

A GUIDE

 TO USING CSMPThe Continuous System Modeling ProgramA Program for Simulating Physical Systems

Frank H. Speckhart

Professor
Mechanical and Aerospace Engineering Department
University of Tennessee, Knoxville

Walter L. Green
Professor
Electrical Engineering Department
University of Tennessee, Knoxville

Speckhart, Frank h

A guide to using CSMP-the Continuous system modeling program.

Includes bibliographical references and index.

1. CSMP (Computer Program) 2. Digital computer
simulation. 3. Engineering-Data processing.
I. Green, Walter L., joint author.
II. Title.

TA343.S64 001.6'424 75-19498
ISBN 0-13-371377-6
(C) 1976 by Prentice-Hall, Inc.

Englewood Cliffs, N.J.

All rights reserved. No part of this book may be reproduced in any form, by mimeograph or any other means, without permission in writing from the publisher.
$\begin{array}{llllll}10 & 9 & 8 & 7 & 6 & 5\end{array}$

Printed in the United States of America.

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICE-HALL OF SOUTHEAST ASIA (PTE.) LTD., Singapore

CONTENTS

PREFACE ix

1
INTRODUCTION 1
An Application-Oriented Program 1
Background Required for Using CSMP 2
The Power of CSMP 3
References 4
2
FUNDAMENTALSOF SYSTEM/360 CSMP5
A General Overview of CSMP 5
Symbols and Constants 7
Operators 8
Format 9
Structure of CSMP 10
Initial Segment 11
Dynamic Segment 12
Terminal Segment 12
Sort and Nosort Sections 12
Solving Problems with CSMP 14
Example 2.1 Spring-Mass-Damper System 14
Example 2.2 Simulation of a Block Diagram 18
Example 2.3 Solution of the Van der Pol Equation 25
Example 2.4 Transient Temperature Response 30
Example 2.5 Three-Stage Saturn Vehicle 35
Example 2.6 Control System with Compensation 39
Example 2.7 RCL Circuit Problem 42
Example 2.8 Temperature Control for a Chemical Process 52
Example 2.9 Simulation of Gear Train Containing Backlash 58
Example 2.10 Beam Deflection Problem 60
Example 2.11 Stress Analysis of Cam-Follower System 65
References 68
Problems 69
3
ADVANCED FEATURES OF CSMP 81
Integration Methods 81
Variable-Step Integration Methods 82
Integration Error Requirements 82
Fixed-Step Integration Methods 85
Choosing the Integration Method 85
The Variable KEEP 89
Changing Integration Technique and Output Interval During a Run 90
Example 3.1 90
User Supplied Integration Method 93
Example 3.2 93
Data Statements 95
Subscripted Variables 95
DIMENSION Statement 97
FORTRAN Specification Card 98
STORAGE Statement 98
Assigning Values to Subscripted Variables 98
Specification Form of Integral Statement 103
Example 3.3 104
Example 3.4 107
Overlay Statement 109
Example 3.5 110
Translation Control Statements 112
END 113
Example 3.6 114
RESET 117
Example 3.7 118
CONTINUE 119
STOP 123
ENDJOB 124
ENDJOB STACK 124
Data Output 124
FORTRAN Output 124
Example 3.8 126
DEBUG Subroutine 129
PREPARE 132
Example 3.9 134
DECK 135
User Defined Functions and Subroutines 138
MACRO Functions 140
Example 3.10 145
Example 3.11 147
Example 3.12 151
PROCEDURE Function 154
Example 3.13 158
FORTRAN Subprograms 165
General Guidelines 165
Example 3.14 167
Memory 168
History 171
Implicit Functions 171
Formulation of Implicit Functions 172
Example 3.15 176
Example 3.16 177
References 179
Problems 179
4
FURTHER APPLICATION OF CSMP 193
Frequency Response 194
Frequency Response Without Integration 195
Example 4.1 196
Frequency Response Using Array Integrators 197
Example 4.2 200
State Variable Formulation From Transfer Functions 205
Digital Control Systems 209
Example 4.3 210
Example 4.4 211
Example 4.5 215
Example 4.6 221
Simulation Digital Logic 224
Example 4.7 224
Example 4.8 228
References 233
Problems 233
5
CSMP III 244
Output Statements 245
PRINT 245
TITLE 245
RERUN 246
PRINTPAGE 246
OUTPUT 246
Example 5.1 247
LABEL 248
PAGE 252
Example 5.2 253
Example 5.3 254
CALL PRINT and CALL OUTPUT 260
RANGE 260
Functions 260
Arbitrary Function Generators 262
FUGEN 262
CALL FGLOAD 262
TWOVAR 263
CALL TVLOAD 264
SLOPE 265
TRANSF 265
Control Statements 266
END CONTINUE 266
INPUT and ENDINPUT 267
CALL FINISH 267
CALL CONTIN 267
Integration Techniques 267
Array Integration 268
DELMAX 268
TIME 268
Double-Precision Operation 268
References 271
Problems 271
APPENDIXI
LISTING AND DEFINITIONOF ALL CSMP FUNCTIONS 281
APPENDIX//
DIAGNOSTIC MESSAGES, PROGRAM RESTRICTIONS, AND RESERVED WORDS 304
APPENDIXIII
MATHEMATICS OF INTEGRATION
METHODS 317

References

INDEX 321

PREFACE

During the last few years the digital computer has assumed a prominent role in system simulation and in the solution of nontrivial mathematical equations. Computer languages such as FORTRAN, BASIC, and PL/1 have provided users with a convenient method for communicating with the computer on a wide range of problems. In many cases, specialized computer programs have been developed that are directly tailored to a particular class of problems. A notable example is in the area of modeling physical systems. Several software packages are available, one of the most widely used being the Continuous System Modeling Program (S/360 CSMP and CSMP III) which was developed by the IBM Company.

CSMP is a program especially designed to allow users to simulate all types of physical systems with a minimum of programming difficulty. The language employs user-oriented statements for formulating numerically complicated mathematical operations such as integration and differentiation. Input data, problem parameters, and program output are handled by extremely simple statements. The power and flexibility of FORTRAN is retained with CSMP since it is used as the source language. Essentially, all capabilities of FORTRAN can be used in a CSMP program.

The basic objective of this text is to provide instruction for both the college student and the practicing engineer and scientist on the use of CSMP in modeling physical systems and solving mathematical equations. The book assumes that the reader has no background in CSMP and only an introductory knowledge of FORTRAN.

In many programming texts, the essential ingredients for writing a complete program (input, output, and structure statements) are contained in various chapters throughout the book. This means the user must read the entire text before formulating and writing meaningful programs. This book is organized in such a way
that the reader need study only the first two chapters in order to solve significant problems.

The basic fundamentals of CSMP are presented with detailed explanations and are illustrated by example problems. From our experience as both students and teachers, we feel that this approach is more appealing and effective in the learning process. Thus, important concepts, program statements, and general software procedures are illustrated by actual working programs representing disciplines from a large cross section of engineering, mathematics, and related fields.

The first two chapters present introductory material and are designed to bring the reader to a point where it is possible to effectively use the program. Each example in Chapter Two concentrates on presenting one or two key concepts and then showing how these concepts are applied in a typical application. The third chapter has a somewhat different objective in that it concentrates on presenting the more advanced features of CSMP and is developed under five main headings; Integration Methods, Data Statements, Translation Control Statements, Subprograms, and Data Output. Once the reader has a basic knowledge of CSMP, the material in this chapter can be used to increase programming capability and as a convenient reference section. As in the second chapter, all important concepts are illustrated by practical example programs. Chapter Four concentrates on specific examples dealing with the frequency response of a system, the simulation of digital control systems, and the simulation of logic functions.

All of the material prior to Chapter Five is written for S/360 CSMP. With the exception of output capability, there is very little difference in using S/360 CSMP and CSMP III. Consequently, the first four chapters also apply to CSMP III. The additional capabilities and slight programming changes are outlined in Chapter Five.

Practice problems are included at the close of all major chapters. Any serious potential user of CSMP should work these problems since it is practically impossible to master a program language without actually writing programs.

The material contained in the Appendix is quite useful in that it gives a complete summary of all functions and signal sources available in CSMP as well as a list of definitions, restrictions, diagnostic messages, and reserved words.

The authors wish to express their appreciation to Mr. George Miles and Mr. Wayne Toppins of the University of Tennessee Computing Center for their assistance and helpful comments. Also, we are grateful to our wives for their continuous encouragement.

F.H.S., W.L.G.

1

INTRODUCTION

In the years preceding the development and wide acceptance of the digital computer, solutions for system simulations and differential equations were commonly programmed on the analog computer. Inherent with the analog computer was the necessity for the user to give careful consideration to both magnitude and time scaling of the problem variables. Complex operations such as square roots, squaring, and trigonometric functions usually required special purpose hardware. The solution to higher-order equations or to several simultaneous equations resulted in a complicated maze of patch-panel wiring. Troubleshooting for a misplaced wiring connection on the patch board was a tedious and time-consuming task.

Following the introduction of FORTRAN and other high-level programming languages, digital computer methods were developed that made possible the numerical solution to problems that were formerly solved on the analog computer. Mathematicians, researchers, and engineers were confronted with developing and debugging their own programs or relying on the skill of a professional programmer. Relying on a programmer to develop software often results in either the user not adequately describing the problem or the programmer not correctly interpreting the user's request.

If, however, users accept the challenge of developing their own software, they are faced with the problem of devoting so much effort to writing programs that little time is left for the main responsibilities of their positions.

An Application-Oriented Program

In response to the need for a program language that did not require extensive knowledge of FORTRAN methods and numerical techniques, IBM developed an
application-oriented program known as Digital Simulation Language-90 (DSL-90) for the 7090 digital computer series. ${ }^{(1)}$ This program was later modified and adapted for use with the IBM System/360. The name of the simulation was changed to Continuous System Modeling Program (System/360 CSMP). ${ }^{(2-4)}$ More recently the scope of CSMP has been extended to include greater flexibility by incorporating CRT graphic-display capability, multiple printer-plots on a single page, lineprinter charts, overstrikes for graytoning and contour definition, and several new function blocks. ${ }^{(5-6)}$ This version of the program is known as CSMP III. Since there is very little difference between S/360 CSMP and CSMP III, both forms are simply referred to as CSMP. This book will use both forms.

CSMP was particularly written to solve either a system of ordinary differential equations or analog block diagrams as encountered in system theory. In developing the program, emphasis was placed on simplified input data statements, output statements, and on program control statements that almost directly describe the mathematical equations or physical variables of the problem. In effect, CSMP allows the user to concentrate on the details of the physical system rather than the usual concerns of numerical analysis and programming.

Background Required For Using CSMP

A person entirely unacquainted with computer programming can learn to solve significant and rather complex problems with CSMP with less than two hours of preparation. An introductory knowledge of FORTRAN is a helpful but not an essential prerequisite. Using CSMP is like using any other programming language in that the scope of problems which one can solve increases with the depth of preparation and the frequency of application.

Using the CSMP program is similar in many respects to using the electronic analog computer. Many of the special CSMP statements perform the same function as typical analog computer components. As previously noted, there is never a need to be concerned with amplitude and time-scaling. CSMP digital simulation has many other advantages over the use of an analog machine in that it (1) is more accurate; (2) is easier to program; and (3) has much greater capability in handling nonlinear and time-variant problems.

Anyone working in a field of science who has a need to simulate a system or solve ordinary differential equations will quickly recognize the power of CSMP. Typically, CSMP can be used to model the dynamic behavior of an automobile, to determine the effect of adding nonlinear rubber isolaters in controlling the vibration of a machine, to study the effects of changing the deadband in a controller of a nonlinear feedback-control system, to simulate the cardiovascular system, and to predict the future performance of the stock market from a yet to be derived nonlinear, time-varying, multiple input/output model. Apparently, the number of potential applications for CSMP is limited only by the needs and imagination of its users. ${ }^{(7-11)}$

The Power of CSMP

The flexibility and ease of using CSMP cannot be described in a few short sentences. However, as a simple introduction, consider the following nonlinear, time-varying, differential equation:

$$
\begin{gathered}
\frac{d^{2} y}{d t^{2}}+y t \frac{d y}{d t}+y=t^{2} \\
y(0)=1.0 \\
\dot{y}(0)=2.0
\end{gathered}
$$

The program below illustrates the ease of solving this equation.

```
Y2DOT = TIME*TIME - Y - Y*TIME*YDOT
YDOT = INTGRL (2.0, Y2DOT)
Y = INTGRL (1.0, YDOT)
TIMER FINTIM = 3.0, PRDEL = 0.03
PRINT Y
END
STOP
ENDJOB
```

With the exception of control cards, the entire program listing consists of only eight statements. The output from the computer will be a column listing giving 100 discrete values of the dependent variable Y calculated uniformly over three units of problem time. As a comparison, the reader might reflect on the effort required to solve this problem by numerical methods using FORTRAN or by simulation using an analog computer.

As another simple example, suppose the step response of the following block diagram representation of a system is desired.

This system can be simulated using only ten CSMP statements.
As these illustrations point out, only a few program statements are required for problem simulations. Solutions using FORTRAN or an analog computer would certainly require much more complicated programming. However, FORTRAN and analog simulation are powerful in their own right. The purpose of this text is to give the reader a background in CSMP and leave the ranking of programming methods to someone else.

CSMP is most useful for small and medium-size simulations. For extremely large and complex problems the simulation may be limited by program-size restrictions. Also, because of the flexibility in programming, CSMP simulations may require slightly more computer time than custom-developed programs.

REFERENCES

1. Syn, W.M. and R.N. Linebarger, "DSL/90-A Digital Simulation Program for Continuous System Modeling." 1966 Spring Joint Computer Conference, April 26-28, 1968.
2. System/360 Continuous System Modeling Program, User's Manual GH20-0367-4; Program Number 360A-CX-16X. IBM Corporation, Technical Publications, White Plains, N. Y.
3. System/360 Continuous System Modeling Program (360A-CX-16X), Application Description, H20-0240-1. IBM Corporation, Technical Publications, White Plains, N. Y.
4. Brennan, R.D. and M.Y. Silberberg, "The System/360 Continuous System Modeling Program." SIMULATION 11, No. 6, December 1968, 301-308.
5. Continuous System Modeling Program III (CSMP III), Application Description, program number 5734-XS9. IBM Corporation, Data Products Division, White Plains, N. Y.
6. Continuous System Modeling Program III (CSMP III), Program Reference Manual SH19-7001-2, Program Number 5734-XS9. IBM Corporation, Data Processing Division, White Plains, N. Y.
7. Chubb, B.A., "Application of a Continuous System Modeling Program to Control System Design." Proceedings 11th Joint Automatic Control Conference, June 24, 1970.
8. Eden, M.S., "The Use of CSMP Digital Simulation Language in Manual Flight Control Analysis." Proceedings 1970 Summer Computer Simulation Conference, June 1012, 1970.
9. Brennan, R.D., C.T. DeWit, W.A. Williams, and Quattrin, "The Utility of a Digital Simulation Language for Ecological Modeling." Oecologia 4, May 1970, 113-132.
10. Winton, H.J. and R.N. Linebarger, "Digital Simulation of Human Temperature Control." Proceedings 1970 Summer Computer Simulation Conference, June 10-12, 1970.
11. Wolf, J. and W.L. Green, "Simulation Study of Predictive Control." Proceedings of the National Electronics Conference, Vol. 27, Oct., 1972.

2

FUNDAMENTALS OF SYSTEM/360 CSMP ${ }^{\dagger}$

The objective of this chapter is to present those fundamentals of CSMP that will allow the beginning user to write productive programs. Extensive discussions of format, program structure, and the functions of the simulation language as separate sections within the chapter are purposely avoided. This is because the authors have found through experience that the basic fundamentals can be more readily grasped by presenting examples that illustrate practical applications of the program.

The discussions of symbols, constants, operators, structure, and format provide a working description of the simulation language. These discussions are followed by eleven examples that have been carefully selected to enable the reader to develop a fundamental knowledge of the simulation language as he progresses through the material. Problems at the end of the chapter should be considered as part of the text, for it is practically impossible for one to ever develop programming skill without personally formulating and writing programs.

A General Overview of CSMP

CSMP is an application-oriented program in that it is specially written for scientists, engineers, and analysts who are involved in work that requires the solution of ordinary differential equations or in simulating a system that has been modeled as a block diagram. Long hours of tedious program development and program debugging are not required for effecting the solution of rather complicated problems.
\dagger Even though this chapter specifically deals with S/360 CSMP, the same programming fundamentals also apply to CSMP III. With the noted exception of the Example 2.2, all programs in this chapter will run on a CSMP III system.

The utility and ease of using CSMP stems mainly from (1) simplified program statements; (2) flexibility of program structure; and (3) a basic set of preprogrammed function blocks.

Program statements can be broken down into three categories: data statements, structure statements, and control statements. Data statements pertain to entities such as initial conditions for integration or numerical values for parameters and constants of the problem. Structure statements are the heart of the program in that the inner-relationship of the problem variables are here defined. Control statements are used to specify the problem run-time, the integration increment, the format of the output data resulting from the problem solution, and other specific options relating to translation and execution of the program. In reality, the user is not compelled to make a decision in terms of which category a problem statement belongs. These categories are defined simply to describe the types of statements that are utilized.

The program structure of CSMP is composed of three segements: Initial, Dynamic, and Terminal. Generally, data statements will appear in the Initial segment. In addition, calculations that are required to be performed only one time during a simulation (i.e., the volume of a cylinder) can be conveniently placed in this segment. The Dynamic segment is usually composed of structure statements that describe the dynamics of the system or explicitly describe a set of differential equations. The Terminal segment is the last segment in the program and is usually made up of control statements.

Many problems simulated by CSMP will not require the explicit structure described above. Examples that use the Initial, Dynamic, and Terminal segmentation as well as examples in which this segmentation can be omitted are presented in this chapter.

The flexibility of CSMP can be considerably extended to include the power of FORTRAN conditional logic and branching. This extension is accomplished through the sort and nosort options of the program. If the user does not specify sort and nosort sections, a sort subprogram within CSMP will automatically place the problem statements in the correct order for the simulation. Automatic sorting relieves the user from the task of keeping up with the proper order of program statements as required by the FORTRAN language. However, occasions often arise whereby conditional logic and branching are necessary in a simulation. The NOSORT label card provides this additional flexibility by establishing sections in the program in which the statements are executed by ordinary FORTRAN rules. A more detailed discussion on the structure of CSMP, including the sort and nosort options, will be given later.

Perhaps one of the greatest assets of CSMP is the availability of thirty-four functional blocks. ${ }^{(1)}$ A functional block plays a role similar to a FORTRAN subroutine in that the user specifies a function but, in this case, the subroutine that specifies the properties of the function is pre-programmed in the CSMP package. The different types of functional blocks are (1) mathematical functions;
(2) system macros; (3) switching functions; (4) function generators; (5) signal sources; (6) logic functions; and (7) FORTRAN functions. A complete list of the functional blocks along with appropriate descriptions of what the functions accomplish is given in Appendix I. Illustrations using many of these functions will be presented in this chapter.

Most simulations require some form of integration. For this purpose, CSMP gives the user a choice of seven pre-programmed methods. If the user does not specify an integration method, the program will automatically use Runge-Kutta with variable integration-step size (RKS).

The user interested in installation and system requirements for running CSMP should consult appropriate IBM manuals. ${ }^{(2-3)}$

The following paragraphs describe the use of symbols, constants, and operators as normally employed in programming languages and particularly as employed in CSMP. Next, a fairly comprehensive description of the structure of CSMP is presented. Many readers may find it advantageous to proceed to Example 2.1 and return to the following material at a later time.

Symbols and Constants

All symbols used in CSMP programs must begin with an alphabetic letter (A through Z) and contain not more than six characters. Only alphabetic and numeric characters with no embedded-blanks are allowed. Some examples of valid and invalid symbols are:

Allowed

Q1	1Q	First character is a number
B12345	B A	Embedded-blank
ABCDEF	ABCDEFG	Too many characters
I1J2	*AB	Invalid first character
K	A(A	Invalid second character

There are certain words reserved for CSMP and FORTRAN that cannot be used as symbols. These reserved words are listed in Appendix II. Unlike FORTRAN, the CSMP language does not require that symbols having a first character of I, J, K, L, M, or N be automatically treated as integers. All symbols, unless otherwise specified, will be treated as floating-point numbers. \dagger The method of designating a symbol as an integer is discussed in Chap. 3.

Floating-point (real) constants can be written two ways. The most common method involves numbers with only a decimal point.

[^0]234.256756
0.005945
-45.7
$+100.0$
This type of number is limited to a total of twelve characters and not more than seven significant decimal digits. For either very large or small numbers, the format involving the letter E should be used. This type constant can assume values between approximately 10^{-75} through 10^{+75}. Examples of E-format numbers, which can be used in a CSMP program, are listed below.

E-format	Equivalent to
3.254 E 4	3.254×10^{4}
-678.1 E 7	-6.781×10^{9}
$0.0231 \mathrm{E}-5$	2.31×10^{-7}
1764.7 E 11	1.7647×10^{14}

Integers are written without a decimal point and can contain up to ten digits.
The use of subscripted variables [e.g., $\mathrm{X}(4), \mathrm{Y}(4,5,7)$] is permitted in the CSMP language with certain restrictions. These restrictions and guidelines for using subscripted variables are outlined in Chap. 3. Double precision is only available in CSMP III. This is covered in detail in Chap. 5.

Operators

Operators used for the basic arithmetic operations are exactly the same as FORTRAN. These operators are tabulated below.

Symbol	Function	Symbol	Function
$+$	addition	**	exponentiation
-	subtraction	=	replacement
*	multiplication	()	
			variables and/or constants
1	division		

The order in which calculations are performed is also exactly the same as FORTRAN.

Operation
Evaluation of functions
Exponentiation (**)
Multiplication and division (* and /)
Addition and subtraction 4th (lowest)

Hierarchy

1st (highest)
2nd
3rd

Operators of the same hierarchy, with the exception of exponentiation, are performed from left to right and exponentiation operations are performed right to left. Expressions within parentheses are always performed first. The order of some arithmetic calculations is shown in the following examples:

$$
\begin{array}{rlrl}
\mathrm{A} / \mathrm{B} * \mathrm{C} & =\frac{A}{B} C & \mathrm{~A} /(\mathrm{B} * \mathrm{C}) & =\frac{A}{B * C} \\
\mathrm{~A} * * \mathrm{~B} * * \mathrm{C} & =A^{\left(B^{C}\right)} & (\mathrm{A} * * \mathrm{~B}) * * \mathrm{C} & =\left(A^{B}\right)^{C}=A^{B+C}
\end{array}
$$

Many programming errors can be attributed to mistakes in interpreting the correct hierarchy of operations. For this reason, it is recommended that sufficient sets of parentheses be used to insure that the arithmetic operations are performed in the desired order.

Format

As with FORTRAN, only columns 1 through 72 are read as part of the program. Consequently, columns 73 through 80 are not processed and can be used for any type of identification. Unlike FORTRAN, structure statements can begin in any column. Some typical CSMP statements printed on computer cards are shown in Fig. 2.1.

Three consecutive periods (. . .) at the end of the information contained on a computer card indicates that the statement is continued to the next card.

$$
\left.\begin{array}{rl}
\mathrm{Y}= & 3.569 * \operatorname{SIN}(3.14159 * \mathrm{TIME} / 180.0)+54.632 * \operatorname{EXP}(21.3 * \mathrm{TIME}) \ldots \\
& -2.32 * \mathrm{X} * \mathrm{Z} /(3.14159 * \mathrm{P})
\end{array}\right] \begin{aligned}
& {\left[\begin{array}{l}
\text { Three consecutive periods } \\
\text { allows continuation to the } \\
\text { next card. }
\end{array}\right.}
\end{aligned}
$$

A statement may be continued on as many as eight cards for a total of nine cards to express a single statement. Special care should be taken not to separate a constant or a symbol on consecutive cards. This type of error is very difficult to find since no diagnostic messages are printed.

An asterisk in the first column denotes a comment card. Comment cards have no effect on the execution of the program. They can be placed anywhere in the program and will be printed with the program listing. Blank cards may be inserted

Fig. 2.1 Computer cards printed with examples of CSMP statements.
in the computer card deck to add additional lines of spacing in the listing of the program.

Structure of CSMP

The solution of most problems does not require a detailed understanding of the structure of CSMP. However, in complicated simulations where it is required to control the order of the execution of the program, an understanding of the structure of the CSMP program is necessary.

Basically the CSMP program can be divided into three segments:
INITIAL
DYNAMIC
TERMINAL

Each of the three segments can be further divided by repeated use of sort and nosort sections. The program simulation statements are contained in the body of these sections. A diagram showing the basic structure of a CSMP program is shown in Fig. 2.2.

Fig. 2.2 Structure of the CSMP program.

The following paragraphs give a description of the INITIAL, DYNAMIC, and TERMINAL segments and explain their application. It should be noted that the three segments must appear in the order presented and each segment can be used only once.

Initial Segment

The Initial segment is the first to appear in the program. It is used exclusively for calculations that need to be performed only once. The use of the Initial segment can reduce computer time since all statements listed in this segment will be executed only. once. All calculations for initial conditions must be included in this segment. It is not always necessary or even desirable to use the Initial segment, consequently, this segment is optional. To specify the use of the Initial segment, a card must be inserted with the label INITIAL at the beginning of the segment.

Dynamic Segment

The CSMP program uses an iterative procedure for problem solution. Since iterations only occur in the Dynamic segment, all simulation statements that are used to describe the dynamic response must be included in this segnent. In effect, the Dynamic segment can be thought of as a subprogram that is executed at each iteration step. The Dynamic segment can be specified by two methods as listed below.

1. If the Initial segment is not specified, the Dynamic segment is automatically incorporated into the program. No labeling is necessary.
2. If the Initial segment is specified, a card with the label DYNAMIC must precede the statements in the Dynamic segment.

Terminal Segment

The Terminal segment is the last of the three segments and is used for those calculations that should be performed at the completion of the simulation. This segment is optional and is only executed when a statement with the label TERMINAL is placed after the Dynamic segment.

Sort and Nosort Sections

One of the most important and valuable features of the CSMP program is the sorting capability. The sorting feature chooses the correct order for the execution of the structure statements. This means that in a section where the statements are sorted (called a sort section), the order in which the statements are placed in the program deck has absolutely no effect on the order of statement execution. The sort section cannot be used for all types of operations. For example, the following FORTRAN conditional logic and branching statements, which control the order of execution, obviously conflict with the CSMP sorting procedure.

$$
\begin{aligned}
& \text { IF(X.GT.4.5) GO TO } 6 \\
& \text { GO TO } 7 \\
& 6 \text { IF(Y) 3, 4, } 5
\end{aligned}
$$

Consequently, these types of FORTRAN statements cannot be used in a sort section. An expression such as

$$
X=X+1.0
$$

in which the same variable appears on both sides of the equal sign is another type of operation that cannot be used in a sort section. Also excluded from sort sections are FORTRAN WRITE and FORMAT instructions such as the following:

$$
\begin{aligned}
& \text { WRITE(6, 100) X, Y, Z } \\
& 100 \text { FORMAT(3F30.5) }
\end{aligned}
$$

In nosort sections, no sorting is performed and therefore all statements are exe-
cuted in the exact order in which they appear in the program. FORTRAN conditional logic and branching and all other similar statements that specify a particular order of control must be included in a nosort section.

All statements in the Initial and Dynamic segments not labeled by a NOSORT card are automatically placed in sort sections while statements in the Terminal segment are automatically placed in a nosort section. To specify a change in section in any of the three segments, the use of a separate card with either a SORT or NOSORT label is required. An example of a particular CSMP program having a complex structure is illustrated in Fig. 2.3.

In this example the first group of statements in the Initial segment are automatically sorted up to the point where the NOSORT statement is included. After the NOSORT card, all remaining statements in the Initial segment are contained in a nosort section. The first NOSORT label in the Dynamic segment places the first group of statements in a nosort section. The next group of statements after the SORT label are sorted. A NOSORT label then changes the last group of statements in the Dynamic segment back to a nosort section. In the Terminal segment,

Statements in the Dynamic segment are executed at each integration step.

Fig. 2.3 Example of a CSMP program having a complex structure.
the first group of statements are automatically placed in a nosort section. The following SORT label changes the last group of statements to a sort section.

Note that when a section contains both sort and nosort segments, the segments will be executed in the order they appear.

Solving Problems with CSMP

The following eleven example problems illustrate the use of CSMP to simulate a wide range of engineering and mathematical problems. By studying the examples and working the problems at the end of the chapter, the reader will have a good working knowledge of CSMP.

Example 2.1 Spring-Mass-Damper System

Some of the very basic concepts of CSMP can be illustrated by simulating the motion of the linear spring-mass-damper system that is shown in Fig. 2.4.

Fig. 2.4 Spring-mass-damper system.
Applying Newton's second law leads directly to the following second-order equation of motion.

$$
\begin{equation*}
M \frac{d^{2} X}{d t^{2}}+C \frac{d X}{d t}+K X=0 \tag{2.1}
\end{equation*}
$$

When dealing with differential equations higher than first-order, it is helpful to reduce all equations to a set of first-order expressions. For some problems, this can require a major effort. However, for Eq. 2.1, it is only necessary to introduce new symbols and rearrange variables.

Let

$$
\mathrm{VEL}=\frac{d X}{d t} \quad \text { (velocity) }
$$

and

$$
A C C=\frac{d(\mathrm{VEL})}{d t} \quad \text { (acceleration) }
$$

The resulting two first-order equations for velocity and acceleration along with the initial conditions are:

$$
\begin{align*}
\frac{d X}{d t} & =\mathrm{VEL} \tag{2.2}\\
\frac{d(\mathrm{VEL})}{d t} & =-(\mathrm{C} * \mathrm{VEL}+\mathrm{K} * \mathrm{X}) / \mathrm{M} \tag{2.3}
\end{align*}
$$

Initial conditions: $X(t=0)=1.0, \operatorname{VEL}(t=0)=0.0$

With this brief explanation, a CSMP program containing only the basic features needed to numerically solve Eqs. (2.2) and (2.3) is shown in Fig. 2.5. In this example program it is not necessary to specify the Initial, Dynamic, or Terminal segments. All statements are automatically placed in the Dynamic segment and sorted. Thus the order in which the structure statements are arranged in the deck has no effect on the execution of the program. The first two statements of the program are comment cards and are identified by an asterisk in the first column. As previously mentioned, comment cards do not affect the execution of the program. The third card is a CONSTANT statement used to assign values to variables.

```
* M = MASS, C = DAMPING CONSTANT, K = SPRING CONSTANT, X = DISPLACEMENT I
* VEL = VELOCITY, ACC = ACCELERATICN, XO = INITIAL OISPLACEMENT 
    CONSTANT M = 1.5,C = 4.0, K=150.0, XO = 1.0 
    ACC = (-K*X - C*VEL)/M
    X = INTGRL(XC,VEL)
    VEL = INTGRL(O.O,ACC)
    PRINT X, VEL, ACC
TITLE SIMULATICN OF A SPRING-MASS-CAMPER SYSTEM 8
    TIMER FINTIM = 2.0, PRDEL = 0.C5 9
END TIMER FINTIM 2.0. PRDEL O.OS
STOP11
END JOB 12
```

Fig. 2.5 Program for simulating spring-mass-damper system.
CONSTANT. The word CONSTANT must be the first label on the card and must be followed by at least one blank space. Otherwise, after this first blank space, blanks are not considered. Successive variables can be set equal to constants (both real and integer) by putting the variable name on the left side of the equal sign. A comma following a numeric value permits another assignment. Notice that a comma should not be placed after the last number. A CONSTANT statement must be continued to following cards by the use of three consecutive periods(...). The format of the CONSTANT card used in this example is

$$
\text { CONSTANT } \mathrm{M}=1.5, \mathrm{C}=4.0, \mathrm{~K}=150.0, \mathrm{XO}=1.0
$$

The fourth card is an ordinary FORTRAN statement used to calculate the acceleration (ACC). Statements 5 and 6 use a special mathematical function (INTGRL) that is unique to CSMP. The INTGRL statement represents the mathematical function of integration as defined by Table 2.1.

Table 2.1
Formulation for Integration

CSMP Form
Mathematical Function

$$
Y=\int_{0}^{t} X d t+I C
$$

Equivalent Laplace transform

In the definition presented in Table 2.1, the integration is with respect to the independent variable t. The symbol TIME is a reserved word in the CSMP program and is used to represent the independent variable. The integrand can be an algebraic expression, but the initial condition (IC) of the INTGRL function must be a constant or symbol. If the INTGRL function is included as part of a statement, it must be the rightmost part of the expression.

Allowed
$\mathbf{Y}=$ INTGRL(7.0, X-Z) $\quad Y=$ INTGRL $(3.0+4.0, \mathrm{X}-\mathrm{Z})$
$\mathbf{Y}=10.0+$ INTGRL(Q,X)
$\mathbf{Y}=3.0 * \operatorname{INTGRL}(\mathrm{Q}, \mathrm{X})$

Not Allowed
$\mathbf{Y}=\operatorname{INTGRL}(\mathrm{Q}, \mathrm{X})+10.0$
$\mathrm{Y}=\operatorname{INTGRL}(\mathrm{Q}, \mathrm{X}) * 3.0$

INTGRL is only one of several mathematical functions available to the CSMP user. A listing and a definition for all functions are contained in Appendix I.

The fifth and sixth statements of Fig. 2.5 represent the integration of Eqs (2.2) and (2.3). In statement 5, the velocity VEL is integrated to obtain the displacement X with the initial condition of X 0 . In the same manner, the sixth statement will perform the integration of the acceleration ACC to obtain the velocity VEL with the initial velocity equal to zero. The seventh card is a PRINT statement which has the following general definition.

PRINT. The PRINT card is used to specify the variables that will be printed at each specific interval during the simulation. All variables following the PRINT label plus the independent variable TIME will be printed and correctly labeled. A comma must be inserted between successive variable names and at least one blank space must follow the PRINT label. The PRINT label should appear only once in the program. If more than one PRINT statement is included, only the last will be executed. If necessary, three periods (...) can be used to continue to following cards. An example of the PRINT statement is:

PRINT X, VEL, ACC

A column format is automatically used for output when there are less than nine dependent variables printed. An example of this is shown in Fig. 2.6 which is the output of the program of Fig. 2.5. Up to forty-nine dependent variables can be printed. When more than eight are specified, an equation-form output format is used as shown in Fig. 2.7. Notice that the output for both Figs. 2.6 and 2.7 is E-format with five significant digits. The user has no other choice of output format when using the CSMP PRINT statement. The eighth card in the program is a TITLE statement.

TITLE. The TITLE card allows the user to specify a heading that will appear at the top of each page of printed output. At least one blank space must follow the label TITLE and the first character must be a number or an alphabetic letter. Continuation to successive cards is not permitted, but up to five TITLE cards can

SIMULATION OF A SPRING-NASS-CAMPER SYSTEM				
time	x	VEL	ACC	
0.0	1.0000E 00	0.0	-1.0000E	2
$5.0000 \mathrm{E}-02$	8.8283E-01	-4.4884E 00	-7.6313E	1
1.0000E-01	5.7793E-01	-7.3878E CO	-3.8093E	01
1.500 UE-01	$1.7863 \mathrm{E}-01$	-8.2319E 00	4.0884 E	co
2.0000E-01	-2.1177E-01	-7.C839E 00	4.0068 E	01
2.50 OOE-U1	-5.0491E-01	-4.4556E 00	$6.2373 E$	1
$3.0000 E-O 1$	-6.4574E-01	-1.1340E 00	6.7598 E	01
$3.5000 E-O L$	-6.2098E-01	2.0328 E 00	5.6677 F	01
4.000 UE-01	-4.5698E-01	4.3385 E 00	3.4129 E	01
4.5000E-01	-2.c871E-01	5.362CE 00	6.5725 E	00
5.0000E-01	$5.6407 \mathrm{E}-02$	5.0288 EO	-1.9051E	C 1
5.500 EE-01	$2.7551 \mathrm{E}-01$	3.5845 E 00	-3.7109E	01
$0.0000 \mathrm{E}-01$	$4.0411 \mathrm{E}-01$	1.4990E 00	-4.4409E	01
6.5000 E -01	4.2404E-01	-6.6588E-01	-4.0618E	01
$7.0000 \mathrm{E}-01$	3.4430E-01	-2.4145E 00	-2.7991E	01
$7.5000 \mathrm{E}-01$	$1.9559 \mathrm{E}-01$	-3.3879E 00	-1.0524E	01
8.00 OUE -01	2.0609E-02	-3.4633F 00	7.1746 E	00
8.5000E-01	-1.3725F-01	-2.73555 00	2.1020 E	OL
9.000UE-01	-2.4395E-01	-1.4716E 00	2.8319 F	Cl
$9.5000 \mathrm{E}-01$	-2.8142E-01	-2.81COE-C2	2.8217 E	01
1.0000 E 00	-2.4S71E-01	1.2417 F 00	2.1660 E	01
1.0500 E 00	-1.6472E-01	2.0683 E 00	1.0957 E	01
1. LOUOE 00	-5.2589E-02	2.3178 E 00	-S. 217	
1.1500 E 00	$5.7602 \mathrm{E}-02$	2.0048 E 00	-1.1106E	C1
1.2000 E 00	$1.4084 \mathrm{E}-01$	1.2714500	-1.7474E	01
1.2500000	$1.8140 \mathrm{E}-01$	$3.2817 \mathrm{E}-01$	-1.9042E	01
1.s000e 00	$1.7533 \mathrm{E}-01$	-5.5613E-01	-1.6050E	01
1.3500 E OU	$1.2983 \mathrm{E}-\mathrm{Cl}$	-1.2113E 00	-9.7523E	00
1.40 U0E 00	$6.0245 \mathrm{E}-02$	-1.5071E 00	-2.0055E	CC
$1.4500 E 00$	$-1.4458 \mathrm{E}-02$	-1.42C6E 00	5.2340 E	00
1.5000 E 00	-7.6524E-02	-1.0192E 00	1.0370 E	01
1.5500 E 00	-1.1330E-01	-4.3434E-01	1.2489 E	01
L.S000e 00	-1.1952E-01	$1.7708 \mathrm{E}-01$	1.1480 E	01
$1.6500 E 00$	-9.7571E-02	6.7160E-01	7.9662 E	00
1.7000 E 00	-5.5995E-02	$9.5046 \mathrm{E}-01$	3.0650 E	00
1.7500 O 00	-6.7754E-03	S.7667E-01	-1.9269E	0
1.8000 E 00	$3.7855 \mathrm{E}-02$	$7.7575 \mathrm{E}-01$	-5.8542E	00
$1.8500 E 00$	6.8238E-02	4.2210ㄷ-01	7.9494 E	00
1.90000000	$7.9188 \mathrm{E}-02$	1.5851E-02	-7.9611E	co
1.9500 E 00	7.0622E-02	-3.4333E-01	-6.1466E	00
2.0000E 00	4.6938E-02	-5.78¢8E-01	-3.1499E	00

Fig. 2.6 Column-type output for spring-mass-damper system.

Fig. 2.7 Example of equation-type output.
be used. Each TITLE card provides one line of heading on each page of output. An example of a TITLE statement is

TITLE SIMULATION OF A SPRING-MASS-DAMPER SYSTEM

The ninth card is called a TIMER statement.
TIMER. The TIMER card is used to specify the variables that control the run-time, print increment, integration interval (step-size), and minimum allowable integration interval. In Fig. 2.5, only two TIMER variables are used, FINTIM, and PRDEL. An example of the TIMER statement is

$$
\begin{array}{ll}
\text { TIMER FINTIM }=2.5, \text { PRDEL }=0.05 \\
\uparrow & \text { A comma must } \\
\text { At least one blank } & \text { separate listings } \\
\text { space must follow } & \\
\text { the label TIMER } &
\end{array}
$$

FINTIM. FINTIM is a symbol that appears on the TIMER card and determines the value of TIME (independent variable) at which the run is terminated. FINTIM is set equal to the desired simulation time and must be included on the TIMER card.

PRDEL. This TIMER variable controls the increment for the output of the PRINT statement. If the value for PRDEL is not specified, it is automatically set equal to FINTIM/100. If a value of OUTDEL is also included on a TIMER card, the output increment of the PRINT statement can change. At this point, there is no need to explain the relationship between PRDEL and OUTDEL, since it will be covered later in this chapter.

The three other variables that can appear on the TIMER card are defined below. A detailed explanation is included in Example 2.2 and in Chap. 3.

OUTDEL. Print increment for the print-plot output
DELT. Integration interval
DELMIN. Minimum integration interval
The format for specifying the above variables on a TIMER card is similar to a CONSTANT card. At least one blank must follow the label TIMER, and successive listings of variables must be separated by commas. The order in which the variables are listed on the TIMER card is not important.

The last three statements (END, STOP, and ENDJOB) must be included to signify the end of the program. These cards must appear in the order shown in Fig. 2.5 and the ENDJOB statement must begin in the first column. For more complicated simulations, the END, STOP, and ENDJOB cards can be used to control the execution of the program. A detailed explanation will follow when advanced topics are considered in Chap. 3. For most simulations the user needs only to use these cards to signify the end of the program.

Example 2.2 Simulation of a Block Diagram

The previous example illustrated one of the principal attributes of CSMP, the solution of a differential equation. Another important application is determining the response
of a system that is modeled as a block diagram. Block diagram representation of a system is often used in control system analysis and design. However, the concept of a block diagram is not restricted to control systems alone. In fact, this application extends to such areas as physiology, transportation, energy conservation, and economics.

The basic premise of the block diagram, or signal-flow graph, stems from the application of Laplace transforms or operator notation. For example, a system might be represented by the second-order, linear, time-invariant differential equation

$$
\begin{equation*}
\frac{d^{2} x(t)}{d t^{2}}+A \frac{d x(t)}{d t}+B x(t)=k u(t) \tag{2.4}
\end{equation*}
$$

If $d x(0) / d t=x(0)=0$, application of Laplace transforms yields

$$
\begin{equation*}
\frac{X(s)}{U(s)}=\frac{K}{s^{2}+A s+B} \tag{2.5}
\end{equation*}
$$

In the sense of the block diagram, the above relationship can be represented by the configuration shown in Fig. 2.8.

Fig. 2.8 Block diagram representation of a second-order differential equation.

Laplace transforms and block diagrams offer the convenience of analyzing a system without the necessity of working directly with the system equations. In effect, the Laplace transform changes a linear differential equation to an algebraic expression.

Suppose we consider the simplified schematic diagram of a position control system shown in Fig. 2.9. Neglecting viscous friction and the electrical time-constant of the motor, this position control system can also be represented by the block diagram of Fig. 2.10. Generally, the block diagram is much easier to work with than the schematic.

As an example, suppose the parameters in Fig. 2.10 have the values of $K_{m}=4$,

Fig. 2.9 Simplified schematic diagram of a position control system.

Fig. 2.10 Block diagram of the position control system.
$K_{1}=1.5625$, and $a=2$. We desire to simulate the response of the system to a unit-step input.

To solve this problem, we first restructure the system diagram so that it is compatible to CSMP modeling. A suitable diagram for this purpose is presented in Fig. 2.11.

Two basic dynamic blocks are present in this representation and can be broken out as separate entities as follows:

Block A
Block B
There is no real significance attached to the order of the blocks, block A could have appeared as the block nearest the output and preceded by block B. The arrangement of the blocks, for linear systems, is a matter of user preference. The symbols X1, X2, X3, ERROR, etc., are intermediate variables. They could have been designated by other symbols up to six characters in length. It is normally desirable to use variable names which describe physical variables in the problem. A significant point that should be made is that each block must have an input and an output variable. For example, X2 is the input and X 1 is the output for block A ; whereas, X 1 is the input and OUTPUT is the output of block B.

Blocks A and B have special meaning in CSMP. In a sense they are represented as subprograms and can be executed by simple statements. The mathematical functional relationship for block A is shown in Table 2.2. The $1 / s$ term (integration) was previously discussed in Example 2.1.

Table 2.2
Formulation for First Order Lag
General Form
Function

> Definition: 1st Order Lag (Real pole)
> $\mathbf{Y}=$ REALPL(IC, $\mathbf{P}, \mathbf{X})$
> $\mathbf{I C}=\mathbf{Y}(0)$
$P \frac{d Y}{d t}+\mathrm{Y}=\mathrm{X}$
Laplace form: $\frac{1}{P s+1}$
$\xrightarrow{X(s)} \xrightarrow{P s+1} \xrightarrow{ }$

Fig. 2.11 A CSMP representation of the system in Fig. 2.10.
These formulations help explain why the original system was subdivided as given in Fig. 2.11. Note that the general form for REALPL is $1 /(P s+1)$. This means that when we encounter terms of the form $1 /(s+a)$ we must divide the numerator and denominator by a. This changes the form to $(1 / a) /(s / a+1)$ and the $(1 / a)$ term in the numerator can either be associated with another constant or represented by a single block as follows.

A program listing for the CSMP simulation of this problem is presented in Fig. 2.12. \dagger For convenience, the CSMP block representation corresponding to this program is

```
* CSMP PROGRAM FOR EXANPLE 2 - BLOCK OIAGRAM OF SECOND ORDER SYSTEM
* NOTE THAT THE ASTERISK IN COLUMN ONE SIGNIFIES A COMMENT STATEMENT
TITLE PRINTEO LISTING OF "OUTPUT" (SIMULATIONI AND "OUTEXT" (ANALYTICAL)
* the title is always given at the top of the "printed listing" page(S)
    INPUT = STEP(0.0)
    ERROR = INPUT - OUTPUT
    OUTPUT = INTGRL(0.0,X1)
    X1 = REALPL(0.0,1.0/2.0,X2)
    x2 = 2.0*X3
    X3 = 1.5625*ERROR
```

* the following statements are not part of the csmp simulation. they
*are used tc calculate the exact solution of "dutput" for comparison
OUTEXT = 1.0-((EXP\{-WN*ZETA*TIME))/SQRT(1.0-ZETA*ZETA))*....
SIN(WN*SQRT(1.0 -ZETA*ZETA)*TIME + THETA)
$W N=2.5$
ZETA $=0.4$
THETA = ATAN(SQRT(1.0 - ZETA*ZETA)/ZETA)
* END OF SPECIAL CALCULATION SECTION FOR "DUTPUT" COMPARISON

```
TIMER FINTIM = 5.2, OUTDEL = 0.16, PRDEL = 0.04
```

PRTPLT OUTPUT (ERROR), ERROR(,0.5)
PRINT OUTPUT, QUTEXT
LABEL STEP RESPDNSE FOR SECOND ORDER SYSTEM
END
STOP
ENDJOB

Fig. 2.12 CSMP listing for Example 2.2.
\dagger The symbol OUTPUT cannot be used in a CSMP III program since it is a reserve word that has a special meaning. To run this program on CSMP III, the symbol, OUTPUT, must be replaced by another symbol.

Fig. 2.13 Programming block diagram for Example 2.2.
repeated in Fig. 2.13. One can easily relate the input-output variables of the blocks in Fig. 2.13 to the statements given in the program listing. Since the arrangement of the cards is not unique, one may start with any block and proceed to describe the system.

Several new terms have been introduced in this problem that were not used in Example 2.1. These terms include PRTPLT, OUTDEL, STEP and LABEL. A general definition of these terms will be given before examining the computer output for Example 2.2.

PRTPLT. An example of a PRTPLT output is given in Fig. 2.14. PRTPLT statements are used to specify those variables that the user desires to be printerplotted. Continuation cards are not allowed, but up to ten separate PRTPLT statements containing 100 variables can be used. A card giving a typical PRTPLT request might appear as

PRTPLT X1, OUTPUT, ERROR

In this case, separate printer plots will be made for X1, OUTPUT, and ERROR. Another useful feature of the PRTPLT request is the capability of printing up to a maximum of three additional problem variables on the same page as the printerplotted variable. These additional variables appear on the far right side of the page in column format. The statement

PRTPLT X1(ERROR, OUTPUT), X2, OUTPUT

means that separate printer plots will be made for X1, X2, and OUTPUT. In addition, the values of ERROR and OUTPUT will be printed on the right side of the pages that give the printer-plot of X1.

The range and scale of a printer-plotted variable can be controlled as follows:

PRTPLT	SIGX(0.2, 3.0)	statement (1)
PRTPLT	SIGX(, 4.0)	statement (2)
PRTPLT	SIGX(-1.2,)	statement (3)
PRTPLT	$\operatorname{SIGX(0.4,~,~XOUT)~}$	statement (4)

The information given by each statement is:
Statement (1)-The printer-plot of SIGX will not show values less than 0.2 or greater than 3.0. Consequently, the scale of the printer-plot will be adjusted for a maximum of 3.0 and a minimum of 0.2 .

Statement (2)-The printer-plot of SIGX does not have a specified lower bound but the upper bound is 4.0 .

	$\begin{aligned} & \text { MINIMUM } \\ & 0.0 \end{aligned}$		OUTPUT VERSUS TIME	MaXimum	
time	output	1		I	ERROR
0.0	0.0	+			1.0000 E 00
1.6000 -01	7.1172 -02	--+			9.2883F-01
3.2000E-01	2.48う5-01				7.5165E-01
4.8COOE-01	4.7856z-01				5.2144E-01
$6.4 \mathrm{COOF}-01$	7.1618E-01		+		2.8382F-01
8.0CCOE-01	9.2708E-01		-------		7.2920E-02
9.6000E-01	1.0901 E 00				-9.0071E-02
$1.1200=00$	1.1953500				-1.9626F-01
1.2800E 00	1.24685 00			-+	-2.4684F-01
1.4400E 00	1.2502E 00			---+	-2.5023E-01
1.5000 E 00	1.2189 ± 00				-2.1887E-01
$1.7600 \leq 00$	$1.1665=00$				-1.6653E-01
1.9200500	1.1000500				-1.06025-01
2.0800500	$1.0478=00$		---------		-4.7760E-02
2.2400 F 00	9.9900E-01				1.0018E-03
$2.4000 E 00$	9.6373E-01		-----		3.6273E-02
2.56COE 00	$9.430<5-01$		--------		5.6994E-02
$2.7200 E 00$	9.3568E-01				$6.4324 \mathrm{E}-0$?
2.88COE 00	9.3904E-01				6.09635-02
$3.040 C E 00$	9.4971E-01				$5.0286 \mathrm{E}-02$
3.2000 E 00	9.6426E-01				3.5739F-02
$3.3600 E 00$	9.79E5E-01				$2.0346 \mathrm{~F}-02$
3.5200E 00	9.9358E-01				6.4203F-03
$3.6800 \equiv 00$	$1.0046 \% 00$				-4.5576E-03
3.8400E 00	1.0119200				-1.1911F-02
$4.0000 \equiv 00$	1.0156300				-1.564:E-02
4.1600 E 00	2.0162 E 00				-1.6236E-02
$4.3200 \leq 00$	1.0145 E 00				-1.4472F-02
4.4800500	1.0112 O				-1.1.236E-02
4.6400500	1.0074500				-7.3662E-03
$4.3000 E 00$	$1.0036 E C 0$				$-3.5610 E-03$
$4.95 C 0 E 00$	1.0003E 00		-------		-3.1376E-04
5.12COE 00	9.9792E-01		-----		$2.0832 \mathrm{E}-03$
5.2000500	7.9707E-0!				2.9293F-03

Fig. 2.14 Printer-plot for step response of Example 2.2.

Statement (3)-SIGX will not have printer-plotted values less than $\mathbf{- 1 . 2}$. The upper bound is unspecified.

Statement (4)-The printer-plot of SIGX has a lower bound of 0.4 and the upper bound unspecified. Also, XOUT will be listed on the right side of the SIGX printer-plot. Finally, printer-plots can only be made using the independent variable (usually TIME) along the abscissa and the requested dependent variable as the ordinate. In other words, it is not possible to plot two dependent variables simultaneously as in a phase-plane plot.

OUTDEL. OUTDEL controls the output increment of the independent variable for printer-plots. If printer-plot points are desired every 0.04 time-units, we use OUTDEL $=0.04$. The OUTDEL specification is included on the TIMER card. A typical example of an OUTDEL assignment is

TIMER FINTIM $=10.0$, OUTDEL $=0.02$
If printer-plots are requested but OUTDEL is not specified, the program will use an OUTDEL $=$ PRDEL. If PRDEL is not given in the program, OUTDEL is set to FINTIM/100. When OUTDEL and PRDEL are both specified, the smaller of the two will be adjusted to be a submultiple of the larger. A useful guide in selecting the OUTDEL interval is that each page of OUTPUT will contain fifty lines. Thus, if the user desires the printer-plot to be contained on one page only, the OUTDEL value should be OUTDEL $=$ FINTIM/50. In general, the OUTDEL selection, based on the number of pages for the plot, is given by OUTDEL $=$ FINTIM/(50 \times number of output pages).

STEP. STEP is one of several signal sources available in CSMP. This particular signal provides a unit-step forcing-function and is described in Table 2.3.

Table 2.3
Formulation for a Unit Step Signal

General Form

A unit-step input applied at $t=0$ is expressed by

$$
\operatorname{XIN}=\operatorname{STEP}(0.0)
$$

If the input forcing-function is a step of weight 3 applied at $t=2.4$, the expression is written as

$$
\mathrm{XIN}=3.0 * \operatorname{STEP}(2.4)
$$

LABEL. LABEL cards are used for placing an open-format title or heading at the top of each page of printer-plotted output. The first non-blank character following LABEL must be alphabetic or numeric. After the first non-blank character, special symbols ($=, /, *$, etc.) may be used within the heading. As with PRTPLT cards, continuation cards are not permitted, but up to ten LABEL cards may be used for each simulation. Consider the following illustration.

PRTPLT ROVER, SIGMA
 LABEL RESPONSE OF SYSTEM MODEL - PROBLEM 1 PRTPLT X1
 LABEL STATE X1 WITH INITIAL CONDITION X2 $=2.0$

Since the first LABEL statement is associated with the first PRTPLT statement, the second with the second, and so on, the heading, RESPONSE OF SYSTEM MODEL-PROBLEM 1, will appear at the top of each page of printer-plotted output for the variables ROVER and SIGMA. The printer-plot of X1 will have a heading of STATE X1 WITH INITIAL CONDITION X2 $=2.0$. If the number of PRTPLT cards exceeds the number of LABEL cards, the excess print-plots will not have headings.

Refer to Fig. 2.12 and consider the following portion of the listing:

> TIMER FINTIM $=8.0$, OUTDEL $=0.16$, PRDEL $=0.04$
> PRTPLT OUTPUT (ERROR), ERROR (, 0.5)
> LABEL STEP RESPONSE FOR SECOND ORDER SYSTEM PRINT OUTPUT, OUTEXT

The TIMER card gives the information that the simulation will run for 8.0 sec , printer-plotted output will occur every 0.16 sec , and printed output every 0.04 sec . We note that with a FINTIM of 8.0 and OUTDEL of 0.16 , there will be one page for each printer-plotted variable (number of pages $=$ FINTIM/(OUTDEL $* 50$).

The PRTPLT card specifies printer plots for OUTPUT and ERROR. The plot for OUTPUT will have ERROR given in tabular form at the right side of the page. The plot of ERROR will have an upper bound of 0.5 . The heading, STEP RESPONSE FOR SECOND ORDER SYSTEM will appear at the top of each page of printer-plotted output. The printer-plot for OUTPUT is given in Fig. 2.14 while Fig. 2.15 shows the plot for ERROR.

The PRINT card designates that OUTPUT and OUTEXT will be printed out. As indicated in the program listing of Fig. 2.12, the exact analytical solution (OUTEXT) is calculated. Notice also in Fig. 2.16 the very close agreement between the CSMP numerical solution (OUTPUT) and the exact analytical solution. This is an indication of the accuracy that can be expected.

Example 2.3 Solution of the Van der Pol Equation

This example illustrates the ease of solving a nonlinear differential equation for various parameter values. The particular example is the well-known Van der Pol equation, which is shown below with the selected initial conditions.

Fig. 2.15 System error response for Example 2.2.

$$
\begin{align*}
\ddot{X}+E\left(X^{2}-1\right) \dot{X}+X & =0 \tag{2.6}\\
X(0) & =2.0 \\
\dot{X}(0) & =0.0
\end{align*}
$$

A helpful first step is to change the second-order differential equation to an equivalent set of first-order equations, easily accomplished as

$$
\begin{align*}
& \dot{X}=X D \tag{2.7}\\
& \ddot{X}=X D D=-E\left(X^{2}-1\right) X D-X \tag{2.8}
\end{align*}
$$

The program for solving Eqs. (2.7) and (2.8) is straight forward, as shown in Fig. 2.17. An ordinary FORTRAN statement is used to calculate $X D D$ and two INTGRL functions are used to integrate $X D D$ and $X D$ to obtain $X D$ and X, respectively.

In this example the following PARAMETER card is used to make a sequence of simulation runs for five different values of the constant E.

$$
\text { PARAMETER } \mathrm{E}=(0.05,0.5,2.0,10.0,50.0)
$$

One separate run is made for each value of E. Figs. 2.18 and 2.19 show the printer-plot outputs for $\mathrm{E}=2.0$ and $\mathrm{E}=50.0$. Note that the parameter value E is listed at the beginning of each plot and on each page of PRINT output.

```
PRINTED LISTING OF "OUTPUT" (SIMULATION) ANO "OUTEXT" (ANALYTICAL)
```


Fig. 2.16 Diagram illustrating printer output for Example 2.2.

When making a sequence of runs using a PARAMETER card, all printer-plots for the same variable will have a common scale. This means that some plots may not cover the full range (example: Fig. 2.19); however, a common scale has the advantage that a direct comparison can be made between plots of sequential runs.

In Example 2.1, a description of the CONSTANT statement was given. The application of both the INCON and PARAMETER cards is identical to the CONSTANT statement. They are completely interchangeable but are lettered differently as a matter of convenience to the user. The description given below is, therefore, equally valid for all three cards.

```
    LABEL SOLUTION OF THE VAN DER POL EQUATION
* THE FOLLOWING PARAMETER STATEMENT RECYCLES THE PRCGRAM FOR THE fIVE
* DIFFERENT VALUES OF E.
    PARAMETER E = 10.05, 0.5, 2.0, 10.0, 50.0)
    INCON XI = 2.0, XDI = 0.0
    XDO = -E*(X*X - 1.0)*XD - X
    X = INTGRL (XI;XD)
    XD = INTGRL(XDI, XCC)
    PRTPLT X (XD,XOD)
    TIMER FINTIM = 10.0, OUTDEL =0.25
END
STOP
ENDJCB
```

Fig. 2.17 Program to solve Van der Pol equation.

Fig. 2.18 Printer-plot output for solution of Van der Pol equation
$\mathrm{E}=2.0$.
PARAMETER, CONSTANT, INCON. These data statements are used for assigning numerical values. Only the first five letters are required to signify their use. Thus it is not necessary to write PARAMETER in full since PARAM is acceptable. This also applies to many other CSMP statements. For example, PRTPLOT may be used rather than PRTPLT.

Regarding PARAMETER, CONSTANT, and INCON; at least one blank must follow the label card while the remaining entries must have the general format

Fig. 2.19 Printer-plot output for solution of Van der Pol equation $\mathrm{E}=50$.
of variable name, equal sign, and numerical assignment. Additional assignments are made on the same card by placing a comma after the numerical value. Any number of assignments may appear on a card. Up to eight continuation cards are allowable by using three consecutive periods at the end of the card. Valid applications are

$$
\begin{aligned}
& \text { PARAMETER AX }=6.0, \mathrm{MW}=2.0, \mathrm{TAU}=1.0, \ldots \\
& \text { RHO }=0.1, \mathrm{GAMMA}=6.2 \mathrm{E}-03 \\
& \text { PARAM EDGE }=3.2, \mathrm{START}=6.4, \mathrm{LAST}=-0.5 \\
& \text { INCON ICX } 1=0.115, \mathrm{ICX} 2=0.0 \\
& \text { CONST ALPHA }=1.35, \mathrm{BETA}=-6.134 \\
& \text { CONSTANT X }=5.6, \mathrm{Y}=-45.78
\end{aligned}
$$

where all of these cards are used in the same program. The results of the simulation would have been unchanged by using

$$
\begin{aligned}
& \text { CONSTANT AX }=6.0, \mathrm{MW}=2.0, \mathrm{TAU}=1.0, \ldots \\
& \text { RHO }=0.1, \mathrm{GAMMA}=6.2 \mathrm{E}-03, \mathrm{ICX} 1=0.115, \ldots \\
& \mathrm{ICX} 2=0.0, \mathrm{ALPHA}=1.35, \mathrm{BETA}=-6.134, \ldots \\
& \mathrm{X}=5.6, \mathrm{Y}=-45.78, \mathrm{EDGE}=3.2, \mathrm{START}=6.4, \ldots \\
& \mathrm{LAST}=-0.5
\end{aligned}
$$

In the above, CONSTANT could be replaced by either INCON or PARAMETER.
Calculations are not allowed in a data statement. An example of an invalid statement is shown below.

$$
\text { CONSTANT } X=5.8, Y=\frac{4.2 / 3.14}{\lfloor } \text { Illegal operation }
$$

As illustrated in Example 2.3, an attractive feature of these data statements is their capability of making sequential runs. A typical statement is

INCON ICX1 $=(0.0,2.0,-1.2,6.0), \mathrm{ICX} 2=2.3$
The program will make four simulation runs in which ICX1 is assigned the values appearing in the parentheses in the order given from left to right. The value of ICX2 $=2.3$ is used for each run. As a slight modification one may use

PARAMETER ICX1 $=(0.0,3 * 0.2,1.4,2 * 2.0)$
which will result in seven simulation runs with the values of ICX1 being $0.0,0.2$, $0.4,0.6,1.4,2.0,4.0$. A maximum of fifty runs can be made in any sequence.

Only one variable can be used to make sequential runs. Examples of invalid data statements which attempt to make sequential runs using two variables for two different programs are

PARAMETER $\mathrm{X}=(2.0,5.0,9.0), \mathrm{Y}=(3.0,4.0,7.0)$
CONSTANT $\mathrm{X}=(2.0,5.0,9.0)$
PARAMETER $Y=(3.0,4.0,7.0)$

Example 2.4 Transient Temperature Response

In some simulations it is necessary to use functional relationships that are contained in tabular or graphic form. Fig. 2.20 shows an example of a graphic relationship between

Fig. 2.20 Graphic relationship between X and Y.
X and Y that can be represented by using a FUNCTION statement. Points on the curve of Fig. 2.20 are entered on a FUNCTION card as illustrated below.

The symbol F represents the chosen name of this particular function but any other valid symbol can be used. The independent variable for each point is always listed first starting with the smallest algebraic value. This variable must monotonically increase to assure that the slope is neither infinite nor the function multivalued. Increment size of the independent variable may be unequal as shown in the above example. Parentheses can be used to group the coordinates of each point but are not required. Commas must separate all numbers. The list of values can be extended to additional cards by the use of three consecutive periods (. .). There are no specific restrictions on the number of points per function.

The two types of statements which use the data contained on the previous FUNCTION card are

$$
\begin{aligned}
& Y=\operatorname{AFGEN}(F, X) \\
& Y=\operatorname{NLFGEN}(F, X)
\end{aligned}
$$

where Y is the dependent variable (ordinate) and X is the independent variable (abscissa).
The AFGEN statement provides linear interpolation between consecutive data points. In effect, the curve is represented by a series of straight-line segments. The more closely spaced the points, the more accurate the representation of the function.

NLFGEN uses a Lagrange quadratic interpolation between points. Consequently, the NLFGEN element cannot accurately represent functions containing abrupt changes. An example of this is shown by Fig. 2.21.
Notice that the error in using the NLFGEN statement is greatest where the data points are widely separated and where the curve changes abruptly.

Both AFGEN and NLFGEN functions can be treated as ordinary variables and, consequently, included as part of structure statements. An example is

$$
\mathrm{Z}=3.5 * \operatorname{AFGEN}(\mathrm{~F}, \mathrm{X}) /(3.8-\operatorname{NLFGEN}(\mathrm{L}, \mathrm{TIME}))
$$

If the value of the input variable is outside the specified range of the function, a diagnostic message is printed and the simulation proceeds without interruption. The value returned by AFGEN or NLFGEN is either the first or last dependent variable in the FUNCTION statement. For example, if the input value of \mathbf{X} in the graphical relationship of Fig. 2.20 were 4.0, the output would be 1.5. In a similar manner, the output would be 1.0 for all input values less than 0.5 .

This example illustrates the simulation of the transient temperature response of a small hot copper cylinder which is quenched in water. Special emphasis is placed on the use of the FUNCTION statement in conjunction with the AFGEN function.

Fig. 2.21 Comparison of curve fit using AFGEN and NLFGEN functions.

Figure 2.22 defines the physical setup of the problem.
Applying the basic law of heat conduction and assuming uniform cylinder temperature and constant water temperature yields

$$
\begin{align*}
\mathrm{TDOT}=\dot{\mathrm{T}} & =\mathrm{H} * \mathrm{AREA} *(\mathrm{TA}-\mathrm{T}) /(\mathrm{RO} * \mathrm{C} * \mathrm{~V}) \tag{2.9}\\
\mathrm{T} & =\int_{0}^{t} \dot{\mathrm{~T}} d t+\mathrm{TINITL} \tag{2.10}
\end{align*}
$$

where

$$
T=\text { temperature of cylinder }
$$

$\mathrm{TA}=$ temperature of water, $530^{\circ} \mathrm{R}$
TINITL $=$ initial temperature of cylinder, $1960^{\circ} \mathrm{R}$
AREA $=$ surface area of cylinder $=\pi\left(D^{2} / 2+D L\right)$
$\mathrm{RO}=$ density of copper, $559 \mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{C}=$ specific heat of copper, $0.0915 \mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{R}$
$\mathrm{V}=$ volume of cylinder $=\pi D^{2} L / 4$
$\mathrm{D}=$ diameter of cylinder, 0.02 ft
$\mathrm{L}=$ length of cylinder, 0.1 ft
$H=$ overall heat transfer coefficient, a function of temperature as shown in Table 2.4.

Data for the heat transfer coefficient is taken from Table 2.4 and entered into the program on a FUNCTION statement called HBOIL.

Fig. 2.22 Schematic showing the quenching of a hot copper cylinder in water.

Table 2.4
Boiling Heat Transfer Coefficient as a Function of Temperature

Temperature $\left({ }^{\circ} \mathrm{R}\right)$	Heat Transfer Coefficient $\left(\mathrm{Btu}^{\prime} \mathrm{ft}^{2}-\mathrm{hr}-{ }^{\circ} \mathrm{R}\right)$
672.1	114
673.0	278
687.0	667
702.0	3680
737.0	13200
822.0	3680
1082	880
1672	880
2672	1140

Notice that this program contains all three segments: Initial, Dynamic, and Terminal. The use of the three segments is not required for this particular program, but is included in order to show a logical classification of the structure statements. The Initial segment contains both the FUNCTION statement and the CONSTANT card which are used to specify the parameters of the system, Since the calculations used to determine AREA and V are only required once, they are included in the Initial segment.

In the Dynamic segment, an AFGEN statement is used to specify H, a FORTRAN type statement is used to calculate TDOT, and the INTGRI function is used to integrate TDOT to obtain T.

The run is terminated either by reaching the finish time (FINTIM) or by the control of the FINISH card.

FINISH. The FINISH label allows the user to terminate a run prior to the time as specified by FINTIM. A run can be ended when any dependent variable first crosses or reaches a given bound. In the program of Fig. 2.23, the run will terminate when T reaches or crosses the value of $682^{\circ} \mathrm{R}$, or when TIME reaches FINTIM. If more than one FINISH card is included, only the last card is considered. A single FINISH statement can contain a maximum of ten terminating conditions. Continuation to successive cards is permitted.

```
lAREL QUENCHING OF A Hot Copper cylinuer
INITIAL
        CONSTANT RO = 559.0, C = 0.0915, TA = 530.0, L = 0.1, D = 0.02,\ldots
        TINITL = 1960.0. PI = 3.14159
* The following values listed on the function card are the heat transfer
* COEFFICIENT AS A FUNCTION DF TEMPERATURE
FUNCTION HBOIL = (672.1,114.0),(673.0,278.0),(687.0,667.0),
                                    (702.0,3630.0),(737.0.13200.0),(322.0,3680.0), ...
                                    (1082.0,880.0),(1672.0,880.0),(2672.0,1140.0)
    AREA = PI*(D*D/2.0 + D*LI
    V = PI*D*D*L/4.0
DYNAMIC
    H = AFGEN(HBOIL,T)
    TODT = H*AREA*(TA - T)/(RO*C*V)
    T = INTGRL(TINITL,TDOT)
TERMINAL
    TIMER FINTIM = 0.006, OUTDEL = 0.00001
    FINISH T = 682.0
    PRTPLT T (H)
END
STOP
ENDJOB
```

Fig. 2.23 Program to calculate the transient temperature of a copper cylinder.

The FINISH statement

shows two conditions for ending the run. The first condition ($X=-3.0$) will terminate the run when X first reaches or crosses -3.0 . The second requirement $(Y=Z$) will end the simulation when $Y=Z$, or when $Y-Z$ first changes sign. The run will be terminated when either of the conditions are met.

Since the FINISH conditions are checked at each integration interval, the run may be terminated at a time that is not a multiple of PRDEL or OUTDEL. If this happens, printing will occur at the time when the FINISH condition is met.

Figure 2.24 shows the PRTPLT output for the time history of the temperature

Fig. 2.24 Printer-plot output for temperature of copper cylinder.
of the copper cylinder. Notice that the FINISH card controlled the termination of the program at TIME $=0.00037 \mathrm{hr}$.

Example 2.5 Three-Stage Saturn Vehicle

For some types of simulations it is necessary to use conditional branching statements to control the sequence of calculations. An example of this type problem is the simulated launch of a three-stage Saturn rocket in which each stage requires different equations to describe the physical parameters. The FORTRAN IF statement can readily be used to insure that calculations are performed in proper order.

Figure 2.25 gives the significant system parameters and also shows the forces acting on the vehicle.

Applying Newton's second law and neglecting all minor effects and disturbances, the equations of motion for a rocket traveling in a radial direction from the center of
the earth are

$$
\begin{equation*}
m \dot{V}=\dot{m} V_{o}-m g-\frac{1}{2} \rho C_{d} A V^{2} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{ALT}=\int_{0}^{t} V d t \tag{2.12}
\end{equation*}
$$

Program Symbols
(Fig. 2.26)
where $\quad m=$ mass of total rocket in slugs
MASS
$V=$ velocity in $\mathrm{ft} / \mathrm{sec}$
VEL
$\dot{V}=$ acceleration in $\mathrm{ft} / \mathrm{sec}^{2}$
ACC
$\dot{m}=$ mass flow rate of propellant in slug/sec (constant for each stage)

MDOT
$V_{o}=$ outflow velocity of propellant relative to rocket in $\mathrm{ft} / \mathrm{sec}$

VOUT
$g=$ acceleration of gravity which is given by
G

$$
g=32.17\left[\frac{r_{e}}{r_{e}+\mathrm{ALT}}\right]^{2}
$$

$r_{e}=$ radius of earth in feet
RADERH
ALT $=$ altitude of rocket in feet \quad ALT
$\rho=$ density of air in slug $/ \mathrm{ft}^{3}$
RO
An approximate value of ρ is given by the

$$
\rho=0.00238 e^{-\mathrm{ALT} / 24000}
$$

$C_{d} A=$ cross-sectional area of the rocket times the drag coefficient in ft^{2}

While Eqs. (2.11) and (2.12) are valid for each stage, the parameters m, \dot{m}, V_{o}, and $C_{d} A$ will change for each burn.

Figure 2.26 shows the CSMP program listing for the simulation of the launch. All three segments (Initial, Dynamic, Terminal) are included in this program. The use of the three segments is good programming practice since it separates the different types of program statements.

The Initial segment is used to specify the constants in the program and makes a onetime calculation to find the radius of the earth RADERH in feet.

Since the parameters in Eq. (2.11) depend on the particular burn stage, FORTRAN IF statements are utilized to transfer control to the appropriate group of structure statements. To allow the use of logic branching statements, the first part of the Dynamic segment is changed to a nosort section.

By examining the program structure, one can make the following observations.
If the flight time TIME is less than the burn time of the first stage BURNT1, control is transferred to statement 1 . The instantaneous mass MASS of the total moving rocket is calculated and the appropriate values for the propellant-mass-flow rate MDOT, dragcoefficient times cross-sectional area DRAG, and propellant-outflow velocity VOUT for the first stage are specified. Control is then transferred to statement 3 which is a FOR-

Fig. 2.25 Saturn three-stage rocket.

TRAN CONTINUE statement. After the CONTINUE statement, the Dynamic segment is changed to a sort section. Calculations are then made for acceleration of gravity G, density of air RO, and acceleration of the rocket ACC. INTGRL statements are used to find the velocity VEL and altitude of the rocket ALT. The final two statements in the Dynamic segment are used to calculate the velocity in miles per hour MPH and the altitude in miles MILES. Control is then transferred back to the beginning of the Dynamic segment where the iterative procedure is repeated.

The final portion of the Dynamic segment was changed to a sort section to eliminate the possibility of having calculations performed in the wrong order.

The value of FINTIM is set equal to the total burn time of all three stages and will consequently terminate the program at the end of the third-stage burn.

```
LABEL SIMULATION OF THE LAUNCH OF A SATURN V THREE STAGE ROCKET
INITIAL
    CONSTANT MASS1 = 148820.0, MASS2 = 32205.0, MASS3 = 8137.0, \ldots.
    FLOW1 = 930.0. FLOW2 = 81.49, FLOW3 = 14.75, VOUT1 = 8060.0.
    VOUT2 = 13805.0, VOUT3 = 15250.0, DRAG1 = 510.0, DRAG2 = 460.0. %..
    DRAG3 = 360.0. BURNTL = 150.0. BURNT2 = 359.0
    RADERH = 3960.0*5280.0
DYNAMIC
    NOSORT
        IF(TIME.LE.BURNTI) GO TO 1
        IFITIME.LT.IBURNT1 + BURNT2I) GO TO 2
* CALCULATIONS FOR THIRD STAGE
        MASS = MASS3 - FLOW3*(TIME - BURNT1 - BURNT2)
        MDOT = FLOW3
        DRAG = DRAG 3
        VOUT = VOUT 3
        GO TO }
* CALCULATIONS FOR FIRST STAGE
        1 MASS = MASS1 + MASS2 + MASS3 - FLOW1*TIME
        MDOT = FLOWI
        DRAG = DRAGI
        VOUT = VOUT1
        GO TO 3
* calculations for second stage
    2 MASS = MASS2 + MASS3 - FLOW2*(TIME - BURNT1)
            MDOT = FLOW2
            DRAG = DRAG2
            VOUT = VOUT2
        3 CONTINUE
        SORT
        G = 32.17*({RADERH/(RADERH + ALT))**2) GRAVITY
        RO = 0.00238*EXP(-ALT/24000.0) DENSITY
        ACC = (MDOT*VOUT - MASS*G - 0. 5*DRAG*RO*VEL*VEL\/MASS
        VEL = INTGRL(0.0.ACC)
        ALT = INTGRL(0.0,VEL)
        MPH = VEL*60.0/88.0
        MILES = ALT/5280.0
TERMINAL
            TIMER FINTIM = 988.0, PRDEL = 4.0. OUTDEL =20.0
            PRINT MILES, MPH, ACC,G, RO
            PRTPLT MPH (MILES,ACC)
* THE FOLLOWING FOUR STATEMENTS ARE USED TO MAKE CALCULATIONS AFTER THE
* RUN IS COMPLETED AND TO PRINT THE RESULTS.
            FEET = MILES*5280.0
            WEIGHT = MASS*32.17
    100 FGRMAT (2E20.5)
            WRITE{6,100) FEET, WEIGHT
END
STOP
ENDJOB
```

Fig. 2.26 Program to simulate the launch of a Saturn rocket.

Ordinary FORTRAN FORMAT and WRITE statements can be used in nosort sections. An example of this is shown by the last two statements in the Terminal segment. Since the statements in the Terminal segment are only executed at the end of the program, the final altitude in feet FEET and the final earth-weight of the rocket WEIGHT can be calculated and will be the last output of the program. A detailed discussion of the use of FORTRAN output statements is included in Chap. 3 in the section on data output.

The PRTPLT output showing the vehicle velocity profile is given in Fig. 2.27.

Fig. 2.27 Printer-plot output for launch of Saturn rocket.

Example 2.6 Control System with Compensation

A problem often encountered by the control engineer is to compensate a system so that both dynamic and steady state design specifications are met. This problem illustrates how a simple compensator can be added to a system in order to improve the transient response to a unit-step input while increasing the static-loop gain.

Consider the closed-loop configuration in Fig. 2.28. The system step response with a loop gain of $300 / 24$ and without compensation is given in Fig. 2.29. We note that the response has excessive oscillation and a peak overshoot of 89%.

The system requirements are to increase the static-loop gain to 300/12 and design a compensator so that the overshoot for a step input is approximately 20% and the time to the first peak is equal to or less than 1 sec .

Fig. 2.28 Uncompensated system diagram for Example 2.6.

STEP RESPDNSE FOR UNCCMPENSATED SYSTEM - EXAMPLE 2.6

Fig. 2.29 Uncompensated system step response for Example 2-6.

Using classical design procedures, one can define a proposed compensator with a transfer function given by

$$
G_{c}(s)=\frac{\begin{array}{c}
\text { (lead) (lag) } \tag{2.13}\\
(s+2.2)(s+0.2)
\end{array}}{(s+8.0)(s+0.0275)}
$$

The diagram in Fig. 2.30 includes this compensator as well as a block arrangement suitable for CSMP simulation. Figure 2.31 gives the program listing using the variable names as specified in Fig. 2.30. When compared with Example 2.2, one notes that the essential difference is the addition of the compensator, $G_{c}(s)$. The CSMP statement and formulation for a simple zero and pole (taken together) are summarized in Table 2.5.

Table 2.5
Formulation for a Lead-Lag Structure

General Form Function

| Definition: Pole-zero (often
 called lead-lag
 compensator) |
| :---: | :---: |
| $\mathbf{Y}=$ LEDLAG $\left(\tau_{1}, \tau_{2}, \mathrm{X}\right)$ |

Fig. 2.30 Diagram for programming compensated system of Example 2.6.

From a practical point of view, the LEDLAG formulation (as illustrated in this example) can be used for either a lead or lag compensator as defined in classical control theory.

The step response of the system with the compensator is shown in Fig. 2.32. We see that the problem specifications are met. One important reason for employing CSMP for a problem of this nature is that the graphic methods used in designing compensators do not generally yield a convenient method for determining the system step response. This is particularly true for higher-order systems.

```
INPUT = STEP(0.0)
ERROR = INPUT - CUTPUT
X8 = 300.0*ERROR
X7 = (0.2/0.0275)*x8
X6 = LEDLAG(1.0/0.2,1.0/0.0275,X71
X5 = (2.2/8.0)*x6
X4 = LEDLAG(1.0/2.2,1.0/8.0,X5)
x3 = (1.0/24.0)*x4
x2 = REALPL(0.0.1.0/2.0, X3)
X1 = REALPL(0.0,1.0/12.0, X2)
OUTPUT = INTGRL(0.0,X1)
TIMER FINTIM = 6.0. CUTDEL = 0.12
PRTPLT OUTPUT
LABEL RESPJNSE FOR COMPENSATED SYSTEM - EXAMPLE 2-6
END
STOP
ENDJOB
```

Fig. 2.31 CSMP program listing for Example 2.6.

Fig. 2.32 Compensated system step response for Example 2.6.

Example 2.7 RLC Circuit Problem

The purpose of this example is to illustrate how CSMP can be used to simulate an electric circuit. A series RLC circuit is given in Fig. 2.33. Suppose it is desired to find the voltage across the capacitor in response to a pulse-train input of unit amplitude. There

Fig. 2.33 Series RLC circuit.
are several approaches that can be used to determine the solution. Three methods will be considered here.

Method 1-Transfer Function. The transfer function between $e_{o}(t)$ and $e_{i n}(t)$ can be expressed as:

$$
\begin{equation*}
\frac{E_{o}(s)}{E_{i n}(s)}=\frac{\frac{1}{L C}}{s^{2}+\left(\frac{R}{L}\right) s+\frac{1}{L C}} \tag{2.14}
\end{equation*}
$$

This can easily be simulated by CSMP provided we know the nature of the roots of the characteristic equation. Two possibilities exist in that the roots can either be real or complex. If the roots are real we can solve the problem by applying REALPL twice. A function (CMPXPL) which requires only one program statement can be used for either real or complex roots. The solution using this function will be presented later in this example.

Method 2-State Variable Representation. The following equations can be written for the previous circuit.

$$
\begin{gather*}
e_{i n}(t)=R i(t)+L \frac{d i(t)}{d t}+e_{o}(t) \tag{2.15}\\
i(t)=\frac{C d e_{o}(t)}{d t} \tag{2.16}
\end{gather*}
$$

Rearranging yields

$$
\begin{gather*}
\dot{e}_{o}(t)=\frac{i(t)}{C} \tag{2.17}\\
\dot{i}(t)=-\frac{e_{o}(t)}{L}-\frac{R i(t)}{L}+\frac{e_{i n}(t)}{L} \tag{2.18}
\end{gather*}
$$

These last two equations form a state-variable representation of the system where the states are $e_{o}(t)$ and $i(t)$.

Method 3-Direct Circuit Application. Kirchoff's law, applied directly to the RLC circuit, yields

$$
\begin{equation*}
e_{i n}(t)=R i(t)+L \frac{d i(t)}{d t}+\frac{1}{C} \int_{0}^{t} i(t) d t \tag{2.19}
\end{equation*}
$$

A "graphical" representation for the solution of this equation is given later.
Pulse Train Generation. The input voltage given in Fig. 2.33 is a train of square waves which can be generated by using two standard CSMP functions. These two functions are IMPULS and PULSE and are defined in Tables 2.6 and 2.7.

Table 2.6
Formulation for an Impulse Generatort

Description

Function
$Y=0$ for $t<P_{1}$
$Y=1$ for $\left(t-P_{1}\right)=K P_{2}$
$Y=0$ for $\left(t-P_{1}\right) \neq K P_{2}$
where $K=0,1,2,3, \ldots$
\dagger This impulse function does not have the same properties as the well-known Dirac (impulse) function.

Table 2.7
Formulation for Pulse Generator

Description
$\mathbf{Y}=\operatorname{PULSE}(\mathbf{P}, \mathbf{X})$

Function
$Y=1$ for $T_{1} \leq X<\left(T_{1}+P\right)$
$Y=0$ for all other t
X is the trigger and must be greater than zero

As an example, suppose the following pulse-train is desired.

The trigger signal for the pulse will be

$$
\text { FLASH }=\operatorname{IMPULS}(0.0,0.4)
$$

where FLASH (a dummy variable) plays the role of \mathbf{X} for the pulse function. The expres-
sion for the output pulse-train is then given by

$$
\text { SIGNAL }=\text { PULSE(0.1,FLASH) }
$$

With this preliminary background we return to the circuit problem and give a solution using each method described above.

Solution by Method 1. As a first step in this solution one should determine the particular values of ξ and ω_{n} from Eq. (2.14) (the characteristic equation), which can be easily accomplished by comparing

$$
\begin{equation*}
s^{2}+\frac{R}{L} s+\frac{1}{L C}=0 \tag{2.20}
\end{equation*}
$$

with

$$
\begin{equation*}
s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0 \tag{2.21}
\end{equation*}
$$

Recall from linear system theory that if
$\xi=1$; the roots are real and equal (critical damped)
$\xi>1$; the roots are real and unequal (overdamped)
$\xi<1$; the roots are complex (underdamped)
Comparing coefficients in Eqs. (2.20) and (2.21) gives

$$
\begin{align*}
\omega_{n} & =\sqrt{1 / L C} \tag{2.22}\\
\xi & =\frac{R}{2 \sqrt{\overline{L / C}}} \tag{2.23}
\end{align*}
$$

Using the values of R, L, and C from Fig. 2.33 results in

$$
\begin{equation*}
\omega_{n}=100.0, \quad \xi=0.3 \tag{2.24}
\end{equation*}
$$

which implies that the system has complex roots. Complex roots can be directly simulated by using the function defined in the Table 2.8, provided the roots are in the denominator of the transfer function. Roots in the denominator of a transfer function are called poles and thus for this case we refer to these roots as complex poles.

Table 2.8

Formulation for Complex Poles \dagger

General Form
Function

> Definition: Complex poles
> $\mathrm{Y}=\mathrm{CMPXPL}\left(\mathrm{IC} 1, \mathrm{IC} 2, \zeta, \omega_{n}, \mathrm{X}\right)$
> $\mathrm{IC} 1=\mathrm{Y}(0)$
> $\mathrm{IC} 2=\dot{\mathrm{Y}}(0)$
> For any value of ζ
$\ddot{y}(t)+2 \xi \omega_{n} \dot{y}(t)+\omega_{n}^{2} y(t)=x(t)$
Equivalent Laplace form
$\xrightarrow{X} \sqrt{\frac{1}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}} \xrightarrow{Y}$
\dagger The poles are not required to be complex to use CMPXPL. As noted in the table any value of ζ is acceptable and thus the function can also be used when the poles are real.

A diagram giving a block arrangement for simulating Eq. (2.20) is given in Fig. 2.34. The actual program listing of the simulation statements is given directly below the diagram in Fig. 2.35.

Fig. 2.34 Simulation diagram for RLC circuit (Method 1 solution).

```
* EXAMPLE PRCBLEM FOR RLC NETWORK - EXAMPLE 2-7
PARAM L = 1.0, C = 0.0001, R = 60.0
TRIG = IMPULS(0.0,0.36)
EIN = PULSE(0.18,TRIG)
X = EIN*(1.0/(L*C))
EOUT = CMPXPL(0.0,0.0,R/(2.0*SQRT(L/C)),SQRT(1.0/(L*C)),X)
TIMER FINTIM = 0.4, OLTDEL = 0.008
PRTPLT EOUT(EIN)
LABEL PULSE TRAIN RESPONSE ACROSS CAPACITOR OF RLC NETWORK
PRTPLT EIN
labEL PLOT SHOWING TrE pulSE TRAIN TO RLC NETWORK
ENO
STCP
ENDJOB
```

Fig. 2.35 Program listing for RLC circuit (Method 1 solution).

For convenience, the circuit parameter values are listed on a PARAMETER card. This gives the added flexibility of changing the circuit values without repunching several problem statement cards.

The voltage response across the capacitor is shown by the printer-plot of Fig. 2.36 which gives the response for a time increment involving two input pulses.

Solution by Method 2. The program listing for the solution of Eqs. (2.17) and (2.18) is given in Fig. 2.37. An advantage of using this approach is that one is not required to determine the form of the roots for the circuit characteristic equation. Formulating the problem in this manner has the added advantage of giving the solution for the current in the circuit. This current response is given in Fig. 2.38.

The voltage $e_{o}(t)$ is identical to the solution in method 1 ; therefore, another printer-plot for this variable is not given.

Solution by Method 3. The diagram in Fig. 2.39 presents one form of solution for Eq. (2.19). Anyone familiar with analog computer simulation recognizes that differentiation has a tendency to produce noise (spikes). However, this approach was selected here to stress the use of the derivative function in CSMP. This function is defined in Table 2.9.

Fig. 2.36 Computer solution for voltage across the capacitor (Method 1 solution).

Table 2.9
Formulation for Differentiation
General Form
Function
Definition: Differentiation

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{DERIV}(\mathrm{IC}, \mathrm{X}) \\
& \mathrm{IC}=\dot{\mathrm{X}}(0)
\end{aligned}
$$

$$
y(t)=\frac{d x(t)}{d t}
$$

Laplace form:

The program listing for the simulation is given in Fig. 2.40 and is accompanied by the error message

SIMULATION INVOLVED AN ALGEBRAIC LOOP CONTAINING THE FOLLOWING ELEMENTS
I $\quad \mathrm{X} 3 \quad \mathrm{I}$
This statement means that the sort subprogram in CSMP cannot find an integration or other memory block \dagger in the loop involving I-X3-I. The program will not run in this case. To correct this situation, one must re-cast the problem so that every loop in the diagram contains a memory block or integration. Loops are not always obvious for a given set of equations unless one draws a block diagram or signal-flow graph.

```
* solution te rlC circuit using state variable approach
PARAM L = 1.0, C = 0.0001, R = 60.0
TRIG = IMPULS(0.0,0.36)
EIN = PULSE(0.18,TRIG)
EODOT = I/C
* I IS THE CurRENT THRCUGH the inductor
IDOT = (1.O/L)*{-EO - I*R + EIN)
EO = INTGRL(O.O,EODOT)
* EO IS THE VOLTAGF ACRDSS THE CAPACITOR
I = INTGRL (0.0.IDCT)
TIMER FINTIM = 0.4, DUTNEL = 0.008
PRTPLT EOIEIN)
LABEL VOLTAGE ACRCSS THE CAPACITOR - EXAMPLE 2-7
PRTPLT I(EIN)
LABEL CURRENT THRCUGH THE INDUCTOR - EXAMPLE 2-7
END
STOP
ENDJOB
```

Fig. 2.37 Program listing for RLC solution (Method 2).
\dagger A discussion of memory functions is given in Chap. 3.

CURRENT THROUGH THE INCUCTOR - EXAMPLE 2-7 PAGE 1

		$\begin{aligned} & \text { IMUM } \\ & 32 E-03 \end{aligned}$	VERSUS TIME	$\begin{array}{r} \text { MAXIM } \\ 6.4814 E \end{array}$		
TIME	1	1		I	EIN	
. 0	0.0		+		1. 0000 E	00
.0000E-03	5.6998E-03			-+	1.0000 E	00
.6000E-02	$6.4814 \mathrm{E}-03$			-+	1. 0000 E	00
-4000E-02	3.8425E-03		------------		1.0000 E	00
. 2000 E-02	3.5775E-04		-+		1.0000 E	00
- 0000E-02	-1.9717E-03				1.0000E	00
-8000E-02	-2.4636E-03	------			1.0000E	00
.6000E-02	-1.5812E-03				1.0000 E	00
. 4000 E-02	-2.7314E-04				1.0000 E	00
. 2000E-02	$0.6814 \mathrm{E}-04$				1.00005	00
. OCOOE-02	9.2889E-04		---- +		1.0000E	00
. 8000E-02	6.4277E-04		--+		1.0000E	00
.6000E-0?	1.5598E-04		-+		1.0000E	00
. $0400 \mathrm{E}-01$	-2.2049E-04				1.0000E	00
.1200E-01	-3.4729E-04				1.0000 E	00
. 2000E-01	-2.5846E-04	-------			1.0000 E	00
. 2800E-01	-7.8947E-05				1.0000 E	00
.3600E-01	7.0206E-05		$+$		1.0000 E	00
.44COE-01	1.2871E-04		+		1.0000 E	00
. 5200E-01	1.0291E-04		-+		1.0000E	00
.6000E-01	3.7367E-05		$+$		1.0000 E	00
.6800E-01	-2.1201E-05				1.0000E	00
, 7600E-01	-4.7230E-05				1.0000 E	00
. 8400 E-01	-4.0583E-05				1.0000E	00
.9200E-01	-5.6506E-03	+			0.0	
, OOCOE-01	-6.5032E-03	+			0.0	
. O8COE-01	-3.8977E-03	------			0.0	
.1600E-C1	-4.0707E-04				0.0	
. 2400 E-01	$1.9498 \mathrm{E}-03$		---+		0.0	
, 3200E-01	$2.4693 \mathrm{E}-03$				0.0	
,4000E-01	1.6012E-03		------+		0.0	
4800E-01	2.9236E-04				0.0	
5600E-01	-6.5865E-04				0.0	
.6400E-01	-9.2999E-04				0.0	
.7200E-01	-6.4989E-04	----			0.0	
8000E-01	-1.6339E-04				0.0	
.8800E-01	2.1648E-04				0.0	
9600E-01	3.4731E-04				0.0	
0400E-01	2.6097E-04		-+		0.0	
1200E-01	8.1788E-05		-+		0.0	
2000E-01	-6.8531E-05				0.0	
2800E-01	-1.2856E-04				0.0	
3600E-01	-1.0378E-04				0.0	
4400E-01	-3.8439E-05				0.0	
$5200 \mathrm{E}-01$	$2.0526 E-05$	---			0.0	
6000E-C1	$2.1380 \mathrm{E}-04$		+		1.0000 E	00
6800E-01	5.8070E-03	-	---------	-- +	1.0000 E	00
7600E-01	6.4711E-03	--	--------	+	1.0000 E	00
$8400 E-01$	3.7644E-03		-----------		1.0000 E	00
9200E-01	2.7532E-04		+		1.0000E	00
0000E-01	-2.0171E-03	-----			1.0000E	00

Fig. 2.38 Current response of RLC circuit (Method 2 solution).

Solution for:

Fig. 2.39 Solution diagram for RLC circuit using DERIV function.

```
    CCNSTANT L = 1.0. C = 0.0001, R = 60.0
    TRIG = IMPULS(0.0,0.36)
    EIN = PULSE(0.18, TRIG)
    X1 = (EIN)/R
    x2 = -VC
    *VC IS THE VOLTAGE ACROSS THE CAPACITOR
    X3 = (L/R)*DERIV(0.0,1)
I = X1 + X2 + X3
* I IS THE CURRENT IN THE CIRCUIT
VC = (1.0/R*C)*INTGRL(0.0.1)
TIMER FINTIM = 0.4, CUTDEL = 0.008
PRTPLT VC, I
LABEL SOLUTION FOR CIRCUIT USING DERIV - EXAMPLE 2-7
END
STOP
\(\operatorname{SIM}_{\mathrm{I}} \mathrm{X}_{3}\) INVOLVES. AN ALEEBRAIC LOOP CONTAINING THE FOLLOWING ELEMENTS
```


****PROBLEM CAN NOT BE EXECUTEC****

Fig. 2.40 Program listing for RLC solution using DERIV function.

Although the simulation will not run using the DERIV function, one should not interpret this to mean a loop cannot have a derivative term. To correct the present problem a solution for the capacitor voltage that has an integrator in each loop is given in Fig. 2.41. The program listing in Fig. 2.42 follows directly from the diagram and the simulation results are identical to those obtained by previous methods.

The objective of this example has been to demonstrate how CSMP can be used for the solution of an electric circuit. However, it should be noted that other specialized programs such as ECAP (Electric Circuit Analysis Program) are generally better suited for circuit analysis and design.

Solution for:

Fig. 2.41 Diagram for Method 3 solution of RLC circuit using all integrators.

```
CCNSTANT L = 1.0, C = 0.0001, R = 60.0
TRIG = IMPULS(0.0.0.36)
EIN = PULSE(0.18, TRIG)
*VC IS THE VOLTAGE ACRDSS THE CAPACITOR
* I Is the current in the circuit
X1 = (EIN)/L
X2 = -VC/L
X3 = -(R/L)*I
IDOT = X1 + X2 + X3
VC =(1.0/C)*INTGRL(0.0,1)
I = INTGRL (0.0,ICOT)
TIMER FINTIM = 0.4, OUTDEL = 0.008
PRTPLT VC, I
LABEL RLC CIRCUIT USING INTGRL TERMS ONLY - EXAMPLE 2-7
END
STGP
ENDJOB
```

Fig. 2.42 Program listing for Method 3 using all integrator blocks.

Example 2.8 Temperature Control for a Chemical Process

A simplified diagram of a temperature-control system is shown in Fig. 2.43. Basically, this system regulates the temperature of a chemical material by passing it through a heat exchanger unit. An output-temperature sensor compares the process temperature to the desired set-point. Any difference between the measured and set-point signals is conditioned by a proportional-integral controller whose output makes correcting adjustments to the steam control valve.

Fig. 2.43 Simplified diagram of a temperature control system.

Fig. 2.44 Block diagram of temperature control system.

Figure 2.44 gives a block-diagram representation of the linearized system. If the output of the first-order lag is $f(t)$, then an ideal delay of θ units will produce $f(t-\theta)$. In terms of Laplace transforms this delay is expressed by $e^{-\theta s}$ and so represented in the block diagram.

The functional relationship for the delay block is given in Table 2.10.

Table 2.10
Formulation for Ideal Delay
General Form
Function

Definition: Ideal Delay	$Y(t)=X(t-P) t \geq P$
$\mathbf{Y}=\mathrm{DELAY}(\mathrm{N}, \mathrm{P}, \mathrm{X})$	$Y(t)=0 \quad t \quad t<P$
$\mathbf{P}=$ Delay time	Laplace form: $e^{-P s}$
$\mathrm{~N}=$Number of points sampled during P (N must be an integer)	$X(s) \longrightarrow e^{-P_{s}}$

The only thing likely to cause confusion is the number of points sampled during P. As noted in Table 2.10, N must be an integer and should not include a decimal (i.e., 21.0 is not allowed but 21 is). As a rule the value of N should be equal to the approximate number of integration steps expected during the delay time P. \dagger

Slight modifications of the original block diagram are necessary before directly writing the simulation statements. One suitable, but not unique, representation is given in Fig. 2.45 where the gain constants have been isolated from the dynamic elements. As stated in a previous example, each block must have input and output variable assignments.

Fig. 2.45 Simulation diagram for Example 2.8.
The simulation program listing is shown in Fig. 2.46. The data statements PARAMETER, CONSTANT and INCON are used to assign numerical values to the specified variables. The use of PARAMETER $\mathrm{KC}=(1.8,12.0)$ will cause the program to run first with $\mathrm{KC}=1.8$ and second with $\mathrm{KC}=12.0$. A complete description of PARAMETER, INCON and CONSTANT was given in Example 2.3.
\dagger Refer to Appendix I for further discussion on selecting N.

```
* CHEMICAL PRCCESS CONTROL
PARAMETER KC = (1.8.12.0), THETA = 19.0
CCNSTANT KP = 6.45, TAU = 544.0, TAUI = 540.0
INCON ICX3 = 0.0, ICRLPL = 0.0
TEMSET = STEP(0.0)
ERROR = TEMSET - TEMDUT
X5 = KC*ERROR
X4 = (1.0/TAUI)*X5
X3 = INTGRL(ICX3,X4)
XCONT = X5 + X3
X1 = (KP)*XCONT
XPROC = REALPLIICRLPL, TAU, XII
TEMOUT = DELAY(25,THETA, XPROC)
TIMER FINTIM = 200.0, OUTDEL = 4.0, PRDEL = 2.0
PRTPLT TEMOUT
LABEL TEMPERATURE OF PROCESS OUTPUT - EXAMPLE 2-8
PRTPLT XCONT
LABEL OUTPUT OF PI CONTROLLER - EXAMPLE 2-8
PRINT TEMOUT
END
STOP
ENDJOB
```

Fig. 2.46 CSMP program listing for the system in Fig. 2.45.
The control statements indicate that the simulation will run for 200 sec (FINTIM). Printer-plots will be made for TEMOUT and XCONT with each plotted point occurring every 4 sec (OUTDEL). In addition, the values of TEMOUT occurring every 2 sec (PRDEL) will be printed on separate pages from those of the printer-plots of TEMOUT.

The response of TEMOUT for $\mathrm{KC}=1.8$ and 12.0 is shown in Figs. 2.47 and 2.48, respectively. Not only is the requested plot LABEL given at the top of the output but the particular value of KC also appears. Whenever repeated runs occur, the run value of the variable parameter will be given at the top of all PRTPLT and PRINT pages.

We note that the printer-plot points of TEMOUT for $\mathrm{KC}=1.8$ are practically all the same. The reason for this is that the printer-plot points are quantized to always cover fifty printer spaces across the page. If a multiple-value parameter is used, the quantization is made over the range of the maximum and minimum values of the total data set. For this example, the largest value in the data set is 34.855 and the smallest value is $\mathbf{- 2 9 . 6 4 2}$. It is incidental that both values occur for $\mathrm{KC}=12.0$. The quantization step is therefore

$$
\begin{equation*}
\text { Quantization step }=\frac{34.855+29.652}{50} \doteq 1.29 \text { units } \tag{2.25}
\end{equation*}
$$

The variation of TEMOUT for $\mathrm{KC}=1.8$ is from 0 to 1.0 (see Fig. 2.47) which is less than one quantization unit. The only reason the plotted output level changes for this case is that 0.0 is almost at a quantization step point and the addition of approximately 0.106 causes a level change.

One might look upon multiple-parameter value runs as having the disadvantage of possibly giving one or more obscured plots. This may be true, but, on the other hand, the plots are scaled to a common relative amplitude which is often a desired characteristic. Furthermore, it is always possible to rerun the simulation using a single-value parameter. Figure 2.49 shows the rerun of this problem for $\mathrm{KC}=1.8$ only.

The remaining printer-plots and printed output for XCONT and TEMOUT are omitted since they give the same general type of information as previously presented.

Fig. 2.47 Printer-plot of TEMOUT for Example $2.8(K C=1.8)$.

Fig. 2.48 Printer-plot of TEMOUT for Example $2.8(K C=12.0)$.

		$\begin{aligned} & \text { MINI MUM } \\ & 0.0 \text {. } \end{aligned}$		temout versus time	$\begin{gathered} \text { MAXIMUM } \\ 1.002 O E \quad 00 \end{gathered}$
TIME		temout	I		I
0.0		0.0	$+$		
4.0000 E	00	0.0	+		
8.0000 E	00	0.0	+		
1.20008	01	0.0	+		
1.50000	01	0.0	+		
2.0C00E	01	2.1342E-02	-+		
2.40005	01	$1.0671 \mathrm{E}-01$			
2.80COE	01	1.9209E-01			
3.2000 E	01	2.7747E-01			
3.6000 E	01	3.6282E-01			
4.0000 E	01	$4.4672 E-01$		+	
4.4000 E	01	5.2483E-01		--+	
4.8 COOE	01	$5.9565 E-01$		+	
5.2000 E	01	6.5919E-01		-------------+	
5.6000 E	01	7.1544E-01.		-----------+	
6.0000 E	01	7.6451E-01			
6.4000 E	01	8.0680E-01		----------	
6.8000 F	01	8.4288E-01			
7.2000 E	01	8.7339E-01		-	
$7.6000 E$	01	8.9894E-01		----------	
8.0000 E	01	9.2015E-01		-------------	
8.4000 E	01	9.37605-01		----------	+
8.8000 E	01	9.5184E-01		-------------	- +
9.2000 E	01	9.6336E-01			- +
9.6000 E	01	9.7259E-01		-------------------	----+
1.0000 E	02	9.7991E-01			---+
$1.0400 E$	02	9.8567E-01			- +
1.0800 E	02	$9.9013 \mathrm{E}-01$			----+
1.12005	02	9.9356E-01		------------	-----+
1.1600 E	02	9.9615E-01			+
1.2000 E	02	9.9807E-01		-	+
1.2400E	02	9.9946E-01		-----	-----+
1.28005	02	1.0005 E 0			-----+
1.3200 E	02	1.0011500			----+
1.3600E	02	$1.0016 E 00$			----+
1.4000 E	02	1.0018E 00			----+
$1.4400 E$	02	1.0019 O 0			+
1.4800E	02	1.0020 O 00			----+
1.5200 E	02	1.0019 E 00		-	------
1.56005	02	1.0018 E 0			----*
1.60COE	02	1.0017E 00			----*
1.6400ㄷ	02	1.0016 EO			----+
1.6880 E	02	1.0015 E 00			------+
1.7200E	02	1.0014 E 00			+
$1.7600 E$	02	$1.0013 E 00$			----4
1.8000 E	02	1.0011500		------	----+
1.8400 E	02	1.0010E 00			
1.8800 E	02	1.0010 E 00			+
1.9200 E	02	1.0009 EO			
1.9600 E	02	1.0008 E 00			+
2.0000E	02	$1.0008 E 00$			+

Fig. 2.49 Plotted output of TEMOUT with $K C=1.8$ and fullscale plotting.

Example 2.9 Simulation of Gear Train Containing Backlash

The function generators shown in Appendix I are very useful for simulating nonlinear systems. An example of a system using a dead-space function is shown in Fig. 2.50.

This system represents a sinusoidal torque driving a flywheel through a set of gears having excessive backlash. The shaft, connecting gear 2 and the flywheel, is not rigid but has a spring constant of $\mathrm{K}=4000 \mathrm{in}-\mathrm{lb} / \mathrm{radian}$. The contact force between gear teeth depends upon their relative position. Figure 2.51 shows the contact force as zero in the position where the teeth are not in contact and increasing in a linear manner after contact has been made.

The functional relationship between force and displacement can be simulated by a dead space (DEADSP) function generator.

Table 2.11
Formulation of Dead Space Function

CSMP Statement

Function
Definition: Dead Space
$\mathrm{Y}=\mathrm{DEADSP}\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{X}\right)$

Using the force characteristics shown on Fig. 2.51, the following DEADSP function can be used to simulate the contact force between gear teeth.

$$
\mathrm{F}=\mathrm{KG} * \operatorname{DEADSP}(-0.1,0.1, \mathrm{R} 1 * \text { THETA } 1-\mathrm{R} 2 * \text { THETA } 2)
$$

where \quad R $1 *$ THETA1 - R $2 *$ THETA $2=$ relative movement between gear teeth.
The equations for the angular accelerations of the gears and flywheel are:

$$
\begin{align*}
& \dot{\omega}_{1}=\mathrm{WD} 1=(\mathrm{T} * \mathrm{SIN}(\mathrm{~W} * \mathrm{TIME})-\mathrm{R} 1 * \mathrm{~F}) / \mathrm{I} 1 \tag{2.26}\\
& \dot{\omega}_{2}=\mathrm{WD} 2=(\mathrm{R} 2 * \mathrm{~F}+\mathrm{K} *(\mathrm{THETA} 3-\mathrm{THETA} 2)) / \mathrm{I} 2 \tag{2.27}\\
& \dot{\omega}_{3}=\mathrm{WD} 3=\mathrm{K} *(\mathrm{THETA} 2-\mathrm{THETA} 3) / \mathrm{I} 3 \tag{2.28}
\end{align*}
$$

In the program of Fig. 2.52, the angular accelerations are calculated by ordinary FORTRAN statements. INTGRL functions are used to integrate angular accelerations and velocities to obtain angular velocities and angular displacements, respectively. All initial conditions are assumed to be zero.

It is often desirable to know the maximum and minimum values of variables during a run. The RANGE statement can be used for this purpose. In this example, it is used to list the maximums and minimums for 10 variables.

Fig. 2.50 Schematic of gear train system.

Fig. 2.51 Backlash in gear teeth.

RANGE. The RANGE card allows the user to obtain both the maximum and minimum values of specified variables that occur during the run. Included with the maximum and minimum values are the times at which the values occurred. The times of maximum and minimum do not necessarily occur at a multiple of PRDEL or OUTDEL. An example of the output from the RANGE statement for this problem is shown in Fig. 2.53.

RANGE F, WD1, WD2, WD3, W1, W2, W3, THETA1, THETA2, THETA3

```
TITLE SImULATION OF THE DYNAMICS OF A GEAR TRAIN CONTAINING BACKLASH
    CONSTANT I1 = 0.4, I2 = 0.01, 13 = 0.8, R1 = 5.0, R2 = 1.0. ...
    KG = 200000.0, K = 4000.0, T = 100.0, W = 20.0
    F = KG * DEADSP(-0.1, 0.1, R1*THETA1 - R2*THETA2)
    WDI = (T * SIN(W*TIME) - RI * FI/II
    WD2 = (R2 * F + K * (THETA3 - THETA2))/I2
    WD3 = K * (THETA2 - THETA3)/I3
    W1 = INTGRL(0.0, WD1)
    W2 = INTGRL(0.0. WD2)
    W3 = INTGRL(0.0, WO3)
    THETAI = INTGRL(0.0, W1)
    THETA2 = INTGRL(0.0. W2)
    THETA3 = INTGRL(0.0. W3)
    PRINT F, WC1, WD2, WD3, W1, W2, W3, THETA1, THETA2, THETA3
    RANGE F. WD1, WD2, WD3, WL, W2. W3, THETA1, THETAZ, THETA3
TIMER FINTIM = 0.5. PRDEL = 0.005
END
STOP
ENDJOB
```

Fig. 2.52 Program for gear train simulation.

	PROBLEM DURATI	0.0	TO 5.0000E	
V ARIABLE	Minimum	time	maximum	time
F	-9.2400E 02	$2.7134 \mathrm{E}-01$	9.4110 O	4.1301E-01
WD1	-1.1534E 04	$4.1301 \mathrm{E}-01$	1.1361E 04	2.7134E-01
WD2	-9.2923E 04	2.7134E-01	8.8692E 04	4.1301E-01
W03	-1.7390E 02	$2.2181 \mathrm{E}-01$	1.8759 E 02	3.8948E-01
Wl	-3.0321E 00	2.1984E-01	3.2531 E 00	$3.8741 \mathrm{E}-01$
W2	-1.8832E 01	3.6290E-01	2.0539 EL	$1.8764 \mathrm{E}-01$
W3	-2.7485E-01	$3.1375 \mathrm{E}-01$	2.7382E 00	4.6904E-01
ThETAl	0.0	0.0	$1.3119 \mathrm{E}-01$	$4.5464 \mathrm{E}-01$
THETA2	-4.2604E-03	3.7764E-02	$6.5328 \mathrm{E}-01$	4.9929E-01
THETA3	0.0	0.0	6.3820E-01	$5.0000 \mathrm{E}-01$

Fig. 2.53 Example of output from a range statement.

Only one RANGE statement can be used, but this statement can contain up to 100 variables by using continuation cards.

Since more than eight variables are requested in the PRINT statement, the "equations format" as shown in Fig. 2.54 is automatically selected. Two TITLE cards are used to obtain two lines of heading on each page of output.

Example 2.10 Beam Deflection Problem

There exists a large class of engineering problems where it is necessary to use a trial and error solution. Two-point boundary-value problems generally fall within this class. The CSMP program has a feature for handling this type of problem and can be illustrated with the following cantilever-beam example.

This problem can be simply stated: find the deflection and stress of a thin steel cantilever beam of varying thickness with a 30 lb weight hung on the end. Figure 2.55 gives the basic configuration of the problem along with beam measurements.

The thin tapered beam will have a large deflection and consequently a large slope. For this reason, the exact equation for the radius of curvature is used in the following differential equation for beam deflection.

Fig. 2.54 Output from gear train simulation.

$$
\begin{equation*}
\frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}=\frac{M}{E I} \tag{2.29}
\end{equation*}
$$

Symbols program
(Fig. 2.56)
where $M=$ bending moment in beam
FORCE*(LO - X)
$E=$ Young's Modulus (30×10^{6} psi)
$I=$ Moment of inertia $=\frac{1}{12} \mathrm{wt}^{3}$
$w=$ width of beam (1.0 in)
$t=$ thickness of beam
$y=$ deflection of beam
$\frac{d y}{d x}=$ slope of beam
E
I
WIDTH
T
Y
$\frac{d^{2} y}{d x^{2}}=\frac{M}{E I}\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}$

Fig. 2.55 Cantilever beam.
Notice that in Eq. (2.29), the independent variable X is the position in the horizontal direction. This is the first example in which the independent variable has not been time (TIME). This detail can easily be handled by renaming the independent variable using the control statement RENAME. A listing of the program in Fig. 2.56 shows an application of this statement.

RANAME. The RENAME statement can be used to change the symbol for any of the six reserved names (DELT, DELMIN, FINTIM, OUTDEL, PRDEL, and TIME), as shown below:

RENAME TIME $=\mathbf{X}$
In this example, the symbol X will be used in place of the reserve word TIME. The independent variable listed in all PRINT and PRTPLT outputs will be the variable X. Successive renaming on the same card must be separated by a comma. No continuation cards (...) are allowed with RENAME; however, several RENAME cards may be used.

The only requirement for the location of the RENAME card is that it must be placed before the TIMER statement.

```
LABEL LARGE DEFLECTION OF A CANTILEVER BEAM
    RENAME TIME = X
INITIAL
    CONSTANT L= 30.0, WIDTH = 1.O.E = 10.0E6, FORCE = 30.0, LO = 26.0
    FUNCTICN THICK = (0.0,0.4),(10.0.0.3),(20.0,0.15),(30.0,0.1)
DYINAMIC
    C = SQRT(1:0 + YP*YP)
    XA = INTGRL(C.C.C)
    T = NLFGEN(THICK,XA)
    I = WIDTH*T*T*T/12.0
    YPP = FORCE*(LO - X)*C*C*C/(E*I)
    YP = INTGRL(0.0,YPP)
    Y = INTGRL(0.0,YP)
    STRESS = FORCE*(LO - X)*T/(2.0*I)
TERMINAL
    TIMER FINTIM = 30.0
    FINISH XA = L
    IF(ABS(X - LC).LT.O.3) GO TO 1
    LO = LO + 0.2*(X - LO)
    CALL RERUN
    l CJNTINUE
* the following end card resets the initial conditions and inIt iates
* another run lsing a value of dutdel = 0.6.
ENO
    TIMER CUTDEL = 0.6
    PRTPLT Y (STRESS,XA,YP)
END
STOP
ENDJOB
```

Fig. 2.56 Program for deflection of cantilever beam.
Since the beam is curved, the X coordinate is not equal to the distance as measured along the center line of the beam. The distance from the base along the beam is given by

$$
\begin{equation*}
X A=\int_{0}^{x}\left[1.0+\left(\frac{d y}{d x}\right)^{2}\right]^{1 / 2} d x \tag{2.30}
\end{equation*}
$$

CSMP statements for the above expression are

$$
\begin{aligned}
\mathrm{C} & =\mathrm{SQRT}(1.0+\mathrm{YP} * \mathrm{YP}) \\
\mathrm{XA} & =\operatorname{INTGRL}(0.0, \mathrm{C})
\end{aligned}
$$

The value of XA must be used as the argument of the nonlinear function-generator statement to calculate the thickness of the beam.

$$
\mathrm{T}=\operatorname{NLFGEN}(\mathrm{THICK}, \mathrm{XA})
$$

Since the beam is curved in its final deflected shape, the exact horizontal LO position of the end of the beam is not known. An initial estimate of 26 in . is made on a CONSTANT card. With this initial estimate the values of $y, d y / d x, d^{2} y / d x^{2}$ and stress are calculated as

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =\mathrm{YPP}=\mathrm{FORCE} *(\mathrm{LO}-\mathrm{X}) * \mathrm{C} * \mathrm{C} * \mathrm{C} /(\mathrm{E} * \mathrm{I}) \tag{2.31}\\
\frac{d y}{d x} & =\int_{0}^{x} \frac{d^{2} y}{d x^{2}} d x=\mathrm{YP}=\mathrm{INTGRL}(0.0, \mathrm{YPP}) \tag{2.32}
\end{align*}
$$

$$
\begin{align*}
y & =\int_{o}^{x} \frac{d y}{d x} d x=\mathrm{Y}=\mathrm{INTGRL}(0.0, \mathrm{YP}) \tag{2.33}\\
\sigma=\frac{m t}{2 I} & =\mathrm{STRESS}=\mathrm{FORCE} *(\mathrm{LO}-\mathrm{X}) * \mathrm{~T} /(2.0 * \mathrm{I}) \tag{2.34}
\end{align*}
$$

The calculations in the Dynamic segment continue until the distance-integrated along the beam XA is equal to the total length L. At this point the first run is terminated by the following FINISH statement:

FINISH XA $=\mathbf{L}$

The FINISH statement terminates a run when the variable XA reaches or first crosses the specified bound L. At this point the actual horizontal position of the end of the beam X is compared with the first estimate LO. If the first estimate for the horizontal location of the end of the beam is not sufficiently close (less than 0.3 in .) to the calculated value, additional runs will be required until this criterion is satisfied. The CALL RERUN feature is used to solve this trial and error problem.

CALL RERUN. The CALL RERUN statement must be placed in the Terminal segment to recycle the program through additional runs with new parameters. All constants used in succeeding runs will have the same values as specified in the Initial segment unless otherwise specified in the Terminal segment. The program listing of Fig. 2.56 illustrates the use of the CALL RERUN statement.

After the first run is terminated by the FINISH statement, the difference between the actual horizontal position of the end of the beam X is compared with the initial guess LO. If the absolute difference is greater than or equal to 0.3 in ., a new estimate for LO is calculated and, the CALL RERUN statement will recycle the program using the new estimate for LO and all other constants as specified in the Initial segment.

Successive runs will occur until the absolute difference between the actual horizontal position and the estimate is within the desired range. When this occurs, the FORTRAN IF statement will transfer the execution to the CONTINUE statement which bypasses the CALL RERUN card.

In this example, the CONTINUE card is used as a FORTRAN statement. If the statement number were not included, the CONTINUE card would have been executed as a CSMP statement. A detailed explanation of the CSMP CONTINUE card is given in Chap. 3.

Notice that there is no output statement before the first END card. This means that there will be no output until the final run is completed. If output is desired at the end of each iterative run, PRINT, or PRTPLT statements should be placed before the first END card. The first END card is used after a CALL RERUN statement to reset the independent variable X to zero, and to initiate another run. The use of the END statement for making multiple runs is covered in Chap. 3. The PRTPLT output for the final run is shown in Fig. 2.57.

One of the most important statements for trial and error solution is the algo-

Fig. 2.57 PRTPLT output for deflection of beam.
rithm used in the terminal segment to recalculate LO. The calculation that was used in this example is

$$
\begin{equation*}
\mathrm{LO}=\mathrm{LO}+0.2 *(\mathrm{X}-\mathrm{LO}) \tag{2.35}
\end{equation*}
$$

This statement is not meant to be the optimum algorithm for calculating the new estimate for LO. It is only a calculation that yielded desired results. Extreme care should be used in choosing algorithms for recalculating new estimates of parameters. These calculations can affect not only the number of iterative runs but can often make the difference between a convergent or divergent solution.

Example 2.11 Stress Analysis of Cam-Follower System

In all of the previous examples, some form of numerical integration was performed. This example illustrates the use of CSMP to make a sequence of calculations where no integration is conducted. Other computer languages such as FORTRAN and BASIC could be used for this particular type of problem but CSMP has the advantage of particular capabilities such as FUNCTION and PRTPLT.

The problem is to calculate the contact stress between a cam and roller-follower at 2° cam increments. A schematic of the physical system is shown in Fig. 2.58.

Fig. 2.58 Schematic of cam-follower system.

The stress is a function of the angular position of the cam, consequently, the independent variable is THETA. The first statement of the program of Fig. 2.59 uses the RENAME card to change the symbol for the independent variable from TIME to THETA.

The maximum compressive contact stress for a 1 in. thick steel cam and roller-follower is given by the Hertz formula.

$$
\begin{equation*}
\text { STRESS }=2291 \sqrt{\frac{F(R+R F)}{R * R F}}(\mathrm{psi}) \tag{2.36}
\end{equation*}
$$

where $R=$ radius of curvature of cam profile at the point of contact (in.)
$R F=$ radius of roller-follower (in.)
$F=$ radial load (lb)

```
    RFNAME TIME = THETA
LABEL CALCULATION OF CONTRACT STRESS BETWEEN CAM AND FOLLOWER
    CONSTANT RF = 0.75, K = 150.0, YI = 0.25
    FUNCTIGN LIFT ={0.0,0.0), (30.0,0.0937),(60.0.0.375),(90.0.0.75)....
    (120.0.1.125).(150.0.1.406).(180.0.1.5),(210.0.1.5).
        (240.0.1.357),(270.0.0.9818).(300.0,0.375),(330.0.0.1433),
        (360.0,0.0)
        FUNCTION RADCUV = (0.0.2.0),(30.0.2.4).(60.0.2.5).(90.0.2.75) ....
        (120.0,3.0),(150.0.3.3),(180.0.3.5),(210.0.3.5),(240.0.2.95), ...
        (270.0.2.8).(300.0.2.6).(330.0.2.5).(360.0.2.0)
        Y = NLFGEN(LIFT,THETA)
        F=K*(Y + YI)
        R = NLFGEN(RADCUV,THETA)
        STRESS = 2291.0*SQRT(F*(R + RF)/(R*RF))
        PRTPLT STRESS (F,R,Y)
    TIMER FINTIM = 360.0, OUTDEL = 2.0
END
STJP
ENDJOB
```

Fig. 2.59 Program to calculate contact stress between cam and follower.

The radius of curvature of the cam surface is measured from the drawing of the cam at 30° increments and this information is included in the following FUNCTION statement.

FUNCTION RADCUV $=(0.0,2,0),(30.0,2.4),(60.0,2.5),(90.0,2.75), \ldots$
(120.0,3.0),(150.0,3.3),(180.0,3.5),(210.0,3.5),(240.0,2.95),
(270.0,2.8),(300.0,2.6),(330.0,2.5),(360.0,2.0)

To simplify the calculation of force, the cam is assumed to be rotating at a speed where the inertial forces can be neglected. A static analysis which neglects the pressure angle yields the following expression for the force between the cam and follower.

$$
\begin{equation*}
F=K(Y+Y I) \tag{2.37}
\end{equation*}
$$

where $Y=$ lift of follower
$Y I=$ initial compression of spring
The lift Y is also a function of THETA and is measured from the drawing at 30° increments. This information is included in the following FUNCTION statement.

$$
\begin{array}{ll}
\text { FUNCTION LIFT }=(0.0,0.0),(30.0,0.0937),(60.0,0.375),(90.0,0.75), & \ldots \\
(120.0,1.125),(150.0,1.406),(180.0,1.5),(210.0,1.5), & \ldots \\
(240.0,1.357),(270.0,0.9818),(300.0,0.375),(330.0,0.1433), & \ldots
\end{array}
$$

Since both the radius of curvature of the cam and the lift are represented by smooth curves, the NLFGEN function-generating element is used to calculate values for R and Y.

The TIMER card controls the increment and range of calculations. In this example, FINTIM was set equal to 360.0 which corresponds to a cam rotation of one revolution. A value of OUTDEL $=2.0$ forces the calculations to be performed and print-plotted at 2° increments. One page of the printer-plot output is shown in Fig. 2.60. Note the maximum and minimum values for the print-plot variable STRESS are always included in the PRTPLT output.

		$\begin{aligned} & \text { MINIMUM } \\ & 1.8996 E 04 \end{aligned}$			Stress versus theta	Naximum $4.7359 E \quad 04$					
THETA		StRESS		I		I	F		R		\checkmark
0.0		$1.8996 E$	04	+			3.7500 E	01	2.0000 E	00	0.0
2.0000 E	00	1.9197 E	04	+			3.8437 E	01	$2.0267 E$	00	$6.2467 E-03$
4.0000 F	00	1.9396 E	04	+			3.9374 E	01	2.0533 E	00	1.2493E-02
6.0000 E	00	1.9592 E	34	-+			4.0311 E	01	2.0800 E	00	1.8740E-02
8.0000 F	00	1.9785 E	04	-+			4.1248 E	01	$2.1067 E$	00	2.4987E-02
1.0000 E	01	$1.9975 E$	04	-+			4.2185 E	01	2.1333 E	00	3.1233E-02
1.2.000E	01	2.0163 E	04	--+			$4.3122 E$	01	2.1600 E	00	3.7480E-02
$1.4000 E$	01	2.0349 E	04	-+			4.4059 E	01	2.1867 E	00	4.3727E-02
1.6000 E	01	2.0533 E	04	--+			$4.4996 E$	01	2.2133 E	00	4.9973E-02
1.80005	01	2.0714 E	04	+			4.5933 E	01	2.2400 E	00	5.6220E-02
2.00005	01	2.0894 E	04	---+			4.6870 E	01	2.2667 E	00	6.2467E-02
2.2000 E	01	2.1071 E	04	---+			4.7807 E	01	2.2933 E	00	$6.8713 \mathrm{E}-02$
2.4000 E	01	2.1246 E	04	---+			4.8744 E	01	2.3200 E	00	7.4960E-02
2.6000 E	01	2.1420 E	04	---...			$4.9681 E$	01	2.3467 E	00	$8.1207 \mathrm{E}-02$
2.8000 E	01	2.1591 E	04	----*			5.0618 E	01	2.3733 E	00	8.7453E-02
3.0000 F	01	2.1761 E	04	----+			5.1555 E	01	2.4000 E	00	$9.3700 \mathrm{E}-02$
3.2000 E	01	2.2149 E	04	-----			5.3492 E	01	2.4160 E	00	1.0662E-01
3.40005	01	2.2556 E	04	---			5.5555 E	01	2.4307 E	00	$1.2037 \mathrm{E}-01$
3.6000 F	01	2.2981 E	04	----			5.7743 E	01	2.4440 E	00	1.3495E-01
3.8000 E	01	2.3423 E	04	----			6.0055 E	01	2.4560 E	00	1.5037E-01
4.0000 E	01	2.3881 E	04	---			$6.2493 E$	01	$2.4667 E$	00	1.6662E-01
4.2000 E	01	2.4355 E	04				6.5056 E	01	2.4760 E	00	1.8371 E-01
4.4000 E	01	2.4844 E	04	----			6.7744 E	01	2.4840 E	00	$2.0163 \mathrm{E}-01$
4.6000 E	01	2.5347 E	04	----			7.0557 E	01	2.4907 E	00	2.2038E-01
4.8000 F	01	2.5863 E	04				7.3495 E	01	2.4960 E	00	2.3997E-01
5.0000 E	01	2.6391 E	04				7.6558 E	01	2.5000 E	00	2.6039E-01
5.2000 E	01	2.0932 E	04				7.9746 E	01	2.5027 E	00	2.8164E-01
5.4000 F	01	2.7484 E	04				8.3060 E	01	2.5040 E	00	3.0373E-01
5.6000 E	01	2.8047 E	04				$8.6498 E$	01	2.5040 E	00	3.2665E-01
5.8000 E	01	$2.8621 E$	04				9.0061 E	01	$2.5027 E$	00	3.5041E-01
6.0000 F	01	2.9205 E	04				9.3750 E	01	2.5000 E	00	3.7500E-O1
6.2000ε	01	2.9700E	04		+		9.7063 E	01	$2.5120 E$	00	3.9708E-01
6.4000 E	01	3.0194 E	04		-		1.0044 E	02	$2.5247 E$	00	4.1959E-01
6.6000 F	01	3.0688 E	04		+		1.0388 E	02	2.5380 E	00	4.4250E-01
6.8000 E	01	3.1181 E	04				1.0738 E	02	$2.5520 E$	00	4.6584E-01
7.0000 E	01	3.1674 E	04				1.1094 E	02	$2.5667 E$	00	4.8959E-01
7.2000 E	01	$3.2166 E$	04				1.1456 E	02	$2.5820 E$	00	$5.1376 \mathrm{E}-01$
7.4000 F	01	3.2657 E	04				$1.1825 E$	02	2.598 OE	00	$5.3834 \mathrm{E}-01$
7.6000 E	01	3.3147 E	04				1.2200E	02	2.6147 E	00	5.6334E-01
7.8000 E	01	3.3636E	04				1.2581 E	02	$2.6320 E$	00	$5.8876 \mathrm{E}-01$
8.0000 F	01	3.4124 E	04		-		1.2969 E	02	2.6500 E	00	6.1459E-01
8.2000 E	01	3.4612 E	04		+		1.3363 E	02	2.6687 E	00	6.4084E-01
$8.4000 E$	01	3.5098 E	04		------+		1.3763 E	02	2.6880 E	00	6.6750E-01
8.6000 E	01	3.5584 E	04		-----------+		1.4169 E	02	2.7080 EE	00	6.9459E-01
8.8000 F	01	3.6068 E	04	---	-----------+		1.4581 E	02	2.7287 E	00	7.2208E-01
9.0000 F	01	3.6552 E	04		------------+		1.5000 E	02	2.7500 E	00	7.5000E-01
9.2000 E	01	3.6982 E	04		-----------*		1.5375 E	02	2.7667 E	00	7.7500E-01
9.4000 E	01	3.7406 E	04		------------*		1.5750 E	02	2.7833 E	00	8.000CE-01
9.6000 E	01	$3.7825 E$	04				$1.6125 E$	02	2.8000 E	00	8.2500E-01
9.8000 E	01	3.8238 E	04		----*		1.6500 E	02	$2.8167 E$	00	8.5000E-01
1.0000 E	02	3.8647E	04		*		1.6875 E	02	2.8333 E	00	8.7500E-01

Fig. 2.60 Printer-plot output for contact stress.

REFERENCES

1. System/360 Continuous System Modeling Program User's Manual GH20-0367-4, Program Number 360A-CX-16X, IBM Data Processing Division, White Plains, N.Y.
2. System/360 Continuous System Modeling Program, Operations Guide, Program Number 360A-CX-16X, IBM Data Processing Division, White Plains, N.Y.
3. Continuous System Modeling Program III (CSMP III) Operations Guide, Program Number 5734-XS9, SH19-7002-1, IBM Data Processing Division, White Plains, N.Y.
4. McCracken, Daniel D., A Guide To Fortran IV Programming 2nd ed. New York: John Wiley and Sons, Inc.

PROBLEMS

1 Write a CSMP program for solving the following nonlinear differential equation:

$$
\frac{d^{2} x}{d t^{2}}+25\left(1.0+0.1 x^{2}\right) x=0
$$

subject to the initial conditions,

$$
\begin{aligned}
x(0) & =3.0 \\
\dot{x}(0) & =0.0
\end{aligned}
$$

Answer: \dagger

$$
x(t)=2.9531 \text { at TIME }=1.0
$$

2 A high-temperature oven is heated by an electrical element supplying $12,000 \mathrm{BTU} / \mathrm{hr}$. The heat loss from the oven by convection and radiation is calculated to be the following.

$$
q_{\mathrm{loss}}=2 \times 10^{-8}\left(T_{o}^{4}-T_{a}^{4}\right)+8.0\left(T_{o}-T_{a}\right) \mathrm{BTU} / \mathrm{hr}
$$

If the initial temperature is $530^{\circ} \mathrm{R}\left(70^{\circ} \mathrm{F}\right)$, determine the oven temperature at 0.05 hr , $0.1 \mathrm{hr}, 0.3 \mathrm{hr}$, and 0.5 hr . The differential equation for this transient heat transfer problem is

$$
\begin{aligned}
C_{t} \dot{T}_{o} & =q_{\text {supplied }}-q_{\text {loss }} \\
C_{t} & =\text { thermal capacitance, } 24 \mathrm{BTU} /{ }^{\mathrm{R}} \mathrm{R}
\end{aligned}
$$

Fig. P2. 2
Answer:

$$
\text { At TIME }=0.5 \mathrm{hr}, T_{o}=723.6^{\circ} \mathrm{R}
$$

\dagger Answers are given to the problems at particular discrete times. If the programs are written correctly then the solutions should agree at the designated value of TIME.

3 Given the system shown in Fig. P2.3, if the input is a unit-step (STEP(0.0)), write a program to find the printer-plot of the output. Use a FINTIM of 1.3 and an OUTDEL of 0.026 .

Fig. P2.3
Answer:

$$
\text { Output }=0.81395 \text { at } \text { TIME }=0.364
$$

4 The period of vibration of a pendulum for small angles is

$$
2 \pi \sqrt{\frac{L}{g}} .
$$

Using the capability of a PARAMETER card to make sequential runs, compare the periods of oscillation of a pendulum which has initial angles of $5^{\circ}, 20^{\circ}, 45^{\circ}, 90^{\circ}$, and 135°. The equation of motion for the pendulum is

$$
L \ddot{\theta}+g \sin (\theta)=0
$$

Fig. P2.4
Answer:

$$
\begin{aligned}
5^{\circ} \text { period } & =6.286 \sqrt{L / g} \\
20^{\circ} \text { period } & =6.331 \sqrt{L / g} \\
45^{\circ} \text { period } & =6.534 \sqrt{L / g} \\
90^{\circ} \text { period } & =7.416 \sqrt{L / g} \\
135^{\circ} \text { period } & =9.600 \sqrt{L / g}
\end{aligned}
$$

5 A system is represented by the vector differential equation,

$$
\dot{x}=A x+b u
$$

in which

$$
x=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right] \quad A=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & -10 & 1 \\
-16 & 0 & -2
\end{array}\right] \quad b=\left[\begin{array}{r}
0 \\
0 \\
16
\end{array}\right] \quad u=\text { unit-step }
$$

Use CSMP to find $x_{1}(t), x_{2}(t)$, and $x_{3}(t)$.
Answer:

$$
\text { At TIME }=1.9: x_{1}(t)=0.793
$$

6 The differential equation for the motion of the base of an unbalanced electric motor is shown below.

$$
M \ddot{x}+c \dot{x}+k x=m e \omega^{2} \sin (\omega t)
$$

$$
\begin{aligned}
M & =0.1 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in} \\
c & =1.2 \mathrm{lb}-\mathrm{sec} / \mathrm{in} \\
k & =800 \mathrm{lb} / \mathrm{in} \\
m e & =0.009 \mathrm{lb}-\mathrm{sec}^{2}
\end{aligned}
$$

Assuming the system is initially at rest, find the time-history of the motion of the base. The motor speed increases according to the following formula.

$$
\omega=120 \pi\left(1-e^{-t / 4}\right)
$$

Fig. P2.6
Answer:

$$
\text { When } \omega=90 \mathrm{rad} / \mathrm{sec}, x=0.067 \mathrm{in} .
$$

7 The system diagram of a process having time delay is shown in Fig. P-2.7
Find the unit-step response of the system. Compare your results with those given in Fig. 2.14 which is the step response of the system above without delay. Use FINTIM $=8.0$, and OUTDEL $=0.16$.

Fig. P2. 7
Answer:
Using $N=20$ in the DELAY Function gives $c(t)=1.4116$ at TIME $=1.44$
8 Determine the time-history for the water level in each of the three tanks. Initially the water level in all tanks is 10 ft . The cross-sectional areas of the tanks are shown below.

$$
\begin{aligned}
& A_{1}=4 \mathrm{ft}^{2} \\
& A_{2}=8 \mathrm{ft}^{2} \\
& A_{3}=12 \mathrm{ft}^{2}
\end{aligned}
$$

The general equation describing the height of water is

$$
A_{i} \dot{H}_{i}=q_{\text {in }}-q_{\text {out }}
$$

The flow through an orifice is given below.

$$
q=A_{\text {orifice }} \sqrt{2 g \Delta H}
$$

Fig. P2.8
Answer:

$$
\text { At TIME }=50 \mathrm{sec}: \begin{aligned}
H_{1} & =10.11 \mathrm{ft} \\
& H_{2}=12.95 \mathrm{ft} \\
& H_{3}=9.76 \mathrm{ft}
\end{aligned}
$$

9 A space vehicle is reentering the earth's atmosphere. In the position shown, the vehicle is $200,000 \mathrm{ft}$ from the surface of the earth and the speed is $25,000 \mathrm{mph}$. The aerodynamic drag is:

$$
f_{\text {total }}=0.5 A C_{d} \rho V^{2}
$$

where $A=$ cross sectional area of vehicle $=80 \mathrm{ft}^{2}$
$C_{d}=\mathrm{drag}$ coefficient $=0.55$
$\rho=0.00238 e^{-\mathrm{h} / 24000} \quad$ (slug/ft $\left.{ }^{3}\right)$
$h=$ altitude in feet
The equations of motion in cylindrical coordinates are shown below.

$$
\begin{aligned}
& m\left(\ddot{r}-r \dot{\theta}^{2}\right)=f_{\text {drag radial }}-m g \\
& m(r \dot{\theta}+2 \dot{r} \dot{\theta})=-f_{\text {drag tangential }}
\end{aligned}
$$

(a) Using this information, how fast does the vehicle strike the earth? (b) What is the total distance traveled by the vehicle? Hint: $s=\int_{0}^{t} v d t$ (c) How much energy is dissipated in aerodynamic drag? Hint: Energy $=\int_{0}^{t}$ force $\frac{d s}{d t} d t$

Fig. P2.9
Answer:
(a) $224 \mathrm{ft} / \mathrm{sec}$ (b) $779,000 \mathrm{ft}$
(c) $5.43 \times 10^{10} \mathrm{ft}-\mathrm{lb}$

10 The block diagram of a system containing amplifier saturation is given in Fig. P2.10. Use the function generator $\mathbf{Y}=\operatorname{LIMIT}\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{X}\right)$ given in Appendix I to find the response of the system if $r(t)=\mathrm{R}(\mathrm{s})=3.5 u(t)$ where $u(t)$ is a unit-step starting at $t=0$. Select FINTIM $=4.0$, OUTDEL $=0.08$, and obtain the printer-plot output of $c(t)$.

Characteristics of amplifier
Fig. P2.10

Answer:

$$
\text { At TIME }=1.28 c(t)=5.2106
$$

11 To test the impact characteristics of neoprene, a 36.6 lb weight is dropped on a doughnut-shaped specimen. The velocity at impact is $52.7 \mathrm{in} / \mathrm{sec}$. The acceleration of the weight was measured to be the following:

Time (sec)	Acceleration $(\mathrm{g} ' s)$	$1 \mathrm{~g}=386 \mathrm{in} / \mathrm{sec}^{2}$
0	0	
0.002	-13.0	
0.003	-23.0	
0.004	-32.0	
0.005	-35.0	
0.006	-34.0	
0.007	-33.0	
0.008	-24.0	
0.01	-11.0	
0.012	0	
0.015	1.0	

Using the AFGEN function to represent data taken from this test, determine the time-history of the velocity and displacement of the top surface of the neoprene. Also determine the energy absorbed by the neoprene.

Fig. P2.11
Answer:

$$
\begin{aligned}
\text { at TIME } & =0.0075 \mathrm{secs} \\
\text { displacement } & =0.208 \mathrm{in} . \\
\text { velocity } & =-15.0 \mathrm{in} / \mathrm{sec}
\end{aligned}
$$

12 An automobile passes over a triangular bump at a speed of $20 \mathrm{ft} / \mathrm{sec}$. Determine the maximum pitch and vertical motion of the center of gravity. Neglect the deflection of the tires and the effects of the unsprung mass. The automobile has the following parameters.

$$
\begin{aligned}
\text { Weight } & =4200 \mathrm{lb} \\
\text { Spring constants } & =\text { front: } 120 \mathrm{lb} / \mathrm{in} ., \text { rear: } 180 \mathrm{lb} / \mathrm{in} . \\
\text { Damping coefficients } & =\text { front: } 10 \mathrm{lb}-\mathrm{sec} / \mathrm{in} ., \text { rear: } 12.0 \mathrm{lb}-\mathrm{sec} / \mathrm{in} . \\
\text { Pitch moment of inertia } & =40,000 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in} .
\end{aligned}
$$

Fig. P2.12
Hint: $\quad I_{\ddot{\theta}}=\Sigma$ torques due to springs and shock absorbers about center of gravity
$m \ddot{y}=\Sigma$ forces due to spring and shock absorbers.
Answer:

$$
y_{\max }=2.09 \mathrm{in} . ; \theta_{\max }=1.84^{\circ}
$$

13 Same as the above problem, except the shock absorbers are more realistically represented by having different linear damping coefficients in the compression and rebound directions.
Damping coefficients $=$ front: compression $6.0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.; rebound $14.0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
rear: compression $8.0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.; rebound $18.0 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
Answer:

$$
y_{\max }=1.588 \mathrm{in} ., \theta_{\max }=1.395^{\circ}
$$

14 A block diagram model of a position control system with tachometer feedback is given in Fig. P2.14.

Fig. P2.14
Let $R(s)$ correspond to a unit-step [i.e., INPUT $=\operatorname{STEP}(0.0)$] and find $c(t)$ for values of $K_{T}=0.1,1.5,4.0$. Use the PARAMETER card for running multiple values of K_{T}. Specify FINTIM $=5.0$, and OUTDEL $=0.1$ for the printer-plot of the output. Also specify that ERROR and INPUT are listed on the same page which gives the printer-plot of the output. Use a LABEL card with your choice of wording for the title of the printer-plot output.
Answer:

$$
\begin{array}{lll}
c(t)=1.2329 & \text { at TIME }=0.7 & K_{T}=1.0 \\
c(t)=1.0468 & \text { at TIME }=0.9 & K_{T}=1.5 \\
c(t)=0.9919 & \text { at TIME }=1.9 & K_{T}=4.0
\end{array}
$$

15 The following Blasius equation is a transformed equation describing the laminar boundary layer on a flat plate.

$$
\frac{d^{3} f}{d \eta^{3}}+\frac{d^{2} f}{d \eta^{2}} f=0
$$

Based on previous experience, the following boundary conditions will yield a satisfactory solution.

$$
f(\eta=0)=\frac{d f}{d \eta}(\eta=0)=0 \quad \frac{d f}{d \eta}(\eta=3)=2
$$

Using a trial and error solution determine the value of

$$
\frac{d^{2} f}{d \eta^{2}}(\eta=0)
$$

Answer:

$$
\frac{d^{2} f}{d \eta^{2}}(\eta=0)=1.328
$$

16 Solve the following set of differential equations.

$$
\begin{aligned}
& 3 \ddot{x}_{1}+\ddot{x}_{2}+5 \dot{x}_{1}^{3}+10 x_{1}=10+e^{-t} \\
& \ddot{x}_{1}+4 \ddot{x}_{2}+25 \dot{x}_{2}+4 x_{2}^{3}=0
\end{aligned}
$$

where

$$
\begin{aligned}
& x_{1}(0)=x_{2}(0)=0 \\
& \dot{x}_{1}(0)=2 \quad \dot{x}_{2}(0)=7
\end{aligned}
$$

Answer:

$$
\text { At TIME }=1.0 \quad x_{1}=1.276
$$

17 The diagram below represents an experimentally measured water temperature increase in a steam generating boiler due to a step input of fuel. The fuel is natural

Fig. P2.17
gas and the step input level is $10,000 \mathrm{ft}^{3} / \mathrm{hr}$. The heat content of the gas is approximately $1000 \mathrm{Btu} / \mathrm{ft}^{3}$. A proposed model for matching the temperature increase (over the range $t=0$ to $t=19 \mathrm{~min}$) due to the step input of fuel is given by

$$
\frac{T(s)}{U(s)}=\frac{K_{2} \epsilon^{-\tau_{d} s}}{s\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right)}
$$

where T has units of ${ }^{\circ} \mathrm{F}, K_{2}$ has units of ${ }^{\circ} \mathrm{F} / \mathrm{ft}^{3}, U$ (input) is in $\mathrm{ft}^{3} / \mathrm{min}$, and $\tau_{d}, \tau_{1}, \tau_{2}$ have units of minutes. Use CSMP to assist you in determining appropriate values for $K_{2}, \tau_{d}, \tau_{1}$, and τ_{2}.

Answers:

$$
K_{2}=0.04^{\circ} \mathrm{F} / \mathrm{ft}^{3}, \tau_{d}=4 \mathrm{~min}, \tau_{1}=2 \mathrm{~min}, \tau_{2}=5 \mathrm{~min}
$$

18 A red hot cylindrical piece of iron is brought from a heat treating furnace and is allowed to cool in still air. Energy is removed from the piece by both convection and radiation. Assuming the iron remains at a uniform temperature, the following equation can be used to describe the transient temperature.

$$
m c \frac{d T}{d t}=\mathrm{hA}\left(\mathrm{~T}_{a}-\mathrm{T}\right)+\mathrm{A} \epsilon \sigma\left(\mathrm{~T}_{a}^{4}-\mathrm{T}^{4}\right)
$$

where: $\mathrm{T}_{a}=545^{\circ} \mathrm{R}, \quad m=161.7 \mathrm{lbm}, \quad c=0.13 \mathrm{Btu}-\mathrm{lbm} /{ }^{\circ} \mathrm{R}$

$$
\begin{array}{ll}
\mathrm{A}=3.01 \mathrm{ft}^{2}, & h=0.18\left(\mathrm{~T}-\mathrm{T}_{a}\right)^{0.33} \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{hr} \\
\epsilon=0.95, & \sigma=0.1714 \times 10^{-8} \mathrm{Btu} / \mathrm{hr}^{-} \mathrm{ft}^{2}{ }^{-} \mathrm{R}^{4}
\end{array}
$$

Use the FINISH card to determine how long it takes for the piece to cool from $1910^{\circ} \mathrm{R}$ to $1300^{\circ} \mathrm{R}$.

Fig. P2.18
Answer:
0.378 hours

19 The following equations describe the angular recoil of a hand gun. The assumption is made that the gun is loosely held so that no external moment is applied to the gun. The restraining force vector passes through the center of mass. The parameters for a 38 caliber pistol are shown below.

Bullet weight $=w=0.0207$ pounds
Moment of inertia about center of mass $=I=0.0105 \mathrm{lb}-\mathrm{in} .-\mathrm{sec}^{2}$
$d=0.9$ inches
Cross-sectional area of bullet $=A=0.1 \mathrm{in} .^{2}$
Find the angular recoil of the hand gun and muzzle velocity for the following description of barrel pressure.

Fig. P2.19
Answer:
At $x=3.962$ in., $\theta=0.018212$ radians, and $x=12600 \mathrm{in} . / \mathrm{sec}$
Closed form solution:

$$
\theta=x w d /(386 I)
$$

20 An automobile engine has a stroke of 3.70 in . and a connecting rod length of 5.84 in . as shown in Fig. P2.20. The following is an expression for the exact acceleration of the piston for a constant engine speed.

Fig. P2. 20

$$
\begin{aligned}
a= & -\omega^{2}\left[\mathrm{R} \cos \theta+\mathrm{R}^{2}\left(\mathrm{~L}^{2}-\mathrm{R}^{2} \sin ^{2} \theta\right)^{-1 / 2} \cos 2 \theta\right. \\
& \left.+\frac{\mathbf{R}^{4}}{4}\left(\mathrm{~L}^{2}-\mathrm{R}^{2} \sin ^{2} \theta\right)^{-3 / 2} \sin ^{2} 2 \theta\right]
\end{aligned}
$$

Use the above equation to calculate the acceleration of the piston for an engine speed of $4800 \mathrm{rpm}(\omega=160 \pi \mathrm{rad} / \mathrm{sec})$ at three degree increments during one complete revolution of the crankshaft. Answer:

$$
\begin{aligned}
& a_{\max }=3.355 \times 10^{5} \mathrm{in} / \mathrm{sec}^{2} \text { at } 141^{\circ} \\
& a_{\min }=-6.155 \times 10^{5} \mathrm{in} / \mathrm{sec}^{2} \text { at } 0^{\circ}
\end{aligned}
$$

3

ADVANCED FEATURES OF CSMP

The preceding chapter introduced the basic concepts and features that allow the reader to begin using CSMP. In this chapter, additional programming capabilities are described which permit considerable flexibility in the simulation of complex systems. The presentation is divided into five distinct areas: integration methods, data statements, translation control statements, data output, and subprograms. Each section is essentially a separate entity and consequently the material can be covered in any order.

Since integration is normally a pivotal point in most simulations, the first section concentrates on the various numerical integration routines available in CSMP.

Integration Methods

One of the most attractive features of CSMP is that the user seldom needs to become involved in specifying either the type or any of the details of the numerical integration method. For those who wish to specify the integration technique, there are five fixed-step and two variable-step methods available. CSMP III provides two additional techniques which are described in Chap. 5. If none of the seven methods are suitable, the user can supply his own integration subroutine. The following paragraphs describe the relative advantages and disadvantages of variable and fixed-step integration methods, error requirements, and give guidelines for choosing the best integration method.

Variable-Step Integration Methods

When the integration method is not specified, a variable-step Runge-Kutta method (CSMP name: RKS) is automatically used. This method is generally a good choice for most problems and is used in the example problems in Chap. 2. It is a sophisticated method that has the advantage of automatically adjusting the time increment of integration to meet the demands of the dynamic conditions of the simulation. Thus, the user is virtually assured a satisfactory solution.

The second variable-step integration technique is the fifth-order, predictorcorrector, Milne method (MILNE). This method is specified by including the following CSMP statement in the program.

METHOD MILNE

The MILNE method is similar to the RKS integration technique in that it uses rather sophisticated numerical algorithms and adjusts the step-size to meet changing conditions. MILNE integration has essentially the same advantages and disadvantages as the RKS technique. Generally, one will not know prior to the run which integration method will give the best simulation results. While the RKS method may give best results for one problem, the MILNE method may perform best for another type of problem.

Both methods have the disadvantage of sometimes using an extremely small integration step-size which results in excessive computer time. The step-size is controlled by algorithms which provide estimates of integration error.

Integration Error Requirements

In both variable-step methods, the absolute value of the estimated integration error (ABSERR) and the relative magnitude of the estimated error (RELERR) are compared with user-specified error-bounds. The step-size is then adjusted to meet the desired error criteria. The error limit of the absolute error dominates for large values of integrator output while the relative error is more important for small values of output. A detailed mathematical description of all integration methods and error criteria is contained in Appendix III.

If error-bounds are not specified, a value of 0.0001 is automatically used for both the absolute and relative errors for all RKS and MILNE integration. The user can specify either or both the relative and absolute errors for each integrator by using the RELERR and ABSERR statements. Examples of both statements are shown below.

$$
\begin{aligned}
& \text { RELERR } X=0.0002, Y=5.0 \mathrm{E}-5, Z=0.0005 \\
& \text { ABSERR } X=0.0003, Y=7.5 \mathrm{E}-5
\end{aligned}
$$

The first statement sets the relative error for the X, Y, and Z integrators to the values shown. In the second statement, the absolute errors for only the X and Y integrators are changed as indicated.

The use of the RELERR and ABSERR cards enables the user to specify the
allowable error for each separate integrator which, in effect, governs the size of the integration step. Computer time can be more efficiently used since step-size and computer time are directly related.

It is quite difficult to determine the exact quantitative effect that the relative and absolute errors have on step-size and solution accuracy. In order to show the relationship of error-bound to solution accuracy for one particular problem, the following second-order linear equation is solved using the variable-step RungeKutta method for values of relative and absolute error that ranged from 0.00005 to 0.1 . The particular problem is the harmonic oscillator,

$$
\begin{equation*}
\ddot{y}+4 \pi^{2} y=0 \tag{3.1}
\end{equation*}
$$

with initial conditions of $y(0)=1.0, \dot{y}(0)=0$
A plot of the exact solution for $y(t)$ is given in Fig. 3.1. To illustrate the effect of ABSERR and RELERR error bounds, the exact solution is compared to the Runge-Kutta numerical solution.

Fig. 3.1 Plot of the exact solution of $\dot{y}(t)+4 \pi^{2} y(t)=0$, with $y(0)=1, \dot{y}(0)=0$.

Table 3.1 contains a summary of the average absolute difference between the exact solution and numerical solution as a function of error-bound. The number of integration steps is also listed. The information in this table should not be directly applied to all problems but it does illustrate how error-bounds affect the accuracy of solution for one particular problem. Round-off errors in the numerical calculations limit the maximum accuracy of the solution. Consequently, the solution error cannot be expected to continue to become smaller indefinitely for increasingly smaller values of error-bound.

In some problems the error-bounds and the dynamics of the simulation do not control the integration step-size. Since the solution must be calculated at each output interval the integration step-size must be equal to or less than the magnitude of either PRDEL or OUTDEL. This means that for small output-intervals the step-size is determined by the print interval. For this condition the error-bound has no effect on the step size. In the numerical solution of Eq. (3.1), which generated the data contained in Table 3.1, the print interval was made sufficiently large to not affect the integration step-size.

Table 3.1

Solution Error of Eq. (3.1) Using RKS as a Function of ABSERR and RELERR.

Error-bound		
ABSERR		
and	Average Absolute Difference between Numerical and Exact Solutions	Number of Integration SELERR
0.00005	5.48×10^{-6}	
0.0001	7.06×10^{-5}	29
0.0002	7.95×10^{-5}	23
0.0005	1.01×10^{-4}	23
0.001	8.87×10^{-5}	20
0.002	5.88×10^{-4}	20
0.004	4.89×10^{-4}	18
0.005	4.89×10^{-4}	17
0.01	4.89×10^{-4}	17
0.02	1.69×10^{-3}	17
0.1	1.69×10^{-3}	15
		15

As previously stated, it is not necessary to specify the integration step-size for either the RKS or MILNE integration methods. The first integration step is automatically set equal to $\frac{1}{16}$ of PRDEL or OUTDEL, whichever is smaller. If the user wishes to use a different value for the first step-size, this can be accomplished by specifying a value for DELT on the timer card. The definition of the DELT specification is as follows:

DELT. The value of DELT is the integration interval or step-size of the independent variable. If DELT is specified, it is automatically adjusted if necessary to be a submultiple of PRDEL or OUTDEL. If neither PRDEL or OUTDEL has been specified, DELT is adjusted to be a submultiple of FINTIM/100. When DELT is not specified, the first integration step is $\frac{1}{16}$ of the smaller value of PRDEL or OUTDEL. For either of the variable-step integration methods there is no need to specify a value for DELT unless the user feels that the first step-size ($\frac{1}{16}$ of smaller value of PRDEL or OUTDEL) is too large. When using a fixed-step integration method, the value of DELT should be carefully selected. Guidelines for choosing a value are discussed later.

For some problems, the error requirements and the dynamics of the solution may demand an extremely small step-size. A lower limit can be placed on the integration step-size by specifying a value for DELMIN on the timer card.

DELMIN. The value assigned to DELMIN on the timer card specifies the minimum allowable integration interval for the variable-step integration methods. If DELMIN is not specified, it is taken as FINTIM $\times 10^{-7}$. The following timer card shows a typical application where DELMIN is included.

$$
\text { TIMER FINTIM }=8.0, \quad \text { PRDEL }=0.2, \quad \text { DELMIN }=2.0 \mathrm{E}-8
$$

If either of the variable-step integration methods attempts to use a value of DELT smaller than DELMIN, the run is terminated at that point with the appropriate message.

Fixed-Step Integration Methods

There are five fixed-interval integration techniques ranging from the sophisticated Runge-Kutta to an extremely simple rectangular integration. A listing of the five fixed-step methods in the order of decreasing complexity is given below.

Summary of Fixed-Step Integration Methods

CSMP Name	Method
RKSFX	Fourth-order Runge-Kutta with
	fixed interval
SIMP	Simpson's Rule integration
TRAPZ	Trapezoidal integration
ADAMS	Adams-Second Order
RECT	Rectangular integration

The integration technique is specified by the use of the METHOD card with the appropriate CSMP integration name. An example of specifying the trapezoidal method is shown below.

METHOD TRAPZ

Since these methods all use a fixed-integration interval, the value of DELT should be carefully chosen. Information for choosing a value for DELT is discussed in the following section.

Choosing the Integration Method

When specifying an integration method one must be concerned with obtaining sufficient accuracy without using excessive computing time. Generally, the selection of the best integration is an extremely complex decision. For problems that are not extremely complex or do not require a large amount of computer time, either the variable-step Runge-Kutta or Milne methods are probably the best choice. The error-bound can be specified to meet the desired accuracy and the step-size is then automatically adjusted to the changing dynamic conditions of the problem.

The solution of Eq. (3.1) by both the Milne and the variable-step RungeKutta methods were compared to the exact solution given in Fig. 3.1. The stepsizes on the first set of runs were entirely controlled by the default error-bound of 0.0001 . In the second set of runs the error-bounds were not changed, but 100 lines of output were specified. From the results shown in Table 3.2, notice that the

Table 3.2
Comparison of Numerical Solutions Using The VariableStep Milne and Runge-Kutta Methods

| | $\begin{array}{c}\text { Average Absolute } \\ \text { Difference between } \\ \text { Integration } \\ \text { Mumerical and Exact } \\ \text { Solutions of Eq. } 3.1\end{array}$ | | |
| :--- | :--- | :---: | :---: | \(\left.\begin{array}{c}Number of

Integration

Steps\end{array}\right]\)| First set of runs,
 default error bound
 of 0.0001,
 2 lines of output | Variable-step
 Runge-Kutta | 7.06×10^{-5} | 23 |
| :--- | :--- | :---: | :---: |
| Second set of runs,
 default error bound
 of 0.0001, | Milne | 1.08×10^{-5} | 58 |
| 100 lines of output | Runge-Kutta | | |

smaller output interval of the second set of runs forced the integration step-size to be smaller and consequently reduced the error.

For certain types of problems, fixed-step integration methods may give better results. The following is a listing of three situations where fixed-step methods should be considered.

1. In some types of problems where sudden changes or discontinuities occur, the variable-step methods may demand an integration step which is smaller than the minimum allowed (DELMIN). If this occurs the run is terminated at that point. The user then has the choice of increasing the error requirements (RELERR and ABSERR), decreasing DELMIN, or using one of the fixed-step methods.
2. If the output interval is very small, the maximum step-size is constrained by the output and there is no need to use a sophisticated, time-consuming integration technique. For this situation a simple fixed-step method should be used.
3. When using elements such as IMPULS (Example 2.7) which involve critical time-sequencing relationships, it is good practice to use a fixed-step method that is a submultiple of the desired pulse interval.

The big problem in using a fixed-step method is choosing the proper integration step-size. DELT should be chosen such that it is sufficiently small to insure an accurate solution and not too small to result in excessive run time. There is no exact procedure for determining the proper step-size prior to making a simulation run. The dynamic response of the system determines the necessary step size.

The faster the response, the smaller should be the integration interval. It is advisable to make the first choice of DELT sufficiently small to ensure an accurate solution. The step-size is probably too large if a smaller integration interval results in a significantly different answer.

In order to provide an estimate on how integration error is affected by stepsize, the numerical solution of Eq. (3.1) was compared with the exact solution shown in Fig. 3.1. This was done for all five fixed-step integration methods using a step-size that ranged from 10 to 10,000 integration steps per cycle of the cosine function. The average absolute difference between the exact solution and the numerical solution is plotted in Fig. 3.2 as a function of step-size for the five integration methods.

Fig. 3.2 Average absolute error as a function of step-size and integration method.

The results shown in Fig. 3.2 are only intended to show the relative accuracy of the various methods as a function of step-size. The curves also illustrate that a small integration interval does not necessarily give the greatest accuracy. If the frequency content of the solution can be estimated, Fig. 3.2 can be helpful in estimating the appropriate step-size.

As previously mentioned, the various integration methods are greatly different in complexity and consequently require different amounts of computing time. In order to provide an estimate on computing time for the five fixed-step methods, a program was run in which 10,000 integration steps were performed. The computer time required for only the numerical integration, using an IBM 360 Model 65 computer, is listed below.

Method	Time in Seconds
RKSFX	3.578
SIMP	2.513
TRAPZ	1.647
ADAMS	1.198
RECT	0.982

In many problems the most time-consuming portion of the simulation is not the result of the numerical integration, but is due to the calculations required at each integration step. The number of times that all statements in the Dynamic segment are executed for each integration step depends upon the method. Table 3.3 contains this information for all seven methods.

If the problem requires a large number of calculations for each integration step, a savings in computer time may result if a smaller step-size is used in conjunction with a less sophisticated integration method.

Table 3.3

	Number of Times that all
	Statements in the Dynamic
Integration	Segment are Executed for
Method	Each Integration Step

RKSFX \& RKS	4
SIMP	3
MILNE	2
TRAPZ	2
ADAMS	1
RECT	1

The Variable KEEP

The CSMP variable KEEP is used to indicate when the numerical technique has reached the end of an integration step. KEEP is set equal to 1 when a valid integration step has been completed. For intermediate steps and for trial steps of the variable-step methods, KEEP equals 0 . The KEEP variable was used in programs which calculated the average absolute error between the numerical and exact solution of Eq. (3.1).

An example of a program using Simpson's integration rule with a step-size of 0.001 seconds is shown in Fig. 3.3.

```
title program to calculate the average absolute error of equation 3.1
INITIAL
CONSTANT PI = 3.14159, SUM = 0.0, COUNT = 0.0
DYNAMIC
```

* THE FOLLOWING 3 CARDS ARE USED TJ SOLVE EQUATION 3.1, WHERE-
* YDO = SECOND DERIVATIVE OF Y WITH RESPECT TO TIME
* YD = FIRST DERIVATIVE OF Y WITH RESPECT TO TIME

```
YDD = -4.O*PI*PI*Y
```

$Y D=\operatorname{INTGRL}(0.0, Y D D)$
$Y=I N T G R L(1.0, Y D)$

* the following nosort section is required to use the "If" statement
NOSORT
* KeEP is equal to 1 When the end of a valio integration step is reached
IF(KEEP. EQ.1) GO TO I
GU TO 2
1 SUM $=\operatorname{SUM}+A B S(Y-\operatorname{COS}(2.0 * P I * T I M E))$
COUNT $=$ COUNT +1.0
AAER = SUM/COUNT
2 continue
TERMINAL
TIMER FINTIM $=1.0$, PRDEL $=0.1$, DELT $=0.001$
METHED SIMP
PRINT Y, SUM, COUNT, AAER
END
STOP
ENDJDB

Fig. 3.3 Program to calculate the average absolute error of Eq. 3.1.
In the program of Fig. 3.3, the variable KEEP was used to indicate when a valid integration step was reached. When KEEP equals 1 , the variable SUM increases by the absolute difference between the numerical solution Y and the exact solution, $\cos (2.0 * \pi * T I M E)$. Also the number of valid integration steps is recorded by the variable COUNT. The quotient, SUM/COUNT is equal to the average absolute error AAER.

Table 3.3 shows that for Simpson's integration, statements in the Dynamic segment are executed three times at each integration step. This means that KEEP is equal to 1 every third time the program cycles through the Dynamic segment.

Changing Integration Technique and
 Output Interval During a Run

CSMP offers the user the flexibility of changing integration methods, stepsize, error requirements, and output-interval during a simulation run. The CSMP CONTINUE statement is used for this purpose. (In CSMP III, the END CONTINUE is used.) A brief description of the CONTINUE statement follows, while a detailed explanation is included in this chapter in the section on translation control statements.

A problem which illustrates the need to change step-size and output-interval is the simulation of the impact of two railroad freight cars. A small step-size is required during impact period because of the high forces and rapidly changing conditions. A much larger step-size and output-interval can be used for the postimpact motion.

Example 3.1

In this example it is desired to calculate the forces, accelerations, and deflections during the impact of two railroad cars. The motion after impact is also desired. Car number one is moving from left to right with a velocity of $8 \mathrm{ft} / \mathrm{sec}$. It strikes and is coupled to a second car that is initially stationary. The impact first occurs at $t=0$. The couplers are assumed to be connected to both cars by a linear-spring and damper. A constant rollingresistance force opposing motion is also included. Figure 3.4 illustrates the simplified problem and gives the appropriate parameters.

Fig. 3.4 Impacting freight cars.

Using Newton's second law, the equations describing the motion of the two freight cars are derived as follows.

$$
\begin{align*}
& \mathrm{FORCE}=\mathrm{K} *(\mathrm{X} 2-\mathrm{X} 1) / 2.0+\mathrm{C} *(\mathrm{~V} 2-\mathrm{V} 1) / 2.0 \tag{3.2}\\
& \dot{\mathrm{~V}} 1=\left[\mathrm{FORCE}-600.0^{*} \operatorname{SIGN}(\mathrm{~V} 1)\right] / \mathrm{W} 1 / 32.17 \tag{3.3}\\
& \dot{\mathrm{~V}} 2=[-\mathrm{FORCE}-400.0 * \operatorname{SIGN}(\mathrm{~V} 2)] / \mathrm{W} 2 / 32.17 \tag{3.4}
\end{align*}
$$

Symbols Used in CSMP
Program of Fig. 3.5

FORCE
K
C
ACC1 \& ACC2
V1 \& V2
X 1 \& X2
W1 \& W2

Force between cars.
Spring constant of coupler spring, $3.5 \times 10^{5} \mathrm{lb} / \mathrm{ft}$.
Damping constant of coupler, $18,000 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$.
Accelerations of cars $1 \& 2$, respectively.
Velocities of cars $1 \& 2$, respectively.
Displacements of cars $1 \& 2$, respectively. Weights of cars $1 \& 2$, respectively.

Prior to running the program, it was estimated that the impact would occur in less than 1.0 sec . Therefore, FINTIM on the first TIMER card was set equal to 1.0 and the output-interval was chosen to be 0.02 . For the post-impact motion FINTIM was set equal to 21.0 with an output-interval of 2.0 . For illustration purposes, the fixed-step Runge-

```
TITLE SIMULATION OF THE IMPACT OF TWO RAILRCAD CARS. THE OUTPUT
TITLE INTERVAL AND INTEGRATION TECHNIQUE ARE CHANGED DURING THE RUN.
    CONSTANT K = 3.5E5, C = 18000.0, W1 = 140000.0,W2 = 95000.0
    FORCE = K*IX2-X1)/2.0 + C*(V2 - V1)/2.0
    ACCI = (FORCE - 600.0*SIGN(1.0.V1))/(W1/32.17)
    ACC2 = (-FORCE - 400*SIGN(1.0.V2)//(w2/32.17)
    V1 = INTGRL(8.0.ACC1)
    V2 =INTGRL(0.0,ACC2)
    X1 = INTGRL(0.0.V1)
    X2 = INTGRL (0.0.V2)
    DEFLCT = X1 - X2
    PRINT FCRCE, ACC1, ACC2, V1, V2, X1, X2, DEFLCT
    METHOD RKSFX
    TIMER FINTIM = 1.0. PRDEL = 0.025. DELT = 0.0005
* THE FOLLOWING CONT INUE CARD ALLOWS THE OUTPUT INTERVAL AND THE
* INTEGRATION TECHNIQUE TO BE CHANGED DURING THE RUN. THE GHANGES ARE MADE
* AFTER 1.0 SECONDS, WHICH IS THE FINTIM TIME ON THE ABOVE TIMER GARD.
    CONTINUE
    METHOD MILNE
    RELERR V1 = 0.0005, V2 = 0.0005, X1 = 0.0005, X2 = 0.0005
    ABSERR V1 = 0.0005,V2 = 0.0005, X1 = 0.0005, X2 = 0.0005
    TIMER FINTIM = 21.0. PRDEL = 2.0
ENO
STOP
ENDJOB
```

Fig. 3.5 Program for the simulation of the impact of two freight cars.

Kutta method (RKSFX) with a step-size of DELT $=0.0005 \mathrm{sec}$ was used for the impact period and the variable-step Milne (MILNE) method was used for the motion after impact. Also for illustration purposes, the relative and absolute errors for all integrators of the Milne integration were set equal to 0.0005 .

The program for simulating this system is shown in Fig. 3.5. One notes the use of the CONTINUE card to change the output-interval and integration technique. The CONTINUE card permits these changes without resetting the independent variable TIME.

The output for this simulation is contained in Figs. 3.6 and 3.7.

SIMULATION OF THE IMPACT OF TWO RAILROAD CARS. THE OUTPUT RKSFX INTEGRATION
interval and integration technigue are changed during the run.

time	force		ACC 1	ACC2	
0.0	-7.2000E	04	-1.6682E O1	2.42 46E	01
$2.5000 \mathrm{E}-02$	-9.3825E	04	-2.1697E 01	3.1637 E	01
5.0000E-02	-1.0758E	05	-2.4859E O1	$3.6295 E$	01
$7.5000 \mathrm{E}-02$	-1.1344E	05	-2.6205E O1	3.8279 E	01
1.0000E-01	-1.1201E	05	-2.5876E O1	$3.7795 E$	01
1.2500E-01	-1.0425E	05	-2.4093E 01	$3.5167 E$	01
1.5000E-01	-9.1367E	04	-2.1133E 01	3.0804 E	01
$1.7500 \mathrm{E}-01$	-7.4724E	04	-1.7308E 01	$2.5159 E$	01
2.0000F-01	-5.5740E	04	-1.2946E 01	1.8740 E	01
2.2500F-01	-3.5798E	04	-8.3637E 00	1.1987 E	01
2.5000E-01	-1.6171E	04	-3.8538E 00	5.3407 E	
$2.7500 \mathrm{E}-01$	$2.0343 E$	03	3.2957E-01	-8.2431E	-01
3.0000E-01	1.7936 E	04	3.9837 E 00	-6.2093E	00
3.2500e-01	3.0889E	04	6.9599 E 00	-1.0595E	01
3.5000E-01	4.0493 E	04	9.1668 E 00	$-1.3848 \mathrm{E}$	01
3.7500F-01	4.6593 E	04	1.0569 E 01	-1.5913E	01
4.0000E-01	4.9257 E	04	1.1181801	-1.6815E	
$4.2500 \mathrm{E}-01$	4.8741 E	04	1.1062801	-1.6641F	
$4.5000 E-01$	4. 5458 EE	04	1.0308 E 01	-1.5529E	
$4.7500 \mathrm{E}-01$	$3.9929 E$	04	9.0372 E 00	-1.3657E	
$5.0000 \mathrm{E}-01$	3.2746 E	04	7.3867 E 00	-1.1224E	
$5.2500 \mathrm{E}-01$	$2.4525 E$	04	5.4976 E 00	-8.4404E	
$5.5000 \mathrm{E}-01$	1.5867 E	04	$3.5080 E 00$	-5.5084E	00
$5.7500 t-01$	7.3274 E	03	1.5459 E 00	-2.6167E	
$6.0000 \mathrm{E}-01$	-6.1086E	02	$-2.7824 E-01$	7.1402E-	-02
$6.2500 \mathrm{E}-01$	-7.5608E	03	-1.8752E 00	2.4249 E	00
$6.5000 \mathrm{E}-01$	-1.3237E	04	-3.1796E 00	4.3471 E	00
$6.7500 \mathrm{E}-01$	-1.7463E	04	-4.1507E 00	5.7782 E	00
7.0000E-01	-2.0169E	04	-4.7723E 00	6.6943 E	
$7.2500 \mathrm{E}-01$	-2.1378E	04	-5.0502E 00	7.1038 E	00
$7.5000 \mathrm{E}-01$	-2.1201E	04	-5.0095E 00	7.0438 E	00
$7.7500 \mathrm{E}-01$	-1.9813E	04	-4.6907E 00	6.5740 E	00
$8.0000 \mathrm{E}-01$	-1.7442E	04	-4.1458E 00	5.77095	00
$8.25005-01$	-1.4342E	04	-3.4334E 00	4.7211 E	
$8.5000 \mathrm{~F}-01$	-1.0781E	04	-2.6153E 00	3.5155 E	
$8.7500 \mathrm{E}-01$	-7.0223E	03	-1.7515E 00	$2.2425 E$	
$9.0000 E-01$	-3.3066E	03	-8.9769E-01	$9.8428 \mathrm{E}-$	01
$9.2500 \mathrm{E}-01$	1.5599 E	02	-1.0203E-01	$-1.8828 \mathrm{E}-$	- 01
$9.5000 \mathrm{E}-01$	$3.1927 E$	03	$5.9577 E-01$	-1.2166E	
$9.7500 \mathrm{E}-01$	5.6803 E	03	1.1674 E 00	-2.0590E	
1.0000 F 00	7.5395 E	03	1.5946 E 00	-2.6886E	

V1		V2	
8.0000E	00	$\begin{aligned} & 0.0 \\ & 7.0417 E-01 \end{aligned}$	
7.5164E	00		
$6.9306 E$	00	1.5590 E	00
$6.2886 E$	00	2.4966 E	00
5.6343 E	00	3.4523E	00
5.0069 E	00	4.3684 E	00
4.4394 E	00	5.1961 E	00
3.9574 E	00	5.8979 E	00
3.5784 E	00	6.4479 E	00
3.3119E	00	6.8322E	00
3.1596 E	00	7.0481E	00
3.1164E	00	7.1032E	00
3.1716 E	00	7.0134 E	00
3.3099 E	00	6.8010 E	00
3. 5131 E	00	6.4930 E	00
3.7614 E	00	$6.1185 E$	00
4.0349 E	00	5.7070 E	00
4.3143 E	00	5.2867 E	00
4.5826 E	00	4.8828 E	00
4.8254E	00	4.5166 E	00
5.0313 E	00	4.2046E	00
5.1927 E	00	3.9582E	00
5. 3053 E	00	3.7837E	00
5.3682E	00	3.6824 E	00
5.3837E	00	3.6512 E	00
5.3562E	00	3.6832E	00
$5.2923 E$	00	3.7688 E	00
5.1999E	00	3.8964 E	00
5.0877E	00	4.0533 E	00
4.9642 E	00	4.2268 E	00
4.8378E	00	4.4045 E	00
4.7160 E	00	4.5755 E	00
4.6051E	00	4.7304 E	00
4.5100 E	00	4.8620E	00
4.4342 E	00	4.9651 E	00
4.3796E	00	5.0371 E	00
4.3465 E	00	5.0773 E	00
4.3342E	00	5.0870 E	00
$4.3406 E$	00	5.0691 E	00
$4.3629 E$	00	5.0277 E	00
4.3977E	00	$4.9679 E$	00

X1	
0.0	
$1.9422 E-01$	
$3.7497 E-01$	
$5.4027 E-01$	
$6.8929 E-01$	
$8.2221 E-01$	
$9.4013 E-01$	
$1.0449 E$	00
$1.1388 E$	00
$1.2247 E$	00
$1.3053 E$	00
$1.3835 E$	00
$1.4619 E$	00
$1.5428 E$	00
$1.6279 E$	00
$1.7187 E$	00
$1.8161 E$	00
$1.9205 E$	00
$2.0317 E$	00
$2.1494 E$	00
$2.2726 E$	00
2.4005 E	00
$2.5318 E$	00
$2.6653 E$	00
$2.7998 E$	00
$2.9341 E$	00
$3.0672 E$	00
$3.1984 E$	00
$3.3270 E$	00
$3.4527 E$	00
$3.5752 E$	00
$3.6945 E$	00
$3.8110 E$	00
$3.9249 E$	00
$4.0366 E$	00
$4.1467 E$	00
$4.2557 E$	00
$4.3642 E$	00
$4.4725 E$	00
$4.5813 E$	00
$4.6907 E$	00

Fig. 3.6 Motion of railroad cars during impact.
SIMULATION JF THE IMPACT DF TWO RAILROAD CARS. THE OUTPUT MILNE INTEGRATION INTERVAL AND INTEGRATION TECHNIOUE ARE CHANGED DURING THE RUN.

1.0000E	00	$7.5395 E$	03	$1.5946 \mathrm{E} \quad 00$	-2.6886E 00	4.3977 E	00	4.9679 E	00	4.6907 E	00	4.7045E	0	1.3760E-02
3.0000 E	00	8.1178 E	01	-1.1922E-01	-1.6294E-01	4.3517 E	00	4.3583 E	00	1.3679E	01	$1.3679 E$	01	-1.2207E-04
5.0000F	00	-1.4982E	02	-1.7230E-01	-8.4720E-02	4.0830 E	00	4.0768 E	00	2.2113E	01	2.2113 E	01	$5.3406 \mathrm{E}-04$
7.0000E	00	-2.8289E	02	-2.0288E-01	-3.965BE-02	3.8152 E	00	3.7941 E	00	2.9999E	01	$2.9999 E$	01	5.3406E-04
9.0000 E	00	-2.2676t	02	-1.8998E-01	-5.8663E-02	3.5452E	00	3.5146 E	00	3.7338 E	01	3.7338 E	01	-2.7466E-04
d. 1000 E	01	-3.8365E	01	-1.4669E-01	-1.2246E-01	3.2848E	00	3.2209 E	00	4.4127 E	01	4.4130 E	01	3. $0670 \mathrm{E}-03$
1.3000E	01	-5.8007E	02	-2.7116E-01	$6.0978 \mathrm{E}-02$	2.9512 E	00	3.0351 E	00	5.0375 E	01	5.0367 E	01	7.6294E-03
1.5000 E	01	-8.7971E	02	-3.4002E-01	$1.6244 \mathrm{E}-01$	2.7154 E	00	2.7052 E	00	5.6069E	01	$5.6065 E$	01	4.5013E-03
1.7000 E	01	-3.4298E	02	2.1668E-01	-1.9308E-02	$2.4556 E$	00	2.4107 E	00	6.1215E	01	6. 1215 E	01	-3.5095E-04
1.9000 E	01	4.4059 F	02	3.6630E-02	$2.8465 \mathrm{E}-01$	2.1639 E	00	2.1631 E	00	6.5814 E	01	6.5817 E	01	2.5635E-03
.1000F	01	-1.9237E	02	1.8208E-01	7.0309E-02	1.8984 E	00	1.8770 E	00	$6.9867 E$	01	6.9867E	01	0.0

Fig. 3.7 Post-impact motion of railroad cars.

In summary, choosing the best integration method is quite complicated, both from a theoretical and a practical point of view. No absolute set of guidelines can be written that will insure the optimum method is used for all problems. The user should be prepared to experiment in order to obtain the best method with regard to run-time and accuracy. It should be emphasized that either of the variablestep integration methods using the default error-bounds will give satisfactory solutions for the vast majority of problems. The additional computing time that may result when using this approach is usually considerably less expensive than the time the user would spend in choosing an optimum method. However, for complicated problems that will require a large amount of computing time, the user can justify spending time in deciding which method will give the best results.

User-Supplied Integration Method

In the event that none of these seven integration methods satisfies the user's requirements, an additional centralized integration method can be added to CSMP. The complete integration routine is entered into the program as a FORTRAN subroutine named CENTRL. The method is specified using the statement,

METHOD CENTRL

Example 3.2

To illustrate a program that employs a user-supplied integration technique, the following linear, first-order differential equation will be solved.

$$
\begin{equation*}
\frac{d(\mathrm{CASH})}{d t}=\mathrm{INTRST} * \mathrm{CASH} \tag{3.5}
\end{equation*}
$$

Initial condition: $\operatorname{CASH}(t=0)=\$ 1000$.
Equation (3.5) governs the present value of a bank account where the money is continuously compounded. This method of compounding is used by many banks and savings and loan associations. The initial amount in the account is $\$ 1,000.00$.

$$
\begin{aligned}
\mathrm{CASH} & =\text { present value of bank account } \\
\text { INTRST } & =\text { yearly interest rate }=0.065(6.5 \%) \\
t & =\text { time in years }
\end{aligned}
$$

The user supplied integration method is the CSMP Simpson method. Note that the only reason for using the CENTRL integration feature in this problem is to demonstrate its use.

Figure 3.8 shows a listing of the entire program. The comment cards are supplied to assist the reader to interpret the program. The IBM System Manual ${ }^{(1)}$ as well as the section on subprograms should be used as a reference for this procedure. Most of the information contained in Fig. 3.8 was taken from the IBM System Manual.

Figure 3.9 gives the output for the program for a time period of 50 years. The accuracy of the numerical integration can be compared with Eq. (3.6) which is the analytical solution to Eq. (3.5).

$$
\begin{equation*}
\mathrm{CASH}=1000 e^{0.065 t} \tag{3.6}
\end{equation*}
$$

```
* PROGRAM TO ILLUSTRATE THE METHOD OF PROVIDING A USER-SUPPLIED 
            SIMPSON ME THOD IS USED.
LABEL HISTORY OF $1000 BANK ACCOUNT, 6.5 CONTINUOUSLY COMPUND INTEREST
    RENAME TIME = YEARS
    CONSTANT INTRST = 0.065
    CASH = INTGRL(1000.0, INTRST*CASH)
    TIMER FINTIM = 50.0, OUTDEL = 1.0, DELT = 0.05
    PRTPLT CASH
    MFTHON CENTRL
        END
        STJP
    THE FOLLOWING IS THE FORTRAN SUBROUTINE "CENTRL"
        SUBROUTINE CENTRL
C THE FCLLOWING 2 COMMON AND }5\mathrm{ EQUIVALENCE CARDS ARE REQUIRED FOR ALL
C INTEGRATION METHODS.
        COMMON DDUM1(64),C(8000),NALARM,KPOINT,DDUM2(16),RANGE(400),H,KEEP
        COMMON DDUM3(1214),IFLAG(50),FAM(50),NCINTG,NOSYMB,SYMB(1)
        EQ(JIVALENCE (IFLAG(16),ISTEP),(IFLAG(19),DTIME),(IFLAG(40),ISTORE)
        EOUIVALENCE (IFLAG(18),ISTART),(IFLAG(10),IFIRST)
        EOUIVALENCE (C(1),TIME),(C(2),DELT),(C(3),DELMIN)
        EQHIVALENCE (C(4),FINTIM),(C(5),PRDEL),(C(6),OUTDEL)
        EOUIVALENCE (DDUM3(492),TNEXT),(DDUM2(10),KREL),(DDUM2(11),KABS)
        NOINTG IS THE NUMBER OF INTEGRATORS
        C IS THE DYNAMIC STORAGE ARRAY FOR THE EXECUTION PHASE
        H IS THE HIGHEST FREQUENCY OUTPUT SAMPLE RATE
        DELT HAS BEEN MOCIFIED TO BE A SUBMULTIPLE OF H
        tNEXt IS THE tImE DF THE NEXT OUTPUT pOINT
        START OF PROGRAM
        IF CENTRL IS AN ERROR TESTING INTEGRATION METHOD, SET NALARM TO
        ONE WHEN ERROR TEST FAILS IN ORDER TO STOP RUN.
        ISTART IS SET TO ZERO BY AN END OR CONTIN CARD TO START THE CASE
        ISTEP IS SET TO ZERO TO INITIALIZE STATUS
        ISTEP=0
C ISTORE IS THE NUMBER OF LOCATIONS USED IN THE C ARRAY
        ISTORE=KPOINT +3*NOINTG
        gO TO 3000
C
    2000 CONTINUE
    FOR SPECIAL INTEGRATION, USER MUST INSERT HIS CODING HERE
    AT THIS POINT VALUES ARE AVAILABLE FOR TIME ZERC.(Y,YDOT,YIC)
    INTEGRATOR OUTPUTS ARE LOCATED IN C(N+6) FOR N=1 TO NOINTG
    INTEGRATOR INPUTS ARE LOCATED IN C(N+G+NOINTG) FOR N=1 TO NOINTG
    INTEGRATOR INITIAL CONDITIONS IN C(N+6+2NOINTGI FOR N=1 TO NOINTG
    HISTORY OF OUTPUTS MUST BE STORED IN USER DIMENSIONED ARRAY OR
    UPPER LOCATIONS OF C ARRAY
    EXAMPLE FOR K HISTORY POINTS (REPLACE ARGUMENTS WITH CONSTANTS)
    DIMENSION CHYS(K,I)
    EQUIVALENCE(C(8000-300*K+1),CHYS(1))
    IN THE SIMPSON INTEGRATION METHOD, THERE ARE 3 HISTORY POINTS, K = 3
    EQUIVALENCE (C(7101), CHYS(1))
        DIMENSION CHYS(3,1),CY(1)
C THF FOLLOWING IS THE CSMP SIMPSON INTEGRATION METHOD.
    fouIVALENCE (C(7),CY(1))
    FQUIVALENCE (DOUM2(13),TLAST)
C
C HISTORY IS STOREC AS FOLLOWS
    C.HYS(J,I)=PAST VALUES AS REQUIRED
    WHERE J VARIES FROM 1 TO K HISTORY POINTS AND
    WHERE I VARIES FROM 301-NOINTG TO 300
```

Fig. 3.8 Program illustrating the use of CENTRL.

```
    00 2010 II=1,NOINTG
    I=301-II
    J=NOINTG+II
    CHYS(1,I)=CY(II)
    CHYS(2.1)=CY(J)
    2010 C.Y(II)=.5*DFLT*CY(J)+CY(II)
    DTIME=DTI ME+1.
    TIME=DTIME*.5*DELT +TLAST
    ISTART=1
    KEEP=0
    CALL UPDATE
    DO 2020 II =1,NOINTG
    I=301-I I
    J=NOINTG+II
    CHYS(3,1)=CY(J)
    2020 CY(II)=.5*DELT*CY(J)+CY(II)
    OTIME=DTIME+1.
    TIME=DTIME*.5*DELT+TLAST
    CALL UPDATE
    D\cap 2030 II =1,NOINTG
    I=301-1I
    J=NOINTG+II
    2030 CY(II)=CHYS(1,I)+.5*DELT*(CHYS(2.I)+4.*CHYS(3,I)+CY(J))/3.
    2040 CONTINUE
C KEEP IS SET TO IDENTIFY POINT TO STORE
    KFEP = 1
    call update
    3000 CONTINUE
C Status checks for variable ranges and output times
    call status
C IFIRST IS SET TO 4 TO INDICATE THE END OF A CASE
    IF(IFIRST-4)2000.4000,4000
    4000 RETURN
    END
ENDJOB
```

Fig. 3.8 (Continued)

Data Statements

Three of the most useful and commonly used data statements are CONSTANT, PARAMETER, and INCON. These three statements are completely equivalent in CSMP and they were previously defined and used in Chap. 2. It should be pointed out that these data statements cannot be used for assigning values to subscripted variables. As in FORTRAN, subscripted variables require special consideration. Following are descriptions of how data statements using subscripted variables are used in CSMP programs.

Subscripted Variables

Subscripted variables provide a procedure for handling large arrays of related data as are frequently found in systems represented by simultaneous equations. Any valid symbol, except those which start with the letters I, J, K, L, M, or N,

Fig. 3.9 Output for program of Fig. 3.8.
may be subscripted. Examples of both valid and invalid subscripted variables are:

Valid Invalid

A(3)
COUNT $(5,7,6)$
ZP123(7,2,8)

JP(8)
$\operatorname{ABCDEFG}(4,2)$
4X(9)
(Invalid first symbol)
(Excessive characters)
(First character cannot be a number)

As in FORTRAN, it is necessary to specify the following information before using subscripted variables.

1. What variables are subscripted.
2. How many subscripts there are for each subscripted variable.
3. The maximum size for each subscript.

This information can be specified by using either the DIMENSION or STORAGE statements.

DIMENSION Statement

Subscripted variables larger than one dimensional arrays [e.g. $X(3,5) Y(3,7,5)$] must be listed on a DIMENSION card. The DIMENSION statement is handled exactly as in FORTRAN with the exception being that a virgule (/) must appear in the first column. The virgule indicates that the DIMENSION instruction is a FORTRAN specification statement (discussed below). An example of a valid statement is shown below.

The compiler will assign 20 spaces to the one-dimensional array named X , $40(4 \times 10)$ spaces to the two-dimensional array Y, and $64(4 \times 4 \times 4)$ spaces to the three-dimensional array A. The user should not attempt to use a subscript larger than the maximum size as specified in the DIMENSION statement. Also, subscripts must never be smaller than 1 . This means that negative numbers and zero cannot be used as subscripts. A seven-dimensional array, which is the limit of FORTRAN IV (Level G), is the largest that can be used in a CSMP program. The DIMENSION statement should be placed at the beginning of the program since it must appear before any subscripted variables are used.

FORTRAN Specification Cards

Cards containing a virgule (/) in column 1 are called FORTRAN specification cards. These cards are treated exactly as FORTRAN statements and consequently must follow a somewhat different format than usual CSMP statements. The following rules must be followed when using FORTRAN specification cards.

1. All FORTRAN specification cards must contain a virgule (/) in column 1.
2. Statements must be contained in columns 7-72.
3. A maximum of 10 FORTRAN specification cards are permitted in any one program.
4. Continuation cards are permitted and must contain a nonzero character in column 6 and a virgule in column 1.

The following DIMENSION statement illustrates the continuation of a FORTRAN specification instruction.

STORAGE Statement

One-dimensional arrays [e.g. $\mathrm{X}(5), \mathrm{Y}(78)$] can be handled by using the CSMP STORAGE statement. This card is used similarly to the DIMENSION statement, the exceptions being that it can only be used for one-dimensional arrays and that it is not a FORTRAN specification card. An example of a valid statement is

STORAGE $\mathbf{Z}(90), \quad Y(75), \quad X(5)$

The symbols following the STORAGE label represent subscripted variables with the appropriate number of storage locations contained within parentheses. A STORAGE statement may be continued to additional cards by using either three consecutive periods or multiple STORAGE cards. All STORAGE statements should be placed at the beginning of the program since they must appear before any subscripted variables are used. DIMENSION and STORAGE statements may be used in the same program.

Subscripted variables are subject to certain restrictions in CSMP programs. Special care must be taken to observe the following rules.

1 All subscripted variables must be declared in either a DIMENSION or STORAGE statement.

2 Subscripted variables cannot appear to the left of an equal sign except in a nosort section or within a PROCEDURE function. The use and definition of a PROCEDURE function is covered later in this chapter. Examples of statements that are only allowed in nosort sections or in PROCEDURE functions are:

$$
\begin{aligned}
& Y(5)=\operatorname{SIN}(3.0 * \text { TIME }) \\
& Y(1)=3.14159 * Q(3)
\end{aligned}
$$

Examples of statements allowed in all sections of the program are:

$$
\begin{aligned}
& \mathrm{Z}=4.0 * \mathrm{X}(4)+\operatorname{COS}(\mathrm{Y}(2)) \\
& \mathrm{Q}=\operatorname{AFGEN}(\mathrm{ABC}, \mathrm{X}(6)) \\
& \mathrm{P}=\operatorname{INTGRL}(8.7, \mathrm{Y}(3))
\end{aligned}
$$

3 The output of an INTGRL function cannot be a subscripted variable. Thus, the following statement type is not allowed anywhere in the program.

$$
\mathrm{X}(2)=\operatorname{INTGRL}(2.3, Y)
$$

4 Subscripted variables cannot be used in PRINT or PRTPLT statements. (This is not the case in CSMP III). In order to obtain a PRINT or PRTPLT output of subscripted variables, it is first necessary to set the dimensioned variables equal to nonsubscripted variables. This is illustrated in following examples.

Assigning Values to Subscripted Variables

There are three convenient methods for assigning values to subscripted variables.

1 The CSMP "TABLE" statement.
2 The FORTRAN "DATA" statement.
3 The FORTRAN "READ" statement.
A description of the use of these three statements along with a method of declaring variables as integers follows.

TABLE Statement: Subscripted variables that are listed on a STORAGE card may be assigned values using the TABLE statement. This is a CSMP data statement which allows values to be assigned to one-dimensional subscripted variables. The use of the TABLE card is similar to the other data statements (CONSTANT, PARAMETER, and INCON) the exception being that the TABLE
statement can only be used for one-dimensional subscripted variables. In addition to the usual way of assigning values, the $K * n$ form can be used to assign K consecutive variables the value n. The following is an example of a valid statement.

TABLE $\mathrm{X}(1)=22.56, \mathrm{X}(9)=-0.891, \mathrm{X}(3-6)=4 * 6.74, \mathrm{Y}(1)=3.14$
In the above example $X(1), X(9)$, and $Y(1)$ are assigned the values shown. $X(3)$, $X(4), X(5)$, and $X(6)$ are all set equal to 6.74. All variables contained in a TABLE statement must be listed on a STORAGE card. TABLE statements may be continued to additional cards by using either three consecutive periods or multiple TABLE statements may be used.

DATA Statement: The FORTRAN DATA statement provides an additional means for assigning values to subscripted variables. The DATA card is a FORTRAN specification statement and must contain a virgule in column 1. Only subscripted variables should appear on a DATA card and these variables must be listed in a DIMENSION statement. Subscripted variables that are listed in a FORTRAN EQUIVALENCE statement must not appear on a DATA card. An example of a DATA and appropriate DIMENSION statement is

```
/ DIMENSION Y(3,2)
/ DATA Y/6*3.14/
```

The above DATA statement assigns a value of 3.14 to all six variables of the twodimensional array.

The order in which numerical values are assigned to a two-dimensional array is illustrated by the following statements.

```
/ DIMENSION Y(3,2)
| DATA Y/7.45, 2*5.89, -4.32, 2*3.33/
```

These statements will assign the numerical values of

$$
\begin{array}{ll}
Y(1,1)=7.45 & Y(1,2)=-4.32 \\
Y(2,1)=5.89 & Y(2,2)=3.33 \\
Y(3,1)=5.89 & Y(3,2)=3.33
\end{array}
$$

A single DATA statement can also be used to assign values to more than one subscripted variable. For example,

$/$	DIMENSION $\quad \mathrm{X}(3,2,2), \mathrm{Y}(2)$
$/$	DATA $\quad \mathrm{X} / 4 * 4.27,-7.16,3 * 12.81,4 * 0.71 /, \mathrm{Y} / 2 * 87.3 /$

The above card assigns the values,

$$
\begin{array}{llll}
\mathrm{X}(1,1,1)=4.27 & \mathrm{X}(1,2,1)=4.27 & \mathrm{X}(1,1,2)=12.81 & \mathrm{X}(1,2,2)=0.71 \\
\mathrm{X}(2,1,1)=4.27 & \mathrm{X}(2,2,1)=-7.16 & \mathrm{X}(2,1,2)=12.81 & \mathrm{X}(2,2,2)=0.71 \\
\mathrm{X}(3,1,1)=4.27 & \mathrm{X}(3,2,1)=12.81 & \mathrm{X}(3,1,2)=0.71 & \mathrm{X}(3,2,2)=0.71 \\
\mathrm{Y}(1)=87.3 & \mathrm{Y}(2)=87.3 & &
\end{array}
$$

A more comprehensive description of DATA statements can be found in many books on FORTRAN. ${ }^{(2-5)}$

FIXED Statement: When using subscripted variables, it is often necessary to use variables as integers for such purposes as indexing. Variables are specified as integers by the use of the FIXED statement. This instruction allows the user to declare selected variables as integers (fixed-point numbers). As previously stated, all variables in CSMP are automatically treated as real numbers (floating-point) unless otherwise specified. Consequently, any valid symbol that is to be treated as an integer must be included on a FIXED card. The following is an example of a valid FIXED statement.

FIXED I, A, Y6, J

Continuation cards (. . .) or multiple FIXED cards may be used if necessary.
It should be remembered that integer variables cannot be used in either PRINT or PRTPLT statements. If the output of an integer variable is desired, it should first be set equal to a real variable. The following two statements could be used to print the value of the integer variable I.

$\mathbf{Z}=\mathbf{I} \quad$ (This statement must be in the Dynamic segment.)
 PRINT Z

READ Statement: The convenience and flexibility of the FORTRAN statement, READ (5, XYZ) can be used in CSMP programs to assign values to variables. The READ card must appear in a nosort section. It is usually placed in the Initial segment since this segment is only executed once at the beginning of the simulation. However, the READ statement can also be included in a nosort section of the Dynamic segment. The user should be aware that all statements in the Dynamic segment are executed from one to four times for each integration step. The exact number of executions depends upon the integration method and is given in Table 3.3. When using a READ instruction for nonsubscripted variables, the variable must appear somewhere else in the program before it can be included in a PRINT or PRTPLT statement.

A FORTRAN FORMAT statement must be used in conjunction with a READ card. The FORMAT card specifies the form in which numerical values are listed on data cards. The FORMAT card must be contained in a nosort section and any continuation cards must have a $\$$ in card column 6 . A detailed explanation on the use of READ and FORMAT statements can be found in books on FORTRAN. ${ }^{(2-5)}$

Numerical values used with the READ statements are contained on data cards. These cards must be placed between the labels DATA and ENDDATA. The DATA card must immediately follow the END card. The ENDDATA label follows the last data card and it must be punched in card columns 1-7. In CSMP III, the labels INPUT and ENDINPUT are used in place of DATA and ENDDATA. It should be noted that this DATA card is a CSMP statement and is different from the FORTRAN DATA statement that was previously described. Portions of three programs which use READ and FIXED statements are shown below.

INITIAL
STORAGE X(4)
FIXED J
NOSORT
100 FORMAT(2F10.0)
$\operatorname{READ}(5,100)(\mathrm{X}(\mathrm{J}), \mathrm{J}=1,4)$
DYNAMIC
\therefore. Statements defining the run.
END
DATA
19.
9.
24.
47.

ENDDATA
STOP
ENDJOB

INITIAL
1 DIMENSION Y(2,3)
FIXED K, J
NOSORT
50 FORMAT(3F14.2)
$\operatorname{READ}(5,50)((\mathrm{Y}(\mathrm{K}, \mathrm{J}), \mathrm{J}=1,3), \mathrm{K}=1,2)$
DYNAMIC
. $\}$ Statements defining the run.
END
DATA

13.42	3.56	-67.80
0.78	32.56	3.34

ENDDATA
STOP
ENDJOB
INITIAL
NOSORT
$\operatorname{READ}(5,999) \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$
999 FORMAT(4E12.3)
DYNAMIC
. $\}$ Statements defining the run.
END
DATA
$0.543 \mathrm{E} 4 \quad 0.400 \mathrm{E} 7 \quad 0.643 \mathrm{E}-4 \quad 0.484 \mathrm{E} 3$
ENDDATA
STOP
ENDJOB

Specification Form of INTGRL

Statement

To facilitate the integration of subscripted variables, the specification or array form of the INTGRL statement can be used. This form of the INTGRL statement allows the use of subscripted variables as inputs, outputs, and initial conditions. The general form of the statement is

$$
\mathrm{ZE}=\mathrm{INTGRL}(\mathrm{XOE}, \mathrm{XE}, \mathrm{~N})
$$

where $\quad \mathrm{ZE}=$ output of the integration
$\mathrm{XOE}=$ initial condition
$\mathrm{XE}=$ integrand
$\mathbf{N}=$ number of elements in the integrator array, \mathbf{N} must be a literal integer constant

In order to use the above specification form of the INTGRL statement for an array of 20 in S/360 CSMP, the program must begin with DIMENSION and EQUIVALENCE cards.

```
| DIMENSION X(20),XO(20),Z(20)
/ EQUIVALENCE (XE,X(1)), (XOE,XO(1)), (ZE,Z(1))
```

The above cards are not required when using CSMP III. See Chap. 5 for a detailed explanation and examples.

It is not permissible to use a STORAGE card to declare the subscripted variables that appear in the array form of INTGRL statements.

In conjunction with the above DIMENSION and EQUIVALENCE statements, the expression

$$
\mathrm{ZE}=\mathrm{INTGRL}(\mathrm{XOE}, \mathrm{XE}, 20)
$$

will integrate 20 variables, namely

$$
\begin{aligned}
\mathbf{Z}(1)= & \int_{0}^{t} \mathbf{X}(1) d t+\mathbf{X O}(1) \\
\mathbf{Z}(2)= & \int_{0}^{t} \mathbf{X}(2) d t+\mathbf{X O}(2) \\
& \cdot \\
& \cdot \\
\mathbf{Z}(20)= & \int_{0}^{t} \mathbf{X}(20) d t+\mathbf{X O}(20)
\end{aligned}
$$

An example illustrating the use of subscripted variables with the specification form of the INTGRL statement is the following transient heat transfer problem.

Fig. 3.10 Cross-section of tungsten heating rod in duct.

Example 3.3

Consider air flowing in a duct across a tungsten heating element. As electric current supplies energy at a uniform rate per unit-volume to the wire, energy is being removed from the circular heating element by radiation, convection, and conduction. The problem is to find the transient temperature distribution along the rod after the current is turned on. The temperature distribution of the rod is described by a partial differential equation having time and distance as the independent variables. Since partial differential equations cannot be directly solved using CSMP, a common method of solution is to divide the tungsten element into a number of small equal-sized elements. Each element is assumed to

Fig. 3.11 Heat flow from i th element.
have a uniform temperature. This method transforms a continuous system into a lumped system which is represented by a set of ordinary differential equations. The accuracy of the simulation improves as the element size decreases.

In this example, the heating element is divided into 20 equal-sized elements, each 0.1 ft long and 0.01 ft in diameter. The elements are sequentially numbered left to right.

Figure 3.11 shows the heat flow for the i th element. An energy balance on this element yields the following equation.

$$
\begin{align*}
\frac{d T(i)}{d t}= & {[\mathrm{K} \cdot \mathrm{AC}(\mathrm{~T}(i-1)-2.0 \mathrm{~T}(i)+\mathrm{T}(i+1)) / \mathrm{L}} \\
& -\mathrm{ES} \cdot \mathrm{AS}\left(\mathrm{~T}(i)^{4}-\mathrm{TA}^{4}\right)-\mathrm{H} \cdot \mathrm{AS}(\mathrm{~T}(i)-\mathrm{TA}) \\
& +\mathrm{QELEC} \cdot \mathrm{AC} \cdot \mathrm{~L}] /(\mathrm{RO} \cdot \mathrm{C} \cdot \mathrm{AC} \cdot \mathrm{~L}) \tag{3.7}
\end{align*}
$$

where $\quad \mathrm{T}(i)=$ temperature of i th element, ${ }^{\circ} \mathrm{R}$
$\mathrm{K}=$ thermal conductivity, 94.0 Btu/hr-ft- ${ }^{\circ} \mathrm{R}$
$\mathrm{AC}=$ cross-sectional area of tungsten rod, ft^{2}
$\mathrm{ES}=$ Stefan-Boltzmann constant times surface emissivity, $8.5 \times 10^{-10} \mathrm{Btu} / \mathrm{hr}^{-\mathrm{ft}^{2}{ }^{\circ} \mathrm{R}^{4}, ~}$
$\mathrm{TA}=$ air temperatures in duct, $530^{\circ} \mathrm{R}$
$\mathrm{H}=$ heat transfer coefficient for forced convection, 25.0 Btu/hr-ft ${ }^{2-}{ }^{\circ} \mathrm{R}$
$\mathrm{AS}=$ surface area of element, ft^{2}
$\mathrm{RO}=$ density of tungsten, $1208 \mathrm{lbm} / \mathrm{ft}^{3}$
$\mathrm{C}=$ specific heat of tungsten, $0.032 \mathrm{Btu} / \mathrm{lbm}^{\circ} \mathrm{R}$
QELEC $=$ electrical energy supplied per unit-volume, $6.0 \times 10^{6}\left(\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{3}\right)$

In the first equation of the array $(i=1)$, the $T(i-1)$ term must be set equal to the temperature of the left wall. In the same manner, the $T(i+1)$ term of the last equation ($i=20$) must be set equal to the temperature of the right side wall.

The program for simulating this system is shown in Fig. 3.12.
There are several points which should be discussed regarding the program.

1. Note that it is necessary to use the DIMENSION and EQUIVALENCE statements to specify the subscripted variables used with the specification form of the INTGRL statement. These relationships are given below.

Subscripted variables
EQUIVALENCE variables

$\mathrm{T}(i)$	$=$temperature of i th element	TE	
$\mathrm{TI}(i)$	$=$initial temperature of i th element		TIE
$\mathrm{TD}(i)$	$=\frac{d \mathrm{~T}(i)}{d t}$		TDE

```
    title the use of subSGRipted variables to solve a heat tranSfer
    TITLE PROBLEM
    INITIAL
f UIMENSICN T(20), TI(20), TD(20)
equIVALENCE (TF,T(1)), (TIE,TI(l)), (TDE, TD(1))
    FIXED I
    CONSTANT RO = 1208.0, C = 0.032, K=94.0, H=25.0, ES = 8.5E-10...
    , DIA = 0.01. L = 0.1, TA = 530.0. TWALL = 530.0, QELEC = 6.0E6
    AC = 3.14159*DIA*DIA/4.0
    AS = 3.14159*DIA*L
NOSORT
    DO 2 I = 1,20
        2 TI(I) = 530.0
    DYNAMIC
NOSCRT
    TD(1) = (K*AC*(TWALL - 2.0*T(1) + T(2))/L - ES*AS*(T(1)**4 - ...
    TA**4) - H*AS*(T(1) - TA) + QELEC*AC*L)/(RO*C*AC*L)
    TO(20) = (K*AC*(T(19) - 2.0*T(20) +TWALL)/L - ES*AS*{T(20)*** - ...
        TA**4) - H*AS*(T(20) - TA) + QELEC*AC*LI/(RO*C*AC*L)
    DO I I = 2.19
1 TD(I) = (K*AC*(T(I-1) - 2.0*T(I) + T(I*I))/L. - ES*AS*(T(I)**4 - ....
    TA**4) - H*AS*(T(I) - TA) * QELEC*AC*L)/(RD*C*AC*L)
SORT
* the following is the specification form of the intgrl statement. it is
* USED TO INTEGRATE ARRAYS.
    TE = INTGRLITIE,TDE,20)
* SUBSCRIPTED VARIABLES CAN NOT BE INCLUDED IN PRINT OR PRTPLT STATEMENTS.
* CONSEQUENTLY, IT IS NECESSARY TO INTRODUCE THE fOLLONING four VARIABLES
* for output purposeS.
    T1 = T(1)
    T5 =T(5)
    T10 = T(10)
    T17 = T(17)
    PRINT T1. T5. T10, T17
    TIMER FINJIM = 0.018, PRDEL = 0.0006
END
STOP
ENDJOB
```

Fig. 3.12 Program to simulate temperature of tungsten rod.
2 The last portion of the Initial segment is changed to a nosort section to allow a DO loop to be used to set all values of initial temperatures $\mathrm{TI}(i)$ equal to 530°. All calculations for initial conditions that are used in INTGRL statements must be performed in the Initial segment. Because TI (i) must be declared in a DIMENSION statement and not in a STORAGE statement, a TABLE card cannot be used to initialize the values of $\mathrm{TI}(i)$. Also, since $\mathrm{TI}(i)$ is contained in an EQUIVALENCE statement, a DATA card cannot be used to specify the initial values for $\mathrm{TI}(i)$.
3 The first portion of the Dynamic segment is changed to a nosort section to allow subscripted variables to appear on the left-hand side of the equal sign and also to permit the use of the DO loop.
4 If the INTGRL statement were written as

$$
\mathrm{TE}=\mathrm{INTGRL}(530.0, \mathrm{TDE}, 20)
$$

only the first term of the array $\mathrm{T}(1)$ would have the initial value of 530.0. All of the
remaining terms would have initial value of zero. For this reason it is necessary to include the array $\mathrm{TI}(i)$ for nonzero initial conditions.
5 Since subscripted variables cannot be used in S/360 CSMP PRINT or PRTPLT statements, it is necessary to set all subscripted variables desired as output equal to nonsubscripted variables. In this example, the subscripted variables $T(1), T(5)$, $T(10)$, and $T(17)$ are set equal to new variables for output purposes.

The resulting output for this simulation is shown in Fig. 3.13.

THE USE OF SUBSCRIPTEO VARIABLES TU SOLVE A HEAT TRANSFER RKS

INTEGRATION PROBLEM

0.0	5.3000E	O	$5.3000 E$	02	5.3000	02	3000 E	
6.0000 E	6.1053 E	02	$6.1610 E$	02	6.1610 E	02	6.161	2
1.2000E-03	6.7098 E	02	6.8947 E	02	$6.8947 E$	02	6.8946 E	02
8000E-03	7.1705E	02	7.5185 E	02	7.5185 E	02	5182 E	02
2.4000E-03	$7.5261 E$	02	8.0478E	02	8.0479	02	8.0469	02
3.0000F-03	7.8035E	02	$8.4960 E$	02	3.4963E	02	8.4939	2
3.6000F-03	8.0216E	02	8.8747 E	02	8.8752E	02	8.8709 E	02
4.2000E-03	8.1944 F	02	$9.1939 E$	02	9.1950 E	02	9.1879	02
$4.8000 \mathrm{~F}-03$	$8.3320 E$	02	$9.4626 E$	02	9.4643	02	9.4538	02
$5.4000 \mathrm{E}-03$	$8.4421 E$	02	9.6882 E	02	9.6908	02	9.6765	
$6.0000 \mathrm{E}-03$	8.5305 E	02	$9.8775 E$	02	$9.8811 E$	02	9.8624	02
$6.6000 \mathrm{E}-03$	8.6018E	02	$1.0036 E$	03	1.0041E	03	1.0018	03
7.2000E-0.3	$8.6593 E$	02	1.0168 E	03	1.0175 E	03	1.0147	03
7.8000F-03	8.7059 E	02	$1.0279 E$	03	1.0287 E	03	1.0254 E	03
8. $4000 \mathrm{E}-03$	8.7437 E	02	1.0371 E	03	1.0380 E	03	1.0343	03
9.0000F-03	8.774	02	1.044	03	1.045	03	. 04	
$9.6000 E-03$	8.7994 E	02	1.0512 E	03	1.0524 E	03	1.0479 E	3
1.0200E-02	8.8198 E	02	1.0566 E	03	1.0579 E	03	1.0530 E	03
1.0800 F	8.	02	1.0610 E	03	$1.0625 E$	03	1.05	03
$1.1400 \mathrm{E}-02$	8.85 OUE	02	1.0647 E	03	1.0663 E	03	1.0607 E	03
1.2000F-02	8.8611 E	02	$1.0678 E$	03	1.0695E	03	1.0636 E	3
1.2600E-02	8.8701 E	02.	1.0703 E	03	1.0721E	03	1.0660 E	03
1.3200E-02	8.8775 E	02	1.0724 E	03	1.0743 E	03	1.0680 E	
$1.3800 \mathrm{E}-02$	$8.8836 E$	02	1.0742 E	03	1.0762 E	03	1.0646 E	03
$1.4400 \mathrm{E}-02$	8.8886E	02	1.0756 E	03	1.0777 E	03	1.0710 E	03
1.5000E-02	8.8927E	02	1.0768 E	03	1.0790E	03	1.0721 E	03
$1.5600 \mathrm{E}-02$	8.89 60E	02	1.0778 E	03	1.0801 E	03	1.0730 E	
$1.6200 \mathrm{E}-02$	8.8988E	02	1.0787 E	03	1.0810 E	03	1.0738 E	3
$1.6800 \mathrm{E}-02$	8.901 UE	02	1.0794 E	03	1.0817 E	03	1.0744 E	03
$1.7400 \mathrm{~F}-02$	8.9029 E	02	1.0799 E	03	1.0824E	03	1.0750 E	03
1.8000E-02	8.9044 E		1.0804 E	03	1.0829 E	,	1.0754 E	3

Fig. 3.13 Output of program of Fig. 3.12.
The specification form of the INTGRL statement cannot be used for direct doubleintegration of arrays. For example, an acceleration array which is integrated into a velocity array cannot be directly integrated into a displacement array. The following example illustrates the correct procedure for performing double-integration of arrays.

Example 3.4

Consider the system of Fig. 3.14 which shows five uncoupled spring-mass units. The entire mass assembly is moving to the right with a common velocity of $50 \mathrm{ft} / \mathrm{sec}$. The base strikes and then sticks to an immovable rigid surface. The problem is to find the resulting motion of all five masses after impact.

Initial velocity of all masses $=50 \mathrm{ft} / \mathrm{sec}$
Fig. 3.14 Spring-mass system.
Using Newton's second law, the acceleration of the i th mass can be written as

$$
\begin{equation*}
\mathrm{A}(i)=\frac{-\mathrm{STIFF}(i) * \mathrm{X}(i)}{\operatorname{WEIGHT}(i) / 32.17} \tag{3.8}
\end{equation*}
$$

where $\operatorname{STIFF}(i)$ is the stiffness of the spring connected to the i th mass.
The program for calculating the system dynamics is shown in Fig. 3.15.
In the program, WEIGHT (i) and $\operatorname{STIFF}(i)$ are declared as subscripted variables by a STORAGE statement. This allows a TABLE card to be used to specify the values for WEIGHT (i) and $\operatorname{STIFF}(i)$.

Note that the entire Dynamic segment is changed to a nosort section. This assures that all statements will be executed in the exact order in which they appear in the program. The acceleration array $\mathbf{A}(\mathbf{J})$ is calculated and then integrated to obtain the velocity array $\mathrm{V}(\mathrm{J})$. It is not permissible to directly integrate this velocity array to obtain the displacement array. An intermediate array must be set equal to the velocity array. This is accomplished by the program statements

$$
\begin{gathered}
\mathrm{DO} 2 \mathrm{~J}=1,5 \\
2 \mathrm{VI}(\mathrm{~J})=\mathrm{V}(\mathrm{~J})
\end{gathered}
$$

```
TITLE PRGGRAM TO CALCULATE THE DYNAMICS OF A MECHANICAL SYSTEM USING
TITLE SUBSCRIPTED VARIABLES.
INITIAL
/ DIMENSION X(5),V(5), A(5),VI(5), VELI(5)
/ EQUIVALENCE (XE, X(1) ), (VE,V|I) I, (AE, A(1))
/ l, (VIE, VI(I) ), (VELIE, VELI(I))
    STORAGE WEIGHT(5), STIFF(5)
    TABLE WEIGHT (1-2)=2*13.6, WEIGHT(3)=18.9, WEIGHT(4-5)=2*11.5....
    STIFF(1)=135.0, STIFF(2-3)=2*180.0, STIFF(4-5)=2*320.0
        FIXED J
NOSORT
    DO 3 J = 1.5
    3 VELI(J) = 50.0
DYNAMIC
NOSORT
    DO 1 J = 1,5
    lA(J)=-STIFF(J)*X(J)/(WEIGHT(J)/32.17)
    VE = INTGRL(VELIE,AE,5)
* CSMP DOES NOT PERMIT DIRECT DOURLE INTEGRATION OF ARRAYS WHEN USING THE
* SPECIFICATION FORM OF THE INTGRL STATEMENT. CONSEQUENTLY, THE FOLLOWING
* TWO STATEMENTS ARE USED TO GENERATE THE ARRAY VI(J) WHICH CAN BE
* INTEGRATED TO FIND X{J}.
    DO 2 J = 1.5
    2VI(J)=V(J)
    XE =INTGRL(0.0,VIE,5)
    X1 = X(1)
    x2 = x(2)
    x3=x(3)
    x4}=x(4
    Xb = X(5)
TERMINAL
    TIMER FINTIM = 0.6, PRDEL = 0.02
    PRINT X1, X2, X3, X4, X5
END
STOP
ENDJOB
```

Fig. 3.15 Program to simulate the dynamics of five masses.
The $\mathrm{VI}(\mathrm{J})$ array can now be integrated to obtain the displacement array. Since the $\mathrm{VI}(i)$ array is used in the specification form of an INTGRL statement, it must be included in the EQUIVALENCE statement. The output for this program is given in Fig. 3.16.

OVERLAY Statement

The FUNCTION statement which was defined in Example 2.4 is considered a data statement. It is used for specifying pairs of $x-y$ coordinates for the function generating elements AFGEN and NLFGEN. When making more than one run, the OVERLAY statement can be used to change previously specified $x-y$ values contained in FUNCTION statements. An example of an OVERLAY card is

OVERLAY TORQUE $=0.0,4.5,3.0,7.8,6.0,11.9,10.0,19.0$
In this example, the FUNCTION defined as TORQUE will take on the new $x-y$ values for the second run as given in the OVERLAY statement.

The format for an OVERLAY statement is the same as for a FUNCTION card with the following exceptions.
program to calculate the dynamics of a mechanical system using

	X1	$x 2$	$\times 3$		$\times 5$
			. 0	. 0	. 0
00	9.7884E-01	$9.7185 \mathrm{E}-01$	O	. $41388 \mathrm{E}-01$	
OOE	340E 00	805 E 00	OE 00	00	. 5556 E 00
6.0000	00	902E 00	1 E 00	E 00	.6293E 00
$8.0000 \mathrm{~F}-0$.7701E 00	4E 00	1 E 00		
1.0000F-01	. 7	OE	6 E 00	01	
1.2	2.3502E 00	1.4961 E 00	4651E 00	-7.2470E-01	70E-01
1.4000E-01	1.6705E 00	6.0608E-01	1.8207500	-1.4469E 00	1.4469E
1.6000F-01	7.7975E-01	-3.8576E-01	F-01	-1.6664E 00	1.6664 E
1.8000E-01	-2.0958E-01	-1.3128E 00	-2.5886E-02	-1.3069E 00	1.3069E 00
2.0000E-01	-1.1724E 00	-2.0194E 00	-1.0040E 00	-4.9320E-01	$4.9320 \mathrm{E}-01$
2.2000F-01	-1.9871E 00	-2.3870E 00	-1.8602E 00	.9181E-01	81 E
4000E-01	-2.5506E 00	-2.3538E 00	-2.4909E 00	.3059E 00	. 3059 E
6000e-01	-2.7918E 00	-1.9253E 00	-2.8194E 00	. 6663 E 00	.6663E 00
8000E	-2.6802E 00	736E 00	-2.8058E 00	76 00	4476 E 00
$3.0000 \mathrm{E}-01$	E 00	01	4520E 00	-01	$7.2596 \mathrm{E}-01$
$3.2000 E-01$	-1.4977E 00	-01	6E 00	1	-2.4791E-0
3.4000E-01	-5.7630E-01	0	- 01	-1.1356E 00	
3.6000E-01	$4.1796 E-01$	0	-	1.6288 E 00	.6288E 00
3.8000F-01	4	9E 00	00	59E 00	. 5559 E 00
4.0000E-01	.1290E 00	321200	98E 00	-01	. $4239 \mathrm{E}-01$
$4.2000 \mathrm{~F}-01$	2.6296 E	5E 00	34 F .00	.4542E-03	$1.4542 \mathrm{E}-03$
4.4000E-01	2.7978 E 00	7E-01	.8234E 00	$9.3996 \mathrm{E}-01$	9.3996 E-01
4.60 OOE-01	2.0125 E 00	-1.6207E-01	2.8008 E 00	. 5548 E 00	1.5548 E 00
4.8000E-01	2.0970 E 00	1.1181E 00	2.4386 F 00	.6293E 00	1.6293 E 00
$5.0000 \mathrm{~F}-01$	$1.3165 E 00$	-1.8864E 00	1.7805E 00	.1377E 00	.1377E 00
5.2000E-01	3.6959E-01	2.3380 EO	9.0639E-01	2.5082E-01	2.5082E-01
5.4000E-01	-6.2400E-01	-2.3970E 00	-7.7623E-02	-7.2322E-01	-7.2322E-01
$5.6000 \mathrm{E}-01$	-1.5387E 00	-2.0535E 00	-1.0522E 00	-1.4459E 00	1.4459E 00
$5.8000 \mathrm{E}-01$	-2.2590E 00	. 3653 E 00	.8992E 30	.6663E 00	. 6663 E 00
6.0000E-01	38E 00	1	2.5158 O 0	-1.3075E 00	-1.3075 E O0

Fig. 3.16 Output from program of Fig. 3.15.

1 The label OVERLAY is used in place of the label FUNCTION.
2 The number of $x-y$ data pairs in an OVERLAY statement must not be more than the number of $x-y$ pairs in the original FUNCTION statement.

3 Parentheses must not be used in OVERLAY statements to separate pairs of data.

A simple example which illustrates the use of an OVERLAY statement is the problem of calculating the volumetric flow of blood pumped by the human heart for two different pressure profiles.

Example 3.5

Figure 3.17 shows two time-histories of ventricular pressure in the human heart. Profile No. 1 represents a strong heart beat while profile No. 2 corresponds to a more average heart. An expression which approximates the flow rate of blood pumped by the heart is

$$
\begin{equation*}
\text { FLOW }=\frac{\mathrm{P}}{575.0} \tag{3.9}
\end{equation*}
$$

Fig. 3.17 Time-history of pressure in pumping chamber of the human heart.
where FLOW $=$ volumetric flow rate in $1 / \mathrm{sec}$

$$
\mathbf{P}=\text { ventricular pressure in } \mathrm{mm}-\mathrm{Hg}
$$

A single integration of FLOW with respect to time yields the total amount of blood that has flowed from the heart during one beat.

$$
\begin{equation*}
\text { VOLUME }=\int_{0}^{t} \text { FLOW } d t \tag{3.10}
\end{equation*}
$$

Figure 3.18 shows the program for solving for the total flow for both pressure profiles. Data representing the first time-history of pressure is entered on the FUNCTION card with the label PRESS. The OVERLAY statement contains the data for the second pressure profile used for the function PRESS in the second run. Figure 3.19 contains the PRTPLT output resulting from the first pressure profile and Fig. 3.20 shows the output for the second time-history of pressure. Notice in the program of Fig. 3.18 that the OVERLAY statement appears immediately after the first END card. The END card permits the simulation to accept new data and control statements for another run. Note also that the END card sets the independent variable (TIME) to zero and resets all initial conditions. A detailed discussion on the use of the END statement is contained in the following section on translation control statements.

```
LABEL BLODD FLOW PROBLEM TO ILLUSTRATE THE USE OF AN OVERLAY STATEMENT.
    FUNCTION PRESS = (0.0,8.0),(0.05,12.0),(0.1,21.0),(0.15,80.0), ... 
        (0.2,140.0),(0.25,174.0),(0.28,178.0),(0.3,177.0),(0.32,176.0), ...
        (0.35,175.0),(0.4,165.0),(0.45,138.0),(0.5,86.0),(0.55,19.0). ....
        (0.6,3.0),(0.62,3.5),(0.64,4.0),(0.67,5.0),(0.7,6.0),(0.8,8.0)
    P = NLFGEN(PRESS,TIMEI
    FLOW = P/575.0
    VOLUME = INTGRL(O.O,FLOW)
    PRTPLT VOLUME (P,FLOW)
    TIMER FINTIM =0.8, OUTDEL =0.04
            THE FOLLOWING END CARD RESETS THE INITIAL CONDITIONS. RESETS TIME TO ZERO,
* PREVIOUSLY DEFINED FUNCTION TO THE VALUES SHOWN.
* ANOTHER RUN. THE OVERLAY STATEMENT CHANGES THE DATA CONTAINED IN THE
    END
    OVERLAY PRESS = 0.0.5.0, 0.05,8.0, 0.1,18.0, 0.15.63.0, 0.2,100.0, ...
        0.25,120.0, 0.3,124.0,0.35,124.0, 0.4,120.0, 0.5,65.0,0.54,6.0, ...
        0.56.4.0, 0.58.2.0, 0.59.2.0. 0.61.2.2, 0.65.2.5, 0.7.3.0.0.8.5.0
    END
    STOP
    ENDJOB
```

Fig. 3.18 Program to calculate blood flow and to illustrate the use of an OVERLAY statement.

Fig. 3.19 Blood flow for pressure-pulse.

Translation Control Statements

Translation control statements specify how structure statements are to be treated. They also are used for run control purposes. For example, the INITIAL, DYNAMIC, and TERMINAL statements, which were defined in Chap. 2, are translation control statements. They specify how groups of structure statements are to be handled. The END and CONTINUE statements, which have previously

Fig. 3.20 Blood flow for pressure-pulse.
been used and briefly described, can be used for run-control purposes and consequently are also translation control statements.

This section is concerned with the following six statements and how they can be used for changing data and output statements for sequential runs, resetting integration methods and error requirements, and other special features pertaining to run control techniques.

END
RESET
CONTINUE
STOP
ENDJOB
ENDJOB STACK

END

The END card must appear at least once in every program. For programs where control and data statements are not changed and only one run is desired, the END card simply appears immediately after the last structural statement. All examples in Chap. 2, with the exception of Example 2.10, illustrated this use of the END statement.

The END card can be used to permit the simulation to accept new data and control statements for sequential runs as illustrated in this chapter in the program of Fig. 3.18. When the END card is not followed immediately by a STOP card, another run is automatically initiated incorporating the changes that follow the END card. At the start of the new run, the initial conditions are automatically reset and the independent variable (TIME) is set to zero. The following simple example program illustrates how this is accomplished.

```
INCON YO =2.0
Y = INTGRL(YO, V)
    •
END
INCON YO =7.5
END
STOP
ENDJOB
```

In the above example, the initial value for Y in the first run is 2.0 . For the second run the initial value of Y is 7.5 .

Example 3.6

Several important points can be illustrated by incorporating an extra END card in the program in Fig. 3.3. Figure 3.21 shows this program where an END card has been added to provide one additional run. The first run of the program is identical to the original program in Fig. 3.3. In the second run, the integration method, output, and timer variables are changed as specified by the cards following the first END statement.

Note that SUM and COUNT are set equal to zero for the second run. This is necessary even though these variables were originally set equal to zero in the Initial segment. If they are not reset to zero, the final values of SUM and COUNT in the first run will be used as the starting values in the second run.

For the variables that appear on the TIMER card, it is only necessary to specify changes. In this problem, DELT is the only timer variable that changes for the second run.

The two pages of output from the program in Fig. 3.21 is shown in Fig. 3.22.
All changes that were made for the second run, in the previous example, nullified the corresponding instruction specified in the first run. Not all statements, however, will cancel previous instructions. The following is a list of the statements that when used for an additional run will completely nullify the corresponding instructions of previous runs.
FINISH
METHOD
PREPARE
PRINT
TITLE

The following is a list of five additive instructions. These statements do not nullify previous ones, but simply provide additional instructions.

ABSERR \& RELERR
LABEL
PRTPLT
RANGE
title program to calculate the average absolute error of equation 3.1
INITIAL
CONSTANT PI $=3.14159, \operatorname{SUM}=0.0$, COUNT $=0.0$
DYNAMIC

```
* The fullowing 3 cardS are used to solve equation 3.1, where-
```

* YDD $=$ SECOND DERIVATIVE OF Y WITH RESPECT TO TIME
* YD = FIRST DERIVATIVE OF Y WITH RESPECT TO TIME
YOD $=-4.0 * P I * P I * Y$
$Y D=$ INTGRL(0.0, YDD)
$Y=$ INTGRL(1.O, YD)
* the following nosort section is required to use the "if" statement

NOSORT

* Keep is equal to 1 when the end of a valid integration step is reached

IF(KEEP. EQ . 11 GO TO 1
GO TJ 2
1 SUM $=$ SUM $+\operatorname{ABS}(Y-\operatorname{COS}(2.0 * P I * T I M E))$
COUNT $=$ COUNT +1.0
AAER = SUM/COUNT
2 continue
TERMINAL
TIMER FINTIM $=1.0$, PRDEL $=0.1$, DELT $=0.001$
METHOD SIMP
PRINT Y, SUM, CUUNT, AAER

* The folluwing "end" card resets the initial conoitions and sets the
* I VDEPENDENT VARIABLE (TIME) TO ZERO AND INITIATES ANOTHER RUN USivg the
* CHANGES THAT FOLLOW THE END CARD.

END
PRINT Y, YD, YDD, SUM, COUNT, AAER
TIMER DELT $=0.004$
CDNSTANT SUM $=0.0$, COUNT $=0.0$
METHOD TRAPZ
END
STJP
ENDJOB
Fig. 3.21 Program to illustrate the use of END statement.
program to calculate the average absolute error of equation $\mathbf{3 . 1}$ simp integration

time	γ	SUM	COUNT		AAER
0.0	1.0000 E 00	0.0	1.0000 E	00	0.0
1.0000E-01	$8.0902 \mathrm{E}-01$	1.3816E-04	1.0100 E	02	1.3680E-06
2.0000F-01	3.0902E-01	4.0048E-04	2.0100 E	02	1.99 25E-06
3.0000E-01	-3.0901E-01	5.8232E-04	3.0100 E	02	$1.9346 \mathrm{E}-06$
$4.0000 \mathrm{E}-01$	-8.0900E-01	1.7282E-03	4.0100E	02	$4.3098 \mathrm{E}-06$
5.0000E-01	-9.9997E-01	4.1801E-03	5.0100 E	02	8.3434E-06
6.0000E-01	-8.0899E-01	7.4814E-03	6.0100 E	02	$1.2448 \mathrm{E}-05$
7.0000E-01	-3.0900E-01	$1.0343 \mathrm{E}-02$	7.0100 E	02	$1.4755 \mathrm{E}-05$
$8.0000 \mathrm{E}-01$	$3.0900 \mathrm{E}-01$	1.1399E-02	8.0100 E	02	$1.4231 \mathrm{E}-05$
$9.0000 \mathrm{~F}-01$	$8.0897 \mathrm{E}-01$	$1.3523 \mathrm{E}-02$	9.0100 E	02	$1.5009 \mathrm{E}-05$
1.0000E 00	$9.9994 E-01$	1.8603E-02	1.0010 E	03	$1.8585 \mathrm{E}-05$

Fig. 3.22 Output of program of Fig. 3.21.

Fig. 3.22 (Continued)

As an example, consider a program having the following structure.

Main body of program

Control statements for first run	$\left(\begin{array}{l} \text { TIMER FINTIM }=4.0, \text { OUTDEL }=0.1, \text { PRDEL }=0.2 \\ \text { PRINT A, B, C } \\ \text { PRTPLT X } \end{array}\right.$
	PRTPLT Y
	RANGE X
	ABSERR X $=0.001, \mathrm{Y}=0.003$
	LABEL OUTPUT OF "X" INTEGRATOR
	(LABEL OUTPUT OF "Y" INTEGRATOR
	END
Control statements for second run	PRINT C
	PRTPLT Z
	RANGE Y, Z
	ABSERR $\mathrm{Z}=0.0004, \mathrm{Y}=0.005$
	(LABEL OUTPUT OF "Z" INTEGRATOR
	END
	STOP
	ENDJOB

For the first run of the above example program, the following occurs:
$1 \mathrm{~A}, \mathrm{~B}$, and C are printed at the interval specified on the timer card.
2 A printer-plot of the variable X will be made with the heading: OUTPUT OF " X " INTEGRATOR.

3 A printer-plot of the variable Y will be made with the heading: OUTPUT OF " Y " INTEGRATOR.

4 The maximum and minimum values of X are listed by the RANGE statement.

5 Absolute errors of 0.001 and 0.003 will be used for the X and Y integrators, respectively.

For the second run, the following occurs:
1 The variable C is printed at the interval specified on the only timer card.
2 As in the first run, printer-plots will be made for X and Y with the same headings.
3 An additional printer-plot of the variable Z will be made with the heading: OUTPUT OF "Z" INTEGRATOR.

4 The maximum and minimum values of X, Y, and Z are listed by the RANGE statements.
5 Absolute errors of $0.001,0.005$, and 0.0004 will be used for the X, Y, and Z integrators, respectively.

In this example PRTPLT, LABEL, RANGE, and ABSERR are the additive statements.

It may be necessary in some simulations to eliminate certain control statements in going from one run to another. For this purpose the RESET card should be used.

RESET

This statement allows the user to nullify certain control instructions used in previous runs.

The RESET card can be used for the following statements.

```
ABSERR & RELERR
FINISH
LABEL
PREPARE
PRINT
PRTPLT
RANGE
```

The RESET card should be placed immediately after the END or CONTINUE card to insure its proper use. RESET PRTPLT will nullify all previous PRTPLT and LABEL instructions. RESET LABEL nullifies only LABEL statements. A card containing only RESET on it will nullify all previous LABEL, PRTPLT, PREPARE, PRINT, and RANGE instructions.

A TITLE statement cannot be nullified by using a RESET card. The use of a TITLE instruction after an END or CONTINUE card will nullify the previous TITLE card.

The following example illustrates the use of the END and RESET statements along with the multiple run capability of a PARAMETER card. This example also shows the use of a CSMP random number generator.

Example 3.7

Random number signal sources can be very useful in simulating problems associated with many fields, including Industrial Engineering. An example of a typical problem involves determining the random distribution of the stiffness of a coil spring that is manufactured in high volume. The wire diameter and inside diameter of the spring are random variables that can best be described by a Gaussian distribution having a mean and standard deviation. The stiffness of a coil spring which is shown in Fig. 3.23 depends on the wire size and inside diameter of the coil as expressed by

$$
\begin{equation*}
K=\frac{G * D W^{4}}{8(D I+D W)^{3} N} \tag{3.11}
\end{equation*}
$$

Fig. 3.23 Coil spring.
where $\quad G=$ modulus of elasticity for steel in shear $=11,500,000 \mathrm{psi}$

$$
N=\text { number of active coils }=10
$$

$D W=$ diameter of wire
$D I=$ inside diameter of spring coil
In addition, the following program parameter definitions are used.
MEANI $=$ mean inside diameter of spring $=1.000 \mathrm{in}$.
SIGMAI $=$ standard deviation of inside diameter of spring: 0.001, 0.002 , and 0.005 in .
MEANW $=$ mean wire diameter $=0.100$ in.
SIGMAW $=$ standard deviation of wire diameter: $0.00033,0.0006,0.0015 \mathrm{in}$.
Since there are three different standard deviations for both the wire size and inside spring diameter, a total of nine runs will be required to simulate all combinations.

CSMP has signal sources which provide random numbers from two distributions. These are the Gaussian and the uniform distributions. For the Gaussian distribution, the statement

$$
\mathbf{X}=\operatorname{GAUSS}(\mathrm{N}, \mathrm{M}, \mathrm{~S})
$$

gives a signal having a normal distribution
where $\mathbf{N}=$ any odd integer (used as a seed value); in CSMP III use any integer

$$
\begin{aligned}
\mathbf{M} & =\text { mean value } \\
\mathbf{S} & =\text { standard deviation }
\end{aligned}
$$

Only at each valid integration step (when KEEP $=1$) does the GAUSS signal source provide a number. It is not activated during trial or immediate integration steps.

A uniform random number distribution between 0 and 1 can be provided by the following RNDGEN function.

$$
X=\operatorname{RNDGEN}(\mathrm{N})
$$

where N is any odd integer which is also used as a seed value. When using two or more random-number signal sources, each statement should use a different seed value.

Using the GAUSS signal source, the following CSMP statements can be used to describe the random numbers representing the wire and inside spring diameters.

$$
\begin{aligned}
\text { DW } & =\text { GAUSS }(1, \text { MEANW, SIGMAW }) \\
\text { DI } & =\text { GAUSS }(3, \text { MEANI, SIGMAI) }
\end{aligned}
$$

The standard deviation of the stiffness can be expressed by the following formula.

$$
\begin{equation*}
\text { SIGMAK }=\sqrt{\frac{n \sum_{i=1}^{n} K_{i}^{2}-\left(\sum_{i=1}^{n} K_{i}\right)^{2}}{n(n-1)}} \tag{3.12}
\end{equation*}
$$

where $K_{i}=$ stiffness of i th spring
$n=$ number of springs in sample
Using the above expressions for the random variables DW and DI, and Eq. (3.12) for the standard deviation of the spring stiffness, a program for simulating production runs for all nine combinations of standard deviations of wire and inside diameters is shown in Fig. 3.24. Note the method used in this program to reset COUNT, SUMK, and SUMK2 to zero. This procedure should be used when using the multiple-run capability of a PARAMETER card. The output for the very last run (SIGNAW $=0.0015$, SIGMAI $=0.005$), which involves a simulation of 3000 springs, is given in Fig. 3.25.

CONTINUE

The CONTINUE card can be used to change data or control statements without resetting initial conditions or the independent variable (TIME). It is used in place of the END card. When the program encounters a CONTINUE statement, it will accept the changes in control and data statements that follow this card. The program will then continue from the point where the previous run was ended. The CONTINUE statement provides, in effect, an interrupt point where changes in control and data statements can be made. The program in Fig. 3.5 illustrates the use of the CONTINUE card to change integration methods, integration error requirements, and timer variables during the run.

In CSMP III, the END CONTINUE label is used in place of CONTINUE. When using the CONTINUE card, the following rules must be followed.

```
TITLE PROGRAM TO SImULATE the VARIANCE IN ThE STIfFNESS IN THE HIGH
TITLE VOLUME PRODUCTION OF A COIL SPRING.
    RENAME TIME = NUMBER
    PARAMETER SIGMAW = (0.00033,0.0006,0.0015)
    CONSTANT COUNT = 0.0, SUMK = 0.0. SUMK2 =0.0. MEANW = 0.1,
        MEANI = 1.0, SIGMAI =0.001,N = 10.0, G = 11.5E6
    DW = GAUSS(1, MEANW, SIGMAW)
    DI = GAUSS(1, MEANI, SIGMAI)
    K = G*(DW**4)/(8.0*((DW + DI)**3)*N)
NOSORT
* THE FOLLOWING 5 CARDS ARE USED TO RESET COUNT, SUMK, AND SUMKZ TO ZERO
* AT THE bEGINNING OF EACH RUN.
    IF(NUMBER.NE.O.O) GO TO 2
    COUNT = 0.0
    SUMK = 0.0
    SUMK2 = 0.0
2 CONTINUE
    IF(KEEP.NE.1) GO TO I
    COUNT = COUNT + 1.0
    SUMK = SUMK + K
    SUMK2 = SUMK2 +K*K
* the following mif" Statement is used to avoid dividing by zero
* IN THE CALCULATION OF THE STANOARD DEVIATION (SIGMAK)
    IF(COUNT.LT. (PRDEL - 2.0) ) GO TO 1
    SIGMAK = SQRT((COUNT*SUMK2 - SUMK*SUMK)/{COUNT*(COUNT - 1.0)))
    MEANK = SUMK/COUNT
1 CONTINUE
    PRINT SIGMAK, MEANK
    RANGE K, DW, DI, SIGMAK, MEANK
    TIMER FINTIM = 5000.0, DELT = 1.0, PRDEL = 100.0
    METHOD RECT
    END
    RESET RANGE
    RANGE K. DW, DI
    CONSTANT SIGMAI =0.002
    TIMER FINTIM = 3000.0, PRDEL =200.0
    PRINT SIGMAK, MEANK, K, DW, DI
    END
    CONSTANT SIGMAI =0.005
    END
    STOP
    ENDJOB
```

Fig. 3.24 Program to simulate the production of a coil spring.

1 The multiple run capability of the PARAMETER, CONSTANT, or INCON statements must not be used in a run where a CONTINUE card is used.

2 A program containing a TERMINAL segment should not be used with a CONTINUE statement.

3 A new value for FINTIM should be specified on a timer card for every use of a CONTINUE card. If a CONTINUE statement is initiated by a FINISH card, the output (PRDEL and OUTDEL) will be incremented from the time at which the FINISH condition was encountered.

4 The FORTRAN CONTINUE statement is distinguished from the CSMP CONTINUE card by a statement number. Figure 3.24 illustrates the use VOLUME PRODUCTION OF A COIL SPRING.

NUMBER		SIGMAK	MEANK		K		DW	D
0.0		3.0245E-01	1.0796E	01	9.3799 E	00	$9.5150 \mathrm{E}-02$	$9.8383 \mathrm{E}-01$
2.0000E	02	6.1168E-01	1.0836E	01	1.0007E	01	$9.7835 \mathrm{E}-02$	9.9805E-01
4.0000E	02	$6.4029 \mathrm{E}-01$	1.0804 E	01	1.1095 E	01	$1.0075 \mathrm{E}-01$	1.0003E 00
$6.0000 E$	02	6.4603E-01	1.0787 E	01	1.2347 E	01	$1.0324 \mathrm{E}-01$	9.9448E-01
8.0000E	02	6.3315E-O1	1.0804 E	01	1.1378 E	01	1.0165E-01	1.0033 E 00
1.0000 E	03	$6.3632 \mathrm{E}-01$	1.0797E	01	1.1053 E	01	$1.0133 \mathrm{E}-01$	1.0095 E 00
1.2000 E	03	6.2593E-01	1.0797 E	01	1.0664 E	01	$1.0010 \mathrm{E}-01$	1.0061E 00
1.4000 E	03	6.2863E-01	1.0797 E	01	1.1533 E	01	1.0183E-01	1.0007 E 00
1.6000E	03	6.3020E-01	1.0798 E	01	1.0704 E	01	$9.9853 \mathrm{E}-02$	1.0013E 00
1.8000E	03	$6.2993 E-01$	1.0804 E	01	1.0589E	01	$9.9512 E-02$	1.0006E 00
2.0000E	03	6.2875E-01	1.0804E	01	1.1122 E	01	$1.0015 \mathrm{E}-01$	9.9135E-01
2.2000E	03	6.2451E-01	1.0811 E	01	1.0604 E	01	$9.9617 E-02$	1.0015E 00
$2.4000 E$	03	$6.2795 E-01$	1.0810 E	01	1.0789E	01	$1.0025 E-01$	1.0038E 00
2.6000 E	03	6. $2814 \mathrm{E}-01$	1.0805E	01	1.0583E	01	$9.9897 \mathrm{E}-02$	$1.0061 E 00$
2.8000E	03	6.2734E-01	1.0805E	01	1.0528 E	01	$9.9399 E-02$	$1.0011 E 00$
3.0000E	03	6.2547E-01	1.0804E	01	1.0589 E	01	$9.9600 E-02$	1.0018E 00
Range Output								

PROBLEM DURATION 0.0 TO 3.0000E 03

VARIABLE	MINIMUM	NUMBER	MAXIMUM	NUMBER
K	$8.6505 E 00$	$3.8300 E 02$	$1.2991 E 01$	$2.4100 E$ O3
DW	$9.4510 E-02$	$3.8300 E 02$	$1.0530 E-01$	$1.6500 E 02$
DI	$9.7930 E-01$	$2.0200 E 02$	$1.0220 E 00$	$5.65 C O E 02$

Fig. 3.25 Output of Fig. 3.24 for last run.
of the FORTRAN CONTINUE card. It can only be used in a nosort section or within a PROCEDURE function with a statement number.

An example of a complicated program which makes use of several END, RESET, and CSMP CONTINUE statements follows.

Main body of program

1st portion of 1st run	$\begin{aligned} & \text { CONSTANT } \mathrm{Q}=-13.5, \mathrm{R}=9.0, \mathrm{~S}=11.0 \\ & \text { LABEL PRINTER-PLOT OF "X" } \\ & \text { PRTPLT X } \\ & \text { TIMER FINTIM }=1.0, \text { OUTDEL }=0.02 \\ & \text { CONTINUE } \end{aligned}$
2nd portion of 1st run	$\begin{aligned} & \text { RESET PRTPLT } \\ & \text { TIMER FINTIM }=1.1, \text { DELT }=0.0005, \text { PRDEL }=0.001 \\ & \text { METHOD ADAMS } \\ & \text { CONSTANT } \mathrm{Q}=-17.0, \mathrm{R}=8.0 \\ & \text { PRINT X, Y } \\ & \text { CONTINUE } \end{aligned}$
3rd portion of 1st run	$\begin{aligned} & \text { TIMER FINTIM }=2.4, \text { PRDEL }=0.02 \\ & \text { METHOD RKS } \\ & \text { PRTPLT Y } \\ & \text { LABEL Y }=\text { DISTANCE } \\ & \text { CONTINUE } \end{aligned}$
4th portion of 1st run	$\left\{\begin{array}{l} \text { RELERR } \mathrm{Z}=0.00002 \\ \text { TIMER FINTIM }=3.8 \\ \text { FINISH Y }=100.0 \\ \text { END } \end{array}\right.$
 4th runs	$\left\{\begin{array}{l} \text { RESET } \\ \text { PARAMETER } \mathrm{S}=(12.0,12.3,12.7) \\ \text { PRTPLT X,Y } \\ \text { TIMER FINTIM }=2.0 \\ \text { FINISH Y }=126.0 \\ \text { END } \\ \text { STOP } \\ \text { ENDJOB } \end{array}\right.$

The above example program makes two complete runs. In the first run, the CONTINUE card is used three times to make changes in parameters, output, and integration method. The following is a summary of the first run.

1 The first portion of the first run, which ends at FINTIM $=1.0$, uses the following parameters and timer variables.

$$
\begin{aligned}
\mathrm{Q} & =-13.5 \\
\mathrm{R} & =9.0 \\
\mathrm{~S} & =11.0 \\
\text { OUTDEL } & =0.02
\end{aligned}
$$

A printer-plot of the variable X is made with the following heading: PRIN-TER-PLOT OF " X ". Since the integration method is not specified, the variable-step Runge-Kutta method is used.
2 The second portion of the first run terminates at FINTIM $=1.1$. The following parameters and timer variables are changed to the values shown.

$$
\begin{aligned}
\mathrm{Q} & =-17.0 \\
\mathrm{R} & =8.0 \\
\text { DELT } & =0.0005 \\
\text { PRDEL } & =0.001
\end{aligned}
$$

Adams integration is used. The RESET PRTPLT card nullifies the previous PRTPLT and LABEL statements and the only output is given by the PRINT X,Y statement.
3 The third portion of the first run ends at FINTIM $=2.4$. There are no changes in parameter values and the integration method is changed back to variable-step Runge-Kutta (RKS). The output includes the previous PRINT X,Y statement and the additional PRTPLT Y card with the following heading: $\mathrm{Y}=$ DISTANCE.

4 For the fourth and last portion of the first run, the run will terminate at a time of 3.8 , or when the variable Y first reaches the value of 100.0 . The relative error for the Z integrator is changed from the usual value of 0.0001 to 0.00002 . All PRINT and PRTPLT outputs remain the same as in the third portion.

The first END card indicates the completion of the first run. All initial conditions are reset to the original values and the independent variable (TIME) is set to zero. The multiple run capability of a PARAMETER card is used to make three additional runs using the specified values of the parameter S. Note that because of the use of the multiple run PARAMETER card, a CONTINUE statement cannot be used in this portion of the program. The RESET card nullifies the previous PRTPLT, RELERR, LABEL, PRINT, and FINISH statements. Consequently, the only output will be printer-plots of the variables X and Y . The output interval will be the value of OUTDEL as specified in the first portion of the first run. The STOP and ENDJOB cards have been used without explanation in all programs. Their use is described as follows.

STOP

The STOP card must follow the last END card to signify the completion of the last run. It is also used to separate any user-supplied FORTRAN subprogram from the CSMP program. All subprograms must follow the STOP card.

ENDJOB

This card is used to signify the end of a job. In all previous programs, which have not included FORTRAN subroutines, the ENDJOB statement follows the STOP card. When FORTRAN subroutines are used, the ENDJOB must follow them. This is illustrated in the section in this chapter on subprograms. ENDJOB is one of five statements that must begin in card column 1. The other statements are: COMMON, COMMON MEN, ENDDATA, and ENDJOB STACK.

ENDJOB STACK

This statement, when used in place of the ENDJOB card, allows another CSMP job to directly follow. However, most computer installations prohibit the practice of "stacking runs". It is recommended that the user check with the computer installation before using the ENDJOB STACK statement. The ENDJOB label must begin in card column 1 and STACK must begin in column 9. A blank card should follow the ENDJOB STACK card.

Data Output

The majority of CSMP output is ordinarily handled by the five output statements: PRINT, PRTPLT, RANGE, TITLE, and LABEL. The user, however, has a wide range of other methods for printing data. These include the use of FORTRAN output statements, a DEBUG subroutine that provides output of all variables, a PREPARE statement that is used to allow plotting of variables on offline X-Y plotters, and a DECK statement that returns a punched deck of the program. CSMP III provides additional output capabilities that are covered in Chap. 5. This section describes the use of the four types of output that are available in both S/360 CSMP and CSMP III.

FORTRAN Output

The entire output capability of FORTRAN, with the exception of the PUNCH instruction, is available to the CSMP user. This includes the use of FORTRAN WRITE, PRINT, and FORMAT statements. Methods of using these output instructions are similar to those in FORTRAN. The primary restriction is that all FORTRAN output statements must be contained in nosort sections or in PROCEDURE functions. A summary of general rules follows later in this section. The reader should refer to specialized texts on FORTRAN, because of the generality and complexity of FORTRAN output statements. ${ }^{(2-5)}$

It is not obvious when it is desirable or necessary to use FORTRAN output capabilities. Some typical situations are listed as follows.

1 It may be necessary to print values from either the Initial or Terminal segments. These values would be printed only one time at the beginning or
end of the run. CSMP PRINT or PRTPLT statements cannot be used for this purpose. Consequently, the only choice is to use FORTRAN output statements.

2 Subscripted variables and integers cannot be used in PRINT and PRTPLT statements in S/360 CSMP. FORTRAN output statements can be used for these types of variables.
3 A maximum of fifty variables (including TIME) can be included in a S/360 CSMP PRINT statement. Essentially any number of variables can be incorporated in FORTRAN output statements.
4 The user has no control over output format when using PRINT and PRTPLT statements. Conversely, the format flexibility of FORTRAN offers considerable freedom in the style of output data.
5 CSMP PRINT and PRTPLT statements are executed at regular intervals as specified on the TIMER card. With the proper use of FORTRAN logical control and output statements, it is possible to have output at any point and at any interval during the run.
6 Since integration must be performed at each PRINT and PRTPLT interval, CSMP output statements usually affect the integration interval of variablestep methods. FORTRAN output instructions do not affect the integration step-size and as a result FORTRAN WRITE statements can be used to monitor each step in variable-step integration.

Statements in the Initial and Terminal segments are executed only once during a run. Consequently, FORTRAN output instructions can be utilized in these two segments with no special consideration other than being used in nosort sections or PROCEDURE functions. However, when FORTRAN output statements are used in the Dynamic segment, special care must be used. For example, depending upon the integration method, FORTRAN output instructions are executed up to four times for each integration step (see Table 3.3) and for each trial integration step if a variable step method is used. To provide FORTRAN output only at the end of valid integration steps, the following type of statement is recommended.

> IF(KEEP. EQ. 1) WRITE(6,100) X,Y,Z

The above will print the values of X, Y, and Z using FORMAT number 100 at each valid integration step.

The following is a summary of some general rules for using FORTRAN output statements.

1 All FORTRAN output and FORMAT statements must be in nosort sections or PROCEDURE functions.

2 Continuation cards used with FORTRAN output and FORMAT statements must contain a $\$$ in card column 6.

3 FORTRAN output instructions in the Initial and Terminal segments are executed only one time. Statements in the Dynamic segment are printed up to four times for each integration step. It is recommended that the following use of the IF statement be employed to provide output only at the end of valid integration steps.

IF(KEEP. EQ. 1) WRITE(6,100) X, Y, Z
4 The FORTRAN PRINT statement can be used in a CSMP program as part of a logical IF statement. For example, the following FORTRAN PRINT statement is valid.

IF(TIME. GT. 1.9) PRINT 100, X, Y, Z
The following PRINT instruction cannot be used.
PRINT 100, X, Y, Z
It should be pointed out that the FORTRAN PRINT statement offers no advantages over the FORTRAN WRITE instruction. For this reason, it is recommended that the FORTRAN PRINT statement not be used.
5 FORTRAN FORMAT instructions can be located in any nosort section or procedure function of the program. The most logical location is in a nosort section of the Initial segment.
6 The FORTRAN PUNCH instruction cannot be used in a CSMP program. If punched output on data cards is desired, the user should employ a FORTRAN WRITE statement. In a FORTRAN program, the following statement provides punch output.

$$
\text { WRITE }(7,100) \mathrm{X}, \mathrm{Y}, \mathrm{Z}
$$

The above statement is not valid in a CSMP program. Unit number 7 is a work data set used by the CSMP system. The user should specify in JCL cards that another unit number be set in reserve for punched output. This unit number is then used in the WRITE instruction to provide punched output.

The following orbital mechanics problem is used to illustrate the use of FORTRAN output statements in all three segments.

Example 3.8

This problem involves the two-dimensional motion of a space vehicle in an orbit that passes over both the North and South Poles. In the initial condition, the vehicle is in a circular orbit at an altitude of $300,000 \mathrm{~m}$. At the start of the simulation, rockets on the space vehicle are ignited for 120 sec which provide a thrust in the tangential direction. At the end of the 120 sec rocket burn, the only force acting on the vehicle is gravity.

To eliminate the problem of programming the effect of variable vehicle mass, it is assumed that the thrust of the rockets provides a constant acceleration of $4.905 \mathrm{~m} / \mathrm{sec}^{2}$ $(0.5 \mathrm{~g})$. A cylindrical coordinate system, as shown in Fig. 3.26, is ideally suited to describe the two-dimensional motion.

Fig. 3.26 Cylindrical coordinates of a space vehicle in a polar orbit.

The nonlinear equation set is

$$
\begin{align*}
\ddot{r} & =r \omega^{2}-g \tag{3.13}\\
\dot{\omega} & =\frac{(A-2 \dot{r} \omega)}{r} \tag{3.14}\\
\theta & =\frac{180}{\pi} \int_{0}^{t} \omega d t \tag{3.15}
\end{align*}
$$

Program symbols
where $\quad r=$ radius from center of earth, m
$\theta=$ angular position, deg
$\omega=$ angular velocity, radians $/ \mathrm{sec}$
$g=$ acceleration of gravity, $3.983 \times 10^{14} / \mathrm{r}^{2}, \mathrm{~m} / \mathrm{sec}^{2}$
$A=$ acceleration resulting from rocket thrust, $\mathrm{m} / \mathrm{sec}^{2}$
$A=4.905$
TIME $<120.0 \mathrm{sec}$
$A=0$
TIME $>120.0 \mathrm{sec}$

R
ANGLE
OMEGA
G

A

The program, shown in Fig. 3.27, which simulates the motion of the space vehicle is divided into the three segments. In the Initial segment the initial radius RO and initial angular velocity OMEGAO are calculated. The angular velocity of a satellite in a circular orbit is given by Eq. (3.16).

$$
\begin{equation*}
\mathrm{OMEGAO}=\sqrt{\frac{g}{r}}(\mathrm{rad} / \mathrm{sec}) \tag{3.16}
\end{equation*}
$$

Note that a FORTRAN WRITE statement is used with an appropriate FORMAT card to print the velocity in the circular orbit in mph. A WRITE instruction is also included in the Initial segment to provide a heading for output from the Dynamic segment.

In the Dynamic segment, a logical IF statement is used in the first nosort section to assign the proper value of A. A sort section is then used to calculate \ddot{r} (RDD) and $\dot{\omega}$

```
LABEL PROGRAM TO CALCULATE THE ORBIT OF SATELLITE.
INITIAL
    CONSTANT REARTH = 6.373E6, C = 3.983E14, ALTO =300000.0
    RO = REARTH + ALTO
    G = C/(RO*RO)
    OMEGAO = SQRT(G/RO)
    VEL = OMEGAO*RO
    MPH = VEL/0.44704
NOSORT
    100 FORMAT(1HI, 26HINITIAL VELOCITY IN MPH = F10.01
    101 FORMAT (4E28.6)
    102 FORMAT (2F25.2)
    103 FORMAT(IHI,12X, 21HFINAL VELOCITY IN MPH,7X,23HFINAL ALTITUDE IN MI
        $LES\
    104 FORMAT\/,16X, 'ALTITUDE IN METERS', 10X, 'ANGLE IN DEGREES*, 12X, *VELO
                $CITY IN METERS/SEC',6X, 'TIME IN SECONDS*'
    WRITE(6.100) MPH
    WRITE(6,104)
DYNAMIC
NOSORT
    A = 0.0
    IF(TIME.LE.120.0) A = 4.905
SORT
    G = C/(R*R)
    RDD = R*OMEGA*OMEGA - G
    OMEGAD = (A - 2.0*RD*OMEGA)/R
    RD = INTGRL(0.0,RDD)
    R = INTGRL\RO,RD\
    OMEGA = INTGRL(OMEGAO,OMEGAD)
    ANGLE = (180.0/3.14159)*INTGRL(0.0.0MEGA)
NOSORT
    ALT = R - REARTH
    VEL = SORT(RD*RD * (R*OMEGA)**2)
    IFITIME.GT.120.0) GO TO I
    IF{KEEP.EQ.1) WRITE(6,101) ALT, ANGLE, VEL, TIME
    1 CONTINUE
TERMINAL
    TIMER FINTIM = 9500.0. DUTDEL }=120.
    ABSERR R = 1.0
    FINISH ANGLE = 360.0
    PRTPLT ALT (ANGLE, VEL, G)
    MPH = VEL/0.44704
    MILES = ALT/1609.344
    WRITE(6,103)
    WRITE(6.102) MPH, MILES
END
STOP
ENDJOB
```

Fig. 3.27 Program to simulate the motion of a space vehicle and to demonstrate the use of FORTRAN output statements.
(OMEGAD) and integrations are performed to calculate \dot{r} (RD), r, ω (OMEGA), and θ (THETA). The Dynamic section is changed back to a nosort section to allow the use of a FORTRAN WRITE statement. The WRITE statement is executed at each valid integration step during the first 120.0 sec of the simulation. This WRITE statement does not affect the step-size of the variable interval integration methods. Notice that the value of OUTDEL is equal to 120.0 . This means an integration step must be performed at TIME $=120.0 \mathrm{sec}$ which insures the program will simulate the total burn of the rockets. Also note that the allowable absolute error for the R integrator is increased to 1.0. The default absolute error of 0.0001 provides tighter control than necessary for very large output of the R integrator.

The output from the FORTRAN WRITE and FORMAT instructions is given in Fig. 3.28.

Fig 3.28 Output from FORTRAN statements in Fig. 3.27.

Note that the first two lines of Fig. 3.28 were initiated in the Initial segment. The following five lines which describe the motion during the 120.0 sec rocket burn period were printed by the WRITE statement in the Dynamic segment. Since all integration steps are printed and the FORTRAN WRITE statement does not affect the integration step size of the variable-step Runge-Kutta method, the progress of the numerical integration can be monitored. Note that the first integration step is 7.5 sec which is $\frac{1}{16}$ of the output interval. In the second step the integration interval is increased to 15.0 sec , and for the third step the interval is 30.0 secs. For the fourth and last integration step during the rocket burn, a step size of 67.5 sec is used. The final velocity and altitude which was printed from the Terminal segment is shown in the last two lines of Fig. 3.28.

The time-history of the altitude is shown by the PRTPLT output of Fig. 3.29.
Note that the FORTRAN output statements had absolutely no effect on the PRTPLT output. This is not the case if both FORTRAN WRITE and PRINT statements are used in the Dynamic segment of the same program. FORTRAN and PRINT output statements are printed in the order in which they are generated. Consequently, FORTRAN and PRINT outputs are mixed together and can be confusing to read. Consider the example of using the following PRINT statement used with a PRDEL of 15.0 in the program of Fig. 3.27.

PRINT ALT, ANGLE, VEL, G

The portion of the mixed output is shown in Fig. 3.30.

DEBUG Subroutine

It is often useful when developing or checking out new programs to know the values of all variables. The DEBUG subroutine can be used for this purpose. It will print the current values of all nonsubscripted variables at each successive integration step. Any diagnostic messages that may appear are printed at the point where they occur. The subroutine is called by the following statement.

CALL DEBUG(N, T)

Fig. 3.29 PRTPLT output for the program of Fig. 3.27.
N is equal to the number of outputs. An output, which includes a listing of the values of all variables, is printed for all trial and intermediate integration steps as well as for valid steps. N must be an integer constant. The output will begin at TIME $=\mathrm{T}$ or at the first integration step after TIME $=\mathrm{T}$.

The DEBUG subroutine can only be called from nosort sections or PROCEDURE functions. It is recommended that DEBUG be called at the end of the Dynamic section. This insures that all computations of the dynamic simulation are completed before DEBUG is called. DEBUG may not be called from the Ter-

Fig. 3.30 Example of mixed FORTRAN and CSMP output.
minal segment since this segment is not executed until the end of the run. Logical control instructions can be used with DEBUG but they should not be used to "branch around" the CALL DEBUG statement at TIME $=0$. The DEBUG subroutine can be used several times in one program.

Figure 3.31 shows a DEBUG statement added to the program of Example 3.8, which simulated the motion of a space vehicle. To simplify the program, all FORTRAN output statements are removed.

```
label program to calculate the orbit of satellite using call debug
INITIAL
    CONSTANT REARTH = 6.373E6, C = 3.983E14, ALTO = 300000.0
    RO = REARTH + ALTO
    G = C/(RO*RO)
    OMEGAO = SQRT(G/RO)
DYNAMIC
NOSORT
    A = 0.0
    IFITIME.LE.120.0) A = 4.905
SORT
    G = C/(R*R)
    RDD = R*OMEGA*OMEGA - G
    OMEGAD = (A - 2.0*RD*OMEGA)/R
    RD = INTGRL (0.0,RDO)
    R = INTGRL(RO,RD)
    OMEGA = INTGRL{OMEGAO,OMEGADI
    ANGLE = (180.0/3.14159)*INTGRL(0.0,OMEGA)
NOSORT
    ALT = R - REARTH
    VEL = SQRT(RD*RD + (R*OMEGA)**2)
* THE fOLLOWING DEBUG STATEMENT WILL PRINT THE VALUE OF ALL VARIABLES USED
* IN THE PROGRAM FOR 4 ITERATIONS. THE DUTPUT WILL START AT TIME = 1600,
* OR ON THE FIRST INTEGRATION STEP AFTER TIME = 1600.
    CALL DEBUG(4,1600.0)
TERMINAL
    TIMER FINTIM =9500.0; OUTDEL = 120.0
    ABSERR R = 1.0*
    FINISH ANGLE = 360.0
    PRTPLT ALT (ANGLE, VEL,G)
END
STOP
ENDJOB
```

Fig. 3.31 Program to illustrate the use of CALL DEBUG.
The DEBUG output is shown in Fig. 3.32. Note that the first output occurred at TIME $=1620.0$ which is the first integration step after TIME $=1600.0$. Since KEEP was equal to 0 in all four DEBUG printings, none of the outputs represent a valid integration step. The six-digit symbols beginning with ZZ are generated by the CSMP program.

PREPARE

If the user's computer installation has offline plotting facilities, data generated by CSMP programs can be plotted on offline X-Y plotters. The PREPARE statement allows the user to specify up to forty-nine variables for offline plotting pur-

Fig. 3.32 DEBUG output form program of Fig. 3.31.
poses. Its use for preparing the variables \mathbf{X}, \mathbf{Y}, and \mathbf{Z} for plotting is illustrated below.

PREPARE X, Y, Z

Using the PREPARE card is similar to using the PRINT statement; the similarities are listed below.

1 The CSMP continuation device (...) may be used for continuation of the PREPARE statement to additional cards.

2 Only one PREPARE statement should be used.
3 The independent variable TIME is automatically included.
4 The heading contained in TITLE statements is specified in the data set generated by the PREPARE card and is available to the $X-Y$ plotting programs.

5 The output interval is specified by the timer variable OUTDEL. Note, the output interval for the PRINT statement is PRDEL.

The data from the PREPARE card is generated on the I/O device specified as number 15. Depending upon the computer operating system, this data will either be stored on a disk-storage device or on magnetic tape.

The simulation of the dynamic response of a pneumatic piston-cylinder system illustrates the use of the PREPARE statement.

Example 3.9

A common engineering problem involves simulating the response of a piston driven by pressurized air flowing into a cylinder. This is a reasonably complex problem since it involves the fluid- and thermodynamics of a compressible fluid. Figure 3.33 shows a drawing of the system where air is flowing at a subsonic velocity through a small orifice to the cylinder.

Fig. 3.33 Piston cylinder system.
The mass flow rate for subsonic velocity of an ideal gas, without losses, through an orifice is

$$
\begin{gather*}
\dot{m}=C\left[\left(\frac{P}{P_{1}}\right)^{2 / \gamma}-\left(\frac{P}{P_{1}}\right)^{(\gamma+1) / \gamma}\right]^{1 / 2} \tag{3.17}\\
\text { where } C=A_{1} P_{1} \sqrt{\frac{2 g_{c} \gamma}{(\gamma-1) R T_{1}}} \tag{3.18}
\end{gather*}
$$

An energy balance on the air in the adiabatic cylinder yields the following expression for the time rate of change of cylinder air temperature.

$$
\begin{align*}
& \dot{T}=\frac{\left(-\frac{P A \dot{X}}{J}+\dot{m} c_{p} T_{1}-\dot{m} c_{v} T\right)}{c_{v} m} \tag{3.19}\\
& T(0)=T_{o}
\end{align*}
$$

The volume inside the cylinder is

$$
\begin{equation*}
V=V_{o}+A \cdot X \tag{3.20}
\end{equation*}
$$

Assuming thermodynamic equilibrium, the perfect gas law can be used to solve for the cylinder pressure.

$$
\begin{equation*}
P=\frac{m \cdot R \cdot T}{V} \tag{3.21}
\end{equation*}
$$

Newton's second law can be used to calculate the acceleration of the piston

$$
\begin{equation*}
\ddot{X}=\frac{A\left(P-P_{o}\right)}{\text { WEIGHT } / g_{c}} \tag{3.22}
\end{equation*}
$$

Symbols Used in
Program of Fig. 3.34

```
where \(\quad A_{1}=\) area of orifice, \(0.0008 \mathrm{ft}^{2} \quad \mathrm{~A} 1\)
            \(\boldsymbol{P}_{1}=\) supply pressure, \(3900.0 \mathrm{lbf} / \mathrm{ft}^{2} \quad\) P1
            \(T_{1}=\) temperature of incoming air, \(560^{\circ} \mathrm{R} \quad \mathrm{T} 1\)
            \(R=\) gas constant, \(53.35 \mathrm{ft}-\mathrm{lbf} / \mathrm{lbm}-{ }^{\circ} \mathrm{R} \quad \mathrm{R}\)
            \(X=\) movement of piston, \(\mathrm{ft} \quad \mathrm{X}\)
            \(\gamma=\) ratio of specific heats, \(1.4 \quad\) GAMMA
            \(A=\) area of piston, \(0.4 \mathrm{ft}^{2} \quad\) A
            \(c_{p}=\) specific heat of air at constant \(\quad \mathbf{C P}\)
            pressure, \(0.24 \mathrm{Btu} / \mathrm{lbm}-{ }^{\circ} \mathrm{R}\)
            \(c_{v}=\) specific heat of air at constant \(\quad\) CV
            volume, \(0.171 \mathrm{Btu} / \mathrm{lbm}-{ }^{\circ} \mathrm{R}\)
            \(T_{o}=\) initial temperature of air in cylinder, \(530^{\circ} \mathrm{R} \quad\) TO
            \(P_{o}=\) atmospheric pressure, \(2116.8 \mathrm{lbf} / \mathrm{ft}^{3} \quad\) PO
            \(M_{o}=\) initial mass of air in cylinder MO
            \(V_{o}=\) initial volume of cylinder, \(0.06 \mathrm{ft}^{3} \quad\) VO
            \(g_{c}=32.17 \mathrm{lbm}-\mathrm{ft} / \mathrm{lbf}_{\mathrm{sec}}{ }^{2} \quad\) GC
    WEIGHT \(=\) weight of piston and attached mass,
        280.0 lbm
            \(J=778 \mathrm{ft}-\mathrm{lbf} / \mathrm{Btu}\)
                            J
```

Equations (3.17), (3.19), and (3.22) are contained in the program of Fig. 3.34 and are integrated to determine the response.

The PREPARE card in the program of Fig. 3.34 is used to generate a data set for the offline plotting of the variables X, XD, and XDD.

Once the data set is generated, the user must supply a program to interface directly with the plotter. In this example the velocity XD and acceleration XDD are plotted as a function of displacement X . The interfacing program that was used at the University of Tennessee for a CALCOMP 763 plotter is shown in Fig. 3.35. It should be noted that each computer installation will require its own interfacing program.

Figure 3.36 shows the PRINT output from the program of Fig. 3.34. Figure 3.37 is the resulting offline $\mathrm{X}-\mathrm{Y}$ plot.

DECK

In simulation studies it is often necessary to make several runs from the same program changing only parameters and output statements. Computer time can be

```
INITIAL
TITLE PROGRAM TO STUDY THE DYNAMICS DF A PNEUMATIC PISTON-CYLINDER
title and to illustrate the use mf the prffpare statement.
    CONSTANT Pl = 3900.0, T1 = 560.0, Al = 0.0008, PO = 2116.8,
    TO = 530.0, VO = 0.06, A = 0.4, WEIGHT = 280.0, CP = 0.24,
    CV = 0.171, R = 53.35, J = 778.0, GANNA = 1.4, GC = 32.17
    MO = PO*VO/(R*TO)
    C = Al*PL*SQRT(2.0*GC*GAMMA/(R*TI*(GAMMA - L.0)))
OYNAMIC
    MD = C*SQRT((P/P1)**(2.0/GAMMA) - (P/P1)**((GAMMA + 1.0)/GAMMA))
    V = VO + A*X
    TD = (-P*A*XD/J + MD*CP*TI - MD*CV*T)/(M*CV)
    P = M*R*T/V
    XDD = (P - PO)*A/(WEIGHT/GC)
        M = INTGRL(NC,MD)
        T = INTGRL(TO,TD)
        XD = INTGRL(O.0,XDD)
        x = INTGRL(C.C,XDI
    PRINT X, XD, XDC, T, TD, M, MD, P
    FINISH X = 1.0
    TIMER FINTIM = 5.0, PRDEL = 0.01. CUTDEL = 0.005
        the following prepare card is used to generate a data set that
* CAN be USED fCR JFF LINE PLOTTING OF THE VARIABLES X, XD, aND XDD.
    PREPARE X, XC, XCD
END
STJP
EINDJOB
```

Fig. 3.34 Program to simulate the response of a pneumatic piston cylinder system and to illustrate the use of the PREPARE statement.
saved in this situation by making a punched card deck of the translated CSMP program. An understanding of the inner workings of the CSMP program is obviously not necessary for successfully programming. However, the following brief description of the CSMP program will enable the reader to better understand the advantages of using a translated punched deck. For the reader who is interested in more detail, the CSMP System Manual ${ }^{(1)}$ is recommended.

Once the user's program is read into the computer, the CSMP program begins to build the subroutine UPDATE. This is called the translation phase. In generating UPDATE, three primary tasks are accomplished.

1 The statements in the sort sections are placed in the proper order.
2 The proper transfer of control for the various segments and sections is established.
3 Common statements are established to make the proper variables available between UPDATE and the CSMP modules.

In the next step, the FORTRAN G compiler is invoked and the linkage editor then links UPDATE with the various CSMP execution modules. Control is then passed to MAIN which is the main or calling program. During the execution of the program, MAIN calls the appropriate subroutine to perform the necessary opera-

```
// EXEC FJRTGCLG.GOREC=96K
//FJRT.SYSIN DD *
            DIMENSION IBUF(664)
            UIMENSION TIME(1000),X(1000),Y(1000),2(1000),XDOT(1000)
            DIMENSION ICODE(20),ICODEI(20)
            DO 5 I = 1,11
            READ (8,80) DUMMY
    5 CONTINUE
    80 FORMAT (A4)
            READ (5.60) ICODE
            READ (5.60) ICODEI
    60 FDRMAT ( 20A4 )
            NOPTS = 110
            DO 10 I = 1,NOPTS
            REAO (8,END=20) TIME(I),X(I),Y(I),Z(I)
    10 CONTINUE
    20 CALL PLOTS (IBUF,664,60.0)
            CALL ZIPOFF
            YAXIS = 9.0
            XAXIS = 10.0
            DO 100 J = 1,3
            NPTS = NOPTS
            NPTS = NPTS / J
            NST = NPTS * J +1
            NDEL = NPTS * J + J + 1
            CALL SCALE (TIME,XAXIS,NPTS,J)
            CALL SCALE (X,XAXIS,NPTS,J)
            CALL SCALE (Y,YAXIS,NPTS,J)
            CALL SCALE (Z,YAXIS,NPTS,J)
            CALL SYMBOL (7.0,9.03,0.14,10,0.0,-1)
            CALL SYMBOL (7.5.9.0,0.14.ICODE,0.0,80)
            CALL SYMBOL (7.0.8.7,0.14,01,0.0,-1)
            CALL SYMBOL (7.5,8.64,0.14,ICODE 1,0.0,80)
            CALL AXIS ( -0.75,0.0,3HXDD,+3,YAXIS,90.0,Z(NST),Z(NDEL))
            CALL AXIS (0.0.0.0.2HXD, +2,YAXIS,90.0.Y(NST),Y(NDEL))
            CALL AXIS (0.0,0.0,1HX,-1,XAXIS,0.0,X(NST),X(NDEL))
            CALL FLINE (X,Y,NPTS,J,+1,10)
            CALL FLINE (X,Z,NPTS,J,+1,01)
            CALL PLOT (15.0.0.0,-3)
    100 CONTINUE
            CALL PLOT (0.0.0.0.999)
            NSTOP = NOPTS
            WRITE (6,63) (TIME(L),X(L),Y(L),Z(L),L=1,NSTOP)
    63 FORMAT (1H .4(E14.6.5X))
            STOP
            END
//GO.PLOTTAPE DD SYSCUT=P
//GO.FTO8FOO1 DD DSN=PLOTTER,DCB=(RECFM=VS,LRECL=255,BLKSILE=2550),
// UNIT=2400.DISP=(OLD,KEEP),LABEL=(,SL.,IN),VOL=SER=002330
//GQ.SYSIN DD
XD (VELOCITY)
XDD (ACCELERATION)
/*
```

Fig. 3.35 Program used at The University of Tennessee to interface between the data set generated by the PREPARE card and a CALCOMP 763 plotter.
tion; integration, printing, plotting, initialization, etc. This total operation of the CSMP program is quite complicated. A strong background in all areas of programming is required if the process is to be understood.

When the label DECK is included in a program with the appropriate JCL (job control language) cards, a punched card deck is made. The deck includes the CSMP subroutine UPDATE and all user-supplied subroutines, a listing of sym-

PROGRAM TO STUDY THE DYNAMICS OF A PNEUMATIC PISTON-CYLINDER and to illustrate the use of the prepare statement.

me	x	x 0	XOD	T		TD		M	MD	p	
0.0	0.0	C. 0	-1.0098E-04	5.3000 E	02	3.9930 E	03	4.4918E-03	7.0071E-02	2.1168 F	3
1.500ue-u2	1.2369E-03	2.4369E-01	3.1264 E 01	5.7555 E	02	2.0834 E	03	5.5107E-03	6.4301E-02	2.79715	3
3.0000E-02	9.2445E-03	8.6853E-01	4.9013 OL	5.9341 F	02	3.7445 E	02	6.4049E-03	5.5627ㄷ-02	3.18335	03
$4.5000 \mathrm{E}-\mathrm{v} 2$	2.7946E-02	1.6260 00	4.9603 E 01	5.9023 E	02	-6.6606E	02	7.2246E-03	5.5247E-02	3.1961 E	3
$6.0000 \mathrm{E}-02$	5.7628E-02	2.3086E 00	4.0511 E 01	5.7696 E	02	-1.0122E	03	8.0899E-03	6.0393E-02	$2.9983 E$	3
$7.5000 \mathrm{E}-02$	9.6383E-02	2.8258E 00	2.8966 El	5.6178 E	02	-9.7191E	02	9.0332E-03	6.5095E-02	2.74715	33
9.0000E-02	$1.4167 \mathrm{E}-01$	3.1826E 00	1.8363 E 01	5.4847 F	02	-7.9159E	02	1.0033E-02	6.7948E-02	2.5164	3
1.0500ET-01	1.9114E-01	3.3905600	9.6998 E 00	5.3812 F	02	-5.9082E	02	1.1065E-02	6.9372F-02	2.3279	3
1.2000E-01	2.4282E-01	3.4834 E 00	2.9908 EO	5.3363 E	02	-4.1209E	02	1.2110E-02	6.9953E-02	2.13195	3
1.3500E-OL	2.9520E-01	$3.4886 E 00$	-2.0441E 00	5.25595	02	-2.6475E	02	1.3161E-02	7.0102E-02	2.0723	3
$1.5000 \mathrm{E}-01$	3.4715E-01	3.4289500	-5.7183E 00	5.2254 E	02	-1.4676든	02	1.4212E-02	7.0057E-02	1.9924	3
1.6500E-01	3.9783E-01	$3.3225 E 00$	-8.302JE 00	$5.2107 E$	02	-5.3236E	01	1.5262E-02	6.9948E-02	1.9362	3
1.8000E-U1	4.4667E-01	3.1842 E 00	-1.0010E 01	5.2084 E	02	2.0588 E	01	1.6311E-02	$6.9841 \mathrm{E}-02$	1.8990	3
$1.9500 \mathrm{E}-\mathrm{JL}$	4.9326E-01	3.0257E 00	-1.1009E 01	5.2160 E	02	7.8645 E	01	$1.7358 \mathrm{E}-02$	6.9765E-02	1.8772	03
2.100UE-OL	$5.3738 \mathrm{E}-01$	2.8568 E 00	-1.1430E O1	5.2314 E	02	1.2396 E	02	1.8404E-02	6.9731E-02	1.8681	03
$2.2500 \mathrm{E}-\mathrm{Jl}$	5.7895E-01	2.6852E 00	-1.1376F 01	5.2527 E	02	1.5977 E	02	1.9450E-02	$6.9735 \mathrm{~F}-0$?	1.8693	03
2.40VOE-O1	6.1796E-01	2.5175 E 00	-1.0930E 01	5.2735 E	02	1.84755	02	2.0496E-02	6.9172E-02	1.8790	03
$2.5500 \mathrm{E}-01$	6.5452E-01	2.358SE CO	-1.0165E 01	5.30775	02	2.03115	02	$2.1543 \mathrm{E}-02$	$6.9830 E-02$	1.8956	3
$2.7000 \mathrm{E}-31$	$6.8879 \mathrm{E}-01$	2.2138 E 00	-9.1415F 00	5.3391 E	02	2.1479 E	02	2.2591E-02	$6.9899 \mathrm{E}-02$	1.9179	03
2.8500E-J1	7.2102E-01	$2.0857 E 00$	-7.9167E 00	5.3718 E	02	2.2051 E	02	2.3640E-02	6.9968E-02	1.9445 E	03
3.0000E-J1	$7.5146 \mathrm{E}-01$	$1.9770 \leq 00$	-6.5430E 00	5.4050 E	02	$2.2086 E$	02	2.4690F-02	7.0029E-02	1.9744 F	33
$3.1500 \mathrm{E}-01$	7.8043E-01	1.88995 00	-5.0702E 00	5.43787	02	2.1637 E	02	$2.5741 \mathrm{E}-02$	7.0074E-02	2.0065 E	3
$3.3000 \mathrm{e}-31$	8.0827E-01	1.2252E 00	-3.5463E 00	$5.4697 E$	02	2.0755 E	02	2.6792E-02	7.0099E-02	2.03965	3
3.450 UE-U1	8.3530E-01	1.7835500	-2.0170F 00	5.4999 E	02	1.9490 E	02	2.7843E-0?	7.0102F-02	2.07295	03
$3.6000 \mathrm{e}-\mathrm{ul}$	8.6189E-01	1.7645 E 00	-5.2546E-01	5.52805	02	$1.7898 E$	02	$2.8895 \mathrm{E}-02$	7.0083F-02	$2.1054 E$	03
$3.7500 \mathrm{E}-\mathrm{JI}$	$8.8835 \mathrm{E}-01$	1.7673 E 00	8.8864E-01	$5.5534 E$	02	1.6039 E	02	$2.9946 \mathrm{E}-02$	7.0045E-02	?.1361E	03
$3.9000 \mathrm{E}-\mathrm{OL}$	$9.1501 \mathrm{E}-01$	1.79C6F 00	2.1899 CO	5.5160 F	02	1.39755	02	3.0996[-02	6.9993E-02	2.1645 F	03
4.03 OUE-O1	$9.4216 E-01$	1.8323E 00	3.3486 CO	5.5953 E	02	1.1772 E	02	3.2046E-02	6.9933F-02	$2.1897 E$	03
$4.2300 \mathrm{E}-01$	9.7006E-01	1.8902E 00	4.3415 E 00	5.61125	02	$9.4977 E$	OL	3.3094E-02	$6.9872 \mathrm{E}-02$	2.2113 E	33
$4.350 \cup E-01$	9.9893E-01	1.9616 E 00	5.1519 EO	5.6237 E	02	7.2167 E	01	3.4142E-02	6.9814E-0?	2.22895	03
SIMULATION HALTED		$x=1.0063 \mathrm{E} 00$									
$4.3875 \mathrm{E}-01$	1.0063E 00	1.9813E 00	5.3248 00	5.6263E	02	6.6527 E	01	3.4403F-C2	6.9801F-02	2.2327	

Fig. 3.36 PRINT output from the simulation of the piston cylinder system.
bols used in the execution phase, and all data, execution, and output statements. When the translated deck is used for initiating a run, generating the subroutine UPDATE is not necessary and consequently, computer time is saved.

Any of the data, execution, and output control statements can be changed in the translated deck. Minor modifications can even be made in the structure statements of the translated punched deck. A complete discussion of the use of translated decks is included in the CSMP System Manual. ${ }^{(1)}$

Figure 3.38 shows the deck statement inserted in the program of Example 3.9. A listing of the resulting punched card deck is shown in Fig. 3.39. Included in this listing are the JCL cards that are required at The University of Tennessee's computing center to make additional runs.

Additional runs can be made by changing the data, execution, and output control statements that appear at the end of the punched deck. It is suggested that the user contact the computer installation to determine the required JCL cards.

User Defined Functions and Subroutines

Functions most often encountered in digital simulations have been programmed as a fundamental part of CSMP. Several of these functional blocks were

Fig. 3.37 Offline X-Y plot of piston response.
presented in Chap. 2 and the remaining ones are given in Appendix I. Such functions are typically of the form $Y=\operatorname{REALPL}(I C, P, X)$. It is impossible to foresee the various types of relationships that might be needed in every situation and thus an all-encompassing set of expressions cannot be pre-programmed. Also, the storage requirements for including such flexibility would soon become completely unreasonable. Having recognized this, CSMP was written so that users could easily develop their own functions relative to a particular problem or even to a given discipline. Such capability is available through the use of MACRO, PROCEDURE, and standard FORTRAN subprograms.

The purpose of this section is to present basic guidelines for developing and using extended functional capabilities. The MACRO type function will be intro-

```
TITLE PROGRAM TO STUDY THE DYNAMICS OF A PNEUMATIC PISTON-CYLINDER
title and to illustrate the use of the deck statement
INITIAL
    CONSTANT P1 = 3900.0, T1 = 560.0, A1 = 0.0008, PO = 2116.8,
    TO =530.0,VO=0.06, A = 0.4,WEIGHT = 280.0, CP =0.24,
    CV = 0.171, R = 53.35, J = 778.0, GAMMA = 1.4,GC=32.17
    MO = PO*VO/(R*TO)
    C=A1*P1*SORT(2.0*GC*GAMMA/(R*T1*{GAMMA - 1.01))
D YNAMIC
    MD = C*SQRT((P/PL)**(2.0/GAMMA) - (P/P1)**((GAMMA + 1.0)/GAMMA))
    V = V0 + A*X
    TD=(-P*A*XD/J + MD*CP*T1 - MD*CV*T)/(M*CV)
    P = M*R*T/V
    XDD = (P - PO)*A/(WEIGHT/GC)
        M = INTGRL(MO,MD)
        T = INTGRL(TO,TD)
        XD = INTGRL(0.0.XDD)
        X = INTGRL(0.0.XD)
    PRINT X, XD, XDD, T, TD, M, MD, P
    FINISH X = 1.0
    TIMER FINTIM = 5.0. PRDEL =0.015
        THE fOLLOWING DECK STATEMENT WHEN USED WITH THE PROPER JCL CARDS
        WILL RETURN A PUNCHED CARD DECK OF THE TRANSLATED PROGRAM.
        DECK
END
STOP
ENDJOB
```

Fig. 3.38 Program to simulate the response of a pneumatic piston cylinder system and to illustrate the use of the DECK statement.
duced first and will be followed by the PROCEDURE and FORTRAN subprograms. As usual, example programs are given which illustrate the use of these functions in a complete simulation.

MACRO FUNCTIONS

In many respects a macro function can be compared to a FORTRAN subroutine although they are definitely not the same. As a simple illustration suppose the following set of equations is used within the body of a more comprehensive simulation.

$$
\begin{align*}
& A x(t)+B y(t)=f_{1}(t) \tag{3.23}\\
& C x(t)+D y(t)=f_{2}(t) \tag{3.24}
\end{align*}
$$

We assume that A, B, C, and D are fixed parameters while $f_{1}(t)$ and $f_{2}(t)$ are time varying functions defined elsewhere in the simulation. The problem is to solve for $x(t)$ and $y(t)$. A matrix form of solution is

$$
\left[\begin{array}{l}
x(t) \tag{3.25}\\
y(t)
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}\left[\begin{array}{l}
f_{1}(t) \\
f_{2}(t)
\end{array}\right]
$$

```
            SIJRROUTINE UPDATE
            COMMNN 229901(5),1L2901,2L2902,129902,2L9903,I29903,2L9991(54)
            COMmNN time
            1,DELT ,DELMIN,FINTIM,PROEL ,OUTDEL,M ,T *XD ,X
            I.MD .TD ,XDD .ZZO.JOT.MO .TO ,ZZOOO4,ZZOOO6,P1
            1.T1 .AL .PO .VO ,A ,WEIGHT,CP ,CV ,R
            1.J .GAMMA ,GC ,C ,V ,P
            CIIMMCN Z29992(7966),NALARM.I29993,2Z9994(417),KEEP, 229995(489)
            $,ILO000,ZZ9990(824),IZ9997,IZ9998.229999( 81)
            RFAL M
            1.MO ,MO .J
            G] TO(39995,39996,39947,39498),120000
C SYSTEM SEGMENT OF MODEL
39995 CONTINUE
            129993= 35
                    129997= 4
                    129998= 34
                    READ(5,39990)(Z29999(IL9999),IZ9999=1, 81)
39990 FORMAT(18A4)
                    IZ9901= 310019
                    IL9902= 340032
                    IZ9903= 81
                    G0 T0 39999
C INITIAL SEGMENT OF MODEL
39996 CONTINUE
                    MO = PO*VO/(R*TO)
                    C=Al*PI*SGRT(2.0*GC*GAMMA/(R*T1*(GAMMA-1.0)))
            G) TO }3999
C DYNAMIC SEGMENT OF mODEL
39997 CONTINUE
            V=V0+A*x
            P=M*R*T/V
            MO=C*SQRT((P/P1)**(2.0/GAMMA)-(P/P1)**((GAMMA+1.0)/GAMMA))
                C M =INTGRL (MO ,MD )
TD=(-P*A*XD/J+MD*CP*T1 -MD*CV*T)/(M*CV)
C T =INTGRL (TO IN )
XDD=(D-PO)*A/(WEIGHT/GC)
C XO =INTGRL (2ZOOO4 ,XDD ,
C X =INTGRL (ZZOOO6 )
    Z20007=XD
    GO TO 39999
C TERMINAL SEGMENT OF MDDEL
39998 CONTINUE
39999 CONTINUE
                        RETURN
    END
//LKED.SYSLIB DD
// DO
// DD DSN=UTCC. APPLIB,DISP=SHR
//LKED.SYSIN DO DSN=UTCC.PAFMLIB(LKEDCSMP),DISP=SHR
//GO.FT13FOOL DD UNIT=WORK,SPACE=(CYL,(L.l)),
// DCB=(RECFM=VBS,LRECL=200.BLKSIZE=1004)
//GO.FT14F001 DD UNIT=WORK,SPACE=(CYL,(1,1)),
// DCB=(RECFM=VBS.LRECL=200.BLKSIZE=1004)
//GO.SYSIN OD *
TIME DFLT DELMINFINTIMPRDEL CUTDELM T T XD X X MD TD SYMB I
XOD ZZOOOTMO TO LZOOO4ZZOOO6P1 T1 Al PO VO A SYMB 2
```



```
                    These data, execution,and output control
                    statements can be changed.
TITLE pROGRAM TO STUDY the oynamICS OF a pNEUMATIC PISTON-CYLINDER
ritle and to lllustrate the use of the deck statement
    CONSTANT Pl = 3900.0. Tl = 560.0, A1 = 0.0008, PO = 2116.8.
    TO = 530.0, VO = 0.06, A = 0.4, WEIGHT = 280.0, CP = 0.24,
    CV = 0.171, F=53.35, J=778.0, GAMMA = 1.4, GC=32.17
    PRINT X, XD, XDD, T, TD, M, MD, P
    FINISH X = 1.0
    TIMER FINTIM = 5.0, PRDEL = 0.01
END
STOP
```

Fig. 3.39 Listing of cards returned by DECK statement from program in Fig. 3.38.

A macro giving the solution for $x(t)$ and $y(t)$ can be formulated as follows

$$
\begin{array}{ll}
\text { MACRO } & \text { ANS1, ANS2 }=\text { INVERT(A, B, C, D, FUN1, FUN2) } \\
\text { DETERM }=\mathrm{A} * \mathrm{D}-\mathrm{C} * \mathrm{~B} \\
\text { A11 }=\mathrm{D} / \mathrm{DETERM} \\
\text { A12 }=-\mathrm{B} / \text { DETERM } \\
\text { A21 }=-\mathrm{C} / \text { DETERM } \\
\text { A22 }=\mathrm{A} / \text { DETERM } \\
\text { ANS1 }=\mathrm{A} 11 * \mathrm{FUN} 1+\mathrm{A} 12 * \mathrm{FUN} 2 \\
\text { ANS2 }=\mathrm{A} 21 * \mathrm{FUN} 1+\mathrm{A} 22 * \mathrm{FUN} 2
\end{array}
$$

The calculations as specified in the macro could be invoked from the program by the following statement.

$$
\mathrm{P}, \mathrm{Q}=\operatorname{INVERT}(6.0,7.1,-2.3,18.0, \mathrm{~N} 1, \mathrm{~N} 2)
$$

The above instruction will execute the statements of the INVERT macro and consequently solve for P and Q from the following equation set.

$$
\begin{array}{r}
6 P+7.1 Q=N 1 \\
-2.3 P+18 P=N 2 \tag{3.27}
\end{array}
$$

At another point within the main program the macro might again be invoked by

$$
\mathrm{X}, \mathrm{Y}=\mathrm{INVERT}(\mathrm{PAR} 1, \mathrm{PAR} 2 * * 2, \mathrm{~F}-\mathrm{M}, \mathrm{RING}, \mathrm{IN} 1, \mathrm{IN} 2)
$$

More will be said later about the function outputs and the arguments of the macro name.

A macro is a parallel-type function. This means that the statements written between MACRO and ENDMAC will be arranged by the CSMP sort algorithm to insure that calculations are performed in the correct order. In addition, the function defining the macro (INVERT in the above example) will be sorted within other statements of the overall program.

Fundamental rules which must be observed when using macros are
1 Macro definition cards must be placed at the beginning of the program and precede any structural statements even though the structural statements are in an INITIAL segment. Generally, the only cards placed before a macro are those which relate to FIXED, STORAGE, HISTORY, MEMORY, and RENAME.

2 The very first card of the macro is a translational control statement containing the word MACRO and is followed, on the same card, by the expression representing the function. At least one blank space must follow MACRO and the first output variable. The last card of the macro must contain the letters ENDMAC. For a single output variable one might have

MACRO FORCE $=$ SHARP(MASS, TORQUE, CONST1)

Macro statements

ENDMAC

3 If necessary, the function defining the macro may be continued up to a total of four cards using the customary . . . for continuation. As an illustration one might have,

$$
\begin{gathered}
\text { MACRO OUT }=\text { CALCU(M21,M22, } \ldots \\
\text { M31, M32, IN1, IN2) }
\end{gathered}
$$

Statements within the body of the macro cannot be continued from one card to another using the . . feature. Therefore, continuation cards cannot appear in a macro other than the first statement defining the function.

4 There are no restrictions on the number of output variables, input variables, and parameters used in defining a macro other than that the total function statement cannot exceed four cards. The macro outputs and macro arguments must be separated by commas.
5 All variables and parameters associated with the macro definition are "dummy" names with the exception of the unique name assigned to the function definition. Thus,

When using this macro, the label FILSIM must be retained; however, SIG, RUN, XX2, JUMP, and METX can be replaced by other names. For example, the above macro could also be invoked by the statement

TRIG, DECAY $=$ FILSIM $(6.4, ~ C C X,(4.0-B) / A)$
in which case the following replacements are made by the macro

	Replaces	
TRIG	\longrightarrow SIG	
DECAY	\longrightarrow UUN	
6.4	\longrightarrow XU2	
CCX	\longrightarrow METX	

6 Once a macro function is defined it can be used several times in one program. For example,

$$
\begin{aligned}
& \text { AA, BX = FILSIM(IC1, DUM, RY) } \\
& \text { KY, NY = FILSIM(NUM, DEM, RELX) } \\
& \text { RED, WWW = FILSIM(3.2, A-M, LLP) }
\end{aligned}
$$

can all be used to invoke the previously defined macro FILSIM (see 5 above) in a single simulation.
7 The arguments used in a macro statement can be literals, variables, subscripted variables, and standard FORTRAN expressions. However, system macros (CMPXPL, MODINT, LEDLAG, REALPL and INTGRL) cannot be used as arguments. Consider the macro definition given earlier

$$
\text { MACRO } \quad \text { SIG, RUN }=\text { FILSIM }(X X 2, \text { JUMP, METX })
$$

The following two statements are valid.

$$
\begin{aligned}
& \mathrm{X}, \mathrm{Y}=\mathrm{FILSIM}(\mathrm{Q} * * 2, \mathrm{M}(2), \operatorname{SQRT}(\mathrm{B} * * 2-4 * \mathrm{~A} * \mathrm{C})) \\
& \mathrm{RX}, \mathrm{MY}=\operatorname{FILSIM}(\operatorname{SINE}(0.1,400.0,0.0), \operatorname{STEP}(0.0), \mathrm{AA})
\end{aligned}
$$

Statements which cannot be used include

$$
\begin{aligned}
& \mathrm{X}, \mathrm{Y}=\operatorname{FILSIM}\left(9.3, \underset{\left.\operatorname{INTGRL}^{\operatorname{INT}}(0.0, \mathrm{Z}), \mathrm{AA}\right)}{ }\right. \\
& \text { not allowed as arguments } \\
& \mathbf{X}, \mathbf{Y}=\operatorname{FILSIM}(9.3, \underset{\downarrow}{\operatorname{REALPL}}(0.0,0.2, \mathrm{~W}), \mathrm{AA})
\end{aligned}
$$

8 Neither a user defined macro function nor a system macro can be used as part of an expression in a structure statement. As an example, the following is an invalid instruction.

$$
\mathrm{Q}=\mathrm{SHARP}(3.3, \mathrm{~T},-4.71) / 3.75
$$

9 Variables defined within the structure statements of a macro are not available for program output through the use of PRINT, PRTPLT, PREPARE, and RANGE. For a variable to be available as output data it must be defined as one of the output names of the macro.

10 A macro may be invoked within another macro. For example suppose the following macro is defined.

```
MACRO Y = STATE(A11, A12, B1, R, IC1)
    X1DOT = A11*X1 + B1*R + A12
    X1 = INTGRL(IC1, X1DOT)
    Y = X1
ENDMAC
```

The macro STATE may be used in another macro called SIMULA as illustrated by

```
MACRO OUTX = SIMULA(INPUT, DIST, S11, S12, SB1, SIC1)
    XX = STATE(S11, S12, SB1, GAIN*INPUT, SIC1)
    QQ = INTGRL(0.0, DIST)
    OUTX = XX + QQ
ENDMAC
```

11 As noted previously, macro structure statements may appear in any order since the sorting algorithm will place them in a correct sequence for computation. Macro functions can be used either in the structure statements of a procedure function or in a nosort section. A macro so used will not be sorted and furthermore, a macro cannot invoke another macro when used in this way.
12 Neither CSMP data nor control statements may appear between MACRO and ENDMAC. Also, FORTRAN control and input/output statements cannot appear unless they are embedded within a procedure function. Input and output statements can reference FORMAT statements but the FORMAT statements cannot appear in a macro: With the above exception, any CSMP or FORTRAN structure statements, including a subroutine call, may appear within a macro.

Perhaps the best way to understand the rules and guidelines for formulating macros is to see how they are applied in several examples.

A good policy to follow when developing a macro is to test the operation of the function before incorporating it into a more comprehensive simulation. The following example presents the development of a rather simple, but useful, macro and a test for asserting the correct operation of the function so generated.

Example 3.10

The desired operating characteristics of an on-off device are shown in Fig. 3.40. The actual device might represent a relay with deadspace, although here the purpose is to make the characteristics as general as possible. Once developed, the macro can be used as a subcomponent in a more extensive system.

The macro may be generated by

```
MACRO .PLAY = RELAY(YP1, YP2, XP1, XP2, FLASH)
    IF(FLASH.GT.XP2.AND.FLASH.LT.XP1) GO TO 99
    IF(FLASH.GE.XP1) GO TO 98
    IF(FLASH.LE.XP2) GO TO }9
    99
    PLAY =0.0
    GO TO 96
    98 PLAY = YP1
    GO TO 96
    97 PLAY = YP2
    96 CONTINUE
ENDMAC
```


Fig. 3.40 Desired characteristics of Relay-type device.

The output, PLAY, and arguments YP1, YP2, XP1, and XP2, and FLASH are dummy symbols and can be replaced by other symbols when invoked from the main program. Notice that FORTRAN branching and logic statements have been used. Since the structure statements of a macro are sorted, the user would encounter difficulty using the program unless steps are taken to insure the statements are not sorted. One way to avoid sorting is to place a card with the letters PROCEDURAL immediately following the macro definition card. This will be explained more fully in the next section dealing with procedure functions. Another way to avoid sorting is to place a NOSORT card before the program statement which invokes the macro. A program which uses this approach and also checks the performance of the macro is given in Fig. 3.41. The macro function is invoked by the statement

OUTPUT $=$ RELAY(LIMIT1, LIMIT2, BOUND1, BOUND2, INPUT)
A sine wave with frequency of 6.28 radians $/ \mathrm{sec}$ is used as the device input. The values of LIMIT1, LIMIT2, BOUND1, and BOUND2 have been specified on a Parameter card. The output from the program is given in Fig. 3.42, where one will note that the function is operating correctly.

If the NOSORT card were omitted from the program in Fig. 3.41 the program would not run and an appropriate error message would appear.

The major emphasis in developing CSMP was placed upon the creation of a simulation language for handling problems which involve differentiation and integration. As shown in Example 3.11, however, one can write CSMP programs which do not solve differential equations. While such programs may certainly be written in FORTRAN or other higher-level languages, CSMP quite often gives a simpler formulation without using DO loops and subscripted variables. The following will present one such use of CSMP.

```
MACRO PLAY = FELAY(YP1, YP2, XP1, XP2, FLASH)
    IF(FLASH.GT& XP2.AND.FLASH*LT.XPI) GO TO 99
            IF(FLASH.GE.XP1) GO TO 98
            IF(FLASH.LE.XP2) GO TO 97
        99 PLAY = 0.0
            GO TO 96
        98 PLAY = YPI
            GO TO 96
    97 PLAY = YP2
    9 6 ~ C O N T I N U E ~
ENDMAC
PARAM LIMIT1 = 1.2, LIMIT2 = - 1. 8, BCUND1 = 1.0, BOUND2 = -1.0
*NOSORT
INPUT = 3.0* SINE (0.0,6.28,0.0)
OUTPUT = RELAYILIMIT1, LIMIT2, BOUND1, BOUND2, INPUTI
TIMER FINTIM = 1.0, DUTDEL = 0.02
PRTPLT OUTPUT(INPUT)
LABEL PERFORMANCE OF RELAY MACRO - EXAMPLE 3-10
END
STOP
ENDJCB
```

> *Placing the Macro in a Nosort section permits FORTAN logic and branching within the Macro.

Fig. 3.41 Program test for relay macro (Example 3.10).

Example 3.11

A mortgage of $\$ 32,000$ is to be financed through a bank on a 25 year 9% interest note. We would like to write a program which will calculate and print the following: (1) the current month; (2) the monthly payment; (3) the interest paid each month on the loan; (4) the running total interest; (5) the amount applied each month toward reducing the original mortgage; (6) the total equity; and (7) the balance left to pay on the loan.

A standard equation for determining the fixed monthly payments on a fixed-period loan is given by

$$
\begin{gather*}
\text { Monthly payment }=\frac{(\mathrm{P} * \mathrm{IRM} M \mathrm{~S})}{(\mathrm{S}-1)} \tag{3.28}\\
\text { where } \mathrm{S}=(1+\mathrm{IRM})^{\text {PERIOD }} \tag{3.29}
\end{gather*}
$$

and

$$
\mathbf{P}=\text { original mortgage value }
$$

$I R M=$ monthly interest rate
This calculation is performed only one time and can therefore be placed in the INITIAL segment of the program.

We make the following definitions for programming convenience.
MONINT = monthly interest
BALANC $=$ balance remaining on the loan
MPAY $=$ amount paid each month toward reducing the loan
PAY = fixed monthly payments
EQUITY $=$ total amount paid off on the loan
TOTINT $=$ running total interest paid

Fig. 3.42 CSMP output for program given in Fig. 3.41.

The basic calculations required are

$$
\begin{aligned}
& \text { MONINT }=\text { IRM } * \text { BALANC } \\
& \text { MPAY }=\text { PAY }- \text { MONINT } \\
& \text { EQUITY }=\text { MPAY }+ \text { PAST EQUITY } \\
& \text { BALANC }=\text { P }- \text { EQUITY } \\
& \text { TOTINT }=\text { MONINT }+ \text { PAST } . \text { TOTAL INTEREST }
\end{aligned}
$$

These equations must be solved 300 times (twenty five years with twelve payments each year). Each time the set of equations is solved, certain quantities must be updated similarly to a difference equation.

There are several ways these equations can be programmed in CSMP but a macro approach will be given since this is the major topic of discussion.

We first write the macro

$$
\begin{aligned}
& \text { MACRO MONINT,MPAY=CALCU1(IRM,BALANC,PAY) } \\
& \text { MONINT = IRM } * \text { BALANC } \\
& \text { MPAY }=\text { PAY }- \text { MONINT } \\
& \text { ENDMAC }
\end{aligned}
$$

where IRM and PAY are fixed parameters and BALANC is an input variable. MONINT and MPAY are output variables of the macro. The statement selected to call the macro is
MONINT,MPAY = CALCU1(IRM,BALANC,PAY)

As explained earlier, the user is only required to retain CALCU1 in the call statement and all other terms can be replaced by perhaps more meaningful terms. In this case it is convenient not to change the output and argument symbols.

Another macro is now written for the remaining calculations.

```
MACRO EQUITY,BALANC,TOTINT = CALCU2(MPAY,PASPAY, . .
                    P,MONINT,PSTINT)
    EQUITY \(=\) MPAY + PASPAY
    BALANC \(=\mathbf{P}-\) EQUITY
    TOTINT \(=\) MONINT + PSTINT
    PASPAY = EQUITY
    PSTINT \(=\) TOTINT
ENDMAC
```

The call statement to the macro will be

EQUITY,BALANC,TOTINT = CALCU2(MPAY,PASPAY,P,MONINT,PSTINT)

The comments made regarding symbols used in the previous macro also apply here. Note in this last macro that PASPAY and PSTINT are used for updating the equity and total interest. At this point a word of caution is in order.

In problems which do not involve integration, calculations in the program are made at intervals of DELT. If DELT is not specified, a value of FINTIM/100 is automatically used. In this problem, all calculations must be performed once for each month. Since the unit of time is months, it is essential that DELT be specified equal to one.

A program for performing the calculations of this example is given in Fig. 3.43. The first five printed output lines are as shown in Fig. 3.44. As a matter of convenience we

```
********** EXAMPLE 3-11 $$$$$$$$$$
* BALANC = BALANCE TO PAY ON THE LOAN
* MGNINT = INTEREST FOR THE CURRENT MONTH
* TOTINT = TOTAL INTEREST PAID TO DATE
* MPAY = AMOUNT PAIC DN LOAN FOR THE CURRENT MONTH
* EQUITY = CURRENT AMCUNT PAID-DFF ON THE LOAN
* IRM = THE MONTHLY INTEREST RATE (IN DECIMAL FORM)
* PAY = THE MCNTHLY PAYMENT (A CONSTANT)
MACRO MONINT, MPAY = CALCUL(IRM,BALANC,PAY)
    MONINT = IRM*BALANC
    MPAY = PAY - MONINT
ENDMAC
MACRC EQUITY, BALANC, TOTINT = CALCU2IMPAY, PASPAY,*..
                P, MONINT, PSTINTI
    EQUITY = MPAY + PASPAY
    BALANC = P - EQUITY
    TOTINT = MONINT + PSTINT
    PASPAY = EQUITY
    PSTINT = TOTINT
ENDMAC
RENAME TIME = MONTH
INITIAL
PARAMETER P = 32000.0, I = 9.0, PERIOD = 300.0
INCON PSTINT = 0.0, TOTINT = 0.0, MONINT = 0.0, ...
    EQUITY = 0.0. PASPAY = 0.0
EALANC = P
IRM = I/1200.0
S = (1.0 +IRM)**PERIOD
PAY = (P*IRM*S)/(S - 1.0)
DYNAMIC
NOSORT
    IF(MONTH.EQ.O.O) GO TO 7
MCNINT, MPAY = CALCUI(IRM,BALANC,PAY)
EQUITY,BALANC,TOTINT = CALCU2(MPAY,PASPAY,P,MONINT,PSTINT)
    7 CONTINUE
TIMER FINTIM =300.0, PRDEL = 1.0, OELT = 1.0, OUTDEL = 10.0
PRINT PAY, MONINT, TOTINT,MPAY,EQUITY,BALANC
TITLE OUTPUT FOR EXAMPLE 3-11
PRTPLT EQUITY(TOTINTI
END
STOP
ENOJOE
```

Fig. 3.43 Program for calculating the amortization of a mortgage.
change TIME to MONTH by the rename statement, as shown in the program. Note that the two macros are placed at the beginning of the program. Also, PSTINT,TOTINT, MONINT,EQUITY, and PASPAY are initialized to zero and BALANC set equal to P($\$ 32,000)$. After the NOSORT card a FORTRAN branching statement,

$$
\text { IF(MONTH.EQ.O.O) GO TO } 7
$$

is placed. This obviously causes the program to by-pass calculations, as desired, at

INTGRL NOT USED

$\begin{gathered} \text { MON } \\ 0 \bullet 0 \end{gathered}$		$\begin{aligned} & \text { PAY } \\ & 2.6855 E \end{aligned}$	02	$\begin{array}{r} \mathrm{MCl} \\ 0.0 \end{array}$		$\begin{array}{r} 10 \\ 0.0 \end{array}$		$\begin{gathered} M P A \\ 0.0 \end{gathered}$		$\begin{aligned} & \text { EQUI } \\ & 0.0 \end{aligned}$		$\begin{array}{r} \text { BALANC } \\ 3.2000 \mathrm{E} \end{array}$	04
1.0000 E	00	$2.6855 E$	02	2.4000E	02	2.4000 E	02	2.8546E	01	2.8546E	01	3.1971 E	04
2.0000E	00	2.6855 E	02	2.3979E	02	4.7979 E	02	2.8760 E	01	5.7305 E	01	$3.1943 E$	04
3.0000 E	00	2.6855 E	02	2.3957E	02	7.1936 E	02	2.8975E	01	8.6281	01	3.191	04
4.0000E	00	$2.6855 E$	02	2.3935E	02	9.5871 E	02	2.9193 E	01	1.1547 E	02	3.1885 E	04
5.0000E	00	2.6855 E	02	2.3913E	02	1.1978 E	03	2.9412E	01	1.4488 E	02	$3.1855 E$	04
6.0000 E	00	2.6855 E	02	2.3891E	C2	1.4368 E	03	2.9632E	01	1.7452E	02	$3.1825 E$	04
7. 0000 E	00	2.6855 E	02	2.3869 E	02	1.6754 E	03	2.9854E	01	2.0437E	02	3.1796E	04
8.00COE	00	2.6855 E	02	2.3847E	02	1.9139 E	03	3.0078 E	01	2.3445 E	02	$3.1766 E$	04
9.0000 E	00	2.6855 E	02	2.3824E	02	2.1522E	03	3.0304 E	01	2.6475 E	02	3.1735 E	04
1.0000 E	01	2.6855 E	02	2.3801E	02	2.3902E	03	3.0531 E	01	2.9528E	02	3.1705 E	04
1.1000 E	01	2.6855 E	02	2.3779 E	02	2.6280E	03	3.0760E	01	3.2604 E	22	3.1674 E	04
1.2000 E	01	2.6855 E	02	2.3755E	02	2.8655E	03	$3.0991 E$	01	3.5704	02	3.164	

Fig. 3.44 Output from the mortgage program of Fig. 3.43.

MONTH $=0.0$. It is important that MONTH be used in this statement. Using TIME in place of MONTH will cause the program to ignore the IF statement and give incorrect results. When a CSMP program variable is renamed, the newly assigned variable should be used in the program.

This example problem was programmed using macro functions simply to illustrate the use of such functions. Obviously, the problem can be written without using a macro and Fig. 3.45 shows one solution using straightforward statements. The output of this program is identical in all respects to the program which uses the macros.

In summary, CSMP can be used for problem solving without integration. The advantage of using CSMP versus FORTRAN will often be that DO loops and subscripted variables are not necessary. This leads to a less demanding effort on the part of the programmer, especially if the programmer is not an expert in using FORTRAN. One disadvantage of using CSMP in problems of this type is that generally slightly more computing time (CPU time) is required.

Example 3.12

The occasion may arise when the solution of a differential equation of the form

$$
\begin{equation*}
a_{1} \frac{d^{3} x}{d t^{3}}+a_{2} \frac{d^{2} x}{d t^{2}}+a_{3} \frac{d x}{d t}+a_{4} x=b_{1} \frac{d^{3} r}{d t^{3}}+b_{2} \frac{d^{2} r}{d t^{2}}+b_{3} \frac{d r}{d t}+b_{4} r \tag{3.30}
\end{equation*}
$$

is desired. If we assume all zero initial conditions and all constant coefficients, applying Laplace transforms yields

$$
\begin{equation*}
\frac{X(s)}{R(s)}=\frac{b_{1} s^{3}+b_{2} s^{2}+b_{3} s+b_{4}}{a_{1} s^{3}+a_{2} s^{2}+a_{3} s+a_{4}} \tag{3.31}
\end{equation*}
$$

This type of problem cannot be handled directly using CSMP system macros such as REALPL and CMPXPL.

The task in this example is to develop a macro which can be used for solving a ratio of polynomials up to the fifth-power with the form

$$
\begin{equation*}
\frac{X(s)}{R(s)}=\frac{b_{1} s^{5}+b_{2} s^{4}+b_{3} s^{3}+b_{4} s^{2}+b_{5} s+b_{6}}{a_{1} s^{5}+a_{2} s^{4}+a_{3} s^{3}+a_{4} s^{2}+a_{5} s+a_{6}} \tag{3.32}
\end{equation*}
$$

Define,

$$
\begin{equation*}
\frac{Y(s)}{R(s)}=\frac{1}{a_{1} s^{5}+a_{2} s^{4}+a_{3} s^{3}+a_{4} s^{2}+a_{5} s+a_{6}} \tag{3.33}
\end{equation*}
$$

```
***** EXAMPLE 3-11 WITHOUT USING MACROS
* bALANC = BALANCE TD PAY ON THE LCAN
* mCNINT = INTEREST FOR THE CURRENT MONTH
* TOTINT = TOTAL INTEREST PAID TO DATE
* mpar = amDUNT PAID ON LOAN FOR THE CURRENT mONTH
* EQUITY = CURRENT AMOUNT PAID-OFF ON THE LOAN
* IRM = THE mCNTHLY INTEREST RATE (IN DECIMAL FORMI
* pay = the monthly payment (a CONSTANT)
RENAME TIME = MONTH
INITIAL
PARAMETER P = 32000.0, I = 9.0, PERIOD = 300.0
INCON PSTINT = 0.0, TOTINT = 0.0, MONINT = 0.0,\ldots
    EQUITY = 0.0, PASPAY = 0.0
BALANC = P
IRM = I/1200.0
S = (1.0 + IRM)**PERICD
PAY = (P*IRM*S)/(S - 1.0)
DYNAMIC
NOSORT
        IF(MONTH.EQ.O.O) GO TO 7
        MUNINT = IRM*RALANC
        MPAY = PAY - MONINT
        EQUITY = MPAY + PASPAY
        BALANC = P- EQUITY
        TOTINT = MONINT + PSTINT
        PASPAY = EQUITY
        PSTINT = TOTINT
        7 \text { CCNTINUE}
TIMER FINTIM =300.0, PRDEL = 1.0, DELT = 1.0, OUTDEL = 10.0
PRINT PAY, MCNINT, TOTINT,MPAY,EQUITY,BALANC
TITLE OUTPUT FOR EXAMPLE 3-11 WITHOUT MACROS
END
STOP
ENDJOB
```

Fig. 3.45 Program for calculating mortgage payments without using macros.
and

$$
\begin{equation*}
\frac{X(s)}{Y(s)}=b_{1} s^{5}+b_{2} s^{4}+b_{3} s^{3}+b_{4} s^{2}+b_{5} s+b_{6} \tag{3.34}
\end{equation*}
$$

In the time domain, Eq. (3.33) becomes

$$
\begin{equation*}
a_{1} \frac{d^{5} y}{d t^{5}}+a_{2} \frac{d^{4} y}{d t^{4}}+a_{3} \frac{d^{3} y}{d t^{3}}+a_{4} \frac{d^{2} y}{d t^{2}}+a_{5} \frac{d y}{d t}+a_{6} y=r \tag{3.35}
\end{equation*}
$$

Now define

$$
\begin{aligned}
y_{1} & =y \\
\frac{d y_{1}}{d t} & =\frac{d y}{d t}=y_{2} \\
\frac{d y_{2}}{d t} & =\frac{d^{2} y}{d t^{2}}=y_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y_{3}}{d t}=\frac{d^{3} y}{d t^{3}}=y_{4} \\
& \frac{d y_{4}}{d t}=\frac{d^{4} y}{d t^{4}}=y_{5} \\
& \frac{d y_{5}}{d t}=\frac{d^{5} y}{d t^{5}}=\frac{1}{a_{1}}\left[r-a_{6} y_{1}-a_{5} y_{2}-a_{4} y_{3}-a_{3} y_{4}-a_{2} y_{5}\right]
\end{aligned}
$$

From Eq. (3.34), after going to the time domain and making appropriate substitutions, we have
where

$$
\begin{equation*}
x=b_{6} y_{1}+b_{5} y_{2}+b_{4} y_{3}+b_{3} y_{4}+b_{2} y_{5}+b_{1} \frac{d y_{5}}{d t} \tag{3.36}
\end{equation*}
$$

An appropriate macro for these equations is

```
MACRO XOUT \(=\) TRANSF (BN, AD, IN)
    Y1 \(=\) INTGRL ( \(0.0, \mathrm{Y} 2\) )
    \(\mathrm{Y} 2=\operatorname{INTGRL}(0.0, \mathrm{Y} 3)\)
    \(\mathrm{Y} 3=\mathrm{INTGRL}(0.0, \mathrm{Y} 4)\)
    Y4 \(=\) INTGRL (0.0, Y5)
    \(\mathrm{Y} 5=\mathrm{INTGRL}(0.0, \mathrm{Y} 5 \mathrm{DOT})\)
\(\mathrm{Y} 5 \mathrm{DOT}=(1.0 / \mathrm{AD}(1)) *(\mathrm{IN}-\mathrm{AD}(6) * \mathrm{Y} 1-\mathrm{AD}(5) * \mathrm{Y} 2-\mathrm{AD}(4) * \mathrm{Y} 3-\mathrm{AD}(3) * \ldots\)
        \(\mathrm{Y} 4-\mathrm{AD}(2) * \mathrm{Y} 5)\)
    \(\mathrm{XOUT}=\mathrm{BN}(6) * \mathrm{Y} 1+\mathrm{BN}(5) * \mathrm{Y} 2+\mathrm{BN}(4) * \mathrm{Y} 3+\mathrm{BN}(3) * \mathrm{Y} 4+\mathrm{BN}(2) * \ldots\)
        \(\mathrm{Y} 5+\mathrm{BN}(1) * \mathrm{Y} 5 \mathrm{DOT}\)
```


ENDMAC

The parameters for the polynomials can be placed in the macro using TABLE and STORAGE. For this case,

STORAGE BNUM1(6), ADEN1(6)
TABLE $\operatorname{BNUM} 1(1-6)=\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 3, \mathrm{~N} 4, \mathrm{~N} 5, \mathrm{~N} 6, \ldots$

$$
\operatorname{ADEN} 1(1-6)=\mathrm{D} 1, \mathrm{D} 2, \mathrm{D} 3, \mathrm{D} 4, \mathrm{D} 5, \mathrm{D} 6, \ldots
$$

where BNUM1 and ADEN1 are dummy names for the numerator and denominator coefficients.

Care must be exercised in using the TABLE with this general fifth-order system. For example, if the particular transfer function is

$$
\begin{equation*}
\frac{2 s^{2}+4 s+3}{9 s^{3}+6 s^{2}+5 s+8} \tag{3.38}
\end{equation*}
$$

the polynomial should be viewed as

$$
\begin{equation*}
\frac{0 s^{3}+2 s^{2}+4 s+3}{9 s^{3}+6 s^{2}+5 s+8} \tag{3.39}
\end{equation*}
$$

The parameters should be read in as

$$
\begin{aligned}
\text { TABLE BNUM1 }(1-6) & =0.0,2.0,4.0,3.0,0.0,0.0, \ldots \\
\text { ADEN1 }(1-6) & =9.0,6.0,5.0,8.0,0.0,0.0
\end{aligned}
$$

$$
\begin{array}{rrr}
\text { where } & \mathrm{N} 1=0.0 & \mathrm{D} 1=9.0 \\
\mathrm{~N} 2=2.0 & \mathrm{D} 2=6.0 \\
\mathrm{~N} 3=4.0 & \mathrm{D} 3=5.0 \\
\mathrm{~N} 4=3.0 & \mathrm{D} 4=8.0 \\
\mathrm{~N} 5=0.0 & \mathrm{D} 5=0.0 \\
\mathrm{~N} 6=0.0 & \mathrm{D} 6=0.0
\end{array}
$$

As an illustration of using this MACRO in a system, consider the diagram in Fig. 3.46. The program, which invokes the macro twice, is given in Fig. 3.47.

Fig. 3.46 System diagram for Example 3.12, illustrating the use of a macro function.

Note that BNUM1, ADEN1, and X2 replace N, D, and IN respectively for one reference to the macro. On the second reference, BNUM2, ADEN2, and X1 replace N, D, and IN. This explains the reason for naming the STORAGE and TABLE values BNUM1, BNUM2, ADEN1, and ADEN2.

The guidelines and examples which have been presented in this section on generating macro functions should serve as a good foundation for the beginning user. The scope of a problem will usually determine whether a special macro function should be written. Obviously, when properly used, a macro function can save considerable programming effort.

The power of the macro is further increased when used with procedure functions. The following section will show how this is accomplished.

PROCEDURE FUNCTION

As in the macro, a procedure function offers another way for users to define their own simulation functions. The major differences between these two translation control statements are (a) the macro is called within the program in a way that is analogous to calling a subroutine, the procedure function is a single entity within the program and is not called; (b) macro structure statements are sorted by the sorting algorithm while structure statements of the procedure function are not sorted. Therefore, the statements of a procedure function can be so written as to utilize FORTRAN logical and branching statements as well as subscripted variables.

```
**********************************************************
* a maCRO muST be placed at the front of the deck
***********************************************************
MACRO XOUT = TRANSF(BN, AD, IN)
    Y1 = INTGRL(0.0, Y2)
    Y2 = INTGRL{0.0, Y3)
    Y3 = INTGRL(0.0,Y4)
    Y4 = INTGRL(0.0, Y5)
    Y5 = INTGRL(0.0. Y5DOT)
Y5DOT = (1.0/AD(1))*(IN-AD(6)*Y1-AD(5)*Y2-AD(4)*Y3-AD(3)*Y4-AD(2)*Y5)
    XOUT = BN(6)*Y14BN(5)*Y2+BN(4)*Y3+BN(3)*Y4+BN(2)*Y5+BN(1)*Y5DOT
ENOMAC
```

```
******************************************************************
* NOTE THAT STORAGE SIZE OF ALL ELEMENTS ARE SO INDICATED ON *
* THE SINGLE FOLLOWING CARD
******************************************************************
```

STORAGE BNUM1(6), ADEN1(6), BNUM2(6), ACEN2(6)

* THE PARTICULAR VALUES OF THE STORAGE LOCATIONS ARE GIVEN *
* USING "TABLE*. NOTE THAT TABLE IS TYPED ONLY ONCE AND *
AND THE \bullet FEATURE IS USED FOR CONTINUATION

TABLE BNUM1 (1-6) $=1.0,12,0,100.0,3 * 0,0, \ldots$
ADENI (1-6) $=1.0,40.0,425.0,3 * 0.0, \ldots$
BNUM2(1-6) $=3 * 0.0,1 \cdot 0,2 * 0.0 \ldots$.
ADEN2(1-6) $=1.0,52.0,700.0,1200.0,2 * 0.0$
PARAMETER $K=3000.0$
INPUT $=$ STEP(0.0)
ERROR $=$ INPUT - CUTPUT
$\times 2=K * E R R U R$
$X_{1}=$ TRANSF(BNUM1, ADEN1, $X 2$)
$x=$ TRANSF(BNUM2, ADEN2, X11
OUTPUT $=$ INTGRL $(0.0, X)$
TIMER FINTIM $=20.0$, OUTDEL $=0.4$
PRTPLT OUTPUT
LABEL OUTPUT OF SYSTEM WITH DOUBLE INVOCATION OF
LABEL TRANSFER FUNCTION MACRD - EXAMPLE 3-12
END
STOP
ENDJOB

Fig. 3.47 Program showing the use of a transfer function macro.

Except for a single important difference, one can achieve the same programming objectives with a nosort section as with a procedure function. This important difference is that a nosort section forms a division between sorted sections of the program. All statements occurring before a nosort section remain above the section. Likewise, statements made after a nosort section always remain after the section. However, statements within a procedure function are never sorted but the function itself is treated as a single entity and moved around within the overall program as required by the sorting algorithm.

The basic structure of a procedure function is given in the following example.

```
PROCEDURE MASS = MVARY (SLOPE, SWITCH, MASSO)
    IF (TIME. GE. SWITCH) GO TO 14
    MASS = MASSO * (1.0 + SLOPE*TIME)
    GO TO 8
14 MASS = MASSO * (1.0 + SLOPE*SWITCH)
    CONTINUE
ENDPROCEDURE
```

Suppose for a given problem that SLOPE $=-0.2$ and SWITCH $=3.0$. We assume these values have been entered previously on a parameter card. A condition for branching is set up by a logical IF statement involving TIME and SWITCH. The procedure function for this case will determine the time varying MASS as given in Fig. 3.48. This procedure function can be located essentially anywhere in the DYNAMIC segment of a simulation requiring the time-varying mass. The sort algorithm will place the procedure function in the correct position relative to other program statements. The time-varying characteristics of the mass can easily be changed by inserting new values for MASSO, SWITCH and SLOPE on parameter cards.

Although many of the structure format statements for using a procedure function are similar to a macro, the procedure accomplishes a different purpose and the following rules should be observed.

1 The first card of the procedure contains the word PROCEDURE followed by at least one blank space. A simple illustration is

PROCEDURE JX, AMP = XFUN(XUP, PAR1, SIGNAL)

Fig. 3.48 Diagram of time-varying mass used in PROCEDURE illustration.

2 Unlike a macro, the arguments of a procedure cannot be functions, expressions, or numbers. They must be names defined elsewhere in the program.

3 As noted above, the first card of a procedure contains the word PROCEDURE. The very last card contains the single word, ENDPROCEDURE. All statements describing the procedure function are placed between the PROCEDURE card and the ENDPROCEDURE card. Since CSMP takes action on the first five characters of these words, the user may replace PROCEDURE by PROCED, and ENDPROCEDURE by ENDPRO.
4 As with the macro function, variables defined within a procedure are not available as output data by means of PRTPLT, PRINT, PREPARE or RANGE unless they are output names on the procedure definition card. In the following example,

```
PARAM CONST1 = 0.5, CONST2 = 0.1
PROCEDURE X1, X2 = READY(CONST1, CONST2)
    X1 = CONST1 *EXP**(-3.0*TIME)
    X2 = CONST2*X1**2
    X3 = INTGRL(0.0, X1)
ENDPROCEDURE
TIMER FINTIM = 1.0, PRDEL = 0.02
PRINT X1, X2
END
STOP
ENDJOB
```

X 3 is not available as output data; however, output is available for X 1 and X 2 . Changing the definition card to

```
PROCEDURE X1, X2, X3 = READY (CONST1, CONST2)
```

will make X 3 available as output data.
5 The procedure function may be located in both INITIAL and DYNAMIC segments. (Since the TERMINAL segment executes statements in the order they appear, a procedure function would not serve a useful purpose in this segment.) The procedure may not be placed in a nosort section.
6 Procedure functions may be placed within a macro. Even though the macro statements are sorted, the statements contained within each procedure will not be sorted except as a single block.
7 Procedure functions within a macro may not be used to invoke other macros. A macro, however, may invoke another macro which itself may contain one or more procedure functions.
8 A procedure function cannot be placed within another procedure function.
9 If the user desires all statements in a macro to be procedural then a single card containing the word PROCEDURAL should be placed immediately
after the macro definition card. For example, the procedure function given previously in this section may be changed to a macro as follows:

```
MACRO MASS = MVARY (SLOPE, SWITCH, MASSO)
    PROCEDURAL
    IF (TIME.GE.SWITCH) GO TO 14
    MASS = MASSO*(1.0 + SLOPE*TIME)
    GO TO }
14 MASS = MASSO*(1.0 + SLOPE + SWITCH)
    8 \text { CONTINUE}
ENDMAC
```

Note that an ENDPROCEDURE card is not to be used in this case. Restrictions placed upon the arguments of MVARY, when used as a procedure function, are now removed and consequently the arguments now conform to those of a macro.

Most of the guidelines presented here on using the procedure function are applied in the following rather comprehensive problem.

Example 3.13

The purpose of this problem is to illustrate how CSMP can be applied to simulating four-way traffic flow at a signal light. The simulation makes use of the procedure function as well as several other program features. These additional features include the mode integrator and the logic functions AND and NOT.

The first step of the problem is to develop a reasonable model for traffic flow. In the diagram in Fig. 3.49 we assume that traffic flows from east to west, west to east, north to south and south to north. The assumption is made that cars do not turn at the light. The justification for making this assumption is simply to avoid the added complication in the problem. Turning traffic could be included with the addition of ten to twelve program statements.

The first consideration is to establish the flow of traffic. One must recognize that the spacing between cars is a random variable even with a given density of traffic flow. The one exception is when the through-put (flow) is maximum. For example, in a 20 mph speed zone, we assume maximum through-put when the distance between each car is constant and each car is traveling at the maximum speed limit. This situation is shown in Fig. 3.50.

To simplify the flow modeling we assume each car approaching the intersection is traveling at the same velocity but with a random arrival. Intuitively we know that even with random spacing between cars, the density or compactness of the traffic varies during the time of day. For this problem we assume the traffic density is as shown in Fig. 3.51. The intended interpretation here is that a relative density of one represents maximum traffic through-put as discussed earlier.

The problem becomes one of producing a string of random traffic having a given density. This can be accomplished as follows. Define an impulse train by

$$
\text { ETRIG }=\operatorname{IMPULS}(0.0, \text { EPERID })
$$

Fig. 3.49 Diagram showing intersection geometry at the traffic light.

For maximum flow

- Each unit moves with the same velocity.
- The space, d, between each car is the same.
- The period of each unit is P sec.

Fig. 3.50 Spacing of cars for maximum flow rate.
where the pulse train starts at 0.0 and has a spacing of EPERID sec. The spacing EPERID is set equal to the period, \mathbf{P}, corresponding to maximum traffic flow shown earlier in Fig. 3.50. Next a random-variable sequence of numbers between 0 and 1 is made available from the random-number generator, RNDGEN.

Thus \quad ERAND = RNDGEN(3)
where ERAND is the selected name of the sequence and 3 is a seed value (any odd integer). Now define a time-varying function, ESIG, such that

$$
\text { ESIG }=\text { EDENSE }- \text { ERAND }
$$

Fig. 3.51 Normalized east to west traffic density.
where EDENSE is the value of the traffic density (from Fig. 5.51) at a particular time. ESIG will be a random number between -1 and 1 . If EDENSE is greater than ERAND, ESIG will be positive and this signifies that a car should be generated at this time. Conversely, if ESIG is negative, no car is generated. By using the logical AND function with ETRIG and ESIG as arguments, a trigger for a pulse generator is formed. The width of the pulse from the generator can be set to the length of a car. The statements required are

$$
\begin{aligned}
& \text { ESINK = AND(ESIG, ETRIG) } \\
& \text { EFLOW = PULSE(EWIDTH,ESINK) }
\end{aligned}
$$

where EWIDTH is a parameter (the car length) and EFLOW is the flow of traffic. AND is a logical function defined by

$$
\begin{aligned}
& Y=\operatorname{AND}(X 1, X 2) \\
& Y=1 \text { if } X 1, X 2>0 \\
& Y=0 \text { otherwise }
\end{aligned}
$$

By combining the above statements, one can write a procedure function for generating EFLOW as follows.

```
PROCEDURE EFLOW = EFORM(EWIDTH, EPERID)
        ETRIG = IMPULS(0.0, EPERID)
        ERAND = RNDGEN(3)
        EDENSE = AFGEN(ENORM, TIME)
        ESIG = EDENSE - ERAND
        ESINK = AND(ESIG, ETRIG)
        EFLOW = PULSE(EWIDTH, ESINK)
ENDPRO
```

The value of EDENSE is determined by using the linear interpolater, AFGEN, where the function is defined by the data of Fig. 3.51. Thus,

$$
\begin{aligned}
& \text { FUNCTION } \quad \text { ENORM }=(0.0,0.2),(0.5,0.25),(1.0,0.34), \ldots \\
& (1.5,0.46),(2.0,0.5),(2.5,0.45),(3.0,0.42),(3.5,0.43), \ldots \\
& (4.0,0.48),(4.5,0.58)
\end{aligned}
$$

Use of the AFGEN was previously explained in Chap. 1. At this point in the simulation development the user should write a short program and verify that EFORM is correctly generated. A short program for this purpose is given in Fig. 3.52 and the resulting output is presented in Fig. 3.53.

```
FUNGTION ENORM = (0.0,0.2),(.5,.25),(1,.,34),(1.5,.46),(2.,.5),....
    (2.5,.45),(3.,.42),(3.5,.43),(4.,.48),(4.5,.58),(5.,.66)
PARAM EWIDTH = 0.01, EPERID = 0.02
```



```
* NOTE ON THE FOLLOWING PROCEDURE TRANSLATION CONTROL CARD *
* THAT ALL VARIABLES REQUESTED FOR PRINTING MUST BE LISTED AS *
                                    OUTPUTS OF THE PROCEDURE FUNCTION
****************************************************************************
PROCEDURE ETRIG, EDENSE, ERAND, ESIG, EFLOW = EFORMIEWIDTH,EPERIDI
    ETRIG = IMPULS(0.0. EPERID)
    ERAND = RNDGEN(3)
    EDENSE = AFGEN(ENCRM, TIME)
    ESIG = EDENSE - ERAND
    ESINK = AND(ESIG, ETRIG)
    EFLOW = PULSE(EWIDTH,ESINK)
ENDPRO
TIMER FINTIM = 0.2, PRDEL = 0.002, DELT = 0.002
PRINT ETRIG, EDENSE, ERAND, ESIG, EFLOW
TITLE I******* TEST FOR RANDOM PULSE GENERATIR - EXAMPLE 3-13 ******
END
STOP
ENDJOB
```

Fig. 3.52 Program for testing the random generation of a string of cars.

Having developed a reasonable representation of traffic flow, attention is next directed to the problem of determining (a) how many cars have approached the light; (b) how many cars have passed under the light; and (c) how many cars are waiting at any given instant of time. The total number of cars approaching the light can be determined by integrating the traffic flow and dividing by the width of a car pulse. This can be deter-
$T I$
0.0
2.0000E-03
4. 0000E-03
6.0000E-03
8.0000 E-03

1. 00COE-02
1.2000E-02
$1.4000 \mathrm{E}-02$
1.6000E-02
1.8000E-02
2. 00COE-02
3. 2000E-02
2.4000E-C2
4. $6000 \mathrm{E}-\mathrm{C2}$
5. 80 COE-02
6. OOCOE-02
7. 2000E-02
$3.4000 \mathrm{E}-02$
3.60COE-02
3.80C0E-02
$4.0000 \mathrm{E}-02$
8. 2000E-02
$4.4000 E-02$
9. 60 COE-02
10. 80C0E-02
5.0000E-02
11. 2000E-02
5.40COE-02
5.6000E-02
12. 8000E-02
$6.0000 \mathrm{E}-02$
6.2000E-02
$6.4000 \mathrm{E}-02$
$6.6000 \mathrm{E}-02$
13. 8000E-02
14. COOOE-02
7.20COE-02
7.4000E-02
15. 6000 E-02
16. 80 COE-02
17. 0000E-02
8.20C0E-02
8.4000E-02
8.6000E-02
8.8000E-02
$9.0000 \mathrm{E}-02$
18. 2000E-02
19. 4000E-02
S. 6000E-02
20. 8000E-02
21. COOOE-01
$1.0200 \mathrm{E}-01$
22. $0400 \mathrm{E}-01$
$1.0600 \mathrm{E}-01$
23. $0800 \mathrm{E}-01$

ETRIG		ECENS :
1.0000E	00	2. COOOE-01
0.0		2.0020E-01
0.0		2.0040E-01
0.0		2.0060E-01
0.0		2.0080E-01
0.0		2.0100E-01
0.0		2.0120E-01
0.0		2.0140E-01
0.0		2.0160E-01
0.0		2.0180E-01
2.0000E	00	2.0200E-01
0.0		2.0220E-C1
0.0		2.0240E-01
0.0		2.0260E-01
0.0		2.0280E-01
0.0		2.0300E-01
0.0		2.0320E-01
0.0		2.0340E-01
0.0		2.0360E-01
0.0		2.0380E-01
2.0000E	00	2.0400E-01
0.0		2.0420E-01
0.0		2.0440E-C1
0.0		2.0460E-01
0.0		2.0480E-01
0.0		$2.0500 \mathrm{E}-01$
0.0		2.0520E-01
0.0		2.0540E-01
0.0		2.0560E-01
0.0		2.0580E-01
1.0000E	00	2.0600E-01
0.0		2.0620E-01
0.0		2.0640E-01
0.0		2.0660E-01
0.0		2.0680E-01
0.0		2.0700E-01
0.0		2.0720E-C1
0.0		2.0740E-01
0.0		2. C760E-01
0.0		2.0780E-01
1.0000E	00	2.0800E-01
0.0		2.0820E-01
0.0		2. $0840 \mathrm{E}-01$
0.0		2. C860E-01
0.0		2.0880E-01
0.0		2. C900E-01
0.0		2.0920E-01
0.0		2.0940E-01
0.0		2.0960E-01
0.0		2.0980E-01
1.0000E	00	2.1000E-01
0.0		2.1020E-01
0.0		2.1040E-01
0.0		2.1060E-01
0.0		2.1080E-01

ERAND
$9.1557 E-05$
5.4933E-04
$2.4720 \mathrm{E}-03$. $1.9965 \mathrm{E}-01$
$9.8878 \mathrm{E}-03 \quad 1.9071 \mathrm{E}-01$
3.7079E-02 1.6372E-01
$1.3348 \mathrm{E}-01$ 6.7515E-02
$4.6720 E-01-2.6600 E-01$
6.0182E-01 -4.0042E-01
$4.0612 \mathrm{E}-01-2.0452 \mathrm{E}-01$
2.0407E-02 1.8139E-01
4.6732E-01 -2.6532E-01
6.2025E-01 -4.1805E-01
5.1562E-01 -3.1322E-01
5.1150E-01 -3.0890E-01
4. 2840E-01 -2.2560E-01
9.6687E-01 -7.6387E-01
$9.4563 E-01-7.4244 E-01$
9.7195E-01-7.6855E-01
3.2096E-01 -1.1736E-01
1.7823E-01 2.5567E-02
1.8079E-01 2.3215E-02
$4.8062 \mathrm{E}-01$-2.7642E-01
2. 5 t $64 \mathrm{E}-01$ - $5.2244 \mathrm{E}-02$
$2.1430 \mathrm{E}-01$-9.6995E-03
9.7600E-01 -7.7120E-01
9.2729E-01-7.2229E-01
7.7977E-01 -5.7457E-01
3.3299E-01-1.2759E-01
9.8003E-01 -7.7443E-01
8.8322E-01 -6.7742E-01
4.7910E-01 -2.7310E-01
9.2562E-01 -7.1942E-01
2.4180E-01 -3.5397E-02
1.2020E-01 8.6404E-02
5.4501E-01 -3.3821E-01
1.8827E-01 1.8727E-02
$2.2458 \mathrm{E}-01$ - $1.7379 \mathrm{E}-02$
$6.5301 \mathrm{E}-01$-4.4561E-01
8.9688E-C1 -6.8928E-01
$5.0414 \mathrm{E}-0.1-2.9634 \mathrm{E}-01$
9. 5295E-01 -7.4495E-01
1.8040E-01 2.7796E-02
5.0590E-01 -2.9750E-01
4. $1178 \mathrm{E}-01$-2.0318E-01
$9.1757 \mathrm{E}-01$-7.0877E-01
7.9938E-01 -5.9038E-01
5.3812E-01 -3.2892E-01
3.4321E-02 1.7508E-01
3. 6282E-01 -1.5322E-01
8.6803E-01 -6.5823E-01
9.4281E-01 -7.3281E-01
8. $4457 \mathrm{E}-01$-6.3437E-01
5.8216E-01 -3.7176E-01
8.9176E-01 -6.8116E-01
$1.1116 \mathrm{E}-01 \quad 9.9635 \mathrm{E}-02 \quad 0.0$

Fig. 3.53 The printer-plotted output from the program of a random pulse generator.
mined using the INTGRL function as

> ELEFT = INTGRL(0.0, EFLOW)
> ETOTAL = ELEFT/EWIDTH
where ETOTAL is the total traffic arriving from the east.
For simplicity, the state of the light is assumed to be either green or red with amber ignored. The number of cars passing under the light can now be determined using the mode integrator function whose characteristics are given in Table 3.4.

Table 3.4
Mode Integrator Function
CSMP Statement

$$
\begin{array}{ll}
\mathrm{Y}=\mathrm{MODINT}(\mathrm{IC}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3) & y(t)=\int x_{3}(t) d t+\mathrm{IC} . \\
& x_{1}>0, \text { any } x_{2} \\
y(t)=\mathrm{IC} & x_{1} \leq 0, x_{2}>0 \\
y(t)=\text { last output } \quad & x_{1} \leq 0, x_{2} \leq 0
\end{array}
$$

The input signal X_{3} should be the actual traffic passing under the light with X_{1} the state of the light. Thus, if X_{1} is greater than zero (the light is green), $y(t)$ increases by integrating X_{3}. When the light changes to red, X_{1} equals zero and $y(t)$ holds the last output value. Any non-positive number for X_{2} can be used. Expressing this in program variables gives

$$
\begin{aligned}
& \text { ERIGHT }=\text { MODINT(} 0.0, \text { EWLITE, }-1.0, \text { EWX2) } \\
& \text { EPASED }=\text { ERIGHT/EWIDTH }
\end{aligned}
$$

where EWLITE $=$ state of the east-west light
EWX2 $=$ the pulses passing under the light
EPASED $=$ the total number of cars passed through the light
The traffic backed-up at any time on the east side is given by

$$
\begin{aligned}
& \text { EBAKUP = ELEFT }- \text { ERIGHT } \\
& \text { EWAIT }=\text { EBAKUP/EWIDTH }
\end{aligned}
$$

where EWAIT is the actual traffic backed up or waiting on the east side.
The excitation signal, EWX2, must take the following into account. When the light changes from red to green, traffic will not move instantaneously. We assume the flow linearly increases with time up to the limit of maximum through-put. Once the maximum flow is reached, the excitation will remain at this level until EBAKUP reaches zero. Once EBAKUP reaches zero, EWX2 should be changed to EFLOW. Suppose we assume that after 8 car units have passed under the light, EWX2 reaches the maximum value of EWIDTH/EPERID.

A program which combines the generation of random traffic with traffic volumn in the east to west direction is given in Fig. 3.54. The correct state of EWX2 is determined by the procedure function EWX3 except for testing the state of EBAKUP. Logically, this test should also be made in the EWX3 procedure function but in attempting to do so an algebraic loop will be formed between ERIGHT, EBAKUP, and EWX3. This algebraic loop is avoided by testing the state of EBAKUP in a NOSORT segment.

```
FUNCTION ENORM = (0.0,0.2),(.5,.25),(1,.,34),(1.5,.46),(2.,.5),\ldots.0
    (2.5,.45),(3.,.42),(3.5,.43),(4.,.48),(4.5,.58),(5.,.66)
PARAM EWIDTH = 0.012, EPERIO = 0.024, CYCLE = 1.0, EBAKUP = 0.0
LITRIG = IMPULS (0.0,CYCLE)
EWLITE = PULSE(CYCLE/2.0,LITRIGI
ETRIG = IMPULS(0.0. EPERID)
PROCEDURE EFLCW = EFORM(ETRIG)
    ERAND = RNDGEN(3)
    EDENSE = AFGEN(ENCRM, TIME)
    ESIG = EDENSE - ERAND
    ESINK = ANDIESIG, ETRIGI
    EFLOW = PULSE(EWIDTH,ESINK)
ENOPRO
NOSORT
IF(EBAKUP.GT.O.O) EWX2 = EWX3
IFIEBAKUP.LE.O.OI EWX2 =EFLOW
SORT
ELEFT = INTGRL(0.0,EFLOW)
ERIGHT = MODINT(0.0,EWLITE,-1,0,EWX2)
EBAKUP = ELEFT-ERIGHT
PROCEDURE EWX3 = CENRAL(EWLITE,EFLOW,CYCLE,EWIOTH,EPERID)
            IF(TIME.LT.(CYCLE/2.0)) GO TO 19
            IFIEWLITE.EQ.O.O) GO TO 21
            IFIEPASLT.EQ.0.0) CLDTIM = TIME
            EDELT = TIME - OLDTIM
            IFIEDELT.GE.(8.0*EPERIDI) GO TO 23
            EWX3 = ((EWIOTH)/(8.0*(EPERID**2)))*EDELT
            EPASLT = EWLITE
            GO TO 27
    21 EWX3 = 0.0
            EPASLT = 0.0
            GO TO 27
    19 EPASLT = 0.0
        IFIEWLITE.GT.0.0) EWX3 = EFLOW
        IFYEWLITE.GE.O.O1 EWX3 = 0.0
        GO TO 27
    23 EWX3 = EWIDTH/EPERID
    27 CONTINUE
ENDPRO
ETOTAL = ELEFT/EWIOTH
EPASEC = ERIGHT/EWIDTH
EWAIT = EBAKUP/EWIDTH
TIMER FINTIM = 1.0, OUTDEL = 0.02, PRDEL = 0.02
PRTPLT ETOTAL, EPASED, EWAIT
LABEL TEST FOR TRAFFIC MJDEL - EXAMPLE 3-13
END
STOP
ENDJOB
```

Fig. 3.54 Traffic simulation program for east to west traffic.
This same basic model applies to west-east, north-south, and south-north traffic and in a natural way invites the use of macro functions.

A simpler program could have been written to illustrate the use of the procedure function. However, most meaningful real-world simulations require combinations of
several CSMP features. The intention here has been to show how the procedure function can typically be used as an element in a more comprehensive simulation.

Fortran Subprograms

There are two forms of subprograms that can be used in CSMP programs, FORTRAN function and subroutine. The function subprogram can be used whenever the output is a single variable. A subroutine must always be used when there are multiple outputs.

The MACRO and PROCEDURE functions essentially serve the same purpose as subprograms and are generally preferred. However, subprograms do have certain advantages not found in the macro and procedure functions. The following is a listing of the most important advantages.

1 FORTRAN subprograms that are stored in the computer's system library can be called directly by CSMP programs.
2 The statements of a subprogram are not processed by the CSMP translator. Consequently, larger models can be developed by using subprograms.
3 Subprograms used in CSMP programs are compatible in FORTRAN programs. Therefore, subprograms can be interchanged between CSMP and FORTRAN programs.

General Guidelines

The rules for writing a subprogram for the use in a CSMP program are exactly the same as for a FORTRAN program. If needed, the reader should refer to specialized texts on FORTRAN ${ }^{(2-5)}$ for a complete discussion on this topic. Implementation of subprograms in CSMP is somewhat different than in FORTRAN. Special considerations that must be followed are outlined by the following general rules.

1 All subprograms must follow the STOP card and furthermore, the last subprogram must be terminated by the ENDJOB card.
2 The following CSMP functional elements cannot be used in subprograms: INTGRL, DERIV, DELAY, ZHOLD, IMPL, MODINT, REALPL, LEDLAG, CMPXPL, HSTRSS, STEP, IMPULS, PULSE, RAMP, SINE, GAUSS, RNDGEN, and any user-defined macro function.
3 A FORTRAN function subprogram can be invoked in all segments and sections of a CSMP program. This includes invocations in macro and procedure functions. Using input variables P, Q, and R , a statement for calling the function XYZ is

$$
\mathrm{X}=\mathrm{XYZ}(\mathbf{P}, \mathrm{R}, \mathrm{Q})
$$

4 A FORTRAN subroutine can be called by two different methods. The CALL statement which is used in FORTRAN programs is only allowed in nosort sections and procedure functions. An example of a CALL statement for the subroutine named $A B C$ is the following.

CALL $\operatorname{ABC}(\mathbf{P}, \mathrm{Q}, \mathrm{R}, \mathrm{X}, \mathrm{Y})$
If the output variables of the subroutine are on the right-hand side of the argument list of the subroutine, a second method for calling a subroutine can be used. This method can be used in all sections and segments, including macro and procedure functions. An example of this type of statement for the same $A B C$ subroutine is shown below.

$$
\mathbf{X}, \mathbf{Y}=\mathrm{ABC}(\mathbf{P}, \mathbf{Q}, \mathbf{R})
$$

It should be reemphasized that the above statement can only be used when the outputs X and Y are the last variables in the argument list of the subroutine.

Another limitation for using the above form for calling a subroutine is that it can only be used when there are two or more output variables.
5 When calling a FORTRAN subroutine that is stored in computer memory, the CALL form must be used in a nosort section or procedure function.

6 If the output of a subprogram includes subscripted variables, the calling statement in the CSMP program must be in a nosort section of a procedure function. All subscripted variables used as inputs or outputs must be declared on either a STORAGE or DIMENSION card.

The following example program illustrates the use of a FORTRAN subroutine to calculate the roots of a quadratic equation of the following form;

$$
\begin{equation*}
A x^{2}+B x+C=0 \tag{3.40}
\end{equation*}
$$

In this program the inputs to the subroutine are the coefficients A, B, and C. The outputs returned by the subroutine are the real part of the solution: XIREAL and X2REAL; and the imaginary part of the solution, X1IM and X2IM.

SUBROUTINE ROOTS (A,B,C,XIREAL,X2REAL,X1IM,X2IM)
$\operatorname{IF}(\mathrm{B} * \mathrm{~B}-4.0 * \mathrm{~A} * \mathrm{C}) 1,2,3$
1 X1REAL $=-\mathrm{B} /(2.0 * \mathrm{~A})$
X 2 REAL $=$ X1REAL
$\mathrm{X1IM}=\mathrm{SQRT}(4.0 * \mathrm{~A} * \mathrm{C}-\mathrm{B} * \mathrm{~B}) /(2.0 * \mathrm{~A})$
X2IM $=-$ X1IM
GO TO 4
2 X1REAL $=-\mathrm{B} /\left(2.0^{*} \mathrm{~A}\right)$
X 2 REAL $=\mathrm{X} 1$ REAL
X1IM $\quad=0.0$
X2IM $=0.0$
GO TO 4
3 X1REAL $=(-\mathrm{B}+\mathrm{SQRT}(\mathrm{B} * \mathrm{~B}-4.0 * \mathrm{~A} * \mathrm{C})) /(2.0 * \mathrm{~A})$
X 2 REAL $=(-\mathrm{B}-\operatorname{SQRT}(\mathrm{B} * \mathrm{~B}-4.0 * \mathrm{~A} * \mathrm{C})) /(2.0 * \mathrm{~A})$
X1IM $=0.0$
$\mathrm{X} 2 \mathrm{IM}=0.0$
4 CONTINUE
RETURN
END

ENDJOB

The statement used in the above example program for calling the subroutine can be used in all segments and sections of the program. The following statement can also be used to call the subroutine, but it must be used in a nosort section or procedure function.

CALL ROOTS(A, B, C, X1REAL, X2REAL, X1IM, X2IM)

Example 3.14

One method for solving a set of simultaneous differential equations is to solve for the highest derivative of each variable and then successively integrate to obtain the total answer. This approach sometimes requires solving a set of simultaneous algebraic equations. As an example, consider the following problem,

$$
\left.\begin{array}{rl}
\ddot{x}_{1}+\left(t^{2}+4\right) \ddot{x}_{2} & =-0.5 \dot{x}_{1}-1.7 x_{1}+0.3 x_{2}+0.21 x_{3}^{3}+\sin (t) \\
5 \ddot{x}_{1} & +24 \ddot{x}_{3}
\end{array}=0.017 t x_{1}-5 \dot{x}_{2}-x_{2}+0.1 x_{3}+1.6 \dot{x}_{3}\right)
$$

where all initial conditions are zero.
The method of solution is to first solve for $\ddot{x}_{1}, \ddot{x}_{2}$, and \ddot{x}_{3} as functions of the other variables that appear in the equations. This requires the solution of a set of simultaneous linear algebraic equations as shown by Eq. (3.44).

$$
\begin{equation*}
X D D=A^{-1} Y \tag{3.44}
\end{equation*}
$$

where $A, X D D$, and Y are defined by the following matrices.

$$
\begin{align*}
A & =\left[\begin{array}{lll}
1 & t^{2}+4 & 0 \\
5 & 0 & 24 \\
56 & 2 t & 100
\end{array}\right] \tag{3.45}\\
X D D & =\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2} \\
\ddot{x}_{3}
\end{array}\right] \tag{3.46}\\
Y & =\left[\begin{array}{c}
-0.5 \dot{x}_{1}-1.7 x_{1}+0.3 x_{2}+0.21 x_{3}^{3}+\sin (t) \\
0.017 t x_{1}-5 \dot{x}_{2}-x_{2}+0.1 x_{1}+1.6 \dot{x}_{3} \\
\dot{x}_{1} \dot{x}_{2}-x_{3}-2.4 \dot{x}_{3}+e^{-x_{1} / 23}
\end{array}\right] \tag{3.47}
\end{align*}
$$

Since the elements of both the A and Y matrices are time dependent, the $X D D$ vector must be calculated at each integration step. Most computer installations have programs available for solving matrix relationships of the form given by Eq. (3.44). At many centers these subroutines are on-line and can be called from storage. In this example, a subroutine which uses the Gauss-Jordan elimination method with complete pivotal searching is employed. The subroutine SOLVE is called from the CSMP program. Within the subroutine SOLVE is another subroutine named INVERT. Figure 3.55 shows a listing of the CSMP program and the FORTRAN subroutines for solving the set of differential equations.

Because A is a double-subscripted variable, the FORTRAN DIMENSION statement must be used. The FORTRAN LOGICAL instruction is a FORTRAN specification statement and is used to declare that SING is a logical variable. If the matrix A is singular, the logical variable SING is true. In this example, the matrix is never singular and hence the solution of the equation set is given in Fig. 3.56.

Since the variable-step Runge-Kutta integration method is used in this example, subroutine SOLVE is called four times for each integration step. If this procedure is used to solve an equation set that has a large number of variables, a large amount of computer time will be required for the multiple solution of the XDD vector.

It should be noted that the only way to call the subroutine SOLVE is by using the CALL SOLVE instruction in a nosort or procedure section. The following statement cannot be used since the output variable (XDD) is not the last argument of the subroutine.

$$
\mathrm{XDD}=\operatorname{SOLVE}(\mathrm{A}, 3,3,3, Y, \operatorname{SING})
$$

Note that there is only one output variable. This is another reason why the above form for calling the subroutine SOLVE cannot be used.

Special consideration must be made when using subprograms where the output depends on past values of output and past and present values of input.

Memory

This statement is required for subprograms that contain memory functions. A memory function is one where the output depends only on past values of input and output. As an example, consider the following statement.

MEMORY ABC(13)
The above instruction specifies that 13 storage locations are allocated for memory functions which are contained in the subprogram ABC. The MEMORY

```
    TITLE PROGRAM TO DEMONSTRATE THE USE OF A SUBROUTINE AND TO SOLVE
    TITLE A SYSTEM OF SIMULTANEOUS DIFFERENTIAL EQUATIONS
        DIMENSION A(3,3), XDD(3), Y(3)
/ DIMENSION A
    FIXED I.J
NOSORT
    DO 1 I = 1.3
    DO 1 J = 1.3
1 A(I.J) = 0.0
    A(1,1)=1.0
    A(1.2) = TIME*TIME + 4.0
    A(2,1) = 5.0
    A(2,3) =24.0
    A(3.1) =56.0
    A(3,2) = 2.0*TIME
    A(3.3)}=100.
    Y(1)= -0.5*XDI - 1.7*X1 +0.3*X2 + 0.2L*(X3**3) + SIN(TIME)
    Y(2) = 0.017*X1*TIME - 5.0*XD2 - X2 + 0. 1*X3 + 1.6*XD3
    Y(3)=XD1*XD2-X3-2.4*XD3 + EXP(-X1/23.0)
    CALL SOLVE(A, 3, 3,3,Y,XDD,SING)
SORT
    XD1 = INTGRL(0.0,XDD(1))
            XD2 = INTGRL(0.0. XDD(2))
            XD3 = INTGRL(0.0,XDD(3))
            XI = INTGRL(0.0,XD1)
            X2 = INTGRL(0.0.XD2)
            X3 =INTGRL(0.0,XC3)
    PRINT XI, X2. X3
    TIMER FINTIM = 0.2. PRDEL = 0.01
END
STOP
C THE FOLLOWING TWO SUBROUTINES WILL SOLVE A SET OF SIMULTANEOUS
C. LINEAR EQUATIONS.
            SUBROUTINE SOLVE(A,MA,NA,N,B,X,SING)
            REAL A(MA,NA), B(N), X(N)
            LOGICAL SING
            CALL INVERT (A,N,MA,SING)
            IFISINGIRETURN
            DO 10 I = 1,N
            X(I)=0.0
            DO 10 J=1,N
    10X(I)=X(I)+A(I,J)*B(J)
            RETURN
            END
            SUBROUTINE INVERT(A,ORDER,DIM A, SING)
            INTEGER ORDER,DIM A
            REAL A(DIM A, 1), B(100),C(100)
            N= OR DER
            LOGICAL SING
            INTEGER IP(100),IO(100)
            DO 1 K=1.N
            PIVOT=0.
            DO 100 I =K,N
            DO 100 J=K,N
            IF(ABS(A(I,J))-ABS(PIVOT)]100,100,101
    101 PIVOT=A(I,J)
            IP(K)=I
            IO(K)=J
    100 CONTINUE
            IF(PIVOT)102,900,102
102 IPK=IP(K)
    IOK=IO(K)
    IF(IPK-K)200,299,200
    200 DO 201 J=1.N
        Z=A(IPK,J)
        A(IPK,J) =A(K,J)
    201 A(K,J)=Z
    299 CONTINUE
        IF(IOK-K) 300,399,300
```

Fig. 3.55 CSMP program and subroutines used to solve a set of differential equations.

```
300 DO 301 1=1,N
        Z=A(I,IOK)
        A(I,IOK)=A(I,K)
301 A(I,K)=2
399 CONTINUE
        DO 400 J=1,N
        IF(J-K)403,402,403
402 B(J)=1./PIVOT
    C(J)=1.
        GOTO 404
    403 B(J) =-A(K,J)/P[VOT
        C(J)=A(J.K)
404 A(K,J)=0.
400 A(J,K)=0.
        DO 405 [=1,N
        00 405 J=1,N
    405 A(I,J)=A(I,J)+C(I)*B(J)
    l CONTINUE
        K=N
        OO 500 KDUM=1,N
        10K=10(K)
        IPK=IP(K)
        IF(IPK-K)501,502,501
501 DO 503 I=1,N
    Z=A(I,IPK)
    A(I,IPK)=A(I,K)
    503 A(I,K)=Z
    502 IF(IOK-K)504,500,504
    504 DO 506 J=1,N
    Z=A(IQK,J)
    A(IOK,J)=A(K,J)
    506 A(K,J)=Z
    5 0 0 ~ K = K - 1
        SING = .FALSE.
        RETURN
900 SING = .TRUE.
    RETURN
    END
ENDJOB
```

Fig. 3.55 (Continued)

PROGRAM TO DEMONSTRATE THE USE OF A SUBROUTINE AND TO SOLVE RKS

INTEGRATION A SYSTEM OF SIMULTANEOUS CIFFERENTIAL EQUATIONS

TIME	X1	$\times 2$	$\times 3$
0.0	0.0	C.C	0.0
1.0000E-02	$1.4215 \mathrm{E}-00$	-3.1430E-07	-2.9598E-07
2.0000E-U2	5.6849E-06	-1.0927E-06	-1.1833E-06
$3.0000 \mathrm{E}-02$	1.2790E-05	-2.0889E-06	-2.6614E-06
4. U0,	2.2737E-05	-3.C570E-C6	-4.73C75-06
$5.0000 \mathrm{E}-02$	3.5528E-05	-3.7516E-C6	-7.3923E-06
6.0000E-02	5.1166E-05	-3.9282E-06	-1.0648E-05
7.0000E-02	6. S655E-05	-3.3428E-C6	-1.4501E-05
8.0000E-U2	9.1001E-05	-1.7521E-06	-1.8953E-C5
9.000UE-02	1.1521E-04	1. C862E-06	-2.4010E-05
1.00 UUE-01	$1.4229 \mathrm{E}-04$	$5.4138 \mathrm{E}-06$	-2.9676E-05
1.100UE-01	1.7225E-04	1.1471 E-05	-3.5957E-05
$1.2000 \mathrm{E}-01$	2.0510E-04	1.9458E-05	-4.2859E-05
$1.3000 \mathrm{E}-\mathrm{Jl}$	2.4085E-04	2.9733E-C5	-5.0389E-05
1.400UE-01	2.7952E-04	4.2413E-05	-5.8555E-05
1.5000E-01	3.2111E-04	5.7774E-C5	-6.7367E-05
1. óv00i-01	3.6565E-04	7.6053E-05	-7.6833E-05
1.7000E-01	4.1314E-04	S. $7482 \mathrm{E}-\mathrm{C} 5$	-8.6964E-05
1.8000E-01	4.6361E-04	1.2229E-04	-9.7770E-05
$1.9000 E-01$	5.1708E-04	1.5072E-04	-1.0926E-04
2.0000E-01	5.7356E-04	1.8299E-04	-1.2146E-04

Fig. 3.56 PRINT output for the solution of the set of differential equations.
card should appear in the deck before the first reference to the subprogram. Examples of some CSMP memory elements are the following

> INTGRL
> DELAY
> REALPL
> CMPXPL

History

This statement is used with subprograms where functions are used in which the output depends on past and present values of output and present values of input. The following instruction will reserve 8 history storage locations for the subprogram ABC , and 17 for the subprogram DEF.

HISTORY ABC(8) DEF(17)

The HISTORY statement must appear before any reference to the subprogram. Some CSMP history functions are:

DERIV	IMPULS	RST
GAUSS	PULSE	STEP
HSTRSS	RNDGEN	ZHOLD

A more comprehensive discussion of MEMORY and HISTORY can be found in References (1 and 6).

Implicit Functions

For certain types of simulations, the output of CSMP will state that an algebraic loop is formed between a specified list of variables and that the program cannot be executed. This problem arises whenever a loop does not contain at least one memory function.

As noted in the previous section, there are two types of memory functions defined in CSMP. If we consider a function to be characterized as having an output and input, the following applies.
(a) A MEMORY function is one whose output depends only on past values of the output and input.
(b) A HISTORY function is one whose output depends on past values of the output and input and in addition, the present value of the input.

There are four MEMORY functions in CSMP: INTGRL, REALPL, CMPXPL, and DELAY. Each loop of a simulation must contain either at least one of these functions or a user-defined memory function to avoid an algebraic loop. However, loops are not always obvious in a simulation.

Consider the simple circuit shown in Fig. 3.57(a). If the output is the voltage

Fig. 3.57 Series circuit and proposed flowgraph.
across R_{2} and the input is the independent source $V_{i n}(t)$, a set of equations describing the network is

$$
\begin{align*}
V_{0}(t) & =i(t) R_{2} \tag{3.48}\\
i(t) & =\frac{V_{i n}(t)}{R_{1}}-\frac{V_{o}(t)}{R_{1}} \tag{3.49}
\end{align*}
$$

A flow graph for the two equations is given in Fig. 3.57(b). Since the flow graph contains a feedback loop without a memory function, programming these equations will result in an algebraic loop. An algebraic loop can often be circumvented by either rewriting the simulation equations or using the CSMP implicit function.

Formulation of Implicit Functions

An equation of the form $F(x)=0$ is an implicit function. The equation for $F(x)$ can be written as

$$
\begin{equation*}
x=f(x) \tag{3.50}
\end{equation*}
$$

where $F(x) \neq f(x)$. As an example, suppose

$$
\begin{equation*}
F(x)=x^{2}+3 x-4=0 \tag{3.51}
\end{equation*}
$$

One way of expressing the variable x is

$$
\begin{equation*}
x=f(x)=\frac{1}{3}\left(4-x^{2}\right) \tag{3.52}
\end{equation*}
$$

The CSMP function
X = IMPL(XO, ERROR, FOFX)
will often find an x which satisfies the general equation, $x=f(x)$, and in particular may satisfy Eq. (3.52). In the IMPL function arguments,

$$
\text { XO }=\text { an initial guess for } x \text { as specified by the user }
$$

ERROR $=$ the error specified by the user in finding x
FOFX $=$ the right hand side of Eq. (3.50)
A general rule for using the IMPL function is that the expressions for FOFX must appear after $\mathrm{X}=\mathrm{IMPL}(\mathrm{XO}$, ERROR, FOFX) and the last such expression must specify FOFX. Furthermore, the variable X must appear at least once on the right side of the equations defining FOFX. As applied to Eq. (3.52) one may write either

$$
\begin{aligned}
& \mathrm{X}=\mathrm{IMPL}(\mathrm{XO}, \text { ERROR, FOFX }) \\
& \mathrm{A}=4.0 / 3.0 \\
& \mathrm{~B}=-(\mathrm{X} * * 2) / 3.0 \\
& \text { FOFX }=\mathrm{A}+\mathrm{B}
\end{aligned}
$$

or

$$
\begin{aligned}
& X=\text { IMPL }(X O, \text { ERROR, FOFX }) \\
& \text { FOFX }=(4.0-X * 2) / 3.0
\end{aligned}
$$

which illustrates that the user is not required to split-up FOFX.
CSMP uses a Wegstein's accelerated convergence algorithm to calculate x_{n+1} using $x_{n-1}, x_{n}, f\left(x_{n-1}\right)$ and $f\left(x_{n}\right)$ with a user-specified initial guess for $x .^{(6)}$ The test for satisfying the user-specified ERROR is based on

$$
\begin{equation*}
\left|\frac{x_{n+1}-x_{n}}{x_{n+1}}\right| \leq \text { ERROR } \quad \text { for }\left|x_{n+1}\right|>1 \tag{3.54}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|x_{n+1}-x_{n}\right| \leq \text { ERROR } \quad \text { for }\left|x_{n+1}\right| \leq 1 \tag{3.55}
\end{equation*}
$$

Generally there will be more than one way of expressing $x=f(x)$. For the case, $F(x)=x^{2}+3 x-4=0$, two ways of writing x are

$$
\begin{equation*}
x=\frac{4-x^{2}}{3}=f(x) \tag{3.56}
\end{equation*}
$$

and

$$
\begin{equation*}
x= \pm \sqrt{4-3 x}=f(x) \tag{3.57}
\end{equation*}
$$

The IMPL function results will often depend on the form selected for $f(x)$ as well as the initial guess. The polynomial, $x^{2}+3 x-4=0$, has roots at $x=1$ and $x=-4$. Suppose Eq. (3.56) is used to represent $f(x)$. The convergence of the implicit algorithm may be observed by printing out the variables x and $f(x)$ each time the program passes through the implicit loop. A short program for this purpose is given in Fig. 3.58. With ERROR $=0.05$, the following values of X were obtained for the indicated initial values of XO.

```
PARAM XO = -3.0, ERROR = 0.05
NOSORT
X = IMPL(XO,ERROR,FCFX)
A = 4.0/3.0
B = -(X***2)/3.0
FOFX1 = A + B
        WRITE(6,1) X,FOFXI
    1 FORMAT(2E20.10)
FDFX = A + B
TIMER FINTIM = 1.0, DELT = 0.25, PRDEL = 0.25
PRINT X
title illustraticN of Implicit function
END
STOP
ENDJOB
```

Fig. 3.58 Program for printing the values of x and $f(x)$ during the implicit loop convergence process.

Initial Guess	Solution
$X O$	X
0.5	1
2.5	1
-1.0	1
-3.0	-4
-6.0	-4

Rather than present a lengthy discussion on how convergence takes place, the reader is encouraged to submit the previous program of Fig. 3.58 and observe the trial values of X and FOFX1 as the program converges to the final value of X.

If X is expressed by

$$
\begin{equation*}
x=-\sqrt{4-3 x} \tag{3.58}
\end{equation*}
$$

solutions for X , using $\mathrm{ERROR}=0.05$, are as follows

Initial Guess	Solution
$X O$	X
3.0	-4
-1.0	-4
-2.0	-4
-6.0	-4

We observe that for $X O=-1, X$ converges to +1 in one case and -4 in the other.

Corresponding to the program in Fig. 3.58 a portion of subroutine Update will give

```
\(30000 \mathrm{X}=\mathrm{IMPL}(1, \mathrm{XO}, E R R O R, F O F X)\)
    IF(NALARM) 30002, 30002, 30001
30001 CONTINUE
    \(\mathrm{A}=4.0 / 3.0\)
    \(\mathbf{B}=-(\mathbf{X} * * 2) / 3.0\)
    FOFX1 \(=\mathbf{A}+\mathbf{B}\)
    WRITE(6,1) X, FOFX1
1 FORMAT(2E20.10)
    FOFX \(=\mathrm{A}+\mathrm{B}\)
    GO TO 30000
30002 CONTINUE
```

On first entering the IMPL routine, NALARM is set equal to 1 and X equal to XO. The value of FOFX is determined and the program returns to 30000. When the error criteria is satisfied, NALARM is set to zero and X set equal to the last value of FOFX. The program goes to 30002 and continues in the simulation. If the error criteria is not satisfied after 100 iterations, NALARM is set to -1 and the run is terminated with a message stating that 100 iterations have been exceeded.

The entire implicit function may be considered as a functional block with X as the output variable. Occasions may arise in which intermediate variables defining the implicit function are required for calculations elsewhere in a program. In such cases, extreme care must be exercised to avoid erroneous results. If at all possible, the desired intermediate variables should be recalculated outside the implicit loop. However, it may be possible to define the intermediate variables as outputs from either a procedure function or a user-defined macro which contains the entire implicit loop. Example 3.16 illustrates the use of a macro for this purpose.

Rules and guidelines for using the IMPL function can be summarized as follows.

1 As many statements as desired may be used to define $f(x)$; however, the output name in the last statement of the definition must be identical to the third argument, FOFX, of the IMPL statement. The output name for FOFX cannot be the output of an expression containing an INTGRL block nor can it be the output of a user defined macro, procedure or user-supplied routine. The last statement in the implicit loop cannot be continued.

2 The implicit variable must appear on the right side of an equal sign at least once in the statements defining FOFX.
3 An implicit loop can be defined within a macro or procedure provided the entire set of required statements is contained within the macro or procedure.

4 An implicit loop cannot be defined within another implicit loop.

Example 3.15

Consider the circuit diagram of Fig. 3.57(a) which was earlier described by the equations

$$
\begin{align*}
V_{o}(t) & =i(t) R_{2} \tag{3.59}\\
i(t) & =\frac{V_{i n}(t)}{R_{1}}-\frac{V_{o}(t)}{R_{1}} \tag{3.60}
\end{align*}
$$

A simple CSMP program for the solution of $i(t)$ and the resulting output is

$$
\begin{aligned}
& \text { PARAM R1 }=8.0, \mathrm{R} 2=2.0 \\
& \text { VIN }=10.0 * \operatorname{STEP}(0.0) \\
& \text { VO }=\mathrm{IA} * \mathrm{R} 2 \\
& \text { IA }=\mathrm{VIN} / \mathrm{R} 1-\mathrm{VO} / \mathrm{R} 1 \\
& \text { TIMER FINTIM }=1.0, \text { DELT }=0.25, \text { PRDEL }=0.25 \\
& \text { PRINT IA } \\
& \text { END } \\
& \text { STOP } \\
& \text { ENDJOB }
\end{aligned}
$$

SIMULATION INVOLVES AN ALGEBRAIC LOOP CONTAINING THE FOLLOWING ELEMENTS VIN VO IA ********PROBLEM CAN NOT BE EXECUTED $* * * * * * * *$

The algebraic loop can be broken by using the implicit function shown below.

$$
\begin{aligned}
& \text { PARAM R1 }=8.0, \mathrm{R} 2=2.0, \mathrm{IAO}=2.0, \mathrm{ERROR}=0.05 \\
& \text { VIN }=10.0 * \operatorname{STEP}(0.0) \\
& \text { IA }=\mathrm{IMPL}(\mathrm{IAO}, \text { ERROR, FOFIA }) \\
& \mathrm{A}=\mathrm{VIN} / \mathrm{R} 1 \\
& \mathrm{VO}=\mathrm{IA} * \mathrm{R} 2 \\
& \mathrm{~B}=-\mathrm{VO} / \mathrm{R} 1 \\
& \mathrm{FOFIA}=\mathrm{A}+\mathrm{B} \\
& \text { TIMER FINTIM }=1.0, \text { DELT }=0.25, \text { PRDEL }=0.25 \\
& \text { PRINT IA } \\
& \text { END } \\
& \text { STOP } \\
& \text { ENDJOB }
\end{aligned}
$$

The output from the PRINT request is

TIME	IA
0.0	1.0000 E 00
$2.5000 \mathrm{E}-01$	1.0000 E 00
$5.0000 \mathrm{E}-01$	1.0000 E 00
$7.5000 \mathrm{E}-01$	1.0000 E 00
1.0000 E 00	1.0000 E 00

The initial value of IA is specified on the PARAM card as IAO $=2.0$ and the acceptable error as ERROR $=0.05$. Note that FOFIA is the last statement used in defining IA and also corresponds to the third argument in the IMPL function.

Example 3.16

The diagram of a feedback system which does not contain a memory function is shown in Fig. 3.59. An unaware user may write the following program only to find that the simulation involves an algebraic loop.

Fig. 3.59 Diagram for Example 3.16. (This diagram does not contain a memory function.)

```
PARAM K =0.6
INPUT = STEP(0.0)
E = INPUT - OUTPUT
X1 = K*E
OUTPUT = LEDLAG(1.0, 1.0/5.0, X1)
METHOD RKSFX
TIMER FINTIM =2.0, DELT =0.05, PRDEL =0.1
PRINT OUTPUT }
END
STOP
ENDJOB
```

The algebraic loop can be broken by making OUTPUT an implicit function in the following manner.

```
PARAM OUTO =0.2, ERROR =0.05,K =0.6
INPUT = STEP(0.0)
OUTPUT = IMPL(OUTO, ERROR, FOFOUT)
E = INPUT - OUTPUT
X1 = K*E
FOFOUT = LEDLAG(1.0, 1.0/5.0, X1)
METHOD RKSFX
TIMER FINTIM =2.0, DELT =0.05, PRDEL =0.1
PRINT OUTPUT\dagger
END
STOP
ENDJOB
```

The response of the system has a discontinuity at time equals zero and hence a fixed-step integration method is used to avoid computational difficulties with the variable-step integration. The printed output from the program is shown in Fig. 3.60. One can easily verify by analytical methods that the values for OUTPUT are correct.
\dagger OUTPUT is acceptable for $\mathrm{S} / 360$ CSMP but should be changed to another variable for CSMP III.

```
            PRINTED OUTPUT FOR LEOLAG ALGEBRAIC LOOP
\begin{tabular}{|c|c|}
\hline & \\
\hline & \\
\hline 0000E-01 & 6. \\
\hline 0000E & \\
\hline ,0000E-01 & \\
\hline ,0000E-01 & 5. \\
\hline . \(0000 \mathrm{E}-01\) & 5.1296 \\
\hline 0000E-01 & \\
\hline .0000E-01 & 4.6 \\
\hline .0000E-01 & 4. \\
\hline 00C0E-01 & \\
\hline 0000E 00 & 4025 \\
\hline . 1000E 00 & 4.165 \\
\hline . 20COE 00 & 4.090 \\
\hline .3000E 00 & 22 \\
\hline 4000 E 00 & 3. \\
\hline .5000E 00 & 3. \\
\hline .6000E 00 & 3.902 \\
\hline .7000E 00 & 3.875 \\
\hline 8000 E & \\
\hline .9000E 00 & \\
\hline OOCOE 00 & 3 \\
\hline
\end{tabular}
```

Fig. 3.60 Printer output from the algebraic loop containing the LEDLAG function.

Now suppose that one desires to evaluate the integral of E^{2} which is often a meaningful index of performance. For this problem, this can be accomplished simply by adding the statement, ISA $=\operatorname{INTGRL}(0.0, \mathrm{E} * * 2)$, outside the implicit loop. As an alternate approach, E may be expressed as the output of a macro and incorporated into a program as follows.

```
MACRO E, OUTPUT = CHECK(OUTO, ERROR, K, INPUT)
    OUTPUT = IMPL(OUTO, ERROR, FOFOUT)
    E = INPUT - OUTPUT
    X1 = K*E
    FOFOUT = LEDLAG(1.0, 1.0/5.0, X1)
ENDMAC
PARAM OUTO =0.2, ERROR = 0.05, K =0.6
INPUT = STEP(0.0)
E, OUTPUT = CHECK(OUTO, ERROR, K, INPUT)
ISA = INTGRL(0.0, E**2)
METHOD RKSFX
TIMER FINTIM = 2.0, DELT }=0.05,\mathrm{ PRDEL }=0.
PRINT E, ISA, OUTPUT
END
STOP
ENDJOB
```

In summary, the implicit function can often be used for breaking an algebraic loop. The user however should be aware that the specified initial value and the user-selected form of $f(x)$ can influence the solution. Normally, the user will know the general results expected from the simulation. Therefore, if an unexpected (or unwanted) solution is
obtained when using the IMPL function, one should try several different initial conditions and perhaps change the form of $f(x)$.

REFERENCES

1. System/360 Continuous System Modeling Program System Manual Y20-0111, IBM Corporation, Data Processing Division, White Plains, N.Y.
2. McCracken, Daniel D., A Guide to FORTRAN IV Programming. New York: John Wiley and Sons, Inc., 1972.
3. Cooper, Laura, and Marilyn Smith, Standard FORTRAN: A Problem-Solving Approach. Boston: Houghton-Mifflin Company, 1973.
4. Holden, Herbert L., Introduction to Fortran IV, New York: The MacMillan Company, 1970.
5. Anderson, Decima M., Computer Programming FORTRAN IV, New York: Appleton-Century-Crofts, 1966.
6. Continuous System Modeling Program III (CSMP III) Program Reference Manual SH-19-7001-2, Program Number 5734-X59, IBM Corporation, Data Processing Division, White Plains, N.Y.
7. Sage, Andrew P., Optimum Systems Control, Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1968.

PROBLEMS

1 Using the END and/or CONTINUE card, solve for the time-history of the value of a bank account over a four-year period. One hundred dollars is deposited at the beginning of the first year at the interest rate of 5% per year. At the beginning of the second year the interest rate is increased to 6%, and at the beginning of the third year the interest rate is 6.75%. The fourth year, the interest rate is 7.5%. Assume that money is continuously compounded according to the following formula.

$$
\frac{d \$}{d t}=i \$
$$

where $i=$ yearly interest rate $(0.05,0.06,0.0675,0.075)$
Answer:

$$
\text { At end of fourth year, } \$=128.72
$$

2 A linear transfer function that can be used to approximate the response of a human operator to a visual command in turning a steering wheel is shown below. The input is a unit-step input.

$$
\theta_{\mathrm{IN}}(s) \longrightarrow-\frac{(1.6 s+1)(0.11 s+1) e^{-0.2 s}}{(1.2 s+1)(0.15 s+1)\left(0.0035 s^{2}+0.084 s+1\right)} \longrightarrow \theta_{\mathrm{O}}(s)
$$

Determine the response of the man to a unit-step input. Note that the $e^{-0.2 s}$ term represents a pure time delay of 0.2 sec .

Fig. P3. 2
Answer:

$$
\text { At } \mathrm{TIME}=1.0, \theta_{\mathrm{O}}=1.1874
$$

3 A real estate purchase of $\$ 42,000$ is financed for 25 years at an interest rate of 9.5%. Write a CSMP program to calculate the monthly payments, the amount paid in interest each month, and the amount paid on the principal each month.
Answer:
Monthly payment $=\$ 366.95$, at the tenth month interest $=\$ 329.97$, principal $=\$ 36.98$
4 Consider the system represented in the following diagram.

Fig. P3.4
If Input 1 and Input 2 are unit-steps applied at $t=0$, find the responses of Output 1 and Output 2.

Answer:

$$
\text { At TIME }=1.2, \text { Output } 1=0.39523 \text {, Output } 2=0.12559
$$

5 The location of a hole is given by the X and Y dimensions. Assume that the X dimension varies between 11.900 in . and 12.100 in . with a uniform distribution and Y dimension has a Gaussian distribution with a mean of 5.000 inches and a standard deviation of 0.100 inches.

Fig. P3.5

How many parts in a production run of 1000 will have a radius R outside the tolerance of $R=13.000 \pm 0.100$?
Answer:
135 parts
6 Use subscripted variables and the array form of the integral statement to solve the following set of equations that describe a mechanical system. The system is initially at rest.

$$
\begin{array}{ll}
& m_{1} \ddot{x}_{1}+\left(k_{1}+k_{2}\right) x_{1}+c \dot{x}_{1}-k_{2} x_{2}-c \dot{x}_{2}=0 \\
& m_{2} x_{2}+\left(k_{2}+k_{3}\right) x_{2}+c \dot{x}_{2}-k_{2} x_{1}-c \dot{x}_{1}-k_{3} x_{3}=0 \\
\text { where } \quad m_{3} \ddot{x}_{3}+k_{3} x_{3}-k_{3} x_{2}=12 \sin (4.0 t) \\
& m_{1}=2.3, m_{2}=3.4, m_{3}=0.9 \\
& k_{1}=19.0, k_{2}=45.0, k_{3}=12.0, c=0.8
\end{array}
$$

Fig. P3.6
Answer:

$$
\text { At TIME }=2.0, x_{1}=-0.2075, x_{2}=-0.2707, x_{3}=0.4517
$$

7 The gas pressure acting across a small caliber bullet varies with the distance traveled by the bullet down the barrel of the gun.

The following table gives this pressure-distance relationship for a 26 in . barrel.

X, in.	Pressure lb/in. ${ }^{2}$
0	5,500
1.0	13,000
2.0	22,500
3.0	27,700
4.0	30,200
5.0	29,000
6.0	27,500
8.0	22,000
10.0	16,000
12.0	11,100
15	6,200
18	4,100
21	3,750
26	3,540

Pressure

Fig. P3.7
Assume the diameter of the bullet is 0.300 in . and weighs $180 \mathrm{gr}(0.0234 \mathrm{lb})$. The frictional drag on the barrel is to be considered small compared to the gas force.

Use Newton's second law to find the time required for the bullet to leave the barrel and the muzzle velocity. Compare answers using the NLFGEN and AFGEN arbitrary function generators.

$$
m \ddot{x}=P A
$$

Answers:

$$
\begin{array}{ll}
\text { Using AFGEN } & v=27546 \mathrm{in} . / \mathrm{sec} \\
\text { Using NLFGEN } & v=27512 \mathrm{in} . / \mathrm{sec}
\end{array}
$$

8 An automobile costing $\$ 4000$ is financed for 36 months with monthly payments of $\$ 130.50$. The annual effective compound interest rate for this loan can be determined by solving the expression

$$
I_{\text {annual }}=(1+i)^{12}-1
$$

where $I_{\text {annual }}=$ annual effective compound interest rate expressed in decimal form (not per cent)
$i=$ interest rate per month expressed in decimal form
The solution for i (rate per month) can be found from

$$
a_{n / i}=\frac{(1+i)^{n}-1}{i(1+i)^{n}}
$$

where in this case

$$
a_{n / i}=\frac{4000}{130.50}=30.651
$$

and $n=36$. An implicit expression for i can therefore be written as

$$
i=\frac{(1+i)^{n}-1}{30.651(1+i)^{n}}
$$

Develop a CSMP program using the IMPL function to solve for i. Include a statement in your program for finding $I_{\text {annual }}$. Use PRINT to give the values of $I_{\text {annual }}$ and i. What effect does the initial guess for i have on the solution for i ? Use $i=0.01$ and $i=5.0$ as initial values and error $=0.00001$.

Answers:
For i (initial) $=0.01, i=.0089613, I_{\text {annual }}=.11298$
For i (initial) $=5.0$, same answers
9 Use the multiple run capability of a PARAMETER card to solve Mathieu's equation for the following values of a

$$
\begin{aligned}
& a=0.5,1.5,3.0,5.0 \\
& b=2.0, \omega=3.0
\end{aligned}
$$

Mathieu's equation is

$$
\begin{gathered}
\frac{d^{2} y}{d t^{2}}+(a-2 b \cos \omega t) y=0 \\
y(0)=\dot{y}(0)=2.0
\end{gathered}
$$

Answers:

$$
\begin{array}{lll}
\text { At TIME }=1.0 & y=4.979 & a=0.5 \\
& y=3.669 & a=1.5 \\
& y=2.046 & a=3.0 \\
& y=0.4326 & a=5.0
\end{array}
$$

10 The figure below shows a tapered beam with an axial load of $10,000 \mathrm{lb}$ and a uniform load of $72 \mathrm{lb} / \mathrm{in}$. The differential equation describing the deflection of the beam is

$$
E I \frac{d^{2} y}{d x^{2}}=-M \quad M=\text { moment due to uniform lead }+p_{y}
$$

Using the CALL RERUN statement, find the deflection of the beam.

Fig. P3.10
Answer:

$$
Y_{\max }=0.388 \text { in. } \quad \text { at } X=66 \mathrm{in} .
$$

11 The acceleration indicated by an accelerometer is given by the following formula.

$$
A=\omega_{n}^{2} z
$$

The equation of motion of the seismic mass is

$$
\ddot{z}+2 \zeta \omega_{n} \dot{z}+\omega_{n}^{2} z=\ddot{y}
$$

Fig. P3.11(a)

Using the multiple run capability of the PARAMETER and END cards, find the indicated acceleration reading for the four combinations of natural frequencies and damping ratios. The input acceleration is shown below.

1. $\omega_{n}=10 \mathrm{rad} / \mathrm{sec} \quad \zeta=0.1$
2. $\omega_{n}=10 \mathrm{rad} / \mathrm{sec} \quad \zeta=0.7$
3. $\omega_{n}=100 \mathrm{rad} / \mathrm{sec} \quad \zeta=0.1$
4. $\omega_{n}=100 \mathrm{rad} / \mathrm{sec} \quad \zeta=0.7$

Time
Fig. P3.11(b)
Answers:
Case 1 At TIME $=0.4, A=4054.0$
Case 2 At TIME $=0.4, A=2430.0$
Case 3 At TIME $=0.4, A=3839.0$
Case 4 At TIME $=0.4, A=3725.0$
12 A steel cantilever beam has a distributed load as shown below.

Fig. P3.12
The equation which describes the shape is the following fourth order differential equation.

$$
\frac{d^{4} y}{d x^{4}}=-\frac{w(x)}{E I}
$$

$$
w(x)=\text { density of the distributed load }
$$

Using the following boundary condition on the left end and the AFGEN function to represent the density of the distributed load, solve for the deflected shape of the beam.

$$
\begin{aligned}
y(0) & =\frac{d y(0)}{d x}=0 \\
\frac{d^{2} y(0)}{d x^{2}} & =-\frac{2700}{E I} \\
\frac{d^{3} y(0)}{d x^{3}} & =\frac{180}{E I}
\end{aligned}
$$

Answer:

$$
\text { At } x=30, y=-0.111 \mathrm{in} .
$$

13 The approximate dimensions of the cross-section of a railroad rail are given by the following table.

y	t
0	6
0.5	6
1	1.7
1.3	1.0
3.0	0.65
4.7	0.8
4.9	0.95
5.0	1.2
5.3	2.9
6.4	2.9
6.55	1.0

Fig. P3.13
Use the AFGEN function to approximate the shape of the rail and find the center of mass and the moment of inertia about line $\mathrm{O}-\mathrm{O}$. The moment of inertia is given by the following formula.

$$
I=\int y^{2} t d y
$$

Answer:

$$
y_{c g}=2.87 \mathrm{in} . \quad I=171.9 \mathrm{in} . .^{4}
$$

14 The transfer function of a system is given by

$$
\frac{Y(s)}{U(s)}=\frac{12}{(s+2)(s+6)}
$$

A unit-step input is applied to the system. It is desired to sample the output signal, $y(t)$, every 0.04 sec as shown in the diagram below.

Write a CSMP program which outputs the sampled signal. Use the IMPULS function for modeling the sampler.
Answer:

$$
y=0.76307 \text { at TIME }=0.72 \text { using variable-step integration. }
$$

15 The following equations describe the motion of a top spinning about a frictionless pivot point. The only external torque is due to gravity.

$$
\begin{aligned}
\ddot{\theta} & =\frac{I^{\prime} \dot{\psi}^{2} \sin \theta \cos \theta-I(\dot{\phi}+\dot{\psi} \cos \theta) \dot{\psi} \sin \theta+W D \sin \theta}{I^{\prime}} \\
\ddot{\psi} & =\frac{-2 I^{\prime} \dot{\theta} \dot{\psi} \cos \theta+I(\dot{\phi}+\dot{\psi} \cos \theta) \dot{\theta}}{I^{\prime} \sin \theta} \\
\ddot{\phi} & =\dot{\psi} \dot{\theta} \sin \theta-\ddot{\psi} \cos \theta
\end{aligned}
$$

$I=$ moment of inertia of top about spin axis $=0.001 \mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2}$
$I^{\prime}=$ moment of inertia of top about a line perpendicular to the spin axis and through the pivot point $=0.04 \mathrm{lb}-\mathrm{in}^{-\mathrm{sec}^{2}}$
$W=$ weight $=0.8 \mathrm{lb}$
$D=2.0 \mathrm{in}$.

Fig. P3.15
Find the motion of the top for the following initial conditions. Note the singularity at $\theta=0$.

$$
\psi=\dot{\psi}=0, \dot{\phi}=500 \text { radians } / \mathrm{sec}, \theta=1.0 \text { radians, } \dot{\theta}=0.5 \text { radians } / \mathrm{sec}
$$

Answer:

$$
\text { At TIME }=1.0 \mathrm{sec}, \theta=63.83^{\circ}, \psi=200.55^{\circ}, \dot{\phi}=499.31 \mathrm{rad} / \mathrm{sec}
$$

16 The difference equation for a low pass filter can be expressed as

$$
y(k T)=(1-\alpha) x(k T)+\alpha y[(k-1) T]
$$

for α less than 1. For this case select $\alpha=0.8$ and $T=0.1$. The input signal, $x(t)$, is given by

$$
x(t)=t+0.5 \sin (6 \pi t)
$$

Write a CSMP program which (a) gives the input signal $x(t)$ every 0.1 sec ; and (b) gives the filtered signal $y(t)$ every $0.1 \mathrm{sec} . \dagger$
Answer:

$$
\text { At } \mathrm{TIME}=4.1, x(t)=4.5755, y(t)=3.7666
$$

17 A classical problem in the calculus of variation is to determine the path of quickest descent-the brachistochoe problem. This problem involves finding the curve between two points that a sliding particle would descend in the minimum time. The exact curve is a cycloid.

Fig. P3.17
The time required for a mass to slide down a curve under uniform gravity is given by the following expression.

$$
t=\frac{1}{\sqrt{2 g}} \int_{0}^{x} \sqrt{\frac{1+y^{\prime 2}}{y}} d x
$$

Using Euler's equation, the above integral can be minimized by the solution to the following differential equations

$$
y^{\prime}=\sqrt{\frac{c}{y}-1}
$$

The value of $c=30.32$ will yield a solution that will pass through the following point: $x=25, y=25.9$. Using this value of c, solve the above equation to determine the shape of the curve. Note that in integrating the above expression for y^{\prime}, it is necessary to add a small number $\left(10^{-6}\right)$ to y to avoid dividing by zero at the start of the integration. Also, it is necessary to use a small step size at the beginning of the integration. Use the CONTINUE card to increase the step size of a fixed-step size integration method (RKSFX) after $x=0.5$.
Answer:

$$
\text { At } x=25, y=26.01
$$

\dagger See Problem 18, Chap. 4 for additional comments.

18 Consider the first-order differential equation given by

$$
\begin{gathered}
\frac{d y(t)}{d t}+3 y(t)=u(t) \\
y(0)=0
\end{gathered}
$$

where $u(t)$ is a unit-step defined to be 1 for t greater than or equal to zero and zero for t less than zero. One approach for numerical solution to this equation is to use the Tustin approximation for differentiation. In such case

$$
\frac{d y(t)}{d t} \longrightarrow \frac{2}{T}\left[\frac{z-1}{z+1}\right] Y(z)
$$

where T is the time between numerical iterations and z is the z-transform variable. Using this approximetion one writes

$$
\frac{2}{T}\left[\frac{z-1}{z+1}\right] Y(z)+3 Y(z)=U(z)
$$

which yields

$$
\begin{gathered}
\frac{Y(z)}{U(z)}=K_{1} \frac{\left(1+z^{-1}\right)}{\left(1+K_{2} z^{-1}\right)} \\
K_{1}=\frac{T}{2+3 T}, \quad K_{2}=\frac{3 T-2}{3 T+2}
\end{gathered}
$$

Using the left shifting property of z-transforms gives the difference equation

$$
y(k T)=K_{1}\left[u(k T)+u((k-1) T]-K_{2} y((k-1) T)\right.
$$

(a) Solve the original differential equation using the standard INTGRL function of CSMP. Use trapezoidal integration (i.e., METHOD TRAPZ) with DELT $=0.1$.
(b) Write a CSMP program which solves the difference equation. Use $T=0.1$. Compare the results with that of part (a).
Answers:

$$
\text { At TIME }=1.0, y(t)=0.31578[\text { part }(\mathrm{a})], y(t)=0.31711[\text { part }(\mathrm{b})]
$$

19 The steady-state current for a 60 hertz- 120 volt input to the circuit below is given by the following expression.

$$
i=120\left[\frac{R_{2}^{2}+L^{2} \omega^{2}}{L^{2} \omega^{2}\left(R_{1}+R_{2}\right)^{2}+\left(R_{1} R_{2}\right)^{2}}\right]^{1 / 2} \quad \omega=120 \pi \mathrm{rad} / \mathrm{sec}
$$

The phase angle of the current can be expressed as

$$
\phi=\tan ^{-1}\left(\frac{L \omega}{R_{2}}\right)-\tan ^{-1}\left[\frac{L \omega\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}\right]
$$

Fig. P3.19

The values of the resistances and inductance with the appropriate tolerances and standard deviations are:

$$
\begin{array}{rlrl}
R_{1} & =10 \text { ohms }(\pm 10 \%), & & \sigma_{R_{1}}=0.33 \text { ohms } \\
R_{2} & =60 \text { ohms }(\pm 20 \%), & & \sigma_{R_{2}}=4.0 \text { ohms } \\
L & =0.18 \text { henries }(\pm 20 \%), & \sigma_{L}=0.012 \text { henries }
\end{array}
$$

Use the GAUSS function to calculate the current and phase angle for gaussian distributed random values of R_{1}, R_{2}, and L. Find the average and standard deviation of both the current and phase angle for 300 different combinations of parameters.

An expression for the standard deviation is:

$$
\sigma_{x}=\left[\frac{n \sum_{i=1}^{n} x_{l}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n-1)}\right]^{1 / 2}
$$

Answer:

$$
\begin{aligned}
i_{\mathrm{ave}} & =2.294 \mathrm{amps}, \phi_{\mathrm{ave}} & =-34.29^{\circ} \\
\sigma_{i} & =0.104 \mathrm{amps} \quad \sigma_{\phi^{\circ}} & =2.264^{\circ}
\end{aligned}
$$

20 The purpose of this problem is to illustrate how a macro is invoked within ánother macro. Consider the general system diagram shown in Fig. P3.20-1. Both subsystem A and subsystem B can be described by a state equation of the form

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] r(t)
$$

Fig. P3.20-1
where $x_{1}(0)=\mathrm{IC} 1$ and $x_{2}(0)=\mathrm{IC} 2$. The program in Fig. P3.20-2 is a proposed method for writing a single MACRO to describe both subsystems A and B and a single MACRO to describe both XXA and XXB. Verify that the program is correct.

```
MACRO Y = STATE(A11,A12,A21,A22,B1,B2,R,IC1,IC2)
    X1DOT = Al1*X1 + Al2*X2 + Bl*R
    X200T = A21*X1 + A22*X2 + B2*R
    XI = INTGRL(ICI,XIOOT)
    x2 = INTGRL(IC2,X200T)
    Y= xl
ENDMAC
* SECOND MACRO FOLLOWS
HACRO OUTX = SIMULAIINPUT,GAIN,DIST,SII,SI2,...
            S21,S22,SB1,SB2,SIC1,SIC2)
        XX = STATE(S11,S12,S21,S22,SB1,SB2,GAIN*INPUT,SIC1,SIC2)
        QQ = INTGRL(0.0.OIST)
        OUTX = XX + QQ
ENDMAC
* PaRAMETERS for the SubSyStEmS fOllow
PARAMETER SAA11 = 0.0, SAA12 = 1.0, SAA21 = -2.0, SAA22 = -3.0,...0
                    SAB1 = 0.0, SAB2 = 1.4, SAGAIN = 0.5, SAIC1 = 0.0,SAIC2 = 0.0
PARAMETER SBAL1 = 0.0, SBA12 = 1.0, SBAL1 = -4.0, SBAZ2 = -5.0,...0
                SBBI = 0.0, SBBZ = 1.0, SBGAIN = 2.1, SBIC1 = 0.0, SBIC2 = 0.0
INA = STEP(0.0)
DISTA = 0.2*SIN(400.0*TIME)
INB = STEP(0.1)
OISTB = EXP(-0.1*TIME)
XXA = SIMULAIINA,SAGAIN,DISTA,SAAI1,SAA12,SAAZ1,...
    SAAZ2,SABI,SAH2,SAICI,SAIC2)
XXB = SIMULA(INB, SBGAIN, DISTB, SBAII, SBAI2, SBALI,...
    SBAZ2, SBBl, SBB2, SBIC1, S8IC2)
OUTPUT = XXA * XXB
TIMER FINTIM = 2.0, OUTDEL = 0.04
PRTPLT OUTPUT(XXAA,XXB)
END
STOP
```

Fig. P3.20-2
Find the response of the system for the inputs, disturbances and system parameters as given in Figure P3.20-2.
21 Many problems in control theory formerly solved by classical methods are now formulated as an optimal control problem using state space analysis. This problem illustrates the use of CSMP for simulation of a time optimal control problem in which the control is expressed in closed form. The state equations for a particular system are given by

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
1 & -\alpha
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)
$$

with initial conditions

$$
\begin{aligned}
& x_{1}(0)=x_{10} \\
& x_{2}(0)=x_{20}
\end{aligned}
$$

The problem is to find the closed-loop control $u(t)$ such that for any initial set, $\underline{x}(0)$, the system response time for state $\underline{x}(t)$ is minimized. Figure P3.21-1 gives a diagram which expresses the essence of this problem.

The solution for the control $u(t)$ can be expressed as ${ }^{(7)}$

$$
u(t)=-\operatorname{sign}\left[x_{1}+\frac{1}{\alpha} x_{2}-\left(\frac{\operatorname{sign}\left(x_{2}\right)}{\alpha^{2}}\right)\left(\ln \left(1+\alpha\left|x_{2}\right|\right)\right)\right]
$$

Fig. P3.21-1
which is maximum effort in that $u(t)$ will be either plus or minus one. The solution for the control logic is obtained from the argument of the sign function and is thus given by

$$
x_{1}+\frac{1}{\alpha} x_{2}-\left(\frac{\operatorname{sign}\left(x_{2}\right)}{\alpha^{2}}\right)\left(1 n\left(1+\alpha\left|x_{2}\right|\right)\right)=0
$$

This equation defines the switching curve as shown in Fig. P3.21-2.

Fig. P3.21-2

The program listing for simulating this system is given in Fig. P3.21-3. The complexity of writing a single statement for $u(t)$ can be avoided by grouping the terms of the switching curve. A conventional FORTRAN statement for the sign of a function is used in the simulation along with standard CSMP simulation statements. The FORTRAN statement

$$
y=\operatorname{sign}\left(P_{1}, P_{2}\right)
$$

takes the value of P_{1} and multiplies by the sign of P_{2}.
PARAM ALPHA $=0.4$
INCON ICX1 $=-2.0, \operatorname{ICX} 2=0.0$
$\mathrm{X} 1 \mathrm{DOT}=\mathrm{X} 2$
X1 = INTGRL(ICX1, X1DOT)
$\mathrm{X} 2 \mathrm{DOT}=-$ ALPHA $* \mathrm{X} 2+\mathrm{U}$
X2 $=$ INTGRL(ICX2, X2DOT)
GAMMA $=\operatorname{ALOG}(1.0+$ ALPHA $* A B S(X 2))$
BETA $=\operatorname{SIGN}(1.0, \mathrm{X} 2) /(\mathrm{ALPHA} * A L P H A)$
$\mathrm{RHO}=\mathrm{X} 1+(\mathrm{X} 2) / \mathrm{ALPHA}$
$\mathrm{U}=-\mathrm{SIGN}(1.0$, RHO - BETA $* G A M M A)$
TIMER FINTIM $=3.0$, OUTDEL $=0.06$
PRTPLT X1(U,X2)
LABEL STATE RESPONSE OF X1 AND X2 FOR TIME OPTIMAL CONTROL
END
STOP
ENDJOB
Fig. P3.21-3 Program listing for time optimal control.
The time optimal response, starting from any point in the x_{1}, x_{2} plane should respond under control of maximum effort $u(t)$ until the system trajectory reaches the switching curve. At this point the sign of the control is reversed and the system should follow the ideal switching curve to the origin. Use the program above with ICX1 $=-2$ and ICX2 $=0$ and find the system response for $x_{1}(t)$ and $x_{2}(t)$. Use a FINTIM of 3.0 and an OUTDEL of 0.06 . Verify that the response intersects the switching curve and then proceeds to the origin.
Answer:

$$
\text { At TIME }=2.1, \mathrm{X} 1=-0.36077, \mathrm{X} 2=0.05055, \mathrm{U}=-1.0
$$

4

FURTHER APPLICATION OF CSMP

The types of problems which can be simulated with CSMP are practically unlimited. Consequently, examples in Chaps. 2 and 3 were rather general and specifically selected to illustrate basic features. For the most part, these earlier chapters present those attributes of the program which are required in the majority of simulations. The material in Chap. 4 is somewhat more limited in scope but nevertheless relates to important engineering applications.

One normally views CSMP as a tool for obtaining the transient or dynamic response of a system of equations. In the first part of this chapter, however, two methods are given for obtaining the steady-state frequency response of a system. One of these methods relies on direct application of the system transfer function: the Laplace variable s is replaced by $j \omega$ and the response is obtained as a function of ω. The second method uses transient response information to find the frequency response.

The second topic of the chapter deals with particular block diagram forms of transfer functions and illustrates how these diagrams can be used to formulate the system state-variable equations. An example is given in which the state equations are solved using CSMP.

Real-time digital control has become increasingly important with recent technological development in the minicomputer and microprocessor field. Therefore, a section is included which gives the basic concepts for simulating direct digital control. The material covers sample and hold simulation, recursive digital control algorithms, and the digital three-mode (PID) controller. Anyone involved with real-time digital control will find this material to be helpful in evaluating the performance of proposed computer control systems.

Although CSMP is normally viewed as a software package for simulating continuous systems, the program also has the capability of simulating digital
logic. The final section in this chapter presents an introduction to logic simulation and thus provides a method for investigating the performance of purposed configurations without actually building hardware realizations.

Frequency Response

The concept of frequency response is well known in most scientific fields, particularly physics and engineering. ${ }^{(1-4)}$ Basically this concept arises when considering an nth order, linear, differential equation with constant coefficients. In particular, if such an equation is written as

$$
\begin{align*}
& \frac{d^{n} x(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} x(t)}{d t^{n-1}}+\cdots+a_{1} \frac{d x(t)}{d t}+a_{0} x(t) \\
& \quad=\frac{b_{m} d^{m} f(t)}{d t^{m}}+b_{m-1} \frac{d^{m-1} f(t)}{d t^{m-1}}+\cdots+b_{1} \frac{d f(t)}{d t}+b_{0} f(t) \tag{4.1}
\end{align*}
$$

and $f(t)=F \sin \omega t$, the steady-state solution for $x(t)$ can be expressed as

$$
\begin{equation*}
x(t)=|X(j \omega)| \sin (\omega t+\phi) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
|X(j \omega)|=|A(\omega)+j B(\omega)| \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\tan ^{-1}[B(\omega) / A(\omega)] \tag{4.4}
\end{equation*}
$$

The question arises as to whether CSMP can be effectively used to calculate the frequency response of a system. The answer is a qualified yes. We have seen that if the transfer function or differential equation of a system is known, the response of the system to any forcing function can be determined using INTGRL, REALPL, LEDLAG, CMPXPL, and user-defined transfer function macros. If the forcing function is selected as a sine wave, the response of the system in steady state will yield the $|X(j \omega)|$ and ϕ. This, however, is a rather awkward approach in that CSMP must go through the transient portion of the solution for each frequency before reaching steady state. The transient calculations are wasted computer time with respect to determining the steady-state solution. Thus, even though CSMP can be used to determine the frequency response, excessive computer time is required if the procedure described above is followed. Only in rare instances, such as calculating the response for one or two frequencies, could one justify using this procedure.

While the above method should generally be avoided, there are other approaches to finding the frequency response using CSMP. Two methods are given below. For the first method a macro is developed and the response determined without using integrators. The second method uses an array of integrators and is applicable to finding the frequency response directly from measured time-domain data.

Frequency Response Without Integration

Consider a transfer function of the form

$$
\begin{equation*}
G(s)=\frac{N_{6} s^{5}+N_{5} s^{4}+N_{4} s^{3}+N_{3} s^{2}+N_{2} s+N_{1}}{D_{6} s^{5}+D_{5} s^{4}+D_{4} s^{3}+D_{3} s^{2}+D_{2} s+D_{1}} \tag{4.5}
\end{equation*}
$$

Replacing s by $j \omega$, multiplying out, and collecting real and imaginary terms gives

$$
\begin{equation*}
G(j \omega)=\frac{\left(N_{5} \omega^{4}-N_{3} \omega^{2}+N_{1}\right)+j\left(N_{6} \omega^{5}-N_{4} \omega^{3}+N_{2} \omega\right)}{\left(D_{5} \omega^{4}-D_{3} \omega^{2}+D_{1}\right)+j\left(D_{6} \omega^{5}-D_{4} \omega^{3}+D_{2} \omega\right)} \tag{4.6}
\end{equation*}
$$

Define

$$
\begin{align*}
& X_{1}=\left(N_{5} \omega^{4}-N_{3} \omega^{2}+N_{1}\right) \\
& X_{2}=\left(N_{6} \omega^{5}-N_{4} \omega^{3}+N_{2} \omega\right) \\
& X_{3}=\left(D_{5} \omega^{4}-D_{3} \omega^{2}+D_{1}\right) \tag{4.7}\\
& X_{4}=\left(D_{6} \omega^{5}-D_{4} \omega^{3}+D_{2} \omega\right)
\end{align*}
$$

giving

$$
\begin{equation*}
G(j \omega)=\frac{X_{1}+j X_{2}}{X_{3}+j X_{4}} \tag{4.8}
\end{equation*}
$$

Rationalizing the expression for $G(j \omega)$ yields

$$
\begin{equation*}
G(j \omega)=\frac{\left(X_{1} X_{3}+X_{2} X_{4}\right)+j\left(X_{2} X_{3}-X_{1} X_{4}\right)}{\left(X_{3}^{2}+X_{4}^{2}\right)} \tag{4.9}
\end{equation*}
$$

We therefore have from Eq. (4.8)

$$
\begin{equation*}
|G(j \omega)|=\left[\frac{X_{1}^{2}+X_{2}^{2}}{X_{3}^{2}+X_{4}^{2}}\right]^{1 / 2} \tag{4.10}
\end{equation*}
$$

and from (4.9)

$$
\begin{equation*}
\phi=\underline{/ G(j \omega)}=\tan ^{-1}\left[\frac{X_{2} X_{3}-X_{1} X_{4}}{X_{1} X_{3}+X_{2} X_{4}}\right] \tag{4.11}
\end{equation*}
$$

To compute the frequency response, various values of ω must be used to calculate X_{1}, X_{2}, X_{3}, and X_{4}.

The values assigned to ω will normally depend upon the intended application. Typically, linear increments of ω are used for Nyquist plots whereas logarithmic increments are used for Bode diagrams. The frequency increments will be equally spaced on a log scale provided,

$$
\begin{equation*}
\omega_{i}=\omega_{\min }(10)^{i \Delta} \quad i=0,1,2, \ldots, m \tag{4.12}
\end{equation*}
$$

where $\quad m=$ the total number of steps over the frequency range

$$
\begin{aligned}
\omega_{\min } & =\text { starting value of } \omega \\
\Delta & =1 /(\text { the number of desired points per decade) } \\
\omega_{i} & =\omega \text { for the } i \text { th point }
\end{aligned}
$$

The natural stepping variable of CSMP is the program variable TIME. The equations for the frequency response developed above are, however, not functions of time. Nevertheless, the index $i \Delta$ can be replaced by TIME if TIME is incremented by $0, \Delta, 2 \Delta, 3 \Delta, \ldots \ldots, m \Delta$. When integration is not specified in CSMP, the increments of TIME can be controlled by the value of DELT given on the TIMER card. The following example illustrates how these observations may be used for obtaining the frequency response.

Example 4.1

The transfer function of a system is given by

$$
\begin{equation*}
G(s)=\frac{25}{s^{2}+3 s+25} \tag{4.13}
\end{equation*}
$$

The frequency response is desired over the range $\omega=0.1$ to $\omega=10$ radians $/ \mathrm{sec}$ with 20 equally spaced log steps per decade.

A program for this purpose is given in Fig. 4.1. In this program a procedural macro is used to calculate $|G(j \omega)|$ and $\mid G(j \omega)$. The coefficients of the transfer function are placed into the program using the STORAGE and TABLE features. Frequency is incremented by the equation

$$
\begin{equation*}
\text { OMEGA }=\text { WMIN } *(10.0 * *(\text { TIME })) \tag{4.14}
\end{equation*}
$$

```
MACRO FASE, MAG = FREQ(N,D,OMEGA)
PROCEDURAL
    X1 = N(5)*(OMEGA**4)-N(3)*(OMEGA**2)+N(1)
    x2 = N(6)*(OMEGA**5)-N(4)*(OMEGA**3)+N(2)*DMEGA
    X3 = D(5)*(OMEGA**4)-C(3)*(OMEGA**2)+D(1)
    X4 = D(6)*(CMEGA**5)-D(4)*(OMEGA**3)+0(2)*OMEGA
    MAG = (SQRT(X1*X1 + X2*X2))/(SQRT(X3**X3+X4*X4))
    CONV = 57.29578
    XREAL = X1*X3 + X2*X4
    XIMAG = X2*X3 - X1*X4
    FASE = (ATAN2(XIMAG,XREAL))*CONV
    IF(FASEI2; 2, 3
    3 FASE = FASE - 360.0
    2 CONTINUE
ENDMAC
INITIAL
        PARAM WMIN = 0.1, WMAX = 10.0
DYNAMIC
STORAGE NUM(6), DEN(6)
TABLE NUM(1-6) = 25.0, 5*0.0,...
            OEN(i-6) =25.0, 3.0, 1.0, 3*0.0
NOSORT
OMEGA = WMIN*(10.0**(TIME))
PHASE, VALUE = FREQ(NUN,DEN, OMEGA)
FINISH CMEGA = WMAX
* set outdel equal to cne over the number jf steps per decade
TIMER FINTIM =.4.0, OUTDEL = 0.05, DELT = 0.05
PRTPLT VALUE(OMEGA,PHASEI, PHASE(OMEGA,VALUE)
LABEL OUTPUT FOR EXAMPLE 4-1
END
STOP
ENDJOB
```

Fig. 4.1 Frequency response program listing using a procedural macro.

The value of TIME is incremented as the smallest value of DELT and OUTDEL. Termination of OMEGA is governed by FINTIM or the finish statement, FINISH = WMAX. One must be careful in specifying FINTIM in this case. When TIME = FINTIM, OMEGA will be $\left(\omega_{\text {min }}\right) 10^{\text {FINTIM }}$. For FINTIM $=4$ the maximum OMEGA is 10,000 times $\omega_{\min }$ which gives 1000 for $\omega_{\min }=0.1$. Obviously, in this case the FINISH statement will terminate the run.

The form of output can be selected by the user. The customary Bode diagram will be obtained if printer-plots of magnitude and phase are requested. As shown on the output in Fig. 4.2, TIME is still listed in the first column and should be ignored except to observe that its increments vary according to the value of OUTDEL. The actual value of OMEGA can be listed on the plots by specifying it as an argument of the requested PRTPLT variable. For example

PRTPLT VALUE (OMEGA)

The program was written for any transfer function with up to a maximum of a fifthorder numerator and denominator. The macro could be extended to a more general case, for example a tenth-order numerator and denominator, but at the sacrifice of using more CPU time.

Frequency Response Using Array Integrators

A transfer function is defined as the ratio of the Laplace transform of the output to the Laplace transform of the input when the system has zero initial conditions. As noted in the previous section, a transfer function can be defined only for linear, time-invariant, systems. The frequency-response function can be determined from the transfer function by replacing s with $j \omega$. We can then write

$$
\begin{equation*}
G(j \omega)=\frac{X(j \omega)}{F(j \omega)}=\frac{\int_{-\infty}^{+\infty} x(t) e^{-j \omega t} d t}{\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t} \tag{4.15}
\end{equation*}
$$

where $X(j \omega)$ and $F(j \omega)$ are the Fourier transforms of $x(t)$ and $f(t)$ respectively. These integrals are defined provided they are absolutely convergent. This is shown by

$$
\begin{equation*}
\int_{-\infty}^{+\infty}\left|x(t) e^{-j \omega t}\right| d t=\int_{-\infty}^{+\infty}|x(t)| d t<\infty \tag{4.16}
\end{equation*}
$$

and similarly for the integral involving $f(t)$. If $x(t)$ and $f(t)$ are zero for $t<0$, Eq. (4.15) becomes

$$
\begin{equation*}
G(j \omega)=\frac{\int_{0}^{\infty} x(t) e^{-j \omega t} d t}{\int_{0}^{\infty} f(t) e^{-j \omega t} d t} \tag{4.17}
\end{equation*}
$$

Evaluating these integrals gives another method for finding the frequency response. From the standpoint of a numerical integration one would never attempt to evaluate the integral over the range $(0, \infty)$. Thus, from practical considerations, the

Fig. 4.2 Printer-plot of the frequency response amplitude using $\log \omega$ steps.
range must be limited to a finite practical upper bound, t_{f}. The expression for $G(j \omega)$ can be viewed as

$$
\begin{equation*}
G(j \omega)=\frac{\int_{0}^{t s} x(t) e^{-j \omega t} d t+\int_{t s}^{\infty} x(t) e^{-j \omega t} d t}{\int_{0}^{t s} f(t) e^{-j \omega} d t+\int_{t r}^{\infty} f(t) e^{-j \omega t} d t} \tag{4.18}
\end{equation*}
$$

If the integration process is terminated after t_{f}, error in $G(j \omega)$ will result according to the remaining integrals evaluated from t_{f} to ∞. ${ }^{(5)}$

Let the input to a system be a pulse of duration $t_{f} / 2$ where the t_{f} selected is large enough to cover the range of the transient response shown in Fig. 4.3. The

Fig. 4.3 Typical time comain signals for determining frequency response.
input signal is not required to be an ideal pulse but should contain sufficiently high harmonics to cover the frequency range of interest for $G(j \omega) . G(j w)$ can be written as

$$
\begin{equation*}
G(j \omega)=\frac{\int_{o}^{t_{s}} x(t) \cos (\omega t) d t-j \int_{0}^{t_{s}} x(t) \sin (\omega t) d t}{\int_{0}^{t_{s}} f(t) \cos (\omega t) d t-j \int_{0}^{t s_{s}} f(t) \sin (\omega t) d t} \tag{4.19}
\end{equation*}
$$

Suppose the frequency response is desired at the frequency points

$$
\omega_{i}=\omega_{1}, \omega_{2}, \omega_{3}, \ldots, \omega_{19}, \omega_{20}, \omega_{21}
$$

Determining $G\left(j \omega_{i}\right)$ requires that 84 integrals be evaluated. In particular, if

$$
\begin{equation*}
G(j \omega)=\frac{A\left(j \omega_{i}\right)-j B\left(j \omega_{i}\right)}{C\left(j \omega_{i}\right)-j D\left(j \omega_{i}\right)} \tag{4.20}
\end{equation*}
$$

then

$$
\begin{equation*}
A\left(j \omega_{i}\right)=\int_{0}^{t_{f}} x(t) \cos \left(\omega_{i} t\right) d t \quad i=1,2, \ldots, 21 \tag{4.21}
\end{equation*}
$$

and similar expressions prevail for $B\left(j \omega_{i}\right), C\left(j \omega_{i}\right)$, and $D\left(j \omega_{i}\right)$. Observe that

$$
\begin{equation*}
A\left(j \omega_{i}\right)=\operatorname{INTGRL}\left[\mathrm{IC}, x(t) \cos \left(\omega_{i} t\right)\right] \tag{4.22}
\end{equation*}
$$

and thus 21 integrals of this form, one for each ω_{i}, could be programmed.

A series of integrals of this form can best be handled using the integrator array feature of CSMP. This type of integration was presented earlier in Example 3.3. The following example will show how these concepts can be programmed in CSMP for finding the frequency response. \dagger

Example 4.2

Find the pulse response and frequency response for the system shown in Fig. 4.4.

Fig. 4.4 System diagram for Example 4.2.
We observe that the closed-loop transfer function is given by

$$
\begin{equation*}
\frac{C(s)}{R(s)}=\frac{25}{s^{2}+3 s+25} \tag{4.23}
\end{equation*}
$$

which is identical to the transfer function in Example 4.1.
The first problem to resolve is the width of the pulse test function. Comparing the above transfer function to the standard second-order form, $s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}$, gives $\omega_{n}=5$ and $\zeta=0.3$. The $\pm 1.8 \%$ settling time is $t_{s}=4 / \zeta \omega_{n}=2.67 \mathrm{sec}$. To insure small error for $G(j \omega)$ we select a pulse width of 4.2 sec .

If we now apply a pulse R given by

$$
\begin{align*}
& \mathrm{R}=\mathrm{Q} 1-\mathrm{Q} 2 \\
& \mathrm{Q} 1=\operatorname{STEP}(0.0) \tag{4.24}\\
& \mathrm{Q} 2=\operatorname{STEP}(4.2)
\end{align*}
$$

then $c(t)=x(t)$ will be the response of the system with $R=r(t)=f(t)$ as the input.
An ordinary CSMP program can be written for the system in Fig. 4.4 to find $c(t)$. This $c(t)$ plays the role of $x(t)$ in the earlier mathematical discussion.

A program for finding the pulse response and the frequency response from $\omega=0.1$ to $\omega=10$ radians $/ \mathrm{sec}$ at ten equal log steps per decade is shown in Fig. 4.5. The following key points are noted.

Frequency $\mathrm{W}(\mathrm{I})$ is calculated in the initial segment using a conventional DO loop. The program determines the pulse response, XX, of the system. The time-varying XX is passed on to a procedure function where the time-varying $\mathrm{XA}(\mathrm{I}), \mathrm{XB}(\mathrm{I}), \mathrm{XC}(\mathrm{I})$, and $\mathrm{XD}(\mathrm{I})(\mathrm{I}=1,2, \ldots, 21)$ are determined. The procedure function returns $\mathrm{XA}(\mathrm{I}), \mathrm{XB}(\mathrm{I})$, $\mathrm{XC}(\mathrm{I})$, and $\mathrm{XD}(\mathrm{I})$ to the arguments of the array integrators $\mathrm{A}(\mathrm{I}), \mathrm{B}(\mathrm{I}), \mathrm{C}(\mathrm{I})$, and $\mathrm{D}(\mathrm{I})$.
\dagger Slight modifications are required for using the array integrator in CSMP III. See Chap. 5.

```
* ILLUSTRATION OF FREQUENCY RESPONSE USING ARRAY INTEGRATION
/ DIMFNSICN A(21),B(21),C(21),O(21),AIC(21),BIC(21),CIC(21),DIC(21),
f $ XA(21),XB(21),XC(21),XD(21)
/ EQUIVALENCE (A1,A(1)),(B1,B(1)),(C1,C(1)),(D1,D(1)),
/ $(AIC1,AIC(1))F(BIC1,BIC(1)),(CICI,CIC(1)),(DICI,DIC(1)),
/ $(XA1,XA(1)),(X81,XB(1)),(XC1,XC(1)),(XD1,XD(1))
FIXED I,ITOTAL
STORAGE W(21), GAIN(21), PHASE(21)
**
IPIITIAL
PARAMETER XDECAD = 10.0. NUMDEC = 2.0. WMIN = 0.1
N\capSTRT
ITOTAL = NUMDEC*XDECAD + 1.0
X=0.0
            DO 20 I = 1. ITOTAL
            X = 1.0/XDECAD + X
    20 W(I) = WMIN*(10.0**(X))
**
DYNAMIC
01 = STEP(0.0)
O2 = STEP(4.2)
R=Q1-Q2
E = R - XX
X1 = (25.13.0)*E
X2 = REALPL(0.0,1.0/3.0,X1)
XX = INTGRL(0.0,X2)
Al = INTGRL(AICl,XA1,21)
B1 = INTGRL(BIC1,XB1,21)
Cl = INTGRL(CIC1,XC1,21)
D1 = INTGRL(CIC1,XD1,21)
PRTCEOURE XA1, XB1,XC1,XD1 = FJRCE{W,XX,R,ITOTAL)
            DO I I = 1,ITOTAL
            XA(I) = XX*CDS(W(I)*TIME)
            XB(I) = XX*SIN(W(I)*TIME)
            XC(I) = R*COS(W(I)*TIME)
    1 XD(I) = R*SIN(W(I)*TIME)
ENDPRO
*
TERMINAL
            CONV = 57.29578
            DO 3 I = 1.ITOTAL
            GAIN(I)={SORT(A(I)**2 + B(I)**2))/(SQRT(C(I)**2 + D(I)**2))
                PHASE(I)={ATAN2(-R(I),A(I))-ATAN2(-D(I),C(I)))*CONV
                IF(PHASE(I))9,9,8
            8 PHASE(I) = PHASE(I) - 360.0
            9 CONTINUE
            3 WRITE.6,10) W(I),GAIN(I), PHASE(I)
            10 FORMAT (1HO,8H OMEGA =, EL2.5,3X, 11HAMPL ITUDE =, 2X,E12.5
            $,3X,7HPHASE =, 2X,F10.51
**
TIMER FINTIM = 10.0. OUTDEL = 0.2. DELT = 0.001, PRDEL = 0.1
PRTPLT XX
LABEL OUTPUT FOR EXAMPLE 4-2 ARRAY
END
STOP
ENDJOB
```

Fig. 4.5 CSMP program listing for finding frequency response with integrator array.

In the terminal segment conventional FORTRAN statements are used to calculate

$$
\begin{gather*}
\operatorname{GAIN}(\mathrm{I})=\sqrt{\frac{\mathrm{A}(\mathrm{I})^{2}+\mathrm{B}(\mathrm{I})^{2}}{\mathrm{C(I})^{2}+\mathrm{D}(\mathrm{I})^{2}}} \tag{4.25}\\
\operatorname{PHASE}(\mathrm{I})=\tan ^{-1}\left(\frac{-\mathrm{B}(\mathrm{I})}{\mathrm{A}(\mathrm{I})}\right)-\tan ^{-1}\left(\frac{-\mathrm{D}(\mathrm{I})}{\mathrm{C}(\mathrm{I})}\right) \tag{4.26}
\end{gather*}
$$

Fig. 4.6 Pulse response of the system for Example 4.2.

The program output for GAIN(I) and PHASE(I) are neither printer-plotted nor printed in the usual CSMP form but are listed using FORTRAN Write and Format statements.

The pulse response of the system is given in Fig. 4.6 where we note that the response overshoot is approximatley 36%, as expected for $\zeta=0.3$. We also note that for all practical purposes the system has reached steady state in 4 sec .

Frequency response information is given in column format in Fig. 4.7. Comparing this output with the results of Example 4.1 (Fig. 4.2) shows excellent agreement. The decibel amplitude could easily be added to the output listing by inserting the statement,

$$
\begin{equation*}
\operatorname{DBGAIN}(\mathrm{I})=20.0 * \operatorname{ALOG}(\operatorname{GAIN}(\mathrm{I})) \tag{4.27}
\end{equation*}
$$

along with slight modifications in the Write and Format statements.

Fig. 4.7 Frequency response information for Example 4.2 using the integrator array.

```
* LLLUSIKAIIUIV LT RKEWUENLT KEJPUNDE USING AKKAT INIEGKAIIUN
/ DIMENSION A(21),B(21),C(21),O(21),AIC(21),BIC(21),CIC(21),DIC(21),
/ $ XA(21),XB(21),XC(21),XD(21)
/ EQUIVALENCE (A1,A(1)),(B1,B(1)),(C1,C(1)),(D1,D(1)),
/ $(AIC1,AIC(1)),(BIC2,BIC(1)),(CIC1,CIC(1)),(DIC1,DIC(I)),
/ $ (XA1,XA(1)),(XB1,XB(1)),(XC1,XC(1)),(XD1,XD(1))
FIXED I,ITOTAL
STORAGE W(21), GAIN(21), PHASE{21)
FUNCTION SIGNAL = (0.0,0.0) , (.2,.3814),(.4,1.019),(.6,1.355),\ldots..
    (.8,1.295),(1.0,1.057),(1.2.0.8875),(1.4,.872),(1.6..952).(1.8,1.03),...
    (2.0.1.051),(2.2.1.028),(2.4..996),(2.6..981),(2.8,.986),\ldots..
    (3.0,.998),(3.2,1.001,(3.4,1.00),(3.6,1.00),(3.8,1.00),\ldots
    (4.00,1.00),(4.2,.617),(4.4,-.0182),(4.6,-. 354),(4.8,-. 294),...
    (5.0,-.057),(5.2,.112),(5.4,.128),(5.6,.0478),(5.8, -.029),\ldots.
    (6.0,-.051),(6.2,-.0279),(6.4,.004),(6.6,.0189),(6.8,.0139),\ldots..
    (7.0,.0015),(7.2,*.0063),(7.4,-.006),(7.6,-.0019),(7.8,.0018),\ldots.
    (8.0.,0026),(8.2,.00123),(8.4,-.0004),(8.6,-.0009),(8.8,-.0006),\ldots..
    (9.0,0.0),(9.2,0.0),(9.4,0.0),(9.6,0.0),(9.8,0.0),(1.0.0.0.0)
**
INITIAL
PARAMETER XDECAO = 10.0, NUMDEC = 2.0, WMIN = 0.1
NOSORT
ITOTAL = NUMDEC*XDECAC + 1.0
X=0.0
        DO20I=1, ITOTAL
        X = 1.0/XDECAD + X
    20W(I) = WMIN*(10.0**(X))
**
DYNAMIC
Q1 = STEP(0.0)
Q2 = STEP(4.2)
R = Q1 - Q2
XX = AFGEN(SIGNAL,TIME)
\Delta1 = INTGKL(AIC1,XAL,21)
BL=INTGRL(BIC1,XB1,21)
C1 = INTGRL(CIC1,XC1,21)
D1 = INTGRL(DIC1,XO1,21)
PROCEDUFE XAL,XB1,XC1,XD1. = FORCE(W,XX,R,ITOTAL)
    DO 1 I = 1,ITOTAL
    XA(I) = XX*COS(W(I)*TIME)
    XB(I) = XX*SIN(W(I)*TIMF)
    XC(I) = R*COS(W(I)*TIME)
    1. XD(I) = R*SIN(W(I)*TIMF)
ENOPRO
*
METHCD RKSFX
TERMINAL
TERMINAL
            CONV = 57.25578
            DO 3 1 = 1,ITOTAL
            GAIN(I)=(SQRT{A(I)**2 + B(I)**2))/(SQRT(C(I)**2 + D(I)**2))
                PHASE(I)=(ATAN2(-BII),A(I))-ATAN2(-D(I),C(I)))*CONV
            IF(PHASE(I)19,9,8
        8 PHASE(I) = PHASE(I) - 360.0
        9 CONTINUE
        3 WRITE(6,10) W(I),GAINII), PHASE(I)
    10 FORMAT (1HO, 8H CMEGA =,F12.5,3X,11HAMPLITUDE =, 2X,E12.5
        $,3X,7HPHASE =,2X,F10.51
**
TIMER FINTIM = 10.0, OUTDEL = 0.2, DELT = 0.005, PRDEL = 0.1
PRTPLT XX
LABEL ARRAY INTEGRATION USING NUMERICAL FUNCTION EXAMPLE 4-2
END
STDP
```

Fig. 4.8 CSMP program listing for finding frequency response from pulse response using the integrator array.

The CPU time for running this program on the $360 / 65$ was approximately 40 sec . The multiple integrations account for the rather large CPU time as compared to Example 4.1 which used only 10 sec for twice as many frequency points. Obviously, if the system transfer function is known, the method of Example 4.1 is preferred over the array integration method.

The real advantage of the array-integrator method exhibits itself in the following light. There are many practical systems where direct frequency response measurements are extremely difficult and uneconomical to obtain. Making such measurements on chemical process plants and metal-rolling mills is practically out of the question. However, the pulse response of many systems can be directly and economically measured. If this time domain data is coupled to the array-integrator program via either AFGEN or NLFGEN then the system frequency response can be obtained.

To illustrate this point, suppose the time response data of Fig. 4.7 is used to define a function.

$$
\text { FUNCTION SIGNAL }=(0.0,0.0),(0.2,0.3814), \ldots
$$

from which the signal XX is obtained by:

$$
\text { XX }=\text { AFGEN }(\text { SIGNAL,TIME })
$$

The program in Fig. 4.8 has incorporated these changes by simply removing the original system-transfer function. The resulting frequency response information is shown in Fig. 4.9. The response compares favorably to the "exact" answers and deviations can be attributed to interpolation inaccuracy.

In summary, this section shows two methods for obtaining a system frequency response using CSMP. The first method applies directly to those systems with known transfer functions. The second method can be applied to systems with known transfer functions and, moreover, has its greatest value in determining the frequency response from pulseresponse information as measured directly from the physical system.

State Variable Formulation from Transfer Functions

The occasion often arises when one wishes to express the dynamics of a system in state-variable form rather than the customary transfer function. The state equations for a linear, time-invariant, system can be written as

$$
\begin{align*}
& \dot{\mathbf{x}}(t)=A \mathbf{x}(t)+B \mathbf{u}(t) \tag{4.28}\\
& \mathbf{y}(t)=C \mathbf{x}(t)+D \mathbf{u}(t) \tag{4.29}
\end{align*}
$$

where $\quad \mathbf{x}(t)=n$-dimensional column vector called the system state vector,
$\mathbf{y}(t)=q$-dimensional column vector called the system output vector,
$\mathbf{u}(t)=m$-dimensional column vector called the system input vector,
and A, B, C, and D have appropriate matrix dimensions.

Fig. 4.9 Frequency response information obtained by Fourier transform.

Consider a system represented by the transfer function

$$
\begin{equation*}
\frac{C(s)}{R(s)}=\frac{a_{2} s^{2}+a_{1} s+a_{0}}{s^{4}+b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}} \tag{4.30}
\end{equation*}
$$

A block diagram which represents this transfer function is given in Fig. 4.10. The following equations can be written from the diagram.

$$
\begin{aligned}
\dot{x}_{1}(t) & =x_{2}(t) \\
\dot{x}_{2}(t) & =x_{3}(t) \\
\dot{x}_{3}(t) & =x_{4}(t) \\
\dot{x}_{4}(t) & =r(t)-b_{0} x_{1}(t)-b_{1} x_{2}(t)-b_{2} x_{3}(t)-b_{3} x_{4}(t)
\end{aligned}
$$

Fig. 4.10 Block diagram for phase variable state equations.
and

$$
c(t)=a_{0} x_{1}+a_{1} x_{2}+a_{2} x_{3}
$$

Expressing these equations in matrix form gives

$$
\left[\begin{array}{c}
\dot{x}_{1}(t) \tag{4.31}\\
\dot{x}_{2}(t) \\
\dot{x}_{3}(t) \\
\dot{x}_{4}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-b_{0} & -b_{1} & -b_{2} & -b_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] r(t)
$$

and

$$
c(t)=\left[\begin{array}{llll}
a_{0} & a_{1} & a_{2} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \tag{4.32}\\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

Comparing with Eqs. (4.28) and (4.29) we have

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-b_{0} & -b_{1} & -b_{2} & -b_{3}
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \quad C=\left[\begin{array}{llll}
a_{0} & a_{1} & a_{2} & 0
\end{array}\right]
$$

and $\mathbf{x}(t)=\left[x_{1}(t), x_{2}(t), x_{3}(t), x_{4}(t)\right]^{\mathrm{T}}, \mathbf{y}(t)=c(t), \mathbf{u}(t)=r(t)$.
Assuming the input to the system in Fig. 4.10 is a unit step, a CSMP program
corresponding to the system diagram can be written as

$$
\begin{aligned}
& \mathrm{R}=\operatorname{STEP}(0.0) \\
& \mathrm{E}=\mathrm{R}-\mathrm{BO} * \mathrm{X} 1-\mathrm{B} 1 * \mathrm{X} 2-\mathrm{B} 2 * \mathrm{X} 3-\mathrm{B} 3 * \mathrm{X} 4 \\
& \mathrm{X} 4=\mathrm{INTGRL}(0.0, \mathrm{E}) \\
& \mathrm{X} 3=\text { INTGRL }(0.0, \mathrm{X} 4) \\
& \mathrm{X} 2=\text { INTGRL }(0.0, \mathrm{X} 3) \\
& \text { X1 }=\text { INTGRL }(0.0, \mathrm{X} 2) \\
& \mathrm{C}=\mathrm{AO} * \mathrm{X} 1+\mathrm{A} 1 * \mathrm{X} 2+\mathrm{A} 2 * \mathrm{X} 3 \\
& \text { TIMER FINTIM }=3.0, \text { OUTDEL }=0.1 \\
& \text { PRTPLT X1, X2, X3, X4, C } \\
& \text { END } \\
& \text { STOP } \\
& \text { ENDJOB }
\end{aligned}
$$

The constants A0, A1, A2, B0, B1, B2, and B3 are usually given on parameter cards and FINTIM and OUTDEL will depend upon these coefficients. This procedure for programming a transfer function can easily be extended to higher-order polynomials. The state variable formulation in this particular form is commonly known as the phase variable representation. ${ }^{(6,7,8)}$

This illustration shows that a set of state equations can always be written for a system transfer function. The state-representation for a transfer function is not unique. In fact, it can be proven that for a given transfer function there exist infinitely many state representations.

Another method for expressing the transfer function of Eq. (4.30) is given in Fig. 4.11. Using the output of each integration (the $1 / \mathrm{s}$ terms) as states, one can

Fig. 4.11 Alternate block diagram form for state variable representation.
easily write a set of equations corresponding to Eqs. (4.28) and (4.29). This is done in an exercise at the end of this chapter.

Digital Control Systems

Digital computers have become an important method for controlling feedback systems. The purpose of this section is to illustrate how CSMP can be used to simulate the digital control process.

A simplified diagram showing the role of the digital computer in a feedback system is given in Fig. 4.12. The analog output of the system is converted to a binary representation by the analog to digital (A/D) converter. The system input must be converted to a compatible binary representation. The computer subtracts the binary output from the binary input to form a binary error signal. The error signal becomes the "input" to a properly selected control algorithm.

Fig. 4.12 Basic digital feedback control system.
Assume that algorithm calculations are made every $T \mathrm{sec}$ to form the binary signal, m, as shown in the diagram. This binary signal is converted to an analog signal by the digital to analog converter (D/A) to produce the signal q which is applied to the system. The design problem is to determine the algorithm which satisfies system specifications. The functions carried out by the computer hardware in Fig. 4.12 can be equivalently represented by the more straightforward model as given in Fig. 4.13. The problem of selecting the control algorithm reduces to one of finding the function $D(z)$ where z is the z-transform variable. The major attention in this section will be given to the simulation problem, since methods for finding $D(z)$ are given in the literature. ${ }^{(9,10,11)}$

Fig. 4.13 Simplified diagram for digital control.

Example 4.3

The system shown in Fig. 4.14 does not include a controller $D(z)$. It is desired, however, to investigate the effect of the sampling process on the system stability. Ideal sampling, followed by a zero-order hold, can be simulated as follows. If the input to the ideal

Fig. 4.14 System diagram with sample and hold. (Example 4.3.)
sampler is E , then the output of the zero-order hold can be represented as \mathbf{Q}. This process can be simulated using the following CSMP statements.

$$
\begin{aligned}
\mathrm{A} 1 & =\operatorname{IMPULS}(0.0, \mathrm{~T}) \\
\mathrm{Q} & =\mathrm{ZHOLD}(\mathrm{~A} 1, \mathrm{E})
\end{aligned}
$$

The reader will recall that A1 $=\mathbf{I M P U L S}(\mathbf{P} 1, \mathbf{P} 2)$ produces a unit-impulse train starting at P1 with pulses occurring every P2 sec. Properties of the zero-order hold are defined in Table 4.1. (Also, see Appendix I)

Table 4.1
Properties of the Zero-Order Hold

CSMP Form	Function	
$\mathrm{Q}=$ ZHOLD(A1, E)	$Q(t)=E$	$A 1>0$
	$Q(t)=$ last output	$A 1 \leq 0$
	$Q(t)=0$	$t=$ initial t

Now suppose we desire to find the step response of the system for sampling times of $\mathrm{T}=0.3$ and $\mathrm{T}=0.8$. A simple program for this purpose is given below.

PARAM T $=(0.3,0.8)$
INPUT $=\operatorname{STEP}(0.0)$
$\mathrm{E}=$ INPUT - OUTPUT
$\mathrm{A} 1=\operatorname{IMPULS}(0.0, \mathrm{~T})$
Q $=$ ZHOLD(A1, E)
$\mathrm{X} 1=(10.0 / 3.5) * \mathrm{Q}$
$\mathrm{X} 2=\operatorname{REALPL}(0.0,1.0 / 3.5, \mathrm{X} 1)$
OUTPUT $=$ INTGRL($0.0, \mathbf{X 2)}$
METHOD RKSFX
TIMER FINTIM $=6.0$, OUTDEL $=0.24$, DELT $=0.01$
PRTPLT OUTPUT
LABEL STEP RESPONSE OF SYSTEM WITH SAMPLE AND HOLD
END
STOP
ENDJOB
A fixed-step integration (RKSFX) is selected for this example to insure that an integration is performed when the sampling switch closes. If a variable-step integration is used, the integration will not generally occur at the sampling time but rather when $\mathrm{KEEP}=1$. The resulting response will not be representative of uniform sampling every $T \mathrm{sec}$. When using the sample and hold, variable integration can be selected but either OUTDEL or PRDEL should be chosen to be a sub-multiple of the sampling interval. Fixed-step integration is recommended for simulating discrete data systems. This is particularly important when a digital controller is placed in the system.

The responses in Fig. 4.15 show the effect of the sampling process on the system stability. The continuous system response has approximately 12% overshoot while the overshoot becomes larger as T in the sampling process is increased.

Example 4.4

The purpose of this example is to illustrate a procedure for finding the time response of a closed-loop feedback system which contains a digital controller, $D(z)$, and a zeroorder hold. The basic block diagram of the system is shown in Fig. 4.16. This system is identical to the one given in Example 4.3 except the gain is raised from 10 to 70 and a digital controller is added to the system. A procedure for selecting the controller is given in reference 11.

First consider the simulation of $D(z)$ followed by the zero-order hold. For this example the particular $D(z)$ is given by

$$
D(z)=0.1 \frac{z-0.981}{z-0.998}
$$

If this function is represented in a more general form as

$$
D(z)=\frac{a_{0}+a_{1} z^{-1}}{1+b_{1} z^{-1}}
$$

we can easily employ the phase variable or rectangular programming methods given in the previous section by replacing s by z. The block diagram for the rectangular form is
given in Fig. 4.17. The controller and the zero-order hold can be programmed as a MACRO using the following CSMP statements:

$$
\begin{aligned}
\text { MACRO } \mathrm{E} 2 & =\mathrm{COMP}(\mathrm{SAMTIM}, \mathrm{TX}, \mathrm{~A} 0, \mathrm{~A} 1, \mathrm{~B} 1, \mathrm{E} 1) \\
\mathrm{TX} & =\mathrm{IMPULS}(0.0, \text { SAMTIM }) \\
\mathrm{EZ} & =\mathrm{TX} * \mathrm{E} 1 \\
\mathrm{Y} 0 & =\mathrm{A} 0 * \mathrm{EZ}+\mathrm{P} 1 \\
\mathrm{Y} 1 & =\mathrm{A} 1 * \mathrm{EZ}-\mathrm{B} 1 * \mathrm{Y} 0 \\
\mathrm{P} 1 & =\mathrm{DELAY}(1000, \mathrm{SAMTIM}, \mathrm{Y} 1) \\
\mathrm{E} 2 & =\mathrm{ZHOLD}(\mathrm{TX}, \mathrm{Y} 0)
\end{aligned}
$$

ENDMAC

This macro is completely general for any $D(z)$ of the form so prescribed and can easily be extended to higher-order $D(z)$.

A block diagram of the total system is shown in Fig. 4.18 and is used to identify the inputs and outputs of the various blocks within the CSMP program. Figure 4.19 gives the program listing corresponding to the block diagram. Figure 4.20 gives the step response, $c(t)$, of the compensated system. Compare this response to that obtained earlier in Example 4.3. The gain was 10 but has now been raised to 70 . Note also that fixed-step integration is used with DELT $=0.02$ to insure that integration is performed at the sampling interval of $\mathbf{T}=0.1$.

While the method for simulating $D(z)$ given in this example is completely general for any digital controller, it is not directly the method followed in programming a control algorithm for real-time digital control. We recall that the operator z^{-1} was simulated by

Fig. 4.15 System step-response for Example 4.3.

(b) Sample and hold, $\mathrm{T}=0.3 \mathrm{sec}$

Fig. 4.15. (Continued)

Fig. 4.16 System diagram with a digital controller. (Example 4.4.)

Fig. 4.17 Block diagram representation for the realization of a first-order digital controller.

Fig. 4.18 Total simulation diagram for Example 4.4.

```
MACRO E2 = COMP(SAMTIM, TX, AO, AL, Bl, ELI)
    TX = IMPULS(0.0, SAMTIM)
    EZ = TX*E1
    YO = AD*EZ + PI
    YI = Al*EZ - Bl*YO
    P1 = OELAY(1000, SAMTIM,Y1)
    E2 = ZHOLD(TX, YO)
ENDMAC
* plant structure follows
PARAMETER AO =0.1, A1 = -0.0981, B1= -0.998, SAMTIM =.1
    c = INTGRL(0.0,022)
    x2 = REALPL(0.0.0.286,X1)
    X1 = 20.0*E2
    E2 = COMPISAMTIM, TX, AO, A1, B1, E1)
    El=R - C
    R = STEP(0.0)
METHOD RKSFX
TIMER FINTIM = 5.0, OUTDEL = 0.18, DELT = 0.02
PRTPLT C
LABEL STEP RESPONSE FOR DIGITAL CONTROL SYSTEM EXAMP. 4-4
END
STOP
ENOJOB
```

Fig. 4.19 Program listing for a digital control system. (Example 4.4.)

Fig. 4.20 Step response of a system containing a digital controller. (Example 4.4.)
using the CSMP DELAY function. In the following example the controller will be programmed using a recursive difference equation.

Example 4.5

The system diagram of a process to be controlled by a digital algorithm is shown in Fig. 4.21. ${ }^{(12)}$ We note from the diagram that $D(z)$ is given by

$$
\begin{equation*}
D(z)=\frac{Q(z)}{E(z)}=\frac{0.19185(z-0.56496)(z-0.96585)}{(z-0.99501)(z-0.42857)} \tag{4.33}
\end{equation*}
$$

This controller can be programmed as a difference equation using either a direct, cascade, or parallel realization. ${ }^{(11)}$ Each of these methods will be briefly discussed.

Direct Realization. The function $D(z)$ can be expressed as

$$
\begin{equation*}
D(z)=\frac{Q(z)}{E(z)}=\frac{0.19185 z^{2}-0.29368 z+0.10469}{z^{2}-1.42358 z+0.42643} \tag{4.34}
\end{equation*}
$$

The standard procedure here is to divide the numerator and denominator by z^{2} and cross-multiply. In terms of $Q(z)$ and $E(z)$ this yields

$$
\begin{align*}
Q(z)= & 0.19185 E(z)-0.29368 z^{-1} E(z)+0.10469 z^{-2} E(z) \\
& +1.42358 z^{-1} Q(z)-0.42643 z^{-2} Q(z) \tag{4.35}
\end{align*}
$$

Fig. 4.21 System diagram with second-order digital controller. (Example 4.5.)

Using the real-translation property of z-transforms ${ }^{(13)}$ gives

$$
\begin{align*}
Q(n T)= & 0.19185 E(n T)-0.29368 E[(n-1) T]+0.10469 E[(n-2) T] \\
& +1.42358 Q[(n-1) T]-0.42643 Q[(n-2) T] \tag{4.36}
\end{align*}
$$

where T is the sampling interval, $n=0,1,2, \ldots$, and

$$
\begin{aligned}
Q(n T) & =\text { the present value of the output } Q \text { at } t=n T \\
Q[(n-1) T] & =\text { the first past value of } Q \\
Q[(n-2) T] & =\text { the second past value of } Q \\
E(n T) & =\text { the present value of the input } E \text { at } t=n T \\
E[(n-1) T] & =\text { the first past value of } E \\
E[(n-2) T] & =\text { the second past value of } E
\end{aligned}
$$

For convenience in programming, the expression for $Q(n T)$ is written as

$$
\mathrm{Q}=0.19185 \mathrm{E}-0.29368 \mathrm{E} 1+0.10469 \mathrm{E} 2+1.42358 \mathrm{Q} 1-0.42643 \mathrm{Q} 2
$$

The present value of E is always known in a process. After solving for Q, the coefficients of the algorithm are immediately updated by including the following statements;

$$
\begin{align*}
& \mathrm{Q} 2=\mathrm{Q} 1 \\
& \mathrm{Q} 1=\mathrm{Q} \\
& \mathrm{E} 2=\mathrm{E} 1 \tag{4.37}\\
& \mathrm{E} 1=\mathrm{E}
\end{align*}
$$

```
INITIAL
    E1 = 0.0
    01 = 0.0
    t2 = 0.0
    62 = 0.0
    PARAM K = 22t.
cynamic
        INPUT = STEP(C.O)
        E = INPUT - CLT
        CUT = INTGR! (0.0, X2)
        X2 = INTGRL(C.0, X20)
        x2D = x3 - 5.71*x2
        X3 = iNTGR({0.0, x30)
        x30 = x4 - 5.71* x3
        x4 = k*x5
        X5 = ZHCLC(A1, 6)
        A.1 = IMPULS(C.0, C.1)
fRICEOURE Q = OUNMY(E,E1,E2,01,02,A1)
        IF(A1.NE.1.0) GO TC 10
        IF(KEEP.AE.,I.C) GC TO 10
        Q =.19105*!-.29368*E1+.10469*E2+1.42358*Q1-.42643*Q2
        E2=E1
        El = E
        02 = 01
        Q1 = 0
10 CONTINUE
ENDPRO
METHON RKSFX
TIMER FINTIM = 8.0, CUTDEL = 0.16, DELT = 0.01
PRTPLT DUT
LABEL QUTPUT FOR EXAMPIE 4-5
EAD
STOP
ENDJOB
```

Fig. 4.22 Program listing for Example 4.5 using direct realization.

A CSMP program which incorporates this realization for $D(z)$ is given in Fig. 4.22. We note that the expressions for $D(z)$ are given as a procedure function since they must be executed sequentially. The statement

IF(KEEP.NE.1.0) GO TO 10

insures that the statements of the procedure function cannot be executed except when an integration is performed. Furthermore, when fixed-step integration is selected, the statement

$$
\text { IF(A1.NE.1.0) go to } 10
$$

allows the procedure function to be executed only at sampling instants $n T$ where $n=0,1,2, \ldots$ and T (sampling time) is an integral multiple of DELT. One will note that when a variable step-size integration method is used, integration will not normally occur at $n T$ and the program will generally give misleading results.

Initial values for $\mathrm{E} 1, \mathrm{E} 2, \mathrm{Q} 1$ and Q 2 are given in the INITIAL segment. It is important to observe that E 2 is updated prior to E 1 and Q 2 is updated prior to Q1 in the procedure function.

The response of the system for a unit-step input applied at $t=0$ is given in Fig. 4.23.

	NINIMLN		Cut	VERSUS TIME	MAXIMUM	
C. 0					1.2328E	00
FIME	QUT	1			I	
0.0	0.0	$+$				
1.6000E-01	2.7389E-02	-+				
3.2CCCF-C1	1.4074E-C1					
$4.8000 E-01$	3.1569E-C1	---				
6.4 CCOE-01	5.1267E-01		-			
8.0CCCE-C1	7.0248E-C1		-	+		
$9.6000 \mathrm{~F}-01$	$8.6790 E-01$			----------t		
1.12CCE CO	1.COCSE CC					
1.2800F 00	1.10015 CO					
1.4400F 00	1.1678 E OC				--t	
1.6CCCE CC	1.2088E CC				--- -	
1.7600 E 00	1.2286 E 00				- +	
$1.92 C O E O C$	$1.2326 E 00$				-+	
2.08CC5 CC	1.2257E OC				- +	
2.24 COE OO	$1.2120 E O C$				+	
2.4CCOE CO	1.1947 ECO				---+	
2.5600500	$1.1761 E 00$				--+	
2.7200 E ט	1.1577 ECC				- +	
2.98CCE CO	$1.1406 E$ CC				- +	
3.0400 E CO	1.1252 E 0				+	
$3.2 C C O E C O$	$1.1118 E$ CC				+	
3.3600500	$1.1003 E \mathrm{CC}$			--------		
$3.5200 E 00$	1.0905 EC					
3.6 CCCE CC	1.C823E CC					
$3.3400 E 00$	1.0752 ECC					
4.OCCCE 00	1.06ヶ2E OC					
4.1 EOCF CO	1.0640E CC			---------		
4.3200800	1.0595 E OC					
4.4800500	1.0554 FCO					
4.6400500	1.0516 ECC					
4.8000500	1.0482 E OO			-		
4.SECCE CC	1.0450 ECC					
5.1200 E 00	1.0420E 00					
$5.28 C C E O C$	1.0392E 00					
5.44 COE CC	$1.0365 E$ C C					
5.6 COOF 00	1.0340 E OC			-------		
5.7600 CO	1.0317 E JO			-		
5.9200 E 00	1.0295 ECC			----		
$6.0800 F O 0$	1.0274 E 00					
$6.24 C C E C O$	1.0255 ECC					
6.4000 E 00	1.0237 ECC			--------		
$6.56 C C E 00$	$1.0220 E O C$					
$6.72 C C E C C$	1.0204 ECC			-		
6.8900 E 00	1.0189 CC					
7.04CCE 00	$1.0176 E 00$			------		
$7.20 C O E 00$	1.0163E CC					
$7.36 C O E O O$	1.0152 E CO					
7. $22 C O E$ CC	$1.0141 E$ CC			-----		
$7.6300 E 00$	$1.0131 E$ CO					
7.84 COF OC	1.0122E CC			---		
$8.0 C C C E O$	1.0113 ECC					

Fig. 4.23 Unit-step response of the second-order digital control system. (Example 4.5.)

Cascade Realization. For cascade realization, $D(z)$ is expressed as

$$
\begin{equation*}
D(z)=\frac{Q(z)}{E(z)}=0.19185\left[\frac{1-0.56496 z^{-1}}{1-0.99501 z^{-1}}\right]\left[\frac{1-0.96585 z^{-1}}{1-0.42857 z^{-1}}\right] \tag{4.38}
\end{equation*}
$$

where the grouping of the numerator and denominator terms within the brackets is arbitrary. An input/output relationship is assigned to each term of $Q(z) / E(z)$ by expressing

$$
\text { where } \quad \begin{align*}
& \frac{Q(z)}{E(z)}=\frac{Q(z)}{V(z)} \cdot \frac{V(z)}{S(z)} \cdot \frac{S(z)}{E(z)} \tag{4.39}\\
& \frac{Q(z)}{V(z)}=0.19185 \\
& \frac{V(z)}{S(z)}=\left[\frac{1-0.56496 z^{-1}}{1-0.99501 z^{-1}}\right] \tag{4.40}\\
& \frac{S(z)}{E(z)}=\left[\frac{1-0.96585 z^{-1}}{1-0.42857 z^{-1}}\right] \tag{4.41}
\end{align*}
$$

Each of these expressions can be written in difference equation form to give

$$
\begin{align*}
& S=E-0.96585 E 1+0.42857 S 1 \\
& V=S-0.56496 S 1+0.99501 V 1 \tag{4.43}\\
& Q=0.19185 V
\end{align*}
$$

Again, after processing the above equations, the coefficients must be updated by setting

$$
\begin{align*}
& \mathrm{E} 1=\mathrm{E} \\
& \mathrm{~S} 1=\mathrm{S} \tag{4.44}\\
& \mathrm{~V} 1=\mathrm{V}
\end{align*}
$$

The simulation for the total system is the same as that given in Fig. 4.22 except the procedure function becomes

$$
\begin{aligned}
& \text { PROCEDURE } \mathrm{Q}=\text { DUMMY(E, A1, E1, S1, V1) } \\
& \text { IF(A1.NE.1.0) GO TO } 10 \\
& \text { IF(KEEP.NE.1.0) GO TO } 10 \\
& \text { S }=\mathrm{E}-0.96585 * \mathrm{E} 1+0.42857 * \mathrm{~S} 1 \\
& \mathrm{~V}=\mathrm{S}-0.56496 * \mathrm{~S} 1+0.99501 * \mathrm{~V} 1 \\
& \mathrm{Q}=0.19185 * \mathrm{~V} \\
& \mathrm{E} 1=\mathrm{E} \\
& \\
& \mathrm{~S} 1=\mathrm{S} \\
& 10 \\
& \text { V1 }=\mathrm{V} \\
& \text { ENDPRO }
\end{aligned}
$$

and in the INITIAL segment $\mathrm{E} 1=0.0, \mathrm{~S} 1=0.0$, and $\mathrm{V} 1=0.0$.
Parallel Realization In the parallel realization method $D(z)$ is expanded in partial-fraction form. When the numerator and denominator of $D(z)$ are the same order, the denominator is first divided into the numerator, which for this example gives

$$
\begin{equation*}
D(z)=0.19185+\frac{(-0.02057 z+0.022875)}{(z-0.99501)(z-0.42857)} \tag{4.45}
\end{equation*}
$$

In partial-fraction form, $D(z)$ becomes

$$
\begin{equation*}
D(z)=0.19185+\frac{A}{z-0.99501}+\frac{B}{z-0.42857} \tag{4.46}
\end{equation*}
$$

where $A=0.00425$ and $B=-0.02482$. We now write the function as

$$
\begin{equation*}
D(z)=\frac{Q(z)}{E(z)}=\frac{M(z)}{E(z)}+\frac{N(z)}{E(z)}+\frac{P(z)}{E(z)} \tag{4.47}
\end{equation*}
$$

where:

$$
\begin{align*}
& \frac{M(z)}{E(z)}=0.19185 \tag{4.48}\\
& \frac{N(z)}{E(z)}=\frac{0.00425 z^{-1}}{1-0.99501 z^{-1}} \tag{4.49}\\
& \frac{P(z)}{E(z)}=\frac{-0.02482 z^{-1}}{1-0.42857 z^{-1}} \tag{4.50}
\end{align*}
$$

These expressions lead directly to the difference equations

$$
\begin{align*}
M & =0.19185 \mathrm{E} \\
N & =0.00425 \mathrm{E} 1+0.99501 \mathrm{~N} 1 \\
P & =-0.02482 \mathrm{E} 1+0.42857 \mathrm{P} 1 \tag{4.51}\\
Q & =\mathrm{M}+\mathrm{N}+\mathrm{P}
\end{align*}
$$

with coefficient updating

$$
\begin{align*}
\mathrm{E} 1 & =\mathrm{E} \\
\mathrm{M} 1 & =\mathrm{M} \\
\mathrm{~N} 1 & =\mathrm{N} \tag{4.52}\\
\mathrm{P} 1 & =\mathrm{P}
\end{align*}
$$

The total simulation program is again identical to that of Fig. 4.22 except that the INITIAL segment contains the values $\mathrm{E} 1=0.0, \mathrm{M} 1=0.0, \mathrm{~N} 1=0.0$, $\mathrm{P} 1=0.0$ and the procedure function is given by

PROCEDURE Q = DUMMY(E, E1, M1, N1, P1, A1)
IF(A1.NE.1.0) GO TO 10
IF(KEEP.NE.1.0) GO TO 10
$\mathrm{M}=0.19185 * \mathrm{E}$
$\mathrm{N}=0.00425 * \mathrm{E} 1+0.99501 * \mathrm{~N} 1$
$\mathrm{P}=-0.02482 * \mathrm{E} 1+0.42857 * \mathrm{P} 1$
$\mathbf{Q}=\mathbf{M}+\mathbf{N}+\mathbf{P}$
$\mathrm{E} 1=\mathrm{E}$
$\mathrm{M} 1=\mathrm{M}$
$\mathrm{N} 1=\mathrm{N}$
$P 1=P$
10 CONTINUE
ENDPRO
The unit-step output response for each of the three methods is practically
identical to the response given in Fig. 4.23. The reader may ask why three different methods are presented. When these algorithms are programmed for real-time digital control, two factors become important. First, the computer time required to execute the algorithm may be an important factor. If this is the sole consideration one would select the algorithm that requires the fewest number of additions and multiplications. Second, numerical roundoff and truncation may have a significant influence on the system response. In this case one might try each realization and select the one that gives the best results. Several investigators have found that parallel realization most often gives the best performance.

Example 4.6

Classical analog compensation techniques that rely heavily upon frequency response methods can be extended to digital control by implementing appropriate algorithms in the digital computer. The bases for this extension were given in the previous examples.

Obtaining frequency response information or developing models can be extremely time consuming and therefore is not always a luxury the control engineer can afford. This is particularly true in the process control industry. Normally one finds in this case that a three-mode controller is the most attractive compromise for improving system performance. The term three-mode stems from the nature of the controller in that one mode is directly proportional to the applied signal, one mode is proportional to the integral of the signal, and one mode is proportional to the derivative. Therefore the term, proportional-integral-derivative (PID) controller is often used rather than three-mode.

The diagram in Fig. 4.24 shows the representation of this controller as applied to a unity-negative feedback system. The continuous PID controller can be approximated on a digital computer using several forms of algorithms. ${ }^{(10,14)}$ As a simplified version we can write

$$
\begin{align*}
X_{I}(k) & =X_{I}(k-1)+T * E(k) \tag{4.53}\\
X_{D}(k) & =(1 / T)(E(k)-E(k-1)) \tag{4.54}
\end{align*}
$$

where Eq. (4.53) corresponds to integration and (4.54) to differentiation. The output of the digital PID is then given by

$$
\begin{equation*}
Y(k)=K_{p} * E(k)+K_{I}\left(X_{I}(k-1)+T * E(k)\right)+K_{D}((1 / T)(E(k)-E(k-1))) \tag{4.55}
\end{equation*}
$$

We note that

$$
\begin{aligned}
T & =\text { sampling time } \\
E(k) & =\text { present value of the applied signal } \\
E(k-1) & =\text { first past value of } E(k) \\
X_{I}(k) & =\text { present estimate of the integral } \\
X_{I}(k-1) & =\text { first past value of } X_{I}(k)
\end{aligned}
$$

Consider the system shown in Fig. 4.25 where the sample switch and the zero-orderhold represent the digital computer without a control algorithm. With a sampling time of $T=0.01$, the step response shown in Fig. 4.26 is practically identical to the continuous system (i.e. without the sampler and hold).

A program using the same basic system but including a digital representation of the PID controller is given in Fig. 4.27. The algorithm for the controller is contained in a

Fig. 4.24 Ideal representation of an ideal continuous PID controller.

Fig. 4.25 System of Example 4.6 without a digital PID controller.
procedure function in the same way as given previously in Example 4.5. Earlier comments with respect to using fixed integration steps rather than variable steps also apply to this simulation.

Integration and differentiation for the controller are approximated by Eqs. (4.53) and (4.54), respectively. Using $K_{p}=12, K_{I}=20$, and $K_{D}=4$ gives the step response shown in Fig. 4.28. We note the improvement in the system rise-time as well as a decrease in the overshoot when compared to the response without a controller.

In conclusion, this section has presented several methods for simulating a digital control system. There are many other ways to view the digital control system, for example, the digital implementation of a predictive controller. ${ }^{(15)}$ Nevertheless, the methods presented here are fundamental and generally apply to more advanced techniques.

There is strong justification for learning the programming concepts presented in this section. Advances in computer technology, particularly in the microprocessor area, have reduced the cost for digital control by a factor of ten during the last decade. Continued improvement in computer technology, coupled with the flexibility offered by a digital controller, will in all likelihood result in a growing number of applications in this area.

	$\begin{aligned} & \text { MINIMUM } \\ & 0.0 \end{aligned}$		COUT	VERSUS TIME	$\begin{gathered} \text { MAXIMUM } \\ 1.1628 E \quad 00 \end{gathered}$
time	cout	1			I
0.0	0.0	$+$			
8.0000E-02	1.2118E-02	+			
1.6000E-01	$4.5765 E-02$	-+			
2.4000E-01	9.6963E-02				
$3.2000 \mathrm{E}-01$	1.6191E-01	---			
4.0000E-01	2.3704E-01				
4.8000E-01	3.1907E-01				
$5.6000 \mathrm{E}-01$	4.0504E-01				
6.4000E-01	4.9235E-01		----		
$7.2000 \mathrm{E}-01$	5.7873E-01		-		
8.0CCOE-C1	$6.6229 E-01$		-	+	
8.8000E-01	7.4146E-01		-	--+	
$9.6000 E-01$	8.1503E-01			--------	
1.0400 EO	8.8209E-01			------	
1.1200E 00	9.4202E-01			-----	
$1.2000 E 00$	9.9446E-01				
1.2800 E 00	1.0393500			-----	
1.3600 E 00	1.0765 E 00			--------	--+
1.44 COE 00	1.1065500				--+
1.5200E 00	1.1295 E 00				+
$1.6000 E 00$	1.1460E 00				----+
1.6800E 00	$1.1567 E 00$				-----*
$1.7600 E 00$	$1.1621 E 00$				+
1.8400 E 00	$1.1628 E 00$				-----+
1.9200500	1.1596 E 00				-----*
2.0000500	$1.1531 E 00$			--------	----4
$2.08 C O E 00$	$1.1440 \leq 00$				
2.1600500	1.1328 E 00				----+
2.2400 E 00	1.1201E 60				----+
2.3200 E 00	$1.1065 E 00$				--- +
2.4000 E00	$1.0923 E 00$				- +
2.4800 E 0	$1.0781 E 00$				
2.5600E 00	$1.0641 E 00$				
$2.6400 E 00$	1.0507 E 0				- +
2.72COE 00	1.0381500				
2.8000E 00	1.0264 E 00				+
2.8800E 00	1.0159 E 0			---------	
2.9600 E 00	$1.0065 E 00$				
$3.0400 E 00$	9.9837E-01			---------	
3.1200 E 00	9.9147E-01				
3.2000 E 00	9.8579E-0.!			---------	
3.2800 E 00	9.8129E-01			------	
3.3600E 00	9.7789E-01				
3.4400 E 00	9.7552E-01			-----	
3.5200 E 00	9.7408E-01			---------	
3.6000 E 00	9.7346E-01		-	---------	
3.6800500	9.7356E-01		---	----------	
3.7600 E 00	9.7427E-01				
3.8400 E 00	9.7548E-01			----	
3.9200 E 00	9.7709E-01			---------	
$4.00 C O E 00$	9.79015-01				

Fig. 4.26 Step response for Example 4.6 without PID controller.

```
INITIAL
    T = 0.01
    E1 = 0.0
    INTG1 =0.0
    KINTG = 20.0
    KPROP = 12.0
    KDERIV = 4.0
DYNAMIC
    E = INPUT - RESP
    INPUT = STEP(0.0)
    RESP = INTGRL (0.0,X1)
    X1 = REALPL(0.0,1.0/2.0,X21)
    X2 = 2.0*X3
    X3 = 2HOLO(AL,Y)
    Al = I MPULS (O.O,T)
PROCEDURE Y = PIC(AI,E,EI,T,KPROP,KINTG,KDERIV,INTGI)
    IF(Al.NE.1.0) GO TO 10
    IF(KEEP.NE.1.0) GO TO 10
    EPRDP = KPROP*E
    EDERIV = KDERIV*(1.0/T)*(E - E1)
    INTG = INTGI + T*E
    EINTG = KINTG*INTG
    Y = EPROP + EDERIV + EINTG
    E1 = :
    INTGI = INTG
10 CONTINUE
ENDPRE
METHCD RKSFX
TIMER FINTIM = 4.0, CUTDEL = 0.08, DELT = 0.001
PRTPLT RESP
LABEL OUTPUT FOR EXAMPLE 4-6 WITH PID CJNTROLLER
END
STIP
ENDJOB
```

Fig. 4.27 CSMP program listing for PID controller. (Example 4.6.)

Simulation of Digital Logic

The capability for simulating various digital logic functions is available in CSMP. We recall that functional blocks such as INTGRL are the key elements for simulating continuous systems. The same holds true for the digital logic case in that again standard blocks are available which make it possible to simulate practically any digital configuration.

Most of the functions related to logic simulation are given in Table 4.2. These functions are also given in Appendix I along with other special switching logic. As an introduction, example problems are given below that illustrate how these elements can be used in combination to perform useful logic tasks.

Example 4.7

This problem illustrates how a random-generated binary number (either $0,1,2$, or 3) can be processed through digital logic so as to form the equivalent decimal representation of the number and thereby activate the proper edges of a Nixie light.

In Fig. 4.29(a), XL1 and XL2 form the binary representation of 0, 1, 2, and 3. E1 through E7 in 4.29(b) is a truth table for the edges of the light as defined in 4.29(c). The

	$\operatorname{MINIMUM}_{0.0}^{\text {M }}$		RESP	VERSUS TIME	$\begin{gathered} \text { MAXIMUM } \\ 1.0777 E \quad 00 \end{gathered}$
tine	RESP	1			
0.0	0.0	$+$			
8.0000E-02	7.9619E-01				
1.60005-01	1.0108E 00				
2.4000E-01	1.0625500				----*
3.2000E-01	1.0755 E 0				
$4.0000 \mathrm{E}-01$	1.0777E 00				-----+
4.8000E-01	1.0758 E 00				
$5.6000 \mathrm{E}-01$	$1.0718 E 00$				----*
$6.4000 \mathrm{E}-01$	$1.0664 E 00$				
$7.2000 \mathrm{E}-01$	1.0601E 00				+
$8.0000 \mathrm{E}-01$	1.0533 E 00				
8.8000E-01	1.0463E 00				
$9.6000 \mathrm{E}-01$	1.0393 E 00				
1.04COF 00	$1.0326 E 00$				-- +
$1.1200 E 00$	1.0263E 00				- +
$1.2 C C O E 00$	1.0205E 00				- +
1.2800 E 00	1.0152 E 00				- +
$1.3600 E 00$	1.0106E 00				- +
1.4400 F 00	$1.0066 E 00$				--t
1.5200 E 00	1.0032500				- +
1.6000 E 00	1.0004 EO				-+
1.6800 E 00	9.9818E-01				- +
1.7600 E 00	$9.9646 E-01$				--+
1.84 COE 00	9.9519E-01				
$1.9200 E 00$	9.9431E-01				- +
2.0000 E00	9.9379E-01				+
2.0800 E 00	$9.9355 E-01$			---	- +
2.1600 E 00	9.9356E-01			----	- +
2.2400 E 00	9.93755-01				+
2.3200E 00	$9.9309 \mathrm{E}-01$.				- +
2.4000 E 00	9.9454E-01				- +
2.4800 E 00	9.9506E-01				+
2.5600 E 00	9.9562E-01				-- +
2.6400 E 00	9.9620E-01				+
2.7200F 00	$9.9677 \mathrm{E}-01$				+
2.8000E 00	9.9732E-01				+
2.8800 F 00	9.9784F-01				--
$2.96 C O E O 0$	$9.9832 \mathrm{E}-01$				- +
3.0400 F 00	9.9875E-01				- +
3.1200 ECO	9.9913E-01				+
3.2000 E 00	9.9946E-01				
3.2800 E 00	9.9974E-01				--+
$3.3600 E 00$	$9.9997 E-01$				+
3.4400 E 00	1.0001500				+
$3.5200 E 00$	1.0003 EO				
$3.6 C O O E 00$	1.0004 E 00				- +
3.6800 E 00	1.0004E 00				- +
$3.7600 E$ CO	1.0005E 00				--+
3.8400 E 00	1.0005 E 00				- +
3.9200E OO	1.0005500				+
$4.0000 E 00$	1.0005E 00				

Fig. 4.28 Step response of system with PID digital controller. (Example 4.6.)

Table 4.2

Logic Functions for CSMP (A/so, see Appendix I)

Statement Form

logic statements defining E1 through E7 are:

$$
\begin{array}{ll}
\mathrm{E} 1=\overline{\mathrm{XL} 1} \cdot \overline{\mathrm{XL} 2} & \text { (not XL1 and not XL2) } \\
\mathrm{E} 2=\mathrm{XL} 1+\overline{\mathrm{XL} 2} & \text { (XL1 or not XL2) } \\
\mathrm{E} 3=1.0 & \text { (always on) } \\
\mathrm{E} 4=\overline{\mathrm{XL} 1}+\mathrm{XL} 2 & \text { (not XL1 or XL2) } \\
\mathrm{E} 5=\mathrm{E} 2 & \text { (same as the state of } \mathrm{E} 2) \\
\mathrm{E} 6=\overline{\mathrm{XL} 2} & \text { (not XL2) } \\
\mathrm{E} 7=\mathrm{XL} 1 & \text { (the state of XL1) }
\end{array}
$$

Number	XL1	XL2
0	0	0
1	0	1
2	1	0
3	1	1

(a) Binary values of XL1 and XL2 for given decimal numbers.

E1	E2	E3	E4	E5	E6	E7	Number
1	1	1	1	1	1	0	0
0	0	1	1	0	0	0	1
0	1	1	0	1	1	1	2
0	1	1	1	1	0	1	3

(b) Truth table for light edges.

(c) Light edge definition.

Fig. 4.29 Diagram defining logic properties for Example 4.7
A logic circuit for performing the above functions is given in Fig. 4.30 where we assume the random number is available from XL1 and XL2.

The program for making this simulation will first use RNDGEN to generate a random number. The number so generated will lie between 0 and 1 . The output of the random number generator will be partioned as follows:

For $0 \leq$ output $<0.25 \longrightarrow$ Assign 0
For $0.25 \leq$ output $<0.50 \longrightarrow$ Assign 1
For $0.50 \leq$ output $<0.75 \longrightarrow$ Assign 2
For $0.75 \leq$ output $\leq 1.00 \longrightarrow$ Assign 3
The numbers $0,1,2$, and 3 will be represented in binary form to give the correct values for XL1 and XL2. Next the logic functions for E1 through E7 will be expressed in terms of CSMP functional logic blocks. Finally, the output will give the random binary number and indicate the state for each edge of the light.

The program given in Fig. 4.31 will accomplish the above tasks. More than 50% of the program statements are used to create a special form of output. Note that on the TIMER card, FINTIM is given as 15.0 and DELT specified as 0.5 . This means that 30 random numbers will be generated. Of course, the user has complete freedom to specify

Fig. 4.30 Logic circuit for Example 4.7.
FINTIM and DELT. In this example neither the PRINT nor PRTPLT features of CSMP were used since all desired output is obtained from conventional FORTRAN statements. An example of typical output is given in Fig. 4.32 where the random number, the binary representation, and the state of each light edge are given at the top of the page. This is followed by a bold print output of the decimal equivalent.

Example 4.8

The reset-set-toggle (RST) flip-flop in the CSMP functional blocks, as given in Table 4.2, can be used for simulating many standard digital functions. This example illustrates the use of the flip-flop in constructing and testing a two-bit up-down counter. (Modulo two.)

Several comments should first be made on logic design using CSMP. First the logic statements should be placed after a NOSORT card. Logic designs using flip-flops with feedback from the output states will form algebraic loops if run as SORT statements.

```
NOSORT
*****************************************************************************
* PART ONE - GENERATE RANDOM NUMBER *
***************************************************************************
        L = RNDGEN(9)
        XL2 = 0.0
        IF(L.GE.O.5) GO TO 13
        XLI = 0.0
        IF(L.GE.0.25) XL2 = 1.0
        GO TO 14
    13 XLI = 1.0
        IF(L.GE.0.75) XL2 = 1.0
    14 CONTINUE
******************************************************************************
* PART TWO - LOGIC STRUCTURE
```

 XL18AR = NOT(XLI)
 XL2BAR = NOT(XL2)
 EL = AND(XLIBAR,XL2BAR)
 E2 = IOR(XLI,XL2BAR)
 E3 = 1.0
 E4 = IOR(XLIBAR,XL2)
 E5 = E2
 E6 = XLIBAR
 E7 = XLI
 **

* PART THREE - WRITE OUT THE VALUES FDR L,XL1,XL2,El,E2,E3,E4,E5,E6,ET*

WRITE(6,3)
3 FORMATIIH1,1X,'RANDCM NUMBER XL1 XL2 EDGE1 EDGE2 EDGE3
\$EDGE4 EDGE5 EDGE6 EDGET')
WRITE(6,10) L,XL1,XL2,E1,E2,E3,E4,E5,E6,E7
10 FIGMMAT 3X,F10. 8,7X,F3.1,2X,F3.1,4X,F3.1,4X,F3.1,4X,F3.1.4X,F3.1,
\$4X,F3.1,4X,F3.1,4X,F3.1,/////////

* PART FOUR - SPECIAL WRITE STATEMENTS TO FORM DECIMAL NUMBER

IF(XL1.EQ.O.O.AND.XL2.EQ.O.0) GO TO 9
IFIXLI.EQ.1.0.AND.XL2.EQ.1.0I GO TO }
IF(XLI.EQ.O.O.AND.XL2BAR.EQ.O.O) GO TO 11
IF(XLI.EQ.1.O.ANO.XL2BAR.EQ.1.0) GO TO 12
9 WRITE(6,15)
* THIS FORMAT PRINTS A LERD
15 FORMAT(T34,12('X')/T34,12('X')/11(T34,'XX XX'/).
\$2(T34,'XXXXXXXXXXXXX'/1)
GO TO 25
11 WRITE(6,19)
* tHIS format prints a cNE
19 FORMAT(151/T40,'XX')'1
GO TO 25
12 WRITE(6,20)
* THIS FORMAT PRINTS a TWO
20 FORMAT(T34,12('X')/T34,12('X')/5(T44,*XX'/),T34,12('X')/
\$T34,12('X')/5(T34,'XX'/1,T34,12('X')/T34,12(*X')/I
GO TO 25
8 WRITE(6,17)
* THIS fORMAT PRINTS A ThREE
17 FORMAT(T34,12('X')/T34,12('X')/5(T44,'XX'/),T34,12(*X')/
\$T34,12(*X')/5(T44,*XX'/),T34,12(*X')/T34,12('X')/)
25 CONTINUE
TIMER FINTIM =15.0. DELT =0.5
END
STEP

```

Fig. 4.31 Program listing for NIXIE light indicator. (Example 4.7.)
\begin{tabular}{cccccccccc} 
RANOCM NUMBER & XL1 & XL2 & EDGE1 & EDGE2 & EDGE3 & EDGE4 & EDGES & EDGEG & EDGET \\
0.54687333 & 1.0 & 0.0 & 0.0 & 1.0 & 1.0 & 0.0 & 1.0 & 1.0 & 1.0
\end{tabular}
\begin{tabular}{|c|}
\hline \(\underset{X X X X X X X X X X X X X X X}{ }\) \\
\hline \(X X\) \\
\hline XX \\
\hline XX \\
\hline XX \\
\hline XX \\
\hline \(\mathrm{x} \times \mathrm{XXXXXXXXXXX}\) \\
\hline \(X X X X X X X X X X X X\) \\
\hline XX \\
\hline XX \\
\hline XX \\
\hline \(X X\) \\
\hline \(X X\) \\
\hline XXXXXXXXXXXXX \\
\hline XXXXXXXXXXXXX \\
\hline
\end{tabular}

Fig. 4.32 Typical program output for NIXIE light. (Example 4.7.)

Furthermore, the SORT algorithm will change the logic statements around so that the resulting simulation becomes nonsense. Second CSMP will go through the program statements twice at TIME \(=0\) even though integral functions are not used. This means that flip-flops will react to the two passes and will often give erroneous results. This problem can be avoided by starting pulses into the logic only after TIME \(=0\). Third, when integration is not used in CSMP, the program statements are executed every DELT units. Thus, users should specify a DELT on the TIMER card commensurate with the frequency desired for executing the program statements. In summary, the following guidelines are recommended when using CSMP to simulate logic containing flip-flops.

1 Always place logic statements after a NOSORT card.
2 Apply inputs to the logic after time \(=0\).
3 Use a DELT corresponding to the frequency desired for executing the program statements.

The logic diagram of an up-down counter using RST flip-flops is shown in Fig. 4.33. The counter counts up one unit for every \(\mathbf{X}_{1}\) pulse applied and counts down one unit for every \(\mathbf{X}_{2}\) pulse applied. Simultaneous pulses for \(\mathbf{X}_{1}\) and \(\mathbf{X}_{2}\) gives an undefined condition.

A CSMP program for simulating this counter is given in Fig. 4.34. The train of pulses applied to the system start at TIME \(=0.1\). Four pulses are first applied from \(X_{1}\) and followed by a continuous train of pulses from \(\mathbf{X}_{2}\). Note that variables Q1I and Q2I are introduced in the INITIAL section. This allows the states of the flip-flops to be defined so that statements for R1, S1, T1 (input to flip-flop 1) and R2, S2, T2 (input to flip-flop 2) can be written. Note also that all logic statements follow a NOSORT card and that


Fig. 4.33 Logic diagram for up-down counter of Example 4.8.
DELT \(=0.1\) is used on the TIMER card. If a DELT is not specified, the program uses FINTIM/100 and thereby executes the program statements at this value.

The output of the program is given in Fig. 4.35. Note that \(\mathbf{Q} 2\) is the low-order bit and Q1 is the high-order bit. The four input pulses for X 1 gives the binary count \(1,2,3,0\) (which is correct). One will also observe that X 2 causes the proper down-count.
```

INITIAL
Q1I = 0.0
Q2I = 0.0

* the following statements generate a train dF pulSES as input
**
CYNAMIC
NOSORT
XX1 = IMPULS(0.1,0.1)
YY: = IMPULS S 0.5,0.1)
X1 = XX1 - YY1
X2 = YY1

```

```

* THE FOLLDWINO STATEMENTS FORM AN UP-DOWN COUNTER
*

**

```
    QIIBAR \(=\) NOT(QII)
    Q2IBAR \(=\) NOT(Q2I)
    M1 = AND(Q1IBAR,Q2I)
    \(S 1=A N D\left(X_{1}, M 1\right)\)
    \(T 1=A N D(X 2, Q 2 I B A R)\)
    \(\mathrm{N} 1=A N D(Q 1 I, Q 2 I)\)
    \(R 1=A N D(X 1, N 1)\)
    \(R 2=A N D(X 2,02 I)\)
    \(S 2=T 1\)
    \(T 2=X 1\)
    Q1 \(=\) RST(R1,S1,T1)
    Q2 \(=\) RST(R2,S2,T2)
    Q1I = Q1
    Q2I \(=02\)
TIMER FINTIM \(=1.5\), DELT \(=0.1\), PRDEL \(=0.1\)
PRINT X1, X2, Q1, Q2
TITLE OUTPUT OF A MODULO TWO COUNTER EXAMPLE 4-8
END
STDP
ENCJOB

Fig. 4.34 CSMP program of the up-down counter of Example 4.8.
```

CUTPUT OF A MODULO TWO CDUNTER EXAMPLE 4-8

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline time & X 1 & & \(\times 2\) & & Q1 & & Q2 & \\
\hline 0.0 & 0.0 & & 0.0 & & 0.0 & & 0.0 & \\
\hline 1.0000E-01 & 1.0000 E & 00 & 0.0 & & 0.0 & & 1.0000 E & 00 \\
\hline 2. \(30005-01\) & 1.0000 E & 00 & 0.0 & & 1.0000 E & 00 & 0.0 & \\
\hline 3.0000E-01 & 1.0000 E & 00 & 0.0 & & 1.0000 E & 00 & 1.0000E & 00 \\
\hline \(4.00005-01\) & 1.0000E & 00 & 0.0 & & 0.0 & & 0.0 & \\
\hline \(5.0000 \mathrm{E}-01\) & 0.0 & & 1. CCOOE & 00 & 1.0000 E & 00 & 1.0000 E & 00 \\
\hline 6.00005-01 & 0.0 & & 1.0000 E & 00 & 1.0000 E & 00 & 0.0 & \\
\hline 7. COCOE-01 & 0.0 & & 1.0000 E & 00 & 0.0 & & 1.0000 E & 00 \\
\hline 8.0000E-01 & 0.0 & & 1.0000 E & 00 & 0.0 & & 0.0 & \\
\hline \(9.0000 E-01\) & 0.0 & & 1.0000 E & 00 & 1.0000 E & 00 & 1.0000E & 00 \\
\hline 1.00 COE 00 & 0.0 & & \(1 . \mathrm{COOOF}\) & 00 & 1.0000 E & 00 & 0.0 & \\
\hline 1.1000 E 00 & 0.0 & & 1.0000 E & 00 & 0.0 & & 1.0000E & 00 \\
\hline 1.? 2000 F 00 & 0.0 & & 1. DOCOE & 00 & 0.0 & & 0.0 & \\
\hline 1.3000500 & 0.0 & & 1.0000 E & 00 & 1.0000 E & 00 & 1.0000E & 00 \\
\hline 1.4000500 & 0.0 & & 1.0000 E & 00 & 1.0000E & 00 & 0.0 & \\
\hline 1.50COE 00 & 0.0 & & 1.00005 & 00 & 0.0 & & 1.0000E & 00 \\
\hline
\end{tabular}

Fig. 4.35 Output results of up-down counter simulation. (Example 4.8.)

\section*{REFERENCES}
1. Kuo, B.C., Automatic Control Systems. Englewood Cliffs, N. J.: Prentice-Hall, Inc. 1967.
2. Thaler, G. J., and Brown, R. G., Analysis and Design of Feedback Systems. New York: McGraw-Hill Book Company, 1960.
3. D'Azzo, J. J., and Houpis, C. H., Feedback Control System Analysis and Synthesis. New York: McGraw-Hill Book Company, 1966.
4. Dorf, R. C., Modern Control Systems. Reading, Mass.: Addison-Wesley Publishing Co., Inc., 1967.
5. Chirlian, P. M., Signals, Systems, and the Computer. New York and London: Intext Educational Publishers, 1973.
6. Dorf, R. C., Time Domain Analysis and Design of Control Systems. Reading, Mass.: Addison-Wesley Publishing Co., Inc., 1965.
7. Schultz, D. G., and Melsa, J. L., State Functions and Linear Control Systems. New York: McGraw-Hill Book Company, 1967.
8. Dransfield, Peter, Engineering Systems and Automatic Control. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1968.
9. Kuo, B. C., Analysis and Synthesis of Sampled Data Control Systems. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1963.
10. Cadzow, J. A., and Martens, H. R., Discrete-Time and Computer Control Systems. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1970.
11. Saucedo, R., and Schiring, E. E., Introduction to Continuous and Digital Control Systems. New York: The MacMillan Company, 1968.
12. Hyland, W. W., and Green, W. L., "Application of Real-Time Digital Automatic Gauge Control," ISA Transactions, Vol. 13, No. 4, 326-34, 1974.
13. Steiglitz, Kenneth, An Introduction to Discrete Systems. New York: John Wiley and Sons, 1974.
14. Smith, C. L., Digital Computer Process Control. New York and London: Intext Educational Publishers, 1969.
15. Wolf, J. and Green, W. L., "Application of a Minicomputer for Practical Realization of Predictive Compensation." ISA Transactions, Vol. 12, No. 3, 1973.
16. DeBolt, R. R., and Powell, B. E., "A Natural 3-Mode Controller Algorithm for D.D.C." ISA Journal Sept., 1966, pp. 43-7.

\section*{PROBLEMS}

1 The open-loop transfer function of a system is given by
\[
G(s)=\frac{150}{s(s+2)(s+10)}
\]
(a) Find the frequency response of the open-loop system over the range \(\omega_{\min }=0.1\) to \(\omega_{\max }=100.0\). Use the basic program given in Fig. 4.1 with NUM(1-6) and DEN(1-6) changed to appropriate values for this problem. Obtain 20 output points per decade. Add a statement to the program in Fig. 4.1 so that the output magnitude is expressed in decibels (dB). If VALUE is the output, this can be expressed in dB by
\[
\text { VALUEX }=20.0 * \text { ALOG10(VALUE) }
\]
(b) The \(G(s)\) given above is used in a unity-negative feedback system as shown below. Again, use the basic program of Fig. 4.1 to obtain the closed-loop frequency response. Express the output in dB and request PRTPLT of output and phase for \(.1 \leq \omega \leq 100.0\),


Fig. P-4.1b
(c) From the computer output of (a) and (b) give
(i) the phase margin and gain margin of the system;
(ii) the peak overshoot \(\left(M_{p}\right)\) of the closed-loop frequency response;
(iii) the frequency at which the peak response occurs ( \(\omega_{p}\) );
(iv) the approximate bandwidth of the closed-loop system; and, finally,
(v) is the closed-loop system stable?

Answers:
Part (a). At \(\omega=1.2589\), VALUEX \(=13.983\), PHASE \(=-129.36\)
Part (b). At \(\omega=2.5119\), VALUEX \(=5.2604\), PHASE \(=-24.841\)
Part (c). (i) Phase margin \(=10 \mathrm{deg}\), gain margin \(=4.06 \mathrm{~dB}\)
(ii) \(M_{p}=15.117 \mathrm{~dB}\), (iii) \(\omega_{p}=3.548\), (iv) 5.3 , (v) yes

2 A stereo amplifier has the following transfer function
\[
G(s)=\frac{4.05 \times 10^{8} s}{(s+30)(s+135,000)}
\]

Use the frequency response program given in Fig. 4.1 and determine the response of the amplifier for \(6.28 \leq \omega \leq 628,000\). Use log stepping with 10 increments per decade. Have the program plot dB magnitude and phase versus \(\omega\). What values are given by the PRTPLT for the low-frequency cutoff, high-frequency cutoff, bandwidth, and mid-frequency gain?
Answers:

> Low frequency cutoff \(\doteq 31.5\) radians \(/ \mathrm{sec}\)
> High frequency cutoff \(\doteq 1.27 \times 10^{5} \mathrm{radians} / \mathrm{sec}\)
> Bandwidth \(\doteq 1.27 \times 10^{5} \mathrm{radians} / \mathrm{sec}\)
> Mid-frequency gain \(\doteq 69.5 \mathrm{~dB}\)

3 Make the necessary modifications to the program in Fig. 4.1 in order to find the frequency response of \(V_{o}(s) / V_{I}(s)\) for the network given below. Use the PRTPLT statement to list the dB magnitude and phase versus \(\omega\) ( \(\omega\) in log steps, 10 steps/per decade) over the range \(0.1 \leq \omega \leq 30,000\). Hint: the transfer function is given by


Fig. P-4.3
\[
\frac{V_{o}(s)}{V_{i}(s)}=\frac{\frac{1}{L C}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
\]

Answer:
\[
\text { At } \omega=1995.2, V_{o}(\omega)=0.638 \mathrm{~dB}, \text { Phase }=-20.09^{\circ}
\]

4 Consider the multiple-element mechanical system shown in Fig. P-4.4. The differential equations describing this system are
\[
\begin{gathered}
-B_{3} \frac{d x_{1}}{d t}+\left(M_{2} \frac{d^{2} x_{2}}{d t^{2}}+\left(B_{2}+B_{3}\right) \frac{d x_{2}}{d t}+K_{2} x_{2}\right)=f(t) \\
M_{1} \frac{d^{2} x_{1}}{d t^{2}}+\left(B_{1}+B_{3}\right) \frac{d x_{1}}{d t}+K_{1} x_{1}-B_{3} \frac{d x_{2}}{d t}=0
\end{gathered}
\]


Fig. P-4.4
By assuming zero initial conditions, taking the Laplace transform, and solving the simultaneous equations one finds
\[
\frac{X_{1}(s)}{F(s)}=\frac{s B_{3}}{C_{4} s^{4}+C_{3} s^{3}+C_{2} s^{2}+C_{1} s+C_{0}}
\]
where: \(C_{4}=M_{1} M_{2}\)
\[
\begin{aligned}
& C_{3}=M_{1}\left(B_{2}+B_{3}\right)+M_{2}\left(B_{1}+B_{3}\right) \\
& C_{2}=M_{2} K_{1}+M_{1} K_{2}+B_{1}\left(B_{2}+B_{3}\right)+B_{2} B_{3} \\
& C_{1}=K_{1}\left(B_{2}+B_{3}\right)+K_{2}\left(B_{1}+B_{3}\right) \\
& C_{0}=K_{1} K_{2}
\end{aligned}
\]

Let \(M_{1}=M_{2}=K_{1}=K_{2}=B_{3}=1.0\), and \(B_{1}=B_{2}=0.5\). Find the frequency response of the transfer function, \(X_{1}(s) / F(s)\), over the relevant range of \(\omega\). Solve this problem by making appropriate changes of the program in Fig. 4.1.
Answers:
\[
\text { At } \omega=1.0, \text { magnitude }=-1.938 \mathrm{~dB}, \text { phase }=-90^{\circ}
\]

5 A particular process-transfer function is given by \({ }^{16}\)
\[
T(s)=\frac{1.25\left(s^{2}+0.345 s+0.32\right) e^{-0.5 s}}{(s+1)(s+0.2)^{2}}
\]

Find the frequency response over the range \(.001 \leq \omega \leq 10\) by making appropriate changes in the program of Fig. 4.1. Use log stepping for \(\omega\) with 16 steps per decade. What is the phase margin and gain margin?
Answer:
Phase margin \(=62^{\circ}\), gain margin \(=0.677\) absolute
6 The transfer function of a particular band-reject filter is given by
\[
G(s)=\frac{s^{4}+1.6 \times 10^{3} s^{3}+8.8 \times 10^{5} s^{2}+1.92 \times 10^{8} s+1.44 \times 10^{10}}{s^{4}+1.204 \times 10^{4} s^{3}+3.648 \times 10^{7} s^{2}+1.4448 \times 10^{9} s+1.44 \times 10^{10}}
\]

Find the frequency response of this filter over the range \(1 \leq \omega \leq 100,000\). Use log stepping for \(\omega\) with 10 steps per decade. PRTPLT the dB magnitude of the filter response. What band of frequencies are rejected by this filter?

Answer:

\section*{Approximately 14 to 8500 radians/sec}

7 A signal is given by
\[
y(t)=10.0 * \operatorname{SIN}(10.0 * \text { TIME })+1.1 * \operatorname{SIN}(350.0 * \text { TIME })
\]

Find the response of the filter in Prob. 6 to this signal over the time interval \(0 \leq\) TIME \(\leq 1.4\) with OUTDEL \(=0.014\). Use the transfer function macro given in Example 3.12 in developing your program. Comment on the filter response for this \(y(t)\).
Answer:
For \(\omega=350\), signal is attenuated by 40 dB
8 A pulse \(r(t)\) defined by
\[
\begin{array}{ll}
r(t)=1 & 0.0 \leq t \leq 0.6 \\
r(t)=0 & \text { all other } t
\end{array}
\]
is applied to a linear, time-invariant, minimum-phase system. Data for the pulse response are given below.
\begin{tabular}{cccc} 
Time & Response & Time & Response \\
\hline 0.000 & 0.000 & 0.645 & 0.5092 \\
0.045 & 0.2899 & 0.675 & 0.3773 \\
0.075 & 0.4221 & 0.720 & 0.2405 \\
0.120 & 0.5590 & 0.765 & 0.1534 \\
0.165 & 0.6464 & 0.855 & 0.0624 \\
0.255 & 0.7380 & 0.915 & 0.0342 \\
0.330 & 0.7710 & 0.975 & 0.0188 \\
0.390 & 0.7838 & 1.060 & 0.0076 \\
0.480 & 0.7934 & 1.200 & 0.0002 \\
0.600 & 0.7980 & & \\
\hline
\end{tabular}

Find the frequency response of this system. Hint: Use the array-integrator frequency response program as shown in Fig. 4.8. Use the data above to define the AFGEN function. An approximate frequency range should start at \(\omega_{\min }=0.1\) with NUMDEC (number of decades) \(=4\) and XDECAD (number of points per decade) \(=10\). Dimensioned variables in Fig. 4.8 should be changed from 21 to 41. Allow approximately 3 min of CPU time on a 360/65 to run this problem.

Answer:
At \(\omega=19.95\) radians \(/ \mathrm{sec}\), magnitude \(=-8.85 \mathrm{~dB}\), phase \(=-62.9^{\circ}\)
9 Data given in Prob. 8 were measured from the system configuration of Fig. P-4.9.


Fig. P-4.9
(a) From the frequency response of Prob. 8, determine a reasonable model for \(G(s)\).
(b) Use the \(G(s)\) determined from part (a) above in the configuration of Fig. P-4.9. Apply a pulse input as shown in this diagram and use CSMP to find the output response. Compare this response to the data given in Prob. 8 to determine the validity of your model. An introductory background in feedback systems is necessary for working this problem.

Answers:
\[
\text { (a) } G(s)=\frac{8}{(s+2)}
\]

10 The transfer function of a system is given by
\[
\frac{C(s)}{R(s)}=\frac{300 s^{2}+720 s+132}{s^{5}+22 s^{4}+137 s^{3}+496 s^{2}+725 s+132}
\]
(a) Express this transfer function in integration form as shown in Fig. 4.11.
(b) Write a set of state variable equations from your diagram by using the output of each integration as a state.
(c) Use the equations in part (b) and write a CSMP program for finding \(c(t)\) (the output) when \(r(t)\) (the input) is a unit step. Hint: Use variable-step integration with OUTDEL \(=0.12\) and FINITIM \(=6.0\).
Answer:
\[
\text { (c) At TIME }=0.84, c(t)=1.1923
\]

11 The transfer function of a system is given by
\[
\frac{C(s)}{R(s)}=\frac{150}{s^{3}+12 s^{2}+20 s+150}
\]
(a) Express this transfer function in integration form as shown in Fig. 4.10.
(b) Write a set of state variable equations from your diagram by using the output of each integrator as a state.
(c) Use the equations in part (b) and write a CSMP program for finding \(c(t)\) (the output) when \(r(t)\) (the input) is a unit step. Hint: Use variable-step integration with OUTDEL \(=0.08\), FINTIM \(=4.0\).

Answer:
\[
\text { At TIME }=1.12, c(t)=1.3443
\]

12 A signal given by
\[
f(t)=\left(4 * e^{-0.1 t}\right)+\sin (1.5 t) \mathrm{sec}
\]
is applied to the input of a sample and hold system as illustrated in Fig. P-4.12. The ideal sampler closes every \(T=0.4 \mathrm{sec}\). Write a CSMP program which will PRTPLT \(f(t), f^{*}(t)\), and \(x(t)\). Use an OUTDEL of 0.1 sec and a FINTIM of 5.0 sec .


Fig. P-4.12
Answer:
At TIME \(=2.1, x(t)=3.416\)
13 The model of a continuous process is given in Fig. P-4.13.


Fig. P-4.13
(a) If \(r(t)\), the input, is a unit step, write a CSMP program which gives the output response, \(c(t)\). Assume all initial conditions are zero.
(b) Remove the segment of the system between \(x\) and \(y\) in Fig. P-4. 13 and replace it by a sample and hold as given in Prob. 12. This replacement is representative of what happens when a digital computer is used to close the process loop. Develop a CSMP simulation for this case and determine the unit-step response for \(T=0.08,0.32\). A fixed-step integration should be used for this case with DELT being a sub-multiple of \(T\).

\section*{Answers:}
(a) At TIME \(=0.96, c(t)=0.50984\)
(b) At TIME \(=1.04, \mathrm{~T}=0.08, c(t)=0.65624\) At TIME \(=1.04, \mathrm{~T}=0.32, c(t)=0.47167\) Both for METHOD RKSFX, DELT \(=0.008\)

14 The system diagram of a proposed direct digital control system using a PID control algorithm is shown in Fig. P-4.14. The digital control portion can be expressed in a


Fig. P-4. 14

PROCEDURE algorithm by
PROCEDURE SUM = PID(A1,SETPT,T,K,TI,TD,ESTAR,ESTAR1,INTG1) IF(A1.NE.1.0) GO TO 10
IF(KEEP.NE.1.0) GO TO 10
EPROP = ESTAR
EDERIV \(=\) TD*(1.0/T) \(*(\) ESTAR - ESTAR1)
INTG \(=\) INTG1 + T*ESTAR
EINTG \(=(1.0 / \mathrm{TI}) *\) INTG
SUM \(=\mathrm{K} *(\) EPROP + EDERIV + EINTG)
ESTAR1 = ESTAR
INTG1 = INTG
10 CONTINUE
ENDPRO
Find the unit-step response of this system using the above control algorithm with \(\mathrm{T}=0.02, \mathrm{~K}=9.6, \mathrm{TI}=1.67, \mathrm{TD}=0.15, \mathrm{INTG} 1=0.0\), and \(\mathrm{ESTAR} 1=0.0\). Use RKSFX with DELT \(=0.02\), FINTIM \(=10.0\), OUTDEL \(=0.2\). Give the PRTPLT of OUT. A review of Example 4.6 may be helpful in working this problem.

Answer:
\[
\text { At } \mathrm{TIME}=0.8, \text { OUT }=1.1431
\]

15 A cascade form of a PID controller for the system in Prob. 14 is given in Fig. P-4.15. \({ }^{(16)}\) Implement this controller in discrete form using a PROCEDURE function. Parameters of the controller are \(K=-9.6\), Sampling Interval \(=0.02\), \(\mathrm{TI}=1.67\), \(\mathrm{TD}=0.15\), all initial conditions are zero. Use RKSFX fixed-step integration, FINTIM \(=10.0\), DELT \(=0.02\), OUTDEL \(=0.2\). Give the PRTPLT of OUT.


Fig. P-4.15

Answer:
\[
\text { At } \operatorname{TIME}=1.2, \operatorname{out}(t)=0.94849
\]

16 Consider the system shown in Fig. P-4.16. It has been determined that a suitable controller, \(D(z)\), for this system with a sampling time of \(T=0.5\) is
\[
D(z)=\frac{A 0+\mathrm{A} 1 * z^{-1}}{1+B 1 * z^{-1}}=\frac{\left(0.25-0.24 * z^{-1}\right)}{\left(1.0-0.99 * z^{-1}\right)}
\]


Fig. P-4.16
Use the method given in Example 4.4 for simulating the above system. Let the input, \(R\), be a unit step. Give the PRTPLT of \(C\) and the output of the zero-order hold. Let FINTIM \(=10.0\), OUTDEL \(=0.15\), DELT \(=0.025\), METHOD RKSFX .

Answers:
\[
\text { At } \operatorname{TIME}=4.2, \mathrm{ZOH}=-0.026969, c(t)=1.1697
\]

17 The diagram for a digital control system is given in Fig. 4.21. Find the unit-step response of the system when the controller is expressed as a parallel realization. Use the PROCEDURE approach. See Example 4.5 for further details.

Answers:
(For \(T=0.1\), DELT \(=0.05\), OUTDEL \(=0.1\), METHOD RKSFX)
At TIME \(=1.4\), output \(=1.1532\)
18 Although the subject was not discussed in the text, CSMP can be used for simulating and finding the response of digital filters. For example, the exponential filter can be expressed as
\[
\frac{Y(z)}{X(z)}=\frac{(1-\alpha) z}{z-\alpha}
\]
where: \(\quad z=\) the \(z\)-transform variable
\[
\alpha=\mathrm{a} \text { filter parameter }
\]
\[
Y(z)=z \text {-transform of the filter output }
\]
\[
X(z)=z \text {-transform of the filter input }
\]

A digital algorithm for this filter is
\[
Y(n T)=(1-\alpha) X(n T)+\alpha Y[(n-1) T]
\]
where: \(\quad Y(n T)=n\)th value of the filter output
\[
\begin{aligned}
Y((n-1) T) & =(n-1) \text { st value of the filter output } \\
X(n T) & =n \text {th value of the filter input } \\
T & =\text { filter sampling time }
\end{aligned}
\]

The frequency response of the discrete filter for several values of \(\alpha\) is shown in Fig. P-4.18(a).

Let an input signal to the filter be given by
\[
y(t)=\underset{\text { term A }}{\sin (0.05 t)}+\underset{\text { term B }}{0.5 \sin (0.44 t)}
\]

We wish to design a filter which will attenuate term \(B\) by 15 dB but pass term \(A\). To achieve this we select \(\alpha=0.9\) and \(T=1.43 \mathrm{sec}\). The program in Fig. P-4.18(b) can be used to simulate this filter. Run this program and observe the output. Comment on your results.

Answer:
\[
\text { At TIME }=80.08, x(t)=-1.0729, y(t)=-0.21010
\]


Fig. P-4.18(a) Magnitude response of the digital exponential filter.
```

PROBLEM INPUT STATEMENTS
PARAM ALPHA =0.9, Y1 =0.0

* SAMPLING TIME = 1.43
OYNAMIC
NOSORT
x = SIN{0.05*TIME} * 0.5*SIN{0.44*TIME)
Y = (1.0 - ALPHA)*X + ALPHA*Y1
Y1 = Y
* Wren usING thIS ffggram be sure that delt on the
* TIMER CARD IS SET EOUAL TO THE SANPLING TIME
* MAKE SURE YI IS UPCATED AS SHOWN
TIMER FINTIM = 250.0, OUTDEL = 2.86, DELT = 1.43
PRTPLT }X,
LABEL ILLUSTRATICN OF EXPONENTIAL FILTER, PROB 4-18
END
STOP
encjce

```

Fig. P-4.18(b) Program listing for Problem 4.18.

19 The algorithm of a third-order discrete Butterworth filter is given by
\[
\begin{aligned}
Y(n)= & 0.0039 * X(n)+0.0116 * X(n-1)+0.0116 * X(n-2)+0.0039 * X(n-3) \\
& +2.3051 * Y(n-1)-1.8317 * Y(n-2)+0.4957 * Y(n-3)
\end{aligned}
\]
where the coefficients have been selected to give a bandwidth of \(\pi / 9 T\). Let the input to the filter be identical to the input signal given in Prob. 18. Use a sampling time of \(T=2 \mathrm{sec}\). This should attenuate term B by 30 dB . Write a CSMP program to simulate this filter. Use a FINTIM \(=125\), DELT \(=2.0\), and OUTDEL \(=2.0\). Compare the results to Prob. 18.
\[
\text { Answer: At TIME }=68, x(t)=0.29501, y(t)=-0.14972
\]

\section*{5}

\section*{CSMP III}

The preceding chapters specifically dealt with the form of CSMP called System/360 Continuous System Modeling Program (S/360 CSMP). An extension of S/360 CSMP called CSMP III is available. It incorporates the following major changes and improvements.

1 Additional output versatility including extensive \(x-y\) plotting capability is available.
2 Several new functional blocks have been added.
3 Double precision calculations can be used to improve accuracy.
4 The model size has been increased.
There is very little difference in using the two forms of CSMP. Most programs written for S/360 CSMP are completely compatible with CSMP III and will run without modifications. The following is a brief check list of items that should be considered when running a program on a different form of CSMP.

1 The \(\mathrm{S} / 360\) CSMP PRTPLT statement is treated as an OUTPUT instruction in CSMP III. The OUTPUT statement cannot be used in S/360 CSMP.
2 Subscripted variables are allowed in CSMP III PRINT and OUTPUT statements, but are not permitted in any S/360 CSMP output instructions.

3 The S/360 CSMP CONTINUE statement is equivalent to the END CONTINUE instruction used in CSMP III.
4 In S/360 CSMP data cards are placed between the labels DATA and ENDDATA. The equivalent labels in CSMP III are INPUT and ENDINPUT.

5 The use of the array form of the INTGRL function is considerably different in the two forms of CSMP.

6 There are several function blocks that can only be used in CSMP III. They are listed in this chapter and in Appendix I.

7 The JCL (job control language) cards are different.
It is the intent of this chapter to point out the major differences in using the two forms of the CSMP program and to describe the additional features of CSMP III. This material does not contain a detailed description of all the features and capabilities of CSMP III. The reader should refer to the IBM manual \({ }^{(1)}\) for additional information.

This chapter is divided into three sections: output, functions, and control statements. The greatest difference between the two forms of the CSMP program exists in output capability. Output capabilities are covered in the first section. The second section contains descriptions of the additional CSMP III functions. A few control statements are slightly different in CSMP III. This is covered in the last section.

\section*{Output Statements}

Additional output statements are provided in CSMP III as well as methods for controlling the format of the output. The beginning user should start with the standard output statements and gradually work up to using the various available options.

The four major output statements are PRINT, OUTPUT, PREPARE, and RANGE: Each of these statements can be used alone or with auxiliary instructions to alter the standard output format. FORTRAN output capability is available in both forms of CSMP.

\section*{PRINT}

The PRINT statement is used exactly as in S/360 CSMP. The changes listed below provide additional flexibility.

1 Up to 55 variables can be listed on a PRINT card.
2 The PRINT statement can be used for subscripted variables. For example, the following card will print the values of \(\mathrm{A}, \mathrm{B}, \mathrm{X}(1), \mathrm{Y}(6), \mathrm{Y}(7), \mathrm{Y}(8)\), and \(\mathrm{Y}(9)\).

> PRINT A, B, X(1), Y(6-9)

\section*{TITLE}

As in S/360 CSMP, the TITLE statement is used for specifying the heading of PRINT output. Each TITLE statement, which can be continued to one addi-
tional card, provides up to 120 characters in one line of output. A maximum of six cards can be included in a program. This means that three TITLE statements, each containing one continuation card; six TITLE cards with no continuations; or an equivalent number of cards can be used.

For example, the following two TITLE statements provide a total of two lines of heading for PRINT output.
TITLE SIMULATION OF THE CONTROL SYSTEM FOR NATURAL GAS... TRANSMISSION
TITLE ALL UNITS ARE GIVEN IN THE METRIC SYSTEM

\section*{RERUN}

The RERUN card is used to print in the heading the values of listed parameters. For example, when several runs are made using the CALL RERUN statement, the current values of \(X, Y\), and \(Z\) are printed as part of the heading by using the following statement.

\author{
RERUN X, Y, Z
}

\section*{PRINTPAGE}

This statement allows the user to specify the size of pages used for PRINT output. If the size is not specified by the HEIGHT and WIDTH variables, the height will be the standard sixty lines and the width will be 132 characters. An example of a PRINTPAGE statement is shown below.
\[
\text { PRINTPAGE HEIGHT }=50, \text { WIDTH }=104
\]

This instruction will provide a page 50 lines high and 104 characters wide. Page width determines the maximum number of variables that can be listed in column form as summarized below.
\begin{tabular}{cc} 
Page Width & \begin{tabular}{c} 
Maximum Number of Output \\
Variables in Column Form
\end{tabular} \\
\hline 132 & 9 \\
120 & 8 \\
104 & 7 \\
91 & 6 \\
78 & 5 \\
\hline
\end{tabular}

\section*{OUTPUT}

The OUTPUT statement provides an additional means for both printing and plotting output. It is used in place of the S/360 CSMP PRTPLT statement. If PRTPLT is used in CSMP III, it is automatically treated as an OUTPUT state-
ment. Up to fifty-five variables can be included in one statement. An example of a valid OUTPUT card is shown below.

OUTPUT X, W, T(3), Q(3-12), P
The output format is automatically determined by the number of variables that are listed on the OUTPUT statement. For five or fewer variables, the output is both plotted and printed on the same plot. When there are more than five variables the output is only printed. The following example illustrates the use of the OUTPUT statement with the three different formats.

\section*{Example 5.1}

Consider the problem of calculating the steady-state error of an accelerometer for a sinusoidal input of frequency \(\omega\). Fig. 5.1 shows the basic elements of an accelerometer.

\[
\begin{aligned}
& \zeta=\frac{C}{2} \sqrt{K M} \\
& \omega_{N}=\sqrt{\frac{K}{M}}
\end{aligned}
\]

Fig. 5.1 Elements of an accelerometer.
The steady-state percent error is given by the following expression
\[
\begin{equation*}
\operatorname{ERROR}=\frac{100}{\left[\left(1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right)^{2}+\left(2 \zeta \frac{\omega}{\omega_{n}}\right)^{2}\right]^{1 / 2}}-100 \tag{5.1}
\end{equation*}
\]

\section*{Symbols used in program}
where \(\zeta=\) damping factor
\[
\begin{gathered}
\frac{\omega}{\omega_{n}}=\begin{array}{l}
\text { ratio of exciting } \\
\\
\\
\\
\text { frequency to natural }
\end{array} \\
\text { frequey }
\end{gathered}
\]

The program shown in Fig. 5.2 calculates the percent error as a function of frequency ratio and damping factor. The independent variable is the frequency ratio (FREQ) and each subscripted variable (ERROR(I)) represents the error for a particular value of \(\zeta\). The ERROR(I) variable corresponds to a damping factor of \(I / 20\). The printing format depends on the number of variables listed in the OUTPUT statement. For 1-5 variables, both a printer-plot and tabular listing are given on the same page. The plot for each variable is independently scaled and identified by a unique symbol. The output for the following instruction containing four variables is given in Fig. 5.3.

\section*{OUTPUT ERROR(1), ERROR(8-9), ERROR(14)}

As with the S/360 CSMP PRTPLT instruction, multiple OUTPUT statements can be used to provide separate plots. For example, the following three cards will provide three separate plots of \(\mathbf{X}, \mathrm{Y}\), and Z .

OUTPUT X
OUTPUT Y
OUTPUT Z
```

LABEL STEAOY-STATE ERROR OF AN ACCELEROMETER AS A FUNCTION OF FREQUE...
NCY AND CAMPING FACTOR
RENAME TIME = FREQ
FIXED I
STORAGE ERRUR(20)
NOSORT
DO 1 I = 1,20
ZETA = FLOAT(I)/20.0
1 ERROR(I) = 100.0/SQRT((1.0 - FREQ*FREQ)**2 + (2.0*ZETA*FREQ)**2)
- 1CC.0
OUTPUT ERRGR(1), ERROR(8-9), ERFOR(14)
LABEL TYPICAL OUTPUT FOR 1-5 VARIABLES
OUTPUT ERROR(4), ERROR(6-10)
LABEL TYPICAL OUTPUT FOR 6-9 VARIABLES
OUTPUT ERROR(1-20)
LABEL TYPICAL OUTPUT FOR 10-55 VARIABLES
TIMER FINTIM = 1.0, OUTDEL = 0.02
END
STOP
ENDJOB

```

Fig. 5.2 Program to calculate the steady-state error of an accelerometer.

In S/360 CSMP, three separate PRTPLT cards or the following single statement will also give three separate plots.

PRTPLT X, Y, Z
For 6-9 variables, a column listing is used. It is similar to the format used by the PRINT statement. The output from the following instruction containing six variables is given in Fig. 5.4.

\section*{OUTPUT ERROR(4), ERROR(6-10)}

For \(10-55\) variables a row format is used. The names of the variables are listed in the left column and each successive column contains the magnitude of the variables for increasing values of the independent variable (TIME). Figure 5.5 shows an example of this type of output for the following statement.

\section*{OUTPUT ERROR(1-20)}

Similar to the PRTPLT instruction, the print interval for the OUTPUT statement is specified by OUTDEL.

\section*{LABEL}

This statement specifies the heading that appears at the top of each page of OUTPUT printout. Only one continuation card is allowed for each LABEL instruction. LABEL statements provide headings for all OUTPUT instructions that follow the LABEL cards. LABEL instructions that follow an OUTPUT statement refer only to the statement they follow. Examples are shown by the program of Fig. 5.2 and outputs in Figs. 5.3, 5.4, and 5.5. A typical LABEL statement is shown below.

LABEL SIMULATION OF THE INDUSTRIAL DYNAMICS OF A ... MANUFACTURING PLANT


Fig. 5.3 Typical printer-plot from OUTPUT statement for 1-5
variables.

STEADY-STATE ERROR OF AN ACCELEROMETER AS A FUNCTION OF FREQUENCY AND DAMPING FACTOR TYPICAL OUTPUT FOR \(6 \mathbf{- 9}\) VARIABLES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline FDEO & ERRJR(4) & ERFOR(6) & ERFOR(7) & ERROR(8) & ERROR(9) & ERROR(10 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 2.0000)E-02 & 3.68042E-02 & 3.27911E-J2 & 3.01971E-02 & 2.71912E-02 & 2.37885E-02 & \(1.99890 \mathrm{E}-1\) \\
\hline \(4.00000 \mathrm{E}-02\) & 0.14738 & 0.13132 & 0.12088 & 0.10884 & \(9.51996 \mathrm{E}-02\) & 7.99561 E \\
\hline 6.00000E-02 & 0.33218 & 0.29585 & 0.27225 & 0.24504 & 0.21423 & 0.17982 \\
\hline \(8.00000 E-02\) & 0.59196 & 0.52689 & 0.48465 & 0.43597 & 0.38091 & 0.31946 \\
\hline 0.10000 & 0.92775 & 0.82510 & 0.75854 & 0.68192 & 0.59528 & 0.49870 \\
\hline 0.12000 & 1.3409 & 1.1914 & 1.0945 & 0.98314 & 0.85732 & 0.71727 \\
\hline 0.14000 & 1.8332 & 1.6268 & 1.4934 & 1.3400 & 1.1671 & 0.97485 \\
\hline 0.16000 & 2.4066 & 2.1328 & 1.9559 & 1.7531 & 1.5246 & 1.2711 \\
\hline 0.18000 & 3.0636 & 2.7107 & 2.4832 & 2.2227 & 1.9298 & 1.6053 \\
\hline 0.20000 & 3.8068 & 3.3623 & 3.0763 & 2.7494 & 2.3825 & 1.9771 \\
\hline 0.22000 & 4.6397 & 4.0895 & 3.7365 & 3.3336 & 2.8827 & 2.3856 \\
\hline 0.24000 & 5.5657 & 4.8946 & 4.4651 & 3. 9761 & 3.4300 & 2.8298 \\
\hline 0.26000 & 6.5891 & 5.7798 & 5.2635 & 4.6771 & 4.0242 & 3.3088 \\
\hline 0.28000 & 7.7144 & 6.7478 & 6.1333 & 5.4372 & 4.6647 & 3.8210 \\
\hline 0.30000 & 8.9469 & 7.8014 & 7.0759 & 6.2568 & 5.3507 & 4.3650 \\
\hline 0.32000 & 10.292 & 8.9437 & 8.0932 & 7.1360 & 6.0815 & 4.9389 \\
\hline 0.34000 & 11.757 & 10.178 & 9.1865 & 8.0751 & 6.8557 & 5.5405 \\
\hline 0.36000 & 13.349 & 11.507 & 10.358 & 9.0739 & 7.6719 & 6.1671 \\
\hline 0.38000 & 15.075 & 12.936 & 11.608 & 10.132 & 8.5281 & 6.8159 \\
\hline 0.40000 & 16.945 & 14.467 & 12.938 & 11.249 & 9.4220 & 7.4834 \\
\hline 0.42000 & 18.968 & 16.105 & 14.351 & 12.423 & 10.351 & 8.1655 \\
\hline 0.44000 & 21.156 & 17.853 & 15.846 & 13.652 & 11.311 & 8.8578 \\
\hline 0.46000 & 23.520 & 19.715 & 17.423 & 14.935 & 12.298 & 9.5549 \\
\hline 0.48000 & 26.073 & 21.696 & 19.083 & 16.268 & 13.307 & 10.251 \\
\hline 0.50000 & 28.831 & 23.797 & 20.824 & 17.647 & 14.332 & 10.940 \\
\hline 0.52000 & 31.810 & 26.022 & 22.645 & 19.067 & 15.367 & 11.614 \\
\hline 0.54000 & 35.026 & 28.373 & 24.542 & 20.521 & 16.403 & 12.265 \\
\hline 0.56000 & 38.499 & 30.851 & 26.510 & 22.001 & 17.431 & 12.885 \\
\hline 0.58000 & 42.250 & 33.456 & 28.544 & 23.498 & 18.441 & 13.463 \\
\hline 0.60000 & 46.301 & 36.184 & 30.632 & 25.000 & 19.421 & 13.990 \\
\hline 0.62000 & 50.676 & 39.030 & 32.766 & 26.493 & 20.357 & 14.455 \\
\hline 0.64000 & 55.397 & 41.986 & 34.929 & 27.962 & 21.237 & 14.846 \\
\hline 0.66000 & 60.490 & 45.040 & 37.103 & 29.387 & 22.044 & 15.152 \\
\hline 0.68000 & 65.977 & 48.172 & 39.267 & 30.750 & 22.761 & 15.361 \\
\hline 0.70000 & 71.878 & 51.359 & 41.393 & 32.025 & 23.372 & 15.462 \\
\hline 0.72000 & 78.207 & 54.568 & 43.451 & 33.190 & 23.859 & 15.444 \\
\hline 0.74000 & 84.969 & 57.759 & 45.403 & 34.216 & 24.205 & 15.296 \\
\hline 0.76000 & 92.152 & 60.881 & 47.211 & 35.075 & 24.391 & 15.009 \\
\hline 0.78000 & 99.723 & 63.874 & 48.829 & 35.741 & 24.403 & 14.576 \\
\hline 0.80000 & 107.61 & 66.667 & 50.210 & 36.184 & 24.226 & 13.990 \\
\hline 0.82000 & 115.71 & 69.179 & 51.307 & 36.379 & 23.848 & 13.248 \\
\hline 0.84000 & 123.85 & 71.326 & 52.072 & 36.303 & 23.259 & 12.347 \\
\hline 0.86000 & 131.78 & 73.016 & 52.461 & 35.938 & 22.455 & 11.289 \\
\hline 0.88000 & 139.18 & 74.162 & 52.436 & 35.270 & 21.432 & 10.077 \\
\hline 0.90000 & 145.66 & 74.688 & 51.969 & 34.292 & 20.194 & 8.7149 \\
\hline 0.92000 & 150.77 & 74.529 & 51.043 & 33.004 & 18.747 & 7.2117 \\
\hline 0.94000 & 154.06 & 73.645 & 49.652 & 31.414 & 17.100 & 5.5766 \\
\hline 0.96000 & 155.15 & 72.025 & 47.807 & 29.535 & 15.267 & 3.8210 \\
\hline 0.98000 & 153.81 & 69.684 & 45.530 & 27.389 & 13.265 & 1.9576 \\
\hline 1.0000 & 150.00 & 66.667 & 42.857 & 25.000 & 11.111 & 0.0 \\
\hline
\end{tabular}

Fig. 5.4 Typical print-out from OUTPUT statement for 6-9 variables.

Steady-state error of an accelerometer as a function of frequency and oamping factor TYPICAL OUTPUT FOR \(10-55\) VARIABLES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline FREO & 0.0 & 2.00000E-02 & 4.00000E-02 & \(6.00000 E-02\) & 8.00000E-02 & 0.10000 & 0.12000 & 0.14000 & 0.16000 \\
\hline ERRTR (1) & 0.0 & \(3.98102 \mathrm{E}-02\) & 0.15944 & 0.35947 & 0.64085 & 1.0049 & 1.4535 & 1.9888 & 2.6134 \\
\hline ERROR (2) & 0.0 & \(3.91998 \mathrm{E}-02\) & 0.15703 & 0.35400 & 0.63107 & 0.98949 & 1.4310 & 1.9576 & 2.5719 \\
\hline ERROR (3) & 0.0 & 3.82080E-02 & 0.15302 & 0.34492 & 0.61476 & 0.96375 & 1.3934 & 1.9057 & 2.5029 \\
\hline ERROR (4) & 0.0 & \(3.68042 \mathrm{E}-02\) & 0.14738 & 0.33218 & 0.59196 & 0.92775 & 1.3409 & 1.8332 & 2.4066 \\
\hline ERROR (5) & 0.0 & 3.50037E-02 & 0.14015 & 0.31583 & 0.56265 & 0.88152 & 1.2735 & 1.7402 & 2.2831 \\
\hline ERROR (6) & 0.0 & \(3.27911 E-02\) & 0.13132 & 0.29585 & 0.52689 & 0.82510 & 1.1914 & 1.6268 & 2.1328 \\
\hline ERROR (7) & 0.0 & \(3.01971 \mathrm{E}-02\) & 0.12088 & 0.27225 & 0.48465 & 0.75854 & 1.0945 & 1.4934 & 1.9559 \\
\hline ERROR (8) & 0.0 & \(2.71912 \mathrm{E}-02\) & 0.10884 & 0.24564 & 0.43597 & 0.68192 & 0.98314 & 1.3400 & 1.7531 \\
\hline ERROR (9) & 0.0 & \(2.37885 \mathrm{E}-02\) & \(9.51996 E-02\) & 0.21423 & 0.38091 & 0.59528 & 0.85732 & 1.1671 & 1.5246 \\
\hline ERRDR (10) & 0.0 & \(1.99890 \mathrm{E}-02\) & 7.99561E-02 & 0.17982 & 0.31946 & 0.49870 & 0.71727 & 0.97485 & 1.2711 \\
\hline ERROR (11) & 0.0 & 1.57776E-02 & 6.31256E-02 & 0.14185 & 0.25169 & 0.39229 & 0.56314 & 0.76364 & 0.99303 \\
\hline ERROR (12) & 0.0 & 1.11847E-02 & \(4.46930 E-02\) & 0.10028 & 0.17761 & 0.27614 & 0.39516 & 0.53383 & 0.69113 \\
\hline ERRDR (13) & 0.0 & \(6.17981 \mathrm{E}-03\) & \(2.46735 \mathrm{E}-02\) & \(5.51910 \mathrm{E}-02\) & \(9.72900 E-02\) & 0.15033 & 0.21350 & 0.28581 & 0.36603 \\
\hline ERROR (14) & 0.0 & 7.78198E-04 & 3.06702E-03 & \(6.54602 \mathrm{E}-03\) & 1.07422E-02 & \(1.49994 \mathrm{E}-02\) & 1.84326E-02 & 1.99890E-02 & 1.84326E-02 \\
\hline ERRDR (15) & 0.0 & -5.06592E-03 & -2.01263E-02 & -4.55780E-02 & -8.19550E-02 & -0.12973 & -0.18980 & -0.26311 & -0.35097 \\
\hline ERROR (16) & 0.0 & -1.12610E-02 & -4.49066E-02 & -0.10129 & -0.18079 & -0.28378 & -0.41106 & -0.56320 & -0.74120 \\
\hline ERRDR (17) & 0.0 & -1.77460E-02 & -7.11975E-02 & -0.16045 & -0.28558 & -0.44699 & -0.64481 & -0.87968 & -1.1517 \\
\hline ERROR(18) & 0.0 & -2.47955E-02 & -9.91821E-02 & -0.22305 & -0.39650 & -0.61919 & -0.89111 & -1.2120 & -1.5816 \\
\hline ERROR (19) & 0.0 & -3.21350E-02 & -0.12868 & -0.28918 & -0.51329 & -0.80026 & -1.1495 & -1.5597 & -2.0300 \\
\hline ERROR (20) & 0.0 & -3.99475E-02 & -0.15977 & -0.35873 & -0.63596 & -0.99013 & -1.4195 & -1.9223 & -2.4961 \\
\hline FREO & 0.18000 & 0.20000 & 0.22000 & 0.24000 & 0.26000 & 0.28000 & 0.30000 & 0.32000 & 0.34000 \\
\hline ERROR (1) & 3.3306 & 4.1441 & 5.0581 & 6.0777 & 7.2084 & 8.4569 & 9.8304 & 11.337 & 12.988 \\
\hline ERROR (2) & 3.2770 & 4.0764 & 4.9740 & 5.9747 & 7.0837 & 8.3072 & 9.6520 & 11.126 & 12.738 \\
\hline ERROR (3) & 3.1879 & 3.9638 & 4.8343. & 5.8037 & 6.8768 & 8.0590 & 9.3566 & 10.776 & 12.326 \\
\hline ERROR (4) & 3.0636 & 3.8068 & 4.6397 & 5.5657 & 6.5891 & 7.7144 & 8.9469 & 10.292 & 11.757 \\
\hline ERROR (5) & 2.9043 & 3.6061 & 4.3910 & 5.2621 & 6.2226 & 7.2762 & 8.4270 & 9.6793 & 11.038 \\
\hline ERROR (6) & 2.7107 & 3. 3623 & 4.0895 & 4.8946 & 5.7798 & 6.7478 & 7.8014 & 8.9437 & 10.178 \\
\hline ERROR (7) & 2.4832 & 3.0763 & 3.7365 & 4.4651 & 5.2635 & 6.1333 & 7.0759 & 8.0932 & 9.1865 \\
\hline ERROR (8) & 2.2227 & 2.7494 & 3.3336 & 3.9761 & 4.6771 & 5.4372 & 6.2568 & 7.1360 & 8.0751 \\
\hline ERROR (9) & 1.9298 & 2.3825 & 2.8827 & 3.4300 & 4.0242 & 4.6647 & 5.3507 & 6.0815 & 6.8557 \\
\hline ERROR (10) & 1.6053 & 1.9771 & 2.3856 & 2.8298 & 3.3088 & 3.8210 & 4.3650 & 4.9389 & 5.5405 \\
\hline ERROR(1I) & 1.2504 & 1.5346 & 1.8445 & 2.1785 & 2.5349 & 2.9119 & 3.3071 & 3.7180 & 4.1418 \\
\hline ERROR (12) & 0.86581 & 1.0565 & 1.2616 & 1.4791 & 1.7070 & 1.9431 & 2.1845 & 2.4286 & 2.6720 \\
\hline ERROR (13) & 0.45276 & 0.54440 & 0.63914 & 0.73494 & 0.82953 & 0.92043 & 1.0049 & 1.0802 & 1.1429 \\
\hline ERROR (14) & \(1.23138 \mathrm{E}-02\) & 0.0 & -2.03094E-02 & -5.06287E-02 & -9.31854E-02 & -0.15018 & -0.22418 & -0.31799 & -0.43413 \\
\hline ERROR (15) & -0.45436 & -0.57500 & -0.71442 & -0.87425 & -1.0565 & -1.2630 & -1.4957 & -1.7568 & -2.0485 \\
\hline ERROR (16) & -0.94608 & -1.1788 & -1.4406 & -1.7326 & -2.0561 & -2.4123 & -2.8026 & -3.2282 & -3.6901 \\
\hline ERRDR (17) & -1.4616 & -1.8096 & -2.1964 & -2.6222 & -3.0876 & -3.5928 & -4.1382 & -4.7239 & -5.3502 \\
\hline ERROR (18) & -1.9997 & -2.4657 & -2.9793 & -3.5398 & -4.1467 & -4.7991 & -5.4962 & -6.2369 & -7.0203 \\
\hline ERROR (19) & -2.5589 & -3.1451 & -3.7868 & -4.4822 & -5.2295 & -6.0264 & -6.8709 & -7.7606 & -8.6931 \\
\hline ERROR (20) & -3.1383 & -3.8462 & -4.6166 & -5.4463 & -6.3320 & -7.2700 & -8.2569 & -9.2888 & -10.362 \\
\hline
\end{tabular}

Fig. 5.5 Typical print-out from OUTPUT statement for 10-55 variables.

\section*{PAGE}

The PAGE card provides a number of options for selecting the format and page size for OUTPUT printout. The following parameters which appear on a PAGE card can be used to provide logarithmic scaling, contoured and shaded printer-plots, merged printer-plots, reduced size pages, and a method for interfacing with \(\mathrm{x}-\mathrm{y}\) plotting devices.

\author{
HEIGHT and WIDTH XYPLOT \\ MERGE \\ CONTOR \\ SHADE \\ NTAB and NPLOT \\ GROUP \\ LOG \\ SYMBOL
}

As in the use of the LABEL statement, a PAGE card which is placed before a group of OUTPUT statements applies to them all. PAGE statements which are placed after an OUTPUT statement refer only to the statement they follow. If instructions are not specified on a PAGE statement, the standard format is always automatically used.

HEIGHT and WIDTH. These variables are used to control page height and width for both printer and \(x-y\) plotter output. If the HEIGHT variable is not specified, the standard 60 lines per page is used for printer-plot output. For \(x-y\) plotter output, the default option is either 8 in . or 8 cm depending on the local plotter system. The WIDTH variable can be used to reduce the size from the standard width of 132 characters to the minimum width of 52 characters. For \(x-y\) plotter output, the WIDTH variable refers to the width of the plot. The standard width is 10 in . or 10 cm . An example of specifying a printer-plot 120 characters wide and 50 lines high is shown below.

PAGE HEIGHT \(=50\), WIDTH \(=120\)
XYPLOT. For computer installations where a plotting subroutine has been incorporated into the CSMP III System, the XYPLOT symbol can be used to initiate off-line \(x-y\) plotting. Because of the various makes and models of digital plotters, each computer facility needs to develop its own plotting subroutine. \({ }^{(1,2)}\) When the XYPLOT symbol is listed on the PAGE card, the variables contained in the OUTPUT statement are printed by an \(x-y\) plotter rather than a line printer. The first variable listed in the OUTPUT statement is plotted on the abscissa, and all the remaining variables are plotted on the ordinate. LABEL statements are automatically transferred to the plotting routines. If the scale is not specified, automatic scaling is used. An example of the method used to specify the scale is shown by the following statements.

OUTPUT X(4.0, 12.0), Y(0.0, 25.0)
PAGE XYPLOT

For this example, the variable X is plotted on the abscissa with a scale ranging from 4.0 to 12.0 , and the variable Y is plotted on the ordinate with the scale of 0.0 to 25.0 .

If automatic scaling is desired, the following statements should be used.

\section*{OUTPUT X, Y, Z \\ PAGE XYPLOT}

The above statements will plot X on the abscissa versus the variables Y and Z on the ordinate. Note that the OUTPUT statement used with XYPLOT allows complete flexibility in the choice of the independent variable.

The PREPARE instruction described in Chap. 3 can also be used to produce a data set for off-line plotting.

MERGE. This symbol is used to merge printer-plots from several runs to one plot for OUTPUT statements containing only one variable. As an example, consider the problem of plotting on one graph the dynamic response of a spring-mass-damper system for three values of damping.

\section*{Example 5.2}

Fig. 5.6 shows a linear spring-mass-damper system with the given parameters and initial conditions. The equation of motion is given by Eq. (5.2).
\[
\begin{equation*}
m \ddot{x}+c \dot{x}+k x=f \tag{5.2}
\end{equation*}
\]


Fig. 5.6 Linear spring-mass-damper system.
The program of Fig. 5.7 uses a standard PARAMETER statement to make three runs for specific values of \(c\). The MERGE parameter is used to combine the time-history of displacement for all three runs in one printer-plot.

Fig. 5.8 shows the resulting OUTPUT.
An alternate form of print-plot is available by specifying the CONTOR and SHADE parameters. They can effectively illustrate the transient response of distributed systems. For example, the transient and spatial temperature distribution in one-dimensional heat flow can be illustrated by using the CONTOR or SHADE parameter.
```

* CSMP III PROGRAM TO SIMULATE SPINT-MASS-DAMPER SYSTEM AND tO
* illlstrate the use of the merge statement
CONSTANT F = 200.0, M = 36.0, K=1000.0
PARAMETER C = (35.0, 150.0, 500.0)
* XOC = ACCELERATION XD = VELOCITY
XDD = (F - C*XD - K*X)/M
XD = INTGRL(0.0,XDD)
X = INTGRL(0.0,XD)
OUTPUT X
PAGE MERGE
TIMER FINTIM = 1.96, CUTDEL = 0.04
END
STOP
ENDJOB

```

Fig. 5.7 Program to simulate spring-mass-damper system and to illustrate MERGE output.

CONTOR. This parameter provides a contoured form of a printer-plot. Scaling for the plot is automatic when the following statement is used.

\section*{PAGE CONTOR}

A second form of the CONTOR parameter can be used to specify the scale. In the following statement, the scaled range of the plot is between 3.0 and 45.0.
\[
\text { PAGE CONTOR }=(3.0,45.0)
\]

\section*{Example 5.3}

The problem of simulating the transient-temperature distribution in a rod illustrates printer-plots using both CONTOR and SHADE parameters. The copper rod shown in Fig. 5.9 is insulated on the outside surface to prevent heat flow in the radial direction. The initial temperature of the rod is \(300^{\circ} \mathrm{K}\) and the left-hand end is connected to an infinite heat source which maintains this end at a temperature of \(300^{\circ} \mathrm{K}\). At the start of the simulation, the right-hand end is brought in contact with a surface having a constant temperature of \(500^{\circ} \mathrm{K}\). As in Example 3.3, the copper rod is divided into 20 equal-size elements. Assuming a constant temperature in each element, the transient temperature of the \(i\) th element is given by Eq. (5.3).
\[
\begin{equation*}
\frac{d T(i)}{d t}=Q[T(i-1)-2.0 * T(i)+T(i+1)] \quad i=1,2, \ldots, 20 \tag{5.3}
\end{equation*}
\]

Symbols used in computer program
\[
\text { where } \begin{array}{rlrl}
Q= & k /\left(\rho c L^{2}\right) & \mathrm{Q} \\
\rho= & \text { density of copper, } & & \mathrm{RO} \\
c= & & \text { specific heat, } & \mathrm{C} \\
& 398 \text { joule } / \mathrm{kg}-{ }^{-} \mathrm{K} & \\
k= & \text { thermal conductivity, } & & \mathrm{K} \\
& 386 \text { watt } / \mathrm{m}-{ }^{\circ} \mathrm{K} & \\
L= & \text { length of element, } & & \mathrm{L} \\
& 0.02 \mathrm{~m} &
\end{array}
\]

Figure 5.10 shows the program for solving the set of 20 equations.


Fig. 5.8 MERGE output from program of Fig. 5.7.


Fig. 5.9 Insulated copper rod.
Note in the CONTOR printer-plot of Fig. 5.11 there are 11 variable groups each covering a specific range of temperatures.

The following listing shows the symbols for each range:
\begin{tabular}{ccc} 
Symbols & Percent range & Temperature values \\
\hline L & less than \(2.5 \%\) & 300 to \(305{ }^{\circ} \mathrm{K}\) \\
1 & \(7.5 \%\) to \(12.5 \%\) & 315 to \(3255^{\circ} \mathrm{K}\) \\
2 & \(17.5 \%\) to \(22.5 \%\) & 335 to \(345{ }^{\circ} \mathrm{K}\) \\
3 & \(27.5 \%\) to \(32.5 \%\) & 355 to \(365^{\circ} \mathrm{K}\) \\
4 & \(37.5 \%\) to \(42.5 \%\) & 375 to \(3855^{\circ} \mathrm{K}\) \\
5 & \(47.5 \%\) to \(52.5 \%\) & 395 to \(405{ }^{\circ} \mathrm{K}\) \\
6 & \(57.5 \%\) to \(62.5 \%\) & 415 to \(425{ }^{\circ} \mathrm{K}\) \\
7 & \(67.5 \%\) to \(72.5 \%\) & 435 to \(445{ }^{\circ} \mathrm{K}\) \\
8 & \(77.5 \%\) to \(82.5 \%\) & 455 to \(4655^{\circ} \mathrm{K}\) \\
9 & \(87.5 \%\) to \(92.5 \%\) & 475 to \(485^{\circ} \mathrm{K}\) \\
H & more than \(97.5 \%\) & 495 to \(500{ }^{\circ} \mathrm{K}\) \\
\hline
\end{tabular}

The percent numbers in the above listing are valid for all CONTOR plots while the temperature values apply only to Fig. 5.11.

SHADE. This parameter provides a shaded print-plot and is used exactly the same as the CONTOR parameter. Scaling is automatic when the following statement is used.

\section*{PAGE SHADE}

The scale range of -5.0 to 4.5 is specified by the following form.
\[
\text { PAGE SHADE }=(-5.0,4.5)
\]

The output from the SHADE parameter of the program of Fig. 5.10 is shown in Fig. 5.12.

Note that there are ten levels of intensity. Variables having values near the high side of the scale are represented by dark plotting. Variables in the lowest \(10 \%\)
```

IABEL CSMP III prugRAM tE: SImulatf thE transient temperature
IAREL DISTRIBUTIUN IIF A CIPPER RCO
INITIAL
CONSTANT RO = OO9U.J, C = 398.0, K = 386.0, L = 0.02,
TLEFT = 300.0, TRIGHT = 500.C
FIXED I
O = K/(R()*C*L*L.)
IABLE TI(1-20)= 20*300.0
DYNAMIC
NOSIRT
FO(1) = Q*(TLEFT - 2.0*T(1) + T(2))
DO 1 I = 2,19
1 TD(I) = Q*(T(I-1) - 2.0*T(I) +T(I+I))
TO(20) = 0*(T(19) - 2.0*T(20) + TRIGHT)
SCRT
T = INTGRL(TI, TD, 20)
O!JPOUT r(1-20)
LABEL EXAMPLE DF A CONTGR PRINTER-PLDT
PAGF COVTOR
OUTPUT T(L-20)
LABEL EXAMPLE OF A SHALF PPINTER-PL'JT
PAGE SHADE
TIMFR FINTIM = 450.0, OUTOEL = 10.0
EN!
STJP
ENDJOB

```

Fig. 5.10 Program to simulate the temperature of copper rod.
of the scale range are represented by blanks. At each \(10 \%\) increase in magnitude of the output variables, the printing becomes one shade darker.

The remaining five PAGE parameters (NTAB, NPLOT, GROUP, LOG, and SYMBOL) are only applicable to printer-plot output. This occurs when OUTPUT statements contain less than six variables.

NTAB. This parameter specifies the number of variables that will be both print-plotted and tabulated. When NTAB is used on the PAGE card as shown below,
\[
\text { PAGE } \mathrm{NTAB}=2
\]
only the first two variables in the OUTPUT statement will be both print-plotted and tabulated. The remaining variables on the OUTPUT statement will only be print-plotted.

NPLOT. This parameter specifies the number of variables that will be both print-plotted and tabulated. All remaining variables listed on the OUTPUT statement will only be tabulated.

GROUP. This parameter specifies the number of variables that are to be print-plotted with the same scale. The common scale is determined by the entire group of variables. The following statement specifies that the first three variables listed on the OUTPUT card will be print-plotted with the same scale.
\[
\text { PAGE GROUP }=3
\]

LOG. This parameter specifies that number of variables on the OUTPUT card that are to be print-plotted with a logarithmic ordinate scale.

SYMBOL. This parameter allows the user to specify the identification symbols used in printer-plots. To illustrate the use of several PAGE parameters, consider the output from the following statements used in the program of Fig. 5.2.

CSMP III PRCGRAM TO SIMLLATE THE TRANSIENT TFNPERATURE
OISTRIBUTION DF A COPPER RIDD
EXAMPLE OF A CONTOR PRIATER-PLET


Fig. 5.11 Example of CONTOR printer-plot output.

\section*{\(\begin{array}{lc}R & L E S S \\ 0 & 380 \\ 0 & 440 \\ R & G R E A T E R\end{array}\) \\ 듣뭉}






 fepain


















 .

 Example of SHADE printer-plot output.
\begin{tabular}{|c|}
\hline  \\
\hline a \\
\hline U.0. \\
\hline  \\
\hline \\
\hline HOL \\
\hline
\end{tabular}
\(\square\)
\begin{tabular}{llll}
0 & 0 & 0 \\
0 & 0 \\
\(M\) & 0 & 0 \\
\(m\) & +
\end{tabular}

OUTPUT ERROR(8), ERROR(9), ERROR(12), ERROR(15)
PAGE NTAB \(=2\), GROUP \(=4\), SYMBOL \(=(A, B, C, D)\)
The output for the above statements is shown in Fig. 5.13.
Note that the NTAB parameter provides that only the first two variables have tabulated output. The GROUP parameter provides that all four variables are plotted with the same ordinate scale. The SYMBOL parameter specifies that the letters \(A, B, C\), and \(D\) are used to identify the printer plots of the variables ERROR(8), ERROR(9), ERROR(12), and ERROR(15), respectively.

\section*{CALL PRINT and CALL OUTPUT}

Both the PRINT and OUTPUT instructions can be invoked at any point in the program by using the CALL statement. These output statements are normally invoked when specified conditions occur, where the IF instruction is usually used to branch to the CALL statement. An example of using the CALL OUTPUT statement is shown below.

NOSORT
IF(X.GT.6.0) CALL OUTPUT
Note that both the CALL PRINT and CALL OUTPUT statements must be used in nosort or procedure sections. The use of the CALL instruction assumes that the appropriate PRINT or OUTPUT statement is defined in the program. If either of the CALL instructions are invoked at a normal PRDEL or OUTDEL interval, the duplicate printing is suppressed.

As in S/360 CSMP, the FORTRAN WRITE statement in nosort or procedure sections is allowed. In some circumstances, this type output may be desirable.

\section*{RANGE}

This instruction is used to list the maximum and minimum values of selected variables and the time of occurrence. Its function in CSMP III is exactly the same as in S/360 CSMP. The only difference is that the maximum number of variables allowed in a RANGE statement is 110 . An example of a valid instruction is shown below.
\[
\begin{aligned}
& \text { RANGE G, H, X1, Y1, T, COST, Q, ... } \\
& \text { L, J, R }
\end{aligned}
\]

Subscripted variables should not be used in a RANGE statement.

\section*{Functions}

In addition to the functions available in S/360 CSMP, CSMP III provides the user with additional function blocks. This section briefly describes some of the more important functions available only in CSMP III.


Fig. 5.13 Printer-plot to illustrate the use of NTAB, GROUP, and SYMBOL

\section*{Arbitrary Function Generators}

The AFGEN and NLFGEN function generators used in S/360 CSMP are also available in CSMP III. There are two additional arbitrary function generators available for CSMP III users, FUNGEN and TWOVAR.

\section*{FUNGEN}

This arbitrary-function generator allows the user to choose the degree of interpolation. A typical statement is shown below.
\[
\mathrm{Y}=\mathrm{FUNGEN}(\mathrm{ABC}, \mathrm{~N}, \mathrm{X})
\]
where \(\quad \mathrm{Y}=\) dependent variable (output)
\(\mathrm{ABC}=\) function name, it is defined on a FUNCTION card
\(\mathrm{N}=\) degree of interpolation, may be \(1,2,3,4\), or \(5 . \mathrm{N}\) must be an integer constant or integer variable.
\(\mathrm{X}=\) independent variable (input)
When \(\mathrm{N}=1\), FUNGEN is identical to AFGEN; and when \(\mathrm{N}=2\), FUNGEN uses second-degree interpolation which is the same as NLFGEN.

\section*{CALL FGLOAD}

In addition to specifying \(x-y\) data in a FUNCTION statement as illustrated in Example 2.4, a CALL FGLOAD instruction using subscripted variables can be used to load the data. A typical set of statements follows.

\section*{INITIAL}


STORAGE \(\mathbf{X}(26), \mathbf{Y}(26) \quad\) This statement must be used to specify
SYSTEM NPOINT \(=26\) the number of data points.
NOSORT


In the above example, 26 pairs of subscripted variables are read in or generated in the Initial segment. This data is then entered into the function ABC by the CALL FGLOAD instruction. The values of the independent variables X must be monitonically increasing and single-valued. A typical set of instruction for using the data entered by the CALL FGLOAD statement is shown below.

COST \(=\) AFGEN (ABC, UNITS)


This function loading capability is useful when the \(x-y\) relationship results from complex calculations. Computer time can be saved by performing the calculations only once in the Initial segment and then using an arbitrary function generator to return the values in the Dynamic segment.

\section*{TWOVAR}

This arbitrary function generator can be used for functions of the form \(Z=F(X, Y)\). An example of this statement is shown below.
\[
Z=\operatorname{TWOVAR}(A B C, Y, X)
\]
where
\[
\begin{aligned}
\mathrm{Z} & =\text { dependent variable } \\
\mathrm{ABC} & =\text { function name } \\
\mathbf{X \& Y} & =\text { independent variables }
\end{aligned}
\]

A graphical representation of Z as a function of X and Y is given by Fig. 5.14.


Fig. 5.14 Functional relationship between \(X, Y\), and \(Z\).

Note in Fig. 5.14 that the three-dimensional surface is represented by four lines each having a constant value of \(X\). The functional relationship of \(Y\) and \(Z\) for constant values of \(X\) is the format used to specify the function \(Z=F(X, Y)\). Using the function name \(A B C\), the following statements can be used to define the functional relationship shown in Fig. 5.14.


Each FUNCTION statement contains the pairs of ( \(\mathrm{Y}, \mathrm{Z})\) values for a constant value of \(X\). The cards must be arranged such that the values of \(X\) be monotonically increasing in each FUNCTION statement. If the TWOVAR function should have to extrapolate for values of either X or Y outside the specified range, a diagnostic message will appear and computation will proceed.

\section*{CALL TVLOAD}

Data for the TWOVAR function generator can be loaded using the subroutine TVLOAD. Its use is similar to FGLOAD, except TVLOAD must be called to load the data for each family of curves having a constant value of X. An example of loading the data contained in Fig. 5.14 for the curve \(X=0\) is given by the following instructions.

\section*{INITIAL}

STORAGE Y(6), Z(6)
SYSTEM \(\mathrm{NPOINT}=24, \mathrm{NFUN}=6\)
total number of \((\mathrm{y}-\mathrm{z}) \quad\) number of function point pairs. curves plus two.
NOSORT
TABLE \(Y(1-6)=0.0,0.5,1.5,2.5,3.5,4.5\)
TABLE \(\mathbf{Z}(1-6)=4.0,3.0,2.0,1.7,1.7,2.0\)
CALL TVLOAD (ABC, Y, Z, 6, \(1,0.0\) )
Function name
Independent variable
Dependent variable
Number of ( \(y-z\) ) pairs
The curve number (1st curve)
Value of \(X\) for pairs of \((y-z)\) data \(\qquad\)

The CALL TVLOAD statement is used three more times to load the \(y-z\) data for the curves \(X=1.0, X=2.0\), and \(X=3.5\).

An example of the second CALL TVLOAD statement is shown below.
CALL TVLOAD(ABC, Y, Z, 5, 2, 1.0)
The value of X must be monotonically increasing for the successive CALL TVLOAD instructions. The range of \(Y\) should be the same for each call instruction and must be monotonically increasing.

A typical set of instructions for using the TWOVAR arbitrary function which is loaded by the subroutine TVLOAD is shown below.
```

Q = TWOVAR(ABC, R,S)
FUNCTION ABC
FUNCTION ABC } Two dummy FUNCTION statements are required.

```

\section*{SLOPE}

This function is used to calculate the slope of a function specified by data points in a FUNCTION statement. It is not the time derivative as given by the DERIV function. The standard form is given below.
\[
\mathbf{Y}=\operatorname{SLOPE}(\mathrm{ABC}, \mathrm{~N}, \mathrm{X})
\]
where \(\quad Y=\) the slope of the function \(A B C\) at \(X\).
\[
\mathrm{Y}=\frac{d f(X)}{d X}
\]
\(\mathrm{ABC}=\) function name containing the \(x-y\) data. The data may also be loaded by the CALL FGLOAD statement.
\(\mathrm{N}=\) an integer constant or variable giving the degree of the polynomial that is used to fit the data. The slope is computed from a polynomial curve fit. N may be 1,2 , or 3 .

Example 3.12 in Chap. 3 illustrates the use of a macro to handle a general transfer function. CSMP III has a function block for this purpose.

\section*{TRANSF}

Consider the following general block diagram written in Laplace transform notation.
\[
r(s) \longrightarrow \sqrt{\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{1} s+a_{m+1}}{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{n+1}}} \rightarrow c(s)
\]

The output for the above block can be obtained by using the following statement.
\[
\mathrm{C}=\operatorname{TRANSF}(n, \mathrm{~B}, m, \mathrm{~A}, \mathrm{R})
\]
where \(n \& m=\) integers giving the order of the denominator and numerator of the transfer function, respectively
\(B \& A=\) subscripted variables defining the transfer function of the denominator and numerator, respectively
\(\mathrm{R}=\) input
The following statements should be used to declare A and B as subscripted variables and to assign values to \(\mathrm{A}(i)\) and \(\mathrm{B}(i)\).

STORAGE A \((m+1), \mathrm{B}(n+1)\)
TABLE A \((1-(m+1))=a_{1}, a_{2}, a_{3}, \ldots, a_{m+1}\)
TABLE \(\mathrm{B}(1-(n+1))=b_{1}, b_{2}, b_{3}, \ldots, b_{n+1}\)
Consider the example of simulating the following block diagram by the use of the TRANSF function.
\[
r(t)=\underset{12.0}{R(s)} \xrightarrow{\frac{s^{2}+5 s^{2}+11.2}{1.1 s^{4}+4 s^{3}+7 s^{2}+2 s+0.5} \rightarrow C(s)} \xrightarrow{C}
\]

The program for determining the response is shown below.
STORAGE A(3), B(5)
TABLE \(\mathrm{A}(1-3)=5.0,1.0,11.2\)
TABLE \(\operatorname{B}(1-5)=2.0,7.0,4.0,1.1,0.5\)
\(\mathrm{C}=\operatorname{TRANSF}(4, \mathrm{~B}, 2, \mathrm{~A}, 12.0)\)
PRINT C
TIMER FINTIM \(=4.0\), PRDEL \(=0.08\)
END
STOP
ENDJOB

\section*{Control Statements}

Additional control capabilities are available in CSMP III. They include branching instructions, integration techniques, and double-precision calculations. This section describes the additional control capabilities as well as the changes in control statements.

\section*{END CONTINUE}

This statement is used in CSMP III as the CONTINUE instruction is used in S/360 CSMP. It allows a run to be interrupted so that data or control statements can be changed during the simulation. A detailed explanation of the CSMP CONTINUE statement is contained in Chap. 3 in the section on translation control statements.

\section*{INPUT and ENDINPUT}

These labels are used to identify the set of cards containing data to be entered into the program by the FORTRAN \(\operatorname{READ}(5, \mathrm{XYZ})\) instruction. The INPUT card must immediately follow the END statement. All data cards must be contained between INPUT and ENDINPUT. The ENDINPUT label must be punched in card columns 1-8.
```

END
INPUT
. } data cards
ENDINPUT
STOP
ENDJOB

```

In S/360 CSMP, the DATA and ENDDATA labels are used in place of INPUT and ENDINPUT. This is described in Chap. 3 in the section on data statements.

In CSMP III it is possible by the use of the CALL FINISH statement to terminate a run by branching to the Terminal segment. Also new parameters and control variables can be introduced in the simulation by employing the CALL CONTIN card.

\section*{CALL FINISH}

This statement can be used in nosort or procedure sections to branch to the Terminal segment. If there is no Terminal segment, the program will terminate when the CALL FINISH instruction is encountered. The CALL FINISH instruction is normally used in conjunction with an IF statement as shown below.

IF(FORCE .GT. FMAX) CALL FINISH

\section*{CALL CONTIN}

This statement is similar to the CALL RERUN instruction described in Chap. 2. When the program encounters a CALL CONTIN statement, a new run is initiated starting with the value of TIME from the previous run. The CALL CONTIN card does not reset initial conditions. As with the CALL RERUN instruction, the CALL CONTIN statement should only be used in the Terminal segment and is normally used with an IF statement.

\section*{Integration Techniques}

There are two additional integration methods available in CSMP III; RKSDP and STIFF. As in S/360 CSMP, if the integration technique is other than the vari-able-step Runge-Kutta, it must be specified on a METHOD card as shown below.

RKSDP. This is the double-precision version of the variable-step RungeKutta method. To take advantage of the increased accuracy, the ABSERR and RELERR parameters should be used to decrease the error-bound on the integrator output. Additional information for using double-precision is contained in a following section.

STIFF. This variable-step integration method should be used for the class of problems represented by so-called "stiff" equations. These equations have solutions which have exponents which are greatly different as typified by Eq. (5.4).
\[
\begin{equation*}
x=A e^{-t}+B e^{-100 t} \tag{5.4}
\end{equation*}
\]

STIFF integration is used because numerical solutions using a method such as Runge-Kutta sometimes exhibit what is called partial-induced-instability when solving a stiff equation. \({ }^{(3)}\)

\section*{Array Integration}

The array or specification form of the INTGRL function is also available in CSMP III as illustrated by the following statement.
\[
\mathrm{Y}=\mathrm{INTGRL}(\mathrm{XO}, \mathrm{X}, 40)
\]

The above instruction specifies an array of 40 integrators: \(Y=\) output, \(\mathrm{XO}=\) initial condition, and \(\mathbf{X}=\) integrand.

Since the above INTGRL statement in CSMP III automatically specifies that \(\mathrm{Y}, \mathrm{XO}\), and X are subscripted variables, they must not be included in a STORAGE or DIMENSION statement. Unlike S/360 CSMP, the initial conditions can be loaded using a TABLE statement. The EQUIVALENCE card that is required in S/360 CSMP is not used in CSMP III. Examples of programs using a CSMP III array integrator are shown in Figs. 5.10 and 5.15. The program of Fig. 5.15 shows the double-precision calculations used in the program of Fig. 5.10.

There are two additional variables that can be included on the TIMER card, DELMAX and TIME.

\section*{DELMAX}

This symbol specifies the maximum allowable integration step size for all variable-step integration methods. If not specified, the smaller of PRDEL or OUTDEL is used.

\section*{TIME}

This variable specifies the value of TIME at the beginning of the run. If not included on the TIMER card, it is set equal to zero.

\section*{Double-Precision Operations}

In some simulation problems the round-off errors with single-precision arithmetic are too large for satisfactory solutions. Double-precision calculation can
improve accuracy and is available in CSMP III. The following describes the various aspects of using double-precision.

Integration. The following card provides double precision variable-step Runge-Kutta integration.

\section*{METHOD RKSDP}

The numerical integration calculations are performed in double-precision but the output is returned in single-precision which is rounded from the doubleprecision results.

If double-precision output is required, the specification form of the INTGRL statement must be used for all integration. The following two control cards should be included.

\section*{SYSTEM DPINTG}

\section*{METHOD RKSDP}

Double-precision initial conditions may be set using the TABLE instruction.

Calculations. There are several rules that must be followed when using double-precision numbers.

1 All double-precision variables must be subscripted and all of these variables not appearing in the specification form of the INTGRL function must be declared on a REAL*8 card.


The above instruction must appear before the first structure statement.
2 Double-precision numbers can be rounded and set equal to single-precision numbers using the following statement.
\[
Y=Z Z R N D(X(4))
\]

In the above instruction, the double-precision variable \(X(4)\) is rounded and set equal to the single-precision variable Y .

3 Double-precision symbols starting with the letters I, J, K, L, M, and N must be included on a FIXED card.
4 The double-precision symbol for TIME is ZZTIME.
5 The exponential form using \(D\) instead of \(E\) can be used for assigning values to double-precision constants.
\[
\begin{array}{ll}
\mathrm{Y}(3)=7.987654 \mathrm{D} 5 & \left(7.987654 \times 10^{6}\right) \\
\mathrm{PI}(1)=3.1415926535898 \mathrm{D} 0 & (3.1415926535898) \tag{3.1415926535898}
\end{array}
\]

Output. Double-precision variables cannot be used in standard CSMP III output statements. They must be equated, or rounded using the ZZRND instruction before they can appear in CSMP output statements.
\begin{tabular}{ll}
\(\mathrm{X}=\mathrm{XDP}(1)\) & (equated) \\
\(\mathrm{Y}=\mathrm{ZZRND}(\mathrm{YDP}(1))\) & (rounded) \\
OUTPUT X,Y &
\end{tabular}

If double-precision output is desired, the FORTRAN WRITE statement should be used as covered in Chap. 3 in the section on data output.

The program of Fig. 5.15 illustrates double-precision integration for calculating the transient temperature distribution of the copper rod of Example 5.3. A FORTRAN WRITE instruction is used to print the double-precision result which is shown in Fig. 5.16.

Note the differences between the double-precision program of Fig. 5.15 and the single-precision program of Fig. 5.10.
```

* CSMP III PROGRAM TG SIMULATE THF IRANSIENT TEMPERATURE DISTRIBUTION
* OF A CCPPER RUD USING COUBLE PRFCISICN CALCULATIONS
INITIAL
/ REAL*8 DP(7)
FIXED I
TABLE TI(1-20)=20*3.002
SYSTEM DPINTG
METHOD RKSDP
RFLERR T(1-20) = 1.0E-8
ABSERR T(1-2U)=1.OE-8
NCSORT
* THE JOUBLE PRECISION SUBSCRIPTEO VARIABLE DP(I) IS USED
* TO INPUT THE VALUES OF THE PARAMETERS OF THE COPPER ROD UF EXAMPLE. 5. }
CP(1) = 8.8903
DP(2)=3.9802
DP(3)}=3.860
DP(4)=2.0D-2
DP(5) = 3.002
DP(\epsilon)=5.002
DP(7) = DP(3)/(DP(1)*UP(2)*DP(4)*UP(4))
1C0 FORMAT(5G22.12)
101 FORMAT(/,6X,'TIME',18X,'T(4)',18X,'T(8)',1/1X,'T(10)',17X,'T(16)')
WRITF(6,1U1)
DYNAMIC
NOSTRT
TO(1)= DP(7)*(UP(5) - 2.0*T(1) + T(2))
0) 1 I = 2,19
1 TC(I) = DP(7)*(T(I-1) - 2.0*T(I) + T(I+I))
TD(20)=OP(7)*(T(19)-2.0*T(20) + DP(6))
SORT
T = INTGRL\TI, TD, 20)
NOSORT
* THE FCLLUWING FORTRAN WRITE STATEMENT PRQVIOES OUTPUT AT THE END OF
* EACH TENTH VALID INTEGRAIICN STEP
IF(KEEP.NE.1) GO TO 2
CT}=CT+1.
IF(CT.LT.O.5) GU TB 2
WRITE(6,100)(TIME, 1(4), T(8), T(10), T(16))
CT = 0.0
2 CONTINUE
TIMER FINTIM = 450.0
ENO
STOP
ENOJOR

```

Fig. 5.15 Simulation of the temperature of copper rod using double precision.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & TIME & T 14 ) & T(8) & T(10) & T(16) \\
\hline & 1.26562500000 & 700.000000000 & 300.000000000 & 300.000000000 & 300.004681049 \\
\hline & \(3.09375) 00000\) & 300.000 COOn 00 & 300.000000001 & 300.000000174 & 300.194794311 \\
\hline & 5.90625000000 & 300. กnกดดกกูก & 300.000090950 & 300.000061033 & 301.805008651 \\
\hline & 10.4062500000 & 300.909000205 & 300.000221716 & 300.004986118 & 308.069261558 \\
\hline & 17.7187500000 & 300.000089076 & 309. 014688666 & 300.135408143 & 322.048061889 \\
\hline & 30.0937500000 & 300.010141710 & 300.336381644 & 301.497811928 & 343.563464148 \\
\hline & 51.4687500000 & 300.306926535 & 3)2.971772836 & 307.765962064 & 369.055400686 \\
\hline & 89.7187500000 & 303. 233027391 & 312.727054459 & 323.260691628 & 394.918449206 \\
\hline & 148.218750000 & 310.683180099 & 379.427550268 & 344.141355339 & 415.596172422 \\
\hline & 199.968750000 & 317.385209377 & 341.543210126 & 357. 834603171 & 426.321822957 \\
\hline & 253.9687500nn & 3?2.984ก81578 & 351.104592378 & 368.286939071 & 433.850591096 \\
\hline & 303.468750000 & 326.863549646 & 357.595669186 & 375.294859587 & 438.733635794 \\
\hline & 355.218750090 & 329.984nのn965 & 362.611840784 & 380.685218191 & 442.442048677 \\
\hline & 406.968750000 & 3.?.C9C773735 & 366. 280281305 & 384.619834664 & 445.134832194 \\
\hline & 450.000000000 & 333.481153192 & 368. 564808895 & 387.068383799 & 446.807280527 \\
\hline \$\$\$ & SIMULATICN HALTEN E?QP & FTMISH CRNMTTOM & TIMT 450.00 & & \\
\hline
\end{tabular}

Fig. 5.16 Double precision output from program of Fig. 5.15.

\section*{REFERENCES}
1. Continuous System Modeling Program III (CSMP III) Program Reference Manual, SH19-7001-2, Program Number 5734-XS9, IBM Corporation, Data Processing Division, White Plains, N. Y.
2. Continuous System Modeling Program, Program Logic Manual, LY19-7000, IBM Corporation, Data Processing Division, White Plains, N. Y.
3. Fox, Leslie and D. F. Mayers, Computing Methods for Scientists and Engineers, Clarendon Press at Oxford, 1968, p. 215.

\section*{PROBLEMS}

1 The equations which defined the concentrations of xenon 135 (X) and iodine 135 (I) in a nuclear reactor which has been suddenly shut down are given below.
\[
\begin{aligned}
\dot{\mathrm{X}} & =-2.09 \times 10^{-5} \mathrm{X}+2.88 \times 10^{-5} \mathrm{I} \\
\dot{\mathrm{I}} & =-2.88 \times 10^{-5} \mathrm{I}
\end{aligned}
\]

The initial concentrations are
\[
\begin{aligned}
\mathrm{X}(0) & =3 \times 10^{15} \text { atoms per unit volume } \\
\mathrm{I}(0) & =7 \times 10^{16} \text { atoms per unit volume }
\end{aligned}
\]

Find the concentrations at \(t=100,000 \mathrm{sec}\). Plot the results using a logarithmic ordinate.

Answer:
\[
\text { At TIME }=100,000 \quad \mathrm{X}=1.761 \times 10^{16} \quad \mathrm{I}=3.929 \times 10^{15}
\]

2 In an epidemic of a contagious disease, the following Kermack-McKendrick set of equations model the number of the population who are susceptible to the disease \(S\), the number of infectious carriers \(C\), and the number of individuals who have recovered and are immune \(R\).
\[
\begin{aligned}
& \dot{S}=-A \cdot S \cdot C \\
& \dot{C}=A \cdot S \cdot C-B \cdot C \\
& \dot{R}=B \cdot C
\end{aligned}
\]
\(A\) and \(B\) are constants which characterize the epidemic. Time is measured in days.

Using the following initial conditions for a population of 1000 ,
\[
\begin{aligned}
& S(0)=900 \\
& C(0)=10 \\
& R(0)=90
\end{aligned}
\]
solve the Kermack-McKendrick equation using \(A=0.001\) and \(B=0.072\).
Include \(S, C\), and \(R\) in a common printer-plot using the same scale for all variables.

Answer:
\[
\text { At TIME }=10 \text { days, } S=27.4, C=631.2, R=341.4
\]

3 Solve the following equation using both the RKSFX and STIFF methods.
\[
\begin{aligned}
\dot{y}+201 \dot{y}+200 y & =0 \\
y(0) & =1.0 \\
\dot{y}(0) & =0
\end{aligned}
\]

Compare the numerical solution with the exact solution.
\[
y=\frac{200}{199} e^{-t}-\frac{1}{199} e^{-200 t}
\]

Answer:
The difference between the exact solution and the numerical solution using RKSFX and STIFF is less than \(10^{-4}\). However, several program interrupts due to underflow occur when using RKSFX.
4 Use the TRANSF function to solve for the dynamic response of the system represented by the following block diagram. A unit-step input occurs at \(t=0\).


Answer:
At TIME \(=10.0 \quad c=2.1671\)


Fig. P-5.5

5 A 640 lb gravity-powered roller coaster travels on a track shown in the above profile. Aerodynamic drag equal to \(0.005 v^{2}\) and a rolling resistance of 10 lb oppose motion. The velocity at the start of the run is \(15 \mathrm{ft} / \mathrm{sec}\). Use the SLOPE function to evaluate \(d y / d x\) in simulating the motion of the vehicle.

The equation of motion is
\[
\frac{w}{g} \dot{v}=-w \sin \theta-0.005 v^{2}-10.0
\]
\[
\text { where } \quad \begin{aligned}
\sin \theta & =\frac{\frac{d y}{d x}}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}} \\
x & =\int_{0}^{t} \frac{v d t}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}} \\
w & =\text { weight } \\
g & =\text { acceleration of gravity, } 32.17 \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
\]

\section*{Answer:}
\[
\text { At TIME }=6.0 \mathrm{sec}: v=35.1 \mathrm{ft} / \mathrm{sec} \text { and } x=197.0 \mathrm{ft} .
\]

6 A 27 lb weight moving downward at a velocity of \(200 \mathrm{in} / \mathrm{sec}\) strikes and sticks to a lead cylinder.


Fig. P-5.6
The dynamic resisting-force of the lead cylinder for large strains is approximated by the following formula.
\[
F=620\left[1+0.004\left(\frac{\dot{y}}{L-y}\right)^{2.02}\right]\left(\frac{y}{L-y}\right)^{0.44}
\]

The equation that describes the motion of the mass is given below.
\[
\frac{27}{386} \ddot{y}=27-F
\]

Generate data for the resisting-force \(F\) in the Initial segment using the following range for \(y\) and \(\dot{y}\).
\[
\begin{aligned}
& 0<y<0.25 \mathrm{in.} \\
& 0<\dot{y}<200 \mathrm{in} . / \mathrm{sec}
\end{aligned}
\]

Load the generated data by using the TVLOAD subroutine and then use the TWOVAR function to calculate \(F\) to determine the maximum deflection of the load cylinder.

Answer:
\[
y_{\max }=0.150 \mathrm{in} . \text { at TIME }=0.00343 \mathrm{sec}
\]

7 The device below is used to control the water level in a tank. The flow characteristics of the valve are given in the figure below. The outflow from the tank is given by the following expression.
\[
q_{o}=5.05 \sqrt{h}
\]


Fig. P-5.7
At the start of the simulation, \(h=10, P=23 \mathrm{psi}\), and \(y=0.5\). Use the TWOVAR function to represent the valve characteristics and solve for the dynamics of the system when \(P\) is suddenly increased to 60 psi .

The equation describing the water level is
\[
250 \frac{d h}{d t}=q_{i n}-q_{o} .
\]

Answer:
\[
\text { At TIME }=40 \mathrm{sec}, h=10.69 \mathrm{in} .
\]

8 The curve below represents an odd periodic function. Using the FUNGEN function with 5th-order interpolation, find the Fourier coefficients for the first five terms of the periodic function. The odd Fourier coefficients are given by the following expression.


Fig. P-5.8
\[
\begin{aligned}
b_{n} & =\frac{2}{p} \int_{0}^{p} f(t) \sin \left(\frac{n \pi t}{p}\right) d t \\
2 p & =\text { period }=8.0
\end{aligned}
\]

Answer:
\[
b_{1}=0.84, b_{2}=0.91, b_{3}=0.32, b_{4}=-0.40, b_{5}=0.27
\]

9 The road-holding ability of an automobile can generally be improved by decreasing the unsprung mass. Use the below model of one corner of an automobile to find the time average ratio of tire force to vehicle weight as the car passes over a depression in the road. Do the simulation for unsprung masses of 80 and 150 lb .
Equations of motion are
\[
\begin{aligned}
& m_{1} \ddot{y}_{1}=k_{t}\left(y-y_{1}\right)+k\left(y_{2}-y_{1}\right)+c\left(\dot{y}_{2}-\dot{y}_{1}\right)+m_{1} g \\
& m_{2} \dot{y}_{2}=k\left(y_{1}-y_{2}\right)+c\left(\dot{y}_{1}-\dot{y}_{2}\right)+m_{2} g
\end{aligned}
\]
initial conditions:
\[
\begin{gathered}
y_{1}(0)=\frac{\left(m_{1}+m_{2}\right) g}{k_{t}} \quad y_{2}(0)=y_{1}(0)+\frac{m_{2} g}{k} \\
\dot{y}_{1}(0)=\dot{y}_{2}(0)=0 \\
\frac{\text { Tire force }}{\text { weight }}=\frac{k_{t}\left(y-y_{1}\right)}{\left(m_{1}+m_{2}\right) g}
\end{gathered}
\]

Answer:
Unsprung mass 80 lb : average force/weight \(=0.6937\)
Unsprung mass 150 lb : average force/weight \(=0.6733\)


Fig. P-5.9
10 A control system is represented by the following block diagram. For the following input, use the TRANSF and REALPL functions to find the time response of the output.


Fig. P-5.10
Answer:
\[
\text { At TIME }=6.0, c=3.5697
\]

11 Motorcycle helmets are tested by dropping a helmet containing a headform on a rigid surface. The following data for two different helmets was taken at the Southwest Research Institute and is the acceleration measured in the headform during a Z-90 test. The helmet has a velocity at impact of \(19.6 \mathrm{ft} / \mathrm{sec}\). Using the OVERLAY statement, find the rebound velocities of both helmets using one program.

The following expression can be used to estimate the injury to a human head from an impact. A value greater than 1000 is usually fatal.
\[
\mathrm{HIC}=\int_{0}^{t} a^{2.5} d t
\]
\(a\) is the acceleration in g's.


Fig. P-5.11
Calculate the value of HIC for both helmets.
\begin{tabular}{cc}
\begin{tabular}{c} 
Test Results of a \\
Time \\
\((\) sec \()\)
\end{tabular} & \begin{tabular}{c} 
Good Helmet \\
Acceleration \\
\(\left(g^{\prime}\right.\) s \()\)
\end{tabular} \\
\hline 0 & 0 \\
0.001 & 24 \\
0.002 & 45 \\
0.003 & 84 \\
0.004 & 125 \\
0.005 & 144 \\
0.006 & 135 \\
0.007 & 120 \\
0.008 & 71 \\
0.009 & 52 \\
0.01 & 20 \\
0.011 & 12 \\
0.012 & 0
\end{tabular}

Answer:
Good helmet: rebound velocity
\[
=7.34 \mathrm{ft} / \mathrm{sec}
\]

HIC \(=935.7\)
\begin{tabular}{cc} 
Test Results of a Poor Helmet \\
Time & Acceleration \\
\((\mathrm{sec})\) & \((g ' s)\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline 0 & 0 \\
0.001 & 100 \\
0.0015 & 180 \\
0.002 & 235 \\
0.0025 & 220 \\
0.003 & 258 \\
0.0035 & 246 \\
0.004 & 205 \\
0.0045 & 175 \\
0.005 & 110 \\
0.0055 & 75 \\
0.006 & 48 \\
0.0065 & 14 \\
0.007 & 0
\end{tabular}

Poor helmet: rebound velocity
\[
=10.85 \mathrm{ft} / \mathrm{sec}
\]
\[
\mathrm{HIC}=2653
\]

12 Each of the three tanks initially contain 500 gal of brine with \(50 \mathrm{lb}, 100 \mathrm{lb}\), and 150 lb of salt dissolved in tanks 1,2 , and 3 , respectively. The flow between tanks is shown in Fig. P-5.12. By assuming the brine is kept well stirred, the following equations describe the amount of salt in each tank.
\[
\begin{aligned}
& \frac{d w_{1}}{d t}=\frac{5 w_{2}}{500-t}-\frac{3 w_{1}}{500+2 t} \\
& \frac{d w_{2}}{d t}=\frac{3 w_{1}}{500+2 t}+\frac{4 w_{3}}{500-t}-\frac{8 w_{2}}{500-t} \\
& \frac{d w_{3}}{d t}=\frac{3 w_{2}}{500-t}-\frac{4 w_{3}}{500-t}
\end{aligned}
\]


Fig. P-5.12
Find the amount of salt in each tank after 4 hours. Use the GROUP parameter to plot the time-history of \(w_{1}, w_{2}\), and \(w_{3}\) with the same scale.
Answer:
\[
\begin{aligned}
& w_{1}=186.77 \mathrm{lb} \text { of salt } \\
& w_{2}=54.927 \mathrm{lb} \text { of salt } \\
& w_{3}=58.308 \mathrm{lb} \text { of salt }
\end{aligned}
\]

13 When a perfectly flexible and homogeneous cable is hung between two support points, the equation of its shape is called the catenary. The exact shape is given by the solution to the following differential equation.
\[
\frac{d^{2} y}{d x^{2}}=\frac{w}{h} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
\]
where: \(\quad w=0.17 \mathrm{lb} / \mathrm{ft}\), weight per unit length of cable
\(h=\) tension in cable at the lowest point


Fig. P-5.13

Find the shape of the free hanging cable for the following values of \(h\).
\[
h=10,40, \text { and } 300 \mathrm{lb}
\]

Use the MERGE parameter to plot all three curves on one page.
Answer:
\[
\begin{aligned}
\text { At: } & x=96 \mathrm{ft} \\
& h=10 \mathrm{lb}, y=97.341 \mathrm{ft} \\
& h=40 \mathrm{lb}, \quad y=19.857 \mathrm{ft} \\
& h=300 \mathrm{lb}, y=2.6118 \mathrm{ft}
\end{aligned}
\]

14 An aluminum circular fin on a 0.5 ft . diameter pipe is used to transfer energy from the surface of the pipe to the ambient air. One fin can transfer \(3200 \mathrm{Btu} / \mathrm{hour}\). For a thin circular fin having only a radial temperature distribution, the following equation gives the steady-state temperature for natural convection.
\[
\frac{d^{2} T}{d r^{2}}+\frac{1}{r} \frac{d T}{d r}-\frac{2 h}{k L}\left(T-T_{a}\right)=0
\]
where: \(T=\) temperature of fin
\[
\begin{aligned}
T_{a} & =\text { ambient temperature }=80^{\circ} \mathrm{F} \\
h & =0.19\left(T-T_{a}\right)^{0.33} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ} \mathrm{F} \\
k & =118 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F} \\
L & =\text { thickness of fin }=0.0085 \mathrm{ft}
\end{aligned}
\]


Fig. P-5.14
Find the temperature at a radius of 0.75 ft . Note that the above equation requires the integration to start at \(r=0.25 \mathrm{ft}\). An initial condition for the temperature gradient on the inside surface of the fin can be calculated from the following relationship.
\[
\begin{aligned}
q & =3200=-\left.k A \frac{d T}{d r}\right|_{r=0.25} \\
A & =\text { area }=0.5 \pi L
\end{aligned}
\]

Answer:
\[
T(r=0.75)=171.55^{\circ} \mathrm{F}
\]

15 Solve problem 14 using the following boundary conditions
\[
\begin{aligned}
T(r=0.25) & =650^{\circ} \mathrm{F} \\
\frac{d T}{d r}(r=0.75) & =-\frac{h}{k}\left[T(r=0.75)-T_{a}\right]
\end{aligned}
\]

In the second boundary condition, the heat flow from the outer edge of the fin is set equal to the energy removed from the same surface by convection. Since the
temperature gradient at the outer edge is specified, the CALL RERUN statement must be used in an iterative procedure to calculate the temperature gradient at the inside surface: \(d T(r=0.25) / d r\).
Answer:
\[
\begin{aligned}
\frac{d T}{d r}(r=0.25) & =-1146^{\circ} \mathrm{F} / \mathrm{IN} \\
T(r=0.75) & =451.7^{\circ} \mathrm{F}
\end{aligned}
\]

\section*{APPENDIX \\ /}

\section*{LISTING AND \\ DEFINITION OF ALL CSMP FUNCTIONS}

The information in this section gives a summary of the functional blocks in both CSMP/360 and CSMP III. The first portion contains those functions which are identical for both versions of CSMP. The second portion gives those functions which have been added to the newer version, CSMP III.

Material in this Appendix can be a valuable asset to the user in that a brief description of the function is given along with the example numbers in the text which use the function.

Table A-1
Functions Involving Integration And Differentiation
\begin{tabular}{c|c}
\hline Program Statement & Mathematical/Transformation Equivalent \\
\hline INTEGRATION & \\
Y \(=\) INTGRL(IC, X) & \(y=\int_{t_{0}}^{t} x d t+y\left(t_{0}\right)\) \\
IC \(=\left.y(t)\right|_{t=t_{0}}\) & \(t_{0}=\) starting time \\
\(\mathrm{X}=\) the input variable or \\
function & \(t=\) independent variable \\
(a) For CSMP/360, \(t_{0}=0\). & Equivalent Laplace transform \\
(b) For CSMP III, \(t_{0}\) is specified on \\
the TIMER card by TIME \(=t_{0}\). & \(\frac{Y(s)}{X(s)}=\frac{1}{s}\) \\
If not specified, \(t_{0}=0\). & \\
These comments apply for all blocks \\
that contain a \(t_{0}\). & \\
\hline
\end{tabular}

\section*{Comments}

This is probably one of the most frequently used functional blocks of CSMP. If the user does not specify a method of integration, then RKS variable step will automatically be used in the program. However, six other methods of integration are available and any one of these can be selected by listing the particular integration form on a METHOD card (see pages 81 to 93 ). Users may define their own integration through the use of a FORTRAN subroutine named CENTRL (pages 93 to 95 ).

A vector or array integration form is also available by using the specification form
\[
\mathrm{Y}=\mathrm{INTGRL}(\mathrm{IC}, \mathrm{X}, \mathrm{~N})
\]
where \(\mathrm{Y}=\) an output array
IC \(=\) array of initial conditions
\(X=\) array of inputs or integrands
\(\mathrm{N}=\) the number of elements in the input array
Before using the specification form of integration, the reader should review the material starting on page 103. Application of this form of integration for \(\mathrm{S} / 360\) CSMP is given in Example 3.3, page 104 and Example 4.2, page 200. Examples of the use of array integration in CSMP III are shown in Chapter 5.

Application of the ordinary integration form, that is \(Y=\operatorname{INTGRL}(I C, X)\), can be found in the following examples: Ex. 2.1, p. 14; Ex. 2.2, p. 18; Ex. 2.3, p. 25; Ex. 2.4, p. 30; Ex. 2.5, p. 35; Ex. 2.6, p. 39; Ex. 2.7, p. 42; Ex. 2.8, p. 52; Ex. 2.9, p. 58; Ex. 2.10, p. 60; Ex. 3.1, p. 90; Ex. 3.6, p. 114; Ex. 3.8, p. 126; Ex. 3.9, p. 134; Ex. 3.12, p. 151; Ex. 3.13, p. 158; Ex. 3.14, p. 167; Ex. 3.16, p. 177; Ex. 4.3, p. 210; Ex. 4.4, p. 211; Ex. 4.5, p. 215; Ex. 4.6, p. 221; Ex. 5.2, p. 253; Ex. 5.3, p. 254.
\begin{tabular}{c|c}
\hline Program Statement & Mathematical/Transformation Equivalent \\
\hline DIFFERENTIATION & \\
\(\mathrm{Y}=\mathrm{DERIV}(\mathrm{IC}, \mathrm{X})\) & \(y(t)=\frac{d x(t)}{d t}\) \\
\(\mathrm{IC}=\left.\frac{d x(t)}{d t}\right|_{t=t_{0}}\) & Equivalent Laplace transform \\
\(\mathrm{X}=\) input variable & \(\frac{Y(s)}{X(s)}=s\) \\
\hline
\end{tabular}

\section*{Comments}

Generally, this function is not used to any considerable extent in simulation. DERIV is not a MEMORY or HISTORY function and therefore cannot be used alone in a closed loop except when the loop is broken by an implicit function. An example using the DERIV function is given on p. 48.
\begin{tabular}{c|c}
\hline Program Statement & Mathematical/Transformation Equivalent \\
\hline REAL POLE or FIRST-ORDER LAG & \\
Y \(=\) REALPL(IC, P, X) & \(p \frac{d y}{d t}+y=x\) \\
IC \(=y(t)\)
\end{tabular}
\(\mathrm{IC}=\left.\boldsymbol{y}(t)\right|_{t=t_{0}}\)
\(\mathbf{X}=\) the forcing function or input

Equivalent Laplace transform
\[
\frac{Y(s)}{X(s)}=\frac{1}{p s+1}
\]

\section*{Comments}

This function is often used in control system simulation. The terms real pole and first-order lag are frequently used in control systems and engineering; hence these terms are used as descriptive titles. However, the equation
\[
p \frac{d y}{d t}+y=x
\]
is simply a first-order differential equation. When the transfer function is expressed as
\[
\frac{Y(s)}{X(s)}=\frac{A}{s+B}
\]
the form must be changed to
\[
\frac{Y(s)}{X(s)}=\frac{\frac{A}{B}}{1+\frac{s}{B}}
\]

See pp. 21 to 22 for further comments.
Applications using the REALPL function are given in Ex. 2.2, p. 18; Ex. 2.6, p. 39; Ex. 2.8, p. 52; Ex. 4.2, p. 200; Ex. 4.3, p. 210; Ex. 4.4, p. 211; Ex. 4.6, p. 221.
\begin{tabular}{c|c}
\hline Program Statement & Mathematical/Transformation Equivalent \\
\hline LEAD-LAG & \\
\(\mathbf{Y}=\) LEDLAG(P1, P2, X) & \(p_{2} \frac{d y}{d t}+y=p_{1} \frac{d x}{d t}+x\)
\end{tabular}

Note: P 1 and P 2 are parameters; initial conditions are not used with this function.
\[
p_{2} \frac{d y}{d t}+y=p_{1} \frac{d x}{d t}+x
\]

Equivalent Laplace transform
\[
\frac{Y(s)}{X(s)}=\frac{p_{1} s+1}{p_{2} s+1}
\]

\section*{Comments}

This is another function often used in control system simulation. The term lead-lag is descriptive of compensation in control systems. A lead compensator is of the form given above when \(p_{1}>p_{2}\). A lag compensator is of the same form

Comments (continued).
but with \(p_{2}>p_{1}\). Further comments and application of this function are given in Example 2.6, p. 39.
\begin{tabular}{c|c}
\hline Program Statement & Mathematical/Transformation Equivalent \\
\hline COMPLEX POLES & \\
\(\mathrm{Y}=\mathrm{CMPXPL}(\mathrm{IC} 1, \mathrm{IC} 2, \mathrm{P} 1, \mathrm{P} 2, \mathrm{X})\) & \(\frac{d^{2} y}{d t^{2}}+2 P_{1} P_{2} \frac{d y}{d t}+P_{2}^{2} y=x\) \\
\(\mathrm{IC} 1=\left.y(t)\right|_{t=t_{0}}\) & Equivalent Laplace transform \\
\(\mathrm{IC} 2=\left.\dot{y}(t)\right|_{t=t_{0}}\) & \(\frac{Y(s)}{X(s)}=\frac{1}{s^{2}+2 P_{1} P_{2} s+P_{2}^{2}}\) \\
\hline
\end{tabular}

\section*{Comments}

This function is particularly designed for second-order polynomials with complex roots. If the roots are real, one may employ REALPL twice. Nevertheless, CMPXPL will also handle the case when roots of \(s^{2}+2 P_{1} P_{2} s+P_{2}^{2}\) are real. Ordinarily, one encounters this polynomial in the form \(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\). Obviously, \(P_{2}\) is equivalent to \(\omega_{n}\) and \(P_{1}\) equivalent to \(\zeta\). If one desires to simulate the transfer function
\[
\frac{Y(s)}{X(s)}=\frac{1}{s^{2}+1.6 s+4}
\]
then \(P_{2}=2\) and \(P_{1}=0.4\).
Application of this function is given in Example 2.7, p. 42.
\begin{tabular}{c|c}
\hline Program Statement & Mathematical/Transformation Equivalent \\
\hline MODE-CONTROLLED INTEGRATOR & \\
\(\mathbf{Y}=\) MODINT(IC, X1, X2, X3) & \(y(t)=\int_{t_{0}}^{t} x_{3} d t+\mathrm{IC} ;\) for \(x_{1}>0\), any \(x_{2}\) \\
IC \(=\left.y(t)\right|_{t=t_{0}}\) & \begin{tabular}{l}
\(y(t)=\mathrm{IC} \quad\) for \(x_{1} \leq 0, x_{2}>0\) \\
\(y(t)=\) last output ; for \(x_{1} \leq 0, x_{2} \leq 0\) \\
from integrator
\end{tabular} \\
\hline
\end{tabular}

\section*{Comments}

This function allows the user to start an integration, integrate for prescribed conditions, then hold the value of \(y\), restart the integration for other prescribed conditions. For some simulations, the value of \(y\) may have large step-changes. If this occurs while using a variable-integration step-size the condition on DELMIN may not be satisfied and the simulation will halt. The user can correct the situation by changing to a fixed-step integration with appropriate step-size.

See Example 3.13, p. 158, for application of the mode-controlled integrator.

Table A-2

\section*{Special CSMP Functions}
\begin{tabular}{c|c}
\hline Program Statement & Mathematical/Transformation Equivalent \\
\hline ZERO-ORDER HOLD & \\
Y \(=\) ZHOLD(X1, X2) & \(y(t)=x_{2} \quad\); for \(x_{1}>0\) \\
X1 \(=\) a trigger signal & \(y(t)=\) last value of \(x_{2} ;\) for \(x_{1} \leq 0\) \\
X2 \(=\) input to the hold & \(\left.y(t)\right|_{t=t_{0}}=0\) \\
& Equivalent Laplace transform \\
& \(\frac{Y(s)}{X(s)}=\frac{1-e^{-s T}}{s}\) \\
& \(T=\) the sampling interval \\
\hline
\end{tabular}

\section*{Comments}

This function has important application in the design and simulation of discrete data systems. The physical property of the zero-order hold is illustrated in the following sketches.


A convenient signal for X 1 is the IMPULS function. Thus, to sample and hold a sine function of a frequency of 30 radians \(/ \mathrm{sec}\), every 1 sec , one may write
\[
\begin{aligned}
\mathrm{X} 2 & =\operatorname{SIN}(30.0 * \text { TIME }) \\
\mathrm{X} 1 & =\operatorname{IMPULS}(0.0,1.0) \\
\mathrm{Y} & =\mathrm{ZHOLD}(\mathrm{X} 1, \mathrm{X} 2)
\end{aligned}
\]

It is important to recognize that if a variable-step integration method is used in a problem, integration will generally not occur when IMPULS is applied. This means that sampling will not occur at \(n T\) but rather at those values of TIME for which an integration is performed. This problem can be overcome by using a fixed-step integration in which \(T\) is a multiple of DELT.

Application of the zero-order hold can be found in Ex. 4.3, p. 210; Ex. 4.4, p. 211; Ex. 4.5, p. 215; Ex. 4.6, p. 221.
\begin{tabular}{c|c}
\hline Program Statement & Mathematical/Transformation Equivalent \\
\hline DEAD TIME (DELAY) & \\
Y \(=\) DELAY(N, P, X) & \(y=x(t-p) ;\) for \(t \geq p\) \\
\(P=\) the ideal delay time & \(y=0 \quad ;\) for \(t<p\)
\end{tabular}
\(\mathrm{N}=\) number of points of \(\mathbf{X}\)
sampled during \(P\).
N must be an integer
constant \(\geq 3\) but \(\leq 16,378\)
\[
\frac{Y(s)}{X(s)}=e^{-p s}
\]

\section*{Comments}

The role of this function is shown in the following sketches. As a rule of thumb one can select \(N\) as a number in the range of expected integrations during \(P\). The program uses \(P / N\) as the sample interval of X when \(P / N \geq\) DELT, otherwise DELT is used.

(a) Signal before delay

(b) Signal with \(p\) units of delay

Dead time is often present in process control systems and hence DELAY is a convenient function to use when simulating these systems. Another important use of the DELAY function stems from the simulation of discrete systems represented by z-transforms. Thus, if
\[
D(z)=\frac{M(z)}{N(z)}=\frac{A+B z^{-1}}{1+C z^{-1}}
\]
the Delay function can be used for \(z^{-1}\) to simulate \(D(z)\) much in the same way that INTGRL is used to simulate \(s^{-1}\).

Application of the Delay function is given in Ex. 2.8, p. 52; and Ex. 4.4, p. 211.
\begin{tabular}{c|c}
\hline Problem Statement & Mathematical/Transformation Equivalent \\
\hline IMPLICIT FUNCTION & \(y=f(y)\) \\
Y \(=\) IMPL(IG, ERROR, FOFY) & \(|f(y)-y| \leq\) error \\
IG \(=\) an initial guess for Y & \\
ERROR \(=\) an acceptable error in \\
finding a solution for Y & \\
FOFY \(=\) the function of \(y, f(y)\) & \\
\hline
\end{tabular}

\section*{Comments}

The implicit function is used to solve a problem of the form
\[
F(y)=0
\]

This function can be expressed (usually in several different forms) as
\[
\begin{aligned}
y & =f(y) \\
\text { where } F(y) & =f(y)-y=0
\end{aligned}
\]

The expression for \(f(y)\) must be the last statement used in the implicit loop.
Further comments on the implicit function and how it can be used to break algebraic loops are given on pp. 176 to 178 . For application see Ex. 3.15, p. 176; and Ex. 3.16, p. 177.

Table A-3
Signal Sources
\begin{tabular}{|c|c|c|}
\hline Program Statement & & Function Definition \\
\hline RAMP FUNCTION
\[
\begin{aligned}
& \mathrm{Y}=\operatorname{RAMP}(\mathrm{T}) \\
& \mathrm{T}=\text { starting time of ramp }
\end{aligned}
\] & Y & \[
\begin{aligned}
& y=t-T ; \text { for } t \geq T \\
& y=0 \quad ; \text { for } t<T
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Comments}

This function is often used for special test-signal purposes. Note that the slope of the ramp is 1 . This can be changed to any value by
\[
\mathbf{Y}=\mathrm{Q} * \operatorname{RAMP}(\mathbf{T})
\]

Also, combinations of the ramp can be used to generate other special signals. For example,
\[
\begin{aligned}
& \mathrm{X} 1=\mathrm{RAMP}(0.0) \\
& \mathrm{X} 2=\mathrm{RAMP}(2.0) \\
& \mathrm{X} 3=\mathrm{X} 1-\mathrm{X} 2
\end{aligned}
\]
produces the signal shown below.

\begin{tabular}{c|c}
\hline Program Statement & Function Definition \\
\hline STEP FUNCTION & \(y=0 ;\) for \(t<T\) \\
Y \(=\) STEP(T) & \(y=1 ;\) for \(t \geq T\) \\
\(\mathrm{~T}=\) starting time of the step & \begin{tabular}{l}
\(y=0 ;\) for \(t<T\) \\
\(y=1 ;\) for \(t \geqslant T\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Comments}

The step input is one of the most frequently used signals for investigating the transient response of a system. The amplitude of the step can be changed to values other than one by using the statement,
\[
\mathrm{Y}=\mathrm{A} * \operatorname{STEP}(\mathrm{~T})
\]
where A is the desired amplitude. Single-shot pulses can easily be generated by multiple use of the step function. For example, the statements
\[
\begin{aligned}
& \mathrm{X} 1=\operatorname{STEP}(0.5) \\
& \mathrm{X} 2=\operatorname{STEP}(1.5) \\
& \mathrm{X} 3=\mathrm{X} 1-\mathrm{X} 2
\end{aligned}
\]
produces the pulse sketched below. Application of the step function can be found in the following examples. Ex. 2.2, p. 18; Ex. 2.6, p. 39; Ex. 2.7, p. 42; Ex. 2.8, p. 52; Ex. 3.12, p. 151; Ex. 3.13, p. 158; Ex. 3.15, p. 176; Ex. 3.16, p. 177; Ex. 4.2, p. 200; Ex. 4.3, p. 210; Ex. 4.4, p. 211; Ex. 4.5, p. 215; Ex. 4.6, p. 221.

\begin{tabular}{c|c}
\hline Program Statement & Function Definition \\
\hline PULSE FUNCTION & \(y=1\); for time duration \(P\) following \\
the application of TRIG. \\
Y \(=\) PULSE(P, TRIG) & \(y=0\); for all other time \\
TRIG \(=\) trigger starting each pulse & \\
\hline
\end{tabular}

\section*{Comments}

This function offers a convenient way for generating a train of pulses. Periodic pulses can be generated by using a periodic trigger. The spacing between pulses will be random provided the trigger is random (with \(P\) less than the duration between trigger applications). For an illustration of generating a pulse train see the comment notes of the Impulse function.

The pulse function is used in the following examples. Ex. 2.7, p. 42; and Ex. 3.13, p. 158.
\begin{tabular}{c|c}
\hline Program Statement & Function Definition \\
\hline IMPULSE FUNCTION & \begin{tabular}{l}
\(y=0 ;\) for \(t<T\) \\
\(\mathbf{Y}=\) IMPULS(T, P) \\
\(\mathbf{T}=\) time when first impulse is \\
applied \\
\(\mathbf{P}=\) spacing between impulses
\end{tabular} \\
\(y=1 ;\) for \(t=T+N P\) \\
\(y=0 ;\) for \(t \neq T+N P\)
\end{tabular}

\section*{Comments}

This function has an amplitude of 1 at discrete points of time. In most cases a unit impulse is considered to have infinite amplitude and an area of 1 (Dirac function). The user should note this difference.

The IMPULS is particularly useful as a trigger function. As an example, a train of unit pulses can be generated as follows.
\[
\begin{aligned}
& \mathrm{X} 1=\operatorname{IMPULS}(0.0,1.0) \\
& \mathrm{X} 2=\operatorname{PULSE}(0.2, \mathrm{X} 1)
\end{aligned}
\]

The signal X2 generated by these two statements is shown below. The impulse function is also useful in simulating the ideal sampler in discrete data systems (see Example 4.3, p. 210). The use of the impulse function is also given in Ex. 2.7, p. 42; Ex. 3.13, p. 158; Ex. 4.4, p. 211; Ex. 4.5, p. 215; Ex. 4.6, p. 221.

\begin{tabular}{|c|c|}
\hline Program Statement & Function Definition \\
\hline \begin{tabular}{l}
VARIABLE SINE FUNCTION \\
\(Y=\) SINE(DELAY,OMEGA,PHASE) \\
DELAY \(=\) delay time for starting the function
\end{tabular} & \[
\begin{array}{cc}
y=\sin \left(\begin{array}{c}
\text { omega }(t-\text { delay })+\text { phase }) \\
\\
y=0
\end{array}\right. & ; \text { for } t \geq \text { delay } \\
\text { for } t<\text { delay }
\end{array}
\] \\
\hline \[
\begin{aligned}
\text { OMEGA }= & \text { frequency of the function } \\
& \text { in radians/unit time } \\
\text { PHASE }= & \text { phase shift in radians }
\end{aligned}
\] &  \\
\hline
\end{tabular}

\section*{Comments}

This function offers the user a convenient way of displacing a sine function. If the user is not concerned about either phase shift or delay, the ordinary FORTRAN SIN can be used as in the following statement
\[
\mathrm{Y}=\mathrm{SIN}(\mathrm{OMEGA} * \mathrm{TIME})
\]
where OMEGA is a specified value of radian frequency and TIME is the CSMP variable for time. See Example 3.10, p. 145 for an illustration of the CSMP SINE function.
\begin{tabular}{c|c}
\hline Problem Statement & Function Definition \\
\hline \begin{tabular}{l|l}
\hline UNIFORM DISTRIBUTION \\
RANDOM NUMBER GENERATOR \\
\(\mathrm{Y}=\mathrm{RNDGEN}(\mathrm{N})\)
\end{tabular} & Uniform distribution of Y \\
\(\mathrm{N}=\) any odd integer which is used \\
as a "seed" value
\end{tabular}

\section*{Comments}

This function generates numbers between 0 and 1 with a uniform distribution. For a given seed value, the random sequence will be unchanged from one computer run to the next. Details for using RNDGEN are given on p. 119.

Application of this function is given in Ex. 3.13, p. 158; Ex. 4.7, p. 224.
\begin{tabular}{l|c}
\hline \multicolumn{1}{c|}{ Program Statement } & Function Definition \\
\hline NORMAL DISTRIBUTION & \\
RANDOM NUMBER GENERATOR & Normal distribution of \(Y\) \\
\(\mathbf{Y}=\) GAUSS(N, P1, P2) \\
\(\mathrm{N}=\) an odd integer seed value & \(P(y)\) \\
\(\mathrm{P} 1=\) mean \\
\(\mathbf{P} 2=\) standard deviation & \\
\hline
\end{tabular}

\section*{Comments}

This function produces random values of \(y\) which statistically have a Gaussian distribution with a specified mean and standard deviation. Both random number generators return numbers only at valid integration steps ( \(\mathrm{KEEP}=1\) ).

Additional comments concerning the use of GAUSS are given on p. 118. See Example 3.7, p. 118 for application.

Table A-4
Function Generation
\(\left.\begin{array}{c|c}\hline \text { Problem Statement } & \text { Function Definition } \\ \hline \begin{array}{c}\text { ARBITRARY FUNCTION GENERATOR } \\ \text { (linear interpolation) }\end{array} & \\ \mathrm{Y}=\mathrm{AFGEN}(\mathrm{FUNCT}, \mathrm{X}) \\ \mathrm{X}=\text { an independent variable }\end{array}\right)\)

\section*{Comments}

AFGEN is used to generate a function specified by the user. Linear or straight line interpolation is used between given values of \(x\). Data points for \(x\) and \(y\) are listed on a FUNCTION card (placed at the beginning of the program) as below
FUNCTION LUCK \(=\begin{array}{ccccc}x_{1} & y_{1} & x_{2} & y_{2} & \ldots \\ \downarrow & \downarrow & \downarrow & \downarrow \text { etc. } \\ (0.0,1.2),(0.3,1.8),(0.7,2.3),(1.1,0.9),(1.7, ~ & 0.3)\end{array}\)

\section*{Comments (continued).}

The function is called by a statement in the program such as
\[
\mathrm{Y}=\mathrm{AFGEN}(\mathrm{LUCK}, \mathrm{X})
\]

Further explanation of AFGEN is given on p. 31. Application of this function is given in Ex. 2.4, p. 30; Ex. 3.13, p. 158; Ex. 4.2, p. 200.
\begin{tabular}{c|c}
\hline Problem Statement & \multicolumn{1}{c}{ Function Definition } \\
\hline \begin{tabular}{c} 
ARBITRARY FUNCTION GENERATOR \\
(quadratic interpolation) \\
\(\mathrm{Y}=\) NLFGEN(FUNCT, X) \\
\(\mathrm{X}=\) an independent variable
\end{tabular} & \(y\) \\
FUNCT \(=\) name of a function defined \\
by a FUNCTION card.
\end{tabular}\(\quad\)\begin{tabular}{l} 
Quadratic interpolation between \\
points (A,B,C,D)
\end{tabular}

\section*{Comments}

The use of this function is identical to AFGEN except that quadratic interpolation is used between data points. See the comments given for AFGEN and also refer to p. 31.

Application of NLFGEN can be found in Ex. 2.10, p. 60; Ex. 2.11, p. 65; Ex. 3.5, p. 110.

Table A-5
Nonlinear System Characteristics
\begin{tabular}{|c|c|}
\hline Program Statement & Definition of Characteristic \\
\hline DEAD SPACE
\[
\begin{aligned}
\mathbf{Y} & =\operatorname{DEADSP}(\mathbf{P} 1, \mathbf{P} 2, \mathbf{X}) \\
\mathbf{X} & =\text { input function } \\
\mathbf{P} 1, \mathbf{P} 2 & =\text { parameters defining the } \\
& \text { range of the dead space }
\end{aligned}
\] & 
\[
\begin{aligned}
& y=0 \quad ; \text { for } P_{1} \leq x \leq P_{2} \\
& y=x-P_{2} ; \text { for } x>P_{2} \\
& y=x-P_{1} ; \text { for } x<P_{1}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Comments}

This function can be used for simulating dead space in a system nonlinearity such as a valve. The slope on the active portion is not limited to \(45^{\circ}\) and can be changed to a specified value by
\[
\begin{aligned}
& \mathbf{Y}=\mathbf{Q} * \operatorname{DEADSP}(\mathbf{P} 1, \mathrm{P} 2, \mathrm{X}) \\
& (\mathrm{Q}=\text { specified slope })
\end{aligned}
\]

Application of this function is given in Example 2.9, p. 58.
\begin{tabular}{|c|c|}
\hline Program Statement & Definition of Characteristic \\
\hline LIMITER
\[
\begin{aligned}
\mathbf{Y}= & \operatorname{LIMIT}(\mathbf{P} 1, \mathbf{P} 2, \mathbf{X}) \\
\mathbf{X}= & \text { an input } \\
\mathbf{P 1}, \mathbf{P} \mathbf{2}= & \text { parameters defining } \\
& \text { the range of limiting }
\end{aligned}
\] & 
\[
\begin{aligned}
& y=P_{1} ; \text { for } x<P_{1} \\
& y=P_{2} ; \text { for } x>P_{2} \\
& y=x ; \text { for } P_{1} \leq x \leq P_{2}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Comments}

Used for defining limiting or saturation in a system. The slope of the function can be changed from \(45^{\circ}\) by the statement
\[
\begin{aligned}
& \mathbf{Y}=\mathbf{Q} * \operatorname{LIMIT}(\mathbf{P} 1, \mathbf{P} 2, \mathbf{X}) \\
& (\mathrm{Q}=\text { user defined slope })
\end{aligned}
\]

A typical application of this function is given in Example 2.10, p. 60.
\begin{tabular}{c|c}
\hline \multicolumn{1}{c|}{ Program Statement } & Definition of Characteristic \\
\hline QUANTIZER & \\
\(\mathbf{Y}=\mathrm{QNTZR}(\mathbf{P}, \mathrm{X})\) & \\
\(\mathrm{P}=\) width of quantized signal \\
\(\mathrm{X}=\) independent variable & \\
& \\
& \\
\hline
\end{tabular}

\section*{Comments}

Useful for quantizing a function or signal. For example, a sin function can be quantized as follows.
\[
\begin{aligned}
& \text { X1 }=\text { SIN }(10.0 * \text { TIME }) \\
& \text { X } 2=\text { X } 1 * \text { QNTZR }(0.05, \text { TIME })
\end{aligned}
\]

This function can be used to simulate the output of a digital to analog converter.
\begin{tabular}{|c|c|}
\hline Program Statement & Definition of Characteristic \\
\hline HYSTERESIS
\[
\begin{aligned}
\mathbf{Y} & =\operatorname{HSTRSS}(\mathrm{IC}, \mathrm{P} 1, \mathrm{P} 2, \mathrm{X}) \\
\mathrm{P} 1, \mathrm{P} 2 & =\text { parameters defining the } \\
& \text { range of the hysteresis } \\
\mathrm{IC} & =\text { value of } \mathrm{Y} \text { at } t_{o} . \\
\mathrm{X} & =\text { independent variable }
\end{aligned}
\] &  \\
\hline
\end{tabular}

Table A-6
Switching Functions
\begin{tabular}{c|c}
\hline Program Statement & Description of Switch \\
\hline \begin{tabular}{l} 
OUTPUT SWITCH \\
\(\mathrm{Y} 1, \mathrm{Y} 2=\mathrm{OUTSW}(\mathrm{X1}, \mathrm{X} 2)\)
\end{tabular} & \begin{tabular}{l}
\(y_{1}=x_{2}, y_{2}=0\); for \(x_{1}<0\) \\
\(y_{1}=0, y_{2}=x_{2} ;\) for \(x_{1} \geq 0\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{c|cc}
\hline Program Statement & & Description of Switch \\
\hline INPUT SWITCH \\
\(\mathbf{Y}=\mathrm{INSW}(\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3)\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Program Statement & Description of Switch \\
\hline COMPARATOR
\[
\mathrm{Y}=\operatorname{COMPAR}(\mathrm{X} 1, \mathrm{X} 2)
\] & 
\[
\begin{aligned}
& y=0 ; \text { for } x_{1}<x_{2} \\
& y=1 ; \text { for } x_{1} \geq x_{2}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Program Statement & Description of Switch \\
\hline FUNCTION SWITCH
\[
\mathrm{Y}=\mathrm{FCNSW}(\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4)
\] &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Program Statement & Description of Switch \\
\hline RESETTABLE FLIP-FLOP
\[
\mathrm{Q}=\operatorname{RST}(\mathrm{R}, \mathrm{~S}, \mathrm{~T})
\] &  \\
\hline
\end{tabular}

Comments
This switch has the operating characteristics of a reset-set-toggle flip-flop. \(Q(t-\Delta t)\) is the previous state of the flip-flop. At the start of a simulation, \(Q(t-\Delta t)=0\) for \(R\) and \(S \leq 0\) with either state of \(T\).

Application of this flip-flop is given in Example 4.8, p. 228.

Table A-7
Logic Functions
\begin{tabular}{c|c}
\hline Program Statement & Logic Function Description \\
\hline AND \(\quad \mathrm{Y}=\mathrm{AND}(\mathrm{X1}, \mathrm{X} 2)\) \\
Applications given in \\
Ex. 3.13, p. 158 \\
Ex. 4.7, p. 224 \\
Ex. 4.8, p. 228
\end{tabular}
\begin{tabular}{|c|c|}
\hline Program Statement & Logic Function Description \\
\hline \begin{tabular}{l}
NOT
\[
\mathrm{Y}=\mathrm{NOT}(\mathrm{X})
\] \\
Application given in Ex. 4.7, p. 224 \\
Ex. 4.8, p. 228
\end{tabular} & \[
\begin{aligned}
& y=1 ; \text { for } x \leq 0 \\
& y=0 ; \text { for } x>0
\end{aligned}
\] \\
\hline \begin{tabular}{l}
INCLUSIVE OR
\[
\mathrm{Y}=\mathrm{IOR}(\mathrm{X} 1, \mathrm{X} 2)
\] \\
Application given in Ex. 4.7, p. 224
\end{tabular} & \begin{tabular}{l}
\(y=0 ;\) for \(x_{1} \leq 0, x_{2} \leq 0\) \\
\(y=1\); otherwise
\end{tabular} \\
\hline NOR (not or)
\[
\mathrm{Y}=\operatorname{NOR}(\mathrm{X} 1, \mathrm{X} 2)
\] & \[
y=1 ; \text { for } x_{1} \leq 0, x_{2} \leq 0
\]
\[
y=0 ; \text { otherwise }
\] \\
\hline EXCLUSIVE OR
\[
\mathrm{Y}=\mathrm{EOR}(\mathrm{X} 1, \mathrm{X} 2)
\] & \[
\begin{aligned}
& y=1 ; \text { for } x_{1} \leq 0, x_{2}>0 \\
& y=1 ; \text { for } x_{1}>0, x_{2} \leq 0 \\
& y=0 ; \text { otherwise }
\end{aligned}
\] \\
\hline equivalent
\[
\mathbf{Y}=\mathrm{EQUIV}(\mathrm{X} 1, \mathrm{X} 2)
\] & \begin{tabular}{l}
\(y=1 ;\) for \(x_{1} \leq 0, x_{2} \leq 0\) \\
\(y=1\); for \(x_{1}>0, x_{2}>0\) \\
\(y=0\); otherwise
\end{tabular} \\
\hline
\end{tabular}

FORTRAN Functions. All FORTRAN functions are available for use in CSMP simulation. Also, the majority of FORTRAN techniques can be used with

CSMP including WRITE statements, DO loops, GO TO, and IF. In some cases the FORTRAN statements require special handling procedures within the body of a CSMP program. Several examples are given in the text in which FORTRAN is included with the CSMP program.

In the following table some of the more common FORTRAN functions are listed for convenience. Users should refer to any standard FORTRAN text for a more complete listing.

\section*{Table A-8}

FORTRAN Functions
\begin{tabular}{|c|c|}
\hline Program Statement & Mathematical Description \\
\hline EXPONENTIAL
\[
\mathbf{Y}=\operatorname{EXP}(\mathbf{X})
\] & \(y=e^{x}\) \\
\hline NATURAL LOGARITHM
\[
\mathrm{Y}=\mathrm{ALOG}(\mathrm{X})
\] & \(y=\ln (x)\) \\
\hline COMMON LOGARITHM
\[
\mathrm{Y}=\mathrm{ALOG10}(\mathrm{X})
\] & \(y=\log _{10}(x)\) \\
\hline ARCTANGENT
\[
\mathbf{Y}=\mathrm{ATAN}(\mathbf{X})
\] & \(y=\tan ^{-1}(x)\) \\
\hline TRIGONOMETRIC SINE
\[
\mathrm{Y}=\mathrm{SIN}(\mathrm{X})
\] & \(y=\sin (x)\) \\
\hline TRIGONOMETRIC COSINE
\[
\mathrm{Y}=\cos (\mathrm{X})
\] & \(y=\cos (x)\) \\
\hline SQUARE ROOT
\[
\mathbf{Y}=\operatorname{SQRT}(X)
\] & \(y=\sqrt{x}\) \\
\hline HYPERBOLIC TANGENT
\[
\mathbf{Y}=\mathrm{TANH}(\mathrm{X})
\] & \(y=\tanh (x)\) \\
\hline \begin{tabular}{l}
absolute value \\
(Real argument and output)
\[
\mathrm{Y}=\mathrm{ABS}(\mathrm{X})
\]
\end{tabular} & \(y=|x|\) \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Program Statement & Mathematical Description \\
\hline \begin{tabular}{c} 
ABSOLUTE VALUE \\
(Integer argument and output) \\
Y \(=\) IABS(X)
\end{tabular} & \\
\hline TRANSFER OF SIGN \\
\(\mathbf{X}=\operatorname{SIGN(A,B)}\) & \(y=|x|\) \\
\hline
\end{tabular}

LARGEST VALUE
(Integer arguments and real output)
\begin{tabular}{c|c}
\(\mathrm{Y}=\operatorname{AMAX} 0(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{XN})\) & \(y=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)\) \\
\hline LARGEST vaLue \\
(Real arguments and output) & \\
\(\mathrm{Y}=\operatorname{AMAX1}(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{XN})\) & \(y=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)\) \\
\hline
\end{tabular}

LARGEST VALUE
(Integer arguments and output)
\begin{tabular}{c|c}
\(\mathrm{Y}=\mathrm{MAX0}(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{XN})\) & \(y=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)\) \\
\hline \begin{tabular}{l} 
LARGEST VALUE \\
(Real arguments and \\
integer output)
\end{tabular} & \\
\(\mathrm{Y}=\operatorname{MAX1}(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{XN})\) & \(y=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)\) \\
\hline
\end{tabular}

\section*{SMALLEST VALUE}
(Integer arguments and real output)
\(y=\min \left(x_{1}, x_{2}, \ldots, x_{n}\right)\)

Smallest value
(Real arguments and output)
\begin{tabular}{c|c}
\(\mathrm{Y}=\operatorname{AMIN} 1(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{XN})\) & \(y=\min \left(x_{1}, x_{2}, \ldots, x_{n}\right)\) \\
\hline \begin{tabular}{c} 
Smallest Value \\
(Integer arguments and output)
\end{tabular} & \\
\(\mathrm{Y}=\operatorname{MIN} 0(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{XN})\) & \(y=\min \left(x_{1}, x_{2}, \ldots, x_{n}\right)\)
\end{tabular}
\begin{tabular}{l|c}
\hline \multicolumn{1}{c|}{ Program Statement } & Mathematical Description \\
\hline SMALLEST value \\
\begin{tabular}{l} 
(Real arguments and \\
integer output) \\
\(\mathrm{Y}=\operatorname{MIN} 1(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{XN})\)
\end{tabular} & \\
\hline
\end{tabular}

Additional CSMP Functions. The following functions have been added to CSMP III. Refer to Chap. 5 for addition comments concerning CSMP III.

Table A-9
Functions Added to CSMP III.
\begin{tabular}{|c|c|c|c|}
\hline Program Statement & \multicolumn{3}{|c|}{Transformation Equivalent} \\
\hline \begin{tabular}{l}
GENERAL LAPLACE TRANSFORM \\
(Available only in CSMP III)
\end{tabular} & & & \\
\hline \begin{tabular}{l}
\[
\mathbf{Y}=\operatorname{TRANSF}(\mathbf{N}, \mathbf{B}, \mathbf{M}, \mathbf{A}, \mathbf{X})
\] \\
Format For Entering Data:
\end{tabular} & \(X(s)\) & \[
\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+a_{1} s+a_{m+1}}{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{n+1}}
\] & \(Y(s)\) \\
\hline STORAGE
\[
\mathrm{B}(\mathrm{~N}+1), \mathrm{A}(\mathrm{M}+1)
\] & & where \(m \leq n\) & \\
\hline TABLE & & & \\
\hline \[
\begin{aligned}
& \mathrm{B}(1-(\mathrm{N}+1))=\mathrm{B}(1) \\
& \mathrm{B}(2), \ldots, \mathrm{B}(\mathrm{~N}+1) \\
& \mathrm{A}(1-(\mathrm{M}+1))=\mathrm{A}(1) \\
& \mathrm{A}(2), \ldots, \mathrm{A}(\mathrm{M}+1)
\end{aligned}
\] & & & \\
\hline
\end{tabular}

\section*{Comments}

The TRANSF function can be used to find the response of a transfer function with \(m\) zeros and \(n\) poles ( \(m \leq n\) ) due to an arbitrary input, \(x\). The user should note with caution that \(a_{m+1}\) and \(b_{n+1}\) are the last coefficients of the numerator and denominator respectively while \(a_{m}\) and \(b_{n}\) are the first coefficients.

Suppose one desires to find the step response of the following transfer function using TRANSF.
\[
G(s)=\frac{Y(s)}{X(s)}=\frac{3 s^{2}+4 s+2}{s^{3}+6 s^{2}+9 s+4}
\]

The statements given below can be used in the program for this purpose.
STORAGE DENCOF(4), NUMCOF(3)
\(\operatorname{TABLE} \quad \operatorname{DENCOF}(1-4)=9.0,6.0,1.0,4.0, \ldots\)
\(\operatorname{NUMCOF}(1-3)=4.0,3.0,2.0\)

Comments (continued).
\[
\begin{aligned}
& \mathrm{IN}=\operatorname{STEP}(0.0) \\
& \mathrm{OUT}=\operatorname{TRANSF}(3, \text { DENCOF }, 2, \text { NUMCOF }, \mathrm{IN})
\end{aligned}
\]

For further comments see Example 3.12, p. 151; and p. 265.
\begin{tabular}{|c|c|}
\hline Program Statement & Equivalent Mathematical Expression \\
\hline \begin{tabular}{l}
Variable flow transport delay \\
(Available only in CSMP III)
\[
\mathrm{Y}=\operatorname{PIPE}(\mathbf{N}, \mathrm{IC}, \mathbf{P}, \mathbf{X} 1, \mathrm{X} 2, \mathrm{ND})
\] \\
\(\mathrm{N}=\) the number of intervals required to define the delay of \(\mathbf{P}\). \\
\(I C=\) the initial condition of entire pipeline \\
\(\mathbf{P}=\) the holdup quantity \\
\(\mathrm{X} 1=\) flow rate \\
X2 \(=\) delayed characteristic \\
\(\mathrm{ND}=\) degree of interpolation for retrieving delayed characteristic. This may be 1 or 2 . \\
This functional block is used to simulate the transient flow of an incompressible fluid in a system having a time delay.
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& f_{v}=\int_{t_{0}}^{t} x_{1} d t \\
& q=\int_{t_{0}}^{t} x_{1} x_{2} d t \\
& y=\mathrm{IC} ; \text { for } f_{v}<P \\
& y=\frac{q\left(f_{v}-P\right)-q\left(f_{v}(t-\Delta t)-P\right)}{f_{v}-f_{v}(t-\Delta t)} ; \\
& \quad \text { for } f_{v} \geq P
\end{aligned}
\] \\
where \(f_{v}=\) flow volume \\
\(q=\) weighted volume
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Program Statement & Equivalent Mathematical Expression \\
\hline \begin{tabular}{l} 
FUNCTION GENERATOR WITH DEGREE \\
OF INTERPOLATION CHOSEN BY USER \\
(Available only in CSMP III)
\end{tabular} & \\
\(\mathbf{Y}=\) FUNGEN(FUNCT, N, X) & \\
FUNCT \(=\) function name \\
\(\mathbf{N}=\) degree of interpolation to \\
be used. User may select \\
from 1, 2, 3, 4, or 5.
\end{tabular}

\section*{Comments}

Use of this function is very similar to AFGEN and NLFGEN. See p. 262.
\begin{tabular}{c|c}
\hline Program Statement & \\
\hline \begin{tabular}{c} 
SLOPE OF A CURVE \\
(Available only in CSMP III) \\
Y = SLOPE(FUNCT, N, X) \\
FUNCT \(=\) user's name of the curve \\
\(\mathrm{N}=\) the degree of interpolation \\
to be used, \(\mathrm{N}=1\), , or 3.
\end{tabular} & \\
X = value of abscissa
\end{tabular}
\begin{tabular}{|c|c|}
\hline Program Statement & Equivalent Mathematical Expression \\
\hline \begin{tabular}{l}
ARRAY-TO-SCALAR CONVERTOR \\
(Available only in CSMP III)
\[
\mathrm{Y} 1, \mathrm{Y} 2, \ldots, \mathrm{YM}=\operatorname{SCALAR}(X(2))
\]
\end{tabular} & \[
\begin{aligned}
& y_{1}=x(2) \\
& y_{2}=x(3) \\
& \cdot \\
& \vdots \\
& y_{m}=x(m+1)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DOUBLE PRECISION FLOATING-POINT TO SINGLE PRECISION \\
(Available only in CSMP III)
\[
Y=Z Z R N D(X(2))
\]
\end{tabular} & The ZZRND function transforms by rounding the double precision variable \(X(2)\) to the single precision variable \(Y\). \\
\hline
\end{tabular}

\title{
APPENDIX // \\ DIAGNOSTIC MESSAGES, PROGRAM RESTRICTIONS, AND RESERVED WORDS
}

This material involving diagnostic messages, restrictions, and reserved words was primarily taken from IBM Manuals. \({ }^{(1,2)}\)

\section*{Diagnostic Messages}

Diagnostic messages may occur during both the translation and execution phases of the program and are designed to be self-explanatory. Some of the diagnostic checks detect illegal characters or incorrect syntax; the symbol " \(\$\) " is printed below the detected error prior to the associated diagnostic message. A "warning only" message is printed when an error is not wholly discernible in translation or does not destroy the "validity" of simulation. Some examples of these errors are:

Control variable name not a systems variable
Parameter value not specified
Variable used as input to a section not available from any prior section
Some examples of errors causing a run halt at the end of translation are:
Incorrect structure or data statement format
Invalid data card type
Unspecified implicit loop
RELERR specification on other than an integrator output name
Examples of errors causing a run halt during execution are:

Failure of an integration or implicit function to meet the error criterion
A misspelled subroutine name
The following is an alphabetical list of diagnostic messages with their explanations and suggested corrections. The messages with the label " \(\mathrm{S} / 360\) " apply only to S/360 CSMP, the messages with the label "III" apply only to CSMP III, and messages designated with "Both" apply to both forms of CSMP.

III CALL CONTIN CAN ONLY BE USED IN A TERMINAL SEGMENT "CALL CONTIN" can be used only in a Terminal segment. If it is used elsewhere, the run terminates.

\section*{Both CALL RERUN CAN ONLY BE USED IN A TERMINAL SEGMENT "CALL RERUN" can be used only in a Terminal segment. If it is used elsewhere, the run terminates.}

III CENTRAL INTEGRATION ROUTINE NOT SUPPLIED
On the METHOD execution control card, the user has used the word, CENTRL, to specify his integration method. However, he has not supplied the integration deck to the program. The run will be terminated.

\section*{Both CSMP STATEMENT INCORRECTLY WRITTEN}

The translation phase has detected an error in the statement printed before this message. The statement should be checked carefully, including parentheses and commas. Although translation of the source statements will continue, the run will be terminated before the execution phase.

\section*{Both CSMP STATEMENT OUT OF SEQUENCE}

The sequence of input statements cannot be processed and the run will be terminated before the execution phase. The statement should be checked for sequence in the input deck to see if it has been misplaced. MACRO definitions must precede all structure statements. An INITIAL segment, when used, must precede the DYNAMIC segment. If used, the TERMINAL segment must follow the DYNAMIC segment.

S/360 DATA HAS NOT BEEN SPECIFIED FOR AN AFGEN FUNCTION
S/360 DATA HAS NOT BEEN SPECIFIED FOR AN NLFGEN FUNCTION
An AFGEN (or NLFGEN) function generator has been used in a structure statement but the corresponding data has not been specified using the FUNCTION statement. The run will be terminated.

III DATA HAS NOT BEEN SUPPLIED FOR A TWOVAR FUNCTION
A TWOVAR function generator has been used in a structure statement, but the data has not been specified on FUNCTION statements. The run will be terminated.

\section*{III DATA NOT SUPPLIED FOR FUNCTION}

An AFGEN, NLFGEN, FUNGEN, or SLOPE function generator has been used in a structure statement, but a FUNCTION statement has not specified the corresponding data. The run will be terminated.

S/360 DYNAMIC STORAGE EXCEEDED. THIS CASE CANNOT BE RUN
The 8000 -word limitation on simulator data storage has been exceeded. The storage in this array includes the current values of model variables, function and error tables, central integration history, and subscripted variable values. The problem should be analyzed to determine where equations can be combined to reduce the number of required entries in the array.

\section*{S/360 ERROR-CENTRAL INTEGRATION ROUTINE NOT SUPPLIED}

The user has used the word CENTRL for his integration method on the METHOD execution control card; however, he has not supplied the integration deck to the program. The run will be terminated.

\section*{Both ERROR IN COORDINATE ENTRIES}

An error has been detected in the previously printed FUNCTION data statement. There is either an odd number of entries in the data table or an improper sequence of X-coordinate values. The run will be terminated.

S/360 ERROR IN PRINT-PLOT STATEMENT
An error has been detected in the PRTPLT output control statement. The statement should be checked for a correct number of parentheses and commas for specifying lower and upper limits, particularly if one or the other is missing, and commas are used to indicate this. Although the run continues, everything on the card after the error is disregarded.

\section*{Both ERROR IN TABLE ENTRY}

In the previously printed TABLE data statement, an error has been detected. Although reading of the data statements will continue, the run will be terminated before execution.
Both EXCEEDED MAXIMUM ITERATIONS ON IMPLICIT LOOP
One hundred iterations of the implicit loop have been run and convergence has not yet occurred. The run has been terminated. One possibility is to change the error condition, so that the convergence criteria can be met.

III FAMILY OF PARAMETER VALUES AFTER END CONTINUE DELETED Following an END CONTINUE statement, a multiple-value parameter has been defined. These values will be deleted and the program will use the previous value of the parameter.
III FINTIM HAS NOT BEEN SET. RUN DELETED
FINTIM either has not been specified or was made equal to zero.
S/360 FINTIM IS ZERO. THIS CASE CANNOT BE EXECUTED
FINTIM either has not been specified or has been specified as being equal to zero.
III FUNCTION DATA EXCEEDS STORAGE
Function data supplied in the execution input exceeds the core storage allocated. The run is terminated.

\footnotetext{
III FUNCTION DATA FOR LOAD EXCEEDS STORAGE
The FGLOAD or TVLOAD subprogram has been called and the available storage for the function as specified by the SYSTEM NPOINT \(=\mathrm{n}\)-statement is not sufficient.
}

\section*{III FUNCTION DATA FOR LOAD INCORRECT}

The FGLOAD or TVLOAD subprogram has been called and the input data ( \(X\) values) are not monotonically increasing.
III FUNCTION NAME xxxxxx HAS BEEN SPECIFIED PREVIOUSLY
The name assigned to function data on a FUNCTION statement has been already assigned to another function, parameter, or variable.

\section*{Both GENERATED STATEMENT NO. xx}

The Translator has detected an error during generation of statement \(x x\) of an invoked macro in the structure of the model. Carefully check the corresponding statement of the macro definition for proper spelling and punctuation.

\section*{Both ILLEGAL CHARACTER OR DOUBLE OPERATOR}

In the previously printed statement, an illegal character or double operator has been detected. Although translation of the source statements will continue, the run will be terminated before the Execution phase.
III ILLEGAL SPECIFICATION ON RERUN
Following an END RERUN statement or END CONTINUE, there is an OUTPUT or PREPARE statement or a TIMER statement with an OUTDEL parameter. This is an illegal specification.

\section*{Both INCORRECT IMPLICIT STATEMENT}

The Translation phase has detected an error in the IMPL structure statement printed before this message. The statement should be checked to see that the third argument is the output name of the last statement in the definition and that the block output appears at least once to the right of an equal sign. Although translation of the source statements will continue, the run will be terminated before the Execution phase.

\section*{Both INCORRECT MACRO STATEMENT}

The Translation phase has detected an error in the macro use statement printed before this message. The statement should be checked to ensure that the number of arguments and outputs is correct and that the argument list ends with a parenthesis. Although translation of the source statements will continue, the run will be terminated before the Execution phase.

\section*{S/360 INCORRECT TIMER VAR NAME**WARNING ONLY}

One of the system variable names (FINTIM, DELT, PRDEL, OUTDEL, or DELMIN) has been misspelled on the TIMER execution control card. The user should also check the possibility that the system variable has been renamed. Although the run will continue, the system variable misspelled will be unchanged.

Both INPUT NAME SAME AS OUTPUT NAME
The output variable name to the left of the equal sign has also been used as an input name on the right side of the equal sign. Except as output of a memory type functional element, such usage is not permissible in a parallel, sorted section. The run will be terminated.
III INPUT P IS LESS THAN ZERO FOR DELAY
Delay time \(P\) of the DELAY function is found to be less than zero, which is an invalid condition. The execution of this run will be terminated.

III INPUT P2 IS LESS THAN P1 FOR DEADSP
Parameter P2 is found to be less than parameter P1 for the DEADSP function and this is an invalid condition.

III INPUT P2 IS LESS THAN ZERO FOR IMPULS
The time between impulses P2 is found to be less than zero for the IMPULS function, which is an invalid condition.

S/360 INPUT TO FUNCTION GENERATOR nnnnnn ABOVE SPECIFIED RANGE INPUT = xxxx.xxxx
The input (xxxx.xxxx) to the function generator named nnnnnn is above the maximum specified range. The program will take the value for the maximum specified and continue. This message will be printed only once, even though the condition is reached several times.
S/360 INPUT TO FUNCTION GENERATOR nnnnnn BELOW SPECIFIED RANGE INPUT = xxxx.xxxx
The input (xxxx.xxxx) to the function generator named nnnnnn is below the minimum specified range. The program will take the value for the minimum specified and continue. This message will be printed only once, even though the condition is reached several times.
III INPUT TO FUNCTION name \(\left[\begin{array}{l}\text { ABOVE } \\ B E L O W\end{array}\right]\) INPUT DATA
[CURVE NO. nnnn] CALL mmmm INPUT \(=\mathrm{w}\) at v
The input to the function generator (interpolating for the function named in the message) is above the maximum or below the minimum input specified. The output of the function generator is set equal to the output value of the function corresponding to the input extreme which was violated. This message is printed only once even though the condition may be reached several times. The curve number nnnn indicates (for functions of two variables) for which curve the first input was in error. For example, if the model contains the following function of two variables:
```

FUNCTION F, $-5 .=(0 ., 3.5),(1 ., 6.1),(3 ., 8.6)$
FUNCTION F, $3.2=(0 ., 3.8),(1 ., 7.5),(3.2,9.6)$
FUNCTION F, $10.2=(0 ., 4.2),(1.2,8.3),(2.8,9.3)$

```
and the diagnostic message specifies CURVE NO. 2, then the error is in the first input to the function curve
\[
\text { FUNCTION F, } 3.2=(0 ., 3.8),(1 ., 7.5),(3.2,9.6)
\]

The call number mmmm is the first argument of the interpolation function in the UPDATE FORTRAN subroutine generated by the Translator. For example, if the model contains the statement
\[
\mathrm{OP}=\mathrm{AFGEN}(\mathrm{FUNCT}, \mathrm{XIN})
\]
the UPDATE subroutine would contain the corresponding statement
\[
\mathrm{OP}=\mathrm{AFGEN}(\mathrm{n}, \mathrm{FUNCT}, \mathrm{XIN})
\]

The first argument n is an integer constant and would be the call number in the diagnostic message for this statement if the value of XIN is outside the range
of the function FUNCT. The input value out of range is specified by INPUT \(=w\). The value of the independent variable for this out-of-range condition is given by AT v .

\section*{SECOND INPUT TO FUNCTION name \(\left[\begin{array}{l}\text { ABOVE } \\ \text { BELOW }\end{array}\right]\) INPUT DATA}

CALL mmmm INPUT \(=\mathrm{w}\) AT v
The second input to the function generator TWOVAR (interpolating for the function of two variables named in the message) is above the maximum or below the minimum input specified. The output of the function generator is set equal to the output value of the function corresponding to the input extreme which was violated. This message is printed only once even though this condition may be reached several times. The call number mmmm is the first argument of the interpolation function block in the UPDATE subroutine generated by the Translator. For example, if the model contains the statement
OUT = TWOVAR (F, XIN, ZIN)
the UPDATE subroutine would contain the corresponding statement
OUT = TWOVAR (n, F, XIN, ZIN)

The first argument n is an integer constant and would be the call number in the diagnostic message for this statement if the value of ZIN is outside the range of the function F . The second input value which is out of range is specified by INPUT \(=\mathrm{w}\). The value of the independent variable for this out-of-range condition is given by AT v .

\section*{Both LABEL INCORRECTLY WRITTEN}

The label used in the preceding statement cannot be recognized by the program. Check for proper spelling. The statement will be disregarded; the run will continue.

III MACRO WITHIN MACRO USED IN A PROCEDURAL
Macros, separately defined, can be invoked within the definition of other macros if overall parallel structure is implied. Invocation of a macro within a procedure within a macro definition is therefore not permissible. Similarly, a macro containing other macros in its definition may not be invoked from a procedure or from a procedural section.

\section*{S/360 MACRO xxxxxx WITHIN MACRO yyyyyy USED IN A PROCEDURAL SECTION}

Macros, separately defined, may be invoked within the definition of other macros if overall parallel structure is implied. Invocation of a macro within a procedure within a macro definition is therefore not permissible. Similarly, a macro containing other macros in its definition may not be invoked from a procedure or from a procedural section.

\section*{III METHOD SELECTED EXCEEDS STORAGE \\ The integration method specified in the execution input exceeds the core storage allocated. The run is terminated. The integration methods available, in order of increasing size, are: RECT, TRAPZ, SIMP, ADAMS, RKSFX, RKS, STIFF, RKSDP, and MILNE.}
S/360 MORE THAN 10 PRTPLT STATEMENTSMore than ten PRTPLT output control statements have been specified. Only thefirst ten will be used.
Both NUMBER EXCEEDS 12 CHARACTERSIn the previously printed statement, a number exceeding twelve characters in amacro argument or integrator block initial condition has been detected. Althoughtranslation of the source statements will continue, the run will be terminatedbefore the execution phase.
Both NUMBER INCORRECTLY WRITTENIn the previously printed statement, a number written incorrectly has beendetected. If detected during the translation phase, translation of the source state-ments will continue; however, the run will be terminated before the executionphase.
S/360 ONLY FIRST 10 CONDITIONS FOR JOB END WILL BE TESTEDMore than ten specifications have been given with the FINISH execution controlstatement. Although the run will continue, only the first ten specifications will beused.
III ONLY FIRST 10 CONDITIONS WILL BE TESTEDMore than ten specifications have been given through the FINISH executioncontrol statement. Although the run will continue, only the first ten specificationswill be used.
Both ONLY FIRST 50 VALUES WILL BE USEDThe multiple-value form of the PARAMETER data statement specifies morethan 50 values for the parameter. A sequence of runs will be performed using onlythe first 50 values.
S/360 ONLY FIRST 50 VARIABLES WILL BE PREPAREDMore than 50 variables (including TIME) have been specified with PREPARE orPRTPLT output control statements. Although the run will continue, only thefirst 50 variables will be used.
III ONLY FIRST 220 VARIABLES WILL BE PREPAREDMore than 220 variables (including TIME) have been specified through PRE-PARE or OUTPUT print control statements. Although the run will continue,only the first 220 variables will be used.
S/360 ONLY FIRST 50 VARIABLES WILL BE PRINTEDMore than 50 variables (including TIME) have been requested with PRINTexecution control statements. Only the first 50 will be printed; others will beignored.
III ONLY FIRST 55 VARIABLES WILL BE PRINTEDMore than 55 variables (including TIME) have been requested through PRINTexecution control statements. Only the first 55 will be printed; others will beignored.
S/360 ONLY FIRST 100 VARIABLES WILL BE RANGEDMore than 100 variables (including TIME) have been specified with the RANGEoutput control statement. Although the run will continue, only the first 100 vari-ables will be used.

III ONLY FIRST 110 VARIABLES WILL BE RANGED
More than 110 variables (including TIME) have been specified through the RANGE output control statement. Although the run will continue, only the first 110 variables will be used.
Both ONLY LAST VALUE OF FAMILY USED FOR CONTINUE RUN
A multiple-value parameter has been used in a run that is to be continued. The continue control feature will be implemented only with the last value of the parameter. This is a warning message. The run will continue.

\section*{Both OUTPUT NAME HAS ALREADY BEEN SPECIFIED}

In the previously printed statement, the output variable name to the left of the equal sign has been used before as an output variable name; that is, it has occurred to the left of the equal sign in a preceding section. The run will be continued.

\section*{Both PARAMETERS NOT INPUT OR OUTPUTS NOT AVAILABLE TO SORT SECTION \(* * *\) SET TO ZERO***}

A list of variable names will be printed following this heading. The run is continued. Variables that are not parameters specified on data cards are set to zero. Output variable names that are not available to this sort section are initially set to zero, but may change as the problem is run.

Both PROBLEM CANNOT BE EXECUTED
At least one diagnostic message will have been printed among the source statements indicating the reason why the problem cannot be executed. The run will be terminated.
S/360 PROBLEM INPUT EXCEEDS TRANSLATION TABLE nn
During translation of the problem, a table has been exceeded and the run will terminate. The specific table is identified by nn in the following list:

Translation Table

1 More than 500 statement output names.
2 More than 1400 statement input names (temporary count during translation).

3 More than 400 parameter names
4 More than 300 INTGRL or MEMORY outputs
5 More than 1400 input names and unique block names
6 More than 20 FIXED variable names
7 More than 100 non-zero initial condition numeric values
8 More than 10 FORTRAN specification cards
9 More than 100 unique block names and symbolic names with first letter I, J, K, L, M, or N but not appearing on FIXED statements
More than 25 STORAGE variable names
11 More than 15 sections (SORT or NOSORT)
12 More than 100 MACRO arguments, outputs, and statement numbers for one MACRO

13 More than 50 MACRO functions
14 More than 120 MACRO definition cards
15. More than 50 HISTORY or MEMORY functions

16 More than 15 MEMORY functions
17 More than 85 variables that are neither parameters specified on data cards nor outputs of a following SORT section
18 More than 150 duplicate names in COMMON (outputs or inputs to INTGRL blocks)
19 More than 100 parameters in one SORT sequence
20 More than 600 structure statements in a single SORT section
21 More than 180 characters in a single macro-generated statement. This restriction is violated by a procedural macro with more than 25 names for input and output variables or by a macro which includes a statement of excessive complexity. To circumvent the restriction, simplify the macro definition.

\section*{III PROBLEM INPUT EXCEEDS TRANSLATION TABLE nn}

A table has been exceeded during translation of the problem, and the run will terminate. The specific table is identified by nn , which refers to the following list:
\(n n\)
Translation Table
1 More than 600 macro and statement output names
2 More than 1900 macro and statement input names
3 More than 300 INTGRL blocks
4 More than 400 parameter and function names
5 More than 50 STORAGE or 100 integrator array specifications
6 More than 50 user-defined history and memory functions
7 More than 50 macro functions defined
8 More than 125 MACRO definition statements
9 More than 100 literal constants (does not include zero values)
10 More than 25 FIXED variable names
11 More than 20 sort sections
12 Sum of arguments, outputs and statement numbers of a macro block definition is more than 100
13 More than 300 duplicate names used with INTGRL blocks
14 More than 600 structure statements in a single sort section

15 More than 100 variables in a single SORT sequence
16 More than 180 characters in a single macro-generated statement. This restriction is violated by a procedural macro with more than 25 names for input and output variables or by a macro which includes a statement of excessive complexity. To circumvent the restriction, simplify the macro definition.

S/360 PRTPLT, PREPARE, AND RANGE VARIABLES EXCEED 100. ALL RANGE VARIABLES STARTING WITH xxxxxx HAVE BEEN DELETED More than 100 variables (including TIME) have been specified with PRTPLT, PREPARE, and RANGE output control statements. Although the run will continue, only the first 100 variables will be used for this run.
III RANGE VARIABLES DELETED STARTING WITH NAME
Too many variables have been specified on RANGE, OUTPUT, and PREPARE statements. "Name" and all those following are deleted from RANGE area.

S/360 RERUN FROM TERMIN CANCELED FOR CONTIN RUN The TERMINAL segment cannot be used to cause a rerun when a CONTINUE translation control statement started the run. The TERMINAL computation statements will be executed but any CALL RERUN will be ignored.

\section*{S/360 SIMULATION HALTED}

The run was terminated because a FINISH condition was satisfied. The variable name and its value are printed.
III SIMULATION HALTED FOR FINISH CONDITION
The run was terminated because a finish condition was satisfied. The variable name and its value are printed.

Both SIMULATION INVOLVES AN ALGEBRAIC LOOP CONTAINING THE FOLLOWING ELEMENTS
A list of output variable names will be printed following this diagnostic. The sort subprogram has been unable to find an integration or memory block in the loop involving these variables. The run will be terminated before the execution phase.
S/360 SYMBOLIC NAME xxxxxx NOT DEFINED
An error has been detected on the PARAMETER, INCON, CONSTANT, or TIMER card printed before this message. Although input to the execution phase will continue, the simulation will not be run.
III SYMBOLIC NAME NOT DEFINED IN MODEL
An error has been detected on the PARAMETER, INCON, CONSTANT, or TIMER card printed before this message. Although input to the Execution phase will continue, the simulation will not be run.
Both SYMBOLIC NAME EXCEEDS SIX CHARACTERS
In the previously printed statement, a symbolic name exceeding six characters has been detected. Although translation of source statements will continue, the run will be terminated before Execution.

\section*{Both SYMBOLIC NAME INCORRECTLY WRITTEN}

In the previous statement, a symbolic name has been written incorrectly. The job will be terminated.

III TOO MANY CONTINUATION CARDS
The previously printed statement has been continued on too many cards. If a MACRO label statement has over three continuation statements or if a structure statement has over eight continuation statements, the user should make multiple statements or use more columns on individual cards. Although translation of the source statements will continue, the run will be terminated before the Execution phase.

S/360 TOO MANY CONTINUATION CARDS. MAX \(=\mathrm{n}\)
The previously printed statement has been continued on too many cards. If \(\mathbf{N}=3\), a MACRO label statements has over three continuation statements. If \(\mathrm{N}=8\), a structure statement has over eight continuation statements. The user should make multiple statements or use more columns on individual cards. Although translation of the source statements will continue, the run will be terminated before the execution phase.
Both TOO MANY LEFT PARENTHESES
Both TOO MANY RIGHT PARENTHESES
Too many left (or right) parentheses have been detected in the statement printed before this diagnostic. Although the translation of the source statements will continue, the run will be terminated before the execution phase.
Both VARIABLE STEP DELT LESS THAN DELMIN. SIMULATION HALT
The simulation will not be continued because the specified DELT is less than the specified DELMIN.

\section*{Programs Restrictions}

Size limitations of the CSMP programs may be exceeded when solving very large problems. The following table gives some of the restrictions for both \(\mathrm{S} / 360\) CSMP and CSMP III. Additional restrictions appear in this Appendix in the section on diagnostic messages under the message, "PROBLEM INPUT EXCEEDS TRANSLATION TABLE nn."
\begin{tabular}{lcr}
\hline & S/360 CSMP & CSMP III \\
\hline Number of statement and MACRO output names & 500 & 600 \\
Numbers of statement and MACRO input names & 1400 & 1900 \\
Number of parameter and function names & 400 & 400 \\
Number of integrators plus statements with memory & 300 & 300 \\
and history & & \\
Number of structure statements in a single sort section & 600 & 600 \\
Number of sort sections & 15 & 20 \\
Number of parameters in a single sort sequence & 100 & 100
\end{tabular}
\begin{tabular}{lcc}
\hline & S/360 CSMP & CSMP III \\
\hline Number of user-supplied memory and history functions & 50 & 50 \\
Number of memory functions & 15 & \\
Number of MACRO functions & 50 & 50 \\
Sum of MACRO arguments, outputs, and statements & 100 & 100 \\
number for one MACRO & 10 & 10 \\
Number of FINISH specifications & \(\dagger\) & \(\ddagger\) \\
Number of RANGE and PREPARE variables & 25 & 50 \\
Number of STORAGE variables & 10 & \\
\begin{tabular}{l} 
Number of statement sent directly to FORTRAN \\
(identified by a / in column 1)
\end{tabular} & 20 & 25 \\
Number of FIXED variables & & \\
\hline
\end{tabular}
\(\dagger\) The total number of RANGE, PRTPLT, and PREPARE variables must be 100 or less.
\(\ddagger\) Two times the number of RANGE variables plus the number of PREPARE and OUTPUT variables must be equal to or less than 220.

\section*{Reserved Words}

The words listed below are reserved for special use in CSMP. They should not be used as variable or subprograms names.
\begin{tabular}{ll} 
ABS & GO \\
BACKSPACE & GOTO \\
CALL & IABS \\
COMMON & IDIM \\
CONTINUE & IF \\
DABS & IFIX \\
DBLE & INTEGER \\
DEFINE & ISIGN \\
DIM & PAUSE \\
DIMENSION & READ \\
DFLOAT & REAL \\
DO & RETURN \\
DOUBLE & REWIND \\
DSIGN & SIGN \\
END & SNGL \\
ENDFILE & STOP \\
EQUIVALENCE & SUBROUTINE \\
EXIT & WRITE \\
EXTERNAL & \\
FIND & \\
FLOAT & \\
FORMAT & \\
FUNCTION &
\end{tabular}

In addition to the above words, the following restrictions must be followed for variable names.

1 Certain variable names are reserved for use by the system, and cannot appear in a CSMP structure statement. These names are NALARM, IZxxxx, and ZZxxxx, where x is any digit.
2 KEEP is a COMMON variable and it must be used consistently with its intended purpose.
3 DELT, DELMIN, DELMAX, FINTIM, TIME, PRDEL, and OUTDEL are system reserved names and, unless renamed, must appear only in their intended context.

4 TIME is the name for the independent variable and should be used only for that purpose.
5 CSMP subroutines, unless renamed, must be used only as intended. These names are MAINEX, CENTRL, NUMER, ALPHA, DEBUG, UPDATE, CSTORE, and the standard CSMP functional block names.
6 The statement numbers 30000 to 39999 , inclusive, are reserved for system use in the UPDATE subprogram.

APPENDIX

\section*{MATHEMATICS OF} INTEGRATION METHODS

There are six different integration methods available in S/360 CSMP. CSMP III provides an additional method for solving stiff equations. All methods use centralized integration. This means that integration is performed after all structure statements have been evaluated.

In the Milne and Runge-Kutta methods, the step-size is automatically adjusted to user-specified error-bounds during the problem execution. The following gives the mathematics of the integration methods as listed in the IBM programs reference manuals. \({ }^{(1,2)}\)

Milne Fifth-Order Predictor-Corrector (MILNE)
Predictor: \(\quad Y_{t+\Delta t}^{p}=Y_{t-\Delta t}+\frac{\Delta t}{3}\left(8 X_{t}-5 X_{t-\Delta t}+4 X_{t-2 \Delta t}-X_{t-3 \Delta t}\right)\)
Corrector: \(\quad Y_{t+\Delta t}^{c}=\frac{1}{8}\left(Y_{t}+7 Y_{t-\Delta t}\right)+\frac{\Delta t}{192}\left(65 X_{t+\Delta t}+243 X_{t}+51 X_{t-\Delta t}+X_{t-2 \Delta t}\right)\)
Estimate: \(\quad Y_{t+\Delta t}=0.96116 Y_{t+\Delta t}^{c}+0.03884 Y_{t+\Delta t}^{p}\)
Integration interval control is based on the following criteria:
\[
\frac{\left|Y^{c}-Y^{p}\right|}{A+R\left|Y^{c}\right|} \cong \frac{\text { Error }}{A+R\left|Y^{c}\right|} \leq 1
\]

Runge-Kutta Fourth-Order (RKS)
\[
Y_{t+\Delta t}=Y_{t}+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right)
\]
\[
\begin{aligned}
& K_{1}=\Delta t f\left(t, Y_{t}\right) \\
& K_{2}=\Delta t f\left(t+\frac{\Delta t}{2}, Y_{t}+\frac{K_{1}}{2}\right) \\
& K_{3}=\Delta t f\left(t+\frac{\Delta t}{2}, Y_{t}+\frac{K_{2}}{2}\right) \\
& K_{4}=\Delta t f\left(t+\Delta t, Y_{t}+K_{3}\right)
\end{aligned}
\]

The interval \((\Delta t)\) for both variable step integrations will be reduced to satisfy the following criterion:
\[
\frac{\left|Y_{t+\Delta t}-Y^{s}\right|}{A+R\left|Y_{t+\Delta t}\right|} \cong \frac{\text { Error }}{A+R\left|Y_{t+\Delta t}\right|} \leq 1
\]

In both the MILNE and RKS methods, \(Y^{s}\) is \(Y_{t+\Delta t}\) calculated by Simpson's rule. \(A\) and \(R\) are the absolute and relative errors corresponding to the values specified by ABSERR and RELERR.

A form of the fourth-order Runge-Kutta for a fixed-step-size (RKSFX) is also available. The mathematics are the same as shown above with the exception that the error criterion is not used.

In addition to RKSFX method, there are four fixed-step integration methods. Adams Second-Order (ADAMS)
\[
Y_{t+\Delta t}=Y_{t}+\frac{\Delta t}{2}\left(3 \dot{Y}_{t}-\dot{Y}_{t-\Delta t}\right)
\]

Simpson's Rule (SIMP)
\[
\begin{array}{cl}
\text { Predictor: } \quad Y_{t+\Delta t / 2}^{p}=Y_{t}+\frac{\Delta t}{2} X_{t} \\
& Y_{t+\Delta t}^{p}=Y_{t+\Delta t / 2}^{p}+\frac{\Delta t}{2} X_{t+\Delta t / 2} \\
\text { Corrector: } \quad & Y_{t+\Delta t}^{c}=Y_{t}+\frac{\Delta t}{6}\left(X_{t}+4 X_{t+\Delta t / 2}+X_{t+\Delta t}\right)
\end{array}
\]

Trapezoidal (TRAPZ)
\[
\begin{array}{ll}
\text { Predictor: } & Y_{t+\Delta t}^{p}=Y_{t}+\Delta t X_{t} \\
\text { Estimate: } & Y_{t+\Delta t}=Y_{t}+\frac{\Delta t}{2}\left(X_{t}+X_{t+\Delta t}\right)
\end{array}
\]

\section*{Rectangular (RECT)}
\[
Y_{t+\Delta t}=Y_{t}+\Delta t X_{t}
\]

In all of the above equations, the common terminology is \(X_{t} \equiv \dot{Y}_{t} \equiv f(t)\). The value of \(X_{t+\Delta t}\) used in the estimate is based on the prediction \(Y_{t+\Delta t}^{p}\).

A method for handling stiff equations \({ }^{(3,4)}\) (STIFF) is available in CSMP III. The solution is computed by the following step by step procedure.

Given the differential equation \(\dot{y}=f(t, y), \quad y\left(t_{0}\right)=y_{0}\)
(1) \(\dot{y}_{A}(t)=\left[y(t)-y\left(t-h_{0}\right)\right] / h_{0}\)
(2) \(d_{1}=\dot{y}(t)-\dot{y}_{A}(t)\)
(3) \(y_{p}(t+\delta)=y(t)+\delta \dot{y}(t) \quad\) where \(\delta \leq h / 4\)
(4) \(\dot{y}_{p}(t+\delta)=f\left[t+\delta, y_{p}(t+\delta)\right]\)
(5) \(\quad d_{2}=\left[\dot{y}_{p}(t+\delta)-\dot{y}(t)\right] / \delta\)
(6) \(\lambda=\left\{\begin{array}{ll}d_{2} / d_{1} & d_{1} \neq 0, \\ 0 & d_{1}=0,\end{array} \quad c_{1}= \begin{cases}\left(e^{\lambda h}-1\right) / \lambda h & \lambda<0, \\ 1+\lambda h / 2 & \lambda \geq 0\end{cases}\right.\)
\(c_{0}= \begin{cases}e^{\lambda h} & \lambda<0 \\ 1+\lambda h & \lambda \geq 0\end{cases}\)
(7) \(y_{c}(t+h)=y(t)+h \dot{y}_{A}(t)+h c_{1} d_{1}\)
(8) \(\dot{y}_{c}(t+h)=f\left[t+h, y_{c}(t+h)\right]\)
(9) \(E=h\left[\dot{y}_{c}(t+h)-\left(\dot{y}_{A}(t)+c_{0} d_{1}\right)\right]\)
(10) \(E_{e}=2 \delta\left[\dot{y}_{p}(t+\delta)-\dot{y}(t)\right]\)

Note that \(y, y_{c}, y_{p}, y_{A}, y_{p e}, d_{1}, d_{2}, c_{0}, c_{1}\), and \(\lambda\) are vector quantities.
Step \(1 \quad\) To start up
\(h_{0}=0\)
\(\dot{y}_{A}(0)=\dot{y}(0)\)
Step \(2 \quad y\) is assumed to be the sum of an asymptotic part and a perturbation from the asymptote.
Steps 3 and 4 These steps constitute Euler integration with step size \(\delta\).
Step \(5 \quad d_{2} \approx \ddot{y}(t)\). It is assumed that the form of \(f(t, y)\) makes calculation of \(\ddot{y}\) difficult.
Step \(6 \quad y_{c}\) is computed solution at end of current step; \(h\) is step-size.
Step \(7 \quad E\) is used to monitor step-size \(h\).
Step \(8 \quad E_{e}\) is used to monitor Euler step-size.
The section on integration methods in Chap. 3 contains details for using the various methods. Information on accuracy and computer time is also included in this section.

In the event that none of the methods satisfies the user's requirements, the user can supply his own integration method. This method is entered in the system by the name of CENTRL. Example 3.2 illustrates the procedure for using a usersupplied integration method.

\section*{REFERENCES}
1. System/360 Continuous System Modeling Program, User's Manual GH20-0367-4, Program Number 360A-CX-16X. IBM Corporation, Technical Publications, White Plains, N. Y.
2. Continuous System Modeling Program III (CSMP III), Program Reference Manual SH19-7001-2, Program Number 5734-XS9, IBM Corporation, Data Processing Division, White Plains, N. Y.
3. Fox, Leslie and D. F. Mayers, Computing Methods for Scientists and Engineers, Clarendon Press at Oxford, 1968, p. 215.
4. Fowler, M. E., and R. M. Warten, "A Numerical Integration Technique for Ordinary Differential Equations with Widely Separated Eigenvalues," IBM Journal of Research and Development, II, No. 5, Sept. 1967, 537-43.

\section*{INDEX}

\section*{A}

ABSEER (absolute error):
definition, 82, 318
effect on problem solution, 84
program application, 91, 116, 117
resetting during simulation, 114, 117
Accelerometer (simulation), 247
ADAMS (integration):
accuracy, 87
application, 85
mathematics of, 318
time requirements, 88
AFGEN function:
definition, 31
illustration, 291
program application, 32-34, 204
Algebraic loop:
definition, 171
diagnostic message, 313
program application, 48, 176-78
Algorithm:
digital filter, 241, 243
for digital control, 216, 219, 220
PID digital controller, 221-24
ALOG10 function, 203, 234
AND (logic):
definition, 226, 296
program application, 160-61; 229, 232
Arbitrary function generators (see also AFGEN, NLFGEN, FUNGEN)
CSMP III, 262-63, 301
CSMP/360, 291, 292
Array integration:
general discussion, 103-4, 268
program application, 104-7, 197-203
ATAN2 (arc tangent), 196, 201

\section*{B}

Beam deflection simulation, 60-65
Block diagram:
digital control system, 209, 210, 213, 214, 216
position control system, 40
simulation of, 18-22
temperature control system, 52
Bode diagram (see Frequency response)
Boundary value problem:
endpoint calculations, 64-65
program application, 60

\section*{C}

CALL ARRAY statement, 302
CALL CONTIN statement, 267
CALL DEBUG subroutine:
description, 129, 130, 132
program application 132, 133
CALL FGLOAD subroutine, 262, 263
CALL FINISH instruction, 267
CALL OUTPUT instruction, 260
CALL PRINT instruction, 260
CALL RERUN statement: definition of, 64
program application, 63
CALL TVLOAD subroutine, 264, 265
Cam follower simulation, 65-68
CENTRAL (integration):
application, 93-95
description, 93
Chemical process, \(52-58\)
Circuit simulation, 42-52
CMPXPL function (complex poles):
application using, 46
definition, 45, 284

Coil spring mfg. simulation, 118
COMMON MEN statement, 124
COMMON statement, 21, 34, 124
COMPARATOR (logic), 226
COMPAR function (switching), 295
Complex poles (see also CMPXPL): transfer function for, 45
Constants (in CSMP), 7, 8
CONSTANT statement:
definition, 15, 28
limitations on use, 95, 120
program application, 14:17, 54, 89
CONTINUE statement:
CSMP application, 29
description, 119, 120, 122, 123
FORTRAN application, 63, 64
program illustration, 92, 122, 201
CONTINUE statement (FORTRAN):
description, 120
program application, 63, 64, 120
CONTOR parameter:
application, 257, 258
description, 254, 256
Control statements:
CSMP III, 266-70
CSMP/360, 112-24
CSMP III:
control statements, 266-67
differences between S/360 CSMP, 244
functions, 260-66
general comment, 2
program examples:
accelerometer simulation, 247
heat transfer, 254, 270
spring-mass-damper system, 253
CSMP/S360:
basic structure, 10-14
general comment, 2

\section*{CSMP/S360 (continued)}
overview, 5.7
program without integration, 65
system installation of, 7

\section*{D}

Data output:
CSMP III, 245-60
CSMP/360, 124-238
DATA statement: description, 101, 244
program application, 102
DÂTA statement (FORTRAN): description and application, 100
DEADSP function (dead space): definition, 58, 292
program application, 60
DEBUG (see CALL DEBUG)

\section*{DECK:}
description, 135-38
example of, 140, 141
DELAY function (time delay):
description, 53, 286
program application, 53-54
used with z-transforms, 212
DELMAX symbol, 268
DELMIN symbol, \(18,85-86\)
DELT symbol:
application, 89
definition, 18, 85-87
for logic stepping, 232
for program stepping, 196
Derivative (differentiation) (see also DERIV):
DERIV function:
application 48, 50
definition, 48, 282
Diagnostic messages:
listing of, 304-14
program application, 176
Difference equation, 215-25
Differential equation solution, 151, 167-68
Digital controller:
cascade realization, 218
direct realization, 215
parallel realization, 219
PID, 221-24
Digital control systems:
diagram illustrating, 209
general discussion, 209-20
Digital logic:
program application, 224, 228
simulation, 224-32
table of functions, 226
DIMENSION statement:
description, 97-99
examples using, 102, 106, 201, 247
DO loop (with CSMP), 201
Double-precision operations:
description, 268-70
example, 270
restriction on using, 8
DYNAMIC segment:
definition, 12
general use, 2
in digital control, 217
in digital logic, 232
program application, 34, 38, 63, 196, 201

\section*{E}

Electric circuit simulation, 42-52
END card:
definition, 18, 113
typical application, 21, 38, 111-15, 122
END CONTINUE statement, 119, 266
ENDDATA statement, 101-2
ENDINPUT statement, 101, 267
ENDJOB card:
definition, 18, 124
typical application, 21, 38, 123
ENDJOB STACK card, 124
ENDMAC card:
description, 142
illustration, 145
ENDPROCEDURE:
application, 156, 217, 220
description, 157-58
EOR function (logic), 226, 297
EQUIVALENCE statement: description, 103, 105, 106
examples, 106, 109, 201
used in CSMP III, 268
EQUIVALENT function (logic), 226, 297
Examples using CSMP/360:
amortization schedule for home mortgage, 147-51
automobile traffic-flow simulation, 158-65
beam deflection simulation, 60-65
coil spring mfg . (random distribution), 118-19
compounding interest in saving account (user supplied integration), 93-95
control system with compensation, 39-42
feedback system with digital controller, 211-15
feedback system with sample and hold, 210-11
frequency response, 196-205
gear train containing backlash, 58-60
heat transfer in air duct, 104-7
impact dynamics of two railroad cars, 90-93
modulo two up-down counter, 228-332
Nixie light logic simulation, 224-28
orbital trajectory simulation of space vehicle, 126-29
PID digital controller, 221-24
position control system, 18-25
response of piston driven by air cylinder, 134-35
RLC circuit, 42-52

Examples using CSMP/360 (continued)
simulation of system involving an algebraic loop, 176-77
solution of nonlinear, time-varying, simultaneous differential equations, 167-69
spring-mass-damper system, 14-18
stress analysis of cam follower, 65-68
temperature control for a chemical process, 52-58
three-stage Saturn vehicle, 35-39
transfer function simulation, 151-54
transient temperature response, 30-35
Van der Pol Equation, 25-30
ventricular pressure simulation of human heart, 110-12
Examples using CSMP III:
dynamics of accelerometer transducer, 247-48
spring-mass-damper system, 253-54
transient heat distribution, 254-59

\section*{F}

FCNSW function (function switch), 295
FINISH label:
definition, 34
program application, 34, 63-64, 196
resetting of, 114, 117
FINTIM symbol:
definition, 18
typical application, 17-18, 18-25
used with a CONTINUE statement, 120
FIXED statement:
application, 102, 106, 257
description, 101
double precision, 269
Flip-flop (RST), 228-32, 296
Format (card columns), 9-10
FORMAT statements:
program application, 102, 128, 129, 229
use in CSMP 9, 101, 125, 126, 201
FORTRAN:
as used in CSMP, 6
continuation cards, 125
functions, 297-300
output, 63-64, 124-26
specification statement, 97-98
subprograms, 138, 165-68
FORTRAN functions:
CONTINUE, 37-38
FORMAT, 38, 201, 204, 229
GO TO, 229
IF, 35
WRITE, 38, 201, 204, 229
Frequency response:
general discussion, 194
program for calculation of, 196, 201
using array integrators, 197
with Bode diagram, 196-97
without integration, 195

Function generators (see Arbitrary function generators)
FUNCTION statement (generation):
program application, 34, 67, 204-5
used with AFGEN, 30-31
used with NLFGEN, 30-31
Function blocks, 6-7
FUNGEN function, 262, 301

\section*{G}

GAUSS (distribution function):
application, 119, 120
description, 291
Gear train (simulation), 58
GO TO statement, 229
GROUP parameter:
application, 260, 261
description, 257

\section*{H}

Heat transfer simulation, 34, 104, 105, 254, 270
HEIGHT variable, 252
HISTORY function, 171
HSTRSS function (hysteresis), 294

\section*{I}

IF statement:
program application, 128, 217, 219, 220, 224, 229
with CSMP, 35, 126
IMPL statement (implicit function) (see also Algebraic loop):
application, 176-78
description, 172, 173, 286
IMPULS function:
definition, 44, 289
in sampled data, 210-11
program application, 46, 86
Inclusive OR (see IOR)
INCON:
description, 28
illustrations, 29
limitation on use of, 95, 120
program application, 28, 54
Independent variable:
other than TIME, 66
renaming of, 62
INITIAL segment:
definition, 11
general comment, 2
in logic simulation, 232
program application, \(34,38,63\), 196, 201
with digital control simulation, 217
INPUT statement, 101, 244, 267
INSW function (switch), 295
Integers:
example, 106
specified by, 101
Integration:
accuracy of, \(84,86,87\)
array, 103, 268

Integration (continued)
changing integration technique during run, 90
choosing the method, 85
CSMP III, 267-68
double precision, 268
error requirement, 82-84, 86
fixed step method, 85
mathematics of, 317-19
methods, 85
mode-controlled, 163, 284
specification form, 103
step size, 82-87, 129
stiff equation, 268
time requirements, 88
user-supplied integration method, 93
variable step method, 82
Interest on investment, 93, 147
INTGRL (integration):
description, 25, 281-82
program application (typical), 14, 18, 42, 54, 60, 91, 106
specification form, 103, 107
with subscripted variables, 99
IOR function (logic):
description, 226, 297
program application, 229

\section*{J}

Job control language cards (JCL), 137, 138, 245

\section*{K}

KEEP symbol:
description, 89
program application, 89, 125, 217

\section*{L}

LABEL statement:
definition, 25
program application, 21, 122
resetting of, 114, 117, 123
using more than one, 46
Laplace transform, 19
LEDLAG function:
definition, 41, 283
program application, 42
LIMIT function, 293
Logic functions, 226, 296, 297
LOG parameter, 257

\section*{M}

MACRO function:
description, 139-54
fundamental rules, 142-45
in digital control, 212
program application, 146-54, 196
MAIN subroutine, 136
MEMORY statement, 168, 171
MERGE instruction:
description, 253
example, 254, 255

METHOD statement:
description, 82, 85
program application, 89
MILNE integration method:
accuracy, 86
description of mathematics, 317
general description, 88
program application, 82
MODINT function:
description, 163, 284
program application, 164

\section*{N}

NAND function (logic), 226, 296
NLFGEN function:
definition 31, 292
program application, 63, 67, 111
Nonlinear function generator (see NLFGEN)
Nonlinear system characteristics, 292-94
Nonlinear systems:
differential equation solution, \(25-30\)
function generators for, 292-94
use of dead space in, 58
NOR function (logic), 226, 297
NOSORT section:
definition, 12-14
general comments, 6
program application, 38, 196, 201
used in digital logic, 232
NOT function (logic), 226, 297
NPLOT parameter, 257
NTAB parameter:
description, 257
example, 260-61

\section*{0}

Offline plotters, 132, 133, 135
Operators (with CSMP),
OUTDEL parameter:
definition, 24
program application, 18-25
relationship to FINTIM, 24
used with CONTINUE, 120, 122
used with integration, 67
used with PREPARE, 133
OUTPUT statement:
description, 246-47
program application, 247-51
OUTSW function, 294
OVERLAY statement:
description, 109, 110
example, 111

\section*{P}

Page height/width control (see

\section*{HEIGHT, WIDTH,}

PAGE statement:
description, 252
example, 254
PARAMETER card:
definition, 28
illustrations, 26, 28

PARAMETER card (continued)
limitation on use of, 95, 120
multiple values for parameter, 53
program application, 201, 211
PI continuous controller, 52
PID digital controller, 221-24
PIPE function, 301
Piston-cylinder system, 134
PREPARE statement:
description, 132, 133
problem application, 134, 136, 137
resetting of, 114, 117
PRTPLT (printer-plot)
computer output of (typical), 23, 28
35, 40, 42, 47, 49, 56, 65
CSMP III (see OUTPUT), 247-48
description, 22
of integers, 101
program application (typical), 21, \(34,38,46,54,63,67,196,201\)
resetting, 114, 117, 122, 123
scaling of, 54
subscripted variables, 99, 107
with log stepping, 197-98
PRINT (FORTRAN), 124, 126
PRINTPAGE statement, 246
PRINT statement:
column output (typical), 17, 27, 54, 60
computer logic output, 232
description, 16
equation type output, 17, 61
integers, 101
maximum number of variables, 126
program application (typical), 15, 21, 54, 60
resetting, 114, 117, 122, 123
subscripted variables 99, 107
PROCEDURE function:
description, 154-64
fundamental rules, 156-58
typical application, 161, 164, 196
used in digital control, 217
Program restrictions, 311, 312, 314, 315, 316
PULSE function:
application program, 46
definition, 44, 288
Pulse generation (with STEP), 200
Pulse train:
application program, 46
generation of, 43-44
random generated, 224-26
PUNCH statement, 124

\section*{Q}

QNTZR function (quantization), 203-94

R
RAMP function, 287
Random number generator (see GAUSS and RNDGEN function)

RANGE statement:
description (CSMP/360), 20
description (CSMP III), 260
resetting of, 114, 117
simulation using, 58-60
READ statement:
example, 102
use in CSMP, 101, 267
REALPL function (real pole):
definition, 20, 283
program application (typical), 21, 42, 54
REAL*8 statement, 269-70
RECT integration (rectangular):
accuracy of, 87
mathematics of, 318
time requirements, 88
use of, 85
Recursive difference equation, 215-21
Relay device, 145, 146
RELERR statement:
application 91, 116, 117
definition of, 82, 318
effect on program accuracy, 84
resetting, 114, 117
RENAME statement:
description, 62
program application, 62-65
with a MACRO, 142
RERUN statement, 246
Reserve words, 315-16
RESET statement:
description, 117
example, 120, 122
Resettable flip-flip (RST):
definition, 226
program application, 228-32
Restrictions (see Program restrictions)
RKS integration:
accuracy of, 84, 86
description, 82
mathematical formulation, 318
time requirements, 88
RKSDP integration (double precision):
description, 269
example, 270
RKSFX (fixed-step integration):
accuracy of, 86-87
application in digital control, 211-18
description, 85
mathematical formulation, 318
time requirements, 88
RNDGEN function (random number generator):
application with digital logic, 229
description, 119, 290

\section*{\(\mathbf{S}\)}

Sample data control, 209-24
SAMPLE function (switch), 302
SCALAR function (array-to-scalar converter), 303
SHADE parameter (gray-tone print output):
description, 256
example output, 257, 259
Signal sources, 287-91
SIMP integration (Simpson):
accuracy of, 87
description, 85
example, 89
mathematical formulation, 93-95, 318
time requirement, 88
SINE function, 290
SLOPE function, 265, 302
SORT section:
basic use, 6
definition, 12-14
typical application, 38
Space vehicle simulation, 35-37, 126
Specification statement:
description, 97, 98
example, 106
Spring-mass system, 107, 253
SQRT (square root), 63, 194, 201
Standard deviation (expression), 119
State variables:
circuit simulation using, 43
transfer function representation in, 205-8
STEP function:
definition, 24, 288
in typical example programs, 21, 54, 155
STIFF integration:
description of, 267, 268
mathematical formulation, 318-19
STOP statement:
description, 123
example, 18, 122, 169
STORAGE statement:
description, 98-99, 106
example, 109, 196, 248
Subscripted variables:
CSMP III integration with, 254-55
CSMP/ 360 integration with, 99, 103
output using, 125, 245-48
use in CSMP, 95, 97-103, 201
Switching functions, 294-96
SYMBOL parameter:
description, 257
example, 260-61
Symbols (in CSMP), 7-8

\section*{T}

TABLE statement:
description, 99-100, 106
program application, 109, 196, 257
TERMINAL segment:
definition, 12
general comments, 2
program application, 34, 38, 63, 201
Thermodynamics, 134
TIME (independent variable):
double precision, 269
with PREPARE statement, 133
resetting to zero, 113
setting starting value, 268, 281

Time delay function (see DELAY FUNCTION)
TIMER card:
description, 18
typical application, 14-17, 60
TITLE statement:
description, 16, 18, 245-46
resetting of, 114,117
typical application, 14-17,60,122-23
Traffic flow (simulation) 158-65
Transfer function:
general application, 43, 195-96
state variable form, 205-8
TRANSF function, 265-66, 300
Translation control statement (see Control statements)
TRAPZ integration (trapezoidal): accuracy, 87
description, 85
mathematical formulation, 318
time requirement, 88
Two-point boundary value problem, 60

TWOVAR function (two variable), \(\mathbf{X}\) 263-64, 302

\section*{\(\mathbf{U}\)}

UPDATE subroutine, 136-38
User defined functions and subroutines, \(138-40\)

\section*{V}

Ventricular pressure (heart), 110-11

\section*{W}

Wegstein's algorithm, 173
WIDTH variable, 252
WRITE statement:
program application, 127-29, 201, 229
use in CSMP, 124-26

XYPLOT instruction, 252

\section*{Z}

ZHOLD function (zero order hold):
definition, 210, 285
program application, 217, 219, 220 , 224
Z-transform:
algorithm simulation for inverse, 215-20
represented by DELAY function, 211-15
ZZRND instruction, 269-70, 303
ZZTIME symbol, 269

\section*{THE APPLICATION OF GPSS V TO DISCRETE SYSTEM SIMULATION}

\section*{Geoffrey Gordon}

This book provides a very practical and easy-to-follow guide to the widely used General Purpose Simulation System, based on the latest version of the language issued by IBM, GPSS V.
Three chapters are devoted to modeling, discrete simulation and programming techniques; a series of thirteen chapters explain all features of the GPSS V language; seven valuable appendices summarize programming details of the language and its assembly program, describe the internal operations of the program, and compare GPSS V with previous versions of the language.

Published 1975
320 pages

\section*{MINICOMPUTER SYSTEMS:}

Organization and Programming (PDP-11)
Richard H. Eckhouse, Jr.
A diverse group of readers will find MINICOMPUTER SYSTEMS to be an excellent guide to the effective use of the inexpensive, yet powerful, small computers now available.

There are discussions of the fundamental concepts of computer hardware and software independent of any particular language or machine, programming fundamentals, PDP-11 organization and structure, programming techniques, introduction to data structures, system software, operating systems, and an applications environment.

Published 1975
343 pages
ENGINEERING SIMULATION
USING SMALL SCIENTIFIC COMPUTERS
Manesh J. Shah
This is a practical book, written to bring the convenience and economy of today's compact digital computers to virtually anyone who needs to simulate and solve dynamic systems problems in engineering and the physical sciences.

For example, it treats control systems of various types, mechanical systems and related design problems, chemical processing, simulations of different kinds of chemical reactor systems, and many others.
Published 1976```


[^0]:    $\dagger$ A floating-point number contains a decimal. For more information see Reference 4.

