
,

BRUIN

BRUWN UNIVERSITY INTERPRETER

for the
"

CAMBRIDGE MONITOR SYSTEM

CMS

• I

written by

The ComputIng laboratory

Brown University

Providence, Rhode Island

'I

a~aPted to CMS by

IB~ Cambridge Scientific Center

CP-67/CMS Support Group

Cambridge, Massachusetts

'Ii
"

I

June 1, 1969 I
I

TABLE OF CONTENTS

~' BRUIN 1

syntax notat ion • 2

system procedures 4

Entering BRUIN 4

Exiting from BRUIN. 4

input conventions • 5

data elements 6

Constants 6

Variables 7

operators and expressions 9

Arithmetic !Expressions and Functions 9

Boolean Expressions 11

Character String Expl"'essioris and Functions 14

direct and indirect mode 16

assignment statement. . 19
.

SET statement 19·•
simp 1 e console input-output 21

OUTPUT stai.ements . 21

LJ NE statements 23
•
INPUT statements ' 24
. .

control statements 26
()
CALL statement 26

GO statement 27

TO statement 28

I F statement 29

FOR statement . 31

STOP statement 33

DONE statement 33

program changes ,. 35
•
DELETE statement 35

storage request 37

ALLOCATE statement . 37

file maintenance 38

SAVE statement 38

LOAD statement 39

other features 40

Keywords Operands 40

Comment Statements' . 41 r

Stopping Program Loops 41

matrix statements 42

Matrix Input statements 42

Matrix Output statements 44

Matrix Expressions 45

Matrix Assignment Statements. 48

summary 49 .,

appendix a '". ;; 50

,r-"l, l. Table of Instructions 50

2. Sample Program and Output 51

appendix b 52

1- BRUIN Character Set 52

2. Built-In Mathematical Functions . 53

• !
J

I

I

I

I

INTRODUCTION

":'.

This manual describes the facili~ies of the Brown University
Interpreter (BRUIN) as it is implemented within the Cambridge
Monitor System.

The BRUIN language is modeled after the University of Pittsburgh
Interpretive Language (PIL). PIL was chosen as a model because
it contains features which are highly desirable in a console
language. Unlike a batch processing language, BRUIN (and PILl
provide the user with direct man-machine interaction capabilities.
This feature is most noticeable in error-recovery procedures.
After BRUIN reports an error in either syntax or program logic,
it allows the user to make corrections and continue without a new
s ta rt. Another commendab 1 e BRU I N fea tu re is the lack of proces sor
oriented statements such as array dimensions and variable types.

The major goal of the BRUIN designers is that BRUIN be a language
which will allow a neophyte as well as an experienced programmer
to expend his energies on problem-solving ra~her than on "program
ming". Towards this goal t-he syntax has been kept simple, the
meaning of each statement clear and unambiguous. BRUIN can best
be utilized as either a program development tool or as a small
numeric problem-solving tool.

j
I,
i
1
I

, 1
1
.~

, !

. i
I!

f
:1
l
: I

:'
!I

I

I

I

I
I

r

I

i

I

____~_____________1 _ .J

SYNTAX NOTATION

Throughout this manual, wherever a BRUIN statement is described that
statement will be illustrated with a uniform system of notation. ThQ
~~Y!QE~2 (special BRUIN words) will be in upper case. This is not d

requirement of the language; it is merely a device to denote the
literal occurrence of that word. Keywords, in fact, may appear in
combinations of upper-case and lower-case letters. Braces «» are
not an element of the language but are used to denote a position in a
statement where the user must make a replacement.

Every BRUIN statement begins with a keyword or part and s~ep

number. (See the section "Direct and Indirect Mode", page 19, for a
description of the form of the the part and step number.) A statement
is at most 80 characters in length. Each statement begins on a new
line and cannot be continued on a second line. A statement may, but
need not end with a period.

Keywords, part-step numbers and user-defined elements (such as
variables) must not be immediately adjacent to one another. They must
be separated by a single symbol operator (e.g. + I *), specif~ed
punctuation (,: ;), an assignment symbol (=) or a blank. There
must not be blank spaces within keywords, part numbers and user
defined elements.

~~~~£1!_1~ The syntax of a form of the conditionalst~tement is 

If <Boolean expression), THEN <command>; ELSE <command>. 

A correct BRUIN command then could be 

IF a =b, Then TO STep 1.5;Etse to step 1.6. 

EY1_!!Q~ 

IFa=b, Then TOSTep 1.5;ELse to step 1.6 

The above statement is in error because there is no.t a blank between 
.~ 	 the F in the keyword IF and the variable a, and between the keywords 

TO and Step. Notice that the keywords IF, THEN and ELSE appear in a 
combination of upper-case and lower-case letters. 

2 



~. 

I F a= 5. 11,THEN TO STEP 1.5;RLSE TO STEP l.b. 

This statemp.nt is incorrect because thp.re is a blank in the k~'yw0rd IF 
~nd in the ~onstant 5.11. 

I. 

i 
• I 

<0 I 

! 
i· 
I 

1 
j 

1 
"j 

i 

i 

····1 

! 

I 

! 
, 

j . 
, ..J, 

3 ,I 
I 

-I 

. J 
I 

http:statemp.nt


I 
I 

SYSTEM PROCEDURES 

Entering BRUIN 
'I 

After logging into CP and IPL' Ing CMS, type "BRUIN". The console 
will respond with the message "BRUIN READY". 

Exiting from BRUlN 

When you are finished using BRUIN, you should dismiss the BRUIN 
interpreter with the BRUIN command: 

CANCEL 

CANCEL does not log you off. In order to log off from the terminal, 
thereby preventing a se~ond party from accessing the system under 
your number and password, type: 

CP LOGOUT 
·I~ To use the terminal system again,. you must repeat the CP LOGIN 

procedure. 

.,, 

J. 
! 



iNPUT CONVENTIONS 

eMS Input c6nventions are used for the character delete and 
line delete functionso 

However, input characters~re not converted to upper case o 

,;, 



DATA ELE~ENTS 

There areth ree types of constants: real arithmetic constant, Boolean 
cqnstant and character string constant. 

An 2..£!!h~~l'!'£_£Qn§ta!!.! is written with at most 7 decimal digits WLth 
an optional decimal point. The constant may be immediately followeJ 
by the letter E (must be upper case) and a one or two digit signed Ol 

unsigned integer specifying an integral paver of ten (scientilLc 
nota tion). In ei ther form of the constant there must not be embedJ.ed 
blanks. Some examples of 'proper arithmetic constants appear below: , 

12.34567 

3567 0[' 3567. 
(\. 

56.5E-5 meaning 56.5 x 10- 5 

125E4 meaning 125 x 10· 

A constant (and results of all operations) can have a maxilLlUiU 
magnitude of 7 x 10 'S ann a minimum non-zero magnitude of 5.4 x 10- 79 • 

T he f!QQJ:.~2.!L£Qnsl2.nl:! are T :iE Tau E an d TH E FALSE wit te n in upper 0l 

lower case letters. 

£.h~£~£l~I__§!£i!Lg_£Q.!!§l~!ll§ consist of a string of characters encloo:i~J 
in double quotes. The double quote character may not occur in d 

str-ing constant. Some proper- character str-ing constants are: "$1,,3. 
5" and "BRUIN". The maximum length of a character- string constant Lo:i 
limited by the size of the line. 

". 

----------------------------------------------------~--~--------------------------------------~ 

6 

http:f!QQJ:.~2.!L�Qnsl2.nl
http:embedJ.ed


t

, ! 
I 

The ndille of a variable must be constrU~ted according to the fallowing 
rules: 

,. rh~ total number of charac~ers must not exceed eight (8)_ 
2. The first chdrdctelC lllust be one ore· the alphabetic character'::';Q :!. 
J~ The remaining cha~acters may be letters or nu~erals. 

Ilpper-cdse letters are distinguished from lower-case letters 1U 
varinbl~ names; therefore the variable na~e DET is different from tne 
name Det. 

I 

I 
names: 

I
DATANA19E@ B, FXY~ 812cn 

r 
In drldition to the scalar vacldble which denotes one ite~, there L~ 
the subscripted vd~iable whicb denotes a collection of items. A 
subscripted variable is written 35 a variable name followed by a lLst 
ot subscripts enclosel LD parentheses. The subscripts a~e sepa~atej 

by commas. For exa,aple o Fl (1,2) couLl l.."epr.-esent the f.ll.I:st row, ::ieCOJrl.l 

colu~n of a table c~112d Fl. I 
The r~les for subscripted vdriables are summarizei below: 

1 

1. Each su~script. m~y be dn arithmetic constant, C].rithmetLC 
vaLL~~le, or an arith~etic expression. i 

2. An array may have up to four subscripts. 'j 
I 

I 
e3. A subscript mcqr have any value between -)2767 and 32767,. l!ut 

only the int~ger part is us~d to reference an element of the ar~ayQ· 

\ 
I 


. j 

z (i, j,2*j), TAJL=: (Z (I"J,J), I+-J) 

In Example 3, assume i is 1.7 and j is 2.4; because only the inte~~~ 
part of the subscript is used, the element referred to in the z arcdY 
is z(1,2,4). 

7 



." 

Storage is allocated dynamically for variables <both scalar 
variables and arrays) at the time that the variable is defined 
<i.e., assigned a value). Therefore, sparse arrays are kept 
in a reduced space. In no BRUIN statement is is possible to 
reference the whole array by using only the name; both name 
and subscript must be specified. 

To use a variable which has no associated value is an error. 
The interpreter wi11 notify the user that this type of error 
has occurred. 

In addition to having a value, a variable has an associated data 
type. The data type may be arithmetic, Boolean, or character 
string, depending on the type of value assigned to it. To change 
the data type of a variable by assigning to It a value of a different 
data type is an error. The Interpreter will notify the user that' 
this sort of error has occurred. 

~~~--------------------------------------------~--~--------------------------~--~) 

8

...

OPERATORS AND .EXPRESSIONS

The arithmetic operators of addition, subtraction, multiplication,
division and exponentiation are represented symbolically by +, , *,
I, and ** respectively. (The vertical bar~ Ig also indicates
exponentiation.)

'J

r--------·-------------------------------------, J

I m~~ni~g ~!~!El~ I I
I I
I I 1
I + addition a+b i t.

I J
I
I - subtraction • I

multiplication

I dillisioIk alb

exporJ.entiation a**b

. j

Table 1~ Arithmetic Operators

Arithmetic constants and variable's are combined by the' arithmetic
operators to form ~rithmitic expressions. Arithmetic expressions, iu
turn, ~an be bracketed by parentheses to form other arithmetic
expressions. The order in which expressions are evaluated is governed
by the following rules of precedence with operations of a higher
precedence performed before those of a lower precedence. Except for
exponentiation, unary- and unary+, where operators of the same
priority appear in an expression, there is a left-to-right evalaation
of the expression. Therefore AlBIC produces th~ same result as
(A/B)/C. If two or more of the op~rators of exponentiation, unary-,
unary+ appear in an arithmetic expression, the order of evaluation is
from right to left. Thus A**-2 produces the same result as A**(-2).

9

r 	 ,
~.

highest 	 functions SQRT (x)

exponentiation, AIBI-2
unary _., unary +

multiplication a*N/y
and division

lowest 	 addition and z + p - 1
subtraction

.J

If an expression is enclosed in parentheses, it is evaluated before
its associated operation is performed. For example, in the expression
c*(a + b), a is added to b and this sum is multiplied by c. Thus
parentheses modify the normal precedence rules. Parentheses can be
used where there is a possibility of ambiguity~

Another way 	 that arithmetic expressions can be formed is by taking
functions of other arithmetic expressions. The set of predefined • i
arithmetic functions is shown in Table 2 of Appendix B. The function
name is fixed but may be written with upper-case or lower-case
letters. Each of the functions has one argument and returns one
value. The argument must be enclosed in parentheses and may be an
arithmetic expression. The expression is evaluated before the func
tion is called. Thus, if it is necessary to compute sin 2x, the BRUIN
expression would be written SIN (2*x)

Examples:

c+a**8/b+5.El0 c + a 8 /b + 5xl0 10

TAN (LN (a*c)) 12 tan 2 (In (ac))

-2**2*b

(-2) **2*b (- 2) 2 b

10

.<

There are six relational operators and four Boolean operators defined

in BRUIN~ The symbolic representations of these operators and their

definitions are found in Table 2 and Table 3.

r ----------------,
l§hQ£t_,{Q!:.! ~~~!£l~ I

I I

I I

I < $LT a less than b a < b I

I I

I

I $LE a less than or equal to b a $LE b

I

I

I = $EQ a,equal b a = b

I

(Ji

! $NE a not equal b a $NE b

!

I

I > $GT a·greater than b a $GT b

I

I

I $GE a greater than or equal to b a $GE b

I

I

la and b ar~ arithmetic expressions
IL ___________________• ___________________~

Table 2. Relational Operators

..
The relational operators have two arithmetic expressions as operands~

the result of such operations is a Boolean value (i.e., either true or

false.) Thus, the expression B**2 - 4*A*C SGT 0 is an assertion that

is either or false, or in BRUIN notation the result will be either THE

TRUE or THE FALSE.

11

I
I

Boolean values or expressions may be combined with the Boolean
operators or the two relational operators $EQ, $NE to produce a
Boolean value.

~--.--------------------------,r----------------
l§hQ!t_fQ£~ lQQg_f2£m g!~~E!~ I
I J

I I
I & $AND logical product a<b liAND c<d I
I J

I J
I $OR logical sum or inclusive or a<b $OR c<d I
I I
I I
I $NOT complement $NOT (a <b) J, I
I . J
I $XOR exclusive or a<b liOR c<d J
I I
I I.
la, b, c and d are arithmeti~ expressions I,

___________~____________________________JL___· ________· ______________ ' I

Table 3. Boolean Operators

The Boolean operators (sometimes called logical operators) have their:,
usual meaning. Thus, if P and Q are Boolean values the expression
P $AND.Q has the value THE TRUE, if and only if both P and Q have the
value THE TRUE. The expression P $OR Q has the value THE TRUE if
either P or Q or both P and Q have the value THE TRUE. Whereas, P
$XOR Q has the value THE TRUE if either P or Q but nQi both have the

.value"THE TRUE. Finally, $NOT P has the value THE TRUE if and only if
P has the value THE FALSE.

I

'j

!

I

12

, ,
-------.---~~~---.-----------.~.--~..

The prio~ities of operations for arithmetic, Boolean and relational
operations are now given by the following list:

---------------------------- '----------,
highest arithmetic function

**, unary +, unary -, $NOT

lit /

..
relational operations

SAND

lowest $OR, $XOa
L____________~_________

--------'

The priorities for arithmetic, Boolean and relational operators is
similar to the priority of such operators in the PL/1 language but not
the Foa~RAN language. The one difference is in the operator $NOT.
This differenc~ becomes apparent in the expression $NOT a<b, where a
and b have arithmetic values. Since $NOT has higher priority than the
o~er~tor <, ·an attem~t to evaluate $NOT a in this expression will be
made. BRUIN will then stop with the error message "WRONG KIND OF
OPERAND". simply enclosing the expression a<b in parentheses, as in
Table 3, will result in the Boolean expression ~<b being the operand
of SNOT.

The following example illustrates the evaluation of an expression
according to the priority of the operators.

-a**b < c+2 $AND a+c=z

This expression is evaluated as if the various parts were enclosed in
parentheses.

- (a**b) (c+ 2) (a +c) (z)

(- (a**b,) <(c+2) (a+c) =(z)
'.

((- (a**b)) <(c+2)) SAND «a+c) = (z))

13

There are three special operators $FC, $LC and $CON for manipulating
character string data. An expression of the two operators $FC and $LC
is evaluated from right to left. In addition to these special
operators the relational operators are valid for comparing character
string data. The comparison will be made according to the 360
collating sequence. (i.e. blank <punctuation < a < b ••• <z<A<B •••
<Z<O.<9). the strings are compared character by character from left
to right. If the strings are of different lengths the shorter string
will be compared as if it were extended on the right with blanks.
Notice that this implies that the character string "ab" will compare
equal to the character string "ab ". Table 4 summarizes the valid
character string operators: The concatenation operator, $CON, may be
written _ (underline symbol) or II (two vertical bars).

------,r--------------
~!~ll!£lg§ Qgf!n!!:i2n Result I

N $FC S The N first characters of string 5 a string of lengthl

N I

I

"

N' $LC S The N last characters of string 5 a string of lengthl
N ,I
.\

I

S $CON P string Sand P are joined in such a a string with the I

or way that the first character of P length = length S I

SI I P immediately follows the last + length P I

character of S I

I

I

S $LT P I

5 $LE P compare Sand P character
 I

5 $EQ P by character from left to right a Boolean valuel

S $NE P
 I

IS $GT P
 I

IS $GE P I

I I

I I

IN has an arithmetic value I

IS and P are character strings. I

I ________________ I
L _

Table 4. character String Operators

14

• I

I

1

i'

I

1

~There are four special functions which
argument. They are UPPR, LOWR, LEN, AND
produces a character string with alphabetic
equivalent of the alphabetic characters
characte~ string with alphabetic characters
of the alphabetic characters of S. LEN(S)

have a character string
CHAR. The function ~PPR(S)

characters the upper case
of S. LOWR(S) produces a

the lower case eqUivalent
returns an arithmetic value

which is the number of characters in string S. CHAR(X) returns the
character representation of the arithmetic value X.

In a mixed expression of string operators, binary operators and
Boolean operators the usual rules of priority as well as the
conventions regarding left to right evaluation are observed. The
string operators are placed in the priority table as follows:

,I
r

highest
I,
I

(~'i 	 I
i
I
I
I 	 lOh\'est
i
'---_.

, ,

The following
operators and

functions
** unary + unary - $NOT

*1
+
$FC $LC
$CON
SEQ SGE LENE $GT $LT SEQ
SAND
$OR $XOR

example will serve to illustrate the use of the string
the priority rules for string operators: I

·1
I

I
I
i

Assume that D is a character string variable which is equal ,1to "PROVIDENCE, R.I." and one wishes to make every letter except P in
Providence a lower case letter. This could be don~
expression

1 SFC D SCON LOWR(9 SLC 10 SFC D)SCON 6 $LC D

This expression results in a character string of length 16
equivalent to "providence, R.I.".

In building character strings by concatenation one must
maximum length of 252. If this length is exceeded BRUIN will
error message to that effect.

with the I
~

'j

I
I

which is
i
I ,
I
J

observe a
issue an

15

DIRECT AND INDIRECT MODE

To facilitatS ~an-machine interaction~ BRUIN provides two
operation, the desk calculator or direct mode and the stored
or indirect mode.

modes ot
progrdm

In the diract mode the console can b~ thought of as a desk calculatol
in;that the statement is ~xecuted i~mediately and the text of tne
statement is not retained in memorYe This mode of operation allow~
the user to evaluate expressions, store results of expressions to~
latet use, and direct the interpreter to execute a stored program.

Errots ace
retypes the

reported immeoiately
correct statement.

retained. For eXample,

in the
The

direct monee
statement in

The user merely
error is not

0, .
TYPE SIN(8*3.141.16

\II 0 u 1 Ii t e suI tin a B R U I N res ron s e "1'1 r S FOR MED -E X PRE S S ION It
missin~ right parenthesis. The uset retypes

bec a use 0 f the

; . ,

TYPE SIN (8*3.14) /16

and the res~lt of the caiculation would appear as

s rl (8 * 3 • 1 4) /1 6 = O. 7 q h 6093 E- UJ

The assignment statement in the jirect mode

SET L=AI2-4*A*C
-!

is li~e~ise executed immediately, causing the variable L to be given a
~alue which could be used either in the direct mode or stored progra~
mode. Notica here that the statement itself is not retdined but the
result of the calculation is retained in L. \

I
1

16

In the indi~ect mode, statements are sto~edand executed unde~ prog~dm
ccnt~ol in a. sequence oefined by pa~t and step nUlllbe~s. In otnee
woeds, indirect statements make up a stored p~ogram. The user may go
back and forth between the two modes. The m~nner by which this 1~
accomplished will be seen in later examples.

A statement in the indirect mode is always preceded by a part anl ste~
number. It is this number ~hich tells BRUIN that this is a statement
of the indLrect m;)de. The part and step numbel:' are each .at most 3
diq1tS in length and arp separated by a period. A blank must follo~
this number but ~ust not be imbedded in the pd~t-step number. rhe
above TYPE statement, written in the indirect mode with part numcer
11, step numbel:' 01, would appear as

11.01 TYPE SIN(8*3.14)/16

This statem~nt is stored without being execute! immediately.

A par tis a calle c t ion 0 f 0 I. C' 0 r morest e p s wit h the ide n tic d 1 pd L t.
number. Sincp steps rt["P drran-jed ill ascen,tin'J step number by tH~

intecpreter, it is not necessary to type- !:>teps in se.juentidl ord~L.

DU[,1nq the execution phase of that part, the st.dteUlenL; will De
executed in the sorted order of step numbers in that part.

Step numbe~s are treated as decLmal fractions an.1 may have dRy
increment between them. Par example, a part 1 could be written w~t~
steps 0, 1 iind 999 (written with part !lumbers 1s1.·0, 1.1 and 1.99:1).
This would be executed by the interpreter in the order 1.0, 1.1 dua
1.999. If it is necessary to make an insertion, say betw~en

s tat em en t s 1. 0 d n d 1. 1, .s imp 1 y c h 00sea n y n urn be r (e • 9 1 • 05) bet wee n
1.0 ano 1.1. Then part 1 woul~ consist of statements withnumbeLs
1.0, 1.GS, 1.1, 1.9<,}9 and would be executed in thdt orjer~ For S~Ctl
progrd~ changes it ~s ~Lse to have ~aps 1n the step 3equence.

Duriny the execution of a p~oJrd~ in the stored pr0~ram mode, d

sequence of BRUIN stdt~ment3 with the same part numbe~ are executed
sequentially (assumin.,J ther:-e is no transfer:- out of that part). 'Tl1~S

means that a statement with the number 2.000 is not executed after the
statement wl,th the number 1.999, ullle~:;s these part::; dre logiGalq.
connected hy the user. This can be accomplished in d vdliety of ways.
To give just onp example, statement 1.g99 could be the instruct~on

1.999 TO STEP 2.000

"

I

I

17

ASSIGNMENT STATEMENT

SET <variable name> = <expr~ssion>,<variable name> = <elpression>,etc.

The E'xpcession on the right-hand side of the assi-jnment symbol (=) 1IidY
be 3.0 drithm8tic Expression, Boolean expression or str-in-j expressiuilo
The type of expression will deter-mine the .lata type assigned to tue
variable. The keyword SET· is 2£tkQn~1 and may be omitted; tor
clarity, every example in the manual will use the keyword.

Thp SET statement CJI1 hdve a list of assiqnments of tne fOLlI <va[iaDL~
name> ::: <ex.)n~ssion); each ds!:)ignment in the list must he sepdr-dted Di
com~dS. J~ thecp lS o~ly one assigument in the stdtem~nt, omit tue
comma. The 1.nt2rpretp[will mall.e a:::;.3iqnments in d list beqillIll.ng wlotn
the leftmo~t plementin the list dni proceeding to the right.

:.>E':' w = SI'l(x+y) ,c=w*x,w=w*y

rJSl.n J the most ['ecently (:\:,siyneLi vdlues of x aol y, the vdriable w 1.0.;

,lssiilled the vdlul"' of the drl.thmetic eXt>ress.ion sin(x~y). ThE"n C .l~

dssi j08-1 the v,llu(-> of w*x, 'tIher" thl' v~lue ot WI l.S tat> l!'reviou..;lr
c em t' uted v d 1 u e , ~ in (x + y) • Fin ,d 1 Y '01 1 S 'J 1. V (-> n t It (-> new lye 0 m p U te.l
v d 1 u t~ W*Y • V a r i il b 11"'::> WI , i 111 C Ice 1L 1. t h m c: tic V :i l- i d h 10 :, ;J .., C a use t 11 e i
werp jivpn drithmetic vdlue~~

. 0

SET ROJL = The Trul"'

Thp vdriabl.... :l')OL 1.S dS'3i,)nf:>li ttl'~ COTlst jut :1,)010dn 1/ liue' The True;
thprpfore the vdciable dOOL is d Jool~an vdrlablp.

http:beqillIll.ng

SET ray(1,1)===$NOT(2 :: 2)

The first === symbol on the left is the assignment symbol. The second =
symbol is the relational operator. Therefore the value "Lll;e ..LSll

assigned to the subscripted variable ray (1, 1). ray therefore i~~' a
boolean array.

101.98 SET, Num = "1234567890"

The double quotes around 1234567890 cause Num to be a string variaole.
Therefore Num can be combined by string operations with other str~ng
operands. The number 101.98 designates part 101, step 98.

20

SET ray (1,1) "=$NOT (2 = 2)

The first = symbol on the left is the assignment symbol. The second ~

symbol is the relational operator. Therefore the value "filL;e" ..LS

assigned to the subscripted variable ray (1, 1). ray therefore i~~' a
boolean array.

101.98 SET' Num = "1234567890"

The double quotes around 1234567890 cause Num to be a string varianle.
Therefore Num can be combined by string operations with other str~ng
operands. The number 101.98 designates part 101, step 98.

20

(\.

SIMPLE CONSOLE INPUT-OUTPUT

PUT <list of items separated by commas>*

or

PUT LIST <list of items separated by commas>*

*(The keyword TYPE may be used in place of PUT).

An item in the output list of' the fi!:§1 PUT statement may be one of
four types of elements:

1. a variable name whose associated value isoto be written,
2. an expression to be evaluated and written out,
3. a character string enclosed in double quotes (")

(~ 4. the special keywords, ALL, ALL VALUES, ALL PARTS, PART,STEP.

The PUT LIST form of the output statement diff~rs from the simple put
form in that, the list of items of the PUT LIST may not contain the
special keywords described in 4 above. In addition, the PUT LIST
writes the items in columns of 5 per line until the list is exhausted;
a simple PUT writes the items one per line until the list is
exhausted. Character strings in the PUT LIST form should not have
more than 15 characters; only the leftmost 15 characters of a str1nj
are written.

PUT "The value of A is" , A

Example 8 illustrates the tirst type of PUT statement. Each 1tem on
the list will be written on a separate line. Assuming A has the value
2, this statement will cause the two lines to be written,

The value of A is

A= 2.000000

(\ The interpreter always writes the variable name followed by the value
in this PUT form.

21

01

PUT LIST "The value of An ,A

Example 9 illustrates the second form of the PUT statement. This
statement will cause the line to be written

The value of A 2.000000

PUT 	 3*SIN(3.14159/16 + SQRT(35.9»

This statement will result in the line

3*sin(3.14159/16 + sqrt.(35 .. 9» = -.2850968

The 	 special~purpose forms and their use are described below:

1. 	 To write out a copy of special parts sorted instep order,

PUT PART <part number>

PUT PART 5, PART 6

2. To write out a copy of the entire program,

PUT. ALL PARTS

3. To list all defined variables and their current values,

PUT ALL VALUES.

4. To list the entire program and all variab~es in storage,
, .

PUT ALL.

22

--~----~--~--~---------------------------------~

5. To write out a step,

PUT STEP (part and step number>

Ixamole:

PUT STEP 1.3~ STEP 50.1

Since the typewriter is a relatively slow device, these features
should be used sparingly.

UNE statement

The line statement causes the console typewriter to space one line
down the page.

Examp] e 11.

1.1 Put (EXP(l.5)+EXP(-1.5})/2
1. 2 Li ne
1.3 Put (EXP(l.S}-EXP(-1.5»/2

CALL PART 1

In examp 1e ll~ the command 1I NE wi 11 produce a blank 1i ne be tween
the two output 1ines. The output therefore will be

(EXP(1.5)+EXP(-1.5»/2=. 2.352406

(EXP(1.5)~EXP(-1.5»/2= 2.129278

23

<part and step number) GET <list of variables separated by commas).

or

<part and step nu~bet) GET LIST <list of variables separated by
commas)·

* (The keyword DEMAND may be used in place of GET)

On e~ecution of the GET statement, BRUIN requests the user to prov~de
values for the variables in the list following the keywords GET or GET
LIST. The response by the 'user way be one of four types of data:

1. constants,
2. an expression i~ terms of previously defined variables,
3. function I
4. any combination of the above.

In the simple GET statement BRUIN prompts the user on each variable ~n
the list by writing the variable name followed by =); it then wa1ts
for a response from the user.

1 .. 5 GET a,b,c

To the command GET a,b,c, the interpreter will respond with

a=)

The user may then type.a number (e.g. 4.0) after the> symbol. Then
the interpreter types

b=)

Again the user may type 3.5*a. The value of a has already been
defined; therefore the value of the product of 1.5 and a vill ~e
assigned to b. Finally the interpreter types

c=)

The user may respond with SQRT(a+b).

24

n
'"

~!~~£le_1J~ Assume that the value of i is 1 and j is 3.
3.11 DEMAND B(i,i+j)

BRUIN will retuen the value
,
of the subsceipts with the array name

B(l,4)=>

On execution of the GET LIST statement, BRUIN will peompt only witb ~
greater than (» symbol. The user may then enter any number of d4ta
items on a line; the data item::; must be separated by commas. Auy
number- of blanks may surround the commas. If the list is uot
satisfied after the transmission of one line of data, BRUIN will
prompt the user for more data. If (n+3) numbee of data items 1::0

teansmitted and the list of varables only requests n items, the last j

data items will be i~nored.

~!~m£l~__l~~ Assume that A should have the value 5.1, 9 tne
value 4.3, C the value -8x.O- s , and J the value 1.

81005 GET LIST A,B,C,J

On this comrrand BROIN will peompt once with the symbol>. The user indY

n t hell pnter- on a Line

5",'1,4.3, -8 .. E5, 1.

Notice that the values are assigned to the variables from left td·
r 19 ht.

In exaL'lples 12, 1,1, and 14 the varia hies in the list were giveu
ar-ithwetic values but this need not be the case. 3001ean values or
char-~ctee strinqs may also be eead in dS values. Example 1~ is dll
illu::;tration of 4 GET LIST ~tdtement with vdriable A beinJ.given dn

arithm8tic·value, B a Boole,ln vdlue dnd C a chaeactH.[strin,} va.lue.

80.4 GET LIST A,B,C

On execution of statement 80.4, BRUIN transmits the symbol >. Entec

4.125*SQRT (3.14159), THE Til !lE, "STRING"

A ~ariable is assignAd a lata type througn the GET statement as welL
as thp SET statement. In example 15 then, the variable A is dU

, j

aeithmetic vari:lble, B is a Boolean variable.,- and C is a strJ..fl':j
vari able.·

25

CONTROL STATEMENTS

In the preceeding sections you were shown bow to refer to variable and
constant quantities, process input and output and assign values to
variables. In most cases a problem cannot be solved by a simple
sequence of assignment statements and input/output statements. State
ments to permit decision making are oft~n required. These decis~on
processing statements permit the programmer to vary the order in wh~c~
statements are executed. Sucb statements which provide the program~~r
with the ability to alter program flow are here called CONTduL
statements.

CALL PART <part number>

The CALL statement causes a part to be executed starting with ~ts
lowest step number.

~!~~E!~_-1~~ Assume that the following proceJure to calcul
ate an expression involving input parameters X, Y6 DELTAX, DELTAY LS
stored in the indirect mode.

15e11 SET X = X + DELTAX, Y = Y + DELTAY
15.15 SET FlY = X*SIND(Y)/COSD(X) +3*X:

In order to execute the two-step procedure beginning with its first
step (here 11) and terminating with its last step (here 15), enter the
statetnent

CALL PART 15

Since the CALL statement is in the direct mode, it will caus~
execution of part 15 to take place immediately. Assuming that th~
variables X, Y, DELTAX and DELTAY have been defined, X, Y, and .r:u
will be assigned nelf values. Following the execution of d part (h~u~
part 15) invoked by a direct command, BRUIN will halt execution WLth
the statement

"EXECUTION HALTED AT END OF PART 1'5"

In the indirect mode, at the termination of the specified pact,
control passes to tbe statement following the CALL.

26

I
i

Example 17. Assume part 25 of example 16.

2.51 CALL PART 15
2.91 PUT X,y,FXY . . .

On entering a CALL PART 2 in the direct mode, the order of execution
he~e will be 2.51, 15.11, 15.15 and 2.91. The point to observe here
is that control of execution is returned to the statement following
the CALL statement (here 2.91). If no errors have been encountered,
execution will halt with the statement

IIEXECUTION HALTED AT END OF PART 2."

GO statement
,

It ,was stated earlier that BRUIN will stop execution of a stored
program when an ~rror is encountered. The user may correct his
error and continue execution at the point of error. This is done
by typing in the correctlori and then issuing the direct command GO.

Assume that in ExampJ~ 16 X is initially 0, DELTAX is 1, DELTAY is 1
but that Y was not given an Initial val.ue~ When the statement of
step 15.11 is executed, BRUIN will issue the error statement

"ERROR AT STEP 15.11: UNDEFINED SYMBOL"

Entering the statements

SET Y = 1
GO

Will cause execution to resume by executing step 15.11 again. A
word of caution is necessary here. Because X was already evaluated
as 1 before BRUIN discovered the error, X will take on the value
2 when execution resumes at step 15.11

The GO command will not ca~~~ execution to resume when BRUIN
interrupts because of ~ infinite loop.

27
------------~,---

I
\

i-I
"' ··,··..-<-i

I

II
~
1

i'
I

, I
I
I

I
I

I

• I

I

There ace two forms of the TO statement. One foem is

<part and step nuaber> TO PART <pact number> *

*(In place of TO, GO TO may be used)

This TO statement causes control to be transferred to the fic~t
statement in the specified part. To illustrate the difference betw~en
a TO statement and CALL statement Example 11 is rewritten replac1.n~
statement 2.51 with a TO statement.

15.11 SET X=X+DELTAX,Y=Y+DELTAY
15.15 SET FXY=X*SIND (Y)/COSD (X) +3*X

2.51 To part 15:
2.91 Put x, Y, FXY

On a CALL PART 2, the order of execution will be 2.51, 15.11, 15.1~.
Centrol of execution is not eeturned to the statement following the TJ
part 15 statement (here 2.91) as it is with a CALL.

Another form of the TO statement is

<part and step numbee> TO STEP <pact and step number> *
* (In place of TO, GO TO may be used)

This TO statement causes conteol to be transferred to the statement
with the specified part and step namber.

15.11 SET X=X.DELTAX,Y=Y+DELTA~
15.15 SET FXY=X*SIND(Y}/COSD(X) +3*X
2.51 TO STEP 15.15
2.91 PUT X,Y,FXY

On a CALL PART 2, the order of execu tion vi'll be ~. 51, 15. 15. T1L1.S
foem of TO permits teansfee of control within a part.

The TO statement is valid only in the indirect mode.

28

______________________________~________________~~_____________~JI

The IF statement causes BRUIN to test a value and proceed in one ot
two possible paths. The Boolean expression in the IF statement is toe
valun that is t~sted. The clauses THEN and ELSE describe the L~O
possible actions. The simplest form is

IF <Boolean expression>, THEN <command>

If the Boolean expression here has the value true, the THEN clause i~
executed. If the expression is false the THEN clause is ~Qt executcQ.
EXPcltion proceeds with the statement following the IF ~tatement. fue
iiord THEN may be omitted but not the punctuation (,).

1.5 If bI2-4*a*c<O, TYPE "ROOTS COMPLEX"
1.0

If the expression bZ -4ac is less than zero, the TYPE command ~~
executed followed by '~xecution of statement 1.6. It the express~~u
b 2 -Qac is greater than or equal to zero, control passes directly to
statement 1.6.

The 0ther form of If has an ELSE clause as well as a THEN clause.

IF <Boolean expression>, TIIEN <command>; ELSE <commilllc1>

If the Roolean expression has the value true, the T:IEN clause J.;:;

executed. If the expression is false, the ELSE clause J.S executclu.
The words THEN and ELSE may be omitted but not the punctuation (,;).

3.9 SET A = x<3 ioa X>5
J.91 IF A, TO STEP 4.0; ELSE TO STEP 4.3

In this example A is a Boolean variable. If A has the value TRUL,
transfer is made to step 4.0. If A has the value FALSE, transfer ~:;;
made to step 4.3.

29

I
I

~.!~!!LE!~_~~.!... Assume .. that the user wished to accomplish a
three-way branch depending on whether x is less than, equal. to or
grea ter than y and then' wished to return to the statement following
the IF statement.

1.998 IF x<y, CALL P RT 3; ELSE IF x=y, CALL PART 4;
ELSE CALL PART 5
1.999 	

3.1 	 · · ·

· · ·
3.999 SET FXY = SIN(x-y)/x

4.6 	 · · ·
· 0
 · "4.999 	 SET FXY = f.

5.998 0 · · 5.999 SET FlY .= xl (-xI2-y /2)

h
In Example 22 the interpreter compares ~. and y. If the less than
relationship is true, part 3 is executed beginning with step 3.1 a~d
ending with 3e999; control then returns to statement 1.999 by virtue
of the interpretation of a CALL c6mmand. If x is not less than y, the
ELSE clause causes x to be compared with y again in an equality
relationship. If x is equal to y, part 4 is done; otherwise part 5.
~ollowing both part 4 and part 5, step 1.999 is executed.

Th~ interpreter will take any BRUIN command in the"THEN, ELSE clauses
but care must be exercised in using another IF in the THEN clause. If .. .

i

,

the expression is false, th~ interpreter looks for the command
following the first semicolon. Por example,

1.1 	IF a>b, THEN IF c>d, THEN TO STEP 1.4; ELSE TO STEP 4.2;
ELSE TO" STEP 4.3

is interpreted as if the statement were writte~

1.1 IF a>b,. THEN IF c>d, THEN TO STEP 1.4; ELSE TO STEP '4.2 .

In other words, if both a is greater than band c is greater than d,
branch to step 1.4; otherwise"branch to step 4.2. AnotheF way of
writing this statement is ,

1.1 IF a>b $ANDcc>d, THEN TO STEP 1.4; ELSE TO STEP 4.2

30

I

The FOR statement specifies that a command is to be repeatedly
executed until a specified criterion is satisfied. The forms of the
FOR statement vary in the stopping- conditions and vary in the manner
in which the values of a control variable are stated. All forms will
take any BRUIN command except

\
a TO command.

The simplest form re~eats an object command for a list of values: · .

FOR <control variable> = <list of arithmetic expressions
separated by commas>:command>*

*(The keyword DO may be used in place of FOR; DO and FOR are
equivalent).

101.5 FOR SUB = J/~*J,4~J,8*J: GET A(SUB)

This statement will cause the GET command to be executed four times.
Assuming J is 1, the interpreter will request values for A(1., A(2),
A(4), A(8). This statement could have been written

101.5 FOR SUB = 1,2,4,8: GET A{SUB) · ,
i
:

· IAnother form of the FOR statement specifies an initial value,
I

increment and final value for the control variable. The general form I

is:

FOR (control variable> = <initial value> BY <increment> TO

.,
<final value> <command>

l.

'101.5 FOR sub = 1 BY i TO 3*i: GET A(sub)

Assuming i is 2, the variable sub will take on 'the values 1, 3, .5. In
this form of t he FOR statement, the command GET A (sub) is executed for
the initial value. Then the control variable (here " sub) is incre
mented (here by i) and compared to the final value (here 3*i). When

31

I"

the value of the control variable is greater than the final value, the
loop is terminated. If no increment is specified, an increment of one

~. (1) is used. If the final value specified is less than the initial
value, the command is executed once. An infinite loop can occur if an
increment is chosen which wilL cause the limit never to be Leached.
(e.g. initial value =1, increment = -2 and final value 2).

The BY,TO form of the FOR statement may be combined with the list form
as in the following example:

L 1 FOR ID =0, 1, 2 BY 2 TO 8,9: CALL PART 8

ID here takes OD the values 0,1,2,4,6,8 and 9. Any number of BY,TO
combinations may be used in the list. If BY is omitted the increment
is assumed to be one (1) until the TO limit is reached. ,

There exist two additional FOR list forMs. They are

FOR <variable>=<initial value> BY <increment> UNTIL <Boolean
expression>:<command>

FOR <waLiable>=<initial value> BY (increment) WHILE <Boolean
expression>~<command>

-~1£~.!!!:el!L~1.!.

FOR a~b Sf 2 UNTIL a>z: DELETE X(a)

The to~.aDd DELETE X(a) will be repeated for successive values of a,
until a is greater than z. I

I
l
11.6 FOR a~b BY 1 WHILE R<S: CALL PART 14

The command, CALL PART 14, will be repeated for a = b, b+l, ••• as long
as R is less thanS. In the UNTIL and WHILE forms, if no increment is
specified the control variabl~ (here a) is not incremented. tare must
be taken that the Boolean expression (R<S) in example 26 is not always
true. The value of R must at some time in part 14 be set greater than
5 or an finite loop will result.

32

If the user wishes to stop the execution of his program and perhaps
check some values before continuing, he may use a STOP statement in
the indirect mode. Assume that the following part is stored:

1.66 SET DIS = BI2 - 4.*A*C
1.67 Stop
1.68 SET D = SQRT(DIS)
1.67 TYPE (-B+D)/{2.*A)

.
On the command CALL Part 1, statement 1~66 followed by statement 1.67
will be ex~cuted. The message "STOP AT srEP 1.67" will ~e issued by
BRUIN. BRUIN will then wait for further instructions. At th1s point
the user may' make changes or look at D to see if it is negative by
typing in the direct mode•.

PUT D

A GO would cause the program to resume execution at statement 1.68.

<part and step number> DONE

The DONE statement causes the interpreter t6 halt execution of a part
by signalling a logical end. It differs from the STOP in that
execution of the stored program does not stop. Execution continues a's
it would at the physical end of a part.

The DONE statement is valid only in the indirect mode.

33

I
I

I

.1

p.

1.5 FOR I = 1 TO 8: CALL PART' 3
3.3 SET B (I) =0

3.~ IF A (I) $LE 0, DONE

3.5 SET B(I) ::: A(I)
3.6 DONE

CALL PART 1

In Example 21 the values of A(1) through A(8) will be compared with O.
If the value of A(I), wher~ I = 1,2, ••• 8, is greater than 0, step 3.5
will be executed. If A(I) is less than or equal to 0 steps 3.5 and
3.6 will not be executed. An equivalent process could be accomplisbed
by replacing step 3.4 with

"

3.4 IF A(I) $LE 0,· TO STEP 3.6

.j
~ J

. I

34

PROGRAM CHANGES

When BRUIN is waiting for a command~ the user may enter either a
direct br indirect statement. If a statement with a new step is
entered, that statement will be inserted in proper sequence in a parto
If a statement is entered using an old step number, the old statement
will be removed and the new statement will replace it.

If in further execution certain variables, parts or steps are no
longer needed these may be deleted, thereby reducing storage
requirementso

Steps, parts and variables mar be deleted selectively by statements of
the form:

DELETE STEP <part ~nd step number>

DELETE PART <part number>

DELETE <list of variables separated by commas>

5.7 D~LETE STEP 5.1

DELETE PART 4

DELETE X"Z(6) ,Z (1}

After the execution of a DELETE
variable X is no longer defined and
error report.

comman1, for
reference to

example
it ~ill

DELETE A,
generate

the
an

'.

35

..

All values or parts may be deleted by the following statements:

DELETE ALL VALUES

DELETE ALL PARTS

The first statement will leave the defined parts and delete all
variables. The second statement will leave the definp.d variables and
delete all parts.

To delete everything belonging to the user (parts and values) the
statement

DELETE ALL

is used.

I

36

-------------------------------- ~--~--~------------~----------~--~--~/

STORAGE REQUEST

When a user makes a request to run a BRUIN job he is initially
allocat~d a f~xed amount of core. If more space than has been
allocated is rieeded at some point in a job, the interpreter will send
a message

"NEED MORE SPACE"

The user may free part of the fixed space allocated to him by issuing
a form of the delete command. If this is not feasible he may request
more space with the ALLOCATE command.

ALLOCATE <number of.blocks(1 to 9»

ALLOCATE 3

ALLOCATE 3 requests 3 o blocks of storage, each of which will hold about
120 values. If there is insufficient core to fulfill this request,
BRUIN will issue the message

/
"LAST NNOT ALLOCATED"

For example, if BRUIN were unable to allocate one of the three blOCKS
~equested, the messag. would be

"LAST 1 NOT ALLOCATED"

The user may continue with the 2 blocks allocated. If BRUIN were
unable·fo allocate any of the 3 blocks the. message issued would be

"LAST 3·NOT ALLOCATED"

The user should request space at a later time.

ALLOCATE may be used in the direct or indirect mode. ,

(\

0

37

FilE MAINTENANCE

SAVE Statement

The SAVE statement enables the user to save BRUIN programs and/or
values as a file which can be loaded into core at a later time.

The list of Items to be saved may contain:

1. names of variables,
2. the keywords All PARTS,
3. the keywQrds All VALUES,
4. the keyword All,
S. the keyword PART followed by a part number.

The filename is a name pf from one to eight alphabetic or numeric
characters, the first o~ which is alphabetic. If the alphabetic
characters in the filename are not upper case, BRUIN makes them
upper case. This change in name prevents a user from creating files
which cannot be accessed or manipulated by CMS commands.

SAVE as <filename> <list of items s~parat~d by commas>

Example 28:

V (1) = 0
FOR I = 1 BY 1 WHilE 1(10: SET A(I) = EXP (V(I)), V (I + 1) =

V 0) + .1
SAVE AS EXPTBl All VALUES

In example 28, the SAVE command causes the variable names and values
of A (1) through A (9)0 V (1) through V (10) and the final value of
1 to be saved 1" a file called EXPTBl BRUIN. In order to use the
file at a later time$ you must use the same filename in a lOAD
statement.

lOAD EXPTBL

The SAVE command will replace with the new file if a previously'saved'
file exists with the same name.

SAVE is valid in both the direct and indirect mode.

All files created by BRUIN have a filetYr>~ of "8RUIN".

38

LOAD Statement

LOAD <filename)

The LOAD command causes a file to be]oa~ed into thp users
core area. If the user has defined parts or variables before
issuing the LOAD command, the parts and variables will be merged
with the file being loaded. Merging is done in the following
manner:

1. 	 If a part or step defined in core has the same number
as a part or step in the file, that part or step in
core will be replaced by the part or step in the file;
otherwise both parts and steps will be retained in core.

2. 	 If a variable defined in core has the same name as a
variable defined in a file, the value of the variable
in core will be replaced by the value of the variable
from the f i 1e. , .

Example 29:

x (1) = .1
FOR 1=1 BY 1 WHILE I <10: SET A{ I)=-SI N (X(I», X(I+1)=X(I)+.4
LOAD EXPTBL

Assume that EXPTBl refers to the file in Example 28. Due to the
nature of the LOAD merge, A{ 1) through A(9) in core wi 11 be re
placed by ACl) through A(9) from the data set EXPTBl. In addition,
the variables V(I) through V(10), XCI) through XCIO) and I will be
defined in core.

LOAD is valid in the direct and indirect mode.

39

. OTHER FEATURES

Various keyword operands such as ALL, ALL PARTS, ALL VALUES, STEP and
PART are valid in the DELETE statement, simple PUT statement and SAVE
statement. In addition to the above operands there are three operands
which are acceptable in either the PUT statements or as operands in
expressions. They are THE SIZE, THE TIME, and THE DATE.

THE SIZE is a floating point number which

is the number of free elements left in

users c6re area. It is approximately the

number of new values that users core area

can still hold.

THE TIME is a floating point number

which gives the tim~ since midnight

in hundredths of a second.

THE DATE is a character string value

of the form 11000. II is the

tens and units digit of the year and

ODD is number of the day with January 1

-as day 1.

~~~!El~~ The statement 

PUT THE TIME, THE DATE 

produces two lines of output as follows: 

THE TIME= O.5391414E+07 

THE DATE="68220 " 


40 



Comment Statements 

A statement beginning with a C followed by one or more blanks 
is accepted by BRUIN as a user ~omment line. To place such a 
comment in a part, write the part-step number followed by a blank 
followed by the letter C. Comment statements can be used anywhere 
in the program. (See samp1e program, Appendix A). 

Stopping Program Loops 

The SPACE key in addi"tion to producing blanks serves another 
Important function an BRUIN. If a user program appears to BRUIN 
to be doing too much computing without writing or reading, BRUIN 
will stop computing and interrogate you simply with a question 
mark: 

" ? 

If the user wishes to'continue at the point where BRUIN stopped 
the pro~ram, he must enter at least one blank (press the space 
bar at least once) and then press carriage return. If the user 
does not wish to continue at the point where BRUIN stopped the 
program, he may type any command. SRU 11~ VIIi 11 process that command. 

. . 

41 




I 
I 

I 

MATRII STATEMENTS 


In order to treat doubly subscripted variables in a notation simiLar 
to a mathematical matrix notation~-a set of matrix statements has been 
included in the BaUIN language. The matrix statements begin with the 
keyword MAT and may be used in either the direct or indirect mode. 

An mxn dimensional BRUIN matrix A is a subscripted variable A(M,N) 
which is defined for all combinations of the first subscript vary1n~ 
frorn 1 to M and the second subscript from 1 to N. A column vector 
which is the result of a MAT instruction has an explicit second 
dimension of 1; a row vector has an explicit first dimension of 1. A 
matrix or scalar which appears in a MAT instruction ma~ appear in non 
MAT instructions as a doubly subscripted variable or in the case or : 
the scalar as a simple variable. The interpreter makes no attempt to 

, 

; 
'I 

keep the dimensions of a matrix fixed to the original dimension~. 
Therefore a matrix which was input with row size 3, column size 2 may 
as the resultant matrix bf an arithmetic operation have a different 
row and column size. 

There are two matrix input statements comparable to the ordinary BrU1U 
input statements: 

MAT GET <matrix name> ( <row size> , <column size> ) * 

or 

MAT GET LIST <matrix name> ( <row size> , <column ,size> ) * 

*(The keyword DEMAND mdY be used in place of GET) 

The expr.ession for row size and column size must be an arithmet1c 
expression or arithmetic ~onstant greater than or equal to 1. If toe 
~xpression is not an integer, it is truncated to the nearest integer. 

The !AT GET statement prompts the user for all elements -of the matr~x. 
Let m be the row size and n be the column size of matrix a; then tne 
MAT GET statement is equivalent to the non matrix saUIN statement: . 

FOR i=l TO Ill: FOR j=1 TO n: GET a(i,j» 

The MAT GET list statement behaves as its non-mat~ix counterpart 1n 
that the input may be in the form of a list of elements separated OJ 
commas .. 

42 




The elements of the matrix must be listed row-major order; that ~S, 
the value for a must be listed in the order 

a (1, 1) , a (1 , 2) , ••• a (1, n) , a (2 , 1) , ••• a (m ,n) 

In both forms of the MAT GET statements the matrix, if previou~~y 
defined, must specify a subscripted variable. The subscripted var~
able will be redefined as a matrix where the dimension of the matrix 
will be changed to the row size and column size specified. 

MAT GET a(2,2) 

The interpreter vill prompt with 

a(1,1)=> 

The user 
element. 

then types the value he wishes 
Then the interpreter types 

to enter for this mat~~x 

a (1,2) => 

The user responds again with a value. Similarly, the interpretcl 
prompts for a(2,1) and a(2,2). Just as in a non MAT statement, tbe 
user response may be an arithmetic expression involving a previou~ly 
defined variable. For example, the response for a (1,2) could h3ve 
been a (1 , 1 ) **2. 

I 
-) 

!g.mEle_1LL Assume that matrix 

To input this in a list for~ the command 

B= 

is 

1112 
21 22 

13 
23 

fiAT GET LIST B(2,3) 

The interpreter responds with a >. The user may then input 

43 




~Ar PUT <matrix name> ( <row size> , <column size> ) • 

or 

MAr PUT LIST <matrix name) «row size> , <column size> ) • 

*(the keyword TYPE may be used in place of PUT) 

The expressions for row size and column size, give the dimension ot 
thp matrix to be printed. This need not be the full dimensions of toe 
matJ:ix. 

Let a be a matrix with row size m and column size n. The simple ~,r 
PUT 1S equivalent to the BRUEN statement: 

FO R i = 1 TO m; Fa R j = 1 TO n: PUT B(i, j) 

One· element of B pe~ line will be p~inted along with ~ts 
identification .. 

The MAT PUT LIST closely resembles its PUT LIST counterpart in tUdL 
the output will be in columns with a maximum of 5 colu~ns per line. 
I: o.... e v~r, on1 y one matrix r ow is wr i t ten per line. Thus, a ] x 3 ma tcJ..x 
is written as 3 lines with 3 entries per line. If a matrix has rnu..:e 
th~n 5 columns the remaining elements ot the row are printed on d 

follo .... inq line or lines, indentl::!li to the second column. 

t!1.!!!Ed&_l£l_ To Olltput the matrix of example 31, execute the 
following statement: 

MAT PU T B ( 2, 3) 

ThA interpreter re~ponds with 
B(1,1)= 11.0 
8(1,2)= 12.0 
B(1,3)= 13 .. 0 

8(2,1)=21.0 

b(2,2)= 22.0 

B(2,3)= 23.0 


44 




f\ 

.§ll.l!El
" 

~-D....: 

MAT PUT LIST B(2,3) 

The output will 
11.0 
21.0 

be 
12.0 
22.0 

13.0 
23.0 

It is permissable to speci~y a smaller row size, j, or column size, K, 
in either MAT PUT statement than is defined for the matrix. BRUIN 
WI ill si mply ou tput the upper right hand jxk partition of the ma trJ.x. 
Assuming the matrix B of example 34, the statement 

MA T PU T L.I S T B (1 , 2) 

will produce the line 

11.0 12 •. 0 

A BR ur Nmatr i x expression consists of at most 2!l~ operation. rne 
operation may be addition, subtraction Or multiplication of two 
matrices, multiplication of a matrix and a scalar, multipli~ation ot a 
matrix and a vector (singly subscribed variable), or the evaluation ot 
special BRUIN matrix functions. In some cases the dimensions of tn~ 
matrix operands are required to fulfill certain constraints sucn as J.~ 
required in conventional matrix algebra. In the case of the binary 
o~erations the two matrix operands are examin~d to insure that tae 
operation 1S conformable. In some of the matrix functions such as 
determinant evaluation the matrix must be squa,ce. 

Table 5 describes in detail the permissable matcix expressions: Tanle 
6 describes the available SqOIN matrix functions. 

45 



_-..n___, 
r-- 
I 

!.,. 

I
.. 

J I 

I ~!~~§si2a Q!!!,!ni!io!l Qimensi2!L2! ~!!2!21!_2! Qi!!~!!2!Q!!_2t I 

I J 

I ! l! !!~2g!1 I 
,I I 


A+B matrix add mxn mxn mxn I 

I J 
I A-B matrix subtract mx:n mxn mxn I 

I I 

I A·B matrix multiply mxn nxk mxk I 

I I 

I A*s multiplication I 

I J 

I of a mxn mxn J 
I , I 

I s·A scalar an.d ma tril{ J 
J I 

I V·A mxn 1xn I 

I I 

I A·V nxm nx1 I 

I I
(\ 
I Function (A) I 

J I 

I A=B assignment mxn mxn I 

I ) 


I I 

I A and B are Bruin matrices; s is a constan t or simple variable; I . 

I I 

IV is a singly subscripted variable of dimension ~.. I 

I _________________ JI 

'----  -

Tabl'e 5. ~atrix Expression 

" 

46 




r------------------------ -------------------------------1,I 
1 I.. 
IFu~tio!l llgy!lU. Result ~!!~B§iQn_of_~2Y!~ I 

J 
OET (·A, nxn matrix A determinant (1)> simple scalar I 

J 
IN V (A) nxn matrix A inverse of A nxn J 

•TRA (A) nxn matrix A trace of A simple scalar I 
J 

TRS(A) nxm matrix A transpose of A ~xn I 
J 

ION (5' positive constant identify pxp a 
I 

or variable matrix where p is the intege~ • 
J 

part of s 

A is a Druin matrix; s is a constant or simple variable. 
L_______________________~_________ 

____~.~=____________________J 

Table 6. Matrix Functions 

47 




... 

MAT SET <variable nallle>=<lIIatrixexpression>, <variable name>=<ma tI:1.Jt 


expression),ete. 


The MAT assignment statement assigns the value of the matrix expre~


sion on the right hand side of the equal symbol to the variable on tae 

left. Not only does the matrix expression give the variable a value 

but defines its type (e.g. simple scalar, matrix). If the· variaola 

on the left h~s already been defined as an arithmetic subseripte~ 

variable, it can be redefined as a matrix. No attempt is made in tu'r 

instruction to keep the dimension of a matrix fixed. Example 37 .1.~ 


given as an i11ust ra tion of changing dimension· sizes. The keyword SEl 

is optional. 


!~a~E!~-1~ Assume that matrix S is a 3x2 matrix, G is a 2x2 
I·~~trix, and R is a 2x2 matrix. The Qbject is to compute GR-1S'. , 
! 

MAT SET B=TRS(B),RI=INV(R),B=RI*S 
·1MAT B=G*S i 

In example 37, according to the rule of m~trix expressions, only one 

matrix operation per assignment is made~ The first statement is a 

multiple SET statement with the assignm~nts being performed from left 

to right. First the transpose of B is·stored into B. The dilllens1.on 

of B is now 2x3. Secondly, the inverse of R is stored into RI and the 

product of HI ~nd S transpose is computed. Pinally, RI*S is 

premultiplied by G'and the result stored in B. 


" 

\ I 
I 

i 

48 

.• ji 

http:dilllens1.on


SUMMARY 


For a summary of the BRUIN instruction set, see Appendix A, 
part 1. 

A complete sample program as typed on the 2741 console appears 
as part 2 of Appendix A. 

Any comments about the organization or content of thh> flliWi.Jal 
or improvements. to th~ language will be appreciatedr 

49 



APPENDIX A 

1. Table of Instructions _...----------

ALLOCATE 

CANCEL 

DELETE 

GET (DEftAND)' 

CALL 

DONE 

FOR· (DO, 

GO 

IF 

LINE 

LOAD 

ft1 T GET 

I'IAT PUT 

rn T SET 

SAVE 

SET 

STOP 

TO 

PUT (TYPE) 

direct/indirect 

direct· 

direct/indirect 

indirect 

direct/indirect 

indirect 

direct/indirect 

direct 

direct/indirect 

direct/indirect 

direct/ind irect 

direct/indirect 

direct/indirect 

direct/indirect 

direct/indirect 

direct/indirect 

indirect 

indirect 

ditect/ind irect 

50 



>1. 0 C sample program to solve giJadra tic eq ua.tions 
>1.1 put "Program to Solve Quadratic Equations" 
>1.2 put" a*x*x+b*x+c=O" 
>1.3 for i=l to 3: line 
> 1.4 put tfEnter· Coefficients"" 
>1.5 get a,b,c i 

>1.6 set discrim=b*b-4*a*c j>1.7 if discrim(O, then call part 2; else call part 3 

>1.8 line 
 I>1.9 put "Enter 0 to terminate, 1 to continue" 
>1.91 get aDS . 
>1.92 if ans=1,then to step 1,.3; else if ans=O, done; to step 1.9 1 
>2.1 put."roots are complex" 

i 

>3.1 set rootl=(-b+sqrt(discrim»/(2*a) r 
>3.2 set root2=(-b~sqrt(discrim»/(2*a, 
>3. 3 t Y P e " 1t, n ", roo t 1 ; r 0'0t 2 
>CALL part 1 . 

I 
I 

Program to solve Quadratic Equations 

a*x*x+b*x+c=O 


Enter.Coefficients 

a=>l. 

b=>10. 

c=>-40. 


r 00 t 1-= 3 • 0 62 i 5 5 

root 2=-1 J. 06225 


Enter 0 to terminate, 1 to cont • 

ans=>l. 


Enter Coefficients 

a=>l. 

b=>O. 

c=>1. 

Roots are complex 


Enter 0 to terminate@ 1 to continue 
,f\ ans=>O. 
, / EXECUTION HALTED AT END OF PART 1. 

51 



blank (space bar aD 
equal 
plus sign 
minus sign 
asterisk 
slash _ 
left parenthesis 
right parentbesis 
comma 
point or period 
semicolon 
colon 
"NOT" symbol 
"AND" symbol 
vertical- ba-r 
"greater than" 
v'less than t • 

double quotatioi'i 
apostrophe 
dollar sign 
cent sign 
excla rna tion point 
percent sign 

underscore 

question-mark 

pound sign 

a t sign 


lPPENDIX B 

console) 

* 
/ 
( 
) 

.. 

.... 
& 

I 
) 

< 
" e 

? 

52 




,,::. 

0 . ! 

" ' 

, 
! 

~. 

b.-_l!yilt-In l'lathellati£a1 Funct~Q!!§ 

!Y!l£SiQ!! !!1ue_!~s.!!!:!led ~!IQ!.:.£Qndi t!Q!! ~!A.!!.E!~ 

ABS Ix I Abs (x) 


LN log (x) base e x~O Ln (3*zl 


tOG2 log (x) base 2 x~O 1092 (3*z+ 5) 


LOG log Ix) base 10 x~O LOG (x) 


EIP e to the pover l: x>174.6131 EXP (5. 1) 


SQRT square ,root of x x < 0 sqrt (3. 14/5) 


SIN sin (X) , x in radians IXi~21. x pi sin (a*b) 


COS cos (x, • x in ra:d ians IXI~21. x pi cos (3. 1/B) 

G, 

SIND sin td) • d in degrees IxJ~218 x ,lBO sind (360/4) 

COSO cos (d) , d in degrees Jxl~218 x 180 COS D (36 O/B) 

TAN tan (x) , x in radians Ix!S2 te x pi TAN(J.14/4) 

TAND tan (d) ,. d in degrees ixl~211· x 180 TAND (a*b) 

ATA N' ac['ctan (x) in radians" ATAN(z) 
=pi/2<ATAN(X) <pi/2 

ATND arctan (xl in degrees, ATND(Z) 
-90<ATAN (x) <90 I 

" '" 
, 

.ERF 2Air SEXF (-U Z ) du ERF(.B, 

0 
,ERFC - ERF (xt ERFC (2. *x) 

SINH sin h (x) x>114.67Jl SINH (3.1*x) 

S3 



"
\ 

COSH cosh (x) 	 x> 174.6731 COSH (x) 

TANH tanh (x) 	 TANH (z) 

ATNH inverse hyperbolic ABS(x)Sl atnh (x) 

tangent of x 


IP 	 integer part of a number x IP(3.15679) 
sign of x times largest integer ~Ixi 

FP fractional part of a number 	 FP (x*z) 

RAND -	 tiniformly distributed random x S 0 RAND (X)* numbers between 0 and 1. 

GAPIA u--.-'EX P (-u) - du • 	 X~2-2S Z r 
0. 	 o or 

x>57.5744 GAMA(3*X) 

**FACT ~!where x!=x(x-1)(x-2) ... ~ 	 XS2,..Z52 FACT (3) 
or j 

x>57.5744 -I 
I 

1 
I 
I 

*For the first entry, x should be an odd integer. After the fi~~t 
entry x should be set - equal to the previous result of the RAND 
function • 

•• x! 	 is computed using the relationship X!=GAMA ~x.l) 

54 



