‘o

o R i

36.010

A Virtual Machine System for the 360/40

= R. J. Adair
2° R. U. Bayles
' L. W. Comeau
R. J. Creasy

IBM Cambridge Scientific Center Report

International Business Machines Corporation
Cambridge Scientific Center
Cambridge, Massachusetts

a May, 1966

36,010
May, 1966
Scientific Center Report

A VIRTUAL MACHINE -
SYSTEM FOR THE 360/40

R. J. Adair
R. U. Bayles
L. W, Comeau
R. J. Creasy

International Business Machines
Corporation

Cambridge Scientific Center

Cambridge, Massachusetts

Abstract

\\bA virtual machine system, which provides copies of a 360
computing system for concurrent use by separate operating
systems, has been implemented for the IBM 360 Model 40,

The user at a terminal interface of a virtual 360 has all of

the capability, with minor restrictions, provided by a stand-
alone system., The system was designed as a system evaluation
tool and as such, CPU efficiency or throughput improvement
was not a primary design geal. ||

Index Terms for the IBM Subject Index

Computers

IBM 0360-40
Computing
Programming
TimeySharing
07-Computers
21-Programming

g 1101008

II.

IIL

IV,

V.

TABLE OF CONTENTS

INTRODUchoN.....l.....'.O...l.’l..‘........l

HARDWARE IMPLEMENTATION, ccovescsscsccsse3d

PROBLEM MODE OPERATION OF THE
ASSOCIATIVE MEMORY.........."....‘....4

CONTROL PROGRAM STRUCTURE..ccsesscsceess D

INPUT‘OUTPUT OPERATIONS.'.....OIOII...Q.ll?

LIMITATIONSQDOCIIOOIOOOOI'................Q‘Qlo

I. INTRODUCTION

Late in 1964, the IBM Scientific Center (formerly Systems
Research and Development Center) at Cambridge, Massachusetts,
undertook a project with a number of objectives., Among these were:

- the development of means for obtaining data on the opera-

tional characteristics of both system applications programs;

- the analysis of this data with a view toward more efficient

machine structures and programming techniques, particularly

for use in interactive systems;

- the provision of a multiple-console computer system for

the Center's computing requir;ments;

- the investigation of the use of associative memories in the

control of multi-user systems.

A system was designed which we thought would satisfy these goals
and, inaddition, provide other useful features. Efficiency in CPU
utilization was not a primary design consideration.

Central to the idea of this system is the concept of the 'virtual
machine! and, in our case, the 'viriual 360"(1}. Because of our desire
to be able to measure a broad spectrum of programs, it is important
that the imposition of a measuring system results in minimum alteration
of the characteristics of the subject program. The '"virtual 360"
concept effects this minimum while providing the flexibility also
required for the raulti-user environment. In this system, the subject
program ilnteracts with the multi-user controller in the same

manner as with the physical machine, and not by specially designed

. ‘supervisor calls or subroutine calls as in currently implemented

RSB

O R B S N N

multiprogramming packages. The program does not ''see'' the software

interface between it and the physical hardware,

Within these virtual "360's" (called 360's), programs such as
operating systems, which were initially designed to run on a hardware
machine, may be run without change. In order to use the available
facilities more efficiently, the Control Program supporting these
multiple 360's performs the traditional multi-user tasks, such as

scheduling, resource allocation, and core management,

We have created, thereio-re,' a multi-user system where each user's
virtual machine can run the programming system of his choice. None
of these programming systems need consciously make use of multi-
tasking faf:ilities to improve machine utilization. Two other advantages
accrue from this design - the ability to dynamicaly alter the virtual
machine's configuration (core, size, available input-output units and
paths), and the ability to assign more than one virtual 360 to a problem

in order to examine the applications of multiprocessing.

We are providing sixteen virtual machines which may address 256K
bytes of main storage, a maximum of one multiplexor and two selector
channels, and a console typewriter. Some of the virtual machines may

have additional typewriters, tape units, and a 2250 display console

assigned to them, A user is normally supplied with three disks - - one

TR

I N T T R B R T A S T T e 20 N e

fead-only disk is to secure for all users access to a library of often-used

systems and routines, while providing the protection necessary in &
multi-user system. The permanent disk provides continuing storage
capability to the user. The temporary disk is available to a virtual
machine for the duration of the session only. The user retains complete
control over the formai and use of his permanent and temporary diék
space. Programs may be loaded into the user's virtual machine by name
from the read-only disk, or by location from any device attached to the

virtual machine.

II. HARDWARE IMPLEMENTATION

To provide these virtual 1achines, the Center obtained a modified
System 360/40(2) with a multiplexor and two selector channels, interval
timer, storage protection feature, univer\sal instruction set, and 256K
bytes of main storage. Its input-output equipment includes a console
typewriter, line printer, card reader and punch, 2702 Transmission
Control with remote terminals, four 2‘3;1 1 disk drives.on two control

‘ . units, two 2401-III tape drives, and a 2250 display unit with a 4K buffer.

The CPU has been modified to permit dynamic relocation of

storage addresses by the addition of a 64 word (one per 4096 byte page

t

of core memory) by 16 bit associative memory (Figure 1). A privileged

operation to load and interrogate the memory has been added to the

l ; instruction set. (see ngdie 1.)

o

IIIl. PROBLEM MODE OPERATION OF THE ASSOCIATIVE MEMORY
When the CPU is in problem mode, each main storage add:ress
presented to memory is mapped by the following method (see Figure 2):
the high order six bits of the eighteen bit memory address
plus the user identification number (set by the Control Program)

are presented to the assvciative memory for a match;

if a single match is found, the address of the selected row of
the memory replaces the high order six bits on the memory

bus, and the memory select takes place;

if a multiple match condition {an error which should never
occur) or no match (requested page is not in the memory)
occurs, an interruption is generated and the Control

Program mu.t take the appropriate steps to resume execution.

This mapping takes place with no degradation of Model 40 cycle time.
Six bits of the associative word are provided to assist the!

scheduling section of the Control Program in selecting the least costly

(i.e. least likely to be brought back) page to roll out when additioxi'al mai*.

memory space is required.

The used bit is set when a match condition is found for a

row of the memory, indicating a reference to the correspond-

ing page, and is reset when all of the pages represented by

b 1101110

the entriesv i.n the memory i:ave been either referenced or
are locked;
/ the active).ait is set at the same time the uaed. bit is set, ;
but is not,like the used bit, automatically reset; |
! | the changed bit is set when the instruction causing the
match condition coqld result in alteration of the contents
of the corresponding page;
the lock bit is set by the control program and is interpreted
by it to mean that the page may not be removed from
raemory:;
the transit bit is used by the control program to indicate that

the page is currently being brought in or dumped out;

one spare bit is provided for unspecified use,

IV. CONTROL PROGRAM STRUCTURE

When the Control Program code is being executed, the machine

is in the supervisor state; at all other times it is in the problem state.

Any action of a virtual machine which could cause a change of machine
state results in an interrupt. The Control Program, then, is an interrupt)
driven system whose components reference a set of tables describing the
state of a users' virtual machines. For each user, this table (UTABLE)

contains a copy of the current Program Status Word (PSW) and the user's

b general purpose and floating-point registers, the locations of the user's

virtual mernory pages (which are either core or disk resident), a

description of the ihput-output equipment and its status, a copy of the
user's interrupt region, and other similar information.

There are two basic types of interrupts handled by the Control
Program: 1) those which invoke a section of the Control Program to
perform some function for _the virtual machine, and 2) those which
require no special action by the Control Program and are 'reflected"
to the virtual machine (such as supervisor call and most program
interrupts caused by overflo;av conditions, protection violations, addressing
errors, etc.). The reflection of interrupts to the virtual machine is
performed by the appropriate swapping of PSW's in UTABLE and
setting the proper interrup%m codes there.

If a virtual machine's current PSW contains the wait bit or if its
execution has been delayed due to the temporary unavailability of a nec-
essary resource, it is considered not runnable. At the occurrence of an
interrupt which could affect the runnability of a machine, UTABLE is
examined for interrupts pending which are enabled. If an enabled pending
interrupt i¢ found, the appropriate "reflectz;.on" of the interrupt takes
place (moving of the current PSW to one of the old PSW's, and of the
corresponding new PSW to the current PSW).

A privileged operation interruption (caused by an attempted
execution of a privileged operation while in problem mode) results in

one of two actions, depending on whether the virtual machine was in

——

NS fao iR IRt SR GBS il S7.5 N

problem or supervisor mode. If the virtual machine was in problem
mode, the interrupt is merely reflected to the virtual machine. If the
virtual machine was in supervisor mode, the action of the priv-ileged
operation, with the exception of input-output operations which are handled
separately and discussed in a later section, must be simulated by the
Control Program by appropriate changes in UTABLE,

A timer-initiated external interrupt controls CPU scheduling
among the virtual machines. Each machi;ne is allotted a quantum of time
to run (which may be sliced into smaller intervals for timer simulation
purposes) énd, at the completion of that interval, a roum}-robin scan is
made of the users to ascertain if another virtual machine\‘\is runnable.

An interrupt from the associative memory, causec& by an attempted

reference to a page not core resident, invokes the core ma‘nagement and
““scheduling routi.nes. The missing page is indic ated by the interruption
code and the paging routines must schedule a page to be rolled out
(according to algorithms which will be a chief point of stud"\y), a2nd the
appropriate page retrieved from disk. For the duration of the ''page turn-

ing", the virtual machine is placed in not runnable condition.

V. INPUT-OUTPUT OPERATIONS

The input-output equipment generaily falls into two classes: high
data rate devices on the selector channel, and low data rate devices on
the multiplexor chanrel. These characteristics, together with the need

to share unit record facilities, the expected programming mode of the

A e

..

typewriier devices, and the differences in the logical structure of the
channels, make it desirable to handle selector channél and multiplexor
channel input-output operations separately. 1
. e
Much of the selector channel input-output is not conveniently !
iﬁterruptable; therefore the channel programs are prescanned a;& 'all
referenced pages are brou_ghi: into core and held there for the duration
of the operation. During this scan, virtual data addresses are converted
to real core addresses, eliminating the need for translation hardware
associated with the channels. Similarly, direct access storage addresses
(bin, cylinder, and head numbers) sper 4 within the channel program

are modified to provide partitioning of these devices, thus sharing the

units among the virtual machines. The modified copies of the channel
programs thus produced are used to directly. cc;ntrol the selector channel
devices. Under this scheme much of the validity checking and interruption
sequencing can be performed by the hardware. Tables are provided to |
map device addresses, detect path conflicts, and stack interruptions for
the virtual machines. An input-output scheduler provides reques} queueing
and facilities scheduling at the hardware interface.

The sub-channel programs for the shared unit record equipment
(punch, reader, and printer) on the multiplexor channel are run inter-
pretively. All data for these devices are buffered in core and on disk,
thu§ operating in a spool-like mode. All interrupts must be software

simulated.

e

expected to spend most of the time in a read state awaiting input,

buffers are provided to reduce the core tied up by\these operations from
one or two pages to a few hundred bytes. The 1/O éiétus at these devices
is controlled by the subchannel program; no information is read before
being requested by the virtual machine. A mapping program is provided
te simulate the on-line typewriter with rlemote typewriters, when desired.
By depfessing the BREAK button (a special feature of our modified

1050 remote terminals which roughly corresponds to the Attention
feature of the online 1052 and 2741 remote terminals), the user may
break out of his virtual machine and enter conversation activity with the
Console Function routines, which provide the simulation of the following
hardware console functions: -

Address Stop

System Reset

Start

Stop

Load

External Interrupt

Display

Stere

VI, LIMITATIONS

Taking the above concepts into consideration, the following
limitations were accepted in the initial implementation of the system:

-the result of dynamic alteration of channel control programs,

while they are in execution, is generally unpredictable;

-correct operation of input-output timing dependent

programs may not be assumed;

-no input-output operation which requires more core

than is available for virtual machine paée residence is

allowed;

-the interval timer will accurately reflect only CPU

execution time.

(1)
(2)

u-

References

"On Virtual Systems", D. Sayre, IBM Watson Research Center

"A Time-Sharing System Using an Associative Memory', A. B.
Lindquist and R. R. Seeber, IBM Systems Development Labora-
tory. Unpublished paper submitted for December, 1966, issue
of "Proceedings of the IEEE".

-l2 -

Marex woicars s

Pace Userm W A C L SP
ConNTROL
Re gisrers . Row
o
M (]
e 2
M 4
o 4
4 | l | ;
Y | [| ! ' Rt
| | Pl |
62
L3
Fleuee 1.

e Limvimes SkETCH

.13 «

User Numegsce

S
2 .
v P i
1 11 31)e1 j1]oo 0o e z_'
H - ¢
& HA ,
1 .
2
; f—
. |
' 1
o3|

To: memory

Figure 2.

FRecimmaer Skeren

