
Z28-6678-0

Basic Systems Language Primer

This publication is an introduction to the Basic Systems Language (BSL) , a pro
gramming language designed for use by system programmers. The topics covered in
clude:

• The Structure IOf BSL Statements

• Describing Data

• Gaining Access to Data

• Dividing Programs Into Parts

• Controlling Program Flow

• Using Assembler Language Instructions and Control Program Services

IBM Confidential

This document contains information of a proprietary nature. ALL IN
FORMATION CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE.
N one of this information shall be divulged to persons other than IBM
employees authorized by the nature of their duties to receive such infor
mation or individuals or organizations authorized by the Systems Devel
opment Division in accordance with existing policy regarding release of
company informa.tion.

PREFACE

The purpose of this publication is to acquaint the reader with BSL, and to provide him
with a general understanding of the language. It is assumed that readers have had some
training or equivalent experience in programming with an assembler language.

This publication is designed to be read from beginning to end, as each chapter is a
prerequisite for the following chapter. The topics covered include:

• The Structure of BSL Statements

• Describing Data

• Gaining Access to Data

• Dividing Programs into Parts

• Controlling Program Flow

• U sing Assembler Language Instructions and Control Program Services

Each of the first five chapters contains a sample problem and a proposed solution.
Readers are urged to complete these problems.

Additional information about BSL can be obtained from the following publications:

• BSL: Basic Systems Language Description

• BSL User's Guide

Requests for copies of this and other BSL publications should be directed to IBM Corporation, Program
ming Technology, Department D76, PO Box 390, Poughkeepsie, N. Y. 12602.

IBM CONFIDENTIAL

INTRODUCTION •.•••••••••••••.••

CHAPTER 1: The Structure of BSL Statements. •
The BSL Character Set ••• '., ••••••••
Symbolic Names. • • • • • • •
Expressions •••••••••

Arithmetic Expressions.
Logical Expressions ••

Checkpoint 1: Problem. • •

CHAPTER 2: Describing Data.
Types of Data •••••

Arithmetic Data ••
String Data. • •
Pointer Data. •
Program Data •••

Collections of Data.
Structures. • • • •
Arrays •••
Arrays of Structures. • • • • • • • • •
Arrays Within Structures.

Checkpoint 2: Problem ••• "

CHAPTER 3: Gaining Access to Data.
Substring Notation ••••
Pointer Notation. • • • •
Checkpoint 3: Problem.

CHAPTER 4: Dividing Programs Into Parts.
Flow of Control Considerations. •
Data Considerations. • • • • • • • • • • .

Nesting Procedures. • • • • • • • • • • • • • • •
U sing Scope Attributes. • • • • •
Passing Arguments. • • • • • • •

Storage Allocation Considerations.
Checkpoint 4: Problem. • • " • • • • • • • • • • • • • • •

CHAPTER 5: Controlling Program Flow ••.
Conditional Changes to Program Flow. • •
Unconditional Changes to Prol~ram Flow. •
Grouping Statements. • • • • • • • • • • .
Checkpoint 5: Problem •••. ' ••••••••

CHAPTER 6: Using Assembler 1,anguage Instructions and Control Program Services.

APPENDIX A: BSL Keywords •••••

APPENDIX B: Priority of Operators.

INDEX. • • • • • • • • • • • • • . • • • • • . • • • • • • •

IBM CONFIDENTIAL

CONTENTS

5

7
8

9

• . 10
11

• • 13
• • 15

• • 17
• ••• 17

• • 18
20
23

• 24
24
25
29
30
31
31

34
34
35
40

43
44
47
47
49
50
52
54

56
56
60
61
64

. 66

69

70

• •.•.• 71

INTRODU eTION

No computer could be put to use lUlless there were some language by which it could
be directed to act. Furthermore, no computer would really be usefullUlless that lan
guage were meaningful not only to the computer, but also to the individual expected to
use the language. Individuals have varying needs, however. These range from solving
engineering problems to producing business reports; from problems requiring thousands
of computations to those requiring few computations.

Whatever the need, it is doubtful whether an individual could, at least without great
difficulty, direct a computer with its own language--the series of O's and 1 's that to the
computer represent instructions and data.

Therefore, many programming languages have been developed. Some are general
purpose languages designed for a large audience, while others are directed toward a
more limited audience, but all are designed to improve the vital man-to-computer com
munication.

The Basic Systems Language (BSL) is a programming language designed for system
programmers. It contains rnany features of other programming languages but, in ad
dition, contains a number of new features particularly useful to programmers involved
in developing and coding system programs.

BSL statements are English-like and are relatively easy to learn and to use. There
are fourteen statements in the language. With BSL statements, programmers can de
scribe operations to be performed without having to write intricate step-by-step in
structions needed to perform the operations. For example, a decision might be
described as follows:

I IF TEST~O THEN A~B+C; ELSE A~B-C;

The entire operation is deseribed in a straightforward way, and its intent is lUlder
standable even by the lUltrained programmer. Once an action to be performed is clearly
established, it can be described more concisely with BSL than would be possible with an
assembler language.

BSL provides convenient ways for describing operations that are performed fre
quently in system programs. For example, tables are commonly used, and much of the
work performed includes storing information in tables and retrieving the information.
Access to specific items of information usually requires a complex sequence of instruc
tions, especially when several tables are arranged in a chained list. With BSL, pro
grammers can describe the arrangement of tables in a chain, and then use a special
notation to gain access to specific items, or to add or delete tables from the chain.

BSL allows programmers to work at any level of detail required. There are times
when details are extremely important, especially in system programs, where charac
teristics of the computer must often be considered. A control program, for example,

IBM CONFIDENTIAL 5

6

in which the contents of a program status word could not be examined or changed would
be of little value, as would one in which main storage space could not be acquired when
needed. No programming language approaches the assembler language in terms of
machine-level control. Therefore, BSL allows programmers to include assembler lan
guage instructions in their programs. BSL also allows programmers to include re
ques ts for control program services in their programs.

As mentioned earlier, BSL allows programmers to describe operations to be per
formed without requiring them to write the instructions necessary to perform the op
erations. The working language of computers is machine language, however. All
programs, regardless of what source language they are written in, must be converted
to machine language before they can be executed. With BSL, this conversion is a two
step process involving first the BSL compiler and then the System/360 assembler.

During the first step, compilation, BSL statements are translated into the assembler
language instructions required to perform the indicated operations (most BSL state
ments result in a number of assembler language instructions). During compilation
BSL statements are checked for syntactical errors and, depending upon the severity of
the error, the next step, assembly, may not be allowed to occur. The end result of
compilation is a program expressed in assembler language, suitable input to a System/
360 assembler. During the second step, assembly, the System/360 assembler is used
to translate the assembler language instructions produced by the BSL compiler into exe
cutable machine language instructions.

IBM CONFIDENTIAL

CHAPTER 1: THE STRUCTURE OF BSL STATEMENTS

BSL is a problem-oriented language, in that the notation used to describe what is to be
done is more closely related to the characteristics of the application, or problem, than
to those of the machine. Therefore, there is little similarity between individual BSL
statements; essentially the application, more than a set of rules, governs the content of
any given statement. Nevertheless, as in any language, there are rules to be followed
and there are certain concepts that could be applied to most statements.

BSL statements may be written in a free-form format. That is, a statement need
not begin in any particular column of a coding sheet, and more than one statement may
be written on a single line. The only requirement is that the end of each statement be
indicated with a semicolon.

Every BSL statement contains some symbol that denotes the operation to be per
formed. For the assignment statement, this symbol is an equal sign, which in that con
text is called an assignment symbol. For example, the statement

is an assigmnent statement that reads "assign the value of B to A." For every other
BSL statement, the symbol is a keyword. For example, the keyword DECLARE denotes
the DECLARE statement, one used to declare, or describe, the characteristics of data
items.

In general, blanks may be used freely within statements to make them more read
able. The assignment statenlent shown above could just as well have been written in any
of the f 011 owing ways:

A=B;
A= B;
A =B;
A = B;
A=B;

The few restrictions that do exist regarding the use of blanks in BSL statements are
pointed out in the text of this pUblication.

Programmers may use comments to clarify the meaning of any statement or group
of statements. Comments must be preceded by the characters "1*" andmust be followed
by the characters "*1". An example of a comment is:

A = B; 1* ASSIGN CONDITION CODE TO A *1

IBM CONFIDENTIAL 7

8

In the above, the comment appears after the statement. Comments may also appear on
separate lines of a coding sheet:

/* ASSIGN CONDITION CODE TO A */
A = B;

In fact, comments may be placed anywhere that blanks are permitted:

A /* ENTRY IN TABLE */ =B /* CONDITION CODE */;

All characters used in BSL statements are selected from a BSL character set. The
characters may then be used singly or in combination to form symbolic names; the sym
bolic names, in turn, can be used in expressions; and expressions are the basic com
ponents of most statements (Figure 1).

BSL Character Set

Symbol ic Names

Ex press ions

Statements

Figure 1. BSL Statement Make-up

THE BSL CHARACTER SET

The BSL character set includes the 26 letters A through Z, the 10 digits 0 through 9,
and the 17 characters shown below.

IBM CONFIDENTIAL

NAME

Blank
"Less than" sign
Left parenthesis
Plus sign
"Or" sign
"And" sign
Asterisk or multiplication sign
Right parenthesis
Semicolon
"N ot" sign
Minus sign
Slash or division sign
Comma
"Greater than" sign
Colon
Single quotation mark or apostrophe
Equal sign or assignment syInbol

CHARACTER

<
(
+

&

*

--,

/

>

Some characters may be combined to form composite symbols. For example,
l= means "not equal to," while> = means "greater than or equal to." Blanks must not
appear between such composite symbols.

The 53-character BSL character set is a subset of the EBCDIC character set, which
contains 256 characters. Programmer's comments may contain any EBCDIC character,
as can data being operated upon. In all other cases, however, only characters from the
BSL character set may be used.

SYMBOLIC NAMES

In the assignment statement

I TOTAL = ITEMA + ITEMB; I
the names TOTAL, ITEMA, and ITEMB are all symbolic names. Such names must be
8 or fewer characters in length, must begin with an alphabetic character, may contain
letters or numbers, but must not contain any blanks or other special characters. In
BSL, as with most program.ming languages, such symbolic names actually represent
locations. Therefore, in the assignment statement shown above, what is meant is that
the sum of the values at locations ITEMA and ITEMB is to be assigned, or placed into,
location TOTAL.

Symbolic names may also be given to statements to which control is to be passed.
In forming statement names" the same rules as those for forming data names must be
followed. In addition, a statement name must precede the statement and be separated
from it by a colon, as in the following example, where CALC is the statement name.

IBM CONFIDENTIAL 9

10

CALC: TOTAL = ITEMA + ITEMB;

EXPRESSIONS

When a symbolic name is used in a BSL statement, the value at the location it represents
mayor may not playa part in the operation being performed. For example, when
ITEMA + ITEMB is written, what is meant is that the value at location ITEMA is to be
added to the value at location ITEMB. The values at the locations are involved in the
operation. On the other hand, when TOTAL = ITEMA + ITEMB is written the value at
location TOTAL is not significant to the operation; whatever it is, it is replaced by the
sum of the values at ITEMA and ITEMB -- the location TOTAL is significant, rather
than the value at that location. vVhen nan1es are used in BSL statements in such a way
that the values at the corresponding locations are significant to the operation being per
formed, the names are said to constitute an expression. In assignment statements, a
value is always placed into a named location. Therefore, the format of the assignment
statement is always:

I symbolic name ~ expression;

An expression may consist of a single name or of a combination of names and op
erators. Thus, in the assignment statement

I TOTAL ~ ITEMA; I
the name ITEMA is an expression. Silnilarly, in the assignment statement

I TOTAL ~ ITEMA + ITEMB; I
the combination ITEMA + ITEMB is an expression. One characteristic of expressions
involving two or more items of data is that they may always be reduced to a single value.
Thus, in the above example, the single value produced as a result of the computation
will be assigned to, or placed into, location TOTAL.

To repeat, in the above example the names TOTAL, ITEMA, and ITEMB all rep
resent locations. Because the data at those locations can vary, the names are said to
represent variables. However, if the value of ITEMA were always, say, 3, then that
value could be specified directly in the statement as a constant, as follows:

I TOTAL ~ 3 + ITEMB; I
Because a constant is a symbol for a value, a single constant is always an expression.

An expression must always be part of a statement; it can never be used alone.
Within statements, expressions are used to specify arithmetic, logical, and comparison

IBM CONFIDENTIAL

operations. Arithmetic and logical operations may be specified in most statements, in
cluding assignment statements; therefore they are described below. However, compari
son operations may be specified only in the IF statement, and they are described in
Chapter 5: Controlling Program Flow.

ARITHMETIC EXPRESSIONS

An arithmetic expression is one that involves addition, subtraction, multiplication, or
division. The corresponding operators are the plus sign (+), the minus sign (-), the
multiplication sign (*), and the division sign (I). Examples of arithmetic expressions,
as used in assignment statements, are the following:

A = B+C; C is added to B.

A = B-C; C is subtracted from B.

A = B*C; B is Inul tiplied by C.

A = B/c; B is divided by C.

The values of variables used in the expressions do not change when the arithmetic
operations are performed. In all of the above, the values of Band C are unaffected by
the operation. The value of A does change, however, because of the nature of the as
signment statement; A will contain the results of the appropriate arithmetic operation.

When division is perfor:med, there is usually a remainder. However, when the
statement

I A = B/c;

is executed, only the quotient will be assigned to A. The remainder could be obtained
by using the conlposite operator "I I", as in the following example:

I A = Bllc; I
Two statements are necessary, then, to obtain both the quotient and the remainder when
division is performed:

A = B/c; /* QUOTIENT TO A *1
D = Bllc; 1* REMAINDER TO D *1

More than one arithmetic operation may be specified with a single arithmetic ex
pression. For example, in the statement

I A = B+C*D;

IBM CONFIDENTIAL 1.1

12

the value of B will be added to the product of the values of C and D. Again, because the
expression appears in an assignment statement, the result will be assigned to A.

Both the plus sign and the minus sign can be used to indicate that a particular con
stant or variable is to be treated as having a positive or negative value. For example,
in the statement

the negative quantity -3 will be assigned to A. When used in this way, the plus and minus
signs are called prefix operators. Another example of a prefix operator is:

I A = -B; I
In the above, the sign given to A will depend upon that of B, as prefix operators are ap
plied algebraically. That is, if B is a negative quantity, A will be positive; if B is a
positive quantity, A will be negative. The sign of a variable does not change when a
prefix operator is specified for it; B is not changed when the assignment shown above is
performed.

There is a specific order by which complex expressions are evaluated. First, pre
fix operators are applied. Next, multiplication and division are performed. Addition
and subtraction are performed last. These priorities are shown in Figure 2. When two
or more operations of the same priority appear in the same expression, they are per
formed in left-to-right order. For example, in the statement

I A = B+C/D-E*F; I
the order of evaluation is:

1. C is divided by D.
2. E is multiplied by F.
3. B is added to the quotient of C/D.
4. The product of E*F is subtracted from the result of B+C/D.

Parentheses may be used to group items of an arithmetic expression either to make the
meaning of the expression more evident, or to override the priority by which the opera
tions are performed. The same result would be obtained if the previous example were
written as follows:

I A = (B+C/D)-(E*F);

However, a different result would be obtained if the statement were written as follows:

A = B+(C/D-E)*F;

IBM CONFIDENTIAL

Operator OperICltion Priority

+ Prefix Plus 1

- Prefix Minus 1

* Multiplication 2

I Division (Quotient) 2

II Division (Remainder) 2

+ Addition 3

- Subtraction 3

Figure 2. Arithmetic Operators

LOGICAL EXPRESSIONS

Logical expressions provide a convenient and efficient means for selectively altering the
bit settings of data items. With logical expressions, any of three Boolean logical opera
tions can be specified--and, £:' and exclusive or.

The result of a logical expression always depends upon two factors: the operation
specified, and the settings of the bits in two data items. A logical operation can be
specified with the operators & (and), I (or), and && (exclusive or); the two data items
may be constants or variables. The corresponding bits of the two data items are ex
amined, bit by bit, and, depending upon the operation specified and the settings of each
pair of bits being examined, the value of the expression is developed. This value may
then be aSSigned to a variable, as with an assignment statement, or it may be used as
an operand in an arithmetic operation. The table below shows the results of bit-pair
combinations for each logical operation.

A B A&B AlB A&&B

1 1 1 1 0

1 0 0 1 1

0 1 0 1 1

0 0 0 0 0

With an 'and' operation, when the corresponding pair of bits in two data items are
both 1, the resulting bit will be set to 1; otherwise, it will be set to o. An 'and' opera
tion involving two data items~1 ITEMA and ITEMB, would be specified as follows:

ITEMA & ITEMB

IBM CONFIDENTIAL J3

14

The result, or value of the expression, would be developed as follows:

ITEMA 1 I 0 I 1 I 0 I 1 I 0 I 1 I 0 I , , I , , , , ,
ITEMB ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I

I ! I I I I I I
ITEMA & ITEMB 11 I 0 1 0 0 0 0 0

If the expression shown above appeared in the assignment sta~ement

I ITEMC = ITEMA & ITEMB; I
the result would be assigned to ITEMC. The values of ITEMA and ITEMB would not be
changed. If it were desired that, say, ITEMB were to contain the result, the following
assignment statement could have been written:

I ITEMB = ITEMA & ITEMB; I
With an 'or' operation, when one or the other of the corresponding pair of bits in

two data items is 1, the resulting bit will be set to 1; otherwise it will be set to o. An
'or' operation involving the two data items, ITEMA and ITEMB, would be specified as
follows:

I ITEMA I ITEMB

The value of the expression would then be developed as follows:

ITEMA

ITEMB

ITEMA I ITEMB

The expression shown could be specified in an assignment statement as follows:

I ITEMC = ITEMA I ITEMB; I
With an 'exclusive or' operation, when one but not both of the corresponding pair of

bits in two data items is 1, the resulting bit will be set to 1; otherwise it will be set to
o. Using ITEMA and ITEMB again, an 'exclusive or' operation could be specified as
follows:

I ITEMA && ITEMB

IBM CONFIDENTIAL

The value of the expression would be developed as follows:

ITKMA q=r? I.; 1 0 1 0 1 0

ct ITEMB

ct ITEMA && ITEMB

The expression could appear in an assignment statement as follows:

ITEMC = ITEMA && ITEMB; I
There are many applications for which logical expressions can be used, including

setting and testing switches, and setting portions of an item to 0 (an entire item may be
set to 0 if it is 'exclusive or'ed' to itself). Logical expressions should be considered
whenever bits are to be set "on" or "off. "

When logical operations are specified in complex expressions, the priorities shown
in Figure 3 are applied.

Operator Operation Priority

& And 5

I Or 6

&& Exclusive Or 7

Figure 3. Logical Operators

CHECKPOINT 1: PROBLEM

Select any three values, assign them to the variables A, B, and C, and then:

1. Add the values together.
2. Multiply the sum of the values by each value to obtain three products.
3. Add the three products obtained from (2) above.

A solution to this problenl appears on the following page.

IBM CONFIDENTIAL 15

16

/* SOLUTION TO CHECKPOINT 1 PROBLEM * /

/* CALCULATE SUM OF THREE VALUES * /
A = 2;
B = 4;
C = 6;
SUM = A + B + C;

/* MULTIPLY SUM BY EACH VALUE */
PRODUCTI = SUM * A;
PRODUCT2 = SUM * B;
PRODUCT3 = SUM * C;

/* ADD PRODUCTS TOGETHER * /
SUMPROD = PRODUCTI + PRODUCT2 + PRODUCT3;

IBM CONFIDENTIAL

CHAPTER 2: DESCRIBING DATA

With an assembler language, there are usually several instructions that might be used to
perform a particular operation. For example, if the operation is one in which two items
are to be added together, an Add instruction would be used when fullword quantities are
involved and the number is signed; anAdd Logical instruction would be usedwhen all bits
are significant; or, when halfword quantities are involved, an Add Halfword instruction
would be used. It can be said, then, that with an assembler language, the characteris
tics of the data playa part in the selection of instructions to be used in a program.

The same characteristics must also be considered when using BSL. However, the
characteristics are not reflected in BSL statements as they are in assembler language
instructions. To illustrate, it is not evident from the following statement exactly what
the characteristics of the iterns are:

I TOTAL = ITEMA + ITEMB; I
Therefore, the operation shown could not be performed unless additional information
were provided to the BSL cODlpiler, which could then select the appropriate instructions
to be used in acting upon the data.

The characteristics, or attributes of data items can be made known to the compiler
with a statement called the DECLARE statement. The DECLARE statement is the pri
mary means by which data can be described. It consists of the statement keyword
DECLARE, followed by the name to be given a location, or area of storage, in turn fol
lowed by the attributes of the item that is to occupy the area:

DECLARE name attributes; I
The attributes of a data item can be expressed in terms of an attribute keyword and

a length. The attribute keyword indicates in what way the bit configuration of an item is
to be interpreted, while the length indicates how much space the item is to occupy. Once
an item is declared, should it ever become necessary to change the attributes of the
item, only the DECLARE statement for that item need be changed; individual statements
in which the item is referred to would require no change whatsoever.

There are four ways in which the bit configuration of an item can be interpreted, or,
in other words, there are four types of data.

TYPES OF DATA

The four types of data are arithmetic data, string data, pointer data, and program data.
To review, the type indicates in what way the bit configuration of an item is to be inter
preted.

IBM CONFIDENTIAL 17

• Arithmetic data is data for which the bit configuration is taken to be a signed
numeric quantity.

• String data is data for which the bit configuration is taken to be a sequence or
string of 8-bit EBCDIC characters, or else a sequence of bits that are unrelated
to each other (as when individual bits serve as switches).

• Pointer data is data for which the bit configuration is taken to be an address of
another data item.

• Program data, like pointer data, is taken to be an address. However, it is al
ways taken to be an address of an instruction.

Each type of data can be described with a DECLARE statement containing the item
name and the attributes to be associated with the item. With this information, the BSL
compiler can select the instructions to be used in manipulating the data in light of its in
tended interpretation.

Both variables and constants can be classified by type. However, when a constant
is used, it does not have to be described with a DECLARE statement. Instead, there
are different ways of expressing constants, and the way a constant is expressed deter
mines how it is to be treated by the compiler.

ARITHMETIC DATA

An area of storage containing an item of arithmetic data is always assumed to contain a
signed, fixed-point number. Internally, there is a specific format by which such numbers
are represented. A fixed-point number can be contained in a halfword or a fullword,
the sign position is always the high-order bit of the item, and the value of the item oc
cupies the remaining bits, as follows:

0 15
I sl value I

0 31

I sl value I

The attribute keyword to be used i.n the DECLARE statement for an arithmetic item
is FIXED. The specified length of the item, which should follow the FIXED keyword, can
be either 15 or 31, depending upon whether the maximum value can be represented with
15 or 31 bits. To illustrate, if ITEMA is to contain a quantity or, during the course of
execution, several quantities, but none will require more than 15 bits, the declaration
could be:

DECLARE ITEMA FIXED (15);]

18 IBM CONFIDENTIAL

Should ITEMA require 31 bits, the declaration would be:

DECLARE ITEMA FIXED (31); I
It is not always necessary to declare an item to be an arithmetic item. Any time a

symbolic data name is used in a statement, and the name is not declared, the item is
automatically taken to be a fullword arithmetic quantity. In other words, the attributes
FIXED (31) are applied by default to any undeclared data variables.

There are times when the context of a statement indicates that the item or items in
volved are to be treated as arithmetic quantities, regardless of how they have been de
clared. For example, whenever an arithmetic operator (+, -, *, I, or I I) is contained
in an expression, the items involved are all treated as arithmetic quantities. If such an
expression appears in an assignment statement, all items referred to by the statement
are treated as arithmetic quantities. For example, when the statement

I TOTAL = ITEMA + ITEMB; I
is written, even if TOTAL, ITEMA, and ITEMB are declared to be a type other than
arithmetic, they will be assumed to be arithmetic quantities, as the arithmetic operator
(+) is used.

Also, if the symbolic name to the left of the equal sign in an assignment statement
has been declared to represent an arithmetic item, any other items referred to by the
assignment statement will be taken to be arithmetic items, regardless of how they have
been declared.

When an arithmetic constant is to be used in a statement, it may be expressed in
either of two ways. It can be expressed as a decimal number or as a binary number that
is followed by the letter B. The two statements below will each result in the same in
ternal representation of the quantity 53:

I TOTAL = 53; I
TOTAL = 110101B;

Constants are commonly used to assign initial values to variables. For example,
when the assignment statement shown below is executed, ITEMA will be given an initial
value of 350:

DECLARE ITEMA FIXED (15); I
ITEMA = 350;

IBM CONFIDENTIAL 19

20

The same result could be obtained by including an INITIAL attribute keyword in the
declaration for ITEMA, and following that keyword with a constant, in parentheses,
which indicates what the initial value of the variable is to be:

DECLARE ITEMA FIXED (15) INITIAL (350);

or

DECLARE ITEMA FIXED (15) INITIAL (101011110B);

A number of items can be described with the same DECLARE statement, if the
names and attributes of each are separated by commas:

DECLARE ITEMA FIXED (15), ITEMB FIXED (15),
ITEMC FIXED (15);

In addition, attributes common to more than one data item may be factored by en
closing the names of the items in parentheses, and specifying any common attributes
following the closing parenthesis:

DECLARE (ITEMA, ITEMB, ITEMC) FIXED (15);

STRING DATA

It has been shown how, by declaring an item to be FIXED or by not declaring the item at
all, a programmer could cause the representation of the item to be interpreted as being
a numeric quantity. If another interpretation were intended, then an attribute keyword
other than FIXED would have to be specified in the DECLARE statement.

EBCDIC characters, for example, belong to a category of data called string data,
of which there are two sub-categories, each of which has an associated attribute key
word. An item can be termed a character string; that is, a sequence of bits that are to
be interpreted as representing EBCDIC characters, or an item can be termed a bit
string; that is, a sequence of bits that may have no meaning collectively, but do have
significance individually, as when they are being used as switches.

Character Strings

An area of storage declared to contain a character string will be interpreted as con
taining a representation of EBCDIC characters. Internally, one byte is required to rep
resent each character, and each character has a specific bit configuration. For ex
ample, the character string AB12 would be represented internally as follows:

11000001 I 11000010 I 11110001 I 11110010

IBM CONFIDENTIAL

The attribute keyword to be used in the DECLARE statement to identify an item as
being a character string is CHARACTER. The keyword must be followed, in parenthe
ses, by the number of characters in the item. For example, the four-character area
shown above could be given the name ITEMA and declared to be a character string with
the following DECLARE statement:

DECLARE ITEMA CHARACTER (4);

If ITEMA is to be used iln an assignment statement, another area, the one to which
ITEMA is to be assigned, would also have to be declared. For example, if the area
were to be 6 characters in length, the following DECLARE statement m.ight be written:

I DECLARE ITEMB CHARACTER (6); I
Now, the following assignment statement can be written:

I ITEMB ~ ITEMA; I
After the assignment is performed, the first four bytes of ITEMB will contain a repre
sentation of the characters ABl2, while the next two bytes will contain the EBCDIC rep
resentation of blanks. Character string assignment is always performed from left to
right. If a character string is assigned to an area of storage that consists of more bytes
than there are characters, as was the case in the preceding example, surplus bytes will
be set to a representation of EBCDIC blanks. However, if a character string is as
signed to an area containing fewer bytes than there are characters in the string, the
right-hand portion of the string will be truncated.

The statements used in the previous examples might appear in a program as follows:

DECLARE ITEMA CHARACTER (4);
DECLARE ITEMB CHARACTER (6);

ITEMB = ITEMA;

As with arithmetic data ~I character strings may be expressed as constants. When
a character string constant is used, it must be enclosed in single quotation marks to
distinguish it from a symbolic name or from other types of constants. Assume that the
character string SUBTOTAL is to be used as a heading in a report to identify a particu
lar column, and that, before it can be printed, it is to be placed into an area named
HEADl. The declaration and assignment statement might be:

....

IBM CONFIDENTIAL 21

22

DECLARE HEAD1 CHARACTER (8);
HEAD1 = 'SUBTOTAL';

Because a blank is a valid EBCDIC character, blanks should not appear between the
single quotation marks and the first or last character in the character string unless it
is intended that they be a part of the string. Also, note that if the single quotation marks
were omitted from the character string constant SUBTOTAL, it would be taken to be a
symbolic name, rather than a constant.

A hexadecimal constant may be used to assign a value to a data item declared to be
a character string. Hexadecimal constants must be enclosed in single quotation marks
and followedby the letter X. To illustrate, the assignment statement shown below will
cause a one-byte area, ITEMA, to be set to ones.

DECLARE ITEMA CHARACTER (1);
ITEMA = 'FF'X;

Bit Strings

Often, it is desirable to use a single bit for some purpose. For example, a bit could
serve as a switch to be set "on" or "off" when certain conditions arise, and its setting
could later be used in selecting a particular action to be taken. A number of contiguous
bits might be used, and each could be a separate switch. When used in this way, the
bits do not collectively represent a numeric quantity or an EBCDIC character but,
rather, serve individually. When individual bits of an item are to have significance, the
item should be declared to be a bit string. (Although the term bit string implies two or
more bits, a single bit can be declared to be a bit string.)

The attribute keyword needed in the DECLARE statement when a bit string is to be
described is BIT. The number of bits in the string should be placed in parentheses fol
lowing the keyword BIT. To illustrate, assume that ITEMA is to be a bit string, and
that it is to contain four bits. The declaration would be:

I DECLARE ITEMA BIT (4); I
A bit string constant could then be used to "set" the four bits in ITEMA. As a con

venience, any bit string constant can be expressed in either of two ways: in binary no
tation, enclosed by single quotation marks and followed by the letter B; or in hexadecimal
notation, also enclosed in single quotation marks, but followed by the letter X. The two
statements shown below will each result in the same bit configuration for ITEMA:

ITEMA = '1011 'B; /*
ITEMA = 'B'X; /*

BINARY NOTATION */
HEXADECIMAL NOTATION */

IBM CONFIDENTIAL

POINTER DA TA

An area of storage declared to contain a pointer data item will be interpreted as contain
ing a representation of an address. Pointer data items are normally used when it is
necessary or desirable to use a technique called indirect addressing. With indirect ad
dreSSing, an item of data is obtained indirectly; that is, via another data item containing
the address of the desired item. The way in which indirect addressing can be achieved
is described in Chapter 3: Gaining Access to Data.

The attribute keyword to be used in the DEqLARE statement when a pointer data
item is to be described is POINTER. The keyword should be followed by a number, in
parentheses, indicating the number of bits needed to represent the address that is to
occupy the area. This number can be 8, 15, 16, 24, 31, or 32. The number of bytes
set aside for an item when these lengths are specified is shown below:

No. of Bits No. of Bytes
Declared Set Aside

8 1
15 2
16 2
24 3
31 4
32 4

Any item declared to be a pointer data item may be used in arithmetic operations. How
ever, pointer data items are always taken to be positive' integers. Thus, every bit in
such items has significance.

Assume that location ITEMA is to contain an address, and that the maximum value
of the address can be expressed in 24 bits. The declaration could be either of the fol
lowing:

DECLARE ITEMA POINTER (24);

or

I DECLARE ITEMA POINTER (31);

An address can now be placed into the area of storage named ITEMA by making use
of a BSL "Built-in Function" called the ADDR function. Basically, when an expression
is made up of the keyword ADDR which is followed by a symbolic name, in parentheses,
the value of the expression is taken to be the address of the location represented by the
symbolic name. For example, when the expression

IBM CONFIDENTIAL

24

ADDR (ITEMB)

is written, its value will be taken to be the address of ITEMB. Using the ADDR func
tion, the address of ITEMB can be assigned, or placed into location ITEMA as follows:

I ITEMA ~ ADDR (ITEMB); I
Thus, to declare an item that is to contain an address, and to assign an address to the
item, the following statements could be used:

DECLARE ITEMA POINTER (24);
ITEMA = ADDR (ITEMB);

PROGRAM DATA

When a symbolic name is used as a statement label, it is converted by the compiler to
an address -- that of an instruction (or the first of a sequence of instructions) to be used
in performing the operation designated in the statement. Such addresses belong to a
catagory of data called program data. There are two attribute keywords that can be
used in a DECLARE statement to identify program data items: ENTRY and LABEL.
Both are default attributes. The ENTRY attribute is applied automatically to entry
points for procedures (procedures are described in Chapter 4: Dividing Programs Into
Parts). The LABEL attribute is applied automatically to statement names.

"Wllen the address of a label or of an entry point is desired, it can be obtained by
using the LABEL or ENTRY attributes and also the ADDR function:

DECLARE A LABEL;
DECLARE ADDRA POINTER INITIAL (ADDR (A»;

A: TOTAL = ITEMA + ITEMB;

The above declarations will result in a data item, ADDRA, which will contain the ad
dress of the instruction or the first of the sequence of instructions that are produced by
the compiler for the statement named A.

COLLECTIONS OF DATA

So far in this chapter, each data name in the discussions and examples shown has rep
resented a single item of data.

IBM CONFIDENTIAL

In BSL, data canbe named so that an entire collection of data items can be referred
to by one name; certain subc:ollections can be referred to be other names, and individ
ual items can be referred to separately.

There are two kinds of data collections to which collective names can be given:
structures and arrays. The major difference between the two is in the kind of data an
array name or a structure name represents. An array is a table of homogeneous data
items; that is, all items in an array have identical attributes. In an array of arithme
tic items, for example, all of the items might have the attributes FIXED (31); in a
character-string array, all of the items would consist of an equal number of characters.
The data items of a structure, on the other hand, need not be of the same data type nor
have the same attributes. Some names in a structure might represent string data while
other names in the same structure could represent arithmetic data.

Collective naming does not alter the data in any way. Data in a structure or an ar
ray is no different from what it would be if it were referred to by a single name. Col
lective naming merely gives a programmer more convenience in referring to and ma
nipulating data.

STRUCTURES

A structure is a graded system of names that represent items or groups of items in a
single area of internal storage. At the highest level, a single name--the major struc
ture name--represents all data items stored in the entire area that is allocated to that
structure. At the next level,. certain portions of the area are individually named; at the
deepest level, each name is a variable.

To illustrate, assume that a program is to perform operations upon the following
collection of data items:

Programmer's Name
Name of Job
Charge No.
Time Job Started
Time Job Completed

JOHN DOE
BSL COMPILATION
040 03 3133
743
745

If the collection were represented by a single name, say INPUT, it would be difficult to
refer to individual items. However, a symbolic name could also be given to each item:

INPUT

PROGNAME
JOBNAME
CHARGENO
STRTTIME
STOPTIME

JOHN DOE
BSL COMPILATION
040 03 3133
743
745

IBM CONFIDENTIAL 25

26

Now, a programmer can refer to the entire collection of data items by the name INPUT,
or he can refer to an individual item by its individual name.

It often is valuable to be able to refer collectively to more than one, but not all, of
the variables in a structure. If such is the case, an intermediate structure can be built:

r PROGNAME CLAST DOE
FIRST JOHN

JOBNAME BSL COMPILATION

INPUT {DEPT 040
CHARGENO AREA 03

SERIAL 3133

STRTTIME 743
STOPTIME 745

The major structure, INPUT, contains the structures PROGNAME and CHARGENO.
JOBNAME, STRTTIME, and STOPTIME are not themselves structures because each
represents only a single data item.

A reference to any structure is a reference to all the data items included in that
structure. In other words, a reference to any name is really a reference to the names
at the next deeper level. To illustrate, a reference to the name at the first level (INPUT,
in the example) is a reference to all of the names at the second level (PROGNAME, JOB
NAME, CHARGENO, STRTTIME, and STOPTIME). A reference to a name at the second
level (CHARGENO) is a reference to all of the names in that structure at the third level
(DEPT, AREA, and SERIAL).

Since there are nolevels deeper than those represented by the names DEPT t AREA,
and SERIAL, the corresponding items are not structures. They are elementary items,
like JOBNAME.

Structures are described in the DECLARE statement. When a structure is declared,
the level of each name is indicated by a level number. The major structure name, at
the highest level, is always given the level number 1. Names at deeper levels are given
numbers to indicate the level depth, and all names are separated by commas:

DECLARE 1 INPUT, 2 PROGNAME, 3 LAST, 3 FIRST,
2 JOBNAME, 2 CHARGENO, 3 DEPT, 3 AREA,
3 SERIAL, 2 STRTTIME, 2 STOPTIME;

IBM CONFIDENTIAL

The same DECLARE statement could be written as follows:

DECLARE 1 INPUT,
2 PROGNAME,

3 LAST.,
3 FIRST,

2 JOBNAME,
2 CHARGENO,

3 DEPT,
3 AREA,
3 SERIAL,

2 STRTTIME,
2 STOPTIME;

The order of the appearance of the names in a DECLARE statement, along with
their level numbers, determines the structuring. Except for the major structure name,
no particular numbers must be specified. The major structure name must be declared
with the level number 1, and it must be the first name listed in the structure declaration.
It must be followed by one of the names at the second level. Each name at the second
level must then have a level number greater than 1, and if it is a structure it must be
followed by the names withi.n that structure. Each structure must be completely de
clared before the next structure declaration begins, and each must have a level number
equal to or less than the level number of the immediately preceding structure at the
same level. For example, the structuring shown above could be achieved if INPUT were
declared in the following way:

DECLARE 1 INPUT,
8 PROGNAME,

20 LAST,
20 FIRST,

6 JOBNAME,
3 CHARGENO,

4 DEPT,
4 AREA,
4 SERIAL,

3 STRTTIME,
3 STOPTIME;

When a structure is declared, attributes maybe specified for individual items within
the structure; any items for which attributes are not specified will be given the attributes
FIXED (31) by default:

IBM CONFIDENTIAL 27

28

DECLARE 1 INPUT,
2 PROGNAME,

3 LAST CHARACTER (10),
3 FrnST CHARACTER (8),

2 JOBNAME CHARACTER (15),
2 CHARGENO,

3 DEPT FIXED (15),
3 AREA FIXED (15),
3 SERIAL FIXED (15),

2 STRTTIME FIXED (15),
2 STOPTIME FIXED (15);

The level numbers that must appear with structure names in the DECLARE state
ment should not appear with the names in any references to them. For example, the
name John Doe could be assigned to the variables LAST and FIRST of the structure
PROGNAME with the following assignment statements:

LAST = 'DOE';
FIRST = 'JOHN';

As with any DECLARE statement, attributes common to more than one data item
may be factored by enclosing the names of the items in parentheses and specifying the
common attributes following the closing parenthesis:

DECLARE 1 INPUT,
2 PROGNAME,

3 LAST CHARACTER (10),
3 FIRST CHARACTER (8),

2 JOBNAME CHARACTER (15),
2 CHARGE NO ,

(3 DEPT, 3 AREA, 3 SERIAL) FIXED (15),
(2 STRTTIME, 2 STOPTIME) FIXED (15);

Structures may be given attributes, and a structure may validly be declared in which
the deSignated size differs from the combined lengths of its elements. When the size of
a structure is smaller than the combined sizes of its elements, the elements will not be
truncated. Instead, the portions of any elements that extend beyond the deSignated size
of the structure will overlap the following structure:

IBM CONFIDENTIAL

DECLARE 1 EXAMPLE, EXAMPLE
I I I I

2 FIELD1 CHARACTER (3) ,

3 FIELD1A CHARACTER (2) ,

I FIELD1 I
I I I

I I FIELD1A I
I

3 FIELD1B CHARACTER (2) , ~FIEL~I
Overlap

FIELD2 I 2 FIELD2 CHARACTER (5),

3 FIELD2A CHARACTER (3), FIELD2A I I
I

3 FIELD2B CHARACTER (2) ; I FIELD2B I
ARRAYS

An array is a named table of data items all of which have identical attributes. Only the
array is given a name. An individual item of an array is referred to by giving its loca
tion within the array. The location is specified by a subscript following the array name.

Assume TABLE has been declared to be an array of 12 elements. TABLE (1) refers
to the first item in the list, TABLE (2) to the second, TABLE (3) to the third, etc. Each
of the numbers (1), (2), or (:3), is a subscript that gives the location, within TABLE, of
a particular data item.

An array is described in a DECLARE statement by giving its name, the number of
elements in the array, and the attributes of the items:

I DECLARE TABLE (12) FIXED (15); I
The above declaration specilfies that the name TABLE refers to an array of 12 data
items, each of which will have a value that can be represented in a halfword. TABLE
is declared to have the dimension attribute of (12). The bounds of the array are 1 and
12. In array declarations, the dimension attribute must immediately follow the array
name.

IBM CONFIDENTIAL 29

30

Assume that the following values have been assigned to the items in TABLE:

31
43
42
57
64
73
79
79
69
58
49
40

Thus, TABLE (1) would refer to the data item 31, TABLE (6) to 73, TABLE (12) to 40.
The expression TABLE (7) + TABLE (1) would yield a value of 110.

Initial values maybe given to any or all items in an array by specifying the INITIAL
attribute in the declaration for the array, and then by placing the desired values in pa
rentheses. For example, the table shown previously could have been declared and ini
tialized as follows:

DECLARE TABLE (12) FIXED (15)
INITIAL (31, 43, 42, 57, 64, 73, 79, 79, 69, 58,

49, 40);

An asterisk may be used in place of any initial values to indicate those items in an
array that are not to be initialized. Also, any value that is to be repeated a number of
times in the declaration for the array may be shown by preceding the value with a pa
renthesized replication number:

DECLARE TABLE (12) FIXED (15)
INITIAL «2) *, (10)55);

The above declaration would result in an array of 12 items, the first two of which
would not be initialized, and the remaining 10 of which would each be given initial values
of 55.

ARRAYS OF STRUCTURES

As discussed previously, all items in an array must have identical attributes. It
follows then, that if two or more structures have identical attributes, they can be made
to be elements of an array. An array of structures can be formed by adding a dimension
attribute to the first level of a structure: -

IBM CON FIDENTIAL

DECLARE 1 TABLE (5),
2 ADDNEXT POINTER,
2 ADDLAST POINTER,
2 DESC CHARACTER (12);

The above declaration would result in five elements called TABLE, each of which would
contain the data items ADDNEXT, ADDLAST, and DESC. A specific structure in the
array could later be referred to by using the appropriate subscript: TABLE (4) would
be the fourth structure, or table, in the array. Similarly, a subscript could also be
used to refer to a specific item within a parti.cular structure. For example, ADDLAST
(4) would be taken to mean the item ADDLAST of the fourth structure.

ARRAYS WITHIN STRUCTURES

Any item in a structure can be declared to be an array. For example, in the declaration

DECLARE 1 TABLE,
2 ADDNEXT POINTER,
2 ADDLAST POINTER,
2 DESC (4) CHARACTER (3);

The item DESC in the structure TABLE is an array of 4 data items, each of which is 3
characters long. In subsequent statements, DESC (1) would be taken to mean the first
item of the array, DESC (2) the second item, etc. One restriction exists regarding ar
rays within structures: Itenls within a structure that is an array cannot themselves be
arrays. In the above, if TABLE were declared to be an array, none of the items within
TABLE could be arrays.

CHECKPOINT 2: PROBLEM

Write the statements necessary to translate the content of anyone-byte area to the char
acter codes of the two hexadecimal characters it contains. For example, if a one-byte
area contains the following:

I 00101110 I
the hexadechnal equivalent would be '2E', and the character codes for the characters
'2E' would be:

11110010 11000101 I

IBM CON FIDENTIAL 31

32

A suggested method would be to do the following:

1. Declare and initialize a one-byte area, say BYTE, with some value.

2. Declare an array of 16 elements, and initialize it with the character codes for
each of the 16 hexadecimal characters:

o 11110000
1 11110001
2 11110010
3 11110011

D 11000100
E 11000101
F 11000110

3. Declare a two-byte area, say TWOCHARS, into which the two character codes
for the hexadecimal characters in BYTE will be placed.

4. Obtain the first four bits of the byte to be converted, and add 1 to their decimal
value. The result will reflect the position in the array of the character code
for the appropriate hexadecimal character. For example, if the four bits are
0010, the result, when 1 is added, will be 0011, or 3. The character rep
resentation of the hexadecimal 0010 occupies the third position of the array.

5. Using the value obtained from step 4 as a subscript, locate the appropriate en
try in the array and assign the content of that entry to the first byte of
TWOCHARS.

6. Repeat steps 4 and 5, this time working with the last four bits of BYTE; assign
the character code to the second byte of TWOCHARS.

A solution to this problem appears on the following page.

IBM CONFIDENTIAL

/* SOLUTION TO CHECKPOINT 2 PROBLEM */

/* INITIALIZE ONE-BYTE AREA, BYTE, WITH CHARACTER A */
DECLARE BYTE CHARACTER (1);
BYTE = 'A';

/* CONSTRUCT TABLE OF HEXADECIMAL EQUIVALENTS */
DECLARE HEXREP (16) CHARACTER (1) INITIAL ('0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F');

/* HEXADECIMAL EQUIVALENT OF BYTE WILL BE PLACED INTO TWOCHARS */
DECLARE 1 TWOCHARS,

2 FSTCHAR CHARACTER (1),
2 SECCHAR CHARACTER (1);

/* FOURBITS WILL BE A WORK AREA */
DECLARE FOURBITS CHARACTER (1);

/* CONVERT FIRST FOUR BITS OF BYTE TO HEXADECIMAL * /
FOURBITS == BYTE & 'FO'X; /* ZERO LOW-ORDER FOUR BITS */
FOURBITS == FOURBITS / 16; /* SHIFT RIGHT FOUR PLACES */
FOURBITS == FOURBITS + 1; /* COMPENSATE FOR POS. IN TABLE * /
FSTCHAR == HEXREP (FOURBITS);/* HEX REP. TO FSTCHAR */

/* CONVERT SECOND FOUR BITS TO HEXADECIMAL * /
FOURBITS == BYTE & 'OF'X; /* ZERO HIGH-ORDER FOUR BITS */
FOURBITS == FOURBITS + 1; /* COMPENSATE FOR POS. IN TABLE * /
SECCHAR == HEXREP (FOURBITS);/* HEX REP. TO SECCHAR */

/* TWOCHARS NOW CONTAINS THE HEXADECIMAL EQUIVALENT */
/* OF THE ONE-BYTE AREA, BYTE */

IBM CON FIDENTIAL 33

34

CHAPTER 3: GAINING ACCESS TO DATA

The simplest way to gain access to an item of data is to give the item a name, and then
to use that name in a statement. The manner in which this can be done has been de
scribed in earlier chapters. In some cases, however, only a part of a particular item
is needed, or the needed item is to be located indirectly, via a pointer data item. In
both cases, more than just a name is required; the data can be referred to by using a
particular notation in the statement that is to act upon the data.

The notation required when a part of an item is needed is called substring notation.
As the name implies, substring notation may be used only with string data. Essentially,
when a portion of a string is needed, the bounds of that portion are indicated, in paren
theses, following the name of the item.

The notation required when an item is to be located indirectly, via an address con
tained in another item is called pointer notation. With pointer notation the name of the
item containing the address is given, followed by the composite operator ->, followed
by the name of the needed item.

SUBSTRING NOTATION

Substring notation is similar to subscript notation, which has been described as the
means of referring to a specific item in an array. To review, any item in an array may
be referred to by giving the name of the array and following that name with a number,
in parentheses, which indicates the position in the array of the needed item. With sub
string notation, any part of an item may be referred to by giving the name of the item
and following that name with a number that indicates the position of the desired part of
the item. To illustrate, assume that two items, ITEMA and ITEMB, have been declared
as follows:

DECLARE ITEMA CHARACTER (8);
DECLARE ITEMB CHARACTER (3);

The fifth character of ITEMA can be assigned to the first byte of ITEMB as follows:

I ITEMB (1) ~ ITEMA (5); I
If more than one character of an item is desired, two numbers, separated by a

colon, must be used. The two numbers should indicate the positions of the first and
last characters of the substring. For example, if characters 4-6 of ITEMA are to be
assigned to ITEMB, the assignment statement would be:

ITEMB = ITEMA (4:6);

IBM CONFIDENTIAL

If ITEMA and ITEMB were declared to be bit strings, and a specific bit or sequence
of bits were desired, the same notation could be used. The only difference would be that
the numbers in parentheses would represent bit positions rather than character posi
tions.

If an item is contained in an array, a portion of the item can be referred to by first
indicating the position of the item in the array, following it by a comma, and then indi
cating the position of the desired part of the item. For example, if ITEMA and ITEMB
were declared as follows:

DECLARE ITEMA (15) CHARACTER (3);
DECLARE ITEMB CHARACTER (2);

The second and third characters of the last item in the array ITEMA could be assigned
to ITEMB with the following statement:

I ITEMB = ITEMA (15,2:3)J

A variable-length substring would result if symbolic names are used to indicate the
bounds of the desired part of an item. For example, the length of the substring in the
following statement would depend upon the values of FIRST and LAST:

I ITEMB = ITEMA (FIRST:LAST); I

When syml;>olic names are used as above, there are certain rules that must be followed:

• Variable-length substrings may not be used as operands in arithmetic opera
tions.

• When a data item is assigned to a variable-length substring, the length of the
substring must not be greater than that of the data item.

• When a variable-length substring is assigned to an item, the length of the sub
string must not be greater than that of the item.

• A symbolic name may not be used to indicate a single-bit substring.

• When at least one sy:mbolic name is used to indicate a bit substring, the first
position of the substring must be the leftmost bit in a byte, and the last position
must be the rightmost bit in some (possibly the same) byte.

POINTER NOTATION

When an array of structures is declared, one block of space is assigned to the entire
array, and each structure in that array is positioned adjacent to the other structures.

IBM CONFIDENTIAL 35

36

For example, if the declaration

DECLARE 1 TABLE (3),
2ITEMA,
2ITEMB;

is written, the three structures within TABLE will be arranged in storage as follows:

TABLE (1) ITEMA

ITEMB

TABLE (2) ITEMA

ITEMB

TABLE (3) ITEMA

ITEMB

Thus, an expression such as

I ITEMB (3) I
is allowed because it is possible for the compiler to gain access to ITEMB of the third
structure in the array. That is, the beginning address of the array is known, and the
lengths of each structure are known; therefore, the displacement of ITEMB (3) from the
beginning of the array could be calculated.

In practice, structures may occupy a large amount of space, or the number of
structures needed may not be known beforehand. Therefore, it might be inlpractical
to declare an entire array of structures at one time. An alternative would be to declare
each structure as it is needed. When this is the case, however, it would be unlikely
that the structures would be adjacent to each other. Therefore, displacements could
not be used to locate a needed structure.

When an application is such that a chain of non-contiguous structures (or tables) is
created, programmers commonly keep track of the locations of the tables by inserting
into each the beginning address of the next table in the chain.

Pointer notation simply provides a way of indicating such an arrangement to the
compiler, so it can use the addresses to gain access to specific tables. Once the be
ginning address of a table is known to the compiler, it can readily compute the displace
ment of a needed item from the beginning of that table.

Pointer notation involves the use of the composite operator ->, which is preceded
by the name of a pointer variable, and followed by the name of a data item. (To review,
pointer variables are always addresses by which other data items can be located.)

IBM CONFIDENTIAL

To begin with an uninvolved example, the expression

A->B I
indicates that data item B is to be located via'the pointer variable A. Such expressions
are called locating expressions. The above expression might be used in an assignment
statement as follows:

I TOTAL =A-> B;

The statement would read "assign the value .of data item B, as located by the pointer
variable A, to the variable TOTAL. "

The relationship between A and B might be shown graphically as follows:

A ~B I , r-"I ---.

Suppose that B is also a pointer variable, however, and that several other pointer vari
ables are also linked in a chain, ending eventually at data item E:

A .---. B ____ C ~ D _____ E
r-"I ----., r-"I --I r-"I ---., ~I --I r-"I ----.

The locating expression would then be:

I A ---'> B -> C -> D -> ~

Now assume that each pointer variable, except the first is actually an entry in a
table, and that the tables are thereby arranged in a chained list of non-contiguous tables,
all of which have the same format:

A ~~ ________ ._~,~ ____ -+ ___ ~~ ________ ~~~ ________ _

c=, ______ 1 ADDNEXT ADDNE~T
INFO INFO

ADDNEXT

INFO

ADDNEXT

INFO

Two DECLARE statements would be needed to describe the above arrangement to
the BSL compiler:

IBM CONFIDENTIAL

38

DECLARE A POINTER;
DECLARE 1 TABLE BASED (A),

2 ADDNEXT POINTER,
2 INFO CHARACTER (12);

The first DECLARE statement identifies A as being a pointer variable.

The second DECLARE statement describes a single item, TABLE. Because all the
tables have the same format, all symbolic names will apply equally to any table in the
chain. The BASED attribute indicates to the compiler that the pointer variable A con
tains the address of the first table of the chain.

Following the above declarations, the first field, ADDNEXT, of the last table in the
chain could be referred to with the following expression:

A -> ADDNEXT -> ADDNEXT -> ADDNEXT -> ADDNEXT

Similarly, the second field, INFO, of the third table in the chain could be referred to as
follows:

I A -> ADDNEXT -> ADDNEXT -> INFO

The above expression is valid because the BSL compiler, using information derived
from the DECLARE statement, will automatically compute the displacement of INFO
from the beginning of the appropriate table.

For a practical application, first assume that two tables are chained as follows:

P

Pointer variable P contains the address of the first table, which in turn contains the
address of the second table. Assume further that another table exists, which is similar
in format, but which is pointed to by Q:

Q

IBM CON FIDENTIAL

Now, suppose that the single table is to be added to the chain between the two tables
currently in the chain. First, the pointer variables P and Q must be declared:

I DECLARE (P, Q) POINTER; I
Next, the format of the tables must be declared:

DECLARE 1 TABLE BASED(P),
2 ELEMI CHARACTER (4),
2 ELEM2 POINTER;

Now, with the following assignment statement, the address of the second of the chained
tables can be placed into the table being added to the chain:

I Q -> ELEM2 ~ P -> ELEM2; I
The statement reads "assign the value of ELEM2, as located by the pointer variable P,
to ELEM2, as located by the pointer variable Q." The results of the operation are
shown below:

p

'----~I)

(First chained
table)

Q

(Table being
added)

(Second chained
table)

As can be seen from the assignment statement, the needed address was obtained from
the first chained table, which still points to the same place, but can now be made to
point to the table being added to complete the chain:

I P -> ELEM2 ~ Q; I

The statement reads "assign the value of Q to ELEM2, as located by the pointer vari
able P." The results of the operation are shown below:

P

])

IBM CONFIDENTIAL 39

40

When an item is declared to have the BASED attribute, it is not necessary to use a
locating expression in referring to the item. For examp~e, if the declarations

DECLARE A POINTER;
DECLARE B BASED (A);

are written, the expression A - > B need not be written when a reference to B is to be
made. The name B may be used alone, as in the following statement:

I ITEMA = B; I
Thus, if several levels of indirect addressing are in use, it is possible to refer directly
to an item as follows:

DECLARE A POINTER, B POINTER BASED (A), C POINTER BASED (B),
D POINTER BASED (C), E BASED (D);

ITEMA = E;

Locating expressions need not reflect relationships that have been declared. For
example, the declaration

I DECLARE B BASED (A);

indicates that the address of item B is contained in item A. If it happens that another
item, say C, also contains the address of B, the following expression might then be
written in referring to B:

I C -> B I
CHECKPOINT 3: PROBLEM

Assume that the three chained tables shown below exist, and that the address of the
first table is contained in storage locati.on A.

IBM CONFIDENTIAL

A

I I)
..... ~ ------...

ADDNEXT

\
ADDNEXT

\
ADDNEXT

(Zeros)

ADDLAST ADDLAST ADDLAST
(Zeros)

DATA DATA DATA

Assume also that another table having the same format as the tables in the chain exists,
but that the address of this table is contained in storage location B:

B

1'----_--'1) -

DATA

Write the statements necessary to add the new table to the chain of tables between
the second and third tables in the chain.

A solution to this proble:m appears on the following page.

IBM CONFIDENTIAL 41

42

/* SOLUTION TO CHECKPOINT 3 PROBLEM * /

/* DESCRIBE FORMAT OF TABLES * /
DECLARE (A,B) POINTER;
DECLARE 1 TABLE BASED (A),

2 ADDNEXT POINTER,
2 ADDLAST POINTER,
2 DATA CHARACTER (4);

/* ADD TABLE TO CHAIN * /
B -> ADDLAST = A -> ADDNEXT -> ADDNEXT-> ADD LAST ;
A-> ADDNEXT -> ADDNEXT -> ADDLAST = B;
B -> ADDNEXT= A -> ADDNEXT -> ADDNEXT;
A ->ADDNEXT->ADDNEXT = B;

The numbered lines in the diagram shown below indicate the order in which the
operations are performed; the broken lines indicate the original arrangement of the
tables.

A B

I~
.........

17
~--- ~

ADDNEXT

~
ADDNEXT

~
ADDNEXT

~
ADDNEXT

(Zeros)

ADDLAST ADDLAST ADDLAST ADDLAST \
(Zeros)

\ /

DATA DATA \ DATA
I

DATA
\ I
\. /

.......... -,,/ ---
Table Being
Added

IBM CONFIDENTIAL

CHAPTER 4: DIVIDING PROGRAMS INTO PARTS

Often, it is desirable to divide a program into a number of parts. It might be that several
programmers are working wi.th the same program but, for practical reasons, each must
code and debug his own assignment separately. Or, to make a program more man
ageable and easier to debug, a single programmer may elect to divide his assignment
into two or more parts, and then to test each part separately. With BSL, programs
may be divided into any number of parts, called procedures, each of which may be
compiled, assembled, and executed separately for test purposes, and then combined
and executed as a single unit.,

BSL programs do not have to be divided into two or more procedures, as an entire
program can be made to consist of only one procedure. The choice of how many pro
cedures to have and where a division is to be made is entirely up to the programmer.

Two BSL statements, the PROCEDURE statement and the END statement, are used
to mark the beginning and the end of each procedure. The PROCEDURE statement must
be preceded by a symbolic name, and-the entire procedure may be referred to by that
procedure name:

I CHECKTCB: PROCEDURE; I
The above statement marks the beginning of procedure CHECKTCB. An END statement
must be the last statement of each procedure. It can consist of only the keyword END,
but may alsocontain the procedure name:

I END CHECKTCB; I
Single-part programs require only one PROCEDURE statement and one END

statement:

CHECKTCB: PROCEDURE;
statement 1;
statement :2;
statement :3;
END CHECKTCB;

The above procedure, CHECKTCB, contains three statements (besides the PROCEDURE
and END statements). A procedure may contain any number of statements, however.

When the decision to divide a program into two or more procedures has been made,
several things must be considered. One consideration is the flow of control, or the order
in which the procedures will be executed and the points at which each will be entered.
Another consideration involves data; some data can be made accessible to all procedures,
while other data can be made to be more limited in scope. Storage allocation must also

IBM CONFIDENTIAL 43

44

be considered. When data is being shared by two or more procedures, the space it is to
occupy must be set aside in one of those procedures.

The above considerations could not only have a direct bearing upon where a division
is made, but could also influence the ways in which the individual procedures are
written.

FLOW OF CONTROL CONSIDERATIONS

Control is not passed automatically from one procedure to the next. A transfer of con
trol must be indicated explicitly with a CALL statement containing the name of the entry
point of the procedure to be entered, or invoked:

I CALL CHECKTCB; I
The above statement will cause entry to procedure CHECKTCB. CALL statements may
be placed at any pOint from which a transfer to another procedure is desired:

MAIN: PROCEDURE;
statement 1;
statement 2;
CALL CHECKTCB;
statement 4;
END MAIN;

CHECKTCB: PROCEDURE;
statement a;
statement b;
END CHECKTCB;

In the above example, execution begins with statement 1 of MAIN. Then statement 2 is
executed. The CALL CHECKTCB statement invokes the procedure named CHECKTCB,
and control is transferred to CHECKTCB, where statements a and b are executed.
When the END CHECKTCB statement is reached, control is returned to procedure
MAIN, where the statement immediately following the CALL CHECKTCB statement is
executed.

When CHECKTCB is called, it is the invoked procedure and MAIN is the invoking
procedure; the CALL CHECKTCB statement is the point of invocation.

As procedure CHECKTCB now stands, it can be invoked at only one point, CHECKTCB.
Therefore, it has only one entry point. Additional entry points could be designated with
ENTRY statements, which consist of the keyword ENTRY preceded by a symbolic state
ment name which is to serve as the entry point name:

CHANGE: ENTRY;

IBM CONFIDENTIAL

Any number of ENTRY statements are allowed in a procedure, and they may be placed
wherever entry points are desired. The following example illustrates the use of an
ENTRY statement:

MAIN: PROCEDURE;
statement 1;
statement 2;
CALL CHANGE;
statement 4;
END MAIN;

CHECKTCB: PROCEDURE;
statement a;
CHANGE: ENTRY;
statement c;
END CHECKTCB;

The CALL CHANGE statement invokes procedure CHECKTCB at point CHANGE, where
statement c is executed. Execution of the END CHECKTCB statement then results in
control being returned to MAIN at the statement following the point of invocation, or
statement 4.

Should it be desirable to cause control to be returned to an invoking procedure be
fore the END statement of the invoked procedure is reached, a RETURN statement can
be used. The RETURN statement consists only of the keyword RETURN, followed by a
semicolon delimiter:

I RETURN; I
The RETURN statement, like an END statement, will cause control to be returned to the
invoking procedure at the statement following the point of invocation. To illustrate, a
RETURN statement might be used as follows:

MAIN: PROCEDURE;
statement 1;
statement 2;
CALL CHECKTCB;
statement 4;
END MAIN;

CHECKTCB: PROCEDURE;
,statement a;
statement h;
RETURN;
statement d;
END CHECKTCB;

IBM CONFIDENTIAL 45

46

In the above, the CALL CHECKTCB statement invokes procedure CHECKTCB, where
statements a and b are executed. When the RETURN statement is executed, control will
be returned to procedure MAIN at the statement following the point of invocation, or
statement 4.

Control can be returned to any named statement of an invoking procedure if a
RETURN TO statement is used:

I RETURN TO VALIDTCB; I
With the above, control will be returned to the invoking procedure at the statement
named VALIDTCB. The name of the statement to which control is to be returned must
be declared to have the attributes LABEL, LOCAL, and EXTERNAL in the invoking
procedure. The name must also be declared to have LABEL and EXTERNAL attributes
in the invoked procedure. The LOCAL and EXTERNAL attributes are discussed in the
section Data Considerations; the need for an explicit LABEL attribute will be explained
after the following example, in which use of a RETURN TO statement is illustrated:

MAIN: PROCEDURE;
DECLARE VALIDTCB LABEL LOCAL EXTERNAL;
statement 2;
statement 3;
CALL CHECKTCB;
statement 5;
VALIDTCB: statement 6;
statement 7;
END MAIN;

CHECKTCB: PROCEDURE;
DECLARE VALIDTCB LABEL EXTERNAL;
statement b;
statement C;
RETURN TO VALIDTCB;
statement e;
END CHECKTCB;

With the above, procedure CHECKTCB will be invoked when the CALL CHECKTCB
statement in procedure MAIN is executed. Then, when the RETURN TO VALIDTCB
statement is executed, control will return to the statement named VALIDTCB of pro
cedure MAIN.

Now observe that, had the LABEL attribute been omitted from either declaration in
the above example, the default attributes for the item VALIDTCBwould have been FIXED
(31). Thus, VALIDTCB would have been taken to be a signed, arithmetic item--the
LABEL attribute ensures that VALIDTCB would be treated as a label.

IBM CONFIDENTIAL

DATA CONSIDERATIONS

If the name and attributes of a data item are declared in one procedure, it does not al
ways follow that the name can be used in other procedures. Furthermore, the same
name can be declared in two or more procedures, but may be taken to represent dif
ferent items of data in each. In a single-procedure program, names are known through
out the program; their scope is the entire program. In multi -procedure programs, how
ever, the scope of a name rnay be more limited. The scope of a name is the range of
the program throughout which the name is kllown. --

Three methods exist by which the scope of a name may be extended. Procedures
can be arranged one inside the other, or nested, in such a way that names known to the
encompassing procedure are known also to the nested procedure. In addition, certain
scope attributes can be specified in the DECLARE statement to identify items whose
scope is to be extended to include procedures other than the declaring procedure. With
the third method, the scope of names can be extended by passing arguments consisting
of the names of data items from one procedure to other procedures in which the same
items will be used.

NESTING PROCEDURES

A nested procedure is one that is wholly contained within another procedure. In the fol
lowing example, two identical procedures are illustrated. In the first program they are
arranged consecutively, while in the second program, one is nested within the other:

A: PROCEDURE; A: PROCEDURE;
statement 1; statement 1;
statement 2; statement 2;
CALL B; CALL B;
ENDA; B: PROCEDURE;

statement a;
B: PROCEDURE; statement b;

statement a; END B;
statement b; ENDA;
END B;

Control flow will be the same for both programs. From external appearances, the only
change appears to be one of physical organization. However, another, more important,
difference now exists.

Any data names declared in procedure A of the first example are known only to that
procedure. In fact, names used in A could be repeated in B, but would be taken to rep
resent different data items, even though their attributes might be declared to be identi
cal.

IBM CONFIDENTIAL 47

48

On the other hand, in the second of the above examples, any names declared in pro
cedure A are known also to procedure B. Consequently, any name used in A can also
be used in B.

The relationship between the nested procedures A and B might be shown as follows:

A

r7==
~

Several levels of nesting could be used, and two or more procedures can appear at the
same level. To illustrate, two additional procedures, C and D, might be added in either
of the following ways:

A A
B

c

~
~

~--------------

B

c

D

Data names used in a procedure are known only to the procedure in which they are
declared and to any lower-level nested procedures. In both of the above examples, a
name declared in B would be known to C and D, but not to A. In the first example, a
name declared in C would be known to D, but not to A or B; in the second example, a
name declared in C would be known only to C.

Nested procedures may be invoked only from the immediately encompassing pro
cedure or any procedure at the same level. In the first of the above examples, a CALL
C statement would be valid only in procedure B, while in the second example a CALL C
statement would be valid in B or D.

A single nested procedure must always be positioned so that its END statement im
mediately precedes the END statement of the containing procedure. Multiple procedures
at the same level must be adjacent to each other, the END statement of the last placed
just before the END statement of the containing procedure. For example, procedures
A, B, C, and D shown above would be arranged as follows:

IBM CONFIDENTIAL

A: PROCEDURE;

B: PROCEDURE;

C: PROCEDURE;

D: PROCEDURE;

ENDD;
END C;

ENDB;
ENDA;

A: PROCEDURE;

B: PROCEDURE;

C: PROCEDURE;

END C;
D: PROCEDURE;

ENDD;
ENDB;

ENDA;

When procedures are nested, the entire nest may be compiled as one unit. In all
other cases, procedures must be compiled separately.

USING SCOPE ATTRIBUTES

To review, the scope of a data name is the range of a program throughout which the name
is known. It has been shown how the scope of a name can be changed by placing proce
dures into a nested arrangenlent. The scope of a name may also be changed, however,
by the use of scope attributes in the DECLARE statement.

There are two scope attributes: INTERNAL and EXTERNAL. The INTERNAL at
tribute serves to restrict the scope of a na~e to the procedure containing the declara
tion; the same name declared to be INTERNAL in two or more procedures would be taken
to mean different data items in each of the procedures.

The EXTERNAL attribute serves to extend the scope of a name from the procedure
containing the declaration to any other procedure containing the same declaration. The
same name declared to be EXTERNAL in two or more procedures would be taken to mean
the same data item.

In the first of the following examples, the name TOTAL represents two different
data items, while in the second example, it represents the same data item:

IBM CONFIDENTIAL 49

50

A: PROCEDURE;
DECLARE TOTAL

FIXED INTERNAL;

ENDA;

B: PROCEDURE;
DECLARE TOTAL

FIXED INTERNAL;

ENDB;

PASSING ARGUMENTS

A: PROCEDURE;
DECLARE TOTAL

FIXED EXTERNAL;

ENDA;

B: PROCEDURE;
DECLARE TOTAL

FIXED EXTERNAL;

END B;

A data item known to an invoking procedure can be made known to the invoked procedure
if its name is passed as an argument of invocation. This is done by placing the data
name into a CALL statement as follows:

I CALL B (ONE); I
The name may then be placed similarly into either a PROCEDURE statement named B
or an ENTRY statement named B as follows:

B: PROCEDURE (ONE);

B: ENTRY (ONE); I
Data names so specified in CALL statements are called arguments; data names so spec
ified ill PROCEDURE or ENTRY statements are called parameters. More than one name
may be passed, but the names must be separated by commas and parentheses must en
close both the argument list and the parameter list:

A: PROCEDURE;
CALL,B (ONE, TWO, THREE);

ENDA;

B: PROCEDURE (ONE, TWO, THREE);

END B;

IBM CONFIDENTIAL

In the preceding example, B is invoked by the CALL statement in A, and the names of
data items ONE, TWO, and THREE are passed from A to B; that is, their scope is ex
tended from A to include B.

Names in an argument list are associated with names in a parameter list only by
the order in which they appear; that is, the first argument is associated with the first
parameter, the second argument with the second parameter, etc. No association by
name is made; in fact, for nested procedures, the name of a parameter must not be the
same as the name of the corresponding argument. The preceding example could just as
well have been expressed as follows:

A: PROCEDURE;
CALL B (ONE, TWO, THREE);

ENDA;

B: PROCEDURE (FOUR, FIVE, SIX);

END B;

With the above, the item nam.ed ONE would be referred to in procedure A by the name
ONE and in procedure B by the name FOUR; each name represents the same data item.

Consider the following example, in which a subroutine, C, is invoked by procedures
A and B:

A: PROCEDURE; B: PROCEDURE;
DECLARE INDICATR BIT (24); DECLARE SWITCH BIT (24);

CALL C (INDICA TR); CALL C (SWITCH);

END A; ENDB;
C: PROCEDURE (INPUT);

DECLARE INPUT BIT (24);

INPUT = 5;

ENDC;

IBM CONFIDENTIAL 51

52

In the example, C is a procedure that is used as a subroutine by both A and B. A and B
each share a data item with C, but not with each other. Although the names of the items
differ, the attributes of the items passed must agree, and they must also be declared in
all procedures involved. With the CALL statements, both the scope of INDICATR and
the scope of SWITCH are extended to include procedure C. When A invokes C, INDICATR
will be assigned a value of 5; when B invokes C, SWITCH will be assigned a value of 5.

Arguments may consist of constants, variables, or complex expressions, and the
variables may be structure or array names.

STORAGE ALLOCATION CONSIDERATIONS

Data names do not actually occupy storage space during execution, as they are converted
to addresses prior to execution. The data items at the locations, however, do occupy
space and this space can be an important consideration. For example, in a nlulti
procedure program in which data is being shared, the procedure in which the shared
items are to be assigned space should be made known to the compiler--otherwise no
space will be assigned. Two storage class attributes, LOCAL and NONLOCAL, provide
a means of indicating the procedure in which a particular item is to be assigned space.
Also, if certain items are referred to in only one procedure, space could be saved if the
items are not assigned space until the procedure is invoked, and if the space is freed
upon exit from the procedure. The two storage class attributes STATIC and AUTOMATIC
provide a means for indicating permanent and temporary space assignment.

The LOCAL attribute indicates that space is to be assigned to an item, while the
NONLOCAL attribute indicates that space is not to be assigned to an item:

A: PROCEDURE;
DECLARE TABLE (12) CHARACTER (10)

LOCAL EXTERNAL;

ENDA;

B: PROCEDURE;
DECLARE TABLE (12) CHARACTER (10)

NONLOCAL EXTERNAL;

END B;

In the example shown above, the array TABLE is to be shared by procedures A and B.
TABLE will be assigned space once--.in the storage area assigned to procedure A.

The default storage class attribute may be LOCAL or NONLOCAL, as it depends
upon the scope attribute that is specified. If the scope of an item is declared to be IN
TERNAL, the default storage class attribute will be LOCAL. However, if the scope of

IBM CONFIDENTIAL

an item is declared to be EXTERNAL, the default storage class attribute will be NON
LOCAL:

Scope Attribute
Defaul t Storage
Class Attribute

INTERNAL LOCAL

EXTERNAL NONLOCAL

If neither a scope attribute nor a storage class ,attribute is specified, the default attri
butes will be INTERNAL and LOCAL.

When the STATIC attribute is specified for a data item, space is assigned perma
nently to that item during cOlllpilation:

A: PROCEDURE;
DECLARE TABLE (12) CHARACTER (10)

STATIC;

ENDA;

With the above, the space assigned to the array TABLE will be obtained during compi
lation; it will not be made available for reassignment to any of the items declared in
other procedures of the program. The STATIC attribute is a default attribute. There
fore, it need not be explicitly specified as it was in the preceding example.

If the AUTOMA TIC attribute is specified for a data item, space will not be obtained
for the item until the procedur.e containing the declaration is invoked. Then, upon exit
from the procedure, the space will be freed for possible reassignment. Whenever the
AUTOMATIC attribute is specified, neither the LOCAL nor the NONLOCAL attribute
may be specified. Also, the PROCEDURE statement for the procedure in which the dec
laration is made must contain the keywords OPTIONS (REENTRANT). The following ex
ample illustrates how the AUTOMA TIC storage class attribute might be used:

A: PROCEDURE OPTIONS (REENTRANT);
DECLARE TABLE (12) CHARACTER (10)

AUTOMATIC;

ENDA;

With the above, space will not be obtained for the array TABLE until procedure A is in
voked; the s pace will be freed upon exit from A.

IBM CONFIDENTIAL

54

CHECKPOINT 4: PROBLEM

In the checkpoint 3 problem, it was said to assume that three chained tables existed, and
that the address of the first of the chained tables was contained in storage location A.
The format and ~rrangement of the tables was shown to be:

A

'7~ ~
ADDNEXT ADDNEXT ADD NEXT

\ \ (zeros)

ADDLAST ADDLAST ADDLAST
(Zeros)

DATA DATA DATA

It was also said to assume that another table of the same format existed, but that the ad
dress of this table was contained in storage location B:

B

DATA

Write a procedure called BUILD, and in it construct both the chain of tables and the
single table to be added to the chain. Pass the address of the first table in the chain and
that of the table to be added to the chain to another procedure, UPDATE.

Add PROCEDURE and END statements to the statements consituting the solution to
the checkpoint 3 problem. Call the procedure UPDATE, and have it receive, as param
eters, the addresses of both the first table in the chain and the table to be added.

A solution to this problem appears on the following page.

IBM CON FIDENTIAL

/* SOLUTION TO CHECKPOINT 4 PROBLEM * /

BUILD: PROCEDURE;
DECLARE (A, B) POINTER;
DECLARE 1 TABLE (4),

2 ADDNEXT POINTER,
2 ADDLAST POINTER,
2 DATA CHARACTER (4);

/* CHAIN THREE TABLES */
A = ADDR (TABLE (1»;
ADDNEXT (1) = ADDR (ADDNEXT (2);
ADDNEXT (2) = ADDR (ADDNEXT (3»;
ADDNEXT (3) = 0;
ADDLAST (1) = OJ
ADDLAST (2) = ADDR (ADDNEXT (1»;
ADDLAST (3) = ADDR (ADDNEXT (2»;

/* ADDRESS OF FOURTH TABLE TO B */
B = ADDR (TABLE (4»;

/* PASS A AND B TO PROCEDURE UPDATE */
CALL UPDATE (A, B);
END BUILD;

UPDATE: PROCEDURE (A,B);
statements for problem 3

END UPDATE;

IBM CON FIDENTIAL

56

CHAPTER 5: CONTROLLING PROGRAM FLOW

Normally, statements are executed one by one in the order by which they appear in a
program. Thus far, it has been shown how that order can be changed with the CALL,
END, RETURN, and RETURN TO statements. The order of execution can also be
changed, however, with the IF, GO TO, and DO statements. With these statements, a
change can be conditional or unconditional, or statements can be grouped and treated as
a group, to be executed together or skipped entirely.

CONDITIONAL CHANGES TO PROGRAM FLOW

The IF statement is used when the order of execution is to depend upon a relationship
that exists between two or more data items. The relationship is expressed, and, de
pending upon whether that relationship is true or false, a choice of designated paths to
be taken is made.

Two keywords constitute the basic IF statement, IF and THEN. In skeletal form the
basic IF statement can be shown as follows:

I IF ---- THEN ----; I

The relationship between two data items is expressed after the IF keyword, and the ac
tion to be taken if the relationship is true is expressed after the THEN keyword. If the
relationship is false, the action is not taken. The example shown below illustrates how
a basic IF statement can be used.

IF A > B THEN A=C;
CALL SUBRTN;

The IF statement reads "If the value of A is greater than that of B, then assign the value
of C to A." The CALL SUBRTN statement is used for illustrative purposes; it repre
sents any statement that may follow the IF statement. It will be executed regardless of
whether or not the value of A is greater than that of B.

The expression A > B is called a relational expression. Relational expressions al
ways show a comparison that is to be made, and may only be used in IF statements. The
"greater than" sign is a comparison operator, one of a group of operators that designate
the way in which the specified items are to be compared (see Figure 4). Items being
compared may be constants or variables.

Either of two paths may be taken in the preceding example. If the relationship is
true, that is, if the value of A is greater than that of B, then the assignment statement
A=C will be executed, and control will pass to the statement following the IF statement,
CALL SUBRTN:

YES ~

IF A > B THEN$C,;
CALL SUBRTN;

IBM CONFIDENTIAL

> Greater than

< Less than

Equal to

l > Not greater than

1 < Not less than

l = Not equal to

>= Greater than or equal to

< ::: Less than or equa I to

All comparison operators have a
priority of 4.

Figure 4. Comparison Operators

However, if the relationship is false, the assignment statement A=C will be skipped, and
control will pass directly to the CALL SUBRTN statement:

NO --------,
IF A > B THEN A=C;
CALL SUBRTN; ~I---

The statement following the THEN keyword can be any statement except the DE
CLARE, END, ENTRY, and PROC EDURE statements, all of which have been discussed,
and the RESTRICT and RELEASE statements, discussed in the publication BSL: Basic
~tems Language Description.

As the example now stands, there are two paths for control flow to follow. A third
path may be added with an ELSE clause:

NO --;::t......
IF A > B THEN A=C; ELSE A=D~
CALL SUBRTN;...... ~

Now, if the relationship between A and B is false, the statement A=D will be executed
before control passes to the CALL SUBRTN statement.

An ELSE clause always deSignates an action to be taken if a relationship expressed
in an IF statement is false. ELSE clauses may only be used with IF statements; they are
optional but, when used, they rnust follow the semicolon that delimits the basic IF state
ment, and they must themselves be followed by a semicolon delimiter.

In all examples discussed thus far, the actions to be taken have depended upon the
result of one relationship, expressed in a single relational expression. It has been men
tioned that the statement following the THEN keyword can be any statement except

IBM CONFIDENTIAL 57

58

DECLARE, END, ENTRY, PROCEDURE, RESTRICT, or RELEASE. Therefore, the
statement following the THEN keyword of one IF statement can be another IF statement.
Furthermore, the statement following the THEN keyword of the second IF s tatemeht can
also be an IF statement, etc. This allows not one, but any number of relationships to be
established, with separate true-false paths for each. The following is an example of
such a nested IF arrangement:

-------------------No ----------------------------
.-------'--NO -----.

Next statement;

One nested IF statement is shown. Notice the association of IF statements and ELSE
clauses (the "no" paths). If the first relationship is false, control passes to the last
ELSE clause; if the second relationship is false, control' passes to the second-to-Iast
ELSE clause. If there were a third nested IF statement and the relationship was false,
control would pass to the third-to-Iast ELSE clause.

The preceding example is shown in Figure 5 as it might appear in a program. The
free-form format facilities of BSL are used to advantage, as the ELSE clauses are made
to appear directly below their associated IF statements.

It was mentioned earlier that ELSE clauses are optional. When there are no ELSE
clauses in a nested IF arrangement, all "no" paths will lead to the next statement.~ If an
equal number of IF statements and ELSE clauses exists, the IF-ELSE relationship is
that which has been shown above (first to last, etc.). However, when there is an imbal
ance, as when there are fewer ELSE clauses then IF statements, each ELSE clause is
automatically paired with the nearest IF statement. To illustrate, if one ELSE clause
were omitted from the nested IF arrangement in the example shown above, the relation
ship would change to the following:

~------------NO---------------------------------~

.----------- NO ------------.

Next statement; ~------------------------~------------~~----~

IBM CONFIDENTIAL

Now if the first relationship is false, control will pass to the next statement--not to the
last (in this case, the only) ELSE clause.

YES -------yES ---.... A
IF A > 8 THEN IF FLAG = 1018 THEN A = C;

ELSE A = 0;

ELSE A = E;

CALLSU8RTN; ~ ___________ J

YES
NO -------...1

IF A> 8 THEN IF FLAG = 1018 THEN A = C;

r~
ELSE A = 0;

ELSE A = E; "-(

CALL SU8RTN; ~
NO ---------------------------~~

IF A> 8 THEN IF FLAG = "0 1 8 THEN A = C;

ELSE A = 0;

ELSE A = E;

t
CALL SU8Rl N;

Figure 5. Nested IF Statement- ELSE Clause Relati.onships

When a "no" action is not desired but a specified IF-ELSE relationship must be
preserved, a null ELSE clause may be used. It consists Simply of the keyword ELSE,
followed by a semicolon delim-iter:

Null ELSE clauses cause no change in control flow. Thus, in Figure 5, a null ELSE
clause could be substituted for any of the ELSE clauses shown, and no other change to
the figure would be necessary.

The logical operators & (and), (or), and && (exclusive or) can be used in re
lational expressions. For example, the statement

IF A > ~(B&C) THEN A~Cj

IBM CON FIDENTIAL 59

60

reads "If the value of A is greater than or equal to that which will result when B is
"anded" to C, then assign C to A. If The parentheses are needed because the priority of
the> = operator is greater than that of the & operator; without the parentheses shown
above, the statement would be meaningless, as it would be interpreted to be:

I IF (A ,> ~B)&C THEN A~C; I
The two operators & (and) and I (or) can also be used when an action is to depend

upon a relationshipship between two or more relational expressions. For example,
the statement

I IF A>Blc<D THEN A~C;

reads "If the value of A is greater than that of B, or if the value of C is less than that of
D, then assign C to A." When used in this way, the operators are called connectives, to
distinguish them from the logical operators which consist of the same symbols.

UNCONDITIONAL CHANGES TO PROGRAM FLOW

The GO TO statement, like the IF statement, can be used to alter the normal order
of execution of a program. Unlike the IF statement, however, the GO TO statement re
sults in an unconditional, rather than a conditional change in the order of execution.

The GO TO statement consists of the keywords GO TO, followed by the name of the
statement to which control is to be passed:

GO TO ALPHA;

ALPHA: A=B;

In the above example, control will be transferred unconditionally from the GO TO state
ment to the statement named ALPHA; all intervening statements will be skipped.

Although a GO TO statement by itself results in an unconditional transfer of control,
it can be used in an IF statement, where it would be executed conditionally. Thus, the
net result would be a conditional transfer of control:

IF A>B THEN GO TO UPDATE;

UPDATE: A=C;

IBM CONFIDENTIAL

In the above example, control would be transferred from the IF statement to the state
ment named UPDATE only if the value of A is greater than that of B. GO TO statements
may follow both THEN and ELSE keywords.

GROUPING STATEMENTS

The 00 statement provides a means of grouping a number of statements in such a 'way
that they will be treated as a single unit. The unit, called a DO group may then be used
in two ways. The group may be placed after the THEN or ELSE keywords of an IF state
ment, in which case the group will be executed or skipped entirely, depending upon the
results of a comparison. The group of statements may also be executed repeatedly a
specified number of times before control passes to the statement following the group.

A 00 statement must always be the first statement of a DO group, and an END state
ment must always be the last statement of the group. In its simplest form, the DO state
ment consists of only the keyword DO and a semicolon delimiter, but it may also be
given a statement name:

DO;

SUBRTN: DO;

The END statement can consist of only the keyword END, but, if the DO statement is
given a name, the END stateJment may also contain that name:

END;

END SUBRTN;

Any group of statements bounded by the above DO and END statements would be
treated as a single unit. Thus, the group could appear in an IF statement as follows:

IF A>B THEN DO;
statement 1;
statement 2;
statement 3;
END;

ELSE statement 4;
statement 5;

Statements 1, 2, and 3 will be executed only when the value of A is greater than that of
B. The END statement signifies the end of the DO group and, in this case, the end of the
THEN clause. Therefore, when the END statement is reached, control will pass to
statement 5. When the value of A is less than that of B, the DO group will be bypassed
entirely and the ELSE clause will be executed.

IBM CONFIDENTIAL (it

62

A DO group can be made to be executed repeatedly a designated number of times if
certain additional information is placed into the DO statement. In principle, the compiler
establishes a counter and increments the count each time a pass is made through the DO
group. The programmer must specify: a symbolic name to represent the counter; the
initial value to be placed into the counter; and a value which, when exceeded, will result
in exit from the group.

The skeletal fornl of a DO statement that can be used to cause repetitive execution
of a DO group is:

I DO TO __ _

Both the variable name that is to represent the counter and the initial value that the
counter is to have are expressed after the DO keyword in the form of an assignment
statement. The value to be exceeded before exit is made from the DO group is specified
after the TO keyword. For example, a DO group that is to be executed 10 times before
control is to pass to the statement following the group might be expressed as follows:

DO A=1 TO 10;
statement 1;
statement 2;
statement 3;
END;

In the above, the variable named A represents the counter, which is given an initial
value of one. Any symbolic name may be used to represent the counter. The counter
will be incremented automatically by one each time the 00 group is executed e When its
value reaches 11, or, in other words, after the group has been executed 10 times, con
trol will pass to the statement following the END statement.

Constants, variables, or arithmetic expressions may be used to designate both the
initial value of the counter and the value to be exceeded when exit from the group is de
sired. Thus, the DO statement in the preceding example could just as well have been
written as follows:

I DO A=B+C TO NO;

In the above, the number of iterations would depend upon the values of the variables B,
C, and NO.

In the examples shown thus far, the counter was incremented by one each time the
DO group was executed. Other values by which the counter is to be incremented can also
be specified, however, by adding the keyword BY to the DO statement, and following the
BY keyword with the desired increment, as shown in the following example:

IBM CONFIDENTIAL

DO A=O TO 10 BY 2;
statement 1;
statement 2;
statement 3;
END;

The above 00 group would be executed six times. The increment, in this case two,
could also be expressed as a variable or an arithmetic expression. If an increment is
not specified, an increment of one will be used.

A negative increment may be specified in the DO statement, in which case the initial
value given the counter will be decremented. Exit from the group will occur when the
value of the counter becomes less than that specified after the TO keyword:

DO A=10 TO.1 BY -1;
statement 1;
statement 2;
statement 3;
END;

The 00 group shown above will be executed 10 times; the counter will have a value of 0
upon exit from the group.

DO groups, like procedures and IF statements, may be nested; that is, a statement
of a DO group may be another DO statement, as in the following example:

DO A=l TO 10;
statement 1;
statement 2;
DO B=l TO 5;

END;

statement a;
statement b;
END;

In the above example, the second DO group will be executed five times for each execution
of the first DO group, or a total of 50 times. Care should be taken with nested DO groups
to ensure that each DO group has an associated END statement.

The automatically decrementing or incrementing value of a counter may often be
used to advantage, for the symbolic name given the counter maybe used todenote a var
iable in other statements of the program. For example, assume that an array of 12
items exists, and that the position of the first item containing zeros is to be determined.
The following statements might be written:

IBM CONFIDENTIAL 63

64

NO = 0;
DO A = 1 TO 12;

IF ARRAY (A) = 0 THEN DO;
NO =A;

END;

GO TO OUT;
END;

OUT: IF NO = 0 THEN ..• ;

In the above, the subscript of ARRAY will reflect the value of the counter. The first
time the group is executed, A will be 1 and the first item in the array will be checked
for zeros; the second time the group is executed, A will be 2 and the second ite:m will be
checked; etc. When an item containing zeros is encountered, a value representing the
position of the item in the array will be assigned toNO, and exit from the group will oc
cur. Should none of the items in the array contain zeros, the value of NO will remain o.
Thus, upon exit from the group, the variable NO will have a value of 0 if none of the
items contained zeros, or a value that reflects the position of the first element in the
array which contains zeros.

Because the counter is reset automatically each time that a DO statement is
reached, a transfer out of any DO group, as with a GO TO statement, will not affect the
operation the next time the group is executed.

CHECKPOINT 5: PROBLEM

Write two procedures. In the first, construct an array of at least five elements con
taining numeric information. Pass to the second procedure the number of elements in
the array and a pointer to the first element of the array. In the second procedure, sort
the elements of the array into ascending sequence.

A solution to this problem appears on the following page.

IBM CON FIDENTIAL

/* SOLUTION TO CHECKPOlNT 5 PROBLEM * /

FIRST: PROCEDURE;
DECLARE P POINTER;
DECLARE ARRAY (lj) INITIAL (18, 5, 3, 1, 4);
P = ADDR (ARRAY);
NO = 5;
CALL SECOND (NO, P);

END FIRST;

SECOND: PROCEDURE (NO, P);
DECLARE P POINTER;
DECLARE TABLE (5) BASED (P);
DO J=1 TO NO-I;

END;
END SECOND;

DO 1=1 TO NO-J;
IFP->TABLE (I) > = P->TABLE (1+1) THEN DO;

SA VE :;:: TABLE (I);
TABLE (I) = TABLE (1+1);
TABLE (1+1) :;:: SAVE;
END;

END;

IBM CON FIDENTIAL 65

66

CHAPTER 6: USING ASSEMBLER LANGUAGE INSTRUCTIONS AND CONTROL PRO
GRAM SERVICES

With BSL, programmers can use any of the assembler language instructions or control
program services that are available tothem. A single instruction or macro instruction,
or any number of instructions maybe inc1udedas a group or maybe interspersed among
BSL statements. The transition from BSL text to non-BSL text, however, must be indi
cated with a statement called the GENERt\ TE statement.

There are two forms of the GENERATE statement. One form, called the simple
GENERATE statement, is used to identify individual non-BSL instructions. The other
form, called the block GENERATE statement, is used to indicate a number of contiguous
non-BSL instructions, and does not require that individual instructions in the block be
identified.

The simple GENERATE statement consists of the statement keyword GENERATE,
followed, in parentheses, by one assembler language instruction or system macro in
struction:

GENERA TE (One AssembLer Language InstrUCtion)
-or-

One System Macro Instruction

A Set Program Mask instruction could be placed in a BSL program as follows:

I GENERATE (SPM 1); I
Similarly, a GETMAIN system macro instruction could be specified as follows:

I GENERATE (GET MAIN R,LV=(O)); I
The block GENERATE statement consists only of the keyword GENERATE and indi

cates the beginning of a sequence of non-BSL instructions. When this form is used, the
special delimiter $ENDGEN must be used to indicate the end of the sequence:

GENERATE;

Assembler Language

Instructions and/or

System Macro Instructions

$ENDGEN

IBM CONFIDENTIAL

When simple GENERATE statements are used, the non-BSL instructions are placed
into columns 10-72 of the input to the assembler, and statement names appearing on the
GENERATE statements are placed into columns 1-8. On the other hand, when the block
GENERATE statement is used, non-BSL instructions are placed into columns 1-80 of
the input to the assembler.

Several things must be considered whenever non-BSL instructions are placed into a
BSL progranl. These include access to data items with non-BSL instructions and also
access to general registers. They require the user to have a knowledge of how the BSL
compiler produces code and, therefore, are beyond the scope of this publication. Such
considerations are described in the pUblication: BSL User's Guide.

IBM CONFIDENTIAL G7

68

APPENDIX A: BSL KEYWORDS

Listed below are all BSL keywords, including both statement keywords and attribute
keywords. Some have not been described in this publication, as it is intended to be only
a general introduction to the language. They are shown here to provide a checklist of
symbolic names that should not be used (symbolic names connot be the same as some
BSL keywords). A "YES" in the column marked Reserved indicates that the correspond
ing keyword should not be used as a symbolic name.

Any of the abbreviations shown below may be used freely in place of the correspond
ing keyw ords •

Permissible Permissible
Keyword Abbreviation Reserved Keyword Abbreviation Reserved

ABNORMAL ABNL GO TO GOTO YES

ABS YES IF YES

ADDR YES INITIAL INIT

AUTOMATIC AUTO INTERNAL INT

BASED LABEL

BIT LOCAL

BOUNDARY BDY NON LOCAL

BY YES NORMAL

CALL Yll!:S NOSAVEAREA

CHARACTER CHAR POINTER PTR

CODE REG PROCEDURE PROC YES

DATAREG REENTRANT

DECLARE DCL YES REGISTER REG

00 YES RELEASE YES

OONTSAVE RESTRICT YES

ELSE YES RETURN YES

END YES RETURN TO YES

ENTRY YES SAVE

EXTERNAL EXT STATIC

FIXED THEN YES

GENERATE GEN YES TO YES

IBM CONFIDENTIAL 69

70

APPENDIX B: PRIORITY OF OPERATORS

The following is a list of all BSL operators, and the priority of each. In complex ex
pressions--those involving more than one operator--the operations are performed ac
cording to the priority of the operators. When more than one operator of the same
priority appears in the same expression, the corresponding operations are performed
in the order by which they appear in the expression; that is, from left to right.

Operator Operation Priority

+ Prefix Plus 1
- Prefix Minus 1

* Mul tiplication 2

I Division (Quotient) 2

II Division (Remainder) 2

+ Addition 3
- Subtraction 3

> Comparison (Greater Than) 4

<- Comparison (Less Than) 4
= Comparison (Equal To) 4
-,> Comparison (N ot Greater Than) 4
-,< Comparison (Not Less Than) 4
-,= Comparison (Not Equal To) 4
>= Comparison (Greater Than or

Equal To) 4
<= Comparison (Less Than or Equal

To) 4

& And 5

I Or 6

&& Exclusive Or 7

IBM CONFIDENTIAL

Addition 11
ADDR flU1ction
"And" operations ..

in IF statements
Arguments of invocation .
Arithmetic constants ..
A rithmetic data
Arithmetic expressions ..

evaluation of
parentheses in
variable-length substrings in .

23
....... 13

59
50

........ 19
18
11
12
12
35

Arithmetic operators 11, 13
Arrays

of structures.
within structures , .

Assembler language
Assembly
Assignment statement
Assignmen.t symbol
Asterisk

..25, 29
· ... 30, 35

........ 31
· .6, 17, 66

6
· ... 7, 10

7

as multiplication sign 11
in array declarations 30

Attributes. .. 17
default (See Default attributes)
factored 20, 28
(See also individual attributes)

AUTOMATIC attribute 52, 53

BASED attribute
BIT attribute

. .38, 40
22

Bit string constants 22
Bit strings

substring notation for
Blanks, use of

in character string constants
in composite symbols
insymholic names

Boolean operations
in IF statements

22
35

7
22

9
9

13
59

CALL stat.ement .. 44
arguments 50

CHARACTER attribute . 21
Character set

BSL. 8
EBCDIC. 9

Character string assignment 21
Character string constants 21
Character strings 20

substring notation for 34
Coding sheet . 7, 8
Collections of data .. 24

arrays. 25, 29
structures 25

Colon
after statement names 9

in substring notation 34
Comments 7, 9
Comparison operators 56, 57
Compilation
Composite symbols
Constants

arithmetic
as arguments
bit string ...

. . 6, 49
9

10
19
52
22

character string
in logical expressions.

Control program services, using

Data
arithmetic .. .
collections of .

INDEX

21
13

6, 66

U
18
24

pointer 18, 23, 36
program
string

DECLARE statement
for arrays
for structures

Default attributes
for arithmetic operations
for items in structures
for program data
for lU1declared variables . . .
scope
storage class

Dimension attribute
Division
DO groups

nested
DO statement

EBCDIC characters
ELSE clause
END statement

.. 18,24
..... 18, 20, 34

.. 7, 17
29
26

19
27
24
19
53

. 52, 53
29
11
61
63

.56, 61

9, 20
57

for DO groups 61
for procedures 43, 48

ENTR Y attribute 24
Entry points . 43, 44
ENTRY statement 41

parameters. 50
Equal sign 7
"Exclusive or" operations. .. 14

in IF statements 59
Expressions .. 10

arithmetic 11
as .arguments 52
locating . 37
logical
relational .

EXTERNAL attribute

13
56

.. 46, 49

Factored attributes••..•............. 20, 2&
FIXED attribute. • • . • • 18
Fixed-point numbers ...•••..... ;............... 18

GENERATE statement .•......•....•.•.......•.. 66
GO TO statement 56, 60

Hexadecimal constants • . • 22

IF-ELSE relationships . 58
IF statement. 56

nested 58
Indirect addressing 23, 40
INITIAL attribute 20
Initial values

for arrays
for variables.

INTERNAL attribute

30
.... 19, 20

49
Invocation, arguments of. .. 50
Invoked procedure . 44
Invoking procedure. 44

IBM CONFIDENTIAL 71

Keywords
list of 69
permissible abbreviations for . 69

LABEL attribute 24, 46
Level number

in structure declarations. 26
LOCAL attribute · .46, 52
Locating expressions
Logical expressions

"and" operations ,
applications•...
"exclusive or" operations
"or" operations .

Logical operators
in logical expressions.
in relational expressions

Machine language. . .
Multiplication

Nesting

37
13
13
15
14
14

13
59

6
11

DO groups
IF statements
procedures

. . . • 63
. 58
. 47

NONLOCAL attribute ..
Null ELSE clauses

Operators.
arithmetic
comparison.
logical
prefix
priorities of

"Or" operations .. .
in IF statements

Parameters
Pointer

.... 11,
· .56,
· .13,

52
59

70
13
57
59
12
70
14
59

50

data 18, 23, 36
notation 34, 35
variables . • . . . •. 36

POINTER attribute , 23
Point of invocation , 44
Prefix operators .. 12
Priority

of arithmetic operators•........... 13, 70
of comparison operators 57, 70
of logical operators 15, 70

Procedures. .. 43
additional entry points to. 44
data considerations 43, 47
flow of control considerations 43, 44
names of 43
nested. 47
storage allocation considerations 43, 52

PROC EDURE statement .. 43
parameters. 50

Program data. 18, 24

Relational expressions .. 56
logical operators in 59

Remainder (in division). 11
Replication nulllber•...•..... 30
RETURN statement•................ 45
RETURN TO statement. 46

Scope
attributes . 49
of data names .. 47

Semicolon•...
Space assignment

(See Storage class attributes)
Statements

blanks, use of
comments, use of
format of
names of

STATIC attribute
Storage class attributes .
String data
Structures

arrays of

7

7, 9, 22
7
7
9

...... 52, 53
52

... 18, 20, 34
25
30

arrays within 31
29
34

Subscripts
Substring notation

variable-length substrings. 35
Subtraction . 11
Symbolic names. 9

as arguments 50
for substrings .. 35
in DO groups. • . 62, 63
of arrays 29
of procedures . • . .. 43
of structures. • 25
scope of•.....•.• 47

Tables, chained•....•••.•..•..•....... 5, 36
Types of data•.•••...............•...... 17

arithmetic .•..•..•...............•........ 18
pointer .••••••..........•............... 18, 23
program. • . • • 18, 24
string .••.............................. 18, 20

Variable-length substrings .•.•........•....•..... 35
Variables . . • . . • . . . • • • • • 10

initial values for ...••..........•......•... 19, 20
in logical expressions. 13
pointer. . . •• 36
(See also Symbolic names)

72 IBM CONFIDENTIAL

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72

