File Number S360-20 ‘
order No. Gc24-5030-8 |DOS

Ts

Systems Reference Library

IBM System/360
Disk and Tape Operating Systems
Concepts and Facilities

This reference publication describes the concepts of
Disk and Tape Operating Systems and guides the
planner in the use of their various facilities. It
describes the components in the Disk and Tape
Operating Systems and explains the function of each.
The last section of the publication discusses the
design, preparation and execution of programs.

For titles and abstracts of associated publications,
see the IBM System/360 Bibliography, GA22-6822.

ty 1 1111

Preface

A related publication, IBM System/360 Basic
Programming Support, Basic Operating System, Tape
Operating System, and Disk Operating System,
Programming Systems Summary, GC24-3420, provides an
introduction to the IBM System/360.

‘

Ninth Edition (October 1970)

This edition applies to Release 24 of IBM System/360 Disk Operating
System and to all subsequent releases until otherwise indicated in new
editions or Technical Newsletters. Changes are continually made to the
specifications herein; before using this publication in connection with
the operation of IBM systems, consult the latest System/360 SRL
Newsletter, GN20-0360, for the editions that are applicable and current.

This edition, GC24-5030-8, is a major revision of, and obsoletes,
GC24-5030-17.

Sunmary of Amendments

This revision reflects the availability of ASCII (The American National
Standard Code for Information Interchange) and Problem Determination
Serviceability Aids (PDAID). All references to PL/I have been changed
to PL/I (D). Miscellaneous changes are also included.

Changes to the text and small changes to illustrations are indicated by
a vertical line to the left of the change; changed or added
illustrations are dencted by the symbol e to the left of the caption.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Programming Publications Dept., P.O. Box 6, Dept. 157, Endicott,
New York, 13760.

© Copyright International Business Machines Corporation 1966

INTRODUCTION

CONTROL PROGRAM . . .
Multiprogramming . .
SUPErvisor « « <« . o o

Operator Communication

Job Control .« <« .
Data Management (IOCS)

PROCESSING PROGRAMS
Language Translators
Assenmbler . . .
COBOL . « o w «
Basic FORTRAN .
FORTRAN . . « «
PL/I D)
RPG 4« « o o o =
Service Programs .
Linkage Editor .
Librarian . . .
r

2 & 4 3 8 g2 b 4 0 5

Sort/Merge Progra
Utilities . .
Autotest . . .
Emul ators . .

lligliii‘lll'
.

00 8 8 5 8 8 @ 0§ s s 0 4

e 8 s & 3 0 3 3 8 e 8 s b

s 0 2 a2 ¥ s

e & 3 8 8 & 3 & 8 s b b s o

e & & @ @

8 ¢ 6 6 5 8 6 5 8 & 2 s s 8

@ ¢ ¢ 3 3 ¢ 8 8 5 % 43 s s 0 s

Contents

Basic Telecommunications Access
Method (BTAM) . v v « « © « « =
Queued Telecommunications Access
Method (QTAM) . 2 o ¢ o o = = =
Utility Macro Instructions . .
System Generation
Protection Facilities
Availability/Serviceability Fac1l
Testing I/0 Units . o« v o o =
Disk Operating System Volume
StatistiCS « « « o 2 @ & o 4w W
Problem Determination

oHtoii

PROGRAM DESIGN, PREPARATION, AND

EXECUTION < o o o o o o o o =« « @
Phase Structure « « .« .
Program Debugging
Operating Considerations (Tape
Operating System Only)

Performance in a Multiprogramming

Environment . « ¢ 2 2 2 o « o
GLCSSARY @« 2 o o @ s @ = o o ® o =

INDEX « « o « o o o @ « o « « « =

tie

iMi'o‘

33

39

Contents 3

4 1IBM S/360 DOS/TOS Concepts and Facilities

Disk and Tape Operating Systems are
comprehensive sets of language translators
and service programs operating under the
supervisory coordination of an integrated
control program. They require an IBM
System/360 with at least 16K bytes of main
storage.

The disk resident system requires at
least one IBM 2311 Disk Storage Drive or
one IBM 2314 Direct Access Storage
Facil ity.

The tape resident system requires at
least four magnetic tape units. One of the
four units, the system residence unit,
should be 9-track because of the
significant system performance advantage it
provides. This advantage is most
significant during execution of
problem-program and language translator
functions that require repeated fetching of
various program phases. The residence
device can be a 7-track unit with the data
convert feature. The IPL routine can
determine the physical characteristics of
the residence device and perform read
backward operations (9-track) or rewind and
read forward operations (7-track). The
remaining tape units can be either 7- or
9-track.

The Disk and Tape Operating Systems have
been designed to:

1. Shorten the period between the time a
problem is submitted for solution and
the time results are received.

2. Increase the volume of work that can be
handled over a given period of time.

3. Assist those concerned with the system
(installation managers, operators, and
especially programmers).

The programmer can take advantage of a
unified system that allows him to:

1. Place information, such as executable
programs, in a system library and
obtain access to the information by
symbolic requests.

2. Divide a problem into a set of
subprograms, code each in the language
best suited to it, and combine them
into an executable program.

Introduction

3. Divide a large program into smaller
sections that can be overlaid during
execution to conserve main storage
space.

4. Test and modify programs and data.

5. Choose between executing programs (or
parts of programs) after compilation or
assembly, or storing them on auxiliary
devices for later use with output from
other compilations or assemblies.

The Disk and Tape Operating Systems
consist of a control program and a numbexr

of processing programs (Figure 1).

The control program supervises the
execution of the processing programs,
comprising lanquage translators, service
programs, and user-written problem
programs. Most processing programs use the
input/output control system (IOCS), whereas
all processing programs use the facilities
provided by supervisor and job control.

Control Program Processing Programs

Language Translators

Assembler
COBOL
FORTRAN
PL/1 (D)
RPG

Supervisor

Service Programs
Job Control
Linkage Editor
Librarian
Sort/Merge
Utilities
Autotest
Emulator

IPL

User - Written
Problem Programs

Figure 1. 16K Operating Systems

Introduction 5

Control Program

Ooptimum efficiency of the system requires
some automatic control. Without such
control, the system is frequently idle and
the operator must locate and load
successive programs in addition to
performing other required setup functions
such as changing tape reels. An orderly
and efficient flow of jobs through the
system is facilitated by:

1. The permanent main storage resident
supervisor.

2. The on-line residence of frequently
used programs.

3. The job control program, which regains
control whenever a job step terminates
(normally or abnormally).

The Disk and Tape Operating Systems
control program provides transition from
phase to phase within a processing program
(i.e., a job step), and from program to
program within a job. Once the system has
been initialized by the IPL routine, job
after job can be included in the input job
stream. The components of the control
program are shown in the main storage map
(Figure 2) and are discussed in the
following sections.

MULTIPROGRAMMING

Multiprogramming is a technique whereby two
or more programs may concurrently share the
resources of a computer system in such a
way that the operation of any one program
is independent of the operation of any
other program.

The effectiveness of any application of
the technique must be measured, not in
terms of the performance of any one
program, but in terms of the extent to
which available resources are utilized.
a multiprogramming environment no single
program can necessarily run at full
efficiency; nevertheless, the total
efficiency and throughput of the system can
be significantly improved.

In

Mul tiprogramming allows the input and
output functions of one program to be
overlapped with the processing functions of
other programs. For instance, when one
program yields control of the CPU (for
example, during a wait state), control

6 IBM S/360 DOS/TOS Ccncepts and Facilities

passes downwards to a partition of lower
priority. When control is withdrawn from a
program (for example, an I/0 interrupt),
control passes upwards to the partition of
highest priority that is ready to execute.

DOS multiprogramming requires that
programs be co-resident in main storage.
To achieve this, storage is divided into
partitions, with each partition capable of
holding a distinct problem program. An
active partition contains a program that is
in course of execution. An inactive
partition does not contain such a program,
or is not physically present in the system.

Because each partition is of fixed
physical size and is defined by fixed
boundaries, DOS mltiprogramming is termed
fixed partitioh multiprogramminge.
Partition boundaries may not be altered
while a partition is active; they may,
however, be altered when the partition is
inactive, thus allowing an increase or
decrease in the size of a partition,
provided that such an alteration does not
result in the reduction in size of any
other active partition. The three
partitions are termed, in order of
ascending priority, background,
foreground-two, and foreground-one.

The amount of main storage available to
the programs may be determined when the
system is generated, or the operator can
allot the amount of storage when the
program is loaded into main storage for
execution. Each program occupies
contiguous areas of main storage.
Multiprogramming requires 24K bytes of main
storage.

)

Permanent Storage Locations Used by the CPU

Communication Region

Supervisor Nucleus
Contains such routines as:

Interruption Handling

Channel Scheduler

Program Retrieval (FETCH and LOAD)

Error Recovery Routines

Storage Protection (required for multiprogramming)
Timer Services (Optional)

I/O Units Control Tables

Transient Area
Can contain such routines as:

Operator Communications Routine
Error Processing Routines

OPEN

CLOSE

rom-+H4z200

SPpIOGOXT

>mxo >

Background Program Area
Can contain such programs as:

Job Control

Linkage Editor

Librarian

Installation Processing Programs

Foreground - two Program Area (Optional)
Can contain such programs as:

Job Control (if BJF)
Foreground (Single Program) Initiator
Installation Processing Programs

Foreground - one Program Area (Optional)
Can contain such programs as:
Job Control (if BJF)

Foreground (Single Program) Initiator
Installation Processing Programs

SmMmrowox o

ZPITOOI

>mxr

Figure 2. Main Storage Organization

Backgqround vs Foreqround Programs

There are two types of problem programs i
multiprogramming: background and :
foreground.

Background programs are initiated by job
control from a batched-job input stream.

Foreqround programs executing as single
programs are initiated by the operator from
the printer-keyboard. Through the operator
attention routine, he requests the
foreground initiator program, also called
the single program initiator (SPI). This
program requires 2K bytes of main storage
and accepts foreground initiation program
commands from either the printer-keyboard
or an operator-assigned card reader.

For the disk system, foreground programs
may execute in batched-job foreground (BJF)
mode if sufficient I/0 and main storage
facilities are available, i.e., 10K bytes
of main storage and separate system
input/output files for the partition.
Batched job initiation is provided by job
control if this option is specified at
system generation time. A communication
region is provided for each partition when
batch processing in the foreground area has
been specified. System logical units
(except SYSLNK) may be used by either
foreground or background programs. For
foregrcund programs executing in single
program initiator mode, gggtem logical unit
assignments are limited to punched card
devices (card readers, card punches, and
printers). Programmer logical units such
as SYS000 and sYS001 may be used by either
foreground or background programs.

Background and foreground programs
initiate and terminate asynchronously from
each other, and are logically independent
of each other.

The system can concurrently operate one
background program and one or two
foreground programs. Priority for CPU
processing is controlled by the supervisor.
The first foreground program has priority
over the second foreground program, which
in turn, has priority over the background
program. All programs operate with
interruptions permitted. Wwhen an
interruption occurs, the supervisor gains
control, processes the interruption, and
gives control to the highest priority
program that is in a ready state. Control
is taken away from a high priority program
when that program encounters a condition
that prevents continuation of processing
until a specified event has occurred.
Control is taken away from a lower priority
program when an event for which a higher
priority program was waiting has been
completed. When all programs in the system
are simultaneously waiting (i.e., no
program can process), the system is placed
in the wait state enabled for
interruptions. Interruptions are received
and processed by the supervisor. Wwhen an
interruption satisfies a program's wait

Control Program 7

condition, that program becomes active and
competes with other programs for CPU
processing time.

In addition to at least 24K positions of
main storage, multiprogramming support
requires the storage protection feature.

For the disk system, object programs
produced by FORTRAN, Basic FORTRAN, PL/I
(D), Assembler, COBOL, and RPG may be run
as batched-job foreground or background
programs. Programs produced by the
FORTRAN, Basic FORTRAN, and PIL/I (D)
fnmpilers may not be run as single program
initiator foreground programs because the
object programs produced by these compilers
require access to a communication region.
Object programs produced by the Assembler
and RPG compilers may be run as single
program initiator foreground programs
provided they do not require access to a
communication region (See Figure 2). Under
DOS, COBOL programs may run without
restrictions in an SPI foreground
environment. IBM-supplied programs are
distributed to run in the background area.
In a multiprogramming environment,
telecommunication programs are normally run
in the foreground-one area because this
area is assigned the highest priority of
the three program areas.

For the tape system, programs produced
by the Basic FORTRAN and PL/I (D) compilers
may not be run as foreground programs,
because the object programs produced by
these compilers use facilities available
only to background programs. Object
programs produced by the Assembler, COBOL,
and RPG compilers may be run as foreground
programs provided the following points are
taken into consideration:

1. Object programs produced by the
Assembler and RPG may not reference any
system logical unit except SYSLOG.

2. Object programs produced by the COBOL
compiler may not reference any system
logical unit except SYSLOG, and may not
contain EXHIBIT and TRACE (the output
of the EXHIBIT and TRACE statements is
on the system logical unit SYSLST).

The DISPLAY and ACCEPT statements may
be used only for the system logical
unit SYSLOG, normally assigned to the
printer-keyboard.

Note that IBM-supplied programs, except the
disk system Tape and Disk Sort/Merge
Program, are run only as background
programs. The sort/merge program can be
executed in the foreground when the Batch
Job Foreground option is in the system.

8 IBM S/360 DOS/TOS Concepts and Facilities

Multiprogramming within Partitions

Using a set of macro instructions,
multiprogramming may be performed in the
disk system within any one or all of the
partitions: background, foreground-one,
and foreground-two. For multiprogramming
users this, in effect, extends the
capabilities of the Disk Operating System
to execute twelve programs rather than
three.

To perform multiprogramming within a
partition, the program must consist of two
parts: a main program, called the main
task, and one or more subprograms, called
subtasks. Subtasks share the same
partition in main storage with the main
task. Main storage may be divided among
the subtasks and the main task within the
partition in any way desired by the problem
program. The main task initiates the
execution of the subtasks. Subtasks have
higher priority than the main task for CPU
time within the partition. Up to nine
subtasks can be attached to the main task
within a partition. Alternately, subtasks
may be attached to main task(s) in more
than one partition, providing the total
attached subtasks do not exceed nine.

The priority of the partition remains
the same (foreground-one, foreground-two,
background), but priority of a subtask
within a partition is determined by when it
is initiated (attached). Within a
partition, the first attached subtask has
the highest priority. As each subsequent
subtask is attached (nine maximum), it has
the next lower priority, followed by the
main task that has the lowest priority.
For example, if foreground-one partition
contains no attacked subtasks,
foreground-two partition contains four
attached subtasks, and the background
partition contains three attached subtasks
(the maximum of nine not being used), the
priority order would be:

-~

1
|F1|Foreground-one area program
L
v
F2| Ssubtask 1
|Subtask 2
| Subtask 3
| subtask 4
| Main Task
i

—

¥

G|Subtask 1
| Subtask 2
| Subtask 3
| Main Task
L

bt s e s, . A s T et T s, it s 2

r-—-——-a-r——"‘-—

Mult iprogramming within partitions is
supported only by the Assembler language.

A track hold function provides
protection of a DASD file being shared by
more than one task or partition at the same
tinme. The user can read a record from a
disk and place a hold on that track to

prevent any other task using the track hold

function from accessing it. The protection
remains in effect until the track is freed.
Protection is also provided when more than
one task will be manipulating data in the
same area of main storage by preventing the
data from being modified simultaneously by
these tasks. The task manipulating data in
the shared area first prevents other tasks
from accessing it with a macro instruction.
Subsequent requesting tasks using the same
macro instruction are then queued and enter
the wait state until the shared data is
made available by the manipulating task.
The requesting task with the highest
priority then gains access to the data.

Supervisor

The supervisor has these functions:
. Accepts interruptions,

. Schedul es the operator attention
routine and all problem programs active
in the system,

. Schedul es input/output operations,

. Performs error recovery (and services
other exceptional conditions for
input/output devices),

° Notifies the operator when a specified
number of tape errors has occurred, and
it records the error statistics by tape
volume (DOS),

. Loads programs from the system
residence device (or, in the tape
system, from a link-and-execute tape),

° Provides for program termination
including a main storage dump facility,

. Contains translate tables for ASCII
tape file processing, and

. Contains tables describing the
configuration and operational status.

To minimize the main storage
requirements of the supervisor, some
supervisor routines are read into main
storage only when needed. The area used
for that purpose is called the transient
area; routines executed in the transient

area are referred toc as transient routines.
Supervisor routines needed only in
exceptional cases (such as the dump
routine, the recording of error statistics
by tape volume routine, and routines to
handle exceptional input/output
conditions), are transient (Figure 2).
Other transient routines are the operator
conmunications routines and the file
initiation (OPEN) and temination (CLOSE)
routines of the input/output control system
(IOCsS). Some error recovery routines
reside in main storage permanently, in case
of an error in reading the resident system
itself.

Executable programs are retained on the
system residence device as images of main
storage and are of two types: absolute or
self-relocating. Absolute programs are
those programs that are unable to be
relocated after linkage editing. Self-
relocating programs are those programs that
retain the ability to be loaded and used at
any main storage address, even after
linkage editing. A self-relocating program
in the core image library can be executed
in either the background or foreground
areas. An absolute program can only be
executed in one of these areas without
linkage editing again. The supervisor
nuc leus and most prcblem programs are
absolute. The routines loaded into the
transient area are self-relocating.

The Channel Scheduler initiates I/O
operations and accepts I/0 interruptions.
The byte-multiplexing capabilities of the
multiplexor channel are fully utilized by
executing I/0 requests for this channel as
soon as each required device is free. 1If
burst-mode devices are attached to the
multiplexor channel, only non-overrunable
devices are multiplexed. For example, the
2540 Read Punch is multipl exed but the 1442
Serial Read Punch is not, if tapes or
direct access storage devices (DASD) are
attached to the multiplexor channel. Wwhen
selecting I/70 requests from the queue on a
selector channel, the Channel Scheduler
bypasses requests for busy devices. Thus,
a read request following a rewind request
for the same magnetic tape unit does not
tie up the channel.

A switchable device, such as a magnetic
tape unit, may be attached to two channels.
If a switchable tape unit is available for
an I/0 operation and channel one is
unavailable, Channel Scheduler uses the
second channel if it is available. In the
disk system, the Channel Scheduler can
optionally separate Seek commands from the
remainder of the channel program to allow
other input/output on a channel during
mechanical seek arm movement.

Control Program 9

When a record is read from SYSRDR/SYSIPT
(the job input stream), the Channel
Scheduler tests for either /* (end of data
or end-of -job step) or /& (end of job) as
the first two bytes of the record. If a
record begins with either of these two
character pairs, the Channel Scheduler
assumes it is a delimiter and not a data
record. Channel Schedulexr posts an
end-of-file condition to the program
originating the input request. 1In this
way, erroneous overreading of a job or a
job step by a previous job or job step can
be prevented.

The timer feature optionally maintains
time of day and allows problem programs to
set time intervals after which control is
directed automatically to special routines
(system or user supplied). Duration and
clock time are printed with the JOB and /&
control statements (the first and last
control statements of a job) for accounting
purposes.

The supervisor assembled during
generation of the system is adapted to the
configuration of the individwal
installation. All other components of the
system adapt to the various machine and
operational options by interrogating
information in a communications area of the
supervisor nucleus. Table areas, buffers,
etc can thus be expanded to use additional
main storage at program execution time.

OPERATOR COMMUNICAT ION

The Disk and Tape Operating Systems allow
the machine operator to:

1. Control the system.
2. Query its status.

3. Respond to system-initiated requests
for operator intervention.

Messages to the operator are written on
the operator communication device, the
printer-keyboard. Operator responses to
the system are generally short, one-word
answers, such as RETRY, IGNORE, or CANCEL.
In addition, the operator can elect the
system default option in most intervention
required situations.

When an I/0 error condition occurs (such
as intervention required, or card read
error that requires operator intervention,
including readying the device), the system
continues operation. Programs not
dependent upon the device can continue
processing. When the I/0 device is
readied, the pending I/0 operation is

10 IBM S/360 DOS/TOS Concepts and Facilities

automatically restarted. No operator
response from the printer-keyboard is
required. The operator communication
routines allow the operator to issue

commands to the system for:

1. Canceling execution of the current job
(in case of a suspected program loop).

2. Requesting a pause to permit forms
change, stacker emptying, device
assignment changes, etc.

3. Requesting the suspension of batch
processing.

4. Performing magnetic tape operations
(such as write tape mark or rewind).

5. Assigning symbolic device names to 1/0
devices.

6. Requesting a list of current system I/0
assignments.

7. Closing output files.

8. Obtaining a map of main storage
allocation and occupancy.

9. Reallocating the interval timer or main
storage among background and foreground
areas.

10. Initiating the execution of a
foreground program.

11. Dumping error statistics from disk to a
tape or a printer (DOS).

Job Control

Job control performs various functions for
batched-job foreground and background
programs on the basis of information
provided in job control statements.
these functions are:

Among

1. Assigning symbolic names to I/O
addresses.

2. Establishing system options.

3. Storing wvolume and file label
inf ormation.

Job control type functions are performed
by the Foreground (Single Program)
Initiator for foreground programs executing
as single programs.

Because 1/0 device addresses vary
between and within installations, usually
it is impractical to use these addresses in
source programs. Therefore, a standard set

of symbolic names has been established.
Each relevant name is identified with an
170 device before executing a given
program. This function is performed by the
program initiator, based on operator
commands or programmer-furnished control
statements. For background and batched-job
foreground programs, the program initiator
is job control. For single foreground
programs, the program initiator is the
Foreground (Single Program) Initiator.

Some symbolic names are required by the
system and must be assigned to specific
types of devices. These symbolic names are
in the form SYSxxx, where xxx represents
specific alphabetic characters. For
example, the symbolic name SYSRDR, the name
of the job control input device, must
always be assigned to a card reader, a
magnetic tape unit, or a 2311 or 2314 disk
extent.

Other symbolic names, in the form SYSnnn
where nnn represents numbers ranging from
000 through the maximum number of units
defined for the system, may be assigned at
the discretion of the user. Some system
components require assignment of one or
more of these symbolic units. For example,
any device supported by the Disk amd Tape
Operating Systems may be assigned the name
sSYs004. :

The Tape Operating System supports only
programmer logical units in the foreground
areas, whereas the Disk Operating System
provides both system and programmer logical
units in the foreground areas. A separate
set of units is defined for each of the
classifications of programs: background,
foreground-two, and foreground-one.

Standard assignments of symbolic device
names to I/0 devices are normally
establ ished when a system is generated.
The operator can permanently or temporarily
modify these standard assignments when the
system is initialized or between job steps,
permitting adjustment for configuration
changes. Job control restores all
temporary assignments to the standard
assignments at the completion of each job
for which they were modified.

For example, a specific card reader
might be assigned at system generation time
as SYSIPT. /The programmer could change the
assignment from the specified card reader
to a specific magnetic tape unit for his
individual job. At the completion of the
job, the assignment for SYSIPT reverts to
the system standard, the card reader.

For batched job operations, system input
(SYSRDR and SYSIPT) and system output
(SYSLST and SYSPCH) may be either tape, or
punched card devices (card readers, card

punches, and printers). For the Disk
Operating System, these files may be
assigned to an IBM 2311 Disk Storage Drive
or an IBM 2314 Direct Access Storage
Facility. Support of system files on disk
requires 24K bytes of main storage.

System input and output files on tape
may be combined, i.e., one tape unit can
replace SYSRDR and SYSIPT, and another can
replace SYSPCH and SYSLST.

Other system options can also be
standardized for background programs when a
system is generated. These options
determine whether:

1. Control statements are to be listed.

2. Dumps of main storage are to be printed
for abnormal terminations of jobs.

3. Language translators are to punch
object decks.

4. Language translators are to print
source module listings.

5. The COBOL compiler is to print object
module listings.

6. Assembler and PL/I (D) are to output
symbol tables, and the COBOL compiler
is to output a data division map.

7. The Assembler is to print symbolic
cross-reference listings.

8. The Basic FORTRAN, COBOL, and PL/I (D)
compilers are to summarize all errors
in source programs. (The Assembler and
FORTRAN always provide this facility.)

The programmer can modify these options
by using one or more of the appropriate job
control statements. Such modifications are
restored by job control to the system
standard at the end of each job. For
example, a system standard can be
established that language translators are
to punch object decks. The programmer can
change the standard for his job by
specifying // OPTION NODECK. The system
standard of punching okject decks is
restored at the end of the job.

Additional options allow the programmer
to indicate that:

1. A program is to be linkage edited.

2. A rrogram is to be added to the core
image library on the system residence
device.

3. A file label is to be stored either
permanently or temporarily, and the

Control Program 11

label may be used by all partitions or
by only one partition.

On a tape device, the multivolume output
for SYSLST and SYSPCH facility provides
automatic volume switching whenever an end
of volume condition is sensed on a file.

For the tape system, checkpoint records
are written on a 2400 tape unit. The tape
may be a 9-track or a 7-track tape that has
the data oconversion feature. User data on
the tape can be either in translate or data
conversion mode. For the disk systemn,
checkpoint records may be written on a 2311
or 2314 disk, or a 2400 tape unit.
Checkpoint/restart may be used by any
program during batch processing in a
foreground or background area.

All volume-label and file-label
processing is done during problem program
execution. Label information is read from
label statements by the program initiator
(job control for batched-job foreground or
background programs, Foreground (Single
Program) Initiator for single foreground
programs) before the execution of the
problem program. The label information is
subsequently stored for use by the proklem
program. As each file is opened, the
corresponding labels are checked against
data retained from the volume and
file—-label statements. If discrepancies
are detected, a message is printed on the
printer-keyboard, informing the operator of
such discrepancies. The operator can
terminate the job, ignore the condition, or
correct the condition and continue
processing.

Volume and file information can be
contained in one control statement for
tape. In the disk system, volume and file
information can be contained in two control
statements for disk. Most of the fields in
the label control statements are optional.
In the tape system, volume and file label
information is stored in the low part of
the problem program area. In the disk
system, label and extent information is
stored on the first cylinder after the last
library of the system. The first six
tracks of the cylinder can contain
temporary or standard label information
defined for a partition. The remaining
tracks of the cylinder can contain standard
label information for any or all
partitions.

The standard label tracks are not
overwritten until specified by the user.
Thus, disk work areas may be defined,
permitting compilation or assembly jobs to
be submitted without label and extent
information for work files. The tracks
used for temporary label information can be
overwritten between jobs and job steps.

12 IBM S/360 DOS/TOS Concepts and Facilities

Data Management (IOCS)

The data management facilities of Disk and
Tape Operating Systems are provided by a
group of routines ccllectively referred to
as the input/output control system (I0CS).
A distinction is made between two types of
rout ines:

1. Physical IOCs (PIOCS). The physical
unit I/0 routines included in the
Supervisor.

2. Logical IOCS (LIOCS). The logical unit
I/70 routines linked with the user's
problem program.

PIOCS is used by all Disk and Tape
Operating Systems programs to initiate or
test I/0 operations, whether or not they
use LIOCS. PIOCS supervises the execution
of channel programs without regard to the
logical content, format, or organization of
the data being read or written. (It does,
however, set the mode requested by the user
for tape operations: density, parity,
translation, and byte-conversion.)

PIOCS includes facilities for:
1. Scheduling and queuing I/O operations.

2. Checking for and handling error
conditions and other exceptional
conditions related to input/output
devices.

3. Handling I/O activity to maintain
maximum I/0 speeds without burdening
the problem program.

As part of most user programs, LIOCS
provides an interface between the user's
file processing routines and PIOCS. (All
COBOL, FORTRAN, Basic FORTRAN, RPG, and
PL/I (D) programs use LIOCS; most Assembler
programs use LIOCS.) Unlike PIOCS, LIOCS
handles logical data files. Generalized
LIOCS routines can be assembled along with
problem programs, or they can be separately
assembled, assigned a unique name, and
cataloged into the relocatable library by
the user for inclusion in problem programs.

Depending on information assembled with
the user's program tc define various
attributes of each file (name, location,
device type, organization, format, etc),
the appropriate LIOCS routines then can be
retrieved from the relocatable library and
linked to the user's program when it is
linkage edited.

Depending on file attributes, LIOCS
performs the following functions where
applicable:

1. Requests (of PIOCS) execution of
appropriate channel programs.

2. Opens and closes files.

3. Services end-of-file and end-of-volume
conditions.

4. Services user-requested label
processing exits.

5. Blocks and deblocks records.
6. Manages user-defined 1I/0 buffers.

7. Services probler program requests for
control operations (that is, backspace
tape, stacker selection, printer fomms
control, etc) on I/0 devices.

8. For ASCII file processing under DOS,
translates from ASCII to EBCDIC on
input and from EBCDIC to ASCII on
output.

For the tape system, LIOCS supports only
sequential file organizations. Such data
organizations are compatible with BSAM
(Basic Sequential Access Method) and QSAM
(Queued Sequential Access Method) data sets
of Operating System, although the
associated program logic is different.
Instead of distinguishing basic and queued
access methods, Disk and Tape Operating
System IOCS permits up to two I/0 buffers.

To avoid time consuming OPEN and CLOSE
functions for intermediate tape work files
(which are often written, reread, and
rewritten several times in a single job
step), NOTE/POINT macros provide limited
direct access to sequential files.

For the disk system, LIOCS supports
sequential, indexed sequential, and direct
access file organizations. The sequential
data organizations are compatible with ESAM
and QSAM data sets of Operating System.

The indexed sequential data organizations
are compatible with BISAM (Basic Indexed
Sequential Access Method) and QISAM (Queued
Indexed Sequential Access Method) data sets
of Operating System. The direct access
data organizations are compatible with BDAM
(Basic Direct Access Method) data sets of
Operating System. As with the tape system,
the disk system provides NOTE/POINT macxros
for limited direct access to sequential
files.

For the disk system, IOCS file
definition macro instructions are available
that provide device independent sequential
file processing for the system units
SYSRDR, SYSIPT, SYSPCH, and SYSIST.
physical device can be assigned at
execution time, allowing data files to be
processed by the physical device that the
user prefers at the time. For example,
when the device independent macro
instruction is used in the program at
execution time, the system logical device
SYSRDR could be assigned to a card reader,
a magnetic tape, or a disk extent. The
user's program need not be modified. This
can be advantageous to the user when one
physical device is temporarily inoperative,
enabling him to process on another device.
The function may be used in the user's
background or foreground programs and is
available to Assenbler language users only.

The

Control Program 13

Processing Programs

Two types of processing programs, language
translators and service programs, are
contained in the system supplied by IBM.
The third type of processing program
(user-written problem programs) can be
added by the user to the system.

Language Translators

Programs in five different languages can be
translated into relocatable object modules.
The five translators are Assembler, COBOL,
FORTRAN, PL/I (D), and RPG.

ASSEMBLER

The Assembl er lanquage provides a
convenient means of sclving problems by
directly utilizing the IBM System/360
instruction set. It is a symbolic, machine
oriented language that is applicable to any
problem. The problem program coding is
done with symbolic instructions that are
translated into machine instructions.
Program locations can be addressed through
symbolic names. Data constants can be
defined in several different ways, either
as explicit constants or as literals coded
directly into the operands of symbolic
instructions.

The Assembler language enables the
programmer to define and use macro
instructions. Macro instructions are
represented by an operation code which, in
turn, actually stands for a sequence of
machine and/or assembler instructions
(called a macro definition) that
accompl ishes the desired function.

Macro definitions used with an Assembler
language source program fall into two
categories. System macro definitions,
provided by IBM, relate the object program
to facilities of the Disk and Tape
Operating Systems. Other macro definitions
may be created by the programmer
specifically for use in the program at
hand, or for incorporation into the source
statement library, available for future
use.

Programmer created macro definitions
simplify the writing of a program and/or
ensure that a standard segquence of
instruction accomplishes a desired

14 IBM S/360 DOS/TOS Concepts and Facilities

function. For example, the logic of a
program may require the same instruction
sequence to be executed again and again.
Rather than code this entire sequence each
time it is needed, the programmer creates a
macro definition for the sequence. Each
time the sequence is needed, the programmer
simply codes the macro instruction
corresponding to the macro definition.

In the Disk Operating System, a user
with a 16K system has the option of using
the Assembler with a disk work file
variant, or an Assembler with a tape work
file variant. Either variant requires 10K
bytes of problem program storage. A user
with at least a 24K system has an
additional option of using the Assembler
with a disk or tape work file variant.
This variant requires 14K bytes of problem
program storage. For users with at least
64K bytes of main storage, Assembler F is
available. This Assemkler requires 44K
bytes of problem program storage. In the
Tape Operating System, a 10K and a 14K
variant are available, both requiring tape
work files.

COBOL

COBOL is based on a well defined restricted
form of English especially suited for
cormercial data processing problems. COBOL
programs are translated by the compiler
directly into object code, including most
I70 functions necessary for processing the
user's data files. The remaining I/0
functions are included from the relocatable
library by the Linkage Edi tor.

The source statement library may be used
to store additional source language
subroutines for inclusion in source
programs at compile time. For example, a
standard system configuration can be
included in the Enwironment Division of the
COBOL source program by using a COPY
statement.

The relocatable library furnishes object

" language subroutines supplied by IBM, plus

those created by the user. These
subroutines are incorporated into various
programs by the Linkage Editor. In the
disk system, COBOL supports direct access
files.

A 16K system is required for the Tape
Operating System; at least a 24K system is

required for the Disk Operating System. In
the disk system, COBOL requires 14K of
problem program area and is capable of
using either disk or tape work files.

A Language Conversicn Program (ICP) is
available under the Disk Operating System
to help convert existing COBOL programs
into a form acceptable to the DOS American
National Standard COBOL compiler. The LCP
requires a problem program area of at least
18K. The LCP is not supported under the
Tape Operating System.

AMERICAN NATIONAL STANDARD COBOL.
American National Standard OOBOL,
problem program area is required.

For
54K of

BASIC FORTRAN

The Basic FORTRAN language helps solve
problems that are primarily mathematical in
nature. Problems containing formulas and
variables can be easily described in the
Basic FORTRAN langquage. Source statements
are translated directly into object code.
The user can divide his Basic FORTRAN deck
into one main program and several
subprograms for speed of development and
ease of maintenance. Subprograms can be
called by the main program and/or other
subprograms. The relocatable library
stores object modules for inclusion into
various programs by the Linkage Editor.

The IBM Basic FORTRAN language is
compatible with, and encompasses the
American National Standard Basic FORTRAN.
The American National Standard Basic
FORTRAN language has been extended by the
following features to facilitate the
writing of source programs and reduce the
possibility of coding errors:

1. Expressions may consist of constants
and variables of the same and/or
different types.

2. The T format spacing code allows
input/output data to be transferred
beginning at any specified position.

3. Apostrophes may be used to enclose
literal data in a FORMAT statement.

4. The A format code allows reading and
writing of character data.

5. The scale factor allows modification of
the internal or external representation
of data.

6. The first character of a record to be
printed is used for carriage control.

7. Three types of data are supported:
INTEGER (binary), REAL (short precision
floating point), and DOUBLE PRECISION
(long precision floating point).

8. An array may have one, or three

dimensions.

two,

9. The name of a variable may contain as
many as six characters.

10. Data records may be read or written in
any order on some types of input/output
devices.

11. Function subprograms may return results
via the argqument list.

The Basic FORTRAN compiler regquires a
16K system (10K of problem program area).
In the disk system, its work file may be
either a tape or a disk.

FORTRAN

The Disk Operating System provides an IBM
FORTRAN compiler in addition to its Basic
FORTRAN facility. The FORTRAN compiler
requires a minimum background partition of
40K bytes for compilation. The FORTRAN
language is compatible with, and
encompasses the American National Standard
FORTRAN. 2All Basic FORTRAN facilities
apply to FORTRAN. In addition, the
following extensions to American National
Standard FORTRAN are available:

1. IMPLICIT statement allowing extended
implicit classification by first
character of a name.

2. Length specifications and
initialization values in type
statements.

3. G-conversion extended to cover all
mineric and logical data types.

4. Multiple entry points in subprograms.

5. Selective returns from SUBROUTINE
subprograms.

6. Arrays of up to seven dimensions.

7. Data-directed input and output via the
NAMELIST statement.

8. Generalized subscripts.
9. Hexadecimal constants and FORMAT code.

10. Debugging language statements.

Processing Programs 15

11. Phase load overlay for object programs.

Optionally, at system generation time, a
user may specify that the FORTRAN compiler
is to print object module listings.

Subprograms compiled by Basic FORTRAN
may be used with FORTRAN programs. This
compatibility may be provided for at system
generation time or, on a job-by-job basis,
during linkage editing.

The FORTRAN compiler requires two work
files, each of which may be on disk or
tape. Object programs may be run in a
background partition or in either
foreground in the batched job foreground
(BJF) mode.

PIL/I (D)

PL/I (D) provides the rrogrammer with a
unified problem-oriented language for
efficiently programming either scientific
or commercial problems, as well as problems
that can best be solved with a combination
of scientific and commercial computing
techniques. It is particularly useful for
the increasing number of semicommercial,
semiscientific applications, such as
information retrieval or command and
control applications. The modern features
of PL/I (D) make it useful for many
progranmming applications for which other
compiler lanquages are not suited.

The PL/I (D) compiler requires at least
a 16K system. In the disk system, two
variants of the PL/I (D) compiler can be
built. One of the variants requires 10K
bytes of problem program storage, while the
other requires 12K. The 10K variant allows
the system input and output files to be
assigned to magnetic tape or punched card
devices. The 12K variant allows the system
input and output files to be assigned to a
disk drive. In the disk system, PL/I (D)
is capable of using either disk or tape
work files.

RPG

RPG is designed specifically for report
writing and file maintenance applications.
The RPG language facilitates producing
programs for a wide variety of reports
ranging from a simple listing to a complete
report that incorporates calculation and
editing.

Additional facilities provided are:

16 IBM S/360 DOS/TOS Concepts and Facilities

1. Table lookup.

2. Branching capabilities.
3. Indicator control.

4. Split control fields.
5. Sterling conversion.

6. Designation of multiple input and
output files.

IBM System/360 RPG has many more
facilities than RPGs of prior systems.
Special coding sheets are provided to
describe the job to be performed. The RPG
lanquage is problem oriented and does not
require detailed knowledge of machine
functions. The main body of the program
can be written in RPG, and separately
assembled routines written in the Assembl er
can be combined with it by the Linkage
Editor.

The RPG compiler requires at least a 16K
system (10K of problem program area), and
in the disk system, is capable of using
either disk or tape work files.

Service Programs

The IBM supplied service programs perform
those functions required by the majority of
users. A description of the service
programs follows.

LINKAGE EDITOR

The Linkage Editor combines object mcdules
supplied in the job input stream, and/or
newly compiled object modules, and/or

ob ject modules from a relocatable library.
It edits these modules into executable
programs. These programs then can be
fetched directly from the Link-and-Execute
file, or they can be cataloged into the
core image library. 1In the tape system,
the Link-and-Execute file is a separate
tape. 1In the disk system, the
Link-and-Execute file is the temporary part
of the core image library.

The Linkage Editor is capable of
generating simple or complex overlay
structures. A phase, one element of an
overlay structure, is the object of cne
FETCH or LOAD operation and is composed of
one or more complete control sections.

Cne phase can contain control sections
from several object modules. One object

module can supply control sections to
several phases. To illustrate this,
consider the following examples. One .
object module (MOD1) contains three control
sections (CSECT1, CSECT2, and CSECT3). A
second object module (MOD2) contains two
control sections (CSECT4 and CSECTS).

To construct a phase (PHNAME1l)
containing selected control sections from
each of these object modules, the following
sequence of Linkage Editor control
statements can be used.

PHASE PHNAMEL,*
INCLUDE MoD1, (CSECT1,CSECT3)

INCLUDE MOD2, (CSECTS)

To construct two phases (PHNAME2 and
PHNAME3) containing control sections from
the same object module, the following
sequence of Linkage Editor control
statements can be used.

PHASE PHNAME2,*
INCLUDE MOD1, (CSECT1,CSECT2)
PHASE PHNAME3,*

INCLUDE MOD1, (CSECT3)

The Linkage Editor also allows the same
control section to occur in different
phases of the same overlay structure.
example, using the same object module
(MOD1), the following two phases (PHNAMEY4
and PHNAMES5) contain the same control
section (CSECT2).

For

PHASE PHNAME4,*

INCLUDE MODlm(CSECTl,CSECTZ)

PHASE PHNAMES,*

INCLUDE MOD1l, (CSECT2, CSECT3)

Thus, a program could use the same I/0

control section in its first and last
phases, omitting it during intermediate
phases that have no I/0 activity.

The Linkage Editor program may execute
as a background program only.

LIBRARIAN

Each system residence device contains one
to three types of libraries: core image
(required), relocatable, and source

statement. As their names imply,
executable programs (core image format) are
stored in the core image library;
relocatable object decks are stored in a
relocatable library; and, source language
routines are stored in a source statement
library.

Each library is preceded by a directory
for the library. In the tape system, the
directory takes the form of header records
preceding each entry in the library.

The Librarian is a group of routines
that maintain and serxrvice the libraries of
the systems. The maintenance routine in
both systems, disk and tape, provides for
cataloging (adding) and deleting. In the
disk system, the maintenance function also
provides the ability to rename, condense,
and reallocate. The service routines
provide for displaying (printing) and
punching elements of the relocatable and
source statement libraries. In the disk
system, a service program is available for
displaying and punching specified phases or
programs from the core image library. The
punched output is of the form acceptable as
input to the Linkage Editor. Both systems
provide for copying the library components.
Directories for all libraries can be
displayed.

The Librarian prcgram may execute as a
background program cnly.

Core Image Library

The core image library contains any desired
number of programs, both IBM supplied and
user cocded. Each program comprises one or
more phases created by the Linkage Editor.
Hence, each phase may be either a single
program or, in the case of a multiphase
program, an overlay. For more rapid
retrieval of the multiphase foreground
programs in the disk system, each phase may
be given the prefix FGP as the first three
characters of the program name. Phases
with these characters are cataloged in a
separate directory on the resident pack.

All programs (except transients) in the
core image library must be linkage edited
to run in the problem program area .(above
the resident Supervisor).
Non-self-relocating foreground programs
mast be linkage edited to run at the
address of the associated foreground
partition. After linkage editing, each
program phase is associated with fixed
locaticns in main storage, although
self-relocating phases (usually retrieved
by the LOAD macro instruction) can be
loaded anywhere in the problem program area

- of storage.

Processing Programs 17

Relocatable Library

A relocatable library can contain any
number of modules. Most modules are
complete object decks in relocatable
format, the output from assemblies and
compilations. Other modules are IOCS
modules required by the various compilers.
The relocatable library pemits the user to
retain frequently used routines:on-line,
available for combination with other
modules without reguiring recompilation.

The 80-column standard IBM System/360
ob ject card contains up to 56 bytes of
program information. Packing allows a
162-byte block in the relocatable library
to contain up to 132 bytes of program
information on the tape system. In the
disk system, up to four 80-column cards may
be contained in each 322-byte record.

Source Statement Library

A source statement library can contain any
number of sequences of source language
statements. Each sequence is called a
book .

The source statement library provides an
extension of the functions of a macro
library. If an assembly source program
contains macro instructions (macros), the
macro definitions in the source statement
library corresponding to these macro
instructions are generated into the source
program. If an Assembler or COBOL source
program contains a COPY statement, the
appropriate language translator inserts a
book from the library into the source
program during compilation.

Each book in the source statement
library belongs to a sublibrary.
Sublibraries are currently defined for two
programming languages, Assembler and COBOL.
Sublibrary A is used by the Assembler, and
sublibrary C is used by COBOL. Classifying
books by sublibrary names permits duplicate
names in different sublibraries.

Each book in the source statement
library is compressed. Source statements
in the library are blocked into longer
records after each blank field has been
replaced by one or more bytes giving the
count of blanks in that field and the count
of nonblank characters in the preceding

field. In the tape and disk systems, the
records are 160 bytes. When a book is
retrieved, each of its statements is

expanded to its original 80-character
format .

18 IBM S/360 DOS/TOS Concepts and Facilities

Private Libraries -- Tape Operating System

The Tape Operating System permits each user
to build relocatable and source statement
libraries on separate tape reels. A job
contrcl statement notifies the system when
either the relocatable or source statement
library is assigned to a private tape.

Private libraries are advantageous to
the user in several ways:
1. The time required to perform an
assembly (containing macro instructions
and/or COPY statements) or a COBOL
compilation (containing COPY
statements) can be reduced. There is
then no need to bypass a portion of the
core image library and the entire
relocatable library, extract the
appropriate book(s) from the source
statement library, and subsequently
reposition the tape to the appropriate
place in the core image library.
2. The time required to perform a linkage
editing function can be reduced,
because there is no need to bypass a
portion of the core image library,
extract the indicated module(s) from
the relocatable library, and
subsequent ly rerosition the tape to the
appropriate place in the core image
library.

Maintenance functions (cataloging,
deleting, ands/or copying) for private
libraries can be performed in less time
because only the individual library and
not the entire system tape need be
updated and copied on another magnetic
tape.

Private Libraries -- Disk Operating System

The Disk Operating System permits the user
to build private relocatable and source
statement libraries. A private library in
the disk system is a disk file having a
unique file name. A job control statement
notifies the system when a relocatable or
source statement library is private.

Private libraries are advantageous to
the user in several ways:
1. The user need not be concerned with
limiting the size of the core image
library on the system residence pack in
order to have room for a relocatable
and source statement library on the
system pack. The relocatable and
source statement libraries can be
removed from the system residence file

and placed in private libraries,
leaving more room for the core image
library.

2. The user may have as many relocatakle
or source statement libraries as he
desires, each serving a particular
function. By notifying the system
which private relocatable and/or which
source statement library is to be used
in a particular job step, it will be
interrogated when needed.

3. A relocatable and source statement
library on the system residence file
may be used in combination with a
private relocatable and source
statement library respectively.

4. Private libraries are useful in a
testing environment because the user
can keep his working programs on a
system library and his modified
versions of these programs on private
libraries. The modified versions can
thereby be tested without destroying
the current working programs that are
on the systems residence file or
another private library.

Maintenance functions such as catalog,
delete, rename, condense, and condense
limit may be performed on private
libraries. All service functions available
to the system are also available to private
libraries.

If both a private and a system
relocatable library are on-line, the
private library is searched first in an
attempt to find a module to be linked into
the user's program.

SORT/MERGE PROGRAMS

Three sbrt/merge programs are available for
users of the Disk and Tape Operating
Systemns:

* " The Disk and Tape Operating Systems
Tape Sort/Merge Program.

. The Disk Operating System Disk
Sort/Merge Program.

. The Disk Operating System Tape and Disk
Sort/Merge Progr am.

The sort/merge programs enable the user to
sort multiple files of randomly ordered
records or to merge multiple files of
sequenced records into one sequential file.
Sequencing is performed by comparing up to
12 specified control data fields within the
records. The programs assume random

sequences for input files to sort
operations, but take advantage of any
inherent ordering. Records may be sorted
or merged in ascending or descending order.

The three programs differ in the number
of input files permitted, and the I/0
device types supported for input, work, and
output files. The following lists give the
general capabilities the programs have in
conmon, and the individual characteristics
of each program.

Each of the sort/merge programs:

1. Processes standard System/360 volume
and file labels, provides linkage to
user label processing routines for
standard, nonstandard, or user labels,
and permits the use of unlabeled tapes.

2. supports 9-track or 7-track (with or
without data conversion) magnetic tape
units, and some comkinations of the two
types.

3. Allows multivolume input and output
files.

4. Provides linkages to user-written
routines at various points in a sort or
merge operation.

5. Prcvides checkpoint, interruption, and
restart procedures for the sort
operation.

6. Allows input files and the output file
to be spread over multiple I/0 devices.

7. Provides for specification of alternate
input and output tape drives for either
a sort or a merge operation.

8. Provides the ability to bypass
unreadable data blocks, or to indicate
the need for operator intervention.
Provides a message to the operator
indicating that a block has been
byrassed.

9. Sequence checks the records during the
final pass of a sort or merge run.

The Disk and Tape Operating Systems Tape
Sort/Merge Program:

1. Supports 9-track and/or 7-track
magnetic tape units for input, output,
and work files.

2. Sorts up to 9 input files, merges up to
7 input files.

The Disk Operating System Disk
Sort/Merge Program:

Processing Programs 19

1. Supports 3%-track and/or 7~track
magnetic tape units and IBM 2311 disk
storage drives for input and output
files. A disk area is used for work
files.

2. Sorts up to 9 input files, merges up to
4 input files.

3. Provides the option of writing an
output file consisting only of the disk
addresses of the ordered records, or
the disk addresses and control data
fields.

4. Provides a facility for calculating the
number of disk work area tracks
required for sorting.

The Disk Operating System Tape and Disk
Sort/Merge Program:

1. Supports 9-track and/or 7-track
magnetic tape units, IEM 11 Disk
Storage Drives, and IBM 2314 Direct
Access Storage Facility for input,
output, and work files.

2. Sorts up to 9 input files, merges up to
8 input files.

3. Provides the option of writing an
output file consisting only of the disk
addresses of the ordered records, or
the disk addresses and control data
fields.

4. Provides a facility for calculating the
number of disk work area tracks
required for sorting.

9. Allows a wider latitude of action by
user-written exit routines than the
other sort/merge programs, including
the ability to lengthen, shorten, and
delete records, to read an input file,
and to write an output file.

6. May be attached by an executing program
as well as executed as an ordinary job.

UTILITIES

The utility programs copy data files from
one storage medium to the same or another
medium, together with reblocking and field
select options. Each utility program is
generalized. To handle a specific job, the
generalized program is modified by control
statements. Control statements are
free-form, that is, optional parameters can
be supplied in any order. The programs
assume a normal use for most options when a
choice is not indicated in a control
statement.

20 IBM S/360 DOS/TOS Concepts and Facilities

Special purpose programs, such as
Initialize Disk, Assign Alternate Tracks,
Copy-Restore (Tape or Card), Copy Disk to
Disk, and Initialize Tape are available fox
the disk system.

For the disk system, utility programs
are distributed to run in the background
area but may be linkage edited to run in a
batched foreground area.

AUTOTEST

The Autotest Program provides debugging
aids for Assembler language programs. Its
testing services are available to other
programs in the system. It is most useful
for symbolic debugging of assembled decks.

Some of the features of the Autotest
Program are:

1. Autopatch. Instructions can be
" exchanged, added or deleted without
reassembling or computing linkage
addresses. Constants can only be
replaced.

2. Display. Data from selected areas of
main storage can be printed at
specified points during the execution
of the object program.

3. Panel. General registers, main storage
positions 24-127, and floating point
registers in any combination can be
printed at specified points during
execution of the problem program.

4. Main storage printout. The content of
main storage can be dumped, if
requested, on a normal end of job. On
an abnormal end of job, the dump always
occurs. Character, mnemonic, and
symbolic information optionally
supplements a hexadecimal dump.

The Autotest facility is available to
all 2311 Disk and Tape Operating Systems
users. However, while operating in
Autotest mode, only background programs can
be processed. This facility is not
available to 2314 disk users.

EMULATORS

The Emulator Programs under the Disk
Operating System allow 1401, 1440, and 1460
user-written programs to be executed in the
background partition or in batched
foreground in a stacked job environment,

and may be intermixed with System/360
programs in the job stream. The Emulator
Programs require little or no reprogramming
of 1400 programs that are written
consistent with 1400 System Reference
Manuals published by IEM.

The Emulator Programs use the physical
IOCS capabilities of the Disk Operating
System to simulate the 1400 I/0
instructions. Automatic job transition is
provided by the system when a 1400
endof-job halt is encountered. Depending
on control card options, 1400
non-end-of-job halts and 1400 program error
conditions are either routed to the
operator for action, or result in an
abnormal end of job fcllowed by a release
to the disk system.

Three main levels of support are
provided by the Emulator Programs:

) 1400 Unit Record: Support is provided
for 1400 card@ programs, and for reading
and punching both BCD and binary data.

. 1400 Tape: Support is provided for
1400 tape operations.

. 1400 Disk: Support is provided for
1311 Disk Storage Drives and 1301 and
1405 Disk Storages.

BASIC TELECOMMUNICATIONS ACCESS METHOD
(BTAM)

The Basic Telecommunications Access Method
(BTAM) controls transmission and reception
of messages over telecommunication lines in
response to READ and WRITE macro
instructions issued in the user's proklem
program. To accomplish this function, BTAM
dynamically generates and executes channel
programs and, at the user‘'s option,
provides buffer allocation.

BTAM requires 32K bytes of main storage
and is available in both multiprogramming
and batch-only systems. BTAM programs can
operate as either foreground or background
programs.

) The facilities of BTAM are made
"available through the macro' generation
~capabilities of the Disk Operating System
assenbler. From a macro instruction
describing the types of terminals, lines,
and other facilities to be used, the user
generates his BTAM logic module. It may be
assenbled with the user program or
separately assembled and combined with it
at linkage edit time. During assembly of a
problem program, macro instructions coded
by the user are expanded into:

1. Tabular information defining the lines,
terminals, and options to be used.

2. Linkage to the BTAM routines.

When an OPEN macro instruction is
executed in the problem program,
Teleprocessing lines are prepared for data
transmission, and initialization for buffer
management is performed. When a message is
to be received or sent, a READ or WRITE
macro instruction causes a branch to the
BTAM READ/WRITE routine. This routine
builds a channel program to perform the
requested operation and passes the request
to the I/0 Supervisor, which starts the
channel procgram. Control passes back to
the user at this point. Execution of the
channel program is performed asynchronously
to the problem program.

An important distinction between BTAM

-and other access methods of the Disk

Operating System is shown in the way in
which the channel program is executed.
certain types of terminals and line
configurations, the BTAM channel programs
may be repeatedly restarted in response to
conditions on the line. This allows a
single REAL to successively poll a number
of terminals on a line. A single WRITE can
signal a number of terminals to prepare to
receive a message. The functions of
restarting channel program and buffering
are performed asynchronously to execution
of the problem programn.

For

QUEUED TELECOMMUNICATIONS ACCESS METHOD
(QTAM)

The Queued Telecommunications Access Method
(QTrAM) is an input/output control system
that extends the techniques of logical IO0OCs
to the telecommunications environment.
Files accessed by the problem programmer
are queues of messages both incoming and
outgoing via remote terminals connected to
comminication lines. Although the time and
order of the arrival of messages to and
from the central processing unit (CPU) are
unpredictable, the programmer can handle
the messages as if they were organized
sequentially.

QraM furnishes more than the mechanics
for input/output operations. In addition
to the standard GET/PUT macro instruction
support for message processing programs,
QTAM provides a high-level and versatile
message control language. QrAM-supplied
macro instructions can be used to construct
a complete message control program that
controls the flow of message traffic from
one remote terminal to another (wessage
switching application), and between remote

Processing Programs 21

terminals and any message processing
programs (message processing applications).
An installation-oriented message control
program can thus be written in a shorter
time than was previously possible.

Ag{;h%__n%gsﬁamzm_nmis
generate rom a number of assembler macro

instructions coded by the programmer.
Although the assembler macro generator is
used, the process followed is similar to
that used by a high-level compiler. A
generated message control program is
completely device dependent, with all
communication lines and terminals
identified to the system. The user
specifies his equipment configuration and
the main storage areas (buffers) required
for his applications through file
definition and control information macro
instructions. These macros generate the
tables and lists of control information
that define the system environment for the
QTAM logic.

QTAM logic modules are also provided for
many procedural functions such as message
code translating, message routing, and
error checking. By selecting the
appropriate macro instructions, the user
can specify which QTAM logic modules are to
be incorporated into the message control
program. In this way, the system can be
tailored to the exact requirements of the
particular application.

The QTAM message processin rogram
services enable a programmer to process
messages from a teleccmmunications network
with the same macro instructions that are
used for local input/ocutput devices.
Because a QTAM message control program
performs the input/outrut operations, it is
possible to write a message processing
program that is device independent. Thus,
the programmer is protected from the time
and device dependent aspects of the
telecommunications environment.

QOTAM requires 64K bytes of main storage
and is available only in a multiprogramming
system. A QTAM message control program
must be executed as a foreground-one
program. Up to two QTAM message processing
programs can run as foreground-two and/or
background programs.

UTILITY MACRO INSTRUCTIONS

These macro instruction facilities are
designed to generate self-relocating
file-to-file utility programs or
user-designed file-processing programs for
operation in a multiprogramming
environment. Macro instructions are
provided for each of the following:

22 IBM S/360 DOS/TOS Concepts and Facilities

Disk Input Card Input

Disk Output Card Output
Tape Input Printer Output
Tape Output Console 1052 Input

Tape Cartridge
Input

Console 1052 Outgut

A typical generated program would require
two of these macros. For example, a
tape-toc-printer utility would use the
tape-input macro and printer-output macro.

Cptional exits are available to user
written routines, which may provide control
information, perform specialized label
processing, perform record processing,
handle unreadable records, add and delete
records, etc.

System Generation

The 2311 and 2314 disk resident systems are
received on either a magnetic tape or disk
pack. The tape resident system is received
on a magnetic tape. The systems contain
three libraries: core image, relocatable,
and source statement. Some DOS
distributions also contain a private source
statement library and a private relocatable
library. If either disk system is received
on tape, it must be copied onto disk before
the system generation procedure can begin.

The tape system core image library
contains the supervisor and its associated
transient routines, job control, and all
other IBM-supplied language translators and
service programs. In the disk system, the
core image library contains the supervisor
and its associated transient routines, Job
Control, Linkage Editor, Librarian,
Assembler, and selected utility programs.
All programs in the core image library of
both systems are edited to run with the
IBM-supplied Supervisor, the size of which
may be specified by the user (6K or 8K for
the tape system; 6K for the 2311 or the
2314 disk systems).

The relocatable library contains IBM
program modules. Among these programs are
Job Control, Linkage Editor, Librarian, the
language translators (Assembler, COBOL,
etc, and the IOCS modules associated with
COBOL, RPG, and PL/I (D)), and other
service programs (Utilities, Sort/Merge,
etc) .

The source statement library contains
macro definitions in the Assembler
sublibrary. Among these are the supervisor

communications and logical IOCS macro
definitions. It also contains macro
definitions for generating the supervisor
and sample problems for various processor
programs.

The system received by the user is
capable of immediate oreration. However,
most installations generate supervisors
adapted to their configurations. Also,
system libraries should be edited according
to the needs of different installations.
When this process is completed, the newly
created system replaces the system that was
received by the user.

Briefly, the system generation process
is as follows. The user codes a set of
supervisor macro instructions describing
his system configuraticn. The assembly of
these macro instructions results in a new
supervisor which is then cataloged in the
core image library of the system. Certain
books in the source statement library (such
as IOCS modules) may be assembled from
macro definitions in the source statement
library, and added to the relocatable
library. In the disk system, the language
translators and other service programs that
the user desires are linkage edited to the
core image library. The result of these
operations is the installation's
operational system.

Protection Facilities

A storage protection feature is supported
optionally by Disk and Tape Operating
Systems. Problem programs cannot modify
main storage locations not assigned to
them. Storage protection is required for
multiprogramming systems. Problem programs
operate in the problem state (as opposed to
the supervisor state), where they cannot
issue privil eged instructions, including
the resetting of storage protection keys.

Whenever different programs use the same
system function, such as the supervisor
itself, or use the same magnetic tape
drives, there is danger that one program
will obliterate information belonging to
another through either programmer or
operator error. Magnetic tapes used for
such read only functions as system
residence can be protected from overwriting
by physical removal of their file
protection rings. However, to prevent one
program from overwriting tape files used by
another program, volume labeling is an
effective protective technique. Iabeling
also assures proper mounting of input and
output data tapes. Magnetic-tape labeling
is optional in the system.

Labeling is also used to identify and
protect direct access storage devices. For
these devices, labeling is mandatory.

Since different programs may use different
extents on the same direct access volumes,
the disk system provides the facility for
protecting extents on direct access
volumes.

For those disk systems with at least 24K
bytes of main storage, file protection is
available for any DASD unit supported by
the system. As file protection is
performed by the supervisor, this optional
facility must be specified when the system
is generated. In a file protected system,
as each program opens an extent on a DASD,
the extent limits are written in a table of
the supervisor. Whenever the problem
program issues a READ or a WRITE to the
DASD, the supervisor checks to make sure
the area is within the extents opened.

In a multiprogramming environment, a
track hold function provides protection for
a DASD file being shared by more than one
task or partition at the same time. The
user can read a reccrd from a disk and
place a hold on that track to prevent any
other task using the track hold function
from accessing it. The protection remains
in effect until the track is freed.

For multiprogramming within a partition,
protection is provided when more than one
task is manipulating data in the same area
of main storage by preventing the data from
being modified simultaneously by these
tasks. The task manipulating data in the
shared area first prevents other tasks from
accessing it with a macro instruction.
Subsequent requesting tasks using the same
macro instruction are then queued and enter
the wait state until the shared data is
made available by the manipulating task.
The requesting task with the highest
priority then gains access to the data.

Other important protection features are
built into the system. For instance,
records starting with /% and /& in the
system input stream (SYSRDR and SYSIPT) are
always considered delimiters and cannot be
used as data. Thus, one job cannot
erroneously overread SYSIPT or SYSRDR and
destroy the succeeding job.

Availability/Serviceability Facilities

Availability is a measure of a system's
ability to continue processing during a
given period. Serviceakility facilities
are those functions that analyze and
correct system malfunctions. Two :
serviceability facilities are available in

Processing Programs 23

a disk system with a minimum of 24K bytes
of storage available. If specified, these
options are generated as part of the
supervisor at system generation time.
Certain conditions, which previously
prevented the system from continuing
processing, can be overcome by using these
features:

1. I/O Exrror Logging

When an I/0 error cannot be corrected
after a standard number of retries,
system environment data is recorded by
the Outboard Recorder (OBR). This data
is stored in a recorder file, defined
on a system logical unit (SYSREC).

The Statistical Data Recorder (SDR)
records the cumulative error status of
an I/0 device. This data is also
stored in the recorder file. Counters
are retained in main storage that
correspond to error counters in the
record. When an I/0 error occurs,
counters in main storage are updated.
Whenever any of the counters in main
storage are filled, the contents of all
the counters are added to the counters
in the record for that device.

2. Machine Check Recording and Recovery
(MCRR)

Pertinent data is also recorded after a
channel or Central Processing Unit
(CPU) failure has occurred. The data
is analyzed and the damaged
partition(s) canceled. No attempt is
made to retry on any error involving
this condition.

RECORDER FILE. When either of the
preceding features is specified, a recorder
file must be created. Data that has been
stored as records in the recorder file can
be edited and printed using the environment
record edit and print program (EREP).

TESTING I/O UNITS

The Disk and Tape Operating Systems provide
a set of programs that may be used to test
I70 units. These test programs are
executed under control of the On Line Test
Executive Program (OLTEP). This program
acts as an interface between the system and
the I/0 unit tests and provides
communication with the operator during the
running of tests. OLTEP may be run in the
background partition, thus permitting the
user to operate foreground programs
concurrent with its execution.

24 IBM S/360 DOS/TOS Concepts and Facilities

DISK OPERATING SYSTEM VOLUME STATISTICS

A major factor affecting the quality of an
operating system is the condition of the
volumes stored on a magnetic medium, such
as tape or disk. Such media are subject to
contamination from dust, foreign materials,
fingerprints, and particles of oxide
coating.

Because of these environmental factors,
it is desirable to record the number of
read and write errors occurring on each
tape volume. By monitoring the error rate,
it is possible to judge the condition of a
volume and to take remedial action against
environmental contaminants.

Read and write errors per volume for
2400 series tape units can be monitored by
a facility called Disk Operating System
Voluwe Statistics. This facility has two
options: Error Statistics by Tape Volume
(ESTV) and Error Volume Analysis (EVA).

Error Statistics by Tape Volume provides
the user with a:set of tape volume error
data, which includes the time of day the
errors occurred, the unit on which the
volure was mounted, tape density, and other
statistics necessary to evaluate the data.

Error Volume Analysis produces a message
to the operator, at the console typewriter,
when a certain number of temporary read or
temporary write errors has occurred on the
tape volume currently in use.

Either or both of these options can be
specified by the user when the system is
generated.

PROBLEM DETERMINATICN

Problem determination is a process or a
procedure for determining the cause of an
error. Some DOS facilities, such as I/0
Error Logging, MCRR, and the DUMP option of
job control, are problem determination
tools. Problem determination provided by
DOS consists of recommending a specific
procedure to be followed when an error
condition occurs.

One group of programs recommended for
error analysis is the Problem Determination
Serviceability Aids (PDAID). PDAIDs allow
users to trace one cf the following events
when it occurs:

e Fetching or Loading of other programs

e Input/Output activity

e Supervisor Calls (SvC); that is,
communications between the control
program and the problem program

Tracing consists of recording pertinent
data when the event occurs. This data may
be used for error analysis.

Ancther facility for problem
determination is the DUMPGEN program. This
program allows the user to generate a
stand-alone dump program, tailored to his
requirements for displaying the entire
contents of main storage when processing
under the Disk Operating System cannot
continue.

Processing Programs 25

Program Design, Preparation and Execution

The Disk and Tape Operating Systems allow
the programmer flexibility in the design
and preparation of programs. He may design
his programs in segments that owerlay each
other, or as subprograms that may be
individually coded, stored, and linked
before execution. He specifies his
requirements for necessary facilities by
using Linkage Editor ccntrol statements and
by including macro instructions in his
Assembler language coding. Many of the
facilities are also available in FORTRAN,
COBOL, RPG, and PL/I (D) prograns.

For example, when coding in the
Assembler language, the programmer can use
the FETCH macro instruction whenever a
program requires another phase to be loaded
for execution. Control is given to the
fetched phase. The LOAD macro instruction
can be used when a phase is to be loaded
into main storage but not executed
immediately. The LOAD macro instruction
may be used to load tables, reference
material, or executable program phases.
After the phase is loaded, control is
returned to the calling program.

The Assembler also provides for direct
linkage between routines that are in main
storage at the same time. Three macro
instructions are used for direct linkage
between routines: CALL, SAVE, and RETURN.
Equivalent functions exist in several of
the other languages. Linkage between the
main program and two subroutines is shown
in Figure 3. Linkage can proceed through
as many levels as required and each routine
may be called from any level. In the
standard direct linkage, a routine always
returns to the next higher level.

First - Level Second - Level
Main Program Subroutine Subroutine
(A) (B) (C)
> SAVE — SAVE
CALL —— CALL — -
l —— RETURN RETURN
Fiqure 3. Direct Linkages

26 IBM S/360 DOS/TOS Concepts and Facilities

Figure 4 shows a program in the various
stages of its development. A set of source
statements that is processed by a language
translator is referred to as a source
program. A source program is compiled or
assembled and the resulting output is
called on obiject module. An object module
can exist:

. in the form of a card deck

. written out on magnetic tape or disk,
or

. cataloged into the relocatable library
(through the Librarian Maintenance
function which is a separate function).

All object modules must be processed by the
Linkage Editor before they can be executed
in the system.

The output of the Linkage Editor
consists of one or more program phases.
The linkage edited program can then be
processed in one of three ways:

1. It can be executed immediately (from
the Link-and-Execute file).

2. It can be cataloged into the core image
library through the Librarian
maintenance function.

3. In the tape system, it can be executed
or cataloged at a later time from the
"go" file.

Once a program is in the core image
library, it can be retrieved easily by
simple control statements or other program
phases.

Program text and data can be preserved
when calling one prcgram phase from another
phase. For this, the user organizes his
program into an overlay structure so that
one phase, the root phase, remains in main
storage during the entire time the program
is executed. Subsequent phases may
partially or completely overlay each other,
normally beginning just beyond the root
phase. The user defines these and other
overlay structures by using Linkage Editor
control statements.

Information can also be passed between
phases or from a main program to a
subprogram by defining a common area. When
used, the common area is in the low part of
the prcblem program area. This facility is
of particular importance when coding

Linkage | Control

. Language
Translator

Source Module Object Module

Figure 4. Program Stages

programs in the Assembler and FORTRAN
languages.

An example of program overlays is shown
in Figure 5. Each branch (PHASEA, PHASEB,
PHASEC, PHASED, and PHASEE) of the tree
structure represents. a program phase. The
vertical length of each branch represents
the amount of main storage used by each
phase.

Entry Point =
PHASEA
PHASEB
PHASEE
PHASEC PHASED
Fiqure 5. Overlay Tree Struwture

Branch PHASEA represents a root phase.
A root phase remains in main storage at all
times during program execution. PHASEB and
PHASEE occupy the same area of main
storage, but at different times during the
course of program execution. The same is
true of PHASEC and PHASED. The following
sequence of Linkage Editor control
statements can be used to build this
program overlay structure.

Editor Program

Main
Storage

Phase

PHASE PHASEA,ROOT
PHASE PHASEB,*
PHASE PHASEC, *
PHASE PHASED, PHASEC
PHASE PHASEE,PHASEB

If two programs are related only by
external files (on cards, magnetic tape
reels, or DASD wolumes), it may be
impossible (or undesirakle) to connect them
within an overlay structure. These files
may be operated upon by two or more
distinct programs, together comprising a
single job; that is, the accounting unit
for computer usage, or alternatively, the
minimal unit submitted by one programmer at
one time.

Each job comprises one or more job
steps, that is, executions of single
programs. For example, the only
relationship existing between a compiling
function and a linkage editing function is
an object module, always stored on an
external device (wmagnetic tape, DASD, or
cards). Hence, consecutive compilations
and linkage editing comprise job steps of a
single job. (An additionmal job step could
be the execution of the linkage edited
program.) At the completion of each job
step, the problem program area of main
storage is set to zero.

If two programs are completely
independent of each other, they may be set
up as two job steps or as two separate
jobs. The latter procedure is recommended
because cancelation of a job step generally
causes cancellation of the entire job.

Program Design, Preparation, and Execution 27

Figure 6 further illustrates the job and
job step concept. EXAMPLEl consists of the
executions of three programs: COBOL
compiler (Step 1), Linkage Editor (Step 2),
and the linkage edited object program (Step
3). These three job steps comprise Job 1.
Job 2 (EXAMPLE2) consists only of the
execution of the linkage edited program
PAYROLL, stored in the core image library.

// JOB EXAMPLE1

.

// OPTION LINK, LIST
// EXEC COBOL

Step 1
(COBOL Source Deck)

/*
// EXEC LNKEDT

Job 1

} Sp2
// EXEC

(Data for Object Program)
/x
/&
// JOB EXAMPLE2

Step 3

.

// TLBL 'label - information" Job 2
// EXEC PAYROLL

(Data for Payroll Program)
J*
/&

Figure 6. Job Sample

28 IBM S/360 DOS/TOS Concepts and Facilities

PHASE STRUCTURE

Input for an individual phase is one ox
more object modules. In many cases,
inclusion in main storage of all control
sections from a specific module is
inappropriate. One altemmative is to
compile each control section separately,
thus forming separate okject modules.
Because this tactic hampers use of a common
synbol table and may complicate cross
referencing of symbols, the Linkage Editor
permits the user to select specified
control sections from one or more modules
for inclusion in a phase. The appropriate
control statements describe these
submodular phases. An example of
submodular structure is shown in the
section entitled Linkage Editor.

A control section is never included in a
phase more than once. In addition, if a
control section appears in the root phase
(the phase remaining in main storage during
the entire time a program is being
executed), that control section appears in
no other phase in the program. The Linkage
Editor, however, allows the inclusion of
the same control section within each of
several phases other than the root phase.

PROGRAM DEBUGGING

Machine stops and "hands-on" debugging of
programs are disadvantageous in any
operating system. The Disk and Tape
Operating Systems offer certain tools for
automated, remote testing. For example,
using COBOL, the user can request test
information in the higher level language by
using the debugging packet. Using FORTRAN,
Basic FORTRAN, and PL/I (D), the user can
readily insert temporary READ and WRITE
statements to monitor test data. The
system also offers storage dump
capabilities for debugging (PDUMP and
DUMP) .

The Autoctest debugging facility is
particularly suited to assembly output,
although it can also help debug object
modules from other translators. Since
executable programs in the system are
linkage edited and loaded from the same
absolute addresses, testing tools need not
be fully symbolic. Main storage snapshot
requests can be inserted into a program
when it is linkage edited under Autotest
contrcl. BAs each snapshot is taken, its
address and limits for any storage area to
be displayed can be specified symbolically.

Other functions of Autotest are:

1. Dumping main storage at termination of
a job step.

2. Recording phase retrieval.

3. Servicing test data with utility
programs before or after the test
execution(s).

The interruption features of IBM
System/360 enable the Supervisor to
interrupt many program errors immediately,
whether or not Autotest is being used. If
Autotest is not used, the supervisor alone
can issue a diagnostic message to the
progranmmer,and if requested by the DUMP
parameter in the job control OPTION
statement, dump main storage.

OPERATING CONSIDERATIONS (TAPE OPERATING
SYSTEM ONLY)

Additional operating efficiency for Tape
Operating System functions can be achieved
by those installations with more than the
minimum four tape units.

Additional magnetic tape units (if
9-track or 7-track with the data convert
feature) may be used for:

1. Compile-and-execute functions, or

2. A private relocatable library, or

3. A private source statement library, or
4, System input, printing, or punching.
5. Set-up for following jobs.

If a compilation (RPG for example) is
being performed, it may be advantageous to
use the additional tape for a
compi le-and-execute function.

If a linkage editing function is being
performed, the additional magnetic tape can
be used effectively as a private
relocatabl e librarye.

If either an Assembly or a COBOL
compilation is being performed, the user
may want to use extra tape unit(s) for a
private source statement library and/or
compile-and execute capability.

Note that Basic FORTRAN
compile-and-execute capability is extended
to users with the minimum configuration (4
magnetic tape units), since FORTRAN
requires only one work tape for
compilations.

PERFORMANCE IN A MULTIPROG RAMMING
ENVIRONMENT

The throughput of a system, the rate and
efficiency at which a group of jobs may be
processed, is a measure of its performance.
Multiprogramming has as its principal
objective the increase of throughput
through more efficient use of resources.
Because the system is capakle of dividing
processing time among three programs, the
total amount of time required to process
multiple jobs may be considerably reduced
in a multiprogramming environment.

Performance in this environment may be
enhanced or impeded, depending on several
factors that fall into three categories:
1. System configuration.

2. Programming.

3. Operational considerations.

Effect of System Configquration on

Performance

In multiprogramming, the number and size of
the prcblem program areas (partitions) are
established externally. The partitions are
defined during the system generation
process or the initialization process, but
may subsequently be altered by the operator
to satisfy varying requirements of problem
programs during system operation. The size
of a partition depends on the amount of
main storage available for partition
definition, and on the size of problem
programs. For this reason, a large main
storage capacity permits large partition
definitions, each of which can permit large
user programs.

In a multiprogramming environment, the
system overlaps 1I/0 operations and
processing for the programs being
processed. For example, at the same time
high-priority (foreground) programs are
performing I/0 operations, a low-priority
(background) program may be performing
internal processing functions. The higher
the speed of the CPU, the more CPU
processing time is made available,

‘resulting in increased performance of lower

priority programs.

The increase in I/O activity that is a
result of multiprogramming naturally
results in some degree of channel
contention. By having additional selector
channels, the I/0 load may be split,
allowing parallel input/output operations.

Program Design, Preparation, and Execution 29

Effect of Program Assignment on Perforggnde

Of prime importance to multiprogramming
performance is the selection of job
priority. Programs that normally are more
suited to run as foreground programs (that
is, those programs given high priority) are
those that require a considerable amount of
input/output operations on low-speed
devices. Teleprocessing programs are good
.candidates for high priority. Prograns
that require a considerable amount of
internal processing normally should not be
run in high priority as they can degrade
total throughput by monopolizing CPU usage.

Programs that use information contained
on the same direct access device, if run
concurrently, cause speed degradation due
to excessive seek time.

In a multiprogramming environment, it is
- particularly desirable that frequently used
programs be self-relocating. A
self-relocating program is one that can be
executed at any location in main storage by
having an initializaticn routine to modify
all address constants at execution time.
Although self-relocating programs require
additional programming effort, the
advantages may compensate for the extra
effort, particularly when a system utilizes
two foreground areas. The self-relocating
program may be executed in any of the three
partitions, and the operator need not be
aware of the origin address established by
the linkage Editor to partition main
storage correctly for execution.

Note that non-self-relocating programs
may be linkage edited for more than one
partition simply by changing the program
name on their PHASE and FETCH statements.
Subsequent EXEC statements would then refer
to the appropriate program name.

Operational Effects on Performance

Performance is significantly improved if
both foreground partitions are operating in
batched job mode, providing, of course,
that the user has sufficient main storage
available. Very little operatox
intervention is required in this mode of
operation because batched job initiation in
the foreground area is provided by Job
Control. Multiprogramming is more
effective if sufficient planning is given
to storage allocation (partition
definition) and foreground initiation
before the actual running of the job.

30 IBM S/360 DOS/TOS Concepts and Facilities

Alteration of partition definitions by
the operator to satisfy problem program
requirements during system operation should
be kept at a minimum. Fixed storage
allocation should be made at system
generation time or at initialization time,
with partitioning preplanned for a number
of jobs. Consider requirements of many
programs, rather than for a particular job.
During operations, it is simplest to run
with one storage allocation for the
following reasons:

e Changing the storage allocation affects
throughput since at least one area, and
often two or three, cannot be active
during a storage allocation.

e The operator need not be concerned with
linkage edit addresses for programs,
even if they are not self-relocating.
He merely must know the area for which
they were linkage edited.

When multiple allocations are used, it
is desirable to restrict the allocations
either to a few unique allocations, or keep
the starting addresses of one or more
partitions fixed. Otherxwise, there might
be difficulty in scheduling to achieve
throughput.

Single foreground programs are initiated
via the printer-keyboard. For certain
foregrcund programs (such as teleprocessing
programs that operate for extended periods
of time and seldom require foreground
initiation), the printer-keyboard normally
is sufficient. If foreground initiation by
the operator is frequently required to
minimize initiation time, a card reader is
probably the more desirable device.

For installations with only one card
reader, it is possible to place batched job
input job streams on high-speed devices,
thus freeing the card reader for foreground
initiation. A combined SYSRDR/SYSIPT
(SYSIN) file can be created for placing
both job control statements and input job
streams on either disk or tape. If large
volumes of varying input may be processed
by one set of job control information, the
job control information can be stored on a
disk extent assigned to SYSRDR, and SYSIPT
can be assigned to a tape unit.

If background input job streams have
been placed on high-speed devices, and the
user's background program makes reference
to an input device as a particular device
type, the program should be examined for
conflicting device specifications. For
example, the device type for an input file,
if specified within the program as a card
reader, would have to be altered to agree
with the high-speed device selected for
input of job streams.

The operating guide appropriate to the
system contains examples of single program
initjation.

Disk system foreground programs should
use the Job Control standard label option.
The Disk Operating System provides both
standard label tracks for all partitions
and a standard label track for each
partition, onto which label definition
statements may be placed. Any program that
may use these labels can then be initiated
without the need of resubmitting them.

Symbolic device assignments may be held

progranmer uses identical assignments for
operation in foreground areas, the holding
of device assignments across jobs will
simplify foreground initiation.

Multiprogramming Summary

Fiqure 7 is a summary of the
characteristics and system facilities
applicable to the available partitions in a

from one foreground job to another. If the multiprogramming environment.

r T T T 1
		Either	Either
	Background	Foreground	Foreground
Characteristic or Facility	(BG)	with BJF (DOS)	(SPI) (DOS or TOS)
i i * i 1			
Program Initiation	Automatic	Aut omaticS	Opexator
Job Control Unit	SYSRDR/IPT	SYSRDR/ IPT 11052 or Card	
	Card/TapesDisk	Card/Tape/Disk	Reader
storage Protection	Yes	Yes	Yes
Storage Protect Key	1	Fi: 3	Fl: 3
		F2: 2	F2: 2
Location (Fixed)	Adjacent to	Fl1: Adjacent to	Fl: Adjacent to
	System Supervisor	Storage End	Storage End
		F2: Adjacent to	F2: Adjacent to
		F1	F1
		(]	
size: (Variable)			
Minimum (Active)	10K Bytes	10K Bytes	2K Bytes
Minimum (Inactive)	10K Bytes	0 Bytes	0 Bytes
Max imum	avail. storage	510K Bytes	510K Bytes
Intervals	2K Bytes	2K Bytes	ZK Bytes
Establ ished by	SYSGEN	SYSGEN	SYSGEN
Alterable by	Operator	Operator	Operator
Priority	3 (lowest)	F1: 1(highest)	Fl1l: 1(highest)
		F2: 2	F2: 2
			I
Use of System Functions:			
System Log	Yes	Yes1	Yes1
Job Logging	Yes	Yes	No
System Units (I/0)	Yes	Yes except	Yes except?
		SYSLNK	SYSLNK (DOS)
			No for TOS
Programmer Units	Yes	Yes	Yes
Operator Inquiry	Yes	Yes	Yes
IOCS Macros	Yes	Yes } Yes	
MPS Utility Macros	Yes	Yes	Yes
BTAM Macros (DOS only)	Yes	Yes I Yes {	
QTAM Macros (DOS only)	Ye s¢	Yes* } Yes*	
Fetch/Load	Yes	Yes	Yes
Program Check Exit	Yes	Yes	Yes
L 1 L L J

/

Fiqure 7.

Program Design, Preparation,

Multiprogramming Summary (Part 1 of 2)

and Execution 31

| T T T R
		Either “	Either
	Background	Foreg round	Foreground
Characteristic or Facility	(BG)	with BJF (DOS)	(SPI) (DOS or TOS)
L L [1 ']		
L B L Ll 1) 1			
Use of Sys. Functions (cont.)			
Interval Timer Exit3	Yes	Yes	Yes
Time of Day?2	Yes	Yes	Yes
Dunp (PDUMP)	Yes	Yes	Yes
Communication Region	Yes	Yes	No
Checkpoint/Restart	Yes	Yes	No
1	{	l	
Use of System Components:			
System Service	Yes	No	No
Language Translators	Yes	No	No
Tape Sort/Merge	Yes	No	No i
Disk Sorts/Merge	Yes { No	No	
Tape & Disk Sort Merge	Yes	Yes	No
Utilities	Yes	Yes	No
Autotest	Yes if foreground	No	No i
	partitions are		
	0 bytes		
l Emulator	Yes	Yes	No
Use of Problem Programs :			
Compiled by: {			
Assenmbler	Yes	Yes	Restricteds
COBOL D	Yes	Yes	Yes (DOCS)
			Restricted® (TOS)
RPG	Yes	Yes	Restricteds
FORTRAN	Yes	Yes	No
Basic FORTRAN	Yes	Yes	No
PL/I (D)	Yes	Yes	No
{ ANS COBOL	Yes	Yes	Yes (DOS)
	i	i	
Types of Program loading:			
l Absolute	Yes	Yes	Yes
Self-Relocating	Yes i Yes	Yes	
Exror Logging Capabilities:			
Environment Record Edit			
and Print (EREP)	Yes (DOS)	No	No
OLTEP	Yes	No	No
PDAID	Yes (DOS)	Yes	Yes (DOS)
DUMPGEN	Yes (DOS)	No	No
'r 1 i . L 4			
Notes r~			
1SYSLOG must be assigned to printer-keyboard.			
2pssumes that the Timer Feature is available.			
i :			
30nly one partition at a time selectable by the orerator.			
“QTAM Message Control Program must operate as Foreground-one. Message			
Processing Programs may operate as Background and/or Foreground-iwoO.			
l			
SRestricted to those language functions that do not require access to a			
communication region, or for the tape system, symbolic system units.			
éForeground is initiated into Batch Job mode by ogperator; thereafter, program			
initiation is automatic from SYSRDR assigned to that partition.			
7Assignments limited to card readers, card punches, and printers.			
L : J
Figqure 7. Multiprogramming Summary (Part 2 of 2)

32 IBM S/360 DOS/TOS Concepts and Facilities

For a more complete list of data
processing terms, refer to IBM Data
Processing Techniques, A Data Processing
Glossary, GC20-1699. .

Access Method: Any of the data management
techniques (sequential, indexed sequential,
or direct) available to the user for
transferring data between main storage and
an input/output device.

Active Program: Any program that is
loaded and ready to be executed.

Addressing: A technique by which the
central processing unit prepares a remote
station to receive a message.

Answering: A remote station has the
ability to dial the central processing unit
through the switched “network facilities.
The CPU answers the call.

ASCII (American National Standard Code for
Information Interchange): A 128-character,
7-bit code. The high-order bit in the
System/360 8-bit environment is zero.

Asynchronous: Without regular time
relationship. The user's programs run
asynchronously with the I/0 interruptions.
BTAM's channel appendage routine runs
synchronously with the I/0 interruptions.

Background Program: In multiprogramming,
the background program is the program with
lowest priority. Background programs
execute from a stacked job input.

Basic Telecommunications Access Method
(BTAM) = A basic access method that
permits a READ/WRITE communication with
remote devices.

Batched Job: Programs that execute from a
stacked job input. Batched jobs run under
the control of job control. ‘

Blocks:

1. To group records rhysically for the
purpose of conserving storage space or
increasing the efficiency of access or
processing.

2. A physical record on tape or DASD.

Book: A group of source statements
written in the Assembler or COBOL language.

Glossary

Buffer:

1. A storage device in which data is
assembled temporarily during data
transfers. It is used to compensate for a
difference in the rate of flow of
information or the time occurrence of
events when transferring information from
one device to another. For example, the
IBM 2821 Control Unit (a control and buffer
storage unit for card readers, card
punches, and printers in a System/360).

2. Program inputs/output. A portion of
main storage into which data is read or
from which it is written.

Buffer Pool: That area of main storage
reserved per line group for buffering.

Burst Mode: A means of transferring data
to or from a particular I/O device on
either the multiplexcr or selector channel.
All channel controls are monopolized for
the duration of data transfer.

Byte Mcde: See Multiplex Mode.
Catalog: To enter a phase, module, or

book into one of the system libraries.

Channel Program: One or more Channel
Command Words (CCWs) that control(s) a
specific sequence of channel operations.
Execution of the specific sequence is
initiated by a single start I/0
instruction.

Channel Scheduler: The part of the
supervisor that controls all input/output
operations.

Checkpoint: A point in a program at which
sufficient information can be stored to
permit restarting the job step from that
point.

Checkpoint Record: Records that contain
the status of the job and the system at the
time the records are written by the
checkpoint routine. These records provide

- the necessary information for restarting a

job without having to return to the
beginning of the job.

Checkpcint/Restart : A means of restarting
execution of a program at some point other
than the beginning. When a checkpoint
macro instruction is issued in a proklem
program, checkpoint records are created.
These records contain the status of the

Glossary 33

program and the machine. When it is
necessary to restart a program at a point
other than the beginning, the restart
procedure uses the checkpoint records to
reinitialize the system.

Checkpoint Routine: A routine that
records information for a checkpoint.

Command Control Block: A sixteen-byte
field required for each channel program
executed by physical IOCS. This field is
used for communication between physical
IOCs and the problem programe.

Communication Region: An area of the
supervisor set aside for interprogram and
intraprogram communication. It contains
information useful to both the supervisor
and the problem program.

Control Program: A group of programs that
provides functions such as the handling of
input/output operations, error detection
and recovery, program loading, and
communication between the program and the
operator. IPL, supervisor, and job control
make up the control program in the Disk and
Tape Operating Systems.

Control Section: The smallest separately
relocatable unit of a program; that portion
of text specified by the programmer to be
an entity, all elements of which are to be
loaded into contiguous main storage
locations.

Core Image Library: An area of the
resident system device used to store
programs that have been processed by the
Linkage Editor. Each program is in a form
identical to that which it must have to be
executable in main storage.

Core_Storage: See Main_ Storage.

Data File: A collection of related data
records organized in a specific manner.

For example, a payroll file (one record for
each employee, showing his rate of pay,
deductions, etc) or an inventory file (one
record for each inventory item, showing the
cost, selling price, number in stock, etc).

Device Independence: The capability of a
program to process the same type of data on
different device types (punched card
devices/printers, tape, or disk).

Disk Operating System: A disk resident
system that provides operating system
capabilities for 16K and larger System/360
systems.

DUMP: Displaying the contents of main
storage.

34 IBM S/360 DOS/TOS Concepts and Facilities

Emulator: The combination of programming
techniques and special machine features
that permits a given computing system to
execute programs written for another
systemn.

Event: An occurrence of significance to a
task; typically, the completion of an
asynchronous operation, such as
input/cutput.

Event Control Block (ECB): A control block
used to represent the status of an event.

Extent: The physical locations on
Input/Output devices occupied by or
reserved for a particular file.

External Reference: A reference to a
symbol used in ancther module. The
external references are resolved when the
respective modules are combined at 1inkage
edit time.

Fetch:

1. To bring a program phase into main
storage from the core image library for
irmediate execution.

2. The routine that retrieves requested
phases and loads them into main storage
(see System Ioader).

3. The name of a macro instruction
(FETCH) used to transfer control to the
System Loader.

File: See Data File.

Fixed Length Record: A record having the
same length as all other records with which
it is logically or rhysically associated.

Foreground Initiation: A set of system
routines tc process operator commands for
initiation of a foreground program.

Foregrcund Initiator:
Initiator (SPI).

See Single Program

Foreground Program: In multiprogramming,
foreground programs are the highest
priority programs. Foreground programs may
be executed from a jocb stack or in an SPI
environment.

Inactive Program: A program that is
loaded but not ready to be executed, or a

program not loaded in the system.

Initial Program Loading (IPL): The
initialization procedure that causes Disk
and Tape Operating Systems to commence
operation.

Input Job Stream: A sequence of job
control statements entering the system,
which may also include input data.

Input/Output Control System (IOCS): A
group of macro instruction routines

provided by IBM for handling the transfer
of data between main storage and external
storage device. IOCS consists of two
parts: physical IOCS and logical IOCS.

Interruption: A break in the normal
sequence of instruction execution. It
causes an automatic transfer to a preset
storage location where appropriate action
is taken.

I/0 Area: An area (portion) of main
storage into which data is read or from
which data is written. In Operating System
publications, the term buffer is often used
in place of I/0 _area. I/0 means
Input/Output.

IPL Loadex: A program that reads the
supervisor into main storage and then
transfers control to the supervisor.

Job Control: A program that is called
into storage to prepare each job or job
step to be run. Some of its functions are
to assign I/0 devices to certain symbolic
names, set switches for program use, log
(or print) job control statements, and
fetch the first program phase of each job
step.

Job Control Statement: Any one of the
control statements in the input stream that
jdentifies a job or job step, or defines
its requirements and ortions.

Job Statement (JOB) : The control
statement in the input stream that
identifies the beginning of a series of job
control statements for a single job, i.e.,
a single accounting unit of processing.

Job Step: The execution of a single
processing program.

K: 1024.

Lanquage Translators: A general term for
any assembler, compiler, or other routine

that accepts statements in one language and
produces equivalent machine language
instructions. For example, Assembler,
COBOL, etc are language translators.

Librarian: The set of programs that
maintains, services, and organizes the
system libraries.

Library: An organized collection of
programs, source statements, or object
modules maintained on the system resident
device. Three libraries are used by the

Disk and Tape Operating Systems: core
image library, source statement library,
and relocatable library.

Linkage Editor: A system service program
that edits the output of language :
translators and produces executable program
phases. It relocates programs or program
sections and links together separately
assembled (or compiled) sections.

Load: To fetch, i.e., to read a phase
into main storage returning control to the
calling phase.

Logic Module: The logical IOCS routine
that provides an interface between a
processing program and physical IOCS.

Logical File: A data file that has been
described to the Disk or Tape Operating
Systems through the use of a file
definition (DTF) macro instruction. Note
that a data file jis described to Operating
System through a different defining method.
Operating System publications refer to a
data file described in this different
manner as a data set.

logical IOCS: A comprehensive set of
macro instruction routines provided to
handle creation, retrieval, and maintenance
of data files.

Logical Record: A record identified from
the standpoint of its content, function,
and use rather than its physical
attributes. It is meaningful with respect
to the information it contains.
(Contrasted with Physical Record.)

MPS : Multiprogramming System.

Main Storage: All addressable storage
from which instructions can be executed or
from which data can be loaded directly into
registers.

Main Task: The main program within a
partition in a multiprogramming
environment. .

Module (Programming): The input to or
output from a single execution of a

language translator or the Linkage Editor;
a separate program unit that can be
combined with other units.

Multiplex Mode: A means of transferring
records to or from low-speed I/0 devices on
the multiplexor channel, by interleaving
bytes of data. The multipl exor channel
sustains simultaneous I/0O operations on
several subchannels. Bytes of data are
interleaved and then routed to or from the
selected I/0 devices or to and from the
desired locations in main storage.

Glossary 35

Multiplex mode is sometimes referred to as

byte mode.

Multiplexor Channel: A channel designed
to operate with a number of I/O devices
simultaneously on a byte basis. That is,
several I/0 devices can be transferring
records over the multiplexor channel, time
sharing it on a byte basis.

Multiprogramming System: A system that
controls more than one program

simultaneously by interleaving their
execution.

Multitask Operation: Multiprogramming;
called mul titask operation to express not
only concurrent execution of one or more
programs in a partition, but also of a
single reenterable program used by many
tasks.

Ob-iject Module: The ocutput of a single
execution of a language translator; it
constitutes input to the Linkage Editor.
An object module consists of one or more
control sections in relocatable,
nonexecutable form. An object module must
be processed by the Linkage Editor before
it can be executed in the system.

Operating System: A collection of
programs that enables a data processing
system to supervise its own operations,
automatically calling in prograns,
routines, languages, and data as needed for
continuous throughput cf a series of jobs.

Overlap: To do something at the same time
that something else is being done; for
example, to perform input/output operations
while instructions are being executed by
the central processing unit.

Overlay:

1. A segment (phase) of a program
loaded into main storage, replacing all or
part of a previously retrieved section.

2. The technigque of repeatedly using
blocks of internal storage during different
stages of a problem. For example, when one
routine is no longer needed ‘in internal
storage, another routine can replace all or
part of that routine.

Overrun: Overrun is the condition caused
by the inability of a physical device to
complete data transfer in the time allotted
to the device by the system.

Phase: The smallest complete unit that
can be referenced in the core image
library. Each overlay of a program or (if
the program contains no overlays) the
program itself is a single complete phase.

36 IBM S/360 DOS/TOS Concepts and Facilities

Physical IOCS: Macro instructions and
supervisor routines (Channel Scheduler)
that schedule and supervise the execution
of channel programs. Physical IOCS
controls the actual transfer of records
between the external storage medium and
main storage, and provides I/O device erxror
recovery.

Physical Record: A record identified from
the standpoint of the manner or form in
which it is stored and retrieved; that is,
one that is meaningful with respect to

access. (Contrasted with Logical Records.)
Polling: The process of inviting stations

within a data link to transmit messages one
at a time in an orderly fashion. The basic
function of polling is to prevent
contention by ensuring that only one
station transmits at a time.

Private Library: A relocatable or source
statement library that is separate and
distinct from the system library.

Problem Determination: A procedure or
process (provided by IBM) that the user
can follow after an error message to
determine the cause of that error.

Problem Program:

1. The user's object program. It can
be produced by any of the language
translators. It consists of instructions
and data necessary to solve the user's

problem.

2. A general term for any routine that
is executed in the data processing system's
problem state; that is, any routine that
does not contain privileged operations.
(Contrasted with Supervisor.)

Processing Program: A general term for
any program that is both loaded and
supervised by the control program.
Specifically, a collection of certain IBM
supplied programs: the language
translators, Linkage Editor, Librarian,
Autotest, Sort/Merge and Utilities. All
user written programs are processing
programs. The term processing programs is
in contrast to the term control program.

Queue: A list of entries, usually crdered
in the sequence of arrival. The entries
identify things contending for service or
attention.

Record: A general term for any unit of
data that is distinct from all others when
considered in a particular context.

Reenterable: The attribute of a set of
code that allows the same copy of the set
of code to be used concurrently by two or
more tasks. ’

Relocatabl e: A module or control section
whose address constants can be modified to
compensate for a change in origin.

Relocatabl e Library Module: A module
consisting of one or more complete control
sections cataloged as a single entry in the
relocatable library.

Resource: Any facility of the computing
system or operating system required by a
job or task, and including main storage,
input/output devices, the central
processing unit, data files, and control
and processing prograns.

Restart: See Checkpoint/Restart.

Selector Channel: A channel designed to
operate with only one I/0 device at a time.
Once the I/0 device is selected, a complete
record is transferred one byte at a time.

Self Relocating: A programmed routine
that is loaded at any double-word boundary
and can adjust its address values so as to
be executed at that location.

Self Relocating Program: A program that
is able to run in any area of storage by

having an initializaticn routine to modify
all address constants at object time.

Service Programs: Any of the class of
standard routines that assist in the use of
a data processing system and successful
execution of problem programs. These

programs include Autotest, Sort/Merge, and
Utilities.
Single Program Iniator (SPI): A program

that is called into storage to perform job
control type functions for foreground
programs not executing in batch job mode.

Source Module: A set of source statements
in the symbolic language of a language
translator that constitutes the entire
input to a single execution of the language
translator.

Source Statement: Statements written by a
programmer in symbolic terms related to a
langquage translator.

Source Statement Library: A collection of
books (such as macro definitions) cataloged
onto the system by the Librarian.

Stacked Job Processing: A technique that
permits multiple jobs to be grouped

(stacked) for presentation to the system.

This allows the system to automatically
process each job in sequence.

Submodular Phase: A phase made up of
selected control sections from one or more
modules as compared with a normal phase
that is made up of all control sections
from one or more modules.

Subtask: A task in which control is
initiated by a main task by means of a
macro instruction that attaches it.

Supervisor: A component of the control
program. It consists of routines to
control the functions of program loading,
machine interruptions, external
interruptions, operator communications and
physical IOCS requests and interruptions.
The supervisor alone operates in the
privileged (supervisor) state. It coexists
in main storage with problem programs.

Symbolic I/0 Assignment: A means by which
problem programs can refer to an I/0 device
by a symbolic name. Before a program is
executed, job contrcl can be used to assign
a specific I/0 device to that symbolic
name.

System Inquiry: The function of operator
initiated communication to a problem
program.

System Loader: One of the supervisor
routines. It is used to retrieve program
phases from the core image library and load
them into main storage.

System Residence: The external storage
space allocated for storing the basic
operating system. It refers to an on-line
tape reel or disk pack that contains the
necessary programs required for executing a
job on the data processing system.

System Service Programs: Programs that
perform portions of the functions of
generating the initial basic operating
system, generating specialized systenms,
creating and maintaining the library
sections, and loading and editing programs
ontc the resident device. These programs
are: linkage editor and librarian.

Tape Operating System: A tape resident
system that provides operating system
capabilities for 16K and larger System/360
systems.

Tape Resident System: An operating system
that uses magnetic tape for on-line storage
of system routines.

Task Selection: The supervisor mechanism
for determining which program should gain
control of CPU processing.

Glossary 37

Te lecommunications: A general term
expressing data transmission between remote
locations.

Te leprocessing: A term associated with
IBM telecommunication systems expressing
data transmission between a computer and
remote devices.

Throughput: A measure of system
efficiency; the rate at which a series of
jobs can be handled by a data processing
systen.

Trace:

l. To record a series of events as
they occur.
2. The record of a series of events.

Transient Area: This is a main storage
area (within the supervisor area) used for
temporary storage of transient routines.

Transient Routines: These self-relocating
routines are permanently stored on the

38. IBM S/360 DOS/TOS Concepts and Facilities

system residence device and loaded (by the
supervisor) into the transient area when
needed for execution.

Undefined Record: A record having an
unspecified or unknown length.

Variable Length Record: A record having a
length independent of the length of other
records with which it is logically or
physically associated. (Contrasted with
Fixed Length Record). It contains fields
specifying physical and logical record
lengths.

Volume: That portion of a single unit of
storage media that is accessible to a
single read/write mechanism. For example,
a reel of magnetic tape on a 2400-series
magnetic tape drive or a disk pack on an
IBM 2311 Disk Storage Drive.

Wait Condition: As applied to tasks, the
condition of a task that it is dependent
on an event or events in order to enter the
ready condition.

Indexes to systems reference library
manuals are consolidated in the publication
IBM System/360 Disk Operating System Master

Index, GC24-5063. For additional
information about any subject listed below,
refer to other publications listed for the
same subject in the Master Index.

absolute programs 9
active partition 6

ANS COBOL 15

ASCII tape file processing
assembler 14

autotest 20,28
availability 23

9,13

background
area 7
programs 11
vs foreground programs 7
basic FORTRAN 15
basic telecommunications access method

(BTAM) 21
batched job foreground (BJF)
mode 7

programs 11

BTAM
channel program 21
logic module 21

OPEN 21
READ 21
WRITE 21

CALL, SAVE, and RETURN 26
channel scheduler 9
checkpoint records 12
CLOSE 9

COBOL 14

control program 6

control section 17,28

COPY statement 18

core image library 17

data management (IOCS) 12
debugging

autotest 28

COBOL 28
device independent sequential file

processing 13

directory 17
disk work file variant 14
DUMPGEN 25

Index

emulator program 20

environment record edit and print program
(EREP) 24

EREP 24

error analysis (PDAID) 24

error logging, I/O units 24

error statistics by tape volume routine
(ESTV) - 9,10,24

error volume analysis (EVA) 24

FETCH 26
file protection 23
file protection
in multiprogramming 23
fixed-partitioned programming 6

foreground
area 7
initiator 7,10

programs 7
vs background programs 7
FORTRAN 15

I/0 error logging 24
I/0 testing 24
inactive partition 6
introduction 5
I0Cs 9

data management 12

job control 10

label information 12

language conversion program (LCP) 15
language translators 14

librarian 17

linkage editor 16

LOAD 26

logical IOCS (LIOCS) 12

machine check recording and recovery (MCRR)
24

machine requirements 5

macro definitions 14

main storage organization 7

main task 8

MCRR 24

multiprogramming performance
operational effect 30
program assignment 30
system configuration 29

multiprogramming 6
summary 31
within partitions 8

multitasking 8

NOTE/POINT 13

Index 39

GC24-5030-8

object module
definition 26
linkage edited 16

OBR 24

OLTEP 24

on line test executive program (OLTEP) 24
OPEN 9

operating considerations (TOS only) 29

operator communication 10
outboard recorder (OBR) 24
overlay structure 17
overlays, program 26

partition 6
PDAID 24
phase 16
program 26
root 26
structure 28
submodular 28
physical IOCS (PIOCS) 12
PL/I (D) 16
priority
partitions 7,8
programs 7
subtasks 8
private libraries
DOS 18
TOS 18
problem determination serviceability aids
(PDAID) 24
problem state 23
processing programs 14
program
debugging 28
design, preparation, and execution
26

overlays 27

phases 26
programming language/I 16
protection facilities 23

multiprogramming 23

queued TP access method (QTAM) 21
logic modules 21
message control program 22

TBH

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International]

recorder file 24
recording error statistics by tape volume
(ESTV) 9,10,24

relocatable library
definition 18
using COBOL 14

report program generator

root phase 26

(RPG) 16

SDR 24
self-relocating programs 9
service programs 16
serviceability 23
single program initiator
mode 7
sort/merge programs 19
common capabilities 19
DOS disk sort/merge 19
DOS tape and disk sort/merge 20
DOS/TOS tape sort/merge 19
source program 26
source statement library
book 18
definition 18
using COBOL 14
statistical data recorder (SDR) 24
storage protection 23
submodular phases 28
subtask 8
supervisor nucleus 6
supervisor 9
state 23
switchable device 9
symbolic names 10
system generation 22
system options for background programs 11

(SPI) 7,10

tape work file variant 14
timer feature 10
TOS operating considerations 29

track hold function 8,23
transient
area 9
routines 9
utilities 20
utility macro instructions 22

8-0€0G-¥ZDD 'V'S'N u! paluld (0Z-09ES) salnfided pue sydaduod 09e/SOL B SO

Reader's Comments Form

IBM System/360
Disk and Tape Operating Systems
Concepts and Facilities GC24-5030-8

Your comments, accompanied by answers to the following questions, help us produce
better publications for your use. If your answer to a question is “No” or requires
qualification, please explain in the space provided below. Please give specific page
and line references with your comments when appropriate. All comments will be
handled on a non-confidential basis. Copies of this and other IBM publications can
be obtained through IBM branch offices.

Yes No

0
O

® Does the publication meet your needs?

) Did you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

oBoooa
ooocoa

[] What is your occupation?

) How do you use this publication:

As an introduction to the subject? O As an instructor in a class? (J
For advanced knowledge of the subject? O As a student in a class? [J
For information about operating procedures? (] As a reference manual? O

Your comments:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
If you would like a reply, please supply your name and address on the reverse side of
this form.

GC24-5030:-8

Your comments, please . . .

This publication is one of a series that serves as a reference source for systems
analysts, programmers, and operators of IBM systems. Your answers to the
questions on the back of this form, together with your comments, help us
produce better publications for your use. Each reply is carefully reviewed by
the persons responsible for writing and publishing this material. All comments
and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using

your IBM system should be directed to your IBM representative or to the IBM
sales office serving your locality.

Fold

PERMIT NO. 170
ENDICOTT, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . .

IBM Corporation
P.O. Box 6
Endicott, N. Y. 13760

Attention: Programming Publications, Dept. 157

D GNP G D D S I G G G SIS GES GRS WA G GED GED SIS SID TS GE WP THL CHD GhD GEF GIP GIP GEP GHD GUR GO GMT W SMEP GRAS WAL G G GED SN NS G GV D S -

Fold If you would like a reply, please print:

Your Name

Company Name

Department

Street Address

City

EM | State

International Business Machinas Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
(USA Only] '

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International]

Zip Code

8-0e0%-¥Z0D 'V'S'N Ul paluld (0Z-09ES) senlidey pue sidsduod 09e/SOL B SO

