- BRUIN

BROWN UN INT R

for the

CAMBRIDGE MONITOR SYSTEM

CMS

written by

The Combutlng Laboratory
Brown University
Providence, Rhodg lsland

adapted to CMS by

IBM Cambridge Scientific Center
CP-67/CMS Support Group
Cambridge, Massachusetts

June 1, 1969

N

JABLE OF CONTENTS

BRUIN & & v 6 ¢ ¢ o o o o « o o o o o o o o o o = . o 1
syntax notation . . . ¢ « ¢ ¢ o ¢ s o e o o o o . . . 2
system procedures . . « ¢ o o o o o © e c o o o o o« . b
Entering BRUIN . . & ¢ ¢ o ¢ o ¢ « ¢ o o o o o« . . L
Exiting from BRUIN, & « ¢« ¢« v ¢ « o o« & .« e b
input conventions . « ¢« « « o s o o o o ¢ o o o .« . 5
data elements . ¢« o o o o« 5 o o o & o o o s s+ e @ . e 5
ConstanNts « « « « o o o o o 5 6 o o o o o o o o o e &
Variables « ¢ ¢ ¢ ¢ ¢ o ¢ o 6 o o o o o o o o . . 7
operators and expressions o o o e e o o o e e o 9
Arithmetic Expressions and FuﬂCQ:ons e e o e o e 9
‘Boolean Expressions .. . « e o . . . 11
Character String Expressions dnd Functions . e .« e 14
direct and indirect mode o ¢ . o . . . 16
assignment statement. ¢ « ¢ ¢ ¢ ¢ o o o - 19
SET statement . . .« v o, c o o o o o o o o o o o . 13
simple conscie iNPUt=OUtPUL ¢ « ¢« « « « o o« o o & . . 21
OQUTPUT staiements . « o o « o o o« o o o o o o . e 21
LINE statements « « ¢« ¢ o« ¢ 5 o o o o o o s o o .« e 23
INPUT statements .« % « o o o o o o o o o o o .« e 24
control statements .« « ¢ « o o o ¢ ¢ o o o o o o . . 26
CALL statement . . . ¢« v ¢ o « o o 6 o o o o . . 26
GO statement ccceee o o o o o o o o o o-9o o o o e . 27
TO statement . ¢ v ¢ ¢« o o o o s o o o o o o o o e 28
IF statement . & ¢ v ¢« ¢ ¢ ¢ o ¢ o o o o o o o e 29
FOR statement « ¢« « + ¢ « ¢ o o s o o o o o o o« . . 31
STOP statement . .« « ¢ o ¢ o o o o o o o o o o . e 33
DONE statement . ¢« ¢ ¢ o ¢« ¢ o o o o s o o o = .« . 33
program Changes . . « . o o ¢ " o o o o o o o o . e 35
DELETE statementf . . o o o o o o o« o o o o o . . 35
storage request « v ¢« . 5 s 4 e e o e o o o o o o . . 37
ALLOCATE statement - . o« o« « o o o o o o o o . . 37
file maintenance ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o 4 e o o e 38
SAVE statement . . ¢ ¢ ¢ o ¢ o o o o o. 0 o o o .« . 38
LOAD statement . ¢ ¢ ¢ o« o « o « o o o o o o . . 39
other features .« ¢« « ¢ ¢ ¢ ¢ o ¢ o o o o o o o o . . Lo
Keywords Operands . . « ¢ ¢ o« ¢« o o o o o o o & . e Lo
Comment Statements: - . « ¢« ¢ ¢ o « o o o o o o o o . 41
Stopping Program LOOPS + ¢ ¢ ¢ o o o o « o o & o . 41
Matrix statements .« o ¢« v ¢ o ¢ o o o o o o o o . . L2
Matrix Input statements . « « ¢ ¢ ¢« « « o o « & .« . L2
Matrix Qutput statements . . . +v « v « o o o+ & . . uh
Matrix EXpressions .« « ¢ ¢ ¢ ¢ ¢« o o « o o o .« e LS
Matrix Assignment Statements. . . . « + « « L8
SUMMAIY o e L9
appendix @ « v ¢ ¢ ¢ 6 o o o o o e e e o e e o . . 50
1. Table of Instructions . « « « ¢« ¢ « o« ¢ o« . o . 50
2. Sample Program and Qutput e 51
appendix b e o o o o o o o o o o o . . 52
1. BRUIN Character Set . e e e e e e e e . . . 52

2. Built-In Mathematical Functions e e e

53

INTRODUCTION

This manual describes the facilities of the Brown University
Interpreter (BRUIN) as it is implemented within the Cambridge
Monitor System. :

The BRUIN language is modeled after the University of Pittsburgh
Interpretive Language (PIL). PIL was chosen as a model because

it contains features which are highly desirable in a console
language. Unlike a batch processing language, BRUIN (and PIL)
provide the user with direct man-machine interaction capabilities.

This feature is most noticeable in error-recovery procedures.

After BRUIN reports an error in either syntax or program logic,

it aliows the user to make corrections and continue without a new
start. Another commendable BRUIN feature is the lack of processor-
oriented statements such as array dimensions and variable types.

The major goal of the BRUIN designers is that BRUIN be a language
which will allow a neophyte as well as an experienced programmer
to expend his energies on problem-solving rather than on 'program-
ming'”. Towards this goal the syntax has been kept simple, the
meaning of each statement clear and unambiguous. BRUIN can best
be utilized as either a program development tool or as a small
numeric probliem=solving tool.

Fa Sk i b Wb e € Ak S A AP i i ot

SYNTAX NOTATION

Throughout this manual, wherever a BRUIN statement is described that
statement will be illustrated with a uniform system of notation. The
keywords (special BRUIN words) will be in upper case. This is not a
requirement of the language; it is merely a device to denote the
literal occurrence of that word. Keywords, in fact, may appear in
combinations of upper-case and lower-case letters. Braces (X>) are
not an element of the language but are used to denote a position in a

statement where the user must make a replacement.

Every BRUIN statement begins with a keyword or part and step
number. (See the section "Direct and Indirect Mode", page 19, for a
description of the form of the the part 'and step number.) A statement
is at most 80 characters in length. Each statement begins on a new -
line and cannot be continued on a second line. A statement may, but
need not end with a period.

Keywords, part-step numbers and user-defined elements (such as
variables) must not be immediately adjacent to one another. They must
be separated by a single symbol operator (e.g. + / *), specified
punctuation (, : ;) , an assignment symbol (=) or a blank. There
must not be blank spaces within keywords, part numbers and user-
defined elements.

Example_ 1. The syntax of a form of the conditional statement is

If <Boolean expression>, THEN <command>; ELSE <command>.

A correct BRUIN command then could be
IF a = b, Then TO STep 1.5;ELse to step 1.6.

but not

IFa=b, Then TOSTep 1.5;ELse to step 1.6

The above statement is in error because there is not a blank between
the F 1in the keyword IF and the variable a, and between the keywords
TO and Step. Notice that the keywords IF, THEN and ELSE appear in a
conbination of upper-case and lower-case letters.

also n

10
lﬁ

I F a=5. 11,THEN TO STEP I.S;ELSE TO STEP 1.o.

This statement is incorrect because there is a blank in the keyword IF
and in the constant 5.11. -

: 4
PSS S

S . SO SN

http:statemp.nt

SYSTEM PROCEDURES

E B N

After logging into CP and IPL'ing CMS, type "BRUIN". The console
will respond with the message '"BRUIN READY",

Exi m_BR)

When vou are finished using BRUIN, you should dismiss the BRUIN
interpreter with the BRUIN command:

CANCEL

CANCEL does not log you off. In order to log off from the terminal,

thereby preventing a second party from accessing the system under
your number and password, type:

CP LOGOUT

To use the terminal system again,. you must repeat the CP LOGIN
procedure. : - '

{NPUT CONVENTIONS

CMS input conventions are used for the character delete and
line delete functions.

However, input characters are not converted to upper case,

e

DATA ELEMENTS

Constants

There are three types of constants: real arithmetic constant, Boolean
"constant and character string constant.

" An arithmetic_constant is written with at most 7 decimal digits with
an optional decimal point. The constant may be immediately followed
by the letter E (must be upper case) and a one or two digit signed ot
unsigned integer specifying an integral power of ten (scientiric
notation). In either form of the constant there must not be embeduded
blanks. Some examples of 'proper arithmetic constants appear below:

12. 34567

3567 or 3567.

56.5E=5 meaning 56.5 x 105

125E4 | meaning 125‘x 104
A constant (and results of all operations) can have a maxiwua
magnitude of 7 x 1075 and a minimum non-zero magnitude of 5.4 x 10-79,

The Boolean constants are THE TRUE and THE FALSE witten 1in upper ot
lower case letters.

Character _string constants consist of a string of characters enclosed
in double quotes. The double guote <character may not occur in a
string constant. Some proper character string constants are: "31.:3.
5" and "BRUIN". The maximum length of a character string coanstant 1is

limited by the size of the line.

http:f!QQJ:.~2.!L�Qnsl2.nl
http:embedJ.ed

Variables

The name of a variable must be construc&md accordimg to the following
ruless

1. The total number of characters must not exceed eight (8).
2. The first character must be one of the alphabetic characters.
3. The remaining characters may be letters or numerals.

Upper-case letters are distinguished from Llover-case letters iu

variable names; therefore the variable name DET is different from tne
name Det. ’

¥

gxample 2. The followiny names are wvalil BRUI¥ variaopie

names:

DATANAME, B, FXY, B12C11

In addition to the scalar variable which denotes one itea, there is

the subscripted variable which denotes a collection of 1items. A
subscripted. variable is vwritten is a variable name followed by a list
of subscripts enclosed 1n parentheses. The subscripts are separated
by commas. For exaaple, F1(1,2) could represent the rirst row, second
column of a table called F1.

The rules for subscripted variables are summarizei below:

1. Each subscript. may be an arithmetic constant, arithmeuic
variable, or an arithmetic expression.

2. An array may have up to four subscripts.

3. A subscript may have any value between -32767 ani 32767,. bnut

anly the integer part is usad to reference an element of the array.

Example 3.
z2(1,3,2%3), TABLEZ(Z2(1,J,J),I+J)

In Example 3, assume 1 is 1.7 and j is 2.4; because only the int;ge&

part of the subscript is used, the element referred to in the z arcay

is z(1,2,4).

e e

[NV WL Y

2

Storage is allocated dynamically for variables (both scalar
variables and arrays) at the time that the variable is defined
(i.e., assigned a value). Therefore, sparse arrays are kept
in a reduced space. In no BRUIN statement is is possible to
reference the whole array by using only the name; both name
and subscript must be specified.

To use a variable which has no associated value is an error.
The interpreter will notify the user that this type of error
has occurred.

In addition to having a value, a variable has an associated data
type. The data type may be arithmetic, Boolean, or character

string, depending on the type of value assigned to it. To change

the data type of a variable by assigning to it a value of a different
data type Is an error. The interpreter will notify the user that

- this sort of error has occurred.

OPERATORS AND EXPRESSIONS

Arithmetic Expressions_and_Functions

The arithmetic operators of addition, subtraction, multiplication,
division and exponentiation are represented symbolically by +, -, *,
/., and ** respectively. (The vertical bar, |, alsoc indicates
exponentiation.) .

r -
| meaning example l
| ' |
|) |
| + addition at+b §
| ' I
i]
i - subtraction a-b :
i i
{ !
| * multiplication a*b- i
{ ;
| i
i 7 division a/b §
; |
!
o exponentiation . a%x*b i
o
4

s m— e niize

Table 1. Arithmetic Operators

irithmetic constants ard variables are combined by the arithmetic

operators to form arithmetic expressions. Arithmetic expressions, in
turn, can be bracketed by parentheses to form other arithmetic
expressions. The order in which expressions are evaluated is govermned
by the following rules of precedence with operations of a higher
precedence performed before those of a lower precedence. Except for
exponentiation, unary- and wunary+, where operators of the sanme
priority appear in an expression, there is a left-to-right evaluation
of the expression. Therefore A/B/C produces the same result as
(A/B)/C. 1If two or more of the operators of exponentiation, unary-,
unary+ appear in an arithmetic expression, the order of evaluation is
from right to left. Thus A**-2 produces the same result as A**(-2).

‘

r 1
| exampie |
| l
| |
| |
| highest functions SQRT (x) |
| : |
| |
| exponentiation, ' A|B|-2 A
| unary =, unary + |
| |
| |
| multiplication a*N/y |
| and division ‘ |
| |
| : |
| lowest additjon and z + p -1 |
{ subtraction !
| |
L J

If an expression is enclosed in parentheses, it 1is evaluated - before
its associated operation is performed. For example, in the expression
cx(a + Db), a 1is added to b and this sum is multiplied by c. Thus
parentheses modify the normal precedence rules. Parentheses can be
used where there is a possibility of ambigquity. .

Another way that arithmetic expressions can be formed is by taking
functions of other arithmetic expressions. The set of predefined
arithmetic’ functions is shown in Table 2 of Appendix B. The function

name is fixed but may be written with upper-case or lower-case

letters. Each of the functions has one argument and returns one
value. The arqument must be enclosed in parentheses and may be an
arithmetic expression. The expression is evaluated before the func-

tion is called. Thus, if it is necessary to compute sin 2x, the BRUIN
expression would be written SIN (2%*x)

; Examples:
Expression Mathematical egquivalent
c+a**8/b+5.E10 c + a8/b + 5x1010
TAN (LN (a*c)) | 2 tan2 (1n(ac))
-2%%2%Db -22h ‘
(-2) *¥%2%D (-2) 2b

10

»

KA

. Boolean_ Expressions

'There are six relational opérators and four Boolean operators defined
in BRUIN. The symbolic representations of these operators and their
definitions are found in Table 2 and Table 3.

short _form long form meaning exanple

a and b are arithmetic expressions

[r o o e TR e e e e T CIE ST R M e e e e i G ——

1§

___________ |

: |

< $LT a less than b \ a<b |
|

’ |

$LE a less than or equal to b a $LE b |

- i

; _ | i

= $EQ a equal b a =b |
: I

$NE a not equal b) a $NE b |

‘ |

o |

> $GT a greater thanm b a $GT b |
|

: |

$GE a greater than or equal to b a $GE b i

|

[

i

|

" |

Table 2. Relational Operators

The relational operators have two arithmetic expressions as operands;
the result of such operations is a Boolean value (i.e., either true or
false.) Thus, the expression B#**2 - U4*A*C $GT 0 is an assertion that
is either or false, or in BRUIN notation the result will be either THE
_TRUE or THE FALSE. '

11

oy

Boolean values or expressiéns may be combined with the Boolean
operators or the two relational operators $EQ, $NE to produce a
Boolean value.

L 4

. 1
Ishort _form long form meaning example I
| |
| : v |
| & $AND logical product ' a<b J$AND c<d i
| ' |
| |
| $OR logical sum or inclusive or a<b $0R c<d i
| |
| . |
| - $NOT complement $NOT (a<b) |
| , |
| s {
| $X0OR exclusive or a<b $0R c«<d |
| i
| . I
fa, b, ¢ and 4 are arithmetic expressions {
| ' |
L J

Table 3. Boolean Operators

The Boolean operators (sometimes called logical operators) have their
usual meaning. Thus, if P and Q are Boolean values the expression

P $AND Q has the value THE TRUE, if and only if both P and Q have the
value THE TRUE. The expression P 30R Q has the value THE TRUE if
either P or Q or both P and Q have the value THE TRUE. Whereas, P
$XOR Q has the value THE TRUE if either P or Q but not both have the

.value THE TRUE. Finally, $NOT P has the value THE TRUE if and only if

P has the value THE PALSE.

12

e et o g e

o e e e e - — —

The priorities of operations for arithmetic, Boolean and relational
operations are now given by the following list:

L

|

highest arithmetic function |
|

%%, unary +, unary -, $NOT [

|

&y |

|

¢ - |

|

' relational operations |

. |

$AND |

|

lowest $0OR, $XOR |
; |

]

The priorities for arithmetic, Boclean and relational operators is
similar to the priority of such operators in the PL/1 language but not
the FORTRAN language. The one difference is in the operator $NOT.
This difference becomes apparent in the expression $NOT a<b, where a
and b have arithmetic values. Since $NOT has higher priority than the
operator <, .an attempt to evaluate $NOT a in this expression will be
made. BRUIN will then stop with the error message "WRONG KIND OF
OPERAND". Simply - enclosing the expression a<b in parentheses, as in
Table 3, will result in the Boolean expression a<b being the operand
of $NOT.

The following example illustrates the evaluation of an expression
according to the priority of the operators.

-a*%xh < c+2 $AND atc=z

This expression is evaluated as if the various parts were enclosed in
parentheses.

—(a**b) (c+2) (a+c) (z)

(- (a**b)) <(c+2) ’ (atc)=(2)
((-(a**b))<(c*+2)) $AND ((a+c) =(2z))

13

There - are three special operators $FC, $LC and $CON for manipulating
character string data. An expression of the two operators $FC and $LC
is evaluated from right to 1left. In addition to these special
operators the relational operators are valid for comparing character
string data. The <comparison will be made according to the 360
collating sequence. (i.e. blank <punctuation < a < b...<z<A<B...
<2<0.<9). the strings are compared character by character from left
to right. If the strings are of different lengths the shorter string
will be compared as if it were extended on the right with blanks.
Notice that this implies that the character string "ab' will compare
equal to the character string *"ab ". Table 4 summarizes the valid
character string operators: The concatenation operator, $CON, may be

written _ (underline symbol) or || (two vertical bars).

|y = —_———
|Exanples Definition Result I
IN $FC S The N first characters of string S a string of length|
{ : N |
| 1
| _ , |
{N- $LC S The N last characters of string S - a string of length|
| N |
| |
I , |
IS $CON P-string S and P are joined in such a a string with the |
| ‘or vay that the first character of P length = length S |
| S{IP immediately follows the last . + length P |
| character of S “ |
| . |
| |
IS $LT P : [
IS $LE P compare S and P character |
IS $EQ P by character from left to right a Boolean valuej|
|S $NE P ' {
IS $GT P |
IS $GE P |
1 |
| , |
IN has an arithmetic value . |
IS and P are character strings. . |
! ~ o

Table 4. Character String Operators

14

e et e -

“There are four special functions which have a character string
arqument. They are UPPR, LOWR, LEN, AND CHAR. The function UPPR (S)
produces a character string with alphabetic characters the upper case
equivalent of the alphabetic <characters of S. LOWR(S) produces a
character string with alphabetic characters the lower case equivalent
of the alphabetic characters of S. LEN(S) returns an arithmetic value
which is the number of characters in string S. CHAR(X) returns the
character representation of the arithmetic value X.

In a mixed expression of string operators, binary operators and
Boolean operators the wusual rules of priority as well as the
conventions regarding left to right evaluation are observed. The
string operators are placed in the priority table as follows:

highest functions
% unary + unary $NOT
%/ -
-
$FC $LC
$con -,
$EQ $GE S$LE $NE $GT SLT $EQ
$AND
lowest $OR $XOR

]

The following example will serve to illustrate the use of the string
operators and the priority rules for string operators:

Assume that D is a character string variable which is equail
to "PROVIDENCE, R.I."™ and one wishes to make every letter except P in
Providence a 1lower <case letter. This could be done with the
expression ‘ :

1 $FC D $CON LOWR(9 $LC 10 $FC D) $CON 6 $LC D

This expression results in a character string of length 16 which is
equivalent to "Providence, R.I.".

In building <character strings by <concatenation one must observe a
maximum length of 252. TIf this length is exceeded BRUIN will issue an

[\ error message to that effect.

15

7 e i

o

DIRECT AND INDIRECT MODE

To facilitate man-machine interaction, BRUIN provides two modes ot
operation, the desk calculator or direct mode and the stored progrdm
or indirect mode.

In the direct mode the console can be thought of as a desk calculatot
in*that the statement is executed immediately and the text of tae
Statement 1s not retained in memory. This mode of operation allows
the user to evaluate expressions, store results of expressions -tor
latei use, and direct the interpreter to execute a stored progranm.

Errors are reported immediately in the direct mode. The user merely

retypes thé Correct statement. The statement 1in error 1is ot
retained. For example, ' '

TYPE SIN(8%3.14/16

would result in a BRUIN response "MIJFORHED EXPRESSION" because of the
missing right parenthesis. The user retypes

TYPE SIN (8%3.14)/16

and the res<7lt of the calculation would appear as
SN (8%3.14) /16 = -0.7966093E~

The assignmeht statement in the direct mode
SET L=A|2~-4*A%*C

is likewise executed immediately, causing the variable L to be given a
value which could be used either in the direct mode or stored prograa
mode. Notice here that the statement itself is not retained but the
result of the calculation is retained in L.

“~

16

In the indirect mode, statements are stored and executed under prograa
ccntrol in a sequence defined by part and step numbers. In otaer
words, indirect statements make up a stored program. The user may o
back and forth Dbetween the two modes. .The manner by which this 1s
accomplished will be seen 1n later examples.)

A statement in the indirect mode is always preceded by a part and step
number. It is this number which tells BRUIN that this is a statement
of the indirect aode. The part and step number are each at most 3
digits in length and are separated by a period. A blank must follow
this number - but must not be imbedded 1in the pdart-step number. The
above TYPE statement, written in the 1indirect mode with part number
11, step number 01, would appear as

11.01 TYPE SIN(8%3.14) /16

This statement is stored without being executel immediately.

A part 1is a collection of one or more steps with the identical part
number. Since steps are arranged in ascending step number by tae
interpreter, it 1is not necessary to type- steps in sejuential ordes.
buring the execution phase of that part, the statements will ope
executed in the sorted order of step numbers 1in that part.

Step numbers are treated as decimal fractions anl may have any
increment between them., For example, a part 1 could be written with
steps 0, 1 and 999 (wvritten with part numbers as 1.0, 1.1 and 1.993).

This would be.executed by the 1interpreter in the order 1.0, 1.1 aua

1.999. If it 1s necessary to make an 1insertion, say between
statements 1.0 and 1.1, simply choose any number (e.g 1.05) Dbetween
1.0 and 1.1, "Then part 1 would consist of statements with numbels
1.0, 1.05, 1.1, 1.999 and would be executed in that order. For suca

prograa changes 1t 1s wise to have gaps in the step sequence.

Durinyg the execution of a proyrams 1in the stored proyram mode, a
sequence of BRUIN statements with the same part number are executed
sequentially (assuming there is no transfer out of that part). ‘Tais
means that a statement with the number 2.000 1s not executed after the

statement with the number 1.999, unless these parts are logicaiuy.

connected by the user. This can be accomplished in a variety of ways.
To give just one example, statement 1.939 could be the instruction

-

1.999 TO STEP 2.000 .

17

ASSIGNMENT STATEMENT

SET statement

SET <variable name> = <expression>,<variable name> = <expression>,etc.

The expression on the right-hand side of the assignment symbol (=) uway
be an arithmetic expression, Boolean expression or string expressivil.
The type of expression will determine the Jata type assigned to tue
variable. The keyword SET' is optional and may be omitted; tor
clarity, every exanmple in the manual will use the keyword.

The SET statement cau have a list of assignments of tne fora <variapa.e
name> = <expression>; each assignment in the list must be separated by
commas. I¢ there 1s only one assigument in the statemant, omit tue

comma. The 1nterpreter will make assigynments 1n a4 list bhegiuning witn:

the lcftmost element 'in the list anl proceeding to the right.

SET W = SIN(X¢y) ,CTwE¥X,W=uw¥y

1sinj the most recently assigyned values of x ani y, the vdriable w iy
assijyned the value of the arithmetic expression sin(x+y). Then cC 1is
assijned the value of w¥*x, where the value ot W 1s tae previously
ccmputed value, sin{x+ y). Finally w 1s given the newly computeu
value w¥y, Variables w, anldl ¢ ire airithmctic variables ovecause tney
were jiven arithmetic values.

([$3]
1
(=%
=]
o
|
I

5
t
ar']
oo
@)
(@]
=
i

The True

The variabl-e 8B90L 1s assiqgned the constint 3n0ledan vilue The True;
therefore the variable B300L is a4 3o0olean variable,

ot
uz

A o

http:beqillIll.ng

Example_ 6.

SET ray (1,1)=38NOT (2 = 2)

The first = symbol on the left is the assignment symbol. The second =
symbol is the relational operator. Therefore the value "false'" .s
assigned to the subscripted variable ray (1,1). ray therefore 1< -a

boolean array.

———e—d -

101.98 SET Num = 1234567890

The double quotes around 1234567890 cause Num to be a string variable.
‘Therefore ©Num can be combined by string operations with other string
operands. The number 101.98 designates part 101, step 98.

20

SET ray (1,1)=$NOT (2 = 2)

The first = symbol on the left is the assignment symbol. The second =
symbol 1is the relational operator. Therefore the value "false'" .s
assigned to the subscripted variable ray (i, 1). ray therefore 1< - a
boolean array.

101.98 SET Num = "1234567890"

The double quotes around 1234567890 cause Num to be a string variable.
.Therefore Num can be combined by string operations with other string
operands. The number 101.98 designates part 101, step 98.

20

SIMPLE CONSOLE INPUT-OUTPUT

QUTPUT statements

PUT <list of itenms separated by commas>*
or
PUT LIST <list of items separated by commas>*

* (The keyword TYPE may be used in place of PUT).

four types of elements: ‘

1. a variable name whose associated value is to be written,
2. an expression to be evaluated and written out,
3. a character string enclosed in double quotes (")
7N - 4. the special keywords, ALL, ALL VALUES, ALL PARTS, PART,ST:P.

The PUT LIST form of the output statement differs from the simple put
form in that, the list of items of the PUT LIST may not contain the
special keywords described in 4 above. - In addition, the PUT LIST
writes the items in columns of 5 per line until the 1list is exhausted;
a simple PUT writes the items one per line until the list 1is
exhausted. Character strings in the PUT LIST form should not have
more than 15 characters; only the leftmost 15 characters of a strang
are written.

PUT "The value of A is" , A

Example 8 illustrates the first type of PUT statement. Each 1tem on

the list will be written on a separate line. Assuming A has the value
2, this statement will cause the two lines to be written,

The value of A 1is
A= 2.000000

7 The interpreter always writes the variable name followed by the value
in this PUT fornm.

21

Exanple 9.

PUT LIST "The value of A" LA

Example 9 illustrates the second form of the PUT statenment. This
statement will cause the line to be written

The value of A 2.000000

Example 10.

PUT 3*SIN(3.14159/16 + SQRT (35.9))
This statement will result -in the line

&

3%sin (3.14159/16 + sqrt(35.9)) = -.2850968

*

The special-purpose forms and their use are described below:

1. To write out a copy of special parts sorted in step order,

PUT PART <part number>

PUT PART 5, PART 6

2. To write out a copy of the entire progran,
PUT ALL PARTS

3. To 1list all defined variables and their current values,
PUT ALL ?AiUEs.

4. To list the entire program and all variables in storgge,

PUT ALL.

22

5. To write out a step,

PUT STEP <part and step number>

Exampie;
PUT STEP 1.3, STEP 50.1

Since the typewriter is a relatively slow device, these features
should be used sparingly. :

LINE statement

¥

The line statement causes the conscle typewriter to space one line
- down the page.

Example 11,
1.1 Put (EXP(1.5)+EXP{(-1.5)3/2

1.2 Line

1.3 Put (EXP(1.5)-EXP(-=1.5))/2
CALL PART 1

In example 11, the comménd LINE will produce a blank line between
the two cutput lines. The output therefore will be

<Exp(1.5)+Exp(-1.5))/2é,_2.352u06
(EXP(1.5)~EXP(=1.5))/2= 2.129278

23

INPUT_statements

<part and step number> GET <list of variables separated by commas>%

or

<part and step number> GET LIST <list of variables separated by
commas>* ' .

* (The keyword DEMAND may be used in place of GET)
On execution of the GET statement, BRUIN rejuests the user to provide
values for the variables in the list following the keywords GET or GET
LIST. The response by the ‘user may be one of four types of data:
1a constants,
2. an expression in terms of previously defined variables,

3. function,
4. any combination of the above.

In the simple GET statement BRUIN prompts the user on each variable in
the 1list by writing the variable name followed by =>; it then waits
for a response from the user.

To the command GET a,b,c, the interpreter will respond with
a=>

The user may then type a number (e.g. 4.0) after the > symbol. Then
the interpreter types .

b=>
Again the user may type 3.5%a. The value of a has already been
defined; therefore the value of the product of 3.5 and a will ve
assigned to b. Finally the interpreter types)

c=>

The user may respond with SQRT (atb).

© 24

D,

Example 13. Assume that the value of i is 1 and j is 3.

i v i S s s pen

3.11 DEMAND B (i,i+]3)
BRUIN will return the value of the subscripts with the arrdy name
"B(1,4)=>

On execution of the GET LIST statement, BRUIN will prompt only with 4
greater than (>) symbol. The user may then enter any number of data
items on a line; the <data items must be separated by commas. Any
number of blanks may surround the commas. If the 1list 1is oot
satisfied after the transmission of one 1line of data, BRUIN will
prompt the user for more data. If (n+3) number of dJdata iteas 1is
transmitted and the list of varables only requests n items, the last 3
data items will be ignored.

Example 14, Assume that A should have the value 5.1, B tne

Pl coip— - S .

value 4.3, C the value -8x10-%5, and J the value 1.
.81.05 GET LIST A,B,C,J

On this comrmand BRNIN will prompt once with the symbol>. The user may
then enter on a line

Notice that the values are assigned to the variables from left to -

riqght. o

In examples 12, 13, and 14 the variables in the list were qivéu

arithmetic values but this need not be the case. Boolean values or

character strings may also be read in as values. Example 15 is an
1llustration of a GET LIST statement with variable A beiny given an
arithmetic value, B a Boolean value and C a character string value.

80.4 GET LIST A,B,C
On execution of statement 80.4, BRUIN transmits the symbol >. Entéc
L.125%SQRT(3.14159), THE TRUE, “STRING"
A variable vis assigned a data type througn the GET statement as well
as the SET statement. In example 15 then, . the variable A 1is an

arithmetic variable, B 1is a Boolean variable_ and C is a striny
variable.. '

25

CONTROL STATEMENTS

In the preceeding sections you were shown how to refer to variable and
constant quantities, process input and output and assign values to
variables. In most cases a problem cannot be solved by a simple
sequence of assignment statements and input/output statements. State-
ments to permit decision making are often required. These decision
processing statements pergsit the programmer to vary the order in which
statements are executed. Such statements which provide the programuer
with the ability to alter program flow are here called CONT®UL
sStatements. ’

CALL statement
CALL PART <part number>

The CALL statement causes a part to be executed starting with 1its
lowest step number. :

Example _16. Assume that the following procedure to calcul-
ate an expression involving input parameters X, Y, DELTAX, DELTAY .1s
stored in the indirect mode.

15.11 SET X = X + DELTAX, Y = Y + DELTAY
15.15 SET PXY = X*SIND(Y)/COSD (X) #+3%X

In order to execute the two-step procedure beginning with its first
step (here 11) and terminating with its last step (here 15), enter the
statepent

CALL PART 15

Since the CALL statement 1is in the direct mode, it will caudse
execution of part 15 to take place immediately. Assuming that the
variables X, Y, DELTAX and DELTAY have been defined, X, Y, and ExY
will be assigned new values. Following the execution of a part (here
part 15) invoked by a direct command, BRUIN will halt execution with
the statement

"EXECUTION HALTED AT END OF PART 15"

In the indirect mode, at the termination of the specified part,
control passes to the statement following the CALL.

26

gggmglg_llL Assume part 25 of example 16.

2.51 CALL PART 15
2.91 PUT X,Y,FXY

On entering a CALL PART 2 in the direct mode, the order of execution
here will be 2.51, 15.11, 15.15 and 2.91. The point to observe here
is that control of execution is returned to the statement following
the CALL statement (here 2.91). |If no errors have been encountered,
execution will halt with the statement

"EXECUTION HALTED AT END OF PART 2."

QQ_ﬁjaxsmgnL__

It was stated earlier that BRUIN will stop execution of a stored
program when an error is encountered. The user may correct his
error and continue execution at the point of error. This is done
by typing in the correction and then issuing the direct command GO.

Assume that in Example 16 X is initially 0, DELTAX is 1, DELTAY is 1
but that Y was not given an initial value. When the statement of
step 15.11 is executed, BRUIN will issue the error statement ’

"ERROR AT STEP 15.11: UNDEFINED SYMBOL"

Entering the statements

SET Y =1
GO

Will cause execution to resume by executing step 15.11 again. A
word of caution is necessary here. Because X was already evaluated
as 1 before BRUIN discovered the error, X will take on the value

2 when execution resumes at step 15.11

The GO command will not cgus?’gxecution to resume when BRUIN
interrupts because of @n infinite }loop.

S~ 27

TO statement

There are two forms of the TO statement. One form is

<part and step nuaber> TO PART <part number> *

* (In place of TO, GO TO may be used)
This TO statement causes control to be transferred to the ficst
statement in the specified part. To 1llustrate the difference between

a TO statement and CALL statement Example 17 is revritten replaciny
statement 2.5%1 with a TO statement. :

Example 18.)

15.11 SET X=X+DELTAX,Y=Y+DELTAY
15.15 SET PXY=X*SIND(Y)/COSD (X) ¢+3*X

2.51 To part 15
2.91 Put X, Y, FXY

On a CALL PART 2, the order of execution will be 2.51, 15.11, 15. 15,
Cecntrol of execution is not returned to the statement following the TV
part 15 statement (here 2.91) as it is with a CALL.
Another form of the TO statement is

<{part and step number> TO STEP <part and step number> =

#(In place of TO, GO TO may be used)
This TO statement causes control to be transferred to the statement

with the specified part and step number.

Exanmple 19.

15.11 SET X=X*DELTAX,Y=Y+DELTAY -
15.15 SET FXY=X*SIND(Y)/COSD (X) +3*X
2.51 TO STEP 15.15

2.91 PUT X,Y,FXY

Oon a CALL'PART 2, the order of execution will be 2.51, 15. 15. Tais -

form of TO permits transfer of control within a part.

The TO statement is valid only in the indirect nmode.

28

IF statement

The IF statement causes BRUIN to test a value and proceed in one ot
two possible paths. The Boolean expression in the IF statement is tne
value that is tested. The clauses THEN and ELSE describe the two
possible actions. The simplest form 1is

IF <Boolean expression>, THEN <command>

If the Boolean expression here has the value true, the THEN clause 1is
executed. If the expression is false the THEN clause is not executeca.
Execution proceeds with the statement following the IF statement. Tue
word THEN may be omitted but not the punctuation ¢(,).

¥

Example_ 20. ‘
1.5 IF b]2-4*a*c<0, TYPE "ROOTS COMPLEX"
1. 6 - - -)

»

If the expression b2-4ac is less than zero, the TYPE command 1s
executed followed by -execution of statement 1.6. If the expressiovu
b2-4ac is greater than or equal to zero, control passes directly to
statement 1.6. '

The other form of IF has an ELSE clause as well as a THEN clause.
IF <Boolean expression>, THEN <command>; ELSE <command>
If the Boolean expression has the value true, the THEN clause 1is

‘executed. If the expression is false, the ELSE clause 1s executeu.
The words THEN and ELSE may be omitted but not the punctuation (,;).

3.9 SET A = x<3 30R X>5
3.91 TIF A, TO STEP 4.0; ELSE TO STEP 4.3

In this example A 1s a Boolean variable. If A has the value TRUL,
transfer is made to step 4.0. If A has the value FALSE, transfer 1is
made to step 4.3. '

29

~

Example 22. Assume that the user wished to accomplish a
three-way branch depending on whether x is 1less than, equal to or
greater than y and then wished to return to the statement following
the IF statement. :

1.998 IF x<y, CALL PART 3; ELSE IF x=y, CALL PART U4;
ELSE CALL PART 5
1.999 - - L

3.1 - -
3.999 SéT°FiY = SIN(x-y)/x
4.6 « ¢ e
4.999 SET FXY = 1.
5.998 « o o
5.999 SET PXY = x/(x|2-Yy12)
In Example 22 the inteiprefer compares x and y. If the 1less than

relationship is true, part 3 is executed beginning with step 3.1 and
ending with 3.999; control then returns to statement 1.999 by virtue

of the interpretation of a CARLL command. If x is not less than y, the .

ELSE clause <causes x to - be compared with y again in an equality
relationship. If x is equal to y, part 4 is done; otherwise part 5.

Following both part 4 and part 5, step 1.999 is -executed.

The interpreter will take any BRUIN command in the THEN, ELSE clauses
but care must be exercised im using another IF in the THEN clause. 1If
the expression is false, the 1interpreter 1looks for the command
following the first semicolon. For example, : - :

1.1 IF a>b, THEN IF c>d, THEN TO STEP 1.4; ELSE TO STEP 4.2;
ELSE TO. STEP 4.3)

is interpreted as if the statement were written

1.1 IF a>b,. THEN ' IF c>d, THEN TO STEP 1.4; ELSE TO STEP 4.2 "

In other words} if both a is greater than b and ¢ is greater than 4,
branch to step 1.4; otherwise branch to step 4.2. Another way of
writing this statement is ' “

1.1 IF a>b $AND_c>d, THEN TO STEP 1.4; ELSE TO STEP 4.2

30

o

N

FOR_statement

‘The FOR étatement, specifies that a command is to be repeatedly

executed until a specified criterion is satisfied. The forms of the
FOR statement vary in the stopping conditions and vary in the manner
in which the values of a control variable are stated. All forms will
take any BRUIN command except a TO command.
The simplest form repeats an object command for a list of values:

FOR <control variable> = <list of arithmetic expressions

separated by commas>:command>*

*(The keyword DO may be used in place of FOR; DO and FOR are
equivalent). -

e ——— i D 2 e

101.5 FOR SUB = J,2%J,4*J,8*3: GET A(SUB)

This statement will cause the GET command to be executed four times.
Assuming J is 1, the interpreter will request values for A (1), A(2),
A(4), A(8). This statement could have been written

101.5 FOR SUB = 1,2,4,8: GET A{SUB)
Another form of the FOR statement specifies an initial value,
increment and final value for the control variable. The general form
is: .

FOR <control variable> = <initial value> BY <increment> TO

<final value> : <command>

Example 24.

"101.5 FOR sub = 1 BY 1 TO 3*i: GET A(sub)

Assuming i is 2, the variable sub will take on the values 1, 3, 5. 1In
this form of the FOR statement, the command GET A (sub) is executed for
the initial value. Then the control variable (here " sub) is incre-
mented (here by i) and compared to the final value (here 3%*i). When

31

7

the value of the control variable is greater than the final value, the
loop is terminated. If no increment is specified, an increment of one
(1) is used. If the final value specified is less than the initial
value, the command is executed once. An infinite loop can occur if an
increment is chosen which will cause the limit never to be reached.
(e.g. initial value =1, increment = -2 and final value 2).

The BY,TO form of the FOR statement may be combined with the list fora
as in the following example:

1.1 FOR ID =0, 1, 2 BY 2 TO\8,9: CALL PART 8
ID here takes on the values 0,1,2,4,6,8 and 9. Any number of BY,TO

combinations may be used in the list. If BY is omitted the increment
is assured to be ome (1) until the TO limit is reached.

There exist two additional FOR list forms. They are

FOR <variable>=<initial value> BY <increment> UNTIL <Boolean
- expression>:<command>

FOR <variable>=<initial value> BY <increment> WHILE <Boolean
expression>:<command>

FOR a=b BY 2 UNTIL a>z: DELETE X(a)

The conmand DELETE X (a) will be repeated for successive values of a,
until 2 is greater than z.

Example 26.

1.6 FOR a=b BY 1 WHILE R<S5: CALL PART 14

‘The command, CALL PART 14, will be repeated for a = b, h+1,...és long

a8 R is less tham 5. In the UNTIL and WHILE forms, if no increment is
specified the control variable (here a) is not incremented. Care must

be taken that the Boolean expression (R<5) in example 26 is not always

true. The value of R must at some time in part 14 be set greater than
5 or an infinite loop will result.

32

STOP statement

If the user wishes to stop the execution of his program and perhaps
check some values before continuing, he may use a STOP statement in
the indirect mode. Assume that the following part is stored:

1.66 SET DIS = B|2 - U.*A*C
1.67 Stop v

1.68 SET D = SQRT (DIS)
1.67 TYPE (-B+D)/(2.%*A)

On the command CALL Part 1, statement 1.66 followed by statement - 1.67
will be executed. The message "STOP AT STEP 1.67" will be issued by
BRUIN. BRUIN will then wait for further instructions. At this point
the user may' make changes or look at D to see if it is negative by
typing in the direct mode. - i :

PUT D

A GO would cause the prograr to resume execution at statement 1.68.

DONE statement

<part and step number> DONE

The DONE statement causes the interpreter to halt execution of a part
by signalling a logicai end. It differs from the STOP in that
execution of the stored program does not stop. Execution continues as
it would at the physical end of a part.

The DONE statement is valid only in the indirect mode.

33

s e e e e i S o S

1«5 FOR I = 1 TO 8: CALL PART 3
3.3 SET B(I) =0 .
3.4 IF A(I) $LE 0, DONE

3.5 SET B(I) = A(I)

3.6 DONE

CALL PART 1

In Example 27 the values of A(1) through A(8) will be compared with 0.
If the value of A(I), where I = 1,2,...8, is greater than 0, step 3.5
will be executed. If A(I) is less than or equal to 0 steps 3.5 and

3.6 will not be executed. An equivalent process could be accompiished
by replacing step 3.4 with

®

3.4 IF A(I) $LE 0, TO STEP 3.6

&

34

PROGRAENM CHANGES

When BRUIN is waiting for a command, the user may enter either a
direct or indirect statement. If a statement with a new step is
entered, that statement will be inserted in proper sequence 1in a part.
If a statement is entered using an old step number, the old statement
will be removed and the new statement will replace it. .

DELETE statement

If in further execution certain variables, parts or steps are no
longer needed these may be deleted, thereby reducing storage
requirements.

1]

Steps, parts and variables may be deleted selectively by statements of
the form:

DELETE STEP <part and step number>

DELETE PART <part numbex>

=3

DELETE <list of variables separated by commas>

Examples:
5.7 DELETE STEP 5.1
DELETE PART 4
DELETE X ,Z2(6),Z2 (1)
After the execution of a DELETE command, for example DELETE X, the

variable X is no longer defined and reference to it will generate an
error report.

35

All values or parts may be deleted by the following statements:

DELETE ALL VALUES
DELETE ALL PARTS
The first statement will 1leave the defined parts and delete all

variables. The second statement will leave the defined variables and
delete all parts. ’ '

To delete everything belonging to the user (parts and values) the
statement

DELETE ALL

Ut
(1]

STORAGE REQUEST

When a user makes a request to run a BRUIN 3job he 1s initially
allocated a fixed amount of core. If more space than has been
allocated is needed at some point in a job, the interpreter will send

'~ a message

"NEED MORE SPACE"

The user may'free part of the fixed space allocated to him by issuing
a form of the delete command. If this is not feasible he may request
more space with the ALLOCATE command.

"ALLOCATE statement '

ALLOCATE <number of.blocks(1 to 9)>

ALLOCATE 3 requests 3-blocks of storage, each of which will hold about
120 values. If there is insufficient core to fulfill this request,

BRUIN will issue the message

N

, "LAST N NOT ALLOCATED"

For example, if BRUIN were unable to allocate one of the three blocks
requested, the message would be

"LAST 1 NOT ALLOCATED"

The wuser may continue with the 2 blocks allocated. If BRUIN were .
unable to allocate any of the 3 blocks the message issued would be

“"LAST 3 -NOT ALLOCATED™
The user should request space at a later time.

ALLOCATE may be used in the direct or indirect mode. -

37

FILE MAINTENANCE

SAVE Statement

The SAVE statement enables the user to save BRUIN programs and/or
values as a file which can be loaded into core at a later time.

The list of items to be saved may contain:

1. " names of variables,

2. the keywords ALL PARTS,

3. the keywords ALL VALUES,

L., the keyword ALL,

5. the keyword PART followed by a part number.

The filename is a name of from one to eight alphabetic or numeric
characters, the first of, which is alphabetic. |If the alphabetic
characters in the filename are not upper case, BRUIN makes them
upper case. This change in name prevents a user from creating files
which cannot be accessed or manipulated by CMS commands.

- SAVE as <filename> (list of items separated by commas>

Example 28:

V(1) =0 :
FOR | = 1 BY 1 WHILE 1<10: SET A(I) = EXP (V(1)), V (1 + 1) =
v (1) + .1

SAVE AS EXPTBL ALL VALUES

In example 28, the SAVYE command causes the variable names and values
of A (1) through A (9), V (1) through V (10) and the final value of
I to be saved in a file called EXPTBL BRUIN. In order to use the
file at a later time, you must use the same fllename in a LOAD
statement. ' '

LOAD EXPTBL

The SAVE command will replace with the new file if a previously saved
file exists with the same name. :

SAVE is valid in both the direct and indirect mode.

A1l files created by BRUIN have a filetype of '"BRUIN",

38

_L_QAD_S.I.a_tgmsaL

LOAD <filename)

The LOAD command causes a file to be loaded into the users

core area. |f the user has defined parts or variables before
issuing the LOAD command, the parts and variables will be merged
with the file being loaded. Merging is done in the following
manner:

1. |If a part or step defined in core has the same number
as a part or step in the file, that part or step in
core will be replaced by the part or step in the file;
otherwise both parts and steps will be retained in core.

2. If a variable defined in core has the same name as a
variable defined in a file, the value of the variable
in core will be replaced by the value of the variable
from the file.,.

Exémgle 29:

X (1) = .1
FOR 1=1 BY 1 WHILE I <10: SET AC!)=SIN (X(1)), X(1+1)=X(I1)+.4L
LOAD EXPTBL

Assume that EXPTBL refers to the file in Example 28. Due to the
nature of the LOAD merge, A(1l) through A(9) in core will be re-
placed by A(1) through A(9) from the data set EXPTBL. In addition,
the variables V(1) through V(10), X(1) through X(10) and | will be
defined in core.

"LOAD is valid in the direct and indirect mode.

39

e

"OTHER FEATURES

Aggxgords Operands

Various keyword operands such as ALL, ALL PARTS, ALL VALUES, STEP and
PART are valid in the DELETE statement, simple PUT statement and SAVE
statement. 1In addition to the above operands there are three operands
which are acceptable in either the PUT statements or as operands in
expressions. They are THE SIZE, THE TIME, and THE DATE.

THE SIZE is a floating point number which

~is the number of free elements left in
users core area. It is approximately the
number of new values that users core area
can still hold. ‘

THE TIME is a floating point number
which gives the time since midnight

N in hundredths of a second.

THE DATE is a character string value
of the form YYDDD. ' YY is the

tens and units digit of the year and
DDD is number of the day with January 1
‘as day 1.

Example: The statement
"PUT THE TIME, THE DATE

produces two lines of output as follows:

THE TIME= 0.5391474E+07
THE DATE="68220 "

4o

Comment Statements

A statement beginning with a C followed by one or more blanks

is accepted by BRUIN as a user comment line. To place such a
comment in a part, write the part-step number followed by a blank
followed by the letter C. Comment statements can be used anywhere
in the program. (See sample program, Appendix A).

S . Prc I

The SPACE key-in,add?fien to producing blanks serves another
important function in BRUIN. If a user program appears to BRUIN
to be doing too much computing without writing or reading, BRUIN

will stop computing and,interrogate you simply with a question

mark: '

€

1" 1

?

i the user wishes to continue at the point where BRUIN stopped
the program, he must enter at least one blank (press the space
bar at least once) and then press carriage return., I|f the user
dces not wish to continue at the point where BRUIN stopped the
program, he may type any command. BRUIN will process that command. '

L1

MATRIX STATEMERNTS

In order to treat doubly subscripted variables in a notation similar
to a mathematical matrix notation, a set of matrix statements has been
included in the BRUIN language. The matrix statements begin with the
keyword MAT and may be used in either the direct or indirect mode.

An mxn dimensional BRUIN matrix A is a subscripted variable A(M,N)
which is defined for all combinations of the first subscript varyiny
from 1 to M and the second subscript from 1 to N. A column vector
which is the result of a MAT instruction has an explicit second
dimension of 1; a rov vector has an explicit first dimension of 1. A
matrix or scalar which appears in a MAT instruction may appear in non
MAT instructions as a doubly subscripted variable or in the case ot
the scalar as a simple variable. The interpreter makes no attempt to
keep the dimensions of a matrix fixed to the original dimensions.
Therefore a matrix which was 1input with row size 3, column size 2 may
as the resultant matrix 6f an arithmetic operation have a differeat
row and column size,

Matrix Input statements

There are two matrix input statements comparable to the ordinary Bruin

1nput statements:

MAT GET <matrix name> (<row size> , <column size>) =x

or

MAT GET LIST <matrix name> (<row size> , <column size>) ¥

*(The keyword DEMAND'mdy be used in place of GET)
The expression for row size and column size must be an arithmetic
expression or arithmetic constant greater than or equal to 1. If tne
expression is not an integer, it is truncated to the nearest integec.
The MAT GET statement prompts the user for all elements of the matrix.
Let m be the row size and n be the column size of matrix a; then tne
MAT GET statement is equivalent to the non matrix BRUIN statement: °

FOR i=1 TO m: FOR j=1 TO n: GET a(i,j))
The MAT GET list statement behaves as its non-matrix counterpart in

that the input may be in the form of a list of elements separated uy
commas.

L2

The elements of the matrix must be listed row-major order; that is,
the value for a must be listed in the order

In both forms of the MAT GET statements the matrix, if previousiy
defined, must specify a subscripted variable. The subscripted varai-
able will be redefined as a matrix where the dimension of the matrix
will be changed to the rov size and column size specified.
Example 30:
MAT GET a(2,2)
The interpreter will prompt with

a(1,1=>

The user then types the value he wishes to enter for this matiix
element. Then the interpreter types

a(1,2)=>

The user responds again with a value. Similarly, the interpretel
prompts for a(2,1) and a{2,2). Just as in a non MAT statement, the
user response may be an arithmetic expression involving a previously
defined variable. For example, the response for a(1,2) could have
been a (i1,1)**2. '

Assume that matrix B= 11 12 13
21 22 23

Example 31:
To input this inm a list fora the command is
BHAT GET LIST B(2, 3)

The intérpreter responds with a >. The user may then input

11,12,13,21,22,23

u3

- Matrix OQutput Statements

MAT PUT <matrix name> (<rov size> , <column size>) *

or
MAT PUT LIST <matrix name> (<row size> ; <column size)) ¥
* (the keyword TYPE may be used in place of PUT) |

The expressions for row size and column size, give the dimension ot
the matrix to be printed. This need not be the full dimensions of tae
matrixe.

Let 3 be a matrix with row size m and column size n. The simple {AT
PUT 1s equivalent to the BRUIN statement: :

FOR i=1 TO m; FOR j=1 TO n: PUT B(i, j)

One element of B per, line will be ptinied along with its
identification,. .

The MAT PUT LIST closely resembles its PUT LIST counterpart in tuat
the output will be in columns with a maximum of 5 coluans per line.
liowever, only one matrix row is written per line. Thus, a 3Ix3 matcix
is written as 3 lines with 3 entries per line. TIf a aatrix has nmoce
than 5 columns the remaining elements of the row are printed on 4
following line or lines, indented to the second column.

Example 32: To output the matrix of example 31, execute the
following statement:

MAT PUT B(2,3)

The intorpreter responds with
B(1,1)= 11.0

B(1,2)= 12.0
B(1,3= 13.0
B(2,1)= 21.0
b(2,2)= 22.0
B(2,3)= 23.0

L

Exapple_33:
MAT PUT LIST B(2,3)
The output will be
- 11.0 12,0 13.0
21.0 - 22.0 23.0
It is permissable to specify a smaller row size, j, or column size, X,
‘in either MAT PUT statement than is defined for the matrix. BRUIN
will simply output the upper right hand jxk partition of the matrix.
Assuming the matrix B of example 34, the statement
MAT PUT LIST B(1,2)
will produce the line

11.0 12..0

Matrix_ Expressions

A BRUIN matrix expression consists of at nmost one operation. The
operation may be addition, subtraction or multiplication of two
matrices, multiplication of a matrix and a scaiar, multiplication ot a
matrix and a vector (singly subscribed variable), or the evaluation ot
special BRUIN matrix functions. 1In some cases the dimensions of tae
matrix operands are reguired to fulfill certain constraints such as is
required in conventional matrix algebra. 1In the case of the bindary
orerations the two matrix operands are examined to insure that tae
operation 1s <conformable. In some of the matrix functions such as
determinant evaluation the matrix must be square.

Table S describes in detail the permissable matrix expressions; Tawule
6 describes the available BRUIN matrix functions.

45

I

Expression Definition Dimension of Dimension _of Dimension_ ot
A : B Result
A+B matrix add » mxn ~ mxn mxn
A-B mat;ix subtract mxn mxn ‘mxn
A*B matrix multiply mXn nxk mxk

A%*s multiplication'

| of a - ;xn mxn
S*) scalar aqg_matrix

V‘A mxXn , ' 1xn
A%V : © nxm nx1
Function (A) -

A=3B assignment . mxn mxn

A and B are Bruin matrices; s is a constant or simple variable;

Vis a singly subscripted variable of dimension M.

(o e e e e e G e o — — o — A — — s Bowt s e rhe - - — ——- —— G ——. — -
e o - - e G e Gee e e M G G Gne G- G G G e S G G St B G G Gme W e G o G of

Table 5. Matrix Expression

L6

o Co e cim s e G G e e e e . m— e —— — — G2y

TRA (A)
TRS (A)

IDN(s)

L

nxn matrix A
nxn matrix A
nxn matrix A

nxm matrix A

Result
detetminant (A)
inverse of A
trace of &

transpose of A

positive constant identify

or variable matrix

B

Dimension_of result

simple scalar
nxn
simple scalar .
axn

pxp

wvhere p is the integer

part of s

4 is a Bruin matrix; s is a constant or simple variable.

*

Table 6.

Matrix Functions

L L I Ry SRS S —)

rd

o — -

Matrix Assignment Statements

o o e o —— ——— € T—— ——— G <55

MAT SET <variable name>=<matrix expression>,<variable name>=<matrix
eypression) ,etc.

The MAT assignment statement assigns the value of the matrix expres-
sion on the right hand side of the equal syambol to the variable on tne
left. Not only does the matrix expression give the variable a vailue
but defines its type (e.g. simple scalar, matrix). If the variavle
on the left has already been defined as an arithmetic subscripted
.variable, it can be redefined as a matrix. ©No attempt is made in MAT
instruction to keep the dimension of a matrix fixed. Example 37 1s
given as an illustration of changing dimension sizes. The keyword SET
is optional. ' -

*

Example 34: Assume that matrix B is a 3x2 matrix, G is a 2x2
matrix, and R 1s a 2x2 matrix. The object is to compute GR™1B*.

"~ MAT SET B=TRS (B),RI=INV(R},3=RI*B
MAT B=G*B ~

In example 37, according to the rule of matrix expressions, only one
matrix operation per assignment 1is made. The first statement is a .
multiple SET statement with the assignments being performed from lerft

to right. First the transpose of B is stored into B. The dimension
of B is now 2x3. Secondly, the inverse of R is stored into RI and the
product of BRI and B transpose 1is computed. Finally, RI*B 1is

premultiplied by G-and the result stored in B.

L8

http:dilllens1.on

SUMMARY

For a summary7of the BRUIN instruction set, see Appendix A,
part 1. .

A complete sample program as typed on the 2741 console appears

~as part 2 of Appendix A.

Any comments about the organization or content of this manual
or improvements to the language will be appreciated.

€

L9

APPENDIX A

1. __Table of Igggguc ions

e 2

command
ALLOCATE
CANCEL
DELETE

GET (DENANDJ
CALL

DONE

FOR (DO}

GO

IF

LINE

LOAD

MAT GET

MAT PUT

.~ MAT SET

SAVE

- SET

STOP
TO

PUT (TYPE)

> ——. S— g <

mode

direct/indirect
direct
direct/indirect
indirect
direct/indirect
indirect
direct/indirect

direct.

. direct/indirect

direct/indirect
direct/indirect

direct/indirect

" direct/indirect

direct/indirect

direct/indirect

direct/indirect
indirect
indirect

direct/indirect

50

” 2. _Sample Program and Output

>1.0 C sample program to solve guadratic equations

>1.1 put "Program to Solve Quadratic Eguations®

>1.2 put " a¥xEx+h*x+c=0"

>1.3 for i=1 to 3: line

>1.4 put "Enter Coeffxczemta

>1.5 get a,b,c

>1.6 set dxscr1n=b*b-u*a*c _

>1.7 if discrim<0, then call part 2; else call part 3

>1.8 line :

>1.9 put "Enter 0 to terminate, 1 to continue"

>1.91 get ans \

>1.92 if ans=1, then to step 1.3; else if ans=0, done; to step 1.9
>2.1 put .®roots are complex® .
>3.1 set rootil={-b#+sqrt(discrim)) /(2*%a)

>3.2 set root2=(-b-sqrt(discrim))/ (2*a)

>3.3 type " "," %, rootl,root2

, >CALL part 1

_/\\ Program to Solve Quadratlc Equations

a¥x*x+h*x+c=0

Enter Coefficients
a=>1. .
b=>10.
C=>‘u0.

rooti= 3.062255
root2=-13.06225

Enter 0 to terminate, 1 %o contigus
ans=>1.

Enter Coefficients
a=>1.

b=>0.

c=>1. '
Roots are complex

Enter 0 to te:mxnateﬁ ! to continue

/A\ ans=>0.
~ 7 EXECUTION HALTED AT END OF PART 1.

51-

vy

name

———

o

1. _BRUIN Ch

APPEHDIX B

blank (space bar omn console)

equal

plus sign

minus sign
asterisk

slash ,

left parenthesis
right parenthesis
comma

point or period
semicolon

colon '
“NOT" symbol
"AND" symbol
vertical bar
"greater than®
“less than"®
double quotation
apostrophe
dollar sign

cent sign
exclamation point
percent sign
underscore
question mack
pound sign

at sign

@ % Wi

Wos MR » SA V= M J oo s ™o\ #i * i

52

»

LOG2
LOG
EXP
SQRT

SIN

ATND
ERF

ERFC

SINH

2. Built-In Mathematical
1

value returned error co

x|
log (x) base e
log (x) base 2
loé(x) bﬁse 10

e to the powvwer x

*

~square root of «x

sin(x), x in radians

cos(x), x in radians
sin{d), d in degrees
coS(d),~d-in degrees

tan(x), x in radians

tan(d), d in degrees

arctan (x) in radians,
=pi/2<ATAN (x) <pi/2

arctan (x) in degrees,
~90<ATAN (x) <90

24w XEXP_ (-u?)du
o _ ’

1 - ER?(xs

sinh{x)

x<0

x>174.6731

x < 0
jxjs218
{xj<218
fx|s218
jxjs218
jx1<2i8

jxjc2e

-

pi

pi

180

180
pi
180

x>174. 6731

Abs (x)
Ln (3*2) |
log2(3%z+5)
LOG (x)

EXP (5. 1)
sqrt (3. 14/5)
sin{d*b)
cos (3.1/8)
sind (360/4)
C0SD(360/8)
TAN (3.14/4)
TAND (a*b)

ATAN (2)

ATND (2)
ERF (. 8)

ERFC (2. *x)

SINH (3. 1%x)

53

COSH cosh (x} _ x>174.6731 COSH (x)
TANH tanh(x) - - TANH (2)

ATNH inverse hyperbolic ABS (x) £1 atnh (x)
tangent of «x

1P ‘ integer part of é nunbetﬁx - IP(3.15679)
~ sign of x times largest integer <|x| '

FP - fractional part of a number - PP (x*z)

* RAND uniformly distributed random x <0 RAND (X)
numbers between 0 and 1. : :
o o _)
GAMA u EXP(-u) du ’ x<2—-2s52

0 , or ,
‘ : x>57.5744 GAMA (3%X)

**FACT' x!where x!=x(x-1) (x-2) c.- x<2—-282 FACT (3)
or
x>57.5744

*For the first entry, x should be an odd integer. After the first
entry x should be set equal to the previous result of the RaND
function. ’

** y! is computed using the relationship x!=GAMA (x+1)

S5h

e
o i WA

