
(columns 61-62) on the Input
Specifications sheet was used for
sequence checking a single input file.

• Encountered a chaining field in the
chaining file that does not appear in
the chained file during random
processing of multiple input files.

• Did not find a record with the correct
key at the designated track address
during random processing by record key
of a DAM file.

• Did not find the record key that
designates the lower limit (obtained
from the RAF) during sequential
processing between limits of an indexed
sequential file.

• Found a wrong length record during
processing of an indexed sequential
file.

• Found an invalid length record (zero or
too long) during random processing by

244 DOS System Programmer's Guide

ISFMS Files Only

record identification of a file on a
DASD.

• Found a difference between the key
length of a DASD record in an indexed
sequential file and the length as
specified in Length of Record Address
Field (columns 29-30) on the File
Description Specifications sheet during
processing with RAF support (random,
ADDROUT, or between limits).

• Found a difference between the key
length in the chained indexed
sequential file and the length as
specified (columns 44-51) on the Input
Specifications sheet during chaining of
multiple input files.

• Encountered a data check on the DASD
during random processing of a DAM file.

• Encountered a DASD error during
sequential or random processing of an
indexed sequential file.

~: Unless the HO indicator is turned
off by a SETOF Operation entry on the
Calculation Specifications sheet, the
program terminates before the next input
record is read.

~
~.

IQ
~ SAMPLE PROGRAM LISTING 1'1
CD

.c: .
~
~ .

OOS/360eRPGeV2.LO RPGSPI 03122161 PAGE 0001

l:O 00 000 H RPGOOI
It! 001 01 010 FINPUT IPE F 80 80 REA040 SYSIPT RPG002
(j) 002 01 020 FOUTPUT 0 V 132 132 OF PRINTERSYSLST RPG003

CIl 003 01 010 IINPUT AA 01 1 l- RPG004

QI 004 01 020 I 8 29 NAME RPG005

~
005 01 030 I 30 3l0MONTH RPG006
006 01 040 I 32 HODAY RPGOOl

I-' 001 01 050 I]it 380lNVNO RPC;008
CD 008 01 060 I 39 430CUSTNOLl RPG009

It!
009 01 010 I 44 450STA TE RPG010

1'1
010 01 080 I 46 480CITY RPGOll

0 011 01 090 I 14 8021NVAMT RPG012

IQ 012 01 010 C 01 INVAMT AOO TOTAL TOTAL 12 RPG013

1'1 013 01 020 C 01 INVAMT ADO GRPTOT GRPTOT 12 RPG014

QI OH 01 010 OOUTPUT H 201 IP RPG015

a 015 01 020 0 OR OF RPG016
016 01 030 0 53 ' A C C 0 U N T S R' RPGOI1 -It! 011 01 040 0 11 ' E C E I V A B L E R E ' RPG018

QI 018 01 050 0 88 'G 1ST E R' RPG019

1'1 019 01 060 0 H 1P RPG020

rt 020 01 010 0 OR OF RPG021
021 01 080 0 25 'CUSTOMER' RPG022

~ 022 01 090 0 80 'LOCATION INVOICE' RPG023

0
023 01 100 0 109 'INVOICE DATE INVOICE' RPG024
024 01 110 0 H 2 1P RPG025

H\ 025 01 120 0 OR OF RPG026

~
026 01 130 0 42 'NUMBER CUSTOMER ' RPG021

0 021 01 lito 0 46 'NAME' RPG028 - 028 01 150 0 19 ' STATE CITY NUMBER' RPG029
029 01 160 0 108 ' 140 DAY AMOUNT' RPG030
030 02 010 0 0 2 01 RPG031
03.1 02 020 0 CUSTNOZ 23 RPG032
032 02 030 0 NAME 53 RPG033
033 02 040 0 STAre Z 59 RPG034
030\ 02 050 0 CITY I 61 RPG035
035 02 060 0 INVNO l 19 RPG036
036 02 010 0 MONTH Z 90 RPG031
031 02 080 0 DAY I 96 RPG038
038 02 090 D INVAMT 109 'S o. RPG039
039 02 100 0 2 Ll RPG040

CIl 040 02 110 0 GRPTOT B 109 'S O. RPG041
CD 041 02 120 0 110 'e' RPG042
0
rt 042 02 130 0 T 2 lR RPG043

~.
043 02 140 0 TOTAL 109 'S O. RPG044

0 044 02 150 0 111 'ee' RPG045

::s
.r::

I:'
CD
b"
~
IQ
IQ
~.

::s
\Q

>'
~.

c.. en

IV
.r::
U1

IV t'Ij
~ ...,-
0\ ~

c:
11

0 CD
0
en ~ .
en t-to
'< w
en •
rt
CD a ::0

-1t:I
It:I Cj)
11
0 en
~ PI
11 a
PI toO

~ ~
CD

CD
11 I'd . 11
en 0

~
Cj) 11
c: PI
...,- a
OJ
CD -"tI

PI

~
IV

0
HI

t-to
0 -

SAMPLE PROGRAM LISTING (CONTINUED)

DOS/360*RPC*V2.LO RPGSPI 03122167 PAGE 0002

SYM80L TA8LES

RESULTiNG INDICATORS

ADDRESS RI ADDRESS RI ADDRESS RI ADDRESS RI ADDRESS R I ADDRESS RI ADDRESS RI

000011 Of 000014 IP 000015 LR 000016 00 000017 01 00007A LO 000078 Ll
000085 HO 000086 HI 000087 H2 000088 H3 000089 H4 00008A H5 000088 H6
00008C H7 000080 H8 00008E H9

FielD NAMES

ADDRESS FIelD ADDRESS FIelD ADDRESS FIelD ADDRESS FielD ADDRESS FIELD

000121 NAME 000139 MONTH 000138 DAY 000130 INVNO 000140 CUSTNO
000143 STATE 00014!» CIfY 0001H INVAMT 000148 TOTAL 00014F GRPTOT

LITERALS

ADDRESS LITERAL ADORE SS LITERAL ADDRESS LITERAL

000153 A C C 0 U N T S R 000168 E C E I V A 8 L E R E 000183 GIS T E R
00018E CUSTOMER"
LITERALS

ADDRESS LITERAL

0001AC INVOICE DATE
0001Df STATE CITY
Ll TERALS

ADDRESS LITERAL

00020C --,--/.--

INPUT/OUTPUT INTERCEPT
TABLE IINPUT AND OUTPUT)
DETER"INE RECORD TYPE
DATA SPECIFICATION
GET INPUT RECORD
DETAIL CALCULATIONS
TOTAL CALCULATIONS
DETAIL LINES
TOTAL LINES

INVOICE
NUM8ER

INPUT/OUTPUT REQUEST BLOCKS POINTER
LOCATION OF DTF TABLE POINTERS

000196 LOCATION

ADDRESS LITERAL

0001C3 NUM8ER
0001F7 MO DAY

ADDRESS LITERAL

000217

MEMORY MAP

INVOICE

CUSTOMER
AMOUNT

000220
00021C
000464
000248
00078C
000904
000958
000AD2
00096C
00126C
000018

ADDRESS LITERAL

000108 NAME

ADDRESS LITERAL

000218

til
m
~ ..,.
g
~
II

t:I
m
0"
~

\Q
\Q ..,.
ts

\Q

)I ..,.
Q,
en

N
~
..,J

"IJ
~

CD

~
I

~
W
I

~
(jl

en

~
I-'
CD

ttl
Ii o

I.Q
Ii
SlI
S

-ttl
SlI
Ii
rt

w
o
H\

~
o -

SAMPLE PROGRAM LISTING (CONTINUED)

OOS/3bO-RPG-V2.l0

INPUT/OUTPUT INTERFACE ROUTINES
WORK AREA POINTER
OVERflOW RYPASS
CONTROL lEVEl
TlBLEIlSSEMBLE 4)
TEST lONE 18CO)
OVERFLOW LINES
LINKAGE PROGRAM

PROGRAM LENGTH 001699

lEND OF COMPILATION'

RPGSPl

OOOOEO
001574
OOOACA
00063C
OOOBAC
0012AC
0009EA
0013E4

03122167 PAGE 0003

"-> I'Zj
.c:- 1-/-
00 IQ

~
t1 CD
0
en .c:-.
en ~
I< w
en .
rt
CD a !:tI

"0
"0 Ci:l
11
0 en

I.Q S1I
11 ~ S1I

§ I-'
CD

CD
11 "0 . 11
en 0

I.Q
Ci:l 11
t: S1I
1-/- a
Pol
C\)

"0
S1I

~
.c:-
o
HI

~
0 -

--

SAMPLE PROGRAM LINKAGE EDITOR MAP

JOB RPGSPI

AtTW'" rAKlN
1I S T
LJ ST
LJ Sf FlURY

03/ .. ~/61

MAP
INCLUDE
INCLUDE

OU2l1"1 PHASE XfR-AD

PIIA Sf ••• 0033£4

DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT

IJCFC 110
IJDFYPll

lIJCORE HICORE

OOZOOO 00H8R

DSK-AD

ZI) 6 1

ESD TYPE LABel

CSECT RPGOOI

CSECT IJCfCIlO
ENTRY IJCFlllO

CSECT IJDFYPll
ENTRY I JOfYlZZ

LOADED

002000

0036AO
OO~6I\0

00311 0
003110

RPGOOl14
RPGOO1l5

REl-fR

002000

0036AO

003110

en
CD

~
g
.p

t:1

[
I.Q
I.Q
::s

I.Q

)I
0.. en

to.,)
.p
\Q

""11
~

CD

.p .
~
w .
~
CIl

~
CD

I'd
11

~
11
~
~

~
~
V1

o
H\

~
o -

SAMPLE PROGRAM'S OUTPUT

ACCOUNTS R E C E I V A 8 L REG I S r E R

CUSTOMER LOCATION INVOICE I NVO ICE DA TE INVOICE

NUMBER CUSTOMER NAME STA TE CITY NUMBER MO DAY AMOUNT

10112 AMALGAMATED CORP H 61 11603 11 10 38<J.25

18<J.25-

11315 BROWN WHOLESALE 30 231 12324 12 28 802.08

11315 BROWN WHOLESALE 30 231 qq588 12 14 $ 261.11

1,063.25-

11891 FARM IMPLEMENTS 47 11 10901 10 18 21.63

S 21.63-

18530 BLACK OIL 16 61 11509 11 8 $ 592.95

LMP TAKEN HERE

I\J
VI
o

o o
CIl

en
~
en
rt
(1)
!3
ItJ
Ii
o
\Q
Ii
~

i
Ii

en
G'l
~
tot·
Qa
(1)

I"Ij
tot·
\Q
~
Ii
(1)

.c::

~
w .
:;0
ItJ
G'l

en
~

t8
~
(1)

ItJ
t;
o
\Q
Ii
~
!3

~
:+
(7\

o
H\

~
o -

GR 0-1

(OR R-F

002000

001030

002060

001090

0020CO

0020fO

002120

002150

002180

RPGSPI 03172/61

0000354C 00003544 000001EO 00002000

~0002890 00003514 00000001 0000208E

05805808 000601FD 0000)3E4 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00002210 00002000 00002000

00002A02 0000296C 0000326C 00002018

00008000 000090~0 OOOOAOOO 00002ACA

100000C4 CIE3C140 C3CI09C4 40404040

59295C40 40404040 40C140C) 40C34006

40C~40C1 40C940E2 40E)40C5 4009C3E4

OOllBO CQC3C540 C4CIE3C5 40404040 C905E506

0021ED E2E3CIE3 C5404040 C3C9E3E8 40404040

002210 68202021 4820205C 5C5COOOO 01FEOOOO

002240 OOOOllAC 4000022C 05805810 803E1211

002710 05F841FO F09641FO fOC641FO FOOE41FO

0022AO 40009200 000041AA 00024690 F0229S00

002200 f06844BO F0904120 F01C9500 C0024180

002300 01FAF800 10001000 4460fOCO 18988890

002330 01FCF200 1000AOOO 180C45CO F096189A

002360 A0004110 FOFC960F A00094FC A0001BA9

002390 18C041FO FOIA0201 F12CC002 92000000

0023CO 41990001 01FAOSOO 10001001 02153113

0023FO 00004110 313041AO 20214180 002445CF

002420 00004110 314541AO 20204180 00t245CF

002450 202694FC 900245BC 000007FE 92003011

002480 fOl10COO F0212000 41AOOOOO 581ABOOO

002480 58ACOOOC lAA305EF 58A100BO 501A0040

CORE DUMP

PAGE

00003000 00004000 00005000 00006000

00002085 400033E6 50003452 00002A02

00000000 OOOOFOOO 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 OOOOFOOO 00000000

00Q0221C 00002000 00002000 00002464

000020EO 00002000 OOOOlOOO 00002000

00002000 00002000 0000263C 000028AC

40404040 40404040 40000COO OCOOOOOC

40E44005 40E340E2 40400940 C540C340

E2E306D4 C5090306 C3CIE3C9 06054040

C9C3C505 E404C2C5 09404040 40404040

4005E404 C2C50940 04064040 4040C4Cl

05£050CO FOIE18CO D500F022 C00058CO

018E5881 00041288 018EIA83 589300C8

f11841FO f1240100 80002120 41AC0002

C0064180 f0544480 f0904710 F05441CC

F08644BO f09041AO f08641CC 00020201

00041A19 91001000 4110fOB2 94FOI000

18C088BO 00048980 000416B9 41FOF01~

44BOF112 1AA99200 A0004198 OFfF4199

95401000 4110C004 41AC0004 12884180

20014110 313941AO 201041BO 001145CF

00004110 314041AO 20264180 002445CF

00004110 114141AO 70494160 003645CF

01FE4110 58D300E8 50f00004 50800008

lA135893 00C84A91 000641FO F0660SEF

58E00004 588D0008 01FE50EO 000C,829

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 OOfOOOOO 00000000 00000000

00002248 0000218C 00002904 00002958

00002000 00006000 00003514 00001000

0000l2AC 000029EA 00000000 0000326C

OOOOOCOO OCOOOCOO 00000C02 01308COO

C540C940 E540C140 C2400340 C5404009

40404040 40C905E5 06C9C3C5 C905E506

4040C3E4 E2E30604 C5094005 C104C540

£8404040 4040CI04 D6E405E3 40402070

FOIE58F3 0098018F 58F30000 01FFOOOO

4A910002 58290000 41900FFF 41989001

41900003 9500~000 4780f034 0201f032

000641fO f01C41CC 00029500 C0004780

F084COOO 9bFOOOOO 41980Fff 41990001

960C1000 IB1918A9 41980FFF 41990001

18988890 00041AA9 0200FI05 A0009100

000107FC FR001000 AOOOl80C 45COFOOE

F0180680 44ROF154 4180F018 41980fFF

00004110 313B41AO 201F41BO 001145CF

00004110 314341AO 202B41BO 001145CF

000001FE 18530C40 18530C40 F2249000

58A300B4 582A0008 1A2341BO 201A4210

58FI000C 12fF4180 E0181AF3 58C30108

00000105 F01AFOIA D7031010 10109041

C/)
CD
g. ..,.
g
~

t:I
CD
tr
d
~
~ ..,.
t:S
~

)I ..,.
0.. en

~
U'I .-

"iI ..,.
~
Ii
CD

~

.­
W .
~
"0
(j)

CIl
~

~
~
CD

"0
Ii o
~
Ii
~ a
....
"0
~
Ii
rt
..,J

o
H\

~
o -

CORE DUMP (CONTINUED)

0024EO

002510

002540

002510

0025AO

002500

(}02600

002610

002660

002690

0026[0

0026FO

RPGSPI 03172161

002805El OOOUUUOO 01009847 o028188E

41F0804C 41800FFF 41548001 41658001

lAF305EF 60044040 06028060 80604740

418080[8 06F04450 81484790 80C0182F

47F080(4 44F0813C 419F9001 44508148

06901880 47F08100 181B58F3 011805EF

4490814(47U0812C ~2F03085 92043120

05008000 10180200 10188000 o502AOOO

A0039003 02013078 811407F8 05FFA003

A0039003 o203307B 811407FB o5FFA003

A0039003 0205)078 811407F8 05FFA003

A0039003 02073078 811407FB o5FFA003

002720 AF180000 000003[[00002085 00000000

002750 30179201 E00496FO 400050A1 000847FO

002780 50AI0008 9~01E004 47FOE006 058047FO

002780 47fOB126 58C300C8 4AC10002 582(0000

0027EO 00R050IA 004G58Fl 000C12FF 47808070

002810 4AOI0006 189050Eo 001858FO 800AIAF3

002840 80709522 90134770 80fA58EO 00184111

002810 801040CO 816A07fE 50800014 58F300AC

0028AO BOOCFOfO fOFOFOFO fOFOFOFO 0700B006

002890 95f08165 41808006 41FOOOAA 40F0817E

002900 92A305EF 05805893 00EA90oE 90F498AO

002930 900895FO 30174110 804C0732 90009000

002960 90F498Ao 30EC98oE 90F407FE 582030C8

002990 058095FO 30784770 80289202 20325890

0029[0 47108028 92022032 589OC014 lA9305E9

0029FO 30E890oE A000921C A0009240 AOOE9240

PAGE 2

18909500 80044780 80260200 900F8004

41768001 41878001 07F4B006 00000448

8076960F 100047FO 81369045 00284140

41220001 88200001 89200004 16F244FO

4780800A 069094FC 90004199 00018850

58100024 91F01000 47C0812C 91041014

92FOI000 44908152 189058EO 000C07FE

90004780 80000202 A0009000 02003078

90034180 800002FF A0039003 02023078

90034~80 800002FF A0039003 02043018

90034180 B00002FF A0039003 02063018

90034180 R00002FF A0039003 02083078

E2C9C705 00000100 454E0030 58C30110

4030ROOA 000003CC 0000044(02031004

800EROOA EI0709(5 0000045C 18105803

5890801A lA9358Al 000896FO A0009585

lAF358C3 010858AC 000C1~A3 05EF58EO

05FF9200 900E58F3 009405EF 95F03085

000492FO 10019108 1014078f 48C0816A

41FF0066 05Ef5880 001458Al 00089200

0000011C 58108122 lA1345EO 807E47FO

95B08112 078E5810 816647FO 82300100

30EC95FO 30174110 802[0137 90009000

F8739008 3141FA13 9008314F F831314F

58A010E8 900EAOOO 921CAOOO 9240AOOE

(0101A93 05F94002 00289202 202E4100

40020028 9202202E 41002020 05Eo0200

AOOF9240 A0655800 309458(3 010C58BO

9204900E 58F30094 05EF5890 80481A93

58F08000 12FF4780 806E0703 80608060

00034150 004418FF 180943F4 805f12FF

814288fO 0004419F 900094FC 9000189F

000118(8 188A4640 80869845 00281890

4780811C 4490814C 41B0812C 41F08124

02009000 COOOF200 9000COOO 91008063

811407FB o5FFA003 90034180 BOOOD2fF

811407FB o5FFA003 90034780 B00002FF

811407FB O~FFA001 90034780 B00002FF

811407F8 o5FFA003 90034780 BOOOD2FF

811407F8 80080000 00000444 4511001C

43902000 41A00060 058C4770 404041AO

40280203 100C402C 41FOE006 41A30085

00E8501o 000850Eo 00040708 30783078

100B4170 805050(3 011C9210 312058A3

00045800 000807fE 00000448 580300C8

47708084 58A10080 o703A040 A04047FO

46C080E4 96F03015 02083078 811441FO

AOOOS8Eo 001847FO 80264770 802607FE

80D658Eo 001C95FO 1001017E 92F08164

BOOCOOOO 00000000 00010004 41F08180

F8139008 3141FA73 90083148 F831314B

900898DE 90F407FE 05805893 00E890DE

9240AOOF 9240A065 58003094 58C3010C

202005EO 02003011 20330580 95f03015

30112033 980EAOOO 07FE5820 30C858AO

30FC9200 AOOC0600 AOOC300C o600AOOC

jI..)
U1
jI..)

8
CIl

~ en
rt en a
"tI
11 o

IQ
11

I
11

en
Gl
~
PI
en

~
IQ

~
en
-=­
~
w .
~
CIl
~

~ ...,
en

~
2
11
~
a

i
~
co

o
H\

~
o -

002A20

002A50

002480

002A80

0024EO

002810

002840

002870

0028AO

002800

002COO

CORE DUMP (CONTINUED)

RPGSP1 03/22/67 PAGE 3

30000600 AOO(300E 0600AOO(300F0600 AOO(3010 0600AOO(30110600 AOO(3012

802(9201 202F9202 20325890 (0001493 05E94002 00289202 202E4100 202005EO

92012032 5890(004 1A9305E9 40020028 9202202E 41002020 05E00200 30112033

C0081A93 05E94002 00289202 202E4100 202005EO 02003011 20330580 980EAOOO

40009240 AOOE9240 AOOF9240 A0655800 309458C3 010C9200 20330580 95F03014

1A9305E9 40020028 9202202~ 41002020 05E00580 95F03014 47708022 92012032

41002020 05E00580 95F03014 47708022 92022032 5890(008 1A9305E9 40020028

47708022 92022032 5890(00C 1A930SE9 40020028 9202202E 41002020 05E00580

30112033 980EAOOO 07FE800A 000008C4 000008E2 OOOOOCOO 00000C24 00000C88

02178035 3168020A 80403183 41000058 07FE0590 58802020 02078011 318E0215

05905880 20200217 801231C3 0203802A 31080217 8037310F 02148051 31F74100

002(30 OE05A010 31400204 80174011 0215801F 31230203 A0104100 OE03AOI0 31430201

0600AOOC 30130788 058095FO 30114710

02003011 20330580 95F03011 47708028

058095FO 30114710 80289202 20325890

01FE5820 30C858AO 30E8900E A000921C

47108026 9201202F 92022032 5890COOO

589QC004 1A9305E9 40020028 9202202E

9202202E 41002020 05E00580 95F03011

41f0800E 96F08001 98DEAOOO 01FE0200

00000CE6 05905880 20200211 80103153

803A3196 02168056 314C4100 006007FE

006C01FE 05905880 20200205 A010A100

8039A012 0203A010 A1000E03 A0103145

002C60 02028040 A0110205 4010AI00 OE05AOI0 31300204 804AAOll 0203AOIO A1000E03 A0103139 02018058 40120203 A010A100

002C90 OE03A010 31380201 805EA012 0204A020 320COEOA A0203147 9258A021 02098063 40214100 006001FE 05905880 20200204

002((0 A020320(OEOAA020 314F9258 A0210209 8063A021 FB33314F 314F0200 80603211 4100006E 01FE0590 58802020 020AA020

002CFO 320COEOA A0203148 92584021 02098063 40210201 80603218 58C0310(4100006F 01FE0004 41F08180 00002010 000020A8

002020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00003014 00003084 00002000

002050 00002000 00002000 00002000 00002000 00002000 00003188 00002000 95F03011 00008000 08000001 00002090 00002098

002080 000036AO 0281C2C2 00003219 00003188 23003219 20000050 415EOOOO 0100544A 00009200 301A9200 00008400 OC000003

002080 00002000 00002008 00003110 08800000 00003195 00000000 0100415E 00000000 11003195 20000084 01003195 30000001

0020EO 900FF1FO 05805500 81CA4780 80A65500 81CE4180 815A5823 00CC1840 18664360 40000660 89600002 lA265812 000058Fl

002EI0 00105823 00C(4160 81844112 002C0500 40186000 41808058 05006000 81C24780 81865A60 81(65470 810A41FO 80385817

002E40 000007F7 980F81EA 01FE4100 00FE06CO 95C84004 47708016 41550050 92405000 59C0810E 47408092 440080AO 58C081DE

002E10 41550100 47F08076 12C(4780 809E06(0 44(08040 01FE0200 50015000 45E08180 45E0818C 5A1081F6 50120000 18C14110

002EAO 81425030 81B245EO 81925830 81825812 00005851 00085855 00009508 40184710 80E0585C 006C9522 40184710 80EC585C

002EOO 00(09520 40184110 80F8585C 00589510 40184770 8104585C 00109540 40184110 811058S(00844155 00005050 400048(0

002FOO 400845EO 80644122 00040503 20008102 41808136 41440020 46F08044 4100000A 582300C(4122002C ~R120000 541081F6

002f30 50120000 41220004 46008142 47F0805E 45E08180 45E0818C 18C14110 814A45EO 81924122 0004440~ _44780 817C46FO

en
Cl)
(')
rt
~.

o ::s
.r=

tj
Cl)
0' s::

I.Q
I.Q
~.

::s
I.Q

)I
~.

01
til

l'.)

U1
W

I-<j
~.

~
11
Cl)

.r=

~
W .
::0

~
en

~
~
Cl)

I'd
11
o

I.Q
11
$lI
a
.....
I'd
$lI

:+
ID

o
H\

~
o -

CORE DUMP (CONTINUED)
RPGSPI 031'l2l67

002F60 815E47FO 605E5843 00C8S823 00CC41FO

002f90 5858C2C3 0306E2C5 00002000 41F08166

002fCO 00000004 00000100 OOFFFFff FFFFFFFF

002ffO 400024E4.0000326C 000020HS 4000274A

003020 IB004300 400FIAEO 430EOOOO 9S02400E

001050 41f0805E 58,04000 95C84004 47801066

001080 1052A020 419070FO 41R0400F 50F070EC

001080 41B07040 95E34010 47801040 45A0709A

OOlOEO 70aC45AO 708295FF 40124180 701A95FF

003110 806447FO 80,E4190 70F447FO 70721BOO

003140 58504000 06504205 000041,5 000148CO

003110 00003710 00000083 00000003 00000081

0031AO 40404040 40404040 40404040 40404040

--SAME--

003200 40404040 40404040 40404040 40404040

003230 40404040 40404040 40404040 40404040

003260 40404040 40404040 40C~C9D3 00003219

003290 00000000 OObOOOOO 000?02FF fFFffFOO

0032CO 4390C030 4199C031 0401C02E 90000500

0032fO OAOAOAOA OAOAOAOA OAOAOAOA OAOAOAOA

001320 OA4AOAOA OAOAOAOA OAOAOAOA OAOAOAOA

003350 OAOAOAOA OAOAOAOA OAOAOAOA OAOAOAOA

003180 OAOAOAOA OAOAOAOA OAOAOAOA OAOAOAOA

0033BO OA202122 23242526 2728290A OAOAOAOA

0033EO OA003AE9 05001850 48200016 02010166

003410 00944160 00044170 01145854 30001A52

003440 00A05873 00E405EF 567300E4 58F300CO

003410 00E40£00 01583064 58F3boB4 05EF0200

PAGE 4

000A5812 000007FE 50C0819A 4500819E

01020408 10202240 FFOOOOOO 00000001

0000326C 8000Z720 00003219 00002000

000032AC 00003,74 6000Z50a 000020EO

47807040 9,C84004 4780805E 9,03EOOO

06,04205 000045EF 000C5850 400048CO

9,FF400F 47807024 95E34010 47807024

45A0708C 06004013 40149200 401445AO

40114770 709Z45AO 709A45Ao 708COZ03

430BOOOO 89000003 56090000 9,OC8000

400841CC 000158FO 10€C45EF 000C4100

00000001 8B280Z1A 0,709222 401347FO

40404040 40404040 40404040 40404040

40404040 40404040 40C2E4C7 40F2F,40

40404040 40404040 40404040 40404040

00000000 00500000 00010401 FFFFFFOO

00110011 02000000 00000000 9202C030

C02EC02F 9200C030 07FBI020 OOOFOFFO

OAOAOAOA OAOAOAOA OAOAOAOA OAOAOAOA

OA1AOAOA OAOAOAOA OAOAOAOA OAOAOAOA

OAOAOAOA OAOAOAOA OAOAOAOA OAOAOAOA

OAOAOAOA OAOAOAOA OAOAOAOA OAOAOAOA

OAOAOA3Z 33343,36 3738390A OAOAOAOA

20080Z03 016A2028 5820016f 89,00008

50543000 87460034 98470172 1A421A52

05EF9400 301441C3 008541AO 00014183

0159)084 02003084 01,895FO 30154780

000020A8 OA0207FE 5858C206 07C50540

0607C505 C30306EZ 00000000 00000004

00003000 00004000 00005000 00006000

9Z0ZZ00E 9S00400E 47807036 41E04016

4780805E 45EFOOOO 47F0805E 45EF0008

40064,EO 806447FO 805E45EF 000041FO

45A0709A 45A070BC 45A0708Z 95FF4010

70BZ95FF 40114780 705E45AO 709A45AO

400FB1E6 48(04008 065041CC 000145EO

478070E4 07FA4199 00044188 000101FA

70E445EF 000407FA 92F04014 07FAOOOO

805E9100 40404040 40404040 40404040

40404040 40404040 40404040 40404040

C4CIE3Cl 40C3CI09 C4404040 40404040

40404040 40404040 40404040 40404040

00000011 01014181 COOOOOOO 00003195

4Z90C02E 42AOC02F CCOIC02E C0351899

FOOAO~OA OAOAOAOA OAOAOAOA OAOAOAOA

OAOAOAOA OAOAOAOA OAOAOAOA OAOAOAOA

OA2AOAOA OAOAOAOA OAOAOAOA OAOAOAOA

OAOAOAOA OAOAOAOA OAOAOAOA OAOAOAOA

OAlOl112 13141516 1718190A OAOAOAOA

OA404142 43444546 4748490A OAOAOAOA

88500008 41220002 lB521825 1832414Q

1A621A72 58000182 58F30000 05EF58F3

008E95FO C0004760 013887CA 007C5873

DOC495FO 30784770 00089101 01574710

tv ~
Ut
~ I.Q

s::
1'1 CORE DUMP (CONTINUED) t:I ('I)

0
CIl ~

CIl ~
'< w en .
rt' m
S !::t1

ttl
ttl Cil
1'1
0 en

I.Q OJ
1'1 ~ i m m RPGSPI 03/22161 PAGE 5
1'1 ttl . 1'1 00341.0 00C49601 015141FO 00085813 00E458F3 00BC05EF 581300E4 58F300C4 05EF95FO 30154180 01149102 01514780 00F258F3 en 0

Cil
I.Q
1'1 003400 01145813 00E405EF 58F30080 96020151 581300f4 05EF0200)0840159 58F30088 581300E4 05Ef41fO 006291fO 30144110

s:: OJ S 003500 010658F3 001.05873 00E405Ef 58000186 58F30000 581300E4 05EFIBOO OAOE4820 00169140 20384180 014E4100 01664110
Q,
(b - 003530 015EOA02 92060131 41F00114 03030000 8091.4020 5858C207 (4E40401 00002000 0000318(000013E4 00001000 00002000 ttl

OJ

:::. 003560 00003000 00004000 0607(505 ~30306E2 00109540 400033E6 50003452 400033E6 001(4040 404040F8 5000278E AOO0288E

~ 003590 00000000 40584040 40F5F9F2 00003000 00004000 00005000 00006000 4122002(58120000 5AI081F6 50120000 41220004
0

0035CO 46008142 47F0805E 45E08180 45E0818C 18C14110 81AA45EO 81404127 00044400 81244780 817(46FO 815E47FO 805E5843
0
HI 0035FO 00C85823 00CC41FO 000A5812 00C007FE 50C0819A 4500819E 00000000 OA0201FE 5858C206 07C50540 5858C2C3 0306E2C5
~
0 003620 00000000 47F081R6 01020408 10202240 fFOOOOOO 00000001 0601C505 C30306E2 00000000 00000004 00000004 00000100 - 003650 OOFFFFFF FFFFFFFF 00000000 00002018 500031\82 00004.299 400033E6 600034F6 00002010 40202020 20202020 20202020

003680 10202020 20202020 20202020 20222120 22212020 20202040 4002FFFF 9500400E 41FOF04E 01.320000 47FOFOI0 01.320000

003680 02001020 10110200 10171016 OA009180 10024110 F0280AOl 50EOF048 58EOI020 0501F046 E0004770 F04058EO 101C07FE

0036EO 58EOF048 07FE615C 80003050 00224AOO F04C9180 10024710 F05COA07 42001020 OA009180 10024710 F06COA07 07FE10FO

003710 OA320000 47FOF02E 01.320000 90(EF070 58EOI018 06E00200 1028EOOO 98CEF010 01.009180 10024110 F02COA01 01FE9180

003140 10024710 F0380AOl 91011015 4780F04E 94FEI015 91021003 018E41FO F0549101 1004018E 12004180 F05E18FO 07FF9288

003710 102801.00 91801002 4710F06E OA0101FE 0000006E 00002220 9000315E

Debugging PL/I Programs

PL/I is made up of subroutines, a control
program, and a mainline routine. The
mainline routine manipulates the data to
develop information for a particular
application. The control program
initializes the mainline routine. It also
provides linkage to subroutines to get the
data from a file for use by the mainline
routine and to create new files of updated
information. .The control program uses
transients much the same as the supervisor,
and it has its own transient area (Figure
4.14l.

The PL/I storage areas important for
debugging purposes are: static storage,
dynamic storage area (DSAl, and library
work space. Figure 4.15 shows the contents
of these areas, when assigned, pointers to
these areas, and where each area is
located.. Static storage contains all of
the information needed by a PL/I program;
literals, address constants, control blocks
and block descriptions. Figure 4.16 shows
a list of subroutines that are moved into
the control program to provide needed
functions to the mainline.

MAINLINE

Initialization (Prologue)

GO TO External Name

OPEN/CLOSE

~ READ, WRITE, Etc.

END .(MAIN), STOP

SYSSUP

Intercepts Program Chec k. Passes
Control to PL/I STXIT PC Location

CONTROL PROGRAM

I---------Ip~. Initialization Routine

1--------..... GO TO Routine
(Return is to External Name)

1--------1---". OPEN/CLOSE Routines
Call $ Transients

• SIGNAL Routine Handles
Exceptional Conditions and
Issues Messages

1--------..... STOP Routine Calls $
T ransi ent for Automati c
Closing of Fi les and EOJ

~ • Interrupt Handler Usually

1--1---

r-I---

Calls $ Transient. ~

--------------------Miscellaneous Subroutines
~ Such as:

$ ~ I/O Transmitters $~
Conversion Routines
Bui It-in Functions

Figure 4.14. PL/I Program Structure

p

Return is Conditional

1------------------
$ Transient Area

May Call $$ B Transients

Section 4: Debugging Aids 255

r--------------------~------------------------~----------------------, I Static I Dynamic ILibrary Work Space I
~---------------------+-------------------------+----------------------~ Contents - - - - -~ I Li terals, Address I Linkage register and I Register save area and I
I Constants, Control IAUTOMATIC data save Iwork area for PL/I I
IBlocks, Block I areas. I subroutines. I
I Descriptions. I I I
~---------------------+-------------------------+----------------------~ When Assigned-- ~IAt Compile Time - IAt Compile Time - IAt Linkage Editor I
IDetermine size, IDetermine size and ITime - Part of PL/I I
Icontents and Ilocation of data Icontrol program is I
I location. Iwithin DSA. IAUTOLINKed regardless I
I I lof need. I
I IAt Object Time - I I
I IDetermine actual I I
I Ilocation when pro- I I
I Icedure is activated. I I
~---------------------+-------------------------+----------------------~ How Pointed to - ~ I Register 12 when I Register 13 when pro- I Register 13 when sub- I
Iprocedure is active. Icedure is active. Iroutine is active. I
I IRegister 11 Used with I I
I IRegister 10 nested pro- I I
I I cedures. I I
~---------------------+-------------------------+---------------------~~ Where located --~ I Doubleword boundary I Doubleword boundary IIJKZWSA from linkag~ I
limmediately follow- limmediately following leditor map_ I
ling procedure. Ihighest core location I I
I I (taken from COMRG). I I L _____________________ ~ ______________________ ___L ______________________ J

Figure 4.15. PL/I Storage Areas

256 DOS system Programmer's Guide

r---, IPart of the PL/I prologue moves a list of subroutine address constants from static I
Istorage to an entry point table within the PL/I control program. I
I I
IThis table contains 16 positional entries as follows: I

~--------------~------------T---------------T--~
IDisplacement I Position I Subroutine I Description I
~-------------+-------------+---------------+--~
Source

0 0 IJKVBCM (28) converts fixed binary to intermediate.
4 1 IJKVTCM (29) converts float to intermediate.
8 2 IJKVPCM (2A) Converts fixed decimal to intermediate.
C 3 IJKVFCM (2B) converts numeric field float to

intermediate.
10 4 IJKVECM (2C) Converts IEI.or IF' format to

intermediate.
14 5 IJKVGIM (20) Converts character string to bit string.
18 6 IJKVIGM (2E) Converts bit string to character string.
lC 1 IJKTSTR (2F) X format item, PAGE, SKIP,
20 8 IJKTLCM (30) LINE, COLUMN

Target
0 9 IJKVCBM (31) Converts intermediate to fixed binary.
4 A IJKVCTM (32) Converts intermediate to float.
8 B IJKVCPM (33) converts intermediate to fixed decimal.
C C IJKVCFM (34) Converts intermediate to numeric field

float.
10 D IJKVCEM (35) Converts intermediate to ' E' or IF'

format.

Isysfiles
I 14 E IJKSYSI (36) SYSIN
I 18 F IJKSYSA (31) SYSPRINT L ______________ ~ _____________ ~ _______________ ~ ___ _

Figure 4.16. Entry Point Table

section 4: Debugging Aids 251

Figure 4.17 shows the layout of core 1 !
storage at object time. The PL/I problem Hardware Area
procedure (mainline coding), the control ~ __________________________ ~ ________________ ~
program, and the library subroutines are
shown. These areas can be located by using
the linkage editor map.

~

Figure 4.17 also shows the dynamic
storage areas that are loaded directly
behind the rest of the PL/I program.
Because they are not on the linkage editor
map, the programmer must look in bytes
40-43 (decimal) of the system
communications region and find the
high-core address of the program to locate
the first DSA. Remember that the
communication re9ion has two ending address
entries (one entry for the last phase
loaded and another entry for the ending
address of the program). The ending
address of the pro9ram is the entry the
programmer must use.

258 DOS System Programmer's Guide

Supervi sor T ransi ent Areas

OTF - Appendages
OTFs and Buffers

;::~

PL/I Problem Procedures

LlOCS Modules

OTF for SYSPRINT

Logic Module for SYSPRINT

PL/I Control Program

'" PL I Librar Subroutines

I
/ y

OSAs

Figure 4.17. Object Time Core Usage

::~

~

J

IJKZWSA
WKA2

WKA1

....

I

...

]

XI05 ' T

XI 05 ' I

Chain Back
NOT USED

Save Register 14
Save Register 15

Save Reg Isters 0 - 12

W kS or pace

Chain Back
NOT USED

Save Register 14
Save Register 15

Save Reg Isters 0 - 12

W kS or pace

WKCA WRCD (Reserved) I WSC F (Sca I e Factor)
WSWA T WSWB I WSWC

WINT {Intermediate Number}
WINT (9 Bytes Total)
WCFL (Current File)

WFCH (File Chain Anchor)

WNTB

IJKZWSI
WKIA

,

T

WFMT (Format)
IJKYBCM X128 '
IJKYTCM X129 '
IJKYPCM XI2A'
IJKYFCM XI2B'
IJ KYECM X '2('
IJKYGIM X'2D 1

IJKYIGM XI2E'
IJKTSTR XI2F'
IJKTLCM X130 '
IJKYCBM X131 '
IJKYCTM X132 '
IJKYCPM X133 '
IJKYCFM X'34'
IJKYCEM X135 '
IJKSYSI X136 '
IJKSYSA X '37 '
Program Check

Old PSW

Save Reg Isters 0

Figure 4.18. Library Work Space

-

Figure 4.18 shows an example of library
storage that contains work space, save
areas, and pointers to the DSA (chain
back). A communications region follows the
work areas. Figure 4.19 shows some of the
information stored in this area.

15

I

......

I ...

......

I ...

WINT

......

T

Level 2 SSA

Levell SSA

Communication
Area

Entry Point Table

Interrupt
Save Area

Section 4: Debugging Aids 259

WSWA

Bit 0 1234567

I

WSWB

I I
~ B Format

----~=-«<--..-~ System action required
for ENDPAGE

»_~.",..~ __ """"'"_«««_~ Set to ind icate that a
hardware interrupt may
occur within a library
subroutine

Bit 0 2 345 6 7

WSWC

L=»WhY __ ""'W ___ h''''''''' Wrong length record
occurred during STREAM
input

~<,,----.. """""'-"""""Y,.",.."... TRANSMIT error occurred
during STREAM input

Used as switch within a subroutine.
Meaning of bits changes with subroutine used.

Figure 4.19. Communications Area Switches

Figure 4.20 shows the layout of the DSA.
Each procedure has a DSA containing the
following information:

1. The condition of the DSA, indicated by
the flag bytes.

2. A block description in static storage
pointed to by the last 3 bytes of the
first word (see Figure 4.21>.

3. The chain forward and back addresses
that allow the programmer to follow
the program flow from procedure to
procedure.

A dummy DSA is built to indicate the
beginning of a chain of DSAs when backward
chaining. Figure 4.20 shows the dummy DSA.
Figure 4.22 gives an example of DSA
chaining.

260 DOS System Programmer's Guide

Dummy DSA

Word Content

1 Flags X'OO' I Invocation Count

2 A(End of Core)

3 Chain Forward A(DSAMAI N)

4 Bit 0 PL/I Dump I AL3(STOP Routine)

5 Program Mask Default x'OEOOOOOOI

DSA Layout

Word Content

1 Flags * I AL3(Block Description)

2 Chain Back Address

3 Chain Forward Address

4 Return Address (R 14)

5 Entry Point (R15)

6 Save Area For

18 Registers '0 - 12

19 Invocation Count

20 Regi ster 0 of Call ing Block

D,ynamic Storage
For

AUTOMATIC Data

* Flag Byte

XIOOI - Dummy DSA
X 1011 or X 1811 - ON Entries
X 1031 or X 1831 - No ON Entries
XI051 - Library Work Space

Figure 4.20. Dummy DSA and DSA Layout

Block Description

Offset to
First ON
Entry

Dynamic
Prefix

Static
Mask

0123.45·67

Fixed Overflow
Size Error

Not Used
&....;,.i"--o"':;'- Size

"'"'""'--....".-- Conversion
"-----it-..,..... Fixed Overflow

I:...-...;.;,--........ -~- Overflow
'"------...... ...:-..:;;;... Underflow 1..,,----__-.;; - Zero Divide

ON Entry Word

2

LABEL

Word 1

r-----~----~~----~--------~
ON Code

FI'Ggs
01234567

Fi Ie Address

Pointer to LABEL

ON Unit is a GO TO

ON Unit is SYSTEM

I:...-_---:l~ ON Statement is Not Executed

............ _......:O~ Last ON Entry in This Block

Base Address

Word 2· Invocation Ceunt
Offset Tol:.abel of
GO TO

ON Code Meaning

X'Ol'
X'02'
X'03'
X'04'
X'05'
X'Ol>'
X'09'
X'OA'
X'OB'
X'OC'
X'OD'
X'OE'

Overflow
Underflow
Zero Divide
Fixed C>verfl'ow
Size
Conversion
Error
Endfile
Endpage
Transmit
Key
~ecord

PrO!1lram Interrupt

Exponent Overflow
Exponent Underflow
Floating Point Divide
()ecimal/Fixed Point Overflow

Fi<}ure 4.21. Block DescriptieD

Section 4: Debu99in9 Aids 261

MAIN •. PROCEDURE OPTIONS (MAIN), . SUB1 •• PROCEDURE, •

CALL SUB1 USING *,15
-I- -. STM 14,12,12(13}

L 15,=V(SUBl) --
BALR 14,15

r--'-- PROLOGUE

CALL LAST
L 15, = V(LAST)

END, •
L 13,4(13)

14,12,12(13)
r BALR 14,15

--LM --
BR 14 To STOP Routine RETURN

L 13,4(13}
DUMDSA LM 14,12,12(13}

:'I~----------------~
BR 14

I
I Static Storage Static Storage

: ~------------~~.~ I I
DSA SAVMAIN DSA SAVSUB1

I
I

IL

Flags I AL3(Block Description) I-
T 'I f T -

.J I I I
I

I Flags \AL3(Block Description)
I

I
I

- Chain Back
A(DUMDSA}

I I I L __ _
I I
I I

I
Chain Back I-

I A(Call ing DSA)

Chain FOlWard I I
_...J I

I
Chain FOlWard I -A(Next Available Core}

I
A(Next Available Core)

L - Return Register 14

Entry Register 15

Figure 4.22. DSA Chaining

-

I
I
I

__ -1

L

When debugging PL/I problem programs,
the programmer must know how to locate the
DTF tables. In PL/I, the DTF table has an
appendage that precedes the DTF proper and
contains a pointer to the DTF (Figure
4.23). The appendage can easily be found
because it is listed as the linkage editor
map by filename. Figure 4.24 shows the
format of the DTF used by PL/I. A sample
program, linkage editor map and core dump
are included in Figure 4.25 to aid the
programmer in debugging his PL/I problem
program.

262 DOS System Programmer's Guide

Return Register 14

Entry Register 15

I~
I
I
h

I J
I
I

r -

~
I

I

Lr ,. I .-
I
I I

I
--T...J

I
I
I

_-1

LAST •• PROCEDURE,.

USING *,15
I- STM 14,12,12(13)

--
PROLOGUE ----
--
RETURN
L 13,4(13)
LM 14,12,12(13)
BR 14

Static Storage

I I·~
I

DSA SAVLAST I

Flags I AL3(Block Description'
I

-J

Chain Back
A(Calling DSA)

Chain FOlWard
A(NextAvailable Core)

Return Register 14

Entry Reg ister 15

Bit

0

1

2

3

4

5

6

7

Word Contents

1 Open Mask AL3(DTF-T)

2 Flag 1 Chain Address

3 Flag 2
Communications I

Byte
Record Length

4

5

6

7

TOPM
Open
Mask

File Closed

Input

Output

Update

Update Next
Must Be a Read

File Has Keys

File Has No
Keys

No Buffers

Maintenance Word

Buffer Address

Relative Pointer

Page Size

TFLl
Flag
Byte 1

Clear Open Mask

00 - Fixed
01 - Variable
11 - Undefined

Print File

Allow Page Size

Backwards

Not End of Chain
Address Table

Current Line
Print
Files

TFL2
Flag
Byte 2

Stream

Consecutive

Regional

0

Direct

Sequential

Unbuffered

Buffered

TXRR
Communications
Byte

First Time

T ransm it Error

Wrong Length
Record

Sti II to Write

Still to Wait For
A Regional File

EOF

System File

Note: Meaning if Bit = 1

Figure 4.23. PL/I Consecutive File DTF-A
Appendage

SUMMARY OF PL/I DEBUGGING AIDS

1. Register 13 (at the start of the dump)
points to a library work space or
dynamic storage area.

2. Always chain back from the library
work space or DSA to find the active
DSAs.

3. The DSA (main) can be located by using
the value contained in the COMREG at a
decimal displacement 40-43. Adjust
this value to a doubleword boundary.

4. If the PL/I error signaled is a
program check, use the PSW and
registers located in IJKZWSI. This
area has a PSW followed by the
registers stored RO through R15.

Word

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Open Mask AL3(DTF - T)

Flag 1

Flag 2

00-
08-

Chain Address

Communica­
tions Byte

Record Length

Maintenance Word

Record Add ress

AL3(Disk Address Routine)

Number of Records/Track - Regional 1

Key

Bin Bin

Head Head

C C

Number of Tracks

C C

Number of Tracks

C C

Number of Tracks

Figure 4.24. PL/I Regional File DTF-A

5. The PL/I control program intercepts
and tries to handle all errors except
machine checks. The control program
issues a PL/I error message, and a
main storage dump is executed from the
control program. Following the dump,
PL/I closes all files. If a printed
output is produced at the time of
error, PL/I prints the last item after
the dump is taken. This gives the
programmer a ,starting point to the
correct area of the failure.

6. PL/I program check error message codes
11 through lE are the same as the
interrupt codes 01 -through OE on the
IBM S/360 Reference Data card,
GX20-1103.

Section 4: Debugging Aids 263

7. PL/I error messages point to the
approximate location where an error
occurred.

a. The name of the last PLII transient
fetched is at the label 'CIJKS'. To
find the labels CIJKS and DISPL (item
9), use register 13 and the chain back
fields to locate the dummy DSA
(identified by its first byte being
zero). Scan backward approximately
four fullwords and locate X'OA04'
(load instruction). Following the
load is X'47Flxxxx', which is labeled
DISPL. Immediately following this is
CIJKS. (PLII (D) transients are of
the format 'IJKSxx' DISPL and CIJKS
are in the routine IJKSZCA.)

9. The branch instruction that activates
a transient just fetched is at the
label 'DISPL'.

10. To locate the current file, look in
'WCFL' in the library work space.
This contains a request code and
pointer to a DTF-A. To find WCFL, use
the label IJKZWSI in the linkage
editor map. Start in the core dump at
that location and scan backward until
you locate a full word beginning with
X'FE'. The fullword immediately
preceding this is the current file
address, labeled WCFL. (WCFL is in
the routine IJKSZCA.)

11. The first word of any DTF-A points to
a logical IOCS DTF.

12. The linkage editor map has a CSECT for
each DTF-A.

13. PL/I register usage is as follows:

a. The instruction flow base
registers in a procedure are 13
(11 and 10) for dynamic storage
and 12 for static storage.

b. The data accessing base registers
in a procedure are 13 (11 and 10)
for dynamic storage and 12 for
static storage.

c. The instruction flow base
registers in a PLII subroutine are
15 and 12.

d. The data accessing base registers
in a PLII subroutine are 13 and
11.

e. The parameter passing registers
are 0 through 5. (Register 1 is
the m9st commonly used.)

264 DOS System Programmer's Guide

14. The following language aids are useful
in debugging both source and object
problems.

a. Dyndump

b. Display

c. Display using the reply option (to
halt a program)

d. Null labels

e. Signal statement (to force dwnp)

Note: In multiphase programs, the first
four characters of the phase names must be
identical and unique to the program. If
they are not, either the DSA is overlaid or
the DSA may not fit into the available
core.

HANDLING COMPILE TIME ABORTS

The following pointers within the control
program indicate how far the compiler
progressed before the abort condition
occurred:

1. Register 12 points to·the start of the
control program and is used as the
base register.

2. The KSAVEl area contains return
registers in the following order:

R 14 - points to last active routine
R 15
R 0
R 1
R 2

To locate KSAVE1, add X'Da' to the
contents of register 12.

3. The K5PH area (a bytes) contains the
name of the phase now in storage. The
phase name is constructed in the
following manner:

PL/lxxxx

The las.t four bytes xxxx contain
the actual phase identifier such as
D75. To locate K5PH, add X'2a4' to
the contents of register 12.

Exceptions: 000, DOS, 010. During these
three phases, the phase name can be located
by adding X'10a' to the contents of
register 12. If K5PH contains phase C95,
the actual phase may be either C95 or Dll.

4. IJKZWSI is valid only if a PSW has
been stored there.

CIl
CD
g.
~.

g
~

t:I
CD
tr s:

IQ
IQ
~.

::s
IQ

>
~.

CI
en

IV
0\
U1

~
~.

IQ
s:
Ii
CD

~ .
IV
U1 .
"d
t"'

" H

CIl

~
CD

"d a
IQ
Ii

~ -"d
AI

~
~

o
HI

~
00 -

DOS PL/I COMPILER 360N-PL-464 CL2-0 CHAiN 06/01../66

I. EXAMPLE OF THREE EXTERNAL PROCEOURES PASSING PARAMETER *1

/* EXAMPLE OF THREE EXTERNAL PROCEDURES PASSING PARAMETER */
/- THIS 15 THE MAIN PROCEDURE IT PASSES (CTR) TO PROC SUBI *1

1 STAHT.. PROCEOURE OPTIONS (MAIN),.
2 DECLARE

INCARD FILE INPUT RECORD ENVIRONMENT (F(7~) MEDIUM
(SVSIPT,2540»,

OTCARD FILE OUTPUT RECORD ENVIRONMENT (F(80) MEDIUM
(SVSPCH,2540»,

CARDIN CHARACTER (15),
I CARDOUT,

2 FIRST15 CHARACTER (15),
2 SECCTR PICTURE '9QQ99',.

3 DECLARE CTR PICTURE 'Q9999',.
4 OPEN.. OPEN FILE (INCARD),.
5 OPN.. OPEN FILE (OTCARO),.
6 C.. CALL SURIlCTR),.
1 READ.. REAU FILE ([NCARD) INTO (CAROI~),.

6 ONE.. ON ENDFIL~ (INCARD) GO TO END,.
9 FIR.. FIRST15-CAROIN,.

10 SEQ.. SEQCTR=CTR,.
11 WRITE.. WRITE FILE (OrCARO) FROM «(ARDOUr),.
12 CC.. CALL REPEAT (CTR),.
13 GOTO.. GO TO READ,.
14 END.. CLOSE FILE lINCARO),.
15 ENOl.. CLOSE FILE (OTCARD),.
16 END,.

PAGE 001

II.) "zj
~ ~.

~ \Q .' , s:
11

8 In DOS PL/I COMPILER 360N-PL-464 CL2-0 Ct1A I;" 06/06/66 PAGE 002
CIl .r= .
CIl II.)

S Y ~ B 0 L TAB L E LISTING '< U'I
en .
rt STAHr 0102 00 0 ENTRY ARITHM» DECIMAL FLOAT 6 [:'XT In a ttl INCARD 0100 0.1 1 FILE EXT t'"I
ttl , OTCARO 0101 01 1 FILE EXT
11 t-t CARDIN 0106 01 1 STRING ALIGNED CHAR. 75 AUTO~ I~T 0
\Q CIl CARDOUT 0105 01 1 STRUCT. 1 PACKED AUT OM. INT

i QI fIR S T 15 0104 01 1 STRUCT. 2 STRING CHAR • 75 [NT .e SEQCTft 0103 01 1 STRUCT. 2 PICTURE OECI~AL FIXED 5,0 INT
~ erR 0101 01 1 PICTURE OECIMAl FIXED 5,0 AUTOM. INT In In

11 UPEN 0108 01 1 LABEL CONST. INT . ttl llPN 0109 01 1 LABEL CaNST. INT en a c 010~ 01 1 lAREl CaNST. INT en \Q ~EAD 010B 01 1 LABEL CONST. INT s::: 11
~.

~ O~E 010e 01 1 LABEL CaNST. INT
Q. rlR 0100 01 1 LABEL CaNST. I N,T In - ~EIJ OlOE 01 1 LAREL CONS T. (NT

ttl ft~(TE OIOF 01 1 LABEL CONST. (NT QI
11 ee 0110 01 1 LABEL eONST. (NT
rt ~OTO Olll 01 1 LABEL CaNST. INT
II.) t""O 0112 01 1 LABEL CaNST. (NT
0 ENOl 0113 01 1 LAREL CONST. INT
H\ SU81 0114 01 1 ENTRY ARITHM. DECIMAL FLOAT 6 EXT
~ f{EPEAT 0115 01 1 ENTRY ARITHM. DECIMAL flOAT 6 EXT
co -

DOS Pl/I COMPILER 360N-PL-464 CL2-0 L.HAIN 06/06/66 PAGE 003

INTERNAL NAME OfFSET TYPE MODULE OFfSET OFFSET TABLE

0102 0034 STATIC 000114
0105 0148 AUTOMATIC
0106 00f4 AUTO~ATlC
0107 013F AUTOMATIC
0114 0058 STATIC 000138
0115 0064 STATIC 000144

~
1-"

~
t1
(I)

~ . I LaC. t-.,)

VI . 000000
000002

~ 000002

~ 00000"
000008 t-I
OOOOOC

en 000010

~ 000012
00001 ..

I-' 000018
(I) 00001A
~ OOOOIE
t1 000020
0 000021 I.Q
t1 00002 ..

~ 000028
00002e - 00C030

to COOO 32
SlI 000038 t1
rt 00003(,

000040
W 0000 .. 2
0 0000 .. 6
H\ oaOO .. A

~
00C04e

co OOOOSO - 00005 ..
0000S6
00005A
0OO05E
000060
000064
000068
00006e
000010

en 000012
(I)

OOC016 n
rt 00001A
1-" 000080
0 000084 t:I

000088
~ 00008C
00

000092
C 000098
(I) 00009C tr OOOOAO s::

I.Q 0000A4
I.Q OOOOA8
1-" OOCOAA t:S
I.Q OOOOAE

>'
1-"
0.. en

t-.,)

0\
-.J

DOS PLI I COMPILER 360N-PL.-"6" Cl2-0

OBJECT coDe

OSFO

0100
.. SEO FOOA
OOOOOOEO
58CO EOOO
189F
1831
58FO COS ..
OSEO
.. lEO EOOE
OSIF
01
000110
00000198
.. 110 eO .. 4
5afO COSO
aSH
0203 OOSO 3000

LABEL

STAHT.. L' 0102'

4110 COlO OPEN •• L'010S'
S8FO CO .. C
OSH
.. 110 C014 OPN .. l'0109'
S8FO co .. e
OSEF .
41EO o13F c.. L'010A'
90EE 0058
lBOo
58fO.COS8
.. 110 0058
OSEF
.. 11000F.. READ .. l"OIOB'
5010 C020
.. 110 C018
S8FO COItO
OSH
4120 C030 ONE .. L'010C'
4A20 2000
0201 C060 0048
4150 case
S050 2004
9288 2004
024A 01lt8 oOflt FIR.. L'0100'
0204 0193 D13FSEQ.. L'OIOE'
4110 0148 WRITE .. l'010F'
SOlO e02C
Itll0 C021t
58FO C040
OSEF
41EO 013F cc.. l'0110'
90EE 0058

OPe

BAL •
BEGIN
BCR
BAL
DC
L
LR
LR
L
BALR
LA
BALR
DC
DC
DC
LA
L
BALR
14VC
LA
L
BALR
LA
L
BAlR
LA
STM
LR
L
LA
BALR
LA
ST
LA
L
BAlR
LA
AH
MVe
LA
ST
MVI
MVC
MVC
LA
ST
LA
L
BAlR
LA
STM

CHAIN 05/02161 PAGE 00 ..

OPERANDS

F,O
OF BLOCK 01
0,0
E,X'OOA'CF)
ACN'FFFF') A (STATIC STORAGE)
C,X'OOO'CEt
9.F REG 9 ALSO USED AS BASE REG
3,1 NO MEANING IN A 'MAIN' PROCEDURE
F,N'OOII' =V (IJKSZCM)
E,O
E,X'OOE'IEt
1,f
X' 01' DSA 'FLAG BYTE'
AU.CN'01l6t) AL3 (~LOCK DESCRIPTION)
LENGTH OF OSA OF BLOCK 01
I • X' 044 ' CC) =A (E NTRY POI NT TABLE)
F.N'0016' =V (IJKSZlM)
E,F
X· 050' C 04,oJ, X '000' C 3) NOT USEFUL IN A 'MAl N' PROCEDURE
I ,X' 0 10' CC) A \FllE NAME)
f,N'0018' =V (JJKTOPM) 'OPEN'
E,F
1,X'011t' CC) A (FILE NAME)
F ,N' 00 18' =V (JJKTOPM) 'OPEN'
E,F
E,N'OI07' REG 14 = ADDRESS OF 'CTR'
E,E,X'OS8'(0)
0,0
F,N'0114' =V (SUB1)
I,X'058'CO)
E,F
1,N'0106' REG 1 = ADDRESS OF 'CARDIN'
1.X'020'CC) STORE 1 TO 'WORKAREA ADDRESS' OF 'CONTROL BLOCK'
I,X'018'((.) REG 1 = ADDRESS OF 'CONTROL BLOCK'
F,N'0038' =V (JJKTCBM) 'TRANSMITTER'
E.F
2. N' 0116' REG 2 = ADDRESS OF BLOCK DESCRIPTION
2,X'000' (2) INCREMENT REG 2 TO POINT AT 'ON' ENTRY

PRCt.OGUE

DSA I NITfAl/ ZE

ENTRY POINT MQVE

IN If NE PROLOGUE
OPEN FILE (INCARD), .

OPEN FILE (OTCARD),.

CALL SUB1 (CTR),.

READ FILE (I NCARD:l INTO (CARDIN)

ON ENDFILE (INCARD) GOTO END,.

X'060' (02,C) ,X'OItS' (0) MOVE DSA INVOCATION COUNT TO STATIC STORAGE
5,X.OSC'CC) lA 5, o-A (STAHT)
5,X'004' (2) STORE REG 5 TO 'ON' ENTRY
X'004' (2),X'S8' RESTORE FLAG BYTE IN 'ON' ENTRY
N'OIOS' (4B),N'010o'
N'010S'+4BCOS),N'0101'
I,N'OIOS' REG 1 = ADDRESS OF 'CARDOUT'
l,X'02e' (C) STORE REG 1 TO 'CONTROL BLOCK'
1,X'024' (C) REG 1 = ADDRESS OF 'CONTROL BLOCK'
f,N'003a' =V (JJKTCBM) 'TRANSMITTER'
E,F
E,N'0101' REG 14::: ADDRESS OF 'CTR'
E,E,X'OSS' (D)

FIRST 75'~ CARDIN, .
SEQCTR:· CTR, .
WRITE FILE (OTCARD) FROM (CARDOUT),.

CALL REPEAT (CTR), .

N
G\
Q)

t:1
g
en
'<
CD
(1-

m

J
t'it

i
(I)
11 .
CD

CQ
a:
~.
QI
(0

tsj
~
(I)

~

•
N
U1 .
·to ,
t-4

en
I
t.t!S
(I)

to
ti)t
Q
\Q .,
I -to
l
c+
~

Q
H\

....
Q) -

lOC.

000082
000084
000088
00008C
00008E
0000e2
0000C6
OOOOCA
OOOOce
000000
00'00'04
000006
00 00.0 A
OO:()0 O'E
OOO:OEO

OOOOEO

OO(),OEC
OOOOofO
OO'()Ofl
OOOO'f4
OOOOfS
000,OF8
OOOOF9
OOOOFC
000 "00
0!OOI'()'4
000105
0{)0'l08
000"OC
OO'OllO
oe,0114
00'9118
000119
eO'OlIC
O,etH20
a.Q.O·ll4
00'·0--124
oeO'125
00,0;"28
000l2t
IHl0130
0'()0134
oa0138
OCil013C
000140
000144
O(Wl48
o,a-ol,O

OOS Pl/l COMPILER

08JECT CODE

1800
S8FO C064
4110 0058
OSEF
41FO 90SE GOTO ••
4110 COlO END .•
S8FO C048
O.5·EF
4110 C014 END 1 ••
~fO C048
OS£F
5,800 0004
98.eC oooe
07'FE

00003,,00'040005000
60007'0,00
00000:000
80
000000
80
000'000
5·8
0000&0
0000004'8
0000000,0
23
000000
0000:0'05.0
000,00000
0008'OaF8
0000009·2
O.A
00090'9
80000000
00·000000

8F
000000
00000000
OOCOOOOO
00000000
00000000
0000000'0
0000000·2
OOOOOlleO
Doooeooo
0000000000000000
FFFFFfFFFFFFfFFF

360N-Pl-464 Cl2-0 CHAIN 05/02161 PAGE 005

LA8El

L'Ol1l'
l '01,12'

L'OII3'

l'FFFF'
L'0004'

L' 0,00,6'
L'OllO'

L "0 l'1E'

l' 011,F'

L'012'0'

L'O 11,6'
L'Ol().2"

L'0038'
L'OOOS'
L'SQ3l'

L' 001,9'
l' 0018·'
L'0016'
L'OOll'
l' 0 114'
L'(H1C'

ll"a llS'
L'eDOI'
L'~H)02'

OPe

LR
L
LA
8'ALR
8C
LA
L
&ALR
LA
L
8A'lR
l
LM
8'CR
'END

OPERANDS

0,0
F,N'OIIS' =V (REPEAT)
I,X'OSS' 'D) REGl POINTS AT A (CTR)
E,F
F,N'OIOB'
1 ,X' 0 10' '·C) =A (lNCARD)
F ,N'0019' =V (IJKTCLM) 'CLOSE'
E,F
I.X'014"C)
F,N'0019'
E.f
O,X'004'CO) 'REG 13=A(DUMMY DSA)
E,C,X·'OO.C' (0) REG 14 == A (STOP ROUTINE)
F.E

eF Bl.eeK

S TA T r.e s reR.G.E
ae X'Oe0030004000S000' ADDRESS INCREMENTS USED WHEN DATA OR
DC ~'()0007000' BRANCHING IS FURTHER THAN 4K FROM BASE REG

ODe X' 0·0000000'
DE ~'&O·
a.e Vl3'CN'OleO'»
DC x '8'0'
DC VL3tN'0101')
DC x • S8 ' READ I NiO
ac Vl.nN'OH)O'» FILE ADDRESS
DC X'0000004B' DATA LENGTH
ue X' 00'000000' ADDRESS OF WORKAREA
aE ,)('23'
ge V~3(N'0101"
De x'OOOOOOSO'
DC x'oooaoooo'
ge X' 0(10800F8' . BLOCK DESCRI·PTION
Be A , N' (».J 02') ,
BC X'S,.' 'ON'ENrRY
aev,uc N' ~H00 ')
ae x'sooooeoo'
ac' ViN' 0038' »
at X"
IilC x'aF' EN'TRYPOINT TA8LE BIT 0 =1 MEANS 'LAST ENTRY'
&C VL3cN'a'03P)
Be '.HN' 00·1 9')
DC V Ht'00'18')
DC VI'N' 0,016 ' »
DC VI N' 00 11 ')
ac v 'N "0 114' J
Be A IN" 0 l02 ')

GO TO READ
CLOSE FILE (lNCARD),.

CLOSE FILE (OTCARD),.

TERMI NATION

De x 'ooooooeo' 2 BYTES - INVOCATION COUNT NEXT 2 BYTES 'GOTO' ADDR tN 'ON' ENTRY
BC VIN'Ql1S')
DC X 'OOOOOO·0.oeo.oooooo' ,
DC X 'FFFFFFFFFFfFFFFF'

m
(1)
o
("t

""-o
l:S

~ ..
t:I

~
~
~
l:S
~

~
""-g,
en

IV
0\
\D

I':I:j

""-~
~
11
CD

~ .
IV
V1
•

~

~
I-t

en

~
I-'
CD

I'd
11
0
~
11

~ -~
PI
11
rt

V1

0
1"1\

....
(X) -

DOS PLII COMPILER 360N-PL-464 CL2-0 ChAIN 06/06/66 PAGE 006

LOC. OBJECT CODE LABEL OPe OPERANDS

000158 OOfEFFFF L'OOO" DC X'OOFEFFFFI
OOO15C ac LIOOOB' DC X'OC'

END

DOS PLII COMPILER 360N-Pl-464 CLl-O (;HAIN 06/06/66 PAGE 001

SYMBOL TYPE ESIO AOOR LENGTH ESIO EXTERNAL SYM80l TABLE

INCARD SO 0001 000000 000098
I JCFllZO fit 0002
IJKTXCf ER 0003
OTClRO SO 0004 000000 OOOOFO
I JCFlOl4 ER 0005
STAHT SO 0001 000000 000160
I NCAItO ER 0002
OTCARD ER 0003
SUB1 ER 0004
REPEAT ER 0005
IJKSICA Elt 0006
IJKSICM ER 0001
I JKSllM ER 0008
IJKTOPM fit 0009
IJKTCLM ER OOOA
IJKSYSA ER 0008
IJKTC8M ER OOOC

DOS PL/I COMPILER 360N-PL-464 CL2-0 CHAIN 06/06/66 PAGE 008

8LOCK LENGTH OF OSA BLOCKTABLE

01 0198

to.)

"'"' o

g
CJl

~
'rt
~
"C a

I.Q

I .
en

~ "",
Q,
CD

~ "",
~
11
CD

-= •
to.)

'-" •

~
H

en

~
CD

"tI a
I.Q
11

~ -"C
~

~
0\

o
loft

~
(X) -

.-

DOS PL/I COMPILER 3bON-PL-464 Cl2-0 CHAIN 06/06/66

, . EXAMPLE OF THREE EXTERNAL PROCEDURES PASSING PARAMETER ./

1
2

)

It
5
6
1
8
'I

~UBI
CTR
CT
CL
KEf
;{EPEAT
CC
j(

END
LAST

I. EXAMPLE OF THREE EXTERNAL PROCEDURES PASSING P~R~~ETlR ./
/_ THIS PROCEDURE ACCEPTS (CTR) ZEROES lION THE FIRST ENTRY -I
I. THEN PASSES IT TO PROCEDURE 'lAST' FOR !HCREMENTING ~I
/. ON SUBSEQUENT ENTRIES THIS PROCEDURE ONLY PASSES {erRl TO 'lAST ·1
SUBl.. PROCEDURE (CTR),.

CT ••
Cl ••
RET ••
REPEAT ••
CC ••
R ••
END ••

DECLARE
CTR PICTURE '999QQ',.

CTR=O,.
CALL LAST (CTR),.
RETURN,.

ENTRY (CTR), •
CALL LAST (CTRt,.
RETURN,.

END,.

DOS PL/I COMPILER 360N-PL-464 Cl2-0 CHAIN 06/06/66

S Y M B 0 L TAB L E

0100 00 0 ENTRY
0101 01 1
0102 01 1
0"103 01 1
0104 01 1
010') 01 0 ENTRY
0106 01 1
0107 01 1
0108 01 1
0109 01 1 ENTRY

DOS PL/I COMPILER 3bON-PL-4b4 CL2-0

INTERNAL NAME OFFSET TYPE

0100 0014 STAT IC
0101 00~8 AUTOMATIC
0105 0018 STATIC
0109 0010 STATIC

LISTING

AR ITHM.
PICTURE
LABEL
LABEl
LABEl
AR ITHM.
lASH
LABEl
LABEl
AR ITHM.

DECIMAL
DECIMAL
CONST.
CONST.
CONST.
DECIMAL
CONST.
CONSf.
CONST.
61NARY

ChAIN

MODUL E OFF SE T

OOOODe

OOOOEO
OOODE8

FLOA T
FIXED

flOAT

F T XED

6
'>.0

6

1.5

PARAM.

06/06/66

OFF SE T TA BLE

EXT
iNT
INT
INT
INT
FXT
fNT
INT
INT
['XT

PAGE 001

'PAGE 002

PAGE 003

~

"zJ
~ DOS PL/I COMPILER 360N-PL-464 CL2-0 CHA l~ 06/06/b6 PAGE 004
(1)

~
• LOC. 08JECT COOE LA8EL OPe OPERANDS
N
U'I 000000 L'OIOO' BEGIN OF 8LOCK 01 .

000000 90EC OOOC STH e,c,X'OOC'(O)

ttl
000004 4ljEO FOOC BAL E,X'OOC'(F)

\: 000008 000000C8 DC A(N'FFFF')
OOOOOC 58CO EOOO L e,X'OOO'(E) 000010 189F LR 9,F

en 000012 1831 LR 3.1

~
000014 58FO COIC L F,N'0012'
000018 05EO BALR E,O

.... OOOOU UEO EOOE LA E,X'OOE'(E)
(1) OOOOIE 051F BALR 1, F

ttl
000020 03 DC X'D]'

a 000021 000008 DC AL3eN'010A')
000024 00000100 DC LENGTH OF OSA OF BLOCK 01

~ COO028 0203 0058 3000 MVC N'0101'(04),X'OOO'I3)
t1 oOO02E 0203 0050]004 MVC X'050'(04,01,X'004'(3)
~ 000014 '.)860 0058 L'OlO2' l b,N'OlOl'

000038 0204 6000 CO 30 MVC X'OOO'(05,6),X'030'CC) - 00001E 58'.)0 0058 L'0103' L 5,~'010I' ttl
~ 000041 41EO 5000 LA E,X'OOO'(5)
t1 000046 90EE 0060 SUI E,E,X'060'IOI r+ 00004' 1800 l~ 0,0
....a UOO04t 58FO C020 L F,N'Ol09'

0
000050 4110 0060 LA 1,)('060'ID)

HI 0000'.)4 05EF BALR E,F
0000S6 5800 0004 lO, 0104' L D~X'004' (0)

~ 00005A 98EC DOOC LM E,C,X'OOC' (01 co OOOOSE 07FE BCR F,E - 000060 47F0 909C l'OU2' BC F,N'Ollt'
000064 90EC OOOC l'Ol05' STH E,C,X'OOC'CD)
000068 45EO FOOe BAL E,X'OOC'Cfl
oa006C 000000C8 DC AIN'FFFF')
000010 S8CO EOOO L C,X'OOO'(E)
000014 S890 C014 L'01l4' L 9,X'024'CC)
000018 1831 LR 3,1
00001' S8FO CalC L F,N'0012'

en DOODlE 0700 BCR 0,0
(1) COO080 OSEO 8ALR EtO n 000082 4lEO EOOE LA E,X'OOE'(E) r+ 000086 051F 86lR l,F
g .000088 03 DC K'03'

000089 000008 DC AL1CN'OlOA')
~ 00008C 00000100 DC LENGTH OF OSA OF BLOCK 01

000090 0203 0058 1000 folVC N'0101'(04t,X'000'(31

0
000096 0203 0050 3004 MVC X'050'(04,0),X'004'(3)

(1) 0OO09C 5860 0()58 L'Ol06' L 6,N'0101'
tr OOOOAO 41EO 6coo LA E,X'OOO'(6)

~ 'JOOOA4 90EE 0060 STM E,E,X'060' (D)

~ OOOOA8 1800 LR 0,0 OOOOU 58FO C020 L F,N'0109'
~ OOOOAE 4110 0060 LA I,X'060'CO)
~

)I
Q,
en

N
....a
~

N IlIj ...,
N ~

11 DOS Pl/l COMPILER 360N-PL-464 CL2-0 CHAIN C6/06/66 PAGE 005

~
(D

.c:: LOC. OBJECT CODE LABEL OP • OPERANDS .
en N
'< U'I 000082 05EF BALR E,F en • 000084 S800 0004 .l' 0101' L D,X'004' (0) rt
(D 000088 98EC OOOC LM E,C,X'OOC'CO)
a .~ OOOOBC 01FE BCR FtE

ttl
, OOOOBE S80t) 0004 l'0108' l D,)(1004 ' (0)

11 t-I 0000C2 98EC OOOC LM E,C,X'OOC'CO)
0 0000C6 01fE BCR F,E
\Q til 0000C8 END OF BLOCK 11

~ III
§ L'FFFF' STATIC STORAGE 0000C8 0000300040005000 L'0004' DC X'0000100040005000' (D (D

60007000 DC X'60001000' 11 . ttl OOOOO~ 00000000 l'0006' DC X'OOOOOOOO' en a 000008 000COOF8 l'OlOA' DC X'OOOCOOFS'
G'l \Q OOOOOC 00000000 L'OIOO' DC AIN'OlOO')
d 11 OOOOEO 00000064 L'0105' DC ACH'QI05') ~ OOOOE4 L'OOOS' DC X' , g,

0000E4 00000000 L'OOIZ' DC VCN'OOIZ') tD - 00OGE8 00000000 L'Ol09' DC VlN'0109')
~ oooeEC 00000000 L'Olll' DC ACH'OIOO' » III
11 OGOOFO 0000000000000000 l'OOOI' DC X'OOOOOOOOOOOOOOOO'
rt UOOOFB FFFFFFF~FFFFFFFF L'ooel' DC X'FFFFFFFFFFFFFfFF'

co 000100 OOFHFFF L'OOOA' DC X'OOFEFFFF'
ooalO~ oc L'OOOS' DC X'OC'

0 000105 FOFOFOFOFO L'OlOC' DC X'FOFOFOFOFO'
t"h END
~
co -

DOS PL/I COMP~LER]60N-PL-~64 CL2-0 ChAIN 06/06/66 PAGE 006

SYMBOL TYPE ESID ADDR LENGTH ESID EXTER~AL SYMBOL TABLE

SUBl SO 0001 000000 000110
REPEA' LD 000064 0001
LAST ER 0002
I JKSlCN ER 000]

DOS Pl/l COMPILER 360N-PL-464 Cl2-0 CHAIN 06/06/66 PAGE 007

BLOCK LENGTH OF OSA BlOCKTABLE

01 0100

~

en
~
o
rt
g
~
00

t:I

~
c:

\.Q
\.Q
= \.Q

)I
Qt
en

N ...,
W

t'Zj
~
~

~
1

'" IJ1 .
I'd

~
H

en

~
~
CD

I'd

a
\Q
11

~ -ttl
PI

~
ID

o
H\

....
00 -

,*

1
2

)
It
5

LAST
crR
CT
RET
END

DOS Pl/f COMPILER 360N-PL-464 CL2-0 CHAIN 06/06/66

EXAMPLE Of THREE EXT~RNAl PROCEOURES PASSING PARAMETER */

'* EXA~PLE OF THREE EXTERNAL PROCEDURES 'a THIS PROCEDURE INCREMENTS FIELD (CTRI
LAST.. PROCEDURE (CTR),.

PASSING PARAMETER -I
AND PETURNS IT VALUE -I

DECLARE
crR PICTURE 199999 1 ,.

CT ••
RET ••
END ••

DOS PL/I COMPILER

CTR=CTR+l,.
RETURN ••

END ••

160N-PL-464 CL2-0

S Y M B 0 L TAB L E

0100 00 0 ENTRY

CHAIN

LIS TIN G

AR ITHM. BINARY

06/06/66

FIXED 15 EXT
0101 01 1 PICTURE DECIMAL FIXED 5.0 PARAM. INT
0102 01 1
0103 01 1
0104 01 1

DOS PL/I COMPILER 360N-~L-464 CL2-0

INTERNAL NAME OFfSET

0100
0101

0014
0058

TYPE

STATIC
AUTOMATIC

LABEL CONST .. INT
LABEl CONST. INT
LABEL CONST. INT

CHAIN 06/06/66

MODULE OFFSET OFFSET TABLE

000091t

PAGE 001

PAGE 002

PAGE 003

I\J "'Ij
.....J ~ .
.1= \,Q

c::
DOS PL/I COMPILER 36ON-PL-~64 CL2-0 CHAIN 06/06/66 PAGE 004 11

t::I CD
0
CIl ~

Lot. OBJECT CODE LABEL OPe OPERANDS ,
en I\J
'< VI 000000 L'OIOO' BEGIN OF BLOCK 01 en .
rt 000000 90EC OOOC STM E,C,X'OOC'IO)
CD OOOOO~ ~5EO FOOC BAl E,X'OOC'IF)
S ~ 000008 00000080 DC AIN'FFFFt"J
~ ~ COOOOC 5BCO EeOO L e,X'OOO'IE)
11 ... 000010 189F lR 9,F
0 000012 1831 lR 3,1 \,Q CIl
11 III 00001~ 58FO C018 l F,N'OOl2'
III ~ 000018 05EO BALR E,O

~ I-' OOOOlA 'tIEO EOOE lA E,X'OOE'IE)
CD CD OOOOIE 051F BAlR I,F
11 000020 03 DC X'03' . ~ 000021 000090 DC AL31N'Ol05" en 11

0 00002~ 00000110 DC LENGTH OF OSA OF BLOCK 01
Cil \,Q 000028 0203 0058 3000 MVC N'OlOl'C04',X'OOO'(3) c: 11 OOOD2E 0203 0050 3004 MVC X'050'(04,D),X'004'C3) ~. ~ Q. 00003~ 5860 0058 L'OlOZ' l 6,N'tHOI'
CD 000038 F224 DOEO 6000 PACK X'OEO'13,O),X'000'(S,6) - 00003E F8FO 0060 C035 lAP X'060'CO,O),X'03S'Cl,C) I'd

III OOOO~~ FAF2 0060 DOEO AP X'060'CO,D),X'OEO'C},n)
11 OOOO~A F83F DOE8 0060 lAP X'OE8'(4,01,X'060'(0,DI rt 000050 92F9 C012 MVI N'OI05'+2,X'F9!
~ 000054 F823 0070 DOES lAP X'070'C},O),X'OE8'(4,O)
0 000054 92F8 C012 MVI N'OlOS'+2,X'FS'

0 00005E 5860 0058 l 6,N'OI01'
HI 000062 F342 6000 0070 UNPK X'000'(5,6),X'070'C3,0)

000068 96FO 6004 01 X'004'(6),X'FO'
~ 00006C 5800 0004 L'OIO)' L O,X'004'COI Q) - 000010 98fC DOOC lM E,C,X'OOC'WI

00007" 01FE BeR F,E
000016 5800 0004 l'O104' l D,X'004'CO)
OOOOlA 98fC DOOC lM E,C,X'OOC'CO)
00001E 01FE BeR F,E
000080 END OF BLOCK

L'FFFF' STATIC STORAGE
GOO080 000030004000S000 L'OOO4' DC X'0000300040005000'

60007000 DC X'60007000'
COO08C 00000000 L'0006' DC X'OOOOOOOO'
000090 000800f8 L'OlOS' DC X'OO0800fB'
000094 00000000 l'OlOO' DC A(N'OIOO')
000098 l'OOOS' DC X, ,

000098 00000000 l'OOIZ' nc V(N'OOlZ')
0OOO9C OS ClOOO4
UOOOAO 0000000000000000 L'OOOl' De X'OOCOOOOOOOOOOOOC'
OOOOA8 FfFfFFfFFFfFFFFF L'oe02' DC X'FFFFFFFFFFfFFfFF •
000080 OOFEFFFF L'OOOA' DC J('OOFEFFfF'
000084 OC L'OOOS' DC X'OC'
000085 IC L'OI07' DC X 'lC'

END

en
CD

~ ..,.
g
~ ..
~ g

\Q
\Q
~.

\Q

)I ..,.
c.
en

N
o,.J
VI

~ ..,.
~
CD

~ .
N
VI .
~
t-I

en

~
CD

"d a
\Q
11

~ -"d
S»
11
rt

~
~

o
I'tI

~
co -

SVM80L

LAST
·1 JKSlCN

DUS Pl/l COMPllE~ 160N~Pl-4b~ Cl2-0

TYPE

SO
ER

ESIC

0001
0002

AOOR LE~CTH ESJQ

000000 000088

DOS Pl/l COMpILER 360N-Pl-464 el2-0

BLOCK LENGTH Of OSA 8l0CKTABlE

01 0110

CHA I ~~

EXTERNAL SYMBOL TASlE

ChAIN

JOB COMPILE 06/06/66 DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT

ACTION
LIST
LI ST
LIST
LIST
LIST
LIST
liST
LIST
LIST
LIST

TAKE" MAP
PHASE CHAIN,S
AUTOllNK IJCFlllO
AUTOllNK IJCFl014
AUTOllNK IJKSYSA·
AUTOllNK IJJCP1N
AUTOllNK IJKSlCA
AUTOllNK IJKSILM
AUTOllNK IJKTCBM
AUTOLINK IJKTXCF
ENTRY

Ob/Ob/b6 PAGE 005

06/06/66 PAGE 006

I\,) !ozj

"
..,.

~ I.Q
s::::

06/06/66 PHASE XFR-AD LOCORE HICORE DSK-AD ESD TYPE LABEL LOADED REL-FR 11
t! CD
0 CHAIN 002190 002000 00301F 30 1 1 CSECT INCARD 002000 002000 CI.l ~ .
CI.l I\,) CSECT IJCflllO 002488 0024B8 '< U'I
en .

CSECT IJKTXCF 003008 003008 rt
CD • ENTRY IJKTXCR 003030 a I'd • ENTRY IJKTXCW 003042
ttl ~
11 1-1 eSECT OTCARO 0020AO 0020AO 0

I.Q CI.l
CSECT IJCFlOl4 002508 002508 11 ~ ~

~ "0 CSECT STAHr 002190 002190
CD ro
11 CSECT SUBl 0022FO 0022FO . ttl ENTRY REPEAT 002354 en 11

0
(j) I.Q CSECT IJKSlLH 0020AO 002040 s:::: 11 ..,.

~ CSECT IJKSYSA 002580 0025BO p"
ro -I'd CSECI IJKTC8H 0020EO 0020EO

~
11 CSECT LAST 002400 002400 rt

~ eSECT I JKSICN 002158 002758
I\,) ENTRY IJKSlCA 002988
0 ENTRY IJKSlCH 002990
H\ ENTRY IJKTOPH 00298A

ENTRY IJKTCLH 0029C6 ~ • ENTRY IJKSlCI 0027E6 co - • ENTRY IJKSlCP 00291A
ENTRY IJKSZCS 002816

• ENTRY IJKSlCT 0029AC
ENTRY IJKlWSA 002A20
ENTRY IJKlWSI 002844

CSECT IJJCP1N 002680 002680
• ENTRY IJJCP3 002680

en
CD
C'l
rt
~.

o
t:S

.r=

~

~
c::

\Q
\Q
~.

t:S
\Q

)I
~.

0..
en

I\J
..,J
..,J

t'I:j
~.

~
t;
(1)

.r= .
I\J
U'1 .
I'd

~
H

en

~
I-'
CD

I'd a
\Q
t;

~ -~
PI

~
~
w
o
H\

~
00 -

FLOATING POINT REGISTERS

REGO
REGS

00003218
00002000

1E0024l0
00002400

o
0000000000000000

2
0000000000000000

000022A8
00002000

00003218
00002000

00002270
00002480

40-CSW KEY-DO ADDR-002040 STATUS-0000I00000000000 COUNT~OOOOOO

4
0000000000000000

000022ce
00003318

OOOO.3lBF
00002428

6
0000000000000000

00.0010DO
000021'>8

4R-CAW KEy-aD ADDR-OO?018

PSW COrtTENTS EXTERN~L INTE~RUPT SUPERviSOR CALL PROGRAM CHECK MACHINE: CHECK INPUT/OUTPUT
r 1 ELD FORMAT-OLD 18 -NEW 58 -OLD 20 -NEW 60 -OLD 28 -NEW b8 -OLD)0 -NEW 70 -OLD 38 -NEW 18
SYSTEM MASK BIT-lll11111 -00000000 -11111111 -00000000 -11111111 -00000000 -01011011 -00000000 -11111111 -00000000
PI{OTEC TlON KEY HEX-O -0 -0 -0 -0 -0 -5 -0 -0 -0
AMWP BIT-alaI -0100 -0101 -0100 -0101 -0100 -1011 -0000 -0101 -0100
PHERRUPT CODE HEX-OOOO -0000 -0000 -0000 -0007 -0000 -(2C5 -0000 -oooc -0000
INSTR LENGTH DEC-O -0 -1 -0 -3 -0 -3 -0 -2 -0
CUNDITION CODE DEC-O -0 -0 -0 -2 -0 -1 -0 -0 -0
PROGRAM MASK BIT-OOOO -l1ll -1110 -0000 -1110 -0000 -0110 -0000 -1110 -0000
INSTR ADDRESS HEX-OOOOOO -DOOGCD -0024CA ·-000B02 -0021t8A -00OC94 -OlF340 -0008F4 -D024CA -000206

4C-UNUSED-OOOOOODO 50-TIMER-FE9912FF 54-UNUSED-00FFB342

~,
00

8 en
en
~
rt
(I)
a
t\1
t1 o
~

i
t1 .
en
Gl
~ ..,0
Q,
(I)

"iI ..,0
~
t1
(I)

,f::

~
U1 .
t\1

~
til

~
(I)

t\1

a
~
t1

~ -t\1
Sl.I

:+
~
,f::

o
H\

~
00 -

REMAIN
IN OTF-A

'INCARO'
002000

~ b ~ k I A(BUFFER) BUF~NGTH START OF OTF TABLE
~ ___ ._ _. ___ ._ . ___ .________ 00002050 004 048 0008000 oeOOOOOI

002020 00002038 00002040 00002488 02810202

002040 47000000 47000048 00000000 00000000

002060 TO THE NEXT LINE ADDRESS CONTAINS 5C5e5C5e

002080 5C5C5C5C 5C5C5C5C 5C5C5C5C 5C5C5C5C
OTF-A 'OTCARO'

0020AO 22002088 01002000 45100050 10000000

0020CO 000020EO 00000000 00002508 04904141

0020EO 41002140 20000050 010020FO 20000050

002100 TO THE NEXT LINE ADDRESS CONTAINS 40404040

002140 C940CI04 40C140C4 CIE3(.140 (.3(.109(.4

002160 TO THE NEXT LINE ADDRESS CONTAINS 5C5('5C5('

002180 5C5C5('5C 5e5('5('5C 5C5('5CFO FOFOFOF1

0021AO 189F1831 58FOC054 05E041EO EOOE051F

0021CO 05EF0203 00503000 4110COI0 58FO('04('

0021EO 90EE0058 180058FO (,0584110 005805EF

002200 05EF4120 C0304A20 20000201 C0600048

002220 00F40204 0193D13F 41100148 5010(,02(,

002240 00581800 58FOC064 41100058 05EF41FO

002260

002280

0022AO

0022CO

0022EO

002300

002320

OU2340

002360

002380

0023AO

0023CO

0023EO

002400

002420

58FOC.048

80002000

0008F8f8

00002DAO

FFFFFFFF

189F 1831

00503C04

41100060

58eoECOO

02030058

006005EF

600070CO

OCCOCCOO

I LAST
90f:COCOC

03002490

05EF5800

800020AO

00002192

00002990

FFFFFFFF

58FOC01C

58600058

05Ef5800

'>890C024

30000203

~800C004

00000000

00000000

45EOFOOC

00000110

000498EC

58002000

OA002000

000022FO

OOFEFFFF

05E041EO

02046000

000498EC

183158fO

00503004

98EeDooe

000CF8F8

FFFFFFfF

00002480

02030058

000C01FE

00000048

880022CC

00002192

oeoooooo

EOOE051F

C0305850

OOOC01FE

C01C0700

58600058

07FE5800

000022FO

FFFfFFFF

58COEOOO

30000203

00002050 00003008 02002050 20000048

I BUFFER
C940('104 40e140C4 CIE)CI40 C3CID9C4

5C5C5C5C 5C5C5(.5C 5C5C5(.01 Cl\34780

00002140 00500050 00008400 04000002

00002140 40404040 01004100 00000040

40404040 40404040 40404040 40404040

5(.5(.5C5C 5('5C5C5C 5C5C5C5C 5C5('5C5C

STAHT
105F00100 45EOFOOA 00002210 58eOEOOO

010022AO 00000198 4110(,044 58FOC050

05EF4110 C01458FO C04C05EF 41E0013F

411000F4 5010C020 4110(.018 58FOC040

4150C05C 50502004 92882004 024A0148

4110e024 58FOC040 05EF4'EO 013F90EE

905E4110 eOl058FO C04805EF 4110(,014

00003000

00003174

000020EO

000100CO
SUB 1

190ECOOOC

030023C8

005841EO

47f0909C

05E041EO

41E06000

000498EC

00002354

OOFEFFFF

189F 1831

00503004

40005000

230020AO

8F0025BO

00002354

45EOFooe

00000100

500090E.E

I REPEAT
90ECOOOC

EOO€051F

90EED060

000CQ7FE

00002758

OCFOFOFO

58FOCOl8

586000')8

60007000

00000050

00002ge6

00000000

00002388

02030058

DOt- H800

45EOFOOC

030023C8

lA0058FO

00003000

00002400

fOF002FF

0!JE:041EO

F224DOEO

00000000

000031C8

0000298A

00000000

58COEOOO

30000203

58fOC020

00002388

00000100

e0204110

40005000

000022fO

03fFOQfF

EOOE051f

6000f8fO

CIl
(I)
o
rt
o
~

,f::

t:J
(I)
t:T
s:=

\Q
\Q
~

\Q

)I
QI
en

I\J

" \D

I'I.j
'g
11 .(1)

,f::

I\J
U'I
•

~
~

CIl

~
~
(I)

t'd a
\Q
11

~ -t'd
I»
11
rt
~
U'I

o
I"tI

~
co -

002440 0060C035

002460 0058F342

002480 00003000

0024AO OOOOOCOO

FAF20060

60000070

1t0005000

00000000

00EOF83F

96F06Q04

60001000

FFFFFFFF

0024CO 1t7FOFOI0 OA3200oo OA009180

0024EO

002500

002'i20

002540

002560

002580

002SAO

0025CO

1t780FOI0

07FE615C

FOICOAo7

EOO.058EO

F0780AOO

00000000

E3D9E800

00002600

50EOFOttC

00002f4~

91101003

FOAItOlFE

9180F07A

00000004

00000000

00000000

58EOI020

IlJCFZOZ4
OA320000

4710F040

41El0030

4710F066

00002590

00000000

00000000

00E8D060

58000004

00000000

fFFffFFF

10024710

0501F04A

OA320000

D2001030

50EOI008

OA07181E

00000000

00000000

07000700

0025EO 03002b80 3100C9Dl E2E8E2D3 E2400040

002600 TO THE NEXT LINE ADDRESS CONTAINS 401t04040

002660 401t0404o 1t0404040 40404040 40404040

002680 00000000 00000000 47FOFOOC 9023FOOO

0026AO 00091803 1t3030~00 1t332FOCB 19034780

0026CO 10284530 FOA09180 10154780 F056947F

0026EO

002700

002720

002740

06001028

10044.780

OA009180

OBCBE38B

101EOAOO

F09A9104

10024710

0301411B

91041015

10154710

FOACOA07

13080004

4780F07A

F09A9108

07F31821

f9C3Fl4E

002760 58500008 50050004 18Ao1805 5A510004

002780 C2884850 ('29A1255 4780(,038 485A0048

0027AO A0145851 00005050 00000200 50025003

0027CO 91805004

OOHEO U000051F

002800 (,2689202

002820 C2B8947F

002840 920EC 119

002860 91004002

oe2880 4780(,198

4710(,078 41550008
IIJKSZCI

210~5FO 58('OF224

C2684780 COE892fl

C3EE947f (.39492FE

41FOC006 58450000

4710C122 947FC3EE

471C(.152 58460000

47FOC064

9680C3EE

C2959200

C1191850

9'>061COO

982C001C

4A440000

92f9C012

98E(.000C

0008F8F8

OOFEfFFF

F8230070

07FE5800

00002ltOO

OC lCOOOO

·00E892F8

000498E(.

00002158

IIJCFZIZO
0A320000

C0125860

')00,"07FE

00000",')0

OA320000

foltOA07 91011004 4180F02C 91401002

E0004770

OAl20000

10280201

OA009180

ItlE 10028

09002598

IIJKSYSA
A0002500

00008400

F04lt58EO

50EOFOAlt

1036102E

10024710

50EOI008

OOOOOOOB

00000000

08000003

101C01FE

OA009180

58EOI028

F0540A07

47FOfOl0

F4Flf5FO

81010078

000025F8

58EOF04('

10024710

024FI038

18E141l0

00000000

C94009C5

00000000

00000000

90002600 47000000 01002600 20000079

40404040 40404040 40000000 00000000

91031015 4770F066 58301028 06304120

F0364620 F0284920 FOCA47BO F0469208

10154530 FOA04122 FOCOOZOO 10282000

4530FOA2 92011028

101F4710 FOAE58EO

48020006 41101016

E5E660FO 4010C128

OA004530

10189823

OA021812

IIJKSZCN
905CF408

FOA29101

F00007FE

47FOF09A

58COF2B4

5550C29C 41BOC01E 50500008 0200C28A

41550001 4050('29A 40500048 0203004C

91030000 4710(,078 4A550000 96405004

985CC408

5800C428

C28F47FO

91055COO

4720C122

01FEOAll

D5004000

07FE41FO COSE985C

02330014 C3F49500
IIJKSZCS

C27A~OEC 000C58CO

4740COfO 58550004

02COC109 10000COO

20408010 040818b5

lC0041RO C1SA9180

C40892~3

C3EFltll0

F I Fb9200

47FOCOD8

CI09C118

91036000

40()441l 0

~ I1:j
tX) .."
0 IQ s:: 0028AO C1524144 000847FO C1385866 000447FO C124950A 10004740 C174950F 10004720

11
t:1 (1) 0028CO CI740502 4001C3A1 4770C142 91404004 4710C142 91104004 4110C198 91084004 0
CIl ~

0028EO 4780C 110 947FC394 58140004 47FOCICA 95081000 4170CU8 9640C'j'~4 47FOC110
CIl ~ J!iK.:zCP '< c.n 002900 18619101 C28A92F4 C2954110 CIBA92F2 C2959200 C28F47FO C27 OEC 000C58CO (J) .
rt
(1) 002920 FOf21850 91055000 4180C22A 4740CIEO 58550004 47FOC1CC 05011004 50484770
S "ttl

to ~ 002940 C 1081805 58610000 50600038 4A610006 50600010 58550000 02005002 500.39180
11 H
0 O(J2960 C3EE4170 C21498EC 000C01FF 947fC3EE 0233C3f4 00140202 C3F 10011 5000C4,6

IQ CIl IIJKSZCA IIJKSZCM 11 QI 002980 OA114510 COC62200 45FOFOOC 184C58CO F07C4700 C24C4510 QI
~

.9207f08A .9208F082

m ,IJKSZCT ~JKTOPM
~ 0029AO C08E2300 9200C243 47FOC438 05F092F3 F03F9200 f03941FO F02 2FO F0339200

(1) (1) ~JKTCLM 11 0029CO F02045FO . to F012F3 F0279204
(J) 11

0029EO F0140A04 41fl0000 58C901D2 0 en IQ PROG MASK I s:: 11 0020400 00002844 000027E6 00002758 OOO~~ 00002840 00002868 00002830
.." ~

OEOOOOOO.
g, SSA2 SAVE
(1) 002A20 05000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 -to 002A40 TO THE NEXT LINE ADDRESS CONTAINS 00000000 QI

11 SSAI
rt 002A60 00000000 00000000 00000000 00000000 05000000 00003080 00000000 0000ZF40

~ 002A80 00002488 00003080 00002018 00002050 00002000 00000048 40002180 58002000
0'1

0 002440 00000048 000Q3174 40002192 00002000 00002A20 000020EO 00000000 00000000
H\

~
002ACO TO THE NEXr LINE ADDRESS CONTAINS 00000000 CURRENT FILE CHAIN

tX) SCALE FACTOR~ 100~~0~O DECIMAL INTEGER. .. J FILE ANCHOR - 002AEO 00000000 00000000 000000 0 00000000 a a OJH)(LQ 0 230020AO FEC020AO
FORMAT ENTRY POINT TABLE

002800 TO THE NEXT LINE ADDRESS CONTAINS 00000000

002820 00000000 00000000 00000000 00000000 00000000 00000000 00000000 COO02S3C
,IJKZWSI - INTERRUPT SAVE AREA REG 0 REG 1 REG 2 REG 3 REG 4

002840 AOO02580 ooooooooPSWoooooQQQI 00000000 00000000 00000000 00000000 00000000
REG 5 REG 6 REG 7 REG 8 REG 9 REG 10 REG 11 REG 12

002860 000022CC 0000318F 00001000 00002000 00002400 00002000 00007000 QOC02480
REG 13 REG 14 REG 15 I START OF 65 DOUBLE WORD PVI TRANSIENT AREA

002880 00000000 00000000 00000000 OOOCCOOO 18C11880 41D040RO 50R00004 18950202

002BAO 00899001 58800088 91808000 4780COB4 91808008 4780CO'3£ 'H088004 4180C03E

002BCO 96048004 48100016 02008019 104£:9140 80044180 C04A9407 80000600 80009000

0028EO 94098009 91428008 4710COBC 58108GCO D7011000 100058?0 80104110 Cl'100202

002COO C0798001 4500C01C 0000}088 OA025QlO 80109680 800991'11 80094710 (;09A0202

0()2C20 80050080 02020080 D089947F 80009180 90004199 OC0447~O COOE5f:lDO 000,,98EC

O()2C40 DOOC07FE 94FB8004 47FOC09E 91208000 4710C05C 58108000 41110000 95101014

.002e60 4770COSC 0208C144 10C00203 1000(140 CH801015 4710CCFO 9207C 138 45f:OClIE

002C80 91101015 923FC138 4180CllO 9227C138 45EOC 11E 91011C"4 4 7l0C 114 92 3 7C 138

Ou2CAO 4SEOCllE 02081000 C14447FO C0824120 C1385021 00080AOO 91801002 4.71 OC 132

tzj
~.

\,Q

~ 002eeo Ol0701FE 00000000 01000000 20000001 00000400 00000100 00000138 00000000

(1) OOleEO .s858e2D6 07C50540 00000000 00000000 00000000 00000000 00000000 OOO(JOOOO
~ . 002000 TO THE NEXT LINE IDDRESS CONTAINS 00000000
N
U1 002080 18Cl9834 00145820 50109180 50004780 C0484510 COIE5858 00001000 05400202 •

002010
,IJKSZLM
90E~000C 58~OF038 41]040E4 43210000 89200019 88200011 1A210202 20011001

~
t:"' 0020CO 91801000 UllOO04 4780Fooe 98E4000C 07FE~510 C1080501 00002120 ~170C078

'" t-I IIJKTCBM
0020EO 90£COOOC 18CF5880 C2185000 80544100 80509868 10005060 8008949F 600943FO

en

~ 002EOO 600044FO C20C4710 C03258FO C21e051F 65009140 80085820 60104110 C1309180

.... 002£20 60094770 COAE9111 800841CO C0744970 60164700 C05E4810 60169620 60095810
(1)

~
002E40 60109130 60044180 C06E4lAA 0001tl898 45EOC1EA 58106000 41110000 58FlOOIO

a 002£60 910C6004 4780C08E lB0045EF 00044840 601641EO C09E90fC OOOC47FF 00oC91l0
\,Q
1'1 002E80 80084780 e0819608 600041FO C1C6947F 60094830 600A4133 00049610 60094970

~
002EAO 60014180 C0024740 COC£4870 600A9620 60099130 60044740 CI004070 60169101 -~ 002ECO 80084110 COF45020 80980202 80018099 47FOC1C6 189818A2 45EOCIEI 47FOCIEO

S»
1'1
rt 002EEO 41970004 19934100 C1115810 60004111 000058F1 001045EF 00148990 00105090

~ 002FOO 80980203 20008098 41220004 47FOCOOE 947F6009 91026009 4780C144 58FOC21C
..J

0 002F20 051FOAOO 58106000 58F10010 41110000 4840600A 41EOC160 90ECOOOC 47FFOO08
H\

~
002F40 50206010 94F76tlOO 91306004 4780C182 02018098 20004840 80984840 C2204122

eo - OU2F60 00044040 60169101 80084110 C19C5020 80980202 10018099 47FOC184 19744780

002F80 C1IC4100 C1I81814 96206009 18921818 45EOClEA 58FOC21C 91406009 4780CIC6

002FIO 4110C222 05EF58FO C21C9130 60044710 C1E09120 60094180 elE04110 C221t05EF

002FCO 58000004 98ECOOOC 01FEltIFO 0100197F 4700e204 187F02FF 10009000 1I9FUAF

002FEO 41FOC1EE 06104470 C21007FE 91008008 02001000 90000000 00002120 00002816
en ,IJKTXCF (1) 003000 00040COO OEOOOOOO E0729140 80084710 E01A5850 80089602 500998Et n ,05E05880
rt
~. 003020 000t01FE 58FOE06£ 980COO14 051FOAOO 05E05880 E04A5850 80089640 500947fO
0
t:I 05E09101 50084780 EOIE9130 50044190

~
00 98ECOOOC

t:I
REG 15

(1)
00002354

tr REG 7
~ 0030AO

\Q
\,Q 0030CO
~.

t:I
0030EO TO THE NEXT LINE ACORESS CONTAINS 00000000 \Q

~ 003160 00000000 00000000 00000000 OOOOCOOO 00000000
I CARDIN

40C140C4 C tE3C 140_
~.

~940CI04

QI
en 003180 C3~4 __ ~L5C5t5' _ 5C5C5C5' _5C5C5C~_C 5CSC5C5C 5C5C5C'iC 5cse5C5C 5C5C5C5C

N
co
~

tv t-:j
co
tv I.Q

s::: ~TR t; 0031AO 5C5C5C5C SCSC5C5C SCSC5C5C 5C5C5C5C 5CSC5CSC SC5C5CljC SC 5CSC5C t:I (t) 5C5C5C_ Q
0 CTR I CARDOUT
C/) ~ 0031CO oooooeoo C940CI04 40C140C4 CIE3Cl40 C3CI09C4 S("SC5C5C 5CSC5C5C . FOFOfOF2.
CIl tv
'< U'I 003lEO TO THE NEXT LINE ACORESS CONTAINS 5C5C5C5C en .
rt DSA 'SUB l'
(t) 003200 5C5C5C5C 5C5C5C5C 5C5C5CSC 5C5C5C5C 5C5C5CFO fOFOFOFl 030023(.'3 00C03080 a ttl

ttl ~ 003220 00003318 1E0023A4 00002400 00003218 00003218 000022A8 '00003008 00002270 t; H
0

I.Q C/)
OU3240 000022CC 000031BF 00001000 00002000 000022FO 00002000 00002000 00002388 t; III

III a
~ "0 OU3260 00020000 00003080 00000000 00000000 00003lBF 00000000 00003lBF 00000000
(t) (t)
t; 003280 TO THE NEXT LINE ACORESS CONTAINS 00000000 . ttl
en t; DSA 'LAST ' 0 003300 00000000 00000000 00000000 00000000 00000000 oocooono 03002490 00003218 (j) I.Q
s::: t;

~ 003320 00003428 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0..
(t) - 003340 TO THE NEXT LINE ACORESS CONTA1NS 00000000 ttl

III
t;

003360 00030000 00003218 00000000 00000000 00003lBF 00000000 00000000 00000000 rt

~
OU3380 00000000 0000002C 00002COO 00000000 00000000 00000000 00000000 00000000 co

0 OU33AO TO THE NEXT LINE AOORESS CONTAINS 00000000 I-h

~
0033EO 00000000 00000000 00000000 00000000 00000000 00000000 COOOIFOO 00000000 co -
003400 0000002C 00000000 00000000 00000000 00000000 00000000 00000000 00000000

003420 TO THE NEXT LINE ADDRESS CONTAINS 00000000

007FEO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

For a more complete list of data processing
terms, refer to IBM Data processing
Techniques, A Data Processing Glossary,
GC20-1699.

access method: Any of" the data management
techniques (sequential, indexed sequential,
or direct) available to the user for
transferring data between main storage and
an input/output device.

ASCII (American National Standard Code for
Information Interchange): A 128-character,
7-bit code. The high-order bit in the
system/360 8-bit environment is zero.

asynchronous: Without regular time
relationship. The user's programs run
asynchronously with the I/O interrupts.
BTAM's channel appendage routine runs
synchronously with the I/O interrupts.

background program: In multiprogramming,
the background program is the program with
lowest priority. Background programs
execute from a stacked job input.

batched job: Programs that execute from a
stacked job input. Batched jobs run under
the control of job control.

block:
r:--To group records physically for the

purpose of conserving storage space or
increasing the efficiency of access or
processing.

2. A physical record on tape or DASD.

BTAM (Basic Telecommunications Access
Method): A basic access method that
permits a READ/wRITE communication with
remote devices.

catalog: To enter a phase, module, or book
into one of the system libraries.

CCB: See Command Control Block.

CCH: See Channel Check Handler.

Channel Check Handler (CCH): A feature
that assesses system/370 channel errors to
determine if the system can continue
operations.

channel program: One or more Channel
Command Words (CCWs) that control(s) a
specific sequence of channel operations.
Execution of the specific sequence is
initiated by a single start I/O
instruction.

Glossary

checkpoint record: A record containing the
status of the job and of the system at the
time the checkpoint routine writes the
record. This record provides the necessary
information for restarting a job without
returning to the beginning of the job.

checkpoint/restart: A means of restarting
execution of a program at some point other
that the beginning. When a checkpoint
macro instruction is issued in a problem
program, checkpoint records are created.
These records contain the status of the
program and the machine. When it is
necessary to restart a program at a point
other than the beginning, the restart
procedure uses the checkpoint records to
reinitialize the system.

checkpoint routine: A routine that records
information for a checkpoint.

Command Control Block (CCB): A 16-byte
field required for each channel program
executed by physical IOCS. This field is
used for communication between physical
IOCS and the problem program.

communications region: An area of the
supervisor set aside for interprogram and
intraprogram communication. It contains
information useful to both the supervisor
and the problem program.

control program: A group of programs that
provides functions such as the handling of
input/output operations, error detection
and recovery, program loading, and
communication between the program and the
operator. IPL, supervisor, and job control
make up the control program in the Disk and
Tape Operating systems.

core storage: See main storage.

data file: A collection of related data
records organized in a specific manner.
For example, a payroll file (one record for
each employee, showing his rate of pay,
deductions, etc) or an inventory file (one
record for each inventory item, showing the
cost, selling price, number in stock, etc).

data protection: A safeguard inVOked to
prevent the loss or destruction of customer
data.

data set security: A feature that provides
protection for disk files. A data secured
file cannot be accidentally accessed by a
problem program.

Glossary 283

Disk Operating System (DOS): A disk
resident programmdng system that provides
operating system capabilities for 16K and
larger IBM System/360 and IBM system/310.

DOS: See Disk Operating system.

DOS Volume Statistics: A facility that
monitors and records the number of
temporary read and write errors on
currently accessed tape volumes. This
facility has two options, Error statistics
by Tape Volume (ESTV) and Error Volume
Analysis (EVA).

OTF (define the file) macro instruction: A
macro instruction that describes the
characteristics of a logical input/output
file, indicates the type of processing for
the file, and specifies the main storage
area and routines to process the file. To
do this, use the appropriate entries in the
keyword operands associated with the DTF
macro instruction.

Environmental Recording, Editing, and
Printing (EREP): A program that edits and
prints data that has been stored on the
system recorder file.

EREP: See Environmental Recording,
EdIting, and Printing.

Error Statistics by Tape Volume (ESTV):
One of the two options of the DOS volume
Statistics. With ESTV support, the system
collects data on tape errors by volume for
any tape volumes used by the system.

Error Volume Analysis (EVA): One of the
two options of the DOS Volume statistics.
With this option, the system issues a
message to the operator when a number of
temporary read or write errors (specified
by the user at system generation time) has
been exceeded on a currently accessed tape
volume.

ESTV: See Error Statistics by Tape Volume.

EVA: See Error Volume Analysis.

extent: The physical locations on
Input/Output devices occupied by or
reserved for a particular file.

fetch:
r:--To bring a program phase into main

storage from a core image library for
immediate execution.

2. The routine that retrieves requested
phases and loads them into main storage
(see system loader).

3. The name of a macro instruction (FETCH)
used to tranfer control to the system
loader.

284 DOS System Programmer's Guide

4. To transfer control to·the system
loader.

Fetch/Load Trace (F/L Trace): A program
that records information about phases and
transients as they are called from the core
image libra'ry.

file: See data file.

fixed length record: A record having the
same length as all other records with which
it is logically or physically associated.

F/L Trace: See Fetch/Load Trace.

foreground initiation: A set of system
routines to process operator commands for
initiation of a foreground program.

foreground program: In multiprogramming,
foreground programs are the highest
priority programs. Foreground programs may
be executed from a job stack or in an SPI
environment.

Forms Control.Buffer (FCB): The buffer in
the IBM 3811 Printer Control Unit that
stores carriage control information for the
IBM 3211 Printer.

'Generalized supervisor Calls' Trace" (GSVC
Trace): A program that records SVC
interrupts as they occur. Allor a
selected group of SVcs can be traced.

GSVC Trace: See Generalized supervisor
Calls Trace.

lORA: See Independent Directory Read-in
Area.

Independent Directory Read-in Area (IDRA):
A resident area, created by supervisor
option, into which the system reads core
image library directories for fetch and
load operations. Using IDRA frees the
physical transient area to perform error
recovery procedures.

Initial Program Load (IPL): The
initialization procedure that causes Disk
and Tape Operating Systems to commence
operation.

interrupt: A break in the normal sequence
of instruction execution. It causes an
automatic transfer to a preset storage
location where appropriate action is taken.

IOCS (Input/Output Control system): A
group of macro instruction routines
provided by IBM for handling the transfer
of data between main storage and external
storage devices.

I/O (inpUt/output) error logging: The
process of recording OBR and SDR records or
the system recorder file.

I/O Trace (Input/Output Trace): A program
that records I/O device activity for all or
a selected group of I/O devices.

IPL: See Initial Program Load.

Job Accounting Interface: A program that
accumulates accounting information for each
job step to: charge usage of the system,
help plan new applications, and help
supervise system operation more
efficiently.

Job Accounting Table: An area in the
supervisor where accounting information is
accumulated for the user.

job control: A program that is called into
storage to prepare each job or job step to
be run. Some of its functions are to
assign I/O devices to certain symbolic
names, set switches for program use, log
(or print) job control statements, and
fetch the first program phase of each job
step.

job step: The execution of a single
processing program.

~: 1024.

language translators: A general term for
any assembler, compiler, or other routine
that accepts statements in one language and
produces equivalent machine language
instructions. For example, Assembler,
COBOL, etc are language translators.

librarian: The set of programs that
maintains, services, and organizes the
system libraries.

library: An organized collection of
programs, source statements, or object
modules maintained on the system resident
device. Three libraries are used by the
Disk and Tape operating systems: core
image library, source statement library,
and relocatable library.

linkage editor: A system service program
that edits the output of language
translators and produces executable program
phases. It relocates programs or program
sections and links together separately
assembled (or compiled) sections.

load: TO fetch, i.e., to read a phase into
main storage returning control to the
calling phase.

lo.gical loeS: A comprehensive set of macro
instruction routines provided to handle
creation, retrieval, and maintenance of

data files.

LSERV (label cylinder display): A program
that formats a listing of the label
cylinder located on SYSRES. LSERV can run
in and partition any outputs the list on
SYSLST, which may be assigned to disk,
tape, or printer.

Machine Check Analysis and Recording
(MCAR): A feature that records System/370
machine check interrupt error information
on the system recorder file and then
attempts to recover from the interrupt.

main storage: All addressable storage from
which instructions can be executed or from
which data can be loaded directly into
registers.

MPS: See multiprogramming system.

multiplexer channel: A channel designed to
operate with a number of I/O devices
simultaneously on a byte basis. That is,
several I/O devices can be transferring
records over the multiplexer channel, time
sharing it on a byte basis.

multiprogramming system: A system that
controls more than one program
simultaneously by interleaving their
execution.

multitask operation: Multiprogramming;
called multitask operation to express not
only concurrent execution of one or more
programs in a partition, but also of a
single reenterable program used by many
tasks.

OBR: See outboard recorder.

OLTEP: See On-Line Test Executive Program.

On-Line Test Executive Program (OLTEP):
The control program of the on-line test
system. OLTEP is the interface between the
on-line test and the operating system.

outboard recorder (OBR): A feature that
records pertinent data on the system
recorder file when an unrecoverable I/O
error occurs.

overlap: To do something at the same time
that something else is being done; for
example, to perform input/output operations
while instructions are being executed by
the central processing unit.

overlay: A program segment (phase) that is
loaded into main storage. It replaces all
or part of a previously retrieved section.

PCIL: See Private Core Image Library.

Glossary 285

PDAID: See Problem Determination Aids.

phase: The smallest complete unit that can
be referenced in a core image library.
Each program overlay is a complete phase.
If the program has no overlays, the program
itself is a complete phase.

physical IOCS: Macro instructions and
supervisor routines (Channel Scheduler)
that schedule and supervise the execution
of channel programs. Physical IOCS
controls the actual transfer of records
between the external storage medium and
main storage, and provides I/O device error
recovery.

Private Core Image Library (peIL): A file
reference in the same manner and for the
same purpose as the system core image
library, but distinct from the system core
image library. PCIL increases available
core image library space to enable
compiling, linkage editing, and executing
in the foreground partition, when a private
core image library is assigned to that
foreground partition.

private library: A core image,
relocatable, or source statement library
that is separate and distinct from the
system library.

problem determination: A procedure or
process (provided by IBM) that the user can
follow after an error message to determine
the cause of the error.

Problem Determination Aids (PDAID):
Programs that trace a specified event when
it occurs during the operation of a
program. The traces provided are: QTAM
Trace, I/O Trace, F/L Trace, and GSVC
Trace.

QTAM Trace: A program that records certain
supervisor and I/O activities on tape or in
main storage.

RDE: See Reliability Data Extractor.

record: A general term for any unit of
data that is distinct from all others when
considered in a particular context.

o

Recovery Management Support (RMS): A
feature for System/370 that consists of the
MCAR (Machine Check Analysis and Recording)
and CCH (Channel Check Handler) functions.
RMS gathers information about System/370
hardware reliability and attempts certain
error recovery operations. RMS is a part
of the entire reliability, availability,
and serviceability support for System/370.

Reliability Data Extractor (ROE): A
function that provides hardware reliability
data that is analyzed by IBM.

286 DOS System Programmer's Guide

,relocatable: A module or control section
whose address constants can be modified to
compensate for a change in origin.

,restart: See checkpoint/restart.

RMS: See Recovery Management Support.

SDR (statistical data recorder): A feature
'that records the cumulative error status of
an I/O device on the system recorder file.

,selector channel: A channel designed to
operate with only one I/O device at a time.
Once the I/O device is selected, a complete
record is transferred one byte at a time.

self-relocating: A programmed routine that
is loaded at any doubleword boundary and
can adjust its address values so as to be
executed at that location.

self-relocating program: A program that is
able to run in any area of storage by
having an initialization routine to modify
all address constants at object time.

Single Program Initiator (SPI): Under DOS,
a program that is called into storage to
perform job control type functions for
foreground programs not executing in batch
job mode.

SORTED DSERV: A program that gives you an
alphamerically sorted listing of any or all
of the library directories.

SPI: See Single Program Initiator.

stand-alone dump: A program that displays
the contents of main storage from a minimum
of 8K bytes to a maximum of 16384K bytes.
It helps to determine the cause of an
error.

supervisor: A component of the control
program. It consists of routines to
control the functions of program loading,
machine interruptions, external
interruptions, operator communications and
physical loes requests and interruptions.
The supervisor alone operates in the
privileged (supervisor) state. It coexists
in main storage with' problem programs.

system residence: The external storage
space allocated for storing the basic
operating system. It refers to an on-line
tape reel or disk pack that contains the
necessary programs required for executing a
job on the data processing system.

task selection: The supervisor mechanism
for determining which program should gain
control of CPU processing.

telecommunications: A general term
expressing data transmission between remote
locations.

teleprocessing: A term associated with IBM
telecommunications systems expressing data
transmission between a computer and remote
devices.

trace:
r:--To record a series of events as they

occur.

2. The record of a series of events.

track hold: A function for protecting DASD
tracks that are currenbly being processed.
When track hold is specified in the DTF, a
track that is being modified by a task in
one partition cannot be concurrently
accessed by a task or subtask in another
partition.

transient area: This is a main storage
area (within the supervisor area) used for
temporary storage of transient routines.

transient routines: These self-relocating
routines are permanently stored on the
system residence device and loaded (by the

supervisor) into the transient area when
needed for execution.

UCS: See Universal Character Set.

UCSB: See Universal Character Set Buffer.

undefined record: A record having an
unspecified or unknown length.

Universal Character Set: A printer feature
that permits the use of a variety of
character arrays.

Universal Character Set Buffer (UCSB): A
buffer in a printer control unit that
stores the code equivalents of the
characters on an interchangeable print
chain or train cartridge.

variable length record: A record having a
length independent of the length of other
records with which it is logically or
physically associated. (Contrasted with
fixed length record.) It contains fields
specifying physical and logical record
lengths.

Glossary 287

288 DOS System Programmer's Guide

Indexes to systems reference library
manuals are consolidated in the publication
DOS Master Index, GC24-5063. For
additional information about any subject
listed below, refer to other publications
for the same subject in the Master Index.

AB (abnormal termination) support
description of 67
multitasking 39,44
option table 57

ACTION statement 141,143
ACTR instruction 183
ADCON (see relocating address constants)
adding records to indexed sequential file

132
AGO instruction 183
AIF instruction 182
ALLOC macro 84
Am. Natl. Std. Code for Info. Interchange

(see ASCII)
ANOP instruction 183
AP (asynchronous processing) (see

multitasking)
ASCII

generation guidelines 29
support 28
system considerations 28

assembler program debugging aids 204
asynchronous processing (AP) (see

multitasking)
ATTACH macro

cancel conditions 40
considerations 39
example 45
use of 39

attributes, macro writing 178

background (BG) communications region
extension 35

BJF (batch job foreground) 27
blocking records 99
bypassing checkpoint records 172

cancel codes, description of 198
cancel, system action 198
card (DTFCD/CDMOD) files 122
catalog CI library example 156
catalog for phase overlay example 162
catalog private CI library example 158
causes for message OS041 200
CBF (console buffering) support

channel considerations 63
description of 63
table 64

Index

CC (command chaining) (see CCW)
CCB (command control block)

CCW address 102
CCW address in CSW
count field 102
CSW status bits
definition of
format of 104

102
100

103

optional sense CCW 103
symbolic unit number 102
transmission information 102
3211 error indicators 173

CCH (channel check handler) 189
CCHAIN (command chaining) support
CCW (channel command word)

command chaining (CC)
command code 106
count 108,111
data address 106
data chaining (CD)
flags 107
format of
PCI 108
SKIP 108
SLI 107

106

CD (chain data) (see CCW)
chaining (DAM) 127

107

107

channel check handler (CCH) 189
channel command word (see CCW)
channel queue (see CHANQ)
channel rescheduling considerations
CHANQ (channel queue)

format of 59,85
size of 84
table 85

checkpoint file 99
checkpoint/restart

bypassing checkpoint records
checkpoint file 168
checkpoint on disk 168
checkpoint on tape 168
CHKPT macro, format of 167
CHKPT macro, use of 166
DASD and MICR files 168

64

87

172

DASD operator verification table 172
multitasking considerations 166,167
problem program responsibilities 166
repositing magnetic tape 170
repositioning I/O files 170
restarting checkpointed programs
RSTRT statement 173

checkpoints
on disk
on tape

CHKPT macro

168
168

format of 167
use of 166

choosing file organization
method 133

choosing file organization
activity 133
criteria 133
random retrieval need
response time 136

and retrieval

136

173

Index 289

choosing file organization (CONT.)
size 134
volatility 134

COBOL program debugging aids 121,204-206
COBOL sample program 207
COCR (cylinder overflow control record)

130
command chaining support 64
command control block (see CCB)
COMMON pool 154,160
communication between tasks 42
communications region

BG extension 35
SDR 190
system 30

compile and execute example 160
concatenation 181
concurrent peripheral operation (CPO) 27
conditional assembly instructions

ACTR 183
AGO 183
AIF 182
ANOP 183

consecutive spill overflow technique (DAM)
127

console buffering (CBF) table 64
console buffering (see CBF support)
console typewriter (DTFCN) 122
CPO (concurrent peripheral operation) 27
cylinder index (ISFMS) 129
cylinder overflow area (ISFMS) 132
cylinder overflow control record (ISFMS)

130

DAM (see direct access method)
DASD address specification, READ/WRITE

(DAM) 128
DASD file protect support (see DASDFP

support)
DASDFP (DASD file protect) support

mode of operation 70
SYSGEN 73

data file definition 93
data management concepts 91-138
data manipulation 99
debugging aids 167-282

assembler 204
COBOL 204
FORTRAN 234
gathering documentation 189
PL/I 255,263
RPG 243
system action under CANCEL 198
wait states 202

declarative macros 111,113
DEQ macro

cancel condition 42
considerations 42
use of 42

DETACH macro
cancel condition 41
considerations 40
example 47

290 DOS System Programmer's Guide

DETACH macro (CONT.)
use of 40

device type codes 90
DIB (disk information block)

definition of 74
format of 75

direct access method
file organization 124
prime number division 126
random addressing formula 125
random addressing techniques 124
synonym records 127

disk information block (see DIB)
divide remainder (see prime number

division)
DOS stand-alone dump generator (DUMPGEN)

189
double buffering 27
DTF (define the file) macros

DTFBG 114
DTFCD 114
DTFCN 114
DTFDA 114
DTFDI 114
DTFEN 114
DTFIS 114
DTFMR 114
DTFMT 114
DTFOR 114
DTFPH 114
DTFPR 114
DTFPT 114
DTFSD 114
DTFSR 114

DUMPGEN (stand-alone dump generator) 189
duplicate addresses, DAM, (see synonyms)
DVCGEN macro

channel rescheduling considerations
87

system generation guidelines 88

ECB (event control block) 39,41
end of day (EOD) 189
ENQ macro

cancel conditions 42
considerations 42
use of 42

ENQ/DEQ and RCB macros example 48
ENTRY statement 141,146
environmental recording, editing, and

printing (EREP) 189
EOD (end of day) 189
EREP (environmental recording, editing, and

printing) 189
error logging 189
error recovery techniques for IBM 3211

printer 174
error statistics by tape volume (ESTV) 58
error volume analysis (EVA) 58
ESTV (error statistics by tape volume) 27
ESTV utilities (ESTVFMT,ESTVUT) 58
EVA (error volume analysis) 58
event control block (see ECB)

.~

,

EXCP (execute channel
extended capabilities

MEXIT 183
MNOTE 184

extending an indexed
external interrupt

program) 23,100

sequential file
56

F/L (Fetch/Load) traqe 194

132

FAVP (first available pointer) table 59
FETCH macro, use of 149
FICL (first in class) table 59
file definition (DTF) macros 113
file

activity 133
definition 93,99
need for random retrieval 136
organization 122-133
processing methods 113
response time consideration 136
size 134
volatility 134

fixed length records
ASCII 93
blocked 95
unblocked 94

FLPTR (free list pointer) 59
FOCL (first on channel list) table 59
FOPT macro

abnormal termination (AB) 67
command chaining (CCHAIN) 64
console buffering (CBF) 63
DASD file protect (DASDFP) 70
ESTV 58
EVA 58
Independent Directory Read-In Area

(IDRA) 64
interval timer (IT) 56
job accounting interface 81
multiple wait (WAITM) 70
operator communications (OC) 56
physical transient overlap (PTO) 62
private core image libraries (PCIL)

76
program check (PC) 58
seek separate (SKSEP) 62
system files on disk (SYSFIL) 74
system generation guidelines 58
tape error block (TEB) 58
tape error recording 58
track hold (TRKHLD) 65

FORTRAN program debugging aids 234
FORTRAN sample program 234

global SET symbols 180
GSVC (Generalized Supervisor Calls) trace

194

halt analysis, RPG 243
header labels, checkpoint
header statement, macro

168,172
178,179

home addresses (DAM) 127

I/O (Input/Output) trace 194
I/O error logging 189
I/O table interrelationship 59
IBM 3211 Printer support

IDRA

error recove~y techniques 174
system considerations 173

definition 64
system generation guidelines 64

imperative macros 111,119
INCLUDE statement 141,145
Independent Directory Read-In Area (IDRA)

64
independent overflow area (ISFMS)
index (ISFMS)

cylinder 129
master 129
track 129

132

indexed sequential file management system
add function 129,132

129
COCR 130
cylinder
load 131
load extend
master index
prime data
random 132
sequential
track index

131
129

129

132
129

interrelationship of DTF and module macro
118 instructions

interrupts 23
intertask communication
interval timer support

concept 56
option table 57

42

IOCS (input/output control system)
logical 111
physical 99

IOTAB macro
channel queue (CHANQ) 84
job information block (JIB)

ISFMS (see indexed sequential file
management system)

IT (interval timer) support
concept 56
option table 57

JIB (job information block)
definition of 84
format of 59,72

84

job accounting interface support 81
prog. considerations 82
table 83

job information block (see JIB)

label cylinder display (LSERV) 189
LBLTYP statement 146
line printers (DTFPR/PRMOD) 122

Index 291

link edit and execute ~xample 154
link editing, examples of 154
link editing

ACTION statement 143
control statements 143
definition of 141
ENTRY statement 146
INCLUDE statement 145
LBLTYP statement 146
OPTION LINK and CATAL 147
overlay structures 147
PHASE statement 144
private core image libraries 141
program considerations 146
program name 141
symbolic units required 143
system flow 141

linkage editor examples
catalog CI library 156
catalog phase overlay 162
catalog private CI library 158
compile and execute 160
link edit and execute 154
link editing 165
submodular structure 162,163

LIOCS (see logical input/output control
system)

LOAD macro, use of 149
loading an indexed sequential file 131
local SET symbols 180
logic module name structure 116
logical file definition 99
Logical Input/Output Control System (LIOCS)

devices 121
logical input/output control system

DAM 124
DTF macros 113
file organization
function 111
imperative macros
ISFMS 129

133

119

macros and devices 121
macros and DTFS 120
MOD macros 114
modular/tabular 113
processing methods 111
sequential file 122
storage required 113

logical IOCS (see logical input/output
control system)

low core error bytes 203
LSERV (label cylinder display)
LUB (logical unit block) table
LUBDSP (LUB displacement) table
LUBID (LUB identification) table

189
59,71

59,85
59,85

machine check analysis and recording (MCAR)
189

machine check recording and recovery (MCRR)
189

macro definition 177
macro instruction

keyword 176

292 DOS System Programmer's Guide

macro instruction (CONT.)
mixed 177
positioning 177

macro writing
attributes 178
concatenation 181
conditional assembly 182
definition 177
extended capabilities 183
header statement 178,179
macro instruction 176
model statement 178,179
prototype statement 178,179
sample MSG coding 186
sample MSG macro 185
sequence symbols 182
sublist notation 179
trailer statement 178,179
variable symbols 179

macros
declarative 111
imperative 111

magnetic ink character re~ognition (see
MICR)

magnetic tape (DTFMT/MTMOD) files 122
main storage requir~ments (LIOCS) 113
master index (ISFMS) 129
MCAR (machine check analysis and recordin~)

189
MCAR linkage area 193
MCRR (machine check recording and recovery)

189
MCRR linkage table 192
MEXIT instruction 183
MICR (magnetic ink character recognition)

SYSGEN 36
table 37

MNOTE instruction 184
MOD (module generation) macros 114
model statement 178,179
modular/tabular system, definition of 113
module generation (MOD) macros 114
MPS, multiprogramming support (see

multiprogramming)
multiple link edits example 165
multiple wait facility (see WAITM)
multiprogramming (MPS)

concepts 18
control method 20
CPO concept 27
operational considerations 27
partitioning 20
programming considerations 28
storage map 19
system considerations 27
system generation guidelines 28
task selection 20

multitasking considerations for checkpoint
166,167

multitasking examples 45
ATTACH macro 47
DETACH macro 47
ENQ/DEQ and RCB 48
POST macro 51

multitasking examples (CONT.)
STXIT AB macro 53
track hold 55
WAITM macro 52

multitasking
abnormal termination 39,44
access to communication region
checkpoint consideration 43
definition of 38
examples 45
intertask communication 42
macro usage 39
maximum tasks 43
multiple wait 39
operator intervention 43
priorities 38,43
reentrant modules 39
register usage 43
resource contention 44
resource protection 41,43
storage protection 43
STXIT macro usage 43
subtask cancelation 44
subtask initiation 39
subtask termination 39
system generation guidelines 44
system logical units 43
track hold 38,43
wait considerations 44

NICL (number in class) table 59

OC (operator communications) support
concept 56
considerations
option table

56
57

OLTEP (On-Line Test Executive Program)
194

OLTEP
OLTS 194
RETAIN/370 194

OLTS (On-Line Tests) 194
On-Line Test Executive Program (OLTEP)

194
On-Line Tests (OLTS) 194
OPTION statement 141,147
option tables; IT,PC,OC,AB
organization

file 122-133
system residence

overflow area (ISFMS)
cylinder 132
independent 132

15

57

overflow record handling (DAM)
chaining 127
consecutive spill
preassigned tracks

overflow records (ISFMS)
overlay 147

communication 149
techniques 148
tree design 147

127
127

130,132

43

overlay (CONT.)
tree structure 147

packing factor (DAM) 127
paper tape (DTFPT/PTMOD) files 122
partition size specification 84
partition

definition of 18,20
types of 20

PC (program check) support
concept 58
option table 57

PCI (program controlled interrupt) 141
PCIL (private core image libraries) 76
PDAID (problem determination aids) 194
PHASE statement 141,144
phase, definition of 147
Physical I/O Control System (PIOCS)

CCB 100,102
CCW 106
EXCP 100
sample program 110
WAIT 100

physical IOCS sample program 110
physical transient overlap support 62
physical unit block (see PUB)
physical unit, definition of 99
PIB (program information block) table 195
PIOCS (see physical input/output control

system)
PL/I program debugging aids 255
PL/I program

compile time aborts 264
debugging aids 263,264
debugging summary 263
sample 265

POST macro 23
cancel conditions 43
example 51
use of 42

preassigned tracks overflow technique (DAM)
127

prime data area (ISFMS) 129
prime number _division ,126
prime number, definition of 126
Printer, IBM 3211 173
priority system

multiprogramming 20
multitasking 38

private core image libraries
link edit considerations 141,144
sysgen guidelines 81
system considerations 76

problem determination aids
DUMPGEN 189
EREP 189
LSERV 189
MCAR/CCH 189
MCRR 189
OLTEP 194
PDArD 194
RMS 189

processing methods
direct access method 112

Index 293

processing methods (CaNT.)
ISFMS 112
sequential 111

program check support
concept 58
option table 57

program design 139-186
program overlay structure 147
prototype statement, macro 178
PTa (physical transient overlap) support

62
PUB (physical unit block)

format of 59,89
use of 87

QTAM trace 194

random addressing
formula 125
techniques 124

random retrieval (ISFMS)
randomizing, definition of

132
126

RCB (resource control block) 41,43
48

189
RCB and ENQ/DEQ macros example
ROE (reliability data extractor)
RDONLY parameter 118
record definition 93
record types

fixed length, blocked
fixed length, unblocked
undefined 96

95
94

variable length, blocked
variable length, unblocked

96

recovery management support (RMS)
reentrant modules 39,118
relative track addressing 128
reliability data extractor (RDE)
relocatable module name prefixes
relocating address constants 151
repositioning I/O files

DASD 171
magnetic tape 170

96
189

189
118

REQID (requestor identification) table
85

rescheduling multiplexor channel
rescheduling selector channel 87
resource contention 44
resource control block (see RCB)
resource protection 41,43
restarting checkpointed programs
RETAIN/370 194
RMS (recovery management support)
RPG program debugging aids 243

halt analysis 243
RPG sample program 245
RSTRT statement 173

SAB (seek address block)
definition of 62
format of 59

294 DOS System Programmer's Guide

87

173

189

59

sample file organizations 136
sample programs

COBOL 207
FORTRAN 234
physical laCS 110
PL/I 265
RPG 245
self-relocating 153
STXIT 69

SDR communications region 190
seek address block (see SAB)
seek separate support

concept 62
system generation guidelines

self-relocating programs
advantages 150
disadvantages 150
programming techniques
rules for writing 149
sample program 153

self-relocating
example 165
sample program 153

sequence symbols 182
sequential DASD 123
sequential files

DASO 123
magnetic tape 122
unit record 122

sequential processing method
sequential retrieval (ISFMS)
SET symbols

defining of
global 180
local 180

180

150

111
132

versus symbolic parameters
single program initiator 28
SKSEP (see seek separate support)

62

180

SLI (suppress incorrect length indication)
(see CCW)

SPI (single program initiator)
STXIT AB macro example 53
STXIT macro

AB parameter
IT parameter
OC parameter
PC parameter
sample program
use of 43,67

STXIT sample program

57,67
56,57
56,57
57,58

69

69,157
sublist notation 179
submodular structure example
subtask

44
38

cancelation
definition of
initiation 39
priority 38,43
termination 39

supervisor calls (SVC), list of
supervisor calls

list 21
o (EXCP) 23
7 O"lAIT) 23

28

163

21

supervisor communications region 218

supervisor planning concepts 13-90
superv1sor tables

AB option 57
BG communications region 35
CBF 64
CHANQ 59
device type codes 90
DIB 75
ECB 41
FAVP 59
FICL 59
FLPTR 59
FOCL 59
IT option 57
JIB 59,72
job accounting 83
LUB 59,71
LUBDSP 59,85
LUBID 59,85
MCAR linkage area 193
MCRR linkage table 192
MICR 37
NICL 59
OC option 57
PC option 57
PIB 195
PUB 59,89
RCB 41
REQID 59,85
SAB 59
SDR communications 190
SVC list 21
system communications 30
TEB 59,60
TEBV 59,61
THFLPTR 59
TKHDTAB 59
TKREQID 59,85

SUPVR macro
MICR 36
multiprogramming 18
multitasking 38

SVC 0 (EXCP) 23
SVC 7 (WAIT) 23
symbolic parameter 179
synonyms

definition of 125
techniques for handling 127

SYSBUFLD 173
SYSFIL (system files on disk) support

concept of 74
considerations 75
sysgen 76

SYSRES (system residence) organization 15
system communications region 30
system files on disk support (see SYSFIL

support)
system residence organization 15
system variable symbols 181

tape error block (see TEB)
tape error recording

ESTV 58

tape error recording (CONT.)
EVA 58
TEB 58

task selection 20
TEB (tape error block)

concept of 58
format of 59,60

TEBV (to specify ESTV) 58
TEBV table

format of 59,61
THFLPTR (track hold free list pointer) 59
TKHDTAB (track hold table) table 59
TKREQID (track requestor identification)

table 59,85
trace

F/L trace 194
GSVC trace 194
I/O trace 194
QTAM trace 194

track hold 129
track hold example 55
track hold facility (see TRKHLD)
track index (ISFMS)

definition of 129
normal entry 129
overflow entry 130

trailer labels, checkpoint 168,172
trailer statement 178,179
tree, definition of 147
TRKHLD (track hold) facility

LIOCS considerations 65,66
supervisor considerations 65
system generation 67

types of file organization
direct access method 124
ISFMS 129
sequential DASD 123
sequential tape 122
sequential unit record 122

undefined records 96
unit record files

card 122
console typewriter 122
line printers 122
paper tape 122

variable length records
ASCII 96
blocked 96
unblocked 96

variable symbols
SET 180
symbolic parameter 179
system variable 181

WAIT macro
multitasking considerations
opera tion 23
use of 70

wait states
hard waits 202'

44

Index 295

GC24-5073-2

wait states (CONT.)
low core error bytes 203
soft waits 202

WAITM (multiple wait) facility
concept of 70
considerations
multitasking

WAITM macro example

70
39

52

3211, IBM Printer 173

llrnoo
Internation! Business Machines COl')loratioll
Data Processing Division
tt!! Westchester Avenue, White Plains, New York 10894
[U.S.A. only]

IBM World Trade Corperatioll
821 United Nations Plaza, New Yurk, New Yark 10017
[International]

DOS System Programmer's Guide

GC24-S073-2

READER'S
COMMENT
FORM

This sheet is for comments and suggestions about this manual. We would appreciate your
views, favorable or unfavorable, in order to aid us in improving this publication. This form
will be sent directly to the author's department. Please include your name and address if
you wish a reply. Contact your IBM branch office for answers to technical questions about
the system or when requesting additional publications. Thank you.

Name

Address

What is your occupation?

Your comments· and suggestions:

* We would especially appreciate your comments on any of the following topics:

Clarity of the text
Organization of the text

Accuracy
Cross-references

Index
Tables

Illustrations
Examples

How did you use this manual?

As a reference source

As a classroom text

As a self-study text

Appearance
Printing

Paper
Binding

/

GC24-5073-2

YOUR COMMENTS, PLEASE .••

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should ,be directed to your.IBM representative or to the IBM sales office serving your
locality.

Fold
Fold

n
c
-I

»
r­o
Z
G)

-I
::t:
en
r­
Z
n1

· , ... :

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 U

POSTAGE WILL BE PAID BY .•.

I BM Corporation

112 East Post Road

White Plains, N.Y. 1060.1

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS. N. Y.

· ·

...
·

Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

.,
a cc
iil
3
3
CD .,
ui

