File Number 8360-50
Order No. GC24-5073-2

Systems Reference Library

DOS System Programmer's Guide

This reference publication is intended primarily
for the system programmer who is involived in
making decisions relating to the components of the
installation's supervisor, file organization and
program design. To form a single publication,
this manual brings together and expands upon
information from many sources. Major topics
discussed are:

1. Supervisor Planning Concepts

2. Data Management

3. Program Design
. 4. Debugging Aids
éor each major section, the Preface lists the most
closely related publications. For a complete list

of available publications, see the IBM System/360
and System/370 Bibliography, GA22-6822.

|

Third Edition (September 1971)

This publication was formerly titled IBM Systems/360 Disk
Operating System: System Programmer's Guide. Although
titles of some DOS publications (including this one) have
been simplified, the change does not affect the contents of
the publications.

This edition replaces and obsoletes GC24-5073-1. Changes are
continually made to the specifications herein; before using
this publication in connection with the operation of IBM
systems, consult the latest System/360 and System/370 SRL
Newsletter, GN20-0360, for the editions that are applicable
and current.

Summary of Amendments
For a list of changes made in this edition, . see page 3.

Changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Laboratory, Publications Dept., P.O. Box 24,
Uithoorn, Netherlands.

C)COpyright International Business Machines Corporation 1969, 1970, 1971

NEW FUNCTIONS

This edition documents support for these
system control and service functions:

¢ Independent Directory Read-In Area
(IDRA)

e On-Line Test Executive Programs
(OLTEP)

¢ Job Accounting Interface

* Data Set Security

e ISAM Track Hold

e Private Core Image Library (PCIL)

e Label Cylinder Display (LSERV)

¢ Recovery Management Support (RMS) for
System/370, which consists of Machine
Check Analysis and Recording (MCAR)
and Channel Check Handler (CCH)

e Reliability Data Extractor (RDE)
function for System/370

e RETAIN/370 for System/370

PROGRAM ENHANCEMENTS

This edition also documents the
enhancements to these programs:

e Error Statistics by Tape Volume
(ESTV)

e Environmental Recording, Editing, and
Printing (EREP)

e DOS Stand-Alone Dump Generator
(DUMPGEN)

* Problem Determination Serviceability
Aids (PDAID)

¢ Forced End-of-Volume for Disk macro
(FEOVD)

Summary of Amendments

for GC24-5073-2

e Directory Service Display (DSERV)

e Linkage Editor (LNKEDT)

NEW DEVICES

This edition also documents support for
these new devices:

e IBM 1255 Magnetic Character Reader
e IBM 2319 Disk Storage

e IBM 3210 Console Printer-Keyboard
e IBM 3211 Printer

e IBM 3215 Console Printer-Keyboard

e IBM 3420 Magnetic Tape Unit

MISCELLANEOQUS CHANGES

Rewritten sections: The section on hard
waits is expanded and rewritten. The
section on COBOL ANS replaces the COBOL D
section. A glossary is included.

ORGANIZATION OF PUBLICATION

The manual has been reorganized and
reformatted. Information in Appendixes A
- L in the previous edition has been
incorporated into the appropriate
sections in this edition. The total
publication has a General Contents, a
Figure list, and an Index. Each section
has a Section Oudtline and a separate
figure list. Figure numbers throughout
the publication are in the form: Figure
1.3, where 1 is the section number and 3
is the figure number within that section.
A tab in the upper right-hand corner of
the beginning of each section identifies
the section by number.

4 DOS System Programmer's Guide

This publication is divided into the
following four major sections:

1. Supervisor Planning Concepts

2. Data Management

3. Program Design

4. Debugging Aids

The Supervisor Planning Concepts section
describes system residence organization,
some supervisor tables, optional supervisor
facilities at a conceptual level, and
presents guidelines for their
implementation. The Data Management
section explains the concepts of file
organization and data manipulation at the
physical and logical IOCS levels. The
Program Design section contains suggestions
for efficient programming. The topics
discussed are link editing functions,
overlay structure, self-relocating
programs, checkpoint/restart facility, the
3211 Printer support, and macro writing.
The Debugging Aids section contains aids
for debugging problem programs written in
assembler language, PL/I, FORTRAN, COBOL,
and RPG.

Multitasking and link editing examples,
and physical I0CS, STXIT support,
self-relocating, and language translator
sample programs are included.

Closely related publications by section
follow.

Note: Although titles of some DOS
publications have been simplified, the
change does not affect the contents of the
publications.

Supervisor Planning Concepts

DOS System Generation, GC24-5033.

DOS System Control and Service,
GC24-5036.

DOS Operating Guide, GC24-5022.

DOS Messages, GC24-5074.

Preface

Data Management

DOS Data Management Concepts, GC24-3427.

DOS Supervisor and 1I/0 Macros, GC24-5037.

DOS _DASD Labels, GC24-5072.

Tape Labels for BPS, BOS, TOS and DOS,
GC24-5070.

IBM System/360 Principles of Operation,
GA22-6821.

IBM System/370 Principles of Operation,
GA22-7000.

Program Design

DOS System Control and Service,
GC24-5036.

DOS Supervisor and I/0 Macros, GC2u4-5037.

IBM System/360 Disk and Tape Operating
Systems, Assembler Lanquage, GC24-3414.

Debugging Aids
DOS OLTEP, GC24-5086.

- IBM System/360 Disk and Tape Operating
Systems, COBOL Programmer's Guide,

GC24-5025.

IBM System/360 Disk and Tape Operating
Systems, PL/I Programmer's Guide,
GC24-9005.

IBM System/360 Disk Operating System,
FORTRAN IV Programmer‘'s Guide, GC28-6397.

IBM System/360 Disk and Tape Operating
Systems, Report Proqram Generator
Specifications, GC26-3570.

IBM System/360 Disk and Tape Operating
Systems, Assembler Langquage, GC24-3414.

DOS Messages, GC2u4-5074.

For further information concerning terms
referenced in this publication, see the IBM
Data Processing Glossary, GC20-1699.

Preface 5

6 DOS System Programmer's Guide

Contents

Introduction ,

Section 1: Supervisor Planning Concepts
System Residence Organization .
SUPVR MaCYO .« o o « o o o o
FOPT Macro « « «
ALLOC Macro . .
IOTAB Macro . .
DVCGEN Macro . .

e s & 8

s s 0 0

o & o 8

s 0 0 0

¢ o o &

s s 0 0

e & s 0
e & s o
e« o 5 0 4
s 8 8 5 & 8 o

Section 2: Data Management « « « « « «
Concepts of Data Management . . .
Physical Input/Output Control System
(PIOCS) « o o o o o « o o o = o o o
Logical Input/Output Control System
(LIOCS) ¢ o o o o o o o o o o o o o

Section 3: Program Design .,
Link Editing « « « « « «
Self-Relocating Programs
Linkage Editor Examples

Checkpoint/Restart . . .
IBM 3211 Printer Support
Macro Writing

s 8 3 8 5 8 @
¢ s s 8 s 0
¢ s s 8 s
"« 8 s s 8 @
s 0 s 0 & 0

Section 4: Debugging Aids . . .
Gathering Documentation . .
Wait States
Debugging Assembler Programs
Debugging COBOL Programs . .
Debugging FORTRAN Programs .
Debugging RPG Programs . . .
Debugging PL/I Programs . .

e & & o o 8 8
e & 9 & & o 8 »
e & » B 8 & 3
e & & & o 8 ¢

GlosSary e« « « « o o o o o o« o « « @

Index ¢« ¢ o o ¢ o ¢ o o o « o a o o

s 8 s o s o @
v
(-]

.111

.139
1481
.149
.154
.166
-173
<175

.187
.189
202
.204
.208
.234
. 243
<255

.283

.289

Contents 7

DOS System Programmer's Guide
LN
A

S

Figure 1.1. System Residence
Organization « « ¢« ¢ ¢ ¢ ¢ o o o o o
Figure 1.2. MPS Storage Map -
Figure 1.3. Supervisor Calls (Part 1
of 2) . .. ¢ . . . - c « o = = @
Figure 1.4. Processing and I/0
Requests Relationship . . . « « . . .
Figure 1.5. PFirst Example of
Processing and I/0 Requests with 1I/0
Interrupts e o e o e o o e s s o s
Figure 1.6. Second Example of
Processing and I/O Requests with I/O0
Interrupts e« o a o o o s o o e o = @
Figure 1.7. System Communications
Region (Part 1L 0f£ 5)
Figure 1.8 Background Communications
Region Extension (BGXTNSN) e o o o o
Figure 1.9. Tables for MICR DTF
Addresses and Pointers
Figure 1.10. Example of Multltasklng
Priorities e o o o s o o s o o e e @
Figure 1.11. Event Control Block
(ECB) &« ¢ ¢ o o o o o o o o« o o o o« =
Figure 1.12. Resource Control Block
(RCB) @ v o o o o o a o o o o o o« « =
Figure 1.13. Option Tables
Figure 1.14. 1I/0 Table
Interrelationship .« ¢« « ¢« ¢ ¢ ¢ o o «
Figure 1.15. Tape Error Block o o @
Figure 1.16. TEBV Table Showing
Status Block and Error Blocks
Figure 1.17. Console Buffering Table
and Work Areas e 6 e e o o o e o o =
Figure 1.18. Example Using CCHAIN
SUPPOYE &« o o o « o o o o o o o o o
Figure 1.19. Processing of STXIT
Conditions e e o o e o o o o o e o o
Figure 1.20. STXIT Sample Program . .
Figure 1.21. Logical Unit Block (LUB)
Table < o ¢ ¢« ¢ o o « a o o o o o o o
Figure 1.22. Job Information Block
(JIB) Table . ¢ ¢ « o o o o « = « .=
Figure 1.23. DASD File Protect Logic
Flow . . . e e e e e ® e o e ° o @
Figure 1. 2u Disk Information Block
(DIB) Table . ¢ o ¢ « o « o« o « o« &
Figure 1.25. Example of Dedicated
PCIL in a Multiple Partition
Environment . . « « . < . . «

Figure 1.26. Example of PCIL in a
Single Partition Environment « e o @
Figure 1.27. Identification of SYSLNK

FileS . o « o o 2 2 o o o o a o « o

Figure 1.28. Job Accounting Table . .
Figure 1.29. CHANQ, LUBID, REQID,
LUBDSP, and TKREQID Tables - « e

Figure 1.30. Physical Unit Block

(PUB) Table . . . e o o = o o s« o =
Figure 1.31. Device Type Codes . .
Figure 2.1. Fixed Length Unblocked
Record FOormat .« « « ¢ o ¢ o o o « o =

17
19

21
24

25

26
30
35
37
38
41

41
57

59
60

61
64
65

67
69

71
72
74

75

78
79

80
83

85
89

90"

924

Figure 2.2.
Record
Figure
Record
Figure
Record
Figure 2.5.
Figure 2.6.
(cCcB) (Part
Figure 2.7.
Figure 2.8.
Example . .
Figure 2.9.
Program . .
Figure 2.10.
Using Logica
Figure 2.11.

2.3.

2.4,

for Logic Modules (Part 1 of 2) . . .

Figure 2.12.

Module Name Prefixes . - . o

Figure 2.13.

Relationship
Figure 2.14.
Module Relat
Figure 2.15.
Macros
Figure
Macros and D
Figure 2.17.
Chaining . .
Figure 2.18.
Figure 2.19.
Fiqure 2.20.

2.16.

after Addition to File

Figqure 2.21.

Disk/Tape SYStem « « o ¢« o ¢ o o o« o

2.22,
Seque
3.1.
3‘ 2.

Fiqure
Versus
Figure
Figure
Figure 3.3.
Figure 3.4.
Constants in
Fiqure 3.5.
Program . .
Figure 3.6.
on Disk . .
Figure 3.7.
Tape Reposit
Figure 3.8.
DASD Operato
Figure 3.9.
Header/Trail
Figure 3.10.

Indicator Bits in the ¢CCB -

Figure 3.11.
Figure 3.12.
Instruction
Figure 3.13.
Instruction
Figure 3.14.
Prototype .

and DTFsS . . « e o o o o .

Figures

Fixed Length Blocked

FOrmat . « « =« « =« « « o« « =« = « 95

Variable Length Unblocked

FOXMAat .« o« « « « o« o « o« o o « o 97

Variable Length Blocked

FOormat . « o« o o o o o « . - 98

I/0 Operation Using PIOCS 101
Command Control Block
lo0£3) « o o =
Format of the ccw - = -
Flowchart for EXCP Coding
Physical IOCS Sample
Retrieving a Record
1 TOCS v o o o « o o o « =
Generated Name Structure

<104

.109
«110
112

.116

DOS Relocatable Library

.118
DTF and Module Macro

S o« o . . « o o
Coding Example of DTF and

jonship . « « « ¢ o « « &
Logical IOCS Imperative

.118
.119

.120
Loglcal Iocs Imperatlve

evices © o s o v = o o u
Direct Access Address
DASD Address Formats . .
Example of Track Index
Example of Track Index

.121

127
.128
130

.131
File Organization on a

.135

Indexed Sequential

ntial File Organization . .137
Linkage Editor System Flow 142
Module Dependency1lu48
Overlay Tree Structure . .148
Relocating Address

a Calling List - -
Self-Relocating Sample

.151

e o o o « o o o o e = = - 4153
Using Checkpoint Facility
Procedure for Building

ioning Tables
Procedure for Building

r Verification Table o e
Format of the Checkpoint

er Records o o e o s o @

3211 Error Status

.169
<170
.172
<172

.175
Operand Field Formats - «176
Keyword Macro
Positional Macro

Macro Instruction with

e ® @ ® e & @ e e e e e o

176
<177
<177

Figures 9

.106

3.15.
3.16.
3.17.
3.18.

Figure
Figure
Figure
Figure
Locals - o
Figure 3.19.
Instruction
Figure 3.20.
Instruction
Figure 3.21.
Instruction
Figure 3.22.

Mixed Macro Instruction
Mixed~-Mode Definition .
Sublist Illustration

Format of Globals and

Format
Format
Format of SETC

Concatenation and

of SETA

of SETB

Generated Coding e e o o o e e o o @

Figure 3.23.
Instruction
Figure 3.24.
Instruction
Figure 3.25.
Instruction
Figure 3.26.
Instruction
Figure 3.27.
Figure 3.28.
Figure 3.29.
Figure 3.30.
Figure 4.1.

(Part 1 of 2)

Figure 4.2.

Conditional Branch
Unconditional Branch

Assembly No Operation
Macro Definition Exit
MNOTE Instruction .
Sample MNOTE « o o
Sample MSG Macro -
Sample MSG Coding . .

SDR Communications Region

LI T T }
¢ 8 o 6

Machine Check Recording

and Recovery (MCRR) Linkage Table . .
RMS Linkage Area (RASLINK) 193

Figure 4.3.

10 DOS System Programmer's Guide

<177
<177
179
.180
.180
.180
.181
.182
.182
.183
.183
.184
.184
.184
.185
.186
.190

192

Figure 4.4.

Information Block (PIB) Table . . . «
PIB Flag Expansions . . .

Figure 4.5.
Figure 4.6.

Information Block (PIB) Table

Figure 4.7.

(Cancel Code X"21") . . ¢ ¢ o o « o «
Low Core Error Bytes . .

Figure 4.8.
Figure 4.9.

Figure 4.10.

(Part 1 of 8)

Figure 4.11.
Figure 4.12.
Analysis Aid
Figure 4.13.
1 of 10) .
Figure 4.14.
Figure 4.15.
Figure 4.16.
Figure 4.17.
Figure 4.18.
Figure 4.19.
Switches .
Figure 4.20.
Fiqure 4.21.
Figure 4.22.
Figure 4.23.

DTF-A Appendage o« « o« o « o o o« « o« «

Figure 4.24.
Figure 4.25.

First Part of Program

.195
.196

Second Part of Program

197

Causes for Message 0S04I

-200
.203

COBOL Sample Program
(Part 1 of 27)

(Part 1 of 18)

e o o o s e e o o o o <207
FORTRAN Sample Program

«235
Using RPG Pointers to DTF 243

Halt Indicator (HO)

- Ll - - - - - - - - . - 02“"
RPG Sample Program (Part

.245
.255
-256
.257
.258

«259

PL/I Program Structure .
PL/I Storage Areas o o
Entry Point Table . . .
Object Time Core Usage
Library Work Space . . .
Communications Area
Dummy DSA and DSA Layout
Block Description . . .
DSA Chaining
PL/I Consecutive File

. 260
260
«261
<262

<263
PL/I Regional File DTF-A .263
PL/I Sample Program

@ ®© e e © e e e a ° o =

<265

As a system programmer, you make decisions
involving the components of your
installation's supervisor, file
organization, program design, and so forth.
From time to time, you may be called upon
to advise other programmers concerning DOS.
In order to assist you in this task, this
publication brings together and expands
upon information from many sources. It is
divided into four major sections:
Supervisor Planning Concepts, Data
Management, Program Design, and Debugging
Aids.

The Supervisor Planning Concepts section
is of interest to the person(s) responsible
for tailoring the IBM-supplied Disk
Operating System to meet the needs of the
installation. This section describes in
detail optional supervisor facilities
available under DOS. Using the information
presented in this section together with the
information on main storage requirements
and implementation procedures found in the
DOS System Generation listed in the
Preface, the system programmer can decide
whether or not to include a particular
facility within the installation's
supervisor. Guidelines for implementing
these facilities at system generation time
are also presented.

The Data Management section is of
interest to the person(s) responsible for
choosing the type of file organization best
suited for an application. This section
discusses data management concepts, the
advantages and disadvantages of each type
of file organization (sequential, direct
access and indexed sequential) and criteria
for choosing the best file organization and
retrieval method.

In addition, data manipulation is
described at both the physical and logical
IOCS levels. Detailed information for
coding at the physical IOCS level is
included. This section also defines the

Introduction

macros for implementing logical IOCS and
describes the interrelationships of the DTF
and logic module generation macros.

The Program Design section is of
interest to the person(s) responsible for
program design and implementation. The
Disk Operating System offers the programmer
a great deal of flexibility in the
generation of his system and in its
operation. This section discusses
effective use of the linkage editor and the
checkpoint/restart facility. In addition,
system programming techniques such as macro
coding, overlay structure and
self-relocating programs are discussed.

The IBM 3211 Printer support is also
discussed.

The Debugging Aids section is of
interest to both the application and system
programmer. This section describes system
action on a cancel condition, gives
register conventions for following program
flow, describes the types of documentation
to be gathered for debugging purposes and
the action to be taken when a hard wait or
program loop is encountered. Problem
determination aids are briefly described.
Aids for debugging problem programs written
in assembler language, COBOL, FORTRAN, PL/I
and RPG are given.

In case of difference between the
conventions given in this manual
for control program functions and
those appearing in IBM-supplied
DOS component publications (such
as guides for language
translators, sorts, utilities,
specifications manuals, etc),
observe the specific restrictions
of the component.

2
g

o e s e S e S G —— — — T—
e S . G . —— — —— —— . =)

Introduction 11

12 DOsS System Programmer's Guide

Section 1: Supervisor Planning Concepts

Section Outline

System Residence Organization . . « o 15 DEQ Macro Considerations 082
IPL (Cylinder 0, Track 0, Records Intertask Communication . « . . . o 42
1and 2) 15 POST Macro Considerations 42
Volume Label (Cyllnder 0, Track 0, Summary of Multitasking
Record 3) . . & o & o 4 o« o = & & o 15 Considerations . . « . o . « « « « . 43
System Directory (Cylinder O, Multitasking Examples . . « « « o « o U5
Track 1) ¢ o ¢ o o o o o e o o « 15 ATTACH Macro Example . « « « « « - . U5
System Work Area (Cylinder 0 DETACH Macro Example . . . « « « « « U47
Tracks 2, 3 and 4) « o 15 ENQ/DEQ and RCB Macros Examples . . 48
Transient Directory (Cylinder 0, POST Macro Example « 51
Track 5) . « < « « o o - « 15 WAITM Macro Example « « « 52
Open Directory (Cyllnder 0, Track STXIT AB Macro Example « « 53
6) ¢ @ i e e e e e e e e e e s s - « 15 Track Hold and Reentrant Module
Library Routine Directory Example . . ¢ ¢ « o « « « « « « « « 55
(Cylinder 0, Track 7) . « « « « « . 15 FOPT MACYO « o « o « o o o« o« o « o« o o « 56
Foreground Program Directory Operator Communications Support (OC) . 56
(Cylinder 0, Track 8) 16 Operational Considerations 56
Phase Directory (Cylinder 0, Track , Interval Timer Support (IT) 56
9) 4 i e e e e e e e e e e e e s e e 16 Program Check Support (PC) 58
Core Image Library Directory 16 Tape Error Recording e« « « « 58
Core Image Library . « « « « « « « . 16 Seek Separate Support (SKSEP) e e o o 62
Relocatable Library Directory . . . 16 Physical Transient Overlap Support
Relocatable Library . . « . « . . . 18 (PTO) e e o e e o e o o o o 62
Source Statement Library Directory . 18 Console Bufferlng Support (CBF) . . . 63
Source Statement Library 18 Independent Directory Read-In Area
Label Information Cylinder 18 (IDRA) @ o ¢ o o o o o « = « « =« « « « 64

SUPVR MacCrXoO =« « o o o o o o o « o o o 18 System Generation Considerations . . 64

Multiprogramming Support (MPS) e o o o 18 Command Chaining Support (CCHAIN) . . 64
Partitioning « « « ¢« ¢« ¢« ¢ o o « o« . 20 Track Hold Support (TRKHLD) 65
Control Method . « . . « . « « « « . 20 Supervisor Considerations 65
Task Selection « . . . ¢« ¢« « . <« « o 20 LIOCS Considerations « « 66
System Considerations « . . 27 Abnormal Termination Support (AB) . . 67
Concurrent Peripheral Operation STXIT Macro Considerations 67
(CPO) v o o o o o« o o o o o o =« « « 27 Multiple Wait Support (WAITM) 70
Operational Considerations 27 Multiple Wait Considerations 70
Programming Considerations 28 DASD File Protect Support (DASDFP) . . 70

American National Standard Code for Mode of Operation « « 10

Information Interchange (ASCII) System Files On Disk Support (SYSFIL) 74

SUPPOTE & ¢ ¢ o « o « o o o o « « » o 28 Considerations When Using System
System Considerations . . « . « . . 28 Files on Disk . = ¢« o« « & =« « « « « 15
System Generation Guidelines 29 Private Core Image Libraries 76

Magnetic Ink Character Recognition System Considerations« . « . 76

Support (MICR) . « « « « « « « « « « « 36 System Generation Guidelines 81
System Considerations . « « « « « . 36 Job Accounting Interface Support . . . 81

Asynchronous Processing (AP) 38 Programming Considerations 81
System Considerations 38 System Generation Guidelines 82
Multitasking Macro Usage « « « « « « 39 ALLOC MACXO =« < « « o o « o « « « « « « 84
Subtask Initiation and Normal System Considerations 84
Termination . . .« « ¢« & ¢« ¢« & « « « 39 IOTAB Macro . . . e « o« o o 84
ATTACH Macro Considerations 39 Job Informatlon Block (JIB) e <« o« - o 84
DETACH Macro Considerations 40 Channel Queue (CHANQ) « . - . 84
Resource Protection 41 Determining Size of the CHANQ . . . 84
ENQ Macro Considerations 42 DVCGEN Macro . . . « e o e - o - 87

Channel Reschedullng Con51derat10ns . 87

Section 1: Supervisor Planning Concepts 13

5 Section Figures

f

Figure 1.1. System Residence
Organization « « « « « « . e o o o
Figure 1.2, MPS storage Map o e
Figure 1.3. Superv1sor Calls (Part 1
of 2) ¢ ¢ ¢ ¢ o o . . © e o e o @
Figure 1.4, Process1ng and I/0
Requests Relationship . . . « o o e
Fiqure 1.5. First Example of
Processing and I/0 Requests with I/0
Interrupts « e o o o o o s o o o = @
Figure 1.6. Second Example of
Processing and I/O Requests with I/0
Interrupts e e ® ® e« % o s 8 e o e =
Figure 1.7. System Communications
Region (Part 1 0of 5) . . & &« ¢ & & « &
Figure 1.8 Background Communications
Region Extension (BGXTNSN) « o o o @
Figure 1.9. Tables for MICR DTF

Addresses and Pointers
Figure 1.10. Example of Multltasklng
Priorities - e e e o o o

Figure 1.11. Event Control Block
(ECB) &« o ¢ o @ o« o o o o« o« o o« o s @
Figure 1.12. Resource Control Block
(RCB) &« o« o ¢ o o « o o« o« «a s a a o o
Figqure 1.13. Option Tables . . . « .
Figure 1.14. 1I/0 Table
Interrelationship <« « « o« ¢ « o« o o &
Figure 1.15. Tape Error Block « e e
Figure 1.16. TEBV Table Showing
Status Block and Error Blocks
Figure 1.17. Console Buffering Table
and Work Areas e e o o e s e e e o
Figure 1.18. Example Using CCHAIN
SUPPOTt o o o o o « o « « « o o o o «
Figure 1.19. Processing of STXIT
Conditions e o @ @« o ° o o s a s ° @
Figure 1.20. STXIT Sample Program . .
Figure 1.21. LTogical Unit Block (LUB)
Table o ¢ ¢« ¢« ¢ ¢ @ « o @ o« o o o« o =
Figure 1.22. Job Information Block
(JIB) Table . ¢« o« o« o« o « o o o o « «
Figure 1.23. DASD File Protect Logic
Flow . . . e e @ o s o e o o o o o e
Figure 1. 24. Disk Information Block
(DIB) Tableé . o o « « o « « o o .o a o
Figure 1.25. Example of Dedicated
PCIL in a Multiple Partition
Environment . « ¢ o o ¢ o« o o o o« o «
Figure 1.26. Example of PCIL in a
Single Partition Environment « o .
Figure 1.27. Identification of SYSLNK
Files e & o e e o e e o o o
Figure 1.28. Job Accounting Table . .
Figure 1.29. CHANQ, LUBID, REQID,
LUBDSP, and TKREQID Tables . - o
Figure 1.30. Physical Unit Block
(PUB) Table . ¢ ¢« ¢ ¢ « o o o« « o o =
Figure 1.31. Device Type Codes . . .

14 DOS System Programmer's Guide

17
19

21
24

25

26
30
35
37
38
41

41
57

59
60

61
64
65

67
69

71
72
74
75

78
79

80
83

85

89
90

To assist you in planning a supervisor
tailored to meet the needs of your
installation, this section presents the
organization of a disk resident system as
received from Program Information
Department (PID), describes optional
supervisor facilities at a conceptual
level, and presents guidelines for their
implementation. Those optional facilities
requiring special consideration are
described in the order in which they appear
as parameters within the supervisor
generation macros. For information on the
other optional supervisor facilities, see
the DOS System Generation listed in the
Preface.

System Residence Organization

Figure 1.1 describes the organization of
the DOS disk resident system. The disk
resident system may be on an IBM 2311 Disk
Storage Drive, an IBM 2314 Direct Access
Storage Facility, or an IBM 2319 Disk
Storage Facility. The organization of the
disk pack is as follows:

IPL (Cylinder 0, Track 0, Records 1 and 2)

This area contains the IPL bootstrap
program.

Volume Label (Cylinder 0, Track 0, Record
3)

The volume label contains the address of
the Volume Table of Contents (VTOC)
established when the pack was initialized.

System Directory (Cylinder 0, Track 1)

This directory consists of five records
that make up the system master directory,
Records 1 through 4 are 80 bytes in length.

Record 1 contains information describing
the core image library and directory.
Records 2 and 3 contain the starting
address of the relocatable library
directory and the source statement library
directory, respectively. Record 4 is not
used. Record 5 is the IPL loader program
($3ASIPL2).

System Work Area (Cylinder 0, Tracks 2, 3
and #)

This 3-track area is reserved as a work
area for the librarian programs and linkage
editor. The format of the records in the
librarian area depends on the program using
the area at a specific time.

Transient Directory (Cylinder 0, Track 5)

This single track directory contains
entries for the A- and B-transient routines
that are located in the core image library.
The entries in this directory are taken
from the core image library directory.

The core image library phases referenced
in this directory have phase names prefixed
by $$A (A-transients) or $3B
(B-transients). This directory has a
maximum capacity of 144 entries for the
2311, or 270 entries for the 2314/2319.
Track format is identical to the core image
library directory.

Open Directory (Cylinder 0, Track 6)

This single track directory contains
entries for the LIOCS open phases located
in the core image library. The entries in
this directory are taken from the core
image library directory. The core image
library phases referenced in this directory
have phase names prefixed by the characters
$$BO. This directory has a maximum
capacity of 144 entries for the 2311, or
270 entries for the 2314/2319.

Library Routine Directory (Cylinder O,
Track 7)

This single track directory contains
entries for frequently used core image
library phases, such as job control,
linkage editor, and so forth. The entries
in this directory are taken from the core
image library directory. The core image
library phases that are placed in this
directory have phase names prefixed by a $
(for example, S$LNKEDT). This entry has a
maximum capacity of 144 entries for the
2311, or 270 entries for the 2314/2319.

Section 1: Supervisor Planning Concepts 15

Foreground Program Directory (Cylinder 0,
Track 8)

This single track directory contains
entries for the foreground program phases
located in the core image library. The
entries in this directory are taken from
the core image library directory. The core
image library phases referenced in this
directory have phase names prefixed by the
characters FGP. This directory has a
maximum capacity of 144 entries for the
2311, or 270 entries for the 2314/2319.

Phase Directory (Cylinder 0, Track 9)

This ' single track directory contains
entries for the phases of the current BG
problem program. The entries in this
directory are constructed by job control
before each job step is executed in the
background partition only. They are taken
from the core image library directory.

The phase naming conventions that permit
the use of the phase directory are:

1. All program names must be unique in
the first four characters.

2. The first four characters of the name
of each phase of a program must be
identical to the first four characters
of the program name. All eight
characters of the first phase name
must be identical to the program name.

Example: WXVZPROG
WXVZPROG - phase 1
WXVZPH1 - phase 2
WXVZPH2 - phase 3

The maximum capacity of this directory is

144 entries for the 2311 or 270 entries for
the 2314/2319.

Core Image Library Directory

This directory consists of one or more
tracks, depending on the allocation
specified by the user. It contains one
entry for each of the phases in the core
image library.

Note: A phase is an overlay of a
multiphase program or a complete program if
not multiphase.

Each directory entry describes one phase
in the core image library and contains:

16 DOS System Programmer's Guide

e Phase name

e Loading address
e Number of blocks
e Entry point

e Starting disk address in the core image
library

e Length of last block

Core Image Library

The core image library consists of five or
more tracks, depending on the allocation
specified by the user. For the 2311, each
track contains two blocks with a maximum
capacity of 1728 bytes. For the 2314,/2319,
each track contains four blocks with a
maximum capacity of 1688 bytes. The number
of programs (phases) and the size of each
program to be contained in the core image
library dictates the number of cylinders
that must be allocated. Each program
starts with a new block and only the last
block of a program can contain less than
1728 bytes of data for the 2311 or 1688
bytes of data for the 2314,/2319.

Note: A phase is an overlay of a

multiphase program or a complete program if
not multiphase.

Relocatable Library Directory

This directory consists of one or more
tracks, depending on the allocation
specified by the user. It contains two
types of information:

1. System directory information for the
relocatable directory and library.
This information occupies the first
five entries of the first record in
the relocatable directory.

2. An entry that describes each module in
the relocatable library and contains:

a. Module name

b. Total number of text-record blocks
required to contain this module

c. Starting disk address of the first
text-record of this module

d. Change level identification.

STAR
NO. COMPONENT TING DISK ADDRESS NUMBER R=REQUIRED
OF TRACKS 1 5 - opTIONAL
BB ccC HH R (Allocation)
IPL Bootstrap Record 1 (SAS$IPL1) 00 00 00 1 R
IPL Boofstrap Record 2 (SASIPLA) 00 00 00 2 R
i 1
Volume Label 00 00 00 3 R
User Volume Label 00 00 00 4 o
Record 1 00 00 01 1 R
System Record 2 00 00 01 2 R
Directory Record 3 00 00 01 3 1 R
2 Record 4 00 00 01 4 R
IPL Retrieval Program ($$A$IPL2) 00 00 01 5 R
3 System Work Area (Librarian Area) 00 00 02 1 3 R
4 Transient Directory ($$A and $$B Transients) 00 00 05 1 i R
5 Open Directory ($$B0) 00 00 06 1 1 R
6 Library Routine Directory ($ Phasenames) 00 00 07 1 1 R
7 Foreground Program Directory (FGP) 00 00 08 1 1 R
8 Phase Directory (For Problem Program Phases) 00 00 09 1 1 R
01 for 231 l/ 00 for 2311
. . 00 for 2314/]10 for 2314/ .
9 Core Image Library Directory 00 2319 2319 1 R
. End of Cl Directory
10 Core Image Library 00 < I ES 1 * R
. R End of CI Library *
11 Relocatable Library Directory 00 = I 00 1 O
. End of RL Directory
2 *
1 Relocatable Library 00 X v 1 O
. . End of RL Library *
13 Source Statement Library Directory 00 71 [06 1 0]
14 Source Statement Library 00 End)c()f >3 IDi:?iffry 1 * ®)
. S End of SS Library 2311:10
15 Volume Area File Definition Storage Area 57 | 06 1 2314/2319:20 R
End of Volume Area
16 *
User Area) l 30 1 o

*Allocation Dependent On User Requirements
X=Ending CC of the Preceding Directory

Y =Ending HH of the Preceding Directory

Z =Ending CC of the Preceding Library

Figure 1.1.

System Residence Organization

Section 1: Supervisor Planning Concepts

17

Relocatable Library

The relocatable library consists of five or
more tracks, depending on the allocation
specified by the user. The number of
modules and the size of each module to be
contained in this library dictates the
number of tracks that must be allocated.
Each allocated track contains 9 blocks
(2311) or 16 blocks (2314/2319), and each
block has a fixed length of 322 bytes.

Each module starts with a new block but not
necessarily a new track.

Source Statement Library Directory

{This directory consists of one or more

- tracks, depending on the allocation

specified by the user. It contains two

types of information:

1. sSystem directory information for the
source statement directory and
library. This information occupies
the first five entries of the first
record in the source statement
directory.

2. An entry that describes each book (see
Note 1) in the source statement
library and contains:

a. A sublibrary prefix: any
alphameric character, §, #, or a,
except A and C (see Note 2).

b. Book name.

c. Starting disk address of the first
block of this book.

d. Total number of blocks required to
contain this book in the source
statement library.

e. Change level identification.

Note 1: A book is a sequence of source
language statements, in compressed card
image format, accessed by a single name.

Note 2: A and C . are reserved for assembler
and COBOL, respectively.

Source Statement Library

The source statement library consists of
five or more tracks, depending on the
allocation specified by the user. The
number of books and the size of each book
to be contained in this library dictates

18 DOS System Programmer's Guide

the number of tracks that must be
allocated. Each track contains 16 blocks
(2311) or 27 blocks (2314/2319), and each
block has a fixed length of 160 bytes.
Each book starts with a new block but not
necessarily a new track. Each book in the
source statement library contains
compressed card images of the source
language input to the assembler or language
translators. A compressed card image can
overflow from one block to another.

Label Information Cylinder

The label information cylinder (10 tracks
for 2311 or 20 tracks for 2314/2319)
contains background and foreground user and
standard label information.

SUPVR Macro
MULTIPROGRAMMING SUPPORT (MPS)

Multiprogramming is the ability to run -
multiple programs concurrently, provision
for which must be included in the DOS
supervisor at system generation time. Each
program resides in a different area of main
storage called a partition. The three
problem program partitions are designated
background (BG), foreground 1 (Fl), and
foreground 2 (F2).

The background partition must be at
least 10K because job control runs in the
background partition and requires 10K bytes
of main storage. However, 14K allows
faster assemblies and linkage editing.

The remaining main storage is divided
between the two foreground partitions. To
satisfy the requirements for the storage
protect special feature, these partitions
must begin and end on 2K boundaries.
Because the MPS supervisor requires a
minimum of 8K and the background partition
requires a minimum of 10K, MPS will not
function on systems with less than 24K of
main storage (see Figure 1.2).

MPS operates under the principle that in
most commercial installations, the CPU is
heavily I/O0 bound. Much of the CPU running
time is spent waiting for a printer, a
reader or a punch to complete a previous
operation before the subsequent one can be
started. With MPS, when a partition
becomes I/0 bound (that is, it cannot
continue until the completion of some I/O
operation), a task selection routine in the
MPS supervisor attempts to give CPU control
to the next partition that is ready to run.

PranN

Supervisor Nucleus

1/O Tables and Information Blocks
| Patch Area I
Logical Transient Area ($$8) 1200 Bytes

Physical Transient Area ($$A) 552 Bytes

CE CE Background
. Table Save Area

Label Save

80 Bytes (112 with Floating Point)

Background Program Area
10K Minimum

F2 Save Area @— 88 Bytes| Label Save
(120 with Floating Point) [Area @

Foreground 2 Program Area
Multiple of 2K

F1 Save Area@- 88 Bytes | Label Save :r
(120 with Floating Point) | Area () 1

Foreground 1 Program Area
Multiple of 2K

Return PSW (8 Bytes) Program Name (8 Bytes)
' Return PSW (8 Bytes)-

General Registers 9 through 8 | General Registers 9 through 8
64 Bytes 64 Bytes

Length of Label Area (2 Bytes)
Reserved (6 Bytes) : Length of Label Area (2 Bytes)

Floating Point Registers Reserved (6 Bytes)
32 Bytes

Floating Point Registers
32 Bytes

Figure 1.2. MPS Storage Map

Section 1: Supervisor Planning Concepts 19

The partition to which control is given
is determined by a priority system. F1 has
highest priority followed by F2 and BG. A
partition cannot be interrupted by one of
lower priority. When an Fl program is
ready to run, the task selection routine
seizes control from a program of lower
priority. One of the disadvantages in such
an arrangement is the possibility of a high
priority program never relinquishing
control to other partitions. This can
happen if the high priority program has few
I/0 requests. In general, the program with
the largest number of I/0O operations or
wait time should reside in the highest
priority partition. A compute (CPU) bound
program should reside in a low priority
partition (for example, BG).

Because the channel scheduler attempts
to keep devices and channels busy
asynchronously, it is an advantage for all
programs to use sufficient I/0 zgeas to
keep the channel queue stacked with
requests. A lower priority partition is
more likely to require multiple I/O areas
to achieve this than is a higher priority
partition.

Partitioning

Multiprogramming has been defined as a
technique whereby two or more programs may
operate concurrently, sharing system
resources between them. The DOS
multiprogramming support requires that such
programs be co-resident in main storage.
To achieve this, storage is divided into 3
sections termed partitions (BG, F1, and
F2). Each partition is capable of holding
a distinct problem program. When a
partition contains a program that is in
course of execution, the partition is said
to be active. When a partition does not
contain such a program, or is not
physically present in the system, then it
is said to be inactive.

Each partition is of fixed physical size

and is defined by fixed boundaries. For
this reason, DOS multiprogramming is termed

20 DOS System Programmer's Guide

fixed partition multiprogramming.

Partition boundaries may be altered in any
manner when all partitions are inactive
(minimum background size is 10K). When any
partitions are active, boundaries can be
altered only if the lower limit of each
active partition is unchanged and the size
of each active partition is not reduced.

Each partition is allotted its own
unique storage protection key; for this
reason the size of any partition must be an
integral multiple of 2K. Thus, a program
contained in any one partition can read but
not alter the contents of core locations
contained in any other partition.

Control Method

Multiprogramming increases system
efficiency by making better use of the
available system resources than is possible
in a single partition batched job
environment.

Multiprogramming support is written in
such a way that the central processing unit
does not enter the wait state if useful
processing can be performed in any
partition. Multiprogramming allows the
input and output functions of one program
to overlap with the processing functions of
other programs. .

Task Selection

A program yields control by issuing a
supervisor call instruction to pass control
to the supervisor routines. The SVC
instruction contains a code that indicates
its purpose. The most numerically
significant of these codes in a
multiprogramming context are those
associated with input and output
operations; therefore, only these codes are
described. A complete list of DOS
supervisor calls is given in Figure 1.3.

SvC
Macro Supported Function
Dec. | Hex.

EXCP 0 0 Execute channel programs.
FETCH 1 1 Fetch any phase.

2 2 Fetch a logical transient (B - transient).

3 3 Fetch or return from a physical transient (A - transient).
LOAD 4 4 Load any phase.
MVCOM 5 5 Modify supervisor communications region.
CANCEL 6 6 Cancel a problem program or task.
WAIT 7 7 Wait for a CCB or TECB.

8 8 Transfer control to the problem program from a logical transient (B -transient.)
LBRET 9 9 Return to a logical transient (B - transient) from the problem program after an

SvC 8.

SETIME 10* A Set timer interval.

11 B Return from a logical transient (B -transient).

12 Cc Logical AND (Reset) to second job control byte (displacement 57 in communi-
cations region).

13 D Logical OR (Set) to second job control byte (displacement 57 in communications
region).

EOJ 14 E Cancel job and go to job control for end of job step.

15 F Same as SVC 0 except ignored if CHANQ table is full . (Primarily used by ERP.)
STXIT (PC) 16* 10 Provide supervisor with linkage to user's PC routine for program check interrupts.
EXIT (PC) 17* 11 Return from user's PC routine .
STXIT (IT) 18* 12 Provide supervisor with linkage to user's IT routine for interval timer interrupts.
EXIT (IT) 19* 13 Return from user's IT routine.
STXIT (OCQ) 20* 14 Provide supervisor with linkage to user's OC routine for external or attention

interrupts (operator communications).

EXIT (OC) 21* 15 Return from user's OC routine.

22* 16 The first SVC 22 seizes the system for the issuing program by disabling multi-
program operation. The second SVC 22 releases the system (enables multiprogram
operotion).

23* 17 Load phase header. Phase load address is stored at user's address.

SETIME 24* 18 Provide supervisor with linkage to user's TECB and set timer interval .

25* 19 Issue HALT 1/O on a teleprocessing device, or HALT 1/O on any device if issued
by OLTEP.

26* 1A Validate address limits.

27*% 18 Special HIO on teleprocessing devices.

* = optional

Figure 1.3. Supervisor Calls (Part 1 of 2)

Section 1: Supervisor Planning Concepts 21

svC
Macro Supported Dec. | Hex. Funcfion
EXIT (MR) 28* 1C Return from user's stacker select routine (MICR type devices only).
29* 1D Provide return from multiple wait macros WAITF and WAITM (except MICR type
devices).
QWAIT 30* 1E Wait for a QTAM element.
QPOST 31* 1F Post a QTAM element .
32 20 (Reserved)
33 21 Reserved for internal macro COMRG.
34 22 Reserved for internal macro GETIME.
HOLD 35* 23 Hold a track for use by the requesting task only.
FREE 36* 24 Free a track held by the task issuing the FREE.
STXIT (AB) 37* 25 Provide supervisor with linkage to user's AB routine for abnormal termination of
a task.
ATTACH 38* 26 Initialize a subtask and establish its priority .
DETACH 39* 27 Perform normal termination of a subtask . It includes calling the FREE routine to
free any tracks held by the subtask .
POST 40* 28 Inform the system of the termination of an event and ready any waiting tasks.
DEQ T 41* 29 Inform the system that a previously enqueued resource is now available.
ENQ 42* 2A Prevent tasks from simultaneous manipulation of a shared data area (resource).
43* 2B Provide supervisor support for external creation and updating of SDR records.
44* 2C Provide supervisor support for external creation of OBR records.
45* 2D Provide emulator interface.
46* 2E Provide OLTEP with the facility to operate in supervisory state .
47* 2F Provide return from wait multiple WAITF for MICR type device.
48 30 (Reserved)
49 31 (Reserved)
50 32 Reserved for LIOCS error recovery.
51* 33 Return phase length at OLTEP request.
* = optional

Figure 1.3. Supervisor Calls (Part 2 of 2)

22 DOS System Programmer's Guide

SVC Code 0 (EXCP)

This code requests the supervisor to
initiate an input or output operation.
address of a Command Control Block (CCB)
located in the requesting program is also
passed to the supervisor via register 1.
This block contains information that
describes the precise nature of the
operation to be performed.

The

When the supervisor receives the EXCP
request but is unable to initiate the
required operation, it places the request
in a queue for later action. The traffic
bit in the relevant CCB is then set 0 to
whether or not an operation can be started
when requested. The supervisor then
returns control to the program that
requested the operation.

SVC Code 7 (WAIT)

This code informs the supervisor that the
program is unable to proceed further until
a previously requested operation has been
completed, and that the operation is still
in progress because the relevant traffic
bit is still set to 0. The program is
placed in the wait state. Note that the
instructions immediately preceding the
supervisor call instruction form a test of
the traffic bit so that, if the traffic bit
is set to 1, the supervisor call is
bypassed. When the SVC 7 is recognized,
the program return address is reduced so
that the instructions generated by the WAIT
macro will be issued.

When the supervisor recognizes an SVC 7
interrupt, it records that the program is
in the wait state. The supervisor then
gives control to the next partition of the
highest priority that is ready to run. If
such a partition does not exist, the
supervisor causes the central processing
unit to enter the wait state until an
interrupt occurs.

A program loses control to the
supervisor whenever an interrupt occurs.
Oonly the input/output interrupts are
described in the following text because
they are the most significant interrupts in
a multiprogramming environment.

When an input/output interrupt occurs,
the supervisor identifies the operation in
question and checks whether it has been
satisfactorily performed. If it has, the
traffic bit in the related CCB is set to 1;
the owning partition is made ready to run,
that is, if it was in a wait state it is
removed from that state; and any further
input/output operation pending for this
channel or device is initiated. The task
selection routine in the supervisor then
gives control to the next partition of the
highest system priority that is ready to
rune.

The following three figures show the
relationship between six different
operations while operating under MPS.
three partitions are active.

All

Figure 1.4 assumes that programs were
initiated at some prior point in time in
all three partitions. The first part of
Figure 1.4 shows that foreground 1 has
control of the CPU and is processing. At
some point in time, the program in F1
returns control of the CPU to the
supervisor by issuing an I/0 wait (SvVC 7).

The supervisor goes through a task
selection process, determines that
foreground 2 is ready to run and gives CPU
control to it. F2 processes its program
until it requires I/0, and then returns
control of the CPU to the supervisor by
issuing an I/O0 wait (SVC 7).

The supervisor goes through a task
selection process, determines that Pl is
not ready to run but the background is
ready to run, and gives CPU control to the
background. BG processes its program until
it requires I/0 and then returns control of
the CPU to the supervisor by issuing an I/0
wait (svC 7).

The supervisor goes through a task
selection process, determines that no
partitions are ready to run, and gives
control of the CPU to a task called All
Bound. This task loads a PSW that puts the
system in the wait state with all
interrupts enabled. Note that no I/0
interrupts have occurred.

Section 1: Supervisor Planning Concepts 23

Foreground 1 (F1)

Foreground 2 (F2)

Background (BG)

Supervisor

System in Wait State

1/O Interrupts

NOTES

1 2 3 4 5 6
T T T ' a T
| ! |
| | | | | |
| | | | | |
Processi l ! ' | !
rocessing : Waiting for 1/0 Completion ! ,
/l i ! |) T 3
1/O Wait* | I ! | ! |
| ! l | 1 !
| Processing | ! !
. . Waiting for 1/O Completion P
T L 7
: | 1/0 Wait * ! ! :
| [| 1
] ' | Processing !
. r | l Waiting for 1/O Completion .
g | e ’
| 1/O Wait* I
| | | | ! I
; Task Task Task ¢
[Selection Selection Selecfionl !
| | J
| All
) | Bound
3 |
!
|
|
¢ | _f

Inactive State

Active State

*1 /0 Wait means an SVC 7 is issued (WAIT Macro)

Figure 1.4. Processing and 170 Requests Relationship

24 DOS System Programmer's Guide

Foreground 1 (F1)

Foreground 2 (F2)

Background (BG)

Supervisor

System in Wait State

1/O Interrupts

1 2 3 4 5
i i T r
' | | |
| | | |) {
| P4
. Waiting for I/O:
7 | ! I !
1 | | 1
! : | !
1 | |
1 |
. Waiting for 1/O JI N Waiting to be Selected It
7 |
|
| ! | |
1 | |
[i !
. Waiting for I/O!] : Waiting to be Selected Py
4 M 1 | | ’
|] | |
| | | |
[4 rl l l {
d 1 |, |f 3
Posting Traffic Bit and Performing Task Sialec'rion
[!]
7 | |
All Bound i |
| | It
| | I I
| 1 |
F1 BG F2
\ [\ l\ J
J

N

I/O INTERRUPT SEQUENCE

1. F1's1/O Interrupt Occurs
2. BG's 1/O Interrupt Occurs
3. F2's /O Interrupt Occurs

Figure 1.5.

Figure 1.5 starts with all partitions
waiting for I/0, and the system in the wait
state with interrupts enabled.

When the first I/0 interrupt occurs, the
supervisor I/0 interrupt routine gets
control of the CPU, and turns on the
traffic bit in the CCB associated with the
device causing the I/0 interrupt (F1
partition). The supervisor task selection
routine then gets control, determines that
F1 is through waiting, and gives CPU
control to it. F1 starts processing its
program.

An I/0 interrupt occurs and control
passes to the supervisor I/0 interrupt
routine. It turns on the traffic bit in
the CCB associated with the device causing
the I/0 interrupt (BG partition). The
supervisor task selection routine gets
control, determines that F1 is still the

First Example of Processing and I/0 Requests with I/0 Interrupts

highest priority program ready to run, and
gives CPU control to it. Note that BG is
still waiting, but now is ready to run

‘because its I/0 wait is complete.

While F1 is processing, anocther I1I/0
interrupt occurs and control passes to the
supervisor I/0 interrupt routine. It turns
on the traffic bit in the CCB associated
with the device causing the I/O interrupt
(F2 partition). The supervisor task
selection routine then gets control of the
CPU, determines that Fl1 is still the
highest priority program that is ready to
run, and gives CPU control to it. Note
that both BG and F2 are now ready to run,
but control of the CPU is retained by the
highest priority partition (F1) until it
issues an SVC or until one of the four
other system interrupts occurs.

Section 1: Supervisor Planning Concepts 25

1 2 3 4 5 6 7
T ! T | H !
| I r ' I :
I ! ! ' ! —
i I ! | [
Foreground 1 (F1) . Waiting for /0 ! : ' ' Processing
r T 4 1 I
]
A o L
! ! 1 !
| 1]]
!] |)
Foreground 2 (F2) . Waiting for 1/O | Processing ! Waiting to be Reselected .
r] T T | | ; 7
] | ! |
I 1] ! !
[: I ! I
[[! I
Background (BG) ., Waiting for 1/O Processing | Waiting to be Reselected .
d ! 1 | [1 1]
| I 1 ! | 1
] ! | | | I
Supervisor ‘ ‘ 4
]]
| Posting Traffic Bit and Performing Task Selection
! | !
F : !
All Bound |
System in Wait State oun :) ,
T T J
: I l}
BG F2 Fi
1/O Interrupt i \ h N g

1/0 INTERRUPT SEQUENCE

1. BG's 1/O interrupt Occurs
2. F2's1/O Interrupt Occurs
3. F1's 1/O Interrupt Occurs

Figure 1.6.

Figures 1.4 and 1.5 show a simplified
version of what actually occurs. In actual
practice, the process time for F1 would be
longer than ¥2 or BG, and the sequence of
170 interrupts would probably be staggered.

Figure 1.6 starts with all partitions
waiting for I/0, and the system in the wait
state with interrupts enabled.

When the first I/0 interrupt occurs, the
supervisor I/0 interrupt routine gets
control of the CPU, and turns on the
traffic bit in the CCB associated with the
device causing the I/0 interrupt (BG
partition). The supervisor task selection
routine gets control, determines that the
BG partition is the highest priority task
ready to run, and gives CPU control to it.
The BG partition starts processing with the
instruction 6 bytes before the I/0 wait
(svc 7).

26 DOS System Programmer's Guide

Second Example of Processing and I/0 Requests with I/0 Interrupts

When the second I/0 interrupt occurs,
the supervisor I/0 interrupt routine gets
control of the CPU, and turns on the
traffic bit in the CCB associated with the
device causing the I/0 interrupt (F2
partition). The supervisor task selection
routine gets control of the CPU, Qdetermines
that the F2 partition is now the highest
priority partition ready to run, and gives
CPU control to it. The F2 partition starts
processing with the instruction 6 bytes
before the I/0 wait (sSvC 7).

When the third I/70 interrupt occurs, the
supervisor I/0 interrupt routines gets
control of the CPU, and turns on the
traffic bit in the CCB associated with the
device causing the I/0 interrupt (F1
partition). The supervisor task selection
routine gets control of the CPU, determines
that the F1l partition is now the highest

priority partition ready to run, and gives
CPU control to it.

The foreground 1 partition remains in
control of the CPU until it issues an SVC
or until one of the four other system
interrupts occurs.

System Considerations

Any program that is process-bound
(compute-bound) completely suppresses any
event from taking place in any partition of
lower priority, regardless of the
utilization of channels and devices.
if the program in the foreground 1
partition is process-bound,
multiprogramming cannot take place because
a partition of lower priority cannot get
control. In general, a foreground program
should never be process-bound in a
multiprogramming environment.

Thus,

Because the slowest devices are those
that are associated with unit record
equipment (e.g., card readers, card
punches, line printers and terminals), unit
record and teleprocessing devices in a
multiprogramming environment should be
associated with the partitions of highest
system priority.

In general, the slowest input/output
devices should run with maximum efficiency,
because loss of efficiency on such devices
is more serious in terms of system
throughput than on faster devices.

Note: 1I/0 bound programs with the slowest
system devices should be allocated to the
highest priority partitions.

The efficiency of a low priority program
depends on the quantity and frequency of
processing time made available to it. The
most advantageous high priority program (in
terms of overall system efficiency)
combines lengthy input and output
operations with a minimum of processing.

Every time an input/output interrupt
occurs, it must be interrogated for all
partitions of higher priority than the
partition to which it relates. Therefore,
a reduction in the number of such
interrupts (which may be achieved by
increasing blocking factors of tape and
disk files), promotes greater
multiprogramming efficiency because it
lowers system overhead. Increased blocking
factors, however, result in increased core
storage requirements.

Another important system consideration
is the use of two input or output areas in
connection with one file (double
buffering). Double buffering increases
computer utilization by allowing the
overlap of input/output operations with
processing. Multiprogramming has the same
purpose. In double buffering, input/output
operations are overlapped with processing
relating to the same program; in
multiprogramming, input/output operations
are overlapped with processing relating to
a different program. Therefore, the more
efficiently double buffering operates in
relation to a given foreground program, the
less time will be freed for use by the
background program.

In a multiprogramming environment, it
may prove more efficient in terms of total
system throughput to dispense with double
buffering for programs operating in
foreground partitions. In most cases, main
storage can be better applied to the
accommodation of greater block sizes than
to the accommodation of double input/output
areas.

Concurrent Peripheral Operation (CPO)

The CPO (Concurrent Peripheral Operation)
concept is the application of
multiprogramming techniques to the basic
utility operations of card-to-tape,
tape-to-punch, tape-to-printer, and their
disk equivalents. Such operations are
performed in a separate storage partition.

A typical CPO program is a file-to-file
utility containing a minimum amount of
processing. Blocking and deblocking
operations and some data selection can be
performed, but this is all. Thus, CPO fits
the specifications for an efficient high
priority program. A CPO program is
normally associated with a unit record
device and the greater part of its
input/output time is likely to utilize
subchannels of the multiplexor channel.
Therefore, channel contention with other
concurrent programs is greatly reduced.
CPO is one of the most efficient practical
applications of the multiprogramming
technique.

Operational Considerations

Two methods used to initialize and operate
programs in the foreground partitions are:

1. Batch Job Foreground (BJF): This
method uses the job control program.

Section 1: Supervisor Planning Concepts 27

The foreground partition(s)

essentially operates like the

background partition (i.e., batched

processing automatic job-to-job

transition). The foreground

partition(s) must be a minimum of 10K.
2. Single Program Initiator (SPI): This
method uses the IBM 1052
Printer-Keyboard for System/360 or the
IBM 3210 or 3215 Comnsole
Printer-Keyboards for System/370 to
initialize single programs in the
foreground partition(s). When the
single program is terminated (either
under its own control by issuing an
EOJ, DUMP or CANCEL macro, or through
operator action, a program error or
certain 1/0 failures), a terminating
message is printed on the console and
the foreground partition becomes
inactive. To run the next single
program in the foreground partition,
the operator must again initialize it
from the 1052, 3210, or 3215 console.
The major advantage of SPI is that the
foreground partition size can be a
minimum of 2K bytes.

Programming Considerations

The output of the language compilers can be
link-edited to run in any partition,
provided enough core storage is available.

In a system that supports both
batched-job foreground and private core
image libraries (see Private Core Image
Libraries), the function of compiling can
be run in the foreground partitions as well
as -the background partition, providing
enough core storage is available in which
to execute the compiler. The linkage
editor can execute in any batched-job
partition. A private core image library is
required when executing the linkage editor
in a foreground partition.

System Generation Guidelines

The multiprogramming facility is specified
at system generation time by the
MPS= keyword parameter in the SUPVR macro.

NO
MPS=<{YES
BJF
NO This option automatically creates
a background partition consisting

of all available main storage
above the supervisor and negates

28 DOS System Programmer's Guide

any and all multiple partition

operation. NO is the assumed

value.
YES When yes is specified, one, two,
or three problem program
partitions may exist. The
foreground partitions may only be
initialized using the single
program initiator (SPI).
BJF Under this option, one, two, or
three problem program partitions
may exist and the foreground
partition(s) may be controlled
either by job control or the
single program initiator (SPI).

The parameter YES or BJF must be
specified if the supervisor is to be
generated to support QTAM.

AMERICAN NATIONAL STANDARD CODE FOR
INFORMATION INTERCHANGE (ASCII) SUPPORT

In addition to processing EBCDIC data
files, DOS can process magnetic tape files
written in ASCII (American National
Standard Code for Information Interchange),
a 128-character, 7-bit code. The
high~order bit in the System/360 8-bit
environment is zero. ASCII tape files may
be either unlabeled or labeled according to
the specifications of the American National
Standards Institute, Inc. (ANSI).

System Considerations

ASCII tape files may be processed in either
a foreground or background partition.
Because internal processing of ASCII files
is performed in EBCDIC, the data is
translated at I/O time. Input files
containing ASCII data are translated to
EBCDIC as soon as the record is read into
the I/0 area. Output files described as
ASCII are translated from EBCDIC to ASCII
just prior to writing the record.

Two translate tables (providing for the
conversion from ASCII to EBCDIC and from
EBCDIC to ASCII) are generated at system
generation time by specifying the ASCII=YES
parameter in the SUPVR macro. These tables
are located immediately before the Seek
Address Blocks in the supervisor. The
address of the ASCII-EBCDIC translate table
is in locations 44-47 (decimal) of the
communications region extension. Add 256
(decimal) to this table to get the address
of the EBCDIC-ASCII translate table. The
address of the communications region

extension is in bytes 136-139 (decimal) of
the communications region. Figures 1.7 and
1.8 show the system and background
communications regions.

System Generation Guidelines

To generate supervisor support for handling
ASCII tape files, ASCII=YES must be
specified in the SUPVR macro.

No
ASCII=\YES

NO

YES

When ASCII=NO is specified, or if
the parameter is omitted or
incorrectly specified, the
translate tables are not
generated. The system will then
process EBCDIC files only.

When YES is specified, the two
translate tables are generated in
the supervisor. The address of
the first table (ASCII-EBCDIC) is
inserted in each communication
region extension to enable
accessibility by any task in any
partition.

Section 1: Supervisor Planning Concepts 29

COMREG*

Displacement
hexadecimal

Displacement
decimal

Displacement
hexadecimal

Displacement
decimal

Displacement
hexadecimal

Displacement
decimal

Displacement
hexadecimal
Displacement
decimal

Displacement
hexadecimal
Displacement
decimal

8.

0A

0C

18 20 24 28 2C
0 8 10 12 23 24 32 36 40 44
Highest [Address of
Address of | Address of UPslI Storage E?i Afc::‘he *5 |Uppermost Label
Date PPBEG EOSSP Problem Program Use | Byte Job Name | Agdress |2 =% ""®€Byte of Phase | Area
Fetched or f .
of the Loaded with Highest Length
Partition | -°¢ Ending Address|
XXXXXXXX XX XX XXXXXXXXXXX X XXXXXXXX § XXXX XXXX XXXX XX
2E 30 34 35 36 37 39 3A 38 3C 3E
46 48 52 53 54 55 57 58 59 60 62
PIK End of | Machine| System Etcmdard Dump, | Job Linkage |Language | Job Disk Address
(PID) | Storage { Confg. Confg. Tanguloi;e Log and | Control | Control |Translator| Duration | Address of | of
Address | Byte Byte l}‘g‘s TN ASCIl | Byte Byte |Control | Indicator [Label FOCL
Options | Options Byte Byte Cylinder
XX XXXX X X X X X X X X XX XX
N J
Job Control Switches
10 42 44 46 48 4A 4C 4E 4F 58 5A 5C
64 66 68 70 72 74 76 78 79 88 90 92
Address | Address | Address| Address| Address| Address | Address |Line System Date LIOCS Address of | 1D Number
of of of of of of of Count Comm,. 1st Part of {of Last
PUB | FAVP [J1B |TEB |FICL | NICL [LuB |for Bytes PIB Table | Checkpoint
SYSLST
XX XX XX XX_| XX XX XX X XXXXXXXXX XX XX XX
5E 60 62 64 66 68 6A 6C 6E
94 96 98 100 102 104 106 108 1o
Length of LUB | Address of | Address of | Address of | Address of | Address of Key of Address of Logical
ID Queve = Disk Error PC Option | IT Option | OC Option | Program the LUBID Transient
No. of Channel | Information | Recovery Table less | Table less | Table less with Timer | Queue Key
Quevue Entries | Block (DIB) | Block 8 bytes 8 bytes 8 bytes Support
XX XX XX XX XX XX XX XX
70 7C 7E 80 84 86 87 88
112 124 126 128 132 134|135 [136
Address of | Address of | Address of { Address of Op~ |System| Pointer to
s isor Constants 2nd MICR DTF | QTAM BG Comm. | tion |Config] Comm.
upervisor L-onstan Part of Table Vector Region Indi- |uration| Region
PIB Table (PDTABB) Table cator |Byte 2| Extension
XXXXXXXXXXXX XX XX XXXX XX X X XXXX

* The address of the communications region is in fixed location X'14' = X'17'.

Displacement values illustrated can be used to access the listing and/or the key that follows the figure.
The key offers more detailed information about each area when necessary.

Figure 1.7.

30 DOS System Programmer's Guide

System Communications Region (Part 1 of 5)

Key to Communications Region Displacements:

MM/DD/YY or DD/MM/YY obtained from the job control date statement. Format controlled by COMREG + 53
(System Configuration Byte, date convention bit 0),

Address of the problem program area.

=] [

Address of the beginning of the problem program area. Y (EOSSP)=Y (PPBEG) if the storage protection option has not
been selected. Y (EOSSP) equals the first main storage location with a storage protection key of 1, if storage protection
is supported .

User area, If seek separation option is specified, bytes 12 and 13 are used at IPL time for the address of the seek
address block.

User program switch indicator.

~

Job name set by the job control program from information found in the job statement.

w NHEN e
N w N

Address of the uppermost byte of the problem program area as determined by the IPL program (Clear storage routine
determines the address, ENDRD routine of $$A$IPL2 stores it.), or the address of the uppermost byte of the partition
as determined during processing of the ALLOC statement.

w
o

Address of the uppermost byte of the last phase of the problem program fetched or loaded. The initial value (as shown)
is overlaid by the first fetch or load to the problem program area.

Highest ending main-storage address of the phase among all the phases having the same first four characters as the
operand on the EXEC statement. For the background partition only, job control builds a phase directory of these
phases. The address value may be incorrect if the program loads any of these phases above its link-edited origin
address. If the EXEC statement has no operand, job control places in this location the ending address of the program
just link-edited.

Length of the problem program label area.

] [2]

Program Interrupt Key - PIK (if asynchronous processing is not supported): Value is equal to the displacement from the
start of the PIB table to the PIB for the task.

oR
Partition Identifier - PID (if asynchronous processing is supported): Value is hex 10, 20, or 30 to identify the partition
in which a maintask or a subtask is running. (See the communications region extension, displacement 18, for the PIK
in an asynchronous processing supervisor.) :

First byte = always zero.
Second byte - contains the key of the program that was last enabled for interrupts, or the partition identifier in
an AP supervisor.

Task PIK (PID) Value
All Bound X'00
BG X'10"
F2 X'20
*F1 X*30"
Attn Rin X'40'
Quiesce |/O X'50"
Supervisor X'60!

*These tasks do not exist in @ non~- MPS supervisor.

Logical end of main storage address.

Figure 1.7. System Communications Region (Part 2 of 5)

Section 1: Supervisor Planning Concepts 31

Key to Communications Region Displacements:

Machine Configuration Byte (Values set at supervisor generation time.)

Bit 0: 1 = Storage protect feature
0 = No storage protect feature
1: 1 =Decimal feature
0 = No decimal feature
2: 1 = Floating=point feature
0 = No floating=point feature
3: 1 = Physical transient overlap option
0 = No physical transient overlap option
4: = Timer feature
0 = No timer feature
5: 1 = Channel switching device
0 = No channel switching device
6: 1 = Burst mode on multiplex channel support
0 = No burst mode on multiplex channel support
7: Reserved

System Configuration Byte

Bit 0: 1=DDMMYY
0 = MMDDYY
1: 1= Multiprogramming environment
0 = Batch job environment
2: 1 =DASD file=protect supported
0 = No file=protect support for DASD
3: 1=DASD SYSIN - SYSOUT
0 = No DASD SYSIN - SYSOUT
4: 1 =Teleprocessing
0 = No teleprocessing
5: 1 =Batch job in foreground

} (Date convention bit set at generation time by STDJC)

0 = No BJF
6: 1 = Asynchronous processing
0 = No AP

7: 1 =Track Hold
0 = No Track Hold

This byte contains the standard language translator 1/O options (set by the STDJC macro).

for the presence of the ASCII~EBCDIC and EBCDIC-ASCII translation tables.

\

Bit 0: Always on

1: DUMP option 1 = yes, dump registers and storage on SYSLST

2: Reserved .

3: LOG option 1 =yes, list all control statements on SYSLST
4-6: Reserved

7: ASCII option =yes, ASCH supported

Bit 0: DECK option 1 =yes, output object modules on SYSPCH
1: LIST option 1 = yes, output source module listings and diagnostics on SYSLST
2: LISTX option 1 =yes, output hexadecimal object module listings on SYSLST (compilers only)
3: SYM option 1 = yes, output symbol tables on SYSLST/SYSPCH
4: XREF option 1 = yes, output symbolic cross reference list on SYSLST
5: ERRS option 1 = yes, output diagnostics on SYSLST (compilers only)
6: CHARSET option 1 =48, input on SYSIPT is 48 or 60 character set
7: Reserved
This byte contains the standard supervisor options for abnormal EQJ and control statement display, and the indicator

Figure 1.7. System Communications Region (Part 3 of 5)

32 DOS System Programmer's Guide

Key to Communications Region Displacement:

Job control byte

Bit 0: 1 = Job Accounting
Interface (JA) not supported
0 = Job Accounting
Interface (JA) is supported
1: 1 =Return to caller on LIOCS disk open failure
0 = Do not return to caller on LIOCS disk open failure
2: 1= Job control input from SYSRDR
Job control input from SYSLOG
Job control output on SYSLOG
Job control output not on SYSLOG
Cancel job
Do not cancel job
Pause at end-of-job step
No pause at end-of-job step
YSLOG is not a 1052
YSLOG is a 1052
YSLOG is assigned to the same device as SYSLST
YSLOG is not assigned to the same device as SYSLST

Linkage control byte

Bit 0: 1 =SYSLNK open for output
0 = SYSLNK not open for output
1: 1=3$or FG program phase deleted, renamed, or cataloged (flag bit for SMAINEOJ)
2: 1 =Allow EXEC
0 = Suppress EXEC
3: 1 =Catalog linkage editor output
0 = Do not catalog linkage editor output
4: 1 =Supervisor has been updated
0 = Supervisor has not been updated
5: 1= Executing in AUTOTEST mode
0 = Not executing in AUTOTEST mode

| I | 1 S | A

“monwnom

6: 1 =Reallocate or condense in progress
7: 1 =Fetch $MAINEOJ at end of job to update system directory
0 = Do not fetch $MAINEOJ at end of job for update
Language processor control byte. This is a set of switches used to specify nonstandard language translator options.

The switches within the byte are controlled by job control OPTION statements and when set to 1, override standard
options. The format of this byte is identical to the stnadard option byte (displacement 54) with one exception:
Bit 7 in this byte is used to indicate to LIOCS that the rewind and unload option has been specified.

Job duration indicator byte

Bit 0: 1 =Within a job condition
0 = Outside a job condition
1: 1 =Dump on an abnormal end~of-job condition
0 = No dump on abnormal EQJ
Z :) - tli?:s:aE:eESJEger Set by Attention Routine for Job Control
3: 1 = Job control output on SYSLST
0 = Output not on SYSLST
4: 1 = Job is being run out of sequence with a temporary assignment for SYSRDR
0 = Conditions for 1 setting not met
5: 1 =PCIL is being condensed
0 = PCIL is not being condensed
Reserved
1 = Batch command just issued
0 = Condition for 1 setting did not occur

e

Figure 1.7. System Communications Region (Part 4 of 5)

Section 1: Supervisor Planning Concepts 33

Key to Communications Region Displacements:

Binary disk address of the volume label area (label cylinder).

62 As illustrated (Figures for information blocks, 1/O tables, and pointers
begin at Figure 1.14 which refers to more detailed Figures).

~

8 Set to the value nn specified in the LINES = nn parameter of the STDJC macro.

~

el 0 focd

The format of the system date contained within this field is determined by the IPL program from information supplied
in the date convention byte (displacement 53). Bytes 85-87 contain the day count.

Bytes reserved for use by LIOCS. Transient dump programs insert a key to indicate to the LIOCS end=of=volume
routine, $$BCMTO7, that it was called by a B=transient.

Address of the first part of the program information block (PIB) table. (See Figures 4.4, and 4.5.)

ID number of the last checkpoint. Temporary indicator of file protected DASD. Used at IPL time, when
DASDFP is specified.

Length of the LUBID queue (in bytes). This equals the number of channe! queue entries. |t can also be used to
access the REQID, LUBDSP, and TKREQID queues: (See Figure 1.29.)

Address of disk /O position data. Thisisthe starting address of the disk information block (DiB)table (See Figure 1.24).
Address of the beginning of the error recovery block. The error recovery block contains addresses of error recovery

exits, error recovery queue information that can be used by physical transients routines, and defines storage for the
error queue entries

104 As illustrated (See Figure 1.13).

Key of the program (BG, F2, or F1) that has timer support.

As illustrated (See Figure 1.29).

Logical Transient Key (LTK) contains the same value as the PIK (PID) (Displacement 46) when the logical transient is

requested. When the transient area is not in use, LTK is equal to zero. The SVC 2 routine sets the LTK. The
SVC 11 routine resets the LTK.

112 Supervisor constants:
DOLLARBO (4 bytes) = C'$$BO!
SSKADR (5 bytes) = XL5'0"
LTAREA (3 bytes) = Adcon of LTSVPT, logical transient save pointer

Address of second part of program information block (PIB) table (See Figure 4.6).

NI
l#

Address of PDTABB, table of DTF addresses for MICR support (See Figure 1.9).

N
©

Address of QTAM vector table (IJLQTTAD).

Address of background communications region.’

2](5]

Option Indicator Byte

Bit 0: 1 = MCRR indicated for OBR writer
0 = No MCRR indicated for OBR writer
1: 1 =EU interface active
0‘= EU interface not active
2: 1 = Teleprocessing request

0 = No teleprocessing request
3: 1 = Supervisor support for only 9~track tape
0 = Supervisor does not support 9-track tape exclusively
4: Reserved
5: 1 = RETAIN/370 support generated
0 = RETAIN/370 support not generated
6-7: Reserved

System Configuration Byte 2
Bit 0: 1 = PCIL supported

0 = PCIL not supported
1 =7: Reserved

Pointer to communications region extension (See Figure 1.8).

Figure 1.7. System Communications Region (Part 5 of 5)

34 DOS System Programmer's Guide

BGXTNSN (See Note)

Key to displacements :

E CE Table Address.
Track Hold Table Address (THTABAD).

Difference between addresses of first part of PIB table and second part of PIB table (PIBDIFF).
IE] Abnormal Termination Table Address (minus 8) (ABPTR).

Identification (LID) of the task owning the Logical Transient Area. Contains same value as PIK (displacement 18) when LTA is in use.
Contains zero when LTA is not in use.

Program Interrupt Key (PIK) if asynchronous processing is supported. Value is equal to the displacement of the start of the PIB table
to the PIB of the main task or subtask being selected (running).
First byte - zero
Second byte - contains the displacement into the PIB table for a maintask or a subtask.
Maintask - PIK value is hex 10, 20, or 30.
Subtask - PIK value is hex 70, 80, 90, . . . FO.

Task Requester ID Table Address (TKIDPTR).

MVCFLD address used by QTAM.

Statistical Data Recorder Table Address (SDRTABLE).
Tape Error Blocks by Volume Table Address (TEBVTAB).

| 36 I Pointer to OLTEP Linkage Addresses

40 lRMS Linkage Area Address (RASLINK)

ASCII-EBCDIC Translation Table Address.
(Reserved)

JA| Common Table Address (ACCTCOMN)

JAI Partition Table Address (ACCTxx; where xx =BG, F2, or F1).

Address of &SYSPARM Field.

Note: If communications regions are generated for the foreground partitions, the labels in those extensions will be F2XTNSN
and FIXTNSN. The extensions, wherever used, are generated by the COMMNEX macro. Following the background
extension (and immediately preceding the MCRR Linkage Table) is a six-byte area. The first four bytes are the address of
the background save area (BGSAV), and the last two bytes are the value 4,096, used to restore base registers.

0 (Hexadecimal |4 8 ocC 10 12 14 18 1C 20
Displacement)
0 (Decimal 4 8 12 16 18 20 24 28 32
Displacement)
Difference ID of
CE Table Track Hold Between st AB Termin- Task ID of Task Re- Address SDR TEBV
Address Table Address{ ond 2nd Part ation Table Owning Task quester ID Used by Communications | Table
(THTABAD) | f PIB Table Address -8 LTA Running | Table Address QTAM Address Address
(PIBDIFF) (ABPTR) Lp) |(PIK) | (TKIDPTR) (MVCFLD) | (SDRTABLE) (TEBVTAB)
XXXX XXXX XXXX XXXX XX XX XXXX XXXX XXXX XXXX
24 (Hexadecimal |28 2C 30 34 38 3C
Displacement) i
36 (Decimal 40 44 48 52 56 60
Displacement)
OLTEP RMS ASCH-EBCDIC JAl Common | JAI Partition |&SYSPARM
Linkage Linkage Translation (Reserved) [Table Address | Table Address |Field
Address Address Table Address (ACCTCOMN) | (ACCTxx) Address
(RASLINK)
XXXX XXXX XXXX XXXX XXXX XXXX XXXX

Figure 1.8 Background Communications Region Extension (BGXTNSN)

Section 1: Supervisor Planning Concepts

35

MAGNETIC INK CHARACTER RECOGNITION SUPPORT
(MICR)

A Magnetic Character Reader, such as an IBM
1255, 1259, 1412, or 1419, can be attached
to a channel for reading
magnetically-inscribed data on checks and
other banking documents. They differ
mainly in document reading rates. The 1255
reads at speeds as high as 500
six-inch-long documents per minute on its
Model 1, and 750 documents per minute on
its Models 2 and 3; the 1259 reads at
speeds as high as 600 six-inch-long
documents per minute; the 1412, at speeds
as high as 950 documents per minute; the
1419, at speeds as high as 1,600 per
minute. Specific speeds depend on document
length as well as on the program.

System Considerations

The DOS supervisor support allows operation
of Magnetic Ink Character Recognition
(MICR) devices in either a foreground or
background area. An extension to the DOS
supervisor monitors, by means of external
interrupts, the reading of documents into a
user-supplied I/0 area (document buffer
area). All MICR documents must be accessed
through logical IOCS. Logical IOCS gives
you the next sequential document and
automatically engages and disengages the
devices, as necessary, to provide a
continuous stream of input. Detected error
conditions and information are passed to
you in each document buffer.

The magnetic character readers are
unique in that documents must be read at a
rate dictated by the device rather than by
the program. To ensure time for necessary
processing (including determination of
pocket selection) a MICR device generates
an external interrupt at read completion of
each MICR document. The supervisor gives
highest priority to external interrupt
processing.

In an MPS system with MICR document
processing, any partition (background or
foreground) can use MICR devices. For
programs with one MICR device, GET macro

36 DOS System Programmer's Guide

instructions are provided. For multiple
MICR processing, READ, CHECK, and WAITF
macro instructions allow processing to
continue as long as one of the files has
documents ready for processing. Figure 1.9
shows the tables for MICR DTF addresses and
pointers.

System_ Generation_Guidelines

To specify supervisor support for MICR
devices, the MICR= parameter must be
included in the SUPVR macro.

1. If both 1412s and 1419s are present,
specify MICR=1419. If 1255s or 1259s
are to be supported, also specify
MICR=1419. MICR=1419D indicates Dual
Address Adapter 1419s.

2. 1419 support gives 1255/1259/1270/1275
capability. The 1270/1275 are optical
reader/sorters.

3. If 1255/1259/1270/1275/1412/1419s are
attached to the multiplexor channel,
the PIOCS parameter BMPX=YES is not
supported.

4. If MICR support is required on a Model
65, specify MODEL=65 in the CONFG
macro.

5. For MICR support on selector channel,
specify MRSLCH=YES in the PIOCS macro.

MICR processing requires at least two I/0
channels. If MICR devices are attached to
the multiplexor channel, no burst mode
devices are supported on the multiplexor
channel. MICRs should be attached as the
highest priority devices on the multiplexor
channel. Single addressing 1412s or 1419s
are supported on any selector channel, but
device performance is maintained only if a
selector channel is dedicated to a single
MICR device. Also note that the Dual
Address 1419 is not attachable to selector
channels.

In addition, MICR processing requires
either the direct control feature or the
external interrupt feature.

Pr—=N

The table of DTF addresses (PDTABB) contains six 8- byte entries; one for each external line of the
direct control feature on the system.

PDTABB
Byte —> 0 1 2 3 4 5 6 7
o ' ' DTF address for MICR:
0 NI PDSTAT +1, X'FE' a Device on line 7
8 NI PDSTAT +1, X'FD' < Device on line 6
16 NI PDSTAT +1, X'FB' [T Device on line 5
24 NI PDSTAT+1, X'F7" : 8 Device on line 4
32 Nt PDSTAT+1, X'EF! ow Device on line 3
40 NI PDSTAT +1, X'DF! Device on line 2
\

Background =10
Foreground 2 =20
Foreground 1 = 30

®Bytes 0- 3 -~ Contain an 'AND" instruction that is executed in main line coding to turn off the
external line status after its detection.

PDSTAT +1 contains one or more of the following interrupt codes:

PSW Interrupt Interrupt Code External

Code Bit (PSW Bits 26-31)* Interrupt Cause
31 nnnnnnnl External signal 7
30 nnnnnnln External signal 6
29 nnnnnlnn External signal 5
28 nnnnlnnn External signal 4
27 nnnlnnnn External signal 3
26 nnlnnnnn External signal 2

@ Byte 4- - Contains the flag of the partition containing the DTF.

® Bytes 5- 7 - - Contain the address of the DTF table.

Table of pointers (PDTABA) to DTF addresses associated with the external interrupt line. The table
contains the status in descending order from Bit 31 to Bit 26 of the external old PSW.

PDTABA
Byte —= 0 1 2 3 4 5 6 7
; : — : : +—
0 00 08 00 10 00 08 0018
8 00 08 00 10 00 08 00 20
16 00 08 00 10 00 08 00 18
24 00 08 00 10 00 08 00 28
32 00 08 00 10 00 08 00 18
40 00 08 00 10 00 08 00 20
48 00 08 00 10 00 08 00 18
56 00 08 00 10 00 08 00 |

*n=other external - interrupt conditions.

Bytes 126 and 127 (X'7E'- '7F') of the communications region contain the address of these
tables. Label PDTABB identifies the first byte of the first table.

Figure 1.9. Tables for MICR DTF Addresses and Pointers

Section 1: Supervisor Planning Concepts

37

ASYNCHRONOUS PROCESSING (AP)

The asynchronous processing function, also
known as multitasking, provides greater use
of system resources at the partition level.
Multitasking provides the ability to
execute more than one program in a
partition, that is, the ability to do
multiprogramming within a partition (or in
all three partitions) of the DOS system.
Just as multiprogramming between partitions
can increase the system throughput,
multitasking can increase overlap of I/0
activity and computer processing for a
given job.

To perform multiprogramming within a
partition, the program must consist of a
main program (main task) and one or more
subprograms (subtasks).

Because multitasking is a logical
extension of the current task selection
mechanism, a maximum of nine subtasks can
exist in the system at any given time.
These nine subtasks can all reside in one
partition, or can be spread among the three
available partitions. A total of 12 tasks
(a task can be considered either a main
task or a subtask) can be executed
concurrently in the system.

The subtasks share the same partition
with their associated main task. The main
task initiates (attaches) execution of the
subtasks. The ability of the main task to
attach subtasks minimizes operator
intervention. Storage within the partition
may be allocated to the main task and its
associated subtasks in any way desired by
the user. Subtasks have the same storage
protect key as the main task.

When subtasks are attached to a given
partition, they retain the priority of that
partition. Priorities are also established
within the partitions. The priority within
a partition is determined by the order in
which a subtask is initiated. The first
subtask to be attached has the highest
priority, and as each subsequent subtask is
attached, it has the next highest priority,
followed by the main task which has the
lowest priority. When a subtask is
attached, it receives control from the
system before control is returned to the
main task. See Figure 1.10 for an example
describing priority structure in a
multitasking environment. If the F1
partition has two attached subtasks, the F2
partition has four attached subtasks, and
the BG partition has three attached
subtasks (a maximum of nine subtasks),
their priority would be as shown (with 1
being the highest priority and 12 the
lowest priority).

38 DOS System Programmer's Guide

A subtask can operate independently of
its main task and has its own save area for
registers. The subtask can communicate
with other subtasks and main task via a set
of macro instructions (see Intertask
Communication).

—

|

Partition Priority |

]

4

F1 Subtask 1 1 |
Subtask 2 2 |

Main Task | 3 |

L i]

LB T

F2 Subtask 1 | 4 |
Subtask 2 | 5 |

i Subtask 3 | 6 |
Subtask 4 | 7 |

Main task | 8 |

F + {
| BG Subtask 1 | 9 |
| Subtask 2 | 10 |
| Subtask 3 | 11 {
| Main Task | 12 |
L (]]

Figure 1.10. Example of Multitasking

Priorities

When a subtask is no longer required, it
can be detached from the system. The
subtask can either detach itself or be
detached by its main task. When one or
more subtasks are detached, subtasks with
lower priorities receive the next highest
priority. If a detached subtask is later
attached, it becomes the lowest priority
subtask in the partition, but it still has
higher priority than the main task.

System Considerations

Under DOS there are additional optional
components and specifications that greatly
enhance multitasking operations.

Track Hold: The track hold facility
prevents two independent subroutines in the
same partition or in two different
partitions from simultaneously trying to
update the same record or write a new
record on the same track when processing
DTFDA, DTFIS, and DTFSD files. When this
facility is used, a second routine
requesting an I/O operation on a track
being held must wait for that track to be
freed by the first routine. Because track
hold is implemented by programming rather
than hardware, all routines processing the
same DASD files must use this facility to
ensure proper protection. This facility
can be used without specifying AP=YES and
is specified at system generation time.
See discussion of TRKHLD parameter under
FOPT Macro for more information.

Multiple Wait: Under DOS, a number of
independent logical IOCS operations
(requiring explicit waiting for completion)
can be initiated before waiting for the
completion of any particular operation.
Once all logical IOCS operations have been
initiated, you must determine the sequence
in which you will wait for their
completion. Once you wait for a particular
operation, you no longer have control, even
though one of the remaining operations
completes before the one on which the wait
occurs and useful processing could have
been done. This can be avoided at the
physical IOCS level, but requires some
additional coding effort on your part.

The multiple wait facility allows you to
wait asynchronously for any one of a number
of I/0 operations to complete at either the
logical or physical IOCS level for the
above situation. This facility provides
increased I/0 overlap processing and is
specified at system generation time. See
discussion of WAITM parameter under FOPT
Macro for more information.

Abnormal Termination: Under DOS, your
program is canceled when certain error
conditions occur. In many cases, it is
desirable to perform certain termination
functions (e.g., close files) to minimize
any problems that may occur. The abnormal
termination facility allows for these
situations via a user exit. This function
is specified at system generation time and
implemented via the AB operand of the STXIT
macro. .

When the supervisor determines that the
task has been abnormally terminated,
control passes to the task's abnormal
termination routine. In this routine, you
may close data files (such as an indexed
sequential ADD) or perform other operations
that are necessary to minimize any possible
damage. Abnormal termination exits can be
established for both main tasks and
subtasks or, if desired, subtasks can share
the coding of their main task's abnormal
termination routine. It is strongly
suggested that in the shared abnormal
termination routine no I/0 be performed.

If I/0 is attempted and causes cancelation,
all tasks in the partition are canceled.
Any abnormal termination within the
abnormal termination routine causes the
task (or job if in the main task) to be
canceled without regard to an abnormal
termination exit. This facility of sharing
an abnormal termination routine can be used
even if the multitasking function (AP=YES)
is not used. See AB parameter under FOPT
Macro for more explanation.

Reentrant Modules: Reentrant modules for
CbMOD, DAMOD, ISMOD, MTMOD, PRMOD, SDMOD,
and DIMOD allow a module to be shared by

the same device type DTFs in a multitasking
environment. For example, one PRMOD can
support several subtasks using multiple
printers within a partition. One DAMOD can
support several subtasks within a
partition.

Multitasking Macro Usage

Although these four functions (asynchronous
processing, track hold, multiple wait and
abnormal termination) can be used
independently, they are discussed under the
heading where they are most frequently
used. The multitasking macros are designed
to handle three basic situations: subtask
initiation and normal termination,,
resource protection and intertask
communication. See Supervisor and I/O
Macros listed in the Preface for a
description of the macro formats. Some
examples using the multitasking macros are
included.

Subtask Initiation and Normal Termination

Subtask initiation can only be performed by
a main task that issues an ATTACH macro
instruction. Normal subtask termination
can be performed by either a main task or a
subtask that issues a DETACH macro
instruction.

ATTACH Macro Considerations

Only a main task can attach subtasks. A
maximum of nine subtasks can be attached in
the system at any given time. They can all
reside in one partition or be spread among
the three partitions in any combination.

If a main task attempts to attach a tenth
subtask to the system, a supervisor Event
Control Block (SPVECB) is unposted
(SPVECB+2, bit 0, set to zero), the address
of the ECB is stored in general register 1
of the main task, and bit 0 of register 1
is set to 1 giving the register a negative
value. The main task can test register 1
for a negative value and, if found, wait on
register 1 until one of the nine subtasks
is detached. Figure 1.11 illustrates the
ECB.

When a subtask is successfully attached,
it has a higher priority than its main
task. Therefore, control is passed to the
subtask before it is returned to the main
task. In addition, the registers of the
subtask contain the same values as the

Section 1: Supervisor Planning Concepts 39

registers of the main task (both the
general registers and floating point
registers if specified), with the following
two exceptions:

1. Register 1 of the subtask contains the
address of the save area for the main
task.

2. Register 0 of the main task contains
the address of the byte immediately
following the save area of the subtask
(save area+96 if no floating point
registers, or save area+128, if
floating point registers).

The passing of the main task's registers
to its attached subtask(s) is worth noting,
because the subtask(s) can be under control
of and use the main task's base register
without initializing it. In addition:

1. The subtask ID (a value from X'70' to
X'F0') is stored in the subtask's save
area (save area+88, if no floating
point registers or save area+120, if
floating point registers)

2. The address of the subtask's entry
point is stored in the save area (save
area+13),and

3. Byte 2 bits 0 and 1 of the subtask's
ECB are set to 0 (unposted).

You should store the subtask name in the
first eight bytes of the save area to be
used for subtask identification when
messages are printed on SYSLOG.

In certain instances, a routine to be
attached may not be in main storage. In
this case, the entry point could be the
label of a FETCH or LOAD routine that
fetches the desired routine into storage.

The following conditions cause
cancelation of a main task (or possibly a
subtask).

1. A main task has not issued the ATTACH
macro (issued by another subtask).

2. The subtask save area is not aligned
on a doubleword boundary.

3. The save area of the subtask being
attached is not within the partition.

4. The entry point of the subtask itself
is not within the partition.

5. The ABSAVE save area, if any, is not
within the partition.

6. The Event Control Block (ECB) of the
- subtask is not within the partition.

40 DOS System Programmer's Guide

If a main task is canceled, all subtasks
in that partition are canceled.

DETACH Macro Considerations

A main task can detach any subtask (within
its partition), but a subtask can only
detach itself. In addition, a subtask can
be detached by issuing the CANCEL, EOJ and
DUMP macros. If a subtask is detached, all
pending I/0 operations are completed before
the DETACH operation is completed. In
addition, any tracks being held by the
subtask/are freed.

If the subtask has an ECB, the ECB is
posted (ECB+2, bit 0 set to one) and any
tasks waiting on the ECB are removed from
wait state. The task with the highest
priority then gains control. The
supervisor ECB is also posted (SPVECB+2,
bit 0 set to one) and any main task waiting
on it is removed from wait state.

Although a main task can detach a
subtask, it is generally more desirable for
a subtask to detach itself. The entire
system could be put into wait state if two
(or all three) main tasks attempted to
attach more than the nine subtasks allowed
by the system. The following two examples
show what could happen if the main task is
allowed to detach its subtasks.

Example 1: All partitions attempt to
attach five subtasks apiece. Each set of
subtasks is independent and processing is
such that each main task has a chance to
attach a subtask before any one main task
has attached all its subtasks. The entire
system could then be placed in wait state,
because the main task is not able to get to
the routine to detach a subtask when it has
successfully completed (it is waiting to
attach another subtask).

Example 2: Placing one or two of the three
partitions in wait state is another
situation that could occur, if all
partitions attempted to attach five
subtasks each. The F1 partition may attach
all five of the subtasks. F2 partition may
attach four of its five subtasks, and the
BG partition may not attach any of its
subtasks and, therefore, be in wait state.
The main task of the F2 partition would
also be in wait state because it still has
one more subtask to attach. These subtasks’
remaining to be attached have to wait until
one or more of the attached subtasks are
detached. In addition, if the five
subtasks in the F2 partition are dependent
upon each other, the entire F2 partition
could also be in wait state. Thus, only
the tasks in the F1 partition may be
executing.

The following conditions cause
cancelation of a main task or a subtask:

1. The main task detaches and does not
pass the address of the subtask save
area (if a subtask detaches and passes
the save area address, it is ignored).

2. The main task detaches and the subtask
is already canceling or canceled.

3. The limits of the save area specified
in the DETACH macro 4o not reside in
the partition of the main task. If
the main task is canceled, all
subtasks within the partition are
canceled.

4. The subtask ID stored in the save area
is not a valid subtask ID (hexadecimal
70-F0).

In the last case, a check cannot be made
if the value has been altered to that of
another subtask ID. In this case, it would
be possible for the wrong subtask to be
detached because this is the only way the
system can locate the task being detached.
(This is also the reason why the main task
must specify the save area of the subtask.)
In addition, the system sets the invalid ID
to binary zeros.

Resource Protection

The resource may be a file, an I/O device,
a DTF, a work area or I/0 area, or a set of
non-reentrant code, etc. In general, it is
anything that has the possibility of being
shared by two or more tasks. A means of
protection has been provided so that two
tasks sharing the same resource don't
access the resource at the same time.

Resource protection can be accomplished
in one of two ways, depending upon the
resource to be protected.

1. The first technique applies to the
types of resources just stated and
requires three macro instructions
(RCB, ENQ, DEQ). The RCB macro
generates a Resource Control Block
(RCB) that is associated with the
resource to be protected, but is not
necessarily a part of that resource.
When a resource is to be protected, an
ENQ macro must be issued to enqueue an
RCB. This places a hold on the RCB
associated with the resource until the
enqueuing task releases the RCB by
issuing a DEQ macro to dequeue the
RCB. These resource protection macros
apply only within a partition and not
across partition boundaries. That is,

| Figure 1.11.

| Figure 1.12.

a resource protected by an enqueue in
one partition is not protected in
another partition because an RCB is
generated in its own partition and
cannot be accessed by other
partitions. Figures 1.11 and 1.12
show the ECB and RCB.

2. The second technique can only be
applied to DTFDA, DTFIS, and DTFSD
DASD files or those files you created
using physical IOCS (EXCP/WAIT
macros). This is the track hold
facility previously discussed. In
contrast to the first technique, track
hold applies across partitions.

Reserved

Reserved Reserved

Event Control Block (ECB)

ECB address
of Current
Resource Owner

XXX

Unused

XXX

Resource Control Block (RCB)

Section 1: Supervisor Planning Concepts 41

ENQ Macro Considerations

A resource can only be protected within a
partition.

Every subtask that enqueues a resource
must have an ECB specified in its ATTACH
macro (issued by the main task) and that
ECB should not be used for any other
purpose while a resource is enqueued. The
address of the ECB is stored in the RCB. A
main task does not require an ECB and has
no means of specifying that it has an ECB
(the address of which could be stored in
the RCB). When a main task enqueues a
resource, the ECB address field of the RCB
is set to binary zeros which identifies the
resource owner as being the main task.

A task requesting use of a resource is
either enqueued and executed or put into
wait state if the resource has already been
enqueued by another task (byte 0 of the RCB
contains binary ones). In the latter case,
the flag byte is turned on in the RCB (byte
4, bit 0 is set to one) and the ECB address
of the current resource owner is stored in
general register 1 of the task placed into
wait state.

The following conditions can cause
cancelation of a task:

1. A subtask does not have an ECB.

2. A previous owner of a resource
terminated without having dequeued the
resource. (If the main task
terminated, the entire partition was
terminated.)

3. A task issued two consecutive ENQs for
the same RCB without having issued an
intervening DEQ.

4. The limits of the RCB specified in the

ENQ do not reside in the partition of
the enqueuing task.

DEQ Macro Considerations

A resource can only be dequeued within a
partition. Only the current owner of a
resource can dequeue that resource.

When an RCB is dequeued, byte 0 is reset
to binary zeros, and all tasks waiting for
that resource are removed from wait state.
The task with the highest priority obtains
control. If no other tasks are waiting for
the RCB, control returns to the dequeuing
task.

42 DOS System Programmer's Guide

The following conditions cause
cancelation of a task:

1. The RCB has the wait bit on in its
flag byte (byte 4) and no waiting task
which has been enqueued can be found
for the RCB. This could be caused by
the flag byte being inadvertently
altered while a resource was enqueued.

2. A subtask does not have an ECB.
3. The limits of the RCB specified in the

DEQ do not reside in the partition of
the dequeuing task.

Intertask Communication

In certain situations, tasks may be
dependent on other tasks within a
partition. In these cases, macro
instructions (POST, WAIT and WAITM) have
been provided to permit synchronization of
tasks for intertask communication. To use
these macros, each task must have an Event
Control Block (ECB) associated with it.

When a particular task is performing a
function and other tasks are waiting for
its completion, it can indicate completion
via the ECB by issuing a POST macro
instruction. The tasks waiting for the
completion may indicate this by issuing the
WAIT macro instruction, designating the ECB
on which the waiting is to be done. If a
task is waiting for completion of a number
of events (in which the order of completion
is of no importance), it can issue the
multiple wait macro instruction (WAITM)
designating a number of ECBs.

POST Macro Considerations

The tasks removed from wait state are those
placed in wait state by ENQ, WAIT, or
WAITM. When the SAVE parameter is omitted
in the POST macro instruction, all tasks
waiting on the specified ECB are removed
from wait state. By specifying a SAVE
parameter, only the task identified by the
save area is removed from wait state. This
parameter can be used for synchronizing the
order in which tasks are to receive
control. The synchronization technique
prevents the priority task within a
partition from gaining control.

Be careful with this technique when the
ECB to be posted is the ECB specified in
the ATTACH macro and ENQ/DEQ macros are
used, because DEQ also removes all waiting
tasks from wait state. When the posting

task dequeues, all tasks waiting for the
RCB are removed from wait state.

A similar situation exists if the
posting task dequeues before posting. The
DEQ removes all tasks waiting for the RCB
from wait state. Then, if it issues a POST
to a particular task, the POST acts as a
NOP because task selection gives control to
the highest priority task ready to use the
CPU. Although the task being posted is
removed from wait state, the posting task
is still active. If the posting task
issues another POST to the same or another
ECB, all other tasks waiting on the posted
ECB are removed from wait state. To avoid
this situation, use a second ECB when
synchronizing tasks. It is your
responsibility to reset the wait bit in the
second ECB that is to be posted (MVI
ECB+2,X'00'), so that tasks testing that
ECB can be put in wait state.

If a task associated with the specified
save area cannot be found, the post
operation is ignored and control passes to

“the highest priority task that is ready to
run.

A task can be canceled if the ECB

specified in the POST macro instruction
does not reside within the partition.

Summary of Multitasking Considerations

Maximum Number of Tasks: A maximum of 9
subtasks can be attached to the system.
They can all reside in one partition or be
spread among the three partitions. Thus, a
total of 12 tasks can be executed
concurrently in the system.

Subtask Priority: Each subtask must be
initiated by a main task. A subtask has a
higher priority than its main task.

Subtask priority within a partition is
determined by the order of attachment. The
first subtask attachment has the highest
priority in the partition, the next subtask
has the second highest priority in the
partition, etc. Of course, the priority of
the partitions remains the same (i.e., F1,
F2, and BG). If the highest priority
subtask is terminated and later reattached,
it will then be the lowest priority subtask
within the partition, but still higher in
priority than its main task, or any
subsequent subtask that may be attached
within that partition.

Storage Protection: Because subtasks are
subprograms within a partition, they have
the same storage protect key as the main
task. Therefore, the main task and its
subtasks do not have storage protection

from each other. The ENQ, DEQ, and RCB
macros offer protection of resources, but
only if all subtasks enqueue and dequeue
before using the resource. They do not
protect against inadvertent coding errors.
In addition, the user must be careful when
using ENQ/DEQ. If a higher priority
subtask dequeues an RCB and does not enter
wait state before enqueuing the RCB again,
a lower priority task does not gain control
of that RCB on which it has also enqueued.
Thus, the lower priority task has to wait
until the higher priority task terminates,
before it can enqueue the RCB.

Access To Communications Region:
communications region exists in a
batched-job partition. Therefore, it is
likely that only one task per partition has
meaningful access to it.

Only one

System Logical Units: Only one set of
system logical units exist per partition
(SYSLST, SYSRDR, etc). Therefore,
interspersed usage by several independent
tasks is not practical, although, if either
the resource protection facilities or the
intertask communication macros are
employed, it can be done.

Operator Intervention: While operator

intervention is minimized for subtask
initiation, SYSLOG will probably be used by
all tasks within all partitions. The
additional number of messages possible on
one SYSLOG could possibly increase the
responsibility of the operator and require
more careful operation than in the past.

STXIT Macro Usage: Subtasks may only

provide their own AB and PC routines via
the STXIT macro. IT and OC operations must
be performed via the main task. An AB exit
is not taken for a task when it is already
in its AB routine (prevents looping on
abnormal termination condition). The task
is canceled.

Checkpoint Consideration: Only main tasks

can issue checkpoints.

Track Hold Facility: Files being shared on
DASD are not protected unless the HOLD
option is specified by the various users
(only applies to DTFDA, DTFIS, DTFSD, and
DTFPH files).

Register Usage: Although a subtask has the
register values (2-15) of its main task
upon being attached, the registers cannot
be used for passing information between
tasks once attached. (It is possible for a
task to access the register save areas of
other tasks within its partition.)

Process Bound Tasks Considerations:
Because subtasks are executed in priority
order, a process-bound task can degrade

Section 1: Supervisor Planning Concepts 43

performance of lower priority tasks, or in
extreme cases, even prevent execution of
lower priority tasks until it has
terminated.

Task Synchronization: Task synchronization
is normally performed by POST, WAIT, and
WAITM macros. This can also be done by
ATTACH/DETACH or ENQ/DEQ providing you are
careful, particularly when intermixing
POST, ENQ/DEQ, and ATTACH/DETACH macros.
While POST may be used to free one waiting
task, DEQ and DETACH can free all tasks
waiting on the ECB posted, if the ECB is
the same one specified in the ATTACH.

Resource Protection: The POST, WAIT, and
WAITM macros are also used for resource
protection, providing you are careful in
your synchronization techniques.

Resource Contention: The problem of
resource contention cannot be over
emphasized in this system. It has already
been pointed out that you can interlock two
or more tasks, or even put the system into
wait state when two or more partitions are
concurrently attaching more than 9 subtasks
or when two or more tasks (or partitions)
are contending for the same sets of tracks
while using track hold. In addition, a
similar problem can exist when two or more
tasks within a partition are enqueuing and
dequeuing on the same set of RCBs. For
example, if task A enqueues RCB 1 and task
B enqueues RCB 2, task A is put in wait
state when it attempts to enqueue RCB 2.
The same is true when task B attempts to
enqueue RCB 1. Neither task is able to get
out of wait state to release the resource
it has enqueued.

This problem can be avoided by having
each task, which shares common resources
with other tasks, enqueue on the same
resources in order. For example, task A
enqueues on RCB 1 and then task B engqueues
on RCB 1 (instead of RCB 2 first); task B
goes into wait state. Task A can now
enqueue on RCB 2 without entering wait
state. When task A dequeues RCB 1, task B
has the chance of enqueuing RCB 1
(providing task A does not enqueue RCB 1
again, before task B has a chance to
reattempt its ENQ).

Another possibility of task interlock is
for two tasks to wait on ECBs, with each
task assuming that the other task will post
the ECB on which it is waiting.

Subtask Cancelation: While the cancelation
of a subtask frees tracks being held, and
posts the subtask's ECB (as. specified in
the ATTACH macro) it does not dequeue any
RCBs engqueued by that subtask.

(Cancelation of a subtask executes the
DETACH routines of the supervisor as well

44 DOS System Programmer's Guide

as the cancel routines.) Therefore, when
the abnormal termination routine is
entered, you should dequeue all RCBs that
the subtask could have enqueued.

If the subtask issues a DEQ for an RCB
on which it has not enqueued, the DEQ is
ignored and the supervisor returns to the

subtask's abnormal termination routine.

Wait Considerations: Although tasks can
wait on ECBs to be posted by other tasks or
on the ECBs of other tasks (in their own
partition), they cannot wait on the CCB of
another task when that task has initiated
the I/0 operation. This does not mean that
two tasks cannot share a CCB as a resource.
It only means that the system identifies
the CCB with the task doing the I/0
operation. Therefore, only that task can
be removed from wait state by the system.
Any other task waiting on another task's
CCB can only be removed from wait state by
having the task that started the I/0 v
operation issue a POST to the CCB. 1In this
case, the CCB would function like an ECB.
Also, note that the task doing the I/0
operation must issue the POST macro after
the WAIT macro rather than before the WAIT
macro. Otherwise it would never enter the
wait state or determine when the I/0
operation is completed.

Abnormal Termination: In all abnormal
termination conditions where an exit is
taken to an abnormal termination routine,
the register values are stored in the
ABSAVE save area before the appropriate
error code is stored in the low-order byte
of register 0. To have this value
available when looking at a storage dump,
you should store (STC or ST) register 0 in
another save area upon entry into the
abnormal termination routine. You will
find that the SVC code shown in the "0S04I
ILLEGAL SVC~..." message along with the
error codes in register 0 will be helpful
in tracing program errors. See Debuqging
Aids section for additional information on
abnormal termination codes.

System Generation Guidelines

The multitasking facility is provided at
system generation time by specifying AP=YES
in the SUPVR macro. When AP=YES is
specified, MPS=YES and WAITM=YES are
implied. To implement the other facilities
related to multitasking, the following
additional specifications are required at
system generation time:

e For abnormal termination support,
AB=YES must be specified in the FOPT
macro. AP=YES in the SUPVR macro is
not required to utilize this function.

e For multiple wait support, WAITM=YES

must be specified in the FOPT macro.

Although the multiple wait function can

be used without specifying AP=YES,
AP=YES cannot be used without
specifying WAITM=YES.

MULTITASKING EXAMPLES

ATTACH Macro Example

The normal procedure for attaching subtasks is as follows:

1.
2.

11.
12.
13.

15.
16.

17.

18.
19.

20.
21.
22.

23.
24,

25.
26.

MAINTASK BALR 2,0
USING 2
L J
*
STXIT AB, MTABEND, MTSAVE
MVC SUB1SAV (8) , SUBINAME
ATST1 ATTACH
LTR 1,1
BNM ATST10K
WALT (1)
B ATST1
ATSTIOK BCTR 0,0
ST 0,ST1SVEND
[
L]
SUBTASK1 BALR 3,0
USING %3
ST 1,MTSVAR
MTABEND STC 0,ABSVCODE
c 1,=A (ST1ABSV)
BE ST1ABEND
®
[]
ST1ABEND EQU *
[]
[]
DS oD
ST1SAV pC 16D'0"
ST1ABSV DC 9D* 0"
ST1ECB DC F'o’
MTSVAR DC F'o°
sTisveND pé F10"
SUBINAME DC C'SUBTASK1"
ABSVCODE DC X'0°
MTSAVE DS 9D

Initialize subtask 1 save area

SUBTASK1,SAVE=ST1SAV, ECB=ST1ECB, ABSAVE=ST1ABSV

Test if ATTACH is successful
BR if successful

WAIT to retry ATTACH

BR to retry

Get end of subtask 1 save area

Store ending address of subtask 1 save

area

store address of main task save area
Save ABTERM code

Test if subtask 1 ABTERM

BR if YES

Align on doubleword boundary
Subtask 1 save area
with floating point
registers

Subtask 1 AB save area
Subtask 1 ECB

Address of main task
save area

Ending address of
subtask 1 save area
Subtask 1 name

Main task save area
used by STXIT

Section 1: Supervisor Planning Concepts

45

Explanation for ATTACH Macro: Statement 3 initializes the subtask save area with the
name of the subtask which is used for messages for subtask identification when messages
are written on SYSLOG.

Statement 4 is the ATTACH of the subtask. SUBTASK1l is the entry point of the subtask,
ST1SAV is the save area for the subtask, ST1ECB is its ECB, and ST1ABSV is the ABTERM
save area for the subtask. In this case, the subtask is using the main task's abnormal
termination routine.

Statements 5 and 6 test for a successful ATTACH. If the ATTACH was not successful
(nine subtasks already attached), the main task waits until another subtask is detached
and retries the ATTACH. If the ATTACH was successful, the main task stores the ending
address of the subtask's save area for later reference, if necessary. The main task can
then continue to do other processing.

Statement 11 is the entry point to the subtask. In this example, the subtask and the
main task use different base registers. This may not be necessary, depending on program
design. The subtask could have omitted the BALR and USING statements because
addressability is available through the main task register (register 2). The values in
the main task registers are passed to the task. Therefore, register 2 would still be
initialized.

Statement 13 saves the address of the main task's save area for reference by the
subtask (if it is necessary for the subtask to name the main task in the POST macro
instruction). Statement 14 stores the ABTERM code when the abnormal termination routine
is entered. This routine is shared by both the main task and subtask 1. Statements 15
and 16 determine which task abnormally terminated (ABTERM save area of the task in error
is stored in register 1). Statement 18 aligns the save areas on a doubleword boundary.

Statement 21 is the user-coded ECB for the subtask.

46 DOS System Programmer's Guide

DETACH Macro Example

A subtask may detach itself or be detached by the main task.

1. MAINTASK BALR 2,0
2. USING *,2
[]
®
3. ATST1 ATTACH ST1,SAVE=ST1SAV, ECB=ST1ECB
®
[]
4. ATST2 ATTACH ST2,SAVE=ST2SAV, ECB=ST2ECB
[]
®
5. DETACH SAVE=ST1SAV Detach subtask 1
[]
L]
6. ST1 ST 1,MTSVAR1
L]
e
7. B ST1+4
8. ST2 ST 1,MTSVAR2

°
)

9. *DETACH Subtask 2

10. DETACH

Explanation for DETACH Macro: The main task attaches two subtasks. When subtask 1
completes processing, it indicates this to the main task. The main task then detaches
subtask 1 by issuing a DETACH macro and specifying the save area for subtask 1 (statement
5). When subtask 2 completes its processing, it detaches itself (statement 10). Note
that an operand was not specified when subtask 2 detached itself, and that the comment
was placed in a comments card (statement 9). The comment would have acted as an operand,
resulting in an error.

Section 1: Supervisor Planning Concepts 47

ENQ/DEQ and RCB Macros_ Examples

EXAMPLE 1:

1.
2.

3.

4.
5.
6.

7.

8.

9.
10.
11.

12.

13.

Explanation for Example 1:

MAINTASK

SUBTASK1

SBTASK1A

SUBTASK2

SBTASK2A

RCB1

" BALR

USING

a common subroutine.

hold.

2,0
*,2

RCB1 .
4,WRITEDTA
RCB1

SBTASK1A

RCB1
4 ,WRITEDTA
RCB1

SBTASK2A

When two subtasks share the same resource within a partition, they can use
the resource protection macros as follows:

Protect resource.
Write a record.
Release resource.

Protect resource.
Write a record.
Release resource.

Resource control block for WRITEDTA

Both subtask 1 and subtask 2 are sharing the same file using

The subroutine is not reentrant, and the file cannot use track

Therefore, it is necessary for each subtask to enqueue on the RCB associated with
the resource and dequeue when the resource can be released for a waiting subtask.

48 DOS System Programmer's Guide

EXAMPLE 2: In the following example, two subtasks are sharing a common processing
routine defined in the first subtask.

1. MTASK START 0
®
[]
2. ATTACH STASK1,SAVE=SAVEl, ECB=ECB1
[]
o
3. ATTACH STASK2,SAVE=SAVE2, ECB=ECB2
[]
L]
4. STASK1 ENQ RCBA Protect resource TOTAL.
[]
[]
5. #* Process TOTAL Used by STASK1 and STASK2.
L]
[]
6. DEQ RCBA Release resource TOTAL.
L]
[}
7. STASK2 EQU *
[
[]
8. B STASK1 Process TOTAL
*
L]
9. RCBA RCB RCB for resource TOTAL
10. TOTAL DS Shared resource

Explanation for Example 2: The resource (TOTAL) in STASK1l is protected by the resource
control block named RCBA. The protection remains in effect only if every segment of
coding within the partition referring to TOTAL issues the ENQ macro before executing that
selection of coding and subsequently dequeues that resource with the DEQ macro. This is
effectively accomplished by branching to the same physical set of code.

Note that the coding from statements 4-6 does not necessarily have to be reentrant,
but you should ensure that values for constants associated with the subroutine do not
have to be retained from one reference to the next, whenever the resource is used. If
so, these values should be saved with the appropriate subtask and then later restored.

Section 1: Supervisor Planning Concepts #49

EXAMPLE 3: In this example, the subtasks again share the same resource, but use
different subroutines for processing that resource.

1. MTASK START 0
L
[]
2. ATTACH ST1,SAVE=SAVEl, ECB=ECB1
[]
[]
3. ATTACH ST2,SAVE=SAVE2, ECB=ECB2
[]
®
4. STASK1 EQU *
L]
L]
5. ENQ RCBA Protect resource RESRCA
®
[
6. *Update RESRCA Process using RESRCA
L]
[]
7. DEQ RCBA Release resource RESRCA
[]
L]
8. STASK2 EQU *
L]
®
9. ENQ RCBA Protect resource RESRCA
[]
]
10. #* Update RESRCA Process using RESRCA
[]
[)
11. DEQ RCBA Release resource RESRCA
[]
L]
12. RCBA RCB RCB for resource RESRCA
13. RESRCA DS or DTF Shared resource

Explanation for Example 3: RESRCA can be simply an area in main storage or a file
defined by a declarative macro. In either case, RESRCA is protected from subtask 2 while
subtask 1 is operating on it. Thus, if all tasks enqueue and dequeue each reference to
RESRCA, then RESRCA is protected during the time it takes to process instructions from
that task's ENQ instruction to its DEQ instruction. This is readily apparent if RESRCA
is in main storage. However, if it is a file, the record being operated upon is
protected while in main storage, but it is not necessarily protected on the external
storage device.

If the file is on DASD, the HOLD function should be utilized, if possible. In any
such situation, the priorities of subtasks must be considered for proper operation.

50 DOS System Programmer's Guide

POST Macro_ Example

The POST macro can be used by one task to inform another task of the completion of some
event, or it can release a number of tasks from wait state.

1. MAINTASK BALR 2,0
2. USING *,2
[]
L]
3. ATTACH ST1,SAVE=AREA1l, ECB=ECB1
L]
[]
4, ATTACH ST2,SAVE=AREA2,ECB=ECB2
[]
L
5. ATTACH ST3,SAVE=AREA3, ECB=ECB3
L]
[]
6. WAIT ECB1 Wait for completion of subtask 1
7. DETACH SAVE=AREA1 Detach subtask 1
[]
[]
8. EOJ
9. ST1 ST 1,MTSVAR Store address of main task save area
[]
[]
10. WAITM ECB2,ECB3 Wait for subtask 2 or subtask 3
11. NI 2(1) X' 7F° Turn off WAIT bit
L]
L]
12. ST1EOJ L 0,MTSVAR Get address of main task save area
13. POST ECB1,SAVE=(0) POST ECB for main task
14. WAIT ECB1A WAIT to be detached
®
[]
15. §ST2 EQU *
L]
[]
16. ST2A EQU *
[]
[]
17. POST ECB2 POST ECB for subtask 1
[]
L]
18. B ST2A
[]
[]
19. sST3 EQU *
[]
L]
20. ST3A EQU *
L]
[]
21. POST ECB3
[]
®
22. B ST3A
*
[]
23. MTSVAR DC F'0"' Save area address for main task
24. ECB1A DC F'0* Dummy ECB for subtask 1
25. ECB1 DC F'0°* ECBs for subtasks
26. ECB2 DC F'0°*
27. ECB3 DC F'0°

Section 1: Supervisor Planning Concepts

Explanation for POST Macro: Subtask 1 (ST1) is dependent on input from subtask 2 (ST2)
and subtask 3 (ST3). Therefore, it issues a WAITM on the ECBs for those subtasks.
Notice that statement 11 resets the wait bit (set to 0) in the ECB that satisfies the
wait condition. This ensures that the wait bit is off before reissuing the WAITM.
(Subtask 1 is the highest priority task and, therefore, would gain control before subtask
2 and subtask 3. The result is that the WAITM is always satisfied from the first
operation.) Initially, subtask 1 is placed in wait state by the WAITM. Control is then
passed to subtask 2 and then to subtask 3. When either of the two subtasks has the
necessary data for subtask 1, it posts its ECB that removes subtask 1 from wait state.
When subtask 1 finishes its processing, it posts its ECB causing the main task to be
taken out of wait state which then detaches subtask 1.

WAITM Macro Example

A task issuing the WAITM macro should ensure that if an event has the possibility of not
occurring (perhaps the task posting the event was terminated), the waiting task should
allow an eventual outlet. This outlet, as shown in the following example, can also wait
on the terminating ECB of the task that was to perform the preferred event.

1. MAINTASK BALR 2,0
2. USING *,2
L]
*
3. ATTACH ST1,SAVE=SAVEl, ECB=ECB1
[]
[]
4, WAITM ECB2,ECB1 Wait for preferred or secondary event
5. NI 2(1) ,X*'7F° Turn off WAIT bit
6. B 4(1) BR to branch in vector table
[]
L
7. PREVENT EQU * Main task preferred event
[]
L]
8. TEVENT EQU * Main task secondary event
L]
°
9. EOJ Main task end of job
[]
L]
10. ST1 EQU *
L]
L]
11. POST ECB2 POST completion of preferred event.
12. ECB1 DC F'0° ECB for secondary event
13. B TEVENT Vector BR to secondary event
14. ECB2 DC F'0°* ECB for preferred event
15. B PREVENT Vector BR to preferred event

Explanation for WAITM Macro: In this example, the WAITM macro contains a preferred event
as the first operand and a secondary event as the second operand. The preferred event is
the posting of ECB2 after subtask 1 completes its calculation. If subtask 1 terminated
before its calculation is completed, the supervisor posts the ATTACH macro ECB of subtask
1, ECB1, and the secondary event can satisfy the WAITM macro. In either event, after the
WAITM macro is satisfied, the address of the posted ECB is contained in register 1. This
address can select a problem program routine.

In this particular case, a branch instruction points to a table containing a list of
ECBs with corresponding branch instructions to the routine to be given control when the
ECB is posted. This table can easily be expanded to include up to a maximum of 16 ECBs
(Que to the WAITM format used).

52 DOS System Programmer's Guide

STXIT AB Macro Example

The STXIT AB macro instruction establishes linkage to an abnormal termination routine for
either a main task or a subtask.

1. MAINTASK BALR 2,0
2. USING *,2
3. STXIT AB, MTABEND, MTABSV Initialize AB exit
°
[
4. ATTACH ST1,SAVE=SAVEl, ECB=ECB1l,ABSAVE=ST1ABSV
[]
L
5. ATTACH ST2,SAVE=SAVE2,ECB=ECB2
[]
®
6. ATTACH ST3,SAVE=SAVE3, ECB=ECB3
®
[J
7. MTABEND STC 0,MTABCODE Save AB code
8. C 1,A(ST1ABSV) Test if ST1ABTERM
9. BE ST1ABEND BR if YES
o
[]
10. CANCEL CANCEL for main task cancels all tasks
11. ST1ABEND EQU *
[]
L]
12. CANCEL ALL CANCEL ALL for subtask 1
[]
[]
13. ST1 EQU *
[]
[J
14. ST2 STXIT AB,ST2ABEND, ST2ABSV Initialize subtask 2 AB exit
L]
[]
15. ST2ABEND STC 0,ST2ABCOD Save AB code
[]
e
16. CANCEL CANCEL for subtask 2
[]
[]
[]
17. ST3 STXIT AB, ST3ABEND, ST2ABSV Initialize subtask 3 AB exit
[
®
18. ST3ABEND STC 0,ST3ABCOD Save AB code
[]
L]
19. CANCEL
[
[]
20. DC 0D Align on doubleword boundary
21. MTABSV DS 9D*'0" Main task AB save area
22. ST1ABSV DC ID*'o0"* Subtask 1 AB save area
23. ST2ABSV DS 9D*'o0"* Subtask 2 AB save area
24. ST3ABSV DS ID*'o0" Subtask 3 AB save area
25. MTABCODE DC X'0" Save area for AB codes
26. ST2ABCOD DC X*'0"
27. ST3ABCOD DC X'0"

Section 1: Supervisor Planning Concepts 53

Explanation for STXIT Macro: Statement 3 establishes linkage to the abnormal termination
routine for the main task. Statement 4 attaches subtask 1 and indicates to the
supervisor that it will use the main task's abnormal termination routine by specifying
the ABSAVE parameter. Note that the main task's abnormal termination routine tests for a
main task or subtask 1 abnormal termination by comparing the address in register 1 to the
address of subtask 1's AB save area.

When the main task or subtask 1 cancels (CANCEL ALL), the entire partition is
canceled. Subtasks 2 and 3 initialize their own abnormal termination exits because they
use their own abnormal termination routines. When either subtask 2 or subtask 3 cancels,
only that subtask is terminated; the other tasks within the partition continue
processing. :

54 DOS System Programmer's Guide

Track Hold and Reentrant Modules Example

Although track hold applies across partitions, this example only shows two subtasks
sharing the same DA file and the same DA modules. It is possible that a similar set of
routines could be executing in a second partition also sharing the file with the first
partition, but that partition would have its own DA module.

1.

2.

5.
6.

12.

13.
1u.
15.

16.
17.

18.

19.

20.

21.
22.

MAINTASK

ST1

DAFILEl

ST2

DAFILE2

DASAVEL
DASAVE2

START

ATTACH ST1,SAVE=AREAl,ECB=ECB1

ATTACH ST2,SAVE=AREA2,ECB=ECB2

OPEN

FREE

DTFDA HOLD=YES,RDONLY=YES, ...

®

e
OPEN
e

L]

LA
READ
WAITF
.

)
WRITE
WAITF

DTFDA HOLD=YES,RDONLY=YES, ...

DAMOD HOLD=YES, RDONLY=YES, ...

.
°

Ds
DS

0

DAFILE1

13,DASAVEL
DAFILE1,KEY

DAFILE1l

DAFILEl,KEY
DAFILEl
DAFILEL

DAFILE2

13,DASAVE2
DAFILE2,KEY
DAFILE2

DAFILE2,KEY
DAFILE2

DAFILE2

8D'0"
8D*0"

OPEN DA master file

Initialize register 13 with DA save area

Read and hold record

Write updated record

Release track

OPEN DA master file.

Initialize register 13 with DA save area

Read and hold record
From DA master file

Write updated record

Release track

Save areas used by DAMOD
when shared and reentrant

Section 1: Supervisor Planning Concepts

55

Explanation for TRACK HOLD and REENTRANT Modules:

Because both subtasks share the same

file, HOLD=YES and RDONLY=YES must be specified in both DTFs and in the DAMOD. In
addition, before any I/0 operation is issued (READ, WRITE, or WAITF), register 13 must
contain the address of a unique save area to store the registers used by the module.
Register 13 is not altered between I/0 operations executed by a given subtask, and

therefore, only needs to be initialized once.

If other reentrant access methods were

used by the subtask, register 13 would have to be initialized for each LIOCS function.

FOPT Macro

OPERATOR COMMUNICATIONS SUPPORT (OC)

Operator Communications (OC) refers to the
processing of an external interrupt by a
problem program. In a multitasking
environment, only the main task can
communicate via the OC linkage. By
specifying OC=YES, a table (OC option
table) is generated within the supervisor
(see Figure 1.13). When the problem
program issues the STXIT macro, the address
of its external interrupt routine is moved
to the OC option table. The user's routine
is terminated by issuing the EXIT macro.
When OC=YES is specified, support is
available to all partitions. Figure 1.20
illustrates a sample program using this
support.

The Tape Compare Utility program
requires this support. OC=YES is also
required if emulator program operator
services are to be requested through the
INTERRUPT key.

Operational Considerations

To cause an external interrupt for the
background partition, the operator presses
the INTERRUPT key on the CPU console. To
cause an external interrupt for the

56 DOS System Programmer's Guide

foreground partitions, the operator presses
the REQUEST key on the 1052 console and, in
reply to the ATTN routine statement *'READY
FOR COMMUNICATIONS', types *MSG F1' or '"MSG
F2'. ‘

INTERVAL TIMER SUPPORT (IT)

This parameter generates programming
support for the hardware timer feature.

The timer consists of two parts. The first
part keeps track of the time-of-day and is
used to time-stamp system time. The second
part of the timer allows a problem program
to set a time interval (via SETIME macro).
By using the STXIT, EXIT, and TECB macros,
a specific routine within the problem
program is entered when this time interval
elapses. In a multitasking environment,
only the main task can set a Timer Event
Control Block (TECB).

The interval timer is in addition to and
separate from the time-of-day support
generated by the specification of the
TIMER= parameter of the CONFG macro. When
interval timer support is specified (i.e.,
IT=BG, F1, or F2), TIMER=YES is assumed for
the CONFG macro. Support is only available
to one partition at a time as defined at
system generation time. The TIMER command
can change the assignment from one
partition to another after the supervisor
has been generated. QTAM requires IT=F1.

P

PC Option Table and OC Option Table:

A B

BG a b

F2 a b

F1 a b
word —f- word I

N