
.. ·

' ,.

: l .
. , · ·. I ;

' •. I.

. \
i: .. ~ ..

·"' ' f

.. ·

/

_______ .., ___ _
~---- - -- - - --·-------

i.

..,
• 1

\

· ..
· ~ .

I.
•

':

...:

..
\.

•)
·.-.

' .\

. ...;-

~
I

L
I

i:~;· -::
. ..;; . , .

i ;.
1·

!

•

!.' •
I

r·
,
' c

A Virtual Machine System for the 360/40

R. J. Adair
R. U. Bayles
L. W. Comeau
R. J. Creasy

•,

IBM Cambridge Scientific Center Report

36.010

International Business Machines Corporation
Cambridge Scientific Center
Cambridge, Massachusetts

~1ay, 1966

L

I

Abstract

36. 010
May, 1966
Scientific Center Report

A VIRTUAL MACHINE ·
SYSTEM FOR THE 360/40

R. J. Adair
R. U. Bayles
L. W. Comeau
R. J. Creasy

lnte rnational Business Machines
Corporation

Cambridge Scientific Centei·
Cambridge, Massachusetts

~t) A virtual machine system, which provides copies of a 360
computing system for concurrent use by separate op•-'rating
systems, has been implemented for the IBM 360 Model 40.
The user at a terminal interface of a virtual 360 ha ..s all of
the capability, with minor restrictions, provide.:l i>y a stand­
alone system. The system was designed as a .iystem evaluation
tool and as such, CPU efficiency or throughput improvement
was not a prim.iry de sign goal. f I

Index Terms for the IBM Subject Inde:'<

Computers
·IBM 0360-40
Computing
Programming
Time-. Sharing
07-Computers
21-Programming

>t"i
.: .~ .·- .; . .:_·.' -~·.1 . i'-:- ,' "· · ·-.:- ~ 1/"· ·~ · ;·~ .~: ' . ,~ · (... ~·..:::: ~.!J.~~\i

TABLE OF CONTEN'rS

I. INTRODUCTION •••••.•.•••••••••••••••••••••••• 1

II. HARDWARE IMPLEMENT AT ION ••••••••••••••••• 3

III. PROBLEM MODE OPERATION OF THE
ASSOCIATIVE MEMORY ••••••••••••••••••••• 4

IV. CONTROL PROGRAM STRUCTURE ••••••••.. •••••• 5

V. INPUT-OUTPUT OPERATIONS ••••••••••••••••••• 7

VI. LIMITATIONS •••••••••••••••••••••••••••••••••• 10

,,

·;I

r-
i :,

~ -r:
' ·

.-~1· \

I. INTRODUCTION

Late in 1964, the IBM Scientific Center (formerly Systems

Research and Development Center) at Cambridge, Massachusetts,

undertook a project with a number 0£ objectives • .Among these were:

- the develop~ent of means for obtaining data on the opera­

tional characteristics of both system applications programs;

- the analysis of this data with a yiew l:oward more efficient

machine structures and programming techniques, particularly

for use in interactive systems;

- the provision of a multiple-console computer system for

the Center's computing requirements;

- the investigation of the use of associative memories in the

control of multi-user systems.

A system was designed which we thought would satisfy these goals

and, iuaddition, provide'! other useful features. Efficiency in CPU'

utilization was not a prim1ry design consideration.

Central to the idea of this system is the concept of the "virtual

machine" and, in our case, the "virtual 360 11 (l}. Because of our des ire

to be able to measure a broad spectrum of programs, it is important

that the imposition of a measuring system results in minimum alteration

'>£the characteristics of the subject program. The "virtual 360"

concept effects this minimum while providing the flexii>ility also

required for the r.:. ~lti-user environment. In this system, the subject

progra.m interacts with the multi-user controller in the same
. I

manner as with the physical machine. and not by specially designed

\ supervisor calls or eubroutine calls as in currently implemented

r
I

r


~~~- . .,/Wt-}:,r~~~~~r.:.~:\, ~'"" .. ·..L~.L:.i'.c · !::m.:.r~l'.l:'-9 -~~.:;~-:::',1'"t~~·".'ff'.!'l''t.'!".'??;r~~ .. 1'i>!·~;:- , .. ::'.::.'.'.:.~~~~f~~~~~~~:::r~Dl'GS'.;."1 '\:.::.xr~ · ~ , . 

( 
! ·-
j 

r 

! 

f. ,. 
1· 
I• 
i: 
I· . 

~ -

f. 
l' r 
1. 
!._ 
~ 

[· 
[' ' 
f: ' 

r 
; 
';. 

' 

- 2 -

multiprogramming packages. The program does rot "see" the software 

interface between it and the physical hardware. 

Within these virtual "360's 11 (called 360 1s), programs such as 

operating systems, which were initially designed t\l run on a hardware 

machine, may be run without change. In order to use the available 

facilities more efficiently, the Control Program supporting these 

multiple 360's performs the traditional multi-user tasks, such as 

scheduling, resource allocation, and core management. 

We have created_. thereiore,· a multi-user system where each user's 

virtual machine can run the programming system of his choice. None 

of these programming systems need consciously ma.ke use of multi-

tasking facilities to improve machine utilization. Two other advantages 

acc:..·ue from this design - the ability to dynamically alter the virtual 

machine's configuration (core, size, available input-output units and 

paths), and the ability to assign more than one virtual 360 to a problem 

in order to examine the applications of multiprocessing. 

We are providing sixteen virtual machines which may address 2.56K 

bytes of main storage, a maximum of one multiplexor and two selector 

channels, and a console typewriter. Some of the virtual machines may 

have additional typewriters, tape units, and a. ZZSO display console 

assigned to them. A user is normally supplied with three disks - - one 

I 



:··:1 
I -~ 
} ~ . 

~ I ...... 

- 3 -

read-only disk is to secure for all users access to a library of ofte'il-used 

systems and routines, while providing the protection neceEisary in ~-

multi-user system. The permanent disk provides continuing storage 

capability to the user. The temporary disk is available to a virtual 

machine for the duration of the session only. The user retaina complete 

control over the format and use of his permanent and temporary disk 

space. Programs may be loaded into the user's virtual machine by name 

from the read-only disk, or by location from any device attached to the 

virtual machine. 

II. HARDWARE IMPLEMENTATION 

To provide these virtual 1 ~'iachines, the Center obtained a modified 

System 360/40(Z) with a multiplexor and two selector channels, interval 

timer, storaee protection feature, universal instruction set, and 256K 

bytes of main storage. Its input-output equipment includes a console 

typewriter, line printer, card reader and punch, 2702 Transmission 

Control with remote terminals, four 23-11 disk drives on two control 

units, two 2401-lll tape drives, and a 2250 display unit with a 4K buffer. 

The CPU has bE:en modified to permit dynamic relocation of 

storage addresses by the addition of a 64 word (one per 4096 byte page 

of core memory) by 16 bit associative memory (Figure 1 ). A privileged 

operation to load and interrogate the memory has b~en added to the 

instruction set. (see Figure 1. ) 

I 



i 

'·· 
r.· .-

1·­
.t ! 

k~· ... ',: 

- 4 -

III. PROBLEM MODE OPERATION OF THE ASSOCIATIVE MEMORY 

When the CPU is in problem mode, each main storage address 

presented to m~mo_ry is mapped by the following method (see Figure 2): 

the high order six bits of the eighteen bit memory address 

plus the user identification number (set by the Control Program) 

are presented to the ass\)ciative memory for a match; 

if a single match is found, the address of the selected row of 

the memory replaces the high order six bits on the memory 

bus, and the memory select takes place; 

if a multiple match condition (an error which should never 

occur) or no match (requested page is not in the memory) 

occurs, an interruption is generated and the Control 

Program mu.;t take the appropriate steps to resume execution. 
\ 

This mapping takes pl~ce with no degradation of Model 40 cycle Ume. 

Six bits of the associative word are provided to assist the! 

scheduling section of the Control Program in selecting the least ,:ostly 

(i. e. least likely to be brought bacl~ page to roll out when additional mai 

memory space is required. 

The used bit is set when a match condition is found for a 

row of the memory, indicating a refei·ence to the correspond-

ing page, and is re.a~t when all of the pages represented by 

I 
t~,r 

I 
~-

r 

I 
f 



~ . . . '"'·, :• ~ . 

- 5 -

the entries i.n the memory have been either referenced or 

I ,. 

are focked; 

the active bit is oet at the same time the used bit is set, I 
but is not,like the used bit, automatically reset; 

the changed bit is set when the instruction causing the 

match condition could result in alteration of the contents 

of the corresponding page; 

the lock bit is set by the control program anJ is interpreted 

by it to mean that the page may not be removed from 

memory~ 

the trans~! bit is used by the control program to indicate that 

the page is currently being brought in or dumped out; 

one spare bit is provided for unspecified use. 

IV. CONTROL PROGRAM STRUCTURE 

When the Control Program code is being executed, the machine 

is in the supervisor state; at all other times it is in the problem state. 

Any action o~ a virtual machine which could cause . a change of machine 

sta!:e results in an interrupt. The Control Program, then, is an interrupt 

driven system whose components reference a set of tables describing the 

state of a users' virtual machines. For each use1', this table (UTABLE) 

contains a copy of the current Program Status Word (PSW) and the users · 

general purpose anci floating-point registers, the locations of tile user's 

' . . ·,; ·'· . ··' ..... .. 



- 6 -

virtual memory pages (which are either core or disk resident), a 

description of the input-output equipment and its status, a copy of the 

user's interrupt region, and other similar information. 

There are two basic types of interrupts handled by the Control 

Program: 1) those which invoke a section of the Control Program to 

perform some function for the virtual machine, and 2) those which 

require no special action by the Control Program and are "reflected" 

to the virtual machine (such as supervisor call and most program 

interrupts caused by overflow conditions, protection violations, addressing 

errors, etc.). The reflection of interrupts to the virtual machine is 

performed by the app1·opriate swapping of PSW's in UTABLE and 

setting the proper intel'ruption codes there. 
'<' 

If a virtual machine's current PSW contains the wait bit or if its 

execution has been delayed due to the temporary unavailability of a nee-

essary resource, it is considered not runnable. At the occurrence of an 

interrupt which could affect the runnability of a machine, UTABLE is 

examined for interrupts pending which are enabled. If an enabled pending 

interrupt i!!. found, the appropriate "reflection" of the interrupt takes 

place (moving of the current PSW to one of the old PSW' s, and of the 

corresponding new PSW to the current PSW). 

A privileged operation interruption (caused by an attempted 

~:xecution of a privileged operation while in problem mode) results in 

one of two actions, depending on whether the virtual machine· was in 

' •' 

I ·-1 

·'')· 
\, 

·;;.\ 
.· ::: . 
. ·:i;.: 

.···· ~ '...' 

! 

. ..~::~ 

• ~· ' . .• :· ..... :·: :·~·. ::.:. :'\ ·:..: ~~x· ·_ ._:-·· .... ~·.-· .... 1_· ... :·i __..·~ ., ... 1·_._: .. : ...... .... _ ..... ,:..,:: ... ::.~ ... ~~~-·:" ... -~-... ~.:l .... : .-:. ... ~::,"".~' ~J. .. :t .. w .... ~~! .. :~ ... :.~~ ... ~1iilillol·~ 



- 7 -

problem or supervisor mode. If the virtual machine wa·s in problem 

mode I the interrupt is merely reflected to the virtual machine. u the 

virtual machine was in supervisor mode, the action of the privileged 

operation, with the exception of input-output operations which are handled 

separately and discussed in a latt:;- .section, must be simulated by the 

Control Program by appropriate changes in UTABLE. 

A timer-initiated external interrupt controls CPU scheduling 

among the virtual machines. ' Each machine is allotted a quantum of time 
l 

to run (which may be sliced into smaller intervals for timer simulation 

purposes) and, at the completion of that interval, a i'OuncJ-robin scan is 

made of the users to ascertain if a~other virtual machine\ is runnable. 

An interrupt !rom the associative memory, cauf'e~ by an attempted 
I 
I 

reference to a page not core residtnt, invokes the core m~.nagement and 

··----· ······ acheduli1ig routines • . 'Ihe missing page is indi c ated by the: interruption 

code and the paging routines must s .chedule a page to be rolled out 

(according to algorithms which will be a chief point of stud~ ), ~nd the 

appropr iate page retrieved from disk. For the duration of ithe "page turn-

ing", the virtual machine is placed in not runnable conditio~. 
I 

V. INPUT- OUTPUT OPEaATIONS 

The in1iut-output equipment generally falls into two cla1:1ses: high 

data rate devices on the selector channel, and low data rate devices on 

the m altiple.xor cha11:r.el. T!lese characteristics, together with the need 

to share unit record facilities, the expected programming mode of the 

... . __ c........:_,,__.:...._· .:..." .:...· ~__. .. ......_.,. ...... .... ··------------
. \ ,. __ ',' 

I- · : -.. •·. . ~ : :~ ...... 

, : 

' 
. - ~ 

' 

" I 
d 
·~ , .. ,, 
; 



I 
), 

I 
I 

· ~ _., 
... 
; 

) 

I 
i .. 

I 
u 

,-' 

'"·i' ... · .. . .. 

• t• ·'· 
! " . 

! •. • 

- 8 -

typewriter devices, and the differences in the logical structure of the 

channels, make it desirable to handle selector channel and multiplexor 

channel input-output operations separately. 

Much of. the selector channel input-output is not conveni~ntly 

interruptable; therefore the channel programs are pres canned and all 

referenced pages are brought into core and held there for the duration 

of the operation. During this scan, virtual data addresses are converted 

to real core addresses, eliminating the need for translation hardware 

associated with the channels. Similarly, direct access storage addresses 

(bin, cylinder, and head numbers) sper i within the channel program 

are modified to provide partitioning of these devices, thus sharing the 

units among the virtual machines. The modified copies of the channel 

programs thus produced are used to directly control the selector channel 

devices. Under this scheme much of the validity checking and interruption 

sequencing can be performed by the hardware. Tables are provided to 

map device addresses, detect path conflicts, and stack interruptions for 

the virtual machines. An inpu~-output scheduler provides reques.~ queueing 

and facilities scheduling at the hardware interface • 

The sub-channel programs for the shared unit record equipment 

(punch, reader, and printer) on the multiploexor channel are run inter-

pretively. All data for these devices are buffered in core and on disk, 

thus operating in a spool-like mode. All inter:.-upts must be software 
I 

simulated. 

1 . _.,,,. 

· ..... 

' ... , . 

. . .~ 

:·.-• 

r 
I 



'·· - 9 -

Since multiplexor subchannels servicing typewriter devic~~~!_e 

· ' expected to spend most of the time in a read state awaiting input, 

buffers are provided to reduce the core tied up by these operations from 

one or two pages to a few hundred bytes. The 1/0 status at these devices 

is controlled by the subchannel program; no information is read before 

being requested by the virtual machine. A mapping program is provided 

to simulate the on-line typewriter with remote typewriters, when desired. 

By depressing the BREAK button (a special feature of our modified 

1050 remote terminals which roughly corresponds to the Attention 

feature of the online 1052 and 2741 remote terminals), the user may 

break out of his virtual machine and enter conversation activity with the 

\ 

Console Function routines, which provide the simulation of the following 

hardware console functions: 

Address Stop 

System Reset 

Start 

Stop 

Load 

External Interrupt 

Display 

Store 



~~Q~!'!'lll-Q.l~lnlll:!lll•ft'l!l'!IMl!~~-.~111'7~T75V"l'!t1F'iR.. t . -~ - · !9, \';'~f . . . ,( ' 

,: . - -- - -·--- -·- ··-·-- ·-- - ... ---- -. - -- -- --- ---- - --·- . 

.. 
- 10 -

VI. LIMITATIONS 

Taking the above concepts into consideration, the following 

limitations were accepted in the initial implemenhtion of the system: 

-•the result of dynamic alteration of channel control programs, 

while they are in execution, is generally unpredictable; 

-correct operation of input-output timing dependent 

prog1·ams may not be assumed; 

-no input-output operation which requires more core 

than is available for virtual machine page residence is 

allowed; 

-the interval timer will accurately reflect only CPU 

\!-x:ecution time. 

.. 'j 
. l ... 

' 

" . 1 

J 
\ 

· ' ' 

•J 
·' ,.j 

. ' 
',·,··~di 

• ~ - • '· '. : ... • • • • • '. .. ·,~ ·.J ~., "£'. ,.· . ..:. __ _ __ · ,~- -.... ~~-·-·~- -·-·_.,_. __ ,.__.. __ __,_ ......... _.._, _ .. ~?..,.c_._ ___ ._i~ _- ___ .. __ ?•"•i ----'•· ili· ;--·~; 'liiii-'iiil'"iili----=iil·!.".,,;iil1iioflliiiii\ 



• -.... .. • '~ ·y 

- 11 -

References 

(1) "On Virtual Systems", D. Sayre, IBM Watson Research Center 

(2) "A Time-Sharing System Using an Associative Men:iory'', A. B. 
Lindquist and R. R. Seeber, IBM Systems Development Labora­
tory. Unpublished paper submitted for December, 1966, issue 
of "Proceedings of the IEEE". 

• ~.- ~: l 

·I 
•.':1 
... , 
···1 
·-.• 

; .. 
_,-_'.:/ 

' J 
•.'! , ,, 

::1 
.1: $ 

··~~ 
j 

,j 
:1 

~t~1 
•. (1 

l 
~-j 
l.·, 

~;-1 
~·:~ 

: ~·i 
<--:1i -.;·. , 

.. ) 
,, 

--~· 

' \'-,. -:; 

I 
~ \I ,. .. 

·. ;~ 

~ 

·t I 
... 



M 
6 
M 
0 

f. 
y 

-·-

I 

- lZ -

Ll.sn 

I 

t 

; . 

I 11 I I I 
I 

I 

:• 

~-.~.! 
. ·.· -:· . . '·:._ : <!~ .~ -.)~.".~1 



.P 

.I 

.Z 
1 

. 11 I I 1 I 11 I I o o •• oe 

I 

. I . --·-··I ' t 'a L.---'· lj 

Fu;u~e· :z. 

.; . " '"· 

- 13 -

J ,:,,,,,M CPU· 

I 

l 

1 
..I 


