
Rough Draft

Nov. 18, 1983

Lynn Wheeler

K83/281
San Jose Research

276-1783
SJRLVM1/WHEELER

ii Rough Draft

CONTENTS

Original CP/67 1
Earliest OS performance .. 1
CP/67 2.3 1
1970 2
CP/67 3.1L 3

VM/370 5
VM/370 2.15 5
VM/370 Release 3 6
AP and ECPS .. 6

Current Performance. .. 7
Optimization and Control .. 9

Appendix A. >16Meg Support 11
HPO 2.5 Page Replacement 12
Page Replacement Alternative One - Multi-level Store 13

Alternative One - Modified (optimized) 14
Page Replacement Alternative Two - Balanced Use 15
Combined Alternatives .. 16

Appendix B. - - CP Paging ...19
Number of bits ...23

N.5 bit replacement algorithms 23
Flush list manipulation .. 24
Biased page replacement algorithms 26
Review ... 26

Appendix C. (Group and User) Fair Share Scheduler...29

Appendix D. VM Design Workshop ... 31

Appendix E. VM/370 Enhancements for Dynamic Scheduling, Performance
Evaluation and Capacity Planning. ... 33

Appendix F. VMECPS .. 7

Appendix G. VM/370 2.15 Distribution List ... 9

Bibliography .. 13

Contents iii

ABSTRACT

The CP component of VM has always attracted a great deal of attention in the area
of performance. A great deal of effort is currently being spent in benchmarks to
accurately identify bottlenecks and other performance problems. A much better
perspective of current performance bottlenecks can be obtain by comparing the
current VM environment with CP/67 at its best in 1973. The similarities and
contrasts between the current situation and that of ten years ago can be very
valuable for placing current performance problems in perspective.

Abstract v

ORIGINAL CP/67

EARLIEST OS PERFORMANCE

When I first became acquainted with CP/67 in late January of 1968, it worked but
relatively slowly. It could be considered a second pass of working on a proto
type and the small group working on it were still spending most of their time im
plementing function and debugging.

The original performance tests I did running 0/S under CP were not promising.
The elapsed time to run 0/S jobs under CP was three to four times what it took
them to run stand alone. The 0/S system was an MFT system that had been highly
optimized though. By hand re-ordering of almost every card in the stage-two
sysgen, I hand increased the through-put of the MFT by a factor of two to three
(for the particular class of jobs that we were running) over a vanilla MFT sys
tem.

Investigating the CP performance problems closer, it became apparent that almost
all of the increased overhead was because of CP path-lengths to simulate the 360
machine environmentAttempting to address this, over the next year I worked on
reducing the CP implementation path-lengths. It was during this period that I
also invented the implementation technique that is currently commonly referred
to as Fastpath. I also implemented BALR linkages for the most commonly used sub
routines (prior to that all linkages were done via the SVC interface).

The aggregate results of the work at the end of the year is that instead of jobs
running three to four times as long as stand-alone, they were running 1.13 to
1.3 three times as long. With optimized path lengths, my invention of Fastpath,
and BALR linkages, I had reduced the CP path-length to run an OS virtual machine
by over 95%. In most cases, the performance optimization changes were also di
rectly applicable to CMS virtual machines.

CP/67 2.3

During this period, CP/67 was being installed at a number of other locations (my
location had been the third after Cambridge and Lincoln laboratory). Path-length
is one type of performance problem, but CP/67 was also prone to page thrashing
if a large number of virtual machines were active. One of the people at Lincoln
came up with a modified scheduler which limited the dispatch list to a number
proportional to real storage. This went a long way towards eliminated the page
thrashing problem at the time. Unfortunately, it was not very load sensitive.
The limit values chosen happen to correspond to the CMS intensive (primarily
FORTRAN compiles) that was representative of the workload at Lincoln Labs.

By this time, Denning had published his working set paper. I had already been
thinking about the problem for some time. I reviewed DenningTs work but dis
missed it as not entirely appropriate for the CP environment. Instead, I in
vented the current moving cursor page replacement algorithm. And then to handle
the working set estimation problem, I invented both the algorithm which uses as

Original CP/67 1

a basis of working set a function of the average resident pages. The page re
placement algorithm was an approximation to a global LRU. Average resident pages
result in a working set that is proportional to the overall system activity
rather than individual activity.

In order to implement this sort of function, I also had to invent the concept of
using feedback algorithms to control system resources and the specific algo
rithms that implemented the controls. From the feedback algorithm work, I
branched off into extending feedback control algorithms into managing dispatch
ing priority (at the time, CP used a very gross round-robin scheme). Feedback
control algorithms, path-length optimization, and fastpath are now pretty well
accepted concepts.

A separate issue was also starting to show up. As CP/67 was maturing and the num
ber of installations was growing, more and more code was being added to the nu
cleus. By todayfs standards, relatively small increases in code size was having
a detrimental effect on the total available pageable memory (real storage was
typically 512k or 768k). To address this problem, I came up with the implemen
tation for pageable CP nucleus modules.

I was also continuing to work on path length performance. After the initial
round at looking at OS performance under CP and the generalized path length
problem, I turned my attention to CMS. After a careful analysis of how CMS
worked, I identified CMS DASD I/O as a significant contributor to overall path
length. To address this problem, I came up with a synchronized I/O interface
with a stylized CCW chain. This change cut the path length overhead involved in
CCW translation and eliminated the privilege instructions and interrupt simu
lation required for the asynchronous I/O interface. This change resulted in a
40%-80% cut in the path-length for much of the CMS activity.

1970

At the beginning of 1970, I joined IBM. By that time I had an extremely large set
of updates to both CP and CMS which significantly improved performance of the
overall system. For the first six months or so, I worked on incorporating some
of my changes into the CP product. This work was released as part of release 3.

I then started addressing other problems. Up until this time, my work had been
primarily concerned with management (&/or optimization) of the CPU and real mem
ory resources.

After all the attention given to CPU and real memory, other areas of the system
were beginning to represent primary bottlenecks. I then worked out the design
and implementation for ordered seek queueing and chained page I/O. The chained
page I/O had its most significant impact on 2301 I/O performance. The maximum
throughput was increased from 80 page requests a second to 300 page requests a
second. Ordered seek queuing had a major impact on both page I/O activity to
2314s and packs with high-contention CMS mini-disks (typically the CMS S-disk).

2 Rough Draft

CP/67 3.1L

The last internal release of CP/67 was called 3.1L. There was an external 3.2
release but since 3.2 contained only a subset of what was available in 3.1L, it
was not used extensively within the company. At that time, Cambridge Scientific
Center had a 768k model 67, with three 2301 drums and 45 2314 drives. Heavy load
would peak at 66-80 users with approximately 105 pageable pages and sub-second
response time.

Original CP/67 3

VM/370

VM/370 Release 1 started out on a 512K 145. It had drastically modified I/O sub
system compared to CP/67 and all of the feedback algorithms were missing. It was
also missing the majority of the fastpath logic from CP/67. Release 1 of VM/370
had severe performance deficiencies as compared to the then current CP/67.

I worked with the development group to improve several of the items in the
VM/370 product. I was able to get in several simple algorithm and fastpath
changes in release 1.9 and release 2.1. At the same time, I was converting most
of the function and performance work I had done from a CP/67 base to a VM/370
base.

A different piece of work that occurred during this period that had a signif
icant effect on VM performance was VMA. The Virtual Machine Assist also signif
icantly reduced the CP overhead involved with simulating virtual.

VM/370 2.15

By the time of VM/370 2.15, I had the majority of my work converted to VM/370
base. I had also created several additional enhancements to both CP and CMS
which had significant effect on performance. I had created relocating shared
segments in both CP and CMS. I had rewritten EXEC and EDIT so that they would re
side in a shared segment (I had previously rewritten the CP/67 CMS editor to be
completely re-entrant, I had dropped it, TWX and 2741 support into HASP for lo
cal ryo CRJE support). I had modified the APL generation procedure so that a
shared APL segments could be loaded, rather than requiring a special CMS/APL
system to be IPL*ed. CP also had swaptable migration (to minimize real storage
requirements) and page migration.

A separate item that was part of the 2.15 system, was Paging Access Method (PAM)
support. PAM involves changes to both CP and CMS. When I initially created the
stylized, synchronous I/O interface it was to primarily minimize the path
lengths. PAM took that a step further. PAM reduced the path length involved in
performing an I/O, by eliminating the page fixed, followed by the I/O
scheduling. Rather than fixing all pages prior to scheduling the I/O, the re
quest could be broken into its individual page components and optimally
scheduled. It would also take advantage of chained page I/O that I had intro
duced, to the extent that requests from different users could be scheduled with
the same SIO. Synchronous I/O has the advantage of minimizing the overhead in
volved in an I/O request, but asynchronous I/O allows more latitude in
performance optimization. PAM has the additional attribute that CP can do glo
bal optimization on all PAM I/O requests (which is not possibly with my standard
synchronous I/O interface), even to the extent of allowing asynchronous I/O ac
tivity transparent to the implementation in CMS.

I invented the algorithms, designed the implementations, implemented and de
bugged the code, shipped and supported the resulting production system, just as
I had previously with CP/67.

VM/370 5

VM/370 RELEASE 3

A subset of the CP relocating shared segment support and all of the CMS changes
were picked up as part of release 3 of VM/370. This had a major impact on the
number and uses of shared pages. The increase in the number of shared pages, re
duces both the real storage requirements and the page I/O rate.

Most of the rest of the CP code that was part of the 2.15 system, was packaged
together into the Resource Manager PRPQ and initially released against a VM/370
3.4 base.

AP AND ECPS

Starting in January of 1975, I began designing modification to CP for multi
processor environment. Specifically, there was a project called VAMPS which al
lowed for up to a 1+4 CPU configuration (one I/O processor and up to four
additional processors without I/O capability). The machine had extensive micro
code capability also, and I started looking at how much CP function could be mi
grated to microcode to improve performance.

In May of 1975, a group from Endicott visited Cambridge looking for suggestions
on operating system functions that could be migrated to microcode. They had al
ready completed the implementation of a piece of VS/1 in microcode. I got to
gether some of the preliminary work, I had been doing as part of VAMPS and
suggested some additional work that could be done to further identify possible
functions that could be migrated to microcode. The outgrowth of the Endicott
group was ECPS which cut the overhead of the CP supervisor at that time by 50%.

Late in 1975, the VAMPS machine was cancelled, but Lexington appeared which was
a 1+1 168. I began work on converting my VAMPS design to a straight 370 design
that wouldn't have any of the additional microcode capability for supporting VM
function. Eventually the development group picked up on it, and started a pro
ject to release it. There were some number of difficulties. First my detailed
design was built on the Resource Manager PRPQ base and second the development
group wanted to make some compromises in the design because of marketing consid
erations.

The resolution to the first problem was that over 60% of the lines of code in the
PRPQ was absorbed into the release 4 base. The resolution to the second problem
was that the development group built that part of the system their way, and I
built it may way. Of course they shipped theirs to customers. I only ran my re
lease 3 based version production on the HONE machines for a year.

6 Rough Draft

CURRENT PERFORMANCE.

For a real look at current performance and where the problems may be, it is help
ful to place a current environment side by side with the 3.1L system.

system 3.1L SP change

machine 360/67 3081K
mips .3 14 *46
pageable pages 105 7000 *66
users 80 320 *4
channels 6 24 *4
drums 12megs 72megs *6
page I/O 150 600 *4
user I/O 100 300 *3
drives 45 32 *4?perform
drive capacity 27meg 630meg *23
drive access 32mills lómills *2
drive data rate .4meg? 3meg *9
total data 1•2gig 20.lgig *20

If we compare the resources that are traditional considered critical, CPU and
memory, we see an increase between 45 to 65 times between the 67 and the 3081.
However we only see an increase by roughly a factor of four in the number of us-
ers supported. Even at that we see performance problems in supporting that many
users. There is ten times as much resources per user on the 3081 compared to the
67 and there are still performance problems. Why? An even more interesting ta-
ble is to show the same information as a function of raw MIPS.

system 3.1L SP3

machine 360/67 3081K
mips .3 14

resources as function of mip rate

pageable pages 350 500
users 266 22.8
channels 20 1.5
drums 40megs 5megs
page I/O 500 43
user I/O 333 21
drives 150 1.1

Major problems can be easily seen in the data at the bottom of the tables, I/O of
all kinds are now the primary bottlenecks in the system. The page I/O capacity
(distinct from the page capacity, i.e. real storage) has increased by a factor

Current Performance. 7

of four. In addition, the user I/O capacity in terms of accesses per second has
increased by a factor of four to eight. However, the rest hardware in the system
(CPU, real storage) has increased by factors of 40 to 60.

There are identifiable problems in usage of CPU and real memory which can be
fixed to improve performance but the overall 3081 system is still restricted to
only doing 4-8 times as many I/Os as the 67.

Lets look at the traditional resources first. Based on raw MIPS rate, the 3081
is basically about 45 times faster than the 67. It turns out that things don*t
directly scale up. Because of added function and lack of attention to path
lengths, the effective path length in VM/SP is at least two times longer than
that of CP/67 (even taking into account the benefit of VMA). There are specific
places where that can be improved. One is in the MP support. My original AP de
sign had a single lock, but with a novel twist that I called lock bounce to avoid
the traditional lock-spin problem. The result was very short path lengths to im
plement and little or no lock contention. It had the disadvantage that is was
dependant on a large number simultaneous tasks to achieve its through-put. Over
the years, work has been done to enhance the performance of a single large guest
environment, attempting to get both processors operating on work for the same
virtual machine. That with other work has drastically increase the overhead in
managing a multiprocessor environment. The situation now is that typically 9-10%
of total elapsed time of both processors is spent in just lock contention and
that is only one aspect of the MP management overhead.

Real storage management has other problems. To get to 7000 pages requires going
to 32meg which involves the >16meg support. 3200 pages is a more typically value
for a 16meg machine. Because of implementation problems, the effectiveness of
pages in the >16meg area is drastically reduced. The effectiveness of the addi
tional 4000 pages is closer to only 1000 or 2000 pages in terms of standard stor
age.

A more representative comparison of a VM/SP system on a 3081K compared to 3.1L
on a 67 is only an effective factor of 20 increase in CPU resources and 45 in
crease in real storage resources. Adjusted raw numbers would indicate that
there is about twice as many real pages per workload MIP on the 3081 as compared
to the 67. The effective increase in real pages per workload MIP is actually
much larger because of the enhancements I did for segment sharing. The result
should be to eliminate a paging problem by creating a much lower paging rate per
workload MIP.

Assuming a factor of four reduction in paging rate per workload MIP because of
the increased storage size per MIP and the increased usage of shared pages, the
a 3081 could be expected to have a paging rate of 1750 page I/Os per second. Un
fortunately, we have a problem. The typical I/O configurations on a 3081 aren*t
capable of achieving 1750 page I/Os per second.

The resulting paging performance related problems can cause people to believe
that 3081s have page thrashing problems. The traditional page thrashing problem,
contention for real storage, no longer exists. A new class of problems exist
because there isn't enough I/O capacity to move all the required pages back and
forth between real storage and backing store.

Even if we could create a 3081 which had a page I/O capacity of 1750 page I/Os
per second, there remains the problem of user I/Os per second. The 67 was churn

8 Rough Draft

ing out 100 user I/Os per second (over 300 per workload MIP) . That represents
over 4500 user I/Os per second on a 3081. Although a typical installations with
3380s has the capacity to hold enough data for 20 times as many users as the 67
with 2314s, 3380s don't have the performance capacity to execute 20 times as
many I/Os (30*20 = 600 I/Os per second per 3380 actuator).

Looking at it slightly differently, the 67 system could perform ten to twenty
times as many I/Os per instruction executed as can a 3081.

There are changes between the 3.1L system and the current SP system which helps
the user 1/0 performance. EDF (and PAM) have increased the physical block size
from 800 to 4096. Unfortunately that doesn't directly translate into a factor of
five-fold increase. First, CMS all along would generate chained CCWs for multi
ple block requests where the blocks were contiguous (negligible difference be
tween 5 adjacent 800 byte blocks and one 4096 byte block). Second, some
percentage of the requests are for files that are 800 bytes or less in size. Even
if the full factor of five could be achieved (which would better take advantage
of the large increase in channel transfer rate), the I/O capacity is still short
by a factor of three. In addition to the blocking factor (which is the same for
vanilla 4k EDF and PAM), PAM has numerous performance advantages over the
straight stylized, synchronous I/O interface that is currently standard in CMS.

OPTIMIZATION AND CONTROL

My work on CP/67 consisted of two distinct activities, one was optimization of
resource utilization and the second was feedback control of those resources. I
only extended the feedback control to those resources which where primary bot
tlenecks at that time, namely CPU and real storage. During the intervening years
there has been additional optimization work but no extensions of the control al
gorithms. The current level of resource optimization is basically at the VM/370
release 3 or 4 level (slightly worse for CPU, increased lock contention; slight
ly better for real storage, i.e. more real storage per MIP, greater use of
shared pages).

The current level of the resource control algorithms are basically at 3.1L (the
algorithms date from 1969, the first full implementation date from 3.1L, and the
current incarnation date from the Resource Manager PRPQ). They only measure, ac
count for, and control CPU and real storage resources which where the primary
bottlenecks which I face in 1969. During the last 15 years, the primary bottle
necks on the system have shifted from CPU and real memory to the various parts of
the I/O system. The current effective I/O through-put per workload MIP is l/5th
to l/20th what it was on the 67. Prior to the last five to eight years, there
was little point to creating sophisticated control algorithms for the I/O re
sources because they didn!t represent a major through-put bottleneck. The
instructions executed by such algorithms would have represented a "cost" that
resulted in little or no net "benefit".

Obviously now, optimization of the I/O system will increase the performance of
the system. A more important problem is that the resource control algorithms
currently don’t control the primary bottleneck in the system, 1/0.

Current Performance. 9

In the interim we are stuck with attempting to manipulate the resource control
algorithms which have little or no control of the major bottleneck in the sys
tems. As a result, changes in control algorithm and/or control algorithm parame
ters appear to have little or random affects on overall system performance. It
is something like trying to use the gas pedal to steer an automobile. Although
the gas pedal is a resource control, it unfortunately has no direct effect on
the critical resource that we are interested in. It is not quite that bad since
control of CPU consumption can indirectly affect the amount of I/O a virtual ma
chine can perform. On the other hand, attempting to fair share the CPU resource
without regard to I/O resource consumption will tend to favor the I/O intensive
virtual machine that you would prefer to bias against.

A secondary outcome, is that any sort of optimization (manual or otherwise) that
is performed on the I/O system can carry with it significant effects. This is a
result of the corollary that optimization of the primary system bottleneck al
ways carries the most leverage.

For most installations at the moment, this implies careful ordering of minidisks
across physical drives and within drives. It also requires careful review of
issues like the price/performance trade-offs of several I/O optimization tech
niques. For some installations the price/performance of doubling the number of
3380 drives, but filling each only half full will be better than spending the
same amount of money on paging drums.

10 Rough Draft

APPENDIX A. >16MEG SUPPORT

Lynn Wheeler
SJRLVM1/WHEELER
276-1783
Aug. 27, 1983

The CP/67 3.1 and VM/370 PRPQ (and incorporated into the base as part of the
VM/370 Rel. 4 AP support) page replacement algorithm went to a great deal of
trouble in an attempt to treat all virtual pages the same. The replacement al
gorithm would search all storage locations in a cyclic manner looking for a page
without its reference bit on. The replacement algorithm would start at the top
of real storage and examine the reference bit of a page. If the reference bit was
on, it would be reset, and the algorithm would bypass the page, proceeding to
the next lower real storage page. If the reference bit was off, the virtual page
would be selected for replacement. The algorithm would then stop, check-pointing
the address of the next lower real page address. This check-pointed address
would be used to resume the search when the algorithm was invoked the next time.

The PRPQ algorithm had significant advantages over the VM/370 algorithm. In the
PRPQ, all virtual pages were essentially assigned random real storage locations.
Since all real storage pages are examined in one pass of the algorithm, the time
between examinations of a particular page is predictable. The interval for one
pass is dependent on the number of real storage pages available and the con
tention for those real storage pages (or dependent on the reference patterns of
all virtual pages in the system). This interval is independent of any character
istic of a virtual page excepting the setting of the reference bit for that
page. The most important factor in the algorithm is the examination interval for
pages. If the examination interval is 200 seconds, then for a page to remain in
real storage, the virtual page must be referenced at least once every 200 sec
onds (the reference bit must be set between the time it is turned off by the
algorithm and the next time the algorithm examines the page.)

The base VM/370*s replacement algorithm was superficially similar to that of the
PRPQ*s, in that it also looped around examining and resetting reference bits.
The base system’s replacement algorithm, however, followed a CORTABLE chain,
rather than looping via real storage address. With proper design of the CORTA
BLE chain, it would have been possible for the base system to exactly simulate
the PRPQ’s algorithm. The base system’s implementation of the CORTABLE chain,
however, resulted in CORTABLE entries being unchained continually from one posi
tion in the chain and rechained at another location. One of the results was that
there was no predictable examination interval for pages. The average interval
between examining pages might be 200 seconds, but the actual interval for some
pages could be 50 seconds and for other pages, 500 seconds (depending on how
they were removed and restored to the CORTABLE chain).

Appendix A. >16Meg Support 11

HPO 2.5 PAGE REPLACEMENT

The HP02.5 implementation for selecting pages to be replaced has similar prob
lems to those encountered by the original VM/370 implementation. In the HP02.5,
greater than 16-meg support, real storage is partitioned into two areas: those
real pages below 16-meg and those above 16-meg. Because of implementation re
strictions in HP02.5, certain virtual pages must be located in the <16-meg area.
As a result, the page replacement function must support two types of calls. The
standard invocation results in all real storage being treated as one logical
area and page replacement can select a page from anywhere. The other case is
when a page is required to be located in the <16-meg area.

One performance measure of this class of page replacement implementations is the
reset interval. The HP02.5 implementation maintains separate reset interval
statistics for the two areas (<16-meg and >16-meg). Ideally, with a careful im
plementation, the two intervals should be equal. Measurement data actually
shows that the interval for the >16-meg area can be 5-15 times the interval for
the <16-meg area. For instance, the <16-meg interval can be three minutes, whi
le the >16-meg interval can be 15-45 minutes. That means a page which resides in
the <16-meg area must be referenced at least once every three minutes to remain
in real storage, while a page in the >16-meg area needs to be referenced only
once every 45 minutes. Virtual pages which have the unfortunate fate of resid
ing below the 16-meg line will be thrown out of real storage unless they are used
at least once every three minutes. Other pages which are more fortunate can lay
around in real storage unused for up to 45 minutes before they are selected for
replacement.

From the stand-point of the page replacement algorithm (as opposed to the HP02.5
page replacement implementation), when

1. there is a reset interval of 200 seconds,

2. a page must be replaced in the <16-meg area because its last reference was
greater than 200 seconds,

3. there are pages in the >16-meg area which havenTt been referenced for much
greater than the page being replaced in the <16-meg area,

then those pages in the >16-meg area might as well not exist.

In other words, an implementation of the page replacement algorithm (as opposed
to whatever the current HP02.5 implements) could give approximately the same
level of performance with much smaller real storage. What type of performance
could be expected if the page replacement algorithm was implemented in HP02.5?
First, if the reset interval between the two areas were equalized, what would
happen? There are two ways of looking at the answer. First, what would the reset
interval be if the real storage size was to remain the same? Second, how much
less real storage would be required to give the same level of performance as the
current HP02.5 implementation?

The first question is the easiest. In a 32 megabyte real machine, there will be
4096 pages in the both the <16-meg area and the >16-meg area. Since all of the CP
nucleus and working storage must be located in the <16-meg area, the actual num
ber of pageable pages in the <16-meg area will typically be in the 3000-3500

12 Rough Draft

range (dependent on the size and number of virtual machines logged on and how
active they are). Having a consistent reset interval in the two areas would in
crease the interval in the <16-meg area and decrease the interval in the >16-meg
area (as compared to the HP02.5 implementation). The resulting reset interval
will be dependent on numerous complex interacting factors. Given reset inter
vals of three minutes and 45 minutes with the current HP02.5 implementation,
then a composite interval could be in the 10 minute range.

An analogous view of the situation is to imagine what happens when a computing
center performs load balancing on two separate 16-meg machines. One of the
16-meg machines is performing 450 page I/Os per second and has a reset interval
of three minutes. The other 16-meg machine is performing 10 page I/Os per sec
ond and has a reset interval of 45 minutes. Equalizing the load (and the reset
interval) on the two machines won*t result in an aggregate paging rate of 460
page I/Os (230 page I/Os per machine). Instead, the overall paging rate is de
creased and the total productive work is increased. Using this analogy, it is
easy to see that the current HP02.5 implementation exhibits two completely dif
ferent performance characteristics on the same machine. Such actual comparison
in the real world is difficult since almost immediately after the load
balancing, the users would increase the work load because of the improvement in
service (and as a result all types of activity in the system would increase).

The second question can also be viewed from the two separate machine analogy.
Assume that the scenario is the same, except that after balancing the load on
the two machines, the real storage on both machines is reduced until the paging
rate on each machine is 230 page I/Os per second. Again the actual numbers are
dependent on numerous complex factors, but it might be possible to reduce each
machine to 12-meg (for a total of 24-meg instead of 32-meg) before the aggregate
paging rate again reaches 460 per second.

The current HP02.5 replacement page implementation can "waste" 8-12 megabytes on
a 32-meg. machine as compared to the performance possible with true implementa
tion of the PRPQ page replacement algorithm. Another way of looking at it would
be to say that a correct implementation of the algorithm would need much less
real storage to give the same level of performance as the HP02.5 implementation.

PAGE REPLACEMENT ALTERNATIVE ONE - MULTI-LEVEL STORE

There are numerous possible solutions to this HP02.5 problem. One scenario is to
actually treat the areas as two distinct separate storage types. In this scheme,
the initial fetch of a page would always be to the <16-meg area. The standard
(<16-meg) algorithm would be invoked if there was a requirement to replace a
page. The difference would be that the replaced page instead of being removed
from storage, is simply moved to the >16-meg area. A similar replacement algo
rithm would be invoked for the >16-meg area, any time a page had to be moved to
the >16-meg area (and there were no available page slots). Only pages being re
placed in the >16-meg area would be moved to secondary storage.

Using this scheme the >16-meg area simulates part of a multi-level paging store.
In such a situation the three minute and 45 minute reset intervals, might be
changed to three minutes and 20 minutes. The advantage would be that pages which
failed the three minute test in the <16-meg area would be moved to the >16-meg

Appendix A. >16Meg Support 13

area. If the pages were referenced within the 20 minute interval, they would
still be available in real storage - eliminating a physical page I/O. The reason
that the interval for the >16-meg area is reduced is that the replacement rou
tine for >16-meg area would be invoked more frequently (as compared to the cur
rent implementation; i.e, essentially every time a page is replaced from the
<16-meg area).

Would the performance actually be better? Consider a simplistic scenario. One
hypothetical page is brought into the <16-meg area and is used once every 10 mi
nutes, requiring a page I/O at every use. Another page residing in the >16-meg
area is used once every 45 minutes (and remains in storage). The result is a
page I/O rate of six/hour for these two pages. Under the revised
implementation, the page being referenced once every 10 minutes will remain in
real storage (decrease of six page I/Os per hour), but it will occupy the space
formerly held by a page being referenced once every 45 minutes (increase of 1.25
page I/Os per hour). The overall paging activity has decreased by 4.75 page I/Os
per hour. Some might view this as a negligible decrease in the overall paging
rate.

ALTERNATIVE ONE - MODIFIED (OPTIMIZED)

There is a temptation to "optimize" the alternative one implementation. Theore
tically a virtual page can be used directly while it resides in the >16-meg
area. The optimized alternative, instead of just treating the >16-meg area as an
extended paging device, will also allow its use as real storage. Rather than
move a page from the >16-meg area into the >16-meg area when a page fault occurs,
the page table is just updated to show the current (>16-meg) real storage lo
cation. The effect on the reset interval will be to increase the (three
minute?) interval for the <16-meg area and decrease the (20 minute?) interval
for the >16-meg area. The cause for the increase in the <16-meg reset interval
is because the demand for <16-meg pages is decreased (pages are used directly in
the >16-meg area, instead of replacing pages in the <16-meg area). The cause
for the decrease in the >16-meg reset interval is that there will be fewer pages
available for replacement on each pass (more pages will have to be examined on
each invocation, decreasing the elapsed time it takes to search all pages). It
might even be possible for the example, that the intervals would be equalized,
i.e., possibly ten minutes for both reset intervals (instead of three and 20).

Such an "optimization" will introduce an imbalance similar to the current HP02.5
implementation, but not nearly as bad. In the current situation, pages which
must be located in the <16-meg region are at a severe disadvantage compared to
pages in the >16-meg region (replaced if they havenft been used in three minutes
as compared to being replaced after 45 minutes of inactivity). In the
"optimized" version, pages which must be located in the <16-meg region will be
at an advantage. All pages will be initially brought into the <16-meg region.
Any page after ten minutes of inactivity would then migrate to the >16-meg re
gion. Now enters the difference. If some pages can be used in place (>16-meg
region), they will not be removed if they are used within an ten additional min
utes. Effectively each page initially has a 20 minute death sentence. Once the
first ten minutes have elapsed, pages relocated to the >16-meg region have a ten
minute death sentence. As long as the page is used at least once every ten min
utes from then on it will continually be reprieved from replacement. Things are

14 Rough Draft

almost fair and consistent? The exception involves pages which must be brought
down to the <16-meg region. Every time they are brought down, their death sen
tence is reset to the combined interval (2*10 minutes).

Although such an "optimized" implementation is better than what is currently im
plemented, it is still not fair. The improvement results in pages which are
forced below the 16-meg line having a distinct advantage (because their clocks
are reset to zero each time) instead of drastic disadvantage (three minute limit
compared to a 45 minute limit). Furthermore the discrepancy between the two in
tervals is much smaller so that there should be better overall performance
(differing by possibly only a factor of two - with the bias in a "desirable" di
rection) .

PAGE REPLACEMENT ALTERNATIVE TWO - BALANCED USE

Why does the implementation have to be unfair? One of the objectives of my ori
ginal design and algorithm (circa 1969) is to establish a uniform reset interval
for all pages. As long as a page is used at least once within that interval, then
it will remain in storage. Let's go back and examine the problems in the current
HP02.5 implementation. The basic problem has to do with more requests occurring
for pages in the <16-meg area. This causes the replacement algorithm to be in
voked more frequently, resulting in a decrease in the elapsed time for examining
all pages.

The current HP02.5 implementation is somewhat confused; sometimes it views stor
age as one large homogeneous area and at other times it restricts its attention
solely to the <16-meg area. A solution can be found by explicitly viewing stor
age at all times as two distinct areas. When pages are explicitly requested from
the <16-meg area, the <16-meg area can be searched. Requests for pages that can
be satisfied from either area can be handled differently. For these requests,
an explicit decision about which real storage region to search should be based
on the current reset intervals for the two areas.

A simple implementation involves two constants, two counters and some simple
monitoring code. Every time the <16-meg area is searched, counterl is incre
mented by constantl. Every time the >16-meg area is searched, counter2 is incre
mented by constant2. When a page is requested that can come from either area,
the decision on which area to search is based on which counter has the smallest
value.

Remember that the reset interval is dependant on the frequency which the area is
searched and the total number of pages in the area. The objective is to equalize
the reset interval, not necessarily the search frequency. In the above example,
the search frequency will be equalized if both increment constants are the same.
Unfortunately, a equal search frequency is desired only if the number of pages
in the two areas are equal. To solve the more general objective, the magnitude
of the two constants must be adjusted to take into account differences in the
number of available pages in the two areas. Adjusting the relative magnitude of
the two constants in proportion to the sizes of the two areas will result in a
corresponding adjustment in the search frequency. Adjusting the search frequen
cy proportional to the number of pages in each area has the objective of

Appendix A. >16Meg Support 15

equalizing the total reset interval. The objective is for the reset interval
(time to examine all pages) for both areas be equal.

Assuming constantl to be some fixed value (say 16), the monitoring code would
adjust constant2 such that the reset intervals for the two areas remain approxi
mately equal. The initial approximation for constant2 would be:

constantl * (size of <16-meg area) / (size of >16-meg area)
i.e. the ratio of constantl to constant2 would be equal to the ratio of avail
able pages in the <16-meg area to the number in the >16-meg area.

For a 24-meg machine, there would be approximately 3400 available pages in the
<16-meg area and 2048 available pages in the >16-meg area. Assuming constantl
set to 16, then constant2 would have a value of 27. For a 32-meg machine, there
would be twice as many pages in the >16-meg area and therefore constant2 would
have a value of 13.

The monitoring code would periodically adjust constant2 based on changes in the
size of the <16-meg area and the measured reset intervals. It would also be the
responsibility of the monitoring code to periodically adjust counter2 to mini
mize large discrepancies (and the long term effects of any temporary aberrations
in activity).

COMBINED ALTERNATIVES

I have proposed three modifications to to my basic page replacement algorithm to
allow for the problems introduced by the current CP use of real storage above
the 16-meg boundary. The first alternative preserves the correctness of the al
gorithm, but significantly under-utilizes the real storage available above the
16-meg boundary. The optimized version of the first alternative makes better
use of the resources available but significantly perturbs the algorithm imple
mentation. Finally, the second alternative appears to both fully utilize the
resources available and implement the algorithm correctly.

Before ending the discussion, a drawback must be pointed out in the second pro
posal. Inherit in the design of the second alternative is an assumption that by
forcing page replacement, when possible, to select pages in the >16-meg area,
the reset intervals for the two areas can be equalized.

The drawback involves the phrase when possible. In the CP design for >16-meg
support, page requests are broken into two types: a) <16-meg and b) don*t-care.
The <16-meg page are those which must be accessed in some way by executable CP
code (and therefore must reside in the first 16 megabytes of storage). The
don't-care pages are those which are only accessed by virtual machine execution.
One way to characterize the demand for pages is to calculate the request ratio
of <16-meg pages to the don!t-care pages.

The implied assumption in the second alternative is that the ratio of the demand
for pages doesn't exceed the page availability ratio (the ratio of available
pages below the 16-meg boundary to the pages above the boundary).

16 Rough Draft

When the demand ratio exceeds the availability ratio, no amount of adjustments
can maintain the algorithm design point. In a 24-meg system, the availability
ratio of approximately 3500:2048 should easily be larger than the demand ratio.
On a 32-meg system, the availability ratio of 3500:4096 should still be
adequate. But what about a 48-meg system, or a system that has a large V=R region
defined in the <16-meg area? Defining an 8-meg V=R area on a 32-meg system would
drop the ratio to 1450:4096 or less.

It is entirely conceivable for environments to exist which will violate the bas
ic design assumptions inherent in alternative two. What can be done? One sol
ution might be to implement both proposed modifications. As long as the demand
ratio stayed within the design limits, the second alternative would be active.
When the demand ratio exceeded the design limit, a switch would be thrown and
the optimized first alternative would be activated. This solves the problem of
equalizing the demand, but has some drawbacks. In principle, the optimized
first alternative should be avoided because it violates the algorithm. Switch
ing completely over to the first alternative, even when the demand ratio exceeds
the design limit by a small margin, appears a little drastic.

A better compromise would be to gradually phase in the first alternative. What
indicators can be used to recognize the condition? One indication of the pres
ence of the condition is a large difference between the two counters (defined in
alternative two) The <16-meg counter is incremented every time there is page re
placed in the <16-meg area. The >16-meg counter is incremented every time there
is a page replaced in the >16-meg area. When a demand is made for a don’t-care
page, the algorithm will always select a page from the >16-meg area (if the
>16-meg counter is less than the <16-meg counter). It is still possible that
this course of action will not be sufficient to allow counter2 to overtake
counterl.

If the <16-meg counter remains larger than the >16-meg counter, and the differ
ence increases over time, then the design point of the algorithm has been ex
ceeded. This characteristic holds the solution for phasing in the first
alternative implementation. First, a ”dif ference’* threshold can be defined to
be some value that the <16-meg counter can exceed the >16-meg counter. When the
gap threshold is exceeded, the replacement of <16-meg pages is changed. Instead
of removing the <16-meg page from storage, it is migrated to the >16-meg area.
In this case, it will not be necessary to increment the <16-meg counter (since
the page was never actually removed from storage). However, the >16-meg counter
will increment because a >16-meg page will have to be removed to make room for
the migration (decreasing the difference between the two counters).

This modification has the effect of dynamically adapting the real storage man
agement algorithm across diverse configurations and loads. It isn’t a perfect
solution since it doesn’t really create <16-meg storage. It effectively parti
tions storage into three logical areas. The <16-meg area, the >16-meg area, and
the <16-meg staging area (located above the 16-meg line).

The solution can also be viewed from the standpoint of the <16-meg area being a
critical system bottleneck (rather than the more general case that real storage
is a bottleneck). There are additional resources in the form of the >16-meg
area, which don’t directly solve the demand for <16-meg pages. Another way of
viewing the problem is that the resources available in the form of pages above
the 16-meg line exceed the demand for those resources (as compared to the re
sources available for servicing the <16-meg demand). Logically, in such a

Appendix A. >16Meg Support 17

situation, there are excess pages above the 16-meg line. Effectively these pages
are idle (similar to the argument concerning the current HP02.5 implementation).
The question becomes: how to use the idle resources to address the bottleneck
problem for <16-meg pages? Using the >16-meg area as a staging area for <16-meg
pages doesn!t increase the size of the <16-meg area. It does improve performance
because the overhead associated with retrieving a page from the >16-meg area is
less than from backing store.

18 Rough Draft

APPENDIX B. - - CP PAGING

Lynn Wheeler
SJRLVM1/WHEELER
276-1783
Oct. 1982

Several questions have been asked about the current CP paging "algorithm". The
current implementation is an algorithm design I did before I joined IBM plus se
veral misc. changes from the 73-74 era as part of the conversion to VM/370.
There are two main items of the paging algorithm. The first is the page replace
ment algorithm. The second is the page thrashing or multiprogramming control al
gorithm.

The original CP had no page thrashing control and a very primitive page replace
ment algorithm. The original implementation allowed all runnable tasks into
queue. The original page replacement algorithm consisted of looping the CORTABLE
searching for a page that didn’t belong to an IN-Q virtual machine. If the com
plete CORTABLE was looped without finding a page to replace, a second search was
made to find the first available page.

As soon as any sort of heavy load happened, the system very quickly got into a
page thrashing situation. A very primitive page thrashing control was imple
mented by Lincoln Labs, and distributed with CP/67 2.3. Page thrashing was con
trolled by limiting the multiprogramming level (number of virtual machines
allowed to execute &/or in queue). The MPL was limited to a number that was pro
portional to the amount of real storage available in the system (something like
four virtual machines per 256K of real storage). This represented a significant
performance improvement because it minimized the page thrashing conditions.

I was working on CP/67 at this time & it was also about the same time that Den
ning published his Working Set Paper (1968). The problem with Denning’s design
was that it required a large number of CPU cycles to implement (scan complete
virtual memory tables every 10,000 to 30,000 virtual instructions) and made no
provisions for being able to adapt to the robustness of the paging I/O subsystem
(although IBM Science Center in France did implement a version against CP/67 re
lease 3). I established goals for a different algorithm which would 1)
accomplish essentially the same objectives as Denning’s working set algorithm,
2) have an implementation with much shorter path lengths, 3) have path lengths
that were proportional to the activity, and 4) would dynamically adapt to the
load and situation.

The first area I changed was the page replacement algorithm. Instead of looping
the CORTABLE looking for a page that didn’t belong to an in-queue virtual ma
chine, I replaced that with the (current) reset reference bit algorithm. I in
vented &/or investigated several different classes of algorithms. I was looking
for an optimal algorithm. It was not necessary that the algorithm make the opti
mal page replacement choice ... it had to provide that overall optimal system
performance. The implemented algorithm had to provide the best page replacement
in the shortest possible path-length resulting in the optimally net performance
throughput.

Appendix B. -- CP Paging 19

The looping algorithm that I invented had several major advantages over
Denning1s design. Denning required that each task!s (virtual machine) pages be
reset every time the task consumed a fixed number of CPU cycles. Pages that
didn!t have their reference bits set where removed from the active working set
and placed in the available pool. A taskfs real storage requirements (or work
ing set) was determined from the average number of pages that had their
reference bit on in each interval. Several problems occur with DenningTs algo
rithm. One of the major ones is that the overhead to manage the resource (real
storage) is not proportional to the demand for that resource (note: the current
implementation with very low real storage demand & resetting of bits at queue
drop effectively approximates Denning*s algorithm ... one of the very things
that I was trying to avoid) .

Instead of resetting the reference bits at fixed intervals, I designed an algo
rithm which would reset the reference bits at a rate proportional to the demand
for real storage. This represents a natural adaptive algorithm. The cut-off
point for acceptable page life in real storage will automatically change to be
whatever value is appropriate for that installation and load. As the load in
creases, the acceptable page life decreases; when the load drops off, the
acceptable page life increases. This is a very significant point. At a high
level design overview, both Denning*s algorithm and mine periodically reset the
reference bits in real storage. Major differences between his algorithm and mine
are 1) my overhead is proportional to contention for real storage rather than
proportional to number of instructions executed by a task and 2) my algorithm
naturally, implicitly, dynamically adapts to the contention for real storage.

OK, my algorithm significantly shortens the path-length to manage real storage
and at the same time was able to dynamically adapt to its environment. Unfortu
nately it also did away with the mechanism for measuring and predicting working
sets. No longer were a count of the average number of reference pages kept. As a
result I had to come up with a substitute which would approximate the same ef
fect. If you logically analyse what is happening in the looping through core &
resetting the reference bits, that process is very similar to what Denning was
doing on a fixed interval. My algorithm would in fact be resetting the reference
bits. I conjectured that there would be some correlation between the number of
pages in real storage for a virtual machine and its demand for real storage
(seems somewhat obvious now). The number of pages in real storage for a virtual
machine somewhat trails the T,exact** definition of working set. Pages that have
their reference bit reset (and are no longer in the working set) would be in
cluded in the in-core, real storage page count until the replacement algorithm
has completely looped the CORTABLE once. After a complete loop of the CORTABLE,
the pages would be removed. I decided to attempt to calculate an approximation
to a real working set value by using the count of resident pages for a task.

Using the real storage page count has all sorts of pit falls. First, if the
looping time was extremely long, a page would be included in the real storage
count for a period much longer than its life time. This could grossly enlarge
the approximate working set value. Enlarged working set values would lead to de
creased number of virtual machines executing simultaneously, further reducing
the real storage contention. Reduced real storage contention will contribute to
increased elapsed time for the reset algorithm to wrap the CORTABLE, further in
creasing the error in the working set calculations.

The reverse is also true. If there is a sudden spike in demand for real storage,
leading to decreased reset algorithm wrap time, then it is possible to underes

20 Rough Draft

timate the working set value. Estimating the working set too small will allow a
too large MPL and excessive real storage contention ... further reducing the
working set estimate. To handle both situations, there had to be other factors
than the number of resident pages belonging to a virtual machine that were used
to estimate working set. Otherwise the situation is non-stable.

Another problem was where to get the count of real storage pages. An working set
estimate was being recalculated at queue drop. Normally there could be large
fluctuations in the number of pages in real storage during a queue stay. One ap
proach might be to create a timer driven task that periodically samples the num
ber of real storage pages. The number of real storage pages would be accumulated
at each observation. At queue drop the accumulated total would be divided by
the number of observations to arrive at the average number of resident pages.

Here again was something I disliked doing . . . creating frequent timer driven
events ... when it might not even be necessary. As a compromise, I decided that
page read events appeared to occur relatively frequently. I made the assumption
that the page read events could be used to approximate the intervals (although
not necessarily evenly). Instead of taking the sample at fixed intervals, I
would take the sample at the page read. Then at queue drop, the sum of the count
of resident pages at each sample would be divided by the number of samples (in
this case the number of page reads).

The basic number used in calculating the working set prediction is the average
number of resident pages. Unfortunately it has several external factors contrib
uting to errors in the calculations. One is real storage contention which af
fects how fast pages that are no longer in the working set are removed from real
storage (and the resident page count decreased) &/or pages being removed that
are in fact still in the working set. The other is the virtual machine’s page
read distribution which can cause the observations & average to be significantly
skewed from a true time average. Both of these deviations have to be corrected
for in the calculations to come up with a useable prediction.

So much for theory. There are several implementation additions to the basic al
gorithm which has restricted the adaptive latitude capabilities of the code.
First, a point about the average resident page sum. The average resident page
sum in addition to being corrected in other ways, has some code which implicitly
assumes that the number of pages in real storage at queue add time is zero. The
observation was made that at queue add time, the number of resident pages will
be zero and that the virtual machine must initialize the working set by page
reads. Each page read will create a sample value. This leads to the sum of the
average resident pages being increased by 1+2+3+.••.+n-l+n, where n is the work
ing set size, just to establish the initial working set. If no other page reads
occur, then the calculations would result in a value about 50 percent of the
true value. Code is in place to use as the first approximation to ’n ’, the maxi
mum number of real storage pages that was reached during the queue stay. This
value (VMMXPG) is subtracted from the number of page reads and 1+2+....+VMMXPG
is subtracted from the sum of resident page count. There are places where the
assumption in this code can be invalid. First the number of resident pages at
queue add time might not be zero (this could be corrected by saving the initial
resident page value). The second is that the maximum resident page count might
be achieved w/o performing any page reads.

There is a CP feature that allows a virtual machine to accumulate real storage
pages w/o performing a page read. Originally all real page allocation included a

Appendix B. -- CP Paging 21

page read. Part of the system CP IPL disk format included a page that was all ze
ros. A virtual machine at virtual IPL time would have all of its SWPTABLE en
tries initialized to the CCPD of this page. Sometime after developing the above
algorithms, I invented the nzeros page". Not only was clearing a page by in
structions faster than reading the page in, but it also required a shorter total
path length.

Either Mzeros page" activity and/or non-zero initial page resident count can
lead to situations where the maximum number of real page level was reached w/o
performing page reads. This can lead to a significant under calculation of the
average resident pages.

Another implementation addition which can significantly affect the paging sys
tem is the reset code at queue drop. There is currently code which at queue drop
time will reset all the reference bits belonging to a virtual machine and/or
place all the pages on the flush list. The code was originally conditional, both
in the resetting of the reference bits and placing the pages on the flush list.
Also until the last 4-5 years it represented a relatively small proportion of
the page manipulation that went on. With the current large storage environment,
the majority of virtual page manipulation may be the queue drop code.

If the reference bits were to be reset at queue drop time and then only those
pages that didnft have their reference bits on, were to be placed on the flush
list ... then effectively we have Denning's 1968 working set algorithm ... and
just the thing I was trying to originally avoid. My intent in the CP/67 queue
drop design was to only invoke it if there was no possibility of the pages being
reclaimed and it didn't significantly affect the overall page replacement algo
rithm. The current situation is a result of a incremental, partial merge of my
CP/67 code into the VM/370 rewrite (small excuse).

At very low real storage contention (large real memory, low MPL) the majority of
the paging may occur at queue add and queue drop time. Previously this had only
been an MVS design point since its CPU overhead to perform page operation would
cause CPU saturation in a page thrashing situation. VM/370 is now finding it
self in a similar situation where real storage contention is at a minimal load
ing level. Two changes have occurred to bring this about. The first is the
number of available pages per MIP has significantly increased cutting down on
real storage contention (per MIP). The other is the decrease in I/O capacity per
MIP. With the current I/O configurations it is not possible to support large
multiprogramming levels. High multiprogramming levels encounter severe bottle
necks in the I/O system (high page wait time used to be an attribute of page
thrashing ... i.e. contention for real storage was too high . . . currently we can
have high page wait time just moving pages into & out of storage at queue
add/drop time because of the severe bottlenecks in the I/O system). Thus a
smaller multiprogramming level per MIP also contributes to reduced real storage
contention.

There are a couple of things that can be done to clean-up the current algorithm
implementation . . . but the "new" major problem is not directly with managing
real storage (although there still are configurations with MIPS/real-storage
and MIPS/10 ratios which require real storage contention control . . . and the
current algorithms to adaptively operate as they do) . The new problem is to con
trol MPL level operating in the I/O system (i.e. those tasks which can
simultaneously compete for I/O resources) similar to the controls on MPL level
for real storage. There is also some trade-offs that are theoretically possible

22 Rough Draft

with utilizing the excessive real storage as a logical paging device (and alle
viating the load on the page I/O system)

NUMBER OF BITS

Without any activity at queue drop, the code implementation is algorithmic cor
rect ... it may not give optimal/desired performance in all circumstances ...
but it gives predictable, understandable performance. The code implementation
is basically a good approximation to an LRU replacement algorithm. It turns out
that an LRU replacement algorithm does not necessarily result in optimal per
formance in all circumstances. I designed and implemented a new variation on the
one bit replacement algorithm which is better than the current algorithm and at
times better than a true LRU replacement algorithm.

Most page replacement algorithms can be classified as either locally LRU or glo
bally LRU, the distinction being whether the resetting of the reference bits oc
cur against just a particular taskfs pages periodically or against all real
pages. Project MAC did some studying of the general class of replacement algo
rithms using one bits, two bits, three bits, and four bits. The published re
sults were that multiple bits were normally marginally better than one bit but
the path-length increase usually didn’t justify the amount of improvement over
two bits.

N.5 BIT REPLACEMENT ALGORITHMS

I invented a different class of global page replacement algorithm . . . the sim-
plist case I refer to as the 1.5 bit algorithm. It requires two physical bits of
implementation but the way they are manipulated results in less than two full
bits of history information for each page. In fact the amount of history infor
mation is variable between one full bit to two full bits of information. On the
average, each page in memory will have 1.5 bits of history information (ref: to
unclassified research report, VM/370 Modifications). After detailed simulation
studies it was found that the 1.5 bit algorithm would perform better than either
a one bit or a two bit algorithm. In fact, there was normally a particular member
of the class of 1.5 bit algorithms which would perform better than true LRU.

The general class of N.5 bit algorithms have even more interesting character
istic in a multiprocessing environment. The current reset and test reference
bit code requires very few instruction in an UP environment, but the path-length
drastically balloons when going to an MP environment because of the synchroniza
tion problem with multiple processors. The N.5 bit class of algorithms dras
tically reduces that overhead because all reference bits are reset at one time.
During the search sequence bits are only testing (with ISK instruction ... not
requiring synchronization) and not reset.

My version of AP support that I did for release 3 at the Palo Alto HONE system
implemented the 1.5 bit algorithm. At the point where all keys must be reset,
both processors were synchronized and began executing the same instruction loop
in a DMKPTR subroutine (one of the processors was assigned half of the pages to

Appendix B. -- CP Paging 23

reset and the other processor was assigned the the other half of the pages). The
function was implemented with a special SIGNAL function which specified that the
signaled processor was to branch to a section of code pointed to by address in
low core.

The other area where the current AP implementation has long path lengths has to
do with the invalidating of the page once the reference bit is reset because the
other processor must be placed in STOP state (a DMKEXT subroutine) prior to the
invalidation. That problem is eliminated with the IPTE instruction. For my re
lease 3 implementation (without the IPTE instruction), I had the signaled pro
cessor turn on the invalid bit in the PTE (while the signaling processor waited
for the invalid bit to appear).

The N.5 class of replacement algorithm with the new SIGNAL function allowed me
to drastically reduce the path-length in the paging supervisor and while elimi
nating the requirement for STOP synchronization functions (path-length for the
STOP function is deceptive since it requires a branch to a subroutine which is
sues a SIGP and then spins until it receives an indication that the other pro
cessor has stopped).

FLUSH LIST MANIPULATION

There have been several instances recently of flush list manipulation which re
sults in unpredictable performance changes. The problem is that the flush list
manipulation is perverting the basic algorithm in strange ways . . . sometimes
completely overriding any base algorithm execution at all. The exact effects
happen to load and/or configuration dependent. Normally performance improve
ments of this type occur when there is only one continuously running guest ma
chine along with periodic other types of usages.

The basic replacement algorithm attempts to approximate LRU as closely as possi
ble. In several instances that may not be the best strategy. One of those situ
ations is where it is desired to bias in favor of a large guest machine. One of
the tendencies of most of the flush list manipulations is to biases the replace
ment algorithm against virtual machines that drop from queue and enter idle
state, i.e. idle machines have their pages placed on the flush list. Because of
the current implementation using all pages on the flush list prior to executing
the basic replacement algorithm may be a large number of very low usage pages
which get replaced infrequently or not at all. The result is that the paging
rate will be higher than if the implementation conformed to the LRU approxi
mation algorithm.

Now in what circumstances would the system perform better with a slightly higher
paging rate. One of the major circumstances is when the paging MburdenM is
shifted from a batch guest machine (which the installation desires to consume
the majority of the resources) to trivial CMS machines. This shift in paging
burden must be such that the guest machine is the only recipient of the benefit
and the overall increase in paging rate doesn*t saturate the I/O system. Prob
lems occur when there is significant, multiple virtual machine activity which
executes for long periods of time. The paging burden shift is not selective by
virtual machine priority or favoring, just by virtual machine execution charac
teristics .

24 Rough Draft

The major problem is that some flushlist manipulation perverts the implementa
tion code so that it no longer conforms to the algorithm. Typically the code
"tuning/changing” is being performed by individuals who donft understand the in
timate relationship involved between a statement of an algorithm and what is re
quired in code to implement that algorithm. Small code changes can frequently
modify the dynamic execution characteristics of a system so that drastically
different algorithmic implementations are the result.

Anyway, back to flush list. The "shifting" burden explanation turns out to have
second order effects that can skew the resulting performance data, greatly con
fusing people doing performance analysis. If the guest virtual machine happened
to be favored at 90-95 percent, and it was only executing at 80 percent because
of page faults, then random modification to the flushlist implementation might
be able to cut the page fault rate for that specific virtual machine in half . ..
possibly doubling the page fault rate for other virtual machines. Turns out page
faults occur when virtual machines execute instructions. Also different types of
programs and/or virtual machines may have a different ratio of instructions per
page fault. Favored guest machines tend to have rather high ratios of in
structions per page fault, (in general, most of the IBM 0/S derivatives tend to
have large, weak working sets, i.e. large number of pages ... and large number
of different pages . . . accessed per instruction interval ... which ordinarily
would create large page fault rates but a favored guest is set-up by the instal
lation to have a large number of pages resident all the time).

Lets say the favored guest is only executing at 80 percent of the CPU without any
unusual flushlist manipulation. Flushlist manipulation could cut the page fault
rate for the guest in half (say by 10 page faults) allowing it to execute at
90-95 percent of CPU. The paging "burden" has been shifted to the trivial inter
active users so that they will now experience an increase of in the number of
pages faults. But since the page replacement algorithm is making less than the
optimal choice in order to allow the guest machine to execute better, the trivi
al CMS users may experience an increase of 20 page faults (verses a decline in 10
for the guest). But that increase of 20 page faults is only if the CMS machines
continue to consume 20 percent of the CPU, i.e. one page fault for each percent
of the CPU. With the guest executing at 90-95 percent of the CPU, the CMS virtual
machines will only consume one half to one fourth of the total CPU that they had
previously. As a result their page fault contribution per unit time will de
crease by a factor of 1/2 to 1/4. The net result for the overall system is a
total decrease in paging rate . . . primarily because of shift in the type of in
structions executed (&/or which virtual machine is executing those
instructions). The guest virtual machine ratio of CPU executed per page fault
was increased from 40mills/fault to around 80-90mills/fault. The CMS virtual
machines had their CPU/fault ratio decreased by the increase of one page fault
per 10 milliseconds of CPU.

That shift may be desirable, but it is purely a side affect of the code change.
On other systems with multiple, continuously executing virtual machine, the ef
fect can be a drastically higher page I/O rate. The changes in flushlist manipu
lation provide beneficial paging performance to virtual machines with specific
execution characteristics at the expense of poorer overall choice in the pages
selected (although an accompanying shift in load characteristics may in fact im
prove overall system throughput). The change occurs without consideration for
any external installation objectives. At some installations the virtual
machine(s) that are desired to execute faster may have the specific internal ex

Appendix B. -- CP Paging 25

ecution characteristics (which specific code changes may bias towards) -- on
other systems they may not.

BIASED PAGE REPLACEMENT ALGORITHMS

At several installations there is a requirement for biased page replacement al
gorithms. The problem is normally one of a primitive guest machine that has not
been modified to execute in a virtual machine environment. The installation has
a performance goal for a particular guest to consume a large percentage of the
total system resources. Unfortunately any page fault for that virtual machine
can make it totally unable to execute for the duration of the time it takes to
service the page fault request. The objective in such a situation is not neces
sarily to choose the least recently used page in the whole system . . . but to
modify the algorithm to make the best page replacement (LRU) choice in the whole
system . . . while at the same time minimizing the page fault rate for a specific
virtual machine(s). If the best page replacement choice happens to belong to
such a favored virtual machine, the algorithm may have to skip choosing that
page and choose a page belonging to some other virtual machine.

One example is the CP reserved page option. I did a rough design of a reserved
page extension to support multiple virtual machines for BNR (& is a modification
of some extended CP/67 page algorithm work I had done) . The reserved page op
tions basically attempt to avoid selecting pages for specific virtual machines
if their number of in-core pages falls below a minimal threshold. The reserved
page options are an attempt to indirectly minimize the virtual machine page
fault rate for a specific virtual machine. They attempt to achieve that goal by
maintaining a minimum number of resident virtual pages for the virtual machine.

A more direct way of affecting a virtual machineTs page fault rate has been im
plemented at Cornell University. In Cornell1s modification, pages that are se
lected for replacement may be "skipped" in a manner very similar to the multiple
reserved page option. In the multiple reserved page option, pages are "skipped"
if the selected page will cause the number of reserved pages for a specific vir
tual machine to drop below a specified threshold. The Cornell modification
allows that every Nth page chosen for selection from a specific virtual machine
to be "skipped". The value for N is dynamically adjusted based on the total num
ber of resident pages belonging to the specific virtual machine and that virtual
machine*s recent page fault rate. The Cornell modification is thus able to con
trol directly the page fault rate for a specific virtual machine.

REVIEW

The previous sections discussed the management of real storage. They dealt with
the concept of "working set** which has been roughly defined to be those set of
pages required to do productive work. The concept was developed to deal with
the problems of uncontrolled page thrashing (real storage contention) in operat
ing systems using page replacement algorithms. The general objective was to lim
it the number of simultaneously executing tasks whose working sets can be
contained in real storage. The second problem is how to choose a page for re

26 Rough Draft

placement from all the pages in storage. Most algorithms tend to approximate a
least recently used criteria on the assumption that those pages have the small
est probability of being used again in the near future.

During the early development of paging systems, the first concept (working sets)
was of prime importance because of the relative scarcity of real storage. Cur
rent hardware configurations are radically different. Typically real storage
now, is at least two to three times larger than the sum of the working sets for
contending tasks. As a result, fine tuning of the working set control algorithms
has little or no affect on overall system performance (all contending tasks will
always be able to execute regardless of the algorithm).

As a result the primary focus for algorithm concern has shifted from the working
set control algorithms to the page replacement algorithms. In addition, a dif
ferent resource bottleneck has emerged. While the number of real storage pages
per MIP has been increasing, the amount of I/O capacity per MIP has been de
creasing. A requirement for a concept similar to working set control is now re
quired for the page I/O subsystem, since it has replaced real storage as the
important bottleneck in the paging system.

For page replacement algorithms, a logical enhancement is to minimize the number
of page faults per CPU consumed (or maximize the CPU/fault ratio). Such an al
gorithm will effectively be equivalent to increasing the size of the working set
for specific virtual machines. Since there is normally large amount of excess
real storage, it should not be detrimental to overall system performance. There
will have to be some sort of reasonable upper bound on this technique, since it
is still possible to exceed real storage capacity and effectively cause page
thrashing for a subset of the tasks.

The new area for implementing algorithm control is the area of contention for
the resource represented by the page I/O subsystem. Working set controls effec
tively minimized the contention for real storage, allowing the scheduling algo
rithm to distribute the computer resources in a controlled manner. A page I/O
contention situation has no similar controls. Excesses demands on the page I/O
system will saturate the resource. This lead to excessive queueing delays over
which there are no algorithmic controls. Requests are essentially satisfied in a
FIFO manner with no consideration given to scheduling and/or throughput objec
tives.

Appendix B. -- CP Paging 27

28 Rough Draft

APPENDIX C. (GROUP AND USER) FAIR SHARE SCHEDULER.

Lynn Wheeler
SJRLVM1/WHEELER
276-1783
May, 1982

This scheduler was released as part of the VM Resource Manager PRPQ (which was
later renamed VM/SEPP and eventually became VM/SP). The scheduler got its
"nickname" from the fact that it kept track of all virtual machines* CPU con
sumption (on a recent history basis) and included the CPU consumption value in
the dispatching priority calculations. The dispatching priority controls the
ordering of the VMBLOKs in the dispatch list, thereby controlling their dispatch
frequency and indirectly controlling the rate at which virtual machines are al
lowed to consume resources.

The CPU consumption value is a primary component in the dispatch priority calcu
lations. The computation involving the virtual machine’s CPU consumption value
is the calculation of the ratio of the individual consumption value to a target
consumption value. If the measured consumption rate is larger than the target
value, then the ratio is greater than one. On the other hand if the consumption
rate is lower than the target value, the the ratio is less than one. The ratio
is multiplied times a value which represents the interval between periods when a
virtual machine is allowed to execute (and thereby consume resources). The larg
er the ratio, the less frequently a virtual machine is allowed to execute (and
the fewer resources which will be consumed).

It turns out that the calculations are self-correcting, in that as a virtual ma
chine increases its CPU consumption, the calculated ratio increases, leading to
a slow-down in execution. On the other hand, low CPU consumption results in a
small calculated ratio and faster CPU consumption. The calculations are also
automatically biased towards trivial interactive tasks. By definition, trivial
interactive tasks require a small amount of CPU consumption, and as long as
their CPU consumption remains small, their calculated ratio will be close to ze
ro.

The term "fair share" comes into play because the value chosen to be the "target
cpu consumption" in the calculations is the total available CPU divided by the
number of virtual machines. The target CPU consumption is the allowed fair
share CPU consumption. Virtual machines consuming more than their fair share
will run slower, while virtual machine consuming less than their fair share will
run faster.

A recent modification which I’ve made to the fair share scheduler is the addi
tion of an optional "group fair share" algorithm. In this case rather than cal
culating the target CPU consumption by taking the total CPU available and
dividing by the total logged on users, the target CPU consumption is calculated
by dividing a predefined allocated group CPU percentage by the number of members
currently logged on in that group.

Appendix C. (Group and User) Fair Share Scheduler. 29

30 Rough Draft

APPENDIX D. VM DESIGN WORKSHOP

Call for Papers
December 1981

VM Design Workshop

to be held at IBM San Jose Research

Lynn Wheeler
276-1783
SJRLVM1/WHEELER

Appendix D. VM Design Workshop 31

A restricted attendance VM Design Workshop is tentatively being scheduled around
the time of the VM Internal Technical Exchange in San Jose (late Feb. or early
March of 1982). Objectives are to cover several related subjects which could
lead to a rewritten CP system.

TOPICS

• High level system programming language

• Software development tools

• Distributed software development

• Migration of CP functions to virtual address spaces

• Migration to non-370 architectures

• 370 simulators

• Dedicated, end-user system

A possible project which would utilize extensions in all the before mention ar
eas is a relatively inexpensive, relatively fast non-370 CPU. A VM kernel (many
CP functions having been migrated to virtual address spaces) is coded in an high
level system programming language. The kernel will initially be compiled into
370 code and executed using the 370 simulator. Eventually the kernel (and possi
bly some of the virtual address space code) will be recompiled into the native
machine language and execute along side the 370 simulator (providing both native
mode and 370 virtual machines).

Although a definite pilot project is envision, nearly all work will be benefi
cial to all current VM/370 environments.

32 Rough Draft

APPENDIX E. VM/370 ENHANCEMENTS FOR DYNAMIC SCHEDULING, PER
FORMANCE EVALUATION AND CAPACITY PLANNING.

R.E. Braine
Lynn Wheeler

IBM
San Jose, California 95193
12/3/80

ABSTRACT: This report describes proposed VM/370 scheduling algorithm enhance
ments .

DISCLAIMER: The work described in this paper was done in support of internal
IBM VM/370 installations only. It should not be confused in any way with support
associated with the VM/370 product.

Appendix E. VM/370 Enhancements for Dynamic Scheduling, Performance Evaluation
and Capacity Planning. 33

Introduction

This is a proposal for a restructuring and enhancement of the current VM/370
scheduler. The enhancement will have a major impact on the way that the capaci
ty and performance of a VM system is measured, planned and managed on a time sca
le extending from the immediate through to days or months.

The following outlines the scope of this proposed project:

1) Move the code that performs the analysis of system performance and makes
scheduling decisions from the nucleus and place it in a virtual machine.
The code that will remain in the nucleus is that which is necessary to
carry out the scheduling decisions, and items appropriate for control on a
millisecond basis.

2) Expand the data collected by CP to provide improved input for performance
analysis and scheduling decisions.

3) Develop improved scheduling algorithms, controls, and feedback
techniques.

4) Extend M3M to include policy decisions at the group and user level. Such
an extension would provide:
a) A set of policy rules which management could selectively apply to

groups and/or users.
b) Analysis of system performance and decisions based on the selected pol

icy rules as to which groups and/or users will be affected.
c) Feedback for:

- management giving the effects of the policy decisions.
- the virtual machine to dynamically determine how effective the par
ticular decisions were and permitting additional adjustments as
needed.

Appendix E. VM/370 Enhancements for Dynamic Scheduling, Performance Evaluation
and Capacity Planning. 1

1.0 Separate Performance Analysis from CP Nucleus

The first item of the enhancement will be to move significant portions of the
CP scheduler out of the CP resident nucleus and into a virtual machine. Those
items that are appropriate to control on a millisecond basis will be left in the
nucleus. Those parts of the scheduler algorithm which involve longer term deci
sions and more complex logic will be implemented in the virtual machine. This
change will have a great impact on the design and testing of new algorithms and
will permit the use of efficient programming techniques through the use of high
level languages, the implementation of more sophisticated and complex algo
rithms and the protection of the system from programming errors in the
scheduler.

1.1 Current Implementation

The current CP scheduling code gathers only a limited amount of immediate
statistics in an attempt to do local and short term performance optimization. CP
can use only a small area of fixed storage for data gathering. CP is implemented
exclusively in assembler language.

1.2 Limitations

i) The current CP implementation structure imposes severe limitations on the
development and testing of new algorithms,

ii) Software failures result in the whole CP system abending. Relatively common
errors, like divide overflow, lead to CP system failure,

iii) System shutdown and re-IPL is required following even the most trivial al
gorithm changes.

1.3 VMPT - Potential Home for Scheduler Implementation.

The current VM/370 Performance Measurement Package (VMPT) is a virtual ma
chine sub-system for the collection and analysis of VM performance data.

VMPT is implemented in a higher level language (FORTRAN) with all the usual
advantages over Assembler in programming ease and efficiency. It already has
extensive and sophisticated CP performance data gathering and reduction facili
ties. Changes and enhancements to the VMPT code running in the virtual machine
do not require a CP system IPL. Any failures in the VMPT code do not bring down
the whole CP system; many software (or data) errors are routinely handled by
FORTRAN support routines.

VMPT has large proportion of a virtual machine scheduler already implemented
and it would be relatively easy, working in a high level language and in the iso
lation of a virtual machine subsystem, to develop the proposed scheduler en
hancements .

2.0 Enhance Performance Data Collected by CP

2 Rough Draft

Changes to the Control Program (CP) are proposed to gather more performance
information, particularly involving I/O activity and various VM service times.
This will allow new forms of performance evaluation based on new models of sys
tem performance and the control of potential bottlenecks in a manner never be
fore possible.

2.1 Current Implementation and Limitations

Currently, in the standard VM system, the only information that is available
is gross I/O counts by real device and virtual machines. This information is
not sufficient to make any decisions about I/O resource contention, bottleneck
identification, control of virtual machines contending for a scarce I/O
resource, etc. What is required is detailed information about the duration of
I/O operations, virtual machine compute bound ratios, length of queues on spe
cific real devices and many other pieces of information. Without this type of
information it is all but impossible for the scheduler to make any sort of in
telligent decision about how virtual machines should be dispatched to minimize
I/O contention.

2.2 Needed Information * 1 2 3 4

Status for each user & device that includes:
- device used (CPU, Dasd, Page, Terminal, etc.)
- operation (Process, Read, Write)
- count of operations
- total user wait time
- total service time

In addition the device info should also include:
- total time device is detected as being unavailable for service to this
system.

2.3 Changes to Date

Currently several changes have already been implemented to start gathering
data to address problems in this area (<2> VM/370 Modifications).

1) VMBLOKs are time-stamped on entry and exit from wait state
a. Individual VMBLOK compute bound ratios are calculated
b. Total VMBLOK runnable time is accumulated
c. Average number of runnable VMBLOKs is calculated (CPU queue size)

2) IOTASKs are time-stamped when queued on a RDEVBLOK
a. Total IOTASK queued time is accumulated for each RDEVBLOK

3) IOTASKs are time-stamped when they are initiated

4) All paging I/O requests are time-stamped when they arrive
a. Total page I/O service time is accumulated

Using this information, there have already been several minor changes in the
scheduling code.

Appendix E. VM/370 Enhancements for Dynamic Scheduling, Performance Evaluation
and Capacity Planning. 3

2.4 Modifications needed to VMPT and VMAP for new data.

VMPT Enhancements

VMPT should be enhanced to gather the additional performance data produced by
the proposed CP changes. This includes information about IOTASK queued time by
device, virtual machine total runnable and non-runnable time, and other queue
delay service times.

VMAP Enhancements

Enhancements will be required to the VM/370 Performance Analysis Package
(VMAP) to allow this information to be analysed and displayed. From this, re
ports can be generated to detect CPU bottlenecks (if any) and to highlight par
ticular devices which have large queueing time (probably representing major
throughput bottlenecks).

Further development will proceed in an interactive manner where additions to
the data gathering and reduction capability will provide information on how to
recognize particular bottlenecks.

2.5 Enhancements to VM Accounting Data

A side-benefit may be in the evolution of more detailed VM accounting
records.

The accounting data presently accumulated by VM/370 is crude and incomplete
by MVS standards. The proposed CP changes will greatly increase the amount of
detailed information on system utilization at a user level. This, along with
the information that is now collected by VMPT, will permit the production of the
sort of Accounting* data that is taken for granted in SMF.

Ultimately, it may prove desirable to modify CP to put this data directly in
to a new form of VM accounting data record. In the short time-frame of this pro
ject, it would be possible to evaluate the practicality of such a modification.

3.0 Scheduler Decisions: Analysis, Controls, and Feedback

3.1 Analysis

In general, specific implementation designs have not been laid out yet for
the VMPT changes other than overall goals. This is partly because the informa
tion is not yet being gathered on which the new algorithms are supposed to base
their decisions. Until we see what the data looks like, it is somewhat diffi
cult to design code which will make decisions based on the data being gathered.

There are several clearly defined goals for the VMPT implementation.

4 Rough Draft

1) The process will be iterative
a. New data gathering capability leads to new algorithms
b. A specific implementation will be refined as it is used

2) The CP nucleus implementation will not require VMPT
a. CP will work as well as it does today if VMPT is not present

3) Algorithms will be self correcting
a. Code will compare predicted results against measured results
b. Comparison information will be available online for developer

3.2 Potential Implementation of Controls

Immediate Dispatch Pool

The next stage will develop the concept of the fTimmediate dispatch pool”.
All virtual machines that are past their time of day to start execution should
be in the immediate dispatch pool. In addition, an attempt will be made to
"round out" the pool with an intelligent choice of virtual machines from those
remaining in the dispatch list, in order to minimize resource contention. This
is an attempt to minimize resource thrashing in other areas beside real storage
contention. The current eligible list and dispatch list structure do an ade
quate job of eliminating real storage contention by restricting the members of
the dispatch list to those virtual machines who's working set sizes can fit into
real storage simultaneously. On a large number of present day configurations,
real storage is not a critical resource. The limitation of the dispatch list
set based on real storage demand is optimizing a non-critical resource. There
is sufficient real storage such that the number of virtual machine simultaneous
ly allowed into the dispatch list (multiprogramming level) is saturating other
resources (<1> Paging/Spooling Enhancement II).

The objective of the immediate dispatch pool implementation is to be more se
lective about which virtual machines are allowed to execute simultaneously in
order to minimize contention for resources other than real storage. Part of the
information that will be used in determining the size of the immediate dispatch
pool is derived from the compute bound ratios. One of the objectives of the
scheduling algorithm, in addition to minimizing contention, is to maximize crit
ical resource utilization (like the CPU). Summing the compute bound ratio
values of all virtual machines in the dispatch pool will give a good indication
about whether or not the CPU can be 100 percent utilized. Other information to
be obtained will be a combination of immediate information about virtual machine
I/O activity and feedback information from the VMPT part of the scheduler iden
tifying devices that represent major system bottlenecks (all devices will be
assigned default numbers so that the algorithm will be at least partially effec
tive even if the virtual machine scheduler isn't present or currently running on
the system).

3.3 Feedback

The availability of information about how well the scheduler is doing its job
is another area that is strongly missed today. Currently all that is available

Appendix E. VM/370 Enhancements for Dynamic Scheduling, Performance Evaluation
and Capacity Planning. 5

)

is information about how well the overall system ran. There is no detailed in
formation about whether or not that is how the scheduler attempted to run the
system (because it couldn't do any better) or if it was actually trying to do
something else and was unable.

4.0 Specifying Resource Service Objectives

Another objective of the scheduling enhancements is the ability for a system
administrator to easily define complex resource service objectives. At this
time, it is not even possible to accurately (or inaccurately) discover what the
capacity of the system is or to predict how it will perform under a given user
workload or workload forecast.

The proposed CP and VMPT enhancements will make these tasks much easier and
more accurate. The new CP queuing data will allow the use of more sophisticated
performance evaluation and capacity planning models.

4.1 A Potential Set of Policy Rules for Management

Based on a rational assessment of system capacity, service objectives can be
specified to the modified VMPT scheduler. Controls and objectives can be speci
fied by individual virtual machines or groups of virtual machines. Activation of
specific service policies can be triggered by various events (including time of
day, system performance thresholds, forecast versus actual, etc.). Modifica
tion of the service objectives by negotiation, priorities, etc. will be easy to
put into effect.

References 1 2

1) L. Wheeler, VM/370 Paging/Spooling Performance Enhancement II, IBM Research
Report to be published

2) L. Wheeler, VM/370 Modifications, IBM Research Report RJ2906, Aug., 1980, 46
pp. PAM I/O, performance measurements.

6 Rough Draft

APPENDIX F. VMECPS

Following numbers were taken with MC instructions inserted thru-out CP on an
early release 3 CP system during late May and early June of 1975. To compensate
for overhead involved in MC data gathering several thousand MC class were exe
cuted in a loop at Monitor Start. The average overhead to process each one was
subtracted from the path timings. Path times for IOS associated functions will
be greater because of the addition of alternate path code starting in release 4.
Times to perform specific !global1 functions requires that the specific paths be
identified and their timings added together. Following is about 1/2 of the data
path entries that I have out of all paths accounting for .5% or greater of CP
time Run was made with one VS1 virtual machine running MS02 job stream. Time va
lues are microseconds to execute path on 145.

This work was the original that Bob Creasy & I did in support of the ECPS project
-- Lynn Wheeler

path count time percent
cp

dsp+8d2 to dsp+c84 67488 374. 9.75
from ,unstioT end to enter problem state

prg+56 to prv+46 69848 232 6.27
from prog, interrupt to priv. simulation

ccw+33e to ccw+33e 64868 215 5.38
loop in ccw calling page lock

fre+5a8
'FRET'

73628 132 3.77

ccw + f4 to ccw = 33e 45297 213 3.73
from initial ’FREE* call to page lock call

dsp+4 to dsp+214 84674 110 3.61
main entry to start of unstio

ptr+a30
unlock page

124502 75 3.59

ccw + 33e to 3 44839 207 3.58
from lock page to ticscan return

ios+20 19399 474 3.55
dmkiosqv (before alternate path finding)

fre+8
FREE

73699 122 3.47

I0S+lc2 to DSP+4 27806 208 2.23
call SCN(real) until DSP entry (after I/O

dsp+4 to dsp+c84 15105 374 2.18
asysvm entry until <enter prob state

sch+4 23445 221 2.00

ios+108 to ios+lc2 27952 165 1.78
i/o interrupt to call scn(real)

scn+84 84359 54 1.76

Appendix F. VMECPS 7

dsp+93a to dsp+c84 11170 374 1.62
sch call to entry problem mode

prv+46 to dsp+b8 20976 199 1.61
non-i/o priv. instruction to new]psw DSP entry

ccw+1252 to EXIT 26212 156 1.58
ticscan return to exit

vio+13a to ccw+0 19405 191 1.43
v.sio, ioblok free call until ccwtran call

vio+ldO to ios+20 19399 181 1.36
ccwtran return to DMKIOSQV call

ios+0 8423 416 1.35
DMKIOSQR

vio+3e to VI0+13a 19405 169 1.27
vio entry(for sio) to ’FREE* call

dsp+214 to dsp+8d2
!unstiof with

70058 45. 1.21
no calls

vio+992 to unt+5a 19410 157. 1.17

ccw+28a to fa (via FREE) 26140 107 1.08
ticscan return till loop back for next block

unt+9e to 116 (FRET) 44694 60. 1.03

unt+9e to 9e (PTR+A30) 65092 38 .97 (79.55 cumm

unt+116 to exit 19407 118 .89
from FRET call to EXIT

vio+4 to 3e (SCN+84) 45240 49 .86
vio entry until scan call for vdevblok

vio+3e to dsp+4 25504 86. .685
from SCN call to DSP (non-SIO)

SCN+4 27979 69 .75
real i/o scan (most I0S+lc2)

dsp+214 to 4ce (SCN+84) 14637 126. .72
^nstio1 until sen call

8 Rough Draft

APPENDIX G. VM/370 2.15 DISTRIBUTION LIST

BILLIE BOVIE
IBM Corporation
Neighborhood Road
Kingston,New York 12401

Telephone: 373-2254

BILL BUCO
IBM Research center
P.0. Box 218
Yorktown Hts., N. Y. 10598

Telephone: 862-1611

TOM DOUGHERTY
IBM Corporation
Bodle Hill Road
Owego, New York 13827
New York, 13827

--Dept. 106 Bldg 101a--

Telephone: 662-3108

RON HUBB
IBM Corporation
3424 Wilshire Blvd.
Los Angeles, California 90010

HONE Phone: 285-1694

KENT LUTHER
IBM Corporation
1133 Westchester Ave
White Plains, N. Y. 10604

HONE Phone: 254-2267

JOE ROOSEVELT
IBM Corporation
673 Morris Ave.
Springfield,New Jersey 07081

Telephone: (201)-463-2266

HUBERT WROBEL
IBM Deutschland
Datenverabeitung
69 Heidelberg
Tiergartenstrasse 15, Germany

Appendix G. VM/370 2.15 Distribution List 9

ALFRED SCHATEN
IBM Lab Boeblingen
Comp. Center Dept. 318U
Entwicklung und Forschung
Schoenaicher Strasse 220
703 Boeblingen, Germany

CLAUDE HANS
Cie IBM France
92102 Boulogne Billancourt
France

BOB ABRAHAM
IBM SCD
2651 Strang Blvd.
Yorktown Hts., N. Y. 10598

telephone: 8-721-2481

BOB DIXON
IBM Dept 997-H589, Bldg 622
P.0. BOX 12195
Research Triangle Park
North Carolina, 27709

Telephone:

R. G. van WEL
IBM Corp. SCD Uithoorn
P.0. Box 24
Uithoorn, Netherlands

Telephone:

DON CLARK
IBM Palo Alto Sci. Cntr.
1530 Page Mill Road
Palo Alto, Cal. 94304

Telephone: 624-3100

BOB PRINTIS
IBM L.A. Sci. Cntr.
1930 Century Park West
Los Angles, Cal. 90067

Te1ephone: 545-6375

ED HAHN
IBM Dept 107
Sterling Forest

Telephone:

10 Rough Draft

Appendix G. VM/370 2.15 Distribution List 11

BIBLIOGRAPHY

M. Brown, et al, VM/370 in the GPP
Engineering Laboratories, IBM Re
search Report (to be published).

L. Wheeler, VM/370 Paging/Spooling
Performance Enhancement I, IBM Re
search Report (to be published), Con
trol for page and spool record
allocation.

L. Wheeler, VM/370 Paging/Spooling
Performance Enhancement II, IBM Re
search Report (to be published), Con
trol for page and spool record
allocation.

L. Wheeler, VM/370 Modifications,
IBM Research Report RJ2906, Aug.,
1980, 46 pp. PAM I/O, performance
measurements.

L. Wheeler, CSC VM/370 Extended II:
Virtual Memory Management, IBM Sci
ence Center Report ZZ20-6002, July
1974, 19 pp., shared segments, mi
gration.

B. Margolin, et al, Analysis of
Free-Storage Algorithms, IBM System
Journal 10, 283-304, (1971).

Y. Bard, Performance Criteria and
Measurement for a Time-sharing Sys
tem, IBM Systems Journal 10, 193-216,
(1971).

P. Denning, Working sets past and
present, IEEE Trans. Softw. Engrg.,
SE-6, 64-84, (Jan. 1980).

Y. Bard, Application of the page sur
vival index (PSI) to virtual memory
system performance, IBM J. of R&D 19,
212-220, (1976).

P. Denning, The working set model for
program behavior, Comm. ACM 11,
323-333, (May 1968).

J. Rodriquez-Rosell and J. Dupuy, The
design, implementation, and evalu
ation of a working set dispatcher,
Comm. ACM 16, (April 1973).

VM/370 Resource Management Program
ming RPQ-PO-9006, Programmer and
System Logic Guide, IBM LY20-1996.

J. Rodriques-Rosell, et al, Brown
Univ. proposal for working set hard
ware on the System/360 Model 67, in
ternal memo, (Nov. 1972).

James Morris, Demand Paging Through
Utilization of Working Sets on the
MANIAC II, Comm. ACM 15, (Oct. 1972).

Richard Cogger and Robert Cowles,
SHARE VM/370 Scheduler White Paper,
SHARE XLVI, (Feb. 1976).

L. Wheeler, CSC VM/370 Extended I:
Dispatching/Scheduling, IBM Science
Center Report ZZ20-6001, (July
1974), dispatching and scheduling.

T. Rosato, CMS 3.1 updated to run un
der VM/370., IBM Installation News
letter Article, (1973).

B. Creasy, Psuedo Machines, IBM Cam
bridge Scientific Center internal
memo, (1965).

L. Wheeler, VM/370 I/O Reliability
Enhancement, IBM Research Report
RJ3013, (Dec. 1980).

VM/SP COMMON System Programmer!s
Guide, IBM Internal document.

G. Zadow, CMS File System in Release
2 of VM/370 Basic System Extensions,
IBM World Trade Systems Center report
ZZ10-9892, (April 1979).

R. Carr, Virtual Memory Management,
Stanford University STAN-CS-81-873,
(1981)

Bibliography 13

G. Bozman, MDREORG - Mini-disk Reor-
ganization Interal IBM document and
program

Bob Braine Requirements for Computer
Measurements

14 Rough Draft

