IBM System/360

Basic Programming Support
FORTRAN IV

Program Number 360P-F0-031

This manual provides information on the internal
logic of the IBM System/360 Basic Programming
Support FORTRAN system. The contents are
intended for technical personnel who are
responsible for analyzing system operations,
diagnosing them, and/or adapting them for
special usage.

RESTRICTED DISTRIBUTION -- SEE ABSTRACT

File Number S360-25
Form 7Z28-6620-0

Page Revised 3/15/66
By TNL Z31-5008-0

Program Logic

Form Z28-6620-0
Page Revised '3/15/66
By TNL Z31-5008-0

PREFACE

Effective use of this Program Logic Manual
(PLM) requires an understanding of the con-
tents of the following manuals:

IBM System/360 Principles of Operation,
Form A22-6821

IBM System/360 Basic Programming Support

FORTRAN IV, Form C28-6504

IBM System/360 Basic Programming Support

FORTRAN Programmer's Guide, Form
C28-6583

ORGANIZATION OF THE MANUAL

The manual is divided into five parts.

The first part contains an introduction
that describes the overall structure of the
IBM System/360 Basic Programming Support
FORTRAN IV system. This introduction is
required reading for a basic understanding
of the system. The second part describes
the control segments for the system, while

the remaining three parts reflect the three

functions performed by the system.
Reference material for the PLM is -con-

tained in the appendices.

DEPTH OF DETAIL

This PLM provides a comprehensive under-

standing of the FORTRAN IV system down to
the routine/subroutine level.

USING THE MANUAL

A user of this manual should read the
introductory section to obtain an under-
standing of the overall structure of the
system. From the material presented in
that section, the user can determine the
functions accomplished by the various seg-
ments of the system.

The introduction to each segment gives
the overall logic of that segment, and
indicates the routine/subroutines associat-
ed with the different functions of the
segment.

Each routine/subroutine description
within a given segment provides the user
with a definition of the function and a
description of the method employed to
implement that function. A routine/
subroutine description, when necessary, is
accompanied by a corresponding flowchart.
Where possible, a name for the associated
portion of coding in the program listing is
placed on an individual block in the flow-
chart. This name gives a direct relation-

- ship between the flowchart and the program

listing.

In addition to flowcharts for routines/
subroutines, flowcharts are provided at
the introductory levels to supplement the
discussion of concepts and overall logic.

Copies of this and other IBM publications can be obtained through IBM

Branch Offices.
publication for readers' comments.
comments may be directed to:

| zBM Programming Publications, Rochester, Minnesota 55901

(© International Business Machines Corporation, 1965

A form has been provided at the back of this
If the form has been detached,

ORGANIZATION OF THE MANUAL.
DEPTH OF DETAIL « « o « « =
USING THE MANUAL. . « « .

PART 1: INTRODUCTION

IBM SYSTEM/360 BASIC PROGRAMMING

SUPPORT FORTRAN IV.
System Initialization . .
FORTRAN System Director .
Control Card Routine. . .

Source Program Compilation .
Fortran System Director
(Compilation) « « « « . .
Phase 10. ¢ o o o « « &«
Phase 12. ¢ ¢ o o o o «
Phase 14. .
Phase 15. .
Phase 20. .
Phase 25. .
Phase 30. .
Completion of Compi

¢ & o 95 0o s 0 0

Hoe o 0 s e

ati

latio

HHeo o o o

Object Program Execution . . .

-
-
-

¢« & o 9

¢ 0 0 0

e & o 8 0 0 ¢ o ¢

FORTRAN System Director (Executlon)

Fortran Relocating Loader .
IBCOM « o« o o o o o o o o o
Completion of Execution . .

System Modification. . «-o-—« .
Fortran-System Director
- (Modification) . . <« . . .
Editor. . .

-

Completion of System Modlflcatlon

PART 2: SYSTEM CONTROL SEGMENTS.

FORTRAN SYSTEM DIRECTOR. . . .

I/0 Operations « o« « o o « « «
I/0 FUNCTIONS o« « o o o «
SVC I/0 Formats « « o« « « &«

Operation Specification.
Tag and Data Set Byte. .
Data Set Designation. . . &
DSTAB -- Data Set Table.
DSCB —-- Data Set Control

Calls TO A PrintéXr . o« « o « &

FORTRAN Printer Carriage Control

Characters « « « « « « « «

Block

Data Parameters For Print Calls

Error Routines
Return To User's Program . . .

Routines . . . e o o o o
DINT Routlne. Chart AA
LDPH Routine: Chart AB
Exit Routine: Chart AC .
SIODIR Routine: Chart AD

¢ & & 0 0

e & o & o 0 o

.

19

19
19
19

21
22

22
22
23
24
24
25
25
26

28

28
28
28

28

28
29
29
30
30

Routines . . . o o o o

PHASE 10 « ¢« « « o«
Chaining. « « « .
Dictionary. . .

Overflow Table.

SIOGO Routine: Chart AE.
SNTPIN Routine: Chart AF
SD1 Routine: Chart AG. .
SETMD Routine: Chart AH.
SD2 Routine: Chart AI. .
SD5 Routine: Chart AJ. .
SD7 Routine: Chart AK. .
SD72 Routine: Chart AL .
SD74 Routine: Chart aAM .
SD741 Routine: Chart AN.
Sp742 Routine: Chart AO.
SD743 Routine: Chart AP. .
SRETRY Routine: Chart AQ .
SERP Routine: Chart AR . .

e 6 o 0 5 0 ¢ 0 0 0 0
e o 8 o 6 & & & 0 0

CONTROL CARD ROUTINE ¢ « o o o o «

CCLASS Rout1ne~ Chart AT
CCJOB Routine: Chart AU.
CCFTC Routine: Chart AV.
CCSET Routine: Chart AW.
CCLOAD Routine: Chart AX
CCEDIT Routine: Chart AY
CCDATA Routine: Chart AZ

e & 8 & 0 0 0
o 6 o & ¢ o 0 0

PART 3: COMPILATION. « « o « « . .

Operation. . «

Operation.
Dimension Information.
Subscript Information.
Statement Number Informatlon

¢ s o o o 0
ootQ“co

Offset Calculations « « « « «

Intermediate Text. « « « « «
Statement Number Entries . .
Subscripted Variable Entries
Format Entries « « « « « « o

- EXrors . < . o o e o

Internal Statement Numbers -
Intermediate Text Output . .
COMMON and EQUIVALENCE Text.

Storage Map « « « ¢« o ¢« « o o o
Subroutines . « « ¢« ¢ ¢ ¢ o o o o o
Subroutine CLASSIFICATION: Chart

BBe « ¢ o o o o o o o o o @

Subroutine ARITH: Charts BC,
BE:e ¢ ¢ o e o o o o o o o o
Subroutine ARITH Part 1. . .
Subroutine ARITH Part 2. .
Subroutine ARITH Part 3. .
Subroutine ASF: Chart BF .
Subroutine GOTO: Chart BJ.
Subroutine DO: Chart BK. .
Subroutine SUBIF: Chart BL
Subroutines CALL, .

FUNCTION/SUBRTN: Chart BM
Subroutine CALL. « 2 « « « «

¢« & & 0 o

L R T S B)

e 8 8 0 8 0 s 0 0 0 8 s 0 s 0

CONTENTS

D T)
D)
w
N

¢ o s 8

R R T S S Y
w
w

. .
" .

.
wWw
& &

¢ 8 & 0 0 0 0

o 8 & o 0 & 0 0
LI]
22

e 2 e o
w
Y]

.
.
.
~
o

o o o

.
I T T S S S S S S S Y S S N F R)
~
~

e & & & 0 0 2 & 0 2 0

.
o<}
v

« « o 86
BD,

« o - 86
. o . 87

.
L S S T N)
.
[oo]
v

.
.
.
O
o

Subroutine FUNCTION/SUBRTN 91 Subroutines. . . e o o o <147
Subroutine READ/WRITE: Chart BN. . 91 Subroutlnes STARTA, COMAL: Chart

Subroutine CONTINUE/RETURN, DAe o o o o o o o o« o« o« = « « « <147
STOP/PAUSE: Chart BO. « « = « « - 92 Subroutine STARTA. « « « « « « « o147

Subroutine CONTINUE/RETURN 92 Subroutine COMAL . . - 147

Subroutine STOP/PAUSEe. « « « « « « 92 Subroutine EQUIVALENCE. Charts

Subroutine DB, DC, DDe o « o « . -148

BKSP/REWIND/END/ENDFILE: Chart Subroutine EQUIVALENCE Part 1. - 148
BPe 2« o o o o e« o« o« o « « o« « o « 93 Subroutine EQUIVALENCE Part 2. . .149
Subroutine DIMENSION: Chart BQ . . 93 Subroutine EQUIVALENCE Part 3. . .150
Subroutine EQUIVALENCE: Charts Subroutine EXTCOM: Chart DE. . . .151
BR, BSe « o o« o o o o o« o« =« o « « 93 Subroutine DPALOC: Chart DF. . . .151

Subroutine EQUIVALENCE Part 1. . . 94 Subroutine SALO: Chart DG. « « « 152

Subroutine EQUIVALENCE Part 2. . . 94 Subroutine ALOC: Chart DH.152

Subroutine COMMON: Chart BT. . . . 95 Subroutine LDCN: Chart DI.153

Subroutine FORMAT: Chart BU. . . . 95 Subroutine ASGNBL: Chart DJ. . . .153

Subroutine EXTERNAL: Chart BV. . . 95 Subroutine SSCK: Chart DK.154

Subroutines INTEGER/REAL/DOUBLE: Subroutine SORLIT: Chart DL. . . .154

Chart BWe o « o « o « o« o« o o « « 96 Subroutines EQSRCH,

Subroutine HOUSEKEEPING: Chart RENTER/ENTER: Chart DM.155
CBe o o o e o o« « 96 Subroutine EQSRCH. « o« « « « « « 155
Subroutine GETWD Chart CC e o o o 97 Subroutine RENTER/ENTER.155
Subroutines SKPBLK, SKTEM: Chart Subroutine SWROOT: Chart DN. . . .156
CD. . e o s o o s o « 98 Subroutine INTDCT: Chart DO. . . .156

Subroutlne SKPBLK. e o o o o o o o 98 Subroutine SORSYM: Chart DP. . . .156

Subroutine SKTEM « « « « « « o« « « 98 Subroutine ESD: Chart DQ . . « . .157

Subroutine SYMTLU: Chart CE. . . . 98 Subroutine RLD: Chart DR « . « . .157

Subroutines LABLU, PAKNOM, Subroutine TXT: Chart DS e « o 158

LABTLU: Chart CFe 2« « « « « « « « 98 Subroutine GOFILE: Chart DT. . 158

Subroutine IABLU < « « « « « « - . 98 Subroutine ALOWRN/ALERET: Chart

Subroutine PARNUMe « « « « « « « « 99 DUe @ o o o o e o o a o« « « =« « «159

Subroutine IABTLU. « « o « « « « « 99

Subroutines CSORN, INTCON: Chart PHASE T4 . o o o o o o o o « o « o« « « 182

CGe o« o e o ¢ o o o o o o o o « « 99

Subroutine CSORN . « « « « « « « « 99 Read/Write StatementS. « « o« o o = «-s 182

Subroutine INTCON. . « « « « <100

Subroutine LITCON: Charts CH, Arithmetic Statement Function

C1i, CJ. . e o o o s o o = o o 2100 Definitions « o« o« o« o« o o o « a « « « 183

Subroutine LITCON Part 1 100

Subroutine LITCON Part 2 .« « - . 101 Format Statements. - « 183

Subroutine LITCON Part 3 « « « « 101 Structure of a Format Statement . « -183

Subroutine SUBS: Chart CL.102 Format Text Card. « . « « e o « -« o184

Subroutines DIMSUB, DIM90: Chart Adjective Code and Number. « o - o184

CM. ¢ ¢ ¢ o & & e o o o o o o 2102 Adjective Code o - o 184

Subroutine DIMSUB. e e o o o o o <102 Adjective Code, Field Length,

Subroutine DIM90 «103 and Decimal Length. . « . -« . . .185

Subroutine END MARK CHECK: Chart Adjective Code, Field Length,

CNe « e o« o « 2103 and Literal « ¢« « « ¢ « « o « « 185

Subroutlne PU‘I‘X PUTBUF, PUTRET:

Chart CO:e o o« o « 2 o = =« « « « 104 SUbYOUtineS. o « =« 2 o« « o « o « « « « 185

Subroutines ERROR, Subroutine PRESCN: Chart EA. . . .185

WARNING/ERRET: Chart CP104 Adjective Code Subroutines:

Subroutine ERROR « « « « « « « « 104 Chart EBe « o « o o « « « « « « 186

Subroutine WARNING/ERRET . . « . 105 Subroutines PINOUT, INOUT,

Subroutine PRINT: Chart CQ106 MSG/MSGMEM, CEM/RDPOTA: Chart

Subroutine GET: Chart CR « « « « .106 ECe o o e o o @« o e o o « o o« « 2187

Subroutine PINOUT. « « « « « « « 187
PHASE 12 . . e o o o o o = o s o o o o143 Subroutine INOUT . « « =« « « « « 188
Address A531gnment. e o e o o o o o« <143 Subroutine MSG/MSGMEM.188

Base Displacement Addresses. . . 143 Subroutine CEM/RDPOTA. . . « . . .188

Location Counte€r « « « « « « « « 143 Subroutines ERROR/WARNING,

Removing Entries From Chains . . .144 UNITCK/UNIT1: Chart ED.189
Equivalence Processing. « « « « « « o145 ~ Subroutine ERROR/WARNING189
Branch Tablee « « ¢« « o o o ¢ o o o .1"6 Subroutine UNITCK/UNIT1.189
Communications AX€a « « « « « « « « <146 Subroutines PUTFTX, ININ/GET,

GOFILE: Chart EEe « « « =« « - « 190
Storage Mape « « o « o « o o« « « o « « o146 Subroutine PUTFTX. « « « « « « « .190

Subroutine ININ/GETe « o « « « « 190

: Subroufine INTCON. .
PHASE 15 2@ o o o o o o o o

Order Of Operations. .

Subroutine GOFILE. . . «

Subroutines DO, CKENDO: Chart EF .190

Subroutine DO. « « « « « »
Subroutine CKENDO.

Subroutine READ/WRITE: Chart EG.
Phase 14 Format Overall Logic,

Chart 21. o« ¢ o o o o o o

Subroutine FORMAT: Chart EH.
Subroutine D/E/F/I/A: Chart EI .
Subroutines QUOTE/H, X: Chart EJ .197

Subroutine QUOTE/H . « . «
Subroutine X ¢« « o« ¢ « < .
Subroutines +/-/P, BLANKZ,
FILLEG, FCOMMA: Chart EK.
Subroutine +/-/P . . « <« o
Subroutine BLANKZ. « « « «
Subroutine FILLEG. « « « «
Subroutine FCOMMA. . . . «
Subroutines LPAREN, RPAREN:
Chart ELe « o o o o o o o
Subroutine LPAREN. « « . .
Subroutine RPAREN. . . .

Subroutines T, FSLASH: Chart

Subroutine T « « « o o o o
Subroutine FSLASH. « . «

Subroutines LINETH, LINECK,

FLDCNT, NOFDCT: Chart EN.
Subroutine LINETH. « « « «
Subroutine LINECK. .
Subroutine FLDCNT. . . . «
Subroutine NOFDCT. . .
Subroutines GETWDA, INTCON:

Chart EO. o o o« o «
Subroutine GETWDA. .

Operations Table
Subscript Table.
Forcing Scan . .

o 0 o &
¢ & 0
o« 0 8 0
e« & o
o o 4 0

Argument Lists ¢ o o o o«

Text Word Modification . « « . .

Register Assignment. . . .

Error Checks « « « ¢ o o « « « &

Routines/Subroutines . « « . < .

PRESCN Routine: Chart FA .
FOSCAN Routine: Chart FB .
DO Routine and Subroutine
DVARCK: Chart FC. « « «
DO Routine . « « « o o o o
Subroutine DVARCK. . « «
COMP GO TO, GO TO Routlnes'
Chart FDe o o o o o « o »
COMP GO TO Routine . « .
GO TO Routine.
BEGIO Routine: Chart FE. -

ERWNEM, SKIP, MSGNEM/MSGMEM/MSG,

INVOP: Routines Chart FF.
ERWNEM Routine . « « « « «
SKIP Routine . « « « « «
MSGNEM/MSGMEM/MSG Routine.
INVOP ROutine. « « « o« « &

¢ o 0 0
e o & o o
e 8 0 s

o o 0 0
e o 0 0 0
¢ o 0 &

.

MOPUP Routine: Chart FG. .
ADD Routine: Chart FH. . .
MULT Routine: Chart FI . .
DIV Routine: Chart FJ. . .
EXPON Routine: Chart FK. .
UMINUS, UPLUS, RTPRN Routlnes
Chart FL. . .
UMINUS Routine .
UPLUS Routine. .
RTPRN Routine. « . « « o o
LFTPRN Routine: Chart FM . .
FUNC, CALL, and END Routines:
Chart FN. . . . -
FUNC Routine . « « .

e 0 0 0 0

CALL Routine .
END Routine. . . o
EQUALS Routine: Chart FO .
COMMA Routine: Chart FP. .
LABEL DEF Routine, Subroutine
LAB: Chart FQ v o o o o «
LABEL DEF Routine. . « « «
Subroutine LAB . 2 « « « < «
ARITH IF Routine: Chart FR
COMPILE Routine: Chart FS.
Subroutines SYMBOL and TYPE:
Chart PFPTe o o o « @ « o o
Subroutine SYMBOL. « « « « « «
Subroutine TYPE. o« o« o « « « &
Subroutines FINDR, FREER,
CHCKGR, SAVER, and LOADR1:
Chart FU. « « « «
Subroutine FINDR . .
Subroutine FREER . .

-
- e o o
-

Subroutine CHCKGR.
Subroutine SAVER .

Subroutine LOADR1. . . « < o o
Subroutine WARN/ERROR: Chart FV.
Subroutines PINOUT, ININ, INOUT:

Chart FW. e o o o @ .
Subroutine PINOUT. e o o o
Subroutine ININ.
Subroutine INOUT . . « + «
Subroutine MODE: Chart FX.
Subroutines MVSBXX and MVSBRX
- Chart FY. . . e o o o o
Subroutine MVSBXX. e o e o o
Subroutine MVSBRX. « « « . .
INLIN1 Routine: Chart FZ . .
Subroutine INLIN2: Chart GA.
Subroutine CKARG: Chart GB .
Subroutine INARG: Chart GC .

¢ 0 o

PHASE 20 o« ¢« ¢ o o o o o o o « o o o

Subscript Optimization. . « . . .
Index Mapping Table.
Statements Subject to

Optimization. « « « « « « <
Register Assignment. .
Generation of Literals
Subscript Text Output.
Special Considerations
Statements That Affect

Optimization. . . .

ESD/RLD RecOrds . « « «

Storage Map « « « « o « o

Routines/Subroutines. . .
INIT Routine: Chart HA
Control Routine: Chart

He ¢ o o o
[ve]
.

¢ & 0 o 0 e 0 6 0 8 e o 0 o 0 e o & o o

.

¢ o o

.234
.235
235
236
236

237
237
237
.238
.238

239
239
.239
239
240
240

. 241
.241
.241
. 241
242

<242
<242

-245

245
.245
-246
246
-246
247
.247

-279
279
-279

279
.280
.280
.281
.282

.282
.282
.282
.283
.283
.283

READ Routine: Chart HC
DO, IMPDO, and ENDDO Routines:
Chart HDe o o o o « o
DO Routine . « « « « «
IMPDO Routin€e « o« o« «
ENDDO Routine. . o .
PHEND Routine: Chart HE.
LABEL Routine: Chart HF.
LIST Routine: Chart HG .
ARITH Routine: Chart HH.
CALL Routine: Chart HI .
IF Routine: Chart HJ . .
OPTMIZ Routine: Chart HK
CALSEQ Routine: Chart HL
Subroutine SUBVP: Charts
Ho. - - - - - - - -
FIXFLO Rout1ne~ Chart HP
DUMPR Routine: Chart HQ.
Subroutines GENER, GENGEN
HR. o L] - . - - - -
Subroutlne GENER .
Subroutine GENGEN. . . «
Subroutine GEN: Chart HS .
GETN Routine: Chart HT . .
Subroutine NIB: Chart HU .
Subroutine NOB: Chart HV .
Subroutine BVLSR: Chart HW .
Subroutine RMVBVL: Chart HX.
Subroutine SYMSRC: Chart HY.
Subroutine CLEAR: Chart HZ .
Subroutine PUNCH: Chart IA .
Subroutine HANDLE: Chart IB. .
Subroutine ESDRLD/CALRLD/CALTXT
Chart IC. ¢« o o «
Subroutine GENCON:
Subroutine ESDPUN:

fX{o o o o ¢ o s 5 0 0 s
e 0 ¢ 8 0 6 8 0 0 4 s 0
I S S S S S N S S S S |

=
z

¢ o o Tie o o s 0 0 s e 0 0 s 0

3

hart

e o 6 0o 0 0 0

* 6 o 0 o 0 8 (N o 0

e o
e e
e o
. e
.
.
e o
* e
.
e e
e e
e e
-

Chart ID. -
Chart IE. .

.
-
]
-
-
-
-
-

PHASEZS....-.---.....-

Object Program Tables. . . . o o -
Branch List Table for Statement

Numbers .

Branch List Table for ASF
Definitions and DO Statements .

Base Value

Table .

® e e e e e o

Epilog Table « ¢« o « ¢« o o o o« «

Instruction Generation .

Arithmetic

Expressions

Intermediate Text Entries for

Subroutines DO1,

Other StatementsS. o« o o o « « o
Output ¢ &« ¢ ¢ o ¢ ¢ ¢ ¢ ¢ e 4 2 o o =
Storage MapPe « « « ¢ o o o o o o o o o
SUbroutineS.: o« « « « o« « o o « o o o o

Subroutine INITIALIZATION: Chart
RAe ¢ o ¢ o o e o o o o o o o =
Subroutine PRESCN: Chart KB. . .
Subroutine RXGEN/LM/STM: Chart

KC. - - - L] L] - - o - - - -
Subroutine LABEL: Chart KD e

Subroutines TRGEN, CGOTO: Chart
KE. - - - - - - - - L - - - -
Subroutine TRGEN e o ¢ o o o o @
Subroutine CGOTO « o « « « « « o«

ENpDO: Chart KF

.285

.285
.285
-286
.286
. 286
- 286
.287
. 287
. 288
.288
.289
.289

-289
-290
<290

291
-291
291
.291
-291
292
-292
292
- 292
292
-293
.293
.293

.293
- 294
«294
«327
«327
- 327
.327
.328
.328

-329
329

329
-329
329
-330

«330
-331

. 331
332

-332
.332
332
-333

Subroutine ASFUSE. « « « &

* Subroutine STOP/PAUSE:

Subroutine DO1 . ¢ . o o « @
Subroutine ENDDO « « « « « o«
Subroutine ARITHI: Chart KG.
Subroutine RDWRT: Chart KH .
Subroutine IOLIST: Chart KI.
Subroutine ENDIO: Chart KJ .
Subroutines SAOP, AOP: Chart
Subroutine SAOP. « « « « «
Subroutine AOP ¢« ¢« o« « « «
Subroutines ASFDEF, ASFEXP,
ASFUSE: Chart KM, .
Subroutine ASFDEF. « « « «
Subroutine ASFEXP. .

DRI -~ B S SR R S S)
?

* 0

-
-
e o e o
-

e o 8 &

Subroutine SUBRUT: Chart KN.
Subroutine RETURN: Chart KO.
Subroutine FUNGEN/EREXIT: Chart

Kpo.o-oo-o.-o.oo

Subroutines FIXFLT, GNBC6: Chart
KQ.-.‘-..-...- e o e
Subroutine FIXFLT. . . . o o o
Subroutine GNBC6 e o o
Subroutine SIGN, DIM, ABS: Chart

KR. - - - - - . - - -
Subroutine SIGN. + . .
Subroutine DIM
Subroutine ABS .« o« o « o o o
Chart
Subroutine END: Chart KT . .
Subroutine ENTRY: Chart KU .
Subroutine GENBC: Chart KV .
Subroutine GET: Chart KW . .
Subroutines BASCHK/RXOUT, RROUT

Chart KX. . . e
Subroutine BASCHK/RXOUT. - o
Subroutine RROUT
Subroutines TXTEST, RLDTXT, and

TXTOUT: Chart KZ. .
Subroutine TXTEST. .
Subroutine RLDTXT. .
Subroutine TXTOUT. .

o 6 8 0 0 0 o

s & 0

¢ e o 0 W
n

i

e e

i

e o0 e & & 6 o o

L s o
o o ¢ 0
* 8 8 0
e o o 0

- -
- -
- -

PHASE 30 « « « =

® @ © o e o e o

PART 4: OBJECT-TIME EXECUTION. . .

FORTRAN LOADER .

Loading Process.o o .« o
Control Dictionary Elements . o

FORTRAN Loader FunctionsS « « « « «

Card Formats . .

Set Location Counter Card . . .

Include Segment

External Symbol
Card . .
External Symbol
Card

~External Symbol

Type 2 Card. .
External Symbol

Card « o« « o
Text Card . .
Replace Card. .
Relocation List
Load End Card .

Carde « « « &

Dictionary Type
Di;t;o;ary.Typé
Diétio;a;y.(ésﬁ)
Diét;o;a;y.Tip;
Dictionary Card

P at O e

s o ¢ o o (N

<333
«333
334
<335
336
.337

337
337

.338

.339
.339
.339
.339
«340
.341

341

.342
342

342

.343
343
.343

<344
344
<344
.345
.346
.346

.347

347 .

347
.347
.347
.348
.348
.373
.375
.376

.376
.376

<377
<377
377
-378
.378
.378
.379
.380
.380
.380

.381
382

Load Terminate and Data Cards382 Subroutine FSTOP: Chart PX . . . 421
IER Routine: Chart NA. . « « « « 383 Subroutine FPAUS: Chart PX421
RD Routine: Chart NB « .383 Subroutine IBFERR: Chart PY. . . .421
CMPSLC Routine: Chart NC384 Subroutine IBFINT: Chart PZ. . . .421
CMPICS Routine: Chart ND384 Subroutine FIOCS: Charts QA, OB. .421
CMPESD Routine: Chart NE385 Subroutine IBEXIT: Chart QC. . . .422
CESDO Routine: Chart NF. . . « . .385
CESD1 Routine: Chart NG.385 PART 5: SYSTEM MODIFICATION. « « « « « U453
CESD2 Routine: Chart NH.386
CMPTXT Routine: Chart NI . « . . .386 EDITOR 2 « 2 o o o o « o o o o o o « « JU54
CMPREP Routine: Chart NJ386
CMPRLD Routine: Chart NK387 ROULINES 2 o o o o o o o o « o o o « o U454
CMPEND Routine: Chart NL e o o <387 START Routine: Chart MA.U54
CMPLDT, WARN Routines: Chart NM. .388 RDACRD Routine: Chart MBU55
CMPLDT Routine « « « « « « « « « 2388 AFTER Routine: Chart MC.U56
WARN ROUtine .« « o« « « o « « « « o388 ASTRSK Routine: Chart MD « « . . U456
HEXB Routine: Chart NN388 COPYC Routine: Chart ME.U457
TBLREF Routine: Chart NO388 COPYCL Routine: Chart MFU57
REFTBL Routine: Chart NP389 COPYL Routine: Chart MG.U458
LODREF Routine: Chart NQ . « « . .389 COPYEC Routine: Chart MHU458
SERCH Routine: Chart NR.389 DELET Routine: Chart MJ. « . « « U459
ERROR Routine: Chart NS.389 REDCRD Routine: Chart MK459
MAP Routine: Chart NT. . . « « . .389 RDOSYS Routine: Chart ML «U460
RELCTL Routine: Chart NU . « « . .390 T92CMP Routine: Chart MM460
EODS Routine: Chart NV . « . . « .390 T92LB1 Routine: Chart MN e = « o461
Editor T92LB2 Library Routln
IBCOMe o o o o o o o o o o a o o o o « <414 #2: Chart MO. &« ¢ « « « « = « « oU61
Opening Section « « « « o o o « « « o414 SET Routine: Chart MP.U61
READ Requiring a Format. . « . . U414
WRITE Requiring a Format e o o U1l APPENDIX A: ANALYSIS AIDS. « « « « - - U479
READ Not Requiring a Format. « - U415
WRITE Not Requiring a Format . . .415 MESSAQES o « o o o = o o « o o« o « o o U479
I/0 List SectiOnNe « « « o« o« « « « « U415
C1051ng Section « « « o« ¢ o o o o « JU16 Statement Processing « « « « « « « o o U483
- IBCOM Subroutines - . U416
Subroutines FRDWF, FWRWF, FIOLF, APPENDIX B: EXPONENTIAL SUBPROGRAMS. . .U85
FIOAF, and FENDF: Charts PA FIXPI Subprogram « « « « « « « « U485
through PH. ¢« ¢« ¢« ¢« ¢ ¢ « « « « U416 FRXPI Subprogram . « « « « « « - 485
Subroutines FCVII and FCVIO: FDXPI Subprogram . « « « « « « « 485
Charts PI, PJ . ¢ o « « « « « « -U418 FRXPR Subprogram . « « « « « « « .486
Subroutine FCVII . ¢« « « « « « . .U418 FDXPD Subprogram . « « « « « « « .486
Subroutine FCVIO « o« o« <"« o « « U418
Subroutines FCVEI/FCVDI an APPENDIX C: ARRAY DISPLACEMENT

FCVEO/FCVDO: Charts PK, PL. . . 418 COMPUTATION 2 2 « « e o o = o o « « o« 2U87
Subroutines FCVEI/FCVDI. . e « U418

Subroutine FCVEO/FCVDO . « « - . .U18 ACCESS o « o o o o o = o a« o« o o o o « 2U87
Subroutines FCVFI and FCVFO: One Dimension « « « « « « « « « « « U487
Charts PK, PL o« « « « o « « o U418 TWO DimenNSioNSe « o « o o « « « « « U487
Subroutine FCVFI« . « U118 Three DimensSionS. « « « « « « « « « U487
Subroutine FCVFO . . « . « e o U419

Subroutines FCVAI and FCVAO
Charts PM, PN . « & o « @ e o o419

Subroutine FCVAI - « 2819 Array Displacement . « « « ¢« « « o « o .U88
Subroutine FCVAO ¢ 2 « o « « « « U419

Subroutines FRDNF, FWRNF, FIOLN, APPENDIX D: LIST OF ABBREVIATIONS. . . .U490
FIOAN, and FENDN: Charts PO

through PTe ¢« ¢ ¢ ¢ ¢ ¢ o « « « U819 APPENDIX E: AUTOCHART SYMBOLS. . « . « 0491
Subroutine FBKSP: Chart PUU420

Subroutine FRWND: Chart PVU420 GLOSSARY &« <« 2 o 2 2 a o o o « o o « o U492
Subroutine FEOFM: Chart PWU420

General Subscript Form . . « « « « . . U488

INDEXe o o o o o o o o o o o o o = « « 2495

ILLUSTRATIONS

FIGURES

Figure 1. I/0 Flow for IBM System/360
BPS FORTRAN . o ¢ ¢ ¢ o o o o o o o«
Figure 2. I/O Functions.
Figure 3. SVC I/O Formats.

Figure 4. Contents of the

Specifier Byte.
Figure 5. Contents of Tag and Data
Set Byte. o .

Figure 6. Data Set Table Format o
Figure 7. DSCB Format.
Figure 8. DSCB Device Code
Assignment. . .« ¢« ¢ ¢ ¢ 4 e 0 4 o ..
Figure 9. DSCB Flag Bytes. « « . . .
Figure 10. DSCB Check Byte
Figure 11. Error Mask Bytes.
Figure 12. FORTRAN Printer
Carriage Control Characters
Figure 13. FORTRAN Printer
Carriage Control Characters (PRINTB)
Figure 14. Return to the User's
Program . « « « « o s o o o o o o
Figure 15. Example of Chaining . . .
Figure 16. Dictionary Entry Format .
Figure 17. Dictionary and Thumb
Index Format. . . . « . & o« .
Figure 18. Format of Usage F1e1d . .
Figure 19. Format of Dimension
Information in Overflow Table . . .
Figure 20. Entries to Dictionary
Overflow Table. «
Figure 21. Format of Subscript
Information o .
Figure 22, Overflow Table Entry. . .
Figure 23. Statement Number
Information in Usage Field.
Figure 24, Adjective Code.
Figure 25. Mode and Type Codes . . .
Figure 26. Format of Intermediate
Text: Entries. e o o .
Figure 27. Intermedlate Text

Entries for a Unary Operation . . .
Figure 28. Intermediate Text

Entries for Statement Numbers . . .
Figure 29. Intermediate Text

Entries for a DO Statement.
Figure 30. Intermediate Text

Entries for Subscripted Variables .
Figure 31. Intermediate Text

Entries for Constant Subscripts . .
Figure 32. Intermediate Text

Entries for a FORMAT Statement. . .
Figure 33. Intermediate Text

Entries for an Error.« .
Figure 34. EQUIVALENCE Text Entry for
EQUIVALENCE Statements.
Figure 35. Storage Map for Phase

10. . . . e s e 0 o . .
Figure 36. Arlthmetlc Statement
Function Processing . . « « « « « &

(PRINTA)

.

.

.18
.23
.24
.24
.25
.25
.26
.27
.27
.27
.27
.28
.28
.29
.70
.71

.72
.73

.74
.75

.76
.76

.77
.79
.80
.81
.81
.81
.82
.82
.82
.83
.83
.85

.88

‘Figure

Figure 37. Dictionary Chain

Entries . v o o o o o o o o o o o
Figure 38. Removing a Symbol From

a Dictionary Chain. . . . e o o
Figure 39. EQUIVALENCE Group
Without Root Switching.
Figure 40. EQUIVALENCE Group Wlth

Root Switching.« e e e
Figure 41, EQUIVALENCE Table
Format. . . « ¢« o « o o o o @ o .

Figure 42, Storage Map for Phase

12, e e s e . . .
Figure 43, Implied DO Text Input

to Phase 14
Figure 44. Implied DO Text Output
from Phase 14 . . « ¢« ¢ ¢ ¢ ¢ o o &«
Figure 45. Organization of Phase 15.
Figure 46. 1-Byte Indicator. . .
Figure 47.
Figure 48.
Figure 49. Subscript Text Output
From Phase 20 -~ SAOP Adjective Code
Figure 50. Subscript Text Output
From Phase 20 - XOP Adjective Code.
Figure 51. Subscript Text Output
From Phase 20 - AOP Adjective Code.
Figure 52. Storage Map for Phase 20.
53. Organization of Phase 20.
54. Branch List Table 2 . . .
55. Format of the Base

Value Table . ¢« ¢« ¢ ¢« ¢ ¢« ¢ o & o &
Figure 56. Values in a Base Value
Table . & & ¢ ¢ v ¢« ¢« ¢« ¢ ¢ o o o
Figure 57. Format of the Epilog
Table & & v v ¢ o o ¢ o o o o o o =
Figure 58. Storage Map for Phase

Figure
Figure

25 e e e e e e e e e e e e e e e

59. Set Location Counter
(SLC) Card. e
Figure 60. Include Segment (ICS)
Card. . . . o e o o e
Figure 61. External Symbol
Dictionary (ESD) Type 0 Card. . . .
Figure 62. External Symbol
Dictionary (ESD) Type 1 Card. . . .
Figure 63. External Symbol
Dictionary (ESD) Type 2 Card. . . .
Figure 64. External Symbol
Dictionary (ESD) Type 5 Card. . . .
Figure 65. Text (TXT) Card
Figure 66. Replace (REP) Card. . . .
Figure 67. Relocation List
Dictionary (RLD) Card . . « « o« o« o«
Figure 68. Load End (END) Card . . .
Figure 69. Load Terminate (LDT)
Card. « o« o v o o o o o o o o o o
Figure 70. Type/Data (DATA) Card . .
Figure 71. System Tape Layout. . .
Figure
in AXray. « o o o o o o o o o o o o

Figure

.

Index Mapping Table Format.
Subscript Text Input Format

.

e o o o

72. Access of Specified Element

L1408
144
.145
.145
.146
L1147
.183
.183
.222
L2044
.279
.280
.281
.281
.281
.283
.284
.328
.328
.328
.329
.330
.377
.378

.378

.379

.379
.380
.380
.381

.382

- .382

.383
.383
. 453

. 487

TABLES

Table 1. Right and Left Forcing Tables .224
Table 2. Format CodeS. « « « « « « « o« U417
Table 3. Error and Warning Messages. . .U479
Table 4. Processing Subroutines.Uu483

CHARTS

Chart 00. FORTRAN System Overall Logic
Diagram . . . e o o o o e o o o o o

Chart 01. FSD Overall Logic Diagram. .
Chart 22. Overall Logic-I/0 Routine. .
Chart AA. DINT ROUtINE o « o o o o « «
Chart AB. LDPH Routine « « « « o « o o
Chart AC. EXIT Routine . « ¢« « o o « «
Chart AD. SIODIR Routine . « « o« « « «
Chart AE. SIOGO Routin€e « « o o o o« «
Chart AF. SNTPIN Routine « « « « o« o« «
Chart AG. SD1 Routin€. « « « « o o « o«
Chart AH. SETMD ROutin€. « « « o« « « «
Chart AI. SD2 Routin€. « « « o o o« « «
Chart AJ. SD5 ROUtin€. o « o o « o o« «
Chart AK. SD7 ROUtinNE€e « o o o o o o «
Chart AL. SD72 Routine . « ¢« « ¢ « o «
Chart AM. SD74 Routine . . . « « « « =«
Chart AN. SD741 Routine. « « « « « « »
Chart AO. SD742 Routin€. « « « « « «
Chart AP. SD743 Routine. . . «
Chart AQ. SRETRY ROUtINE o« o« o« « « o« «
Chart AR. SERP Routine . . o o o
Chart 02. Control Card Overall Logic
Diagram . e o o o o e o o o o o o
Chart AT. CCLASS Routine e o o o o o o
Chart AU. CCJOB ROUtIiNE. = o « o o o o
Chart AV. CCFTC ROUtINE€. o o o « o o« «
Chart AW. CCSET ROUtIN€. o o« o o o « o
Chart AX. CCLOAD ROUtIine « o« o o « o« @
Chart AY. CCEDIT Routine . . « o o« «
Chart AZ. CCDATA Routine e o o o o
Chart 03. Phase 10 Overall Logic

DiagXam « o o« « o o« « « « o o o o o o
Chart BB. Subroutine CLASSIFICATION. .
Chart BC. Subroutine ARITH Part 1. . .
Chart BD. Subroutine ARITH Part 2.
Chart BE. Subroutine ARITH Part 3.
Chart BF, Subroutine ASF . .« . « «
Chart BJ. Subroutine GOTO. « « « «
Chart BK. Subroutine DO. « « « « «
Chart BL. Subroutine SUBIF . « . «
Chart BM. Subroutines CALL,

FUNCTION/SUBRTN « « « « o« e e o o o
Chart BN. Subroutine Phase 10

READ/WRITE. . . . - e o o o o o o
Chart BO. Subroutines CONTINUE/RETURN,

STOP/PAUSE. <« « « e o o o ° ® o o o
Chart BP. Subroutlne

BKSP/REWIND/END/ENDFILE &« <« o« o « « «
Chart BQ. Subroutine DIMENSION « . « «
Chart BR. Subroutine EQUIVALENCE Part

1 - - L] - - - - - - - - - - - o - -
Chart BS. Subroutine EQUIVALENCE Part

2 ¢ o o @ o o o o o o o e o @

Chart BT. Subroutine COMMON. . .

L] ¢« o 0
. L]

.
.

Chart BU. Subroutine FORMAT. .
Chart BV. Subroutine EXTERNAL.
Chart BW. Subroutine
INTEGER/REAL/DOUBLE <« o « « © o o« o o
Chart CB. Subroutine Phase 10
HOUSEKEEPING. 2 « 2 © o =« o o o o o
Chart CC. Subroutine GETWD « « « « « «

e« 0 0 0
¢ o o

“ s 0
w
(=]

L R T R R R N R)
=
w

LR S N S)
wn
=

Chart CD.
Chart CE.
Chart CF.
LABTLU.
Chart CG.
Chart CH.
Chart CI.
Chart CJ.
Chart CL.
Chart CM.
Chart CN.
Chart
Chart

Subroutines SKPBLK, SKTEM.

Subroutine

SYMTLU. . .

Subroutines LABLU, PAKNUM,

Subroutines CSORN, INTCON.
Subroutine LITCON Part 1
Subroutine LITCON Part 2 .

Subroutine LITCON Part 3

Subroutine

Subroutines DIMSUB, DIM90
Subroutine END MARK CHECK.
CO. Subroutine PUTX. . . .
CP. Subroutines ERROR,

WARNING/ERRET . . .
Chart CQ. Subroutine PRINT . . .

Chart CR.
Chart 04.
Diagram
Chart DA.
Chart DB.
1 . « &
Chart DC.
2 ¢ o o
Chart DD.
3 . ..
Chart DE.
Chart DF.
Chart DG.
Chart DH.
Chart DI.
Chart DJ.
Chart DK.
Chart DL.
Chart DM.

RENTER/ENTER. .

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart DU.
Chart 05.
Diagram
Chart EA.
Chart EB.

DN.
DO.
DP.
DQ.
DR.
DS.
DT.

Chart EC. Subroutines PINOUT,
CEM/RDPOTA. . «
Chart Ep. Subroutine ERROR/WARNING,

MSG/MSGMEM,

Subroutine

SUBS. « . .

e ®© e e o o

GET « « - &

Phase 12 Overall Logic

e @ o o e

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

COMAL . . .
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EXTCOM. . .
DPALOC. . .
SALO. « . .
ALOC. . . .
LDCN. « « .
ASSNBL. . .
SSCKe ¢ « &
SORLIT. . .

Subroutines EQSRCH,

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine

SWROOT. . .
INTDCT. . .
SORSYM. . .
ESD « « «
RLD « « . «
TXT « « «
GOFILE. .

ALERT/ALOWRN.
Phase 14 Overall Logic

e e e e e o

PRESCAN . .

Subroutine Adjective Code.

UNITCK/UNIT1. . . «
Chart EE. Subroutines PUTFTX,
ININ/GET, GOFILE. .

Chart EF.
Chart EG.
Chart 21.

Subroutines DO, CKENDO -

Subroutine

Phase 14 FORMAT Overall

Logic Diagram . . .«

Chart EH.
Chart EI.

Subroutine
Subroutine

READ/WRITE.

FORMAT. . e
D/E/F/I/A .

Chart EJ. Subroutine QUOTE/H,X .

Chart EK.
FILLEG,

Subroutines +/-/P, BLANKZ
FCOMMA. . .

INOUT,

-129
-130

. 131
. 132
133
. 134
135
.136
. 137
.138
.139

- 140
. 141
<142

.160
161

.162
.163

. 164
. 165
.166
- 167
.168
. 169
<170
- 171
<172

-173
- 174
. 175
-176
<177
-.178
.179
.180
.181

.203
204
.205

.206
207
.208
.209
.210
-211
.212
.213
.214

.215

Chart EL. Subroutines LPAREN, RPAREN
Chart EM. Subroutines T, FSLASH. . .
Chart EN. Subroutines LINETH, LINECK,
FLDCNT, NOFDCTe o« « « o o e o o o
Chart EO. Subroutines GETWDA, INTCON
Chart 06. Phase 15 Overall Logic
DiagYaM « o« o o o o o o o o o o o o
Chart FA. PRESCAN Routine. . « « « «
Chart FB. FOSCAN Routine . « . « .
Chart FC. DO Routine,
Chart FD. COMP GO TO, GO TO Routines
Chart FE. BEGIO Routine. « « « o « «
Chart FF. ERWNEM,

-

Subroutine DVARK

-

SKIP/MSGNEM/MSGMEM/MSG/INVOP Routines

Chart FG. MOPUP RoOUtin€. « « o« « o o
Chart FH. ADD ROUtin€. « « o o « o« @
Chart FI. MULT Routine . « « « « o« «
Chart FJ. DIV RoOutin€e. o« o« o« « o o «
Chart FK. EXPON Routine. « « « « « «
Chart FL. UMINUS, UPLUS, RTPRN
RoOutineS. « « o o « « e o o o

Chart FM.
Chart FN.

LFTPRN Routlne .
FUNC, CALL, END Routlnes
Chart FO. EQUALS Routine . « « . «
Chart FP. COMMA Routin€. . « . « «
Chart FQ. LABEL DEF Routine,
Subroutine IAB. « « « o © « « o o
Chart FR. ARITH IF Routine
Chart FS. COMPILE Routine. . .
Chart FT. Subroutines SYMBOL, TYPE
Chart FU. Subroutines FINDR, CHCKGR
SAVER, FREER, LOADR1. ¢« « « « o «
Chart FV. Subroutine WARN/ERROR. .
Chart FW. Subroutlnes _PINOUT, ININ,
- INOUT o o o o o © @ @ « o o o o o
Chart FX. Subroutine MODE.
Chart FY. Subroutines MVSBXX, MVSBXR
Chart FZ. INLIN1 Routine «
Chart GA. INLIN2 Routine . « « . .
Chart GB. Subroutine CKARG
Chart GC. INARG Routin€e « o« « « =«
Chart 07. Phase 20 Overall
Diagram
Chart HA.
Chart HB.
Chart HC.
Chart HD.
Chart HE.
Chart HF.
Chart HG.
Chart HH.
Chart HI.
Chart HJ.
Chart HK.
Chart HL.
Chart HM.
Chart HN.
Chart HO.
Chart HP.
Chart HQ.
Chart HR.
Chart HS.
Chart HT.
Chart HU.
Chart HV.
Chart HW.
Chart HX.
Chart HY.

e 06 N & 0 0

Logic

INIT Routine « « « « .
CONTROL Routine. . . .
READ Routine . « « «
DO/IMPDO/ENDDO Routines.
PHEND Routine. .
LABEL Routine.
LIST Routine .
ARITH Routine.
CALL Routine .
IF Routine . .
OPTMIZ Routine
CALSEQ Routine
Subroutine SUBVP
Subroutine SUBVP (2)
Subroutine SUBVP (3)
FIXFLO Routine . . .
DUMPR Routine. . .
Subroutines GENER,
Subroutine GEN . .
GETN Routine , . .
Subroutine NIB . .
Subroutine NOB . .
Subroutine BVLSR .
Subroutine RMVBVL.
Subroutine SYMSRC.

)

e 0 o 0 o o 0 0 0 0 0

[
=
2 e
@
=
2

L]
.
e 0 o 8 o 0
e 0 o 8 6 0 o s

¢ 6 o o 0
¢ 06 6 0o 0

216
.217

.218
219

.248
.249
. 250
«251
252
.253

. 254
.255
. 256
<257
. 258
.259

260
.261
«262
-263
.264

«265
-266
267
.268

269
. 270

. 271
272
273
. 274
.275
- 276
2717

. 295
«296
. 297
. 298
«299
.300
301
.302
.303
.304
. 305
. 306
. 307
.308
.309
<310
-311
«312
.313
.31
.315
.316
317
.318
.319
-320

Chart HZ.
Chart IA.
Chart IB.
Chart 1IC.

Subroutine CLEAR .
Subroutine PUNCH .
Subroutine HANDLE.
Subroutine

ESDRLD/CALRLD/CALTXT. . « .

Chart 1ID.
Chart 1E.

Subroutine GENCON.
Subroutine ESDPUN.

Chart 08. Phase 25 Overall Loglc

Diagram
Chart KA.
Chart KB.
Chart KC.
Chart KD.
Chart KE.
Chart KF.
Chart KG.
Chart KH.
Chart KI.
Chart KJ.
Chart KL.
Chart KM.

ASFUSE.
Chart KN.
Chart KO.
Chart KP.
Chart KOQ.
Chart KR.
Chart KS.
Chart KT.
Chart KV.
Chart KW.
Chart KX.

BASCHK/RXOUT/RROUT.
Subroutines TXTEST,

Chart KZ.
TXTOUT.

Subroutine INITIALIZATION.
Subroutine PRESCAN . . .
Subroutine RXGEN/1lnm/stm.

Subroutine LABEL .

Subroutines TRGEN, CGOTO

Subroutines DO1,
Subroutine ARITH1.
Subroutine RDWRT .
Subroutine IOLIST.
Subroutine ENDIO .

ENDDO .

-
-
e o
-

Subroutines SAOP, AOP. .

Subroutines ASFDEF, ASFEXP,

Subroutine SUBRUT.
Subroutine RETURN.

e o e

e o e

Subroutine FUNGEN/EREXIT
Subroutine FIXFLT/GNBC6.
Subroutines SIGN, DIM, ABS
Subroutine STOP/PAUSE. .

Subroutine END . .
Subroutine GENBC .
Subroutine GET . .
Subroutine

e o e

Chart 09. Phase 30 Overall Logic

Diagram
Chart 11.

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart 12.

Diagram
Chart PA.
Chart PB.
Chart PC.
Chart PD.
Chart PE.

NA.

NC.
ND.
NE.
NF.
NG.
NH.

NB. RD Routine . .

e o e e o o -

Relocating Loader 0vera11
Logic Diagram . « « . «

IER Routine. .

CMPSLC Routine
CMPICS Routine
CMPESD Routine
CESDo Routine.
CESD1 Routine.
CESD2 Routine.
CMPTXT Routine
CMPREP Routine .
CMPRLD Routine .
CMPEND Routine

CMPLDT, WARN Routlnes.

HEX Routine. . .
TBLREF Routine .
REFTBL Routine .
LODREF Routine .
SERCH Routine. .
ERROR Routine. .
MAP Routine. . .
RELCTL Routine . .
EODS Routine . .

IBCOM-Object Program Logi

Subroutines FRDWF,
Subroutines FRDWF,
Subroutines FRDWF,
Subroutines FRDWF,
Subroutines FRDWF,

e 6 6 8 0 0 ¢ 0 0 0

LI T R T S S S S S S

e 0 0 s 0 0
¢ 0 0 0 o

-

FWRWF
FWRWF
FWRWF
FWRWF
FWRWF

RLDTXT,

Q8 o ¢ 0 s s s 0 s s s s 0

.321°
.322
323

324
325
326

-349
350
351
352
353
-354
-355
-356
<357
-358
.359
360

-361
362
.363
-364
.365
-366
367
-368
369
370

-371
372
-374

391
392
-393
-394
395
.396
397
-398
399
400
401
.402
.403
404
405
-406
407
-408
-409
410
.411
<412
-413

-423
424
-425
U426
<427
428

" Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

PF.

PH.
PI.
PJ.
PK.
PL.
PM.
PN.
PO.
PQ-

PS.
H‘.
PU.
PV.
PW.
PX.

PZ.

FIOLF .
FIOAF .
FENDF .
FCVII .
FCVIO .

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine FCVAI .
Subroutine FCVAO .
Subroutines FRDNF,
Subroutines FIOLN,
Subroutines FIOLN,
Subroutines FIOLN,
Subroutine FENDN .
Subroutine FBKSP .
Subroutine FRWND .
Subroutine FEOFM .
Subroutines FSTOP,
Subroutine IBFERR.
Subroutine IBFINT.

FCVFI/FCVEI
FCVFO/FCVEO/FCVDO

/F

FWRNF .
FIOAN .
FIOAN .
FIOAN .

FP

AUSE.

CVDI

. 429
- 430
431
-432
.433
.434
- U35
-436
- 437
.438
- 439
- 440
441
- 442
- 443
- Bly
. 445
-b46
< uu7
448

Chart QA, Subroutine FIOCS 1/0

Interface « o« o« o« ¢ ¢ o o o o
Chart QB. Subroutine FIOCS 1/0

Interface « o« « o o o« o o o o
Chart QC. Subroutine IBEXIT. .
Chart 10. Editor Overall Logic
Chart MA. START Routine. . . .
Chart MB. RDACRD Routine .
Chart MC. AFTER Routine. .
Chart MD. ASTRSK Routine .
Chart ME. COPYC Routine. .
Chart MF. COPYCL Routine .
Chart MG. COPYL Routine. .
Chart MH. COPYEC Routine .
Chart MJ. DELET Routine. .
Chart REDCRD Routine .
Chart RDOSYS Routine .
Chart T92CMP Routine .
Chart T92LB1 Routine .
Chart T92LB2 Routine .
Chart SET Routine. . .

o 6 o e o & 0 0 8 0 0 0
e 6 0 6 6 s 0 0 8 8 0 s 0

e & 0 e o 0 e 6 0 0 0 0 0 0 U. .

iagram

449

.450
451
.463
.uél
465
466
467
-468
469
470
-471
472
U473
474
475
476
477
478

Lo

PART 1: INTRODUCTION

This part contains a concise description
of the Basic Programming Support FORTRAN IV
system.

Part 1: Introduction 13

IBM SYSTEM/360 BASIC PROGRAMMING SUPPORT FORTRAN IV

IBM System/360 Basic Programming Support
FORTRAN IV operates independently of any
other programming system. The system is
comprised of segments - that reside on a
system tape. The segments are read into
main storage and executed, depending on the
function to be performed. The three system
functions are:

1. Compilation.
2. Object-time execution.
3. System modification.

The segments that are always required,
irrespective of +the type of processing
performed by the FORTRAN system, are the
FORTRAN System Director and the Control
Card routine.

In addition, the segments of the system
used for compilation are Phases 10, 12, 14,
15, 20, 25, and 30; for object-time execu-

tion, the FORTRAN relocating 1loader and
IBCOM; and for system modification, the
editor.

Chart 00 represents the overall logic
flow for the system and Figure 1 represents
the input/output flow for the system.

SYSTEM INITIALIZATION

The system is
action; pressing the
operator causes the
(IPL) to be read.
System Director
to, the system.

initiated by operator
IPL key. Thus, the

initial program load
IPL reads in the FORTRAN
from, and passes control

FORTRAN SYSTEM DIRECTOR

The FORTRAN System Director (FSD) con-
trols the various functions of the system.
It remains in storage during compilation,
object-time execution, and system modifica-
tion. Initially, the FSD reads in the
Control Card routine.

CONTROL CARD ROUTINE

The Control Card routine reads in con-
trol cards and determines, among other
things, whether:

14

1. A source program is to be compiled.

2. An object program is to be executed.

3. The system is to be modified.

4. A combination of functions is to be
performed (e.g., compile and execute) .

SOURCE PROGRAM COMPIIATION

Source programs written in the IBM
System/360 Basic Programming Support
FORTRAN IV language are compiled by the
segments on the system tape that constitute
the Basic Programming Support FORTRAN com-
piler.

The compiler segments are the FSD, the
Control Card routine, and the seven phases
(10, 12, 14, 15, 20, 25, and 30).

The FORTRAN compiler analyzes the source
program statements and transforms them into
an object program compatible to IBM
System/360. In addition, 1if any source
program errors exist, the FORTRAN compiler
produces appropriate messages. At the
user's option, a complete _listing of the
source program is produced and/or an object
deck is punched.

FORTRAN SYSTEM DIRECTOR (COMPILATION)

The FORTRAN System Director performs the
following functions during a compilation:

1. Handles the initialization
for a compilation.

2. Loads each phase of the
execution.

3. Fills the input/output (I/0) requests
of the various phases of the compiler.

4. Determines the point at which control
is to be returned to a phase after an
I/0 request of that phase is filled.

required

compiler for

Because a compilation is to be
formed, the FSD reads in Phase
passes control to it.

per-
10 and

PHASE 10

Phase 10 reads in each statement of the
source program and converts the statement
(unless it is a COMMON or EQUIVALENYE

-

statement) into intermediate text which is
used as input to subsequent phases of the
compiler. To allow this intermediate text
to be properly processed, certain informa-
tion must be known about the symbols in the
source statements. This information is
maintained in a dictionary and an overflow
table. For COMMON and EQUIVALENCE state-
ments, Phase 10 produces another type of
text which remains in storage to be proc-
essed by Phase 12. s

Upon completion of Phase 10 processing,
control returns to the FSD, which reads in
and passes control to Phase 12.

PHASE 12

Phase 12 primarily allocates storage to
symbols entered in the dictionary, overflow
table, COMMON text, and EQUIVALENCE text.
The storage allocated at this time dictates
where the various symbols will reside in
main storage during the execution of the
object program. The main storage reserved
for COMMON and EQUIVALENCE text is then
made available for subsequent phases.

Phase 12 punches loader input cards for
the object program and text cards for all
constants used by the program, if the DECK
option is specified. It writes these cards
on the GO tape (a temporary tape containing
any object program produced), if the GOGO
or COMPILE and GO options are specified.
If the MAP option is specified, all symbols
and their relative addresses are printed as
part of a storage map, as the addresses are
being assigned.

Upon completion of Phase 12 processing,
control returns to the FSD, which reads in
and passes control to Phase 14.

PHASE 14

Phase 14 reads the intermediate text
created by Phase 10 and replaces any poin-
ters +to dictionary information with infor-
mation accessed from the dictionary. Phase
14 converts intermediate text for FORMAT
statements to an internal code. At object-
time execution, this internal code is used
by the IBCOM routine (an object-time I/0
control program) to place input and output
records into the specified format. If
requested, the code is written on the GO
tape and/or punched on text cards.

reserved for the
sub-

The main storage
dictionary is then made available for
sequent phases.

Upon completion of Phase 14 processing,
control returns to the FSD, which reads in
and passes control to Phase 15.

PHASE 15

Phase 15 primarily translates arithmetic
expressions 1into approximate machine code;
that is, it produces the data necessary to
allow the text word to be converted to a
machine instruction by Phase 25.

Upon completion of Phase 15 processing,
control returns to the FSD, which reads in
and passes control to Phase 20.

PHASE 20

Phase 20 increases the efficiency of the
object program by decreasing the amount of
computation associated with subscript
expressions. Phase 20, if requested via
the DECK option, punches loader input cards
for any required 1library exponentiation
subprograms, for any references to IBCOM,
and for literals that are generated during
the phase in connection with array dis-
placement.

Upon completion of Phase 20 processing,
control returns to the FSD which, in turn,
reads in and passes control to Phase 25 or
30 depending on whether:

1. The COMPILE and GO, or NOGO
option is specified.
2. Any source program errors are found.

GOGO,

If the GO option is specified and source
program errors are found, the FSD passes
control to Phase 30. If no source program
errors are found, the FSD passes control to
Phase 25.

If the GOGO option is specified, the FSD
passes control to Phase 25, irrespective of
whether source program errors are found.

If the NOGO option is specified and
source program errors are found, the FSD
passes control to Phase 30. If no source
program errors are found, the FSD passes
control to the Control Card routine.

PHASE 25

Phase 25 analyzes the text produced by
the preceding phases of the compiler and
transforms that text, wherever necessary,

IBM System/360 Basic Programming Support Fortran IV 15

DIAL SYSTEM

TAPE DEVICE NOTE: AN INPUT/OUTPUT ERROR
ADDRESS IS PRINTED, WHEN IT OCCURS,
PRESS LOAD BY THE FORTRAN SYSTEM DIRECTOR
BUTTON

COMPUTER CONSOLE

IPL IS
FSD READ IN — 3| LOADED AND
READS IN
FSD
CONTROL ,—THIS IS THE LEAD-IN BLOCK FOR OBJECT
CARD RTN MATN |STORAGE ~" PROGRAM EXECUTION OR SYSTEM MODIFICATION
READ IN BY 7/
FSD s/
/
e
» CARD
CONTROL CARD ROUTINE SIHING
CONTROL CARD ROUTINE
CARD READER DETERMINES THAT A PRINTER
SOURCE PROGRAM IS
TO BE COMPILED.
FORTRAN
——————————— —1 SYSTEM
DIRECTOR
PHASE 10
READ IN
N SOURCE STATEMENT
SOURCE » PHASE 10 —————————————
PROGRAM CONVERSION
CARD READER
ESD/RLD CARDS FOR
gggggﬁN PROGRAM--TXT CARDS
DIRECTOR FOR PROGRAM CON-
TANTS
DECK OPTION PUNCH
PHASE 12 SPECIFIED
READ IN //////,//
PHASE 12 }—— COMPILE AND GO AND TXT GO TAPE
CARDS
MAP OPTION
SPECIFIED
FORTRAN g?ﬂgCT-
——————————— — SYSTEM
DIREGTOR ADDRESSES
PRINTER
PHASE 14 POINTERS RE-
READ 1IN PLACED WITH
\ ADDRESSES
' TEXT CARDS
PHASE 14 ™ pECK OPTION SPECIFIED—»‘ FOR FORMAT
STATEMENTS
\\\\ PUNCH
COMPILE
AND GO
NEXT
SHEET

Figure 1. I/0 Flow for IBM System/360 BPS FORTRAN (sheet 1 of 2)

16

PHASE 15
READ IN

PHASE 20

READ IN

PHASE 25 |
READ IN |
|
l
FORTRAN
SYSTEM
DIRECTOR
1
DECK OPTION
FHASE 25 SPECIFIED

CONTROL RETURNS TO
FSD. IF ERRORS OR
WARNINGS ARE TO BE
PROCESSED, FSD READS
IN PHASE 30

CONTINUED
FROM SHEET 1

FORTRAN
SYSTEM INPUT FROM PHASE 14
DIRECTOR WORK TAPE B
ARITH EXPRESSIONS

PHASE 15 TRANSFORMED
FORTRAN ESD/RLD CRDS TEXT CARDS
SYSTEM Do X PONEN ——»| FOR GENERATED
DIRECTOR TBCOM LITERALS

DECK OPTION e SN

SPECIFIED UNCH 1
PHASE 20 | ——————— COMPILE AND GO

TO BE PROCESSE

\\\\\\\\ MAP OPTION
SPECIFIED

SUBSCRIPT TEXT
OPTIMIZED

MAP OF
GENERATED
LITERALS
AND IMPLIED
EXTERNAL
REF

ERRORS

YES

NOW BY PHAS
30

PRINTER

TXT CRDS FOR

INSTRUCTIONS, FORTRAN
BRANCH LISTS, —— — —| SYSTEM
AND BASE VALUES DIRECTOR
PUNCH

PHASE 30
READ IN

RLD CRDS FOR UPON COMPLETION ERROR
BRANCH LISTS,BASE
OF PHASE 25, THE PHASE 30 MESSAGES
VALUES, AND AD- -
DRESS CONSTANTS OBJECT PROGRAM
HAS BEEN COMPLETELY ,
PUNCH PUNCHED l PRINTER
COMPILE CONTROL RETURNS
AND GO TO FSD
OBJEC
PRO- /GO TAPE
GRAM
MAP OPTION
SPECIFIED

PRINTER

OBJECT PROGRAM EXECUTION

LOAD CONTROL CONTROL CONTROL CARD ROUTINE
CARD - FIRST o CARD DETERMINES THAT AN
CARD OF OBRJ ROUTINE OBJECT PROGRAM IS TO
PROGRAM BE COMPILED.

CARD READER IF OBJECT PROGRAM

IS IN CARD READER
IT IS PUT ON GO TAPE

FORTRAN
—————— -1 SYSTEM
DIRECTOR
LOADER OBJECT PROGRAM @
READ IN READ IN AND
RELOCATED
FORTRAN
_______ LOADER — —=—— -1 SYSTEM
DIRECTOR
REFERENCED IBCOM NOTE: DATA CAN BE
LIBRARY SUB- READ IN EITHER IN THE. CARD
ggigR%ms READER OR ON TAPE.
PROGRAM IN=- p -
70 BATN DATA — —»{IN STORAGE. le— ——
PORAGE IBCOM OVER-
2 CARD READER LAYS LOADER
AFTER OBJECT PROGRAM IS
@ EXECUTED, CONTROL IS
RETURNED TO FSD
SYSTEM MODIFICATION
 \ CONTROL CARD ROUTINE
EDIT ggggROL DETERMINES THAT SYSTEM
CONTROL ROUTINE MODIFICATION IS TO BE
CARD PERFORMED
CARD READER
FORTRAN SYSTEM
——————— SYSTEM TAPE
DIRECTOR MAP
EDITOR PRINTER
READ IN
SYSTEM MODI- _
FICATION EDITOR
CONTROL CRDS
CARD READER l

CONTROL RETURNS
TO FSD

Figure 1. I/0 Flow for IBM System/360 BPS FORTRAN (sheet 2 of 2)

IBM Systems/360 Basic Programming Support Fortran IV 17

into the desired object code. It assembles

the entire transformed text into a card
format that is acceptable to the Basic
Programming Support FORTRAN loader. Thus,

the output of Phase 25 (and the compiler)
is an object program in the form of loader
input cards.

Upon completion of Phase 25 processing,
control returns to the FSD, which reads in
and passes control to Phase 30 if source
program errors are found. If no source
program errors are found, control is passed
to the Control Card routine.

PHASE 30

Phase 30 produces error and warning
messages signalled by error/warning indica-
tors set in the output text of any preced-
ing phase.

If no error or warning conditions are

encountered during the compilation, Phase
30 is bypassed. Upon completion of Phase
30 processing, control returns to the FSD.

COMPLETION OF COMPILATICN

At the completion of a compilation, the
FSD passes control to the Control Card
routine to read in any additional cards for
processing. If there are no additional
cards (i.e., another source program to be
compiled), the FSD either reads in the
relocating loader and passes control to it,
or displays an end of job message, and then
goes into a wait status, depending on the
option specified. If the GO or GOGO
options are specified, control is passed to
the loader. If the NOGO option is speci-
fied, an end of job message 1is displayed,
and a wait status is entered.

OBJECT PROGRAM EXECUTION

An object program generated by the
FORTRAN compiler 1is executed through the
use of certain segments on the system tape.
These segments are the FORTRAN System
Director, the FORTRAN Relocating Loader,
and the IBCOM routine.

18

FORTRAN SYSTEM DIRECTOR (EXECUTION)

The FORTRAN System Director performs the
following functions during object-time exe-
cution:)

1. Handles the initialization
for an execution.
2. Loads the FORTRAN loader

required

into main

storage.

3. Loads IBCOM into main storage after
the FORTRAN loader performs its
duties.

4, Fills the I/0 requests of the FORTRAN

loader and the IBCOM routine.

FORTRAN RELOCATING LOADER

The FORTRAN loader loads the main object
program and any associated object subpro-
grams into main storage from the GO tape
(or from the card reader). In addition, it
loads the required out-of-line subprograms
from the library on the system tape. This
produces a storage map of each object
program that is loaded, if the MAP option
is specified. Upon completion of the load-
ing, control passes to the FSD.

IBCOM

After the FORTRAN loader has been used,
the FSD loads the IBCOM routine from the
system tape over the FORTRAN loader. ¢he
IBCOM routine serves as the hub of the
FORTRAN input/output object code state-
ments. It is used by the object program as
an interface with the I1I/0 routines in the
FSD.

Although the I/0O routines in the FSD
perform the actual I/0 operations, IBCOM
sets up all required information. For
example, IBCOM converts any data to be read
or written by the FSD to its specified
format. IBCOM remains in main storage
until the conclusion of object-time execu-
tion.

COMPLETION OF EXECUTION

At the completion of object-time execu-
tion, control returns to the FSD from the
object program.

SYSTEM MODIFICATION

The Basic Programming Support FORTRAN
system may be tailored to fit the program-
ming requirements of a particular installa-
tion.

The editor, a segment of the FORTRAN
system, enables the user to revise one or
more segments of the system tape. This
revision (the addition, replacement, or
deletion of features as desired) is accom-
plished through the use of control cards
(also referred to as control statements) .

FORTRAN SYSTEM DIRECTOR (MODIFICATION)

The FORTRAN System Director performs the
following functions during a system modi-
fication:

1. Handles the initialization required
for a system modification.

2. lLoads the editor into main storage.

3. Fills the 1I/0 requests of the editor
in reading in the segments of the
system to be modified and writing out
the modified segments on the new sys-
tem tape.

.out the editing process.

EDITOR

After the FSD loads the editor into main
storage, the editor reads in the system
maintenance control cards (and any object

decks associated with them) and modifies
each segment of the FORTRAN system as
specified. The editor has control through-

The editing proc-
ess ends when there are no more control
cards to be read or when the editor encoun-
ters a control card indicating that no more
editing is to be done. Control 1is then
returned to the FSD.

COMPLETION OF SYSTEM MODIFICATION

At the completion of system modifica-
tion, control returns to the FSD from the
editor. If there is additional processing
to be performed in the job (e.g., compiling
a source program using the new system
tape) , the FSD gives control to the Control
Card routine. Otherwise, the FSD enters a
wait status.

IBM System/360 Basic Programming Support Fortran IV 19

IFL EFFECTED

AT CONSO
X

EEAXXAZERRARERNER

REE ‘FSD 01B3%

P AKX N—X-Xo

* A2 FoeeeX® LDAD C NYROL *Xeoew

* * *#CARD RTN--GI

e * CONT! o

o T cc
PR

X

ARRREBRERERERRRE
CR 028B.

« .
o* TEM *.
*. MAINTENANCE o

Xeoooe

E2 %,
o *o
% OBJECT *.
. PROGRAM o
.EXECUTIDN.

R

Xeooee

EEREAERERBEENREE
PH10 03B

* CE
* STAT NTS
Saasitiannnnnnnes

Xeeson

EREERG2EREEERRENE
*FSD o

* LOAD PH12 ¥
* GIVE CONTROL ¥
* *
P e I T

Xeosoe

EEAEKHDEE A RRRR N
04

* ALLOCATE =
* STORAGE *
*

EARRRREEERRRRRERR

X
lilil;z.&lua!i{l:
*FSD B3%
-, L1
* LCAD PH14-- %
* GIVE CONTROL %

* -
ERREEREEREAERRRNR

Xeoaae

ERRERRKOREEEERERER
PH14 05A3
B e Tt oo)
REPLACE POINTRS¥

Chart 00.

20

YES

ceeee¥

Exex Enan
- * * *
* A3 * * A4 *
= * * *
*ann ERnx
X x
EEREEATEREERRERER EAREAALRRRERREEER
FSD 01B3% FSD 01B83%
* LOAD EDITOR-- #* * PH15-- *
GIVE CONTROL # * GIVE CONYROL *
* TO EDITOR * * *
X X
EREERDI: Ba
EDR 1uB2 *PH15 06A3*
PERFORM * * TRANSFORM %

SYSTEM *
* MAINTENANCE *

* ARITHMETIC #
* EXPRESSIONS #

EREXCIRERRRIKER
GIVE_CONTROL TO
* FSD TO -
* TERMINATE JOB #*
EEEERREERRRERRS

YES

*—x
-..x* LOAD LOADE

ERERREIEARREEERER
D

*
IVE CONYROL *

T0 DE!
EREERRREERREEERER

Xeosae

EEERAEIRRERRRERZR
LOi 11A1%
Pt TP Sttt
*LOAD IN OBJECT *
* PR M= *

* THEN IBCOM %
B e

Xeoonae

CONTROL IS
OBJECT PROGRAM

Xeesons

REERECALEERERERRRE

*FSD 0183%
Pl PRI T ety
* LOAD PH20 ¥
* GIVE CONTROL *
* TO_PH20 *
RREERREREEEXERERR

X o*e
EREERDAXRERERERRR o
*PH20 0783% o NOGO *e
B e T) o* *. 0
* PERFORM *eee X*e SFEClFlED o*e
* SUBSCRIPT *o o*

* OPTIMIZATION * *o o
ERREREERARERERRNE *o o
* NO
X
E4 .
Al
Y .
Te. . :
* YES .
X X
Fa .

EEREEFSEEREERRELR
SD 01

OAD PH25-- %
* s VE coNrRoL *
*

B i

X
*ERRRGE
*FSD 0183% *PH25 8A2%
IoExoxox ook R KRR XN X_R
PH30~— * PRODUCE »
* cHVE” CONTROL * . * OBJECT *
To . * PROGRAM *
. . eXeseesscene
X . oXeo
REREEXHEREHEEXRHRE s .
xPH30 9983 ANY
__________ YES . ERRORS
*PRODUCE ERROR/ - « *WARNINGS 10 BE *
+PROCESSED. ¥
5 MESSAGES *o o
AR L3 *e 0¥
. * NO
eXeesssesascenssescsaccoans
X
Prre
* *
* A2 x
* *
ExEx

FORTRAN System Overall Logic Diagram

B A S AN T PR

PART 2: SYSTEM CONTROL SEGMENTS

Control of the various functions of the
Basic Programming Support (BPS) FORTRAN IV
system resides within the FORTRAN System
Director (FSD). During the system func-
tions (compiiation, object-time execution,
and system modification), the FSD remains
in storage.

Initially, the FSD reads in the Control

Card routine to determine which system
function is to be performed.

Part 2: System Control Segments 21

FORTRAN SYSTEM DIRECTOR

The FORTRAN System Director (FSD) con-
trols the functions of the FORTRAN system.
The FSD remains.in storage during compila-
tion, object-time execution, and/or system
modification.

All communication between the various
segments of the system and the FSD is by
supervisor call (SVC) instructions. An SVC
instruction requests the FSD to perform a
certain operation. One SVC instruction is
reserved for the I/0 operations of the FSD.
(These operations include such things as
reading tape, writing tape, printing, and
punching.) Loading of the various segments
is also initiated by an SVC instruction.

A communications area exists within the
FSD. This area serves as a central gather-
ing point for comron information. The
contents of the communications area are
specified in the program 1listing supplied
by IBM for the FSD.

Chart 01, the FSD Overall Logic Diagram,
indicates the entrance to and exit from the
FSD and is a guide to the overall functions
of the FSD. :

I/0 OPERATIONS

The FORTRAN System Director (FSD) trans-
fers control to the I/O routines whenever
an SVC instruction, requesting an I/0 oper-
ation, is encountered. The I/0 operations
are explained in accordance with:

1. The functions supported.

2. SVC I/0 formats.

3. Data set designation.

4. Return to the user's program.

In general, the flow within the I/0
routines begins with an SVC instruction.
The co-ordination of I/0 devices and func-
tions is controlled by the device assign-
ment (referred to as a unit table on the
program listing provided by IBM for the I/0
routines). The I/O routines set up for
(SIODIR) and initiate (SIOGO) all the I/O
operations. They handle all I/O interrupts

22

(SNTPIN), provide for tape read and/or
write retry procedures (SRETRY), and under
certain conditions allow error recovery
procedures (SERP). The routines provide
the initial location of the device assign-
ment table if it 1is not already known
(SD1), set up for a set mode operation code
and CAW (SETMD), and set up for a check
operation (SD2). They set up simple con-
trol operations (SD5), data operations
(SD7), and print operations (SD74, SD741).

The I/0 routines construct a model for
the current call. This model consists of
12 bytes that contain all the information

necessary to process the current call.
After the model is fully developed, it
contains the CCW for the current I/O opera-
tion.

I/0 FUNCTIONS

The BPS FORTRAN I/0 routines support the
functions defined in Figure 2.

r
| FUNCTION

T 1
| EXPLANATION & CONSIDERATIONS |
!

———- -4

|This operation provides an|
|output facility £for -areas|
|that are to be handled as|
|data. Modifiers are speci-|

|fied in the call parameters.

I
I
!
|
| I
F - 1 1
|
|
|
|

+
|This operation provides an|
|input facility. Modifiers|
|are specified 1in the call]
| parameters. |
p=— 4 1
Control 3 |This facility is for opera-|
|tions not involving read or|
|write, such as irmediate]
| space, stacker select, set|]
|mode, etc. (operation codej
|]011).
+
|This facility is for
|tions not involving read or|
|write, such as rewind, |
|space, write tape mark, etc.|
| (operation code 111).
L

P SR,

Control 7 opera- |

!
!
|
!
|
I
IL ——
I
I
|
I
!
L

|
J

Figure 2. I/O Functions (continued)

(continued)

FUNCTION

T - 1
| EXPLANATION & CONSIDERATIONS|
1 4

Print

— e e —— e o e e e e e e e e e g e o

+
Check (Wait) |This

T 1
|This operation provides a]

|facility for areas intended|
| for graphic material. It is|
|similar to the write cpera-|
|tion except that it allows|
| carriage control specifi-|
|cation for off-line work (as]|
|determined by the class of|
|device). The carriage con-|
| trol character is located in|
|the first kyte of the datal
|area. When the call is to a|
|graphic device, this charac-|
|ter controls the insertion|
|cf the appropriate|
| System/360 modifiers. When|
la call is to a non-graphic|
|device, the control charac-|
|ter 1located in the first]
|byte is written out as thej
| first data byte and thej
|modifiers specified in the|
|call parameter are used. |

operation provides thej
|facility to examine a desig-|
|nated unit for a busy condi-|
|tion, waiting if the unit is|
| busy, and interrogating the]|
| result. (This function is|
|automatically included in]
|WAIT calls.) Return is made|
|to Normal return, Unit|
| Exceptional Condition |
| return, or Error return, as|
|indicated in a data set con-|
|trol block within the device]
|assignment takle and deter-|
|mined by current conditions. |
|If no operation has Leen|
|initiated on the designated|
|unit since the last check of}
| the unit, direct normalj
| return is made. (See]
| "Return to User's Program.") |
1

-- i

The print facility is divided into]
| two sukfunctions, PRINT A

and PRINT B|

| (see Figures 12 and 13 respectively). |

|
L

I
1

Figure 2.

I/0 Functions

SVC I/0 FORMATS

The

the user is specified in

operation and data set desired by

an SVC instruc-

tion.
of all I/0 calls
routine

Form 228-6620-0
Page Revised 1/11/66
By TNL 728-2117

One SVC format is used as the basis
; however,
capabilities

additional 1I/O
can be introcduced Lty

parameters contained in an expansion of the

btasic format.
the use

These
of modifiers
operation code, specification of data

capabilities include
to the I/0 command
par-

ameters in indicated registers (rather than

in the data

set control block), and ten-

porary cancellation of overlapped orperation

on the data set designated bLy the
of the
defined in Figure 3.

The structure

call.
SVC I/0 formats is

r—
|NAME

T T
FORMAT |BYTES|EXPLANATION
+

P SR

-
|Base
| Format

0
<
(@]
=
N
[©)

0
g
tz
(9}

Start
of
Return

1
'|This format is

used|
|for all simple datal
|operations, that is|
| for operaticns that]
|do not involve com-|
|mand operation modi-|
|fiers; - this format]
|is wused for Check]|
|calls.*

|
|]
| i
| Specify the type of]
|svc. |
| |
|Tag |
|Bits

and data
u-7
set

set.

give the|
|data reference|
| nurber (0 through|
115). i
] |
|A11 I/0 functions]|
|are defined for the|
| routines in this|
| byte. See Figure 4}
|for a definition of}
|this field. |
| |
|See "Return to|
|User's Progran™ for|
|a definition of this|
|field.

|

e ———— a
=3
o
0

|Expan-|
|sion A]

+
I
|
I
I
I
|
|
!
|
I
|
!
|
|
I
|
|
|
I
!
I
|
|
|
!
|
|
I
|
I
I
!
+
!
|
I
I
|
I
svC I/0]|
|
!
I
I
|
1

!
!
!
|
I
|
|
I
|
L

1

|This format is used
|for Control 3, Con-
|trol 7, and for any|
|operations requiring]|
| command modifiers.
|

| Sarre as
| format.
| .
| Same as for the base
| format.

1

|
|
v i
|
|

for the base

e s o . — — —— —

!
I
|
|
I
|
|T DS
|
|
1
3

Figure 3. SVC

I/0 Formats

(continued)

FORTRAN System Director 23

(continued)

.
|NAME | ¥ORMAT
p-————- oo

|same as for the base]|
| format. |
| I
{This byte suppliesj]
|the command modifi-|
|ers for the current|
|operation. |
| |
|A and B are any pair|
|of registers con-|
| taining the wouffer|
|address (in A) and|
jthe byte count (in|
|B) . Both fields]|
|must be supplied if|
|either is supplied, |
|and register con- |
|tents will replace|
| current data param-|
|eters in the data]
|set control bilock.|
|&an A,B of 0 indi-|
|cates that the cur-|
| rent data parameters|
|are to be used. |
| I
| See "Return toj
|User's Program" for|
|a definition of this|
| field.
L

=

=

[

|Start
| of
| Return

41

b e e e e e e e e e e e e e e e e

— b s——

*¥ Data parameters (address of buffer area|
and Dbyte count) must exist in the UCB. |

[e o e e e e e e S e SO . S e . . . M i e St . P e S S e M, . o . B S e

Figure 3. S8SVC I/O Formats

A detailed discussion of those fields of
the SVC formats peculiar to the BPS FORTRAN
I/0 routines is presented in the following
sections.

Operation Specification

Figure 3 indicates that all I/0 func-
tions are defined for the routines in the
specifier byte. This byte is structured as
follows: bits 0-3 are used for flags; bits
4-7 specify the operation. Figure 4
defines the contents of this bpyte.

24

r T T T " 1
| I | HEXA- I
| | BITS | DECIMAL| SIGNIFICANCE |
t $—-—1 -1 1
IFLAGS | | | |
| (bits | 0000]| 0 | (Reserved) |
[0-3) fo———fmmmmm e PRE—— 4
10001	1	Wait on this opera-	
			tion. This flag may
			be combined with any
			other flag.
10010 2	Disregard incorrect		
			length indication]
			(ILI) now. May Dbe
			combined with any
			other flag.
10100	4	Use data group now.	
1 b1+ 1 1			
11100} C	(Illegal)		
	1101] D	(Illegal)	
	1110	E	(I1legal)
L llllli F i(Illegal) !			
______________________ i			
OPERA-	0000	0	(Reserved)
TIONS } 1 + 1			
(bits	0001}	Write (data)	
4-7)	0010]	2	Read
: {00111 3 iControl 3 J

T - 1
10100] 4	(Reserved)		
{0101 5	(Reserved)		
	0110	6	(Reserved)
! 3 - 1			
10111	7	Control 7	
1 p-——=1-- {			
11000] 8	(Resexrved)		
I p—t === 1			
11001 9	PRINTA (write graphic]		
I 1 l ldata) }

T T 1
| 11010] A | (Reserved)]
| 1011 B | (Reserved) |
| 11100} C | (Reserved) |
| ——-4 t -—{
| 1101 D | PRINTB (write graphic]
| I | | data) |
l -—==1 } 1
| 11110} E | (Reserved) |
| 1 1 1
| 1111 F |Check |
[, i____1 1 J

Figure 4. Contents of the Specifier Byte

Tag and Data Set Byte

The tag and data set byte indicates
whether modifiers and/or the use of reg-
isters for data parameters are present in
the current call; it provides the unit
reference number. Figure 5 defines the
contents of this byte.

r T T 1
| | HEXA- I
| BITS | DECIMAL| SIGNIFICANCE |
-1 t {
10000 | 0 | Reserved) |
| 0001 1 | (Reserved) |
==t~ { {
10010 2 |Indicates whether or not |
		modifers are supplied and/or
		data parameters for the data
		group are contained in reg-
		isters (Expansion 3).
b—t- ! 1		
0011] 3	Reserved)	
=+t t {		
]0100] 4	Contain the data set refer-	
thru	thru	ence numbers (0 through 15) .
0111} 7 | |
L L 1 y |
Figure 5. Contents of Tag and Data Set

Byte

DATA SET DESIGNATION

device assignment table (DAT). This table
is comprised of two sections: data set
table (DSTAB) and data set control blocks
(DSCB) . In the program listing provided by
IBM for the I/0 routines, DSTAB is referred
to as UTAB and DSCB as UCB.

DSTAB —- Data Set Table

- tial entry in DSTAB is a

DSTAB is an open end list, referenced
from the I/0 routines, and composed of one
6-byte block for each data set. The ini-
4-byte header
block; the 1last entry is a 2-byte message
data set identity block (see Figure 6) .

Each 6-byte block holds one assigned
physical device address, an amount rep-
resenting the byte offset of the associated
DSCB from the head DSCB, and the device

The correlation of I/0 devices and func- type identification in hexadecimal digits
tions is controlled through the use of the (3 bytes) .

T T T T 1

DATA SET | | | | I

REFERENCE NUMBER | NAME | STRUCTURE | | BYTES |

[] 1 i 4

T T] T] 1

| DSTAB | n+1 | Address of DSCBO | | 4 |

} 1 L 1 4 4

T T T T 1 1

0 | DSTABO | Device 0 Address | Offset 0 | Type | 6 |

4 4 1 1 4 4

T T T T T 1

1 | DSTAB1 | Device 1 Address | Offset 1 | Type | 6 |

4 e + $ } 1

. | I I | I |

4 [1 [i J

] T T T T 1

. | I I | I I

L 4 [3l i | 1 i

v T T T T T L}

| . | | |] | |

L i 4+]] 4 3

r 1] T T T T 1

| n | DSTABn | Device n Address | Offset n | Type | 6 |

+ { T { $ t {

m | DSTABLh+6 | Data Set|Dev Addr | | | 2 |

L L L 1 L L _JI

NOTE: The "Type" field is further illustrated as follows: |

|

1] T L] T 1 l

I X X| XX |D]|M] |

' L L 1 L 4 '

| . |

Where: XXXX is four hexadecimal digits defining the type of devices, such as 2400 for]|

a 2400 series tape. |

’ |

D is one hexadecimal digit for a service type subclass, such as 24009 for aj

9-track tape. |

|]

] M is reserved.]

L i 4

Figure 6. Data Set Table Format

FORTRAN System Director 25

The U-byte header block holds the number
"of data sets in DAT (1 byte) and the
location of the start of the DSCB section
(3 bytes) . The 2-byte message data set
identity block holds the data set reference
number in the high order 5 bits and the
device address in the low order 11 bits.
Bit position 1 is reserved.

DSTAB is arranged in sequence according
to data set reference number, 0 through n,
and is so referenced by any SVC instruction
requesting an I/0 operation.

DSCB —-- Data Set Control Block

Each entry in DSTAB requires an asso-
ciated DSCB. The DSCB can vary in size
from a minimum of 22 bytes to a maximum of
44 bytes.

The DSCB describes the associated data
set (identified with the physical device
address in DSTAB) and the extent of opera-
tions to be performed on that device. The
DSCB also provides space for retaining any
history requisite +to the progress or con-
trol of those operations being performed on

tion recognition, and separate indication
(return) for unit exceptional condition,
and/or error conditions.

Figure 7 presents a general - description
of the contents of the DSCB. Discussion of
fields that require further explanation are
presented immediately following the figure.

DEVICE CODE BYTES: The bit configurations

of these bytes are as follows: Bits 0-4
contain the set mode modifier pattern for
7-track tape: ddmmm. Bits 5-7 contain the
expansion code for this unit: 001, Expan-
sion B. Bits 8-14 specify the device code
as follows:

Bit 8 Tape

Bit 9 Printer

Bit 10 Punch

Bit 11 Reader

Bits 12-14 are used for a subclass of
one of the above unit types.

Bit 15 contains the multiplex mode flag.

the device. The DSCB may also provide the Figure 8 illustrates the device code
optional capabilities of overlapped opera- assignment.
r T T Ll L] T 1
| | NAME | BYTES | EXPANSION| TOTAL | CONTENTS |
L 1 1] 4 +1 4
1) T T 1] 1 T 1
(DSCBO) |Device I 2 | | |Multiplex mode flag, device code, expansion]|
|Code | | | |code, set mode modifier pattern for 7-track]|
| | | | | | tape. |
1 [i] + d
T T T T T X i
+2 |Flags I 2 | | |Extent of operations to be performed. |
1 1 1 Il +1 4
T T T T T 1
+4 |Specifier| 2 | |The contents of these bytes is the same as the]|
| | | |SVC specifier byte. - |
[1 } | L 4
T T =T T T 1
| +6 |CCW | 8 | | |
L [i 4] i |
L) L] T T T 1
+14 |Check I | |DSCB check byte.]
[[1 i [4
T T T] 1 1
+15 |Byte | 2 | | |This is the byte count for data group entries. |
|Count 1 | | | | |
(] [[1 [l }
T T T T T . . 1
+17 |Buffer | 3 | | |This is the buffer address for data group|
| |Address 1] | | |entries. |
L 4 4 } [l 1 4
r T T T T T 1
| +20 |Error | 2 |&A 22 | 22 |Error mask bytes. |
| 4 i }] 4
] !]] T 1
| +22 |Sense | 6 | |Note: Minimum requirements. |
| |Bytes | I I | : I
L] L] 4 i 4
L} T T T 1) 1 1
+28 |Is0 014 8 | |
| PSW | |
1 ¥
+36 |CSW 8 |B 22 44 |Note: Requirement for overlapped operation.
L L
Figure 7. DSCB Format

26

r T T T T - 1
				HEXA-
DEVICE	MODE	BITS 8-14	BIT	DECIMAL
		‘	15	CODING
b + + $ommm e 1				
11052	Multi-			
Printer	plex (0001 001	1	13	
t 1 1 1 1 4				
r T T T T 1				
j1402	Malti-			
Reader	plex 0010 000	1	21	
t T e S 1				
11402	Multi-			
Punch lglex	0010 001	1	23	
R 1 _ 1 1 4				
r 1 T T 1				
1442	Multi-			
Reader	plex 0011 000	1	31	
b= ¥ + ommmmpm oo 1				
{1442	Multi-	i		
Punch lplex 0011 002	1	33		
L - 1 4 R— _]_ _______ {
v T T T

|1443 |Multi-| |] |
|Printer |plex 0100 001 | 1 | 43 |
[N 1 —_— e e e
1) T + + ‘I
|1403 | Multi-| | | |
|Printer |plex |0100 0121 | 1 | 47 |
k 4 1 [l + _______ "
{ T T T

| 2400 I | | | |
|9-Track |Burst |1000 000 | O | 80 |
| Tape Read | I | | I
N 1 1 4 +__ 4
I T + + 4
2400				
9-Track	Burst	1000 001	O	82
Tape Write]				
I KR _]. _____ 1 4 4
1) T i T R}
12400 | | | l |
|7-Track |Burst {1000 010 | O | 84 |
|Tape Read | | | | |
L 4 +_ 4 1 _."
] T T T

[2400 | | I | |
|7-Track |Burst |1000 011 | O | 86 |
|Tape Write] | | | |
L L L 1 ~d

Figure 8. DSCB Device Code Assignment

IDSCB _FIAG BYTES: Figure 9 illustrates the
structure of the DSCB flag bytes.

—_ —=—

T
BIT|SIGNIFICANCE |
1 i

T a
|Operation not checked; last]|
|oreration not yet interrogat-|
| ed.
|Wait-Check
|Reserved
|Chaining Flag o
|Retry - complete; all retries
|resulted in failure.

| Reserved

|Reserved

|Reserved

L

BYTE

DSCBp+2

F Wk o

I
S0 U

T
|

+
|
|
|
I
|
I
|
I
I
I
|

4

b e e e e e —— —— ———

Figure 9. DSCB Flag Bytes (continued)

Form Z228-6620-0
Page Revised 1/11/66
By TWNL Z28-2117

{continued)
[— T T

|RYTE |BIT|SIGNIFICANCE

|DSCBn+3| |Resexrved

	No overlap: zero overlap per-
	missible and requires expan-
	sion B.

|

|

PSR S

10 |SILI: disregard all incorrect]

|length indications from thisj|
lunit.]
|11 |Reserved |
| Reserved |
|13 |Reserved |
|14 |Unit exceptional condition]|

] |return; user will accept unit|
| | exception return. |
|15 |Exror return; user will|
|

|accept error return. |
L : 1

L e p—
[R=Y
[8}

Figure 9. DSCB Flag Bytes

DSCB_CHECK BYTE: The kit configuration of

the DSCB check byte is illustrated in
Figure 10.

| T T - - 1
|BYTE |BIT|SIGNIFICANCE I
b-- $-——14 -- 1
DSCBp+14	O	Program contrcl interrurt
		(PCI) h
	1	Attention
	2	Incorrect length reccrd
	3	Error
	4	Exceptional conditicn
	5	Status report applies tc the
		crevious call
	6	Reserved
]	7	Busy; current operation has
		not received device end,
		reject, error, or exception-
	lal conditicn	
S, N . J		
Figure 10. DSCR Check Byte

ERROR MASK BYTES: The significance cf the

error mask bytes is exrlained in Figure 11.

m~ T T 1
| BYTE |BIT |SIGNIFICANCE |
——— 1 4 _— 1

T T 1
|DSCBp+20]0-3 |Second level retry count |
| s e -
| |4-=7 |First level retry count |
| S : E—
| |18-9 |Reserved |
l — 1-- -- 1
| 110 |Previous read errcr |
| b-—-——t !
| |11 |Not first entry |
I b + - i
| |12-15|Reserved |
L i i — J
Figure 11. Error Mask Bytes

FORTRAN System Director 27

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

CALLS TC A PRINTER

Due tc the reculiarities of a FORTRAN

print command (which is actually a write
graphic data command) the wuser should &ke
familiar with the following material on

FORTRAN printer carriage control characters
and data parameters for print calls.

FORTRAN' PRINTER CARRIAGE CONTROL CHARACTERS

Figures 12 and 13 define the carriage
control characters and their effect. PRIN-
TA writes after performing the indicated
carriage function (see Figure 12); PRINTB
writes ©before the carriage function is
performed (see Figure 13).

r T 1
| CHARACTER | EFFECT |ACTION |
t ¥ I -1
|0 (zero) |Doukble Space |Immediate space |
| | I'2; Writes |
L 4 —_— +___ —— 4
r T R . 1
| (blank) |Single Space |Immediate space |
I | |1; Write* |
e —————1- e
|+ (plus) |Print without|Immediate NOP; |
| | spacing |Write* |
R T .
11 |Print on | Immediate skip to|

| jfirst line |line 1 of the |
| |of next page |next page; Writex*|
41

pommmmmmod —————i

|*Write has no integral carriage moticn. |
L

- —_ -d

Figure 12. FORTRAN Printer Carriage Con-
trol Characters (PRINTA)

r T T - 1
| CHARACTER | EFFECT |ACTION |
——— S [P 4
|0 (zero) |Doukle Space |Write*, space 2 |
N B U S, _l
r T
| (blank) |Single Space |Write*, space 1 |
L 4
F $- 4= i
|+ (plus) |Print without|Writex* |
| | Spacing I |
L —_— 1 —_— o o o 2 e 2 e e e e o e e {
v T .
|1 |Print last | |
] |1ine then go | |
|]to first line] |
| |of next page | |
b L ——mmet —
| *Write has no integral carriage motion. |
L -1

Figure 13. FORTRAN Printer Carriage

trol Characters (PRINTB)

con-

28

DATA PARAMETERS FOR PRINT CALLS

In a print call, the data address points
to the carriage control character which is
contained in the byte immediately rreceding

the graphic data bytes. The byte count
includes the carriage control character
byte. In the fcllowing example:

120 characters for a rrint line
1 carriage control character

121

a kyte count of 121 is supplied to the I/O

routines.

Error Routines

If there is an error during a tape read
or write oreration, a given number of
retries will ke performed (according toc IRM
standards). If the retries are successful,
processing will continue. If they are not,
contrcl may ke returned to the wuser's
program (see "Return to User's Prcgrar") or
a wait PSW may be 1loaded (see "SRETRY
Routine").

Error recovery procedures may Or may nct
enable the user to recover the error manu-
ally from the console. For a discussion of
the ccnditions governing this fprocedure,
see "SERP Routine."

RETURN TO USER'S PROGRAM

Returns to the user's prograr from an
I/0 routine are made starting at the 1loca-
tion immediately following the SVC block.
The return can cccur in any one o¢f three
formats derending on the capatkilities kuilt

into the DSCB. Indication is given in the
DSCB if the return is a result of the
previous call rather than the current cne.
Figure 14 defines the types of returns.
ROUTINES
The routines of the FSD are:
1. FSD Initialization routine (DINT)
Chart AA.
2. FSD Load Segment routine (IDPH) Chart
AR.

3. Exit routine (EXIT) Chart AC.
4. I/0 routines (see "I/O Orerations")
Charts AE thrdugh AR.

oo s o v o s . n— ki ca— e —— b c— —a— ol wo— o]

r L L L T

| TYPE | RETURN AT| LOCATION | BYTES | WHEN USED

L 1 1 .

r T T -

| Type 1 | | End of SVC block Used when neither error nor except-
| | ional condition return is provided

| | Return All returns for in the DSCB.

! [l

1] T

| Type 2 | End of SVC block Used when either error or exceptional
| | Return Unusual return condition is provided for in the

| t + DSCB, but not when both are provided
| | +4 | Normal return for.

i 4 4 .

L} T T

| Type 3 | | End of SVC block Used when both error and exceptional
| | 4 condition returns are provided for in
| | Return Error return the DSCB.

|

| +4 Exceptional Con-

| dition return

|

| +8 Normal return

L L L L

Figure 14. Return to the User's Program

DINT Routine: Chart AA

The DINT routine performs the required
initialization.

ENTRANCE: The DINT routine receives
trol from IPL.

con-

CONSIDERATION: The DINT routine performs
the following initialization:

1. Associates the device upon which the
system tape resides with data set
reference number 0. (The system tape
is always referenced as data reference
number 0.)

2. Clears lower
registers.

3. Sets up the program, machine check,
and supervisor program status words
(PSWs) .

4., Sets an indicator in +the communi-
cations area that the FSD has control.

storage and the general

OPERATION: To establish the system tape
device as data set reference number 0, the
system tape device is placed into the data
set reference number 0 entry of the device
assignment table.

The system tape device address is deter-
mined when IPL is effected. This device
address is compared against each device
address in the device assignment table.
The following conditions can occur:

1. The system tape device is already
associated with data set reference
number 0.

2. The system tape device compares with a
device address associated with a data
set reference number other than 0.

The two device addresses are, there-
fore, switched.

3. The system tape device is not present
in the device assignment table. The
device address is, therefore, entered
in the data set reference number 0
entry of the device assignment table.

Lower storage and the general registers are

- then cleared.

The FSD constructs the program, machine
check, and supervisor PSWs and places them
in their appropriate 1lower storage 1loca-
tions. Included as elements in the various
PSWs are the following:

1. Program PSW: address of the routine to
be branched to if a program interrupt
occurs. :

2. Machine Check PSW: address of the
routine to be branched to if a machine
check interrupt occurs.

3. Supervisor PSW: address of that por-
tion of the FSD to be branched to when
one of the phases requests a certain
function of the FSD.

The FSD indicates that it currently has
control by setting a specific indicator in
the communications area. ’

EXIT: The DINT routine exits to the LDPH
routine.

LDPH Routine: Chart AB

The LDPH routine loads a segment of the
system, as required, for execution and
determines the point at which control is to
be received.

FORTRAN System Director 29

. ENTRANCE : The LDPH routine initially
receives control from the DINT routine.
Subsequent to this initial entry, the LDPH
routine receives control from one of the
various segments of the system.

OPERATION: The load segment function of
the FSD is initiated by an SVC instruction
that can call for the load of a segment.
After the load operation is complete, the
FSD passes control to that segment.

Included in the load segment function of
the FSD for the compiler is a check to
insure that the punch device used to punch
the output of a particular phase is not
busy. If busy, the read of the next phase
is not issued by the FSD until the punch is
free. This insures that the contents of
the output buffers of a given phase are not
destroyed until the contents of the buffer
have been punched.

EXIT: The LDPH routine exits to the newly-
loaded segment.

Exit Routine: Chart AC

The EXIT routine determines the point of
return within a segment so the FSD can
return to the appropriate place after an
I/0 operation is performed.

ENTRANCE : The EXIT routine receives
control form an I/0 routine within the FSD,
after that routine has fulfilled the
request for some segment.

CONSIDERATION: The return address is det-
ermined from the address of the byte fol-
lowing the SVC instruction that requested
the I/0 operation. This address, which was
saved in the supervisor old PSW, may or may
not be the return address.

If a parameter list follows the SVC, the
saved address is the address of the first
parameter. If no parameter list follows
the SVC, the saved address is the return
address within the segment after its I/0
request has been fulfilled.

OPERATION: After an I/0 routine performs
its specified function, it returns control
to the EXIT routine to access the saved
address. The EXIT routine adds to that
address the number of bytes, if any, which
the parameter 1list following the SvC
instruction occupies. The resulting
address is the return point to the segment
that originated the I/0 request.

EXIT: The EXIT routine exits to the seg-
ment that originated the I/0 request.

30

SIODIR Routine: Chart AD

The SIODIR (I/O Director Base) routine
completes the initialization steps neces-
sary for all I/O operations.

ENTRANCE: This routine is entered whenever

an SVC instruction requesting an I/0 opera-

tion is encountered.

CONSIDERATIONS: The SIODIR routine is

OPERATION:

EXITS:

required for all I/O0 functions.

This routine requires that a specified
symbolic register hold the address of the
DSTAB header block, if the table is not
compiled with the I/0 routines.

The SIODIR routine sets up the
I/0 base register, return PSW, and gets the
initial DSTAB location.

The routine then determines if it is
being entered for the first time during the
current I/0 operation (external entry), or
for the second time (internal entry). If
entry results from an external call, the
routine saves the entry registers and call
return PSW, and sets the internal switch.
If entry results from an internal call or
when the operations resulting from an
external call have been performed, the
SIODIR routine extracts and saves the SVC
specifier byte and the data set reference
number, determines the DSTAB and associated
DSCB locations, and sets the DSCB referen-
ces.

If a check operation or any operations
other than those essential "to all 1I/0
functions are requested, the SIODIR routine
branches +to the appropriate routine to set
up those operations.

When all required I/0 operations are set
up, the SIODIR routine sets the suppress
incorrect length indication (SILI) flag (if
specified in the DSCB) into the CCW model
and sets up the I/0 interrupt new PSW.

The SIODIR routine exits to the
SIOGO routine. .

ROUTINES CALLED: During execution this

routine references the following routines:
sb1, Sp2, SD5, and SD7.

SIOGO Routine: Chart AE

ENTRANCE:

The SIOGO (I/0 Initiator Base) routine
initiates all I/0 calls.

The SIOGO routine 1is entered

from the SIODIR routine when that routine

completes its set-up functions; it may also
be entered from the SNTPIN and SRETRY
routines.

CONSIDERATIONS: The SIOGO routine is

required for all I/0 functioms.

OPERATION: The SIOGO routine determines if
the physical device has been checked and,
if not, branches to the SNTPIN routine to
check it.

The routine initiates a series of tests
to guard against an early burst mode
device. If the routine is operating in a
multiplex mode on a multiplex channel with
a multiplex device, and the new device is
not a multiplex device, the routine sets
the CCW model in reserve and branches to
the SNTPIN routine.

When a path is available, the CCW model
is brought in and the DSCB set up. The
SIOGO routine sets up the CCW and CAW, and
issues the Start I/0 (SIO) command to the
device. After the SIO command is issued, a
series of operations, based on the condi-
tion codes set after the command-is issued,
are performed.

Condition code 2 or 3 causes the SIOGO
routine to set the CCW model into reserve
and transfer control to the SNTPIN routine.

If condition code 1 is found and the
busy bit is not present, control is trans-
ferred to the SNTPIN routine. If condition
code 1 is found and the busy bit is
present, the SIOGO routine sets the CCW
model in reserve and transfers control to
the SNTPIN routine.

If condition code 0 is indicated and the
routine . is not to wait for device end (in
which case control is transferred to the
SNTPIN routine), the SIOGO routine clears
the internal flag, restores the original
call return and entry registers, sets up to
return control to the user's program, and
returns control to it.

When a path is not available and the CSW
has not been stored, the CCW model is set
in reserve and control is transferred to
the SNTPIN routine.

EXITS: The SIOGO routine exits to either
the user's program or the appropriate loca-
tion in the SNTPIN routine.

ROUTINES CALLED: During execution, the
SIOGO routine references +the SNTPIN and
SETMD routines.

SNTPIN Routine: Chart AF

ENTRANCE:

OPERATION:

The SNTPIN (I/0 Interrupt Entry) routine
performs the analytic functions necessary
to handle I/O0 interrupts.

The SNTPIN routine is entered at
its initial location whenever an I/0 inter-
rupt occurs. It is entered at various
symbolic 1locations from the SIOGO, SRETRY,
SERP, and SD2 routines.

This routine establishes an I/0
base register (saving the environment if
the current entry is not intermnal) and sets
the DSTAB and DSCB references.

After storing the 1latest 1I/0 PSW and
latest CSW, the routine determines if the
operation has ended. If it has, a sense
command is issued to the current device;
the busy and multiplex flags are cleared;
and, if a retry is specified at this time,
control is transferred to the SRETRY rou-

tine.
When the retry indications have been
cleared (i.e., no retry specified) or if

the operation has not ended, tests for

minor interrupt conditions (attention bit,
program control interrupt-PCI, incorrect
length record, or unit exceptional

condition) are performed and the flag for
the appropriate indication(s) is set.

The SNTPIN routine then performs a ser-
ies of tests to establish the check opera-
tion status. These tests will ultimately
result in transferring control to the
appropriate location in the SIOGO routine
or enabling a wait. The following para-
graphs describe the possibilities.

When an immediate check is specified and
the device is still not busy, the residual
bit count is saved. Control is then trans-
ferred to the SERP routine to check for any
class of errors.

After control returns from the SERP
routine or if an immediate check was not
specified, a check is made for any error or
unusual condition which forces an immediate
return to the user. If any exist, result
area pointers are set in the communication
registers.

If the operation is ended and return to
the user is to be made, the intermal flag,
the device wait-check flag, the not-yet-
checked flag, and the device usage flag are
cleared. Checks are made for the presence
of a wait or reserve operation. If either
operation is present, the wait state will
be entered until termination of the current
operation. Return is made to the call that
requested the current I/0 operation, if

FORTRAN System Director 31

neither a wait nor reserve operation is
present.

EXITS: This routine exits to either the
SRETRY, SERP, or the appropriate location
of the SIOGO routine.

ROUTINES CALLED: During execution
SNTPIN routine references the
SIOGO, SRETRY, and SERP routines.

SIODIR,

SD1 Routine: Chart AG

The SD1 routine extracts and saves four
items: the DSTAB header block location, the
address that points to the first physical
device, the number of devices, and the
initial DSCB location.

ENTRANCE: This routine is entered from the
SIODIR routine.

CONSIDERATIONS: The SD1 routine is entered
only during the initial entry to the SIODIR
routine. After this first and only use,
the entire routine is eliminated and cannot
be used without reloading the entire pro-
gram.

OPERATION: ' The SD1 routine determines if
the 1initial DSTAB location is already pre-
sent in the area designated to hold that
address, and exits if it is.

Otherwise, the routine obtains and saves
the DSTAB header block location. It then
extracts the number of data sets and the
initial DSCB location from the header block
and saves them. The header block location
is incremented by 4 and the result is saved
as the initial DSTAB location.

The SD1 routine makes a final test to
make certain that the initial DSTAB loca-
tion is present, and then exits.

EXITS: This routine exits to the SIODIR

routine.

SETMD Routine: Chart AH

The SETMD routine performs the set-up
functions for I/0 operations that require a
set mode operation code and CAW. It also
performs the set-up for I/0 operations
involving the use of FORTRAN printer car-
riage control characters at the start of
the data stream and for immediate eject
operations on the IBM 1442 punch.

ENTRANCE : The SETMD routine
from the SIOGO and SD74 routines.

is entered

32

the-

CONSIDERATIONS: The use of this routine
requires the presence of the SIODIR rou-
tine.

OPERATION: After setting up the standard

FORTRAN 1I1I/0 CAW, the SETMD routine deter-
mines if seven track tape is being used.

When it is not, this routine effects a
series of branches to set up the printer
immediate control chain and the repetitive
punch on the IBM 1442 Card Read-Punch,
which does not have an automatic ejection
when punching is complete.

When seven track tape is being used, the
SETMD routine sets up the set mode modifi-
ers for the DSCB and CCW chain.

When the set mode modifiers have been
set up or after setting up for punch eject
operations on the 1442, the set mode
FORTRAN I/0O CAW is set up and the CCW
operation code 1is cleared and replaced by
the set mode operation code.

EXITS: This routine exits to the routine
that called it.

ROUTINES CALLED: During execution the
SETMD routine references routines SD741 and
SD743.

SD2 Routine: Chart AI

The SD2 routine determines if the cur-
rent operation is a check operation and, if
so, whether the device has already been
checked.

ENTRANCE: The SD2 routine is entered from
the SIODIR routine.

OPERATION: The SD2 routine determines if
the current operation is a check operation
and exits if it is not. If it is a check
operation, but the device has already been
checked, the SD2 routine branches to that
part of the SNTPIN routine that establishes
an exit path; otherwise it branches to that
part of the SNTPIN routine that checks for
minor interrupt conditions.

EXITS: This routine exits to the appropri-

ate location in the SIODIR or SNTPIN rou-
tine.

SD5 Routine: Chart AJ

This routine sets up the model for all
simple control operations; that is, for all
control operations whose entire function is

defined in the operation byte of the com-
mand.
ENTRANCE: The SD5 routine is entered from

the SIODIR routine.

CONSIDERATIONS: Control operation modifi-
ers are moved in from the SVC parameters.

OPERATICON: After clearing the data groug
flags, the SD5 routine determines if the
current I/0 call has an operation code of 3
(all operations not involving read or
write, such as immediate space or select
stacker) or 7 (all operations not involving
read or write, such as rewind tape). If
neither operation code is found, control is
returned to the SIODIR routine.

When either operation code 3 or 7 is
found, the aprropriate operation code is
placed into the CCW model.

The operation modifiers for simple con-
trol operations are then moved into the
model, along with a count of 1 and the SIII
flag.
EXITS: The SD5 routine exits to the SIODIR
routine.

SD7 Routine: Chart AK

This routine sets the proper parameters
for data operations into the CCW model.

ENTRAN E: The SD7 routine is entered from
the SIODIR routine.
CONSIDERATIONS: Data include
read, write, and print.

cperations

OPERATION: The SD7 routine sets the data
group flags and the data parameters (the
storage 1location at which the data is
found, and the kyte count).

The arpropriate data operation 1is then
set up in the CCW model by inserting
whatever modifiers are necessary, the pro-
per operation code, and making whatever
adjustmwents are necessary for a . particular

device (such as the special FORTRAN car-
riage control characters for the rprint
routine).
EXITS: exits to the SIODIR
routine.

This routine

ROUTINES CALLED:
routine references
tines.

During execution the SD7
the SD74 and SD72 rou-

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

SD72 Routine: Chart AL

The SD72 routine extracts data paramet-
ers through SVC pointers.

ENTRANCE: This routine is entered fromr the
SD7 routine.

CONSIDERATIONS: This routine requires the
crresence of the SD7 routine.

Although this routine is not essential
for 1I/0 orerations, it must ke included if
any SVC formats include expansicn A for

providing data parameters in registers.

OPERATION: When the current call does not
include expansiocn A, or when it dces but no
rointers are supplied, the SD72 routine
transfers contrcl to the SD7 rocutine.

Otherwise, a work register is cleared
and the identities of the two registers
containing the pointers to the data raram-
eters (one register containing +the Ltuffer
address and the other the tkyte count) are
loaded into the work register.

The SD72 routine extracts the data
address span and the storage span; the data
address span is then reserved.

The routine then rositions the Lyte
count span, loads the save area pointer
into another register, and fcrms the rpoin-
ter to the Lyte count area ky adding the
save area pointer to the byte count span.

The SD72 routine sets the " kyte count
into the CCW model, forms the rointer to
the data address area, and sets the data
address into the model.

EXITS: The SD72 routine exits to the SD7
routine.

SD74 Routine: Chart AM

The SD74 (Print Operation Rase)
sets ur for a print operaticn.

routine

ENTRANCE: This routine is entered from the
SD7 rcutine.

OPERATION: The appropriate print oreration
is set ur using the SD742 routine fcr a
PRINTR operation and the SD743 rcutine for
a PRINTA ogeration. If the cperation is
not on a grarhic device, there is no
further rrocessing.

If the operation is on a graphic device,

the SD741 routine is used to adjust for the
FORTRAN contrel characters; the printer

FORTRAN System Director 33

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

carriage control character is then set into
the model. If the unit is not a printer,
the console printer carriage control char-
acter is set into the model before the data
parameters are adjusted to omit the ccntrol
characters.

EXITS: This routine returns control to the
SD7 routine.

ROUTINES CALLED: During execution, the
SD74 routine references the SD741 routine,
the SD742 routine, and the SD743 routine.

SD741 Routine: Chart AN

This
operaticn for
characters.

routine performs an adjustment
any FORTRAN print control

ENTRANCE: This routine is entered from the
SD74 routine at entry point SD741 or from
the SETMD routine at entry point SD741B.

CONSIDERATIONS: This routine requires the
presence of the SD74 and SETMD routines.

All FORTRAN control characters are
entered in a FORTRAN control character
list. This list consists of 2 chains, one

for PRINTA and cne for PRINTB.

OPERATION: When the SD741 routine is
entered from the SD74 routine, the FORTRAN
control character list is searched sequen-
tially wuntil the FORTRAN control character
is found. A pointer is then set to that
control character. 1If the control charac-

ter is not found, the last character in the.

list is used. A return is then made.

When the SD741 routine is entered from
the SETMD routine, CCW chains and/or chain-
ing flags are set up according to the
following scheme.

A 4-CCW chain and chaining flag for:
PRINTA console printer

A 3-CCW chain for:
PRINTA rrinter skip
PRINTA console printer single space
PRINTA console printer doukle space
PRINTB console printer skip

34

A 2-CCW chain and chaining flag fcr:
PRINTA printer single space
PRINTA rrinter double space
PRINTE console printer doukle srace

A special CCW for:
PRINTB rrinter skig

A 1-CCW for:
all cthers

EXIT: The SD741 routine returns contrcl tc
the calling routine.

SD742 Routine: Chart AC

The SD742 routine sets wur the FORTRAN
print contrcl character for the PRINTE
functiocn.

ENTRANCE: This routine is entered from the

SD74 rcutine.

CONSIDERATIONS: This routine requires the
rresence of the SD741 routine.

OPERATION: The SD742 routine deterrines if

the current request is for PRINTB.
is not, the routine returns contrcl tc the
SD74 routine. If it is, a rointer is set
to the PRINTB character list. A return is
then mwade.

EXIT: This routine returns contrcl to the
SD74 routine.

SD743 Routine: Chart AQ

This routine sets up the FORTRAN rprint
control character for the PRINTA function.

ENTRANCE : The SD743
from the SD74 routine.

rcutine 1is entered

CONSIDERATIONS: This rcutine requires the
presence cf the SD741 routine.

CPERATION: The SD743 routine determwines if
the current request is for PRINTA. If it
is noct, the routine returns control to the
SD741 routine. If it is, a rointer is set
to the PRINTA character list. A return is
then made.

EXIT: This routine returns ccntrcl to the
SD74 rcutine.

If it

SRETRY Routine: Chart AP

This routine performs error retry procedures
for tape devices.

ENTRANCE: The SRETRY routine is entered
from the SNTPIN routine.

CONSIDERATIONS: The SRETRY routine main-
tains two command chains. The clean chain
consists of three backspace commands, two
forward space commands and a transfer into
the fix chain. The fix chain first issues
a backspace command, then, depending on the
conditions found, sets an erase gap command
or request track in error into the FIXCCW;
it terminates by a TIC instruction to the
set mode CCW.

OPERATION: For illustrative purposes, the
operation of this routine has been divided
into three paths.

Path 1: If the current device is not a
tape, control is returned to the SNTPIN
routine.

The SRETRY routine determines if there
is a data check. 1If there is no data
check, processing continues at Path 2.

When the current routine entry is not
the first error, the retry counts are re-
stored and processing continues at Path 3.
Otherwise, a test is made to determine if
the tape is in write status; when it is,
the retry count is set to 3, and processing
continues at Path 3.

If the tape is not in write status, the
routine determines if a noise record has
been read and exits if it has. If a noise
record has not been read, it sets the read
indicator, sets the retry count to 10, sets
the tape clean count to 10, and continues
processing at Path 3.

Path 2: If this is not the first retry
attempt, or if this is the first retry
attempt but the load point indicator is not
set, control is returned to the SNTPIN
routine.

Otherwise, the SRETRY routine determines
if the third backspace in the clean chain
has been attempted. When it has not, the
tape clean count is reset to 10, and proc-
essing continues at Path 3.

When the third backspace has been
attempted, the control areas are cleared
and the CAW is set to forward space one
data record. The retry count is set to 10,
the retry and tape clean counts saved, and
the routine exits.

Form Z228-6620-0
Page Revised 3/15/66
By TNL Z31-5008-0

Path 3: The control areas are cleared.
When both the retry and tape clean counts
are exhausted, an indication that the retry
is completed is made, and control is re-
turned to the SNTPIN routine. ’

When the retry count is exhausted, but
the tape clean count is not, the CAW is set
to the clean chain and the retry count to
10. If the retry count is not exhausted,
the CAW is set to the fix chain and a test
is made to determine if the previous read
error indicator is on. When that indicator
is not on, the fix CCW is set to "erase

gap. "

When the previous read error indicator
is on, or after setting the CAW to the
clean chain, the fix CCW is set for "request
track in error."

After the fix CCW has been set (for
request track in error or erase gap), the
retry and tape clean counts are saved and
the routine exits.

EXITS: This routine returns control to
that portion of the SIOGO routine that
issues the Start I/0 Command.

ROUTINES CALLED: During execution of the
SRETRY routine the SIOGO routine is
referenced.

SERP Routine: Charts AQ and AR

This routine prepares the system to per-
form error recovery procedures. It may be
used to check for error conditions or for
a condition code 3 occurring after an SIO
operation.

ENTRANCE: The SERP routine is entered
from the SNTPIN, SIOGO, or SRETRY routines.

CONSIDERATIONS: This routine is optional.
Its use requires the presence of the SRETRY
routine.

Four messages may be issued by this
routine. They are; FIA, FIC, FID, and FIS.

OPERATION: When the routine is used for
error detection, the channel failure and
unit check indicators are tested. If none
are on, a normal return is made. If any are
on, the error indicated is processed.

is known to exist, the

one of three general paths.
AQ) is for the condition
after an SIO operation, the

When an error
processing takes
The first (Chart
code 3 occurring

FORTRAN System Director 35

Form Z228-6620-0
Page Revised 3/15/66
By TNL Z31-5008-0

second (Chart AQ) is for a channel failure
indication, and the third (Chart AR) is for
a unit check indication. All three paths
use a common routine procedure in case of
error. This procedure consists of setting
up and printing the proper message (FIA,
FIC, FID, or FIS), setting up the entry for
the external PSW and for SEREP, and moving
the unit address to a position in the FSD
area used by SEREP.

During object time, 2540 punch equipment
check retries are handled differently than
other error retries. 2540 punch- equipment
checks require the repunching of the last
two cards punched. Other errors require
reprocessing only one record, which can be
done within FSD. For 2540 punch equipment
checks, the return is set to the IBCOM
IB2540 routine for the retry.

EXIT: If the SERP routine does not return
control to the calling routine, an FIA,
FIC, FID, or FIS message is issued. The
routine then loads the wait PSW.

36

FHEERAE R R ERRARH
* *
* IPL ENTRY *
* *

3 3 3 I3 MR HR
.

Xe o o000

RERRHBOXERXARRH AR
CINT AAB3
L e R it B B
* PERF GRM *
*INITIALIZATICN *
* *

FHEHREEE RN RN NN

Xe o000 00000 X000 0000000

3 3 3 3 D2 F I I KX R

LOPH ABXX
E R et Tt 2L R TET DR N
* *
* LOAD *
* SEGMENT *
36 3% 3 36 36 36 3 36 36 36 3 3 36 3 % ¢3¢

.

.

.

.

.

.

X
EE R S E 2 0 2 X 2 2
* BRANCH TO' *
* SEGMENT JUST *
* LOADEC *

EE RS A2 LRSS

Chart 01. FSD Overall Logic Diagram

WHERE

XX
XX

B2 FOR PHASELOAD
ST

LCAD REQUEST

HHERALH R REENR
* *
* SVC ENTRY *
* *

I3 333 3 3 XN

Xeo oo 000

XEERXBLERRERRREXR
* - *

* INTERPRET *
* svc *
¥* *
* *
6 3 3363 3 I3 H RN

.

.

.

.

.

oXeo
ca x,

Is *o

o ¥
YES % THIS A *,

®ecccsecsecscecscccsescscscsssccvsccncscvecscseeXeLOAD SEGMENT o*

#*e REQUEST o%
* g ¥
e o
* NO
« (MUST BE
«REQUEST)

Xe oo

HREEADLEXRE RN N RS
* 22C1#*
LI T T T e eomeva
* FULFILL I/0 *
* REQUEST *
*
*

*
3363 333 3 I X RN

Xeoeeoo o

FEXRRELH XXX RRFXRR
H*EXIT ACB3#*
L R R e R
*COMPUTE RETURN *
* ADDRe RESTORE *
* REGISTERS *
FHEERFAEE R R XHR
.

Xe oo o 00

XRERFLHFHXFRRRRE

* RETURN TO *
* CALLING *
* SEGMENT *

3 3 3 I 3 3 K I 3 X XK X

I/0

REQUEST CAN BE FROM

COMPILER PHASE OR FROM
CBJECT PROGRAM REQUEST
FILTERED THROUGH IBCOM

CAN BE COMPILER
PHASE OR OBJECT
PROGRAM (VIA IEBCOM)

FORTRAN System Director

37

...x

seses s

OTE

.
.
.
.
.
o
.
.
.
.
.
.
.
.
.
.
N
.

Chart

38

33 36 3T I NI I I I N N
¥ SD1 % AGE3 * GET INITIAL DSTAB, DSCB AND PHYSICAL *

* CEVICE ADDRESSES PLUS NUMEER OF DEVICES *
xi****i&ii*li***ii**iﬁ*****l*ii*ﬂ%*iii**i*******ﬂi*******

. * SD2 * AIB3 # SET UP TO CHECK DEVICE *
. ii“*****k*l&**i*i****li*iiﬁi***ii**i**i***&****k********
. * SDS * AJB3 * SET PROPER OPERATION CODE INTO MODEL
. i&**&**i*i&ﬁ***Q*******ﬁ*****&***il*&**i****&******l****
FHRHD] RN R .
* . NOTE =~ SD2 CAN BRANCH TO SNTPIN ROUTINE
* SVC ENTRY * .
* *
3 IR KR .
. .
. .
. .
. .
. .
. .
. .
X
RN IHC] WK RN NR . I C2 K KN RKR 93 IC TR K KN
*SIODIR ADA3%*Xeeee *S07 AKA3* *SD072 ALE3*
LR e et Dt L S B Lt BT L T T L e e L e e
* SET UP *XeooooooX¥ SET UP *x.......x* EXTRACT DATA *
* FOR 1/0 * ' FCR A DATA * PARAMETER *

* ROUTINES *
LR TR R R T]

Xe s essesssssssessesssccesssessscsne

L T R T R

S10G0 AEA2¥
PR B B B B T T
* INITIATE
THE 1/0
. COMMAND .
396 3 3 M IR IR
.
.
.
.
.
.
oXe
Gl #.
o ¥
WAIT NOW
“x. o*
%, oF
* YES
.
.
.

.
X
T TR T T TR TR
*
WAIT UNTIL
INTERRUPT

L T Y
.

EEE RS

*
*
*
*
*

Xe oo

K] IR NN KX
*SNTPIN AFA3% 400
B D it i il
* PROCESS *Xeo
* 1/0 *
* INTERRUPTS *
LRI IR R R T T
.
.

ceescscscsvsoce

22.

x.......x

.

OPERATION *
*Q***il*&****li*i

Xeoooo >

D2 KRN KR

*FROM REGISTERS *
LR T T T

*ﬂli***&***i***i**ii&i**i*******l***l**h&l****i*

*}i*i&*
*

SD74 AMB3# * SD741 * ANB2 * INSERT ANY FORTRAN PRINT

e D et Bt T R * * CHARACTER IN MODEL

* SET UP *Xee -X 3% # *

* FCR A PRINT * * sD742 * AOBB * SET UP FORTRAN PRINT CONTROL

* CPERATION RACTER FOR PRINTB FUNCTICN #*

*
LR e T

LI L

#SETMD AHB3#
e i—;-& i-* *-*

SET
*FOR A SET MODE *

* OPERATION *
LER R TR S R IR L]

X KNG KRN R
* *
RETURN *

LR R I T TN

KD KKK

De s sosecesoscscscscscscsessosssssssssccsene

CHA
i*i***{&*i*****i***&***&i**ﬁ**ﬂi***‘& LR
* SD743 % APB3 * SET UP FORTRAN PRINT CONTROL %

* * CHARACTER FOR PRINTA FUNCTION %
&*h******i&*li**&ﬂ*******i**iﬂ***i*il**i**
* SETMD * AHB3 * SET UP FOR SET MODE OPERATION *
R e L

SRETRY AQA3
HmH ot K W Nk W N
cee e X¥ RETRY ¥eae
’ TAPE ERROR *RETRY
PROCEDURE *
ui**{*&*ﬁ«&ﬁ&ai**
«NC RETRY
ecescsscecse
.
.
.
o RRHNE PN KRN NR
o %SERP ARA1%*
R L T Dt et
* INITIATE *, . .
*ERRCR RECOVERY “ERROR .
os e X PROCEDURES #* .
. L T] .
. «NGC .
. « ERROR .
. .
. . NOTE -
. .
. .
. .
X X
HHRKCDHKINNINR KR R TN NN
* * * ENABLE *
* RETURN * * ERROR *
* * * WAIT *
L I e] L e

Overall Logic-I/O Routine

GO TO INITIALIZE
CURRENT OPERATION
AFTER CHECKING R&-
SULTS OF PREVIOUS
OVERLAPPED OPERA-
TIONs PROVIDING NO
ERRORS EXIST

R 22 23

XAA ¥

% p3%
x *
*

ENTER FROM

.
e IPL ONLY
.

X

3% 33 3B T K I X
* *
* ACCESS *
* SYSTEM TAPE #*
*DEVICE ADDRESS *
* *
*

3836 3636 3 36 3 3 I I3 3 3 H XX
.

FEREFCIHRKHHHENRS
* ESTABELISH *
* SYSTEM TAPE #
*DEVICE ADDR AS
DATA SET REFER-
* ENCE NCe. C *
FRREEERRRRHRRHRS
.

Xe oo o0

HEXRRRDIHAARE AR HRS
* CLEAR *
* LOWER STORAGE *
* AND GENERAL *
* REGISTERS *
* *

*

3436 36 36 3636 36 9 3 3 3 3 3 H XX

Xe o o0 00

HEARRFEIRRARRXXHRR
SET UP PROGRAM,
*MACHINE CHECK, *
AND SUPERVISOR #
*PROGRAM STATUS *
* WORDS *
HERERXRKRR R RRRRR
.

Xe oo o0

N TR XN RNN
* SET INDICATOR *
* IN COMMUNICA- *
* TIONS AREA TO #*
* INDICATE FSD *
* IS IN CONTROL *
33 36 3 63 3 I 3 3 36 3 3 XXX

.

.

X
XRHRR
*AB *
* B2%*

Chart AA. DINT Routine

FORTRAN System Director

39

*#¥#%# FROM DINT ROUTINE

*AB * INITIALLYe. SUBSE-

* B2*% QUENT ENTRIES OCCUR

* % FCR PHASE LOAD REQUESTS

Xeo o6

W3 3% R B2 W KK E XK NK
* *

SET REAC OF *
PHASE ADDRESS *
TO 4000 *

K ok e K

*
38 3 I I K I N X XK N
.

Xes oo e

% % 3% C2 ¥ I K MW 3 K¢
3*

*
SET READ DATA *
SET REFERENCE *
NUMBER TO 0 #*
*

3*

*

33 3 36 3¢ 3 3 6 I I 3 XX XX %
.
.

* %k %

.
.
eXeeooecoocce

.
eXe .

b2
o 1S

*o PUNCH
*s BUSY
*

ke o
NO

Xe oo oo %

HRREREDE R HAREREAX
* SET A SUFFI- #
* CIENT RECORD *
* BYTE COUNT *
ASSCCIATED WITH®¥
*THE PHASE READ *
LR EET 2T SR 2T S22
.

Xe oo oo

3 3% % 3 3 X2 6 3 3 X3 X KN

* *

READ
PHASE INTO
* STORAGE *
REXEEERRRIRNH
-

Xe oo oo

HREHG2H R XHRE AR R
* ERANCH TO *
* PHASE JUST *

*

LOADEC
3% 3 36 I K I3 XK

Chart AB. LDPH Routine

40

3% %
®*AB *
* B4

* %

FROM EDITOR
LOAD REQUEST

Xe o o X

KB G KKK RN AR
3*

SET READ OF
PHASE ADDRESS
TO 12000

* %k %

*
*
*
*
* *
36 3 3 36 3 3 3 3 I 3 KKK R
.

.

.
.

D R R R R R L R R RR R YRR

RERER
*AB *
* E4%
* %
*
« FROM LOADER
e« IBCOM LOAD
o REQUEST

X
FEXRFXRELH XX ERHERRHR
* IBCOM *
STARTING
* AT 4000 *

3363 % 3% 3 363X K
.

Xo oo oo

3636 3 3 [4 3 % % 3 K I K¢
* *

* OBTAIN
*OBJECT PROGRAM
* ADDRESS

* ok ok %k

¥ 36 36 3 3 I I I I 3 K N KX
.

Xe oo oo

EEEARGAXNRXERRNR
* BRANCH *
* TO OBJECT *
* PROGRAM *
FRERRERERERRRRNR

R L 2 23

*AC * FROM FSD I/0 ROUTINE

* B3% AFTER THE REQUESTED

* OPERATION IS FULFILLED -
*

*

.
.
.

EXIT X
HEEERXBIRRE XX NRE
* *
* COMPUTE *
* RETURN *
* ADDRESS *
* *

3 36 3 3 3 3E 3 3 36 3 I KX KR

Xo oo s

33 3636 3 C 396 363 3 M HIHN

* RES
* REGI
* SA
* BY

*

*

ROUTI

3 3 3 33 3% %

TORE *
STERS *
VED *
1/0 *
NE *®
KK RE R

Xoe oo o

333 D 23NN HHN

* RETURN *
* TO CALLING *
* SEGMENT *

% 3 36 3636 3 3 36 3 3 I K ¥ H3X

Chart AC.

EXIT Routine

FORTRAN System Director

41

X
ERERR
*AJ *
* B3%

Chart AD.

42

SIODIR

EERHADREEARENHR
*

XREERATERRERRRRER
* *

* SET UP *
* SVC ENTRY *eeee X* I1/0 BASE *
* * * REGISTER *
EREHREEEXRERRRR * *
FH KRR HHERXRE R RRR

.

Xe s oo

EEERRBIRFF AR RERR
* *

GET *
INITIAL DSTAB ¥cececese
* X

*
*
* LOCATION
*
*

*
HRE RN RN R NRRRE
.

.
.
.
.
X
c3 *o
o®
o NEW
. .
o CALL o
*o .
*o o¥
NO

Xoe o oo k

EEREEDIH KRR XX RHRR
* *

GET * *
1/0 OPERATION ¥Xseeoosoo¥
* *

*
*
* FROM SvC CALL
#*
*

*
HEEEREEREERRE XA
.

Xe oo o

HEEEXEIXRERXXRERR
*SET REFERENCES
* FOR DSCB IN

*
*
#DEVICE ASSIGN- *
* MENT TABLE *
*
¥

EERERHIHEEERERRRR
* *

* SET UP
* SILI FLAG
* IN MOCEL
* *
HEREREEXREREREERR

lli*!d}*ﬁ*’**i*l*
* *
* SET UP *
* 1/0 INTERRUPT }
o NEW PSW x

ERERRERRRREERRRRR
.
.

X
EREXR
®AL *
® A2*

* *

*

SIODIR Routine

*.
*. YES

XXX *
*AD * I NN RN
* F2% -
* * -
* .
. .
X SOXT2 «Xe
HERRRF2ERRRRX AR RN F3 *q
* * ¥ *o
* * NO % CHECK *. YES
* CLEAR MODEL *Xeeeeeese*s OPERATION
* * *. TO BE %
* * *TESTED *
FREREETREF R ARRR He ¥
*
- EXRR
- * *
. *AD .
. * G3x .
. XxRE .
«Xe Xeo
G2 *. 63 *,
o ¥ *o
YES +* SIMPLE . DATA *. YES
. CONTROL X*. OPERATION
%o OPER . .
. ¥ *, o ¥
e o ¥ *o o
* * NO
.
N
.
.
SCXR X

XWX

*AG *

* B3%
* ®
*

HERXRRCHAXIRRRRRNNE
*SAVE REGISTERS ¥
* *

o« X* SAVE CALLe *
* RETURN PSW *

* *
FRERFEERNH AN TR RN
.

Xe oo o

HRXREDLEERERRRHRS
* *
SET NEW *
CALL SWITCH *
ON *

*
*

*
EEREEEX AR KRR RNR

e¥seecsncse

EXXER

AT *
* B3%
* *

*

*¥Xeoooooe
*

Form Z28-6620-0
Page Revised 1/11/66
By TNL 228-2117

EREEN
HAE *
* A2%
- x
*
I
S1060 Ve
a2 Tw. HEREEATHRERRER SRR HRREALNKERERERRE
o . * * * SET *
% DEVICE *. NO * SET CCW * * PREVIOUS CALL *
*. CHECKED % >% MODEL IN *. >% AN IT- *
. o* * RESERVE * * CHECK FLAGS * v
ERREE - ¥ . * * * WX
*AE * *e ¥ BN TN RN NN EAZ S LSS S s s dsd *AF *
* B1* * YES * D2*
* % * *
* *
S1G6G1 v S1602 . . .
HRHERD | EERERR RS . B3 B4 %
* * ¥ *g ¥ *g ¥ *q ke
* RESTORE * o* * o* *e YES ok * * *
* MODEL FROM * >%e¢ MULTIPLEX >%e MULTIPLEX _o¥%———————>%, MULTIPLEX >* G3 *
* RESERVE * *. MODE % *. CHANNEL o% *o DEVICE o% * *
* * *e o N . ETETS
BRI NI KN *e o *e oF e oF
NO T * YES
EHER
- *
* C3 *—>
* *
XN
HERRKCIHRRERERRNN
* *
* CHECK *
>% PATH STATUS *<
* (T10) *
RN
*AE * EEREERRERERERERER
* D1%
* %
*
SIGORP v s$1603 Ve
FHMNND | RN NN NNN ERRERD2H R X R HRRRNR D3 *o
* * * * ¥ *g
* * * BRING * YES o% PATH *a
* SET UP DSCB #<——————# IN CCW *< *o AVAILABLE o%
* * * MODEL * *. (CCO) o*
* * * * *e ¥
HEEEREEIEIRREREEE P T e 0%
* NO
Ve S1608
E3 * RERRRELERRERRRERN
ok *g * *
. csw *o YES * SET cCw *
%o STORED ok >* MODEL IN *
#*e (CCLl) % * RESERVE *
EERER . . * *
*AE * e o ¥ E e
* Fax * NO
* * RA 2]
* * *
1 * F4 *—>
*
! TS
v ss10 v
EREERE | REREEERERE ERXEXF2HREEREE IR
* * * * RN
* SET UP * * ISSUE * * *
* CCW AND CAW * >* START 1,0 * >* C3 *
* * * TO DEVICE *
* * * R 2
FRERAERERER RN EREXEEEIEKEER RS
P
* *
* G3 *—>
* *
EE 22
HARREGIH AR ERN G4 *,
* * o *
* SET cCw * «%* DEVICE _ #*, YES
>% MODEL IN * *4BUSY CHANNEL o¥*
* RESERVE * *.AVATLABLE.* v
* * - - R
P Ll] ®e o® *AF *
* NO * K3%
] * *
i *
v
L2 s 2l
EAF *
Ve Ve * B2
N] R H2 *e H3 *o *
* SET * ot *o o* CHAN- #o *
* BUSY AND * NO_o* *, % NEL NOT #, NO
* NOT-CHECKED ¥<—————#, ccl ¥ - OPERATIQNAL o
* FLAGS * *, ¥ *, C3) % |
* * - ¥ . o®
NI NN e ok v *o o¥
* YES RN T2
*AQ * *AF * RN
* D5* * K3% * *
* * * *® * F4 %<
* * * *
E e YES
*o
EEITENEEY WREEE SRR R NN Ja *.
*SNTPIN * * ot *
ot e * * SET BUSY * ok *. NO
* ADJUST FOR * b e > ¥ AND NOT #em> ¥4 DEVICE D e |
* RETURN OR % * CHECKED FLAGS * *. BUSY *
* WAIT * * * *e R
BN NN NN R s 22 e i R 2] *, o* HAF *
* B2®
RN EE Ll R XN * *
* * * * *
HAE Ao HAE ¥ *AE
* K2® ’ * K3% * Kax i
RN R RN
04 v S1G60S v 5160 v
HERRRK 2 K3 P22 PTT T TR A T Y
* » * - * SET UP * REERKSHERE RN NN
* ADJUST * * LEAR * * RETURN. * * *
> RETURN * >* INTERRUPT % > * > RETURN *
* LOCATION * * FLAG * * RESTORE * *
* * * * REGISTERS * HRERRERRERER R

| chart AE.

SIOGO Routine

FORTRAN System Director 43

Form 228-6620-0
Page Revised 1/11/66
By TNL 228-2117

WA DR KT KRR NR
* INTERRUPT *
* .

Lo
ENTRY *
KNI KR

XHR R
*

*

*AF *

* B2% |

%% %
SNTPN2

WHRR RGN HE NN RNRE

* *

ACCUMULATE *

SNTPIN
HEEREAZHERREREXRE
*

* ESTABLISH
> * 1/0 BASE
: REGISTERS

% %k kK ok

L e e e

¥
>¥*e

o ¥y
A4 *o
o *o
*o NO
o

INTERNAL
FLAG
. -

]
%o o i

* YES i
|
|

v
HREERBLIEEHEEEXNR EREXEDSHEERNRHENN
* *

*

* SET SAVE
DSTAB AND DSCB8 #< ENVIRONMENT

PSW_AND CSW *<
DATA *

* K K ¥

\ *
WK RHK R

X RERCIHRN IR RN RN

LR
LEE R

* REFERENCES *
* *

e L e] A IR XK

HRRBENCLENRHRHERHR
*

¥ *o *ISSUE SENSE TO * *
* *o YES *CURRENT DEVICE * FHo K Fm K K P R e
*o OPERATION % —>% CLEAR BUSY e > % POSSIBLE *
%o ENDED o% * RESET MPX * * ADJUST COUNTS *
*o o FLAGS * ROUTINE *
e o EE 22222222222 L2 ER 2122222 T2 22 X2
* NO
E2 223
* *
XAF *—>
* D2w
L2 2 2
SSCHK eVe Ve
*, HHRHIHD I RN RN R RN R Da *,
% MINOR *o * * ¥ .
YES o* INTERRUPT #*, * CLEAR * 0 % *e YES
——————————————#%, INDICATIONS %< * RETRY * *. RETRY NOW %
I *. o * INDICATIONS * . o* v
* g ¥ * *o «® LA 22 2] X
*e o T T T *AP * *AF *
* NO * A3% * ES5*
| AR * * * *
* * * *
I *AF %
] * E3%
| XX |
v eVe SGCHKD eVe v
HEARHE LRI NN KRN R E2 %o 3 *e RN RE L RN H KRR HRKERESH AR RN AR
* * ¥ *o o ¥ *o * * *SERP APB3%*
* SET MINOR * CHECK *o YES «* OPERA- *e NO * SAVE * i i e el el it
* CONDITIONS * NOW P >%o TION STILL >% RESIDUAL BYTE * > % ERROR *
* FLAG * -® *o Y - * COUNT * * RECOVERY *
* * *o ¥ *o . * * PROCEDURE *
ER 222222222222 e o *e o¥ R T2 222l E2 2222222 222222223
* NO * YES !
|
SNTPS Ve SNTP6 Ve
*o FE TR 4R TNW FS %,
¥ 1 * * SET * ¥ *o
¥ D/0R *e YES * RESULT AREA # YES o% ANY *o
D>* o ATTENTION o >%* POINTERS, IF *< * o RETURN o ¥
DI . * ERROR * *CONDITIONS *
*oTION o% * * . .
Ko o EEEEERERNEIE RN RN Ky o¥
* NO #* NO
|
[
Ve SIGORN SNTPS Ve
G2 * g 33 X G FH I NN NN NN GG W NN R GS *q
- * g * * * * o ¥ *g
YES o¥% *e NO * RESET * * * NO o* .
%, PREVIOUS - ¥ > % WAIT *< * CLEAR FLAGS *< *, PREVIOUS ¥
v *o CALL ¥ * FLAGS * * * *e CALL
XN *q * * * * *q
#AE * E2 22222222 222222 ' EE 2232222222222 *y o
* B1¥ * * YES
* * * *
* RAF *
* G3% v
EE 22 20 HREEN
*AE *
Ve * B1*
H3 *q * *
¥ . *
YES «% RESERVE *.
DEVICE -
*g ¥
* g o
*, ¥
NO
oVe Ve
LR 22 ENBR 222222 s J2 *g J3 *,
* * ¥ * g ¥ * o
* CLEAR * YES «*ANY RETURN #*. NO - ANY *e YES
* RESERVE *#L———————%, CONDITIONS o * >4 RESERVE ¥
* SWITCH * *o o *eOPERATIONG* v .
* * *q ¥ * g ¥ ERERR
EZ 22222 2222 22222 He o e o *AE *
* #* NO * K2%
’ * ®
1 *
v
3% %
*AE * |
* K2 Ve
* * K3 *o HEXERCLHRRERRRRR R
* ¥ * * W SRR N RN
YES * SET *
WAIT NOW % >% INTERNAL * > WAIT *
. . * FLAGS = * *
* g * * EE 2222222 2 22 222
e 2 I 22222222222)
V* .
. E2 22 23
| chart AF. SNTPIN Routine g
* K2%
* *

4y

HEHRR
HAG *
* B3

*

Xeo oo

3 3% 3B 3 3 3K HXAN
* *

* LOAD INITIAL
* CSTAE

* LOCATION
*
*

K % Kk

F 33 363 I 36 I N R HRF ’

Xe s oo

eXe
Cc3 *o
o* *o
YES <% LOCATION %,
ecesssceitsy PRESENT e¥Xaoe
X

*o o ¥
EX T 233 *o o ¥
*AD # He ok
* A3 * NO
* ¥ .
* .
.
.
.
X

KX HD IR HRHRHN
#* LOGICAL AND ¥
* OPERATION TO %
* GET DSTAE *
#* HEADER ELOCK *
* LOCATION *
HEEK KK AR AR RAHHRR
.

Xeo oo o0

63 HNE T HH® M HHRRH
* ¥*
* SAVE *
% HEADER BLOCK %
* LOCATION *
3 *
3636 33 56 3 3 3 363 36 X

Xe s s e 0

HRHRAEIRREH KRR HER
#* EXTRACT AND #
*SAVE NUMBER OF *

3* PHYSICAL *
* DEVICES *
* *

F6 36 3636 3 3 3 I 36 I 3 X XK
-

Xeoe oo o0

ARRERGIFH R XX NRE
3 EXTRACT
* ANC SAVE
* INITIAL DSCB
* LOCATION
*
*

% ok ok ok ok sk

B33 I3 336 33 I 3 X H X

Xe oo oo

FEEERRHIEEE KRR X HEHR
ADD 4 TO HEADER
. *BLOCK LOCATION *
* TO COETAIN *
* INITIAL DSTAB *
* LOCATICN *
Le st e e
.

Xo s s o0

HHRERJIHERR R RR R
*

*
* SAVE *
INITIAL DSTAB %*see
*
*
3*

L I I R R R R O S S I I B I I T R T I T S S S O I N R I N R I S R R R A N R R R I R R A SR S S Y

L ® LOCATION
*

I RN

Chart AG. SD1 Routine

FORTRAN System Director 45

SETMDA

eeecscccsccccssccn,

Xe s 0 oee 0000000000000 0006000000000000000

RREXRF2AXRRNREXRR
* SET UP SET *
#MCDEL MODIFIERS#*

YES

SET

#*# FOR DSCB PAT— ¥*4ccce0ceeX
*

* TERN AND TO
* CCW CHAIN *
TN NN RN AR

32

*AH *

* B3*
* *
%*

X
HXEREBIRHHRRHERRR
* SET upP *
* STANDARD *
*# FORTRAN I/0 *
* CAW *
* *
HERERRERRFERARRRR

.

.
-
-
.
.
oXe
c3 *o
¥ *o
¥ *eo
7-TRACK o¥®
%o, TAPE ¥

*e ok
Xe ok
N

Xe oo 00 X

3 363 D 3 % XR
#sD741 ANB4
LR R 2 B 2 T L 2
*SET UP PRINTER *
IMMEDIATE *
* CONTROL CHAIN *
33 363 363 I 3 I3 3 33 XX
.

Xe o oo

EERRKEIHRRXXRXHXR
* SET UP *
* IMMEDIATE *

E2 222

*AH *

* E3%
* %
*

*EJECT OPERATION#*Xeeooooe
* *

FOR 1442

* PUNCH *
HHEEEHRERRRERRRRR

.

.

.

.

.
MDB
REEERFIHERERRARER
* SET UP *
* SET MODE *

* FORTRAN 1I/0
* CAW

* *
3636 3 I3 I I3 IR FHHNR
.

Xe oo oo

336 3 3 % G 3 I XXX
* *

CLEAR
OPERATION
CODE

LERE X
* ok K %

336 36 36 336 3 6 3 I I 3 X H

Xe oo oo

XRRRFHIHERRERXRER
*

* INSERT SET
*MODE OPERATION
* CODE

* ok ok %

* *
3 36 3 3 3 3 3 36 3 3 I 36 3 36 36 % 3%
.

Xe o oo oo

XN THRRREREAR
* *
* RETURN »
* *

3 3636 36 3 I % I X 3 % XN

Chart AH. SETMD Routine

46

XY 3

*AH *

* F3*
* *
*

*Xeoeeooee
*

X KR
*AT *
* B3*
* %
*

.
.
.
X
B2 *o
o *o
o ¥ CHECK *e NO
*e OPERATION oe*eeecvesces
* ¥ X

*q o KR
He o¥ *AD *
* YES * F2%
- * %
- *
.
-
.
oXe
cz2 *e

o *.

YES o% DEVICE #.
eececsece*s CHFECKED .*
X *o YET %

KRR *o o
*AF * *e o
* C3* * NO
* x -
*® .
.
.
.
X
HEEREDINRRRLRXRER
* CLEAR
*PCI/ ATTENTION
* FL

CS o

*SET WAIT CHECK

* FLAG

R I e
.

*
*
*
*
*
*

.
.

X
L2222

XAF *
* E3®

Chart AI. SD2 Routine

FORTRAN System Director

47

XRRER

*AY ¥

* B3*

*
*

.
-
.

X
AARXEARBINERRHRXERR
* *

* CLEAR *
* DATA GROUP =
* FLAGS *
* *
EE T ST 2222222222 2
.
.
.
.
.
«Xeo
c3 %,
*

o« ® .
NO +* CONTROL %,
cececces %, OPERATION o%

X *, OPCODE o ¥
HRE R *o 3 o
*AD = Xe oF
* G3* * YES

* F .
* -
-
.
.
X

3 D 3N RHE
3* *
* SET CONTROL *
* oP3 IN *
* CCw MODEL *
* *
* *

3363 I X KN X RN XRX

.
.
.
.
.
.
X
E3 *o ERERRCLEXXEXEEHER
o ¥ *o * *
CONTROL *. YES * SET CONTROL *
OPERATION e¥eceosceeX¥ oP7 IN *
*. OPCODE % * CCW MODEL *
%o T o * *
*g o I3 36 3 3 9 I 3 I X ¢
* NO .
. .
. .
. .
eXoeessessscossccscescccscce
-

EREXRF IR XERXRRR
* SET UP *
* CONTROL *
* INFORMATION *
* IN CCw *
* MODEL *
3636 3636 336 3 3 3 3 XXX H
.

.

.

X
XX XER
#AD *
* G3*

Chart AJ. SD5 Routine

48

'
222 IS LT E S
#*

* e ok Xk

*
SET *
DATA GROUP #*
FLAGS *
*
L T

|

|

|

EE RS RS R R 2L]

* MOVE BUFFER *
* ADDRESS AND *
—>% BYTE COUNT *
| * INTO MODEL *
* 3*
I 3 I I I 3 3 3 I I XX
*
* *
*AK *
* B3*
HHERE i
I
v
I3 3 C 3 NI XXX KN
SD72 ALB3
Fm e e Fm W —H— K
EXTRACT DATA *
PARAMETERS FROM
* SVC CALL *
I 36 366 I 3 3 I I3 H
;
I 3 %K H
] *AK *
\ * D3%*
EE R 2 viE R L Lt Lt * *
* SET UP * *
* WRITE *
* OPERATION *<—-———J
* CODE *
* *
36 36 36 36 3 3 36 I I 3 I W 3 X
o ¥o oVe
E2 3o E3 * o E2 22 20X S 2 2 S R 2 22 S
o ¥ *q ¥ * o *SD74 ANB3*
YES o% READ *q NO % PRINT *, YES Fam e Hm e o P Fm e N
* o OPERATION o # Lt o OPERATION >* ADJUST *
* o o ¥ *o o ¥ * FOR PRINT *
* o ¥ #* o o ¥ * OPERATION *
*e o¥ *e o KNI NN RN
* NO - * ’
I] |
I 1
i
Ve v
F3 *q FHRNRE LR TN HRRER
o ¥ * o * *
o ¥ WRITE *o YES * ADJUST *
*. OPERATION % > FOR 1442 *
*o o * PUNCH *
*o o ¥ * *
*ge o 3t 3 36 I 3 I 3 X I I XX
A NO |
> 1< l
v
EZ 2 X3
*AD *®
* H3*
* *
*
| chart AK. SD7 Routine

FORTRAN System Director

Form 728-6620-0
Page Revised 1/11/66
By TNL z28-2117

49

EE 2223
*AL *
* B3#%*

Ve
c3 *o
o* *o
NO «% POINTERS *
r———_——_*o’ SUPPLIED
-

v .
EXEER * o*
EAK * *e o
* D3% * YES

* *

*

v
HHRERDTEH R KRN HXH
* CLEAR WORK *
*REGe LOAD REG. ‘¥
* IDENTITIES OF *
* DATA POINTER *
* *

*

L e T

v
REXRFEIHHERERERXN
* OBTAIN AND *
* LOAD BYT, *
*#COUNT REGISTER *
* IDENTITY *
*
*

*
KNI R RHRRH R

v
RHHERE IR XEE NN
EXTRACT DATA
ADDRESS SPAN

* *
* *
* *
* FIND STORAGE %
* P *
* *

R e T

v
AAEREGIHEERRAENHN

*

*

*

* AREA POINTER #*
* *
*

HEEE IR KRR KRRH

v
HHHRHHTHEE KRR RN XN
* FORM POINTERS #*
* BYTE COUNT *
* AREA SET BYTE *
: COUNT IN *
*

MODEL *
R SR I LT 2

v
HIRE JTHREEREEEER
FORM POINTER TO
* DATA ADDRESS *
*AREAes SET DATA *
* ADDRESS IN *
* ODEL *
R T e X a2 T

R R
HAK *
* D3%

Chart AL. SD72 Routine

50

R
*AM *
* B3*
* *
*
sD74 Ve
I P T TR TR B3 *,
*SD742 * o ¥ *o
e e e YES o* PRINTB *,
* SET FOR * L * o OPERATION o¥%
* PRINTS8 * *o ¥
* * *, o
e YT *e o
? NO
Ve
c3 *o R C LRI RRR N
o* *o *#SD743 *
o% PRINTA %, YES Hm o Hm K K K K
*o OPERATION o %— > SET FOR *
*o ¥ * PRINTA *
*, o ¥ * *
®e o Y e st T2
* NO I
|
> < I
H3
eXe
D3 *, HRREHDL R IR HERE
HREED2NRENE XX RE ok *, *SD741 *
* * NO % GRAPHIC *. YES e e e et Sl S e
¥* RETURN D St DEVICE o ¥— >%* SET PRINTER *
* * *e o ¥ * TO FORTRAN *
) *o ok * CTL CHAR *
Ko o I RHR N
*

FHREXREIHXHEER XK

: SET PRINTER %

*

* IN MODEL *

* *

TR KKK
|

Ve
F3 *q
o ¥ *o
o ¥ *e NO
¥o PRINTER ° ¥—
*q o ¥
*q o
He o¥
* YES

HERRHGIHHRNRERXXNN
ADJUST DATA #*

CTL CHAR *

%k %k ok Xk ok K

¥*
B3I I IR N X ENRR

v
HRERHTI R KR HER
* *
* RETURN *
*

3 3 3 36 3 I I 3 I X ¥ X3k

| chart AM. SD74 Routine

|

|
CARRIAGE * l
CTL CHAR *<

HREENRFLERAXEXXXRR
SET CNSL PRTR *

* CARRIAGE *

>#* CTL CHAR *
* IN MODEL *
*

*
336363 I3 I I KK XK RHR

PARAMETERS * ’
TO OMIT *<

Form 228-6620-0
Page Revised 1/11/66
By TNL Z28-2117

FORTRAN System Director 51

Form Z228-6620-0

Page Revised 1/11/66

By TNL %28-2117

SD741
33K KB] KRR KKK
¥ SET PRINTER
* FOR FUORTRAN
* CONTROL
:CHARACTER LIST

% ok %k %k ok K

336 3 36 363 3 3 F I 3 K X H

C1 *e
*o
FORTRAN %,

D1 *.
o ¥ .
% LIST *.
%o COMPLETE
. .
¥* g o ¥
Ko o
* YES

i
|
I

HREHNE] HHRRHRIHR R
* .

*
* SET PCINTER *
L——>x% TO CTL *
* CHARACTER *
* ¥*
33 363 336 3 3 K H XX
|
v
333] F I KN
3* *
* RETURN *
¥* *

333 3 3 I I I N NH

| Chart AN.

52

CHARACTER D e EE—— 1
*

o H———

>* POINTER
*

FHHEHFHD2 W HH NN NN
#* ¥*

* INCREMENT

* ok k Xk

*
W FHERHF RN

SD7418
HERREBLHHEEERERN®
*

EXTRACT
TEST

% % % %k

13
CHARACTER

* %k ok ok ok k

LR A2 S R 22 SR R 22

& ——

XX RCLHIFRREFEXRR
* *
* SET FOR *
* 4-CCW *
* CHAIN *
* *
* *

FRRFRREERERREXRRR

P —

Ve
D4 *o
¥ *o
<% CONSOLE *.

*o PRINTER o ¥

*o SKIP %
* o o ¥
He o¥

* NO

|

|

i
3 4 I RNN
* *
* SET FOR *
* 3-ccw *
* CHAIN *
* *
* *

EE 2 2 S S 2 222 s

Ve
R e H3 *,
* * o ¥ *o
* SET UP * YES «% PRINTER %,
* CCW FOR ¥ SKIP ¥
* SKIP * *o o¥®
* * %o o*
R e s T He o¥

* NO

lr______

SD741 Routine .

v
HHEHR JIHERHERERER
*

*
* SET FOR *
> SINGLE *—
* ccw *
*

*
EE 2SS S R S RSS2

EEREHGHEHEXXEREXR
*
SET FOR

2-CCwW

*
¥* *
* *
* CHAIN *
+* *
* *

T T e
|
|
|
|

XN XHG H XX XX RXEXR
*

*
* SET UP *
* CHAINING *<—
* FLAG *
* *
2222222222222 22 23

I
v
FRHER JLEERRREXRER
*

*
>#* RETURN *
* *

33 3 3636363 I XX XN

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

RN
*AQ * *AD *
* A2% * AS*
* *® * *
* *
SD742 Ve SD743 Ve
. .
WA AL KR ¥ *a R AL R IR RRE o* *,
* * *e * * NO % *o
* RETURN * PRINTB o* * RETURN hh Gt Y PRINTA ok
* . o* * * *o o
NN KRR AN * ¥ P e T Y *a o
*o ok Ko o
* YES * YES
|
|
v v
P L
* * * *
* SET POINTER % * SET POINTER *
* TO PRINTB * * TO PRINTA *
* CHAR LIST * * CHAR LIST *
* * * *
B T T e T

v v
XX HC2H KR EH KRR XHHHCS RN XN HNN
* * * *
* RETURN * * RETURN *
* * * *
IR IR e e

| chart AO. SD742 and SD743 Routines

FORTRAN System Director 53

Form 7Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

NN
XAP *
*asx
* *
*
Ve
FERRES
ERRHADEEERRER RN o
* * NO . YES
% RETURN < %" TAPE *
* . .
PET T T T T, *. o
A *o o
*
NO
B2 *q B3 -
o *. . *.
YES %" LOAD PT ~*. NO %0 ANY .
———2% INDICATOR +*<—————%. ERROR SENSE +%<
*., SET ux . BITS %
ENT Txe o’
* YES
v
ARERECIRXEXREEERR M
S1060 AED1 KERRCTHAREEERLS
oA S Sl * *
* CLEAR * * RETURN *
* CONTROL * * *
* AREAS * WHEERER RN RERERR EERE
ER 22222 222222222 * *
* E4 *
* *
E2 22
A
.
| ves
v oVe o¥o
R REED] TN RN D3 * g HRERRD G NNENR DS * g
* CLEAR TAPE * o *, * SET * o *
% CLEAN COUNT * " FIRST *. YES % eNOT FIRST * o7 WRITE .
x AND RESET % xI" ERROR o%— >% ERROR! * >% STATUS .*
* RETRY COUNT * *. o x SwiTcH * * o
* 70 10 * *o ¥ * * *e ¥
PP e - Ny o PR Fe oF
*"No *"No
ERRE
* *
* E4 *
#* *
P
oVe v v
el Tw. 2 £3 £4
o *. * * x * ¥ *
%" THIRD #. YES * SET CAW * * RESTORE * * CLEAR *
% BACKSPACE .#——————>% FOR FORWARD * M RETRY * % TAPE CLEAN *
* o * SPACE * * COUNTS * M COUNT *
*g ¥ * * * * * *
%o ox
*"No
v v
HRRRRF | HERERERRRR F4 FS
* * * * * SET READ *
* SET caw * * SET * * INDICATION *
* FOR FIX CCW * * RETRY COUNT * * AND RETRY *
* RECOVERY * * TO0 3 * * COUNT *
* * x M * F0 10 *
EAZ AR 22) I
1
< | |
v
Ei s 2] '
* *
* J3 * v v
* * R R iR et S22 2 st] WG S W W NN AN
XN *SI10GO AED1* * *
Fm RN W N Hm N N B * SET TAPE
* CLEAR *< CLEAN COUNT
* CONTROL % To 1o

* AREAS *
g2 e

v

HREERH] RIEREERERE H3 %,
* * o* o* *,
* INDICATE * YES o% PE *o YES o% RETRY *e NO
* RETRY ol Sam * CLEAN CT %< *o COUNT o ¥
* COMPLETE * *oEAHAUSTED + * *«EXHAUSTED < %
* * *o o* *e o*
P R T T *e o® *e o¥
* NO
*xuw
* *

* 43—y
* *
HRER
]

v
v HHERHJDRRERERR AR
EAEEJ]RERRRERNR
* *

HHIRE YRR RRRE R
* SET FIX

SET CAW TO CCw *
* CLEAN CHAIN. * TO INDICATE *

Kk kK

EXTIT TR AR TR 2 2

*

* SET_CAW

> To FIX
* CHAIN

EEE TR

LR T e e e T oY

¥ *o
YES o% DscBe *o

* RETURN * . * SET RETRY >% REQUEST TRACK #*< *e READ o
* * % COUNT TO * IN ERROR * *. o
AT HNXN R RN * * * - ¥
EEE 22222 222222 22 2] FH TR RN NN *e o
*"NO
1
v v
K3 K4
* * * *
* SAVE RETRY * * SE *
* TAND TAPE < * FIX CCW *
* CLEAN COUNTS % * TO ERASE GAP ¥
* *

| Chart AP. SRETRY Routine

54

*
*
*
*
*

*
EEREREERRRERRRER

Form Z28-6620-0
Page Revised 3/15/66
By TNL Z31-5008-0

AA% Entry for a CC3
after an SIO

A4
Set Unavailable \
SEREP Code
AQ Normal Entry AQ
Bl B4
B1 B4
Clear SEREP §e| FIC
Save Area @ in PSW
o © .
Set FIA Set Return
in PSW for SXTINT
AQ
D4
DI @ ‘ D4
Set Up Return Determine D
for SXTIN Character for
Message
E3 E4
Channel G lace i YES (S:it:rsvﬁzlEP Enable PSW
Fail eck or Cl .
arvre Cntrl ChecT(n Code Flag Print Message
F2 F3 F4
Set Entry for
YES Set FID Set FIS SEREP, Entry to
in PSW in PSW EXTERN PSW,
Unit Address in
FSD Area

@ |-
NO
Wait

Channel
Data Check

Normal
Return

Clear DSCB
Error Byte,
Set Up Return
fo SRAGIN

@ Chart AQ. SERP Routine (Part 1 of 2)

FORTRAN System Director 55

Form Z28-6620-0
Page Revised 3/15/66
By TNL Z31-5008-0

@® Chart AR.

56

B2

Get Sense

Data, Set

SEREP Unit
Flag

Cc2

Equipment
Check

Intervention
Required

Command

YES

C4

Store UCB
Address for
IBCOM

E4

Set FIC
in PSW

Set Return
to IBCOM
182540
Routine

AQ
D4,

SERP Routine (Part 2 of 2)

AQ
D4

NO

This is an unconditional
branch to AQC4 during
compilation

At the beginning of any job (whether a
single job or a job within a multiple job),
the FORTRAN System Director (FSD) reads in
and gives control to the Control Card
routine. The Control Card routine reads in
control cards (also referred to as control
statements) , sets appropriate indicators in
the communications area, and determines
whether:

1. The system is to be modified.

2. BAn object program is to be executed.

3. A source program is to be compiled.

4. A combination of functions is to be
performed (e.g., compile and execute) .

Chart 02, the Control Card Routine Over-
all Iogic Diagram, indicates the entrance
to and exit from the Control Card routine
and 1is a guide to the overall functions of
the routine.

ROUTINES

The CCLASS routine (Chart AT) reads
control cards and determines the type of
function to be performed (e<ge., a
compilation) . Charts AU through AZ rep-
resent the various routines that process
the FTC, EDIT, LOAD, SET, JOB, and DATA
control cards.

CCLASS Routine: Chart AT

The CCLASS (Control Card Classification)
routine controls the processing of control
cards (also referred to as control
statements) used in conjunction with compi-
lation and execution.

ENTRANCE: The CCLASS routine receives con-
trol from the FSD.

CONSIDERATION: Any job is terminated by
either a DATA control card or an end of
data set. The DATA control card is used as
a flag by the CCLASS routine. In a compile
and execute job, there may be blank cards
between the source program and the input
data to be used during execution. In this
case, the CCLASS routine can quickly step
through the blank cards because a DATA
control card precedes any objeci-time data
cards.

CONTROL CARD ROUTINE .

For compile and execute jobs, all com-
piled source and object programs to be
executed are placed on the GO tape.

OPERATION: The operation of the CCLASS
routine is discussed in accordance with the
relative position of an input card to one
or more jobs.

Initial Entry Into CCILASS. Routine: Any
entry into the CCLASS routine prior to the
first compilation or execution immediately
causes a card to be read. The card may be
either a blank card, a control card, or the
first card of an object or source program.

The CCLASS routine ignores any blank
card and proceeds to read another card.

A control card causes the CCLASS routine
to give control to the appropriate Control
Card routine, which interprets the informa-
tion on the card and sets up the proper
directives for subsequent action.

The first card of an object program
causes the CCLASS routine to take one of
two options: (1) if the object program is
to be executed, each object program card is
written on the GO +tape, or (2) if the
object program is not to be executed, each
object program card is ignored.

The encounter of any other type of card
causes the CCLASS routine to assume the
card is the first card of a source program.
Therefore, the FSD is called to load Phase
10 and begin compilation.

Subsequent Entry Into CCLASS Routine:

After a source program has been compiled,
the FSD returns control +to the CCLASS
routine which determines if a single or
multiple job is currently specified.

For a single job, the CCLASS routine,
upon receiving control after the compila-
tion, 1looks for a DATA control card. When
a DATA control card is read, control is
given to the CCDATA routine.

If the end of data set, or a card other
than a blank card, is encountered without
finding the DATA control card, the CCLASS
routine performs the following functions.
It prints a warning message indicating that
the DATA control card is missing, simulates
the DATA control card, and then returns
control to the FSD. The FSD either termi-
nates the job or calls the FORTRAN loader,
depending on whether or not the job 1is to
be executed.

Control Card Routine 57

For a multiple job, the CCLASS routine
immediately reviews the contents of the
last card that was read to determine its
type. (The last phase has read a card that
now becomes the first card to be processed
by the CCLASS routine. This card is saved
in a buffer in the communications area,
which remains resident in main storage.)

The subsequent operation of the CCLASS
routine is similar to the operations per-
formed upon the initial entry into the
CCLASS routine.

EXIT: The CCLASS routine exits to the FSD
or to one of the control card routines.

CCJOB Routine: Chart AU

The CCJOB (Job Control Card) routine
interprets information supplied on the JOB
control card and transforms that informa-
tion into appropriate directives for the
FSD.

ENTRANCE : The CCJOB routine receives con-
trol from the CCLASS routine when a JOB
control card is encountered.

CONSIDERATIONS: The information on the JOB
control card is subsequently used by the
CCLASS routine to determine: (1) whether a
single or multiple job is specified, and
(2) the action taken following compilation.

OPERATION: The JOB control card is scanned
to determine the desired option. When an
option is determined, a corresponding indi-
cator is set in the communications area.

EXIT: When a blank field is encountered,
indicating that all specifications have
been examined, the CCJOB routine returns
control to the CCLASS routine. The CCJOB
routine may also be terminated if a speci-
fied option does not correspond with an
available option. If this occurs, an error
message is written, and control is returned
to the CCLASS routine.

CCFTC Routine: Chart AV

The CCFTC (FTC Control Card) routine
interprets information supplied on the FTC
control card and transforms that informa-
tion into directives for the FSD.

ENTRANCE: The CCFTC routine receives con-

trol from the CCLASS routine when a FTC
control card is encountered.

58

CONSIDERATION: The information in the FTC

OPERATION:

control card is used by the FSD to deter-
mine action taken during and/or following
compilation.

The FTC control card is
scanned, field by field, by the CCFTC
routine to determine any specified option
or options. Appropriate indicators are set
in the communications area for performance
of the desired functions. -

EXIT: When a blank field is encountered,
indicating that all options have been exam-
ined, the CCFTC routine returns control to
the CCIASS routine. The CCFTC routine may
also be terminated if a specified option
does not correspond with an available
option. If this occurs, an error message
is written, and control is returned to the
CCLASS routine.

CCSET Routine: Chart AW

The CCSET (SET Control Card) routine
uses information supplied on the SET con-
trol card to temporarily modify the device
assignment table in main storage. The
device assignment table is wused in the
compilation of the source program. The
device assignment table on the system tape
is not modified by this routine.

ENTRANCE: The CCSET routine receives con-
trol from the CCLASS routine when a SET
control card is encountered.)

CONSIDERATIONS: The device assignment
table in the FSD contains a list of data
set reference numbers and a list of corres-
ponding addresses of the physical devices
to which these data set reference numbers
refer. (An input/output device is ref-
erenced by a data set reference number
which in no way implies a particular
device.) A specification within the device
assignment table specifies the type of
device and its physical address.

An arbitrary I/0 configuration, under-
stood by the compiler, exists for each
installation. Unless specific changes are
to be made to this configuration, the SET
card does not have to be specified. Dif-
ferent installations have different physi-
cal addresses and therefore call for dif-
ferent changes in the device assignment
table.

The SET option, requested by a control
card at compile time, is performed only for
that job. If permanent changes in the
device assignment table are required, the
EDIT option may be used. The EDIT option
recognizes the same SET card; however, a

new system tare with an altered device
assignment table is generated.

Another SET card option, LINE NUMBER, is
used to specify a 1line 1longer than 120
characters. During compilation, a count is
kept of the numker of characters indicated
in the FORMAT statement. If the count
exceeds 120, a warning message is issued.
If a rprinter with a 132-character line is
being used, the LINE NUMBER option allows
the normal 120-character line to extend to
132 characters.

OPERATION: The CCSET routine checks the
first option field. If the field is Lklank,
a return is made in the CCLASS routine to

read the next card. If the field is not
blank, a check is made for a line count.
If the field contains a 1line count, the

number is converted to binary and placed in
the communications area. If the line count

is not specified, the data set reference
number on the card is stored, and the
device assignment table in main storage is

searched for that data set reference num-
ber. If the number is not found, the new
data set refernce number is invalid and an
error message is produced.

The next ortion field is examined. If
this field is klank, the routine returns to
the CCILASS routine to read another card.
If +the field is not blank, checks are made
for a line numker and/or data set reference
number, and the information is processed as
previously described. If the word LINE is
misspelled, the routine assumes that the
field contains a data set refernce number.
If the assumed numker is not found in the
device assignment table, +the misspelled

word 1is treated as an invalid data set
refernce number, and an error message is
produced.

EXIT: When a blank field is encountered,
indicating that all sgpecifications have
been processed, the CCSET routine returns

control to the CCLASS routine.

CCLOAD Routine: Chart AX

The CCLOAD (LOAD Control Card) routine
interprets information on the LOAD control
card and transforms that information into
directives for the CCLOAD routine.

_ENTRANCE: The CCLOAD routine receives con-
trol form the CCLASS routine when a LOAD
control card is encountered.

CONSIDERATION: The information on the LOAD
control card is scanned by the CCLOAD
routine to determine certain object-tirme

information.

Form 7Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

OPERATION: The LOAD control card is
scanned ky the CCLOAD routines to determine

any srecified option or options. Approprri-
ate indicators are set 1in the communi-
cations area to 1indicate the specifed

okject-time information.

EXIT: The CCLOAD routine passes control to

the FSD after any specified options have
kteen rrrocessed. The FSD either terminates
the job or calls the FORTRAN loader,

derending upon the condition of the GO or
NOGO flags.

CCEDIT Routine: Chart AY

The CCEDIT (EDIT Control Card) routine
allows permanent changes in certain aspects

of the system tape as contrasted to tem-
rorary alterations in system conditions
caused by the CCSET routine. The CCEDIT

routine accomplishes this by supplying user

information on altered conditicns to the
editor.
ENTRANCE: The CCEDIT routine receives con-

trol from the CCLASS routine when an
control card is encountered.

EDIT

OPERATION: The EDIT control card causes
the FORTRAN System Director to search the
existing system tape for the editor, load

the editor into main storage, and then pass
contrcl to the editor. Other than its
identification, the EDIT contrcl card is
not examined in this routine.

EXIT: The CCEDIT routine is terminated
when ccntrol is passed tc the editor.

CCUNIT Routine: Chart AY

The CCUNIT (UNITS Control Card) routine
prints out a descripticn of the device
assignwent takle indicating °‘the 1logical
unit number and its associated address.

ENTRANCE: The CCUNIT routine recéives con-
trol from the CCLASS routine when a UNITS
contrcl card is encountered.

OPERATION: The UNIT control card indicates
that a description of each of the 16 units
used is to ke printed with arprorriate
heading information. This printing occurs
each time a UNIT control card is encoun-
tered.

EXIT: The CCUNIT routine returns control
to the CCLASS routine.

Control Card Routine 59

CCDATA Routine: Chart AZ

The CCDATA (DATA Control Card)
recognizes the end of the input data set
for the compiler and determines if an
execution 1is to be performed. It prepares
directives for the CCLOAD routine or for
the FORTRAN System Director job termina-
tion, accordingly.

routine

60

ENTRANCE :

The CCDATA routine receives con-
trol from the CCLASS routine when a DATA
control card is encountered.

CONSIDERATIONS: The DATA control card

‘indicates

that there are no more cards to
ke processed by the CCLASS routine. Furth-
er, the DATA ccntrol card immediately pre-
cedes any data cards the wuser wmway have
accompanying his program.

FRREEBIHIERRE RN R
WHEN INDICATED #
*¥ SET UP INFO *
FROM CNTRL CRDS¥
#IN THE COMMUNI-*
* CATIONS AREA *
I e A

|
i
eVe
*

c3 .
o* IS *q H R C LN RN
«%* SYSTEM *o YES *FORTRAN SYSTEM *
*o TO BE @ ¥—————3#DRCTOR TO LOAD *
*e EDITED o% * EDITOR - o*
*q o® KN NN
%o oF
* NO
|
I
o Ve
D3 *o
o¥ HAVE %, HERRDLEREEHH AR
«ALL COMPILA- « NO *#FORTRAN SYSTEM *
*¢ TIONS BEEN o¢¥————————>#DRCTOR TO LOAD *
*o COMPLETED. * #PH10 OF COMPLER¥*
*q o ¥ R
e o
* YES
oVe
E3 *o
% IS * o HHEHELF R RE R HX
«* OBJECT *o YES *FORTRAN SYSTEM *
*¢ PROGRAM TO o¥#——————>%¥DRCTOR TO LOAD *
*e¢ BE EXE~- o#% * LOADER *
#oCUTED * L e e T
Hy o
* NO

v
EREAFIHREXRXXHX
FORTRAN SYSTEM #
* DRCTOR TO *
#* TERMINATE JOB #
LR e e s

Chart 02. Control Card Overall Logic Diagram

Ccontrol Card Routine 61

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

XXHER

v
HERHEAL H R HERN
* *

* *
* INITIALIZE *
* *
* *
PEPP

|

i

1

I

Ve

81 *o
«*IS THIS#*,
«*FIRST ENTRY¥*.
TO LA
ROUTINE o%

.
*o

%
¥ HAS
*e TIMER BEEN
*o STOPPED .
*

-V
D1
*
* 1S THIS
*e A SINGLE

L
*
*, ¥

* *
* E1 ¥—>
* %

*xxx
v
L
* READ *
A
* CARD *

IR RRRRRERR

e* 1S CARD %,
*o OBJECT DECK
*e4 CARD o

* *

YES

v
HRRRIH)RR RIE NN
WRITE WARNING
MESSAGE -
DATA CONTROL
*CARD MISSING *

*

AN N

v
2222
*AB *
* B1*

IN FORTRAN
Y M
DIRECTOR

| chart AT. ccLa

62

Pree
* P
* B2 *—>
* *
*xxx
R SRS SRR RS RS s L

READ *

A
CARD *

FHIH KR NHHK R

KR C2H KKK
* COMPUTE

* AND PRINT
>% COMPILATION
* T

* ok kK

*
P I I

o* IS *o

CARD *+ YES

A CONTROL

*o4 CARD ¥ *
*o *

G2 *a
*o
. IS CARD *. YES

0BJECT DECK
*o CARD o
*

o E—

*e ok

v

v
L e T
WRITE WARNING

* MESSAGE —

DATA CONTROL
*CARD MISSING *

IR NI H
*
*
* v
HHE R
*AZ *
* C3%
* *
EHER *
*
E222)
o¥o
G3 *o

o* IS %,
+ *PROGRAM TO *. NO
>*BE EXECUTED IF *——
#NO COMPILE *
*.ERROR. ¥
Ko o¥
* YES

v

H2:
WRITE MESSAGE -
* *

BEGIN
* COMPILATION *

HRHIEKRRRNER

|
*rxE
t_ * *
>*AB ¥

¥ S *o
«¥PROGRAM TO *., NO
L—>%BE EXECUTED IF ¥—

FHHEE K 2K IR RR KRN
* WRITE *
CARD ON
* GO TAPE *

FHEHHKHER KK
{

SS Routine

H3
WRITE CARD ON
GO TAPE

AND MAKE
* RECORD *

*

OF IT
HHHREERREERR

<

v
EHRN

EXEE

*RRE
* *
* A4
* *
*wxE
v
HHHEEHALHIHEHHEHRER
* PRINT *
THE
* CARD *
L et
BRANCH ACCORDING TO
TYPE OF CARD
v
[CARD. TYPE * CHART i
*
lFTC CONTROL CARD * AVA1l
EDIT CONTROL CARD * AYB3
LOAD CONTROL CARD * AXA2
SET CONTROL CARD * AWB2
JOB CONTROL CARD * AUA2
DATA CONTROL CARD * AZB3
UNITS CONTROL CARD * AYBS
.lNVALlD CONTROL CARD * ES OF THIS CHART

*xR®
*HR
i

v
XK HESHK NN HIR R E
WRITE ERROR

ERRR
* *

* D2 ¥*eoceeX¥e

*
XA

Chart

LA S 23
®AU *
* A2%
* ®
*

.
.
.
X
ER 222 VISR S22 2L)
* *
* EXAMINE *
* FIRST OPTION %
* FIELD *
*
ERE R 2222 R 2222223
.

Xe oo

EERREB2ERRHEE AR RE
RESET ALL INDI-#
CATCRSs ASSOCI-¥%
®* ATED WITH JCE *
* CONTROL CARC, *
#TC ASSUMED CONC#
EARERERENXREE XX NR

.
.
.
.
.
.
eXe
c2 *o
¥ *o
o 1s *o YES ASSUMED
#*eCPTION FIELD «%*ceocscoe CONDITIONS
%o BLANK o% X PREVAIL
*g ¥ R
e o *AT *
* NO * E2%
o * *
. *
.
.
.
X
D2 ERREADIRERERRIRES
o* . * *
o® NOGO *o YES * SET INDICATOR *
OPTION e¥ocessseeX® TO PREVENT
*#oSPECIFIED <% * EXECUTION *
. - *
*o o¥ HRREEAEREERERNRR
* NO
.
.
.
. -
«Xe

HERXRCIRXAEERRERS
* *

* SET INDICATOR *
*

F NO COMPILE
R

*e o ¥ * RORS
*e o HERERERERERERRRER
* NO
.
.
.
-
.
oXe
F2 *o FERRRFIRRRRERRNER
o *q * *
o ¥ GOGO *o YES * SET INDICATOR *
*o OPTI e*eeoseceeX¥FOR UNQUAL IFIED*ccecccccccccccccs
eSPECIFIED. * EXECUTION *
*, ¥ * *
*e o ERAXARREERRERERER
*
.
.
.
-
-
eXe
G2 *o FREEXGIRRAERNERER
o*
«¥* SINGLE * SET INDICATOR *
*e JoB * FOR *oo
*e

* SINGLE JOB *
* *

RN REENE TN NR R

H2 *q

EERRAHIHRRR RN
¥ *, *

«% MULTIPLE *, YES
. JoBe

*
* SET INDICATOR *

*, ¥
*, o - * *
*e ¥ REEARERRERRRRARRS

NO

Xe oo oo %

HEEERR JORRRRRERERRE
WRITE ERROR
* MESSAGE- *
INVALID
* CONTROL *

EEREEER AR NE
.
.

«X* FOR EXECUTION ¥*.ee
* I *

* ACCESS
e*oseseeseeX* FOR MULTIPLE *eseeeeceeX® NEXT OPTION
* Joe * * FIELD

#oees00csccccsccscce

eXessesssssane

Xo o000 00000 X0 0000000000 0e X 000000000

EXRERHYGERRERER RS
*

R T

*
EREERRERRAREERRRR
.

.
-
.
.
oXeo
Ja *e
o ¥ *, EXER
e* IS OPTION *. NO * *
*o FIELD e*eceeX* D2 *
*o BLANK %
. o® RN
Ko o¥
« YES

eeccecsccscssscscecssscsscsecscssscsscscccssscocconeXe

AU. CCJOB Routine

XEEER
EAT *
* B2%
* *

Control Card Routine

63

Rebdotiabed
*AV *
* Ale
. %

Xo o

HERERA LR AR R B
* *
* EXAMINE *
* FIRST OPTION *
* FIELD *
*
*

P I YT T T

oXe
c1 *o
o* *e
o* 1s *. YES
#¢OPTION FIELD e¥*ccevccoe ASSUMED
o BLANK o% X CONDITIONS
*. o Frere PREVAIL pree
e o* *AT * * *
*°No iy P * D& *
. % » *
. P
e oXe
01 "%, ARRERD2EE RN NN pa’ Te, EERNEDSHREERRRRER
o *. » » - *.

o DECK *a YES * SET INDICATOR # o%* MACHINE *, YES #* STORE_MACHINE #*
ceX¥g OPTILO! e¥oeeeseeeX¥® FOR PUNCHING ¥.0cecvccccccccccns *o e*ecossncee X¥ *
- ‘oiPEClF[EE" :OF 0BJECT DECK : . *02PECIF|ED.* :CO”“UN[CAT[ONS »
. . . . o *
M Cxe o FETTT TR : P ERARRERRERANNN RN

e *+"No : » .
* * . . .
* D1 * . . .
* * . . .
e N . :

x . X

1’ x. ARRRREDHRRERE NN AR : EERERREQRAEREERE RN
o* *, * * - WRITE ERROR
«* NODECK *o YES # SET INDICATOR #* . MESSAGE~-
*o OPTION TO PREVENT *eeevessscccsscceXe INVALID
#+SPECIFIED. * NG * . * CONTROL *
*e ¥ #0F OBJECT DECK * . RD
*o ow ERRARNREERRREAANRE . EEREARRRREEEE
*"No . .
. . .
. . <
. . X
. . Exwan
. . *AT #
oXe . * 2w
17 e, ARRRRERRRAAARERRR . %
* * * .
o* AP *e YES * SET INDICATOR # .
*o OPTION e®eeescseeX® FOR PRINTING ¥eesecscsccccssscXe
‘ofPEClF[EE-‘ :CF STORAGE MAP * .
Cxe et RAREERRRARAREERR :
* NO .
. .
. M
: .
oXe

G1 *o
o *e
o NOMAP %,
*._ OPTIOl
*.SPECIFIED. *
. o

*o

LIST *o

#. OPTION
'.iPEClFIEE.*

efescessaeX®
*

e¥esssscaeX® T

FARRRG2ERRARERRNR

» *

YES * SET INDICATOR *
TO PREVENT

NTING OF

R1
STORAGE MAP
EIT R PR Rt

HREERH2ERERRRAN RN
» *
YES * SET INDICATOR *

0 Pl
#SCURCE_PROGRAM
* LISTING *

*eeeeeescccsscsceeX
*

UCE *eeeesssessscsseaXe
*

.

.

sees

*e o% EETE T T e e Y
* NO
oXe X
J1 . w. ERABEJOHRERARRE AR ERRREJTHERRRRERAE
o *. * » * -
o* NOLIST *. YES # SET INDICATOR * * ACCESS *
OPTION eeX* TO PREVENT *o eseeX® NEXT OPTION *X
#eSPECIFIED. * * LISTING OF % x % FIELD *
‘.. ‘.* #SOURCE PRCGRAM * - * *
£ : .
. . .
oXe :
K1 EEERRKQERHAAERN AN . K3 #,
» * .

o* N
o* JOB *o

Chart AV.

64

STORE JOB *
M|

ERRRRRREREARRNR R

CCFTC Routine

x* NAME I *.
#COMMUNICATIONS *
»* AR *

o *e *nnn
% 1s *+ NO * *
%#4OPTION FIELD o%
*o BLANK .

e

3 3 3 3¢

*

¥ D2 HeeeeXi, COUNT
* *

EES 2]

HHEHHRF] KRR HRHRXRR
WRITE ERROR
*® MESSAGE - *
INVALID
* CONTROL *

CARD
KRR R X

Chart AW.

*

Xeoooocooie

363 % X H
HAW #
% B2*
**

Xe oo

33 XA B2 K KRN HN
* 3*

* EXAMINE

* FIRST OPTION
* FIELD

*
*

*
*
#*
*
*

33 363 I3 3 3 3 X R

o ¥ Is
*.CPTION FIELD
e BLANK o%
*eo .

-
o LINE *,
#eSPECIFIED«#*

*

- .
E N
NO

Xe oo oo %

336 3 3 36 £ 2 9 3 38 3 3 3 3 3¢ 3
3* *
#ACCESS DATA SET*
* REFERENCE *
* NUMBE R *
3* *
363 3 3 36 6 I 36 I 3 36 % ¢ A K
.

Xe oo oo

eXe
F2 *e
e* NQOo #o
NC o#% IN DEVICE #*,
ASSIGNMENT %
%*e TABLE %

Xe oo oo ¥

G2 N NN RN
* ENTER NUMBER, 3
*AND ASSOCIATED *
* INFORMATION
* CN SET CARD, *
* IN TABLE *
36 363 3 I3 I I I I X XX

CCSET Routine

YES

X XK E
*AT
* B2

e¥ooseseoeX¥

*ooes0000eXit
*

*
3*
*

FI D TR NK
* *

* STORE LINE *
COUNT 1IN *
#*COMMUNICATIONS :
*

A
KNI IR KRR
.

Mo o e 0 8000060000600 08000 00 0L L C e e

FXRHRGINIHARHEXIR
* *

* ACCESS
NEXT OPTION

FIELD
*

*
*
*
*
3 I I ENRF

o ¥ I
*¢OPTICN F
te BLANK o%

*

*

3R

¥e NO
IELD o%eoeeX¥ D2
*

3% ¥

*
3*
3*

Control Card Routine

65

3 3 3% %
3* *

3 3 % %
FAX H*
* A%
* ¥
*

.

.

.

X
LRSSV VESE RS SRS EE]
3 *
* EXAMINE *
* FIRST OFTION *
* FIELC *
* 3t
33 36 36 3 363 I I I 3 3 K 33

.

Xe oo o0

A KB K, KRR KA AK
RESET ALL INDI-
#CATCRSy ASSOCI-X
*ATEC WITH LOAD *
CONTROL CARC,
#TC ASSUMEC CCNC#
I I T S T T

Xeooo oo

*. YES

*o CPTION FIELD e%ececccee
X

*e BLANK o%

.
.
.
.
.

*o
% DOES *. YES

3 33 %
*AZ

* (3

* ¥
3*

3t
3*
#*

M HD TR N E RN R
* SET INDICATOR *
*# FOR LOACER TO =

* D2 *....X* FIELD CCNTA[N.*.-......X*PRINT ADDRESSES*eeesececceccccccee

{***

Chart AX.

66

. o*
e o ¥
*eo o

* NO

Xe oo o

.
E2 *o
o

*,

.* DOES *. YES

*eFIELD CONTAIN<¥eeeecssoXXFROM PRNTNG THEXeoeeosecenccseasX
3

*s NO MAP o ¥
* o ¥
He o ¥

* NO

Xe o000

o ¥

*o .

DOES YES
.FIELD CgNTAIN.*.--..-..X*

%, CA o¥
*e o
*e o

NO

Xe o o 0 0 ¥

HFH KR I NN RHH
WRITE ERROR
* MESSAGE- *
INVALID
* CONTRCL *
CARD
HRRRERRRRHARR
.
.
.

X
XX RN
XAZ *
* C3%

* #

*

CCLOAD Routine

ES *e YES
#oFIELD CCONTAINe¥*eeooooosX®
PE *

*OF SUBROUTINES *
* AS LOADED *
L2 2 iy e s

WM UE TR RN
* SET INDICATOR *
#TO PREVENT LDR *

* ADDRESSES OF
* SUBROUTINES %
R e R e ey

3636 33t 3 336 3 3 3 36 3 3 3 3¢ 3

SET INDICATOR #*
FOR LOADER TO *
GET OBJECT
* PROGRAM FROM *
*

*
*

TAPE *
F I I K NN ®

HHHRRGIRRR XN
* SET INDICATOR *
* FOR LOADER TO *
GET OBJECT
* PROGRAM FRCM *
* CARC READER ¥
22 e e s

HoeeeeecsescccceececX

Feaoeeese X
*

X6 6 8 0060060000000 00000s0s00000000008000

*****Gq* 36 3 I 3 3¢ KX
*

M ACCESS *
NEXT OPTION *
FIELD *

*

3*

*
36 36 3 3 36 3 3 3 I 36 I X KX

Xe oo o0

oXe
Ha *o

o ¥ *e %% %
o 1s *e NC 3* *
¥eOPTION FIELD e¥eeeoeX¥ D2 *
¥ BLANK o% * *

* o e

*e o
YES

N

Xe o %

HEEER
*AZ *
* C3%

FHERR
*AY *
* B3*

HERRADIHRHHRHXF R
CALL FSD TO
SEARCH SYSTEM
TAPE FOR
EDITOR

Kk Kk kK
K ok ok %k ok %k

I 336 3 I 3 X XK

l

v
HEHER
*AB *
* B1*

* %

*

GIVE CONTROL TO
FSD TO LOAD THE
EDITOR

e
XAY *
* BS5*

*
< e K
*

3636 3 3 3 35 3 3 ¥ 3¢ X XK
* *

* PRINT *
* HEADING *
* ¥*
* *
* *

36 3 I 3 33 39 XK H KX

|
|
|
> |
|
v
333 % 3 C 5K XX HHH
* EXAMINE *
* UNIT TABLE *
* FOR DEVICE *
* AND ADDRESS *
3* *
3* *

33 % XN X

P

FRFERRFEDSER XX HRERXHR

SET uP
* PRINT BUFFER *
AND PRINT
* LINE *

RN R R RK
eVe
*o

ES
«¥ HAVE %,
NO o%* ALL *o

%o UNITS BEEN %
* ¢ PROCESSED.*
*o o
%y oF

* YES

|

1

v
HXEER

HAT *
* B2%*

| Chart AY. CCEDIT and CCUNIT Routines

Form 7228-6620-0
Page Revised 1/11/66
By TNL Z28-2117

Control Card Routine 67

3 3% ¥ % 3
*AZ *

s
3 3 3 % 3 B 3 3 33 3 % ¢ K

PRINT THE
* CONTENTS OF *
THE DATA
* CONTROL *
CARD
333 3 I XN AR
3 3¢ * ’
*AZ * '
* C3% Ve
* * c3 *o
* o ¥ * .

l ¥ Is *e NO
># ¢ PROGRAM TO BE ¢ ¥——

¥eEAECUTED o%
*o .
e o
* YES

o ¥q Ve
LR 2R SR S S S 2 D2 *o D3 *o

WRITE MESSAGE- *o o
* EXECUTION * COMPILE *, NO o

ABORTED DUE TO <—— . ERROR o ¥ OPTION o ¥
* ERROR(S) * *oe EXISTS % *eSPECIFIED«*

*, o ¥ *o ok
HHEHHXRHERIXER *y ok

* NO
|

GOGO

MR >%

* % %
I
IN

* %k

v
¥ 3 3 33 I £ 33 3 3 I3 9 3 KK kR
WRITE END
* OF DATA SET *
ON GO TAPE,

* iF *
APPLICABLE
EZ X T X 22 XL 2R 2

¥ 33 3%

|
v
I WK 3R HH K
REWIND
* GO TAPE, *
IF
* APPLICABLE #*
KRR RRRH R
|

v
R KK G H K NH IR HR
ACCESS
* LOADER *
ON
* SYSTEM *

336 3 3 3 3 3 K33 X

[S —

K HH TR KX HHH AR
*WRITE MESSAGE- *
BEGIN
* EXECUTION *

3 3 3 3 36 9 363 X XXX

v
EE 220
*AB *
* Bl#

* %

*

GIVE CONTROL TO

FSD TO LOAD THE
LOADER

Chart AZ. CCDATA Routine

68

3% 3 3% 3 3 C 4 3 K% HH

* REWIND *
SYSTEM
* TAPE *

—_—>

I WK H KA

|
|
|
i
i
KDL R HKRE KRR
*WRITE MESSAGE- *
END OF
* JOB *
R T]
|
|
|
v
X
*AB *
% B1%*

* 3
*

GIVE CONTROL TO

FSD TO TERMIN-
ATE THE J0B

Phase

10

29

PART 3: COMPILATION

Source programs written in the IBM
System/360 Basic Programming Support
FORTRAN IV language are compiled by the
segments on the system tape that constitute
the Basic Programming Support FORTRAN com-
piler.

The FORTRAN compiler analyzes the source
program statements and transforms them into
an object program compatible to IBM
System/360. In addition, if any source
program errors exist, the FORTRAN compiler
produces appropriate messages. At the
user's option, a complete listing of the
source program is produced and/or an object
deck is punched.

The compiler segments consist of the two
control segments discussed in Part 2 and
the seven phases (10, 12, 14, 15, 20, 25,
and 30) to be discussed in this part of the
manual.

Part 3: Compilation 69

PHASE 10

Phase 10 converts FORTRAN source state-
ments into input for subsequent phases of
the Basic Programming Support FORTRAN com-
piler. This input consists of intermediate
text, the dictionary, overflow table,
COMMON text, and EQUIVALENCE text.

Chart 03, the Phase 10 Overall Logic
Diagram, indicates the entrance to and exit
from Phase 10 and is a guide to the overall
functions of the phase. ‘

Intermediate text provides a format that
can be easily converted to machine language
instructions. This conversion requires
coded information about variables, con-
stants, arrays, statement numbers, in-line
functions, and subscripts. This coded
information, derived from the source state-
ments, is contained in the dictionary and
overflow table and referenced within the
intermediate text.

The COMMON text is a table of variables
which are assigned to the COMMON area by
the source program in COMMON statements.
The EQUIVALENCE text is a table of
EQUIVALENCE groups assigned by EQUIVALENCE
statements. The COMMON and EQUIVALENCE
text contain references to the dictionary.

i Each FORTRAN statement is classified as
» either a keyword statement, arithmetic
; statement function, or arithmetic state-
: mente.

The first symbol in the FORTRAN state-
ment is checked against a list of keywords
contained in the dictionary. If this sym-
bol is in the dictiomary, control is passed
to a subroutine whose address is in the
dictionary with the keyword. The keyword
subroutine makes entries to the intermedi-
ate text to indicate that this statement
requires special processing.

After these entries have been made,
control is passed to either an arithmetic
subroutine which processes arithmetic
expressions or a subroutine which gets the
next source statement.

If the FORTRAN statement does not begin
with a keyword, Phase 10 determines whether
the
ment function. If it does, control passes
to a subroutine which makes special entries
to the intermediate text and dictionary for
that statement function. Control is
returned to the arithmetic subroutine which
processes the arithmetic expression in the
statement.

70

statement defines an arithmetic state-

If the FORTRAN statement neither begins
with a keyword nor defines an arithmetic
statement function, it is an arithmetic
statement. Control is passed directly to
the arithmetic subroutine that makes the
necessary entries for an arithmetic state-
ment to the intermediate text, dictiomary,
and overflow table.

The errors checked in Phase 10 are only
flagged in the intermediate text. No error
messages are transmitted to the operator
during Phase 10.

CHAINING

The technique used by the FORTRAN com-
piler to arrange and retrieve items entered
in the dictionary and overflow table is
called chaining. Items are chained so less
time 1is required to locate the necessary
information. :

A chain 1is composed of a number of
related entries. Each entry consists of an
item and its related fields. One specific
field within each entry points to some
related entry, but not necessarily to the
one that is physically adjacent in storage
(See Figure 15).

(2) |3 [] (5) | (6)
AB | C |DC | EFG[HIJ
9 [7] 68

(0 1(8) (9
NO [POR|[X

()]
ENTRY A
POINTER | 3

Figure 15. Example of Chaining

The lower line in Figure 15 is a pointer
to the next entry in the chain. For
example, entries 1, 3, and 9; 2, 4, and 7;
and 5, 6, and 8 form separate chains. The
common characteristic of these chains is
that each item in the specific chain is
composed of the same number of characters.
Items can be grouped and entered on a
separate chain by any characteristic (e.g.,
alphabet, length, or number) that would
divide the table. Division of a long chain
into several smaller chains saves time that
would be used to search one long chain.

AT

! The thumb index, which contains the
iaddresses of the first entry for each

S

&

%chaln, is directly related to the charac-
teristic that separates items into chains.
?There is an entry in the thumb index for
feach characteristic that defines a separate
hain. By first determining the charac-

eristic of an item, that item is found or
“placed in the proper chain by use of the
;thumb index.

DICTIONARY

y contains names, con-
ta set reference numbers. A
of alphabetic and numeric

characters, the first of which must be
alphabetic. A name can be any of the
ﬂfo}%gylngw\ﬁ oy SO P sove: ST

1. Variable. In the statement:

R R

ALPHA=BETA+GAMMA-2.0-X123X

the variables ALPHA, BETA, GAMMA,
X123X are names.

and

2. Keyword. In the statement:

ek RN
DIMENSION A (10,5)
the keyword DIMENSION is a name.

3. Array., In the precedlng statement, A
is -the name of the array.

4. In-line function. 1In the following

statement:

A=ABS (B)

the in-line function ABS is a name. -
In the statement:
REWIND J
J is entered into the dictionary as a
variable name, not as a data set reference
number.
In the statement:
REWIND 3
3 is a data set reference number. The
compiler distinguishes a data set reference
number from an integer constant by the
context in which it is used. For example,
in the statement:
I=1I-3

3 is an integer constant because it is used
in an arithmetic expression.

Operation

The dictionary is organized as a series
gﬁ 15 chains and a thumb index. Each
taddress in the thumb index points to the
jbeginning of a different chain. There are
%11 chains organized on the basis of name
élength. For example, all names with a
f{length of one Binary Coded Decimal (BCD)
/character are placed in the first chain,
tall names with a length of two BCD charac-
iters in the second chain, and so on.

% Keywords and in-line functions are names
%and the dictionary includes them as perman-
‘ent residents of their respective chains.
gKeywords and in-line functions are present
fwhen the dictionary is first established in
-main storage. Names assigned by the user
are placed in their respective dictionary
chains as the source program is processed
by Phase 10.

Chains 7 through 11 are reserved for
keywords that range in 1length from 7
through 11 characters, (e.g., FUNCTION,
DIMENSION, EQUIVALENCE, etc.). No wuser

name is placed in these chains.

The four remaining chains in the dic-
*tlonary are used for real, integer, and
fdouble precision constants and data set
:reference numbers; each has its own chain.

The search for a constant "or data set
reference number entry in the dictionary is
accomplished by determining what the symbol
is. If the symbol is a constant, Phase 10
determines the mode (real, integer, or
double precision) and finds the proper
address in the thumb index. This address
directs Phase 10 to the beginning of the
correct chain. If the symbol is a data set
reference number, the address in the thumb
index takes the compiler to the data set
reference number chain. After the correct
chain is determined, the compiler can fol-
low the chain addresses in the dlctlonary
to search for the correct entry.

DICTIONARY ENTRY:
contains from five to
address and size
Figure 16).

Each dictionary entry
seven fields. The
fields are optional (see

r v T T T T 1
|Chain|Usage|Mode Type|Image|Address|Size |
| | | | | |

2 | 1 |4 |8 | n | 2 |2 |

|

|

|bytes|byte |bits|bits|bytes|bytes |bytes

L L L1 1. i 4 J
4
In-line
Function

Code

Figure 16. Dictionary Entry Format

Phase 10 71

Chain:

During Phase 10 this field contains

the address of the next entry in the chain.

The value 0001 in this field indicates
last entry in the chain.
chain, a search is made to see if there

the
By following the
is

a dictionary entry for the current item.

If no dictionary entry

is made, one is

assembled for this item and appended to the
proper chain.

An

illustration of chaining in the dic-

in-line function names are the
first entries in their respective chains
and precede names assigned by the user. . In
the chain for 1length 2, the keywords IF,
GO, and DO precede any entry of names
assigned by the user. The thumb index for
the length 2 chain points to the entry for
IF. The chain address for the IF entry
points to the entry for GO.

words and

tionary is shown in Figure 17. All key-
THUMB INDEX DICTIONARY
r r T T T 1
— address of X address of |usage, mode, type|IF|address of}
b r—J »| GO |for IF | |IF routinel
address of IF L T L —— 1
i i
|address of END|}— r T T 1
t { |address of |usage, mode, type|GO|address of|
| . | DO |for GO | |GO routine|
' . | L 1 1 L J
| . | —
% ll r 1 T T 1
| address of | |address of |usage, mode, type|DO|address of|
| EQUIVALENCE I XY |for DO | |DO routinej
} ‘J' L L 1 4 d
|address of | > .
| 123.625 | .
L J .
' r T T T 1
| 0001|usage, mode, type|EQUIVALENCE |address of |
> |for EQUIVALENCE | | EQUIVALENCE |
| | | | routine |
L L L L J
r T T 1
|address of |usage, mode, type|XY|
—> 72 |for XY 1 1
L 4 L d
1
r T T 1
| 0001}usage, mode, typel|X |
> |for X | |
L. 4 J
r . T T 1
|address of |usage, mode, type|123.625]
o Jnext real |for 123.625 | |
“|constant | | |
L 1 i J
]
r T T T L 1
|address of |usage, mode, type|ZZ|address of | |
»|next name |for ZZ (array) | |subscript |size of}
|of length 2| | |information|array |
L L . L L L d
Figure 17. Dictionary and Thumb Index Format

72

Usage: The usage field indicates charac-
teristics of the symbol. Usage is dis-
cussed later in this section.

Mode: The mode field contains a hexadeci-
mal character denoting integer, real, or
double precision mode. The codes for these
modes are:

5 : integer
6 : double precision .
7 : real
e: The type field contains a hexadeci-
mal character denoting a constant, array,

function, or variable. Refer to Figure 25
for the code for these items. The mode and
type codes are contained in one byte and
used together in most cases.

Image: The image field is the BCD card
image of the symbol. It ranges in length
from 1 through 11 characters.

Address: This optional field contains the
address of a subroutine if the symbol is a
keyword. It may also be a pointer to the

dimension entry in the overflow table if
the symbol is an array. If the symbol is
an in-line function, the first byte of the
address field contains the code for the
particular in-line function. The second
byte of the address field is not entered
for in-line functions.

e s A A T i |
'8ize: This optional field is used only for
 arrays and contains the size, in bytes, of!
an array. This size is found by multiply-:

ing the dimensions of the array by the:
length, in bytes, of each item. The length:
is 4 for real or integer mode and 8 for.
{double precision mode. . RR—— |

The fields in a dictionary entry contain
the mode/type, address, and size associated
with a symbol, plus the symbol itself.
Sstill, if the compiler is to produce
machine language programs, other informa-
tion is necessary.

The usage field contains a bit code to
indicate characteristics of each item to
the compiler. (See Figure 18).

v R)) 1
Usagel		
Field	Condition	Bit
Bits		Status
" t 1		
	Mode not defined	0
O	Mode has been defined	1
pm—mt $ {		
	Type not defined	0
1	Type has been defined	1
L 1 [4		
L} T T a		
	variable not in COMMON	0
2	variable is in COMMON	1
[} 1 3		
v T T 1		
	Variable not equated	0
3	variable is equated	1
t t + 4		
4	Not used in Phase 10	
bt ¢ {		
5	Root Indicator for Equatej	1
I 1 + d		
] 1] T 1		
	No Double Precision	0
6	Double Precision	1
bt } {		
	Punch ESD Card	1
L L i 4

Figure 18. Format of Usage Field

Bit 0 indicates the mode of a symbol has
been defined. The mode of a symbol is
defined only when:

1. The name is mentioned in an
mode definition statement.

2. The name is entered for the first time
into the intermediate text.

explicit

Any time a variable is used in a FORTRAN
statement, its mode is determined and a
mode code inserted in the dictionary. If
the mode has not been defined, it may
change. The mode cannot be redefined if
bit O has been set to 1. When the symbol
is encountered again, its entry is found in
the dictionary and the mode bit is checked.
Assume the following statements occur in
sequence:

REAL A, B, C,

INTEGER I, J, A

In the first statement, A is explicitly
defined as a real symbol. In its dictiona-
ry entry, the mode field contains the code
for real. Bit 0 in the usage field is set
to 1, indicating that the mode has been
defined. The second statement attempts to
redefine A as an integer. The mode bit
(bit 0) is again tested to determine if the
mode has been defined previously. Because
it has been defined, an error condition is
noted.

Bit 1 indicates whether the symbol type
has been defined. Type is defined when:

Phase 10 73

An array is defined by a DIMENSION
statement.

2. The names in COMMON or explicit speci-
fication statements are dimensioned.

3. A name is included in an EXTERNAL
statement. ,

4. A subprogram name is defined in a §
SUBROUTINE or FUNCTION statement; the j
type for dummy variables in these
statements is not defined.

5 A variable is entered for the first .

time in the intermediate text.

Assume the following
sequence:

X = A(I,B)

XYZ = A

In the first statement, A is defined as
the name of a FUNCTION subprogram. If this
is the first time A is encountered in the
program, the code for a FUNCTION subprogram
is inserted in the type field of its
dictionary entry. At the same time, bit 1

is set to 1 indicating that the type of A
has been defined. The second statement
indicates that A is a variable. Because
bit 1 is set to 1, Phase 10 does not

attempt to redefine A, but merely uses the
type code that was established in the first
statement. An error condition does exist
because the program attempts to use A as
both a FUNCTION subprogram name and a
variable. The error condition, however,
will not be noted until Phase 15.

Bit 2 indicates whether the variable is
in the COMMON area. This bit is required
for Phase 12 when storage is - allocated.

Bits 3, 5, and 6 are not set during
Phase 10. They are set and used by Phase
12 when EQUIVALENCE and COMMON statements
are processed. Bit 6, the double precision
bit, is set only for equated variables.
The function and operation of these bits is
explained in Phase 12. .

Bit 7 is set to 1 by Phase 10 for
symbols used as in-line functions or exter-
nal references. If bit 7 is set to 1 and
the type code denotes an external symbol,
an ESD card is punched in Phase 12. ESD
cards are not punched for in-line func-
tions.

OVERFLOW TABLE

The overflow table produced by Phase 10
contains dimension, subscript, and state-
ment number information.

74

statements occur in}j

Operation

& The overflow table is constructed with
' the same chaining technique as the dic-
tionary. The overflow table is composed of
11 chains. Three chains are reserved for
array information; the first chain contains
all arrays with one dimension, the second
with two dimensions, and the third with
three dimensions. Three additional chains
are reserved for subscripted variables; the
first chain contains information for all
variables with one subscript, the second
{ with two subscripts, and the third with
% three subscripts. L

; The last five chains contain statement
: number information. All statement numbers
7 ending in 0 and 1 are contained in the
i first chain. The remaining chains contain
+ statement numbers ending in 2 and 3, 4 and
5, 6 and 7, and 8 and 9, respectively.

Dimension Information

The format for these entries, (see Fig-
ure 19) is different from the dictionary
format. The general form for defining 1-,
2- and 3-dimensional arrays is:

ARRAY (D1)
ARRAY (D1,D2)
ARRAY (D1,D2,D3)

where D1, D2, and D3 are integer constants.

The dimension information for 1-,

and 3-dimensional arrays is:

2-,

T
|Chain 1 |Length
L

T
2 |Length

L

e e

r 1
|Chain D1*Length|
L 4

r 1] L] L) T 1
|Chain | 3 |Length |D1*Length|D1*D2*Length|
L L L i L]

Format of Dimension Information
in Overflow Table

Figure 19.

Every entry made in the overflow table
for dimension information has a chain field
with the same function as the chain field
in the dictionary. It links the entries
with the chain. The second field in a
dimension entry contains the number of
dimensions in that array. A 1-dimensional
array has the number 1 in this field. The
third field contains the 1length of each
element in the array. If the entries in an
array are double precision, this field
contains the mnumber 8 because a double

precision number is
the array is real or integer, this field
contains the number 4. These three fields
are the only entries for 1-dimensional
arrays, but are entered for all arrays.

exactly 8 bytes. If

For 2- and 3-dimensional arrays, another
field is added. D1 represents the first
dimension. The product, D1*Length, is an
indexing factor used in the later phases of
the compiler and in the object program.
The use of this factor is explained in
Appendix C. If a real array is defined
with the statement:

DIMENSION A (20,10)

this field contains the product
80 (4%x20 = 80) . The length of a real number
is U4; the first dimension is 20.

If the array is 3-dimensional, an addi-
tional field, D1*D2*Length is added. This
field is another indexing factor used in
later compiler phases and the object pro-

Dictionary Entry for Array

gram. If the array is A (20, 10, 5) and is
again composed of real numbers, this field
contains the number 800 since D2 represents
the second dimension.

When a DIMENSION or explicit specifi-
cation statement that defines an array is
read from the source'deck, Phase 10 makes
entries to both the dictionary and the
overflow table. The name of the array is
entered in the dictionary along with a
pointer to an entry in the overflow table.
The size of the array is entered and the
type code is set to represent an array or a
dummy array.

Assume the name ARRAY is defined as real
and the statement:

DIMENSION ARRAY (4,3,2)
is read. Phase 10 makes entries in the

dictionary and overflow table, as illus-
trated in Figure 20.

Chain Usage Mode/Type Symbol Pointer Size
2 1 1 5 2 2
bytes byte byte bytes bytes bytes
01000000/ real array ARRAY 96
\ ' A 4
size of array
type is
fixed
address of dimension
information in
overflow table
Dimension Entry in Overflow Table
Chain | 3 | 4 | 16 | 48 |
4 4 \
number of
dimensions
Length
D1*Length
D1*D2*Length
Figure 20. Entries to Dictionary and Overflow Table

Phase 10 75

Subscript Information

The second type of information entered
in the overflow table is subscript entries
for subscripted variables (see Figure 21).
Each field is two bytes in length. These
subscript variables can be in any one of
the following forms, for 1-, 2-, and
3-dimensional variables, respectively.

VAR (C1#V1+J 1)
VAR (C1#V1+J1,C2%V2+J2) .
VAR (C1#V1+J1,C2%V2+J2,C3%V3+J3)

In the general form above, Ci1, C2, C3,
J1, J2, and J3 are integer comnstants; V1,
V2, and V3 are integer variables. VAR is
any array defined either by a DIMENSION,
COMMON, or explicit mode specification
statement.

The entries in the overflow table bear a
resemblance to the format in a subscript.

r T T -
[Chain [C1 |p (V1)
L L 4

S |

T T

lc2 |pv2) |

1 L J

r
|Chain |C1 |p (V1)
L

- T T T T T T]
Chain !c1 !p(V1) |c2 !p(VZ) 1C3 ILp(V3) ,'

Figure 21. Format of Subscript Information

The symbols, p(1l), p(v2), and p(V3)
represent pointers to the integer varia-
bles, V1, V2, and V3, which are entered in
the dictionary. The offset, a constant
indexing factor used to find the correct
element in an array for a particular sub-
script expression, is computed using the
integer constants J1, J2, and J3 and is
placed in text. (Refer to Appendix C for
an understanding of Array Displacement Cal-
culation.) These constants are not entered
in the dictionary or the overflow table.

Assume the subscripted variable, ARRAY
(2,2%1I-1,J) 1is encountered in a source
statement. Furthermore, assume that the
names ARRAY, I, and J have already been
entered in the dictionary, and ARRAY is
defined as DIMENSION ARRAY (4,3,2). For
the subscripted variable ARRAY (2,2*I-1,J),
the following entry (see Figure 22) is made
to the overflow table in Phase 10.

76

r

[Qhain

o o |2 |pm@m |1

lp @] |
y W\

No variable in
1st subscript

Constant that multiplies
variable in 2d subscript

|Address of dictionary entry for
integer variable in 2d subscript

jConstant that multiplies integer
|variables in 3d subscript |

Address of dictionary entry for
integer variable in 3d subscript

b

Figure 22. Overflow Table Entry

Only subscripts that contain at least
one integer variable in a subscript param-
eter are entered in the overflow table. No
integer variable is used to compute the
first subscript parameter; consequently,
the entries referring to the first sub- "
script parameter in the overflow table are
both zero. Notice that the names for the
integer variables in the second and third
subscript parameters are not included, but
the addresses of their dictionary entries
are inserted in the entry. If the sub-
scripted variable is ARRAY (2,1,1), the
indexing is completely taken care of by the
offset and no entry is made to the overflow
table.

Statement Number Information

The third type of entry made to the
overflow table is for statement numbers.
Any statement number encountered in the
source statements is entered in the over-
flow table. The format of the entry is:

Chain Usage Packed Statement Number

3 bytes

T
!
[
|
|
L

| 2 bytes| 1 byte
L

TR S—
R S

The statement number is obtained from
the source statement and its Extended
Binary Coded Decimal Interchange Code
(EBCDIC) format 1is changed to the packed
decimal format. A search is made of the
proper chain. The first time the statement
number is encountered, an entry is made in
the overflow table and certain bits are set
in the usage field (see Figure 23). The

usage field is primarily used for error
checking in Phases 12 and 14.

1 |Statement No. referenced
1

r T

| Usage]|

|Field| Condition Bit
|Bits | Status
'.____

| |Statement No. undefined 0
| O |Statement No. defined 1
L]

1 T

| |Statement No. not referenced 0
| 1
t

T
2 |End DO
1

T

|Statement No. of specifica-
3 |tion (e.g.; DIMENSION)

1

——

+
4 |Sstatement No. of FORMAT
1

+
|Statement No. denotes DO
5 |nesting errors
4

}
6 |Not used in Phase 10
]

e el s o e i O —

i e e e mE t e e = —

+
7 |Not used in Phase 10
1o

Statement Number Information in

Figure 23.
’ Usage Field

Bits 0 and 1 denote whether the state-
ment number is defined by a statement, and

if the statement number is referenced,
respectively. The statement:

112 A=B

sets bit 0 to 1. It has no

effect on bit 1. The statement:

GO TO 112

sets bit 1 to 1.
bit 0.

It has no effect on

Bit 2 is the indicator set to define the

end of a DO 1loop. This bit is set for
error checking. GO TO, COMPUTED GO TO,
PAUSE, RETURN, STOP, IF, FORMAT, and DO

statements are not permitted to end a DO
loop. This condition is checked in Phases
10 and 14. Bit 2 is also used in later
phases to check for proper nesting of DO
loops.

Another statement number error checked
in Phase 10 is a "backward DO" (i.e., the
statement ending the DO loop is sequential-
ly in front of the statement that defines
the DO). The program would be written as
follows:

10 CONTINUE

DO 10 I=I,1000

The statement that defines the DO loop
follows the statement that is supposed to
end the loop. If Phase 10 tries to set bit
2 to 1 (denoting an END DO) and bit 0 is
set to 1 (denoting that the statement
number has been defined) an error exists.

Bit 3 is set to 1 to indicate that this
statement number defines a specification
statement.

Bit 4 indicates the statement number of
a FORMAT statement. If the statement num-
ber defines a FORMAT statement, bit 4 is
set to 1. No statement except a FORMAT
statement will set this bit to 1.

Bit 5 is set by Phase 15 to indicate DO
nesting errors.

Bits 6 and 7 are not used.

OFFSET CALCULATIONS

The offset, a constant, is computed by
Phase 10 and used as an indexing factor by
Phase 25. The offset is not entered in the
dictionary or overflow table. It is com-
puted using the following formulas:

Offset = [J1-1] *Length
Offset = [(J1-1) + (J2-1) #D1] *Length
Offset = [(J1-1) + (J2-1) *D1+ (J3-1) *D1*D2] *

Length

for one, two, and three subscripts, respec-
tively.

Length is the length of each element in
the array. If the elements of the array
are integer or real, Length equals four.
If they are double precision, Length equals
eight. Assume ARRAY is dimensioned as
ARRAY (4,3,2) and is real, therefore its
Length is four. Then, the offset computa-
tion for the subscripted variable ARRAY
(2,2#%1-1,J) is:

Offset = [(2-1) + (—1-1) *U+ (0-1) *4%3] *4
Offset = [1+ ((-2) *U4) + ((-1) ¥12)] *4
Offset = [1-8-12 *U]

Offset = [F19] * 4

Offset = -76

In the example, ARRAY (2,1,1) with ARRAY
composed of real numbers, the offset is
different even though the two subscripts
refer to the same array.

Phase 10 77

Offset = [(2-1) +(1-1) *4+ (1-1) *4*3] *4
Offset = [1+0+0] *4
Offset = 4

The offset is contained in the inter-
mediate or EQUIVALENCE text. The offset is
used then in the computation of an indexing
factor to find the correct element in the
array for a particular subscript expres-
sion.

Intermediate Text

Intermediate text is written in Phase 10
as input to the other phases of the Basic
Programming Support FORTRAN compiler. The
format for the intermediate text consists
of three fields which contain an adjective
code, a mode/type code, and a pointer to
information in the dictionary or overflow
table.

The following example illustrates the
intermediate text entry format:

[} T Ll L]
|Adjective |Mode/Type | |
| Code | Code | Pointer |
b ¢ $ {
| 1 byte | 1 byte | 2 bytes |
L 1 L J

The basic entry in the text is generally
four bytes or one word long. This format
is modified for the following special
entries:

78

1. Subscripted variables.

2. FORMAT statements which do not conform
to this basic entry and are discussed
later in this phase.

3. Array size.

4, Number of arguments.

5. STOP or PAUSE statements.

The adjective code (see Figure 24) indi-
cates the type of statement within the
intermediate text. If the first symbol in
a FORTRAN statement is a keyword, control
is given to a subroutine which processes
that statement. The keyword must be
flagged so that subsequent phases can com-
pile the correct machine language instruc-
tions. The subroutine that processes the
keyword statement moves the adjective code
for this keyword to the intermediate text.

If the first symbol does not indicate a
keyword statement, Phase 10 determines
whether this statement defines an arithmet-
ic statement function or an ordinary
FORTRAN arithmetic statement and moves the
proper adjective code to the intermediate
text. Figure 24 contains the adjective
codes and their use.

Adjective codes are also used to rep-
resent delimiters in a FORTRAN statement.
Delimiters such as:

+ - / % ** () or ,

are individually assigned a unique adjec-
tive code which denotes the type of opera-
tion to be performed.

The second byte in an intermediate text
entry is the same as the modestype code
inserted in the dictionary to describe a
symbol. The mode/type code (see Figure 25)
denotes the mode of the symbol and the
manner in which it is used.

0L °seyd

6L

*4z danb1a

9poD 2AT3IO3LpY

f T T T T T
INL | | | | |
ImNo | | | | |
i\w |0 1 2 3 [5 6 17 8 19 |A B C D E F |
N | | | |
h\ | | | |
} + t 1 + t +
0 . (1) = |* |# END |ILLEGAL|+ |- | * / ** FUNC(|
	ARGU~ MARK ['							
			MENT					
			no					
1 i + } 4 } i 1 J								
T T T T T T T T 1								
1	AOP	UNARY	saop SIZE OF	END		MvCe 1o I		
MINUS	ARRAY	MARK					QUOTE	
: + 1 : t ¥ ¥
2 IN-© |ARITH- | | |
STM |LINE |METIC 1M 3 BLANK |
FUNC |IF | |
+ t
3 1 | |
4 } [l
T T T
4 . |s | BCO | | |
+ +
5 T | LCR | S M INTEGER
1 c U U
6 |o | \ o | B L D DOUBLE PRECISION
} - M | T T I
7 IR | L P R I \ REAL
o A A A P I
8 E LCER) ‘|A R D C L D
| g | D E D T Y E SRDA°
+ + + + + + 1
9 | INTEGER |DOUBLE |REAL | COMPLEX | COMMON | EQUIVA~- | EXTER- | ABNOR- | DIMEN- | SUBROU- | |
| | | LENCE NAL MAL SION | TINE | |
| | | | | | |
+ + + : + 1 1
A FUNC- | FORMAT | END CON- |UNCONDI-|COMPUT- |BACK- |REWIND |END WRITE READ WRITE |READ DO STMNT . |
TION DO TINUE | TIONAL ED SPACE | FILE BINARY |BINARY |BCD BCD NO. |
GO TO GO TO | DEF. |
1 I [l
T T T
B END CALL |ASF, ARITH | BEGIN END |RETURN |STOP |PAUSE |ARITH |IMP ERROR |WARNING |
i |1/0 70 | | |IF DO MESS- |MESS- |
|LIST LIST | AGE AGE |
[l 1 4 Il i 4
T T T T T T
| ¢ | | | | |
| | | | | |
1 Il Il 1 il
hl T T T T
D | | | | | |
i } 1 i 1 1 }
T |l T T T T T
E |
F
1 1
© Subject to change in later phases

80

Ry ADEEN CMEa™
—_—
] R
_ o
a ADEEN UDMOVUEHAEMNA DCKHAMANY
— o]
3} NPMUNUEHAMEBERA DaAdHCMER
m ADTZEN DRMHLKMOAN
°
< SDAMHACMAM
©
o
]
g
o MPM ADSEEN MDBEUOHHOZ
EEE
Anyv
] o
&
© mm MXHMEZC @ AHAXKEN KDZUEBHHORZ
N
1] ©
e e s
~ MDD -HAH oZ MDZOEBHMOZ
° -]
© NHRLHMNEMZH RMDZUHHOZ
-]
a T - - T 7
<] 5 B
o Z
i 5 g
o n 2] VOZNHRZH
3 z 2
H ©
(=] o
—_— J— - 44 —
= UHZHECHRAA ZOMM oM
o
e c—f
(a2
n
~ £ o}
- 2]
2 g
—— -+ —— —_
M
[}
- +
[0}
-~
L o - -3
[.
° - :
B a
0=z - 48
z ©
B uo 2
© 2
2/ Q M +
L g
Ra B8 # 9
—— —_——
7z -}
k-] 1]
o/ o - N ! = N o ~ © Mmoo B
AL
7o °
ZoQmm voAM
Figure 25. Mode and Type Codes

g The third and fourth bytes in an inter-

mediate text entry constitute an address

- which points to a symbol in the dictionary
or to a statement number entry in the

Loverflow table. These bytes may also con-

ftain an integer constant (less than U4096)
of a DO statement and not the address of
its dictionary entry.

For example, a typical entry for a
FORTRAN arithmetic statement is the inter-
mediate text for this statement:

CIRCUM=2.0#%3.14159*%RADIUS

Phase 10 would write the intermediate text
shown in Figure 26.

T T L] 1
Adjective |Mode/Type | |
Code |Code | Pointer |
b + + 4
|arithmetic|real | |
|statement |variable | |
(B5) | (7R) | p (CIRCUM)
+ + :
= |real |
| constant | |
(06) | (75) ip(2.0)
+ +
* |real |
| constant |
(0C) | (75) lp (3.14159)
+ + 1
* |real | |
|variable | |
(0C) !(7A) lp(RADIUS) J
T 1 1
end mark | |internal statement |
| (16) |00 | number |
L L J
Figure 26. Format of Intermediat Text

Entries

In Figure 26, the numbers in parentheses
from the first two columns refer to the

actual adjective and modestype codes that
appear in the intermediate text. The end
mark entry indicates to other phases that

this

entry for this FORTRAN statement.

is the end of the intermediate text

The

hexadecimal characters 00 represent a blank

text entry. The items in the pointer field
point to the dictionary. An internal
statement number is assigned to each

FORTRAN statement before it is processed.

the
in Figure

217.

intermediate text entries are as shown

r T T 1
|Adjective |Mode/Type | |
|Code |Code | Pointer |
’ —+ t {
|arithmetic|real | |
|statement |variable |p (A) |
F + t {
|= 100 10000 |
1] 4
T T 1
|real | |
unary - |variable |p(B) |
4 [i
T 1) 1
| |internal statement |
{end mark |00 | number |
L L L J
Figure 27. Intermediate Text Entries for a

Unary Operation

Zeros are used to fill the second entry
because no symbol follows the equal sign.

Statement Number Entries

Statement numbers are entered in inter-
mediate text in a manner similar to entries
for a variable in a statement
10.14) . When the statement is defined by a
statement number, the statement number
entry is entered in the intermediate text
before any other entries are made for the
statement itself. The statement:

(see Figure

101 A=B

is the data used to form the intermediate
text shown in Figure 28.

r T T a
|Adjective |Mode/Type | |
|Code |Code | Pointer |
1] 4

T T 1

statement |statement | |
number | number |p (101) |
: 4 { 1
arithmetic|real | |
|statement |variable |p(d) |
¥ : {

|real | |

= |variable |p (B) |
¢ - {

| |internal statement |

end mark |00 | number |
L L 4 J

Intermediate Text Entries for
Statement Numbers

Figure 28.

If a statement number is used in a
statement itself, such as:)
DO 101 I=M,N,3

the text entries are as shown in Figure 29.

Phase 10 81

T Y 1 points to the dimension information for the
Adjective |Mode/Type | | array A. This information is necessary for
Code | Code | Pointer | processing subscripts in other phases.
4 I}
T 1
statement | |
DO number lp(101) |
+ i r T T 1
| integer | . | |Adjective |Mode/Type | |
blank | variable |p(I) | |Code |Code |Pointer |
' $ it t t {
integer | | | |real | |
= variable |p(M | |arithmetic|subscripted| |
t 4 | statement |variable ip (A) |
integer | It + + 1
’ | variable |p(N) | | SAOP 100 |Offset |
¢ ¢ { L t {
| immediate | | | p (subscript A) |p (dimension A) |
’ | constant |3 | b T + .|
H 1 |real | |
| internal statement | |1= |variable |p (B) |
|]end mark |00 number | b + + 4
L = I |real I |
Figure 29. Intermediate Text Entries for a | * | constant |p(2.0) |
DO Statement 3 + + {
| | |internal statement|
|end mark |00 | number
L 4 ‘ d

The third parameter in this DO statement
is the integer constant 3. The constant 3
is not entered in the dictionary, but is
inserted in the address field of the inter-
mediate text as the number 3. This is done
to save dictionary space and to optimize
instructions in the object program.

Subscripted Variable Entries

When a subscripted variable is used, the
format of the intermediate text entries
changes; three pointers are needed instead
of the wusual one. The second pointer
points to the subscript information for the
variable; the third points to dimension
information for the array. For example, in
the statement:

A(X1,J,K)=B*2.0

the entries shown in Flgure 30 are made to
the intermediate text.

The first line contains the pointer to
the dictionary entry for the subscripted
variable A. In the second line SAOP is a
special adjective code which is inserted in
the intermediate text to indicate to other
phases of the FORTRAN compiler that a
subscript calculation is necessary. The
pointer field in the second 1line contains
the offset.

The third line contains two pointers to
entries in the overflow table. The first
points to the subscript information for
this subscripted variable A; the second

82

Intermediate Text Entries for
Subscripted Variables

Figure 30.

If the subscripts do not contain any

variables, only the extra pointer to
DIMENSION information is included. For
example, the statement:

B=A (2,1,1)

where A is dimensioned as A (4,4,4), would

be entered in the
shown in Figure 31.

intermediate text as

r T L] 1
|Adjective |Mode/Type | |
| Code |Code | Pointer |
b -+ 4 1
|arithmetic|real | |
| statement |variable |p (B) |
F + : {
! |real | I
|= | subscripted|p (8) |
| |variable | |
L [} 4 4
r T T 1
| SAOP |00 |Offset |
F L + {
10000 |p (dimension A) |
t T - |
| | |internal statement|
|end mark |00 | number |
L L L J
Figure 31. Intermediate Text Entries for
Constant Subscripts
After the initial calculation of the

offset, no additional information is neces-
sary because the offset represents a con-
stant indexing factor. No pointer to sub-
script information is necessary because the

subscript information is used to calculate
an indexing factor for variable subscripts.

Format Entries

Another change in the format of the
intermediate text is caused by the FORMAT
statement. Phase 10 makes little change to
the FORTRAN card image of a FORMAT state-
ment. Every FORMAT statement must have a
statement number, which is converted to
intermediate text and an entry for it must
be made to the overflow table. The keyword
FORMAT is then encountered and control is
given to the keyword subroutine which proc-
esses FORMAT statements for Phase 10. This
subroutine:

1. Inserts the adjective code for a
FORMAT statement in the intermediate
text.

2. Gets the entire card image, excluding
the statement number and identifi-
cation field (columns 73 through 80),
and the EBCDIC image for that card in
the intermediate text.

3. Inserts the EBCDIC image for that card
in the intermediate text.

An end mark entry is then made with an
internal statement number in the pointer
field.

The statement:
12 FORMAT (F20.5,16)

would then produce the intermediate text
illustrated in Figure 32.

v T L}
Adjective |Mode/Type | |
Code |Code | Pointer |
[1 i
1§) 1
| statement |statement | ; |
number number |p (12) , |
+ T i
FORMAT (13 12 |
+ 1
0 |- |5 Iy
1 [[
T] 1)
I |6 h |blank |
1 L L 1
ALL, CARD COLUMNS TO COLUMN 72
L] k]
| |internal statemen
end mark |00 | number :
L 1

L m
Figure 32.

Intermediate Text Entries for a
FORMAT Statement

The FORMAT information is
characters
of the characters

held in BCD
for the intermediate text. All
on the FORMAT card,

immediately after the ' keyword FORMAT
through card column 72, are moved to inter-
mediate text.

Errors

Any errors or warnings detected in Phase
10 are flagged in the intermediate text.
The second byte in the end mark entry in
the intermediate text is reserved for this
action. If Phase 10 detects an error in a
statement, the hexadecimal 01 is inserted
in this byte. The next entry in the
intermediate text contains an error/warning
adjective code (see Figure 33) . An error
number is placed in the mode/type field by
a general error subroutine. The pointer
field contains the same internal statement
number as the end mark entry.

r T T 1

|Adjective |[Mode/Type | . |

|Code |Code | Pointer

L I 4 X

1] T T

| | |internal statement

|end mark |01 number

% 1

r T

| |error internal statement

|exrror code|number number

L. 4]

Figure 33. Intermediate Text Entries for
an Error

Internal Statement Numbers

Phase 10 assigns an internal statement
number to each FORTRAN statement as it is
read into main storage. This number, which
differs from the user statement number, is
assigned whether or not intermediate text
is written for this statement. If +the
statement is DIMENSION, REAL, INTEGER,
DOUBLE PRECISION, or EXTERNAL, no inter-
mediate text is written. However, these
statements are assigned an internal state-
ment number, and gaps may exist in the
internal statement numbers of the inter-
mediate text. Similarly, if an error
occurs, . two successive entries in the
intermediate text may have the same inter-
nal statement number.

Intermediate Text Output

The intermediate text is written omn a
tape output data set and used as input to
subsequent phases of the FORTRAN compiler.
The buffer size is computed in the Control

Phase 10 83

© Card routine. Both the dictionary and the
overflow table remain in main storage for
subsequent phases. The overflow table
begins with the highest available location
and extends down toward low addressed main
storage. The dictionary origin depends on
the size of the buffers and extends up
toward the overflow table.

COMMON and EQUIVALENCE Text

For COMMON and EQUIVALENCE statements,
Phase 10 writes another type of text which
‘remains in main storage to be processed by
iPhase 12. The following COMMON text is
.composed of two fields, each two bytes in
dength for each variable entered in the
COMMON area at object time.

r T
|2 bytes |2 bytes
L 1

b e s e el

v T
| pointers |1length
L L

The first field contains the address of
the dlctlonary entry for fhat varlable, and
the second field contains the ‘length of its
name in EBCDIC characters. For example,
the statement:

COMMON A,B,CONU4Z

would cause this COMMON text:

Pointer Length

lp @ I 1 |
- i

p (B) l 1 l
T 1

p (CON4Z) | 5 |
4 4

The length is needed to determine in
what chain the variable is entered in the
dictionary.

A FUNCTION or SUBROUTINE subprogram name
must be defined in the first card of a
FORTRAN source program. The Phase 10 sub-
routine for processing FUNCTION and SUBROU-
TINE statements is not required after the
first card is processed. The COMMON text

84y

‘three fields, each two bytes

is written in the area that would have been
occupied by this Phase 10 subroutine.

The EQUIVALENCE text is composed of
long. Every
group of equated symbols is preceded by a
header entry. The first field contains an
adjective code representing an EQUIVALENCE
statement. The second field contains
binary zeros, and the third contains the
number of equated variables.

The format for the header entry is:

r T T
|2 bytes |2 bytes |2 bytes
1 4 4
T T
iadjective | | number of
| code | 0000 |entries |
L L L J

A detail entry is made for each variable
in an EQUIVALENCE group. The first field
is a pointer to the dictionary entry for
the variable. The second field holds the
size of the variable in bytes, or the size
of the array in bytes if the variable is

dimensioned. The third field contains the
offset, if this particular variable is
subscripted, or zeros if it 1is not sub-
scripted.
The format for the detail entry is:

r L] T 1
|2 bytes |2 bytes |2 bytes |
F——- $-- t 1
|pointer |size |offset or |
| | | 0000 |
L L L J

For example, the statements:

EQUIVALENCE
EQUIVALENCE

a2,1),8(1),0, M3,2),1)

(XEM,Y, ZETA)

where A, B, C, XEM, Y,
and I are integers; and the arrays are
dimensioned as A(5,5), B(10), and M(10,5)
to produce the EQUIVALENCE text shown in
Figure 34.

and ZETA are real; M

All arrays must be defined before they
can be used in an EQUIVALENCE statement or
any other statement. The DIMENSION routine
is overlaid with the text for the
EQUIVALENCE statements.

— vl

i Entry I Entry | Reason] Entry | Reason
929] 0 | (header entry) i 3 | (mumber of entries)
P (A) 100 | (detail entry array size in bytes) E) | (offset) !
i p (B) ! 40 | (detail entry array size in bytes I 0 | (offset) j
i P (C)] 4 | (detail entry size of a real) i 0 | (mo subscript) }
29 0 | (header entry) i 2 | (number of entries)
! P (M) ! 200 | (detail entry size of array) i 80 | (offset) I
i p(I) I 4 | (detail entry size of an integer) i 0 | (no subscript) i
99 0 | (header entry) i 3 | (number of entries)
p (XEM) l 4 | (detail entry size of real) i 0 | (no subscript)
p (Y) T 4 | (detail entry size of real) i 0 | (no subscript) Ny
p (ZETA) 4 | (detail entry size of real) 1' 0 | (no subscript) j

. Figure 34. EQUIVALENCE Text

STORAGE MAP

The storage map for Phase 10 is shown in

Figure 35.

L]
|
L
T
|

COMMUNICATIONS REGION

FORTRAN System Director

ra———

I/0

PHASE 10

|
L
r
|
I

COMMON/EQUIVALENCE TEXT

OUTPUT BUFFERS
(for intermediate text)

DICTIONARY

——— ks cumn e, axlitn. ez . s, w—

f
|

e E e n

OVERFLOW TABLE

J

Dimension/Header
Routines

Variable

16 to ‘64K

K=1024

Figure 35. Storage Map for Phase 10

Entry for EQUIVALENCE Statements

SUBROUTINES

The introduction to Phase 10 has dis-
cussed the input and output in Phase 10.

Five forms of data are developed from
source statements:

1. Dictionary.

2. Overflow table.

3. Intermediate text.
4. COMMON text.

5. EQUIVALENCE text.

To develop this data, 3 types of subrou-
tines (mainline, keyword, and utility) are
used in Phase 10.

The mainline subroutines divide state-
ments into three classes: arithmetic state-
ments, keyword statements, and arithmetic
statement functions. The mainline subrou-
tines also process arithmetic expressions
and statements and define arithmetic state-
ment functions. These are covered in
charts BB through BF.

The keyword subroutines supervise the
processing of statements beginning with
FORTRAN keywords. In fact they may process
the entire keyword statement. These are
covered in charts BJ through BW.

The utility subroutines called by main-
line or keyword statements enter symbols in
the dictionary, overflow tables, and inter-
mediate text; convert numbers; call
input/output devices; process subscripts,

Phase 10 85

and end marks, etc. These subroutines are
covered in charts CB through CR.

Subroutine CLASSIFICATION: Chart BB

; Subroutine CLASSIFICATION performs the
following functions:

1. Initializes program switches to proc-
ess another statement.

2. Processes any statement number that
may define this statement.

3. Determines if this statement begins
with a keyword. If it does, gives
control to the correct keyword subrou-
tine.

4., Gives control to subroutine ARITH if
the statement does not begin with a
keyword.

ENTRANCE : Subroutine
receives control from:

CLASSIFICATION

1. Phase 10 HOUSEKEEPING subroutine.

2. Subroutine ARITH after the entire
FORTRAN statement has been processed.

3. A keyword subroutine if it has proc-

' essed the entire statement.

OPERATION: In initialization, the byte
called FUNISW is set to binary zero, 1 is
added to the internal statement number, and
the parentheses count is set to zero.

The bits in FUNISW represent the follow-

a

READ/WRITE statement
Subscripted variable
Immediate DO parameter
Literal DO parameter

IF statement

Statement number

Arithmetic statement function
I/0 unit

NoOoOUNEWN=O P

66 00 00 40 40 00 00 a0

Subroutine GETWD retrieves a new state-
ment from the buffer area. If the first
five columns contain a statement number,
the overflow table is scanned and the
address of statement number overflow table
entry is returned to CLASSIFICATION. This
address is entered in the intermediate text
along with the statement number adjective
and mode/type codes.

If the first symbol (other than any
possible statement number) is a keyword,
control is passed to the subroutine which
processes that particular keyword state-
ment. If the statement does not begin with
a keyword, control is passed to subroutine
ARITH.

86

EXIT: Subroutine CLASSIFICATION exits to:

1. Any of the various keyword subroutines
that process the statement under con-
sideration.

2. Subroutine ARITH.

3. Subroutine ERROR if an error has
detected.

been

SUBROUTINES CALLED: During execution, sub-
routine CLASSIFICATION references subrou-
tines GETWD, LABLU, CSORN, and WARNING.

Subroutine ARITH: Charts BC, BD, BE

Subroutine ARITH determines whether the
statement defines an arithmetic statement
function, and if a function is called with
the statement. ARITH makes the entries for
arithmetic expressions +to the dictionary,
intermediate text, and overflow table by
calling other subroutines.

ENTRANCE: Subroutine ARITH is entered

from:

1. Subroutine CLASSIFICATION if the
statement does not begin with a key-
word.

2. Subroutine ASF after the delimiter =
is encountered in an arithmetic state-
ment function.

3. Keyword subroutines if the keyword
statement contains an arithmetic
expression.

4. Subroutine READ/WRITE to analyze the
1/0 list.

CONSIDERATION: Subroutine ARITH is divided

ARITH Part 1 scans the
statement for symbols and delimiters and
enters the symbols in the dictionary.
ARITH Part 2 determines if there are any
subscripted variables or referenced func-
tions on the right of the = sign. ARITH
Part 3 makes the entries to the intermedi-
ate text. ARITH Part 2 and Part 3 process
the delimiters that are found by ARITH Part
1.

into three parts.

Each of the three flowcharts associated
with subroutine ARITH represents the speci-

fic functions performed by subroutine
ARITH.
EXIT: Subroutine ARITH exits to:

1. Subroutine ASF.

2. Subroutine GO TO.

3. Subroutine END MARK CHECK.

4. Subroutine ERROR if an
detected.

error is

- Subroutine ARITH Part 1

Subroutine ARITH Part 1 prepares to
insert the adjective code for an arithmetic
statement in the intermediate text. it
determines if this statement defines an
arithmetic statement function or if a sub-
scripted variable appears left of the equal
sign. ARITH Part 1 scans the statement for
symbols and delimiters.

ENTRANCE : Subroutine ARITH Part 1 is
entered from:

1. Subroutine CLASSIFICATION if the
statement does not begin with a key-
worde.

2. Subroutine ASF to process the arith-
metic expression to the right of the =
sign.

3. Subroutine subroutines
word statement contains an
expression or an I/0 List.

4., Subroutine ARITH Part .3 to
another symbol.

if this key-
arithmetic

fetch

OPERATION: The adjective code for an
arithmetic statement is moved to a buffer

by subroutine PUTX, which fills the inter-
mediate text output buffers.

An arithmetic statement function is
defined by checking the following condi-
tions:

1. The following delimiter
parenthesis.

2. The name has not been dimensioned.

3. No executable statements have been

is a 1left

processed. If these conditions are
satisfied, ARITH Part 1 calls subrou-
tine ASF.

The first entry for this statement, if
it is not defining an arithmetic statement
function, is entered in the intermediate
text using subroutine PUTX in ARITH Part 1.
ARITH Part 1 alternately scans the state-
ment using a translate and test instruction
issued by subroutines GETWD and SKPBIK.
Any symbol in the arithmetic
other than a delimiter is scanned by ARITH
Part 1 and entered in the dictionary. If
the symbol is a delimiter, control is
passed to ARITH Part 2.

CONSIDERATION: Phase 10 determines if any
executable statements have been processed
by checking the executable switch. The
switch is set on when the first executable
statement of the program is processed. It
is not set off for the remainder of the
phase.

EXIT: Subroutine ARITH Part 1 exits to:

1. Subroutine ASF, if an arithmetic

statement

statement function is defined.

2. Subroutine ERROR, if an error is
detected.

3. Subroutine ARITH Part 2 to begin proc-
essing a delimiter.

SUBROUTINES CALLED: During execution ARITH
Part 1 calls subroutines:

1. SKPBIK to get a delimiter.

2. SUBS to process a subscripted varia-
ble.

3. PUTX to make entries to the intermedi-
ate text. .

4. GETWD to access a symbol.

5. CSORN to make entries to the diction-

ary.

Subroutine ARITH Part 2

ARITH Part 2 determines if any sub-
scripted variables or referenced functions
follow the = sign and calls the appropriate
subroutine. ARITH Part 2 then gives con-
trol to the correct routine in Part 3 to
process the current delimiter.

ENTRANCE: Subroutine ARITH Part 2 is
entered from subroutine ARITH Part 1.

OPERATION: If the delimiter following the
symbol is a left parenthesis, the symbol
must either be an array or function name.
If the dictionary entry for the symbol
indicates an array, the symbol is assumed
to be a subscripted variable. Otherwise,
it is assumed to be the name of a function.

ARITH Part 2 wuses the byte placed in
register 2 by the translate and test
instruction in Part 1 to index a branch
list in order to get to the correct delimi-
ter routine in ARITH Part 3. This same
byte is inserted in the adjective code to
represent the delimiter.

CONSIDERATION: The first delimiter (not a
blank) that appears after the first varia-
ble is assumed to be the = sign. It is

. checked by subroutine ARITH.

EXIT: ARITH Part 2 exits to:
1. Subroutine ARITH Part 3 to process a
delimiter.
2. Subroutine ERROR if an error is
detected.

SUBROUTINE CALLED: During execution ARITH

Part 1 calls SUBS if a subscripted variable
is recognized.

Phase 10 87

. Subroutine ARITH Part 3

Subroutine ARITH Part 3 processes delim-
iters and makes entries to intermediate

text.

ENTRANCE : Subroutine ARITH Part 3 is
entered by subroutine ARITH Part 2.
OPERATION: If a decimal point is used as a
delimiter, the symbol must be a floating-

point constant. This subroutine must then
get and convert the number.
the

A left parenthesis increments

parentheses count.

An equal sign is usually found as the
first delimiter in an arithmetic statement
after a subscripted or nonsubscripted vari-
able. An = sign used in this manner is
merely inserted in the intermediate text in
ARITH Part 2 and is never processed by
ARITH Part 3. If the statement contains an
= sign in any other position, it is the
delimiter for an implied DO in a READ/WRITE
statement.

A right parenthesis decrements a paren-
theses count, and checks whether the count
has reached zero or become negative.

An end mark gives control to subroutine
END MARK CHECK. If the last symbol proc-
essed was a subscripted variable, control
is given directly to END MARK CHECK because
the subroutine SUBS has made all entries to
the intermediate text.

Asterisk checks whether an asterisk
immediately preceded this asterisk to sup-
ply the adjective code for exponentiation
operation.

A plus, minus checks if the + or - sign
follows another delimiter. If it does, it
is assumed to be a unary operation.

CONSIDERATIONS: In ARITH Part 3, entries
are made to the intermediate text through
the 1logical block ARIT30. If the last
variable is subscripted, no entries are
made in the subroutine ARITH for the last
variable. The subscript subroutine SUBS

makes all the intermediate text entries
necessary for the subscripted variable.

EXIT: Subroutine ARITH Part 3 exits to the
following subroutines:

1. ARITH Part 2 after all entries have
been made.
ERROR WARNING if an error is detected.
GOTO after processing the arithmetic
expression in an IF statement.
4. DO after processing an implied DO in

an.I/0 statement.

5. END MARK CHECK
detected.
ARITH Part 1 to get another symbol.

20
3'

if an end mark is
6.

SUBROUTINES CALLED: During execution sub-
routine ARITH Part 3 calls subroutines:

1. GETWD to access a number for a liter-

al.

2. CSORN to enter a decimal number in the
dictionary.

3. PUTX to make entries in the intermedi-
ate text.

Subroutine ASF: Chart BF

Subroutine ASF processes the parameters
of an arithmetic statement function defini-
tion wuntil the delimiter = is encountered.
All symbols and delimiters which follow are
processed by subroutine ARITH (see Figure
36) .
ENTRANCE: Subroutine ASF is entered from:

1. Subroutine ARITH Part 1 if it deter-
mines that the current statement

defines an arithmetic statement func-
tion.

2. Subroutine END MARK CHECK to complete
processing an arithmetic statement
function definition.

CONSIDERATIONS: An arithmetic statement

function must be defined in a user . program
before it is called in an arithmetic state-
ment.

The symbols used to define the paramet-
ers in an arithmetic statement function may

L L] L} T T

| Statement | SuM| (A,B,C) =| A+B+C+2.0|#

| | N —

| Subroutines | CLASSIFICATION | ASF | ARITH |END MARK CHECK

| that process | | |

| the statement | ARITH | | |ASF (processes end |

! | | ! |mark text entry) |
i N L L J

Figure 36.

88

Arithmetic Statement Function Processing

be used in the main program. They do not
carry the same meaning as they do in the
statement function definition. For exam-
ple:

DIMENSION A (20)

SUM (A) = (A+2. 3) #3. 14

Both statements contain the name A. In
the first statement A is defined as an
array by use of a DIMENSION statement. In
the second statement A is a dummy variable
used to define the operations on the param-
eter passed to the function SUM, when the
user calls the function SUM in a normal
arithmetic statement. For all other state-
ments in the main program, A is an array
with 20 elements. However, the mode can be
set by a specification statement.

OPERATION: Before subroutine ARITH deter-
mines that a statement defines an arithmet-
ic statement function, it sets an adjective
code to represent an arithmetic statement.
If ARITH determines that the statement is
an arithmetic statement function defini-
tion, subroutine ASF changes the adjective
code to represent an arithmetic statement
function.

Subroutine ASF searches the dictionary
for a symbol that defines a parameter to
determine if that symbol has
previously. If it has, ASF defaces the
previous entry -so that it can not be
recognized. The address of this previous
entry is saved, and the name of the param-
eter used to define the function is entered
in the dictionary.

If that symbol has not been defined
previously, it is entered in the dictionary
and the modes/type field is set to indicate
that the symbol is a dummy variable.

Subroutine END MARK CHECK returns to ASF
if the switch indicating the processing of
an arithmetic statement function definition
is set on. The switch is then turned off.
2All defaced entries are restored to their
original image using the previously stored
addresses. The original entries are then
recognized by subsequent searches of the
dictionary. The entries made for defining
the operations in the arithmetic statement
function are then defaced so subsequent
searches of the dictionary will not recog-
nize the symbols used to define parameters.

EXIT: Subroutine ASF exits to the follow-
ing subroutines:
1. ARITH Part 1 to process the statement
to the right of the = sign.
2. END MARK CHECK after the original

been defined

entries in the dictionary are re- -
stored.

3. ERROR if an error is detected.

SUBROUTINES CALLED: During its execution
subroutine ASF references subroutines:

1. CSORN to search for and make entries
in the dictionary.

2. GETWD to access symbols.

3. SKPBIK to access delimiters.

Subroutine GOTO: Chart BJ

Subroutine GOTO determines if the state-
ment 1is an unconditional or computed GOTO
statement. If the statement is an uncondi-
tional GOTO, the statement number is
entered in the intermediate text. If the
statement is a computed GOTO, the list of
statement numbers is scanned and entered in
the intermediate text and overflow table.

ENTRANCE: Subroutine GOTO receives control
from the following subroutines:

1. CLASSIFICATION.
2. ARITH Part 3 to process the statement
number for IF statements.

CONSIDERATION: A GOTO statement may begin
with either the words GO TO, or the word
GOTO. Subroutine CLASSIFICATION recognizes
either form.

OPERATION: After the keyword has been
checked, subroutine GOTO determines whether"
this statement is a computed GOTO. If the
delimiter following the letters TO is a
left parenthesis, subroutine GOTO assumes
the statement is computed GOTO. Any delim-
iter, other than a blank, between the
letters TO and the (first) statement number
is not accepted. :

A library subroutine is used by the
object program to execute a computed GOTO
statement. The first intermediate text
entry for a computed GOTO contains the
adjective code for a computed GOTO, the
type code for a library function, and the
library identification number for the com-
puted GOTO subroutine in the pointer field.

Subroutine GOTO 1is entered after the
arithmetic expression for the IF statement
is processed by subroutine ARITH to process
the 1list of statement numbers in the IF
statement. The IF switch tells subroutine
GOTO that the statement currently being
processed is an IF statement.

EXIT: Subroutine GOTO exits to the follow-
ing subroutines:

Phase 10 89

1. END MARK CHECK when the end mark is
encountered.
2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub-
routine GOTO references subroutines:

1. GETWD to access symbols in the
statement.

2. LABLU to process statement numbers.

3. PUTX to make entries to the intermedi-
ate text.

4., CSORN to make entries in the diction-

source

ary‘
5. WARNING/ERRET if a warning is detect-
ed.

Subroutine DO: Chart BK

Subroutine DO scans the DO statement and
makes entries to the intermediate text,
dictionary, and overflow table. Subroutine
DO also processes the parameters for an
implied DO in a READ/WRITE statement.

ENTRANCE : Subroutine DO receives control
from subroutines:

1. CLASSIFICATION.
2. ARITH Part 3 to process an implied DO
in an I/O list.

OPERATION: An error, a backward DO, occurs
if the statement number definition for the
end of the DO loop precedes the DO state-
ment. If statements occurred in the
FORTRAN program in the following sequence,
this condition would exist.

20 A=B

-

DO 20 I=1,10

The switches for an immediate DO param-
eter are set on and off when subroutine DO
calls CSORN (see description of subroutine
CSORN, Chart CG) .

Subroutine DO is also entered when sub-
routine ARITH is processing a READ/WRITE
statement. If an implied DO is found in a
READ/WRITE statement, subroutine DO will
process the parameters. An implied DO is
formed when a program attempts to perform
an I/O operation on a number of elements
from an array without listing all of them
in an I/0 list. For example, the statement
READ (3,1, @&(I),I=1,100) contains an
implied DO. The elements of the array A
are to be read with this I/0 statement.

EXIT: Subroutine DO exits to the following
subroutines:

90

1. END MARK CHECK when the end mark is
sensed.

2. ARITH if subroutine DO is processing
an implied DO of a READ/WRITE state-
ment.

3. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub-
routine DO references subroutines:

1. GETWD to access symbols and delimi-
ters.
2. LABTLU to process overflow
- entries for statement numbers.
3. PUTX to make entries in the intermedi-
ate text.
4. CSORN to process dictionary entries.

5. SKPBIK to access delimiters.

table

Subroutine SUBIF: Chart BL

Subroutine SUBIF enters the IF adjective
code 1in the intermediate text and gives
control to other subroutines to process the
arithmetic expression and the 1list of
statement numbers following the expression.

ENTRANCE: Subroutine SUBIF is entered from
subroutine CLASSIFICATION.

OPERATION: Subroutine SUBIF sets the IF
switch to control the processing of other
subroutines which process portions of the
IF statement. The IF switch is contained
along with other switches in the byte
called FUNISW (see CLASSIFICATION) .

Subroutine ARITH processes the arithmet-
ic expression, and subroutine GOTO process-
es the list of statement numbers.

EXIT: Subroutine SUBIF exits to:

1. Subroutine ARITH to process the arith-
metic expression in an IF statement.

2. ERROR, if an error is detected.

SUBROUTINES CALLED:
routine SUBIF calls:

During execution sub-

1. Subroutine SKPBLK to access a delimi-
ter.

2. Subroutine PUTX to make entries in the
intermediate text.

Subroutines CALL, FUNCTION/SUBRTN: Chart BM

Subroutine CALL

Subroutine CALL gets the name of the
subprogram and passes control to subroutine
ARITH to process the arguments.

ENTRANCE: Subroutine CALL is entered from
subroutine CLASSIFICATION.

OPERATION: Since the arguments in a CALL

statement may be arithmetic expressions,

subroutine CALL uses‘ subroutine ARITH to

process the parameters that are passed to

the user SUBROUTINE during the execution of

the object program.

EXIT: Subroutine CALL exits to:

1. Subroutine ARITH Part 2 to process the
arguments of a CALL statement.

2. Subroutine ERROR, if an error is
detected.

SUBROUTINES CALLED: During execution sub-
routine CALL references the following sub-
routines:

1. PUTX to enter the CALL adjective code
in the intermediate text.

2. GETWD to access the subprogram name.

3. CSORN to enter the name in the
dictionary.

Subroutine FUNCTI ON/SUBRTN

Subroutine FUNCTION/SUBRTN processes the
header cards for FUNCTION and SUBROUTINE
subprograms. It makes entries to the
intermediate text and dictionary for the
subprogram name and the parameters passed
to the subprogram.

ENTRANCE : Subroutine FUNCTION/SUBRTN is
entered from subroutines:

1. CLASSIFICATION.
2. INTEGER/REAL/DOUBLE if a statement
such as REAL FUNCTION A (B,C) is used.

OPERATION: Subroutine FUNCTION/SUBRTN is
entered at two points. The first entry
~point is used if the program defines a
SUBROUTINE. If FUNCTION/SUBRTN is entered
at this point a switch is set to indicate
that the statement is the header card for a
user SUBROUTINE. The logic flow for FUNC-
TION and a SUBROUTINE at this time become
the same. The second entry point is used
if the subprogram is FUNCTION.

A test is made to check whether this is
the first card of the source program. If
not, an error condition exists. The inter-
nal statement number must equal 1 if this
is the first card processed. TINE

The switch for a SUBROUTINE is tested in
order to enter the correct adjective code.
If the switch indicates that this is a
SUBROUTINE subprogram definition, the deli-
miter following the subprogram name is

tested. If it is an end mark, the subpro-
gram definition is valid, because a SUBROU-
TINE subprogram may have no parameters. A
FUNCTION subprogram definition is not valid
if it has no parameters.

Subroutine FUNCTION/SUBRTN scans the
list of arguments and enters them into the
dictionary and intermediate text. It uses
subroutines GETWD and CSORN. The only
valid delimiters are a comma to separate
the arguments and a right parenthesis to
conclude the scan. The type codes for
arguments in the subprogram are not entered
here; they are defined implicitly or expli-
citly in the subprogram. Since arguments
can be arrays, space is reserved in the
dictionary entries for array information.

EXIT: Subroutine FUNCTION/SUBRTN exits to
the following subroutines:

1. END MARK CHECK if an end mark is
encountered.
2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub-
routine FUNCTION/SUBRTN references subrou-
tines:

1. GETWD to access symbols in the state-
ment.

2. CSORN to make entries in the diction-
ary.

3. SKPBIK to access delimiters
statement.

4. PUTX to make entries in the intermedi-
ate text.

in the

Subroutine READ/WRITE: Chart BN

Subroutine READ/WRITE analyzes the sym-
bol representing the data set reference
number and the FORMAT statement number in a
READ/WRITE statement, and enters them in
the intermediate text, dictionary, and
overflow table. Subroutine ARITH then
processes the list in the READ/WRITE state-
ment.

ENTRANCE: Subroutine READ/WRITE receives
control from subroutine CLASSIFICATION.

OPERATION: When subroutine READ/WRITE is
entered, it assumes the read/write opera-
tion will be in BCD mode. It enters the
BCD adjective code into ADJ, and later it
determines if the operation is in BCD or
binary.

Subroutine READ/WRITE sets a switch to
indicate that this is a READ/WRITE state-
ment. This switch is tested in subroutine
ARITH Part 3 when subroutine ARITH process-
es the READ/WRITE list. It is wused in

Phase 10 91

connection with the implied DO for the
READ/WRITE statement.

Subroutine READ/WRITE does not check the
validity of the data set reference number
specified in the READ/WRITE statement. It
blindly enters it into the dictionary if it
has not already been entered, and enters
its dictionary address into the intermedi-
ate text.

Subroutine READ/WRITE determines if the
operation is BCD or binary by the manner in
which the statement is formed. The state-
ment:

READ (3, 1) HOG, TOAD , SHARK, LUNCH

is a statement instructing the object pro-
gram to read in the BCD mode, while the
statement:

READ (3) PAUL, CHUCK ,FOO

directs that the read be
mode.

in the binary

When the subroutine READ/WRITE deter-
mines that the second delimiter is a right
parenthesis instead of a comma, it changes
the BCD adjective code entered in ADJ to a
binary adjective code.

EXIT: Subroutine READ/WRITE exits to sub-
routines:

1. ERROR if an error has been detected.
2. BARITH Part 1 to begin processing the
READ/WRITE variable list.

SUBROUTINES CALLED: During execution sub-
routine READ/WRITE references the following
subroutines:

1. SKPBLK to access delimiters.

2. GETWD to access symbols in the state-
ment.

3. CSORN to enter symbols in the diction- *
ary.

4. PUTX to make entries in the intermedi-
ate text.

5. ILABLU to process the FORMAT statement
number.

Subroutine CONTINUE/RETURN, STOP/PAUSE:
Chart BO

Subroutine CONTINUE/RETURN

Subroutine CONTINUE/RETURN makes
single intermediate +text entry for
CONTINUE and RETURN statements. .

the
the

92

ENTRANCE: Subroutine CONTINUE/RETURN is
entered by subroutine CLASSIFICATION.

OPERATION: The entrance to
CONTINUE/RETURN for a CONTINUE statement
checks for a statement number. If there
was no statement number, a warning is
issued.

subroutine

A RETURN statement is used to return
control to the main program from a FUNCTION
or a SUBROUTINE subprogram. If this state-
ment is in a main program, an error condi-
tion exists. ‘

Neither +the CONTINUE nor
statement enters a pointer in intermediate
text. Both the pointer and mode/type
fields for their intermediate text entries
are set to 0.

the RETURN

EXIT: Subroutine CONTINUE/RETURN exits to
subroutine END MARK CHECK.

SUBROUTINES CALLED: During execution sub-
routine CONTINUE/RETURN references subrou-
tines GETWD, WARNING, PUTX, and SKTEM.

Subroutine STOP/PAUSE

Subroutine STOP/PAUSE enters the adjec-
tive code and any number used to identify
the halt into the intermediate text. This
number is not entered in the dictiomary.

ENTRANCE: Subroutine STOP/PAUSE is entered
from subroutine CLASSIFICATION.

There are two intermediate text entries
made for STOP and PAUSE statements. The
first entry contains the STOP or PAUSE
adjective code with zero in the entries for
the modes/type and pointer fields. If there
is a halt number , it is entered in the
pointer field of the second intermediate
text entry. If there is no halt number the
second entry will contain zeros.

EXIT: Subroutine STOP/PAUSE exits to sub-
routines:

1. END MARK CHECK.
2. ERROR if an error is detected.

SUBROUTINES CALLED: Subroutine STOP/PAUSE

calls subroutine:

1. GETWD to access symbols and delimiter.

2. PAKNUM to pack the halt number.

3. PUTX to make entries to the intermedi-
ate text.

4. SKPBIK to get the end mark.

Subroutine BKSP/REWIND/END/ENDFILE: Chart

Subroutine DIMENSION: Chart BQ

BP

Subroutine BKSP/REWIND/END/ENDFILE makes
the intermediate text and dictionary
entries for the REWIND, BACKSPACE, END, and
ENDFILE statements.

ENTRANCE: BKSP/REWIND/END/ENDFILE receives
control from subroutines:

1. CLASSIFICATION
SPACE, REWIND,
recognized.

2. END MARK CHECK if the end of data set
in the card reader is sensed and the
END card has not been read.

if the keywords BACK-
END, oxr ENDFILE are

OPERATION: The intermediate text entries
for the BACKSPACE, REWIND, END FILE, and
ENDFILE statements are the same except for
the adjective codes. The END FILE and
ENDFILE keywords mean the same. The com-
piler accepts either form. The subroutine
enters either the address of the dictionary
entry for a data set reference number or
the address of a name symbolizing the data
set reference number in the intermediate
text for the I/0 statements.

When subroutine CLASSIFICATION recog-
nizes the keyword END, it is not determined
whether this statement 1is an END or END
FILE statement. When CLASSIFICATION passes
control to this subroutine after recog-
nizing the word END, subroutine
BKSP/REWIND/END/ENDFILE checks if the next
symbol is the word FILE.

-~ If this was an END statement signifying
end of the program, subroutine
BKSP/REWIND/END/ENDFILE sets a switch to
indicate +to subroutine END MARK CHECK that
the END card has been read. When END MARK
CHECK senses an end of data set at the
input device, it gives control to
BKSP/REWIND/END/ENDFILE to set a switch
simulating that an END card has been read.

EXIT: Subroutine BKSP/REWIND/END/ENDFILE
exits to subroutines:

1. END MARK CHECK.
2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub-
routine BKSP/REWIND/END/ENDFILE references
subroutines:

1. CSORN to process entries in the
dictionary.

2. GETWD to access symbols and delimiter.

3. PUTX to make entries to the intermedi-

ate text.

ENTRANCE:

executable

EXIT TO:

Subroutine DIMENSION scans the list of
symbols for DIMENSION, COMMON, INTEGER,
REAL, and DOUBLE PRECISION statements. It
determines if variables are subscripted,
calls subroutines to process the subscript,
and changes the mode in the dictionary when
an explicit mode defines the mode of a
variable. In any one of the above state-
ments, an array may be defined and subrou-
tine DIMENSION makes entries in the over-
flow table and dictionary for the array.

Subroutine DIMENSION is entered
by subroutines:

1. CLASSIFICATION.
2. COMMON to process the list of varia-
bles placed in COMMON.
3. INTEGER/REAL/DOUBLE PRECISION to proc-
ess the list of variables.
OPERATION: A sequence error occurs if an
or EQUIVALENCE statement is
processed before the DIMENSION statement is
read.

The scan is similar to the scan used in
subroutine ARITH, but it is much simpler
because there are only three legal delimi-
ters, the comma and the 1left and right
parentheses.

A multiple switch is set to determine
the type of statement being processed. It
is set in the subroutines COMMON and
INTEGER/REAL/DOUBLE which transfer control
to subroutine DIMENSION.

Subroutine DIMENSION exits to
subroutines:

1. END MARK CHECK.

2. COMMON in order that entries
made in the COMMON text.

3. ERROR if an error is detected.

may be

SUBROUTINES CALLED: During execution sub-

routine DIMENSION references subroutines:
1. GETWD to access symbols
ters.

2. RCOMMA to skip redundant commas.

3. SKPBIK to access delimiters.

4. CSORN to process dictionary entries.
5. DIMSUB to calculate array sizes.

6. WARNING/ERRET to process warnings.

and delimi-

Subroutine EQUIVALENCE: Charts BR, BS

Subroutine EQUIVALENCE creates the
EQUIVALENCE text. The +two flow charts
associated with subroutine EQUIVALENCE rep-

Phase 10 93

resent specific functions performed by sub-

routine EQUIVALENCE. Each is discussed
separately.
ENTRANCE : Subroutine EQUIVALENCE receives

control from subroutine CLASSIFICATION.

EXIT: Subroutine EQUIVALENCE exits to sub-
routines:

1. END MARK CHECK.
2. ERROR if an error is detected.

Subroutine EQUIVALENCE Part 1

This part of subroutine EQUIVALENCE
scans the EQUIVALENCE statement, getting
the variable names and delimiters. It also
makes both header and detail entries for
the EQUIVALENCE text.

ENTRANCE: Subroutine EQUIVALENCE Part 1 is
entered by subroutines:

1. CLASSIFICATION.
2. EQUIVALENCE Part 2 when a name is
subscripted.

OPERATION: The EQUIVALENCE text is written
in the area that orginally contained sub-
routine DIMENSION. When an EQUIVALENCE
statement is processed, a switch is set to
forego the processing of any DIMENSION
statements that follow the EQUIVALENCE
statement. Subroutine DIMENSION is over-
laid by EQUIVALENCE text. This switch is
never reset during Phase 10.

The EQUIVALENCE text contains a header
entry and a detail entry for each element
in the EQUIVALENCE group. The entire group
must be scanned before the header entry is
made because it contains a count equal to
the number of variables in the EQUIVALENCE
group. After the right parenthesis defin-
ing the end of this group is encountered,
the element count is inserted in the header
entry.

EXIT: Subroutine EQUIVALENCE Part 1 exits
to subroutines:

1. END MARK CHECK.

2. ERROR if an error is detected.

3. EQUIVALENCE Part 2 to process a sub-
scripted variable.

SUBROUTINES CALLED: During execution sub-
routine EQUIVALENCE Part 1 references sub-
routines:

1. SKPBIK to access delimiters

2. GETWD to access symbols and delimiters
3. CSORN to process dictionary entries

4. WARNING/ERRET to process warnings.

924

Subroutine EQUIVALENCE Part 2

EQUIVALENCE Part 2 processes the sub-
script information for any subscripted
variable which is a member of an
EQUIVALENCE group.

ENTRANCE: Subroutine EQUIVALENCE Part 2 is
entered from subroutine EQUIVALENCE Part 1
to process a subscripted variable.

OPERATION: The offset is computed using
the numbers in the subscripted variable in
the EQUIVALENCE statement and the informa-
tion for the array entered in the overflow
table by subroutine DIMENSION.

The offset for 3-dimensional variables
is computed using the following formula:

Offset=[(J1-1) + (J2-1) D1+ (J3-1) D1*D2] *Length

where: J1, J2, and J3 are constants in the
subscripted variable A (J1, J2, J3) entered
in the EQUIVALENCE group. The constants
Length, Di*Length, and D1*#D2*Length, are
computed when the DIMENSION statement is
processed by subroutine DIMENSION and
stored in the overflow table. When
EQUIVALENCE Part 2 collects each subscript,
it subtracts 1 from each and multiplies it
by the appropriate constant in the overflow
table. The products of this multiplication
are added into an accumulator until all
subscripts for this variable are exhausted.

Valid subscripts for variables in an
EQUIVALENCE group contain no variables.
Subscripted variables may have one sub-
script for 1-, 2-, and 3-dimensioned varia-
bles, or the same number of subscripts as

there are dimensions in its DIMENSION
statement. For example, in the array
A(5,5,5, A(2,2,2) and A (32) represent the

same element.

EXIT: Subroutine EQUIVALENCE Part 2 exits

to subroutines:

1. EQUIVALENCE Part 1 to enter the sub-
scripted variable into the EQUIVALENCE
text.

2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub-
routine EQUIVALENCE Part 2 references sub-
routines:

1. GETWD to access and delimi-

symbols
i ters.
2. INTCON to convert EBCDIC numbers to
binary numbers.
3. SKPBIK to access delimiters.

Subroutine COMMON: Chart BT

The function of subroutine COMMON is to
direct the processing of COMMON statements
and to enter names in the COMMON text.

Subroutine COMMON receives con-
CLASSIFICATION or

ENTRANCE :
trol from subroutines
DIMENSION.

CONSIDERATION: Subroutine COMMON uses sub-
routine DIMENSION to do the bulk of the
processing for the COMMON statements. It
sets a program switch to indicate to sub-
routine DIMENSION that this is a COMMON
statement. After subroutine DIMENSION col-
lects the symbols, COMMON enters them in
the COMMON text. COMMON statements may be
used in place of a dimension statement to
define an array.

OPERATION: The executable switch is
checked to see if any executable statement
‘or EQUIVALENCE statement is processed. Iif
there has been an executable or EQUIVALENCE
statement processed, a sequence error is
detected.

After subroutine DIMENSION retrieves
each name in the COMMON statement from the
dictionary, control returns to subroutine
COMMON. The address of the entry in the
dictionary along with the 1length of the
name are entered in the COMMON text. The
length of the name is entered in order to
search the chain in the dictionary for the
name.

EXIT: Control is passed from subroutine
COMMON to subroutines:

1. DIMENSION to process entries in the
COMMON statement.

2. ERROR if an error is detected.

Subroutine FORMAT: Chart BU

Subroutine FORMAT enters the adjective
code for a FORMAT statement in the inter-
mediate text. Then the card image immedi-
ately beyond the word FORMAT, extending
through column 72, is moved in one byte BCD
characters to the intermediate text. If a
continuation card is required to complete
the FORMAT statement, the image from column
7 of the continuation card through column
72 is moved to the intermediate text.

ENTRANCE: Subroutine FORMAT receives
trol from subroutine CLASSIFICATION.

con-

OPERATION: Subroutine GETWD sets an end
mark in the first column beyond the 1last
non-blank character in the card. Because

subroutine FORMAT moves all the characters
beyond the word FORMAT through column 72 to
the intermediate text, the end mark set by
GETWD is blanked, and an end mark is placed
in column 73 by subroutine FCRMAT.

Subroutine CLASSIFICATION has made an
entry in the overflow table for the state-
ment number that refers to the FORMAT
statement, but it did not adjust the usage
field to indicate that this was the state-
ment number for a FORMAT statement. Sub-
routine FORMAT, using the pointer that was
supplied when the statement number was
found or entered in the overflow table,
adjusts the usage field to indicate that
this statement number refers to a FORMAT
statement.

Subroutine FORMAT then moves the image
of the FORMAT card, byte by byte, to the
intermediate text. It moves the characters
up to and including the end mark which is
placed in column 73. When the end mark is
encountered, it is moved to the intermedi-
ate text. But the output pointer is not
updated, so that if . a continuation card
were required to complete this statement,
the character in column 7 would overlay the
end mark. If there are no continuation
cards or if this is the last one, the end
mark remains in the intermediate text to
signal to other phases that it is the end
of the image of the FORMAT statement.

If there are no more continuation cards
(or if none exist) , the end of the FORMAT
statement has been reached. When entries
are made byte by byte, as in subroutine
FORMAT, there 1is a good possibility that
the entries did not stop on a full word
boundary. All other intermediate text
entries must begin on a full word boundary.
The output pointer is then adjusted to a
full word boundary to satisfy the format
for the intermediate text and the end
statement entry is made.

EXIT: Subroutine FORMAT exits to subrou-
tine END MARK CHECK, where the entry for
the end statement is made. .

SUBROUTINE CALLED: During execution, sub-

routine FORMAT references subroutines

1. PUTX to make entries to the intermedi-
ate text.

2. GET to read cards.

3. WARNING/ERRET if a warning is detect-
ed.

Subroutine EXTERNAL: Chart BV

i

Subroutine EXTERNAL scans the
placing each name on the card

card,
in the

Phase 10 95

dictionary and typing it as an extermal
symbol. It sets the appropriate bit in the
usage field of the dictionary, indicating
that an ESD card must be punched for this

symbol.

ENTRANCE: Subroutine EXTERNAL receives
control from subroutine CLASSIFICATION.

OPERATION: All external symbols must be
defined before any executable statements
are encountered. If the executable switch

is on, subroutine EXTERNAL cannot define
external symbols. All symbols entered as
- external symbols must be names, otherwise

subroutine EXTERNAL detects an error. A
constant cannot be an external symbol.

EXIT: Subroutine EXTERNAL exits to subrou-

tines:

1. END MARK CHECK when the end mark is
encountered.
2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub-
routine EXTERNAL references subroutines

1. GETWD to access symbols and delimi-
ters.

2. CSORN to enter names in the diction-
ary.

3. RCOMA to bypass redundant commas.

Subroutines INTEGER/REAL/DOUBLE: Chart BW

Subroutine INTEGER/REAL/DOUBLE sets the
mode for the statement and exits to subrou-
tines DIMENSION or FUNCTION/SUBRTN.

ENTRANCE :
receives
CATION.

Subroutine INTEGER/REAL/DOUBLE
control from subroutine CLASSIFI-

OPERATION: The mode for this statement is
inserted in a work area. Any variable that
appears later in the statement being proc-
essed is assigned the mode explicitly stat-
ed in the first mname in this statement.
The first name always is REAL, INTEGER, or
DOUBLE.

The first of two switches set in subrou-
tine INTEGER/REAL/DOUBLE indicates to sub-
routine FUNCTION/SUBRTN that it was entered
from INTEGER/REAL/DOUBLE and the mode is
explicitly defined. When subroutine
FUNCTION/SUBRTN enters the mode of the
subprogram it checks this switch to see if
an explicit mode has been defined. The
second switch is set for subroutine
DIMENSION, indicating that it was entered
from subroutine INTEGER/REAL/DOUBLE.

96

Subroutine INTEGER/REAL/DOUBLE may exit
to one of two subroutines. If +the next
symbol is the word FUNCTION, it exits to
subroutine FUNCTION/SUBRTN to define the
function that follows the word FUNCTION.
For example:

REAL FUNCTION RAF (A,B,I)

defines the function RAF as a real func-
tion. The mode and type of the parameters
are not defined until they are used in a
statement other then the header card. 1If
the next symbol is not the word FUNCTION,
control is passed to subroutine DIMENSION,
because an array may be defined explicit
mode statement. For example:

DOUBLE PRECISION A, TOAD, HERBIE (20)

defines a double precision array HERBIE
composed of 20 elements.

EXIT: Subroutine INTEGER/REAL/DOUBLE exits
to the following subroutines:

1. DIMENSION.

2. FUNCTION/SUBRTN if the name after the
specification keyword is the keyword
FUNCTION.

3. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub-

routine INTEGER/REAL/DOUBLE references sub-
routines:

1. GETWD to access
ters.
2. WARNING/ERRET to process warnings.

symbols and delimi-

Subroutine HOUSEKEEPING: Chart CB

ENTRANCE:

OPERATION:

Subroutine HOUSEKEEPING enters informa-
tion into the communication area, primes
input buffers, and sets the beginning
addresses for the dictionary and overflow
table.

Subroutine HOUSEKEEPING is
entered from the FORTRAN System Director
after the FSD has loaded Phase 10.

Subroutine HOUSEKEEPING enters
the following information:

1. Indication to FSD that Phase 10 is in
control.

2. Address of output buffer, COMMON text
area, EQUIVALENCE text area, and thumb
index.

The dictionary is located initially at
the end of the Phase 10 subroutines. Sub-
routine HOUSEKEEPING must move it to allow
storage for the intermediate text output

buffers. The size of the output buffers is
calculated from information in the communi-
cations area (supplied by the Control Card
routine) ; then, the beginning address of
the dictionary is calculated.

The resident dictionary is moved to this
location, and the addresses in the thumb
index are modified to reflect +the new
location of the dictiomnary.

Subroutine HOUSEKEEPING sets the address
of the dictionary and overflow table in
registers. It primes the input buffer by
calling the FORTRAN System Director to read
in the first two cards in the card reader

while the communications area is being
initialized.
EXIT: Subroutine HOUSEKEEPING exits to

subroutine CLASSIFICATION to process the
first source statement.

SUBROUTINES CALLED: Subroutine HOUSEKEEP-
ING references the FORTRAN System Director
to read the first two source cards.

Subroutine GETWD: Chart CC

Subroutine GETWD scans the card for
names, constants, data set reference num-
bers, and delimiters. If the end mark for
a card is sensed, GETWD reads a new card,
prints it, sees if the card is a continua-
tion card, and adjusts the pointers and
register +to process the continuation card.

ENTRANCE: The utility subroutine GETWD is
referenced by subroutines EXTERNAL,
REAL/INTEGER/DOUBLE, CLASSFICATION, ARITH,
GOTO, CONTINUE/RETURN, STOP/PAUSE,
BKSP/REWIND/END/END FILE, SUBS,
EQUIVALENCE, DO, ASF, READ/WRITE, CALL,
FUNCTION/SUBRTN, DIMENSION, DIM90, END MARK
CHECK, SKPBLK, SKTEM, FORMAT

OPERATION: When subroutine GETWD is
entered, it assumes that Phase 10 has
already started processing a card. A poin-

ter, set for the card, checks for a blank
card position. If it is blank, the pointer
is advanced. If the position is not blank,
it saves the pointer for a length calcula-
tion.

After the first non-blank character is
found, the compiler executes a translate
and test instruction. The table for this
instruction is set so the instruction stops
on any special character (including blanks)
except $. The translate and test instruc-
tion inserts the address at which it
stopped in general register 1, and the
non-zero byte in the table which caused it
to stop in general register 2. The address

in general register 1 is used to calculate
the 1length of +the symbol, and initialize
GETWD the next time it 1is entered. The
byte in general register 2 is the adjective
code for the delimiter and it is also used
to index the branch table in ARITH Part 2.

Subroutine GETWD has two return points.
The normal return is used if the length of
the symbol just scanned is greater than
zero. This implies that the symbol scanned
is a name, constant, or data set reference

number. The second return is the zero
return which is wused if the symbol has
length of zero (i.e., the translate and

test instruction stopped at the same posi-
tion at which it began). A delimiter is at
the position that the translate and test
instruction began and ended its scan.

If an end mark 1is encountered as a
delimiter, subroutine GETWD calls subrou-
tine GET to read another card. The read
area 1is double buffered (i.e., it can
process a card in one buffer, while a card
is being read into the second buffer). If
an end mark is encountered in buffer 1,
GETWD calls subroutine GET to read a card
into buffer 1, and prepare the pointers to
process the card in buffer 2. At the same
time the card is being read into buffer 1,
the card in buffer 2 is printed. If this
card was a comments card, subroutine GETWD
calls subroutine GET to read a card into
buffer 2 when the card reader is available.

While the card that is about to be
processed 1is being printed, it is scanned
four bytes at a time for the first signifi-
cant (non-blank) character from column 73
toward column 1. The end mark is placed in
the column immediately to the right of that
significant character. ’

Subroutine GETWD checks the card being
processed. If it is a continuation card,
subroutine GETWD sets the pointers and
registers so the calling subroutines never
know a continuation card has been read.
Register 2, which receives the function
bytes of the translate and test instruc-
tion, is set to blank and the pointer that
is stored after each translate and test
instruction is set to point to column 6 of
the card. The card is then processed from
the point at which GETWD was entered.

EXIT: Subroutine GETWD exits to the sub-

routine that called it.

SUBROUTINES CALLED: During execution sub-

routine GETWD references subroutines:

1. GET to read a card.
2. PRINT to print a card image.

Phase 10 97

Subroutines SKPBLK, SKTEM: Chart CD

Subroutine SKPBLK

When a subroutine expects to find a
delimiter, it «calls subroutine SKPBLK to
skip blanks until it finds another delimi-
ter. If a name, constant, or data set
reference number is encountered' before a
delimiter, an error message is entered in
the intermediate text.

ENTRANCE: The utility subroutine SKPBLK is

referenced by subroutines ARITH Part 1,

SUBS, EQUIVALENCE, DO, SUBIF, READ/WRITE,

FUNCTION/SUBRTN, DIMENSION.

EXIT: Subroutine SKPBLK exits to:

1. The subroutine that called it.

2. Subroutine ERROR if a symbol that is
not a delimiter is encountered.

SUBROUTINES CALLED: During execution sub-
routine SKPBLK references subroutine GETWD.

Subroutine SKTEM

When a subroutine expects to find an end
mark, it calls subroutine SKTEM, which
skips the remaining symbols of the card
until it finds an end mark. An error has
already been noted when this subroutine is
called.

ENTRANCE: The utility subroutine SKTEM is
referenced by subroutines END MARK CHECK,
ERROR, and CONTINUE/RETURN.

EXIT: Subroutine SKTEM exits to the sub-
routine that called it.

SUBROUTINES _CALLED: During execution sub-
routine SKTEM references subroutines GETWD.

Subroutine SYMTLU: Chart CE

Subroutine SYMTLU determines if the sym-
bol has been entered on a chain in the
dictionary. If the symbol has not been
entered, subroutine SYMTLU enters it in the
dictionary and returns the address of the
entry to the calling subroutine (CSORN) .
If the symbol has been entered, it returns
the address of the entry to the calling
subroutine.

ENTRANCE: The utility subroutine SYMTLU is
referenced by subroutine CSORN.

98

OPERATION:
name length determines the proper chain.

If the symbol is a name, the
The length of the symbol is determined by
subroutine GETWD and used by subroutine
SYMTLU to find the proper address in the
thumb index, so that the correct dictionary
chain may be searched. The symbol is
entered in the chain with a chain address,
mode, type, possibly an address, and possi-
bly an array size. The usage field is set
by the subroutine that referenced CSORN.

If the symbol is not a name, it is
entered on one of the chains for real
constants, integer constants, double preci-
sion constants, or data set reference num-
bers. If it 1is a constant, its mode is
determined by subroutine LITCON. Phase 10
distinguishes - a data set reference nuniber
from a constant by the context in which the
number is used.

If the symbol has already been entered,
SYMTLU makes no changes in the entry. The
subroutine which has called SYMTLU adjusts
the mode, type and usage fields of the
entry if necessary.

RESTRICTION: Subroutine SYMTLU will reject
any attempt made to enter any name greater
than six characters. The chains for
lengths 7 through 11 are reserved strictly
for FORTRAN key words. No user name can be
entered in these chains.

EXIT: Subroutine SYMTLU exits to subrou-

tines:

1. CSORN the subroutine that called it.
2. ERROR if an error is detected. '

Subroutines LABLU, PARKNUM, LABTLU: Chart CF

Subroutine LABLU

Subroutine LABLU is entered only if the
calling subroutine expects the symbol. it
receives from subroutine GETWD to be a
statement number. It calls other subrou-
tines to pack the statement number and
enter it into the overflow table. Subrou-
tine LABLU selects the correct chain for
the statement number to be entered in the
overflow table.

ENTRANCE: Subroutine IABLU is referenced
by subroutines CLASSIFICATION, GOTO, and
DO.

OPERATION: Subroutine LABLU sets a switch

indicating to other subroutines that the
symbol they are processing is a statement
number. The switch is reset by LABLU
before control returns to the subroutine
which called LABLU.

EXIT: The utility subroutine LABLU exits
to the subroutine that called it.

SUBROUTINES CALLED: During execution sub-
routine LABLU references subroutines:

1. PAKNUM to pack the statement number.
2. LABTLU to process the overflow table.

Subroutine PAKNUM

Subroutine PAKNUM either packs a state-
ment number prior to the search of the
overflow table or packs the number used to
jdentify a PAUSE or a STOP. PAKNUM also
checks for errors.

ENTRANCE : The subroutine PAKNUM is ref-

erenced by subroutines LABLU and
PAUSE/STOP.
RESTRICTIONS: Any statement number or halt

number is illegal if it is greater than
five characters or contains any alphabetic
characters. Subroutine PAKNUM checks both
of these conditions.

EXIT:
to:

The utility subroutine PAKNUM exits

1. The subroutine that called it.
2. Subroutine ERROR if an error is
detected.)

Subroutine LABTLU

Subroutine LABTLU enters all information
into the overflow table. It searches for
and enters, if necessary, all statement
numbers, subscript information, and
dimension information. :

ENTRANCE: The utility subroutine LABTLU is
referenced by subroutines SUBS, DIMSUB, and
LABLU. :

CONSIDERATICN: A switch is set in subrou-
tine LABLU to indicate a statement number
to LABTLU. .

OPERATION: Subroutine LABTLU first gets
the correct address for the beginning of a
chain in the overflow table. Then it
searches the contents of each entry in the
overflow table, comparing the assembled
entry against each entry in the chain for
that type of entry until it finds the entry
for that symbol or the chain ends.

If an entry is not found, it attaches
the entry to the end of the chain. The
switch indicating a statement number is

OPERATION:

tested so that the correct compare instruc-
tions can be used while LABTLU is searching
the table. It is also tested in order that
the correct move instructions are executed

in moving the entry into the overflow
table.
EXIT: Subroutine LABTLU exits to:
1. The subroutine that called subroutine
LABTLU.
2. Subroutine ERROR if an error is
detected.

Subroutines CSORN, INTCON: Chart CG

Subroutine CSORN

The functions of subroutine CSORN are:

1. To determine if the symbol is a name,
constant or a data set reference num-
ber and to call the proper subroutines
to process the symbol.

2. To determine how to enter the paramet-
er in the intermediate text if a
constant is a DO parameter.

ENTRANCE: Subroutine CSORN receives con-
trol from subroutines CLASSIFICATION, ARITH

Part 1, BKSP/REWIND/END/ENDFILE,
STOP/PAUSE, GOTO, ARITH Part 3, SUBS,
EQUIVALENCE, DO, ASF, READ/WRITE, CALL,

FUNCTION/SUBRTN, DIMENSION.

Subroutine CSORN first deter-
mines if the symbol is a name or a constant
by checking the first character. If the
symbol 1is an integer constant, subroutine
CSORN checks a switch for the context in
which the symbol is used. It may be a data
set reference number.

By checking another switch CSORN deter-
mines if an integer constant is a DO
parameter and determines the magnitude of
the constant. If the constant is less then
4096, it can be carried in the displacement
field of an instruction and directly ‘in the
pointer field of an intermediate text
entry. It will not be entered on a chain
in the dictionary. A constant greater than
4096 cannot be entered in the intermediate
text or the displacement field of an
instruction, and must be entered on a chain
in the dictionary.

CONSIDERATIONS: DO parameters 1less than

4096 are entered in the object program in
the displacement field of a 1load address
instruction. Otherwise, storage has to be
allocated for the constant.

Phase 10 99

EXIT: Control is passed from subroutine
CSORN to the subroutine that referenced it.

SUBROUTINES CALLED: During execution, sub-
routine CSORN references the following sub-
routines:

1. LITCON to convert EBCDIC numbers to a
format that can be used internally.
2. SYMTLU to make entries in the diction-

ary.

Subroutine INTCON

Subroutine INTCON calls a subroutine to
convert integers in subscript expressions
to binary numbers.

ENTRANCE: Subroutine INTCON receives
trol from subroutines SUBS, DIM90.

con-

OPERATION: INTCON checks whether integer
constants are properly located within the
subscript expression and calls LITCON to
convert a decimal number to a binary con-
stant.

EXIT: Control is
INTCON to:

passed from subroutine

1. The subroutine that referenced it.
2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution, sub-
routine INTCON references subroutine LITCON
to convert numbers to an internal format.

Subroutine LITCON: Charts CH, CI, CJ

The functions of subroutine LITCON are:

1. To convert any numeric constants to a
format that can be used internally.

2. To convert double precision and real
constants to double-precision
floating-point numbers.

3. To convert integer constants to binary
full word numbers.

ENTRANCE : Subroutiné LITCON receives con-
trol from CSORN, INTCON

OPERATION: Subroutine LITCON is divided
into three parts, each with its own func-
tions and objectives. Each part 1is dis-
cussed separately.

EXIT: Control 1is passed from subroutine

LITCON to the subroutine that referenced
it.

100

Subroutine LITCON Part 1

Subroutine LITCON Part 1 is entered only
if the first character of a symbol is a
number or a decimal point. LITCON Part 1
scans the constant, examining each charac-
ter. If the character is numeric, it is
added to a binary accumulator to form the
number. If the character is a delimiter,
control is passed to LITCON Part 2 and
appropriate action is taken. :

ENTRANCE: Subroutine LITCON Part 1
receives control from CSORN, INTCON, LITCON
Part 2.

CONSIDERATION: Subroutine GETWD maintains
two pointers. The first points to the
first character of the symbol. The second
points to the delimiter which stopped the
translate and test instruction.

For example,

123.456 236E7
t ot t t

123.456E+3 236E7+
t ot t t

If the number is an integer, the pointers
refer to the first digit of the constant
and the delimiter which defines the end of
the constant. For example:

123456
+ t

14589+
t t

OPERATION: When subroutine LITCON Part 1
is entered, a register is cleared. It is
used to build a binary constant. The first
pointer furnished by subroutine GETWD is
used to scan the constant. This pointer
will be incremented by 1 each time LITCON
Part 1 must examine another character. If
the character is not a digit, control is
given to LITCON Part 2 to process that
character.

If the character is a digit the contents
of the register are multiplied by 10 and
the digit is added to the register. If a
decimal point is encountered in the scan,
control is given to LITCON Part 2 which

sets a decimal indicator on and returns to
Part 1. Using this indicator as a program
switch, a count is maintained to indicate

the number of decimal places to the right
of the decimal point. This number is used
in LITCON Part 3 to normalize the constant.

If an E or D is encountered in the scan,
the register is saved and cleared by LITCON

Part 2. The same register is
LITCON Part 1 to build the exponent.

used by

EXIT:
LITCON

Control is passed from sukroutines

Part 1 to LITCON Part 2.

| Subroutine LITCON Part 2

Subroutine LITCON Part 2 processes any
character not a digit, that is encountered
by LITCON Part 1 while it is scanning the
symbol.

ENTRANCE: Sukroutine LITCON Part 2
receives control from LITCON Part 1 and
LITCON Part 3.

OPERATION: LITCON Part 2 sets indicators
used as program switches for the three
parts of LITCON. It sets one indicator if

a decimal point is encountered in the scan
of a symbocl. Another indicator is set if
the characters D or E are encountered in
the scan. Either of these characters indi-
cates that this constant is exponentiated.

When a D or E is recognized, LITCON Part
2 stores the binary number that was in the
register used by Part 1, and clears the
register so the LITCON Part 1 may accumu-
late the expcnent.

Subroutine LITCON exits through Part 2
when the entire number is converted to a
fixed- or floating-point number. The poin-
ters used by GETWD to scan the remainder of

the statement must ke updated so that both
are fixed on the character immediately
following the 1last character of the con-

stant.

EXIT: Control is rpassed from subroutine

LITCON Part 2 to subroutines:

1. LITCON Part 1.

2. LITCON Part 3.

3. The subroutine that referenced sukrou-
tine LITCON.

| Subroutine LITCON Part 3

Subroutine LITCON Part 3 is entered only
if the constant is a real or double preci-
sion number. It converts the mantissa and
characteristic generated from Parts 1 and 2
to an internal doukle precision number.

LITCON
subroutine

Part 3
LITCON

Subroutine
control from

ENTRANCE :
receives
Part 2.

CONSIDERATION: All
precision constants

real or double-
are converted into

Form Z28-6620-0 .
Page Revised 1/11/66
By TNL Z28-2117

double-precision, floating-roint numbers.
When LITCON Part 3 was entered, one part of
LITCON converted the mantissa tc a binary
nurber and stored it in main storage. The
second rart of LITCON converted the exro-
nent to a kinary number and rlaced it in a
register. A count of the nurker of decimal
rlaces had also keen kept.

OPERATION: LITCON Part 3 uses these three
kinary nurbers to form a doukle-precision
normalized floating-point constant. Fer
the constant, 23.456+06, Parts 1 and 2
would place the binary expression of the
decimal integer 23456 in a storage loca-
tion, the binary integer 6 in a register,
and a count 3 in another location.

The mantissa must ke handled as an
integer because the computer cannct place a
rhysical decimal point in a field. The
number 23.456 takes the form cf 23456 with
a count of 3 decimal places.

The hexadecimal equivalent of 23456 is
| sBAO.

If the mantissa is treated as an inte-
ger, some adjustment must ke made to the
exponent. The decimal count is subtracted
from the original exponent. 1In our example
the exponent 1is changed to 3 and the
decimal count is cleared.

23.456%106=23456%103
23.456E+06=23456E+03

The expcnent is changed from +6 to +3.
If the result of the subtraction is nega-
tive, a switch is set to indicate a nega-
tive result, and the result - is set to its
aksclute value.

Ur to this point, then, we have a
| hexadecimal wantissa 5BA0 and a deciral
expcnent, 3. A double word is then esta-

klished in storage; the first kLyte contains

"the hexadecimal numker U4E, and the rest of
the bytes contain hexadecimal zerocs. That
doukle word is:
4E00000000000000

The sign bit is set to zero. The
hexadecimal mantissa is then "ored" to the
seccnd word of this doukle word. Oour
doukle word then becomres
4E00000000005BA0) , ¢

In hexadecimal notation this means
.00000000005BA0) ,¢* 1614

Actually, the double word is an unncr-

malized System/360 floating-point constant.

Phase 10 101

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

Characteristic U4E, 1is the exponent 14 in
excess 64 notation. This is explained in
the System Reference Library publication,

IBM System/360 Principles of Operation,
Appendix C.

To normalize the constant, the doukle
word is added to a double floating-point
register, which contains floating-point
zero. The result of this operation is:
445BA00000000000

or
.5BA0 * 164
Finally, the decimal exponent must ke

used to adjust this double word. A switch
is set to indicate a positive or negative
exponent, and the exponent is set to its
absolute value. If the exponent is nega-
tive, the double word is divided by the
value 10 ** exponent. If it was positive,
the doukle word is multiplied by the value,
10 ** exponent.

LITCCN Part 3 uses a takle with
floating-point values for various expcnents
of 10. In our example the exponent 3
indicates a value of 1000 in the decimal
number system. Using the table, Part 3

finds that 1000 is 3E8 in the hexadecimal
system. This hexadecimal number is con-
verted to a floating-roint constant and
used to multiply the numker that is cur-
rently in the doukle floating-point reg-
ister, 445BA00000000000. The result of

this multiplication would be:
47165E90000000000

or
.165E900 * 167
Then,
23.456E+06=47165E90000000000,

and the floating-point number is converted
to an internal machine constant.

EXIT: Control is
LITCON Part 3 to:

passed from subroutine

1. The subroutine that called subroutine
LITCON if an error is detected.

2. Subroutine LITCON Part 2 to exit from
sukroutine LITCON.

Subroutine SUBS: Chart CL

Subroutine SUBS processes all subscript-
ed variables in arithmetic expressions,

102

to the dic-
and the intermedi-

making the necessary entries
tionary, overflow takle,
ate text.

ENTRANCE :
sukroutines

Sukroutine SUBS is referenced Ly
ARITH Part 1 and ARITH Part 2.

OPERATION: Sukroutine SUBS rrocesses vari-
akles with one, two, or three subscripts.
The subscrirts must conform to the general
FORTRAN sukscrirt expression:

C1*V1+J1

where C1 and J1 are unsigned integer
stants, and V1 is an integer variatle.

con-

The overflow table entry for a sub-
scripted variakle is assembled in the over-
flow buffer. Just fkefore «ccentrol is
returned tc the calling routine, the ccn-
tents of the overflow kuffer are inserted
in the overflow table kty use of sukroutine
LABLTU.

Constants of the form J1 are stored-in
main storage until contrcl is about to ke
given to the calling sukroutine. The off-
set is then computed using these cocnstants
and the dimension information entered for
this array in the overflow takle, when the
array was defined by a DIMENSION statement.

The offset 1is then entered in the inter-
mediate text.

EXIT: The utility sukroutine SUBS exits
to:

1. The subroutine which has called it.

2. Subroutine ERROR if an error is
detected.
SUBROUTINES CAILED: During execution suk-

routine SUBRS references subrcutines:

1. GETWD to access
ters.

2. INTCON to process integer constants.

3. SKPBLK to access delimiters.

4. CSORN to process dictionary entries.

5. LABTLU tC process overflcw takle
entries.

symbols and delimri-

Sukroutines DIMSUB, DIM90: Chart CM

Sukroutine DINMSUB

Sukroutine DIMSUB scans the subscrirt
rorticn of a statement that is dirwensioning
an array. It also inserts the dirensicn
information into the overflow takle entry
and the size of the array in the dictionar-
y.

ENTRANCE: The utility subroutine DIMSUB is
referenced by subroutine DIMENSION. :

OPERATION: The type code is set to rep-
resent an array because Phase 10 has now
determined that this statement defines an
array.

Subroutine DIMSUB uses another subrou-
tine, DIM90, to actually compute the con-
stants entered in the overflow table.

EXIT: Subroutine DIMSUB exits to:

1. The subroutine that called it.

2. ERROR if an error has occurred.

sub-

SUBROUTINES CALLED: During execution
routine DIMSUB references subroutines:

1. DIMGO to compute constant.
2. WARNING/ERRET if an error is detected.

Subroutine DIM90

Subroutine DIM90 computes the constants,
D1*L and D1*D2%*L, which are inserted in the
overflow table, and the size of the array
(D3*D2*D1*1L) which is inserted in the size
field of the dictionary where the general
form for the array is: :

ARRAY (D1,D2,D3)

ENTRANCE: The utility subroutine DIM90 is
referenced by subroutine DIMSUB.

OPERATION: Subroutine DIM90 uses GETWD and
INTCON to get the integer and convert it.
Then for the first subscript it computes
the product D1*L and saves the result. If
the array has only one dimension, this
product is the size of the array. If there
is more than one dimension for this array,
the product D2*D1*L is computed. If the
array has only two dimensions, that is the
size of the array. If there is another
dimension for the array, the product
D3#D2#D1*L is computed. This product is
the size in bytes of a 3-dimensional array.
For information concerning the format of
these entries in the overflow table, see
the introduction to Phase 10.
EXIT: Subroutine DIM90 exits to:
1. The subroutine that called it.
2. Subroutine ERROR if an error is
detected.

SUBROUTINES CALLED: During execution sub-
routine DIM90 references subroutines:

1. GETWD to access symbols and delimi-
ters.

2. SKPBIK to access delimiter.
3. INTCON to process integers.

" Subroutine END MARK CHECK: Chart CN

Subroutine END MARK CHECK calls subrou-
tine PUTX to write the end mark entry for
the majority of FORTRAN statements. It
also tests for the card reader end of data
set or if the END card has been read. Part
of END MARK CHECK is used to find redundant
commas. ‘

ENTRANCE: Subroutine END MARK CHECK
receives control from subroutines EXTERNAL,
CONTINUE/RETURN, STOP/PAUSE, GOTO, ARITH
Part 3, EQUIVALENCE, DO, ASF, CALL,
FUNCTION/SUBRTN, DIMENSION.

OPERATION: Subroutine END MARK CHECK is
composed of two distinct sections. One
section with entry points RCOMA, RCOMA1,

RCOMA2, and RCOMA3 is entered if no inter-
mediate text is writtem for this statement.
It is entered by subroutines processing
COMMON, EQUIVALENCE, DIMENSION, REAL, INTE-
GER, DOUBLE PRECISION, and EXTERNAL state-
ments. It enters the second portion from
the first portion of subroutine END MARK
CHECK, only if a warning message must be
issued.

A portion of the first section issues
warning messages when used as a subroutine
to skip redundant commas. The return to
the subroutine that called it returns to a
program step above the call instruction.
The compiler then stays in a loop until all
redundant commas have been skipped.

The first section of END MARK CHECK sets
off all type switches used to direct Phase
10 through explicit specification state-
ments.

The second portion of subroutine END
MARK CHECK has entry points EOSR, EOSR1,
EOSR2, EOSR2A, and EOSR3. This section is
entered if intermediate text is written for
this statement.

This portion of subroutine END MARK
CHECK calls subroutine ASF if the arithmet-
ic statement function switch is set. Sub-
routine ASF then resets dictionary entries
and defaces those made to define the state-
ment function arguments.

EXIT: Subroutine END MARK CHECK éexits to:

1. Subroutine CLASSIFICATION to process
another source card entry.

2. The subroutine that called it if entry
was made at block RCOMA.

"3. Subroutine ASF to finish processing an

Phase 10 103

arithmetic statement function.

4. FORTRAN System Director to load Phase
12.

5. Subroutine BKSP/REWIND/END/ENDFILE to
simulate an end card being read.

SUBROUTINES CALLED: During execution sub-
routine END MARK CHECK references subrou-
tines:

1. GETWD to access symbols and delimi-
ters.

2. SKTEM to skip to the end mark.

3. PUTX to make entries to the intermedi-
ate text.

4. WARNING/ERRET
ed.

if a warning is detect-

Subroutine PUTX, PUTBUF, PUTRET: Chart CO

Subroutine PUTX makes entires to the
intermediate text buffer area, consisting
of an adjective code, type code, and an
address pointing to an entry either in the
dictionary or the overflow table. If a
buffer area is full, PUTX gives control to
the FORTRAN System Director in order to
write a tape record and free the buffer.

Subroutines PUTBUF and PUTRET are parts
of PUTX which are used for specific func-
tions in some Phase 10 subroutines. PUTBUF
is called by subroutine END MARK CHECK to
output the buffers at the end of Phase 10
execution.

PUTRET is called by subroutines not
making standard text entries (e.g., FORMAT
statements) to the intermediate text buf-
fers to check if a buffer area is full.

ENTR NCE: The utility subroutine PUTX is
referenced by

ARITH Part 1,

BKSP/REWIND/END/END FILE, GOTO, ARITH Part
3, DO, SUBIF,

READ/WRITE, CALL, FUNCTION/SUBRTN,
CONTINUE/RETURN, STOP/PAUSE, FORMAT, END
MARK CHECK

OPERATION: When the translate and test
instruction senses the first delimiter in
the statement under consideration, that
delimiter is placed in DELIM. PUTX then
moves the contents of ADJ to the intermedi-
ate text buffer area, and then moves the
contents of DELIM to ADJ. Subroutine ARITH
Part 1, subroutine ASF, or a keyword sub-
routine uses a special adjective code for
the first intermediate text entry for that
statement. These codes are moved directly
to ADJ.

Subroutine PUTX is entered at different
points depending on the information the

104

calling subroutine has to enter. imn the
intermediate text. One entry point exists
in PUTX for a subroutine that has a state-
ment number to be entered in text, a
separate entry point exists for a subrou-
tine that has an adjective code to be
entered, etc.

Subroutines SYMTLU and LABTLU place the
address of the dictionary or overflow table
entry in a general register. PUTX moves
that pointer from the general register to
the intermediate text.

The type code is moved directly to the
intermediate text from the mode/type field
in the dictionary of overflow table.

EXIT: Subroutine PUTX exits to the subrou-
tine that called it.

SUBROUTINES CALLED: The utility subroutine

PUTX will reference the FORTRAN System
Director to write the output buffers on
tape.

Subroutines ERROR, WARNING/ERRET: Chart CP

Subroutine ERROR

Subroutine ERROR creates the intermedi-
ate text entry for an error messagee.
Errors are not printed in Phase 10.
Entries which indicate to Phase 30 that an
error message should be printed are made to
the intermediate text. The remainder of
the statement in which the error occurred
is not processed. An indicator is set in
the Communications area so that the other
phases of the compiler know an error has
occurred.

ENTRANCE: The utility subroutine ERROR is
referenced by subroutines EXTERNAL,
INTEGER/REAL/DOUBLE, CLASSIFICATION, ARITH
Part 1, ARITH Part 2, ARITH Part 3,
CONTINUE/RETURN, STOP/PAUSE,

BKSP/REWIND/END/ENDFILE, GOTO, SUBS, SYM-

TLU, EQUIVALENCE Part 1, EQUIVALENCE Part
2, DO, PAKNUM, LABTLU, ASF, SUBIF, INTCON,
READ/WRITE, FUNCTION/SUBRTN, COMMON,

DIMENSION, DIMSUB, DIM90, END MARK CHECK.

OPERATION: The intermediate text entry for
an error message 1is the error adjective
code, an error number which is inserted in
the position normally occupied by a
mode/type code, and the internal statement
number of the statement in which the error
was detected.

The error number is retrieved in an
unusual manner. When an error condition is
found in any of the statements processed by

Phase 10, a branch is taken to an instruc-
tion in a table of branch instructions.

Each of these branch instructions rep-
resents a particular error message. All of
the instructions are branch and link

instructions +to the subroutine ERROR. Sub-
routine ERROR makes use of an address
constant which is the address of the begin-
ning of the branch table.

The branch table 1list in Phase 10
appears as follows:

ERR1 BAL 13,ERROR
ERR2 BAL 13,ERROR
ERR3 BAL 13,ERROR

ERR27 BAL 13,ERROR

The subroutine which branches to a point
in the branch table determines the nature
of the error, and which error message is to
be generated. If the calling subroutine
has determined that this is error #27, it
will issue this instruction:

BC 15, ERR27

When the computer executes the instruc-
tion 1located at ERR27 it branches to sub-
routine ERROR and saves the address from
which it branched to ERROR in register 13.
Each instruction in the branch table places
its address in register 13, and each branch
instruction has a particular error message
associated with it.

If the beginning address of the branch
table (the address of the instruction
labeled ERR1) is 1loaded as an address
constant in subroutine ERROR, the error
message number can be computed by subtract-
ing the beginning address from the address
loaded into the register by the branch and
link instruction, and then dividing by &.
The length of a branch and link instruction
is one word or 4 bytes.

A program switch is set any time subrou-
tine ERROR is entered. If an error has
occurred in statements of the program writ-
ten by the user, the compiler knows that it
cannot compile the program properly. It
does mnot generate the machine language
coding necessary to run the object program.
Instead, if the GOGO option is not on,
after Phase 20 is completed, it enters
Phase 30 which will use the error entries

in the intermediate text +to print error
message.
EXIT: Subroutine ERROR exits to subroutine

END MARK CHECK.

SUBROUTINES CALLED: During execution sub-

routine ERROR references subroutine PUTRET
to see if the intermediate text output
buffers are full.

Subroutine WARNING/ERRET

ENTRANCE:

OPERATION:

Subroutine WARNING/ERRET enters a warn-
ing or an error message in the intermediate
text. Subroutine WARNING/ERRET attempts so
recover and continue processing the state-
ment, whereas subroutine ERROR goes direct-
ly to subroutine END MARK CHECK and aborts
the rest of the statement from the compila-
tion.

Subroutine WARNING/ERRET is
entered to generate a warning message by
subroutines CLASSIFICATION, CONTINUE/RETURN
BKSP/REWIND/END/ENDFILE, GOTO ARITH Part 3,
EQUIVALENCE Part 1, DIMENSION, DIMSUB, END
MARK CHECK. Subroutine WARNING/ERRET is
entered to generate an error message by
subroutine DIMSUB.

A warning does not force the
compilation to be ended at Phase 20 as an
error does. The compiler generates the
object coding for the FORTRAN source pro-
gram, and then calls Phase 30 to process
the warning messages that were entered in
the intermediate text during Phase 10. 7:\
warning would occur if a statement such as:

DIMENSION, A (20),B(2,2,2)

were processed by Phase 10. The comma
between the names DIMENSION and A is redun-
dant.

The same problem for error and warning
messages processed by subroutine
WARNING/ERRET does not develop as it did in
subroutine ERROR. The error or warning
message number is inserted in a register.
The contents of the register are then
stored in the intermediate text entry for
that error or warning message.

Every time subroutine WARNING/ERRET is
entered when a warning has occurred, a bit
is set on in the Communications area to
indicate that at least one of the source
statements has a condition which merits a
warning message. If this switch is on,
Phase 30 is called after Phase 25 has been
completed to process any warning messages
placed in the intermediate text.

If subroutine WARNING/ERRET is called
because an error has occurred, the same
switch set by subroutine ERROR is set.
This switch indicates to the compiler not
to call Phase 25 to assemble the machine
language instructions. Instead, Phase 30

Phase 10 105

is called at the end of Phase 20 to process
the errors.

When an attempt is made to re-enter the
subroutine that called WARNING/ERRET, the
intermediate text messages normally entered
for errors must be saved until the state-
ment has been completely processed. A bit
is set in the communications area to indi-
cate that entries for warnings and errors
must be made to the text. When the end of
statement is reached, subroutine END MARK
CHECK tests this bit and enters the entries
for warnings and errors to the intermediate
text after the end statement entry has been
made to the intermediate text.

EXIT: Subroutine WARNING/ERRET exits to
the subroutine that called it.

Subroutine PRINT: Chart CQ

Subroutine PRINT assembles a line to be
printed and calls the FORTRAN System Direc-
tor to print the line.

ENTRANCE : The utility subroutine PRINT is
referenced by subroutine GETWD.

OPERATION: Subroutine PRINT always prints
the card image of the card, and the inter-

nal statement number that has been assigned
to this statement by subroutine CLASSIFICA-
TION. The internal statement number has
been assigned to this statement before it
is processed.

Subroutine PRINT through use of a Super-
visor Call instruction calls the FORTRAN

106

System Director to print a line. The FSD
will then call the I/0 routine that com-
mands the printer.

EXIT: Subroutine PRINT exits to the sub-

routine that called it.

SUBROUTINES CALLED: During execution sub-

routine PRINT references the FORTRAN System
Director to print a source card.

Subroutine GET: Chart CR

ENTRANCE:

Subroutine GET reads a new card image
and switches the buffers in the double
buffering scheme.

Utility subroutine GET is ref-
erenced by subroutine GETWD.

OPERATION: Subroutine GET calls the
FORTRAN System Director to read cards.
Control may be returned to subroutine GET
by two exits. The first is for normal
processing. The second exit is used if the
last card has been read from the card
reader. A switch is turned on signifying
the end of file for the card reader.

EXIT: Subroutine GET exits to the subrou-
tine that call subroutine GET.

SUBROUTINES CALLED: During execution sub-
routine GET references the FORTRAN System
Director to print a source card. Text is
written for this statement.

90 0000000000000 0000000000000000000000000000

Chart 03.

NO END
eee¥*e STATEMENT
*

WX

%03 *

* B3*

* *
*

.
.
.
X
HERRFBIRHERRK XX

GET SOURCE STMT#
* AND PRINT *

e X STATEMENT *

* VIA FORTRAN ¥
* SYST DIRECTOR #*
HEXEAXFRARERERERR

Xe oo 0o

HEEERCIRERERHH RN
* CLASSIFY STMT *
* AS KEY WORD #
* OR ARITHMETIC ¥
#STMT, OR ARITH *
STMT FUNCTION *
LR 22 2 s T S ST T s

Xeoe oo o0

K XD IR N H R KRR
* CONVERT STMT

* SUBSEQUENT
* PEASES

*
*
* INPUT FOR *
*
AS *
LR R RS 22T RS 22 S 2]

.
¥

.
*e ot

*o o
YES

Ko o o0 08 %

XN IHRHEHERR AR
* PHASE 12 VJA %
*FORTRAN SYSTEM *
* DIRECTOR *
HREHERR R E RN

Phase 10 Overall Logic Diagram

Phase 10

107

CLA

eeX
.
AR
®
* Al
*

* 3 3k

Chart BB.

108

36 3 33

*BB *
A1®
*
*
.
.
.
ss X
A] K N H R RAD RN NN RRR
UPDATE INTERNAL * RESET *
* STATEMENT * * SWITCHES *
NUMBER AND *eeceoeseeeX*TC PROCESS NEW
* ZERO PAREN % * STATEMENT %
* COUNT * * *
3636 3 3 33 36 3 36 I XX XX 363 3 X K I N X
.
* .
* o
* o
.
o
CLASO1 X
XX NB2 X NN NK
GETWD CCAl
RN W R R K-k =-%ZERO
* GET WORD OR *eeevesceecccsccsceosccsccccsccccns
DELIMITER X
* * .
3 33 I I I XX AN -
«NCN .
«ZERO .
. N
. .
. o
o o
«Xe CLASO06 .
c2 - ERZ 2 ETeicE R 2 2 2 22 2 223 -
«% END *. *LABLU CFAl% .
«% OF SYMBOL *. YES B e .
%o LESS TFAN e%ceeeeeeeX*¥VERIFY STMT NO * .
%o COLUMN % * IN OVERLOW * .
¥o T e* * TAELE * o
e o 363 33 36 3 I I 3 3 I ;KX .
* NO . .
. . .
. . .
. o .
. . .
. .
«Xe CLASO4 .
3633 R D] I X XN D2 - 9 KD IR X RRH -
WARNING CNA3 o* WAS % * ENTER _STMT NO * .
Rttt et d YES o% LAST STMT *. * POINTER IN * .
* INACCESSIBLE %*Xeeeeeoeee®GC TOs RETURN, *# * INTERNAL TEXT * .
* STATEMENT % #e STOP o * * .
* #* *e ¥ * * -
33 I I I I N He o 36383 33 I I 336 3 3 X XX .
. * - .
. . . o
. o . -
. . o .
seccsccsescsscsecsccaccssseXe i . .
. . .
CLASO3 X CLASOS X .
33 3 3 3 E D ¥ 3 383 % 3 K 33 36 HE T %3N H -
CSORN CGH1 *¥GETWD CCA1* .
R Bt Bt R B B R B NCN#—H— -’ —H=F~H—%ZERO o
#CCLLECT SYMBCL *Xeesesees* GET WORD OR ¥eeoecoe
* * ZERO* DELIMITER *
3* * * *
36 3 3 3 3 3 3636 36 3 3 I 3 ¢ H X 36 3 363 33 % 3 I K ;XN
.
.
N
o
eXe
F2 *e
. *o
YES o% *o
eeesceee¥SYMBOL NUMERIC *
X *o o
¥ 33 3% % * o ¥
#CN * *e o
* A2 #* NO
* * -
#* °
” ERROR- .
ILLEGAL .
STATEMENT o
X
G2 3t o 3636 36 ¥ 3 G T 3 XK
o - 3* *
o *o YES * BRANCH *
*o KEY WGORD e*eeeseeeeX® ACCORDING TO Feeceoes
. . o ¥ * KEY WORD *
* g ¥ * *
Fe oF F 36 36 3 36 3 I 3 I 3 3 X R
* NO
.
.
X
363 3 3 3
*#BC #
* A%
E
*

Subroutine CLASSIFICATION

CLAS20 oo
*a
o ¥ *o
¥ Is *e N
eeX#¢DELIMITER ENDe¥eoeoosce
*o MARK ¥ X
*o o *RXXR
¥e ok *CN_ *
* YES * A2%
. * ®
. *
- ERROR-
. STATEMENT
) FORMATION
X
RHERRKCHRER®HEERRR
WARNING CNAS
FmHm R R R H KR K
* #*
* BLANK CARD *
* *

F6 3 3 3 3 3 % I I3 XN
.
.
.

X
L2323

XX KX

ccetsevesscsessscossans
« KEYWORD CHART o
@ F I W NN IR RNNN,
« BACKSPACE « BPAS

@cccscccscscccscsseccoces

e CALL « BMA1 .
©ecescsecccccsaccescccce
ON « BTA2 .

sceese ecssce
ONTINUE « BOA1l °
eeesscessececscces

e DIMENSION « BQA3

s GO « BJUA1 .
©ceXoesoseccscccssscscccnse
e BJA3

ecccce

o BOA3

.
e
z

the (ne Ve Ve Te T

Fe
De Co —~o¢ Me Me Ms

e (Do Oe o —o Do
—o Te TDe ms Co [

R R N A A N A A)

XEERN
#BC *
* A2*

Xe oo

ARITH
HAARRADRE R XXX HR
SET

* #*
* ARITHMETIC *
* ADJECTIVE *
* CODE *
* *
HEREERERERERRNH AR
.

Xo¢so0e

EARENRB2AKRREER RN
SKPELK CDA2#%
L e s
* GET *
* CELIMETER *
* *

HRRERRNEXARRRRERR

¥ *o
*o YES

. . .
*o o ¥
He o %
* NO

.
.
ARITO3 X
D2 *eo
¥ *o
IS *eo
DELIMETER %
EQUAL o
*eSIGN o%
*e ok
* YES

ERROR -
STATEMENT
FORMATION
ARITC2 X
HREHEED X R AE R

¥PUTX COA3
L Rt T S S)
* PUT *
ARITH ADJECTIVE
* *

EERERRENE RN AR AR

o®

*. ARRAY %
- ¥
Ky o

YES

Xe o oo %

ERERRDIHREXRREXRR

SUBS CLA1
Hm o K W W K N N

* PROCESS *

* SUBSCRIPT *

* *

HERERRERHAXRERENRR
.

*a
*eo

¥

*oSIGN o%
e ot

* YES

.

.

.

eXevesesecessavccsscscsnconse

ARTTO4 X
EXRERF2ERRNRER
INDICATE *
AN EXECU- %
TABLE STMT *
EAS BEEN *

FROCESSED *
LR R R]

EE TS

.
xRN .

* * .
HEC HeXe
* G2% .
XXX .

ARIT10 X
ERRRRG2RERARRRRRN
GETWD CCA1

Hm RNk Rk -X-%XZERQ

* GET L LR RRY
* sSYMBOL
* * XX
EE S22 22222222 *BC *
«NCN * C3%
*ERE * %
* *
*BC
* H2#® .
ERER .
X
HERERHDARRHEERE R
CSORN CGA2
B s T e
* COLLECT *
* SYMBOL OR *
* NUMBE

HERRR JORE R XXX AR XX
SKPBLK CDA2
EEE B B 2 B 2 B 2
* GET *
* DELIMITER *
* *
EEEES 22222222222
.
N
N
X
EXRRR
*BD =
* A%
* ®
*

Chart BC. Subroutine ARITH Part 1

*o
* 1s Is *o NO
*¥e DELIMITER oe%eccsceceoeX¥, THIS AN e¥e00c0ceeX¥s STATEMENT o%ecsecscee
* !

¥ HAS ¥,
+*EXECUTABLE *. YES

#CESSED * XRERR
*e oF *CP *

* NO * A2%

. * *

. *

X ERROR -
Ebauliabed SEQUENCE
*BF *ASF OR
* A2% SUBSCRIPT

* %

*

Is N
DELIMITER e¥*ececccee .
EQUAL

SR L L2

*CP *

* A2®
* *

*
ERROR-
STATEMENT
FORMATION

Phase 10

109

ARIT1Z
EEREHD] RERRXARRRR
#SUBS CLA1
L et RN
* PROCESS *Xe
* SUBSCRIPTS *

* *

XK RN NN RN

ecsce

¥
«* V

*BD *
* A%
* *
*
.
.
.
Xe ARIT14 ¥y
A2 *o AZ *o RN AQ NN R NN
IS o *o * CHANGE (*
ARIAELE NC o Is *o YES ® ADJ CODE *
DIMEN- e¥oesvevseaXFe DELIMITER e*seeesseesX®* TO FUNCTION (*
SIONEC % *o (o * ADJECTIVE 3*
*o o * *
He o e e Y
* NO .
. .
. .
. .
. .
. *Xe
. Ba *, HERANDSHARRRERRRR
. . *o * *
. * HAS * SET _TYPE *
. TYPE BEEN ce X TO *
. *. CHANGED * FUNCTION *
. . o * *
. %o oF P]
. * YES .
. . .
. . . .
. . .
eeXeXeo .
X

ARIT20 oXe
c3

*o

o *o
«* BRANCH *o
ON

ceX®o o
. *.DELIMETER.*
. *. o
. *o %
* *
* ® -
ED_ .
* C3x .
EEE 22 -
X
ceceseesesesecsescccccsctescsccscsrecrecrssesasronne
DELIMITER . CHART .
HRAARRRRFRARRRR AR R AN HRFERERN
DECIMAL PCINT . BEA1
ceeccccscceseccssecsscsctscetsesessnscsocsons .
. BEG1
P
MINUS . BEG1
e
LEFT FARENTHESIS .

e oo

cescecee ces

scesesccscsccsccne

ecsecscssscsseccscessssasscse
.

eccrease

eeecccescsecssesscccssccescscce

scccccse

ceee

oo

erecs e s s st sttt ve e
sececssss s s s e

D R R L T R P PR PR

Chart BD. Subroutine ARITH Part 2

110

HERAECSH AR HHN
* CHECK *
* FOR IMPLIED *
* DeP. MODE AND *
* SET MODE *

* *
HHRHE RN XK N AR
.

X
EERER
*BE *
* A3

* *

*

(ERROR-ILLEGAL DELIMETER)

e ERH

LA 22
*BE *
* A3%
* *
*

v
KRR
®CN *
* C3%

® *

HXR
* G4 *
* *

HREH

o10 ARIO020 v
RN] TN KK KKK KRN ATH RTINS
GETWD CCA1 * *
L et ot) * INCREMENT *
* o i—] #* PARENTHESIS #
* GET NUMBER * v * COUNT *
* * RN * *
s *CP * RN NN R
* A3%
*
I o '
ERROR - v
I ILLEGAL *EE
DELIMITER * *
v * G4 *
eI Ea 22 2 R * *
#CSORN CGA2 L2220
L s o S
* CONVERT *
* NUMBER *
* *
HRHREEEEEERRRRRRR
i
v
et
*BD *
* C3%
* ®
*
S
*BE *
* D2%
* *
*
]
i
i
ARIO030 v
HEHERDDHHHHHHE IR R
* *
* DECREMENT *
* PARENTHESES ¥
* NT *
* *
B e LR
i
|
Ve
HHHENE] HHEHR KR RN E2 *o
WARNING CPA3 ¥ . KK
B e e T e LT o% TES *. GT * *
* EXCESS NOe PAREN_COUNT o¥%———=>% G4 *
#* OF RIGHT *¥4FOR ZERO % * *
* PARENTHESES ¥ *o ¥ HEXR
B T et 3 *e o
| * EQ
i
[}
v
ERRER
*BC *
* G2%* ARI031 Ve
* ¥ F2 *o
* o . ERXR
o¥ is *, NO * *
e IF SWITCH % > G4 *
*o N o® * *
KR e o P
*BE * Ko o
* G1¥ * YES
* ®
x I
I v
RN
*3J * GO TO
080 oVe * A4H
Gl *e * ¥
. . HHRR *
¥ UNARY *e¢ NO * * *
L + OR - - —>% G4 *
*e ok * *
* ok ERRH
*e o
* YES

I] KK XK REK
* *
*® SET *
UNARY ADJECTIVE®
* CODE *

* *
HFEREER AR AHRER

v
HEHEH

% % %
@
&

* ok ok

XX

| chart BE. ARITH Part 3

*o
F—————%,A SUBSCRIPTED.*

Form 7Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

R

ARIO040 oVe
A4

*q WA SN NN NN

¥ IS *o *PUTX COA3*

o¥* THIS A L e e e e
*o READ/WRITE

>* ENTER = SIGN *
*

*oSTATEMENT o ® INTO INTER- *
e o * MEDIATE TEXT #*
Ky oF 363 I3 36 I3 K
* NO
|
|
v v
RE2 L K
* * *BK *
* G4 * * C4x
* * * *
H RN *
222 2 EE 22 23
*BE * *BE *
* Caw * C5%*
* * *
* *
i
ARI060 Ve ARI090 Ve
Cca *, c *eo

¥ LAST %, o% WAS ¥,
YES «% SYMBOL NO % LENGTH OF *,
%o LAST SYSBOL %
*¥o VARIABLE % *o ZEROC o
* *

*, o
*o ok v
* NO *EER
* *
* G4 *
* *
ERER

I

v
KRN D 4K R KNI

PUTX COA3
L R e WAS
* PUT LAST * #*e LAST CHAR
* PARAMETER * *
* *
B e S R R
v
HHEEE
*CN * |
* C3% v
* x EE s I T T A
* * *
* SET ADJ CODE *
* TO *
* *¥ *
* *
B R R T Y
|
v
LA EE RS
*BC #
* G2®
* x
*
R
*BE *
* Gaw
* *

ARIT30

o¥

o ¥ *. NO
>%*, ENTER ITEM - ¥—y
*

. o v
*, o R R
*e ¥ *BC *
* YES * G2#*
* ¥
| *
|
v

HREARHLHEHEEE KR XER
PUTX COA3
Hm KRR R H—R— R
*ENTER DELIMIT- *
* ER IN TEXT *

* *
WHRENF AR AT NN

v
XHERE
*BC *
* G2%

Phase 10 111

ERERR

*BF *
* A2
* * R 22 FVEE S 2 LSl
* * INDICATE *
| * THAT ASF *
L >% STATEMENT *
* 1S BEING *
* PROCESSED *
EE 2222222 22)
¥
D2

FRERND] HEEKEEHRENR
*

*
*COPY MODE FROM *

* DICTIOUNARY *
* *

* *
R T T 2

P

R HE L KRR
SAVE ADDRESS OF
NAME AND DEFACE¥
* PREVIOUS *
* DICTIONARY *

* ENTR *
WX HRHRHH R HAR

I

v
HEEHF L HHRERHRRNNR
CSORN CGA2
R it ot DL DL N
* ENTER *

¥ *eo
«% WAS NAME *,
*oeIN DICTIONARY« *<:
*

*o .

—> % OF symBOL
* TO ASF

ASFO4

FR K AT NN XK N
* *

* SET TYPE

* ok % %

*
R T T T T T

ERHH
* *

* B3 *—>
* *

X HAER

v

RHHEXBIRHR R AR RREN
GETWD CCAL

Fm KRR H— A=K =¥ —*ZERO
* GET PARAMETER *

* *

* *
KRR NN REH
NON

ZERO

v
HRARRCIHEARREREHE
#CSORN CGA2*
Hm K K N R — K K
* SEARCH THE *
* DICTIONARY *
* FOR SYMBOL *
HEEREERERHRHERRRRS

*o
THE %o NO
*q o
. o
e o¥

*

ASFO05

HHNHEFE IR HXH A RN R
SKPBLK CDA2#
W W Fom e e

*PARAMETER INTO *
* DICTIONARY *
TR KKK KR XT X

Chart BF.

112

Subroutine ASF

>% GET DELIMITER *
* *

* *
AR H RN A

G3
*
DELIMITER %

o

*g o ¥
*e ok
)

*
|

ASF11 v

FHHRHHBH KRR R HH
#SKPBLK CDA2
e ettt L EL O
* GET DELIMITER *
* *

* . *
L

P J—

J3 *o

*o
WHAT IS #. OTHER

v
X RIH
*CPp %
* A2%

* *

*

ERRCOR-
NO PARAMETER

PARAMETER ¢ #—————
E

v
EEEER
*CP *
* A2*

L

*
ERROR—
ILLEGAL
PARAMETER

v
EEEKH
*CP *

* A2*
* *

*
ERROR-
ILLEGAL
DELIMITER

o* WHAT IS ¥,
#NEXT DELIMITER ¥———

a o
*. ¥

XEREE
*BC *
* G2

v
HEKER
*CP *

* A2¥
* %

*
ERROR~-
ILLEGAL
DELIMITER

I
*BF *
* B5*
* *
*
ASF20 v
HREAHDSEEEEHRK
* INDICATE *

* ASF STATEMENT*
* PROCESSING IS *
* COMPLETE *
* *
FHEHHRHKRHERR

ASF22
RHXRHCSHFH AR KR RN
* RESTORE

*
* NAMES THAT *
* WERE DEFACED *
* *
*
*

*
I E KRN NN

<——

ASF24
XKD SRR KRR KR K
* *

#* DEFACE NAME %
* OF PARAMETER %
* IN DICTIONARY *
* *
XK HHHER W AR R

v
HHERR
HCN *
* ES*

XK

R
*BY * *BY *
* A1¥ * A4x
* % * *
* *
. .
. .
. .
GO X GOTO2 X i
RERERL]HHRH XER NN HHEREALE RN AR
GETWD CCE3 xR *GETWD CCA1%*
I s B B M) * * Fe kR R R kX=X —XZERO
* GET WORD *ee * AL Foeee X GET *
* T0 * X * * * STATEMENT * X
* * XXXRR EERR * NUMBER * XA
R KT R RRR *CP * EERRREREHRERRRRARE *CP %
+NON * A2% «NON * A2%
« ZERC * * « ZERO * *
. * . *
. ERRCR- . ERROR-
. STATEMENT . DELIMITER
. FORMATION . FCLLOWING
oXe X DELIMITER
B1 *o ERREHBAR XXX RRERRR
o% *o *LABLU CFA1%
o¥ NEXT *. NC L e T 2t
*. WORD eHeeosonna * LOOK UP *
*. TO o® * STATEMENT *
*, o ERRRR * NUMBER *
*e o *CPp * KRN RRR
* YES * A2% .
Xk . * .
* * . * .
*BJ ¥ eXe ERRCR- .
* A3 . STATEMENT .
HHRKE . FORMATICN .
GOTO oXe
. EERRRCIHREHARRIRE HRHEHCHEHERHAEHR R R RS
. * #*PLACE COMPUTED * *#PUTX COA3*
o¥* DOES *e YES * G IN AD * Rt ket Sk it g
oSTATEMENT ENDe®o . seeX AND LIBRARY * * PLACE I *
* o A DC . X . * ROUTINE ID * #* INTERMEDIATE *
#*4LOOP % HRE R . #* IN POINTER * * TEXT *
Fe oF ACP * . e T s Y FREEREHHELRRARR RS
* NC * A%
. * o* . . .
- * . . .
. ERRCR- - . .
. ILLEGAL . .
. END DO . . .
oXe . X X
D1 * o . EERERDIHERRRXHRERS ERREHDLE XN FRERXH
o ¥ *o . *PUTX COA3* *SKPBLK CDA2*
o Is #*. NC . e B Tt Sy L e Tt)
#eDELIMITER A e%escscecse . * PUT IN * * GET *
*e BLANK o % - * INTERMEDIATE * * DELIMETER *
*e o *%¥%¥ ERROR- . * * * *
Ho oF #CP #* ILLEGAL . HHHM RN ARRRRRR e s T 2
* YES #* A2% CELIMITER . . o
. * % . . .
. * . . .
. . . .
. . . .
. . . .
X GCTC1 o ¥ . X o Xe
HENRRE T HHERERRER *e . HEEAREIRRRRRERAXE E4 *a
*GETWD CCAL1® o *o . * * . % *e
H—R—Ho KR K - K- H-XZERO o¥ Is *o YES . *PLACE CONTENTS #* YES % 1s *o
* GET WORD * o CELIMITER o%eseacoe * OF REGISTER #X eee¥*s DELIMITER o%
* OR DELIMITER * « . * 2 IN ADJ * ¥*e A COMMA o3
* * * *o
P S e Y EEREERRRERRERERSR *e
«NON .
« 2ERC . . .
. . .
. X X
. EEERR *XXR
. *CP x * *
X * A2% * A4 ® .
HRHHKE | RN RHEERR * * * * Fa4
LABLU CFA1 * EERR ¥ .
LIS BN R T e) ERROR- o® 1s *. YES
* LOOK UP * STATEMENT * IF SWITCH *eesvocss
* STATEMENT * FORMATION * ON .
* NUMBER * *a ¥ ERERN
e et ®o o ¥ #CN * END MARK CHECK
- ¥ NO * B3%*
. . * ®
. . *
. .
. .
X o ¥ o Xe
EHRRRG T R HHH NN G3 *o Ga *o
* SET UP * . % .
* UNCONDITIONAL * - INTEGER *, . IS *e NO
* GO TO BYTE * MODE %X DELIMITER ccee
* FOR ADJECTIVE * X . .) . X
* * XXX *e o *a o %%%*% ERROR-
R e S T2 *CP * %o oF *o o ¥ #CP * IMPROPER
. * A2 * YES * YES * A2% DELIMITER
. * % . * *
. * . *
. ERROR- .
. MODE MUST .
. BE INTEGER .
X GCTO 5 X GOTO6
ORI] KRR RRR HEREFHIEREERERRRR HEEREHSRREARERE RN
PLTX COA3 *PUTX COA3* ¥ *WARNING CPA3*
e e e B i kSt T 8 * NEXT NO O e B Tt)
#* PUT ADJECTIVE #* * LACE I * CHARACTER *eoeesseeX® PUNCTUATION *
#CCDE IN INTER- * * INTERMEDIATE * . . - * IN GO TO *
#* MEDIATE TEXT # * TEXT * *eo R * *
RN NN R R R EEEEEERRERXRRERRR ®e o ¥ HRE RN ERENN RN RN
. - * YES .

.

eXaeeessseccencccccccccscccsocccccacsssccccscccocnsos

.
eXe
J1 * o
54 o
¥ IS *o. YES
*4DELIMITER ENDe*eoe
. MARK - ¥
e ok ERRRR
*e oF #CN *
* NC * D3*
. * *
o *
X
R XX
*CN *
* A3®
* *
*
.
Chart BJ. Subroutine GOTO

P R R R I e S R R R]

GOTO3 X
AERRE JAEFRR SR RXFR
GETWD CCAL1

L R et e

* GET
* VARIABLE
*

eXeoosocecccccccccccssscocs

*eooenans

XXX
HRFRRREEERE R XN XS *CP *
. N * A2%
«ZERO * =
. *
. ERROR~
. STATEMENT
FORMATION
GOTO4
HRHEHK G IR RER RN
CSORN CGA2#%

S e N Zoe e Y)

cecect ENTER *
* VARIABLE IN *
* DICTIONARY *

EREEERRERRE R NERR

Phase 10

113

Chart BK.

U RERRAKER R ERRE NN
ITX COA3%

B T e o e)
#PUT DO VARIAELE#*
*IN INTERMEDIATE®

X
ARRBRREERERARNB RS

*
*Xo 0
*
*

114

Subroutine DO

wxnnn e
*BK * *BK *
* Aze * Aax
3 Pt
. B
oc X X
REARRBAHR AR RN RRRN ERRRRALRRRRRRSR
H M M *
* pUT DO N IMMEGIATE *
* ADJECTIVE * ®ssscssnscccne INDICATOR *
* CODE IN ADJ * . : N
* * - 0 ST, MENT #*
HRRBRRERN TR AN R - - *ii*i‘*’*‘&‘ll
. : P :
: : P :
. : * aa x H
: : M :
: : nnn :
X . X
T - : P Se—
*GETWO carx . *GETWD catx
ZEROAS S ARk ek ow : $ 5 waei S8 N 2eR0
PP e GET * . * ' GET DO
X * STATEMENT * : * PARAMETER ¥
RN * - . * *
*CP » W NI T TN AN N . HRERREARRRRRRERRN
* A% . N . .
* * «ZERQ - «ZERO
* : . :
: : :
ERRQR-IMEROPER : N :
ATEMENT . . .
X - X
ARRERRC2HEHNRREERN . ii‘ﬁ*callil.il“"
*LABLY cFA1® . *CSOR ceaze
ot ik : o N e e 025
*ENTER STMNT NO.® : * ENTER DO *
* IN OVERFLOW % . * PARAMETER IN' %
: DICTIONARY
AR L3-S . RARAAAERNRRNRREE
. . :
: . :
: : :
. . .
oXe . X
02" s, : ERRRRDARRRHEERRRE
. . *#SKPBLK DAZ*
YES o : (Lt SR L
scscnccet, NO. ALREADV a* . * GET *
FINED o0 : * DELIMITER #
. e : M H
*CP * *e . P
* A2#% ' NO - .
* * . . .
* : . .
ERROR~ - - .
BACKWARD DO . - .
X . X
ERRRAEDRRERENEANN . ERERREGHERRRRRT BN
PUTX coA3 : T CoA3®
i L S S : ot L N Sl
ERROR-ILLEGAL * PUT ENTRY IN * : * PUT ENTRY IN *
ELI " TER #* INTERMEDIATE * - #* INTERMEDIATE *
H M : H M
. T2 S : LT P
*cp ¥ . . .
* azw : . :
e : : :
x : H :
NO . : .
poz0 . oXe . poso H
: FITTT —
. * RESET = *
. . : * 00 AND _ *
. - . * IMMEDIATE
OMMA . : * INDICATORS _#
*e . - - - * »
P *o ox : L ETPPrREE———
*"ves *"ves .
. . -
M e N M
x DO10 X -
wxnrrgy G2 .
EWARN' . CPA3% *GETWD. ccaz¥ .
* REDUNDANT *eeosesnseX¥ GET DC 'o'.'x* F1 . .
* CcCoMMA * * VARIABLE * .
H M M * :
«NON . *
zERo . .
- « NO .
X o¥e Doso oXe
EREERH2HRRNRRRR RN HE *- Ha *o
CSORN CA2 ¥ *,
R e D e .* DELIMI'ER T NO o% DELIMITER *,
* NTER *e RIGHT e#Xesoosonay NI o®
* VARIABLE IN ¥ %, PAREN _.» %o MARK o
DICTIONARY *. R " o
IR0 0 P *e o
. *"ves o x"ves
. S 4
X B X
"*"JZ“"“!"* Ja *o
#SKPBLK c o .
bl S L4 NO_ ¥ wo_ e
* GET * esscscaat, PARAMETERS ¥
b DELIMITER - X *¢PROCESSED.*
H P * o
FrnRrEEEERRRR RS xch % PR
N * A2% * YES
. - * -
. ERROR= .
. INPROPER .
b STATEMENT X

B e et L]
PUTX COA3
B ot - Stta)
* PUT IMMEDIATE %*.ccee
* PARAMETER *

T e e

*esesseas

*
RROR—

ILLEGAL
DELIMETER

XX WK
*BL *
* B2*

Xe o o

IF

I3 3 3 B2 % 3 33X M E I

*SKPELK DCA2%
o AR KRR K%

* GET
* DELIMITER
*

*
*
*

363 3 3 I 363 I I I X3 K3

Xe oo o0

.
c2 *q
o

-
%o o
*e o %

Xe oo o

FRXERD2 N EHNNN
* *

* SET
* IF
* SWITCH
*
363 3 36 3 I 3E I I 3 X H X
.
.
.
.
.
.
X

KR 2N XN
*

* SET

* GO _TO
* . SWITCH
*
*

3*
33 3 3% 3 I3 3 3% 3 €%

Xeo 000

o 1s "
*. DELIMITER
(o*

e¥soc000ses

E2T 22

®*CP *

x A%
* ®
*

ERRCR-
STATEMENT
FORMATION

*
*
*

*
3*
*

3 K2 R XXX NNXH®

PUTX COAZ
E R R Rt B B

* PUT IF
* ADJECTIVE

#*# COCE IN TEXT

3*
*
*

33 36 36 3 I I I I I 3 I I R XA

-
.
.

X
2212
*BD *
* C3Ix

* ®

*

Chart BL. Subroutine SUBIF

Phase 10

115

wxuin
*BM ¥
* Alx
*
*
cALL X
FREREALREE AR
PUTX COA3
B o Yo b}

* PUT CALL *
*ADJECTIVE CODE *
» *

Xeoooen

EREEED] REEERREERE
'GETHD CCA1*

—X—%— %R E—_¥_¥ZERO
. GET NAME OF
* SUBPROGRAM #

*

- »*
B e atd

12ER0

Xe o

HRRERC L ERER RN RRE
GA2*
a_;-a_u_a
* ENTE E
N DICTIoNARV :

HREEEERRIAE RRRRRE

Xeoene

ERREED] HE R EAE KRN

SET_TYPE

LT L]

*
»
* SUBPROGRAM
*
*

L R T

Chart BM.

116

wenEx Anrnx
*BM x
* A2%
*
*
SUBRUT X FUNCT
ERRRRADERRERRR
INDICATE *
* SUBROUTINE % s *,
7 SUBPROGRAM 1S «X%*o. THIS_FIRST o
* *.STATEMENT. % X *
% compileo = * * ExxRx
* e ox wcP %
YES * A2% * A2% * YES
. % . .
. * .
. ERROR- ERROR-!LLEGAL .
. HEADER CARD DELIMITE .
. NOT FIRST .
FUNO4 X SUBRO3 X
ERRERBIEEERREREER EEEREDSHREERERERE
*GETWD CA *PUTX COA3*
R Rk K—%—%—¥—%ZERO B o el
* GET * * ENTER *
* SUBPROGRAM * X % SUBPROGRAM %
* M * rExRn * NAME IN TEXT
RRAEEERREEEREEERE *CP % PR L
«NON * A2k .
«ZERO * .
* - * .
ERROR- . RROR- .
ILLEGAL . ILLEGAL .
SUBPROGRAM . SUBPROGRAM .
NAME X NAME X
EXRRRCIRREXEERRER HRERRCSHRRERLRERE
CSORN CGA2 *GETWD CCA1x
O et et ZERO#—%—%—%—R—¥—_X—%—%
* ENTER NAME = sesescec® GET *Xeo
* IN DICTIONARY * X * PARAMETER *
* * reERR * *
EEEEREREARERIRRS xCcp * EERREERRERAERRARS
. * A% .
: = * «ZERO
. * .
. ERROR- .
. ILLEGAL .
. PARAMETER .
oX SUBRO6 X
- EEEREDSEXEEEREEAR
*CSORN CGA2#
o « NO iR S PP Tt
. SUEPROGRAN ¥ecesanos * ENTER *
ME ~ o% * PARAMETER IN %
-VALID- [t * DICTIONA
He oF #CP * i{li‘ﬂilli!ﬂi..'i
* YES ® Az .
. * * .
. * -
. OR- .
. TLLEGAL .
. SUBPROGRAM .
X NAME X
FrerrEITxeresauxe ERERRESRAERRRERER
H *#SKBL| DA2*
IMPLICIT OR % B S PTEEtuu
3 EXPLICIT MODE * GET *
* IN DICTIONARY * * DELIMITER %
* * » *
ARRRREERRERERRREE REEREEEERRRIERER
ERREAFIRARARRRRER FS‘
* INSERT NAME = * l.COMMA
» INTO * OTHER % AT
#COMMUNICATIONS * sesaces OELTMITER ~iw.
* REGION * X o
* ExEnx “x. o
AEERREEAERRERERER *cp * e o®
. * A2 ")
. % .
* .
ERROR= .
DELIMITER .
ERRO! .
SUBRO9 x
FRERAGSEREREREERE
GETWD CCA1
ZERO®—%—%—%—X— %Nkt
* GET * cseacsne® GET *
* DELIMITER * X * END *
* * wrxan » MARK *
AREEXIERRTRRRERLR *CN * B e
. * B3% «NON
N * «ZERO
* .
END MARK CHECK .
X
EREERHSREERREARER
WARNING CPA3
0 o%° KW R KR R—E_ A%
eeeecesensenenasnonl SUBROUTINE * SOMETHING %
. *SUBPROGRAM * * SUPERFLUOUS *
. *. . - *
. e W% ARRREERERERRRRNER
. * YES .
. X
M ExxEx
. *CN_*
FUN10 X SUBR20 X * B3%
HEARRJOAERAERAEAE AREEXJIAERERREEER *x
* INSERT * * INSERT *
* FUNCTION * * SUBROUTINE %
* ADJECTIVE » * TADJECTIVE *
= CODE * * CODE *
* * * *

Subroutines CALL,

FUNCTION/SUBRTN

XX W
*BN *
* AL1¥

Xeo o0

READS
HABIRA LN RN R RN
* *

* SET UP READ
* ADJECTI VE
: CODE

¥k

LT IR T R T T
.
.
.
.
eXeoessoe
.
X
HARHRD] R AR KRR
INDICATE *

*

* READ/WRITE %
* STMT IS BEING *
*
*
*

IR RRR

Xesse e

R LR RN
*SKPBLK CDA2%®
L T i Dot)
* GET *
* *
* DELIMITER *
R T e e e T 2

.
.
.
.

o ¥ Is *o
*o DELIMITER %
% « *
*e ¥
X o¥

Xo oo 00 %

FHHHE] KK HRTHAR
*GETWD CCA1R
LS B et Bl Bt B Tt T
* GET DATA *
* SET REFERENCE *

*

*

I KRR H XN
«NON
«ZERO

Xe oo

MR] AR KRN HER
CSORN CGA2
R M I B
* ENTER DATA *
SET REF NCe . *
* IN DICTIONARY *
LR e

ET T T
*#BN *
* A2#

Xe oo

WRITE
A AR NN RN AR
*

SET UP WRITE
ADJECTIVE
CODE

TS

*
*
*

* *

Er T)

.
.
.
.
eescescscecscccccne

NC
sevccesce
X
XX
*CP *
* A%
® #
*
ERRCR-
LEFT FAREN

MISSING AFTER
READ/WRITE

ZERO

AR
*CP *
* A2

*
ERROR-
ILLEGAL
DELIMITER

.
.
.
.
.
.
.
*Xe
H1 * o DK KN R K TR KN HRN WS KRN N
o *o CHANGE * *PUTX COA3* *PUTX COA3*
o 1s YES * ADJ COCE * Lt B et L e T i e et
¥+ DELIMITER sescscceX¥ FROM BCD LR RRY & PUT ADJ *oeesecns sssesecce*® PUT FORMAT *
*o ¥ * TO * * CODE STMT NOe *
*o o¥ * BINARY * * * XK KK XN * IN TEXT *
X oF LR e TR XA R *BC * *BC * L e e T]
* NO * G2¥ *. G2% X
. * # * * .
. * * .
. .
. .
. e YES
o Xe READ1 . o¥a
J1 * HRRE PN X W RN R NN R TR R HHRRR HHRAE JO KR EHRN R Js *o
o* *o *PUTX CCA3* *LABLU CFA1%® *SKPBLK CDA2* o *o
o 1s *o YES it bttt D B Tt o T e e o el LI R Tt R B o ¥ 1s *o
*e DELIMITER e%ecseccoeX¥ PUT ACJ * * ENTER FORMAT *oceeeeeeX¥® *o eeX*s DELIMITER %
*o COMMA % * 'CODEs TYPE * * STMT NOe IN * * GET * *o) .
o o * AND POINTER #* *OVERFLOW TABLE * * DELIMITER * *e o*
*ao o LR e e e e LT *, o
* NO . X #* NO
. . . .
. . - .
X . . X
R R . . HNER
*CP * . . *CP *
* A2 X . * A2%
* % HERERKERRRANNE RS . * *
* *GETWD CCAl1* . *
ERROR- ZERC¥—#—R—R—%—%-%-%-ANON . ERROR-
ILLEGAL secccceek GET *eosec000ccscccanse ILLEGAL
DELIMI TER X * FORMAT *ZERO DELIMITER
bbbl * STATEMENT NC. *
*CP * R e e e T
* A2

* %
* ERROR-ILLEGAL DELIMITER

Chart BN. Subroutine Phase 10 READ/WRITE

Phase 10 117

CON

CONT

Chart EO.

xR
*BO *
* A1%

Xe oo

T
R RIA] RN NN NN
* uP
CONTINVE
ADJECTIVE
CODE IN ADJ

IR IR RN RRR

% % ok ok
EE RS

Xe e s e e

“x. XX RHPIEIE NN RN RN
WARNING CPA3
RN Tk Yt e
NC STMT NOC. *

.
B1

o% DID %,
e*¥THIS STMNT % NO
*¥eHAVE A STMNT e*eeesceeeX¥
*

*o NO. % FOR_CONTINUE %
*o o * STATEMENT *
*e oF PR E R I T T T
* YES .
. .
. .
. X
eXooseoeecscessacsessssccesscssccrscccccccnsssocscccce
1
FHIHEERC TR XR RERERR HHHRRC2E RN NRI NS AN
GETWD CCAl *WARNING CPA3%
Fm N B WK K = KNON B e s
* GET *oo SOMETHING *
* END *ZERO * DANGL ING *
* MARK * * *
P N et AN KIN NN RN
. .
. .
. .
. .
. -
. .
oXe X
D1 * g D2 NN NN
¥ *o *SKTEM CCA4*
¥ *e NO LR ST 2 B T N P
. END e¥ce00e * SKIP TO *
#*o MARK ¥ * END MARK *
*q ¥ * *
*eo o¥ EIZT 22T TR TS Y
* YES .
. .
. .
. .
eXeoossecccesscscssscccscsnse
.
X

I HRHE] RN NN
SET POINTER

* *
* *
* TYPE TO *
* ZERO *
* *
#* %

F RN KKK XN R

Xe oo

R R] KK HIHN NN

PUT
* ADJECTI VE *
* CODE *
L e T e]
.

X
RN
*#CN *
* D3%

*

118

WX

RETURN

HERREKAIEEREXXRHRR

* SET UP *
RETURN

* *
* ADJECTIVE *
* CODE IN ADJ %
* *

*

NI IR NN A KR

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

EEE L 2] L2 22
*BO * *BO *
* A4 * AS*
* x * *
* *
. .
. .
. .
sTOP X PAUSE X
HRRERALFHHHRHRRRER RREERASHRRERXRERR
* SET UP * * SET UP «
* TOR * * PAUSE *
* ADJECTIVE * * ADJECTIVE *
* CODE IN ADJ * * CODE IN *
* * * *
ERZ IS SIS SIS T EREERREARXEREREXRRES
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
eXeosossesosecescsccscscane
X PAUSEA
FRRRRCHEHNNE RN
*GETWD CCAL¥

Hm KR R R R — R’ — % ZERO
#* GET NUMBER, %o
IF PRESENT *
*

* XRER

WK RI AR *#CN
. * B3
«ZERO * *
- *

Xe oo

HREERDLEE AR KER AR
CSORN CGA2
L e e]
* SEARCH FOR *
: HALT NUMBER :
HEEEREIHERREREE RS

.

Xeesosoe

HEEEREAREEXREER XN

PAKNUM CFA4
L Dt B s s

* NUMBER *
* INTO POINTER

.

.

.

.

.

PAUSE1 X
FRNRRF LR RN TR RN RN
#PUTX COA3

L B e e e =
* PUT ADJECTIVE %
* CODE _IN *

* TEXT *
HEEERRERHRRE XN
.

X
LA s]
*CN *
* A3%

* *

Subroutines CONTINUE/RETURN, STOP/PAUSE

*
*
*

ERRNR E2 2223
*BP * *Bp_*
* A1¥ * A3
* * * *
*
. .
. .
. .
END X %, ENDFIL X
FERRRA] HERERRR RN A2 *g FHERERAZHERR R RRER
*GETWD CCAl% o *. * ET UP *
EoE—A—E—X—X—X_X—ENON o s *. YES * END FILE *
* GET ¥eesseceeX¥e 1T e®ececeseeX* ADJECTIVE *
* SyYMBOL *2ERO *. FILE o% * CODE IN ADJ *
* * * *
E2 2222222222 222223 o ¥ Ea 2222222222222 2]
«ZERO * NO .
. . .
. . .
. . .
. .
. .
. .
. .
. .
. .
- .
. .
. .
. .
. .
. .
. .
. .
X DANGLE X
FERRRC] HH RN HXN EEEFRC2ER XA RN XN

* INDICATE * *wARNING CPAZ*
* END OF PROG #* L e e e R i
* IS REACHED #Xeseeosee* SUPERFLUOUS *
* * * INFORMATION *
*
*

* * *
HEEEERRE AR AR HAEENERRERRRRRENR

Xeoos o

END1
HERRED R RE XHRXRE
#* SET ADJ CCRE

*
* TO END. *
*ZERO MODE/TYPE *
* AND *
* POINTER *
EEEEERREXRR HRXRHE

Xe o e

END2
HAREAE] HH RN EEE RN
PLTX COA3
L B et i o
* PUT END *
* ADJECTIVE *®
#* CODE IN TEXT *
EREEEEFRRRENERRRR

.

*X R
*CN * .
* B3*

* ¥

*

Chart BP. Subroutine BKSP/REWIND/END/ENDFILE

R RRE

REWIND X BKSP
HERRRASERX XA RRRER

FRERRALERER RN RN
T uP *

*

*
* REWIND * *
* ADJECTIVE * *
* CODE IN ADJ * *
* * *
I T *

.

.

ENDFL1

X
FERRABLRAREERRE RS
GETWD CCA1
Fm KR KRN —R—%—%Z2ERQ
* GET DATA *eesscces
* SET REF * X
* NUMBER * X H R
PRI T TR T %*CP *
«NON * A2
- * *
*
. ERROR-
. IMPROPER
X STATEMEN
HEERRCHARRRRRRRAR FCRMATIO
#*CSORN CGA2*

L e e St T O
* ENTER DATA *
* SET REF NQOe. *
* INDICTIONARY *
TREXREREE R TR AR

Xe oo

FREXRDGFRARER RN
PUTX COA3
R e e it Dt St I
* PUT ADJ CCDE #*
* AND DICT ADDR *
OF UNIT IN TEXT
HERERERRERAERERR AKX

.

.

X
EXER
#CN *
* A3

* ®

*

ERERR
*BP *
* AS®

Xe o0

ET UP
BACKSPACE
ADJECTIVE

*
*
*
CODE IN ADJ *
*
*

eeccccccscscsssccccsscssseXeXoooososocscccccccccccccccse

T
N

EXRERERXEERRR RS

Phase 10

119

NN

CIM

*o
e¥oseececeX
o

%, SEQUENCE

*o ERROR

CIM

CIM

XX XX
kRN

DIM32
XERERD2HE X RN XX XN
*DIMSUB cMB2
L et
PROCESS
CIMENSION *

INFORMATION %

AXERXEERRAERRR NN

NS ION

*
*DIME
*X

*
*
*
*

Xe oo o oo

HEHHRE] R RIRHNR
WARNING CPA3
LRt e T B e e T
* MISSING

* COMMA

ERRERE2 R HER AR NN
CETWD CCA1
NON¥— ¥R lm N — N F e N ¥
*¥Xeooseooek
ZERC*
*
R e e a]
«ZERO

GET *
DELIMITER *
*

* *
RN NN HI NN RN

MA

s e s e essssscssssss s e a0

eoe

Chart BQ. Subroutine DIMENSION

120

EERE

*

*BQ

* A3% coe

ERER . .

o1 X .

ERREAATHRRERRRRRR HHEERALREHERNRERE

GETWD CCA1 *RCOMA CNA1*

Fm R R R KRR X% 2ERO L et L L U B

* *eoeeoseee X¥ CHECK *
* * REDUNDANT *

GET VARIABLE
*

* COMMA
HEREEEREHHREREHRR HREEREEXEERRERNRRR

«NON
EERR «ZERO
* * -
*BS *.Xe
* B3% -
% XE .
31 X
EE S R R 2 S s
#CSORN CGA2
B e e
* ENTER *
* VARIAELE IN *
* DICTIONARY *

EREEERERERERXXARR
.

.
.

34 X

EREARCIRRRXRHEARR

SKPBLK CDA2

I R s T)

* *
* GET CELIMITER *
* *

EHRRREERERRRRARER

EXPLICIT ¥ *e
FeoseoeseeX¥,
SPEC

. HAS

*o MODE BEEN
DEFINED
. .
Fe oF

NO

*o .

®e oF
#COMMON
.

X
EXHER
*BT *
* F2%

* *

*

*
.
.

..

DOUBLE %

PRECISION
¥

E4
#*
¥
*o

*o
*o

X
HERERFLXRERRRRE
SET MODE

DEF INED
BIT IN
DICTIONARY
*
AR SRS L L L LS L L
.

*

*
*

*
*
*
*
*
*

Xe oo oo

F W NN GG NN NN NR
* ENTER NEW
* MCDE IN
* DICTICNARY
*
*
*

*
*
*
*
*
*

LRSS 22 SR 2]
LR .
* *
*oeXe
.
.
«Xe
*o
*o

*BQ
* Ha®

HHE R
DIM33

¥

DELIMITER

*eeseesse X¥

YES

*%%%% ERROR-—
*CP % MULTIPLE

* A2% DEFINITION
* *

EERRKESHXRRXRNRHR
* *

YES * CHANGE SIZE *
OF ARRAY *
DICTIONARY *
*

E]

* IN
*

.

HER RS HEH RN RN XN

Xeeoeoeo

IN OVERFLOW
ABLE

*
*
*
*
*
LR T T e L

*
*
*
*
*

EQUIV
RN R AW N RN R
o¥ HAS % * INDICATE NC#*
«*EXECUTABLE *o NC * - SUBSEQUENT *

*o STATEMENT
#*¢BEEN PRO-.%*
*CESSED *
* *

. .
* YES

X
KRR
*#CP *
* A2*

* ¥

*

ERROR -
SEQUENCE

Chart BR.

eXeeoeeee e X¥CIMENSION STMTSH*
* ARE TC BE #
* FROCESSED *

3NN XN RN

N RB2H NN HAE RN AN
*SKPELK CCA2%
Lt T B Tk e O 2
* GET *
* CELIMITER *
* *
I NN

Xe s oo

EGUO1
W AHRC2H N H RN KRN

X RN * INITIALIZE *
* * * REGISTERS *
* C2 ¥oaeeX¥ AND *
* * * COUNTERS *

RN *

NI R RN XK HH

* *
* A4 *
* *
X
.
kKRR -
*BR * .
* A4% EQUOS X
* * I AL NN R R
* * PUT *
. * INFORMATION *
ceseaasX¥ INTO *
* EQUIVALENCE *
*
336 33 3 3 IR R

NO

R

ES * *
ceeX¥ E2 *
* *

X%

ceecee

.
.
.
.
-
.
.

. .
. .
EGUO2 Xeo X
*, HRHNKDL KRR XRR KRR
o ¥ *o * PUT ELEMENT %
Is #*e NO * CCUNT INTO *
DELIMITER e%eeccscccscaces . * EQUIVALENCE *
. « . o * TEXT AND *
*o o . *ADJUST PCINTER *
*e o . I RN H .
* YES . . .
. . . .
. . . .
. . . .
eXeoososessc0cececsccsccccnccae . . .
.
EGUOS X - . X .
EAXRREQREHREXNRAR EERFRED . E4
LA *CETWD CCAl® *RCOMA CNA1* . *GETWD CCAL* .
* * KRR RN N—-X—X-XZERQ e e Dt = I . Fm R R B W N—H—XNCN
* E2 ¥eeeeX¥ secceccaX¥ CHECK *Xeoeo * GET *¥oeeeXe
* * * GET VARIABLE * * REDUNDANT * * COMMA *ZERO o
X * * COMMA * * * .
KRNI NN NRRH *% .
. «NCN « ZERO .
«ZERO . .
. . .
. . .
. . .
. . .
X EQUOB e¥a EQUO7 oXe .
T T T F2 *, Fa *e .
* INCREMENT * ¥ *o o ¥ *o .
* ELEMENT * NO o *e NO % .
* COUNT FOR * cos¥e (e*¥Xesooassaks COMMA ok .
* THIS GROUP * - *. o¥ *o o* .
* * . o* o
S X o o .
- XX NR * * YES .
. *CN * - . .
. * C1% . o .
. * % . . .
. * . . see
. . . .
X RCOMA2 X X .
I G2 NN HRRR HRRERGD G4 .
#*CSORN CGA2% *WARNING CPA3#* *GETWD CCA1*
B s Tk T g e B o o Fo R R X R B K K—ENON o
* ENTER * * MISSING * * GET (¥eesesscee
VARIABLE IN # * COMMA * * *ZERO X
* DICTIONARY * * * * * RN
NN NN IR NN BTN R R *CP #
. . «ZERO * A2%
. . . * *
- . . *
X X ERROR
. XWX R DELIMITER
. * * * * ERROR
X * C2 * * C2 *
R NN NN AN * * * *
ASKPELK CCA2%* XXX EET L]

LT DO Bt T B Y
* GET DELIMITER *
* *

* *
R e TR
B

Xeeoos

EQUC3
EAEE I NI EE S22 22T 3
INSERT SIZE *
OF ARRAY OR
* SIZE CF *
* VARIABLE *
* XT *
ERE SRR RS2 2L
.

*

.
.
.
.
. e
EGU10 eXe
K2 *e
o *e
YES o% 1 *
eseeceee*s VARIABLE
X #*DIMENS ICNED*
RN . -
*BS * Hy o
* A3% *
L
*

Subroutine EQUIVALENCE Part 1

Phase 10

121

RRER

.
.
X

ERROR=-
DELIMETER
EQU20 ERROR
HEAXABIRFRRRXRARR
GETWD CCAL
Fm N N— NN RN K—%ZERO
see X GET
. * PARAMETER
. * * HRH R
XREH IR N K ERNE *CP * -
«NON * A2%
«ZERO * *

*eoeoeccne

- *
. ERROR-

. DELIMETER
. ERROR

X
HREXRCIHHERRNHRRR
INTCON CGF2#

D et SEL N DL
* CONVERT *
* INTEGER *
* *

.
.
.
.
.

EE e T

Xe oo

HHRERDIHRER RN RRNR
* *

* *
* CCMPUTE *
* OFFSET *
* *
#* *

seee s e es st

RN R KNERN

Xessoon

.
.
.
.
.

X RE TN RN
*

*
* INCREMENT *
* SUBSCRIPT *
* COUNT *
* *
* ¥*

FHEHERERER RN
.

.

Xesoon

HEAEEETHEERTHERR N

#SKPBLK CDA2
Fm R Hm N W N N N N
* *

GET
* DELIMITER *
* *

R e T e e e T

R

.

*e NO

e¥eosesces
X

ERERR

%*CP *

* A2%

* *
*

ERROR-
ILLEGAL

DELIMETER

o *o
YES o% SUBSCRIPT *.
COUNT

o¥e o*

X
EERRR
*ER *
* A4x

K3

. ¥ *

YES % SUBSCRIPT *. NO
ceseceac¥s COUNT EQUAL <¥eecseces
X F DIM % x

*NOe. O
ERXRR *, o ERERR
*BR * Ko oF *CP *
% A4 * * A2% ERROR-
* % * *SUBSCRIPT
* * ERROR

Chart BS. Subroutine EQUIVALENCE Part

122

Form Z28-6620-0
Page Revised 1/11/6¢6
By TNL Z28-2117

COMMON
*.
o* *e
o* 1s *o NO
*STATEMENT IN o ¥———qy
*.SEQUENCE % v
*g ¥ RN
*e ¥ *CP *
* YES * A2%
* *
*
ERROR-
SEQUENCE
ERROR
Ve
B2 *.
o* *e
NO % 1s *,
r——————%. DELIMITER o%
v *o BLANK o%
L2223 * g ¥
xCp * e o
* A2% * YES
* ¥
*
ERROR-
DELIMITER
ERROR
v
RS Rt 2 222 22T]

* INDICATE TO*

A _COMMON *
* STATEMENT *
R I T T 2

v
**%¥%XTO SUBROUTINE
*BQ % DIMENSION
* A3%
* *
*

*R XX XFROM SUBROUTINE
*BT * DIMENSION
* F2%
* *®
*

comMo1 Ve
F2

%o
*o
o is *o YES
*o TEST AREA o ¥—————m
*o FULL o v
*q - W NR
*e o *CP *
* NO * A2%
* %
*
ERROR
COMMON
TEXT FULL
Ve
G2 *e

% IS *
«* VARIABLE YES
*o A RESERVED _o¥—————
RD o

*e WO v
*e . XX H
o o *CPp *
* NO **AZ*
*
*
ERROR INVALID USE
OF RESERVED
WORD

v
W 2NN
* ENTER *
* DICTIONARY #
* POINTER AND #
*NAME LENGTH IN *
* COMMON TEXT %
W B3NN I KN W

v
ERRRR
*3Q *
* Ha®

* %

*
DIMENSION

| Chart BT. COMMON Routine

Phase 10 123

FORMAT

FMT1

FMT2

33 % 3K

W ADKE KN H NN KRN
OVERLAY END
* MARK SET BY
* GETWD SET
* END MARK 1IN
*
*

*

COLUMN 72
LT TS S TT 223

Ve
8z *e
o%* DID %,
«* STATEMENT *., NO
*¢ HAVE A STMT o%—
*e NUMBER %
*eo .
Xe o
* YES

* kK ok Kk Xk

v
*****c2¥*********
* TYPE *
* STATEMENT *
* NUMBER *
* AS FORMAT *
* *
* *

396 36 3t 3 36 36 ¥ 3¢ 9 3 KR

|

v
EHERHDHHRRHRH AR
PUTX COA3
[
¥ PUT FORMAT *#<
* ADJ CODE IN *
* INTERMED TEXT #
L e s T2 2

v

363636 3 3 £ 2 % 3 3 3 3 3 *
PUTX COA3
o e W — e W e o e I

>%¥ PUT NEXT *<
* CTHARACTER *
* IN TEXT *
3 3 3 3 3 3 3 36 3 I X K

.
P —
.

PUTFTX
WK HE] RN H R RRN *q
* UPDATE * o ¥ | *eo
* INPUT AND * NO % WAS *e YES
* QUTPUT EL—— —%*o CHARACTER %
* POINTERS * *¥oEND MARK o%
* * *q o*
F 3 I I KKK KKK He o

Chart BU.

124

*

Subroutine FORMAT

FMTWRN
BB NI XX N
WARNING CPA3

Hom K N e K e H W
>* NO STMT NO. *
* ON FORMAT *
* STATEMENT *
e s e

HRRHEREIHRHERH RN
ADJUST INPUT *
POINTER TO *

THE CARD *
*

*
*
* COLUMN 7 OF #<——
*
*
*

3 3636 3 36 9 36 363 I 3 3 3 3%

FMT3
HRHXRFIHHE RN RER
¥GET CRA3%*
L Dot T e

> % GET NEXT *
* CARD *

* *
¥ 33 I3 I XK

REPEM
HEERREL X RNRHHHERR
* OVERLAY END
* MARK SET BY
GETWD. SET
* END MARK IN
* COLUMN 73
KRR XK

e

K ok ok k Xk Kk

I YES
o e
Fa *o
«* IS *o
¥ THIS A *o
>*¥ e CONTINUATION %
#*o CARD
*q o ¥
*o o

ok

*
NO

—

3636 3 3% 3G 4 3 333 N3
ADJUST *
OUTPUT *

POINTER TO A #

*

3

*

Aok % ok K Kk
mn
=
r
r
=
o
v
o

333 I IR R

HHEXH
*#CN *
* D3*

.
EXTERN oXe
2

% 3 3 % 3
*BV *

< * o
o ¥ * o
+«¥*EXECUTABLE *. YES
*STATEMENT BEEN *eseeececee
X

* e PROCESSED« %
*o o *% %% *ERROR—
¥e o¥ #CP *SEQUENCE
* NO #* A2%ERROR
o * ®
N *

-
eXesoeoecsscssssscscccssscas
. .

EXTO1 X o
RRRRNBINRXERRF RS * HHEHXBLRIE RN KRR BN
GETWD CCAL1 #*RCOMA CNA1#*
KR H e R R R =R —X—%ZERO O T T e e)

ceeX¥ GET NEXT ¥oeeeeceeeX¥ CHECK *

* SYMBOL * * REDUNDANT *
* * * COMMA *
R HREEHEXEREHERRRRN

«NON

«ZERO

.

.

.

-

EXT1 X
ARERRCIARRERRERRR
#CSORN CGA2*

Hom e R B W WK

© % 0 0 0.0 008000060 0056000000000 00080000000 EL0 0000000000000 00s0000000800s0000000

* ENTER SYMBOL *
* IN DICTIONARY *
*

*
K KRR AR REN
.

Xe aos e

eXe
D3 *o
o¥* I *o
o%* SYMEOL *o YES
%o A CONSTANT oe%eececceccce
* X

. .
*q o R KR
Ko ol *CP *
* NO * A2
. * %®
. *
. ERROR-
. IMPROPER
. SYMBOL
eXe
E32 *o
«%* REAS ¥,
ok TYPE *o YES
*o BEEN e¥ooecccsne
%o DEFINED o%
*o o ¥ KRR XK
e o *CP *
* NO * A%
- * %
. *
. ERROR-
. MULTI-DEFINED
. SYMBOL
X

FEAXRFIRERRXERRHNR
* SET TYPE TO *
* EXTERNAL NAME *
* AND SET BIT %
* INDICATING AN *
* ESD CARD *
EXEEEHRRXK KRR RHRR
.

Xeo oo 00

HHERRGIHRH KRR KA
#SKPBLK CDA2#
L e ek t BEL L B
* GET *
* DELIMITER *
* *

33 36 3 3 36 36 I I X I X E AKX

Xs oo oo

* *.

. .

eYES o% Is *o

esee*e DELIMITER o#%
COMMA

*q o®
*q o
*e o
* NO
-
.

X
X KK R
#CN *
#* D2%

Chart BV. Subroutine EXTERNAL

Phase 10

125

EE 2 2]

* *
*BW Yoo
* Al% .
3% 3% * -
INTGER X
LR XL LTSRS SRS RS
* INDICATE *
* INTEGER MODE #
* FOR THIS ¥eo000e
* STATEMENT

* *
3 3 36 3 3 3 I I I W * X

L2 2 2]
* *
*BW *eee
* Bl .
HRER .
REAL X
RN NE] NN NN NN

INDICATE *
REAL MODE *
*oosee

STATEMENT : .

36 3636 3 3 36 W 3 I 6 X 3K *

%%
* *
*BW Xeee
* C1* .
HHRR .

DOUBLE X
FRAHNC T R RN XN
* INDICATE
* DOUBLE
*PRECISION MODE
* FOR THIS
* STATEMENT
LA ST R S SR 22 2

.

L E R EEE

Xoe oo oo

XM HD] K RN R KR
GETWD CCA1
ZERO¥ —%—%— % — % —% = %—%—%
cceek GET *
3 * NEXT *
* SYMBOL *
B R e T

o *o

¥ IS IT %o YES

*oe PRECISION o¥scee
*o .
*o o

*o

© 0006000000000 000060000600000000000000000003XeX000000000000

o
* NC
.
eesccsccesXe

60 ec00 0000000000000
m
-
*
.

L 2 2 2 3
*CP ®
* AD®
* %

*
ERROR-
STATEMENT

v FORMATION

Chart BW.

126

REAL1 oo

2 *o
o* DOES %,
«* STATEMENT #*. NO

3 3 3 3% 3¢

BI%ERRERN

#* SET UP TYPE#¥

* IN

eeX¥%e HAVE STMT e*eeeeeseeX*FOR
*eo NO. o X * F
*, ok . *
*e o . RN R
* YES .
- . .

. .

. .

. .

. .

X .
XRHRRC2MN NN NN R -
WARNING CPA3 -

L R e e e b D B .

STMT NO ON *oeee
A SPECIFICATION¥
* STATEMENT *
LR 2 222 S P S R L]

Subroutine INTEGER/REAL/DOUBLE

o¥e
B4 *o
o¥* HAS %,
+*EXECUTABLE *. YES

DICATION

SUBROUTINE *seee0eee X¥STATEMENT BEEN ¥ceeccecce

UNCTION/ * *oPROCESSED < %* X

SUBRTN * *o o L2 2223

HRIRRE R AR e o %XCP *
* NO * A%
. * *
. *
. ERROR-
. SEQUENCE
. ERROR
X

HERRRCHREXIRERRRR
GETWD CCA1

KR k—K—N—%—X-%ZERO
* GET NEXT

*eoeecsce
*

* SYMBOL
* * E2 22 2]
E2 2222222222222 22 *#CP *
«NON * A2%

« ZERO * %
- *
. ERROR-
. ILLEGAL
o DELIMITER
X
D4 *,
¥ IS %,
«*THIS SYMBOL*. YES

#*#e THE WORD
#'FUNCTION® *
%, o

e¥eoescace

22T Y
*e o ¥ *BM *
* NO * A3
. * *
- *
. TO SUBROUTINE
. FUNCTION/SUBRTN
.
X
WL WK RN

* INDICATE TO%*

*
% THE TYPE OF =*
#*
*
*

36 3 36 3 3 3 3 3 36 3 3% 3¢

3% % %%

#BS *

* B3%
% *
*

TO SUBROUTINE
DIMENSION

EHERR
*CB *
* A3%
* ®
*

.
.
.
START X

MR ATRIK KR AHKR
*

INDICATE
PHASE 10 IS

IN CONTROL

REERREEAERARRERRR
. -

EE TR 2
K K

Xe oo oo

EERRERBIFRRERRRRIRR

* REWIND *

EEERREEEHAERR

Xe oo oo

XERERCIRFHREXREREH
*

SETUP 1/0 *
BUFFER *
CONSTANTS *
*

*

LE R RS

I NI N A R
.

Xeoooe

HHERRDIHERARHERRR
*

MOVE *
ENTIRE RESIDENT#
* DICTIONARY *
* ABOVE BUFFERS *
* *
HHHE AR AR RN

.

Xeesoae

ERREREINRRNRHHXRR

* RELOCATE *

* POINTERS IN *

««X*¥DICTIONARY AND *
* THUMB INDEX #*
*

*
EEEERERERERNERRE

.
ALL CHAINS o%
*oRELOCATED <%

. .

o o¥
YES

Xe o oo e %

HERRRGIHFEXRRFRXR
* SET UP *
*COMMUNICATIONS *
#AREA INDICATORS®
* AND ADDRESS #
* CONSTANTS *
2 e e e e L]
.

.

.

.

.

.

X
EREERHIEERERRENNR
* SET uP *
* REGISTERS *
* FOR_I/0 AND *
* TABLE *
* POINTERS *
HERERRRREERRNRRRN

Xe oo oo

AR I NEL2Z2 2]
* *

PRIME
BUFFERS

* Wk K
.ok ok

REERRREERERRNERRN
.
.
.

X
EEERR
*BB *
* Al%

* *

*

Chart CB. Subroutine Phase 10 HOUSEKEEPING

Phase 10

127

EX 2 223

#CC *

* Al
3 %R * * -
* * *
* Al %.Xe
* *

R H .
GETwWD oXe
Al * o . A EADER KN E NN
o *e * *
. * SAVE POINTER *
. CHARACTER eeeX* FCR LENGTH *
. #o . BLANK o% * CALCULATION *
. o o * *
. *oe oF HREEHRAEREARREXNR
- * YES - .
. . .
. . .
. . .
.
. . .
- X X
- LTSRS R TR SRR 2 HARARB2RERRERAN AR
. * * *
. * ADVANCE * * TRANSLATE *
ceeat POINTER * * AND *
* * * TEST *
* * * *
KR K HE IR KRR HAERARRRERAREERRR
.
.
.
.
.
.
HERE X
HRRAHC2HR AR AR AN AR
*
COMPUTE
LENGTH

*
* *
* *
* *
* *
EHARAXERERRNEAFER

.
.
.

READ
* g FH AW ED I NN HRRFER
o* *o *GET CRA3*
o% DELIMITER #%. YES HoRo AR KRR
*. AN ENC cescesalX® FETCF *
*o MARK o X * NEXT CARC *
*q ¥ - * *
e o . Py T Y
* NO . .
. .
. .
. .
. .
«TSTSW oXe
. E3 *, FERANRELGAARERRIXHR
T] N KRR R - . - *PRINT CQA3*
* NORMAL * . . ¥ LIST *o YES FmFm K K R R W R R
* RETURN #Xeosoee o . REQUESTEC e¥*eeeseeesX* PRINT SOURCE *
* * . o # CARD AND ISN *
KRR HRE XN N e o * *
- *e o FRFFRERFHERRRERRR
- * NO . .
. . .
. .
. ceesee
.
. «CMPCMT .
X . F3
AEEEKF2RAARERRR . o® *o
*® * «YES «% COMMENTS
* ZERO RETURN * esea¥e CARD
* * *, .
HERRRAERHBRRRR *e o*
*e o¥
* NO
.
.
.
.
SETEM X
EEREEGIRHRRERERER
* PLACE ENC *
* MARK AFTER *
* STATEMENT *
* TEXT *
* *
HRAEREREERREHERRS
.
- NCRMCC
2NN
* SET COLUMN &' * . o
* TO BLANK * NO o% *e
* AND POINTER *Xeeeeoeees*e CONTINUATICON o%
* TC COLUMN 1 * *, CARD o
* * *q ¥
FHE RN N RERERR %o ok
. * YES
.
.
X
3R -
* * .
* E2 % b
* * ERERRYIARRERRRNHRE
*XER * *
* SET REGISTER ¥
* 2 TO BLANK *
* (DELIMETER) *
* * kX
NI NN N RN * *
. * Al *
. *
. EX T
. X
.
.

EERREKTHEER R RHRN

SET COLUMN 6 * ¥ KIS HR NN N R R
* TO BLANK AND * ¥ WAS *4 NC * NORMAL *
* POINTER TO *eeoseceaeX¥, LENGTH ceccssee X* RETURN *
* COLUMN 6 * *o =0 * *
* * *q HRENER RN ERNRN
EET RS RS2 S22 22 Ho o

Chart CC. Subroutine GETWD

128

XXEER

*CD #

* A2%
x* *®
*

.
.
-
Xe
H#e

o *e

SKPEBLK .
A2

NO

I3 I A TR E KRR
*

ok 1S *o
eeoX¥*, DELIMITER A o*coeeooseX¥* RETURN
*

*e BLANK %
*o

¥y o

Xo o000 %

EXE2 ;22222222 223

*GETWD CCAl1x
L R e e et T R

Neosoeosesososovsosonce

ceo *
ERC* GET DELIMITER *
*

*

FRRRNRIIR N RRR N R
o NCN
«ZERO.

X
Xk R
*CP ¥
* A2%

*

*
ERROR~
DELIMITER
ERROR

Chart CD.

39 3 3 I 3 I I K X KX

#*
*
*

Subroutines SKPBLK, SKTEM

3 % 3 %%

eXeeaseocosese
-

SKPTEM X .
EEXERNBLRREEXREXRR -
GETWD CCA1 -
R R RN =KX —-%—%NCNo

-
.
-
.
-
.
.
-
.
.
.
.
.
.
-

X% *eoee
* GET SYMBOL *ZERO
* *

KRR ERRF N
«ZERO

.
-
.
.
oXe
Cca *o
¥ *o

NO % *o
eee® DELIMITER ENDe¥*
MARK

* o ¥
%, o ¥
*e oF

YES

Xe oo o0 e X%

FERRDLARRRRKNER
* *
* RETURN *
* *

33 9 3 3 3 R X X

Phase 10

129

.
.
.
SYMTLU oXe
A2
o* I *o
o* LENGTH OF *
SYMBOL

*o

#*e GT 11 o%
* *

T
FROPER CHAIN
IN THUMB
INDEX

HERRERRTRERERNN
.
.

.
eXeeesecccscsscscsccccccccccese

.
.
.
.
.
.
. . . .
- *e ¥ .
. * NO .
. . .
. .
. .
. . .
. . .
. «Xe .
. D2 *e AEREEDIRREHERERRR
. o* IS *o * *
. «* THIS THE *. NOC * LOCATE *
. *e END OF e¥eeseeeseX* NEXT ENTRY *
. *e ¥ * IN CHAIN *
- * *
- EERRRERREEERRERER
.
.
.
.
«SYM3
.
.
. caee
.
- LA S S 2]
. *CP *
. # A2%ERROR-
. . * % TOO MANY
. . * - SYMBOLS -AND
. STMTe NOSe.
.
. .
«SYM4 X
- EEXRRFOERRRERRRRR
. * ENTER
. * SYMBOL *
- * INTO THE *
. * DICTIONARY *
- * *
- EEERERRERRRAERRRRR
. -
. .
. .
. .
- .
«SYNS eXe
.
.
.
. .
. X
. XXX
. *CP *
. * A2*ERROR-
. * * ILLEGAL
. *# NAME
.

HHHERH2EERRNE AR AR
* *

* MAKE ADDRESS

* CF ENTRY

* AVAILABLE TO

* CALL ROUTINE

EEARBRRERRRRRRE AR
.

LE R R

Xe oo o oe

REREJORRRARRARR
* *
* RETURN *
* *

AREARFRRRRRRRRD

Chart CE. Subroutine SYMTLU

130

W R R R

*CF % *CF *
* Al * Aax
* O* * *
* *
. .
. .
o .
LABLU X PAKNUM oXeo
R ST SE ST RS E L E D A4 *q
*PAKNUM CFA4% % IS *.
LR T 2 B e T I o3 LENGTH *,YES
* PUT STATEMENT * GREATER
* NUMBER INTO * . %o THAN § o .
* PACKED FCRM % * .
336 3 I I MR FH R .
. .
. .
. . .
. .
. .
. .
X PN1 .
EEEE IR RS R 22 .
* INDICATE % e .
* STATEMENT * o* ARE *.YES .
% NUMBER IS % #ANY CHARACTERS eeceesceXe
* BEING * *ALPHABETIC * X
* PROCESSED * %o o attatet -
B3I I I I RN *e o *CP *
. * NO * A2%
- - * *
. . *
. . ERROR -
. . ILLEGAL
. . STATEMENT NUMBER
X PACKLA X OR HALT NUMBER
EEZ 22 BRI 22 22 2 220 IR C 4NN NR
* SELECT * * *
* CORRECT * * PACK *
CHAIN IN * * THE *
* OVERFLOW * * NUMBER *
* TABLE * EE 222 * *
I T NI RN #CF * EE 2RSS 222 L L 2
. * D3% . .
. * % .
. * .
. . .
. . .
. . -
X LABTLU X .
R RID] RN RN NN D TR NN X
*LABTLU CFD3# * N HAXRDLHHRRRERXER
LR et 2 B et B 2 T] * GET PROPER * *
* VERIFY STMT % * _CHAIN IN * = RETURN *
* NO IS IN * * THUMB INDEX * * *
#OVERFLOW TABLE * * * EEZ 2222222222223
****-}******i*;*** 33 I IR
. ’ .

Xe oo

FRRKE] R RN
RESET *
STATEMENT %

NUMBER *
INDICATION %
*

ccsce

*
*
*
*
*
*

I RN RN
.

cesss e

REEREHIHFRARARENRR
*ENTER STMT NO, *
* SUBSCRIPTs OR *
#*DIMENSION INFO *
* INTO OVERFLOW *

*

* TABLE
HRHERERERRERRHRNNE

.
.
. .
. .
. -
. .
. .
- . LAB1 .
X . HERAEFLRERERETN RS
HHHAE] HEHEHERER . % A *o * *
* * . +*% THE END #*. NO * LOCATE *
* RETURN * . *o OF *¥esoesoseeeX® NEXT ENTRY *
* * . *o CHAIN * IN CHAIN *
IR RN RN . . . *
. *o ok P T T
o * YES
. .
. -
«LAB3 oXe
. G2 *o
.
. Do
. TABLES .
. %o OVERLAP o%
- *e ¥ AL 22
. *o o *Cp *
. * NO * A2%
- - * *
- . %
. - ERROR -
. . TOO MANY. ENTRIES
. o IN DICTIONARY
«LAB4 X AND OVERFLOW TABLE
.
.
.
.
.
.
.
.
.
.

eseXe
.

LABS ; .
EERERJTHER AR RRAR
* MAKE ADDRESS #*
* OF ENTRY *
* AVAILABLE TO *
* CALLING *
*
*

* ROUTINE
ERRRERREER KRR RER

XREHK TRHNRRHNRE
*

* RETURN *

* *

I AR NI

Chart CF. . Subroutines LABLU, PAKNUM, LABTLU

Phase 10 131

SORN2

XXERE
*#CG *
* A2¥%

*

Xe o0

CSCRN

o®

o WHAT

*e IS FIR

*4,CHARAC
*o

*o

*o
*o
ST .
TER.*

o ¥

¥
*ALPHA

Xeooo

EARENB2REXNENARAR
*SYMTLU CEA2%
R e i

* ENTER SYMBOL *
* INTO *
* DICTIONARY *
ERERRRERE RN AT NE
.
.
.
.
.
.
X
HHHHNC] RN NN XN c2 * g
* * o IS * g
* INSERT YES +¥ THIS *.
* IMPLIED *Xeoesoons NEW o
* MODE * %o ENTRY o%
* * . .
ER 222222222222 22 2] *e o¥
. * NO
. .
. .
. .
cessescecccvcssccsccsscccXe
o
X
HRRERD2HEREXRHERR
* GET *
* DICTIONARY *
* POINTER *
* OF THE *
*

Chart

132

SYMBOL *
LR e e L 2

INTCCN
o
¥ 1s *
*, PARAMETER A
o NUMBER %

X RN
*CP *
* A2#
* »

*
ERROR -

PARAMETER
NOT A NUMBER

CG.

SCRN1 o¥e
HREEEATHRRRERENRS A4 #* AEREEASHERRELERRR
LITCON CHA2% ¥ *o *SYMTLU CEA2%*
NUMERIC L T ot Do 2 D N e o ® IS THIS *o YES L R e i R
eccccsseX® CONVERT *¥eeeeee0eX¥eDATA SET REF e¥eeeeoeeeX* ENTER INTO *
* THE NUMBER * *o NUMBER - * DATA SET REF *

* *
HHREHRKRNEKNE XN RR

*o

R

*
* CS

* % K

*
RN

IS
TEIS
409€

*o

*e o

Xe o a0 %

*o .
*e oF
NO

SORNS

YES

GT e¥Xeosoosese
o ¥
*

NO

ERBERCIRXRXXXR

*
* IMM

* PARAMETER IS
ING

*

PRO

INDIC

A
ECIAT

BE

S

*
*
*
*

TE
E DO

SED *

* CE
HRERREXEEXRERR

HEERRDIHHHERENRK
*

oX*
*

Xe oo

RETUR

*
N *
*

EREHREREERERERR

EERERFIREREREARER

*ITC

X ¥
*

*
XN

Subroutines CSORN, INTCON

ON

o e Km W e N N R B

CHA2¥*

CONVERT
THE
NUMBER *
S22 222222222
* YES
.
.
.
.
oXe
Ga %,
o* IS ¥,
YES o% NUMBER *.
PRTT TR A o
X *. ZERO %
ERRRR *, .
*Cp * *o o o%
* A2x * NO
* * .
* .
ERROR - .
ZERO .
SUBSCRIPT .
.
X

EERREHA X R R RN R

* RETURN *
* *

R

* %
*C|
*
*

* NO. CHAIN *
FEERRERFHNEHERXRR

Xe oo oo

DS HIN NN RN XL
*

RETURN

HHEEERHERRF AR

*
*
*

X RR

SORN6
HEXKHECSHIRIFRHHRRT
#SYMTLU CEA2%*
B R

ee X ¥ ENTER *
* CONSTANT IN *
* DICTIONARY *
HRHEREERERHRHHEEN

Xe oo e

AEHEHDSHERXREERXN
INSERT MODE
OF CONSTANT

IN DICTIONARY

ENTRY

PEEEE R

*

*

*

*

*

HKEXRERRREERRNRAR
.

Xeos e

AEHERESHEERARE
*

* SET *
* MODE AND TYPE *
* CHANGED *
* BITS *
HEEARRERRRRRRRR

Xeosoonr e

AEAARFSHERXRRXNH

*
RETURN *
*
RN IRHEEEER
X
X
P *
A2%

ERROR -
PARAMETER

NOT AN

INTEGER

3% %R 33 %%

*CH * #CH_*
* A2% * A3
* * * %
* *
. .
. .
. .
LITCCN X NXTBYT X
3 I A DI I N KK NN 33633 A T3 K X HRH
INITIALIZE % * * (T2
REGISTERS * * INCREMENT * * *
* AND * * SCAN *Xeoos® A3 *
* SWITCHES * * POINTER % *
* * * 3 - L2 X 2
EEEE 221 RS 2L XL 33 383 I 36 3 I 3 W WK X X -
. . .
o o .
. . .
. . .
eXeessecsccccscccscacsscacs .
.
CKDIGT .
.
.
.
.
*, .
EE L 23 -
* * -
* C3 * .
. * * .
. 3 36 % 3¢ -
. . .
. . .
o . .
©eXe X .
c2 *q KR I C I W RNR P
o © e * INCREMENT _ * .
o 1 *, YES *OVERFLOW COUNT * .
¥oCVERFLOW FLAGe®ececeeeeX* IF E ORD * o
*e SET o *# INCICATOR * .
*e o * NOT SET * .
e o¥ . 3 36 363 336 3 36 3% I WK XK X -
* NO . . <
. : . .
. cececscecscee
.
.
N

MPYACD X)
ARAXRD2HRRHXXXHHNR
* MULTIPLY *
* FREVIOQUS *
* NUMBER BY *
* 10 ANC *
* ADD DICIT *
33633 3 33 KX KA XK

TESTNC -
33 9 3¢ 3 £ 39 3 3 36 36 3 % XX %
Py * 3*
o* YES * SET *
o NOe GT eceecsseeX OVERFLOW *
#o (2%%56)-1e% * FLAG *
* o ¥ * *
g o 33 36 36 36 I 36 3 3 I 3 I K K XK
* NO .
.
.
.
.
CKDCPT X
33 2 X R
WARN CPA3
o ¥ Hm o Hm R F—m - — -
%, DECIMAL . * TOO MANY *
,INDICATOR. .. % DIGITS IN %
o SET o% N * NUMBER *
*e o X 3636 36 36 3636 33 36 X NN X
* YES HXRR .
. * * . .
. * A3 * .
. * *
. R R
o Loow *
«Xe * C3 *
G2 *o * *
EXER ¥ *, * KRR
* # - YES o% E OR D *.
A3 *Xeoee¥*s INDICATOR %
* * *. SET o
3 3 3% 3¢ * g P 2
g %
NO
.
.
.
.
.
X :
363 3 3 3 |2 3 I 3 I3 N X - .
* . N *
* INCREMENT *
* .DECIMAL *
* COUNT *
* *

363 36 3 3 3 I 3 I 3 I 3 ¢ KX

Chart CH. Subroutine LITCON Part 1

Phase 10 133

*CI *
* ALl
* *
*
CKCHAR oXe : * o*.
Al *, A2° %, A3 ®.
o o* IS %, ¥ IS ¥,
o DECIMAL *. NO «* D ORE *. YES
* . INDICATOR e*eeeseeeeX¥s INDICATOR ccccces
*a SET o *. SET o
*q ¥ * o ¥ * o o ¥ 33 XX
*e o Ko o¥ *g oF *CP *
* NO * YES * NO * A2%
. . . * *®
- L . *
. X .
. EEEEE . ERROR-
. *Cp * . DECIMAL POINT
CKE oXeo * A2% X AFTER E OR D
B1 * o * * XN ABIHHHRE N
o ¥ g * * *
NO o% *, ERROR- * SET *
eeee*e E OR D o TOO MANY * DEC IMAL *
. %, ok DECIMAL * INDICATOR #*
. *e o POINTS * *
. e o 3636 36 3 363 36 % 3 35 3 %3¢
. * YES .
° P - 33 3% 3¢
° . * 3*
. . coX*CH *
. . * A3%
- o 3% % % ¢
«CKE10 oXe oo
e Ci1 * o 36 3 3 3 C2 % 3 33 %3 X Cc3 * 4 FRERECHEXRERRR
. o* IS % * * o¥* IS #. * *
. o* NEXT *. YES * INCREMENT * <% E OR D *. NO * SET *
e %o CHARACTER o¥eceoscesX¥ POINTER ¥ecesseeeX¥*s INDICATOR o¥eessesesX¥ E OR D *
. *. + o * * *, SET o * INDICATOR *
Py g ¥ * * *q ¥ * *
- e oF 36 38 36 3 I 336 I 3 I I K3 K *g o 363 36 36 383 % X I E XX
. * NC X * YES .
.
.
. . . X .
. . . K H -
. . . *CP * .
«CKNEG X . * A2 SVDATM
- D1 * o 363 3 36 D2 6 3 33 % * * ERRREDLHRHXHRERXR
. ox IS #. * SET * * * SAVE NOe—— *
. % NEXT *. YES * EXPONENT % ERROR- * CLEAR *
e - *o¢ CHARACTER e%*eceeseceeX® SIGN * TOO MANY * SUMMATION *
. *o - ok * MINUS * EsS OR D,S * REGISTER *
. *q o * * * *
- e oF 3636 I3 X XXX F RN ERERRERRE
. * .
. . o
. . .
. X X
- 3 %% EX Y X2
- * * *#CH *
o * C3 * * A3x
o * * * 3
s * 3 X3¢ *
.
.
- «
.
.
.
.
.
.
.
< IORF ¥
. F1 *.
- «*IS DECo*e
. <% INDICATOR *. YES
eeX¥e OR D OR E e¥ecoesoecs
* . INDICATOR. * X
%e SET % XXX HXREF
*o ok *Cy * *#CI *
* NO * AL® * G3x
- * * * *
- * *
. .
. .
. .
IRET4 «Xe IRET X
G1 * o ERRERG2H R RRXRN 336 3 3 G 3 % 33X H
o IS *q * * * * 33 W% G4 KX RNR
«¥ NUMBER *. NO * SET * * ACJUST * * *
%eGT (2%%31)=1 e¥eeceoseaX¥ INTEGER FoeeasoeeX¥ GETWD *oseoeeeeX¥ RETURN *
*. o * INDICATOR * * POINTER * * *
*e ¥ * * * * L2 222222 22222 2 23
*e oF L2 22222222222 X3 36 36 36 3 363 36 I 3 3 3 X3 H
* YES
.
.
X
WA XX
#CP =
* A2%
* ¥
*
ERROR—
INTEGER
T00 BIG

Chart CI. Subroutine LITCON Part 2

134

ECO

ECO

ECO

Chart CJ.

3 KX

*CJ *
* Al®
® *
»*
.
.
.
NO2 X
FHMMA] W RN RN
* EXPONENT *
3* EQUALS *

E VALUE MINUS *

*DECIMAL COUNT +#

*#OVERFLOW COUNT #

LA s R e e 2 2]
.

.
.
.
.
NO3 oXe
B1 *o
¥ *eo
o 1s *o

* o RESULT
*e. MINUS &%
*q o
g ¥
NO

*

Se s 0000t s s s

YES

e¥oaeossceX¥*
*

LR 2 d-V-E R S L LTS

* SET *
* EXPONENT #
NEGAT IVE *
FLAG *
* *
33 3 33 33 N XX

.

.

.

.

.

.

X
IR C 2 I NN NN
* SET *
* EXPONENT *
* TO *
* ABSOLUTE *
* *

VALUE
IR H
.

.
.
.

eXeoeeosoecseccsccsccscscsccces

o* IS *e
o¥ EXPONENT ¥,

*o ' VALUE TOQ
*¥e LARGE o#

*e o
Ko o
* NO
.
-
.
.
.
N12 X
EHERRE] HH R XN KRN
* RESTORE *
* MANTISSA *
* (INTEGER *
* PART) *
* *
* *

3 36 96 33 3% I I H I H NN
. .

Xe o oo

XRHRAE] HHXH HXR XX
* PUT INTO *
* NORMALIZED *
* . FLOATING-

* POINT FORM *
*
*

*
336 36 3 36 36 36 3 336 3 336 I 3 3¢

YES

e¥ooecccee

33 3% %
*CP

* A2

* *
*

ECC

¥oaeseosaeX¥,

ECC

*
*
*

ERROR-
EXPONENT

NO6 o,
F2

¥
o Is
EXPONENT
*NEGAT IVE
* g o
¥o o
* NO

Xe oo o0

NOS
RRREAG2EX R XXX XL
* MULTIPLY *
* 10 *% *
* EXPONENT *
* IN FLOATING *
* PCINT FCRM *
L e
.

.

-

X
L2 2 2 2
*CI *
* G3%

YES

eeecccscce

esccece

Xe o oo 000000

NI G I NN NN RN

*
*
*
*
*
*

Subroutine LITCON Part 3

DIVIDE BY
10 *x
EXPONENT
IN FLOATING
POINT FORM
LR 2 S T e 2 2]
.
.
.

X
L2222

*CI *
* G3*

*
*
*
*
*
*

Phase 10

135

e nuun

“CL * "CL *
* ALR ® A2®
P *
.
x susss
- lllAl““l'i!"l.l Q""AZ""!G"I‘
MOVE ARRAY *GETW Alx
T . '—.—'—Q—.—‘—.—.—.ZE“O
INTER“EQIATE *q «X* GET PARAMETER %
TEXT BUFFER # H H
- oS-
“ZERO
A
ERROR-
IMPROPER
DELIMITER
HRRRED] AN RRN<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>