
Systems Reference Library

IBM System/360
Disk Operating System
Supervisor and Input/Output Macros

File Number S360-30
Form C24-S037-2

This reference publication contains information
about the Input/Output Control System Macro
Instructions and the Supervisor Macro Instructions
for use with the IBM System/360 Disk Operating
System (DOS). IBM publications that provide related
information are:

IBM System/360 Principles of Operation,
Form A22-682li

IBM System/360 Disk Operating System, Data
Management Concepts, Form C24-3427j

IBM System/360 Disk Operating System, System
Control and System Service Programs, Form C24-S036i

IBM System/360 Disk and Tape Operating Systems,
Assembler Specifications, Form C24-34l4i

IBM System/360 Disk Operating System, Basic
Telecommunications Access Method, Form C30-S00l;

IBM System/360 Disk Operating System, Queued
Telecommun1cat1ons Access Method, Message Control
Program, Form C30-5002i

IBM System/360 Disk Operating System, Queued
Telecommunications Access Method, Message
Processing Program Services, Form C30-5003.

For titles and abstracts of other associated
publications, see the IBM System/360 Bibliography,
Form A22-6822.

DOS

PREFACE

This reference publication is intended as a
~ guide for the programmer planning to use

the DOS Input/Output Control System macro
instructions and Supervisor macro instruc­
tions. The publication is divided into
seven sections. The first two sections
introduce concepts and terminology. The
third section describes the LIOCS imperative
macro instructions, while the fourth section
discusses the two types of LIOCS declarative
macro instructions. The fifth section con­
tains information about processing with
PIOCS. The sixth section describes the
Supervisor-Communication Macros and the pro­
cedures for checkpointing a program. The

seventh section discusses additional macro
instructions used in program linkage.

The material in this publication is pre­
sented with the assumption that the reader
has experience with computer systems and
basic programming concepts and techniques
(or has completed basic courses of instruc-
tion in these areas).

I
The user should be familiar with the

publications listed on the front cover of
this manual and with every pertinent device
manual.

I
Third Edition, March 1967

This edition, Form C24-S037-2, is a major reVLSLon of, and obsoletes
Form C24-S037-l, Technical Newsletter N24-S2l3, and Form C24-3429-2.
Changes are indicated by a vertical line to the left of the affected
text and to the left of affected parts of figures. A dot (e) next to
a figure title or page number indicates that the entire figure or
page should be reviewed.

Specifications contained herein are 'subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for readers'. comments.
If the form has been removed, comments may be addressed to IBM Corporation,
Programming Publications, Endicott, New York 13760.

ell International Business Machines Corporation 1966

INTRODUCTION. • . .
Machine Requirements.
'Macro Similarities ..
Compatibility of the Original and
the Present DOS. . • • ..•

Physical IOCS vs Logical IOCS
Types of LIOCS Processing •

Sequential Processing ..
Direct Access Method (DAM)
Indexed Sequential File
Management System (ISFMS)

Basic and Queued Telecommunications
Access Methods (BTAM and QTAM) •

THE MACRO SYSTEM. . • . . .
DTF Macro . • . . • •

Symbolic Unit Addresses ...••..
Logic Module Generation Macro
Instructions . . . •

Interrelationships of the Macro
Instructions . . •

How the IOCS Module is Linked with
the DTF Table

Generation of Module Names in DTF
Tables and Logic Modules.

Subset and Superset Module Names . •
Editing Logical IOCS Programs .•..
Linkage-Editing Preas sembled Logic

Modules • •.
Macro Instruction Format. .•• ..

Entry Cards for Declarative Macros .
Macro Instruction Conventions.

Register Notation. • • . . •
Register Usage • . • . . • • .

IMPERATIVE MACRO INSTRUCTIONS •
Initialization. • • • . .

OPEN(R) Macro ••••..
Opening DASD Files. . • •.
Sequential Processing - Output.
Sequential Processing - Input .
Direct Access Processing - Output .
Direct Access Processing - Input. •
Index Sequential Processing -
Output • • • • . • • • • .

Index Sequential Processing -
Input.. •••.•

PIOCS - Single Volume
Mounted - Output • •

PIOCS - Single Volume
Mounted - Input. • •

PIOCS - All Volumes
Mounted - Output . •

PIOCS - All Volumes
Mounted - Input. • .

VTOC Checking For Output Files ..•
Writing DASD User Standard Labels •
Checking DASD User Standard Labels.
Positioning Tape Files. • • . •••
Opening Tape Output Files . . • • •
Opening Tape Input Files.

LBRET Macro. • . • •

5
5
6

6
6
7
7
8

9

9

10
11
13

14

14

14

15
15
15

16
17
17
18
18
19

20
20
20
23
23
23
24
24

24

25

25

25

25

26
26
26
27
28
28
29
30

CONTENTS

Macros For Sequential Processing.
GET Macro. • • •
PUT Macro. . • •
RELSE Macro. .
TRUNC Macro. .

Punch and Printer Control
CNTRL Macro .•

Magnetic Tape Unit Codes .
Printer Codes. • .• ..
1403 Printer with Universal
Character Set

2540 Card Read Punch Code.
2520 Card Read Punch Code. .
1442 Card Read Punch Codes
2311 Disk Storage Drive Code .
2321 Data Cell Drive Codes .
1285 and 1287 Optical-Reader Codes •

CHNG Macro. . • • • • . . • • . .
PRTOV Macro • • • • • . • • • •
Macros for the Optical Character

Reader • • .
DSPLY Macro. .
READ Macro . . • • • • •
RESCN Macro.
RDLNE Macro. . • • • •
WAITF Macro. . • • • •

Macros for Tape and Disk Work Files
Work Files on Tape .
Work Files on Disk

READ Macro. •.• • •
WRITE Macro. . • • • •
CHECK Macro. •
NOTE Nacro ..
POINTR Macro .
POINTW Macro • • . • •
POINTS Macro •

Processing DASD Records by the Direct
Access Method. • • . • •

Record Types. ..•
Direct Access IOAREAl.
Reference Methods .••
Creating a File or Writing
Additional Records on a File. •

READ Macro • •. .••••
WRITE Macro. .. .•
WAITF Macro.
CNTRL Macro. . • • . •

Processing DASD Records by the
Indexed Sequential System. •

Record Types .. •...•.
Storage Areas.. • ...••
Organization of Records on DASD.
Addition of Records and Overflow

Areas • • • . • . • • • • • . •
Example of an Organized File . •

Macro Instructions to Load or Extend
a DASD File by ISFMS • .

SETLF Macro.
WRITE Macro.
ENDFL Macro.

Macro Instructions to Add Records to
a DASD File by ISFMS

31
31
33
35
35
36
36
36
38

38
39
39
39
39
39
39
40
40

41
41
41
41
41
42
42
42
42
43
43
44
44
44
44
45

45
45
45
46

49
50
51
52
52

53
53
53
53

57
59

61
61
61
62

62

WRITE Macro. . . . • . . .
Macro Instructions for Random

Retrieval by ISFMS
READ Macro .
WRITE Macro. . . .

62

WAITF Macro. • . .

63
6A
64
64

Macro Instructions for Sequential
Retrieval by ISFMS • • • • . 64

65
66
66
67
67
68
68
68
69
69
70
72
72
72

SETL Macro . . . • •
GET Macro. • . ..••
PUT Macro ..
ESETL Macro ..

Completion. . . .
DASD Input File.
DASD Output File .
Tape Input File ..
Tape Output File .
Forced End of Volume: Tape Files ••
CLOSE(R) Macro ..
LBRET Macro. •
FEOV Macro
SEOV Macro . .-

DECLARATIVE MACRO INSTRUCTIONS.
Sequential Processing .

Card File (DTFCD) ...•
Parameters and Names for CDMOD

(Card Module) • •
Paper Tape File (DTFPT). •
Characteristics of a Paper Tape
File •••••...

Parameters and Names for PTMOD
(Paper Tape Module)

Printer File (DTFPR)
Parameters and Names for PRMOD

(Printer Module).. •.•.
Magnetic Tape Files (DTFMT). .
Parameters and Names for MTMOD
(Magnetic Tape Modules) •...
Sequential DASD Files (DTFSD).
Parameters and Names for SDMODxx

Sequential DASD Module. • . •
Console File (DTFCN) • • • • •
Optical Reader File (DTFOR) .•
Parameters and Names for ORMOD

(Optical Reader Module) • .
Serial D?vice File (DTFSR) • .
Direct Access Method (DTFDA) .
Direct Access Module (DAMOD)

Parameters. . • • • • • • . •
Indexed Sequential System (DTFIS).
Indexed Sequential Module (ISMOD)
Parameters ...•••••..••

73
73
73

76
77

80

82
83

85
86

90
92

96
99

101

· 105
• 105
• 120

· 128
• 129

• 136

PROCESSING RECORDS WITH
CCB Macro •.

PHYSICAL IOCS • 138
• . • . • 138

. • • . . • • 141 EXCP Macro. . . . • • • •
WAIT Macro. • . ••••
Alternate Tape Switching.
Bypassing Imbedded Checkpoint

Records on Tape. • ••
Command Chaining Retry.
Data Chaining • . . • •
DASD Channel Programs • .
DTFPH Macro . • • • • •

• 141
142

• 142
• • • • .- • 142
. • •• 143

• . • • . . • 143
• 143

SUPERVISOR - COMMUNICATION MACROS ••• 147
Program Loading • • • • • • • • .- . 148

FETCH - Fetch a Phase. • • 148
LOAD - Load a phase. • • 148

Communication Region. . . • • • • • . • 148
COMRG - Get Address of

Communication Region. . • .. . 149
MVCOM - Move to Communication .

Region. . • 149
Time of Day Macro 150

GETIME - Get Time of Day in
Register 1. • 150

Interval Timer and User Exit Macros • • 150
Method-l Macros • • . • • • • • • . . • 150

SETIME - Set Interval Timer. • • 150
STXIT- - Set Linkage to User
Routine(s). • • . • . • • . . . 151

EXIT - Exit from User s Interrupt
Routine(s). • ...•• 151

Method-2Macros • • • . . • 152
TECB - Build Timer Event Control

Block . • • 152
SETIME - Set Interval Timer.. . 152
WAIT - Wait for Timer Elapse • 152

The DUMP Macros • • • • • • . .. • 152
PDUMP - Partial Dump of Main

Storage • • . • • • • . • . . • . • 152
DUMP - Dump Main Storage • . . • • • 153

The CANCEL and EOJ Macros . • • • 153
CANCEL - C.ancel the Job. . • • 153
EOJ - End-of-Job Step. • . 153

Checkpointing a Problem Program •• 153
Use of CHKPT Macro • . . • . • 153
CHKPT Macro. • • • . . . • • • • 154
Checkpoint File. • • . . • . • • . . 155
Repositioning I/O Files •...•.. 155
DASD Operator Verification Table . • 158

ADDITIONAL MACRO INSTRUCTIONS: CALL,
SAVE, AND RETURN .•••..•...• 159

Linkage Registers . • . . • • • • . . . 160
Save Area Use • . . • • • 160

Register Saving and Restoring
Responsibilities. • . ••... 160

Save Area. • . • • • . • • . . 161
Save Area Chaining • • • • . • 162
Registers (Calling Program
Responsibilities) • • . • •

CALL - Call a Program • • • .
SAVE - Save Register contents •
RETURN - Return to a Program. .

· • 162
163

· . 164
• • 164

APPENDIX A. •.•• 166
DASD Labels ...• • • 166

Standard File Labels • • • 166
Standard File Label Formats.. .166
User-Standard DASD File Labels • 167

Standard Tape Labels. • . ••. 168
Nonstandard Tape Labels • • • . •• 169
Unlabeled Tape Files. • • • . • •• 169

APPENDIX B: CONTROL CHARACTER CODES •. 170
CTLCHR ASA.... 170
CTLCHR = YES • . • • • . •• 170

APPENDIX C: ASSEMBLING THE PROBLEM
PROGRAM, DTF'S, AND LOGIC MODULES ••• 172

APPENDIX D: READING, WRITING, AND
CHECKING WITH NONSTANDARD LABELS • 186

INDEX •
Figure List.

• 188
• • • 195

MACHINE REQUIREMENTS

Minimum features required:

• 16K bytes of main storage (32K bytes
are required for multiprogramming and/
or telecommunications, COBOL, assembler
with tape or disk work file variants,
and for assigning system input/output
files to disk) .

• Standard instruction set. See Note 1.

• One I/O channel (either multiplexor or
selector). See Note 2.

• One Card Reader (1442, 2501, 2520, or
2540). See Note 3.

• One Card Punch (1442, 2520, or 2540).
See Note 3.

• One Printer (1403, 1404, or 1443).
See Note 3.

• One 1052 Printer-Keyboard.

• One 2311 Disk Storage Drive.

Note 1: Language translators may require
extended instruction sets.

Note 2: Telecommunications requires a
mult1plexor channel and at least one selec­
tor channel.

Note 3: One 2400-series magnetic tape unit
may be sUbstituted for this device. (7- or
9-track. If 7-track tape units are used,
the data-convert feature is required, except
when substituted for a printer.)

Additional features supported:

• Timer Feature.

• Simultaneous Read-while-Write Tape
Control (2404 or 2804).

• Any channel configuration up to one
multiplexor channel and six selector
channels.

• Tape Switching Unit (2816).

• Storage Protection Feature (required for
multiprogramming).

• Universal Character Set.

• Additional main storage up to 16,777,216
bytes.

DOS SUPERVISOR AND I/O MACROS

Problem programs can request I/O operations
on the following devices:

1. 1442 Card Read Punch

2. 2501 Card Reader

3. 2520 Card Read Punch

4. 2540 Card Read Punch

5. 1403 Printer

6. 1404 Printer (for continuous forms

7. 1443 Printer

8. 1445 Printer

9. 1052 Printer-Keyboard. It is used
operator communication.

10. 2671 Paper Tape Reader

11. 2311 Disk Storage Drive

12. 2321 Data Cell Drive

13. 2401, 2402, 2403, 2404, and 2415
Magnetic Tape Units

only)

for

1

14. 1285 Optical Reader (maximum of 8 opti­
cal readers are supported)

15.

16.

17.

18.

119
•

1287 Optical Reader* (maximum of 8 opti­
cal readers are supported)

1030 Data Collection System

1050 Data Communication System

1060 Data Communication System

2260 Display Station (Local and/or
Remote)

20. AT&T 83B3 Selective Calling Stations

21. AT&T Teletypewriter Terminal, Models 33
and 35

22. Western Union Plan l15A Outstations

23. 2740 Communication Terminal

24. IBM System/360, Models 30, 40, 50, 65,
or 75* (Binary Synchronous Communication)

25. IBM 2780 Data Transmission Terminal*
(Binary Synchronous Communication)

26. 7770 and 7772 Audio Response Units

Introduction 5

* Programming specifications for using
these devices may be used for planning pur­
poses only. Source programs must not con­
tain instructions for these devices until
the Disk Operating System includes the

l
appropriate programming. If coding for
these devices is included in a source pro­
gram, diagnostics indicating invalid codes
or operands are issued.

MACRO SIMILARITIES

Macro similarities between Basic Programming
Support (BPS), Basic Operating System (BOS) ,
Tape Operating System (TOS) , and Disk Opera­
ting System (DOS) are as follows:

• Imperative macro instructions and
Supervisor Communication macro instruc-'
tions available for TOS have identical
expansions for DOS.

• File definition macro instructions
available for the TOS have identical
expansions for DOS.

Symbolic programs written for BPS and
BOS can be assembled into the functional
equivalents for DOS. However, the DTFSR
macro instruction substantially prolongs
program preparation time when used on DOS.

Certain register parameters for BPS and
BOS are parenthesized in DOS. In general,
DOS will accept the paramet~rs without the
parentheses. For example, in DOS the cor­
rect format is IOREG=(r). DOS will accept
the BOS parameter IOREG=r.

No change in register usage conventions
is planned for BOS or BPS. However, to
avoid compatibility problems resulting
from transition between 8K and 16K support
levels, installations using 8K support
should observe the 16K register conventions
indicated under Register Usage.

COMPATIBILITY OF THE ORIGINAL AND THE
PRESENT DOS

• User programs written for the original
DOS can be run in, the present DOS
batch-job environment with no changes
and without recompilation.

• A LABADDR routine that builds user­
standard labels in the IOCS area of
main storage cannot be executed in a
storage-protected environment and,
hence, cannot be executed in a multi­
programming environment.

• Programs written for the original DOS
can be run as background jobs in a
multiprogramming environment with the
following exception. The background

6 DOS Sup. and I/O Macros

program must have control of the
interval timer feature when a program
using the timer (SETlME macro instruc­
tion) is executed in a mUltiprogramming
environment.

• Programs using PIOCS to process DASD
files must OPEN the file if the program
is being executed in a system that has
DASD file protect. The channel program
for the DASD must begin with a Seek
(X' 07') command.

• Data files created for the original DOS
can be used without exception.

• Programs checkpointed in the original
DOS cannot be restarted in the present
DOS.

PHYSICAL Ioes VS LOGICAL IOeS

The input/output control is considered to
consist of two parts: physical Ioes (PIOeS)
and logical Ioes (LIOeS). Physical Ioes
controls the actual transfer of records
between the external medium and main storage
It performs the functions of initiating the
execution of channel commands and handling
associated I/O interrupts. Physical Ioes
consists of the following routines:

• Start I/O routine

• Interrupt routine

• Channel scheduler

• Device error routines.

These physical Ioes routines are part of
the supervisor, which is permanently lo­
cated in lower main storage while problem
programs are being executed. The device
error routine for SYSRES resides in the
supervisor area. Other error routines
are called into the transient area.

Logical IOeS performs those functions
that a user needs to locate and access a
logic-al record for processing. A logical
record is one unit of information in a
file of, like units--for example, one em­
ployee's record in a master payroll file,
one part-number record in an inventory file,
or one customer account record in an account
file. One or many logical records may be
included within one physical record, for
example, a physical tape record (gap to
gap). The term logical IOCS refers to the
routines that perform the following
functions:

• Blocking and deblocking records

• Switching between I/O areas when two
areas are specified for a file

• Handling end-of-file and end-of-volume
conditions

• Checking and writing labels.

Logical laCS uses physical IOCS to exe­
cute I/O commands whenever it determines
that a transfer of data is required. For
example, if a file consists of blocked
records and a block has been read into main
storage, logical laCS makes each record in
succession available to the user until the
end of the block is reached. No physical
IOCS is required. When logical laCS de­
termines that the last record in the block
has been processed, it requests physical
IOCS to start an I/O operation to transfer
the next physical record (gap to gap) into
Illain storage.

In Figure 1, only logical laCS is re­
quired to make records 2 and 3 (and 5 and 6)
available. Records 1-3 are already in
main storage. Physical laCS is also re­
quired to make record 4 available (records
4 through 6 are transferred in one block).

Logical laCS macros (such as GET, PUT,
READ, WRITE, etc) and physical laCS macros
(such as EXCP and WAIT) are available to
the programmer for handling records. The
logical laCS macro routines cause all the
functions of both logical and physical laCS
to be performed for the programmer. For
example, when a GET instruction is issued,
a logical record is made available for
processing. Registers 0, 1, 14, and 15
are used by logical laCS routines.

The physical IOCS routines are complete­
ly distinct from the routines used by logi­
cal laCS to perform functions such as
blocking and deblocking. They permit the
problem program to use physical laCS func­
tions directly. To transfer a physical
record (such as a DASD or tape record), the
problem program issues an EXCP macro instruc­
tion (Execute Channel Program). This causes
a request for da'ta transfer to be handled
by the channel scheduler, and program exe­
cution immediately continues with the next
problem program instruction. However, the
DASD or tape record will not be available
in main storage until some later time. When
the record is needed for processing, the
program must test (WAIT macro instruction)
to determine if the transfer has been
completed. Physical laCS uses registers
o and 1.

The functions of physical and logical
laCS routines are shown in Figure 2.

DASD File Protection

For a 32K or larger machine, logical and
physical laCS can provide DASD data file

Block of 3 Records in Main Storage

I Record 1
(Record 4)

LlO

Record 2
(Record 5)

for
Record 2 (5)

lI0 = Logical 10CS
PIO = Physical 10CS

Record 3
(Record 6)

lI0
for

Record 3 (6)

lI0 and PIO
for

Record 4

Figure 1. Physical laCS vs Logical laCS

protection if the user requests it when
he generates his system. The protection
is on a cylinder basis for the 2311 and on
a strip basis for the 2321. Thus, data
files having the same cyl'inder/strip cannot
be protected from one another. For complete
protection, files should begin and end on
cylinder/strip boundaries. File protection
is ensured only if the labels involved are
unexpired.

TYPES OF LIOCS PROCESSING

The logical laCS routines process records
in sequential order, in random order by the
Direct Access Method (DAM), or randomly and
sequentially by the Indexed Sequentiad File
Management System (ISFMS). Sequential
processing applies to all files in serial
I/O devices (such as card reader, tape,
printer, etc), and to records on the IBM
2311 disk or 2321 data cell when they are
processed serially. The types of proces­
sing performed by DAM and ISFMS apply only
to files of Direct Access Storage Device
(DASD) records.

SEQUENTIAL PROCESSING

Sequential processing is -used to read/write
and process successive records in a logical
file. For example, card records are proc­
essed in the order the cards are fed. Tape
records are processed starting with the
first record after a header label and con­
tinuing through the records to the trailer
label. DASD records are processed starting
with a beginning DASD address and continu­
ing in order through the records on succes­
sive tracks and cylinders to the ending
address.

A sequential file on DASD is contained
within one or more sets of limits, which
are specified by the Job Control XTENT
cards. If the logical file consists of
more than one set of limits, laCS will
automatically process each set as required
by the user. The records within each set
must be adjacent and contained within one
volume (disk pack or data cell). The sets

Introduction 7

Problem
Program

Logical
10CS

Physical
10CS
(Channel
Scheduler)

Input
Device

Using
Logical
10CS

Issue GET • { Provide Record (Deblock)
__ ~ and Return to Problem Program

Next Instructi~ - OR-
(after GET) ~ If I/O Required, Issue EXCP

andWAIT~

{

When I/O Complete,
Return to Problem

Determine Channel.
Place Request in Queue
if Channel Busy, and Return
to Logical 10CS.

If Channel Not Busy, } """""---"1/0 S
b~S~UI/O ~~
and Return to Logical 10CS.

Program

{
When I/O Complete, go } I/O C I
through Interrupt Routine ~ omp ete

--- --- --- --- --- --- --- --- --- --- --- ----------- --- ----- --- ---- --- ---- --- ---- ----- ----- ----- ----- -----
Using
Physical
10CS

Set Up CCW, CCB, and Issue EXCP ----....... ----~ Determine Channel.
Place Request in Queue

Next Instruction ~---------------__ J
(after EXCP)

if Channel Busy, and Return
to Problem Program.

Issue WAIT

Next instruction
(after WAIT)

If Channel Not Busy, } ----.. I/O Starts
Issue START I/O
and Return to Problem Program.

{
When I/O Complete, go } ~ I/O Complete
through Interrupt Routine .

Figure 2. Retrieving a Record Using Logical laCS (One I/O Area) or Physical laCS

are not required to be adjacent or on the
same volume. Sequential processing of a
file written on DASD by the direct access
method can be performed.

The basic macros used for sequential
processing are GET and PUT. These instruc­
tions overlap data transfer and processing.
The extent of overlap depends on the user's
I/O area assignment. In any case, when a
GET or PUT has been executed, the transfer
of data is complete before the instruction
following the GET or PUT is executed.

DIRECT ACCESS METHOD (DAM)

The Direct Access Method (DAM) provides a
method of processing records contained on
IBM 2311 or IBM 2321 that are usually
organized in a random manner. It is impor­
tant to note that DAM is a method of proc­
essing records and not an organizational
method.

8 DOS Sup. and I/O Macros

laCS locates a DASD record for process­
ing by referring to a record-location
reference supplied by the problem program.
The location reference consists of two
parts: a track reference and a record ref­
erence. The track reference specifies the
track (or the first of multiple tracks)
to be searched for the record. The record
reference may be the record key, if records
contain key areas, or the record identifier
(ID), which is in the count area of each
DASD record. laCS seeks the specified
track and searches for the record on that
track, or on the succeeding tracks in the
cylinder.

The basic macros used for the direct
access method of processing are READ and
WRITE. Variations within these macros
permit records to be read, written, updat­
ed, replaced, or added to a file. Thus,
this method provides a means of maintaining
a logical file in a random (or sequential)
order. When a READ or WRITE instruction is
executed, the actual I/O operation is

either started or placed in a queue for
later execution. When the record is re­
quired for processing, the program must
test (WAITF macro) to ensure that the trans­
fer is complete.

INDEXED SEQUENTIAL FILE MANAGEMENT SYSTEM

DASD records contained within an indexed
sequential file may be processed in a ran­
dom order or in sequential order by control
information. Both orders use the control
information of the records (such as em­
ployee number, part number, etc), which is
available in the key area of each DASD
record. Any record stored at any location
in the logical file can be processed using
the random method. The user supplies ISFMS
with the key (control informa~ion) of the
desired record. ISFMS searches for the
record and makes it available for
processing.

In sequential processing, ISFMS makes a
series of records available. The records
are available, one after the other in
order by the control information (key) in
the records. The first record to be proc­
essed is specified by the user. ISFMS
retrieves the succeeding records (on
demand) from the logical file, in key
order, until the problem program terminates
the operation.

ISFMS provides the facility to create an
organized file and then add to, read from,
and update records in that file. The file
is organized from records that have been
pre-sorted by their control information.

As the records are loaded onto DASD, ISFMS
constructs indices for the logical file.
The indices will permit individual records
to be found in subsequent processing opera­
tions. The indices are created in such a
way that records can be retrieved randomly
or sequentially. If records are added to
the file at a later date, ISFMS updates the
indices to reflect the new records.

The basic macros used for processing the
indexed sequential files are READ/WRITE and
GET/PUT. READ and WRITE are used for ran­
dom operations, and GET and PUT are used
for sequential operations. A READ or WRITE
instruction in the problem program causes
the I/O operation to be started or placed
in a queue, and execution of the problem
program continues. When an instruction
later in the program requires that the
transfer of data be complete, a test must
be made. A WAITF macro is provided for the
test". When a GET or PUT instruction for a
record is executed, the transfer of data
is completed before the next instruction
in the problem program is executed.

BASIC AND QUEUED TELECOMMUNICATIONS ACCESS
METHODS

Disk Operating System provides the facility
to communicate with remote terminals by
using either the Basic (BTAM) or Queued
(QTAM) Telecommunications Access Method.
The publications listed on the front cover
of this manual provide a general descrip­
tion of the available telecommunications
facilities and specific information on the
imperative macro instructions, DTF's, and
modules used with BTAM and QTAM.

Introduction 9

TEE HACRO SYSTEM

A definition of macro is 'of or involving
large quantities'. For one macro instruc­
tion, many instructions may be assembled.
Thus, the system derives its name.

The macro system is composed of two
basic parts:

• Macro Definitions--General routines
written as source statements and stored
in the Assembler Sub-library of the
Source-Statement Library.

• Source-program macro instructions:

1. Imperative Input/Output Control
Macro Instructions tell what I/O
operation is desired. For example,
in Appendix C GET indicates that
the user wants to obtain a card
record.

2. Supervisor Communication Macro In­
structions communicate with the
Supervisor and provide access to
the communication region.

For processing with IOCS, two additional
macro instructions are used:

SOURCE PROGRAM
(Before)

1
2------

ASSEMBLER
OPERATIONS

Locate Macro
Definition

3. Declarative Logic Module Generation
Macro Instructions (used with LIOCS)
provide information about the type
of module to be generated. A
module is an object code routine
which can handle the conditions
specified in the module generation
macro. For example, in Appendix C
the CDMOD generates a module to
handle card input on a 2540 using
a work area.

4. Declarative DTFxx Macro Instructions
(used with the LIOCS and PIOCS) de­
fine the characteristics of the spec .
fic file to be processed. The infor
mation in the macro instruction is
assembled into a DTF table. For ex­
ample, in Appendix C the DTFCD macro
instruction used specifies that the
symbolic unit containing the file is
SYS004, that the file uses a work
area and an I/O area called AI, and
that control should be given to
EOFCD when the last card is read.

A direct relationship exists between
these parts. During assembly, the macro
instruction specifies which macro defini­
tion is to be called. The macro definition
is extracted, tailored, and inserted into
the program as shown in Figure 3. The

Source
Program
Statements

SOURCE PROGRAM
(After)

1
2

Source
Program
Statements

15-----
16 Macro Instruction ------4~
17------

Perform Indicated Selection
and Substitution

15------
16 Macro Instruction

Merge with }
Source Program ""--­

~Macro
Expansion

Source { 1:
Program •

Statements : =_ -==_ -==_ -==_ -==_ -==_ -=

Figure 3. Schematic of Macro Processing

10 DOS Sup. and I/O Macros

tailoring is accomplished by a selection
and substitution process using the general
information in the macro definition and the
specific information in the macro instruc­
tion. The insertion is a module, a table,
or a small in-line routine and is called
the macro expansion.

After the insertion is made, the complete
program consists of both source program
statements and assembler language statements
generated from the macro definition. In
subsequent phases of the assembly, the en­
tire program is processed to produce the
machine-language program.

IBM provides a number of prewritten macro
definitions and specifies the macro instruc­
tions that can be used by the programmer to
use the definitions. Other macro defini­
tions can be written by the user. See the
Assembler publication listed in the abstract
of this manual for information on this.

The IBM-supplied macro instructions that
are explained in this publication are organ­
ized in four categories:

• Imperative LIOCS I/O Control Macro
Instructions

• Declarative LIOCS DTF and I/O Module
Generation Macros

• PIOCS Macro Instructions

• Supervisor Communication Macro
Instructions

be defined by a declarative macro instruc­
tion, called a DTF. The DTF macro instruc­
tion describes the characteristics of the
logical file, indicates the type of proc­
essing to be used for the file, and speci­
fies the main-storage areas and routines
used for the file.

For example, if a GET is issued, the
file definition supplies such factors as:

• Record type and length

• Input device from which the record is
to be retrieved

• Address of the main-storage area where
the record is to be located for proc­
essing by the problem program.

I

Device-oriented file-definition declara­
tive macro instructions are available for
defining files processed by LIOCS. One is
available for magnetic tape or DASD files
processed by PIOCS. Figure 4 contains an
example of a DTF. For LIOCS operations,
the file-definition macro instructions used
depend on the type of processing that will
be performed for the file.

SEQUENTIAL PROCESSING: This applies to
input/output files in serial devices or to
2311 or 2321 DASD when records are proc­
essed sequentially~ The following macros
are used for sequential processing:

Macro Instruction Define the file for a:

DTFSR Serial type device

DTFCD Card Device

DTFMT Magnetic tape

Self-Relocation and IOCS DTFPR Printer

Te-make LIOCS and PIOCS Imperative and ,DTFCN
Supervisor Communication macro instructions

Console (Printer-Keyboard)

self-relocating the user must: DTFSD Sequential DASD

1. use the OPENR and CLOSER macro in­
structions, and he must

2. use register notation within his
macro instructions.

See the discussion on Register Notation in
this publication.

DTF MACRO

Whenever logical IOCS imperative macro in­
structions (GET, PUT, READ, WRITE, etc)
are used in a program to control the input/
output of records in a file, that file must

DTFPT

DTFOR

Paper Tape Reader

Optical Reader

DIRECT ACCESS METHOD: Whenever a logical
DASD file is to be processed randomly, the
DTFDA is used.

INDEXED SEQUENTIAL SYSTEM: Whenever a logi­
cal DASD file is to be organized or proc­
essed by the indexed sequential file man­
agement system (ISFMS), the DTFIS is used.

The Macro System 11

I-'
N

a o
00

00

t@

III
::I
0.

•
I-%j
1-"
~
~
Ii
CD

01::>

til
III

~
I-'
CD

H tJ

" 1-3 o I-%j

:s: ~
III
() :s:
Ii III o ()
en Ii

o

Req'd.

H 10p~i.
::I
Ul
rt
Ii
~
(')

rt
1-"
o
::I

II., IBM Syatam/l6o Aaaembler Cading Farm TOS/DOS DTFMT Entries

* Header and each detail canl, e)Cept the last one In each set, must have a continuation punch in column 72. Also,
each detail canl, except the last one, must cantain a comma immediately after the operand. Space is allowed for the
longest operand ~.Ius the comma. If a smaller operand is used, the comma should be moved over accordingly. In the
last detail canl ora set, the comma position must be blank.

t General reglsten 2- 12, written In parenth_; for e)CICJmple: (12).

Form X24· 5052
P,lnted In u.s

PHYSICAL IOCS PROCESSING: When PIoes macro
instructions (EXCP, WAIT, etc) are used for
a file, the DTFPH macro instruction is re­
quired if standard labels are to be checked
or written on a DASD or magnetic tape file,
or if the DASD file is file protected.

A DTFxx macro instruction generates a
DTF table that contains indicators and con­
stants describing the file. The user can
reference this table by using the symbol
Filename+constant or Filenamex, where x
is a letter. When such a reference is nec­
essary, the constant or letter is specified
in the text. When referencing the DTF
table, the user must ensure addressability
through the use of an A-type constant, or
through reference to a base register.

SYMBOLIC UNIT ADDRESSES

In each of the DTF macro instructions, ex­
cept those for DTFDA, DTFIS, and DTFPH
MOUNTED=ALL files, the user must specify a

Source Program DTF Table

GET FILE rFILE DTFCD
'- __ --.I 1 ____ ... DEVADDR=SYSOOO

The fixed set of symbolic unit names
differs for batch or backgrorind jobs and
for foreground programs. No other names
can be used. For batch or background jobs
the names are:

SYSRDR

SYSIPT

SYSPCH

SYSLST

SYSLOG

SYSRES

Card reader, magnetic tape
unit, or disk extent used
for Job Control statements.

Card reader, magnetic tape
unit, or disk extent used
as the input unit for
programs.

Card punch, magnetic tape
unit, or disk extent used
as the main unit for
punched output.

Printer, magnetic tape
unit, or disk extent used
as the main unit for
printed output.

Printer-keyboard used for
operator messages and log­
ging Job Control state­
ments. Can also be as­
signed to a printer.

System residence area on a
disk drive (for DTFPH
only) .

symbolic unit name in the DEVADDR=SYSnnn
entry. This symbolic unit name is also used
in the Job Control ASSGN statement to assign
an actual I/O device address to the file.
For DASD files the symbolic unit name is
supplied in the Job Control XTENT statement.

The symbolic unit name of a device is
chosen by the programmer from a fixed set
of symbolic names. He writes his program
considering only the device type (tape,
card, etc) of his file. At execution time,
the actual physical device is determined
and assigned to a given symbolic unit. For
instance, a programmer can write a program
which processes tape records and can call
the tape SYSOOO. At execution time the
operator (using ASSGN) assigns any avail­
able t~pe drive to SYSOOo.

The relationship between the source pro­
gram, the DTF table, and the Job Control
I/O assignment is shown in the following
chart.

Supervisor I/O
Tables (Job Con­
trol Initiated)
SYSOOO,cuu

SYSOOO-SYS244 All other background units
in the system.

The permissible names for foreground
programs are given in the list that fol­
lows. (Note that although some of the same
names can be used in both background and
foreground programs, separate device as­
signments are required for the programs.)

SYSLOG

SYSOOO-SYSnnn

Printer-keyboard used for
operator messages and log­
ging Job Control state­
ments. Can also be as­
signed to a printer. The
same device is used by
background and foreground
programs and the control
program.

All other foreground units
in the system. A total of
245 numeric units can be
specified in any given
system (at system genera­
tion time). Sequential
names beginning with SYSOOO
are used for each area in
the multiprogramming
environment.

Because DTFSR is used in DOS purely for
compatibility with BOS, different symbolic
unit names are available. The names are
listed in the DTFSR discussion.

The Macro System 13

Source Program CCB Supervisor I/O Table
(Job Control Initiated)

EXCP ccbname r+ SYSxxx- - - - - - - - - - ... SYSxxx, cuu
L ___ I (hex representation)

In physical IOCS, the symbolic unit name
is specified in the CCB (as well as the
DTFPH when used). The relationship between
the source program and the Job Control I/O
assignment is shown in the previous chart.

LOGIC MODULE GENERATION MACRO INSTRUCTIONS

Each DTF except DTFCN and DTFSR must link
to an IOCS logic module. These modules
provide the necessary instruction to perform
the input/output functions required by the
problem program. For example, the module
may read or write data, test for unusual
input/output conditions, block or deblock
records if necessary, or place logical rec­
ords in a work area.

Some of the module functions are pro­
vided on a selective basis, according to
the parameters specified in the xxMOD macro­
instruction. The programmer has the option
of selecting (or omitting) some of these
functions according to the requirements of
his program. The omission of some of these
functions will result in smaller main sto­
rage requirements for a particular module.

Note: If the user issues an imperative
macro, such as WRITE or PUT, to a module
~hat does not contain that function, the job
is terminated and a message is displayed.

A logical IOCS module is defined as a
subset to another logic module if all the
functions available in the subset module,
plus additional functions, are also availa­
ble in the latter module, defined as a
superset module. For example:

Superset Module
Functions

Optional use of
CNTRL macro

Workarea and I/O
Area Processing

Support of Printer
Overflow

Read backward and
forward on magnetic
tape

Subset Module
Functions

CNTRL macro cannot
be used

I/O Area Processing
Only

No Printer Overflow
Support

Read forward Only

The relation between subsets and supersets
is shown in diagrams at the end of the dis­
cussion of each module.

Some CDMOD, PRMOD, PTMOD, ISMOD, SDMOD,
DAMOD, and MTMOD macro instructions cor­
respond, respectively, to two or more DTFCD,

14 DOS Sup. and I/O Macros

DTFPR, DTFPT, DTFIS, DTFSD, DTFDA, and
DTFMT macro instructions. The functions
required by these DTF's are thus available
in a single xxMOD macro instruction, even:
the DTF's have slightly different parameteJ

INTERRELATIONSHIPS OF THE MACRO INSTRUCTIO~

HOW THE IOCS MODULE IS LINKED WITH THE DTF
TABLE

Regardless of the method of assembling lo­
gic modules and DTF's (i.e., with the main
program or separately), a symbolic linkage
will result between the DTF table and the
logic module. The Linkage Editor will re­
solve these linkages at edit time.

The IOCS-module-DTF-table linkage is
accomplished by generating a V-type address
constant in the DTF table and a named
CSECT in the logic module. To resolve this
linkage, the linkage symbols must be identi·
cal. These linkage symbols are referred to
as module names.

The following example illustrates the
relationship of the program, the DTF, and
the logic module. Imperative macros ini­
tiate the action to be performed on the fil€
by branching to the logic module entry poini
generated in the DTF table.

Program DTF Table Module

r-----------"t
GET TAPE, WORK TAPE DTFMT ---'IJFFBCWZ

IJFFBCWZ--

TAPE is the name of the file.
the name of the logic module.

IJFFBCWZ is

GENERATION OF MODULE NAMES IN DTF TABLES
AND LOGIC MODULES

A module name is generated in the DTF table
by one of two methods. The user may ex­
plicitly specify the module name by entering
it in the DTF parameter MODNAME=Name, or he
may allow the macro definition that proc­
esses the DTF macro instruction to generate
this name, as determined by the functions
required by the DTF macro instruction.

Similarly, a module name is generated
for a logic module by one of two methods.
The user may explicitly specify the module
name by supplying this name in the name
field of the xxMOD macro instruction, or he
may allow the macro definition that proc­
esses the xxMOD macro instruction to gen­
erate this name, as determined by the func­
tions that the logic module will supply.
The generated names will be referred to as
standard module names. Information on
standard mod~le names follows discussions
of the logic module generation macros.

SUBSET AND SUPERSET MODULE NAMES

When a DTF table is assembled (with the main
program or separately), a module name is gen­
erated that reflects exactly the functions
required by the DTF macro instruction.

If similar DTF's are assembled together,
the functions required by the similar files
will be collected by the macro definition
during the assembly process, and one super­
set module name will be generated. For ex­
ample, if in the same assembly one DTFCD
table requires the CONTROL function and
another DTFCD table does not, a CDMOD handl­
ing the CNTRL macro is able to process both
DTFCD tables.

For example, an MTMOD with the CKPTREC
option and the WORKA option can process a
number of similar DTFMT tables requiring
different functions. The following tables
could be processed by a single MTMOD.

• No CKPTREC or WORKA

• CKPTREC and no WORKA

• WORKA and no CKPTREC

• Both CKPTREC and WORKA

Each logic module section contains a name
list and indicates the structure of subset
and superset names for the module.

EDITING LOGICAL IOCS PROGRAMS

The programmer has the option of either as­
sembling DTF's and logic modules with his
main program or assembling them separately
for later linkage editing with the main
program. In order to take full advantage of

the linking facilities for DTF tables and
logic modules, which are discussed in the
following sections, the parameter SEPASMB=
YES should be specified when DTF tables or
logic modules are separately assembled.

Logical IOCS programs will always gener­
ate symbolic linkages between DTF tables and
logic modules that will have to be resolved
by the Linkage Editor at edit time. Further­
more, if DTF tables are assembled separately,
the definition of additional symbolic link­
ages in the form of EXTRN-ENTRY symbols will
be the programmer's responsibility.

Appendix C contains a full description
of the different symbolic linkages that
must be defined when separately assembled
programs are edited.

When the parameter SEPASMB=YES is speci­
fied in a DTF macro instruction, a CATALR
card with the file name given to the DTF is
generated ahead of the object deck. When
the parameter SEPASMB=YES is specified in
an xxMOD macro instruction, a CATALR card
with the module name is generated ahead of
the object deck.

Cataloging DTF tables and logic modules
to the relocatable library is recommended
to lessen user coding effort and to minimize
total time needed to prepare and test pro­
grams using logical IOCS. The use of DTF
tables cataloged in the relocatable library
requires standardization of the labels re­
ferred to by the DTF's, so that these tables
may be used by different programs.

If the I/O modules, DTF tables, and the
main program are assembled together, the
linkage editor will search the input stream
and will resolve the symbolic linkages be­
tween tables and I/O modules by using the
External Reference information (V-type
address constants generated in DTF tables)
and the Section Definition information (CSECT
definitions in logic modules). Further in­
formation may be found in the Linkage Editor
section, under Structure of a Program, in the
System Control and System Service Programs
publication listed in the Abstract.

If any of the elements that constitute a
program are assembled separately, the. dif­
ferent "object modules" (assemblies) may
be supplied to the input stream at linkage­
edit time, and the linkage editor will re­
solve the symbolic linkages between them.

If any of the separately assembled ele­
ments has been cataloged to the relocatable
library, the linkage editor will find un­
resolved external references in the input
stream and will perform the AUTOLINK func­
tion, searching the relocatable library
for a relocatable module whose name matches
identically the external reference. If the
module is not defined in the relocataple
library, the external references to this

The Macro System 15

name will be unresolved. Therefore, if
the modules are assembled separately and
cataloged to the relocatable library, the
programmer must determine that at least
one of the DTF's in his program includes 'a
module name that can be successfully
AUTOLINK'ed from the relocatable library.

Programmer control of the module to be
AUTOLINK'ed from the relocatable library is
achieved by using the MODNAME parameter in
the DTF macro instruction. This overrides
the standard module name generated by the
macro definition.

LINKAGE-EDITING PREASSEMBLED LOGIC MODULES

A small number of IOCS logic modules can
serve a large number of DTF macros. (This
is applicable only to CDMOD, PRMOD, SDMOD,
ISMOD, DAMOD, PTMOD, and MTMOD.) For
example, the module shown below can serve
the 64 different DTFMT files possible using
the six following options: TYPEFLE=INPUT
or OUTPUT, RECFORM=FIXUNB or FIXBLK,
WORKA=YES or NO, IOAREA2=Name or (not used),
CKPTREC=YES or NO, and READ=FORWARD or
BACK.

MTMOD
TYPEFLE=INPUT,
RECFORM=FIXUNB,
WORKA=YES,
CKPTREC=YES,
READ=BACK

Col 72

x
X
X
X
X

The same module also serves files with
varying block sizes, record sizes, I/O
area addresses, and exit addresses.

A preas sembled logic module may be
furnished to the linkage editor in three
ways:

1. INCLUDE the module from SYSIPT.

2. INCLUDE the module from the system
relocatable library.

3. AUTOLINK the module from the system
relocatable library.

If a module is included from SYSIPT, its
name offers no problem. The user assumes
responsibility for its name and functional
"match" to the DTF's in his program.

If a module is INCLUDEd from the system
relocatable library, the situation is
similar. The user should assure himself
that the desired modules have already been
cataloged to the library by consulting a
DSERV listing of the library.

16 DOS Sup. and I/O Macros

If the module is to be AUTOLINKed from
the system relocatable library, the user
must determine whether the module name
generated by the DTF (or furnished by the
MODNAME parameter) coincides exactly with
the name in the system relocatable library.
If the names are identical, the AUTOLINK
is accomplished. Otherwise, the user must
either INCLUDE some module that meets these
needs (from SYSIPT or from the system
relocatable library) or consider the logic
module needs of other DTF's in his program.
This latter technique is discussed in the
following paragraph.

If a needed module is not available in
the relocatable library, the user should
determine if any other DTF will need a
module which (a) is named in the library
and (b) furnishes at least the functions
required by the first DTF. For example,
the following DTF generates a request for
the module named IJFFZZZZ.

Col 72

FILEI DTFMT X
TYPEFLE=INPUT, X
RECFORM=FIXUNB, X
IOAREAI=AI, X
IOAREA2=A2

The following DTF generates a request
for the module named IJFFZZWZ.

FILE2 DTFMT
TYPEFLE=OUTPUT,
RECFORM=FIXBLK,
IOAREAl=A3,
WORKA=YES

Col 72

X
X
X
X

If the module named IJFFZZWZ is available
in the system relocatable library and if
the two files are defined in the same
assembly, the AUTOLINK facility can be used
without further problem. However, if only
the first file is defined in the assembly
and if no other IJFxxxxx modules are cata­
loged in the system relocatable library,
the user should either furnish a private
copy of the IJFFZZZZ module at linkage­
edit time or INCLUDE the larger module
(IJFFZZWZ). In systems with ample main
storage and/or for small programs, the
user may choose to sacrifice a modest
amount of main storage to achieve simplicity
in linkage editing.

An installation could conceivably fur­
nish every possible IOCS module in the sys­
tem library--several hundred in all. This

technique would severely restrict the capa­
bilities and performance of the system; it
is not recommended. Instead, each installa­
tion should generate a certain set of IOCS
logic modules when the system residence is
built, based on equipment, installation
standards for record formats and exits, etc.
Any user requiring a special tailored
module can generate it by using the logic
module macro instruction and its specific
parameters.

To resolve the symbolic linkages between
a superset module, and DTF tables that can
be processed by this module but whose name
does not match identically the name of the
logic module (because the DTF does not use
all the functions provided by the module) ,
ENTRY points are generated in addition to
the CSECT in the logic module. These ENTRY
points will define all the subset module
names that can be handled by the superset
module. V-type address constants may then
be resolved against the ENTRY point if they
do not match the CSECT name. For example,
the module named IJFFZZWZ has a secondary
entry point named IJFFZZZZ. This explains
why AUTO LINK will work in the previous
example. However, AUTOLINK can be used
successfully only with catalog names (which
correspond to the CSECT name) but not with
secondary entry points.

If the programmer gives an explicit
module name to the xxMOD macro-instruction,
this name will override the standard module
name in the CSECT definition, and no ENTRY
points will be generated. The DTF tables
that will access the module may employ the
parameter MODNAME=Name to link to the pre­
viously named logic module.

MACRO-INSTRUCTION FORMAT

Macro instructions have the same format as
assembler statements. That is, each macro
instruction can consist of a name field,
an operation field, and an operand field.

The name field in the macro instruction
may contain a symbolic name. Some macro
instructions require a name, e.g., CCB,
TECB, DTFxx.

The operation field must contain the
mnemonic operation code of the macro
instruction.

The parameters in the operand field must
be written in one of 'three formats:
positional, keyword, or mixed.

POSITIONAL OPERANDS: In this format the
parameter values must be in the exact order
shown in the macro instruction discussion.
Each parameter, except the last, must be
followed by a comma with no imbedded

blanks. If a parameter is to be omitted
in the macro instruction and. following
parameters are included, a comma must be
inserted to indicate the omission. No
commas need to be included after the last
parameter. Column 72 must contain a con­
tinuation punch if the parameters fill the
operand field and overflow into another
card. Any nonblank character in column 72
causes the next parameter to be read.

For example, GET uses the positional
format. A GET for a file named CDFILE
using WORK as a work area is punched:

GET CDFILE,WORK

KEYWORD OPERANDS: The exact parameters
used are equated to a keyword value. Thus,
a parameter written in keyword format has
the form:

LABADDR=MYLABELS

where LABADDR is the keyword and MYLABELS
is the parameter. The association of
parameters is performed through the use of
keywords. The parameters in the macro
instruction may appear in any position, and
any that are not required may be omitted.
Different keyword parameters may be punched
in the same card, each followed by a
comma, ~ike the positional type. Or, they
may be punched in separate cards as in
Figure 4.

MIXED FORMAT: The parameter list contains
both positional and keyword operands. The
keyword operands can be written in any
order, but they must be written to the
right of any positional operands in the
macro instruction.

ENTRY CARDS FOR DECLARATIVE MACROS

The parameters of the DTFxx and the module
generation macro instructions can be punched
in a set of entry cards in the assembler
format previously described. An example of
the entry cards used for a DTFMT macro
instruction is shown in Figure 4. The
macros may be assembled in any order.

The first entry card is a header card,
and the continuation cards are detail cards.
The header card is punched with:

• The symbolic name of the file in the
name field. Programming Note: Avoid
defining symbols beginning with IJj they
may conflict with IOCS symbols begin­
ning with IJ. Avoid symbols which are
identical to a filename plus a single
character suffix. For example, for
the filename RECIN, IOCS generates the
symbols RECINS, RECINL, etc by concate­
nating the filename with an additional
character.

The Macro System 17

In a DTF, the symbolic filename may
be up to seven characters long. If
the Job Control VOL card is required
for the file defined by the DTF, the
filename must be the same as the file­
name used on the VOL card.

For a module generation macro, the
name mayor may not be specified. See
Generation of Module Names in DTF Tables
and Logic Modules in this publication.

• The macro instruction mnemonic operation
code in the operation field.

• Keyword entries in the operand field, if
desired.

• A continuation punch in column 72, if
detail cards are necessary.

The detail cards follow the header card,
and they may be arranged in any order.
Each detail card is blank in the name and
operation fields and is punched beginning
in column 16, with one or more keyword
operands, separated by commas. All detail
cards except the final one must be punched
with a comma immediately following the last
operand and with a continuation punch in
column 72. They may contain comments if a
space is left after the comma following the
last operand.

MACRO-INSTRUCTION CONVENTIONS

The conventions used in this publication to
illustrate macro instructions are as
follows:

1. Upper-case letters and punctuation
marks (except as described in items 3
and 4 below) represent information
that must be coded exactly as shown.

2. Lower case letters and terms represent
information that must be supplied by
the programmer.

3. Information that is contained within
brackets [] represents an option that
can be included or omitted, depending
on the requirements of the program.

4. An ellipsis (a series of three periods
enclosed by commas) indicates that a
variable number of items may be
included.

5. Options contained wi thin braces {}
represent alternatives, one of which
must be chosen.

18 DOS Sup. and I/O Macros

6. [Name]
Label
Address

7. Filename

9. Length

11. {Name}
(r)

12. { Name 1
(0) f

{ N~~f}

A name-field symbol in
this assembly, or an
operand of an EXTRN state­
ment, or * (the location
counter) •

Symbol appearing in the
name field of a DTF macro
instruction.

Self-defining value, such
as 3, X'04', (15), B'OlO'.

Absolute expression, as
defined in the Assembler
publication.

Underlined elements repre­
sent an assumed value in
the event a parameter is
omitted.

Ordinary Register Notation

Special Register Notation
(Ordinary Register Notation
can be used).

REGISTER NOTATION

Certain operands can be specified in either
of two ways. One, the user can specify the
operand directly. Or two, he can preload the
address of the value into a register before
executing the macro instruction and specify
the register in the macro instruction. (The
registers that can be used are discussed
under Register Usage in this publication.)
The second method is known as (ordinary)
register notation. When the macro lnstruc­
tion is assembled, instructions are gener­
ated to pass the information specified in
the operand to rocs or the Supervisor.

For example, if an operand is written as
(8), and if the corresponding parameter is
to be passed to the Supervisor in register
0, the macro expansion will contain the
instruction LR 0,8.

The user can save main storage and
execution time by using what is known as
special register notation: writing the
operand as either (0) or (1).

This notation is special for two reasons:

• The register notation designation of
registers 0 and 1 is not allowed un­
less specifically designated.

• The designation must be made by the
specific three characters (0) or (1).
When special register notation is indi­
cated by (0) or (1) in a macro instruc­
tion, the user can use ordinary register
notation and the macro expansion will
contain the extra (LR) instruction.

The format description of each macro in­
struction shows whether special register
notation can be used, and for which operands.
For example,

GET
~ Fi lename 'l [.sWorkname 'l]
t (1) f 't (0))

The format description shows that the file­
name operand can be written as (1), and
the workarea operand as (0). If either of
these special register notations is used,
the user's problem program must have loaded
the designated parameter register before
execution of the macro expansion. Ordinary
register notation could also have been
used.

Register Usage

General registers 0, 1, 13, 14, and 15 have
special uses, and are available to the pro­
grammer only under certain restrictions.
Registers 2 through 12, however, are avail­
able without restriction and, to avoid the
possibility of errors, these should be the
registers used by the programmer.

Registers 0, 1

Logical IOCS macros, the Supervisor macros,
and other IBM-supplied macros use these
registers to pass parameters. Therefore,

these registers may be used without re­
striction only for immediate computations,
where the contents of the register are no
longer needed after the computation. If
the programmer uses them, he must either
save their contents himself (and reload
them later) or finish with them before
laCS uses them.

Register 13

Control program subroutines, including
logical laCS, may use this register as a
pointer to the 72-byte, double-word aligned
save area. Most users will find it con­
venient to set the address of the save
area in register 13 at the beginning of
each program phase, and to leave it un­
changed thereafter.

Registers 14, 15

Logical laCS uses these two registers for
linkage. Register 14 contains the return
address (to the problem program) from DTF
routines, called programs, and user's
subroutines. Register 15 contains the entry
point into these routines, and is used as
a base register by the OPEN, CLOSE, and
certain DTF macros. laCS does not save
the contents of these registers prior to
using them. If the programmer uses them,
he must either save their contents himself
(and reload them later) or finish with
them before Ioes uses them.

The Macro System 19

IMPERATIVE MACRO INSTRUCTIONS

Imperative macro instructions are issued
by the programmer and initiate such func­
tions as opening a file, making records
available for processing, writing records
that have been processed, etc. The macro
instructions provided by IBM for input/
output control are present in this section
in the following groups.

• Initialization: OPEN, OPENR, and LBRET.

• Processing Records Sequentially: GET,
PUT, RELSE, PRTOV, CNTRL, TRUNC, RESCN,
DSPLY, RDLNE, and WAITF.

• Processing Work Files: READ, WRITE,
CHECK, NOTE, POINTR, POINTW, and POINTS.

• Processing DASD Records by the Direct
Access Method: READ, WRITE, WAITF,
and CNTRL.

• Processing Direct Access Storage De­
vice (DASD) Records by the Indexed
Sequential File Management System:
SETFL, ENDFL, WRITE, READ, WAITF, SETL,
ESETL, GET, and PUT.

• Completion: CLOSE, CLOSER, LBRET,
FEOV, and SEOV.

Figure 5 summarizes when these macros are
used. When necessary, the detail entries
of the DTF macro associated with the file
are cross-referenced in Figure 5. For
example: FILABL=STD.

INITIALIZATION

Before processing a file, the file is
usually readied for use by issuing an OPEN
macro. Exception, OPEN is not used with
DTFCN files. OPEN optionally checks or
writes standard labels. The user can exit
from the IOCS OPEN routine to write or
check user labels or nonstandard labels.
When opening a file to be processed by
physical IOCS or direct access method, the
user can exit to process his XTENT informa­
tion. The LBRET macro is issued in user
routines to return to IOCS.

Information on labels is contained in
the Data Management Concepts publication
listed on the cover and 1n Appendix A of
this publication.

20 DOS Sup. and I/O Macros

OPEN MACRO

Op Operand

for pfograms which are not self-relocating

OPEN {Filenamel} f, {Filename2} ••. , {Filenamen'
(r I) L (r 2) (rn) .

for self-relocating programs

OPENR {Filenamell [,fFilename2lr ... ,fFilenamen'
(r I) r l (r 2) 'I. (rn)

The OPEN macro instruction is used to acti­
vate all files that are processed with LIOCS
except printer-keyboard files, and certain
files that are processed with PIOCS (see
the discussion on PIOCS) .

When the operation OPEN is used, the sym­
bolic address constants which OPEN gener­
ates from the parameter list are not self­
relocating. When OPENR is specified, the
symbolic address constants are self­
relocating.

Self-relocati~g programs using LIOCS
must use the OPENR macro-instruction to
activate all files, including printer­
keyboard files. The OPENR macro, in
addition to activating files for processing,
relocates all address constants within the

I

DTF t.ables specified in the operand field(s)
in register notation. If symbolic notation
is used, the user needs to establish address­
ability through a base register.

The symbolic name of the file (DTF file­
name) is entered in the operand field. A
maximum of 16 files may be opened with one
OPEN (or OPENR) by entering the filenames
as additional operands. Alternately, the
user can load the address of the DTF file­
name in a register and specify the register
using ordinary register notation. Filename
should not be preloaded into Register O.

Whenever an input/output DASD or magnetic
tape file is to be opened and the user plans
to process user-standard labels (UHL or
UTL) , or nonstandard tape labels, he must
provide the information for checking or
building the labels. If this information
is obtained from another input file, that
file must be opened, if necessary, ahead of
the DASD or tape file. This is done by
specifying the input file ahead of the tape

or DASD file in the same OPEN, or by issuing
a separate OPEN preceding the OPEN for the
file.

Opening Other Files

For the card reader, card punch, paper tape
reader, and printer, OPEN simply makes the
file available for input or output.

For 1403 printers with the Universal

ICharacter Set feature, data checks are
suppressed unless the user specifies UCS=ON
in the DTFPR for the file.

When logical IOCS is used with the IBM
1285 Optical Reader or IBM 1287 Optical
Reader, the OPEN macro must be issued at
the beginning of each input roll when proc­
essing journal tapes. When processing
documents, OPEN must be issued to make the
file available. OPEN allows header
(identifying) information to be entered at
the 1285 or 1287 keyboard, if desired, for
journal tape or cut documents (1287). When
header information is entered, it is always
read into IOAREA1, which must be large
enough to accommodate the desired header
information.

Imperative Macro Instructions 21

TYPE OF PROCESSING WITH LOGICAL 10CS

Sequential Indexed Sequential System

...c

" u
.~ c 0

CI) CI) CI) :;)
"t ...c

" " ~ d-
a.. "t >

MACRO INSTRUCTION a a c CI) .~ Vl

~ ~ 0 CI) - Cl
CI) ~ U

~ N ~ Q.. >
I - lo lo .~ Qi ~ a ::l .~ ~ Q
2 a -0 ~2 ~Qj ~ Q u I- CI) -E .~ .~ '" .. u "t ...J

~ " 0
~

a CI) CI) u 0 e><: .~ « .: ""2 c.. c.. o c o a N "0 e.: .c Q.. .2 ~.;: lo CI) lo 0 £ ... « u E ~ ... a 0 0 ~a.. ~e><: ~ a ~::> i.i: CI) c a.. 0 M-1O Ql t a:: 0 CI) Vl
N..o lo " NO

~
~ N o CI) ~ " ~ " " " :;) >-lOA co co O~ ~;1; o Q.. " 0

a c c-o CI)
~ ~ ~~ M C"') ~ 0 -0 Ql 0 ..9 " ~

CI) :c
~~ ~N N N NI- Ne><: « Vl a..

Initialization
LBRET X2 X2 X2 x:- X2
OPEN(R) X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X3 X1

Processing

CCB X
CHECK XS XS
CHNG XB XB
CNTRL X X X X X X X X X
DSPLY X11
ENDFL X
ESETL X
EXCP X
GET X X X10 X1 .. X X X X X
NOTE Xs XS
POINTR XS XS
POINTS XS XS

POINTW Xs Xs

PRTOV X
PUT X X X X13 X" X" X X12
RDLNE X X10

READ X11 XS XS X X
RELSE X6 X6
RESCN X"
SETFL X
SETL X
TRUNC X7 X7
WAIT X
WAITF X11 X X X
WRITE XS XS X X X)(12

Completion
CLOSE{R~ X3 X3 X3 X3 X3 X3 X 3 X3 X3 X 3 X3 X 3 X3 X3 X1
FEOV X X9

LBRET X2 X2 X2 X2
SEOV X

Notes: 1. Required only for DASD or tape files with standard labels for DTFPH and for file protected DASD files.
2. Applies only if DTFSR, DTFMT, DTFDA, DTFSD, or DTFPH LABADDR is specified or if DTFPH or DTFDA XTNTXIT is specified.
3. Required for all files processed by logical 10CS.
4. PUT rewrites an input DASD record if UPDATE is specified.
5. Work files for DASD and magnetic tape.
6. Applies only to blocked ~ records.
7. Applies only to blocked output records.
8. Applies only when two selector channels and one or more 2- channel, simultaneous- read- while- write tape control units are installed.
9. Applies only to output tape files with standard labels.

10. For 1287, applies only to journal tape processing.
11. For 1287, applies only to document processing.
12. Rewrites an input record.
13. PUT punches an input card with additional information if TYPEFLE=CMBND is specified.
14. In the 2540, GET normally reads cards in the read feed. If TYPEFLE=CMBND is specified, GET reads cards at the punch- feed- read station.

• Figure 5. Macro Instructions for Input/Output Control

22 DOS Sup. and I/O Macros

OPENING DASD FILES

When a DASD file is processed, the user
must supply the following Job Control cards:
a VOL and DLAB card for each logical file
to be processed and an XTENT card for each
separate area (or extent as it is more
commonly called). OPEN uses the informa­
tion supplied in these cards and also
certain information from the DTF table for
the file to process labels.

The extent(s) for a file must either
coincide with or be within an existing
extent(s) that is defined in the Volume
Table of Contents (VTOC). That is, on in­
put, IOCS-will open only an existing file
or a subset of an existing file. On output,
the file to be written cannot overlap
existing unexpired files; IOCS will not
destroy an unexpired file without an
explicit request from the user.

SEQUENTIAL PROCESSING--OUTPUT

When a multivolume DASD file is to be
created using sequential processing, only
one extent is processed at a time, thus
only one pack need be mounted at a time.

When a file is 9pened, OPEN checks the
standard VOLl label and checks the extents
specified in the XTENT cards:

1. the extents must not overlap each
other,

2. the first extent must be at least two
tracks long if user standard labels are
to be created,

3. Only extent types 1 and 128 are valid.

The data extents of a sequential DASD
file can be type 1, type 128, or both.
Type 128 extents are called split cylinder
extents and use only a portion of each
cylinder in the extent. The portion of
the cylinder used must be within the head
limits of the cylinder and within the
range of the defined e~tent limits. For
example, 2 files can share 3 cylinders-­
one file occupying the first 2 tracks of
each cylinder and the other file occupying
the remaining tracks. In some applications,
the use of split cylinder files reduces
the access time.

Then, OPEN checks all the labels in the
VTOC to ensure that the file to be created
will not destroy an existing file whose
expiration date is still pending and that
the extents specified in the XTENT cards
do not overlap existing extents. After the
VTOC checks, OPEN creates the standard
label(s) for the file and writes the
label(s) in the VTOC.

If the user wi~hes to create his owti
user standard (UHL or UTL) labels for the
file, he must include the DTF entry LABADDR.
OPEN reserves the first track of the first
extent for the user header and trailer
labels. Then the user's label routine is
given control at the address specified in
LABADDR.

After the header labels are built, the
first extent of the file is ready to be
used. The extents are made available in
the order of the sequence numbers on the
XTENT cards. When the last extent on the
mounted volume has been filled, user
standard trailer labels can be built. Then
the next volume that was specified in the
XTENT cards is mounted and opened in the
above manner.

For a file-protected DASD, when OPEN
makes the first extent of the new volume
available, it makes the extent(s) from the
previous volume unavailable.

When the last extent on the last volume
of the file has been processed, OPEN issues
a message. The user has the option of
canceling the job or typing in an XTENT on
the Printer-Keyboard and continuing the
job.

SEQUENTIAL PROCESSING--INPUT

In a multivolume file (a file having ex­
tents on more than one disk pack), only one
extent is processed at a time, and thus
only one pack need be mounted at a time.

When a volume is opened, OPEN checks the
standard VOLl label and goes to the VTOC
to check the file label(s). OPEN checks the
extents specified in the XTENT cards against
the extents in the labels to make sure the
extents exist. If LABADDR is specified,
OPEN makes the user standard header (UHL)
labels available, one at a time, to the
user for checking.

After this, the first extent of the file
is ready to be processed. The extents are
made available in the order of the sequence
number on the XTENT cards. Note the same
XTENT cards that were used to build the
file can be used when the file is used as
input. When the last extent on the mounted
volume has been processed, the user
standard trailer labels are made available
for checking one at a time. The next
volume is opened in the above manner.

For DASD devices that are file protected
when OPEN makes the first extent of the new
volume available, OPEN makes the extent(s)
from the previous volume.unavailable.

Imperative Macro Instructions 23

DIRECT ACCESS PROCESSING--OUTPUT

If a file is to be created using the direct
access method of processing, all volumes
used must be mounted at the same time, and
all the volumes are opened before the proc­
essing is begun.

For each volume, OPEN checks the stand­
ard VOLI label and checks the extents speci­
fied in the XTENT cards:

1. The extents must not overlap;

2. Only type-l extents can be used;

3. If user standard header labels are to
be created, the first extent must be
at least two tracks long.

Then OPEN checks all the labels in the VTOC
to ensure that the file to be created will
not destroy an existing file while the ex­
piration date is still pending. After the
VTOC check, OPEN creates the standard
label(s) for the file and writes the
label(s) in the VTOC.

If the user wishes to create his own
user labels (UHL) for the file, he must
include the DTF entry LABADDR. OPEN re­
serves the first track of the first extent
for these header labels and gives control
to the user's label routine.

If the XTNXIT entry is specified, OPEN
stores the address of a 14-byte extent in­
formation area in register 1. (See DTFDA
for the format of this area.) Then OPEN
gives control to the user's extent routine.
The user can save this information for use
in specifying record addresses.

After the user labels have been written,
the next volume is opened. When all the
volumes have been opened, the file is ready
for processing. If the DASD device is file
protected, all extents specified in XTENT
cards are available to the user.

DIRECT ACCESS PROCESSING--INPUT

Direct access processing requires that all
volumes containing the ,file be on-line and
ready at the same time. All volumes used
are opened before any processing can be
done.

For each volume, OPEN checks the stand­
ard VOLI label and then checks the file
label(s) in the VTOC. OPEN checks some of
the information specified in the XTENT cards
for that volume. If LABADDR is specified,
OPEN makes the user standard header labels
available one at a time for cheCking.

24 DOS Sup. and I/O Macros

If the XTNTXIT entry is specified, OPEN
stores the address of a l4-byte extent in­
formation area in register 1. (See DTFDA
for the format of this area.) Then OPEN
gives control to the user's extent routine.
The user can save this information for use
in specifying record addresses. Then the
next volume is opened. After all the
volumes have been opened, the file is ready
for processing. If the DASD device is file
protected, all extents specified in XTENT
cards are available for writing.

INDEX SEQUENTIAL PROCESSING--OUTPUT

When a file is to be created or extended
using index sequential processing, those
volumes of the file that will be written on
are opened as output files. If the file
consists of more than one volume, all the
volumes must be on line and ready when the
file is first opened.

For each volume, OPEN checks'the stand­
ard VOLI label and performs extensive checks
on the extents specified in the XTENT cards
for that volume. The extents must meet the
following conditions:

1. All prime data extents must be continu­
ous;

2. The master and cylinder index extents
must be continuous and on the same
unit;

3. No extents must overlap;

4. Only type 1, 2, or 4 extents are valid.

5. The 'extent sequence numbers must be in
the following order: 0 for master index,
when present; 1 for cylinder index; 2,
3, 4, ••. for the prime data and inde­
pendent overflow tracks. The XTENT
cards for the independent overflow
tracks can be placed either before or
after all the XTENT cards for the prime
data extents.

OPEN checks all the labels in the VTOC
to ensure that the file to be created will
not destroy an existing file while the ex­
piration date is pending. Any expired
labels are deleted from the VTOC. After
the VTOC check, OPEN creates the standard
labels for the file and writes the labels
in the VTOC. If the DASD device is file
protected, all extents specified in the
XTENT cards are available for writing.

INDEX SEQUENTIAL PROCESSING--INPUT

All volumes containing an index sequential
file must be on-line and ready when the
file is first opened.

For each volume, OPEN checks the extents
specified in the XTENT cards for that
volume (for example, checks that the data
extents are continuous). OPEN also checks
the standard VOLI label and then goes to
the VTOC to check the file label(s). Then
the next volume is opened. After all the
volumes have been opened, the file is ready
for processing. If the DASD device is file
protected, all extents specified in XTENT
cards are available to the user.

PIOCS--SINGLE VOLUME MOUNTED--OUTPUT

When processing with physical IOCS, OPEN
is used only if the user wants to build
standard labels. When the first OPEN for
the volume is issued, OPEN checks the stand­
ard VOLI label and the extents specified in
the XTENT cards for the mounted volume:

1. The extents must not overlap each other;

2. If user standard header labels are to
be written, the first extent must be at
least two tracks;

3. Only types 1 and 128 extents are valid.

Then, OPEN checks all the labels in the VTOC
to ensure that the file to be created will
not destroy an existing file whose expira­
tion date is still pending.

If the user wishes to create his own
user standard header (UHL) labels for the
file, he must include the DTF entry LABADDR.
OPEN reserves the first track of the first
extent for these labels and gives control
to the user's label routine.

After this, the first extent of the file
is ready to be used. Each time the user
determines that he has completed all pro­
cessing for an extent, he issues another
OPEN for the file and th~t OPEN makes the
next extent available. When the last
extent on the last volume of the file has
been processed, OPEN issues a message. The
user has the option of canceling the job,
or typing in an XTENT on the Printer­
Keyboard and continuing the job.

If the system provides DASD file pro­
tection, only the extents that are opened
for the mounted volume are available to
the user.

PIOCS--SINGLE VOLUME MOUNTED--INPUT

When processing with physical IOCS, OPEN is
used only if the user wants to check stand­
ard labels.

When the volume that is mounted is opened
for the first time, OPEN checks the extents
specified in the XTENT cards (for example,
checks that the extent limit address for
the device being opened is valid). OPEN
also checks the standard VOLI label and
then checks the file label(s} in the VTOC.

If LABADDR is specified, OPEN makes the
user standard labels (UHL) available to the
user one at a time for checking. Then OPEN
makes the first extent available for
processing.

Each time the user determines that he
has completed all processing for an extent,
he issues another OPEN for the file and
OPEN makes the next extent available. If
another extent is not available, OPEN stores
the character 'F' (for EOF) in byte 31 of
the DTFPH table. The user can determine
the end of file by addressing and checking
the byte at Filename+30.

If the system provides DASD file pro­
tection, only the extents that are opened
for the mounted volume are available to
the user.

PIOCS--ALL VOLUMES MOUNTED--OUTPUT

If all the volumes to be used are mounted
when creating an output file with physical
IOCS, all the volumes are opened before
the file is processed. OPEN is used only
if standard labels are to be checked.

For each volume, OPEN checks the stand­
ard VOLI label and checks the extents speci­
fied in the XTENT cards:

1. The extents must not overlap each other;

2. Only type-l extents can be used;

3. If user standard header labels are to
be created, the first extent must be
at least two tracks long.

Then OPEN checks all the labels in the
VTOC to ensure that the file to be created
will not destroy an existing file while
the expiration date is still pending.
After this check, OPEN creates the standard
label(s) for the file and writes the
.label (s) in the VTOC.

Imperative Macro Instruction 25

If the user wishes to create his own user
standard header (UHL) labels for the file,
he must include the DTF entry LABADDR. OPEN
reserves the first track of the first extent
for these labels and gives control to the
user's label routine.

If the XTNTXIT entry is specified, OPEN
stores the address of a l4-byte extent
information area in register 1. (See Pro­
cessing Records with Physical IOCS: DTFPH
for the format of this area.) Then OPEN
gives control to the user's extent routine.
The user can save this information for use
in specifying record addresses. If the
user's DASD file is file protected, he
cannot write on any extents while in his
XTNTXIT routine.

When
returns
LBRET 2
opened.
opened,

the checking is complete, the user
control to OPEN by issuing the
macro. Then the next volume is
After all the volumes have been

the file is ready for processing.

PIOCS--ALL VOLUMES MOUNTED--INPUT

When all volumes containing the file are
on-line and ready at the same time, the
volumes are opened one at a time before any
processing is done. OPEN is used only when
standard labels are to be processed.

For each volume, OPEN checks the extents
specified in the XTENT cards, and checks
the standard VOLl label on track a and the
file label(s) in the VTOC.

If LABADDR is specified, OPEN makes the
user standard labels available, one at a
time, for checking.

If XTNTXIT is specified, OPEN stores the
address of a 14-byte extent-information­
area into register 1. (See Processing
Records with Physical IOCS: DTFPH for the
format of this area.) Then OPEN gives
control to the user's extent routine. For
example, the user can save this area and use
the information to provide a method of
specifying the address of the record to be
processed. If the DASD file is file pro­
tected, the user cannot write on any ex­
tents while in his XTNTXIT routine.

Each volume is completely opened before
the next volume is opened. When all volumes
are opened the file is ready for processing.

VTOC CHECKING FOR OUTPUT FILES

When an output file is opened, OPEN checks
the Volume Table of Contents (VTOC) to
determine whether the output file can be

26 DOS Sup. and I/O Macros

written on the volume being opened. If
OPEN determines that the output file will
overlay an existing file whose expiration
date has expired, OPEN deletes the expired
label(s) from the VTOC. This in effect re­
moves the file from the volume. In a multi
volume file, the file may be removed from
all the volumes that it occupies or from
only some of the volumes. ----

If OPEN determines that the expiration
date of an existing file to be overlaid by
the output file has not expired, the old
file cannot be destroyed automatically.
The user has the following choices.

For sequential or physical IOCS
processing:

1. Terminate the job.

2. Bypass the extent. If more extents
have been specified, the next one will
be checked and supplied if it is avail­
able. If no more extents are specified
a message will be issued and the user
may type in an extent from the 1052, or
he may terminate the job.

3. Delete the unexpired file.

For work file and direct access processing:

1. Terminate the job.

2. Bypass the extent. If more extents hav
been specified, the next one will be
checked and supplied if available. If
no more extents are available, the job
will be terminated.

3. Delete the unexpired file.

For index sequential processing:

1. Terminate the job.

2. Delete the unexpired file.

WRITING DASD USER STANDARD LABELS

When user standard trailer (UTL) and/or
header (UHL) labels are to be written, the
user must specify the DTF entry LABADDR.
This causes OPEN to reserve the first track
of the first data extent for the user label
area. User labels cannot be created for a
file whose first extent is a split cylinder
extent or for an ISFMS file. When LABADDR
is specified, at least one user header labe
and one user trailer label must be written.

IOCS uses bytes 1-4 of the 80-byte label
for the label identification (for. example,
UHLx, x=l, 2, ..• , 8) and the user can use
the other 76 bytes as he wishes. The maxi­
mum number of user labels is 8 header and
8 trailer labels for a 2311 file, and 5 of
each for a 2321 file.

OPEN loads an alphabetic '0', 'V' or
'F' in register O. a indicates head~r
labels; V indicates end-of-volume labels·
and F indicates end-of-file labels. The'
user can test this character to determine
whether header, end-of-volume, or end-of­
file labels should be written. OPEN also
loads the address of an 80-byte laCS label
area in register 1.

The OPEN stores the label identification
(UHLx or UTLx) that it generates in bytes
1-4 of the laCS label area. The user can
test the identification to determine the
type and the number of the label.

Then OPEN gives the control to the user's
label routine at the address specified in
LABADDR. While in his label routine the
user cannot issue a macro that calls'a
transient routine. For example, OPEN,
CLOSE, DUMP, PDUMP, CANCEL, and CHKPT
cannot be issued. If the user's DASD file
is file protected, no extents are available
for writing while in the user's label
routine.

The user can build his labels in either
of the following ways.

1. Build an 80-byte (or a 76-byte) label
in the user area of main storage, and
load the address of the label area (or
label area minus four if a 76-byte
label was built) into register 0 before
issuing the LBRET macro. (When the
label is moved into the laCS area, laCS
adds four bytes to the address in reg­
ister 0.)

2. Build a 76-byte label in the laCS area
at the address (that laCS supplies in
register 1) plus four, and load the
contents of register 1 to register 0
before issuing the LBRET macro.

Note that the laCS area of main storage
is a part of the Supervisor. If the program
is to be executed on a system with the
storage protection feature, method 1 must
be used because the user cannot write into
the Supervisor area. Thus, no user standard
label routine using the second method can
be executed in a multiprogramming environ­
ment.

When the label is ready to be written
the user issues the LBRET macro, which '
returns control to laCS. If LBRET 2 is
used, OPEN writes the label and returns
control to the user's label routine unless
the maximum number of labels has been
written. If LBRET 1 is used, the label set
is terminated; no more labels can be created.

When laCS receives control, the laCS
routines move the label from the address
the user loaded in register 0 into the laCS
label area. If the maximum number of
labels has not been written, laCS increases
the identification number by 1 and returns
to the user's label routine unless LBRET 1
was used. If the maximum number of labels
has been created, laCS automatically ter­
minates the label set.

CHECKING DASD USER STANDARD LABELS

When a DASD file contains user standard
trailer and/or header labels, laCS makes
these labels available one at a time to
the user if LABADDR is specified in the DTF
for the file. laCS reads a label and stores
information for the user in registers 0 and
1:

register 1 - the address of the label just
read,

register 0 - an alphabetic '0', 'V', or 'F'
a indicates header labels
V indicates end-of-volume

labels
F indicates end-of-file labels.

After initializing the registers, laCS
enters the user's routine at the label
specified in LABADDR. If the user's DASD
file is file protected, no extents are
available for writing while the user's rou­
tine is being executed.

In his routine, the user can process the
label, using logical laCS macros if desired.
The user cannot issue a macro that calls a
transient routine. For example, OPEN,
CLOSE, DUMP, PDUMP, CANCEL and CHKPT cannot
be issued.

If the labels are to be checked against
information obtained from another input
file, that file must be opened ahead of the
DASD file.

When the user is finished with that
label, he issues a LBRET 2 macro, which
causes OPEN to read the next la~el. How­
ever, if the end-of-file record at the end
of the labels is read instead, OPEN auto­
matically terminates the label checking.

If the user wishes to end label checking
before all the labels have been read, he
issues a LBRET 1 macro.

Imperative Macro Instructions 27

POSITIONING TAPE FILES

When a magnetic tape file with standard
labels (FILABL=STD) is opened, IOCS expects
the first record read to be a label. On
output this label must be the label identi­
fying the file that will contain the out­
put data. On input, this label can be any
label preceding the file; laCS locates the
correct file by the file sequence number.
On input the first record is a label if the
tape file being opened is the first file
on the reel and if laCS rewinds the reel
(see REWIND). If no rewind is specified
for either an input or an output file, or
if an output file starting in the middle
of the reel is opened, it is the user's
responsibility to propeily position the
tape prior to the OPEN. The tape should be
positioned immediately past the last tape
mark of the preceding file. The user can
employ the MTC command of Job Control for
this function. If the tape is improperly
positioned, laCS indicates an error condi­
tion by issuing a message to the operator.

When a magnetic tape with nonstandard la­
bels is opened, the tape must be positioned
to the first label that the user wishes to
process. The MTC job control command can
be used to skip the necessary number of
tapemarks or records to position the file.

On both input and output, an unlabeled
file must be positioned at the location to
be processed. That is, the tape must be
either at load point or at the tape mark
following the data for a previous file.

OPENING TAPE OUTPUT FILES

For a magnetic tape output file, OPEN re­
winds the tape as specified in the DTFSR
or DTFMT entry REWIND. (No rewind is per­
formed if the file is defined by DTFPH.)

Writing Standard Labels

When standard header labels are to be
written (STD specified in DTFSR or DTFMT
FILABL, or OUTPUT in DTFPH TYPEFLE), the
user must supply the Job Control VOL and
TPLAB cards. When the OPEN is issued, the
volume (VaLl) label is checked and the old
file header, if present, is read and checked
to make sure that the file on the tape is
no longer active and may be destroyed. If
the file is inactive or if a tape mark was
read, the tape is backspaced and the new
file header (HDRl) label is written with
the information the user supplies in the
Job Control TPLAB card. The volume label
is not rewritten.

28 DOS Sup. and I/O Macros

Writing User Standard Labels

A maximum of eight user standard (UHL)
labels can be written following the standard
header (HDRI) label. The user standard
labels are 80 bytes long and are built en­
tirely by the user. Bytes 1-4 must contain
the label identification (UHLx, where
x=I,2, ••• ,8); the other 76 bytes can be used
as desired.

To write these labels, the user speci­
fies LABADDR in the DTF for the file. When
the file is opened, OPEN loads an alpha­
betic a in the low-order byte of register O.
The user can test for the 0, which indicates
that the file is being opened and that a
header label should be built. laCS also
loads the address of an 80-byte laCS output
area in register 1. Then OPEN gives control
to the user's routine at the address speci­
fied in LABADDR.

The user can build his labels in either
of the following ways:

1. Build the label in the user area of
main storage, and load the address of
the label into register a before issu­
ing the LBRET macro.

2. Build the label in the laCS area at the
address that laCS supplies in register
1, and load the address of the area
from register 1 to register a before
issuing the LBRET macro.

Note that the laCS area of main storage
is a part of the Supervisor. If the pro­
gram is to be executed on a system with
the storage protection feature, method 1
must be used because the user cannot write
into the Supervisor area. Thus, no user
standard label routine using the second
method can be executed in a multiprogramming
environment.

When the label is ready to be written,
the user issues the LBRET macro, which
returns control to laCS. LBRET 2 returns
control to the user's routine after. IOCS
writes the label. LBRET I must be used to
terminate the label set.

When laCS receives control, laCS writes
the label on the magnetic tape and either
returns control to the user (LBRET 2) or
writes a tape mark (LBRET 1).

Writing Nonstandard Labels

To write nonstandard labels, the user must
specify FILABL=NSTD and LABADDR=name. He
must also write his own channel program and

use physical laCS macros to transfer the
labels from main storage onto tape. For
an example see Appendix D.

When a file is opened, OPEN supplies 4he
hexadecimal representation of the symbolic
unit currently being used in the two low­
order bytes of register 1. See Figure 36,
Command Control Block, for these values.
For example, this information might be
useful when one LABADDR routine is used for
many files.

laCS also stores an alphabetic a in the
low-order byte of register o. The user can
test for the 0, which indicates that the
file is being opened and that header labels
should be built.

Then the user's routine is given control
at the address of the symbol in LABADDR.
Physical laCS macros must be used to trans­
fer the labels· from main storage onto tape.
A Command Control Block (CCB) and a Channel
Command Word(s) (CCW) must be established,
and an EXCP macro must be issued for each
label record. See Processing Records with
Physical laCS.

Logical laCS macros can be used for any
processing other than transferring the
labels from main storage to tape. If any
logical laCS macros, other than LBRET, are
used to process nonstandard labels on multi­
volume files, the user must save and restore
register 15 in his routine.

After all labels have been written, the
user returns control to OPEN by use of the
LBRET 2 macro. OPEN either writes, or does
not write, a tapemark as the user speci­
fies in the DTF for the file. (See the DTF
entry TPMARK.) The file is then ready for
processing.

Unlabeled Output

OPEN either writes, or does not write, a
tapemark as the user specifies in the DTF
for the file. (See the DTF entry TPMARK.)
The file is then ready for processing.

OPENING TAPE INPUT FILES

When an input file is recorded on magnetic
tape, OPEN rewinds the tape according to
the specifications in the DTFSR or DTFMT
entry REWIND. (No rewind is performed if
the file is defined by DTFPH.)

Checking Standard Labels

Both the volume (VaLl) and file header
(HDRl) labels are automatically read and
checked if standard label checking is

specified (STD specified in FILABL;or
INPUT specified in the DTFPH parameter
TYPEFLE) and if the tape is read forward
(FORWARD specified in DTFMT or DTFSR READ).
The labels are checked with the information
the user supplies to Job Control in the VOL
and TPLAB cards.

When the tapemark at the end of the
labels (standard or user standard, if
present) is read, laCS opens the next file
specified in the OPEN macro, or returns
control to the problem program if all files
have been opened. The file is then ready
f'or processing.

READING BACKWARDS: If a magnetic tape file
that will be read backwards (READ=BACK) is
opened, the file trailer label is automati­
cally read and checked if label checking
is specified. (The volume label is not
repeated at the end of the tape.) Because
the file trailer label is processed at this
time, it must be complete and contain both
the trailer and header information (except
HDR) to identify the file. If the file
labels were originally written by laCS rou­
tines, the trailer label will be complete.
When physical laCS macros are used to read
records backwards, labels cannot be checked
(DTFPH must not be specified).

BYPASSING STANDARD LABELS: I·f an input
tape contains standard labels but the user
does not want laCS to check them, FILABL=
NSTD should be specified in the file defi­
nition. No LABADDR is specified. However,
a tapemark must be present immediately
following the label set. If user labels
exist but the user does not specify LABADDR,
the user labels are bypassed by laCS. A
tapemark must be present after the last
user label.

Checking User Standard Labels

If a magnetic tape contains user standard
header labels (UHLl-UHL8) following the
standard file header label [or user stand­
ard trai~erlabels (UTLl-UTL8) preceding
the 'standard trailer when reading back­
wards], the programmer can check them in
his own routine. If the information for
checking is obtained from another file,
that file must be opened ahead of the tape
file containing the labels.

OPEN reads a user label, stores the
address of the label in register 1, and
gives control to the user's routine for
checking. The entry point of the routine
is specified in the DTF entry LABADDR. If
any logical laCS macros, other than LBRET,
are used to process user labels on a multi­
volume file, the user must save and re­
store register 15 in his label routine.

Imperative Macro Instructions 29

After checking the label, the user must
return to the OPEN routine by use of the
LBRET macro. If the user wants to process
the next label, he uses LBRET 2, and OPEN
supplies his routine with the next user
label. To bypass the rest of the labels
he uses LBRET 1.

Checking Nonstandard Labels

To process nonstandard labels, the user
must specify FILABL=NSTD and LABADDR=name.
He must also write his own channel program
and use physical IOCS macros to read the
labels from the tape into main storage.
(To bypass nonstandard labels, the user
must specify FILABL=NSTD and omit LABADDR.
A tapemark must follow the last label.)
For an example see Appendix D.

When a file is opened, IOCS supplies the
hexadecimal representation of the symbolic
unit currently being used in the two low­
order bytes of register 1. See Figure 36,
Command Control Block, for these values.
For example, this information might be
useful when one LABADDR routine is used for
many files.

Then the user's routine is given control
at the address of the symbol in LABADDR.
Note that OPEN has not moved the tape.
Physical IOCS macros must be used to trans­
fer the labels from tape to main storage.
Therefore, the user must establish a
Command Control Block (CCB) and a Channel
Command Word(s) (CCW). The macro EXCP is
used to initiate the transfer. See
Processing Records with Physical IOCS.

Logical IOCS macros can be used for any
processing other than transferring the
labels from tape to main storage. If any
logical IOCS macros, other than LBRET, are
used when processing multivolume files, the
user must save and restore register 15 in
his routine.

If nonstandard trailer labels are to be
processed on a file that is read backwards,
the user must position the tape between the
two tapemarks that are at the end of the
file before opening the file.

After all labels have been checked, the
user returns control to OPEN by use of the
LBRET 2 macro. If a tapemark follows the
last label, the user can read it or not as
desired with no effect on OPEN.

Unlabeled Input

FILABL=NO must be specified for an un­
labeled tape. When OPEN is issued for such
a file, OPEN reads a record. If the record
is a tapemark, the file is considered open.
If a tapemark is not found, OPEN assumes
the record read is data and backspaces to
the load point.

30 DOS Sup. and I/O Macros

LBRET MACRO

Name Operation Operand

[name] LBRET {It
2f

The LBRET macro is issued in user sub­
routines when the user has completed proc­
essing and wishes to return control to
IOCS. LBRET applies to subroutines that
write or check DASD or magnetic tape user
standard labels, write or check tape non­
standard labels, or check DASD extents.
The operand used depends on the function to
be performed.

CHECKING USER STANDARD DASD LABELS: IOCS
passes the labels to the user one at a
time until the maximum allowable number have
been read, or until the user signifies he
wants no more. In his label routine, the
user issues LBRET 2 if he wants IOCS to
read and pass him the next label. If an
end-of-file record is read when LBRET 2 is
used, label checking is automatically ended.
If the user wants to eliminate the checking
of one or more remaining labels, he uses
LBRET 1.

WRITING USER STANDARD DASD LABELS: The user
builds the labels one at a time and uses
LBRET to return to IOCS, which writes the
labels. LBRET 2 is used if the user wants
to have control returned to him after IOCS
writes the label. If, however, IOCS deter­
mines that the maximum number of labels has
been written, label processing will be ter­
minated. LBRET 1 is used if the user wishes
to stop writing labels before the maximum
number has been written.

CHECKING DASD EXTENTS: When using physical
IOCS on an input file with all volumes
mounted or when processing with the direct
access method, the user can process his
extent information. When he finishes all
the checking, he returns control to IOCS by
using the LBRET 2 macro.

CHECKING USER STANDARD TAPE LABELS: IOCS
reads and passes the labels to the user one
at a time until a tapemark is read, or until
the user signifies he does not want any more
labels. LBRET 2 is used if the user wants
to process the next label. If IOCS reads a
tapemark, label processing is automatically
terminated. LBRET 1 is used if the user
wants to bypass any remaining labels.

WRITING USER STANDARD TAPE LABELS: The user
builds the labels one at a time and returns
to IOCS, which writes the labels. When
LBRET 2 is used, IOCS returns control to the
user (at the address specified in LABADDR)
after writing the label. LBRET 1 must be
used to terminate the label set.

WRITING OR CHECKING NONSTANDARD TAPE LABELS:
The user must process all hlS nonstandard
labels at once. LBRET 2 is used after all
label processing is completed and the user
wants to return control to laCS. For an
example see Appendix D.

MACROS FOR SEQUENTIAL PROCESSING

The sequential processing macro instructions
permit the programmer to store and retrieve
records without coding blocking/deblocking
routines. The programmer can, therefore,
concentrate on processing his data. Another
major feature of these macro instructions
is the ability to use one or two I/O areas
and to process records in either a work
area or an I/O area.

The sequential processing routines are
designed to provide for overlapping the
physical transfer of data with processing.
The amount of overlapping actually achieved
is governed by the problem program through
the assignment of I/O areas and work areas.
An I/O area is that area of main storage to
or from which a block of data is physically
transferred by the logical IOCS. A work
area is an area used for processing an-­
individual log~cal record from the block of
data. A work area cannot be used with paper
tape records. The I/O area(s) is specified
in the associated DTF macro, while the work
area is specified in the sequential proc-
essing macro.

The following combinations of I/O areas
and work areas are possible:

1. One I/O area with no work area

2. One I/O area with a work area

3. Two I/O areas with no work area

4. Two I/O areas with a work area

GET MACRO

Name Operation Operand

[name] GET {Filename I [{Workname}]
(1) f (0),

GET makes the next sequential logical record
from an input file available for processing
in either an input area or a specified work
area. It is used for any input file in the
system, and for any type of record: blocked
or unblocked, fixed or variable length, and
undefined.

If GET is used with a file containing
checkpoint records, the checkpoint records
are bypassed automatically.

FILENAME: GET requires the first operand.
The parameter value must be the same as
specified in the header entry of the DTF
for the file from which the record is to be
retrieved. The filename can be specified
as a symbol or in either special or ordinary
register notation.

WORKNAME: This is an optional parameter
specifying the workarea name or a register
(in either special or ordinary register
notation) containing the address of the
workarea. The workarea address should
never be preloaded into register 1. This
parameter is used if records are to be
processed in a workarea that the user him­
self defines (for example, using a DS
instruction). If the operand is specified,
all GETs to the named file must always use
a register or a workname. Using the second
operand causes GET to move each individual
record from the input area to a work area.

All records from a logical file may be
processed in the same work area, or differ­
ent records from the same logical file may
be processed in different work areas. In
the first case, each GET for the file
specifies the same work area. In the second
case, different GET instructions specify
different work areas. It might be advanta­
geous to plan two work areas, for example,
and to specify each area in alternate GET
instructions. This would permit the pro­
grammer to compare each record with the
preceding one, for a control change. Only
one work area can be specified in anyone
GET, however.

Required DTF Entries

The input area must be specified in the
entry IOAREAl of the DTF macro. For any
file other than a combined file, two input
areas may be used to permit an overlap of
data transfer and processing operations.
The second area is specified in IOAREA2.
Whenever two input areas are specified, the
laCS routines transfer records alternately
to each area-. They completely handle this
"flip-flop" so that the next sequential
record is always available to the problem
program for processing.

For a combined file, the input area is
specified in IOAREAl and the output area in
IOAREA2. If the same area is to be used for
both input and output, IOAREA2 is omitted.

When records are processed in the input
area(s), a register must be specified in the
entry IOREG of the DTF macro if:

1. Records are blocked;

2. Variable-length magnetic tape records
are read backwards; or

Imperative Macro Instructions 31

3. Two input areas are used, for either
blocked or unblocked records.

This register identifies the next single
record to be processed. It always contains
the absolute address of the record currently
available. The GET routine places the
proper address in the register.

If a work area is used, WORKA=YES must
be specified. IOREG should "not be specified.

When the GET macro detects an end-of-file
condition, IOCS branches to the user's end­
of-file routine (specified by EOFADDR).

An example of GET/PUT processing is
shown in the following coding. The param­
eter IOAREAI points to the first I/O area
for this file; IOAREA2 points to the second
I/O area. GET points to the file-definition
block and to the work area (A3) to which
logical records are moved from areas Al and
A2 by LIOCS.

Name Operation Operand Col. 72

FNAME DTFMT

~~)I
: IOAREAl=AI, X

IOAREA2=A2, X
WORKA=YES

DS 500C
DS 500C

GET

DS

Unblocked Records

Records retrieved from any input file are
considered fixed unblocked unless otherwise
specified.

Whenever records are unblocked (either
fixed or variable length) and only one input
area is used, each GET transfers a single
record from an I/O device to the input area,
and then to a work area if one is specified
in the GET instruction. If two input areas
are specified, each GET makes the last
record that was transferred to main storage
available for processing in the input area
or work area. The same GET also starts the
transfer of the following record to the
other input area.

32 DOS Sup. and I/O Macros

When an IBM 2540 Card Read-Punch is used
for a card input file, each GE+ instruction
normally reads the record from a card in the
read feed. However, if the 2540 has the
punch-feed-read special feature installed
and if CMBND is specified in the entry
TYPEFLE, each GET reads the record from a
card in the punch feed, at the punch-feed­
read station. This record can be updated
by additional information and punched back
into the same card, when that card passes
the punch station and a PUT instruction is
issued. (See PUT: Updating.)

Blocked Records

When records on DASD or magnetic tape are
specified as blocked in the entry RECFORM,
each individual record must be located for
processing (deblocked). Therefore, blocked
records (either fixed or variable length)
are handled as follows:

1. The first GET instruction transfers a
block of records from DASD or tape to
the input area. It also initializes

2.

3.

the specified register to the absolute
address of the first data record, or it
transfers the first record to the speci­
fied work area.

Subsequent GET instructions either add
an indexing factor to the register or
move the proper record to the specified
work area, until all records in the
block have been processed.

Then the next GET makes a new block of
records available in main storage, and
either initializes the register or moves
the first record.

Undefined Records

When undefi.ned records are to be handled,
the entry RECFORM=UNDEF must be included in
the file definition. GET treats undefined
records as unblocked, and the programmer
must locate individual records and fields.
If a RECSIZE register is specified, IOCS
will store the length of the record read in
that register. Undefined records are con­
sidered to be variable in length by IOCS.
No other characteristics of the record are
known by IOCS. They are the responsibility
of the user.

Read Backwards, Tape

If records on magnetic tape are to be read
backwards (BACK specified in entry READ),
blocks of fixed-length records, blocks of
blocked-variable records, or unblocked rec­
ords, are transferred from tape to main
storage in reverse order. The last block is

~ead first; the next-to-last block, second;
~tc. For blocked records, each GET instruc­
:ion also makes the individual records
ivailable in reverse order. The last recor9
Ln the input area is the first record avail­
ilile for processing (either by indexing or
Ln a work area).

If a tapemark precedes the data records
it the beginning of the tape, a nine-track
:ape can be read backwards. Seven-track
:ape can be read backwards only if:

• the tape was originally written on a
magnetic tape unit of the IBM System/360;

• the Data Conversion spe~ial feature was
not used when the tape was written; and

• a tape mark was written at the beginning
of the tape preceding the data records.

?UT .MACRO

Name Operation Operand

[name] PUT {Filename} [,~workname}J
(1) ~ (0)

~UT writes or punches logical records that
rrave been built directly in the output area
~r in a specified work area. It is used for
any output file in the system, and .for any
type of record: blocked or unblocked, fixed
~r variable length, and undefined. It oper­
ates much the same as GET but in reverse.
It is issued after a record has been built.

Filename: PUT requires the first operand.
rhe parameter value must be the same as
specified in the header entry of the DTF for
the file being built. The filename can be
specified as a symbol or in either special
or ordinary register notation.

Workname: An optional parameter specifying
the work area name or a register (in either
special or ordinary register notation) con­
taining the address of the work area. The
work area address should never be pre loaded
into register 1. This parameter is used if
records are to be built in a work area that
the user himself defines (for example, using
a DS instruction). If the operand isspeci­
fied, all PUTs to the named file must always
use a register or a workname. Using the
second operand causes PUT to move each rec­
ord from the work area to the output area.

Individual records for a logical file
may be built in the same work area or in
different work areas. Each PUT instruction
specifies the work area where the completed
record was built. However, only one work
area can be specified in anyone PUT
instruction.

Whenever an output data record is trans­
ferred from an output area (or work area)
to an I/O device (by a PUT instruction),
the data remains in the area until it is
either cleared or replaced by other data.
IOCS does not clear the area. Therefore,
if the user plans to build another record
whose data does not use every position of
the output area or work area, he must clear
that area before he builds the record. If
this is not done, the new record will con­
tain interspersed characters from the pre­
ceding record. For example, in the case of
output to a printer, the forms design may
require printing in selected positions on
one print line and in different positions
on another line. In this case, the output
area or work area for the printer file
should be cleared between lines.

Required DTF Entries

The output area must be specified in the
entry IOAREAl of the DTF macro. For any
file other than a combined file, two output
areas may be used to permit an overlap of
data transfer and processing operations.
The second area is specified in IOAREA2.
Whenever two output areas are specified, the
IOCS routines transfer recerds alternately
from each area. The routines completely
handle this "flip-flop", so that the proper
output record area is always available to
the program for the next sequential output
record.

For a combined file, the input area is
specified in IOAREAl and the output area in
IOAREA2. If the same area is to be used
for both input and output, IOAREA2 is
omitted.

When records are built in the output
area(s), a register must be specified in the
entry IOREG if:

1. Records are blocked, or

2. Two output areas are used, for either
blocked or unblocked records.

This register always contains the absolute
base address of the currently available
output-record area. IOCS places the proper
address in the register.

The user should always address the I/O
areas by using the IOREG as the base register
and should not make any assumptions as to
which I/O area is presently being used.

If a work area is used, WORKA=YES must
be specified; IOREG should not be specified.

If the blocked records are variable
length and are being built in the output
area(s), an additional register must be

Imperative Macro Instructions 33

specified in the entry VARBLD. IOCS stores
the number of bytes remaining in the output
area in the VARBLD register each time a PUT
instruction is executed.

Unblocked Records

Records transferred to any output file
except DASD or magnetic tape are always con­
sidered fixed unblocked unless otherwise
specified. Records for DASD or tape output
are treated as unblocked if this is speci­
fied in the entry RECFORM.

Whenever records are .unblocked (either
fixed or variable length), each PUT trans­
fers a single record from the output area
(or input area if updating is specified) to
the file. If a work area is specified in
the PUT instruction, the record is first
moved from the work area to the output area
(or input area) and then to the file.

For fixed DASD unblocked records, IOCS
uses the rule that if there is not enough
space for another record in the extent
specified, then there is not enough space
for an EOF record.

Blocked Records

When blocked records are to be written on
DASD or magnetic tape, the individually
built records must be formed into a block
in the output area. Then the block of rec­
ords is transferred to the output file.
The blocked records may be either fixed or
variable length.

Fixed-length blocked records can be-built
directly in the output area or in a work
area. Each PUT instruction for these rec­
ords either adds an indexing factor to the
register IOREG, or moves the completed
record from the specified work area to the
proper location in the output area. When
an output block of records is complete,
PUT causes the block to be transferred to
the output file and initializes the register
if one is used.

Variable-length blocked records can also
be built in either the output area or a work
area. The length of each variable-length
record must be determined by the problem
program and included in the output record
as it is built. The problem program can
calculate the length of the output record
from the length of the corresponding input
records. That is, variable-length output
records are generally developed from pre­
viously written variable-length input rec­
ords, perhaps modified by current records.
Each variable-length input record must
include the field that contains the length
of the record.

34 DOS Sup. and I/O Macros

When variable-length blocked records are
built in a work area, the PUT instruction
performs approximately the same functions as
it does for fixed-length blocked records.
The PUT routines check the length of each
output record to determine if the record
will fit in the remaining portion of the
output area. If the record will fit, PUT
immediately moves the record. If it will
not fit, PUT causes the completed block to
be written and then moves the record. Thus,
this record becomes the first record in a
new block.

If variable-length blocked records are
to be built directly in the output area,
however, the VARBLD entry, the TRUNC macro,
and additional user programming are required
The user's program must determine if each
record to be built will fit in the remaining
portion of the output area. This must be
known before processing of the record is
started, so that if the record will not fit,
the completed block can be written and the
record can be built at the beginning of a
new block. Thus, the length of the record
must be pre-calculated and compared with the
amount of remaining space.

The amount of space available in the
output area at any time can be supplied to
the program (in a register) by the laCS
routines. For this, the user must specify
a general-purpose register in the DTF entry
VARBLD. This register is in addition to
the register specified in IOREG. Each time
a PUT instruction is executed, laCS loads
into this register the number of bytes
remaining in the output area. The problem
program uses this to determine if the next
variable-length record will fit. If it
will not fit, a TRUNC macro instruction
must be issued to transfer the block of
records to the output file and make the
entire output area available for building
the next block.

Undefined Records

When undefined records are handled, PUT
treats them as unblocked. The programmer
must provide any blocking he wants. Be must
also determine the length of each record
(in bytes) and load it in a register for
laCS use, before he issues the PUT instruc­
tion for that record. The register that
will be used for this purpose must be speci­
fied in the DTF entry RECSIZE.

Updating

A sequential file on 2311 or 2321 DASD, a
card input file in a 1442 or 2520, or a
card file in the punch feed of a 2540
equipped with the punch-feed-read special
feature can be updated. That is, each DASD

or card, from which it was read. In the
case of a card file, the file must be
specified as a combined file (CMBND) in
the entry TYPEFLE.

When updating a file, one I/O area can
be specified (entry IOAREA1) for both the
input and output of a card record. If a
second I/O area is required, it can be
specified with IOAREA2.

A PUT for a card or DASD record must
always be followed by a GET before another
PUT is issued. GETs can be issued as many
times in succession as desired.

For a file in a 2540 with the punch-feed­
read special feature, a PUT instruction must
be issued for each card. A PUT' instruction
may be omitted, however, if a particular

Icard does not require punching in a 1442 or
2520. The operator must run out the 2540
punch following a punch-feed-read job.

In the following example, data will be
punched in the same card that was read.
Information from each card is read, proc­
essed, and then punched into the card to
produce an updated record.

Col
Name Operation Operand 72

FILEC DTFCD X
TYPEFLE=CMBND, X
IOAREA1=AREA, X
bEVADDR=SYS005, X
RECFORM=FIXUNB, X
IOAREA2=AREA2

0

0

0

GET FILEC
0

0

0

PUT FILEC
0

0

RELSE MACRO

Name Operation Operand

[name] RELSE JFilename}
t (1)

The RELSE (release) macro instruction is
used in conjunction with blocked input rec­
ords read from DASD or magnetic tape. It
allows the programmer to skip the remaining
records in a block and continue processing
with the first record of the next block when
the next GET instruction is issued.

The symbolic name of the file, specified
in the DTF header entry, is the only param­
eter required for this instruction. It can

be specified as a symbol or in register
notation.

The release instruction discontinues the
deblocking of the present block of records,
which may be either fixed or variable length.
RELSE causes the next GET instruction to
transfer a new block to the input area, or
switch I/O areas, and make the first record
of the next block available for processing.
GET initializes the register or moves the
first record to a work area.

For example, this function can apply to
a job in which records on DASD or tape are
categorized, and each category (perhaps a
major grouping) is planned to start as the
first record in a block. For selective
reports, specified categories can be located
readily by checking only the first record
in each block.

TRUNC MACRO

Name Operation Operand

[name] TRUNC {Filename}
(1)

The TRUNC (truncate) macro instruction is
used in conjunction with blocked output
records that will be written on DASD or mag­
netic tape. It allows the programmer to
write a short block of records. (Blocks do
not include padding.) Thus the TRUNC macro
can be used for a function similar to the
RELSE instruction for input records, but in
reverse. That is, when the end of a cate­
gory of records is reached, that block can
be written and the new category can be
started at the beginning of a new block.

The symbolic name of the file, specified
in the DTF header entry, is the only param­
eter required in this instruction. If this
macro will be issued for fixed-length
blocked DASD records, the DTF entry TRUNC
must be included in the file definition.

When TRUNC is issued, the short block is
written (on DASD or tape) and the output
area is made available to build the next
block. The last record included in the
short block is the record that was built
before the last PUT instruction preceding
TRUNC was executed. Therefore, if records
are built in a work area and the problem
program determines that a record belongs in
a new block, the TRUNC instruction should
be issued first, followed by the PUT in­
struction for this particular record. If
records are built in the output area, how­
ever, the programmer must determine if a
record belongs in the block before he
builds the record.

Imperative Macro Instructions 35

Whenever variable-length blocked records
are built directly in the output area, this
TRUNC instruction must be used to write a
complete block of records. When the PUT
instruction is issued after each variable­
length record is built, the output routines
supply the programmer with the space (number
of bytes) remaining in the output area.
From this the programmer determines if his
next variable-length record will fit in the
block. If it will not fit, he issues the
TRUNC instruction to write out the block
and make the entire output area available
to build the record. The amount of remain­
ing space is supplied in the register speci­
fied in the entry VARBLD (see PUT Macro and
DTFMT VARBLD).

PUNCH AND PRINTER CONTROL

Stacker selection in a card read-punch, and
line spacing or skipping in a printer, can
be controlled either by specified control
characters in the data records or by the
CNTRL macro instruction. Either method, but
not both, may be used for a particular logi­
cal file.

When control characters in data records
are to be used, the DTF entry CTLCHR must
be specified, and every record must contain
a control character in the main-storage out­
put area. This must be the first character
of each fixed-length or undefined record, or
the first character following the record­
length field in a variable-length record.
The BLKSIZE specification for the output
area must include the byte for the control
character and, if undefined records are
specified, the RECSIZE specification must
also include this byte.

When a PUT instruction is executed, the
control character in the data record deter­
mines the command code (byte) of the Channel
Command Word (CCW) that IOCS establishes.

If CTLCHR=ASA: the control character is
translated into the command code.

If CTLCHR=YES: the control character is
used directly as the command code.

If the user desires to send a space and/
or skip command, without printing, to the
printer (perhaps to move forms), the output'
area must contain the first-character forms
control and the remainder of the area must
be blanks (X'40').

The particular character included in the
record is determined by the function to be
performed. For example, if double spacing
is to occur after a particular line is
printed, the code for double spacing must
be the control character in the output line
to be printed. The first character after
the control character in the output data

36 DOS Sup. and I/O Macros

becomes the first character punched or
printed. A complete listing of the control'
characters is given in Appendix B.

CNTRL MACRO

Name Operation Operand

[name] CNTRL {Filename}, code [, n] [,m]
(I)

The CNTRL (control) macro instruction pro­
vides commands for these input/output units:
magnetic tape units, card read-punches,
punches, printers, DASD, and optical readers
Orders apply to physical nondata operations
of a unit and are peculiar to the unit in­
volved. They specify such functions as re­
winding tape, card stacker selection, line
spacing on a printer, etc. For optical
readers, orders specify marking error lines
or keyboard correcting a line for journal
tapes, document stacker selecting, or eject­
ing and incrementing documents. The CNTRL
macro does not wait for completion of the
order before returning control to the user,
except for certain mnemonics for optical
readers.

CNTRL is used in conjunction with a
logical file in a unit, and it usually
requires two or three parameters. The
first parameter must be the name of the file
specified in the DTF header entry. It can
be specified as a symbol or in register
notation.

The second parameter is the mnemonic
code for the command to be performed. This
must be one of a set of predetermined
codes (Figure 6).

The third ,parameter n is required when­
ever a number is needed for stacker selec­
tion or immediate printer carriage control.
The parameter m applies to delayed spacing
or skipping. In the case of a printer file,
the parameters g and ~ may be required.

The CNTRL macro instruction must not be
used for printer or punch files if the data
records contain control characters and the
entry CTLCHR is included in the file
definition.

Whenever CNTRL will be issued in the
problem program, the DTF entry CONTROL must
be included (except for DTFMT) and CTLCHR
must be omitted. If control characters are
used when CONTROL is specified, the control
characters are ignored and treated as data.

MAGNETIC TAPE UNIT CODES

The CNTRL macro instruction is used to con­
trol magnetic-tape functions that are not
concerned with reading or writing data on

Unit
Mnemonic
Code

n m

2400 Series Magnetic Tape Units REW

RUN

ERG

WTM

BSR

BSF

FSR

FSF

2540 Card Read PS 1
2
3

2520, 1442 Card Read Punch SS 1
2

E

See Note

1403, 1404, 1443, 1445 Printers SP c

SK c

1403 Printer with Universal Character Set UCS ON
Feature

OFF

2321 Data Cell Drive SEEK

RESTR

2311 Disk Storage Drive SEEK

1285 Optical Reader MARK

READKB

1287 Optical Reader MARK

READKB

EJD

SSD 1
2
3
4

ESD 1-4

INC

Note: c = An Integer Indicating Immediate Printer Control (Before Printing).

d = An Integer Indicating a Delayed Printer Control.

Figure 6. CNTRL Macro Instructions

d

d

Command

Rewind Tape

Rewind and Unload Tape

Erase Gap (Writes Blank Tape)

Write Tape Mark

Backspace to Interrecord Gap

Backspace to Tape Mark

Forward Space to Interrecord Gap

Forward Space to Tape Mark

Select Pocket 1, 2, or 3

Se lect Stac ker 1 or 2

Eject to Stacker 1 (1442 Only)

Carriage Space 1, 2, or 3 Lines

Skip to Channel c and/or d

Allow Data Checks

Disallow Data Checks

Seek to Address

Return Strip to Sub-Cell

Seek to Address

Mark Error Li ne

Read 1285 Keyboard

Mark Error Li ne in Tape Mode

Read 1287 Keyboard in Tape Mode

Eject Document

Select Stacker A, B, Reject, or Alternate
Stacking Mode

Eject Document and Select Stacker

Increment Document at Read Station.

Impe~ative Macro Instructions 37

the tape. These functions are grouped in
the following categories:

Rewinding tape to the load point
REW - Rewind
RUN - Rewind and unload

Moving tape to a specified position
BSR - Backspace to inter record gap
BSF - Backsapce to tape mark
FSR - Forward space to interrecord gap
FSF - Forward space to tape mark

Writing a tape mark
WTM - Write tape mark

Erasing a portion of the tape
ERG - Erase gap (writes blank tape)

The tape rewind (REW and RUN) and tape
movement (BSR, BSF, FSR, and FSF) functions
can be used bef9re a tape file is opened.
This allows the tape to be positioned at a
desired location for opening a file under
conditions such as:

• The file is located in the middle of a
multifile reel.

• The entry REWIND specifies NORWD, but
for some conditions rewinding is re­
quired for the file.

The tape movement functions (BSR, BSF,
FSR, and FSF) apply to input files only,
and the following factors should be
considered:

1. The FSR (or BSR) function permits the
user to skip over a physical tape
record (from one interrecord gap to the
next). The record is passed without
being read into main storage. The FSF
(or BSF) function permits the user to
skip to the end of the logical file
(identified by a tape mark).

2. The functions of FSR, FSF, BSR, and BSF
always start at an interrecord gap.

3.

4.

If blocked input records are being
processed and if the user does not want
to process the remaining logical rec­
ords in the block, as well as one or
more succeeding blocks (physical rec­
ords), he must issue a RELSE macro
before the CNTRL macro. Then the next
GET will make the first record of the
new block available for processing. If
the CNTRL macro, with FSR for example,
were issued without a preceding RELSE,
the tape would be advanced, but the next
GET would make the next record in the
old block available for processing.

For any I/O area combination except one
I/O area and no work area, laCS is
always reading one physical tape record

38 DOS Sup. and I/O Macros

ahead of the one that is being proc­
essed. Thus, the next physical record
(block) after the one being processed
will be in main storage ready for proc­
essing. Therefore, if a CNTRL FSR
function is performed, the second
physical tape record beyond the present
one will be passed without being read
into main storage.

5. If FSR or BSR is used, LIOCS does not
update the block count. Furthermore,
laCS cannot sense tapemarks on an FSR
or BSR command and, therefore, does
not perform the usual EOV or EOF
functions.

PRINTER CODES

The CNTRL macro instruction can be used
for any printer forms control.

The CNTRL macro codes for printer opera­
tion cause spacing (SP) over a specified
number of lines or skipping (SK) to a
specified location on the form (represented
by a carriage-tape channel). The third
parameter is required for immediate
spacing and skipping (before printing) .
The fourth parameter is required for delayed
spacing or skipping (after printing) .

The SP and SK operations can be used-in
any sequence. However, two or more consecu­
tive immediate skips (SK) to the same
carriage channel on the same printer have
the same effect as the first skip only.
That is, any skip order after the first is
ignored. Two or more consecutive delayed
spaces (SP) and/or skips (SK) to the same
printer result in the last space or skip
only. Any other combination of consecutive
controls (SP and SK), such as immediate
space followed by a delayed skip or immedi­
ate space followed by another immediate
space, causes both specified operations to
occur.

1403 PRINTER WITH UNIVERSAL CHARACTER SET
CODES

The CNTRL macro can be used before a PUT
for the file to change the method of proc­
essing data checks. They can be either:

1. allowed--indication given to operator,
or

2. disallowed--ignoreo and blank printed.

A data check occurs on a 1403 with the UCS
feature when a character (except null,
00000000, or blank, 01000000) sent to the
printer does not match any of the charac­
ters in the UCS buffer.

If OPEN is used for the file, data
checks are automatically disallowed until
a CNTRL macro is used to allow them.

If the UCS form of the CNTRL macro is
used for a printer without the UCS feature,
the CNTRL macro is ignored and the output
operation is performed.

2540 CARD READ PUNCH CODE

Cards read or punched on the 2540 normally
fall into the pocket specified in the DTF
entry SSELECT (or the Rl or PI pocket if
SSELECT is omitted). The CNTRL macro with
code PS is used to select a car~into a
different stacker, which is specified by
the third operand (n) of the CNTRL macro.
The possible selections are:

Feed Pocket Value of n

Read Rl 1
Read R2 2
Read RP3 3
Punch PI 1
Punch P2 2
Punch RP3 3

INPUT FILE: CNTRL can be used only when
one I/O area, with or without a work area,
is specified for the file. The macro is
issued after GET. Once used, CNTRL must be
used with every succeeding GET for the file.

OUTPUT OR COMBINED FILE:
used with any permissible
I/O and work areas. When
select a particular card,
issued before the PUT for
ever, CNTRL does not have
PUT.

2520 CARD READ PUNCH CODE

CNTRL can be
combination of
the user wants to
CNTRL must be
that card. How­
to precede every

The CNTRL macro used for the IBM 2520 uses
the code SSe Thus, the third operand can
be either 1 or 2.

1442 CARD READ PUNCH CODES

Cards fed in the IBM 1442 are normally
directed to the stacker specified in the
DTF entry SSELECT. If SSELECT is omitted,
they go to stacker 1. The CNTRL macro can
be used to override the normally selected
pocket temporarily.

CARD READING: To stack a particular card,
the CNTRL macro instruction should be
issued after the GET for that card, and
before the GET instruction for the follow­
ing card. When the next card is read, the
first card is stacked in the specified
stacker. CNTRL can be used only when one
I/O area, or one I/O area and one work area,
is specified for the file.

CARD PUNCHING: To stack a particular card,
the CNTRL macro should be issued before the
PUT for that card. After the card is
punched, it is stacked into the specified
pocket immediately. CNTRL can be used with
any permissible combination of I/O and work
area.

COMBINED FILE: If a particular card is to
be selected, the CNTRL macro for the file
should be issued after the GET and before
the PUT for the card. When the next card is
read, the first card is stacked into the
specified stacker.

2311 DISK STORAGE DRIVE CODE

The CNTRL macro for seeking on the 2311
allows the user to specify a track address
to which access movement should begin for
the next GET, PUT, READ, or WRITE macro
instruction for sequential and direct
access files only. While the arm is moving,
the programmer may process data and/or
request I/O operations on other devices.

2321 DATA CELL DRIVE CODES

The CNTRL macro enables the user to seek
to a specific address or to restore the
strip to its cell. The seek address must
be provided in the field with the symbolic
name given in the DTFDA entry SEEKADR.

IBM 1285 OPTICAL READER AND 1287 OPTICAL
READER CODES

Use of the CNTRL macro instruction with the
READKB mnemonic allows the user to read a
complete line from the 1285 or 1287 key­
board when processing journal tapes. This
permits the operator to key in a complete
line on the keyboard if a 1285 or 1287 read
error makes this type of correction neces­
sary. If the operator cannot readily iden­
tify the unreadable character, he may enter
a reject character (@) in the error line.
IOCS then exits to the user's COREXIT rou­
tine, in which he may issue the CNTRL macro
instruction to read from the keyboard. The
1285 or 1287 display tube then displays the
full line and the operator keys in the cor­
rect line from the k~yboard, if possible.
The line read from the keyboard is always
read into the correct area.

The CNTRL macro with the READKB mnemonic
waits for completion of the order before
returning control to the user.

When processing journal tapes, use of
the CNTRL macro instruction with the MARK
mnemonic provides a program-controlled

Imperative Macro Instructions 39

means of marking a line on the input tape
that results in a data transfer error or
is otherwise suspect of error. To ensure
that the proper line is marked, the CNTRL
macro instruction must be issued in the
user's error correction routine (specified
in DTFOR COREXIT). If CNTRL is issued at
another time, the line following the one
in error will be marked.

When processing in document mode on the
1287, each document must be explicitly
ejected with a CNTRL macro instruction. The
EJD mnemonic causes the document to be
ejected and the next document to be fed.

Documents must also be explicitly stacker
selected using the CNTRL macro instruction
with the SSD mnemonic. A document may be
directed to stacker A, B, or R (reject
stacker) by specifying a selection number
of 1, 2, or 3 respectively. Also, documents
may be selected into stackers A and B in an
alternate stacking mode, with automatic
stacker switching when one stacker becomes
full. The selection number for alternate
mode is 4. If selection number 4 is used
in the first stacker selection macro, stackel
A will be filled first. If selection num­
ber 4 is used after other selection numbers,
the last preceding selection number deter­
mines the first stacker to be filled.

Ejection and stacker selection of docu­
ments must occur alternately.

The CNTRL macro instruction with the
ESD mnemonic combines the ejection and
stacker selection functions. In order to
satisfy the alternate ejection and stacker
selection functions, the combined mnemonic
must not be immediately preceded by an
eject or immediately followed by a stacker
select.

The CNTRL macro with the INC mnemonic
is used for document incrementation. This
macro is not used with documents having a
scannable area shorter than 6 inches. The
document is incremented forward 3 inches.
It may be used only once per document.

CHNG MACRO

Name Operation Operand

[name] CHNG SYSnnn

This macro instruction is provided only
for Basic Programming Support and Basic
Operating System upward compatibility. No
code is generated from this macro instruc­
tion. In the Disk Operating System, tape
channel switching is handled automatically
by physical IOCS.

40 DOS Sup. and I/O Macros

PRTOV MACRO

Name Operation Operand

[name] PRTOV jFilename\ r} t j RoUtine-name~
l (1) f 2 l (0),

The PRTOV (printer overflow) macro instruc­
tion is used in conjunction with a logical
file in a printer to specify the operation
to be performed on a carriage overflow con­
dition. Whenever this macro instruction
is to be issued in a problem program, the
DTFPR or the DTFSR entry PRINTOV=YES must
be included in the file definition.

PRTOV requires two or three parameters.
The first parameter must be the filename as
a symbol or in register notation. The sec­
ond parameter must specify the number of
the carriage tape channel (9 or 12) used to
indicate the overflow. When overflow con­
dition occurs, IOCS restores the printer
carriage to the first printing line on the
form (channell), and printing of detail
lines continues.

A third parameter is required if the
programmer prefers to branch to his own
routine on an overflow condition, rather
than skipping directly to channel 1 and
continuing with the detail printing. It
specifies the symbolic name of the user's
routine. The name can be specified as a
symbol or in register notation. However,
the name should never be pre loaded into
register 1.

In this case, IOCS does not restore the
carriage to channell. In his routine,
the user may issue any IOCS macro instruc­
tion (except another PRTOV) to perform
whatever functions he desires. The CNTRL
macro cannot be issued to the file unless
CONTROL=YES has "been specified in the DTF.
For example, he can print total lines,
skip to channell, and print overflow
page headings. At the end of his routine,
the user must return to IOCS by branching
to the address in register 14. IOCS sup­
plies this address upon entry to the user's
routine. Therefore, if other IOCS macros
are used in the routine (for example, the
CNTRL macro}, the user must save and re­
store register 14 himself.

The PRTOV macro causes a skip to channel
1, or branches to the user's routine if an
overflow condition (punch in channel 9 or
12) is detected on the preceding space or
print command. An overflow punch is not
recognized during a carriage skip operation.
After the execution of any command that
causes carriage movement (PUT or immediate
CNTRL), the user should issue a PRTOV macro
before issuing the next CNTRL or PUT. This
ensures that the user's overflow option will
be executed at the correct time.

MACROS FOR THE OPTICAL CHARACTER READER

DSPLY MACRO

Name Operation Operand

[name] DSPLY {Filename},r,r
(1)

The DSPLY macro displays the document field
on the 1287 display scope. A complete
field may be keyboard-entered if a 1287
read error makes this type of correction
necessary. An unreadable character may be
replaced by a reject character (@) by either
the operator (if processing in the on-line
correction mode) or by the device (if proc­
essing in the off-line correction mode).
The user may then use the DSPLY macro to
display the field in error. The 1287 dis­
play tube displays the full field and the
operator keys in the correct field from the
keyboard, if possible. The field read from
the keyboard is always read into the portion
of IOAREAl originally specified for the
field. The macro blanks this portion of
IOAREAl. When the operation is completed,
the field is left justified in this area.

This instruction always requires three
parameters. The first parameter is the
symbolic name specified in the DTFOR header
entry for the 1287 file. The second param­
eter specifies a general purpose register
(2-12) into which the problem program will
have placed the addres's of the Load Format
CCW giving the document co-ordinates for
the field to be displayed. The third
parameter specifies a general purpose reg­
ister (2-12) into which the problem program
will have placed the address of the Load
Format cew giving the co-ordinates of the
reference mark associated with the field to
be displayed.

Note: When using the DSPLY macro, the user
must ensure that the Load Format ecw giving
the document co-ordinates for the field to
be displayed (second parameter) is command
chained to the Read Backward (or Read Back­
ward and Test) ecw for that field.

READ MACRO

The READ macro instruction is used in
sequential processing to cause the next
sequential 1287 Optical Reader (document
mode only) record to be read.

Name Operation Operand

[name] READ {Filename},SQ,{name}
(1) (r)

The first parameter specifies the name in
the DTFOR header for this fi·le, and it is
always required.

The parameter SQ is always required.

The parameter name is always required.
This parameter specifies the address of the
user-provided channel command word list to
be used to read a document from the 1287
file. The register entry may be used in
this parameter to provide the address of
the channel command word list.

RESeN MACRO

Name Operation Operand

[name] REseN {Filename} , r, r
(1)

The RESCN macro selectively re-reads a field
on a document when a defective character
makes this type of operation necessary. The
field read is always read into the portion
of IOAREAl originally intended for the field.

I This instruction always requires three
parameters. The first parameter specifies
the sy~olic name of the l287D file specified
in the DTFOR header entry for this file.
The second parameter specifies a general
purpose register (2-12) into which the prob­
lem program will have placed the address of
the Load Format cew giving the document
co-ordinates for the field to be read. The
third parameter specifies a general purpose
register (2-12) into which the problem pro­
gram will have placed the address of the
Load Format CCW giving the co-ordinates of
the reference mark associated with the field
to be read.

Note: When using the RESCN macro, the user
must ensure that the Load Format cew giving
the document co-ordinates for the field to
be read (second parameter) is command
chained to the Read Backward (or Read Back­
ward and Test) CCW for that field.

The user determines whether the read
operation generated by RESCN has resulted
in a more satisfactory read than the orig­
inal read of the field. If the re-read of
the field results in a wrong length record
or a lost line condition, an indication of

Ithe reason is provided in Filename+SO. See
description of COREXIT for hexadecimal
values.

RDLNE MACRO

Name Operation Operand

[name] RDLNE {Filename}
(1)

Imperative Macro Instructions 41

The RDLNE macro provides selective on-line
correction when processing journal tapes
on the IBM 1285 or the IBM 1287 Optical
Reader. This macro reads a line in the on­
line correction mode while processing in
~he off-line correction mode. If the
reader cannot read a character, IOCS retries
the line containing the unread character.
If still unsuccessful, the user is informed
of the condition via his error correction
routine (specified in DTFOR COREXIT). The
RDLNE macro may then be issued to cause
another attempt to read the line. If the
character in the line cannot be read during
this attempt, the character is displayed
on the 1285 or 1287 display scope. The
operator may key in the correct character,
if possible. If the operator cannot readily
identify the defective character, he may
enter a reject character (@) in the error
line. This condition is posted in
"filename+80" for user examination. Wrong
length records and lost line conditions are
also posted to "filename+80". See the de­
scription of COREXIT for hexadecimal values.
RDLNE should be used in COREXIT only or the
line following the one in error will be
read in on-line correction mode.

The macro requires only one parameter,
the symbolic name of the 1285 or 1287 file
from which the record is to be retrieved.
This name is the same as that specified in
the DTFOR header entry for this file.

WAITF MACRO

Name Operation Operand

[name] WAITF {Filename}
(1)

The WAITF macro instruction is used in se­
quential processing to ensure that the trans­
fer of a 1287 Optical Reader record (docu­
ment mode only) has been completed. It re­
quires only one parameter: the symbolic
name of the file containing the record.

This instruction must be issued before
the problem program attempts to process an
input record for the file concerned. The
program enters a waiting loop until the
transfer of data is complete. Thus, the
WAITF macro instruction must be issued
after any READ instruction for a file, and
before the succeeding READ instruction for
the same file.

The WAITF macro instruction accomplishes
all checking for read errors on the 1287
file and exits to the user-provided COREXIT
routine for user handling of these condi­
tions, if necessary.

42 DOS Sup. and I/O Macros

MACROS FOR TAPE AND DISK WORK FILES

A work file can be used for input, output,
or both. If TYPEFLE=WORK is specified in
the DTF macro instruction, work-file macro
instructions READ, WRITE, and CHECK are
provided. In addition, if NOTEPNT is
specified, workfile macro instructions NOTE,
POINTR, POINTW, and POINTS are provided.
Work files will handle fixed-length un­
blocked records and undefined-format records.

WORK FILES ON TAPE

A work file is a single-volume file that
can be used for both input and output, even
within a single program phase. It is often
used to pass intermediate results between
successive phases or job steps. However,
work files also can be written, read, and
rewritten within a single phase, without
requiring additional OPEN or CLOSE proc­
essing. Work files are defined as an
option of the DTFMT and MTMOD macro instruc­
tions and are accessed by the READ/WRITE/
CHECK macro instructions.

The first time a work file is opened,
it is opened as an output file. OPEN ex­
amines the tape to determine whether the
tape used contains standard labels. The
DTFMT. entry FILABL is ignored. If the tape
is labeled and the date in the header label
is expired, a new label consisting of HDRl
and followed by 76 binary zeros is created.
The Job Control label information cards
are not required. If the tape does not al­
ready contain standard labels, labels are
not created for the work file. Trailer
labels are not processed.

If a work file with standard labels is
reopened, OPEN determines from the HDR label
that the file is a work file and does not
rewrite the labels.

When a tapemark is sensed during a read
operation or when an end-of-reel reflective
spot is sensed during a write operation,
the IOCS work file logic exits to the ad­
dress specified by the user in the entry
EOFADDR,.

WORK FILES ON DISK

Disk (2311) work files are supported as
single-volume single-pack files. They are
always opened as output files. Standard
label information must be supplied by the

user. Both normal extents (type 1) and
split.-extent.s (type 128) are supported.
File protection for work files is en­
sured only if their labels are unexpired.

WORK FILE TO BE DELETED AFTER USE: The en­
try DELETFL=NO must not be used. OPEN cre­
ates a Format 1 label for the file, and
CLOSE destroys the label. The next job re­
quiring a work file can use the same extents
and filename.

WORK FILE TO BE SAVED AFTER USE: The ex­
piration date in the DLAB Job Control card
must not be the current date. The entry
DELETFL=NO must be specified in the DTF for
the file. OPEN creates a Format 1 label,
but CLOSE does not delete it. Thus the
file can be saved until the expiration date
is reached.

DELETING AN UNEXPIRED FILE: When the
user tries to use the limits of an unex­
pired file, a message is printed to indi­
cate the overlap, and the operator can de­
lete the label. Then OPEN will create a
label for the new file and the job will
continue.

The following text discusses the macro
instructions used with a magnetic tape or
disk (2311) work file.

READ MACRO

The READ macro instruction will cause the
next sequential physical record, or part
of it, to be read from the file associated
with the Filename, into the area of main
storage indicated by the third operand.

The DTF entry R,EAD;::;FORWARD or BACK
should be used to specify the type of read
fo~ a tape file.

Name Operation Operand

[name] READ {Filename} ,SQ, {area}
(1) (0)

[fc:?thJ]
The first parameter specifies the name

of the file associated with the record to
be read and is always required. This name
is the same as the name specified in the
DTFMT or DTFSD header entry for this file.
The name can be given as a symbol or in
register notation.

The parameter SQ (for sequential) is
always required. Area specifies the name,
as a symbol or in register notation, of the
input area used by this file. If the tape

is to be read backwards, area must be the
address of the rightmost byte of the input
area.

The length parameter is used only for
records of undefined format (RECFORM=UNDEF).
To read only a portion of a record, an
actual length (or a register containing the
number) can be stated. Or, an S can be
provided to indicate that the entire phys­
ical record should be read.

If the work file records are fixed-length
unblocked records (RECFORM=FIXUNB), the
length parameter is not specified in the
READ macro. The number of characters to be
read is specified in the BLKSIZE entry.
The user can change this number, which is
stored in the DTF table, at any time by
referencing the halfword FilenameL.

If the fourth parameter is not specified,
the third parameter (area) should never be
preloaded into register O. If the fourth
parameter is specified, special register
notation is not necessary to allow the
macro to be used in a self-relocating
program.

WRITE MACRO

The WRITE macro instruction causes a rec­
ord to be written from the indicated area
into the file associated with the File­
name. The record will be stored sequen­
tially following the last record written
in this file.

Name Operation Operand

[name] WRITE {Filename}, { SQ },
(1) UPDATE

{area}
(0) [, {le7~fh}]

The first parameter specifies the name
of the file associated with the record to
be written and is always required. This
name is the same as the name specified in
the DTFMT or DTFSD header entry for this
file. The name can be given as a symbol
or in register notation.

The second parameter specifies the type
of WRITE to be executed. For magnetic tape
it is always SQ. For 2311 work files if
SQ is specified, a formatting WRITE (Write
Count Key and Data) will be executed; if
UPDATE is specified, a non-formatting WRITE
(Write Data) will be executed. An update

WRITE will generally follow a READ macro
instruction.

The parameter area specifies the name,
as a symbol or in register notation, of
the output area used by this file.

Imperative Macro Instructions 43

The last parameter is used only for rec­
ords of undefined format (RECFORM=UNDEF).
Length specifies the actual number (or
register containing the number) of bytes
to be written.

If fixed length unblocked records
(RECFORM=FIXUNB) are being written, length
is not used in the write macro. The num­
ber of characters to be written is spec­
ified in the BLKSIZE entry. The user can
change this number, which is stored in the
DTF table, at any time by referencing the
halfword FilenameL.

If the fourth parameter is not specified,
the third parameter (area) should not be
preloaded into register O. If the fourth
parameter is specified, special register
notation is not necessary to allow the
macro to be used in a self-relocating
program.

CHECK MACRO

Name Operation Operand

[name] CHECK {Filename}
(1)

This macro instruction prevents the user
from processing until completion of the
input/output operation, started by a READ
or a WRITE, for the device associated with
the Filename. If the I/O operation is
completed without any error or other
exceptional condition, CHECK returns con­
trol to the next instruction. If the opera­
tion results in a read error, CHECK will
process the user's option specified in
ERROPT. If CHECK finds an end-of-file
condition, control is passed to the routine
specified in EOFADDR.

NOTE MACRO

Name Operation Operand

[name] NOTE {Filename}
(1)

The NOTE macro instruction is used to ob­
tain identification for the last physical
record that was read or written.

For a tape, the identification is the
number of physical records that have been
read or written in the specified file from
the load point. The information is re­
turned in register 1 in the form OBBB
where 0 = eight binary zeros, and BBB = the
physical record number in binary.

44 DOS Sup. and I/O Macros

For a 2311, the identification is re­
turned in register 1 in the form OCHR,
where 0 = eight binary zeros, C = cylinder
number, H = track number, R = record num­
ber within the track; C, H, and Rare
binary numbers.

The user may store the identification
(in the OBBB or OCHR form), and later pre­
sent it to a POINTR or POINTW macro to
find the desired record.

If NOTE follows a WRITE to a 2311 file,
the unused space remaining on the track
following the end of the identified record
is returned in register D as the binary
number DOLL.

The user must ensure the last operation
was completed satisfactorily by using
CHECK prior to issuing a NOTE.

POINTR MACRO

The POINTR macro instruction is used to
reposition the file to read a record pre­
viously identified by a NOTE macro
instruction.

Name Operation Operand

[name] POINTR {Filename} , {address}
ell (0)

Address is the address (as a symbol or
in register notation) of the 4-byte main­
storage location containing the required
record identification. Address should
never be pre loaded into register 1. The
4-byte number must be in the form obtained
from the NOTE macro.

On disk or magnetic tape, POINTR, fol­
lowed by a WRITE (SQ), causes the new record
to be written and the remainder of the track
to be erased. On disk, POINTR, followed by
a WRITE (UPDATE), causes the identified rec­
ord to be overwritten (destroyed).

POINTW MACRO

The POINTW macro instruction is used to
reposition the file to write a record after
one previously identified by a NOTE macro
instruction.

Name Operation Operand

[name] POINTW {Filename} , {address}
(1) (0)

Address is the address (as a symbol or
in register notation) of the main-storage
location where the user has the required
record identification stored. Address
should never be preloaded into register 1.

For tapes, the identification must be in
the form obtained from the NOTE macro. When
a READ is issued to a tape file following
a POINTW, the tape is positioned to read
the record following the one identified by
the POINTW.

For 2311 work files, the user must build
the identification from OCHR and OOLL into
a 6-byte number OCHRLL. POINTW may be fol­
lowed by a WRITE only if the space re­
maining on the track is available. The
unused space remaining on the current track
will not be obtainable if a NOTE is given
after a READ macro instruction.

When using disk work files, the user
should consider the following two condi­
tions. First, a READ issued to a disk
file following a POINTW reads the same
record identified by the POINTW. Second,
some programs using disk work files may
include multiple WRITE instructions fol­
lowing a NOTE macro. If a POINTW instruc­
tion is issued and the work file records
are in undefined format, there may be
occasions when the replacement record
(being longer than the original record)
cannot be written in the space available
on the track. In this case, when the next
WRITE is performed, the original record
will remain as the last record on the
track, and the replacement record will be
written as the first record on the track.

POINTS MACRO

The POINTS macro instruction is used to
reposition a file to the beginning of the
file.

Name Operation Operand

[name] POINTS {Filename}
(1)

For a tape file, the tape will be re­
wou~d. If any header labels are present,
they will be bypassed, and the tape will
be positioned to the first record follow­
ing the label set.

For a 2311, the file will be repositioned
to the lower limit of the first extent.

PROCESSING DASD RECORDS BY THE DIRECT
ACCESS METHOD

DASD records can be processed in random
order by the Direct Access Method (DAM).
In this method the user specifies the
address of the record to IOCS and issues a.
READ or WRITE macro instruction to transfer
the specified record. Variations in the .

parameters of the READ or WRITE instructions
permit records to be read, w~itten, updated,
or replaced in a file. Whenever this method
of processing records is used, the logical
file and main-storage area(s) allotted to
the file must be defined by the declarative
macro DTFDA (Define the File for Direct
~ccess). -

RECORD TYPES

DASD records that will be processed by DAM
can exist on the DASD in either of two for­
mats: with a key area, or without.

With key area:

I countl

Without key area:

countl I Datal

Whenever records in a file have keys that
are to be processed:

• Every record must have a key, and

• All keys must be the same length.

Whenever the DTFDA entry KEYLEN is not
specified for a file, IOCS ignores keyS;­
and the DASD records mayor may not contain
key areas. A WRITE ID or READ ID will read
or write the data portion of the record.
However, when KEYLEN is not specified in
the DTF for the file, WRITE AFTER cannot be
used to extend a file which has keys.

Ioes considers all records as unblocked
(o~e logical record per one physical rec­
ord). If the user wants blocked records,
he must provide his own blocking and de­
blocking. Records are also considered to
be either fixed length or undefined.
(Variable-length records can be .handled
by specifying them a.s undefined.) The
type of records in the file must be
specified in the DTFDA entry RECFORM.
Whenever records specified as undefined
are to be written to a file, the user
must determine the length of each record
and load it in a register (specified by
the DTFDA entry ~CSIZE) before he issues
the W~ITE instruction for that record.

DIRECT ACCESS IOAREAl

The DTFDA entry IOAREAl defines an area of
main storage in which records are read on
input or built on output.

Imperative Macro Instructions 45

Format

The format of the I/O area is determined at
assembly time by the following DTFDA
entries: AFTER, KEYLEN, READID, WRITEID,
READKEY, and WRITEKY. Figure 7 describes
the types of DTF macros and the I/O areas
that they define. The information in this
figure should be used to determine the
length of the I/O area specified in the
BLKSIZE entry. The I/O area must be large
enough to contain the largest record in
the file. If the DTF used requires it,
the I/O area must include room for an 8-
byte count field. The count is provided
by IOCS.

Contents

The phrase contents of the IOAREAI refers to
the information provided by or to IOCS for
a specific imperative macro instruction.
See Figure 32 for a summary of what the
contents are for each type of READ/WRITE.
When the user is building a record, he must
place the contents in the appropriate field
of the I/O area using Figure 7 as a guide.
The contents that laCS provides on input
are always placed in the appropriate field
of the I/O area. For example, if the DTF
used for the file resulted in the uppermost
format shown in Figure 7, the Data would be
located to the right of the Count and Key
area.

REFERENCE METHODS

With the direct access method of processing,
each record that is to be read or written
is specified by providing laCS with two
references:

• Track reference. This gives the track
on which the desired record is located.

• Record reference. This may be either
the record key (if the records contain
key areas) or the record identifier
(ID) .

laCS seeks the specified track, searches
it for the individual record, and reads or
writes the record as indicated by the macro
instruction. If a specified record is not
found, laCS sets a no-record-found indica­
tion in the user's error/status byte, which
is specified by the DTFDA entry ERRBYTE.
This indication can be tested by the prob­
lem program, and additional processing
can be programmed to suit the user's
requirements.

46 DOS Sup. and I/O Macros

Multiple tracks can be searched for a
record specified by Key (SRCH1v1). If a
record is not found after an entire cylinder
or the remainder is searched, an end-of­
cylinder bit is turned on instead of NRF
in ERRBYTE.

When the I/O operation is started, con­
trol is returned immediately to the problem
program. Therefore when the program 1S
ready to process the input record, or build
the succeeding output record for the same
file, a test must be made to ensure that
the previous transfer of data is complete.
This is done by issuing a WAITF macro in­
struction in the problem program.

After a READ or WRITE instruction for a
specified record has been executed, laCS
can make the ID of the next record avail­
able to the problem program after the data
transfer has been assured by the use of
WAITF. To request that IOCS supply the ID,
the user must set up a 5-byte field (in
which laCS can store the ID) and specify
the symbolic address of this field in the
DTFDA entry IDLOC.

When record reference is by key and
multiple tracks are searched, the ID of the
specified record (rather than the next
record) is supplied. The function of sup­
plying the ID is useful for a random up­
dating operation or for the processing of
~uccessive DASD records. If the user is
processing consecutively on the basis of
the next ID and does not have an end-of-file
record, he can check the ID supplied by
laCS against his file limits to determine
when he has reached the end of his logical
file.

Track Reference

To provide laCS with the track reference,
the user sets up an 8-byte track-reference
field in main storage, assigns a symbolic
name, and specifies the symbolic name in
the DTFDA entry SEEKADR. Before issuing
any read or write instruction for a record,
the user must store the proper track in­
formation (MBBCCHH) in the first seven
bytes of this field. The field (Figure 8)
contains the following seven bytes for
track reference. The eighth byte (R),
listed here and shown in the figure, is
used when reference to records is by record
number (see Record Reference: Identifier}.
All numbers must be supplied in binary
notation.

Using a DTF for which AFTER and KEYLEN are specified. READID,
WRITEID, READKEY, and WRITEKY may also be specified.

Count Key Data

1 I

,...., .. t-----..,.------rj BLKSIZE = n ------... '
Length ~ 8 I KEYLEN = n 1 Largest Record
(Bytes) : t I

IOAREAl

Using a DTF for wh ich AFTER is specified, but KEYLEN is not.
READID and/or WRITEID may be specified, but READKEY and
WRITEKY may not.

Count Data

1;"'1 .t-----..,.-- BLKS I ZE = n --------<.~:
Length~ 8 Largest Record I

(Bytes) I t I

IOAREAl

Using a DTF for which KEYLEN, READID, and/or WRITEID are
specified, but AFTER is not. READKEY and/or WRITEKY may also
be specified.

Key

I. I
I I

Length....., KEYLEN=n I

(Bytes) 1 t I
IOAREAl

Data

I
B LKS I ZE = n --------<.~I

Largest Record

Using a DTF for which READID and/or WRITEID is specified, but
AFTER, KEYLEN, READKEY, and WRITEKY are not.

or
Using a DTF for which KEYLEN, READKEY, and/or WRITEKY are
specified, but AFTER, READID, and WRITEID are not.

Data

:.-B LKS IZE = n --------!·~I
Length ~ t Largest Record I
(Bytes) I I

IOAREAl

Figure 7. Schematic of I/O Area in Main Storage, for DAM

Imperative Macro Instructions 47

Byte

o

1-2

3-4

5-6

7

Figure 8.

Identifier

M

B,B

C,C

H,H

R

Contents

0-244

0,0 (for 2311)
0,0-9 (for
2321)

0,0-199 (for
2311) 0-19,0-9
(for 2321)

0,0-9 (for
2311) 0-4,0-19
(for P21)

0-255

Track Reference Field

48 DOS Sup. and I/O Macros

Information

Number of the pack (0-244) on which the rec­
ord is located. Packs or symbolic units for a
file must be numbered consecutively. The first
pack number for a file must be zero, but the
first symbolic unit may be any SYSnnn number.
The system references the pack by adding its
number to the first symbolic unit number.
Example: // VOL SYS005,X'190' and M=2 results
in the system referencing SYS007.

For 2321 the first byte is zero. The cell
Number (0-9) is specified in the second byte.
These two bytes are always zero for 2311 disk­
storage references.

For 2311 the number of the cylinder (0-199) in
which the record is located. The first byte
is always zero, and the second byte specifies
one of the available cylinders in a disk pack.
These two bytes with the next two (HH) provide
the track identification. For 2321 the number
of the subcell (0-19) is located in the first
byte. One of the ten strips (0-9) is located
in the second byte.

Note: The last four strips on each cell are
reserved for alternate tracks.

For 2311 the number of the read/write head
(0-9) that applies to the record. The first
byte is always zero, and the second byte
specifies one of the ten disk surfaces in a
disk pack. For 2321 the first byte (0-4)
specifies one of the five head bar positions
(equivalent to cylinder on 2311). The second
byte (0-19) specifies one of the twenty head
elements.

Sequential number of the record on the track.

Note: R = 0 if reference is by key.

When the READ or WRITE is executed, laCS
refers to this field to select the specific
track on the appropriate DASD.

Record Reference

The Direct Access Method allows records to
be specified by record key or by record
identifier.

If records contain key areas, the records'
on a particular track can be randomly
searched by their keys. This allows the
user to refer to records by the logical
control information asso'ciated with the
records, such as an employee number, a part
number, a customer number, etc.

For this type of reference the program­
mer must specify, in the DTFDA entry KEY­
ARG, the symbolic name of a main-storage
key field. He then stores each desired key
in this field.

Identifier (ID)

Records on a particular track can be ran­
domly searched by their position on the
track., rather than by control information.
This is accomplished by using the record
identifier (ID). The record identifier,
which is part of the count area of the DASD
record, consists of five bytes (CCHHR).
The first four bytes (cylinder and head)
refer to the location of the track and the
fifth byte (record) uniquely identifies the
particular record on the track. When
records are specified by ID, they must be
numbered in succession, and without missing
numbers, on each track. The first data
record on a track must be record number 1,
the second number 2, etc.

Whenever records are to be identified by
the record ID method, the 'eighth byte (R)
of the track-reference field (Figure 11)
must contain the number of the desired
record. When a READ or WRITE instruction
that searches by ID is executed, laCS
refers to the track-reference field to
determine which record is requested by the
program. The number in this field is com­
pared with the corresponding field,s in the
count areas of the disk records. The R­
byte specifies the particular record on the
track.

CREATING A FILE OR WRITING ADDITIONAL
RECORDS ON A FILE

In addition to reading, writing, and up­
dating records randomly, the direct access
method permits the user to create a file
or write new records on a file. When this
is done, all three areas of a DASD record
are written: the count area, the key area
(if present), and the data area. The new
record is written after the last record pre­
viously written on a specified track. The
remainder of the track is erased. This
method is specified in a WRITE instruction
by the parameter AFTER.

laCS ensures that each record will fit
on the track specified for it. If the
record will fit, laCS writes the record;
if it will not fit, laCS sets a no-room­
found indication in the user's error/status
byte (specified by the DTFDA entry ERRBYTE).
In the AFTER method laCS also determines
(from the capacity record) the location

where the record is to be written.

Whenever the AFTER option is specified,
laCS uses the first record on each track
(RO) to maintain updated information about
the data records on the track. Record 0
(Figure 9) has a count area and a data
area, and contains the following:

Count Area

Flag (not normally transferred to main
storage)

Identifier

Key Length (KL)

Data Length (DL)

Data A~ea (8 bytes)

5 Bytes--ID of last record written on
track (CCHHR).

2 Bytes--Nurnber of unused bytes remain­
ing on track.

1 Byte--For the DAM on the Operating
System/360.

Each time a WRITE AFTER instruction is
executed, laCS updates the data area of
this record.

Imperative Macro Instructions 49

COUNT AREA

Bytes ~

I
I
I
I

Contains ~:
I
I

0>
0

u:

0 1

Identifier KL DL

5 6 7 8

Standard Information

DATA AREA

Identifier
of Last Record

o

C C H H

4 5 6 7

I I
I I
I Number

R: of Unused
: Bytes
I
I

Figure 9. Contents of Record 0 for Capacity-Record Option

READ MACRO

Name Operation Operand

[name] READ {Filename} , {~~Y} (1) .

This instruction causes a record to be
transferred from DASD storage to an input
area in main storage. The input area must
be specified in the DTFDA entry IOAREAl.

The READ macro instruction is written in
either of two forms, depending on the type
of reference used to search for the record.
Both forms may be used for records in any
one DTFDA-specified logical file if the
logical file has keys.

The instruction always requires two
parameters. The first parameter specifies
the name of the file from which the record
is to be retrieved. This name is the same
as that specified in the DTFDA header entry
for this file and can be given as a symbol
or in register notation. The second pa­
rameter specifies the type of reference
used for searching the records in the file.

If records in the file are specified as
undefined (RECFORM=UNDEF), DAM will supply
the data length of each record in the
register that is specified in the DTF entry
RECSIZE.

Record Reference by Key

If the record reference is by key (control
information in the key area of the DASD
record), the second parameter in the READ
instruction must be the word KEY, and the
DTFDA entry READKEY must be included in the
file definition.

50 DOS Sup. and I/O Macros

Whenever this method of reference is
used, the problem program must supply the
key of the desired record to IOCS before
the READ instruction is issued. For this,
the key must be stored in the key field
(specified in the DTFDA entry KEYARG).

When the READ instruction is executed, IOCS
searches the previously specified track
(stored in the a-byte track-reference field)
for the desired key.

Then when a DASD record containing the
specified key is found, the data area of
the record is transferred to the main­
storage input area.

Only the specified track is searched
unless the programmer requests that
multiple tracks be searched on each READ
instruction. A search of multiple tracks
is specified by including the DTFDA entry
SRCHM in the file definition. With this
entry, the specified track and all follow­
ing tracks are searched until the desired
record is found or the end of the cylinder
is reached. The search of multiple tracks
continues through the cylinder even though
part of the cylinder may be assigned to a
different logical file.

Record Reference by 10

If the record reference is by ID (iden­
tifier in the count area of records), the
second parameter in the READ instruction
must be the letters 10, and the DTFDA entry
READID must be included in the file
definition.

Whenever this method of reference is
used, the problem program must supply both
the track information and the record number
in the a-byte track-reference field. When
the READ instruction is executed, IOCS
searches the specified track for the parti­
cular record. When a record containing the

.

specified ID is found, both the key area
(if present and specified in DTFDA KEYLEN)
and the data area of the record are trans­
ferred to the main-storage input area.

WRITE MACRO

Name Opera"tion Operand

tYt [name] WRITE {Filename} . i~TER [,EOF] (1)
RZERO

The KEY, ID, or AFTER form of the instruc­
tion causes a record, which has been built
in an output area of main storage, to be
transferred from main storage to DASD
storage. The output area must be specified
in the DTFDA entry IOAREAl.

The first parameter specifies the sym­
bolic name of the file to which the record
is to be transferred. This name is the
same as the one specified in the DTFDA
header entry for this file and can be given
as a symbol or in register notation. The
second parameter specifies the type of
reference that is used for searching the
records on DASD to find the proper location
to write the output record. The third
parameter is optional and applies only to
the WRITE Filename,AFTER form of the macro
instruction.

The WRITE Filename,AFTER,EOF form of
the macro instruction is used to write an
end-of-file record (a record with a length
of zero) on a specified track after the
last record on this track.

The instruction WRITE Filename,RZERO is
used to reset the capacity record of a
specified track to its maximum value and
to erase this track after record zero.

If records in the file are specified as
undefined (RECFORM=UNDEF), the programmer
must determine the length of each record
and load it in a register for. Ioes use
before he issues the WRITE instructions
for that record. The register that will
be used for this purpose must be specified
in the DTFDA entry RECSIZE.

Record Reference by Key

If the DASD storage location for writing
records is determined by the record key
(control information in the key area of the

DASD record), the word KEY is entered as
the second parameter of the WRITE macro
instruction. Also the DTFDA entry WRITEKY
must be included in the file definition.

Whenever this method of reference is
used, the problem program must supply the
key of the desired record to IOeS before
the WRITE instruction is issued. For this,
the key must be stored in the key field
(specified by the DTFDA entry KEYARG) •

When the WRITE instruction is executed,
IOCS searches the previously specified
track (stored in the 8-byte track-reference
field) for the desired key. Then, when a
DASD record containing the specified key
is found, the data in the main storage
output area is transferred to the data area
of the DASD record. This replaces the
information previously recorded in the data
area. The DASD count field of the original
record controls the writing of the new
record. If a record is shorter than the
original record, it is padded with zeros.
A record longer than the original record
is written only to the extent of the area
indicated in the count field on the track,
and any excess bytes are lost. In either
case (short or long records) Ioes turns on
the wrong-length-record bit in the error­
status field.

Only the specified track is searched
unless the programmer requests that multi­
ple tracks be searched on each WRITE in­
struction. Searching multiple tracks is
specified by including the DTFDA entry
SRCHM in the file definition. In this
case, the specified track and all following
tracks are searched until the desired
record is found or the end of the cylinder
is reached. The search of multiple tracks
continues through the cylinder even though
part of the cylinder may be assigned to a
different logical file.

Record Reference by ID

If the DASD storage location for writing
records is determined by the record ID
(identifier in the count area of records),
the letters ID are entered as the second
parameter of the WRITE instruction. Also
the DTFDA entry WRITEID must be included in
the file definition.

Whenever this method of reference is
used, the problem program must supply both
the track information and the record number
in the 8-byte track-reference field. When
the WRITE instruction is executed, IOeS
searches the specified track for the parti­
cular record. When the DASD record con­
taining the specified ID is found, the
information in the main storage output area
is transferred to the key area (if present
and specified in DTFDA KEYLEN) and the data

Imperative Macro Instructions 51

area of the DASD record. This replaces the
key and data previously recorded. IOCS
uses the count field of the original record
to control the writing of the new record.
If a record is shorter than the original
record, it is padded with zeros. A record
longer than the or~ginal record is written
only to the extent of the area indicated in
the count field on the track, and any excess
bytes are lost. In either case (short or
long records) IOCS turns on the wrong­
length-record bit in the error/status field.

Record Reference: After

If a record is to be written following the
last record previously written on a track
(regardless of its key or IDI, the second
parameter of the WRITE instruction must be
the specification AFTER. For this opera­
tion the DTFDA entry AFTER must be included
in the file definition.

Whenever this method of reference is
used for writing records, the problem pro­
gram must supply the track information in
the first seven bytes of the a-byte track­
reference field. When WRITE is executed,
IOCS examines the capacity record (Record
0) on the specified track to determine the
location and amount of space available for
the record. If the remaining space is
large enough, the information in the main­
storage output area is transferred to the
track in the location immediately following
the last record. The count area, the key
area (if present and spec1fied by DTFD~
KEYLEN), and the data area are written.
IOCS then updates the capacity record.

If the space remaining on the track is
not large enough for the record, IOCS does
not write the record and, instead, sets an
indication in the user's error/status byte
(specified by the DTFDA entry ERRBYTE).

Whenever a new file is built in an area
of the disk pack or cell that contains
outdated records, the capacity records must
first be set up to reflect empty tracks.
An IBM-supplied utility program (Clear
Disk) is available to construct Record O.

Record Reference: RZERO

The RZERO instruction resets the capacity
record to reflect an empty track. The
problem program must supply, in SEEKADR,
the cylinder and track number of the track
to be reinitialized. Any record number is
valid but will be ignored. IOCS will write
a new RO with the maximum capacity of the
track (3625 for an IBM 2311; 2000 for an
IBM 2321) and will erase the full track
after RO.

52 DOS Sup. and I/O Macros

This macro should be used every time the
problem program wants to reuse a certain
portion of a pack. It may be used as a
utility function to initialize a limited
number of tracks or cylinders.

WAITF MACRO

Name Operation Operand

[name] WAITF {Filename}
(1)

The WAITF macro instruction is used to
ensure that the transfer of a record has
been completed. It requires only one
parameter: the name of the file containing
the record. The parameter can be specified
as a symbol or in register notation.

This instruction must be issued before
the problem program attempts to process an
input record or build another output record
for the file concerned. The program does
not regain control until the transfer of
data is complete. Thus, the WAITF macro
instruction must be issued after any READ
or WRITE instruction for a file, and before
the succeeding READ or WRITE instruction
for the same file.

The WAITF macro makes error/status in­
formation, if any, available to the problem
program in the field specified by DTFDA
ERRBYTE.

CNTRL MACRO

Name Operation Operand

{name] CNTRL {Filename},code
(1)

The CNTRL (control) macro instruction can
be used to begin access movement for the
next READ or WRITE for a file. It requires
two parameters.

The first parameter specifies the name
of the file, which is the same name as that
specified in the DTFDA header entry f07 the
file, and can be given as a symbol or 1n
register notation. The second parameter
must be the word SEEK (for 2311 and 2321)
or RESTR (for 2321 only). The seek address
must be provided in the field with the sym­
bolic name given in the DTFDA entry SEEKADR.

PROCESSING DASD RECORDS BY THE INDEXED
SEQUENTIAL SYSTEM

The Indexed Sequential File Management
System (ISFMS) permits DASD records to be
processed in random order or in sequential
order by control information. For random
processing, the user supplies the key
(control information) of the desired record
to ISFMS and issues a READ or WRITE macro
instruction to transfer the specified
record. For sequential processing by con­
trol information (key), the user specifies
the first record to be processed and then
issues GET or PUT macro instructions unti!
all desired sequential records have been
processed. The successive records are made
available in sequential order by key.
Variations in macro instructions permit:

• A logical file of records to be loaded
onto DASD (created).

• Individual records to be read from,
added to, or updated in the file.

Whenever the indexed sequential system
of processing is used, the logical file and
main-storage areas allotted to the file
must be defined by the declarative macro
DTFIS (Define The File for Indexed Sequen­
tial System). The detail parameter entries
for this definition are described under
Declarative Macro Instructions.

RECORD TYPES

When an ISFMS file is originally organized,
it is loaded onto the volume(s) from pre­
sorted input records. These records must
have been sorted by control information.
All records in the file must contain key
areas:

! count! ! Keyl

All keys must be the same length, and the
length must be specified in the DTFIS entry
KEYLEN.

The logical records must be fixed
length, and the length must be specified in
the DTFIS entry RECSIZE. Logical records
may be either blocked (two or more logical
records in one physical record) or un­
blocked (one logical record per one physical
record). This must be specified in the
DTFIS entry RECFORM. When blocked records
are specified, the key of the highest rec­
ord (last) in the block is the key for the
block and, therefore, must be stored in the
key area of the record. The number of
records in a block must be specified in the
DTFIS entry NRECDS.

STORAGE AREAS

Records in one logical file are transferred
to, or from, one or more I/O areas in main
storage. The areas must always be large
enough to contain the key area and a block
of records, or a single record if unblocked
records are specified. In addition, it
must allow space for the count area when a
file is to be loaded, or when records are
to be added to a file. For the functions
of adding or retrieving records, the I/O
area must also provide space for a se­
quence-link field that is used in conjunc­
tion with overflow records (see Addition
of Records and Overflow Areas). The .1/0
area requirements are illustrated sche­
matically in Figure 10 and described in
detail in the DTFIS entries IOAREAL,
IOAREAR, and IOAREAS •

Records may be processed directly in the
I/O area or in a work area. If the records
are to be processed in the I/O area, a
register must be specified in the DTFIS
entry IOREG. This is used for indexing, to
point to the beginning of each record and
thus locate the record for processing.

If the records are to be processed in a
work area, the DTFIS entry WORKL, WORKR,
or WORKS must be specified. ISFMS moves
each individual input record from the I/O
area to the work area where it is available
to the problem program for processing.
Similarly, on output ISFMS moves the com­
pleted record from the work area to the
I/O area where it is available for transfer
to DASD storage. Whenever a work area is
used, a register is not required.

ORGANIZATION OF RECORDS ON DASD

When a logical file of presorted records is
loaded into DASD, ISFMS organizes thee file
in a way that allows the user to have
access to any record, in the most efficient
manner.

Reference can be made to records at
random throughout the logical file, or to a
series of records in the file in their pre­
sorted sequence (collating sequence). The
organization also provides for additions to
the file at a later time, while still main­
taining both the random and sequential
reference capabilities.

ISFMS loads the records, one after the
other, into a specified area of the DASD
volume. This is called the prime area of
the logical file on DASD. The starting and
ending limits of this area are specified by
the user in Job Control XTENT cards.

Imperative Macro Inst~uctions 53

LOAD

I Count

I I \

Length_: 8
(Bytes) It KEYLEN=n jooI:-~------- RECSIZE x NRECDS -------.~:

I (Minimum size = 10) \

IOAREAL

ADD - Unblocked Records

I I
Data (Unused)

I
Count Key I or

SL I Data
I

I I I I

Length_I 8 I KEYLEN=n 10 I. RECSIZE=n .1
(Bytes) l t I NRECDS=1 I I

I I I
IOAREAL

ADD - Blocked Records

Key (of last
Count record in the Doto

block)

\

Length_: 8
(Bytes) It

1 I I

I KEYLEN=n 1._-------RECSIZE x NRECDS --------..1. I I I (Minimum size = One record + 10) I
IOAREAL

SEQUENTIAL RETRIEVE -Unblocked Record

Data (Unused) I
~-----~i-------------or----------------~------~.

SL

I

\
I Data

Length __ : KEYLEN=n
(Bytes) 1+

10 1'-1_-----__ RECSIZE=n _________ -+1
1

,- NRECDS=1 .. ,
I I

IOAREAS

(Unused)
or------------------~---~

length
(Bytes)

Data

, I
~ 10 ""', __ -----------RECIZE = n ---------------....... \

\ t I NRECDS = 1 I
IOAREAR

RETRIEVE - Sequential or Ro'ndom Blocked Records

~---------.Re-c-~-d-J--------R-ec-~-d-2----------~-C-~-d-3----~ . Sl Rec~d length ~
\ \
1 I

Length - li"'I .. ---------- RECSIZE x NRECDS ---------.... ,
(Bytes) t (Minimum size = One record + 10) 1

IOAREAR
or
IOAREAS

S L = Sequence Li nk

Figure 10. Schematic of I/O Areas in Main Storage, for ISFMS

54 DOS Sup. and I/O Macros

Indices

As ISFMS loads a file of records sorted by
control information, it builds a set of
indices for the file. The indices are
utilized for both random and sequential
reference to records as follows:

• They permit rapid access to individual
records for random processing.

• They supply the means of providing
records in key order during sequential
processing.

Either two or three indices are built,
depending on the user's specifications.
Both a track index and a cylinder index are
always constructed. A master index is also
constructed if the DTFIS entry MSTIND is
included in the file definition.

Once a file has been loaded and the
related indices have been built, the ISFMS
routines search for specified records by
referring to the indices. When a particu­
lar record (specified by key) is requested
for processing, ISFMS searches the master
index (if used), then the cylinder index,
then the track index, and finally the indi­
vidual track. Each index narrows the
search by pointing to the portion of the
next-lower index whose range includes the
specified key. Because of the high speed
and efficiency of the direct access devices
in a System/360, a master index should be
established only for exceptionally large
files, for which the cylinder index occu­
pies several tracks (possibly five or
more). That is, it is generally faster to
search only the cylinder index (followed by
the track index) when the cylinder index
occupies four or less tracks.

TRACK INDEX

The indices are made up of a series 'of
entries, each of which includes the address
of a track and the highest key on that
track or cylinder. Each entry is a separ­
ate record composed of both a key area and
a data area. The key area contains the
highest key on the track or cylinder, and
its length is the same as that specified
for logical data records (in the DTFIS
entry KEYLEN). The data area of each index
is ten bytes long, and it contains track
information including the track address.

Key Area Data Area

Track Index

The track index is the lowest-level index
for the logical file. A separate track
index is built for each cylinder used by
the file, and it contains index entries for
that cylinder only. Each track index is
located on the cylinder that it is index­
ing. It is always on the first track of
that cylinder.

When the track indices are originally
constructed, they contain two similar
entries (normal and overflow) for each
track utilized on the cylinder. For exam­
ple, if the prime area of the logical file
utilizes eight tracks on a cylinder, the
track index might contain the entries shown
in Figure 11. The use of two index records
for each track is required because of over­
flow records that will occur if more
records are inserted in the file at a later

GEJ Track I [0 Track 1 ~ Track 2 ~ Track 2
Address COCR 75

~ 240

K

IAr'l
~

0

Track 3
Address

0

K 0

Dummy Entry

K = Key Area
0= Data Area

K

Address 75

0 K

[;] Track 3
240 Address

K 0

COCR = Cyl inder Overflow Control Record (RO)

Address 150 Address

0 K 0

--------1 ~;61 Track 8
Address

K 0

150

K

~ 980

K

o

Track 8
Address

o

Figure 11. Schematic Example of a Track Index

Imperative Macro Instructions 55

time (see Addition of Records and Overflow
Areas). When overflow records for a track
exist, the second (overflow) index record
contains the key of the highest record in
the overflow chain and the address of the
lowest record in the overflow cha1n for the
track. The dummy entry indicates the end
of the track index. Any following records
are logical-file data records.

Cylinder Index

The bar-position address of a 2321 data
cell corresponds to the cylinder of a 2311
disk drive in ISFMS. References to cylin­
der also apply to the 2321. The -cylinder
index is an intermediate level index for
the logical file. It contains an index
entry for each cylinder occupied by the
file. This index is built in the location
specified by the user in a Job Control
XT~NT card. The cylinder index may be
bU1lt wherever the user chooses, but it may
not be on one of the cylinders that con­
tains data records for this file. It must
be on a separate cylinder, or it may be on
a separate volume that will be on-line
whenever this logical file is processed.

The cylinder index may be located on one
or more successive cylinders. Whenever the
index is continued from one cylinder to
another, the last index entry on the first
cylinder contains a linkage field that
points to the first track of the next cyl­
inder. A cylinder index may not be contin­
ued from one volume to another, however.
It must be completely contained within one
volume.

This index contains one entry for each
cylinder occupied by the data file. The
key area contains the highest key associ­
ated with the c~linder, and the data area
contains the ad ress of the track index for

CYLINDER INDEX

that cylinder. For example if a file
requires nine cylinders, the cylinder index
might contain the entries shown in Figure
12. The dummy entry indicates the end of
the cylinder index.

.Master lndex

The master index is the highest-level index
for a,logical f~le built by the IBM System/
360 D1sk Operat1ng System. This index is
optional, and it is built only if it is
specified by the DTFIS entry MSTIND. It is
built in the location specified by a Job
Control XTENT card. Like the cylinder
index, it may be located on the same volume
with the logical-file records or on a dif­
ferent volume that will be on-line whenever
the records are processed.

The master index must immediately pre­
cede the cylinder index on a volume, and it
may be located on one or more successive
cylinders. Whenever it is continued from
one cylinder to another, the last index
entry on the first cylinder contains a
linkage field that points to the first
track of the next cylinder. A master index
may not be continued from one volume to
another, however. It must be completely
contained within one volume.

The master index contains an entry for
each track of the cylinder index. The key
area,contains the highest key on the cylin­
der 1ndex track, and the data area contains
the address of that track. For example if
a master index is located on track x and a
cylinder index is located on tracks x+l
through x+20, the master index might con­
tain the entries shown in Figure 13. The
dummy entry indicates the end of the master
index.

§ Cylinder 1

~
Cylinder 2 ---------1 ~;rO I Cyl inder 9

980
Track 1

1850
Track 1 Track 1

Address Address Address

K

[AtIl
~

0

K 0
Dummy Entry

K = Key Area
0= Data Area

K 0

Figure 12. Schematic Example of a Cylinder Index

56 DOS Sup. and I/O Macros

K 0

MASTER INDEX

§ Track X + 1
4730 Address

K

fAiiI
~

D

K D
Dummy Entry

K = Key Area
D = Data Area

§ 8560

K

Track X + 2

~
Track X + 3 ------n--I~~ol Track X + 20

Address 12750 Address Address

D K D K D

Figure 13. Schematic Example of a Master Index

ADDITION OF RECORDS AND OVERFLOW AREAS

After a logical file has been organized on
DASD, it may subsequently become necessary
to add records to the file. These records
may contain keys that are above the highest
key presently in the file and, thus, con­
stitute an extension of the file. Or, they
may contain keys that fall between keys
already in the file and therefore require
insertion in the proper sequence in the
organized file.

If all records to be added have keys
that are-bigher than the highest key in the
organized file, the upper limit of the
prime area of the file can be adjusted Cif
necessary} by the specification in a Job
Control XTENT card, and the new records can
be added by presorting them and loading
them into the file. No overflow area is
required. The file is merely extended
further on the volume. However, new rec­
ords can be batched with the normal addi­
tions and added to the end of the file.

If records must be inserted among those
already organized, however, an overflow
area will be required. ISFMS uses the
overflow area to permit the insertion of
records without necessitating a complete
reorganization of the established file.
The fast random and sequential retrieval of
records is maintained by inserting refer­
ences to the overflow chains in the track
indices, and by using a chaining technique
in the overflow records. For chaining, a
sequence-link field is prefixed to the
user's data record in the overflow area.
The sequence-link field contains the address
of the record in the overflow area that has
the next-higher key. Thus a chain of se­
quential records can be followed in a search
for a particular record. The sequence-link
field of the highest record in the chain
indicates the end of the chain. All records

in the overflow area are unblocked, regard­
less of the specification (in DTFIS RECFORM)
for the data records in the logical file.

To add a record by insertion, ISFMS
searches the established indices first to
determine on which track the record must be
inserted. The keys-or-the last records on
the tracks in the originally-Qrganized file
determine the track where an inserted rec­
ord belongs. A record is always inserted
on the track where:

1. The last key is higher than the inser­
tion, and

2. The last key of the preceding track is
lower than the insertion.

For example, assume Tracks 2 and 3 are
organized with the record keys shown in
Figure 14. Then records with keys such as
lSI, 175, 199, 215, and 239 are inserted on
Track 3 (or in the related overflow chain
that has developed). Any key lower than
150 is added to either Track 1 or Track 2;
any key higher than 240 belongs to Track 4
or above. The track indices always retain
the highest key of each track as it was
originally organized.

After the proper track is determined,
ISFMS searches the individual records on
the track or overflow area (if necessary)
to find where the record belongs in key
order. This results in either of two con­
ditions:

1. The record falls between two records
presently on the track. ISFMS adds the
record by inserting it in the proper
sequence and shifting each succeeding
record one record location higher on
the track, until the end record is
forced off the track. ISFMS transfers
the end record to the overflow area,

Imperative Macro Instructions ~7

DATA RECORDS

Track 21 ~;61 Data @D 125 Data �-------1 ~:61 Data
rKe;l
~

Data

Track 3~
~

Data ~ 205
Data 1-------I ~;61 Data ~

~
Data

Figure 14. Example of Data Records as Originally Organized on Tracks 2 and 3

and prefixes the record (data area)
with a sequence-link field. The first
time a record is inserted on a track,
the sequence-link of the overflow rec­
ord indicates that this is the highest
record associated with the track.
Thereafter, the sequence-link field of
each overflow record points to the
next-higher record for that track.

ISFMS also updates the track index
to reflect this change. The first
index record for the track has the key
field changed to indicate the new last­
record located on the track. The
second index record for the track has
the track address (in the data area)
changed to point to the address of the
overflow record. If a record with key
105 is added to a file organized as
shown in the previous illustrations and
if the overflow area is located on
Track 9, the track index records con­
tain the information shown in Figure 15.

2. The record falls between the last
record presently on the track and the
last record originally on the track.
Thus, it belongs in the overflow area.
ISFMS writes the record in the overflow
area following the last record pre­
viously written. ISFMS searches through
the chain of records associated with
the corresponding track for this record
and identifies the sequential position
the record should take. Then the
sequence-link fields of the new record,
and of the record preceding it by
sequential key, are adjusted to point
to the proper records. If records 150,

INDEX ENTRIES FOR ONE TRACK

Before
Addition

After
Addition

~
~

~
~

Track 2
Address

Track 2
Address

§ Track 2
150 Address

§ Track 9
Record X

150 Address

Figure 15. Example of Track Index Entries
Before and After Addition of a
Record on Track 2

58 DOS Sup. and I/O Macros

140, and 130 are already in the over­
flow area and record 135 is to be added,
for example, the sequence-link fields
of records 130 and 135 must be adjusted
(Figure 16).

Overflow-Area Option: The location of
the overflow area(s) for a logical file may
be specified by the user. The overflow
areas may be built by one of three methods:

1. Overflow areas for records may be lo­
cated on each cylinder within the
prime area that is specified by a
Job Control XTENT card for the data
file. In this case the user must
specify the number of tracks to be
reserved for overflow on each cylinder
occupied by the file. The overflow
records that occur within a particular
cylinder are written in the cylinder
overflow area for that cylinder.

The number of tracks to be reserved
for each cylinder overflow area must be
specified in the DTFIS entry CYLOFL
when a file of records is to be loaded
and when records are to be added to an
organized file.

2. An independent overflow area may be
specified for storing all overflow rec­
ords for the logical file. In this
case a Job Control XTENT card must be
included when the program is executed
to specify the area of the volume to be
used for the overflow area. This area
may be on the same volume with the data
records, or on a different volume that
is on-line. However, it must be con­
tained within one volume. (It must be
the same kind of device as that con­
taining the prime data area.)

RECORD
SEQUENCE-LINK FIELD

Before Addition After Addition

130 140 135

135 - 140
(New Record)

Figure 16. Example of Sequence Link Fields
Adjusted for Addition of a
Record 135

3. Both cylinder overflow areas (method 1)
and an independent overflow area
(method 2) may be used. In this case
overflow records are placed first in
the cylinder overflow areas within the
data file. When any cylinder overflow
area becomes filled, the additional
overflow records from that cylinder are
written in the independent overflow
area. The specifications required for
both methods 1 and 2 must be included
for this combined method of handling
overflows.

All records placed in the overflow area
will be in the unblocked format and will
have prefixed to each record a sequence­
link field. There must always be one prime
data track available (for a DASD record
which has a data length of zero) when addi­
tions are being made to the last track in
the prime data area containing records.

EXAMPLE OF AN ORGANIZED FILE

A simplified example of a file organized on
DASD by the Indexed Sequential File Manage­
ment System is shown schematically in Fig­
ure 17. Figure 17 is an illustration of an
organized file for an IBM 2311 DASD with
the last two tracks on each cylinder used
for the overflow area. The same file would
have similar characteristics if it was
created on another IBM DASD type. The
assumptions made and the items to be noted
are:

1. The track index occupies part of the
first track, and data records occupy
the rest of the track.

2. The data records occupy part of Track
o and all of Tracks 1-7. Tracks 8 and
9 are used for overflow records in
this cylinder.

3. The master index is located on Track X
on a different cylinder. The cylinder
index is located on Tracks X+l through
X+20.

4. A dummy entry signals the end of each
index.

5. The file was originally organized with
records as follows:

Track Records

1
2
3

8

5-75
100-150

900-980

6. The track index originally had two
entries for each track. It now shows
that overflow records have occurred
for Tracks 1 and 7.

7. Records 150, 140, and 130 were forced
off the track by insertions on the
track. Record 135 was added directly
in the overflow area.

8. A sequence-link field (SL) has been
prefixed to each overflow record. The
records for Track 1 can be searched in
sequential order by following the SL
fields:

Record

130

135

140

Sequence-Link Field (SL)

SL points to record with key
135.

SL points to record with key
140.

SL points to record with key
150.

150 End of search. (Key 150 was
the highest key on Track 2
when the file was loaded.)

9. When the file was loaded, the last
record on Cylinder 1 was Record 980,
on Cylinder 2 Record 1850, and on
Cylinder 9 Record 4730. This is
reflected in the cylinder index. The
first entry in the master index is the
last entry of the first track of the
cylinder index.

10. When cylinder overflow areas are used,
the first record (Record 0) in the
track index for a cylinder is the
Cylinder Overflow Control Record (COCR).
It contains the address of the last
overflow record on the cylinder and
the number of tracks remaining in the
cylinder overflow area. When the num­
ber of remaining tracks is zero, over­
flow records are written in the inde­
pendent area. The format of record
zero data field is as follows:
HHRBBTXX

HH - last cylinder overflow track con­
taining the records.

R - last overflow record on the track.

BB - the number of bytes remaining on
the track (for fixed-length records
this will be binary zeros).

T - the number of remaining tracks
available in the cylinder overflow
area.

xx - reserved (with binary zeros).

Imperative Macro Instructions 59

0'\ I'%j
0 1-'-

I.Q Track
s:: 0
11

t:l CD
0
C/) I--'

-..J
C/)

~
to

C/)

0
Pl ::r
!j CD
p.. S

Pl
H rt

........... 1-'-
0 0

:s: 0
Pl Hl
0
11 Pl
0
en I'%j

1-'-
I--'
CD

0
!j

IV
LV
I--'
I--'

t:l
~
C/)

t:l

0
Ii

\.Q
Pl
!j
1-'-
N
CD
p..

tJ'
"<:

H
Ul
I'%j

:s:
Ul

TRACK INDEX

D

DA T A RECORDS

Track
1 1,00 : OWo I'~ 0.0 ((--]n' i '- 1,>0 i 0.0 ~

D DOD

DATA RECORDS

Track
2 ~ 1,,0 OWo /(-=r" i 0.0 I'w i 00>0

o 0 ' D

DATA RECORDS

;.~. Ef 0.0 H ,"0 II Ho-I W, 00>0 -I
K 0 D K D K D

----------------------------------~--

Track
8

Track
9

Track
X

Tlock
X + 1

OVERflOW DATA RECORDS

I

150 : Sl :
: * I

Data

o
OVERflOW DATA RECORDS

MASTER INDEX

D

CYLINDER INDEX

K = Key Area
o - Ooto Area

140

D

Sl
to !
150 I

D

Sl = Sequence Link ·SL indicates the end of the overflow chain_
COCR ; Cylinder Overflow Control Record (Contained in RJI)

o

130
Sl Data

1

980
to ~ Sl

135 I
Data

D D

Data

o

135 Sl
to i
140 I

D

D

Data

D

o

MACRO INSTRUCTIONS TO LOAD OR EXTEND A
DASD FILE BY ISFMS

The function of originally loading a file
of presorted records onto DASD, and the
function of extending the file by adding
new presorted records beyond the previous
high record, are the same. Both are con­
sidered a LOAD operation (specified by the
DTFIS entry IOROUT), and they both use the
same macro instructions in the problem
program. However, the type field in the
DLAB card must specify ISC for load crea­
tion and ISE for load extension.

The areas of the volumes used for the
file are specified by Job Control XTENT
cards. The areas are: the prime area
where the data records are written, a
cylinder index area where the user wants
ISFMS to build the cylinder index, and a
master index area if a master index is to
be built (specified by the DTFIS entry
MSTIND) .

During the load operation, ISFMS builds
the track, cylinder, and master (if speci­
fied) indices.

Three different macro instructions are
always required in the problem program to
load original or extension records into
the logical file on DASD.

SETFL MACRO

Name Operation Operand

[name] SETFL {Filename}
(0)

The SETFL (set file load mode) macro in­
struction causes ISFMS to set up the file
so that the load function can be performed.
SETFL pre formats the last track index of
each cylinder of a file with zero entries.
The name of the file to be loaded is the
only parameter required in this instruc­
tion. This name is the same as that speci­
fied in the DTFIS header entry for this
file. It can be specified as a symbol or
in register notation.

This macro must be issued whenever the
file is to be loaded or extended.

WRITE MACRO

Name Operation Operand

[name] WRITE {Filename},NEWKEY
(1)

When a WRITE macro instruction with the
parameter NEWKEY is issued in the problem
program between a SETFL instruction and an
ENDFL instruction (the third macro required
for loading), it causes ISFMS to load a
record onto DASD.

It requires two parameters. The first
specifies the name of the file specified
in the DTFIS header entry. The filename
can be specified as a symbol or in register
notation. The second parameter must be the
word NEWKEY.

Before issuing the WRITE instruction,
the problem program must store the key and
data portions of 'the record in a work area
(specified by OTFIS WORKL). The ISFMS
routines construct the I/O area (see Figure
10) by moving the data record to the data
area, moving the key to the key area, and
building the count area. When the l/O
area has been filled, ISFMS transfers the
records to OASO storage and then constructs
the count area for the next record. The
WAITF macro should not be used when loading
or extending an ISFMS file.

Before records are transferred, ISFMS
performs both a sequence check (to ensure
that the records are in order by key) and
a duplicate-record check.

After each WRITE is issued, ISFMS makes
the 10 of' that record or block available to
the problem program. The IO is located in
an 8-byte field labeled FilenameH. (File­
name cannot exceed 7 characters.) For ex­
ample, if the file name in the OTFIS header
entry is PAYRO, the 10 field is addressed
by PAYROH. By reference to this field, the
10 of any selected records can be punched
or printed for later use. This will be
required if the user plans to retrieve rec­
ords in sequential order starting with the
10 of a particular record (see SETL Macro) .

Imperative Macro Instructions 61

As records are loaded onto DASD, ISFMS
writes track-index records each time a
track is filled, writes a cylinder-index
record each time a cylinder is filled, and
writes a master-index record (if DTFIS
MSTIND is specified) each time a track of
the cylinder index is filled.

ENDFL MACRO

Name Operation Operand

[name] ENDFL {Filename}
(0)

The ENDFL (end file load mode) macro
instruction ends the mode initiated by the
SETFL macro. The name of the file that has
been loaded is the only parameter required
in this instruction. This name is the same
as the name specified in the DTFIS header
entry for this file. It can be specified
as a symbol or in register notation.

The ENDFL macro performs a close-like
operation for the file that has been loaded.
It writes the last block of data records,
if necessary, and then writes an end-of­
file record after the last data record. It
writes any index entries that are needed.
It also writes dummy index entries for the
unused portion of the prime data XTENT.

MACRO INSTRUCTIONS TO ADD RECORDS TO A
DASD FILE BY ISFMS

After a file has been organized on DASD,
new records can be added to the file. Each
record is inserted in the proper place
sequentially by key. This function is
provided by specifying ADD or ADDRTR in the
DTFIS entry IOROUT.

The file may contain either blocked or
unblocked records, as specified by the
DTFIS entry RECFORM. When the file con­
tains blocked records, the user must pro­
vide ISFMS with the location of the key
field that is provided through the DTFIS
entry KEYLOC. The records to be inserted
are written one record at a time. The rec­
ords must contain a key field in the same
location as the records already in the file.
Whenever the addition of records is to
follow sequential retrieval (ADDRTR) the
macro instruction ESETL must be issued be­
fore a record is added.

62 DOS Sup. and I/O Macros

Two macro instructions, WRITE and WAITF,
are used in the problem program for adding
records to a file.

WRITE MACRO

Name Operation Operand

[name] WRITE {Filename},NEWKEY
(1)

The operand Filename is the same name that
is contained in the DTFIS header entry.
The name can be specified as a symbol or in
register notation.

Before the WRITE macro is issued for un­
blocked records, the program must store the
record (key and data) to be added into a
work area specified in the DTFIS entry
WORKL. For blocked records, the program
must store only the data (the key is assumed
to be a part of the data). Before any
records are transferred, ISFMS checks for
duplicate record keys. If no duplication
is found, ISFMS will insert the record in
the file.

To insert a record into a file, ISFMS
performs an index search at the highest
level index. This search determines if the
record to be inserted can be placed within
the file, or if it is higher than the last
record on the file.

If the record can be inserted within the
file, searching of the master index (if
available), the cylinder index, and the
track index determines the appropriate
location to insert the record.

For an entry to an unblocked file, an
equal/high search is performed in the prime
data area of the track. When a record on
the track is found that is equal or higher
than the record to be inserted, the record
is read from the track and placed in main
storage (in the I/O area). The two records
are compared to see if a duplicate record
is found. If a duplication is found, that
information will be posted to the user in
the DTF table at FilenameC. If no duplicate
is found, the appropriate record (in the
user's work area) is written directly to
the track. The record (just displaced from
the track) in the I/O area is moved by ISFMS
to the user's work area.

The next record on the track is read into
the I/O area. Then the record in the work
area is written on the track. Succeeding
records are shifted until the last record
on the track is set up as an overflow
record. This last record is then written

into the appropriate overflow area, and the
appropriate track index entries are updated.
This is the cylinder overflow area, if
CYLOFL has been specified for this file
and the area has not been filled.

If the cylinder overflow area is filled,
or if only an independent area has been
specified by a Job Control XTENT card, the
end record is transferred to the independent
overflow area. If an independent overflow
area has not been specified (or is filled)
and the cylinder area is filled, there is
no room available to store the overflow
record. ISFMS will post this condition in
the DTF table at FilenameC.

In all cases, before any records are
written, ISFMS determines if room is
available.

For an entry to a blocked file, the
work area, WORKL, is required in the DTFIS
entries. Each record to be added must con­
tain a key field in the same location as
the records already in the file. The high­
order position of this key field, relative
to the leftmost position of the logical
record, must be specified to ISFMS by the
user. The DTFIS entry KEYLOC is used for
this specification.

When the WRITE macro is issued in the
problem program, ISFMS first locates the
correct track by referring to the necessary
master (if available), cylinder, and track
indices. Then a search on the key areas of
the DASD records on the track is made to
locate the desired block of records. The
block of records is read into the I/O area.
ISFMS then examines the key fields within
each logical record to find the exact posi­
tion to insert the record. ISFMS checks
for duplication of records. If an equal
condition exists, the information is posted
in FilenameC. If the record is. high, the
record in this position is exchanged with
the record to be inserted (contained in
the work area WORKL).

This procedure continues with each suc­
ceeding record in the block until the last
record is moved into the work area. ISFMS
then updates the key area of the DASD rec­
ord and writes the block back onto DASD.
The remaining blocks on the track are simi­
larly processed until the last logical
record on the track is moved into the work
area. This record is then set up as an
overflow record with the proper sequence­
links, and moved to the overflow area.
The indices are updated and ISFMS returns
to the problem program for the next record·
to be added. If the overflow area is
filled, the information will be posted in
FilenameC.

If the proper track for a record is an
overflow track (determined by the track
index), ISFMS searches the overflow chain
and checks for duplication. If no dupli­
cation is found, ISFMS writes the record,
preceded by a sequence-link field in the
data area of the DASD record, and adjusts
the appropriate linkages to maintain
sequential order by key. ISFMS writes the
new record in either the cylinder overflow
area or the independent overflow area. If
these areas are filled, the user will be
notified by a bit in FilenameC.

If the new record is higher than all
records presently in the file (end-of­
file), ISFMS checks to determine if the
last track containing data records is
filled. If it is "not, the new record is
added, replacing the end-of-file record.
The end-of-file record is written in the
next record location on the track, or on
the next available prime data track. An­
other track must be available within the
file limits. If the end-of-file record is
the first record on a track, the new record
is written in the appropriate overflow
area. After each new record is inserted
in its proper location, ISFMS adjusts all
indices that are affected by the addition.

MACRO INSTRUCTIONS FOR RANDOM RETRIEVAL BY
ISFMS

When a file has been organized by ISFMS,
records can be retrieved in random order
for processing and/or updating. Retrieval
must be specified in the DTFIS entry
IOROUT (IOROUT=RETRVE or IOROUT=ADDRTR).
Random processing must be specified in the
DTFIS entry TYPEFLE=RANDOM.

Because random reference to the file is
by record key, the problem program must
supply the key of the desired record to
ISFMS. To do this, the key must be stored
in the main storage key field specified by
the DTFIS entry KEYARG. The specified key
designates both the record to be retrieved
and the record to be written back into the
file in an updating operation.

Three macro instructions are available
for use in the problem program for retriev­
ing and updating records randomly.

Imperative Macro Instructions 63

READ MACRO

Name Operation Operand

[name] READ {Filename},KEY
(1)

The READ instruction causes ISFMS to
retrieve the specified record from the
file. This instruction requires two param­
eters. The first parameter specifies the
name of the file from which the record is
to be transferred to main storage. This
name is the same as the name specified in
the DTFIS header entry for this file and
can be specified as a symbol or in register
notation. The second parameter must be the
word KEY.

To locate the record ISFMS searches the
indices to determine the track on which
the record is stored, and then searches the
track for the specific record. When the
record is found, ISFMS transfers it to the
I/O area specified by the DTFIS entry
IOAREAR. The ISFMS routines also move the
record to the specified work area if the
DTFIS entry WORKR is included in the file
definition.

When records are blocked, ISFMS trans­
fers the block that contains the specified
record to the I/O area. It makes the indi­
vidual record available for processing
ei the"r in the I/O area or the work area
(if specified). For processing in the I/O
area, ISFMS supplies the address of the
record in the register specified by DTFIS
IOREG. The ID of the record can be refer­
enced using FilenameG.

WRITE MACRO

Name Operation Operand

[name] WRITE {Filename},KEY
(1)

The WRITE instruction with the parameter
KEY is used for random updating. It causes
ISFMS to transfer the specified record from
main storage to DASD storage. This instruc­
tion requires two parameters. The first
parameter specifies the name of the file to
which the record is to be transferred.
This name is the same as the name specified
in the DTFIS header entry and in the pre­
ceding READ instruction for this file. The
name can be specified as a symbol or in
register notation. The second parameter
must be the word KEY.

64 DOS Sup. and I/O Macros

ISFMS rewrites the record retrieved by
the previous read instruction for the same
file. The record is updated from the work
area if one is specified, otherwise from
the I/O area. The key need not be speci­
fied again ahead of the WRITE instruction.

WAITF MACRO

Name Operation Operand

[name] WAITF { Filename}
(1)

The WAITF macro instruction is issued to
ensure that the transfer of a record has
been completed. It requires only one
parameter: the name of the file to which
the record is being transferred. The name
can be specified as a symbol or in register
notation.

This instruction must be issued before
the problem program attempts to process an
input record or build another output re­
cord for the file concerned. The program
does not regain control until the previous
transfer of data is complete.

The WAITF instruction posts any excep­
tional information in the DTFIS table at
FilenameC.

The WAITF instruction applies to the
functions described in Macro Instructions
to Add Records to a File by ISFMS, and
Macro Instructions for Random Retrieval by
ISFM5.

MACRO INSTRUCTIONS FOR SEQUENTIAL RETRIEVAL
BY ISFMS

When a file has been organized by ISFMS,
records can be retrieved in sequential
order by key for processing and/or updating.
The DTFIS entry IOROUT=RETRVE must be
specified. Sequential processing must be
specified in the DTFIS entry TYPEFLE=SEQNTL.

Although records are retrieved in order
by key, sequential retrieval can start at
a record in the file identified either by
key or by the ID (identifier in the count
area) of a record in the prime data area.
Or, sequential retrieval can start at the
beginning of the logical file. The user
specifies, in SETL, the type of reference
he will use in the problem program.

Whenever the starting reference is by
key and the file contains blocked records
(RECFORM=FIXBLK), the user must also pro­
vide ISFMS with the position of the key
field within the records. This is speci­
fied in the DTFIS entry KEYLOC. To search
for a record, ISFMS first locates the
correct block by the key in the key area

The SETL (set limits) macro instruction
initiates the mode for sequential retrieval
and initializes the ISFMS routines to be­
gin retrieval at the specified starting
address. It requires two parameters. The
first operand (Filename) specifies the

of the DASD record. (The key area contains
the key of the highest record in the block.)
Then, ISFMS examines the key field within
each record in the block to f1nd the speci­
fied record.

name of the file, specified in the DTFIS
header entry, from which records are to be
retrieved. The name can be given as a
symbol or in register notation. Special
register notation is not necessary to allow
the macro to be used in a self-relocating
program.

Four macro instructions are available
for use in the problem program for retriev­
ing and updating records sequentially.

The second operand specifies where proc­
essing is to begin. If the user is proc­
essing by the record ID, the operand

SETL MACRO

Name

[name]

Byte

0

1-2

3-4

5-6

7

Operation Operand

SETL {Fil~~;""e}, Wd7~eH

p~~ ~
GKEY

Idname or (r) specifies the symbolic name
of the main-storage field in which the
user will supply the starting (or lowest)
reference for ISFMS use. The symbolic
field will contain the following
information:

Pointer to First Record to be Processed by Sequential Retrieval

Identifier Contents Information

M 2-245 Number of the extent in which the starting
record is located.

B,B 0,0 (for 2311) Always zero for 2311. Cell number for 2321.
0, 0-9 (for
2321)

C,C 0, 1-199 (for Cylinder number for 2311. Sub-cell and strip
2311) 0-19, for 2321.
0-9 (for 2321)

Note: The last four strips on each cell are
reserved for alternate tracks.

H,H 0,0-9 (for Head position for 2311. Cylinder and head
2311) 0-4,0-19 for 2321.
(for 2321)

R 1-254 Record location.

Imperative Macro Instructions 65

If processing is to begin with a key
supplied by the user, the second operand
is KEY. The key will be supplied by the
user in the field specified by the DTFIS
entry KEYARG. If the specified key is not
present in the file, an indication will be
given at FilenameC.

The second operand BOF specifies that
retrieval is to start at the beginning of
the logical file.

Selected groups of records within a
file containing identical characters or
data in the first locations of each key
can be processed by specifying GKEY in the
second operand. The GKEY specification
allows processing to begin at the first
record (or key) within the desired group.
The user must supply a key that will iden­
tify the significant (~igh order) bytes of
the required group of keys. The remainder
(or insignificant) bytes of the key must
be padded with blanks, binary zeros, or
bytes lower in collating sequence than any
of the insignificant bytes in the first
key of the group to be processed. For ex­
ample, a GKEY specification of D6420000
would permit file processing to begin at
the first record (or key) containing
D642xxxx, regardless of the characters
represented by the x's.

This method also allows starting at a
key equal-to or greater-than the one speci­
fied in the DTFIS entry KEYARG without
getting an error indication in FilenameC.

GET MACRO

Name Operation Operand

[name] GET {Fi~~)ame}[{wo{~)ameE

The GET macro instruction causes ISFMS to
retrieve the next record in sequence from
the file. It can be written in either of
two forms, depending on where the record
is to be processed.

The first form is used if records are
to be processed in the I/O area (specified
by DTFIS IOAREAS). It requires only one
parameter, which is the name of the file
from which the record is to be retrieved.
This is the same name as that specified in
the DTFIS header entry. The name can be
specified as a symbol or in register
notation. ISFMS transfers the record from
this file to the I/O area, and the record
is available for the execution of the next
instruction in the problem program. The
key is located at the beginning of IOAREAS
and the register (IOREG) points to the

66 DOS Sup. and I/O Macros

data. If blocked records are specified,
ISFMS makes each record available by
supplying its address in the register
specified by the DTFIS entry IOREG. The
key is contained in the record.

The second form of the GET instruction
is used if records are to be processed in
a work area (DTFIS specifies WORKS). It
requires two parameters both of which can
be specified as symbols or in register
notation. The first is the name of the
file, and the second is the name of the
work area. When using register notation,
workname should not be pre loaded into reg­
ister 1. The record is available for the
execution of the next program instruction.

If blocked records are specified in the
file definition, each GET that transfers a
block of records to main storage will, if
necessary, also write the preceding blank
back into the file in its previous location.
GET writes the preceding block if a PUT
instruction has been issued for at least
one of the records in the block. If no PUT
instructions have been issued, updating is
not required for this block and GET does
not write the block. The ID of the record
or block can be referenced by FilenameH.

PUT MACRO

Name Operatlon Operand

[name] PUT {Fi~~)ame}~{wo{~)ame}J

The PUT macro instruction is used for
sequential updating of a file, and causes
ISFMS to transfer records to the file in
sequential order. PUT returns a record
that was obtained by a GET. It may be
written in either of two forms, depending
on where records are processed.

The first form is used if records are
processed in the I/O area (specified by
DTFIS IOAREAS). It requires only the name
of the file to which the records are to be
transferred. This is the same as specified
in the DTFIS header entry and can be speci­
fied in register notation or as a symbol.

The second form of the PUT instruction
is used if records are processed in a work
area. It requires two parameters, both of
which can be specified either as a symbol
or in register notation. The first is the
name of the file, and the second is the
name of the work area. When using register
notation, workname should not be loaded
into register 1. The work area name may
be the same as that specified in the pre­
ceding GET for this file, but this is not

required. ISFMS moves the record from the
work area specified in the PUT instruction
to the I/O area specified for the file in
the DTFIS entry IOAREAS.

When unblocked records are specifieq,
each PUT writes a record back onto the
file in the same location from which it
was retrieved by the preceding GET for this
file. Thus, each PUT updates the last
record that was retrieved from the file.
If some records do not require updating, a
series of GET instructions can be issued
without intervening PUT instructions.
Therefore, it is not necessary to rewrite
unchanged records.

When blocked records are specified, PUT
instructions do not transfer records to
the file. Instead, each PUT indicates that
the block is to be written after all the
records in the block have been processed.
When processing for the block is complete
and a GET is issued to read the next
block into main storage, that GET also
writes the completed block back into the
file in its previous location. If a PUT
instruction is not issued for any record
in the block, GET does not write the com­
pleted block. The ESETL macro instruction
writes the last block processed, if neces­
sary before the end-of-file.

ESETL MACRO

Name Operation Operand

[name] ESETL {Filename}
(1)

The ESETL (end set limit) macro instruc­
tion ends the sequential mode initiated by
the SETL macro. The name of the file must
be the same as the name specified in the
DTFIS header entry. It can be specified
as a symbol or in register notation.

If blocked records are specified, ESETL
writes the last block back if a PUT was
issued.

INote: If ADDRTR and/or RANSEQ are specified
in the same DTF, ESETL should be issued

I before issuing a READ or WRITE, another
SETL can be issued to restart sequential
retrieval.

COMPLETION

After all the records for a logical output
file have been processed (end-of-file),
that file must be deactivated by an in­
struction in the problem program to close
the file.

When the end of a logical input file in
an I/O unit other than DASD or magnetic
tape is sensed, Ioes immediately branches
to the user's end-of-file routine (speci­
fied by EOFADDR) where the instruction to
close the file can be issued.

When the end of a DASD or magnetic
tape input file is sensed, Ioes checks
standard trailer labels (if any), makes
provision for user-checking of user labels,
and then branches to the user's end-of-file
routine (specified by EOFADDR) where the
file may be closed. A CLOSE macro instruc­
tion is available to the programmer for
closing each input and output file.

An end-of-volume condition (EOV),
rather than an end-of-file condition (EOF),
can occur during the processing of records
in a logical file on DASD or magnetic tape.
An EOV condition means that the processing
of all the records on one volume has been
completed, but that more records for the
same logical file are recorded on another
volume. When this occurs, IOCS checks or
writes standard labels (if any) on the
completed volume (trailer labels) and on
the next volume (header labels), makes
provision for user-processing of user­
standard labels on both volumes, and then
makes the data records on the next volume
available for processing. Because IOCS
detects the end-of-volume condition and
utilizes many of the routines established
for opening and closing files, no problem­
program instructions are required specifi­
cally for an EOV condition. However, if
the program requires that the processing
of tape records on one volume be ended be­
fore the actual ·end~of-volume is reached,
an end-of-volume condition can be forced.
An FEOV (forced end-of-volume) macro in­
struction is provided for this condition in
tape files.

The specific functions that occur on an
EOF or EOV condition for a DASD or tape
file vary with the type of operation (in­
put or output) and with the use of file
labels. These functions are discussed in
the following sections.

Imperative Macro Instructions 67

DASD INPUT FILE

When records in a logical input file on
DASD are processed in sequential order or
in sequential order by key (specified by
DTFIS or DTFSD), laCS detects an end-of­
file condition. The end of the input file
is determined either by the ending address
of the last extent specified fdr the file
in Job Control XTENT cards, or by an end­
of-file record read from the data file.
with sequential processing of index se­
quential files (TYPEFLE=SEQNTL), laCS posts
an indication of this condition in bit 2 of
the field referred to as FilenameC (see
Figure 31 in the Indexed Sequential System
(DTFIS) section of this publication). The
user can test this bit and take any action
required to close the file.

When records are processed in sequential
order, the file may contain user trailer
labels. In this case laCS branches first
to the user's label routine (specified by
LABADDR) where the user may check his
trailer labels. Up to eight trailer labels
for a 2311 file and five trailer labels for
a 2321 file can be read and checked. They
are written on the first track of the first
extent specified for the file on each pack.
The trailer labels follow the additional
user header labels for the pack, and they
are identified by UTLx, where x is 1,2, .••
5 or 1,2, ••• 8. When laCS branches to the
user's label routine, it also reads the
trailer label and makes it available to the
user for checking. laCS sets up a label
area and supplies the address of the area
to the user in Register 1. After each
label is checked, the user returns to laCS
by use of the LBRET macro. After all
trailer labels have been checked, laCS
branches to the user's end-of-file routine
(specified by EOFADDR) •

laCS detects end-of-volume conditions in
a DASD input file. The end of a volume is
recognized when all extents on one volume
have been processed but Job Control XTENT
cards have specified additional extents on
another volume. At the end of a volume,
laCS allows the user to check his trailer
labels (if any), the same as at the end of
a file. laCS then checks the standard
header labels on the next volume, allows
the user to check any user header labels
by branching to the address specified by
LABADDR, and makes the first record in the
first extent available for processing.

DASD OUTPUT FILE

When DASD records are processed sequentially
or loaded sequentially by key (DTFIS), and
when all records for the logical file have
been completed, the CLOSE instruction is

68 DOS Sup. and I/O Macros

issued and normal EOF procedures are ini­
ated (see CLOSE Macro). If the end of the
last extent specified for the file is
reached before CLOSE is issued, laCS as­
sumes an error condition.

End-of-volume conditions in a DASD out­
put file are detected in the same way as in
a DASD input file. At the end of a volume
laCS allows the user to write his trailer
labels (if any), the same as at the end of
a file (see CLOSE Macro). laCS then writes
standard file labels on the next volume,
allows the user to write any user header
labels by branching to the user's label
routine (specified by LABADDR), and permits
the processing of output data records to
continue.

TAPE INPUT FILE

When logical laCS senses a tape mark on a
magnetic tape input file, either an end-of­
file or end-of-volume condition exists.
The EOF/EOV condition is determined by laCS
or by the user (depending on the type of
labels used for the file) and the appro­
priate functions are performed.

If standard labels are specified, laCS
immediately reads and checks the standard
trailer label. If user labels are also
present and are to be checked (specified
by LABADDR), the user's routine is then
entered for each user label that is read
(see OPEN Macro). Whenever LABADDR is
specified in the DTF and multi-volume files
are processed, the user's label routine
must save and restore register 15 if any
logical laCS macros are used, other than
LBRET. After all labels have been checked,
the rewind option is executed, as specified
in the DTF parameter REWIND.

When the standard trailer label is
checked, either an EOV or EOF condition is
sensed. When an EOV identifier is sensed,
laCS switches to the alternate tape drive
(designated by ASSGN cards) after user
labels have been checked if specified. If
an alternate drive is not specified, the
operator is notified to change the tape
reels and the system enters the wait state.
When the operator has mounted the new reel,
processing resumes. laCS checks the header
label(s) if checking is specified, and nor­
mal processing continues. If an input file
is processed by physical laCS (DTFPH speci­
fied), the user must issue an OPEN instruc­
tion for the new reel. Then laCS checks
the header label and processing continues.

When an EOF condition is sensed, laCS
branches to the programmer's end-of-file
routine, specified by the entry EOFADDR.

If the tape input file has nonstandard
labels, IOCS immediately branches to the
user's label routine (specified by LABADDR)
when the tape mark is sensed. Whenever
LABADDR is specified in the DTF and multi­
volume files are processed, the user's
label routine must save and restore
register 15 if any logical IOCS macros are
used, other than LBRET. In his routine,
the programmer must use physical IOCS macro
instructions to read his label(s). Further­
more he must determine the EOF/EOV condition
and indicate this to IOCS by loading either
EF (end-of-file) or EV (end-of-volume) in
the two low-order bytes of Register O. On
an EOF condition, IOCS branches to the
user's end-of-file address (specified by
EOFADDR) when the problem program returns
to IOCS at the end of the label routine.
On an EV condition, IOCS initiates the end­
of-volume procedures to close the completed
volume and open the next volume for
processing.

If a tape file is not labeled (FILABL=NO)
or contains labels that are not to be
checked (FILABL=NSTD) and no LABADDR entry,
'IOCS branches to the end-of-file address
when the tape mark following the last data
record is sensed.

Whenever an input tape is read backwards
(READ=BACK), an end-of-file condition
always exists when the file header label
is reached. That is, backwards reading is
confined to one volume. Therefore, with
standard labels, the input/output routines
check only the block count, which was
stored from the trailer label, and then
branch to the specified end-of-file routine.
When physical IOCS macros are used to read
records backwards, labels cannot be checked
(DTFPH must not be specified). For tape
files with nonstandard labels, IOCS
branches to the user's label routine speci­
fied by LABADDR where he may check the
header label. He must use physical IOCS
macro instructions to read the label(s)
for checking.

TAPE OUTPUT FILE

When an end-of-reel reflective marker is
sensed on an output tape, logical IOCS pre­
pares for closing the file by ensuring that
all records have been written on the tape.
If the programmer issues another PUT, in­
dicating that more records are to be written
on this output file, normal end-of-volume
(EOV) procedures are initiated. If the
programmer issues a CLOSE, the EOF proce-
dures are initiated.

The programmer should be aware that,
under certain conditions, an unfilled block
of records may be written at an EOV or EOF
condition, even though the file is defined
as having fixed-length blocked records.
When this file is used for input, the
System/360 logical IOCS will recognize and
handle these short blocks without the pro­
grammer being concerned or aware of this
condition.

Labeling procedures for the EOV condi­
tion closely follow those described under
CLOSE Macro. The label is coded EOV rather
than EOF, and only one tape mark is written
after the label set, or after the data if
standard labels are not used.

FORCED END-OF-VOLUME: TAPE FILES

In some cases a programmer may need to
force an end-of-volume condition at a point
other than the normal tape mark (input) or
reflective marker (output). He may want to
discontinue reading or writing the records
on the present volume and continue with
those records for this same logical file
that are recorded on the next volume. This
may be necessary because of some major
change in the category of records or in the
processing requirements. An FEOV (forced
end-of-vo.lume) macro instruction is availa­
ble to the programmer for this function.
See FEOV Macro.

Imperative Macro Instructions 69

CLOSE MACRO

Op Operand

for programs which are not self-relocating

CLOSE Filenamel ~{Filename2}, ... , {Filenamen}]
(rl) (r2) (rn)

for self-relocating programs

CLOSER Filenamel ~ {Filename2} , .. , ,{Filenamen}]
(rl) (r2) (rn)

The CLOSE macro instruction is used to deac­
tivate any file that was previously opened
in any input/output unit in the system.

I
(Console files cannot be closed.) A file may
be closed at any time by issuing this macro
instruction. No further commands can be
issued for the file unless it is OPENed.

When the operation CLOSE is used, the
symbolic address constants which CLOSE gen­
erates from the parameter list are not self­
relocating. When CLOSER is specified, the
symbolic address constants are self­
relocating.

The symboltc name of the logical file
(assigned in the DTF header entry) to be
closed is entered in the operand field. A
maximum of 16 files may be closed by one
instruction, by entering additional file­
name parameters as operands. Alternately,
the user can load the address of the file­
name in a register and specify the register
using ordinary register notation. The
address of the filename should not be
preloaded into Register O.

Reopening a DASD File

If further processing of a closed file is
required at some later time in the program,
the file must be opened again. If a file
of DASD records is reopened after a CLOSE,
the label processing and extents made
available depend on the type of processing
that is specified for this file. When an
input file is processed in sequential order,
IOCS checks the label(s) on the first
volume and makes the first extent available,
the same as at the original OPEN. When a
file is processed by physical IOCS with
SINGLE specified in the DTFPH parameter
MOUNTED, IOCS opens the next extent
specified by the userrs XTENT cards. When
a file is processed by the direct access
method (DTFDA specified), by the indexed
sequential system (DTFIS specified}, or by
physical IOCS with ALL specified in DTFPH
MOUNTED, all label processing is repeated
and all extents are again made available.

70 DOS Sup. and I/O Macros

Reopening and Repositioning Tape Files

If further processing of a closed file is
required at some later time in the program,
the file must be opened again. After the
CLOSE, the tape is positioned in accordance
with the REWIND specification. Therefore
to resume processing of tape records at the
point where CLOSE occurred, NORWD should be
specified in the DTF entry REWIND. When
OPEN is issued later for additional records
on that reel, the first record read must be
a file label if standard labels are speci­
fied for the tape file being opened. If
the tape file being opened is unlabeled or
contains nonstandard labels, it is the
userrs responsibility to identify the first
record read as a data record or a file
label.

Closing DASD Files

When DASD records are processed in random
order (specified by DTFDA or DTFIS), the
CLOSE instruction is issued in the problem
program to deactivate the file after all
records have been processed.

When records in a DASD input file are
processed in sequential order, the CLOSE
instruction is generally issued in the
userrs end-of-file routine (specified by
EOFADDR) to deactivate the file. IOCS
branches to this routine when it detects an
end-of-file condition (see Completion).

When records in a DASD output file are
processed in sequential order or loaded in
sequential order (DTFIS or DTFSD), the
CLOSE instruction is issued after all rec­
ords for the file have been processed. In
this case CLOSE causes one or more functions
to be performed before it deactivates the
file. If records are processed in sequen­
tial order, user trailer labels may be
written if the entry LABADDR is included in
the file definition.

Up to eight trailer labels for a 2311
file and up to five for a 2321 file can be
written on the first track of the first
extent specified for the file on each vol­
ume. They follow the user header labels
for the pack and are identified by UTLx.
For this operation, IOCS branches to the
user's label routine, sets up a label area,
and supplies the address of the area in
Register 1. In his routine the user con­
structs the trailer label in his own label
area, places the address of this area for
IOCS in Register 1, and then returns control
to IOCS by use of the LBRET macro. IOCS
then writes the trailer label. Similar to
writing user header labels, these steps are
repeated until eight (or five) trailer la­
bels have been written or until the user
indicates that he does not require any more
labels, whichever occurs first. (See OPEN
Macro: DASD Output File, Writing User----­
Standard Header Labels). After the last
trailer label is written, CLOSE deactivates
the file.

Closing Tape Input File

When an input file recorded on magnetic
tape is processed, CLOSE is generally is­
sued in the user's end-of-file routine. It
initiates rewind procedures for the tape as
specified in the DTF entry REWIND. It then
deactivates the file.

Before CLOSE can be issued to an input
file containing standard labels, all label
processing and the rewind option must have
been completed.

If CLOSE is issued for any tape input
file before the end of the data is reached,
the tape is rewound as specified by the
entry REWIND, and the file is deactivated.
No labels are read or checked.

Note: If CLOSE is issued to an input file
that has not been opened, the option speci­
fied in the DTF entry REWIND will be
performed.

Closing Tape Output File

For a magnetic tape output file, CLOSE is
issued when all records for the file have
been processed. It writes any record, or
block of records, that has not already been
written. If a record block is partially
filled, it is truncated: that is, a short
block is written on the tape. Following
the last record, a tape mark is written.
If labels are not specified, a second tape
mark is written and the tape is rewound as
specified in REWIND.

When standard labels are specified (STD
in FILABL or OUTPUT in DTFPH TYPEFLE) ,
CLOSE causes the file trailer label to be
completely written after the tape mark.
The EOFI indication, the block count ac­
cumulated during the run, and the header­
label information (with HDRI replaced by
EOFl) are included in the trailer label.

rocs accumulates the block count for the
trailer label whenever logical IOCS is used
for an output file. When physical IOCS
(DTFPH) is used, however, the problem pro­
gram must accumulate the block count, if
desired, and supply it to IOCS for inclusion
in the standard trailer label. For this,
the count (in binary form) must be moved
to the 4-byte field within the DTF table
labeled FilenameB. (Filename must be seven
or less characters long.) For example, if
the filename specified in the DTFPH header
entry is DETLOUT, the block count field is
addressed by DETLOUTB.

If checkpoint records are interspersed
with data records on an output tape, the
block count accumulated by logical IOCS
does not include a count of the checkpoint
records. Only data records are counted.
Similarly if physical IOCS is used, the
problem program must omit checkpoint rec­
ords and count only data records.

If user labels are to follow the stand­
ard trailer, the CLOSE routine branches to
the user's routine (identified by LABADDR)
after the standard label has been written.

Whenever LABADDR is specified in the DTF
and multi-volume files are processed, the
user's label address routine must save and
restore Register 15 if any logical rocs
macros are used other than LBRET. Upon
entry to the user's routine, rocs supplies
Code F in the low-order byte of Register 0
to indicate that an end-of-file trailer la­
bel should be built. In his routine the
programmer can build a maximum of eight
labels, which the CLOSE routine writes for
him. After building each user-standard
label, he must return to the CLOSE routine
by use of the LBRET macro~

After all trailer labels are written,
the CLOSE routines write two tape marks,
execute the rewind option, and deactivate
the file.

Note: If CLOSE is issued to an output
file that has not been opened, no tapemark
or labels will be written.

For the proper procedures to handle
user-standard labels and/or nonstandard
labels, see OPEN Macro: Tape Output File.

Imperative Macro rn&tructions 71

Closing Other Files

When the last card, optical reader record,
or paper tape input record has been read,
IOCS branches to the user's end-of-file
routine where CLOSE is generally issued.

When a printer or card output file is
completed, CLOSE must be issued for that
file. Any record in the output area that
has not been printed or punched is trans­
ferred to the output file before the file
is deactivated.

LBRET MACRO

N~e Operation Operand

[name] LBRET {~}

The LBRET (label return) macro instruction
is issued at the end of the user's label
routine to return to IOCS. This macro is
described under Initialization: LBRET
Macro.

FEOV MACRO

Name Operation Operand

[name] FEOV {Filename}
(1)

The FEOV (forced end-of-volume) macro
instruction is used for either input or
output files on magnetic tape (programmer
logical units only) to force an end-of­
volume condition before sensing a tape mark
or reflective marker. This indicates that
processing of records on one volume is con­
sidered finished, but that more records for
the same logical file are to be read from,
or written on, the following volume. For
system units see the SEOV macro.

For input magnetic tape, FEOV executes
the rewind option selected by the user,
provides for a reel change and processes
the header label if it is specified in the
DTF entry for the file. For an output file,
the macro will write a tape mark. It also
provides the ability to write the trailer
label, provide a reel change, and process
the next header label if it is specified in
the DTF.

The name of the file, specified in the
header entry, is the only parameter re­
quired in the operand. The name can be
specified either as a symbol or in register
notation.

72 DOS Sup. and I/O Macros

When logical IOCS macro instructions are
used for a file, FEOV initiates the same
functions that occur at a normal end-of­
volume condition, except trailer-label
checking.

For an input tape, it immediately re­
winds the tape as specified by REWIND and
provides for a volume change as specified
by the ASSGN cards. Trailer labels are not
checked. FEOV then checks the standard
header label on the new volume and provides
for user-checking of any user-standard
header labels if LABADDR is specified. If
nonstandard labels are specified (FILABL=
NSTD), FEOV provides for user-checking, if
desired.

For an output tape, FEOV writes a tape
mark. Then it writes the standard trailer
label and user-standard labels (if any),
writes one tape mark, provides for a volume
change, and writes the file header label(s)
on the new volume, as specified in the
entries REWIND, FILABL, LABADDR, and the
ASSGN cards. If nonstandard labels are
specified, FEOV provides for user-writing
of trailer labels (complete volume) and
header labels (new volume), if desired.

When physical IOCS macro instructions
are used and DTFPH is specified for stand­
ard label processing, FEOV may be issued
for an output file only. In this case FEOV·
writes the standard trailer label, and any
user-standard trailer labels if DTFPH
LABADDR is specified. When the new volume
is mounted and ready for writing, IOCS
writes the standard header label and user­
standard header labels, if any.

SEOV MACRO

Name Operation Operand

[name] SEOV Filename

The SEOV (system end-of-volume) macro in­
struction is used to cause automatic volume
switching for magnetic tape output files if
the physical end-of-volume is detected and
SYSLST or SYSPCH are assigned to a tape
output file. The routine will write a tape
mark, rewind, unload the file, and check for
an alternate tape. If none is found, a
message is written and the user may mount
a new tape on the same drive and continue.
If an alternate unit is assigned, the macro
fetches the alternate switching routine to
promote the alternate unit, opens the new
tape, and makes it ready for processing.

The two types of declarative macros, DTF's
and Module Generation macros, are described
in this section of the manual. The section
is organized by type of processing:

• sequential

• direct access

• index sequential

Each type of processing is broken down
further by type of file--card, magnetic
tape, etc. The DTF used with the file is
discussed first and then, where applicable,
the module generation macro is discussed.

Note: The user does not need to specify
names for his modules as illustrated by the
examples in Appendix C. (None of those
modules are user named.) If the user does
not plan to name his modules, he can over­
look the discussion on module-naming con­
ventions following each module-generation
macro instruction.

SEQUENTIAL PROCESSING

Eight DTF's can be used for sequential
processing. The DTFCD, DTFMT, DTFPT, DTFOR,
DTFCN, DTFPR, and DTFSD macros are subsets
of the inclusive declarative macro, DTFSR.
DTFSR is included for Basic Programming
Support and Basic Operating System users.
By specifying the subsets instead of DTFSR,
program assembly time will be substantially
improved.

CARD FILE (DTFCD)

Enter the symbolic name of the file, File­
name, in the name field and DTFCD in the
operation field. The detail entries follow
the DTFCD header card in any order. Key­
word entries are contained in the operand
field. Figure 18 lists the entries.

BLKSIZE={~
Enter the length of the I/O area (IOAREAl).
If the record format is variable or un­
defined, enter the length of the largest
record. If this entry is omitted, the
length is assumed to be 80.

DECLARATIVE MACRO INSTRUCTIONS

CONTROL=YES

This entry is specified if a CNTRL macro
is to be issued to the file. If this param­
eter is specified, CTLCHR must be omitted.

CRDERR=RETRY

This entry applies to card output on the
IBM 2540 and 2520. It specifies the opera­
tion to be performed if an error is detected.

If a punching error occurs, it usually
is ignored and operation continues. The
error card is stacked in pocket PI (punch)
and correct cards are stacked in the pocket
selected by the user. If the CRDERR=RETRY
entry is included and an error condition
occurs, IOCS also notifies the operator and
then enters the wait state. The operator
can, by his reply to an appropriate message,
either terminate the job, ignore the error,
or instruct IOCS to repunch the card. From
this specification, IOCS generates a retry
routine and a save area for the card punch
record.

{
ASAl

CTLCHR= YESf

This entry is required if first-character
control is to be used. The ASA denotes the
American Standard Association set. The YES
denotes the System/360 character set.
Appendix B contains the codes. This entry
does not apply to combined files. If this
parameter is specified, CONTROL must be
omitted.

DEVADDR=SYSnnn

This entry specifies the symbolic unit
(SYSnnn) to be associated with this logical
file. An actual unit and channel will be
assigned to the unit by an ASSGN card in
the Job Control statement.

{1442~'
'2501

DEVICE=)2520
{2540

This entry specifies the I/O device associ­
ated with this logical file. The accept­
able entries are 1442, 2501, 2520, or 2540.
If this entry is omitted, 2540 is assumed.

Declarative Macro Instructions 73

-....J
~

0
0
ICn

en
s::

"d

III
::s
p,.

H

"" 0

:s:
III
()
Ii
0
til

•
I'%j
1-'.
lQ
s::
Ii
CD

I-'
00

0
~
I'%j
n
0

t7j
::s
rt
Ii
1-'.
CD
til

~ ~'d.

J

II,., mM Syatllim/3SD Aaaamblar Cadinll Farm lOS/DOS DlFCD Entries

• Header and each detail card, except the last one in each setr must have a continuation punch in column 72. Also,
each detail card, except the last one, must contain a comma immediately after the operand. Space is allowed for the
longest operand ~ the comma. If a smaller operand is used, the comma should be moved over accordingly. In the
last detail card ora set, the comma position must be blank.

t General reglsten 2- 12, written In parentheses; for example: (12).

Form X24· 5053
Prln In U.S.A

EOFADDR=Name

This entry specifies the symbolic name of
the userrs end-of-file routine. IOCS will
automatically branch to this routine on an
end-of-file condition. This entry must be
specified for input and combined files. In
his routine, the programmer can perform any
operations required for the end of the file,
and he generally issues the CLOSE instruc­
tion for the file.

IOCS detects end-of-file conditions in
the card reader by recognizing /* punched
in card columns 1 and 2. If cards are
allowed to run out without a /* trailer
card (and a /& card if end-of-job) an error
condition (intervention required) is
signaled to the operator.

IOAREAl=Name

This entry specifies the symbolic name of
the input or output area used by this file.
An address expression, Name, is defined.

If the file is a combined file, this
entry specifies the input area. If IOAREA2
is not specified, the area specified in this
entry is used for both input and output.

IOAREA2=Name

This entry specifies a second I/O area.
An address expression is defined. If the
file is a combined file, this area will be
the output area if it is specified.

IOREG= (r)

If work areas are not to be used and two
input or output areas are used, specify the
register (2-12) in which IOCS puts the
address of the record. For output files,
IOCS puts the address where the user can
build a record. This entry may not be
used for combined files.

MODNAME=Name

This entry may be used to specify the name
of the logic module that will be used with
the DTF table to process the file. If the
logic module is assembled with the program,
the MOD NAME in the DTF macro instruction
must specify the same name as the CDMOD
macro instruction. If this entry is
omitted, standard names will be generated
for calling the logic module. If two DTF
macro instructions call for different

functions that can be handled by a single
module, only this one module will be called.

OUBLKSZ=n

This entry is used in conjunction with
IOAREA2 only for a combined file. Enter
the maximum number n of characters that
will be transferred-at one time. If this
entry is not included and IOAREA2 is speci­
fied, the same length as BLKSIZE is
assumed.

I jFIXUNB}
RECFORM=)VARUNB

,UNDEF

This entry specifies the record format of
the file. If the record format is FIXUNB,
this entry may be omitted.

If TYPEFLE=CMBND, this entry must be
FIXUNB.

RECSIZE=(r)

For undefined records this entry specifies
the register (2-12) that will contain the
length of the output record. The user must
load the length of each record into the
register before he issues the PUT instruc­
tion for the record.

SEPASMB=YES

Specify this entry if the DTF is assembled
separately. This causes a CATALR card with
Filename to be punched ahead of the object
deck and defines the Filename as an ENTRY
point in this Assembly.

SSELECT=n

This entry specifies the stacker-select
character that is valid for the file. If
this entry is not specified, cards will be
selected into NR (normal read) or NP
(normal punch). This entry is not applic­
able to a combined file.

{

INPUT }
TYPEFLE= OUTPUT

CMBND

This entry specifies if the file is input,
output, or combined. A combined file can
be specified for an IBM 1442 or 2520
or for a 2540 with the punch-feed-read
feature. TYPEFLE=CMBND is applicable if
both GETrs and PUTls are issued to the same
card file.

Declarative Macro Instructions 75

WORKA=YES

If I/O records are to be processed in work
areas instead of the I/O area, this entry
is specified with YES. The programmer must
set up the work area in main storage. The
address expression of the work area 0: ~
general purpose register must be spec~f~ed
in each GET and PUT.

PARAMETERS AND NAMES FOR CDMOD (CARD
MODULE)

Listed here are the user-supplied parameters
for CDMOD. The first card contains CDMOD
in the operation field and may contain a
module name in the name field.

CONTROL=YES

CRDERR=RETRY

CTLCHR= YES J I {' ASA t.

Include this entry if the
CNTRL macro instruction is
to be used with the module
and the DTF's associated
with the module. The
module will also process
files in which the CNTRL
macro is not used.

If CONTROL is specified,
the CRLCHR parameter may
not be specified. This
parameter cannot be speci­
fied if IOAREA2 is used
for an input file.

Include this entry if the
module is to include error
retry routines for the 2540
and 2520 punch-equipment
check. Whenever this
parameter is specified,
any DTF to be used with
the module must also speci­
fy the CRDERR parameter.

This entry does not
apply to an input or a
combined file.

Include this entry if first
character stacker-select
control will be used.
Either YES or ASA may be
specified. Whenever this
parameter is included, any
DTF to be used with the
module must also specify
the CTLCHR parameter with
the appropriate YES or
ASA operand.

76 DOS Sup. and I/O Macros

f
2540 't 1442

DEVICE= 2520
\2501

IOAREA2=YES

If CTLCHR is included,
CONTROL may not be speci­
fied.

This entry does not
apply to a combined file.

Include this entry to
specify the I/O device
that will be used by the
module. Any DTF used with
the module must have the
same operand.

Include this entry if a
second I/O area will be
used. Any DTF to be used
with the module must also
include the IOAREA2 param­
eter. This entry is not
required for combined
files.

(FIXUNB} Specify the record format:
RECFORM=\ VARUNB fixed-length, variable-

~UNDEF , length, or undefined. Any
DTF to be used with the
module must include the
appropriate operand in the
RECFORM parameter.

SEPASMB=YES

{

INPUT l
TYPEFLE= OUTPUT(

CMBND ,

WORKA=YES

For INPUT and COMBND
files only, FIXUNB should
be specified.

Include this parameter if
the logic module is as­
sembled separately. This
causes a CATALR card with
the module name (standard
or user) to be punched
ahead of the object deck.

This entry causes genera­
tion of a module for either
input, output, or combined
file. Any DTF to be used
with the module must in­
clude the appropriate
operand in the TYPEFLE
parameter.

This entry is to be in­
cluded if records are to
be processed in work areas
instead of I/O areas. Any
DTF to be used with the
module must include the
appropriate operand in the
WORKA parameter.

Recommended Module Name for CDMOD

Each name begins with a 3-character prefix
(IJC) and consists of a 5-character field
corresponding to the options permitted in
the generation of the module.

CDMOD name = IJCabcde

a = F if RECFORM=FIXUNB (always for INPUT
and CMBND files)

V if RECFORM=VARUNB
U if RECFORM=UNDEF

b A if CTLCHR=ASA is specified (not speci-
fied if CMBND)

Y if CTLCHR=YES is specified
C if CONTROL=YES is specified

I J C
* * * * *
F A I W 0

Y
C

* + * * *
V C 0 I 1

Z
U C B 2

Z 3

4

5

Z if neither CTLCHR nor CONTROL is + Subsetting/supersetting permitted.
specified

c = I if TYPEFLE=INPUT
o if TYPEFLE=OUTPUT
C if TYPEFLE=CMBND

d

e =

Z if neither WORKA nor IOAREA2 is
specified

W if WORKA=YES is specified
I if IOAREA2=YES
B if both WORKA and IOAREA2 are

specified.

For CMBND Files

0
I
2
3

if WORKA=YES is specified, d = W
if WORKA=YES is not specified, d

if DEVICE=2540
if DEVICE=1442
if DEVICE=2520
if DEVICE=2501

Z

4 if DEVICE=2540 and CRDERR is specified.
5 if DEVICE=2520 and CRDERR is specified.

Subsetting and Supersetting of CDMOD Names

The following diagram illustrates the sub­
setting and supersetting allowed for CDMOD
names. All but one of the parameters are
exclusive (do not allow supersetting). A
module name specifying C (CONTROL) in the
b location is a superset of a module name
specifying Z (no control or CTLCHR). A
module with the name IJCFCIWO is a superset
of a module with the name IJCFZIWO.

* No subsetting/supersetting permitted.

PAPER TAPE FILE (DTFPT)

A DTF entry is included for every paper tape
input file that is to be processed in the
program. The first entry must be the DTFPT
header entry. Enter the symbolic name of
the file, Filename, in the name field and
DTFPT in the operation field. The detail
entries follow the DTFPT header card in any
order. Keyword entries are contained in the
operand field. Figure 19 lists the entries.

BLKSIZE=n

This entry specifies the length of the input
area. For undefined records, this area must
be at least one position larger than the
longest record, and must accommodate all
shift and delete characters included in the
record. For fixed-length records, the area
must be exactly the size of the record. If
shift or delete characters are present in
the record (the SCAN entry is specified),
BLKSIZE will indicate the number of charac­
ters required by the user after translation
and compression. OVBLKSZ will contain the
number of characters to be read in to pro­
duce the BLKSIZE number.

Declarative Macro Instructions 77

IBM IBM System/3S0 Assembler Coding Form

PROGRAM I PUNCHING I GRAPHIC I I I I PAGE Of

PROGRAMMER DATE
I INSTRUCTIONS I PUNCH I I I I CARD ELECTRApp.e..i.e.6 to

STATEMENT I ~ -
~:i Identificotion-

Name Operation Operand Comments :i tl.. Sequence
I B 10

"
16 20 25 30 35 40 45 50 55 60 65

71 ,~~ 80

111JIIIIIIII 1-0'0

,X XX XX XX DT FPT Name of the paper tape file. This DTF requires a PTMOD. I ! X)()(~

8L KS Ii E= h , Length of user's I/O areas. XXX
DE VA DO R.= Sy Sx X X , Symbolic unit (SYSxxx) to be associated with this logical file. XXX
EO FA DD R= xx xx xx X X , Name of user's end-of- file routine. Xx
10 AR e~ I: X X xx X)(X X , Name of first I/O area. 1 IXxx - - ER RO (IGNORE, SKIP, or error routine name) Prevents job termination on error records. IXx - - - - - - -,(PT =x xx xx xx X ,)(

eq'd.

J
Opt't.

FT RA tJS :x xx Xx ~X X , (For shifted codes) Symbolic address of user's figure shift translate table., XX
IO AR EA 2= xx xx xx " X , Name of second I/O area. XXX
IP REG =(xx) I~ (Used with two I/O areas) Register (2- 12) containing current input- record address. XXX
LT RA WS =" xx XX xx)(, (For sh if ted codes) Name of the user's letter sh ift translate table. Xx
tAO O~ At.\ E= x)c xx xx Xx, For module names other than standard. i XXX
OV BL I<S ~= n, (See explanatory text) Used if I/O records are compressed or expanded. XXX
RE CF OR M= Xx xx x X , (FIXUNB or UNDEF) If omitted FIXUNB is assumed. XXX
RE CS 1~ E= (X x) I, (Optil.for input, req'd.for o,utput with UNDEF records) Register containing the rec.length. XXX
SC A~ = X XX xx xx x, Name of user's scan table for shift or delete character. XX
SE PA SM 8: Vi 5 , DTF is assembled separately. I I XXX
Tft AM s= xx ")(' xx xx" Name of user's table for code translation. I I XXX
WL R£ RR =x xx XX XXX Name of user's wrong - length - record error routine.)(

DEVADDR=SYSnnn

This entry specifies the symbolic unit
(SYSnnn) to be associated with this logical
file. An actual channel and unit will be
assigned to the unit by an ASSGN card in the
Job Control statement. The ASSGN statement
contains the same symbolic name as DEVADDR.

EOFADDR=Name

This entry specifies the symbolic name of
the user's end-of-file routine. IOCS will
automatically branch to this routine on an
end-of-file condition, if the end-of-file
switch is set ON.

In his routine, the programmer can per­
form any operations required for the end of
file and issue the CLOSE instruction for
the file.

{
IGNORE}

ERROPT= SKIP
Name

This entry is specified if the user does
not want a job terminated when a read error
cannot be corrected by the operator. If the
ERROPT entry is omitted and a read error
occurs, laCS will terminate the job.

The entry IGNORE allows IOCS to handle
the record as if no errors were detected.
If the entry SKIP is specified, laCS will
skip the record in error and will cause
the next record to be read in.

If neither IGNORE nor SKIP are speci­
fied, the symbolic name of the user's error
routine should be specified. On an error
condition, laCS will read in the complete
record, including the error character(s) ,
and will then branch to the user's error
routine. At the end of his error routine,
the user must return to laCS by branching
to the address in Register 14, and the next
record will be read in. The programmer
must not issue any GET instructions for
records in the error block. If any other
laCS macros are contained in the error rou­
tine, the contents of Register 14 must be
saved and restored.

FTRANS=Name

This entry must be included for every file
using a shifted code. It specifies the
symbolic name of a figure shift table that
must be provided by the user. This table
must conform to the specifications of the
machine instruction TRANSLATE. The entry
TRANS must be omitted.

IOAREA1=Name

This entry specifies the input area. Enter
an address expression (name) that specifies
the input area.

IOAREA2=Name

This entry specifies a second input area.
Enter an address expression (name) that
specifies the input area. With two input
areas specified, laCS will overlap the fill­
ing of one input area with the processing
of the record in the other area.

IOREG=(r)

This entry must be included if two input
areas are used. It specifies the register
into which laCS will put the address of the
record that is available for processing.
Any register from 2 through 12 may be used.

LTRANS=Name

This entry must be included for every file
using a shifted code. It specifies the
symbolic name of a letter shift table which
must be provided by the user. This table
must conform to the specifications of the
machine instruction TRANSLATE. The entry
TRANS must be omitted.

MODNAME=Name

This entry may be used to specify the name
of the logic module that will be used with
the DTF table to process the file. If the
logic module is assembled with the program,
the MODNAME in the DTFPT macro instruction
must specify the same name as the PTMOD
macro instruction. If this entry is
omitted, standard names will be generated
for calling the logic module.

OVBLKSZ=n

This entry specifies the number of charac­
ters to be read in, before translation and
compression, to produce the number of
characters specified in the BLKSIZE entry.
This entry is used only when SCAN and
RECFORM=FIXUNB are both specified. If it
is omitted, the number of characters to be
read will be made equal to the number speci­
fied in the BLKSIZE entry.

Declarative Macro Instructions 79

RECFORM={FIXUNB}
UNDEF

This entry specifies the record format of
this file. Either format may be specified
for shifted and unshifted codes. If the
record format is FIXUNB, this entry may be
omitted.

RECSIZE= (r)

This entry specifies the number of the
register that will contain the length of
the input record. This may be any register
from 2 through 12. This entry is optional.
If it is present, laCS will place the length
of each record read into the register speci­
fied. If input files contain shift codes
or other characters requiring deletion, the
length placed in the register will be that
of the compressed record.

SCAN=Name

This entry must be included for all files
using shifted codes. It may also be in­
cluded if the user wishes to delete certain
characters from each record. The entry
specifies the symbolic name of a table that
must be provided by the user. This table,
which must conform to the specifications of
the machine instruction TRANSLATE AND TEST,
will contain nonzero entries for all delete
characters and, where appropriate, for the
figure and letter shift characters. The
entry in the table for the figure shift
character must be hexadecimal 04, and for
the letter shift character hexadecimal 08.
Delete entries must be hexadecimal DC. All
other entries in the table must be zero.
Any deviation from this will cause incorrect
translation and may produce a program check.
The table must be large enough to accomo­
date the maximum binary value of coding in
the tape being processed; i.e., 255 bytes
for eight-track tape. This prohibits
erroneous coding in the tape from causing
a SCAN function in a location beyond the
limits of the SCAN table.

SEPASMB=YES

Include this parameter if the DTF is as­
sembled separately. This causes a CATALR
card with the filename to be punched ahead
of the object deck and defines the File­
name as an ENTRY point in the assembly.

80 DOS Sup. and I/O Macros

TRANS=Name

This entry must be included if a non-shiftec
code is to be translated into internal
System/360 code. The FTRANS and LTRANS
entries must be omitted if this entry is
present. If none of these entries is pre­
sent, no translation will take place. The
TRANS entry specifies the symbolic name of
a table provided by the user. This table
must conform to the specifications of the
machine instruction TRANSLATE.

WLRERR=Name

When IOCS determines a wrong-length record
is present, it will branch to the symbolic
name specified in the WLRERR entry. If
this entry is not included and the ERROPT
entry is included, laCS will consider the
error uncorrectable and will use the ERROPT
option specified. Absence of both ERROPT
and WLRERR entries will cause the wrong­
length record to be accepted as a normal
record. Wrong-length checking will not be
performed for fixed-length records because
a fixed number of characters will be read
in each time. Overlength undefined records
will be detected when the incoming record
fills the input area. The input area must,
therefore, be at least one position larger
than the longest record anticipated.

At the end of the user's WLRERR routine,
the user must return to IOCS by branching
to the address in Register 14. laCS will
cause the next record to be read in. If
any other IOCS macros are included in the
record-length error routines, the user must
save and restore the contents of Register
14 in the error routine.

CHARACTERISTICS OF A PAPER TAPE FILE

Record Formats

Fixed unblocked records and undefined
records are the only formats supported for
the paper tape reader. Shifted and non­
shifted codes are acceptable in both format:

FIXED UNBLOCKED RECORDS: Fixed unblocked
records should not have an End-of-Record
(EaR) character following them. If they
do, the EOR character will enter main stor-
age as a normal character and will not stop

the data transfer. The user must define
the "number of characters contained in each
record in the BLKSIZE entry. A count­
controlled read will cause the number of
characters specified (or fewer if an EOF
condition occurs) to be read in as the
result of a GET instruction. If shift codes
and deletion characters are included in the
record, the record will be translated and
compressed. Additional reads will be per­
formed automatically by IOCS until a trans­
lated record of the specified length has
been obtained. Control is then returned to
the user.

Note that when the programmer uses the
fixed unblocked record format, he must not
clear the input area beyond the length
specified in his BLKSIZE entry. The re­
mainder of the input area may now contain
part of the next record, which has been
read in and will remain there until the
next GET is issued.

UNDEFINED RECORDS: Each undefined record
must have an EOR character following it.
The user must define an input area and a
BLKSIZE entry that is at least one position
larger than the longest record anticipated.
A modified read (under control of count and
the EOR character) will cause the number of
characters specified, up to the next EOR
character, to be read in. This record will
be translated and, if SCAN was specified,
compressed. There will be no re-reads. If
the record fills the input area, it is as­
sumed to be overlength, and IOCS will take
the wrong-length record option specified by
the user.

Note: All processing is carried out in the
user's input area(s). Work areas are not
utilized unless the user moves the record
to the work area. The GET Filename,Work­
area form of the GET macro instruction can­
not be used for a paper tape file; only the
GET Filename form is acceptable. If the
user has two input areas, he must reference
fields within his record by means of dis­
placements relative to the general register
specified by him in his IOREG entry or by
means of a DSECT.

Code Translation

The TRANS entry is used for records con­
taining non-shifted codes and translation
is performed directly into internal System/
360 code. If the input tape is punched in
EBCDIC code, no translation is required and
all translation entries may be omitted.

If the input tape contains shifted
codes, the FTRANS, LTRANS, and SCAN entries
must be included. IOCS assumes that the
first record read from the input tape starts
in figure shift. Therefore, if the first
record starts with letter shift coding, the
user must be sure that the first character
of the first record is a letter shift
character. The shift status is carried
from one record to the next and remains
unchanged until another shift character is
encountered.

Translation of shifted codes is ac­
complished as follows.

1. The record is first scanned for shift
characters and the segment between the
shift characters is translated using
the appropriate shift table.

2. The translated segment is moved to the
left to remove the shift character.

3. The above steps are repeated for each
segment until the complete record has
been translated and compressed.

These steps result in a translated and
compressed record left justified in the in­
put area. The record length is communicated
to the user in the register designated in
the RECSIZE entry, if present.

If the record format is fixed unblocked,
the number of characters specified in the
OVBLKSZ entry will be read in, translated,
and compressed. If the resulting record is
shorter than that specified in the BLKSIZE
entry, additional reads will be performed
until the record length is equal to, or
greater than, the BLKSIZE specification.
The record is then available to the user.
If the final read results in a record length
that exceeds the BLKSIZE specification, the
remaining characters are moved into the be­
ginning of the input area, as the start of
the next record, when the next GET is issued.

SCAN may be used alone, or in conjunction
with TRANS, to delete characters from
records that do not contain shifted code.
In this case, there must be no 04 or 08
entries in the SCAN table.

The EOR character must be independent of
shift status. That is, it must be effective
whether the coding is in letter or figure
shift. If there is valid character coding
in either shift which corresponds to the
EOR coding established for a particular
job, the corresponding code must not be in­
cluded in the input record.

Declarative Macro Instructions 81

Error and Wrong-Length Record Conditions

The paper tape reader stops immediately on
an error condition. If the error cannot be
corrected and the job is not to be termi­
nated, IOCS will cause the complete record
containing the error to be translated and
compressed before taking the error option
specified by the user.

The only wrong-length record condition
that can be detected is an over length un­
defined record when at least one additional
position has been provided in the input
area and this fact has been reflected in
the BLKSIZE entry. It is the operator's
responsibility to determine that the input
tape is correctly positioned for the next
GET instruction, at the physical beginning
of the next record.

Wrong-length record indication is not
possible with fixed unblocked records since
each record is a sequence of a specified
number of characters. The FIXUNB record
format should be used with caution since
one character too few or too many in any
record will cause all subsequent records
to be out of ph~se.

The last record on any file should be
checked for correct length by the user
through the use of the RECSIZE entry. A
record cannot be partly on one reel of in­
put tape and partly on another reel.

Programming Considerations

When processing fixed unblocked r~cords
with logical IOCS using the SCAN option,
data checks must not be ignored. Logical
IOCS prohibits the operator from ignoring
such an error because ignoring the error
could result in processing all subsequent
records out of phase (on other than the in­
tended record boundaries). LIOCS cannot
determine whether the error character was
a shift or delete character, or whether it
should be included in the record length
count.

When processing any other type of record
with LIOCS and a data check occurs, the
error can be ignored if the programmer so
directs the operator.

To allow the possibility of ignoring
data checks when processing with physical
IOCS (using EXCP and WAIT instructions),
the programmer must set byte 2, bit 4 of
the CCB ON.

82 DOS Sup. and I/O Macros

Note: Immediately after using the WAIT
instruction, the programmer must restore
the CCW.

PARAMETERS AND NAMES FOR PTMOD (PAPER TAPE
MODULE)

Listed here are the user-supplied param­
eters for PTMOD. The first card contains
PTMOD in the operation field and may con­
tain a user module name in the name field.

_{FIXUNBl
RECFORM- UNDEF f

SCAN=YES

SEPASMB=YES

TRANS=YES

Summary of PTMOD

Required only if the entry
SCAN=YES is present. If
records of undefined for­
mat using the SCAN option
are to be translated, the
UNDEF parameter must be
specified. If records
are of fixed unblocked
format, the F~XUNB param­
eter may be specified or
it may be omitted.

Required for records con­
taining shift characters
or characters which are to
be automatically deleted.

Include this parameter if
the logic module is as­
sembled separately. This
causes a CATALR card with
the module name (standard
or user) to be punched
ahead of the object deck.

Required only if the entry
SCAN=YES is not present.
If it is specified, a mod­
ule will be generated which
will translate records
using an unshifted code.

The following are the only possible com­
binations of entries.

1. No parameters specified. Module does
not provide routines for translation
nor for shift or delete characters.

2. TRANS=YES. Module handles translation
of unshifted code, but no delete
characters.

3. SCAN=YES [RECFORM=FIXUNB]. Module
handles shift and delete characters for
records of fixed unblocked format.

4. SCAN=YES, RECFORM=UNDEF. Module handles
shift and delete characters for records
of undefined format.

Recommended Module Name for PTMOD

Each name begins with a 3-character prefix
(IJE) and consists of a 5-character field
corresponding to the options permitted in
the generation of the module.

PTMOD name = IJEabcde

a = S if SCAN=YES is specified
Z if SCAN=YES is not specified

b T if TRANS=YES is specified, and
SCAN=YES is not specified

Z if TRANS=YES is not specified

c = F if RECFORM=FIXUNB, and SCAN=YES is
specified

U if RECFORM=UNDEF, and SCAN=YES is
specified

Z if SCAN=YES is not specified

d Z always

e = Z always

Subsetting and Supersetting of PTMOD Names

The following diagram illustrates the PTMOD
names. No subsetting or supersetting is
allowed.

* * *
I J E Z Z Z Z Z

Z T Z

S Z F

S Z U

* No subsetting/supersetting permitted

PRINTER FILE (DTFPR)

A DTFPR entry is included for each printer
file that is processed in the program. The
first entry is the DTFPR header entry. The

name field contains the symbolic file name,
Filename. The operation field contains
DTFPR. The detail entries, in any order,
follow the DTFPR header entry with keyword
entries in the operand field. Figure 20
contains DTFPR entries.

IBLKSIZE={l~l}
This entry specifies the length of IOAREAl.
If the record format is variable or unde­
fined, enter the length of the longest
record. If this entry is omitted, 121 is
assumed.

CONTROL=YES

This entry is specified if the CNTRL macro
will be issued to the file. If this pa­
rameter is specified, CTLCHR must be
omitted.

CTLCHR={YES}
ASA

This entry is specified if first-character
control is to be used. The entry
CTLCHR=ASA specifies the American Standard
Association set. The entry CTLCHR=YES
specifies the System/360 character set.
Appendix B contains the codes. If this
parameter is specified, CONTROL must be
omitted.

DEVADDR=SYSnnn

This entry specifies the symbolic unit
(SYSnnn) to be associated with this printer.

I 1
14031 1404

DEVICE= 1443
1445

This entry specifies that one of the fol­
lowing printers is used for the file: 1403,
1404 (continuous forms only), 1443 or 1445.
Enter one of these numbers. If this entry
is omitted, 1403 will be the assumed device.

IOAREA1=Name

This entry specifies the output area. An
address expression (Name) is specified.

IOAREA2=Name

This entry specifies a second,output area.
An address expression (Name) is specified.

Declarative Macro Instructions 83

(Xl
,j::.

0
0
til

(J)

C
"0

PI
!j
P..o

H
.........
0

:s:
~
()

li
0
en

•
I'rj
1-'-

\.Q
c
Ii
CD

N
0

0
8
I'rj
I'tj

!::d
tIj
!j
rt
Ii
1-'-
CD
en

IBM IBM System/3S0 Assembler Coding Form TOS/DOS DTFPR and DTFCN Entries

detail card, except the last ane in each set, must have a continuation punch in column n. Also,
each detail card, except the last one, must ·contain a comma immediately after the operand. Space is allowed for the
longest aperand ~ the comma. If a smaller operand is used, the comma should be maved over accordingly. In the
last detail card oro set, the comma pasition must be blank.

Form X24· 5054
Printed in U.S.A.

Sequence

IOREG=(r)

If two output areas and no work areas are
used, the entry IOREG=(r) specifies the
address of the area where the user can build
a record. The (r) represents a register
2-12.

MODNAME=Name

This entry may be used to specify the name
of the logic module that will be used with
the DTF table to process the file. If the
logic module is assembled with the program,
the MODNAME in the DTF macro instruction
must specify the same name as the PRMOD
macro instruction. If this entry is
omitted, standard names will be generated
for calling the logic module. If two DTF
macro instructions call for different func­
tions that can be handled by a single
module, only one module will be called.

PRINTOV=YES

This entry is specified if the PRTOV macro
instruction is included in the problem pro­
gram.

fFIXUNB l
RECFORM=) UNDEF \

,VARUNB,

The entry RECFORM=FIXUNB is specified if
the record format is fixed. When the
record format is FIXUNB, this entry may be
omitted. The entry RECFORM=UNDEF is speci­
fied if the record format is undefined. If
the output is variable and unblocked, enter
VARUNB.

RECSIZE= (r)

This entry, for undefined records, speci­
fies the general register (2-12) that will
contain the length of the output record.
The user must load the length of each record
into the register before he issues the PUT
instruction.

SEPASMB=YES

Include this parameter if the DTF is assem­
bled separately. This causes a CATALR card
with the Filename to be punched ahead of the
object deck and defines the Filename as an
ENTRY point in the assembly.

UCS={g~F }

This entry determines whether data checks
are to be allowed or disallowed on a 1403
printer with the Universal Character Set
feature. The entry is especially useful to
programmers who are using first-character
forms control and who have modules that can-

Inot~;:oce;:~;;:~;:;:;~:;;;:~s.
WORKA=YES

If output records are processed in work
areas instead of the output area, the entry
WORKA=YES is specified. The user must set
up the work area(s) in main storage. The
address expression of the work area (or a
general register containing the address)
must be specified for each GET or PUT.

PARAMETERS AND NAMES FOR PRMOD (PRINTER
MODULE)

Listed here are the user-supplied param­
eters for PRMOD. The first card contains
PRMOD in the operation field and may contain
a user module name in the name field.

CONTROL=YES

CTLCHR={YES }
ASA

Include this entry if
CNTRL macro instructions
are to be used with the
associated DTF's. The
module will also process
files which do not use
the CNTRL macro instruc­
tion.

If CONTROL is speci­
fied, the CTLCHR param­
eter should not be speci­
fied.

Include this entry if
first-character carriage­
control is to be used.
Whenever this parameter
is included, any DTF to
be used with the module
must also specify the
CTLCHR parameter with
the appropriate YES or
ASA operand.

If CTLCHR is included,
CONTROL should not be
specified.

Declarative Macro Instructions 85

IOAREA2=YES

PRINTOV=YES

{
FIXUNB}

RECFORM= VARUNB
UNDEF

SEPASMB=YES

WORKA=YES

Include this entry if a
second I/O area is to be
used. Any DTF to be used
with the module must also
include the IOAREA2
parameter.

Include this entry if
PRTOV macro instructions
are to be used with the
associated DTF's. The
module will also process
any files which do not
use the PRTOV macro in­
struction.

This entry causes gener­
ation of a module which
will process the speci­
fied record format:
fixed-length, variable­
length, or undefined.
Any DTF to be used with
the module must include
the appropriate operand
in the RECFORM parameter.

Include this parameter
if the logic module is
assembled separately.
This causes a CATALR
card with the module
name (standard or user)
to be punched ahead of
the object deck.

Include this entry if
records are to be proc­
essed in work areas
instead of I/O areas.
Any DTF to be used with
the module must include
the appropriate operand
in the WORKA parameter.

Recommended Module Name for PRMOD

Each name begins with a 3-character prefix
(IJD) followed by a 5-character field cor­
responding to the options permitted in the
generation of the module.

PRMOD name = IJDabcde

a = F if RECFORM=FIXUNB
V if RECFORM=VARUNB
U if RECFORM=UNDEF

b A if CTLCHR=ASA is
Y if CTLCHR=YES is
C if CONTROL=YES is

specified
specified
specified

Z if neither CTLCHR nor CONTROL
specified

86 DOS Sup. and I/O Macros

is

c = P if PRINTOV=YES is specified
Z if PRINTOV=YES is not specified

d I if IOAREA2=YES is specified
Z if IOAREA2=YES is not specified

e = W if WORKA=YES is specified
Z if WORKA=YES is not specified

Subsettins and SUEersetting of PRMOD Names

The following diagram illustrates the sub­
setting and supersetting allowed for PRMOD
names. Two of the parameters allow subset­
tinge For example, the module name IJDFCPIW
is a superset of the module names IJDFCZIW
and IJDFZZIW.

* * * * *
I J D F A P I W

V Y Z Z Z
* +
U C

Z

+ Subsetting/supersetting permitted.

* No subsetting/supersettinq permitted.

MAGNETIC TAPE FILES (DTFMT)

A DTFMT entry is included for each magnetic
tape input or output file that is to be
processed. The DTFMT header entry is
followed by a series of detail entries that
describe the file (Figure 21). The detail
entries generate the DTF table. Enter the
symbolic name of the file in the name
field and DTFMT in the operation field.
The entries following the header entry may
appear in any order.

BLKSIZE=n

Enter the length n of the I/O area. If the
record format is variable or undefined r
enter the length of the largest block of
records. If a READ or WRITE macro speci­
fies a length greater than n for workfiles,
the record length will be greater than
BLKSIZE. The maximum block size is 32,767
bytes (32K minus one). The minimum size
physical tape record (gap to gap) is 12
bytes. Eleven bytes or less are considered
a noise record.

CKPTREC=YES

This entry is necessary if a tape input file
will have checkpoint records interspersed
among the data records. IOCS will bypass
any checkpoint records that are encountered.

o
(1)
n
I--'
OJ
Ii
OJ
rt
1-'.

~
::s:
OJ
n
Ii
o
H
::s
Ul
rt
Ii
~
n
rt
1-'.
o
::s
Ul

00
-...J

•
"'1j
1-'.

~
Ii
(1)

N
I--'

o
t-3

~
t-3 I Re1'd.
tr.I
::l
rt
Ii
1-'.
(1)
Ul

Opt'l.

1.'4 mM System/36D Assembler Cadinll Farm TOS/DOS DTFMT Entries

* Header and each detail card, except the last one In each set, must have a contlnuatlan punch in column 72. Also,
each detail cord, except the last one, must contain a comma Immediately after the operand. Space is allowed for the
longest operand plus the comma. If a smaller aperand is used, the comma should be moved over accordingly. In the
last detail card ora set, the comma position must be blank.

t General registers 2-12, written In parentheses; for example: (12).

Form X2~· 5052
Printed In U.S.A.

DEVADDR=SYSnnn Name IOCS branches to the user's rou­
tine, where he may perform what­
ever functions he desires to
process or make note of the error
condition. Register 1 contains
the address of the block in
error, and Register 14 contains
the return address.

This entry specifies the symbolic unit
(SYSnnn) to be associated with the logical
file. An actual channel and unit number
will be assigned to the unit by an ASSGN
statement. The ASSGN card contains the same
symbolic name as DEVADDR.

EOFADDR=Name

This entry specifies the symbolic name of
the user's end-of-file routine. IOCS will
automatically branch to this routine on an
end-of-file condition. This entry must be
specified for input and work files.

In his routine, the programmer can per­
form any operations required for the end of
file, and he generally issues the CLOSE
instruction for the file.

IOCS detects end-of-file conditions in
magnetic tape input by reading a tapemark
and EOF when standard labels are specified
or /* if the unit is assigned to SYSRDR or
SYSIPT. If standard labels are not speci­
fied, IOCS assumes an end-of-file condition
when the tapemark is read. The user must
determine, in his routine, that this
actually is the end of the file.

{

IGNORE)
ERROPT= SKIP (

Name)

This entry specifies functions to be per­
formed for an error block.

If a parity error is detected when a
block of tape records is read, the tape is
backspaced and reread 100 times before the
tape block is considered an error block.

If either FILABL=STD or CKPTREC, or both,
is specified, the error block is included
in the block count that is taken. After
this the job is automatically terminated,
unless this ERROPT entry is included to
specify other procedures to be followed on
an error condition. Either IGNORE, SKIP,
or the symbolic name of an error routine
can be specified in this card. The func­
tions of these three specifications are:

IGNORE

SKIP

The error condition is completely
ignored, and the records are
made available to the user for
processing.

No records in the error block are
made available for processing.
The next block is read from taper
and processing continues with the
first record of that block. The
error block is included in the
block count.

88 DOS Sup. and I/O Macros

In his routine, the program­
mer should address the error
block, or records in the error
block, by referring to the ad­
dress supplied ln Register 1.
The contents of the IOREG reg­
ister or the work area (if either
is specified) may vary and there­
fore should not be used for error
blocks. Also, the programmer
must not issue any GET instruc­
tions for records in the error
block. If he uses any other laCS
macros in his routine, he must
save and restore the contents of
registers 0, 1, 14, and 15. At
the end of his error routine, he
must return to IOCS by branching
to the address in register 14.
When control is returned to the
problem program, the first rec­
ord of the next block is avail­
able for processing in the main
program.

This ERROPT entry does not apply to tape
output files. The job is automatically term­
inated if a parity error still exists after
Ioes attempts 15 times to write a tape out­
put block. This includes erasing forward.

This entry applies to wrong-length rec­
ords if the entry WLRERR is not included.
If both ERROPT and WLRERR are omitted and
wrong length records occur, IOCS will
assume the IGNORE option.

JSTD l
FILABL=)NO "

~NSTD,'

The entry STD is used to indicate that
standard labels will be processed. Enter
NO if no labels are contained on the file.

If nonstandard labels are contained on
the file, enter NSTD. The user must fur­
nish a routine to check or create the non­
standard labels by using his own I/O area
and EXCP to read or write the labels: The
entry point of this routine is the operand
of LABADDR.

IOAREA1=Name

This entry specifies the I/O area. Enter
an address expression (name) which speci­
fies the I/O area. When variable-length

recorqs are processed, the size of the I/O
area must include four bytes for the block
size.

IOAREA2=Name

This entry specifies a second I/O area.
Enter an address expression (name) which
specifies the I/O area. When variable­
length records are processed, the size of
the I/O area must include four bytes for
the blocksize.

IOREG=(r)

If two input or output areas are used, if
blocked input or output records are proc­
essed in the I/O area, if variable un­
blocked records are read, or if undefined
records are read backwards, this entry
specifies the register in which IOCS places
the address of the record that is available
for processing. For output files, IOCS
places, in a register, the address of the
area where the user can build a record. Any
register (2-12) may be specified.

LABADDR=Name

Enter the symbolic name of the user routine
to process user-standard or nonstandard
labels. See the discussion under Tape OPEN:
Writing and Checking User Standard Labels
and Writing and Checking Nonstandard Labels.

MODNAME=Name

This entry specifies the name of the logic
module that will be used with the DTF table
to process the file. If the logic module
was assembled with the program; the MODNAME
in the DTF macro instruction must specify
the same name as the MTMOD macro instruc­
tion. If this entry is omitted, standard
names will be generated for calling the
logic module. If -two DTF macro instructions
call for different functions that can be
handled by a single module, only one module
will be called. For example, if one DTF
specifies READ=FORWARD and another specifies
READ=BACK, only one logic module capable of
handling both functions will be called.

NOTEPNT={POINTS}
YES

The entry YES is specified if the NOTE,
POINTW, POINTR, or POINTS macro instructions
will be issued to the tape work file. If
POINTS is specified, only POINTS macro in­
structions can be issued to tape work files.

READ={FORWARD}
BACK

This entry specifies the direction in which
the tape is read. READ=FORWARD may be
omitted.

RECFORM=

This entry specifies the type of records
(fixed- or variable-length, blocked or un­
blocked, or undefined) in the input or out­
put file. One of the following may be
entered immediately following the = sign.

FIXUNB

FIXBLK

VARUNB

VARBLK

UNDEF

for fixed-length unblocked records

for fixed-length blocked records

for variable-length unblocked
records

for variable-length blocked records

for undefined records.

If the record format is fixed-length
unblocked, this entry may be omitted. Work
files may use only FIXUNB or UNDEF.

RECSIZE=n or (r)

For fixed-length blocked records, this
entry is required. It specifies the
number of characters, n, in each record.

For undefined records, this entry is
required for output files and optional for
input files. It specifies a general regis­
ter (2-12) that contains the length of the
record. On output, the user must load the
length of each record into the register
before he issues the PUT. If specified
for input, Ioes will provide the length of
the record transferred to main storage.

{
UNLOAD}

REWIND= NORWD

If this specification is not included,
tape files are automatically rewound, but
not unloaded, on an OPEN or CLOSE instruc­
tion or on an end-of-volume condition. If
other operations are desired for a tape in­
put or output file, this entry specifies:

UNLOAD to rewind the tape on OPEN or to
rewind and unload on a CLOSE or
end-of-volume condition.

NORWD to prevent rewinding the tape at
any time.

Declarative Macro Instructions 89

SEPASMB=YES

Include this parameter if the DTF is
assembled separately. This causes a CATALR
card with the Filename to be punched ahead
of the object deck and defines the Filename
as an ENTRY point in the assembly.

TPMARK=NO

This entry is included if the user does not
want a tape mark written as the first record
on a tape output file when no labels are
specified. This entry is also included if
no tape mark is to be written following
nonstandard labels. If this entry is omit­
ted for a tape output file, a tape mark
will be the first record if no labels are
specified. Also if this entry is omitted
a tape mark will be written following non­
standard labels.

TYPEFLE= {;~~~~T}
WORK

Use this entry to indicate whether the file
is an input or output file. If INPUT is
specified, the GET macro will be used. If
OUTPUT is specified, the PUT macro will be
used. If WORK is specified, the READ/WRITE,
NOTE/POINT, and CHECK macros will be used.
(See the section Work Files for DTFMT and
DTFSD.)

VARBLD=(r)

Whenever variable-length blocked records
are built directly in the output area (no
work area specified), this entry must be
included. It specifies the number (r) of
a general-purpose register, which will al­
ways contain the length of the available
space remaining in the output area. Any
register (2-12) may be specified.

Only after the PUT instruction is issued
for a variable-length record, IOCS calcu­
lates the space still available in the out­
put area and supplies it to the programmer
in the VARBLD register. The programmer
then compares the length of his next
variable-length record with the available
space to determine if the record will fit
in the area. This check must be made before
the record is built. If the record will
not fit, the programmer issues a TRONC in­
struction to transfer the completed block
of records to the tape file. Then the
present record is built at the beginning of
the output area, as the first record of the
next block.

WLRERR=Name

This entry applies only to tape input
files. It specifies the symbolic name of
a user's routine to receive control if a
wrong-length record is read.

90 DOS Sup. and I/O Macros

The address of the record is supplied
by IOCS in register 1. In his routine the
user can perform any operation he desires
for wrong~length records. However, he
must not issue any GET macro instructions.
If he uses any other IOCS macros in his
routine, he must save and restore the
contents of register 14. At the end of
his routine the user must return to IOCS
by branching to the address in register 14.

When fixed-length unblocked records are
specified (RECFORM=FIXUNB), a wrong length
record error condition is given when the
length of the record read is not equal to
that specified in the BLKSIZE parameter.
For fixed-length blocked records, record
length is considered incorrect if the
physical tape record (gap to gap) that is
read is not a mUltiple of the logical­
record length (specified in DTF RECSIZE),
up to the ,maximum length of the block
(specified in DTFMT BLKSIZE). This permits
the reading of short blocks of logical
records without a wrong-length-record
indication.

For variable-length records blocked and
unblocked, record length is considered in­
correct if the length of the tape record is
not the same as the block length specified
in the four byte block-length field.

The WLRERR option is taken for undefined
records if the record read is greater than
the size specified by the BLKSIZE parameter

If the WLRERR entry is omitted but a
wrong-length record is detected by IOCS,
one of the following will result.

• If the ERROPT entry is included for
this file, the wrong-length record
will be treated as an error block
and handled according to the user's
specifications for an error (IGNORE,
SKIP, or Name-of-error routine).

• If the ERROPT entry is not included, IO
will assume the IGNORE option of ERROPT

WORKA=YES

If I/O records are processed in work areas
instead of the I/O area, specify YES with
this entry. The user must set up the work
area in main storage. The address expres­
sion of the work area, or general register
containing the address, must be specified
in each GET or PUT.

PARAMETERS AND NAMES FOR MTMOD (MAGNETIC
TAPE MODULE)

Listed here are the user-supplied parameter
for MTMOD. The first card contains MTMOD
in the operation field and may contain a
user module name in the name field.

CKPTREC=YES

ERROPT=YES

NOTEPNT={'YES '}
POINTS

READ={FORWARD}
BACK

Include this entry if
tape input files to be
processed by the module
will contain checkpoint
records interspersed
among the data records.
The module will also
process files which do
not have checkpoint rec­
ords, i.e., those whose
DTF's do not specify
CKPTREC=YES.

This entry is not
needed for work files.

Include this entry if
the module is to handle
any of the error options
for an error block.
Logic is generated to
handle any of the three
options (IGNORE, SKIP,
or .name). The module
will process any files
in which the ERROP~
parameter is not speci­
fied in the DTF.

This entry is needed
for work files, but it
is not needed for input
or output files.

Include this entry if
NOTE/POINT logic will be
used with the module.
If YES, the module will
process any NOTE, POINTR,
POINTW, or POINTS macro
instruction. If POINTS
is specified, only the
POINTS macro instruction
will be processed.

Modules specifying
either one of the two
options will also proc­
ess work files for which
the NOTE/POINT parameter
is not specified. Mod­
ules specifying YES will
also process work files
specifying only POINTS.
This entry does not
apply to input or out­
put files.

This entry causes gener­
ation of a module that
will read tape files
forward or backward.

If the operand speci­
fies FORWARD, logic to
read tape forward only
is generated.' Any DTF
used with the module may

fFIXUNB*)
FIXBLK*{

RECFORM= ~ VARUNB· ,
JVARBLK ~
f UNDEF /

SEPASMB=YES

(INPUT)
TYPEFLE=)OUTPUT~

lWORK)

not specify BACK in the
READ parameter statement.

If the operand is
BACK, logic to read tape
both forward and back­
ward is generated, and
any DTF used with the
module may specify
either FORWARD or BACK
as its READ parameter.

This entry is not
needed for work files.

This entry causes gener­
ation of an input/output
module which will proc­
ess either fixed-length,
variable-length or un­
defined records. If
either FIXUNB or FIXBLK
is specified, a logic
module will be generated
which allows processing
of both fixed-length
record types. If either
VARUNB or VARBLK is
specified, a logic mod­
ule will be generated
which allows processing
of both variable-length
record types. If UNDEF
is specified, a logic
module for processing
undefined record types
will be generated. Any
DTF used with the module
must specify the same
record format type as
the module. For example,
if the module has the
entry RECFORM=FIXUNB,
the DTF may have either
the entry RECFORM=FIXUNB
or RECFORM=FIXBLK.

This entry is not
needed for work files.

* FIXBLK and FIXUNB use
identical table for­
mats and logic modules.

Include this parameter
if the logic module is
assembled separately.
This causes a CATALR
card with the module
name (standard or user)
to be punched ahead of
the object deck.

This entry causes gener­
ation of a logic module
that will process either
GET/PUT macro instruc­
tions or READ/WRITE,
NOTE/POINT and CHECK

Declarative Macro Instructions 91

macro instructions for
work files. If the
operand of the entry
specifies WORK, then
logic to process work
files is generated;
otherwise, a module to
handle both input and
output file types is
assumed. Only DTF's for
work files may be used
with work file modules,
and only DTF's for input
or output files may be
used with an input/
output module.

Note: INPUT and OUTPUT
have the same table for­
mat and logic modules.

WORKA=YES This entry is to be in­
cluded if records are
to be processed in work
areas instead of I/O
areas for the GET/PUT
macros. The module will
also process files which
do not use a work area.

This entry is not
needed for work files.

Recommended Module Name for MTMOD

Each name begins with a 3-character prefix
(IJF) and consists of a 5-character field
corresponding to the options permitted in
the generation of the module.

In MTMOD there are two module classes:
the module class for handling GET/PUT func­
tions and the module class for handling
READ/WRITE, NOTE/POINT, and CHECK functions
(work files).

Name list for GET/PUT type modules.

MTMOD name = IJFabcde

a = F if RECFORM=FIXUNB (or FIXBLK)
V if RECFORM=VARUNB (or VARBLK)
U if RECFORM= UNDEF

b B if READ=BACK is specified
Z if READ=FORWARD, or if READ is

specified
c = C if CKPTREC=YES is specified

Z if CKPTREC=YES is not specified

d W if WORKA=YES is specified
Z if WORKA=YES is not specified

e = Z always

Name list for Work file type modules
(TYPEFLE=WORK) •

92 DOS Sup. and I/O Macros

not

MTMOD name = IJFWabcd

a = E if ERROPT=YES is specified
Z if ERROPT is not specified

b N if NOTEPNT=YES is specified
Z if NOTEPNT=YES is not specified
S if NOTEPNT=POINTS is specified

c = Z always

d Z always

Subsetting and Supersetting of MTMOD Names

The following diagram illustrates the sub­
setting and supersetting allowed for MTMOD
names. Three of the parameters allow sub­
setting. For example, the module name
IJFFBCWZ is a superset of any MTMOD name
specifying fixed-length records.

* + + :I-

I J F F B C W Z

v Z Z Z

U

+ Subsetting/supersetting permitted.

* No subsetting/supersetting permitted.

Subsetting and Supersetting Work Files for
MTMOD

The following diagram illustrates the sub­
setting/supersetting relationship for work
files using magnetic tape.

+ +

I J F WEN Z Z

Z S

Z

+ Subsetting/supersetting permitted.

SEQUENTIAL DASD FILES (DTFSD)

The DTFSD macro instruction defines sequen­
tial (consecutive) processing for a file
contained in a DASD. Only IBM standard
label formats will be processed. The DTFSD
macro instruction can be used with the IBM
2311 Disk Storage Drive or the IBM 2321
Data Cell Drive Modell.

A DTFSD entry is included for each
sequential input or output DASD file that

is processed in the program (Figure 22).
The DTFSD header entry and a series of de­
tail entries describe the file. Symbolic
addresses of routines and areas are speci­
fied in the detail entries.

Enter the symbolic name of the file in
the name field and DTFSD in the operation
field.

The detail entries can follow in any
order. Keyword entries are contained in
the operand field.

BLKSIZE=n

Enter the length (n) of the I/O area. If
the record format is variable or undefined,
enter the length of the I/O area needed for
the largest block of records.

CONTROL=YES

This entry is specified if a CNTRL macro
is to be issued to the file. A CCW will
be generated for control commands.

DELETFL=NO

Specify this parameter if the CLOSE macro
is not to delete the Format-l and Format-3
label for a work file. The parameter
applies to work files only.

{
23ll} DEVICE= 2321

This entry is included to specify whether
the data file is located on an IBM 2311 or
2321. If unspecified, 2311 is assumed.

EOFADDR=Name

This entry specifies the symbolic name of
the user's end-of-file routine. IOCS will
automatically branch to this routine on an
end-of-file condition. In his routine the
user can perform any operations required
for the end of the file. He generally
issues the CLOSE there.

{
IGNORE}

ERROPT= SKIP
Name

This entry is specified if the user does
not want a job terminated when a read or
write error cannot be corrected in the disk
error routines. If a parity error is de­
tected when a block of records is read, the
disk block is reread 10 times before it is

considered an error block. After unsuccess­
fully reading 10 times, the job is termi­
nated unless the ERROPT entry is included.
Enter one of the following parameters after
~he = sign if the ERROPT entry is desired.

IGNORE

SKIP

Name

The error condition is ignored.
The records are made available
to the user for processing.

No records in the error block
are made available for process­
ing. The next block is read
from the disk, and processing
continues with the first record
of that block.

This entry specifies the name
of the routine available to
process the error condition.
Register 1 contains the address
of the error block. Register
14 contains the return address.
The error block should be ref­
erenced using register 1. The
contents of IOREG or the work
area (if either is specified)
may vary. Consequently, they
should not be used to reference
the error block. GET macro in­
structions must not be issued
to the error block. If any
other IOCS macros are used in
the error routine, the contents
or register 14 must be saved.
To return to IOCS, the error
routine branches to the address
contained in register 14. After
control is returned to the prob­
lem program, the first record
of the next block is available
~or processing.

For an output file, IOCS
branches to the specified error
routine. Register 1 contains
the address of the error block.
Register 14 contains the return
address of the problem program.
The address is the instruction
following the PUT (CHECK for
work files) that detected the
error.

On an output file, the only
acceptable entries are IGNORE
or Name. On an UPDATE=YES file,
the entry SKIP will cause write
errors to be ignored. The
ERROPT entry applies to wrong­
length records if the DTFSD
entry WLRERR is not included.

Declarative Macro Instructions 93

'" ~

t:::I
0
C/)

C/)

r::
"'"0

Pl
::I
0.

H

" 0

:s:
Pl
()
Ii
0
en

•
I-rj

I.Q
r::
Ii
CD

I'V
I'V

0
1-3
I':tj
C/)

0

ttl
::I
rt
Ii
(1)
en

Req'd.

_L
Opt'l.

IB"1: IBM System/3S0 Assembler Coding Form DOS DTFSD Entries

* Header and each detai I card, except the last one in each set, must have a continuation punch in column 72. Also r
each detail cord r except the last one, must contain a comma immediately after the operand. Space is allowed for
the longest operand plus the comma. If a snialler operand is used, the comma should be maved over accordingly. In
the last detail card ora set, the comma pasition must be blank.

t General registers 2- 12, written in parentheses; for example: (12).

Form X24· 5051
Printed in U.S.A.

IOAREAl=Name

This entry specifies the symbolic name of
the I/O area to be used by the file. laCS
will read records into this area, or laCS
will write records from this area. When
variable-length records are processed, the
size of the I/O area must include foUr
bytes for the block size. The I/O area
must include eight bytes to build a count
field for output files. If the file is an
update file, the input and output areas are
the same. If the record format for the
file is variable length, the I/O area must
begin on a half-word boundary.

I OAREA2=Name

If two I/O areas are to be used by GET or
PUT, this entry is specified. Enter the
symbolic name of the second I/O area to be
used. When variable-length records are
processed, the size of the I/O area must
include four bytes for the block size. The
I/O area must include eight bytes to build
a count field for output files.

IOREG= (r)

This entry specifies the general purpose
register (2-12) in which IOCS puts the
address of the record that is available for
processing. For output files, IOCS puts
the address of the area where the user can
build a record. The same register may be
used for different files.

This entry must be specified if blocked
input or output records are processed in
the I/O area or if two I/O areas are used
and the records are processed in the I/O
areas.

LABADDR=Name

Enter the symbolic name of the routine that
enables the user to process his own labels.
See the sections Writing and Checking User
Standard DASD Labels for a discussion of
what the LABADDR should do.

MODNAME=Name

This entry may be used to specify the name
of the logic module that will be used to
process the file. If the logic module
is assembled with the program, the MODNAME
in the DTF macro instruction must specify
the same name as the SDMODxx macro in­
struction. If this entry is omitted,
standard names will be generated for calling
the logic module. If two DTF macro in-

Istructions call for different functions
that can be handled by a single module,
only one module need be called.

NOTEPNT={POINTRW}
YES

The parameter POINTRW is specified if a
NOTE, POINTR, or POINTW macro will be
issued to the file. If the parameter YES
is specified, NOTE, POINTR, POINTW, and
POINTS macros may be issued to the file.

I RECSIZE= {(~)}
For fixed-length blocked records, this
entry is required. It specifies the number
of characters, n, in each record.

For undefined records, this entry is
required for output files and optional for
input files. It specifies a general regis­
ter (2-12) that contains the length of the
record. On output, the user must load the
length of each record into the register be­
fore he issues the PUT. If specified for
input, IOCS will provide the length of the
record transferred to main storage.

RECFORM=

This entry specifies the type of records
(fixed or variable length, blocked or un­
blocked, or undefined) in the input or out­
put file. One of the following may be
entered immediately following the sign.

FIXUNB for fixed-length unblocked records

FIXBLK for fixed-length block records

VARUNB for variable-length unblocked records

VARBLK for variable-length blocked records

UNDEF for undefined records.

If RECFORM is omitted, FIXUNB is assumed.

SEPASMB=YES

Include this parameter if the DTF is assem­
bled separately. This causes a CATALR card
with the filename to be punched ahead of
the object deck and defines the filename
as an ENTRY point in the assembly.

TRUNCS=YES

This entry is specified if FIXBLK DASD files
contain short blocks embedded within an in­
put file. This entry is also specified if
the TRUNC macro will be issued for a FIXBLK
output file.

{
INPUT }

TYPEFLE= OUTPUT
WORK

Declarative Macro Instructions 95

Use this entry to indicate whether the file
is an input or output file. If WORK is
specified, a work file is used. (See Work
Files for DTFMT and DTFSD.) If INPUT rs-­
specified, the GET macro will be used. If
OUTPUT is specified, PUT will be used. If
WORK is specified, the READ/WRITE, NOTE/
POINT, and CHECK macros will be used.

UPDATE=YES

I
ThiS entry must be included if the DASD in­
put file or work file is to be updated.

VERIFY=YES

This entry is included if the user wants to
check the parity of 2311 records after they
are written. If this entry is omitted, any
records written on 2311 are not verified.
VERIFY is assumed when 2321 records are
written.

VARBLD=(r)

Whenever variable-length blocked records
are built directly in the output area (no
work area specified), this entry must be
included. It specifies the number (r) of a
general-purpose register, which will always
contain the length of the available space
remaining in the output area. Any register
2-12 may be specified.

Only after the PUT instruction is issued
for-a-variable-length record, IOCS calcu­
lates the space still available in the
output area, and supplies it to the pro­
grammer in this VARBLD register. The pro­
grammer then compares the length of his
next variable-length record with the
available space to determine if the record
will fit in the area. This check must be
made before the record is built. If the
record will not fit, the programmer issues
a TRUNC instruction to transfer the com­
pleted block of records to the file. Then
the present record is built at the begin­
ning of the output area, as the first rec­
ord in the next block.

WLRERR=Name

Register 1. At the end of his routine, the
user must return to IOCS by branching to
the address in Register 14. When control
is returned to the problem program, the
first record of the next block is available
for processing.

If this WLRERR entry is omitted from the
set of DTFSD entries but a wrong-length rec­
ord is detected by IOCS, one of the follow­
ing will result:

• If the ERROPT entry is included for
this file, the wrong-length record will
be treated as an error block and handled
according to the user's specifications
for an error (IGNORE, SKIP, or Name of
error routine).

• If the ERROPT entry is not included,
the error will be ignored.

The WLRERR entry does not apply to unde­
fined records. Undefined records are not
checked for incorrect record length.

WORKA=YES

Input/output records can be processed, or
built, in work areas instead of the input/
output areas. If this is planned, this
WORKA=YES entry must be included, and the
programmer must set up the work area(s) in
main storage. Then the symbolic name (or a
general register containing the address),
which is used in the DS instruction that
reserves the work area, must be specified
in each GET or PUT instruction. On a GET
or PUT, IOCS moves the record to, or from,
the specified work area.

Whenever this entry is included for a
file, the DTF entry IOREG must be omitted.

PARAMETERS AND NAMES FOR SDMODxx
SEQUENTIAL DASD MODULE

Sequential DASD module generation macros
differ from other IOCS module generation
macros. The file characteristics are sep­
arated into ten categories, and each cate­
gory has a unique macro instruction asso­
ciated with it.

This entry applies to disk input files. It
specifies the symbolic name of a user's rou- Macro
tine to which IOCS will branch if a wrong-

Module Generated

length record is read. In his routine the SDMODFI
user can perform any operation he desires
for wrong-length records. However, he must
not issue any GET macro instructions for SDMODFO
this file. Also, if he uses any other IOCS
macros in his routine, he must save the con-
tents of Register 14. The address of the SDMODFU
wrong-length record is supplied by IOCS in

96 DOS Sup. and I/O Macros

Sequential DASD Module, Fixed
-length records, ~nput fTle

Sequential DASD Module, Fixed
-length records, ~utput file

Sequential DASD Module, Fixed
-length records, ~pdate file

Macro

SDMODVI

SDMODVO

SDMODVU

SDMODUI

SDMODUO

SDMODUU

SDMODW

Module Generated

Sequential DASD Module, Variable
-length records, ~nput fTle

Sequential DASD Module, Variable
-length records, Qutput file

Sequential DASD Module, Variable
-length records, ~pdate file

Sequential DASD Module, Undefined
-records, Input file

Sequential DASD Module, Undefined
-records, Qutput file

Sequential DASD Module, Undefined
-records, Qpdate file

~equential ~ASD Module, Work file

As shown, the macro operation, as well
as the keyword operands, define the charac­
teristics of the module. Two advantages
result from this way of generating modules
for sequential DASD files:

1. Maintenance changes can be made to the
module more easily.

2. A module to handle a specific file can
be generated more quickly than if there
were only one macro.

The operands for the ten macro instructions
are shown in Figure 23 and explained in the
following section.

SDMODxx Operands

A module name may be contained in the name
field of the macro instruction. The macro
operation is contained in the operation
field (SDMODFI, for example). The operands
are contained in the operand field.

CONTROL=YES This entry is specified if a
CNTRL macro is issued to the
file. This entry applies to
all ten SDMODxx macro instruc­
tions. The module also
processes any DTF in which
the CONTROL parameter is not
specified.

ERRQPT=YES This entry applies to all ten
SDMODxx macro instructions.

This entry is included if the
module will handle any of the
error options for an error
block. Logic is generated to
handle any of the three options
(IGNORE, SKIP, or name) regard­
less of which option is speci­
fied. The module will process
any DTF in which the ERROPT
parameter is not specified.

If this entry is not in­
cluded, the user's program
will cancel when any uncor­
rectable error except wrong­
length record error (which
LIOCS will ignore) is encoun­
tered.

NOTEPNT= {PO INTRW }
YES

This entry applies to SDMODW
(work files) only. This entry
is included if any NOTE,
POINTR, POINTS, or POINTW macro
instructions are to be used
with the module. If the oper­
and specifies POINTRW, logic
to handle only NOTE, POINTR,
and POINTW is generated.

If the operand specifies
YES, the routines to handle
NOTE, POINTR, POINTS, and
POINTW are generated and any
files that specify
NOTEPNT=POINTRW in the DTF are
processed.

In either case, any files
that do not specify the
NOTEPNT parameter in the DTF
are processed.

SEPASMB=YES Include this parameter if the
logic module is assembled
separately. This causes a
CATALR card with the module
name (standard or user) to be
punched ahead of the object
deck.

TRUNCS=YES This parameter applies to all
SDMOD macro instructions for
fixed length records. This
entry causes generation of a
logic module that allows use

Declarative Macro Instructions 97

Name Operation Operand Required Comments

I Modname] SOMOOxx

CONTROl=YES If the CNTRl macro is Appl ies to all
to be issued to the file SOMOO's

ERROPT=YES If the module will Appl ies to all
handle error options SOMOO's
fo.r an error block

If NOTE, POINTR, Th is parameter appl ies
NOTEPNT= {POINTRW}

YES POINTS, OR POINTW to SOMOOW only.
macros will be issued The operand POINTRW
to the file generates log i c for

NOTE, POINTR, and
POINTW. The oper-
and YES generates
logic for all four
macros.

SEPASMB=YES If the module is assern- Applies to all
bled seporately from SOMOO's
the OTF

TRUNCS=YES If the TRUNC macro Applies to all
will be issued to the SOMOO's for
file fixed length records

UPDATE=YES If SDMODW will Applies to

process the WRITE SDMODWonly.

UPDATE macro
instruction.

Figure 23. Parameters for SDMODxx

of the TRUNC macro instruction.
It must be specified if any
FIXBLK DASD files to be proc­
essed by the module contain
short blocks embedded within
them. The module also
processes any DTF, for fixed
length records, in which the
TRUNCS parameter is not
specified.

In SDMOD there are two module classes:
the module class for handling GET/PUT func­
tions, and the module class for handling
READ/WRITE, NOTE/POINT, and CHECK functions
(work files).

UPDATE=YES This parameter is required for
the SDMODW only. (It is
assumed for SDMODFU, SDMODUU,
and SDMODVU.) It causes genera-'
tion of a logic module that
will allow use of the WRITE
UPDATE macro instruction with
workfiles.

Recommended Module Name List for SDMODxx

Each name will begin with a 3-character
prefix (IJG) and consist of a 5-character
field corresponding to the options permit­
ted in the generation of the module.

98 DOS Sup. and I/O Macros

Name List for GET/PUT Type Modules

SDMODxx name = IJGabcde

a = F if SDMODFx
V if SDMODVx
U if SDMODUx

b U if SDMODxU
I if SDMODxI
0 if SDMODxO

c = E if ERROPT=YES is specified
Z if ERROPT=YES is not specified

d T if TRUNC=YES is specified
Z if TRUNC=YES is not specified

e = C if CONTROL=YES is specified
Z if CONTROL=YES is not specified

Name List for Workfile Type Modules
(TYPEFLE=WORK)

SDMODxx name = IJGWabcd

a = E if ERROPT=~SKIP is specified
(IGNORE }

~Name
Z if ERROPT is not specified

b R if NOTEPNT=POINTRW is specified
N if NOTEPNT=YES is specified
Z if NOTEPNT is not specified

c = C if CONTROL=YES is specified
Z if CONTROL=YES is not specified

Id == U if UPDATE=YES is specified
Z if UPDATE=YES is not specified

Subsetting and Supersetting of SDMOD Names

The following diagram illustrates the sub­
setting and supersetting allowed for SDMOD
names. For the GET/PUT or workfile type
modules, three parameters allow superset­
tinge For example, in the GET/PUT type
module, the module IJGFUETC is a superset
of a module with the name of IJGFUEZZ.

**+++
IJG FUETC

VIZZZ
UO
*++++
WENCU

ZRZZ
Z

+Subsetting/supersetting permitted.
*No subsetting/supersetting permitted.

CONSOLE FILE (DTFCN)

DTFCN is used to define an input or output
file that will be processed on an IBM 1052
Printer-Keyboard. DTFCN provides GET/PUT
logic for the IBM 1052. The symbolic name
of the file is entered in the name field
and DTFCN is entered in the operation
field. The detail entries, in any order,
follow the DTFCN header entry with keyword
entries in the operand field. Figure 24
contains the DTFCN entries.

When entering information on the printer­
keyboard, if a mistake is made, press the
CANCEL key. This causes a new read command
to be issued, and the operator can retype
the date starting from the beginning.

BLKSIZE=n

The length of the I/O area is stated in
this entry. The length may be specified as
a number n. If the record format is unde­
fined, BLKSIZE must be as large as the
largest record. The input/output records
must not exceed 256 characters.

DEVADDR=lSYSLOGt
SYSnnn ~

This entry specifies the symbolic unit that
is associated with the logical file.

In a multiprogramming environment,
DEVADDR=SYSLOG must be specified to obtain
Background (BG), Foreground 1 (Fl), or
Foreground'2 (F2), prefixes for message
identification.

IOAREAl=Name

This entry specifies the symbolic name of
the I/O area to be used by the file.

RECFORM=l FIXUNB \
UNDEF

This entry specified the record format of
the file. FIXUNB is assumed.

RECSIZE=(r)

For undefined records this entry specifies
the register (2-12) that will contain the
length of the record. The user must load
the length of each record into the register
before issuing a PUT for the record on an
output file.

lINPUT t
TYPEFLE= OUTPUT\

If INPUT is specified, coding will be gen­
erated for both input and output files. If
OUTPUT is specified, coding for an output
file only is provided.

WORKA=YES

This entry indicates that a work area will
be used with the file. On a GET or PUT,
IOeS moves the record to or from the work
area.

Declarative Macro Instructions 99

I-'
0
0

0
0
00

CJl
s::
to

DI
::1
0..

H

" 0

:s:
DI
0
Ii
0
Ul

•
t'!j

lQ
~
Ii
CD

I\.)

01:>-

0
1-:3
tlj
()
z
t:tj
::1
rt
Ii
CD
Ul

Req'd.

_1
Opt'l •

IB., IBM System/360 Assembler Coding Form lOS/DOS OlFPR and OTFCH Entries

* Header and each detail caljd, except the last one in each set, must have a continuation punch in column n. Also,
each detail card, except tile last one, must contain a comma immediately after the operand. Space is allowed for the
longest operand ~ the comma. If a smaller operand is used, the comma should be maved over accordingly. In the
last detail card ora set, the comma pasition must be blank.

t General registers 2- 12, written in parentheses; for example: (12).

Form X24· 5054
Printed in U.S.A.

Identification­

Sequence

OPTICAL READER FILE (DTFOR)

DTFOR is used to define an input file to
be processed on an IBM 1287 Optical Reader
or on an IBM 1285 Optical Reader.

Enter the symbolic name of the file in
the name field and DTFOR in the operation
field. The entries for DTFOR are discussed
in the following text and illustrated in
Figure 25.

!BLKSIZE= {lJ
This entry indicates the size of the input
area specified by IOAREAl. BLKSIZE spec­
ifies the maximum number (n1 of characters
that will be transferred to the area at any
one time. When undefined records are read,
the area must be large enough to accommodate
the longest record to be read.

If two input areas are used for journal

! tape proce'ssing (IOAREAl and IOAREA2), the
size specified in this entry is the size of
the I/O area (s) .

IOCS uses this specification to construct
the count field of the CCW.

CONTROL=YES

This entry must be included if a CNTRL macro
instruction will be issued for this file.
A control command issues orders to the Op­
tical Reader to perform nondata operations
such as line marking, stacker selecting,
document incrementing, etc.

COREXIT=Name

COREXIT provides an exit to the user's
error correction routine for the IBM 1285
or 1287 Optical Reader. Whenever the error
correction routine is entered, an indica-

Ition of the reason for the entry is provided
in Filename+80. Filename+80 contains the
following hexadecimal bits indicating the
conditions that occurred during the last
line or field read. More than one error
condition may be present.

X'Ol' A reject character (@) was in­
serted in the line.

X'02' The operator corrected one or more
characters from the keyboard.

X'04' A wrong-length record was retried
unsuccessfully ten times. (Fixed­
length unblocked records only.)

X'08' An equipment check resulted in a
lost line. After an equipment
check while processing undefined
records, the RECSIZE register
may contain zero. The user
should test the register before
moving records from the work
area or the I/O area. If an
equipment check occurs on the
first character read, the IOREG
points to the high-order position
of the I/O area.

X'lO' A non-recovery error occurred.

X'20' A stacker-select command was given
after the allotted time had
elapsed and the document had been
put in the reject pocket.

I Filename+80 can be interrogated by the
user to determine the reason for entry to
the error correction routine. Choice of
action in the user's error correction rou-
tine is determined by the particular appli­
cation. Only the entries pertaining to

\

wrong-length record, equipment check, non­
recovery, and late stacker selection, are
applicable to document processing on the
1287.

If, in the COREXIT routine, the user
issues I/O macro instructions to any device
other than the 1285 and/or 1287, he must
save registers 0, I, 13, 14, and 15 upon
entering the COREXIT routine and restore
these registers prior to exiting. If I/O

acro instructions, other than the GET and/
or READ, are issued to the 1285 and/or 1287
in this routine the user must first save,
and later restore registers 14 and 15.

All exits from COREXIT (except those
noted in the following table) must be to the
address in register 14, which returns to the
point from which the branch to COREXIT
occurred.

Declarative Macro Instructions 101

•
I--' '"':l
0 1-'.
IV lQ

s::
Ii
CD

0
0 IV
CIl U1

IBM IBM System/36D Assembler Coding Form

PROGRAM I PUNCHING I GRAPHIC I I I I PAGE Of

PROGRAMMER DATE
J INSTRUCTIONS J PUNCH I I I 1 CARD ELECTRO NUMBER

STATEMENT
Identification-

No ... Operation Operand Comments Sequence

CJ)

s::
'0 0 . 1-3

'"':l
n.t 0
::s ~
0..

tIj
H ::s

......... rt
0 Ii

1-'.
::s: CD
n.t til

I 8 10 1~ 16 20 25 30 35 40 45 50 55 60 65 71 73 80

,X)C)()eX XX lOT FOR Name of the optical reader file (1 characters or less). This OTF table requires an ORMOO. X R

CO RE XI T= xX xx X)(X Xlot Name of user's error correction routine. I ·1 I X
IDe VA DO R= SV s)(")(, . Symbolic unit assigned to the optical reader. 1)(
EO FA 100 R= xx xx xx xx, Nameofuser'send-of-fileroutine·1111 X
10 All EA 1= xx xx xx xx, Name of first input area. I 1 1 1 I 1 \ \ \ X .- - -- - - - -8 LK SI i!E Length of I/O area (s). If omitted, 38 is assumed. X =.x XI~ ()

CO tJT Rio L= 'IE 51. If CNTRL macro is to be used for this file. I I X

R~l
Op.t'.e.

I'
p.t '.e.

()
Ii DE VI CE =x X" xx, (1285, 12870, or 1287T) 1285 processes journal tape only. If omitted, 1285 is assumed. X
0
til HE AD ER ='(ES, If a header record is to be read from the optical reader keyboard by OPEN. X

10 AR fA 2= xx)'" xx xx, If two input areas are used, name of second input area. ! X
110 I2E G= (x x), Reg. no., if 2 input areas or UNOEF records are to be used. If omitted, reg. 2 is assumed. X
MO DN AM E= xx xx xx xx, Name of OTF's logic module.\lf omitted, 10CS generates a standard name. X
RE' eF OR M= xx X" xx, (FIXUNB or UNOEF) If omitted, FIXUNB is assumed~ X
(lE CS Ii E= (x x) , Reg. no., containing record size, if RECFORM=UNOEF. If omitted, reg. 3 is assumed. lX
SE PA SM s= YE 5, i If the OTFOR is to be assembled separately. I X
~O RK A= YES IIIlI~r~c~r~sare to ,b~ p.r0~_e~sed ,in, a ,~r~_,!re.a., C?mit,I<?R~~., 1111 III 1

Seven binary counters are used to accum­
ulate totals of certain 1285 and 1287 tape
mode error conditions. These counters each
occupy four bytes, starting at Filename+48.
Filename is the name specified in the DTFOR
header entry. The seven DTFOR counters are:

Counter Address

1 Filename+48

2 Filename+52

3 Filename+56

4 Filename+60

5 Filename+64

6 Filename+68

7 Filename+72

Contents

Lost lines

Lost line uncorrect­
able after ten
retries.

Wrong length records

Wrong length records
uncorrectable after
ten retries.

Keyboard corrections

Lines, including
retried lines, in
which data checks
are present.

Lines marked

An eighth counter, located at Filename+
76, contains a count of total lines read.
All of the previous counters contain binary
zeros at the start of each job step and are
never cleared.

The user may list the contents of these
counters for analysis at end of file, or at
end of job, or he may ignore the counters.
(Binary contents of the counters should be
converted to a printable format.)

A non-recoverable error when processing
journal tapes (torn tape, tape jam, etc)
may require that the tape be completely re­
processed unless the user can provide suit­
able means of correction. A non-recovery,
when processing documents on the IBM 1287
Optical Reader, indicates that a jam
occurred during a document incrementation
operation. It mayor may not indicate loss

1
0f the document, depending on the extent of
document mutilation. In these cases, the
problem program must not branch to the

address in register 14 from the eOREXIT
routine or looping will occur. Following a
nonrecovery error, the DTFOR file must be
CLOSEd and reOPENed before processing can
continue. The user should ignore any out­
put resulting from the document which caused
the jam.

Notes: The user cannot issue a GET or a
READ macro to the 1285 or 1287 in his error
correction routine. The user should not
process records in his error correction rou­
tine. The record that caused the exit to
the error routine will be available for
processing upon return to the user's main­
line program. Any processing included in
the error routine would be duplicated after
return to the mainline program.

DEVADDR=SYSnnn

This entry specifies the symbolic unit
(SYSnnn) to be associated with this logical
file. The symbolic unit represents an
actual I/O device address. The symbolic
unit is SYSOOO-SYS244 for an optical reader.
It is used in the Job Control ASSGN state­
ment to assign the actual I/O device address
to this file.

I {1285 }
DEVICE= l287D

1287T

This entry must be included to state the
I/O device associated with this logical
file. One of the following specifications
must be entered immediately after the =
sign:

1285 for a journal tape input file
on a 1285

l287D for a document input file on
a 1287

l287T for a journal tape input file
on a 1287

From this specification, Ioes sets up the
device-dependent routines for this file.
For document processing on the 1287 Optical
Reader, the coding of eew's is accomplished
by the user.

EOFADDR=Name

This entry specifies the symbolic name of
the user's end-of-file routine. Ioes auto­
matically branches to this routine on an
end-of-file condition.

I When processing documents, end-of-file
condition is recognized by pressing the
END OF FILE key on the console when the

Declarative Macro Instructions 103

hopper is empty., When processing journal
tapes on a 1285 or 1287, end-of-file is
detected by pressing the END OF FILE
key after the end of the tape has been
sensed.

When IOCS detects the end-of-file, it
branches to the user's routine specified by
EOFADDR. It is the user's responsibility
to determine if the current roll is the
last roll to be processed. It is suggested
that this be accomplished by keying in head­
er information at the beginning of each
roll. This information could then be inter­
rogated in this routine to determine whether
it is the last roll. Regardless of the
situation, the tape file must be CLOSEd for
each roll within this routine. If the cur­
rent roll is not the last, OPEN must be
issued. The OPEN macro instruction allows
header {identifying} information to be
entered at the reader keyboard and read by
the processor when using logical IOCS.

HEADER=YES

This entry is required if the operator is
to key in header {identifying} information
from the 1285 or 1287 keyboard. The OPEN
routine reads the header information only
when this entry is present. If the entry
is not included, OPEN assumes no header
information is to be read. The header rec­
ord size can be as large as the BLKSIZE
entry and it is read into the high order
positions of IOAREAl.

IOAREAl=Name

This entry is included to specify the
symbolic name of the input area used by
this file. Prior to each input operation,
the area is set to binary zeros and the
input routines then transfer records to
this area.

IOAREA2=Name

Two input areas can be allotted for a file
to permit an overlap of data transfer and
processing operations. When this is done,
the IOAREA2 entry must be included. It
specifies the symbolic name of the second
I/O area, which is set to binary zeros be­
fore each input operation occurs.

This entry must not be included if
DEVICE=1287D.

IOREG={{ r >}
(~)

This entry specifies the general-purpose
register (r) that the input/output routines
use to indicate the beginning of undefined

DOS Sup. and I/O Macros

records for a journal tape file. Any -regis­
ter number 2-12 may be specified, but if the
entry is omitted, register 2 is assumed.

The same register may be specified in
the IOREG entry for two or more files in
the same program, if desired. In this case,
the problem program may need to store the
address supplied by IOCS for each record.

Whenever this entry is included for a
file, the DTFOR entry WORKA must be omitted,
and the GET instruction must not specify
a work area. --

Undefined records are processed by the
1285 and 1287. The "read" by an optical
reader is accomplished by a backward scan,
which places the rightmost character in the
record in the rightmost position in the
I/O area and subsequent characters in
sequence from right to left. The register
defined by IOREG is used to indicate, to
the user, the beginning of the record.

MODNAME=name

This entry is used if a nonstandard, or a
more inclusive module is referenced. It
specifies a user-named I/O module.

RECFORM={FIXUNB }
UNDEF

This entry specifies the type of records
(fixed unblocked or undefined) in an optical
reader file. One of the following speci­
fications may be entered immediately after
the = sign:

FIXUNB

UNDEF

for fixed-length unblocked
records

for undefined records

If the entry is omitted, FIXUNB is assumed.

RECSIZE={{r)}
(~)

For fixed-length unblocked records, this
entry should be omitted and no register is
assumed.

For undefined records, this entry spec­
ifies the number (r) of the general-purpose
register that will contain the length of
each individual input record. This may be
any register 2-12, but if the entry is
omitted, register 3 is assumed.

SEPASMB=YES

Include this entry if the DTF is assembled
separately. This causes a CATALR card with
the filename to be punched before the object
deck and defines the filename as an ENTRY
point in the assembly.

WORKA=YES

Journal tape input records can be processed
in a work area instead of the input area.
If this is planned, the entry WORKA=YES must
be included, and the programmer must set up
the work area in main storage. The symbolic
name of the work area (or a general register
containing the address of the work area)
must be specified in each GET. When GET is
issued, IOCS left-justifies the record in
the specified work area.

Whenever this entry is included for a
file, the DTFOR entry IOREG must be omit­
ted.

PARAMETERS AND NAMES FOR ORMOD (OPTICAL
READER MODULE)

The following list contains the parameters
for a user-coded I/O module (ORMOD). The
first card contains the module name in the
name field and ORMOD in the operation field.

Operands

CONTROL=YES

{
1285 }

DEVICE= l287D
l287T

IOAREA2=YES

RECFORM={FIXUNB}
UNDEF

SEPASMB=YES

Comments

Include this entry if
CNTRL macro instructions
are to be used with the
associated DTF's. The
module also processes
files that do not use the
CNTRL macro instruction.

This entry must be speci­
fied to indicate that
either the 1285, 1287
(document mode), or 1287
(tape mode) Optical Reader
is being used as the input
device.

Include this entry if a
second I/O area is to be
used. The DTFOR used with
this module must also in­
clude the IOAREA2
parameter.

This entry causes genera­
tion of a module that will
process the specified rec­
ord format: fixed-length
or undefined. The DTFOR
used with this module must
also include the appropri­
ate operand in the RECFORM
parameter.

Include this parameter if
the module will be assem­
bled separately from the
DTF(s). This entry causes
a CATALR card to be
punched preceding the
module.

WORKA=YES Include this entry if rec­
ords are to be processed
in work area(s) instead
of I/O areas. The DTFOR
used with this module must
include the appropriate
operand in the WORKA
parameter.

Recommended Module Name for ORMOD

Each name begins with a 3-character prefix
(IJM) followed by a 5-character field cor­
responding to the options permitted in the
generation of the module.

ORMOD name = IJMabcde

a = F if RECFORM=FIXUNB
U if RECFORM=UNDEF

b C if CONTROL=YES is specified
Z if CONTROL=YES is not specified

c = I if IOAREA2=YES is specified
W if WORKA=YES is specified
Z if neither is specified
B if both are specified

d T if device is in tape mode
D if device is in document mode

e = Z always

Subsetting and Supersetting of ORMOD Names

The following diagram illustrates the sub­
setting and supersetting allowed for ORMOD
names. One of the parameters allows sub­
setting. For example, the module IJMFCITZ
is a superset of the module IJMFZITZ.

* + * * *
I J M F C I T Z

Z W
B
Z

U
Z D

* No subsetting/supersetting permitted

+ Supersetting/subsetting permitted

SERIAL DEVICE FILE (DTFSR)

The DTFSR macro instruction is provided as
a compatibility aid to users of the Basic
Operating System/360. For Disk Operating
System/360 users, the DTFCD, DTFPT, DTFMT,

Declarative Macro Instructions 105.

.......
0
0'\

0
0
CIl

(J)

s::
"0

PI
~
P,

H

"'-0

:s!
PJ
()

Ii
0
Ul

•
i"%j
1-'.
lQ
s::
11
ro
N
0'\

0
t-3
i"%j
(J)

~

trJ
~
rt-
11
1-'.
(\)

Ul

I1j

PJ
11
rt-

.......

0
t-h

U1

IBM IBM System/360 Assembler Coding Form BPS/BOSITOS/DOS DTFSR Entries, Card Read-Punch Form X24-5046 U / M025
Printed in U.S.A.

'Header and each detail card, except the last one in each set, must have a continuation punch in column 72. Also,
each detail card, except the last one, must contain a comma immediately alter the operand. Space is allowed for the
longest operand plus the comma. If a smaller operand is used, the comma should be moved over accordingly. In the
last detail card oloset, the comma position must be blank.

tGeneral registers: For BPS and BOS, use 2-11, written without parentheses; for example: 11. For 105 and DOS, use
2-12, written with parentheses; for example: (12).

Req'd.

Opt'l.

t:1
(0
()
I--'
P1
Ii
P1
cT
1-'-
<!
(0

re=
()
Ii
o
H
::I
{J)

cT
Ii
r::
()

cT
1-'­
o
::I
{J)

I--'
o
--...J

I-l:j
1-'-
~
r::
Ii
(0

IV
m

t:1
t-3
I-l:j

Cf.l
~

tr:I
::I
cT
Ii
1-'-
(0
{J)

tU
P1
Ii
cT

IV

0
t-h

Ul

IBM IBM System!360 Assembler Coding Form BOS/DOS DTFSR Entries, Disk Form X24-S04B U/M02S
Printed in U.S.A.

'Header and each detail card, except the last one in each set, must have a continuation punch in column 72. Also,
each detail card, except the last one, must contain a comma immediately after the operand. Space is allowed for the
longest operand plus the comma. If a smaller operand is used, IlIe comma should be moved over accordingly. In the
last detail card oT;;" set, the comma position must be blank.

tGeneral registers: For BPS and BOS, use 2-11, written without parentheses; for example: 11. For TOS and DOS, use
2-12, written with parentheses; for example: .(12).

Req'd.

Opt'l.

•
I-' I'%j
0 1-'"
00 I.Q

s:: IBM IBM System/3BO Assembler Coding Form

Ii
CD PROGRAM I PUNCHING I GRAPHIC 1 I I I PAGE Of

t:I
0 N

PROGRAMMER
I INSTRUCTIONS I PUNCH I I I I CARD ELECTRO NUMBER

DATE

00 0"1 STATEMENT
Identification-

m

~ t:l Req'd.
8
I'%j

PJ 00
~ :;0
P.

tr:l
H ::l

........... rt
0 Ii

1-'"
~ CD

Opt'!. PJ Ul
()
Ii
0 tU
Ul PJ

Ii
rt

Nome Operation Operond Comments Sequence
I B 10 14 16 20 25 30 35 40 4'; 50 55 60 65 71 73 BO

XX XX XXX DT FSR Name of 1285 or 1287 optical reader file (7 characters or less), I I I I 1111 I X F

co RE XI T= xx xx xx xx, Name of user's error correction routine. I I I X
DE VA DO R= SV Sx XX, Symbolic unit assigned to the optical reader. X
DE VI CE =x xx xx X)f., (READ87T, READ87D, READ85) If omitted, READ85 is assumed. X
EO FA DO R= x)(. xx xx XX, Name of user's end- of- file routine. I I I I X
10 AR EA I = xx xx xx xx, Name of first input area. J I I I J I J J I X
SL KS ii! E= XX, Length of I/O area~}. If omitted, 38 is assumed. X (

CO ..,r RO L= VE S~ If CNTRL macro is to be used for th is fi Ie. 1 1 X
HE AD ER =y ES , If a header record is to be read from the optical reader keyboard by OPEN. X
10 AR EA 2= xx xx xx x X, If two input areas are used, name of second input area. I X

e.q'd.

pt't.

w 10 RE G= (x X) , Reg. no., if two input areas, or undef. records, are to be used and a work area is not specified. X
0
I-h

RE CF OR M= xx xx x X , (FIXUNB or UNDEF) If omitted, FIXUNB is assumed. I)(I

U1 2E C5 1% E= (x x), Register number if RECFORM=UNDEF. If omitted, register 3 is assumed. X
TY PE FL E= XX XX XX, If not specified, INPUT is assumed. 1 I I I I I I X
rNo RK A= yeS l __ '--- -

'---~ ~E~s ~pecified with a ~o~~ area: Omi~ IOREG_~.JJ III 1 ! L I .- '----

o
CD
()

I-'
PJ
Ii
PJ
rt
<:
CD

:s:
PJ
()
Ii
o
H
::l
en
rt
Ii
C
()

rt
o
::l
en

I-'
o
I.D

I-Ij
I.Q
c
Ii
CD

tv
0\

0
J-3
I-Ij
til
::0
tIj
::l
rt
Ii
CD
en

IU
PJ
Ii
rt

II::>

0
I-tt

U1

IBM IBM Systam/360 Assamblar CDding FDrm BPS/BOS/TOS/DOS DTFSR Entries, Printer and Printer-Keyboard Form X24tr9~red i~/~~~

80

Req'd.

Opt'l.

Req'd.

I 1'1"1'1'1-1-1 "I I-I rl I I I .P"I , , , , , , , " , ,', , , , , , , i , , I I I I I I I I I I I I I I I I r'l I I I I I I I _ j_

• Header and each detail card, except the last one in each set, must have a continuation punch in column 72. Also,
each detail card, except the last one, must contain a comma immediately after the operand. Space is allowed for the
longest operand ~ the comma. If a smaller operand is used, the comma should be moved over accordingly. In the
last detail card of a set, the comma position must be blank.

tGeneral registers: For BPS and BOS, use 2·11, written without parentheses; for example: 11. For ros and DOS, use
2-12, written with parentheses; for example: (12).

T'

•
~ I'7j
~ 1-'-
0 I.Q

~
11

t::J
CD

0 N en ~

Ul
C

'"d t::J
1-3
I'7j

PJ 00
!:l :;d
P.

tr:J
H :J

'-...... ri-o 11
1-'-:s: CD

PJ Ul
()
11
0 I'd
Ul PJ

11
rt

U1

0
HI

U1

IBM BPS/BOS/TOS/DOS DTFSR Entries, Tape Form X24-5045 U/M025
Printed in U.S.A.

IBM System/3S0 Assembler Coding Form

1 1""1 I I I I I I I I I l .. d 1 1 1 1 1 ·1 1"1""1"-1 1 1 1 1 1 1 Req'd.

*Header and each detail card, except the last one in each set, must have a continuation punch in column 72. Also,
each detail card, except the last one, must contain a comma immediately after the operand. Space is allowed for the
longest operand plus the comma. If a smaller operand is used, the comma should be moved over accordingly. In the
last detail card OIO"set, the comma position must be blank.

tGeneral registers: For BPS and BOS, use 2-11 written without parentheses; for example: 11_ For lOS and DOS, use
2-12 written with parentheses; for example: (12).

Opt'l.

DTFOR, DTFPR, DTFCN, and DTFSD macros pro­
vide more advantages than DTFSR. Enter the
symbolic name of the file in the name field
and DTFSR in the operation field. The
entries for DTFSR are discussed in the fol­
lowing text and illustrated in Figure 25.

The begin-definition card must be
punched with DTFBG in the operation field
and DISK in the operand field. The name
field is blank. It is included in DOS to
provide compatability with the BOS DTFSR
macro instruction.

ALTTAPE=SYSnnn

This parameter is provided for BPS and BOS
compatibility.

BLKSIZE=n

This entry indicates the size of the input,
or output, area specified by IOAREA1.
BLKSIZE specifies the maximum number (n)
of characters that will be transferred to,
or from, the area at anyone time. When
variable-length records are read, or writ­
ten, the area must be large enough to
accommodate the largest block of records,
or the longest single record if the rec­
ords are unblocked.

If card-punch or printer output records
include control characters (DTFSR CTLCHR
specified) and/or record-length fields for
variable-length records (RECFORM=VARUNB),
the BLKSIZE specification must include the
extra bytes allotted in the main-storage
output area.

If two input, or output, areas are use

I

for a file (IOAREAl and IOAREA2), the size
specified in this entry is the size of the
I/O area(s).

IOCS uses this specification to:

• construct the count field of the CCW
for an input file.

• Construct the count field of the CCW
for an output file of fixed-length
records.

• Check physical record length for a file
of fixed-length blocked input records.

• Determine if the space remaining in the
output area is large enough to accommo­
date the next variable-length output
record.

CHECKPT=n

This entry is provided for compatibility
with BPS and BOS and is ignored by DOS.

CKPTREC=YES

This entry is required if a tape input
file will contain checkpoint records
interspersed among the data records. With
this entry, IOCS recognizes the checkpoint
records and bypasses them.

CONTROL=YES

This entry must be included if a CNTRL
macro instruction will be issued for this
file. A control command issues orders to
the I/O device to perform non-data opera­
tions such as card-stacker selection, car­
riage skipping, marking of doubtful 1287 or
1285 tape records, tape rewinding, etc.

When CONTROL is included, the DTFSR
entry CTLCHR must not be included.

COREXIT=NAME

COREXIT provides an exit to the user's
error correction routine for the IBM 1285
or 1287 Optical Reader. Whenever the error
correction routine is entered, an indica-

Ition of the reason for the entry is pro­
vided in Filename+80. Filenarne+80 contains
the following hexadecimal bits, indicating
the conditions that occurred during the
last line or field read. More than one
error condition may be present:

X'Ol' A reject character (@) was in~
serted in the line.

X'02' The operator corrected one or
more characters from the key­
board.

X'04' A wrong-length record was retried
unsuccessfully ten times. (Fixed­
length unblocked records only.)

X'OB' An equipment check resulted in a
lost line. After an equipment
check while processing undefined
rGcords, the RECSIZE register may
contain zero. The user should
test the register before moving
records from the work area or the
I/O area. If an equipment check
occurs on the first character
read, the IOREG points to the
high-order position of the I/O
area.

X'lO' A non-recovery error occurred.

X'20' A stacker-select command was
given after the allotted time
had elapsed and the document had
been put into the reject pocket.

Declarative Macro Instructions III

I

Filename+80 can be interrogated by the
user to determine the reason for entry to
the error correction routine. Choice of
action in the user's error correction
routine is determined by the particular
application. Only the entries pertaining
to wrong-length record, late stacker selec­
tion, equipment check and non-recovery are
applicable to document processing on the
1287.

If, in the COREXIT routine, the user
issues I/O macro instructions to any device
other than the 1285 and/or 1287, he must
save registers 0, 1, 13, 14, and 15 upon
entering the COREXIT routine and restore
these registers prior to exiting. If I/O
macro instructions, other than the GET and/
or READ, are issued to the 1285 and/or 1287
in this routine the user must first save,
and later restore registers 14 and 15. All
exits, except as noted below, from COREXIT
must be to the address in register 14, which
returns to the point from which the branch
to COREXIT occurred.

Seven binary counters are used to accu­
mulate totals of certain 1285 and 1287 tape
mode error conditions. These counters each

loccupy four bytes, starting a Filename+48.
Filename is the name specified in the DTFOR
header entry. The seven DTFSR counters are:

Counter Address

1 Filename+48

2 Filename+52

3 Filename+56

4 Filename+60

5 Filename+64

6 Filename+68

7 Filename+72

Contents

Lost lines.

Lost lines un­
correctable after
ten retries.

Wrong-length
records.

Wrong-length
records uncorrect­
able after ten
retries.

Keyboard correc­
tions.

Lines, including
retried lines, in
which data checks
are present.

Lines marked.

An eighth counter, located at Filename+
76, contains a count of total lines read.
All of the above counters contain binary
zero at the start of each job step and are
never cleared.

112 DOS Sup. and I/O Macros

The user may list the contents of these
counters for analysis at end of file, or at
end of job, or he may ignore the counters.
(Binary contents of the counters should be
converted to a printable format.)

A non-recovery error when processing
journal tapes (torn tape, tape jam, etc)
may require that the tape be completely
reprocessed unless the user can provide a
suitable means of correction. A non­
recovery, when processing documents on the
IBM 1287 Optical Reader, indicates that a
jam occurred during a document incrementa­
tion operation. It mayor may not indicate
loss of the document, depending on the
extent of document mutilation. In these
cases, the problem program must not branch
to the address in register 14 from the
COREXIT routine or looping will occur.
Following a nonrecovery error, the DTFOR
file must be CLOSEd and reOPENed before
processing can continue. The user should
ignore any output resulting from the docu-
ent wh~ch caused the jam.

Note: The user cannot issue a GET or a
READ macro to the 1285 or 1287 in his error
correction routine. The user should not
process records in his error correction rou·
tine. The record that caused the exit to
the error routine will be available for
processing upon return to the user's main­
line program. Any processing included in
the error routine would be duplicated after
return to the mainline program.

See Special Considerations for Optical
Reader Files in the Optical Reader File
(DTFOR) section of this manual.

CRDE RR= RETRY

This entry applies only to a card output
file in the IBM 2540 or 2520. It specifies
the operation to be performed if an error
is detected.

Normally if a punching error occurs, it
is ignored and operation continues. The
error card is stacked in pocket PI (punch).
Correct cards are stacked in the pocket
selected by the user. If this CRDERR entr]
is included to specify retrying, however,
IOCS also notifies the operator and then
enters the wait state when an error con­
dition occurs. The operator can either
terminate the job or instruct laCS to re­
punch the card.

From this specification, laCS generates
a retry routine and a save area for the
card punch record. ----

CTLCHR=YES

The CTLCHR (control character) entry applies
only to printer and punch output files. It
is included if each logical record to be
written or punched contains a control char­
acter (carriage control or stacker selec­
tion) in the record itself, in the main­
storage output area. For fixed-length or
undefined records, the control character
must be the first character. For variable­
length records, it is the first character
after the record-length field. The control
character codes are the same as the mod­
ifier bytes used for a punch or print
command.

with this entry, the IOCS routines cause
the control-character-specified printer or
card punch order to be issued to the I/O
device. Printing or punching begins with
the second character in the record.

When the CTLCHR entry is not included,
any control functions desired must be
performed by the CNTRL macro.

DEVADDR=SYSnnn

This entry specifies the symbolic unit
(SYSnnn) to be associated with this logical
file. The symbolic unit represents an
actual I/O device address. The symbolic
unit for the batch-or background job may
be:

SYSRDR for main system control card
reader

SYSIPT for main system input device

SYSPCH or SYSOPT for main system
punch device

SYSLST for main system printer

SYSLOG for control card logging device

SYSOOO-SYS244 for other units in the
system. This is generally a
unique number for each logical
file (except files on disk).

For the foreground job, the symbolic
units available are: SYSLOG, SYSOOO-SYSnnn
(no more than 245, total, symbolic units
with numeric names can exist in a system).

The symbolic unit (SYSnnn) is used in
the Job Control ASSGN statement to assign
the actual I/O device address to this file.
A reel of tape may be mounted on any tape
drive that is available at the time the
job is ready to be run, by merely assigning
that drive to the symbolic unit.

Whenever two devices are used for one
logical file, such as an alternate tape
drive (specified in the ASSGN cards), this
DEVADDR entry specifies the symbolic unit
for the first device.

The symbolic unit is specified for all
units except the 2311 disk drive. For
files on this unit, DEVADDR may be omitted.
If DEVADDR is omitted, the symbolic unit
for a disk drive is supplied by a Job Con­
trol XTENT card.

DEVICE=

This entry must be included to state the
I/O device associated with this logical
file. One of the following specifications
must be entered immediately after the =
sign.

DISKII

TAPE

PRINTER

READ 0 1

READ20

READ40

READ42

CONSOLE

PTAPERD

READ87T

READ87D

READ85

for an input or output file on
disk (2311).

for an input or output file
recorded on magnetic tape (2401,
2402, 2403, 2404, 2415).

for output printed on a 1403,
1404, 1443, or 1445.

for an input card file in a 2501.

for an input or output card file
in a 2520.

for an input or output card file
in a 2540.

for an input or output card file
in a 1442.

for input from and output to the
printer-keyboard (1052).

for input from a 2671.

for a journal tape input file on
a 1287

for a document input file on a
1287

for a journal tape input file on
a 1285

From this specification, IOCS sets up the
device dependent routines for this file.
For document processing on the 1287 Optical
Reader, the coding of CCW's is accomplished
by the user.

EOFADDR=Name

This entry must be included for:

Declarative Macro Instructions 113

• Card reader files

• Magnetic tape input files

• Paper tape input files

• Sequential disk input files.

• Optical Reader files.

It specifies the symbolic name of the
user's end-of-file routine. IOCS will
automatically branch to this routine on an
end-of-file condition.

IOCS detects end-of-file conditions as
follows:

• Card reader--by recognizing /* punched
in card columns 1 and 2. If cards are
allowed to run out without a /* trailer
card (and a /& card if end-of-job), an
error condition is signaled to the
operator (intervention required).

• Magnetic tape input--by reading a
tapemark and EOF in the trailer label
when standard labels are specified, or
by reading /* if the unit is assigned
to SYSRDR or SYSIPT. If standard
labels are not specified, IOCS assumes
an end-of-file condition when the tape­
mark is read. The user must determine,
in his routine, that this actually is
the end of the file.

• Paper tape reader--by recognizing the
end of tape when the end-of-file switch
is set ON.

• Sequential disk input--by reading an
end-of-file record or reaching the end
of the last extent supplied by the
user.

• 1287 Optical Reader input--when proc­
essing documents, end-of-file condition
is recognized by depression of the END

issued. The OPEN macro instruction
allows header (identifying) informa­
tion to be entered at the reader key­
board and read by the processor when
using logical IOCS.

I {IGNORE}

.
ERROPT== SKI!,

Name

This entry applies to disk or magnetic
tape input files, and it specifies functions
to be performed for an error block.

If a parity error is detected when a
block of sequential disk records is read,
the disk block is reread 10 times before
it is considered an error block. If a
parity error is detected when a block of
tape records is read, the tape is back­
spaced and reread 100 times before the tape
block is considered an error block. After
this the job is automatically terminated,
unless this ERROPT entry is included to
specify other procedures to be followed on
an error condition. Either IGNORE, SKIP,
or the symbolic name of an error routine
can be specified in this card. One of
these specifications is entered immediately
after the = sign in this keyword operand.
The functions of these three specifications
are:

IGNORE

SKIP

The error condition is com­
pletely ignored, and the records
are made available to the user
for processing.

No records in the error block
are made available for proc­
essing. The next block is read
from disk or tape, and proc­
essing continues with the first
record of that block. The error
block is included in the block
count, however.

OF FILE key on the console when the Name IOCS branches to the user's
routine, where he may perform
whatever functions he desires
to process or make note of the
error condition. Register 1
contains the address of the
block in error, and register 14
contains the return address.

input hopper is empty. When processing
journal tapes on a 1287 or 1285, end-
of-file is detected by depression of
the END OF FILE key after the end of
the tape has been sensed.

When IOCS detects the end of file, it
branches to the user's routine specified
by EOFADDR. It is the user's responsi­
bility to determine if the current roll
is the last roll to be processed. It
is suggested that this be accomplished
by keying in header information at the
beginning of each roll. This informa­
tion could then be interrogated in this
routine to determine whether it is the
last roll. Regardless of the situation,
the tape file must be CLOSEd for each
roll within this routine. If the cur­
rent roll is not the last, OPEN must be

114 DOS Sup. and I/O Macros

In his routine, the program­
mer should address the error
block, or records in the error
block, by referring to the
address supplied in register 1.
The contents of the IOREG reg­
ister or the work area (if
either is specified) may vary
and, therefore, should not be
used for error blocks. Also, the
programmer must not issue any GET
instructions for records in the

error block. If he uses any
other IOeS macros in his routine,
he must save the contents of
register 14. At the end of his
routine, the programmer must
return to IOeS by branching to
the address in register 14.
When control is returned to the
problem program, the first rec­
ord of the next block is avail­
able for processing in the main
program.

This ERROPT entry does not apply to
disk or tape output files.~he job is
automatically terminated if a parity error
still exists after Ioes attempts 10 times
to write a disk output block, or 15 times
to write a tape output block. The tape
procedure includes 15 forward erases.

This entry applies to wrong-length rec­
ords if the DTFSR entry WLRERR is not in­
cluded. If both ERROPT and WLRERR are omit­
ted, Ioes ignores any wrong-length records
that occur.

{
NO l

FILABL= STD (
NSTD)

This entry may be included for a tape input
or output file. One of the following spec­
ifications is entered immediately after the
= sign:

STD

NSTD

NO

HEADER=YES

for a tape input file if standard
labels are to be checked by laCS,
or for a tape output file if
standard labels are to be written
by IOeS.

for a tape input or output file
that has nonstandard labels.
These labels may be processed by
the user (see Opening Tape Files:
Nonstandard Labels). NSTD is
specified for standard input la­
bels if they are not to be checked
by IOeS.

for a tape file that does not
contain labels. The entry
FILABL=NO may be omitted, if de­
sired, and laCS will assume that
there are no labels.

This entry is required if the operator is
to key in header (identifying) information
from the 1285 or 1287 keyboard. The OPEN
routine reads the header information only
when this entry is present. If the entry

is omitted, OPEN assumes no header informa-

I

tion is to be read. The header record size
can be as large as the BLKSIZE specification
and it is read into the high-order positions
of IOAREAl.

INAREA=Name

This entry applies only to a card file in
an IBM 1442 that is to be updated (TYPEFLE=
CMBND) and for which separate input and
output areas are required. INAREA speci­
fies the symbolic name of the input area
to which the card record is to be trans­
ferred. OUAREA is used in conjunction with
INAREA, and both IOAREAl and IOAREA2 must
be omitted.

When the same I/O area is to be used for
both input and output in a combined file
for a 2520 or 2540, INAREA and OUAREA are
omitted, and IOAREAl specifies the name of
the I/O area to be used for both input
and output.

I This entry does not apply to combined
files in an IBM 2520 or 2540.

INBLKSZ=n

This entry is used in conjunction with
INAREA for a combined file in the 1442 when
separate input and output areas are re­
quired. It specifies the maximum number,
n, of characters that will be transferred
to the input area (INAREA) at anyone time.
Whenever this entry is included, the corre­
sponding entry OUBLKSZ must also be in­
cluded, and BLKSIZE must be omitted.

IOAREAl=Name

This entry is included to specify the sym­
bolic name of the input, or output, area
used by this file. The input/output rou­
tines will transfer records to or from this
area.

For a disk output file, the user must
reserve eight bytes at the beginning of his
I/O area, ahead of the positions allotted
for data records. These eight bytes are
necessary to allow laCS to construct the
count area for the disk record.

I For 1285 and/or 1287 readers this area
is set to binary zeros prior to each input
operation.

Declarative Macro Instructions 115

This entry must not be included for a
1442 combined file if INAREA and OUAREA
are specified for the file.

For a 2520 or 2540 combined file, IOAREAl
must be used for both the input and output
area.

IOAREA2=Name

Two input, or output, areas can be allotted
for a file, to permit an overlap of data
transfer and processing operations. When
this is done, this IOAREA2 entry must be
included. It specifies the symbolic name
of the second I/O area.

For a disk output file, the user must
reserve eight bytes at the beginning of his
I/O area, ahead of the positions allotted
for data records. These eight bytes are
necessary to allow IOCS to construct the
count area for the disk record.

For 1285 and/or 1287 readers this area
is set to binary zeros prior to each input
operation.

This entry must not be included for a
1442 combined file if INAREA and OUAREA
are specified for the file, if TYPEFILE=
CMBND, or if DEVICE=READ87D.

For a 2520 or 2540 combined file,
IOAREA2 cannot be specified. IOAREAl
in this case must be used for both the
input and output areas.

IOREG= (r)

This entry specifies the general-purpose
register (r) that the input/output routines
can use to indicate which individual record
is available for processing. IOCS puts the
address of the current record in this reg­
ister each time a GET or PUT is issued.
Any register number 2-12 may be specified.

The same register may be specified in
the IOREG entry for two or more files in
the same program, if desired. In this case
the problem program may need to store the
address supplied by IOCS for each record.

This entry must be included whenever:

• Blocked input or output records (from
disk or tape) are processed directly in
the I/O area.

116 DOS Sup. and I/O Macros

• Variable-length unblocked or undefined
tape records are read backwards and
processed directly in the input area.

• Two input, or output, areas are used
and the records (either blocked or
unblocked) are processed in the I/O
areas.

Whenever this entry is included for a
file, the DTFSR entry WORKA must be omitted,
and the GET, or PUT, instructions must not
specify work areas.

Undefined records are processed by the
IBM 1287 Optical Reader and the IBM 1285
Optical Reader. The "read" by the optical
reader is accomplished by a backward scan,
which places the rightmost character in
the record in the rightmost position in the
I/O area and subsequent characters in se­
quence from right to left. The register
defined by IOREG is used to indicate, to
the user, the beginning of the record.

LABADDR=Name

The user may require one or more of his own
disk or tape labels in addition to the
standard file header label or trailer label
(on tape). If so, he must include his own
routine to check, or build, the label(s).
The symbolic name of his routine is speci­
fied in this entry. IOCS branches to this
routine after it has processed the standard
label. This entry is also required whenever
nonstandard labels are to be checked or
written by the user (DTFSR FILABL specifies
NSTD) .

LABADDR allows one user's label routine
to be specified for all types of labels for
the file: header labels, end-of-file la­
bles, and end-of-volume labels. On an in­
put file, the user can determine the type of
label that has been read by the identifica­
tion in the label itself. For an output
tape file, however, IOCS indicates to the
user the type of label that is to be
written. For this, IOCS supplies a code in
the low-order byte of Register 0, as
follows:

O--Header label
F--End-of-file label
V--End-of-volume label

In his routine the user can test this byte
and then build the appropriate type of label.

At the end of his routine, the program­
mer must return to IOCS by use of the LBRET
macro. The user may not issue a macro in­
struction that will call in a transient
routine. For example, the OPEN, CLOSE,
DUMP, PDUMP, CANCEL, or CHKPT macro cannot
be issued in the LABADDR routine.

OUAREA=Name

This entry is used in conjunction with
INAREA for a combined file in an IBM 1442
that requires separate input and output
areas. It specifies the symbolic name of
the output area from which the updated card
record is punched. If only one area is to
be used for input and output, then IOAREAl
should be used.

OUBLKSZ=n

This entry is used in conjunction with
OUAREA for a combined file. Similar to
INBLKSZ, it specifies the maximum number,
n, of characters that will be transferred
from the output area (OUAREA) at anyone
time. If combined files use IOAREAl, then
BLKSIZE must be used.

PRINTOV=YES

This entry must be included whenever the
PRTOV macro instruction is included in the
problem program.

READ={FORWARD}
BACK

This entry may be included for a tape input
file to specify the direction in which the
tape is to be read. One specification or
the other is entered immediately after the
= sign:

FORWARD for a tape read in the normal for­
ward direction.

BACK for a tape read backwards.

If this entry is omitted, IOCS assumes
forward reading.

lFIXUNBI FIXBLK
RECFORM= VARUNB

VARBLK
UNDEF .

This entry specifies the type of records
(fixed or variable length, blocked or

unblocked, or undefined) in the input or out­
put file. One of the following specifica­
tions may be entered immediately after the
= sign:

FIXUNB

FIXBLK

VARUNB

VARBLK

UNDEF

for fixed-length unblocked
records.

for fixed-length blocked records.
This applies only to disk and
magnetic tape input or output.

for variable-length unblocked
records. This applies only to
disk input or output (2311), mag­
netic tape input or output (2400),
card punch output (1442, 2520, or
2540), and printer output (1403,
1404, 1443, or 1445).

for variable-length blocked rec­
ords. This applies only to disk
and magnetic tape input or output.

for undefined records. This ap­
plies to any file except card in­
put (1442, 2501, 2520, or 2540).

The records in a file can be specified as
follows:

Disk and magnetic tape input or output:
FIXUNB, FIXBLK, VARUNB, VARBLK, or
UNDEF

Card input: FIXUNB

Card output: FIXUNB, VARUNB, or UNDEF

Optical reader input: FIXUNB or UNDEF

Paper tape input: FIXUNB or UNDEF
If this entry is omitted, FIXUNB is
assumed.

Printer-keyboard input or output: FIXUNB
or UNDEF

Printer output: FIXUNB, VARUNB, or UNDEF

RECSIZE={(~) }

This entry must be included for disk or
magnetic tape records that are fixed-length
blocked (RECFORM=FIXBLK) or undefined
(RECFORM=UNDEF), in an input or output file.
For paper tape records, this entry may be
included for fixed-length unblocked or for
undefined records (RECFORM=FIXUNB or =UNDEF) .
For other files of records, this entry
must be included whenever records are un­
defined (RECFORM=UNDEF).

For fixed-length blocked disk or magnetic
tape records, this entry specifies the num-
ber n of characters in an individual record.

Declarative Macro Instructions 117

The input/output routines use this factor
to block or deblock records, and to check
record length of input records.

For undefined records, this entry speci­
fies the number (r) of the general-purpose
register that will contain the length of
each individual input or output record.
This may be any register 2-12. When unde­
fined records are read, IOCS supplies the
physical record size in the register. In
the case of paper tape records, this will
apply to both fixed unblocked and undefined
records. When undefined records are built,
the programmer must load the length of each
record (in bytes) into the register before
he issues the PUT instruction for the rec­
ord. This becomes the count portion of the
CCW that IOCS sets up for this file. Thus
it determines the length of the record to
be transferred to the output device. If an
undefined punch or printer output record
contains a control character in the main­
storage output area (DTFSR CTLCHR speci­
fied) , the length loaded into the RECSIZE
register must also include one byte for
this character.

,REWIND={UNLOADl
NORWD f

If no specifications are given by the pro­
grammer, tape files are automatically re­
wound, but not unloaded, on an OPEN or
CLOSE instruction and on an end-of-volume
condition. If other operations are desired
for a tape input or output file, this entry
may be included with one of the following
entered immediately after the = sign:

UNLOAD

NORWD

TPMARK=NO

to rewind the tape on OPEN, and
to rewind and unload on CLOSE or
an end-of-volume condition.

to prevent rewinding the tape at
any time.

This entry is included if the user does not
want a tapemark written as the first rec­
ord on a tape output file if no labels are
specified. This entry is also included if
no tapemark is to be written following non­
standard header labels. If this entry is
omitted for a tape output file, a tapemark
will be the first record if no labels are
specified. Also if this entry is omitted,
a tapemark will be written following non­
standard header labels.

TRANS=Name

This entry applies to an input file read
from the IBM 2671 Paper Tape Reader, and it
specifies the symbolic name of a code­
translation table. The table must conform

118 DOS Sup. and I/O Macros

to the specifications of the machine in­
struction TRANSLATE.

The input file records may be punched in
5-, 6-, 7-, or 8-channel paper tape, using
anyone of several different recording
codes. If a code other than EBCDIC is used,
it must be translated to EBCDIC code for
use in System/360 programming. For IOCS
to perform this translation, the user pro­
vides a translation table and specifies the
symbolic name of the table in this TRANS
entry. Then the logical IOCS routines
translate the paper tape code and make the
record available to the programmer in usa­
ble form directly in the input area.

TRUNCS=YES

This entry applies to disk files with
fixed-length blocked records (RECFORM=
FIXBLK) when short blocks are to be proc­
essed. It must be included:

• For an output file if the TRUNC macro
instruction is to be issued in the prob­
lem program .

• For an input file if the TRUNC macro
was issued to write short blocks when
the file was originally created.

I

~INPUT l
TYPEFLE=)OUTPUT(

~CMBND)

This entry must be included to specify the
type of file (input, output, or combined).

I INPUT

OUTPUT

must be specified for:

2311 disk input files (with or
without updating)

2400 magnetic tape input files

1442, 2501, 2520, 2540 card
reader files

1052 keyboard input (both GET and
PUT instructions may be issued)

1285 Optical Reader files

1287 Optical Reader files

must be specified for:

2311 disk output files

2400 magnetic tape output files

1442, 2520, 2540 card punch files

1403, 1404, 1443, 1445 printer
output

1052 printer output (only PUT
instructions may be issued)

CMBND must be specified for a 1442,
2520, or 2540 card file that is
to be updated. That is, card
records are to be read, processed,
and then punched (PUT) in the
same cards from which they were
read. Thus input and output op­
erations are combined for the
same file. This operation can be
performed in the IBM 1442 or the
IBM 2520 or in the IBM 2540 if
the punch-feed-read special fea­
ture is installed and cards are
fed and read in the punch feed.
(See PUT Macro: Updating.)

IIf this entry is omitted, INPUT is assumed.

UPDATE=YES

This entry must be included if a disk input
file (TYPEFLE=INPUT) is to be updated.
That is, disk records are to be read, proc­
essed, and then transferred back (PUT) to
the same disk record locations from which
they were read.

VARBLD=(r)

Whenever variable-length blocked records
are built directly in the output area (no
work area specified), this entry must be
included. It specifies the number (r) of
a general-purpose register, which will al­
ways contain the length of the available
space remaining in the output area. Any
register 2-12 may be specified.

After the PUT instruction is issued for
a variabl~-length record, laCS calculates
the space still available in the output
area and supplies it to the programmer in
this VARBLD register. The programmer then
compares the length of his next variable­
length record with the available space to
determine if the record will fit in the
area. This check must be made before the
record is built. If the record will not
fit, the programmer issues a TRUNC instruc­
tion to transfer the completed block of
records to the tape file. Then the present
record is built at the beginning of the
output area, as the first record in the
next block.

VERIFY=YES

This entry is included if the user wants
disk records to be parity checked after they
are written. If this entry is omitted, any
records written on disk are not verified.

WLRERR=Name

This entry applies only to disk, magnetic
tape, or paper tape input flles. It speci­
fies the SymbOllC name of a us.er' s routine
to which programming will branch if a wrong­
length record is read. In his routine the
user can perform any operation he desires
for wrong-length records. However, he must
not issue any GET macro instructions for
this file. Also, if he uses any other laCS
macros in his routine, he must save the
contents of Register 14. The address of
the wrong-length record is supplied by laCS
in Register 1. At the end of his routine,
the user must return to laCS by branching
to the address in Register 14.

Whenever fixed-length blocked records or
variable-length records are specified
(RECFORM=FIXBLK, =VARUNB, or =VARBLK), the
machine check for wrong-length records is
suppressed and laCS generates a programmed
check of record length. For fixed-length
blocked records, record length is considered
incorrect if the physical disk or tape
record (gap to gap) that is read is not a
multiple of the logical-record length
(specified in DTFSR RECSIZE), up to the
maximum length of the block (specified in
DTFSR BLKSIZE). This permits the reading
of short blocks of logical records, without
a wrong-length-record indication.

For variable-length records, record
length is considered incorrect if the
length of the disk or tape record is not
the same as the block length specified in
the four byte block length field.

When fixed-length unblocked records are
specified (RECFORM=FIXUNB), laCS checks for
a wrong-length-record indication that may
have been set as the result of an I/O
operation.

If this WLRERR entry is omitted from the
set of DTFSR entries but a wrong-length
record is detected by laCS, one of the
following will result:

• If the DTFSR ERROPT entry is included
for this file, the wrong-length record
will be treated as an error block and
handled according to the user's speci­
fications for an error (IGNORE, SKIP,
or Name of error routine).

• If the DTFSR ERROPT entry is not in­
cluded, the wrong length record is
ignored.

Declarative Macro Instructions 119

The WLRERR entry does not apply to unde­
fined records. Undefined records are not
checked for incorrect record length.

WORKA=YES

Input/output records can be processed, or
built, in work areas instead of the input/
output areas. If this is planned, this
entry WORKA=YES must be included, and the
programmer must set up the work area(s} in
main storage. The symbolic name used in
the DS instruction that reserves the work
area (or a general register containing the
address of the work area) must be specified
in each GET or PUT. On a GET or PUT, IOCS
moves the record to, or from, the specified
workarea.

Whenever this entry is included for a
file, the DTF entry IOREG must be omitted.

The DTFEN Card

An end-of-definition card must follow the
last set of DTFSR cards that applies to a
magnetic tape file or to a DASD file if
tape or DASD I/O modules are being assembled
with the DTFs. (If tape or DASD I/O modules
are assembled separately, this card need not
be included.) It must be punched with DTFEN
in the operation field and blanks in the
name field. The operand field may be blank
or it may contain OVLAY as a parameter (to
provide compatibility with BOS). DOS uses
the DTFEN card as a signal to begin genera­
tion of the required I/O modules.

DIRECT ACCESS METHOD (DTFDA)

The DTFDA detail entries that apply to a
file when records are processed by the
direct access method are explained in the
following text and shown in DTFDA Entries
(Figure 29).

Enter the symbolic name of the file in
the name field and DTFDA in the operation
field.

AFTER=YES

This entry must be included if any records
(or an additional record) are to be written
in a fil~ by a format WRITE (count, key and
data) following the last record previously
written on a track. The remainder of the
track is erased. That is, whenever the
macro instruction WRITE Filename,AFTER or
WRITE Filename,RZERO will be used in a pro­
gram, this entry is required.

BLKSIZE=n

This entry indicates the size of the I/O
area by specifying the maximum number, n,

120 DOS Sup. and I/O Macros

of characters that will be transferred to,
or from, the area at anyone time. When
undefined records are read or written, the
area must be large enough to accommodate
the largest record.

If key length is specified by DTFDA
KEYLEN, and if macro instructions that
transfer the key areas of records will be
issued, this area must provide for both the
key area and data area of a record (see
IOAREAl and Figure 28. The length must
specify an additional eight bytes if
WRITE=AFTER is specified. If a file is to
be created or if additional records are to
be written in a file, the count area of the
records must be included in this
specification.

IOCS uses this specification to construct
the count field of the CCW for reading or
writing fixed-length records.

CONTROL=YES

This entry must be included if a CNTRL
macro instruction will be issued for this
file. The CNTRL macro for seeking on the
2311 allows the user to specify a track
address to which access movement should
begin for the next READ or WRITE instruc­
tion for a file. While the arm is moving,
the programmer may process data and/or re­
quest I/O operations on other devices.

For the 2321, the CNTRL macro enables
the user to seek to a specific address or
to restore the strip to its subcell.

DEVICE={ 23lll
2321'

This entry specifies whether the logical
file is on a 2311 disk drive or a 2321 data
cell drive. If this entry is omitted, 2311
is assumed.

ERRBYTE=Name

This entry is required for IOCS to supply
indications of exceptional conditions to
the problem program. The symbolic name of
a 2-byte field, in which IOCS can store the
error-condition or status codes, is entered
after the = sign.

The codes are available for testing by
the problem program at WAITF time after
the transfer of a record has been completed.
One or more of the following Error status
indication bits may be set to one by IOCS
as in the bits indicated:

Byte

o

o

o

o

o

o

o

1

Bit

o

1

2

3

4

5

6

7

o

Error/Status Code
Indication

Wrong-length record

No room found

Explanation

The wrong-length record indication is applicable
for undefined records or fixed-length records.
Fixed-length records: This bit is set on when­
ever the data length or key length of a record
differs from the previous record. If an updated
record is shorter than the original record, the
updated record is padded with binary zeros to
the length of the original record. If an up­
dated record is longer than the original record,
the original record positions are filled and
the rest of the updated record is truncated
and lost.
Undefined-length records: This bit is set on
under the following conditions:

• When a READ is issued and the record is
greater than the maximum data size (BLKSIZE
minus KEYLEN, or BLKSIZE minus the value of
KEYLEN plus eight if AFTER is used), a
wrong-length error condition is given and
the value returned in the RECSIZE register
will be that of the actual record length.

• When a WRITE ID or KEY is issued and the
record to be written is greater than the
maximum data size, a wrong-length error
condition is given and the record written
is equal to that of the maximum data length.
If the DASD record is larger than the maxi­
mum data size, the remainder of the record
is padded with binary zeros. The value
in the RECSIZE register will be set equal to
that of the maximum data length.

• When a WRITE AFTER is issued and the record
to be written is greater than the maximum
data size, a wrong-length error condition is
given and the record written is truncated
to the maximum data length. The value in
the RECSIZE register will be set equal to
that of the maximum data length.

The no-room-found indication is applicable only
when the WRITE AFTER form of the macro is used
for a file. The bit is set on if IOCS deter­
mines that there is not enough room left on the
track to write the record. The record is not
written.

Data check in count area This is an unrecoverable error.

Declarative Macro Instructions 121

Byte Bit

1 1

1 2

1 3

1 4

1 5

1 6

1 7

Error/status Code
Indication

Track overrun

End of cylinder

Explanation

The number of bytes on the track exceeds the
theoretical capacity. (Should not occur when
DOS/360 macro instructions are used.)

The end-of-cylinder indication bit is set on
when SRCHM is specified for READ or WRITE KEY
and the end-of-cylinder is reached before the
record is found. If IDLOC is also specified,
certain conditions also turn this bit on (for
further information see IDLOC under DTFDA) .

Data check when reading This is an unrecoverable error.
key or data

No record found The no-record-found indication is given when a
search ID or key (without SRCHM) is issued and
a record is not found. If SRCHM=YES is speci­
fied, only the end of cylinder indication is
set on.

End of file The end-of-file indication is applicable only
when the record to be read has a data length of
zero. The ID returned in IDLOC, if specified,
is hexadecimal FFFFF. The bit is set only after
all the data records have been processed. For
example, in a file having n data record (record
n + 1 is the end-of-file record), the end-of­
file indicator is set on when the user reads the
n + 1 record.

End of volume The end-of-volume indication is given in con­
junction with the end-of-cylinder indication.
This bit is set on if the next record ID (n + 1,
0, 1) that is returned on the end of the cylindeJ
is higher than the volume address limit. The
volume address limit is cylinder 199, head 9,
for a disk pack and subcell 19, strip 5, cylin­
der 4, head 19 for a data cell. These limits
allow for the reserved alternate track area.

If both the EOC and EOV indicators are set
on, the ID returned in IDLOC is FFFFF.

122 DOS Sup. and I/O Macros

IDLOC=Name

This entry is included if the programmer
wants laCS to supply the ID of a record
after ,each READ or WRITE (ID or KEY) is
completed. The symbolic name of a 5-byte
field, in which laCS is to store the ID, is
specified after the = sign in this parameter.
WAITF should be used before referencing
this field.

laCS supplies the ID of the record speci­
fied in the READ/WRITE instruction, or the
ID of the next record location. The follow­
ing may occur when this option is taken.

• Whenever a READ or WRITE ID (or if a
READ or WRITE KEY without SRCHM) is
issued, the address returned will be
that of the next record location.
Exception: When the record to be read

or written is the last rec­
ord of the cylinder, an
end-of-cylinder indication
is posted in ERRBYTEl, bit 2,
and the address returned is
that of the first record of
the next cylinder. Also,
the end-of-volume indication
is posted, and the address
returned in IDLOC will be
all one bits. See Note.

• Whenever a READ or WRITE KEY with
SRCHM is specified, the address returned
will be that of the SfuTLe record loca­
tion.
Exception: When the record is not

found an end-of-cylinder
condition is posted and
the information returned
unpredictable.

For more information on the SRCHM
specification see Figure 27.

Note: If IDLOC is specified and end-of­
cylinder is reached on a 2311 file, the
cylinder number will be increased by one,
the head number will be set to zero, and
the record number will be set to one. On
a 2321 file, an end-of-cylinder condition
with IDLOC specified will cause the high­
order position of the head number to be
increased by one, the low-order position
of the head number to be set to zero, and
the record number to be set to one. An

is

overflow from the high-order position of
the head number will cause the low-order
position of the cylinder number to be in­
creased by one, and the high-order
position of the head number to be set to
zero. The low-order position of the head
number will be zero, and the record number
will be set to one. Subsequent overflows
of address locations will cause increases
in the next higher positions of the
addresses. (It is the user's responsibility
to check the validity of the address re­
turned in IDLOC.)

IOAREAI=Name

This entry must be included to specify the
symbolic name of the input/output area used
by this file. The input/output routines
will transfer records to or from this area.
The specified name must be the same as the­
name used in the DS instruction that re­
serves this area of main storage.

The main-storage input/output area must
be large enough to contain the maximum
number of bytes that will be required in
any READ or WRITE instruction issued for
this file in the problem program. This is
affected by the length of record data areas,
and by the use of the count and key areas
as follows:

• If undefined records are specified in
the DTFDA entry RECFORM, the area must
provide space for the largest data
record that will be processed.

• If the DTFDA entry KEYLEN is specified
and if any instructions that read or
write the key area of a record are to
be issued in the problem program, the
input/output area must provide room for
the key area as well as the data area.
The length needed for the key is the
length specified in KEYLEN.

• If any write instructions that transfer
the count area to a disk record will be
issued in the problem program, eight
bytes of main storage must be allotted
at the beginning of the I/O area. In
these eight bytes laCS will construct
the count field to be transferred to
disk.

Declarative Macro Instructions 123

10 SUPPLIED
MACRO INSTRUCTION

With SRCHM Without SRCHM

READ Filename,KEY Same record Next record

READ Filename,ID Next Record Next record

WRITE Filename/KEY Same record Next record

WRI TE Fi lena me, I D Next Record Next record

WRITE Filename,RZERO None None

WRITE Filename,AFTER[, EOF) None None

Figure 27. ID Supplied After a READ or
WRITE Instruction

Whenever a WRITE instruction is issued,
IOCS assumes that the input/output area
(see Figure 7) contains the information
implied by the type of instruction that is
to be executed (Figure 28).

124 DOS Sup. and I/O Macros

KEYARG=Name

This entry must be included if records are
to be identified by key. That is, if the
macro instruction READ Filename,KEY or
WRITE Filename,KEY will be issued in the
problem program, this entry is required.
KEYARG specifies the symbolic name of the
key field in which the user will supply the
record key for the READ/WRITE routines.

I/O AREA CONTENTS
MACRO I NSTRUCTIO N

With KEYLEN Without KEYLEN

READ Filename,KEY Data

READ Filename,ID Key and Data Data

WRITE Filename,KEY Data

WRITE Filename,ID Key and Data Data

WRITE Filename,RZERO Anything Anything

WRITE Filename,AFTER[, EOF) Count, Key, Count and Data
and Data

Figure 28. I/O Area Requirements for DAM

tI
CD
o
I-'
~
Ii
~
rt
1-'.

~
:s::
~
o
Ii o
H
::s
en
rt
Ii
~
o
rt
1-'.
o
::s
en

I-'

'" U'1

I-%j
1-'.
I!l
~
Ii
CD

I\)

1.0

tI
t-3
I-%j

~ I Req'd.

t:r:I
::s
rt
Ii
1-'.
CD
en

-0;'1:"

11'4 IBM Systsm/3GO Assembler CDding FDrm BOS/DOS DTFDA Entries Form X24· 5049
Printed in U.S.A.

* Header and each detai,1 card, except the 'last one in each set, must have a continuation punch in column 72. Also,
each detail card, except the last one, must contain a comma immediately after the operand. Space is allowed for the
longest operand plus the comma. If a smaller operand is used, the comma should be moved over accordingly. In the
last detail card oraset, the comma pasition must be blank.

t General registers: For 8PS and 80S, use 2- II, written without parentheses; for example: 11. For TOS and DOS, use
2- 12, written with parentheses; for example: (12),

When record reference is by key, IOCS
uses this specification at assembly time to
construct the data address field of the CCW
for search commands.

KEYLEN=n

This entry must be included if record ref­
erence is by key or if keys are to be read
or written. It specifies the number, n,
of bytes in each key. All keys must be the
same length. If this card is omitted, IOCS
assumes a key length of zero.

If there are keys recorded on DASD and
this entry is absent, a WRITEID or READID
will read or write the data portion of the
record.

When record reference is by key, IOCS
uses this specification to construct the
count field of the CCW for this file. IOCS
also uses this in conjunction with IOAREAl
to determine where the data field in the
main-storage I/O area is located (see
IOAREAl) .

LABADDR=Name

The user may require one or more user
labels in addition to the standard file
label. If so, he must include his own
routine to check, or write, the labels.
The symbolic name of his routine is speci­
fied in this entry. IOCS branches to this
routine after it has processed the stand­
ard label. See the sections Writing and
Checking DASD User Standard Labels for a
complete discussion of the function of the
LABADDR routine.

MODNAME=Name

This entry may be used to specify the name
of the logic module that will be used with
the DTF table to process the file. If the
logic module is assembled with the program,
the MODNAME in the DTF macro instruction
must specify the same name as the DAMOD
macro instruction. If this entry is omit­
ted, standard names will be generated for
calling the logic module. If two DTF
macro instructions call for' different func­
tions that can be handled by a single
module, only one module will be called.

READID=YES

This entry must be included if any input
records are to be specified by ID

126 DOS Sup. and I/O Macros

(identifier) in the problem program. That
is, whenever the macro instruction READ
Filename,ID will be used in the program,
this entry is required.

READKEY=YES

This entry must be included if any input
records are to be specified by key in the
problem program. That is, whenever the
macro instruction READ Filename,KEY will be
used in the program, this entry is required.

RECFORM=

This entry specifies the type of records in
the input, or output, file. Either of the
following specifications may be entered
immediately after the = sign:

FIXUNB

UNDEF

for fixed-length records. All
records are considered unblocked
in the DAM method. If the user
wants blocked records, he must
provide his own blocking and
deblocking.

for undefined records. This
specification is required only if
the records are not fixed length.

RECSIZE=(r)

This entry must be included if undefined
records are specified (RECFORM=UNDEF). It
specifies the number (r) of the general­
purpose register that will contain the
length of each individual input or output
record. This may be any register 2-12.

Whenever each undefined record is read,
IOCS supplies the length of the data area
of that record in the register.

When an undefined record is to be
written in the file, the programmer must
load the length of the data area of the
record (in bytes) into this register,
before he issues the WRITE instruction for
the record. IOCS adds the length of the
key when required.

When records are to be written in the
file (AFTER specified in the WRITE instruc
tion), IOCS uses the length in constructing
the count area to be written on DASD. I.OCS
adds the length of both the count and the
key when required.

SEEKADR=Name

This entry must be included to specify th.e
symbolic name of the user's track-reference
field. In this field the user stores the
track location of the particular record to
be read or written. The READ, WRITE, and
CNTRL routines refer to this field to
determine which volume and which track on
that volume contains the desired record.
Whenever records are to be located by
searching for a specified ID, th.e track­
reference field must also contain the num~
ber of the record on the track.

The track-reference field is an eight­
byte field CMBBCCHHR}, and the symbolic
name labels the first byte.

The bytes are used for:

Symbolic unit number (0-244)

BB Always 00 for 2311. For 2321, the
first byte is always O. The second
byte specifies cell number (Q-,9 I for
2321.

CC For 2311 the first byte is always O.
The second byte contains the cylinder
number (0-199) in which the record is
located. For the 2321, the first oyte
contains the number of the sub-cell
(0-19). The second byte contains the
number of the strip (0-9).

HH For 2311 the first byte is always O.
The second byte contains the number of
the read/write head that applies to the
record. For 2321 the first byte
specifies one of the five head bar
positions (0-4). The second byte
specifies one of the twenty head ele­
ments (0-19).

R Sequential number of the record on the
track (0-255).

Isee Figure 8 for additional information.

SEPASMB=YES

Include this parameter if the DTF is
assembled separately. This causes a CATALR
card with the filename to be punched ahead
of the object deck and defines the Filename
as an ENTRY point in the assembly.

SRCHM=YES

If input/output records will be identified
by key, this entry may be included to cause
laCS to search mUltiple tracks for each
specified record. The instruction READ
Filename,KEY or WRITE Filename,KEY will
cause a search of the track specified in
the track-reference field and all following
tracks in the cylinder, until the record is
found or the end of the cylinder is
reached. If the logical file ends before
the end of the cylinder and the record is
not found, the search continues into the
next file, if any, on the cylinder. EOC,
instead of NRF, will be indicated.

without this card, each search is con­
fined to the specified track.

TYPEFLE=

This entry must be included to indicate
how standard volume and file labels are
to be processed:

INPUT

OUTPUT

Standard labels are to be read
and checked.

Standard labels are to be
written.

Because logical files on DASD must al­
ways contain labels, this entry is always
required.

VERIFY=YES

This entry is included if the user wants to
check the parity of 2311 records after they
are written. VERIFY is always assumed
when 2321 records are written. If this
card is omitted, any records written on
2311 are not verified.

WRITEID=YES

This entry must be included if the DASD
storage location for writing any output rec­
ord is to be specified by record ID (iden­
tifier) in the problem program. That is,

Declarative Macro Instructions 127

whenever the macro instruction WRITE File­
name,ID will be used in the program this
card is required.

WRITEKY=YES

This entry must be included if the DASD lo­
cation for writing any output record is to
be specified by record key in the problem
program. That is, whenever the macro in­
struction WRITE Filename,KEY will be used
in the program, this card is required.

XTNTXIT=Name

This entry is included if the programmer
wants to process XTENT card information.
It specifies the symbolic name of the user's
XTNTXIT routine. During an OPEN, IOCS
branches to the user's routine after each
specified extent has been checked and vali­
dated. Upon entering the user's routine,
IOCS stores in register 1 the address of a
l4-byte field that contains the extent card
informa tion (in binary form).

BYTES

o

1

2-5

6-9

10-11

12

13

CONTENTS

Extent type code (as speci­
fied in the XTENT card)

Extent sequence number

Lower limit of the extent
(CCHH)

Upper limit of the extent
(CCHH)

Symbolic unit

Old bin number

Present bin number of the
extent (B2)

The user returns to IOCS by use of the
LBRET macro instruction.

DIRECT ACCESS MODULE (DAMOD) PARAMETERS

A set of DAMOD entries is included for each
DAM logic module necessary to support each
DTFDA macro in a particular problem program.
The logic modules are described by a DAMOD
header entry and a series of keyword
parameters.

The header entry contains DAMOD in the
operation field and may contain a user
module name in the name field. The param­
eters are explained in the following text
and shown in Figure 30.

128 DOS Sup. and I/O Macros

Name Operation Operand Remarks

[Modname] DAMOD Must be inc luded •

AFTER=YES When WRITE with the
operand AFTER or
RZERO is used.

IDLOC= Required if IDLOC
YES specified in DTFDA.

RECFORM= Describes record format.
FIXUNB
UNDEF

SEPASMB= If the module is
YES assembled separately.

Figure 30. DAMOO Entries

AFTER=YES

IDLOC=YES

This entry causes genera­
tion of a logic module that
can format write (count,
key, and data). It performs
the functions required by
WRITE Filename,AFTER and
WRITE Fllename,RZERO. The
module will also process
any files in which the
AFTER parameter is not
specified in the DTF.

This entry causes genera­
tion of a logic module which
will handle the return of
record identifier (10) in­
formation to the user. The
module will also process
any files in which the
IOLOC parameter is not
specified in the DTF.

_{UNDEF }If UNDEF is specified, the
RECFORM~ FIXUNB logic module that is gen-

SEPASMB=YES

erated can handle both un­
blocked fixed length and
undefined records. If the
entry is omitted, or if
FIXUNB is specified, the
logic module that is gener­
ated can handle only fixed­
length unblocked records.

Include this parameter if
the logic module is as­
sembled separately. This
causes a CATALR card with
the module name (standard
or user) to be punched
ahead of the object deck.

Recommended Module Name List for DAMOD

Each name will begin with a 3-character
prefix (IJI) and consist of as-character
field corresponding to the options per­
mitted in the generation of the module.

DAMOD name = IJIabcde

a = F if RECFORM=FIXUNB

B if RECFORM=UNDEF (handles
both UNDEF and FIXUNB)

b A if AFTER=YES is specified

Z if AFTER is not specified

c = I if IDLOC is specified

Z if IDLOC is not specified

d Z always

e = Z always

Subsetting and Supersetting of DAMOD Names

The following diagram illustrates the sub­
setting and supersetting allowed for DAMOD
names. Three parameters allow supersetting.
For example, the module IJIBAIZZ is a
superset of the module with the name
IJIFAZZZ.

+++
IJI BAIZZ

FZZ

+Subsetting/supersetting permitted.

INDEXED SEQUENTIAL SYSTEM (DTFIS)

The DTFIS detail entries that apply to a
file when records are processed by the In­
dexed Sequential Management System are ex­
plained in the following text and summarized
in Figure 31. A DTFIS header entry and a
series of detail entries describe the file.

The symbolic name of the file, Filename,
is entered in the name field. 'DTFIS is
entered in the operation field.

Status or Condition Code Indication

The DTF macro instruction provides a two­
byte field where all status or condition
codes will be placed after execution of
each macro instruction. (Only the first
byte is used; the second byte is reserved
for future use.) This field can be refer­
enced by the user as FilenameC. Filename
should be the same as that specified in the
DTF header entry for the file. The

FilenameC byte will be in the format shown
in Figure 32.

The user has the facility of addressing
certain fields or locations in a table, sucD
as FilenameC. ISFMS provides addressability
for FilenameC by returning the address of
the DTF table in register 1 after each ISFMS
imperative macro is executed.

CYLOFL=n

This entry must be included if cylinder
overflow areas are to be reserved for a
logical file.

To reserve the areas for cylinder over­
flow this entry is required when a file is
to be loaded onto DASD and when records
are to be added to an organized file. It
specifies the number n of tracks to be
reserved on each cylinder.

If an independent overflow area is
specifie.d (by an XTENT card) along with the
CYLOFL entry, overflow records are written
in the independent overflow area after a
cylinder overflow area becomes filled.

DEVICE={2311}
2321

This entry specifies the unit that contains
the prime data area or overflow areas for
the logical file.

DSKXTNT=n

This entry must be included to specify the
maximum number n of extents for this
file. The number must include all the data
area extents if more than one DASD area is
used for the data records, and all the
index area and independent overflow area
extents that are specified by XTENT cards.
Thus the minimum number specified by this
entry is 2: one extent for one prime data
area, and one for a cylinder index.

Each area assigned to an ISFMS data file
is considered an extent.

Note: Master and cylinder indices are
treated as one area.

{
2311} HINDEX= 2321

This entry specifies the unit containing
the highest index.

I OAREAL=Name

This entry must be included when a file is
created (loaded) or when records are added

Declarative Macro Instructions 129

....
w
0

0
0
C/)

(J)

~

§
P.

H
"-0

:s:
III
0
11
0
Ul

•
h:J
1-'-
\Q

~
11
CD

w

0
8
I"%j
H
(J)

tlj
::l
rt
11
1-'-
CD
Ul

-;;
Pl
11
rt

....
0
t-h

IV

IB.,

I Req'd.

1"0;'1.

(Continued on back: BOS optionol exits to user's routines.)

IBM Systam/3S0 Assemblsr Coding Form BOS/OOS OTFIS Entries Form X2 .. - 5050
Printed in U.S.A.

t:1
CD
()
I-'
PI
Ii
PI
rt
1-"
<:
('I)

:s:
PI
()

Ii
o
H
~
rn
rt
Ii
~
()
rt
1-"
o
~
rn

I-'
W
I-'

•
I-<j
1-"

lQ
~
Ii
CD

W
I-'

0
1-:3
I-<j
H
C/)

I:Ij
~
rt
Ii
1-"
CD
rn

"'0
PI
Ii
rt

I\..)

0
I-tt

I\..)

10p,t'l.

IB,., IBM System/360 Assembler Coding Form BOS/DOS DTFlS Entries Form X24· 5050
Printed in U.S.A.

* Header and each detail card, except the last one in each set, must have a continuation punch in column 72. Also,
each detail card, exce~t the last one, must contain a comma immediately after the operand. Space is allowed for the
longest operand plus the comma. If a smaller operand is used, the comma should be moved over accordingly. In the
last detail card otaset, the comma pasition must be blank.

t General registers: For BPS and BOS, use 2 - 11, written without parentheses; for example: 11. For TOS and DOS, use
2- 12, written with parentheses; for example: (12).

ADD, RETRVE, and ADORTR

Bit Cause Explanatian

0 DASD errar Any uncorrectable DASD errar has accurred (except wrang length recard).

1 Wrong length record A wrong length record has been detected during an I/O operation.

2 End of file The EOF condition has been encountered duri ng execution of the sequential retrieval function.

3 No record found The record to be retrieved has not been found in the data fi Ie. This applies to Randam (RANSEQ)
and to SETl in SEQNTl (RANSEQ) when KEY is specified.

4 Illegal 10 specified The 10 specified ta the SEn in SEQNTl (RANSEQ) is outside the prime data file limits.

5 Duplicate record The record to be added to the file has a duplicate recard key of another record in the file.

6 Overflow area full An overflow area in a cylinder is full, and no independent overflow area has been specified, or
an independent overflow area is full, and the addition cannat be made. The user shou Id assign
an independent overflow area or extend the limit.

7 Overflow The record being processed in one af the retrieval functians (RANDOM/SEQ Nn) is an overflow
record.

LOAD

Bit Cause Explanation

0 DASD error Any uncorrectabte DASD error has occurred (except wrong length recard).

1 Wrong length record A wrong length record has been detected duri"ng an I/O operation.

2 Prime data area fu II The prime data area has been filled while creating or extending the data file. The user shou Id
extend the upper I im it by use of a new extent card.

3 Cylinder Index area full The Cylinder Index area is not large enough to contain all the entries needed ta index each
cylinder specified for the prime data area. This condition can occur during the execution of the
SETFl. The user must extend the upper limit of the cylinder index by using a new extent card.

4 Master Index full The fv\aster Index area is not large enaugh to contain all the entries needed to index each track of
the Cylinder Index. This condition can occur during SETH. The user must extend the upper
limit, if he is creating the fi Ie, by using an extent card. Or, he must reorgani ze the data fi Ie
and assign a larger area.

5 Duplicate record The record being loaded is a duplicate of the previous record.

6 Sequence check The record being loaded is not in the sequential order required for loading.

Figure 32. Fi1enameC--Status or Condition Code Byte

132 DOS Sup. and I/O Macros

to an organized file. It specifies the
symbolic name of the output area used for
loading or adding records to the file. The
specified name must be the same as the name
used in the DS instruction that reserves
this area of main storage. The ISFMS rou­
tines construct the contents of this area
and transfer records from this area to DASD.

This main-storage output area must be
large enough to contain the count area,
key area, and data area of records.
Furthermore, the data-area portion must
provide enough space for the sequence-link
field of overflow records whenever record~
are added to a file (Figure 33).

IOAREAR=Name

This entry must be included whenever rec­
ords are processed in random order. It
specifies the symbolic name of the input/
output area used for random retrieval (and
updating). The specified name must be the
same as the name used in the DS instruction
that reserves this area of main storage.

This main-storage I/O area must be large
enough to contain the data area of records.
Furthermore, the data-area portion must
provide enough space for the sequence-link
field of overflow records (Figure 34).

IOAREAS=Name

This entry must be included whenever rec­
ords are processed in sequential order by
key. It specifies the symbolic name of
the input/output area used for sequential
retrieval (and updating). The specified
name must be the same as the name used in
the DS instruction that reserves this area
of main storage.

This main-storage I/O area must be large
enough ~o contain the key area and data
area of records for unblocked data records
and the data area for blocked records.

Furthermore, the data-area portion must
provide enough space for the sequence-link
field of overflow ~ecords (Figure 34).

IOREG= (r)

This entry must be included whenever rec­
ords are to be retrieved and processed
directly in the I/O area. It specifies the
number (r) of the register that ISFMS can
use to indicate which inaividual record is
available for processing. ISFMS puts the
address of the current record in this reg­
ister each time a READ, WRITE, GET, or PUT
is executed. Any register 2-12 may be
specified.

IOROUT=

This entry must be included to specify the
type of function to be performed. One of
the following specif~cations is entered
after the = sign:

LOAD

ADD

To build a logical file on DASD or
to extend a file beyond the highest
record presently in an organized file.

To insert new records into an
organized file.

RETRVE To retrieve records from a file for
either random or sequential proc­
essing and/or updating.

ADDRTR To both insert new records into a
file (ADD) and retrieve records
for processing and/or updating (RTR).

KEYARG=Name

This entry must be included for random
READ/WRITE operations and sequential re­
trieval initiated by key. It specifies
the symbolic name of the main-storage key
field in which the user must supply the
record key to ISFMS.

OUTPUT AREA REQUIREMENTS (IN BYTES)

FUNCTION Sequence Count Key
link

Data

Load Unblocked Records 8 Key Length - Record Length

Load Blocked Records 8 Key Length - Record Length x Blocking Factor

Add Unblocked Records 8 Key Length 10 Record Length

Add Blocked Records 8 Key Length - Record length x Blocking Factor
OR*

8 Key Length 10 I Record length

* Whichever Is Larger

Figure 33. Output Area Requirements for Loading or Adding Records to a File by ISFMS

Declarative Macro Instructions 133

I/o AREA REQUIREMENTS (IN BYTES)

FUNCTION
Sequence

Count Key
link

Data

Retrieve Unblocked Records - Key Length for sequen-
10 Record Length tial unblocked records

Retrieve Blocked Records - - Record Length x Blocking Factor
OR*

- 10 I Record Length

* Whichever Is Larger

Figure 34. I/O Area Requirements for Random or Sequential Retrieval by ISFMS

KEYLEN=n

This entry must be included to specify the
,number, n, of bytes in the record key. All
keys must be the same length.

KEYLOC=n

This entry must be included if an add,
load, or retrieve function is to be per­
formed and blocked records are specified
in DTFIS RECFORM. This entry must always
be included for blocked records. It
supplies ISFMS with the high-order position
of the key field within the data record.
That is, if the key is recorded in posi­
tions 21-25 of each record in the file, this
entry specifies 21.

ISFMS uses this specification to locate
(by key) a specified record within a block.
The key area of a DASD record contains the
key of the highest record in the block. To
search for any other records, ISFMS locates
the proper block and then examines the key
field within each record in the block.

MODNAME=Name

This entry may be used to specify the name
of the logic module that will be used with
the DTF table to process the file. If the
logic module is assembled with the program,
the MODNAME in the DTF macro instruction
must specify the same name as the ISMOD
macro instruction. If this entry is omit­
ted, standard names will be generated for
calling the logic module. If two DTF macro
instructions call for different functions
that can be handled by a single module, only
one module will be called.

134 DOS Sup. and I/O Macros

MSTIND=YES

This entry is included whenever a master
index is used for a file. In this case, it
is required when a file is loaded (to in­
struct ISFMS to build the index) and when
records are added to or retrieved from a
file with a master index.

ISFMS always builds a track index and a
cylinder index, but the master index is
optional. The master index, if used, is the
highest level index, and it includes an in­
dex record for each track of the cylinder
index. Thus, it points to the cylinder
index on a search for a particular record
(see Indices: Master Index). The location
of the master index is specified by a Job
Control XTENT card.

NRECDS=n

This entry specifies the number, n, of
logical records in a block (called the
blocking factor). If RECFORM=FIXUNB, n
is assumed to be 1.

RECFORM=

This entry specifies the type of records in
the logical file. All logical records in
the file must be fixed length. However,
they may be either blocked or unblocked.
One or the other of these specifications
must be entered after the = sign:

FIXUNB

FIXBLK

for unblocked records.

for blocked records. With this
specification the key of the
highest record in the block be­
comes the key for the block and
must be recorded in the key
area.

The specification that is included when
the logical file is loaded into DASD storage
must also be included whenever the file is
processed.

Records in the overflow area(s) are al­
ways unblocked (see Addition of Records and
Overflow Areas), but that does not affect
this entry. RECFORM refers to records in
the prime data area only.

RECSIZE=n

This entry must be included to specify the
number n of characters in a logical rec­
ord. This is the length of the data area
of each individual record. All logical
records must be the same size.

SEPASMB=YES

Include this parameter if the DTF is assem­
bled separately. This causes a CATALR card
with the filename to be punched ahead of the
object deck and defines the Filename as an
ENTRY point in the assembly.

TYPEFLE=

This entry must be included when a retrieval
function is to be performed. It specifies
the type(s) of processing that is to be per­
formed by the problem program for this file.
One of the following specifications is
entered after the = sign:

RANDOM

SEQNTL

RANSEQ

for random processing. Records
are retrieved from the file in
random order specified by key.

for sequential processing. The
problem program specifies the
first record to be retrieved,
and thereafter ISFMS retrieves
records in sequential order by
key. The first record is spe­
cified by key, ID, or the be­
ginning of the logical file
(see SETL Macro).

for both random and sequential
processing.

TYPEFLE is not required for loading or
adding functions.

VERIFY=YES

This entry is included if the user wants
to check the parity of 2311 records after
they are written. If this entry is omitted,
any records written on 2311 are not verified.
VERIFY is always assumed when 2321 records
are written.

WORKL=Name

This entry must be included whenever a file
is to be created (loaded) or records are to
be added to an organized file. It specifies
the symbolic name of the work area in which
the user must supply the data records to
ISFMS for loading or adding to the file.
The specified name must be the same as the
name used in the DS instruction that
reserves this area of main storage.

This work area must provide space for
one logical data record when a file is to
be created (for blocked records--Data; for
unblocked records--Key and Data).

Due to record shifting in the ADD func­
tion, the original contents of WORKL will
be changed.

WORKR=Name

When records are processed in random order,
this entry must be included if the indivi­
dual records are to be processed in a work
area rather than the I/O area. It specifies
the symbolic name of the work area. This
name must be the same as the name used in
the DS instruction that reserves this area
of main storage. This area must provide
space for one logical record (data area).

When this entry is included and a READ
or WRITE instruction is executed, ISFMS
moves the individual record to, or from,
this area.

WORKS=YES

When records are processed in sequential
order, this entry must be included if the
individual records are to be processed in
work areas rather than the I/O area. Each
GET and PUT instruction must specify the
symbolic name of the work area to or from
which ISFMS is to move the record. The

Declarative Macro Instructions 135

area must be large enough for one logical
record (data area) and the record key (key
area) when unblocked records are processed,
and for one logical record (data area) when
blocked records are processed.

The ISFMS workarea requirements are as
follows:

Load

Add

Random

Unblocked
Records

KL + DL

KL + DL
or 10*

Blocked
Records

DL

DL or 10*

Retrieve DL DL

Sequential
Retrieve KL + DL DL

Where:

K=Key, D=Data, L=Length
*Whichever is greater.

INDEXED SEQUENTIAL MODULE (ISMOD)
PARAMETERS

A set of ISMOD parameters is included for
each logic module necessary to support each
DTFIS macro in a particular problem program.
The logic modules are described by a ISMOD
header entry and a series of parameter
entries. The header entry contains ISMOD
in the operation field, and may contain a
user supplied name in the name field. The
parameters are explained in the following
text and shown in Figure 35.

{

LOAD ~
IOROUT= :~RVE

ADDRTR

This entry specifies the type
of logic module required to
perform a given function. The
entries are listed in the fol­
lowing text.

LOAD

ADD

generates a logic module
for creating a file.

generates a logic module
for adding new records
into an existent file.

RETRVE generates a logic module
to retrieve (randomly/
sequentially) records
from an organized file.

136 DOS Sup. and I/O Macros

Nome

[Modname]

Figure 35.

Operation Operand Remarks

ISMOD

IOROUT= Specifies function to be
LOAD performed.
ADD
RETRVE
ADDRTR

RECFORM = Describes fi Ie. Required
FIXUNB if IOROUT specifies
FIXBLK ADD or ADDRTR. If
BOTH IOROUT specifies LOAD

or RETRV£, BOTH is
assumed.

SEPASMB= I f the module is
YES assembled separately.

TYPEFLE = Required if IOROUT
RANDOM specifies RETRVE or
SEQNTL ADDRTR.
RANSEQ

ISMOD Entries

ADDRTR generates a logic module
that combines the fea­
tures of the ADD and
RETRVE modules. This
module will also process
any file in which only
ADD or RETRVE is speci­
fied in the IOROUT
parameter statement of
the DTF for that file,
and in which the TYPEFLE
entry contains the cor­
responding parameter
(or a subset of it).

}FIXUNB}
RECFORM=)FIXBLK

~BOTH

This entry generates a detailed
logic module that will create,
add to, or process an unblocked
(FIXUNB) or blocked (FIXBLK)
data file. If BOTH is speci­
fied, a module is generated to
process both unblocked and
blocked files, and the DTF
entry for the file may specify
either FIXUNB or FIXBLK in the
RECFORM parameter statement.
The RECFORM entry is required
only when IOROUT specifies ADD
or ADDRTR. If IOROUT specifies
LOAD or RETRVE, a module that
handles fixed-length blocked
and unblocked files is gener­
ated, and the entry is not
required.

SEPASMB=YES Include this parameter if the
logic module is assembled
separately. This causes a
CATALR card with the module
name (standard or user) to be
punched ahead of the object
deck.

{
RANDOM l

TYPEFLE= SEQNTL S
RANSEQ

This entry is required when
IOROUT specifies RETRVE or
ADDRTR. RANDOM generates a
logic module that will include
only random retrieval capabili­
ties. SEQNTL generates a logic
module that includes only
sequential retrieval capabili­
ties. RANSEQ generates a logic
module that includes random and
sequential capabilities. It
will also process any file in
which the TYPEFLE parameter
statement of the DTF specifies
either RANDOM or SEQNTL.

Recommended Module Name List for ISMOD

Each name will begin with a 3-character pre­
fix (IJH) and will consist of as-character
field corresponding to the options permitted
in the generation of the module.

ISMOD name = IJHabcde

a = U if RECFORM=FIXUNB and IOROUT specifies
ADD or ADDRTR
B if RECFORM=FIXBLK and IOROUT specifies
ADD or ADDRTR
A if RECFORM=BOTH and IOROUT specifies
ADD or ADDRTR
Z if RECFORM is not specified. (IOROUT
specifies LOAD or RETRVE)

b L if IOROUT=LOAD
I if IOROUT=ADD

c =

R if IOROUT=RETRVE
A if IOROUT=ADDRTR

R if TYPEFLE=RANDOM
S if TYPEFLE=SEQNTL
B if TYPEFLE=RANSEQ

is specified
is specified
is specified

Z if TYPEFLE is not specified (IOROUT
specifies LOAD or ADD)

d Z always

e = Z always

Subsetting and Supersetting of ISMOD Names

The following diagram illustrates the sub­
setting and supersetting allowed for ISMOD
names. Three parameters allow supersetting.
For example, the module IJHBABZZ is a
superset of the module IJHBASZZ.

+++
IJH AABZZ

BIR
URS

ZLZ

+Subsetting/supersetting permitted.
*No subsetting/supersetting permitted.

Declarative Macro Instructions 137

PROCESSING RECORDS WITH PHYSICAL IOCS

Records can be transferred to or from an
input/output device by issuing physical
IOCS macro instructions. These instruc­
tions relate directly to the physical IOCS
routines and are distinct from logical
IOCS routines. See the introductory
section Physical IOCS vs Logical IOCS.

The user must provide any of the func­
tions that are required for a problem pro­
gram such as blocking or deblocking
records, performing programmed wrong-length
record checks, testing (the CCB) for
certain errors, switching I/O areas when
two areas are used, and setting up Channel
Command Words (CCW). He must also recog­
nize and bypass checkpoint records if they
are interspersed with data records on an
input tape.

Physical laCS routines control the
transfer of data to or from the external
device. These routines are:

• Start I/O

• I/O Interrupt

• Channel Scheduler

• Device Error

Thus, physical IOCS macro instructions
provide the user with the capability of
obtaining data and performing nondata
operations in I/O devices, with exactly
the CCW's that he requests. For example,
if he is handling only physical records,
he does not need the logical IOCS routines
for blocking and deblocking logical records.

Three macro instructions are available
to the programmer for direct communication
with physical IOCS: CCB (Command Control
Block), EXCP (Execute Channel Program),
and WAIT. These are explained in the
following sections. Whenever physical
IOCS macro instructions are used, the
programmer must construct the Channel
Command Words (CCW) for his input/output
operations. He uses the assembler­
instruction CCW statement to do this.

Macros normally used with files that
are processed by logical IOCS are necessary
when standard DASD or magnetic tape labels
are to be processed, or when DASD file
protect is present. The DTFPH, OPEN,
CLOSE, LBRET, and FEOV macros can be used
in this processing. See the discussion
DTFPH (Define the File for Physical IOCS).

138 DOS Sup. and I/O Macros

The OPEN and the DTFPH macros are also
necessary when a 2311 is used as a check­
point file.

CCB MACRO

Oper-
Name ation Operand

Blockname CCB SYSnnn,Command-list-name
[,X'nnnn'] [,Sense Address]

A CCB (Command Control Block) macro instruc­
tion must be specified in the problem pro­
gram for each I/O device that is to be con­
trolled by physical laCS macro instructions.

IThe first 16 bytes of the generated DTF
tables are the CCB. This includes the DTFPf.
This block (see Figure 37) is necessary to
communicate information to physical IOCS so
that it can perform desired operations (for
example, notify the problem program of
printer channel 9). The Command Control
Block also receives status information afte~
an operation and makes this available for
use by the problem program. The user should
ensure proper boundary alignment of the CCB
if necessary for his program.

Blockname: The CCB instruction must be
labeled (Blockname) with a symbolic name.
This name can be used as the operand in the
EXCP and WAIT macro instructions that refer
to the Command Control Block.

SYSnnn: Two operands are required in this
CCB macro instruction. The first operand
specifies the symbolic unit (SYSnnn) for
the actual I/O unit with which this control
block will be associated. The name may be
SYSRDR, SYSLST, SYSIPT, SYSLOG, SYSPCH,
SYSRES, SYSOOO-SYS244. The actual I/O unit
can be assigned to the symbolic unit by a
Job Control ASSGN statement.

Command-list-name: The second operand
(Command-list-name) specifies the symbolic
name of the first CCW to be used with this
CCB. This name must be the same as the
name specified in the assembler CCW state­
ment that constructs the Channel Command
Word.

X'nnnn': A hexadecimal value sets the CCB
user option bits. Column 5 of Figure 36
gives the value used to set a user option
bit ON. If more than one bit needs to be
set,~he sum of the values is used. For

Condition Indicated On Values Mask for
for Third Test Under

Byte Bit 1 (ON) o (OFF) Operand in Mask
CCB Macro Instruct ion

2 0 Traffic Bit (WAIT) I/O Completed. Normally' I/O Requested and not X'8000' X'80'
set at Channel End. Set at completed.
Device End if Bit 5 is ON.

1 End of Fi Ie on System Input / * or /& on SYSRDR or X'4000' X'40'
SYSIPT. Byte 4/ Unit Ex-
ception Bit is also ON.

2 Unrecoverable I/O Error I/O error passed back due to No program or operator X'20'
program option or operator option error was passed
option back

3* Accept Unrecoverable I/O Error Return to User after Physical Operator Option: X'lOOO' X'lO'
(Bit 2 is ON) 10CS Attempts to correct Dependent on the Error

I/O Error. +

4* 2671 Data Check Operator Options: Operator Option: X'0800' X'08'
Ignore/ Retry/or Cancel Retry or Cancel

Return any DASD Data Checks Return to User

5* Post at Device End Device End Condition will Device End Conditions X '0400 , X'04'
be posted i.e./ byte 2/ bit wi II not be posted. Traffic
o and byte 3/ bits 3 and 6 Bit is set at Channel End.
set at Device End. Also
byte 4/ bit 5 is set (see
Figure 37).

6* Return: Uncorrectable tape read Return to user after physical Operator Option: X'0200' X'02'
data check; 2540 or 2520 punch 10CS attempts to correct Ignore or Cancel for Tapes
equipment check; or DASD read or tape or DASD error. and punches. Re,try or
verify data check. (Data checks on cancel for DASD.
count not returned.)

7* User Error Routine User wi II hand Ie error recov- A Physica I 10CS Error X'0100' X'Ol'
ery (Test Bit 2). n routine will be used.

3 0 Data check in DASD count Field. Yes - Byte 3/ bit 3 is OFF; No X'80'
Byte 2/ bit 2 is ON.

Data Check- 1285 or 1287 in Yes No
Jo urna I Tape Mode

1 DASD Track overrun. Yes No X'40'

Keyboard correction 1285 or 1287 in Yes No
Journal Tape Mode

2 End of DASD Cylinder Yes No X'20'

Hopper Empty 1287 Document Mode Yes No

3 Tape read data check; 2540 or 2520 Operation was unsuccessful. No X'lO'
punch equipment check; or any Byte 2/ Bit 2 is also ON.
DASD data check Byte 3/ Bit 0 is OFF.

1285 or 1287 equipment check Yes No

Figure 36. Conditions Indicated by CCB Bytes 2 and 3 (Part 1 of 2)

Processing Records with Physical IOCS 139

Condition Indicated On Values Mask for
for Th ird Test Under

Byte Bit 1 (ON) o (OFF) Operand in Mask
CCB Ma~ro Instruction

3 4 Questionable Condition Card: Unusua I Command X'08'
sequence (2540). DASD:
No record found.

Non - recovery 1285/1287: Document Jam
or Torn Tape

5 No record found condition Retry command if no record Set ON questionable X'04'
found condition occurs (2311). condition bit and

return to user.

6 Verify Error for DASD or Carriage Yes. (Set ON when Channel No X'02'
Channel 9 Overflow 9 is reached only if Byte 2,

Bit5isON.)

1287 Document Mode - Late Stacker
Select

7* Command Cha in Retry Retry begins at last CCW Retry begins at first CCW X'OOOl' X'Ol'
executed. of channel program.

* User Option Bits. Set in CCB macro. Physical 10CS sets the other bits OFF at EXCP time and ON when the condition
specified above occurs.

+ I/O program check., command reject, or tape equipment check will always terminate the program.
II User must handle all error or exceptional conditions except Channel Control Check, Interface Control Check, I/O

Program Check, and I/O Protection Check.

Figure 36. Conditions Indicated by CCB Bytes 2 and 3 (Part 2 of 2)

example, to set user option bits 3, 5, 6
and 7 of byte 2 ON, X'1700' is used.
(X'1700'=X'1000' + X'0400' + X'0200' +
X'OlOO')

I
It is possible for the macro to set ON

any of the bits in bytes 2 or 3, but nor­
mally, the user need not be concerned with
setting the remaining bits ON.

Sense Address: This operand, when supplied,
causes a CCW for reading sense information
to be generated as the last field of the
CCB and sets the user error recovery bit
(bit X'Ol' of byte 2) on. The name field
(Sense Address) of the area that the user
supplies must have a length attribute
assigned of at least one byte. Physical
laCS uses this length attribute in the CCW
to determine the number of bytes of sense
information the user desires at his sense
address.

Note: When user error recovery (CCB bit
X'OI' byte 2) is specified, the occurrence
of a channel data check, unit check, or
chaining check will cause byte 2, bit
x'20' of the CCB to be turned on and com­
pletion posting and dequeuing to occur.
I/O program and protection checks always
cause program termination. Incorrect
length and unit exception are treated as
normal conditions (posted with completion) •
Note also that the user must request device

140- DOS Sup. and I/O Macros

end posting (CCB byte 2, bit X'04') in
order to obtain errors after channel end.

CCB Format

From the specifications in this CCB in­
struction, the macro sets up a l6-byte
or 24-bytefield (Figure 37) as follows:

0-1

2-3

Contents

After a record has been trans­
ferred, laCS places the residual
count from the CSW in these two
bytes. By subtracting the re­
sidual count from the original
count in the CCW, the problem
program can determine the length
of the record that was transferred.

The next two bytes are used for
transmission of information be­
tween physical laCS and the
problem program. The problem
program can test any bit in bytes
2 and 3, using the mask given in
column 6 of Figure 36. More than
one bit can be tested by using
the hexadecimal sum of the test
values.

All bits are set at 0 (OFF)
when the problem program is assem­
bled unless the third parameter is

4-5

6-7

9-11

13-15

-0
I

Contents

specified. If the third parameter
is specified, it will be assembled
into these two bytes. The user
may turn on bits 5 and 7 in byte 3
and bits 3, 4, 5, 6, and 7 in byte
2. During execution each bit may
be set at 1 (ON), by the problem
program or by a condition detected
by physical IOCS. Any bits that
can be turned on by physical IOCS,
during program execution, are reset
to zero by PIOCS the next time an
EXCP macro using the same CCB is
executed. The condition indicated
by the setting of each bit is shown
in Figure 36.

These two bytes are the status
bytes of the CSW. If Device End
posting is requested (byte 2, bit
5), Device End status will be
OR'ed in. Byte 4 is set to X'OO'
at EXCP time.

These two bytes are a hexadecimal
representation of the symbolic
unit for the I/O devices, as
specified in the first operand of
this CCB.

This byte must not be modified by
the user.

These three bytes contain the
address of the CCW (or first
address of a chain of CCW's)
associated with this CCB and
specified symbolically in the
second operand.

This byte must not be modified by
the user.

These bytes contain the address
of the CCW in the CSW stored at
channel end interrupt for this
I/O operation.

Count Transmission CSWa Symbolic Unit
Infonnation Stotus Bits Address
(see Fig. 36)

1 2 34 5 6
___ -J l

: BIT DESIGNATION
I
132 Attention
133 Status modifier
'34 Control unit end
'35 Busy
136 Channel end
:37 Device end

138 Unit check
139 Unit exception
I
I

7

16-23

Contents

These bytes are allotted only when
the Sense Address operand is sup­
plied in the CCB Macro. They con­
tain the CCW for returning sense
information to the problem program.

EXCP MACRO

Name Operation Operand

[name] EXCP ~ Blockname f
(1)

The EXCP (execute channel program) macro
instruction requests physical IOCS to start
an input/output operation for a particular
I/O device. The Blockname of the CCB
established for the qevice is the only
operand required in this instruction.
Blockname can be specified as a symbol or
in register notation.

Physical IOCS determines the device
concerned, from the Command Control Block
specified by Blockname, and places the
Command Control Block (CCB) in a queue of
such 'CCB's for this device. If the channel
and device are available, the channel pro­
gram is started. Program control is then
returned to the problem program. I/O
interruptions are used to process I/O com­
pletion and to start I/O for requests if
the channel or device was busy at EXCP
time.

WAIT MACRO

Name Operation Operand

[name] WAIT ~ B lockname ~
(1)

Not Used CCW Address Reserved for CON Address Sense CCW
Must Contain X'OO' .Physical 10CS in CSW (Optional)

8 9

". i
11

Address of CON
Associated with
This CCB

I

12

Must
Contain
X'OO'

13 15 16 23

I
Address of CCW I This CCW contains I
in the CSW Stored I data for returning
at Channel End. I sense information I

I to the problem
I program.
I
I.

I

a Bytes 4 and 5 contain the status bytes of the Channel Status Word (Bits 32 -47). If byte 2, bit 5 is on and device end results as a separate interrupt, device end
status will be ORed in.

Figure 37. Command Control Block (CCB)

Processing Records with Physical IOCS 141

This macro instruction is issued whenever
the program requires that an I/O operation,
started by an EXCP instruction, be com­
pleted before execution of the problem pro­
gram continues. For example, the transfer
of data (a physical record) to main storage
must be completed before that data can be
added, moved to another area of main
storage, or otherwise processed. When this
WAIT instruction is executed in a batch job
environment, processing is suspended until
the traffic bit (byte 2, bit 0) of the
related CCB is turned ON. Then program­
ming automatically continues, and the data
can be processed. In a multiprogramming
environment, the Supervisor gives control.
to another program until the traffic bit
is set ON.

The Blockname, as a symbol or in reg­
ister notation, of the CCB established for
the I/O device is the only operand required
in this instruction. This is also the same
name as that specified in the EXCP instruc­
tion for this device.

Before using the WAIT macro for a paper
tape file, the user should refer to the
section entitled Sequential Processing,
Paper Tape Reader: Programming
Considerations.

ALTERNATE TAPE SWITCHING

Alternate tape drives cannot be used on
input processed by PIOCS. On output, auto­
matic alternate switching can be accom­
plished by using the DTFPH and FEOV macro
instructions. FEOV writes the standard
trailer labels, and any user-trailer labels
(if DTFPH LABADDR is specified). When the
new volume is mounted and ready for writing,
IOCS writes the standard header labels, and
the user-standard header labels, if any.

BYPASSING IMBEDDED CHECKPOINT RECORDS
ON TAPE

The checkpoint information saved is written
as a set of magnetic tape records: a 20-
byte header record, as many core-image rec­
ords as required to save the necessary
parts of core, and a 20-byte trailer rec­
ord identical to the header. The format
of the header and trailer record is:

0-11

12-13

Contents

/// CHKPT //

The number, in binary, of core
image records following the header.

142 DOS Sup. and I/O Macros

14-15

16-19

Contents

The total number, in unpacked
hexadecimal, of records following
the header.

The serial number of the
checkpoint.

If checkpoint sets are imbedded in a
file being read with physical IOCS, they
must be recognized and bypassed. On any
mode input tape, checkpoint sets may be
identified by the first 12 bytes of the
header or trailer records. Note that when
reading backwards, the checkpoint header
will occupy the 20 low-order bytes of the
input area.

When bypassing checkpoint sets, three
methods are possible:

1. Go into a read loop (forward or back­
ward) until the checkpoint trailer
(header if backward) is encountered.

2. Extract the count from bytes 12-13 of
the header (or trailer if backwards),
add 2 to this, and forward space (or
backspace) that number of records.
Read commands could also be used.

3. Extract bytes 14-15 of the header (or
trailer if backwards), pack and convert
the field to binary, and forward space
(or backspace) that number of records.
Read commands could also be used.

When bypassing checkpoint sets on 7-
track tapes in translate mode, only method
3 can be used and only forward space (or
backspace) record commands (not reads) can
be used. Reads would create data checks.

COMMAND CHAINING RETRY

If the user generates his system to support
command chaining retry, he can utilize this
option for his physical laCS channel pro­
grams by setting CCB bit 7, byte 3 ON. If
this bit is ON and an error involving retry
occurs, the retry begins with the last CCW
executed. If the bit is OFF, the entire
channel program is reexecuted.

If a command chain is broken by a con­
dition (such as wrong-length record or unit
exception) that does not result in device
error recovery by physical IOCS, the user
can determine the address of the last CCW
executed and, if necessary, restart at that
point.

To obtain the address of the last CCW
executed, subtract 8 from the address
stored in bytes 13-15 of the CCB.

When the command chaining retry bit is
ON, the user must move the address of the
first CCW in the channel program to bytes
9-11 of the CCB before each EXCP issued.
This is done to ensure that the correct
address is there because physical IOCS
modifies this field when retrying after an
I/O error and never restores it to the
original value.

Command chaining should not be used to
read multiple records from SYSIPT or SYSRDR.
The bit should never be ON for DASD channel
programs.

DATA CHAINING

When using Data Chaining, each CCW should
contain the command code of the operation
being executed. (If the CCW's were formed
by the Assembler, they contain this code
automatically.) This is necessary to
ensure proper I/O error recovery. Because
recovery frequently depends on the command
being executed, the command in the last
CCW executed is often examined.

DASD CHANNEL PROGRAMS

The user must begin his DASD channel pro­
grams with a full seek (hex command code
07). If the program is to run in a DASD
file protected environment (system genera­
tion option "DASDFP") no further seeks
may be included in the channel program. If
not operating with DASD file protection,
any other seek in the channel program must
be a full seek (hex command code 07). It
is not recommended that the user utilize
"imbedded" seeks since his program can then
never run under DASD file protect. With
DASD file protection, an "imbedded" seek

Checkpoint File on 2311: The following
parameters .can be used:

CCWADDR=name
DEVADDR=SYSnnn
DEVICE=2311
LABADDR=name
MOUNTED=SINGLE
TYPEFLE=OUTPUT
XTNTXIT=name

optional
optional
required
optional
required
required
does not apply

If a DASD or tape file with standard
volume and file labels is processed, a
DTFPH header card and detail cards may be
used (Figure 38). This set indicates to
IOCS that labels are to be read and checked
(on input) or written (on output). The
header card is punched with DTFPH in the
operation field and the symbolic name of
the file in the name field. The symbolic
name may be seven characters long.

CCWADDR=Name

rhis parameter allows the user to utilize
the CCB generated within the first 16
bytes of the DTFPH table. CCWADDR specifies
the symbolic name of the first CCW to be
used with the CCB generated within the
DTFPH macro. This name must be the same
as the name specified in the assembler
CCW statement that constructs the channel
command word.

If this parameter is omitted, the
location counter value of the CCB-CCW
table address constant will be substituted
for the CCW address.

{
TAPE}

DEVICE= 2311
2321

will cause the errant program to be canceled. If the file is contained on DASD, enter the
As shown in the following chart, when !proper identification: 2311 or 2321. If
executing the channel program, the Super- DEVICE=2311 or 2321, the DEVADDR entry can
visor sets up three commands in the channel be omitted.
program that it builds: a seek that is
identical to the user's seek, a set file
mask that prevents any other 07 seeks from
being executed, and a transfer in channel
(TIC) that transfers control to the command
following the user's seek.

DTFPH MACRO

When physical IOCS macro instructions (EXCP,
WAIT, etc) are used in a program, DASD or
tape files with standard labels need to be
defined by DTFPH entries (DTF for a file
handled by Physical IOCS). DTFPH must also
be used for a checkpoint file on a 2311.

DEVADDR=SYSnnn

This entry specifies the symbolic unit
(SYSnnn) to be associated with the logical
file. The symbolic unit represents an
actual I/O device address. The symbolic
unit may be:

• SYSLNK for linkage-editing

• SYSPCH for main system punch device

Processing Records with Physic~l IOCS 143

r----~SIO--- -l
I I I SEEK ~ __ -1

Set File Mask
J

1 I TIC--- --,

I I Supervisor
I I

Problem I I
Program L_CCB <_, I

i EXCP--J I
I
I

SEEK I
SEARCH ID~----J
TIC *-8
Write Count, Key and

• SYSLST for main system printer

• SYSIPT for main system input device

• SYSRDR for system reader

• SYSRES for system residence device

• SYSOOO-SYS244 for other units in the
system

The symbolic unit (SYSnnn) is used in
the Job Control ASSGN statement to assign
the actual I/O device address to this file.
The ASSGN card makes the file independent
of the device it runs on. For example, a
reel of tape may be mounted on any tape
drive that is available at the time the
job is ready to be run, merely by assigning
that drive to the symbolic unit.

If SYSLST or SYSPCH are used as output
tape units and alternate tape switching is
desired upon detecting a reflective spot,
the SEOV macro instruction must be used.
(See SEOV.)

LABADDR=Name

The user may require one or more DASD or
tape labels in addition to the standard
file labels. If so, he must include his
own routine to check (on input) or build
(on output) the user label(s). He specifies
the symbolic name of his routine in this
entry, and IOCS branches to his routine
after the standard label has been processed.

LABADDR may be included to specify a
user routine for user header or trailer
labels as follows:

144 DOS Sup. and I/O Macros

} Channel program set up
by the Supervisor to
protect the DASD device.

}
Channel program written
by the user.

Data

• DASD input or output file: header
labels only

• Tape input file: header labels only

• Tape output file: header and trailer
labels

Thus, if LABADDR is specified for the file,
user header labels can be processed for an
input/output disk or tape file, and user
trailer labels can be built for a tape out­
put file. Similar to the functions per­
formed by logical IOCS, physical IOCS reads
input labels and mak.es them available to
the user for checking, and writes output
labels after they are built.

For a complete discussion of the LABADDR
routine, see the OPEN sections of this
manual.

MOUNTED=

This entry must be included for a DASD file
to specify how many extents (areas) for the
file are to be made available for pr9ces­
sing when the file is initially opened.
The entry must not be included for a tape
file. One of the following specifications
is entered after the = sign:

ALL if all extents are to be available
for processing. When the file is
opened, IOCS checks all labels on
all packs and makes available all
extents specified by the user's
control cards. Only one OPEN is

t'd
Ii
o
(')
CD
Ul
Ul
1-'.
::1

lQ

~
(')
o
Ii
P.o
Ul

~
1-'.
rt
::T
t'd
::r

"<:
Ul
1-'.
(')

AI
I-'

H
o
()
en

.1-'
~
(Jl

•
I"tj
1-'.
lQ
s::
Ii
CD

w
co

t:l
1-3
I"tj
t'd
:::r:
tr:l
::1
rt
Ii
1-'.
CD
Ul

IBM
PROGRAM

PROGRAMMER

I
Name Operation

I 8 10 14

re.Q'd
_1-

XX XX XXX 01 FPt-f

- - - --Op:t't

IBM Syslem/3S0 Assembler Coding Form

PUNCHING I GRAPHIC I I I I PAGE Of

INSTRUCTIONS I PUNCH I I I I CARD ELECTRO NUMBER
DATE

STATEMENT
Identificotion-

Opercmd Comment I Sequence

16 20 25 30 35 40 4.; 50 55 60 65 71 73 80

Name of tape file with standard labels or DASD file •. X R eq'd.

IrY PE FL E= xx xx xx., (INPUT or OUTPUT) Specifies type of file. X
iWA If CCB generated by DTFPH is to be used. X - - 6 CC DD R= xx xx xx X X ,

t __
p:t't.

DE VI CE =x xx X , (TAPE, 2311, or 2321) If omitted, TAPE is assumed. X
DE VA DD R= SY Sx x x , May be omitted if DEVICE =2311 or 2321 • X
LA BA DO R= '''(xx xx X x, Routine to check or build user standard labels. X
MO UN rrE D= xx ~x x X , (ALL or SINGLE) Required for DASD files only. X
~Ir WIT Xl rr= xx xx xx xX If XTENT cards are to be processed. DASD only.

i
I

SINGLE

required for the file. ALL should
be specified whenever the user
plans to process records in a
manner similar to that performed
by the direct access method. In
any case, the user must supply a
LBLTYP card .

. Also for thi§ option, after the
OPEN is performed, the user must
be aware that the symbolic unit
address of the first volume con­
taining this file is in bytes 30
and 31 of the DTFPH table other
than in the CCB. Before executing
any EXCP's the user must place the
symbolic address in bytes 6 and 7
of the CCB.

if only the first extent on the
first volume is to be available
for processing. SINGLE should be
specified when the user plans to
process records in sequential
order. laCS checks the labels on
the first pack, and makes the
first extent specified by the
user's control cards available
for processing. The user must
keep track of the extents and
issue a subsequent OPEN whenever
another extent is required for
processing. The user will find
the information in the DTFPH table
helpful in keeping track of the
extents:

DTFPH table (referenced by
Filename)

Byte Contents

0-15 CCB (Symbolic unit has been
initialized in the CCB)

54-57 Extent Upper Limit (CCHH)

58-59 BB Seek Address

60-63 Extent Lower Limit (CCHH) •

On each OPEN after the first, IOCS
makes available the next extent
specified by the control cards.

When the user issues a CLOSE
for an output file, the volume on
which he is currently writing
records will be indicated, in the
file label,· as the last volume
for this file.

146 DOS Sup. and I/O Macros

TYPEFLE={Input }
Output

This entry must be included to specify the
type of file (input or output). One speci­
fication or the other is entered immedi­
ately after the = sign.

XTNTXIT=Name

This entry is included if the programmer
wants to process XTENT card information.
It specifies the symbolic name of the
user's extent routine. The DTFPH entry
MOUNTED=ALL must also be specified for the
file.

Whenever XTNTXIT is included, laCS
branches to the user's routine during the
initial OPEN for the file. It branches
after each specified extent has been com­
pletely checked and after conflicts, if
any, have been resolved.

Upon entry to the user's routine, IOCS
stores in register 1 the address nf a 14-
byte area from which the user can retrieve
extent card information (in binary form).
This area contains:

o

1

2-5

6-9

10-11

12

13

Contents

Extent type code (as specified
in the XTENT card)

Extent sequence number

Lower limit of the extent
(CCHH)

Upper limit of the extent
(CCHH)

Symbolic unit

Old bin number

Present bin number of the
extent (B2)

The user returns to IOCS by use of the
LBRET macro instruction.

The Supervisor is a control program that
provides specialized services to problem
programs. These services differ slightly,
depending on the execution environment. In
the batch-job environment, the Supervisor
processes interruptions, I/O requests, and
program retrieval. In addition to these
functions, in the multiprogramming environ­
ment the Supervisor also determines which
program (foregroundl, foreground2, or back­
ground) is to be executed.

The interruptions handled by the Super­
visor result from five conditions:

• Input/Output

• Program Check

• Machine Check

• External Signal (including timer)

• Supervisor Call

The user can request the Supervisor to set
up linkages so that his routines can handle
program check, and operator-communication

COtl.tRG

MVCOM

GETIME

SETlME

STXIT

EXIT

and/or timer interrupts. TECB

The Supervisor also contains a communi-
cation region (see Figure 39) that problem WAIT
programs can use for storing information
between job steps. There are no restric-
tions on the use of this area in the PDUMP
batched-job environment. In the multipro-
gramming environment any program can read
from this region, but only background pro- DUMP
grams can write in it.

Several macro instructions are available
to the programmer to enable him to communi- CANCEL
cate with the Supervisor. Thus, he can
utilize the functions performed by the
Supervisor or have access to the communica- EOJ
tion region in the Supervisor. To make use
of the Supervisor functions requires switch-
ing from problem state to Supervisor state.
Therefore, most macro instructions used for CHKPT
this purpose generate a Supervisor Call
(SVC) instruction. The macro instructions
included in this section are:

SUPERVISOR--COMMUNICATION MACROS

Obtains the address of the
communication region. This
macro does not generate an SVC.

Modifies the content of the
user's portion of the communi­
cation region.

Obtains the time of day. This
macro does not generate an SVC.

Requests the Control Program
to take a program exit or set
a bit in the TECB after a spe­
cific time interval.

Activates a user's program
check, interval timer, or op­
erator communication routine,
or cancels the use of such a
routine.

Returns to the point of inter­
ruption from a user routine
for interval timer, program
check, or operator communica­
tion.

GenerateS a Timer Event Control
Block.

Yields control until the ex­
piration of the interval timer.

Obtains a selective (snapshot)
dump of main storage.

Terminates the job step and
provides a dump of main
s"torage.

Terminates all remaining steps
of the job.

Informs the Supervisor that the
current problem-program job
step has been completed.

Causes checkpoints to be taken
in a batch or background pro­
gram.

LOAD

FETCH

Loads a program phase and re­
turns control to the calling
phase.

Loads and gives control to a
program phase.

Multiprogramming Restrictions on Use of
Supervisor Macros: If MVCOM is used in a
foreground program, the program is canceled
because the bytes in the communication
region that can be modified by this macro
do not contain information for foreground

Supervisor--Communication Macros 147

programs. The interval timer macros SETIME,
STXIT IT, and EXIT IT can be used in only
one program (foregroundl, foreground2, or
background) at a time. This program is
specified at system-generation time but can
be changed by the operator. CHKPT is ig­
nored in a foreground job.

PROGRAM LOADING

Phases may be loaded into main storage from
the Core Image Library with the FETCH and
LOAD macro instructions. FETCH gives con­
trol to the phase that was loaded while
LOAD returns control to the phase that
issued the macro instruction. Self­
relocating phases must be loaded using the
LOAD macro instruction (rather than the
FETCH) with the load address specified in a
register.

FETCH--FETCH A PHASE

Name Op Operand

[name] FETCH {Pha(~~ame} [. {ent~~ame}]

The FETCH macro instruction loads the phase
specified in the first parameter. The
phase name can be 1-8 characters long. Con­
trol is passed to the address specified by
the second operand. If the second operand
is not specified, control is passed to the
entry point determined at linkage-edit time.

The parameters can be specified either
as symbols or in register notation. When
register notation is used for phasename,
the register must be pre loaded with the
address of an eight~byte field that contains
the phasename as alphameric characters. If
necessary, the phasename should be padded
wi th blanks.

If ordinary register notation is used
for entryname, the absolute address of the
entry point of the phase should not be
preloaded into register 1. If, instead, a
symbolic name is used for entryname, the
macro expansion results in a V-type address
constant. The entryname does not have to
be identified by an EXTRN statement.

LOAD--LOAD A PHASE

Name Op Operand

[name] LOAD { Phamame} [{10 (gjddr}]

148 DOS Sup. and I/O Macros

The LOAD macro instruction loads the phase
specified in the first parameter and returns
control to the calling phase. The phasename
can be 1-8 characters long. The user should
code his LOAD in a place where it cannot be
overlaid by the new phase.

After execution of the macro, the entry­
point address of the called phase is
returned to the programmer in register 1.
This entry-point address is determined at
linkage-edit time.

If an optional address parameter is pro­
vided, the load-point address specLfied to
the linkage editor is overridden, and the
phase is loaded at the address specified.
The address used must be outside the Super­
visor area. When an overriding address is
given, the entry-point address is relocated
and returned in register 1. None of the
other addresses in the phase are relocated.

The parameters can be specified either
as symbols or in register notation. When
register notation is used for phasename, the
register must be preloaded with the address
of an eight-byte field that contains the
phasename. If necessary, the phasename
should be left-justified and padded with
blanks. If ordinary register notation is
used for loadaddr, the parameter should not
be preloaded into register 1.

COMMUNICATION REGION

As shown in Figure 39 and described here,
the communication region is a 46-byte stor­
age area within the Supervisor. Batch-jobs
can read and write in this region. In a
multiprogramming environment, all programs
can read the data located in this area, but
only background programs can write there.

Field Length

8 bytes

2 bytes

2 bytes

Information

Calendar date. Supplied from
system date whenever a JOB
statement is encountered.
The field can be two forms:
MM/DD/YY or DD/MM/YY where
MM is month, DD is day, and
YY is year. It can be tem­
porarily overridden by a
DATE statement.

Address of first byte of
problem pro"gram area for the
batch or background job.

Reserved for control program
use.

Bytes

Date

Mo!Day!Yr

or

Day!~/yr

0

t
Address of first
byte supplied
in register 1

7

E
GI

::D e
D.. 0
.... GI o ...
GI<

~~€
~ .~·e
<LLD..

8 910

Job Name

User Area - - set to zero when (Entered from
JOB statement is read. VI Job Control)
(lnter- or, Intra- Job Step D..

e 2-
Communication) C Ql

8 ..t=

~
... GI .~ .£:s VI

] E E
~ e ~
Sl ~ 0)

GI ... e
ao::D.. D..

11 12 22 23 24

E C GI GI
::D GI -=-£ l: GI e :;, '"
D.. U 0 "'0 0

0 ..t= Sl GI D.. E !! 0 o E ::::> '" 0 E ..!< GI l! ~ GI..t= 2 .c -
>-0

.... D..
>-0) ~~ ~ e~ CIl !! CIl e

~.s t;< t;D.. t;<D..

~ ~ E ~ ~ E ~ ~ .~j o E
GI ... ~ GI ... GI -£ e

:g ~ ~ ... GI- ... GI"'O.c
"'0 Cl..c ~ ~..9 e ~~ :¥ ~~ <::::>D.. <::::> D.. ...I D..

31 32 35 36 39 40 43 44 45

by COMRG Note: In the multiprogramming environment, the information in bytes 8- 9, 12- 45 pertain to the Background Program~

Figure 39. Communication Region (in Supervisor)

11 bytes

1 byte

8 bytes

4 bytes

4 bytes

4 bytes

User area for inter- or
intra-job step communica­
tions. All 11 bytes set to
zero when JOB statement for
the batch or background job
is encountered.

UPSI (user program switch
indicators). Set to binary
zero when JOB statement for
the batch or background job
is encountered. Initialized
by UPSI Job Control state­
ment.

Job name as found in the JOB
statement for the batch or
background job.

Address of the uppermost byte
of the batch or background
program area. When the first
phase of a foreground or
background program is loaded
and given control, register
2 contains the address of
the uppermost byte of the
respective program area.

Address of the uppermost byte
of the current phase placed
in the problem-program area
by the last FETCH or LOAD
macro instruction in the
batch or background job.

Address of the uppermost byte
used in loading any phase of
the batch or background job.
This value may be incorrect
if the program (using the

2 bytes

LOAD macro) loads a phase
above its linkage-edited
origin, or all phases of the
program are not linkage­
edited together.

Length of batch or background
program label area.

Macro instructions (COMRG and MVCOM) are
provided to allow the problem program to
communicate with the Supervisor and the
communication region. A brief discussion
of these macro instructions follows.

COMRG--GET ADDRESS OF COMMUNICATION REGION

Name Operation Operand

[name] COMRG

When COMRG is issued, the address of the
communication region is placed in register
1. Any problem program can read any portion
of the communication region by using regis­
ter 1 as a base register.

MVCOM--MOVE TO COMMUNICATION REGION

Name Operation Operand

[name] MVCOM to, length, {frOm}
(0)

The MVCOM macro instruction is used to
modify the content of bytes 12-23 of the

Supervisor--Communication Macros 149

communication region. This macro cannot be
used in a foreground program.

The operand from represents the address,
either as a symbol or in register notation,
of the bytes to be inserted; length repre­
sents the number of bytes (1-12) to be in­
serted; to is the relative address of the
first communication region byte to be modi­
fied (12-23). (The to address used is rela­
tive to the first byte of the region.)

The following example shows how to move
three bytes from the symbolic location DATA
into bytes 16-18 of the communication
region.

Name Operation Operand

[name] MVCOM 16,3,DATA

TIME OF DAY MACRO

GETlME--GET TIME OF DAY IN REGISTER 1

Name Operation Operand

[name] GETlME { STANDARD}
BINARY
TU

The GETlME macro instruction is used to
obtain the time of day at any time during
program execution. STANDARD is assumed if
no operand is given.

If STANDARD is specified, the time of
day is returned in register 1 as a packed
decimal number: HHMMSS (where H is hours,
M is minutes, and S is seconds) with low­
order sign. The time of day may be stored,
unpacked, or edited.

Note: Lengthy conversion routines are gen­
erated (in line) each time STANDARD is used.
Therefore, this function should be put into
a subroutine if it is used frequently.

If BINARY is specified, the time of day
is returned in register 1 as a binary inte­
ger in seconds.

If TU is specified, the time of day is
returned in register 1 as a binary integer
in units of 1/300 second.

GETlME can be used only if the timer
feature was specified at system generation
time and if the CPU has the timer feature.

Note: The timer feature is independent of
the interval timer options (SETlME and
STXIT). GETlME can be used by any area in

150 DOS Sup. and I/O Macros

a multiprogramming environment, regardless
of which area is using the timer.

INTERVAL TIMER AND USER EXIT MACROS

Programs using the interval timer macros-­
SETlME, WAIT, TECB, STXIT IT, EXIT IT--must
be executed with a Supervisor containing
the optional interval timer routines and
must be executed on a CPU having the timer
feature. The user specifies at system­
generation time whether the Supervisor is
to be generated with the interval timer
routines.

In a multiprogramming environment, only
one program at a time can use the interval
timer macros. This program is specified at
system-generation time but can be tempor­
arily changed by the operator.

There are two distinct methods of using
the interval timer macros. Only one method
can be used at a tIme. The first method
allows the user to set the timer and enter
a routine in his program when the time
elapses. The SETlME, STXIT, and EXIT macros
are used to do this. In the second method,
a given routine can be performed at timed
intervals. The SETIME, TECB, and WAIT
macros are used. The time set is a real­
time interval and is not stopped or adjusted
when the program using the timer does not
have control. This should be noted by the
lower-priority programs in a multiprogram­
ming environment.

METHOD-l MACROS

SETlME--SET INTERVAL TIMER

Name Operation Operand

[name] SETlME {seconds}
. (1)

The SETlME macro instruction is used to set
the interval timer to the value that is
specified in the operand. The largest al­
lowable value is 55924, which is equivalent
to 15 hours, 32 minutes, 4 seconds. A reg­
ister may be specified as the operand. The
register must contain the number of seconds
in binary. When the specified timer inter­
val has elapsed, the interval-timer routine
supplied by the user will be entered.

If a routine has not been supplied to
the Supervisor (via the STXIT macro instruc­
tion) by the time of the interruption, the
interruption will be ignored.

When a program is restarted from a check­
point, any timer interval set by a SETlME
macro is not restarted.

STXIT--SET LINKAGE TO USER ROUTINE{S)

Name Operation Operand
I

to establish linkage

[name] STXIT {ii},{rtnaddr},{Savarea}
OC (0) (1)

to terminate linkage

[name] STXIT un
The STXIT (set exit) macro instruction is
used to establish or terminate a linkage
from the Supervisor to a user's routine for
Interval Timer, Operator, or Program-Check
interrupt handling. If only the first op-
erand is resent linka e to the user's p , g
routine is terminated.

The operands are described as follows.

PC

IT

OC

rtnaddr

savarea

Program Check Interruption

Timer Interruption

Operator Attention Interrupt

Entry-point Address of the routine
that handles the interruption des­
cribed in the first operand.

Address of a 72-byte area in which
the Supervisor stores the old PSW
and general registers 0-15. In
the case of stacked interrupts,
the user must have a separate save
area for each routine.

The routine address and the savarea address
can be given in register notation. However,
the routine address should not be specified
in register 1.

In a batch or background job, the OC
routine is entered when the external inter­
rupt key on the console is pressed. In a
foreground program, the OC routine is
entered when the request key on the 1052 is
pressed and the foreground OC routine is
requested. The IT routine is entered when
the interval timer elapses. ·The PC routine
is entered when a program check occurs. If
a PC occurs in a routine that is being exe­
cuted from the Logical Transient Area, the
job containing the routine is canceled.

In all cases if a STXIT macro is given
and the Supervisor was not generated to
handle the requested facility, the job is
canceled. This also applies to a program
that requests the timer interrupt and is
not allocated the timer.

If a timer or operator-attention inter­
rupt occurs and linkage has not been estab­
lished to a user routine the interrupt is ,
ignored. If a Program Check occurs witho ut
exit linkage established, the program is
terminated.

The following chart shows what happens
when an interrupt occurs while an interru pt
routine is being processed.

C

H

I

Routine Being Interrupt Occuring
Processed

PC OC IT

PC C H H

OC H Ib Ef H

IT H H I

Job canceled.

Interrupt honored. When processing of
new routine completes, control returns
to interrupted routine.

Error message given in foreground pro­
gram and control returns to interrupted
OC routine.

Interrupt ignored for all programs

Interrupt ignored in batch job or back­
ground program.

Notes:

1. When restarting a program from a
checkpointed position, any STXIT link­
ages established prior to the check­
point are destroyed.

2. If a program is using a logical
transient routine when a timer inter­
rupt occUrs, the user timer routine is
not entered until the logical transient
routine is released.

EXIT--EXIT FROM USER'S INTERRUPT ROUTINE(S)

Name Operation Operand

[name] EXIT un
The EXIT macro instruction is used to return
from a user routine, specified in the STXIT
macro instruction, to the point in the
interrupted program where the interruption
occurred. The PSW and registers are re­
stored from the savarea; hence the savarea

Supervisor--Communication Macros 151

contents should not be destroyed.
ands have the following meanings:

The oper- WAIT macro can be processed. When SETlME
is issued, the event bit is set to o.

PC

IT

Exit from the user's program-check
routine.

Exit from the user's interval-timer
routine.

OC Exit from user's routine that handles
the operator-attention interrupt.

METHOD-2 MACROS

TECB-BUILD TIMER EVENT CONTROL BLOCK

Name Operation Operand

tecbname TECB

The TECB causes a Timer Event Control Block,
shown in Figure 40, to be generated at the
address of tecbname. This block contains
an event bit that is set to indicate when
the time interval specified in SETlME has
elapsed.

SETlME-SET INTERVAL TIMER

Name Operation Operand

[name] SETlME {seconds}, {tecbname}
(1) (r)

The SETIME macro sets the amount of time
that must elapse before the TECB event bit
is set to 1 and the routine following the

Reserved Reserved Reserved

Byte 0 1 2 3

/
Event Reserved
Bit

Bit 0 1- 7

The Event Bit is set ON by the Supervisor's Timer Routines

Value Indication

a time specified in SETIME has not elapsed

time specified in SETIME has elapsed

Figure 40. The Timer Event Control Block
(TECB)

152 DOS Sup. and I/O Macros

The number of seconds can be specified
directly or in register notation. The
largest allowable value is 55924, which is
equivalent to 15 hours, 32 minutes, 4 sec­
onds. If a register is specified, the reg­
ister must contain the number in binary.

The user can specify the tecbname or
specify the register (r) (r cannot be 0 or
1) in which he has placed the address of
the corresponding TECB. After SETlME is
executed, the Supervisor returns the TECB
address in register 1.

WAIT--WAIT FOR TIMER ELAPSE

Name Operation Operand

[name] WAIT {tecbname}
(1)

The WAIT macro is used to ensure that the
time interval specified in SETlME has
elapsed (event bit turned ON) before execu­
tion of the program issuing the WAIT contin­
ues. When a WAIT macro is processed in a
multiprogramming environment, control is
given to the Supervisor, which makes the
time available to a lower-priority program.

The user can either specify the tecbname
or use register notation. The WAIT macro
instruction loads the TECB address into
register 1 unless register (1) is specified.

Note: The SETIME macro instruction leaves
the TECB address in register 1.

THE DUMP MACROS

PDUMP--PARTIAL DUMP OF MAIN STORAGE

Name Operation Operand

[name] PDUMP {addressl}, {address2~
(r) (r) J

This macro instruction provides a hexadeci­
mal dump of the general registers and of
the main storage area that is contained be­
tween the two address expressions (addressl
and address2). One or both of the addresses
can be given in registers. Special register
notation is not necessary for use in a self­
relocating program: The contents of regis­
ters 0-1 are destroyed, but the CPU status

is retained. Thus, PDUMP furnishes a dy­
namic dump (snapshot) useful for program
checkout. Processing continues with the
next user instruction.

In a batch or background job, this dump is
directed to SYSLST. When SYSLST is a 2311,
the user must issue an OPEN macro to any DTF
assigned to SYSLST after each PDUMP that is
executed. This OPEN macro updates the disk
address maintained in the DTF table to agree
with the address where the PDUMP output ends.
If the OPEN is not issued, the address is
not updated, and the program is canceled
when the next PUT is issued.

In a foreground job the dump is directed
to SYSOOO, which can be either a printer or
a tape. The records are 121 bytes long;
the first byte is an ASA control character.

DUMP--DUMP MAIN STORAGE

Name Operation Operand

[name] DUMP

This macro terminates the job step and gives
a hexadecimal dump.

In a batch-job or a background program,
the Supervisor, the batch or background
program, and the general registers are
dumped onto SYSLST.

In a foreground program, the dump goes
to SYSOOO and contains the supervisor, the
foreground program that issued the macro,
and the general registers. SYSOOO can be
either a printer or a tape. (Before the
macro is issued, the tape must be opened,
if necessary, and positioned as desired.
The records are 121 bytes long; the first
byte is an ASA control character.)

THE CANCEL AND EOJ MACROS

CANCEL--CANCEL THE JOB

Name Operation Operand

[name] CANCEL

This macro instruction causes the job to be
terminated. No dump of main storage is
provided.

EOJ--END-OF-JOB STEP

Name Operation Operand

[name] EOJ

The EOJ macro ins'truction is issued at the
end of a problem-~rogram step to inform the
system that the job step is finished. The
operand field is ignored.

CHECKPOINTING A PROBLEM PROGRAM

Checkpoint is a means of recording the
status of a problem program at desired in­
tervals. Restart is a means of resuming
the execution of the program from one of
the checked points rather than from the
beginning, if processing is terminated for
any reason before the normal end of program.
For example, ,a job of higher priority may
require immediate processing, or some mal­
function such as a power failure may occur
and cause an interruption. The checkpoint
ability is provided through the CHKPT macro
while the restart ability is provided
through Job Control. (For information on
restarting a checkpointed program, see the
System Control and Service publication
listed on the front cover.)

USE of CHKPT MACRO

The CHKPT macro can be issued by any pro­
gram in a batch-job environment or by a
background program in a multiprogramming
environment. It will be ignored in a fore­
ground program. CHKPT will also be ignored
under the following conditions:

1. The device on which the checkpoint rec­
ords are to be written is not a magnetic
tape or a 2311 disk. (The device must
be a 2311 disk if filename operand is
present.)

2. End-of-reel is detected while writing
the checkpoint on tape.

3. The area on disk is not large enough
for a single checkpoint.

4. The macro is issued by a telecommunica­
tion program that has any I/O opera­
tion(s} pending on a telecommunication
device.

5. The user-specified end address is
greater than the end of the background­
job area.

Supervisor--Communication Macros 153

6. The CHKPT macro is issued before the
disk checkpoint file is opened.

7. Any of the required DTFPH parameters
for the disk checkpoint file contain
errors.

CHKPT MACRO

Name Operation Operand

[name] CHKPT SYsnnn,{restart address}
(rl)

[, end address]
(r2)

[,tpointe1
(r3)

[, dPointer]
(r4)

fFilename]
(r5)

SYSnnn specifies the logical unit on which
the checkpoint information will be stored.
It must be a magnetic tape or a 2311 disk.
(See Checkpoint File.)

Restart address (or rl) specifies a
symbolic name of the problem program state­
ment (or register containing the address)
at which execution is to restart if proc­
essing must be continued later.

End address (or r2) is a symbolic name
(or register containing the address) of the
uppermost byte of the problem program area
required for restart. This address must
follow the logic modules being included
from the relocatable library.

If this operand is omitted, all of main
storage above the Supervisor will be check­
pointed in a batch-job environment, and
all of the background program area in a
multiprogramming system.

This operand provides two advantages.
One, less time and space is required for
recording the checkpoint record set. Two,
if a program using 32K of storage is being
run in a larger system and only 32K is
checkpointed, that program can be restarted
either on a 32K system or as a 32K back­
ground job in a multiprogramming system.

Tpointer (or r3) is the symbolic name of
an eight-byte field contained in the
problem program area. (See Repositioning
Magnetic Tape.)

Dpointer (or r4) is the symbolic name of
a DASD operator verification table that the
user can set up in his own area of main
storage. (See DASD Operator Verification
Table.)

154 DOS Sup. and I/O Macros

Filename (or r5) is used only for check­
point records on disk. It is the name of
the associated DTFPH macro. (See Check­
point on Disk.)

Special Register Notation cannot be used
with any of these operands.

Information that Is and Is Not Saved

When the CHKPT macro is issued, the follow­
ing information is saved:

• Information for the Restart and other
Supervisor or Job Control routines.

• The general registers:

• Bytes 8-10 and 12-45 of the communica­
tion region.

• The problem program area (see End­
Address Operand).

• All DASD file protection extents
attached to logical units belonging to
the checkpointed program.

Note: If the program is using DASD system
input or output files (SYSIPT, SYSLST),
they must be reopened in the user restart
routine to obtain the current DASD address.

The following information is not saved:

• The floating point registers. (If
needed, these registers should be
stored in the problem program area be­
fore issuing CHKPT, and restored in a
user restart routine.)

• Any linkages to user routines set by
the STXIT macro. (If needed, STXIT
should be used in user's restart
routine.)

• Any timer values set by the SETlME
macro. (If needed, SETlME should be
used in user's restart routine.)

• The program mask in problem program
PSW. (If other than all zeros is
desired, the mask should be reset in
user's restart routine.)

Note: A user's restart routine must also
reopen any DASD system input or output
files (SYSIPT, SYSLST, etc) that are used.

CHECKPOINT FILE

The checkpoint information must be written
on a 2311 disk or a magnetic tape--either
7 or 9 track. The 7-track tape can be in
either data conversion or translation mode;
however, the magnetic tape unit must have
the data conversion feature. On 7-track
tapes, the header and trailer labels are
written in the mode of the tape; the data
records are written in data convert mode,
odd parity.

Checkpoints on Tape

The programmer can either establish a
separate file for checkpoints or imbed the
checkpoint records in an output data file.
When the data file is read at a later time
using logical IOCS, the checkpoint records
are automatically bypassed. If physical
iUCS is used, the user must program to by­
pass the checkpoint record sets. See
Processing Records with Physical,IOCS.

If a separate magnetic tape checkpoint
file with standard labels is maintained,
the labels should be either checked by an
OPEN or bypassed by an MTC command before
the first checkpoint is taken.

Checkpoints on Disk

If checkpoints are written on a 2311 disk,
the following must be observed:

• One continuous area on a single pack
must be defined at execution time by
the Job Control cards necessary to
define a DASD file.

• The number of tracks required is com­
puted as follows:

[

X y
N 1+30+20

18

where N

C

X

the number of sets of
checkpoint records to be
retained. (When the
defined extent is full,
the first set of check­
point records is over­
laid.)

the number of bytes to be
checkpointed in the
user's problem program up
to the end address
specified in the CHKPT
macro operand.

the number of 2311 XTENTS
including nonoverlapping
split-cylinder XTENTS.

If split-cylinder XTENTS
overlap on the same cyl­
inder the number of
XTENTS counted is one used
by the program. (This
number is zero if DASD
file protect is not used.)

Y = same as above for 2221.

For each division, the remainder is
rounded up to the next highest whole
number before multiplying by N.

• Each program can use a common check­
point file or define a separate one.
If a common file is used, only the last
program using the file can be restarted.

• The checkpoint file must be opened be­
fore the CHKPT macro can be used.

• A DTFPH macro must be included for use
by OPEN and the checkpoint routine.
See Processing Records with Physical
laCS: DTFPH Macro.

REPOSITIONING I/O FILES

The I/O files used by the checkpointed pro­
gram must be repositioned on restart to the
record that the user wants to read or write
next. Checkpoint provides no aids for re­
positioning unit-record files. The pro­
grammer must establish his own reposition­
ing aids and communicate these to the
operator when necessary. Some suggested
ways are:

• Taking checkpoints at a logical break
point in the data, such as paper tape
end of reel •

• Switching card stackers after each
checkpoint.

• Printing information at checkpoint to
identify the record in process.

• Issuing checkpoints on operator demand.

User sequential DASD input or output files
require no repositioning.

When updating DASD records in an exist­
ing file, the programmer must be able to
identify the last record updated at check­
point in case he needs to restart. This
can be done in various ways, such as:

• Creating a history file to record all
updates.

• Creating a field in updated records to
identify the last transaction record
that updated it. This field can be
compared against each transaction at
restart time.

Supervisor--Communication Macros 155

Repositioning Magnetic Tape

Checkpoint provides some aid in reposition­
ing magnetic tape files at restart. Files
can be repositioned to the record following
the last record processed at checkpoint.

The following discussion presents the
procedure in correlation with a chart given
at the end of this section. The fourth
operand of the CHKPT macro points to two
V-type address constants that the user
specifies in his coding. The order of these
constants is important.

• The first constant points to a table
containing the filenames of all the
logical IOCS magnetic tape files that
are to be repositioned.

• The second constant points to a table
containing repositioning information
for physical IOCS magnetic tape files
that are to be repositioned.

• If the first, second, or both con­
stants are zero, no tapes processed by
logical, physical, or both types of
IOCS, respectively, will be reposi­
tioned.

If the tables are contained in the same
CSECT as the CHKPT macro, the constants may
be defined as A-type constants.

The user must build the tables discussed.
Each filename in the logical IOCS table
points to the corresponding DTF table where
IOCS maintains repositioning information.
The user should note the following:

• Magnetic tapes with nonstandard labels
should be repositioned past the labels
at restart time (presumably the labels
are followed by a tapemark so that
forward-space file may be used) •.

• If a tape, that is to be repositioned,
is processed with nonstandard labels
and read backwards, the user must keep
a physical IOCS repositioning table,
becau,se for this case, the physical
record count kept by IOCS will be in­
correct. The physical record count

156 DOS Sup. and I/O Macros

must be the number of forward reads
necessary for restart to position the
tape.

• Restart does not rewind magnetic tapes
when repositioning them.

• A multifile reel should be pre­
positioned to the beginning of the de­
sired file.

• The correct volume of a multivolume
file must be mounted for restart.

• For tapes with a standard VOL label,
restart writes the file serial number
and volume sequence number on SYSLOG,
and gives the operator the opportunity
to verify that the correct reel is
mounted.

• laCS can completely reposition files
on system logical units (SYSIPT,
SYSLST, etc), if the tape is not shared
with any other program and if the user
keeps a physical laCS repositioning
table. However, if a system logical
unit file is shared with other pro­
grams, a problem exists. Output pro­
duced after the checkpoint is dupli­
cated at restart. Input records must
be reconstructed from the checkpoint,
or the user restart routine must find
the last record processed before check­
point.

The entries in the physical laCS table
are as follows:

First halfword--hexadecimal representation
of the symbolic unit address of the
tape (copy from CCB).

Second halfword--nurnber of files within the
tape in binary notation. That is,
the number of tapemarks between the
beginning of tape and the position
at checkpoint.

Third halfword--nurnber (in binary notation)
of physical, records between the
preceding tapemark and the position
at checkpoint.

Name Operation Operand
CHKPT SYSOOX,(rl)"POI'TER,DAFD

r------ ----- ---------I----l
f-- ----- ___________ J

I POINTER DC.- - V (LOGICL)

I I V (PHYSCL)

I ir---J
I ,- - - - - - CNO;- - - - : 2,4

I LOG1CL DC I Hlnl

I I
number of entries in
the following table.

I , __________ J

I I DC r---~
I : I

(Filenamel) Symbolic DTF
(Filename2) name of each

tape file to

r I I
I I I
I I I
I I I
I I I

I • : I PHYSCL DC I

--------" --J I
I

I
I
I

t
Filenamel DTFxx

be r~positioned
at restart

V (Filenamen)

Hlnl

3H

3H

Hlnl

number of entries in
the following table.

six bytes (3 halfwords)
for each tape file
that is to be
repositioned at restart.

2H 4 bytes

2H

(2 halfwords for each
DASD for which the
operator is to verify
the volume sequence
number at restart.

Supervisor--Comrnunication Macros 157

DASD OPERATOR VERIFICATION TABLE

If the Dpointer operand is used, the user
can build a table, in his own area of main

I storage, to provide the symbolic unit num­
ber and the bin (cell) number of each DASD
file used by his program. At restart, the
volume sequence number of these files will
be printed on SYSLOG, and the operator can
verify them.

The entries in the DASD Operator Verifi­
cation Table must consist of the following
two halfwords, in the order stated:

158 DOS Sup. and I/O Macros

• The symbolic unit in hexadecimal nota­
tion copied from the CCB bytes 6 and 7.

• The bin (cell) number in hexadecimal
notation.

There must be one entry for each DASD unit
that is to be verified by the operator.

I The bin number is always zero, except
for a 2321 in which case the bin number
varies with the cell (0-9) being verified.

ADDITIONAL MACRO INSTRUCTIONS: CALL, SAVE, AND RETURN

A program may consist of several phases
which have been produced by the same lan­
guage translator or different language
translators (FORTRAN or COBOL, for exam­
ple). These phases are then combined by
the Linkage Editor. This process is mean­
ingful only if one phase can branch to
another phase and deliver parameters to it.
The routine called should also be able to
provide the calling routine program with
results.

If control passes from one routine to
another within the problem program, the
linkage between the routines is referred

to as direct linkage. In direct linkage,
no linkage to the Supervisor is involved.
Three macro instructions, using conventions
of the Assembler language, are used for
linkage between routines: CALL, SAVE, and
RETURN.

Linkage between the main program and two
subroutines is shown in Figure 41.. Linkage
can proceed through as many levels as re­
quired, and each routine may be called from
any level. In the standard direct linkage,
a routine always returns to the next higher
level.

Main Program (A) First- Level Subroutine (B) Second- Level Subroutine (C)

---- SAVE (14,r2) SAVE--

LA 13,SAVEA BALR --

---- USING -- ---

ST 13,SAVEB+4 ---

CALL LA 13,SAVEB

---- ---

-
CALL

- - - - - __ -----.... 1

RETURN --

L 13,SAVEB+4

SAVEA OS 90 RETURN (14, r2)

SAVEB OS 90

Figure 41. Direct Linkage

Additional Macro Instructions 159

LINKAGE REGISTERS

The registers having specific roles in
linkage are listed in Figure 42. The
greatest use of linkage registers occurs
with direct linkage. However, linkage reg­
isters are also used in linkages with the
Supervisor, which are normally achieved
through macro instructions.

Some of the linkage register identities
and uses are shown in the following typical
direct linkage calling sequence:

CNOP 2,4
LA 13, SAVEAREA load save

area address
LA 14,RETADR load return

address
L 15,=V(SUBR) load entry

point addr
BALR 1,15 load para-

meter list
address

DC A (PARI ,PAR2) parameter
list

RETADR
S AVE AREA DS 9D

In the above sequence, a higher level
program (the calling program) gives control
to a lower level program (the called pro­
gram) by branching to the address in reg­
ist~r 15. Register 15 is the entry point
register; it can be used to provide initial
addressability in the called program.

Before branching, the calling program
loads register 14, the return register,
with the address to which the called pro­
gram should return control. Two parameters,
PARI and PAR2, are passed to the called
program, in a list pointed to by register
1, which is the parameter list register.

SAVE AREA USE

Registers used by a called program must
have their contents saved and restored by
each lower level program that is given
control by a higher level program. This
conserves main storage, because the in­
structions to save and restore registers
need not be in each calling sequence in the
higher level program. The save area used
is in the higher level program and has a.:,
standard format so that all programs can
save registers in a uniform manner. Save
areas are chained together in ascending
order so that register contents can be
restored as control is returned to the
higher level programs. Save areas can also
optionally be chained together in descend­
ing order.

REGISTER SAVING AND RESTORING
RESPONSIBILITIES

Every program, before it executes a direct
linkage, must provide a save area and place
the address of this save area in register
13.' A program can use the same save area

REGISTER
REGISTER NAME CONTENTS NUMBER

0 Parameter register Parameters to be passed to the called
program.

1 Parameter register Parameters to be passed to the called

or
program.

Parameter list Address of a p'arameter I ist to be
register passed to either the control program

or a user's subprogram.

13 Save area register Address of the reg ister save area to be
used by the called program.

14 Return register Address of the location in the calling
program to which control should be
returned after execution of the
called program.

15 Entry point register Address of the entry point in the
called program.

Figure 42. Linkage Registers

160 DOS Sup. and I/O Macros

for all of ,its linkages. Unless the pro­
gram requires register 13 for other
reasons, the address of the save area can
be loaded into it once, when the program
is entered.

The save area in the calling program is
used by a called program in direct linkage
to save the contents of registers the
called program will use. Register saving
should be accomplished by using a SAVE
macro instruction. Because register saving
should be the first action taken by the
called program, the SAVE macro instruction
should be used at the entry point of the
called program. The called program should
use a RETURN macro instruction to return

WORD DISPLACEMENT CONTENTS

1 0 Indicator byte and storage length.

control to the calling program, and to
restore the saved registers from the save
area.

Words 6 through 18 of the save area in
the calling program may be used by the
called program to save registers, or as a
work area.

SAVE AREA

A save area occupies 9 double-words
aligned on a double-word boundary.
save area words, their displacement
the area origin, and their contents
shown in Figure 43.

and is
The
from
are

2 4 Address of the save orea used by the call ing program
(stored by the calling program). This save area is in
the program that ca II ed the call ing program.

3 8 Address of the save area in the called program (stored
by the called program).

4 12 Retum address (register 14 contents - stored by the
called program).

5 16 Entry point address (register 15 contents - stored by
the called program).

6 20 Register 0

7 24 Register 1

8 28 Register 2

9 32 Register 3

10 36 Register 4

11 40 Register 5

12 44 Register 6

13 48 Register 7

14 52 Register 8

15 56 Register 9

16 60 Register 10

17 64 Register 11

18 68 Register 12

Figure 43. Save Area Words and Contents in Calling Program

Additional Macro Instructions 161

Additional information on the contents
of each of the words in a save area is
given below:

• Word 1. An indicator byte followed by
three bytes that contain the length of
allocated storage. Use of these fields
is optional, except in programs written
in the PL/l Language.

• Word 2. The address of the save area
in the next higher level program. The
contents of register 13 must be stored
in this word by the calling program
(which might be a called program) be­
fore the calling program loads register
13 with the address of the current save
area.

• Word 3. The address of the save area
in the called program, unless the
called program is at the lowest level
and does not have a save area. (The
called program need have a save area
only if it is itself a calling pro­
gram.) Thus the called program, if it
contains a save area, stores the save
area address in this word. This is
done only if save areas are being op­
tionally chained together in descending
order.

• Word 4. The return address, which is
in register 14 when control is given
to the called program. The called pro­
gram may store the return address in
this word if it intends to modify
register 14.

• Word 5. The address of the entry point
of the called program. This address is
in register 15 when control is given to
the called program. The called program
stores the entry point address in this
word if it is required.

• Words 6 through 18. The contents of
registers 0 through 12, in that order.
The called program stores the register
contents in these words if it intends
to modify the registers.

SAVE AREA CHAINING

The lowest level program (the current
active level) in a chain of program link­
ages should point to a save area as
follows:

• If the lowest level program does not
have a save area, register 13 should
point to word 1 of the save area in the
next higher level program.

162 DOS Sup. and I/O Macros

• If the lowest level program does have
a save area, register 13 should point
to word 1 of this save area.

• Whether or not the lowest level program
has a save area, register 13 should
point to word 1 of the save area in the
next higher level program when a RETURN
macro instruction is executed.

Note that register 13 need only point to
a save area when a linkage occurs.

In all cases, word 2 of each save area
should contain a pointer to word 1 of the
save area in the next higher level program.

Word 3 of each save area can optionally
contain a pointer to word 1 of the save
area in the next lower level program.

An example of save area chaining is
shown in Figure 44. Two programs (A and B)
are shown in the example. Program A has
called program B. In this example, pro­
gram B calls another program which is not
shown because it does not call any pro­
grams. Programs A and B contain a save
area.

REGISTERS (CALLING PROGRAM
RESPONSIBILITIES)

The calling program is responsible for the
following:

1. Loading register 13 with the address
of a save area.

2. Loading register 14 with the return
address.

3. Loading register 15 with the entry
point address.

4. Loading register 1, if necessary, with
the address of a parameter list.

After execution of the calling sequence,
the calling program can expect the follow­
ing to occur as a result of execution of
the remainder 6f the linkages:

1. The contents of registers 2 through
14, the program mask, and the program
interruption control area will be un­
changed.

2. The contents of registers 0, 1, and 15;
the contents of the floating-point
registers; and the condition code may
be changed.

PROGRAM ADDRESS OF
CONTAINING SAVE AREA CONTENTS OF WORD
SAVE AREA WORD

Program A A1 Optional

A2 If A is highest level program, then it contains
whatever was assembled there. Otherwise,
address of save area in the program that
called A.

A3 81 (optional)

A4 Return Address in A (optional)

A5 Entry point in 8 (optional)

A6-A18 Optional

Program 8 81 Optional

82 A1

83 Not Set

84 Return address in 8

85 Entry point in the lowest level program (no
save area).

86-818 Optional

Figure 44. Save Area Chaining

CALL--CALL A PROGRAM

The CALL macro instruction passes control
from a program to a specified entry point
in another program. The program issuing
the CALL macro instruction is referred to
as the calling program; the program re­
ceiving control is referred to as the
called program. The called program must
be in main storage when the CALL macro
instruction is executed. The called pro­
gram is brought into main storage in one
of two ways:

1. As part of the phase issuing the CALL.
In this case, the CALL macro instruc­
tion must specify an entry point. When
the linkage editor processes a phase
containing such a CALL, it includes the
called program in the phase.

2. As the phase specified by a LOAD macro
instruction. In this case, the CALL
macro instruction must specify the pro­
gram to be called by indicating that
the address of its entry point will be
loaded into register 15 (the entry
point register) before execution of the

CALL macro instruction. The LOAD macro
instruction must precede the first CALL
for the program.

The called program returns control to
the calling program by issuing a RETURN
macro instruction or its equivalent.

Name Operation Operand

[name] CALL entry-symbol
[, (param-addr, •.•)]

entry

Specifies the entry point to which control
is to be passed. If the symbolic name of
an entry point is written, an instruction,
L l5,=V(entry), is generated as part of
the macro.expansion. Control is given to
the called program by a branch to the ad­
dress in register 15 (the entry point reg­
ister). Entry may be a self-defining value
equal to 15 and enclosed in parentheses.

Additional Macro Instructions 163

param

Specifies an address (relocatable or abso­
lute expression) to be passed as a param­
eter to the called program. Terms in the
address must not be indexed. The param
operands must be written in a sublist, as
shown in the format description. If one
or more param operands are written, a prob­
lem program parameter list is generated.
It consists of a full-word for each oper­
and. Each full-word is aligned on a full­
word boundary and contains, in its three
low-order bytes, the address to be passed.
The addresses appear in the parameter list
in the same order as in the macro instruc­
tion. When the called program is entered,
register 1 (the parameter list register)
contains the address of the problem pro­
gram parameter list.

If the entry operand is written as a
symbolic name, a V-type address constant
is generated by the assembler, and the
linkage editor makes the called program
part of the calling-program phase. The
symbolic name must be either the name of
a control section or an assembler language
ENTRY statement operand in the called
program.

If the entry operand is written as (15),
a V-type address constant is not generated.
If the called program is not part of the
calling-program phase, a LOAD macro instruc­
tion must be executed (to bring the program
to be called into storage) before the CALL
macro instruction is issued.

In the following examples, EXl gives
control to an entry point named ENT. EX2
gives control to an entry point whose ad­
dress is contained in register 15. Two
parameters, ABC and DEF, are passed.

EXl CALL ENT
EX2 CALL (15), (ABC,DEF)

A typical macro expansion for the macro
instruction NAME CALL SUBR,(Pl,P2 •.. ,Pn)
is:

NAME
CNOP
L
LA
BALR
DC

2,4
l5,=V(SUBR)
l4,*+6+4*n
1,15
A(Pl,P2 •.. ,Pn)

NAME is the symbol in the name field of
the macro instruction. n is the number of
full-words in the parameter list. SUBR is
the symbolic name of the entry point of the
called program. Pl through Pn are the ad­
dresses tq be passed to the called program.

When the CALL macro instruction is exe­
cuted, it gives control to the called pro­
gram by branching to the address in reg­
ister 15.

164 DOS Sup. and I/O Macros

The (15) entry operand and LOAD macro
instruction combination is most useful when
the same program is to be called many times
during execution of the calling program,
but is not needed in main storage through­
out execution of the calling program. If
the CALL macro instruction is used and a
symbolic name written for the entry oper­
and, the called program resides in storage
throughout execution of the calling pro­
gram. This wastes main storage if the
called program is not needed during all of
the calling-program execution.

SAVE--SAVE REGISTER CONTENTS

The SAVE macro instruction is written at
the entry point of a program. Upon entry
to the program, SAVE stores the contents
of specified registers in a save area pro­
vided by the program from which control was
given. The saved register contents are re­
loaded by execution of a RETURN macro in­
struction.

Name Operation Operand

[name] SAVE (rl[,r2])

The operands rl, r2 specify the range of
the registers to be stored in the save area
of the calling program. This area is
pointed to by register 13. The operands
are written as self-defining values. They
should be so written that, when inserted
in a STM instruction, they cause desired
registers in the range of 14 through 12
(14, 15, 0 through 12) to be stored. Reg­
ister 14 and 15, if specified, are saved
in words 4 and 5 of the save area. Reg­
isters 0 through 12, if specified, are
saved in words 6 through 18 of the save
area. The contents of a given register are
always saved in a particular word in the
save area. For example, register 3 is
always saved in word 9 of the save area,
even if register 2 is not saved.

If r2 is omitted, only the register
specified by rl is saved.

RETURN--RETURN TO A PROGRAM

The RETURN macro instruction can reload
the registers whose contents were saved by
execution of a SAVE macro instruction.
After reloading the registers, if any,
control returns to the calling program.

Name Operation Operand

[name] RETURN (rl [,r2])

The operands rl, r2 specify the range
of the registers to be reloaded from the
save area of the program receiving control.
The operands are written as self-defining
values. They should be so written that,
when inserted in an LM instruction, they
cause the loading of registers in the range
from 14 through 12 (14,15,0 through 12).
Registers 14 and 15, if specified, are re-

stored from words 4 and 5 of the save area.
Registers 0 through 12, if specified, are
restored from words 6 through 18 of the
save area. If r2 is omitted, only the
register specified by rl is restored.

The address of the save area must have
been loaded into register 13 before execu­
tion of this macro instruction.

Additional Macro Instructions 165

APPENDIX A

DASD LABELS

Whenever files of records are written on
DASD, each volume must contain standard
labels to identify the pack or cell and the
logical file(s) on it. When logical IOCS
is used for a file, the IOCS routines read,
check, and/or write standard labels. When
physical IOCS is used, IOCS processes the
labels if the DTFPH macro instruction is
included in the user's program. The entry
TYPEFLE must be specified to indicate
whether the file is an input file (read and
check labels) or an output file (read and
check old labels and write new labels).

The standard labels include one volume
label for each pack or cell and one or more
~labels for each logical file on the
DASD. The following paragraphs describe
briefly the organization of labels on disk
packs or data cells. Additional informa­
tion about labels is given in the Data
Management Concepts publication, as listed
in the abstract of this publication.

Volume Labels

The standard volume label identifies the
entire volume and offers volume protection.
For systems residence, the volume label is
always the third record on cylinder 0,
track O. The first two records on this
track of SYSRES are Initial Program Loading
(IPL) records. On all other volumes, these
records contain binary zeros. The volume­
label record consists of a count area, a
4-byte key area, and an aO-byte data area.
Both the key area and the first four bytes
of the data area contain the label identi­
fier VOLle The remaining 76 bytes of the
data area contain other identifying infor­
mation such as the volume serial number,
and the address of the set of file labels
for the pack or cell (see Standard File
Labels). The volume label is generally
written once, when the DASD is received,
by an IBM-supplied utility program.

The standard volume label may be fol­
lowed by one to seven additional vol~e
labels (starting with record 4 on cyl~nder
0, track 0). These labels must c~ntain the
label identifier VOL2, VOL3, etc ~n the
four-byte key areas and in the first four
bytes of the data areas. T~e other. 76
bytes may contain whatever ~nformat~on the
user requires. The additional vo~~e
labels are also written by the ut~l~ty
program that writes the standard volume
label. However, IOCS does not make them

166 DOS Sup. and I/O Macros

available to the user for checking or
rewriting when problem programs are
executed. These labels are provided for
use with Operating System/360 and are
always bypassed by the Disk Operating
System OPEN routines.

STANDARD FILE LABELS

The standard file labels identify the logi­
cal file, give its location(s) on the disk
pack or data cell, and offer file protec­
tion. The labels for all logical files on
a volume are grouped together and stored
in a specific area of DASD called the
Volume Table of Contents.

The number and format of labels required
for anyone logical file depends on the
file organization (see Standard File Label
Formats) and the number of separate areas
(extents) of the pack or cell used by the
file. The data records for a logical file
may be contained within one area of the
pack or cell, or they may be scattered in
different areas of it. The limits (start­
ing and ending addresses) of each area
used by the file are specified by the
standard file label(s).

Because each file label contains file
limits, the group of labels on the volume
is essentially a directory of all files on
the volume. Therefore, it is known as the
Volume Table of Contents (VTOC). The VTOC
itself becomes a file of records (one or
more standard-label records per logical
file) and, in turn, has a label. The
label of the VTOC is the first record in
the VTOC. This label identifies the file
as the VTOC file, and gives the file
limits of the VTOC file. The Volume Table
of Contents is contained within one cyl­
inder of a disk pack or data cell. It
does not overflow onto another cylinder.

If a logical file of data records is
recorded on more than one volume, standard
labels for the file must be included in
the VTOC of each volume used. The label(s)
on each volume identifies the portion of
the logical file on the pack or cell and
specifies the extent(s) used on it.

STANDARD FILE LABEL FORMATS

All standard file label records have a
count area and a l40-byte key/data area.
Five standard-label formats are provided.

Format 1. This format is used for all
logical files, and it has a 44-byte key
area and a 96-byte data area. It is always
the first of the series of labels when a
file requires more than one label on a disk
pack or cell (as discussed in Formats 2 and
3) •

The Format-l label identifies the logi­
cal file (by a file name assigned by the
user and included in the 44-byte key area) ,
and it contains file- 'and data-record speci­
fications. It also provides the addresses
for three separate DASD areas (extents) for
the file. If the file is scattered over
more than three separate areas on one pack
or cell, a Format-3 label is also required.
In this case, the Format-l label points to
the second label set up for the file on
this volume.

If a logical file is recorded on more
than one volume, a Format-l label is always
created in the VTOC for each volume.

Format 2. This format is required for
any file that is organized by the Indexed
Sequential File Management System. The
44-byte key area and the 96-byte data area
contain specifications unique to this type
of file organization.

If an indexed sequential file is recorded
on two or more volumes, the Format-2 label
is used only on the volume containing the
cylinder index. This volume may, or may
not, contain data records. The Format-2
label is not repeated on the additional
packs (as~e Format-l label is).

Format 3. If a logical file uses more
than three extents on any pack or cell,
this format is used to specify the address­
es of the additional extents. It is used
only for extent information. It has a 44-
byte key area and a 96-byte data area that
provide for 13 extents.

The Format-3 label is pointed to by the
Form~t-l label for the logical file. In a
DTFSD file, it may also be pointed to
another Format-3 label. It is included as
required on the first pack or cell, or on
additional volumes if the logical file is
recorded on two or more volumes.

Format 4. The Format-4 label is used to
define the VTOC itself. This is always the
first label in the VTOC. This label is also
used to provide the location and number of
available tracks in the alternate track
area.

Format 5. The Format-S label is used by
the Operating System/360 for Direct Access
Device Space Management.

USER-STANDARD DASD FILE LABELS

The user may include additional labels to
define his file further, if he desires,
provided the file is processed sequentially
(DTFSR or DTFSD macro specified), by the
direct access method (DTFDA macro speci­
fied), or by physical IOCS (DTFPH macro
specified). User standard file labels are
riot processed in a file organized and proc­
essed by the Indexed Sequential File Man­
agement System (DTFIS specified). A file
that is to be processed in sequential order
(using DTFSR or DTFSD) may have up to eight
user header labels and up to eight user
trailer labels for a 2311 file, and up to
five user header labels and up to five user
trailer labels for a 2321 file. The trailer
labels can be written to indicate an end­
of-volume or end-of-file condition. That
is, when the end of an extent on one volume
is reached and the next extent is on a dif­
ferent volume, or when the end of the file
is reached, user trailer labels can be in­
cluded to contain whatever trailer informa­
tion the user desires (for example, a rec­
ord count for the completed volume) .

User-standard labels are not stored in
the Volume Table of Contents-.--Instead, they
are written on the first track of the first
extent allotted for the logical-file d~
records. In this case, the user's data rec­
ords start with the second track in the
extent, regardless of whether the labels
require a full track. If a file is written
on two or more packs or cells, the addi­
tional labels are written on each of the
packs or cells.

All user-standard labels must be eighty
bytes long, and they must contain standard
information in the first four bytes. The
remaining 76 bytes may contain whatever in­
formation the user wants.

The standard information in the first
four bytes is used as a record key when
reading or writing header labels. The
header labels are identified by UHLl,
UHL2, ... ,UHLS. The trailer labels, when
applicable, are identified in the key field
by UTLO, UTLl, .•. ,UTL7 (or UTL4) although
the first four bytes of the labels will
contain UTLl-UTLS (or UTLS). Each user­
label set (header or trailer) is terminated
by an end-of-file record (a record with
data length 0), which is written by IOCS.

Appendix A 167

For example, if a file has five header
iabels and four trailer labels, the con­
tents of the user-label track are:

RO Standard information
Rl UHLl--user's 1st header label
R2 UHL2--user's 2nd header label
R3 UHL3--user's 3rd header label
R4 UHL4--user's 4th header label
R5 UHL5--user's 5th header label
R6 UHL6--end-of-file record
R7 UTLl--user's 1st trailer label
R8 UTL2--user's 2nd trailer label
R9 UTL3--user's 3rd trailer label
RIO UTL4--user's 4th trailer
Rll UTL5--end-of-file record

If only header labels are used, the user­
label track contains:

RO Standard information
Rl UHLl--user's 1st header label
R2 UHL2--user's 2nd header label

R(n) UHL(n)--user's nth header label where
n is ~ 8

R(n+l) UHL(n+l)--end-of-file record
R(n+2) UTLO--end-of-file record

The user's label routine can determine
if a label is a header or trailer label by
testing the first four bytes of the label
(see OPEN Macro).

STANDARD TAPE LABELS

When a tape input or output file that has
standard labels is opened, IOCS can handle
the label checking (on input) or writing
(on output). When logical IOCS macros are
used in the program, the entry FILABL=STD
must be included to specify IOCS processing
of labels. When physical IOCS macros' are
used, the DTFPH entry TYPEFLE mus·t be in­
cluded to indicate whether this is .an
input file (check labels) or an output
file (write labels).

The standard labels for a tape file are:
a volume label, a file header label, and a
file trailer label. The volume label, which
is the first record (eighty characters) on a
reel of tape, identifies the entire volume
(reel) and offers volume protection. It
contains the label identifier VOLI in the
first four positions, and other identifying
information such as the volume serial number.
This is a unique number generally assigned
to the reel when it is first received in the
installation. The volume label is generally
written once, when the reel of tape is re­
ceived, by an IBM-supplied utility program.
The standard volume label may be followed
by a maximum of seven additional volume
labels if desired. These must be identified

168 DOS Sup. and I/O Macros

by VOL2, VOL3, etc in the first four posi­
tions of each succeeding label. However,
IOCS does not permit the checking or writing
of additional volume labels by the user in
the problem program. These labels are
available for use with the Operating
System/360 and are always bypassed on the
input for the Disk Operating System.

The volume label set is followed by a
standard file header label. This label
(eighty characters) identifies the logical
file record on the tape and offers file
protection. It contains the label iden­
tifier HDRI in the first four positions,
and other identifying information such as
file identifier, file serial number, crea­
tion date, etc. An input tape may contain
standard header labels HDRl-HDRB. IOCS
checks label HDRI and bypasses HDR2-HDR8
(these labels are provided for use with the
Operating System/360).

The standard file header labels may be
followed by a maximum of eight user-written
standard labels if desired. If so, the
file header labels must be identified by
UHLl, UHL2, etc. Labels UHLl-UHLB may be
processed if the DTF entry LABADDR is speci­
fied. A tape mark follows the last file
header label.

A standard file trailer ·label is located
at the end of a logical file (EOF) , or at
the end of a volume (EOV) if the logical
file continues on anothe~ volume. The
trailer label has the same format as the
header label. It is identified by EOFI or
EOVl (instead of HDRl) and contains a physi­
cal record count (block count). Like the
file header label, the standard file
trailer label may be followed by user
standard trailer labels. These must be
id~ritified by UTLl, UTL2, etc.

All user-written standard labels must be
eighty characters long and must contain the
standard identification in the first four
positions. The remaining 76 positions may
contain whatever information the user wants.
Additional information about tape labels is
given in the Data Management Concepts pub­
lication, as listed in the abstract of this
manual.

If an input tape contains standard labels
but the user does not want IOCS to check
them, FILABL=NSTD should be specified in
the file definition. LABADDR must not be
specified in the DTF. A tapemark must
immediately follow the label set.

Note: On 7-track tape, standard labels
are written on the same density as the data
on the tape. All information on a tape
reel must be written in single density.
These standard labels are written with
even parity in the translation mode.

NONSTANDARD TAPE LABELS

Any tape labels that do not conform to the
standard-label specifications are con­
sidered nonstandard and, if desired, must
be read, checked, or written by the user.
On input the nonstandard labels may, or
may not, be followed by a tapemark. This
choice, combined with the user's require­
ments to check the labels, or not, result
in the following four possible conditions
that can be encountered:

1. One or more labels, followed by a tape­
mark, are to be checked.

2. One or more labels, not followed by a
tapemark, are to be checked.

3. One or more labels, followed by a tape­
mark, are not to be checked.

4. One or more labels, not followed by a
tapemark, are not to be checked.

For conditions 1 and 2, the DTFSR or
DTFMT entries FILABL=NSTD and LABADDR=Name
must be specified in the file definition.
For condition 3, the entry FILABL=NSTD must
be specified. LABADDR is omitted and Ioes
skips all labels, passes the tapemark, and

positions the tape at the first data record
to be read. For condition 4, the entries
FILABL=NSTD and LABADDR=Name must be speci­
fied. in this case IOeS cannot distinguish
labels from data records because there is
no tapemark to indicate the end of the
labels. Therefore, the user must read all
labels even though checking is not desired.
This positions the tape at the first data
record.

For output files created by logical
IOeS, a tapemark may follow the last non­
standard label.

UNLABELED TAPE FILES

On input, unlabeled tapes (FILABL=NO) may
or may not contain a tapemark as the first
record. If the tapemark is present, the
next record is considered to be the first
data record. If there is no tapemark, IOeS
reads the first record, determines that it
is not a tapemark, and backspaces to the
beginning of the first record that it con­
siders to be the first data record. For
unlabeled output files (FILABL=NO) created
by logical IOeS, the first record may be a
tapemark. .

Appendix A 169

APPENDIX B: CONTROL CHARACTER CODES

CTLCHR=ASA

A control character must appear in each
logical record if the ASA option is chosen.
If the control character for the printer is
not valid, a message is given and the job
is canceled. If the control character for
the card punch is not V or W, the card is
selected into pocket 1. The codes are as
follows:

Code

(blank)
o

+
1
2
3
4
5
6
7
8
9
A

B

C

V
W

CTLCHR=YES

Interpretation

Space one line before printing
Space two lines before printing
Space three lines before printing
Suppress space before printing
Skip to channel 1 before printing
Skip to channel 2 before printing
Skip to channel 3 before printing
Skip to channel 4 before printing
Skip to channel 5 before printing
Skip to channel 6 before printing
Skip to channel 7 befor~ printing
Skip to channel 8 before printing
Skip to channel 9 before printing
Skip to channel 10 before
printing

Skip to channel 11 before
printing

Skip to channel 12 before
printing

Select stacker 1
Select stacker 2

The control character is the command-code
portion of the System/360 Channel Command
Word used in printing a line or spacing the
forms. If the character is not one of the
following characters, unpredictable events
will occur.

8-Bit
Code

Punch
Combination

Stacker Selection on 1442

Function

a-Bit
Code

Punch
Combination Function

Stacker Selection on 2520

00000001 12,9,1

01000001 12,0,9,1

Printer Control

00000001 12,9,1

00001001 12,9,8,1

00010001 11,9,1

00011001 11,9,8,1

10001001 12,0,9

10010001 12,11,1

10011001 12,11,9

10100001 11,0,1

10101001 11,0,9

10110001 12,11,0,1

10111001 12,11,0,9

Select into stacker 1

Select into stacker 2

Write (no automatic
space)

write and space 1
line after printing

write and space 2
lines after printing

write and space 3
lines after printing

write and skip to
channel 1 after
printing

Write and skip to
channel 2 after
printing

Write and skip to
channel 3 after
printing

Write and skip to
channel 4 after
printing

Write and skip to
channel 5 after
printing

Write and skip to
channel 6 after
printing

Write and skip to
channel 7 after
printing

10000001 12,0,1 Select into stacker 1 11000001 12,1 Write and skip to
channel a after

11000001 12,1 Select into stacker 2 printing

Pocket Selection on 2540 11001001 12,9 Write and skip to
cha,nnel 9 after

00000001 12,9,1 Select into pocket 1 printing

01000001 12,0,9,1 Select into pocket 2 11010001 11,1 Write and skip to
channel 10 after

10000001 12,0,1 Select into pocket 3 printing

170 DOS Sup. and I/O Macros

8-Bit Punch 8-Bit Punch
Code Combination Function Code Combination Function

11011001 11,9 Write and skip to 10101011 11,0,8,3 Skip to channel
channel 11 after 5 immediately
printing

10110011 12,11,0,3 Skip to channel
11100001 11,0,9,1 Write and skip to 6 immediately

channel 12 after
printing 10111011 12,11,0,8,3 Skip to channel

7 immediately
00001011 12,9,8,3 Space 1 line

immediately 11000011 12,3 Skip to channel
8 immediately

00010011 11,9,3 Space 2 lines
immediately 11001011 12,0,9,8,3 Skip to channel

9 immediately
00011011 11,9,8,3 Space 3 lines

immediately 11010011 11,3 Skip to channel
10 immediately

10001011 12,0,8,3 Skip to channel
1 immediately 11011011 12,11,9,8,3 Skip to channel

11 immediately
10010011 12,11,3 Skip to channel

2 immediately 11100011 0,3 Skip to channel
12 immediately

10011011 12,11,8,3 Skip to channel
3 immediately 00000011 12,9,3 No op

10100011 11,0,3 Skip to channel
4 immediately

Appendix B 171

APPENDIX C: ASSEMBLING THE PROBLEM PROGRAM, DTF'S, AND LOGIC MODULES

All the programs described in this appendix
perform the same function, namely, a card­
to-disk operation with the following equip­
ment and options:

1. Card reader: 2540 (SYS004).

2. Disk: 2311 with user labels.

3. Record size: 80 bytes.

4. Block size: 408 bytes including 8-byte
count field (blocking factor of 5).

5. One I/O area and work area for the card
reader.

6. Two I/O areas for the disk.

The following five methods may be used
to furnish the DTF's and IOCS logic modules
to the card-to-disk program.

1. DTF's, IOCS logic modules, and prob­
lem program assembled together.

2. Logic modules assembled separately.

3. DTF's and logic modules assembled sep­
arately, label exit, EOF exit, and I/O
areas assembled with DTF's.

172 DOS Sup. and I/O Macros

4. Same as in item 3 except that I/O areas
are moved back into main program.

5. Same as in item 4 except that label
exit and EOF exit are also moved back
into main program.

An example of each of the five preceding
methods of assembling the main program,
modules, DTF's, and related functions is
given in this appendix. In the illustra­
tions that accompany the examples, each
dashed arrow represents a symbolic linkage,
with an external reference at the base of
the arrow, and a label or section definitio
designating the same symbol at the head of
the arrow.

At the points where an arrow is marked
with a circle, it will be the programmer's
responsibility to define an ENTRY or EXTRN
symbol, as applicable.

Each dotted arrow represents a direct
linkage. Components are represented by the
small rectangles. Assemblies are repre­
sented by the larger bordered areas.

The examples are followed by a compari­
son of the advantages of the five methods.

ASSEMBLING THE PROBLEM PROGRAM, DTF'S, AND LOGIC MODULES TOGETHER (EXAMPLE 1)

Figure 45 illustrates the assembly of the DTF's, logic modules, and problem program.

(1)

The assembly source deck is as follows:

CDTODISK

NEXT

SAVEAREA

EOFCD

MYLABELS

CARDS

DISK

Al
A2
A3

START
BALR
USING
LA
OPEN
GET
PUT
B
DS

CLOSE
EOJ

LBRET

DTFCD

DTFSD

DS
DS
DS

CDMOD

SDMODFO

END

o
12,0
*,12
13, SAVEAREA
CARDS,DISK
CARDS, (2)
DISK
NEXT
9D

CARDS,DISK

2

DEVADDR=SYSOO4,
EOFADDR=EOFCD,
IOAREAl=Al ,
WORKA=YES

BLKSIZE=408,
IOAREAl=A2,
IOAREA2=A3,
IOREG=(2) ,
LABADDR=MYLABELS,
RECFORM=FIXBLK,
RECSIZE=80,
TYPEFLE=OUTPUT

80C
408C
408C

DEVICE=2540,
TYPEFLE=INPUT,
WORKA=YES

CDTODISK

Col. 72

X
X
X
X

X
X
X
X
X
X
X
X

X
X
X

Initialize base register.
Establish addressability.
Use reg 13 as pointer to save area.
Open both files.
Read one card and move it
to the disk output buffer.
Return for next card.
Save area is 72-byte, double-word
aligned.

At card-reader EOF, close
both files and exit to Job
Control.

User's label-processing
routine.
Return to main program.

Card-input buffer
First disk buffer
Second disk buffer

Program-start address

Appendix C 173

Problem Program
• • •

DTF's

OPEN CARDS, DiSK··········· ••••••••••••••••••••••••••••••••••••• ~ DISK

GET CA~DS,(2) : •••••••• ·.CARDS
• • • • •

. ~------------------~

CARDS DTFCD

• DEVADDR=SYS004
: ••• EOFADDR~OFCD : L·············· IOAREA1=Al : : WORKA=YES · .
~ ~-_I _-----J

~ ~ I · .
~ : I
~ : I
: I
~ AI (Buffer Area) I ; I
: IIIIIIIIIIIIIIIIIIIIIIIIII~· . i .. : I
: I

r-i I
EO;CD (End-of-File Processing) I

: I
I

r---------.J
I

f
CDMOD

(Logic for a Card File)

• • • • • •

DISK DTFSD

BLKSIZE=408
IOAREA1=A2 ••••••••••••••

• ••••••• IOAREA2=A3 I:
: IOREG= (2) :
• LABADDR=MYLABELS·· ••• :
• RECFORM=flXBLK :
• RECSIZE=80 : :
: TYPEFLE=OUTPUT • :
: . .

~~-. .
I • : · . . : . : .

; MYlABElS I: i
{User's Routine) ... •• •••••• :

.: I: · : · .
A2 (Buffer Area) I ~
11111111111111111111111111 r :
A3 (Buffer Area)

: ,11111111111111111111111111

I

SDMODFO

(Logic for a Tape File)

• • • • • •

Figure 45. Assembling the Problem Program, DTF's and Modules Together (Example 1)

174 DOS Sup. and I/O Macros

Assembling the Logic Modules Separately
(Example 2) rCDMOD

I

Col. 72
X
X

The main-program source deck is identical
to that in Example 1 until (1) i at this
point, the user simply furnishes ~he END
card. Figure 46 shows the separation of
the I/O logic modules.

Card logicJ
module I

DEVICE=2540,
SEPASMB=YES,
TYPEFLE=INPUT,
WORKA=YES

X
X

The two logic modules are assembled as
follows:

Problem Program
• • •

I

!...-END

X I-SDMODFO
Disk logi~1 SEPASMB=YES
module I

I-END

OTF's

OPEN CARDS, DISK ••• ~ DISK

GET CA~oS,(2) : •••••••• ·~CARoS · . . ,....---------------·
• • •

CARDS oTFCo

• oEVAooR=SYSOO4
• •• • EOFAooR=£OFCo : L·············· IOAREAl=Al : : WORKA=YES · .
: : I · .
: ~ I

I
.

A 1 (Buffer Area) :

1111111111111111111111111 t · · f·· :
~.---------------,

EOFCo (End-of-File Proc:essi~)
• • • • •

I
I
I
I
I
I
I
I
I
I

r---------.J
I

• CoMOo (Separately Assembled)

(Logic for a Card File)
• • • • • •

DISK DTFSD

I

BLKSIZE=408
IOAREAl =A2 ••••••••••••••

• •••••• ·IOAREA2=A3 I :
: IOREG= (2) :
: LABAoDR=MYLABELS· • • •• :
: RECFORM=FIXBLK ::
: RECSIZE=60 • •

TYPEFLE=OUTPUT

·
·

A2 (Buffer Area) I ~
1IIIIIIIIIIIIIIIIIIIIIIIIIr • . .. :
A3 (Buff.r Area)

: · · i·· · -111111111111111111111111111

SDMOoFO (Separately Assembled)

(Logic for a Tape File)
• • • • • •

Figure 46. Logic Modules Assembled Separately (Example 2)

Appendix C 175

After assembly, each logic module is
preceded by the appropriate CATALR card;
the modules may be added to the system
relocatable library during a maintenance
run. Thereafter, they are automatically
included in the user program by the link­
age editor while it prepares the preceding
main program for execution.

ASSEMBLING THE DTF'S AND LOGIC MODULES
SEPARATELY (EXAMPLE 3)

The main program is assembled as follows:

CDTODISK

NEXT

SAVEAREA

(2)

START
BALR
USING
LA
OPEN
GET
PUT
B
DS

EXTRN
END

o
12,0
*,12
13 , SA VEAREA
CARDS,DISK
CARDS, (2)
DISK
NEXT
90

CAROS,DISK
COTODISK

The logic modules are assembled as in
Example 2. Figure 47 shows the separation
of the DTF's and logic modules.

The card-file macro instruction and
related functions are assembled as follows:

CARDS

EOFCD

(3) Al

OTFCD

USING

CLOSE
EOJ

EXTRN

DS
END

Col. 72

X
DEVADDR::::::;SYS004, X
SEPASMB=YES, X
EOF ADDR=E;OFCD, X
IOAREA1=Al, X
WORKA=YES
*,14

CARDS,DISK

DISK

80C

176 DOS Sup. and I/O Macros

The disk-file macro instruction and
related functions are assembled as follows:

Col. 72

DISK DTFSD X
BLKSIZE=408, X
SEPASMB=YES, X

TYPEFLE=OUTPUT
MYLABELS BALR 10,0

USING *,10

LBRET 2

(4) A2 DS 408C
(5) A3 DS 408C

END

In both the card-file and the disk-file
assembly above, a USING statement was
added because certain user routines are
segregated from the main program and moved
into the DTF assembly.

When user routines, such as error,
label processing, or EOF routines, are
segregated from the main program, it is
necessary to establish addressability for
these routines. The user can provide this
addressability by assigning and initializ­
ing a base register. In the special case
of the EOF routine, the addressability is
established by logical IOCS in register 14.
For error exits and label processing rou­
tines, however, this addressability is not
supplied by logical IOCS. Therefore, if
the user segregates his error routines, it
will be his responsibility to establish
addressability for them.

To illustrate how the coding of Example
3, shown above, would look when assembled,
Figure 48 contains'the printer output.

Notice that in Figure 48 the standard
name for the logic modules has been gener­
ated: statement 13 of the DTFCO-­
V(IJCFZIWO), and statement 12 of the
DTFSD--V(IJGFOZZZ). These module names
appear in the External Symbol Dictionary
of each of the respective logic module
assemblies.

Problem Program
• • •

DTF's (AsS4! mbled Separately)

OPEN CARDS,DISK-O·~------------·~DISK

GET CARDS,(2) r-- -.CARDS
: L-O_-J ~--------------------~
: CARDS DTFCD DISK DTFSD
•
• DEVADDR=SYS004
•• EOFADDR=EOFCD

L IOAREAl =A 1
: WORKA=YES
: SEPASMB=YES
~. I

: I
. . I
: I

---: I
A J (Buffer Area) I ~ I

11111111111111111111111111" . . f .. : I

--,--------------~

I
I
I

EOFCD (End-of-File Processing)
• • • • • I

I
r---~----_..J
I

• CDMOD (Separately Assembied)

(logic for a Card File)

• • • • • •

I

BLKSIZE=408
IOAREAl=A2 ••••••••••••••

•••••••• IOAREA2=A3 I
• IOREG= (2)

lABADDR=MYLABElS ••• : •
RECFORM=fIXBLK •
RECSIZE=8O :
TYPEFlE=OUTPUT :.
SEPASMB=YES :

. .

MYLABElS I ~
(u;-r's Routine)~···· i···

• A3 (Buffer Area)

: -111111111111111111111111111

I

SDMODFO (Separately Assembled)

(logic for a Tape File)

• • • • • •

Figure 47. Logic Modules and DTF's Assembled Separately (Example 3)

Appendix C 177

r---
MAIN PROGRAM

EXTERNAL SYMBOL DICTIONARY PAGE
SyMBOL TYPE 10 AOOR LENGTH LO 10

COTOOISK SO 01 000000 00009.0 Section definition. Control section defined by START statement.
CARDS ER 02 External reference.

} Defined by EXTRN statement. DISK ER 03 External reference.

~--

EXAMPLE 3 PAGE

LOC OBJECT CODE AODR1 AOOR2 snn SOURCE STATEMENT D0200CT66 10/26/66

000000 1 CDTOOISK START 0
000000 05CO 2 BALR 12,0 INITIALIZE BASE REGISTER
000002 3 USING :0:,12 ESTABLISH AOORESSABILITY
000002 4100 C036 00038 4 LA 13,SAVEAREA USE REGISTER 13 AS POINTER TO SAVE

5 OPEN CARDS,OISK OPEN BOTH FILES
6+* SYSTEM CONTROL AND BASIC IOCS 360N-CL-453 CHANGE LEVE~ 2-0

000006 0700 7+ CNOP 0,4
000008 8+ DC OF'O'
000008 4110 C07E 00080 9+ LA It=C'$$80PEN •
OOOOOC 4500 C016 00018 10+IJJOOOOl BAL 0,*+4+4*13-1)
OgOO10 00000000 11+ DC A(CARDS)
000014 00000000 12+ DC A(DISK)
000018 OA02 13+ SVC 2

14 NEXT GET CAROS,(2) READ ONE CARD, MOVE TO WORK AREA
15+* CHANGE LEVEL 2-0

OOOOlA 5810 C086 00088 16+NEXT L 1,=AICAROS) GET OTF TABLE ADDRESS
00001E 1802 17+ LR 0,2 GET WORK AREA ADDRESS
000020 58fl 0010 00010 18+ L 15,16(1) GET LOGIC MODULE ADDRESS
000024 45EF 0008 00008 19+ 8AL 14,8(15) BRANCH TO GET ROUTINE

20 PUT DISK WR ITE ON 01 SK
21+* CHANGE LEVEL 2-0

000028 5810 C08A 0008C 22+ L 1,=AIDISK) GET OTF TABLE ADDRESS
00002C 58Ft 0010 00010 23+ L 15,16(1) GET LOGIC MOCULE ADDRESS
000030 45EF OOOC OOOOC 24+ BAL 14,12(15) BRANCH TO PUT ROUTINE
000034 47FO C018 0001 A 25 B NEXT GO FOR NEXT CARD
000038 26 SAVE AREA OS 90 72-BYTE SAVE AREA

27 EXTRN CARDS,OISK
000000 28 END CDTODISK
000080 5858C20607C50540 29 =C'$SBOPEN •
000088 00000000 30 =A(CAROS)
00008C 00000000 31 =A(OISK)

[--~
Figure 48. Separate Assemblies, (Example 3) (Part 1 of 4)

178 DOS Sup. and I/O Macros

DTFCD ASSEMBLY

SyMBOL TYPE 10 ADDR

CAROSC SO 01 000000
CARDS LD 000000
IJCFZIWO ER 02
DISK ER 03

LENGTH LD 10

OOOOAO
01

EXTERNAL SYMBOL DICTIONARY PAGE

Section definition. } G d b 'fy0 SEPASMB YES 0 DTfCD • •
Label d fi 't' I nt 'nt) enerate y SpeCI IIlg = III macro Instruction. e 1m Ion ,e ry pol •
External reference. Corresponds to V- type address constant generated in DTfCD.
External reference. Defined by EXTRN statement.

EXAMPLE 3 PAGE

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT DD200CT66 10/26/66

000000

000000
000000 000080000000
000006 01
000007 04
000008 00000020
OOOOOC 00000000
000010 00
000011 000000
000014 02
000015 01
000016 02
000017 02
000018 00000048
OOOOIC 00000034
000020 0200004820000050
000028 4100 0000
00002e D24F 0000 EOOO 00000
000032
000032

000032 0100
000034
000034 4110 E066
000038 4500 EOl2
00003C 00000000
000040 00000000
000044 OA02

000046 OAoE

000048

000098 5&58C2C30306E2C5

00000
00000

00098
00044

CARDS

2+* SYSTEM
3+
4+CARDSC
5+
6+
7+CARDS
8+
9+

10+
11+
12+
13+
14+
15+
16+
11+
18+
19+
20+IJCXOOOI
21+
22+
23+IJJZOOOI
24
25 EOFCD
26+* CHANGE
21+
28+EOFCO
29+
30+IJJC0002
31+
32+
33+
34
35+* CHANGE
36+
31
38 AI
39
40

DTFCD OEVAODR=SYS004,
SEPASMB=YES,
EOFAODR=EOFCD,
IOAREA1-Al,
WORKA=YES

CONTROL AND BASIC lacs 360N-CL-453 CHANGE LEVEL 2-0
PUNCH ' CA TALR CARDS I
CSECT
ENTRY CARDS
DC 00'0'
DC X '000080000000 , RES. COUNT,COM. BYTES, STATUS BTS
DC ALlll) LOGICAL UNIT CLASS
DC AL1(4) LOGICAL UNIT
DC AIIJCX0001) CCW ADDRESS
DC 4X'00' CCB-ST BYTE,CSW CCW ADOR.
DC AllIO)
DC VL3IIJCFZIWO, ADDRESS OF LOGIC MODULE
DC X'02' DTF TYPE IREADER'
DC ALlll) SWITCHES
DC ALl(2) NOR HAL COHM.COOE
DC AL1(2) CNTROL COHM.COOE
DC AIAlI ADD.R. OF IOAREAl
DC AIEOFCD) EOF ADDRESS
CCW 2,Al,X'20',80
NOP 0 LOAD USER POINTER REG.
MVC 0180,13),0114) MOVE IOAREA TO WORKA
EOU *
USING .,14 ESTABLISH AODRESSABILITY
CLOSE CARDS,DISK END OF FILE ADDRESS FOR CARD READER
LEVEL 2-0
CNOP 0,4
DC OF'OI
LA 1,=C'S$8CLOSE'
BAL 0,*+4+4*13-1'
DC AI CAR·OS ,
DC AtDI SK'
SVC 2
EOJ
LEYEL 2-0
SYC 14
EXTRN DISK
OS 80C CARD I/O AREA
END

=C'$$8CLOSEI

x
x
x
x

[------------------------------~-----------------------------______________ J
Figure 48. Separate Assemblies, (Example 3) (Part 2 of 4)

Appendix C 179

~--~---

DTFSD ASSEMBLY

SYMBOL TYPE 10 ADDR LENGTH LD 10

DISKC SO
DISK LO
IJGFOlZZ ER

01 000000 000304
000000

02
01

EXTERNAL SYMBOL DICTIONARY PAGE

Section definition. }G db 0fy0 SEPASMB YES ° DTFSD ° °
I -bel d fi °to It· t) enerate y SpeCI IIlg = III macro Instruction. e IIlI Ion \en ry polll •
External reference. Corresponds to V- type address constant generated in DTFSD.

- -

~--

EXAMPLE 3 PAGE

LOC OBJECT CODE ADDRI ADOR2 STHT SOURCE STATEMENT DD200CT66 10/26/66

DISK OTFSD BlKSIZE=408, X
SEPASMB=YES, X
IOAREAl=A2, X
IOAREA2=A3, X
IDREG-(2) , X
LABADDR=MYLABELS, X
RECFORM=FIXBLK, X
RECSIZE=80, X
TYPEFLE"'O~TPUT

Z+# CONSECUTIVE DISK PROCESSING IOCS 360N-10-4SS CHANGE LEVEL 2-0
3+ PUNCH • CA TALR OI SK'

000000 4+0ISKC CSECT
5+ ENTRY DISK

000000 6+ DC 00'0'
000000 000080000000 7+DISK DC X '000080000000 , CCB
000006 FF 8+ DC All (2551 LOGICAL UNIT CLASS
000007 ff 9+ DC ALl(2551 LOGICAL UNIT NUMBER
000008 00000068 10+ DC A(IJGCOOOll CCB-CCW ADDRESS
OOOOOC 00000000 11+ DC 4X'00' CCB-ST BYTE,CSW CCW ADDRESS
000010 00 12+ DC All(OI
000011 000000 13+ DC VL3IIJGFOZZZ) LOGIC MODULE ADDRESS
000014 20 14+ OC X'ZO' DTF TYPE
000015 49 15+ DC ALl(73) OPEN/CLOSE INDICATORS
000016 C4C9E2D240404040 16+ DC CL8'DISK' FILENAME
OOOOlE 000000000000 17+ DC 6X'00' BCCHHR ADDR OF Fl LABEL IN VTOC
000024 0000 18+ DC 2X'00' VOL SEQ NUMBER
000026 08 19+ DC X'OB' OPEN COMMUNICATIONS BYTE
000027 00 20+ DC X'OO' XTENT SEQ NO OF CURRENT EXTENT
000028 00 21+ DC X'~O' XTENT SEQ NO LAST XTENT OPENED
000029 OOOOAO 22+ DC AL31MYLABELSI USER'S LABEL ADDRESS
00002C 000000A4 23+ DC A(A21 ADDRESS OF IOAREA
000030 80000000 24+ DC X'80000000' CCHH ADOR OF USER LABel TRACK
000034 0000 25+ DC 2X'00' LONER HEAD LIMIT
000036 00000000 26+ DC 4X'00' XTENT UPPER LIMIT
00003A 0000 27+DISKS DC 2X'00' SEEK ADDRESS-BB
00003C OOOOFfOO 28+ DC X'OOOOfFOO' SEARCH ADDRESS-CCHH
000040 00 29+ DC X'OO' RECORD NUMBER
000041 00 30+ DC X'OO' KEY LENGTH
000042 0190 31+ DC H'400' DATA LENGTH
000044 00000000 32+ DC 4X'00' CCHH CONTROL FIELD
000048 06 33+ DC ALl(6) R CONTROL FIELD
000049 00 34+ DC X'OO' SWITCHES
00004A 018f 35+ DC H'399' SIZE Of BLOCK-l
00004e 0000000000 36+ DC 5X'00' CCHHR BUCKET
000051 00 37+ DC X'OO'
000052 OE29 38+ DC H'3625' TRACK CAPACITY CONSTANT
000054 5821 0058 00058 39+ L Z,88(1) LOAD USER'S IOREG
000058 OOOOOOlC 40+ DC ACA2+B) DEBLOCKER-INITIAL POINTER
00005e 00000050 41+ DC F'80' DEBLOCKER-RECORD SIZE
000060 0000023B 42+ DC ACA2+8+400-1) DE8LOCKER-LIMIT
000064 OA 43+ DC AL1CIO) LOGICAL INDICATORS
000065 000000 44+ DC AL3CO) USER'S ERROR ROUTINE
000068 0700003A40000006 45+IJGCOOOl CCN 7,*-46.64,6 SEEK
000070 3100003C40000005 46+ CCW X'31',*-52,64,5 SEARCH 10 EQUAL
000078 0800007000000000 47+ CCW 8,,,*-8,0,0 TIC

[--__________________________________ 1
Figure 48. Separate Assemblies, (Example 3) (Part 3 of 4)

180 DOS Sup. and I/O Macros

~------------------------------.--

DTFSD (Continued)

EXAMPLE 3

LOC OBJECT CODE ADOR1 AOOR2 STMT SOURCE STATEMENT

000080 IDQ0023COOOOO198
000088 3100003C40000005
000090 0800008800000000
000098 lEOOO09830000001
OOOOAO
OOOOAO 05AO
0000A2

48+
49+
50+
51+
52+IJJZOO01
53 MYLABELS
54

ccw
CCW
CCW
CCW
EgU
BALR
USING

X'10',A3,0,400+8 WRITE COUNT KEY AND DATA
X'31',OISKS+2,64,5 SEARCH 10 EQUAL
8,*-8,0,0 TIC
30,*,48,1 VERIFY

* 10,0
*,10

INITIALIZE BASE REGISTER
ESTABLISH ADORESSABILITY

PAGE 2

00200CT66 10/26/66

55 * USER'S LABEL PROCESSING ROUTINE
56 *
57
58+*

00OOA2 OA09 59+
000OA4 60 A2
00023C 61 A3

62

CHANGE
LBRET
LEVEL
SVC
OS
OS
EN!)

2 RETURN TO IOCS
2-0
9 BRANCH BACK TO IDeS
408C FIRST DISK liD AREA
408C SECOND DISK liD AREA

-

CDMOD ASSEMBLY
EXTERNAL SYMBOL DICTIONARY

SYMBOL TYPE 10 ADDR LENGTH LD 10

IJCFZIWO SO 01 000000 000060 Section definition. CSECT name generated by CDMOD macro instruction.

lOC OBJECT CODE ADDRI ADDR2 STMT

2
3

73

EXAMPLE 3

SOURCE STATEMENT

PRINT NOGEN
CDMOD

END

DEVICE-251t0,
SEPASMB-YES,
TYPEFlE-INPUT,
WORKA-YES

X
X
X
X

. SDMODFO ASSEMBLY

EXTERNAL SYMBOL DICTIONARY
SYMBOL TYPE 10 AODR LENGTH lD 10

IJGFOZZZ SO 01 000000 000104 Section definition. CSECT name generated by SDMODFO macro instruction.

LOC OBJECT CODE ADDRI ADDR2 STMT

2
3

169

EXAMPLE 3

SOURCE STATEMENT

PRINT HOGEN
SDMODFO

SEPASMB-YES
END

X

[--_____ -__________________ :J
Figure 48. Separate Assemblies, (Example 3) (Part 4 of 4)

Appendix C 181

The DTF assembly generates a table that
contains no executable code.

Each of the DTF tables is preceded by
the appropriate CATALR card. These two
object decks can be cataloged into the
relocatable library together with the logic
modules as follows:

// JOB CATRELOC

// EXEC MAINT

(DTFCD Assembly)

(DTFSD Assembly)

(CDMOD Assembly)

(SDMODFO Assembly)

/*

Alternately, the object decks from
these assemblies (DTF tables and logic
modules) can be furnished to the linkage
editor, along with the main program object
deck. The sequence is as follows:

// JOB CATALOG

// OPTION CATAL

INCLUDE

PHASE name,*

(Object deck, main program)

(Object deck, DTFCD assembly)

(Object deck, DTFSD assembly)

(Object deck, CDMOD assembly)

(Object deck, SDMODFO assembly)

/*

// EXEC LNKEDT

/&

Note: It is not necessary to remove the
CATALR card because the linkage editor
bypasses it.

DTF'S AND LOGIC MODULES ASSEMBLED
SEPARATELY, I/O AREAS WITH MAIN PROGRAM
(EXAMPLE 4)

The main program is identical to that of
Example 3 except that the following four

182 DOS Sup. and I/O Macros

cards are inserted after the card marked
(2) :

Al
A2
A3

DS
DS
DS
ENTRY

80C
408C
408C
Al,A2,A3

The separate assembly of logic modules
is identical to that in Example 3.

In the card-file assembly of Example 3,
replace the card marked (3) with the
following card:

EXTRN Al

Similarly, in the disk-file assembly of the
previous example, replace the cards marked
(4) and (5) with the following card:

EXTRN A2,A3

Figure 49 shows the separation of the logic
modules, DTF's and I/O areas.

ASSEMBLING DTF'S AND LOGIC MODULES
SEPARATELY: I/O AREAS, LABEL EXIT, AND
END-OF-FILE EXIT WITH MAlN PROGRAM
(EXAMPLE 5)

In addition to the changes described in the
previous example, the label exit and the
end-of-file exit may be assembled sepa­
rately. Figure 50 illustrates these sepa­
rate assemblies. The main program is
assembled as follows:

CDTODISK

NEXT

SAVEAREA

EOFCD

MYLABELS

Al
A2
A3

START
BALR
USING
LA
OPEN
GET
PUT
B
DS

CLOSE
EOJ

o
12,0
*,12
13, SA VEAREA
CARDS,DISK
CARDS, (2)
DISK
NEXT
9D

CARDS,DISK

LBRET 2

EXTRN
DS
DS
DS
ENTRY
END

CARDS,DISK
80C
408C
408C
Al,A2,A3,EOFCD,MYLABELS
CDTODISK

• Problem Program DTF's (Assembled Separately)
• • •

OPEN CARDS,DISK- 0- - - ---- - - - - - - - DISK
CARDS,(2) GET

• • • • • •

L- - -0- - -"'~ARDS

CARDS DTFCD DISK DTFSD

DEY ADDR=SYSOO4
••• EOFADDR=EOFCD

r -0- -IOAREA1=Al BLKSIZE=408

I WORKA=YES ~ - - - -0-IOAREA1=A2
SEPASMB=YES I r - -0- -IOAREA2=A3

I I I I IOREG= (2)

I I ·LABADDR=MYLABELS
I I : RECFORM=FIXBLK

I I I I : RECSI ZE=80
A 1 (Buffer Area) : TYPEFLE=OUTPUT

111111111111111111111111111+- - -0- J II I I : SEPASMB=YES

A2 (Buffer Area) I I 1 ~
11111 1111111111111 11111 III f.-- - -0- - - - 1. - - - - - -.J I I:
A3 (Buffer Area) : I I ~ I MYLABElS

1I111111111111111111111111f.- - -0 - - - -I - - - - - .. - J :: · r' ~(urr'$ Routine)

~: I I
~i I I

EOFCD (End-of-File Processing) I
• I
: I I
• I I

r----------- J i
.

--.

• CDMOD
+

SDMODFO

(Logic for a Card File) (Logic for a Tape File)

• • • • • •

• • • • • •

Figure 49. Logic Modules and DTF's Assembled Separately, I/O Areas With Main
Program (Example 4)

Appendix C 183

Problem Program
•

1
DTF's {Assembled Separately}

• •
OPEN CARDS,DISK-O- - - - - --- - - - - - - ---+- DISK

CARDS, (2) GET
• • • • • •

L - -0- - - -- CARDS

CARDS DTFCD DISK DTFSD

DEY ADDR=SYS004
r - - - - - - - - - - -O-EOFADDR=EOFCD

I
r 0 - -IOAREA1=Al BLKSIZE=408

I
WORKA=YES ~ - - - -0-IOAREA1=A2

I SEPASMB=YES I r - -0- -IOAREA2=A3

I I I ,I I rO- ~~~~~~~:~YLABELS
I I I I I RECFORM=FIXBLK

I (I I I I I RECSIZE=80
A 1 Buffer Area) I I I TYPEFLE=OUTPUT

I 111111111111111111111111111- - -0 J : SEPASMHES

I A2 (Buffer Area) I I I I
I 1II11111111111111111111111~ - -0- - - - 1. - - - - - -1 I I I
I A3 (Bulfer Area) I I I I I MYLABELS

! 0111111011111111111111111- - -0- - - III - - - - - - J ! L,-(Ur Routine)

9
EotF;D (End-of-File Processi"'): :

• : I I
• I I

• __ ----------..J I
I I

I

I

+
SDMODFO

,
CDMOD

(Logic for a Card File)

• • • • • •

(logic for a Tape File)
• • • • • •

Figure 50. DTF's, and Logic Modules Assembled Separately; I/O Areas Label Exit, EOF
Exit with Main Program (Example 5)

184 DOS Sup. and I/O Macros

The file definition instructions
separately assembled as follows:

CARDS

DISK

DTFCD

EXTRN
END

DTFSD

EXTRN
END

DEVADDR=SYSOO4,
WORKA=YES,
EOFADDR=EOFCD,
SEPASMB=YES,
IOAREAI=AI
EOFCD,Al

BLKSIZE=408,
TYPEFLE=OUTPUT,
SEPASMB=YES,

IOAREAI=A2,
IOAREA2=A3
A2,A3,MYLABELS

are

Col. 72

X
X
X
X

X
X
X

X

The separate assembly of logic modules is
identical to that in Examples 3 and 4.

Comparison of the Five Methods

Example I requires the most assembly time
and the least linkage-edit time. Because
the linkage editor is substantially faster
than the assembler, frequent reassembly of
this program will require more total time
for program preparation than Examples 2
through 5.

Example 2 segregates the IOCS logic
modules from the remainder of the program.
Because these modules are generalized,
they can serve several different applica­
tions. Thus, they are normally retained
in the system relocatable library for ease
of access and maintenance.

When a system pack is generated or when
it requires maintenance, the IOCS logic
modules that are required for all applica­
tions should be identified and generated
onto it. Each such module requires a
separate assembly and a separate catalog
operation, as shown in Examples 2 through
5. Many assemblies, however, can be

batched together as can many catalog
operations.

Object programs produced by COBOL, PL/I,
and RPG require one or more IOCS logic
modules in each executable program. These
modules are usually assembled (as in Ex­
ample 2) during generation of a system
pack and are permanently cataloged into
the system relocatable library.

Example 3 shows how a standardized IOCS
package can be separated almost totally
from a main program. Only the imperative
IOCS macro instructions remain: OPEN,
CLOSE, GET, and PUT. All file parameters,
label processing, other IOCS exits, and
buffer areas have been preassembled. If
there are few IOCS changes in an applica­
tion compared to other changes, this method
reduces to a minimum the total development/
maintenance time. This approach also serves
to standardize file descriptions so that
they can be shared among several different
applications. This reduces the chance of
one program creating a file that is im­
properly accessed by subsequent programs.
In Example 3, the user need only be con­
cerned with the record format and the
general register pointing to the record.
He can virtually ignore the BLKSIZE,
LABADDR, etc parameters in his application
program, although he must ultimately con­
sider their effect on main storage, job­
control cards, etc.

In Example 4, a slight variant of
Example 3, the I/O buffer areas are moved
into the main program rather than being
assembled with the DTF's. In Example 5,
the label processing and exit functions are
also moved into the main program. Examples
4 and 5 show how buffers and IOCS facili­
ties can be moved between main program and
separately assembled modules. If user
label processing is standard throughout an
installation, label exits should be
assembled together with the DTF's. If
each application requires special label
processing, label exits should be assembled
into the main program.

Appendix C 185

APPENDIX D: READING, WRITING, AND CHECKING WITH NONSTANDARD LABELS

..--------------------- -----------

EXTERNAL SYMBOL DICTIONARY PAGE 1
SYMBOL TYPE 10 AODR lENGTH lO 10

PC 01 003000 0004EO
IJCFZIZO ER 02
IJFFZZZZ ER 03
IJFF8ZZZ ER 04
IJDFZZZZ ER 05

- ---
f--- -------- - ---- ----

TEST CREATING AND PROCESSING NON-STANDARD lABELS PAGE

lOC OBJECT CODE AOOR1 ADDR2 STMT SOURCE STATEMENT OD200CT66 10/26/66

003000

003208 0520
00320A

003232 47FO 2010

003212 47FO 2050

0032AE 47FO 208C

2 PRINT ON,NOGEN,NODATA NST00004
3 STAR T 122BS NST00005
4 * NST00006
5 READER OTFCD DEVICE=2540,OEVADOR=SYSIPT,BlKSIZE~SO,TYPEFlE=INPUT, *NST00007

EOFADOR=ENOCARO,IOAREA1=IOAREA NST00008
26 * NST00009
21 TAPEOUT DTFMT DEVADOR=SYS004,IOAREA1=IOAREA,BlKSIZE=80,TYPEFlE=OUTPUT,*NST00010

lABADDR=lABElOUT,REAO=FORWARO,FIlABl=NSTD NSTOOOll
58 * NST00012
59 TAPEIN OTFMT DEVADOR=SYS004,IOAREA1=IOAREA,BlKSIZE=80,TYPEFlE=INPUT, *NST00013

EOFADOR=ENDTAPE,READ=FORWARD,FIlABl=NSTD,REWIND=NORWD, *NSTD0014
lABADDR=lABElIN NST00015

93 * NSTD0016
94 TAPEIN2 DTFMT OEVADOR=SYS004,IOAREAl=IOAREA,BlKSIZE=BO,TYPEFlE=INPUT, *NST00017

EOFADDR=ENDTAPE2,READ=BACK,FIlABl=NSTD NSTD0018
129 * NST00019
130 PRINT DTFPR DEVICE=1403,DEVAODR=SySlST,IOAREAl=IDAREA,BlKSIZE=80 NSTD0020
151 * NSTD0021
152 CONSOLE DTFCN BlKSIZE=80,DEVADOR=SYSlOG,IOAREA1=CAREA,RECFORM=FIXUNB, *NSTD0022

WORKA=YES NSTD0023
204 * NST00024
205 * NST00025
206 START BAlR 2,0 SET UP A BASE REGISTER NSTD0026
201 USING *,2 NST00027
208 * ** ROUTINE TO WRI TE TAPE NSTD0028
209 OPEN TAPEOUT TO WRITE NSTD RECORDS NSTD0029
211 GETCARD GET READER REAO A CARD FROM THE CARD READER NSTD0030
222 PUT TAPEOUT WRITE CARO IMAGE ON TAPE NSTD0031

0321A 221 B GETCARD BRANCH AND GET ANOTHER CARD NSTD0032
228 ENDCARD CLOSE TAPEOUT TO WRITE NSTD TRAILER lABEL NSTD0033
236 * ** ROUTINE TO READ TAPE FORWARD NST00034
231 OPEN PRINT,TAPEIN TO PROCESS NSTD lABEL NSTDOS35
246 GETTAPE GET TAPEIN GET A CARD IMAGE FROM TAPE NSTD0036
251 PUT PRINT PRINT CARD IMAGE ON PRINTER NSTD003T

0325A 256 B GETTAPE BRANCH AND GET ANOTHER TAPE RECORD NST00038
251 ENDTAPE CLOSE TAPEIN PROCESS NSTD lABELS NSTD0039
265 * ** ROUTINE TO READ TAPE BACKWARDS NST00040
266 OPEN TAPEIN2 BYPASS NStO lABELS NST00041
274 GETTAPE2 GET TAPEIN2 READ A TAPE RECORD NSTD0042
279 PUT PRINT PRINT RECORD NSTD0043

03296 2B4 B GETTAPE2 BRANCH ANO GET ANOTHER TAPE RECORD NSTD0044
285 ENDTAPE2 CLOSE PRINT,TAPEIN2 BYPASS NSTD RECORDS NSTD0045
294 CNTRl TAPEIN2,REW REWIND TAPE TO lOAD POINT NSTD0046
300 EOJ NORMAL END OF JOB NSTD0047
303 * ** LABEL CREATION ROUTINE NSTD0048 - - --

f-- -- -- - - - - ---

PAGE 2

lOC OBJECT CODE AODR1 ADDR2 STMT SOURCE STATEMENT D0200CT66 10/26/66

003206 4900 2202 0340C 304 LABELOUT CH 0,=X'00D6' OPEN OR CLOSE NSTD0049
0032DA 4770 20FO 032FA 305 BNE TRAllOUT BRANCH IF CLOSE NSTQ0050
0032DE 0227 221C 21CC 03426 03306 306 MVC IOAREA(40),HEADER MOVE HEADER TO 1/0 AREA NSTOO051

301 RITELAB EXCP OUTCCB WRI TE lABEL NSTOO052
311 WAIT OUTCCa WAIT FOR COMPLETION NSTD0053
317 lBRET 2 RETURN CONTROL TO 10CS NSTD0054

0032FA 0227 221C 21F4 03426. 033FE 320 TRA IlOUT MVC IOAREAI401,TRAllER MOVE TRAILER lABEL TO 1/0 AREA NSTD0055
003300 47FO 20DA 032E4 321 B RI TElAB BRANCH TO WRITE THE lABEL NSTD0056

322 * ** lABEL PROCESSING ROUTINE NSTD0057
003304 4900 2202 034DC 323 lABEUN CH 0,=X'OOD6' OPEN OR CLOSE NSTOO058
003308 4180 212C 03336 324 BE HEAOIN OPEN TIME NSTD0059

325 TRAIUN EXCP INCCB REAO A TRAILER lABEL NSTDOO60

- 329 WAIT INCCB WAI T F~O COMPlETI.E,!!... ~TDOO61 -
186 DOS Sup. and I/O Macros

003320 9101 2270 0347A
003324 4710 2164 0336E
003328 0527 221C 21F4 03426 033FE
00332E 4780 2102 0330C
003332 47FO 2152 0335C

00334A 9101 2270 0347A
00334E 4710 2168 03372
003352 0527 221C 21CC 03426 03306
003358 4780 212C 03336

00336E 4800 2204

003314 404040404&404040
0033A6 E4E2C5094003C1C2
n03306 E4E2C50940C8C5C1
0033FE E4E2C50940E3D9C1
003426 4040404040404040

003496 0000
003498 0200342600000028
0034AO 0100342600000028
003208
0034A8 5B5BC20607C50540
0034BO 5B5BC2C30306E2C5
0034B8 00003000
0034BC 00003038
0034CO 00003090

1-------------

0340E

--

- -
335 TM INCCB+li,X' 01' "l'E"ST FOR A TAlSE MARK
336 BO EXITEOF BRANCH IF YES
337 CLC IOAREA(40),TRAILER COMPARE TRAILER LABEL
338 BE TRAILIN BRANCH TO GET ANOTHER RECORD
339 B ERRLAB BRANCH IF LABELS DO NOT CONPARE
340 HEADIN EXCP INCCB READ A HEADER LABEL
344 WAIT INCCB WAIT FOR COMPLETION
350 TM INCCB+4,X'0I' TEST FOR A TAPE MARK
351 Bn EXIT BRANCH IF YES
352 CLC IOAREA(40) ,HEADER DOES HEADER LABEL COMPARE
353 BE HEADIN IF VES, BRANCH AND READ TAPE
354 ERRLAB PUT CONSOLE,LABELERR PUT LABEL ERROR MESSAGE
360 EOJ TERMINATE JOB
363 EXITEOF LH O,=C'EF' INOICATE EOF TO IOCS
364 EXIT LBREr' 2 RETURN CONTROL TO IOCS
367 :0: CONSTANTS
368 CAREA DC CL50" CONSOLE 1/0 AREA
369 LABELERR OC C'USER LABELS DO NOT COMPARE. ABNORMAL END OF JOB.'
370 HEADER DC CL40'~SER HEAOER LABEL'
371 TRAILER DC CL40'USER TRAILER LABEL'
312 IOAREA DC CL80" INPUT lOUT PUT AREA
373 INCCB CCB SVS004,INCCW READ TAPE CCB
384 OUTCCB CCB SVS004,OUTCCW WRITE TAPE CCB

395 INCCW
396 OUTCCW
397

CCW
CCW
END

X'02',IOAREA,X'OO',40
X'OI',IOAREA,X'OO',40
START

READ TAPE CCW
WR ITE TAPE CCW

398
399
400
401
402

=C'SSBOPEN '
=C'SSBCLOSE'
=ACREAOER)
=AC TAP EOllT)
=ACTAPEIN)

- --

TEST CREATING AND PROCESSING NON-STANDARD LABELS

NSTO0062
NSTD0063
NSTD0064
NST00065
NST00066
NST00067
NSTD0068
NSTD0069
NSTD0070
NSTOOO7I
NSTO0072
NST00073·
NSTD0074
NST00075
NSTD0076
NSTD0077
NSTO0078
NSTO0079
NSTD0080
NSTO0081
NSTD0082
NSTO0083
NST00084

NSTD0085
NST00086
NSTo0087

- - ----

PAGE 3

LOC OBJECT CODE

0034C4 00003150
0034C8 000030FO
0034CC 00003486
003400 00003476
00341>4 00003180
003408 000033A6
00340C 0006
00340E C5C6

AoORI AOOR2 STMT SOURCE STATEMENT

=ACPRINTl
=ACTAPEIN2)
=ACOlJTCCB)
=A(INCCB)
=A(CONSOLE)
=AC LABEL ERR)
=X'0006'
=C'EF'

00200CT66 10/26/66

-

403
404
405
406
407
408
409
410

--L ______________ _ -

Tape Output
(40 characters) ~

~m •• .)J
~

~ 0
E

8. • 8-USER HEADER LABEL 0 USER TRAILER LABEL 0- 0-

Notes: 1. IOCS wrote the first tapemark because the TAPEMARK =NO parameter was omitted.
2. IOCS always writes the tapemark following the data.
3. IOCS wrote the two tapemarks after the user trailer label.

Tape Inp~t
(40 characters) ~

Ddo ••• ~~
-"I.

a ~ E

" 8. a..
USER HEADER LABEL a 0 USER TRAILt:R LABEL 0- 0-

Notes: 1. IOCS reads the first tapemark or bypasses it if user labels are not checked.
2. Upon encounter-ing the second tapemark IOCS branches to the user label address.

(40 characters) ~ ~ I
~ 0

E

~ 8. • a.. a a
0- 0-

(40 characte,,) ~ -t
~ 0

E
8. • a..
a a

0- 0-

3. After the user reads the third tapemark he should issue a LBRET 1 and IOCS will branch to the end-of-file address.

Appendix D 187

Addition of Records and Overflow Areas
(ISFMS) 57

Additional Macro Instructions: CALL,
SAVE, and RETURN 159-165

AFTER
DAMOD 128
DTFDA 120

Alternate Tape Switching 142
ALTTAPE

DTFSR III
Appendix A 166-169
Appendix B: Control Characters

Code 170-171
Appendix C: Assembling the Problem Program,

DTF'S, and Logic Modules 172-185
Appendix 0: Reading, Writing, and Checking

Nonstandard Labels 186
ASA Codes (CTLCHR) 170
Assembling Macros 10-12, 15
Auto1ink Function 15, 16-17

Basic and Queued Telecommunications Access
Methods 5, 9

Begin Definition Card (DTFSR) III
BLKSIZE

DTFCD 73
DTFCN 99
DTFDA 120
DTFMT 86
DTFOR 101
DTFPR 83
DTFPT 77
DTFSD 93
DTFSR III

Blocked Records 32, 34
B10ckname (CCB Macro) 138
BSF (CNTRL) 37
BSR (CNTRL) 37
Bypassing Imbedded Checkpoint Records

on Tape 142
Bypassing Standard Tape Labels 29

CALL Macro 163
Called Program 160
Calling Program 160
CANCEL Macro 153
Card File (DTFCD) 73
Card Read Punch Codes (CNTRL Macro) 38
CATALR Card 15
CCB Format 140
CCB Macro 138
CDMOD Name 77
Chaining, Data 143
Channel Program, DASD File Protected

Device 143
Characteristics of a Paper Tape File 80
CHECK Macro 43
Checking DASD Extents 30
Checking DASD User Standard Labels 27, 30
Checking for Output Files, VTOC 26
Checking Nonstandard Labels, Tape 30
Checking Standard Labels, Tape 29

• 188 DOS Sup. and I/O Macros

Checking User Standard Labe'ls, Tape 29, 30
Checkpoint Bypassing on Tape 142
Checkpoint File 155
Checkpoint File, DTFPH Entries for 143
Checkpoint Header Format 142
CHECKPT

DTFSR III
CHKPT (Checkpoint the Program) 153-158
CHKPT (Information That Is and Is

Not Saved) 154
CHKPT Macro 154
CHKPT Macro, Use of 153
CHKPT on Disk, Tracks Required 155
CHNG Macro 40
CKPTREC

DTFMT 86
DTFSR III
MTMOD 91

CLOSE(R) Macro (Completion) 70
Closing DASD Filed 70
Closing Tape Input File 71
Closing Tape Output File 71
CNTRL Macro 36-39
CNTRL Macro (Card Read Punch Codes) 38
CNTRL Macro (DAM)
Code Translation (Paper Tape Reader) 81
Command Chaining Retry 142
Compatibility of the Original and

The Present'DOS 6
Communication Region 148-149
Communication Region Macro
Instructions 149

Completion 67
COMRG Macro 149
Console File (DTFCN) 99-100
CONTROL

CDMOD 76
DTFCD 73
DTFDA 120
DTFOR 101
DTFPR ·83
DTFSD 93
DTFSR III
ORMOD 105
PRMOD 85
SDMOD 97

Conventions, Macro
COREXIT

DTFOR
DTFSR

CRDERR
CDMOD
DTFCD
DTFSR

Creating
Records

CTLCHR
CDMOD
DTFCD
DTFPR
DTFSR
PRMOD

101
III

76
73
112

a File or
on a File

76
73
83
113
85

Instruction 18

Writing Additional
(DAM) 49

CTLCHR (ASA Codes) 170
CTLCHR (System/360 Codes) 170~171
Cylinder Index (ISFMS) 56
CYLOFL

DTFIS 129

DAM (Direct Access Method)
DAMOD Entries 128
DAMOD Name 129

8

DASD Extent Exit Return (LBRET Macro)
DASD Extents, Checking 30
DASD File Protected Device, Channel
Program 143

DASD File Protection 76
DASD File, Reopening 70
DASD Files, Closing 70
DASD Files, Opening 23-27
DASD Input File (Completion)
DASD Labels 166-167

68

DASD Operator Verification Table
DASD Output File (Completion) 68

158

30

DASD User Standard Labels, Checking 27, 30
DASD User Standard Labels,
Writing of 26, 30

Data Cell Drive, IBM 2321 (CNTRL)
Data Chaining 143

39

Declarative File Definition Macro 11-13
Declarative Macro Instructions 73-137
DELETFL

DTFSD 93
Detail Cards
DEVADDR

DTFCD
DTFCN
DTFMT
DTFOR
DTFPH
DTFPR
DTFPT
DTFSR

DEVICE
CDMOD
DTFCD
DTFDA
DTFIS
DTFOR
DTFPH
DTFPR
DTFSD
DTFSR
ORMOD

73
99
88
103
143
83
79
113

76
73
120
129
103
143
83
93
113
105

17

Direct Access File, Opening 23
Direct IOAREA1 45
Direct Access Method (DAM) 8
Direct Access Method (DTFDA) 120-128
Direct Access Module (DAMOD)
Parameters 128

Direct Linkage 159
Disk Storage Drive, IBM 2311 (CNTRL) 39
Document Reading, Reference Marks 106
DSKXTNT

DTFIS 129
DSPLY Macro 41
.DTF Macro 11
DTF Table and IOCS Module, Linkage of 14
DTF Tables 10, 12
DTFBG Card (DTFSR) III
DTFCD, Card File 73
DTFCD Entries 73-76

DTFCN (Console File) 99-100
DTFCN Entries 99-100
DTFDA Entries 120-128
DTFEN Card (DTFSR) 120
DTFIS Entries 129-136
DTFMT Entries 86-91
DTFMT (Magnetic Tape Files) 86
DTFOR Entries 101
DTFPH Entries 144-146
DTFPH Entries for Checkpoint File 144
DTFPR Entries 83-85
DTFPR (Printer File) 83
DTFPT Entries 77-80
DTFPT (Paper Tape File) 77
DTFSD Entries 92-97
DTFSD (Sequential DASD Files) 92
DTFSR Entries 111-120
DTFSR (DTFBG Card) III
DTFSR (DTFEN Card) 120
DTFSR (Serial Device File) 105-120
DUMP Macro 153

Editing Logical IOCS Programs 15
EJD, CNTRL Mnemonic 39
End-of-Cylinder Indication (ERRBYTE) 120
End-of-Definition Card (DTFSR) 120
End-of-File Condition (Card

Reader) 73, 114
End-of-File Condition (Magnetic

Tape) 88, 114
End-of-File Condition (Sequential

Disk) 95, 114
End-of-File Record (DASD) 27, 51, 114, 167
End-of-Record Character (Paper Tape

Reader) 80, 81
End-of-Tape (Paper Tape Reader) 79, 114
ENDFL Macro (ISFMS) 62
EOFADDR

DTFCD 75
DTFMT 88
DTFOR 103
DTFPT 79
DTFSD 93
DTFSR 113

EOJ Macro 153
ERG (CNTRL) 37
EOR Character (Paper Tape Reader) 80, 81
ERRBYTE

DTFDA 120
ERROPT

DTFMT 88
DTFPT 79
DTFSD 93
DTFSR 114
MTMOD 91
SDMOD 97

Error/Status Code (ERRBYTE) 120
Error/and Wrong Length Record Conditions

(Paper Tape Reader) 82
ESETL Macro (ISFMS) 67
ESD CNTRL Mnemonic 39
Example of an Organized File (ISFMS) 59-60
EXCP Macro 141
EXIT Macro 151
Extent Card Information (XTNTXIT) 128, 146
Extent, Type 23, 25, 42

FEOV Macro 72

Index 189 •

FETCH Macro
FILABL.

DTFMT 88
DTFSR 115

148

File Definition Macro Instructions
(DTFs) 125-127

File Definition Macros and IOCS Logic
Modules Generation Macros 73-137

File Header Label (Tape) 168
File Labels (DASD) 166
File Labels, User-Standard DASD
File Protection, DASD 6, 7
File Trailer Label (Tape) 168
FilenameC 132
Files (DASD), Opening 23
Files (PIOCS), Opening 25-26

167

Files (Tape Input), Opening 29-30
Files (Tape Output), Opening 28,29
Files (Tape), Positioning 28
Fixed Unblocked Records (Optical

Reader) 105
Fixed Unblocked Records (Paper Tape

Reader) 80
Forced End-of-Volume: Tape Files
Format, CCB 140
Format, Checkpoint Header
Format, Keyword 17
Format, Macro Instruction
Format, Mixed 17
Format, positional 17
Format 1 File Label 167
Format 2 File Label 167
Format 3 File Label 167
Format 4 File Label 167
Format 5 File Label 167

142

17

Formats, Standard File Labels
(DASD) 166-167

FSF (CNTRL) 37
FSR (CNTRL) 37
FTRANS

DTFPT 79
Function, Autolink 15, 16-17

69

Generation of Module Names in DTF Tables
and Logic Modules 14

GET Macro 31
GET Macro (ISFMS) 66
GET, Required DTF Entries 31
GETlME Macro 150

HEADER=YES
DTFOR 104
DTFSR 115

Header Card 17
Header Information, Optical Reader 21
HINDEX

DTFIS 129

IBM 1442 or 2520 Card Read-Punch
(CNTRL) 38

IBM 2311 Disk Storage Drive (CNTRL) 39
IBM 2321 Data Cell Drive (CNTRL) 39
IBM 2540 Card Read-Punch (CNTRL) 38
Identifier (ID), DAM 49
IDLOC

• 190

DAMOD 128
DTFDA 123

DOS Sup. and I/O Macros

IJCxxxxx (CDMOD) 76
IJDxxxxx (PRMOD) 86
IJExxxxx (PTMOD) 83
IJFxxxxx (MTMOD) 92
IJGxxxxx (SDMOD) 98
IJHxxxxx (ISMOD) 137
IJlxxxxx (DAMOD) 129
IJMxxxxx (ORMOD) 105
Imperative Macro Instructions
INBLKSZ

DTFSR
INAREA

115

DTFSR 115

20

Indexed Sequential File Management
System 9

Indexed Sequential File, Opening
Indexed Sequential Module (ISMOD)
Parameters 166-167

Indexed Sequential System (DTFIS)
Indices (ISFMS) 55

24-25

129-136

Information That Is and Is not Saved
(CHKPT) 154

Initialization 20
Interval Timer and User
I/O Area, Definition of
I/O Files, Repositioning
IOAREAl, Direct Access
IOAREAl

DTFCD
DTFCN
DTFDA
DTFMT
DTFOR
DTFPR
DTFPT
DTFSD
DTFSR

IOAREA2
CDMOD
DTFCD
DTFMT
DTFOR
DTFPR
DTFPT
DTFSD
DTFSR
ORMOD
PRMOD

IOAREAL
DTFIS

IOAREAR
DTFIS

IOAREAS

75
99
123
88
104
83
79
95
115

76
75
89
104
83
79
95
116
105
86

129

133
133

Exit Macros
31

155
45

IOCS Logic Module Generation Macro
Instructions 14

150

IOCS Module and DTF Table, Linkage of 14
IOeS Logic Modules, Definition of 10
IOREG

DTFCD 76
DTFIS 143
DTFMT 89
DTFOR 104
DTFPR 85
DTFPT 79
DTFSD 95
DTFSR 116

IOROUT
DTFIS 143
ISMOD 136

ISFMS (Indexed Sequential File Management
System) 9

ISFMS (Overflow Area Option) 58
ISFMS Workarea Requirements 136
ISMOD Entries 136-137
ISMOD Name 137

KEYARG
DTFDA 124
DTFIS 143

KEYLEN
DTFDA 126
DTFIS 134

KEYLOC
DTFIS 134

Keys (DAM) 49
Keyword Operands 17

LABADDR,
Use of

DTFDA
DTFMT
DTFPH
DTFSD
DTFSR

26-27, 28-30, 68-69, 143-145
126
89
144
95
116

Labels, Nonstandard (Tape Input
File) 30, 31, 169

Labels, Nonstandard (Tape Output File) 28
Labels, Standard (Tape) 28, 29
Labels, User-Trailer (DASD) 26-27
Labels, User-Trailer (Tape) 29, 68
LBRET Macro 30-31
LBRET Macro (Completion) 72
Link, Sequence 57
Linkage-Editing Preassembled Logic

Modules 16
Linkage of DTF Table and IOCS Module 14
Linkage Registers 160
LIOCS Declarative Macro Instructions,

Use of 11, 14
LOAD Macro 148
Logic Module Macro Instructions 14
Logical IOCS Functions 6
Logical IOCS, Physical IOCS vs 6
LTRANS

DTFPT 79

Machine Requirements 5
Macro Definition 10
Macro Instruction Conventions 18
Macro-Instruction Format 17
Macro Instructions, Declarative 73-137
Macro Instructions to Add Records to a
File by ISFMS 62

Macro Instructions to Load or Extend a
DASD File by ISFMS 61

Macro Instructions for Random
Retrieval by ISFMS 63

Macro Instructions for Sequential
Retrieval by ISFMS 64

Macro Similarities 6
Macro System 10
Macros for Self-Relocating Programs 11
Macros for Sequential Processing 31

Macros for Tape and Disk Work Files 42
Macros for the Optical Character Reader
Magnetic Tape Files (DTFMT) 86
Magnetic Tape, Repositioning 156
Magnetic Tape Unit Codes (CNTRL

Macro) 36-37
MARK, CNTRL Mnemoni c 39
Master Index (ISFMS) 56
Mixed Format 17
MODNAME

DTFCD 75
DTFDA 126
DTFIS 134
DTFMT 89
DTFOR 104
DTFPR 85
DTFPT 79
DTFSD 95

Module, Definition of 10
Module Name, Standard 15
Module Name, User 15
MOUNTED

DTFPH 144
MSTIND

DTFIS 134
MTMOD Name 93
Multiprogramming Restrictions on Use

of Supervisor Macros 147
MVCOM Macro 149

Nonstandard Labels (LBRET Macro) 31
Nonstandard Labels (Tape Input
File) 30, 31, 169

Nonstandard Labels (Tape Output File) 28
Nonstandard Tape Labels 169, 186
Notation, Ordinary Register 18
Notation, Special Register 18-19
NOTE Macro (Work File) 44
NOTEPNT

DTFMT 89
DTFSD 95
MTMOD 91
SDMOD 97

NRECDS
DTFIS 134

OPEN(R) Macro 20-30
Opening DASD Files 23
Opening Direct Access File 24
Opening Indexed Sequential File 24-25
Opening PIOCS Files 25-26
Opening Sequential DASD 23
Opening Tape Input Files 29-30
Opening Tape Output Files 20-27
Operands, SDMODxx 98
Operator Verification Table, DASD 158
Optical Reader Files (DTFOR) 101

Data Acquisition and Manipulation 105
Record Formats 104
Reference Marks 105
Wrong Length Records 105
Using OPEN 21

Ordinary Register Notation 18
Organization of Records on DASD (ISFMS)
Original and Extended DOS, Compatibility

of 6
Other Files, Closing 72

41

53

Index 191e

Other Files, Opening 21
OUAREA

DTFSR 117
OUBLKSZ

DTFCD 75
DTFSR 117

OVBLKSZ
DTFPT 79

Overflow Area Option (ISFMS) 58

Paper Tape File, Characteristics of
Paper Tape File (DTFPT) 77
Paper Tape Reader (Fixed Unblocked

Records) 80
Paper Tape Reader (Undefined Records)
Parameter List Register 150
Parameters and Names for

CDMOD 76
MTMOD 90-92
ORMOD 105
PRMOD 85-86
PTMOD 82
SDMOD 96-98

PDUMP Macro 152
Physical IOCS (DTFPH) 143-146
Physical IOCS Functions 6
Physical IOCS vs Logical IOCS 6
PIoes Files, Opening 25-26
POINTR Macro (Work File) 44
POINTS Macro (Work File) 45
POINTW Macro (Work File) 44
Positional Operands 17
Positioning Tape Files 28
Pre loading 18
Printer Codes (CNTRL Macro) 38
Printer File (DTFPR) 83
Printer (Punch and) Control 36
PRINTOV

DTFPR 85
DTFSR 117
PRMOD 86

PRMOD Name 86
Processing DASD Records by the Direct
Access Method 45

Processing DASD Records by the Indexed
Sequential System 53

Processing Records with Physical IOCS
138-146

80

81

Processing Records Sequentially 8, 73-120
Processing, 'Types of LIOCS 8, 11-12
Program Loading 148
Programming Considerations (Paper Tape

Reader) 82
PRTOV Macro 40
PTMOD Name 83
Punch and Printer Control 36
PUT Macro 33
PUT Macro (ISFMS) 66-67
PUT, Required DTF Entries 33

Queued Telecommunications Access Method
(QTAM) 9

RDLNE Macro 41
READ

DTFMT 89
DTFSR 117
MTMOD 91

Read Backwards, Tape 29, 32

.192 DOS Sup. and I/O Macros

READ Macro (DAM) 50
READ Macro (Work Files) 43
READ Macro (ISFMS) 64
READ Macro (Optical Reader) 41
Read-Punch, IBM 1442 or 2520 (CNTRL)
Read-Punch, IBM 2540 (CNTRL) 39
READID

DTFDA 126
READKB, CNTRL Mnemonic 39
READ KEY

DTFDA 126
RECFORM

CDMOD 76
DAMOD 128
DTFCD 75
DTFCN 99
DTFDA 126
DTFIS 134
DTFMT 89
DTFOR 104
DTFPR 85
DTFPT 80
DTFSD 95
DTFSR 117
ISMOD 136
MTMOD 91
ORMOD 105
PRMOD 86
PTMOD 82

Recommended Module Name for
CDMOD 76
DAMOD 129
ISMOD 137
MTMOD 92
ORMOD 105
PRMOD 86
PTMOD 83
SDMOD 98

Record Formats, Optical Reader Files
Record Formats (Paper Tape Reader)
Record Reference: After (WRITE) 52
Record Reference (DAM) 49
Record Reference by ID (READ)
Record Reference by ID (WRITE)
Record Reference by Key (READ)
Record Reference by Key (WRITE)
Record Reference: RZERO (WRITE)
Record Types 116
Record Types (DAM) 45
Record Types (ISFMS) 53
Records, Blocked 32, 34
Records, Fixed Length 32, 34
Records, Undefined 32, 34
Records, Unblocked 32, 34
Records, Updating 34
Records, Variable Length
RECSIZE

DTFCD
DTFCN
DTFDA
DTFIS
DTFMT
DTFOR
DTFPR
DTFPT
DTFSD
DTFSR

75
99
126
135
89
104
85
80
95
117

34

50
51
50

51
52

39

104
80

Reference Marks, Optical Reader Files 105
Reference Methods (DAM) 47

Register Notation 18
Register Saving and Restoring
Responsibili~ies 150-151

Register Usage 19
Registers (Calling Program
Responsibilities) 162

RELSE Macro 35
Reopening a DASD File 70
Reopening and Repositioning Tape Files
Repositioning I/O Files 155
Repositioning Magnetic Tape
Required DTF Entries, GET
Required DTF Entries, PUT

156
31
33

RESCN Macro 41
Retry, Command Chaining
RETURN Macro 164
Return Register 160
REW (CNTRL) 36
REWIND

DTFMT 89
DTFSR 118

RUN (CNTRL) 36

Save Area 161-162
Save Area Chaining 162
Save Area Use 160
SAVE Macro 164
SCAN

DTFPT 80
PTMOD 82

SDMOD Name 98
SDMODFI 97
SDMODFO 97
SDMODFU 97
SDMODUI 97
SDMODUO 97
SDMODUU 97
SDMODVI 97
SDMODVO 97
SDMODVU 97
SDMODW 97
SDMODxx Operands 97
SEEKADR

DTFDA 127

142

Self-relocating Programs, Macros for 11
Self-relocation and IOCS 11
Sense Address (CCB) 140
SEOV 72
SEPASMB

CDMOD 76
DAMOD 128
DTFCD 75
DTFDA 127
DTFIS 135
DTFMT 90
DTFOR 104
DTFPR 85
DTFPT 80
DTFSD 95
ISMOD 137
MTMOD 91
ORMOD 105
PRMOD 86
PTMOD 82
SDMOD 97

Sequence Link 57
Sequential DASD Files (DTFSD) 92
Sequential DASD Module (SDMODxx) 98-100

70

Sequential DASD, Opening 23
Sequential Processing 7, 73-120

DTFCD 73-76
DTFCN 99-100
DTFMT 86-91
DTFPR 83-85
DTFPT 77-80
DTFSD 92-97
DTFSR 102-118

Sequential Processing, Macros for 11, 31
Serial Device File (DTFSR) 105-120
SETFL Macro (ISFMS) 61
SETL Macro (ISFMS) 65
SETlME Macro 150, 152
Special Register Notation
Split-Cylinder Concept 23
SRCHM

DTFDA 127
SSD, CNTRL Mnemonic
SSELECT

DTFCD 75

39

18-19

Standard File Label Formats (DASD)
Standard File Labels (DASD) 166
Standard Labels (Tape) 28, 29

166-167

Standard Module Name 15
Standard Tape Labels 168
Standard Tape Labels, Bypassing 29
Status or Condition Code Indication

(ISFMS) 129
Storage Areas 31
Storage Areas (DAM)
Storage Areas (ISFMS)
STXIT Macro 151

45
53

15 Subset and Superset Module Names
Subset Module, Definition of 14
Subsetting and Supersetting of Module

Names
CDMOD
DAMOD
ORMOD
PRMOD
PTMOD
MTMOD
SDMOD

77
129
105
86
83
92
99

Subsetting
for MTMOD

and Supersetting
92

Work Files

Superset Module, Definition of
Summary of PTMOD 82-83
Supervisor - Communication Macro

14

Instructions 147-158
Symbolic Unit Addresses
System/360 Codes (CTLCHR)
System End of Volume (SEOV)

13
170-175

72

Tape
for

Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
Tape
TECB

and Disk Work Files, Macros
42-45

Files, Positioning 28
Files, Reopening and Repositioning
Input File, Closing 71
Input File (Completion) 68
Input File (OPEN Macro) 29
Input Files, Opening 29-30
Open, Unlabeled Input 30
Open, Unlabeled Output 29
Output File, Closing 71
Output File (Completion) 69
Output File (OPEN Macro) 28
Macro 152

Index

70

193 •

Time of Day Macro 150
TPMARK

DTFMT 90
DTFSR 118

Track Index (ISFMS) 55
Track Reference (DAM) 46-47
Track Reference Field (SEEKADR) 48, 126
Tracks Required, CHKPT on Disk 154
TRANS

DTFPT 80
DTFSR 118
PTMOD 82

Translate Tables (Paper Tape Reader) 82
TRUNC Macro 35
TRUNCS

DTFSD 95
DTFSR 118
SDMOD 97

Type 128 Extent 23, 25, 42
TYPEFLE

CDMOD 76
DTFCD 75
DTFCN 99
DTFDA 127
DTFIS 135
DTFMT 90
DTFPH 146
DTFSD 95
DTFSR 118
ISMOD 137
MTMOD 91
SDMOD 101

Types of LIOCS Processing 7

UCS
DTFPR 85

Unblocked Re-cords 32, 34
Undefined Record Format, Optical

Reader Files 104
Undefined Records 32, 34
Undefined Records (Paper Tape Reader) 82
Unlabeled Input, Tape Open 30
Unlabeled Output, Tape Open 29
Unlabeled Tape Files 29, 30, 169
Use of CHKPT Macro 153
Use of Supervisor Macros, Multiprogramming
Restrictions on 147

User Exit and Interval Timer Macros 150
User-Standard DASD File Labels 167
User-Trailer Labels (DASD Input
File) 27, 167

UPDATE
DTFSD 96
DTFSR 119
SDMOD 98

Updating 34

VARBLD
DTFMT
DTFSD
DTFSR

90
96
119

• 194 DOS Sup. and I/O Macros

Variable Length Records 34
VERIFY

DTFDA 127
DTFIS 135
DTFSD 96
DTFSR 119

Volume Label (DASD) 166
Volume Table of Contents (VTOC) 23, 167
VTOC Checking for Output Files 26

WAIT Macro
WAITF Macro
WAITF Macro
WAITF Macro
WLRERR

DTFMT
DTFPT
DTFSD
DTFSR

141, 152
(DAM) 52
(DTFOR) 42
(ISFMS) 64

90
80
96
119

Work Area, Definition of 31
Work Files (Disk) 42
Work Files for DTFMT and DTFSD

(2311) 42-45
Work Files (Tap~) 42
Work Files (Tape and Disk) ,

Macros for 42
WORKA

CDMOD 76
DTFCD 76
DTFCN 99
DTFMT 90
DTFOR 105
DTFPR 85
DTFSD 96
DTFSR 120
MTMOD 93
ORMOD 105
PRMOD 86
SDMOD 101

WORKL
DTFIS 135

WORKR
DTFIS 135

WORKS
DTFIS 135

WRITE Macro (DAM) 52
WRITE Macro (ISFMS) 61-64
WRITE Macro (Work File) 43
WRITEID

DTFDA 1.27
WRITEKY

DTFDA 128
Writing DASD User Standard Labels 26, 30
Writing Nonstandard Labels, Tape 28
Writing Standard Tape Labels 28
Writing User Standard Labels, Tape 28, 30
WTM (CNTRL) 37

XTNTXIT
DTFDA
DTFPH

128
146

Figure 1. Physical IOCS vs Logical
IOCS. . • . . • • • • . . . • • . .• 7

Figure 2. Retrieving a Record Using
Logical IOCS (One I/O Area) or Physical
IOCS. • • • 8

Figure 3. Schematic of Macro
Processing. . • 10

Figure 4. Sample DTFMT Macro
Instruction . • 12

Figure 5. Macro Instructions for Input/
Output Control. • • • • . • . . . •• 2~

Figure 6. CNTRL Macro Instructions.. 37
Figure 7. Schematic of I/O Area in

Main Storage, for DAM • . . • . • .• 47
Figure 8. Track Reference Field . .. 48
Figure 9. Contents of Record 0 for
Capacity - Record Option. . . • . .. 50

Figure 10. Schematic of I/O Areas in
Main Storage, for ISFMS . . • • . 54

Figure 11. Schematic Example of a
Track Index . . . • . • . • . • . 55

Figure 12. Schematic Example of a
Cylinder Index. . . • • . • . . . 56

Figure 13. Schematic Example of a
Master Index. • • . • . . 57

Figure 14. Example of Data Records as
Originally Organized on Tracks 2 and 3 58

Figure 15. Example of Track Index
Entries Before and After Addition of a
Record on Track 2 . • 58

Figure 16. Example of Sequence Link
Fields Adjusted for Addition of a
Record 135. • . . 58

Figure 17. Schematic of a File on
2311 DASD Organized by ISFMS. . 60

Figure 18. DTFCD Entries. 74
Figure 19. DTFPT Entries. 78
Figure 20. DTFPR Entries. . 84
Figure 21. DTFMT Entries. . • •. 87
Figure 22. DTFSD Entries. . 94
Figure 23. Parameters for SDMODxx •. 98
Figure 24. DTFCN Entries. • 100
Figure 25. DTFOR Entries. • . . • 102
Figure 26. DTFSR Entries. 106-110
Figure 27. ID Supplied After a READ
or WRITE Instruction. _ • • 124

FIGURES

Figure 28. I/O Area Requirements for
DAM . •............. 124

Figure 29. DTFDA Entries. . 125
Figure 30. DAMOD Entries. . 128
Figure 31. DTFIS Entries. . 130-131
Figure 32. FilenameC--Status or
Condition Code Byte

Figure 33. Output Area Requirements
for Loading or Adding Records to a

· 132

File by ISFMS • • . . . • . 133
Figure 34. I/O Area Requirements for

Random or Sequential Retrieval by
ISFMS•...

Figure 35. ISMOD Entries
Figure 36. Conditions Indicated by

· 134
• 136

CCB Bytes 2 and 3 • 139-140
Figure 37. Command Control Block

(CCB) • . . . • . .. 141
Figure 38. DTFPH Entries•. 145
Figure 39. Communication Region (in
Supervisor) • •

Figure 40. The Timer Event Control
Block (TECB).

Figure 41. Direct Linkage .•.•
Figure 42. Linkage Registers ...
Figure 43. Save Area Words and

• 149

· 152
159
160

Contents in Calling Program .. . 161
Figure 44. Save Area Chaining ..•• 163
Figure 45. Assembling the Problem
Program, DTF's and Modules Together
(Example 1) • • • • . • . • • . • • • 174

Figure 46. Logic Modules Assembled
Separately (Example 2). • . • • . . . 175

Figure 47. Logic Modules and DTF's
Assembled Separately (Example 3) ••. 177

Figure 48. Separate Assemblies,
(Example 3) ••••.•••••. 178-181

Figure 49. Logic Modules and DTF's
Assembled Separately, I/O Areas With
Main Program (Example 4). • • • • • . 183

Figure 50. Label Exit, EOF Exit,
DTF's, and Logic Modules Assembled
Separately; I/O Areas With Main
Program (Example 5) • • • . • • • . . 184

Figures 195 •

C24-5037-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I0BOl
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

READERIS COMMENT FORM

IBM System/360
Disk Operating System
Supervisor and Input/Output Macros C24-5037-2

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confi­
dential basis. Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

Yes No

• Does this publication meet your needs? CJ c:::J

• Did you find the material:
Easy to read and understand? CJ c:J
Organized for convenient use? CJ c::::::J
Complete? CJ c::J
Well illustrated? CJ c::J
Written for your technical level? CJ c::J

• Wh~~yourocc~ation?~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• How do you use this publication?
As an introduction to the subject? c::J As an instructor in a class? c::::::J
For advanced knowledge of the subject? c::J As a student in a class? c::J
For information about operating procedures? c:::::J As a reference manual? c::J

Other __ ~~~~~~~~~~~~~~~~~~~~~~~~ ____ ~~~~~ __ ~ __
• Please give specific page and line references with your comments when appropriate.

COMMENTS:

• Thank you for your cooperation. No postage necessary if mailed in the U. s. A.

Fold Fold

,---------~----------------~-------------------------------~

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Publications, Dept. 157

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 6

EndicoH, N. Y. 13760

FIRST CLASS

PERMIT NO. 170
ENDICon, N. Y.

Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[In terna tional]

Fold

