
IBM System/3S0
Basic Programming Support
FORTRAN IV

Program Number 360P-FO-031

This manual provides information on the internal
logic of the IBM System/360 Basic Programming
Support FORTRAN system. The contents are
intended for technical personnel who are
responsible for analyzing system operations,
diagnosing them, and/or adapting them for
special usage.

RESTRICTED DISTRIBUTION -- SEE ABSTRACT

File Number S360-25
Form Z28-6620-0
Page Revised 3/15/66
By TNL Z31-5008-0

Program Logic

Form Z28-6620-0
Page Revised'3/l5/66
By TNL Z3l~5008-0

PREFACE

Effective~use of this Program Logic Manual
{PLM} requires an ~derstanding of the con­
tents of the following manuals:

IBM System/360 Principles of Operation,
Form A22-682l

IBM System/360 Basic Programming Support
FORTRAN IV, Form C28-6504

IBM System/360 Basic Programming Support
FORTRAN Programmer's Guide, Form
C28-6583

ORGANIZATION OF THE MANUAL

The manual is divided into five parts.
The first part contains an introduction
that describes the overall structure of the
IBM System/360 Basic Programming Support
FORTRAN IV system. This introduction is
required reading for a basic understanding
of the system. The second part describes
the control segments for the system, while
the remaining three parts reflect the three
functions performed by the system.

Reference material for the PLM is con­
tained in the appendices.

DEPTH OF DETAIL

This PLM provides a comprehensive under­
standing of the FORTRAN IV system down to
the routine/subroutine level.

USING THE MANUAL

A user of this manual should read the
introductory section to obtain an under­
standing of the overall structure of the
system. From the material presented ~n
that section, the user can determine the
functions accomplished by the various seg­
ments of the system.

The introduction to each segment gives
the overall logic of that segment, and
indicates the routine/subroutines associat­
ed with the different functions of the
segment.

Each routine/subroutine description
within a given segment provides the user
with a definition of the function and a
description of the method employed to
implement that function. A routine/
subroutine description, when necessary, is
accompanied by a corresponding flowchart.
Where possible, a name for the associated
portion of coding in the program listing is
placed on an indi viq.ual block in the f low­
chart. This name gives a direct relation­
ship between the flowcha.rt and the program
listing.

In addition to flowcharts for routines/
subroutines, flowcharts are provided at
the introductory levels to supplement the
discussion of concepts and overall logic.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices. A form has been provided at the back of this
publication for readers' comments. If the form has been detached,
comments may be directed to:

I IBM programming Publications, Rochester, Minnesota 55901

@ International Business Machines Corporation, ,1965

ORGANIZATION OF THE MANUAL. • 2
DEPTH OF DETAI L • • • 2
USING THE MANUAL. • • • • 2

PART 1: INTRODUCTION • 13

IBM SYSTEM/360 BASIC PROGRAMMING
SUPPORT FORTRAN IV. • • • • • • • • 14

System Initialization • • 14
FORTRAN System Director • 14
Control Card Routine. • • 14

Source Program Compilation • • 14
Fortran System Director

(Compilation). • • • • • • ••• 14
Phase 10. • • • • 14
Phase 12. • • • • • • • • 15

15 Phase 14.
Phase 15.
Phase 20.
Phase 25.
Phase 30.

• • • • • • 15
15

• ••• 15
18

Completion of Compilation • ••• 18

Object Program Execution • • • • • • •
FORTRAN System Director (Execution)

• 18
• 18

18 Fortran Relocating Loader
IBCOM • • • • • • • • • • • ••• 18
Completion of Execution • 18

~!:.e}!LKQtli£iJ:::ation~ • .--'0 -.- • • • • 19
Fortran System D1rector

(Modification) • • • • • • • • • 19
Editor. • . . • • • • • • • • • • 19
Completion of System Modification •• 19

PAR~ 2: SYSTEM CONTROL SEGMENTS. • • • • 21

FORTRAN SYSTEM DIRECTOR. • 22

I/O Operations • • • • •
I/O FUNCTIONS • • • •
SVC I/O Formats • • • • • • •

Operation Specification. •
Tag and Data Set Byte. • •

Data Set Designation. • • • •
DSTAB -- Data Set Table. •

• • 22
• • • • 22

23
• 24
• 24
• 25
• 25

DSCB -- Data Set Control Block • • 26

Calls TeA Printer . · . . . · · · 28
FORTRAN printer Carriage Control
Characters . . · · · · · · 28

Data Parameter s For Print Calls · · · 28
Error Routines · · 28

Return To User's Program · 28

Routines · . . . · · · · 28
DINT Routine: Chart AA · · 29
LOPH Routine: Chart AB · 29
Exit Routine: Chart AC · · · · 30
SIODIR Routine: Chart AD · · · 30

CONTENTS

SIOGO Routine: Chart AE. • • 30
SNTPIN Routine: Chart AF • • 31
SD1 Routine: Chart AG. • • • 32
SETMD Routine: Chart AH. • • • 32
SD2 Routine: Chart AI. • • • • 32
SD5 Routine: Chart AJ. • • • • 32
SD7 Routine: Chart AK. • 33
SD72 Routine: Chart AL • 33
SD74 Routine: Chart AM • • • • • • 33
SD741 Routine: Chart AN. • • 34
SD742 Routine: Chart AO. • 34
SD743 Routine: Chart AP. '. • • • • 34
SRETRY Routine: Chart AQ • • 34
SERP Routine: Chart AR •••••• 35

CONTROL CARD ROUTINE •

Routines • • • • • • •
CCLASS Routine: Chart AT •
CCJOB Routine: Chart AU.
CCFTC Routine: Chart AV.
CCSETRoutine: Chart AW.
CCLOAD Routine: Chart AX
CCEDIT Routine: Chart AY • •
CCDATA Routine: Chart AZ. •

PART 3: COMPILATION ••

• 57

• 57
• 57

• • 58
• • 58
• • 58

59
• 59
• 59

• • • 69

• • • 70 PHASE 10 • • •
Chaining ••
Dictionary. • •

Operation. • ~ •
OVerflow Table./ •

• • • • • 70

· . ,. .-
71

__ !-_.! 71.' 7,.
Operation. • • • • • • 74
Dimension Infomation ••••••• 74
Subscript Information. • • 76
Statement Number Information • 76

Offset Calculations • • • • • 77
Intermediate Text. • • • • • • 78
Statement Number Entries. • • 81
Subscripted Variable Entries ••• 82
Format Entries • • • • • • • • 83
Errors . • • • • • • • • •• • 83

• 83
• 83

Internal Statement Numbers •
Intermediate Text Output • •
COMMON and EQUIVALENCE Text. • • • 84

Storage Map • • • • • • • • • •
Subroutines • • • • • • • • • •

Subroutine CLASSIFICATION: Chart
BB. · · · · Subroutine ARITH: Charts BC, BD,
BE. . . . · · · · Subroutine ARITH Part 1.

Subroutine ARITH Part 2. · SUbroutine ARITH Part 3. · Subroutine ASF: Chart BF
SUbroutine GOTO: Chart BJ. · · · Subroutine DO: Chart BK. · · Subroutine SUBIF: Chart BL · · · Subroutines CALL,

FUNCTION/SUBRTN: Chart BM · Subroutine CALL. · · · · · · · ·

• 85
• 85

· 86

86

· 87

· 87

· 88
88

· 89

· 90

· 90

· 90

· 90

Subroutine FUNCTION/SUBRTN • • 91
Subroutine READ/WRITE: Chart BN •• 91
Subroutine CONTINUE/RETURN,

STOP/PAUSE: Chart BO •••
Subroutine CONTINUE/RETURN • •
Subroutine STOP/PAuSE. • • • •
Subroutine

BKSP/REWIND/END/ENDFILE: Chart

• 92
92

• • 92

BP. • • • • • • • • • • • • • • • 93
Subroutine DIMENSION: Chart BQ • • 93
Subroutine EQUIVALENCE: Charts

BR, BS. • • • • • • • • • • • • • 93
SUbroutine EQUIVALENCE Part 1. 94
Subroutine EQUIVALENCE Part 2 ••• 94
Subroutine COMMON: Chart BT. • • • 95
SUbroutine FORMAT: Chart BU. • • • 95
Subroutine EXTERNAL: Chart BV ••• 95
Subroutines INTEGER/REAL/DOUBLE:
Chart BW. • • • • • • • • • • • • 96

Subroutine HOUSEKEEPING: Chart
CB. • • • • • • • • • • • • 96

Subroutine GETWD: Chart CC •• 97
Subroutines SKPBLK, SKTEM: Chart

CD. • • • • • • • • • 98
Subroutine SKPBLK.
Subroutine SKTEM •
Subroutine SYMTLU:

• • • • 98

Subroutines LABLU,
LABTLU: Chart CF.

Chart CEo
PAKNUM,

• • 98
98

• 98
• • 98
• • 99

Subroutine LABLU •
Subroutine PAKNUM.
Subroutine LABTLU.
SUbroutines CSORN,

• • 99
INTCON: Chart

CG. • • • • • • • • • • • • • • • 99
Subroutine CSORN • • • • •
Subroutine INTCON. • • • •
SUbroutine LITCON: Charts CH,
CI, CJ ••••••

• • 99
• .100.

.100
Subroutine LITCON Part 1 •
Subroutine LITCON Part 2 •
Subroutine LITCON Part 3 •
Subroutine SUBS: Chart CL.
SUbroutines DIMSUB, DIM90: Chart

• .100
.101

• .101
• .102

eM •••• • ••• 102
DIMSUB. • • • •
DIM90 • • • • •

.102

.103
Subroutine
Subroutine
Subroutine END MARK CHECK: Chart

CN. • • • • • • • • .103
Subroutine PUTX, PUTBUF, PUTRET:
Chart CO. • • • • • • • • • • • • 104

SUbroutines ERROR,
WARNING/ERRET: Chart CP •

Subroutine ERROR • • • • •
Subroutine WARNING/ERRET
Subroutine PRINT: Chart CQ • •
Subroutine GET: Chart CR •

.104
• .104
• .105
• .106

.106

PHASE 12 • • • • • • • • • • • • • .143
Address Assignment. • • • • • • .143

Base Displacement Addresses •••• 143
Location Counter ••••••••• 143
Removing Entries From Chains ••• 144

Equivalence Processing. • • ••• 145
Branch Table. • • • • • • • .146
Communications Area. • •• 146

storage Map. • • • • • • .146

Subroutines. • • • • • • • • • • .147
Subroutines STARTA, COMAL: Chart

DA. • • • • • • • • • • • .147
Subroutine STARTA. • • • •
Subroutine COMAL • • • • •
Subroutine EQUIVALENCE: Charts

• .147
•• 147

DB, DC, DD •••••••••••• 148
Subroutine EQUIVALENCE Part 1 ••• 148
Subroutine EQUIVALENCE Part 2 ••• 149
Subroutine EQUIVALENCE Part 3 ••• 150
Subroutine EXTCOM: Chart DE. .151
Subroutine DPALOC: Chart DF •••• 151
Subroutine SALO: Chart DG. • .152
Subroutine ALOC: Chart DH ••••• 152
Subroutine LDCN: Chart DI ••••• 153
Subroutine ASGNBL: ChartDJ •••• 153
Subroutine SSCK: Chart DK ••••• 154
Subroutine SORLIT: Chart DL •••• 154
Subroutines EQSRCH,

RENTER/ENTER: Chart DM. • • .155
Subroutine EQSRCH ••••••••• 155
Subroutine RENTER/ENTER. • •• 155
Subroutine SWROOT: Chart DN •••• 156
Subroutine INTDCT: Chart DO •••• 156
Subroutine SORSYM: Chart DP •••• 156
Subroutine ESD: Chart DQ •• 157
Subroutine RLD: Chart DR •• 157
Subroutine TXT: Chart DS ••• 158
Subroutine GOFILE: Chart DT •••• 158
Subroutine ALOWRN/ALERET: Chart

DU. • .159

PHASE 14 •

Read/Write Statements.

Arithmetic Statement Function
Definitions • • •

.182

.182

.183

Format Statements. • •• 183
Structure of a Format Statement ••• 183
Format Text Card. • • • • • .184

Adjective Code and Number ••••• 184
Adjective Code. • • • • • • .184
Adjective Code, Field Length,

and Decimal Length •••••••• 185
Adjective Code, Field Length,

and Literal • • • • .185

Subroutines. • • • • • • • • • • • • • • 1 85
Subroutine PRESCN: Chart EA •••• 185
Adjective Code Subroutines:
Chart EB ••••••••••••• 186

Subroutines PINOUT, INOUT,
MSG/MSGMEM, CEM/RDPOTA: Chart
EC. • • •

Subroutine PINOUT. • • •
Subroutine INOUT • • •
Subroutine MSG/MSGMEM.
Subroutine CEM/RDPOTA. •
Subroutines ERROR/WARNING,

• •• 187
.187
.188

• •• 188
• •• 188

UNITCK/UNIT1: Chart ED •••••• 189
Subroutine ERROR/WARNING. • .189
Subroutine UNITCK/UNIT1 •••••• 189
Subroutines PUTFTX, ININ/GET,

GOFlLE: Chart EE. • • • .190
Subroutine PUTFTX ••••••••• 190
Subroutine ININ/GET. • • ••• 190

Subroutine GOFILE ••••••••• 190
Subroutines DO, CKENDO: Chart EF .190
Subroutine DO. • • • • • • • .190
Subroutine CKENDO ••••••••• 191
Subroutine READ/WRITE: Chart EG •• 191
Phase 14 Format Overall Logic,
Chart 21 ••••••••••••• 195

Subroutine FORMAT: Chart EH •••• 196
Subroutine D/E/F/I/A: Chart EI •• 196
Subroutines QUOTE/H, X: Chart EJ .197
SUbroutine QUOTE/H. • • • • .197
Subroutine X • • • • • • • • .197
Subroutines +/-/P, BLANKZ,

FILLEG, FCOMMA: Chart EK.
Subroutine +/-/P •
Subroutine BLANKZ.
Subroutine FILLEG.
Subroutine FCOMMA.
Subroutines LPAREN, RPAREN:

• .197
• .197
• .197
• .198
• .198

Chart EL. • • • • • ••••• 198
Subroutine LPAREN ••••••••• 198
Subroutine RPAREN ••••••••• 198
Subroutines T, FSLASH: Chart EM •• 199
Subroutine T ••••••••••• 199
Subroutine FSLASH. • • • •• 199
Subroutines LINETH, LINECK,

FLDCNT, NOFDCT: Chart EN.
Subroutine LINETH.
Subroutine LINECK. • •
Subroutine FLDCNT. • •
Subroutine NOFDCT. • •
Subroutines GETWDA, INTCON:
Chart EO. • • •• • •

Subroutine GETWDA. • •
-SU-orollfTne -INTCON~

PHASE 15 ••••

Order Of Operations. • •••
Operations Table •
Subscript Table.
Forcing Scan • • • • •

Argument Lists • •

Text Word Modification
Register Assignment. •

Error Checks •

Routines/Subroutines •
PRESCN Routine: Chart FA •
FOSCAN Routine: Chart FB •
DO Routine and Subroutine

DVARCK: Chart FC.
DO Routine • • • • • • • •
Subroutine DVARCK. • • • •
COMP GO TO, GO TO Routines:

.200
• ••• 200

.200
• .200
• .201

.201

.201

.202

• .220

• .220
• .220

• ••• 220
• .220

• .220

• ••• 221
• .221

• ••• 221

• ••• 221
• .223

.223

• 232
.232

• .233

Chart FD. • • • • • • • • • • • .233
COMP GO TO Routine. • .233
GO TO Routine. • • • • .233
BEGIO Routine: Chart FE. • • .233
ERWNEM, SKIP, MSGNEWMSGMEWMSG,

INVOP: Routines Chart FF. • .233
ERWNEM Routine. • • • • • .233
SKIP Routine ••••••••••• 234
MSGNEM/MSGMEWMSG Routine ••••• 234
INVOP Routine ••• ~ • • • • .234

MOPUP Routine: Chart FG. • .234
ADD Routine: Chart FH. • ••• 235
MOLT Routine: Chart FI • • • .235
DIV Routine: Chart FJ ••••••• 236
EXPON Routine: Chart FK. • • .236
UMINUS, UPLUS, RTPRN Routines:
Chart FL. • • • • .237

UMINUS Routine. • •• 237
UPLUS Routine. • • • • • .237
RTPRN Routine. • • .238
LFTPRN Routine: Chart FM ••••• 238
FUNC, CALL, and END Routines:
Chart FN. • • •••••••• 239

FUNC Routine • • • • • • • .239
CALL Routine ••••••••••• 239
END Routine. • • • • • • • •• 239
EQUALS Routine: Chart FO • .240
COMMA Routine: Chart FP ••••• 240
LABEL DEF Routine, Subroutine

LAB: Chart FQ. • • • • • .241
LABEL DEF Routine. • .241
Subroutine LAB • • • •• 241
ARITH IF Routine: Chart .FR. • • .2 41
COMPILE Routine: Chart FS •••• 242
Subroutines SYMBOL and TYPE:

Chart FT. • ••
Subroutine SYMBOL.
Subroutine TYPE. • • • •••

.242

.242

.242
Subroutines FINDR, FREER,

CHCKGR, SAVER, and LOADR1:
Chart FU. • • .243

Subroutine FINDR • • .243
Subroutine FREER • • .243
subroutine CHCKGR. • • ••• 243
SubrOutine SAVER. • • •••• 243
Subroutine LOADR 1. • • • • • • ..2-44
Subroutine WARN/ERROR: Chart FV •• 244
Subroutines PINOUT, ININ, INOOT:
Chart FW. • • • • • • • • • • • • 2 4 4

Subroutine PINOUT. • •• 244
Subroutine ININ •••••••••• 245
Subroutine INOUT • • • .245
Subroutine MODE: Chart FX ••••• 245
subroutines MVSBXX and MVSBRX:
. Chart FY. • • • • • • • • • • • .245
Subroutine MVSBXX. • • • .245
Subroutine MVSBRX. • • • • • • • .246
INLINl Routine: Chart FZ ••••• 246
Subroutine INLIN2: Chart GA. • •• 246
Subroutine CKARG: Chart GB .247
Subroutine INARG: Chart GC •• 247

PHASE 20 • • • 0 • • • • • • • • •••• 279
Subscript Optimization.

Index Mapping Table •
Statements Subject to

• •••• 279
• •••• 279

Optimization. • • • • • • • • • .279
Register Assignment. • .280
Generation of Literals • • .280
subscript Text Output ••••••• 281
Special Considerations • • •••• 282
Statements That Affect
Optimization. • •

ESD/RLD Records • • • • •
Storage Map • • • • • • •
Routines/Subroutines. • •

• ••• •• 282
• ••• •• 282
• ••• •• 282

INIT Routine: Chart HA •
Control R~utine: Chart HB.

.283
• •• 283

.283

READ Routine: Chart HC •••••• 285
DO, IMPDO, and ENDDO Routines:
Chart HD. • • • • ••• 285

DO Routine • • • • • • • .285
IMPDO Routine. • • .286
ENDDO Routine. • • .286
FREND Routine: Chart HE. • • .286
LABEL Routine: Chart HF. • • .286
LIST Routine: Chart BG • • • .287
ARITH Routine: Chart HB. • .287
CALL Routine: ChartBI • • • .288
IF Routine: Chart HJ • • • • .288
OPTMIZ Routine: Chart UK • • .289
CALSEQ Routine: Chart HL • • .289
Subroutine SUBVP: Charts HM, HN,

HO. • • • • • • • • • • • .289
FIXFLO Routine: Chart UP • .290
DUMPR Routine: Chart HQ. • .290
Subroutines GENER, GENGEN: Chart

HR. • • • • • • • • .291
Subroutine GENER • • • • • • .291
Subroutine GENGEN ••••••••• 291
Subroutine GEN: Chart HS • • .291
GETN Routine: Chart HT ~ • • .291
Subroutine NIB: Chart HU • • .292
Subroutine NOB: Chart HV • • .292
SUbroutine BVLSR: Chart HW •• 292
Subroutine RMVBVL: Chart HX. .292
Subroutine SYMSRC: Chart HY •••• 292
Subroutine CLEAR: Chart HZ •••• 293
Subroutine PUNCH: Chart IA •••• 293
Subroutine HANDLE: Chart lB •••• 293
SUbroutine ESDRLD/CALRLD/CALTXT:
Chart IC. • • • • • • .293

SUbroutine GENCON: Chart ID •••• 294
SUbroutine ESDPUN: Chart IE •••• 294

PHASE 25 • • • • • .327

Object Proqram Tables. • • • • • • .. 327
Branch List Table for Statement

Numbers • • • • • • • • • • • • .327
Branch List Table for ASF
Definitions and DO Statements •• 327

Base Value Table. • .328
Epilog Table. • • • • • .328

Instruction Generation • • •
Arithmetic Expressions • • • •
Intermediate Text Entries for
other Statements.

Output •••

Storage Map.

• .329
• .329

• .329

• .329

• .329

Subroutines. • • • • • .330
SUbroutine INITIALIZATION: Chart

RA. • • • • • • • • • • • • .330
Subroutine PRESCN: Chart KB •••• 331
SUbroutine RXGEN/LM/STM: Chart

RC •••••••••••••••• 331
Subroutine LABEL: Chart RD •••• 332
Subroutines TRGEN, CGOTO: Chart

KE •••••••
Subroutine TRGEN • • • • • • • •
Subroutine CGOTO • • • • • • • •
Subroutines DOl, ENoDO: Chart KF

• 332
.332
.332
.333

Subroutine D01 • • • • • .333
Subroutine ENDDO • • • • • .333
Subroutine ARITHI: Chart RG. .334
Subroutine RDWRT: Chart KB •••• 335
Subroutine IOLIST: Chart RI •••• 336
SubroutineENDIO: Chart RJ •••• 337
Subroutines SAOP, AOP: Chart RL •• 337
Subroutine SAOP. • • • • • • .337
Subroutine AOP • • • • • • • ••• 338
Subroutines ASFDEF, ASFEXP,
ASFUSE: Chart RM. • • • • • .339

Subroutine ASFDEF. • ••••• 339
Subroutine ASFEXP. • • .339
.Subroutine ASFUSE. • • • • • • • .339
Subroutine SUBRUT: Chart RN. .340
Subroutine RETURN: Chart RO •••• 341
Subroutine FUNGEN/EREXIT: Chart

KP. • • • • • • • • • • • .341
Subroutines FIXFLT, GNBC6: Chart

KQ. • • • •••• 342
FIXFLT. • • • •
GNBC6 •••••

.342

.342
Subroutine
SUbroutine
Subroutine SIGN, DIM, ABS: Chart

KR. • • • • •••••••• 343
SUbroutine SIGN. • .343
Subroutine DIM. • ••• 343
Subroutine ABS • • ••• 344
Subroutine STOP/PAUSE: Chart RS •• 344
Subroutine END: Chart RT ••••• 344
SUbroutine ENTRY: Chart XU • .345
Subroutine GENBC: Chart KV • .346
Subroutine GET: Chart KW • • .346
Subroutines BASCHK/RXOUT, RROUT:
Chart RX ••••••••••••• 347

Subroutine BASCH:K/RXOtiT·.·-·~-. --:- ~.347
Subroutine RROOT ••••••••• 347
Subroutines TXTEST, RLDTXT, and

TXTOUT: Chart RZ ••••••••• 347
Subroutine TXTEST. • .347
Subroutine RLDTXT. • •••• 348
Subroutine TXTOUT. • • .348

PHASE 30 • • .. • • .373

PART 4: OBJECT-TIME EXECUTION. • •••• 375

FORTRAN LOADER • • • • • • • • •

Loading Process. • • • • • • • •
Control Dictionary Elements

FORTRAN Loader Functions • •

• .376

.376

.376

• .317

Card Formats •••••••••••••• 377
Set LOcation Counter Card. • • .377
Include Segment card. • • • .378
External Symbol Dictionary Type 0

Card • • • • • • • • •••••••• 378
External Symbol Dictionary Type 1

Card • • • • • • • • •••••••• 378
External Sytilbol Dictionary (ESD)

Type 2 Card. • • • • • • • • •
External Symbol Dictionary Type 5

.379

Card • • • • • • • • ••••••
Text Card • • • • • • • • • • ••
Replace Card. • • • • • • • • •
Relocation List Dictionary Card • •
Load End Card • • • • • • • • •

• .380
• .380

.380

.381

.382

Load Terminate and Data Cards •••• 382
IER Routine: Chart NA. • • • .383
RD Routine: Chart NB • • • .383
CMPSLC Routine: Chart NC • • .384
CMPICS Routine: Chart ND • • .384
CMPESD Routine: Chart NE • • .385
CESDO Routine: Chart NF. • .385
CESD1 Routine: Chart NG. • • .385
CESD2 Routine: Chart NH •••••• 386
CMPTXT Routine: Chart NI ••••• 386
CMPREP Routine: Chart NJ • • .386
CMPRLD Routine: Chart NK • .387
CMPEND Routine: Chart NL • • .387
CMPLDT, WARN Routines: Chart NM •• 388
CMPLDT Routine •••••••••• 388
WARN Routine. • • • • • • • .388
HEXB Routine: Chart NN • • • .388
TBLREF Routine: Chart NO • • .388
REFTBL Routine: Chart NP • .389
LODREF Routine: Chart NQ ••••• 389
SERCH Routine: Chart NR •••••• 389
ERROR Routine: Chart NS. • • .389
MAP Routine: Chart NT. • • • .389
RELCTL Routine: Chart NU • • .390
EODS Routine: Chart NV •••• 390

IBCOM. • • • • • • • • • ••• 414
Opening Section. • • ••••• 414

READ Requiring a Format •••••• 414
WRITE Requiring a Format. • .414
READ Not Requiring a Format •••• 415
WRITE Not Requiring a Format ••• 415

I/O List Section. • • .415
Closing Section ••••••••••• 416
~BCOM-Subroutines •••••••••• 416

Subroutines FRDWF, FWRWF, FIOLF,
FIOAF, and FENDF: Charts PA
through PH •••••••••••• 416

Subroutines FCVII and FCVIO:
Charts PI, PJ •••••••••• 418

Subroutine FCVII ••••••••• 418
Subroutine FCVIO ••••••••• 418
Subroutines FCVEI/FCVDI and

FCVEO/FCVDO: Charts PK, PL •••• 418
Subroutines FCVEI/FCVDI •••••• 418
subroutine FCVEO/FCVDO •••••• 418
Subroutines FCVFI and FCVFO:
Charts PK, PL •••••••••• 418

Subroutine FCVFI ••••••••• 418
Subroutine FCVFO ••••••••• 419
Subroutines FCVAI and FCVAO:
Charts PM, PN • • • .419

SUbroutine FCVAI ••••••••• 419
Subroutine FCVAO ••••••••• 419
Subroutines FRDNF, FWRNF, FIOLN,

FIOAN, and FENDN: Charts PO
through PT. • • • • • • • • .419

Subroutine FBKSP: Chart PU •••• 420
Subroutine FRWND: Chart PV •••• 420
Subroutine FEOFM: Chart PW •••• 420

SUbroutine FSTOP: Chart PX •••• 421
Subroutine FPAUS: Chart PX • .421
Subroutine IBFERR: Chart PYa ••• 421
Subroutine IBFINT: Chart pz ••.• 421
Subroutine FIOCS: Charts QA, QB •• 421
Subroutine IBEXIT: Chart QC •••• 422

PART 5: SYSTEM MODIFICATION. .453

EDITOR • .454

Routines • • .454
• .454

•••• 455
START Routine: Chart MA. •
RDACRD Routine: Chart ME •
AFTER Routine: Chart MC.
ASTRSK Routine: Chart MD • •
COPYC Routine: Chart ME.
COPYCL Routine: Chart MF •
COPYL Routine: Chart MG.
COPYEC Routine: Chart MH • •
DELET Routine: Chart MJ.
REDCRD Routine: Chart MK •
RDOSYS Routine: Chart ML •
T92CMP Routine: Chart MM
T92LB1 Routine: Chart MN •
Editor T92LB2 Library Routine

• •• 456
• •• 456
• •• 457

• .457
• •• 458
• •• 458
• •• 459

• .459
.460

• •• 460
• .461

#2: Chart MO. • • • ••••• 461
SET Routine: Chart MP ••••••• 461

APPENDIX A: ANALYSIS AIDS. • .479

Messages • .479

Statement Processing • •••• 483

APPENDIX B: EXPONENTIAL SUBPROG~ •• 485
FIXPI Subprogram ••••••• 485
FRXPI Subprogram ••• 485
FDXPI Subprogram •••• .485
FRXPR Subprogram ••••••••• 486
FDXPD Subprogram. • •• 486

APPENDIX C: ARRAY DISPLACEMENT
COMPUTATION •

Access • • • •
One Dimension •
Two Dimensions.
Three Dimensions. •

General Subscript Form •

Array Displacement • •

.487

.487

.487
• •• 487

••••• 487

• •• 488

• •• 488

APPENDIX D: LIST OF ABBREVIATIONS •••• 490

APPENDIX E: AUTOCHART SYMBOLS •••••• 491

GLOSSARY ••• 492

INDEX •• • .495

ILLUSTRATIONS

FIGURES

Figure 1. I/O Flow for IBM System/360
BPS FORTRAN • • • • • • •

Figure 2. I/O Functions ••
Figure 3. SVC I/O Formats.
Figure 4. Contents of the
Specifier Byte. • • • • • •

Figure 5. Contents of Tag and Data
Set Byte. • • • •••

Figure 6. Data Set Table Format.
Figure 7. DSCB Format ••.
Figure 8. DSCB Device Code
Assignment. • • • • • • •

Figure 9. DSCB Flag Bytes.
Figure 10. DSCB Check Byte.
Figure 11. Error Mask Bytes.
Figure 12. FORTRAN Printer

.16

.23
• •• 24

. 24

.25
• •• 25
• •• 26

.27
• .27

.27

.27

Carriage Control Characters (PRINTA) •• 28
Figure 13. FORTRAN Printer
Carriage Control Characters (PRINTB) •• 28

Figure 14. Return to the User's
Program • • • • • • • • • • • • • •

Figure 15. Example of Chaining •••
Figure 16. Dictionary Entry Format.
Figure 17. Dictionary and Thumb

Index Format. • • • • • • • • •
Figure 18. Format of Usage Field.
Figure 19. Format of Dimension

Information in Overflow Table •
Figure 20. Entries to Dictionary and

Overflow Table. • • • • • • •
Figure 21. Format of Subscript

• .29
• .70
• .71

.72
• .73

.74

.75

Information • • • • • • • . • • • • • .76
Figure 22. Overflow Table Entry. .76
Figure 23. Statement Number
Information in Usage Field. • • •

Figure 24. Adjective Code ••••
Figure 25. Mode and Type Codes ••
Figure 26. Format of Intermediate

Text" Entries ••••••••.•
Figure 27. Intermediate Text
Entries for a Unary Operation •

Figure 28. Intermediate Text
Entries for Statement Numbers •

Figure 29. Intermediate Text
Entries for a DO Statement. •

Figure 30. Intermediate Text

• .77
.79
.80

.81

.81

• .81

• • .82

Entries for Subscripted Variables • • ,,82
Figure 31. Intermediate Text
Entries for Constant Subscripts

Figure 32. Intermediate Text
.82

Entries for a FORMAT Statement. • • • .8.3
Figure 33. Intermediate Text
Entries for an Error ••••••• .83

Figure 34. EQUIVALENCE Text Entry for
EQUIVALENCE Statements ••••••••• 85

Figure 35. Storage Map for Phase
10. • • • • • • • • • • " • • • • .85

Figure 36. Arithmetic Statement
Function Processing. • • • • • .88

Figure 37. Dictionary Chain
Entries •••••••••••••••• 144

Figure 38. Removing a Symbol From
a Dictionary Chain •.••••••••• 144

Figure 39. EQUIVALENCE Group
Without Root Switching •••

Figure 40. EQUIVALENCE Group With
Root Switching ••••

Figure 41. EQUIVALENCE Table
Format. • • • • •

Figure 42. Storage Map for Phase
12. • • • • • • •

Figure 43. Implied DO Text Input
to Phase 14 .'. • • • • •

Figure 44. Implied DO Text Output

.145

.145

• .146

• .147

.183

from Phase 14 • • • • • • .183
Figure 45. Organization of Phase 15 ••• 222
Figure 46. 1-Byte Indicator ••••••• 244
Figure 47. Index Mapping Table Format •• 279
Figure 48. Subscript Text Input Format .280
Figure 49. Subscript Text Output

From Phase 20 - SAOP Adjective Code •• 281
Figure 50. Subscript Text Output

From Phase 20 - XOP Adjective Code ••• 281
Figure 51. Subscript Text Output

From Phase 20 - AOP Adjective Code. .281
Figure 52. Storage Map for Phase 20 ••• 283
Figure 53. Organization of Phase 20 ••• 284
Figure 54. Branch List Table 2 • • .328
Figure 55. Format of the Base
Value Table • • • • • • • • •

Figure 56. Values in a Base Value
Table •.••• • • • •

Figure 57. Format of the Epilog
Table ••••

Figure 58. Storage Map for Phase

.328

.328

•••• 329

25. • • • • • • • • • • • • • • 330
Figure 59. Set Location Counter

(SLC) Card. • • • • • • • • • • • .377
Figure 60. Include Segment (ICS)

Card. • • • • • • • . • • • • •
Figure 61. External Symbol
Dictionary (ESD) Type 0 Card. •

Figure 62. External Symbol
Dictionary (ESD) Type 1 Card. •

Figure 63. External Symbol
Dictionary (ESD) Type 2 Card. •

Figure 64. External Symbol
Dictionary (ESD) Type 5 Card. •

Figure 65. Text (TXT) Card •••
Figure 66. Replace (REP) Card.
Figure 67. Relocation List
Dictionary (RLD) Card • • • •

Figure 68. Load End (END) Card
Figure 69. Load Terminate (LDT)

• .378

• .378

• .379

• .379

•••• 380
• .380

.381

.382
• .382

Card. ••• • • • • • • • • • .383
Figure 70. Type/Data (DATA) Card. .383
Figure 71. System Tape Layout. • • .453
Figure 72. Access of Specified Element
in Array •••••••••••••••• 487

TABLES

Table 1. Right and Left Forcing Tables .224
Table 2. Format Codes •••••••• •• 417
Table 3. Error and Warning Messages ••• 479
Table 4. Processing Subroutines ••••• 483

CHARTS

Chart 00. FORTRAN System Overall Logic
Diagram • • • • • • • • • • • • • • • • 20

Chart 01. FSD Overall Logic Diagram ••• 37
Chart 22. Overall Logic-I/O Routine ••• 38
Chart AA. DINT Routine • • 39
Chart AB. LDPH Routine • • • • • 40
Chart AC. EXIT Routine • • 41
Chart AD. SIODIR Routine • 42
Chart AE. SIOGO Routine. • • 43
Chart AP. SNTPIN Routine • 44
Chart AG. SD1 Routine. • • 45
Chart AB. SETMD Routine. • 46
Chart AI. SD2 Routine. • ••• 47
Chart AJ. SD5 Routine. • 48
Chart AK. SD7 Routine. • • 49
Chart AL. SD72 Routine • • • 50
Chart AM. SD74 Routine • 51
Chart AN. SD741 Routine. • • 52
Chart AO. SD742 Routine. • • 53
Chart AP. SD743 Routine. • • 54
Chart AQ. SRETRY Routine • • 55
Chart AR. SERP Routine • • • 56
Chart 02. Control Card Overall Logic

Diagram • • • • • • • •
Chart AT. CCLASS Routine
Chart AU. CCJOB Routine.
Chart AV. CCFTC Routine •••••
Chart AW. CCSET Routine.
Chart AX. CCLOAD Routine
Chart AY. CCEDIT Routine
Chart AZ. CCDATA Routine ••
Chart 03. Phase 10 Overall Logic

Diagram • • • • • •
Chart BB. Subroutine CLASSIFICATION.
Chart BC. Subroutine ARITH Part 1 ••
Chart BD. Subroutine ARITH Part 2. •
Chart BE. Subroutine ARITH Part 3.

• 61
• • 62

• 63
• • 64

• 65
• • 66
• • 67

68

• .107
• .108
• .109
• • 110

• 111
• .112 Chart BF. Subroutine ASF ••

Chart BJ. Subroutine GOTO ••
Chart BK. Subroutine DO. • •
Chart BL. Subroutine SUBIF •
Chart BM. Subroutines CALL,

• ••• 113

FUNCTION/SUBRTN • • • • • •
Chart BN. Subroutine Phase 10

• ••• 114
• .115

• • 116

READ/WRITE. • • • • • • • • • • • • 117
Chart BO. Subroutines CONTINUE/RETURN,

STOP/PAUSE. • • • • • • • • • • • .118
Chart BP. Subroutine

BKSP /REWIND/END/ ENDFILE • • • • • • 119
Chart BQ. Subroutine DIMENSION. • .120
Chart BR. Subroutine EQUIVALENCE Part

1 • • • • • • • • • • 121
Chart BS. Subroutine EQUIVALENCE Part

2 • • • • • • • • •
Chart BT. Subroutine
Chart BU. Subroutine
Chart BV. Subroutine
Chart BW. Subroutine

INTEGER/REAL/DOUBLE
Chart CE. Subroutine

HOUSEKEEPING. • • •
Chart CC. Subroutine

COMMON. • •
FORMAT. • •
EXTERNAL. •

Phase 10

GETWD

.122
• .123
• .124
• .125

• ••• 126

• ••• 127
• .128

Chart CD. Subroutines SKPBLK, SKTEM ••• 129
Chart CEo Subroutine SYMTLU ••••••• 130
Chart CF. Subroutines LABLU, PAKNUM,

LABTLU. • • • • • • • • • • • • • • • .131
• .132

.133

.134
• .135

.136

.137

.138
• 139

Chart CG. Subroutines CSORN, INTCON.
Chart CH. Subroutine LITCON Part 1
Chart CI. Subroutine LITCON Part 2
Chart CJ. Subroutine LITCON Part 3 •
Chart CL. Subroutine SUBS. • • • •
Chart CM. Subroutines DIMSUB, DIM90 ••
Chart CN. Subroutine END MARK CHECK. •
Chart CO. Subroutine PUTX. • • • • • •
Chart CPo Subroutines ERROR,

WARNING/ERRET • • • • • • •
Chart CQ. Subroutine PRINT •
Chart CR. Subroutine GET • • • • •
Chart 04. Phase 12 Overall Logic

.140
• .141

.142

Diagram. • • • • • • • • • .160
Chart DA. Subroutine COMAL •••• 161
Chart DB. Subroutine EQUIVALENCE Part

1 • • • • • • • • •
Chart DC. Subroutine EQUIVALENCE Part

2 • • • • • • • • •
Chart DD. Subroutine EQUIVALENCE Part

.162

.163

3 • • • • • • • • •
Chart DE. Subroutine EXTCOM.
Chart DF. Subroutine DPALOC. •
Chart DG. Subroutine SALO.
Chart DH. Subroutine ALOC. •
Chart DI. Subroutine LDCN. • •
Chart OJ. Subroutine ASSNBL.
Chart DK. Subroutine SSCK. •
Chart DL. Subroutine SORLIT.

.164

.165
• •• 166

• ••• 167
• •• 168

• • • • .169
• 170

.171

.172
Chart DM. Subroutines EQSRCH,

RENTER/ENTER. • • • • • • •
Chart DN. Subroutine SWROOT.
Chart DO. Subroutine INTDCT. •
Chart DP. Subroutine SORSYM. • •
Chart DQ. Subroutine ESD • • • • • •

• .173
.174

• .175
.176

• .177
.178 Chart DR. Subroutine RLD • • •

Chart DS. Subroutine TXT • • • ••• 179
Chart DT. Subroutine GOFILE. •
Chart DU. Subroutine ALERT/ALOWRN.
Chart 05. Phase 14 Overall Logic

.180
• • .181

Diagram • • • • • • • • • • • • •
Chart EA. Subroutine PRESCAN • • •
Chart EB. Subroutine Adjective Code.
Chart EC. Subroutines PINOUT, INOUT,

.203

.204
• .205

MSG/MSGMEM, CEM/RDPOTA ••••••••• 206
Chart ED. Subroutine ERROR/WARNING,

UNITCK/UNIT1 ••••••••••
Chart EE. Subroutines PUTFTX,

ININ/GET, GOFILE ••••••••
Chart EF. Subroutines DO, CKENDO •
Chart EG. Subroutine READ/WRITE.
Chart 21. Phase 14 FORMAT Overall

• .207

.208

.209

.210

Logic Diagram. • • • • • • • .211
Chart EH. Subroutine FORMAT. • • .212
Chart EI. Subroutine D/E/F/I/A ••• 213
Chart EJ. Subroutine QUOTE/H,X ••••• 214
Chart EK. Subroutines +/-/P, BLANKZ,

FILLEG, FCOMMA. • • • • • • • • • • • .215

Chart EL. Subroutines LPAREN, RPAREN · .216 Chart HZ. Subroutine CLEAR · · · · · · .321
Chart EM. Subroutines T, FSLASH. · · · .217 Chart IA. Subroutine PUNCH • · · · .322
Chart EN. Subroutines LINETH, LlNECK, Chart lB. Subroutine HANDLE. · · .323

FLDCNT, NOFDCT. · · · · · · · · · · · • 218 Chart IC • Subroutine
Chart EO. Subroutines GETWDA, INTCON · .219 ESDRLD/CALRLD/CALTXT. · · · · .324
Chart 06. Phase 15 OVerall Logie Chart ID. Subroutine GENCON. · · · · · .325

Diagram . · · · · · · · · · · · · · · • 248 Chart IE. Subroutine ESDPUN • · · · · · .326
Chart FA. PRESCAN Routine. · · · · · · .249 Chart 08. Phase 25 OVerall Logic
Chart FE. FOSCAN Routine · · · · · · · .250 Diagram · · · · · · · · · · · · · · · .349
Chart FC. DO Routine, Subroutine DVARK .251 Chart KA. Subroutine INITIALIZATION. · .350
Chart FD. COMP GO TO, GO TO Routines · .252 Chart KB. Subroutine PRES CAN • · · .351
Chart FE. BEGIO Routine. · · · · · · · .253 Chart KC. Subroutine RXGEN/lm/stm. · · .352
Chart FF. ERWNEM, Chart KD. Subroutine LABEL • · · · .353

SKIP/MSGNEM/MSGMEM/MSG/INVOP Routines .254 Chart KE. Subroutines TRGEN, CGOTO • · .354
Chart FG. MOPUP Routine. · .255 Chart KF. Subroutines DOl, ENDDO · · · .355
Chart FH. ADD Routine. · · · .256 Chart KG. Subroutine ARITH1. · · .356
Chart Fl. MOLT Routine · · · · · · .257 Chart KH. Subroutine RDWRT · · · · .357
Chart FJ. DIV Routine. · · · · .258 Chart KI. Subroutine IOLIST. · · .358
Chart FK. EXPON Routine. · · · .259 Chart N. Subroutine ENDIO · · · · · · .359
Chart FL. UMlNUS, UPLUS, RTPRN Chart KL. Subroutines SAOP, AOP. · · · .360
Routines. · · · · · · · · · · · · .260 Chart KM. Subroutines ASFDEF, ASFEXP,

Chart FM. LFTPRN Routine · · · · .261 ASFUSE. · · · · · · · · · · · · · · · .361
Chart FN. FUNC, CALL, END Routines · · .262 Chart KN. Subroutine SUBRUT. · · · · · .362
Chart FO. EQUALS Routine· • · · .263 Chart KO. Subroutine RETURN. · · · · · .363
Chart FP. COMMA Routine. · · · · · · · .264 Chart KP. Subroutine FUNGEN/EREXIT • · .364
Chart FQ. LABEL DEF Routine, Chart KQ. Subroutine FIXFLT/GNBC6. · · .365

Subroutine LAB. · · · · · · · .265 Chart KR. Subroutines SIGN, DIM, ABS · .366
Chart FR. ARITH IF Routine · · .266 Chart KS. Subroutine STOP/PAUSE. · · · .367
Chart FS. COMPILE Routine. · · .267 Chart KT. Subroutine END". · · · .368
Chart FT. Subroutines SYMBOL, TYPE · · .268 Chart KV. Subroutine GENBC · · · · · · .369
Chart FU. Subroutines FINDR, CHCKGR, Chart KW. Subroutine GET · · · · · · · .370

SAVER, FREER, LOADR1. · · · · · · · · .269 Chart KX. Subroutine
Chart FV. Subroutine WARN/ERROR. · · · .270 BASCHK/RXOUT/RROUT. · · · · .371
Chart FW. Subroutines PINOUT, ININ, ChartKZ. Subroutines TXTEST, RLDTXT,
"INOUT-; ". ".

-.----~-~--~. ~

.271 TXTOUT. .372 · Chart FX. Subroutine MODE. · · · · · · .272 Chart 09. Phase 30 Overall Logic
Chart FY. Subroutines MVSBXX, MVSBXR · .273 Diagram · · · · · · · · · · · · · · · .374
Chart FZ. INLINl Routine · · · • 274 Chart 11 • Relocating Loader OVerall
Chart GA. INLIN2 Routine · · · .275 Logic Diagram · · · · · .391
Chart GB. Subroutine CKARG · · · · .276 Chart NA. IER Routine. · · · · · .392
Chart GC. INARG Routine. · · .277 Chart NE. RD Routine · · · · · · · · · .393
Chart 07. Phase 20 OVerall Logie Chart NC. CMPSLC Routine · · .394

Diagram . · · · · · · · · · · .295 Chart ND. CMPICS Routine · .395
Chart HA. INIT Routine · · · · .296 Chart NE. CMPESD Routine · · .396
Chart HB. CONTROL Routine. · · .297 Chart NF. CESDo Routine. .397
Chart HC. READ Routine · · .298 Chart NG. CESDl Routine. · .398
Chart HD. DO/IMPDO/ENDDO Routines. · · .299 Chart NH. CESD2 Routine. · .399
Chart HE. PHEND Routine. · .300 Chart NI. CMPTXT Routine · .400
Chart HF. LABEL Routine. · .301 Chart NJ. CMPREP Routine • · .*- · · .401
Chart HG. LIST Routine · · .302 Chart NK. CMPRLD Routine · · · · · .402
Chart HH. ARITH Routine. · .303 Chart NL. CMPEND Routine · · · · · .403
Chart HI. CALL Routine · · · · .304 Chart NM. CMPLDT, WARN Routines. · .404
Chart HJ. IF Routine · · · .305 Chart NN. HEX Routine. · · · · · · .405
Chart HK. OPTMIZ Routine · .306 Chart NO. TBLREF Routine · · · · .406
Chart HL. CALSEQ Routine · · .307 Chart NP. REFTBL Routine · · .407
Chart HM. Subroutine SUBVP (1) · .308 Chart NQ. LODREF Routine · · · · · .408
Chart HN. Subroutine SUBVP (2) · .309 Chart NR. SERCH Routine. · · · · · · · .409
Chart HO. Subroutine SUBVP (3) · · .310 Chart NS. ERROR Routine. · .410
Chart HP. FIXFLO Routine · · · .311 Chart NT. MAP Routine. · · · · · · · · .411
Chart HQ. DUMPR Routine. · · · .312 Chart NU. RELCTL Routine · · .412
Chart HR. Subroutines GENER, GENGEN. · .313 Chart NV. EODS Routine · · · · · · .413
Chart HS. Subroutine GEN · .314 Chart 12. IBCOM-Object Program Logic
Chart HT. GETN Routine · · · · .315 Diagram · · · · · · · · · · · · .423
Chart HU. Subroutine NIB · · · .316 Chart PA. Subroutines FRDWF, FWRWF .424
Chart HV. Subroutine NOB · · · .317 Chart PB. Subroutines FRDWF, FWRWF · · .425
Chart HW. Subroutine BVLSR · · · .318 Chart PC. Subroutines FRDWF, FWRWF · · .426
Chart HX. Subroutine RMVBVL. · · · .319 Chart PD. Subroutines FRDWF, FWRWF • · .427
Chart HY. Subroutine SYMSRC. · .320 Chart PEe Subroutines FRDWF, FWRWF · · .428

Chart PF. Subroutine FlOLF • · · · .429 Chart QA. Subroutine FlOCS I/O
Chart PG. Subroutine FIOAF • · · · · · .430 Interface · · · .449
Chart PH. Subroutine FENDF • · .431 Chart QB. Subroutine FlOCS I/O
Chart PI. Subroutine FCVII • · · · .432 Interface · · · .450
Chart PJ. Subroutine FCVlO • · · · .433 Chart QC. Subroutine IBEXIT. · · · · · .451
Chart PR. Subroutine FCVFI/FCVEI/FCVDI .434 Chart 10. Editor Overall Logic Diagram .463
Chart PL. Subroutine FCVFO/FCVEO/FCVDO .435 Chart MA. START Routine. · · · · .464
Chart PM. Subroutine FCVAI . · · · · · .436 Chart MB. RDACRD Routine • · · .465
Chart PN. Subroutine FCVAO • · · · · · .437 Chart Me. AFTER Routine. · · .466
Chart PO. Subroutines FRDNF, FWRNF · · .438 Chart MD. ASTRSR Routine · · · · · .467
Chart PQ. Subroutines FIOLN, FIOAN • · .439 Chart ME. COPYC Routine. · .468
Chart PRo Subroutines FIOLN, FlOAN • · .440 Chart MF. COPYCL Routine • · · .469
Chart PS. Subroutines FIOLN, FlOAN • · .441 Chart MG. COPYL Routine. · · .470
Chart PT. Subroutine FENDN • · .442 Chart MH. COPYEC Routine • · · · .471
Chart PU. Subroutine FBRSP • .443 Chart MJ. DELET Routine. · · · .472
Chart PV. Subroutine FRWND • .444 Chart MR. REDCRD Routine · · · · .473
Chart pW. Subroutine FEOFM • · · · .445 Chart ML. RDOSYS Routine .474
Chart PX. Subroutines FSTOP, FPAUSE. · .446 Chart MM. T92CMP Routine · · · .475
Chart PY. Subroutine IBFERR. · .447 Chart MN. T92LBl Routine. · .476
Chart pz. Subroutine IBFINT. · · · · · • 448 Chart MO. T92LB2 Routine • · · · · · · .477

Chart MP. SET Routine. . · · .478

PART 1: INl'RODUCTION

This part contains a concise description
of the Basic Programming Support FORTRAN IV
system.

Part 1: Introduction 13

IBM SYSTEM/360 BASIC PROGRAMMING SUPPORT FORTRAN IV

IBM System/360 Basic Programming Support
FORTRAN IV operates independently of any
other programming system. The system is
comprised of segments that reside on a
system tape. The segments are read into
main storage and executed, depending on the
function to be performed. The three system
fUnctions are:

1. Compilation.
2. Object-time execution.
3. System modification.

The segments that are always required,
irrespective of the type of processing
performed by the FORTRAN system, are the
FORTRAN System Director and the Control
Card routine.

In addition, the segments of the system
used for compilation are Phases 10, 12, 14,
15, 20, 25, and 30; for object-time execu­
tion, the FORTRAN relocating loader and
IBCOM; and for system modification, the
editor.

Chart 00 represents the overall logic
flow for the system and Figure 1 represents
the input/output flow for the system.

SYSTEM INITIALIZATION

The system is initiated by operator
action; pressing the IPL key. Thus, the
operator causes the initial program load
(IP~ to be read. IPL reads in the FORTRAN

System Director from, and passes control
to, the system.

FORTRAN SYSTEM DIRECTOR

The FORTRAN System Director (FSD) con­
trols the various functions of the system.
It remains in storage during compilation,
object-time execution, and system modifica­
tion. Initially, the FSD reads in the
Control Card routine.

CONTROL CARD ROUTINE

The Control Card routine reads in con­
trol cards and determines, among other
things, whether:

14

1. A source program is to be compiled.
2. An object program is to be executed.
3. The system is to be modified.
4. A combination of functions is to be

performed (e.g., compile and execute) •

SOURCE PROGRAM COMPILATION

Source programs written in the IBM
System/360 Basic Programming Support
FORTRAN IV language are compiled by the
segments on the system tape that constitute
the Basic Programming Support FORTRAN com­
piler.

The compiler segments are the FSD, the
Control Card routine, and the seven phases
(10, 12, 14, 15, 20, 2·5, and 30) •

The FORTRAN compiler analyzes the source
program statements and transforms them into
an object program compatible to IBM
System/360. In addition, if any source
program errors exist, the FORTRAN compiler
produces appropriate messages. At the
user's option, a complete __ listing of the
source program is produced and/or an object
deck is punched.

FORTRAN SYSTEM DIRECTOR (COMPILATIO~

The FORTRAN System Director performs the
following functions during a compilation:

1. Handles the initialization required
for a compilation.

2. Loads each phase of the compiler for
execution.

3. Fills the input/output (I/~ requests
of the various phases of the compiler.

4. Determines the point at which control
is to be returned to a phase after an
I/O request of that phase is filled.

Because a compilation is
formed, the FSD reads in
passes control to it.

PHASE 10

to be per­
Phase 10 and

Phase 10 reads in each statement of the
source program and converts the statement
(unless it is a COMMON or EQUIVALENr~

statement) into intermediate text which is
used as input to subsequent phases of the
compiler. To allow this intermediate text
to be properly processed, certain informa­
tion must be known about the symbols in the
source statements. This information is
maintained in a dictionary and an overflow
table. For COMMON and EQUIVALENCE state­
ments, Phase 10 produces another type of
text which remains in storage to be proc­
essed by Phase 12.

Upon completion of Phase 10 processing,
control returns to the FSD, which reads in
and passes control to Phase 12.

PHASE 12

Phase 12 primarily allocates storage to
symbols entered in the dictionary, overflow
table, COMMON text, and EQUIVALENCE text.
The storage allocated at this time dictates
where the various symbols will reside in
main storage during the execution of the
object program. The main storage reserved
for COMMON and EQUIVALENCE text is then
made available for subsequent phases.

Phase 12 punches loader input cards for
the object program and text cards for all
constants used by the program, if the DECK
option is specified. It writes these cards
on the GO tape (a temporary tape containing
any object program produced), if the GOGO
or COMPILE and GO options are specified.
If the MAP option is specified, all symbols
and their relative addresses are printed as
part of a storage map, as the addresses are
being assigned.

Upon completion of Phase 12 processing,
control returns to the FSD, which reads in
and passes control to Phase 14.

PHASE 14

Phase 14 reads the intermediate text
created by Phase 10 and replaces any poin­
ters to dictionary information with infor­
mation accessed from the dictionary. Phase
14 converts intermediate text for FORMAT
statements to an internal code. At object­
time execution, this internal code is used
by the IBCOM routine (an object-time I/O
control program) to place input and output
records into the specified format. If
requested, the code is written on the GO
tape and/or punched on text cards.

The main storage reserved for
dictionary is then made available for
sequent phases.

the
sub-

Upon completion of Phase 14 processing,
control returns to the FSD, which reads in
and passes control to Phase 15.

PHASE 15

Phase 15 primarily translates arithmetic
expressions into approximate machine code;
that is, it produces the data necessary to
allow the text word to be converted to a
machine instruction by Phase 25.

Upon completion of Phase 15 processing,
control returns to the FSD, which reads in
and passes control to Phase 20.

PHASE 20

Phase 20 increases the efficiency of the
object program by decreasing the amount of
computation associated with subscript
expressions. Phase 20, if requested via
the DECK option, punches loader input cards
for any required library exponentiation
SUbprograms, for any references to IBCOM,
and for literals that are generated during
the phase in connection with array dis­
placement.

Upon completion of Phase 20 processing,
control returns to the FSD which, in turn,
reads in and passes control to Phase 25 or
30 depending on whether:

1. The COMPILE and GO, GOGO, or NOGO
option is specified.

2. Any source program errors are found.

If the GO option is specified and source
program errors are found, the FSD passes
control to Phase 30. If no source program
errors are found, the FSD passes control to
Phase 25.

If the GOGO option is specified, the FSD
passes control to Phase 25, irrespective of
whether source program errors are found.

If the NOGO option is specified and
source program errors are found, the FSD
passes control to Phase 30. If no source
program errors are found, the FSD passes
control to the Control Card routine.

PHASE 25

Phase 25 analyzes the text produced by
the preceding phases of the compiler and
transforms that text, wherever necessary,

IBM Systern/360 Basic Programming Support Fortran IV 15

DIAL SYSTEM
TAPE DEVICE
ADDRESS
PRESS LOAD
BUTTON

COMPUTER CONSOLE

\----- FSD READ IN

COMPILE AND
EXECUTE
CONTROL CARD

CARD READER

SOURCE
PROGRAM

CARD READER

CONTROL
CARD RTN
READ IN BY
FSD

PHASE 10
READ IN

PHASE 12
READ IN

PHASE 14
READ IN

NOTE: AN INPUT/OUTPUT ERROR
IS PRINTED, WHEN IT OCCURS,
BY THE FORTRAN SYSTEM DIRECTOR

IPL IS
-----.4 LOADED AND

READS IN
FSD r- THIS IS THE LEAD-IN BLOCK FOR OBJECT
MAIN STORAGE / PROGRAM EXECUTION OR SYSTEM MODIFICATION

/

CONTROL
CARD
ROUTINE

FORTRAN
SYSTEM
DIRECTOR

PHASE 10

FORTRAN
SYSTEM
DIRECTOR

PHASE 12

FORTRAN
SYSTEM
DIRECTOR

NEXT
SHEET

/
/

CONTROL CARD ROUTINE
DETERMINES THAT A
SOURCE PROGRAM IS
TO BE COMPILED.

PRINTER

SOURCE STATEMENT ______ ---;~
CONVERSION

DECK OPTION
SPECIFIED

COMPILE AND GO

MAP OPTION
SPECIFIED

POINTERS RE­
PLACED WITH
ADDRESSES

COMPILE
AND GO

GO TAPE

ESD/RLD CARDS FOR
PROGRAM--TXT CARDS
FOR PROGRAM CON­
STANTS

GO.TAPE

TEXT CARDS
FOR FORMAT
STATEMENTS

PUNCH

Figure 1. I/O Flow for IBM System/360 BPS FORTRAN (sheet 1 of 2)

16

WORK
TAPE A

FORTRAN
SYSTEM
DIRECTOR

PHASE 15
READ IN

PHASE 20
READ IN

NO

PHASE 25 DECK OPTION
SPECIFIED

CONTROL RETURNS TO
FSD. IF ERRORS OR
WARNINGS ARE TO BE
PROCESSED, FSD READS
IN PHASE 30

CONTINUED
FROM SHEET 1

FORTRAN
SYSTEM
DIRECTOR

INPUT FROM PHASE 14
WORK TAPE B

PHASE 15 1---- ARITH EXPRESSIONS ___ +/
TRANSFORMED

WORK
TAPE A

FORTRAN
SYSTEM
DIRECTOR

PHASE 20

DECK OPTION
SPECIFIED

1------_ COMPILE AND GO

ESD/RLD CRDS
FOR EXPONEN­
TIATION AND
IBCOM

PUNCH

GO
TAPE

MAP OPTION
SPECIFIED

SUBSCRIPT TEXT
OPTIMIZED

TXT CRDS FOR
INSTRUCTIONS,
BRANCH LISTS,
AND BASE VALUES

YES

RLD CRDS FOR
BRANCH LISTS,BASE
VALUES, AND AD­
DRESS CONSTANTS

COMPILE
AND GO

MAP OPTION
SPECIFIED

PHASE 30
READ IN

UPON COMPLETION
OF PHASE 25, THE
OBJECT PROGRAM
HAS BEEN COMPLETELY
PUNCHED

GO TAPE

MAP OF REF­
ERENCED STMT
NRS. SIZE OF
COMMON. SIZE
OF PROGRAM

PRINTER

FORTRAN
SYSTE1~
DIRECTOR

PHASE 30

CONTROL RETURNS
TO FSD

TEXT CARDS 1
--.. FOR GENERATED

LITERALS

PUNCH

PRINTER

PRINTER

LOAD CONTROL
CARD - FIRST
CARD OF OBJ
PROGRAM

CARD READER

LOADER
READ IN

REFERENCED
LIBRARY SUB­
PROGRAMS
READ IN

OBJECT PROGRAM EXECUTION

CONTROL
CARD
ROUTINE

FORTRAN
SYSTEM
DIRECTOR

LOADER

CONTROL CARD ROUTlNE
DETERMINES THAT AN
OBJECT PROGRAM IS TO
BE COMPILED.

IF OBJECT PROGRAM
IS IN CARD READER
IT IS PUT ON GO TAPE

OBJECT PROGRAM
READ IN AND
RELOCATED

GO
TAPE

IBCOM
READ IN

I::-:-:-:--::::D,.,.AT.".A:-:-__ }.J -­
CARD READER

FORTRAN
SYSTEM
DIRECTOR

NOTE: DATA CAN BE
EITHER IN THE CARD
READER OR ON TAPE.

OBJECT PRO­
GRAM REMAINS
IN STORAGE.
IBCOM OVER­
LAYS LOADER

AFTER OBJECT PROGRA~I IS
EXECUTED, CONTROL IS
RETURNED TO FSD

SYSTEM MODIFICATION

EDIT
CONTROL
CARD

CARD READER

EDITOR
READ IN

SYSTEM MODI­
FICATION
CONTROL.CRDS

CARD READER

CONTROL
CARD
ROUTINE

FORTRAN
SYSTEM
DIRECTOR

EDITOR

CONTROL RETURNS
TO FSD

CONTROL CARD ROUTINE
DETERMINES THAT SYSTEM
MODIFICATION IS TO BE
PERFORMED

Figure 1. I/O Flow for IBM System/360 BPS FORTRAN (sheet 2 of 2)

IBM System/36 0 Basic Programming Support Fortran IV 17

into the desired object code. It assembles
the entire transformed text into a card
format that is acceptable to the Basic
Programming Support FORTRAN loader. Thus,
the output of Phase 25 (and the compiler)
is an object program in the form of loader
input cards.

Upon completion of Phase 25 processing,
control returns to the FSD, which reads in
and passes control to Phase 30 if source
program errors are found. If no source
program errors are found, control is passed
to the Control Card routine.

PHASE 30

Phase 30 produces error and
messages signalled by error/warning
tors set in the output text of any
ing phase.

warning
indica­
preced-

If no error or warning conditions are
encountered during the compilation, Phase
30 is bypassed. Upon completion of Phase
30 processing, control returns to the FSD.

COMPLETION OF COMPILATION

At the completion of a compilation, the
FSD passes control to the Control Card
routine to read in any additional cards for
processing. If there are no additional
cards (i.e., another source program to be
compiled), the FSD either reads in the
relocating loader and passes control to it,
or displays an end of job message, and then
goes into a wait status, depending on the
option specified. If the GO or GOGO
options are specified, control is passed to
the loader. If the NOGO option is speci­
fied, an end of job message is displayed,
and a wait status is entered.

OBJECT PROGRAM EXECUTION

An object program generated by the
FORTRAN compiler is executed through the
use of certain segments on the system tape.
These segments are the FORTRAN System
Director, the FORTRAN Relocating Loader,
and the IBCOM routine.

18

FORTRAN SYSTEM DIRECTOR (EXECUTION)

The FORTRAN System Director performs the
following fUnctions during object-time exe­
cution:

1. Handles the initialization required
for an execution.

2. Loads the FORTRAN loader into main
storage.

3. Loads IBCOM into main storage after
the FORTRAN loader performs its
duties.

4. Fills the I/O requests of the FORTRAN
loader and the IBCOM routine.

FORTRAN RELOCATING LOADER

The FORTRAN loader loads the main object
program and any associated object subpro­
grams into main storage from the GO tape
(or from the card reader). In addition, it
loads the required out-of-line subprograms
from the library on the system tape. This
produces a storage map of each object
program that is loaded, if the MAP option
is specified. Upon completion of the load­
ing, control passes to the FSD.

IBCOM

After the FORTRAN loader has been used,
the FSD loads the IBCOM routine from the
system tape over the FORTRAN loader. ~he

IBCOM routine serves as the hub of the
FORTRAN input/ou~put object code state­
ments. It is used by the object program as
an interface with the I/O routines in the
FSD.

Although the I/O routines in the FSD
perform the actual I/O operations, IBCOM
sets up all required information. For
example, IBCOM converts any data to be read
or written by the FSD to its specified
format. IBCOM remains in main storage
until the conclusion of object-time execu­
tion.

COMPLETION OF EXECUTION

At the completion of object-time execu­
tion, control returns to the FSD from the
object program.

SYSTEM MODIFICATION

The Basic Programming Support FORTRAN
system may be tailored to fit the program­
ming requirements of a particular installa­
tion.

The editor, a segment of the FORTRAN
system, enables the user to revise one or
more segments of the system tape. This
revision (the addition, replacement, or
deletion of features as desired) is accom­
plished through the use of control cards
(also referred to as control statements) •

FORTRAN SYSTEM DIRECTOR (MODIFICATIO~

The FORTRAN System Director performs the
following functions during a system modi­
fication:

1. Handles the initialization required
for a system modification.

2. Loads the editor into main storage.
3. Fills the I/O requests of the editor

in reading in the segments of the
system to be modified and writing out
the modified segments on the new sys­
tem tape.

EDITOR

After the FSD loads the editor into main
storage, the editor reads in the system
maintenance control cards (and any object
decks associated with them) and modifies
each segment of the FORTRAN system as
specified. The editor has control through­
out the editing process. The editing proc­
ess ends when there are no more control
cards to be read or when the editor encoun­
ters a control card indicating that no more
editing is to be done. Control is then
returned to the FSD.

COMPLETION OF SYSTEM MODIFICATION

At the completion of system modifica­
tion, control returns to the FSD from the
editor. If there is additional processing
to be performed in the job (e.g., compiling
a source program using the new system
tape) , the FSD gives control to the Control
Card routine. otherwise, the FSD enters a
wait status.

IBM Syster~360 Basic Programming Support Fortran IV 19

IPL EFFECTED
AT CONSOLE

X
*****A2**********

* * :~i~*_*_*_*_~~~::

: A3 :

X
·*A3**·****
:~~~*_*_*_*_2~~::

* A2 * •••• X* LOAD CONTROL *X ••• .. LOAD EDITOR-- •
* GIVE CONTROL * * * *CARD RTN--GIVE *

**** :*~~~!:~;*!~*~~*:

X
*****B2******·***
:~~~.-*-*-.-~:~::
* DETERMINE *
* FUNCTION TO *
:*~i*~i::~~~i~ .. *:

.x.
C2 * •

:***!~*;~!!~~***:

X
*****B3**********

:~~~*-*-*-*-!~~::
•••••• * PERFORM *

* SYSTEM *

:**::!~!i~!~~~**:

• * *. ****C3***.*****
.* *. YES *GIVE CONTROL TO*

. END OF JOB X FSD TO *
. . * TERMINATE JOB *
.. ***************

* •• *
• NO

. x.
02 * ..

.* * •
• * SYSTEM * .. YES * *

. !>1AINTENANCE . •••• X* A3 *
. . * * *. .* * •• *

• NO

.x.
E2 *. *****E3**********

• * *. *FSD 01B3*
• * OBJECT *. YES *-*-*-*-*-*-*-*-*

. PROGRAM X* LOAD LOADER-- *
.EXECUTION. * GIVE CONTROL *
.. * TO LOADER *

* •• * *****************
• NO

X
*****F2**********

:~~~~-*-*-*-~:~::
* CONVERT *
* SOURCE *

:**;!:!i=i~!~***:

X
*****G2**********
:~;~*-*-*-*-~:~::
* LOAD PH12 *
* GIVE CONTROL *

:****!~*~~H****:

X
*****H2**********
:~~~~-*-*-*-~~:::

ALLOCATE
STORAGE

X
*****J2**********

:~~~*-*-*-*-~~~::
* LOAD PHl4--- *
* GIVE CONTROL *

:****!~*~~!:****:

X
*****K2**********

:~~::-*-*-*-~::::
REPLACE POINTRS
WITH ADDRESSES-
: ~~~,;;;;* ~~~::!*:

x
**** .

: A4- :

X
*****F3**********

:~~~*-*-*-*-!!.:::
*LOAD IN 08JECT *
* PROGRAM- ..

:**!~;~*!~;~:***:

CONTROL IS
GIVEN TO

OBJECT PROGRAM

**** . .
: A4 :

X
*****A4**********
:::;~*_*_*_*_2~~::
* LOAD PH15-- *
* GIVE CONTROL *

:****!~*~~!~****:

X
*****84**********

:~~:;-*-*-*-~~:::
* TRANSFORM *
* ARITHMETIC *

:**i!~~;;;!~~;**:

X
*****C4**********
:~;~*_*_*_*_2~~::
* LOAD PH20 *
* GIVE CONTROL *

:****!~*~~;~****:

x .* •
*****04********** 05 *.
:~~:2_*_*_*_~:~:: • *.* O~~~gN *. *. \
* PERFORM * •••••••• X*. SPECIFIED .*.
* SUBSCRIPT * *. .*

:*~~!!=!~:~!~~**: *. * •• *.*

.x.
E4 * •

.* ANY * •
• MAJOR ERRORS • NO

• NO

TO BE PROCESSED ••••••••••••••••••
. BY PH30 .

. . * •• *
* YES

.x. X
F4 *. *****F5**********

.* GOGO *. *FSD 0183*
.* OPTION *. YES *-*-*-*-*-*-*-*-*

. SPECIFIED . •••••••• X* LOAD PH25-- *
. . * GIVE CONTROL *
.. * TO PH25 *

* •• * *****************
* NO

x

:~i~:~::::::Ei~:
X

*****G5**********
:~~~;-*-*-*-~~:~:

* LOAO PH30-- *X •••
* GIVE CONTROL *

* PRODUCE *
* OBJECT *

:****!~*:~i~****:

X
*****H4**********

:~~:~-*-*-*-~:~~:
*PRODUCE ERRQR/ *
* WARNING *

:***~~;;:~;i****:

:****~~~~~!:****:

· . • X •••••••••• '.

3.
H5 *.

.* ANY *.
• YES.* ERRORS OR * •
••• ••• *WARNINGS TO 8E *

.PROCESSED.
. .

* •• *
• NO . .

.X •••••••••••••••••••••••••

*!** . .
* A2 *

Chart 00. FORTRAN System Overall Logic Diagram

20

PART 2: SYSTEM CONTROL SEGMENTS

Control of the various functions of the
Basic Programming Support (BPS) FORTRAN IV
system resides within the FORTRAN System
Director (FSD). During the system func­
tions (compilation, object-time execution,
and system modification), the FSD remains
in storage.

Initially, the FSD reads in the Control
Card routine to determine which system
function is to be performed.

Part 2: System Control Segments 21

FORTRAN SYSTEM DIRECTOR

The FORTRAN System Director (FSD) con­
trols the functions of the FORTRAN system.
The FSD remains, in storage during compila­
tion, object-time execution, and/or system
modification.

All communication between the various
segments of the system and the FSD is by
supervisor call (SVC) instructions. An SVC
instruction requests the FSD to perform a
certain operation. One SVC instruction is
reserved for the I/O operations of the FSD.
(These operations include such things as
reading tape, writing tape, printing, and
punching.) Loading of the various segments
is also initiated by an SVC instruction.

A communications area exists within the
FSD. This area serves as a central gather­
ing point for comwon information. The
contents of the communications area are
specified in the program listing supplied
by IBM for the FSD.

Chart 01, the F'SD Overall Logic Diagram,
indicates the entrance to and exit from the
FSD and is a guide to the overall functions
of the FSD.

I/O OPERATIONS

The FORTRAN System Director (FSD) trans­
fers control to the I/O routines whenever
an SVC instruction, requesting an I/O oper­
ation, is encountered. The I/O operations
are explained in accordance with:

1. The functions supported.
2. SVC I/O formats.
3. Data set designation.
4. Return to the user's program.

In general, the flow within the I/O
routines begins with an SVC instruction.
The co-ordination of I/O devices and func­
tions is controlled by the device assign­
ment (referred to as a unit table on the
program listing provided by IBM for the I/O
routines). The I/O routines set up for
(SIODIR) and initiate (SIOGO) all the I/O
operations. They handle all I/O interrupts

22

(SNTPIN), provide for tape read and/or
write retry procedures (SRETRY), and unde,r

I certain conditions allow error recovery
procedures (SERP). The routines provide
the initial location of the device assign-
ment table if it is not already known
(SD1), set up for a set mode operation code
and CAW (SETMP), and set up for a check
operation (SD2). They set up simple con­
trol operations (SDS), data operations
(SD7), and print operations (SD74, SD741).

The I/O routines construct a model for
the current call. This model consists of
12 bytes that contain all the information
necessary to process the current call.
After the model is fully developed, it
contains the CCW for the current I/O opera­
tion.

I/O FUNCTIONS

The BPS FORTRAN I/O routines support the
functions defined in Figure 2.

r------------T----------------------------,
I FUNCTION IEXPLANATION & CONSIDERATIONS I
~------------+----------------------------~
IWrite IThis operation provides ani
I loutput facility for areas I
I Ithat are to be handled asl
I Idata. Modifiers are speci-I
I I fiedin the call parameters. I
~------------+----------------------------~
IRead IThis operation provides ani
I linput facility. Modifiers I
I lare specified in the calli
I I parameters. I
~------------+----------------------------~
IControl 3 IThis facility is for opera-I
I Itions not involving read orl
I Iwrite, such as irrmediatel
I I space, stacker select, setl
I Imode, etc. (operation codel
I 1011), I
~------------+----------------------------~
IControl 7 IThis facility is for opera-I
I Itions not involving read orl
I I wri te, such as rewind, I
I Ispace, write tape mark, etc. I
I I (operation code 111). I L ____________ i ____________________________ J

Figure 2. I/O Functions (continued)

(continued)
r------------T----------------------------,
I FUNCTION IEXPLANATION & CONSIDERATIONS \
~------------+----------------------------~
Print This operation provides al

facility for areas intended
for graphic material. It is
similar to the write opera­
tion except that it allows
carriage control specifi­
cation for off-line work (as
determined by the class of
device). The carriage con­
trol character is located in
the first byte of the data
area. When the call is to a
graphic device, this charac­
ter controls the insertion

lof the appropriate
ISystem/360 modifiers. Whenl
la call is to a non-graphic I
Idevice, the control charac-I
Iter located in the firstl
Ibyte is written out as thel
I first data byte and thel
Imodifiers specified in thel
Icall parameter are used. I

t------------+----------------------------~
ICheck (Wait) This operation provides the
I facility to examine a desig-
I nated unit for a busy condi-
I tion, waiting if the unit is
I busy, and interrogating the
I result. (This function is
I automatically included in
I WAIT calls.) Return is made
I to Normal return, Unit
I Exceptional Condition
I return, or Error return, as
I indicated in a data set con-
I trol block within the device
I assignment table and deter-
I mined by current conditions.
I If no operation has been
I initiated on the designated
I unit since the last check of
I the unit, direct normal
I return is made. (See
I "Return to User's Program.")
t------------J.----------------------------i
I I
INote: The print facility is divided intol
Itwo subfunctions, PRINT A and PRINT BI
I(see Figures 12 and 13 respectively). I
I I L ___ J

Figure 2. I/O Functions

SVC I/O FORMATS

The operation and data set desired by
the user is specified in an SVC instruc-

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

tion. One SVC format is used as the basis
of all I/O calls; however, additional I/O
routine capabilities can be introduced by
parameters contained in an expansion of the
basic format. These capabilities include
the use of modifiers to the I/O command
operation code, specification of data par­
ameters in indicated registers (rather than
in the data set control block), and terr­
porary cancellation of overlapped operation
on the data set designated by the call.
The structure of the SVC I/O formats is
defined in Figure 3.

r------T-------T-----T--------------------,
INAME IFORMAT IBYTESIEXPLANATION I
t------+-------+-----+--------------------~
Base I 1'1 This format is used I
Format I I I for all simple data I

I I I operations, that isl
I I Ifor operaticns that \

lido not involve com-I
I Imand operation modi-I
I I fiers; ,this format I
I I is used for Check I
I I calls. *
I I
I I

svc 1/01 2 ISpecify the type of
I I ISVC.
I I I
I T DS I 1 ITag and data set.
I I I Bits 4-7 give the
I I I data set reference
I I I number (0 through
I I 115).
I I I
I SPEC I 1 IAII I/O functions
I I I are defined for the

I II I I routines in this
I Ibyte. See Figure 4

I I I for a definition of
I I Ithis field.
I I I
I Start I I See "Return to
I of I I User' s Prograrr" for
I Return I ! a definition of this I
I I lfield. I
! I I I
~------+-------+-----+--------------------~
IExpan-1 IThis format is used I
Ision AI Ifor Control 3, Con-I
I I Itrol 7, and for anyl
I I loperations requiring I
I I Icorrmand modifiers. I
I I I I
I ISVC I/O 2 \Same as for the basel
I I I format. I
I I I I
I IT DS 11 Saroe as for the basel
I I I format. I
I I I I l ______ ~ _______ J. _____ J. ____________________ J

Figure 3. SVC I/O Formats (continued)

FORTRAN System Director 23

(continued)
r------T-------T-----T--------------------,
I NAM.."S I FORMAT I BYTES I EXPLANATION I
~------+-------+-----+--------------------i
I SPEC 11 I Same as for the base
I I Iforraat.
I I I
I NODS 11 I This byte supplies
I I I the command moaifi-
I I lers for the current
I I I operation.
I I I

A B IliA and B are any pair
I lof registers con-
I taining the Duffer
I address (in A) and
I the byte count (in
I B). Both fields
I must be supplied if
I either is supplied,
I and register con-
I tents will replace
I current data param-I
I eters in the datal
I set control block. I
I An A,B of 0 indi-I
I cates that the cur-I
I rent data parameters I
I are to be m;ed. I
I I

Start I See "Return tal
of I User's Program" fori

Return I a definition of this I
I I field. I

~------L-------L-----L--------------------i
I I
1* Data parameters (address of buffer areal
I and byte count) must exist in the UCB.I
I I L ___ J

Figure 3. SVC I/O Formats

A detailed discussion of those fields of
the SVC formats peculiar to the BPS FORTRAN
I/O routines is presented in the following
sections.

Operation Specification

Figure 3 indicates that all I/O func­
tions are defined for the routines in the
specifier byte. This byte is structured as
follows: bits 0-3 are used for flags; bits
4-7 specify tne operation. Figure 4
defines the contents of this byte.

24

r------T----T-------T---------------------,
I I I HEXA- I I
I I BITS I DECIMAL I SIGNIFICANCE I
~------+----+-------+---------------------~
FLAGS I I I I
(bits 100001 0 I (Reserved) I
0-3) ~----+-------+---------------------~

100011 1 IWait on this opera-I
I I Ition. This flag mayl
I I Ibe combined with anyl
I I lather flag. I
100101 2 I Disregard incorrect I
I I I length indication I
I I I (ILL) now. May bel
I I I combined with anyl
I I lather flag. I
101001 4 IUse data group now. I
~----+-------+---------------------~
111001 C I (Illegal) I
11101 I D I (Ille<jal) I
111101 E I (Illegal) I
111111 F I (Illegal) I

~------+----+-------+---------------------~
10PERA-100001 0 I (Reserved) I
ITIONS ~----+-------+---------------------i
I(bits 100011 1 IWrite (data) I
14-7) 100101 2 IRead I
I 100111 3 I Control 3 I
I ~----+-------+---------------------i
I 10100 I 4 I (Reserved) I

101011 5 I Ct<.eserved) I
10110 I 6 I (Reserved) I
~----+-------+---------------------i
101111 7 IControl 7 I
~----+-------+---------------------i
11000 I 8 I (Reserved) I
~----+-------+---------------------i
110011 9 IPRINTA (write graphicl
I I Idata) I
~----+-------+---------------------i
110101 A I (Reserved) I
110111 B I (Reserved) I
111001 C I (Reserved) I
~----+-------+---------------------i
111011 D IPRINTB (write graphic I
I I I data) I
~----+-------+---------------------~
111101 E I (Reserved) I
~----+-------+---------------------i

I 111111 F I Check I L ______ L ____ L _______ L _____________________ J

Figure 4. Contents of the Specifier Byte

Tag and Data Set Byte

The tag and data set byte indicates
whether modifiers and/or the use of reg­
isters for data parameters are present in
the current call; l~ provides the unit
reference number. Figure 5 defines the
contents of this byte.

r----T-------T----------------------------l
I I HEXA- I I
I BITS I DECIMAL I SIGNIFICANCE I
~----+-------+----------------------------~
10000 I 0 I (Reserved) I
10001 1 1 I (Reserved) I
~----+-------+----------------------------~
100101 2 IIndicates whether or notl
I I Imodifers are supplied and/or I
I I Idata parameters for the datal
I I Igroup are contained in reg-I
I I I isters (Expansion A) • I
~----+-------+----------------------------~
10011 I 3 I (Reserved) I
~----+-------+----------------------------~
101001 4 IContain the data set refer-I
Ithrul thru lence numbers (0 through 15).1
101111 7 I I L--__ i _______ i ____________________________ J

Figure 5. Contents of Tag and Data Set
Byte

DATA SET DESIGNATION

The correlation of I/O devices and func­
tions is controlled through the use of the

device assignment table (DAT). This table
is comprised of two sections: data set
table (DSTA~ and data set control blocks
~SCB). In the program listing provided by

IBM for the I/O routines, DSTAB is referred
to as UTAB and DSCB as UCB.

DSTAB -- Data Set Table

DSTAB is an open end list, referenced
from the I/O routines, and composed of one
6-byte block for each data set. The ini­
tial entry in DSTAB is a 4-byte header
block; the last entry is a 2-byte message
data set identity block (see Figure 6) •

Each 6-byte block holds one assigned
physical device address, an amount rep­
resenting the byte offset of the associated
DSCB from the head DSCB, and the device
type identification in hexadecimal digits
(3 bytes) •

r----------------T------------T--------------------------T---------T----------l
I DATA SET I I I I I
I REFERENCE NUMBER I NAME I STRUCTURE I I BYTES I
~------------------+-----------+-----T----------------------+---------+----------~
I I DSTAB I n+ 1 I Address of DSCBO I I 4 I
~-------------------+------------+------i------------~--------__ +---------+----------~
I 0 I DSTABO I Device 0 Address I Offset 0 I Type I 6 I
~-----------------+------------+-----------------+-----------+---------+----------~
I 1 I DSTAB1 I Device 1 Address I Offset 1 I Type I 6 I
~-... ---------------+-----------+-----------------+-----------+---------+----------~
I· I I I I I I
~----------------+------------+------------------+-----------+---------+----------~
I I I I I I I
~------------------+------------+------~-------------+-----------+---------+----------~
I " I' I I
~--------------------+------------+--------------------+-----------+---------+----------~
'n 'DSTABn I Device n Address I Offset n , Type I 6 ,
~------------------+_-----------+----------T---------+_----------+---------+----------~
'm , DSTABn+6 I Data SetlDev Addr I I I 2 I
~------------------i------------i----------i---------i------_____ i _________ i __________ ~
'NOTE: The "TypeD field is further illustrated as follows: I
I I
I r---~-~---T---T---T---l I
I IXIXIXIXIDIMI I , L ___ i __ -i ___ i ___ i ___ i ___ J I

I I
I Where: XXXX is four hexadecimal digits defining the type of devices, such as 2400 fori
I a 2400 series tape. I
I I
I D is one hexadecimal digit for a service type subclass, such as 24009 for al
I 9-track tape. I
I I
, M is reserved. ~ I
L _________ --__________________ J

Figure 6. Data Set Table Format

FORTRAN System Director 25

The 4-byte header block holds the number
. of data sets in DAT (1 byte) and the
location of the start of the DSCB section
(3 bytes). The 2-byte message data set
identity block holds the data set reference
number in the high order 5 bits and the
device address in the low order 11 bits.
Bit position 1 is reserved.

DSTAB is arranged in sequence according
to data set reference number, 0 through ~,
and is so referenced by any SVC instruction
requesting an I/O operation.

DSCB -- Data Set Control Block

Each entry in DSTAB requires an asso­
ciated DSCB. The DSCB can vary in size
from a minimum of 22 bytes to a maximum of
44 bytes.

The DSCB describes the associated data
set (identified with the physical device
address in DSTAB) and the extent of opera­
tions to be performed on that device. The
DSCB also provides space for retaining any
history requisite to the progress or con­
trol of those operations being performed on
the device. The DSCB may also provide the
optional capabilities of overlapped opera-

tion recognition, and separate indication
(retur~ for unit exceptional condition,
and/or error conditions.

Figure 7 presents a general . description
of the contents of the DSCB. Discussion of
fields that require further explanation are
presented immediately following the figure.

DEVICE CODE BYTES: The bit configurations
of these bytes are as follows: Bits 0-4
contain the set mode modifier pattern for
7-track tape: ddmmm. Bits 5-7 contain the
expansion code for this unit: 001, Expan­
sion B. Bits 8-14 specify the device code
as follows:

Bit 8 Tape
Bit 9 Printer
Bit 10 Punch
Bit 11 Reader
Bits 12-14 are used for a subclass of
one of the above unit types.

Bit 15 contains the multiplex mode flag.

Figure 8 illustrates the device code
assignment.

r-------T---------T-----T---------T-----~--,
I I NAME I BYTES I EXPANSION I TOTAL I CONTENTS I
~-------+---------+-----+---------+-----+---~
I (DSCBO) IDevice I 2 I I IMultiplex mode flag, device code, expansion I
I I Code I I I I code, set mode modifier pattern for 7-trackl
I I I I I I tape. I
~-------+---------+-----+-------+-----+---~
I +2 I Flags I 2 I I I Extent of operations to be performed. I
~-------+---------+-----+---------+-----+---~
I +4 I Specifier I 2 I liThe contents of these bytes is the same as the I
I I I I I ISVC specifier byte. I
~-------+------.-+-----+---------+-----+--~
I +6 ICCW I 8 I I I I
~-------+-------+-----+---------+---+--~
I +14 ICheck I 1 I I IDSCB check byte.' I
~-----+-------+-----+-------+-----+---~
I +15 IByte I 2 I I IThis is the byte count for data group entries. I
I I Count 1 I I I I I
/------+---------+-----+-------+---+---~
I +17 I Buffer I 3 I I I This is the buffer ad~ess for data group I
I IAddress 11 I I I entries. I
~-----+---------+-----+-------+-----+--~
I +20 IError I 2 IA 22 I 22 IError mask bytes. I
~-------+---------+-----+-------+---+--~
I +22 ISense I 6 I I I Note: Minimum requirements. I
I I Bytes I I I I I
~-------+---------+-----+---------+-----+--------------~-----------------------------~
I +28 II/O Old I 8 I I I I
I IPSW I I I I I
~-------+-------+-----+---------+-----+--~ I +36 ICSW I 8 IB 22 I 44 I Note: Requirement for overlapped operation. I L _____ .1. _________ .1. _____ .1. _________ .1.-____ .1.-__ J

Figure 7. DSCB Format

26

r----------T------T---------T-----T-------,
I I I I I HEXA- I
I DEVICE I~ODE IBITS 8-141 BIT I DECIMAL I
I I I I 15 I CODING I

I r----------+------+---------+-----+-------~
11052 IMUlti-1 I I I
I Printer Iplex 10001 001 I 1 I 13 I
r----------+------+---------+-----+-------~
11402 I Multi-I I I I
1 Reader Iplex 10010 000 I 1 I 21 I
r----------+----~-+---------+-----+-------~
11402 IMulti-1 I I 1
I Punch Iplex 10010 001 I 1 I 23 I
r----------+------+---------+-----+-------~
11442 IMulti-1 I I I
I Reader Iplex 10011 000 I 1 I 31 I
r----------+------+---------+-----+-------~
11442 IMUlti-1 I I I
I Punch Iplex 10011 001 I 1 I 33 I
r----------+------+---------+-----+-------~
11443 IMulti-1 I I I
I Printer Iplex 10100 001 I 1 I 43 I
r----------+------+---------+-----+-------~
11403 I Multi-I I I I
I Printer Iplex 10100 011 I 1 I 47 I
r----------+------+----.... ----+-----+-------~
12400 I I I I I
19-Track IBurst 11000 000 I 0 I 80 I
ITape Read I I I 1 I
r----------+------+---------+-----+-------~
12400 1 1 I 1 I
19-Track IBurst 11000 001 1 0 1 82 1
ITape Writel I I I I
r----------+------+---------+-----+-------~
12400 I 1 I I I
17-Track IBurst 11000 010 I 0 I 84 I
ITape Read I I J I I
r----------+------+---------+-----+-------~·
12400 I I I I I
17-Track IBurst 11000 011 1 0 I 86 I
ITape Writel I I 1 I L __________ ~ ______ ~ _________ ~ _____ ~ _______ J

Figure 8. DSCB Device Code Assignment

IDSCB FLAG BYTES: Figure 9 illustrates the
structure of the DSCB flag bytes.

r-------T---T---------------------------~-,
I BYTE IBITISIGNIFICANCE 1
r-------+---+-----------------------------~
DSCBn+21 0 IOperation not checked; lastl

1 loreration not yet interrogat-I
1 I ed. I
I 1 IWait-Check 1
1 2 IReserved 1
I 3 IChaining Flag 1
I 4 IRetry complete; all retries I
I I resulted in failure. I
I 5 IReserved I
I 6 I Reserved I
I 7 IReserved I _______ ~ ___ ~ __________ __________________ J

Figure 9. DSCB Flag Bytes (continued)

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

(continued)
r-------T---T-----------------------------,
IBYTE IBITISIGNIFICANCE I
r-------+---+-----------------------------~
IDSCBn+3 8 IReserved I
I 9 INa overlap: zero overlap per-I
I missible and requires expan-
I sian B.
I 10 SIll: disregard all incorrect
I length indications from this
I unit.
I 11 Reserved
I 12 Reserved
I 13 Reserved
I 14 Unit exceptional condition
I return; user will accept unit
I exception return.
I 15 Error return; user will
I accept error return. L _______ ~ ___ ~ _________________ ~ ___________ J

Figure 9 .. DSCB Flag Bytes

DSCB CRECK BYTE:
the DseB check
Figure 10.

The bit configuration
byte, is illustrated

of
in

r--------T---T----------------------------,
IBYTE IBITISIGNIFICANCE I
r--------+---+----------------------------~
IDSCBn+141 0 Program control interrupti
I I (PCn I
I I 1 Attention I
I 1 2 Incorrect length record I
I I 3 Error I
I I 4 Exceptional condition I
I 1 5 Status report applies to thel
1 1 previous call 1
1 1 6 Reserved 1
1 ,7 Busy; current operation has I
1 1 not received device end, 1
1 1 ~eject, error, or exception-I
I 1 al condition 1 L ________ ~ ___ ~ __________ --________________ J

Figure 10. DSCE Check Byte

ERROR MASK BYTES: The significance of the
error mask bytes is explained in Figure 11.

r--------T-----T--------------~-----------,
IBYTE IEIT I SIGNIFICANCE 1
r--------+-----+--------------------------~
DSCBn +2010-3 ISecond level retry count 1

r-----+----~-----------------~---~
14-7 IFirst level retry count 1
r-----+-------~------------------~
18-9 I Reserved I
r-----+--------~-----------------~
110 IPrevious read error I
r-----+--------------------------~
111 INot first entry I
r-----+------.... -------------------~
1 12-15 I Reserved I ________ ~ _____ ~ __________________________ J

Figure 11. Error Mask Bytes

FORTRAN System Director 27

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

CALLS TC A PRINTER

Due to the peculiarities of a FORTRAN
print command (which is actually a write
graphic data corrmand) the user should be
familiar with the following material on
FORTRAN printer carriage control characters
and data parameters for print calls.

FORTRAN PRINTER CARRIAGE CONTROL CHARACTERS

Figures 12 and 13 define the carriage
control characters and their effect. PRIN­
TA writes after performing the indicated
carriage function (see Figure 12); PRINTB
writes before the carriage function is
performed (see Figure 13).

r---------T-------------T-----------------,
I CHARACTER I EFFECT I ACTION I
~---------+-------------+-----------------~
10 (zero) IDouble Space IImmediate space I
I I I~; Write· I
~---------+-------------+-----------------~
I (blank) ISingle Space IImmediate space I
I I 11; Write· I
~---------+-------------+-----------------~
1+ (plus) IPrint withoutlImmediate NOP; I
I I spacing IWrite. I
t---------+-------------+-----------------~
11 IPrint on IImmediate skip tol
I ifirst line Iline 1 of the I
I lof next page Inext page; Write· I
t---------~-------------~-----------------~
I.Write has no integral carriage motion. I L ___ J

Figure 12. FORTRAN Printer Carriage Con­
trol Characters (PRINTA)

r---------T-------------T-----------------,
I CHARACTER I EFFECT I ACTION I
t---------+-------------+-----------------~
10 (zero) IDouble Space IWrite., space 2 I
t---------+-------------+-----------------~
I (blank) ISingle Space IWrite., space 1 I
t---------+-------------+-----------------i
1+ (plus) I Print withoutlWrite. I
I I Spacing I I
t---------+-------------+-----------------~
11 I Print last I I
I Iline then go I I
I Ito first linel I
I lof next page I I
t---------~-------------~-----------------~
I.Write has no integral carriage motion. I L ___ J

I Figure 13. FORTRAN Printer Carriage Con­
trol Characters (PRINTB)

28

DATA PARA~ETERS FOR PRINT CALLS

In a print call, the data address points
to the carriage control character which is
contained in the byte immediately preceding
the graphic data bytes. The byte count
includes the carriage control character
byte. In the following example:

120 characters for a print line
1 carriage control character

121

a byte count of 121 is supplied to the I/C
routines.

Error Routines

If there is an error during a tape read
or write operation, a given number of
retries will be performed (a~cording to IB~
standards). If the retries are successful,
processing will continue. If they are not,
contrel may be returned to the user's
program (see "Return to User's Pregrarr") or
a wait PSW may be loaded (see "SRETRY
Routine").

Error recovery procedures mayor may not
enable the user to recover the error manu­
ally from the console. For a discussion of
the ccnditions governing this procedure,
see "SERP Routine."

RETURN TO USER'S PROGRAM

Returns to the user's prograrr from an
I/O routine are made starting at the loca­
tion immediately following the SVC block.
The return can occur in anyone of three
formats depending on the capabilities built
into the DSCB. Indication is given in the
DSCB if the return is a result of the
previous call rather than the burrent one.

Figure 14 defines the types of returns.

ROUTINES

The routines of the FSD are:

1. FSD Initialization routine (DINT)
Chart AA.

2. FSD Load Segment routine (LDPH) Chart
AB.

3. Exit routine (EXIT) Chart AC.
4. I/O routines (see "I/O Operations")

Charts AE through AR.

r---------T----------T----------------~------~------------------------------------1 .
,TYPE 'RETURN AT' LOCATION , BYTES.' WHEN USED ,
~---------+----------+_------------+_--.,...---+_-------------------------------1
, Type 1 , , End of SVC block , I Used when neither error nor except- I
, ,. -_I I ional condition return is provided ,
I ,Return' All returns , I for in the DSCB. ,
~---------+---------+----------------+_---+_--------------------------------I
, Type 2 I I End of SVC block , , Used when either error or exceptional ,
I I Return I Unusual return I 4 I condition is provided for in the I
, ~-------+-------------_I I DSCB, but not when both are provided I
, I +4 I Normal return, , for. I
~---------+--------+------------+_--~----------------------------------1 I Type 3 I , End of SVC block , , Used when both error and exceptional,
I I .------------1 I condition returns are provided for in I
, I Return 'Error return ,4, the DSCB. I
, ~---------+------------_I , I
I '+4 I Exceptional Con- I 4 I ,
I I I dition return I I I
I .--------+-----------1 I I
I I +8 I Normal return I I ' , L ________ ~ ________ ~ _________________ ~ ______ ~ _____________________________________ J

Figure 14. Return to the User"s Program

DINT Routine: Chart AA

The DINT routine performs the required
initialization.

ENTRANCE: The DINT routine receives con­
trol from IPL.

CONSIDERATION: The DINT routine performs
the following initialization:

1. Associates the device upon which the
system tape resides with data set
reference number O. (The system tape
is always referenced as data reference
number 0.) .

2. Clears lower storage and the general
registers.

3. Sets up the program, machine check,
and supervisor program status words
(PSWs) •

4. Sets an indicator in the communi­
cations area that the FSD has control.

OPERATION: To establish the system tape
device as data set reference number 0, the
system tape device is placed into the data
set reference number 0 entry of the device
assignment table.

The system tape device address is
mined when IPL is effected. This
address is compared against each
address in the device assignment
The following conditions can occur:

deter­
device
device
table.

1. The system tape device is already
associated with data set reference
number O.

2. The system tape device compares with a
device address associated with a data
set reference number other than O.

The two device addresses are, there­
fore, switched.

3. The system tape device is not present
in the device assignment table. The
device address is, therefore, entered
in the data set reference number 0
entry of the device assignment table.

Lower storage and the general registers are
then cleared.

The FSD constructs the program, machine
check, and supervisor PSWs and places them
in their appropriate lower storage loca­
tions. Included as elements in the various
PSWs are the following:

1. Program PSW: address of the routine to
be branched to if a program interrupt
occurs.

2. Machine Check PSW: address of the
routine to be branched to if a machine
check interrupt occurs.

3. Supervisor PSW: address of that por­
tion of the FSD to be branched to when
one of the phases requests a certain
function of. the FSD.

The FSD indicates that it currently has
control by setting a specific indicator in
the communications area.

EXIT: The
routine.

DINT routine exits to the LDPH

LDPH Routine: Chart AB

The LDPH routine loads a segment of the
system, as required, for execution and
determines the point at which control is to
be received.

FORTRAN System Director 29

ENTRANCE: The LDPH routine
receives control from the DINT
Subsequent to this initial entry,
routine receives control from one
various segments of the system.

initially
routine.
the LOPH
of the

OPERATION: The load segment function of
the FSD is initiated by an SVC instruction
that can call for the load of a segment.
After the load operation is complete, the
FSD passes control to that segment.

Included in the load segment function of
the FSD for the compiler is a check to
insure that the punch device used to punch
the output of a particular phase is not
busy. If busy, the read of the next phase
is not issued by the FSD until the punch is
free. This insures that the contents of
the output buffers of a given phase are not
destroyed until the contents of the buffer
have been punched.

EXIT: The LDPij routine exits to the newly­
loaded segment.

Exit Routine: Chart AC

The EXIT routine determines the point of
return within a segment so the FSD can
return to the appropriate place after an
I/O operation is performed.

ENTRANCE: The EXIT routine receives
~ontrol form an I/O routine within the FSD,
after that routine has fulfilled the
request for some segment.

CONSIDERATION: The return address is det­
ermined from the address of the byte fol­
lowing the SVC instruction that requested
the I/O operation. This address, which was
saved in the supervisor old PSW, mayor may
not be the return address.

If a parameter list follows the SVC, the
saved address is the address of the first
parameter. If no parameter list follows
the SVC, the saved address is the return
address within the segment after its I/O
request has been fulfilled.

OPERATION: After an I/O routine performs
its specified function, it returns control
to the EXIT routine to access the saved
address. The EXIT routine adds to that
address the number of bytes, if any, which
the parameter list following the SVC
instruction occupies. The resulting
address is the return point to the segment
that originated the I/O request.

EXIT: The EXIT routine exits to the seg­
ment that originated the I/O request.

30

SIODIR Routine: Chart AD

The SIODIR (I/O Director Base) routine
completes the initialization steps neces­
sary for all I/O operations.

ENTRANCE: This routine is entered whenever
an SVC instruction requesting an I/O opera­
tion is encountered.

CONSIDERATIONS: The SIODIR routine is
required for all I/O functions.

This routine requires that a specified
symbolic register hold the address of the
DSTAB header block, if the table is not
compiled with the I/O routines.

OPERATION: The SIODIR routine sets up the
I/O base register, return PSW, and gets the
initial DSTAB location.

The routine then determines if it is
being entered for the first time during the
current I/O operation (external entry), or
for the second time (internal entry). If
entry results from an external call, the
routine saves the entry registers and call
return PSW, and sets the internal switch.
If entry results from an internal call or
when the operations resulting from an
external call have been performed, the
SIODIR routine extracts and saves the SVC
specifier byte and the data set reference
number, determines the DSTAB and associated
DSCB locations, and sets the DSCB referen­
ces.

If a check operation or any operations
other than those essential· to all I/O
functions are requested, the SIODIR routine
branches to the appropriate routine to set
up those operations.

When all required I/O operations are set
up, the SIODIR routine sets the suppress
incorrect length indication (SILl) flag (if
specified in the DSCB) into the CCW model
and sets up the I/O interrupt new PSW.

EXITS: The SIODIR routine exits to the
SIOGO routine.

ROUTINES CALLED: During execution this
routine references the following routines:
SD1, SD2, SD5, and SD7.

SIOGO Routine: Chart AE

The SIOGO (I/O Initiator Bas~ routine
initiates all I/O calls.

ENTRANCE:
from the

The SIOGO routine is entered
SIODIR routine when that routine

completes its set-up functions; it may also
be entered from the SNTPIN and SRETRY
routines.

CONSIDERATIONS: The SIOGO routine
required for all I/O functions.

is

OPERATION: The SIOGO routine determines if
the physical device has been checked and,
if not, branches to the SNTPIN routine to
check it.

The routine initiates a series of tests
to guard against an early burst mode
device. If the routine is operating in a
multiplex mode on a multiplex channel with
a multiplex device, and the new device is
not a multiplex device, the routine sets
the CCW model in reserve and branches to
the SNTPIN routine.

When a path is available, the CCW model
is brought in and the DSCB set up. The
SIOGO routine sets up the CCW and CAW, and
issues the Start I/O (SIO) command to the
device. After the SIO command is issued, a
series of operations, based on the condi­
tion codes set after the command-is issued,
are performed.

Condition code 2 or 3 causes the SIOGO
routine to set the CCW model into reserve
and transfer control to the SNTPIN routine.

If condition code 1 is found and the
busy bit is not present, control is trans­
ferred to the SNTPIN routine. If condition
code 1 is found and the busy bit is
present, the SIOGO routine sets the CCW
model in reserve and transfers control to
the SNTPIN routine.

If condition code 0 is indicated and the
routine is not to wait for device end (in
which case control is transferred to the
SNTPIN routin~, the SIOGO routine clears
the internal flag, restores the original
call return and entry registers, sets up to
return control to the user's program, and
returns control to it.

When a path is not available and the CSW
has not been stor.ed, the CCW model is set
in reserve and control is transferred to
the SNTPIN routine.

EXITS: The SIOGO routine exits to either
the user's program or the appropriate loca­
tion in the SNTPIN routine.

ROUTINES CALLED: During
SIOGO routine references
SETMD routines.

execution,
the SNTPIN

the
and

SNTPIN Routine: Chart AF

The SNTPIN (I/O Interrupt Entry) routine
performs the analytic fUnctions necessary
to handle I/O interrupts.

ENTRANCE: The SNTPIN routine is entered at
its initial location whenever an I/O inter­
rupt occurs. It is entered at various
symbolic locations from the SIOGO, SRETRY,
SERP, and SD2 routines.

OPERATION: This routine establiShes an I/O
base register (saving the environment if
the current entry is not internal) and sets
the DSTAB and DSCB references.

After storing the latest I/O PSW and
latest CSW, the routine determines if the
operation has ended. If it has, a sense
command is issued to the current device;
the busy and multiplex flags are cleared;
and, if a retry is specified at this time,
control is transferred to the SRETRY rou­
tine.

When the retry indications have been
cleared ~.e., no retry specifie~ or if
the operation has not ended, tests for
minor interrupt conditions (attention bit,
program control interrupt-PCI, incorrect
length record, or unit exceptional
condition) are performed and the flag for
the appropriate indication(s) is set.

The SNTPIN routi~e then performs a ser­
ies of tests to establish the check opera­
tion status. These tests will ultimately
result in transferring control to the
appropriate location in the SIOGO routine
or enabling a wait. The following para­
graphs describe the possibilities.

When an immediate check is specified and
the device is still not busy, the residual
bit count is saved. Control is then trans­
ferred to the SERP routine to check for any
class of errors.

After control returns from the SERP
routine or if an immediate check was not
specified, a check is made for any error or
unusual condition which forces an immediate
return to the user. If any exist, result
area pointers are set in the communication
registers.

If the operation is ended and return to
the user is to be made, the internal flag,
the device wait-check flag, the not-yet­
checked flag, and the device usage flag are
cleared. Checks are made for the presence
of a wait or reserve operation. If either
operation is present, the wait state will
be entered until termination of the current
operation. Return is made to the call that
requested the current I/O operation, if

FORTRAN System Director 31

neither a wait
present.

nor reserve operation is

EXITS: This routine exits to either the
SRETRY, SERP, or the appropriate location
of the SIOGO routine.

ROUTINES CALLED: During execution the
SNTPIN routine references the SIODIR,
SIOGO, SRETRY, and SERP routines.

SDl Routine: Chart AG

The SDl routine extracts and saves four
items: the DSTAB header block location, the
address that points to the first physical
device, the number of devices, and the
initial DSCB location.

ENTRANCE: This routine is entered from the
SIODIR routine.

CONSIDERATIONS: The SD1 routine is entered
only during the initial entry to the SIODIR
routine. After this first and only use,
the entire routine is eliminated and cannot
be used' without reloading the entire pro­
gram.

OPERATION: The SDl routine
the initial DSTAB location
sent in the area designated
address, and exits if it is.

determines if
is already pre­
to hold that

Otherwise, the routine obtains and saves
the DSTAB header block location. It then
extracts the number of data sets and the
initial DSCB location from the header block
and saves them. The header block location
is incremented by 4 and the result is saved
as the initial DSTAB location.

The SDl routine makes a final test to
make certain that the initial DSTAB loca­
tion is present, and then exits.

EXITS: This routine exits to the SIODIR
routine.

SETMD Routine: Chart AH

The SETMD routine performs the set-up
functions for I/O operations that require a
set mode operation code and CAW. It also
performs the set-up for I/O operations
involving the use of FORTRAN printer car­
riage control characters at the start of
the data stream and for immediate eject
operations on the IBM 1442 punch.

ENTRANCE: The SETMD routine is entered
from the SIOGO and SD74 routines.

32

CONSIDERATIONS: The use
requires the presence
tine.

of this routine
of the SIODIR rou-

OPERATION: After setting up the standard
FORTRAN I/O CAW, the SETMD routine deter­
mines if seven track tape is being used.

When it is not, this routine effects a
series of branches to set up the printer
immediate control chain and the repetitive
punch on the IBM 1442 Card Read-Punch,
which does not have an automatic ejection
when punching is complete.

When seven track tape is being used, the
SETMD routine sets up the set mode modifi­
ers for the DSCB and CCW chain.

When the set mode modifiers have been
set up or after setting up for punch eject
operations on the 1442, the set mode
FORTRAN I/O CAW is set up and the CCW
operation code is cleared and replaced by
the set mode operation code.

EXITS: This routine exits to the routine
that called it.

ROUTINES CALLED: During execution the
SETMD routine references routines SD741 and
SD743.

SD2 Routine: Chart AI

The SD2 routine determines if the cur­
rent operation is a check operation and, if
so, whether the device has already been
checked.

ENTRANCE: The SD2 routine is entered from
the SIODIR routine.

OPERATION: The SD2 routine determines if
the current operation is a check operation
and exits if it is not. If it is a check
operation, but the device has already been
checked, the SD2 routine branches to that
part of the SNTPIN routine that establishes
an exit path; otherwise it branches to that
part of the SNTPIN routine that checks for
minor interrupt conditions.

EXITS: This routine exits to the appropri­
ate location in the SIODIR or SNTPIN rou­
tine.

5DS Routine: Chart AJ

This routine sets up the model for all
simple control operations; that is, for all
control operations whose entire function is

defined in the operation byte of the com­
mand.

ENTRANCE: The SDS routine is entered from
the SIODIR routine.

CONSIDERATIONS: Control operation modifi­
ers are moved in from the svc parameters.

OPERATION: After clearing the data group
flags, the SDS routine determine,s if the
current I/O call has an operation code of 3
(all operations not involving read or
write, such as immediate space or select
stacker) or 7 (all operations not involving
read or write, such as rewind tape). If
neither operation code is found, control is
returned to the SIODIR routine.

When either operation code 3 or 7 is
found, the appropriate operation code is
placed into the CCW model.

The operation modifiers for simple con­
trol operations are then moved into the
model, along with a count of 1 and the SILl
flag.

EXITS: The SDS routine exits to the SIODIR
routine.

SD7 Routine: Chart AK

This routine sets the proper parameters
for data operations into the CCW model.

ENTRAN E: The SD7 routine is entered from
the SIODIR routine.

CONSIDERATIONS: Data operations include
read, write, and print.

OPERATION: The SD7 routine sets the data
group flags and the data parameters (the
storage location at which the data is
found, and the tyte count).

The appropriate data operation is then
set up in the CCW model by inserting
whatever modifiers are necessary, the pro­
per operation code, and making whatever
adjustments are necessary for a particular
device (such as the special FORTRAN car­
riage control characters for the print
routine).

EXITS:
routine.

This routine exits to the SIODIR

ROUTINES CALLED: During execution the SD7
routine references the SD74 and SD72 rou­
tines.

SD72 Routine: Chart AL

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-211 7

The SD72 routine extracts data paramet­
ers through SVC pointers.

ENTRANCE: This routine is entered from the
SD7 routine.

CONSIDERATIONS: This routine requires the
presence of the SD7 routine.

Although this routine is not essential
for I/O operations, it rrust te included if
any SVC formats include expansicn A for
providing data parameters in registers.

OPERATION: When the current call does not
include expansion A, or when it does but no
pointers are supplied, the SD72 routine
transfers contrcl to the SD7 routine.

Otherwise, a work register is cleared
and the identities of the two registers
containing the pointers to the data pararr­
eters (one register containing the buffer
address and the other the byte count) are
loaded into the work register.

The SD72 routine extracts the data
address span and the storage span; the data
address span is then reserved.

The routine then positions the byte
count span, loads the save area pointer
into another register, and forms the poin­
ter to the byte count area by adding the
save area pointer to the byte count span.

The SD72 routine sets the byte count
into the CCW model, forms the pointer to
the data address area, and sets the data
address into the model.

EXITS:
routine.

The 8D72 routine exits to the SD7

SD74 Routine: Chart AM

The 8D74 (Print operation Base) routine
sets up for a print operation.

ENTRANCE: This routine is entered from the
SD7 routine.

OPERATION: The appropriate print operation
is set up using the 8D742 routine for a
PRINTB operation and the SD743 routine for
a PRINTA operation. If the operation is
not on a graphic device, there is no
further processing.

If the operation is on a graphic device,
the SD741 routine is used to adjust for the
FORTRAN control characters; the printer

FORTRAN System Director 33

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

carriage control character is then set into
the model. If the unit is not a printer,
the console printer carriage control char­
acter is set into the model before the data
parameters are adjusted to omit the control
characters.

EXITS: This routine returns control to the
SD7 routine.

ROUTINES CALLED: During execution, the
SD74 routine references the SD741 routine,
the SD742 routine, and the SD743 routine.

SD741 Routine: Chart AN

This routine
operation for any
characters.

performs
FORTRAN

an adjustment
print control

I ENTRANCE: This routine is entered froIT the
SD74 routine at entry point SD741 or from
the SETMD routine at entry point SD741B.

CONSIDERATIONS: This routine requires the
presence of the SD74 and SETMD routines.

All FORTRAN control characters are
entered in a FORTRAN control character
list. This list consists of 2 chains, one
for PRINTA and one for PRINTB.

I

OPERATION: When the SD741 routine is
entered from the SD74 routine, the FORTRAN
control.character list is searched sequen­
tially until the FORTRAN control character
is found. A pOinter is then set to that
control character. If the control charac­
ter is not found, the last character in the.
list is used. A return is then made.

When the SD741 routine is entered from
the SETMD routine, CCW chains and/or chain­
ing flags are set up according to the
following scheme.

A 4-CCW chain and chaining flag for:
PRINTA console printer

A 3-CCW chain for:
PRINTA printer skip
PRINTA console printer single space
PRINTA console printer double space
PRINTB console printer skip

34

A 2-CCW chain and chaining flag fer:
PRINTA printer single space
PRINTA printer double space
PRINTB console printer double space

A special CCW for:
PRINTB printer skip

A 1-CCW for:
all ethers

EXIT: The SD741 routine returns contrcl tc
the calling routine.

SD742 Routine: Chart AO

The SD742 routine sets
print contrcl character
function.

up
for

the
the

FORTRAN
PRINTE

ENTRANCE: This routine is entered from the
SD74 rcutine.

CONSIDERATIONS: This routine requires the
presence of the SD741 routine.

OPERATION: The SD742 routine deterITines if
the current request is for PRINTB. If i1

is not, the routine returns control tc the
SD74 routine. If it is, a pointer is set
to the PRINTB character list. ~ return is
then reade.

EXIT: This routine returns contrcl to the
SD74 routine.

SD743 Routine: Chart AO

This routine sets up the FORTRAN print
control character for the PRINTA function.

ENTRANCE: The SD743 rcutine is entered
from the SD74 routine.

CONSIDERATIONS: This rcutine requires the
presence of the SD741 routine.

OPERATION: The SD743 routine deterITines if
the current request is for PRINTA. If it
is not, the routine returns control to the
SD741 routine. If it is, a pointer is set
to the PRINTA character list. A return is
then wade.

EXIT: This routine returns centre I to the
SD74 routine.

SRETRY Routine: Chart AP

This routine performs error retry procedures
for tape devices.

ENTRANCE: The SRETRY routine is entered
from the SNTPIN routine.

CONSIDERATIONS: The SRETRY routine main­
tains two command chains. The clean chain
consists of three backspace commands, two
forward space commands and a transfer into
the fix chain. The fix chain first issues
a backspace command, then, depending on the
conditions found, sets an erase gap command
or request track in error into the FIXCCWi
it terminates by a TIC instruction to the
set mode CCW.

OPERATION: For illustrative purposes, the
operation of this routine has been divided
into three paths.

Path 1: If the current device is not a
tape, control is returned to the SNTPIN
routine.

The SRETRY routine determines if there
is a data check. If there is no data
check, processing continues at Path 2.

When the current routine entry is not
the first error, the retry counts are re­
stored and processing continues at Path 3.
Otherwise, a test is made to determine if
the tape is in write statusi when it is,
the retry count is set to 3, and processing
continues at Path 3.

If the tape is not in write status, the
routine determines if a noise record has
been read and exits if it has. If a noise
re~ord has not been read, it sets the read
indicator, sets the retry count to 10, sets
the tape clean count to 10, and continues
processing at Path 3.

Path 2: If this is not the first retry
attempt, or if this is the first retry
attempt but the load point indicator is not
set, control is returned to the SNTPIN
routine.

Otherwise, the SRETRYroutine determines
if the third backspace in the clean chain
has been attempted. When it has not, the
tape clean count is reset to 10, and proc­
essing continues at Path 3.

When the third backspace has been
attempted, the control areas are cleared
and the CAW is set to forward space one
data record. The retry count is set to 10,
the retry and tape clean counts saved, and
the routine exits.

Form Z28-6620-0
Page Revised 3/15/66
By TNL Z31-5008-0

Path 3: The control areas are cleared.
When both the retry and tape clean counts
are exhausted, an indication that the retry
is completed is made, and control is re­
turned to the SNTPIN routine.

When the retry count is exhausted, but
the tape clean count is not, the CAW is set
to the clean chain and the retry count to
10. If the retry count is not exhausted,
the CAW is set to the fix chain and a test
is made to determine if the previous read
error indicator is on. When that indicator
is not on, the fix CCW is set to "erase
gap. "

When the previous read error indicator
is on, or after setting the CAW to the
clean chain, the fix CCW is set for "request
track in error."

After the fix CCW has been set (for
request track in error or erase gap), the
retry and tape clean counts are saved and
the routine exits.

EXITS: This routine returns control to
that portion of the SIOGO routine that
issues the Start I/O Command.

ROUTINES CALLED: During execution of the
SRETRY routine the SIOGO routine is
referenced.

SERP Routine: Charts AQ and AR

This routine prepares the system to per­
form error recovery procedures. It may be
used to check for error conditions or for
a condition code 3 occurring after an SIO
operation.

ENTRANCE: The SERP routine is entered
from the SNTPIN, SIOGO, or SRETRY routines.

CONSIDERATIONS: This routine is optional.
Its use requires the presence of the SRETRY
routine.

Four messages may be issued by this
routine. They arei FIA, FIC, FID, and FIS.

OPERATION: When the routine is used for
error detection, the channel failure and
unit check indicators are tested. If none
are on, a normal return is made. If any are
on, the error indicated is processed.

When an error is known to exist, the
processing takes one of three general paths.
The first (Chart AQ) is for the condition
code 3 occurring after an SIO operation, the

FORTRAN System Director 35

Form Z2S-6620-0
Page Revised 3/15/66
By TNL Z31-500S-0

second (Chart AQ) is for a channel failure
indication, and the third (Chart AR) is for
a unit check indication. All three paths
use a common routine procedure in case of
error. This procedure consists of setting
up and printing the proper message (FIA,
FIC, FID, or FIS) , setting up the entry for
the external PSW and for SEREP, and moving
the unit address to a position in the FSD
area used by SEREP.

During object time, 2540 punch equipment
check retries are handled differently than
other error retries. 2540 punch equipment
checks require the repunching of the last
two cards punched. Other errors require
reprocessing only one record, which can be
done within FSD. For 2540 punch equipment
checks, the return is set to the IBCOM
IB2540 routine for the retry.

EXIT: If the SERP routine does not return
control to the calling routine, an FIA,
FIC, FID, or FIS message is issued. The
routine then loads the wait PSW.

36

****A2*********
* * " *

I PL ENTRY

" *

X
*****82**********
CINT AAB3
--*-*-*-'*-*-*-*
* PERFORM *
*I~ITIALIZATIGN *

" *****************

****A4*********
* " *
"

SVC ENTRY

X

" *

*****84**********
* * " INTERPRET *
* SVC *
*
" " " *****************

.x.
C4 * •

• * IS *.
X YES.* THIS A * •
•• *.LOAO SEGMENT .*

. REQUEST .

*****02**********

WHERE
XX 62 FOR PHASELOAD

REQUEST
LCPP A8XX XX

* * xx

B4 FOR ED ITOR
LGAD REQUEST
E4 FOR IBCOM
LOAD REQUEST * LOAD * * SEGMENT it

X
****E2*********

" BRANCH TO' "
* SEGMENT JUST *
* LO~DEC

Chart 01. FSD OVerall Logic Diagram

* •• * * NO
.(MUST BE I/O
• REQUEST)

X
*****D4**********
* 22Cl*
--*-*-*-*-*-*-* REQUEST CAN BE FROM
" FULFILL I/O * COMPILER PHASE OR FROM
" REQUEST * OBJECT PROGRAM REQUEST
" " FILTERED THROUGH IBCOM

X
*****E4**********
EXIT ACB3
--*-*-*-*-*-*-*
*COMPUTE RETURN *
* ADDR. RESTORE *
" REGISTERS "

X
****F4*********

* RETURN TO * * CALLING " CAN BE COMPILER
" SEGMENT "PHASE OR OBJECT

*************** PROGRAM (VIA IBCOM)

FORTRAN System Director 37

****61*********
* * * SVC ENTRY ·

x

* * .. ***** * * .. ** ** ** **** ** * * ** * ** **** * * *** **** *. ** * *** ** .. * *
* SOl * AGE3 • GET INITIAL DSTAB. DseB AND PHYSICAL *
* * * DEVICE ADDRESSES PLUS NUMBER OF DEVICES *

•••• x************.***********************.*.*****************
* SD2 * AIE3 • SET UP TO CHECK DEVICE *
.****************.**********************.***********
* SOS * AJE3 .. SET PROPER OPERATION CODE INTO MODEL *
**

NOTE - SD2 CAN BRANCH TO SNTPIN ROUTINE

*****e: I ********** • *****C2***.****** *****C3**********
*SIODIR ADA3*x.... *507 AKA3* *SD72 AL83*
--*-*-*-*-*-*-* *-*-.. -*-*-*-*-*-* *-*-*-*-*-*-*-*-*
* SET UP *X ••••••• X* SET UP *X ••••••• X* EXTRACT DATA
* FOR I/O * .. FOR A DATA. * PARAMETER *
.. ROUTINES * * OPERATION * *FROM REGISTERS *
***************** .**************** *****************

>.

x
* * * ** 02 ** * * ** * * ** **** * * ** * * * * * * ** * * * * * * * ** * ** * * ** *** ** * *. * *** *** *
SD7_ ANB3 * SD7_1 * ANB2 * INSERT ANY FORTRAN PRINT *
--*-*-*-*-*-*-* * * * CHARACTER IN MODEL ..
* SET UP *x ••••••• X***********.************************************
* FeR A PRINT * * SD742 * AOB3 * SET UP FORTRAN PRINT CONTROL *

OPERATION * * * CHARACTER FOR PRINTS FUNCTION *
***************** .**********.************************************

.X •••••••••••••••••••••••••••••••••••••

X
*****,=- 1 **** ****** *.***F2***.**.***
SIOGO AEA2. .SETMD AH83
--.-.-*-.-*-*-* .-*-.-*-*-.-*-*-*

••• x* INITIATE *X ••••••• X* SET UP *
* THE I/O * *FOR A SET MODE •
* COMMAND * * OPERATION *
****.**********.. ** ••• ****.*** ••• *

.x.
Gl * •

• * *. ****G2***··***·
.* *. NO· *

. ,WAIT NOW •••••••••• X RETURN *
. . * *..* .**.**** •• **.**

••• *
* YES

X
··*HI*···****
* •
• WAIT UNTIL *

·****H2**********
SRETRY ACA3
--*-*-*-*-*-*-*

I/O ••••• x* RElAy •••••
* INTERRUPT · . ********* •• ***.*.

X
·*·**Jl***·**·*** •

• *SNTPIN AFA3* ••••

* TAPE ERROR *RETRY
* PROCEDURE *
.************.***

• NO RETRY

• ··**·J2*··***·***
SERP ARAl
.-*-*-*-*-*-*-*-* NOTE*-*-·-*-*-*-*-*-* •

* S0743 * APB3 * SET UP FORTRAN PRINT CONTROL *
* * * CHARACTER FOR PRINTA FUNCTION *
*************************************.******* •• *
* SETMD • AH83 * SET UP FOR SET MODE OPERATION *
*.**.***.**********************************.****

••••• ?ROCESS .X •••••••
* I/O •

• INITIATE * ••••••••••••••••••
.ERROR RECOVERY *ERROR

• INTERRUPTS *
****.****.*****.*

••• x* PROCEOURES *
** •• ********** •• *

.NO
• ERROR

X
*·**K2**·*··***

• *
RETURN •

X
****K3**·*·****

* ENABLE *
ERROR

* WAIT *
.**.****,******

Chart 22. Overall Logic-I/O Routine

38

NOTE - GO TO INITIALIZE
CURRENT OPERATION
AFTER CHECKING R~­
SULTS OF PREVIOUS
OVERLAPPED OPERA­
TION. PROVIDING NO
ERRORS EXIST

*AA *
* E!3*
* *
* • ENTER FROM
• IPL ONLY

X
*****83**********
* * * ACCESS *
* SYSTEM TAPE *
*DEVICE ADDRESS *
* * *****************

X
*****C3**********
* ESTABLISH *
* SYSTEM TAPE *
*DEVICE ADDR AS *
DATA SET REFER-
* E~CE Ne. c *
~**********

X
*****03**********
* CLEAR *
* LOWER STORAGE *
* AND GENERAL *
* REGISTERS *
* * *****************

X
*****E3**********
SET UP PROGRAM,
*MACHINE CHECK. *
*AND SUPERVISOR *
*PROGRAM STATUS *
* WORDS *

X
*****F3**********
* SET INDICATOR * * IN COMMUNICA- *
* TrONS AREA TO * * INDICATE FSD *
* IS IN CONTROL *

X
***** *A8 *
* 82*
* * *

Chart AA. DINT Routine

FORTRAN System Director 39

***** FROM DINT ROUTINE
*AB * INITIALLY. SUBSE-
.. B2* QUENT ENTRIES OCCUR

* * FOR PHASE LOAD REQUESTS
*

· X
*****82**********
.. *
.. SET READ OF *
* PHASE ADDRESS *
" TO 4000 *
* * *****************

X
*****C2**********
" ..
" SET READ DATA"
" SET REFERENCE "
" NUMBER TO 0 "

" " *****************

· .X •••••••••••

· .X.
02 * • . " .* IS YES.

. PUNCH . •..•
. BUSY .

. .
. .

" NO

· X
*****E2**********
" SET A SUFFl- ..
.. CIENT RECORD *
" BYTE COUNT ..
*ASSOCIATED WITH"
"THE PHASE READ *

· X
******F2***********

" READ *
PHASE II<TO

" STORAGE ..

X
****G2*********

" BRANCH TO "
" PHASE JUST ..
" LOADED ..

Chart AB. LDPH Routine

40

*AB ..
* 84*

.. * ..
• FROM EDITOR -
• LOAD REQUEST

X
*****84**********
" SET READ OF ..
.. PHASE ADDRESS ..
" TO 12000 "
" ..

*AS *
* E4*

• FROM LOADER -
• I BCOM LOAD
• REQUEST
X

******E4***********
REAO

" IBCOM ..
STARTING

.. AT 4000 ..

X
*****F4**********
" " " OBTAIN "
*OBJECT PROGRAM "
* ADDRESS

X
****G4*********

" BRANCH *
" TO OBJECT "
* PROGRAM *

*AC * FROM FSD I/O .ROUTINE
* 83* AFTER THE REQUESTED

* * OPERATION IS FULFILLED
*

EXIT X
*****83**********
* * * COMPUTE *
* RETURN *
* ADDRESS *
* * *****************

X
*****C3**********
* RESTORE * * REGISTERS *
* SAVED * * 8Y I/O * * ROUTINE *

X
****03********* * RETURN *

* TO CALLING *
* SEGMENT *

Chart AC. EXIT Routine

FORTRAN System Director 41

SIODIR
*****A3**********

****A2********* * *
* * SET UP *

SVC ENTRY * •••••••• X* I/O BASE

* * REGISTER

X
*****B3**********
* •

GET *
* INITIAL OSTAB * ••••••••
* LOCATION * X
* *****
***************** *AG *

* 83*

.x.
C3 *.

.* *. .* NEW *. YES

*****C4**********
*SAVE REGISTERS * .

****~
*AD *
* F2*

* *

X
4****F2**********
• *

. . •••••••• x* SAVE CALL.
. CALL . RETURN PSW

. .
* •• * *****************

• NO

X
*****03**********

• *

X
*****04**********
• *

* GET * *
* I/O OPERATION *X •••••••• *
* FROM SVC CALL * *

SET NEW
CALL SWI TCH

ON

*****E3**********
*SET REFERENCES *
* FOR DSCe IN *
*DEV ICE ASS IGN- *
* MENT TABLE 4-· *4***************

SDXT2 .x.
F3 *.

• * IS *.
NO.* CHECK *. YES

CLEAR MODEL *X •••••••• *. OPERATION .* ••••••••
* *. TO E!E .* X

*TESTED * *****
* •• * *AI *

* * 83*

· *AD * •••
* G3*
**** .X. .X.

G2 *. G3 * •
• * *. .* *.

YES.* SIMPLE *. NO .* DATA *. YES

* •

•••••••• *. CONTROL .* •••••••• X*. OPERATION .* ••••••••
X *. OPER .* *. .* x

*AK *
* *Ai'*

*AJ *
* 83* . .

Chart AD.

42

. .
* •• * . *. .*

* •• * * NO

SCXR X
*****H3********** · . SET UP

*AD *
* H3*
* *

SILl FLAG *X •••••••
IN MODEL *

x
*****J3**********

• * • SET UP
: I/O INTERRUPT:
* NEW PSW *

SIODIR Routine

*AL *
* A2* .. .

SIOGO

-_.*.
*AE ...
... • A~* .
I

.v •
• * A2 *. *. :****A3*********: :****A4;:;******:

.* DEVICE *. NO * SET CCW * * PREVIOUS CALL *
. CHECKED .->* MODEL IN *--->* AND WAIT- *-,

***** *.4..'*.'*:. RESERVE: : CHECK FLAGS: **~*4
AE ' * •• * 4**************** ********* ___ ***** *AF * f I~ ~

SIGul V SIG02 .v. .*. .*.
*****81********** 82 *. 53 *. 54 *.
* * .* *. .* 4. .* *. .***
* RESTORE * .4 *. YES.* -. YES.* *. NO * *
* MODEL FROM *--->*. MULTIPLEX .*--->*. MULTIPLEX .*--->*. MULTIPLEX .*->* G3 *
: RESERVE: *.*.MOOE .*.* *.*:HANNE: * *.*~EVICE.*.* *****'*
***************** * •• * * •• * 4 •• *

.LNo :*::.:_:, NO ~. YES
4***

:****C3*~*******:
* CHECK *

>* PATH STATUS *<
* (TIO) -

***** * '*

::r!: •·•· .. ·T·······
SIGORP V SIGD3 .V.

:****01**4******: :****02*"*******: .*03 *. *.
* * * BRING * YES.* PATH *.
* SET UP osce *<---* IN CCW *<---*. AVAILABLE .*
* * * MODEL * *. (ceo) .*
* * * * *..*
******4*4******** ***************** * •• * ro

.V. SIG08
.* E3 *. *. :****E4******4**:

.* esw *. YES * seT ecw *
. STORED .->* MODEL IN *

. (CC1) . * RESERVE * .if._.
*.E ...
... • F~*

*..4 * *

.
I

' •• ·~o ~:~~:~:r······
v SSIO v

:**.*F 1 -_ ••••••• : ': •••• F2 •• ** ••••• :
... seT UP'" .. ISSUE ...
... CCW AND CAW *---->* START I/O ...
: :: TO DEVICE :
•••••••• **.** •• ** __ ••••• _ ...

I **** . .
: G3 :->
**** • v. V

G2 . *. • •••• G3* •••••••••
• * *.* ceo *. NO ... SET CC. .. *. OR .*->* MODEL IN ... *. eel.* ... RESERVE ... *. , .*

'. r~ES ········r····*·~

.v. .v • .•... Hl.......... HZ *. H3 *.
... SET'" .* *. .* CHAN- *.
... BUSY AND'" NO .* *. .* NEL NOT *. NO
... NOT-CHECKED *<---*. eel .* r-. OPERATIQNAL .~
... FLAGS'" *. .* I *. (ee3) .* . I
: ••••••••••••••• : ••••• *.* y ••••• *.* v

.v.
F4 *.

.* *.. ****
.* CU *. YES * ,* *. BUSY .'*->* C3 * *. ALONE.* * *

.. ****
* •• *

ro

.v •
G4 * •

• * * •
.* DEVICE *. YES

.BUSY CHANNEL .----,
.AVAILABLE. V
.. -****

* •• * *AF -
*NO *K3*
I ** *

.*~**
*AF *
* *B:* .

*AQ ... *AF ... ** •• I ... YES _.... ... •••••

... 05--- ... K3*

.... * "' ... '" : F4 :<-,
••• * I YES

v .* • Jl* **. • •••• J3.......... J4 *.
SNTPIN AFF2* * • • -*-*-*-*-*-*-*-* ... SET BUSY * .* *. NO
* ADJUST FOR * >* AND NOT *->*. DEVIce .*---;
* RETURN OR * * CHECKED FLAGS _ *. BUSY.* V
- WAIT * * - *..* ***** ***4_*******4**_* ***44***_* __ ***** * •• * *AF *

I - * B2* **** *4** **** * _
** *4 *4 *
*AE *--, *AE *--, *AE *I
:*~~* 1 :*~~4 I :*~:* I .v. SIG04 V SIGOS V SIGO V

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

.*Kl -. *. :**"-K2*********: :****K3*********: :****~:;*~~*****: ****K5*********
YES.* WAIT *. NO * ADJUST ~ * CLEAR * * RETURN. * * • r . NOW .*--->* RETURN *->* INTERRUPT -->* .---. >* RETURN *

. . * LOCATION * * FLAG * * RESTORE * '* -
.. * * * * '* REGISTERS * '***************

V * •• * ***********4****4 ***************.* **.******_*******
-**** * *AF _

* _K:* .

I Chart AE. SIOGO Routine

FORTRAN System Director 43

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

SNTPIN .*.
*****A3********** A4 *.

****A2********* * * .* *. * INTERRUPT * * ESTABLISH'" .* *eo NO
* *---->* I/O BASE *---->*. INTERNAL .*=-------, * ENTRY * * REGISTERS * *. FLAG .*
._************* * ... *..*

* *
*AF *l * 82*

SNTPN2 V
*****82**********
* *

***************** *. .*

rES

Y Y
*****B4********** *****85**********
* * * * * SET * ... SAVE

*
*

ACCUMULATE
psw AND CSW

DATA
*<-----------------*aOSTAB AND osea *<----* ENVIRONMENT
* * REFERENCES *.. *

*, * * * * ...
*-*************** ***************** *******--*****-**

I .Y.
C2 *. *****C3********** *****C4********** .* *. *ISSUE SENSE TO * * *

.* *. YES *CURRENT DEVICE * *-*-*-*-*-*-*-*-* *. OPERATION .*---->* CLEAR BUSY *---->* POSSIBLE *
. ENDED . * RESET MPX * * ADJUST COUNTS *
.. * FLAGS * * ROUTINE *

* •• * ********-******** *-*********-*****

::;* * *_> *\ NO I
* 02·
**** SSCHK .v. .v.

02 *. *****03********** 04 * • • * MINOR *. *. * .* *.
YES .* INTERRUPT *. * CLEAR * NO .* *. YES

. INDICATIONS .<-------* RETRY *<-------*. RETRY NOW .*-------, I *..* * INDICATIONS * *. .* v

I *·*·*I·~~* ****************! .-.-.-.-. ::::: ::~::
**** * * * * * * *
*AF *l I * E3*
**** V .v. SGCHKD .v. v

:****El*********: •• E2 *_.. ..E3 *_.. :****E4*********: :;::;E5*****:~:;:
* SET MINOR * .* CHECK *. YES .* OPERA- *. NO * SAVE * *-*-*-*-*-*-*-*-*

CONDITIONS *---->*. NOW .*---->*. TION STILL. c.:.. ___ >* RESIDUAL BYTE *---->* ERROR *
* FLAG * *. .* *. BUSY.* * COUNT * * RECOVERY
* * *..* *..* * * * PROCEDURE *
***************** * •• * * •• * ***************** *****************

*LNO

SNTP5.i. YES SNTP6 .I.
F3 *. *****F4********** FS * • • * PCI *. * SET *. .* *.

_____ >*:* A~~~~~~ON *:.YES >: P~i~¥~~S~Ri~ : < ___ Y_E_S*: * RE~~~N *:*
. INDICA- . * ERROR * *CONDITIONS *

.TION . * * *..*
. . ***************** *. .*

I ro ro
.V. SIGORN SNTP5 .V.

G2 *. *****G3********** *****G4********** G5 * •
• * *. * * * * .* *.

YES .* *. NO * RESET * * * NO .* *.
,-----*. PREVIOUS .*---->* WAIT *<----* CLEAR FL.AGS *<----*. PREVIOUS .*
V *. CALL.* ** FLAGS ** I * * *. CALL .*

***** *..* *. .*
*AE * *. .* ***************** ***************** *. .*
* 81* * I * * YES
* * *:F * * I

* G3* Y
***** *.***

*AE •
• V. * 81*

H3 *. * * .* *.

r::··~:f~··>
.v. .v.

*****Jl********** J2 *. J3 *.
.. * .* *. .* *.
*
*

CLEAR * YES .*ANY RETURN *. NO .* ANY *. YES
RESERVE *<-------*. CONDITIONS •• >*. RESERVE .+------0
SWITCH * *. .* *.OPERATION.* V

.. *..* *****
***************** * •• * * •• * *AE *

I v

*AE *
* K2*
* *

I Chart AF.

44

* i NO **:~*

SNTPIN Routine

.Y.
K3 *. *****K4**********

.* *. * * ****K5*********
.* *. YES * SET * * *

. WAIT NOW .------->* INTERNAL *------->* WAIT *
.. . * FL.AGS * ..
.. * .. ****** .. * .. * ***

. . ***************** * NO

I
Y

*AE *
* K2*
* *
*

*AG *
* B3*
* *
*

X
*****83**********
* * * LOAD INITIAL *
* CSTAB *
* LOCATION *
* * *****************

.x.
C3 * •

• * *.
YES .* LOCATION * •

.......• *. PRESENT .*X •••
X *. .*

***** *..*
*AD * * •• * * A3* * NO
* *
*

X
*****03**********
* LOGICAL AND *
* OPERATION TO *
* GET DSTAB *
* t<EADER BLOCK
* LOCATION *

X
*****E3~*********

* * * SAVE * * ~EADER BLOCK *
* LOCATION *
* * *****************

X
*****F~********** * EXTRACT AND *
*SAVE NU~EER OF *
* PHYSICAL *
* DEVICES *
* * *****************

X
*****G3**********
* EXTRACT *
* ANC SAVE *
* INITIAL oseB *
* LOCATION *
* * *****************

X
*****H3**********
ADD 4 TO t<EADER
*BLOCK LOCATION *
* TO OBTAIN *
* INITIAL DSTAB *
* LOCATION *

X
*****J~**********

* * * SAVE *. * INITIAL DSTA8 * ••••
. * LOCATION *
* * *****************

Chart AG. SOl Routine

FORTRAN System Director 45

YES

*AH *
'* 83*
* * *

X
*****83**********
* SET UP * * STANDARD * * FORTRAN I/O *
* CAW *
* * *****************

.X.
C3 * •

• * * •
• * *.

•••••.•••••••••••• *. 7-TRACK .*
. TAPE .

. .
* •• *

* NO

.
X

*****03**********
50741 ANB4
--*-*-*-*-*-*-*
*SET UP PRINTER *
* IMMEDIATE * * CONTROL CHAIN *

*AH *

X * E3*
*****E3********** * *
* SET UP * '*
* IMMEDIATE * •
*EJECT OPERATION*X •••••••
* FOR 1442 *
* PUNCH *

SETMDA X SETMDB X

*AH *
* F3*

*****F2**_******* *****F3********** * * * SET UP SET * * SET UP * * *MCDEL MODIFIERS* * SET MODE *
* FOR osee PAT- * •••••••• X* FORTRAN 1/0 *x •••••••
* TERN AND TO * * CAW *
* CCW CHAIN * * *
***************** *****************

X
*****G3**********
* * * CLEAR * * OPERATION *
* CODE *
* * *****************

X
*****H3**********
* * * INSERT SET *
*MODE OPERATION *
* CODE *
* * *****************

X
****J3*********

* *
* *

RETURN

*
*

Chart AH. SETMD Routine

46

*AI * * 83*
* * *

.x.
83 * •

• * * •
• * CHECK *. NO

. OPERATION . ••••••••
. . X
.. *****

* •• * *AD * * YES * F2*

.x.
C3 * •

• * *.
YES.* DEVICE * •

•••••••• *. C~ECKEO .*
X *. YET .*

***** *~.*
*AF * * •• *
* G3* * NO
* *
*

X
*****03********** * CLEAR *
*PCI/ ATTENTION *
* FLAGS. *
*SET WAIT CHECK *
* FLAG *

.
X

*».**
*AF *
If E:3*

* * *

Chart AI. SD2 Routine

* *
*

FORTRAN System Director 47

*A,J *
* 83*

* * *

X
*****83**********
* * * CLEAR * * DATA GROUP *
* FLAGS *
* * *****************

.x.
C3 * •

• * *.
NO • * CONTROL * • *. OPERATION .*

x

*AD ..
* G3*

*

. OPCODE .
. :3 .

* •• * * YES

X
*****D3**********
* * * SET CONTROL *
* OP3 IN * * CCW MODEL *
* * *****************

.x.
E3 *. *****E4**********

.* *. * * .* CONTROL *. YES * SET CONTROL *
. OPERATION . •••••••• X* OP7 IN *

. OPCODE . * CCW MODEL *
. 7 . * *

* •• * *****************
* NO

. .

.X •••••••••••••••••••••••••

X
*****F3**********
.. SET UP *
* CONTROL * * INFORMATION *
* IN CCW * * MODEL ..

x

*AD *
* G~*
* *
*

Chart M. SDS Routine

48

*AK *
* A3*
* *
*
I
V

*****A3**********
* * * SET * * DATA GROUP *
* FLAGS *
* * *****************

I
V

*****63**********
* MOVE BUFFER * * ADDRESS AND *

r->* BYTE COUNT *
I * INTO MODEL *
I * ***************** *
* * * *AK *

* 83*

V
*****C3**********
SD72 ALB3
--*-*-*-*-*-*-*
* EXTRACT DATA *
PARAMETERS FROM
* SVC CALL *

II *****
*AK *

V * 03*
*****03********** * *
* SET UP * *
: op:~!iioN **<-----J
* CODE *
* * *****************

.*. .V.
E2 *. E3 *. *****E4**********

.* *. .* *. *5074 ANS3*
YES.* READ *. NO.* PRINT *. YES *-*-*-*-*-*-*-*-*

r---*. OPERATION .*<---------*. OPERATION .*---------->* ADJUST *
I *. .* *. .* * FOR PRINT *

.. *..* * OPERATION *
. . *. .* ***************** i, NO • * I
~-------~i I

.V. V
F3 *. **~**F4**********

.* *. * *
.* WRITE *. YES * ADJUST *

*. OPERATION • *----------> * FOR 1442 *
. . * PUNCH *

. . * * * •• * *****************
II NO I

L--____________ > I <:---------'-

I Chart AK. SD7 Routine

V

*AD *
* H3*
* *
*

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

FORTRAN System Director 49

*AL *
* B3*

* *

.V.
e3 * •

• * *.
NO .* POINTERS *. ,.----*. SUPPLIED .*

V *. .*
***** *..*
*AK * * •• *

* *:;* i YES

V
*****03********** * CLEAR WORK *
*REG. LOAD REG •. * * IDENTITIES OF *
* DATA POINTER *
* * *****************

I
V

*****E3********** * OBTAIN AND * * LOAD BYTE *
*COUNT REGISTER *
* IDENTITY *
* * *****************

I
V

*****F3********** * EXTRACT DATA * * ADDRESS SPAN *
* * FIND STORAGE *
* SPANS *

I
V

*****G3**********
* POSITION BYTE *

COUNT SPAN * * LOAD SAVE
: AREA POINTER

I
V

*****H3********** * FORM POINTERS *
* BYTE COUNT *
* AREA SET BYTE *
* COUNT IN * * MODEL *

I
V

*****J3**********
FORM POINTER TO
* DATA ADDRESS *
*AREA. SET DATA * * ADDRESS IN *

MODEL *

I
V

*AK *
* 03*
* *

Chart AL. SD72 Routine

50

SD74

***** *AM *
* 63*
* *
*

I
.V.

*****82********** 83 *.
*50742 * .* *.
--*-*-*-*-*-*-* YES.* PRINTS *.
* SET FOR *<--------*. OPERATION .*
* PRINTS * *. .*
* * *..*
***************** *. .*

I * NO

I
.V.

C3 *. *****C4**********
.* *. *50743 *

.* PRINTA *. YES *-*-*-*-*-*-*-*-*
. OPERATION .-------->* SET FOR *

1 ________ *_·_*_·_· ° j0:':' o. :· ... :::1: :
L-----_ >I< _______________________ ~_

H3 .x.
03 *. *****04**********

****02********* .* *. *50741 *
* * NO.* GRAPHIC *. YES *-*-*-*-*-*-*-*-*
* RETURN *<-----*. DEVICE .*.-------:>* SET PRINTER *
* * *. .* * TO FORTRAN *

*************** *..* * CTL CHAR *

I Chart AM.

* •• * *****************
*

*****E3**********
* SET PRINTER *
* CARRIAGE * * CTL CHAR *<----------------~
* IN MODEL *
* * *****************

I
.V.

F3 *. *****F4**********
.* *. * SET CNSL PRTR *

.* *. NO * CARRIAGE *
*. PRINTER • *"------> * CTL CHAR *

. . * IN MODEL *
. . * * *. .* *****************

* YES I

I I
*****G3*~******** I * ADJUST DATA * * PARAMETERS *
* TO OMIT *<------------------' * CTL CHAR *
* * *****************

I
V

****H3*********
* * * RETURN *
* * ***************

SD74 Routine

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

FORTRAN System Director 51

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

50741

***** *AN *
* 81*
* *
*
I
I
v

*****81**********
* SET PRINTER *

FOR FORTRAN *
* CeNTRGL *
~CHARACTER LIST *
• •

I
I .v.

C 1 *.
.* '*.

YES.* FORTRAN *.
r---*. CHARACTER .*<---------------,
J *..* I
I ' .•..•. ' I
I i NO I
II I I . ~. I
I 01 *. *****D2**********
, .*-* LIST *-*. NO : INCREMENT :
I ~. COMPLETE • *--------> * POINTER *
I *-*. .*-* : :
j * •• * *****************
I * YES

I 1
I v I :****El********~:

I * SET POINTER *
L-_>* TO CTL *

'* CHARACTER * • •

I
I

I
V

****FI*********
* •

S0741B

***** *AN *
* 1:34*
* *
*

I
v

*****84**********
• *
*
*

EXTRACT
TEST

CHARACTER
*
* *
* *****************

I
V

*****C4**********
* * * SET FOR *
* 4-CCW *
* CHAIN *
* * *****************

I .v.
04 *.

.* * • • * CONSOLE *. YES
. PRINTER .---,

. SKIP. I
. .

* •• * * NO

I
V

*****E4**********
• * * SET FOR *
* 3-CCW * * CHAIN
* *****************

I
I .v.

F4 *.
.* *.

NO.* NO * • "* RETURN . ------------------*. SPACE .* •

.v.
*****H2********** H3 *.
* * .* *. * SET UP * YES.* PRINTER *.

. . *. .*
* •• * * YES

I
V

*****G4**********
* * * SET FOR * * 2-CCW *
* CHAIN *
* * *****************

I
V

*****H4**********
* * I SET UP * * CCW FOR *<-------*. SKIP .* * CHAINING *<--J

I Chart AN.

52

* SK I P *
*

*.
*.

***************** * •• *
* FLAG *

.* * * ***************** I * NO

I ".1 I
v

SD741 Routine

I :
"---------------->*

*
*

SET FOR
SINGLE

CCW

****J4********* *. • *-------->* RETURN *
* * * ***************

***** *AD * * A2*
* * *
I

50742 .v.
A2 *.

****At***·····.· •• *. ... * NO .* *.
... RETURN * <-------*. PRINTB .*
.. ... *. .*

**************. *..*

I Chart AO.

* •••

rES
v

*****82*********·
* * SET POINTER *

TO PRINTS *
CHAR LIST *

* * *****************

I
V

****C2*********
* * * RETURN *
* ***************

SD742 and SD743 Routines

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

***** *-AD *
... AS·

* * *

I
50743 .v.

AS *.
****A4********* .* *.

* * NO .* *.
RETURN *<----*. PRINTA .*

* *. .*
***************

*. .-rES
v

*****65*********­
* * * SET POINTER

TO PRINTA
: CHAR, LIST

I
V

****C5*********
* * * RETURN

FORTRAN System Director 53

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

it._
*AP *
.. A3* .. .
I .v.

A3 *.
****A2********* .* ...

.. • NO .* *. YES

.. RETURN *<---*. TAPE _, *. .--_._ •• _ •• _ •• _.- *. . .* I NO •••••

• *. .*. .v.
62 *. 83 *. 84 - • • * *. .-11- *. .* ••

YES.* LOAD PT *. NO.* ANY *. NO.* DATA *.
rl--------'= ••. *. IND~~~TOR •• -*<---*. *~RR~~T~ENS~* .*(---*. *. CHECK ••• *

I
.... *..*

* •• * * •• * * •••
.. .. YES .. YES

V I ••• _*Cl _._ •••• _._ v

:~!~~~*_*_*_:~~~: .. ·*·*C3··***·*** *
Cg~~~~L .. RETURN :

: •• ***:~~:i**.*.:

I v
.*01··*····
.. CLEAR TAPE *
.. CLEAN COUNT •
.. AND RESET *
.. "RETRY COUNT *
:.* ••• !~*!~ •• *.*:

I .v.
El -.

.* -.
:****E2*********:

• * THIRD *. YES .. SET CAW * *. dACKSPACE .*--->* FOR FORWARD •
. . .. SPACE *
.. .. * *. • * ••••• _._._--_ •• _.

• NO

I
V *****F 1 _._. __ ._._ · . • seT CAW ..

• FOR FIX CCW *
: RECOVERY :

***** .. ***********
I .!:_. __________________ -J

. .
: J3 :

itit __ . .
: E4 : itit __

A

I I VES .v. .*.
03 *. *****04********** 05 *. .* *. * SET * .* *.

.* FIRST *. YES * 'NOT FIRST * .* WRITE *.
. ERROR .---->* ERROR" *--->*. STATUS .*

. . * SWITCH * *. .* *..* • * *..*

'T~O ~:~~:~~ .. *.*.*. 'T~O
v v .v.

:****E3*********: :****E4*********: .* E5 *. *.
* RESTORE * • CLEAR * YES.* NOISE * •
* RETRY * • TAPE CLEAN * 1*' RECORD .*

COUNTS • COUNT * *. .*
* * *..*

***************** ***************** v * •• *
I I ::~;: i NO

V V
*****F4********** *****F5**********
* * * SET READ *

V * SET * * INDICATION * I : RET~~ ~OUNT : : ANgo~:~RY :

. ***************** :*****!~*!~*****:

I v v

:~!~i~::::::!~~!: E***:::*;:::****:
* CLEAR *< • CLEAN COUNT *

:***.~::~~~~****: :*****:~*::*****:

I .*. .v.
:****Hl *********: .*H2 *. *. .* H3 *. *. :****H4*********:

INDICATE * YES.* TAPE *. YES.* ~ETRY •• NO * SET CAW *
RETRY *<---*. CLEAN CT .*<---*. COUNT .*--->* TO FIX *

COMPLETE: *.;~HAUST~~.* *.~~HAUST~~.* : CHAIN :
***************** * •• * * •• * *****************

I i NO (~:)~ I
v v .V.

V *****J2********** *****J3********** J4 *.
*****Jl********** : CC~!NC~~AI~. : : ~:iTI~~~C~~~: YES .*'* Dses *'*.

RETURN .. . • SET RETRY *--->* REQUEST TRACK *<---*. READ ••
* * COUNT TO * * IN ERROR * *. .*

* •• ****.*.***** * 10 * * • *..*

I Chart AP.

54

*** ***** ... **.*** ******.********** * •• *

SRETRY Routine

I j"0
v v

:****K3*******.*: :****K4*******"'*:
* SAVE RETRY * * seT
* AND TAPE *<---* FIX Ctw *
: CLEAN COUNTS : : TO ERASE GAP :

********** .. ****** ******* .. *********

I
:
*AE *
* *F~* .

.Chart AQ.

Clear SEREP
Save Area

Set FIA
j·n PSW

Set Up Return
for SXTIN

Normal Entry

81

CI

01

GI

E2

Set FlO
in PSW

G2

Clear OSC8
Error Byte,
Set Up Return
to SRAGIN

SERP Routine (Part 1 of 2)
')

/

Set SEREP
YES Channel

Code Flag

Set FIS
in PSW

E3

F3

Form Z28-6620-0
Page Revised 3/15/66
By TNL Z31-5008-0

Entry for a CC3
ofter an 510

A4

Set Unavailable
SEREP Code

84

C4

04

Determine D
Character for
Message

E4

Enable PSW
Print Message

F4

Set Entry for
SEREP, Entry to
EXTERN PSW,
Unit Address in

.FSO Area

G4

FORTRAN System Director 55

Form Z28-6620-0
Page Revised 3/15/66
By TNL Z31-5008-0

Get Sense
Datal Set
SEREP Unit
Flog

Equipment
Check

NO

Bus Out

NO

B2

C2

YES

D2

YES

E2

• Chart AR. SERP Routine (Part 2 of 2)

56

C4

This is an unconditional
2540 branch to AQC4 during

compilation

D3

Store UCB
Address for
IBCOM

E4

Set Return
to IBCOM
I B2540
Routine

At the beginning of any job (whether a
single job or a job within a multiple job) ,
the FORTRAN System Director (FSD) reads in
and gives control to the Control Card
routine. The Control card routine reads in
control cards (also referred to as control
statements), sets appropriate indicators in
the communications area, and determines
whether:

1. The system is to be modified.
2. An object program is to be executed.
3. A source program is to be compiled.
4. A combination of functions is to be

performed (e.g., compi~e and execut~.

Chart 02, the Control Card Routine Over­
all Logic Diagram, indicates the entrance
to and exit from the Control Card routine
and isa guide to the overall functions of
the routine.

ROUTINES

The CCLASS routine (Chart AT) reads
control cards and determines the type of
function to be performed (e.g., a
compilation). Charts AU through AZ rep­
resent the various routines that process
the FTC, EDIT, LOAD, SET, JOB, and DATA
control cards.

CCLASS Routine: Chart AT

The CCLASS (Control Card Classification)
routine controls the processing of control
cards (also referred to as control
statements) used in conjunction with compi­
lation and ~xecution.

ENTRANCE: The CCLASS routine receives con­
trol from the FSD.

CONSIDERATION: Any job is terminated by
either a DATA control card or an end of
data set. The DATA control card is used as
a flag by the CCLASS routine. In a compile
and execute job, there maybe blank cards
between the source program and the input
data to be used during execution. In this
case, the CCLASS routine can quickly step
through the blank cards because a DATA
control card precedes any objecL-time data
cards.

CONTROL CARD ROUTINE

For compile and execute jobs, all com­
piled source and object programs to be
executed are placed on the GO tape.

OPERATION: The operation of the CCLASS
routine is discussed in accordance with the
relative position of an input card to one
or more jobs.

Initial Entry Into CCLASS, Routine: Any
entry into the CCLASS routine prior to the
first compilation or execution immediately
causes a card to be read. The card may be
either a blank card, a control card, or the
first card of an object or source program.

The CCLASS routine ignores any blank
card and proceeds to read another card-.----

A control card causes theCCLASS routine
to give control to the appropriate Control··
Card routine, which interprets the informa­
tion on the card and sets up the proper
directives for subsequent action.

The first card of an obiect proqram
causes the CCLASS routine to take one of
two options: (1) if the object program is
to be executed, each object program card is
written on the GO tape, or (2) if the
object program is not to be executed, each
object program card is ignored.

The encounter of any other type of card
causes the CCLASS routine to assume the
card is the first card of a source proqram.
Therefore, the FSD is called to load Phase
10 and begin compilation.

Subsequent Entry Into CCLASS Routine:
After a source program has been compiled,
the FSD returns control to the CCLASS
routine which determines if a single or
multiple job is currently specified.

For a sinqle job, the CCLASS routine,
upon receiving control after the compila­
tion, looks for a DATA control card. When
a DATA control card is read, control is
given to the CCDATA routine.

If the end of data set, or a card other
than a blank card, is encountered without
finding the DATA control card, the CCLASS
routine performs the following functions.
It prints a warning message indicating that
the DATA oontLol card is miSSing, simulates
the DATA control card, and then returns
control to the FSD. The FSD either termi­
nates the job or calls the FORTRAN loader,
depending on whether or not the job is to
be executed.

Control Card Routine 57

For a multiple job, the CCLASS routine
immediately reviews the contents of the
last card that was read to determine its
type. (The last phase has read a card that
now becomes the first card to be processed
by the CCLASS routine. This card is saved
in a buffer in the communications area,
which remains resident in main storage.)

The subsequent
is similar
upon the

routine
formed
CCLASS routine.

operation of the CCLASS
to the operations per­
initial entry into the

EXIT: The CCLASS routine exits to the FSD
or to one of the control card routines.

CCJOB Routine: Chart AU

The CCJOB ~ob Control Car~ routine
interprets information supplied on the JOB
control card and transforms that informa­
tion into appropriate directives for the
FSD.

ENTRANCE: The CCJOB routine receives con­
trol from the CCLASS routine when a JOB
control card is encountered.

CONSIDERATIONS: The information on the JOB
control card is subsequently used by the
CCLASS routine to determine: (1) whether a
single or multiple job is specified, and
(2) the action taken following compilation.

OPERATION: The JOB control card is scanned
to determine the desired option. When an
option is determined, a corresponding indi­
cator is set in the communications area.

EXIT: When a blank field is encountered,
indicating that all specifications have
been examined, the CCJOB routine returns
control to the CCLASS routine. The CCJOB
routine may also be terminated if a speci­
fied option does not correspond with an
available option. If this occurs, an error
message is written, and control is returned
to the CCLASS routine.

CCFTC Routine: Chart AV

The CCFTC ~TC Control Car~ routine
interprets information supplied on the FTC
control card and transforms that informa­
tion into directives for the FSD.

ENTRANCE: The CCFTC routine receives con­
trol from the CCLASS routine when a FTC
control card is encountered.

58

CONSIDERATION: The information in the FTC
control card is used by the FSD to deter­
mine action taken during and/or following
compilation.

OPERATION: The FTC control card is
scanned, field by field, by the CCFTC
routine to determine any specified option
or options. Appropriate indicators are set
in the communications area for performance
of the desired functions •.

EXIT: When a blank field is encountered,
indicating that all options have been exam­
ined, the CCFTC routine returns control to
the CCLASS routine. The CCFTC routine may
also be terminated if a specified option
does not correspond with an available
option. If this occurs, an error message
is written, and control is returned to the
CCLASS routine.

CCSET Routine: Chart AW

The CCSET (SET Control Card) routine
uses information supplied on the SET con­
trol card to temporarily modify the device
assignment table in main storage. The
device assignment table is used in the
compilation of the source program. The
device aSSignment table on the system tape
is not modified by this routine.

ENTRANCE: The CCSET routine receives con­
trol from the CCLASS routine when a SET
control card is encountered.

CONSIDERATIONS: The device aSSignment
table in the FSD contains a list of data
set reference numbers and a list of corres­
ponding addresses of the physical devices
to which these data set reference numbers
refer. (An input/output device is ref­
erenced by a data set reference number
which in no way implies a particular
device.) A specification within the device
aSSignment table specifies the type of
device and its physical address.

An arbitrary I/O configuration, under­
stood by the compiler, exists for each
installation. Unless specific changes are
to be made to this configuration, the SET
card does not have to be specified. Dif­
ferent installations have different phYSi­
cal add~esses and therefore call for dif­
ferent changes in the device aSSignment
table.

The SET option, requested by a control
card at compile time, is performed only for
that job. If permanent changes in the
device assignment table are required, the
EDIT option may be used. The EDIT option
recognizes the same SET card; however, a

new system tape with an altered device
assignment table is generated.

Another SET card option, LINE NUMBER, is
used to specify a line longer than 120
characters. During compilation, a count is
kept of the number of characters indicated
in the FORMAT statement. If the count
exceeds 120, a warning message is issued.
If a printer with a 132-character line is
being used, the LINE NUMBER option allows
the normal 120-character line to extend to
132 characters.

OPERATION: The CCSET routine checks the
first option field. If the field is blank,
a return is made in the CCLASS routine to
read the next card. If the field is not
blank, a check is made for a line count.
If the field contains a line count, the
number is converted to binary and placed in
the communications area. If the line count
is not specified, the data set reference
number on the card is stored, and the
device assignment table in main storage is
searched for that data set reference num­
ber. If the number is not found, the new
data set reiernce number is invalid and an
error message is produced.

The next option field is examined. If
this field is blank, the routine returns to
the CCLASS routine to read another card.
If the field is not blank, checks are made
for a line number and/or data set reference
number, and the information is processed as
previously described. If the word LINE is
misspelled, the routine assumes that the
field contains a data set refernce number.
If the assumed number is not found in the
device assignment table, the misspelled
word is treated as an invalid data set
refernce number, and an error message is
produced.

EXIT: When a blank
indicating that all
been processed, the
control to the CCLASS

field is encountered,
specifications have

CCSET routine returns
routine.

CCLOAD Routine: Chart AX

The CCLOAD (LOAD Control Card) routine
interprets information on the LOAD control
card qnd transforms that information into
directives for the CCLOAD routine.

. ENTRANCE: The CCLOAD routine receives con­
trol form the CCLASS routine when a LOAD
control card is encountered.

CONSIDERATION: The information on the LOAD
control card is scanned by the CCLOAD
routine to determine certain object-time
information.

Form Z28-6620-0
Page ReVised 1/11/66
By TNL Z28-2117

OPERATION: The LOAD control card. is
scanned by the CCLOAD routines to deterFine
any specified option or options. Appropri­
ate indicators are set in the corrmuni­
cations area to indicate the specifed
object-time information.

EXIT: The CCLOAD routine passes control to
the FSD after any specified options have
been processed. The FSD either terminates
the job or calls the FORTRAN loader,
depending upon the condition of the GO or
NOGO flags.

CCEDIT Routine: Chart AY

The CCEDIT (EDIT Control Card) routine
allows permanent changes in certain aspects
of the system tape as contrasted to tem­
porary alterations in system conditions
caused by the CCSET routine. The CCEDIT
routine accomplishes this by supplying user
inforFation on altered conditicns to the
editor.

ENTRANCE: The CCEDIT routine receives con­
trol from the CCLASS routine when an EDIT
control card is encountered.

OPERATION: The EDIT control card causes
the FORTRAN System Director to search the
existing system tape for the editor, l.oad
the editor into main storage, and then pass
control to the editor. Other than its
identification, the EDIT contrcl card is
not examined in this routine.

EXIT: The CCEDIT routine is terminated
when ccntrol is passed to the editor.

CCUNIT Routine: Chart AY

The CCUNIT (UNITS Control Card) routine
prints out a descripticn of the device
assignrrent table indicating "the logical
unit number and its associated address.

ENTRANCE: The CCUNIT routine receives con­
trol from the CCLASS routine when a UNITS
con~rol card is encountered.

OPERATION: The UNIT control card indicates
that a description of each of the 16 units
used is to be printed with appropriate
heading information. This printing occurs
each time a UNIT control card is encoun­
tered.

EXIT: The CCUNIT routine returns control
to the CCLASS routine.

Control Card Routine 59

CCDATA Routine: Chart AZ

The CCDATA (DATA Control Card) routine
recognizes the end of the input data set
for the compiler and determines if an
execution is to be performed. It prepares
directives for the CCLOAD routine or for
the FORTRAN System Director job termina­
tion, accordingly.

60

EN~RANCE: The CCDATA routine receives con­
trol from the CCLASS routine when a DATA
control card is encountered.

CONSIDERATIONS: The DATA
indicates that there are
be processed by the CCLASS
er, the DATA control card
cedes any data cards the
accompanying his program.

control card
no more cards to
routine. Furth­
immediately pre-
user may have

*02 *
* 83*
* *
*

I
V

*****83**********
*WHEN INDICATED *
* SET UP INFO *
FROM CNTRL CRDS
IN THE COMMUNI-
* CATIONS AREA *

I .v.
C3 * •

• * IS *. ****C4*********
.* SYSTEM *. YES *FORTRAN SYSTEM *

. TO BE .--------~>*DRCTOR TO LOAD *
. EDITED . * EDITOR *
.. ***************

* •• * * NO

I .v.
03 * •

• * HAVE *. ****04*********
.ALL.COMPILA- • NO *FORTRAN SYSTEM *

. TIONS BEEN .--------->*DRCTOR TO LOAD *
.COMPLETED. *PH10 OF COMPLER*
.. ***************

* .• *

j'"
.v.

E3 * •
• * IS *. ****E4*********

.* OBJECT *. YES *FORTRAN SYSTEM *
*. PROGRAM TO .**--------->*DRCTOR TO LOAD *

. BE EXE- . * LOADER *
.CUTEO. ***************

* •• *

I~
" ****F3*********

*FORTRAN SYSTEM *
* DRCTOR TO *
* TERMINATE JOB *

Chart 02. Control Card Overall Logic Diagram

Control Card Routine 61

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

.... -
-AT *
* *A!* ,

I
v

:****Al ***.*****:

INITIALIZE

I .v.
Bl ••

.*IS THIS* •
• *FIRST ENTRY*. YES

*.**.
*AT ...

.*** * * 8~*
, '*
* 62 *->1 * ,

** ... *
V

******82***********

. TO CCL.ASS .---->
. ROUTINE .

READ
A

CARD *. .* ••• *
• NO

I .v.
el *. *****C2*********-.* *. ... COMPUTE* HAS *. YES ... AND PRINT * *. TIMER BEEN .*--->* COMPILATION * *. STOPPED .* * TIME ...
.. * ... * •• * ******** •••••••••

* NO

I ,.-----------. t<-_J
.v. .v. . •.

01 *. 02 *. 03 ••
• * *. .* *. .* WAS - • • * IS THIS *. NO .* END *. YES .* LAST *. YES

. A SINGLE .---->*. OF DATA .*--->*. CARO DATA .*, *. JOB .* *. seT .* *. CONTROL .*
.. *..* -.CARD .-

* •• * - •• * * •• * v

.it . *1 YES *1 NO *1 NO ::~*:
: El :_> * *B~* _._*

V .v. V
•• ****E 1 --* _.- E2 ******E3*********** .* *. WRITE WARNING .

.-->
READ

A
CARD

.* IS *. YES MESSAGE -*. CARD .*--, DATA CONTROL
-" •• BLANK •• ,,- I ·CARD MISSING ..

* •• * v ._._.-__ •••• _.

'I NO (::' : "L
*AZ ...

I *************

I
F2'"Y'''.. *.c~* .v.

Fl *.
.* *. .* IS *. ...

.* CARD *. YES'" * *. A CONTROL .. *->* A4 .. ~:* C~~D *:*
. BL.ANK . *. CARD.*

. . *. .-.... * •• -* NO ro I • v. .v.. .* .
Gl *. G2 G3 *.

.. . IS *.
.* IS CARD *. YES

. OS..IECT DECK .---. *:* 08~~C~A~~CK·: *~>*a:P~~~~C~E~O I;· *NO
. CARD . *. CARD • * *NO CaMP IL.E *

. . *..* *.ERROR
•• .. * * •• *

j"0 r o rES
.v. v v

HI *. ******HZ*"'******.** ******H3***********
.. * WAS * .. WRITE MESSAGE - WRITE CARD ON

YES .. * L.AST * .. • * GO TAPE
r--*.. CARD DATA .* BEGIN AND MAKE
I *. CONTROL. .* ... COMPIL.ATION * RECORD
I *.CARD .*
V * ... * ***** •• ****** ** ... *~:*!!****

::~': 'I NO
* *bi* ,

v
***1 1 * * **

WRITE WARNING
MESSAGE -

DATA CONTROL.
"'CARD MISSING ...

II L>:::*,. .1:,
:.~!* * *

J2.*.*. : 82 :

.* IS *.
.*PROGRAM TO *. NO

>*BE EXECUTED IF *-1
* ... * ** **

I
**~ ... *
*AS *
* *S!* ,

IN FORTRAN
SYSTEM

DIRECTOR

"'NO COMPIL.E •
*.ERROR .. *

... •• *
* YES

I
V

******KZ***********

WRITE
CARD ON
GO TAPE

1<----' v ,
* El * • *

I Chart AT. CCLASS Routine

62

** ... * , .
: A4 :

I
v

"'"'A4*******'!'"***

PRINT
THE

CARD

... ******* *

IBRANCH ACCORDING TO
TYPE OF CARD

V

!* ... **;!~~;..!::~~***.****:**~~!~!************! I FTC CONTROL. CARD : AVAl I .
EDIT CONTROL. CARD ,

* L.OAD' CONTROL. CARD * .
SET CONTROL. CARD *
JOB CONTROL. CARD *
DATA CONTROL. CARD *
UNITS CONTROL. CARD *
INVAL.ID CONTROL. CARD * ,

AYB3

AXA2

AWB2

AUA2

AZB3

AYB5

E5 OF

I
I
I

THIS CHART I

* *
: E5 :

I
v

******ES**"'********
WRITE ERROR

MESSAGE­
INVAL.ID
CONTROL.

****;:~~*****

I
*~**

* *
: 82 :

*.**

"AU *
* A2*
* •

X
*****A2** ******** . .
* EXAMINE
* Fl~ST OPTION
* FI ELD

X
*****82**********
RESET ALL INDI-
CATeRS. ASSOCI- * ATED WITH Joe *
* CONTROL CARC. *
TC ASSUMED COND
********* ********

.x.
C2 * •

• * * • • * IS *. YES
.CPTION FIELD . ••••••••

. BLANK . X
.. *****

* •• * *AT *
• NO • E2*

* *

.x.

ASSUMED
COND ITIONS

PREVA IL

02 •• *****03**********
.* *. * *

.* NOGO *. YES * SET INDICATOR *
* 02 * •••• X*. OPTION .* •••••••• X* TO PREVENT •••••••••••••••••••
* * •• SPECIFIED.. * EXECUTION • ...* .

*. •• *****************
• NO

.x.
E2 *. *****E3**********

.* *. * * • • * GO *. YES * SET INDICATOR * X
. OPTION . •••••••• X* FOR EXECUTION ,* ••••••••••••••••••

.SPECIFIED. * IF NO COMPILE ..
.. * ERRORS *

*. • * *****************
* NO

.x.
F2 *. *****F3**********

.* *. * * •
• * GOGO *. YES * SET INDICATOR * X

. OPTION . •••••••• X*FOR UNQUALIFIED* ••••••••••••••••••
.SPECIFIED. * EXECUTION *

. .
* •• * *****************

• NO

.x.
G2 *. *****G3**********

.* *. * *
.* SINGLE *. YES * SET INDICATOR *

. JOB . •••••••• X* FOR * ••••••••••••••••••
. . * SINGLE JOB *

. .
* •• * *****************

* NO

.X. X
H2 *. *****H3********** *****H4**********

.* *. * * * * .* MULTIPLE *. YES * SET INDICATOR * * ACCESS *
. JOB . •••••••• X* FOR MULTIPLE * •••••••• X* NEXT OPTION *

. . * Joe * * FIELD
. .

* •• * ****************. *****************
* NO

X
******J2***********

WRITE ERROR
MESSAGE­

INVALID
CONTROL

CARD

.x.
J4 *.

.* *. ****
.* IS OPTION *. NO .. *

. FIELD . •••• X* D2 *
. BLANK. * *

. .
* •• * • YES · . •••••••••••••••••••••• ~ •••••••••••••••••••••••••••• x.

Chart AU. CCJOB Routine

x

*AT *
* 82* • *

Control Card Routine 63

x : •••• "1 ••••••••• :
.. EXAMINE ..
.. F lAST OPT ION ..
: FIELD :•...

X ·····BI····.··.·· -RESET ALL INDI-•
• CATORS. A550CI-_
.. ATED 'IIIITH FTC •
.. CONTROL CARD ••

:!~.:::~:~~.~~~~:

.x.
CI * •

• * * • • * IS *. YES
-.OPT. ON FI ELD .-

. BLANK . X *..* ••••• * •• * .,.T ..
.. NO ... B~* .

ASSUMED
CONDITIONS

PREVAIL

eX.
01 *.

• * * •
: •••• 02 ••••••••• :

• * DECK *. YES .. SET IND ICATOR ..

. .
: 04 :

eX.
04 -. .* Wo •

:* ••• 05 ••••••••• :

.- MACHINE *. YES .. STORE MACHINE.
•• X_. OPTION •••••••••• X. FOR PUNCHING ••••••••••••••••••• *. SIZE •••••••••• X. SIZE IN •

-.SPECIFIED.- .OF OBJECT OECK .. -.SPECIFIED._ _COMMUNICATIONS.
.. *... .. AREA .. * •• * ••••••••••••••••• * •• * •••••••••••••••••

• NO • NO . .
: 01 :

.x. X
El *. : •••• E2 ••••••••• : • E4

.* *. .* NODECK *. YES .. SeT INO [CATOR •
... OPTION •••••••••• X. TO PREVENT ••••••••••••••••• X.

•• SPECIFIEO.. • PUNCHING •
•••• .OF OB .. ECT DECI< •

• NO

eXe
Fl·. : •••• F2 ••••••••• :

•• •• YES • SET INDICATOR. •
•• OPTION X. FOR PRINTING ••••••••••••••••• X •

•• SPECIFIED.. .CF STORAGE MAP. * • •• •• • ••••• **** •• * ••••
• NO

.x.
Gl •• : •••• G2 ••••••••• :

•• NOMAP •• YES • SET IND I CATOR • •
•• OPTION •••••••••• X. TO PREVENT - •••••••••••••••• X •

•• SPECIFIED.. • PRINTING OF •
..... • STORAGE MAP •

• NO

.x.
HI •• : •••• H2 ••••••••• :

•• LIST •• YES • SET INDICATOR. •
•• OPTION •••••••••• X. TO PRODUCE ••••••••••••••••• X •

•• SPECIFIED.. .SOURCE PROGRAM. •••• * LISTING • •• • * •••••••••••••••••
• NO

.x. i.
.... 1 *... : ••• * .. 2 ••••••••• : : 3 ••••••••• :

WRITE ERROR
MESSAGE­

INVALID
CONTROL

• £:~~

... : ..
·AT • •• 8:. .

•• NOLIST •• YES • SET INDICATOR. • ACCESS • •
-. OPTION •••••••••• X. TO PREVENT ••••••••• x. NEXT OPTION .. X •••

•• ;:ECIFI~~.. :SOb~~~I~=cg~AM : X: FIELD : -.
• NO

.x.
•• Kl •••• : •••• 1<2 ••••••••• :

•• ..oB •• YES • STORE JOB. •
•• NAME •••••••••• X. NAME IN •••••••

•• SPECIFIED.. .COMMUNICATIONS •
•••• • AREA * •• .* •••••••••••••••••

• NO

.a._ . .
: 04 :

.i. •
1<3 ••

•• IS •• NO .. •
..OPTION FIELD •••••• X. 01 •

•• BLANI<.. ••
* YES

.. ~ ..
·AT • •• B: • .

Chart AV. CCFTC Routine

64

*AW *
* 62* * ..

*

X
*****82**********
* " * EXAMI~E *
.. FIRST OPTION *
* FIELD ..

" * *****************

.X.
C2 * •

• * * • • * IS *. YES
.CPTION FIELD . ••••••••

. BLANK . X
.. *****

* •• * *AT * * ~o * e2*

• x.

*

02 *. *****03**********
**** .* *. * * * '* .* LINE *. YES * STORE LINE *

* 02 * •••• x*. COUNT .* •••••••• x* COUNT IN '* *.. *.SPECIFIED.* *COMMUNICATIONS *
**** *..* * AREA *

. . *****************
* NO

X
*****E2**********
" * "ACCESS DATA SET*
.. REFERENCE ..
* NUMBER *
* * *****************

.x.
F2 *.

.* NO. *.
******Fl***********

wRI TE ERROR
I'ESSAGE -* * NC .* IN DEVICE *. .. I NVALl D

CONTROL
CARD

x

*AT * * 82*
*

*
x •••••••• *. ASSIGNMENT .*

. TABLE .
. .

*. • * .. YES

x X
*****G2********** *****G3********** * ENTER NUMBER, '* * '*
*A~D ASSOCIATED .. * ACCESS ..
* INFORMATION * •••••••• X* NEXT OPTION *
* eN SET C~RD, * * FIELD '*
* IN TABLE .. * ..
***************** *****************

.x.
H3 * •

• * *. ****
.* IS *. NO * *

.OPTICN FIELD . •••• X* 02 *
. BLANK. * *
.. ****

* •• * * YES

x
***** *AT * * B2*

Chart AW. CCSET Routine

Control Card Routine 65

*AX *
* A2*
* * *

X
*****A2**********
* * * EXAMINE *
* FIRST OPTION *
* FIELC *
* * *****************

X
*****82**********
RESET ALL INDI-
*CATCRS. ASSOCI-«
*ATEC WIT~ LOAD * * CONTROL CARD. *
TC ASSUMED CCNO

.X.
C2 * •

• * * • • * IS *. YES
.CPTION FIELD . ••••••••

. BLANK . X
.. *****

. . *AZ *
* ~O * C3*

• X.

* * •

02' *. *****03**********
**** .* *. * SET INDICATOR *

* * .* DOES *. YES * FOR LOADER TO *
* 02 * •••• X*.FIELD CCNTAIN.* •••••••• X*PRINT ADDRESSES* ••••••••••••••••••
* * *. MAP.* *OF SUBROUTINES *

**** *..* * AS LOADED *

Chart AX.

66

. . *****************
* NO

.X.
E2 4. *****E3**********

.* *. * seT INDICATOR *
.* DOES *. YES *TO PREVENT LOR * •

.FIELD CCNTAIN. •••••••• X*FROM ·PRNTNG T~E* •••••••••••••••• X.
. NO M~P . * ADDRESSES OF *
.. * SUBROUTINES *

* •• * **********4******'
* NO

.X.
F2 *. *****F3**********

.* *. * SET INDICATOR *
.* OOES *. YES * FOR LOADER TD *

.FItLD CC~TAIN. •••••••• X* GET OBJECT * •••••••••••••••• X.
. TAPE. * PROGRAM FROM *
.. 4 TAPE *

. . *****************
* ND

.X. X
G2 *. *****G3****~***** *****G4**********

.* *. * SET INDICATOR * * *
.* DOES *. YES * FOR LOADER TO * * ACCESS *

.FIELD CCNTAIN. •••••••• X* GET OBJECT * •••••••• X* NEXT OPTION *
. CARD. * PROGRAM FROM * * FIELD *
.. * CARe READER * * *

. . ***************** *****************
* NO

X
44H2***********

WRITE ERROR
* ~ESSAGE- *

INVALID
* CONTRCL *

CARD

X

*AZ *
* C3*
* *
*

CCLOAD Routine

.X.
H4 *.

.* *. ****
.* IS *. NO * *

.OPTION FIELD . •••• ~* 02 *
. BLANK. * *
.. ****

. .
* YES

x
***** *AZ *
* C3*
* *
*

*AY *
* 63*
* *
*

I
V

*****83**********
* CALL FSD TO *
* SEARCH SYSTEM 4-
"* TAPE FOR *

EDITOR *
* *****************

I
v

***** *AB 4-

* 81*
* *

GIVE CONTROL TO
FSD TO LOAD THE

EDITOR

*AY *
* 85*

I
I
V

*****85**********
* * PRINT *

HEADING *
*
* *****************

I
ir----->\

II *****C5*~********
* EXAMINE *
* UNIT TABLE
* FOR DEVICE

I * AND ADDRESS

I

I
1

I
V

******05***********
SET UP

* PRINT BUFFER *
AND PRINT

LINE * *

I .V.
I E5 *.
~ .* HAVE *.

NO.* ALL *.
. UNITS BEEN .

.PROCESSED.
. .

* •• *
* YES

I
V

***** *AT *
* 82*
* * *

I Chart AY. CCEDIT and CCUNIT Routines

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

Control Card Routine 67

*AZ *
* 83*
* * *
I
V

******83***********
PRINT THE

* CONTENTS OF *
THE DATA

* CONTROL *
CARD

***** II
*AZ *
* C3* .V.
* * C3 *.
* .* *.

* * * C4 *
* * ****

I
V

******C4***********

~>*:~ROGR1~ TO d::~--->* REWIND
SYSTEM

TAPE
*

.EAECUTED . * * *. .*
* .• *

* YES

I .*. .v.
******01*********** 02 *. 03 *.

WRITE MESSAGE- .* *. .* *.
* EXECUTION * YES.* COMPILE *. NO.* GOGO *.

ABORTED DUE TO <---------*. ERROR .*<---------*. OPTION .*
* ERROR(S) * *. EXISTS .* *.SPECIFIED.*

I
V

* * * C4 *
* * ****

.. *..*
* •• * * •• *

* NO * YES

LI I
-------->1

I
V

******E3***********
WRITE END

* OF DATA SET *
ON GO TAPE,

* IF *
APPLICABLE

I
V

******F3***********
REWIND

* GO TAPE, *
IF

* APPLICABLE *

V
******G3***********

ACCESS
* LOADER *

ON
* SYSTEM *

TAPE

I
V

******H3***********

*WRITE MESSAGE- *
BEGIN

* EXECUTION *

I
V

*AB *
* 81*
* *
*

GIVE CDNTROL TO
FSD TO LOAD THE

LOADER

Chart AZ. CCDATA Routine

68

I

I
V

******D4********~**

*WRITE MESSAGE- *
END OF

* JOB *

I
v

*AB *
* 81*
* *
*

GIVE CDNTROL TO
FSD TO TERMIN­

ATE THE JOB

Phase 10 29

PART 3: COMPILATION

Source programs written in the IBM
System/360 Basic Programming Support
FORTRAN IV language are compiled by the
segments on the system tape that constitute
the Basic programming Support FORTRAN com­
piler.

The FORTRAN compiler analyzes the source
program statements and transforms them into
an object program compatible to IBM
System/360. In addition, if any source
program errors exist, the FORTRAN compiler
produces appropriate messages. At the
user's option, a complete listing of the
source program is produced and/or an object
deck is punched.

The compiler segments consist of the two
control segments discussed in Part 2 and
the seven phases (10, 12, 14, 15, 20, 25,
and 30) to be discussed in this part of the
manual.

Part 3: Compilation 69

PHASE 10

Phase 10 converts FORTRAN source state­
ments into input for subsequent phases of
the Basic Programming Support FORTRAN com­
piler. This input consists of intermediate
text, the dictionary, overflow table,
COMMON text, and EQUIVALENCE text.

Chart 03, the Phase 10 OVerall Logic
Diagram, indicates the entrance to and exit
from Phase 10 and is a guide to the overall
functions of the phase.

Intermediate text provides a format that
can be easily converted to machine language
instructions. This conversion requires
coded information about variables, con­
stants, arrays, statement numbers, in-line
functions, and subscripts. This coded
information, derived from the source state­
ments, is contained in the dictionary and
overflow table and referenced within the
intermediate text.

The COMMON text is a table of variables
which are assigned to the COMMON area by
the source program in COMMON statements.
The EQUIVALENCE text is a table of
EQUIVALENCE groups assigned by EQUIVALENCE
statements. The COMMON and EQUIVALENCE
text contain references to the dictionary.

Each FORTRAN statement is classified as
either a keyword statement, arithmetic
statement function, or arithmetic state­
ment.

The first symbol in the FORTRAN state­
ment is checked against a list of keywords
contained in the dictionary. If this sym­
bol is in the dictionary, control is passed
to a subroutine whose address is in the
dictionary with the keyword. The keyword
subroutine makes entries to the intermedi­
ate text to indicate that this statement
requires special processing.

After these entries have been made,
control is passed to either an arithmetic
subroutine which processes arithmetic
expressions or a subroutine which gets the
next source statement.

If the FORTRAN statement does not begin
with a keyword, Phase 10 determines whether
the statement defines an arithmetic state­
ment function. If it does, control passes
to a subroutine which makes special entries
to the intermediate text and dictionary for
that statement function. Control is
returned to the arithmetic subroutine which
processes the arithmetic expression in the
statement.

70

If the FORTRAN statement neither begins
with a keyword nor defines an arithmetic
statement function, it is an arithmetic
statement. Control is passed directly to
the arithmetic subroutine that makes the
necessary entries for an arithmetic state­
ment to the intermediate text, dictionary,
and overflow table.

The errors checked in Phase 10
flagged in the intermediate text.
messages are transmitted to the
during Phase 10.

C~AINING

are only
No error
operator

The technique used by the FORTRAN com­
piler to arrange and retrieve items entered
in the dictionary and overflow table is
called chaining. Items are chained so less
time is required to locate the necessary
information.

A chain is composed of a number of
related entries. Each entry consists of an
item and its related fields. One specific
field within each entry points to some
related entry, but not necessarily to the
one that is physically adjacent in storage
(See Figure 15).

(1)
ENTRY A
POINTER 3

Figure 15. Example of Chaining

The lower line in Figure 15 is a pointer
to the next entry in the chain. For
example, entries 1, 3, and 9; 2, 4, and 7;
and 5, 6, and 8 form separate chains. The
common characteristic of these chains is
that each item in the specific chain is
composed of the same number of characters.
Items can be grouped and entered on a
separate chain by any characteristic (e.g.,
alphabet, length, or numbe~ that would
divide the table. Division of a long chain
into several smaller chains saves time that
would be used to search one long chain.

~ The thumb
~addresses of
~

index, which contains
the first entry for

the
each

'chain, is directly related to the charac­
fteristic that separates items into chains.
~There is an entry in the thumb index for
i) each characteristic that defines a separate
~: chain. By first determining the charac­
\teristic of an item, that item is found or
C placed in the proper chain by use of the
1 thumb index • ..

DICTIONARY

The di9tio~a:rY .90~ta.in~.naIlles, .. c()n­
,~.~e:lit~~ ·ariil .. ·.d.acta..set iefe·r~nc:e ... nUmbers. . A
name J.s a st:d.ngdf· alpliaIktlc iind' numeric
characters, the first of which must be
alphabetic. A name can be any of the

.. !:BllQ.~.:j,.~.g;.". ~·'··'"·'''''., ... "c.:'''''

1.

ALPHA=BETA+GAMMA-2.0-X123X

the variables ALPHA, BETA, GAMMA, and
X123X are names.

2.

3.

Keyword. In the statement;
~"~"'i'lf!i'$'\L·!",,'Y;_1"1li,:~',.

DIMENSION A (10,5)

the keyword DIMENSION is a name.

~"f"",~.~, In the preceding statement,
J.stne name of the array.

A

In the following

A=ABS (B)

the in-line function ABS is a name.

In the statement:

REWIND J

J is entered into the dictionary as a
variable name, not as a data set reference
number.

In the statement:

REWIND 3

3 is a data set reference number. The
compiler distinguishes a data set reference
number from an integer constant by the
context in which it is used. For example,
in the statement:

I = 1-3

3 is an integer constant because it is used
in an arithmetic expression.

Operation

~ The dictionary is organized as a series
~f 15 chains and a thumb index. Each
~address in the thumb index points to the
'jbeginning of a different chain. There are
~11 chains organized on the basis of name
flength. For example, all names with a
llength of one Binary Coded Decimal (BCD)
{character are placed in the first chain,
fall names with a length of two BCD charac­
jters in the second chain, and so on.

I Keywords and in-line functions are names
~and the dictionary includes them as perman­
tent residents of their respective chains.
~Keywords and in-line functions are present
~when the dictionary is first established in
~main storage. Names aSSigned by the user
are placed in their respective dictionary
chains as the source program is processed
by Phase 10.

Chains 7 through 11 are reserved for
keywords that range in length from 7
through 11 characters, (e.g., FUNCTION,
DIMENSION, EQUIVALENCE, etc.). No user
name is placed in these chains.

~ The four remaining chains in the dic­
~tionary are used for real, integer, and
~double precision constants and data set
11reference numbers; each has its own chain.

The search for a constant or data set
reference number entry in the dictionary is
accomplished by determining what the symbol
is. If the symbol is a constant, Phase 10
·determines the mode (real, integer, or
double precisio~ and finds the proper
address in the thumb index. This address
directs Phase 10 to the beginning of the
correct chain. If the symbol is a data set
reference number, the address in the thumb
index takes the compiler to the data set
reference number chain. After the correct
chain is determined, the compiler can fol­
low the chain addresses in the dictionary
to search for the correct entry.

DICTIONARY ENTRY: Each dictionary entry
contains from five to seven fields. The
address and size fields are optional (see
Figure 16).

r-----T-----T---------T-----T-------T-----'
IChainlUsagelMode Type I Image I Address ISize I
I I I I I I I
I 2 I 1 I 4 14 I n I 2 I 2 I
Ibyteslbyte Ibitsl bits Iby tes I bytes I bytes (L-____ ~ ____ ~ _________ ~ _____ ~ _______ ~ _____ J

t
In-line
Function
Code

Figure 16. Dictionary Entry Format

Phase 10 71

Chain: During Phase 10 this field contains
the address of the next entry in the chain.
The value 0001 in this field indicates the
last entry in the chain. By following the
chain, a search is made to see if there is
a dictionary entry (or the current item.
If no dictionary entry is made, one is
assembled for this item and appended to the
proper chain.

words and in-line function names are the
first entries in their respective chains
and precede names assigned by the user. In
the chain for length 2, the keywords IF,
GO, and DO precede any entry of names
assigned by the user. The thumb index for
the length 2 chain points to the entry for
IF. The chain address for the IF entry
points to the entry for GO.

An illustration of chaining in the dic­
tionary is shown in Figure 17. ,All key-

THUMB INDEX DICTIONARY

r--------------, r-----------T-----------------T--T----------,
address of X I laddress of lusage, mode, typelIFladdress ofl

~1-a-d-d-r-e-s-s--O-f--I-F-LJr------l;)o ... 1 GO I for IF I I IF routine I .- ~L__ _ _____ ~ _________________ ~ __ ~ __________ J

~--------------~

~~~~==~~-~=-~~~n r~ddr~ss-~;-T~~~~~:-~od~~-~;~~T~;T~dd~es~-~fl 
I • I DO Ifor GO I IGO routine I I. : 1 @L __________ ~ _________________ ~ __ ~ __________ J 

~--------------~ r-----------T-----------------T--T----------, 
laddress of I laddress of lusage, mode, type IDOl address ofl 
I EQUIVALENCE XY Ifor DO liDO routine I 
~--------------~ L____ __ ____ ~ _________________ ~ __ ~ __________ J 

laddress of I 
1123.625 I 
L _____________ J 

r-----------T-----------------T-----------T-----------, 
I 00011 usage, mode, typelEQUIVALENCEladdress of I 

L...--__ -+--+I I f or EQUIVALENCE I I EQUIVALENCE I 
I I I I routine I L ___________ ~ _________________ L-__________ ~ ___________ J 

r-----------T-----------------T--' 
laddress of lusage, mode, typelXYI 

ZZ Ifor XY I I L____ __ ____ L-________________ ~ __ J 

r-----------T-----------------T--' 
I 00011usage, mode, typelX I 

L...-----~----------r--~ Ifor X I I L ___________ ~ _________________ ~ __ J 

r-----------T-----------------T-------, 
laddress of lusage', mode, type I 123.6251 

'--_____ ~f--_ .... next real Ifor 123.625 I I 
I constant I I I L____ __ ____ ~ _________________ ~ _______ J 

r-----------T-----------------T--T-----------T-------, 
laddress of lusage, mode, typelZzladdress of I I 

~-+~next name Ifor ZZ (array) I I subscript Isize ofl 
lof length 21 I I information I array I L____ __ ____ ~ _______ ~ _________ ~~ ________ ~ __ ~ _______ J 

Figure 17. Dictionary and Thuwb Index Format 

72 



Usage: The usage field indicates charac­
teristics of the symbol. Usage is dis­
cussed later in this section. 

Mode: The mode field contains a hexadeci­
mal character denoting integer, real, or 
double precision mode. The codes for these 
modes are: 

5 integer 
6 double precision 
7 real 

Type: The type field contains a hexadeci­
mal character denoting a constant, array, 
function, or variable, Refer to Figure 25 
for the code for these items. The mode and 
type codes are contained in one byte and 
used together in most cases. 

Image: Tpe image field is the BCD card 
image of the symbol. It ranges in length 
from 1 through 11 characters. 

Address: This optional field contains the 
address of a sUbroutine if the symbol is a 
keyword. It may also be a pointer to the 
dimension entry in the overflow table if 
the symbol is an array. If the symbol is 
an in-line function, the first byte of the 
address field contains the code for the 
particular in-line function. The second 
byte of the address field is not entered 
for in-line functions. 

. "~!~~:""Tiir$"'bpt~rona'r';£i~ld"':r~;',~~';~r~;;iy f~~~ 
arrays and contains the size, in bytes, oft, 
an array. This size is found by multiply-\ 
ing the dimensions of the array by thef 
length, in bytes, of each item. The length" 
is 4 for real or integer mode and 8 for; 
double precision mode.~ '" .......", ."" .. ",;., .. ",;.,;t 

~~~JiI;:>'IlI?:';,):,,~~"A:0-"'V":')';.{~~~:"':~fi:'t:{t\~:r.'~~'¥'tr\",;,,-.;~'A:~"~'_'\C''?f,~"It'~"''c"~,,,,,'~'i': .:,,,,,-,,y't ~--- >, .,-" ',,' 

The fields in a dictionary entry contain
the mode/type, address, and
with a symbol, plus the
Still, if the compiler
machine language programs,
tion is necessary.

size associated
symbol itself.

is to produce
other informa-

The usage field contains a bit code to
indicate characteristics of .' each item to
the compiler. (See Figure 18).

r-----~------------------------T---------l

IUsagel I I
I Field I Condi tion I Bi t I
IBits I I Status I
~-----+-------------------------+---------~
I IMode not defined I 0 I
I 0 IMode has been defined I 1 I
~-----+-------------------------+---------~
I IType not defined I 0 I
I 1 IType has been defined I 1 I
~-----+-------------------------+---------~
I IVariable not in COMMON I 0 I
I 2 IVariable is in COMMON I 1 I
~-----+-------------------------+---------~
I IVariable not equated I 0 I
I 3 IVariable is equated I 1 I
~-----+-------------------------+---------~
I 4 INot used in Phase 10 I I
~-----+-------------------------+---------~
I 5 IRoot Indicator for Equate I 1 I
~-----+-------------------------+---------~
I I No Double Precision I 0 I
I 6 IDouble Precision I 1 I
~-----+-------------------------+---------~
I 7 IPunch ESD Card I 1 I L _____ ~ _________________________ ~ _________ J

Figure 18. Format of Usage Field

Bit 0 indicates the mode of a symbol has
been defined. The mode of a symbol is
defined only when:

1. The name is mentioned in an explicit
mode definition statement.

2. The name is entered for the first time
into the intermediate text.

Any time a variable is used in a FORTRAN
statement, its mode is determined and a
mode code inserted in the dictionary. If
the mode has not been defined, it may
change. The mode cannot be redefined if
bit 0 has been set to 1. When the symbol
is encountered again, its entry is found in
the dictionary and the mode bit is checked.
Assume the following statements occur in
sequence:

REAL A, B, C,

INTEGER I, J, A

In the first statement, A is explicitly
defined as a real symbol. In its dictiona­
ry entry, the mode field contains the code
for real. Bit 0 in the usage field is set
to 1, indicating that the mode has been
defined. The second statement attempts to
redefine A as an integer. The mode bit
(bit 0) is again tested to determine if the

mode bas been defined previously. Because
it has been defined, an error condition is
noted.

Bit 1 indicates whether the symbol type
has been defined. Type is defined when:

Phase 10 73

1. An array is defined by a DIMENSION
statement.

2. The names in COMMON or explicit speci­
fication statements are dimensioned.

3. A name is included in an EXTERNAL
statement.

4. A subprogram name is defined in a
SUBROUTINE or FUNCTION statement; the
type for dummy variables in these
statements is not defined.

5. A variable is entered for the first
time in the intermediate text.

Assume the following statements occur in
sequence:

x = A (I, B)

XYZ = A

In the first statement, A is defined as
the name of a FUNCTION subprogram. If this
is the first time A is encountered in the
program, the code for a FUNCTION subprogram
is inserted in the type field of its
dictionary entry. At the same time, bit 1
is set to 1 indicating that the type of A
has been defined. The second statement
indicates that A is a variable. Because
bit 1 is set to 1, Phase 10 does not
attempt to redefine A, but merely uses the
type code that was established in the first
statement. An error condition does exist
because the program attempts to use A as
both a FUNCTION subprogram name and a
variable. The error condition, however,
will not be noted until Phase 15.

Bit 2 indicates whether the variable is
in the COMMON area. This bit is required
for Phase 12 when storage is,allocated.

Bits 3, 5, and 6 are not set during
Phase 10. They are set and used by Phase
12 when EQUIVALENCE and COMMON statements
are processed. Bit 6, the double precision
bit, is set only for equated variables.
The function and operation of these bits is
explained in Phase 12.

Bit 7 is set to 1 by Phase 10 for
symbols used as in-line functions or exter­
nal references. If bit 7 is set to 1 and
the type code denotes an external symbol,
an ESC card is punched in Phase 12. ESD
cards are not punched for in-line func­
tions.

OVERFLOW TABLE

The overflow table produced by Phase 10
contains dimension, subscript, and state­
ment number information.

74

Operation

The overflow table is constructed with
the same chaining technique as the dic­
tionary. The overflow table is composed of
11 chains. Three chains are reserved for
array information; the first chain contains
all arrays with one dimension, the second
with two dimensions, and the third with
three dimensions. Three additional chains
are reserved for subscrf-pt"ed'variables; the
first chain contains information for all
variables with one subscript, the second
with two subscripts, ~nd~he third with
three subscripts. ,"

The last five chains contain statement
number information. All statement numbers
ending in 0 and 1 are contained in the
first chain. The remaining chains contain
statement numbers ending in 2 and 3, 4 and
5, 6 and 7, and 8 and 9, respectively.

Dimension Information

The format for these entries, (see Fig­
ure 19) is different from the dictionary
format. The general form for defining 1-,
2- and 3-dimensional arrays is:

ARRAY (01)
ARRAY (01,D2)
ARRAY (01,D2,D3)

where D1, D2, and D3 are integer constants.

The dimension information for 1-, 2-,
and 3-dimensional arrays is:

r------T---T-------,
IChain I 1 ILength I L _____ ~ ___ ~ _______ J

r-----~---T-------~-------,
IChain I 2 ILength ID1*Lengthl L _____ -L-__ ~ _______ ~ ________ J

r------T---T-------~----~--T------------,
IChain I 3 ILength ID1*LengthID1*D2*Lengthl L ______ ~ __ ~ ______ ~ _______ ~ _________ ~--J

Figure 19. Format of Dimension Information
in Overflow Table

Every entry made in the overflow table
for dimension information has a chain field
with the same function as the chain field
in the dictionary. It links the entries
with the chain. The second field in a
dimension entry contains the number of
dimensions in that array. A 1-dimensional
array has the number 1 in this field. The
third field contains the length of each
element in the array. If the entries in an
array are double precision, this field
contains the number 8 because a double

precision number is exactly 8 bytes. If
the array is real or integer, this field
contains the number 4. These three fields
are the only entries for 1-dimensional
arrays, but are entered for all arrays.

For 2- and 3-dimensional arrays, another
field is added. D1 represents the first
dimension. The product, D1*Length, is an
indexing factor used in the later phases of
the compiler and in the Object program.
The use of this factor is explained in
Appendix C. If a real array is defined
with the statement:

DIMENSION A (20, 10)

this field contains the product
80(4*20 = 80). The length of a real number
is 4~ the first dimension is 20.

If the array is 3-dimensional, an addi­
tional field, D1*D2*Length is added. This
field is another indexing factor used in
later compiler phases and the object pro-

Dictionary Entry for Array

gram. If the array is A(20, 10, 5) and is
again composed of real .numbers, this field
contains the number 800 since D2 represents
the second dimension.

When a DIMENSION or explicit specifi­
cation statement that defines an array is
read from the source'deck, Phase 10 makes
entries to both the dictionary and the
overflow table. The name of the array is
entered in the dictionary along with a
pointer to an entry in the overflow table.
The size of the array is entered and the
type .code is set to represent an array or a
dununy array.

Assume the name ARRAY is defined as real
and the statement:

DIMENSION ARRAY (4,3,2)

is read. Phase 10 makes entries in the
dictionary and overflow table, as illus­
trated in Figure 20.

Chain Usage Mode/Type Symbol Pointer Size
2 1 1 5

bytes byte byte bytes
oil~oPPtOP real array WNl

~

type is
fixed

Dimension Entry in OVerflow Table

~Chain I 3 I 4 I 16 I 48 j
~ ~

number of
dimensions

Length

D1*Length

D1*D2*Lenqth

Figure 20. Entries to Dictionary and Overflow Table

2 2
bytes bytes

96

t size of arra y

address of dimension
information· in
overflow table

Note: ~,t~~Q"",J.,~",~~,&,Jt~I'i~l~ ,,~S?Ji
JI.$iiir;.. :~V1~li'~J ~aaMr"a

Phase 10 75

Subscript Information

The second type of information entered
in the overflow table is subscript entries
for subscripted variables (see Figure 21) •
Each field is two bytes in length. These
subscript variables can be in anyone of
the following forms, for 1-, 2-, and
3-dimensional variables, respectively.

VAR (Cl*Vl+Jl)
VAR (Cl*Vl+Jl ,C2*V2+J2)
VAR(Cl*Vl+Jl,C2*V2+J2,C3*V3+J3)

In the general form above, Cl, C2, C3,
Jl, J2, and J3 are integer constants; Vl,
V2, and V3 are integer variables. VAR is
any array defined either by a DIMENSION,
COMMON, or explicit mode specification
statement.

The entries in the overflow table bear a
resemblance to the format in a subscript.

r----~---T------'
,Chain ICl 'p(Vl) ,
L ____ --L ___ ~ ______ J

r------r---T------T---T------'
,Chain ICl Ip(Vl) ,C2 ,p(V2) ,
L ____ --L ___ ~ __ . __ -~-~------J

r----~---T------~--T------T---~-----,
I Chain I C 1 'p (Vl) ,C2 , P (V2) , C3 , P (V3) , L--__ --L ___ ~ ______ ~ __ ~ ______ ~ __ ~ _____ J

Figure 21. Format of Subscript Information

The symbols, p (Vl), p (V2), and p (V3)
represent pointers to the integer var~a­
bles, Vl, V2, and V3, which are entered in
the dictionary. The offset, a constant
indexing factor used to find the correct
element in an array for a particular sub­
script expression, is computed using the
integer constants Jl, J2, and J3 and is
placed in text. (Refer to Appendix C for
an understanding of Array Displacement Cal­
culation.) These constants are not entered
in the dictionary or the overflow table.

Assume the subscripted variable, ARRAY
(2,2*I-l,~ is encountered in a source
statement. Furthermore, asswne that the
names ARRAY, I, and J have already been
entered in the dictionary, and ARRAY is
defined as DIMENSION ARRAY (4,3,2). For
the subscripted variable ARRAY (2,2*I-l,~,
the following entry (see Figure 22) is made
to the overflow table in Phase 10.

76

r~--,
IChain 1 0 10 12 Ip (I) 11 Ip(~1 ,

I , , , , , , , , ,
·1 , , , , ,

"

No variable in
1st subscript

Constant that multiplies
variable in 2d subscript

Address of dictionary entry for
integer variable in 2d subscript

Constant that multiplies integer
variables in 3d subscript

Address of dictionary entry for
integer variable in 3d subscript

1 . L-__ J

Figure 22. OVerflow Table Entry

Only subscripts that contain at least
one integer variable in a subscript param­
eter are entered in the overflow table. No
integer variable is used to compute the
first subscript parameter; consequently,
the entries referring to the first sub­
script parameter in the overflow table are
both zero. Notice that the names for the
integer variables in the second and third
subscript parameters are not included, but
the addresses of their dictionary entries
are inserted in the entry. If the sub­
scripted variable is ARRAY (2,1,1), the
indexing is completely taken care of by the
offset and no entry is made to the overflow
table.

Statement Number Information

The third type of entry made to the
overflow table is for statement numbers.
Any statement nwnber encountered in the
source statements is entered in the over­
flow table. The format of the entry is:

r-------~-----T----------------------,
1 Chain ,Usage ,packed Statement Number 1
~------+--------+---------------------~
1 2 bytes' 1 byte , 3 bytes I L ________ ~ _______ ~ ____________________ J

The statement number is obtained from
the source statement and its Extended
Binary Coded Decimal Interchange Code
(EBCDIC) format is changed to the packed

decimal format. A search is made of the
proper chain. The first time the statement
number is encountered, an entry is .made in
the overflow table and certain bits are set
in the usage field (see Figure 23). The

usage field is primarily used for error
checking in Phases 12 and 14.

r-----y----------------------------T------'
IUsagel I I
IFieldl Condition I Bit I
IBits I I Status I
~-----+----------------------------+------~
I IStatement No. undefined I 0 I
I 0 IStatement No. defined I 1 I
~-----+----------------------------+------~
I IStatement No. not referenced I 0 I
I 1 IStatement No. referenced I 1 I
~-----+----------------------------+------~
I 2 lEnd DO I 1 I
~-----+-----------------------+------~
I IStatement No. of specifica- I I
I 3 Ition (e.g.~ DIMENSION) I I
~-----+--------------------------+------~
I 4 Istatement No. of FORMAT I 1 I
~-----+----------------------------+------~ I IStatement No. denotes DO I I
I 5 Inesting errors I 1 I
~-----+--------------------------+------~
I 6 INot used in Phase 10 I I
~-----+----------------------------+------~
I 7 INot used in Phase 10 I I L ____ ~ _________________________ ~ ______ J

Figure 23. Statement Number Information in
Usage Field

Bits 0 and 1 denote whether the state­
ment number is defined by a statement, and
if the statement number is referenced,
respectively. The statement:

112 A=B

sets bit 0 to 1. It
effect on bit 1. The statement:

GO TO 112

has no

sets bit 1 to 1.
bit O.

It has no effect on

Bit 2 is the indicator set to define the
end of a DO loop. This bit is set for
error checking. GO TO, COMPUTED GO TO,
PAUSE, RETURN, STOP, IF, FORMAT, and DO
statements are not permitted to end a DO
loop. This condition is checked in Phases
10 and 14. Bit 2 is also used in later
phases to check for proper nesting of DO
loops.

Another statement number error checked
in Phase 10 is a -backward DO· (i.e., the
statement ending the DO loop is sequential­
ly in front of the statement that defines
the Dq. The program would b~ written as
follows:

10 CONTINUE

DO 10 I=I,1000

The statement that defines the DO loop
follows the statement that is supposed to
end the loop. If Phase 10 tries to set bit
2 to 1 (denoting an END Dq and bit 0 is
set to 1 (denoting that the statement
number has been define~ an error exists.

Bit 3 is set to 1 to indicate that this
statement number defines a specification
statement.

Bit 4 indicates the statement number of
a FORMAT statement. If the statement num­
ber defines a FORMAT statement, bit 4 is
set to 1. No statement except a FORMAT
statement will set this bit to 1.

Bit 5 is set by Phase 15 to indicate DO
nesting errors.

Bits 6 and 7 are not used.

OFFSET CALCULATIONS

The offset, a constant, is computed by
Phase 10 and used as an indexing factor by
Phase 25. The offset is not entered in the
dictionary or overflow table. It is com­
puted using the following formulas:

Offset = [J1-1] *Length
Offset = [(J1-1)+(J2-1)*Dl]*Length
Offset = [(J1-1) + (J2~1) *Dl+ (J3-1) *D1*D2] *

Length

for one, two, and three subscripts, respec­
tively.

Length is the length of each element in
the array. If the elements of the array
are integer or real, Length equals four.
If they are double precision, Length equals
eight. Assume ARRAY is dimensioned as
ARRAY (4,3,2) and is real, therefore its
Length is four. Then, the offset computa­
tion for the subscripted variable ARRAY
(2 ,2 * I -1 , J) is:

Offset
Offset =
Offset =
Offset =
Offset

[(2-1) + (-1-1) *4+ (0-1) *4*3] *4
[1+ «-2) *4) + «-1) *12)] *4
[1-8-12 *4]
[-19] * 4
-76

In the example, ARRAY (2,1,1) with ARRAY
composed of real numbers, the offset is
different even though the two subscripts
refer to the same array.

Phase 10 77

Offset = [(2-1) + (1-1) *4+ (1-1) *4*3] *4
Offset = [1+0+0] *4
Offset = 4

The offset is contained in the inter­
mediate or EQUIVALENCE text. The offset is
used then in the computation of an indexing
factor to find the correct element in the
array for a particular subscript expres­
sion.

Intermediate Text

Intermediate text is written in Phase 10
as input to the other phases of the Basic
Programming Support FORTRAN compiler. The
format for the intermediate text consists
of three fields which contain an adjective
code. a mode/type code. and a pointer to
information in the dictionary or overflow
table.

The following example illustrates the
intermediate text entry format:

r----------T----------T-------------------,
IAdjective IMode/Type I I
I Code I Code I Pointer I
~----------+----------+-------------------~
I 1 byte I 1 byte I 2 bytes I L __________ ~ __________ ~ ___________________ J

The basic entry in the text is generally
four h¥tes or one word long. This format
is modified for the following special
entries:

78

1. Subscripted variables.
2. FORMAT statements which do not conform

to this basic entry and are discussed
later in this phase.

3. Array size.
4. Number of arguments.
5. STOP or PAUSE statements.

The adjective code (see Figure 24) indi­
cates the type of statement within the
intermediate text. If the first symbol in
a FORTRAN statement is a keyword. control
is given to a subroutine which processes
that statement. The keyword must be
flagged so that subsequent phases can Com­
pile the correct machine language instruc­
tions. The subroutine that processes the
keyword statement moves the adjective code
for this keyword to the intermediate text.

If the first symbol does not indicate a
keyword statement. Phase 10 determines
whether this statement defines an arithmet­
ic statement function or an ordinary
FORTRAN arithmetic statement and moves the
proper adjective code to the intermediate
text. Figure 24 contains the adjective
codes and their use.

Adjective codes are also used to rep­
resent delimiters in a FORTRAN statement.
Delimiters such as:

+ / * ** or •
are individually aSSigned a unique adjec­
tive code which denotes the type of opera­
tion to be performed.

The second byte in an intermediate text
entry is the same as the mode/type code
inserted in the dictionary to describe a
symbol. The mode/type code (see Figure 25)
denotes the mode of the symbol and the
manner in which it is used.

~
til
(1)

-'
o

-..I
I.Q

~
'g
11
(1)

II.)

~

~
u.
(1)
o
("I-.....
<:
(1)

(")

8-
(1)

r-----T-----T------T-----T-----T--------T-------T-------T-------r------~------T------T------T----~-----T------T-------~------------------l

I'L I I I 1 I I I I I I I I I I I I I I
IH'O I I I I I I I I I I I I I I I I I I
I i 'w I 0 11 12 13 14 15 I 6 I 7 18 19 I A I B I C I D IE I F I I
I g' I I I I I I I I I I I I I I I I 1 I
I h'l I I I I I I I I I I I I I I I 1 1
~---~-+-----+------+-----+-----+_-------+---~---+-------+-------t------+-------+------+------+------+-----+_-----+-------+_------------------~
I 0 1 I I I. I (Il 1= I' 1'1 END IILLEGALI+ 1- 1* 1/ 1** I FUNC (I I
I I I I I I 1 I I ARGU- I MARK I I· I 1 I I I I 1
I I I 1 I I I I 1 MENT ~----~ I 1 I I I I I I
I I I 1 I I I I I INo I I 1 I I 1 1 I I
~-----+-----+------+-----+-----+--------+-------+-------+-------+------+__-----+------+------+------+-----+_-----+-------+_------------------1
I 1 IAOP lUNARY I ISAOP I ISIZE OFIEND I I I I 1 IMVCo 1 10 I' I I
1 1 I MINUS I I I I ARRAY I MARK I I I I I I I I 1 QUOTE I I
~-----+-----+_-----+-----+-----+_-------+-------+-------+-------+------+_------+------+------+------+-----+------+-------+_------------------1
I 2 I I I IIN-o I ARITH- I I I I I I I I I I I I I
I I I ISTM ILINE IMETIC ILM 1$ I IBLANK I I I I 1 I I I I
I I I I IFUNC IIF I I I I I I I I I I I I I
~-----+-----+------+-----+-----+--------+-------+-------+-------+------+-------+------+~-----+------+-----+_-----+-------+-------------------1
I 3 I I I I I I I I I I I I I I I I I I
~----+-----+------+-----+-----+---~----+-------+-------+-------t------+__-----+------+------+------+-----+------+-------+_------------------1
I 4· I S I I I I I I I BCo I I I I I I I I I I
~-----1 ~------+-----+-----+--------+-------+-------+-------+------+-------+------+------+-----~+-----+_-----+-------+_------------------1
I 5 IT I I ILCR I I I I I I I IS 1M I I I I INTEGER I
~-----~ ~------+-----+-----+__------+-------+-------+-------1 I C I I U I U I ~-----+-------+-------------------1
I 6 I 0 I I I I I I I . I 10 I I B I LID I I I DOUBLE PRECISION I
~-----1 ~------+-----+-----+--------+-------+-------+-----~-·I I M I I TIT I I ~------+-------+_------------------1
I 7 IR I I I I I I I IL IP I IR I I IV I I I REAL I
~-----~ ~------+-----+___--+--------+-------+-------+.,....,-----~O IA IA IA IP II ~------+-------+_-----------------1
I 8 IE I I ILCER I I IliA IR ID IC IL ID I I I I
I I I I I I I I I ID IE 10 IT IY IE ISRDAo I I I
~-----+-----+------+-----+-----+_-------+-------+----~--+-------+------+__-----+------+------+------+-----+------+-------+_------------------1
I 9 I I I I IINTEGER IDOUBLE IREAL ICOMPLEXlcOMMONIEQUIVA-IEXTER-IABNOR-IDlMEN-1 I ISUBROU-I I
I I I I I I I I I I ILENCE INAL IMAL ISION I I ITINE I I
I I I I I I I I I I I I I I I I I I I
~-----+-----+-----+-----+_----+--------+-------+-------+-------+------+__-----+------+------+---~--+-----+_-----+-------+_------------------1
I A IFUNC-IFORMATIEND ICON- IUNCONDI-ICOMPUT-IBACK- IREWIND lEND I WRITE I READ IWRITE IREAD 100 ISTMNT·I I I
I I TION I I DO I TlNUE I TIONAL I ED I SPACE I I FILE I BINARY I BINARY I BCD I BCD I I NO. I I I
I I I I I I GO TO I GO TO I I I I I I I I I DEF. I I I
~----+-----+------+-----+_----+--------+-------+-------+-------+------+-------+------+------+------+-----+------+-------+-------------------1
I B I END I I CALL I ASF I I ARITH I I BEGIN I END I RETURN I STOP I PAUSE I ARITH I IMP I ERROR I WARNING I I
I I I I I I I I 11/0 11/0 I I I IIF 100 IMESS- IMESS- I I
I I I I I I I I I LIST I LIST I I I I I I AGE I AGE I . I
~-----+-----+------+-----+_----+--------+-------+-------+-------+_-----+-------+------+------+------+-----+------+-------+_------------------1
I C I I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I II I I I
~-----+-----+------+-----+-----+--------+-------+-------+-------+_-----+__-----+------+------+------+-----+_-----+-------+_------------------1
I D I I I I I I I I I I I I I I I I I I
~-----+-----+------+-----+-----+--------+-------+-------+-------t------+-------+------+------+------+-----+------+-------+_------------------1
I E I I I I I I I I I I I I I I I I I I
~-----+-----+------+-----+-----+--------+-------+-------+-------+_-----+_------+------+------+------+-----+------+-------+_------------------1
I F I I I I I I I I I I I I I I I I I . I
~-----~-----~-----~----~---~-------~-------~-------~-------+------~-----~------~------~------~-----~-----~-------~------------------~
10 Subject to change in later phases I I L-__ L-___ J

00
0

'<J
f-I.

TYPE CODE

<.Q
~
Ii
(1)

r-----~-------~-----T-~-----T------T-------T------~----------T------T-------T------~-------~-------T-------T-------~------T------~-------_, ',\L' , , , , , , " , , , , , , , , ,
'H,\O , , I , , , , " , , , , , , , , ,
, i '\W , ,0, ,2, 3 , 4 , 5 ,6 I 1 I 8 , 9 , A' B I C , D , E , F ,

IV
U'l

, g'\' , , , , , , " , , , , , , , , ,
, h'\' , , , , , , " , , , , I , , , , . ~-----+__-------f------f-------f------+_------f-------f----------f------f-------f--------f--------f-------f-------f-------f-------f-------+-------~
, 0 , , , , , , , " , , , , , , , , ,

:s:
0

~-----+_--------+_-----f-------f------+_------f-------f----------f------f-------~--------f--------f-------f-------+_------+_------f-------+--------~
" ,STATE-, , , , ,oIMMEDIATE' , , ,oDUMMY' , , , , , ,

0.
(1)

" 'MENT' I UNIT , I I " ,oSUBPRG-, SUBI'RO-I , , I , I ,
" ,NUMBER, , , , , CONSTANTS, , ,GRAM, GRAM' , , I , , ,

~
::l

~---~-f---------f------f-------f------f-------f-------f----------f------f-------f--------f--------f-------f-------f-------f-------f-------f--------~
, ,0 ° ,0 0 10 E ° ° ° , ,

0. I I X I D I

8
'<
'0
(1)

I , T 'U,
I , E 'M I
I I RIM'
I IN, y ,

(j
0
0.

, I A I ,
, I L 'S S ,

2 " " G 'U U I
(1)
CJl

" I 'E S & B B ,
3" "N T B S S ,

" "E AU L C C I
4, I " R T I I R R I

I I 'A E L B D D I I ,
5 'FULL I I T M T R U U P P

M, IINTEGER I 'E E A M M T T
01" 'D N I R M M E E D
DI I I , T N Y Y Y D D U
E' 6 ,DOUBLE , I W M

I ,PRECISIONI '0 C F F F F V V V V M
CI I, 'R 0 U U U U A A A A Y
01" I K N N N N N R R R R
DI 1 IREAL I I S C C C C I I I I A A
E" I I A T T T T T A A A A R R

" I I R A I I I I B B B B R R
I I I lEN 000 0 L L L L A A
181 I I A I TIN N' N IN EEl EEl Y I Y I
~-----+__-------f------f-------f------f-------f-------f----------f------f-------}--------f--------f-------f-------f-------+_------f-------f--------~
, 9 I , I I , , I I I I , I I I , I , ,
~-----+__-------+_-----f-------f------+_------f-------f_---------+------f-------}--------f--------f-------f-------f-------+_------+-------f--------~
I A I , , I , , , " , I I I I I , I I
~-----+__-------f------f-------f------+_------+-------f----------f------f-------f--------f--------f-------f-------f-------+_------+-----~-f--------~
, B I I I I , I , I I I I , I I I I I I
~-----+__-------f------f-------+------f-------f-------f_---------f------f-------f--------f--------f-------+__-----f_------+_------+_------f--------~
, C I I I , , I , " I I I I , I I I I
~-----+__-------f_-----f-------f------f-------f-------+----------f------f-------f--------f--------f-------f-------f-------+_------f-------f--------~
, D , I I I I , , I I , , I I , , , , ,
~-----+_--------f------+_------f_-----f-------f-------f----------f------f-------f--------f--------f-------f-------+_------f-------f-------f-------~
IE' I I , I , , " , I , , , , , , ,
~-----f---------f------f-------+_-----f-------f-------f----------f------f-------t--------f--------f-------f-------f-------f-------+_------f-------~
IF' , , , , , , " I I , I I I I I I
~-----~---------~------L-------L------L-------~-------~----------L------~-------f--------~--------~-------~-------~-------L--_____ L_ _____ ~ ________ ~
I ° Subject to change in later phases I I
L __ .L __ J

'

The third and fourth bytes in an inter­
mediate text entry constitute an address

. which points to a symbol in the dictionary
or to a statement number entry in the
overflow table. These bytes may also con­
tain an integer constant (less than 4096)
of. a DO statement and not the address of
its dictionary entry.

For example, a typical entry for a
FORTRAN arithmetic statement is the inter­
mediate text for this statement:

CIRCUM=2.0*3.14159*RADIUS

Phase 10 would write the intermediate text
shown in Figure 26.

r----, -T-----T-------------,
IAdjective IMode/Type I I
1 Code 1 Code 1 Pointer I
.-.-----+--. --+-------------~
I arithmetic I real I I
Istatement Ivariable I I
I (B5) I (1A) I P (CIRCUM) I
.---+----+----------,.~
1= I real I I
I I constant I I
1 (06) 1 (15) Ip (2.0) I
.------+-----+------------i
1* 1 real I I
I I constant I I
I(OC) 1(15) Ip(3.14159) I
.----+-----+-------------i
1* I real I I
I I variable I I
, (OC) , (1A) , P (RADIUS) I
.-----+------+-------------i
'end mark I I internal statement I
, (16) 100 I number I L ____ ..L ______ ..L ____________ J

Figure 26. Format of Intermediate Text
Entries

In Figure 26, the numbers in parentheses
from the first two columns refer to the
actual adjective and mode/type codes that
appear in the intermediate text. The end
mark entry indicates to other phases that
this is the end of the intermediate text
entry for this FORTRAN statement. The
hexadecimal characters 00 represent a blank
text entry. The items in the pointer field
point to the dictionary. An internal
statement number is assigned to each
FORTRAN statement before it is processed.

A=-B

the intermediate text entries are as shown
in Figure 21.

r---------..,.T-------T------------------,
IAdjective IMode/Type I I
I Code I Code I Pointer I
.-------+--------+---------------~
I arithmetic I real I I
,statement Ivariable Ip(A) I
.------+--------+-----------------~
1= 100 10000 I
.--------+--------+-------~-------i
I I real I I
I unary - I variable , p (B) I
.--------+-------+---------------~
I I linternal statement I
lend mark 100 I number I L ______ ..L ________ ..L ________________ J

Figure 21. Inte:i::mediate Text Entries for a
Unary Operation

Zeros are used to fill the second entry
because no symbol follows the equal sign.

Statement Number Entries

Statement numbers are entered in inter­
mediate text in a manner similar to entries
for a variable in a statement (see Figure
10.14). When the statement is defined by a
statement number, the statement number
entry is entered in the intermediate text
before any other entries are made for the
statement itself. The statement:

101 A=B

is the data used to form the intermediate
text shown in Figure 28.

r------T------T----------------,
IAdjective IMode/Type I I
I Code I Code I Pointer I
.------+------+-------------~--i
Istatement Istatement I I
I number I number Ip(101) I
l--------+-------+----------------~
I arithmetic I real I I
Istatement Ivariable Ip(A) I
.--------+------+-----------------i
I I real I I
I = I variable I p (B) I
.--------+~--------+--------------i
I I linternal statement I
lend mark 100 I number I L _____ .L-_____ .L-____________ J

Figure 28. Intermediate Text Entries for
Statement Numbers

If a' statement number is used in a
statement itself, such as:

DO 101 I=M,N,3

the text entries are as shown in Figure 29.

Phase 10 81

r--------T---------T----------------,
IAdjective IMode/Type 1 1
1 Code 1 Code 1 Pointer 1
~----------+---------+------------------~ 1 I statement 1 ,
1 DO 1 number 1 p (101) 1
~---------+---------+------------------~
, ,integer, ,
,blank , variable , p (I) .,
~----------+----------+------------------~
, ,integer, , ,= ,variable Ip(M) ,
~----------+----------+-------------------~
, ,integer 1 ,
, , 1 variable 1 p (N) ,

~---------+----------+------------------~
1 1 immediate 1 1
1 , 1 constant 1 3 1
~----------+----------+-----------------~
1 1 1 internal statement 1
1 end mark 1 00 1 number 1 L __________ .l. __________ .l.--_________________ J

Figure 29. Intermediate Text Entries for a
DO Statement

The third parameter in this DO statement
is the.integer constant 3. The constant 3
is not entered in the dictionary, but is
inserted in the address field of the inter­
mediate text as the number 3. This is done
to save dictionary space and to optimize
instructions in the object program.

Subscripted Variable Entries

When a subscripted variable is used, the
format of the intermediate text entries
changes; three pointers are needed instead
of the usual one. The second pointer
points to the subscript information for the
variable; the third points to dimension
information for the array. For example, in
the statement:

A (I,J ,K) =B*2. 0

the entries shown in Figure 30 are made to
the intermediate text.

The first line contains the pointer to
the dictionary entry for the subscripted
variable A. In the second line SAOP is a
special adjective code which is inserted in
the intermediate text to indicate to other
phases of the FORTRAN compiler that a
subscript calculation is necessary. The
pointer field in the second line contains
the offset.

The third line contains two pointers to
entries in the overflow table. The first
points to the subscript information for
this subscripted variable Ai the second

82

points to the dimension information for the
array A. This information is necessary for
processing subscripts in other phases.

r-------r-----------T,-----------------,
IAdjective IMode/Type 1 1
1 Code 1 Code 1 Pointer 1
~---------+----------+-----------------~
, 1 real I 1
1 arithmetic I subscripted 1 I
,statement 'variable Ip(A) 1

~---------+----------+------------------~
1 SAOP 100 I Offset I
~--------.l.-----------+_----------------~
I p (subscript A) I p (dimension A) I
~--------T----~-----+-----------------~
I Ireal I I
1 = 1 variable I p (B) I
~--------+-----------+----------------~
1 Ireal I 1
1* I constant Ip (2.0) I
~--------+----------+------------------~
I I I internal statement I
lend mark 100 I number I L _______ .l. __________ .l.-__ ~ _____________ J

Figure 30. Intermediate Text Entries for
Subscripted Variables

If the subscripts do not contain any
variables, only the extra pointer to
DIMENSION information is included. For
example, the statement:

B=A (2, 1,1)

where A is dimensioned as A(4,4,4), would
be entered in the intermediate text as
shown in Figure 31.

r---------T---------T------------------,
IAdjective IMode/Type I I
I Code I Code I Pointer I
~--------~+-----------+-----------------1
I arithmetic I real I I
Istatement Ivariable 'PCB) I
~---------+----------+----------------~
I I real I I
1= I subscripted Ip (A) I
I I variable I I
~---------+----------+------------------~
I SAOP 100 I Offset I
~---------.l.----------+------------------~
10000 1 p (dimension A) I
~--------T---------+------------------~
I I linternal statement I
lend mark 100 I number I L _________ .l. _________ .l.-_________________ J

Figure 31. Intermediate Text Entries for
Constant Subscripts

After the initial calculation of the
offset, no additional information is neces­
sary because the offset represents a con­
stant indexing factor. No pOinter to sub­
script information is necessary because the

subscript information is used to calculate
an indexing factor for variable subscripts.

Format Entries

Another change in the format of the
intermediate text is caused by the FORMAT
statement. Phase 10 makes little change to
the FORTRAN card image of a FORMAT state­
ment. Every FORMAT statement must have a
statement number, which is converted to
intermediate text and an entry for it must
be made to the overflow table. The keyword
FORMAT is then encountered and control is
given to the keyword subroutine which proc­
esses FORMAT statements for Phase 10. This
subroutine:

1. Inserts the adjective code for a
FORMAT statement in the intermediate
text.

2. Gets the entire card image, excluding
the statement number and identifi­
cation field (columns 73 through 80) ,
and the EBCDIC image for that card in
the intermediate text.

3. Inserts the EBCDIC image for that card
in the'intermediate text.

An end mark entry is then made with an
internal statement number in the pointer
f.ield.

The statement:

12 FORMAT (F20.5,I6)

would then produce the intermediate text
illustrated in Figure 32.

r----------T----------T-------------------,
IAdjective IMode/Type I I
I Code I Code I Pointer I
~----------+----------+-------------------~
Istatement Istatement I I
I number I number Ip(12) I
~----------+----------+---------T---------~
I FORMAT I (IF 12 I
~--------+-------+---------+--------~
10 I. 15 I, I
~---------+----------+---------+---------~
I I I 6 Il I blank I
~-------.1.--------.1.-------.1.---------~
I ALL CARD COLUMNS TO COLUMN 72 I
~--------,-----------,------------------~
I I linternal statement I
I end mark I 00 I number I
L--____ ----.1.----------.1.------------------J
Figure 32. Intermediate Text Entries for a

FORMAT Statement

The FORMAT information is held in BCD
characters for the intermediate text. All
of the characters on the FORMAT card,

immediately after the keyword FORMAT
through card column 72, are moved to inter­
mediate text.

Errors

Any errors or warnings detected in Phase
10 are flagged in the intermediate text.
The second byte in the end mark entry in
the intermediate text is reserved for this
action. If Phase 10 detects an error in a
statement, the hexadecimal 01 is inserted
in this byte. The next entry in the
intermediate text contains an error/warning
adjective code (see Figure 33). An error
number is placed in the mode/type field by
a general error subroutine. The pointer
field contains the same internal statement
number as the end mark entry.

r---------T----------T-----------------,
IAdjective IMode/Type I I
I Code I Code I Pointer I
~----------+----------+-------------------~
I I linternal statement I
I end mark I 01 I number I
~----------+---------+------------------~
I I error I internal statement I
I error code I number I number I
L-_________ .1.-_--------.1.-------------------J
Figure 33. Intermediate Text Entries for

an Error

Internal Statement Numbers

Phase 10 assigns an internal statement
number to each FORTRAN statement as it is
read into main storage. This number, which
differs from the user statement number, is
assigned whether or'not intermediate text
is written for this statement. If the
statement is DIMENSION, REAL, INTEGER,
DOUBLE PRECISION, or EXTERNAL, no inter­
mediate text is written. However, these
statements are assigned an internal state­
mentnumber, and gaps may exist in the
internal statement numbers of the inter­
mediate text. Similarly, if an error
occurs, two successive entries in the
intermediate text may have the same inter­
nal statement number.

Intermediate Text Output

The intermediate text is written on a
tape output data set and used as input to
subsequent phases of the FORTRAN compiler.
The buffer size is computed in the Control

Phase 10 83

Card routine. Both the dictionary and the
overflow table remain in main storage for
subsequent phases. The overflow table
begins with the highest available location
and extends down toward low addressed main
storage. The dictionary origin depends on
the size of the buffers and extends up
toward the overflow table.

COMMON and EQUIVALENCE Text

\

For COMMON and EQUIVALENCE statements,
Phase 10 writes another type of text which
remains in main storage to be processed by
Phase 12. The following COMMON text is

l(omPOSed of two fields, each two bytes in
ength for each variable entered in the

1 OMMON area at object time. .. '

r--------------T----------------,
12 bytes 12 bytes 1
~------------------+-----------------~
1 pointers 1 length 1 L ___________________ ~ ________________ J

,l'be ..U,J;~,t ~~xl,q .,gont,~~n~ ;,th~aQ.dres~.", of

~~"~!~!~~i~f~~~t!i~s,~h=·'I~ri!~~f6! . ~~~
name in EBCDIC characters. For example,
the statement:

COMMON A,B,CON4Z

would cause this COMMON text:

r----------------T-------------------,
1 Pointer 1 Length 1
~----------------+-------------------~
Ip(A) l' 1
~---------------+--~-----------~
Ip (B) 1 1 1
~-------------+---------------~
Ip (CON4Z) 1 5 1 L _____________ ~ _____________ J

The length is needed to determine in
what chain the variable is entered in the
dictionary.

A FUNCTION or SUBROUTINE subprogram name
must be defined in the first card of a
FORTRAN source program. The Phase 10 sub­
routine for processing FUNCTION and SUBROU­
TINE statements is not required after the
first card is processed. The COMMON text

84

is written in the area that would have been
occupied by this Phase 10 subroutine.

The EQUIVALENCE text is composed of
'three fields, each two bytes long. Every
group of equated symbols is preceded by a
header entry. The first field contains an
adjective code representing an EQUIVALENCE
statement. . The second field contains
binary zeros, and the third contains the
number of equated variables.

The format for the header entry is:

r-----------T------------T-------------,
12 bytes 1 2 bytes 1 2 bytes 1
I------------+-------------+-------------~
1 adjective 1 Inumber of 1
1 code 10000 1 entries 1 L _____________ ~ ____________ ~ ____________ J

A detail entry is made for each variable
in an EQUIVALENCE group. The first field
is a pointer to the dictionary entry for
the variable. The second field holds the
size of the variable in bytes, or the size
of the array in bytes if the variable is
dimensioned. The third field contains the
offset, if this particular variable is
subscripted, or zeros if it is not sub­
scripted.

The format for the detail entry is:

r-------------T------------T-----------,
1 2 bytes 1 2 bytes 1 2 bytes 1
~-----' ----+----------+------------~
1 pointer Isize loffset or 1
1 1 10000 1 L-_________ ~ __________ ~ __________ J

For example, the statements:

EQUIVALENCE (A (2,1) ,B (1) ,C), (M (3,2) ,I)
EQUIVALENCE (XEM, Y , ZETA)

where A, B,
and I are
dimensioned
to produce
Figure 34.

C, XEM, Y, and ZETA are real; M
integers; and the arrays are

asA (5,5), B (10), and M (10, 5)
the EQUIVALENCE text shown in

All arrays must be defined before they
can be used in an EQUIVALENCE statement or
any other statement. The DIMENSION routine
is overlaid with the text for the
EQUIVALENCE statements.

,.------T-----------------------------,--------------- ,
1 Entry 1 Entry 1 Reason I Entry I Reason 1
.----+------------------------_+----------------------1 1 99 I 0 1 (header entry) I 3 1 (number of entries) I
.-------+---------------~-------------+----------------- -~ I P (A) I 100 I (detail entry array size in bytes) 1 4 I (offset) I
.------+------------------------------------+---------------------1 I p (B) I 40 I (detail entry array size in bytes 1 0 1 (offset) . 1
.------+---------------------------------+----------------------i 1 p (C) 1 4 1 (detail entry size of a real) 1 0 1 (no subscript) 1
.-------+------------------------------+---------------- -i
, 99 ,0 1 (header entry), , 2 ,(number of entries) ,

.--------+-----~-----------------_+------------ 1
, P (M) ,200, (detail entry size of array) ,80, (offset) ,

.--------+--------- --------------------+----------------------i
, p(I) ,4, (detail entry size of an intege~ 1 0 ,(no subscript) ,

.--------+-------------.------~---------------+--------------------------1
, 99 ,0, (header entry) , 3 ,(number of entries) ,

.----------+------------------------------------_+------------------ i
, p (XEM) , 4 ,(detail entry size of real) ,0, (no subscript) ,

.--------+--------------------------------+------------------------~
, p (Y) 1 4 1 (detail entry size of real) ,0, (no subscript) ,

.---------+---------------------.-------------------+---------------------------1
,p(ZETA) , 4 ,(detail entry size of real) ,0 1 (no subscript) , L _______ J. ________________________________ -.1. _____________________ J

Figure 34. EQUIVALENCE Text Entry for EQUIVALENCE Statements

STORAGE MAP

The storage map for Phase 10 is shown in
'Figure 35.

r-------------------, , , . -----------------~
, COMMUNICATIONS REGION ,
• --------------------1
IFORTRAN System Director ,
• ----------------------1
'I/O ,
.-------------------------i , PHASE 10 ,
• -----------------------i
,COMMON/EQUIVALENCE TEXT ,Dimension/Header
1 1 Routines
.---------------------1 1 OUTPUT BUFFERS , Variable
1 (for intermediate text) 1
.----------------------1 1 DICTIONARY 1 r----f------------l
1 1

l------j---------l 1 OVERFLOW TABLE 1
1 116 to -64K L _______________ J

K=1024

Figure 35. Storage Map for Phase 10

SUBROUTINES

The introduction to Phase 10 has dis­
cussed the input and output in Phase 10.

Five forms of data are developed from
source statements:

1 • Dictionary •
2. OVerflow table.
3. Intermediate text.
4. COMMON text •
5. EQUIVALENCE text •

To develop this data, 3 types of subrou­
tines (mainline, keyword, and utility) are
used in Phase 10 •

The mainline subroutines divide state­
ments into three classes: arithmetic state­
ments, keyword statements, and arithmetic
statement . :functions. The mainline subrou­
tines also process arithmetic expressions
and statements and define arithmetic state­
ment functions. These are covered in
charts BB through BF.

The keyword subroutines supervise the
processing of statements beginning with
FORTRAN keywords. In fact they may process
the entire keyword statement. These are
covered in charts BJ through BW.

The utility subroutines called by main­
line or keyword statements enter symbols in
the dictionary, overflow tables, and inter­
mediate text~ convert numbers~ call
input/output devices~ process subscripts,

Phase 10 85

and end marks, etc. These subroutines are
covered in charts CB through CR.

Subroutine CLASSIFICATION: Chart BB

Subroutine CLASSIFICATION performs the
following functions:

1.. Initializes program switches to proc­
ess another statement.

2. Processes any statement number that
may define this statement.

3. Determines if this statement begins
with a keyword. If it does, gives
control to the correct keyword subrou­
tine.

4. Gives control to subroutine ARITH if
the statement does not begin with a
keyword.

ENTRANCE: Subroutine CLASSIFICATION
receives control from:

1. Phase 10 HOUSEKEEPING subroutine.
2. Subroutine ARITH after the entire

FORTRAN statement has been processed.
3. A keyword subroutine if it has proc­

essed the entire statement.

OPERATION: In initialization, the byte
called FUNISW is set to binary zero, 1 is
added to the internal statement number, and
the parentheses count is set to zero.

The bits in FUNISW represent the follow­
ing:

o READ/WRITE statement
1 Subscripted variable
2 Immediate DO parameter
3 Literal DO parameter
4 IF statement
5 Statement number
6 Arithmetic statement function
7 I/O unit

Subroutine GETWD retrieves a new state­
ment from the buffer area. If the first
five columns contain a statement number,
the overflow table is scanned and the
address of statement number overflow table
entry is returned to CLASSIFICATION. This
address is entered in the intermediate text
along with the statement number adjective
and mode/type codes.

If the first symbol (other than any
possible statement number) is a keyword,
control is passed to the subroutine which
processes that particular keyword state­
ment. If the statement does not begin with
a keyword, control is passed to subroutine
ARITH.

86

EXIT: Subroutine CLASSIFICATION exits to:

1. Any of the various keyword subroutines
that process the statement under con­
sideration.

2. Subroutine ARITH.
3. Subroutine ERROR if an error has been

detected.

SUBROUTINES CALLED: During execution, sub­
routine CLASSIFICATION references subrou­
tines GETWD, LABLU, CSORN, and WARNING.

Subroutine ARITH: Charts BC, BD, BE

Subroutine ARITH determines whether the
statement defines an arithmetic statement
function, and if a function is called with
the statement. ARITH makes the entries for
arithmetic expressions to the dictionary,
intermediate text, and overflow table by
calling other subroutines.

ENTRANCE:
from:

Subroutine ARITH is entered

1. Subroutine CLASSIFICATION if the
statement does not begin with a key­
word.

2. Subroutine ASF after the delimiter =
is encountered in an arithmetic state­
ment function.

3. Keyword subroutines if the keyword
statement contains an arithmetic
expression.

4. Subroutine READ/WRITE to analyze the
I/O list.

CONSIDERATION: Subroutine ARITH is divided
into three parts. ARITH Part 1 scans the
statement for symbols and delimiters and
enters the symbols in the dictionary.
ARITH Part 2 determines if there are any
subscripted variables or referenced func­
tions on the right of the = sign. ARITH
Part 3 makes the entries to the intermedi­
ate text. ARITH Part 2 and Part 3 process
the delimiters that are found by ARITH Part
1.

Each of the three flowcharts
with subroutine ARITH represents
fic functions performed by
ARITH.

1.
2.
3.
4.

Subroutine ARITH exits to:

Subroutine
Subroutine
Subroutine
Subroutine
detected.

ASF.
GO TO.
END MARK CHECK.

ERROR if an

associated
the speci­
subroutine

error is

SUbroutine ARITH Part 1

Subroutine ARITH Part 1 prepares to
insert the adjective code for an arithmetic
statement in the intermediate text. It
determines if this statement defines an
arithmetic statement function or if a sub­
scripted variable appears left of the equal
sign. ARITH Part 1 scans the statement for
symbols and delimiters.

ENTRANCE: Subroutine ARITH Part 1 is
entered from:

1. Subroutine
statement
word.

CLASSIFICATION if the
does not begin with a key-

2. Subroutine ASF to process the arith­
metic expression to the right of the =

3.

4.

sign.
Subroutine subroutines if
word statement contains an
expression or an I/O List.
Subroutine ARITH Part 3
another symbol.

this key­
arithmetic

to fetch

OPERATION: The adjective code for an
arithmetic statement is .moved to a buffer
by sUbroutine PUTX, which fills the inter­
mediate text output buffers.

An arithmetic statement function is
defined by checking the following condi­
tions:

1. The following delimiter is a left
parenthesis. .

2. The name has not been dimensioned.
3. No executable statements have been

processed. If these conditions are
satisfied, ARITH Part 1 calls subrou­
tine ASF.

The first entry for this statement, if
it is not defining an arithmetic statement
function, is entered in the intermediate
text using subroutine PUTX in ARITH Part 1.
ARITH Part 1 alternately scans the state­
ment using a translate and test instruction
issued by subroutines GETWD and SKPBLK.
Any symbol in the arithmetic statement
other than a delimiter is scanned by ARITH
Part 1 and entered in the dictionary. If
the symbol is a delimiter, control is
passed to ARITH Part 2.

CONSIDERATION: Phase 10 determines if any
executable statements have been pro.cessed
by checking the executable switch. The
switch is set on when the first executable
state~t of the program is processed. It
is not set off for the remainder of the
phase.

Subroutine ARITH Part 1 en ts to:

1. Subroutine ASF, if ·an arithmetic

statement function is defined.
2. Subroutine ERROR, if an error is

detected.
3. Subroutine ARITH Part 2 to begin proc­

essing a delimiter.

SUBROUTINES CALLED: During execution ARITB
Part 1 calls subroutines:

1. SKPBLK to get a delimiter.
2. SUBS to process a subscripted varia­

ble.
3. PUTX to make entries to the intermedi­

ate text.
4. GETWD to access a symbol.
S. CSORN to make entries to the diction­

ary.

Subroutine ARITH Part 2

ARITH Part 2 determines if any sub­
scripted variables or referenced functions
follow the = sign and calls the appropriate
subroutine. ARITH Part 2 then gives con­
trol to the correct routine in Part 3 to
process the current delimiter.

ENTRANCE: Subroutine ARITH Part 2
entered from subroutine ARITH Part 1.

is

OPERATION: If the delimiter following the
symbol is a left parenthesis, the symbol
must either be an array or function name.
If the dictionary entry for the symbol
indicates an array, the symbol is assumed
to be a subscripted variable. Otherwise,
it is assumed to be the name of a function.

ARITH Part 2 uses the byte placed in
register 2 by the translate and test
instruction in Part 1 to index a branch
list in order to get to the correct delimi­
ter routine in ARITH Part 3. This same
byte is inserted in the adjective code to
represent the delimiter.

CONSIDERATION: The first delimiter
blank) that appears after the first
ble is assumed to be the = sign.
checked by subroutine ARITH.

EXIT: ARITH Part 2 exits to:

(not a
varia­
. It is

1. Subroutine ARITH Part 3 to process a
delimiter.

2. Subroutine ERROR if an error is
detected.

SUBROUTINE CALLED: During execution AR1TH
Part 1 calls SUBS if a subscripted variable
is recognized.

- Phase 10 87

Subroutine ARITH Part 3

Subroutine ARITH Part 3 processes delim­
iters and makes entries to intermediate
text.

ENTRANCE: Subroutine ARITH Part 3 is
enterea by subroutine ARITH Part 2.

OPERATION: If a decimal point is used as a
delimiter, the symbol must be a floating­
point constant. This subroutine must then
get and convert the number.

A left parenthesis
parentheses count.

increments the

An equal sign is usually found as the
first delimiter in an arithmetic statement
after a subscripted or nonsubscripted vari­
able-. An = sign used in this manner is
merely inserted in the intermediate text in
ARITH Part 2 and is never processed by
ARITH Part 3. If the statement contains an
= sign in any other position, it is the
delimiter for an implied DO in a READ/WRITE
statement.

A right parenthesis decrements a paren­
theses count, and checks whether the count
has reached zero or become negative.

An end mark gives control to subroutine
END MARl< CHECK. If the last symbol proc­
essed was a subscripted variable, control
is given directly to END MARK CHECK because
the subroutine SUBS has made all entries to
the intermediate text.

Asterisk checks whether an asterisk
immediately preceded this asterisk to sup­
ply the adjective code for exponentiation
operation.

A plus, minus checks if the + or - sign
follows another delimiter. If it does, it
is assumed to be a unary operation.

CONSIDERATIONS: In ARITH Part 3, entries
are made to the intermediate text through
the logical block ARIT30. If the last
variable is subscripted, no entries are
made in the subroutine ARITH for the last
variable. The subscript subroutine SUBS

makes all the intermediate text entries
necessary for the subscripted variable.

EXIT: subroutine ARITH Part :3 exits to the
following subroutines:

1. ARITH Part 2 after all entries have
been made.

2. ERROR WARNING if an error is detected.
3. GOTO after processing the arithmetic

expression in an IF statement.
4. DO after proceSSing an implied DO in

an. I/O statement.
S. END MARK CHECK if an end mark is

detected.
6. ARITH Part 1 to get another symbol.

SOBROOTINES CALLED: During execution sub­
routine ARITH Part 3 calls subroutines:

1. GETWD to access a number for a liter-
al.

2. CSORN to enter a decimal number in the
dictionary.

3. PUTX to make entries in the intermedi-
ate text.

SUbroutine ASF: Chart BF

Subroutine ASF processes the parameters
of an arithmetic statement fUnction defini­
tion until the delimiter = is encountered.
All symbols and delimiters which follow are
processed by subroutine ARITH (see Figure
36) •

ENTRANCE: Subroutine ASF is entered from:

1.

2.

Subroutine ARITH Part 1 if it deter­
mines that the current statement
defines an arithmetic statement func-
tion.
Subroutine END MARK CHECK to
processing an arithmetic
function definition.

complete
statement

CONSIDERATIONS: An arithmetic statement
function nnst be defined in a user, program
before it is called in an arithmetic state­
ment.

The symbols used to define the paramet­
ers in an arithmetic statement function may

r------------T--------------, T-------y----------------,
I Statement I SUM I (A,B,C) =1 A+B+C+2.01# I
.-----------+---------------+~----+------~-----------------i
I I II I I
I Subroutines I CLASSIFICATION I ASF I ARITH I END MARK CHECK I
I that process I I I I I
I the statement I ARITH I I IASF (processes end I
I I I I I mark text entry) I L--___________ ~ ________________ ~ _____ ~ ______ ~ _______________ J

Figure 36. Arithmetic Statement Function Processing

88

be used in the main program. They do not
carry the same meaning as they do in the
statement function definition. For exam­
ple:

DIMENSION A (20)

.
SUM (A) = (A+2.3) *3.14

Both statements contain the name A. In
the first statement A is defined as an
array by use of a DIMENSION statement. In
the second statement A is a dummy variable
used to define the operations on the param­
eter passed to the function SUM, when the
user calls the function SUM in a normal
arithmetic statement. For all other state­
ments in the main program, A is an array
with 20 elements. However, the mode can be
set by a specification statement.

OPERATION: Before subroutine ARITH deter­
mines that a statement defines an arithmet­
ic statement function, it sets an adjective
code to represent an arithmetic statement.
If ARITH determines that the statement is
an arithmetic statement function defini­
tion, subroutine ASF changes the adjective
code to represent an arithmetic statement
function.

Subroutine ASF searches the dictionary
for a symbol that defines a parameter to
determine if that symbol has been defined
previously. If it· has,ASF defaces the
previous entry so that it can not be
recognized. The address of this previous
entry is saved, and the name of the param­
eter used to define the function is entered
in the dictionary.

If that symbol has not been defined
previously, it is entered in the dictionary
and the mode/type field is set to indicate
that the symbol is a dummy variable.

Subroutine END MARK CHECK returns to ASF
if the switch indicating the processing of
an arithmetic statement function definition
is set on. The switch is then turned off.
All defaced entries are restored to their
original image using the previously stored
addresses. The original entries are then
recognized by subsequent searches of the
dictionary. The entries made for defining
the operations in the arithmetic statement
function are then defaced so subsequent
searches of the dictionary will not recog­
nize the symbols used to define parameters.

EXIT: Subroutine ASF exits to the follow­
ing subroutines:

1. ARITH Part 1 to process the statement
to the right of the = sign.

2. END MARK CHECK after the original

entries in the dictionary are re-·
stored.

3. ERROR if an error is detected.

SUBROUTINES CALLED:" During its execption
subroutine ASF references subroutines:

1. CSORN to search for and make entries
in the dictionary •

2. GETWD to access symbols.
3. SKPBLK to access delimiters.

Subroutine GOTO: Chart BJ

Subroutine GOTO determines if the state­
ment is an unconditional or computed GOTO
statement. If the statement is an uncondi­
tional GOTO, the statement number is
entered in the intermediate text. If the
statement is a computed GOTO, the list of
statement numbers is scanned and entered in
the intermediate text and overflow table.

ENTRANCE: Subroutine GOTO receives control
from the following Subroutines:

1. CLASSIFICATION.
2. ARITH Part 3 to process the statement

number for IF statements.

CONSIDERATION: A GOTO statement
with either the words GO TO, or
GOTO. Subroutine CLASSIFICATION
either form.

may begin
the wOrd

recognizes

OPERATION: After the keyword has been
checked, subroutine GOTO determines whether'
this statement is a computed GOTO. If the
delimiter following the letters TO is a
left parenthesis, subroutine GOTO assumes
the statement is computed GOTO. Any delim­
iter, other than a blank, between the
letters TO and the (first) statement number
is not accepted.

A library subroutine is used by the
object program to execute a computed GOTO
statement. The first intermediate text
entry for a computed GOTO contains the
adjective code for a computed GOTO, the
type code for a library function, and the
library identification number for the com­
puted GOTO subroutine in the pointer field.

Subroutine GOTO is entered after the
arithmetic expression for the IF statement
is processed by subroutine ARITH to~rocess
the list of statement numbers in the IF
statement. The IF switch tells subroutine
GOTO that the statement .currently being
processed is an IF statement.

EXIT: Subroutine GOTO exits to the follow­
ing subroutines:

Phase 10 89

1. END MARR CHECK when the end mark is
encountered.

2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub­
routine GOTO references subroutines:

1. GETWD to apcess symbols in the source
statement.

2. LASLU to process statement numbers.
3. PUTX to make entries to the intermedi­

ate text.
4. CSORN to make entries in the diction­

ary.
5. WARNING/ERRET if a warning is detect­

ed.

Subroutine DO: Chart BR

Subroutine DO scans the DO statement and
makes entries to the intermediate text,
dictionary, and overflow table. Subroutine
DO also processes the parameters for an
implied DO in aREAD/WRITE statement.

ENTRANCE: Subroutine DO receives control
from subroutines:

1. CLASSIFICATION.
2. ARITH Part 3 to process an implied DO

in an I/O list.

OPERATION: An error, a backward DO, occurs
if the statement number definition for the
end of the DO loop precedes the DO state­
ment. If statements occurred in the
FORTRAN program in the following sequence,
this condition would exist.

20 A=B

DO 20 I=1, 10

The switches for an immediate DO param­
eterare set on and off when subroutine DO
calls CSORN (see description of subroutine
CSORN, Chart CG) •

Subroutine DO is also entered when sub­
routine ARITH is processing a READ/WRITE
statement. If an implied DO is found in a
READ/WRITE statement, subroutine DO will
process the parameters. An implied DO is
formed when a program attempts to perform
an I/O operation on a number of elements
from an array without listing all of them
in an I/O list. For example, the statement
READ (3,1) , (A (I) ,1=1,100) contains an
implied DO. The elements of the array A
are to be read with this I/O statement.

EXIT: Subroutine DO exits to the following
subroutines:

90

1 • END MARl(CHECR when the end mark is
sensed.

2. ARITH if subroutine DO is processing
an implied DO of a READ/WRITE state­
ment.

3. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub­
routine DO references subroutines:

1. GETWD to access symbols and delimi­
ters.

2. LABTLU to process overflow table
entries for statement numbers.

3. PUTX to make entries in the intermedi­
ate text.

4. CSORN to process dictionary entries.
5. SRPBLK to access delimiters.

subroutine SUBIF: Chart BL

Subroutine SUBIF enters the IF adjective
code in the intermediate text and gives
control to other subroutines to process the
arithmetic expression and the list of
statement numbers following the expression.

ENTRANCE: Subroutine SUB IF is entered from
subroutine CLASSIFICATION.

OPERATION: Subroutine SUBIF sets the IF
switch to control the processing of other
subroutines which process portions of the
IF statement. The IF switch is contained
along with other switches in the byte
called FUNISW (see CLASSIFICATIO~ •

Subroutine ARITH processes the arithmet­
ic expression, and subroutine GOTO process­
es the list of statement numbers.

EXIT: Subroutine SUBIF exits to:

1. Subroutine ARITB to process the arith­
metic expression in an IF statement.

2. ERROR, if an error is detected.

SUBROUTINES CALLED: During execution sub­
routine SUBIF calls:

1. Subroutine SRPBLl(to access a delimi­
ter.

2. Subroutine PUTX to make entries in the
intermediate text.

Subroutines CALL, FUNCTION/SUBRTN: Chart BM

Subroutine CALL

Subroutine CALL gets the name of the
subprogram and passes control to subroutine
ARITH to process the arguments.

ENTRANCE: Subroutine CALL is entered from
subroutine CLASSIFICATION.

OPERATION: Since the arguments in a CALL
statement may be arithmetic expressions,
subroutine CALL uses' subroutine ARITH to
process the parameters that are passed to
the user SUBROUTINE during the execution of
the object program.

EXIT: Subroutine CALL exits to:

1. Subroutine ARITH Part 2 to process the
arguments of a CALL statement.

2. Subroutine ERROR, if an error is
detected.

SUBROUTINES CALLED: During execution sUb­
routine CALL references the following sub­
routines:

1. PUTX to enter the CALL adjective code
in the intermediate text.

2. GETWD to access the subprogram name.
3. CSORN to enter the name in the

dictionary.

Subroutine FUNCTION/SUBRTN

subroutine FUNCTION/SUBRTN processes the
header cards for FUNCTION and SUBROUTINE
subprograms. It makes entries to the
intermediate text and dictionary for the
subprogram name and the parameters passed
to the subprogram.

ENTRANCE: Subroutine FUNCTION/SUBRTN is
entered from subroutines:

1. CLASSIFICATION.
2. INTEGER/REAL/DOUBLE if a statement

such as REAL FUNCTION A (B,C) is used.

OPERATION: sUbroutine FUNCTION/SUBRTN is
entered at two points. The first entry
point is used if the program defines a
SUBROUTINE. If FUNCTION/SUBRTN is entered
at this point a switch is set to indicate
that the statement is the. header card for a
user SUBROUTINE. The logic flow for FUNC­
TION and a SUBROUTINE at this time become
the same. The second entry point is used
if the subprogram is FUNCTION.

A test is made to check whether this is
the first card of the source program. If
not, an error condition exists. The inter­
nal statement number must eqUal 1 if this
is the first card processed. TINE

The switch for a SUBROUTINE is tested in
order to enter the correct adjective code.
If the switch indicates that this isa
SUBROUTINE subprogram definition, the deli­
miter following the subprogram name is

tested. If it is an end mark, the subpro­
gram definition is valid, because a SUBROU­
TINE subprogram may have no parameters. A
FUNCTION subprogram definition is not valid
if it has no parameters.

Subroutine FUNCTION/SUBRTN scans the
list of arguments and enters them into the
dictionary and intermediate text. It uses
subroutines GETWD and CSORN. The only
valid delimiters are a comma to separate
the arguments and a right parenthesis to
conclude the scan. The type codes for
arguments in the subprogram are not entered
here~ they are defined implicitly or expli­
ci tly in the Subprogram. Since arguments
can be arrays, space is reserved in the
dictionary entries for array information.

EXIT: Subroutine FUNCTION/SUBRTN exits to
~ollowing subroutines:

1. END MARK CHECK if an end mark is
encountered.

2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub­
routine FUNCTION/SUBRTN references subrou­
tines:

1. GETWD to access symbols in the state-
ment.

2. CSORN to make entries in the diction-
ary.

3. SKPBLK to access delimiters in the
statement.

Ii. PUTX to make entries in the intermedi-
ate text.

Subroutine READ/WRITE: Chart BN

Subroutine READ/WRITE analyzes the sym­
bol representing tpe data set reference
number and the FORMAT statement number in a
READ.lWRITE statement, and enters them in
the intermediate text, dictionary, and
overflow table. Subroutine ARITH then
processes the list in the READ/WRITE state­
ment.

ENTRANCE: Subroutine READ/WRITE receives
control from subroutine CLASSIFICATION.

OPERATION: When subroutine READ/WRITE is
entered, it assumes the read/write opera­
tion will be in BCD mode. It enters the
BCD adjective code into ADJ, and later it
determines if the operation is in BCD or
binary.

Subroutine REAO/WRITE sets a switch to
indicate that this is a READ/WRITE state­
ment. This switch is tested in subroutine
ARITH Part 3 when subroutine ARITH process­
es the READ/WRITE list. It is used in

Phase 10 91

connection with the implied DO for the
READ/WRITE statement.

Subroutine READ/WRITE does not check the
validity of the data set reference number
specified in the READ/WRITE statement. It
blindly enters it into the dictionary if it
has not already been entered, and enters
its dictionary address into the intermedi­
ate text.

Subroutine READ/WRITE determines if the
operation is BCD or binary by the manner in
which the statement is formed. The state­
ment:

READ (3,1) HOG,TOAD,SHARK,LUNCH

is a statement instructing the object pro­
gram to read in the BCD mode, while the
statement:

READ (3) PAUL,CHUCK,FOO

directs that the read be in the binary
mode.

When the subroutine READ/WRITE deter­
mines that the second delimiter is a right
parenthesis instead of a comma, it changes
the BCD adjective code entered in ADJ to a
binary adjective code.

EXIT: Subroutine READ/WRITE exits to sub­
routines:

1. ERROR if an error has been detected.
2. ARITH Part 1 to begin processing the

READ/WRITE variable list.

SUBROUTINES CALLED: During execution sub­
routine READ/WRITE references the following
subroutines:

1. SKPBLK to access delimiters.
2. GETWD to access symbols in the state­

ment.
3. CSORN to enter symbols in the diction­

ary.
4. PUTX to make entries in the intermedi­

ate text.
5. LASLU to process the FORMAT statement

number.

Subroutine CONTINUE/RETURN, STOP/PAUSE:
Chart BO

Subroutine CONTINUE/RETURN

Subroutine CONTINUE/RETURN makes the
single intermediate text entry for the
CONTINUE and RETURN statements.

92

ENTRANCE: Subroutine CONTINUE/RETURN is
entered by SUbroutine CLASSIFICATION.

OPERATION: The entrance to subroutine
CONTINUE/RETURN for a CONTINUE statement
checks for a statement number. If there
was no statement number, a warning is
issued.

A RETURN statement is used to return
control to the main program from a FUNCTION
or a SUBROUTINE SUbprogram. If this state­
ment is in a main program, an error condi­
tion exists.

Neither the CONTINUE nor the RETURN
statement enters a pointer in intermediate
text. Both the pointer and mode/type
fields for their intermediate text entries
are set to O.

EXIT: Subroutine CONTINUE/RETURN exits to
subroutine END MARK CHECK.

SUBROUTINES CALLED: During execution sub­
routine CONTINUE/RETURN references subrou­
tines GETWD, WARNING, PUTX, and SKTEM.

Subroutine STOP/PAUSE

Subroutine STOP/PAUSE enters the adjec­
tive code and any nurrwer .used to identify
the halt into the intermediate text. This
number is not entered in the dictionary.

ENTRANCE: Subroutine STOP/PAUSE is entered
from subroutine CLASSIFICATION.

There are two intermediate text entries
made for STOP and PAUSE statements. The
first entry contains the STOP or PAUSE
adjective code with zero in the entries for
the mode/type and pointer fields. If there
is a halt number , it is entered in the
pOinter field of the second intermediate
text entry. If there is no halt number the
second entry will contain zeros.

EXIT: Subroutine STOP/PAUSE exits to sub­
routines:

1 • END MARK CHECK.
2. ERROR if an error is detected.

SUBROUTINES CALLED: Subroutine STOP/PAUSE
calls subroutine:

1. GETWD to access symbols and delimiter.
2. PAKNUM to pack the halt number.
3. PUTX to make entries to the intermedi­

ate text.
4. SKPBLK to get the end mark.

Subroutine BKSP/REWIND/END/ENDFILE: Chart
BP

Subroutine BKSP/REWIND/END/ENDFILE makes
the intermediate text and dictionary
entries for the REWIND, BACKSPACE, END, and
ENDFILE statements.

ENTRANCE: BKSP/REWIND/END/ENDFILE receives
control from subroutines:

1. CLASSIFICATION if the keywords BACK­
SPACE, REWIND, END, or ENDFILE are
recognized.

2. END MARK CHECK if the end of data set
in the card reader is sensed and the
END card has not been read.

OPERATION: The intermediate text entries
for the BACKSPACE, REWIND, END FILE, and
ENDFILE statements are the same except for
the adjective codes. The END FILE and
ENDFILE keywords mean the same. The com­
piler accepts either form. The subroutine
enters either the address of the dictionary
entry for a data set reference number or
the address of a name symbolizing the data
set reference number in the intermediate
text for the I/O statements.

When subroutine CLASSIFICATION recog­
nizes the keyword END, it is not determined
whether this statement is an END or END
FILE statement. When CLASSIFICATION passes
control to this subroutine after recog­
n1z1ng the word END, subroutine
BKSP/REWIND/END/ENDFILE checks if the next
symbol is the word FILE.

If this was an END statement signifying
end of the program, subroutine
BKSP/REWIND/END/ENDFILE sets a switch to
indicate to subroutine END MARK CHECK that
the END card has been read. When END MARK
CHECK senses an end of data set at the
input device, it gives control to
BKSP/REWIND/END/ENDFILE to set a switch
simulating that an END card has been read.

EXIT: Subroutine BKSP/REWIND/END/ENDFILE
exits to subroutines:

1. END MARK CHECK.
2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub­
routine BKSP/REWIND/END/ENDFILE references
subroutines:

1. CSORN to process entries in the
dictionary.

2. GETWD to access symbols and delimiter.
3. PUTX to make entries to the intermedi­

ate text.

Subroutine DIMENSION: Chart BQ

Subroutine DIMENSION scans the list of
symbols for DIMENSION, COMMON, INTEGER,
REAL, and DOUBLE PRECISION statements. It
determines if variables are subscripted,
calls subroutines to process the subscript,
and changes the mode in the dictionary when
an explicit mode defines the mode of a
variable. In anyone of the above state­
ments, an array may be defined and subrou­
tine DIMENSION makes entries in the over­
flow table and dictionary for the array.

ENTRANCE: Subroutine DIMENSION is entered
by subroutines:

1. CLASSIFICATION.
2. COMMON to process the list of varia­

bles placed in COMMON.
3. INTEGER/REAL/DOUBLE PRECISION to proc­

ess the list of variables.

OPERATION: A sequence error occurs if an
executable or EQUIVALENCE statement is
processed before the DIMENSION statement is
read.

The scan is similar to the scan used in
subroutine ARITH, but it is much simpler
because there are only three legal delimi­
ters, the comma and the left and right
parentheses.

A multiple switch is set to determine
the type of statement being processed. It
is set in the subroutines COMMON and
INTEGER/REAL/DOUBLE which transfer control
to subroutine DIMENSION.

EXIT TO: Subroutine DIMENSION exits to
subroutines:

1 • END MARK CHECK.
2. COMMON in order that entries may be

made in the COMMON text.
3. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub­
routine DIMENSION references subroutines:

1. GETWD to access symbols and delimi-
ters.

2 • RCOMMA to ski p redundant commas.
3. SKPBLK to access delimiters.
4. CSORN to process dictionary entries.
5. DIMSUB to calculate array sizes.
6. WARNING/ERRET to process warnings.

Subroutine EQUIVALENCE: Charts BR, BS

Subroutine EQUIVALENCE creates the
EQUIVALENCE text. The two flow charts
associated with subroutine EQUIVALENCE rep-

Phase 10 93

resent specific functions performed by sub­
routine EQUIVALENCE. Each is discussed
separately.

ENTRANCE: Subroutine EQUIVALENCE recei ves
control from subroutine CLASSIFICATION.

EXIT: Subroutine EQUIVALENCE exits to sub­
routines:

1 • END MARK CHECK.
2. ERROR if an error is detected.

Subroutine EQUIVALENCE Part 1

This part of subroutine EQUIVALENCE
scans the EQUIVALENCE statement, getting
the variable names and delimiters. It also
makes both header and detail entries for
the EQUIVALENCE text.

ENTRANCE: Subroutine EQUIVALENCE Part 1 is
entered by subroutines:

1. CLASSIFICATION.
2. EQUIVALENCE Part 2 when a name is

subscripted.

OPERATION: The EQUIVALENCE text is written
in the area that orginally contained sub­
routine DIMENSION. When an EQUIVALENCE
statement is processed, a switch is set to
forego the processing of any DIMENSION
statements that follow the EQUIVALENCE
statement. Subroutine DIMENSION is over­
laid by EQUIVALENCE text. This switch is
never reset during Phase 10.

The EQUIVALENCE text contains a header
entry and a detail entry for each element
in the EQUIVALENCE group. The entire group
must be scanned before the header entry is
made because it contains a count equal to
the number of variables in the EQUIVALENCE
group. After the right parenthesis defin­
ing the end of this group is encountered,
the element count is inserted in the header
entry.

EXIT: Subroutine EQUIVALENCE Part 1 exits
to subroutines:

1.
2.
3.

END MARK CHECK.
ERROR if an error
EQUIVALENCE Part
scripted variable.

is detected.
2 to process a sub-

SUBROUTINES CALLED: During execution sub­
routine EQUIVALENCE Part 1 references sub­
routines:

1. SKPBLK to access delimiters
2. GETWD to access symbols and delimiters
3. CSORN to process dictionary entries
4. WARNING/ERRET to process warnings.

94

Subroutine EQUIVALENCE Part 2

EQUIVALENCE Part 2 processes the sub­
script information for any subscripted
variable which is a member of an
EQUIVALENCE group.

ENTRANCE: Subroutine EQUIVALENCE Part 2 is
entered from subroutine EQUIVALENCE Part 1
to process a subscripted variable.

OPERATION: The offset is computed using
the numbers in the subscripted variable in
the EQUIVALENCE statement and the informa­
tion for the array entered in the overflow
table by subroutine DIMENSION.

The offset for 3-dimensional variables
is computed using the following formula:

Offset= [(Jl-l) + (J2-1) Dl+ (J3-1) D1*D2] *Length

where: Jl, J2, and J3 are constants in the
subscripted variable A (J1, J2, J3) entered
in the EQUIVALENCE group. The constants
Length, D1*Length, and D1*D2*Length, are
computed when the DIMENSION statement is
processed by subroutine DIMENSION and
stored in the overflow table. When
EQUIVALENCE Part 2 collects each subscript,
it subtracts 1 from each and multiplies it
by the appropriate constant in the overflow
table. The products of this multiplication
are added into an accumulator until all
subscripts for this variable are exhausted.

Valid subscripts for variables in an
EQUIVALENCE group contain no variables.
Subscripted variables may have one sub­
script for 1-, 2-, and 3-dimensioned varia­
bles, or the same number of subscripts as
there are dimensions in its DIMENSION
statement. For example, in the array
A (5,5,5), A (2,2,2) and A (32) represent the
same element.

EXIT: Subroutine EQUIVALENCE Part 2 exits
to subroutines:

1. EQUIVALENCE Part 1 to enter the sub­
scripted variable into the EQUIVALENCE
text.

2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub­
routine EQUIVALENCE Part 2 references sub­
routines:

1. GETWD to access symbols and delimi-
ters.

2. INTCON to convert EBCDIC numbers to
binary numbers.

3. SKPBLK to access delimiters.

Subroutine COMMON: Chart BT

The function of subroutine COMMON is to
direct the processing of COMMON statements
and to enter names in the COMMON text.

ENTRANCE:
trol from
DIMENSION.

Subroutine COMMON receives con­
subroutines CLASSIFICATION or

CONSIDERATION: Subroutine COMMON uses sub­
routine DIMENSION to do the bulk of the
processing for the COMMON statements. It
sets a program switch to indicate to sub­
routine DIMENSION that this is a COMMON
statement. After subroutine DIMENSION col­
lects the symbols, COMMON enters them in
the COMMON text. COMMON statements may be
used in place of a dimension statement to
define an array.

OPERATION: The executable switch is
checked to see if any executable statement
or EQUIVALENCE statement is processed. If
"there has been an executable or EQUIVALENCE
statement processed, a sequence error is
detected.

After subroutine DIMENSION retrieves
each name in the COMMON statement from the
dictionary, control returns to subroutine
COMMON. The address of the entry in the
dictionary along with the length of the
name are entered in the COMMON text. The
length of the name is entered in order to
search the chain in the dictionary for the
name.

EXIT: Control is passed from subroutine
COMMON to subroutines:

1. DIMENSION to process entries in the
COMMON statement.

2. ERROR if an error is detected.

Subroutine FORMAT: Chart BU

subroutine FORMAT enters the adjective
code for a FORMAT statement in the inter­
mediate text. Then the card image immedi­
ately beyond the word FORMAT, extending
through column 72, is moved in one byte BCD
characters to the intermediate text. If a
continuation card is required to complete
the FORMAT statement, the image from column
7 of the continuation card through column
72 is moved to the intermediate text.

ENTRANCE: Subroutine FORMAT receives con­
trol from subroutine CLASSIFICATION.

OPERATION: Subroutine GETWD sets an end
mark in the first column beyond the last
non-blank character in the card. Because

subroutine FORMAT moves all the characters
beyond the word FORMAT through column 72 to
the intermediate text, the end mark set by
GETWD is blanked, and an end mark is placed
in column 73 by subroutine FORMAT.

Subroutine CLASSIFICATION has made an
entry in the overflow table for the state­
ment number "that refers to the FORMAT
statement, but it did not adjust the usage
field to indicate that this was the state­
ment number for a FORMAT statement. Sub­
routine FORMAT, using the pointer that was
supplied when the statement number was
found or entered in the overflow table,
adjusts the usage field to indicate that
this stat"ement number refers to a FORMAT
statement.

Subroutine FORMAT then moves the image
of the FORMAT card, byte by byte, to the
intermediate text. It moves the characters
up to and including the end mark which is
placed in column 73. When the end mark is
encountered, it is moved to the intermedi­
ate text. But the output pointer is not
updated, so that if" a continuation card
were required to complete this statement,
the character in column 7 would overlay the
end mark. If there are no continuation
cards or if this is the last one, the end
mark remains in the intermediate text to
signal to other phases that it is the end
of the image of the FORMAT statement.

If there are no more continuation cards
(or if none exist) , the end of the FORMAT
statement has been reached. When entries
are made byte by byte, as in subroutine
FORMAT, there is a good possibility that
the entries did not stop on a full word
boundary. All other intermediate text
entries must begin on a full word boundary.
The output pointer is then adjusted toa
full word boundary to satisfy the format
for the intermediate text and the end
statement entry is made.

EXIT: Subroutine FORMAT exits to subrou­
tine END MARK CHECK, where the entry for
the end statement is made.

SUBROUTINE CALLED: During execution, sub­
routine FORMAT references subroutines

1. PUTX to make entries to the intermedi­
ate text.

2. GET to read cards.
3. WARNING/ERRET if a warning is detect­

ed.

Subroutine EXTERNAL: ChartBV

Subroutine
placing each

EXTERNAL
name on

scans the card,
the card in the

Phase 10 95

dictionary and typing it as an external
symbol. It sets the appropriate bit in the
usage field of the dictionary, indicating
that an ESD card must be punched for this
symbol.

ENTRANCE: Subroutine EXTERNAL receives
control from subroutine CLASSIFICATION.

OPERATION: All external symbols must be
defined before any executable statements
are encountered. If the executable switch
is on, subroutine EXTERNAL cannot define
external symbols. All symbols entered as
external symbols must be names, otherwise
subroutine EXTERNAL detects an error. A
constant cannot be an external symbol.

EXIT: Subroutine EXTERNAL exits to subrou­
tines:

1. END MARK CHECK when the end mark is
encountered.

2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub~
routine EXTERNAL references subroutines

1. GETWD to access symbols and delimi-
ters.

2. CSORN to enter names in the diction-
ary.

3. RCOMA to bypass redundant commas.

Subroutines INTEGER/REAL/DOUBLE: Chart BW

Subroutine INTEGER/REAL/DOUBLE sets the
mode for the statement and exits to subrou­
tines DIMENSION or FUNCTION/SUBRTN~

ENTRANCE: Subroutine INTEGER/REAL/DOUBLE
receives control from subroutine CLASSIFI­
CATION.

OPERATION: The mode for this statement is
inserted in a work are~. Any variable that
appears later in the statement being proc­
essed is assigned the mode explicitly stat­
ed in the first name in this statement.
The first name always is REAL, INTEGER, or
DOUBLE.

The first of two switches set in subrou­
tine INTEGER/REAL/DOUBLE indicates to sub­
routine FUNCTION/SUBRTN that it was entered
from INTEGER/REAL/DOUBLE and the mode is
explicitly defined. When subroutine
FUNCTION/SUBRTN enters the mode of the
subprogram it checks this switch to see if
an explicit mode has been defined. The
second switch is set for subroutine
DIMENSION, indicating that it was entered
from subroutine INTEGER/REAL/OOUBLE.

96

Subroutine INTEGER/REAL/DOUBLE may exit
to one of two subroutines. If the next
symbol is the word FUNCTION, it exits to
subroutine FUNCTION/SUBRTN to define the
function that follows the word FUNCTION.
For exampl.e:

REAL FUNCTION RAF (A, B, I)

defines the function RAF as a real func­
tion. The mode and type of the parameters
are not defined until they are used in a
statement other then the header card. If
the next symbol is not the word FUNCTION,
control is passed to subroutine DIMENSION,
because an array may be defined explicit
mode statement. For example:

DOUBLE PRECISION A, TOAD, HERBIE (20)

defines a doubl.e prec1s1on array HERBIE
composed of 20 el.ements.

EXIT: Subroutine INTEGER/REAL/DOUBLE exits
to the following subroutines:

1 • DIMENSION.
2. FUNCTION/SUBRTN if the name after the

specification keyword is the keyword
FUNCTION.

3. ERROR if an error is detected.

SUBROUTINES CALLED: During execution sub­
routine INTEGER/REAL/DOUBLE references sub­
routines:'

1 • GETWD to access symbols and delimi­
ters.

2. WARNING/ERRET to process warnings.

Subroutine HOUSEKEEPING: Chart CB

Subroutine HOUS~EPING enters informa­
tion into the communication area, primes
input buffers, and sets the beginning
addresses for the dictionary and overflow
table.

ENTRANCE: Subroutine HOUSEKEEPING is
entered from the FORTRAN System Director
after the FSD has loaded Phase 10.

OPERATION: Subroutine HOUSEKEEPING enters
the fol.lowing information:

1. Indication to FSD that Phase 10 is in
control.

2. Address of output buffer, COMMON text
area, EQUIVALENCE text' area, and thumb
index.

The dictionary is located initially at
the end of the Phase 10 subroutines. Sub­
routine HOUSEKEEPING must move it to allow
storage for the intermediate text output

buffers. The size of the output buffers is
calculated from information in the communi­
cations area (supplied by the Control Card
routin~; then, the beginning address of
the dictionary is calculated.

The resident dictionary is moved to this
location, and the addresses in the thumb
index are modified to reflect the new
location of the dictionary.

Subroutine HOUSEKEEPING sets the address
of the dictionary and overflow table in
registers. It primes the input buffer by
calling the FORTRAN System Director to read
in the first two cards in the card reader
While the communications area is being
initialized.

EXIT: Subroutine HOUSEKEEPING exits to
subroutine CLASSIFICATION to process the
first source statement.

SUBROUTINES CALLED: Subroutine HOUSEKEEP­
ING references the FORTRAN System Director
to read the first two source cards.

Subroutine GETWD: Chart CC

Subroutine GETWD scans the card for
names, constants, data set reference num­
bers, and delimiters. If the end mark for
a card is sensed, GETWD reads a new card,
prints it, sees if the card is a continua­
tion card, and adjusts the pointers and
register to process the continuation card.

ENTRANCE: The utility subroutine GETWD is
referenced by subroutines EXTERNAL,
REAL/INTEGER/DOUBLE, CLASSFI CATI ON, ARITH,
GOTO, CONTINUE/RETURN, STOP/PAUSE,
BKSP/REWIND/END/END FILE, SUBS,
EQUIVALENCE, DO, ASF, READ/WRITE, CALL,
FUNCTION/SUBRTN, DIMENSION, DIM90, END MARK
CHECK, SKPBLK, SKTEM, FORMAT

OPERATION: When subroutine GETWD is
entered, it assumes that Phase 10 has
already started processing a card. A poin­
ter, set for the card, checks for a blank
card position. If it is blank, the pointer
is advanced. If the position is not blank,
it saves the pointer for a length calcula­
tion.

After the first non-blank character is
found, the compiler executes a translate
and test instruction. The table for this
instruction is set so the instruction stops
on any special character (including blanks)
except $. The translate and test instruc­
tion inserts the address at which it
stopped in general register 1, and the
non-zero byte in the table which caused it
to stop in general register 2. The address

in general register 1 is used to calculate
the length of the symbol, and initialize
GETWD the next time it is entered. The
byte in general register 2 is the adjective
code for the delimiter and it is also used
to index the branch table in ARITH Part 2.

Subroutine GETWD has two return points.
The normal return is used if the length of
the symbol just scanned is greater than
zero. This implies that the symbol scanned
is a name, constant, or data set reference
number. The second return is the zero
return which is used if the symbol has
length of zero (i.e., the translate and
test instruction stopped at the same posi­
tion at which it began). A delimiter is at
the position that the translate and test
instruction began and ended its scan.

If an end mark is encountered as a
delimiter, subroutine GETWD calls subrou­
tine GET to read another card. The read
area is double buffered (i.e., it can
process a card in one buffer, while a card
is being read into the second buffer). If
an end mark is encountered in buffer 1,
GETWD calls subroutine GET to read a card
into buffer 1, and prepare the pointers to
process the card in buffer 2. At the same
time the card is being read into buffer 1,
the card in buffer 2 is printed. If this
card was a comments card, subroutine GETWD
calls subroutine GET to read a card into
buffer 2 when the card reader is available.

While the card that is about to be
processed is being printed, it is scanned
four bytes at a time for the first signifi­
cant ~on-blank) character from column 73
toward column 1. The end mark is placed in
the column immediately to the right of that
Significant character.

Subroutine GETWD checks the card being
processed. If it is a continuation card,
subroutine GETWD sets the pointers and
registers so the calling subroutines never
know a continuation card has been read.
Register 2, which receives the function
bytes of the translate and test instruc­
tion, is set to blank and the pointer that
is stored after each translate and test
instruction is set to point to column 6 of
the card. The card is then processed from
the point at which GETWD was entered.

EXIT: Subroutine GETWD exits to the sub­
routine that called it.

SUBROUTINES CALLED: During execution sub­
routine GETWD references subroutines:

1. GET to read a card.
2. PRINT to print a card image.

Phase 10 97

Subroutines SKPBLK, SKTEM: Chart CD

Sub:r;outine SKPBLK

When a subroutine expects to f~nd a
delimiter, it calls subroutine SKPBLK to
skip blanks until it finds another d~~imi­
ter. If a name, constant, or data~set
reference number is encountered before a
delimiter, an error message is entered in
the intermediate text.

ENTRANCE: The utility subroutine SKPBLK is
referenced by subroutines ARITH Part 1,
SUBS, EQUIVALENCE, DO, SUBIF, READ/WRITE,
FUNCTION/SUBRTN, DIMENSION.

EXIT: Subroutine SKPBLK exits to:

1. The subroutine that called it.
2. Subroutine ERROR if a symbol that is

not a delimiter is encountered.

SUBROUTINES CALLED: During execution sub­
routine SKPBLK references subroutine GETWD.

Subroutine SKTEM

When a subroutine expects to find an end
mark, it calls subroutine SKTEM, which
skips the remaining symbols of the card
until it finds an end mark. An error has
already been noted when this subroutine is
called.

ENTRANCE: The utility subroutine SKTEM is
referenced by subroutines END MARK CHECK,
ERROR, and CONTINUE/RETURN.

EXIT: Subroutine SKTEM exits to the sub­
routine that called it.

SUBROUTINES CALLED: During execution sub­
routine SKTEM references subroutines GETWD.

Subroutine SYMTLU: Chart CE

Subroutine SYMTLU determines if the sym­
bol has been entered on a chain in the
dictionary. If the symbol has not been
entered, subroutine SYMTLU enters it in the
dictionary and returns the address of the
entry to the calling subroutine (CSOR~.
If the symbol has been entered, it returns
the address of the entry to the calling
subroutine.

ENTRANCE: The utility' subroutine SYMTLU is
referenced by subroutine CSORN.

98

OPERATION: If the symbol is a name, the
name length determines the proper chain.
The length of the symbol is determined by
subroutine GETWD and used by subroutine
SYMTLU to find the proper address in the
thumb index, so that the correct dictionary
chain may be searched. The symbol is
entered in the chain with a chain address,
mode, type, possibly an address, and possi­
bly an array size. The usage field is set
by the subroutine that referenced CSORN.

If the symbol is not a name, it is
entered on one of the chains for real
constants, integer constants, double preci­
sion constants, or data set reference num­
bers. If it is a constant, its mode is
determined by subroutine LITCON. Phase 10
distinguishes a data set reference number
from a constant by the context in which the
number is used.

If the symbol has already been entered,
SYMTLU makes no changes in the entry. The
subroutine which has called SYMTLU adjusts
the mode, type and usage fields of the
entry if necessary.

RESTRICTION: Subroutine SYMTLU will reject
any attempt made to enter any name greater
than six characters. The chains for
lengths 7 through 11 are reserved strictly
for FORTRAN key words. No user name can be
entered in these chains.

EXIT: Subroutine SYMTLU exits to subrou­
tines:

1. CSORN the subroutine that called it.
2. ERROR if an error is ,detected.

Subroutines LABLU, PARNUM, LABTLU: Chart CF

Subroutine LABLU

Subroutine LABLU is entered only if the
calling subroutine expects th~ symbol. it
receives from subroutine GETWD to be a
statement number. It calls ,other subrou­
tines to pack the statement number and
enter it into the overflow table. Subrou­
tine LABLU selects the correct chain for
the statement number to be entered in the
overflow table.

ENTRANCE: Subroutine LABLD is referenced
by subroutines CLASSIFICATION, GOTO, and
DO.

OPERATION: Subroutine LABLU sets a switch
indicating to other subroutines that the
symbol they are processing is a statement
number. The switch is reset by LABLU
before control returns to the subroutine
which called LABLU.

EXIT: The utility subroutine LABLU exits
to the subroutine that called it.

SUBROUTINES CALLED: During execution sub­
routine LABLU references subroutines:

1. PAKNUM to pack the statement number.
2. LABTLU to process the overflow table.

Subroutine PAKNUM

Subroutine PAKNUM either packs a state­
ment number prior to the search of the
overflow table or packs the number used to
identify a PAUSE or a STOP. PAKNUM also
checks for errors.

ENTRANCE: The
erenced by
PAUSE/STOP.

subroutine
subroutines

PAKNUM is ref-
LABLU and

RESTRICTIONS: Any statement number or halt
number is illegal if it is greater than
five characters or contains any alphabetic
characters. Subroutine PAKNUM checks both
of these conditions.

EXIT: The utility subroutine PAKNUM exits
to:

1. The subroutine that called it.
2. Subroutine ERROR if an error

detected.

Subroutine LABTLU

is

Subroutine LABTLU enters all information
into the overflow table. It searches for
and enters, if necessary, all statement
numbers, subscript information, and
dimension information.

ENTRANCE: The utility subroutine LABTLU is
referenced by subroutines SUBS, DIMSUB, and
LABLU.

CONSIDERATIO!~: A switch is set in subrou­
tine LABLU to indicate a statement number
to LABTLU.

OPERATION: Subroutine LABTLU first gets
the correct address for the beginning of a
chain in the overflow table. Then it
searches the contents of each entry in the
overflow table, comparing the assembled
entry against each entry in the chain for
that type of entry until it finds the entry
for that symbol or the chain ends.

If an entry is not found, it attaches
the entry to the end of the chain. The
switch indicating a statement number is

tested so that the correct compare instruc­
tions can be used while LABTLU is searching
the table. It is also tested in order that
the correct move instructions are executed
in moving the entry into the overflow
table.

EXIT: subroutine LABTLU exits to:

1. The subroutine that called subroutine
LABTLU.

2. Subroutine
detected.

ERROR if an error is

Subroutines CSORN, INTCON: Chart CG

Subroutine CSORN

The functions of subroutine CSORN are:

1. To determine if the symbol is a name,
constant or a data set reference num­
ber and to call the proper SUbroutines
to process the symbol.

2. To determine how to enter the paramet­
er in the intermediate text if a
constant is a DO parameter.

ENTRANCE: Subroutine CSORN receives con­
trol from subroutines CLASSIFICATION, ARITH
Part 1, BKSP/REWIND/END/ENDFILE,
STOP/PAUSE, GOTO, ARITH Part 3, SUBS,
EQUIVALENCE, DO, ASF, READ/WRITE, CALL,
FUNCTION/SUBRTN, DIMENSION.

OPERATION: Subroutine CSORN first deter.­
mines if the symbol is a name or a constant
by checking the first character. If the
symbol is an integer constant, subroutine
CSORN checks a switch for the context in
which the symbol is used. It may. be a data
set reference number.

By checking another switch CSORN deter­
mines if an integer constant is a DO
parameter and determines the magnitude of
the constant. If the constant is less then
4096, it can be carried in the displacement
field of an instruction and directly in the
pOinter field of an intermediate text
entry. It will not be entered on a chain
in the dictionary_ A constant greater than
4096 cannot be entered in the intermediate
text or the displacement field of an
instruction, and must be entered on a chain
in the dictionary.

CONSIDERATIONS: DO parameters less than
4096 are entered in the object program in
the displacement field of a load address
instruction. Otherwise, storage has to be
allocated for the constant.

Phase 10 99

EXIT: Control is passed from subroutine
CSORN to the subroutine that referenced it.

SUBROUTINES CALLED: During execution, sub­
routine CSORN references the following sub­
routines:

1. LITCON to convert EBCDIC numbers to a
format that can be used internally.

2. SYMTLU to make entries in the diction­
ary.

Subroutine INTCON

Subroutine INTCON calls a subroutine to
convert integers in subscript expressions
to binary numbers.

ENTRANCE: Subroutine INTCON receives con­
trol from subroutines SUBS, DIM90.

OPERA.TION: INTCON checks whether integer
constants are properly located within the
subscript expression and calls LITCON to
convert a decimal number to a binary con­
stant.

EXIT: Control is passed from subroutine
INTCON to:

1. The subroutine that referenced it.
2. ERROR if an error is detected.

SUBROUTINES CALLED: During execution, sub­
routine INTCON references subroutine LITCON
to convert numbers to an internal format.

Subroutine LITCON: Charts CH, CI, CJ

The functions of subroutine LITCON are:

1. To convert any numeric constants to a
format that can be used internally.

2. To convert double precision and real
constants to double-precision
floating-point numbers.

3. To convert integer constants to binary
full word numbers.

ENTRANCE: Subroutine LITCON receives con­
trol from CSORN, INTCON

OPERATION: Subroutine LITCON is divided
into three parts, each with its own func­
tions and objectives. Each part is dis­
cussed separately.

EXIT: Control is passed from subroutine
LITCON to the subroutine that referenced
it.

100

Subroutine LITCON Part 1

Subroutine LITCON Part 1 is entered only
if the first character of a symbol is a
number or a decimal point. LITCON Part 1
scans the constant, examining each charac­
ter. If the character is numeric, it is
added to a binary accumulator to form the
number. If the character is a delimiter,
control is passed to LITCON Part 2 and
appropriate action is taken.

ENTRANCE: Subroutine LITCON Part 1
receives control from CSORN, INTCON, LITCON
Part 2.

CONSIDERATION: Subroutine GETWD maintains
two pointers. The first points to the
first character of the symbol. The second
points to the delimiter which stopped the
translate and test instruction.

For example,

123.456
t t

123.456E+3
t t

236E7
t t

236E7+
t t

If the number is an integer, the pointers
refer to the first digit of the constant
and the delimiter which defines the end of
the constant. For example:

123456
t t

14589+
t t

OPERATION: When subroutine LITCON Part 1
is entered, a register is cleared. It is
used to build a binary constant. The first
pointer furnished by subroutine GETWD is
used to scan the constant. This pointer
will be incremented by 1 each time LITCON
Part 1 must examine another character. If
the character is not a digit, control is
given to LITCON Part 2 to process that
character.

If the character is a digit the contents
of the register are multiplied by 10 and
the digit is added to the register. If a
decimal point is encountered in the scan,
control is given to LITCON Part 2 which
sets a decimal indicator on and returns to
Part 1. Using this indicator as a program
switch, a count is maintained to indicate
the number of decimal places to the right
of the decimal point. This number is used
in LITCON Part 3 to normalize the constant.

If an E or D is encountered in the scan,
the register is saved and cleared by LITCON

Part 2. The same register is used by
LITCON Part 1 to build the exponent.

EXIT: Control is passed from subroutines
LITCON Part 1 to LITCON Part 2.

I Subroutine LITCON Part 2

Subroutine LITCON Part 2 processes any
character not a digit, that is encountered
by LITCON Part 1 while it is scanning the
symbol.

ENTRANCE: Subroutine LITCON Part 2
receives control from LITCON Part 1 and
LITCON Part 3.

OPERATION: LITCON Part 2 sets indicators
used as program switches for the three
parts of LITCON. It sets one indicator if
a decimal point is encountered in the scan
of a symbol. Another indicator is set if
the characters D or E are encountered in
the scan. Either of these characters indi­
cates that this constant is exponentiated.

When a D or E is recognized, LITCON Part
2 stores the binary number that was in the
register used by Part 1, and clears the
register so the LITCON Part 1 may accumu­
late the exponent.

Subroutine LITCON exits through Part 2
when the entire number is converted to a
fixed- or floating-point number. The poin­
ters used by GETWD to scan the remainder of
the statement must be updated so that both
are fixed on the character immediately
following the last character of the con­
stant.

EXIT: Control is passed from subroutine
LITCON Part 2 to subroutines:

1. LITCON Part 1.
2. LITCON Part 3.
3. The subroutine that referenced subrou­

tine LITCON.

I Subroutine LITCON Part 3

Subroutine LITCON Part 3 is entered only
if the constant is a real or double preci­
sion number. It converts the mantissa and
characteristic generated from Parts 1 and 2
to an internal double precision number.

ENTRANCE: Subroutine
receives control from
Part 2.

CONSIDERATION: All
precision constants

LITCON Part 3
subroutine LITCON

real or double­
are converted into

Form Z28-6620-0
Page Revised 1/11/66
By T1iJL Z28-2117

double-precision, floating-point numbers.
When IITCON Part 3 was entered, one part of
LI'ICON converted the mantissa to a binary
number and stored it in main storage. The
second part of LITCON converted the expo­
nent to a binary number and placed it in a
register. A count of the nurober of deci«al
places had also been kept.

OPERATION: LITCON Part 3 uses these three
binary nu«bers to form a double-precision
normalized floating-point constant. For
the constant, 23.456+06, Parts 1 and 2
would place the binary. expression of the Idecimal integer 23456 in a storage loca­
tion, the binary integer 6 in a register,
and a count 3 in another location.

The mantissa mu~t be handled as an
integer because the computer cannct place a
physical decimal point in a field. The
number 23.456 takes the form of 23456 with
a count of 3 decimal places.

The hexadecimal equivalent of 23456 is
15BAO.

If the mantissa is treated as an inte­
ger, some adjustment must be made to the
exponent. The decimal count is subtracted
from the original exponent. In our example
the exponent is changed to 3 and the
deci«al count is cleared.

23.456*10 6=23456*10 3

23. 456E+06=23456E+03

The exponent is changed from +6 to +3.
If the result of the SUbtraction is nega­
tive, a switch is set to indicate a nega­
tive result, and the result/is set to its
absolute value.

Up to this point, then, we have a
Ihexadecimal rrantissa 5BAO and a decimal
exponent, 3. A double word is then esta­
blished in storage; the first byte contains

-the hexadecimal number 4E, and the rest of
the bytes contain hexadecimal zeros. That
double word is:

4EOOOOOOOOOOOOOO

The sign bit is set to zero. The
hexadecimal rrantissa is then "ored" to the
second word of this double word. Our
double word then becomes

4E00000000005EAO) 16

In hexadecimal notation this means

.00000000005EAO) 16* 161q

I Actually, the dOUble word is an unncr­
malized System/360 floating-point constant.

Phase 10 101

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

Characteristic 4E, is the exponent 14 in
excess 64 notation. This is explained in
the System Reference Library publication,
IEM System/360 Principles of operation,
Appendix C.

To normalize
word is added to
register, which
zero. The result

445BAOOOOOOOOOOO

or

. 5BAO * 16 4

the constant, the double
a double floating-point
contains floating-point
of this operation is:

Finally, the decimal exponent must be
used to adjust this double word. A switch
is set to indicate a positive or negative
exponent, and the exponent is set to its
absolute value. If the exponent is nega­
tive, the double word is divided by the
value 10 ** exponent. If it was positive,
the double word is multiplied by the value,
10 ** exponent.

LITCCN Part 3 uses a table with
floating-point values for various exponents
of 10. In our example the exponent 3
indicates a value of 1000 in the decimal
number system. Using the table, Part 3
findS that 1000 is 3E8 in the hexadecimal
system. This hexadecimal number is con­
verted to a floating-point constant and
used to multiply the number that is cur­
rently in the double floating-point reg-

lister, 445BAOOOOOOOOOOO. The result of
this multiplication would be:

47165E90000000000

or

.165E900 * 16 7

Then,

23.456E+06=47165E90000000000,

and the floating-point number is converted
to an internal machine constant.

EXIT: Control is passed from subroutine
LITCON Part 3 to:

1. The subroutine that called subroutine
LITCON if an error is detected.

2. Subroutine LITCON Part 2 to exit from
subroutine LITCON.

Subroutine SUBS: Chart CL

Subroutine SUBS processes all subscript­
ed variables in arithmetic expressions,

102

making the necessary entries to the dic­
tionary, overflow table, and the intermedi­
ate text.

ENTRANCE: Subroutine SUES is referenced by
subroutines ARITH Part 1 and ARI~H Part 2.

OPERATION: SUbroutine SUBS processes vari­
ables with one, two, or three subscripts.
The subscripts must conform to the general
FORTRAN subscript expression:

Cl*V1+J1

where C1 and J1 are unsigned integer con­
stants, and V1 is an integer variable •

The overflow table entry for a sub­
scripted variable is assembled in the over­
flow buffer. Just before centrol is
returned to the calling routine, the con­
tents of the overflow buffer are inserted
in the overflow table by use of subroutine
LABLTU.

Constants of the form J1 are stored-in
main storage until control is about to be
given to the calling subroutine. The off­
set is then computed using these constants
and the dirr:ension information entered for
this array in the overflow table, when the
array was defined by a DIMENSION statement.
The offset is then entered in the inter­
mediate text.

EXIT: The utility subroutine SUES exits
to:

1. The subroutine which has called it.
2. Subroutine ERROR if an error is

detected.

SUBROUTINES CALLED: During execution sub­
routine SUBS references subroutines:

1. GETWD to access symbols and delimi-
ters.

2. INTCON to process integer constants.
3. SKPBLK to access delimiters.
4. CSORN to process dictionary entries.
5. LABTLU to process overflew table

entries.

Subroutines DIMSUB, DIM90: Chart C~

Subroutine DIMSUB

Subroutine DIMSUB scans the subscript
portien of a statement that is dimensioning
an array. It also inserts the dimensien
information into the overflow table entry
and the size of the array in the dictionar­
y.

ENTRANCE: The utility subroutine DIMSUB is
referenced by subroutine DIMENSION.

OPERATION: The type code is set to rep­
resent an array because Phase 10 has now
determined that this statement defines an
array.

Subroutine DIMSUB uses another subrou­
tine, DIM90, to actually compute the con­
stants entered in the overflow table.

EXIT: Subroutine DIMSUB exits to:

1. The subroutine that called it.
2. ERROR if an error has occurred.

SUBROUTINES CALLED: During execution sub­
routine DIMSUB references subroutines:

1. DIMGO to compute constant.
2. WARNING/ERRET if an error is detected.

Subroutine DIM90

Subroutine DIM90 computes the constants,
D1*L and D1*D2*L, which are inserted in the
overflow table, and the size of the array
(D3*D2*D1 *L) which is inserted in the size
field of the dictionary where the general
form for the array is:

ARRAY (01 ,D2,D3)

ENTRANCE: The utility subroutine DIM90 is
referenced by subroutine DIMSUB.

OPERATION: Subroutine DIM90 uses GETWD and
INTCON to get the integer and convert it.
Then for the first subscript it computes
the product D1*L and saves the result. If
the array has only one dimension, this
product is the size of the array. If there
is more than one dimension for this array,
the product D2*D1*L is computed. If the
array has only two dimensions, that is the
size of the array. If there is another
dimension for the array, the product
D3*D2*D1 *L is computed. This product is
the size in bytes of a 3-dimensional array.
For information concerning the format of
these entries in the overflow table, see
the introduction to Phase 10.

~ Subroutine DIM90 exits to:

1. The subroutine that called it.
2. Subroutine ERROR if an error is

detected.

SUBROUTINES CALLED: DUring execution ~ub­
routine D:IM90 references subroutines:

1. GETWD to access symbols and de1imi­
terse

2. SKPBLK to access delimiter.
3. INTCON to process integers.

Subroutine END MARK CHECK: ChartCN

Subroutine END MARK CHECK calls subrou­
tine PUTX to write the end mark entry for
the majority of FORTRAN statements. It
also tests for the card reader end of data
set or if the END card has been read. Part
of END MARK CHECK is used to find redundant
commas.

ENTRANCE: Subroutine END MARK CHECK
receives control from subroutines EXTERNAL,
CONTINUE/RETURN, STOP/PAUSE, . GOTO, ARITH
Part 3, EQUIVALENCE, DO, ASF, CALL,
FUNCTION/SUBRTN, DIMENSION.

OPERATION: Subroutine END MARK CHECK is
composed of two distinct sections. One
section with entry points RCOMA, RCOMA1,
RCOMA2, and RCOMA3 is entered if no inter­
mediate text is written for this statement.
It is entered by subroutines processing
COMMON, EQUIVALENCE, DIMENSION, REAL, INTE­
GER, DOUBLE PRECISION, and EXTERNAL state­
ments. It enters the second portion from
the first portion of subroutine END MARK
CHECK, only if a warning message must be
issued.

A portion of the first section issues
warning messages when used as a subroutine
to skip redundant commas. The return to
the subroutine that called it returns to a
program step above the call instruction.
The compiler then stays in<a loop until all
redundant commas have been skipped.

The first
off all type
10 through
ments.

section of END MARK CHECK sets
switches used to direct Phase
explicit specification state-

The second portion of subroutine END
MARK CHECK has entry points EOSR, EOSR1,
EOSR2, EOSR2A, and<EOSR3. This section is
entered if intermediate text is written for
this statement.

This portion of subroutine ENO MARK
CHECK calls subroutine ASF if the arithmet­
ic statement function switch is set. Sub­
routine ASF then resets dictionary entries
and defaces those made to define the state­
ment function arguments.

EXIT: Subroutine END MARK CHECK exits to:

1 • Subroutine CLASSIFICATIQN to procesS
another source card entry.

2. The subroutine that called it if entry
was made at block RCOMA.

3. Subroutine ASP to finish processing an

Phase 10 103

arithmetic statement function.
4. FORTRAN System Director to load Phase

12.
5. SUbroutine BKSP/REWIND/END/ENDFILE to

simulate an end card being read.

SUBROUTINES CALLED: During execution sub­
routine END MARK CHECK references subrou­
tines:

1. GETWD to access symbols and delimi­
ters.

2. SKTEM to Skip to the end mark.
3. PUTX to make entries to the intermedi­

ate text.
4. WARNING/ERRET if a warning is detect­

ed.

Subroutine PUTX, PUTBUF, PUTRET: Chart CO

Subroutine PUTX makes entires to the
intermediate text buffer area, consisting
of an adjective code, type code, and an
address pointing to an entry either in the
dictionary or the overflow table. If a
buffer area is full, PUTX gives control to
the FORTRAN System Director in order to
write a tape record and free the buffer.

Subroutines PUTBUF and PUTRET are parts
of PUTX which are used for specific func­
tions in some Phase 10 subroutines. PUTBUF
is called by subroutine END MARK CHECK to
output the buffers at the end of Phase 10
execution.

PUTRET is called by subroutines not
making standard text entries (e.g., FORMAT
statement~ to the intermediate text buf­
fers to check if a buffer area is full.

ENTR NCE:' The utility subroutine PUTX is
referenced by
ARITH Part 1,
BKSP/REWIND/END/END FILE, GOTO, ARITH Part
3, DO, SUBIF,
READ/WRITE, CALL, FUNCTION/SUBRTN,
CONTINUE/RETURN, STOP/PAUSE, FORMAT, END
MARK CHECK

OPERATION: When the translate and test
instruction senses the first delimiter in
the statement under consideration, that
delimiter is placed in DELIM. PUTX then
moves the contents of ADJ to the intermedi­
ate text buffer area, and then moves the
contents of DELIM to ADJ. Subroutine ARITH
Part 1, subroutine ASF, or a keyword sub­
routine useS a special adjective code for
the first intermediate text entry for that
statement. These codes are moved directly
to ADJ.

Subroutine PUTX is entered at different
points depending on the information the

104

calling subroutine has to enter in the
intermediate text. One entry point exists
in PUTX for a subroutine that has a state­
ment number to be entered in text, a
separate entry point exists for a subrou­
tine that has an adjective code to be
entered, etc.

Subroutines SYMTLU and LABTLO place the
address of the dictionary or overflow table
entry in a general register. PUTX moves
that pointer from the general register to
the intermediate text.

The type code is moved directly to the
intermediate text from the mode/type field
in the dictionary of overflow table.

EXIT: Subroutine PUTX exits to the subrou­
tine that called it.

SUBROUTINES CALLED: The utility subroutine
PUTX will reference the FORTRAN System
Director to write the output buffers on
tape.

Subroutines ERROR, WARNING/ERRET: Chart CP

Subroutine ERROR

Subroutine ERROR creates the intermedi­
ate text entry for an error message.
Errors are not printed in Phase 10.
Entries which indicate to Phase 30 that an
error message should be printed are made to
the intermediate text. The remainder of
the statement in which the error occurred
is not processed. An indicator is set in
the Communications area so that the other
phases of the compiler know an error has
occurred.

ENTRANCE: The utility subroutine ERROR is
referenced by subroutines EXTERNAL,
INTEGER/REAL/DOUBLE, CLASSIFICATION, ARITH
Part 1 , ARITH Part 2, ARITB Part 3,
CONTINUE/RETURN, STOP/PAUSE,
BKSP/REWIND/END/ENDFILE, GOTO, SUBS, SYM­
TLU, EQUIVALENCE Part 1, EQUIVALENCE Part
2, DO,PAKNUM, LABTLU, ASF., SUBIF, INTCON,
READ/WRITE, FUNCTION/SUBRTN, COMMON,
DIMENSION, DIMSUB, DIM90, END MARK CHECK.

OPERATION: The intermediate text entry for
an error message is the error adjective
code, an error number which is inserted in
the position normally occupied by a
mode/type code, and the internal statement
number of the statement in which the error
was detected.

The error number is retrieved in an
unusual manner. When an error condition is
found in any of the statements processed by

Phase 10, a branch is taken to an instruc­
tion in a table of branch instructions.
Each of these branch instructions rep­
resents a particular error message. All of
the instructions are branch and link
instructions to the subroutine ERROR. Sub­
routine ERROR makes use of an address
constant which is the address of the begin­
ning of the branch table.

The branch table list in Phase 10
appears as follows:

ERR 1 BAL 13,ERROR
ERR2 BAL 13,ERROR
ERR3 BAL 13,ERROR

ERR27 BAL 13,ERROR

The subroutine which branches to a point
in the branch table determines the nature
of the error, and which error message is to
be generated. If the calling subroutine
has determined that this is error #27, it
will issue this instruction:

BC 15,ERR27

When the computer executes the instruc­
tion located at ERR27 it branches to sub­
routine ERROR and saves the address from
which it branched to ERROR in register 13.
Each instruction in the branch table places
its address in register 13, and each branch
instruction has a particular error message
associated with it.

If the beginning address of the branch
table (the address of the instruction
labeled ERR 1) is loaded as an address
constant in subroutine ERROR, the error
message number can be computed by subtract­
ing the beginning address from the address
loaded into the register by the branch and
link instruction, and then dividing by 4.
The length of a branch and link instruction
is one word or 4 bytes.

A program switch is set any time subrou­
tine ERROR is entered. If an error has
occurred in statements of the program writ­
ten by the user, the compiler knows that it
cannot compile the program properly. It
does not generate the machine language
coding necessary to run the object program.
Instead, if the GOGO option is not on,
after Phase 20 is completed, it enters
Phase 30 which will use the' error entries
in the intermediate text to print error
message.

EXIT: Subroutine ERROR exits to subroutine
END MARK CHECK.

SUBROUTINES CALLED: During execution sub­
routine ERROR references subroutine PUTRET
to see if the intermediate text output
buffers are full.

Subroutine WARNING/ERRET

Subroutine WARNING/ERRET enters a warn­
ing or an error message in the intermediate
text. Subroutine WARNING/ERRET attempts so
recover and continue processing the state­
ment, whereas subroutine ERROR goes direct­
ly to subroutine END MARK CHECK and aborts
the rest of the statement from the compila­
tion.

ENTRANCE: Subroutine WARNING/ERRET is
entered to generate a warning message by
subroutines CLASSIFICATION, CONTINUE/RETURN
BKSP/REWIND/END/ENDFILE, GOTOARITH Part 3,
EQUIVALENCE Part 1, DIMENSION, DIMSUB, END
MARK CHECK. Subroutine WARNING/ERRET is
entered to generate an error message by
subroutine DIMSUB.

OPERATION: A warning does not force the
compilation to be ended at Phase 20 as an
error does. The compiler generates the
object coding for the FORTRAN source pro­
gram, and then calls Phase 30 to process
the warning messages that were entered in
the intermediate text during Phase 10. A
warning would occur if a statement such as:

DIMENSION, A (20) ,B (2,2,2)

were processed by Phase 10. The comma
between the names DIMENSION and A is redun­
dant.

The same problem for error
messages processed by

and warning
subroutine

as it did in WARNING/ERRET does not develop
subroutine ERROR. The error
message number is inserted in a
The contents of the register
stored in the intermediate text
that error or warning message.

or warning
register.
are then

entry for

Every time subroutineWARNING/ERRET is
entered when a warning has occurred, a bit
is set on in the Communications area to
indicate that at least one of the source
statements has a condition which merits a
warning message. If this switch is on,
Phase 30 is called after Phase 25 has been
completed to process any warning messages
placed in the intermediate text.

If subroutine WARNING/ERRET is called
because an error has occurred, the same
switch set by subroutine ERROR is set.
This switch indicates to the compiler not
to call Phase 25 to assemble the machine
language instructions. Instead, Phase 30

Phase 10 105

is called at the end of Phase 20 to process
the errors.

When an attempt is made to re-enter the
subroutine that called WARNING/ERRET, the
intermediate text messages normally entered
for errors must be saved until the state­
ment has been completely processed. A bit
is set in the communications area to indi­
cate that entries for warnings and errors
must be made to the text. When the end of
statement is reached, subroutine END MARK
CHECK tests this bit and enters the entries
for warnings and errors to the intermediate
text after the end statement entry has been
made to the intermediate text.

EXIT: Subroutine WARNING/ERRET
the subroutine that called it.

Subroutine PRINT: Chart CQ

exits to

Subroutine PRINT assembles a line to be
printed and calls the FORTRAN System Direc­
tor to print the line.

ENTRANCE: The utility subroutine PRINT is
referenced by subroutine GETWD.

OPERATION: Subroutine PRINT always prints
the card image of the card, and the inter­
nal statement number that has been assigned
to this statement by subroutine CLASSIFICA­
TION. The internal statement number has
been assigned to this statement before it
is processed.

Subroutine PRINT through use of a Super­
visor Call instruction calls the FORTRAN

106

System Director to print a line. The FSD
will then call the I/O routine that com­
mands the printer.

EXIT: Subroutine PRINT exits to the sub­
routine that called it.

SUBROUTINES CALLED: During execution sub­
routine PRINT references the FORTRAN System
Director to print a source card.

Subroutine GET: Chart CR

Subroutine GET
and switches the
buffering scheme.

reads
buffers

a new card image
in the double

ENTRANCE: Utility subroutine GET is ref­
erenced by subroutine GETWD.

OPERATION: Subroutine GET calls the
FORTRAN System Director to read cards.
Control may be returned to subroutine GET
by two exits. The first is for normal
processing. The second exit is used if the
last card has been read from the card
reader. A switch is turned on signifying
the end of file for the card reader.

EXIT: Subroutine GET exits to the subrou­
tine that call subroutine GET.

SUBROUTINES CALLED: During execution sub­
routine GET references the FORTRAN System
Director to print a source card. Text is
wri tten for this statement.

*03 *
* 83*
* * *

X
*****83**********
GET SOURCE STMT
* AND PRINT *

••• X* STATEMENT *
* VIA FORTRAN *
* SYST DIRECTOR *

X
*****C3********** * CLASSIFY STMT *
* AS KEY WORD *
* OR ARITHMETIC *
*STMT. OR ARITH *
* STMT FUNCTION *

.
X

*****03********** * CONVERT STMT *
* TO USABLE *
* INPUT FOR * * SUBSEQUENT *
* P~ASES *

.X.
E3 it •

. * * •
NO • * END *.

•••. *. STATEMENT .*
. .

. .
* •• * * YES

X
****F3*********

* PHASE 12 VJA *
*FORTRAN SYSTEM *
* DIRECTOR *

Chart 03. Phase 10 OVerall Logic Diagram

Phase 10 107

*sa *
* AI*
* * *

CLASS X
*****Al********** *****A2*******
UPDATE INTERNAL * RESET * * STATEMENT. • SWITCHES •

•• x* NUMBER AND * •••••••• X*TC PROCESS NEW *
• ZERO PAR EN. * STATEMENT •
* COUNT * * * . ***************** **************

* * * Al *
* * **** .

CLASOI X CLAS20 .*.
*****82********** B4 *.
GETWO CCAI .* *.
--*-*-*-*-*-*-*ZERO .* IS *. NO
* GET WORD OR * •••••••••••••••••••••••••••••••••• X*.DELIMITER END.* •••••••• * DELIMITER * X *. MARK.* X
* * *..* *****
***************** * •• * *eN *

.NCN * YES * A2*

.ZERO * *

.x. CLAS06
C2 *. ***~*C3********** .* END *. *LABLU CFAl*

.* OF SYMBOL *. YES *-*-*-*-*-*-*~*-*
. LESS T~AN . •••••••• X*VERIFY STMT NO *

. COLUMN . * IN OVERLOW •
. 7 . * TABLE *

* •• *. *****************
* NO

.X.
*****01********** 02 *.
WARNING CNA3 .* WAS *.
--*-*-*-*-*-*-* YES .* LAST STMT *.
* INACCESSIBLE *X •••••••• *GC TO. RETURN, *
* STATEMENT * *. STOP .*
* * *..*
***************** *. .*

*

. .
••••••••••••••••••••••••• x.

CLAS04 X
*****03**********
* ENTER STMT NO *
* POINTER IN * * INTERNAL TEXT *
*
*

*
* *****************

CLAS03 X CLAS05 X
*****E2********** *****E3**********
CSORN CGHl *GETWD CCAl*
--*-*-*-*-*-*-* NCN*-*-*-*-*-*-*-*-*ZERO •
*COLLECT SYMBOL *X •••••••• * GET WORD OR * ••••••.
* * ZERO* DELIMITER *
* * **********.******

.X.
F2 * •

• * *.
YES.* IS *.

•••••••• *SYM80L NU~ERIC *
X *. .*

***** *..*
*CN * * •• * * A2* * ~o
* *
* ERROR-

ILLEGAL
STATEMENT

* * *****************

.
X

*****C4**********
.WARNING CNAS*
--*-*-*-*-*-*-*
* • * BLANK CARD *
* * *****************

x

* * * Al *
* * ****

* ERROR-
STATEMENT
FORMATION

................•••.••.
• KEYWORD CHART •
• *********************.
• BACKSPACE • BPAS•••......
• CALL • BMAl••.....
• COMMON • BTA2

.......................
• DIMENSION • BQA3•.....•••••....
• 00 • BKA3

• DOUBLE • BWCI
:·END·····~···:·BPAi··· .•••...................
• ENDFILE • BPA3

:·EGuiVALENCE·:·BRAi···•••.....•.•.•.•..
• EXTERNAL • BVA3 •........••............
• FORMAT • BUA2 .X. • •••••••••.•••••••••••.

G2 *. *****G3**********. FUNCTION • BMA3
.* *. * * •••••••••••••••••••••••

• * *. YES * BRANCH * • GO •. BJAI •
. KEY WORD . •••••••• X* ACCORDING TO * •••••••• X •••••••••••••••••••••••

. . * KEY WORD * • GOTO • BJA3
.. * *

. . * NO

X

*BC *
it A2*
* * *

................••.....
• IF • BL82

• INTEGER • BWAI

• READ • BNAI

• REAL • BWBl•..............
• RETURN • BOA3
.~
• REWIND • BPA4
• STep • BOA4

:·SUBROUTiNE··:-SMA2···
• INRITE • BNA2

Chart BB. Subroutine CLASSIFICATION

108

*BC *
* A2* --*

AR ITt-'
*****A2**********
.. SET *

ARITHMETIC *
ADJECTIVE

CODE

..
X

** ***82**********
SKPELK COA2
--*-*-*-*-*-*-*

GET
CELl METER

********* ********

.X.
C2 *. .*. .*. C3 *. C4 * •

• * *. .* *. .* HAS * •
• * IS *. YES .* IS *. NO .*EXECUTABLE *. YES

. DELIMITER . •••••••• X*. ThIS AN .* •••••••• X*. STATEMENT .* ••••••••
. (. *. ARRAY .* *.8EEN PRO-.* X
.. *..* *CESSED * *****

* •• * * •• * * •• * *CP *
* ~O * YES * NO * A2*

ARIT03 .X.
02 *. .- -. NO.* IS *.

*****03**********
SUBS (LA1
--*-*-*-*-*-*-*

X
****4
*BF *ASF
* A2* . .

ERROR -
SEQUENCE

OR
SUBSCRIPT

•••••••• *. DELI METER .* PROCESS
SUESCRIPT x

•• ***
*CP *
* A2* --* ERROR -

STATEMENT

. EQUAL .
.SIGN .

* •• *
* YES

FOR~ATION •
ARIT02 X .x.

E3 *.
.* *.

.* IS *. NO

*****E2*****4****
Pl.,;TX CQA3
--*-*-*-*-*-*-*
* PUT *
ARITH ADJECTIVE
* CODE *

. DELIMITER . ••••••••
. EQUAL .

.SIGN .
* •• * * YES

· .
• X •••••••••••••••••••••••••

ARTT04 X
*****F2*******
* INDICATE *
* AN EXECU-

TABLE STMT
t'AS BEEN

* PROCESSED *

* •
*EC *.X.
* G2*

ARITIO
*****62** ********
*GETWO CCA 1 *
--*-*-*-*-*-*-*ZERO
* GET * ••••••••

SYMBOL * X

.NCN
• ZERO

* •
*ec *.X.
* HZ*

X
*****H2****4*****
CSORN CGA2
--*-*-*-*-*-*-*
* COLLECT

SYMBOL OR
NUMBER *

X
*****J2**********
SKPBLK CCA2
--*-*-*-*-*-*-*
* GET *

DELIMITER * .

*BO * * A2*

- *

*Be * * C3* --.

Chart BC. Subroutine ARITH Part 1

x

*Cp *
* A2* -.

ERROR­
STATEMENT
FORMATION

Phase 10 109

***** *BD * * A2* * •

• x. ARIT14 .*.
A2 *. A3 *. *****A4********** .* IS *. .* *. * CHANGE (* .* VARIAELE *. NC .* IS *. YES AOJ CODE *

. DIMEN- . •••••••• X*. DELIMITER .* ••••• ••• X* TO FUNCTION (* *. SIONEC .* *. (.* *" ADJECTIVE ...
. .' *..* * CODE *

*. • * *. .* ********4********
* YES * NO

ARIT13 ARITII .X. • x.
*****81********** B2 *. 84 *.
::~~;-*-*-*-~:!~: YES .*.* * •••

.* * •
• 4 HAS 4. NO

*****85**4******* .
* PROCESS *X •••••••• *. DELIMITER .* *. TYPE BEEN .* x*

SET TYPE
TO

FUNCTION SUBSCRIPTS * *. .* *. CHANGED .4

. . *. .*
***************** * •• * * •• * * NO * YES

. . . .
•.•••••••••••••••••••••••• X ••••••••••••••••••••••••• X.X •••••••••••••••••••••••••

ARIT20 .X.
C::! *.

• * *. • * BRANCH *.
•• X*. ON .*

. .
*EO *
* C::*
***4*

.DELIMETER.
. .

* •• * .

:····DELiMiTER····················:······cHART······:
• ***4 * ** * *** *** **** *** *****"** ******* ****"***4 4*******.

DECIMAL PCINT BEAI ·
PLUS BEGl · .. .
MINUS BEGI ·
LEFT PARENH .. ESIS BEA3

·····Ri~~T·PARE~T~Esis············ .. ······BED2········
....... AsTERisK······· .. • .. ••· .. ••••·•••· .. •• sEc5· •• .. · · .. .

EQUALS BEA4

• C i';i CE···· .. • .. •• .. ••••••• .. •• • .. •• • BEG4 • .. ••
...... CO;MA·· · .. · · BEG;···· .. ·•·
...

ENe MARK BEC4 · .. .

****************"*"

X
*****C5********** * CHECK ...
.. FOR IMPLIED ...
.. D.P. MODE AND ...
* SET MODE "*

*BE ...
* A3* ..

OT~ER CPA2 (ERROR-ILLEGAL DELIMETER)

Chart BD. Subroutine ARITHPart 2

110

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

*BE *
* Al*

* * *

I

*BE *
* A3*
" " "
I

*BE * * A4*
" " " I

010 V ARI020 V ARI040 .v.
*****Al**********
GETWO CCA1
--*-*-*-*-*-*-*
*
"

*----.

*****A3**********
* * * INCREMENT *
* PARENTHESIS *

A4 *. *****A5**********
.* IS *. *PUTX eOA3*

.* THIS A *. YES *-*-*-*-*-*-*-*-*
. READ/WRITE .------->* ENTER = SIGN *

GET NUMBER COUNT * *.STATEMENT.* * INTO INTER-* V

*CP *
* A3*

***************** * * *****************
.. * MEDIATE TEXT *

". j" ~o **""****j*""*"***
I
V

*****61**********
CSORN eGA2
--*-*-*-*-*-*-*

CONVERT
NUMBER *

* *****************

I
V

*so *
* C3*
" *

" *
" EttROR -

ILLEGAL
DELIMITER

*8E * * 02*
* *
*
I

ARI030 V
*****02**********
* * ... DECREMENT *
* PARENTHESES

COUNT " " *****************

I .V.
*****El********** E2 *.
WARNING CPA3 .* *.
--*-*-*-*-*-*-* LT.* TEST *. GT * *

EXCESS NO. *<---*. PAREN COUNT .*-->* G4 *
* OF RIGHT'" *.FOR ZERO .* * *
* PARENTHESES *..* ****
***************** * •• *

060

,,*!** *1 EQ

*Be *
* G2* ARI031 .v.
* * F2 *.
* .* * •

*BE *
* Gl*
* *
" I

• V.
Gl *.

• * *.

• * IS *. NO * *
. IF SWITCH .-->* G4 *

. ON. * *
. . * •• *

* YES

I
V

*BJ * GO TO
* A4'*
* *
" .* UNARY *. NO

... + OR - .*-->* G4 *
. . * * *. .*

* •• * * YES

I
V

*****H1**********
* " SET *
UNARY ADJECTIVE
* CODE *

I
V

* G4 *
* "

I Chart BE. ARITH Part 3

I
V

* * * G4 *
* * ****

V V
* ... ** *****

* * *BK *
... G4 * * C4*
* * * ...

ARI060

*BE * * C4*

* " .
I .V.

C4 *.
• * LAST *.

YES.* SYMBOL *.
.----*.A SUBSCRIPTED.*
V *.VARIABLE .*

***** *..*
*CN * * •• *

**T ro

I

ARI090

*BE *
* cs*
* *
" I .V.

C5 *.
.* WAS * •

NO .* LENGTH OF *. 1 *. LAST SYSBOL .*
. ZERO .

. .
V * •• * :*::*; *1 YES

**** .V.
os *.

.* *.
v

-*04*******
PUTX COA3
--*-*-*-*-*-*-* * PUT LAST *

.* WAS *. NO

PARAMETER *

"""***j*"**""""

ARIT30

v

*CN *
* *C;*

*BE *
* 64*
* *
*

I .v •
G4 *.

.* * • * *.* *. NO
* G4 *-->*. ENTER ITEM .*---,
*... *. .* v

. LAST CHAR .---,
*. * .* ,

. . I
"'·*·~ES J

I
V

*****E5**********
" * * SET AO..J CODE
... TO * I ** * " * ********r******* I

****,*.<~
*BC *1
**G~*

**** *.. * ***** * •• * *BC ...
* YES * G2*
1**

I
V

*****H4**********
:~~~~-*-*-*-;~!~:
*ENTER OELIMIT- *
* ER IN TEXT *

I
V

*Be *
* 62*
" *

Phase 10 111

***** *SF * * A2* ASF
* * *****A2******* *****A3**********

... ... INDICATE * * ...
~>: ~~:iEQ~~T **------->! ~~TS~~:~L *

* IS BEING'" * TO ASF * PROCESSED * *
************** *****************

:*::*:->1
* * I

ASF04 V
*****83**********
GETWO CCAl
--*-*-*-*-*-*-*ZERO * GET PARAMETER *----,
* * V

* ***** ***************** *Cp ~ I NON * A2*
ZERO * *

* I ERROR-
NO PARAMETER

V
*****C3**********
CSORN CGA2
--*-~-*-*-*-*-*

SEARCH THE
* DICTIONARY * FOR SYMBOL ...

I .*. .v.
*****01********** 02 *. D3 *.
... * .* *. .* *.
*COPY MODE FROM * .* WAS NAME *. YES.* IS THE *. NO * DICTIONARY *<--------*.IN DICTIONARY.*<-------*. PARAMETER .*-------.

* *. .* *. A NAME .* V
* *..* *..* ***** ***************** * •• * * •• * *Cp *

I */ NO * **::*
ERROR­
ILLEGAL
PARAMETER

V
*****El**********
SAVE ADDRESS OF
NAME AND DEFACE
* PREVIOUS *
* DICTIONARY *
... ENTRY *

I
V ASF05

*****F1********** *****F3**********
CSORN CGA2 *SKPBLK CDA2*
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
* ENTER *--------------------------------:>* GET DELIMITER *
*PARAMETER INTO * * *
* DICTIONARY *

Chart BF.

112

Subroutine ASF

I .V.
COMMA G3 *.

.* *.
* * .* WHAT IS *. OTHER
* B3 *<----*. DELIMITER .*----,
* * *. .* V

.. *****
. . *CP *

*1) **::*
ERROR­
ILLEGAL
DELIMITER

ASF11 V
*****H3**********
SKPBLK CDA2
--*-*-*-*-*-*-*
... GET DELIMITER * . . .,

I .V.
J3 * •

• * * • • * WHAT IS *.
*NEXT DELIMITER *----,

. . V
.. *****

. . *cp *
* = * A2*
I • * *
V ERROR-

***** ILLEGAL
*BC * DELIMITER
* G2*
* *

*BF *
* B5*
* •
*
I

ASF20 V
*****85*******
* INDICATE *
* ASF STATEMENT*
* PROCESSING IS *

COMPLETE *

.I
ASF22 V

*****C5**********
* RESTORE *
* NAMES THAT *
* WERE DEFACED *
*

I
ASF24 V

*****05**********
• *
* DEFACE NAME *
* OF PARAMETER *
* IN DICTIONARY *
* * *****************

I
V

*CN *
* E5*
* *

GO X
*****,\ 1'**********
GETJtjD CCE3
--*-*-*-*-*-*-*

GET WORD * ••••••••
TO X

***** ***************** *Cp * .NON .. A2*
.ZERO

.x.
Bl *.

.* *. .* NEXT *. NO

· ERRCR-
STATE,...ENT
FORMATION

. WORD . ••••••••
. TO. X

*..-11- *****
* •• * *cp *

.. YES .. A2* . .
*BJ * .X.
iI- A3*

**** GOTD .X.
C1 *.

.* *. .* DOES *. YES

· . · ERRCR-
STATE~EI\T
FORflATICN

*8J *
.. A4* . .

*

GOT02 X
*****A4**********
GET~D eCAI
*_*_*_*_*_*_*_*_4 ZERO

* A4 * •••• x* GET * •••••••• * STATEMENT" X
**** NUMBER *****

*****C3**********
*PLACE COMPUTED *
i!- GO TO IN ADJ

***************** *cp if
.NON * A2*
.ZERO .. *

X
*****84**********
LABLU CFA}
--*-*-*-*-*-*-*

LOOK UP
STATEMENT

* NUMBER *

X
4****C4**********
'*PUTX COA3*
--*-*-*-*-*-*-*

.
ERROR­
DELIMITER
FOLLOwl NG
DELIMITER

.STATEMENT END. ••••••••
. A DC. X

..... x* AND LIBRARY
* ROUTINE 10

'* PLACE IN
'* INTERMEDIATE

TEXT

.LOOP . ***** * •• * *cp iI-

* NO * A2*

.x.
01 *.

.* *. .* IS *. NC

· ERRCR-
ILLEGAL
END DO

.DELIMITER A . ••••••••
*. BLANK • * X

*.. • * ***** ERROR-
* •• * *C~ * ILLEGAL

* YES * A2* CELIMITER

• * ·
X GeTOl .*.

*****E I ********** E2 *.
GETWD CCAI .* *.
--*-*-*-*-*-*-*ZERO .* IS *. YES •
* GET WORD * x*. CELIMITER .* ••••••
* OR DELIMITER *. (.*
* ****** ******** ***

.NON

.ZERO

X
*****F 1**********
*LABLU CF A 1 *
--*-*-*-* -*-*-*

LOOK UP
STATEMENT

* NUMBER
*********** *** ***

X

. .
* •• *

• NO

*cp *
* A2* .

ERROR­
STATEtJ,ENT
FORMATION

* IN POINTER *

X
'**03**'****'*
PUTX COA3
--*-*-*-*-*-*-*
* PUT IN
* INTERMED I ATE
* TEXT

X
*****04**********
SKPBLK CDA2
--*-*-*-*-*-*-*
* GET *

DELIMETER

.X.
*****E3********** E4 *.
* * .* *.
*PLACE CONTENTS * YES .* IS *.
* OF REGISTER *X •••• · •••• 4. DELIMITER .*

2 IN AOJ '* * .. A COMMA .*

* * * A4 *
* *

.x.
F4 *.

.* *.
.* IS *. YES

. IF SWITCH . ••••••••

. '.
G3 *.

• * *.
NO.* INTEGER *~

*. ON • *
. .

* •• *
-* NO

.X •
G4 *.

.* *. • * IS *. NO

X

*CN * END MARK CHECK
* 83*
• *

*****G 1 **** ******
* SET UP *
* L;NCONDITIONAL *
* GO TO BYTE *
* FOR ADJECTIVE *
* CODE *

......... *. MODE .*X ••• *. DELIMITER .* ••••••••

X
*****H 1 **********
P~TX COA3
--*-*-*-*-*-*-*
*-PUT ADJECTIVE *
*ceDE IN INTER- *
* MEDI ATE TEXT *

X *. .*
***** *..*
*cp *
* A2* ••

* ERROR-
MODE MUST
BE INTEGER

* •• *
* YES

GeTO 5 X
*****H3**********
PUTX CQA3
--*-*-*-*-*-*-*
* PLACE IN
* INTERMEDIATE
* TEXT *

. .
• X •••••••••••••••••••••••• 10 ••• 10 ••••• 10 10 •• e

.X.
41 *.

.* *. .* IS *. YES
... OELIMITER END.* ••••••••

. MARK. X
.. *****

* •• * *eN * * NC * 03*

X

*CN *
* A3* . .

Chart BJ.

· .

Subroutine GOTO

.). x
.. ***** ERROR-

* •• * *cp * IMPROPER
* YES * A2* DELIMITER

.X. GOTC6
H4 *. *****H5**********

.* IS *. *WARNING CPA3*
.* NEXT *. NO *-*-*-*-*-*-*-*-*

. CHARACTER . •••••• •• x* PUNCTUATION *
*. • * * I N GO TO *

. . * •• * * YES

. .
• X ••••••• ••••••••••••••••••

GOT03
*****J4**********
GET~D CCAl
--*-*-*-*-*-*-*

GET * ••••••••
VARIABLE * X

.NON
• ZERO

GOT04 X
*****K4**********
CSORN CGA2
--*-*-*-*-*-*-*

•••••• * ENTER *
* VARIABLE IN
* DICTIONARY *

*cp *
* A2* . . .

ERROR­
STATEMENT
FORMATION

Phase 10 113

*8K *
* *A~*

x
:****A2*********:

* PUT DO *
* AD.JECT IVE *
: CODE IN AD.J :

******.**********

X
*****82**********
GETWO CCAl

ZERO*-*-*-*-*-*-*-*-* * GET *
X * STATEMENT *

***** * NUMBER *
*CP * *****************
* A2* .NCN

* * * .ZERO

ERROR-IMPROPER
STATEMENT X

*****C2**********

:~:~~~* .. *_*_~~e::
ENTER STMNT NO.
* IN OVERFLOW *

:*****!!:~i*****:

.x.
02 *.

.* *. YES.* STMT *.
•••••••• *. NO. ALREADY .*
X *. DEFINED .. *

.***. *..*
*CP * _'II •• *
* *A~* * NO .
ERROR­

BACKWARD DO
X

*****E2**********
:~~~~_*_*_*_i~:~:

ERROR-ILLEGAL
DELI:ETER

* PUT ENTRY IN *
* INTERMeDIATE *

!*****!;!!******! ..
*CP *

:*:~ x
: NO .*. .x.

Fl 'II. F2 *.
.* 'II. .* *. .* IS *. NO.* IS'll.

'II. DELIMITER .*X •••••••• *. DELIMITER .*
'II. COMMA.* X *. 8LANK .*
.. *..*

* •• * * •• *
* YES **** * YES . .

: Fl :

X 0010 X
*** •• G 1 **** ****** *****G2**********
:~!~~-*-*-*-~~:~: :~i:':~*-*-*-;::~:ZERO * **** *

REDUNDANT'll •••••••• x* GET DC * ••• • x* Fl *
COMMA * * VARIABLE : * *

***************** ***.***-** •• **.**
.NON
.ZERO

X
*****H2**.*******

X
*****A4*******
* SET *
* IMMEDIATE *

••• •••••••••••••• X* INDICATOR *

• NO

• * FOR DO *
• * STATEMENT *

*;.** ************** . .
: A4 :

X
*****B4**********
GETWD CCAl
- -*-*-*-*-* -'II _* ZERO
* GET DO *

PARAMETER: **!**
***************** *CP *

:~g~o * *:~*

X
*****C4**********
::;~:~*-*-*-;~:~:
* ENTER 00 *
* PARAMETER IN *

:**~!~!!~~::!***:

X
*****04**********

::!~~~!-*-*-;~:~:
* GET *
: DELIMITER *

X
*****E4**********
:~~~~-*-*-*-~~:~:
* PUT ENTRY IN *
* INTERMEDIATE *

:*****!i!!******:

ERROR­
ILLEGAL
DELIMETEP

0060 X
*****F4*******
* RESET * * DO AND
* IMMEDIATE *
: INDICATORS * *

.* ... **********

ARpH ..
*eD *
:*!i:

x
: YES

.X. 0070 .*.
64 *. 65 ••

.* 'II. .* 'II.
•• THREE *. YES •• REAO/ ••

'II. PARAMETERS .* •••••••• x*. WRITE .*
•• PRoceSSED.. X 'II. STMNT .* ...* *..*

* •• * * •• *
* NO * NO

.*. 0080 .x.
!
*CN *
* *ei* H3 *. H4 ••

.* *. .* *. . :~i~:~*_*_*_~~!~: .* DELIMITER *. NO .* DELIMITER *. END MARK
CHECK

Chart BK.

114

* ENTER 00 *
* VARIABLE IN *

:**~!;!!~~::! .. *:

X
*****..12**********

:::~~~!-*-*-~~:~:
* GET *
: DELIMITER

X
.****K2.********·

:~~!:-*-*-*-~~:~:
PUT 00 VARIABLE
IN INTERMEDIATE

:*****!i~! .. * .. *:

*~** . .
: A4 :

Subroutine DO

*. RIGHT .*X •••••••• *. END .* *. PAREN .* 'II. MARK .*
.. *..* * •• * 'II •• *

• YES * YES

· x.
.x •

..14 *.
.* ••

NO.* TWO * •
•••••••• *. PARAMETERS .*
X *.PROCESSED.*

***** *..*
*cp • * •• *
* *A;* * YES

ERROR-

~~~~g~~~T X 
*·***K4********** 
*PUTX COA3* 
*-*-*-*-*-*-*-*-* • 
• PUT IMMEDIATE * •••• ~. 
* PARAMETER * 

:******2:!'11*****: 



IF 

***** *BL * * B2* .. .. 
* 
. 
X 

*****82********** 
*S~peLK DCA2* 
*-*-*-*-*-*-*-*-* 
* GET * 
* DELIMITER * 
* * ***************** 

.X. 
C2 * • 

• * * • • * IS *. NO 
*. DELIMITER .* •••••••• 

*. (.* X 
*..* ***** * •• * *CP .. * YES .. A2* 

X 
*****02******* 
* * * * * 
* 

SET 
IF 

SWITCH 

************** 

X 
*****E2******* 

* 

* * .. 
* * 
* 

SET 
GO TO 

SWITCH 

************** 

. 
X 

.. 

* 
* * 

* .. 
* 

** ***F2** *****.***. 
*PUTX COA3* 
*-*-*-*-*-*-*-*-* 
.. PUT IF .. 
.. ADJECTIVE * 
.. CODE IN TEXT * 
***************** 

x 
***** 
*BD .. 
* C3* 
* .. 
* 

* .. .. 
ERROR­
STATEMENT 
FORMATION 

Chart BL. Subroutine SUBIF 

Phase 10 115 



CALL X 
*****A 1 **** ****** 

:~~~!-*-*-*-~~~:: 
* PUT CALL * 
:AD.JECl"IVE CODE: 

****************4 

X 
*****8 I ********** 
*GET~D CCAI* 
*-*-.-*-*-*~*-*-* ZERO 

SUBRUT X .X. 
* •• **A2* ••• **. A3 *. 
* INDICATE * .* *. 
* SUBROUTINE • .* IS •• NO 
• SUBPROGRAM IS * •••••••• X*. THIS FIRST .* •••••••• 
* BEING. *.STATEMENT.* X 
* COMPILED * *..* ***** 
*****4*** •• *** * •• * *CP * 

* YES * *Ai.* 

FUN04 X 
*****83********** 
*GETWO CCAI* 
*-*-*-*-*-*-*-*-* ZERO 

. 
ERROR­
HEADER CARD 
NOT FIRST 

* GET NAME OF * ....... .. * GET * ........ . 
: SUBPROGRAM * .*:** * SUBPROGRAM * X 

* NAME * ***** 
**.************** ·CP * ***************** *cp * 

:~~~O .<~* .NON * /1,2* 
.ZERO * * 

ERROR­
ILLEGAL 

X ~~~~ROGRAM X 

ERROR­
ILLEGAL 
SUBPROGRAM 
NAME 

*****C 1 ********** 

::;~~~*-*-* -~::~: 
* ENTER NAME * 
: IN DICTIONARY: 

***************** 

x 
:****01**.******: 

• SET TYPE * 
• TO 
: Sl}8PROGRAM 

***************** 

Chart BM. 

116 

*****C3****·.***. 

::~~~~.-*-.-~::~: 
• ENTER NAME * 
: IN DICTIONARY: 

* ••• *******.* •• ** 

.x. 
03 *. .* IS *. 

.* THIS *. NO 
*. SUBPROGRAM •••••••••• 

*. NAME.* X 
*.VALIO.* ***** 

* •• * .CP * 
* YES • *A~* . 

ERROR­
ILLEGAL 

X ~~~~ROGRAM 
*·***E3********** 
• INSERT * 
* IMPLICIT OR * 
* EXPLICIT MODE * 
: IN DICTIONARY: 

*********.******* 

X 
*****F3·********* 
* INSERT NAME * 
* INTO * 
*COMMUNICATIONS * 
: REGION : 

*.************.** 

X 
·****G3*********· 

::~~~~L*_*_;~:~: 
* GET • 
: DELIM ITER : 

**********.****** 

.x. 
H3 *. .* IS •• 

NO .. * THIS A *. 
• ••••••••••••••••• *. SUBROUTINE .. * 

.SUBPROGRAM * 

FUNIO X 
*****...12****.***** 
• INSERT * 
• FUNCT ION * 

AOJECTI .... e * 
* CODE • 

***************** 

*. .* 
* •• * 

* YES 

SUBR20 X 
*****J3********** 
* INSERT * 
* SUBROUT tNE * 
.. ADJECT IVE 
: CODE 

***************** 

.• x. 
K3 * • • * •• 

• * IS *. YES 
*.DELIMITER ENO.* ........ . 

*. MARK.* X 
*... *.*** 

-* •• * *CN .. 
• : NO * *8;* 
• .......................... X. 

*~** . . 
: A5 : 

Subroutines CALL, FUNCTION/SUBRTN 

. . 
: AS : 

SUBR30 .x. 
AS *. .. . .. 

NO.* IS *. 
•••••••••• DELIMITER .* 
X *. ( .* 

***** *..* 
*CP * * •• * 
* *Ai* * YES . 

ERROR-ILLEGAL 
DELIMiTER 

SUBR03 X 
*·***BS*********. 

:~~!!-*-*-*-;~::: 
* ENTER * 
* SUBPROGRAM * 

:*~::;*!~*!;~!**: 

X 
*·"**CS********** 
*GETWO CCA1* 

Z ER 0* -* -* -* -*-*-* -*-* ......... * GET *x ••• 
**~** : PARAMETER * 

.CP * ***************** 
* *Ai.* :~~~O 

ERROR­
ILLEGAL 
PARAMETER • 
NAME SUBR06 X 

***·*05***·****** 

:::~~~*-*-*-~~:~: 
* ENTER * 
* PARAMETER IN * 

:**~!;!!~~!~!***: 

X 
*****ES********** 

:::~i~*_*_*_;~:~: 
* GET * 
: DELIMITER : 

*.******.******** 

.x. 
F5·. • 

.* *.COMMA • 
OTHER.. WHAT IS *. • 

........... DELIMITER .* ...... 
X *. .* 

***** *..* 
*cp * * •• * 
**A~* * ) 

ERROR­
DELIMITER 
ERROR 

SUBR09 X 
.*.**G5********** 
*GETWD CCAI* 

Z ER 0* -. -* -* -*-.-*-*-* • ••••••• * GET * 
X • END * 

***.* .. MARK * 
*CN * ****.************ * 83* .NON 

* * .ZERO 

END MARK CHECK 

X 
*****HS**.******* 

:~:~~.:~~*-*-;~::: 
* SOMETHING * 
: SUPERFLUOUS : 

******.*****.**** 

**~** 
*CN * 
**B~* . 



... **** 
*BN * 
... Al* 
* • 

***** 
*BN * * A2* * • 

* 

READS X WRIT.E X 
*···*Al**-'****** 
• *. 
.. SET UP READ· * 

*****A2****.~**** 
* • 
* SET UP WRITE 

.. ADJECTI ve .. ... ADJECT IVE 
CODE CODE * . . 

*****.*********** 
• * 
**************~** 

. . 

.X ••••••••••••••••••••••••• 

X 
*****B I ******* 
* INDICATE * * REAO/WRI TE * 
* STMT IS BEING * 
*. PROCESSED * 

FOR ARITH * 
*********** *** 

X 
*****Cl********** 
*SKPBLK CDA2* 
*-*-*-*-*-*-*-*-* * GET • 

* * DELIMITER * 
***************** 

.X. 
01 *. -.• * ... 

... IS *. ~C 
*. DELIMITER •••••••••• 

*. ( •. * X 
*..* ***** *. .* *CP .. 

* YES * A2* 
• * . 

ERROR-
LEFT FAFCEI\' 
MISSING AFTER 

X READ/WRITE 
*****El********** 
"GETlljD CCAI" 
*-*-*-*-*-*-*-*-*2ERO 
* GET DATA * •••••••• 
* SET REFERENCE * X 
* NUMBER * ***** 
*** .. ***** .. ******* *Cp * 

.NON * A2* 

.ZERO * .. 

X 
*"**"F!*********" 
*C~ORN CGA2* 
*-*-*-*-*-*-*-~-* 
* ENTER DATA * 
* SET REF NO. * 
* IN DICTIONARY * 
.. **************** 

.x. 

. 
ERROR­
ILLEGAL 
DELIMITER 

HI". '*****H2***.***"** *****H3********** .* *. * CHANGE * *PUTX COA3* 
.* <IS *. YES ADJ CODE *-*-*-*-*-*;'-'11"-*-* 

*~ DELIMI.TER .* ••••.•••• X* FROM BCD * •••••••• X* pu:r ADJ * •••••••• 
.... • * * TO * * eooe * X 

*. .* ' .. BINARY * * ***** 
* •• * ****.*** ••• ****.* ***************** *Be * 

* NO * 62* 
* * 

*****H5********** 
*PUTX COA3* 
*-*-*-*-*-*-*-*-* 

• ••••••• * PUT FORMAT * 
X * STMT NO. * 

****. IN TEXT 
*Be * *.*************** 
*. G2* X .. 

• YES .x. READI 
JI *. *****J2*~******** 

.*. 
*****J3********** *****J4**.****.*.. J5 *. 

.* *. *PUTX COA3* 
• * 15 *. YES *-*-*-*-*-*-*~*-* 

*. DELIMITER .• * •••••••• X~ PUT ACJ . * 
*. COMMA .* * CODE. TYPE * 
*..* • AWD POINTER * 

* •• * *****.**********. 
• NO 

x 
***.* 
*cp .* 
*. A2* X 

-****K2********** 
*GETWD eeAI* 

*LABLU CFAI* *SKPBLK CDA2* ;.* * • 
*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* .* IS *. 
* ENTER FORMAT ••••••••• X* ~ •••••••• X.. DELIMITER /.* 
* STMT NO. IN * * GET. *.).* 
*OVERFLOW TABLE * * DELIMITER * *..* 
********.*******. ****************. ... •• * 

X * NO 

X 
***** 
*ep * * A2* 
* * . * • 

* ERROR- ZERO*-*-*-*~*-~-*.-*-*NON • •••••••• * 'GET * •••••••••••••••••• ERROR­
ILLEGAL 
QELIMITER 

.. - ILLEGAL 
DELl~ITEA X *, FORMAT *ZERO 

***** * STATEMENT NO., * 
*ep * **.************** 
* A2* • * * ERROR-ILLEGAL DELIMITER 

Chart BN. Subroutine Phase 10 READ/WRITE 

Phase 10 111 



•• **. 
*BO * 
* Al* 
* " " 

CaNT X 
··*··Al····*····* 
• SET UP • 

CONTINUE * 
ADJECTI VE * 

* CODE IN AOJ • 

" ••••• **.*.** •• *.* 

.x. 
B 1 *. ** •• *B2 ••• ******* 

.* DID •• .~ARNING CPA::I • 
• *THIS STMNT *. NO *-*-*-.-.-«-*-.-. 

*.HAVE A STMNT .* •••••••• X* NO STMT NO. 
*. NO..* * FOR CONTINUE 
*..* * STATEMENT • 

*. .* **.*.* •••• « •• * •• * 
* YES 

**.** 
·eo -* A::I* 

" " 

RETURN X 
·****A3*********· 
* SET UP * 
* RETURN * 
* ADJECTIVE -

CODE IN AOJ 
* * *** •• *****-***.*-

• x • 
• X ••••••••••••••••••••••••••••••••••••••••••••••••••• 

CONTI X 
*-*-*c 1***--****- *****C2 •• **-*--_. 
.GET"O eCA1* • .,ARNING CPA:!* 
*-*-*-*-.-·-*-*-*NON .-.-*-*-*-.-*-.-. 
* GET ••••••••• X. SOMETHING 

END *ZERO X • OANGLI~G 
• MARK _. • 
* ••• *** •• **.**.** -*-** •••• ** •• ***­

.ZERO 

.x. 
01 *. •• *. • * *. NO • *. END •••••••• 

•• MARK .* 
*. .* *. ;* 

* YES 

.. 
X 

**·*·02*****-*-·* 
*SKTEM CCA4* 
*-*-.-*-*-.-*-.-• 

SKIP TO 
* END MARK * . " • *.***_.*-**_ •••• 

. . 

.X ••••••••••••••••••••••••• 

X 
**··-EI***·-*·*-­
* SET POINTER * 

AND 
TYPE TO 

ZERO 

" " *-***-***-****-*. 

X ** __ *Ft* _____ *_·A 

-P~TX eOA3* ._*_*_*_A_._._._* 
• PUT * ADJECTI VE 
* CODE A _ •• *_ ••• _AA •• __ .A 

x 
AA**A 
*CN * * 0::1-" . 

" 

**** • 
·BO • 
* A4A . " 

" 

*** •• 
*BO * 
• AS* 

" " " 
STOP X PAUSE X 

·**-~A4**.******* 
• SET UP * 
- STOP * * ADJECTIVE * 

CODE IN AOJ · " *****-*-* •• _ •• **. 

·****AS*··******· * SET UP « 
* PAUSE • 
• ADJECTIVE * 

CODE IN 
* AOJ • 
*.*********** •••• 

. . 

.x ••••••••••••••••••••••••• 
X PAUSEA 

·***·C4*****·*·** 
.GETWO eCAl* 
·-*-*-*-*-*-*-*-·ZERO 
• GET NUMBER, * •••••••• 

IF PRESENT * X 
* ** •• * 

***A************* _CN • 
.NON • B3* 
.ZERO * * 

X 
*****04**··***.·* 
ACSORN CGA2* A_._._._*_._._*_* 

SEARCH FOR 
- HALT NUMBER 

" " **A •• ***_ •••••••• 

X 
···*·E4·**···*-** 
*PAKNUM CFA4* 
*-*-.-*-*-.-*-*-* 
• PACK 
• NUMBER 
• INTO POINTER • 
.**.************. 

PAUSEt x 
**··*F4*·······** 
.PUTX COA3* 
.-.-.-.-.-*~*~.-* 
- PUT ADJECTI VE * 
* CODE IN • 
* TEXT * 
**A**_*_**** •• *** 

x 
***** 
*CN * * A3* 
" " 

Chart BO. Subroutines CONTINUE/RETURN, STOP/PAUSE 

118 



***** 
*BP * * AI* 
* * 
* 

END i .*. 
*****A I ********** A,2 *. 
*GET~D CCAI* .* *. 
*-*-*-*-*-*-*-*-*NON .* IS *. YES 

***** 
*BP * 
* A3* 

* * 

ENOFIL X 
*****A3********** * SET UP * 

END FILE 
ADJECTIVE 

CODE IN ADJ 
* GET * •••••••• X*. IT .* •••••••• X* 

SYMBOL *ZERO *. FILE.* * 
* *..* * 

***************** *. .* ***************** 
.ZERO * NO 

***** 
*BP * 
* A4* 
** 

REWIND i 
*****A4«-«-*«-****** 
* SET UP * 

REWIND 
ADJECTIVE 

CODE IN ADJ 

***** 
*BP * 
* AS* .. 

BKSP X 
*****A5********** 
* SET UP * 

BACKSPACE 
ADJECTIVE 

CODE IN ADJ 

. . . 
••••••••••••••••••••••••• x. x ••••••••••••••••••••••••• 

i DANGLE X 
*****C I **** *** *****C2********** * INDICATE * *~ARNING CPA3* 

END OF PROG * *-*-*-*-*-*-*-*-* 
IS REACHED * X •••••••• * SUPERFLUOUS 

II\FORMATION 

ENOl X 
*****01 **** ****** * SET ADJ CORE * 
* TO END. * 
*ZERO MODE/TYPE * 
* AND * * POINTER * 
***************** 

EN02 X 
*****E 1 **** ****** 
*PLTX COA3* 
*-*-*-*-*-*-*-*-* 

PUT END 
it- ADJECTIVE 
* CODE IN TEXT 
****** *******.**** 

x 
***** *eN .. 
* 83* 

* * 

Chart BP. Subroutine BKSP/REWIND/END/ENDFILE 

ENOFLI x 
*****84********** 
*GETWD CCAI * 
*-4-* -*-*-* -*-*-* Z ER 0 
* GET DATA * •••••••• 

SET REF * X 
* NUMBER * ***** 
***************** *ep * 

.NON * A2* 

X 
*****(4********** 
*eSORN CGA2* 
*-*-*-*-*-*-*-*-* 

ENTER DATA 
* SET REF NO. 
* INOICTIONARY * 
***************** 

X 
*****04********** 
*PUTX COA3* 
*-*-*-*-*-*-*-*-* 
* PUT ADJ CODE * 
* AND DIeT AOOR * 
*OF UNIT IN TEXT* 
***************** 

***** 
*eN * 
* A3* 
• * 

.. 
ERROR­
IMPROPER 
STATEMENT 
FORMATION 

Phase 10 119 



***** 
*so * * A2* .. * A~ * 

*~** * * · *eo * ••• * A3* .x ••••••••••••••••••••••••• 
**** • 

• X. DIMOI X 
A2 *. *****A3********** *****A4********** 

.* *. *GETWD CCAl* *RCOMA CNAl* 
.* *. NO *-*-*-*-*-*-*-*-*ZERO *-*-*-*-*-*-*-*-* 

*. SEQUENCE .* •••••••• X* * •••••••• X* CHECK * 
*. ERROR .* * GET VARIABLE * REDUNDANT * 
*..* * * COMMA * 

* •• * ***************** ***************** 
* YES .NON 

x 
***** 
*cp * 
* A2* 
* * 

ERROR­
SEQUENCE 
ERROR 

• * 
* 02 * * • 

.ZERO . . 
*BS *.X. 
* 83* 
**** • 

D IM31 X 
*****83********** 
*CSORN CGA2* 
*-*-*-*-*-*-*-*-* 
* ENTER 
* VARIABLE IN 
* DICTIONARY * 
**************-*** 

CIM34 X 
*****C3********** 
*SKPBLK COA2* 
*-*-*-*-*-*-*-*-* · . * GET CEL 1M ITER * · . ***************** 

DIM32 X .X. .*. 
*****02********** 03 *. 04 *. 
*DIMSUS CMS2* .*OIMEN- *. .* *. 
*-*-*-*-*-*-*-*-*DIMENSICN .* SION EX- *. EXPLICIT.* HAS *. YES 
* PROCESS *X •••••••• *.PLICIT SPEC •• * •••••••• x*. MODE BEEN .* •••••••• 

CIMENSION * *. COMMON .* SPEC *. DEFINED .* X 
* INFORMATION * *.STMT .* *..* ***** ERROR-
***************** * •• * * •• * *cp * MULTIPLE 

X 

*COMMON * NO * A2* DEFINITION 

***** 
*8T * 
* F2* .x. 

*****E 1 **** ****** *****E2********** .. E4 *. *****E5********** 
*WARNING CPA3* *€ETWD CCAl* 
*-*-*-*-*-*-*-*-* NON*-*-*-*-*-*-*-*-* 

MISSING *x •••••••• * GET * 
COMMA * ZERC* DELI MITER 

x 
**** 

• * 
* 83 * . . 

. 
***************** 

.ZERO 

.x. 
F2 *. 

.* *. 
YES.* IS *. 
••• *. DELIMITER .*X ••• 

*. C0104'1o4''''' .* 

* • 
* A3 * . . 

*. .* 
* •• * * 1'\0 

x 
***** 
*eN * 
* 81* .. 

.* *. * * 
• * DOU8LE *. YES CHANGE SIZE 

*. PRECISION .* •••••••• X* OF ARRAY 
*. .* * IN DICTIONARY 4-

X 
*****F4******* 
* SET MODE * 

X 
*****F5********** 
* CHANGE * 

o IMENS ION DEF I NED 
BIT IN 

DICTIONARY 
*X •••••••• * INFORMATION 

* IN OVERFLOW 

X 
*****G4********** 
* ENTER NEW * 

MODE IN * 
DICTICNARY 

ENTRY . 
***************** 

**** . . . 
*8Q *.X. 
* H4* 
**** 

DIM33 .X. 
H4 * • 

• * *. 

T A8LE * 
***************** 

• NO .* * • 

Chart BQ. 

120 

•••••••••••••••••••••••••••••••• *. DELIMITER .* 

Subroutine DIMENSION 

*. ( .* 
*. .* 

* •• * 
* YES 

x 
**** . . 

* 0.2 * • * 
*-*** 



***** 
!fBR * 
* Al* 
* * 
* 

I;:QUIV .X. 
***** 
*ER .. 

**** 
* * * A4 * 
* * 

* A4* EOU09 X 
Al *. *****A2******* * * *****A4********** 

.* HAS *. * INDICATE Ne* * * PUT * 
.*EXECUTABLE *. Ne * SUBSEQUENT * • * INFORMATION 

*. 51 A1EMENT • * •••••••• x*c IMENSI ON STMTS* ••••••• X* INTO 
*.BEEN PRO-.* ARE T·O BE * * EGUIVALENCE * 

* TEXT * 
***** .. *********** 

*CESSED * PROCESSED * 
* •• * ********** ..... **. 

* YES 

x 
***** 
*cp * 
* A2* 
* * 
* ERROR -

SEQUENCE 

Chart BR. 

x 
** ***82** ***'***** 
*SKPELK CCA2* 
*-*-*-*-*-*-*-*-* * GET .. 
* DELIMITER 
* ** .... *** ... ******** 

EQUOI X 
*****C2********** 
* INITIALIZE * 
* REGISTERS * 

* C2 * •• · ... X.. AND * 
* * * COUNTERS 

* ***************** 

EGU02 .x. 
02 *. 

.* * • • * IS *. NO 
*. DELIMITER .* •••••••••••••••••••••••••••••• 

*. .* *. .* 
* •• * * YES 

.X ......................... . 

EGU05 X 
** ***E2******.**** **** *E3********** 

**** *GETIIIID CCA1* *RCOMA· CNA1* 
*._*-* _*_* - *-*-* -* ZERO *-*-*-*-*-*-*-*-* 

: E2 : •••• X: GET VARIABLE : •••••••• X: RE6~~6~NT :x .. ~ 
**** * * COMMA * 

** ..... ** .. *** .. *.*** ****** .. **** .. ***** 
.NeN 
.ZERO 

.x. 
84 *. 

.* *. **** 
.* IS *. yes * * 

*.*.DE~~=~!ER.*.* •••• X: E2 : 
*..* **** 

* •• * * NO 

.x. 
C4· *. 

.* *. 
.* *. NO 

*. .* •••••• 
*. 

*. .* 
* •• * * YES 

.* 

X 
*****04********** 
* PUT ELEMENT * 
* COUNT INTO 

EQUIVALENCE * 
* TEXT AND * 
*ADJUST POINTER * 
***************** 

X 
*****E4**'* .. ****** 
*GET~D CCA1* 
*-*-*-*-*-*-*-*-*NCN • 
* 6ET * •••• X. * COMMA *ZERO 
* * ***************** 

.ZERO 

X 
*****F2********** 
* INCREMENT * 
* ELEME~T .. 
.. COUNT FOR 

EQUOa .*. EQU07 .X. 

Tt!15 GROUP 

*** ...... *** .. ** .. ***. 

X 
4****G2********** 
*CSORN CGA2* 
*-*-*-*-*-*-*-*-* 
* ENTER .. 

VARIABLE IN 
DICTIONARY * 

*** .... *** .. **** ........ 

X 
*"***H2********** 
*SKPELK CCA2" 
*-*-*-.. - .. -*-*-*-* 
* GET DELI~ITER * 
* * * * .. * .. * .. ************ 

EQU03 X 
*****J2"""**"**** 
* INSERT SIZE .. 
.. OF ARRAY OR 

.* SIZE CF 
VARIAeLE 

IN TEXT .. 
**** .. *** .. *** .. * .. ** 

, 
EOUIO .x. 

K2 * • 
• * ... 

F3 *. F4 *. 
.* *. .* *. 

NO .* *. NO .* *. 
••• *. .*X •••••••• *. COMMA .* 

x 
***.* 
*CN * 
* Cl* 
• * 

*. .* *. .* 
*..* *..* 

* •• * * •• * 
* * YES 

RCOMA2 X X 
*****G4********** 
*GETWD CCAl*. 
*-*-*-*-*-*-*-*-*NON. 

*****63********** 
*WARNING CPA3* 
*-*-*-*-*-*-*-*-* 

MISSING * 
COMMA 

* ***** .. *********** 

x 
**** 

* * * C2 * 
* * *.** 

* GET ( * •••••••• 
*ZERO X 

***** 
***************** *cp * 

.ZERO * A2* 

x 
**-* 

* * * C2 * 
* * **** 

* * * ERROR -
DELIMITER 

ERROR 

YES • * 1 S *. NO .. * 
•••••••• *. VARIABLE .* •••• x* A4 * 
X *Dl MENS I CNEO* * * 

***** *..* ** .. * 
*85 * * •• *', 
* A3* * • * 

* 

Subroutine EQUIVALENCE Part 1 

Phase 10 121 



***** 
*8S * 
* A.::!* 
* • 

• x. 
A3 * • 

• * * • • * *. NO *. .* ........ . 
*. .* X 
*..* ***** 

* •• * *CP * 
* YES * A2* 

* * 

ERROR­
DELI METER 

EQU20 X ERROR 
*****83********** 
*GETWD CCAL* 
*-*-*-*-*-*-*-*-*ZERO 

••• x* GET * •••••••• 
* PARAMETER * X 
* ***************** 

.NON 

.ZERO 

X 
*****C3********** 
*INTCON CGF2* 
*-*-*-*-*-*-*-*-* 

CONVERT 
INTEC:ER 

X 
*****03********** . . 

CCMPI,;TE 
OFFSET 

X 
*****E3********** 
* * INCREMENT 

SUeSCRIPT 
COUNT * . 

***-************* 

X 
*****F3********** 
*SKPBLK CDA2* 
*-*-*-*-*-*-*-*-* 

GET 
DELIMITER 

. " .YES .'11-

.x. 
G3 *. 

• ••• *. COMMA 
* • 

* • .* 
*. .* 

.x. 
H3 * • 

• * * • • * *. NO 

***** 
*CP * 
* A2* 
* * 
* ERROR-

OELIMETER 
ERROR 

*. .* •••.•.•. 
*. .* X 
*..* ***** 

* •• * *CP * 
* YES * A2* 

.x. 
J3 * • 

• * *. 
YES .* SUeSCRIPT * • 

. 
ERROR­
ILLEGAL 
OELIMETER 

•••••••• *. CO~NT .* 
X *. =1 .* 

***** *..* 
*ER * * •• * 
**A!* * NO 

* 

.x. 
K3 * • 

• * *. 
YES .* SU8SCRIPT *. NO 

•••••••• *. COUNT EQUAL .* •••••••• 
X *NO. OF DIM * X 

***** *..* ***** 
*8R * * •• * *CP * 
* A4* * * A2* ERROR-
* * * *SUBSCRIPT * ERROR 

Chart ES. Subroutine EQUIVALENCE Part 2 

122 



**.*. -BT ... 
* A2* 
* * * 
1 

COMMON .V. 
A2 * • 

• * * • • * IS *. NO 
"'.STATEMENT IN .*--, 

.... SEQUENCE .... V 

*..* ***** *. .* *Cp ... 

*1 YES ... *:~* 
ERROR­
SEQUENCE 
ERROR .V. 

62 * • 
• * -. NO.* IS *. 

,...---*. DEL.IMITER .* 
V *. BL.ANK '.* 

***** *..* 
*Cp ... * •• * 
**:~* *1 YES 

ERRQR-

~~~A:ITER I 
V

*****C2*******
... INDICATE TO-
• SUBR DIMENSIN*
... THAT THIS IS ...
... A COMMON *
... STATEMENT *

I
V

*****TO SUBROUTINE
*sa ... DIMENSION
* A3*
* *

*****FROM 5UBROUTI HE
-BT ... DI'MENSION
... F2*
* * *

I
CONOl .v.

F2 * • • * * • • * IS *. YES *. TEST AREA .*---,
•• FULL.* V

.. ***** *. .* *cp ...

*1 NO ::~::
COMMON
TEXT FULL

.V.
G2 * •

• * IS * • • * VARI ABLE *. YES *. A RESERVED .*----. *. WORD.* V
.. ***** * *cp ...

1 NO E::~: INVALID
OF RESERVED
WORD

V
*****H2**********
... ENTER ...
... DICTIONARY
... POINTER AND ...
-NAME LENGTH IN * * COMMON TEXT *

I Chart BT.

I
V

*8Q *
* H4*
* * * DIMENSION

COMMON Routine

USE

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

Phase 10 123

*BU *
* A2*
* *
*

I
FORMAT V

*****A2**********
* OVERLAY END *
* MARK SET BY *
* GETWD SET *
* END MARK IN *
* COLUMN 72 *

I
.V. FMTWRN

82 *. *****B3**********
.* DID *. *WARNING CPA3*

.* STATEMENT *. NO *-*-*-*-*-*-*-*-*
. HAVE A STMT .-------->* NO STMT NO. *

. NUMBER . * ON FORMAT *
*..~ * STATEMENT *

* •• *
* YES

I
*****C2~~********
* TYPE *
* STATEMENT *
* NUMBER *
* AS FORMAT *
* * *****************

I
FMTI V

*****02**********
PUTX COA3
--*-*-*-*-*-*-*
* PUT FORMAT * <--------­
* ADJ CODE IN *
* INTERMED TEXT *
***************** ,

I
FMT2 V

*****E2**********
PUTX COA3
--*-*-*-*-*-*-*

r---------------->* PUT NEXT * <---------
I * CHARACTER *
, IN TEXT *
I *****************

I
I

-----'

*****E3**********
* ADJUST INPUT *
* POINTER TO *
* COLUMN 7 OF *<
* THE CARD *

* *****************

REPEM
*****E4**********
* OVERLAY END *
* MARK SET BY * * GETWD. SET *
* END MARK IN *

COLUMN 73 * *****************

'I .vl. j '" PUTFTX FMT3 .*.
*****Fl********** F2 *. *****F3********** F4 *.
* UPDATE '* .* . *. *GET CRA3* .* IS *.
* INPUT AND * NO.* WAS *. YES *-*-*-*-*-*-*-*-* .* THIS A *.
'* OUTPUT *<--------*. CHARACTER .*--~----->* GET NEXT *-------->*.CONTINUATION.* * POINTERS * *.END MARK .* * CARD *. CARD .*
" ****'************* *. . *

*

Chart BU. Subroutine FORMAT

124

* *************'**** '*. • * * NO

I
V

*****G4**********
'* ADJUST '*
* OUTPUT *
* POINTER TO A *
'* FULL WORD *
" BOUNDARY *
''***************

I
V

*CN *
* 03*

* * *

***** *BV * * A3*
" * "

· EXTERN .X.
A3 * • • * HAS * •

• "EXECUTABLE ". YES
*STATEMENT BEEN * ••••••••

.PROCESSED. X
.. *****ERROR-

* •• * *CP *SEQUENCE
" NO " A2"ERROR "
• x ••••••••••••••••••••••••• · EXTOl X •

*****B~********** *****84**********
"GETWO CCAI" "RCOMA CNAI"
--*-*-*-*-*-*-*ZERO *-*-*-*-*-*-*-*-*

••• X* GET NEXT * •••••••• X* CHECK *
" SYMBOL * "REOUNOANT"
" "" COMMA "
***************** *****************

.NON

.ZERO

· . • EXT I X
*****C3**********
"CSORN CGA2*
--*-*-*-*-*-*-*
" ENTER SYMBOL "
" IN OICTIONARY "
* * *****************

.X.
D~ * •

• * IS * • • * SYMBOL *. YES
. A CONSTANT . ••••••••

. . X
.. *****

* •• * *cp * * NO * A2*

.X.
E3 * • • * HAS * • • * TYPE *. YES

" " " ERROR-
IMPROPER
SYMBOL

. BEEN . ••••••••
. DEFINED . X

. .
* •• * .. NO

X
*****F3**********
* SET TYPE TO "
" EXTERNAL NAME "
.. AND SET BIT ..
.. INDICATING AN "
.. ESD CARD ..

X
*****G3**********
"SKPBLK CDA2"
--*-*-*-*-*-*-*
~ GET *
.. DELIMITER

• EXT2 .X •
H3 *.

• .* * • • YES.* IS * •
•••• *. DELIMITER .*

. COMMA .
. .

* •• *
" NO

· X

*CN *
.. 02"
* ..
"

*CP * * A2*
" * " ERROR-

MULTI-DEFINED
SYMBOL

Chart BV. Subroutine EXTERNAL

Phase 10 125

**** • • *ew * •••
• AI· **** •

INTGER X
*****AI**********
* INDICATE •
• INTEGER MODE •
* FOR THIS * ••••.•
• STATEMENT •

• * *****************

**** • •
*BtI * •••
» BI·
****. •

REAL X .REALI .*. .*.
*****Bl********** B2 *. *****83******* 84 *. * INDICATE * • .* DOES *. * SET UP TYPE* .* HAS *.
• REAL MODE * X .* STATEMENT *. NO * INDICATION * .*EXECUTABLE *. YES
* FOR THIS * ••••••.. X*. HAVE STMT .* ••.••••. X*FOR SUBROUTINE * ..•••••. X*STATEMENT BEEN * ••••••.•
* STATEMENT * X *. NO... X * FUNCTION/ * *.PROCESSED.* X
* * *..* * SUBRTN * *..* *****

*CP *
* A2*

***************** *. .* ************** * •• *
* YES * NO

* * *BW * •••
* Cl*
**** •

DOUBLE X
*****CI**********
* INDICATE· *
* DOUBLE *
*PRECISION MODE *
* FOR THIS *
* STATEMENT *

.
X

*****01**********
GETWD CCAl

ZERO*-*-*-*-*-*~·-*-* •••• * GE---T/ *
* NEXT *
* SYMBOL *

.NON

.ZERO

.X.
El *.

.* *.
.* IS IT *. YES •

. PRECISION . •...••
. .

. .
* •• * * NO . .

••••••••••• X.
X

*cp *
* A2*
• * ..

ERROR­
STATEMENT
FORMATION

.
X

*****C2**********
WARNING CPA3
--*-*-*-*-*-*-* •
* STMT NO ON * ••••••
A SPECIFICATION
* STATEMENT· *

Chart BW. Subroutine INTEGER/REAL/DOUBLE

126

· X
*****C4**********
GETWD CCAl
--*-*-*-*-*-*-*ZERO

• *
* ERROR-

SEQUENCE
ERROR

* GET NEXT * ••••••••
* SYMBOL * X
* * *****************

.NON

.ZERO

***** *CP * * A2*
* * * ERROR-

ILLEGAL
• DELIMITER .X.

04 *.
.* IS *.

.*THIS SYMBOL*. YES
. THE WORD . ••••••••

*'FUNCTION' * X
.. *****

* •• * *8M *
* NO * A3*

· X
*****£4*******
• INDICATE TO*
• SUBR DIM. •
• THE TYPE OF *
• STMT BEING *
* PROCESSED.

· X

*BS *
* 83*
* * •

TO SUBROUTINE
DIMENSION

* * * TO SUBROUTINE
FUNCTION/SUBRTN

*CB *
* A3*
* *

START X
*****A3**********
* * *. INDICATE *

PHASE 10 IS
* IN CONTROl.
* * *****************

X
******63***********

REWIND
WORK
TAPES

X
*****C3**********
* * * SETUP I/O

BUFFER *
CONSTANTS *

* *****************

X
*****03**********
* MOVE *
ENTIRE RESIOENT
* DICTIONARY *
* ABOVE BUFFERS •
* * ****.************

X
*****E3**********
* REl.OCATE *
* POINTERS IN *

••• X*DICTIONARY AND *
* THUMB INDEX •
* * *****************

.x.
F3 * •

• * * • • NO.* ARE * •
•••• *. ALL CHAINS .*

.RELOCATED.
. .

* •• * * YES

X
*****G3********·*
* SET UP *
*COMMUNICATIONS *
AREA INDICATORS
* AND ADDRESS *
• CONSTANTS *

X
*****H3**********
• SET UP *

REGISTERS * * FOR I/O AND *-* TABLE. • * POINTERS •
**************.**

X
*****J3********-*
* * - PRINE *

eUFFERS -
* * •

-***.*.****-*****

x
.***4
*Be * * AI-. . .

Chart CB. Subroutine Phase 10 HOUSEKEEPING

Phase 10 127

*ee *
* Al*

**** * * · .. * Al *.x. · . ****
GETwD .x.

Al *. *****A2**********
.* *. * *

.* *. NO * SAVE POI~TER
..... x*,. CHARACTER .* •••••••• x* F.CR LEN.GTH

. BLANK . ' , * eALCULATlON
.. * *

* •• * *************.***
* YES

X
*****Bl**********

• *
•••• *

*

ADVANCE
POINTER

X
*****B2**********
* •

TRANSLATE
AND

TEST

HERE X
*****C2********** · . .
* COMPUTE *

LENGTt-':

.x. READ
02 *. *****03**********

.* IS *.. *GET CRA3*
• * CELl MITER *. YES *-*-*-*-*-*-*-*-*

. AN ENe . ••..•••• x* FETC ...
. MARK. X * NEXT CARC
.. *

. . *****************
* "'0

• *. * E2 *.X. · .

• x.
E2 *.

****El********* .* *.

.TSTSW .X •
E3 *. *****E4**********

.* *. *PRINT CQA3*
* NORMAL * ~c.* WAS *. .* LIST *. YES *-*-*-*-*-*-*-*-*

RETURN *X •••••••• *. LENGTI-' .*
* *. =0 .*

*************** *..*
* •• * * YES

X
****F2********* · . * ZERO RETURN * .

NCRMCC
*****H2**********
* SET COLUMN 6 *

TO BLANK

. REQUESTED . •••••••• X* PRINT SOURCE
. . * CARD AND ISN
.. *

* •• * *****************
• NO

· . • X •••••••••••••••••••••••••

• CtoIPCMT .X.
Fa 4.

• .* * •
• YES .* COMMENTS *.
•••• *. CARD .*

. . *. .*
* •• *

• NO

SETEM X
*****G3**********
* PLACE ENO *

MARK AFTER *
STATE~ENT

TEXT

.x.
H3 * •

• * *.
NO .* *.

AND POINTER *X •••••••• *.CONTINUATION .*
Te COLUMN 1 * *. CARD .*

x
**** . .

* E2 * . .

. . * •• * * YES

X
*****J3********** . .
* SET REGISTER *
* 2 TO BLANK *
* (OELIMETER) * . .

**** . .
* Al *
* * ****

x
• YES

X .*.
*****K3********** K4 *.
* SET COLUMN 6 * .* *. ****KS*********
* TO BLANK AND * .* WAS *. NO * NORMAL *

POINTER TO * •••••••• X*. LENGTH .* •••••••• x* RETURN
* COLUMN 6 * *. =0.* .. *
* *..- ******.********
***************** *. .*

*

Chart cc. Subroutine GETWD

128

·CD ..
* A2*
* * *

SI<PBLI< .X.
A2 ...

... *. ****A3*********
.* IS *. NO * *

••• X •• DELIMITER A .* •.•••.•. X.. RETURN *
. BLANK . * *
.. ************* ...

. .
* YES

X
-****B2**********
*.G ETWD CCA 1 *

• *-*-*-*-*-*-*-*-*
•••• * *
ZERO* GET DELIMITER *

* * *****************
.HeN
.ZERO .
X

*cp *
* A2*
* * * ERROR-

DELIMITER
ERROR

Chart CD. Subroutines SKPBLK, SKTEM

*co * * B4*
**
* · .x ••......•.•

· SKPTEM X
*****84**********
GETWD CCA1.
--*-*-*-*-*-*-*NCN.

••• x* * •••• * GET SYMBOL *ZERO
* * *****************

. .ZERO

.x.
C4 *.

.* *.
• NO.* IS *.
•••• *.DELIMITER END.*

. MARl< .
. .

* •• *
* YES

· X
****04*********

* * * *
RETURN

* *

Phase 10 129

*CE *
* A2*
* •
*

SYI'o'TLU .X.
A2 * •

• * IS * • • * LENGTH OF *. YES
. SYM80L . ..••••••

. GT 11 . X
.. *****

* •• * *CP * * NO * A2* · . *CE *.X.
* E2*
**** •

SYM11 X
*'·***82*** *******
* GET * * FRCPER CHAIN
* IN THUMB

INDEX

• * .
ERROR­
ILLEGAL
NAME

• X •••••••••••••••••••••••••

SYM2 .X.
C2 * •

• * *.
YES.* IS * •

•• •• *. THERE .*
. A MATCH .

. .
* •• * * t\O

.x.
02 *.

• * IS *.
*****03**********
* •

.* THIS THE *. NO
. END OF . •••••••• X*

. CHAIN . *
. .

* •• * * YES

.X.
E2 * •

• * * • • * DO *. YES
. TABLES . ••••••••

. OVERLAP . X
. .

. .

*CP *

LOCATE
NEXT ENTRY

IN CHA IN

• NO * A2*ERROR-

. .
• SYM4 X

*****F2**********
* ENTER *

SYMBOL

:SYtJs

INTO THE
DICTIONARY

.X.
G2 * •

• * IS * • • * NAME *. YES

* * TOO MANY
SYM80LS -AND
STMT. NOS.

. LENGT~ ..~ *. GT 6.* X
.. *****

* •• * *CP * * * A2*ERROR-

: .••..••••• X:
X

*****H2********** · . * MAKE ADDRESS
* CF ENTRY * AVAILABLE'TO
* CALL ROUTINE *

x
****J2*********

• * RETUR~ *
* ***************

* * ILLEGAL * NAME

Chart CEo Subroutine SYMTLU

130

*
*

*CF *
* AI*
* *

LABLU X
·*·**AI**·"******
PAKhUM CFA4
--*-*-*-*-*-*-*
* FUT STATEMENT *
.. NUMBER INTO *

PACKED FCRM
*********** *** it**

*****81*******
* INDICATE *

STATEfv1Ef'.!T
NUMBER IS *

BEING *
* PROCESSED *
****** ***** ***

*****C 1 **********
* SELECT •

CORREC T
CHAIN IN
OVERFLOw

* TABLE *
****.************

X
*****01 **** ******
LAETLU CFD3
--*-*-*-*-*-*-*

VERIFY STMT *
* NO IS IN *
*OVERFLOW TABLE *
****** *******;***

X
*****E 1 **** *4*
* RESET *

STATEMENT
NUMBER

INDICATI ON

X
.*F 1 ** *.***

RETURN *

*CF *
* 11.4*
* *

PAKNUM .X.
A4 *.

.* IS *. .* LENGTH *.YES
*. GREATER

*. THAN 5

* •• * * NO

PNI .X.
B4 *.

.*

.* ,*.
.* ARE *.YES

*ANY CHARACTERS ••••••• X.
*ALPHABETIC * X
.. .4**.

. . *CP * * NO 4 A2*
* *
* ERROR -

ILLEGAL
STATEMENT NUMBER

PACKLA OR HALT NUMBER

*CF *
* 03*

* *

LABTLU X
*****03**********
• *

GET PROPER *
CHAIN IN *

THUMB INDEX *

LAB2 .x.
E3 *.

.* *.
YES.* IS *.

4****C4**********

* * PACK
THE

NUMBER *
* ***.*************

X
****04*********

* * * RETURN *

•••• *. T~ERE A .*X •••••••••••••••••
. MATCH .

.x. LABt II

F3 *.
.4 AT *.

*****F4**********
• *

.* THE END *. NO
. OF . •••••••• X*

. CHAIN . ..
. .

4 •• *
* YES

.LAB3 .x.
G2 * •

• * * • • * DO *. YES *. TABLES .* •.••••..
. OVERLAP _. X

. .
* •• *

• NO

*CP * * A24 ..

* ERROR -

LOCATE
NEXT ENTRY

IN CHAIN

TOO MANY, ENTRIES
• • IN DICTIONARY
.LA84 X AND OVERFLOW TABLE

*****H3**********
*ENTER STMT NO. *
* SUBSCR IPT. OR *
*DIMENSION INFO *
* INTO OVERFLOW *
* TABLE ..
************4****

· .
• II •••••• II •• X.

LAB8 _ X
*****J3**********
.. MAKE ADCRESS *
* OF ENTRY
.. AVAILABLE TO
-It CALLING
* ROUT[NE
****-It************

X
****K3*********

* * RETURN

Chart CF. Subroutines LABLU, PAKNUM, LABTLU

Phase 10 131

CSCRI\:

*CG * * A2*
* •

.x. SCRN! .*.
A2 *. *****A3********** A4 *. *****A5**********

.* *. *LITCON CHA2* .* *. *SYMTLU CEA2*
.* WHAT *. NUMERIC *-*-*-*-*-*-*-*-* .* IS THIS *. YES *-*-*-*-*-*-*-*-*

. IS FIRST . •••••••• X* CONVERT * •••••••• X*.oATA SET REF .* X* ENTER INTO
.CHARACTER. .. THE NUMBER * *. NUM8ER .* * DATA SET REF
.. * * *..* * NO. CHAIN *

* •• * ***************** * •• * *****************
*ALPHA * NO

X
*****82** ********
SYMTLU CEA2
--*-*-*-*-*-*-*
* ENTER SYMBOL
* INTO
* DICTIONARY
** ******* * ****.* **

.*. SORN5. x.
83 *. 84 *.

.* *. .* IS *.
YES.* IS *. YES.* THIS *. NC
••• *. T~IS GT .*X •••••••• *. DO .* ••••••

**** . .
* C5 * . .

. 409E . *. PARAM .*
.. *..*

* •• *
• NO

* •• * .
X

****85********* · . * RETURN

.. C5 * ••• · .
SORN2 .X. X

*****C3*******
:SORN~4** x

*****Cl********** C2 *.
* * .* IS *.

INSERT * YES.* THIS *.
IMPLIED *X •••••••• *. NEW .*

MODE * *. ENTRY .*
. .

***************** * •• *
* NO

. .
••••••••••••••••••••••••• X.

X
*****02**********
* GET *

DICTIONARY *

* INDICATE *
* IMMEDIATE DO *
* PARAMETER IS *
* BEING *
* PROCESSED *

X
****03********* .

POI NT ER * •••••••• X* RETURN
OF THE * *
SYMB OL * ***************

INTCCN

*CG *
* F2* ..

• x. .*.
F2 *. *****F3********** F4 *.

.* *. *LITCON CHA2* .* IS *.

*****cs**********
SYMTLU CEA2
--*-*-*-*-*-*-*

••• x* ENTER *
* CONSTANT I~ *
* DICTIONARY *

X
*****"05********** * INSERT MODE ..
* OF CONSTANT *
* IN DICTIONARY"
* ENTRY *

X
*****E5******* · . * SET *
.. MODE AND TYPE * * CHANGED *

BITS *

X
****F5*********

.* IS *. YES *-*-*-*-*-*-*-*-* .* NUMBER *. Ne · .

Chart CG.

132

. PARAMETER A . •••••••• X* CONVERT * •••••••• x*. AN .* ••••
. NUMBER . * THE * *. INTEGER .*
.. * NUMBER * *..* * •• * ***************** * •• * * NO * YES

x

*cp *
* A2* . . .

ERROR -
PARAMETER

NOT A NUMBER

Subroutines CSORN, INTCON

.x.
G4 * •

.* IS *.
YES.* NUMBER *.

...••••• *. A .*
X *. ZERO .*

***** *..*
*cp * * •• * * A2* * NO .. .

ERROR -
ZERO

SUBSCRIPT

****H4********* . .
* RETURN * .

*cp *
.. A2*
* ERROR -

PARAMETER
NOT AN
INTEGER

RETURN

*CH * * A2*
* * *

LITCCN X
*****A2**********
* INITIALIZE *
* REGISTERS *

*C~ * * A3*
* * *

NXTBYT X
*****A3******·***
* * *

* * * AND *

* SWITCHES *
*
* *
*

INCREMENT
SCAN

POINTER
*x •••• * A3 *
* * *

* * *****************
~ ****

· . • X •••••••••••••••••••••••••

C~DIGT • X.
82 * •

• * IS * • • * THIS *. NO
*. A LEGAL ••••••••••

. DIGIT . X
.. ***** ****

* * .. C3 * * •• * *CI * * YES * Al*
* * * * * ****

.x. X
C2 *. *****C3**********

.* *. * INCREMENT *
.* IS· . *. ~ES *OVERFLOW COUNT *

.CVERFLOW FLAG. •••••••• X* IF e OR 0 *
. SET. * INDICATOR *
.. * NOT seT *

* •• * ***************** * NO

MPYACC X
*****02********** * ~ULTIPLY *
* PREVIOUS *
* NUMBER BY *
* 10 ANC *
* ADD DI~IT *

TESTNC· .X.
E2 *. *****E3**********

.* *. * * .* IS *. YES * SET * *. NO. -GT .* ••.•••••• X. OVERFLOW •
*.(2**56)-1.* * FLAG *
.. * *

. . **************~**
* NO

C~DCPT .X.
F2 * • • * . *.

.* *. NO
. DeCIMAL . ••••

.INDICATOR.
. seT .

. .
* YES

· .X.
G2 *.

**** .* *. .. *. ·y·es.* e OR 0 * •
• A3' *x ••.•• *. INOICATOR .*
* *' *. seT .*

**** *..*
. . ,; 1'0

· X .
*****H2*.*********
* * * INCREMENT *
* .DECIMAL *
* COUNT ..
* * *****************

x

* * * A3 *
* * ****

* * * A3 *
* * ****

X
*****F3**********
WARN CPA3
--*-*-*-*-*-*-*
* TOO MANY *
* DIGITS IN *
* NUMBER *

x

* * * C3 *
* * ****

Chart cu. Subroutine LITCON Part 1

Phase 10 133

*CI *
* AI*

* * *

CKCHAR .x. * • *.

CKE

Al *. A2· .*. A3 *.
• * *. .* IS *. .* IS * •

. YES . DECIMAL *. NO .* D OR E *. YES .*
* * •••••••• X*. INDICATOR .* •••••••• X*. INDICATOR .* ••••••••

*. • * *. .*
. . * NO

.x.
B 1 *.

.* *.

. SET . *. SET.* X
.. *..* *****

* •• * * •• * *Cp *
* YES * NO * A2*

x

*cp *
* A2*

* *
X

*****83*******
* *

* * *
ERROR­
DECIMAL POINT
AFTER E OR D

NO .* *. * ERROR- * SET * •••• *. E OR D .* TOO MANY
DECIMAL
POINTS

* DECIMAL *
* INDICATOR * *. .*

4. .*
. . * YES

* * **************

• * * •• X*CH *

* A3*

.CKEIO .X. .*.
Cl *. *****C2********** C3 *. *****C4*******

.* IS *. * * • * IS *. * *
.* NEXT *. YES * INCREMENT * .* E OR D *. NO * SET *

. CHARACTER . •••••••• X* POINTER * •••••••• X*. INDICATOR .* •••••••• X* E OR D *
. +. * * *. SET.* * INDICATOR *
.. * * *..* * *

* •• * ***************** * •• * ************** * NO X * YES

x
***** *Cp *

• CKNEG .x • * A2* SVDATM X
01 *. *****02*******

.* IS *. * SET *
.* NEXT *. YES * EXPONENT *

. CHARACTER . •••••••• X* SIGN *
. . * MINUS *
.. *

* * * C3 *
* * ****

.IORF .*.
F 1 * •

• *IS DEC.*.
• .* INDICATOR *. YES
••• X*. OR 0 OR E .* ••••••••

IRET4

.INDICATOR. X
. SET . *****

* •• * *CJ * * NO * At*

.x.

* * *

*

IRET

* *
* ERROR-

TOO MANY
Eo,S OR D,S

*CI *
* G3*
* *
*

Gt *. *****G2******* *****G3**********

*****04********** * SAVE NO.-- *
* CLEAR * * SUMMATION *
* REGISTER *
* * *****************

X

*CH * * A3*
* * *

.* IS *. * * * * ****G4*********
.* NUMBER *. NO * SET * * ADJUST * * *

*.GT (2**31)-1 .* •••••••• X* INTEGER * •••••••• X* GETWD * •••••••• X* RETURN *
. . * INDICATOR * * POINTER * * *
.. * * * * ***************

* •• * * YES

X

*ft*** *CP *
* A2*
* * * ERROR-

INTEGER
TOO BIG

************** *****************

Chart CI. Subroutine LITCON Part 2

134

*CoJ *
* Al*
* " *

.
ECON02 X

*****Al**********
.. EXPONENT *
* EQUALS *
* E VALUE MINUS *
"DECIMAL COUNT +"
"OVERFLOW COUNT"

ECON03 .X.
Bl *. *****82*******

.* *. * SET *
.* IS ". YES "EXPONENT *

. RESULT . •.•.••.• X* NEGATIVE *
. MINUS . * FLAG *
.. * *

* .. * * NO

X
*****C2**********
" SET *
" EXPONENT *
* TO * * ABSOLUTE *
" VALUE *
•••• ********.****

. .

.X •••••••••••••••••••••••••

• X.
01 * •

• * IS * •
• * EXPONENT *. YES

. VALU.E TOO . ..•.....
*. LARGE • * X
.. *****

* •• * *Cp *
.. NO * A2*

ECONI2 X
"*E 1 **** ******
* RESTORE "
" MANTISSA *
" !INTEGER "
" PART) "
* * *****************

.. "
*

ERROR­
EXPONENT

~ ECCN06 .".
*****Fl********** F2 *.
*. 'PUT INTO * .* *. * NORMALIZED" .* IS *. YES
... FLOATING- * •••••••• X*. EXPONENT .* ••••••••••••••••••
* POINT FORM " *.NEGATIVE .*
* * *..*
~*~************** *. .*

" NO

ECON05 X
*****G2****._****

Chart CJ.

" MULT I PLY *

" 10 "" " " EXPONENT ..
* IN FLOATlNG ..
* PCINT FeRM " *.****************

X

*CI *
* G3*
* * *

Subroutine LITCON Part 3

X
*****G3**·*******
* DIVIDE BY ..
* 10 "" *
* EXPONENT * .. IN FLOATING ..
* POINT FORM *

X

*CI *
.. G3*
.. *
*

Phase 10 135

.....
·CL --.A!- . .

.....

.CL •
•• A~. ·

SUBS X SUBSS i •.••• "1.......... • ..•• 102 .•••.•..•.
• MOVE ARRAY. .GETWD CCAI.
• NAME TO. .-.-. ___ ._._._._.ZERO
• INTERMEDI ATE ••••••••• x. GET PARAMETER •••••••••
: TEXT BUFFER :: : .. : ••
•••• _...........CP •

:~~=O •• :~.

.x •

ERROR­
IMPROPER
DELIMITER *81.......... B2 ••

• INTCON CGF2. ••• •
• -.-.-.-.-.-.-.-. YES.. IS THIS •• NO
.CONVERT NUMBER .X.......... A NUMBER •• · ·

x ••• SUBI SUB10D X Cl.......... CZ C3.......... • •••• C........... C5
• SICPBLK CDAZ. •••• .ENTER CONSTANT. .GETWD CCA1. .CSORN CGAZ •
• -.-.-.-.-.-_.-. •• IS •• YES .. PRECEDING. • .-.-.-.-.-.-.-.-.NON .-.-._-.-.-.-.-.
• GET DELIMITER ••••••••• X.. DELI METER •••••••••• X. INTO THE ••••••••• X. GET SYMBOL ••••••••• X.COLLECT SYMBOL.
• • ••••• .0VERFLOtil TABLE. • FOLLOWING • ZERO • « : : : : : !~~.: : : :

• NO .ZERO

.a •• . .
: GS :

..: ..
·CP •
•• A~. OS.X •••

• •• *.
ERROR- NO.. IS THIS *.
IMPROPER •••••••••• A VARIABLE ••
SUBSCRIPT X •• ••

·CP • • •••
• • A:. • YES .
ERROR­
IMPROPER
SUBSCRIPT

SUBZ
·····EZ··········
• ENTER •

VARIABLE •
OV~=~~OW :X •••

:** .. :~~~i: :

X
·*···I"Z··········
.SICPBLIC CCAZ • • -.-ft ___ ._._._._.
• GET •
: DELI MITER : ERROR- (

DELIMITER
ERROR
• CP .X •• . 102· .

: G!5 :
• X. SUB. •••• :ZERO SUBOS X

•• G2 •• *. :::;:g3 ~~:~: :::;~:~ ~:~:: : •••• G15 ••••••••• :
.* IS it. YES .-.-*-.-.-.-.-*-.NON .-*-.-.-.-._-.-. . SAVE INTEGER •

•• DELIMITER •••••••••• X. GET CONSTANT ••••••••• X. CONVERT * •••••••• X. TO COMPUTE •

SUB!5

•• + OR - •• • .ZERO. CONSTANT. • OFFSET *................•. . •...............
• NO

· . • X •••

• x. • ••
•• H2 •••• : •••• H3 ••••••••• : •• H4 ••••

•• IS •• YES • INCREMENT. •• MORE THAN •• YES
•• DELIMITER •••••••••• X. SUBS ••••••••• X.THREE SUBSCRPTS •••••••••

SUe7

•• COMMA •• • • •• •• X
•••• • • •••• • •••• ERROR-

•• •• ••••••••••••••••• a. •• .CP • MORE THAN
• NO • NO.... • .A~. 3 SUBSCRIPTS •• X: AZ :

• x. SUB12 SUB10 .JZJ3..........
•••• • ENTER. .LABTLU CFD3.

:J5 * •• :
NO.. IS •• YES • SAOP ---. ._it_._._._._._._. .ENTER POINTERS.

•••••••••• DELIMITER •••••••••• X.COMPUTE OFFSET ••••••••• X. ENTER BUFFER ••••••••• X. INTO TEXT •
X ..).. .AND ENTER INTO. • INTO OVERFLOW. •

••••• •••• • TEIICT • • TABLE. •
.Cp • •• •• •
• • A~* • .

ERROR­
IMPROPER
DELIMITER
IN SUBSCRIPT

.x.
K5 •• 1<............ YES •• s~~~P~U~N;· •.

• RETURN .X *FOR VARIABLE = •
• • .NO OF DIMEN*
................. ·-SIONS • -... ERROR- _ NO

IMPROPER

SUBSCRIPT •• ! ..
• CP •
• • A~ • .

Chart CL. Subroutine SUBS

136

****4H 1 **4* ******
WARNING CPA3
--*-*-*-*-*-*-*

OIMSUE

.
*eM if

.82
• *

.x.
82 *. *****83**********

.* *. *ERRET CPA4*
.* IS *. NO *-*-*-*-*-*-*-*-*

. DELIMITER . •••••••• X* ILLEGAL
. (. * DELIMITER

. . * •• * * YES

· .
• X

0110113 X
*****C2"**********
DIM90 CMA2
--*-*-*-*-*-*-*

CONVERT
* INTEGER
* CONPUTE DI*L *

.x.
02 4. . - * • .* 4. NO

. DELIMITER . ••••
. COMMA .

. .
* •• * * YES

X
*****E2*****4****
D[M90 CMA2
*_*_*_*_*_*_*_*_4

COMPUTE
01 * 02 * L

.X.
F2 *.

. * *. NO
. DELIMITER . •••• *. COMMA .*

. . * •• *
* YES

X
*****G2**********
OIM90 CMA2
--*-*-*-*-*-*-*
* COMPUTE *
*01 * 02 * 03 *L * . .
****************4

· . • X

* •
* H3 *
* *

DIMl4 • X. DIMl8 X
H2 *. *****H3**********

.* *. * INSERT *
.* IS *. YES * DIMENSION

DIM90

*CM *
* A4*
• * .

*****A4**********
4GET~0 CCAI*
--*-*-*-*-*-*-*ZERO
* GET INTEGE.R * ••••••••

* X

.NON-
• ZERO

X
*****B4**********
INTCON CGF2
--*-*-*-*-*-*-*

CONVERT
INTEGER

X
*****C4**********
* COMPUTE *
* PRODUCTS
* FOR OVERFLOW *
* TABLE ENTRIES *
* AND SIZE *
4*******4********

X
*****04**********

SAVE *
RESUL T

FOR
SIZE

X
4*E4*******
4SKPBLK CDA2*
--*-*-*-*-*-*-*
* GET *
* DELIMITER

X
****F4********* . .

RETURN

DIM19

*CP * * A2*
• *
* ERROR -

OELIMITER
ERROR

*****H4******* *****H5**********
* SET * *INSERT ADDRESS *

TYPE * OF OVERFLOW
MISSING * •••• *. DELIMITER .* •••••••• X* INFORMATION * •••••••• x* CODE FOR * •••••••• X* TABLE ENTRY *

RIGHT *. .* * INTO * *
* PARENTHESIS
*** *** ***** *** ***

X
X

• *
* H3 * . .

.. * TABLE *
. . *****************

• NO

.. YES

OH121 .*. DIMl6 .. X.
JI *.. J2 *.

.* *. .* * • • * END *. NO .. * *.
*. MARK .*X •••••••• *. COMMA .*

. . *. .* *..* *..* *. .* *. • ..
.. NO * YES

x

*cp *
* A2* • * .

ERROR -
DELIMITER

Chart CM.

x

*cp *
* A2* * • · ERROR -

MORE THAN
3 DIMENSIONS

Subroutines DIMSUB, DIM90

ARRAY *INTO DICT ENTRY*
* FOR ARRAY *

X
****J5*********

-* *
RETURN

Phase 10 137

RCOMA .X.

.....
*CN • •• A:.
·

EOSR X
AI.. * •••• A2 •••••••••• *.···A3.*···· •• ••

.GETIIID CCAI • • *.. .IIIARNJNG CPA3.
•• IS •• YES .-.-.-.-.-.-.-.-. .-·-·-·-.-·-·-·-·NDN ~:~~=~:: X: RE~=~:NT •

_ GET 1II0RO DR * ••••••••••••••••••
: DELIMITER :. ZERO

•• •• • ••••••••••••• * •• •••••••••••• ** ••• · . • NO

• eN •• x. :.:!. .:
RCONAI X

• ••• ·Bl.· •• •••
• RESET ALL.
• SWITCHES FOR •
• STMTS NOT •
• WRITING •
• INTERMED TEXT _.-.-.. · . . • CN •• X.

x
•••• *82 ••.••••••••

: RETURN :

••••• * •••••••••

.ZERO
11:* •• • •• * · . . .CN •• X. · . .

.CN * ••• :.::. • 84-· **.. •
EOSRI .x. EOSR3 X

83 *. • •••• 84 •••• *.* •••

•••• IS •••• NO :!:~~~:~*-.-~~:~:
•• DELIMITER •••••••••• X. SOMETHING •

•• ~D MAR~ •• * : DANGLING :

•• •• .* ••••• *-*** •• ***
• YES

• * •
*CN •••• .CN •• x.

:.~!.
RCOMA2

:.~~. • C3·
.X. RCONA:! .X. EOS::·· X X

Cl •• C2 •• • •••• C3 •••••••••• ···.·C4· ••• •••••• •••• .PUTX COA3. :~!~~~.-.-.-~~:~: •• IS •• YES .* ANY *. YES .-.-.-*-.-.-*-.-.
•• DELIMITER .* •••••• · •• X.. WARNING •••••••••• X.PUT END MARK + * • SKIP TO END •

: MARK : •• END MARl(.* •• MESSAGES •• * INTERNAL STMT •
•••• •••• • NUM8ER • •• •• •• •• • •••••••• * ••••••• • •• * ••••••••••• **

• NO • NO

.. ~
·CP • • • A=. · ERROR-
SOMETHING
DANGLING

· . • X •••••••••••••••••••••••••

EOSR2A .X •
03 *.

•• IS ASF •• YES
•• STATEMENT ••••••••••

•• INDICATED.. X ...*
•• •• .SF •

• NO •• B~ • .
• X. PUTIIIRN

•• E3 •• •• : •••• E4-••••••••• :

•• ANY •• YES • WRITE •
• IIIARNING MESSAGE ••••••••• X. WARNING •
· •• INDICATED.. • MESSAGE,S) ON •

•••• * TAPE *
•• •• • ••• ** ••••• ** ••••

• NO

X
.* ••• F4* ••••••

• * RESET WARNING
X * MESSAGE *
•••••••••••••••••• * INDICATOR FOR *

. .
••••••••••••••••••••••••• X.

EOSREX .X.
G3 ••

NEITHER .* END OF *. BOTH

: NEXT STMT • *

•••• *******.**

•••••••• *. FILE OR END ••••••••••••••••••••
X •• CARD ••

• ***. *..*
·88 • • •• *
* Al* • NOT
••• • 80TH

CLASSIFICATION

.x. X
H3 *. ···*·H4-·········· •• * •

• * •• YES :~~~:~:-.-.-~~~~:
•• END CARD •••••••••• X. WRITE LAST •

•• •• • INTERMEDIATE •
•••• • TEXT BUFFER •

* •• * •• * ••••••••••••••

• NO

x
: 3 ••••••••

• SET END ...
: CARD BIT ON •• ·

X
·····K3··*······*

:!:~:!:~.-.-~~:::
• MISSING END •
: CARD :
•••••••••••• * ••• *

x
: 4 ••••••••• :

• WRITE END • * OF FILE AND *
: REWIND TAPE :

• ••• * ••••••••••••

Chart CN. Subroutine END MARK CHECK

138

*CO ..
* A3*
* * ..

PUTX X
*****A3*******
* .. * INITIALIZE ..
.. EXIT *
* ADDRESS *
* * **************

X
*****63**********
* MOVE *
* SPECIFIED *
* INFORMATION *
INTO DICT ENTRY
" BUFFER *

**** * * • *CO *.x.
* C3*

*Co *
.. C4*
* *
*
.

PUT RET • X. PUTBUF X
C3 *. *****C4**********

.* ' *. * WRITE *
.* OUTPUT ". YES * INTERMEDlATE *

. BUFFER . .•..••.. X* TEXT RECORD *
. FULL. * ON WORK *
.. * TAPE *

* •• * *****************
* NO

. .

.X ••••••••••••••••••••••••• .
X

****03*********
" * ..
*

EXIT

Chart co. Subroutine PUTX

Phase 10 139

* .. ***
*cp *
.. A2*

.. *
*

ERROR· X
*****A2**********
* DEVELOP *
* INTERMEDIATE *
* TEXT WORD *
* FOR ERROR *
* MESSAGE *
********~*** .. ****

o
X

*****82**********
* PUT END *
* MARK W.ITH *
* ISN IN * * INTERMEDIATE *
* TEXT *

o
X

****_C2**********
.* PUT ERROR *
* MESSAGE *
IN ·INTERMEDIATE
* TEXT *
* * *****************

o
X

*****02~******~**
PUTRET COC3.
--*-*-*-*-*-*--*
* CHECK FOR . *
* ~ULL BUFFER *
* * .*******.*********.*

X
****.E2*******
* TURN ON *
* MESSAGE 5W IN*
*COMMUNICATIONS *
* AREA FOR *
* ERRORS *.

o.

o
X

*****F2***··*****
SKTEM COA4
--*~*~*.~*~*..;.*-*
* SKIP TO * * E·ND MARK *
* * ********_.***.***

o
X.

*CN •
* 03*
• *
*

**** ..
*Cp ...
* A:3*
* * *

WARN X
*****A:3**********
* DEVELOP *
* INTERMEDIATE *
• TEXT WORD * * FOR WARNING *
* MESSAGE *
* ... ****.**********-It

X
*****8:3*******
* TURN ON *
.* WARNING *
* SWITCH IN •
• COMMUNICATION*
* AREA *

*CP * * ·A4.
* *
*
o

ERRET X.
* **A4** .. ****** ...
* DEVELOp· .*
• INTERMEDIATE •
* TEXT WORD *.
• FOR ERROR •
* MESSAGE •
************** .. **

X
*****84*******
* TURN ON •
* ERROR SWITCH * * . .IN .•
* COMMUNICATION~
* AREA *
********* ... ***

o 0

.X ••••••••• ~ •••••••••••••••

. X
·****C:3.·.****
* TURN ON * * WARNING *
* SWITCH FOR *
* SUBROUTINE *
* END MARK *
............ *.****-**

WARN 2 X
*****0:3**********
* * • SAVE * * INTERMEDIATE *
* TEXT *
* MESSAGE *

X
****Ea*·*******

* * RETURN

-**********
* *

Chart CPo Subroutines ERROR, WARNING/ERRET

140

*co *
* A3*
* *
*

PRINT .X.
A3 *. *****A4**********

.*CONTROL*. * BLANK OUT *
.*COMMENTS OR*. YES * ISN FIELD *

.CONTINUATION . .•...•.. X* IN PRINTING *
. CARD. * BUFFER *
.. * *

* •• * *****************
* NO

X
*****63**********
* * * GET INTERNAL *
* STATEMENT *
* NUMBER *
* * *****************

X
*****C3**********
* * * EDIT ISN *
* INTO *
* PRINTING *
* BUFFER *

. .

.X •••••••••••••••••••••••••

X
*****03**********
* MOVE * * SOURCE * * STATEMENT * * INTO PRINTING *
* BUFFER *

X
******E3***********

PRINT SOURCE
* STATEMENT *

VIA
* FSD *

X
****F3*********

* EXIT TO *
* CALLING *
* ROUTINE *

Chart CQ. Subroutine PRINT

Phase 10 141

*****C2*******
* * * SET EOF
* SWITCH
*

***** *CR *
* A3*
* *
*

GET .X.
A3 * •

• * IS *. ****A4*********
.* EOF *. YES * *

. SWITCH . •••••••• X* RETURN *
. ON. * *
.. ***************

* •• * * NO

X
*****83**********
* GET * * ALTERNATE *
* ADDRESS *
* FOR NEXT * * BUFFER *

INIT
*****C3********** * REQUEST *

* EOF* TO READ *
*X •••••••• * NEXT CARD ...

* * INTO NEXT *
* * * BUFFER *
************** *****************

• NORMAL

. .
••••••••••••••••••••••••• X.

X
*****D3**********
* SET PNTR TO *
* ADDR OF PREY *
* BUFFER (CARD *
* READ IN BY * * LAST REQUEST) *

X
****E3*********

... EXIT TO ...
* CALLING *
* ROUTINE *

Chart CR. Subroutine GET

142

The primary function of Phase 12 is the
allocation of storage to symbols entered in
the dictionary, overflow table, COMMON
text, and EQUIVALENCE text. Variables,
constants, external references, and arrays
are assigned object program addresses. The
statement numbers referenced by control
statements are assigned relative locations
in a branch list table that is used by the
object program to control branching.

Several secondary functions are per­
formed. If the DECK option is specified,
Phase 12 punches ESD and RLD cards for the
object program and text cards for all
constants used by the program. If the
Compile and Go option is specified, these
ESD, RLD, and text cards are written on the
GO tape. As Phase 12 assigns addresses,
the symbol, its address, and possibly some
indicators are entered in the storage map
and printed if the MAP option is specified.

Chart Oq, the Phase 12 OVerall Logic
Diagram, indicates the entrance to and exit
from Phase 12 and is a guide to the overall
functions of the phase.

After the FORTRAN System Director has
loaded Phase 12, all variables and arrays
in COMMON are assigned addresses and
removed from their dictionary chains.
Phase 12 next processes the EQUIVALENCE
text and creates an EQUIVALENCE table used
later in this phase to assign addresses to
equated variables.

Addresses are assigned to all names in
the dictionary; first to double precision
variables and arrays and then to real and
integer variables and arrays. No distinc­
tion is made between real and integer
variables and arrays. They are intermixed
in the object program. Using the
EQUIVALENCE table, equated variables are
removed from their dictionary chains and
assigned addresses.

Addresses are then assigned to address
constants, and the ESD and RLD cards are
punched or written on the GO data set.
Address constants are locations at which
the loader places the address assigned to
external functions or symbols. The ESD
cards contain names of external functions
for the program being compiled. The RLD
cards contain the addresses of address
constants for the external functions. In­
line functions are processed, an~ the dummy
variables and arrays are assigned
addresses.

PHASE 12

All referenced statement numbers, other
than those for FORMAT or specification
statements, are assigned relative positions
in a branch table. The subscript chains in
the overflow table are scanned, and the
dictionary pointers for variables in sub­
script expressions are replaced by the
address assigned to the variable in the
object program.

Addresses are assigned to constants in
the following order: integer, real, and
double-precision. If the DECK option is
specified, text cards are punched for the
constants; if the Compile and GO option is
specified, the constants are written on the
GO data set. The FORTRAN System Director
is then called to read Phase 1q.

ADDRESS ASSIGNMENT

Variables, arrays, constants, and
address constants are assigned addresses in
Phase 12. A base-displacement address is
assigned through the use of a location
counter, and the variable assigned an
address in Phase 10 is removed from its
dictionary chain.

Base Displacement Addresses

The base-displacement address assigned
by Phase 12 is a 2-byte address. The first
hexadecimal number ~our bits) represents a
general register used as a base register;
the three remaining hexadecimal numbers (12
bits) represent the displacement in a
machine language instruction. This address
is accessed and inserted in machine lan­
guage instructions in subsequent phases.
An effective address in IBM System/360 is
the address in the base register plus the
displacement inserted in the instruction.
All symbols in a FORTRAN object program are
referenced by their base displacement
address. An address assigned to an array
refers to the first element of the array.

Location Counter

The base-displacement
assigned through the use of
counter which is initialized

address is
a location

and then

Phase 12 1q3

incremented as addresses are assigned. The
location counter is incremented by the
number of bytes needed in main storage to
contain the object program field assigned
to the variable, array, constant, address
constant, or EQUIVALENCE group.

are first

e ase- sp acemen
''iff:te'''~tii'iltl~~'''\i81e'''''~p'f~se~'-s
register used for storage

allocation, and 000 represents the dis­
placement for the first variable entered in
COMMON. The statements:

DOUBLE PRECISION A
COMMON A, B

set indicators in the dictionary and COMMON
text to indicate that the variable A is
double precision and that A and Bare
entered in COMMON. If A is the first
variable entered in COMMON, it is assigned
the object program address 4000. The loca­
tion counter is incremented by g because A
is a double precision variable. The next
variable in COMMON, B, is assigned the
address 4008 indicating the base register 4
and a displacement of 8. The location
counter is then incremented by 4; B is not
double precision.

This process of contiguously assigning
addresses· using the location counter may
vary £or the following conditions.

For example, if the last variable
in COMMON is assigned the address
42A4, the next .variable should have an
address of 42A8. Because the next
variable is not in COMMON, it must be
assigned a new base register. The
location counter is set to 5000 (the
base register 5 with a displacement of
000) •

2. Integer and real constants are
assigned addresses before double pre­
cision constants. After addresses are
assigned to integer and real ·con­
stants, the location counter may have
to be adjusted to a double-word bound­
ary to accommodate the double preci­
sion constants. If this happens,
there is a full-word gap between the
last real constant and the first
double precision constant.

The location counter is incremented by
the size of the variable, array, constant,

144

or EQUIVALENCE group

at 4FFC and an integer variable is assigned
to this address, the location counter is
incremented by 4 to 5000.

If a real array A(5) is assigned to the
address 4FFC, the location counter is
incremented by 20 bytes (the hexadecimal
number 14). The location counter is incre­
mented to 5010 representing the base reg­
ister 5 plus a displacement of 010.

Removing Entries From Chains

When a variable is assigned an address,
that address must be placed in the chain
address field of the dictionary. This
requires switching three addresses in the
dictionary chain. In Phase 10, the chain
field points to the next entry in the chain
(see Figure 37) •

r---------r---------,
Ip(HOG) I MAC I
L---T----~---------J

I r---------T---------,
L-__ > I.p (PIG) I HOG I

L---T-----~---------J
I r---------T---------,
L _____ > I p (ANT) I PIG I L _________ ~ _________ J

Figure 37. Dictionary Chain Entries

If HOG is the variable to be assigned an
address, this address is placed in the
.chain field. The pointer to HOG in the
entry for MAC must be replaced by the
pointer to PIG to keep the chain for
unassigned variables intact (see Figure
38) •

r---------r---------,
Ip (PIG) I MAC I
L---T-----~--------~

I
I
I
I

r----------------T----------,
IAssigned address I HOG I
I of HOG I I l ________________ ~ __________ J

I r---------T---------,
L ______ _________ > I p (ANT) I PIG I

L--_______ ~ _________ J

Figure 38. Removing a Symbol From a
Dictionary Chain

EQUIVALENCE PROCESSING

An EQUIVALENCE group consists of the
names between a left and right parenthesis
in an EQUIVALENCE statement. For example,
in the statement:

EQUIVALENCE (A,B,C,D,), (W,X,Y,Z)

the variables A,B,C, and D form one
EQUIVALENCE group, and the variables W,X,Y,
and Z form another EQUIVALENCE group. In
the statements:

DIMENSION TOAD (20)
EQUIVALENCE (TOAD (3) ,FLUB,SHARK)

the array TOAD and the variables FLUB and
SHARK form an EQUIVALENCE group.

An EQUIVALENCE class is a number of
EQUIVALENCE groups linked together by names
that are common to two or more groups. In
the statement:

EQUIVALENCE (A,B, C) , (C,X)

the two groups form a class because they
are linked together by the variable C. In
the statement:

EQUIVALENCE (A,B,C), (C,D) , (D,Y,Z)

all three groups form an EQUIVALENCE class
because they are linked together by the
variables C and D. In the statement:

EQUIVALENCE (X,Y,Z), (Xl,G,H)

an EQUIVALENCE class is not formed.

~~f!,!::~!::~~!~~~!~~!~~~~~,i~!~~~;,~,~!~~~~~ .
root is aSSigned an address and all other
variables and arrays are assigned addresses
relative to the root. ~~"""f~~~".

'fl~~*¥f~~~f~!iiti~~~~"~~~*~·{£~~t~~~,·,'r~~g~~~~,
'o!>""I~t*e""f<;~~~bles,,;;R~~~~r;:""CIT~N, the root
cannot be determined until the displacement
is calculated.

The displacement, the distance in bytes
between a variable and its root, is calcu­
lated by subtracting the offsets entered in
the EQUIVALENCE table in Phase 10. For
non-subscripted variables, the offset is
always zero. To determine the root and

displacement of variables and arrays, the
first name in the EQUIVALENCE group is
establiShed as a temporary root. The off­
set for the other arrays and variables is
subtracted from the offset of the temporary
root. For example, in the statements:

DIMENSION A (5) , }WAS (4)
EQUIVALENCE (A (2) ,B,XMAS(l»

the first name in the group is establiShed
as a temporary root. The offset of A(2) is
4. The offset of both Band XMAS (1) is O.
The root for an EQUIVALENCE group is
changed only when the result of the dis­
placement calculation is negative. By cal­
culating the displacement, the relative
pOSition for the elements of the variables
and arrays is determined. When the offset
of B is subtracted from the offset of A(2)
the result is 4, and when the offset of
XMAS (1) is subtracted from the offset of
A(2) the result is 4. The relative posi­
tions of the members in this EQUIVALENCE
group are shown in Figure 39.

r-------T-------~------T-------T---------,
IA(l) IA(2) IA(3) IA(4) IA(5) I
I IB I I I I
I I XMAS (1) I XMAS (2) I XMAS (3) I XMAS (4) I L _______ i _______ i-______ i _______ i _________ J

Figure 39. EQUIVALENCE Group Without Root
Switching

The symbols A (2), B, and XMAS (1) all
refer to the same field. In the state­
ments:

DIMENSION MAC (4) ,HERBIE (4)
EQUIVALENCE (MAC (1) , WINDY. HERBIE (2))

when the EQUIVALENCE text is processed, the
array MAC is temporarily established as the
root of the EQUIVALENCE group. The offset
for both MAC (1) and WINDY is 0, and the
displacement is O. The offset for
HERBIE (2) is subtracted from the offset for
MAC (1) ; the result is -4. Because the
result is negative, the array HERBIE must
be established as the new root. The dis­
placement for WINDY and MAC must be changed
to 4.

The relative positions of the members in
this EQUIVALENCE group are shown in Figure
40.

The symbols MAC (1) , WINDY, and HERBIE (2)
all refer to the same field.

r----------------T-----------------T----------------~-----------------T----------------,
I I MAC ,(1) I MAC (2) I MAC (3) I MAC (4) I
I I WINDY I I I I
I HERBIE (1) I HERBIE (2) I HERBIE (3) I HERBIE (4) I I L ________________ i _________________ i _________________ i-________________ i ________________ J

Figure 40. EQUIVALENCE Group With Root Switching

Phase 12 145

The size of an EQUIVALENCE group or
class is the size in bytes necessary to
contain the entire EQUIVALENCE group or
class. For example, if the elements shown
in Figure 40 are all real, the size of that
EQUIVALENCE group is 20 bytes. There are
five 4-byte fields in the EQUIVALENCE
group.

Phase 12 constructs an EQUIVALENCE table
used by the subroutines that assign
addresses in Phase 12. The format of the
EQUIVALENCE table is shown in Figure 41.

r--------------T-------~-----------T-----l
Ip(variable) Ip(root) Idisplacementlsize I
I or I lor address I J
Ip(array) I lin COMMON I I l ______________ ~ _______ ~ ____________ ~ _____ J

Figure 41. EQUIVALENCE Table Format

1~ .. ~j?~ kti~.~~ ,j·,P.",., t'Je, , , ,t'i':l:Jte ,i~twp.~y:tes
.:t,qng.' The f~rst f~eId conta~ns a po~nter
to the entry for the variable or array in
the dictionary. The second field contains
a pointer to the dictionary entry for the
root to which the variable or array is
equated. If the variable or array is the
root of the EQUIVALENCE group, the first
two fields contain the same pointer. The
third field contains the displacement or
address assigned to the variable or array
in COMMON. The addresses for variables and
arrays in COMMON are assigned before this
table is constructed. The fourth field is
the size in bytes of the EQUIVALENCE group
or class.

BRANCH TABLE

An object program uses a branch table to
control branching. Each referenced state­
ment number for an executable statement is
assigned a position in the branch table.
Phase 25 places an address in this position
to denote where the instructions begin for
the statement defined by the statement
number.

Phase 12 allocates storage for the
branch table by assigning a relative number
in the table to each statement number not
in a FORMAT or specification statement but
referenced in a control statement. State­
ment numbers assigned relative numbers are
removed from their chain in the overflow
table and the relative number is placed in
the chain address field.

The relative number is directly related
to the position the statement number occu-

146

pies in the branch list generated for the
Object program. The statement number
chains in the overflow table are scanned
sequentially. Each time a statement number
is referenced and is not the statement
number for a FORMAT or specification state­
ment, a counter is incremented by 4. The
contents of the counter are then placed in
the chain field in the overflow table.
This counter is initialized at 0; there­
fore, the first statement number in the
first chain is assigned the relative number
O. The second statement number in the
first chain is assigned the relative number
4. The third statement number in the first
chain is assigned the relative number 8,
and so on.

COMMUNICATIONS AREA

At the end of execution for Phase 12,
the following items have been entered in
the communications area:

1. If an error has been detected, a
switch is set denoting at least one
error in this program.

2. A switch is set to indicate whether
the program is large or small.

3. The address of the first available
location for the object program.

4. A page number that has been updated
while the storage map was being print­
ed, provided the MAP option was
requested by the user.

5. The number of bytes required to con­
tain COMMON.

6. The number of bytes required to store
the branch table.

7. The last ext,ernal symbol identifi­
cation number that was used.

8. The card sequence number for the last
card that was punched.

9. The address of the beginning of the
subscript entries in the overflow
table.

10. The assigned address of the branch
table.

11. The assigned address of the first
value in each base register.

STORAGE MAP

The storage map for Phase 12 is shown in
Figure 42.

r-----------,
Hex. Loc.1 I

150 ~--~------~.
I Communications I
I Region I
~---. _. ~--:..-~
IFORTRAN System I
I Director I
I I
IB I/O· I

FAO ~-----~-----~
I· I
IPHASE 12 I
I I
I I
I I
I I

2E70 ~----~-----i
II/O Buffer I

2F38 I------------~
11/0 BUffer I

3000 ~----------~

Dictionary

+
I
I
I
I

~ I
OVerflow Table I .

I
I
I
I 4000 '--__________ J

Figure 42. Storage Map for

SUBROUTINES

Size and loca­
tions vary with
machine size.
Those shown
are for 16K
machine.

Phase 12

Two types of subroutines (mainline and
. uti Ii ty) are necessary to perform address
assignment.

The mainline subroutines assign address­
es to symbols entered in COMMON; build the
EQUIVALENCE table;- assign addresses to
variables, (arrays, and address constants;
assign relative numbers to statement num­
bers; assign addresses to constants; and
insert object program addresses into over­
flow table entries for subscripts. (See
chcirts DA through DL.)

The .utility subroutines are called by
mainline subroutines to perform perfunctory
functions such as scanning the EQUIVALENCE
table,·entering items in the EQuIVALENCE
table, scanning the chains in the diction­
ary, calling input/output devices, and put­
ting the ESD, RLD, text cards, and storage
Jilap into a format. (See charts-OM through
bU.) -

Subroutines STARTA, COMAL: Chart DA

Subroutine STARTA

Subroutine STARTA initializes Phase 12.

ENTRANCE: Subroutine STARTA is enterea
from the FORTRAN System Director after
Phase 12 is loaded into main storage.

OPERATION: Subroutine STARTA initializes
the base register and adjusts the pointers
for the input and output buffers.

EXIT: Subroutine STARTA exits to subrou­
tine COMAL after the initialization of
Phase 12 is completed.

Subroutine COMAL

Subroutine COMAL aSSigns addresses for
variables or arrays to be placed iIi the
COMMON area and removes those variables or
arrays from the dictionary chains.

ENTRANCE: Subroutine COMAL is entered from
subroutine STARTA after Phase 12 is -ini­
tialized.

OPERATION: When subroutine COMAL is
entered, it gets the beginning and ending
addresses of the COMMON text left in the
communications area by Phase 10. The loca­
tion counter in the communications area
also tells subroutine COMAL where to begin
assigning addresses for variables in the
COMMON area in the object program.

Subroutine COMALchecks for entries in
the COMMON area by comparing the beginning
and ending addresses of the COMMON text.
If they differ, entries are made in COMMON.
If they are the same, there is no COMMON
text to process.

If.there are variables or arrays to be
entered in COMMON, subroutine COMAL access­
es the character length of the name in the
COMMON text, goes to the correct chain in
the dictionary, and searches for the entry.
Subroutine COMAL finds the entry by compar­
ing the address entered in the COMMON text
with the chain addresses entered in the
dictionary. When the comparision is equal,
the next entry in the dictionary chain is
the entry in COMMON.

The address in the location counter is
then placed in what was originally the
chain address field of· the dictionary
entry.

Phase 12 147

Dummy variables or arrays, used to
define the operations performed on paramet­
ers passed in CALL statements, may not be
entered in COMMON. The location of these
dummy variables is passed from the main
program in a calling sequence.

If the mode of any variables or arrays
entered in the COMMON area is double preci­
sion, these variables must be on a double­
word boundary. COMAL can not adjust the
variable or array to a double-word boundary
because no gaps may exist in COMMON. The
beginning address of the COMMON area starts
on a double-word boundary. If the double
precision variables or arrays are assigned
first to COMMON, an error can not occur.

EXIT: Subroutine COMAL exits to subroutine
EQUIVALENCE Part 1 after all COMMON text is
processed.

SUBROUTINES CALLED: During execution
subroutine COMAL references the following
subroutines:

1.

2.

ALERET to
detected.
SORSYM to
requested.

process any errors that

print storage map

are

if

Subroutine EQUIVALENCE: Charts DB, DC, DD

The EQUIVALENCE subroutines use the
EQUIVALENCE text constructed in Phase 10 to
build an EQUIVALENCE table. The table is
used when addresses are assigned to varia­
bles later in Phase 12.

ENTRANCE:
entered
addresses
placed in

Subroutine EQUIVALENCE is
from subroutine COMAL after
are assigned to the variables
the COMMON area.

OPERATION: Each flowchart is discussed
separately.

EXIT: After the EQUIVALENCE text is proc­
essed to form the EQUIVALENCE table, con­
trol is passed to subroutine EXTCOM.

SUBROUTINES CALLED: During execution sub­
routine EQUIVALENCE references subroutines
SWROOT, EQSRCH, RENTER/ENTER, and ALERET.

Subroutine EQUIVALENCE Part 1

SUbroutine EQUIVALENCE Part 1 initiali­
zes the registers to scan the EQUIVALENCE
text for each EQUIVALENCE group and proc­
esses the first name entered' in an
EQUIVALENCE group.

148

ENTRANCE: Subroutine EQUIVALENCE Part 1 is
entered from subroutine COMAL after the
entries in COMMON are assigned a COMMON
address, and from EQUIVALENCE Part 2 to get
the first entry in the next EQUIVALENCE
group after an entire EQUIVALENCE group is
processed.

OPERATION: Subroutine EQUIVALENCE Part 1
is initialized with the beginning address
of the EQUIVALENCE text and the EQUIVALENCE
table. These pointers are incremented as
the text is processed.

Subroutine EQUIVALENCE Part 1 checks for
additional entries in the EQUIVALENCE text
by testing for the EQUIVALENCE adjective
code. If there are no entries, control is
passed to subroutine EXTCOM. (The adjec­
tive code and the number of entries in the
EQUIVALENCE group are entered in Phase 10
for a header entry in the EQUIVALENCE
text.)

The EQUIVALENCE table is then searched
to check for a previous entry of the
variable in another EQUIVALENCE group.
This condition forces the EQUIVALENCE
groups to be combined, forming an
EQUIVALENCE class. For example, the state­
ment:

EQUIVALENCE (A,B), (A,C)

indicates that A,B, and C are all members
of one EQUIVALENCE class.

If the variable is not entered in anoth­
er EQUIVALENCE group or class, it is
entered as a root in the EQUIVALENCE table.
This status may change as other variables
in the EQUIVALENCE group or class are
processed.

If the variable was previously entered
in the table, subroutine EQUIVALENCE Part 1
gets the root for that variable in its
previous entry and checks for the root in
COMMON. If the root is not in COMMON, the
displacement is inserted in the EQUIVALENCE·
table; if the root is in COMMON, the COMMON
address is used.

EXIT: Subroutine EQUIVALENCE Part 1 passes
control to EQUIVALENCE Part 2 after the
first member of an EQUIVALENCE group is
processed.

SUBROUTINES CALLED: During execution sub­
routine EQUIVALENCE Part 1 refer-ences the
following subroutines:

1. EQSRCH to see if a variable was
entered in the EQUIVALENCE table pre­
viously.

2. RENTER/ENTER to enter a variable as a
root.

Subroutine EQUIVALENCE Part 2

Subroutine EQUIVALENCE Part 2 processes
all members following the first one in an
EQUIVALENCE group. If EQUIVALENCE Part 2
determines· that· a member should be the root
for.theEQ'QIVALENCE group, it changes the
roOt for the EQUIVALENCE group.

ENTRANCE: . Subroutine EQUIVALENCE Part 2 is
entered from EQUIVALENCE Part 1 after the
first memb~r of an EQUIVALENCE group is
entered in the EQUIVALENCE table. Subrou­
tines SWROOTand EQUIVALENCE Part 3 enter
EQUIVALENCE Part 2 to check for additional
members in this. EQUIVALENCE group. Subrou­
tine· EQUIVALENCE Part 3 also enters
EQUIVALENCE Part 2 either to enter a varia­
ble in the EQUIVALENCE table or prepare the
subroutines for switching roots.

OPE~TION: When subroutine EQUIVALENCE
Part 2 is entered from EQUIVALENCE Part 1,
the EQUIVALENCE text pointer is incremented
by EQUIVALENCE Part 1 so the next entry in
the EQUIVALENCE text may be processed. The
address of the root is entered in a reg~
ister.When control is passed to
EQUIVALENCE Part 2, a root for this group
is determined either by setting the first
member in the EQUIVALENCE group as a root
or switching the root in EQUIVALENCE
Part 2. .

Any time EQUIVALENCE Part 2 determines
. that a member or its root is in COMMON,
control is passed to EQUIVALENCE Part 3.

If the mode of the variable is double
prec1s10n, a bit in the usage field of the
dictionary entry for the root is set to 1.
Other" bits j,n the usage field are setiil
the EQUIVALENCE subroutines to indicate
that the variable is a root or equated to a
root. These two bits are not set to 1 at
the same time. .The first bit indicates a
root. The second bit is set only for
variables that are equated to some root.

The.dispiacement of an equated variable
is its distance in bytes from the root.
That is, the displacement is the offset of
the equated variable subtracted from the
offset of the root. The offsets are'
entered in the Phase 10 . EQUIVALENCE text.
For example, if two arrays are dimensioned
as A(3,3,3) and B(2,2,2) and the
EQUIVALENCE statement:

EQUIVALENCE (A (2,1,1) ,B (1,1,1»

is read in Phase 10; the offset for the
first member of the EQUIVALENCE group
A(2,1,1) is 4. The offset for. the second
member of the EQUIVALENCE group B (1,1,1) ,

is O. Then the displacement is:

4:-0=4

This means that the array B begins 4
bytes away from the first element of the
ax:rc;lyA,.as follows:

A(1,t,1). A(2,1,1) A(3,1,1)
B (1 , 1 , 1) B (2, 1 , 1)

A(1,2,l)
B(1,2,l)

. In "subroutine EQUIVALENCE Part . 1 the
first member of the EQUIVALENCE group is
temporarily entered as a root. When the
displacement in the preceding example is
calculated, the result is positive because
the. first member of the EQUIVALENCE group
is. "entered as a root. If the position in
the statement of the members of the group
is changed,fdr example:

EQUIVALENCE (~.(1.,1, 1) , A (2,1,1))

the result of the displacement calculation
is different. In subroutine EQUIVALENCE
Part. 1 for this example, the first member
B (1,1,1) is entered as. a root. The dis­
placeinent is now:

0-4=-4.

which means. that the root must be· changed
to indicate that A, not B,is the root for
this EQUIVALENCE group.

If the result of the "4ispiacement· calcu­
lation is po.sitive, a check fs made to See
if this. variable has already . been entered
in the EQUIVALENCE table." If it has not
been entered, . it "is· entered in the
EQUIVALENCE table, and a check is made for
an additional variable in this EQUIVALENCE
group. The following statement would . have
entered the variable previously: .

EQUIVALENCE (A (2,1,1) , C), (B (1, ,,1) ,C)

This statement forms an .EQUIVALENCE
class. At this point, both A and Bare
temporarily roots. Because they are equat­
ed to C, one must be selected as . the root
for this class. The displacement is com­
puted for the two roots, and the offset of
B(1,1,1) is subtracted from the offset of
A(2,1,1), yielding:

The root for this EQUIVALENCE class" is
A, and B is then equated to A.

If the result of the first displacement
calculation is negative, resulting from the"
statement:

EQUIVALENCE (B(1,1,1),C), (A(2,1,1),C)

Phase 12 149

subroutine EQUIVALENCE Part 2 again switch­
es roots.

EXITS: Subroutine EQUIVALENCE Part 2 pass­
es control to subroutine SWROOT if the root
for an EQUIVALENCE group must be changed.
Subroutine EQUIVALENCE Part 1 is entered
from EQUIVALENCE Part 2 if there are no
other members in the EQUIVALENCE group.
Subroutine EQUIVALENCE Part 3 is entered if
subroutine EQUIVALENCE Part 2 determines
that either the variable being processed or
its root is in COMMON.

SUBROUTINE CALLED: During execution sub­
routine EQUIVALENCE Part 2 references the
following subroutines:

1. EQSRCH to search the EQUIVALENCE
table.

i. RENTER/ENTER to enter a variable in
the EQUIVALENCE table.

Subroutine EQUIVALENCE Part 3

Subroutine EQUIVALENCE Part 3 handles
special processing for all equated varia­
bles or arrays entered in COMMON. If the
variable or its root is in COMMON, subrou­
tine EQUIVALENCE Part 3 processes that
variable.

ENTRANCE: Subroutine EQUIVALENCE Part 2
enters subroutine EQUIVALENCE Part 3 if
either a variable or its root entered in
COMMON is encountered.

OPERATION: There are three entries used to
enter subroutine EQUIVALENCE Part 3.

Entry DDA 1 is used if subroutine
EQUIVALENCE Part 2 determines that the
variable has been entered in COMMON. It
then checks for the root in COMMON. If the
root is entered in COMMON, it has been
assigned an address by subroutine COMAL,
which also assigned an address to the
variable. Using the offsets entered in the
EQUIVALENCE text, EQUIVALENCE Part 3 com­
putes an address for the variable relative
to its root. If the address assigned to
the variable by COMAL and the address
computed by EQUIVALENCE Part 3 are not
equal, an error is noted. In the example:

COMMON A (3) , B (3)
EQUIVALENCE (A (2) ,B(l»

the COMMON statement places the arrays A
and B in COMMON as follows:

A (1) A (2) A (3) B (1) B (2) B (3)

The EQUIVALENCE statement then attempts

150

to place the arrays A and B in COMMON as
follows:

A (1) A (2)
B (1)

A (3)
B (2) B (3)

If these two statements are processed,
two different addresses are assigned to
B(l). Subroutine COMAL assigns B(l) an
address that places it adjacent to A (3) •
Subroutine EQUIVALENCE Part 3 attempts to
assign to B(l) the address that subroutine
COMAL assigned to A (2) •

If the root is not assigned to COMMON
and the variable is assigned to COMMON, the
roots must be changed. If an EQUIVALENCE
group contains a variable entered in
COMMON, that variable must be used as the
root. Subroutine EQUIVALENCE Part 3 then
enters this variable as .a root.

Entry DDA4 is used if
the variable, is entered
COMMON address relative
computed, and the variable
the EQUIVALENCE table.

the
in
to
is

root, but not
COMMON. The
the root is
entered in

If the variable was previously entered
in the table, it was assigned a root when
the entry was made. A check is made for
the root in COMMON. If the previous root
is in COMMON, an additional check is made
to see if the two roots assign conflicting
addresses to the variable. If the previous
root was not entered in COMMON, it must be
equated to the current root entered in
COMMON.

Entry DDE3 is used when the variable or
current root is not entered in COMMON.
Previously the variable was entered in the
EQUIVALENCE table, and its root was in
COMMON. These statements generate the fol­
lowing condition:

COMMON A
EQUIVALENCE (A,C), (B,C)

The current root, B, must be equated to
the previous root, A. All variables equat­
ed to B must also be equated to A.

EXITS: Subroutine EQUIVALENCE Part 3 exits
to subroutines SWROO'!' if the root for a
group must be changed. Subroutine
EQUIVALENCE Part 3 also exits to
EQUIVALENCE Part 2 if an error is detected
or to set the mechanism for changing roots.

SUBROUTINES CALLED: During execution
EQUIVALENCE Part 3 calls subroutines ALERET
and RENTER/ENTER.

Subroutine EXTCOM: Chart DE

Subroutine EXT COM finds and enters the
size of COMMON in the communications area.
It then adjusts the location counter to the
next base and increments the location coun­
ter by the number of bytes necessary to
contain the initialization routine for the
object program.

ENTRANCE: Subroutine EXTCOM is entered
from subroutine EQUIVALENCE Part 1 after
the EQUIVALENCE table is constructed.

OPERATION: The size of COMMON is deter­
mined by subtracting the location counter
used to allocate COMMON from the beginning
address of COMMON. The difference is
entered in the communications area •.

The location counter is adjusted to
in~ure that the next variables assigned
addresses have a different base register
than the variables previously placed in
COMMON.

,.,~;~i},R~Y~B~~~,~~",.R~'i'~M·
'~~X~".,$""'h."*.,!, .. , .. ",,• , .. ,i~$X~!JA:" ,:~~~:~f;s~~~~:':a, '
2-~~te a~dress. The first hexadec1mal
':riMh~:e;ln i~~ add'ress is the base register.
'If the address of a variable assigned to
COMMON is 40CS, the variable is assigned
the base register 4 with a displacement of
OCS. After assigning addresses to all
variables in COMMON, the register number is
incremented by 1. If all variables in
COMMON are referenced by base register 4,
the first item not in COMMON is assigned an
address using base register 5.

Indicators in the communications area
are set in Phase 10 to indicate that the
program being compiled is a FUNCTION or
SUBROUTINE subprogram or a main program. A
bit is .a1so set if the program being
compiled calls subprograms. Phase 12 must
reserve .storage. for a ,calling sequence
depending on these different conditions.
In Phase 12, the size of the area needed to
contain the initialization routine for the
object .program is computed, and the loca­
tion.counteris adjusted accordingly.

I . A check. is made to determine if more
. than three base registers are used to
.' al10.c.at .. e . varia.bles in COMMON. If so, a

.. warning mess.age is issued.

EXIT: Subroutine EXTCOM exits to subrou­
tine . DPALOCwhere storage is allocated for
double~precision variables.

Subroutine DPALOC: Chart. DF

Subroutine DPALOC assigns addresses to
all double prec1s10n variables or arrays
entered in the dictionary.

ENTRANCE.: Subroutine DPALOC is entered
from subroutine EXTCOMtoallocate storage
for all double precision variables and
arrays. Entry is also made from subroutine
INTDCT after it retrieves a name from the
dictionary.

OPERATION: Subroutine DPALOC references
subroutrne INTDCT to search the dictionary.
INDCT returns to several subroutines. A
switch is set when subroutine DPALOC is
entered to force subroutine INTDCT to
return to subroutine DPALOC. SUbroutine
INTDCT orily retrieves entries in the
dictionary: it does not check mode or type.
Subroutine DPALOC only processes the
dictionary entry under the following condi­
tions:

1. It is not in COMMON, equated, or. a
keyword.

2. It is double prec1s10n.
3. It is a variable or an array.

The location counter is adjusted to a
double-word boundary and the variable' is
assigned an address. Th.e dictionary entry
is removed from the chain and the variable
is inserted into the storage map.

If the variable is the root of ·an
EQUIVALENCE group or class, its entry is
accessed in the EQUIVALENCE table to allow
the location counter to be increased by the
size of the class.' If the variable is an
array, the dictionary entry is accessed to
allow the location counter to be increased
by the size of the array. If the variable
is neither an array nor the root of an
EQUlVALENCE class, the.locationcotinter.is
increased by S, the size in bytes' of a
double precision variable.

EXITS: Subroutine DPALOC exits to. the
following subroutines:

1 • INTDCT to retrieve another variable or.
. array.

2. SALO to assign. addresses to real and
integer variables .after all' double
precision variables have been allocat-
ed. .

SUBROUTINEs CALLED: During execution sub­
routine DPALOC references the following
subroutines:

1. INTDCT to retrieve entries in the
dictionary.

2. SORSYM to enter variables in the stor- .
age map and print them.

Phase 12 151

3. EQSRCH to search the entry for a root
in the EQUIVALENCE table.

Subroutine SALO: Chart DG

Subroutine SALO retrieves real and inte­
ger variables and arrays from the diction­
ary by use of subroutine INTDCT and assigns
an address to them.

ENTRANCE: Subroutine SALO is entered from
subroutine DPALOC after DPALOC has assigned
addresses to all double precision variables
and arrays. SAL 0 is also entered from
subroutine INTDCT after INTDCT has returned
a name.

OPERATION: When subroutine SALO is
entered, a switch is set to indicate to
subroutine INTDCT that the entry was from
SALO. Control is passed to INTDCT to
retrieve the first entry in the dictionary.

A name removed from a dictionary chain
has an address assigned to it by subroutine
SALO if the following conditions are ful­
filled:

1. The variable is not equated to a root.
2. The symbol is a name of a variable or

an array.
3. The name is not a keyword or in-line

function.

Both integer and real variables are
processed by subroutine SALO.

If the variable is the root of an
EQUIVALENCE group that contains a double
precision variable, it is adjusted to a
double-word boundary, even through the
variable is single precision. The variable
is removed from a dictionary chain,
aSSigned an address, entered into the stor­
age map and printed if the MAP option is
specified.

If the variable is the root of an
EQUIVALENCE group, its entry in the
EQUIVALENCE table is accessed. The
EQUIVALENCE group size is used to increment
the location counter. If the name is an
array, the size of the array is accessed in
the dictionary and used to increment the
location counter. If the name is not an
array, the location counter is incremented
by 4, the size in bytes of a real or
integer variable.

EXITS:
tines:

Subroutine SALO exits to subrou-

1. INTDCT to access another dictionary
entry.

2. ALOC after all real and integer varia­
bles are assigned addresses.

152

SUBROUTINE CALLED: During execution sub­
routine SALO references subroutines:

1. EQSRCHto find the entry for the root
of an EQUIVALENCE group in the
EQUIVALENCE table.

2. SORSYM to enter a variable in the
storage map.

Subroutine ALOC: Chart DH

Subroutine ALOC assigns addresses to all
equated variables. The address of the root
of the variable is assigned in subroutines
DPALOC, SALO, and COMAL.

ENTRANCES: Subroutine ALOC is entered by
subroutines SALO after SALO has assigned
addresses for the real and integer varia­
bles. ALOC is also entered from INTDCT
when INTDCT retrieves a name from a
dictionary chain.

OPERATION: The first time control is
passed to subroutine ALOC, it sets the
multiple switch used in subroutine INTDCT
to return to subroutine ALOC. Control is
passed to INTDCT to retrieve the first name
in the dictionary.

Subroutine ALOC assigns addresses only
to those entries in the dictionary that are
equated. If a returned entry is not equat­
ed, ALOC returns to INTDCT to retrieve
another entry. If an equated name that is
neither a variable nor an array is returned
to ALOC, an error condition is noted.

If the name is equated and it is the
name of a variable or an array, subroutine
ALOC removes it from the dictionary chain
and finds the variable in the EQUIVALENCE
table. If the root of the variable is not
in COMMON, the address is computed using
the displacement (computed in the Phase 12
EQUIVALENCE subroutines) and the address
assigned to its root by either DPALOC or
SALO. If the variable is in COMMON, the
address assigned in the EQUIVALENCE subrou­
tines is retrieved from the EQUIVALENCE
table. The assigned address of the varia­
ble is moved into the dictionary entry.
The symbol is then entered and printed in
the storage map if the MAP option is
specified by the user.

EXITS: Subroutine ALOC exits to the fol­
lowing subroutines:

1. LDCN after the name chains in the
dictionary are processed.

2. INTDCT to retrieve another dictionary
entry.

SUBROUTINES . CALLED: ouring execution sub­
routine ALOCreferences the following sub­
routines:

1. ALERET if an error is .detected.
2. EQSRCB· to find the variables in the

EQUIVALENCE table.

Subroutine LOCN:. Chart 01

SubrC?utine LOCN may punch· and/or write
ESO section definition cards on the GO tape
for the program and the COMMON area. LOCN
processes all dictionary entries that are
external. . functions, in-line functions,
external references, or arguments for a
function definition.

. ENTRANCE: Initially, subroutine LDCN is
entered from subroutine ALOC after ALOC has

·assigned . addresses for all equated varia­
bles. . Subsequently , LOCN is entered from
subroutine INTDCT each time INTOCT has
retriev~danothername from the dictionary.

. OPER1\.TION:The section definition card for
the program contains the program name. The
section definition card for COMMON contains
the .word .COMMONand . the nUlnber of bytes
necessary ·to ·contain the variables and
arrays in COMMON.. An entry ESO card con-

. tairis the name of the program entry point
and its displacement from the beginning of
the . program.LOCN calls a subroutine to
pwichandlorwrite these cards on the GO

. tape. .

SubroutineLDCN :r;:emoves all name entries·
. from the dictionary, except keywords, by
d~stroying the chain address entry. Either
the assigned address for the variable or an
in':"line function code is placed in the
dictionary field that contained the chain
address in Phase 10. After subroutines
OPALOC, SALO, and ALOC have completed proc-
essing, only the in-line functions, dummy
variables for functions, external fUnc­
tions, and keywords remain in the diction~
ary naIlle chains.

When. subroutine ~CN iv first entered,
the multiple switch is set to allow subrou­
tine INTDCT to return to LOCN. Subroutine
LOCN references subroutine INTCON to
retrieve names from the dictionary. When.
subroutine INTDCT returns the name, LOCN
checks the ESO bit in the dictionary entry.
If the ESO bit is not on, subroutine LOCN
assumes the name is a keyword and referen­
ces subroutine INTOCT to obtain another
name from the dictionary. ,If the ESO bit
is on, the name is either a dummy name used
to define parameters for a FUNCTION or
SUBROUTINE subprogram, an external symbol,
or an in-line function.

If the tlaine . is . a ,dummy yariable,an.
address .. · is' assigned ,and the ·variable is.
removed from the dictionary ,chains •. If the
name is an iri-'line· functiori,the . number
code inserted in the address field of the·
dictionary entry is moved. 1:.0 the field that
was origina-lly the chain field. for that
dictionary entry. If the name. is an exter­
nal function, an address constant address
is assigned and ESO and RLDcards may be
punched and/or written on the GO tape.

EXITS: Subroutine LDCN exits to the fol­
lowing subroutines:

1. INToCTto retrieve names from the
dictionary.

2. ASGNBL to begin aSSignment of the
branch list.

SUBROUTINES CALLED:. Ouringexecutiori sub-'
routine LOCN references the follOwing sub­
routines:

1. ESD to punch and/or write ESD and RLD·,
'cards.

2. GO FILE to punch and/or write the
control section cards for the program
and the COMMON area •.

subroutine ASGNBL: Chart OJ

Subroutine ASGNBL scans the statement
number chains in the overflow table, and
allocates a branch, list. position for each
statement number referenced by a branch
statement.'

ENTRANCE: $ubroutineASGNBL is entered
from subroutine LDCN after external and
in-line function . names and external ref­
erences are processed.

OPERATION: The first statement number
chainaddress is accessed, in the thumb
index of the overflow table, and ASGNBL
begins to scan the statement number chain.
A relative number is assigned to each
referenced statement.riumber excluding those
aSSigned to a FORMAT or specification
statement. . The first statement number in
the first ,chain is assigned the relative
number 0 if it is to ·be entered in the
branch list. The relative number . is
inserted in the Chain field for that state­
ment· number, and the statement number is
removed from the overflow table chain.· The
relative· nUlnber is then incremented by 4
and the next statement number is assigned a
position in the branch list.

When . the .. end. Qf a chain is
ASGNBL accesses· the thumb index
beginning of the. next chain~
statement number chain is then

reached,
for the

the next
processed.

Phase 12 153

When the last chain is processed, ASGNBL
increments the location counter by the size
of the branch list and exits to subroutine
SSCK.

EXIT: After the statement numbers are
assigned relative numbers for the branch
list, subroutine ASGNBL exits to subroutine
SSCK.

Subroutine SSCK: Chart DK

Subroutine SSCK searches the three sub­
script variable chains in the overflow
table, and replaces the dictionary pointer
to variables with the address assigned the
variable by Phase 12.

ENTRANCE: SUbroutine SSCK is entered from
subroutine ASGNBL after ASGNBL has assigned
branch list positions for statement num~
bers.

OPERATION: Subroutine SSCK obtains the
address of the first subscript chain from
the thumb index of the overflow table and
then searches the chain for variables in a
subscript expression. In Phase 10, if a
subscript expression contained no varia­
bles, it was not entered in the overflow
table. For example, there was no entry in
the overflow table for the subscripted
variable A(1,5,2). If only one subscript
parameter contained a variable, however,
the subscript expression was entered in the
overflow table. For those subscripts with­
in the same expression that contained no
variables, the space allotted for variables
was filled with zeros. In the subscripted
variable A(1,5,2*I), space had to be allot­
ted for variables in the first and second
subscripts, even though this space was
filled with zeros.

In Phase 12, a check is made in SSCK to
determine if zeros are in a field where
there normally would be a dictionary poin­
ter. If there is a zero, this field is
ignored and the next field expected to
contain a variable is checked. If the next
field contains a pointer to a dictionary
entry for a variable, the dictionary entry
is accessed and the address assigned to
that variable is placed in the subscript
variable chain. (The address for the vari­
able in the subscript expression has been
inserted in the dictionary entry for the
variable by subroutine SALC.)

When SSCK reaches the end of one of the
subscript chains, it checks to see if this
is the last chain to be processed. If
another chain remains to be processed, SSCK
goes to the overflow table thumb index and
obtains the address for the start of the
next chain.

154

EXIT: After all subscripts in the overflow
table are processed, subroutine SSCK passes
control to subroutine SORLIT.

Subroutine SORLIT: Chart DL

Subroutine SORLIT assigns addresses and
calls subroutine TXT to punch and/or write
text cards for all literals entered in the
dictionary. SORLIT then calls the FORTRAN
System Director to load Phase 14.

ENTRANCE: Subroutine SORLIT is entered
from subroutine SSCK after SSCK has proc­
essed the overflow table subscript entries.

OPERATION: Subroutine SORLIT accesses the
beginning address for the integer constant
chain in the dictionary, assigns an address
for each constant in the chain, and calls
subroutine TXT to put the constants into a
text card buffer. Text cards may be
punched and/or written on the GO data set.

When the end of the integer constant
chain is reached, the beginning address of
the real constant chain is accessed in the
thumb index of the dictionary. The real
constants are then assigned an address and
placed in a text card buffer.

When the end of the real constant chain
is reached, the address for the chain
containing double prec1s1on constants is
accessed, and the location counter is set
to a double-word boundary. All double
precision constants are assigned an
address; the constants are then put into a
text card buffer. When all double preci­
sion constants are processed and put in the
text card format, any buffers used to punch
the ESD and RLD cards are closed, buffers
used for text cards are closed, and the
FORTRAN System Director is called to read
Phase 14.

EXIT: After all constants
essed, subroutine SORLIT
FORTRAN System Director
from the system tape.

have been proc­
exits to the

to read Phase 14

SUBROUTINES CALLED: During execution sub­
routine SORLIT references the following
subroutines:

1. TXT to put the' constant and its
address out to a text card and to
close the text card output buffers.

2. ESD to close the ESD and RLD card
output buffers.

3. SORSYM to enter the constant into the
storage map.

Subroutines EQSRCH, RENTER/ENTER: Chart DM

Subroutine EQSRCH

Subroutine EQRSCH searches the
EQUIVALENCE table for a previously entered
variable. EQSRCH is also used by subrou­
tine SWROOT to find all variables that have
been equated to a root.

ENTRANCES: Subroutine EQSRCH is entered
from subroutines EQUIVALENCE Part 1, Part
2, and Part 3 to determine if a variable
was entered previously in the EQUIVALENCE
table. EQSRCH is also entered from subrou­
tine SWROOT to find all variables equated
to one root that must be equated to another
root.

OPERATION: Subroutine EQSRCH is entered at
two points. At the first point of entry,
registers are initialized to search the
EQUIVALENCE table for a previously entered
variable. The registers are initialized to
compare the dictionary pOinters to the
variable now being processed. The pointer
of the variable currently being processed
is in the EQUIVALENCE text.

At the second point of entry, the reg­
isters have been initialized by the calling
subroutine to compare the pointer to the
roots in the EQUIVALENCE table. EQSRCH
checks the EQUIVALENCE table to find all
variables previously equated to a root.

EQSRCH searches the EQUIVALENCE table by
checking each entry for the correct pointer
until it finds the entry or reaches the end
of the EQUIVALENCE table. If EQSRCH reach­
es the end of the table without finding the
entry for the variable, it takes the not
found return; if the variable is found,
EQSRCH takes the found return.

EXIT: Subroutine EQSRCH exits to the call­
ing subroutine.

Subroutine RENTER/ENTER

Subroutine RENTER/ENTER enters variables
in the EQUIVALENCE table either as a root
or an equated variable.

ENTRANCE: Subroutine RENTER/ENTER is
entered at two points. The first point of
entry ~ENTER) is entered by subroutines
EQUIVALENCE Part 1, Part 2, and Part 3,
when a variable is to be entered in the
EQUIVALENCE table as a root. The second
point of entry (ENTER) is entered by
EQUIVALENCE Part 2 when a variable is to be
entered as an equated variable.

OPERATION: If the variable is entered as a
root, the bit that indicates a root is set
in the usage field of its dictionary entry.
If the variable is in COMMON, the address
aSSigned to the variable by subroutine
COMAL is accessed from its dictionary
entry. If the variable is not entered as a
root, the processing becomes the same for
both roots and equated variables.

If the variable is double precision and
is entered in COMMON, it must be assigned a
COMMON address that is on a double-word
boundary. If the address assigned to it is
not on a double-word boundary, an error is
detected.

The pointer to the dictionary entry for
the variable, a pointer to the root, and
the displacement are entered in the
EQUIVALENCE table. (If the variable is
entered as a root, the two pointers are the
same.)

If the variable is entered as a root and
is being entered for the first time, the
size entry for the variable in the
EQUIVALENCE text is accessed and inserted
in the size field in the EQUIVALENCE table.
If the variable is equated to a root, a
size computation is necessary.

After the size is entered, a check is
made to determine if the size of the COlf~40N
area has been extended by equating arrays
to variables previously entered in COMMON.
For example, the statement:

COMMON A

places the real variable A in COMMON. The
size of the COMMON area is now four bytes.

The statement:

DIMENSION B (5)

defines a real array whose size is 20
bytes. If the statement:

EQUIVALENCE (A,B(1»

is processed, the array B must be placed in
COMMON. Since the size of the array is 20
bytes, the size of COMMON must be increased
to 20 bytes, and the location counter
adjusted accordingly.

A check is made to determine if the
COMMON area is extended backward, e.g., if
the preceding EQUIVALENCE statement is
changed to:

EQUIVALENCE (A,B(2»

Since A is in COMMON, an attempt must be
made to include B in COMMON. The second
element in B is equated to A, therefore

Phase 12 155

B (1) should be the first element in COMMON.
An error is noted because an attempt was
made to "extend COMMON backward. n

The count of the number of entries
entered in the EQUIVALENCE table is incre­
mented by 1 for each entry.

EXIT: The utility subroutine RENTER/ENTER
returns control to the calling subroutine.

SUBROUTINE CALLED: During execution sub­
routine RENTER/ENTER calls subroutine ALER­
ET if an error is detected.

Subroutine SWROOT: Chart DN

The utility subroutine SWROOT is ref­
erenced by subroutine EQUIVALENCE Part 10r
Part 2 when EQUIVALENCE Part 1 or Part 2
determines that the root entered previously
for this EQUIVALENCE group or class must be
changed, and a new root inserted.

ENTRANCE: Subroutine SWROOT is entered by
subroutine EQUIVALENCE Part 1· and 2.

OPERATION: Subroutine SWROOT searches the
EQUIVALENCE table for the entry for the new
root and saves its address so the size of
the group can be computed. SWROOT then
compares the new root and the . old root. If
the roots are the same, SWROOT·computes the
displacement between them.. If the dis­
placement is a.number other than. zero, an
error is detected. If the displacement is
zero, SWROOT returns·to EQUIVALENCE Part 2.

If the old root and new root differ, the
equated bit in the usage field of the
dictionary for the old root is set to
indicate that the old root has been equated
to another root.

If the old root is double precision, a
bit is set in the usage field to indicate
that the new root must be placed on a
double-word boundary_ If the old root is
in COMMON, a check is made to determine if
the new root is on a Qouble-word boundary;
if not, an error is noted.

A bit is set in the usage field of the
dictionary entry for the new root. This
bit indicates that this variable is a root
of an EQUIVALENCE· group or class. Using
the address of the old root, the
EQUIVALENCE table is searched for all vari­
ables that were equated to the old root.
The ~UIVALENCE table entries for these
variables must be changed to indicate the
new root, and the displacement and size
fields in the table must also change. If
the root is in COMMON, and COMMON has been
extended forward, the location counter must

156

be adjusted. If COMMON was extended back­
ward, an error condition is noted.

EXIT: Subroutine SWROOT
EQUIVALENCE Part 2 to determine
are additional variables
EQUIVALENCE group.

exits to
if there
in this

SUBROUTINES CALLED: During execution sub­
routine SWROOT references the following
subroutines:

1 • ALERET if an error has been detected.
2. EQSRCH to search the EQUIVALENCE table

for the entry made for the new root
and for variables equated to the old
root.

Subroutine INTDCT: Chart DO

Subroutine INTDCT is used by subroutines
DPALOC, ALOC, SALO, and LDCN to retrieve
entries from the dictionary.

ENTRANCES: Subroutine INTDCT is referenced
by subroutines LDCN, ALOC, SALO, and DPALOC
to search the name chains in the diction­
ary.

OPERATION: Subroutine INTDCT initializes
registers and pointers for a search, and
checks for names entered in the dictionary.
If there is another name, its entry is
fetched and INTDCT returns to the subrou­
tine that called it.

If subroutine INTDCT determines that it
is at the end of a dictionary chain, it
goes to the thumb index, gets the starting
address of the next chain, and begins
retrieving variables from that chain. A
switch is set by the subroutine that called
subroutine INTDCT. By testing this switch,
subroutine INTDCT returns to the calling
subroutine.

EXIT: Subroutine INTDCT returns to the
calling subroutine after retrieving an
entry from the dictionary. If SUbroutine
INTDCT has returned the last variable in
the dictionary chain, INTDCT returns to
another pOint in the calling subroutine.

Subroutine SORSYM: Chart DP

Subroutine SORSYM puts into format and
prints the storage map for all arrays,
constants, and external references assigned
addresses in Phase 12.

ENTRANCE: Subroutine SORSYM is referenced
by subroutines SORLIT, COMAL, DPALOC, SALO,
ALOC, and ESD.

OPERATION: Variables and arrays, external
symbo~s, and constants are printed for the
storage map.- If a heading is not printed
for a category, SORSYM prints the heading.

The symbol and the address assigned to
it are moved to the print buffer; if the
buffer is full, a line is printed. There
are four symbols with associated addresses
inserted in a print line.

EXIT: Subroutine SORSYM exits ... to the call­
ing subroutine.

SUBROUTINES CALLED: During its execution
subroutine SORSYM references the FORTRAN
System Director to initialize printing.

Subroutine ESD: Chart DQ

Subroutine ESD enters external symbols
into the ESD card format and initializes
the action for punchingESD cards.

ENTRANCE: Subroutine ESD is entered by
subroutine LDCN every time an external
symbol should be entered in an ESD card.
Subroutine SORLIT also calls a portion of
subroutine ESD to close the ESD data set.

CONSIDERATIONS: An ESD card contains one
external symbol identification number, one
to three names used as external symbols,.
and the number of significant bytes in the
ESD card. This number on the ESD card
includes the number of card columns used to
contain the external symbol identification
number, the external symbols, and the num­
ber itself. Each external symbol in the
'external symbol dictionary is assigned an
external symbol identification number.
However, in the ESD card, only the symbol
identification number for the first symbol
is included.

Subroutine ESD and Phase 10 intermediate
text use a similar double-buffer system.
There are two card output areas. One
buffer is punched as the other is filled.

OPERATION: Subroutine ESD removes the
entry for an external symbol from the
dictionary chain.. The address that con­
tains either the beginning address of the
external function or the address of the
external symbol is inserted in the chain
field.

If neither the DECK nor Compile and Go
option is taken, subroutine ESD returns to
the calling subroutine. If either the DECK
or Compile and Go option is taken, ESD
moves the external symbol from the diction­
ary entry to a buffer and increments the
external symbol identification number by 1.

Subroutine ESD determines how many
external symbols are entered in the buffer.
If this is the first entry for this card,
the external symbol identification number
is moved to the buffer for the first
external symbol entered in the card. The
number of significant bytes entered in the
buffer for this external symbol is then
updated.

If this is the second entry for this
card, the number of significant bytes for
the second entry is added to the register
containing the number of bytes for this
card. If this is the third entry to the
buffer for this card, the number of Signi­
ficant bytes for the third entry is added
to the Significant byte accumulator. After
the third entry is made to the buffer, the
card may be punched and/or written on the
GO tape.

ESD is entered to close the buffers
after subroutine SORLIT has processed the
last constant chain entered in the diction­
ary. ESD closes the buffer. A switch is
set in ESD to indicate to subroutine RLD
that the output buffers must be closed. If
any external symbols in the buffer are not
punched, ESD initializes t~e punching for
the last ESD card.

EXIT: Subroutine ESD exits to subroutine
RLD to enter an address in an RLD card and
put out the last RLD card if subroutine ESD
was entered to close the ESD and RLD
buffers.

SUBROUTINE CALLED: Subroutine ESD referen­
ces subroutine GOFILE to initialize the
output for an ESD card.

Subroutine RLD: Chart DR

Subroutine RLD enters the addresses
assigned to external symbols in an RLD card
and initializes the action for RLD card
output.

ENTRANCE: Subroutine RLD is entered by
subroutine ESD each time ESD makes an entry
to an ESD buffer and when ESD closes the
output buffers for RLD and ESDcards.

CONSIDERATIONS: An RLD card contains up to
six address constant addresses. Each
address and its external symbol identifi­
cation number may be .punched in the RLD
card and/or written on the GO tape. An RLD
address and ESD name are linked by the same
external symbol identification number.

Subroutine RLD uses a dOUble buffer
system similar to the one used for ESD
cards. There are two card output areas.

Phase 12 157

An RLD card is punched from one buffer,
while the next RLD card is put into format
in the other buffer.

OPERATION: Subroutine ESD sets an end·
swi tch . to indicate to" subroutine RLD that
theRLD and ESD buffers are to be closed.
If this end switch is on, RLD checks for
any entries in the current. buffer that have
not been put into an RLD card format. If
there are current entrieS,RLD calls sub-

. routine GOFILE to initialize card output.

'If the end switch is not on; RLD must
make an entry to an RLD card buffer.
Subroutine RLDinsertsthe address constant
addresS in the RLD buffer along with the
external symbol identification number and
updates the location' coUnter so that the
correct address constant address is is
assigned to the next external symbol. If
the RLD card buff.er does not contain six
i te.ms, the RLD buffer pointer is increment­
ed by the length 9f the entry just made in
.the buffer pointer so that the next load
constant address can be inserted in the
proper position in. the buffer. The exter­
nal symbol identification number is incre­
mented in subroutine ESD. If an RLDcard
buffer is full, subroutine GOFILE is called
to put out the RLD cards.

EXIT: . SubroutineRLDeXits to the subrou­
tine that originally referenced subroutine
ESD. .

SUBROUTINES CALLED: Subroutine RLD ref­
erences subroutine GOFILE to put out the
RLD card.

Subroutine TXT: Chart DS

Subroutine TXT enters constants along
with a beginning address in a text card and
calls a subroutine .to allow text card
output.

ENTRANCE: Subroutine TXT is referenced by
subroutine SORLIT when SORLIT proceSses the
cQnstantchains iIi the dictionary and clos­
es the text card bufferfl.·

CONSIDERATIONS: .Atext·card generated by
Phase. 12 contains an address and a string

'of integer, real,' or doubl.e.precision con­
stants. The address' . entered in the card
indicates to the .. object . program . loader
where to put the firs.tc;onstantin the text

. card. The' remaining constants folloW the
first constaht.

Subroutine TXT . USeS . a:double~buffer sys­
tem similar to subroutinefl ESD.and RLD~

158

OPERATION: Subroutine TXT initializes
itself in Phase 12 by moving the pointer to
the dictionary entry for the constant being
processed from subroutine SORLIT. The con­
stant is then moved from the dictionary to
a text card buffer, and the number of
significant bytes for this card. If this
is the first entry for this card, the
address in the location counter is inserted
in the card.

The location counter is adjusted by the
length of the constant (8 for doublepreci­
sion and 4 for real or integer). Sub:r:ou-'
tine TXT then checks for a DECK or GO
option. If neither option is on, TXT
returns to the subroutine that called it
and does not put out a text card.

If either option is on, a check is made
to see if the buffer is full. If the
buffer is not full, the buffer pointer is
updated by the size of the entry just made,
and subroutine TXT returns to the calling
subroutine. If the buffer is full~ subrou­
tine GOFILE is called to initialize card
output.

Subroutine TXT is entered by subr9utine
SORLIT after SORLIT has processed the. last
constant chain. If either text buffer
contains entries, subroutine GOFILE is
called to put out the entries.

EXIT: subroutines TXT returns to the call­
ing subroutine.

SUBROUTINE CALLED: During execution sub~
routine TXT references subroutine GOFILE to
punch a card and/or write a record on the
GO tape.

Subroutine GOFILE: Chart DT

Subroutine GOFILE updates the card
sequence number and inserts it and the
program identification into the card buf­
fer. GOFILE 'calls the FORTRAN System
Director to punch a card or write the card
image on the GO tape.

ENTRANCES: Subroutine GOFILE is entered
from Subroutines ESD, RLD, or TXT if the
user has specified that either an object
deck. be punched under the DECK option or

. the object program loaded on tape under the
Compile and Go option.

CONSIDERATION: The calling subroutine
assembles the card in cthecorrect format
for the FORTRAN System Loader. The card
sequence number and the card identification
for the program are inserted in the card by
GOFILE.

OPERATION: Subroutine GOFILE increments
the card sequence number by 1, and enters
it in the ESD, RLD, or text cards. GO FILE
places the program identification in the
card and tests the Compile and Go option.
If the Compile and Go option was exercised,
GOFILE references the FORTRAN System Direc­
tor to write the card to the tape used for
the GOFILE output tape. If the DECK option
is taken, GOFILE calls the FORTRAN System
Director to punch the card for the object
deck.

EXIT: Subroutine GOFILE returns control to
the calling subroutine.

SUBROUTINE CALLED: During execution, sub­
routine GOFILE references the FORTRAN Sys­
tem Director to write the card image to the
GO tape or to punch a text card.

Subroutine ALOWRN/ALERET: Chart DU

Subroutine ALOWRN/ALERET processes
errors and warnings detected during Phase
12.

ENTRANCES: Subroutine ALOWRN is entered
from subroutine EXTCOM if the COMMON area
is too large. Subroutine ALERET is entered
from subroutines EQUIVALENCE Part 2 and
Part 3, RENTER/ENTER, SWROOT, and COMAL
when an error is detected.

OPERATION: Subroutine ALOWRN/ALERET is
entered at two points. The first entry
point, ALOWRN, is used if a warning is
issued. The second, ALERET, is used if an
error is issued. The difference between
errors and warnings is discussed in the
Phase 10 subroutine ERROR, ERRET/WARNING.

The only intermediate text entries made
during Phase 12 are the entries for errors
and warnings detected during execution of
the Phase 12. The adjective code is set
when ALOWRN/ALERET is entered, depending
whether the subroutine is entered for an
error or warning. The error or warning
number is inserted with the adjective code
in the intermediate text output buffers.
The internal statement number for the
statement which caused the error or warning
is not entered in Phase 12. There is no
way to access the internal statement number
and in most cases the condition that caused
the error or warning cannot be pinpointed
to a specific statement.

The output buffer pOinter is updated,
and a test is made to check if the output
buffer is full. If the buffer is full,
subroutine ALOWRN/ALERET exits to subrou­
tine· SORLIT to abort the rest of Phase 12
and read in Phase 14.

EXIT: Subroutine ALOWRN/ALERET exits to
the subroutine that called it or to subrou­
tine SORLIT.

Phase 12 159

••• **
,*04 •

" .. A2* ..
*

· X
*****A2******·*·· * . *

'*.

ALLOCATE
COMMON

• * ••••••••••••••• *.

X
'*'***S2****** **.*
• * * PROCESS
* EQUIVALENCE .. . · . •• **,*---*********

'**,*'**C2*!******** * ALLOCATE *
,. NON eQUATED
* VARIABLES *
* FIRST * · . ~*.*******.* •• ***

.X

*****02********** · . * 'ALLOCATE *
.. !:.QUAT·EO .-
• VARIABLES' .*

• * **.********.~*****

x
*'. ***E2***.**.*** *. PUNCH ESD. *

RLD 'CAROS -
.FOR SUE!-

* F~~G.RA~S. *
* •• *-**.*-*******

X
*****F2-*·*******
• ALLOCATE *
• ST.ORAGE
• TO LOAD * . * CONST ANTS • · . • *.*._*--****.***

X
···**G2**********
• ASSIGN * * BRANCH *

LIST
* ADDRESSES • ********-* •• **.*.

X
*.****H2·* *******. * ASSIGN *

ADDRESS 'TO *
* SUBSCRIPT *
*. INFORMATION
* •
****-**.-*._***.*

"

X
*****J2·********* * .. ASSIGN • . * ADORESSES TO
.. LITERALS. AND
* PUNCH TEXT' *
* ". CARDS * ** ••• ~*~* •• * •• *.*

"

X

****K2********· * TO PHASE 14 *
.. VIA ~ORTRAN *
.SYSTEM DIRECTOR*
*******--**-***

Chart 04.

160

Phase 12 Overall Logic Diagram

*
*DA *
iI- A2* ..

ST ART X
*****A2***"******
* II\'ITIALIZE *

REGISTERS
AND

J:OINTERS

* E2 *.X.

• * * .. **
CCMAL .X.

B2 * • • * ANY * • • * MORE *. NO
.VARIABLES IN . ••••••••

... COMMCN .* X
.. *****

* •• * *DE *
* YES • A2*EQUIVP

CO~ALI

*****C2**********

• * LOOK UP
VARIABLE IN
DICTIONARY * .

CCMAL2
*****02**********
REMCVE VARIAELE
FROtl DICT CHAIN
* AND MCVE •
• ASSIGNED ADDR •
*Te CHAIN FIELD *
****.***.********

.x.

* *

E2 *. *****E3**********
.* *. *ALERET DUA3*

.* IS *. YES *-*-*-*-*-*-*-*-*
. VARIABLE . ••• ~ X* DUMMY IN

. A DUMMY .o * COMMON
. .

* • .o*
* NO

*

· .
• Xo •••••••••••••

CCMALa .X. .*.
F2 *. F3 *. *****F4**********

.* IS *. .* IS *. *ALERET DUA3*
.* MODE *. YES .* ADDRESS *. NO *-*-*-*-*-*-*-*-*

. DOUBLE . •••••••• X*ON DOUBLE WORD * •••••••• X* CANNOT *
.PRECISION. *.BOUNDARY .* ALLOCATE IN *
... *..* * COMMON *

*. • * *. • * *._***************
* NO * YES

· . • Xo

COMAL 7 • x.
G2 *. *****G3**********

.. * *. * INCREMENT *
.* *. YES * LOCATION

. ARRAY . •••••••• X* COUNTER BY * •••• ~.
. . * SIZE OF *

CCMAL9

.. * ARRAY *
* ... * *****************

• NO

• X.
H2 *.

.* *.

CONAL3
·*·*·H3******·***

* * •• DOUBLE *. NO INCREMENT
8Y •

* • * • .o •• x. •• PRECISION •••••••••• X*
. . * * *. .* * •• * * YES

.

*****J3**********

* *
*****J4**********
SORSYM DPA2 ****

INCREMENT
8Y 8

X *-*-*-*-*-*-*-*-* * *
••••••••••••••••• X*

Chart DA.

*
*

Subroutine COMAL

* •••••••• X* ENTER IN * •••• X* 82 *
* * STORAGE MAP * * *

* * ****

Phase 12 161

***** *oe *
* A2*
* * *

.
ECUIVP X

*****A2********** * INITIALIZE *
* REGISTERS *
* AND *
* TABLES *
* * *****************

EQUSOI .X.
82 * •

• * * •
• * ANY *. NO

. MORE . ••••••••
. ENTRIES . X

. .
. .

* YES
***** *DE *
* E3*EXTCOM
* * *

ECUS02 X EQUS50
*****C2********** *****C4**********
EGSRCH DMA2 * *
--*-*-*-*-*-*-*FOUNO * GET *
* DETERMINE IF * •••••••••••••••••••••••••••••••••• X* ROOT *
* VARIABLE IS * * *
* IN TABLE * * ..
***************** *****************

.NOT

.FOUND

X
*****02**********
RENTER DMD1
--*-*-*-*-*-*-*

.X.
04 *.

.* * •
• * I S. IT *. YES

* ENTER IT * *. IN'COMMON .• * •••••••• -••••••••••
* AS ROOT *
* * *****************

'*DC *
* Hl*
* * *EGUS15

Chart DB. Subroutine EQUIVALENCE Part 1

162

. .
. .

* •• *
* NO

.
X

*****E4**********
* *
* FIND * * EQUIVALENCE * * SUBSCRIPT *
* * *****************

EQUS51 x
*****E5**********
* COMPUTE * * ADDRESS * * IN *
* COMMON *
* * *****************

EQUS03 X EQUS12 .*.
*****AI********** A2 *.
* ADJUST rEXT * .* *.
POINTER AND GET .* IS *. YES

•• x* NEXT VARI ABLE * •••••••• x*. VARIABLE IN .* ••••••••
* AND ROOT * *. COMMON .* X

SUBSCRIPT * *..* *****
****************. • •• * *00 *

**** * NO • A1*

* * '* * * Al *
* *

*****8 I *******
* *

.x.
B2 '*.

.* *.
YES.* IS

*X.......... VARIABLE
*.
.*

SET DP
INDICATOR

I N ROOT '* *. D.P. .*
****** ***** *** *. • •

• NO

. .

............................ x •
EGUS04 • x.

C2 * •
• * * • • * IS *. YES

. ROOT IN . •••••••• *. COMMON
*. • * * •• *

* NO

EGUS05 X

.*

·*D2*******
* * * FINO
* C ISPLACEMENT
*

.x.
E2 *.

.* *. • * CHECK *.

x
.*** •
*DC *
*)1.4* .. .

EQUS06 .FOUND
*****04**********
EGSRCH DMA2
--*-.-*-.-*-*-*

••• x* DETERMINE IF * VARIABLE IS
* IN TABLE
* •••• *.*****.****

.NOT

.FOUND

X
··*E4*******·
* • * CHANGE

EQUSIO .X.
05 ••

.• *.
YES.* IS * •
•.• *. ROOT IN .*

. COMMON .

*DD *
* E3*
* *

.. . * •• * * NO

x
****-* E5*******4** . .
* GET *. SIGN .* ~ • DISPLACEMENT '* DISPLACEMENT

DC ' * Fl·

'*. .*
. .

* •• * * + OR
.. ZERO

EQUS08 X
.F 1********** *****F2******.***
ENTER DMGl *EGSRCH DMA2*
--*-*-*-* -*-*-* NCT*-*-*-*-*-*-*-*-*

ENTER *X * IS VA~IA8LE *
VARIABLE .. FOUND* IN TABLE •

* IN TABLE * *
***************** *****************

.FCUND

* •
*DC *.X ..
* G2*
*iIi**

* TO POSITIVE · **************.**

X
*****F4**********
*RENTER DMDI *
--*-*-*-*-*-*-*

* •
* •

ENTER *
AS * X * ROOT * ****.

***************** *ON '* * A2* ..
* SWROOT

X EQUS07 .. x. EGUS09 .*. EOUSI3 X
*****G 1 **** *.*
* •

G2 *.. *****G3********** G4 •• .*... * * .* *.
*****G5********** . .

SET
EQUATED

BIT

. . • * IS *. NO .. FIND .* *. SET TO
SWITCH

THIS ROOT
.. ROOT IN X* DISPLACEMENT * X*.. CHECK 10* X*

· . *DC *.X.
* +'1*
**** EQUSl5 .. X ..

HI * .. .* ANY *.
.. * MORE *. YES. *

.VARIABLES IN X* Al iii

*. GROUP .. * .. *
. . * ... * * NO

X
*****Jl**********

• * ADJUST *
* EQUIVALENCE
* TEXT POINTER · *****************

X

*DB *
* A2*
• *

*EQUSOI

. COMMON <0 .. * *.. SIGN.* -II-

.. * * •• * ***.************* * YES

x

*DO *
* E3* . .

.. ..
* •• * * + OR

.ZERO

EQU09A X
*****H4*******-lf**

• * .. SET
* DISPLACEMENT *

• * X * *****
.**************** *DN *

* A2* ..
*SWROOT

Chart DC. Subroutine EQUIVALENCE Part 2

x

*ON *
* A2*

* * *SWROOT

Phase 12 163

.........
*00 •
* A1* ..

*

.x.
Al *.

• * *. .* IS *. YES

ECUS21
*****A2********** .

*00 *
* A4*
• *

X
*****A4********** *.***A5**********
EQSRCH OMA2" ..
-.--*-*-*-*-*-*NQ * FINO COMMON *

. ROOT IN . •••••••• X*
FINO

EQUATED
ADDRESS

*x ••••••••••••••••• . * IS * •••••••• X* ADDRESS OF
. COMMON . * .. VARIABLE" * VARIABLE

. . * •• *
• NC

EQU51€ X
*****Bl********** · . * FIND * DISPLACEMENT ·

X
*****Cl**********
EQSRCH OMA2
--*-*-*-*-*-*-*FCUNO
* * ••••

PERFORM *
* SEARCH *

.NOT
• FOUND

X
*****01********** · . * GET
* ASSIGNED

ADDRESS

X
*****E1**********
RENTER DMD1
--*-*-*-*-*-*-*
.. ENTER

AS ROOT

x

*DN *
.. A2*
* * .

SWRGOT

x

*OC * * G2* • *

* .. IN TA8LE" ..
***************** *****************

.x.
82 *.

.* * • • * IS IT *. YES
*ECUAL ASSIGNED * •••• *. ADDRESS .*

. .
* •• * * NO

.YES

EQUS20 X
*****84**********
* • . . GET ROOT

.
*

* * *****************

.x.
C4 *.

.* *.
X

*****C2**********
ALERET DUA3
--*-*-*-*-*-*-* • YES.* IS *.

TWO * ••••••••
VARIABLES * X

..................... ROOT IN .*
. COMMON .

* IN COM~ON * *****
***************** *ec *

* t-1* ..

*00 *
* E3*
• *

EOUS11 X
*****E3**********
• *

GET ROOT
* ADDRESS .

X
*****F3**********
* •

$,SWROOT
SWITCH

THIS ROOT

x

*ON *
* A2*
• *

. .
* •• * • NO

X
*****04**********
* * * GET COMMON *

AODRESS OF
VARIABLE

x

*ON *
.. C2*

* * *SW06

x

*DC *
* FI* . .

Chart DD. Subroutine EQUIVALENCE Part 3

SETLOI X
*****E2**********
* ADJUST *
* LOCATION *
* COUNTER * * FOR CALLING *
* SEQUENCE *

SETL03 .X.
F2 * •

• * *.
YES.* IS * .

•••• *.FRCGRAM TOO.*
. BIG .

. .
. .

*

*****G2**********

:~~~:~~-*-*-~~:~: X

*DE *
* 83*
* * *

EXTCOM X
*****83**********
* * * FIND SIZE *
* OF * * COMMON *
* * *****************

X
*****C3**********
* * * ENTER INTO *
*COMMUNICATIONS *
* REGION *
* * *****************

EXTOl X
*****03**********
* ADJUST *
* LOCATION *
* COUNTER * * TO NEXT *
* BASE *

••• X* PROGRAM * ••••••••
• TOO * X
* BIG * *****
***************** *OF *

Chart DE.

* A4*
* * *DPALOC

Subroutine EXTCOM

Phase 12 165

•••• *
.OF ..
•• A~" ·

DPI .X.
A2 ••

•• VARIABLE *. YES
• A2 ••••• X*.IN COMMON OR .* ••••
* * •• EQUATED .*
*... *..*

• NO

.x.
B2 •• .* ... •

••]5 *. NO X
.... THIS DOUBLE .* ••••

".PRECISION.*
. . * •••

.. YES

. x.
C2 ••

••]S IT YESX
•• RESERVED ••••••

•• WORD .*
... • *

o NO

.x.
02 ••

• * •• • 0" IS IT *. NO X
*.A VARIABLE OR ••••••••••

... ARRAY .* X_*. *.00 *
• YES .. E!2*

X
··*E2"·"*"***
... ADJUST *
.. TO DOUBLE ..
.. WORD ..
: BOUNDARY :

.. ***** •• * * * ...

X
···F2·****·····
*REMDVE VARIABLE"
*FROM I)ICT CI-IAIN.
- AND MOVE AS- •
*S]GNED ADDRESS.

:!=*~~:!:.:!~~~*:

X
" •••• G2 •••••• ** ••
:~~~:~=-.-.-~~:~:
• ENTER]tHO •
* SYMBOL *

:*.***!::~~ *:

... *]0004

OP2 .X. * Hl *........ H2 ...

:~~~~~~-*-.. -~~:~: YES IS ••••
• EQUTAB *X •••••••• *.]T A .*
* SIZE FROM • ... ROOT .*

: ;~~!::.** .. : * •••• *.*

• NO

OPS .X •
• * J2 •• *. : J::3*.*****.*:

... IS *. YES • GET *
... IT AN •••••••••• X'" ARRAY •

*. _. ARRAY ••• * : SIZE :

.... •• * ... ****

• NO

. . .
••• •••••••••••••••••••••• X.X •••••••••••••••••••••••••

DPI X
:****K2***.****.:

.. INCREMENT •
* LOCAT ION *
: COUNTER :

** ... *.* *.*.*

:10004

.*~ .. ·00 •
* .B~. ·

Chart DF. Subroutine DPALOC

166

DPALOC ~
: **A4* ** •••

.. SET SWITCH ..
"'FOR INTERROGATE*
: DiCTIONARy

X ...* ••• B *.
:~~~~~!-.. -... -~~:~:
: Dl~~~~~~RY : •••• x: A2 :

* * * •• * ••••
.FINAL
.RETURN

... : ..
*DC; ...
* ... A~. .

SALO

*06 *
* *A~* ·
.x.

A2 'I.
.* IS 'I.

* * .4 VARIABLE 'I. YES
* .1.2 * •••• X IN COMMON OR ••••••
... * *. EQUATED

··*Hl**··**··

:~~:::~-*-*-~~:~:

'I. .4
'I •• *

• NO

.x.
B2 ••

•• 'I. •
.4 IS •• YESX 'I. THIS DOUBLE ••••••

4.PRECISION.*
. • *

• NO

.x.
C2

• * *. •
•• RESERVED *. YESX

.... WORD .* ••••
•• .*

'I •• 4

• NO

eX.
02 * •

• 4 •• •
•• IS IT •• NO X *. A VARIAeLE .* ••••••••
'I. ... X *...

'I •• * *00 ...
* YES B~ •

• 10004

.x.
E2 **.*.E3 ***.* ...

...... • ADJUST *
.* IS •• YES" N *

•• THIS A O.FI ••••••••••• X. C TO" - *. ROOT.* • D WORD"

.... 'I •• *.... : : 'I:::.".!
• NO

· . • x •••••••••••••••••••••••••
SALC3 X

·····F2···*·····*
.REMOVE VARIABLE*
FROIIII DICT CHAIN
• AND MOVE * * ASSIGNED ADDR *
:!~*5~:!~'1~!;~~*:

X
···62····*···

::~~~!=-.-.-~~:~:
• PUT INTO •
• SYMBOL •

: ~::~~* .. **:

.x.
H2 ••

yeS .* 'I.
• GET GROUP .X •••••••• *. THIS A ••
... SIZE IN EQU. * •• ROOT ••
• TABLE" *..*
••••• ******.*.... •• ••

• NO

SAL94 .X •
•• J2 'I. *. : •••• J3***** •••• :

.* IS 'I. YES • GET * 'I. THIS AN .* •••••••• x* ARRAY •
'I. ARRAY .tt • SIZE •••• *

..... * .* ••• *.****** ... * ...

. . .
••• ••• ••••••••••••••••••• x.x •••••••••••••••••••••••••

Chart 00.

SAL002 X
:*.*.K2* •••••••• :

* INCREMENT
• LOCATION
: COUNTER

••• *.* •• * •• *****.

: 10004

•• ~.4
*00 •
• • A~.

·
Subroutine SALO

SALO X
• •• **.1.4***.*.* * seT SWI TCH *
* INTERROGATE·
... DICTIONARY *
: '01' *
**** *** ••• *.

X
* *B4*.* •••••• *

:~::!:~~!-*-*-~~:~: • *

: oll~~~~~RY : •••• X: .1.2 :

•••• ****
.FINAL
• RETURN

.*:.* .DH .ALOC
* • .1.:* .

Phase 12 167

ALCCO!

*DH *
* A2*
* * *

• X.'
A2 *.

**** .* *.
* * .* HAS *. NO
* A2 * X*. NAME 8EEN .* •...•...
* * *. EQUATED .*

ALOC05 .X.

x

*DO *ID004
* E2*
* *
*

*****81********** 82 *.
ALERET DUA3 .* IS *.
--*-*-*-*-*-*-* f\'C.* THIS A *~
* ERROR- *X •••••••• *. VARIA8LE .*
* CANNOT * *. .*
* EQUATE * *..*
***************** *. .*

* YES

. .
••••••••••••••••••••••••• X.

ALCC06 X
*****C2**********
* * * RESTORE *
* DICTIONARY *
* POINTER *
* * *****************

X
*****02**********
ECSRCH D~A2
--*-*-*-*-*-*-*
* LOOK UP *
* VARIABLE *
* IN EQUTAB *

ALOC02 .X.
E2 *. *****E3**********

.* *. * *
.* IS *. NO * COMPUTE *

. ROOT IN . •.•••••• X* ADDRESS *
. COMMON . * *
.. * *

. . *****************
* YES

. .

.X •••••••••••••••••••••••••

ALCC03 X
*****F2**********
REMCVE VARIABLE
FRO~ DICT CHAIN
* AND MOVE AS- *
*SIGNED ADCRESS *
*TC CHAIN FIELD *

ALCC04 X
*****G2**********
SCRSYM OPA2
--*-*-*-*-*-*-*
* ENTER INTO *
* SOURCE SYMBOL *
* TABLE *

x

*DO *
* 82*
* * *

Chart DH. Subroutine ALOC

168

*DH *
* ALt.*
* *
*
.

ALOC X
*****A4*******
* * * SET SWITCH *
FOR INTERROGATE
* DICTIONARY *
* '00' *

X
*****84**********
INTDCT DOA2 ****
--*-*-*-*-*-*-* * *
* SEARCH * •.•• X* A2 *
* DICTIONARY * * *
* * *****************

.FINAL

.RETURN

X

*DI *
* A2*
* *
* LDCN

*0 I *
* A2*

* *
*

LDCN X LDCNlA
*****A2******* *****A3********** *****A4********** *****A5**********
* SET * '* SET PROGRAM * *GOFILE DTA2* * PUT ENTRY *
* SWITCH FOR * * NAME IN ESD * *-*-*-*-*-*-*-*-* * POINT IN *
* INTERROGATE * •••••••• X* BUFFER TO * •••••••• X*OUTPUT CONTROL * •••••••• X* ESO BUFFER TO *
* DICTIONARY *OUTPUT CONTROL * * SECTION CARD * * OUTPUT ENTRY *
* 'II' * * SECTION CARD * * * * CARD

* 82 * •••
* * ****

• *.
B4 *.

X
*****65**********
GOFILE OTA2

*****82**********
INDCT DOA2
--*-*-*-*-*-*-*ENO * * NO.* ANY *. *-*-*-*-*-*-*-*-*
* SEARC~ if ••••••••

*CICTIONARY FOR *RETURN X
* 82 *X •••• *.VARIABLES IN .*X •••••••• * OUTPUT ..
* * if. COMMON .* .. ENTRY *

* ENTRIES ***** **** *..* * CARD *
***************** *OJ *

* A2*

LDCNI .X.
C2 *.

.* *.

* * *
ASSB.NL

NC .*15 ESD EIT if.
•••••••••••••••••• *.SET FOR THIS .*X •••

. ENTRY . .. *. . *
*. • *

.. YES *
* *

*01 *
* C2*

.x. LOCN4
D2 *. *****D3**********

.* *. *ASSIGN ADDRESS *
.* IS THIS *. YES *REMOVE VARIABLE*'

. A DUMMY . •••••••• X* FROM DICT if

. . * CHAIN *
.. * *

*. • * * NO

.X.
E2 *.

• * * • • * IS THIS *. YES
A~ EXT FUNCTION ••••

*. • *
~. .*

. . * NO

.X.
F2 * •

• * *.
• NO.* IS THIS * •
• X •••••••••••••••• *. AN IN-LINE .*

.FUNCTICN .
. .

. • ' * YES

LDCN2 X
*****G2**********
PUT APPROPRIATE

• * ceDE NUMBER *
.X •••••••••••••••• *INTC DICTIONARY*

* CHAIN *
* *****************

*****H2**********
ESD DGA2

• *-*-*-*-*-*-*-*-* •
• X •••••••••••••••• *GENERATE AN ESO*X •••

+ RLD ENTRY FOR

x
***** *DO * 10004
* 82*
* * *

Chart DI.

* THIS SYMBOL *

Subroutine LDCN

x
"*****
*00 *
"* 82*
* *
*

* •• * *****************
* YES

X
*****C4********** * SET COMMON * * AND NUMBER
.. OF BYTES IN *
* COMMON IN *
* ESD BUFFER *

X
*****04**********
GO FILE DTA2
--*-*-*-*-*-*-*
*OUTPUT CONTROL *
* SECTION CARD *

* * * 82 *
* *

Phase 12 169

*OJ *
* A2*

* "
"

A5SNEL X
*****A2**********
" " * INITIALIZE *
" REGISTER "

" "

ASSNEA X

" "

*****82**********
* GET CHAIN *
" ADDRESS * FROM THUMB *X •••••••••••••••••
* INDEX *
" " *****************

" ". * C2 *.X.
" " ****

ASSNl • X.
*****Cl********** C2 *.

NO
." .

C3 *.
* * .* *. .* '* GET ADDRESS * .* END *. YES .*
* CF NEXT ENTRY * •••••••• X*. OF .* •••••••• X*.
'* IN CHAIN * *. CHAIN .* *.

" *****************
X

. . ' * NO

• X.
*****01********** 02 *.
* * .* IS *.
if SKIP * YES .*THIS STMT. *.
* THIS *X •••••••• *NC. FOR FeRMAT *
* STMT NO. '* *. OR SPEC .*
* * *.STMT .*

X

.X.
E2 * •

• * WAS *.
NC .* STMT NC. * •

•••••••••••••••••• *. REFERENCED .*

Chart OJ.

170

*. . *
*. • *

*. • * * YES

X
*****F2**********
" PUT BRANCH "
* LIST NUMBER '* '* IN CHAIN ANC * * UPDATE BRANCH *
* LIST NUMBER

X

" " * C2 *
" " ****

Subroutine ASSNBL

".

LAST
CHAIN

*****C4**********
'* UPDATE *

'*. YES LOC CTR "
.* •••••••• X* BY SIZE OF *

.* * BRANCH LIST

'***********

x

*DK *
* A2*

" " " SSCK

***** *OK *
* A2*
* *
*

SSCK X
*****A2**********
* *
* * * INITIALIZE *
* *
* * *****************

.
SSCKI X

*****82**********
* GET CHAIN *
* ADDRESS *
* FROM THUMB *X •••••••••••••••••
* INDEX *
* * *****************

••••••••••• X.

• SSCKI .x. .*. NO

C2 *. C3 * •
• * *. .* * • • * END *. YES .* LAST *. YES

. OF . •••••••• X*. CHAIN .* ••••••••
. CHAIN . *. .* X
.. *..* *****

* •• * * •• * *OL *SORLIT
* NO ... * A2*

.SSCK6 .X.
02 *.

• .* IS * •
• YES.* THIS * •
• X •• *. ENTRY .*

. ZERO .
. .

. .
* NO

· . • SSCK7 X
*****E2**********
* PUT ASSIGNED *
* ADDRESS OF *

•••• * REFERENCED *
* VARIABLE INTO *
Sl:BSCRIPT CHAIN

Chart DK. Subroutine SSCK

* *
*

Phase 12 171

*DL *
* A2*
* * *

SCRLIT X
*****A2**********
* * * * * INITIALIZE *
*
*

*
* *****************

SRLTXX X
*****B2**********
* GET CHAIN *
* ADDRESS *
* FOR * * INTEGERS *
* * *****************

* *. * C2 *.X. * *. X •••

SLIT2 .X. SL IT3 SLIT3A

C2 *. *****C3********** *****C4**********
.* *. *TXT DSA2* *SORSYM oPA2*

.* END *. NO *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
••••••••••••••••• X*. OF .* •••••••• X* PUT LITERAL * •••••••• X* ENTER *

CHAIN .* * CUT ON TEXT * * SYMBOL INTO *
*. . * * CARD * * STORAGE MAP *

*. • * ***************** *****************
* YES

SLIT4 .X. SLITS
*****01********** 02 *. *****03**********
* GET CHAIN * .* *. *ESo oQC4*
* ADDRESS * INTEGER .* WHICH *. DOUBLE *-*-*-*-*-*-*-*-*

*DL *
* D3*
* *
*

.:X* FOR *X •••••••• *. CHAIN .* •••••••• X* CLOSE ESD/ *X •••••••
* ReAL * *. .* PRECISION* RLD CARD *
!***************! *.* •• *.* x :****~~~:;~~****:

**** * REAL
* *.
* 01 *
* * ****

Chart DL.

172

SLIT4A X
*****E2**********
* GET CHAIN * * AODRESS * * FeR DOU8LE *
* PRECISION *
* * *****************

X
*****F2**********
* ADJUST *
* LOCATICN *
* CTR TC *
* DOUBLE WORD *
* BOUNDARY *

X

* * * C2 *
* * ****

Subroutine SORLIT

* * * 01 *
* * ****

SL IT6 X
*****E3**********
TXT DSG3
--*-*-*-*-*-*-*
* CLOSE TEXT *
* CARD BUFFERS •
* * *****************

X
****F3*********

* EXIT TO FSD *
* TO LOAD *
* PHASE 14 *

EQSRCH X
:****A2*********:

* INITIALIZE *
: REGISTERS : . .
.****************

.x.
B2 * • • * •• • * IS •• NO

•• VARIABLE IN .* .•.........•••.•.• *. TABLE ••
. .

* •• * * YES

X
** •• C2*.*.* •• ••

*DM *
* *D!*

RENTER X
:****01*********:

* INITIALIZE
: REGISTERS

X
.*E 1 ****
* SET ROOT *
* INDICATOR.
* FOR VARIABLE *
.. BEING *
:****i~!i~i~** *

• FOUND *
: RETURN

.********

F 1 .x. *. ***.*F2****".* •• *
... *. * •

.it IS *. YES * GET * .. VARIABLE IN .* ••••• G •• X* COMMON
*. COMMON • * * ADDRESS
... * *

* •• * *****************
• NO

· . • x
ENTER .X.

G1 * •
• * *. .* IS *. NO * *

•• X*.D.P. BIT SET .* •••• X* 04 *
.tHROOT. * *

. .

• x.
HI * •

• * *. .* * it
it. ROOT IN X* 04- *

. COMMON. *.
. .

*. o· * YES

.x.
J 1 * ..

•• IS *. ..**
.* !IIOCR ON *. YES * *

*. DOUBLE WORD .. * X* 04 *
.BOUNDARY . *.

. .
* •• *

• NO

X
*****K 1 **.*.*** ••
:~~~~:!-.-*-~~:~:
* INCONSISTENT •
: EQUATE *
•• *************.*

X
****C3*··.****** * NOT FOUND *

: RETURN

**** ••• *.* •• **. **** o •
: 04 :

ENTERl X
*****04**********
• ENTER * * VARIABLE. *
* ROOT. •
: DISPLACEMENT :

*******.*********

X
*****E4-*** •• ***.* · . * FINO it
* GROUP *

SIZE

.x.
.*F4 * .. *. :****F5*********:

.* IS *. YES * REPLACE
. IT GT . ••••• G •• X* OLD

. OLD. *
. .

* ... * *** •• **** ••• *****
• NO

· . .X ••••••••••••• "

.x.
• * G4 r S *. *. :*"**G5******,***:

.* COMMON *. YES * ADJUST * *. EXTENDED " •••• X* LOCATION
•• FORWARD .* * COUNTER
.. * * * •• * .*******.********

• NO

· . • X e • ~." '" ... ~

• x •
H4 *. *****H5**********

.*.* CO~~ON *. *. YES :~~:~:L*_*_~::!::
*. EXTENDED X" COMMON •

*. BACK.,ft • EXTENDED

*. * •• *.* :***:!~~:::~*****
• NO

· . • X

ENTER3 X
*****J4********** * INCREMENT *
* TABLE

ENTRY
• COUNT *
.11***************

x
• ***.K4*·******. *

RETURN

Chart DM. Subroutines EQSRCH, RENTER/ENTER

Phase 12 173

_.*-­*ON *
* *A~* ·

SWRoeT X
*****A2****if*****

:~~:~~~-*-*-~~:~:
* FIND NEW *
* ROOT AND SAVE *

:**if*:~~~i;i****:

.x. .*.
82 *. 83 *. ** •• *84*********.

•••• .* *. *ALERET DUA3*
.* DOES OLD *. YES .* IS *. NO *-*-.-*-*-*-*-*-.

ROOT .. NElli ROOT •••••••• X*.DISPLACEMENT .* •••••••• x* INCONSISTENT * ••••••••
•• .* *. ZERO.. • EQUATE * X
.. *..* * *****

* •• * * •• * ****** •• if*if*.**** *DC *
• NO * YES .*Ii!. · . *DN *.X.

* CZ·
***if •

S\II06 X
:***.Cz*.***.***:
... INITIALIZE *
: REG 1 SYERS : .
..***.* •• *.***.

x
: •••• 02***.*** *

• SET EQUATED •
* 8IT FOR *
: OLD ROOT *

• *****.****.**

.x.
E2 ••

•• *.

EQUl5

:****E3******* *

•• IS *. yes SET
•• OLD ROOT .* •••••••• X. NEW ROOT

•• D.P..* • D.P. ...* .
* •• * ••••• *if*.* ••••

• NO

EQUSIS

****.05.*·******·

:~;~~:!-*-*-~~:::
•••••••• * INCONSISTENT *

if.~** : EQUATE •
.OC • ..*.* •• ** ••• * ••• *
•• Ii!. X .
EQUSl5

: NO
.if. .*.

E4 *. E5 *.
.* *. .* *.

.* IS •• YES .* ON *.
••••••••• X •• OLD ROOT IN .* ••••••.• X*. DOU8LE WORD .*

if *. COMMON .* •• 80UNDARY .* ...* *... •• •• • •• *
* NO * YES

• x •
• X

5\1102 X
:**.*FZ-****-* •

• RESET NEW •
* ROOT EQUATED •
: BIT -
••• *.* ••• ****.

· '. * G2 *.x.
..** •

X SWOl •••
•• *.*G2***.** •• ** .**.*G3 ••• ******* G4 * •
• EQSRCH DMAZ* * ENTER NEW • .* *.

NOT.-.-.-*-*-.-*-*-* FOUND • ROOT AND NEW * .* ROOT *. YES
•••••••• * LOOK FOR OLD * •••••••• x* DISPLACEMENT ••••••••• x*. IN COMMON .* ••••••••••••••••••
X FOUND*ROOT VAR ENTRY * * • *. .*

.****. • * *. .*

.DC • ***************** *****.**.******** ••••
**H!* x • NO

EQUS15

Chart DN.

174

SW04 X
:****H3 •• *******:

• • AOJUST *
• ••••••••••••••••• : GROUP SIZE . .

• ***** •••• ******.

Subroutine SWROOT

.x.
HS ••

.* *.
:*.**H4* •• ******:

ADJUST * YES .* IS COMMON *.
LOCATION *X •••••••• *. EXTENDED .*

COUNTER * •• FORWARD • *
* * *..*
***********.** •• * •• • •

• NO

. .

.......................... X.

SW05 .X.
J5 ••

• * *.
• * NO.* COMMON *.
* G2 *X •••• *. EXTENDED .*
* * *.BACKWARD .*

* •• * * YES

X
****·K5***.**.***

:~;~~~!-*-*-~~:~:
* COMMON *

EXTENDED

****~:i~::~~*****

: G2 :

*00 ..
* Al*
* *
*
.

INTDCT X
*****A2**********
* I~ITIALIZE *
* REGISTERS *
* AND POINTERS *
* FeR SEARCH *
* * *****************

* * •
*CC *.x.
* E2*

10004 .x.
B2 *. 10003

.* *. ****83*********
.* ANY MORE *. NO * *

. DICTIONARY•• X* RETURN *
. ENTRIES . * *

X
*****C2**********
* * * GET * * DICTIONARY *
.. ENTRY *
* * *****************

IDTEST X
*****02**********
* BRANCH * * ACCORDING TO *
* SWITCH SET IN *
* SUBROUTINE *
" * *****************

.......•.....•.••.......................•........
• SWITCH SETTING. SUBROUTINE. BRANCH LOCATION •
• ***.

00 ALOC DHA2

01 SALO DGA2•.••........................
10 DPALOC DFA2•.•••.•..••..............................
11 LDCN DIC2

Chart DO. Subroutine INTDCT

Phase 12 175

*DP *
* A2*
* * ...

SCRMAF X
*****A2**********
* GET ...
* BUFFER *
... POINTER *
* * *****************

SCRfo!F3 .X.
82 *. *****B3**********

.* HAS *. * SET UP *
.* HEADING *. NO * PROPER *

.SEEN PRINTED X* HEADING *
.FOR THIS . * IN PRINT *

CATEGORY * BUFFER ...
. . *****************

... YES

.
X

*****C2**********
* MOVE OATA * * AND ADDRESS *

X
******C3***********

* * TO PRINT *X ••••••••
* BUFFER * * * * *****************

PRINT
HEADING

*
...

.
.X.

02 * •
MAP1A

******03***********
• * *.

.* IS *. YES *
. BUFFER . •••••••• X

. FULL .
. .

. .
* NO

.
MAPlE X

*****E2**********
* UPDATE *

PRINT
A LINE

* OF DATA ...

* BUFFER * • * POINTER *X •••••••••••••••••
* ...
* ...

EXIT X
****F2*********

* ...
* ... RETURN

Chart DP. Subroutine SORSYM

176

...

****A 1 *********

*DQ "
* A2* * ..

"
.

ESD X
*****A2**********
" *

* " " GET ..
*
*

RETURN

X

" .. *eUFFER POINTER
" ..

NO •
• *. X

Bl *. *****82**********
.* *. * * .* IS GO OR ". "ASSIGN ADDRESS "

*. DECK OPTION .*X •••••••• * CONSTANT *
. SET. * ADDRESS *
.. * *

* •• * *****************
.. YES

*****C2**********
.. MOVE ESD "

• " SYMBOL INTO *
••••••••••••••••• X* CURRENT CARO *

" IMAGE BUFFER "
" " *****************

.
X

*****02**********
.. UPDATE ESID "

" ..
"

.. ..
"

*DO * * C4* * ..

*

PC HE SO X
*****C4******* .. ."
" SET END "
.. SW FOR RLD "
.. ROUTINE ..

" " **************

.X.
04 *.

.* * •
• *15 CURRENT *. YES

. CARD BUFFER . ••••••••
. EMPTY . X
.. *****

***************** *. .* *OR * TO RLD
* NO * A2*

ESDC .X. ESDD . ESDE X
*****E1********** E2 *. *****E3********** *****E4********** * * .* *. * * *GOFILE DTA2*
.. INITIALIZE" ONE ." HOW MANY *. THREE .. UPDATE NUMBER * *-*-*-,,-,,-*-*-*-*
*ESID AND NUMBER*X •••••••• *ENTRIES IN THIS* •••••••• X* OF BYTES * •••••••• X*TO OUTPUT CARD *
... OF BYTES * *. BUFFER .* ... * * *
... * *..* * * * *
***************** * •• * ***************** *****************

* TWO

ESDA X X
*****F1********** *****F2**********
" * * ..
* UPDATE BUFFER " " UPDATE NUMBER " * POINTER *X •••••••• * OF BYTES " * * .. " *****************

.
X

"DR * TO RLD
* A2* .. *

*

.. ..
* ..

Chart DQ. Subroutine ESD

X
*****F4**********
* SELECT AND *
* CLEAR OTHER *
* BUFFER ..
* " *****************

x

*DR .. TO RLD
* A2*
" * ..

" * "

Phase 12 177

***** *DR *
.. A2"

" " "

· RLD X
*****A2**********
" GET RLD CARD "
" BUFFER "
" POINTER "
" " " " **.**************

.x. RLC2 .*.
B2 *. 83 * •

• * WAS *. .* IS * •
• * END *. YES .* THIS *. YES

. SWITCH . ••••.••• X*. BUFFER .* *. seT BY .* *. EMPTY .*
. ESO . *..*

* •• * * •• *
" NO .. NO

· X
*****C2**********
" FUT LOAD "
" CONSTANT "
.. ADDRESS "
" AND ESID "
" TO BUFFER "

· X
*****02**********
* UPDATE ..
" NUMBER "
* OF BYTES ..
* ..
" " *****************

· .x. RLD3 X
E2 *. *****E3**********

.* IS ". "GOFILE DIA2"
.* THIS *. YES *-*-*-*-*-*-*-*-*

. BUFFER . ••••••.• X* TO *
. FULL. "OUTPUT *
.. * CARD *

. . *****************
* NO

· X RLD1 X
*****F2********** *****F3**********
* " " SELECT " " UPDATE " " AND CLEAR ..
" BUFFER " .. NEXT ..
* POINTER * * BUFFER * * .. * * ***************** *****************

.
X

****G3*********
• * * • ••••••••••••••••• x* RETURN *X •••

* * ***************

Chart DR. Subroutine RLD

178

DS '
* A2* .. .

TXT
*****A2********** · . A.SSIGN

ADDRESS
TO DATA · *****************

• X.
82 * •

• *15 DECK*. *-JI**
.* OR GC *. NO * * *. OPTION SET .* x* J3 *
*. .4 * *
.. ****

* •• * * YES

X
*****C2** ********
* PUT PROGRAM *

BUFFER
POINTER .

-JI*****-JI****-JI*

*****02***-JI-JI*-JI***
'* PUT TXT '*
* DATA TO *

BUfFER

• * *-JI-JI*-JI*"***********

*****E2**********
* UPDATE *

NUMBER
OF BYTES

.X.
F2 *.

.* IS *.
YES .*THIS FIRST *.

*****F 1 **** ******
* SET UP *

FIRST
A.DDRESS *X *. ENTRY eN .*

IN BUFFER * *. THIS .. *
* .. CARC .*

* ... '*
• '0

TXTl X
'*G2**********
* UPDATE '*

BUFFER

*DS *
* (:3*
• *

PCHTXT .. x.
G3 * ..

.'* IS * * THIS *. YES
• e x* POINTER *. BUFFER .*

Chart DS.

· . . *. EMPTY ~*

. . '* * '* ** **** ***-11-* '* ** *;. .. *
• NO

TXT2 eX. TXT3
H2 *. *****H3**********

.* IS *~ *GOFILE DTA2*
.* THIS * .. YES *-*-*-*-*-*-*-*-*

*. BUFFER .. * X* TO OUTPUT *
. FULL. * CARD

. ..
. . * 1\0

**** · . * J3 *.X.

• * **** •
TXT4 X

*****J3**********
* SELECT *

AND CLEAR
NEXT

BUFFER

X
****K3******-lI-** · .

• e ~ •••• X* RETURN *X •••

Subroutine TXT

· . ***************

Phase 12 179

*DT *
* A2*
" " "

GOFILE X
*****A2**********
" " " * " I~ITIALIZE "

" " " * *****************

X
*****82********** * UPDATE *
* CARD *
" SEQUENCE *
* NUMBE~ *

X
*****C2**********
" PUT PROGRAM *
" ~AME A~D " * CARD SEQ *
* NUMBER *
* TO CARD *

.x.
02 * •

• * IS * • • * COMPILE *. NO
.AND GO OPTION. ••••

. ON .
. .

*. • * * YES

X
*****E2**********
* *
* " *
"

WRITE GO
FILE " " " " *****************

• X

GCFLI .X.
F2 * •

• * * • • * IS *. NC
. DECK OPTION . ••••

*. ON • *
. .

* •• * * YES

GCFL2 X
*****G2**********
* "
" * " " *

PUNC,-,
CARD " " " *****************

.x •••••••••••

X
****H2*********

* *
" "

RETURr< " " ***************

Chart DT. Subroutine GOFILE

11:10

ALOWRN

*DU *
* A2*

" " "

X
*****A2**********
* SET WARN ..
* SWITCH " " AND *
* ADJECTIVE " " CODE " *****************

ALOEfU
*****B2**********
.. ADD PROPER "
" ADJECTIVE *
" CODE TO *
.. ERROR "
" NUMBER "

. X
*****C2**********
" PUT ERROR "
* MESSAGE "
.. TO OUTPUT "
" BUFFER "
* " *****************

X
*****02**********
" UPDATE *
* OUTPUT "
" POINTER "
* .. " " *****************

ALERET

*Ou *
* A3*
" " ..
X

*****A3**********

" SET 'ERROR *
" SWITCH ..
" AND ..
* ADJECTIVE CODE " *****************

.X.
E3 * •

• * IS * • • * OUTPUT *. YES
. BUFFER . ••••••••

. FULL. X
... *****

* •• * *DL *
* NO * 03*

X
****F3*********

" " "
EXIT TO
PHASE 14

" ..
" "

RETURN

4**************
" "

Chart DU. Subroutine ALERT/ALOWRN

Phase 12 181

· PHASE 14

Phase 14 reads the intermediate text
created by Phase 10 and replaces any
dictionary pointers with information
accessed from the dictionary. Phase 14
converts intermediate text for FORMAT
statements to an internal code that is used
by IBCOM to place input and output records
into a format specified for the object
program.

Chart 05, the Phase 14 Overall Logic
Diagram, indicates the entrance to and exit
from Phase 14 and is a guide to the overall
functions of the phase.

The adjective code of the first
mediate text entry for a statement
cates the type of statement and
subroutine is to process intermediate
entries for the particular statement.

inter­
indi­
which
text

All statements except
READ/WRITE, and arithmetic
tion definition statements
similarly by Phase 14.

END, FORMAT,
statement fUnc­
are processed

When Phase 14 reaches the intermediate
text entry for the END statement, it puts
that entry on the intermediate text output
tape and then continues to access text
wordS, putting out any error entries fol­
lowing the END statement.

Upon encountering intermediate text for
a FORMAT statement, Phase 14 converts that
text to an internal code used by IBCOM at
object time. If requested, the code is
written on the GO tape and/or punched on a
text card. The code consists of a 1-byte
FORMAT adjective code and a 1-byte field
containing a binary number associated with
the FORMAT adjective code.

When Phase 14 processes READ/WRITE
statements, it checks for any implied DOs,
inserts implied DO adjective codes in the
intermediate text, and puts the text
entries for the implied DOS into a new
format.

182

When an arithmetic statement function
definition is encountered in Phase 14, a
unique number is assigned to the arithmetic
statement fUnction. This number is used to
identify the statement function in later
phases.

In the intermediate text entries for the
FORTRAN statements, other than the END and
FORMAT statement, dictionary pointers are
replaced. If the pointer refers to an
entry for a variable, constant, array, or
external function, the address aSSigned to
it and placed in the chain field by Phase
12 is inserted in the intermediate text
entry. If the pointer refers to a data set
reference number, that number is inserted
in the intermediate text entry in place of
the pointer. If the pointer refers to an
arithmetic statement function, the arith­
metic statement function number replaces
the dictionary pointer.

As the entries are updated, they are
written on the intermediate text output
tape for Phase 14.

READ/WRITE STATEMENTS

The READ/WRITE text entries are scanned
for implied DOs which are recognized by a
left parenthesis within a READ/WRITE state­
ment. For each encounter, an implied DO
adjective code is inserted in the inter­
mediate text entries for the READ/WRITE
statement. When the end of an implied DO
is recognized (right parenthesis), an end
DO adjective code is inserted in the inter­
mediate text. The entries for READ/WRITE
statements are rearranged so later phases
of the compiler may process them.

The implied DO variable and parameters
are placed ahead of the subscripted varia­
ble. The entries for the offset, dimension
pointer and the subscript pointer are
placed ahead of the entry for the variable
itself. If an implied DO:

(A (I) , I= 1 , 10)

is processed by Phase 10, the output has
the format shown in Figure 43.

r-------T-----------T---------------,
IAdjective , ,Pointer I
, Code , Mode/Type , Field I
~---------+------------+---------------~
, ,real, ,
I (I subscripted I p (A) I
I I variable I I
~---------+-----------+-----------------1
I SAOP 100 I Offset I
~-------.l.------------+----------------1
Ip(dimension) Ip(subscript) I
~-------T----------+--------------1
I I integer I I
I , I variable I p (I) I
~----+----------+-----------1
I I inunediate I I
1= IDO parameter I 1 I
~----------+-----------+-------------1
, I inunediate I I
I, IDO parameter I 10 I
~------+---------+--------------1 D 100 ,0000 , L--______ .l. ___________ .l. _______________ J

Figure 43. Implied DO Text Input to Phase
14

After Phase 14 has processed the implied
DO, the intermediate text output takes the
format shown in Figure 44.

r---------T---------T-------------,
IAdjective r ,Pointer ,
, Code , Mode/Type , Field I
~------+----------+------~------1
I implied DOIOO 10000 I
~-----+---------+----...;.---------~
, ,integer, ,
, , ,variable I address (I) I
~------+---------+__------------1
, , inunediate . , ,
,= 'DO parameter' 1 ,
~------+-----------+__-------------1
I , inunediate , ,
I, 'DO parameter, 10 ,
~------+----------+-------------~ , , inunediate , ,
I , 'DO parameter 11 I
~-------+----------+-----------------~
'begin I/O 100 10000 I
~----+-----------+--------------~
,SAOP ,00 ,Offset ,
~------.l.----------+--------------1
, P (dimension) I p (subscript) ,
~-. ---T--------+__-------------~
, I real I ,
, (,subscripted 'address (A) I
I , variable I I
~---------+--------+------------1
lend DO 100 10000 I L ________ .l. _________ .l. _____________ J

Figure 44. Implied DO Text Output from
Phase 14

ARITHMETIC STATEMENT FUNCTION DEFINITIONS

Each arithmetic statement function (ASF)
must be defined before it can be used in
another statement. When Phase 14 encoun­
ters an ASF definition, a number is
assigned to that function. A counter,
reserved in the conununications a~ea, is
initialized at zero and incremented by 1
each time an ASF number is assigned. The
ASF number is placed in the chain field for
the ASF dictionary entry.

When a statement that references the ASF
is encountered, the dictionary entry for
the ASF is accessed. The ASF number is
placed in the pointer field of the inter­
mediate text entry for the statement that
references the ASF.

FORMAT STATEMENTS

FORMAT statements are converted to an
internal code which is accessed and used by
IBCOM to place input and output records
into the format specified for the object
program. The internal code is. written on
the GO tape and/or text cards, depending on
the user's options.

STRUCTURE OF A FORMAT STATEMENT

A FORMAT statement is composed of a
series of format specifications, establish­
ing the format of the input and output
records for a FORTRAN object program.

The field length for a FORMAT specifi­
cation is the number of bytes reserved in
the input or outptlt record for the variable
in the record. The field length is the
number located immediately to the right of
the format code. In the specification I6,
the ~umber 6 represents the field length.
Six positions are reserved in the record
for any variable using this specification.

The decimal length is the number of
bytes reserved for decimal places within
the field. In a format specification using
a decimal length, the decimal length is the
number following the decimal point. The
point is located inunediately to the right

.of the field length. In·the specification
F10.2, the number 2 represents the decimal
length and the number 10 represents the
field length. The field length must be
large enough to contain the number of
decimal places, a decimal point, a sign,
and an exponent if there is one for the
specification.

Phase 14 183

The field count represents the number of
times a conversion is to be repeated for an
I/O list. In a format specification using
a field count, the field count is the
number located immediately to the left of
the format code. In the specification
5F10.2, the number 5 represents the field
count. This means that the conversion
Fl0.2 will be repeated 5 times in an
input/output record.

Format specifications may be repeated by
enclosing them in parentheses. The format
specifications within the parentheses is
called a group. In the FORMAT statement,

10 FORMAT (I6,F12. 5, (Fl0.2,H»

(Fl0.2,I4) is a group. After the first two
fields are processed, the variables follow­
ing in the I/O list for the input state­
ments alternate with the specifications
Fl0.2 and 14.

A group may be repeated any number of
times by placing a number immediately
preceding the left parenthesis that defines
a group. This number is called the group
count. In the FORMAT statement,

1 0 FORllJA T (16 r F 1 2. 5, 7 (F 1 0 • 2 , I 4) , D 9 • 3)

the number 7 represents the group count.
The group Wl0.2,I4) is repeated 7 times
for the I/O list referencing this FORMAT
statement.

The length of a record is determined by
information in a FORMAT statement. In the
statement,

20 FORMAT (F7.3,5X,4F15.7, 'HOG')

75 bytes constitute the record length. In
the FORMAT statement,

30 FORMAT (F20.4,4Il0/6 (I2,4X) .5HSTEEL)

two records are represented. The two
records are separated by the character /.
The first record is 60 bytes long, and the
second is 41 bytes long.

A user has the option of specifying a
length (referred to as a specified length)
for records through a control card. The
specified length is compared to a record
length that is computed by Phase 14 as it
processes the FORMAT statement. If the
record length exceeds the specified length,
a warning message is issued.

184

FORMAT TEXT CARD

FORMAT statements are translated into an
internal representation used by IBCOM to
place input/output records into a format
specified for the object program. The
internal representation is a series of
1-byte hexadecimal .numbers (two hexadecimal
digits for each byte). A byte may contain
a FOR¥JAT adjective code, which indicates
either the format conversion (H, I, F, P,
X, etc.) to IBCOM, or a group or field
count, or the end of a FORMAT statement.
The byte may also contain a number that
represents a field count, field length,
group count, or decimal length. There are
four ways bytes may be entered into a text
card.

Adjective Code and Number

An adjective code followed by a number
is entered for format specification P, I,
T, A, and X, and for entries made to
indicate a field or group count. The
number entered along with the correct
adjective code for each specification is as
follows:

1. P specification: the scale factor is
entered as the number.

2 •• 1 and A specifications: the field
length is entered as the number.

3. T specification: the record position
is entered as the number.

4. X specification: the number of blanks
to be inserted on output or the number
of characters to be skipped on input
is entered as the number.

5. Field count: the actual field count is
entered as the number.

6. Group count: the actual group count is
entered as the number.

An example that illustrates the preced­
ing text card entries is the group
5(12,110). The text card entry for that
group is 04051002100A. The entry is com­
prised of three parts: 0405 for the group
count; 1002 for 12; and 100A for 110. In
each case, the first two hexadecimal digits
represent the adjective code, while the
last two represent the associated number.

Adjective Code

Entries consisting
code are made for
parenthesis that ends
parenthesis that ends

of only the adjective
a slash, the right
a group, or the right
a FORMAT statement.

Adjective Code, Field Length, and Decimal
Length

An adjective code followed by a field
length and a decimal length are entered in
the format text cards for D, E, or F
specifications. For example, the specifi­
cation F9.3 is entered in a text card as
OA0903 where OA is the adjective code, 09
is the field length, and 03 is the decimal
length.

If the format specification +2PF9.3 is
entered in a FORMAT statement, the code is
entered in the text card as 08020A0903.
The scale factor is denoted by 0802.

Adjective Code, Field Length, and Literal

An adjective code followed by a field
length and a literal is entered in a text
card for H and quote specifications. The
specification 5HTlMER is . entered as
1A05TlMER in the text card. The same entry
is generated for the specification 'TIMER'.

SUBROUTINES

A section of Phase 14 is devoted to
processing FORMAT statements, exclusively.
The other subroutines in Phase 14 process
all statements, except FORMAT statements.

Subroutine PRESCN gets the first inter­
mediate text word for a statement and
passes control to the Phas~ 14 subroutine
for that statement (Chart EA) • The adjec­
tive code subroutines ~hart E~ process
all statements except READ/WRITE, DO, and
FORMAT. Subroutine PINOUT, INOUT,
MSG/MSGMEM, CEM/RDPOTA (Chart EC) are util­
ity subroutines used by Phase 14.

Subroutines ERROR/WARNING, UNITCK/UNIT1
(Chart ED) are closed subroutines used by

Phase 14 subroutines. Subroutine
ERROR/wARNING processes error or warning
conditions; subroutine UNITCK/UNIT1 proc­
esses symbols, used to represent data set
reference nUmbers.

Subroutines PUTFTX, ININ/GET, GOFILE
(Chart EE) are used by all Phase 14 subrou­
tines to initiate I/O operations for the
phase. Subroutine DO, CKENDO (Chart EF)
are used to process DO statements, and to
determine if a statement has invalidly
ended a DO loop. Subroutine READ/WRITE
(Chart EG) processes READ and WRITE state-

ments in Phase 14.

The subroutines in charts EH through EO
are used exclusively to process FORMAT
statements. Chart 21 illustrates the over­
all logic of FORMAT processing. Subroutine
FORMAT (Chart. EH) initializes processing
for each FORMAT statement and the format
specifications within a statement. Subrou­
tine D/E/F/I/A (Chart EI) processes D, E,
F, I, and A specifications. Subroutines
QUOTE/H,X (Chart E~ process format speci­
fications for literal, H, X specifications.
Subroutines +/-/P, BLANKZ, FILLEG, FCOMMA
(Chart EK) process P specifications and
blanks, commas, and illegal delimiters
found in a FORMAT statement. Subroutines
LPAREN, RPAREN (Chart EL) process any
parentheses found in a FORMAT statement.
Subroutines T, FSLASH process the T speci­
fications and any slash found in the state­
ment. Subroutines LINETH, LlNECK FLDCNT,
NOFDCT (Chart E~ perform operations con­
cerning the record length and field counts
for a FORMAT statement. Subroutines GETWD­
A, INTCON (Chart EO) are used to scan
FORMAT statements and convert any integers
in the statement to binary number.

Subroutine PRESCN: Chart EA

Subroutine PRESCAN performs initializa­
tion for Phase 14. PRESCN checks the
adjective code of the first intermediate
text entry for each statement and calls the
correct Phase 14 subroutine to process
intermediate text for that statement.

ENTRANCES:
from:

Subroutine PRESCAN is entered

1. The FORTRAN System Director, after
Phase 14 has been read into main
storage, for initialization.

2. Subroutine MSG/MSGMEM, after entries
are moved to the intermediate text
output buffers.

3. Subroutine LABEL DEF, after a state­
ment number has been entered in the
intermediate text output buffers.

4. Subroutine LPAREN, when the clOSing
left parenthesis for a FORMAT state­
ment is recognized.

OPERATION: When PRESCN is entered from the
FORTRAN System Director, PRESCN begins to
process entries by setting pointers to the
beginning and end of the intermediate text
input and output buffers.

Subroutine PRESCN is entered only for
the first entry in the intermediate text
for a FORTRAN source statement. The adjec­
tive code of this first entry indicates the
type of source statement that caused Phase
10 to generate. the following series of
intermediate text entries. With the adjec-

Phase 14 185

tive code, PRESCN can index to the correct
position in a branch table. The address in
the branch t.able directs the processing of
Phase 14 to the proper subroutine.

The adjective code indicates if the
statement is a keyword statement (and what
kind Of keywor~ , an arithmetic statement,
or the definition of an arithmetic state­
ment function. It also indicates if there
is an error or warning entry in the inter­
mediate text.

EXIT: Subroutine PRESCN exits to the sub­
routine indicated by the adjective code.

Adjective Code Subroutines: Chart EB

The adjective code subroutines process
all intermediate text entries in Phase 14
except the READ/WRITE, DO, and FORMAT
statement entries. Several subroutines
process intermediate text in the adjective
code subroutines. Subroutine PRESCN deter­
mines the type of intermediate text entry
to be processed and gives control to the
correct adjective code subroutine.

ENTRANCE: The adjective code subroutines
are entered from subroutine PRESCN after it
determines the current adjective code.
(The first adjective code entered for a
statement in the intermediate text indi­
cates the type of statement to be proc­
essed.)

OPERATION: A series of text entries are
made for each source statement. Separate
adjective code subroutines control the
processing of source statements and inter­
mediate text error entries. The various
subroutines and their operation are dis­
cussed in the following paragraphs accord­
ing to the statements they process.

SUBROUTINE/FUNCTION Statements: Subroutine
SUBFUN controls the processing for FUNCTION
and SUBROUTINE statement entries in inter­
mediate text. SUBFUN replaces any diction­
ary pOinters for arguments passed to the
subprogram with the address assigned to
those arguments in Phase 12.

In Phase 10, when the FUNCTION or SUB­
ROUTINE statement was translated into
intermediate text, the mode/type code for
the arguments was not entered in the inter­
mediate text. Mode/type for the arguments
was established as the statements in the
subprogram were processed by Phase 10. In
Phase 14, the dictionary entry for each
parameter is accessed and the mode/type
code is inserted into the intermediate
text.

186

Computed GO TO, GO TO, CALL, IF, Arithmetic
Statements: Subroutine PASSON processes
intermediate text entries for these state­
ments. It scans the intermediate text
until it reaches an end mark entry, and
replaces each dictionary pointer encoun­
tered during the scan, with the assigned
address for that symbol.

BACKSPACE, REWIND, END FILE Statements:
Subroutine BSPREF processes the intermedi­
ate text entries for the BACKSPACE, REWIND,
and END FILE statements and checks if a
valid symbol identifies the data set ref­
erence number. Subroutine BSPREF then
passes control to subroutine PASSON to
search for the end mark entry.

Arithmetic Statement Function Definitions:
Subroutine ASF processes intermediate text
entries for arithmetic statement function
definitions. A unique number, in sequence
from 01, is assigned to each arithmetic
statement function in the program.

When subroutine ASF is entered, the
arithmetic statement function count is
incremented by 1, and the count is moved to
the dictionary entry for the name of the
function. The intermediate text dictionary
pointer is also replaced by the count.
Subroutine ASF then passes control to sub­
routine PASSON to replace all pointers with
actual addresses and search for the end
mark entry.

Error/Warning Intermediate Text Entries:
Subroutine ERWNEM processes intermediate
text entries for errors, warnings, and end
marks. These entries are not changed by
Phase 14, but are moved from the intermedi­
ate text input buffer directly to the
intermediate text output buffer.

CONTINUE Statements: Subroutine SKIP proc­
esses CONTINUE statements. The subroutine
does not change the intermediate text
entry; it moves the entry from the input to
the output buffer.

RETURN Statements: Subroutine RETURN proc­
esses RETURN statements. RETURN calls sub­
routine CKENDO to determine if a RETURN
statement invalidly ends a DO loop. If it
does not, a check is made to determine if
the RETURN statement appears in a main
program. If so, the adjective code is
changed to STOP. The intermediate text
entry is moved to the output buffer.

PAUSE Statements: Subroutine PAUSE proc­
esses the PAUSE statements. Subroutine
PAUSE calls subroutine CKENDO to test 'for
an illegal end DO.

There are three text entries made for an
errorless PAUSE statement:

1. An adjective code for PAUSE.
2. The number identifying the PAUSE.
3. The end mark entry.

The first entry is written on the inter­
mediate text output tape. Subroutine SKIP
places the second entry on that tape~

subroutine MSG/MSGMEM, the end mark entry.

STOP Statements: Subroutine STOP controls
the processing of STOP statements. Subrou­
tine STOP calls subroutine CKENDO to test
for an illegal end DO. There are three
text entries made for the STOP statement:

1. An adjective code for STOP with zero
entries for the mode/type and diction­
ary pointer fields.

2. Zero entries in the adjective and
mode/type fields and the number iden­
tifying the STOP in the pOinter field.

3. The end mark entry.

The first entry is moved unchanged from
the input to the output buffers. Subrou­
tine SKIP moves the second entry unchanged
to the output buffers; subroutine
MSG/MSGMEM, the end mark entry.

Statement Number Definition Entries:
Statement number definitions are processed
by subroutine LABEL DEF,. A statement num­
ber entry, other than for a FORMAT state­
ment number, is moved unchanged from the
input buffer to the output buffer. A
warning is issued for a FORMAT statement
number which is not referenced. If the
FORMAT statement ends a DO loop, an error
is detected. If neither an error nor
warning is noted, the contents of the
location counter are inserted in the chain
address field for the FORMAT statement
number. (The location counter is incre­
mented when the FORMAT statement is proc­
essed, because a FORMAT statement follows
the statement number entry in the inter­
mediate test.) The statement number entry
is moved unchanged from the input to the
output buffer.

END Statement: Subroutine END processes
the intermediate text entries for the END
statement by moving the unchanged inter­
mediate text word from the input to the
output buffer. If other text entries fol­
low the END statement entry, those text
words are also moved to the output buffer.
Subroutine END then writes an end of data
set on the intermediate text output tape
and rewinds the input and output tapes.

Subroutine END calls the FORTRAN System
Director to read Phase 15 into main stor­
age.

EXITS: The adjective code subroutine exit
to:

1. Subroutine MSG/MSGMEM to process the
end mark entry for the adjective code
subroutines.

2. Subroutine PRESCAN to process the ser­
ies of intermediate text entries for
the next statement.

3. FORTRAN System Director to read Phase
15 after the entry for the END state­
ment has been processed.

SUBROUTINES CALLED: During
adjective code subroutines
following subroutines:

execution the
reference the

1. RDPOTA to replace a dictionary pOinter
by the assigned address.

2. CKENDO to test for an illegal end DO.
3. UNITCK/UNIT1 to check for the validity

of a symbol referencing a data set.
4. PINOUT to move an input intermediate

text wo~dto an output buffer.
5. ERROR/WARNING if an error or warning

condition is encountered.

Subroutines PINOUT, INOUT, MSG/MSGMEM,
CEM/RDPOTA: Chart EC

Subroutine PINOUT

Subroutine PINOUT moves an intermediate
text word from an input buffer to an output
buffer. It increments both the input and
output buffer pointers for the next inter­
mediate text word.

ENTRANCE: Subroutine PINOUT is entered
from either the adjective code subroutines,
subroutine READ/wRITE, or subroutine DO
after a text word is processed, or subrou­
tine FORMAT.

OPERATION: Intermediate text words are
processed by Phase 14 while they are in the
intermediate text input buffers. Subrou­
tine PINOUT moves the entire text word to
an intermediate text output buffer after
the word has been processed. PINOUT then
calls subroutines ININ and INOUT to incre­
ment the input and output buffer pointers.

EXIT: Subroutine PINOUT exits to the call­
ing subroutine.

Phase 14 187

SUBROUTINES CALLED: During execution sub­
routine PINOUT references the following
subroutines:

1. ININ to increment the input buffer
pointer.

2. INOUT to increment the output buffer
pointer.

Subroutine INOUT

Subroutine INOUT increments the output
buffer pointer to the next available posi­
tion so Phase 14 may insert the next
intermediate text word.

ENTRANCE: Subroutine INOUT is referenced
by subroutine PINOUT to increment the out­
put buffer pointer.

OPERATION: Subroutine INOUT increments the
intermediate text output buffer pointer by
four bytes each time it is referenced.
INOUT then checks the buffer. If it is
full, the FORTRAN System Director is called
to write that input buffer on the output
tape. The next buffer in the double-buffer
system is selected so the next series of
intermediate text words can be read as the
first buffer is being written on the output
tape.

EXIT: Subroutine INOUT exits to the sub­
routine that called it.

SUBROUTINES REFERENCED: Subroutine I NOUT
references the FORTRAN System Director to
initiate writing a buffer on the output
tape.

Subroutine MSG/MSGMEM

Subroutine MSG/MSGMEM searches for an
end mark entry in the intermediate text.
This entry, when found, is moved to the
intermediate text output buffer. If Phase
14 has noted further error or warning
conditions for that statement, subroutine
MSG/MSGMEM inserts those error/warning
entry numbers in the intermediate text
output buffer.

ENTRANCE: Subroutine MSG/MSGMEM is entered
by the adjective code subroutines and the
FORMAT subroutines when an end mark entry
should be the next intermediate text entry.
Subroutine MSG/MSGMEM is entered by subrou­
tines CEM and READ/WRITE when an end mark
entry is detected. Subroutine MSG/MSGMEM
is entered by the FORMAT subroutines where
an error is detected.

188

OPERATION: Subroutine MSG/MSGMEM is
entered at two points. The first entry
point, MSG, is used when a subroutine has
found an end mark entry. The second entry
point, MSGMEM, is entered when a subroutine
has processed intermediate text entries for
a FORTRAN statement and expects to find an
end mark entry next in the intermediate
text buffer. MSGMEM is given control to
search the intermediate text buffer until
it finds the end mark entry, ignoring all
other text entries.

Subroutine MSG/MSGMEM puts the inter­
mediate text word for the end mark entry
into an output buffer, and checks an indi­
cator to determine if Phase 14 has found
any error/warning conditions in that series
of intermediate text entries. If any were
detected, MSG/MSGMEM puts the corresponding
message numbers in the output buffer.

EXITS: Subroutine MSG/MSGMEM exits to sub­
routine PRESCN to begin processing the
intermediate text entries for the next
statement.

SUBROUTINES CALLED: During execution sub­
routine MSG/MSGMEM references subroutines:

1.

2.

PINOUT to
text entry
I NOUT to
entries.

put out the intermediate
for the end mark.

put out error/warning

Subroutine CEM/RDPOTA

Subroutine CEM/RDPOTA is used to process
intermediate text entries for arithmetic,
BACKSPACE, REWIND, END FILE, computed GO
TO, GO TO, DO, CALL, IF statements, and
arithmetic statement function definitions.
A portion of CEM/RDPOTA is used to insert
the arithmetic statement function number in
the intermediate text and replace the PAUSE
library function number with its aSSigned
address constant.

ENTRANCE: Subroutine CEM/RDPOTA is entered
from subroutines PASSON, PAUSE, and ASF to
replace dictionary pointers.

OPERATION: Subroutine CEM/RDPOTA is
entered at two points. The first, CEM,
checks the intermediate text word being
processed. If it is an end mark entry,
control is passed to subroutine MSG/MSGMEM
to put out the entry for the end mark. If
not, subroutine CEM/RDPOTA checks the
mode/type code in the intermediate text
entry to determine the item referenced in
the pointer field.

If the pointer field pOints to a data
set reference number dictionary entry, the
pointer is replaced by the reference num­
ber. If it does not, the adjective code in
the entry is checked for a subscript
expression (adjective code of SAOP). If
the code is SAOP, this entry and the next
entry are moved from the input to the
output buffer. (These two entries contain
the offset for the subscript expression and
pointers to dimension and subscript infor­
mation.) Control is then returned to the
subroutine that called subroutine
CEM/RDPOTA.

If the adjective code was not SAOP and
the mode/type code is an immediate DO
parameter, the entry is moved from the
input to the output buffer. The subroutine
exits to the subroutine that called it.

If the mode/type code is not an immedi­
ate DO parameter, the mode/type code is
checked for a dictionary pointer of any
kind. Any dictionary pOinter is replaced
by the contents of the chain field. (The
chain field at this time contains either an
address assigned by Phase 12 or an arith­
metic statement fUnction number assigned
earlier ,by Phase 14.) The word is then
moved from the input to the output buffer.

This last portion of coding in subrou­
tine CEM/RDPOTA may be entered independent­
ly by other Phase 14 subroutines, if a
dictionary pointer is to be replaced by the
contents of the chain field. The portion
of coding is called RDPOTA.

EXIT: Subroutine CEMVRDPOTA exits either
to subroutine MSG/MSGMEM if it detects an
end mark entry, or to the subroutine that
called it.

SUBROUTINES CALLED: During execution sub­
routine CEM/RDPOTA references subroutine:

1. UNITCK/UNIT1 to replace a dictionary
pointer with a data set reference
number.

2. PINOUT to move an intermediate text
word from input to output buffers.

Subroutines ERROR/WARNING, UNITCK/UNIT1:
Chart ED

Subroutine ERROR/WARNING

Subroutine ERROR/WARNING
intermediate text words for
warnings detected by Phase 14.

generates
errors and

ENTRANCE: Subroutine ERROR/WARNING can be
entered from every Phase 14 subroutine.

OPERATION: Subroutine ERROR/WARNING has
two entry points. One entry point, WARN­
ING, is used by a Phase 14 subroutine when
it detects a warning condition. (The dif­
ference between an error and a warning
condition was discussed in subroutine
ERROR/WARNING of Phase 10.) When subrou­
tine ERROR/WARNING is entered for a warning
condition, the warning number is placed by
the calling subroutine in a general reg­
ister. Subroutine ERROR/WARNING accesses
the warning number and composes an inter­
mediate text word for the warning.

A second entry point is used by a Phase
14 subroutine when it detects an error
condition. The calling sequence for errors
is the same as the calling sequence used to
enter subroutine ERROR/WARNING in Phase 10.
A branch table is used to calculate the
error number; the intermediate text word
for an error is composed.

Both error and warning text words are
saved in main storage after they are com­
posed. When the end mark entry for the
current statement is encountered, the text
words (maximum of four) are accessed and
inserted in the intermediate text output
buffer by subroutine MSG/MSGMEM. If more
than four errors and/or warning text words
are detected by Phase 14, the remaining
intermediate text entries for the statement
are ignored. Subroutine ERROR/WARNING
passes control to subroutine MSG/MSGMEM to
find the end mark entry for the statement
and put out the error/warning text words.

EXIT: Subroutine ERROR/WARNING exits to
the subroutine that called it or to subrou­
tine MSG/MSGMEM when more than four error
or warning text words are detected by Phase
14 for a single FORTRAN statement.

Subroutine UNITCK/ONIT1

Subroutine UNITCK/UNITl checks the vali­
dity of a symbol used to reference a data
set reference number. UNITCK/UNITl repla­
ces the dictionary pointer with the address
assigned to the data set reference number.

ENTRANCES: Subroutine UNITCK/UNITl is
entered by subroutines READ/WRITE and
BSPREF to determine if the symbol used to
reference a data set reference number is
valid. The subroutine is also entered by
subroutine CEMVRDPOTA to replace a diction­
ary pointer by a data set reference number.

OPERATION: Subroutine UNITCK/UNITl is
entered at two points. One entry point is
used for checking the data set representa-

Phase 14 189

tion in BACKSPACE, REWIND, END FILE, READ,
or WRITE statements. A data set can be
represented by a data set reference number,
an integer variable, or a dummy integer
variable. If it is represented by a data
set reference number, the dictionary pOin­
ter in the intermediate text word is
replaced by the data set reference number.
If it is represented by an integer variable
or a dummy integer variable, the dictionary
pointer is replaced by the address assigned
to the variable in Phase 12. Any other
representation of a data set is illegal and
an error condition is noted.

A second entry point is used by subrou­
tine CEMVRDPOTA if it determines from the
mode/type entry that the pointer refers to
a data set reference number. Subroutine
UNITCK/UNIT1 replaces the dictionary poin­
ter in text with the data set reference
number in the dictionary entry.

The intermediate text word is moved from
the input to the output buffer.

EXITS: Subroutine UNITCK/UNIT1 returns
control to the subroutine that called it.

SUBROUTINES CALLED: During execution sub­
routine UNITCK/UNIT1 references subroutine
PINOUT to output an intermediate text word,
and subroutine RDPOTA to insert the
assigned address of an integer variable or
dummy integer variable in an intermediate
text word.

Subroutines PUTFTX, ININ/GET, GOFILE: Chart
EE

Subroutine PUTFTX

Subroutine PUTFTX enters the FORMAT
adjective codes and FORMAT numbers for
FORMAT specifications in a text card. If
the DECK and/or the Compile and Go options
are set and a buffer is filled, the card
image is either punched in a card, and/or
written on the GO tape.

ENTRANCE: Subroutine PUTFTX is entered by
subroutines D/E/F/I/A, QUOTE/H, X, +/-/P,
LPAREN, RPAREN, T, FSLASH, and FLDCNT.

OPERATION: The operation of subroutine
PUTFTX is similar to the operation of
subroutine TXT, Chart DS, in Phase 12.

EXIT: Subroutine PUTFTX exits to the sub­
routine that called it.

SUBROUTINES CALLED: During execution sub­
routine PUTFTX references subroutine GOFILE
if a buffer is full.

190

Subroutine ININ/GET

Subroutine ININ/GET increments the input
buffer pointer so the intermediate text
entries may be processed. It also ini­
tiates the reading of the intermediate text
input tape if the end of the buffer is
reached, or a subroutine requests another
record be read.

ENTRANCE: Subroutine ININ/GET is entered
by subroutines PINOUT and MSG/MSGMEM to
increment the input buffer pointer, and by
subroutine GETWDA to read another record.

OPERATION: Subroutine ININ/GET calls the
FSD to read an intermediate text record
into a buffer. The buffers in the double­
buffer system are switched to allow the
second buffer to be filled with an
intermediate text buffer.

EXIT: Subroutine ININ/GET exits to the
subroutine that called it.

Subroutine GOFILE

Subroutine GOFILE punches a text card
and/or writes on the GO tape, the card
image which has been assembled by subrou­
tine PUTFTX, if the DECK and/or Compile and
Go options are specified.

ENTRANCE: Subroutine GOFILE is entered by
SUbroutine PUTFTX if an output buffer is
full.

OPERATION: The operation of subroutine
GOFILE is similar to the operation of
subroutine GOFILE, Chart DT, in Phase 12.

EXITS: Subroutine GOFILE exits to subrou­
tine PUTFTX.

SUBROUTINE CALLED: During execution sub­
routine GOFILE references the FORTRAN Sys­
tem Director to punch text cards and/or
write the card image on the GO tape.

Subroutines DO, CKENDO: Chart EF

Subroutine DO

Subroutine DO processes DO statements in
Phase 14. It performs a diagnostic check
on the DO variable and the DO parameter.

ENTRANCE: Subroutine DO is entered from
subroutine PRESCN when PRESCN encounters a
DO adjective code ih the intermediate text.

OPERATION: Subroutine DO determines if a
DO statement is used to end another DO. If
it is, an error condition is noted. If an
invalid end DO error does not occur, the DO
adjective code and the statement number are
entered in the intermediate text output
buffers.

The mode/type field in the intermediate
text for the next entry is checked to
determine if the next entry is for an
integer v~riable. If it is, the dictionary
pointer 1n the text entry is replaced by
the address assigned to the variable in
Phase 12. The entry is then entered in one
of the intermediate text output buffers.
If the mode/type field does not indicate an
integer variable, an error condition is
noted.

If an error does not occur, the next
text entry is checked. If the adjective
code is not an equal sign, an error condi­
tion is noted. If the code is for an equal
sign, the mode/type field is checked.

If the sYmbol referenced by the pOinter
field is an integer variable, the diction­
ary pOinter for the entry is replaced by
the address assigned the variable in Phase
12, and the text word is entered in the
intermediate text output buffer. If the
symbol is not an integer variable, but is
an immediate DO parameter, the intermedi~te
text word is moved to the output buffer.
If the symbol is not an immediate DO
parameter, an error condition is noted.

If the adjective code for the intermedi­
ate text array is a comma, subroutine DO
repeats the same series of tests for the
next DO parameter. For any other adjective
code, however, subroutine DO passes control
to subroutine MSG/MSGMEM.

EXIT: Subroutine DO exits to subroutine
MSG/MSGMEM; when the DO statement;is proc­
essed or an error is detected.

SUBROUTINES CALLED: During execution sub­
routine DO calls the following subroutines:

1. CRENDO to determine if a DO statement
illegally ended another DO.

2. PINOUT to move intermediate text
entries from an input to an output
buffer.

3. RDPOTA to replace a dictionary pointer
with an assigned address and move the
entry to an output buffer.

4. ERROR/WARNING if an error is detected.

Subroutine CKENDO

subroutine CKENDOdetermines if a state­
ment has invalidly ended a DO loop.

ENTRANCE: Subroutine CKENDO is referenced
by subroutines processing statements not
permitted to end a DO loop. These are
subroutines PAUSE/STOP, RETURN, FORMAT, and
DO.

OPERATION: If a statement has a statement
number, subroutine CKENDO checks the usage
field of the statement number entry in the
overflow table to determi:qe if the state­
ment ended a DO loop. If the statement
ended a DO loop, an error condition is
noted. If it does not, subroutine CKENDO
returns control to the subroutine that
called it.

EXIT: Subroutine CKENDO exits to the sub­
routine that called it.

SUBROUTINES CALLED: If an error is detect­
ed, subroutine CKENDO references subroutine
ERROR/WARNING.

Subroutine READ/WRITE: Chart EG

Subroutine READ/WRITE processes inter­
mediate text entries made in Phase 10 for
READ and WRITE source statements.

ENTRANCE: Subroutine READ/WRITE is entered
by subroutine PRES CAN if the adjective code
for a statement represents either a READ or
WRITE statement.

OPERATION: Subroutine READ/WRITE is divid­
ed into three sections for discussion pur­
poses:

1. Section 1 (blocks EF01 through EF09):
processes the FORMAT statement number
and data set reference number in a
REAO/WRITE statement.

2. Section 2 ~locks EF09 through EF19) :
processes any implied DO in the I/O
list of a READ/WRITE statement.

3. Section 3 ~locks EF20 th,rough EF34) :
processes variables in the I/O list,
excluding those variables used as sub­
script parameters.

Blocks EF01through EF09: The first inter­
mediate text word containing the READ or
WRITE adjective code is moved to the inter­
mediate text output buffer.

Phase 14 191

The symbol used to represent the data
set reference number is checked for validi­
ty and moved to an output buffer. The
FORMAT statement number, if present, is
moved to the output buffer.

Absence of a FORMAT statement number
signifies a binary operation and the next
intermediate text word is moved to the
output buffer. 'An end mark entry is then
generated and moved to the output buffer.
The end mark entry is made for Phase 20 to
denote the end of the first text entries
for the READ/WRITE statement. The I/O
list, which is now treated as a separate
statement in text, is moved to a save area.
After processing the data set reference
number and the FORMAT statement number, the
statement pointer used to process the
statement is at the beginning of the I/O
list.

Blocks EF09 through EF19: Subroutine
READ/WRITE determines if the symbol pointed
at is a left parenthesis, indicating an
implied DO. The recognition encounter of
any symbol other than a left parenthesis
causes control to be passed to Section 3 of
this subroutine. However, if a left paren­
thesis is encountered, the value of the
statement pointer is saved for subsequent
processing and an implied DO adjective code
is immediately inserted in the intermediate
text output buffer. For reference purpos­
es, the pointer is now referred to as the
implied DO pointer. This pointer is used
to scan the text entries between the outer­
most set of parentheses for any implied
DOs.

A parentheses count is used to determine
whether an implied DO is nested within
another implied DO. Each recognition of a
left parenthesis causes this count to be
incremented by 1; each recognition of a
right parenthesis causes the count to be
decremented by 1.

If the parenthesis count is non-zero
after a right parenthesis has caused it to
be decremented, an implied DO is nested
within another implied DO, and the implied
DO pointer must be used to continue scan­
~ing the list until the parentheses count
1S zero. Using this technique, the implied
DO which contains other implied DOs can be
processed first. For example, in the
statement:

READ (2,15) «C(I,J) ,D(I,J) ,J=1,5) ,1=1,4)

the DO implied by 1=1,4 is processed first.

When the parentheses count reaches zero,
the implied DO pointer is decremented by
four text words (16 bytes) to allow the DO
variable to be moved to the output buffer.
The DO parameters are then moved to the

192

intermediate text output buffer. A SKIP
adjective code is inserted in a save area
to indicate that these text words have
already been placed in the intermediate
text output buffer. The processing for the
outermost implied DO is now complete.

To resume I/O list processing, the poin­
ter is restored to the value that was saved
during the first encounter of the left
parenthesis (indicating an implied DO). If
there is a nested implied DO, the pointer
again points at a left parenthesis. The
process, just described for an implied DO,
is repeated.

When the last nested implied DO is
processed, the restored pointer points at
the first symbol in the I/O list. To
process the symbols in the list, control is
passed to Section 3 of this subroutine.

Blocks EF20 through EF34: To indicate the
beginning of an I/O list to later phases, a
BEGIN I/O adjective code is placed in the
intermediate text output buffer.

The dictionary pointer in the intermedi­
ate text word for the symbol is replaced by
the address assigned to the symbol in Phase
12. The mode/type entry is checked for a
valid entry in an I/O list. Variables or
array names are the only legal entries in
an I/O list. If the symbol is illegal, an
error condition is noted, and the remainder
of the I/O list is aborted from the compi­
lation.

If the symbol is legal, READ/WRITE det­
ermines if the adjective code following the
variable or array entry is a SAOP, denoting
a subscripted variable. If it is SAOP, the
intermediate text words containing the off­
set and the pointers to dimension and
subscript information are moved to the
intermediate text output buffers. Then the
entry for the variable is inserted in the
intermediate text. The order for sub­
scripted variable entries in an I/O list is
changed somewhat. For example, the entries
made for a subscripted variable in Phase 10
follow this format:

r----------T-----------T------------------l
1 1 subscripted 1 I
I , 1 variable I p (VAR) I
~----------+-----------+------------------~
ISAOP 100 JOffset I
~----------~-----------+------------------~
I p (dimension) 1 p (subscript) I L ______________________ ~ __________________ J

In Phase 14 the format for subscripted
variable entries is changed to:

r--------T--------T-------------,
ISAOP 100 I Offset I
~---------~--------+---------------1
I p (dimension) I p (subscript) I
~--------T----------+-------------1
I I SUbscripted I I
I I variable I address (VAR) I L ________ ~ ___________ i_ ___ ~ ____________ J

If the next adjective code was not an
SAOP, the intermediate text entry for the
variable is inserted in the intermediate
text output buffer.

A series of checks are made to determine
what action subroutine READ/WRITE should
take. If the adjective code denotes a
comma and the mode/type field is not blank
for the next entry, the entry is a variable
(subscripted or non-subscripte~ and sub­
routine READ/WRITE takes action to enter
the variable in the output buffer. If the
adjective code for the next entry is a skip
(inserted in section 2 of this subroutine)
the next four entries in the save area are
the integer variable and parameters for an
implied DO. ~hey were entered in the
output buffer in section 2 of the
READ/WRITE subroutine.) READ/WRITE then
skips four text words and performs the same
series of checks on the current text entry.

If the adjective code denotes neither a
variable nor a skip, READ/WRITE checks if
the adjective code is an end mark. If it
is, the end I/O adjective code is inserted
in the output buffer, because all entries
in the I/O list have been processed. If
the adjective code is not an end mark,
READ/WRITE determines if it denotes an
implied DO. If it does, control is given
to section 2 to process the implied DO. If
the adjective code is neither an end mark,
variable, skip, nor an implied DO, an error
condition is noted and the remainder of the
I/O list is aborted.

EXIT: Subroutine READ/WRITE exits to the
subroutine MSG/MSGMEM if:

1. An error condition is detected.
2. The end mark entry is encountered in

the save area.

SUBROUTINES CALLED: During execution sub­
routine READ/WRITE references subroutines:

1. PINOUT to make entries to the output
buffer.

2. UNITCK to check the validity of a data

set reference number.
3. ERROR/WARNING if an error is detected.

Examples: The statement:

READ (2,10) A,B,C

generates the following intermediate text
in Phase 10:

r----------T-----------~-----------------,
I READ 10000 10000 I
~----------+------------+-----------------1
I Idata set I I
I (I reference 12 I
I I number I I
~----------+------------+-----------------~
I I statement I I
I, I number 110 I
~----------+------------+-----------------~
I Ireal I I
I) I variable I p (A) . I
~----------+------------+-----------------1
I Ireal I I
I , I variable I p (B) I
~----------+----------+-----------------1
I Ireal I I
I , I variable I p (C) I
~----------+----------+-----------------1
I I I internal I
lend mark 100 Istatement number I L __________ i_ ___________ i_ _______________ J

From these entries Phase 14 generates these
intermediate text entries:

r----------T-----------T-----------------,
I READ 100 10000 I
~----------+------------+-----------------1
I Idata set I I
I (I reference 12 I
I I number I I
~---------+------------+----------------~1
I I statement I I
I, I number Ip (10) I
~----------+------------+-----------------1
I end mark 100 I 0000 I
~----------+------------+-----------------1
Ibegin I/O 100 10000 I
~----------+----------+-----------------~
I Ireal I I
I, I variable I address (A) I
~----------+----------+-----------------1
I I real I I
I , I variable I address (B) I
~----------+------------+-----------------1
I Ireal I I
I , I variable I address (C) I
~----------+------------+-----------------~
lend I/O 100 10000 I
~--------+------------+----------------1
I I I internal I
lend mark 100 Istatement number I L-_________ i_ ___________ ~ _________________ J.

Phase 14 193

The statement:

WRITE (N,2) «A (I,J) ,J=1, 10) , I=1, 15) ,B

generates the following intermediate text
in Phase 10:

r----------T------------T-----------------,
I WRITE 100 10000 I
~----------+------------+----------~------~
I I integer I I
I (I variable I p (N) I
~--------+------------+----------------~
I I statement I I
I , I number I p (2) I
~----------+------------+----------------~
I> 100 10000 I
~---------+------------+-----------------~
I (' I 00 10000 I
~---------+----------+----------------~
I I real I I
I (I subscripted I p (A) I
I I variable I I
~---------+----------+----t------------~
I SAOP 100 I Offset. I
~---------.!.-------,-----+---------------~
Ip(dimension) Ip(subscrip~ I
~--------T------------+-----------------~
I I integer I I
I, I variable Ip (J) I
~--------+------------+-----------------~
I I immediate DO I I
I = I parameter 11 I
~----------+-----------+----------------~
I I immediate DO I I
I, I parameter 110 I
~-------+----------+-----------------~
I I immediate DO I I
I , I parameter 11 I
~----------+------------+--~-------------~
I> 100 I 0000 I
~-------+-----------+~--------------~
I I integer I I
I , I variable I p (I) I
~----------+------------+----------------~
I I immediate 001 I
I = I parameter 11 I
~----------+------------+-----------------~
I I immediate DO I I
I, I parameter 115 I
~--------+------~---+----------~------~
I I immediate DO I I
I , I parameter 11 I
~---------+------------+----------------~
J) I 00 I 0000 I
~--------+-----------+---------------~
I I real I I
I , I variable I p (B) I
~-------+--------+----------------~
I I I internal I
lend mark 100 Istatement number I L ________ .!. ____________ .!. _________________ J

194

From these entries Phase 14 generates these
text entries:

r--------T-----------T----------------,
I WRITE 100 10000 I
~--------+----------+----------------~~
I I integer I I
I (I variable I address (N) I
.--------+----------+-----------------~
I I statement I I
I, I number I p (2) 1
~----------+------------+-----------------~
I end mark 100 10000 I
.----------+------------+----------------~
limplied DOIOO 10000 I
~---------+-----------+-----------------~
1 I integer 1 I
I, I variable 1 address (I) I
.---------+------------+-----------------~
I I immediate DO I I
I = I parameter 11 I
.---------+-----------+-----------------~
I limmediate 001 I
I, I parameter 115 1
.----------+-----------+-----------------~
I I immediate DO I I
1 , I parameter 1 1 I
.--------+----------+-----------------~
limplied DOIOO 10000 1
.----------+------------+-----------------~
I I integer I I
I , I variable I address (J) I
.---------+------------+-----------------~
I limmediate DOl I
1.= I parameter 11 I
~---------+------------+-----------------~
I limmediate 001 I
I, I parameter 110 1
.----------+-----------+-----------------~
I limmediate DOl I
I, Iparameter 11 I
.--------+------------+----------------~
Ibegin I/O 100 10000 I
.----------+------------+-----------------~
I SAOP 100 I Offset I
.----------.!.----------+-----------------~
I p (dimenSion) I p (subscript) I
.---------T------------+---------------~
I Ireal I I
I (I subscripted I address (A) I
I I variable I I
.----------+------------+---------------~
lend DO 100 10000 I
~---------+------------+----------------~
lend DO 100 10000 I
.----------+------------+-----------------~
I begin I/O 100 10000 I
.----------+------------+-----------------~
I Ireal I I
I, I variable laddress(~ I
.----------+------------+-----------------~
lend I/O 100 10000 I
.----------+------------+-----------------~
I I I internal I
lend mark 100 Istatement number I L _________ .l.-___________ .!. _________________ J

Phase 14 Format Overall Logic, Chart 21

Several subroutines (Charts EH through
Eq are used to process FORMAT statements.
The overall logic for this processing is
shown in Chart 21.

The FORMAT subroutine is entered from
subroutine PRESCN after PRESCN recognizes
an adjective code for a FORMAT statement.
Using the translate and test table for
FORMAT statements, subroutine FORMAT
retrieves the first FORMAT code for the
statement and passes control to a specific
subroutine. The functions of the specific
subroutines are generally the same.

If a FORMAT code is a + or -, the scale
factor and the P are retrieved and entered
in a text card, and the next format code is
fetched.

While retrieving the FORMAT code, sub­
routine FORMAT may find a field count for
this code. If it does, the field count
adjective code is entered in the text card
along with the field count, itself; then,
the adjective code for the format code is
entered. A left parenthesis, encountered
within the outside parentheses for the
FORMAT statement, indicates a FORMAT group.
If a groupi~ indicated within a FORMAT
statement, the series of FORMAT subroutines
retrieves the FORMAT code for the next
FORMAT specification and begins processing
that specification.

If a group is not indicated, the FORMAT
code is checked to see if it is defining
literals (H or quote specifications). If
the specification defines a literal, the
literal is inserted in the text card, and
the FORMAT subroutines then branch to com­
pute the record length.

If a literal is not being defined, the
FORMAT code is then checked to see whether
this specification contains a field length.
If it does not, the FORMAT sUb.routines
branch to compute the record length. If a
field length is part of this specification,
~he translate and test table is used to get
the field length and the following delimi­
ter. The field length is then entered in
the text card.

The FORMAT code is checked again to see
if the speCification contains a decimal
length. If it does not, the FORMAT subrou­
tines branch to compute the decimal length.
If the specification contains a decimal
length, the translate and test table is

used again to get the length and the
following delimiter. The decimal length is
entered in the text card.

Record length accumulators are then
updated. There are three accumulators used
to calculate record length: the record
length, the leading length, and the tail .
length accumulators.

The record length accumulator is used
exclusively if there is no attempt made in
the FORMAT statement to define a group of
format specifications. After each specifi-.
cation is processed, the field length is
multiplied by the field count for this
specification and added to the record
length accumulator.

The leading length accumulator is used
to accumulate the length of a group. If
there are no slash or T FORMAT specifi­
cations, this accumulator is used to accu­
mulate the sum of the field lengths in the
group. After each specification in a group
is processed, the field length is multi­
plied by the field count for this specifi~
cation and added to the leading length
accumulator. When the closing right paren­
thesis is found, the leading length accumu,...c
lator is multiplied by the group count and
added to the record length accumulator.

If a slash or T specification is found
within a group, the record length accUmula­
tor is set equal to the nUmber. entered in
the field length position. If the FORMAT
code is a slash, the tail length accumula­
tor is set to zero. If the FORMAT code is
a T, the tail length accumulator is set to
zero. After each specification following
the T or slash i"n the group is processed,
the field length is multiplied by the count
for this specification and the result is
added to the tail length accumulator.
After the end of the group i~ sensed, the
record length accumulator is .set equal to
the tail length accumulator.

After FORMAT specifications are checked,
and their field lengths added to the accu­
mulators, the contents of the record length
accumulator are compared to the specified
length entered by the user in a control
card. If the record length is greater than
the specified length, a warning is issued.

If the right parenthesiS ending the
FORMAT statement is sensed, control is
passed to subroutine PRESCN to process
another statement. If the ending' right
parentheSiS is not sensed, the FORMAT sub­
routines return to the beginning of subrou-

Phase 14 195

tine FORMAT to begin processing another
format specification.

Subroutine FORMAT: Chart EH

Subroutine FORMAT initializes the FORMAT
subroutines to process a FORMAT statement.
SUbroutine FORMAT is entered by other
FORMAT subroutines to process a FORMAT
specification. If there is a field count
for a FORMAT specification, subroutine
FORMAT processes the field count. Using a
branch table and the delimiter accessed by
the FORMAT statement scanning subroutine,
GETWDA, it passes control to the proper
subroutine to process the specification.

ENTRANCE: Subroutine FORMAT is entered by
subroutine PRESCAN when PRESCAN finds a
FORMAT adjective code. Subroutine FORMAT
is entered by the other FORMAT subroutines,
using certain entry points under given
conditions, as follows:

1. FMTONE when subroutine FORMAT must get
another delimiter.

2. FMTTWO when a FORMAT subroutine
already has a delimiter, and the deli­
miter must be processed by subroutine
FORMAT.

3. FMTGCE when a FORMAT subroutine has
already checked the delimiter and det­
ermined that the delimiter was a
comma, left parenthesis, or a P.

4. FMTBRN when the previous delimiter was
a blank, and the delimiter fetched by
subroutine BLANKZ must be processed.

OPERATION: To initialize the FORMAT sub­
routines to process a FORMAT statement,
subroutine FORMAT sets:

1. The left parenthesis switch off.
2. The record length, leading length, and

tail length accumulators to zero.
3. The group count to zero.
4. The comma switch on.

Subroutine FORMAT then gets the first
delimiter. If the first delimiter is a
left parenthesis, the parentheses count is
set to 1, and the adjective code for a
FORMAT statement is inserted in the text
card. If not, an error condition is recog­
nized.

Subroutine FORMAT converts the field
count, if there was one, to a binary
integer. If there was no field count for
this FORMAT specification, the field count
is set to 1. The delimiter returned from
subroutine GETWDA is then used to access
the branch table, and control is passed to
the subroutine which Processes the format
specification.

196

EXIT: Subroutine FORMAT exits to subrou­
tine MSG/MSGMEM, if subroutine FORMAT has
detected an error, or to a FORMAT subrou­
tine to process the delimiter accessed by
subroutine GETWDA.

SUBROUTINES CALLED: During execution sub­
routine FORMAT references the following
subroutines:

1. GETWDA to get another delimiter.
2. INTCON to convert an EBCDIC integer to

a binary integer.
3. ERROR/WARNING if an error has been

detected.

Subroutine D/E/F/I/A: Chart EI

Subroutine D/E/F/I/A processes the
FORMAT specifications for D, E, F, I, and A
conversions.

ENTRANCE: Subroutine D/E/F/I/A is entered
from subroutine FORMAT, if the FORMAT code
is a D, E, F, I, or A.

OPERATION: Subroutine D/E/F/I/A enters in
a text card the field count and the field
count adjective code, if there is a field
count for the specification; the adjective
code for the FORMAT code; the field length;
and the decimal length, if there is a
decimal length for this specification.

EXITS: Subroutine D/E/F/I/A exits to sub­
routines:

1. FORMAT to process the next FORMAT
specification.

2. MSG/MSGMEM if an error is detected.

SUBROUTINES CALLED: During execution sub­
routine D/E/F/I/A references subroutine:

1. FLDCNT to check this specification for
a field count and enter it in a text
card, if there is a count.

2. PUTFTX to make entries in the text
card.

3. GETWDA to get the delimiter, and num­
ber ahead of the delimiter.

4. INTCON to convert an EBCDIC integer to
a binary constant.

5. LINETH to add the field length to the
record length accumulator.

6. ERROR/WARNING if an error or warning
is detected.

Subroutines QUOTE/H, X: Chart EJ

Subroutine QUOTE/H

Subroutine QUOTE/H processes the FORMAT
specifications for H or quote literals.

ENTRANCE: Subroutine QUOTE/H is entered
from subroutine FORMAT if the FORMAT code
is a quote mark or H.

OPERATION: Subroutine QUOTE/H enters the
adjective code for the FORMAT specifi­
cation, the field count, and the literal in
a text card.

EXIT:
tine:

Subroutine QUOTE/H exits to subrou-

1. FORMAT to process the next FORMAT
specification.

2. MSG/MSGMEM if an error has been
detected.

SUBROUTINES CALLED: During execution sub­
routines QUOTE/H references subro~tine:

1. NOFDCT to insure that there was no
count for the quote FORMAT codes.

2. PUTFTX to enter adjective codes, field
count and the literal in text cards.

3. LINETH to add the field length to the
record length accumulator.

4. ERROR/WARNING if an error is detected.

Subroutine X

Subroutine X processes FORMAT specifi­
cations for X FORMAT codes. Subroutine X
enters the X adjective code and the field
count in a text card.

ENTRANCE: Subroutine X is entered from
subroutine FORMAT if the FORMAT code is an
X.

EXIT: Subroutine X exits to subroutine
FORMAT to process the next FORMAT specifi­
cation.

SUBROUTINES CALLED: During execution sUb­
routine X references subroutine:

1. PUTFTX to make entries in the text
card.

2. LINETH to add the field length to the
record length accumulator.

3. ERROR/WARNING if a warning is detect-
ed.

Subroutines +/-/P, BLANKZ, FILLEG, FCOMMA:
Chart EK

Subroutine +/-/P

Subroutine +/-/P processes the format
specification codes for scale factors.

ENTRANCE: Subroutine +/-/P is entered by
subroutine FORMAT if the format code is a
+, -, or P.

CONSIDERATION: If there is a count for a
format specification with a scale factor,
it should be placed between the P and the
FORMAT code for the field and decimal
lengths. For example, if the specification
+3PF10.2 is to be repeated five times, the
specification is written +3P5F10.2.

OPERATION: If the sign preceding the scale
factor is negative, the scale factor is
converted to a 1-byte binary integer, and a
1 bit is placed in the high-order bit for
the byte. A scale factor of -3 is rep­
resented by the hexadecimal number 83,
while the scale factor of +3 is represented
by the hexadecimal number 03.

Subroutine +/-/P enters the scale factor
adjective code and the scale factor in the
text card.

EXIT: Subroutine +/-/P exits to subrou­
tine:

1. FORMAT to process the remainder of the
format specification, following the P.

2. MSG/MSGMEM if an error is detected.

SUBROUTINES CALLED: During execution sub­
routine+/-/p references subroutine:

1. GETWDA to get the scale factor and the
following delimiter.

2. INTCON to convert the scale factor to
a binary number.

3. PUTFTX to make entries to text cards.
4. ERROR/WARNING if an error is detected.

Subroutine BLANKZ

Subroutine BLANKZ processes any blanks
encountered in scanning a FORMAT statement.

ENTRANCE: Subroutine BLANKZ is entered
from subroutine FORMAT when a blank delimi­
ter is encountered.

OPERATION: Subroutine BLANKZ references
subroutine GETWDA. If the non-zero return
is used by GETWDA, an error condition is
noted. If the zero return is taken, sub-

Phase 14 197

routine BLANKZ passes control to subroutine
FORMAT.

EXIT: Subroutine BLANKZ exits to the fol­
lowing subroutines:

1. FORMAT to process the delimiter it
fetched.

2. MSG/MSGMEM if an error is detected.

SUBROUTINE CALLED: During execution sub­
routine BLANKZ references subroutine GETWDA
to get the next delimiter.

Subroutine FILLEG

Subroutine FILLEG processes any invalid
delimiters found in a FORMAT statement.

ENTRANCE: SUbroutine FILLEG is
from subroutine FORMAT when an
delimiter is found.

entered
illegal

OPERATION: An error text word is con­
structed for each invalid delimiter.

EXIT: Subroutine
tine MSG/MSGMEM.

SUBROUTINE CALLED:
routine FILLEG
ERROR/WARNING.

Subroutine FCOMMA

FILLEG exits to subrou-

During execution sub­
references subroutine

Subroutine FCOMMA processes any commas
found in a FORMAT statement.

ENTRANCE: Subroutine FCOMMA is entered
from subroutine FORMAT when a comma is
found in a FORMAT statement.

OPERATION: Subroutine FCOMMA checks an
indicator that denotes whether or not the
current comma is valid. If the indicator
is off and entry is made into this subrou­
tine, the current comma is valid. Subrou­
tine FCOMMA skips over the comma, but sets
the comma indicator on. Until this indica­
tor is set off, any subsequent encounter of
a comma is considered an error. If the
indicator is on when subroutine FCOMMA is
entered, the error condition is noted.

EXIT:
tine:

Subroutine FCOMMA exits to subrou-

1. FORMAT to get another delimiter.
2. MS,G/MSGMEM if an error is detected.

SUBROUTINE CALLED: If an error is detect­
ed, Subroutine FCOMMA references subroutine
ERROR/WARNING.

198

Subroutines LPAREN, RPAREN: Chart EL

Subroutine LPAREN

Subroutine LPAREN processes any
parentheses, other than the opening
parenthesis, in the FORMAT statement.

left
left

ENTRANCE: Subroutine LPAREN is entered
from subroutine FO~AT when a left paren­
thesis is sensed.

OPERATION: A left parenthesis, other than
the first parenthesis in a FORMAT state­
ment, indicates the beginning of a group.
A group indicator is set on by subroutine
LPAREN any time a left parenthesis is
encountered. If the group indicator is on
when subroutine LPAREN is entered, an error
is noted because BPS FORTRAN does not
permit nesting groups.

If a field count preceded the left
parenthesis, the group count is set equal,
to the field count, and the group count and
the group adjective code are inserted in a
text card. The leading and tail length
accumulators are set to zero. The comma
indicator is set on, so a comma between the
left parenthesis and the first format
specification for the group is an error.
The group indicator is set on to indicate
that a group is being processed. A leading
length indicator is set on so the length"
for the group elements is accumulated in
the leading length accumulator. The paren­
thesis count is then incremented by 1.

EXIT:
tine:

Subroutine LPAREN exits to subrou-

1. FORMAT to process the first FORMAT
specification in the group.

2. MSG/MSGMEM if an error is detected.

SUBROUTINE CALLED: During execution sub­
routine LPAREN references subroutine:

1. PUTFTX to make entries to text cards.
2. ERROR/WARNING if an error is detected.

Subroutine RPAREN

Subroutine RPAREN processes any right
parenthesis, in a FORMAT statement, to end
a group or a FORMAT statement.

ENTRANCE: Subroutine RPAREN is entered by
subroutine FORMAT when a right parenthesis
is encountered.

OPERATION: Subroutine RPAREN insures that
no field count preceded the right parenthe­
sis, and decrements the parentheses count.
If the parentheses count is less than zero,
an error is noted. If the parentheses
count is zero, the end of the FORMAT
statement is reached.

If the end of the FORMAT statement is
reached, the adjective code for the end of
a FORMAT statement is sent to the text
card, the record length is compared to the
specified length, and the input pointer is
adjusted to the next full-word boundary.
Control is then passed to subroutine PRESCN
to process the next intermediate text
entry.

If the parentheses count is positive,
the end of a group has been reached. If
the sum of the leading and tail length
accumulators exceeds. the specified length,
a warning is issued. If the tail length
accumulator is zero, the record length
accumulator is incremented by the product
of the l.eading length accumulator and the
group count. If the tail length accumula­
tor is not zero, the record length accumu­
lator is set equal to the tail length
accumulator.

The group indicator is set off indicat­
ing that the group has been processed, and
the adjective code for end group is entered
in the text card. Control is then passed
to subroutine FORMAT to process the next
format specification.

EXIT: Subroutine RPAREN exits to subrou­
tine:

1. FORMAT to process the next FORMAT
specification, after all the elements
of a group have been processed.

2. PRESCN if the closing right parenthe­
sis for the FORMAT statement is proc­
essed.

3. MSG/MSGMEM if an error has been
detected.

SUBROUTINE CALLED: During execution sub­
routine RPAREN references the following
subroutines:

1. NOFDCT to insure that no field count
preceded the right parenthesis.

2. PUTFTX to make entries to a text card.
3. LINECK to insure the accumulated

length in the record length accumula­
tors has not exceeded the specified
length.

4. ERROR/WARNING if an error or warning
is detected.

Subroutines T, FSLASH: Chart EM

Subroutine T

Subroutine T processes T FORMAT specifi­
cations in the FORMAT statement and enters
the adjective code and the record poSition
in a text card.

ENTRANCE: Subroutine T is entered from
subroutine FORMAT when a T FORMAT code is
recognized.

OPERATION: Subroutine T insures that there
was no count for this FORMAT specification.
Subroutine GETWDA is referenced to get the
record pOSition for the T specification.
The T adjective code and the position
number are then entered in the text card.
The record length accumulator is compared
to the specified length.

The group indicator is tested for the T
specification within a group. If Twas
specified, the record length accumulator is
set to zero and the tail length accumulator
is set equal to the position number. If
the T specification is not in a group, the
record length accumulator is set equal to
the position number.

The leading length indicator is set off
so the specifications within a group are
accumulated in the tail length accumulator
instead of the leading length accumulator.

EXIT: Subroutine T exits to subroutine
FORMAT to process the next FORMAT specifi­
cation.

SUBROUTINES CALLED: During execution sub­
routine T references the subroutines:

1. NOFDCT to insure that there is no
count immediately preceding a T speci­
fication.

2. GETWDA to get the poSition number.
3. INTCON to convert the position number

to a binary integer.
4. PUTFTX to enter the T adjective code

and the position number in the text
card.

5. LINECK to insure that the accumulated
length in the record length accumula­
tor does not exceed the specified
length.

6. ERROR/WARNING if an error is detected.

Subroutine FSLASH

Subroutine FSLASH processes the slash
FORMAT specifications in a FORMAT state­
ment, and enters the slash adjective code
in the text card.

Phase 14 199

ENTRANCE: Subroutine FSLASH is entered by
subroutine FORMAT when a slash FORMAT
specification is recognized.

OPER TION: Subroutine FSLASH enters the
slash adjective code in the text card and
insures there was no field count for the
slash entry. The record length accumulator
is compared to the user-specified length.

The record and tail length accumulators
are set to zero and the leading indicator
is setoff so, if the slash is part of a
group, the specifications following the
slash are accumulated in the tail length
accumulator.

EXIT: Subroutine FSLASH exits to subrou­
tine FORMAT to process the next FORMAT
specification.

SUBROUTINES CALLED: During execution sub­
routine FSLASH references the following
subroutines:

1. PUTFTX to enter the slash adjective
code in the text card.

2. NOFDCT to insure that there is no
field count for a slash specification.

3. LINECK to insure the accumulated
length in the record length accumula­
tor does not exceed the specified
length.

Subroutines LINETH, LINECK, FLDCNT, NOFDCT:
Chart EN

Subroutine LINETH

Subroutine LINETH adds the total length
for the field(s) in a FORMAT specification
to the record length accumulator.

ENTRANCE: Subroutine LINETH is entered by
subroutines D/E/F/I/A, QUOTE/H, and X.

OPERATION: The total length for a FORMAT
specification is computed by multiplying
field length by the field count. The total
length is added to the record length accu­
mulator.

If the group indicator is off, the total
length is added to the record length accu­
mulator. If the group indicator is on, the
total length is added to either the leading
or tail length accumulator.

If the leading indicator is on, the
total length is added to the leading length
accumulator. If the leading indicator is
off, the total length is added to the tail
length accumulator.

200

EXIT: Subroutine LINETH exits to the sub­
routine that called it.

Subroutine LINECK

Subroutine LINECK
length of the record
specified length.

determines if the
exceeds the user-

ENTRANCE: Subroutine LINECK is entered by
subroutines RPAREN, T, and FSLASH.

OPERATION: If the group indicator is off.
the record length accumulator is compared
to the specified length. If the record
length is greater, a warning is issued.

If the group indicator and the leading
indicator are both on, the leading length
accumulator is added to the record length
accumulator and the record length
accumulator is compared to the specified
length. If the leading indicator is off,
the record length accumulator is set equal
to the tail length accumulator, and the
comparison to the specified length is made.

EXIT: Subroutine LINECK exits to the sub­
routine that called it.

SUBROUTINES CALLED: If the record length
accumulator exceeds the user-specified
length, subroutine LINECK calls subroutine
ERROR/WARNING to insert the warning entry
in the intermediate text.

Subroutine FLDCNT

Subroutine FLDCNT checks for a field
count.

ENTRANCE: Subroutine FLDCNT is entered by
subroutine D/E/F/I/A.

OPERATION: If a field count, other than 1,
exists, the field count adjective code and
the field count are entered in a text card.

EXIT: Subroutine FLDCNT exits to the sub­
routine that called it.

SUBROUTINE CALLED: During execution sub­
routine FLDCNT references subroutine PUTFTX
to put the field count adjective code and
the field count in a text card.

Subroutine NOFDCT

Subroutine
specifications
count.

NOFDCT
that

processes
cannot have

FORMAT
a field

ENTRANCE: Subroutine NOFDCT is entered by
subroutines QUOTE/H, RPAREN, T, and FSLASH.

OPERATION: If the current specification
has a field count, an error is noted.

EXIT: Subroutine NOFDCT exits to the sub­
routine that called it.

SUBROUTINE CALLED: If the specification
has a field count, subroutine ERROR/WARNING
is referenced to issue the error text word.

Subroutines GETWDA, INTCON: Chart EO

Subroutine GETWDA

Subroutine GETWDA scans FORMAT state­
ments, returning the delimiter that stopped
the scan and the number of numeric charac­
ters preceding the delimiter. If the con­
tents of an input buffer have been com­
pletely processed, subroutine GETWDA ref­
erences another subroutine to read an
intermediate text record.

ENTRANCE: Subroutine GETWDA is entered
from subroutines FORMAT, D/E/F/I/A, +/-/P,
BLANKZ, and T.

OPERATION: When subroutine GETWDA is
entered by a calling subroutine, GETWDA
increments the translate and test pointer.
If the character at the translate and test
pointer is blank, the pointer is increment­
ed. If the character is not a blank, a
test is made for the end of the input
buffer. If the end is reached, subroutine
ININ/GET is called to read another record
into the buffer, and the translate and test
pointer is adjusted so that it points to
the beginning of the next buffer.

When the end of the buffer is not
reached, a translate and test instruction
is executed to get the next delimiter. The
table for this instruction is set so the
instruction stops on any non-numeric char­
acter. The translate and test instruction
inserts the address at which it stopped in
general register 1, and the non-zero byte
in the table which caused the instruction
to stop in general register 2. The address
in general register 1 is used to calculate
the length of the numeric field preceding
the delimiter and to initialize GETWDA for
the next time it is entered. The byte in

general register 2 is the adjective code
entered in the text card for FORMAT speci­
fications and is used to index the branch
table in subroutine FORMAT.

The length of the numeric field is
calculated, using the address in general
register 1 and the address at which the
translate and test instrUction began execu­
tion. The data just translated is then
moved to a work area so that subroutine
INTCON can access it.

A test is made to see if the scan has
reached the end of either buffer. If the
end has not been reached, a test is made to
see if the length of the numeric data is
zero. A'zero length implies that there is
no numeric data preceding this delimiter.
For example, if a right parenthesiS is
immediately preceded by a slash, the length
is zero and the zero return is used in
returning to the calling subroutine. If
the length is non-zero, the non-zero return
is used.

There are two buffers used to read the
intermediate text tape. There are two
tests, made for the end of the buffer: one
for the first buffer and a second for the
remaining buffer.

The two buffers are adjacent to each
other in main storage. The last storage
position of the first buffer is next to the
first storage poSition of the second buf­
fer. When the FORMAT statement is written
on the intermediate text output tape in
Phase 10, it is written in a card image.
There is no attempt made to translate the
FORMAT statement to any form of internal
code. It is possible that part of the
FORMAT statement may be read into one
buffer, while the remaining part of the
statement is in the second buffer.

The translate and test instruction does
not stop when the end of the first buffer
is reached; it accesses characters in the
second buffer until a delimiter is found.
For example, if a FORMAT statement is set
up as follows:

FORMAT(•••• ,5F10.2, ••••)
(,

and it was read in Phase 14 so the first
buffer contained part of the specification
5F10.2 and the second buffer contained the
remaining part, as fOllows:

r--------------------T--------------------l I first buffer I second buffer I
~--------------------+--------------------i
I •••• ,5F110.2,.... I L ____________________ ~ ____________________ J

Phase 14 201

the translate and test instruction does not
stop because it is at the end of the
buffer, splitting the 1 and O. The
instruction ceases execution when the deci­
mal point is reached. The only action
necessary in this situation is starting the
read operation to refill the first buffer.

If the statement was read
the second buffer contained
of the specification and the
contained the second part as

in Phase 14 so
the first part
first buffer

follows:

r--------------------T--------------------,
1 first buffer 1 second buffer I
~--------------------+__------------------i
10.2,.... I •••• ,5Fll L--__________________ ~ ___________________ J

it is illogical for subroutine GETWDA to
return merely the number and stop fetching
characters when the end of the second
buffer is reached. Still it cannot contin­
ue translating until it reaches a ~elimi­
ter, because whatever is beyond the last
position reserved for the second buffer is
not part of the FORMAT statement.

A special character, which stops the
translate and test instruction, is placed
at the end of the second input buffer. If
the translate and test instruction is
stopped at this special character, subrou­
tine GETWDA recognizes that the end of the
second buffer has been reached. It calcu­
lates the length of the field just tran­
slated. In the above example, the result
of the length calculation is 1. The field
translated is moved to a position immedi­
ately in front of the first character in
the first input buffer.

r-------------------T--------------------,
I first buffer I second buffer I
r-------------------+--------------------~

110.2,.... 1 •••• ,5F11 L-__________________ ~ ____________________ J

The translate and test pointer is then
adjusted so that it points to the first
character in the field just moved. Then
subroutine ININ/GET is referenced to start
the read operation to refill the first
buffer, and the translation process is
repeated.

202

EXIT: Subroutine GETWDA exits to the sub­
routine that called it.

SUBROUTINE CALLED: During execution sub­
routine GETWDA references subroutine
ININ/GET to read another intermediate text
record into an input buffer.

Subroutine INTCON

Subroutine INTCON converts integer con­
stants to binary and checkS their validity.

ENTRANCE: Subroutine INTCON is entered by
subroutines FORMAT, D/E/F/I/A, +/-/P, and
T.

OPERATION: The data to be converted is
accessed from the work area in which sub­
routine GETWDA stored the integer. If the
data in the work area is not numeric, an
error condition is noted.

The data in the work area is converted
to binary. The high-order digit in the
work area is accessed and inserted in a
general register. If there is a second
digit, the contents of the register are
multiplied by 10 and the second digit is
added to the product. For each succeeding
digit, the contents of the register are
multiplied by 10; that digit is added to
the product.

If the resulting number is greater than
255, an error condition is noted. A test
is made to see if this digit is to be
tested for a zero value in this format
specification. If it may have a zero
value, control is passed from subroutine
INTCON to the subroutine that called it.

If the integer constant cannot have a
zero value, and the number is zero, an
error condition is noted. If an error does
not occur, control is passed from subrou­
tine INTCON to the subroutine that called
it.

EXIT: Subroutine INTCON exits to subrou­
tine MSG/MSGMEM if an error is detected or
to the calling subroutine.

SUBROUTINE CALLED:
erences subroutine
error is detected.

Subroutine INTCON
ERROR/WARNING if

ref­
an

*05 *
* A3*
* *

******A3***** ******
GET

* INTERMEDIATE
••• X TEXT X •••• * A3 *

******C 1 **** *******
ENTER

*****C2**********
* ASSIGN *

STORAGE TO

ENTRY * *

.x.
83 *. *****84**********

.* *. * * ****85*********
.* END *. YES * PASS ON PHASE * EXIT TO *

. STATEMENT . •••••••• X* 12 ERROR * •••••••• X* FSD TO READ *
. . * ENTRIES * * PHASE 15

. . ***************

.x.
C3 *.

.* *.
FORMAT

INFORMAT ION X •••••••• * FORMAT
YES.-lIe FORMAT *.

*X •••••••• *. STATEMENT .*
I N TEXT

CARD

Chart 05.

* INFORMATION * *. *. .*
* •• * * NO

.x.
D3 *.

.*

.. * * •
• *READ/WRITE *. YES

*****D4**********
* *

.. STATEMENT X*
ANAL YZE
IMPLIED
DO'S *.. .* *

.. .
* •• * * NO

.x.
*****E2********** E3 * ..
* ASSIGN ASF * .* *.

NUMBER TO YES.* ASF *.
* ARITHMETIC *Xo *. DEFINITION .* * STATEMENT -If *.. ...)(.

FUNCT leN * *..*
***************** * ... *

* NO

. . .

....................................... X .. X ... "

*****F3********** * REPLACE ANY * '* D ICT IONARY
* POINTER WITH
* ADDRESS

*****G3**********
'* REPLACE ANY '*
*POINTER TO DATA'll
'* SET REFERENCE *
* NUMEER WITH *
* NUMBER *
***********'******

X
*****H3**********
* • '* REPLACE ANY *
POINTER TO ASF '
* NAME WITH ASF *
* NUMBER *

X
******J 3**** *******

PUT OUT
UPDATED

INTERMEDIATE
'* TEXT

x

* * * A3 '* • *

Phase 14 Overall Logic Diagram

Phase 14 203

*EA *
* AI*
* *
*

PHINIT X
*****AI**********
* * * PHASE *
*INITIALIZATION *
* *
* * *****************

* * • *EA *.X.
* 81*
**** •

PRESCN X
*****81**********
* * * GET * * ADJECTIVE *
* CODE *
* * *****************

*
*
*

ADJ CODE TEXT ENTRY BRANCH LOCATION *
*
* ***

L2 X * 9F SUBROUTINE EBA! *

*****Cl********** ***
* * * AO FUNCTION EBA! *
* BRANCH * ***
* ACCORDING * •••.•••• X* Al FORMAT EHAI *
* TO ADJ CODE * ***
* * * A3 CONTINUE EBE3 *
***************** ***

Chart EA.

204

* A4 GO TO EBC4 *

* A5 COMPUTED GO TO EBC4 *

* A6 BACKSPACE EBB4 *
*** * A7 REWIND EBB4 *
*** * AS END FILE EBB4 *
*** * A9 WRITE BINARY EGA! *
*** * AA READ BINARY EGA! *
*** * AB WRITE BCD EGA! *
*** * AC READ BCD EGA! *
*** * AD DO EFA3 *
*** * AE STATEMENT NUMBER EBG2 *

* BO END EBA5 *

* B2 CALL EBC4 *

* 83 ASF EBA3 *
*** * B5 ARITH EBC4 *

* B9 RETURN EBG! *

* BA STOP EBD4 *
*** * BB PAUSE EBD2 *

* BC IF EBC4 *
*******~*** * BE ERROR EBEl *
*** * BF WARNING EBE! *

* 16 END MARK EBE! *

Subroutine PRESCAN

*EB *
* Al* . .

SUBFUN X 01
*****Al**********
*RDPOTA ECH3.
--*-*-*-*-*-*-*

••• X* REPLACE DIeT *
* POINTER WITH *
*ASGND. ADDRESS.

• S8Fl.iNI .X.
61 *.

.* *. .* ANY *. NO
. PARAMETERS . ••••••••
.FOLLO~ING. X

*Ee *
* A3*
* *

ASF X 02
*****A3********** · . · · UPDATE

ASF
COUNT

.
* * * *****************

X
*****83**********
* * * PUT ASF COUNT '*
* IN DICTIONARY *
* CHAIN *

*E8 *
* 84*
* • .

BSPREF X 03
*****84**********
UNITCK EDF3
--*-*-*-*-*-*-*

INSURE THAT
DEVICE IS

*Ee *
* AS*
* *

END 05
*****A5**********
PINOUT ECA1
--*-*-*-*-*-*-*

••• x* PUT INPUT *
* WORD
* OUT *

.x.
85 *.

.* *.
• NO.* IS *. • ••• *. NEXT \'JORD .*

. CLEARED .
.. ***** * LEGAL *

. . * •• * *EC * * •• * * YES * E2* "'SGMEM * YES

X
*****Cl********** . .

• * REPLACE TYPE
...... IN TEXT FROM

* DICTIONARY

*Ee *
* El*
* •

ER~NEM X 06
*****El**********
PINOUT ECAl
--*-*-*-*-*-*-*

PUT *
INPUT WORD *

* ·OUT *

x

*EA *
* 81* PRESCN
* •
*

*ES *
* Gl*
• *

RETURN X 11
*****Gl**********
CKENDO EFA4
--*-*-*-*-*-*-*

CHECK *
END DO *

* * *****************

X
*****Hl**********
PINOUT ECAl
--*-*-*-*-*-*-*
* PUT RETURN *
* ~ORD OUT .

x
***** *EC *
* 82*
* *

TO
MSGMEM

.. .

*Ee *
* 02*
• *

* • *ES *.X.
* C4*

X PAS~~~* X 04
*****C3********** *****C4**********
RDPOTA ECH3 *CEM ECC3*
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*

REPLACE * •••••••• X*CHECK END MARK *
* DICTIONARY * X * REPLACE DIeT *
* POINTER * * POINTER *
***************** *****************

X
*****cs**********
* * CLOSE

OUT
* DATA SETS
* *****************

PAUSE X 07

*Ea *
'* 04* STOP 09 X *****02**********

CKEHDO EFA4
--*-*-*-*-*-*-*

CHECK *
END DO *

*.***
*EB * * E3*
* *

* * *****04**********
CKENDO EFA4
--*-*-*-*-*-*-*

••••••• x* CHECK
* END DO

* *****************

X SK IP X 08 X
*****E2********** *****E3********** *****E4**********
ROPOT A ECH3 *p INOUT ECAI * *p I NOUT ECAI *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* '* REPLACE CICT * •••••••• X* PUT *x •••••••• * PUT *
* POINTER WITH '* '* INPUT WORD * * INPUT WORD
* "'SEND ADDRESS '* * OUT * * OUT *
***************** ***************** *****************

*E8 * * G2*
* *

LABEL .x.
62 *. 10 .* IS *. .* THIS *. NO

*EC *
* 82* MSGMEM

****05********* * EXIT TO FSD *
* TO LOAD
* PHASE 15 *

. STATEMENT .~ •••
.NUMBER OF.

*FORMAT *
* •• * * YES

* * * H5 * * •

· . .X. .*. .LABELI X
H2 *. H3 *. *****H4********** *****H5**********

••• * IS *.*. YES .*i; IT USE~·*. NO : P~6D~~~~G~~D * x :~!~~~~-*-*-~::~:
*.STATEMENT NO •• * •••••••• x*. AS END 00 .* •••••••• x* STATEMENT * •••••••• X* PUT STMT NO. *

. REFRNCD . *. .* * NUMBER CHAIN * X * DEFINITION *
.. *..* * * * WORD OUT *

* •• * * •• * ***************** ***************** * NO * YES

X
*****J2**********
WARN EDA2
--*-*-*-*-*-*-* * UNREFERENCED
* FORMAT
* STATEMENT *

• * * •• x* H5 *

* *

X
*****J3**********
ERROR EOA4
--*-*-*-*-*-*-*
* FORMAT *

USEC AS *
* END 00 *

x
***** *EA * '* 81 * PRESCN
* *

Chart EB. Subroutine Adjective Code.

Phase 14 205

*EC * * Al* . .

PINOL:T X
'*****A 1 ********** . .

MOVE
INPUT 1I0RD

OUT * .

X
*****61**********
lhIN EEA4
--*-*-*-*-*-*-*
* INCREMENT *

INPUT *
* POINTER *

X
*****Cl**********
INOUT ECA5
--*-*-*-*-*-*-*
* INCREMENT

OUTPUT *
POI NTER *

*********** ******

X
****01********* . .

RETURN *
* ****,**********

*****A2**********
II'\IN EEA4
--*-*-*-*-*-*-*

INCREMENT *x •••
OUTPUT *

* POINTER *
* .. ************ * . .
*EC *.X.
* E2*

MSG~E'" • x.
82 *. • * IS *.

.* THIS *. Ne •
. END MARK . ••••

. ENTRY .
. .

* •• * * YES . .
*Ee *.X.
* E3*
**** •

*EC *
* C3* .. ·

MSG X CEM .X.
*****C2********** C3 *.
PINOUT ECAl .* IS *.
--*-*-*-*-*-*-* YES.* THIS *.

PUT *x •••••••• *. END MARK .*X •••••••••••••••••
IriIORO OUT * *. ENTRY .*

.x.
E2 *.

.* ANY *.
NO.* IriIARNING *.

•••••••• *. OR ERRCR .*
X *.MESSAGES .*

. . * •• *
• NO

D3· X• *. *****04*:********
.* IS *. *UNITl EOJ3*

.* THIS *. YES *-*-*-*-*-*-*-*-*
. DATA SET . •••••••• X* REPLACE OICT *

.REFERENCE. * POINTER WITH *
*. NO •• * * REFERENCE NO. *

* •• * *****************
• NO

.x.
E3 *. *****E4**********

.* *. *PINOUT ECA1*
.* *. YES *-*-*-*-*-*-*-*-*

. SAOP . •••••••• x* PUT INPUT *
. . * WORD OUT *

***** *..* *. .* .

Chart EC.

206

*EA * *. .* * 81 * * YES
* * TO

* PRESCAN

X
*****F2**********
INOUT ECA~
--*-*-*-*-*-*-*
* PUT OUT l'
* WAITING *

MESSAC:ES *
******* .. *********

x

*EA *
* 81* * •

• TO
PRESC.eN

* •• *
• NO

CEMI .x.
F3 *.

.* IS *.
.* T~JS *. YES •

. IMMEDIATE . •••••••••••••••• X.
lI. DATA .*

. .
* •• *

• NO

CEM2 .x. X
G3 *. *****G4**********

.* DOES *. *PINCUT ECA1*
.* THIS 1riI0RO *. NO *-*-*-*-*-*-*-*-*

. HAVE A OICT . •••••••• X* PUT INPUT *
. POINTER . X * wORD OUT
.. *

* •• * ***************** * YES . .
*EC *.X.
* H3*
**** •

RepOTA x
*****H3**********
* REPLACE OICT *
* POINTER WITH *
* ASSIGNED * ••••••

ADDRESS OR *
* NUMBER *

X
****H4********* . .

RETURN *

Subroutines PINOUT, INOUT, MSG/MSGMEM, CEM/RDPOTA

*EC *
* AS* ..

'INOUT X
*****AS**********

• * * INCREMENT
OUTPUT
POINTER · . *****************

CKOU8F .x •
85 *.

.* IS * • .* THIS *. NO
. BUFFER . •••.

. FULL .
. .

* •• * * YES

CLSOUT X
*****cs**********
* WRITE OUT *

THIS BUFFER *
AND SELECT
NEXT BUFFER .

. .

.x •••••••••• , .
X

****05*********

• * RETURN * .

*ED *
* A2* . .

WAi:(N
*****A2********** . .,

GET
MESSAGE
NUMBER

X
*****82** ******** * GENERATE

WARN Ir-;G

*****83**********
* •

*ED *
* A4* .. .

ERROR
*****A4********** . .

COMPUTE
MESSAGE
NUMBER

X
*****84**********
* GENERATE *
* ERROR * * INTERMEDIATE * X*

SAVE
GENERATED

WORD
*X •••• •••• * INTERMEDIATE *

TEXT WORD TEXT WORD * ·
.x.

C3 * •
.. '* * .. • * IS *. YES *. SAVE AREA .* .•••••••

*. FULL .. * X
.. *****

* * *EC *
* NO * 82*

X
****D3*·******* · . RETURN

****-)1-
*Ee *
* F3* ..

*

* * MSGMEM .

*ED *
* F4*

UNITCK .x.. UNITI X
F3 *. *****F4**********

.* IS *.. '* REPLACE DIeT * .* T~IS A *. YES * POINTER WITH
.. REFERENCE G x* REFERENCE "*

. NUMBER . NUMBER *
.. ..

.x.
G3 *.

.. * IS *.
e* THIS AN *. YES

. INTEGER . ••••
* .. VARIABLE .*

-If. .*
* *

• NO

.x.

X
*****G4**********
PINCUT ECAl
-ll-*-*-*--ll-*-*-*-*

PUT
INPUT

... WORD OUT *

*****H2********** H3 * ..
ERROR EDA4 .* IS *.
--*-*-*-*-*-*-* NO.* THIS *.

ILLEGAL *X *.. INTEGER .*
I/O DEVICE * *. DUMMY .*

* REFERENCE * *..*
***************** * •• * * YES

. .

.X

X
*****J3**********
ROPOT A ECH3
--*-*-*-*-*-*-*
* REPLACE DieT
* PO INTER WITH *
* ASGND ADDRESS *
*********** ******

X
****K3********* · x* RETURN *x •••••••••• e

* •

Chart ED. Subroutine ERROR/WARNING, UNI TCK/UN IT 1

Phase 14 207

*****F 1 **** *** ***
* • * SET UP FIRST

*EE *
* A2* ..

"
PUTFTX X

** .. ** A2**********

ASS [GI\
A.DDRESS
TO DATA

• x.
B2 ...

• * IS *.

*

.* DECK OR *. NC
*CCMPILE AND GO * •••• X* J3 *

. OPT[O". * *
. ON . *. • ..

* YES

X
*****(2********** · . GET

BUFFEP
POINTER

X
*****02********"* · . PUT TEXT

DATA [I\TO
BUFFER

X
*****E2********** · . * UPDATE

NUMBER
OF BYTES

.x.
F2 *.

... *.
YES.* F[RST *.

ADDRESS [N
BUFFER

*X •••••••• *.ENTRY IN NEW .*
* *. BUFFER .*

. . *. .* * 1'<0

*EE *
* G3*
* •

TXTl X P(HTXT .x.
** ***G2********** G3 *.

... [S *.
• *

.................... X* ·
UPDATE
BUFFER
POI NTER

.* T~IS *. YES
. BUFFER . .•..

. EMPTY .
... .*

* •• *
• NO

TXT2 .X. TXT3 X
H2 *. *****H3********** *. *GO F[LE EEDS*

.* IS *. YES *-*-*-*-*-*-*-*-*
. THIS BUFFER . •....•.• X* TO OUTPUT

. FULL. * CARD
. .

* •• * *****************
• NO

TXT4 X
*****J3**********
* •

SELECT AND
* J3 * •••• X. CLEAR NEXT
* * * BUFFER . .

X
****K3*********

* •
••••••••••••••••• X* RETURN *x ••• .

Chart EE. Subroutines PUTFTX, ININ/GET, GOFILE

208

*EE *
* A4*

[NIN
*****A4**********
* •

UPDATE
[NPUT

POINTER

CKINBF .X •
84 *. . ' .* AT

*. END OF
*. BUFFER

. .
*EE *.X.
* C4*
**** •

GET X

* • *. YES

*****C4**********
READ INTO *

THIS BUFFER

****85*********

• * RETURN

x

AND SELECT *
NEXT EUFFER ..

• *

****K4*********

* *

****'lI
*EE *
* 05*

GOFILE X
*****05 ********** · .

INITIALIZE · ·

*****E5********** · UPDATE CAi:(D
SEQUENCE

NUMBER

X
*****F5********"'*
* PUT PROGRAM *

NAME AND
CARD NUMBER

TO CARD

.x.
G5 *.

.* IS *.
NO.* COMPILE *0

..... *.AND GO OPTION.*"
. ON .

. .
* •• * * YES

X
*****H5**********

WRITE
GO

TAPE

·
.************

. .

................. x ..
GOFLl .X.

J5 *.
oo* * ..

NO.* IS * •
•••••• *oo DECK OPT ION .*

.... SET .*
. .

* •• *
.. YES

GOFL2 x
*****K5**********

* *
'II- RETURN *X oo. * . . PUNCH

CARD

• * *****************

*EF *
* A3* ..

DO X
*****A3**********
* CKENDO *
--*-*-*-*-*-*-*

CHECK
FOR *

END DO *

*****B3**********
*p INOUT ECAl *
--*-*-*-*-*-*-*
* PUT OUT DO *
*ADJECTIVE CODE *
* + STMT NO. *

SUBRT .X.
*****C2********** C3 *.
ERROR ECA4 .* IS DO *.
--*-*-*-*-*-*-* NO .* VARIABLE *.

ILLEGAL *X •••••••• *. INTEGER .*
DO '* *.VARIABLE .*

* VARIABLE * *..*
.*****.****.* * •• *

X

*EC •
* B2* * •

TO
MSGMEM

* YES

X
*****03**********
ROPOTA ECH3
--*-*-*-*-*-*-*
* PUT OUT

DO VARIABLE

.X.
*****E2********** E3 *.
ERROR EDA4 • * IS *.
--*-*-*-*-*-*-* NO.* NEXT * •

• ••••••• * ILLEGAL *X •••••••• *. ADJ. CODE .*
X * DELI METER *..*

***** *. ••
*EC * ***************** * •• *
* 82* TO * YES
* * MSG~E~

.x •••••••••••
DC4 .*. 002 .X.

*****FI********** F2 *. F3 *.
ERROR EDA4 .* *. .*IS TYPE*.
--*-*-*-*-*-*-* ~C .* IMMEDIATE *. NO.* INTEfER *.

ILLEGAL *X •••••••• *.CO PARAMETER .*X •••••••• *. VARIABLE OR .*
* 00 * *. .* *. DUMMY .*
* PARAMETER * *..* *..*
***************** *. •• * •• *

X

*EC *
* 82* ..

TO
MSGMEM

Chart EF.

* YES * YES

X
*****G2**********
FINCUT ECA]
-.--*-*-*-*-*-*
* PUT OUT
* IMMEDIATE DO
* PARAMETER *
******** **.** ... *

002A X
*****G3**********
ROPOT A ECH3
--*-*-*-*-*-*-*
* PUT OUT *
* 00 PARAMETER *
* VAR tABLE *

. .
••••••••••••••••••••••••• x.

OC1 .x.

Subroutines DO, CKENDO

H3 * •
• * IS *. .

.* NEXT *. YES.
. ADJECTIVE . ••••

. CODE .
.COMMA.

* •• *
• NO

x

*EC *
* 82*
* • .
TO

MSGMEM

***-*
·EF *
* A4*
* * *

(KENDO .x.
A4 4.

.* DID .*.
.4 STATEMNT *. NO

HAVE A STMT NO. ••••••••••••••••••
. . *. .* * •• lI!-

* YES

(KNDOI .X.
B4 *.

.* *. .* STMT *. NO
. USED AS . •••••••••••••••• X.

. END DO .
. .

* •• * .* YES

X
*****C4********** X
ERROR EDA9 ****C5*********
--*-*-*-*-*-*-* *

lLLEGAL * •••••••• X* RETURN
END DO * * *

Phase 1lJ 209

*EG *
* AI* ..

READ~R 01 02 .*. .*.
*****Al********** *****A2********** A4 *. 03 A5 *. 04
PINCUT ECA1 *UtdTCK ECF3* .* IS *. .* *.
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* .* NEXT *. YES .. * IS *. NO

PUT FIRST * X* INSURE SYMSCL * X*. TEXT WORD A .* ...••.•. X*.STMT NO. FOR .* ••••
WORD OUT * *FeR I/O DEVICE * *.STMT NO •• * *. FORMAT .*

* IS LEE~L * *..* *..*
***************** ***************** * •• * * •• *

* NO * YES

· . • x •••••••••••••••••••••••••

LISlC 20
*****c 1 ********** . .

as Rw4- 07 06
** ***82** ******** *****83********** *****84-********.*
* * * * *PINOUT ECA1*
* SAVE THE REST * PUT OUT END *_*_*_*_'If_*_*_*_*
* CF STATEf.1.£NT *x *MARK AD.JECTIVE *X •••••••• *
: IN SAVE AREA * * CODE .. : PUT WORD OUT

********* *if****** ***************** ***************4*

R\lj6A .ox. DORWW 10 II
C2 *.. 09 *****C3********** *****C4**********

.* IS *. *PINOUT ECAl* *SAVE STATEMENT
NO.* NEXT *. YES -11--*-*-*-*-*-*-*-* * POINTER. SET

05
*****85**********
ERROR EDA4
--.-*-*-*-*-*-* •
* STATEMENT NO. *X •••
* REFERENCE ..

NOT FORMAT

.MSGMEM
**** . .

•• X*EC ..
* B2*

D02RW 12
*****C5********** · PUT OUT

8::::GIN I/O
LIST

*x •••••••• *ADJ CODE IMPLI-* •••••••• x* PUT OUT * •••••••• X* IMPLIED DO * x*
INCREMENT

PAREN
COUNT * *. ED DC.* X * IMPLIED DO" * POINTER • X'

.. .. TEXT wORD *
* •• * *****************

X ****

••••••••••• x. . .
.LISTD X 21

. .
.. (3 * . .

006RW 19
··***03**********
.. SET SKIP IN *

*****01 **** ****** . .
* REPLACE DICT • SAVE AREA
.. POINTER WITH
* ADDRESS

••••••••••••••••••• RESTORE STATE-·*
* ME NT POINTER *

.. x. 23
E I -11-. 22 ****4E2**********

.* IS *. *ERROR EDA4-*
• * THIS *. NO *-*-*-*-*-*-*-*-*

MODE/TYPE LEGAL •••••••• X*I~PROPER MODE/ * ••••
*. • * * TYPE VARIABLE *
.. * I~ I/O LIST *

* •• * *****************
"* YES MSGMEM *****

.x. LISTG 25

*EC ..
* 82*

x

DQ7RW • 18
*****E3*********· . .

PUT our
* DO PARAMETER

* . .

x

D05RW • 17 .* •
FI *. 24 *****F2********** *****F3********** F4 *. 16

.* IS *. * * *PINOUT ECAI* .* IS *.
• * NEXT *. YES * PUT OUT WORDS * *-*-*-*-*-*-*-*-* YES.* PAREN *.

**** · '. * 05 *.X • · . • ****
.D03RW .X.

OS •• 13
. .* IS *.
.YES.* NEXT * •
•••• *ADJ CODE IMPLI-*X •••

. ED DO .
. .

* •• *
• NO

.x.
E5 *. 14

.. * IS * • .. * NEXT *. NO ..
.ADJ CODE END . ••••

-If. DO .*
. . *

.. YES

DQ4-RW X 15
*****F5********** · .

. ADJ CODE . •••••••• x* wITH OFFSET PUT OUT *x *. COUNT .*x ~*
DECREMENT

PAREN COUNT
. SAOP. * AND POINTERS

'. • *
* •• *

• NO

26
*****G 1 **** ******
PINOUT ECAl
--*-*-*-*-*-*-*

.

* PUT OUT WORD *x •••••••••••••••••
* CONTAIN! NG *
* ~ARIABLE *
*********** ******

INTEGER * *. = a .*
* VARIABLE" *..*
***************** * •• *

• NO

x
**** . .

* 05 * . .

.LISTH .X. LISTJ .*. LISTK .*. .*.
HI *. 27 H2 *. 28 H3 *. 31 H4 *. 33

• ."* NEXT *. .* IS *. .* IS *. .* IS * •
• YES .* ADJ CODE, *. NO .* ADJ * .. NO .* ADJ *. NO .* ADJ *. YES * *
•••••• COMMA. MOOE/ .* •••••••• x*. CODE A SKIP .* •••••••• X*.MODE END MARK.* •••••••• X*CODE IMPLIED DO* •••• x* C3 *

.TYPE NOT . *. .* *. ..* *. .* * *
.BLANK. *..* *..* *...*

* •• * * ... * * •• * * •• *
X * YES '* YES * NO

• 30
*****Jl**********
* SKIP TO *

FIFTH WORD

29
*****J2** ********
PINOUT ECA1
--*-*-*-*-*-*-*

* AF TER THE *x •••••••• * PUT
* * END DC .. . : CURRENT WORD

***************** *****************

Chart EG. Subroutine READ/WRITE

210

LISTKI 32
*****.J 3**********
PINOUT EC,A,I
--*-*-*-*-*-*-*
* PUT OUT
* END I/O LIST *
* •

x

*EC *
* C3* .

MSG

X 34
*****,)4**********
ERROR EDA4-
--*-*-*-*-*-*-*

ILLEGAL
* DELIMITER * . .

*EC *
* 82*
• *

MSGMEM

. .
... Al * . .

X
*****A 1 *******4**
" ****A3*********
GET FORMAT COOE * ENTERED *

••• X* AND FIELD *X X * FROM PRESCAN
'* PRECEDING IT * * *
'* ***'******-11*****
*********** ******

.X.
Bl *. *****82**********

.* *. '* GET SCALE *
.* IS FORMAT *. YES "* FACTOR AhO P. *

. CODE + OR - . •••••••• X* ENTER T1-EM *
. . '* IN TEXT CARC
.. ...

* •• * *****************
• NO

.X.
CI *. *****C2**********

.. * *. "* * .* ItAS THERE *. YES *E"TER ADJ CODE *
. A COUNT X. AND COUNT IN

. TEXT CARD
.. '*

* ... *
• NO

x .x.
*****D 1 **** ****** 02 "* ..
E~TER ADJ CODE ' .* WAS *.
FCR THIS FORMAT NO.* FORMAT *.
'* CODE IN rExT *X CODE H CR X .. *
iI- CARD'" *. .*

***************** * •• *
iI- YES

.x.
El *.

.. .* DID * •
• YES .. * FORMAT * •
..... *.CODE INDICATE.*

. A GROUP .
-!l.. ..*

* •• *
• NO

· . • x
• x.

Fl *. *****F2**********
.* WAS *. * *

.*FORMAT CODE*. YES * ENTER LITERAL * *
. HOLLER! TH x* IN TEXT CARC * •••• x* ... 1 "*

* .. OR QUOTE .* * *"* *
. . ****

* •• * * NO

.x.
G1 *. *****G2********** *****G3**********

.* IS *. * GET FIELD * * *
.* THERE * .. YES * LENGTH AND * * ENTER FIELD

.*.
G4 *.

.* IS * • • * DELIMITER *. YES

*****G5********** * GET DEC IMAL *
LENGTH AND *

*.FIELD LENGTH .. * •••••••• X* FOLLOWING * X* LENGTH FOR * X*. A DECIMAL .* X* FOLLOWING
DELIMITER *.FOR THIS .* * DELIMITER * * THIS CARC * *. POINT .* "*

. CODE .
* •• *

**** . . * NO

"* H1 * .. X.
• *

x X
*****H 1 ********** *****H5**"********
* * • * * COMPUTE * X * ENTER DECIMAL *

*X .. * LENGTH N *
LENGTH * * TEXT CARD

.X.
Jl *. *****J2**********

.. *RECORO *. * WARNI NG- *
.*LENGTH Exeo*. YES * RECORD LENGTH *

*. SPECIFIED .. *.8 •••••• x* EXCEEDS *
. LENGTH . * SPECIFIED
... * LENGTt-I *

. . **.**************
• NO

· . • x
• x.

Kl * •
•• END OF *. ****K2*********

NO.* FORMAT *. YES * EXIT TO *
••• *. STATEMENT .* •••••••• x* PRESCAN *

. .. * *
.. ***************

X * •• *
**** * . .

* Al * . .

Chart 21. Phase 14 FORMAT Overall Logic Diagram

Phase 14 211

•••• *
·EH *
• Al*
• *

FORMAT X
.****A 1 **********
* *

INI TIALI ZE

FMT3 X
*****81*****.**** ***.*B2**.*******
* PUT ASSIGNED * *CKENOO EFA4*
* ADDRESS FOR -II- *-*-*-*-*-*-*-*-*
FORMAT INFORMA- •••••••• X* CHECK
* TION IN * * END DO
* a'll 'FLOW CHAI N *
******.********** ****.************

X FMTERI
*****Cl********** *****C2**********
*GEn"DA ENA2*NON *ERRCR EDA4*
--*-*-*-*-*-*-*ZERO *-*-*-*-*-*-*-*-*
* FETCH WORD * •••••••• X* NO LEAC (
* OR DELIMITER * X * IN FORMAT
* * STATEMENT *
****.************ *****************

• ZERO

FMTERA .X.
Dl *.

.* * • • * IS *. NO
. DELIMITER . ••••••

. (.
. .

* •• * * YES

*****El****.*****
* GET PAREN *

COUNT = 1
PUT 02 IN
TEXT CARD

...............

X TO
*****MSGMEM
*EC *
* 82"*
* *

*EH *
* E2*
* •

FMTONE X
*****E2**·**** • *

TURN
OFF COMMA

SWITCH *
*

*.***
*EH *
* E3*
* *

FMTTWO .X.
E3 *. .****E4***.***

.* *. * * .* IS *. NO * TURN OFF
. DELIMITER A . •••••••• X* COMMA

. COMMA . * SWITCH
. .

* •• * * YES

.. .

*EH •
* F2*

••••••••••• X. X •••••••••••••••••••••••••

FMTGCE X FMTHRE X
* * *****F2**********

GETWOA ENA2
*****F4**********
* * • *-*-*-*...,*-*-*-*-*ZERO

••••••• X* FETCH WORD * •••••••••••••••••••••••••••••••••• X*
SET

COUNT TO
1 * OR * *

* DELIMITER *

.NON
• ZERO

X
*****G2**********
* INTCON ENA4*
--*-*-*-*-*-*-*

CHECK AND
CONVEIH

* INTEGER *

X

X
*****G4*******
• *

SET COUNT *
* SWITCH OFF .

**** * • •
*EH *.X.
* H4*
**** •

FMTBRN X

*
*

*****H2*******.** *****H3*******
* SET COUNT * * *

*****H4**********
* * EQUAL TO SET COUNT * * BRANCH

**** * ***** **************
*DELIMITER * LOCATION*
**** *****.***** *********
** ** * ***** ***** *** *.** * *
*BLANK * EKA3 *

.0 * E I A 1 *

*E * EIA2 *

*F * EIA3 ..

*1 * EIA4 *
************ *** *********
*A * EIAS *
**** ********************
*x .. EJG4 *
* * ** .. ** * * * ** * **.* ** ******
*p * EKH2 *

*+ * EKBI *

CONVERTED * •••••••• X* SWITCH ON * •••••••• X* ACCORDING TO * ••• x*- * EKAI *

Chart ER.

212

INTEGER * * * * DELIMITER

Subroutine FORMAT

*

**** ********************
*(* ELAI *
* *** * *** ** ******* * * * ** **
*/ * EMA3 *

*T * EMAI *
***** *******************
*H * EJA4 *
* * ** * ** * ** ** * ********** *
*QUOTE * EJAI *
**** ********************
*COMMA * EKH4 *

*) * ELA3 *

*OTHERS * EKE4 *

*ENDMARK * EKE4 *
*********.***************

FMDCON X
: •••• Al ••••••• 4-

• SET E
• INDICATOR
: FOR 0 •

......... * ••••••

.....
·.EI •
... Ai·

·
FMECCN X

: •••• A2.* ••••••

SET E •
INDICATOR

• FOR E •
FMFCON X

: ••• *A3".**

.. I~~IcA~OR·.

.. FOR F •
· . .
••••••••••••••••••••••••• x.X •••••••••••••••••••••••••

X
* •••• 82··········

:~~~~~!-.-.-~~~~:
• CHECK •
• FIELD •

:.*"'**~~~:!*"' ... :

FMICON X FMACON X
• •••• A ••• • •• • ... •• **· .. *A5 * ... •

:~~~;~!_._._i~~!.: :~i~~~_*_._i~~!.:
• CHECK • • CHECK •
• FIELD • • FIELD *

!*** .. ~~~~!.*.*.: : ... 4*.~2~~! ••••• :

X X *.···8.·· · • ... • .. 85·* •••••
:~~~:~:_ .. _._i:!~: :~~:::!-.. -.-;~:~:

SEND 10 • • SEND 1. TO •
TO TEXT •

:**.**~::~ •••• *.:
! TEXT CARD :

:x •••.•.•..•...•••••••.•.. :
FMT002 .x.

....... C 1 •••••• *... C2 •• • •••• C:;I ••••••••••

:~~~:~!-.-.-~::~: 0 •••• DEF *. *. F :~~~:~L._._~::~:
SEND OE .X •••••••• *. SWITCH X. SEND OA •
TO TEXT. *. •• • TO TEXT *

.... **~:~~ .. ** ... : *.~. ...• :* ~:~~ ... ****:
• E

X
•• •• ·02 .. *··.···.· :~~~::!-.-*-~~!!:
• SEND DC •
: TO TEXT CARD :

.* •••• * ••••••••••

FMT007 X
: •••• C •••••• * ••
• SET FIXED •
• POINT INDICATR •
: ON •• **

• • X •
••• ••••••• ••••••••••••••• X.X •••

FMTGDG X
...... *E I............ E2 •••••••• *.
::~~~~*_* __ i~:~: ZERO!~i::~:-.-.-i~:~:
* MISSING *X •••••••• * FETCH WORD OR •
: WIDTH: : DELI METER :

•••• ** * 11 .11 *.11 ••

II.! ••
·EC •
•• B~.

· TO
MSGMEM

X

NON
ZERO

•• II·.F2.··*II"*".*

:~~:~~:_._._i~:~:
* CHECK *
* INTEGER :

**.* •••••••••• *.*

x

. .
: F. :

X .** •• F •••• * ••••••
*INTCON eOA."
-"'--.-'f-.-.-*-*
* CHECK •
: INTEGER :

... * •••••• *.** ••••

• x.
*** ... 61 ••• **......... ..II**G2.* •••• **." •••• *G3*" •• * ••• *. G. *. • •••• G5.* .. **

::!~;:!:~_. __ ;~:~: :~~:!:~!~_.~*_i:!~: *IIIIARNING EDA2. ..COMPARE.. .ERROR: EDA ••
-.-.-.. --.-.. -.-* := •• NUMBER OF *. GT .-*-.-*-*-*-.-*-.

* ADD FIELD *X......... SEND WIDTH * *OECIMAL LEN(;TH .x OECIMjtL PLACES * •••••••• x. DECIMAL
.. LENGTH TO. • TO TE)(T CARD • * EQUAL FIELD * *.TO FIELD •• • LENGTH

!.:;~~:~ .. ~i:~!~.: : ... **** •• *.***.! :** •• ~;~~i~ •• ***: ".;~G!~.* :** .. !~~*;:=:i**.*
• LT

. .
••••••••••••••••••••••••• x.

.*. •• H21S •••• : *H3 *
• •• FIxeD *. YES .. SET FIXED •
••••••••••••••••• X*PCINT INDICATOR ••••••••• X.POINT 'INDCTR' •

•• ON.* * OFT *
*. ••

*. •• * ** •••• *

• NO

FIIIT003 .X.
J2 ••

•• *.
NO.II IS *.

••• DELI METER ••
•• DECIMAL .*

*.POINT.-­.....
• YES

FMTOO. X FMT005 X
..... **Kl.** ** ••• *.K2 * •••• *
*ERFIOR eOA.. .GETIfIDA ECA2" ••••
-.-.-,-*--.-.-* ZERO*-*-*-*-·-·-·-*-*NON· *
• PUNCTUATION .X.......... FETCH IfIORD * •••• X. F4 •
: ERROR: : CR DELIMITER :ZERO •• **. *

•• * * •••• ***
• TO
• MSGMEM

x
* •• *.
*EC. *
* .S!* ·

Chart EI. Subroutine D/E/F/I/A

X
."*H4-••• ** •• ** •

:~~':~:!::_._._i=!~:
*SEND NUMBER OF •
*DECIMAL PLACES.

: !~.~!:~* ••• :

**!.*
·EH ..
• .. E;*

.. ! ...
*EC •
* .B~* .

TO
M5GMEM

Phase 14 213

*EJ *
* AI*
* * *

FQUOlE X
*****Al**********
* * SET *

"10TH = 0

* * *****************

X
*****81**********
NOFOCT ENH4
--*-*-*-*-*-*-* * CHECK * * COUNT SWITCH *
* * *****************

FMTOl7 X
*****Cl**********
PUTFTX EEA2
--*-*-*-*-*-*-*
• SEND IA * TO TEXT CARD
* *****************

.X. .*.

****­
*EJ *
* A4*
* *

FHOLER X
*****A4**********
* * SET •

WIDTH = 1 * .

X
*****84**********
PUTFTX EEA2
--*-*-*-*-*-*-*
* SEND 1A AND *

COUNT TO
11- TEXT CARD *

* C4 *.X. · . ****
FMTHOL .X.

C4 •• *****C5**********
.* IS *. * MOVE CHARS IN *

.* LAST CHAR *. YES * CURRENT INPUT *
.BEYOND END OF. •••••••• X* BUFFER TO *

. BUFFER . * TEXT CARD
. .

* •• * • NO

01 *. 02 *. *****03**********
X

*****04**********
ilPUTFTX EEA2*
--*-*-*-*-*-*-*

X
*****05**********
* REDUCE COUNT *
* BY NUMEE.R

.* IS *. .* IS *. *PUTFTX EEA2*
.* NEXT *. YES .* FOLLOWING *. NO *-*-*-*-*-*-*-*-*

••• X*. CHARACTER .* •••••••• X*. CHAR ALSO A .* •••••••• X* PUT WIDTH * MOVE CHARS * OF CHARATERS
. QUOTE . *. QUOTE •• • TO TEXT CARD * * TO CARD AND *

*ADJUST POI NTER *

* MOVED
.. *..* ,* * .

* •• * * •• * **************"*** *** __ *******4*****
* NO * YES

•• X* F1 *
* * ****

.FMTOlB .X.
El *. *****E2********** .* *. *ERROR ECA4*

.* IS *. YES *-*-*-*-*-*-*-*-*
. IT AN END . •••••••• X* UNCLOSED

. MARK . * QUOTe *
.. * *

* *

* •• * *****************
• NO

* Fl * .X.
* * • **** •

x

*EC * * 82* .FMTIBA X

*****Fl*****-**** * * * * * * SAVE *
* CHARACTER IN -
* SAVE AREA *

MS~~EM

.INSVI .X.
G 1 *. *****G2********** .* *. *ERROR EDA4*

.* TOO *. YES *-*-*-*-*-*-*-*-*
.MANY CHARS IN. •••••••• X* TOO MANY *

*.SAVE AREA.- * CHARATERS IN *
.. * SAVE AREA *

* •• * *****************
* NO

X
*****Hl**********
* * INCREMENT

WIDTH BY 1

* *****************

x
-
*EC *
* 82*
* * * TO

MSGMEM

Chart EJ. Subroutine QUOTE/H,X

214

FMTXXX X FMT013 X
*****E3********** 4****E4**********
PUTFTX EEA2 *LINETH EMA2*
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
* PUT OUT CHARS * •••••••• X* ADD WIDTH
*FROM SAVE AREA * * Te RECORD
* TO TEXT CARDS'" * LENGTH *
***************** *****************

x

*EH *
* E2* • *

*EJ *
* G4* . .

FMXCON X
*****G4**********
PUTFTX EEA2
--*-*-*-*-*-*-*

SEND 18 * * AND COUNT
* TO TEXT CARD *

.x.

X
*****E5*******:II-**
GET EEC4
--*-*-*-*-*-*-*

READ INTO
NEXT BUFFER *

* *****************

* •
... C4 '* . .

H4 *. *****H5**********
.* *. *ItJARNING EDA2*

• * *. YES *-*-*-*-*-*-*-*-*
. COUNT = 0 . •••••••• X* ZERO COUNT
.. IN X

. .
* •• *

• NO

FMT008 X
*****J4********** · . SET

WIDTH = 1 *X ••••••••••••••••• · · *****************

X
*****K4**********
LINETH ENA2
--*-*-*-*-*-*-*

ADD WIDTH * ••••••••
TO RECORD * X

* LENGTH .. *****
***************** *EH *

... E2* .. .

.....
·EK ..
• Al*
* * *

FNINUS X .* ••• A 1 •• * ••••
* * * SET SIGN •

INDICATION
FOR MINUS

** •••• *** ••• **

.EK * .X.
• 81* *... . FPLUS X
*****Bl**********
GETWDA EOA2
--*-*-*-*-*-*-*ZERO
* GET WORD * ••••••
* OR DELIMITER *
* **************.**

NON
ZERO

X
*****Cl********·*
INTCON EOA4
--*-*-*-*-*-*-*
* CHECK

INTEGER
* * **** ••••• *** ••• *.

X
·*01*·*****
* * SeT FACTOR

EQUAL TO *
INTEGER ..

.x.
E 1 *. .****E2**********

.* *. • ~ERRCR EOA4*
.* IS *. NO X *-*-*-*-*-*-*-*-*

. DELIMETER . •••••••• X* ILLEGAL *
. P. * SIGN

. .
* •• * ***************.*

.. YES

.x.
Fl *. ... * •

• * SIGN *. PLUS
. INDICATION . ••••••

. .
;.

* MINUS

X
*****Gl**********
* * * PUT 1 BIT * * IN BIT 0 OF
: SCALE FACTOR

** •• *******.*****

x

*EC *
• B2*
* * *

TO
MSGME~

** •• *
·EK *
• H2*
* * *

x :FSCALE x
"**H 1 * ••• *** **H2**********

: TURN OFF *. X :~~~~~~-*-*-~:~~:
... MINUS SI GN * •••••••• X* SEND 08 ANO *
* INDI~ATION * SCALE FACTOR *

* TO TEXT CARO *
"***-* ********

x

*EH *
* E2*
* * *

*_if_ •
*EK *
- A3*
* *

BLANKZ X
*****A3********** *****A4**********
GETWOA ENA2 *ERROR EDA4*
--*-*-*-*-*-*-*NON *-*-*-*-*-*-*-*-*
* GET ~ORO * •••••••• X* IMBEDDED * ••••••••
* OR DELIMETER *ZERO * BLANK * X
* * if****
***************** ***************** *EC *

.ZERO * 82*

x
* * *

***** TO
*E~ * MSGMEM * H4*
* *
*

*EK *
* E4*
* *

FILLEG X
*****E4**********
ERROR EDA4
--*-*-*-*-*-*-*

ILLEGAL *
DELIMITER *

x

*EC *
* B2*
* * *

TO
MSGMEN

* ... ***
*EK * * H4* * •

FCQMMA .X.
H4 *. ***"**1-:15*******

.* *. * *
.* IS *. NO * TURN ON

.COMMA SWITCH . •••••••• X* COMMA
. ON. * SWITCH
.. *

* •• * **************
* YES

X
*****J4**********
ERROR EDA4
--*-*-*-*-*-*-*
* ILLEGAL *

COMMA

x

*EC *TO
* 82*MSGNEM
* •
*

x

*EH *
* F2*
* * .

Chart EK. Subroutines +/-/P, BLANKZ, FILLEG, FCOMMA

Phase 14 215

****-If
*EL *
-If AI* ..

LPAREr.. • X.
Al *. *iliI**A2********.JI*

.* *. *ERReR EDA4*
.* IS *. YES *_*_*_*_*_*_*_*_4

GROUP INDICATOR •••••••• x* MeRE THAN 1
. ON. * LEVEL CF
.. * NESTING () *

. . ********* ********
* NO

X
*****81 **** ****** · . SET COUNT

EQUAL TO
GROUP COUNT

*****c 1 **** *** ***
P~TFTX EEA2
--*-*-*-*-*-*-*
* SEND 04 *
AND GROUP (OUNT
* TO TEXT CARD -If

X
*****D 1 **********
* SET LEAD ING *

LENGTH AND
* TAl L LENGTH *
* EQ~AL TO ZERO *

*****E 1 *******
* SET COMMA I *

GROUP AND *
LEADING IN- *

-If orCATORS ON * · . **************

x
*****F 1 **** ****** · . * INCREMENT

PAREN COUNT
BY 1

*EH *
* F2* .. .

*EC *
* B2* .. .

TO
MSGMEM

*EK *
* A3* . .

RPAREN X
*****A3********4*
NOFDCT ENH4
*_*_ *_4_*_*_*_*_*

CHECK
COUNT

* SWITCH *

X
*****83********** · . DECREMENT *

PAREN COUNT -If
EY 1

.x.
C3 *. *****C4***4***iHI-*

.* IS *. *ERROR EDA4*
.* PAREN *. YES .*-*-*-*-*-*-*-*-*

COUNT LESS THAN •••••••• x* PARENTHESES * ••••••••
. ZERO. * ERROR X

. . *****
* •• * ***************** 4EC *

* NO -If 82*

.x. FMT020

..
'TO

MSGMEM

03 *. *****04***4-IHI-***4 *****D5**.JI-*4*****
.* IS *. *PUTFTX EEA2* *LINECK ENE2*

.* PAREN *. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
*COUNT EGUAL TO * •••••••• X*SEND 22 TO TEXT* •••••••• X4 CHECK LENGTH

4. ZERO.* 4 CARD (END OF * * OF RECORD
* FORMAT)

* .. *
• NO

**********4**4**4 *****4********44*

.x.
E3 *. *****E4**4*******

.* IS *. *WARNING EDA2*
.* LEAD PLUS *. YES *-*-*-*-*-*-*-*-*

*TAIL LENGTH GT * •••••••• x* RECORD *
.SPECIFIED. * TOO LONG

*LENGTt-; * *
* •• * *****************

• NO

· . .X •••••••••••••••••••••••••

FMT022 .X.
F3 *.

.* IS *.
.* TAIL *. NO

.LENGTH EQUAL . ••••••••••••••••••
. TO ZERO .

. .
4 •• *

* YES

FMT023 X
*****G3**********
* INCREMENT *
* RECORD LENGTH *
* BY LEAD ING *

LENGTH * *
* GROUP COUNT *

FMT024 X
****4H34****** · . .

****4G4********** . .
* RECORD *
* LENGTH EQUALS *

TAIL LENGTH * .

SET GROUP
INDICATOR

OFF
*x

*****J3*****4****

:~~~:~~_*_*_i:!::
* SEND IC *
* TO TEXT CARD · *****************

x

*EH * * E24 ..

FMT032
*****E5***4******
* ADJUST
* INPUT BUFFER

POINTER TO
A FULL WORD .

*********4*4*****

x

4EA *
* Bl * ..

TO
PRESCAN

Chart EL. Subroutines LPAREN, RPAREN

216

*****'
*EM *
* Al*
* * *

FSUEST X
*****Al**********
NOFDCT ENH4
--*-*-*-*-*-*-*
* CHECK *
* COUNT *
* INDICATOR *

.
X

*****81**"******** *****82**********
GETWDA EOA2 *ERROR EDA4*
--*-*-*-*-*-*-*ZERO *-*-*-*-*-*-*-*-*
* GET WORD OR * •••••••• X* NUM8ER *
* DELIMETER * * MISSING *
* * *****************

.NON

.ZERO

it
*****Cl**********
INTCON EOA4
--*-*-*-*-*-*-* * CHECK *
* INTEGER *
* * *****************

.
X

*****Dl**********
PUTFTX EEA2
--*-*-*-*-*-*-* * SEND 12 AND *
* POSITION NO. *
* TO TEXT *

X
'**E 1 *******
LINECK ENE2
--*-*-*-*-*-*-*
* CHECK *
* RECORD *
* LENGTH *

.X.
Fl *.

.* IS * •
• * GROUP *. YES

* * *****************

.
X

*EC *
* 82*
* *
*
TO

MSGMEM

'. INDICATOR . .••.•••••••••.•.••
*. ~ ON • *'

. .
* •• *

* NO

X
*****Gl**********
* SET RECORD *
* LENGTH EQUAL *
* TO POSITION *
* NUMBER *
* * *****************

FMTOll X
*****Hl*******
* *

FMTOI0 X
*****G2**********
* SET RECORD *
* LENGTH = 0 *
SET TAIL LENGT~
* EQUAL TO *
* 'T' NUMBER *'

* SET LEADING * •
* INDICATOR *X •••••••••••••••••
* OFF *
* * * ********** ***

it

*EH *
* E3*
* * *

Chart EM. Subroutines T, FSLASH

*EL *
* A3*
* *
*

FSLASH X
*****A3**********
PUTFTX EEA2
--*-*-*-*-*-*-*
* SEND IE TO *
* TEXT CARD *
* * *****************

FMT009 X
*****83**********
NOFDCT ENH4
--*-*-*-*-*-*-*
* CHECK *
* COUNT *
* SWITCH *

X
*****C3**********
LINECK ENE2
--*-*-*-*-*-*-*
* CHECK *
* RECORD *
* LENGTH *

X
*****03**********
* SET RECORD *
* AND TAIL * * LENGTHS EQUAL *
* TO ZERO *
* * *****************

X
*****E3*******
* * * SET * * LEADING * * INDICATOR *
* OFF *

x

*EH *'
* E2*
* *
*

Phase 14 217

*EN *
* A2*

L I NETI"" X
*****A2*4********
* COMPUTE TOTAL * * LENGTJ-!
* FIELD LEI'\GTt-: 4-

* * FIELD COUNT *

• * *****************

.X. FMT026 .*.
82 *. 83 * •

• it IS *. .* IS * • • * GROUP *. YES .* LEADING *. NO
. INDICATOR . •••••••• X*. SWITCH ON .* ••••••••••••••••••

. ON. it. .*

X
*****C2********** · ADD TOTAL
* LENGTH TO ...
* I:(ECORD LENGTH * · *****************

. .
* •• * * YES

*****C3**********

* ADD TOTAL
* LENGTH TO *
*LEADING LENGTH * · . *****************

FMTC27
*****C4********** . .
* ADD TOTAL
.. LENGTH TO

TAIL LENGTH

· . .
.......................... X. X

*EN *
* E2* ..

****03********* · . RETURN

LINECK • X. FMT030 .*. FMT031
E2 *. E3 *. *****E4**********

.* IS *. .* IS *. * *
.* GROUP *. YES .* LEADING *. YES * ADO LEAD *

. INDICATOR X.. SWITCH ON .* X* LENGTH TO *
it. ON.* *. e* * RECORD LENGTH *

. .
* •• *

• NO

* F2 *eX. · . ***4
FMT028 .x.

.. * *
* •• * **********iHI-*****

• NO

**** . .
*****FI********** F2 *.

X
*****F3**********

* F2 * . .
WARNING EDA2 .. * IS *. · . *-*-*-*-*-*-*-*-* • * RECORD *.

RECORD *X *. LENGTH GT .*X *
SET RECORD

LENGTI-< =
TAIL LENGTH TO LONG * *.SPECIFIED.*

it**********
*.LNGT *

. . · . .
.............................. eX.

*EN *
* HI* ..

FLDCNT .X.

FMT029
****G2*********

• * RETURN

*EN *
* H4* . .

*

NOFDCT • x.
HI *. H4 *. *****H5**********

.* *. .* IS *. YES
. COUNT

. = I .
. .

* •• *
• NO

X
*****JI*****.**** FMT025
PUTFTX EEA2 ****J2*********
--*-*-*-.-*-*-*. *

SEND 06 AND * •••••••• X* RETURN
* FIELD COUNT
.. TO TEXT CARD * *************.*
.************

.* IS *. *ERROR EDA4*
.* COUNT *. YES *-*-*-*-*-4--*-*-*

. INDICATOR X* ILLEGAL
. ON. * NUMBER

. .
* •• *

• NO

X
****J4********* . .

RETURN

.****
*EC 4-
4- 82*

Chart EN. Subroutines LlNETH, LlNECK, FLDCNT, NOFDCT

218

*EO *
* *A~*

GETUCA X
*****A2********** · . *STEP TRANSLATE *
* AND TEST *X •••

GETWCE

POINTER *

• x.
82 *.

.* IS *.
.* THIS *. YES •

••••••••••••••••• X*. CHARACTER .* ••••
. BLANK .

. .
* •• * * NO

.x.
*****C 1 ********** C2 *.
GET EEC4 .* IS *.
--*-*-*-*-*-*-* YES .o* THIS Tt-:E *.
*READ INTO THI S *X.o • .o ••••• *.o END OF THE .*
* BLiFFER AND * *. BUFFER .*
*AOJ~ST POINTER * *.o.*
***************** * •• *

* NO
*"*** * • * C2 *eX.

* •
**** •

GETWDI X
*****02**********

• * "* TRANSLATE
* AND
* TEST

X
*****E2********** · . COMPUTE AND

SAVE LEt-.'GTt-'

X
-JHIF2*** **** · . * SAVE DATA IN

lttIORK AREA

*EO *
* A4* . . ·

INTCON
*****A4**********

* * * GET DATA FROM *
* WORK AREA *

INTI .x •
84 *. *****85**********

.* *. *ERROR EDA4*
.* IS THIS *. NO *-*-*-*-*-*-*-*-*

. A NUMBER . •••••••• X* ERROR *X •••
. . * IN *

. . * INTEGER *
* •• * *****************

* YES

INT2 X

*EC *
* 82*

*****C4**********
• *

CONVERT
NUMBER TO

BINARY TO
MSGMEM

.x.
D4 *. *****D5**********

.* *. *ERROR EDA4*
.. * IS *. YES *-*-*-*-*-*-*-*-*

*. NUMBER
*. GT 255

.* •••••••• X* ILLEGAL *
.* * NUMBER

tRET

. .
* ... * * NO

**** . .
TO •• X*EC *

MSGMEM * 82*

.. X.. .*.
E4 *. E5 *.o

~* IS *. .'* *~
..* ZERO * .. NC .* IS *. YES.

'* .. ALLOWED IN .* x*. NUMBER .. * ••• .o

. .. *. ZERO
.. *.

"* •• * "* YES
* •• * * NO

· .
• X e

INT3 X
****F4********* .

RETURN * .

.'

• x.. RTNE RTNEI
G2 *. *****G3*********'* *****G4********** .* IS *. * * * ADJUST TRT *

.* THIS *. YES * GET LENGTH * * POINTER TO
* .. END OF 5ECOND .. * X* OF SYMBOL * X* NUM8ERS THAT *

. BUFFER . * TRANSLATED * * WILL 8E MOVED '*
.. * •• •

*. ... ***************** *****************
* NO

.x.
*****H 1 **** ****** H2 *.
GET EEC4 .* IS *.
,*-*-*-*-*-.-*-*-* YES.* THIS *.
'* READ INTO *X •••••••• *.END OF FIRST .*
* FIRST BUFFER * *. BUFFER .. *
* *. .*
***************** * ... *

* NO

. .

........ .oo X ..

. x.
J2 *. .* IS i!-.

YES.'It TOTAL *. NO
.. ~ *. LENGTH .. *

X
****K 1 **** ***** . .

ZERO RET URN ..

*.
'.

= 0

* ... -If . .*
.*

,
x

****K3*********
.. NON ZERO *

RETURN

Chart EO. subroutlnes GETWDA, INTCON

X
*****H4**********
*PUT TRANSLATED *
* DATA TO AREA

PRECEDING
FIRST INPUT

BUFFER

X
*****J4**********
GET EEC4
--*-*-*-*-*-*-*

READ INTO ..
SECOND *
BUFFER

. .
* D2 * * •

Phase 14 219

PHASE 15

Phase 15 modifies input text and con­
verts it to a more refined form by reorder­
ing the sequence of text words within the
statements. The text words may be modified
to a form closely resembling an instruction
format. When the text words are modified,
registers are assigned to the operands
depending upon the operator. Argument
lists for external or arithmetic statement
function references are created by modify­
ing the input text. In-line function ref­
erences are processed by generating the
appropriate instruction format text or in­
line function call word. During the input
text processing, errors pertaining to a DO
loop, arithmetic IF statement, statement
number, function argument, and operand
usage and form are recognized, and the
proper messages are given.

Chart 06, the Phase 15 Overall Logic
Diagram, indicates the entrance to and exit
from Phase 15 and is a guide to the overall
functions of the phase.

ORDER OF OPERATIONS

Phase 15 implements an ordering of the
operations within each statement of the
text by reordering the sequence of text
words.

The desired order is defined by a
hierarchy of the specific operations as
represented by adjective codes and deter­
mined by comparing two adjective codes.
The text word is either processed, or
stored in the operations or subscript table
depending upon the hierarchy.

Operations Table

The operations table is a temporary
storage area used during the ordering of
operations within a statement for any text
words referring to the operation. An
exception is made for subscript text which
is stored in the subscript table.

The operations table may contain no more
than 50 entries. The entries in the opera­
tion table are accessed by a pointer to the
last entry for the specific statement under
consideration.

220

Subscript Table

The subscript table is used as a tem­
porary storage area for subscript text.
Each subscript entry in the subscript table
is two words. There may be no more than 38
entries to the subscript table.

Forcing Scan

The forcing scan directs the ordering of
the text words of the statement. It com­
pares the forcing value of the various
adjective codes to determine their dispOSi­
tion.

Each adjective code has a left and a
right forcing value. The right forcing
value applies to the adjective code within
the text word in the input text. The left
forcing value applies to the adjective code
within the text word in the operations
table.

The adjective code of the first word of
the statement has the highest forcing value
of any adjective code except the end of
statement indicator. This adjective code
is entered into the operations table.

As a word of the input text is accessed,
its right forcing value is compared to the
left forcing value of the adjective code of
the last word entered into the operation
table. If the left forcing value is higher
than the right forcing value of the current
input text word, the current input text
word is stored in the operations table. If
the left forcing value is lower or equal,
the current input text word is processed.

A word is uniquely processed depending
upon its adjective code, and then written
onto the output data set. In this way, the
input data set is ordered when it leaves
Phase 15 as the output data set.

ARGUMENT LISTS

When an adjective code indicating a call
to an in-line, external, or arithmetic
statement function is detected, a list of
arguments is constructed. An exception is
made for the SNGL and DELE in-line func­
tions which are processed by Phase 15.

For external or arithmetic statement
functions, the argument list is preceded by
a text word containing information to iden­
tify the specific function call. ,The first
word of the argument list is a count word
which indicates the number of arguments.
It is followed by a text word for each
argument.

For in-line functions not processed by
Phase 15, only one text word is generated.
The three parts of this text word are: '

1. An in-line function ,call adjective
code.

2. Registers assigned to the operand in
the mode/type field.

3. A code to indicate the specific in-
line function in the address pointer
field.

During the processing of argument lists,
a count of the total number of arguments is
kept in the communications area. This
count will be used by Phase 20.

TEXT WORD MODIFICATION

As each statement of Phase 15 is
processed, the various text words are exam­
ined and modified. The contents of the
adjective code field may be changed to an
operation code which is determined by the
required operation and the mode of the
operands. The mode field is replaced by an
appropriate register assignment.

Register Assignment

Registers are assigned by Phase 15
according to the adjective code that is
encountered. Many operations and most
function references require that certain or
all operands be in registers.

There are eight registers (general reg­
isters 0, 1, 2, and 3; and floating point
registers 0, 2, 4, and 6) assigned by Phase
15 in these cases. The type of register
used depends upon the mode of the operation
and operands.

When a register is required and one is,
not available, the contents of required
registers are placed in the first available
work area (save register technique) •

ERROR CHECKS

As each statement is accessed and proc­
essed, specific error conditions are recog­
nized. General format errors as well as
errors connected with specific statements
such as DO, arithmetic IF, statement num­
ber, or an argument list are noted. DO
loops are examined to determine if the DO
variable is redefined or if a DO loop is
partially nested. Arithmetic IF statements
are examined to determine if the arithmetic
expression contains legal symbols. They
are also examined to determine if more or
less than three statement numbers have been
specified. Statements numbers are examined
to insure that they are defined and do not
indicate transfers to nonexecutable state­
ments. If a function subprogram is being
compiled, a check is made to determine
whether the function name is defined. The
members of an argument list are examined to
determine whether they are valid. If the
particular list has a required length it is
examined to determine if that list is of
the required length. If an error condition
is discovered, an error message is given.

ROUTINES/SUBROUTINES

The routines and subroutines within
Phase 15 fall into four groups. The first
group contains the PRESCN routine which
accesses each statement and determines
which routines of the second group will
process that statement or begin the proc­
essing of that statement. The routines
called by PRESCN form the second group.

The third group refers to the routines
which are called by the FOSCAN routine (a
routine in the second group) •

The routines called by the second and
third groups, other than FOSCAN, form the
fourth group. Figure 45 illustrates these
groups.

Phase 15 221

*****61**********
* DO * *-*-*-*-*-* -*-*-*
* * CHART FC

*****Cl********** * BEG I/O *
--*-*-*-*-*-*-*
• * * CHART FE
* **;tI-******** ******

*****82**********
* SKIP *
--*-*-*-*-*-*-*

CHART FF

*****C2** ********
* LABELDEF * tt_*_*_*_*_*_*_*_*
* • * CHART Fa .

*****01********** *****02**********
* ADO * * MULT *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* * * ••••••••• * * ••••

CHART FH * * CHART FI *

*****A~********** * PRESCAN * *_*_*_*_*_*_*_*_tt .
CHART FA

SU8ROUT INES
CALLED BY.PRESCN

*****C3**********
* FOSCAN *
--*-*-*-*-*-*-* .

CHART FB

SUBROUT INES
CALLED BY.FOSCAN

*****84**********
* GO TO *
--*-*-*-.*-*-*-*
*
* CHART FO *

*

*****C4*;********
* ERWNEM * *_*_*_*_*_*_tt_*_*
* CHART FF

*****04**********
* EXPOP tt *_*_*_*_*_tt_*_*_*

• ••• * . CHART FK *
* * *****************

*****E4**********
* CALL *

*****El**********
* LFTPRN *
--*-*-*-*-*-*-*

*****E2**********
* RT PRN *
--*-*-*-*-*-*-* • • • *-*-*-*-*-*-*-*-* * ••••••••• * * ••••••••••••••••••••••••••••••••••• * *

* CHART F M • * CHART FL .
******4**** ******

*****Fl********** *****F2**********
* COMMA * * FUNC *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*

* ••••••••• * * ••••
CHART FP * * CHART FN * .

* CHART FN

*****F4**********
* INVOP *
--*-*-*-*-*-*-*

•••• * *
* CHART FF *
• *

*****85**********
* CaMP GO TO *
--*-*-*-*-*-*-*
* * CHART FO

*****C5*;********
* MOPUP *
--*-*-*-*-*-*-*
* •

CHART FG *
* *****************

*****05**********
* UMINUS *
--*-*-*-*-*-*-*
* * CHART FL

*****E5**********
* EaUALS *
--*-*-*-*-*-*-*
* * CHART FO

*****F5**********
* UPLUS *
--*-*-*-*-*-*-*
* * * CHART FL
• *

*****Gl********** *****G2********** GENERAL P~RPOSE, *****G4********** **~**G5**********
* DVARCK * * SYMBOL * SUBROUTINES * MODE * * TEPE *
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* * * ••••••••• * * ••••••••••••••••••••••••••••••••••• * * ••••••••• * *"

CHART Fe * CHART FT * * CHART FX * * CHART FT *
* * * * ***************** ***************** ***************** *****************

*****Hl********** *****H2********** *****H4********** *****H5**********
*MSGMEN/MSGMEM/ * * COMPILE * * WARNING * * ERROR *
* MSG * *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
***************** ••••••••• * * ••••••••••••••••••••••••••••••••••• * * ••••••••• *
* CHART * * CHART FS * * CHART FV * * CHART FV *
* FF * * *
***************** ***************** ***************** *****************

*****Jl********** *****J2********** *****J4********** *****J5**********
* DIV * * ARITHIF * * INLINI * * INLIN 2 *
--*-*-*-*-*-*-* *-*-*-*-*~*-*-*-* *-*-*-*.*-*-*-*-* *-*-*-*-*-*-*-*-* * * ••••••••• * * ••••••••••••••••••••••••••••••••••• * * ••••••••• *

CHART F J * * CHART FR * CHART FZ CHART GA
* •

*****K 1 ********** *****K2********** *****K3*;******** *****K4********** *****K5********** * PINOUT, ININ, * * MVS8XX/MVSBRX * *FINDR, CHCKGR, * * INARG * * CKARG *
* INOUT * *-*-*-*-*-*-*-*-* * SAVER, FREER, * *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
***************** ••••••••• * * ••••••••• * LOADR * ••••••••• * * ••••••••• *
* CHART * * CHART FY * ***************** * CHART GC * * CHART GB
* FW * * CHART FU * * *
***************** ***************** ***************** ***************** *****************

Figure 45. Organization of Phase 15

222

PRESCN Routine: Chart FA

The PRESCN (control) routine, identifies
each statement type and passes control to
the appropriate processing routine.

ENTRANCE: The PRESCN routine receives con­
trol from the FORTRAN System Director.

OPERATION: The PRESCN routine performs the
necessary phase initialization. Each
statement identification word is then
accessed and the adjective code is examined
to determine the appropriate processing
routine for that statement.

EXIT: When the END statement indicating
the end of the input text is sensed,
control passes to the MOPUP routine. . The
MOPUP routine exits to the FORTRAN System
Director to call in Phase 20.

FOSCAN Routine: Chart FB

The FOSCAN routine, which is the arith­
metic scan, checks the syntax of the arith­
metic, arithmetic IF, CALL, and ASF state­
ments. This routine removes parentheses
and orders the arithmetic expression
according to the hierarchy of operations.

ENTRANCE: The FOSCAN routine
from the PRES CAN routine when an
ic, arithmetic IF, CALL, or ASF
adjective code is detected.

is entered
arithmet­

definition

CONSIDERATION: The forcing scan is used
during the arithmetic scan. It is des­
cribed in the Introduction to Phase 15.

OPERATION: The first text word of the
statement is written onto the intermediate
text output tape. The FOSCAN routine
attempts to limit the value range of the
adjective codes in the forcing value tables
to increase the efficiency of working with
the table. The FOSCAN routine equates the
adjective code of any arithmetic, arithmet­
ic IF, CALL, or ASF definition statement to
a particular forcing adjective code value.
The original adjective codes would cause a
more extensive range of adjective codes in
the forcing value table. The modified text
word is placed into the operations table.

After the first word, as modified, is
entered into the operations table, the next
word of the input text is accessed and
examined. If it is a subscript word, the
subscript text is entered into the sub­
script table. The following word of the
input text is then accessed and examined.
When the word (in the operations table)
containing the subscripted variable is

processed, the related subscript text is
accessed from the subscript table. The
related subscript text is always the latest
subscript in the subscript table.

If the word accessed from the input text
is not a subscript word, the right forcing
value associated with that word is accessed
and compared to the left forcing value of
the latest operations table entry for that
statement. If the right forcing value
forces the left forcing value (according to
the hierarchy set up by the forcing scan) ,
the text is processed.

If the left forcing value is not forced
by the right forcing value, the current
word of the input text is entered into the
operations table. The next word of the
input text is then accessed.

If an attempt is made to enter informa­
tion into the operations table when it is
full, an error condition is recognized. An
error message indicating that the statement
is too long and should be subdivided is
issued. The remainder of that statement is
not processed.

The end mark is written on a
all other words, including
processed words in the subscript
not written out.

work tape;
the non­

table are

There is additional processing for the
CALL and ASF definition statements. For a
CALL statement, the name of the subroutine
subprogram called is checked to determine
if it has been defined. If the mode/type
field of the word indicates an external
library subprogram, the subroutine
subprogram name is considered defined and
processing continues. If the subprogram
name is not defined, the statement is not
processed. An error message, along with
the end mark, are written onto the output
buffer. For an undefined subprogram name,
the associated CALL statement output is:

r----------T----------T-------------------,
I CALL I I I
ladjective Imode/type Isubroutine I
I code I I name I
~----------+----------+-------------------~
I I linternal sequence I
lend mark I I number I
~----------~----------~-------------------~
I error message I l ___ J

1 byte 1 byte 2 bytes

For an ASF definition, the ASF switch is
set. This indicates to the various rou­
tines called by the arithmetic scan that an
ASF definition statement is being proc­
essed.

Phase 15 223

Table 1. Right and Left Forcing Tables
r----------T-------------r-------------------------T------T-------------,
I Adjective I Left I Address of Assooiated I IRight Forcing I
I Code I Forcing I Routine I I Value I
I I Value I I I I
~---------+-----------+-----------------------------~ ~------------~
I (I 64 I a (LFTPRN) I I 01 I
~-----------+-----~--------+---------------------------~ ~-------------~
I) I 00 I a (RTPRN) I I 69 I
~-----------+--------------+-----------------------------~ ~-------------~
I = I 70 I a (EQUALS) I I 70 I
~-----------+------------+-----------~-------------------~ ~------------~
I, I 49 I a (COMMA) I I 48 I
~-----------+------------+----------------------------~ ~------------~
I n I 80 I never forced out I I 01 I
~------------+-------------+-------------------------------~ ~-------------~
I + I 09 I a (ADD) I I 09 I
~----------+-------------+-----------------------------~ ~------------~
I - I 09 I a (ADD) I I 09 I
~-----------+-------------+---------------------------------~ ~-------------~
I * I 05 I a (MOLT) I I 05 I
~-----------+-------------+----------------------------~ ~-------------~
I / I 05 I a (MOLT) I I 05 I
~-----------+-------------+-------------------------------~ ~------------~
I * * I 04 I a (EXPON) I I 03 I
~------------+-----------+---------------------------~ ~-------------~
I F (I 64 I a (FUNC) I I 01 I
~-----------+-------------+-------------------------------~ ~-------------~
I I I I I I
I u I 05 I a (UMINUS) I I 01 I
~----------+-------------+---------------------------~ ~------------~
I end mark I 00 I never forced out I I 80 I
~------------+------------+----------------------------~ ~------------~
I + I I I I I
I u I 05 I a (UPLUS) I I 01 I
~-----------+--------------+--~-~------------------------~ ~-------------~
I ASF I I I I I
I Forcing I 72 I a (END) I I 70 I
~----------+--------------+-----------------------------~ ~-------------~
I ARITB I I I I I
I Forcing I 72 I a (END) I I 70 I
~---------+-----------+---------------------------~ ~-------------~
I CALL I I I I I
I Forcing I 72 I a (CALL) I I 70 I
~----------+-------------+---------------------------------~ ~-------------~
I IF I I I I I
I Forcing I 72 I a (END) I I 70 I L _________ .1.-____________ .1. ________________________ J L _____________ J

1 byte 1 byte 2 bytes 1 byte

Right and left forcing tables of the
format in Table 1 are used to determine the
right and left forcing values of the var~
ious operators.

Input/OUtput Formats: There are four
statement types (arithmetic, arithmetic IF,

224

CALL, and ASF) which may appear as input to
the Phase 15 Arithmetic Scan. An arithmet­
ic scan within the FOSCAN routine passes
control to the associated operator routine
to process the individual text words.

A simple arithmetic statement such as:

HERBIE = MACK - WINDY

appears in the input to Phase 15 as:

r----------T-----------T-------------------------,
I arithmetic I I I
ladjective linteger la(HERBIE) I
I code I variable I I
~----------+-----------+-------------------------~
I I integer I I
1= I variable la(MACK) I
~----------+-----------+-------------------------~
I I integer I I
1- I variable I a (WINDY) 1
~----------+-----------+-------------------------~
I I lin~ernal statement I
I end mark I I number I L __________ ~ ___________ ~ _________________________ J

1 byte 1 byte 2 bytes

The output from Phase 15 for this statement is:

r----------T-----------------T-------------------,
I arithmetic I I I
ladjective I integer la(HERBIE) I
I code I variable I I
~----------+--------T------~-+-------------------~
IL I register Ivariablel a (MACK) I
I 1#3 I I I
~----------+--------+--------+-------------------~
IS I register Ivariablela (WINDY) I
I 1#3 I I I
~----------+--------+--------+-------------------~
1ST Iregisterlvariablela(HERBI~ I
1 I #3 I I I
~----------+--------~--------+-------------------~
1 I linternal statement I
I end mark I I number I L __________ ~ _________________ ~ ___________________ J

1 byte 1 byte 2 bytes

The address pointer field contains
the address of the resultant field
of the arithmetic statement.

The first operand, MACK, is loaded
into register #3.

The second operand, WINDY, is sub­
tracted from MACK.

The result is stored in the resul­
tant field, HERBIE.

Phase 15 225

A complex arithmetic statement such as:

A (IOAD) = JETHRO * MOOSE + A (IOAD)

appears in the input to Phase 15 as:

r----------T-----------T-------------------------,
I arithmetic I real I I
I adjecti ve I subScript'ed I a (A) I
I code I variable I I

r::::----r~~~!~~;~:-- r:ff:::-------------------l }
I I information I I
~--------i-----------+_---~--------------------~
Ip(subscript) Ip(dimension) I
~----------T-----------+-------------------------~
, I real I ,
I = I variable I a (JETHRO) I
~--------+-----------+-------------------------~
I I real , ,
, * ,variable, a (MOOSE) ,
~--------+-----------+-------------------------~
, I real , I
, + , subscripted, a (A) ,
I ,variable, ,
~----------+-----------+-------------------------~
, 'residual, , }
ISAOP I mode/type I Offset ,
'Iinformation' ,
~----------i-----------+_------------------------~

~P(~~bSC=~~~~----------~~~~~~~~~~~-------------~
, I linternal statement I
lend mark I 'number , L __________ i ___________ i _________________________ J

1 byte 1 byte 2 bytes

226

These two words contain the sub­
script text for A (IOAD) •

These two words contain the sub­
script text for A (IOAD) •

The output from phase 15 for this statement is:

r-------T------------------T------------,
I arithmetic I real' I I
I adjecti ve I subscripted I a (A) 1
I code I variable I 1
~---------+-------T----------+--------------i

-I LE 1 register I subscripted 1 a (JETHRO) 1
I 1#6 1 variable I I
~------+--------+-----------+--------------i
I ME I register I real I a (MOOSE) 1
I 1#6 1 variable I I
~-------+-------+---------+----------_i
I SAOP 10 I register I Offset I
I 1#3 I I
~--------..L-------+---------..L-----------i
I p (subscript) I p (dimension) I
~---------T-------+----------T----------_i
I I I real I I
IAE Iregisterlsubscriptedla(A) I
I 1#6. I variable 1 1
~---------+--------+-----------+_-----------_i
I SAOP 10 I register I Offset 1
I I 1#3 I I
~-------..L-------+_--------..L---------------i
I p (subscript) I p (dimension) I
~-------T,....-----+..,.·--------T-------------_i
I I I real I I
ISTE Iregisterlsubscriptedla(A) 1
I . 1#6 1 variable 1 1
~--------+--------.L----------+--------------_i
1 I I internal I
lend mark I Istatement number 1 L _________ ..L ___________________ ..L ____________ _J

1 byte 1 byte 2 bytes

A simple arithmetic IF statement such as:

IF (MART) 11,5,63

appears in the input to Phase 15 as:

r------T---------T--------------------,
I arithmetic I . I I
IIF I I 1
ladjective 100 I 0000 I
I code I I I
~-------+-----------+_------------------i
I I integer I 1
I (- I variable I a (MART) . I
~---------+-------+--------------------~
I I statement I I
\) .' I number I p (11) I
~-----+---------+_----------~-----i
I I statement I I
I , I number I p (5) I
~---------+---------+_-------------------i
1 I statement I I
I , I number ! p (63) I
~------+-----------+_--------------_i
I I I internal statement I
I end mark I 00 I number I L _______ ..L _________ .L-_____ ~ _____________ _J

1 byte 1 byte 2 bytes

Phase 15 zeros residual mode infor­
mation and replaces residual type
information with a work register.

These three words contain the
subscript text for + A (IOAD) •

Phase 15 zeros residual mode infor­
mation and replaces residual type
information with a work register.

These three words contain the
subscript text for A (IOAD)=.

Phase 15 227

The output from Phase 15 for this statement is:

r----------T-----------------~------------------,
I arithmetic I I I
IIF 1 I I
ladjective 100 10000 I
_Icode· I I I
~--------+--------T--------+-----------------~
ILE Iregisterlvariablela(MAR~ I
I I #0 I I I
~----------+--------~--------+------------------~
IIF forcing I 1 I
ladjective 150 10000 I
I code I 1 I
~--------+-----------------+-------------------~ I> I statement number I p (11) I
~----------+---------------+-------------------~
I, I statement number 1 p (5) I
~--------+----------------+----------------~
I , I statement number I p (63) I
~----------+-----------------+------------------~ 1 1 linternal statement I
I end mark I I number I L __________ ~ ________________ ~ __________________ J

1 byte 1 byte 2 bytes

A complex Arithmetic IF statement such as:

IF(IR (H) + M - 18) 6, 26, 64

appears in the input to Phase 15 as:

,-------T-----------T-----------------------,
I arithmetic 1 1 1
IIF 1 1 1
ladjective 100 100 00 I
1 code 1 1 1
~---------+-----------+------------------------~
1 I integer I 1
1 (1 subscripted 1 a (IR) I
1 1 variable I 1
~--------+--------~--+---------------------~
1 I residual 1 1
ISAOP I mode/type 1 Offset 1
I I information I I
~--------~---------+----------------------'I }
~P(~~bsC:iP~~----------~:~~~~:~~~~~-----------~
I I integer 1 I
I + I variable I a (M) I
~--------+----------+-----------------------~
1 I integer 1 I
1- I constant I a (18) . I
~---------+-----------+_---------~--------i
I I statement I I
I> I number I p (6) I
~--------+----~-----+--------------------'I
1 1 statement 1 I
I, I number Ip (26) I
~-------+-----------+-----------------------i
1 1 statement 1 I
I, I number Ip (64) I
~----------+--'--------+_----------------...,----i
I I linternal statement I
1 end mark I I number 1 L _________ ~ ________ ~ ___________________ J

1 byte 1 byte 2 bytes

228

The value of the arithmetic portion
of the arithmetic IF is. loaded
into register o.

The mode field indicates the
address pointer field indicates
register o.

These two words contain subscript
information for IR (H) •

The output from Phase 15 for this statement is:

r----------T--------------------T----------------,
I arithmetic I I I
IIF I I I
ladjective 100 10000 I
I code I I I
~----------+--------T-----------+----------------~
ISAOP 10 I register loffset I
I I 1#3 I I
~----------~--------~-----------+----------------~
Ip(subscript) Ip(dimension) I
~----------T--------T-----------+----------------~
IL I register I subscripted I a (IR) I
I 1#3 I variable I I
~----------+--------+-----------+----------------~
IA I register Ivariable la(M) I
I 1#3 I I I
~----------+--------+-----------+----------------~
IS I register I constant la(18) I
I 1#3 I I I
~----------+--------+-----------+----------------~
IIF forcinglregisterl1 10003 I
ladjective 1#3 I I I
I code I I I I
I I I I I
~----------+--------~-----------+----------------~
I) Istatement number Ip(16) I
~----------+--------------------+----------------~
I • I statement number I p (16) I
~----------+--------------------+----------------~
I. Istatement number Ip(26) I
~----------+--------------------+----------------~
I I I internal I
lend mark I Istatewent numcerl L __________ ~ ____________________ ~_-______________ J

1 byte 1 byte 2 cytes

A CALL statement with no parameters:

CALL SUBRTN

appears in the input to Phase 15 as:

r----------T-----------T-------------------------,
I CALL I I I
ladjective Ireal I a (SUBRTN) I
I code I sucprogram I I
~----------+-----------+-------------------------~
I I linternal statement I
I end mark I I number I L~ _________ ~ ___________ ~ _________________________ J

1 byte 1 byte 2 bytes

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

Phase 15 zeros residual mode infor­
mation and replaces residual type
information with a work register.
These three words contain the sub­
script information for IR(H).

The value of M is added to the
value of IR(H) in register #3.

The value of 18 is subtracted from
the value of IR(H}+M in register 3.

A 1 in the mode/type field indi­
cates a register in the address
pOinter field. Register #3 will
contain the value of the arithmetic
portion of the arithmetic IF.

Phase 15 229

The output from Phase 15 for this statement is:

r----------T-----------T-------------------------,
I CALL I I I
ladjective Ireal I a (SUBRTN) I
I code I suJ::program I I
~----------+-----------+-------------------------~
I CALL Ireal I I
I forcing Isubprogram la(SUBRTN) I
~----------i-----------i----~--------------------~
100 00 0000 I There is no argurrent.
~----------T-----------T-------------------------~
I I linternal statement I
lend mark I I number I L __________ i ___________ i _________________________ J

1 byte 1 byte 2 bytes

A simple CALL statement:

CALL SUBRTN (A,l.0)

appears in the input to Phase 15 as:

r----------T-----------T-------------------------,
I CALL Ireal I I
ladjective lexternal I a (SUBRTN) I
I code I subprogram I I
~----------+-----------+-------------------------~
I I real I I
I(I variable la(A) I
~----------+-----------+-------------------------i
I Ireal I I
I , I constant I a (1. 0) I
~----------+-----------+-------------------------i
I I linternal statement I
lend mark I I number I L __________ i ___________ i _________________________ J

1 byte 1 byte 2 bytes

230

The output from Phase 15 for this statement is:

r----------T-----------T-------------------------,
I CALL I real I I
ladjective lexternal la{SUBRT~ I
I code I subprogram I I
~----------+-----------+-------------------------~
I I real I I
I CALL I external I a {SUBRT~ I
I forcing I function I I
~----------~-----------~-------------------------~
100 00 0002 I There are two arguments.
~--------T-----------T-------------------------~
I I real I I
I (I variable la (A) I
~----------+-----------+-------------------------~
I I real I I
I, 1 constant la(1.0) 1
~----------+-----------+-------------------------~
1 I linternal statement 1
I end mark I I number 1 L--________ ~ ___________ ~ _________________________ J

1 byte 1 byte 2 bytes

A complex CALL statement:

CALL OAJK (A,B (I) ,C*2.+D)

appears in the input to Phase 15 as:

r----------T-----------T-------------------------,
1 CALL 1 1 I
l adjective I real I a (OAJK) I
1 code 1 subprogram I I
~--------+-----------+----------------------~--~
1 I real I I
, (I variable 1 a (A) I
~--------+-----------+-------------------------~
I I real I I
1 , 1 subscripted I a (B) 1
I I variable , I

rSA::----i~~~~~~;~:--r::::::-------------------l }
1 ,information, I
~--------~-----------+-----------------------_t These two words refer to B(l).
Ip(subscript) Ip(dimension) I
~--------T-----------+_------------------------~
I I real I I
I, I variable la (C) I
~----------+-----------+-------------------------~
I I real I I
1* I constant la(2.) I
~--------+-----------+-------------------------~
I I real 1 I
,. ,variable la(D) 1
~----------+-----------~-------------------------~
I> 100 0000 I
~----------+-----------T------------------------~
I I linternal statement I
lend mark I I number I L __________ ~ ___________ ~ _______________________ J

1 byte 1 byte 2 bytes

Phase 15 231

The output from Phase 15 for this statement is:

r----------T-----------------~-----------------_,
I CALL I I I
ladjective Ireal subprogram la(OAJK) I
I code I 1 I
~--------+--------T--------+-------------------~
ILE I register I variable I a (C) 1
I I #6 I I I
~----------+--------+--------+------------------~
IME I register I constantia (2) I
I I #6 I I I
~----------+--------+--------+-------------------~
IAE Iregisterlvariablela(~ I
I 1#6 I I I
~----------+--------+--------+-------------------~
I STE I register I work I work area I
I I # 6 I area I· I
~ ________ .L ________ .L ________ .L-__________________ ~

100 0 0 0003 I
~--------T------T-------T------------------~
I SAOP I register I register I Offset I
1 1#3 1#3 I I
~ __________ .L ________ .L ________ + _____ -------_------~
Ip(subscript Ip(dimensio~ I
~----------T--------T-------+-----------------~
I LA I B I type I a (B) I
~----------+--------+--------+-------------------~
I I real I work 1 I
I , I type I area I a (work area) I
~----------+------+-----+-------------------~
I I I I internal statement I
I end mark I I I number I L __________ .L ________ .L-_______ .L __________________ --I

1 byte 1 byte 2 bytes

The arithmetic expression is cal­
culated first: the result is then
stored in a work area.

There are three arguments.

These three words refer to B(I). A
general register is aSSigned as a
work register •.

The expression was calculated above
and placed in a work area.

Exit: The FOSCAN routine passes control to
various routines associated with certain
operators encountered by Phase 15. These
routines are: ADD, MULT, EXPON, UMINUS,
UPLUS, RTPRN, LFTPRN, CALL, FUNC, EQUALS,
INVOP, COMMA, and END.

DO Routine and Subroutine DVARCK: Chart FC

OPERATION: The referenced statement number
and the DO variable are entered into the DO
table. The statement number is checked to
ensure that it is defined. If not, an
error condition is noted. Subroutine
DVARCK is called to check that this DO
statement does not redefine an existing DO
variable, or to check for a level of
nesting greater than 25. If either condi­
tion occurs, an error is noted and control
is passed to the MSGNEM/MSGMEM/MSG routine
to eliminate the following text words of
the statement.

DO Routine

The DO routine examines the DO statement
for a statement number that defines the
last statement of the DO loop, for a DO
variable not multi-defined, and for a DO
loop nested to a depth no greater than 25.

ENTRANCE: The DO routine receives control
from the PRESCN routine when a DO or
implied DO adjective code is detected or to
complete processing of a computed GO TO.

232

If no error exists, subroutine PINOUT is
used to place the input word onto the
output data set. This portion of the
processing is also used by the COMP GO TO
and BEGIO routines.

EXIT: The DO routine passes control to the
MSGNEM/MSGMEM/MSG routine when an end mark
is detected.

SUBROUTINE CALLED: During execution the DO
routine calls subroutines LAB and PINOUT.

Subroutine DVARCK

Subroutine DVARCK processes a DO or implied
DO variable.

ENTRANCE: Subroutine DVARCK is entered
from the BEGIO and DO routines.

OPERATION: Subroutine DVARCK checks for
two possible errors. The first is a DO
variable that has been defined as the DO
variable for a DO loop within which this DO
loop is defined, i.e., multi-definition.
If this error is not present, the DO
variable is entered into the DO or the
IMPLIED DO table. If either table is full,
a level of nesting greater than 25 is
present and an error is indicated.

EXIT: After execution subroutine DVARCK
returns control to the subroutine which
called it. If any errors are detected,
control passes to the MSGNEM/MSGMEM/MSG
routine.

SUBROUTINE CALLED: Subroutine DVARCK calls
the ERROR subroutine if any errors are
detected.

COMP GO TO, GO TO Routines: Chart FD

COMP GO TO Routine

The COMP GO TO routine
statement number used in the
TO.

checks each
computed GO

ENTRANCE: The COMP GO
entered from the PRESCN
computed GO TO is detected.

TO routine is
routine when a

OPERATION: The COMP GO TO routine essen­
tially examines the pointer field of a text
word in a computed GO TO statement. When a
statement number reference is encountered,
subroutine LAB determines if that number is
defined. Each text word that is processed
by the COMP GO TO routine is put into the
output data set by subroutine PINOUT.

EXIT: The COMP GO TO routine passes con­
trol to the DO routine.

GO TO Routine

The GO TO routine checks the statement
number referenced by the GO TO statement.

ENTRANCE: The statement number referenced
by the GO TO statement is checked using
subroutine LAB to insure that it is
defined. The current input word is then
written onto the output data set.

EXIT: The GO TO routine passes control to
the MSGNEMlMSGMEMIMSG routine to put out
the remainder of the statement, including
the end mark.

BEGIO Routine: Chart FE

The BEGIO routine processes the
input/output lists of READ and WRITE state­
ments.

ENTRANCE: The BEGIO routine is entered
from the PRESCN routine when a BEGIO adjec­
tive code is detected.

OPERATION: When the statement is checked
and an implied DO is found, the DO variable
is processed by subroutine DVARCK. As each
word of the statement is checked, it is put
onto the output data set by subroutine
PINOUT.

EXIT: When the end mark is detected,
control is passed to the MSGNEMlMSGMEMIMSG
routine.

SUBROUTINES CALLED: The BEGIO routine
calls subroutines DVARCK and PINOUT.

ERWNEM, SKIP, MSGNEMlMSGMEMlMSG, INVOP
Routines:Chart FF

These routines control the processing of
miscellaneous text words in Phase 15.

ERWNEM Routine

The ERWNEM routine processes
adjective codes encountered in the
routine.

three
PRESCN

ENTRANCE: The ERWNEM routine is entered
from the PRESCN routine when an end mark,
ERROR, or WARNING adjective code is recog­
nized in the PRESCN routine.

OPERATION: Subroutine PINOUT is referenced
to put the word containing the end mark,
WARNING, or ERROR adjective code into the
output buffer. Subroutine PINOUT also
updates both the input and output pointers.

Phase 15 233

EXIT: The ERWNEM routine returns control
to the PRESCN routine.

SUBROUTINES CALLED: During execution, the
ERWNEM routine calls subroutine PINOUT.

SKIP Routine

The SKIP routine begins the processing
of the Return and Continue statements.

ENTRANCE: The SKIP routine is entered from
the PRESCN routine when a RETURN or CONTIN­
UE adjective code is detected.

OPERATION: Subroutine PINOUT is referenced
to put one word onto the output buffer, and
to update both the unput and output poin­
ters.

EXIT: The SKIP routine passes control to
the MSGNEM/MSGMEM/MSG routine to complete
the processing of the statement.

SUBROUTINE CALLED: During execution the
SKIP routine calls subroutine PINOUT.

MSGNEM/MSGMEM/MSG Routine

The MSGNEM/MSGMEM/MSG routine processes
the remaining text words of a statement,
and puts any ERROR and WARNING messages
and/or any necessary ENDDO text onto the
output dat:a set.

ENTRANCE: The MSGNEM/MSGMEM/MSG routine is
entered from all statement processing rou­
tines except the ERWNEM and LABEL DEF
Routines.

OPERATION: The MSGNEM/MSGMEM/MSG routine
has three entry points for the current word
of the statement text. It is entered at
MSGNEM if the current word does not have an
end mark adjective code, MSGMEM if there
may be an end mark adjective code, and MSG
if there is an end mark adjective code.

At MSGNEM, the current input word is
eliminated by updating the input buffer
pointer without moving the current word to
the output buffer area. Control is then
passed to entry point MSGMEM to check the
adjective code. If it is not an end mark,
the text word is eliminated using MSGNEM
and the next word is processed by ,MSGMEM.
When an end mark indicator is found, con­
trol passes to entry point MSG to move the
input word to the output data set. The
output buffer pointer is updated~ the input
buffer pointer is not updated.

234

If a statement represented the end of
one or several DO loops, ENDDO text words
are generated for each loop. Any error or
warning messages generated for this state­
ment by Phase 15'are now written onto the
output data set using the ISN found in the
address pointer field of the text word
whose adjective code is an end mark. The
word containing the ISN can now be elimi­
nated by updating the input buffer pointer.

EXIT: The MSGMEM/MSGNEM/!llSG routine
returns control to the PRESCN routine.

SUBROUTINES CALLED: The MSGNEM/MSGMEM/MSG
routine calls subroutines ININ and INOUT.

INVOP Routine

The INVOP routine processes
adjective codes detected by the
routine.

invalid
PRESCN

ENTRANCE: The INVOP routine is entered
from the PRESCN routine when an invalid
adjective code is detected.

OPERATION: The INVOP routine calls subrou­
tine ERROR to process an invalid adjective
code message.

EXIT: The INVOP routine passes control to
the MSGNEM/MSGMEM/MSG routine.

SUBROUTINES CALLED: The INVOP routine
calls subroutine ERROR.

MOPUP Routine: Chart FG

The MOPUP routine performs the final
processing for the phase.

ENTRANCE: The MOPUP routine is entered
when the END statement is detected by the
PRESCAN routine.

CONSIDERATION: The END statement may be
followed on the input data set by error or
warning message text words. The final text
word contains all zeros. These text words,
followed by an end of data set, are written
on the output work tape.

During the phase, whenever it is neces­
sary to utilize a register that is not
available, an instruction is generated to
load the contents of the register into a
work area. A count is kept of the maximum
size of the work area required at object
time. This count is used to update the
location counter in the FORTRAN communi­
cations area.

If the output does not exceed one output
buffer, it is not written onto the tape but
remains within main storage. A bit is set
in the communications area to indicate the
location of the Phase 15 output data set to
Phase 20.

OPERATION: The final text words are writ­
ten onto the output data set. An addition­
al error message is written onto the output
data set if a FUNCTION subprogram is being
compiled, but the function name has not
been defined.

The location counter is updated by the
maximum size of the work area, and the work
tapes are rewound.

EXIT: The MOPUP routine passes control to
the FORTRAN System Director which passes
control to Phase 20.

ADD Routine: Chart FH

The ADD routine prepares text referring
to the ADD, SUBTRACT, MULTIPLY, and DIVIDE
operators for the COMPILE routine. It
determines which operands are registers and
then, if necessary, interchanges the oper­
ands or assigns a register to the left
operand.

CONSIDERATION: The word in the operations
table which was forced by the FOSCAN rou­
tine is considered the current text word.
Its address pointer field references the
right operand. The pointer field of the
preceding word references the left operand.
The operator for both operands is in the
adjective code field of the current word in
the operations table.

ENTRANCE: The ADD routine is entered from
the forcing scan of the FOSCAN routine when
a text word, whose adjective code refers to
an ADD or SUBTRACT operator is forced. The
ADD routine is also entered from the MULT
routine.

OPERATION: The ADD or SUBTRACT operands
are checked for mixed-mode and legality of
the symbol using subroutines MODE and SYM­
BOL, respectively.

The operands for ADD, SUBTRACT, MULTI­
PLY, and DIVIDE operators are processed
together. If both the left and rig~t
operands are in registers, control 1S
passed to the COMPILE routine to process an
RR instruction.

If the right operand is not in a reg­
ister but the left operand is, control is
passed to the COMPILE routine to process an
RX instruction. (The COMPILE routine, when

entered for an RX instruction, assumes that
the left operand is a register and the
right operand is not. The text word is
modified to meet this condition.)

If the right operand is in a register
and the left operand is not, the RX condi­
tion could be met by interchanging the
operands. This interchange is made for the
operands of ADD and MULTIPLY operators
because their order of operands is imma­
terial. Interchanging cannot be made for
the SUBTRACT and DIVIDE operators.

If neither operand is in a register, or
the right operand alone is in a register
but is not the operand of an ADD or
MULTIPLY operator, a register is assigned
to the left operand. Prior to this assign­
ment, the left operand is checked for a
subscripted variable. If one is present,
subroutine MVSBXX is called to process the
subscripted variable.

Next, subroutine FINDR is referenced to
assign a register to the left operand. All
other subscript occurrences within operands
are processed by Phase 15 in the COMPILE
routine. After a register is assigned to
the left operand, subroutine LOADR1 is
called to generate an instruction to load
the left operand into a register at object
time. NOW, the left operand can be
referred to as a register.

EXIT: The ADD routine passes control to
the COMPILE routine either to process an RR
or an RX instruction.

SUBROUTINES CALLED:
subroutines SYMBOL,
and LOADR1.

The ADD routine calls
MODE, MVSBXX, FINDR,

MULT Routine: Chart FI

The MULT routine aids in the processing
of the operands of the multiply and divide
instructions.

ENTRANCE: The MULT routine is entered from
the FOSCAN routine when the forcing scan
forces a word out of the operations table
whose adjective code indicates a multiply
or divide instruction.

CONSIDERATION: The left and right operands
of a multiply instruction are the multi­
plicand and the multiplier, respectively.

In multiplication, it is possible to
interchange the multiplier and the multi­
plicand without changing the value of the
product.

Phase 15 235

The multiply instruction for integer
quantities requires that the multiplicand
be in an odd register. The even register
which precedes the multiplicand (the odd
register) must be made available unless it
contains the multiplier. Both even and odd
registers are required for the multi­
plication procedure.

The multiply instrUction for real quan­
tities requires that at least the multi­
plicand (the left operand) be in a reg­
ister.

OPERATION: The operands of a multiply or
divide operation are checked for symbol
validity by subroutine SYMBOL. Subroutine
MODE assures that the modes agree. If the
operands are real, control is passed to the
ADD routine to place the left operand in a
register.

For integer quantities which are oper­
ands of a divide operation, control is
passed to the DIV routine. The MOLT rou­
tine completes the processing for integer
quantities which are the operands of a
multiply instruction. If both operands are
in registers, they are manipulated so that
the left operand is in an odd register.
Control is then passed to the COMPILE
routine to process an RR instruction.

If neither operand is in a register, the
left operand is placed into an odd register
and the even register preceding the odd
register is made available. Control is
then passed to the COMPILE routine to
process an RX instruction.

If either operand is in a register, the
operands are switched and processed so that
the left operand is in an odd register.
Control is then passed to the COMPILE
routine to process an RX instruction.

During the processing, the various reg­
isters are checked for availability by
subroutine CHCKGR. If a register is
required, but is not currently available,
its contents are placed into a work area by
subroutine CHCKGR.

EXIT: Control is passed to the ADD routine
for real operands. Control is passed to
the DIV routine for integer operands of a
divide operator.

For integer operands of a multiply oper­
ator, control is passed to the COMPILE
routine. If both fixed point operands of a
multiply instruction are in a register at
the completion of the MULT routine, control
is passed to the COMPILE routine to process
an RR instruction. If only the left inte­
ger operand of a multiply instruction is in
a register at the completion of the MULT

236

routine, control is' passed to the COMPILE
routine to process an RX instruction.

SUBROUTINES CALLED: The MOLT routine calls
subroutines MVSBXX, INOUT, FREER, CHCKGR,
MODE, SYMBOL, and LOADR1.

DIV Routine: Chart FJ

The DIV routine processes integer oper­
ands of a divide operation.

ENTRANCE: The DIV routine is entered from
the MULT routine.

CONSIDERATION: For integer division, the
dividend must be in an even-odd register
pair. The dividend of a divide operation
is represented by the left operand; the
divisor, by the right operand.

OPERATION: If the dividend is already in a
register, the appropriate even or odd reg­
ister is made available.

If the dividend is not in a register,
the operands are processed for the presence
of subscript expressions. Subroutine
MVSBRX processes the left operand, while
subroutine MVSBXX processes the left and/or
right operands. The dividend (left
operan~ is then placed into an even-odd
register pair.

EXIT: The DIV routine passes control to
the COMPILE routine at one of three points
depending upon whether the right operand is
a register, is subscripted, or is neither
subscripted nor a register.

SUBROUTINES CALLED: The DIV routine calls
subroutines CHCKGR, FREER, MVSBXX, MVSBRX,
and LOADR1.

EXPON Routine: Chart FK

The EXPON routine processes
word whose adjective code
exponentiation.

the text
indicates

ENTRANCE: The EXPON routine is entered
from the FOSCAN routine when a word con­
taining an exponentiation adjective code is
forced out of the operation table by the
forcing scan.

CONSIDERATION: The phrase A**B appears in
the text input to Phase 15 as:

r----------T----------T-------------------l
ladjective Ireal I I
I code I variable la(~ I
~----------+----------+---------~---------~
I I real I I
I ** I variable I a (B) I L __________ ~ __________ ~ ___________________ J

1 byte 1 byte 2 bytes

The second word is forced out by
forcing scan. The adjective code for
word (**) indicates exponentiation.

the
this

OPERATION: ~he base and exponent are
checked for validity using subroutines SYM­
BOL and CKARG, respectively. If the base
is an integer number while the exponent is
a real number, subroutine MODE converts the
base to a real number.

Exponentiation requires library subrou­
tines; therefore, specific· registers are
required. (This is identical to the proc­
essing done in the COMMA routine for an
external subprogram reference.)

The mode of the base and the exponent
determine the library subprogram to be
called. An internal code to indicate the
subprogram name is entered in the pointer
field of the text word with an exponentia­
tion adjective code.

The argument count in the FORTRAN com­
munications area is incremented by 2 since
exponentiation requires exactly two argu­
ments. The argument list, consisting of
the base and exponent, is written out.

If the exponentiation appears within an
ASF definition the contents of register 14
(the linkage register) and register 9 (the

ASF argument register) are saved. The
instructions to restore registers 9 and 14
are generated on return from any function
call.

EXIT: The EXPON routine passes control to
the FOSCAN routine.

SUBROUTINES CALLED: The EXPON routine
calls subroutines SYMBOL, MODE, and CKARG.

UMINUS, UPLUS, RTPRN Routines: Chart FL

UMINUS Routine

The UMINUS routine processes the operand
of a unary minus and generates an instruc­
tion to reverse the sign of the operand.

ENTRANCE: The UMINUS routine is entered
from the forcing scan of the FOSCAN routine

when a text word whose adjective code
refers to a unary minus is forced out of
the operations table.

OPERATION: The operand of the unary minus
is checked for validity by subroutine TYPE.
If the operand is not a register, subrou­
tine MVSBRX is called to check for and
process a subscript expression in the oper­
and. The operand is then loaded into a
register.

When the operand is in a register, an
instruction is generated to complement the
register and complete processing the unary
minus.

EXIT: The UMINUS routine passes control to
the FOSCAN routine.

SUBROUTINES CALLED:
calls subroutine TYPE,
LOADR1.

UPLUS Routine

The UMINUS routine
INOUT, FINDR, and

The UPLUS routine deletes the unary plus
adjective code word.

ENTRANCE: This routine is entered from the
forcing scan of the FOSCAN routine when a
unary plus adjective code is forced.

CONSIDERATION: The unary plus serves no
logical function; however, it is not con­
sidered an error.

A unary plus only occurs in the text
following a word whose adjective code rep­
resents an equal sign or a left parenthe­
sis.

OPERATION: The word containing a unary
plus is deleted from the input text. The
information in the address pointer and
mode/type fields is moved into those fields
in the preceding word of the operation
table.

The text would appear in the operation
table as:

r----------T----------T-------------------l
1= I I I
lor 100 10000 I
I {I I I
~----------+---~~----+-------------------~
lunary Imode/type la(operan~ I
1+ I I I L __________ ~ __________ ~ __________________ _;:J

1 byte 1 byte 2 bytes

Phase 15 237

The text would be revised in the operation
table to:

r----------T----------T-------------------,
1= 1 I I
lor 1 mode/type 1 a (operand) I
1 (1 I I l __________ ~ __________ ~ ___________________ J

1 byte 1 byte 2 bytes

EXIT: The UPLUS routine passes control to
the FOSCAN routine.

RTPRN Routine

The RTPRN routine is only entered for an
error condition and checks for a further
error.

ENTRANCE: The RTPRN routine is entered
from the forcing scan of the FOSCAN routine
when a text word with a right parenthesis
adjective code is forced out of the opera­
tions table.

CONSIDERATION: A right parenthesis forced
out of the operations table by the forcing
scan is an error. If the right parenthesis
is followed by an operator, Phase 10 has
generated a warning message.

OPERATION: If the right parenthesis is not
followed by an operator, Phase 15 gives an
illegal delimiter or symbol missing error
message.

EXIT: The RTPRN routine returns control to
the FOSCAN routine.

SUBROUTINES CALLED: The RTPRN
calls subroutine ERROR.

LFTPRN Routine: Chart FM

routine

The LFTPRN routine processes a left
parenthesis.

ENTRANCE: The LFTPRN routine is entered
from the FOSCAN routine when a text word
with a left parenthesis adjective code is
forced out of the operations table by the
forcing scan.

CONSIDERATION: The three uses of a left
parenthesis considered by the LFTPRN rou­
tine are: in a CALL statement, an arithmet­
ic IF statement, or as a regular left
parenthesis (i.e., when used to change the
hierarchy of operations) •

238

OPERATION: If a left parenthesis is part
of a CALL statement, the argument is
checked for validity and the argument count
is set to 1. Control is passed to the
COMMA routine to continue processing.

If a left parenthesis is part of an
arithmetic IF statement, the parenthesized
expression is checked to determine the
following:

1. The symbol used in the arithmetic
expression is valid.

2. The expression result is in a reg­
ister.

3. The operation that placed the resul­
tant value of the arithmetic expres­
sion in a register sets the condition
code so the proper branch can be taken
as a result of that value.

An IF forcing text word is entered into the
output, it has the following format:

r----------T-----T---------T--------------,
IIF forcing I I I I
ladjective Imode lindicatorlregister I
I code I I I number I l __________ ~ ____ ~ ____ ~ ____ ~ ______________ J

1 byte 1 byte 2 bytes

Register number indicates the register that
contains the value of the arithmetic
expression; indicator denotes whether the
condition code is set or not.

If this is a regular left parenthesis
used to change hierarchy, it is delet~~
from the operations table.

EXIT: There are three normal exits for the
LFTPRN routine, depending upon the use of
the left parenthesis. Within the CALL
statement, control passes to the CO~~

routine; within the arithmetic IF state­
ment, control passes to the ARTHIF routine;
for a regular left parenthesis, control is
returned to the FOSCAN routine.

An error condition exists and control
passes to the MSGNEM/MSGME~vMSG routine if
the left parenthesis is not one of the
three normal occurrences, if there is an
invalid symbol in an arithmetic IF, or if
the left parenthesis is not forced by a
right parenthesis indicating an invalid
statement.

SUBROUTINES CALLED: The LFTPRN routine
calls subroutines CKARG and ERROR.

FUNC, CALL, and END Routines: Chart FN

FUNC Routine

The FUNC routine processes one-argument
functions.

ENTRANCE: The FUNC routine is entered from
the FOSCAN routine when the forcing scan
forces a text word with a FUNC adjective
code out of the operations table.

CONSIDERATION: In-line, external, and ASF
functions may have one argument.

OPERATION: The in-line functions are proc­
essed separately by the INLIN1 routine. An
argument for ASF and external functions is
processed by checking the validity of the
argument using subroutine CKARG and setting
up an argument count of 1.

EXIT: Control is passed
routine to complete the
one-argument fUnction.

to the COMMA
processing of a

SUBROUTINES CALLED: The FUNC routine calls
subroutine CKARG.

CALL Routine

The CALL routine processes the CALL
statement.

ENTRANCE: The CALL routine is entered from
the FOSCAN routine when a text word whose
adjective code is a CALL forcing adjective
code is forced out of the operations table.

CONSIDERATION: If a CALL statement has no
arguments, the CALL forcing adjective code
word indicates that a CALL is to be proc­
essed. If a CALL statement has arguments,
either the LFTPRN, FUNC, or COMMA routine
has determined that a CALL is to be proc­
essed and has processed it.

The CALL forcing adjective code word may
take one of two forms. If the CALL has
arguments, the word appears as:

r----------T----------T-------------------,
I CALL I I I
I forcing I I 1
ladjective Imode 10000 I
1 code I 1 1 l __________ ~ ______ ~ __ _i ___________________ J

1 byte 1 byte 2 bytes

If the CALL has no arguments, the word
appears as:

r----------T----------T-------------------,
I CALL I 1 I
I forcing 1 I I
ladjective Imode laddress of CALL I
1 code 1 I subroutine I l __________ ~ _________ ~ ___________________ J

1 byte 1 byte 2 bytes

OPERATION: The address pointer field is
examined to determine if the CALL has been
processed. If the CALL has arguments, it
has been processed and .an exit is taken.

If the CALL has not been processed, it
is a CALL with no arguments. There are two
words written onto the output buffer, the
first indicates a CALL and the subroutine
to which the CALL is made; the second
indicates no arguments. These two words
appear as follows:

r----------T----------T-------------------,
I CALL I 1 I
ladjective Imode/type la(CALL subroutine) I
I code I I I
~----------+----~----+-------------------~
1 argument 1 1 I 1
1 count 10 1 0 I 00 00 1
ladjective I I I I
I code I I I I l __________ ~ ____ ~ ____ ~ ___________________ J

1 byte 1 byte 2 bytes

EXIT: The CALL routine passes control to
the MSGNEM/MSGMEM/MSG routine to move the
end mark to the output buffer.

END Routine

The END routine determines if the arith­
metic IF, arithmetic, and ASF statements
were processed.

ENTRANCE: The END routine is entered from
the FOSCAN routine when a text word within
Arith, Arith IF, or ASF adjective code is
forced out of the operations table.

OPERATION: The END routine examines the
address pointer field. If it is 0, the
statement has been processed and the exit
is taken. If it is not 0, the statement
has not been processed, and an illegal
statement error message is given. The exit
is then taken.

EXIT: The END routine passes control to
the MSGNEMlMSGMEMlMSG routine.

Phase 15 239

SUBROUTINE CALLED:
subroutine ERROR.

The END routine calls

EQUALS Routine: Chart FO

The EQUALS routine processes a text word
containing an equal adjective code.

ENTRANCE: The EQUALS routine is entered
from the FOSCAN routine when the forcing
scan forces a word with an equal adjective
code out of the operations table.

CONSIDERATION: The arithmetic and ASF
definition statements contain an equal
adjective code. The result of an ASF
definition must be in register 0 (general or
floating-point), while the result of an
arithmetic statement is in ,the field which
represents the symbol to the left of the
equal sign in an arithmetic statement (the
resultant field) •

OPERATION: If the text word containing the
equal adjective code is part of an arith­
metic statement, the first part of the
processing checks the resultant field. If
an invalid symbol is represented in the
resultant field, an error message is given,
and control is passed to the
MSGNEMVMSGMEM/MSG routine to eliminate the
remainder of the statement.

If the resultant field is valid, subrou­
tine TYPE is referenced to check the right
operand which represents the result of the
computations on the right side of the equal
sign. If the right operand is invalid, an
error message is given and control is
passed to the MSGNEMVMSGMEMVMSG routine to
eliminate the remainder of the statement.
If the right operand is valid, the MODE
routine is called to insure that the right
operand and the resultant field modes are
the same.

Because the mode of the resultant field
determines the mode of the value resulting
from the arithmetic operation, the mode of
the right operand, if different, is con­
verted to the resultant field mode. An
instruction to store the right operand in
the resultant field is then generated.

If the ASF switch, which is set on at
the beginning of ASF definition statement
processing in subroutine FOSCAN, indicates
an ASF definition, different processing is
followed. The type of the right operand is
checked for an error by subroutine TYPE.
If an error is found, an error message is
given and the rest of the statement is
eliminated using the MSGNEM/MSGMEMVMSG rou­
tine. Subroutine MODE compares the modes
of the ASF and the right operand if the
right operand is valid.

240

The result of the ASF must be in general
register 0 if the ASF is an integer func­
tion and in floating point register 0 if it
is a real function. If the result is not
in the correct register, a load instruction
is generated to put the result into the
correct register.

The final processing for an equal adjec­
tive code word in an ASF definition is the
generation of the return instruction. This
allows the ASF coding to return to that
portion of coding which referenced the ASF
during the object program execution.

EXIT: At the completion of the EQUALS
routine, control is returned to the FOSCAN
routine. If errors were detected during
the processing, control passes to the
MSGNEMVMSGMEMVMSG routine.

SUBROUTINES CALLED: The EQUALS routine
calls subroutines ERROR, TYPE, and MODE.

COMMA Routine: Chart FP

The COMMA routine processes an argument
list.

ENTRANCE: The COMMA routine is entered
from the FOSCAN routine when the forcing
scan forces a word whose adjective code
refers to a comma out of the operations
table.

CONSIDERATION: A comma occurs in the input
text only when an argument list is to be
processed. This argument list may be part
of an in-line function, external function,
or ASF call. An argument list is set off
in the original FORTRAN statement by a left
parenthesis preceding the list and a fol­
lowing right parenthesis.

The processing for an ASF definition and
call is basically the same as the external
function call. The processing for an in­
line function differs and is in the INLIN2
routine.

For a function call, general registers 0
and 1 and all floating-point registers in
USe are saved.

If an ASF definition is being processed,
register 14 is saved before and restored
after the function call. Register 14 is
the linkage register for an ASF.

OPERATION: Each argument represented is
checked by subroutine CKARG for validity.
A count is kept of the number of arguments
used in the argument list. This count is
added to the count of arguments in a

counter within the FORTRAN communications
area.

The required registers are examined for
availability. If they are not available,
subroutine SAVER is referenced to store the
contents of the registers in a work area.

Certain error checks are made. If the
function name is invalid, an error message
is given. If an argument is followed by an
end mark, a warning message is given to
indicate a missing right parenthesis. If
neither a right parenthesis nor an end mark
follows the argument, an error messag.e
indicating an illegal delimiter is given.

EXIT: The COMMA routine passes control to
the forcing scan in the FOSCAN routine.

SUBROUTINE CALLED: The COMMA routine calls
subroutines CKARG, ERROR, and WARN.

LABEL DEF Routine, Subroutine LAB: Chart FQ

LABEL DEF Routine

The LABEL DEF routine checks the
occurrence of statement numbers used to
indicate the end of a DO loop.

ENTRANCE: The LABEL DEF routine is entered
from the PRESCN routine when a statement
number definition adjective code is encoun-
tered. .

CONSIDERATION: AS each DO definition is
encountered, the . ending DO loop statement
number (the ENDDO) is entered into the DO
table along with the DO variable. By
checking the current statement number
against the latest statement number in the
DO table, it can be determined if this
ENDDO is properly nested with respect to
the other DO loops.

OPERATION: If the statement number defini­
tion is not referenced as an ENDDO, the
text word is put onto the output dataset
using subroutine PINOUT. A statement num­
ber referenced as an ENDDO is checked
against the entries in the DO table. If a
DO nesting error is detected, an error
message is given and the text word is put
onto the output data set using subroutine
PINOUT.

If the statement number is a legal
ENDDO, an indicator is set for the
MSGNEM/MSGMEM/MSG routine to genera~e the
ENDDO word of text. The input word 1S then
put onto the output data set using subrou­
tine PINOUT.

EXIT: The LABEL DEF routine returns con­
trol to the PRESCN routine.

SUBROUTINES CALLED: The LABEL DEF routine
calls subroutines PINOUT and ERROR.

Subroutine LAB

Subroutine LAB checks for legal state­
ment number references.

ENTRANCE:
the GOTO,
routines.

Subroutine
COMP GOTO,

LAB is entered from
ARITH IF, and DO

OPERATION: A referenced statement number
is checked to insure that the statement
number has been defined and is not that of
a FORMAT statement. Because a branch can­
not be made to either an undefined state-

. ment number or a FORMAT statement, an error
message is printed for each such reference.

EXIT: Subroutine LAB returns control to
the subroutine which called it.

SUBROUTINE CALLED: Subroutine LAB calls
subroutine ERROR if either error condition
is found.

ARITH IF Routine: Chart FR

The ARITH IF routine processes the
statement number portion of an arithmetic
IF for two errors: undefined statement
numbers and an incorrect number of state­
ment numbers specified.

ENTRANCE: The ARITH IF routine is entered
from the LFTPRN routine.

CONSIDERATION: Phase 10 may have truncated
the text of an arithmetic IF due to various
error conditions encountered (i.e., invalid
delimiters or statement numbers). If less
than three statement numbers are specified
by the user, the input text appears as if
truncated due to error conditions.

OPERATION: Each statement number is exam­
ined by subroutine LAB. If the statement
number has been defined, it is put into the
output text of Phase 15 and the next input
text word is accessed using subroutine
PINOUT. If the number was not defined,
subroutine LAB does not return to the ARITH
IF routine.

As each statement number is being proc­
essed, a count is kept. If it is other
than three, an error message is entered for
the statement. If the statement was trun-

Phase 15 241

cated by Phase 10, an error message is not
given for the error condition represented
by less than three statement numbers.

EXIT: The ARITH IF routine takes one of
three exits: when an end of statement
indicator is known to be, may be, or is not
present.

SUBROUTINES CALLED: The ARITH IF routine
calls subroutines LAB, PINOUT, and ERROR.

COMPILE Routine: Chart FS

The COMPILE routine creates text in the
form of RR and RX instructions, moves
subscript text from the subscript table to
the output data set, increments the output
buffer pointer, and decrements the pointer
to the operations table.

ENTRANCE: The COMPILE routine is entered
from the ADD, MOLT, DIV, EXPON, U~ITNUS,
UPLUS, and SYMBOL routines.

OPERATION: When text is to be created in
the form of an RR instruction, the left
operand becomes the resultant register.
The FREER routine is then called to free
the right operand register, and processing
continues as for an RX instruction.

The right operand is checked. If it is
subscripted, it is entered into the output
text. If not, that part of the processing
is skipped.

The operation code and the register
number are entered into the current word of
the operations table. The output buffer
pointer is then incremented, and the poin­
ter to the operations table is decremented.

EXIT: The COMPILE routine passes control
to the FOSCAN routine.

SUBROUTINES CALLED: The COMPILE routine
calls subroutines FREER and INOUT.

Subroutines SYMBOL and TYPE: Chart FT

These subroutines process operands for
symbol validity.

Subroutine SYMBOL

This subroutine processes the left and
right operands of an operator.

242

ENTRANCE: Subroutine SYMBOL is entered
from the ADD, MULT, and EXPON routines.

OPERATIONS: Subroutine SYMBOL calls sub­
routine TYPE to check for errors in the
left and right operands.

If an error is discovered in the right
operand, control is passed to the COMPILE
routine to decrement the pOinter to the
operations table. Subroutine TYPE gives an
error message for the specific error. By
decrementing the pointer to the operations
table, the word being processed is deleted.
The . COMPILE routine passes control to the
forcing scan in the FOSCAN routine.

If an error is detected in the left
operand by subroutine TYPE, an error mes­
sage is given. Subroutine SYMBOL elimi­
nates the left operand from the operations
table by overlaying it with the right
operand. Control is then passed to the
COMPILE routine.

EXIT: If there is no error detected in the
left or right operand, control is returned
to the routine which called subroutine
SYMBOL. If there is an error, control is
passed to the COMPILE routine.

Subroutine TYPE

Subroutine TYPE checks each symbol used
as an operand for errors.

ENTRANCE: Subroutine TYPE is entered from
the UMINUS, EQUALS, and INLIN1 routines and
subroutine SYMBOL.

CONSIDERATION:
have a valid
text word.

A symbol, to be valid, must
type code in the associatfd

OPERATION: The. type code associated with
the symbol is examined to determine if the
symbol is invalid or if the symbol is
multi-defined. If either condition exists,
or if the symbol is missing, an error
message is given. This error message indi­
cates the specific error encountered.

EXIT: If no errors are discovered, subrou­
tine TYPE returns control to the routine
which called it. If an error is detected,
control is passed to the error return
specified by the routine which called sub­
routine TYPE.

Subroutines FINDR, FREER, CHCKGR, SAVER,
and LOADR1: Chart FU

These five subroutines perform the var­
ious register manipulations necessary dur­
ing the Phase 15 text processing.

CONSIDERATION: There are eight registers
(floating-point regis'ters 0, 2, 4, and 6;

general registers 0, 1, 2, and 3) available
to Phase 15 for assignment as work reg­
isters. A record of register availability
is kept using a 1-byte indicator. Each of
the eight bits of the 1-byte indicator
represents a different register (see Figure
46) •

r--------------------T--------------------,
I General 1 Floating-point I
I Registers I Registers 1
~----~---T----T-----+-----T----T----T----~
13 121110 I 61412101 L ____ ~ ___ i ____ i _____ i _____ i ____ i ____ ~ ___ J

Figure 46. l-Byte Indicator

The register routines are
ing the processing of the
arithmetic operators. They
to insure the availability of
and 1 for external references.

Subroutine FINDR

utilized dur­
operands of

are also used
registers 0

Subroutine FINDR finds a register and
indicates that it is unavailable.

ENTRANCE: The FINDR routine is called by
the ADD routine and subroutine MODE.

OPERATION: Subroutine FINDR accesses the
first available general register for inte­
ger quantities and the first available
floating-point register for real quanti­
ties.

EXIT: Subroutine FINDR returns control to
the routine which called it.

Subroutine FREER

Subroutine FREER indicates that a reg­
ister is available.

ENTRANCE: Subroutine FREER is entered from
the COMPILE and INLIN2 routines ,and subrou­
tines CKARG and MODE.

OPERATION: When it is determined which
register is to be freed, that bit in the

byte which indicates register availability
is set to available.

EXIT: Subroutine FREER returns control to
the routine or subroutine which called it.

Subroutine CHCKGR

Subroutine CHCKGR accesses a specific
general register.

ENTRANCE: Subroutine CHCKGR is entered by
the MULT, DIV, INLIN1, and INLIN2 routines
and subroutine MODE.

OPERATION: Subroutine CHCKGR is entered to
determine the availability of a specific
general register.

When that register is found to be avai­
lable, it is marked occupied and the return
is made to the calling routine.

When that register is unavailable, con­
trol is passed to subroutine SAVER to make
a register available by storing the con­
tents of the specified register in a work
area.

EXIT: Subroutine CHCKGR returns control to
the routines which called it.

Subroutine SAVER

Subroutine SAVER stores the contents of
a specified register into the next availa­
ble area of the work area.

CONSIDERATION: When a register is required
and it is not available, the contents of
the register is stored into a work area.

ENTRANCE: Subroutine SAVER is entered from
the COMPILE, CO~~, DIV, or FINDR routines.

OPERATION: The latest entry in the opera­
tion table is accessed. If it utilizes the
register being treated, an instruction to
store the contents of that register in the
next available area of the work area is
generated. This instruction word is moved
to the output buffer.

If this entry does not utilize the
register in question, the next entry is
accessed and examined.

Note that if the register in question is
used for a double-precision quantity, the
work area is aligned on a double-word
boundary.

Phase 15 243

EXIT: The SAVER subroutine returns control
to the routines which called it.

SUBROUTINES CALLED: Subroutine SAVER calls
subroutine INOUT.

Subroutine LOADRl

Subroutine LOADRl enters an operand into
a specific register.

ENTRANCE: Subroutine LOADR 1 is entered
from the ADD, MULT, DIV, EQUAL, LFTPRN, and
INLIN1 routines and subroutines MODE and
INARG.

OPERATION: Subroutine LOADRl generates the
instruction to load the contents of the
left operand, being processed in the rou­
tine or subroutine which referenced subrou­
tine LOADR1, into a specific register. The
instruction word is then placed into the
output buffer.

EXIT: Subroutine LOADR1 returns control to
the routine which called it.

SUBROUTINES CALLED: Subroutine LOADRl
calls subroutine INOUT.

Subroutine WARN/ERROR: Chart FV

Subroutine WARN/ERROR is called when a
warning or error condition is encountered
during text processing. It generates the
error or warning message text entry for the
specific condition encountered.

CONSIDERATION: There is a reserved area
for a maximum of four error and warning
messages for any given statement. The end
Of the area contains a message that indi­
cates more than four error and/or warning
messages. The area has the following form:

r---l
1 reserved area for message 1 ,I
~-------. ----------------------------------~
1 reserved area for message 2 1
~-------------------------------------~
I reserved area for message 3 1
~----------------------------------~
I reserved area for message 4 1
~---------------------------------------~
1 ntoo many messagesn message text entry I L ___ J

subroutine WARN/ERROR does not place the
internal sequence number in the error and
warning message text word save area. The

244

internal sequence number is entered by the
MSGNEM/MSGMEM/MSG routine after the word
containing the end mark is processed.

ENTRANCE: Subroutine WARN/ERROR has two
entry points. It is entered from the COMMA
routine and subroutine CKARG, TYPE, and
INARG at entry point WARN and from the
INVOP, EQUAL, ARITH IF, RTPRN, COMMA,
LFTPRN, and LABEL DEF routines and subrou­
tines TYPE, LAB, INARG, and CKARG at entry
point ERROR.

OPERATIONS: At entry point WARN, subrou­
tine WARN/ERROR generates a warning message
text word using the warning number passed
to it by the calling routine. The warning
message is then entered into the error and
warning message area. If there are already
four error and warning message text words,
processing for this statement is terminat­
ed.

At entry point ERROR, subroutine
WARN/ERROR computes the error number from
the information passed by the calling rou­
tine. The error message text word is then
constructed and placed in the error and
warning message area. If there are already
four error and warning message text words,
processing for this statement is terminat­
ed.

When a warning condition occurs, control
is returned to the calling routine. When
an error condition occurs within a state­
ment, control is normally returned to the
MSGNEM/MSGMEM/MSG routine to eliminate the
rest of that statement. In some instances,
the MSGNEM/MSGMEM/MSG routine does not

.receive control to process any rema1n1ng
error or warning conditions for the state­
ment. This decision is made prior to
calling subroutine WARN/ERROR.

EXIT: Subroutine WARN/ERROR returns con~
trol to the calling routine. If there are
more than four error and warning messages
detected in Phase 15, control is passed to
the MSGNEM/MSGMEM/MSG routine.

Subroutines PINOUT, ININ, INOUT: Chart FW

These three subroutines alone or in
combination perform the input/output opera­
tions for Phase 15.

Subroutine PINOUT

Subroutine PINOUT performs both input
and output functions.

ENTRANCE: Subroutine PINOUT is entered
from any Phase 15 routine whenever the
current input word is to be put out.

OPERATION: Subroutine PINOUT moves the
current input word to the output buffer.
Subroutines ININ and INOUT are then called
to update the input and output pointers
respectively.

EXIT: Subroutine PINOUT returns control to
the routine which called it.

SUBROUTINES CALLED: Subroutine PINOUT
calls subroutines ININ and INOUT.

Subroutine ININ

Subroutine ININ updates the input buffer
pointer and refills a buffer if necessary.

ENTRANCE: Subroutine ININ is called by
subroutine PINOUT and the MSGNEM/MSGMEM/MSG
routine.

CONSIDERATION: There are two buffers used
for input.

OPERATION: The input buffer pointer is
updated. A check for the end of the buffer
is then made. If the end of the buffer has
been reached, the buffer is refilled and
the other buffer is made current.

Subroutine INOUT

Subroutine INOUT updates the output buf­
fer pointer and empties a buffer if neces­
sary.

ENTRANCE: Subroutine INOUT is entered
subroutines PINOUT, MSGNEM/MSGMEM/MSG,
MVSBXX, and the DIV, MULT, UMINUS. and
register routines.

from
and

save

CONSIDERATION:
fers.

There are two output buf-

OPERATION: The output buffer is updated
and the end of the buffer is checked. If
it has been reached, the buffer is written
out and the other buffer is made current.

EXIT: Subroutine INOUT returns control to
the subroutine or routine which called it.

Subroutine MODE: Chart FX

Subroutine MODE checks two operands and
changes them, if necessary, so that both
are the same mode.

ENTRANCE: Subroutine MODE is entered from
the ADD, EXPON, EQUAL, INLIN1, and MULT
routines.

CONSIDERATION: A hierarchy of modes exists
(double-precision, real, and integer) with

double-precision being the highest.

OPERATION: Subroutine MODE determines if
there is a difference in the modes of the
two operands under consideration. If there
is, an appropriate in-line call word is
generated to change the operand whose mode
is lower in the hierarchy of modes to the
higher mode.

There is one exception to the rule that
the mode is changed according to the
hierarchy of modes. This exception occurs
when the operator is '='. In this case the
right operand is adjusted to the left
operand regardless of the hierarchy.

When subroutine MODE is entered from
INLIN1, only the appropriate function call
is generated.

Subroutines MVSBXX and MVSBRX: Chart FY

Subroutine MVSBXX

Subroutine MVSBXX processes a left oper­
and subscripted variable when the right
operand might also be a subscripted varia­
ble.

ENTRANCE: Subroutine MVSBXX is entered
from the ADD, MULT, and DIV routines and
subroutine MODE to process an existing left
operand subscripted variable.

CONSIDERATION: If the right operand is not
a subscripted variable and the left operand
is a subscripted variable, the left operand
subscripted variable is the last entry in
the subscript table.

If the right and
subscripted variables,
subscripted variable
the subscript table.
subscripted variable
entry.

left operands are
the right operand

is the last entry in
The left operand

is the next to last

OPERATION:
subscripted
take place,
made.

If the left operand is not a
variable, no processing need
and an immediate return is

Phase 15 245

If the left operand is a subscripted
variable and the right operand is not, the
left operand is moved to the output buffer
using subroutine INOUT. The pointer to the
last entry in the subscript table is updat­
ed.

If the left and right operands are
subscripted variables, the left operand is
moved to the output buffer. After the left
operand subscripted variable is moved from
the subscript table, the right operand
subscripted variable is moved to the place
in the table previously occupied by the
left operand. This avoids blank areas in
the subscript table which would cause
errors.

EXIT: Subroutine MVSBXX returns control to
the routine which called it.

SUBROUTINE CALLED: During execution sub­
routine MVSBXX calls subroutine INOUT.

Subroutine MVSBRX

Subroutine MVSBRX is entered when only
the left operand may be a subscripted
variable. If the left operand is a sub­
scripted variable, it is processed.

ENTRANCE: Subroutine MVSBRX is entered
from the EQUALS, UMINUS, and DIV routines
and subroutine MODE.

OPERATION: If the left operand is not a
subscripted variable, no processing need
occur and a re"turn is made.

If the left operand is a subscripted
variable, it is moved to the output buffer
using subroutine INOUT.

EXIT: Subroutine MVSBRX returns control to
the routine which called it.

SUBROUTINE CALLED: Subroutine MVSBRX calls
subroutine INOUT.

INLIN1 Routine: Chart FZ

The INLIN1 routine processes the single
argument in-line functions.

ENTRANCE: The INLIN1 routine is entered
from the FUNC routine.

CONSIDERATION: There are eight single­
argument in-line functions: IFIX, FLOAT,
DFLOAT, SNGL, DBLE, ABS, IABS, and DABS.

246

OPERATION: Instructions are generated to
form the functions for the SNGL and DBLE
in-line functions. For the IFIX, FLOAT,
DFLOAT, lABS, ABS, and DABS functions, an
in-line function call word is generated.
This word is in the following format:

r-------------T--T--T-----------------~---l
lin-line I I I I
I function IR21R11code number for the I
I adjective I I lin-line fUnction I
I code I I I I L _____________ ~ __ ~_~ ____________________ J

1 byte 1 byte 2 bytes

Depending upon the specific in-line
function, up to three registers are made
available by Phase 15. For ABS, IABS, and
DABS only an argument register is required.
This register is indicated in the R1 field,
and the R2 field is zero.

For IFIX, FLOAT, and DFLOAT in-line
functions, three registers are required: an
argument register, a result register, and a
work register. The argument register is
indicated in R1, the result register in R2.
The work register is R1-1; it is freed by
Phase 15. If the mode of the argument is
incorrect, an error message is given.

EXIT: The INLINl routine passes control to
the COMMA routine. If there were errors in
the argument, control is passed to the
MSGNEM/MSGMEM/MSG routine.

SUBROUTINES CALLED:
INLIN1 routine calls
MODE, and INARG.

During execution the
subroutines ERROR,

Subroutine INLIN2: Chart GA

Subroutine INLIN2 processes an in-line
fUnction with two arguments.

ENTRANCE: Subroutine INLIN2 is entered
from the COMMA routine.

CONSIDERATION: In an in-line function with
two arguments, the result of the function
is in the register assigned to the first
argument. Due to this fact, the register
assigned to the second argument should be
indicated as free.

OPERATION: Both arguments are checked by
subroutine INARG to determine if they are
valid and in a register. Subroutine INARG
will assign them to a register, if neces­
sary. Then the register assigned to the
second argument, R2, is indicated as free,
because the R2 register is not used to
contain the result.

An in-line function call word is gener­
ated. It has the following format:

r-------------T--T--T---------------------,
lin-line I I I I
I function IR21R11code number for the I
I adjective I I lin-line function I
I code I I I I L _____________ ~~ __ ~ ____________________ J

1 byte 1 byte 2 bytes

If the in-line function does not have a
code of an in-line function with two argu­
ments, or. if the argument is not of the
same mode as the function, an error message
is given.

EXIT: The INLIN2 routine normally passes
control to the COMMA routine. If an error
message is given an exception is made, and
control is passed to the MSGMEM routine.

SUBROUTINES CALLED: The INLIN2
calls subroutines ERROR, INARG, and

Subroutine CKARG: Chart GB

routine
FREER.

Subroutine CKARG checks the argument in
an external call for validity. It also
assures that the arguments have an assigned
storage location.

ENTRANCE: Subroutine
trol from the EXPON.
FUNC routines.

CKARG receives con­
LFTPRN, COMMA, and

CONSIDERATION: The calling sequence for an
external call requires that each argument
have an assigned main storage address. An
argument has an assigned address if it is a
constant, a variable (not an ASF dummy
variable or a subscripted variable with
variable subscripts). or if it is in a work
area.

OPERATION: Entering subroutine CKARG an
argument has no assigned address. The
argument is assigned to a register, if not
already in one, and the contents of the
register are stored into a work area (i.e.,
aSSigning an address). This procedure is
also used to save the contents of a reg­
ister when that register is to be used for
another purpose.

SUbscripted variables, which are used as
arguments, remain in the subscript form,
but are not assigned a main storage
address.

If a symbol, which is not a valid
argument. is used within an argument' list,
an error or warning message is given,
depending upon the severity. If an argu­
ment is missing, an error message is given.

EXIT: The CKARG routine returns control to
the routine which called it.

SUBROUTINES CALLED:
subroutines: FINDR,
and WARNING.

Subroutine CKARG calls
LOADR1, FREER, ERROR,

Subroutine INARG: Chart GC

Subroutine INARG processes an in-line
function argument.

ENTRANCE: Subroutine INARG is entered from
the INLIN1 and INLIN2 routines.

CONSIDERATION: An in-line function call
word has the following form:

r-------------T-~-~--------------------,
I in-line I I I I
I function I R21 R 11 code number for the I
I adjective I I lin-line function I
I code I I I I L _____________ ~~ __ ~ ____________________ J

1 byte 1 byte 2 bytes

If there is only one argument, it
appears in register R1. If there 1S a
second argument, it appears in register R2.
If there is no second argument, register R2
is zero.

Due to this form of the in-line function
call text word, the arguments must be in a
register.

OPERATION:
determine
required.

The argument is examined to
if a register assignment is
If so, a register is assigned.

If the argument is a subscripted varia­
ble or a dummy subscripted Yariable. the
mode/type fields are modified to agree so
that. during the remainder of Phase 15,
they are indistinguishable. The subscript
table is updated to access the next sub­
script, which may be the next argument.

If an argument is missing or if an
invalid argument is used, an error message
is given. If an array or a dummy array is
used as an argument, a warning message is
given.

EXIT: Subroutine INARG returns control to
the subroutine which called it. An excep­
tion is made if an error message is given.
In that case, control is returned to the
MSGNEM/MSGMEM/MSG routine.

SUBROUTINES CALLED:
subroutines ERROR,
LOADR1.

Subroutine INARG calls
WARNING, FINDR, and

Phase 15 247

*06 *
**A;* .

X
*****A3********** · . * PERFORM * * INITIAL PHASE *
* PROCESSING * · . *****************

X
******83***********

ACCESS *

FROM FORTRAN
SYSTEM DIRECTOR
AFTER PROCESSING
PHASE 14

INPUT X •••
STATEMENT

X
*****C3********** * REORDER *
* OPERATIONS * * WITHIN STATE- *
* MENT IF *
* NECESSARY *

X
*****03********** * MODIFY TEXT * * WORDS TO IN- *
*STRUCTION FOR- *
* MAT ASSIGNING *
*REGS IF NEEDED *

X
*****E3********** · . PROCESS ANY

FUNCTION *
REFERENCES * .

X
*****F3**********
• * INDICATE
* ANY ERRORS * ENCOUNTERED * .

X
******G3***********

ENTER STATEMENT
* ON OUTPUT *

DATA
SET

.x.
H3 * •

• * * • • * END *. NO •
. OF . •••• *. TEXT .*

. . * •• * * YES

X
*****J3**********
* * ~ PERFORM *

FINAL *
* PROCESSING *
* •

X
****K3*********

*FORTRAN SYSTEM *
* DIRECTOR TO * * LOAD P~ASE 20 *
4 ... *4****4**

Chart 06.

242

Phase 15 Overall Logic Diagram

*FA *
* Cl*
* *
*

START X
*****Cl**********
* *
* * *INITIALIZATION *
* * * * *****************

PRE£CAN X
*****01**********
* GET *

STATEMENT *
•• x* IOENT ~ORO *

* FROM INPUT *
* FILE *
***************** ;

* * *FA *
* 01*

X
*****El**********
* *
* *
*

PICK UP
ADJECTIVE

CODE
* *
*

* * *****************

X
*****Fl**********
* *

*********-***************~** * STATEMENT * ROUTINE * ID *
* BRANCH * ***
* ACCORDING TO * •••••••• XCCKTINUE * SKIP * FFB4 *
* CODE * ***
* * * GO TO * "GO TO * FDB4 *
***************** ***

Chart FA.

* COMPUTED GO TO * COMP GO TO * FDB2 *

* I/O OPERATIONS * BEG I/O * FBB2 *
*** * LABEL DEFINITION * LABEL DEF * FGB2 *

* ARITH * FOSCAN * FBB3 *
*** * CALL * FOSCAN * FBB3 *

* ASF * FDSCAN * FBB3 *
*** * ARITH IF * FOSCAN * FBB3 *

* RETURN * SKIP * FF84 *
*** * ERROR WARNING * ERWNEM * FFBI *

* END * MOP UP * FGB2 *

* 00 * DO * FCA2 *

PRES CAN Routine

Phase 15 249

*FB *
* A2*
* *

• *
* A4 *
* *

.X. X
*****A2**********
* INITIALIZE *
*ALL INDICATORS *
* USED IN THE *

A4 *. *****AS**********
.* *. *ERROR *

.*OPERATIONS if. YES *-*-*-*-*-*-*-*-*
. TABLE FULL . •••••••• X* STATEMENT

FOSCAN *. .* * TOO LONG
,.: . * ROUTINE *

***************** * •• * *****************
* NO

FOS020 .X. FOSOI0 X
*****84**********
* MOVE *

INPUT TO 1*
* OPERATIONS *
* TABLE * .

*****B 1"******* B2 *. *****B3**********
... C::F. T * • * CALL, *. * *
* ';Sf ... ASF.* ASF, *. CALL * CHECK *

INDICATOR *X •••••••• *. ARITHIF OR .* •••••••• X* SUBROUTINE
ON * *. ARITH .if * NAME *

. . *
* •• * *****************

*

FCS025 X
*****C2**********
CHANGE ADJECTVE
* CODE TO *

.................. X* ADJECTIVE *X ••••••••••••• · ••••
* FORCING *

, :*****;~~;******:

FCRSCAN X
*****02**********
* MOVE *
* INPUT *
* TO OPERATIONS *
* TABLE *

* E2 *.X. • *X •••

X
*****E2**********
* GET *
* NEXT

WORD *
FROM *

* INPUT *

.X.
*****FI********** F2 *.
* MOVE * .* *.

SUBSCRIPT YES .* SUBSCRIPT *.
TEXT TO *X •••••••• *. TEXT .*

SUBSCRI PT * *. .*
* TABLE * *..if
*************~*** * •• *

." X

* * * E2 * . .

Chart FB.

250

• NO

X
*****G2**********
* GET RIGHT *
* FORCING VALUE *
* OF INPUT *
* WORD

X
*****H2**********
* GET LEFT *
* FORCING VALUE *
* OF LAST *
* OPERATICNS
* TABLE ENTRY *
~****************

**
* LEFT * *
* OPERATOR * EXPLANATION * ROUTINE * CHART
* •••••••••••• * •••••••••••••• * ••••••••• * •••••••••••••• *
* + * ADD * ADO * FH * ••••••••••••••••••••••••••• * ••••••••• * •••••••••••••• *
* * SUBTRACT * ADD * FH * * •• *
* * * MULTIPLY * MULT * FI * * •• *

.X. * / * DIVIDE * MULT * FI *
J2 *. * •• *

.* *. * ** * EXPONENTIATE * EXPON * FK *
.* LEFT *. YES * •• *

. FORCED BY . ••• X* * * * *
. RIGHT. * U * UNARY MINS * UMINUS FL *. .* * •• *

* •• * * (* LEFT PAREN * LFTPRN * FM * * NO * •• *

**** . .
* A4 * . .

FOSCAN Routine

*) * RIGHT PAREN * RTPRN * FL *
* •• *
* C FORC * CALL FORCING* CALL * FN * * •• *
* * EQUAL * EQUAL * FO *
:····:·······:·;~~~~~~i·····:·~~~~~~··;··~~··········:
* •• *
* F(* FUNCTION * FUNC * FN *
* ... *
* ILLEGALOP * ILLEGALCP * INVOP * FF *
* •• *
* + * * * *
*****~*******:*~~:~!*~;~;***:*~*~;~;*****:;***********

x

*FF *
* 83* ..

*FC *
* B2*
* * *

DC X
*****82**********
LAB FQB4
--*-*-*-*-*-*-*
* INSURE * * STMT NO. IS *
* DEFINED *

X
*****C2**********
* SAVE *
* STATEMENT *
* NUMBER IN *
* END DC *
* TABLE *

.
X

*****02**********
DVARCK FCB4
--*-*-*-*-*-*-*
* CHECK *
* DO * * VARIABLE *

*FC * •
* E2* DC2 X

* * *****E2**********
* *PINOUT FWB1*
• *-*-*-*-*-*-*-*-*
••••••• X* MOVE *X •••

***** *FC *

* INPUT WORD *
* OUT *

* F2* CEM .X.
* * F2 *.

* .*IS THIS*.
• .* AOJ CODE *. NO •
••••••• X*. AN END .* ••••

. MARK .
. .

. .

Chart Fe.

* YES .
X

*FF * * 03*

*

DO Routine, Subroutine DVARK

*FC *
* B4*
* * *

DVARCK .X.
84 *. *****85**********

.*IS THIS*. *ERROR FV84*
.*00 VARIABLE*. YES *-*-*-*-*-*-*-*-*

. ALREADY IN . •••••••• X* DO VARIA8LE *
. EITHER . * REDEFINED *

.TABLE. * *
* •• * * NO

* * •• X*FF *
* 83*
**** .X.

C4 *. *****C5**********
.* IS *. * ENTER *

.* THIS *. YES * VARIABLE *
. AN IMPLIED . •••••••• X* IN IMPLIED *

. 00. ... DO TABLE *
.. * *

* •• * *****************
* NO

X
*****04**********
* ENTER *
* VARIABLE *
* IN * * DO *
* TABLE *

. .

.X •••••••••••••••••••••••••

.X.
E4 *. *****E5**********

.* *. *ERROR FV84*
.* IS *. YES *-*-*-*-*-*-*-*-*

. TABLE . •••••••• X* MORE THAN *
. FULL. * 25 LEVELS *
.. * OF DO NESTING *

. . *****************
* NO

X
****F4*********

x
***** *FF *
* 83*
* * ..

* * ..
*

RETURN

*
*

Phase 15 251

*FD * * B2*
* *
*
.

CGOTC X
*****82**********
PINOUT FWB1
--*-*-*-*-*-*-*

•••••• ·•· •••••••••• x* P~T INPUT *
* WORD *
* OUT *

.X.
*****C.l **** ****** C2 *.
LAB FOB4 .* DOES *.
--*-*-*-*-*-*-* YES .* NEXT WORD *.
* INSURE T~AT *X •••••••• *. POINT TO A .*
* STMT NO. IS· * *. STMT .*
* DEFINED * *. NO •• *
***************** *. .*

Chart FO.

252

* NO .
X

*FC *
* F2*
* * *

COMP GO TO, GO TO Routines

4****
*FD *
* B"*
* * *
.

GO TO X
*****84**********
LAB FOB4
--*-*-*-*-*-*-*
* INSURE THAT *
* STMT NO. *
* IS DEFINED *

.
X

*****C4*********,*
PINOUT FWB1
--*-*-*-*-*-*-*
* PUT INPUT *
* WORD * * OUT *

X

*FF *
.. 83*
* * *

*FE *
* 83*
* *
*

BEGIO X
*****83**********
PINOUT FWBl
--*-*-*-*-*-*-*

••• X* PUT INPUT *
* WORD *
* OUT *

.X.
C3 *. *****C4**********

.* IS *. *OVARCK FC84*
.* THERE *. YES *-*-*-*-*-*-*-*-*

. AN IMPLIED . •••••••• X* CHECK *
. 00. * IMPLIED DO *
.. * VARIA8LE *

* •• * ***************** * NO

.X.
D3 * •

• * IS *.
NO.* THERE * •

•••• *. AN END .*X •••••••••••••••••
. MARK .

. .
* •• * * YES .

X

*FF *
* 03*
* *
*

Chart FE. BEGIO Routine

Phase 15 253

*FF * •. Bl*
* *

ER.,NEM X
*****Bl**********
PINOUT FWB1
--*-*-*-*-*-*-*
* PUT * * INPUT _ORO *
* OUT *

x

*FA *
* 01* * •

*FF *
* B3*
* •

MSGNEM X
*****83**********
ININ FWB3
--*-*-*-*-*-*-*

••• x* INCREMENT * INPUT * POINTER *

.x.
C3 *.

SKIP
*****B4**********
PINOUT FWB1
--*-*-*-*-*-*-*
* PUT * * INPUT WORD *
* OUT *

• .* *. •

*FF *
* 85*
* •

INVOP X
*****B5**********
ERROR FVB4"
--*-*-*-*-*-*-* * INVALID * * ADJECT IVE *"
* CODE *

• NO .* *. x •
•••• *. END MARK .*X •••

*FF *

. . *. .*
* •• * * YES

* 03* X
* * *****03**********
* * PUT INPUT * • * WORD OUT * ••••••• x* 00 NOT UPDATE *

* INPUT *
POINTER *

.x.

.
* * *FF *

* C3*

E3 *. *****E4**********
.*15 THIS*. * PUT *

.* USED AS *. YES * OUT END *. AN END DO .* •••••••• X* DO TEXT *
. . * ~ORD(S) *
.. * *

* •• * ***************** * NO

:x :
.x.

*****F2********** F3 *.
.. PUT * .* ANY *.

MESSAGES yes.. WARNING *. * ONTO OUTPUT .X.......... OR ERROR .* * DATA SET * *. MESSAGE .*
* .. *..*
***************** * •• *

* NO

X
*****G3**********
ININ FWB3
--*-*-*-*-*-*-*

••••••••••••••••• x* UPDATE *
* INPUT * * POINTER *
**********.******

x

*FA * * 01·
* * *

Chart FF. ERWNEM, SKIP/MSGNEM/MSGMEM/MSG/INVOP Routines

254

*FG *
* 82*
* *

MCPUF X
*****82**********
* PUT *
* THE FINAL *
TEXT WORDS ONTC
* THE OUTFUT *

DATA SET .
**********.******

.x.
*****Cl********** C2 *.
.. .. .* *.
* PUT * YES.* ANY *.

ME:SSAGES *X.. ••• ••••• MESSAGES .*
aUT * *. FROM .*

.INPUT.
* •• * * NO

.x. .*.
02 *. 03 *. *****04**********

.* *. .* IS *. *ERROR FVB4*
• .* WITHIN A *. YES .* FUNCTION *. NO *-*-*-*-*-*-*-*-*
••••••••••••••••• x*. FUNCTION •••••••••• x*. NAME .* •••••••• X* FUNCTION NAME *

Chart FG.

. SUBPRO- . *. DEFINED .* * NOT *
.GRAM . *..* * DEFINED *

* •• * * •• * ***************.**
.* NO * YES

X
·****E2**********
* PUT THE * •
* ENe OF OUTPUT * X •
*TEXT WORD ONTO *X •••••••••••••••••• ~ ••••••••••••••••••••••••
* THE OUTFUT *
* DATA SET *
*.************* ••

X
*****F2********·*
* UPDATE THE *
.. LOCATICN *
*CCUNTER BY THE *
.. WORK AREA *
* SI ZE ..

X
*****G2**********
* MOVE *
* OUTPUT *
* INDICATOR TO *
*THE COMMUNICA- *
* TION APEA *

.x.
H2 *. .* IS *.

******H3***********

.* CUTPUT IN *. NO *.. MAIN .* •••••.•• x
. STORAGE .

. .
* •• * .. YES

x
******J2***********

WRITE END
OF DATA
seT ON
OUTPUT

TAPE
* •• **********

REWIND
WORK
TAPES

x •••••••••••••••••

X
****K2*********

* FSD TO *
• REAO IN ..
* PHASE 20 *

************ .. **

MOPUP Routine

Phase 15 255

***** *FH *
* 83*
* * *

X.
*****83**********
SYMBOL FTB1
--*-*-*-*-*-*-*
* DELETE ANY *
* SYMBOL *
* ERROR *
***********&*****

X
*****C3**********
MODE FXB3
--*-*-*-*-*-*-*
* UNM~X ANY *
* MIXED *
* MODE *

* * • *FH *.X.
* B3*

*FH * * 04*
* *
*

.*. ACOAD .X. .X.
02 *. 03 *. 04 * •

• * IS *. .* IS *. .* IS *.
YES.* LEFT *. YES.* RIGHT *. NO .* LEFT *. YES

•••••••• *. OPERAND A .*X •••••••• *. OPERAND A .* •••••••• X*. OPERAND A .* ••••••••
X *.REGISTER .* *.REGISTER .* *.REGISTER .* X

***** *..* *..* *..* *****
*FS ~ - •• * * •• * * •• * *FS *
* B3* * NO * * NO * C3*
* * * * *

.
• X. SUB SUB X

E2 *. *****E4**********
.* IS *. *MVSBXX FYB2*

.* OPERATOR *. YES *-*-*-*-*-*-*-*-*
. SUBTRACT OR . •••••••••••• · •••••••••••••••••••••• X* PROCESS LEFT *

. DIVIDE . * OPERAND. IF *
. . * SUBSCRIPT *

. . ***************** * NO .

X
*****F2**********
* SWITCH *
* LEFT AI'II;) *
* RIGHT *
* OPERANDS *
* * *****************

.
X

*FS *
* C3*
* * *

X
*****F4**********
FINDR FUBI
~-*~*~*-*~*-*~* * GET A FREE *
* REG AND MARK *
* IT OCCUPIED *

X
*****G4**********
LOADRI FUFS
--*-*-*-*-*-*-*
* GENERATE LOAD * * OF LEFT OPER- *
* AND INTO REG. *
********'*********

.X.
Hit * •

• * IS * •
• * RIGHT *. YES

*

. OPERAND A . ••••••••
.REGISTER . . X
.. *****

. . *FS *
* NO * B3*

X

*FS *
* C3*
* *
*

* *
*

Chart FR. ADD Routine

256

*FI *
* 83* ..

MULT X
*****83**********
SYMBOL FTBt
--*-*-*-*-*-*-* * DELETE * * ANY SYMBOL *
* ERROR

X
*****C3**********
MODE FXB3
--*-*-*-*-*-*-*
* UNMIX * ANY MIXED *

MODE *
****.************

.x.
03 * •

• * * •
• * FIXED *. NO

. MODE . ••••••••
. . X
.. *****

* •• * *FH * * YES * 03*

• x.
E3 * •

• * *.
YES.* IS * •

.. .

•• ••• ••• *. OPERATION .*
X *. DIVIDE .*

***** *..*
*FJ * *. .*
* 93* * NO ..

.x.
*****Ft********** F3 *. *****F5**********
* ~~ITCH REGIS- * .* *. * PROCESS *
* TERS IF NEe. BOTH ARE REGISTERS .* ARE *. NEITHER IS A REGISTER * LEFT OPERAND *
* TO MAKE LEFT *X •••••••••••••••••••••••••••••••••• *. OPERANDS .* •••••••••••••••••••••••••••••••••• X* SUBSCRIPT
* OPERAND THE * *.REGISTERS.* * IF ANY
* HIGHER REG. * *. .*
***************** * •• * *****************

X
*****Gl**********
* GET *
* AN EVEN-ODD *

REGISTER *
PAIR

x

*FS *
* B3*
• *

Chart FI. MULT Routine

*ONE IS A REGISTER

.x.
G3 *. *****G4**********

.* *. * SWITCH *
.* WHICH ONE *. RIGHT * RIGHT AND *

. IS A . •••••••• X* LEFT
.REGISTER. OPERAND * OPERANDS
.. • *

* •• * ****************.
*LEFT
.OPERAND

X
*****H3**********
* MAKE SURE *
* LEFT OPERAND
* 1$ IN AN *X •••••••••••••••••
* ADO REGISTER * . .

X
*****J3**********
* MAKE EVEN *
* REGISTER *
* AVAILABLE FOR *
*MUL TIPLICATION * . .

x

*FS *
• C3· ..

X
*****G5********** * DETERMINE * * WHICH *
* PEGISTER PAIR *
• TO USE *

X
.****H5**********
* SAVE *

REGISTERS *
* IF *
* NECESSARY

X
*****JS*****·**-*
LOAOR1 FUFS
--*-*-*-*-*-*-*
* GENERATE LOAD -* OF LT OPERAND *
• INTO ODD" REG. *
************.****

x

*FS * * C3* . .

Phase 15 257

*FJ * * 83* .. .

DIV .X.
B3 * •

• * IS *.
YES.* LEFT *. NO

•••••••••••••••••• *. OPERAND A .* ••••••••••••••••••

. x.
C2 *.

.*15 LEFT*.
YES.* OPERAI\'D *. •••••••••••••.•••• *. AND OCD .*

.REGISTER .
. . * •• * • NO

.RE«:ISTER .
. . * •• * .

.x.
C4 *. *****C5**********

.* IS *. *MVSBXXX FY82*
.* RIGHT *. NO *-*-*-*-*-4-4-*-*

. OPERAND A . •••••••• X* PROCESS LEFT
.REGISTER . * SUBSCRIPT
.. * IF ANY *

. . *****************
* YES

ODDIV X X
*****02**********
CHCKGR FUFl
--*-*-*-*-*-*-*
* SAVE oeD *

L28 X
*****01**********
CHCKGR FUFl
--*-*-*-*-*-*-*

SAVE EVEN
REGISTER

* IF NECESS. *
****** ***** ******

X
*****El*~********
* GENERATE *
... LOAD OF *
* ODD INTO EVEN *
... REGISTER *

X
*****F 1 **********
* GENERATE *
* SHIFT OF *
* EVEN INTO ODD *
* REGISTER *

* *****************

REGISTER
* IF NECESS.

X
*****E2********** . .
* MARK * * CDC REGISTER
* CCCOPIEO

X
*****F2**********
FREER FUBS
--*-*-*-*-*-*-*

),lARK EVEN
REGISTER

FREE

.x.
G3 *. • .* IS *.

*****04**********
MVSBXR FY84
--*-*-*-*-*-*-*
... PROCESS

SUBSCRIPT *
* IF ANY *

. .

.X •••••••••••••••••••••••••

X
*****E4**********
* ASSIGN *
* LEFT OPEQANO *
* TO A REGISTER *
* PAIR *

X
*****F4**********
LOAORI FUFS
--*-*~*-*-*-*-*
LOAO LEFT OPER-
* AND INTO THE *
* REGISTER PAIR ...

• X .* RIGHT *. YES
••• X*. OPERAND A .* ••••••••

Chart FJ. DIV Routine

258

.RE«:ISTER . x
.. *****

* •• * *FS * * NO * 83*

• x.
H3 * •

• * IS *.
YES.* RIGHT * •

••••• ••• *.OPERAND 5UB- .*
X *.SCRIPTED .*

***** *..*
*FS * •• *
* 03* * NO .. .

x

*FS *
* G3* ..

* • .

*FK *
* 82*
* * *

EXPON X
*****82**********
SYMeOL FTG3
--*-*-*-*-*-*-*
* DELETE *
* ANY SYMeOL *
* ERRCR *

X
*****C2**********
* * * CHANGE ~OOE *
* OF BASE * * IF NECESSARY *
* * *****************

X
*****02**********
* * * GC TO COMMA *
* ROUTINE TO *
STORE REGISTERS
* * *****************

X
*****E2**********
CKARG GBA2
--*-*-*-*-*-*-*
* PROCESS THE *
*BASE AND EXPO- *
NENT AS ARGMNTS

X
*****F2**********
* PUT AN *
*EXPONENTIATION *
* WORD INTO * * THE OUTPUT *
* DATA SET *

X
*****G2********** * GENERATE AN *
*ARGUMENT COUNT *
* TEXT WORe AND *
* ADD 2 TO THE *
*ARGUMENT COUNT *

.X.

*EXPON • SPECIFIC ..
ADJ • EXPONENTIATION
*CODE • CODE *

*COUNT • *
ADJ 2
*COoE *

H2 *. *****H3**********
.* *. * GENERATE *

.* WITHIN *. YES * INSTRUCTION *
. AN ASF . •...••.. X* TO RESTORE *

*DEFINITION * * REEISTERS *
* 14 AND 9 "*
***************** . .

.X •••••••••••••• ~ ••••••••••
x

*FA *
* ,01*
'* -.*
*

Chart FK. EXPON Routine

Phase 15 259

*FL *
* 82*
* * *

· UII,lNUS X
*****82**********
TYPE FTB3
--*-*_*_if_*_*_*
* FIND *
* ANY SYMBOL *
* ERROR *

.X.
C2 *.

.* IS *.
YES.* OPERAND * •

.••. *. A REGISTER .*
. .

. .-
. .

* NO

.X.
02 * •

• *15 OP- * .
• * ERAND A *. NO

. SU8SCRIPTED . .•••
.EXPRESS- .

. ION .
. . * YES

· X
*****E2***·*******
MVSBRX FYB4
--*-*-*-*-*-*-*
* PROCESS *
* SUBSCRIPT *
* EXPRESSION *

· . • LOAD X
*****F2**********
FINDR FUBl
--*-*-*-*-*-*-* •
*GET A FREE REG.*X •••
* AND MARK IT *
* OCCUPIED *

-X
*****G2**********
LCADRl FUFS
--*-*-*-*-*-*-*
* GENERATE LOAD *
* OF OPERAND *
* INTO REGISTER *

· . .LCR X
*****H2**********
* GENERATE *

• *INSTRUCTION TO *
••• X*COMPLEMENT REG-*

ISTER AND ENTER
* IT IN OP TBL *
***************.*

· X

*FS *
* C3*
* * *

*FL *
* 84*
* * *

.
UPLUS X

*****84**********
* * * DELETE *
* UNARY PLUS * * TEXT WORD *
* * *****************

x

*FA *
* 01*
* * *

*FL *
* F4*
-* *

*

RTPRN .X •
F4 *.

.* *.
NO.* MISSING *.

• ••• *. OPERATOR .*
. .

. .
* •• *

* YES

X
*****G4**********
ERROR FVB4
--*-*-*-*-*-*-*
* MISSING *
* OPERATOR *
* * ***************** . .

••••••••••• X.
- X

FS,
.. C3*
* *
*

Chart FL. UMINUS, UPLUS, RTPRN Routines

260

LFTPRN

*FM *
* 82*

.x. CALLI
83 *. *****84**********

.* *. *CKARG GSA1*
.* CALL *. YES *-*-*-*-*-*-*-*-*

*****B5**********
* SET *

ARGUMENT
. STATEMENT . •••••••• X* CHECK * •••••••• X* COUNT

TO 1 *
* *. .* * ARGUMENT * *

* •• *
• NO

AIF .*. .X.
C2 *. C3 ...

• * IS *. .* *.
* * YES.* THE ARITH *. YES .* ARITH IF *.
* H2 *X.oo •• *.EXPRESS ION IN.*X •••• oo ••• *. STATEMENT .*
* * *.' A REG- .* *. .*

.ISTER. *..*
* •• * * •• *

* NO * NO

• X. .x.
02 * • 03 *. *****04**********

• * ARITH *.
oo*EXPRESSION *. YES

ooA VARIABLE CR.
*DUMMY VAR- *

* .. [ABLE .. *
*oo • *

• NO

.x.

.* *. *ERROR FV84*
.* REGULAR *. NO *-*-*-*-*-*-*-*-*

. LFTPRN . •••••••• x* ERROR
. . * IN
.. * PUNCTUATION *

* •• * ***************** * YES

x

*FF *
* B3*

*****El********** E2 *. *****E3**********
'* DELETE *

LFTPRN
* * *ERROR FV84* .. * SUBSC *.

--*-*-*-*-*-*-* NC .. * CR DUMMY *.
* ILLEGAL *X * .. SUBSC VARI- .* FROM

STATEMENT * *. ABLE .* * OPERATIONS

x

*FF *
* 03* ..

Chart FM.

. .
* ... * * YES

ASF030 X
*****F2******'****
* PUT T~E *
* TWO WORDS * * CF SUBSCRIPT
* TEXT CUT

ASF020 X
*****G2**********
GENERATE INSTR.
TC LOAD. SUBSCR ..
*CR INTEGER VAR *X •••

INTO A *
REGISTER *

iHI ***************

* H2 *.X. . .
X

*****H2**********
* PUT * * AN IF FORCING *
* TEXT weRD

INTO INPUT .

* TABLE

*FA *
* 01* . .

.x. ASF050
J2 *. *****J3********** • * WAS *. *ERROR FVB4*

.* LFTPRN *. NO *-*-*-*-*-*-*-_*-*
. FORCED BY . •••••••• X* ILLEGAL *

. RTFRN . * STATEMENT *
.. * * * •• * *****************

* YES

x

*FR * * .43* • *

LFTPRN Routine

x

*FF *
* D3* ..

x

*FP *
* D4*

Phase 15 261

FUNC

***** *FN if

* 82 it

• X •
E2 it.

• * *-.
.it INLINE *. YES

it. FUNCTICN .* ••••••••
... • * X
.. it****

* •• * *FZ *
.. NO * E3*

X
*****C2**********
CKARG G8Al
--*-*-*-*-*-*-*
* CHECK *

ARGUMENT *

X
*****02**********
* SET * * ARGUMENT *

COUNT *
it TO 1

* ****it************

x
***it*
FP '
* 04*
* "

'*****G2********** * ERROR FVeC ..

* *
*

END

***itit
*FN it

* <:2*
* *
*

.x.
G3 ...

*_*_*_it_*_it_*_it_* ~O.* WAS *.
* *X •••••••• *. STATEMENT .it

ILLEGAL" *.PROCESSED.*
STATEMENT .. *..*

*ititit************* *. .*

x
*itit**
*FF * * C3*
* *
*

Chart FN.

262

* YES

x

*FF *
.. D3*
* *
*

FUNC, CALL, END Routines

itititit*
*FN *
'* 84*
* *
*

CALL .x •
B4 *.

.it HAS * •
.* CALL BEEN *. YES

. PROCESSED . ••••
*. .it

'*. • ..
• NO

X
*****C4**********
* GENERATE *
.. CALL

TEXT *
* WORDS *
* *****************

• x •••••••••••
x

*FF *
* 03*

* *

*FO *
* e3*
* * *
.

• *. EQUALS .X. ASFDEF
*****81********** B2 *. 83 *. *****84**********
ERROR FV84 .* IS *. .*WITHIN *. * MOVE ARGUMENT *
--*-*-*-*-*-*-* NO.* THE *. NO.* AN ASF *. YES * COUNT WORD *
* INVALID *X •••••••• *. RESULT .*X •••••••• *. DEFINITION .* •.••.••. X* OUT OF *
* RESULT * *. FIELD .* *. .* * OPERATIONS *
* FIELD * *.VALID.* *..* * TABLE *
***************** *. .* * •• * *****************

x

*FF *
* D3*
* *
*

* YES *

.
X

*****C2**********
TYPE FT83

ERRCR*-*-*-*-*-*-*-*-*

X
*****C4**********
TYPE FT83
--*-*-*-*-*-*-*ERROR

•••••••• * CHECK RIGHT * * CHECK * ••••••••

Chart FO.

X * "OPERAND *
***** * NORMAL *
*FF * *****************
* D3* .NORMAL
* *
*

X
*****02**********
~eDE FXB3
--*-*-*-*-*-*-*
* UNMIX *
* AND * * MIXED Me DE *

X
*****E2**********
* * * GENERATE *
* STORE * * INSTRUCTION *
* * *****************

X

*FA *
* 01*
* * *

EQUALS Routine

* RIGHT * X
* OPERAND * *****
***************** *FF *

.NORMAL * 83*

· X
*****04**********
MODE FXB3
--*-*-*-*-*-*-*
* UNMIX ANY * * MIXED MODE *
* * *****************

· .X.
E4 *.

.* IS *.
.* RESULT *. YES

. IN PROPER
"*.REGISTER .*

. .
. .

* NO

· X
*****F4**********
* LOAD *
* RESULT *
* IN *
* PROPER *
* REGISTER *

X
*****G4**********
GENERATE RETURN
* INSTRUCTION *
* ACCORDING TO *X •••
• ARGUMENT *
• COUNT *

x

*FA *
* 01*
* * *

* *
*

Phase 15 263

COMMA

*FP *
* 81:1-..
.x.

B 1 *. *****82**********
.* *. *II\:LIN2 GA83*

.* I NL I NE *.. YES *-*-*-*-*-*-*-*-*
. FUNCTION . •••••••• X*PROCESS [I\LINE *

. CALL. * FUNCTICN *
.. .. CALL *

. . ********* ********
* NO

~
*****C 1 **********
* INI TIAL! ZE *

COUNT OF
* NUMBER OF
* ARGUMENTS IN
*TH[S STATEMENT *

X
*****01 **** *** ***
*CKARG GBA 1 *
--*-*-*-* -*-*-*
* *X •••
*CHECK ARGUMENT * . .
*********** ******

X
*****E 1 *4** ******
* INCREMENT *

ARGUMENT *
COUNT

BY
• 1 •
****** ***** ******

.x.
F I *.

• * *.
• * ANOTHER *. YES.

. ARGUMENT . ••••
*. . *

. .
* •• * * NO

.x.
GI *.

.* IS *.
.* THIS IN *. YES

x

*FA * * 01*
* *

. AN ASF . ••••••••••••••••••
*. CALL • *

. .
* •• * * NO

.X. X
Hl *. *****H2**********

• * *. * SAVE GRO GRI. *
.* FUNCTION *. YES * FPO. FP2. FP4 *

. NAME . •• •••••• X* AND FP6 *
. VALID . * AND MARK *_
.. * THEM FREE *

* •• * *****************
• NO

X
*****.J 1 **********
ERROR FVB4
--*-*-*-*-*-*-*

INVALID
FUNCTION

* NAME *
****** ***** ******

x

*FF *
* 83*
* *

• *
* B4 *
* *

Chart FP. COMMA Routine

264

*FP *
* D4*
* *

**** . .
* B4 * • *

X
*****84********** . .

MARK RESULT
REGISTERS

FREE

.x.
C4 *. *****C5**********

.*WITHIN *. * SAVE LINKAGE :I-
.* ASFDEF *. YES * REGISTER 14

. PROCESSING . •••••••• x* AND ARGUMENT *
. . *LIST REGISTC:R 9*

COM025
*****04**********
* PUT FUNCTION *

• *CALL AND PRMTR * •
••••••• X*LI ST I N OUTPUT *X •••••••••••••••••

*INCRMT ARG CNT *
FRTRN COMM ADOR

.x.
E4 *. *****E5**********

.*WITHIN *. * RESTORE *
.* ASF DEF *. YES * LINKAGE *

. PROCESSING . •••••••• X*REGISTER 14 AND*
. . * ARGUMENT LIST *
.. * REGISTER 9 :I-

*.. • * *****************
• NO

COM060 .x.
F4 * •

.* *. .* * •
NO .* FORCED BY *. NO.* FORCED *.

• ••• *. END MARK .*X •••••••• *. BY .*X •••••••••••••••••
.INDICATOR. *.).*
.. *.. *

* •• * * •• *
* YES * YES

*****G3**********
WARN ING FVB2
--*-*-*-*-*-*-*

MISSING
)

*****G4**********
* DELETE WORD *
* IN OPERATIONS *

TABLE THAT *
ceNTAI NS A * ..

* RIGHT PAREN *
****4-4-***********

. .

............................ X.

*****H3**********
ERROR FVB4
--*-*-*-*-*-*-*

•• • x* ILLEfAL
* DEL IMETER

x

*FF *
* 834 .. .

X

*FA *
* 01*
* •

*FQ *
* B2*
* * *

LABEL DEF • x.
82 *.

.* IS *.
.* THIS *. NC

. ~N ENDeo . ••••
. .

. .
* •• * * YES

• x.
*****C1********** C2 *.
ER~OR • FV84 .* IS *.
--*-*-*-*-*-*-* NC.* THIS *.

INVALID *x •••••••• *. ENDDO .*
ENDeo * *. VALle .*

* *..*
***************** *. .* * YES

X
~*"D2******** * INDICATE * * AN ENDDO

FOR Tt-:E *
MSG ..

ROUT INE *
* .. ***************

. -
X

*****E2**********
FINCUT F~81
--*-*-*-*-*-*-*

••••••••••••••••• X* PUT INFUT *x •••
* WORD OUT *

Chart FQ.

x

*FA ..
* C1*
* *
*

LABEL DEF Routine, Subroutine LAB

*FC *
* 84* .. .

LAB
*****84**********
* ACCESS * * STATEMENT

NUMBER
POINTER

.x •
C4 *. *****C5**********

.* *. *ERROR FVB4*
.* IS *. NO *-*-*-*-*-*-*-*-*

*. STMT NO. • * x* STMT NO. *
. DEFINED-. * NOT *
.. * DEFINED *

* •• * ***************** * YES

. .

.X •••••••••••••••••••••••••

• x.
04 *. *****05**********

.*IS THIS*. *ERROR FVB4*
.* STMT NO. *. YES *-*-*-*-*-*-*-*-*

. OF FORMAT . •••••••• X*ILLEGAL TRNSFR *
. STATE- . *TO NON-EXCUTBLE*

.MENT . * STATEMENT *
. . *****************

* NO

:X :
X

****E4*********
* -* * RETURN
*

Phase 15 265

ARTHIF

*FR *
• A3*
* *
*

· .X. .*.
83 *. 84 * •

• *15 NEXT*. .* * •
• * OPERAND A *. NO .* WAS THE *. YES

••• x*. STATEMENT .* •••••••• X*. STATEMENT .* ••••
. NUMBER . *.TRUNCATEO.*
.. *..*

* • • *' * •• *
* YES * NO

X
*****C3**********
LAB FQB4
--*-*-*-*-*-*-*
* INSURE STATE- *
*MENT NUMBER IS *
* DEFINED *

X
*****03**********
PINOUT FW81
--*-*-*-*-*-*-*
* PUT WORD OUT *
* AND ACCESS *
* NEXT WORD *

· .X.
E3 * •

• * ARE 3 * •
• NO .* STATEMENT * •
•... *. NUMBERS .*

.PROCESSED.
. .

* •• *
* YES

· .X.
*****F2********** F3 *.
ERROR FV84 .* *.
--*-*-*-*-*-*-* NO.* END *.
*~CRE THAN THREE*X •••••••• *. MARK .*
* STATEMENT * *. NEXT .*
* NUMBERS * *..*
*****************- *. .*

* YES

x X
***** *****
*FF * *FF *
* C3* * 03*

* * * * * *

Chart FR. ARITH IF Routine

266

X
*****C4**********
ERROR FVB4
--*-*-*-*-*-*-*
*LESS THAN THREE.
* STATEMENT *
* NUMBERS *

x

*FF *
* 83*
* * *

.
X

*FF *
* 03*
* * *

*FS *

*FS *
* 83*
* " "

RR X
*****83**********
"FREER FUB5"
--*-*-*-*-*-*-*
" MARK RIGHT *
" OPERAND "
" FREE "

* L3* RX .X.
* * C3 *.
* .* IS *.
• .*RIG~T OPRNO*. NO
••••••• X*. SUBSCRIPTED .* ••••

*FS *

. .
. .

* •• *
" YES

* C3* L30 X * * *****03**********
" "MOVE LAST SUB- "
• "SC~lPT FROM "
••••••• X*SUBSCRIPT TABLE"

" TO OUTPUT * * BUFFER "

X
*****E3**********
"INOUT FWB5*
--*-*-*-*-*-*-*
* INCREMENT "
" OUTPUT "
* POINTER "

X
*****F3**********
* DECREMENT "
" POINTER TO •
* SUeSCRIPT "
" TABLE "
" " *****************

:F~2: REG X
* * *****G3**********
* * GENERATE *
• " OPERATION AND *
••••••• X* ENTER RESULT *X •••

*FS *
* H3*
" .
"

• REG NUMBER "
* INTO OP TBL "

L27 X
*****H3**********
*INOUT FWB5"
--*-*-*-*-*-*-*

••••••• X* INCREMENT *

*FS *
* J3*

" * "
L22

" OUTPUT "
" POINTER "

*****J3**********
" " " DECREMENT "

••••••• X*, POINTER TO *
" OPERATIONS *
" TABLE "

Chart FS.

x

*FA *
* 01*

" " "

COMPILE Routine

Phase 15 267

~YMEOL

*FT *
* 81*

*****81 **** ******
* TYPE FTB3*
--*-*-*-*-*-*-*ERROR

CHECK RIGHT * ••••••••
OPERAND * X

4****
***************** *FS *

• J3*
NORMAL * '*

*****C 1 **** **.*** *****(2**********
TYPE FT83 * CVERLAY LEFT *
--*-*-*-*-*-*-*ERROR * CPERAND WITH '*
.. CHECK LEFT * •••••••• X* RIGHT OPERAND *

OPERAND * .. IN OPERATIOHS *
* TABLE *

***************** *****************

NCRMAL

X
****01*···***·* . .

RETURN

x

*FS *
* J3* * •

•• ***
*FT *
* B3*
* •

TYPE X
*****83********** *****84**********
* * *ERROR FVB4* ****85*********
* MISSING *YES *-*-*-*-*-*-*-*-* * ERROR *

SYMBOL * ••• oOoOoO .oOX* MISSING * x* RETURN
* * ERROR X

.NO

.x.
C3 *. *****C4**********

• * • ;YPE COD~oO *. NO :~~~~~*-*-*-~~~~:
. TOO HIGH . •••••••• X* INVALID * •••• X •

oO OR LOW . * OPERAND *
. .

* •• * *********.*******
* YES

.x.
03 *. *****04**********

.* *. *ERROR FVB4*
.* VALID *. NO *-*-*-*-*-*-*-*-*

. TYPE . •••••••• X* MULTIDEFINEO * ••••••
. . * SYMBOL

. .
* •• * * YES

X
****E3*********

* * RETURN .
****.**********

IF AN ERROR IS
DETECTED. CON­
TROL IS PASSED
TO THE ERROR
RETURN SPEC I F I ED
BY THE ROUTINE
WH ICH CALLED SUB­
ROUTINE TYPE.

Chart FT. Subroutines SYMBOL, TYPE

268

*FU *
* 61* . .

FINDR X
*****81********** · . * FIND A
* FREE

REGISTER

X
*****Cl**********
* • * MARK THAT ..

REGISTER
UNAVAILABLE .

X
****01 **** ***** · . RETURN

************.**

*FU *
* Fl* . . .

CHCKGR .X.
F 1 *. *****F2********** .* IS *. *SAVER FUB3*

.* SPECIFIER *. NO *-*-*-*-*-*-*-*-* *. REGISTER .* ..••••.• X* STCRE PRESENT *
. AVAIL- . * CCNTENTS OF *

.ABLE . *SPECF. REGISTER*
* •• * ***************** * YES

X
*****Gl**********
* • * MARK THAT *

REGISTER
UNA VA I l,.A BLE

X
****Hl********* · . * RETURN *X ••••••••••••••••• .

*FU * * 83* ..

SAVER X
*****83********** · . DETERMINE * * REGISTER TO * * BE TREATED

X
*****C3********** * INITIALIZE *
* POINTER TO *

THIS WORK *
AREA ENTRY .

X
*****03********** · ' . ACCESS

OPERATIONS *X •••••••••••••••••
TABLE ENTRY * X

********.********

.x.
E3 * •

• *15 REG * •
• * NUM BEING *. NO •

. TREATED IN . ••••
. THIS .

.ENTRY.
* •• * • YES

• NO .X. .*.
F3 *. F4 *.

.* *. .* *.
.* SAME *. NO .* DOUBLE *.

. MODE . •••••••• X*. PRECISION .*
. . *. .* *. .* *. .*

* •• * * •• * * YES * YES

NOTDBL X X
*****G3********** *****G4**********
GENERATE INSTR. * INSURE THAT *
TO STORE CONTNT * PTR TO THIS *
* OF REGISTER *X •••••••• * WORK AREA IS *
*INTO WORK AREA * * ON A DOUBLE
* * * WORD BOUNDARY *
***************** *****************

X
*****H3**********
• * * UPDATE WORK *
* AREA POINTER *
• *
• * *****************

X
*****J3**********
INOUT FWB5
*_*_*_*_*_*_*_*_iI'
INCREMENT OUTPT
*BUFFER PTR FOR *
GENERATED INSTR

X
****K3********* · . RETURN *

Chart FU. Subroutines FINDR, CHCKGR, SAVER, FREER, LOADR1

*FU * * 85«-. .

FREER X
*****B5********** * DETERMINE *
*WHICH REGISTER *
* IS TO BE *
*MADE AVAILABLE * . .

. X
*****C5**********
* * * MARK THAT * REGISTER *

AVAILABLE *
* •

X
****05*********

• *
RETURN

*FU * * F5* * •

LOADRI X
*****F5**********
GENERATE INSTR.
* TO LOAD LEFT *
* OPERAND INTO *
* SPECIFIED
* REGISTER *

X
*****G5**********
INOUT FWB5
--*-*-*-*-*-*-* * INCREMNT PTR *
* TO OUTPUT FOR *
* GENRTED INSTR *

X
****H5*********

* •
RETURN

Phase 15 269

*FV *
* 82*

WARN X
*****82**********
.. GET ..
.. MESSAGE ..
.. NUMBER

*FV *
* 84*

ERROR X
*****84**********

COMPUTE
MESSAGE
NUMBER

..

x X
*****C2********** *****C3********** *****C4**********
.. .. "PLACE GENERATED" .. GENERATE ..
.. GENERATE" .. WORD IN" .. ERROR ..
* WARNING TEXT * •••••••• X* ERROR AND *X •••••••• * TEXT *
.. WORD ... *WARNING MESSAGE" .. WORD ..
* * * AREA * * *
***************** ***************** *****************

.X.
03 * •

• *15 ERR * .
• *AND WARNING*. YES

. MESSAGE . ••••....
. AREA. X

.FULL . *****
* .• * *FF *

* NO * 83*

X
****E3*********

..

.. RETURN

.. ..

Chart FV. . Subroutine WARN/ERROR

270

PINOUT

*FW *
* Bl* ..

*****B 1 **** ******
* MOVE *

INPUT wORD
TO

OUTPUT
* BUFFER
*********** 44*444

*****c 1 ******* ***
* 11\ IN FWB3*
--*-*-*-*-*-*-*

UPDATE
INPUT

* POINTER
****** *4*** ******

X
*****01 **** ****** * INOLT FWB5*
--*-*-*-* -*-*-*

UPDATE
OUTPl.;T
POINTER

*********4* ******

****El*********
* * RETURN

*FW *
* B3* . .

ININ X
*****83**********

* UPDATE
INPUT

PO INTER

• x.
C3 *.

'" 'II- AT ".o
NO.o* END OF *.

.o •• .o*. BUFFER .*
. .

. . * • .o* * YES

X
*****03**********
* READ INTO * * TH IS BUFFER.

* SELECT NEXT
BUFFER

**** *************

X
*4*4E3********* . .

... .oX* RETURN .
Chart FW. Subroutines PINOUT, ININ, INOUT

*FW *
* B5*

INOUT X
*****85********** . .

UPDATE
OUTPUT
POINTER

.x •
C5 * ..

.* IS *.
NO.* THIS * •

•••• *. BUFFER .*
. FULL .

. .
* •• *

.. YES

X
*****05**********
* WRITE OUT * * THIS BUFFER.

SELECT NEXT
BUFFER

***** ************

****E5*********

.. .o.o X * RETURN .

phase 15 271

***** *FX * * 83*

* * *

.x.
83 * •

• * * • • * SAME *. YES
. MODE . ••••••••••••••••••••••••••••••••

. .
. . *. . * * NO

.x.
C3 *. *****C4**********

.* IS *. *GENERATE AN IN-* • ****C5*********
.* RIGHT *. YES *LINE FUNC CALL * X * *

. OPERAND . •••••••• X*TO FLT RT OPRND* •••••••• X* RETURN *
. INTEGER . * ACCORDING TO * * *
.. * LFT OPRND * ***************

* •• * *****************
* NO

.x.
*****02********** D3 *.
GENERATE AN IN- .* *.
*LINE FUNC CALL * YES.* IS *. * TO CONVE~T RT. *X •••••••• *. OPERATOR .*
CPRND ACCORDING
* TO LEFT CPRND *

. ':;::' .
. . *. . * * NO

.x.
E3 *. *****E4**********

.* *. *GENERATE INLINE*
.* LEFT *. YES * FUNC CALL TO *

. OPERAND . •••••••• X* FLT LFT OPRND *
. INTEGER . * ACCORDING TO *
.. * LFT OPRND *

. . * NO

X
*****F3**********
* * * EXTEND SINGLE *
* OPERAND TO *
*DOUBLE OPERAND *
* * *****************

. . .
••••••••••••••••••••••••• X.X •••••••••••••••••••••••••

Chart FX.

272

X
****G3*********

* * * RETURN *
* * ***************

Subroutine MODE

*FY *
* 82*
* *
*

*FY *
* 84*
* *
*

Mvsexx .x. MVSeXR .X.
82 *. B4 * .

• * IS *. ****B3********* .* IS * •
• * LEFT *. NO * * ~O.* LEFT *.

. OPERAND . •.•..... X* RETURN *X •••••••• *. OPERAND .*
*SUBCRIPTED * * * *SUBCRIPTED *

. . *************** *..*
*. . * * .. * * YES * YES

• X. X
C2 *. *****C4**********

.* [S *. * MOVE LAST *
.* RIG~T *. NO * ENTRY [N

. OPERAND . •.••••.•••••.•••••.•..•..•.•••••.. X*SU8SCRIPT TABLE*
*SUBCRIPTED * * TO OUTPUT *

. . * BUFFER *
* •• * *****************

* YES

X
*****02**********
* MOVE NEXT * * TO LAST ENTRY *
* IN SUBSCRIPT *
TABLE TO CUTPUT
* BUFFER *

X
*****E2**********
* CVERLAY LAST *
* ENTRY IN *
SUBSCRIPT TAELE
* NEXT TO *
* LAST ENTRY *

*****F3**********
INOUT FWB5
--*-*-*-*-*-*-*

••••••••••••••••• X* INCREMENT *X •••••••••••••••••

Chart FY.

* POINTER TO *
* OUTPUT BUFFER *

X
*****G3**********
* * * DECREMENT *
SUBSCRIPT TABLE
* POINTER *
* * *****************

."
X

****H3*********
* *
*
*

RETURN

*
*

Subroutines MVSBXX, MVSBXR

Phase 15 273

YES

*FZ * * 83*
* * *

.X.
*****82********** 83 *.
ERROR FV84 .* *.
--*-*-*-*-*-*-* NO.* ONE * • •••••••• * WRONG NO. OF *X •••••••• *. ARGUMENT .*

X * ARGUMENTS * *.FUNCTION .*
***** * * *..*
*FF * ***************** * •• *
* B3* * YES
* * *

.*. .*. .x.
Cl *. C2 *. C3 * •

• * *. .* IS *. .* IS * •
• * IS *. YES .* FUNCTION *. YES .* FUNCTION *.

••• *. ARG MODE .*X •••••••• *. MODE .*X •••••••• *.IFIX FLOAT OR.*
. INTEGER . *. INTEGER .* *. DFLOAT .*

. . *..* *..*
* •• * *. • * *. • *

**** * NO * NO * NO
* * * E2 *
* * ****

• X.
*****Dl********** 02 *.
ERROR FVB4 .* IS *.
--*-*-*-*-*-*-* NO.* ARG *.

•• x* WRONG MODE *X •••••••• *. MODE .*
* OF * *. REAL • * * ARGUMENT * *..*
***************** *. .*

**** * YES
* *
4- 01 *
" " ****

x
***** *FF * * 83*

" " "
*****E2**********
MCDE FX83
--*-*-*-*-*-*-*

•• X* GENERATE AN *
* INLINE FUNC *
" CAL WARD *

" " * E2 *
* " ****

X
*****F2**********
* REVISE TEXT *
* IN OPERATIONS *
* TABLE TO *
* ELIMINATE *
* FUNCTION REF. *

.X. .* •
03 *. 04 * • • * IS *. .DOES ARG • ****

.* FUNCTION *. YES .*MODE MATCH *. YES * *
. SNGL OR . •••••••• X*. FUNCTION .* •••• X* 01 *

. DBLE . *. MOoE.* * *
.. *..* ****

* •• * * •• * * NO * NO

.x.
E3 *.

.DOES ARG •
.*MODE MATCH *. NO

. FUNCTION . ••••
. MODE .

. . * •• * * YES

X
*****F3**********
INARG GCAI
--*-*-*-*-*-*-*
* * * PROCESS *
* ARGUMENT *

X
*****G3**********
* GENERATE AND *
* OUTPUT A WORD *
*REPRESENTING A *
* CALL IS AN *
INLINE FUNCTION

* * * 01 *
* * ****

X
*****E4**********
CHANGE ARGUMENT
* WORD AS * * INDICATED BY *
* FUNCTION *
* * *****************

. .
••••••••••••••••••••••••• X.X •••••••••••••••••••••••••

Chart FZ. INLINl Routine

274

X

*FP *
* F4*
* * *

*GA *
* Al*
* *

INLIN2 .x.
Al *. *****A2**********

.* *. *ERRCR FUB4*
.* IS THIS A *. NO *-*-*-*-*-*-*-*-*

.TWO ARGUMEKT . •••••••• X* WRONG NO. * ••••••••
.FUNCTIO~ . * OF * X
.. * ARGUMENTS *****

* •• * ***************** *FF * * YES .. C3*

.x.
81 *. *****82**********

.* DOES *. *ERRCR FUB4*
.*MODE OF lST*. NO *-*-*-*-*-*-*-*-*

* *
*

.ARG MATCH THE. •••••••• X* WRONG * ••••••••
.FUNCTION . * ARGUMENT * X

.MODE . * MODE * *****
* •• * ***************** *FF *

* YES X * C3*

X
*****Cl**********
INARG GCAl
--*-*-*-*-*-*-*
* PROCESS *
* FIRST *
* ARGUMENT *

.x.
Dl * •

• * DOES * •
• *MCDE OF 2ND*. NO

.ARG MATCH THE. •••••••••••••••.•••
.FUNCTION .

.MODE .
* •• * * YES

X
*****El**********
*INARG GCAl~
--*-*-*-*-*-*-*
* PROCESS *
* SECOND *

ARGUMENT *

X
*****F1**********
FREER FUB5
~-*-*-*-*-*-*-* * FREE REGISTER *
* ASSIGNED TO *
SECOND ARGUMENT

X
*****G 10**********
* FORM AN *
INLINE FUNCTION
* CALL ~ORD * * AND ENTER IN *
* OUTPUT *

x

*FP *
'* F4*
* *
*

Chart GA. INLIN2 Routine

* *
*

Phase 15 275

4GB *
* A1*
" " *

CKARG .X.
81 * •

• * *.
*****82**********
ERRCR FVB4

.* IS *. YES *-*-*-*-*-*-*-*-*
. ARGUMENT . •••••••• X* * ••••••••

. MISSING . * ARGUMENT" X
.. * MISSING * *****

* •• * ***************** *FF *
* NO * E3*

.X.
C 1 * •

• * IS * • • * ARGUMENT *. YES

* *
*

TO MSGMEM

. IN A . ••
* .REGI STER • *

.X.
01 * •

• *ARG IS *. ****02*********
.*CONSTANT IN*. YES * *

*A WORK AREA OR * •••••••• X*
.A REGULAR. *

RETURN

X

NO

*
*

.x. .*. X
El *. E2 *. *****E3********** *****E4**********

.* IS *. .* *. 4 * * *
.* ARGUMENT *. YES .* WITHIN *. YES " ASSIGN * *GENERATE INSTR *

. A DUMMY . •••••••• X*. AN .* •••••••• X* ARGUMENT TO * •••••••• X* TO STORE REG *
.VARIABLE . *. ASF.* * A REGISTER * *IN A WORK AREA *

. . * NO

.X.
F 1 *.

.*WITHIN *.

* * * * ***************** *****************

X

YES.* ASF *.
*****F4**********
FREER FUBS
--*-*-*-*-*-*-*

•••• *. DEFINITION .*
*PROCESSING "

* MARK THE *
* REGISTER *

. . * FREE *
* •• * *****************

" NO

.X.
Gl *. *****G2**********

.* *. *~,AKE SUBSCRIPT *
.* IS *. YES * CODE UNIFORM. * •

. ARGUMENT . •••••••• X* * •• X.
.SUBSCRIPT. *RESET SUBSCRIPT*
.. * POINTER. *

* •• * *****************
* NO

.X.
HI *. *****H2********** .* IS *. *WARNING FVB2*

.ARGUEMENT AN • YES *-*-*-*-*-*-*-*-*
*ARRAY OR DUMMY * •••••••• X* ARRAY * •• X.

. ARRAY . * USED AS *
.. * ARGUEMENT *

* •• * *****************
* NO

.
X

*****Jl**********
ERROR FVB4
--*-*-*-*-*-*-*

X
****.J4*********

* * ••• x* * •• X* RETURN *
* * INVALID * *

* ARGUMENT * ***************

Chart GB. Subroutine CKARG

276

*GC *
* AI*
* * *

INARG .X.
A1 *. *****A2**********

.* *. *ERRCR FVB4*
.* IS *. YES *-*-*-*-*-*-*-*-*

. ARGUMENT . •••••••• X* * ••••••••
. MISSING . * ARGUMENT * X
.. * MISSING * *****

* •• * ***************** *FF *
* NO * C3*

.X.
61 * •

• * * • • * IS *. YES

* *
"

.ARGUMENT IN A. ••
.REGISTER .

* •• *
" NO

Cl· X,,,. *****C2*********" ***"*C3********** X
.*15 ARG *. *FINOR FUBI* *LOADRI FUF5* ****C4*********

.* IN A ~ORK *. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* * *
AREA A CONSTANT •••••••• X* FIND A * •••••••• X* LOAD ARGUMENT * •••••••• X* RETURN *

*OR A REGUL * * FREE * * INTO A * * *
.VARI . * REGISTER * * REGISTER * ***************

. . ***************** *****************
" NO X

.X •••••••••••

• x.
Dl *. *****02**********

.* *. * * .* IS *. YES * PROCESS *
. ARGUMENT . •••••••• X* THE *

.SUBSCRIPT. * REGISTER

* •• * * NO

.X.

* " *****************

El *. *****E2**********
.* IS *. *WARNING FVB2*

.*ARGUMENT AN*. YES *-*-*-*-*-*-*-*-*
*ARRAY OR DUMMY * •••••••• X* ARRAY * ••••

. ARRAY . * USED AS *
.. * ARGUEMENT *

* •• * * NO

X
*****FI**********
ERRQR FVB4
--*-*-*-*-*-*-*
* * * INVALID * * ARGUMENT *

x

*FF *
* 03*

* *
*

Chart GC. INARG Routine

Phase 15 277

Phase 20 increases the efficiency of the
object program by decreasing the amount of
computation associated with subscript
expressions. Phase 20 in addition, per­
forms miscellaneous functions, such as the
generation of ESDand RLD records for any
required library exponentiation subroutines
and for any reference to IBCOM.

Chart 07, the Phase 20 OVerall Logic
Diagram, indicates the entrance to and exit
from Phase 20 and is a guide to the overall
functions of the phase.

SUBSCRIPT OPTIMIZATION

A subscript expression can reoccur fre­
quently in a FORTRAN program. Recomputa­
tion at each occurrence is time-consuming
and results in an inefficient object pro­
gram. Therefore, Phase 20 performs the
initial computation of any given subscript
expression and assigns a register which ,at
object time, contains the results of the
computation. Phase 20 then modifies the
text wreviously referred to as intermedi­
ate text in order to differentiate it from
COMMON and EQUIVALENCE text) for subsequent
occurrences of the expression. This text
modification (optimization) essentially
replaces the computation of the subscript
expression with a reference to its initial
computation (that is, to the assigned
register) • The text for each subsequent
occurrence of the subscript expression can
be modified in this manner as long as the
values of the integer variables in the
expression remain unchanged.

Index Mapping Table

The index mapping table, used to aid the
implementation of subscript optimization,
maintains a record of all information pert­
inent to a subscript expression. Because
the computation of any unique subscript
expression is placed in a register, the
number of entries in the table depends on
the number of registers available for this
purpose. The initial register used for
assignment to a subscript expression is
determined during the initialization proc­
ess for Phase 20. The format for an entry
in the index mapping table is shown in
Figure 47.

PHASE 20

r--------~-----------------------T-------l

I Register I Number of I I
I Number I Dimensions I Status I
~---------~-----------------------~-------~
I Offset I
~-------------~-~------------------------~ I Subscript Entry Pointer I
~---~
I Dimension Entry Pointer I
~--------------------------------------~

Register Number
contains the register number.

I
I
I
I
I Number of Dimensions

contains the number 1,
indicating the number

2, or 3 I
of dimen- I

I
I
I
I
I
I
I

sions.

Status
contains a number which indicates
whether the register referenced by
this entry is:

Offset

1. Unassigned.
2. Assigned to a normal sub­

script expression for index­
ing computation (e.g., C*V+J
where V represents the inte­
ger variable and C and J
represent constants.

3. Assigned to the address of a
dummy variable.

contains the offset portion of an
indexing factor used to access the
correct element of an array ref­
erenced by a particular subscript
expression.

Subscript and Dimension Entry Pointers
contain pointer references to
addresses in the overflow table.
(For more information on the. over­

flow table, see the introduction
I to Phase 10.)

I
I
I

L ___ J

Figure 47. Index Mapping Table Format

Statements SUbject to Optimization

Before Phase 20 can attempt subscript
optimization, it must first find text that
can include subscript expressions. ThUS, a
search of text is made for:

1. Arithmetic statements.
2. IF statements.

Phase 20 279

3. CALL statements.
4. I/O lists (treated as statements in

text) •

When Phase 20 encounters one of these
statements containing a subscripted varia­
ble, the optimization process begins. The
index mapping table is used to determine if
the subscript expression of the subscripted
variable has been previously encountered.

SUBSCRIPT TEXT INPUT: The text input to
Phase 20 for a subscript expression is
shown in Figure 48.

r----~------T------T--------------------l

I SAOP I 0 I W I Offset I

~------~------~------+--------------------~
I p(subscript) I p(dimensio~ I

~------T------T------+--------------------~
I OP I R I Type I a(variabl~ I

~----~------~------~--------------------~

SAOP

o

W

contains the adjective code for
subscripted variable portion
text.

contains a zero value.

I
I

a I
of I

I
I
I
I
I
I

contains a work register assigned I
by Phase 15. I

Offset
contains the value of the offset
portion of the array displacement.

p (subscript)
contains the pointer to subscript
information in the overflow table
for this subscript expression.

p (dimension)

OP

R

Type

contains the pointer to dimension
information in the overflow table
for this subscript expression.

contains the operation
assigned by Phase 15.

code

contains the register assigned by
Phase 15.

contains the last half of the
Mode/Type code (see Phase 10).

a (variable)
contains the address of the sub- I
scripted variable. I _~ ______________________________________ J

Figure 48. subscript Text Input Format

280

Register AsSignment

When the index mapping table indicates
the first occurrence of the current sub­
script expression, a register is assigned
and a corresponding entry is made in the
index mapping table. When a register is
not available for assignment, the register
that is currently assigned to the subscript
expression of the least dimension is reas­
signed to the current subscript expression.

If the current subscript expression has
been previously encountered, the text for
its computation can be effectively replaced
by a reference to the register assigned at
the first encounter of the expression.
However, redefinition of any integer varia­
ble in the expression invalidates the pre­
vious computation and prohibits the assign­
ment of the same register to the current
expression.

Generation of Literals

Phase 20 generates literals associated
with the array displacement represented by
any given SUbscript expression. The calcu­
lation of an array displacement is
explained in Appendix C. This explanation
includes a discussion of the offset and CDL
(constant, dimension, lengt~ portions of
the array displacement. Literals are gen­
erated by Phase 20 under the following
conditions:

1. Phase 20 adds the offset portion of
the array displacement to the dis­
placement of the variable address. A
resulting value outside the addressa­
ble range of 0 through 4095 bytes
causes Phase 20 to make the offset a
literal. The generation of an offset
literal allows Phase 25 to produce
instructions without assigning a new
base register whose contents are unk­
nown.

2. Phase 20 generates a literal for each
component of the CDL portion of the
array displacement. For ex~ple, the
value of C2*D1*L (the CDL component
associated with the second dimension
of an array displacement) is generated
as a literal by Phase 20. Literals
associated with the CDL portion of the
array displacement are used by Phase
25 in its generation of machine lan­
guage instructions. (If the first
component of the CDL portion of the
array displacement is a power of 2,
that power, instead of the address for
the literal C1*L, is placed in text.)

Subscript Text Output

Subscript text output from Phase 20
depends on the previous optimization Of the
subscript expression. Three adjective
codes used to indicate the different condi­
tions that can be present in subscript text
output and the conditions are explained in
the following paragraphs.

SAOP ADJECTIVE CODE: This code indicates
that a subscript expression has not been
previously optimized, and that an offset
literal was not generated for the value
resulting from the addition of the offset
portion of the array displacement to the
the variable address displacement. Sub­
script text output associated with an SAOP
adjective code is shown in Figure 49.

r-----~------T------T--------------------l
I SAOP I N I W I Offset I
~----~------L------+--------------------~
I p (subscript) I a (C1 *L) I
~--------------------+--------------------~
I a (C2*D1*L) I a(C3'D1*D2*L) I
~-----~------T------+----------------~---~
I OP I R I X I a (variable) I
~------~--~---~-----~--------------------~

SAOP

N

contains an adjective code desig­
nating the form of subscript text.

contains the number of dimensions
of the subscripted variable.

a (C1*L) , a (C2*D1 *L) , and a (C3*Dl*D2*L)
contain the addresses of the
literals which combine to form the
CDL portion of the array displace­
ment. N determines which address­
es must appear. For example, if N
is 1, only a (Cl*L) appears. (If
the first literal, Cl*L, is a
power of 2, that power appears
instead of the address of that
literal.)

X
contains the register assigned to
the subscript computation by Phase
20.

a (variable)
contains the address of the sub­
scripted variable.

~---------~-------------------------------~
I Note: All other entries are as defined I
I in Figure 48. I l ___ J

Figure 49. Subscript Text Output From
Phase 20 -- SAOP Adjective Code

XOP ADJECTIVE CODE: This code indicates
that the subscript expression has not been
previously optimized, and that an offset
literal was generated for the value result­
ing from the addition of the offset portion
of the array displacement to the displace­
ment of the variable address. The sub­
script text output associated with an XOP
adjective code is shown in Figure 50.

r------T------T------T--------------------l
I XOP I N I W la~enerated literal) I
~------L-----~----+--------------------~
I p (subscript) I a (C 1 *L) I
~-----------------+--------------------~
I a (C2*Dl*L) la(C3*Dl*D2*L) I
~-----T-----T----+-------------------~
I OP I R I X la(variabl~ I
~------~----~-----~--------------------~
I I
I XOP I
I contains an adjective code desig- I
I nating the form of subscript text. I
I I
I a (generated literal) I
I contains the address of the offset I
I literal generated by Phase. I
~------------------------------~-------~
I Note: All other entries are as defined I
I in Figures 48 and 49. I l __ J

Figure 50. Subscript Text Output From
Phase 20 - XOP Adjective Code

AOP ADJECTIVE CODE: This code indicates
that the subscript expression has been
previously optimized. The subscript text
output associated with an AOP adjective
code is shown in Figure 5.1.

r-----~------T------T-------------------l
I AOP I 0 I B IOffset I
~-----+-----+------+--------------------~
I OP I R- I X I a(variable) I
~-----~----~------~--------------------~

AOP

o

B

contains an adjective code deSig­
nating the form of subscript text.

contains a zero value.

contains an indicator. A hexa­
decimal 0 indicates that the
actual offset is in the offset
field. A hexadecimal F indicates
that the address of the generated
offset literal appears in the off­
set field.

~---------------------------------------~
I Note: All other entries are as in I
I Figure 48 and 49. I l ___ J

Figure 51. Subscript Text Output From
Phase 20 - AOP Adjective Code

Phase 20 281

Special Considerations

The preceding discussion of subscript
optimization applies to subscript expres­
sions that are neither constant nor asso­
ciated with a dummy subscripted variable.
These two conditions are discussed in the
following paragraphs.

SUBSCRIPTED DUMMY VARIABLE: In addition to
normal optimization, a base register is
assigned to any dummy variable to access
the variable during the execution of the
object program. The assignment is entered
in the index mapping table.

Preceding subscript text output asso­
ciated with a dummy variable, an instruc­
tion to load the address of the variable
into the base register is generated and
placed in the output buffer. Because that
base register, at object time, contains the
address of the variable, the displacement
portion of the text address field is set to
zero. The base register number replaces
the register portion of the text address
field.

CONSTANT SUBSCRIPT EXPRESSION: Phase 20
does not assign a register to a constant
subscript expression whose value is within
the addressable range of 0 through 4095
bytes.

Subscript text output with an AOP adjec­
tive code is modified for a constant sub­
script expression, as follows:

1. The field following the AOP adjective
code contains an F instead of a zero.

2. The X field can contain a temporary
register, if an offset literal was
generated.

Statements That Affect Optimization

In addition to previously mentioned
statements, various other statements that
can affect optimization are processed by
Phase 20.

DO AND READ STATEMENTS: These statements
sometimes cause the redefinition of an
integer variable that exists in a subscript
expression. (Arithmetic statements are
also processed for a possible redefinition
of an integer variable.) Any integer vari­
able that is redefined (i.e., changes
value) becomes a bound variable. For exam­
ple, in the DO statement:

282

DO 25 K=1,1000

the integer variable K is a bound variable.

Any encou~ter of a bound variable causes
Phase 20 to examine subscript expressions
assigned a register in the index mapping
table. A bound variable in a subscript
expression invalidates any previous compu­
tation for that expression and causes the
register assigned to that expression to be
deleted.

ARITHMETIC, CALL, AND IF STATEMENTS: Any
subprogram argument that is an integer
variable causes redefinition of all sub­
script expressions containing that integer
variable.

REFERENCED STATEMENT NUMBER: When a state­
ment number is referenced by other state­
ments (e.g., a GO TO statement) , Phase 20
does not know if the value of previously
encountered integer variables can still be
used by subscript expressions containing
those variables. Because any given integer
variable may now be a bound variable, Phase
20 considers a-statement number referenced
by some other pertinent statement as a
point of definition and deletes all reg­
ister assignments to subscript expressions
in the index mapping table.

END STATEMENT: The END s~atement indicates
the end of Phase 20 processing. If the end
of the input tape is reached before the END
statement, compilation is aborted because
input to Phase 20 is limited to one tape.

ESD/RLD RECORDS

When Phase 20 encounters exponentiation,
it references one of the library exponenti­
ation subroutines. Because this reference
is external to the program being compiled,
Phase 20 generates text, ESD, and RLD
records for the first encounter of any
given exponentiation subroutine.

References to IBCOM, CGOTO, and IBERR
also cause Phase 20 to generate ESD and RLD
records.

STORAGE MAP

The storage map for Phase 20 is shown in
Figure 52.

OK r---------------------------------1
I FORTRAN System Director I
~---------------------------------i
I I/O Routines I

4K~---------:_-------------------i
I PHASE 20 I

11.888K~-------------------------------i
I I/O Buffers I
I I
I I
~-------------------------------i
I Work Area
I i
1- - - - -
1- - -
I + I DOLIST
1
I
I
I­
I- -
I

SYMLST
_1:

I Bound Variable List
~-------------------------------i
I 1
I I

16K I OVerflow Table I l _________________________________ J

Figure 52. Storage Map for Phase 20

ROUTINES/SUBROUTINES

The routines and subroutines that per­
form subscript optimization, process sub­
script text input and output, and generate
ESD and RLD records are shown in Figure 53.

The routines and subroutines are cate­
gorized as .follows:

1. Charts HA and HB: Phase 20 initializa­
tion and control.

2. Charts HC through HJ: Processing rou­
tines for the various statements.

3. Charts HK through HT: Optimization
routines.

4. Charts HU through ID: General purpose
utility subroutines.

INIT Routine: Chart HA

The INIT routine performs the required
initialization for Phase 20.

ENTRANCE: The INIT routine receives con­
trol from the FORTRAN System Director.

OPERATION: An indicator is set in the
communications area to indicate to the
FORTRAN System Director that Phase 20 is in
control. The location counter used in the

assignment of addresses to literal con­
stants generated during phase 20 is ~n~­
tialized to the location 'counter value in
the communications area. The INIT routine
determines the first register number avai­
lable for assignment in Phase 20 by using
the contents of that location counter. The
beginning address of the index mapping
table is determined according to this reg­
ister.

The INIT routine also opens the input
and output data sets, primes the first
input buffer area, and determines the ini­
tial address of the work area and the bound
variable list. This list contains the
addresses of all current bound variables.

The INIT routine initializes the
addresses for the ESD, RLD, and text card
output areas. The program name is then
moved to all three output areas. If the
program being compiled is a main program,
an ESD and RLD record are immediately put
onto the output data set.

EXIT: The INIT routine exits to the Con­
trol routine for Phase 20.

Control Routine: Chart HB

The Control routine controls Phase 20
processing.

ENTRANCE: The Control routine receives
control from the INIT routine.

OPERATION: The initial text word for a
statement is accessed and its adjective
code is checked to determine if·optimiza­
tion is to be performed. Optimization
occurs in Phase 20 if the adjective code
indicates an arithmetic, IF, or CALL state­
ment, or an I/O list substatement. Upon
encountering the code for one of these
statements, the Control routine moves the
entire text for the associated statement to
the work area, and the adjective code in
each word is examined for exponentiation at
this time. Exponentiation requires an
external reference to one of the library
exponentiation subroutines. The text word
that contains an adjective code for
exponentiation appears as follows:

r----------T----------T-------------------l
I Code I 00 I OOON I l __________ i __________ i--_________________ J

1 byte 1 byte 2 bytes

where N is any integer constant whose value
dependS upon the required library exponen­
tiation subroutine.

Phase 20 283

*****Cl**********
* END *
* STATEMENT

*****C2**********
* DO *

*****A3********** · . *INITIALIZATION *
* (INIT) *

CHART HA
* *****************

*****83********** · . *CONTROL ROUT INE*
* (CONTROL *

CHART HB · . ******** .********

* STATEMENT * PROCESSING • ROUTINES

*****C4********** *****C5**********
* READ * * STATEMENT *

STATEMENT * * NUMBER
PROCESSOR

(PHEND)
* ••••••••• * PROCESSOR * ••••••••••••••••••••••••••••••••••• * PROCESSOR * ••••••••• * PROCESSOR

* CHART HE *
*********** ****.a.*

(DO.[MPOO.ENOOO NO OPT[.M[ZATION
* CHART HO *

(READ) * * (LABEL)
* CHART HC * CHART HF *
***************** *****************

*****02********** *****04********** *****05**********
* IF * * CALL * * I/O LIST *

STATEMENT PROCESSING. ROUTINES STATEMENT * * PROCESSOR *

*****D 1 ***4******
* AR[THMETIC *

STATEMENT
PROCESSOR

(ARITH)
* ••••••••• * PROCESSOR * ••••••••••••••••••••••••••••••••••• * PROCESSOR * ••••••••• * (LIST)

* (IF) * OPTI.MIZATION * (CALL) * * CHART HG · · * CHART HH

*****G 1 *. ********
* OFFSET *
LITERAL ADDRESS
* GENERATION *
* (GENER) *
* CHART HR *

* CHART HJ * * CHART HI *
***************** *****************

*****F2*. ********
* SUBSCRIPTED *

VARIABLE
ROUT[NE

* (SUBVP) *
C~ARTS HM.HN.-HO

*****G2**********
* COL *
LITERAL ADDRESS
* GENERATION *
* (GENGEN) *
* CHART HS *

*****E3* .********
* OPTIMIZATION *

DISPATCH *
ROUTINE

(OPTMIZ)
* CHART HK

OPTIMIZATION ROUTINES

fENERAL

*****F3**********
* INTEGER/REAL *
* CONVERSION
* ROUTINE

(F[XFLT)
* CHART HP *

*****G3*.******** * DUMMY *
VAR[ABLE

* PROCESSING
* (DUMPR)
* CHART HQ *

PURPOSE SUBROUTINES

*****F4*.********
* CALLING *

SEQUENCE
ROUTINE

(CALSEQ)
* CHART HL *

*****G4*. ********
* ROUTINE FOR *
MAKING REGISTER
* AVAILABLE *

(GETN)
* CHART HT *

*****H5**********
* FIXFLO *
* C ONST ANT AND *
AREA GENERATION
* (GENCON) *
* CHART 10 *

*****J 1 ***4****** ****4J2** 44**4**4 *****J4********** *****J5**********
4 [NPUT * * OUTPUT * * BOUND * * INDEX MAPP ING *
* BUFFER * * BUFFER • * VARIABLE L[ST * TABLE ENTRY
* AVAILABILITY * ••••••••• * AVAILABILITY * ••••••••••••••••••••••••••••••••••• * ENTRANCE * ••••••••• * REMOVAL
* (NIB) * * (NOB) * * (BVLSR) * * (RMVBVL)
* CHART HU * * CHART HV * * CHART HW * * CHART HX *
***************** ***************** ***************** **********-******

*****K 1 ********** *****K2**********
* DETERMINATION * *REMCVAL OF ALL *
* OF LITERAL IN * *ASSIGNMENTS IN *

*****K3*.********
* CARD *

PUNCHING

*****K4**********
* FUNCTION ..

REFERENCE
SYMBOL LIST * ••••••••• *IOX MAPPING TBL* ••••••••• * (PUNCH)

CHART IA

*****K5******_****
* ESO-RLD *

CARDS
(ESDRLO)
CHART IC

* ••••••••• * PROCESSING * ••••••••• *
(SYMSRC) * * (CLEAR) * *

* CHART HY * * CHART H2 * *
* * (HANDLE) * * · · ***************** ***************** *****************

* CHART [6 *
***************** *****************

Figure 53. Organization of Phase 20

284

The ESDRLD routine assigns the address
at which the particular library subroutine
is located at object time, and then places
that address in the pointer field of the
text word. The first encounter of any
given library subroutine causes text, ESD,
and RLD records to be generated unless the
ESD table indicates that this subroutine
has been used previously. When the entire
text for the statement under consideration
is moved to t.he work area, control is
passed to the associated routine which
processes the text.

If the adjective code in the initial
text word for a statement does not indicate
that optimization is to be performed, a
further check is made of the adjective
code. Each of these codes causes control
to be passed to an associated routine that
may do either of the following:

1. Generate certain information used by
the subscript optimization process
(e. g. , a DO variable is placed on the

bound variable list) •
2. Refine the text to increase the effi­

ciency of Phase 25 in producing
machine language instructions.

Upon completion of its processing, the
referenced routine either returns control
to the Control routine to move the text to
the current output buffer area, or includes
the text in its own processing. Subroutine
NOB is requested to make an output buffer
area available for the next word, as each
word is placed in the output buffer area.

Any adjective codes not previously men­
tioned in this discussion cause the Control
routine to move the text to the current
output buffer area.

EXIT: Control is passed from the Control
routine to one of the following routines
depending on the adjective code:

1. LIST routine.
2. ARITH routine.
3. IF routine.
4. CALL routine.

ROUTINES CALLED: During execution the Con­
trol routine references the READ, DO,
ENDDO, and PHEND routines, and subroutines
NIB and NOB.

READ Routine: Chart HC

The READ routine indicates that the I/O
list is part of a READ statement. If the
I/O list references items that are external
to the program being compiled, text, ESD
and RLD records are put onto an output data
set.

ENTRANCE: The READ routine receives con­
trol from the Control routine.

OPERATION: An indicator is set to notify
the LIST routine that the current I/O list
is part of a READ statement. The statement
is put on to the output data set, word by
word. A check is then made for the END I/O
list. If it is encountered, the indicator
is set off.

EXIT: The READ routine exits to the CON­
TROL routine to process the next statement.

SUBROUTINES CALLED: During execution the
READ routine references the ESDRLD routine.

DO, IMPDO, and ENDDO Routines: Chart HD

The DO, IMPDO, and ENDDO routines per­
form DO statement processing. The process­
ing involved in each of the three routines
is limited.

CONSIDERATION: Each iteration of a DO loop
increments the DO variable and causes that
DO variable to become bound.

DO Routine

The DO routine processes a DO statement.

ENTRANCE: The DO routine receives control
from the Control routine.

OPERATION: Upon entry to the DO routine, a
DO loop indicator is turned on. (This
indicator, upon interrogation within SUBVP,
indicates that the current statement is
within a DO loop.)' To indicate any nested
DO loops, the count of the current number
of DO loops is incremented by 1. A list of
subscript expressions within the DO loop
(DO list) is cleared.

The DO variable of the current DO state­
ment is accessed and control is given to
subroutine BVLSR to place the DO variable
on the bound variable list. Because of
this new entry on the bound variable list,
subroutine RMVBVL is used to remove reg­
ister assignments for subscript expressions
which utilize that DO variable in the index
mapping table.

EXIT: The DO routine exits to the Control
routine.

SUBROUTINES CALLED: During execution the
DO routine references subroutines BVLSR and
RMVBVL.

Phase 20 285

IMPDO Routine

The IMPDO routine processes the DO vari­
able of an implied DO statement.

ENTRANCE: The IMPDO routine receives con­
trol from the LIST or Control routine.

OPERATION: Upon entry to the IMPDO rou­
tine, the DO loop indicator is turned on;
the count of the current number of DO loops
is incremented by· 1; and the DO list is
cleared.

Subroutine BVLSR places the DO variable
of an implied DO statement on the bound
variable list, and subroutine RMVBVL
removes register assignments from the index
mapping table for subscript expressions
that utilize the DO variable.

EXIT: The IMPDO routine exits to the
OPTMIZ or Control routine.

SUBROUTINES CALLED: During execution the
IMPDO routine references subroutines BVLSR
and RMVBVL.

ENDDO Routine

The ENDDO routine ensures that the end
of a DO loop is recognized.

ENTRANCE: The ENDDO routine receives con­
trol from the Control routine.

CONSIDERATION: The word containing an
ENODO adjective code (indicating the end of
a DO loop) may be followed by an end mark.
If it is, the .next statement is accessed.
If . it is not followed by an end mark, the
Control routine would (without ENDDO
processin~ continue the scan for the end
mark, and an entire statement might not be
processed.

OPERATION: The ENDDO routine decrements
the count of the number of DO loops encoun­
tered. If the count equals zero, the DO
loop indicator is turned off.

ENDDO is interpreted as an end mark and
returns to a point in the Control routine
at which it is assumed an end mark had been
found.

EXIT: The ENDDO routine passes control
back to the Control routine.

286

PREND Routine: Chart RE

The PREND routine completes the process­
ing performed by Phase 20.

ENTRANCE: The PRENO routine receives con­
trol from the Control routine, when the
adjective code for an END statement is
encountered.

CONSIDERATION: The END statement is not to
be confused with the end mark indicator,
which merely indicates the conclusion of a
given statement.

OPERATION: When the· END statement is
reached, the contents of the text, ESD, and
RLD buffers are put onto an output data
set, and the END statement word is moved to
the output buffer. Additional text beyond
the END statement (due to an error condi­
tion in the END statement) is also moved to
the output buffer. Miscellaneous clOSing
procedures are performed, including a
branch into subroutine NOB to write the
contents of the output buffer on the work
tape. Upon return to the PRENO routine,
the output work tapes are rewound. The
communications area is updated according to
the contents of the location counter whose
value has changed since Phase 20 assigned
addresses to generated literals.

EXIT: If the error flag in the communi­
cations area is set off (indicating that
any errors are mino~, the PREND routine
passes control to Phase 25. If the error
flag in the communications area is set on,
PREND exits according to the follOwing
conditions:

1. If the GOGO bit in the communications
area is set (indicating compilation of
the object program is to continue
regardless of the presence of errors) ,
control is passed to Phase 25.

2. If the GOGO bit in the communications
area is not set (implying that compi­
lation of the object program is not to
continue), control is passed to Phase
30.

SUBROUTINES CALLED: During execution the
PREND routine references subroutines NIB,
NOB, and PUNCH.

LABEL Routine: Chart RF

The LABEL routine removes all current
register assignments from subscript compu­
tations for pertinent referenced statement
numbers.

ENTRANCE: The LABEL routine receives con­
trol from the Control routine when a state­
ment number is being processed.

CONSIDERATION: A statement number ref­
erenced by other statements represents a
point of definition, unless it is either
the statement number for a FORMAT statement
or only referenced by a DO statement.

OPERATION: The LABEL routine determines if
a point of definition exists by checking
the status of appropriate bits in the Usage
field of the overflow table entry for the
statement number (see the introduction to
Phase 10). If a point of definition
exists, subroutine CLEAR sets the status of
all entries in the index mapping table to
unassigned; all registers are then availa­
ble.

EXIT: The LABEL routine exits to the
Control routine to continue processing the
statement referenced by the statement num­
ber.

SUBROUTINE CALLED: During execution the
LABEL routine references subroutine CLEAR.

LIST Routine: Chart HG

The LIST routine processes the I/O list
substatement of a READ statement.

ENTRANCE: The LIST routine receives con­
trol from the Control routine when an I/O
list substatement is detected.

CONSIDERATIONS:' An I/O list substatement
is part of a statement; however, it is
treated within text as if it were a state­
ment.

When an I/O operation is caused by a
READ statement, the value of the variables
in the I/O list substatement changes;
(i.e. j they become bound).. When a READ

statement is encountered by the Control
routine, control is passed to the READ
routine to set a READ statement indicator
for the LIST routine. In this way, the
LIST routine knows that the current I/O
list substatement is associated with a READ
statement.

OPERATION: If the READ statement indicator
is on, it is then set off in preparation
for the processing of subsequent I/O list
substatements. During the processing which
follows, the LIST routine searches for
integer variables that become bound as a
result of the read that occurs because of
the READ statement. The LIST routine, as
it processes an I/O list substatement with­
in a READ statement, checkS the mode code

for "Integer." If "Integer" is found, the
corresponding integer variable is accessed
and control is passed to subroutine BVLSR
to place that variable on the bound varia­
ble list.

When the end mark indicator is reached,
the OPTMIZ routine optimizes the I/O list
substatement. When control is returned to
the LIST routine, all registers assigned to
subscript expressions with bound variables
are made available by calling SUbroutine
RMVBVL.

When the READ statement indicator is
off, the List routine detects that the
current I/O list is not associated with a
READ statement. Control is passed to OPT­
MIZ to optimize the I/O list. Return from
OPTMIZ, in this case, causes a direct exit
from the LIST routine.

EXIT: The LIST routine exits to the Con­
trol routine to process the ne~ statement.

ROUTINES CALLED: DUring execution the LIST
routine references the OPTMIZ routine and
subroutines BVLSR and RMVBVL.

ARITH Routine: Chart HB

The ARITH routine optimizes an arithmet­
ic statement.

ENTRANCE: The ARITH routine receives con­
trol from the Control routine.

CONSIDERATION: The symbol preceding an
equal sign in an arithmetic statement (the
initial symbol) changes value during the
execution of the object program. If this
symbol is an integer variable, it is a
bound variable. Function arguments may
also be bound varia'bles.

OPERATION: The ARITH routine accesses and
examines a text word for a function ref­
erence. If such a reference is found, the
ARITH routine passes control to subroutine
HANDLE, which sets an indicator. This
indicator is examined by the ARITB routine
after optimization to determine if a func­
tion is referenced in the arithmetic state­
ment and to set the exit from ARITH,
accordingly. HANDLE also places any func­
tion argument that is an integer variable
on the bound variable list.

If no function reference is found by the
ARITH routine, the text word is checked for
an operation code of "Store Integer." When
this code is present, subroutine BVLSR
places the associated integer variable (the
ini~ial symbol of the arithmetic statement)
on the bound variable list.

Phase 20 287

When the end mark for the statement is
encountered, the OPTMIZ routine is used to
optimize the statement. The point of
return from the OPTMIZ routine is used to
check the status of the indicator set by
HANDLE. If this indicator is on, control
is passed to the CALL routine. At this
time, a variable which is both in COMMON
and part of a subscript expression within
the index mapping table causes that sub­
script expressi6n to be deleted from the
index mapping table.

Regardless of the indicator setting,
subroutine RMVBVL is used to make available
those registers assigned to subscript
expressions with bound variables.

EXIT: The ARITH routine exits either to
the CALL routine as a result of the indica­
tor set by HANDLE being set on or to the
Control routine to process the next state­
ment.

ROUTINES CALLED: During execution, the
ARITH routine references the HANDLE and
OPTMIZ routines and subroutines BVLSR and
RMVBVL.

CALL Routine: Chart HI

The CALL routine causes optimization of
a CALL statement.

ENTRANCE: The CALL routine receives con­
trol from the Control routine. It is also
entered at a midpoint from the ARITH and IF
routines when a function CALL is part of an
arithmetic or IF statement.

CONSIDERATION: Integer variables which are
arguments in a CALL statement or are locat­
ed in COMMON, may become bound as the
result ofa subprogram execution.

OPERATION: The mode code of each parameter
is examined. If an integer type code is
found, subroutine BVLSR places the corres­
ponding integer variable on the bound vari­
able list.

When the end mark indicator is encoun­
tered, the OPTMIZ routine optimizes the
CALL statement. When control is returned
to any CALL routine, the variable which is
both in COMMON arid part of a subscript
expression within the index mapping table
causes that subscript expression to be
deleted from the index mapping table.

Subroutine RMVBVL then removes all reg­
ister assignments in the index mapping
table from those subscript eXPressions con­
taining bound variables.

288

EXIT: The CALL routine exits to the Con­
trol routine to begin processing the next
statement.

ROUTINES CALLED: During execution, the
CALL routine references the OPTMIZ routine
and subroutines BVLSR and RMVBVL.

IF Routine: Chart HJ

The IF routine optimizes the arithmetic
expression of an IF statement.

ENTRANCE: The IF routine receives control
from the Control routine.

CONSIDERATION: The arithmetic expression
of the IF statement may contain a fUnction
reference and, therefore, function argu­
ments which may be bound variables.

OPERATION: The IF routine accesses and
examines a text word for a function ref­
erence. If such a reference is found, the
IF routine passes control to subroutine
HANDLE which sets an indicator. This indi­
cator is examined by the IF routine, after
optimization, to determine if a function is
referenced in the IF statement. HANDLE
also places any function argument that is
an integer variable on the bound variable
list.

The IF routine processes the IF state­
ment text until it encounters an IF forcing
adjective code (set in Phase 15) denoting
the end of the arithmetic expression or an
end of statement indicator. When this code
is encountered, the OPTMIZ routine is used
to optimize the arithmetic expression.

The point of return from the OPTMIZ
routine is used to check the status of the
indicator set by HANDLE. If this indicator
is on, it is turned off and control is
passed to a point within the CALL routine.
At this time, a variable Which is both in
COMMON and part of a subscript expression
within the index mapping table causes that
subscript expression to be deleted from the
index mapping table.

EXIT: The IF r9utine exits either to a
point within the CALL routine as a result
of the indicator set by HANDLE being set
on, or to the Control routine to process
the statement numbers in the IF statement.

ROUTINE CALLED: During execution, the IF
routine references the OPTMIZ routine and
subroutine HANDLE.

OPTMIZ Routine: Chart HK

The OPTMIZ routine is a dispatch routine
for further processing of statements which
are to be optimized.

ENTRANCE: OPTMIZ receives control from
LIST, ARITH, CALL, and IF routines when
optimization is required.

OPERATION: For statements which are to be
optimized, the OPTMIZ routine scans the
associated text (which is in the work area)
for specific adjective cOdeS. These adjec­
tive codes indicate various processing as
follows:

1. The adjective code for external fUnc­
tion and arithmetic statement function
CALL causes control to be given to the
CALSEQ routine to perform processing
connected with the argument list.

2. The adjective code for IFIX, FLOAT,
and DFLOAT causes control to be given
to the FIXFLO routine to initialize an
area and a constant to be used in the
conversion between real and integer
quantities.

3. The adjective code for a subscripted
variable causes control to be given to
subroutine SUBVP to perform optimiza­
tion with respect to any subscript
expressions.

4. The adjective code for an implied DO
causes control to be given to the
IMPDO routine to process the DO varia­
ble of the implied DO.

5. The adjective code for an end DO
causes control. to be given to the ENDO
routine to ensure that the end of a DO
loop is recognized.

In all three cases control
to the OPTMIZ routine to
processing of the statement.

is returned
complete the

An end mark indicator causes the end
mark text word to be moved to a current
output buffer area. Control is passed to
subroutine NOB to assure the availability
of an output buffer area for the next
output word. Control is then returned to
the routine that referenced the OPTMIZ
routine.

If the adjective code does not indicate
any of the preceding conditions, the text
word is moved to the current output buffer
area. Control is passed to subroutine NOB
to assure the availability of an output
buffer area for the next output word. The
text scan is then continued.

EXIT: The OPTMIZ routine returns control
to the calling routine.

ROUTINES CALLED: During execution the OPT­
MIZ routine references the CALSEQ, FIXFLO,
and SUBVP routines and subroutine NOB.

CALSEQ Routine: Chart HL

The CALSEQ routine assigns addresses to
the argument list entries and causes· the
relevant ESD, RLD, and text information to
be entered on the respective cards.

ENTRANCE: The CALSEQ routine is entered
from the OPTMIZ routine.

CONSIDERATION: The arguments of a CALL
statement are accessed by a program exter­
nal reference. Therefore, RLD cards as
well as text cards are required.

OPERATION: If this is a CALL with no
arguments, the CALL text word is placed
onto the output data set, and a return to
the OPTMIZ routine is made.

Each argument in the argument list is
accessed and is entered onto a text card
with an object time address. If the argu­
ment is subscripted, the Phase 20 subscript
processing is accomplished by subroutine
SUBVP. For subscript variables used as
arguments, a zero address is entered into
the text cards.

RLD cards are punched for non­
subscripted arguments. An argument in
COMMON is assigned an external symbol iden­
tification (ESID) of 02. An argument not
in COMMON is assigned an ESID of 01.

An indication of the last argument in
the argument list is made, unless that
argument is subscripted. For a subscripted
argument the indication is made at object
time, because the $ubscript calculation at
object time would destroy a compile-time
indicator.

EXIT: The CALSEQ routine returns control
to the OPTMIZ routine.

SUBROUTINES CALLED: Subroutine CALSEQ
calls the SUBVP routine, and subroutines
CALTXT and CALRLD.

Subroutine SUBVP: Charts 8M, HN, HO

The SUBVP routine optimizes a subscript
expression.

ENTRANCE: TheSUBVP routine receives con­
trol from the OPTMIZ routine or subroutine
CALSEQ.

Phase 20 289

CONSIDERATION: The subscript
and output are discussed in the
tion to Phase 20.

text input
introduc-

OPERATION: The SUBVP routine initially
determines if the current subscript expres­
sion is constant. A constant subscript
expression does not require a register
assignment.

For other than a constant subscript
expression, a register assignment is made
in the index mapping table. If no register
is available, control is given to the GETN
routine to free the register assigned to
the subscript expression with the least
dimension.

At this point in the process, when a
dummy subscripted variable is encountered,
control is given to subroutine DUMPR to
process that dummy variable. If the sub­
scripted variable is not a dummy, then
subsequent processing of the subscript
expression depends on whether that expres­
sion is constant or has already been optim­
ized at a previous encounter. Either of
the two preceding conditions causes the
generation of subscript text output with an
adjective code of AOP, unless this is the
first occurrence of the expression within a
DO loop. If it is, the expression is left
in SAOP form.

If the subscript expression is not con­
stant or has not been previously optimized,
either subscript text output with an adjec­
tive code of SAOP or subsequent text output
with an adjective code of XOP is generated.
The form of generated text depends on
whether or not a literal must be produced
for the offset portion of the array dis­
placement.

EXIT: The SUBVP routine returns control to
the routine that referenced it.

SUBROUTINES CALLED: During execution, the
SUBVP routine references the GETN and DUMPR
routines and subroutines GENER, GENGEN, and
NOB.

FIXFLO Routine: Chart HP

The FIXFLO routine assigns an area and a
constant to be used .by the library subrou­
tines IFIX and IFLOAT.

ENTRANCE:
trol from
FUNCTION
within the
optimized.

290

The FIXFLO routine receives con­
the OPTMIZ routine whenever a

adjective code is encountered
text of the statement to be

OPERATION: For a call either to IFIX or
IFLOAT, a text word containing the address
of a constant and a work area is generated.
If the constant has previously been
assigned an address, that address is used.
If the work area has been generated pre­
viously, the address of that area is used.
Subroutine GENCON moves the constant or the
work area definition to the text card area
and puts a card image on an output data
set, if necessary.

EXIT: The FIXFLO routine exits to the
OPTMIZ routine.

SUBROUTINES CALLED: The FIXFLO routine
references subroutines GENCON and NOB.

DUMPR Routine: Chart HQ

The DUMPR routine processes subscripted
dummy variables.

ENTRANCE: The DUMPR routine receives con­
trol from subroutine SUBVP.

CONSIDERATION: No more than three dummy
variables are allowed in the index mapping
table at any given time.

OPERATION: The DUMPR routine determines if
the dummy variable in text is currently
assigned a register in the index mapping
table. If one is assigned, it can be used
for subsequent processing by subroutine
DUMPR.

If no register has previously been
assigned to the dummy variable, one must
now be assigned. If three dummy variables
are already assigned registers in the index
mapping table, one of these registers is
reassigned to the current dummy subscripted
variable.

However, if less than three dummy varia­
bles are aSSigned registers in the index
mapping table, the first unassigned reg­
ister (if one exists) is assigned to the
current dummy variable. The entry with the
least dimension is spilled (made available)
if all registers were previously aSSigned.

After a register is assigned to the
current dummy variable, a 'load base
register' instruction is generated and
placed in the output area. This instruc­
tion precedes the text for the dummy sub­
scripted variable. The register number
used for the instruction is placed in text.

EXIT: The DUMPR routine returns control to
the SUBVP routine.

Subroutines GENER, GENGEN: Chart HR

Subroutine GENER

Subroutine GENER provides linkage to
subroutine GEN for the generation of offset
literals.

ENTRANCE: Subroutine GENER receives con­
trol from the SUBVP routine.

CONSIDERATION: When subroutine SUBVP
encounters a value outside the range of 0
through 4095 ~he largest number physically
used as an offset) by the addition of the
offset (calculated in Phase 10) to the
displacement (determined in Phase 15), sub­
routine GENER is called to generate an
offset literal. The adjective code is
changed from SAOP to XOP or, in the case of
an AOP, indicators are set to indicate to
Phase 25 that an offset literal is generat­
ed and replaces the offset in text.

OPERATION: Upon entry into subroutine
GENER, the offset to be generated as a
literal is passed as a parameter to subrou­
tine GEN, which generates the literal.

GENER modifies the text to indicate that
an offset literal is generated and to
supply the address of that literal.

EXIT: Subroutine GENER returns control to
the SUBVP routine.

SUBROUTINE CALLED: During execution GENER
references subroutine GEN.

Subroutine GENGEN

Subroutine GENGEN
subroutine GEN for the
literals.

provides linkage to
generation of CDL

ENTRANCE: Subroutine GENGEN receives con­
trol from the SUBVP routine.

OPERATION: Upon entry in subroutine GEN­
GEN, the CDL portion to be generated as a
literal is passed as a parameter to subrou­
tine GEN, which generates the literal.

EXIT: Subroutine GENGEN returns control to
subroutine SUBVp.

SUBROUTINES CALLED: During execution, sub­
routine GENGEN references subroutine GEN.

Subroutine GEN: Chart HS

ENTRANCE: Subroutine GEN receives control
from subroutine GENER or GENGEN.

OPERATION: Subroutine GEN deter~ines if
the passed literal is already in the symbol
list. Presence of that literal in the
table causes subroutine SYMSRC to return
the address of that literal to subroutine
GEN.

If the literal is not in the symbol
list, GEN must assign the address of the
literal using the location .counter and
produce the corresponding text card output.
Subroutine GEN uses the current contents of
the location counter as the address of the
offset literal. This address, along with
the offset literal, is placed in the source
symbol table and the symbol list.

GENER moves the offset literal to the
text card area. If the area is full, PUNCH
is accessed.

EXIT: Subroutine GEN returns control to
the calling routine.

SUBROUTINES CALLED: During execution, sub­
routine GEN references subroutines SYMSRC
and PUNCH.

GETN Routine: Chart HT

The GETN routine makes a register avai­
lable.

ENTRANCE: GETN receives control from the
SUBVP routine.

CONSIDERATION: When subroutine SUBVP pre­
pares to assign a register to the current
subscript expression, there may be no reg­
isters available. Control is then passed
to subroutine GETN which accesses a reg­
ister.

OPERATION: Each entry in the index mapping
table is examined until an entry with the
least dimension is found. The entry is
deleted and the corresponding register is
made available. The available register
number is then placed in a specified field
that can be referenced by subroutine SUBVP.

EXIT: GETN returns control to subroutine
SUBVP at the point at which it is called.
The two exception exits in GETN are:

1. To EXRTN within SUBVP if the Mode/Type
code field indicates a constant sub­
script and a generated literal.

Phase 20 291

2. To CLOSE within the PBEND routine if
there are no entries for subscript
expressions in the index mapping
table.

Note: Exception exit 1 is taken after
register is found and its number
returned by a location, but before
index mapping table entry is deleted.

Subroutine NIB: Chart HU

a
is

the

Subroutine NIB updates a current input
buffer pointer.

ENTRANCE: Subroutine NIB receives control
from the Control, READ, and PHEND routines.

CONSIDERATION: There are two input buf­
fers.

OPERATION: A buffer pointer is updated
until the end of the current buffer is
reached. The next buffer is then accessed
for processing purposes and the first buf­
fer is refilled. If an end of tape indica­
tor is detected during the read, an error
indicator is set. This indicator is exam­
ined within NIB, immediately before any
read is executed.

EXIT: Subroutine NIB returns control to
the Control routine. An exception exit to
the CLOSE routine is made if there is an
error in the previous read.

Subroutine NOB: Chart HV

Subroutine NOB keeps a buffer area avai­
lable for output.

ENTRANCE: Subroutine NOB receives control
from the Control, PHEND, OPTMIZ, INIT, AOP,
FIXFLO, READ, SUBVP, and DUMPR routines and
subroutine CALSEQ.

CONSIDERATION: There are two output buf­
fers.

OPERATION: The output buffer pointer is
updated until the end of the current buffer
is reached. At that time, the alternate
buffer is made current and the full buffer
is written on the work tape.

EXIT: Subroutine NOB retlU='ns control to
the routine that referenced it.

292

Subroutine BVLSR: Chart HW

Subroutine BVLSR enters bound variables
on the bound variable list.

ENTRANCE: Subroutine BVLSR receives con­
trol from the DO, IMPDO, LIST, ARITB, and
CALL routines.

OPERATION: If the bound variable is not
currently on the bound variable list, it is
now entered. (See the introduction to
Phase 20.)

EXIT: Subroutine BVLSR returns control to
the routine which referenced it.

Subroutine RMVBVL: Chart HX

Subroutine RMVBVL removes register
assignments from tOe index mapping table
for subscript expressions containing bound
variables.

ENTRANCE: Subroutine RMVBVL receives con­
trol from the DO, IMPDO, LIST, ARITH, and
CALL routines.

OPERATION: If the bound variable list is
empty, there is no processing and an
immediate exit is taken. If the bound
variable list is not empty, the status of
each index mapping table entry is examined.
If the associated register is assigned to a
subscript expression, that expression is
checked against the bound variable list.
If a bound variable is in the expression,
the status of the associated index mapping
table entry is set to unassigned. The exit
occurs after the entire index mapping table
is processed.

EXIT: Subroutine RMVBVL returns control to
the routine which referenced it.

Subroutine SYMSRC: Chart BY

subroutine SYMSRC determines if a liter­
al is in the symbol list.

ENTRANCE: Subroutine SYMSRCreceives con­
trol from subroutine GEN.

CONSIDERATION: The format of the symbol
list is as follows:

r--------------------T--------------------,
I literal I address I
~--------------------+--------------------~
I literal I address I
~--------------------+--------------------~
I literal I address I L ____________________ ~ ____________________ J

The address of this table is indicated
in the FORTRAN communications area.

OPERATION: If the literal is in the symbol
list, the address of the literal is
returned to the subroutine which referenced
it. If the literal is not in the table, a
zero function is returned.

EXIT: Subroutine SYMSRC returns control to
subroutine GEN.

Subroutine CLEAR: Chart HZ

Subroutine CLEAR removeS all entries
from the index mapping table at a point of
definition to insure the availability of
all registers used for subscript expres­
sions.

ENTRANCE: Subroutine CLEAR receives con­
trol from the LABEL routine.

CONSIDERATION: The format of the index
mapping table is described in the introduc­
tion to Phase 20 (see Figure 20.1).

OPERATION: The status of each entry in the
index mapping table is examined. If the
status is unassigned (i.e., the register is
availabl~, the next entry is accessed. If
the status is assigned, it is changed to
indicate that the register is now availa-

. ble. The next entry is then accessed.

EXIT: Subroutine CLEAR returns to the
LABEL routine.

Subroutine PUNCH: Chart IA

Subroutine PUNCH processes a card buf­
fer.

ENTRANCE: SUbroutine PUNCH receives con­
trol from the PRENO routine and subroutine
GENER.

OPERATION: A Supervisor Call instruction
is directed to the FORTRAN System Director
to have the contents of the card buffer
punched, if the DECK option is specified.
If the NODECK option is specified, no ~ards
are punched. If GO is requested, the
contents of the buffer are written on the
GO tape.

EXIT: Subroutine PUNCH returns either to
the PHEND routine or subroutineGENER.

Subroutine HANDLE: Chart IB

Subroutine
references in
an arithmetic
ment.

HANDLE processes function
an arithmetic statement or in
expression'of an IF state-

ENTRANCE: Subroutine HANDLE receives con­
trol from either the ARITH or IF routine.

CONSIDERATION: Integer variables which are
arguments in a function call or are located
in COMMON, may become bound as the resul t
of a subprogram execution.

OPERATION: Subroutine HANDLE sets an indi­
cator for the ARITH or IF routine to
indicate that a function call occurred
within the statement being processed. The
on condition of this indicator later causes
an exit to be taken from the calling
routines to a location within the CALL
routine to initiate a search of the index
mapping table for variables in COMMON.

HANDLE places any integer parameters of
the function calIon the bound variable
list.

EXIT: Subroutine HANDLE returns control to
the routine that referenced it.

SUBROUTINE CALLED: During execution, sub­
routine HANDLE references subroutine BVLSR.

Subroutine ESDRLD/CALRLD/CALTXT: Chart IC

This subroutine generates ESD, RLD, and
text cards during. Phase 20, whenever neces­
sary.

ENTRANCE: Subroutine ESDLRD/CALRLD/CALTXT
is entered at ESDRLD whenever a reference
to an external symbol is made. Subroutine
ESDRLD/CALRLD/CALTXT is entered at CALRLD
whenever an argument list is processed.
Subroutine ESDRLD/CALRLD/CALTXT is entered
at CALTXT whenever text information is to
be entered for an argument list.

CONSIDERATION: References to an external
symbol occur in the OPTMIZ routine for
references to IBCOM, IBERR, and CGOTO, and
in the ARITH routine for references to the
various exponentiation routines.

The ESD table contains the address of
each external symbol and an area into which
the address of the respective routine will

Phase 20 293

be loaded (the address constan~. This
field is initially zero. The ESD table has
the following format:

address symbol

r--------------,-----------------,
I la(IBCO~ I
~---------+-----------~
I I a (FRXPI) I
~-------------+-----------------~
I I a (CGOTO) I
~---------------+----------------~
I I a (FRXPR) I
~--------------+-------------~
I I a (FIXPI) I
~-------------+- -----------~ I I a (FDXPI) I
t--------------+---------------~
I I a (FDXPD) I
~---..,.-------------+----.------------~
I I a (IBERR) I L ______________ .1 ___ · ____________ J

2 bytes 2 bytes

OPERATION: When subroutine
ESDRLD/CALRLD/CALTXT is entered at ESDRLD,
the ESD table is checked to determine if
the symbol has been referenced. If not, an
address constant address is assigned to the
symbol and entered into the ESD table.
ESD, text, and RLD entries in their respec­
tive areas are then set up. If any card
areas are full, subroutine ESDPUN is ref­
erenced to place the contents of the full
areas on an output data set.

When subroutine ESDRLD/CALRLD/CALTXT is
entered at entry point CALRLD, an RLD entry
is made in the current RLD area. If both
RLD areas are not full, a return is made.
If the RLD areas are full, the text, ESD,
and full RLD card areas are placed on an
output data set by subroutine ESDPUN.

When subroutine ESDRLD/CALRLD/CALTXT is
entered at entry point CALTXT, a text card
entry is made. If this entry does not fill
the text card area, a return is made. If
the text card area is full, the text card
area along with the ESD area and any RLD
area that is full are placed on an output
data set.

EXIT: Subroutine ESDRLD/CALRLD/CALTXT
returns control to the calling routine.

SUBROUTINES CALLED: During execution sub­
routine ESDRLD/CALRLD/CALTXT calls subrou­
tine ESDPUN.

294

Subroutine GENCON: Chart ID

Subroutine GENCON moves the constant or
the work area definition from the FIXFLO
routine into the text card area.

ENTRANCE: Subroutine GENCON receives con­
trol from subroutine FIXFLO.

OPERATION: The text card area is examined.
If a double word will not fit in that area,
a text card is punched using subroutine
PUNCH. The constant or the work area
definition is then placed at the beginning
of the text card area. A test is made to
determine if the text card area is full.
If it is full a card is punched; if not, no
card is punched.

EXIT: Subroutine GENCON passes control to
FIXFLO.

SUBROUTINE CALLED: During execution, sub­
routine GENCON references subroutine PUNCH.

Subroutine ESDPUN: Chart IE

Subroutine ESDPUN performs the card out­
put for Phase 20.

ENTRANCE: Subroutine ESDPUN is entered
from subroutine ESDRLD/CALRLD/CALTXT.

CONSIDERATION: There is a count in the
FORTRAN communications area of the number
of cards punched.

OPERATION: The current card number and
card image are moved into an available card
buffer. If no source errors exist and the
DECK option is specified, a card is
punched; or if a GO option is specified, a
card image is placed onto the GO tape.
However, if source errors do exist, neither
the GO nor DECK option are checked and an
immediate return is made.

EXIT: Subroutine ESDPUN returns control to
the subroutine that referenced it.

***** FROM FORTRAN
*07 * SYSTEM DIRECTOR
* E3*
* *
*

X
*****83**********
* * * INITIALIZE *
* PHASE 20 *
* *
* * *****************

X
*****C3**********
* OPTIMIZE *
'* SUESCRIPT '*
'* COMPUTATIONS '*
* WHEREVER *
* POSSIELE *

X
*****03**********
* ALLOCATE. *
* RE~ISTERS *
'* FOR USE BY *
* THE DEJeCT '*
* PRO~RAM *
**********'*******

X
******E3***********

PUNCH ESD AND
* RLD CARDS FOR *

EXPONENTIATION
* AND FOR I/O *

OPERATIONS

X
******F3***********

PUNCI-' TEXT
* CARDS FOR *

GENERATED
* LITERALS *

.X.
G3 * •

• * ~AVE *. ****G4*********
.*ERRORS BEEN*. YES * PHASE 30 VIA *

FOUND ThAT MUST •••••••• X* FORTRAN *
BE PROCESS- *SYSTEM DIRECTOR*

. ED . ***************
* •• * * NO

X
****H3********'* '* PHASE 25 VIA *

'* FORTRAN '*
SYSTEM DIRECTOR

Chart 07. Phase 20 Overall Logic Diagram

Phase 20 295

***** FROM FORTRAN
*HA * SYSTEM DIRECTOR
* 83*
* *
*

X INIT
*****83**********
* SET BIT IN *
*COMMUNICATIONS *
AREA AS NOTIFI-
CATION THT PHSE
* 20 IS IN CTRL *

X
*****C3********** * PERFORM *
*INITIALIZATION *
* RELATED TO *
* THE LOCATION *
* CENTER *

X
*****03**********
OPEN DATA SETS.
* PRIME INPUT *
* BUFFER. INIT- *
* IALIZE FIELDS *
* AND WRK AREA *

X
*****E3**********
* INITIALIZE *
* INDEX MAPPING *
* TAELE AND *
*BOUND VARIABLE *
* LIST *

X
*****F3********** * PERFORM *
*INITIALIZATION *
* IN CONNECTION * * WITH ESD,RLD, *
*AND TEXT CARDS *

x

*HB *
* A3*

* *
*

Chart HA.

296

INIT Routine

* * ... 82 *
* * ****

*HE *
* A3*
* * *

X
*****A3**********

**** * * * * • ACCESS *
* A3 * •••• X* TEXT *
* * * WORD *

**** * * *****************

· . X .X. .*.
*****B2********** B3 *. B4 *. * * .* DOES *. .* STMNT *.
* MOVE * YES .* ADJ. CODE *. NO .*NO. ENODO. *. NO

•••••••••• ~ •••••• X* TEXT WORD TO *X •••••••• *. INDICATE .* .••..••• X*. IMPLIED 00 •• * ••••
* WORK AREA * *.OPTIMIZA-.* *.READ. 00 •• *
* * *.TION .* *. END .*
***************** * •• * * •• *

· • • X.
*****Cl********** C2 *.
* * .* DOES *.
* PROCESS * YES .* ADJ COCE *.
* *X •••••••• *.AT THIS WORD .*
*EXPONENTIATION * *.INDICATE .*
... * *. EXP .*
***************** *. .*

* NO

· .X.
02 *.

**** .* *.
* * NC.* *. * B2 *X •••• *. ENOMARK .*
* * *. .*

**** *..*
. . * YES

· X
****************.
ARITH • H~B3
* •••••••••••••• *
CALL • HIB3
* •••••••••••••• *
IF • HIB3
* •••••••••••••• *
LIST • HGB3

* * YES

.
SEE NOTE X

*OO,ENOO.. *
*IMPDO • HD *
* ••••••••••••••••• *
*END • HE83 **.
* ••••••••••••••••• * •
*READ HCB3 ***.
* ••••••••••••••••• *
*STMT NO. HFB3 *

*****04**********
* * * MOVE *.

••• X* TEXT WORD TO .X •••
• OUTPUT BUFFER *
* * *****************

X
*****E4**********
NOB HVB3
--*-*-*-*-*-*-*
* WRITE OUTPUT *
* BUFFER IF *
* NECESSARY *

.
• X.

F4 * •
• * *. ****

• NO .* *. YES * ...
•••. *. END MARK .* •••• X* A3 *

Chart BB. CONTROL Routine

. . PUT OUT *
. . END MARK**

* •• *
*

* ENO - EXIT FROM PHASE 20 OCCURS
WHEN THE END STATEMENT IS PRO­
CESSED. THE EXIT CONDITIONS ARE
EXPLAINED IN THE TEXT FOR THE
ENO STATEMENT ROUTINE.

**READ - THE READ ROUTINE RETURNS TO
A3 TO ACCESS A WORD. NOT TO 04.

Phase 20 297

*HC *
* 83*
* * *

· X READ
*****8"3**********
* INDICATE TO *
* LIST ROUTINE *
* THAT I/O LIST *
* IS PART OF *
*READ STATEMENT *

X
*****C3**********
ESDRLD ICB3
--*-*-*-*-*-*-*
* PUNCH ESD AND *
* RLD CARDS FOR *
* EXTERNAL REFS *

· X
*****03**********
* * * MOVE TEXT *

••••• X* WORD TO * * OUTPUT BUFFER *
* * *****************

· X
*****E3**********
NOB HVB3
--*-*-*-*-*-*-*
* WRITE OUTPUT *
* BUFFER. IF *
* NECESSARY *

· X
*****F3**********
NIB HUB3
--*-*-*-*-*-*-*
* MAKE INPUT * * TEXT WORD * * AVAILABLE *

.X.
G3 * .

• * * • • * END OF *. YES
. STATEMENT . ••••••••

. . X
.. *****

* •• * *He * * NO * A3*

NO • * . -
· .X.

H3 *.
* •

END * •
.X •••• *. I/O .*

". LIST .
. .

* •. *
- YES

· X
*****j3**********
SET OFF INDICTR
- FOR I/O LIST * •••••• * BEING PART * * OF READ * * STATEMENT *

- * *

Chart HC. READ Routine

298

*HD *
-II- 81* ..

*

00 X
*****B 1 **********
SET UP FOR PRO-
* CESSING CF *
NESTED DO LOOPS
* PROCESS DC *

VARIABLE *

X

*HB -II­
-II- A3*
* •

*HD *
* 8~*
* •

IMPDO X
*****8~**********
SET UP FOR PRO-
* CESSING OF *
NESTEC DO LOOPS * PROCESS 00 * * VAR IABLE

X
****C3********* . .

RETURN *

Chart HD. DO/IMPDO/ENDDO Routines

*HD *
* 85* . .

ENDDO X
*****B5**********
* • .
*

PROCESS
ENDDO

CONDITION *
* *****************

X

*HB *
* A3* ..

*

Phase 20 299

*t-:E *
* 83*
* *
*

X PHEND
*****83**********
*PUNCH ESD,RLD, *
* AND TEXT CARD *
* BUFFERS VIA *
*FORTRAN SYSTEM *
* DIRECTOR *

:H~3: X CLOSE
* * *****C3**********
* * MOVE END STMT *
• * TEXT PLUS ANY *
••••••• X*TEXT BEYOND END*

*STMT TO OUTPUT *
* BUFFER *
*~***************

X
*****03**********
NOB t-VB3
--*-*-*-*-*-*-*
*WRITE CONTENTS *
OF OUTPUT BUFFR
* ON WORK TAPE *

X
*****E3**********
* * * PERFORM FINAL *
* CLOSING *
* PROCEDURES *
* * *****************

X
****F3*********

* EXIT TO *
* PHASE 25 OR *
* P~ASE 30 *

Chart HE. PHEND Routine

300

*HF *
* 83*
* * *

.x.
83 * •

• * DOES * •
. * STMT NO. *. NO

*REPRESENT A PT * •••.
*OF DEFINI- *

.TION .
* •• * * YES

X
*****C3**********
CLEAR HZB3
--*-*-*-*-*-*-*
* MAKE ALL *
* REGISTERS *
* AVAILABLE *

. .

.X •••••••••••

x

*HB *
* A3*
* * *

Chart HF. LABEL Routine

Phase 20 301

*****81 **** ****** .

*HG *
* 83* ..

• x.
83 *.

.* I/O * •
NO.* LIST OF *. ACCESS

NEXT TEXT
INORD

*X •••••••••••••••••••••••••••••••••• *. A READ .*
* *.STATEMENT.*

.x.
Cl *.

.* * •
• NO .* *.
•••• * • END MAR K • *

*. . * *. .*
* •• * * YES

X
*****02**********
CI==TM IZ HKB3
--*-*-*-*-*-*-*

CPTIMIZE *
I/O

* LIST *

x

*HB *
* A3* .. .

Chart HG. LIST Routine

302

. .
* •• * * YES

X ROPR
*****C3**********
*SET TO OFF THE *
*IND ICATOR Tt-:AT *
*SHOWS I/O LIST *
* IS PART OF A *
* READ STMT *
*****************
• *. * 03 *.X.
• *

.X. .*. PRSAP
03 *. 04 *. *****05**********

• .t *. .* *. *8VLSR HWB3*
.* *. NO .* MODE CODE *. YES *-*-*-*-*-*-*-*-*

. END MARK . •••••••• X*.FOR 'INTEGER'.* •••••••• X*PLACE VARIABLE *
. . *. .* * ON BOUND *
.. *..* * VARIABLE LIST ..

* •• * * •• * ***************** * YES * NO

*****E3**********
OPTMIZ hKB3
--*-*-*-*-*-*-*

OPTIMIZE
I/O *

.. LIST *

X
*****F3**********
RMVBVL HXB3
--*-*-*-*-*-*-*
*MAKE AVAILABLE *
*AREAS INVOLVED * * W/BOUND VARS *

x
***** *HB * * A.3* * •

. .
• X •••••••••••••••••••••••••

X INC2
*****E4**********
* * * ACCESS *

NEXT TEXT
* WORD

* *****************

x
**** * •

* 03 * • *

*HH *
* 83*
* * .

X ARI TH
*****83**********
• * .

* 83 * •••• X* • * •
ACCESS

TEXT 'I1IORD

· . * B3 * · . ****
X

LINKOP .X. ARRE .*. .*. CKOP2
*****C2********** C3 *. (4 *. C5 * ..
OFTMIZ HK83 .. * *. .* *. .* IS *.
--*-*-*-*-*-*-* YES .* *. NO .* IS *. NC .* OPERATION *.
* OPTIMIZE *X •••••••• *. END MARK .* •••••••• X*. A FUNCTION .* •••••••• X*. CODE 'STORE .*
* ARITHMETIC * *. .* *REFERENCED * *.INTEGER' .*
* STATEMENT * *..* *..* *..*
***************** * •• * * •• * * •• *

* * YES * YES

.x. X LKHN
*****01********** 02 *. *****04**********

HANDLE I B83
--*-*-*-*-*-*-*
SET UP FOR CALL
RTN. PUT INTEGR
ON BND VAR LIST

X
*****05**********
BVLSR HW83
--*-*-*-*-*-*-*
*ENTER VARIABLE *
* ON BOUND *
* VARIABLE LIST *

* SET OFF THE * .* WAS *.
'FUNCTION * YES .*A FUNCTION *.

REFERENCED' *X •••••••• *. REFERENCED .*
INDICATOR * *. .*

x
***** *HI *
* 02* . .

Chart HH.

. .
* •• *

• NO

x
*****E2**********
Rfo/'V8VL HXB3
--*-*-*-*-*-*-*
*",AKE AVAILABLE *
* REGS INVOLVED *
* W/BOUND VARS *
** ***************

x

*HB *
* A3*

ARITH Routine

x
**** . .

* B3 * . . · . * B3 * · .

Phase 20 303

*.-: I *

***"**
h I "
* 83*

" " "

X CALL
*****83**********

**** * * * ACCESS *
* 83 * •••• X* TEXT *
* * * WORD *

**** *

.x. .*.
*****C2********** C3 *. C4 *.
CFT~IZ HKB3 .* *. .* *. ****
--*-*-*-*-*-*-* YES .* *. NO .* INTEGER *. NO * *
* CPTIMIZE *X •••••••• *. END MARK .* .••••••• X*. PARAMETER .* ••.• X* 83 *
* CALL * *. .* *. .* * *
* STATEMENT * *..* *..* ****
***************** *. ."*

" YES

* 02* CALLI" X
* * *****D2********** * *ACCESS VARIABLE* ****

* IN SUBSCRIPT * * *
••••••• X* EXP IN INDEX *X •••• * 02 *

* NAPPING TABLE * * *
* " *****************

.X. CKNV
E2 ".

.* IS * •
• * VARIABLE *. NC

*ALSO IN CCMMCN * ••••
. .

. .
* YES

X
*****F2**********
EVLSR HWB3
--*-*-*-*-*-*-*
"EhTER VARIABLE"
" eN BOUhO "
" VARIABLE LIST"

. .

.X •••••••••••

• x.
G2 * •

• * * • • * *. NC
. END OF . ••••

.VARIA8LE .
. .

*. • * x

" YES ****
* " * 02 *

X
*****H2**********
R~VBVL HXB3
--*-*-*-*-*-*-*
"~AKE AVAILABLE"
" REGS INVCLVEO "
" W/EOUNO VARS "

x

*HB *
* A3*
* " *

" * ****

Chart HI. CALL Routine

304

*****04**********
BVLSR HWB3
--*-*-*-*-*-*-*
*ENTER VARIABLE *
"* ON BOVND *
* VARIABLE LIST"

" " * 83 *
* " ****

*HJ *
* 83*
* * it

X IF
*****83**********

**** * *
it ACCESS ..
* 83 * •••• X* TEXT WORD *
* * * * **** * *

.x. CKIFF .*.
*****C2********** C3 *. C4 *.
OFTMIZ HKB3 .* END *. .* *. ****
--*-*-*-*-*-*-* YES .* OF ARITH *. NO .* IS *. NO * *
* OPTIMIZE *X •••••••• *.EXPRESSION OR.* •••••••• X*. A FUNCTION .* .••• X* 83 *
* IF * *.END MARK .* *REFERENCEO * * *
* STATEMENT * *..* *..* ****
***************** * •• * * •• *

. .X.
*****01********** 02 *.
* SET OFF THE * .* *.
it 'FUNCTION it YES.* WAS it. NO
* REFERENCEO' -X •••••••• *. A FUNCTION .* ••••••••
it INDICATOR" "REFERENCED ." X
* * *..* *****
***************** * •• * *He *

.
X

*HI *:
* 02* " ..

"

Chart HJ.

* * A3*
"

IF Routine

.. it YES

.
X

*****04**********
HANDLE IBB3
--*-*-*-*-*-*-*
"SET UP FOR CALL"
"RTN PUT INTEGER"
" ON BND "

**** .. "
" B3 " .. "

Phase 20 305

*HK *
* B3*
* *

OPTMIZ X
*****B3**********
* * * Access FIRST * 1III0RO TO BE
* PROCESSED •
* * * •••• ****.***** ••

SCAN .X.
C3 *. *****C4**********

.* IS *. *CALSEQ HLS3*
.ADJ CODe EX- • YES *-*-*-*-*-*-*-*-*

••••••••••••••••• X*TERNAL FUNCTION* •••••••• x* PROCESS * ••••

*****02**********
* * * ACCESS *

TEXT *
* WORDS *
* * *****************

x

*****E2.*********
NCB HUB3
--*-*-*-*-*-*-*
* WRITE OUT *
* CUT PUT BUFF ER *
* IF NECESSARY *

x

*****F2**********
* * MOVE TEXT * * WORD TO •
* OUTPUT BUFFER *
* * *****************

x

'.

. OR ASF . * ARGUMENTS *
.CALL . *

. . ***************** * NO

CTse .x.
03 *. *****04**********

.*·:OJI~OOE*·*. YES :~~~~~*-*-*-~~::: x
FOR 5UBSCRIPTEO •••••••• x* PROCESS * ••••

.VARIABLE . * SUBSCRIPT *
.. * EXPRESSION -

. . *********---*****
* NO

CKCOD .x.
E3 *. *****E4**********

.AD~ CA~E F~R • YES :~!~~~~-*-*-~~::: x
. IFIX,FLOAT, . •••••••• X*INITIALIZE FOR * ••••

. OFLOAT . * NUMBER *
.. * CONVERSION *

* •• * ***** •• ********-*
* NO

.x.
F3 *. *****F4*******.***

.*·:OJ~~TIV~·*. YES :~:~~~*-*-*-~~::: x
. CODE FOR . •••••••• X* PROCESS *

. IMPLIED . * THE I~PLIEO *
. DO . * DO *

* •• * *****************
* NO

.x.
G3 *. *****G4***.******

.*·:DJ~~TIV:·*. YES :=~~~-*-*-*-~~::: x
. CODE FOR . •••••••• X* PROCESS THE * ••••

. END. * ENO' 00 *
. 00 . * CONDITION *

* •• * *****************
* NO

.x.
H;;! * • • * *.

• NO .* *. •
•••••••••••••••••• *. END MARK .*X •••••••••••••••••••••••••••••

Chart HK.

306

*. ••
. .

. . * YES

STATEN X
*****J3*******-**
* * * MOVE END MARK *
* TEXT WORD TO * * OUTPUT BUFFER *
* * *****************

X
*****K3**********
NOB HVB3 ****K4*********
--*-*-*-*-*-*-*. *
* WRITE OUT * •••••••• X* RETURN
* OUTPUT BUFFER • * •
* IF NECESSARY * ** •• _.**.**-**.
********.********

OPTMIZ Routine

*HL *
* 82*

CALSEG • X.
82 ...

• * IS * • • * ARGUMENT *. YES" ..
. COUNT . •••• X* E5 ..

. ZERO. * *
. .

* •• * * 1\'0

X
*****C2**********
* ACCESS NEXT *
* OEJECT-TIME *
*ARGLST ADDRESS *
* ACCESS FIRST *
* ARGUMENT *

.x.
****"01********** 02 *. *****03**********
Sl,;S"P HMB3 .* IS *. * *
--*-*-*-*-*-*-* YES .*ARGUMENT A *. GET NEXT

PROCESS .. X •••••••• *. SUBSCRIPTED .*X •••••••• * ARGUMENT FROM *
SUBSCRIPTS * *.VARIABLE .* * THE WORK AREA *

.. * *
***************** * •• * *****************

X
*****El**********
* GENERATE AN *
*INSTRUCTION TO *
*STORE ARGUMENT *
* ADDR IN *
* ARGUMENT LIST *

X
*****Fl**********
CALTXT IC85
--*-*-*-*-*-*-*
* PUT -A ZERO
* TEXT WORD IN *
THE ARGUMNT LST

X
*****Gl********** . .
GENERATE A FLAG
*IF THIS IS THE *
* LAST ARGUMENT *
* •

* NO X

CAL020 X
*****E2**********
* SET ES!O TO *
*02 IF ARGUMENT * * IS IN COMMON. *
*01 IF ARGUMENT *
ISN'T IN COMMON

CAL025 X
*****F2** ** .. ** ..
* IF THIS IS *
* THE LAST *
*ARGUMENT SET A *
* FLAG FOR THE *
* TEXT CARD *
** .. **************

CAL030 X
*****G2**********
CALTXT ICBS
--*-*-*-*-*-*-*
* PUT ARGUMENT
* ADDRESS IN *
* TEXT CARD *

X
*****H2********** . .
* CALCULATE
* ADDRESS FOR *
* RLD CARD *
* •
** .. **************

X
*****J2**********
CALRLD I C83
--*-*-*-*-*-*-*
* GENERATE AN *
~LD ENTRY FOR A
* RGUMENT *

.x.
K2 * • • * *.

*****E3**********
* •

INCREMENT
* OBJECT TIME *
* ARGUMENT LIST *
ADDRESS COUNTER

X

• .* LAST *. NO •
••••••••••••••••• X*. ARGUMENT .* ••••••••••••••••••

Chart HL.

... .*
. .

* •• * * YES

X
**** . .

* C5 * . .

CALSEQ Routine

**** . .
* C5 * . .

X
*****C5********** * GENERATE *
*INSTRUCTION TO *
* LOAD ARGUMENT *
.. LIST INTO *
CORRECT REGISTR

X
*****05**********
* INCREMENT *
* OBJECT TIME *
*ARGUEMENT LIST *
* ADDRESS ..
* COUNTER *
**************** ..

* • * E5 *.X. · .
*****E5*********" · . * PUT CALL TEXT *
* WORD ONTO *

OUTPUT DATA
* SeT *
4**********

X
*****F5**********

• * RESET WORK
AREA

POINTER

X

*HK *
* F3*
* •

Phase 20 301

•••• *
·HM •
•• A~.

0'

EMTR X SUBVP .X. SPAOP
••••• A2.......... A3 •• • ••• *A4 ••••••••••

NOTE- SUBROUT
USED TO MAKE
AVA[LABLE. [F
INITIALLY AVAI
[NDEX MAPPING

TN _OBTAIN REGISTER. •• IS •• .INDICATE IN eA'.
ER • FOR CURRENT. NO •• SUBSCRIPT •• YES .FIELD OF [NITAL.
IS • SUBSCRIPT .X •••••••••• EXPRESSION A •••••••••• X.SUBSCRIPT WORO •

IN • EXPRESSION • ..CONSTANT •• .THAT SUBSCRIPT.
• • •••• • IS CONSTANT

• x •
•••• *81.......... B2 ••
• STORE REG NO. • •• [5 ••
• [N TEMPORARY. YES •• SUBSCRIPT _ •
• FIELD.PLACE SUS.X •••••••••• EXPRESSION .*
.-CRIPT II'OICATR. "'.OPTIMIZED ••
• OF AOP IN TEXT • ••• ••.... -...... ·

• 0 •
• .X: 03 :

_00

o NO

EXRTN
·····CI ••••••••••
• PLACE REGI STOR • .T
• NUMBER IN. YES •• A

• .X. TEXT. BUT NOT .X •••••••••• LIT
•• IN INDEX. ..CON
• • MAPP I NG TABLESCR ·
~O o~

·tlM • · .
:.~:: • 03 •••• • ·

X CONTIN .X • 02.......... 03•. 04•.
• ASSIGN ISTER. •• IS •• *OUMPR HQA3 • • TO IPT. ..SUBSiCRIPTED •• YES • ___ ._._._. ____ __
.EXP AND ••••••••• X.VARIABLE ADUMMy ••••••••• X* PROCESS *
.ENT 0 IN- • ..VARIABLE •• • DUMMY •
• DEX NG TBL. •••• • VARIABLE • .••• *... ••...•• •. .. • •....••.....•...

o NO

REDUM X
: •••• E3 ••••••••• :

• STORE· •
• REG ISTER NUMBER.X •••••••••••••••••
: INTO TEXT :

• x.
F3 ••

• TEXT IND •
•• ~ GENERATED •• YES

•• LITERAL FORM ••••••••••
•• CON SUB- •• X

·SCRIPT • • •••• •• • * ·HO ..
• NO •• F:.

o

.X. .*.
G3 •• G4 ••

•• IS *. .* ••
•• STATEMENT •• NO •• IS •• YES

-. WITHIN A DO •••••••••• X •• THIS AOP ••••• ~ ••••

Chart BM.

308

•• •• LOOP •••• X •••• TEXT •••• ..! ••
•• •• •• •• ·HO •

• YES • NO •• A:.

.x.
H3 ••

•• FIRST ••
•• OCCURENCE •• NO •

-.OF SUBSCRIPT ••••••••
•• WITHIN DO ••

·.LOOP ••
• YES

x
: 3 ••••••••• :

_RESTORE ANY AOP.
- TEXT TO SAOP •
: FORM :

· . • X •••••••••••••••••••••••••

DOENT X ····*1(3·········· .. LOCAT! •
• REGISTER ENTRY •
• IN INDEX •
• MAPPING •
: ••••• !:~5 ••••• :

Subroutine SUBVP (1)

.. ~ ..
OHN 0 •• A:.
·

o

REA~: •••
.ADD
• CULA
• TO T
• DET

.....
·HN •
• • Ai· .
:

CAL-·
PHIO •
CMT •

BV •

:.:~!** .~~~**:

.x.
••••• B2.......... B:3 ••

CONSTANT .GENER HRB2. •• IS ••
SUBSCRIPT .-.-.-.-.-.-.-.-. YES •• RESUL T LESS ••

.......... GENERATE *X ••••••••• THAN O. OR GTR •

:~:.: : ~!;:h .. **: •. !~:: ::~;.*
•• A~. NON-CONSTANT • NO

• SUBSCRIPT

N6EN2 X
: •••• C:3 ••••••••• :

• • ENTER NUMBER •
• •••••••••••••••• X. OF DIMENSIONS.

: INTO TEXT :
IF GENER IS NOT USED X ···"·03··"·······

.MOYE FIRST WORD.
• OF SUBSCR IPT • • SAOP • N • III • OFFSET

IF GENER IS usee

• TEXT TO OUTPUT •
: BUFFER :

• XOP • N • 'III • A(EEN LITERAL) •

Chart HN.

: •••• 62 ••••••••• :

X
•• ••• E:3·· •• ·.··*·

:~~~.-.--.-~~~:
.. WRITE OUT •
• OUTPUT BUFFER •

:.!~.~~~~:~!:: .. :

x
: •••• F3 ••••••••• : · . : COMPUTE Cl.L :

·
.x.

E3 ••
• PLACE POWER. YES.. IS Cl.L ••
• INTO TEXT .X •••••••••• A POWER OF 2 •• · ·

• NO

X ·····H3·········· :~~~:~~-.-.~::~:
• GENERATE H-E •
• LITERAL FOR •

: ~!:~ .. ***.:

X
•• ••• .,3·· .. ••••••• • MOVE SECOND •

• • WORD OF SUB- •
• •••••••••••••••• X.SCR IPT TEXT TO •

: OUTPUT BUFFER :
X

••••• K3.· •••• ••••

:~~~.-.-.-.-~~:=:
• WRnE OUT
• BUFFER. IF

: ... :~~~;;::!**.:

.:
: A4 :

Subroutine SUBVP (2)

..... . .
: A4 :

eX. DIM2
..A4 •••• : •••• AS :

•• 15 THERE A •• YES • COMPUTE
C2.Dl·L •• SECOND DIMEN-•••••••••• X.

•• SION.. • •• •• • *
• NO

x
: •••• B4 ••••••••• :

.MOVE LAST .ORD •
• OF SUBSCRIPT •
• TEXT TO OUTPUT •

:.**.:~~:~: ••••• :

DIM3
: •••• 0" ••••••••• :

X
• •••• 85 ••••• •• •••

:~i~::~_._._~~:~:
• GENERATE THE •
• LITERAL FOR •

: .. *.~~:~!:~** •• :

x
: •••• C5 ••••••••• :

• PLACE ADDRESS ..
.OF LITERAL FOR •
• C2.Dl·L •

: •••• !~ .. !;!!** .. :

.x.
05 ••

• COMPUTE • YES •• 15 THERE A ••
: C3.Dl.D2.L :X ••••••••• T~!RD DIMENS!~N • ·

X
·····E4··········

:~:~::~-.-.-~~:~:
• GENERATE THE •
.. LITERAL FOR •

:**~~:~!:~::~ ... :

• NO

X
••••• E5 •••••• * •••
• SET THE TEXT •
• RESERVED FOR •
• ADDRESS OF •
• C3·Dl"D2*L •

: !~.~i:~ :

i i
...... F4** •• * •••• * **F5.*
• PLACE ADDRESS. .MOVE THIRD WORD •
• OF LITERAL FOR. • OF SUBSCRIPT *
* C:3*Dl*02*L * •••••••• X*TEXT TO OUTPUT *
: IN TEXT: : BUFFER :

••• ***.**** ••••• * * ** •• ** ••• *
• ACC2.01.L) • ACC3*DI.D2*L) •

IF GENGEN IS NOT USeD

X
*****65**********

:~~~.-*-*-*-~~~~:
• WRITE OUT •
• BUFFER. IF •

: ••• ~~~ii~~~!***:

X
*.**·H5"**·**·.".
.MOVE LAST WORD •
• OF SUBSCRIPT •
• TEXT TO OUTPUT.
* BUFFER :

.*.**** ••• ** •

•• !.*
"HK *
* .8~*

:·PlSueSCRipH ·:·PO;ER· 0;:·2·:
IF GENGEN IS USED

• P(SU8SCRIPT) • A(Cl.L)

Phase 20 309

**.*.
*HO *
* A3*

AOPRTN .X.
A3 *. **.**A4**********

.* IS *. *SUBTRACT INDEX *
.* SUBSCRIPT *. NO "* MAPPING TABLE *

.EXPRESSION A . •••••••• X* OFFSET FROM *
.CONSTANT . * TEXT OFFSET *
.. *. *

* •• * *****************
• YES

X SKIN .X.
*****B3********** 84 *.
* ADD ADJUSTED * 0
* OFFSET TO THE * NO.* RESULT *.
* DISPLACEMENT *X •••••••• *. EQUAL TO .*
* DETERMINED BY * *. ZERO .*
* PHIS FOR YAR * *..*
*********.******* *. .*

.X. NOG!

... YES

x
****

*****C2********** C3 *.
* F3 *

CONSTANT *GENER HRB2* .* IS *.
SUBSCRIPT *-*-*-*-*-*-*-*-* YES.* RESULT * •

•••••••• * GENERATE *X •••••••• *LESS THAN O.OR *
X * OFFSET * *. G.T. .*

***** * LITERAL * *.4095 .*
*HM * ***************** * •• *
* A2* .NON-CONSTANT * NO

* * .SUBSCRIPT ..

Chart HO.

310

.x.
03 * • • * IS * •

• * SUBSCRIPT *. NO
.EXPRESSION A . ••••

.CONSTANT .
. . * •• * * YES

X
*****E3**.*******
* NULLIFY ANY _
REGISTER ASSIGN
MENT ev SETTING
X-F IELD IN TEXT
* TO ZERO *
****************.

**** .. .
*HO *.X.
* F3*

X MOV
*****F3**·*******
MOVE FIRST WORO

• * OF SUBSCRIPT * •
••••••••••••••••• X* TEXT TO *X •••

X * OUTPUT eUFFER *
• **************.**

****
* F3 *

X
*****G3**********
NOB HVB3
--*-*-*-.-*-*-*
* WRITE *
• OUTPUT BUFFER •
• IF NECESSARY *

. X
*****H3**********
*MOVE LAST WORD *
* OF SUeSCRIPT *
*TEXT TO OUTPUT ...
... BUFFER * ..
******.**********

X
*****J3**********
NOB HVB3
--*-*-*-*-*-*-* * WRITE •
* OUTPUT BUFFER *
* IF NECESSARY *

x

*HK * * 83*

Subroutine SUBVP (3)

***-

IF GENER IS US EO

AOP

WHERE

A B : ~(GEN. LITERAL

A INDICATES WHETHER OR NOT
SUBSCRIPT IS A CONSTANT

B IS SET TO INDICATE THAT
ADDRESS OF A GENERATED LITERAL IS
IN TeXT

IF GENER IS NOT USED

AOP

WHERE

A B • OFFSET

A AGAIN INDICATES WHETHER OR NOT
SUBSCRIPT IS A CONSTANT

B IS SET TO INDICATE THAT THE
ACTUAL OFFSer IS IN THE TEXT

*HP *
* A3*
* *
*

X
*****A3********** · . MOVE wORD *

TO OUTPUT
BUFFER AREA

X
*****B3**********
NOB HVB3
--*-*-*-*-*-*-*

UPDATE
OUTPUT

* AREA *

.x.
*****C2********** C3 *.
* ~OVE INTEGER * .*INTEGER*.
* CR REAL AREA * YES .* WORK AREA ~.
*ADDRS AND CON- *X •••••••• *.QR REAL PRE- .*
* STANT ADDRESS * *V IOUSLY GEN*
*TC OUTPUT BUFF * *ERATED *
***************** * •• *

X
*****02**********
NCB HVB3
--*-*-*-*-*-*-*
* UPDATE *

OUTPUT
* BUFFER *

x
****E2********* . .

SCAN

****..12********* . .
SCAN *

X

.

• NO

.x.
03 *. *****04**********

.* *. * MOVE *
.* CONSTANT *. YES CONSTANT *

. PREVIOUSLY . •••••••• X* ADDRESS TO *
.GENERATED. * OUTPUT
.. * BUFFER *

* •• * *****************
• NO

X
*****E3********** * PUT NEXT *

DOUELE WORD
ADDRESS IN *

OUTPUT *
* BUFFER AREA *

X
*****F3********** · . * ASSIGN
* ADDRESS TO *
* CONSTANT *

X
*****G3**********
GENCON IOA3
--*-*-*-*-*-*-* · . * CONSTANT

· . • X •••••••••••••••••••••••••

X
*****H3**********
* PUT NEXT *

DOUBLE WORD
* ADDRESS IN *
* OUTPUT BUFFER *
* AREA *

X
*****..13**********
NOB HVB3
--*-*-*-*-*-*-*

UPDATE
OUTPUT

* AREA *

X
*****K2********** *****K3**********
GENCON IDA3 * ASS lEN *
--*-*-*-*-*-*-* * ADDRESS TO
* FIX OR FLOAT *X •••••••• * INTEGER OR
* WORK * * REAL WORK
* AREA * * AREA *
***************** *****************

Chart HP. FIXFLO Routine

Phase 20 311

*t-lQ *
- A3-..

ACENT X
*****A::!**********

• * * ACCESS *
* INDEX MAPPING ~
* TABLE ENTRY * · *****************

.x.
B3 *. *****B4**********

.* IS *. * * .* DUMMY *. YES * USE REG[STER
VAR[ABLE [N T ... E •••••••• X* ASS[GNED TO *

.[NDEX MAP. *DUMMY VAR[ABLE *
.TABLE. * *

* •• * *****************
* NO

.X. GETBSE

**** .
• • X* H3 * . .

C3 *. *****C4**********
.it ARE *. * CHANGE STATUS it

.* Tt-.ERE 3 *. YES ... OF ONE OF *
DUMMY VAR [AE!LES •••••••• X* CORRESPONDI NG *

*IN [DX MAP * * ENTR[ES TO *
.TABLE. .* UNASS[GNED *

* •• * *****************
*LESS
.THAN 3

.x. REGAV X
*****02********** 03 *. *****04**********
GETN HTB3 .* [S *. * ASSIGN FIRST *
--*-*-*-*-*-*-* NO.* THERE *. YES *UNASSIGNEO REG *
* DETERM[NE REG *X •••••••• *.AN UNASSIGNEO.* •••••••• X* TO CURRENT *
ASGNO TO S8CRPT 4.REG[STER .* * DUMMY
_ITH LEAST DIME *..* * VARIABLE it

it ... *********** ... *** * •• * *****************

. X
*****E2**********
* ASS[GN THE *
* REGISTER *
*Te THE CURRENT *
* DUMMY *
* VARIAeLE ...
*************** ... *

*

GENIN
*****F3**********
* GENERATE A *

• *'LOAD BASE REG'* •
••••••••••••••••• X*INSTRUCT[ON ANO*X •••••••••••••••••

Chart HQ.

312

PLACE IN OUTPUT
* AREA *

X
*****G3**********
NOB HV83
--*-*-*-*-*-*-*
* WRITE OUT *
*OUTPUT BUFFER, *
* IF NECESSARY *

* H3 *.X.

• *
X

*****H3**********
* PLACE *

THE 8ASE
REGISTER *
NUMBER IN *

TEXT
*********** * ... **

X
****J3********* · . * RETURN · . ***************

DUMPR Routine

*HR *
* 82*
* * *

GENEI' X
*****82**********
* * *
*
* *

ACCESS
OFFSET *

* * * *****************

*****C3**********
GEN HSB3
--*-*-*-*-*-*-*

*HR *
* 84*
* * *

GENGEN X
*****84**********
* * * ACCESS *
* COL *
* PORTION *
* * *****************

••••••••••••••••• X* GENERATE *X •••••••••••••••••
* THE *
* LITERAL *

XOPCH GENSET .*. .X.
*****Dl********** 02 *. 03 *. *****04**********
* * .* WAS *. .* *. * *
PLACE SUBSCRIPT YES .* SUBSCRIPT *. OFFSET .* COL OR *. COL * PLACE ADDRESS *
* INDICATOR OF *X •••••••• *EXPRES ALREADY *X •••••••• *OFFSET LITERAL * •••••••• X* OF LITERAL *
* XOP IN TEXT * *.OPTIMIZED.* *.GENERATED.* * IN TEXT *
* * *****************

OUTIN X E2· X.*.
****El********* .* IS *.

* * NO .* SUBSCRIPT *.
* RETURN *X •••••••• *.EXPRESSICN A .*
* * *.CONSTANT .*

X
*****F2**********
* NULLIFY ANY *
* REGISTER *
* ASSIGNMENT EY *
SETTING X-FIELD
IN TEXT TO ZERO

x

*HM *
* A2*
* * * SPECIAL EXIT

FOR CONSTANT

Chart HR. Subroutines GENER, GENGEN

.. * *
* •• * *****************

*

X
****E4*********

* * * RETURN *
* * ***************

Phase 20 313

*HS *
* 83*
* * *

X
*****83**********
SYMSRC HY83 ****84*********
--*-*-*-*-*-*-PRESENT * *
* DETERMINE IF * .••••••. X* RETURN *
* LITERAL IS IN * * *
* SYM LIST * ***************

.NOT PRESENT

X
*****C3**********
* MOVE THE *
*LITERAL TO THE *
TEXT CARD AREA.
* UPDATE CARD *
* COUNTER *

.X.
03 * •

• * IS * •
• * THE TEXT *. NO

. CARD AREA . .••.
. FULL .

. .
* •• *

* YES

X
*****E3**********
PUNCH IAB3
--*-*-*-*-*-*-*
* PROCESS THE *
* TEXT CARD *
* AREA *

. .

.X •••••••••••

INS X
*****F3**********
* * * ENTER THE- *
* LITERAL IN *
THE SYMBOL LIST
* * *****************

ENDS3Y X
*****G3**********
*DETERMINE AD DR *
*OF LITERAL VIA *
* LOCATION CTR *
* AND ENTER IN *
*SOURCE SYM TBL *

X
****H3*********

* * * RETURN *
* * ***************

Chart HS. Subroutine GEN

314

....... **
"HT "
" 83*
" * *

.X.
83 * •

• * CAN A *.
NO ."REG ASGD TO* •

•••.•••• *. A SU8SPT OF .*
X "LST DIM BE *

***** *.FOUNO.*
*HE * * •• *
* C3" " YES
* *
" .

• X.
C3 * •

• *15 THIS*.
YES .*A CONSTANT * •

•••••••• *SUBSCRIPT AND A*
X ".GENERATED.*

" "LITERAL*
*HM * * •• *
* Cl* * NO
" * *

.
X

*****03**********
* " " ASSIGN "
" REGISTER *
" " " " **_ ... **--*********

X
****E3*********

" " " RETURN "
" " .**************

Chart HT. GETN Routine

Phase 20 315

NOTE
IF THE CURRENT
COMPILATICN IS
PERFORMED WITH-
IN MAIN STORAGE.
NEITHER READIN~
NCR WRITING oc­
CURS. ONLY POINT­
ERS ARE UPDATED

***** *HU *
* 83*
* * *

· X
*****83**********
*UPDATE POINTER *
* OF CURRENT *
* INPUT EUFFER *
* AND. DETERMINE *
IF 8UF IS EMPTY

.x.
C3 * •

• * *. ****C4*********
.* INPUT *. NO * *

. BUFFER . •..•..•. X* RETURN *
. EMPTY . * *
.. ***************

* •• *
* YES

· GET X
*****03**********
* CHAN~E STATUS *
* OF BUFFERS. *
* MAKING THE *
* ALTERNATE *
* ONE CURRENT *

· .x.
E3 * .

• * * • • * END *. YES
. OF . ••••••••

. TAPE. X
.. ***** * •• * *H3 *

* NO * C3*
* * *

X
*****F3**********
* CALL FORTRAN *
SYSTEM DIRECTOR
* TO READ INTO *
• EMPTY *
* 8UFFER *

.x.
G3 *. *****G4**********

.*WAS END*. * INDICATE •
•• OF TAPE *. YES * TO ROUTINE *

*. DETECTED .- •••••••• X*USING THE DATA ...
• DURING THE * * THAT AN ERROR.

.READ . * COND EXISTS *
* •• * *****************

• NO

· . • x •••••••••••••••••••••••••

X
****H3*********

• * • RETURN • • * ***************

Chart HU. Subroutine NIB

316

***** *HV *
* B3*
* * *

.X. NOB
B3 *. *****84**********

.* *. * *
.* IS *. NO * UPDATE *

.OUTPUT BUFFER. •••••••• X* OUTPUT BUFFER *
. FULL. * POINTER *'
.. * *

* •• * *****************
* YES

.
X PUT

*****C3**********
* CHANGE STATUS * * OF BUFFERS. *
* MAKING THE * * ALTERNATE ONE *
* CURRENT *

X SVC4
*****03********** * WRITE FULL *
*BUFFER ON WORK *
* TAPE VIA *
* FORTRAN *
SYSTEM DIRECTOR

. .
.X ••••••••••••••••••• ~ •••••

X
****E3********* * . * * RETURN *

* * ***************

Chart HV. Subroutine NOB

Phase 20 317

*HW *
* 83*
* * *

. .x.
63 * •

• * *.

BVLSR

YES.* IS THE * •
•••• *80UNO VARIABLE *

*LIST EMPTY *
. .

* •• * * NO

.x. CPVB
C3 * •

• * IS * •
• * VARIABLE *. YES

*ALREAOY ON THE * ••••
. LIST .

. .
* •• *

* NO

X ENTIT.
*****03**********
* * • *PLACE VARIABLE *

••• x* ON T~E BOUND *
* VARIABLE LIST *
* * *****************

. .

.X •••••••••••

X
****E3*********

* * * RETURN *
* * ***************

Chart HW. Subroutine BVLSR

318

* *
*

.x. RMVBVL
8:: * •

• * IS * •
• * THE *. YES

*BOUNO VARIABLE * ••••
. LIST .

.EMPTY.
* .• *

* NO

· . X NXTBVL
*****C3**********
* PROCESS INDEX *
* MAPPING TABLE *
* AGAINST THE *
*BOUND VARIABLE *
* LIST *

· X VAREQ.
*****03**********
*WHEN SUBSCRIPT *
EXPRESSION CON-
TAINS BOUND VAR
* CHANGE STATUS *
OF ENT TO UNASS

· . • X •••••••••••

X
****E3*********

* * * RETURN *
* * ***************

Chart HX. Subroutine RMVBVL

Phase 20 319

*HY *
'* B3*

* *
*

.x. REFO
83 *. *****84**********

.* *. * * .* IS *. NO *RETURN ADDRESS *
. LIT IN THE . •••••••• X* OF ZERO TO *

. SYMBOL . *CALLING ROUTINE*
.LIST . * *

* •• *
* YES

X NONEE
*****C3**********
* * *RETURN ADDRESS *
* OF LITERAL TO *
CALLING ROUTINE
* * *****************

. .
.X ••••••••••••••••••••••••• .
X

****03*********
* * * *

RETURN * * ***************

Chart HY. Subroutine SYMSRC

320

.
*t-IZ *
* 83*
* * *

CLEAR X
*****83**********
* * * ACCESS INDEX * * MAPPING *X •••
* TABLE ENTRY *
* * *****.***********

SETCOD .X.
C3 * •

• * IS *.
YES .* REG ASSOC * •

.••• *. WITH ENTRY .*
.AVAILABLE.

. .
* •• * * NO

. .

.SETCDI X
*****03**********
* MAKE REGISTER * * AVAILABLE BY *
CHANGING STATUS
* OF ENTRY TO * * UNASSIGNED *

.X.
E3 * •

• * LAST *.
• .* ENTRY IN *. NO •
••• X*.INOEX MAPPING.*~ •••

. TABLE .
. .

* •• * * YES

.
X

****F3*********
.* *
* RETURN * * * *******-*******

Chart HZ. Subroutine CLEAR

Phase 20 321

*IA *
* 83*
" " *

.x.
83 * •

• * DECK *. ****84*********
.* OR *. NODECK * *

. NODECK . •••••••• X* RETURN *
. OPTION . * *
.. ***************

* •• * X
" DECK

.x.
C3 * •

• * * • • * IS *. YES
. CARD AREA . ••••••••••••••••••

. BLANK .
*. • * *. .*

" NO

X
*****03**********
" ACCESS CARD *
* NUMBER FOR "
* USE IN CARD *
"IDENTIFICATION *
" * *****************

.x.
E3 *. *****E4**********

.* *. * *
.* GO *. YES * ENTER INFO *

. OPTION . •••••••• X* IN CARD AREA *
.SPECIFIED. * ONTO GO TAPE *

* * *****************

. .

.x •••••••••••••••••••••••••
• x.

F3 *. *****F4**********
.* *. * *

.* DECK *. YES * CALL FORTRAN *
. OPTION . •••••••• X*SYSTEM DIRECTOR*

.SPECIFIED. "TO PUNCH A CARD"
.. * *

* •• * *****************
" NO

. .

.x •••••••••••••••••••••••••
X

*****G3**********
* " *
"

CLEAR
CARD
AREA

*
" *
* *****************

X
****H3*********

* ..
* *

RETURN " ..

Chart IA. Subroutine PUNCH

322

*18 *
* B3*
* *
*

X
*****83**********
*INO TO CALLING *
*ROUTINE THAT A *
*FUNCTION IS TO *.
* BE PROCESSED *
* VIA CALL RTN *

X
*****C3**********
BVLSR HWB3
--*-*-*-*-*-*-*
* PLACE INTEGER *
* PARAMETER ON *
* BNO VAR LIST *

X
****03*********

* * * RETURN *
* * ***************

Chart lB. Subroutine HANDLE

Phase 20 323

*IC *
* 81* . .

ESORLD .X.
Bl *. *****82**********

.* IS *. * * .* CUR ENTRY *. YES ... SET •
.REFERENCED IN. •••••••• X* ADDRESS *

. ESDTAS . * INTO TEXT
.. * *

. . ***************** * NO

*IC *
* 53* • *

. CALRLO X
*****83·*****"'***
• * * FORM AN RLD * ENTRY IN *X B3 *

RLDCRD AREA * * * .
.***********

.x.

*IC *
* 85*

CALTXT X
"'****B5**********
• *

FORM A TEXT *
* ENTRY IN * * TXTCRD AREA

.x. X
****-Cl********** * ASSIGN LOAD *
* CONSTANT ADDR *
* ENTER INTO *
* TEXT AND *

X C3 *. CS *.
****C2********* .* *. ·***C4·*-*"'**_. .* *.

* * NO.* RLOCRO •• • - NO .* IS *. RETURN *X •••••••• *. AREAS .* • RETURN *X •••••••• *. TXTCRD .*
* *. FULL .* • * *. FULL .* ESDTAS *

*****.********* *..* ******.** ••• *** ••• *

X
*****01********** · . FORM AN ESO

ENTRY IN *
ESOCRD AREA *

X
*****El**********
* * seT CURRENT *
• ESIDIN •
*CLRRENT RLDCRD •
* AREA *
.****************

• x.
F 1 *. *****F2**********

• * *. * * • * FIRST *. YES SET CURRENT
. ENTRY IN . •••••••• X* ESID IN *

. ~SDCRD . * ESDCRD AREA ...
.AREA . * *

* •• * ***************** * NO

.x.
Gl *.

.* *. .* IS *". NO *. ESDCRD .* •••• *. FULL .*
. . * ••• * YES

X
*****Hl*·****·***
.ESDPUN IE83*
--*-*-*-*-*-*-*

PUNCH AN *
* ESD
... CARD *
* •• **.********_.*

X
****·Jl···-***·**
* * FORM A TEXT X •
: T~~~:b !~EA :X •••••••••••••••••
• * ****************.

X
·*-**Kl·***·*·**­
.ESDPUN IEB3.
-.--.-*-*-*---*
- PUNCH A -TEXT
• CARD * **.*** •••• *** ••• *

x
***.

* * • B3 -
* *

••• *" * •• * * YES - YES

.x. CAL TOO X
03 *. *****05****.* •• ** • * *. *ESOPUN I EB3.

•• TXTCRO *. NO .-.-*-.-*-*-.-*-*
. AREA . •••••••••••••••••••••••••••••••••• x* PUNCH A *

. EMPTY . * TEXT
. . * CARD *

* •• * ***** ••••• *******
• YES

. .
••• x.

.x.
****.E4********** E5 *.
*ESOPUN lEBa.
.-*-*-*-*-*-*-*-* NO.. ESDCRD *.

PUNCH AN .X •••••••• *. AREA .*
ESO * *. EMPTY .*

* CARD * *..*
******.******.*** *. •• * YES

. .
••••••••••••••••••••••••• X •

.x.
.****F4.......... F5 ••
ESOPUN I E83 .* ••
.. -*-*-*-*-.. -*-.-. YES.* RLOCRO *.

PUNCH AN *X •••••••• _. AREAS .*
* RLD * *. FULL .*
.. CARD * *..*
** .. *.***.*** ... *** *. • *

* NO

X
"***GS***·"··*·

* * • •••••••••••••••• x. RETURN .
.* ****

Chart IC. Subroutine ESDRLD/CALRLD/CALTXT

324

•. ****
*10 * * A3*
* * *

.X.
B3 *. *****B4**********

.* WILL *. * PUNCH *
.* INFO *. NO *-*-*-*-*-*-*-*-*

. FIT ON THE . •••••••• X* PROCESS *
. TEXT. * TEXT CARD *

.CARD . * *
* •• * ***************** * YES

. .

.X •••••••••••••••••••••••••

X
*****C3********** * . ENTER * * INFORMATION *
* IN * * TEXT CARD *
* * *****************

.X.
03 *. *****04**********

.* IS *. * PUNCH *
.* THE *. YES *-*-*-*-*-*-*-*-*

. CARD . •••••••• X* PROCESS *
. FULL. * TEXT CARD *
.. * * * •• * * NO

. .

.x •••••••••••••••••••••••••

X
****E3*********

* * * RETURN .*
* * ***************

Chart 1D. Subroutine GENCON

Phase 25 325

*IE *
* B3*
* *
"

ESDPUN X
*****83**********
* * * CALCULATE *
* CURRENT CARD "
" NUMBER "
" " *****************

· X
*****C3**********
* MOVE CARD " * NUMBER AND " * CARD IMAGE TO "
" CURRENT CARD "
" BUFFER "

· .x. .*.
03 *. 04 * •

• * *. .* * • • * GOGO *. OFF .* ERROR *. ON
. OPTION . .••••••. X*. SWITCH .* ••••••••••••••••••

. . *. .*
.. *..*

. . *. .* * ON * OFF

· . • X •••••••••••••••••••••••••

· .X.
*****E2********** E3 *.
...* *.
* PUNCH * ON.* OECK *. * A *X.......... OPTION .*
* CARD'" *. .*
... * *...
***************** .* • • *

" OFF

. .
••••••••••••••••••••••••• X.

· .X.
F3 *.

.* *.
*****F4*********·
" *

Chart IE.

326

• * GO * • ON * *. OPTION .* •••••••• X*
. . *

. .
* •• *

" OFF

· X
** ... ·G3****** ... **

"

PUT CARD
IMAGE ON GO

FILE

" " .
*X ••••••••••••••••• " RETURN

" ***************

Subroutine ESDPUN

"

* " " "

X
****E5*"'*"'*****

* " * RETURN "
" * *_if*"'.*******.*

Phase 25 creates the object coding for
the FORTRAN source program from the inter­
mediate text entries and the overflQw
table. Instructions are generated and
punched in the object deck if the DECK
option is specified and/or written on the
GO tape if the GO option is specified.
Addresses are assigned to entries, in the
branch list which is written on the output
data sets.

Phase 25 accesses entries in the inter­
mediate text and checks the adjective code
to determine the type of the entry. The
adjective code determines which Phase 25
subroutine processes the entry. The proc­
essing subroutine generates the instruc­
tions.

Chart 08, the Phase 25 Overall Logic
Diagram, indicates the entrance to and exit
from Phase 25, and is a guide to the
overall functions of the phase.

If the adjective code for a statement
number definition is recognized, the con­
tents of the location counter are inserted
in the branch list entry for the statement
number. The relative numbers for statement
numbers in ttie branch list were established
in Phase 14. Another branch list, created
by Phase 25, contains the addresses of the
beginning of arithmetic statement function
expansions and addresses to control branch­
ing with a DO loop.

Phase 25 completes the generation of the
base value table. Each address assigned to
a base register is placed in this table.

When the intermediate text entry for the
END statement is recognized, both branch
list tables and the base value table are
entered into the output data set. All
three tables must be relocatable. All
entries in these tables are entered in RLo
cards, as well as text cards.

When Phase 25 has completed its execu­
tion, a test is made. for an error or
warning condition within the program. If
one exists, Phase 25' calls the FORTRAN
System Director to load Phase 30. If an
error or warning did not exist in the
compilation, the FORTRAN System Director is
called to load the Control Card routine.

PHASE 25

OBJECT PROGRAM TABLES

Several tables are used by the object
program to execute the instructions gener­
ated by Phase 25. These tables are assem­
bled in their final form in Phase 25.

Branch List Table for Statement Numbers

Phase 14 allocated storage for a branch
list table. Each statement number, not a
FORMAT statement number but referenced by a
GO TO, Computed GO TO, IF, or DO statement,
was assigned a relative number in this
branch list table. This relative number
was placed in the chain field of the
dictionary entry in the overflow table.

When an entry for a statement number
definition is recognized by Phase 25, the
OVerflow table entry is accessed, and the
relative number is used to assign a posi~
tion to the statement number in the branch
list. The value of the location counter is
placed in this position in the branch list
table. The next instruction generated by
Phase 25 is the first instruction for the
referenced statement.

The following instructions are generated
for the portion of a FORTRAN statement that
references the statement number:

L 1,address in the branch list
BCR 15,1

The first instruction loads the address
of an entry it:?- the branch list into general
register 1; the second instruction branches
to the address placed in general register
1.

Branch List Table for ASF Definitions and
DO Statements

A second branch list table is generated
by Phase 25 for arithmetic statement func­
tion expansions and DO statements. A num­
ber assigned to each arithmetic statement
function by Phase 14 is used to assign
locations in the second branch list table
for each arithmetic statement function
expansion. Phase 25 inserts the address of
the first- instruction in the arithmetic
statement function expansion in this loca-

Phase 25 327

tion in the branch list. Any statement
referencing the ASF uses the number of the
ASF to find the address of the beginning of
the ASF expansion.

Phase 25 also assigns each DO statement
a location in the branch list. The address
of an instruction near the beginning of the
DO loop is entered in that location in the
branch list. Object program instructions
located at the end of the DO loop access
this location in the branch list and branch
to the address in the location.

The format for the second branch list is
illustrated in Figure 54.

r---1
, address of ASF expansion 1 ,
~---~
, address of ASF expansion 2 ,
~---~ , , , " , ,
~---~
, address of ASF expansion N I
~---~
, address of instruction in DO loop 1 ,
~---~ I address of instruction in 00 loop 2 ,
~---~ , ,
, I
, I
~---~
, address of instruction in DO loop M I L ___ J

Figure 54. Branch List Table 2

Base Value Table

The base value table (see Figure 5~ is
generated by other phases of the FORTRAN
compiler and Phase 25. An object program
can use only general registers 4, 5, 6, and
7 as base registers. When the object
program is entered, these registers are
initialized with values from the base value
table. If a base register other than 4, 5,
6, or 7 is used in an object program, the
table is used to take special action. The
value for each base register used by the
object program is inserted in the base

value table. The first entry in the base
value table is the value placed in register
4: the second refers to register 5, etc.

r---l
Ivalue placed in the first base register I
lused to access data in COMMON ,
~---~
I I
I I
I I
~---~
Ivalue placed in the last base register ,
lused to access data in COMMON I
~---~
Ivalue placed in the first base register I
lused to access data in the object program'
~--------. ------------------------------~

I I
I I , ,
~--------------------. ----------------~
'value placed in the last base register ,
,used to access data in the object program' L ____________________________________ J

Figure 55. Format of the Base Value Table

For a program which uses registers 4 and
5 to access COMMON and registers 6, 7, 8,
9, 10, and 11 to access data and instruc­
tions in the object program, the base value
table takes the values shown in Figure 56.

The value 20480 should be entered in
general register 11. However, register 7
is the last register available for use as a
base register. Until Phase 25 is executed,
nothing has been done to correct this
situation. The spill technique is imple­
mented in the instructions generated by
Phase 25. If an intermediate text "entry
indicates that a base register other than
4, 5, 6, or 7 is used to access data, an
instruction is generated to load the value
into general register 7, and 1 is used as
the base register in the instruction.

Epilog Table

A subprogram may have only variables,
arrays, or other subprograms used as param­
eters. A subprogram accesses a variable by

r---------------T-------~-----~------_y_-------r__------r__-----~--------~------1

, Register , 4 , 5 I 6 , 1 , 8 I 9 I 10 I 11 I
~-------------+-------+--------+--------+-------+--------+--------+--------+-------~
, Value I 0 I 4096 I 0 I 4096 I 8192 I 12288 I 16384 I 20480 I L _____________ __L ________ ~ _____ __L _______ _i _______ -L--_____ ~ _____ _i ________ ~ _______ J

Figure 56. Values in a Base Value Table

328

moving the value of the variable from the
calling program to the subprogram. An
array or a subprogram is accessed by moving
the address of the array or subprogram used
as a parameter from the parameter list in
the calling program to the subprogram. The
result of the operation performed by the
subprogram on array Or another subprogram
is in the locations allocated to the sub­
program or array in the calling program.
The result of the operation performed by
the subprogram on the variable is in the
subprogram itself.

The epilog table (see Figure 57) is
generated to return the value of variables
used as parameters to the calling program.
Phase 25 generates an epilog table when' a
FUNCTION or a SUBROUTINE adjective code is
recognized. The epilog table exists only
at compile time.

r----------T----------T-------------------,
I L1 I S1 I address1 I 1--________ .1. ___ '"" ______ .1. _______________ ~

I I
I I
I I
~----------T----------y_-----------------~
I Ln I Sn I addressn I L __________ .1. _________ ~ __________________ J

Figure 57. Format of the Epilog Table

L is the field length of the variable in
the' subprogram; S is the relative location
of the variable in the parameter list in
the calling program; and address is the
location of the variable in the subprogram.

The instructions generated by the RETURN
entry in the intermediate text access the
epilog table to return the value of varia­
bles to the calling program.

INSTRUCTION GENERATION

Phase 25 accesses the intermediate text
and generates instructions by analyzing the
intermediate text. A FORTRAN object pro­
gram makes use '9f all five formats for
System/360 instructions - RR, RX, RS, SI,
and SSe Intermediate text entries for
operations within arithmetic expressions
are almost in final form while other text
entries must be thoroughly analyzed before
instructions can be generated.

Arithmetic Expressions

The text words generated by Phase 15 for
arithmetic expressions contain all 'the ele­
ments for the RX format instruction. The
op-code, result register, base register,
and the displacement have been supplied.
If an index register is used, it is in
connection with an array, and the opera­
tions must be generated by Phase 25 to
adjust the index register. These inter­
mediate text entries are denoted by adjec­
tive codeS 40 through 8F and are processed
by the Phase 25 subroutine RXGEN.

Intermediate Text Entries for Other
Statements

Other text entries still resemble the
output generated by Phase 14. An adjective
code identifies the entry and possibly
several entries that follow it. Various
Phase 25 subroutines analyze these entries
and generate instructions.

A .number of instructions are assembled
for Phase 25. These instructions are not
used to perform any operation; they are
used as constants or literals by Phase 25
to generate instructions. These "skeleton
instructions· are always assembled with an
op-code. They may have a register and an
address.

OUTPUT

phase 25 inserts the generated instruc­
tions, branch lists, and the base value
table into text card images. RLD card
images are created for all entries in the
branch lists and the base value table. The
card images are then written on the GO data
set, if the Compile and Go or GOGO option
is specified, and/or punched into the card
deck, if the DECK option is specified.

STORAGE MAP

The storage map for Phase 25 is shown in
Figure 58.

Phase 25 329

r------------,
Hex. Loc.1 I

150 ~----------~---~
I Communications I
I Region I
~------------~
IFORTRAN System I
I Director I
IF I/O I

FAO ~------------~
IPHASE 25 I

2 E 70 ~-------------~
I I/O Buffer I

2 F 38 ~-------------~
11/0 Buffer I

3000 ~-------------~
I I
IWKARA I
I I
IEpilog table I
IBranch lists I
IOverflow Table I
I I
I I
I I
I I 4000 L _____________ J

Size and loca­
tions vary with
machine size.
Those shown
are for 16R
machine.

Figure 58. Storage Map for Phase 25

SUBROUTINES

The five types of subroutines
Phase 25 are the initialization,
cation, processing, input/output,
eration subroutines.

used in
classifi­
and gen-

SUbroutines INITIALIZATION (RA) and
ENTRY ~U) initialize Phase 25 and generate
object program instructions to initialize
the object program.

Subroutine PRESCN (RB)
intermediate text entries
code.

classifies the
by adjective

The subroutines described in chart des­
criptions RC through RT process the inter~
mediate text entries for various adjective
codes and begin generating the instruc­
tions.

Subroutines BASCHR/RXOUT, RROUT (RX),
and GENaC (R~ generate the object program
instruction and initialize the input/output
subroutines to enter instructions in text
cards.

Subroutines GET ~W) and TXTEST, RLDTXT,
TXTOUT (RZ) supervise the input/output for
Phase 25.

330

Subroutine INITIALIZATION: Chart KA

Subroutine INITIALIZATION initializes
Phase 25. It calculates the size of tables
used by Phase 25, initializes the
input/output data sets, and sets indicators
for spill base registers.

ENTRANCE: Subroutine INITIALIZATION is
entered from the FORTRAN System Director
(FSD) after the FSD has read Phase 25 into

main storage.

OPERATION: Subroutine INITIALIZATION esta­
blishes base registers for Phase 25. It
then calculates the sizes of the branch
table for statement numbers and the branch
table for arithmetic statement fUnctions.
The buffer pOinters are initialized, and
the GOGO option is checked.

If the GOGO option is on, the error
subroutine for the object program is set up
to handle any errors in the object program.
If, during object execution the program
attempts to execute the coding generated
from an erroneous FORTRAN statement, a
branch is generated to the object error
subroutine.

The input buffers are primed. An
address constant is calculated for use in
assigning addresses to object program
instructions. Because these addresses must
be relative to zero, the constant is sub­
tracted from the current value of the
location counter each time an address is to
be assigned to an instruction.

Subroutine INITIALIZATION then initiali­
zes the first text card image. It inserts
the address at which the first instruction
is to be loaded, and computes constants
used in the double-buffering technique.

If a spill base register is necessary,
an indicator is set to indicate to the
other subroutines in Phase 25 that a spill
base register must be used. If COMMON has
used all the base registers for a FORTRAN
program (registers 4 through 7), an indica­
tor is set to indicate a type 3 program. A
type 3 program uses all available base
registers (4, 5, 6, and 7) to reference
COMMON in the object program. A type 3
program presents the problem of not having
a base register to establish addressability
for instructions. Subroutine ENTRY
resolves this problem. Subroutine ENTRY is
then referenced to generate the coding for
the object program to initialize itself.

EXIT: Subroutine INITIALIZATION exits to
subroutine PRESCN to begin processing the
first intermediate text word.

SUBROUTINES CALLED: Subroutine INITIALIZA­
TION references subroutine:

1. ENTRY to assemble coding for an object
program to initialize itself.

2. GET (READXT entry) to prime input
buffers.

3. HEADNG to print a page heading, if
necessary.

Subroutine PRESCN: Chart KB

Subroutine PRESCN passes control to a
Phase 25 subroutine to process the inter­
mediate text entries for a statement.

ENTRANCE: Subroutine PRESCN is entered at
two points. The first entry point, PRESCN,
is used if subroutine PRESCN must access an
intermediate text word. The subroutines
which enter PRESCN under this condition
are: ASFDEF, ASFUSE, ASFEXP, ENDIO, TRGEN,
CGOTO, RETURN, LABEL, RXGEN, FUNGEN, IOL-
1ST, FIXFLT, SIGN, DIM, ABS, and
STOP/PAUSE.

The second entry point, NOGET, is used
if the entering subroutine has accessed an
intermediate text word, and sUbroutine
PRESCN must not access another intermediate
text word. The subroutines entering PRESCN
under this condition are: INITIALIZATION,
ARITHI, D01, ENDDO, SAOP" AOP, SUBRUT,
RDWRT, and STOP/PAUSE.

OPERATION: Subroutine PRESCN uses the
adjective code for the intermediate text
entry to determine which Phase 25 subrou­
tine should process the next series of
intermediate text entries. Using shifting
operations in the registers, subroutine
PRESCN determines how to branch to a sub­
routine. If the adjective code is less
than or equal to 25, (hexadecimal), one
branch table is accessed. If the adjective
code is between 25 and SF, control is
passed directly to subroutine RXGEN/LM/STM.
If the adjective code is greater than or
equal to SF, another branch table is
accessed.

EXIT: Subroutine PRESCN exits to the Phase
~ubroutine determined by the adjective
code.

SUBROUTINE CALLED: During execution, sub­
routine PRESCN references subroutine GET to
access another intermediate text word.

subroutine RXGEN/LM/STM: Chart KC

Subroutine RXGEN/LM/STM processes inter­
mediate entries with adjective codes
between 25 and SF ~exadecimal) and entries
fOr store multiple and load multiple
instructions in an ASF expansion.

ENTRANCE: Subroutine RXGEN/LM/STM is
entered from subroutine PRESCN.

OPERATION: subroutine RXGEN/LM/STM tests
the next entry being processed for an
arithmetic operation within an arithmetic
statement function. If the entry is for an
arithmetic operation, control passes to
subroutine ASFEXP to enter the instruction
in an arithmetic statement function expan­
sion. If the entry is not an arithmetic
operation in an ASF, a test is made to
determine if the entry is to be developed
into an ASF linkage instruction, which uses
only general registers 1q and 15.

If the text entry is neither for arith­
metic operation nor a linkage instruction,
it is not part of an ASF expansion. A test
is made to determine if a register-to­
register (RR) or a register-to-storage (RX)
instruction is to be generated. For an RR
instruction, the second register is
inserted in the text word, and subroutine
RROUT is called to generate the instruc­
tion. If the text entry does not indicate
that an RR instruction is to be generated,
subroutine BASCH!(is called to generate an
RX instruction.

An indication of an ASF linkage instruc­
tion causes a test to be made to determine
if a branch instruction should be generated
from the intermediate text word. If so,
another test is made to determine if this
is the last ASF in the object program. If
it is, the address of the first instruction
in the program that is neither an ASF nor
part of the initialization for the object
program is entered in the branch table so
the last instruction in the object program
initialization may branch around any ASF to
the first instruction. Subroutine
RXGEN/LM/STM then tests for an RR instruc­
tion.

If the instruction is not a branch
instruction, it is an instruction referenc­
ing a dummy variable. Subroutine
RXGEN/LM/STM zeros the bit in the instruc- .
tion set in Phase 20 to indicate that this
intermediate text entry dealt with passing
parameters. The subroutine calls subrou­
tine RXOUT to generate the instruction.

When subroutine RXGEN/LM/STM is entered
to process the load or store multiple
register instructions, a text entry desig­
nating multiple register instructions has

Phase 25 331

been made with the object program address
allocated to storing registers.
RXGEN/LM/STM inserts the load or store
multiple operation code in the text word,
inserts registers 2 and 3 in the instruc­
tion, and calls subroutine BASCHK to gener­
ate the instruction.

EXIT: Subroutine RXGEN/LM/STM exits to
subroutines:

1. PRESCN to process another intermediate
text entry.

2. ASFEXP to process an intermediate text
entry for an arithmetic operation in
an ASF.

SUBROUTINES CALLED: RXGEN/LM/STM calls
subroutines BASCHK/RROUT and RXOUT to gen­
erate object program instructions.

Subroutine LABEL: Chart KD

Subroutine LABEL processes intermediate
text entries for statement numbers defini­
tions.

ENTRANCE: Subroutine LABEL is entered from
subroutine PRESCN when an intermediate text
entry for a statement number is encoun­
tered.

OPERATION: Subroutine LABEL inserts the
statement number in the print buffer. It
then loads the contents of the location
counter in a register, subtracts the
address constant computed in subroutine
INITIALIZATION from the register, and
inserts the result in the print buffer as
the address of the statement number.

The buffer pointer is updated and
checked to determine if the end of the
print buffer is reached. If so, the
FORTRAN System Director is called to print
the contents of the buffer.

If the statement number is referenced by
an executable statement, its entry in the
overflow table is accessed for the branch
list number. This number is used to com­
pute the position for the statement number
in the branch iist. The address for the
statement number location in the object
program instructions is inserted in the
branch list.

EXIT:
PRESCN

Subroutine LABEL exits to subroutine
to process the next intermediate

SUBROUTINES CALLED: Subroutine LABEL ref­
erences the FORTRAN System Director to
print statement numbers in the storage map.

332

Subroutines TRGEN, CGOTO: Chart KE

Subroutine TRGEN

Subroutine TRGEN generates branching
instructions for unconditional GO TO state­
ments.

ENTRANCE: Subroutine TRGEN is entered from
subroutine PRESCN when subroutine PRESCN
encounters an unconditional GO TO adjective
code, and from subroutine RETURN to gener-

'ate an unconditional branch.

OPERATION: Subroutine TRGEN accesses the
overflow table pointer in the intermediate
text word. The relative number in the
branch table is in the overflow table
statement number entry. Subroutine TRGEN
uses the relative number in the branch
table to compute the address of the branch
table entry for the statement number. In
the object program, the address of the
object program instruction for the st.ate­
ment that defined the statement nurrher is
located at the branch table address comput­
ed by subroutine TRGEN.

Subroutine TRGEN generates an instruc­
tion to load the address stored in the
branch table in a general register, and an
instruction to branch to the address con­
tained in the register.

EXIT: Subroutine TRGEN exits to subroutine
PRESCN if an unconditional GOTO is generat­
ed, or subroutine RETURN, if RETURN
instructions are generated.

SUBROUTINES CALLED: During execution sub­
routine TRGEN references the following sub-'
routines:

1 • BASCHK/RXOUT to generate the load
instruction.

2. RROUT to generate the branch instruc­
tion.

Subroutine CGOTO

Subroutine CGOTO processes intermediate
text entries for computed GO TO statements.
It'generates the calling sequence for the
computed GO TO library subroutine.

ENTRANCE: Subroutine CGOTO is entered from
subroutine PRESCN when a computed GO TO
adjective code is recognized.

OPERATlON: Subroutine CGOTO accesses
intermediate text entries until it finds
the variable for the statement. Instruc­
tions are then generated to load the varia­
ble into general register 2 and to load the
beginning address of the computed GO TO
subroutine in a general register. A branch
and link instruction is generated to the
address contained in the register.

The address of the beginning of the
branch list is inserted in the object
program immediately following the BALR
instruction; then, the numbers of paramet­
ers in the call are inserted. Then the
relative number for each statewent number
is inserted in the object program. The
computed GO TO library subroutine uses the
beginning address of the branch table and
the list of relative numbers to branch to
the correct instruction in the object pro­
gram.

EXIT:
SUbrOutine CGOTO exits to subroutine PRESCN
to process the next intermediate text word.

SUBROUXINES CALLED: During execution sub­
routine CGOTO calls the following subrou­
tines:

1. BASCHK to generate load instructions.
2. RROUT to generate the branch and link

instruction and insert the list of
relative numbers in the Object pro­
gram4

3. ARGOUT to insert the beginning address
of the branch list in the object
program.

Subroutines DOl, ENDDO: Chart KF

Subroutine 001

subroutine DOl sets up a DO table for a
DO statement and establishes one instruc­
tion to initialize a DO loop and another
instruction to store the value of the DO
variable.

ENTRANCE: Subroutine 001 is entered from
sUbroutine PRESCN when a DO or implied DO
adjective code is recognized.

OPER TION: Subroutine DOl makes entries in
the DO table which consists of 25 8-byte
entries. Each entry contains four 2-byte
fields and has the following format:

r-----------T----------T--------T---------,
I increment Itest value I I I
lor address lor address I Idisplace-I
lof variablelof variab-Iaddress Iment of I
Irepresent- lIe repre- lof DO I branch I
ling increm-Isenting Ivariablellist I
I ent I test value I I entry I l ___________ ~ __________ ~ ________ ~-________ J

Subroutine DOl ente~s the increment,
test value, and address of the DO variable
in the DO table. D01 also checks the
initializing value of the DO loop for an
immediate DO parameter. If that value is
for an immediate parameter, a load address
instruction is generated to load the ini­
tial value for the DO loop in a general
register. If it is not, a load instruction
is generated to load the parameter from its
location in main storage into the general
register.

An address in the branch list is comput­
ed for the DO loop. Each DO is assigned a
number, and the branch list location is
computed using this number. The contents
of the location counter are placed in the
branch list location. The location counter
contains the address of the next instruc­
tion to be generated.

An instruction is then generated to
store the register containing the DO varia­
ble in the location of the DO variable.

For the statement:

DO 12 I = J, 100, 3

these instructions are generated by subrou­
tine D01:

L 0, J

ST 0, I

The address of the store instruction is
entered in the branch list.

EXIT: Subroutine DOl exits to subroutine
PRESCN to process the first intermediate
text entry within the DO loop.

SUBROUTINE CALLED: Subroutine DOl calls
subroutine BASCHK/RXOUT to generate
instructions.

Subroutine ENDDO

Subroutine ENDDO generates instructions
to end a DO loop.

ENTRANCE: Subroutine ENDDO is entered from
subroutine PRESCN when an end DO adjective
code is recognized.

Phase 25 333

OPERATION: Subroutine ENDDO initializes
the skeleton instruction and then deter­
mines if the increment value is an immedi­
ate DO parameter or a variable. If it is
an immediate DO parameter, a load address
instruction is generated to load the param­
eter in register 2. If it is a variable, a
load instruction is generated to load the
variable into general register 2.

Subroutine ENDDO then checks the test
value of the DO loop for an immediate DO
parameter. If it is, a load address
instruction is generated to load the test
value into general register 3. If it is
not, a load instruction is generated to
load the test value from its location in
main storage into general register 3.

Subroutine ENDDO generates an instruc~
tion to load the DO variable into register
O. The location of the branch list entry
for the DO loop is computed and inserted
into a skeleton instruction. A load
instruction is generated to load the
address in the branch list entry in reg­
ister 1.

Subroutine RXOUT is then called to con­
struct a BXLE instruction. This instruc­
tion is used to increment the DO variable
and test if the DO variable has reached its
test value. The instruction generated is
BXLE 0,2,0(1). For the statement:

DO 25 I=J,100,3

these instructions are generated by subrou­
tine ENDDO:

LA
LA
L
L
BXLE

2,3
3,100
O,I
1,address in branch list
0,2,0(1)

EXIT: Subroutine ENDDO exits to subroutine
PRESCN.

SUBROUTINE CALLED: Subroutine ENDDO calls
subroutine BASCHK/RXOUT to generate
instructions.

Subroutine ARITHI: Chart KG

Subroutine ARITHI processes arithmetic
IF statements in Phase 25.

ENTRANCE: Subroutine ARITHI is entered
from subroutine PRESCN when PRESCN recog­
nizes an IF forcing adjective .code.

CONSIDERATION: The intermediate text input
for an IF statement in Phase 25 has the
following format:

334

r-~--------T----------T-------------------'
IAdjective IMode/Type I I
I Code I Code I Address I
t----------+-----T----+-------------T-----~
IIF I I I I I
I Forcing I model I I R I
t----------+-----~----+-------------~-----~
I I statement I I
I I number I p(l} I
~----------+----------+-------------------~
I , statement I I
I I number I p(2) I
t----------+----------+-------------------~
I , statement I ,
I I number , p (3) ,
~----------+----------+-------------------~
, , ,internal statement ,
I end mark I I number I
~----------+----------+-------------------~
,adjective , laddress or ,
I code I mode/type I p (4) I L __________ i-_________ ~ ___________________ J

The symbols p(l), p(2), and p(3) represent
overflow table pointers to the first, sec­
ond and third statement numbers, respec­
tively, used in the IF statement. If an
arithmetic expression was used as the argu­
ment for the IF statement, Phase 15 has
assembled intermediate text entries for the
computation of the value of the expression
ahead of the. entry containing the forcing
IF adjective code.

These entries are processed by other
subroutines in Phase 25. The entries for
the expreSSion were designed so that the
result is placed in the register R, indi­
cated in the first text word. The instruc­
tion generated from the last text word
before the IF adjective code insures that
the result of the operation is placed in
register R.

OPERATION: Subroutine ARITHI accesses the
text words depicted in the diagram and
places them in a work area. Subroutine
ARITHI tests an indicator set in the low
order portion of the mode/type field in the
IF forcing entry. This indicator indicates
if the instruction generated from the text
entry immediately preceding the IF forcing
entry set the condition code. If the
instruction did not set the condition code,
a load and test instruction is generated to
set the code to test for a negative, zero,
or positive expression value.

The remainder of subroutine ARITHI
optimizes and generates the branching
iristructions for the IF statement (a load
instruction to load register 1 from the
branch list and a branch on condition code
to the address placed in the register) •
The mask for the branch instruction is set
by subroutine ARITHI according to the con-

ditions represented by the statement num­
bers in the IF statement.

The optimization is concerned with the
number of branch instructions generated.
It is affected by the following conditions:

1. Two of the statement numbers are
equal.

2. The entry following the end mark entry
for an IF stat:ement is the statement
number definition for one of the
statement numbers referenced by the IF
statement.

One branch instruction is generated for
two equal statement numbers if the entry
following the end mark entry is the defini­
tion entry for one of the statement numbers
refer-enced by the IF statement.

For example, the FORTRAN statements

IF (I) 1,1,2
1 X = A + 1.0

2 X = A + 1.0

generate the following instructions for the
IF statement:

L O,I
LTR 0,0
L 1,STN02
BCR 2,1

Two branch instructions are generated
for two equal statement numbers referenced
by the IF statement if the entry following
the end mark entry is not the definition
entry for any of the statement numbers in
the IF statement.

For example, the FORTRAN statements

IF (A) 1,1,2
69 LOAD = 2.0 + 2.0

1 X = A+1,0

generate the following instructions for the
IF statement:

LE
LTER
L
BCR
L
BCR

O,A
0.0
1,STN01
13,1
1,STN02
2, 1

Two branch instructions are also gener­
ated for unequal statement numbers if the
entry following the end mark entry for an

IF statement is the definition entry for
one of the statement numbers referenced by
the IF statement.

For example, the FORTRAN statements

IF (A) 1,2,3
1 X = A+1.0

3 X A-1.0

2 X = A

generate the following instructions:

LE
LTER
L
BCR
L
BCR

O,A
0.0
1,STN02
8,1
1,STN03
2,1

Three branch instructions are generated
for unequal statement numbers if the entry
following the end mark entry is not the
definition entry for any of the statement
numbers referenced by the IF statement.

EXIT: Subroutine ARITHI exits to subrou­
tine PRESCN to process the next entry in
the intermediate text.

SUBROUTINES CALLED: Subroutine ARITHI
calls subroutines; GENBC to generate the
branch instructions and RXOUT ,to generate a
load and test instruction.

Subroutine RDWRT: Chart KH

Subroutine RDWRT processes the entries
in the text for the READ/WRITE BACKSPA.CE,
REWIND, and END FILE adjective codes, the
FORMAT statement number, and the reference
to the data set reference number.

ENTRANCE: Subroutine RDWRT is entered by
subroutine PRESCN when PRESCN recognizes
the READ/wRITE, BACKSPACE, REWIND, or END
FILE adjective codes.

OPERATION: Subroutine RDWRT determines if
this is a READ/WRITE statement using a
FORMAT statement. If it is, the FO~~T
indicator is set on. If no FORMAT state­
ment is associated with this input/output
statement, two text words are accessed. If
a FORMAT statement is associated with the
statement, three text words are accessed.

All input/output operations are proc­
essed by IBCOM. Subroutine RDWRT generates

Phase 25 335

a calling sequence to enter and pass param­
eters to IBCOM. Subroutine RDWRT generates
an instruction to load the address of IBCOM
in a general register. The adjective code
for the statement is used to generate a
displacement for a branch instruction. The
displacement is the distance in bytes
between the I/O subroutine represented by
the adjective code and the beginning of
IBCOM. A branch and link instruction is
generated to branch to the particular sub­
routine in IBCOM.

The symbol referencing the data set
reference number is checked for a data set
reference number or an integer variable. A
word is placed in the object program fol­
lowing the branch and link instruction
indicating the type of symbol referencing
the data set reference number, and contain­
ing the address of the integer variable or
the data set reference number, itself.

If the I/O statement requires a FORMAT,
the address of the FORMAT information is
accessed from the overflow table and
inserted in the object program as a param­
eter passed to IBCOM.

EXIT: Subroutine RDWRT exits to subroutine
PRESCN to process the next intermediate
text word.

SUBROUTINE CALLED: Subroutine RDWRT calls
the following subroutines:

1. GET to access intermediate text words.
2. BASCHK to generate the load instruc­

tion.
3. RXOUT to generate the branch and link

instruction and to generate the param­
eter containing the data set reference
number.

4. ARGOUT to insert addresses in the
Object program.

Subroutine IOLIST: Chart KI

Subroutine IOLIST processes each member
in the I/O list.

ENTRANCE: Subroutine IOLIST is entered
from subroutine PRESCN when it detects a
variable in an I/O list designated by a
left parenthesis, right parenthesis, or a
comma.

CONSIDERATION: An instruction was generat­
ed in subroutine RDWRT to load a register
with the starting address Of IBCOM. The
address in this register is not altered by
any of the I/O processing. Instructions in
subroutine IOLIST are generated assuming
this condition.

336

OPERATION: Subroutine IOLIST determines if
the symbol entered in the I/O list is an
array. If it is not an array, the indica­
tor set in subroutine RDWRT is tested to
determine if the symbol in the list
requires a FORMAT. If it does not require
a FORMAT, a displacement is. computed for
subroutine FIOLN in IBCOM, and a branch and
link instruction is generated to call that
IBCOM subroutine. If the symbol does
require a FORMAT, the displacement is com­
puted for subroutine FIOLF in IBCOM and a
branch and link instruction is generated to
call that IBCOM subroutine.

To complete the calling sequence for
either FIOLN or FIOLF, a parameter word is
generated. This word contains the length
of the variable (4 for real or integer, 8
for double-precisio~, an indexing register
if the variable is subscripted, and t.he
base-displacement address of the variable
in the I/O list.

When this subroutine was entered, a test
was made to determine if the item in the
I/O list is an array. If the item is an
array, the next text word is accessed, and
the indicator set in subroutine RDWR'I' is
tested to determine if the array requires a
FORMAT. If the array does require a
FORMAT, the displacement is calculated for
subroutine FIOAF in IBCOM, and a branch and
link instruction is generated to subroutine
FIOAF. If the array does not require a
FORMAT, a displacement is computed for
subroutine FIOAN in IBCOM, and a branch and
link instruction is generated to FIOAN.

If the item in the I/O list is an array,
two parameter words are generated. The
first word contains the beginning address
of the array; the second contains the
length and number of the elements in the
array.

EXIT: Subroutine
tine PRESCN after
entry is processed.

IOLIST exits to subrou­
the intermediate text

SUBROUTINES CALLED: During execution, sub­
routine IOLIST calls the following subrou­
tines:

1. RXOUT to generate branch and link
instructions and to insert the length
and number of elements in a -parameter
word for an array.

2. ARGOUT to insert the address of the
beginning of an array in the object
program.

3. BASCBK to generate the parameter word
for variables in an I/O list.

Subroutine ENDIO: Chart KJ

Subroutine ENDIO processes the
entry in the intermediate text.

end I/O

ENTRANCE: Subroutine ENDIO is entered from
subroutine PRESCN when an end I/O list
adjective code is recognized.

OPERATION: Subroutine ENDIO tests the
indicator set by subroutine RDWRT to deter­
mine if the I/O list requires a FORMAT. If
it does, the displacement for subroutine
FENDF in IBCOM is calculated, and a branch
and link instruction is generated to call
subroutine FENDF. If the I/O list does not
require a FORMAT, the displacement for
subroutine FENDN in IBCOM is calculated,
and a branch and link instruction to call
subroutine FENDN is generated. The FORMAT
indicator is set off.

EXIT: Subroutine ENDIO exits to subroutine
PRESCN to process the next intermediate
text entry.

SUBROUTINE CALLED: Subroutine ENDIO calls
subroutine RXOUT to generate the branch and
link instructions.

Subroutines SAOP, AOP: Chart KL

Subroutine SAOP

Subroutine SAOP processes intermediate
text entries for subscript calculation if
the entire subscript indexing factor must
be calculated.

ENTRANCE: Subroutine SAOP is entered
subroutine PRESCN when an SAOP or
adjective code is recognized.

CONSIDERATION: The intermediate
entries for subscripted variables are
the format as described in Phase 20.

from
XOP

text
in

r----------T-----------T------------------,
IAdjective IMode/Type I I
I Code I Code I Pointer I
~----------+-----T-----+------------------~
IXOP or I I I I
ISAOP I N I W I Offset I
~----------~-----~-----+---------~--------~
I p (subscript) I C1 *L I
~----------------------+------------------~
I C2*Dl*L I C3*Dl*D2*L I
~----------T-----T-----+_-----------------~
I Op I R I X I Address of A I l __________ ~ _____ ~ _____ ~ __________________ J

where:

N
W=
R

X

number of dimensions
work register
register containing
operation
index register

the result of the

OPERATION: Subroutine SAOP gets the next
three intermediate text words, stores them
in a work area, and begins generating
instructions for the first subscript param­
eter.

If the first parameter is a constant, no
instructions are generated for it; the
first parameter was included in the offset.
If it is not a constant, a test is made to
determine if a literal was generated for
C1*L. If a literal was generated, an
instruction is generated to load X with
Cl*L. Then, an instruction is generated to
multiply the contents of X by V1. If a
literal was not generated, the product C1*L
was found to be a number of the form 2 and
the number p was entered in the pointer
field of the intermediate text by Phase 20.
V1 is loaded into X. An instruction is
generated to multiply the contents of X by
shifting left p bits.

A test is made to determine if there is
more than o~e subscript parameter in the
subscript expression. If there is another
parameter, a test is made to determine if
the second parameter is a constant. If it
is, no code is generated for this paramet­
er. If the second parameter is not a
constant, an instruction is generated to
load C2*D1*L into the work register.
Another instruction is generated to multi­
ply the contents of W by the value V2. The
next instruction generated adds the con­
tents of W to the contents of X. The
dimension count is decreased by 1 and a
test is made for a third dimension.

The third dimension instructions are
similar to those generated for the second
dimension. C3*Dl*D2*L is loaded into W; W
is multiplied by V3, and the contents of W
are added to X.

When all the instructions have been
generated for the variables in the sub­
script expression, a test is made to deter­
mine if the instruction is part of an I/O
list. If it is, an indicator is set for
the I/O subroutines to handle this condi­
tion.

A test is then made to determine if the
offset is a literal. If it is, an instruc­
tion is generated to add the literal to the
contents of X. If the offset is not a
literal, the offset is added to the dis­
placement portion of the instruction to be
executed for the subscripted variable.

Phase 25 337

r---,
I Condition I Instruction I Alternate Instructions I
~---~
I I L X=(C1*L) I L X,V1 I
I First variable I MH X, V1+ 2 I SLA X, p I
~---~
I I L W,= (C2*D1*L) I I
I Second variable I MH W, V2+2 I I
I I AR X,W I I
~---~
I I L W,= (C3*D1*D2*L) I I
I Third variable I MH W,V3+2 I I
I I AR X,W I I
~---~
I Offset I A X,= (offset) I no instruction I
~--..:--------------------~
I Operation I op R,A (X) I op R,A+offset (X) I L __ ----------_J

For the general form illustrated above,
these instructions are generated:

EXIT: Subroutine SAOP exits to subroutine
PRESCN to assemble the instruction for the
subscripted variable.

SUBROUTINES CALLED: During execution sub­
routine SAOP calls subroutines BASCHK/RXOUT
and RROUT to generate instructions.

Subroutine AOP

Subroutine AOP processes entries in the
intermediate text for subscript calcula­
tions that do not use variables.

ENTRANCE: Subroutine AOP is
subroutine PRESCN when an
code is recognized.

entered from
AOP adjective

CONSIDERATION: The intermediate text
entries for a subscripted variable with an
AOP adjective code are in this format as
described in Phase 20:

r----------T-----------T------------------,
IAdjective IMode/Type I I
I Code I Code I Pointer I
~----------+-----------+------------------~
IAOP 100 I offset I
~----------+-----T-----+_-----------------~
lOP I R I X laddress of A I L---' ________ .1. _____ .1. _____ .1.-___________ -' _____ J

The offset may be in the form of an
actual constant or a literal with the
address of the literal in the intermediate
text entry. The AOP entry is made for
variables with a constant subscript, or for
a subscript calculation that has been elim­
inated by Phase 20.

OPERATION:
operation

338.

The text
performed

word containing the
on the subscripted

variable is accessed and a test is made to
determine if the offset is a literal. If
it is not, the offset is added to the
displacement portion of the address in the
instruction portion of the literal.

If the offset was a literal, a test is
made to determine if the offset is for a
constant subscript or was generated by
Phase 20 for use with a previousl~ calcu­
lated subscript expression. If it is for a
constant subscript, an instruction is gen­
erated to load the offset into X. If it is
for use with a previously calculated
expression, the offset is really an adjust­
ing factor for X, and the offset is added
to the contents of X.

A test is then made to determine if
entry is in an I/O list. If it is, the
list indicator is set on for reference
the I/O subroutines.

the
I/O

by

In summary, no subscript calculations
are generated for an offset that is not a
literal. The instruction for the operation
takes the form:

op R,A+offset

For a literal, one instruction is generated
for subscript calculation. If the offset
is for a constant subscript, the instruc­
tion:

L X,= (offset)

is generated. For an offset used as an
adjustment factor on a previously calculat­
ed expression, the instruction:

A X,= (offset)

is generated. The instruction containing
the operation takes the form:

op R,A (X)

EXIT: Subroutine AOP exits to subroutine
PRESCN to generate the instruction contain­
ing the operation on the subscripted varia­
ble.

SUBROUTINES CALLED: During execution sub­
routine AOP calls sUbroutine BASCHK to
generate the instruction for adjusting X
with the offset.

Subroutines ASFDEF, ASFEXP, ASFUSE: Chart
RM

Subroutine ASFDEF

Subroutine ASFDEF
word for an arithmetic
definition.

processes the first
statement function

ENTRANCE: Subroutine ASFDEF is entered
from subroutine PRESCN when the ASF defini­
tion adjective code is recognized.

OPERATION: Subroutine ASFDEF accesses the
ASF number in the pointer field of the
intermediate text entry and calculates the
address of this number in the second branch
table. The operations defining the arith­
metic statement function follow this text
word. The contents of the location counter
are inserted at the address in the ASF
table just calculated.

EXIT: Subroutine ASFDEF exits to subrou­
tine PRESCN to get the first word of the
arithmetic statement function expansion.

Subroutine ASFEXP

Subroutine ASFEXP processes intermediate
text entries for arithmetic operations in
an arithmetic statement function expansion.

ENTRANCE: Subroutine ASFEXP is entered
from subroutine RXGEN/LM/STM when the
intermediate text entry for an arithmetic
operation in an ASF expansion is recog­
nized.

OPERATION: An instruction is generated by
subroutine RXGEN immediately before calling
the instructions for an ASF. This places
the address of the parameter list for an
ASF reference in a general register. The
parameter list contains the addresses of
the parameters used in the ASF reference.

Subroutine ASFEXP accesses the pointer
field in the intermediate text word to find
which parameter is used in this text word.
It generates an instruction to load the

address for the parameter in general reg­
ister 15.

Subroutine ASFEXP accesses the operation
field and the work register aSSigned to the
operation in the intermediate text word.
It then generates an instruction to perform
the operation, placing the result in the
work register. The displacement field of
this instruction contains a zero. The base
register is general register 15, because
the first generated instruction placed the
address of the parameter in general reg­
ister 15.

For example, if the text word,

r----------T----------T-------------------,
IOperation IMode/Type I I
I Code I Code I Pointer I
.----------+----------+-------------------~
I AE I 60 I 1008 I l __________ ~ __________ ~ ___________________ j

is generated by Phases 15
following instructions are
Phase 25:

L 15, 8 (9)
AE 6, 0 (15)

and 20, the
generated by

The displacement 8 in the first instruction
is accessed from the pointer field in the
text word. The work register 6 is accessed
from the mode/type field, and the operation
AE is accessed from the adjective code
field in the text word. In this example,
register 9 is used to pass the address of
the parameter list.

EXIT: Subroutine ASFEXP exits to subrou­
tine PRESCN to process the next text word.

SUBROUTINE CALLED: During execution sub­
routine ASFEXP calls subroutine RxOUT to
generate object program instructions.

Subroutine ASFUSE

Subroutine ASFUSE generates the instruc­
tions to call an arithmetic statement func­
tion.

ENTRANCE: Subroutine ASFUSE is entered
from subroutine PRESCN when the adjective
code for an ASF usage is recognized.

OPERATION: Subroutine ASFUSE accesses the
pointer field of the text word and gets the
ASF number aSSigned to the called function.
The. number is used to compute the address
of the entry in the ASF table. This
address is entered in a load instruction,
which is generated to load the address from

Phase 25 339

the ASF table of the first instruction in
the ASF expansion in general register 15.

Subroutine ASFUSE then generates an
instruction BALR 14, 15 to branch to the
first instruction in the ASF expansion.

EXIT: Subroutine ASFUSE exits to subrou­
tine PRESCN to process the next intermedi­
ate text word.

SUBROUTINES CALLED: During execution sub­
routine ASFUSE calls subroutines RXOUT and
RROUT to generate the load instruction and
the branch instruction, respectively.

Subroutine SUBRUT: Chart KN

Subroutine SUBRUT processes FUNCTION and
SUBROUTINE header cards. It builds the
epilog table for the subprogram and gener­
atesinstructions to pass the parameters in
the calling program to the subprogram.

ENTRANCE: Subroutine SUBRUT is entered
from subroutine PRESCN when the adjective
code for a FUNCTION or SUBROUTINE header
card is recognized.

OPERATION: Subroutine SUBRUT computes the
address of the epilog table, in order that
the epilog table can be constructed.

Subroutine SUBRUT gets the next text
word and tests it for an end mark entry.
If it is an end mark, the end of the
intermediate text entries for the subpro­
gram has been reached. Subroutine SUBRUT
then generates a branch instruction to
bypass instructions that will be generated
for any ASF in the subprogram.

If the next text word is not an end
mark, a test is made to determine if the
text word is a dummy array. If it is, a
move instruction is generated to move the
address of the dummy from the parameter
list in the calling program to the field
that has been allocated to the dummy symbol
in the SUbprogram. During object execution
the address of the parameter list is passed
to the subprogram in a general register.
In Phase 25 the displacement of the param­
eter from the beginning of the parameter
list is obtained by maintaining a count of
the number of dummy names accessed by
subroutine SUBRUT.

If the dummy name is a variable, its
value, not its address, is passed to the
subprogram. If the dummy name is a func­
tion, the address of an address constant is
passed to the subprogram. A load instruc­
tion and a move instruction are generated.
The mode of the variable is tested, and the

340

number 4 for real or integer, or 8 for
double-precision variables is saved. The
displacement of the parameter from the
beginning of the parameter list is inserted
in the load skeleton instruction. A load
instruction is then generated to access the
address of the variable in the main program
from the parameter list and put it in a
general register. For example, subroutine
SUBRUT may generate the instruction:

L 2,DISP2 (1)

where 1 is the general register in which
the address of the parameter list was
placed by the calling program, and DISP2 is
the displacement of the second variable
from the beginning of the parameter list.
The result of this instruction is the
placement of the address of the second
parameter in the calling program in general
register 2.

A move instruction is generated to move
the variable used as a parameter in the
calling program to its location as a dummy
variable in the subprogram. The address
assigned to the dummy variable is placed in
the move skeleton instruction and the move
instruction is generated. For example,
subroutine SUBRUT generates the following
instruction after the load instruction:

MVC DUMMY2 (4), 0 (2)

where DUMMY is the location of the dummy
variable in the subprogram and, if it is
double-precision, its field length is 8.

The information for a dummy variable is
placed in the epilog table, which is used
by instructions generated by subroutine
RETURN to return the value of dummy varia­
bles to the main program. The length of
the variable, parameter list displacement,
and the address of the variable in the main
program are placed in the epilog table.
The displacement for the parameter list is
updated, and subroutine SUBRUT gets the
next text entry to determine if it is an
end mark.

EXIT: Subroutine SUBRUT exits to subrou­
tine PRESCN when an end mark indicating the
end of the parameter list is recognized.

SUBROUTINES CALLED: During execution, sub­
routine SUBRUT calls the following subrou­
tines:

1. GENBR to generate a branch around the
ASF expansions.

2. RXOUT or RROUT to generate move
instructions.

3. RXOUT. to generate load instructions.
4. GET to access intermediate text words

from the input buffer.

Subroutine RETURN: Chart KO

Subroutine RETURN processes any inter­
mediate text entries for a RETURN state­
ment.

ENTRANCE: Subroutine RETURN is entered
from subroutine PRESCN when a RETURN adjec­
tive code is recognized.

OPERATION: If any previous RETURNS have
been processed for the subprogram, subrou­
tine RETURN generates instructions for the
following RETURNS to branch to the coding
generated for the first RETURN.

If no previous RETURNS have been gener­
ated for the subprogram, the coding for the
RETURN must be generated. The address of
the RETURN coding is placed in the branch
list, so that following RETURNS generated
in the subprogram may branch to the same
RETURN coding. Instructions are then gen­
erated to load the pointer to the parameter
list in a general register and to return
the value of the parameters to the caller.

If the subprogram is a FUNCTION subpro­
gram, an instruction is generated to return
the value of a function in a general
register.

When the SUbprogram was entered,
instructions were generated to save the
registers of the calling program in main
storage. The pointer to this area is
placed in a general register. If another
subprogram is called within a subprogram,
this pointer must be saved in main storage.
When the subprogram is returning to the
calling program, this pointer must be
reloaded into a register so that the reg­
isters for the calling program can be
restored.

Instructions are then generated to res­
tore the registers to the same values they
contained when the subprogram was called.

\ The exit branch is then generated to
return control to the calling program. The
address to which the subprogram should
return was left in register 14 by the
branch and link instruction of the calling
program.

EXITS: Subroutine RETURN exits to subrou­
tine PRESCN after the instructions for a
RETURN have been generated.

SUBROUTINES CALLED: During execution sub­
routine RETURN calls the following subrou­
tines:

1. RROUT, RXOUT, and BASCHK to generate
instructions for the first RETURN in a
subprogram.

2. TRGEN if
generated
branch to
RETURN in

a RETURN has already been
to generate an unconditional
the coding for the first
the subprogram.

Subroutine FUNGEN/EREXIT: Chart KP

Subroutine FUNGEN/EREXIT processes all
in-line and library function calls. If the
GOGO option is on, subroutine FUNGEN/EREXIT
is used to generate the coding where source
program errors occurred.

ENTRANCE: Subroutine FUNGEN/EREXIT is
entered from subroutine PRESCN when:

1. An in-line function is called.
2. A library function is called.
3. An exponentiation operation is to be

performed.
4. An intermediate text entry for an

error is encountered.

OPERATION: Subroutine FUNGEN/EREXIT is
points. The first entry
tests for an in-line fUnc-

entered at two
point, FUNGEN,
tiona

If the function is in-line, subroutine
FUNGEN/EREXIT uses the function identifi­
cation number to access a branch table and
find the address of the subroutine used to
generate the coding.

The second entry point, EREXIT,
subroutine FUNGEN/EREXIT to access
address of the library subroutine
from the communications area.

causes
the

IBERR

If the function is not in-line, subrou­
tine FUNGEN/EREXIT generates instructions
to load the address of the library function
from its address constant in a general
register, and an instruction to branch to
the address loaded in the register.

EXIT: Subroutine FUNGEN/EREXIT exits to
subroutine PRESCN after generating the lin­
kage instructions for a library subroutine,
or the proper subroutine for generating a
specific in-line function.

SUBROUTINES CALLED: During execution sub­
routine FUNGEN/EREXIT calls subroutines
BASCHK and RROUT to generate the instruc­
tions for linkage to a library subroutine.

Phase 25 341

· Subroutines FIXFLT, GNBC6: Chart KQ

Subroutine FIXFLT

Subroutine FIXFLT generates instructions
for the in-line fUnctions IFIX, FLOAT, and
DFLOAT.

ENTRANCE: Subroutine FIXFLT is entered
from subroutine FUNGEN/EREXIT when the
function number in the intermediate text
word indicates one of the in-line functions
IFIX, FLOAT, or DFLOAT.

CONSIDERATION: Phase 15 enters intermedi­
ate text words for in-line fUnctions. One
word forces the Phase 25 subroutine
RXGEN/LM/STM to generate an instruction to
insert the argument in a floating-point
register. The second word contains the
adjective code for an in-line function, the
number of a floating point register (R1)
and a fixed point register ~2), and the
number of the in-line function in the
pointer field. Phase 15 generates text
words to insure that RXGEN generates
instructions to initialize R1 and R2, and
possibly a third fixed point register whose
number is R2-1.

OPERATION: Subroutine FIXFLT determines if
the in-line function is IFIX. If it is,
the following instructions are generated:

AW
STD
L
BALR
BO
LNR

R1,CONST
R1,WORK
R2,WORK+4
15,0
10,6 (15)
R2,R2

Phase 15 generated a text word that
insured that the floating-point word was
loaded into R1. The add unnormalized
instruction adds the constant
4EOOOOOOOOOOOOOO to R1. This insures that
the integer portion of the number is locat­
ed in the low order portion of the number.
The store double and load instructions load
the low order portion of this number into
R2. The BALR instruction is generated to
insure addressability for the next generat­
ed instruction. The add unnormalized
instruction sets the condition code, and
the three instructions following it do not
change the code. A branch on condition
code instruction is generated to determine
if the original floating-point number is
negative. If it is, the instruction fol­
lowing the BCinstruction is executed and
the number in the general register is made
negative by the load negative instruction.
Otherwise, the branch on condition code
instruction branches around the load nega­
tive instruction.

342

If the in-line function 'is not IFIX, the
instructions for FLOAT and DFLOAT are gen­
erated. The instructions for either of
these subroutines are the same. The text
entries made by phase 15 before and after
the text word containing the in-line func­
tion number cause RXGEN to generate
instructions for either single precision or
double precision variables.

The instructions generated by subroutine
FIXFLT/GENBC6 are:

LPR
ST
LD
AD
LTR
BALR
BC
LNER

R2-1,R2
R2-1, WORK+4
R1,CONST
R1,WORK
R2,R2
15,0
10,.6(15)
R1,R1

Phase 15 entered a text word word which
forced RXGEN to generate an instruction to
load the argument of the function in R2.
Subroutine FIXFLT generates an instruction
to load positive the value in R2 into R2-1.
The value in R2-1 is stored in a work area.
The constant 4EOOOOOOOOOOOOOO is then load­
ed into register R1, and the contents of
the work area are added to register R1. A
load and test instruction is generated to
determine if the integer number is negative
or positive, and the same three instruc­
tions are generated for DFLOAT and FLOAT
that were generated for IFIX.

EXIT: Subroutine FIXFLT exits to subrou­
tine PRESCN to process the next intermedi­
ate text entry.

SUBROUTINES CALLED: Subroutine FIXFLT
calls the following subroutines:

1. BASCHK/RXOUT and RROUT to generate
instructions.

2. GNBC6 to generate the branch instruc-
tions.

Subroutine GNBC6

Subroutine GNBC6 generates branch
instructions for the in-line functions.

ENTRANCE: Subroutine GNBC6 is entered from
subroutines FIXFLT, SIGN, and DIM.

OPERATION: When
entered, the calling
that instruction has
the condition code.

subroutine GNBC6 is
subroutine has insured
been generated to set

Subroutine GNBC6 generates two instruc­
tions:

BALR
BC

15,0
M,6 (15)

where M is the mask for the instruction
passed by the subroutine that called GNBC6.
These two instructions have the effect of

BC M,*+6

EXIT: Subroutine GNBC6 exits to the sub­
routine that called it.

SUBROUTINES CALLED: Subroutine GNBC6 calls
subroutines RXOUT and RROUT to generate
instructions.

Subroutine SIGN, DIM, ABS: Chart KR

Phase 25 enters intermediate text words
for the in-line functions SIGN, ISIGN,
DSIGN, DIM, IDIM, DABS, ABS, and IABS. The
first words entered force subroutine RXGEN
to generate instructions to load the argu­
ments for the function into general reg­
isters, if the mode of the function is
integer, or into floating point registers,
if the mode of the function is real or
double precl.sl.on. The next word generated
by Phase 25 contains the in-line function
adjective code, the register numbers ~1
and R2) in the mode/type field, and the
in-line function number in the pointer
field.

Subroutine SIGN

Subroutine SIGN processes the intermedi­
ate text entry for the in-line functions
DSIGN, ISIGN, and SIGN.

ENTRANCE: Subroutine SIGN is entered from
subroutine FUNGEN.

OPERATION: Subroutine SIGN is entered at
three points, one each for the in-line
functions SIGN, ISIGN,and DSIGN. At each
entry point, the mode is set for the
instructions to be generated by subroutine
SIGN.

The instructions generated for the in­
line function ISIGN by subroutine SIGN are:

LPR
LTR
BALR
BC
LNR

Rl,Rl
R2,R2
15,0
10,6 (15)
R1,R1

The first argument is made positive by
the load positive instruction, and a load
and test instruction is generated to

determine the sign of the second argument.
The branch and link instruction is generat­
ed to insure addressability for the next
instruction.

A branch on condition code is then
generated to determine the result of the
load and test instruction. If the result
is negative, the next instruction (a load
negative instruction to change the sign of
the first argument tQ negative) is execut­
ed. If the result of the load and test
instruction is positive or 0, the branch on
condition code instruction branches around
the load negative instructior..

EXIT: Subroutine SIGN exits to
PRESCN to process the next
intermediate text.

subroutine
word in the

SUBROUTINES CALLED:
routine SIGN calls
tines:

During execution sub­
the following subrou-

1.

2.

RROUT to generate the
register instructions.
GNBC6 to generate
instructions.

Subroutine DIM

register-to-

the branch

Subroutine DIM generates the coding for
the in-line fUnctions DIM and IDIM.

ENTRANCE: Subroutine DIM is entered from
subroutine FUNGEN.

OPERATION: Subroutine DIM may be entered
at two pOints, one for the in-line function
DIM and the other for IDIM. At each entry
point, the mode is set for the instructions
to be generated by subroutine DIM.

The instructions generated for the in­
line function DIM by subroutine DIM are:

SER
BALR
BC
SER

R1,R2
15,0
2,6 (15)
R2,R2

The second argument is subtracted from
the first argument. A BALR instruction is
generated to insure addressability for the
next generated instruction. The condition
code is set by the subtract instruction,
and a branch on condition code is generated
to test if the difference is negative. If
it is, the next instruction generated is
executed. This instruction zeros the
contents of R2. If the difference is
positive, this instruction is skipped, and
the next instruction is executed.

Phase 25 343

The same instructions are generated for
IDIM, except that the registers used are
general registers, and the op codes gener­
ated are for fixed point instructions.

EXIT: Subroutine DIM exits to subroutine
PRESCN to process the next text word.

SUBROUTINES CALLED: Subroutine DIM calls
the following subroutines:

1.

2.

RROUT to generate the
register operations.
GNBC6 to generate
instructions.

Subroutine ABS

register-to-

the branch

Subroutine ABS generates the coding for
the in-line fUnctions ABS, DABS, and lABS.

ENTRANCE: Subroutine ABS is entered from
subroutine FUNGEN.

OPERATION: Subroutine ABS is entered at
three points, one each for the in-line
functions ABS, DABS, and lABS. At each
entry, the mode is set for the instruction
to be generated by subroutine ABS.

Subroutine ABS generates an instruction
to load positive the contents of R1 into
R1. For example, the instruction

LPR Rl,R1

makes the contents of register Rl positive.
The register type (fixed or floating point)
and the op code depend on the in-line
function called.

EXIT: Subroutine
PRESCN to process
text word.

ABS exits to subroutine
the next intermediate

SUBROUTINE CALLED: Subroutine ABS calls
subroutine RROUT to generate the load posi­
tive instruction.

Subroutine STOP/PAUSE: Chart KS

Subroutine STOP/PAUSE generates instruc­
tions for STOP and PAUSE statements in the
object program.

ENTRANCE: Subroutine STOP/PAUSE is entered
by subroutine PRESCN when PRESCN recognizes
a STOP or PAUSE adjective code.

OPERATIO~: Subroutine STOP/PAUSE gets the
relative location of the STOP or PAUSE in
IBCOM. This location is the distance in

344

bytes from the beginning of IBCOM for the
STOP or PAUSE instructions.

The location of the beginning address of
IBCOM in the object program is accessed and
inserted into a skeleton instruction. An
instruction is generated to load the begin­
ning address of IBCOM into register 15. A
base-displacement instruction is generated
to branch and link to STOP or PAUSE in
IBCOM. The displacement is the distance in
bytes from the beginning of IBCOM: the base
register used is register 15.

A constant indicating
bytes in the halt number is
with the number itself.
immediately follows the
instruction.

the number of
generated along
This constant

branch and link

EXIT: Subroutine STOP/PAUSE exits to sub­
routine PRESCN to process the next inter­
mediate text entry.

SUBROUTINES CALLED: Subroutine STOP/PAUSE
calls the following subroutines:

1. BASCHK to generate the load instruc-
tion.

2. RXOUT to generate the branch and link
instruction.

3. RROUT to generate the constant.

Subroutine END: Chart KT

Subroutine END processes the intermedi­
ate text entry for the END card. It
generates instructions to restore registers
and branch to the start of the program.
Subroutine END punches text cards and RLD
cards for the branch lists and the base
value table, and creates the END card.

ENTRANCE: Subroutine END is
subroutine PRESCN when an
code is recognized.

entered from
END adjective

OPERATION: Subroutine END determines if
the program is a main program. If it is,
it tests further to determine if a STOP
instruction was included in the program.
If no STOP was generated, a call is gener­
ated to call the IBCOM subroutine IBEXIT.

The location counter is saved for the
computation of the size of the program, and
the text card data set for the object
program instructions is closed. The text
card addresses and the byte count for the
card are set to zero. The following
instructions and constants are generated:

DC CL 7 'PROGRAM '
DC XL1 '07'
STM 14,12,SAVE
LM 4,N,BASVAL
BC 15,START

The two generated constants are required
by the calling sequence. The first is the
program name. It is always seven bytes in
length. The second constant is the number
of bytes in the program name. The STM
instruction stores the general registers in
the save area. The LM instruction loads
all base registers for the program being
executed in the general registers 4 through
N, the highest base register used. A
branch is generated to the first instruc­
tion to be executed by the program.

The print buffers for the statement
numbers are closed, and the END subroutine
is initialized to enter the branch list for
statement numbers in text cards. All
statement number entries in the branch list
are then written on the output data sets.
After all statement numbers have been put
into text cards, subroutine END is initial­
ized to put all branch list entries for
arithmetic statement functions and branch
addresses generated for DO loops in the
text cards. All branCh list entries are
then entered into text cards.

After the entries have been made, RLD
cards are punched for entries in the branch
list. The statement number entries are
punched first, and then RLD cards are
punched for the ASF and DO branches.

A text card is then set up in the proper
format for all base registers used for the
object program. The addresses for the
registers used to access COMMON are entered
in the card first, followed by the base
register addresses used to access data and
coding in the program. The card containing
these addresses is then put on the output
data set. All base registers can be con­
tained in one card. The base register
addresses are inserted in an RLD card to
insure relocatability. The registers used
for COMMON are given an ESID of 2, and the
registers used by the program are given an
ESID of 1.

A text card buffer is then cleared for
the END card of the object deck. The
information identifying the END card is
inserted in the buffer. A test is made to
determine if the program is a subprogram.
If it is not, the entry point is inserted
in the text card. For main programs this
entry point is eight. For all programs,
the size of the program is entered in the
end card. The text card is put out; the
size of COMMON and the size of the program
are printed.

EXIT: Subroutine END exits to the FORTRAN
System Director:

1. To call the Control Card routine, if
no errors or wa~nings have been
detected.

2. To call Phase 30 if error/warning
conditions have been detected during
the compilation.

SUBROUTINES CALLED: Subroutine END calls
the following SUbroutines:

1. BASCHK/RXOUT to generate instructions.
2. TXTOUT to put out the END card.

Subroutine ENTRY: Chart KU

Subroutine ENTRY generates instructions
in the object program to initialize the
Object program.

ENTRANCE: Subroutine ENTRY is called by
subroutine INITIALIZATION.

OPERATION: Subroutine ENTRY generates the
first executable instructions in the object
program. Subroutine ENTRY saves the loca­
tion counter before it generates an object
code so the instruction that transfers
control to the object program branches to
the correct address.

If a type 3 program is being compiled,
an instruction to set up addressability of
the program is generated. The FORTRAN
System Director establishes addressability
for the object program in register 15, but
the object program does not use register 15
as the base register. Subroutine ENTRY
generates an instruction to load the con­
tents of register 15 into register 8,
establishing addressability with register 8
for the initialization instructions in the
object program.

If the program being compiled is a
subprogram, an instruction is generated to
save the address of the parameter list in
main storage. The address of the parameter
list is passed to the subprogram in general
register 1. Object programs use register 1
as a work register; therefore, general
register 1 must be saved for the epilog.

If the program is a main program, a call
is generated to subroutine IBFINT in IBCOM.
This subroutine is executed by the main
program to initialize program status words
for interruption. If the program is a
subprogram, it does not have to call IBFINT
because the main program has established
the program status words.

Phase 25 345

If the program contains any arithmetic
statement function (ASF), subroutine ENTRY
generates a branch around the object code
for the ASFs. The ASFs appear immediately
after the coding to initialize the object
program.

If any external calls were included in
the program, the following instructions,
which save and set up new save area poin­
ters, are generated:

LR 12,13
LA 13,SAVE
ST 13,8 (13)
ST 12,4 (12)

EXIT: Subroutine ENTRY exits to the sub­
routine that called it.

SUBROUTINES CALLED: During execution sub­
routine ENTRY references subroutines RROUT
and RXOUT to generate object program
instructions.

Subroutine GENBC: Chart KV

Subroutine GENBC generates the branching
instructions for the instructions generated
by an IF statement.

ENTRANCE: Subroutine GENBC is called by
subroutine ARITHI when it is processing IF
statements.

OPERATION: Subroutine GENBC accesses the
address of the beginning of the branch
list, and the branch list number for the
statement number in its entry in the over­
flow table. A load instruction is then
generated to load the address in a general
register.

The mask for the branch on condition
code is accessed in main storage. The mask
was inserted in a location in storage by
subroutine ARITHI. Subroutine GENBC then
generates a branch on condition code
instruction.

EXIT: Subroutine GENBC returns to the
subroutine that called it.

SUBROUTINES CALLED: During execution sub­
routine GENBC calls the following subrou­
tines:

1. BASCHK to generate the load instruc­
tion.

2. RROUT to generate the branch on condi­
tion code instruction.

346

Subroutine GET: Chart KW

Subroutine GET updates the input
pointer, and ini tiali·zes action
another intermediate text record,
buffer has been exhausted.

buffer
to read

if a

ENTRANCE: Subroutine GET is called by
subroutines PRESCN, FIXFLT, IOLIST, RDWRT,
CGOTO, SUBRUT, ARITHI, and DOl to access
intermediate text words.

OPERATION: Subroutine GET updates the buf­
fer pointer, and tests for the end of the
buffer. If it has not been reached, con­
trol passes to the subroutine that called
subroutine GET.

If the end of the buffer has been
reached, a test is made to determine if the
compilation being executed had no need to
write the intermediate text on an output
tape; that is, the buffers are large enough
to contain all the intermediate text
records for the compilation. If this is an
in-storage compile, the pointer to the
second buffer in the double-buffer system
is set in a register to access intermediate
text words.

If the compilation is not in-storage, a
test is made to determine if the end of the
input data set has been reached. If it
has, control is passed to the subroutine
that called subroutine GET.

If the end of the data set has not been
reached, a supervisor call is issued to
read a text record into the buffer just
exhausted. There are two returns to sub­
routine GET from the supervisor call. One
entrance is used if the end of data set has
been reached. If this entrance is used,
subroutine GET sets an indicator for the
end of the text data set.

The other return from the supervisor
call is used if the end of data set is not
reached. The intermediate text record is
read into the buffer just exhausted, and
the buffer pointer is set to process the
intermediate text words in the second buf­
fer.

EXIT: Subroutine GET exits to the subrou­
tine that called it.

SUBROUTINES CALLED: The FORTRAN System
Director is referenced to read an inter­
mediate text record into an input buffer.

Subroutines BASCHK/RXOUT, RROUT: Chart KX

Subroutine BASCHK/RXOUT

Subroutine
instructions
subroutines.

BASCHK/RXOUT
generated by

processes
the Phase

RX
25

ENTRANCE: Subroutine BASCHK/RXOUT is
called by subroutines IOLIST, ENDIO, RDWRT,
TRGEN, CGOTO, SUBRUT, FUNGEN/EREXIT,
STOP/PAUSE, GENBC, DOl, ENDDO, ASFEXP,
ASFUSE, END, RXGEN/LM/STM, ENTRY, FIXFLT,
RETURN, SAOP, and AOP.

OPERATION: Subroutine BASCHK/RXOUT is
entered at two points. The first entry,
BASCHK, is used to determine if a spill
base register was used when storage was
assigned to symbols in Phases 12 and 20.
It tests for a spill base register in the
program. If there is none, BASCHK/RXOUT
branches to the portion of coding labeled
RXOUT. If a spill base register is used in
the compilation, BASCHK/RXOUT tests if the
instruction to be generated uses a spill
base register. If it does not,
BASCHK/RXOUT branches to RXOUT.

If a spill base is used in the instruc­
tion, a test is made to determine if the
last used the same spill base register. If
it did not, the linkage register and the
instruction pOinter that were ent.ered by
the subroutine that called BASCHK/RXOUT are
saved, because RXOUT must be entered to
generate an instruction to load register 7
and the linkage registers for Phase 25 must
be saved. A test is made to determine if
the program used 16K bytes for COMMON. If
it did, 8 is subtracted from the displace­
ment of the instruction that is to be
generated.

The load instruction is generated to
load register 7 with the base value gener­
ated for the spill base register. Subrou­
tine RXOUT is called to generate the load
instruction; the registers for linkage and
the instruction pointer are saved. When
RXOUT was called, it generated its own
linkage and returned to a point in subrou­
tine RXOUT where the original registers
were restored.

Subroutine BASCHK/RXOUT changes the base
in the original instruction to be generated
to base register 7.

The portion of the coding called RXOUT
begins. The link register is saved, the
instruction length is set to 4, and subrou­
tine TXTEST is entered to enter the
instruction in a text card.

EXIT: Subroutine BASCHK/RXOUT exits to
subroutine TXTEST.

SUBROUTINES CALLED: Subroutine
BASCHK/RXOUT calls subroutine RXOUT to load
a spill base address in register 7.

Subroutine RROUT

Subroutine RROUT generates register-to­
register instructions.

ENTRANCE: Subroutine RROUT is entered from
subroutines RDWRT, SAOP, TRGEN, CGOTO,
FUNGEN/EREXIT, STOP/PAUSE, GENBC, ASFUSE,
RXGEN/LM/STM, SIGN, DIM, ABS, ENTRY, and
RETURN.

OPERATION: The link register is saved for
subroutine TXTEST, and the instruction
length is set to 2.

EXIT: Subroutine RROUT exits to subroutine
TXTEST to insert the instruction in a text
card.

Subroutines TXTEST, RLDTXT, and TXTOUT:
Chart KZ

Subroutine TXTEST

Subroutine TXT EST moves an instruction
to the output buffer and determines if that
instruction must be put out on the GO tape
and/or punched in a card.

ENTRANCE: Subroutine TXTEST is entered by
subroutines RROUT and BASCHK/RXOUT. Sub­
routine TXTEST may also be entered by
subroutine RLDTXT, if TXTEST previously
determined that an instruction can not fit
on a card.

OPERATION: If neither the GO, GOGO, nor
the DECK options are specified, subroutine
TXTEST returns control to the subroutine
that called subroutines RROUT or
BASCHK/RXOUT. If one of these options is
on, subroutine TXTEST updates the location
counter by the length of the instruction.
TXTEST then deterrr~nes if the instruction
can fit on a text card. If it cannot, the
location counter is decremented by the
length of the instruction, and an indicator
is set for subroutine RLDTXT to indicate
that this condition has occurred. Subrou­
tine RLDTXT is entered to put out the card
image.

If the instruction can fit on the card,
it is moved to the card output buffer. The

Phase 25 347

count of the number of bytes in the card
buffer and the buffer pOinter are updated
by the number of bytes in the instruction.
A test is made to determine if the end of
the buffer has been reached. If it has,
subroutine RLDTXT is called to output the
card image.

EXIT: Subroutine TXTEST exits to the sub­
routine that called it or to subroutine
RLDTXT, if it is determined that the
instruction being processed will not fit in
this card image.

SUBROUTINES CALLED: Subroutine TXTEST
calls subroutine RLDTXT if the end of the
buffer is reached after an instruction has
been inserted in a card image.

Subroutine RLDTXT

Subroutine RLDTXT inserts the byte count
in the card to be put out, and initializes
a neW buffer.

ENTRANCE: Subroutine RLDTXT is entered by
subroutine TXTEST under two conditions. It
is entered as an open subroutine if an
instruction must be inserted in a card and
the instruction will not fit in the card;
it is entered as a closed subroutine if the
instruction is inserted in the card, and
the end of the buffer has been reached.

OPERATION: Subroutine RLDTXT inserts the
byte count into the card image to be put
out, and calls subroutine TXTOUT to put out
the card image. The buffer pointers are
switched to start inserting instructions in
a new buffer. Th~ new buffer is cleared,
the address constant is subtracted from the
address currently in the location counter,

348

and the result is inserted in the new text
card buffer.

The indicator set in subroutine TXTEST
is tested to determine whether the subrou­
tine shall pass control to subroutine
TXTEST or to the subroutine that called
subroutines RROUT or BASCHK/RXOUT.

EXIT: Subroutine RLDTXT exits to subrou­
tine TXTEST .•

SUBROUTINES CALLED: Subroutine RLDTXT
calls subroutine TXTOUT to put out the card
image.

Subroutine TXT OUT

Subroutine TXTOUT inserts the card
sequence number and the program identifi­
cation in the card image output buffer, and
outputs the card image on either the GO
tape and/or in a text card.

ENTRANCE: Subroutine TXTOUT is called by
subroutine RLDTXT.

OPERATION: Subroutine TXTOUT inserts the
card sequence number and the program iden­
tification in the card image output buffer.
If the GO or GOGO option is specified by
the user, the card is written on the GO
tape. If the DECK option is specified, the
card image is punched in a text card.

EXIT: Subroutine TXTOUT returns to the
subroutine that called it.

SUBROUTINES CALLED: The FORTRAN System
Director is referenced to write the card
image on the GO tape or to punch the card
image in a text card.

*08 *
* A2*
* *
*

X
******A2***********

GET TEXT
* ENTRIES *

••• X FOR
* STATE- *

MENT

X
*****82**********
* * *
* *
*

CLASSIFY
STATEMENT *

* *
* *****************

****85*********
* EXIT TO FSD *
* TO LOAD * * PHASE 30 *

X

YES
.x. .*.

C2 *. ******C3*********** ******C4*********** C5 * •
• * *. PUT OUT TEXT PUT OUT TEXT .* ANY * •

• * END *. YES * AND RLD CARDS * * AND RLD CARDS * .* ERRORS OR *.
. STATE- . •••••••• X FOR •••••••• X FOR 8ASE •••••••• X*. WARNINGS .*

. MENT . * BRANCH * REGISTER * *. .*
. . LIST VALUES *..*

* •• * ************* *************
* NO

X
*****02**********
* * *
* *
*

GENERATE
OBJECT
CODING

*
* *
* *****************

X
******E2***********

*
*

PUT OUT
COOl NG

*
*

Chart 08. Phase 25 OVerall Logic Diagram

* .• *
* NO

X
****05*********

* EXIT TO FSD *
* TO LOAD CDN- * * TROL CARD *

Phase 25 349

*KA * * A2* . . .

START X
*****A2********** · . SET UF * * PHASE ..
*ACORESSA8ILITY * , · . ********* ********

PROCESS X
*****82********** * CALCULATE *

E!EGINNING
OF ASF
BRANCt-'

* TABLE *
******** .. ********

X
*****C2********** · . INITIALIZE

BUFFER
FOINTERS

.x.
02 * •

• * *.
YES.* GOGO ...

•••••••••••••••••• *. OPTION .*

X
*****El********** . .
* SET UP ERROR *

. . *. .*
* •• * • NO

x
*** * **E2* * **** *****

* ROUTINE FOR * •••••••• X
OB.JECT PRGM *

REWIND
TEXT INPUT

TAPE . .
*********** ******

Chart RA.

350

*******'****'**

NCG02 X
*****F2********** *FiEADXT KWC3*
--*-*-*-*-*-*-*

PRI ME *
INPUT *

BUFFERS *
*********'********

X
*****G2******'****
* CALCULATE *

OBJECT TIME
ADDRESS *

CONST ANT *

X
*****H2********** · . INITIALIZE *
.. FIRST TeXT
* CARD I MAGE

.X. .*. GENENT
J2 *. .J3 *. *****.J_**********

.* ANY *. .* FIRST *. *ENTRY KUA3*
.* SPILL *. NO .*NON-COMMON *. NO *-*-*-*-*-*-*-,*-*

. BASE X. BASE REG .* •••••••• X* GENERATE * ••••••••
.REGISTER . X *. G.T. 7.* X" ENTRY * X
.. *..'* * COOING '* *****

* •• * * •• * ***************** *KS * * YES * YES .. Cl*

REGTST X
··***K2******* · . ,TURN ON

SPILL EASE
* SWITCH · * •• ***-.--.***

. .

.SETREG X
*****K3*"***** . .

SET-PROGRAM * • *...... TO INDICATE * ••••••
* TYPE '3'

****-********-

Subroutine INITIALIZATION

. .

*** .. *
*KB *
* el*
* •

PRESCAN X
***"*B 1 ** *** .. **
"GET KWA3*
--*-*-*-*-*-*-*

GET A
TEXT

* WORD *

NOGET . .X. .*.
Cl *. C2 * •

• * *. .* * •
• * ADJ *. YES .* ADJ *. YES

•• X*. CODE .* •••••••• X*. CODE .* ••

* •
*I<B *
* Cl*

. G.r. . *. G.T. .*
. 25 . *. SE .* * •• * * •• * * Ne * NO

x

*KC *
* A3" • * .
RXGEN

:SRANCH ACCORDING Te ADJECTIVE
• CODE OR CPERATOR CCDE

X
* .. **** * * *** .. ** ** .. * * .. ** .. * ... * ****** **** * .. *
*DETERMINE APPROPRIATE RCUTII\E * . .
SL:BROUTINE OR OPERATION. RCUTINE CHART
****** ***** .. ** *********** ***** .. ****. ******
*FUNCTION CALL • FUNGEN • KPA2 *
*st:eSCRIPT • SACP • KLA2 * ..
*IF • ARJTHI • KGAI *
: i/o·L isy·j TEM··········:· iCLisT··:· Kis.·· *
*AOP • ACF • KLA3
*CALL • F.l..I'\GEN • KPA2 *
• AS; ·USAGE··············:· ASFUSE··:· ~MA;·:
:~~~o·~u~~jp~~··········:·~;······~·~CH;·:

• STORE· MULT iPLE·········:· S-r;.·····:· KCH4·;
,,*,,*******************"*.*********x*******

Chart KB. Subroutine PRESCAN

:BRANCH ACCORDING TO ADJECTIVE
.CODE OR OPERATOR CODE .

X
-*-*************** .. *****************
*DETERMINE APPROPRIATE ROUTINE * .
STATEMENT OR OPERATOR ROUTINE BLOCK
*************************.*********.******
*SUBROUTINE OR FUNCTION .SUBRUT .KNA3 * ..
*LABEL .LABEL .KDA3 *•..•.......•.•.•...•..
*END DO .ENDDO .KFA4
*GO TO .TRGEN .KEA2 * ~•••••••.
*COMPUTED GO TO .CGOTO .KEA4 -

*ecKspcE:REwiNo·;·ENoFiLE:RDwRT····:KHA3·; ~ ~ .. .
*READ/WRITE .RDWRT .KHA3 * ..
*00 .001 .KFAI••...•.........
*END .END .KTAI -

.....................•....................
*PAUSE .PAUSE .KSA4 * ..
*END I/O LIST .ENOIO .KJB2 ..
.iMPLiED· Do·············· :ooi······ :KFAi· • ..
*ASF DEFINITION .ASFDEF .KMAI *••..•.••...•.........•............
*RETURN .RETURN .KOA2 *••••..•.•...•••
*ERROR .EREXIT .KPBl *
**

Phase 25 351

*KC *
* A3*
* * "
.

RXGEN .X.
A3 * •

• * IS * • • * THIS *. YES
*.AN ASF ARITH ••••••••••

. INSTR . X
.. *****

* •• * *KM * * NO * A3*
* * *

* * * B4 *
* * ****

TSTHI .X. TESTRX .X.
83 *. 84 *.

• * A *. .* IS *.
.* SPECIAL *. NO .* THIS *. YES

GENRR
*****B5**.******** * " * .
* *. INSTRUCTION .* •••••••• X*. AN RR .* •••••• ~.X*

PUT IN
R2

FIELD
" * *
*

. . *. INSTR .* *
. .

* •• *
* YES

* ". * C4 *.x.
* * **** • .X. XOUT X

C3 *. *****C4**********
.* IS *. *BASCHK KXA3*

.* IT A *. YES *-*-*-*-*-*-*-*-*
.STORE OR LOAD. •••••••• X* GENERATE. *

. INSTR . * RX *
.. * INSTRUCTION *

* •• * *****************
* NO

x

*KB * .*. NOBSCK .X. " CI*

02 *. 03 *. * *
.* LAST *. .* IS *. *

NO.* ASF *. YES.* IT A * •
•••• *. DEFINITION .*X •••••••• *. BRANCH .*

. . *. JNSTR .*
.*..* *..*

* •• * * •• *
* YES * NO

X
*****E2**********
* PUT ADDRESS *
* CF FIRST *
* NON-ASF *
* INSTRUCTION *
*I~ BRANCH LIST "

ZRBIT X
*****E3**********
* " * ZERO DUMMY *
* BIT IN "
* TEXT WORD *
* * ***************** . .

••••••••••• X.
X

" * * B4 *
* * ****

*KC "
* H2*
" * " .

LM X
.H2**********
* ASSEMBLE *
* LOAD *
* MULTIPLE * * INSTRUCTION "
* " *****************

.
X

* * * C4 *
* " ****

LePTR X
*****F3**********
"RXOUT KXJ3*
--*-*-*-*-*-*-*
* PUT OUT "
* RX * * INSTRUCTION *

X
***** *KB * * CliO

* *
"

Chart KC. Subroutine RXGEN/lm/stm

352

***** *KC *
* H4*
* *
*
.

STM X
*****H4********** * ASSEMBLE " * STORE "
* MULTIPLE "
" INSTRUCTION *
* * *****************

X

* * * C4 *
" * ****

* *****************

.
GENRRI X

*****cs**********
RROUt KXAS
--*-*-*-*-*-*-*
* GENERATE "
* RR *
* INSTRUCTION *

.
X

*KB *
* CI*
* *

*

*KD *
* A3*
* * •

LABEL X
*****A3********** • •
• PUT STATEMENT •
• NUMBER IN * * PRINT BUFFER *
* * *****************

CONCUR X
*****83**********
• SUBTRACT •
• AODRESS *
• CONSTANT FROM • * STATEMENT NO ••
• ADDRESS •

X
*****C3********** • •
• PUT OBJECT • * ADDRESS IN •
• PRINT BUFFER • • •

· X
*****03*********· • • • ..
*

UPDATE
BUFFER
POINTER

* * * • •

· .X.
E3 *.

.* * • • * END OF *.
******E4***********

YES • .. *****E5**********
* *

. BUFFER . •••••••. X
PUT OUT

PRINT
BUFFER

* CLEAR BUFFER
•••••••• X* AND RESET • ..

. . * *. .* * * POINTER
* * • * •• * ************* *****************

* NO

· . • X •••

· REFCHK .X.
*****F2********** F3 *.
* COMPUTE * .* IS *.
* BRANCH LIST * YES.* STMNT ".
* ENTRY *X •••••••• *. NUMBER .*
* ADDRESS * *REFERENCED *
" * *****************

.
X

*****G2********** • • .. PUT ASSIGNED ..
.. ADDRESS IN ..
.. BRANCH LIST

X

*KB ..
* Bl·

*

x

*KB *
.. Bl"
* " "

Chart RD. Subroutine LABEL

Phase 25 353

*KE *
* A2*
* * *

TRGEN X
*****A2**********
" * " SET EXIT *
" TO PRESCN *
* "

*
" *****************

TRANSF X
*****82**********
* CALCULATE *
" ADDRESS OF "
" BRANCH LIST "
" ENTRY FOR "
" STMT NO "

GNENE X
*****C2**********
"EASCHK KXA3*
--*-*-*-*-*-*-*
" GENERATE * * L R,ADDRESS *
" * *****************

X
*****02**********
RROUT KXAS
--*-*-*-*-*-*-*
* GENERATE *
* BCR 15, R *
" " *****************

X
****E2*********

* " " "
EXIT " * ************** ..

Chart KE. Subroutines TRGEN, CGOTO

354

*KE *
* A4*
" * *

CGOTO X
*****A4**********
" FIND VARIABLE "
" MAINTAINING "
" COUNT OF "
" STATEMENT "
" NUMBERS "

X
*****B4**********
"BASCHK KXA3"
--*-*-*-*-*-*-*
" GENERATE * * L 2. VARIABLE"
" * *****************

X
*****C4**********
"BASCHK KXA3*
--*-*-*-*-*-*-*
" GENERATE "
" L R. V(CGOTOI "

" " *****************

X
*****04**********
"RROUT KXA5"
--*-*-*-*-*-*-*
" GENERATE " * BALR L,R *
* " *****************

X
*****E4**********
*ARGOUT KYA3"
--*-*-*-*-*-*-*
* GENERATE "
" DC AL4 "
" (BRANCH LISTI *

X
*****F4**********
" " " SET UP "
" COUNT TO *
" GET VARIABLE *
* " *****************

OUTPAR X
*****G4**4*******
RROUT KXA5
--*-*-*-*-*-*-*

••• x* GENERATE *
* DC AL2 (NIl "
* " *****************

.X.
H4 *.

• .* ANY * •
• YES.* MORE * •
.•.. *. PARAMETERS .*

. .
. .

* •• *
"
X

*KS *
" Bl*
" " "

*KF iI­

* AI*
* *
*

DOl X
*****A I **** ******
* COMPUTE *

ADDRESS FOR
NEXT DO

TABLE
* ENTRY *
****** ***** ******

ro'.OVTXT
*****B 1 **** ******
'* GET ALL DO '*
"* TEXT ENTRIES

AND MOVE
THEM TO

WORK AREA
*"****************

x
*****C I **** ******
*PL T INCREMENT, *
* TEST VALUE, * * ~ARIABLE ADDR *
* IN DO TABLE *

• x.
Dl *.

• * INITIAL *. YES
. VALUE A . •.•.•.•..••..•..•.

"*.CONSTANT .*

* •• *
• NC

*****E 1 **** ******
BASCHK KXA3
--*-*-*-*-*-*-*

GENERATE *
L R ADDR

* OF INIT VAL

LODREG X
*****FI**********
* COMPUTE *

ADDRESS IN

LACUT
*****E2*****"****
RXOUT KXJ3
--*-*-*-*-*-*-*
* GENERATE *
*LA R. INIT VAL * .

BRANCH LIST *x ••••••••••• -...... .
FOR DO "*
BRANCH

x
*****G 1 **********
* PUT ADDRESS *

IN BRANCH
LIST IN DO

TABLE

X
*****H 1 **** ****** . .
* PUT LOCATION
* COUNTER IN

BRANCH LI ST

*****J 1**********
BASCHK KXA3
--*-*-*-* -*-*-*

GENERATE
STORE DO

* VARIABLE *

x

*KB *
* C]* ..

Chart KF. Subroutines 001, ENDDO

*KF 'II­

* A4*
* *

ENDOO X
***** A4********** . .

SET UP
SKELETON

PCI NTER

••••••••••• X.

.TSTBAS .X.
84 *.

.* *. .* IMMED *. YES

*****B5*******"**~
RXOUT KXJ3
--*-*-*-*-*-*-*

. DO . •••••••• X* GENERATE
. PARAM . LA R.
.. CONSTANT

* •• * ********"*********
• NO

· . • LHOUT X
****'*C4**********
BASCHK KXA3
--*-*-*-*-*-*-*

GENERATE
L R.

"* VARIABLE "*
***********'*"*****

· . • X •••••••••••••••••••••••••

• U?OAT .X •
04- *.

• .* * •
• NO.* THIRD *.
. •.. *. LOAD .*

. GEN .
. .

* ... *
* YES

*****E4-********** * CALCULATE
ADDRESS IN
BRANCH LIST

*FOR DO ADDRESS *

X
*****F4**********
BASCHK MXA3
--*-*-"*-*-*-*-*
* GENERATE
"* L 1, ADDRESS
* * *****-11-***-11-**-11-***

X
*****G4**********
RXOUT KXJ3
-'11---*-*-*-*-*-*
.. GENERATE *

BXLE INST
* FOR DO LOOP

x

*KB * * Bl* . . ·

Phase 25 355

ARITHI X
******A 1 ********.**

GET NEXT
• FIVE WORDS

FRO~
BUFFER

.X.
B 1 *. .****82**********

.* CONO. *. *RXOUT KX"'3*
.* CODE SET *. NO .-*-*-*-*-*-*-.-.

*.BY PRECEDING .. * •••••••• X* GENERATE *
*. I NSTR • * * LOAD AND TEST •
.. * INSTRUCTION *

* •• * ********* ••••• *.*
* YES

. .

.X •••••••••••••••••••••••••

NOL TR .X. CI<SWI .*. .*. BC2
C 1 *. C2 II. C:::! *. .*.*IIC4**********

.*··S~~~S~O*·*. YES .1I·~~gEA~~L*·*. YES .*.*=I~I~~T*·*. :~;~:~*_*_*_~~:~:
. :: SECOND •••••••••• X.. END MARK . •••••••• X*. STMT .* •••••••• X* GENERA TE II ••••••••

11.*. S~~T .*.* II.*.S~~T .*.* *.*. NO .*.* : BC 2. AODR: *.!**
. . *. • * *. .* ****.*.****.***** *I<B *

*NO *NO *NO **C!* .
BC13132 X .X. NOBC2

:**.::::::::****: NO .*·*~~~H~i~*·*. YES :;;;i~::::::E~:~:
•••• BC 13. AODR *X •••••••• *. STMT •••••••••• X. GENERATE * ••••••••
• II BC 2. ADDR * *. NO.* • BC 13. • X

! .. : *********: *. *. *.*.* :***.:~~~;:i:i****: :~:*:
*Ke * **C!*
~~. .

.x. CI<SIII2 .!I. .*.
El *. E2 *. E3 *.

.* FIRST *. .*IS AD'" *. .* IS *.
.* STMT NO *. YES .* CODE FOL *. YES .* IT::: *. YES

BeB
*****E4**********

:~;~:~.-*-.-~~:~:
. '" THIRD X*. END MARK .* •••••••• X*. FIRST .* •••••••• X* GENERATE * ••••••••

•• *.S~~T .*.* *.*.S~~T .*.* *.*.S~~NT.*.* : BC e. AD DR : *.!**
* •• * * •• * * •• * ********.******** *I<B *

*NC *NC *NO **C!* .
BC78C8 X .X. NOBCa

r**::::::::***·: NO .* .:Fbc~~: *. *. YES :~;~i~::::::;~;~:
•••• BC 7. ACDR *X.......... STMT .* •••••••• X* •••••••••
: : eC8. ACDR: *.*. NO .*.* : BC 7. ADOR: .*!**

:;:*: •• *.****.******** *. *.* *.*********** •• ** ::~!:

* *C!*

.x. CI<SW3 .*. .*. BC4
G 1 4. G2 *. G3 *. *.***G4*****4**

• *·*~~S~N~(J* ••• YES .*·~~gEA~~L*·*. YES .*.: ~~C~~O*·*. YES :~;~:~*_*_*_:~:~:
. '" THIRD . •••••••• X*. END MARK .* •••••••• X*. STMT .* •••••••• X* GENERATE * ••••••••

.. S~~T •••• *.*.S~~T .*.* *.*. NO .* : BC 4. AOOR: **!**
* •• * * •• * * •• * ***************** *KB *

*N(J *N(J *NO **C!*

.X.
HI·.

• *1 SAO

8C1182 X
:.***H2*********:

.x.
H3 * • .* IS IT *.

NO .* CODE FOL. *. * GENERATE" 1\10.* = FIRST ... YES
•• ••• END MARK .*

. STMT .
. NO .

X * •• *
* YES

: J4 :

••• * BC 11. ADOR *X........... STMT .* •••••••• X" •••••••••
: : BC 4. ADOR: *.*. NO .*.* : BCll.AOOR * **!**

! .****.**.******** •• *.* ***** .. *-***-*****

*K8 *
* *C!* .

*I<B *
* *C!-

• X. .*. ••• GEN482 8C8BC2
... 1 *. ...2 •• ...3 •• ***** ... 4********** *****J5 •• *.*.*.**

.* •• S~~~S~O *. *. NO .* ·*sT:~CNO *. *. NO .*.* S~~:R~O *. *. NO :~~~~~*_*_*_~~:~: :~~~:~*_*_*_~~:~:
*. = FOURTH X.. = FOURTH .. * •••••••• X*.. ::: FOURTH .* X* GENERATE * •••••••• X* .GENERATE

..S~~T * *.*.S~~T .*_* *.*.S~~T .*.* : BC 4. AODR: : BC 8. ADOR
. . *. • * *.. .* ******"*********** ********* •• ******
.~ ._ .~ X

BceBC2 X
****.K 1 **** ****** . .
* GENERATE
* BC 8. ADDR
: BC 2. AODR

X

*1<8 *
* *C!*

"

Chart KG.

356

8C48C2 X eC48C8 X
:****K2*********: :.***K3********":

• GENERATE * * GENERATE *
* BC 4. AOOR * * BC e. AODR •
: BC 2. AOOR : BC 4. AOOR •

**********.**.* •• * *** .. *-**.*

Subroutine ARITH1

**** . .
: .14 : X

*****K5**********
:~;~~~*-*-*-~~:~:
_ GENERATE
: Be 2. ADDR

*******.* •• ******

~
*KB *
* *C!*

"KH •
* A3· . .

ROWRT .X.
A3 *. *****A4******* .

• * DOES •• * *
.*REAO/WRITE *. YES * SET *

. REQUIRE A . •••••••• X* FORMAT *
. FORMAT . * INDICATOR *
.. * ON * * •• * **************

• NO

· . • X •••••••••••••••••••••••••

STOTXT X
*****B3**********
GET KWA3
--*-*-*-*-*-*-*
* GET NEXT *
* ASSOCIATED *

TEXT WORDS
****** .. ***.******

TRANS X
*****C3**·*******
BASCHK KXA3
--*-.. -*-*-*-*-*
* GENERATE *
: L R, V(IBCOM) :

X
*****03********** . .

CONVERT "OJ
.. CODE TO
* DISPLACEMENT
·0*
*****.***********

X
*****E3**·******·
RROUT KXAS
--*-*-*-.. -*-*-*
* GENERATE
• SAL R. D(R)
* * ******.**********

CALCUN .X.
*****F2******"*** F3 *.
* .. .*15 IT A*.

SET FLAG TO NO ." DATA SET *.
* INDICATE AN .. X....... REFERENCE .*
* ADDRESS" *. NUMBER .*
* * *..*
************ .. **** *. .*

X
*****H2·*".**.* ••
AR.GOUT KYA3 .-.-*-.-.-.. -*-.. -* .. GENERATE *
.. DC XLt • FLAG' *
* DC AL3 'AOO' *
..... * •• * .. * * ... **

* YES

X
*****63**********
.. seT FLAG TO *

INDICATE A *
DATA SET
REFERENCE

* NUMBER *

X
"****H3**********
"RXOUT KXJ3*
--*-*-*-*-*-*-*
: oc~Gi~iR~~CAG' :
.. OC AL3 'UNIT' *

. .
••••••••••••••••••••••••• X.

TESFOR .X.
*****J2********** J3 ...
ARGOUT KYA3 .* IS *.
--*-*-*-*-*-*-* YES.* FORMAT -.
* GENERATE *X •••••••• *. REQUIRED .*
*. ADDRESS OF. *. .*
- FORMAT * *..*
* •• ,.*******.***. * •• *

• NO . .
••••••••••••••••••••••••• X.

Chart KH.

x

*KB ..
* Ct* . .

Subroutine RDWRT

Phase 25 357

*KI *
* 84*
* * *

FI0AN .*. GETWD IOLIST .X.
*****81********** 82 *. *****83********** 84 *.
RXOUT KXJ3 .* DOES *. *GET KINA3* .* IS *.
--*-*-*-*-*-*-* NO.* I/O REQ *. *-*-*-*-*-*-*-*-* YES.* ITEM *.
* GENERATE *X •••••••• *. A FORMAT .*X •••••••• * GET NEXT *X.......... AN ARRAY .*
* SAL L, FIOAN * *. .* * TEXT _ORO * *. .*
* * *..* * *..*
***************** * •• * ***************** * •• *

* YES * NO

x X
*****e 1********** ***.**C2**********
* * *RXOUT KXJ3*
* GET * *-*-*-*-*-*-*-*-*
* ADDRESS *X •••••••• * GENERATE

OF ARRAY * SAL E, FIOLN

X
*****01**********
ARGOUT KYA3
--*-*-*-*-*-*-*

GENERATE ..
DC AL4

* (ARRAY) *

X
*****E!**********
* GET *

LENGTH
* OF EACH * * ELEMENT *

X
*****F!********** . .

CALCULATE
SIZE

• OF
* ARRAY *

MOVNUM X
*****Gl**********
RXOUT KXJ3
--*-*-*-*-*-*-*
* GENERATE *
DC XL.l 'LENGTH'
* DC XL3 'SIZE' *

X

.KB * * Bl* . . .

*

•

Chart KI. Subroutine IOLIST

358

IOFORM .X.
C4 *. *****cs**********

.* DOES *. *RXOUT KXJ3*
.* I/O REQ *. YES *-*-*-*-*-*-*-*-*

. A FORMAT . •••••••• X* GENERATE
. . * SAL L, *
.. * FIOLF *

. . *****************
* NO

FIOLN X
*****04*********·
RXOUT KXJ3
--*-*-*-*-*-*-*
* GENERATE *
* SAL L, FIOLN *
* * *****************

. .

.X •••••••••••••••••••••••••

SETSKL X
*****E4**********
* P~T LENGTH *

OF VARIABLE
INTO *

PARAMETER *
* WORD *

ZROMOD .x.
*****F3********** F4 *.
* PUT * .* IS *.

INDEX * YES .* VARIABLE *.
* REGISTER *X •••••••• *. SUBSCRIPTED .*
* IN PARAMETER * *. .*
* WORD * *..*
***************** * •• *

o NO

OCLENG X
*****G4**********
8ASCHK KXA3
--*-*-*-*-*-*-*
GENERATE DCX L2
*'LENGTH INDEX' *
DCXL2 BASE OSPL
***************** . .

••••••••••••••••••••••••• X.
X

*KS *
* Bl* ..

*KJ *
* 82*

* * *
.

ENDIC .X. FENDF
B2 *. *****B3**********

.* DOES *. *RXOUT KXJ3*
.* I/O REQ *. YES *-*-*-*-*-*-*-*-*

. A FORMAT . •••••••. X* GENERATE *
. . * BAL L. FENOF *
.. * *

. . *****************
* NO .
.
X X

*****C2********** *****C3*******
PXOUT KXJ3 * *
--*-*-*-*-*-*-* * TURN OFF *
* GENERATE * •••••••• X* FORMAT *
* EAL L. FENDN * * INDICATOR *
* * * * ***************** **************

.
X

*K8 *
* Bl*
* * *

CHart RJ. Subroutine ENOlO

Phase 25 359

*****61 **** ******
8ASCHK KXA3
--*-*-*-*-*-*-*

*KL *
* A2* . .

SAOP X
*****A2**********
* fET SAOP *

TEXT AND
INSTRUCTION

WORD

LODATA .X.
82 *.

.* IS *.
* GENERATE *X •••

• * SUBSCRIPT *. YES
. A CONSTANT . ••••

* LX, = (C 1 *L) * . .
*********** ******

x
*****C 1 **** ******
BA$CHK KXA3
--*-*-*-*-*-*-*
* GENERATE *
: MH X. VI + 2 *
*********** ******

. . *. .*
* •• *

• NO

oX 0

C2 *.
.* IS *.

• YES.* Cl*L A *.
•••••• *. LITERAL .*

. . *. .* * •• * * NO

X
*****02**********
8ASCHK KXA3
--*-*-*-*-*-*-*

GENERATE
L X.VI

X
*****E2**********
RXOUT KXJ3
--*-*-*-*-*-*-*
* GENERATE

SLA X, P

o 0 0

••••••••••••••••••••••••• X. X •••••••••••

*KL *
* A3* ..

AOP X
*****A3**********
GET KWA3
--*-*-*-*-*-*-*

GET NEXT
TEXT _ORO * .

*K8 *
.. CI*

X

o NO
.X. CHEKIO .*.

83 *. *****B4********** 85 *.
.* IS *. * * .* * •

.* OFFSET *. NO * ACO OFFSET .* INST. *.
. A LITERAL . •••••••• X*TO DISPLACEMENT* •••••••• X*. IN AN I/O .*

AI-'OUT

. . *OF INSTRUCTION * X *. LIST .*
.. * * *..*

* •• * ***************** * •• *
* YES * YES

.X. SETLH
C3 *. *****C4**********

.* *. *BASCHK KXA3*

X
*****C5******* . .

.* CONSTANT *. YES *-*-*-*-*-*-*-*-* • SET I/O
LIST

INDICATOR
. SUElSCRIPT . •••••••• X* GENERATE * •••• X.

. . * L X. = OFFSET * · . ****-*************

ADOFST
*****04**********
BASCHK KXA3

• *-*-*-*-*-*-*-*-* •
••••••••••••••••• X* GENERATE * ••••••

* A X. = OFFSET * · . *****************

* ON *
**********~Hf**

x

*K8 4-

* C1* ..

SETUPL .x. TST4AH .*.
F2 *. F3 *. *****F4*******

.* ANY *. .* *. · . • * MORE *. NO .* INST. *. YES SET I/O
LIST

INOlCATOR
••••••••••••••••• X*. SUBSCRIPT .* •••••••• X*. IN AN I/O .* •••••••• X*

. . *. LIST.* *
.. *..*

* •• * * •• *
* YES * NO

INTSKL .X.
G2 *.

.* *.
YES .* SUBSCRIPT * •

••••• • *. A CONSTANT _.*
. . *. .* * •• *

• NO

X
*****H2******"**"
BASCHK KXA3
--*-*-*-*-*-*-*
* GENERATE
* L W. VALUE

*****J2**********
EASCHK KXA3
--*-*-*-*-*-*-*
* GENERATE *
* MH W. V+2 . .

UP SUB • GENAR X
*****Kl******* *****K2**********
* DECREASE * *RROUT KXA5*
* DIMENSION X *-*-*-*-*-*-*-*-*
* COUNT *X •••••••• * GENERATE *

BY 1 * * AR X._ *
* * * * **************

Chart KL. Subroutines SAOP, AOP

360

o 0

.x •••••••••••••••••••••••••
LITCON .X.

G3 *. *****G4**********
.* IS *. *BASCHK KXA3*

.* OFFSET *. YES *-*-*-*-*-*-*-*-*
. A LITERAL . •••••••• X* GENERATE *

. . * A X. = OFFSET *
.. * *

*. • * *****************
• NO

X
*****H3**********
* •

AOD OFFSET •
TO OISPLACEMENT •••••••••••••••• x.
*OF INSTRUCTION * . .

X

*KB *
* C1* . .

*KM * * A1* . .

ASFDEF X
*****A 1 ********** . .

CALCULATE
ASF TABLE *

ENTRY * .

X
*****81 **** ******
* PUT *

LOCATION
COUNTER

IN TABLE

x

*K8 *
* Bl* ..

*

*KM *
* A3* ..

ASFEXP
*****A3**********
• * * GET ADDRESS

IN TEXT *
\MORO *

X
*****83**********
RXOUT KXJ3
--*-*-*-*-*-*-*
* GENERATE LOAD *
* PARAMETER *
ADDRESS IN R. 15

X
*****C3********** . .
* GET OPERATION *
* FROM TEXT *

WORD

X
*****03**********
:~~~~~*-*-*-~~~::

GENERATE
OPERAT ION * .

x
***** *KE *
* 81*
• * .

Chart KM. Subroutines ASFDEF, ASFEXP, ASFUSE

*KM *
* A5* * •

ASFUSE X
*****A5********** * GET ADDRESS *
*OF FIRST INST. *
* IN ASF FROM *

ASF TABLE *

X
*****85********** . .
*INSERT ADDRESS.

IN LOAD *
INSTRUCT ION *

X
*****C5**********
RXOUT KXJ3
--*-*-*-*-*-*-*
* GENERATE * * L 15, ADDRESS * . .

X
*****05**********
RROUT KXA5
--*-*-*-*-*-*-*

GENERATE
BALR 14, 15

x

*K8 *
* 81* ..

Phase 25 361

x
: •••• ",,3 ••••••••• :

.PUT SUBROUTINE ..

.. TEXT WORD ..
: IN WORK AREA :

x
: •••• 83 ••••••••• :

.. GET ADDRESS ..

.. OF EP ILOGUE ..
: TABLE :

NXTPAR X
••••• C;, ••••••••••

:~~!.-.-.-.-~!:~:
.. GET NEXT .X ••••• C3 ..
: TEXT WORD:

• x.
03 tI. • •••• 0 •••••••••••

... YES :~~~:~._._._~~t~:
. END MARK . •••••••• X* GENERATE * ••••••••

*. *. .*.* : ARO~:~N~~F(S~ : .. : ••
fi •• * ••••••••••••••••• *KB ..

.. NO ... C!-.
TSTARV eX. NAME

•• E3 *. *. : •••• E4 ••••••••• :

.* *. YES .. GENERATE • *. ARRAY .* •••••••• X. MVC DUMMy ••••••• *. .* _NAME , ...). 0(1) ..
.. * •• * •••••••••••••••••

• NO

VALUE i ••••• F3········*· *SET LENGTH FOR ..
-MOVE TO " OR 8 ..
.. DEPEND ING ON ..
.. MODE OF DUMMY ..

: ... ~::!::~:****:

STOLEN, X ·····G3······"··· * PUT DISPLACE- *
• MENT IN LOAD *
• SKELETON *
: INSTRUCTION :

** ••• *** ••••••• **

X
···H3**·······*
:~~~~:!:*-*-*-~~~::
• GENERATE •
: L2.D(l):

.** ••• **.* ••••• *.

X
** ... ·,J3**·· •• • ... •
• GET DUMMY •
• ADDRESS AND •
• PUT IT INTO •
: MOVE SKELETON :

••••• ***** *.

x :CKNXT
: K3 ••••••••• : * •••• K4.......... • •••• K5 .••.••••••

.. PUT LENGTH.. •• •
• GENERATE. • PARAM LIST. X. UPDATE •
• NVC DUMMY(LJ X. DISPLACEMENT. * X. DISPLACEMENT ...
• 0(2) • • AND ADDRESS • • BY 4 •

: •••••• *** ! : ... !~ ... ~:!~~~.!:~.: : ***.** •• *!

Chart KN.

362

Subroutine SUBRUT

*! •• . .
: C3 :

RETURI\

*KO *
* A2* * •

• x.
A2 *. *****A3*.******** *****A4**********

.* ANY *. * PUT BRANCH * .TRGEN KEA2*
.* PREVIOUS *. YES * LIST ADDRESS * .-*-.-.-*-*-*-*-*

. RETURNS . •••••••• K* IN LOWER * •••••••• X* GENERATE LOAD * ••••••••
. . * HALF OF * - AND BRANCH * X
.. * INSTRUCTION * * INSTRUCTIONS. *-***

* •• * -**-*** •• *.***-** -**.*_ •• **-***.** *KS *
* NO - Bl *

PUTRET X
*****82********** · . * ENTER RETURN
* ADDRESS INTO *

BRANCH LIST *

** ***C2**********
RXOUT KXJ3
--*-*-*-*-*-*-*
*GENERATE- LOAD *
*PARAM. POINTER *
* INTO REGISTER.
********* ****.***

NXTEFI X
*****02**********
* GENERATE *
* INSTRUCTIONS *
• TO GET VALUES *
* CF PARAM.
* TO CALLER
*.**.*.********_.

TSTFl"N .X.
E2 * • • * ••

• * FUNCTICN *. NO
. SUBPROGRAM . ••••

. . •• .*
* •• *

* YES

*****F2**********
.EASCHK KXA3*
--*-.-*-*-*-*-*
* GENERATE INST *
TO RETURN VALUE'
* OF FUNCTION *
******.**********

· . • X •••••••••••

EXTCf":K .X.
G2 * •

• * * •
• * ANY *. YES

. EXTERNAL . ••••••••••••••••••
. CALLS .

. .
* •• *

• NO

NTFUNC X X
.4.H2 ******** **.**H3***.*******
* GENERATE * * GENERATE INST *
- INSTRUCTIONS * TO RESET SAVE *
* TO RESTORE *X •••••••• * AREA •

REGI S TERS * * PO INTER • · *. --************.** •••••••••••••• *.*

X
·J2*···******
RROUT KXA5
--*-*-.-*-.-*-*
* GENERATE *

EXIT *
• BRANCH •
****.* •• **.* •• *.-

x
*-***
*KB * * Bl-. . ·

Chart KO. Subroutine RETURN

* *
*

Phase 25 363

*KP *
* A2*
* *
*

FUN GEt-: .X.
A2 * •

• * * • • * IN-LINE *. YES
. FUNTION . ••.•..•••••••.•.•.

*KP *
* 81*
* * *

. .
. .

. .
* NO

EREXIT X BALANY X
*****81********** *****82**********
* * *8ASCHK KXA3*
*GET ADDRESS OF * *-*-*-*-*-*-*-*-*
* ERROR LIBRARY * ••••••.• X* GENERATE LOAD *
* ROUTINE * * REG. 15 WITH *
* • IBERR· * * ADDRESS *
***************** *****************

Chart KP.

364

X
*****C2**********
RROUT KXA5
--*-*-*-*-*-*-*
* GENERATE *
* 8ALR 14, 15 *
* * *****************

X

*KB *
* 81 *
* * * PRESCN

Subroutine FUNGEN/EREXIT

X

*IN-LIN *
FUNCTION NAME • CHART

*IFIX KQA2 *
*FLOAT KQA2 *
*OFLOAT KQA2 *
*ABS KRG3 *
*IABS KRG4 *•..
*DABS KRG2 *
*DIM KRC3 *
*IDIM KRC5 *
* ••••••••••••••••••••••••• *
*SIGN KRA2 * * •••.••••••••••••••••••••• *
*ISIGN KRA3 *
* ••••••••••••••••••••••••• *
*OSIGN • KRAI *

*KQ *
* A2* * •

FIXFLT X
*****A2**********
EET KWA3
--*-*-*-*-*-*-*
* GET NEXT *

TEXT
* WORD *

FLOAT • X.
*****Bl********** 82 ••
* * .* *. * ACCESS Rl AND. NO.* IS *. YES
*R2 AND COMPUTE *X •••••••• *. THIS .* ••••••••••••••••••
* R2-1 * *. IFIX .*

x
*****C 1 **** ******
RROUT KXA5
--*-*-*-*-*-*-*
* GENERATE *
* LPR R2-1. R2

* *****************

X
*****01**********
eASCHK KXA3
--*-*-*-*-*-*-*

GENERATE *
ST R2-1,

* WORK+4 *

X
*****E 1 **********
BASCHK KXA3
--*-*-*-*-*-*-*
* GENERATE * * LD RI. CONST .
*********** ******

X
*****F 1 **********
8ASCHK KXA3
--*-*-*-*-*-*-*

GENERATE *
AD Rl. WORK *

X
*****G 1 **********
RROUT I<XA5
--*-*-*-*-*-*-*

GENERATE *
L TR R2. R2 .

*********** ******

X
*****Hl **********
GNBC6 KQ85
--*-*-*-*-*-*-*
'* GENERATE
* BALR 15.0
* BC 10.6(15) *
*********** ******

X
*****J 1 **** ******
RROUT KXA5
--*-*-*-* -*-*-* * GENERATE *

LNER Rl. Rl *

x

*KB * * 81* . .

*.

. .
* •• * .

Chart KQ. Subroutine FIXFLT/GNBC6

X
*****03**********
BASCHK KXA3
--*-*-*-*-*-*-*

GENERATE *
AW RI.CONST

X
,*E3**** ** ****
BASCHK KXA3
--*--*-*-*-*-*-* * GENERATE *

srD RI.WORK
* WORK *

X
*****F3**********
BASCHK KXA3
--*-*-*-*-*-*-* * GENERATE
* L R2. * WORK+4 *

X
*****G3**********
GNBC6 KQB5
--*-*-*-*-*-*-*
* GENERATE

BALR 15.0
* BC 10,6(15) *

X
*****H3**********
RRour KXA5
--*-*-*-*-*-*-* * GENERATE
* LNR R2. R2
• *

x

*KB *
* Bl* ..

*KQ *
* 85*
* *

GNBC6 X
*****B5**********
RROUT KXAS
--*-*-*-*-*-*-*
* GENERATE
* BALR 15.0

X
*****C5**********
RXOUT KXA3
--*-*-*-*-*-*-*

GENERATE *
BC M.6(15}

****05********* . .
RETURN

Phase 25 365

*KR *
* Al* . .

cSIGN X
*****Al********** · . · · SET MODE

TO DOUBLE
PRECISION

. .
· *****************

KR - A2* · .

SIGN X
*****A2*******-** · . * SET MOCE -
- TO· ...
* REAL * · *****************

*KR *
* A3* · . ·

ISIGN X
-****A3********** · . * SET MODE *
* TO * * INTEGER * · . ****-************

.
••••••••••••••••••••••••• X.X •••••••••••••••••••••••••

Chart KR.

366

IRSIGt\: X
*****82**********
RROUT KXA5
--*-*-*-*-*-*-*
* GENERATE *
LP(E)(D)R Rl,Rl · . *****************

*KR *
* C3* · .

*KR *
* C5* . .

X
*****C2**********
RROUT KXAS
--*-*-*-*-*-*-* * GENERATE *
.LT(E)(D)R R2.R2*

DIM X IRDIN 101M X
*****C3********** ** •• *C4*****.**** •• ***C5*.********
* * *RROUT KXA5* * *
... SET MODE'" *-*-*-*-*-*-*-*--1- -I- SET MODE *
* TO * •••••••• X. GENERATE .X •••••••• * TO
• REAL * • S(E)R Rl.R2 * * INTEGER · . *****************

x
*****02*****·****
GNBC6 KCSS
--*-*-*-*-*-*-.
* GENERATE •

BALR IS,O
• BC 10.6(15) *
******.*****.****

X
*****E2**********
RROUT KXAS
--.-*-*-*-*-*-.
* GENERATE *
.LN(E)(D)R Rl.Rl* · . ** * ****** **** ****

x

*KB *
* Bl* · .

*KR *
• G2* · . .

· . **************.**

·KR *
**G;* ·

. .
.************

X
*****04**********
GNBC6 KQB5
--*-*-*-*-*-*-*

GENERATE *
BALR 15,0 ...

* Be 2,6()5) ...
.****************

X
*****E4**********
RROUT KXAS
--*-*-*-*-*-*-*
* GENERATE *

S(E)R R2,R2 . .
*********-*-*****

x

*KB ...
* 8)· ..

KR - G4* . . .

DABS X ABS X tABS X
*****G2********** *****G3********** *****G4**********
* - * * * * * SET MODE * SET MODE * * SET MODE *
* TO DOUBLE * •••••••• X* TO *x •••••••• * TO * * PRECISION * * REAL * * INTEGER * *. * * ***************** ***************** *****************

IRABS X
*****H3***·**·***
RROUT KXA5
--*-*-*-*-.-*-*
• GENERATE *
LP(E)(O)R Rl,Rl · . *.***.***********

Subroutines SIGN, DIM, ABS

x

*KB *
* 81* · . ·

. .

*KS * * A2"
" " "

STOP X
*****A2**********
" GET DISTANCE "
* '0' *
" CF STOP FROM "
" BEGINNING OF "
" IBCOM *

PAUSE 1
*****83**********
" "

*KS *
* A4*
* *
"

PAUSE X
*****A4**********
" GET DISTANCE "
* '0' *
" OF PAUSE FROM "
" BEGINNING OF "
" IBCOM "

• " GET ADDRESS " •
••••••••••••••••• X*OF THE BGNG OF *X •••••••••••••••••

Chart KS.

" IBCOM "
" " *****************

X
*****C3**********
"BASCHK KXA3"
--*-*-*-*-*-*-*
" GENERATE "
"L IS, VIIBCOM) "

" " *****************

.
X

*****03*********­
"RXOUT KXJ3"
--*-*-*-*-*-*-*
" GENERATE *
"BAL 14 , 0115) "

" * *****************

.
X

*****E3**********
"RROUT "
--*-*-*-*-*-*-*
*SET UP DC'S FOR"
" CHAR CNT AND "
" HALT NUMBER "

X
'*
"KB "
'* 81*

" " "
Subroutine STOP/PAUSE

Phase 25 367

END • X. • *.. EXTCHK
.*AI IS *.*. • .. A~AS :.*. :****A3******"*.:

• * THIS A *. NO ... STOP BEEN ... NO * GENERATE
. SUBPROGRAM . •••••••• X*. GENERATED .* •••••••• X* CALL TO

... .* *. .* * IBEXIT
.. *..* * *

* •• * ••• * ***** ***** .. **'**
* YES * YES

• X •
• x •••

SAVLOC X
: ... **e 1 ****** .. **:

* SAVE *
* LOCATION ..
: COUNTER :

**** ** ** .. **

x
:* C 1 *****.***:

.. CLOSE OUT ..
• ANY TEXT *
: CARD ENTRIES :

NOTEXT X
:****01 *** ** .. *!

* SET TeXT CARD *
* ADDRESS *
*AND BYTE COUNT *

: !~.~~~~ ... **:

X
* *El·* .. ***.***

:~:~~~ .. -*-*-~~~::
GENERATE DC CL7
* 'PRGNAME' *

: ... ~;*:~!*; ~!;**:

X
*****F 1 ***** ***

:~~~~~*-*-*-~~~::
* GENERATE *
* STM 14.12 ..

:*****.;:~~******:

X
*****GI **********

:~:~~~ .. -.. -*-:~~::
* GENERATE *
.. LM 4.N. *
:*****~:.;;* * :

X
****"Hl ** .. **** *
:BASCHK KXA3:

* GENERATE *
: BC IS.START :

* ** ... *** **** ..

x
:****Jl *********:

CLOSE STATEMENT
* NUMBER PR tNT *
: BUFFERS :

: C3 :

Chart KT.

368

.. *** . .
: C3 :

** .. *

CI-iKBL X
*****C3**********
* INITIALIZE *
* SUBROUTINE TO *
*PROCESS BRANCH *
LIST FOR STATE-

:*~i~!*~~~~i~;**:

CKEND X
:****03*********:

* PUT OUT *
••••••••••••••••• x* BRANCH LIST *

: TEXT CARDS :

*** •• ****.***.***

ANYRLD .x.
*****E2* •• ** •• *.* E3 *.
* INITIALIZE * .'* *.
* SUBROUTINE TO * NO.. SECOND ...
*PROCESS BRANCH *X •••••••• *. BRANCH LIST .*
LIST FOR ASF(S) *.PROCESSED.*
* AND 00 STMTS * *..*
* ... * •••••••• **.**

• YES

RLDCHK X
.***.F3·****·****
* INITIALIZe *
* SUBROUTINE TO *
* CREATE RLD *
CARDS FOR STMT.

:~~:.*~~:~;~*;!;!:

MORCRO X
:****G3****.****:

* PUT OUT *
• •••••••••••••••• X* BRANCH LIST *

: RLD CARDS :

BRCHK2. GETCNT .X.

:*.;:~~::~~~:***: .*Hol *.*.
* SUBROUTINE TO * NO.* seCONO *.
* CREATE RLD *X •••••••• *. BRANCH LIST ••
* ENTRIES FOR * *.PROCESSEO.*
"A5F(S)+DO STMT5" *..*
........ ****** .. ****** * •• *

Subroutine END

* YE5

ZRTXT X
:".**J3*********:

"PUT COMMON BASE*
* ADDRESSES IN •
: TEXT CARD :

*** .. ********* .. ***

ZRTEX X
:****K3*****.***:

* PUT PROGRAM *
*BASE ADDRESSES *
: IN TEXT CARD :

.. ******* .. *** .. ****

: AS :

.... ** . .
: AS :

•• -*
x

:****AS.****** :

* PUT OUT TEXT ..
.CARD WITH BASE ..
: ADDRESSES :

*** .. * .. ** .. ** *

ENDCRD X
: ••• *C5*********:

* PUT OUT RLD *
CARDS AND CLEAR
* BUFFERS FOR *

:**.~~*~::~****:

:****04*********:
.X.

05 * • • * ...
PUT I":NTRY
POINT IN
END CAI'lD

YES.. MAIN ...
X... PROGRAM . . .' .. if..*

.. ** ** .. ** •• **** * •• *
• NO

OUTEND X
:***.ES* •• ".** •• :

* COMPUTE * X: ~~~~R~: :

X
*****FS**"*******

:!~!~~l_*_*_!~:~:
* PUT OUT *
: END CARD :

******** .. **** .. ***

X
:****G5*********:

* PRINT SIZE *
* OF COMMON •
: AND PROGRAM :

*** .. ****.********

XYZOUT .X.
HS *.

****H4"·***"*** • * *.
• eXIT TO * YES.* ANY *.
: PHASE 30 :X •••••••• *. *!A~:~~~~ O~*.*

*** •• *.****.**. *..*
* •• *

• NO

$VC7 X
.*.15*"****·

* EXIT TO *
* CTL CARD *

* ****:~~!!~i**** *

***** *KU :II-

* A3*
* * *
I

ENTRY V
*****A3********** · . * SAVE ENTRY *
*POINT LOCATION *
:II- COUNTER *

I
SUBPRO .v.

83 *. *****84********** .* ARE *. *RROUT KXAS*
.* BASE *. NO *-*-*-*-*-*-*-*-*

. VALUES .------->* GENERATE *
ADDRESSABLE LR 8, 15
.. *

*. .~ ***************** * YES

I
CHKEXT .v.

*****C2********** C3 *.
RXQUT KXJ3 .* *. *_*_*_*_*_*_it_it_* NO.* IS *.
* GENERATE *<-----*. THIS A MAIN .*<--------' * ST 1. PA~PTR * *. PROGRAM .*

* *..*
***************** * •• * * YES

I
v

*****03**********
6ASCH KXA3
*_*_*_*_it_*_*_*_*
* GENERATE *
:II- L 15=V(IBCOM) :II-· . *****************

I I, V

*****E3********** I :~~~~~*-*-*-~:~~: * GENERATE *

I,

ll :*::~*~::::~::;*:

I
I GENIBF F3- V-*. *****F4**********

L .* *. *RROUT KXAS*
.* ANY *. YES *-*-*-*-*-*-*-*-*

-------->*. EXTERNAL .*------->* GENERATE *
. CALLS . * LR 12. 13 ..
.. *

* •• * *****************

ro I
CHKMAIN .v. V

G3 *. *****G4**********
****G2********* .* *. *BASCHK KXA3*

* * NO • * IS *. *-*-*-*-*-*-*-*-*
RETURN :<------*. *:H~~O~R~~I~* .*<--, : LA G~~~R~!E(B) :

*************** *".. * I * *

I Chart KU.

··~ES I *****************

I
*****H3********** · . *GENERATE BRANCH*
* TEXT FOR ASF * * BRANCH

I
v

*·"**J3·lf-******** · . RETURN

Entry Routine

V
*****H4**********
RXOUT KXJ3
--*-*-*-;*-*-*-*
* GENERATE *
: ST 13. 8(12) *

I *****J4**********

L:~;~~~*-*-*-~~;::
* GENERATE *
STI2.4(13) . .

Form Z28-6620-0
Page Revised 1/11/66
By TN!. Z28-2117

Phase 25 368A

*KV *
* A3*
* *
*

GENBC X
*****A3**********
* GET ADDRESS * * OF BEGINNING *
* OF BRANCH *
* LIST *
* * *****************

X
*****B3**********
* CALCULATE *
* ADDRESS OF *
* BRANCH LIST *
* ENTRY FOR *
* STMT. NO. *

X
*****C3**********
BASCHK KXA3
--*-*-*-*-*-*-*
GENERATE LOAD R
WITH ADDRESS IN
* BRANCH LIST *

X
*****D3**********
* INSERT *
* MASK *
* IN * * BRANCH * * INSTRUCTION *

X
*****E3**********
RROUT KXA5
--*-*-*-*-4-*-*
* GENERATE * * BCR MASK.O(R) *
* * *****************

X
****F3*********

* * * *
RETURN * * ***************

Chart KV. Subroutine GENBC

Phase 25 369

*KW *
* A3*
* * *

GET X
*****A3**********
* * * UPDATE *
* BUFFER *
* POINTER *
* * *****************

· .X.
83 *.

****82********* .* *.
* * NO.* END *. * RETURN *X •••••••• *. OF .*
* * *. BUFFER .*

*************** *..*
* •• * * YES

· REAOXT .x.
C3 * •

• * * • • * IN *. YES
. STORAGE . ••••

* .. COMPILE .*
. .

* •• * * NO

.X.
03 *.

****02********* .* END *.
* * YES.* OF DATA *.
* RETURN *X •••••••• *.SET INDICATOR.*
* * *. ON .*

*************** *..*
* •• *

* NO

· X
*****E2******* "*****E3**********
* SET END * * * * OF DATA SET * EOF* SUPERVISOR *
* INDICATOR *X •••••••• * CALL TO *
* ON * * READ TEXT *
* * ************** * * *****************

. .
•.••••••••.•.••.•.••.••.• x.

Chart Kif.

370

NOREAD X
*****F3**********
* * * * *
*

FLIP
BUFFER

POINTERS
* *X •••
•
* *****************

· X
****G3*********

* * *
*

RETURN *
* ***************

Subroutine GET

,
eASCHK .X.

A3 *. .* ANY * •
• * SPILL *. NO

.8ASE IN THIS . ••••••
* •• ~ROGRA~ •••

* •• *
* YES

.x.
83 *.

•• IS * •
• * THIS *. NO •

.A SPILL BASE . •••• X.
. INSTR. .

. . * •• *
• YES

.x.
C:;! * •

• * IS IT *.
* * YES .*THE SAME AS*.
* l"I:3 *X •••• *. PREVIOUS .*
* * *. SPILL .*
**** *..*

* •• *
• NO

X
*****0:3**********
* SAVE LINK •
* REGISTER *
* AND *
* INSTRUCTION *

:****~~!~!;~****:

.x.
E:3 *.

.* *.
:*.**E2*.***.***:

SUBTRACT 8 FROM YES.* 16K *.
* ACTUAL EASE *X •••••••• *. COMMON .*
* CISPLACEMENT * *. .*
* * *..*
*******'********** *. .*

• NO

. .

............................ X.

SETLo7 X
** •• *F3***·*·****

:~!~~~*-*-*-~~~::
* GENERATE
* L R. BASE

X
.*G::l** •••• *
* RESTORE •
* LINK REGISTER *
* AND INSTR.. *
* POINTER :

.**********

PUTIN7 X
:****H:3'****.****:

* * * Ct-ANGE *
* H:3 X* BASE TO SPILL *
* •• ** * : BASE REGISTER:

*** ••
*I<X •
* *..Ji· .

*****.****.******

RXOUT X
: •• * • ..J3*********: X: SAVE LINK

REGISTER :X •.••• .
x

:****K3********.:

* SET •
* INSTRUCTION •
: LENGT TO 4 :

* •• *******.*** •••

: TXT2ST

*.!**
·KZ *
* .A~* ·

*KX *
**A~* . .

RROUT X
:****AS***.****.:

* SAVE LINK *
: REGISTER

**************.*!

x
:****65*********:

* TXTeST *
* INSTRUCTION *
: LENGTH TO 2. :

TXTEST

Chart KX. Subroutine BASCHK/RXOUT/RROUT

Phase 25 371

*KZ *
* A2*

* *

TXTEST .X.
A2 *.

****A 1 *'1HHI· *** ** • * GO. *.
* * NC .* GO GO. OR *.

RETURN *X •••••••• *. DECK OPTION .*
* .. *. .*

*************** *..*
* •• *

* YES

X
*****B2*******4**

• *

RLDTXT

*KZ *
* A3* ..

**** *A3**********
* SET BUFFER *

PO INTER AND *
*PUT BYTE COUNT *
* IN T6:XT CARD * .

UPDATE
LOCATION

COUNTER
*X •• oo .

X
*****83**********
TXTOUT KZA4
--*-*-*-*-*-*-*
* PUT OUT *

TEXT CARD

• x.
*****Cl********** C2 *.
* * .* CAN *.
* DECREMENT * NC .* INSTRUC- *.

LOCATION *Xoo ••••••• *. TION FIT ON .*
COUNTER * *. CARD .*

* ****** ***********

X
*****Dl*******
* * SET EXIT

INDICATOR
ON

X
*****E 1 **** ******
RLDTXT I<ZA3
--*-*-*-*-*-*-*

. .
* •• * * YES

MVTEXT
*****02*******

* * SET EX IT
INDICATOR

OFF
*

*****E2********** · .
PUT OUT * •••••••• X*

PUT I NSTR
IN

TEXT CARD * * CARD BUFFER
* IMAGE *
*********** ******

* iii ***F2**********
* UPDATE *

BYTE COUNT
AND BUFFER

POI NTER

.x.
*****Gl********** G2 ,*.
RLDTXT I<ZB3 .* END *.
--*-*-*-*-*-*-* YES.* OF *.
* PUT OUT *X •••••••• *. BUFFER .*

TEXT CARD *..*
* IMAGE * *. .*
*********** ****** *. .* * NO

. .
••••••••••••••••••••••••• X.

EXTXT X
****H2********* · . RETURI\<

*****C3**********
• *

INITIALIZE *
OTHER

BUFFER

• x.
03 *.

.* *.
• YES.* EXIT *.
•••••• *. INDICATOR .*

. ON .
* •• *

* NO

EXTXT
****E3********* . .

* RETURN

Chart KZ. Subroutines TXTEST, RJ~TXT, TXTOUT

372

*KZ *
* A4*

TXTOUT X
*****A4**********
* PliT CARD *
* SEQUENCE NO. *

AND PROGRAM *
NAME ON

* CARD *

.x.
84 *.

.* GO OR *.
.*GOGO OPT I ON*. YES

**** ** 85*** * *******
WRITE

CARD ON
. ..oo •••••• x GO

. .
* •• *

• NO

TAPE

· . • x •••• oo ... oo

.x.
C4 *. * *** ** C5 ** * * ** *****

oo* *.
oo* DECK *. YES

. OPTION . •••••••• X
PUNCH
TEXT
CARD *. .*

. .
* •• *

• NO

· . .. x oo oo

****04*********
• *

RETURN
*

Phase 30 produces error and
messages signalled by error/warning
tors set in the output text of any
ing phase.

warning
indica­
preced-

Chart 09, the Phase 30 OVerall Logic
Diagram, indicates the entrance to and exit
from Phase 30 and is a guide to the overall
functions of the phase.

When an error condition is encountered
during compilation, an error indicator is
set in the communications area. Phase 20,
at the completion of its processing, checks
this indicator. When errors have been
encountered in the preceding phases, Phase
20 determines if the GOGO option was speci­
fied by the user. If the GOGO option was
not specified, entry is made into Phase 30;
otherwise, Phase 20 exits to Phase 25.

When a warning condition is encountered
during compilation, a warning indicator is
set in the communications area. Phase 25,
at the completion of its processing, deter­
mines if error or warning conditions have

PHASE 30

been encountered. When either condition is
encountered, entry is made into Phase 30.

Phase 30 checks the adjective code of
each text word for an error or warning
condition. Phase 30 accesses the
error/warning number (set up by the phase
that found the error/warning condition)
from the mode/type field of that text word.
This number is compared to the numbers in
the error/warning message table. ~his
table is illustrated in the System/360
Basic Programming Support FORTRAN
Programmer's Guide, Diagnostic Messages.)

If that number is found in the table,
Phase 30 prints the corresponding message.
When a corresponding number is not found in
the table, Phase 30 prints a message indi­
cating a compiler error.

After the text is completely processed,
Phase 30 returns control to the FORTRAN
System Director to call in the Control card
routine.

Phase 30 373

*****FROM FORTRAN
*09 *SYSTEM DIRECTOR
* 83*
* * *
.
X

*****83**********
* * * ACCESS A

TEXT WORD * * * * * *****************

.X.
C3 *.

.* DOES * •
• * ADJECTIVE *. YES *

******C4***********
PRINT ERROR/

WARNING
MESSAGE * *.CODE INDICATE.* •••••••• X

.ERROR OR .
WARNING

* •• * * NO

.X.
03 * •

• * * •

* DESIGNATED *
IN TEXT

• NO.* TEXT * •
••.• *. PROCESSING .*

.COMPLETE .
. .

* •• *
* YES

X
****E3*********

*RETURN CONTROL *
* TO FORTRAN *
SYSTEM DIRECTOR

Chart 09. Phase 30 Overall Logic Diagram

374

,
\ .

PART 4: OBJECT-TIME EXECUTION

An object program generated by the
FORTRAN compiler is executed via four seg­
ments of the system: FORTRAN System Direc­
tor (FSD), Control Card routine, FORTRAN
loader, and IBCOM.

The FSD and Control Card routine are
discussed in Part 2; the FORTRAN loader and
IBCOM are to be discussed in this part of
the manual.

Part 4: Object-Time Execution 375

FORTRAN LOADER

The FORTRAN loader (BPS FORTRAN IV D
Relocating Loader) places control segments
into storage at locations other than those
assigned by the compiler; that is, relo­
cates them, completes the linkage between
the various segments, and, at the end of
the loading process, provides the FORTRAN
System Director with the location to which
control is to be transferred in the user

Chart 11, the Loader OVerall Logic
Diagram, indicates the entrance to and exit
from the loader and is a guide to the
overall functions of the loader.

LOADING PROCESS

The flow of operations of the FORTRAN
loader can, in general, be defined as
follows: the user program is read into
storage, the library routines referenced by
the user program are loaded into main
storage, and relocation and linkage are
effected.

More specifically, the loader reads the
entire user program into main storage. The
user program may consist of one or more
control segments (a control segment is the
output of a single compilatio~. The name,
length, and starting address of a control
segment are defined by an ESD Type 0 card;
the end of the control segment is defined
by an END card. (The segment length may
also be indicated in the END card.) The
end of the entire user program is defined
by an LDT or DATA card. As the user
program is read into storage, the control
dictionary for segment relocation and lin­
kage are built.

Once the program is in main storage, the
loader begins to process the calls made by
the program for library subprograms. Any
reference to a library subprogram causes a
search of the library on the system tape,
provided the referenced subprogram is not
already in main storage.

During the process of accessing and
reading segments into storage, the loader
writes on a work tape the information for
relocation and linkage (contained in the

376

ESD and RLD card~. When all library
subprograms have been read in and the
information for relocation and linkage is
on the work tape, the loader rewinds the
work tape.

The loader reads the work tape and
carries out the relocation and linkage for
the user program as instructed by the
information on the loader cards.

When relocating control segments and
establishing the linkage among them, the
loader must calculate certain information
during the loading process. The loader
receives this information from loader cards
encountered during the loading process and
performs its calculations with a distinct
routine for each type of load card.

Thus, for information on relocating, the
loader analyzes and performs calculations
on the Set Location Counter (SLC), Include
Segment (ICS), External Symbol Dictionary
(ESD), Text (TXT), and Replace (REP) cards.

For inforrration on linkage, the loader acts
on External Symbol Dictionary ~SD types 0,
1, 2, and 5), Relocation List Dictionary
(RLD), and Replace (REP) cards. The infor-

mation for end-of-Ioad transfer is provided
by Load Terminate (LDT), Type/Data VDATA),
and Load End (END) cards.

CONTROL DICTIONARY ELEMENTS

The control dictionary consists of a
reference table, an external symbol iden­
tification table (ESIDT~, and a lOcation
counter.

The reference table is a list of 12-byte
entries built by the loader; it contains
the names and entry points of a control
segment, their present internal location,
and the relocation factor. (The relocation
factor is the difference between the com­
piler assigned address of a control segment
and the address where the segment is
actually loaded in storage.)

The ESID table contains pOinters to the
entries, in the reference table, for the
current control segment.

TheFORTRAN loader maintains its own
location counter, which is used to deter­
mine where control segments are to be
loaded. The counter is set to a constant
value during the initial loading process
and is subsequently incremented by the
number of bytes indicated on an ESD Type 0
or END card. It may also be incremented by
the length indicated on an ICS card or
reset by an SLC card.

FORTRAN LOADER FUNCTIONS

As was pointed out, the FORTRAN loader
must perform certain calculations on the
information it receives from the loader
cards. The routines that analyze and act
upon the load cards are illustrated on
Charts NC through NM.

The loader must also have routines to
initialize itself and to read cards into
storage: these routines are shown on charts
NA and NE.

Apart from initializing itself, reading
cards into storage, and acting upon the
information contained in those cards, there
are other necessary functions that must be
provided for, such as handling error indi­
cations (Chart NS), providing a map of
storage (Chart NT), obtaining or searching
for frequently referenced data (Charts NO
through NR), converting hexadecimal charac­
ters to binary (Chart NN) , and routines to
handle end of data set (EODS) indications.

CARD FORMATS

The relocating loader recognizes the
card images specified under 'LOADING PROC­
ESS.' The SLC, rcs, REP, LDT, and DATA
cards are supplied by the user. The ESD,
RLD, TXT, and END cards are generated by
the compiler.

In the following paragraphs, the func­
tion of each card is stated briefly, the
card format shown in tabular form, and each
field of the card is explained.

SET LOCATION COUNTER CARD

The Set Location Counter (SLC) card is
supplied by the programmer. The card sets
the location counter of the loader to the
address assigned to the name in the card.
If there is also a hexadecimal address in
the card, that address is added to the
address assigned to the name in the card
and the location counter is set to the
resulting sum~ The contents of the SLC
card fields are explained in Figure 59.

r-------T------------~--------------------l

I Column' Contents ,
~-------+-------------------------------~

1 I Load card identification
, (12-2-9). Identifies this as a
I card acceptable to the loader.
I
I

2-4 I SLC. Identifies the type of
I load card.
I

5-6 I Blank.
I
I

7-12 I Address in hexadecimal (to be
added to the value of the sym­
bol in colUmns 17-22). The
address must be right-justified
in these columns, and unused
leading columns filled in with
zeros.

13-16 Blank.

17-22 Symbolic name, whose internal
assigned location will be used
by the loader. The symbol must
be left-justified in these

I columns. If left blank, an
, error is indicated.
I

23-72 I Blank.
I ,

73-80 I Not used by the loader. The
, programmer may leave blank or
I punch in program identification
, for his own convenience. _______ ~ _________________________________ J

Figure 59. set Location Counter (SLC) Card

FORTRAN Loader 377

INCLUDE SEGMENT CARD

The Include Segment (ICS) card is sup­
plied by the programmer. The card defines
a control segment by name and length and so
enables one control segment to refer to
another. The contents of the rcs card
fields are explained in Figure 60.

r-------T---------------------------------, I Column I Contents I
~-------+---------------------------------~

1 Load card identification I

2-4

5-16

17-22

23-24

25-28

29-72

(12-2-9). Identifies this as a I
card acceptable to the loader. I

ICS. Identifies the type of
load card.

Blank.

Name of segment, left-justified
in these columns.

Blank.

Length (in bytes) in hexadeci­
mal notation of the control
segment. This must not be less
than the actual length of the
segment. The number must be
right-justified in these
columns, and unused leading
columns filled in with zeros.
Can be all zeros.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. l _______ ~ _________________________________ J

Figure 60. Include Segment (ICS) Card

EXTERNAL SYMBOL DICTIONARY TYPE 0 CARD

The External Symbol Dictionary (ESD)
Type 0 card defines the name, starting
address, and when necessary, the length of
a control segment. There is only one ESD
Type 0 card for each control segment. The
contents of the ESD Type 0 card fields are
explained in Figure 61.

378

r-------T---------------------------------, I Column I Contents I
~-------+---------------------------------~

1 Load card identification I
(12-2-9). Identifies this as a I
card acceptable to the loader. I

2-4 ESD. Identifies the type of
load card.

5-10 Blank.

11-12

13-14

15-16

17-22

23-24

25

26-28

29

30-32

33-72

The number of bytes in the
card. Extended card code
12-0-1-8-9 and 12-11-1-8-9
(hexadecimal value of 0010) •

Blank.

External Symbol Identification
(ESID) • Number, in extended
card code, assigned to the seg­
ment.

Program name.

Blank.

Extended card code 12-0-1-8-9
(hexadecimal value of 00),
identifying this as a program
name card.

Address, in extended card code,
Of the first byte of the seg­
ment as assigned by the compil­
er.

Blank.

Nuwber, in extended card code,
of bytes in the control seg­
ment. May be all zeros.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

-------~---------------------------------
Figure 61. External Symbol Dictionary

(ESD) Type 0 Card

EXTERNAL SYMBOL DICTIONARY TYPE 1 CARD

The External Symbol Dictionary (ESD)
Type 1 card defines an entry point within
the control segment to which another seg­
ment may refer. One card is produced for
each entry point so defined.

The contents of the ESD Type 1 card
fields are explained in Figure 62.

r-------T---------------------------------,
I column I Contents I
~-------+---------------------------------i

1 Load card identification
(12-2-9). Identifies this as a
card acceptable to the loader.

2-4 ESD. Identifies the type of
load card.

5-10 Blank.

11-12

13-16

17-22

23-24

25

26-28

29-30

31-32

33-48

The number of bytes in the card
in extended card code.
(decimal value of 16, 32: or 48
in hexadecimal)

Blank.

Name of entry point.

Blank.

Extended card code 12-1-9
(hexadecimal value of 01) ,
identifying this as an entry
point card.

Address, in extended card code,
of the entry point as assigned
by the compiler.

Blank.

External Symbol Identification
(ESID) • Number, in extended
card code, assigned to control
segment in which entry points
occurred.

May be a repeat of columns
17-32.

49-64 May be a repeat of columns
33-48. J

I
65-72 Blank. I

I
73-80 Not used by the loader. The I

programmer may leave blank or I
punch in program identification I
for his own convenience. I _______ ~ _________________________________ J

Figure 62. External Symbol Dictionary
~S~ Type 1 Card

EXTERNAL SyMBOL DICTIONARY (ESD) TYPE 2
CARD

The External Symbol Dictionary (ESD)
Type 2 card points to a name within another
control segment to which this control seg­
ment may refer. It is assigned an iden­
tifying number of 2 through 15, according
to the order in which it is encountered by

the compiler among the external symbols of
the segment.

The contents of the ESD Type 2 card
fields are explained in Figure 63.

r-------T---------------------------------,
I Column I Contents I
~-------+---------------------------------i

1 Load card identification

2-4

5-10

11-12

13-14

15-16

17-22

23-24

(12-2-9). Identifies this as a
card acceptable to the loader.

ESD. Identifies the type of
load card.

Blank.

The number of bytes in the card
in extended card code.
(decimal value of 16, 32; or 48
in hexadecimal)

Blank.

External Symbol Identification
(ESID) • Sequential number, in
extended card code, assigned to
the first external symbol on
this card.

Name of externai symbol.

Blank.

25 Extended card code 12-2-9
(hexadecimal value of 02) iden­
tifying this as an external
symbol card.

26-28

I
I
I

Extended card code 12-0-1-8-9,
12-0-1-8-9, and 12-0-1-8-9
(hexadecimal value of 000000).

An address of 0 is always
assigned to External Symbols by
the compiler.

29-32 I Blank.
I

33-48 I May repeat columns 17-32 for a
I second entry.
I

49-64 I For a third entry.
I

65-72 I Blank.
I

73-80 I
I
I

.Not used by the loader. The
programmer may leave blank or
punch in program identification

I for his own convenience.
-------~---------------------------------

Figure 63. External Symbol Dictionary
(ESC) Type 2 Card

FORTRAN Loader 379

EXTERNAL SYMBOL DICTIONARY TYPE 5 CARD

The External Symbol Dictionary (ES~
Type 5 card defines a given size for Blank
COMMON.

The contents of the ESD Type 5 card
fields are explained in Figure 64.

r-------T---------------------------------,
I Column I Contents I

~-------+---------------------------------~
1 Load card identification

(12-2-9). Identifies this as a
card acceptable to the loader.

2-4 ESD. Identifies the type of
load card.

5-10

11-12

13-14

15-16

17-24

25

26-28

29

30-32

Blank.

The number of bytes in the
card. Extended card code
12-0-1-8-9 and 12-11-1-8-9
(hexadecimal value of 0010).

Blank.

External
(ESID) •
extended
external

Blank.

Symbol Identification
Sequence number in

card code, assigned to
symbol.

Extended card code
identifying this as
COMMON card.

12-5-9,
a Blank

Address
program
piler.
punched
with a
000000.

Blank.

of first byte of the
as assigned by the com­
This field is always

in extended card code
hexadecimal value of

Number, in extended card code,
of bytes in BLANK COMMON.

33-72 I Blank.
I

73-80 I Not used by the loader. The
I programmer may leave blank or
I punch in program identification

I I for his own convenience. I l _______ ~ _________________________________ J

Figure 64. External Symbol Dictionary
(ESD) Type 5 Card

380

TEXT CARD

The Text ~XT) card contains the
instructions and/or constants of the user
program and the starting address at which
the first byte of text is to be loaded.

The contents of the TXT card fields are
explained in Figure 65.

r-------T---------------------------------,
I Column I Contents I

~-------+---------------------------------~
I 1 I Load card identification
I I (12-2-9). Identifies this as a
I I card acceptable to the loader.
I I
I 2-4 I TXT. Identifies the type of
I I load card.
I I
I 5 I Blank.
I I

6-8 I 24-bit starting address (in
I extended card code) in storage
I where the information from the

card is to be loaded.

9-10

11-12

13-14

15-16

17-72

Blank.

Number of bytes (in extended
card code) of text to be loaded
from the card.

Blank.

External Symbol Identification
(ESID) • Number, in extended
card code, assigned to the con­
trol segment in which the text
occurs.

A maximum of 56 bytes of
instructions and/or constants
assembled in extended card
code.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification

I for his own convenience. l _______ ~ ________________________________ _

Figure 65. Text (TXT) Card

REPLACE CARD

The Replace ~EP) card allows correc­
tions and/or additions to be made to the
user program at load time. The REP card is
supplied by the programmer. It must be
punched in hexadecimal.

If additions made by REP cards increase
the length of a control segment, the pro-

grammer must place an
defines the total length
segmen~ at the front of
mente

ICS card (which
of the control
the control seg-

The constants of the REP card fields are
explained in Figure 66.

r------T--------------------------,
I Column I Contents I
~------+------------------------------~

1 Load card identification
(12-2-9). Identifies this as a
card acceptable to the loader.

2-4 REP. Identifies the type of
load card.

5-6 Blank.

7-12

13-14

15-16

17-70

71-72

Starting address, in hexadeci­
mal, of the area to be
replaced, as assigned by the
compiler. It must be right­
justified in these columns, and
unused leading columns filled
in with zeros.

Blank.

External Symbol Identification
(ESID) • Hexadecimal number

aSSigned to the control segment
in which replacement is to be
made.

A maximum
hexadecimal
by commas,
previously
(two bytes) •

must not be
comma.

Blank.

of 11 four-digit
fields, separated
each replacing one
loaded half-word

The last field
followed by a

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

'---_.!._---------------------------
Figure 66. Replace (REP) Card

RELOCATION LIST DICTIONARY CARD

The Relocation List Dictionary (RLD)
card is produced by the compiler when it
encounters a DC instruction or the second
operand of a CCW instruction, which defines
an address as a relocatable symbol or
expression. This may be the address of
either an internal symbol, which occurs
only within the control segment, or of an
external symbol belonging to another con­
trol segment.

A control segment may contain more than
one symbol or expression, definable in
terms of one relocatable symbol. The RLD
card lists addresses for as many as 13
expressions so defined. If there are more
than 13 such expressions, other RLD cards
associated with the symbol are produced.

The contents of the RLD card fieldS are
explained in Figure 67.

r------T----------------------------,
I Column I Contents I
~-----+-------------------------------~

1 Load card identification

2-4

5-10

11-12

13-16

17-72

1
I

(12-2-9). Identifies this as a
card acceptable to the loader.

RLD. Identifies the type of
load card.

Blank.

Number, in extended card code,
of bytes of information in the
variable field (card columns
17-72) of this card. The range
is from 8 to a maximum of 56.

Blank.

Variable field (in extended
card cod~. Consists of the
following subfields:

Relocation Header. (Two
bytes.) An ESID with a value
of from 01 through 15. Whether
or not the value is 01 or from
02 through 15 depends on wheth­
er the symbol it points to is
internal or external to the
particular control segment.

Posi tion Header. (Two bytes.)
The ESID assigned to this Con­
trol segment.

Flag Byte (bits 0 through 3 are
not used). This byte contains
three items:

I 1. Size. (Bits 4 and 5.)
I
I
I

I
I
I
I

Two bits which indicate
the length (in bytes) of
the adjusted address cell
(AA Cell) •

a.
b.
c.

00 - one-byte cell
01 - two-byte cell
10 - three-byte cell

I I d. 11 - four-byte cell L _____ .!. ______________________________ J

Figure 67. Relocation List Dictionary
(RLD) Card (continued)

FORTRAN Loader 381

r-------T---------------------------------,
I Col unm I Contents I
~-------+---------------------------------~

2. Complement Flag. (Bit 6.)
When this bit is a one, it
means that the value (or
address) of the symbol is
to be subtracted from the
contents of the AA Cell.
When this bit is a zero,
'the *'a'lue of the symbol is
to be added to the con­
tents of theAA Cell.

3. Continuation Flag. (Bi t
7.) When this bit is a
one, it means that this is
one of a series of
addresses to be adjusted.
When this bit is a zero,
this is the only AA Cell
to be adjusted or the last
in a series using the same
Relocation and Position
headers.

Address.
address
AA Cell.

The three-byte
of the location of the

The Flag Byte and Address
may be repeated for AA Cells as
long as the continuation flag
bit is on in the current four­
byte entry.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ ~ _________________________________ J

Figure 67 •. Relocation List Dictionary
(RLO) Card

LOAD END CARD

The Load End (END) card is produced by
the compiler when it encounters the END
statement instruction. This card ends the
loading of a control segment and may
specify a location within the control seg­
ment to which control is to be transfer~ed
at end-of-Ioad.

The contents of the END card fields are
explained in Figure 68.

382

r-------T---------------------------------,
I Column I Contents I
~-------+---------------------------------~
I 1 Load card identification
I (12-2-9). Identifies this as a
I card acceptable to the loader.
I
I 2-4 END. Identifies

load card.
the type of

I
I
, 5 Blank.

6-8 Address (may be blank), in
extended card code, of the
point in the control segment to
which control may be trans­
ferred at the end of the load­
ing process. See the condi­
tions and priority discussed
under Load Terminate card.

9-14

15-16

Blank.

External Symbol Identification
(ESID) • The number 0002, in
extended card code is assigned
to the program.

17-29 Blank.

30-32 Number, in extended card code,
of bytes in the program.

33-72 Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ ~ _________________________________ J

Figure 68. Load End (END) Card

LOAD TERMINATE AND DATA CARDS

The Load Terminate (LOT) and Type/Data
~ATA) cards which are provided by the

programmer, have the same functions: they
terminate the loading process and may pro­
vide the address, within one of the loaded
control segments, to which control should
be transferred.

The specific location to which control
will be transferred is determined through
the following order of priority:

1.

2.

Control is always
location specified
card.

transferred to a
on an LOT or DATA

If the LOT or DATA card does not
specify a location, control is trans­
ferred to the location specified by
the first END card containing an
address encountered during the current
loading process.

3. If neither the LDT, DATA, nor END card
specifies a location, control is
transferred to the first location into
which the contents of a TXT card are
loaded (or of a REP card, if one
precedes the text cards) •

The contents of the LDT and DATA card
fields are explained in Figures 69 and 70,
respectively.

r-------T---------------------------------,
I Column I Contents I
~-------+---------------------------------~

1 I Load card identification
I (12-2-9). Identifies this as a
I card acceptable to the loader.
I

2-4 I LDT. Identifies the type of
I load card.
I

5-16 I Blank.

17-22

23-72

Name of entry point to the
program segment, left-justified
in these columns. Use of this
field is optional.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

-------~--------------------------------
Figure 69. Load Terminate (LDT) Card

r-------T---------------------------------,
I Column r Contents I
~-------+---------------------------------~
, 1 Load card identification (0-1).
I Identifies this as a card
I acceptable to the loader.
I
I 2-5
I
I
I 6-16
I
I
J 17-22
I
I
I
I
I 23-72
I
I 73-80
I
I

DATA. Identifies
load card.

Blank.

the type of

Name of entry point to the
program segment, left-justified
in these columns. Use of this
field is optional.

Blank.

Not used by the loader. The
programmer may leave blank or
punch in program identification

I I for his own convenience. I L-______ ~ _________________________________ J

Figure 70. Type/Data (DATA) Card

IER Routine: Chart NA

The IER routine performs those initiali­
zation steps that enable the loader to
begin the loading process.

ENTRANCE: The IER routine receives control
from the FORTRAN System Director (FSD).

OPERATION: The IER routine sets an indica­
tor in the communications area to notify
FSD that the loader is in control and
records the start time. IER obtains the
beginning load address, the size of stor­
age, and the logical input device from the
communications area.

IER uses the highest available storage
address to determine the starting address
of Blank Common and sets the location
counter to the begin-load address.

After setting up the reference table
counter, loading the entry point for IBCOM
into the reference table, and writing the
storage map heading, the IER routine sets
up: to read either cards or tape, rewind
the work tape, and transfer control to the
RD routine.

EXIT: The IER routine exits to the RD
routine.

RD Routine: Chart NB

The RD routine reads one card image at a
time into storage.

ENTRANCE: The RD routine is
the following routines:

entered from
IER, CMPICS,

CESD1, CESD2,
CMPEND, MAP, and

CMPSLC, CMPESD, CESDO,
CMPTXT, CMPRLD, CMPREP,
EODS.

OPERATION: The RD routine, after setting
up to read, loads the input buffer address
and the number of bytes to be read, and
issues a read SVC. If the end of the data
set has been reached, control is trans­
ferred to the EODS routine; otherwise, a
set of constants, used throughout the load­
er, are loaded.

A serieS of tests, based on a set of
switches, are performed; switches 1, 3, and
6 indicate, respectively: if the end of the
control segment has been reached on the
system tape; if the system tape is being
searched for a given control segment; and
if the control segment is needed from the
system tape. When the system tape is not
being read, switches 1, 3, and 6 are always
off. If the end of the control segment has
not been reached on the system tape (switch

FORTRAN Loader 383

1 off) and if the system tape is not being
searched (switch 3 off), control is trans­
ferred to the CMPTXT routine.

However, when a search of the reference
table indicates that all control segments
have not yet been entered into storage,
switch 3 is turned on, initiating a search
for ESD Type 0 cards. When an ESD Type 0
card is found, the name in the card is
compared to the'entri'es in the reference
table to determine if the segment is need­
ed. If it is needed, switches 1, 3, and 6
are turned off and control is transferred
to the CMPESD routine. If the segment is
not needed, the name is placed in the
reference table with a not-found indica­
tion, a 1 is added to the reference table
count, switch 1 is turned on, and another
card image is read.

If the card is an ESD card, other than
ESD Type 0, a test is made to determine if
the card is an ESD Type 1 card. When an
ESD Type 1 card is encountered, the ref­
erence table is searched for the entry
point name to further determine if this
control segment is needed. If the entry
point name is not in the reference table or
if the card is not an ESD Type 1 card,
another 'card is read. The name could be in
the REFTBL and not needed.

If the card is an ESD Type 1 card and
the search of the reference table indicates
that the segment is needed, switch 6 is
turned on, and another card is read.

When swi tch 1 is on and an END card is
encountered, indicating the end of a
library subprogram, a test is made of
switch 6. Switch 6, being on, indicates
that this control segment is needed, as
requested through one of its entry points.
Because this segment is already bypassed on
the tape, another pass through the system
library is needed. For this Process,
switches 1 and 6 are turned off. The ESD
Type 0 name, that was placed in the ref­
erence table with a not-found indication,
becomes a permanent entry in the table.

If switch 6 is off and an END card is
encountered, switch 1 is turned off, indi­
cating that the control segment was not
needed and 1 is subtracted from the ref­
erence table count, effectively deleting
the name contained in the ESD Type 0 card
from the reference table.

EXITS: The RD routine exits to either the
CMPTXT, EODS, or CMPESD routine, depending
on the conditions discussed under
·Operation.-

ROUTINE CALLED: During execution, the RD
routine references the EODS routine.

384

CMPSLC Routine: Chart NC

The CMPSLC routine sets the location
counter to the address assigned to the
symbolic name in the SLC card; if there is
also a hexadecimal address in the card,
that address is added to the address
assigned to the symbolic name, and the
location counter is set to the resulting
sum.

ENTRANCE: The CMPSLC routine is entered
from the CMPREP routine when that routine
encounters a card that is not a REP card.

OPERATION: The CMPSLC routine determines
if the card to be processed is an SLC card;
if not, the routine transfers control to
the CMPICS routine.

When an SLC card is encountered, a check
is made for a name in the card. The
absence of a name is an error. If the card
has a name, a search for that name is made
in the reference table. If the name is not
in the table, an error exists.

When the table contains the name, the
routine obtains the address currently
assigned to the name and sets the location
counter to this value.

If there is also a hexadecimal address
in the card, however, that address is
converted to binary and added to the
address obtained for the name. The loca­
tion counter is set to the resulting sum.

EXIT:
tine.

This routine exits to the RD rou-

ROUTINES CALLED: During
CMPSLC routine references
HEXB routines.

CMPICS Routine: Chart ND

execution
the SERCH

the
and

The CMPICS routine establishes reference
table entries for the control segment name
on the ICS card.

ENTRANCE: The CMPICS routine is entered
from the CMPSLC routine whenever that rou­
tine encounters a card that is not an SLC
card.

OPERATION: When the card to be processed
is not an ICS card, control is transferred
to the CMPESD routine. When the CMPICS
routine encounters an ICS card, it sets up
for a possible error message and resets the
card count counter.

After converting the indicated segment
length to binary, the routine searches for
the name in the reference table and exits
to the READ routine if the name is found.
If the name is not found, the CMPICS
routine places the name into the reference
table, adjusts the location counter to the
next double-word boundary (if necessar~,
and assigns the current value of the loca­
tion counter to the name.

The CMPICS routine then adds the segment
length to the current value of the location
counter and saves the highest address
assigned to text.

EXIT: This routine exits to the RD rou­
tine.

ROUTINES CALLED: During execution, the
CMPICS routine references the TBLREF,
SERCH, and HEXB routines.

CMPESD Routine: Chart NE

The CMPESD routine determines if the
card to be processed is an ESD card. If it
is an ESD Type 5 card, it signifies Blank
Conunon.

ENTRANCE: The CMPESD routine is entered
from the Library Primary Search routine
when that routine encounters an ESD Type 0
card for a segment that is needed; it is
also entered from the CMPICS routine when
that routine encounters a card that is not
an ICS card.

OPERATION: If the card to be processed is
not an ESD card, the CMPESD routine trans­
fers control to the CMPRLD routine. If it
is an ESD card and the work tape is not
being read, the card image is written on
the work tape for later processing. If it
is an ESD card, but not Type 5, control is
transferred to the CESDO routine.

When the CMPESD routine encounters an
ESD T~ 5 card, it determines if the work
tape ~s being read. Reading of the work
tape causes the routine to determine if
Blank Common has been established. If so,
a test is made to determine if Blank Common
overlays the text placed in storage. If it
is, an error condition exists. Control is
transferred to the RD routine if Blank
Common is not overlaying text.

If the work tape is not being read, the
size of Blank Common is subtracted from the
size of storage. If the result is less
than the saved Blank Common address, the
CMPESD routine saves the size found in the
ESD Type 5 card. Whether or not the
routine saves the address, it exits to the
RD routine.

EXIT: The CMPESD routine exits to the RD
routine.

CESDO Routine: Chart NF

The CESDO routine determines the type of
ESD card to be processed and makes ref­
erence table and ESID table entries for the
control segment specified in the ESD Type 0
card.

ENTRANCE: The CESDO routine is entered
from the CMPESD routine when that routine
encounters an ESD card that is not an ESD
Type 5 card.

OPERATION: The CESDO routine. determines
the type of ESD card to be processed. It
transfers control to the appropriate rou­
tine for an ESD Type 1 or Type 2 card,
retains control for an ESD Type 0 card; and
exits to the ERROR routine for an ESD Type
3 or 4 card.

This routine resets the card count coun­
ter for possible error messages and maps
the segment name and its aSSigned location.

The length of the control segment, as
indicated on the ESD Type 0 card, is loaded
and the reference table pointer to the
control segment is placed in the ESID
table.

The CESDO routine calculates the reloca­
tion factor by subtracting the compiled
address of the control segment from its
current, relocated address. The routine
places the relocation factor in the ref­
erence table.

EXIT: The CESDO routine exits to the RD
routine.

ROUTINES CALLED: During execution the
CESDO routine references the CMPICS and MAP
routines.

CESDl Routine: Chart NG

The CESDl
erence table
specified in
such an entry

routine establishes
entry for the entry
the ESD Type 1 card,

already exists.

a ref­
point

unless

ENTRANCE: This routine is entered from the
CESDO routine when that routine encounters
an ESD Type 1 card.

OPERATION: The CESDl routine obtains the
relocation factor for the specified control
segment through the external symbol iden-

FORTRAN Loader 385

tification (ESID) entry on the card. The
address on the card is added to the reloca­
tion factor and the resulting sum is saved
as the new, relocated address of the name.

The routine then searches for the name
in the reference table; if it is not in the
table, the name of the entry point and its
relocated address are placed in the ref­
erence table and a map of the entry provid­
ed. If the - name is in the table, the
routine indicates that it was found and
compares the new, relocated address to the
address assigned to the name in the ref­
erence table; if they are not identical, an
error exists.

EXIT:
tine.

This routine exits to the RD rou-

ROUTINES CALLED: During execution, this
routine references the MAP, TBLREF, REFTBL,
LODREF, and SERCH routines.

CESD2 Routine: Chart NH

The CESD2 routine places the reference
table pointer of the external name indicat­
ed on the ESD Type 2 card into the ESID
table. The routine places the address
assigned to the external name into the
reference table as the relocation factor
for the name.

ENTRANCE: The CESD2 routine is entered
from the CESDO routine when that routine
encounters an ESD Type 2 card.

OPERATION: The routine searches for the
name (indicated on the car~ in the ref­
erence table. If the name is not found in
the table, the reference table pointer to
the name is placed in the ESIDtable. The
ESID table is adjusted for the next entry,
and control is transferred to location RDD
to determine if more entries are in the
card.

If the name is found in tbe reference
table, a test is made to determine if the
work tape is being read. If the tape is
not being read, the CESD2 routine transfers
control to the RD routine. If the work
tape is being read, the address assigned-to
the external name is loaded into the ref­
erence table as the relocation factor of
that name.

If further processing of the card
necessary, control is tranSferred to
CMPESD routine; otherwise, the CESD2
tine exits to the RD routine.

is
the

rou-

EXITS:
routine.

The CESD2 routine exits to the RD

386

ROUTINE CALLED: During execution, the
CESD2 routine references the SERCH routine.

CMPTXT Routine: Chart NI

The CMPTXT routine makes address validi­
ty checks and places the contents of a TXT
card into storage.

ENTRANCE: The CMPTXT
from the Library Primary
is also entered from the
address validity checks.

routine is entered
Search routine; it
CMPREP routine for

OPERATION: If the card to be processed is
not a TXT card, this routine transfers
control to the CMPREP routine; otherwise,
the routine obtains the relocation factor
for this entry from the reference table and
adds it to the address on .the card. If the
result of this addition indicates that the
relocated address is within the area of the
loader or that it exceeds the size of
storage, an error condition exists.

If the address is valid, the CMPTXT
routine loads the text into storage, unless
entry into this routine is from the CMPREP
routine. In the latter case, control is
returned to the CMPREP routine.

EXITS: The CMPTXT routine exits to the
READ or CMPREP routines.

ROUTINES CALLED: During execution the
CMPTXT routine references the TBLREF,
REFTBL, and LODREF routines.

CMPREP Routine: Chart NJ

The CMPREP routine places corrections to
text into storage.

ENTRANCE: The CMPREP routine is entered
from the CMPTXT routine when that routine
encounters a card that is not a TXT card.

OPERATION: The encounter of any card type,
other than a REP card, causes the CMPREP
routine to transfer control to the CMPSLC
routine.

When a REP card is encountered, the
routine converts the address and ESID on
the card to binary. The routine branches
to CMPTXT routine to determine the validity
of that address.

The routine converts the correction on
the card to binary .and places the correc­
tion into storage. If there is another
entry on the REP card, it adjusts the

address for the next two bytes and branches
back to that part of the routine that
checks address validity.

EXITS: The CMPREP routine exits to the RD
routine.

ROUTINES CALLED:
CMPREP routine
HEXB routines.

During
references

CMPRLD Routine: Chart NK

execution the
the CMPTXT and

The CMPRLD routine processes RLD cards,
which are produced by the compiler when it
encounters address constants within the
program being compiled. The CMPRLD routine
places the relocated storage address of a
given symbol or expression into the address
indicated by the compiler. The routine
must calculate the proper value of a given
symbol or expression and the proper address
for adjustment of that value.

ENTRANCE: The CMPRLD routine is entered
from the CMPESD routine when that routine
encounters a card that is not an ESD card.

OPERATION: If the card to be processed is
not an RLD card, control is transferred to
the CMPEND routine. If it is an RLD card,
but has not been written on the work tape,
the CMPRLD routine writes it on the work
tape and transfers control to the RD rou­
tine.

An RLD card that has already been writ­
ten on the work tape will be tested to
determine if the external ESID ~elocation
Header ESID) is valid; if it is not valid,
an error condition exists. If the ESID is
valid, it is used to ohtain the relocated
address of the symbol referred to by the
RLD card. (This address is found in the
relocation factor position of the proper
reference table entry.)

The internal ESID (Position Header ESID)
is then tested to determine if it is valid;
if it is not, an error condition exists. A
valid internal ESID is used to obtain the
relocation factor of the control segment in
which the -Define Constant- instruction
occurred.

The CMPRLD routine decrements the card­
specified byte count by four; if the result
is zero, the routine transfers control to
the RD routine. Otherwise, the routine
obtains the length, in bytes, of the symbol
referred to in the RLD card and sets up to
place the specified add.ress value in
storage at the specified address.

The relocation factor of the control
segment in which the current address of the
symbol must be stored is added to the
card-specified address. The sum is the
current address of the location at which
the symbol address must be stored. The
symbol address is then calculated and
placed at the indicated address.

If there are no more entries on the RLD
card, the CMPRLD routine'exits; otherwise,
a test is made of the continuation flag.
If the flag is on, the CMPRLD routine
branches back to process data for a new
symbol (i.e., to that part of the CMPRLD
routine that tests for a valid external
ESID). If the flag is off, the routine
returns to process data for the same symbol
(i.e., to that part of the CMPRLD routine
that determines the length, in bytes, of
the symbol being processe~ •

EXIT:
tine.

This routine exits to the RD rou-

ROUTINES CALLED: During
CMPRLD routine references
TBLREF, and LODREF routines.

CMPEND Routine: Chart NL

execution, the
the REFTBL,

The CMPEND routine saves the address in
the first END card encountered as a possi­
ble end-of-Ioad transfer address.

ENTRANCE: The CMPEND routine is entered
from the CMPRLD routine when that routine
encounters a card that is not an RLD card.

OPERATION: If the card to be processed is
not an END card, the CMPEND routine trans­
fers control to the CMPLDT routine. A test
is made to determine if there is an end
address in the card. If there is, and an
end address has not already been saved from
a previously processed END card, the relo­
cation factor for this control segment is
added to the address in the card. The
resulting value is saved for a possible
end-of-Ioad transfer address. If there is
an end address in the card, but one has
already been saved from another END card,
or if there is not an end address in the
card, a test is made to determine if there.
is a segment size indicated in the END
card. When a segment size is present, it
is added to the current value of the
location counter. The result is saved for
the Blank Common overlay test, only if the
result is greater than the highest address
assigned to text.

If there is no segment size in the card,
or after the result of adding the segment
size to the location counter has been

FORTRAN Loader 387

saved, or after the test and processing of
an end address, the ESID table is cleared.
A test is made to determine if the work
tape is being read~ if it is, control is
transferred to the EODS routine. If the
work tape is not being read, the CMPEND
routine exits to the RD routine.

EXITS: The CMPEND routine exits -to the RD
routine.

ROUTINES CALLED: During execution the
CMPEND routine references the TBLREF,
REFTBL, and LODREF routines.

CMPLDT, WARN Routines: Chart NM

CMPLDT Routine

The CMPLDT routine saves the address
the name on an LDT or DATA card
end-of-load transfer.

of
fo;r

ENTRANCE: The CMPLDT routine is entered
from the CMPEND routine when that routine
encounters a card that is not an END card.

OPERATION: If the CMPLDT routine encoun­
ters a card that is not an LDT or DATA
card, a warning message is issued (only if
a GOGO job is indicated, otherwise an error
is indicated) to indicate that the card is
not recognized by the loader. For the LDT
or DATA card, the routine determines if the
card has a name and, if so, saves the
address of that name. If there is no name
in the card, or after the address name has
been found and saved, the routine clears
the ESID table and transfers control to the
EODS routine.

EXIT: The CMPLDT routine exits to the EODS
routine.

ROUTINES CALLED: During
CMPLDT routine references
TBLREF routines.

WARN Routine

execution
the SERCH

the
and

The WARN routine writes a warning mes­
sage when the loader encounters a card that
it does not recognize~ it also determines
whether to continue processing.

ENTRANCE: The WARN routine is entered from
the CMPLDT routine when that routine
encounters a card that is not recognized by
the loader.

388

OPERATION: The routine converts the card
count number accumulated since the last ESD
Type 0 or ICS card was read to hexadecimal,
places the converted address into the warn­
ing message with the name of the last
control segment, and writes the warning
message.

The WARN routine determines whether the
current load is a GOGO load (i.e., a load
that is to proceed regardless of this
error) • A GOGO load causes a transfer of
control to the RD routine. For other than
a GOGO load, the routine issues a Terminate
Load SVC to the FORTRAN System Director.

EXITS: The WARN routine issues an SVC to
the FORTRAN_System Director, unless a GOGO
load is indicated, then the WARN routine
exits to the RD routine.

HEXB Routine: Chart NN

The HEXB routine
numbers to binary.

converts hexadecimal

ENTRANCE: The HEXB routine is entered from
the CMPREP, CMPSLC, and CMPICS routines.

OPERATION: The HEXB routine determines if
the character to be converted is either a
valid alphabetic or numeric character~ if
it is not, an error exists.

Valid numeric characters are converted
by clearing the four high-order bits of the
character; alphabetic characters are con­
verted by subtracting a constant from the
character.

After the character has been converted,
the HEXB routine shifts the general reg­
ister (in which the entire converted number
is returned) four bits to the left, and
places the converted character in the four
low-order bits.

If there is another character
converted, the process is repeated.

to be

EXITS: The HEXB routine exits to the
routine that called it.

TBLREF Routine: Chart NO

The TBLREF routine loads three standard
constants.

ENTRANCE: The TBLREF routine is entered
from the following routines: IER, EODS, RD,
CMPTXT, CMPSLC, CMPICS, CESD1, CESD2,
CMPRLD, CMPEND, and CMPLDT.

OPERATION: The TBLREF routine loads the
following constants into three sequential
registers: the address of the first loca­
tion above the reference table, the size of
the reference table entries (12 bytes
each) , and the number of entries in the
reference table.

EXITS: The TBLREF routine exits to the
routine that called it.

REFTBL Routine: Chart NP

The REFTBL routine calculates the stor­
age address of a given entry in the ref­
erence table.

ENTRANCE: REFTBL is entered from the
CESD1, CMPRLD, and CMPEND routines.

OPERATION: The REFTBL routine loads the
entry position in the reference table from
the ESID table, by using the ESID on the
card cur~ently being processed. It multi­
plies the entry position by the reference
table entry size (12), and subtracts the
product from the highest address (plus 1)
of the reference table. The result is the
location of the reference table entry.

EXITS: The REFTBL routine
routine that called it.

LODREF Routine: Chart NQ

exits to the

The LODREF routine obtains the reloca­
tion factor of a control segment and
returns it to the calling routine.

ENTRANCE: LODREF is entered from the
CMPTXT, CESD1, CMPRLD, and CMPEND routines.

OPERATION: The LODREF routine uses the
address obtained from the REFTBL routine as
an index to the reference table. It places
the relocation factor contained in the
indicated reference table entry into a
general register.

EXITS: The LODREF routine exits to the
routine that called it.

SEReR Routine: Chart. NR

The SERCH routine searches for a given
name in the reference table.

ENTRANCE: The SERCR routine is entered
from the CMPSLC, CMPICS, CESD1, CESD2, and
CMPLDT routines.

OPERATION: After clearing the specified
register and loading the address of the
name to be searched for, the SERCR routine
sets up for a possible mapping of this
entry.

The routine compares the given name with
each name in the reference table. When
found, the SERCR returns with the position
at which the name is located in the ref­
erence table. If the name is not found,
the SERCR routine places the name in the
table, increments the reference table count
by one, and checks for loader overlay. If
the loader has been overlaid, there will be
an error.

EXITS: This routine exits to the routine
that called it.

ERROR Routine: Chart NS

The ERROR routine writes an error mes­
sage for the routine in which the error has
occurred.

ENTRANCE:
from the
CMPESD,
and REXB

The ERROR routine is entered
CMPTXT, XMPSLC, SERCR, CMPICS,

CESDO, CESD1, CMPRLD, CMPLDT, WARN
routines.

OPERATION: The ERROR routine loads the
address of the error message (determined by
the routine in which the error occurred)
and writes that message.

EXIT: The ERROR routine exits to the
FORTRAN System Director.

MAP Routine: Chart NT

The MAP routine provides a map of stor­
age for a given entry.

ENTRANCE: The MAP routine is entered from
the IER, RELCTL, CESDO, and CESDl routines.

OPERATION: The MAP routine unpacks a given
address, converts the binary address to
hexadecimal, loadS the mapping address, and
writes the map for the given entry (e.g.,
IBCOM at location OOOFAO) •

.EXITS: The MAP routine exits to the call­
ing routine.

FORTRAN Loader 389

RELCTL Routine: Chart NU

The RELCTL routine performs all the
final functions, preparatory to releasing
control from the loader.

ENTRANCE: This routine is entered from the
loader when the end of data set is encoun­
tered on the work tape.

OPERATION: The RELCTL routine spaces a
data set on the system tape, maps Blank
Common if called for, records the time from
the timer, and loads the end-of-Ioad trans­
fer address into a general register.

EXIT: The RELCTL routine exits to FSD.

ROUTINE CALLED: During execution the
RELCTL routine references the MAP routine.

EODS Routine: Chart NV

On EODS indications, this routine deter­
mines where the loader is in the loading
process and, depending on the results of
the tests made within the routine, either
continues processing or releases control.

390

ENTRANCE: This routine is entered on EODS
indications.

OPERATIONS: If EODS has been reached on
the work tape (switch 4 on), control is
transferred to the RELCTL routine; other­
wise, a test is made to determine if the
system tape is being read (switch 2 on).
If the system tape has not been read, the
EODS routine sets up to read the system
tape and turns switch 2 on. If the system
tape is being read, the library data set is
backspaced to its beginning. In either
case, processing continues to determine if
all necessary library routines have been
loaded.

If all entries have not been loaded, a
retry will be made. For this action,
switch 3 is turned on; switches 1, 6, and 8
are turned off. If all entries have been
loaded, a tape mark is written on the work
tape and the tape is rewound.

The EODS routine sets up to read the
work tape, turns switches 1 and 3 off, and
turns switch 4 on. The routine then trans­
fers control to the RD routine.

EXITS: If further processing is necessary,
the EODS routine exits to the RD routine:
otherwise, it exits to the RELCTL routine.

*11 * * Al*
* *

IER X

RO

*****Al********** • *
INITIALIZE

* LOADER
.. (CHART NAB3)

* ***.**** ••••• ****

X
*****81·******··-
.. GETCARD -

IMAGE INTO CARD TYPE ROUTINE CHART
- STORAGE - ••• X.

,.
* (CHART NBB3) * ••
* * ******.**********

X

-***
* * * B1 *
* *

SLC CMPSLC NCB3

ICS CMPIES NOB3

ESOO CESOO NF83

ESDI CES01 NGB3 ..
ESD2

ESOS

TXT

REP

RLO

END

/CATA

LOT

:SUPPC~TING FUNCTIONS

:CCNVEIH t-:EX TO BINAFiY

.PReVIDE STORAGE MAP

.SEARCt: H-E REFERENCE

.TAELE FOR A GIVEN ENTRY

.PROVIDE REFERENCE

.TAELE INFORMATION

:CALCULATE STORAGE
.AOO"RESS fOR A GIVEN
.ENTRY IN THE
.REFERE CE TABLE

.CBTAI" RELOCATION

.FACTOR OF A CCI\TRCL

.SEG~EI\ T

CES02 NH83

CMPESO NEB3

CMPTXT NIB3

CMPREP NJ83

CMPRLO NK83

CMPENC NLB3

CMPLDT NM83

CMPLDT NMB3

ROUT INE CHART

HEXE NNB3

MAP NTB3

SEARCt- NR83

TBLREF NOB3

REFTBL NPB3

LCOREF NOS3
• *
* 81 * . .

**** x
• NO .X. .*. EOOS .*.

J2 *. J3 *. *.**.J4*.***.**.* J5 *.
•• DID *. .* *. • * .* * •

• - AN ERRCR •• NO .* EODS *. YES * PROCESS EODS .* END *.
-.CCCUR IN ANy •••••••••• x*. INDICATION •••••••••• X. INDICATION * •••••••• X*. OF .* *. ROUT INE .* *. .* * (CHART NVB3) .. *. LOAD .* ...* *..* * - * *. .* *. .* .****.***********

* YES * NO

ERROFi X
·*K2*···**­. .
* ERROR MESSAGE -
* WRITTEN *
: (Ca-:ART NSB3)

******.**********

* •
* 131 * • *

. .
* •• * * YES

RELCTL X
·***KS*********

RELEASE CONTROL * (CHART NUB3) * .
*******.****.* ..

Chart 11. Relocating Loader Overall Logic Diagram

FORTRAN Loader 391

*****G2**********
* * * NO

*NA *
* 83*
* *

X
*****83**********
* INDICATE *
* TO FSD *
* THAT LOADER *
* IN IN *
* CONTROL *

X
*****C3**********
* * * RECORD START *
* TIME FROM *
* TIMER *

X
*****03**********
08TAIN STARTING
*LOAD ADDR. AND *
* STORAGE SIZE * * FROM COMMUNI- * * CATIONS AREA *

X
*****E3**********
* SAVE HIG~EST *
* STORAGE ADDR. *
* TO DETERMINE *
* STORAGE ADO. *
* OF BLANK CNTR *

X
*****F3********** *****F5**********
* SET LOCATION * * LOAD IBCOM *
* COUNTER * * ENTRY INTO *
* TO STARTING * •••••••••••••••••••••••••••••••••• X* REFERENCE *
'* ADDRESS * * TABLE '*
* * * ***************** *****************

.*.
G3 *. *****G4********** *****G5**********

.* *. *OBTAIN LOGICAL * * *
.* IS *. * INPUT DEVICE * * WRITE STORAGE * *

* *

SET UP
TO READ

TAPE
*X •••••••• *. INPUT ON .*X •••••••• * TYPE FROM *X •••••••• * MAP *
* *. CARDS .* *COMMUNICATIONS * * READING

* * *..* AREA *
***************** * •• * ***************** *****************

* YES

. .
••••••••••••••••••••••••• X.

X
*****H3**********
* * *
*
* *

REWIND
WORK
TAPE

*
* *
* *****************

x

*NB *
* 83*
* *
*

Chart NA. IER Routine

392

*NB *
* 83*
* •

X
*****83**********
*SET UP TO READ *
*LOAD BUFF AD DR * * *
* AND NUMBER OF *X •••• * 83 *
* BYTES TO BE * * *
* READ *

X
******C3***********

READ

.x.
D~ *. *****04**********

.* *. * *
YES .* *. NO *LOAD CONSTANTS *

.••••.•• *. EODS .*•• X* FOR USE *
X *. .* * THRU OUT

*NV *
* B3* .. '.

• *. SWI .4.

.'

E2 *. E3 * .
• * *. .* *.

* LOADER *
44************4**

YES .* *. YES.* SIMITCH 4. •
•••••••••••••••••• *. END CARD .*X •••••••• *. I ON .4X •••••••••••••••••

• x.

*. . * *. .*
.. *..*

* •• * * •• * * NO * NO

. .
••••••••••••••••••••••••• X •

FI *. *****F2**********
• x •

F3 *.
.*.

F4 *.
.* *. * * . ' *. .* * • • * S~ITCH *. YES * TURN SWITC,", .* SWITCH *. YES .* ESD *. NO

. 6 ON . ••••...• X* 6 OFF
*. • * *
.. * *

* •• * ***************iH!-
• NO

X
*****GI********** *****G2**********

. 3 ON . •••••••• X*. CARD .* ••••
. . *. .*
.. *..* * •• * * •• 4

4 NO * YES

x

*N I *
4 B3* .x.

G4 *.

x
**** . .

* 83 *
*

*****F5********** * " •
* TURN SWITCHES *
* I, 3, AND 6 *X •••
* OFF *

. .
•• X*NE *

* 83*
***4 .'.

G5 *.
* Sl,;8TRACT I * * * .* 4. .* *.
-It FROM 4 * TURN SWITCH
REFERENCE TABLE •••••••• X* I OFF
* COUNT * -It

x

*NV *
* E3*
* *

Chart NB. RD Routine

.* ESD 4. YES .* THIS *. YES.
. TYPE 0 . •••••••• X*. SEGMENT .* ••••

. . *. NEEDED .*
.. *..4

* •• * * •• * * NO -It NO

.x.
H4 *.

• * *. NO.* ESD *.
* -83 *X •••• *. TYPE I .*
* * *. .* *. .* * •• * * YES

.x.
J4 4.

• * ' . NO.* ESD
* 83 *X •••• *. TYPE I

*. NEEDED
. . * •• * * YES

*.
.* .'

X
*****K4**********
* * TURN SWITCH

* 83 *X •••• * 6 ON
* * *

X
*****H5********** * PLACE NAME *
* IN REFERENCE *
TABLE. INDICATE
*NAME NOT FOUND *
* * *****************

X
*****J5**********
* ADD I TO *
REFERENCE TABLE
* COUNT. TURN *

Sill ITCH I ON

x
**** . .

* 83 *
* *

FORTRAN Loader 393

***** *NC if

* 83* *

• x.
83 *.

NO • if IS * •
•••••••• *. T~IS AN .*
X *.SLC CARD .*

*NC *
* 63*

*

. .
* •• * * YES

.x.
c:= *. *****C4**********

* * NO.* NAME *. YES .. FIND .NAME IN
•••••••• *. IN CARD .* •••••••• X* REFERENCE * ••••••••••••••••••
X *. .* * TABLE *

***** *..* if *
*NS if * •• * *****************
* 63* *

*****02**********
rEXe NN83
--*-*-*-*-*-*-* YES.* HEX

.x.
*****04********** D5 *.
* if .* *.

GET ADDRESS if YES.* NAME *.
* CCNVERT HEX *X •••••••• *. ADDRESS IN .*X •••••••• * OF NAME *X •••••••• *.IN REFERENCE .*
* DATA TO if *. CARe.* * * *. TABLE .*

BINARY *.

. .
••••••••••••••••••••••••• x •

X
*****E~**********
.. ADD ADDRESS ..
* ON CARD * * (I F ANY) ..

TO ADDRESS *
OF NAME

X
*****F3**********
if PLACE *
* ADDRESS IN ..
* LOCATION *
.. COUNTER *
* ..

x

*NB *
* 83*

*

Chart NC. CMPSLC Routine

394

.. ..
***************** x

*
*NC *
if 04*

x

*NS *
* 83*

* *
*

*NO *
* 83*
* *
*

.X.
83 * •

• * IS * •
• * THIS *. NO

. AN ICS . ••.••••.
. CARD. X
.. *****

* •• * *NE *
* YES * B3*

X
*****C3**********
* MOVE SIX *
* CHARACTER *
* NAME FIELD TO *
* ERROR MESSAGE *
* AREA *

X
*****03**********
* * * RESET CARO *
* COUNT * * COUNTER *
* * *****************

X
*****E3***'*******
HEXB NNB3
--*-*-*-*-*-*-*
* CONVERT *
* SEGMENT LNGTH *
(IF ANY) TO BIN

.X.

* * *

*****F2********** F3 *.
* PLACE NAME * .* IS *.
* IN REF TBL * NO.* NAME *. YES
* AND INDICATE *X •••••••• *.IN REFERENCE .* .••••.••
* NAME NOT * *. TABLE .* X
* FOUND * *..* *****
***************** * •• * *NB *

* * 83*
* *
*

x .*.
*****G2********** G3 *. *****G4********** * * .* IS *. *ADJUST LOCATION* * LOAD * .* ADDR *. NO *COUNTER ADDRESS*
* LOCATION * ••.....• X*. A MULTIPLE .* X* TO NEXT *
* COUNTER * *.OF EIGHT .* * DOUBLE-WORD *
* * *..* * BOUNDARY *
***************** * •• * *****************

Chart NO.

* YES

. .

.x •.•....•.•••.•..••.•..••.
X

*****H3**********
ASSIGN LOCATION
COUNTER ADDRESS
* TO NAME AND *
* PLACE IN *
* REFERENCE TBL *

X
*****J3**********
* * * ADD LENGT~ * * OF SEGMENT TO *
* LOCATION CNTR *
* * *****************

x

*NB *
* 83*
* *
*

CMPICS Routine

FORTRAN Loader 395

• *

*NE *
* A3*
* * *

.x.
A3 * •

.* ESD *. NO
. CARD . ••••••••

. . X
.. *****

* •• * *NK * * YES * 83*

.x.

* *
*

83 ******84***********
• * * • • * WORK *. NO *

. TAPE 8EING . •••••••• X
. READ .

. . *. .* * YES

WRITE CARD
IMAGE ON

* WORK TAPE

. .
• X •••••••••••••••••••••••••

• x.
C3 *.

NO.* ESD
•••••••• *. TYPE
X *. 5

*NF * * 1::3*
* *
*

.x.

*
*

*****02********** 03 *. *****04********** * LOAD STORAGE * .* *. * *
*SIZE, SUBTRACT * NO.* WORK *. YES * GET SAVED * * SIZE OF BLANK *X •••••••• *. TAPE BEING .* •••••••• X* BLANK-COMMON *
* COMMON * *. READ.* * ADDRESS *
* * *..*
***************** * •• *

*

• x.
E2 *. • * LESS *.

* * *****************

.x •
E4 *.

.* LESS * •
.THAN HIGHEST • YES NO .*THAN SAVED * •

•••••••• *.ELANK-CQMMON .* *. TEXT .* ••••••••
X *. ADDR .*

***** *..*
*N8 * *. .* * 83* * YES
* * *

X
*****F2**********
* * *
* *

SAVE
ADDRESS * * * * * *****************

x

*N8 *
* 83*
* * *

Chart NE. CMPESD Routine

396

. ADOR. X
.. *****

* •• * *NS *
* NO * 63*

x

*N8 *
* 83*
* * *

* * *

*NF *
* 83*
* *

.x.
83 * •

• * *.
YES.* ESD * •

•••••••• *. TYPE 3 OR 4 .*
X *. .*

***** *..*
*NS * * •• *
* 83* * NO
* •

.x.
C3 it •

• * *.
EQ.* ESD *. GTR

•••••••• *. TYPE EQUAL .it ••••••••

X *. TO 1.* X
. *..it *****
*NG * * •• * *NH * * 83* * LESS * 83*
* * * ¥

X
*****03**********
*MOVE NAME INTO *
WARNING MESSAGE
* AREA, RESET it

CARD COUNT
* COUNTER *
***********.*****

X
*****E3*·********
o 0

*LOAD INDICATED *
* SEGMENT *

LENGTH

*

lOX.. ..* ..
F3 *.. F4 * •

.. * *. .* 4. 4***
.* NAME *. YES .* NAME *. NC *

. IN TABLE . •••••••• X*. ASSIGNED .* •••• X4 G3 *
.. . *. ..* * *

o. .. * *...*

o •

* ... *
o NO

* G3 *.X.
• 0

X
*****G3**********
• 0

* PLACE NAME *

* •• * * YES

.x.
G4 *.

.* *.
YES 5* ADDR *. NO

IN TAELE ASSIGN
* LOCATION *

........ *. COMPARE .*

. .
lOX

X
*****H3**********
MAP NT83
*_*_*_*_it_*_*_*_*

MAP ESD *
ENTRY *

X
*****J3**********
PLACE REFERENCE
* T ABLE ENTRY *
POSITION IN THE
* ESID TABLE *

X
*****K3**********
* CALCULATE THE *
* RELOCAT ION *
FACTR AND PLACE
* IT IN THE *
REFERENCE TABLE
*************4***

x

*NH it
* G3*

• 0

o

. EQU. X
. . *****

*NS *
* 83* ..

Chart NF. CESDo Routine

FORTRAN Loader 397

*NG *
* 83*

* *
*

X
*****83**********
* * *
* *
*

08TAIN
ESID FROM
THE CARD

*
*
* * *****************

X
*****C3**********
* 08TAIN THE *
* STORAGE ADDR *
* OF REFERENCE *
* TA8LE ENTRY *
* * *w***************

X
*****03********** * 08TAIN THE *
* RELOCATION *
* FACTOR FROM *
* REFERENCE *
* TA8LE ENTRY *

X
*****E3**********
* ADD ADDRESS *
* ON CARD TO *
* RELOC FACTOR. *
* FORM NEW *
* ADDRESS *

.X.
*****F2********** F3 *. *****F4**********
*IIW'ICATE ENTRY * .* *. * PLACE NAME *
* FOUND. OBTAIN * YES.* NAME *. NO * AND NEW *
*ACDRESS OF NAME*X •••••••• *.IN REFERENCE .* •••••••• X* ADDRESS IN *
*FROM REFERENCE * *. TABLE .* * REFERENCE *
* TA8LE * *..* * TABLE *
***************** * •• * ***~*************

.X.
G2 *.

.*REF TS *.

*

X

NO.* AND NEW * •
..••..•. *. ADDRESS .*

*****G4**********
MAP NTB3
--*-*-*-*-*-*-*
* * * MAP THIS * X *. SAME .*

***** *..*
*NS * *. .*
* B3* X YES

* ENTRY *

* *
*

. .
.x •••••••••••••••••••••••••••••.•••••••••••••••••••••

Chart NG.

398

X

*NH *
* G3*
* * *

CESDl Routine

*NH *
* 83*
* * *

.X.
*****Cl********** *****C2********** C3 *.
* ADJUST ESID * * INDICATE NAME * .* *.
* FOR POSSIBLE * * NOT FOUND * NO.* NAME *.
* SECOND ENTRY *X •••••••• * PUT REFERENCE *X •••••••• *.IN REFERENCE .*
* INCARD * * TABLE POINTER * *. TABLE .*
* * * IN ESID TABLE * *..*
***************** ***************** * •• *

* YES

X
*****03**********
PLACE REFERENCE
* TABLE POINTER * * IN ESID TABLE *
*ADJ FOR POSSI- *
* BLE 2ND ENTRY *

.X.
E3 * •

• * * • • * WORK *. NO
. TAPE BEING . .•••

. READ .
. .

* •• *
* YES

X
*****F3********** * LOAD ASSIGNED *
*ADDR AND PLACE *
* IN THE RELOC *
FACTOR POSITION
* OF REF. TBL. *

. . .
••• X.X •••••••••••

ROO X
*****G3**********
* * * SEl UP FOR *
* CARD BYTE *
* COUNT CHECK *
* * *****************

.X.
H3 *. *****H4**********

.* *. * SET UP FOR *
.* IS *. NO * FURTHER *

*NEW BYTE COUNT * •••••••• X* PROCESSING OF * ••••••••

Chart NH. CESD2 Routine

. ZERO. * CARD DATA * X
.. * * *****

* •• * ***************** *NE * * YES * C3*

x

*NB *
* B3*
* * *

* *
*

FORTRAN Loader 399

*N I *
* 83*
* * *

.X.
83 * •

• * * • • * TXT *. NO
. CARD . ••••••••

. . X
.. *****

* •• * *N') * * YES * 83*

X
*****C3**********
* * *
* *
*

SETUP TO
PROCESS

TXT CARD
*
* *
* *****************

X
*****03**********
" * "GET RELOCATION *
* FACTOR FROM *
*REFERENCE TABLE"
" * *****************

x
*****E3**********
"ADD RELOCATION *
" FACTOR TO THE " * ADDRESS IN " * THE CARD *
" " *****************

" " . *NI *.X.
* F3*

.X.
F3 * •

• * *.

* " "

YES.* ACDRESS * •
•••••••• *. WIT~IN THE .*
X *. LOADER .*

***** *..*
*NS * * •• *
* 83* * NO
* "

.X.
G3 * •

• *LENGTH * •
• OF TEXT PLUS • YES

. ADDR EXCEED . ••••••••
. STORAGE . X
.. *****

* •• * *N5 *
* NO * 83*

.X.
H3 * •

• * *.

* "
"

YES.* ENTERED * •
•••••••• *. FROM CMPREP .*
X *. ROUTINE .*

*N') *
* C3*
" " "

. .
* •• * * NO

X
*****,)3**********
" SETUP TO LOAD "
* DATA INTO "
* STORAGE AND "
* LOAD DATA *

" " *****************

x

*NB *
c* 83*

* *
"

Chart NI. CMPTXT Routine

400

*NJ *
* 83*
* *
*

.
• X.

*****81********** *****B2********** 83
HEXB NNB3 * * .*
--*-*-*-*-*-*-* * SET UP TO YES.* REP *. NO
* CONVERT *X •••••••• * CCNVERT HEX *X •••••••• *. CARD .* •••••••• * ADDRESS TO * * ADD TO BINARY * *. .*
* BINARY * * * *..*
***************** *************.*** * •• *

*

X
*****Ct********** *****C2********** *****C3********** * * *hEXB NN83* *LOAD BYTE COUNT*
* SET UP TO * *-*-*-*-*-*-*-*-* *BRANC~ TO NJF3 *

x

*NC *
* B3*
* *
*

* CONVERT HEX * •••••••• X* CONVERT ESID * •••••••• X*IN TXT RTN FOR *X •••••••••••••••••
*ESID TO BINARY * * TO 8INARY * * ADDR VALIDITY *
* * * * * C~ECK *
***************** ***************** *****************

* * • *NJ *.X.
* 03*

*****03********** * SET UP TO *
* CONVERT HEX *
* hALF-WORD *
* CORRECTION *
* TO BINARY *

X
*****E3**********
HEX8 NN83
--*-*-*-*-*-*-*
* CONVERT * * HALF-WORD *
*CORR TO BINARY *

X
*****F3**********
* SET UP * * AND PLACE * * CORRECTION *
* IN STORAGE *
* * *****************

.x.
G3 *. *****G4**********

Chart NJ. CMPREP Routine

.* *. * * .* ANOTHER *. YES *ADJUST ADDRESS *
. REP CARD . •••••••• X* FOR NEXT *

. ENTRY . * TWO BYTES *
.. * *

. . ***********'******
* NO

x

*NB *
* B3*
* * *

FORTRAN Loader 401

*NK *
* 83* ..

• X. .*.
83 *. 84 *. ******85***********

.* *. .* *.
NO .* *. YES .* READING *. NO

•••••••• *. RLD CARD .* ...••.•• X*. WORK .* •••••••• X
x

'*****
*NL *
* E3* .. .

. . *. TAPE .*
.. *..*

* •• * * •• *
* * YES

.x.
C4 * •

• * *.
NO .* EXTERNAL * •

•••••••• *. ESID VALID .*X •••• * C4 *
X *. .* * *

***** *..*
*NS * * •• * * 83* * YES . .

.*. X
02 *. *****03********** *****04**********

.* *. *LODREF NQB3* *REFT8L NPB3*
NO .* INTERNAL *. *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*

WRITE THIS
CARD ON

WORK TAPE

x

*NB ...
* 83* . .

•••••••• *. ESID VALID .*X •••••••• * GET CURRENT *X •••••••• * GET ADDR OF *
X *. .* 4 SYMEOL ADDR * *EXTERNAL ENTRY *

***** *..* *FROM REFER TBL * *FROM REF. TSL. *
*NS * *. .* ***************** *****************
* 83* * YES . .

X
*****E2********** *****E3 ******** *****E4******4*** *****E5**********
REFTBL NP83 *LODREF NQB3* * MODIFY * * REDUCE RLD *
*_*_*_*_*_*_*_*_4 *-*_*_*_*_*_*_*_* *STORAGE - TO - * * CARD OAT A *
* GET ADDR OF * •••••••• X* GET CURRENT * •••••••• X* STORAGE MOVE * •••••••. X* BYTE COUNT BY *
*INTERNAL ENTRY * * SYMBOL ADDR * * INSTRUCTIONS * 4 FOUR *
*FROM REFER TEL * *FROM REFER TBL * * *
***********4***** ************444** ***************** *****************

.x.
JI.****F2********** *****F3********** **4**F4*******4** F5 * ..
* MOVE * * DETERMINE IF * * RESTORE * .* *.
* AD.JUSTMENT 4 * THE SYMBOL *DECREMENTED RLD* NO • * IS * •

••• *CELL TO LOR FOR*X •••••••• *LENGTH IS ONE, *x •••••••• *CARD DATA BYTE *X *. BYTE COUNT .*

.x.

* MODIFICATION * *TWO, THREE, OR * .. COUNT IN CARD * *. 4 .*
* 4 FOUR 8YTES * * IMAGE * *..*
***************** ***************** ***************** * •• *

X * YES

**** · . * F3 *

x

*NB *
.. 83*

Gl *. *****G2********** • *
. .

.. * *. * FIND NE~ DC *
.. * IS * .. YES * VALUE BY SUB- *

COMPLEMENT FLAG X*TRACTING CURR- *
. ON. *ENT VALUE FROM *
.. * SYMBOL ADDR *

* ... * *****************
* NO

x X .*.
*****HI********** *****H2********** *****H3********** H4 *.
* FIND NEW DC * * * * REDUCE RLD * .* * ..
VALUE 8Y ADDING * RESTORE * * CARD DATA * .* IS *. YES * CURRENT VALUE * X* AD.JUSTED CELL * X* BYTE COUNT * X*. BYTE COUNT .*
*TO SYMBOL ADDR * * TO DCB * * BY FOUR * *. FOUR.* X
* * *..* *****
***************** ***************** ***************** * •• * *NB *

Chart NK. CMPRLD Routine

402

* NO * 83*

.. *. X
J3 *.. 4****..14**********

.. * *. * RESTORE *
* * NO.* IS *. *DECREMENTED RLD*
* C4 *X •••• *.CONTINUATION '.*X *CARD BYTE COUNT*
* * * .. FLAG ON .* * TO C~RD IMAGE *

... 4 *
* •• * 4****************

* YES

x
**** · . * F3 * · .

..

*NL *
* 83* ..

• x.
83 * •

• * * •
• * END *. NO

. CARD . ..•.•...
. . X
.. *****

* •• * *NM *
* YES **8;* .

• x.
C3 * •

• * * • • * ADDRESS *. NO
. IN . ••••.•

. CARD .
. .

4 •• *
* YES

. .
4 04 * . .

.X. .x.
*****Dl********** *****02********** 03 *. 04 *. *****05****,-******
REFT8L NPB3 * INDICATE ADOR * .* -It. • .lI- -It. * LOAD LOC/ATION *
*_*_*_4_*_*_*_*_* 4SAVED. GET ESID* NO.4 HAS *. YES X .* SEGMENT *. YES * COUNTE;R, ADD *
* GET REFERENCE *X •••••••• * FROM CARD *x •••••••• *.ADDRESS BEEN .* •••••••• X*. SIZE IN .* •••••••• X*SIZE IN CARD TO*
* TABLE ADDRESS * * IMAGE * *. SAVED .* *. CARD.* *LOCATION COUNTR*
* OF THIS ENTRY * * *..* *..*
***************** ***************** * •• * * •• *

X
*****E 1 ***4 *** ***
LCOREP NQ83
--*-*-*-*-*-*-*
*GET RELOCATION *
* FACTOR FROM *
4REFERENCE TABLE4
*-It********* ******

X
*****F 1 ***4 ****** *****F2**********
* * * SAVE ADDRESS ..
*AOO RELOCATION * * FOR POSSIBLE
* FA:TOR AND * •••••••• X.. END OF LOAD

ADDRESS" * TRANSFER .

Chart NL.

x
**** . .

* D4 * . .

CMPEND Routine

* * NO

.x.
E5 *.

.*GREATER*.
.. NO.4 THAN *.
.X •••••••••••••••• *.HIGHEST ADDR .*

* .. OF TEXT .*
.. .

* •• * '* YES

x .
*****F3********** *****F5**********

* * * * CLEAR ES ID X
* TABLE *X •••••••••••••••••••••••••••••••••• * SAVE ADDRESS
***************** *****************

.x.
G.3 * •

• * IS * •
• * SYSTEM *. YES

. TAPE BEING . ••••••••
. READ. X

-. .
* •• *

• NO

x

*NB *
* B3*

*NV *
* E3* . .

FORTRAN Loader 403

*NM *
* E3*
* *

• x.
83 *.

.* LOT
.*

... NO

.* •
84 *.

TYPE/
. CARD . •••••••• X*. DATA

*.

• * *. CARD
.* *.

. .
• X •••••••••••••••••••••••••

• x.
C3 *.

*.
.. NO ... NAME

IN
CARD

* t-3 *X •••• *.
* * *.

*. • * * YES

.x.
03 *.

.* NA"-E *.
NO • * IN *.

•••••••• *. REFERENCE .*
X *. TAELE .*

*N$..
.. E3*
* *

... .*
*. • * * YES

X
*****F3**********
ORG2 NCB3
--*-*-*-*-*-*-*
.. GET CURRENT ..
* ADD OF NAME *
* AND RETURN *

X
*****G3**********
* * SAVE ADDRESS *
FOR END-OF-CARD
* TRANSFER *
* * *****************

* * * H3 *.X.
* * ****

*****H3**********
* * * CLEAR ESID *
* TABLE *
*
* *

x

*NK *
.. 03*
* *
*

Chart NM. CMPLDT, WARN Routines

404

*. NC • * ••••••••••••••••••

X
*****05**********
CONVERT CRD CNT
* TO HEX AND *
* MOVE INTO MSG *
*AREA WITH NAME ..
OF LAST CTL SEG

X
******E5***********

WRITE
WARNING
MESSAGE

.x.
F5 ...

YES.* GOGO *.
•••••••• *. LOAD .*
X *. .*

***** *..*
*N8 * * •• *
.. 83* .. NO

X
****G5*********

* * * SVC TO FSD

*NN *
* 83*

* *
*

X
*****83**********
.. SAVE RETURN *
*ADDR LOAD CON- *
* STANTS FOR *
* THIS ROUTINE *
* * *****************

.x· •••••••••••
• *. .x.

C2 *. C3 * •
• * *~ .* *.

YES.* IS *. NO.* IS * •
•••••••••••••••••• *. CHARACTER .*X •••••••• *. CHARACTER .*

*ALPHABETIC * *. NUMERIC .*
. . * •• * * YES

.X. .X.
01 *. 03 * •

• * *. .* * •
• * VALID *. NC NO.* VALID *.

. HEX . •••••••••••••••• X.X •••••••••••••••• *. HEX .~
. DIGIT . *. CIGIT .*

. . *. .*
* •• * * YES

x

*NS *
* 83*
* *

* •• * * YES

.
X

*****E3**********
* * * CONVERT *
* NUMERIC HEX *
DIGIT TO BINARY
* * *****************

x .X.
****4F1****"***** F3 *.
* * .* *. • * CONVERT * .* ANOTHER *. YES.
*ALPHABETIC HEX * •••••••••••••••••••••••••••••••••• X*.CHARACTER TO .* ••••
DIGIT TO BINARY *. CONVERT .*
* * *. .*
***************** * •• *

* NO

X
****G3*********

* *
* RETURN *
* * ***************

Chart NN. HEX Routine

FORTRAN Loader 405

***** *NO *
* 83*
* * "

X
*****83**********
* LOAD ADDRESS *
*OF FIRST LOCATN"
ABOVE REFERENCE
* TABLE INTO A *
* REGISTER *

X
*****C3**********
* " *LOAD REFERENCE *
* TABLE ENTRY "
" SIZE "
" * *****************

X
*****03**********
" " *LOAD REFERENCE "
* TABLE COUNT *
" *
* " *****************

X
****E3*********

* *
" "

RETURN " * ***************

Chart NO. TBLREF Routine

406

****-3::­
*NP *
"* 83*
* *

X
*****C3**********
* USE ESID TO *
* GET ENTRY *
* POSITION IN *
* REFTBL FROM *
* ESIC TABLE ..

X
*****D2**********
* MULTIPLY *
*ENTRY POSITION *

BY REF TBL
* ENTRY SIZE *
* * *****************

X
*****E3**********
* SUBTRCT *
* PRODUCT *
* FROM HIGHEST *
* LOCATION OF *
* REFTBL + 1 *

x
*****F3**********
.. RESULT IS *
* LOCATION OF

REFERENCE *
TABLE ENTRY *

x
****G3*********

* * * RETURN

* ***************

Chart NP. REFTBL Routine

FORTRAN Loader 407

...... **
*NQ ..
* B3*
* *
*

LODREF X
*****C3**"*******
* GET * * RELOCATION *
* FACTOR FROM *
REFERENCE TABLE
* ENTRY *

.
X

****03*********
* * * *

RETURN *
* *********4*****

Chart NQ. LODREF Routine

408

•••• *
*NR •
• B3* . . ·

X
.*.**A3 •• *.* ••• ** ***.*A.****** ••• *
CLEAR SPECIFIED * LOAD HIGHEST •
*REGISTER. LOAD * * ADDRESS + 1 •
ADDRESS OF NAME •••••••• X*OCCUPIEO BY THE •
• TO BE SEARCHED * • REFTBL INTO *
... FOR. * * SPECIFIED REG *
*****.*****.*.**. **.*.**.* •• ******

X
*···*B3**·******* * seT UP FOR •
* POSSIBLE *

MAPPING OF *
THIS ENTRY · . *****.***.*.*.***

**** · . • C4 • · . • **.

x X
•••• *C3*********. *****C4**********
• * *SUBTRACT REFTBL*
.LOAD REFERENCE. *ENTRY SIZE FROM*
• TABLE COUNT * •••••••• X*HIGHEST ADDR +1*
• • .OCCUPIED BY THE.
* * * REFTBL. •
• ***.*******.**** *.****** •• *** ••••

X
·*03·******
* ADO 1 TO *
... SPECIFIED REG.
*ADJUST TO COMP *
*NAME AND REFER *
* TABL.E ENTRY *
.*.* •••• *.***

.x.
****.E2*******... E3 * •

• ***El*******.* * DEVELOP. •• NAME *.
* REFTBL LOC * YES.. SAME AS *.
• RETURN .X •••••••• *CF NAME AND POS.X.......... ENTRY .*

* • OF NAME IN * *. .*
***********.*** • TABLE * *..*

Chart NR.

.*.*.*****.**.*.* * •• *

SERCB Routine

• NO

.x.
F3 *. .**.*F4**********

.* *. * •
• * TABLE •• NO DeCREMENT

•• COUNT .* •••••••• x* TABLE COUNT
. ZERO. * BY 1
.. * *

*. •• *.***.***********
* YES

X
*****G3**********
* ADJUST TABLE *
• COUNT. ADJUST * * TO PLACE NAME •
* IN REFER. TBL ... · . **.**.*** •• *****.

X
·H3***·******

• * * PLACE NAME
• IN REFER. TBL .
*******.*.***.** •

• x.
J3 *.

•• IS * • • * LOADER *. YES
*. OVERLAID ••••••••••

. . x
.. *****

•• .- *NS -
• NO ... B3.

X
****K3*···*·*··

• * RETURN

.***.******

. .

x · . * C4 * · .

FORTRAN Loader 409

*NS *
* 83*
• •
*

X
*****83**********
• LOAD ADDRESS *
*OF THE MESSAGE *
.FOR TI-'IS ERROR •
* * * * *****************

X
******C3***********

*
*

WRITE
ERROR

MESSAGE

X

*

****03*********

*

* SVC *
* TO *
• FSD *

Chart NS. ERROR Routine

410

*NT *
* 83*
* * *

X
*****83**********
* UNPACK * * GIVEN ADDRESS *
* AND CONVERT * * BINARY TO *
* HEX *

X
*****C3**********
* * * LOAD ADDRESS *
* OF GIVEN *
* MESSAGE *
* * *****************

X
******03***********

*
*

WRITE
MESSAGE

*

X
****E3*********

*

* * *
*

RETURN * * ***************

Chart NT. MAP Routine

FORTRAN Loader 411

4NU *
* 83*
* *
*
.x •••••••.••••••••••••.•••.
X

******B3***********
SPACE DATA

* SET ON *
SYSTEM

* TAPE *

.x.
C3 *. *****C4**********

.* *. * TURN SWITCH *
NO.* WAS *. YES *THAT INDICATES *

•••••••••••••••••• *SySTEM LIBRARY * •••••••• X*SySTEM LIBRARY.
. READ. * WAS READ OFF *
.. * *

* •• * *****************
*

.x.
02 *. *****03**********

.* WAS *. *MAP NTB3*
.* BLANK *. YES *-*-*-*-*-*-*-*-. *. COMMON .* ...••.•• X*PROVIOE STORAGE*
. CALLED . * MAP OF BLANK *
.. * COMMON *

. . *****************
* NO

. .
••••••••••••••••••••••••• X.

X
*****E3**********
* LOAD END-OF- *
* LOAD TRANSFER *
* ADDRESS INTO *
* A SPECIFIED *
* REGISTER *

X
*****F3**********
* * *RECORD TIME IN *
*COMMUNICATIONS *
* AREA *
* * ***************'**

X
****G3*********

* SVC *
* TO * * FSD *

Chart NO. RELCTL Routine

412

*NV *
* B3*
* * *

.x.
83 * •

• * *.
YES.* SWITCH * •

•••••••• *. 4 ON .*
X *. .*

*NU *
* 83*
* *
*

. .
* •• * * NO

.x.
C3 *.

• * *. .* SWITCH *. YES * *
******C4***********

BACKSPACE
LIBRARY

.*.
C5 *.

.* TAPE * •
.* SEARCH *. NO

. 2 ON . •••••••• X TAPE DATA •••••••• X*. COUNT .* ••••
. .

. . * •• * * NO

* * •
*NV *.X.
* D3*

LCT~~~* X
*****03**********
*SET UP TO READ *
* SYSTEM *
* LIBRARY * * TURN SWITCH *
* 2 ON *

* * • *NV *.X.
* E3*

REF;~~* X
*****E3********** * SEARCH REFER. *
* TABLE TO SEE *

* SET *

*. ZERO

* •• * * YES

x

*NS *
* 83*
* *
*

* IF FURTHER *X •••
* PROCESSING *
* NECESSARY *

.x. RETRY
F3 *. *****F4**********

.* ALL *. * TURN SWITCH 3 *
.* ENTRIES *. NO * ON *

. FOUND . •••••••• X* TURN SWITCHES * ••••••••
. .

. . *. e * * YES

X
*****G3**********
* * * SET UP * * CONTROLS *
* TO READ *
* WORK TAPE *

X
*****H3********** * TURN SWITCHES *
* 1 AND 3 OFF * * TURN SWITCH *
* 4 ON *
* * *****************

Chart w.

x

*N8 *
* 83*

* * *

Eons Routine

* I AND 6 OFF * X
* * *****************

*NB *
* 83*
* * *

FORTRAN Loader 413

IBCOM

IBCOM, a segment of the .FORTRAN system,
performs object time implementation of the
following FORTRAN I/O source statements:

1. READ and WRITE (both requiring and not
requiring a format) •

2. BACKSPACE, REWIND, and END FILE (tape
manipulation) •

3. STOP and PAUSE (write to operato~ •

In addition, IBCOM processes object time
errors detected by the various FORTRAN
library subroutines, processes arithmetic
type program interrupts, and terminates
object program execution.

Chart 12 the IBCOM-Object Program Over­
all Logic Diagram indicates the entrance to
and exit from IBCOM as the guide to the
overall functions of IBCOM.

All linkages to IBCOM are compiler­
generated. Each time one of the above­
mentioned source statements is encountered
during compilation, an appropriate calling
sequence to IBCOM is generated and included
as part of the object program. At object
time, these calls are executed, passing
control to IBCOM to perform the indicated
I/O operation.

Except for READ/WRITE implementation,
the operation of IBCOM, is straightforward.
Therefore, only READ/WRITE implementation
is discussed in this introduction. The
other operations are discussed as part of
the subroutine descriptions.

For the implementation of READ and WRITE
statements, IBCOM consists of the opening,
I/O list, and closing sections.

OPENING SECTION

The compiler generates a linkage to the
opening section of IBCOM when it detects a
READ or WRITE statement in the FORTRAN
source program.

The opening section determines the
nature of the operation (READ or WRITE,
requ~r~ng or not requiring a forma~ and
the address of the device upon which the
operation is to be performed. The device
address is saved for future operations.

414

READ Requiring a Format

If the determined operation is that of a
READ requiring a format, a record is read
into an I/O buffer. The location and size
of the I/O buffer are saved, a pointer to
the I/O buffer is initialized to the first
location in that buffer, and the address of
the FORMAT statement associated with the
READ is saved. (The address of the FORMAT
statement is passed as an argument to the
opening section.) Control is passed to a
portion of IBCOM that scans the FORMAT
statement. The first format code (either a
control or conversion type) of the FORMAT
statement is then accessed.

For the control type code (e.g., an H
format code or a group count) , a list item
is not required. Control passes to the
control routine associated with the format
code under consideration to perform the
indicated operation. (See Subroutines
FRDWF, FWRWF, FIOLF, FIOAF, and FENDF,
Table E.1, Format Codes.) Control then
passes to the scan portion, which obtains
the next format code. The above operation
is repeated for all control type codes,
until either the end of the FORMAT state­
ment or the first conversion code is
encountered.

A conversion type code (e.g., an I
format code) requires a list item in a READ
statement. Upon the first encounter of a
conversion type code in the scan of the
FORMAT statement, the opening section of
IBCOM completes its processing of a READ
requiring a format and returns control to
the next sequential instruction of the
object program. The object program obtains
the list item associated with the conver­
sion code and calls the I/O list section of
IBCOM.

WRITE Requiring a Format

If the opening section determines that
the desired operation is that of a WRITE
requ~r1ng a format, it proceeds in a manner
similar to a READ requiring a format.

READ Not Requiring a Format

If the desired operation is that of a
READ not requiring a format, the opening
section of IBCOM reads a record into the
I/O buffer. This section saves the loca­
tion and size of the I/O buffer, initiali­
zes the buffer pointer to the first loca­
tion in the I/O buffer beyond the control
word, and returns control to the next
sequential instruction of the object pro­
gram. The object program obtains a list
item and calls the I/O list section of
IBCOM.

WRITE NOt Requiring a Format

If the operation to be performed is a
WRITE not requiring a format, the opening
section proceeds in a fashion similar to a
READ not requiring a format.

I/O LIST SECTION

The compiler generates a linkage to the
I/O list section of IBCOM when it encoun­
ters an I/O list item in the FORTRAN source
program.

The I/O list section performs the actual
input of data to the list item if a READ
statement is being implemented and from the
list item if a WRITE statement is being
implemented.

In processing list items for any READ or
WRITE requiring a FORMAT, the I/O list
section passes control to the conversion
routine that puts the list item in a format
according to its associated conversion type
format code. (This conversion routine has
been pre-determined by the scan portion of
IBCOM, and its address is made available to
the I/O list section.) For input, the
conversion routine accesses data from the
I/O buffer and converts the data to the
form dictated by the format code. The
converted data is then moved into the list
item •. For output, the conversion routine
accesses the list item, converts it to the
form dictated by the format code, and . moves
the result to the I/O buffer.

After the conversion routine has proc­
essed the list item, 'the I/O list section
determines if the format code applied to
the list item just processed is to be
repeated for the next list item. It looks
for a field count (the number of times a
conversion is to be repeated for an I/O
list item) associated with the format code.

If the format code is to be repeated and
the list item just processed was a varia­
ble, control returns to the object program
to obtain the next item. The object pro­
gram again links to the I/O list section,
and the conversion routine which processed
the previous list item is given control.
This action applies the same format code to
the next list item.

If the format code is to be repeated and
the list item just processed was an array
element, the next element of the array is
obtained. The format code is repeated for
this element. There is no return to the
object program until all array elements
have been satisfied. If the format code is
not to be repeated, control is passed to
the scan portion of IBCOM to continue the
scan of the FORMAT statement.

If the scan portion determines that a
group of format codes is to be repeated,
the format statement pointer is adjusted to
the first format code in the group. The
codes of the group are then repeated. If a
group of codes is not to be repeated, the
scan portion of IBCOM accesses the next
format code. For the control type code,
control is passed to its associated control
routine. For the conversion type code,

control is returned to the object pro­
gram which obtains the list item associated
with the conversion code. The object pro­
gram again links to the I/O list section to
process the list item.

In processing list items for READ and
WRITE statements not requ1r1ng a format,
the I/O list section determines the size of
the list item (i.e., the number of bytes
reserved for the list item). The list item
may be either a variable or an array. In
either case, the number of bytes specified
by the size of the list item is moved from·
the I/O buffer to the list item on input
and reversed on output. Control is then
returned to the object program to obtain
the next list item.

Conversion Routines: The conversion rou­
tines, an integral part of the I/O list
section for any READ or WRITE requ1r1ng a
format, have an associated, conversion type
format code. Each conversion routine con­
verts the list item presented to it into
the form dictated by its associated format
code. The conversion routine moves the
converted result to the address assigned to
the list item if a READ statement is being
implemented, or to the I/O buffer if a
WRITE statement is being implemented.

IBCOM 415

CLOSING SECTION Chart py

+'017. IBFERR Execution error monitor
The compiler generates a linkage to the---

closing section of IBCOM after all list Chart PZ
items associated with the READ or WRITE
statement have been processed. The closing+bi18. IBFINT Interrupt processor
section closes input/output operations for
I/O statements irrespective of format Charts QA, QB
requirements.

19. FIOCS I/O interface

Chart QC

+b~20. IBEXIT Job terminator -
IBCOM SUBROUTINES

The IBCOM subroutines are broken down in
the following categories:

.±2., 1 •

+~ 2.

+' 3. -
~ rz.... 4.

+- Ie. 5.

6.

+ 2Cf 8.
r-o-"

+Vi 9. -
~'32 10.

+'io 12.
ill.J3.
+t.{1 14 •

Wl5.
+06 !.6.

416

Charts PA through PH

FRDWF--Opening section for a READ
requiring a format

FWRWF--Opening section for a WRITE
requiring a format

FIOLF--I/O list section for the list
variable of a READ or WRITE
requiring a format

FIOAF--I/O list section for list array
of a READ or WRITE requiring a
format

FENDF--Closing section for a READ or
WRITE requiring a format

Charts PI through PN

D, E, F, I, A conversion routines
(both input and output)

Charts PO through PT

FRDNF--Opening section for a READ not
requiring a format

FWRNF--Opening section for a WRITE not
requiring a format

FIOLN--I/O list section for list vari­
able of a READ or WRITE not
requiring a format

FIOAN--I/O list section for list array
of a READ or WRITE not requir­
ing a format

FENDN--Closing section for a READ or
WRITE not requiring a format

Charts PU through PW

FBKSP
FRWND Tape manipulation
FEOFM

Chart PX

FSTOP Write to operator
FPAUS

Subroutines FRDWF, FWRWF, FIOLF, FIOAF, and
FENDF: Charts PA through PH

These five subroutines transfer data
between external storage and main storage
under control of a FORMAT statement. The
format code specifies the type of conver­
sion to be performed between the internal
and external representations of the data.
These subroutines constitute that portion
of IBCOM which implements any READ or WRITE
requiring a format.

ENTRANCE: The five subroutines are entered
at object time under the following condi­
tions:

1. Subroutine FRDWF when a READ statement
requiring a format is to undergo open­
ing section operations.

2. Subroutine FWRWF when a WRITE state­
ment requiring a format is to undergo
opening section. operations.

3. Subroutine FIOLF when a list variable
of a READ or WRITE requiring a format
is to undergo I/O list section proc­
essing.

4. Subroutine FIOAF when a list array of
a READ or WRITE requiring a format is
to undergo I/O list section process­
ing.

5. Subroutine FENDF when a READ or WRITE
operation requiring a format is to
undergo closing section operations.

OPERATION: Subroutines FRDWF and FWRWF,
the opening section subroutines~ call sub­
routine FIOCS to select the actual channel
and device that corresponds to the data set
reference number. FIOCS also initializes
the data set for input or output.

Upon return from FIOCS, FORMAT statement
processing is initiated. The FORMAT state­
ment has been analyzed, translated, <'ind
packed during compilation to a format rec­
ognizable by IBCOM (see introduction to
Phase 14). The processing performed for
the various format codes is explained in
Table 2.

Table 2. Format Codes
r------------T---------------T----------T---,
IFORMAT Code IDescription I Type ICorresponding Actiop Upon Code I
~------------+---------------+----------+---~

n(

n

nP

Tn

nX

lbeginning Ofaz..1control ISave location for possible repetition of the I
I statement I Iformat codes; clear counters. I
I I I I
group count I control ISave n and location of left parenthesis fori

04k~ I lpossible repetition of the format codes in the I
I I group. I
I I I

field countOr.."1I\ control ISave n for repetition of format code which I

scaling factor
09 "10

column reset
12

skip or blank
If

Ifollows. I
I I

control ISaveq for use by F, E, and D/~onversions. I
I _ UJf=- VN;5r ,.'1- .F It k ~ I if f\z.,. is """ ... 'II1ft.- I

control IReset current position within record to nth I
Icolumri or byte. I
I 1

control 1 Skip n characters of an input record or insert 1
In blanks in an output record. I
I I

'text' or nH literal data control IMove n characters from an input record to the 1

Fw.d
Ew.d

IDw.d
IIw
lAW
I
I
I
I
I
I
I
D
I
I
I
1/
I
I

I
I

I

'~"'''I "" ~ft'f (I

conversions
r- oA"",,!J
E oc.;' .1.1

o c·e~.rl:!

t \Ow~
A t4 wid

group end
\C.

IFORMAT statement, or n characters from the I ,
IFORMAT statement to an output record. I
I 1

conversionlExit to the object program to return control tol

control

ISubroutine FIOLF or FIOAF. Using information I
Ipassed to the I/O list section, the address and I
Ilength of tpe current list item are obtained I
land passed to the proper conversion routine I
Itogether with the current position in the 1/01
I buffer, the scale factor, and the values of wi
land d. Upon return from the conversion routine 1
Ithe current field count is tested. If it isl
I greater than 1 , another exi t is made to the I
lobject program to obtain another list item. I
I I
ITest group count. If greater than 1, repeat I
Iformat codes in group; otherwise continue tol
Iprocess FORMAT statement from current position. I
I I

Irecord end control IInput or output one record using subroutine I
I 'E IFIOCS. I
I I I
lend of control IIf no I/O list items remain to be transmitted, I
I statement Ireturn control to the Object program to link tol
I 1.'2. I subroutine FENDF, the closing section; if list I
I litems remain, input or output one record using I
I Isubroutine FIOCS. Repeat format codes from I

I I Ilast left parenthesis. I
~----_-----.1--------------.l.-.-_-----.l.-.-------------_:_------------------_____ ~
I - I
I Note: The internal representation of the above format specification codes is discussed 1
lin the introduction to Phase 14. 1
I I L ___ J

When any conversion code is encountered
in the FORMAT statement and no I/O list
items remain to be transmitted, control is
passed to subroutine FENDF, the closing
section. If a WRITE operation is being
implemented, the current record is put out
using subroutine FIOCS. General housekeep-:­
ing is performed, and control is returned
to the Object program.

EXIT: Each IBCOM section (opening, I/O
list, and closing) returns control to the
object program after execution. However,
the exit is to subroutine IBFERR for an
error.

IBCOM 417

Subroutines FCVII and FCVIO: Charts PI, PJ

Subroutine FCVII

Subroutine FCVII reads integer data
(integer input conversio~ according to an
Iw format code.

ENTRANCE: Subr6utine FCVII receives con­
trol from subroutines rIOLF or FIOAF.

OPERATION: The number of bytes, (specified
by w, in the format code) is scanned from·
left to right, starting at the appropriate
I/O buffer location. The characters con­
tained in these bytes are converted to a
signed binary integer and stored in the
list item.

EXIT: After execution .subroutine FCVII
exits to subroutines FIOLF or FIOM.

Subroutine FCVIO

Subroutine FCVIO writes integer data
(output integer conversio~ according to an
Iw format code.

ENTRANCE: Subroutine FCVIO receives con­
trol from subroutines FIOLF or FlOAF.

OPERATION: The contents of the list item
are converted from a binary integer to
decimal digits. These characters, preceded
by leading blanks sufficient to fill the
number of bytes, specified by w, are stored
from 1eft to right in the I/O buffer,
starting at the appropriate buffer loca­
tion.

EXIT: After execution subroutine FCVIO
exits to subroutines FIOLF or FIOM.

Subroutines FCVEI/FCVDI and FCVEO/FCVDO:
Charts PR, PL

Subroutines FCVEI/FCVDI

Subroutine FCVEI/FCVDI reads real data
with an external exponent (real/double
input conversion, exponent) according to an
Ew.d or OW.d format code.

ENTRANCE: Subroutine FCVEI/FCVDI receives
control from subroutines FIOLF or FIOAF.

OPERATION: The number of bytes, (specified
by w, in the format code) is scanned from
left to right, starting at the appropriate

418

buffer location. The characters in these
bytes are converted to a binary integer and
scaled according to the value of d and the
exponent field. The result is stored in
the list item.

EXIT: After execution, subroutine
FCVEI/FCVDI exits to subroutines FIOLF or
FlOAF.

SUbroutine FCVEO/FCVDO

Subroutine FCVED/FCVDO writes real data
with an external exponent (real/double out­
put conversion, exponent) ·according to an
Ew.d or OW.d format code.

ENTRANCE: Subroutine FCVED/FCVDO receives
control from subroutines FIOLF or FIOM.

OPERATION: The contents of the list item
are scaled according to its characteristic
and the scale factor. The result is seg­
mented into integer and fractional por­
tions, and then converted to properly
signed decimal digits, separated by a deci­
mal point. An exponent field is placed to
the right of the fraction indicating a
power of 10 to which the preceding number
must be raised to obtain the proper value.
All of these characters, preceded by suffi­
cientblanks to fill·w bytes, are stored
from left to right in the I/O buffer,
starting from the appropriate buffer posi­
tion.

EXIT: After execution subroutine
FCVEO/FCVDO. exits to subroutines FIOLF or
FIOAF.

Subroutines FCVFI and FCVFO: Charts PR, PL

Subroutine FCVFI

Subroutine FCVFI reads real data without
an external exponent (real-double input
conversion, no exponent) according to a
Fw.d format code.

ENTRANCE: Subroutine· FCVFI receives con­
trol from subroutines FIOLF or FIOAF.

OPERATION: A number of bytes (specified by
w in the format code) is scanned from left
to right starting from the appropriate I/O
buffer position. The characters contained
in these bytes are co~verted to a binary
integer and scaled according to the value
of d and the scale factor. The result is
stored in the list item.

EXIT: After execution subroutine FCVFI
exits to subroutine FIOLF or FIOAF.

Subroutine FCVFO

Subroutine FCVFO writes real data with­
out an external exponent (real-double out­
put conversion, no exponent) according to a
Fw.d format code.

ENTRANCE: Subroutine FCVFO receives con­
trol from subroutine FIOLF and FIOAF.

OPERATION: The contents of the list items
are scaled according to its characteristic
and scale factor. The result is segmented
into integer and fractional portions and
then converted to properly signed decimal
digits separated by a decimal point. These
characters, preceded by sufficient blanks
to fill w bytes, are stored from left to
right in the I/O buffer, starting from the
appropriate buffer location.

EXIT: After execution subroutine FCVFO
exits to subroutines FIOLF or FIOAF.

Subroutines FCVAI and FCVAO: Charts PM, PN

Subroutine FCVAI

Subroutine FCVAI reads alphameric data
(alphameric input conversion) according to

an Aw format code.

ENTRANCE: Subroutine FCVAI receives con­
trol from subroutines FIOLF or FIOAF.

OPERATION: If the value of w (in the
format code) is greater than or equal to L
(the length of the list item), the L
rightmost characters in the I/O buffer are
used to fill the list item. If the value
of w is less than L, w characters from the
I/O buffer are left-justified in the list
item with L minus w trailing blanks.

EXIT: After execution subroutine FCVAI
exits to subroutine FIOLF or FIOAF.

Subroutine FCVAO

Subroutine FCVAO writes alphameric data
(alphameric output conversion) according to
an Aw format code.

ENTRANCE: Subroutine FCVAO receives con­
trol from subroutine FIOLF or FIOAF.

OPERATION: If the value of w is less than
or equal to L the w leftmost characters in
the list item are placed into the I/O
buffer. If the value of w is greater than
L, t characters from the list item are
right justified in the I/O buffer with w
minus L leading blanks.

EXIT: After execution subroutine FCVAO
exits to subroutines FIOLF or FIOAF.

Subroutines FRDNF, FWRNF, FIOLN, FIOAN, and
FENDN: Charts PO through PT

These five subroutines transfer data
between external storage and main storage
with no intermediate conversion. These
subroutines constitute that portion of
IBCOM which implements any READ or WRITE
not requiring a format.

ENTRANCE:
at object
tions:

The five subroutines are entered
time under the following condi-

1. Subroutine FRDNF when a READ statement
not requiring a format is to undergo
opening section operations.

2. Subroutine FWRNF when a WRITE state­
ment not requ~r~ng a format is to
undergo opening section operations.

3. Subroutine FIOLN when a list variable
for a READ or WRITE not requ~r~ng a
format is to undergo I/O list section
processing.

4. Subroutine FIOAN when a list array for
a READ or WRITE not requiring a format
is to undergo I/O list section proc­
essing.

5. Subroutine FENDN when a READ or WRITE
not requiring a forma·t is to undergo
closing section operations.

OPERATION: Each record read that does not
require a format is expected to contain a
control word of the type prefixed to every
record written not requiring a format.
This control word occupies the first four
bytes of the record and consists of the
following fields:

r----------T------------------------------~ I 8 bits I 24 bits I
~-------~--+------------------------------~
I LRI I record length I

,
l __________ ~~ _____________________________ ~

- A FORTRAN logical record consists of the
total number of records necessary to con­
tain all I/O list items within a single
WRITE statement. For all but the last
record within the logical record, LRI (Last
Record Indicator) equals zero~ for the last
record, LRI equals the total number of
records within this logical record. The

IBCOM 419

"record length" is always present and
equals the number of bytes within the
record, excluding the control word. Sub­
routines FRDNF and FWRNF, the opening sec­
tion subroutines, call subroutine FIOCS to
select the actual channel and device cor­
responding to the data set reference number
and to initialize the data set for input or
output.

Upon return from 'subroutine FlOeS, con­
trol returns to the object program to
obtain an I/O list item and to call the I/O
list section, either subroutine FIOLN or
FIOAN. Using the information passed to the
I/O list section, the address of the cur­
rent list item and its length are obtained.
They are used to transfer bytes from the
I/O buffer to the list item on input or
from the list item to the I/O buffer on
output.

If end of record is reached and I/O list
items remain to be transmitted, one record
is read or written using sUbroutine FIOCS.
Then processing of the I/O list resumes.

When no I/O list items remain to be
transmitted, control is passed to subrou­
tine FENDN, the closing section. If a READ
operation is being implemented, successive
records are read using FIOCS until the end
of the logical record is reached. If a
WRITE operation is being implemented, the
current record (containing an end-of­
logical record indicato~ is written using
FIOCS. General housekeeping is performed,
and control is returned to the object
program.

EXIT: Each section of IBCOM (opening, I/O
list and closing) returns control to the
object program after execution. However,
if an error exists, the exit is to
subroutine IBFERR.

Subroutine FBKSP: Chart PU

Subroutine FBKSP implements the BACK­
SPACE source statement. This subroutine
backspaces the specified tape unit one
physical record for a data set requiring a
format, and one logical record for a data
set not requiring a format.

ENTRANCE: Subroutine FBKSP receives con­
trol from the object time execution of a
compiler-generated linkage. This linkage
is generated during compilation when a
BACKSPACE statement is encountered.

CONSIDERATION: If the tape is at load
point and a backspace operation is request­
ed, the backspace operation is not per­
formed.

420

OPERATION: Subroutine FBKSP calls subrou­
tine FIOCS to select the actual channel and
device corresponding to the data set ref­
erence number and issue a backspace record
control to that channel and device. If the
data set required a format, subroutine
FBKSP returns control to the object pro­
gram. If the data set did not require a
format, subroutine FBKSP reads the record
backspaced over, using subroutine FIOCS,
and obtains the control word specifying the
number of records within this logical
record (see control word format under sub­
routine FRDNF/FWRNF). Subroutine FBKSP
issues an equal number of backspaces (using
subroutine FIOCS) before returning to the
object program.

EXIT: After execution subroutine FBKSP
returns control to the object program.

Subroutine FRWND: Chart PV

Subroutine FRWND implements the REWIND
source statement.

ENTRANCE: Subroutine FRWND receives con­
trol from the object time execution of a
compiler generated linkage. This linkage
is generated during compilation when a
REWIND source statement is encountered.

OPERATION: Subroutine FRWND calls subrou­
tine FIOCS to select the actual channel and
device corresponding to the data set ref­
erence number and to issue a rewind control
to that channel and device.

EXIT: After execution subrout~ne FRWND
returns control to the object program.

Subroutine FEOFM: Chart PW

subroutine FEOFM implements the END FILE
source statement.

ENTRANCE: Subroutine FEOFM receives con­
trol from the object time execution of a
compiler generated linkage. This linkage
is generated during compilation when the
END FILE source statement is encountered.

OPERATION: Subroutine FEOFM calls subrou­
tine FIOCS to select the actual channel and
device corresponding to the data set ref­
erence number and to issue a write end-of­
data set control to that channel and
device.

EXIT: After execution subroutine FEOFM
returns control to the object program.

"

Subroutine FSTOP: Chart PX

Subroutine FSTOP implements the STOP
source statement.

ENTRANCE: Subroutine FSTOP receives con­
trol from the object time execution of a
compiler-generated linkage. This linkage
is generated during compilation when a STOP
statement is encountered.

OPERATION: Subroutine FIOCS is called
twice: to initialize the data set fOr a
write; and, to write on the typewriter the
message associated with the STOP statement.

EXIT: After execution subroutine FSTOP
passes control to subroutine IBEXIT to
terminate program execution.

Subroutine FPAUS: Chart PX

Subroutine FPAUS implements the PAUSE
source statement.

ENTRANCE: Subroutine FPAUS receives con­
trol from the object time execution of a
compiler-generated linkage. This linkage
is generated during compilation when a
PAUSE statement is encountered.

OPERATION: Subroutine FIOCS is called
twice: to initialize the data set for a
write; and, to write on the typewriter the
message associated with the PAUSE state­
ment. Subroutine FPAUS places the system
in a "wait" state, until a reply is
received from the operator.

EXIT: When the operator's reply is
received, subroutine FPAUS returns control
to the next sequential instruction of the
object program.

Subroutine IBFERR: Chart py

Subroutine IBFERR (Execution Error Monitor)
processes object-time errors (e.g., a
permanent tape redundancy).

ENTRANCE: Subroutine IBFERR receives con­
trol from the various FORTRAN library sub­
routines, when they detect object-time
errors.

OPERATION: Subroutine IBFERR, using sub­
routine FIOCS, prints out a message to in­
dicate the type of error detected and the
point in the object program where the
error occurred.

Form Z2S-6620-0
Page Revised 3/15/66
By TNL Z3l-500S-0

EXIT: After execution subroutine IBFERR
passes control to subroutine IBEXIT to
terminate the execution of the object
program.

Subroutine IBFINT: Chart PZ

Subroutine IBFINT (Interrupt Processor)
processes arithmetic type program errors
(e.g., overflow, underflow, divide check).

ENTRANCE: Subroutine IBFINT initially
receives control from a compiler generated
linkage, which is included in as the initial
object program coding to be executed. Sub­
sequent entries into subroutine IBFINT are
effected whenever program interrupts occur.

OPERATION: The first time subroutine IBFINT
receives control, it initializes the object
time 2540 punch error recovery mechanism in
the FSD error recovery routine (SERP). In
addition IBFINT saves the new program PSW
and substitutes its own. This is done to
insure that subroutine IBFINT receives con­
trol each time a program interrupt occurs.
In handling interrupts, subroutine IBFINT
determines if the interrupt is the arith­
metic type. If not, it loads the saved
new program PSW, thereby giving control to
the program interrupt routine of the FORTRAN
System Director to process non-arithmetic
program interrupts. If the interrupt is
arithmetic, subroutine IBFINT writes out the
old program PSW, using subroutine FIOCS.
This PSW can be examined to determine the
nature of the interrupt.

If overflow or underflow has caused the
interrupt, subroutine IBFINT sets the ap­
propriate indicators, which are referenced
by subroutine OVERFL (a library subroutine).
If any type of divide check has caused the
interrupt, subroutine IBFINT sets the indi­
cator referenced by subroutine DVCHK (a
library subroutine).

EXIT: After processing an arithmetic pro­
gram error, subroutine IBFINT returns con­
trol to the point in the object program at
which the interrupt occurred. If the pro­
gram interrupt is not arithmetic, subrou­
tine IBFINT exits to the program interrupt
routine of the FORTRAN System Director.

Subroutine FIOCS: Charts QA, QB

Subroutine FIOCS (I/O Interface) handles
all I/O requests from other FORTRAN library
subprograms.

ENTRANCE: Subroutine FIOCS receives con­
trol. from the various FORTRAN library sub­
routines when they request I/O operations.

IBCOM 421

Form Z28-6620,-0
Pa.ge Revised 3/15/66
By TNLZ3l-5008-0

CONSIDERATIONS: Subroutine FIOCS does not
perform the actual I/O operations. It acts
as an interface betwee~ the subprogram
requesting the I/O operation and the
FORTRAN System Director (FSD), which actually
fulfills the I/O request of the subprogram.
Subroutine FIOCS r~ceives and passes the
I/O request on to the FSD by means of a
Supervisor Call. The FSD performs the re­
quested I/O operation and returns control
to subroutine FIOCS.

OPERATION: The operation of FIOCS is com­
prised of initialization, read, write, and
control.

Initialization: Data set initialization is
considered as part of the opening section
operation. The requested data set ref­
erence number is saved and used, until
another initialization occurs, for all sub­
sequent read or write requests. If the
data set is to be read, a record is read
into an I/O buffer, using the FSD. The
beginning address of the I/O buffer and the
size of the record read are returned to the
calling subprogram. If the data set is to
be written, an I/O buffer area is located
and initialized. The beginning address of
this area and its maximum length (in bytes)
is returned to the calling subprogram.

Read: A record is read, using the FSD,
from the current data set into an I/O
buffer. The beginning address of the buf­
fer and the size of the record read are
returned to the calling subprogram.

Write: The contents of the last located I/O
buffer are written, using the FSD, onto the I current data set. If the write was a suc­
cessful 2540 punch operation, the informa­
tion just punched and the device parameters
are saved for possible punch equipment check
recovery procedures. A new I/O buffer area
is located and initialized. The beginning
address of this area and its maximum length
(in bytes) are returned to the calling s~­
program.

Control: The qualifying argument passed to
subroutine FIOCS is examined and its cor­
responding operation (backspace, rewind,
or end of data set) is performed on the
requested data set, using the FSD. If the
operation was a backspace, the previous
qualifier set during data set initializa­
tion for this data set reference is re-

422

turned to the calling subprogram (to indi­
cate the format requirement). Subroutine
FBKSP needs this information to complete
the backspacing of a data set that does not
require a format.

The other types of control operations
(rewind and end of data set) do not require
output from subroutine FIOCS.

EXIT: After execution subroutine FIOCS
returns control to the calling subprogram.

Subroutine IBEXIT: Chart QC

Subroutine IBEXIT terminates the execution
of an object program.

ENTRANCE: Subroutine IBEXIT receives con­
trol from subroutines FSTOP, DUMP, EXIT,
and IBFERR after it prints an error mes­
sage; and from the object time execution of
a compiler generated linkage for the RETURN
statement appearing in the main program.

OPERATION: Subroutine IBEXIT closes all
FORTRAN data sets that are open.

EXIT: After execution subroutine IBEXIT
passes control to the FORTRAN System
Director.

Subroutine IB2540: Chart QD

Subroutine IB2540 handles 2540 punch equip­
ment check retries during object time.

ENTRANCE: IB2540 receives control from the
external interrupt after FSD has printed
the error message.

OPERATION: IB2540 routine sets up the
error device UCB and CSW to indicate a
successful punch operation, and changes the
FSD return address to return to the IB2540
retry address (IORTRY). It then gives con­
trol to the FSD interrupt routine (SNTPIN).
Routine SNTPIN will find a successful punch,
restore IBCOM registers and I/O device
indicators, and then return to the retry
entry (IORTRY).

IB2540 will punch the first card and
then give control back to the IBCOM I/O
Interface Subroutine (FIOCS) to punch the
second card.

EXIT: After execution of subroutine
IB2540 control is returned to the IBCOM I/O
Interface Subroutine (FIOCS).

THIS CALL IS
GENERATED BY

COMPILER WHEN A
READ OR WRITE

IS ENCOUNTERED

THIS CALL IS
GENERATED BY
COMPILER lIHEN

AN I/O LIST ITEM
IS ENCOUNTERED

THIS CALL IS
GENERATED BY
COMPILER WHEN ALL

OF THE LIST ITEMS
ASSOCIATED lIITH READ
OR WRITE HAVE
BEEN PROCE ssED

CBJECT PROGRAM IBCOM

..
" " " " " " " *

" · *
X *

*****C2********** * *****C4**********
* * * * * * CALL OPENING * * *PERFORM OPENING*
* SECTION OF * ••••••••••••••••• * •••••••••••••••• X*OPERATIONS FOR *
" IBCOM" " * READ OR lIRITE "
* * * * * ***************** * *****************

* " * * . •••••••••••••••••••••••••• * ••••••••••••••••••••••••••
· " x *

*****02********** * *****04**********
* * * * * *GET LIST ITEM. " " * PERFORM I/O *

••• X. CALL I/O LIST * ••••••••••••••••• * •••••••••••••••• X*LIST OPERATIONS-

NO

* sECTICN .. * * ON LIST ITEM "
* * * * * ***************** * * *

" *

.......................... -•......•••..•.•.•••.•....•
.x.

E2 *.
".

LAST *.

*
* ..

.•.. *. LIST .*
*
" ..

. ITEM .
. .

*. .if
.. YES

X
*****F2**********

*

* * " * * * " * * ..
" " .. *****F4**********

* * * if CALL CLOSING
" SECTION OF
" IBCOM

* ••••••••••••••••• * •••••••••••••••• x*
* .. *

CLOSE OUT
I/O

OPERATION
* ..
* * " " ***if*ifif** __ ****** " " " ..

" ..
* **-••• _**********

•••••••••••••••••••••••••• * ••••••••••••••••••••••••••

· X
*****G2**********
* ..
" CONTINUE WITH *
*CEJECT PROGRAM *
" PROCESSING "
* * *****************

* *
" " "
*

Chart 12. IBCO~Object Program Logic Diagram

I BCOM 423

*PA *
* 82*
* *
*

*PA *
* 84*
* *
*

FRDWF X FWRWF X
*****82********** *****63********** *****84**********
* * * * * * * SET FOR INPUT * * SAVE MAIN * *SET FOR OUTPUT *
* REQUIRING * •••••••• X* REGISTERS *X •••••••• * REQUIRING *
* A FORMAT * * * * A FORMAT *
* * * * * * ***************** *****************

X
*****C3**********
* * * GET POINTER * * TO PARAMETERS *
* * * * *****************

X
*****03**********
FIOCS QAAl
--*-*-*-*-*-*-*
* INITIALIZE * * DATA SET *
* * *****************

X
*****E3**********
* * * SAVE *
*START LOCATION *
* OF RECORD *
* * *****************

X
*****F3**********
* * * COMPUTE *
* END LOCATION *
* OF RECORD *
* * *****************

X
*****G3**********
* * * INITIALIZE *
* RECORD *
* POINTER *
* * *****************

X
*****H3**********
* *
* INITIALIZE *
* FORMAT *
* POINTER *
* * *****************

x

*P6 *
* 81*
* *
*

Chart PA. Subroutines FRDWF, FWRWF

424

*PB *
* B1*

" " *

X
*****81**********
" * .. SCAN OUT *
.. OPERATOR *X •••
.. .. X - X

" " *****************

.x.
Cl * •

• * * • • * BRANCH *.
. ACCORDING . *. TO OP ...

*****02**********
" "

*****D~**********

" " • 02 • * CLEAR" * BUMP FORMAT *
••••••••••••••••• X* COUNTS * •••••••• X* POINTER * ••••

* * .. AND SAVE IT *
.. * * *
***************** *****************

• x •••

*****E2**********
" " *

*****E3**********
" * * * • 04 • *

••••••••••••••••• X*
SAVE

GROUP COUNT * •••••••• x*
BUMP FORMAT

POINTER
AND SAVE IT

* ••••
* .* " *
* " * " ***************** *****************

.x •••

*****F2**********
" "

*****F3**********
* *

• 06 • * SAVE
••••••••••••••••• x* FIELD CCUNT

" "

* " * •••••••• x*
* *
" "

BUMP FORMAT
POfNTER " * ••••

*
* ***************** *****************

*****G2**********
* *

*****63**********
" " 08 * SAVE

••••••••••••••••• X* SCALE FACTOR
* "

* * * •••••••• x*
* *
* "

BLMP FORMAT
POINTER * * ••••

" * ***************** *****************

.*.
*****H2********** H3 *.
* * .* *.

• 12 * COMPUTE * .* PAST *. NO
*****H4**********
" * * ••••••••••••••••• X*START OF RECORC* •••••••• X*. RECORD .* •••••••• X*

BUMP FORMAT
POINTER *

* *
*

x

*PC * * 81*
* "

Chart PB.

* PLUS COLUMN * *. END.* *
.. * *..*
***************** * •• *

Subroutines FRDWF, FWRWF

* YES

* * • *PB *.X.
* J3*

X
*****43********** * ATTEMPT TO *
* READ/WRITE *
" PAST RECORD *
* END *
" * *****************

x

*py *
* E3*
* *
*

" *****************

IBCOM 425

*PC ..
* Bl*
* *
*

.*. *****B2.......... B3 •• ..**.B4 •••• * •••••
* * .* *. • •

• 18" BUMP FORMAT * .* INPUT *. INPT • BUMP RECORD
••••••••••••••••• x* POI NTER * •••••••• X... OR .* •••••••• X. POI NTER BY N

"

* * •• OUTPUT .* • *
• • •••• * •
• *.*.* ••••• *.**.* •• •• • ••• * •• ** ••• * ••••

• OTPT

x .X •
••• **C3 •••• ** •• ** C4 *.
• * •• *. * MOVE N BLANKS * •• AT END •• YES
• INTO BUFFER ••••••••• X.. OF RECORD .* ••••••••
* * *. .* X * * *..* ••• **
* •• ** •• * •••••• *.* ••• * ·PB *

• NO • J3 •

x
* ••• *
·PB *
* Bl* . .

.*. *****E2** *....... • •••• E3**** •• *.** E4 *.
* •• * .* ••

BUMP FORMAT • .COMPUTE RECORD * .* N BYTES *. NO

. .

••••••••••••••••• x· POI NTER ••••••••• X -END ANO RECORD * •••••••• X*. LEFT •••••••••• · * • POINTER. *. .* X * .. •••• * ••••
* •• ***** ••••• **** •• .* .PB *

.<.

* YES * J3 • . .
• X.

F4 *.
•• *.

*****FS*****·**** . .
• * INPUT *. INPT

. OR . •••••••. X.
. OUTPUT . *

MOVE N
CHARACTERS

TO FORMAT
< .

. . ••• *
<

.****.* •••• ***.**
• OTPT

x X
·.G4** •• *** .****G5********.*
* * * • * MOVE N * .. BUMP RECORD ..
• CHARACTERS * •••••••• X.. AND FORMAT ..

TO BUFFER * * POINTERS
< <
******.****.*****

x
****.
*PB *
• 81*

< <

* •• *-J2.*******.. J3 *. *****J4** ••• ** •• * ***.*JS* •••• ****.
- * .* *. * • * * • lC BUMP FORMAT - •• ~ROUP *. YES • RESET FORMAT • REDUCE

••••••••••••••••• X. POINTER * •••••••• X*. COUNT .* •••••••• X* POINTER TO * •••••••• X. GROUP COUNT

x .* •••
·PO •
• Bl·

• <
'.

Chart PC.

426

* • *. ~T 1.* • LAST GROUP. • BY 1 •* * • * "* *********.***.**. * •• * ** •• ** ••••• ****** .* ••• **.***.*****
* NO

x
****.
*PB -• Bl-

< •

Subroutines FRDWF, FWRWF

x
..***
·PB *
.. 81*

• <

***** *PD *
* 81* • *

*

*****82********** *****83********** *****84**********
* * *Floes QAAl* * *

• IE *. seT UP FOR * *-*-*-*-*-*-*-*-* * BUMP *
••••••••••••••••• x* READ OR WRITE * •••••••• X* READ/WRITE * •••••••• x* FORMAT * ••••••••

* *. * ONE RECORD. * POINTER * X
* * * * * * ***** ***************** ***************** ***************** *PB *

* Bl*

*****C2**********
* * ***~e3*********

* * *

22 * SET END * * TO OBJECT *
••••••••••••••••• X* OF FOR~AT * •••••••• x* PROGRAM *

.
x

*PE *
* 81*
• *

Chart PD.

* SWITCH ON * * *
* * ***************

Subroutines FRDWF, FWRWF

IBCOM 427

*PE *
* 81* ..

*4-***82********** · . • OA SET FOR
................... x* F *

• OC

* CCCNVERS ION · · ·

*****C2********4-*

• *
*****C3*******4-**
* • * SET W 10TH, *

• X:if
SET FCR

E
CCNVERS [ON

* •••••••• X* DECIMALS, AND * •••• · *
.. * SCALE FACTOR *

*****02********** ·

·

10 SET FOR
• x* I *

1.

* CCNVERSION ·

*****E2********** · . SET FOR *

X
*****E3**********

• *
........................... x* A * x*

SET WIDTH
PLUS A

Nap

x

*PY *
* 83*
* •

Chart PE.

428

CCNVERSION * ..

NOTE - THE CONVERSION
SUBROUTINE DEPENDS
UPCN THE ITEM
TO BE CONVERTED

. .

.X

*****F3**********
* * BUMP

FORMAT
POINTER

*****G3********** · . * ADJUST FOR·
* INPUT /OUTPl;T *
• * · . **********-******

.x. .*.
H3 *. H4 *. *****H5**********

.* *. .* IS *. * .. • * END *. NO .* CURRENT *. NO * SAVE OWN,
. OF . •••••••• X*.L[ST ITEM AN .*•.•. X* RESTORE MAIN

. FORMAT. X *. ARRAY .* * REGISTERS
.. *..* *

* •• * * •• * *****************
* YES .. **** * * YES

X
*****J3**********
* •

SET END
OF FORMAT

SWITCH OFF
.
* * * *****************

* H4 *
* * x

*PG *
* H2*
* *

x .*.

X
****J5********* * TO OBJECT * * PROGRAM FOR

LIST ITEM

*****K3********** K4 *. *****K5*********""
* FVC-- * .* *. * *
--*-*-*-*-*-*-* .* FIELD *. YES * REDUCE *

CONVERT * •••••••• X*. COUNT .* •••••••• X* FIELD COUNT
.. LIST ITEM * *. GT 1.* * BY I
* * *..* *
***************** * •• * *****************

* NO

x

*PB * * Bl*
* *

x

* * * H4 * . .

Subroutines FRnWF, FWRWF

NOTE - THE CONVERSION
SUBROUTINE
DEPENDS UPON
THE I TEM TO BE
CONVERTED

***** *PF *
* 82*
* * *

F I CLF X
*****82**********
* * * GET LENGTH *
* OF LIST *
* ITEM *
* * *****************

X
*****C2**********
* * * GET * * ADDRESS OF *
* LIST ITEM *
* * *****************

.X.
02 *. *****03********** *****04**********

.* * • * * *Floes QAAl*
• * END *. YES * SET UP * *-*-*-*-*-*-*-*-*

. CF FORMAT . •••••••• X* FOR READ * •••••••• X* READ/WRITE *
. . * OR WRITE * * ONE RECORD *
.. * * * *

. . ***************** *****************
* NO

X
*****E2**********
* FVC-- *
--*-*-4-*-*-*-*
* CONVERT * * LIST ITEM *
* * *****************

.X.
F2 *.

.* * • • * FIELD *. NQ
. COUNT . ••••••••

•• GT 1.* X
.. ***** *. .* *PE *

* YES * El*

X
*****G2**********
* * * REDUCE * * FIELD CCUNT *
* BV 1 *
* *
***********~*****

X
*4**H2********* * TO OBJECT * * PROGRAM FOR *

* LIST ITEM *

* * *

X
*****E4**********
* * * RESET FORMAT *
* POINTER AND *
* GROUP COUNT *
* * *****************

x
***** *PB *
* Bl*
* * *

Chart PF. Subroutine FIOLF

IBCOM 429

NOTE - THE CONVERSION
SUBROUTINE
DEPENDS UPON
THE ITEM TO BE
CONVERTED

***** *PG ..
* B2*
* * *

· FIOAF X
*****62**********
* GET LENGTH ..
* OF LIST ..
* ITEM * .. * *****************

X
*****C2**********
* * * GET ADDRESS *
* OF * * LIST ITEM *
* * *****************

**** .. * •
.. 02 -.X.
* * **** · .X.

02 *. *****03********** *****04*********-
.* *. .. * *FIoes QAAl*

.* ENO *. YES .. SET UP FOR" *-*-*-*-*-*-*-*-*
. OF . •••••••• X. READ OR ••••••••• X. READ/WRITE ..

. FORMAT . * WRITE * * ONE RECORD *
* * *. .*

. . *****************
* NO

X
*****E2**********
* FCV-- *
--*-*-*-*-*-*-*
* CONVERT ..
* LIST ITEM *
* * *****************

· .X.
F2 * •

• * *.
.* FIELD *. NO

. COUNT . •.••.••.
. GT 1. X
.. ***** *. .* *pe ..

.. YES * El*

X
*****G2**********
* * * REDUCE * * FIELD COUNT *
.. BY 1 *
* * ********.*********
**** * * •
*PG -.x.
.. H2*
**** .X.

* *
*

H2 *. *****H3**********

.. * *****************

.
X

*****E4**********
* * * RESET FORMAT ..
* POINTER + *
* GROUP COUNT *
* ..

x

*PB * * Bl*
* * *

.* *. ****
.* ARRAY *. NO * INCREMENT * * *

*. EXHAUSTED .- •••••••• X- ADDRESS BY * •••• X* 02 *
. . .. ITEM LENGTH * .. *
.. * * ****

. .
.. YES

· X
****J2*********

* TO OBJECT * * PROGRAM FOR *
* LIST ITEM *

Chart PG. Subroutine FIOAF

430

*PI-! *
* C3*

FENOF X
*****C3**********
.. SAVE MAIN. ..
.. RESTORE OwN ..
* REGISTERS *

X
*****03**********

RESET
SW ITCHES

..
it**********

.X.
E3 * •

• * * . • * INPUT *. INPT
. OR . ••••

". OUTPUT .*
. .

* •• *
.. OTPT

X
*****F3**********
.. SET UP ..
.. FOR WRITE ..

" "

.
X

*****G3**********
"FIOCS QAAl"
--*-*-*-*-*-*-*
" OUTPUT A ..
.. RECORD " .. " *****************

. .

.x •••••••••••
X

*****H~**********
RESTORE

MAIN
REGISTERS

..
"

*********.*******

X
****-'3*********

.. TO OBJECT ..
" PROGRAM

****.**.*******

Chart PH •. Subroutine FENDF

IBCOM 431

*PI *
* B2*
it it

it

· FCVII X
*****82**********
.. it ..
*

SAVE
REGISTERS * * it

* *****************

· X
*****C2**********
* * " SCAN INPUT *
.. AND CONVERT "
" TO BINARY "
" " *****************

· .X.
02 * •

• * * • • * INPUT *. NO
. NEGATIVE . ••••••••••••••••••

. . *. .*
. . .. YES

· X . .x.
*****E2********** E3 *. *****E4**********
* * .* *. * * * NEGATE" ." ITEM *. 2 BT .. STORE .. * DATUM * •••••••• X*. LENGTH .* •••••••• X* HALF-WORO *
* * *. .* * INTEGER * * * *..*
***************** * •• * *****************

Chart PI.

432

* 4 BT

x X
*****F3********** *****F4**********
* * * * " STORE" .. RESTORE .. * FULL-WORD * •••••••• X* REGISTERS *
.. INTEGER"" ..
* * * * ***************** *****************

Subroutine FCVII

.
X

****G4********* * ..
.. RETURN *
.. *

*PJ •
* 82*
* *

F\lCIC X
*****82**********
* * SAVE *

REGISTERS

* *****************

X
*****C2**********
* •

POINT TO
PARAMETERS

X
*****02********** · . PICK UP

WIOTt-:

.x.
E2 *.

• * *.
*****E3********** . .

.* ITEM *. 28T LOAD
HALF-WORD

INTEEER
. LENGTI-", .o ••••••• .oX*

. . * *. .* * •• 4 * 4 8T

X
*****F2**********

• * LOAD
FULL-weRD

INTEGER

· . • X •••••••••••••••••••••••••

• x.
G2 * ..

.* *.
*****G3**********
• * .* DATUM *. - SET SWITCI-".

. SIGN . •.••.••• x* FOR MINUS
. . * * *. .* *

. . *****************
• +

X
*****H2********** · . SET SWITCH

FOR BLANK

· .
• X •••••••••••••••••••••••••

X
*****J2********** · . * CONVERT *

DATUM TO
DECIMAL · . *****************

X
*****K2**********
• * GET NUM8ER *

OF SIGNIFI­
CANT DIGITS

Chart PJ. Subroutine FCVIO

.x.
B4 *. *****B5**********

.* *. * * .* WIDTH *. NO * FILL FIELD * *.. ADEQUATE .* •••••••• X*WITH ASTERISKS *
. .. * *
.. *

* •• * ***************** * YES

X
*****C4**********
.. START AT *
* RIGHT END * * OF DIGITS AND *
* BUFFER AREA *

x
:****04*********:

* MO\lE ONE *
.... X* DIGIT TO

* BUFFER

.x.
E4 * •

.* *.
.* WIDTH *. YES

. EXHAUSTED . ••••••••••••••••••
. .

. .
* •• * • NO

• x.
F4 *.

.* *.
• NO.* DIGITS *.
.o *.. EXHAUSTED .*

. .
. . * •• * * YES

X
*****G4*******4**
* * SET SIGN

ACCORDING
TO SWITCH

.x.
H4 *.

.* *.
.. * WIDTH *. YES

. EXHAUSTED . ••••••••••••••••••
. .

. .
* •• * • NO

X
*****J4**********
* •

X
*****J5**********
• *

* FILL WITH * * RESTORE
*LEADING BLANKS * •••••••• X* REGISTERS
• • * .

X
****K5********* . .

RETURN .

IBCOM 433

*PK *
* 82* . .

X
*****82********** · . SAVE

REGI STERS

X
*****C2**********
* SCAN *
* INPUT *
*A~D CONVERT TO *

• *

8 INARY *

• x.
02 *.

* • • * INPUT *. YES

. .
* 83 * * •

.* SIGN '. -
*****84********** * SCALING *

POwER
. OF SCALE . ••.••••. X* + SCALE

FACTOR *. FACTOR .* *
. .

* •• * • +

X

· *****************

*****(3********** *****C4**********
* SCALING * * *

POWER * * TEST * * *
- SCALE * •••••••• X* FINAL SCALING *X •••• * C4 *
FACTOR * * POWER * * **** *

**** *************

.x •
*****03********** 04 *.
* 'II- .* *.

SET 'II- NO.* VALID * •
. ZERC . •.•.•.•• X* DATUM TO *X •••••••• *. RANGE .*

. . * *. .*
* •• * * NO

• x.
*****El********** E2 *.
* * .* *. * SHIFT INTEGER * NC.* ROOM *. * RIGHT 1 OR 2 *X •••••••• *. FCR CHA~AC- .*
* HEX DIGI TS * *.TERISTIC .*

4. .*
****** ***** ****** *. • *

*****F 1 **** *** *** . .
* SET *
*CHARACTERI STIC *

OF 15 OR 16 *

* YES

X
*****F2**********
* * * SET *
*C~ARACTERISTIC *

OF 14 * * (rEX PO\llER) *
** ******* ********

*****G2********** · .
••••••••••••••••• x* ·

FLOAT DATU~
USINE
0.0

X
*****H2**********

• * * SCALING POWER *
* = SPILLS - 0 * * + EXPONENT

.x.
J2 *.

.* *. **** .* EXPONE~T *. NO *
. IN INPUT . •••• X* 83 *

. . * * *. .* * •• * * YES

* * * (4 *
* *

ZERO '* *. .*
. . * •• * * YES

.x •
E4 *.

.* *. .* SIGN *.-
*****E5**********
• *

. OF SCALING . ••.•.••. x*
DIVIDE
8Y 10**

POWER *. POWER .* *

X
*****F4**********

• * MULTIPLY
8Y 10**

POWER · *****************

· .
• X •••••••••••••••••••••••••

• x.
G4 *. *****G5**********

.* *. * * .* INPUT *. YES * NEGATE
••••••••••••••••• X*. NEGATIVE .* •••••••• X* DATUM

*. • * *

.*

.. *

• *

* •• * *****************
* NO

· . • x •••••••••••••••••••••••••
• x.

H4 *.
* •

ITEM *. 8 8T

*****H5**********
* *

. LENGTH . •••••••• X*
STORE
LONG

PREe IS ION *. .* *
.. *

* •• * ***************** * 4 BT

X
*****J4**********
* *

X
*****J5**********
* * * STORE RESTORE

* SHORT * •••••••• X* REGISTERS *
PRECISION * * *

* * * ***************** *****************

X
****K5*********

* * RETURN
* *

Chart PI<. Subroutine FCVFI/FCVEI/FCVDI

434

..............
*PL ..
* 82" * •

X
4444*82**4******* . .

SAVE
REGISTERS

X
*****C2**********
* • * SET

FOR NC
EXPONEI\:T

X
-*-*-02********** . .

FIX OUTPUT
AI\:D CONVERT
TC DEC IMAL

X
*****E2**********
* * RESTORE *

REGISTERS

****F2** *******
* •

RETURN

Chart PL.

*PL *
* B4* ..

*
FCVEO •
FCVDO X

*****84********** · . * SAVE *
REGI STERS · · *****************

X
*****C4**********

• * SET it

FOR *
EXPONENT

X
*****04********** · . * FIX OUTPUT
* AND CONVERT

TO DECIMAL

X
*****E4**********

• * * GET BUFFER
POSITION OF *

EXPONENT *

.x.
F4 *.

.* *.
.* ITEM *. 8 BT

*****F5********** · .
. LENGTH . •••.•••• X*

SET
=0=

CHARACTER *. .* * *. .*

X
*****G4**********

• *

X
*****G5******4*** · . SET

=E=
CHARACTER

* •••••••• x* · . SET
SIGN OF

EXPONENT

* *****************

Subroutine FCVFO/FCVEO/FCVDO

X
*****H5**********

• * * SET * 2-DIGIT
EXPONENT

X
4*J5******* · . * RESTORE
* REGISTERS * . .

·
x

****K5*********

RETURN

IBCOM 435

*PM *
* 82*
* *

FCVAI. X
*****82**********
* * * SAVE

REGISTERS
* * *****************

X
.****C2**********
* * * POINT *

TO *
PARAMETERS *

* *****************

X
*****02**********
* * * PICK UP *

ITEM
LENGT

X
*****E2**********
* * PICK UP *

FORMAT ..
.. WIDTt' *
* **************** •

• x.
F2 * •

• * * • • * COMPARE *. L GT W
. LENGTH, . ••••••••••••••••••

. WIDTH .
. .

* •• * *L LT OR
.EC W

x X
*****G2********** *****G~**********

* * * * • SKIP EXCESS * * USE SMALLER * CHARACTERS IN * •••••••• X* NO. (L OR W) ..
* BUFFER * * AS COUNT *
* * .***************.

chart PM.

436

* *************.***

X
*****H3**********
* * MOVE BYTES

FROM BUFFER
TO ITEM *

* * *****************

.x.
J3 * •

• * * • • * *. NO
. L GT W . ••••••••••••••••••

. . *. .*
* •• * * YES

x X
*****K3********** *****K4**********
* * * * ***-KS-**-***_· * FILL ITEM RESTORE _.. -

ON RIGHT * •••••••• X* REGISTERS * ••• ~ •••• X* RETURN -
- WITH BLANKS - * * * *
* * * * ***************
***************** ****************.

Subroutine FCVAI

*PN *
* 82*
* *
*

fCVAC X
** ***B2** ********
* * SAVE

REGISTERS

X
*****C2** ******** · . POINT

TO
PARAMETERS * .

X
*****02**********
* •

PICK UP *
ITEM

LENGTt-'

X
*****E2********** · . PICK UP *

FORMAT *
WI OTt~

.x.
f2 * •

• * * • • * COMPARE *. L GT OR EQ W
. LENGTt-. . ••••••••••••••••••

'I. WIOTI-' .*
'I. .*

* •• *
*L LT W

X
*****G2********** · . X

*****G3**********
* • * ELANK EXCESS * * USE SMALLER

* CHARACTERS IN * •••••••• X* NO. (L OR W)
* BUFFER * .. AS COUNT

Chart PN.

• * **** *************

X
*****H3********** · . MOVE BYTES *

FROM ITEM
TO BUfFER

X
*****J3********** · . RESTORE

REEISTERS

X
****K3********* · RETURN

*

Subroutine FCVAO

IBCOM 437

***** ·PO •
* 52" .. *****

*PO *
* 84*
• *

FRDNF X FWRNF X
*****82******"*** *****83********** *****84**********
* SET * * * * SET *
* FOR INPUT * * SAVE * * FOR OUTPUT *
* NOT REQUIRING * •••••••• X* MAIN *X •••••••• * NOT REQUIRING *
* A FORM.AT * * RE(;ISTERS * A FORMAT * .

X
*****C3**********

• * GET
POINTER TO
PARAMETERS

X
*****03**********
FIOCS QAA1
--*-*-*-*-*-*-*

INITIALIZE
DATA

* SET *

X
*****E3********** · . * SAVE *
*START LOCATION *
* AT RECORD *

X
*****F3********** · . * COMPUTE
* END LOCATION
* OF RECORD

X
*****G3********** · . * ADJUST *
*RECORD PO INTER *
* PAST CONTROL * · *****************

X
*****H3**********
* •
* INITIALIZE

RECORD
COUNT * .

X
*****J3**********
* * * SAVE OWN. *
* RESTORE MAIN *
* REGISTERS * .

X
****K3********· * TO OBJECT *

* PROGRAM FOR *
LIST ITEM *

Chart PO. Subroutines FRDNF, FWRNF

43S

*PQ *
* 82*
* * *
.

FICLI\ X
*****82**********
* * * SAVE *
* MAIN * * REGISTERS *
* * *****************

.
X

*****C2**********
* * * GET LENGTH * * OF LIST * * ITEM *
* * *****************

X
*****02**********
* GET * * ADDRESS OF *
* LIST * * ITEM *
* * *****************

X

*PR *
* 81*
* * "

Chart PQ. Subroutines FIOLN, FIOAN

*PQ *
* 84*
* * *

FIOAN X
*****84**********
* SAVE MAIN, *
* RESTORE *
* OWN * * REGISTERS *
* * *****************

X
*****C4**********
* *
* GET LENGTH * * OF ITEMS *
* IN ARRAY * * * *****************

X
*****04**********
* * * GET * * ADDRESS OF *
* ARRAY *
* * *****************

X

*PR *
... 81*
* * *

IBCOM 439

*PR *
* 81* . .

X
*****81 **** ****** . .
* COMPUTE *
*RECORO POI NTER * * + LENGTH *
* *****************

.x. .*. .*.
C1 *. C3 *. (4 * •

• * *. .* *. .* * •
• * AT *. YES .* INPUT *. INPT .* AT *. YES

. END OF . •••••••••••••••••••••••••••••••••• X*. OR .* •••••••• X*. LAST .* ••••••••
. RECORD . *. OUTPUT .* *. RECORD .* X

. . *..* *..* *****
* •• * * •• * * •• * *PY * * NO * OTPT * NO * 83*

.x.
D1 *.

.* *.
*****02********** . . X

*****03********** · . .* INPUT *. INPT
••• X*. OR .* •••••••• X*

. OUTPUT . *
. .

MCVE BYTES
TO ITEM

FROM BUFFER

* SET
* FOR *

WR ITE *

* •• * *****************
* OTPT

X
*****E 1 **** ******
* •

MOVE BYTES *
FROM ITEM *
TO BUFFER

X
*****F1********** . .

INCREMENT •
*RECORD POINTER *X •••••••••••••••••
* BY LENGTH *

x

*PS *
* B2*
* •
*

YES

X
*****E3**********

• * PICK UP
NUMBER OF

BYTES *

• * *****************

X
*****F3**********
* * * STORE *
* RECORD LENGTH *
* I N CONTROL *

X
*****G3**********

• * UPDATE
RECORD

COUNT

.x.
H::I * •

• * * •
• * COUNT *.

•••••••• *. 6T .*
X *. 255 .*

***** *..*
*PY * *. .*
* E3* * NO
• *

X
*****J3**********
*F IOCS QAA 1 *
--*-*-*-*-*-*-*

X
*****04********** .

SET
FOR

READ .

READ/WRITE *X •••••••••••••••••
ONE * * RECORD

X
*****K1********** *****K2********** *****K3**********
* * * * * * • ... ADJUST * * COMPUTE * * SAVE *

•••• *RECORO POINTER *X •••••••• * END LOCATION *X •••••••• *START LOCATION *
* PAST CONTROL * * OF RECORD * * OF RECORD ...
* *. * * ****************. *****************

Chart PR. Subroutines FIOLN, FIOAN

440

* •
*

*PS it
* 82*
* * *

.x.
82 *. *****83**********

.* *. * * ****84*********
.* WHERE *. FIOLN * SAVE OWN, * * TO OBJECT *

. FROM . .••..... X* RESTORE MAIN * •••.•••• X* PROGRAM FOR *
. . * REGISTERS * * LIST ITEM *
.. * * ***************

. .
*FIOAN

.
• X.

C2 *. *****C3**********
.* *. * *

.* SAVE OWN. *. NO * INCREMENT *
.RESTORE ~AIN . ..•.•••. X* ADDRESS BY *

.REGIS.TERS. * ITEM LIST *
. .

. .
* YES

X
*****02**********
* * * SAVE OWN. *
* RESTORE ~AIN * * REGISTERS •
* •

X
****E2*********

* TO OBJECT *
* PROGRAM FOR *
* LIST ITEM *

* * *****************

x

*PR *
* 81* • •

*

Chart PS. Subroutines FIOLN, FIOAN

IBCOM 441

•• ***
*PT *
* B3*
* * "

FENDN X
*****83********** .. " * SAVE MAIN. * * RESTORE OWN •
.. REGISTERS .. • •

.................•..•.....• · . . x. .x. •
C3 *. C4 *. *****C5********.*

.* *. .* *. *Floes QAAl*
.* INPUT *. INPT .* AT *. NO *-*-*-*-*-*-*-*-*

. OR . •••••••• X*. LAST .* •••••••• x* READ •
. OUTPUT . *. RECORD .* * A *
.. *..* * RECORD *

* •• * * •• * *******.*.******* * OTPT • YES

· X
·****03********** .. .
• PICK UP *
.. NUMBER OF ..
• BYTES • * ..

· X
-E3**********
• STORE • * RECORD LENGTH *
" AND COUNT •
• IN CONTROL
*******.*********

· X
*****F3*****~****
"FIOCS QAAI.
--*-*-*-*-*-*-*
.. WRITE ..
~ A *
.. RECORD *

· X
*****G3********** ·
•

RESTOR'E
MAIN

REGISTERS

.. .
*X ••••••••••••••••• "

· X
****H3*********

• TO * * OBJECT •
* PROGRAM *

Chart .Pr. Subroutine FENDN

442

*PU •
* B2·
* * *

· FBKSP X
*****B2**********
• SAVE MAIN *
* REGISTERS. *
* * * PICK UP *
* PARAMETERS *

· X
*****C2**********
*FIOCS QAAI.
--*-*-*-*-*-*-*

• * * PERFORM *
* BACKSPACE •

· .X.
02 * •

• * DID ••
YES .* DATA SET * •

•.•. *. REQUIRE A .*
. FORMAT .

. .
. . * NO

· X
*****E2**********
.FIOCS QAA1*
--*-*-*-*-*-*-*
• READ RECORD •
* BACKSPACED *
• OVER *

· X
*****F2********** • •
• GET * * NUMBER OF •
: RECORCS :

· .X •• ~ ••••

· .x. .
G2 *. *****G3"********** *****G4********* •

• * *. *FIOCS QAAl* * ..
• * NUMBER *. NO *-*-*-*-*-*-*-*-* ... SUBTRACT 1 *

. OF RECORDS . •••••••• X* * •••••••• X* FROM NUMBER *
. EQ 0. * PERFORM. • OF RECORDS •
.. * BACKSPACE * * *

. . ***************** ***************** * YES

. .
•••••.••••• x.

· X
*****H2********** • • * RESTORE *-
• MAIN *
• REGISTERS •
* * *****************

· X
****J2********* * TO •

• OBJECT *
* PROGRAM *

.. **************

Chart PO. subroutine FBKSP

IBCOM 443

*PV *
* 83*

* *
*

FRWND X
*****83**********
* * * SET * * FOR *
* REWIND *
* * *****************

.
X

*****C3**********
* SAVE MAIN *
* REGISTERS. *
* * * GET *
* PARAMETERS *

X
*****03**********
FIOCS QAAl
--*-*-*-*-*-*-*
* PERFORM *
*REWINC CONTROL *
* OPERATION *

.
X

*****E3**********
* * * RESTORE *
*MAIN REGISTERS *
* * * * *****************

X
****F3*********

* TO * * OBJECT *
* PROGRAM *

ChartPV. Subroutine FRWND

444

*PW *
* B.3*

* *
*

FEOFM X
*****83**********
* SET * * FOR ~RITE * * END-OF-DATA
* SET *

* *****************

X
*****C3********** * SAVE MAIN ..
* REGISTERS. *
* * * GET * * PARAMETER~ *

X
*****03**********
FIOCS QAAl
--*-*-*-*-*-*-*
* PERFORM WRITE *
ENO-OF-OATA CON
*TROL OPERATION *

X
*****E3**********
* *
*
*

RESTORE
f'AIN

REGISTERS
*
*
*

X
****F3*********

* TO * * OeJECT '* * PROGRAM *

Chart PW. Subroutine FEOFM

IBCOM 445

***"**
*PX * * 82* .. .

FSTOP X.
*****B2*******~4* . .
* INDICATE * THIS IS
* STOP * . .

X
*****C3**********
* -it ... SAVE ...
* MAIN * REGISTERS • · . **************.**

X
*****03********** · . SELECT
* CONSOLE * * OUTPUT ...
* DEVICE *

X
*****E3**********
FIOCS QAA1
--*-*-*-*-*-*-*

INITIALIZE
DATA

* SET *

X
*****F3*********·
• * * GET NUMBER *

OF BYTES
IN MESSAGE

* * *****************

.x.

***** *PX _

- B4*
* * *

FPAUS X
*****B4****.****_
* •

INDICATE -* THIS IS -* PAUSE -. .
.*********-*-****

G3 *. *****G4********* •
• * *. * SET NUMBER *

.* ACCEPT- *. NO *" OF BYTES TO •
. ABLE NUMBER . •••••••• X*MAXIMUM BUFFER *

.OF BYTES . *" LENGTH ...
. . *

* •• * ***************** * YES

. .

.X •••••••••••••••••••••••••

X
*****H3**********
*F IOCS QAA 1 *
--*-*-*-*-*-*-*

"RITE
* MESSAGE *
*************.***

.X. X
J3 *. *****J4**********

.* *. • PLACE *
.* *. NO * COMPUTER • •

. STOP . •••••••• X*IN 'WAIT' STATE •••••
. . * * *..* * *

* •• * ***************** * YES .WHEN OPERATOR
.REPLIES

x

*QC *
* 83·
* * . X

****K4*·***"****
* TO *"

OBJECT
... PROGRAM *

Chart PX. Subroutines FSTOP, FPAUSE

446

*py *
* e3*
* *
*

IEFERR
*****83**********
* * .. SAVE *
* REC:lSTERS
*
* *****************

X
*****C3**********
* * * SELECT *
* SYSTEM OUTPUT *
* DEVICE *
* * *****************

X
*****D3**********
FIOCS GAA1
--*-*-*-*-*-*-*
* INITIALIZE *
.. DATA *
* SET *

X
*****E3**********
FIOCS GAAI
--*-*-*-*-*-*-*
* WRITE *

ERROR *
* MESSAGE *

X
*****F3**********
* *
*
*
*
*

RESTORE
REGISTERS *

* *

x

*ac *
* 83*
* * *

Chart PY. Subroutine IBFERR

IBCOM 447

Form Z28-6620-0
Page Revised 3/15/66
By TNL Z31-5008-0

Al

Initialize
2540 Punch
Error Recovery
in FSD

BI

Save Program
New PSW

Substitute
PSW

CI

DI

r Interrupt
Entry

B2

Save Registers

1 C2

Get
Interrupt
Code

D2

Is Code
NO

Arithmetic

8 YES

Fixed Point Divide

Decimal Divide

Exponent Overflow

Exponent Underflow

Floating-Point Device

Decimal Overflow

Fixed-Point Overflow

Significance

Other

C3

• Chart PZ. Subroutine IBFINT

448

D3

To FSD's
Interrupt Routine

E4

I
Set Appropriate
Indicator

I F4

5el ect System
Output Device

I G4
FIOCS QAAI

Initialize
Data Sets

I H4

Convert PSW
to HEX

I J4

FIOCS QAAI

Write Out
PSW

I K4 K5

Restore TOo~
Registers \!nterrupted Progra

.....
• Q" •
• AI· • • .

Floes X
·····"1·········· · . • SAVE •

REGISTERS ·•........•....

X

·····Bl·········· · . GET •
• OPERATION ..
• TYPE *

.x.
C 1 •• • •••• C2.......... • •••• C3 •••••••• * • . *..

•• •• YES • SET * GET OEVICE •
• INITIALIZATION - •••••••• X. DATA SET ••••••••• X. ACORESS AND

•• •• • QUALIFIERS. • SAVE • •• •• • •••••• *** •••••••
* NO

.x. .x. . •.
01 •• • •••• 02.......... O~ •• 04 •• ** ••• 05 ••••••••••

•••• .. • •• *. •• OAT~ •• • •
•• *. YES * SET • YES •• •• NO •• SET •• YES .• I"NITIAL.IZE

•• READ •••••••••• X. INDICATORS .x.. INPUT .* •••••••• x.. REQUIRE •••••••••• X. BUFFER
•• •• • FOR READ. •• .* X •• A FORMAT •• •
•••• • • *..* *... ··.·:0 •••• *............ : ··.·:0

x
*QB •
• AI'" . .

Chart QA.

x
···*··E2**········* PERFORM

I/O
(USINC:

FSD)

X
.····F2··········
• PICK UP •
• RECORD •
.. ACDRESS ANQ -

LENGTt'

* ••••••• * •••••••••

X
.. ····G2·········· · . RESTORE

REGISTERS · ·

X ····H2········· · . RETURI\' • · :11 ••••••

Subroutine FIOCS I/O Interface

• *
·QA • . 0... .
• * •• * .x •••••••••••••••••••••••••

X
***··E4*········· • PICK UP •
• RECORD •
• L.ENGTH •

AND
• ADDRESS • .•••••• * ••••••••• *

X

·····F4········-· · . RESTORE
• REGISTERS • · . ·

X
····G4*·······.· · . RETURN

IBCOM 449

Form Z28-6620-0
Page Revised 3/15/66
By TNL Z31-5008-0

Al

Write

NO

Must Be
Control

El

Pick up
Device
Number

Fl

Get Channel
Device Address
and Save

Gl

Get
Control
Type

YES Set Record
Length

Set Indicator
for Write

Set
Contro1
Command

A2

B2

03

Save Info
just Punched
and Device
Parameters

G2 G3

Set Indicator
for Control

Restore

Registers

• Chart QB. Subroutine FIOCS I/O Interface

450

J4 J5

YES
Pick up

Backspace Data Set
Qualifiers

NO

K5

Return

*QC *
* 83*
• *
*
.
X

*****83**********
* * *
* * *

CLOSE ALL
FORTRAN

DATA SETS
*
* *
* *****************

X
****C3*********

* FORTRAN * * SYSTEM *
* DIRECTOR *

Chart QC. Subroutine IBEXIT

IBCOM 451

Form Z2S-6620-0
Page Revised 3/15/66
By TNL Z31-500S-0

• Chart QD. Subroutine 1B2540

452

162540 B3

Set Return
Address in FSD
to 2540 Punch

Recovery
Routine

Set UCB and
CSW to
Indicate
Successful
Punch

C3

D3
SNTPIN AFA3

FSD
Interrupt
Routine

PART 5: SYSTEM MODIFICATION

The Basic Programming Support FORTRAN
system may be tailored to fit the program­
ming requirements of a particular installa­
tion. Any editing of the system is per­
formed via three segments of the system:
FORTRAN System Director (FSD), Control Card
routine, and editor.

The FSD and Control Card routine are
discussed in Part 2; the editor is to be
discussed in this part of the manual.

Part 5: System Modification 453

EDITOR

The editor, with its associated rou­
tines, makes .it possible for the user to
revise one or more portions of the system
tape by adding, replacing, or deleting
features to meet the requirements of his
installation. For reference purposes in
the subsequent discussions of the various
editor routines, a generalized layout of
the system tape is shown in Figure 71 •.

Chart 10, the Editor Overall Logic
Diagram, indicates the entrance to and exit
from the editor and is a guide to the
overall functions of the editor.

An editing process begins with the
recognition of an EDIT control card by the
CCLASS routine. The FORTRAN System Direc­
tor loads the editor from the system tape
and transfers control to the editor.

The logic of the editor is developed on
the basis of the modifications that can be
incorporated in the various portions of the
system tape. These modifications are indi­
cated on editor control cards. The cards
and the affected portions of the system
tape are:

Card
REPLACE

(REP)

SET

AFTER
DELETE
EDR

ASTERISK

System Tape Portion
Initial Program Load
FORTRAN system Director
Control Card Routine
Compiler Phases
Loader
Library
FSD - Device Assignment Table

- Line Length
Library Subprograms
Library Subprograms
Editor
IBCOM
Signals end of processing

As revisions, additions, and deletions
are made as a result of information on the
control cards, the revised old system tape
is copied onto the new system tape or
tapes.

The editing process ends when the editor
recognizes the end of data set on the input
device or when it encounters a card which
indicates that no more editing is to be
done. The editor then gives control to the
FORTRAN System Director.

ROUTINES

Initialization for the editor is rep­
resented in Chart MA. Classification of
the current control card to be processed by
the editor is represented in Chart MB. The
resultant processing, depending upon the
current control card, is represented in
Charts MC through MP.

START Routine: Chart MA

The START (EDIT Control Card) routine
forms a device assignment table for the new
system tapes, places the object machine
size in the communications area. rewinds
the old and new system tapes. and makes the
Initial Program Load available for process­
ing.

ENTRANCE: The START routine receives con­
trol from the FORTRAN System Director,
after the CCLASS routine has recognized an
EDIT control card and called the FORTRAN
System Director to find and load the editor
from the system tape.

CONSIDERATIONS: The EDIT control card is
read by the CCLASS routine and the informa­
tion on the card is stored in the FORTRAN
System Director buffer, where it is
retrieved by the START routine.

Unlike the standard control cards, the
format of the EDIT card is relatively
fixed. The first field is either blank or
contains the specification of machine size
in bytes. The data set reference number(s)
are specified after the first field.

r---------T---------T---------T---------T-------~--~--------T---T--------T--------T---'

,Initial IFORTRAN I Control I I I T I I T I I I T I
, program I System I Card I Compiler I Loader I M I Library I M I IBCOM I EDITOR I M I
I Load I Director I Routine I Phases I I I I I I I I
I (IPL) I (FSD) I (CTL) I I (LDR) I (1) I I (1) I (IBC) I I (1) I
~---------~--------~---------i---------~-------i---i--------i ___ i _______ ~i--------i---~
I (1) Tape Mark I l ________________________ ~ ________ -----__ J

Figure 71. System Tape Layout

454

If the size field is blank, the routine
retains the old machine size in the com­
munications area and starts to search for
the data set reference numbers. When the
first blank is encountered, the routine
will finish any other processing and exit
to read another card.

OPERATION: Following initialization, the
routine moves the information on the EDIT
control card fr6m the'FORTRAN System Direc­
tor buffer area to the editor buffer area
and rewinds the old system tape. If the
edit control card specifies a GO option, an
indication of this edit and go condition is
set for the ASTRSK routine. The START
routine then lists the data set reference
numbers in packed form, and tests the size
field for a blank.

If the size field is not blank, a check
is made to determine that the specified
size is a valid machine size. If the size
is valid, it is placed in the communi­
cations area. An error message is written
for an invalid size specification, and the
job is aborted. Also, if the size field is
blank, the old machine size in the communi­
cations area is not disturbed.

The data set reference numbers are load­
ed into the device assignment table, the
tapes to be used for new systems tapes are
rewound, and the Initial Program Load is
read in from the old system tape.

EXIT: After the
read in, control
RDACRD routine.

Initial Program Load is
is transferred to the

ROUTINE CALLED: During execution, the
START routine calls the RDOSYS routine.

RDACRD Routine: Chart ME

The RDACRD (Classification) routine
reads a system maintenance control card,
determines if it is a valid control card,
and interprets the type of control card for
transfer to the appropriate processing rou­
tine.

ENTRANCE: The RDACRD routine receives con­
trol initially from the START routine.
However, control is also returned to it
from every card processing routine which it
calls, with the exception of the ASTRSK
routine.

CONSIDERATIONS: The RDACRD routine has few
functions of its own that directly affect
the system. It merely determines, on the
basis of the type of card it reads in and
the setting of various switches, the proper
processing routine and transfers control to

that routine. Under normal conditions,
control is returned-to the RDACRD routine
from the called routine So that the next
card may be read in.

OPERATION: Initially, the RDACRD routine
reads a card and prints its contents. If
an end of data set is encountered, the
ASTRSK routine is called.

If an end of data set is not encoun­
tered, the routine determines if the card
is an ASTERISK control card. If it is, the
ASTRSK routine is called. If the card is
not an ASTERISK control card, the RDACRD
routine determines if the old system tape
is at editor.

If the tape is at editor, it is an
indication that no more editing is
required. Thus, the RDACRD routine seeks
only an ASTERISK control card. Any other
control card is considered invalid. If a
card other than an ASTERISK control ,card is
read, the routine prints an error message
for an invalid control card and then
returns to FSD as end of job.

If the tape is not at editor, the
routine checkS for a loader control card.
A loader control card, if present, is
examined for a phase name. The presence of,
a phase name requires that one or more
parts of the compiler be revised, and
control is transferred to the T92CMP rou­
tine. If no phase name exists, the loader
control card is for revision of one or more
library subroutines, and control is trans­
ferredto the T92LB1 routine.

A card other than a loader control card,
causes the RDACRD routine to check for a
SET control card, which is used for revi­
sion of the FORTRAN System Director on the
system tape. A SET control ~ard causes the
routine to transfer control to the SET
routine.

If the card is a SET control card and
the FORTRAN System Director has not been
copied from the old system tape, the rou­
tine calls the COPYC routine. This routine
uses FSD as the phase name, to allow the
FORTRAN System Director to be revised on
the system tape. Control is then trans­
ferred from the RDACRD'routine to the SET
routine to accomplish the reV1S10ns. The
RDACRD routine then returns to read another
card.

If the card is not a SET control card, a
check is made fora DELETE control card. A
DELETE card causes transfer of control to
the DELET routine. When cOntrol is
returned to the RDACRD routine, another
card is read.

Editor 455

If the card is not a DELETE control
card, a check is made for an AFTER control
card. If the card is an AFTER control
card, control is transferred to the AFTER
routine, and then returned to the RDACRD
routine to read in another card.

If the card is not an AFTER control
card, the possible legitimate control cards
(ASTERISK, LOADER, SET, DELETE, and AFTER)

have been checked. An error message is,
therefore, printed to indicate an invalid
control card, and the routine returns to
FSD to end the job.

EXIT: Following the end of data set and/or
processing of an ASTERISK control card, the
ASTRSK routine calls the FORTRAN System
Director to terminate the job. If no more
editing is required, but the card read is
not an ASTERISK control card, an error
message is printed and the FORTRAN System
Director is called to terminate the job.

ROUTINES CALLED: During execution, the
RDACRD routine references anyone of the
following processing routines:

1. ASTERSK Control Card routine.
2. T92CMP routine.
3. T92LB1 routine.
4. SET routine.
5. DELET routine.
6. AFTER routine.

AFTER Routine: Chart MC

The AFTER (AFTER Control Card) routine
processes the insertion of library subrou­
tines in the compiler library, following
the subroutine specified on the AFTER con­
trol card. The system tape is copied on a
new system tape, up to and including the
specified subroutine. Text cards, contain­
ing the additional subroutine or subrou­
tines are copied onto the new system tape.
The RDACRD routine is then called.

ENTRANCE: The AFTER routine receives con­
trol from the RDACRD routine when an AFTER
control card is encountered.

OPERATION: The AFTER routine assumes that
the AFTER control card is followed by cards
concerned with a library subroutine. Ini­
tially, the routine examines the AFTER
control card and lists the names of the
subroutines to be inserted, which are on
that card. The AFTER control card also
contains the name of the library subroutine
after which new SUbroutines are to be
inserted. The routine checks this name
against a directory of subroutine names
which have already been copied into the new
library.

456

If the subroutine name on the AFTER card
is in the directory, the routine further
checks whether this name is the last entry
in the directory. If it was the last entry
up to this time, the routine turns on a
switch to indicate new subroutines are to
be inserted and returns to the RDACRD
routine to begin reading new subroutines
from the card reader •. If the subroutine
name is in the directory, but not the
latest entry, the routine name is out of
sequence; an error message is given. A
return to the RDACRD routine is made to
read another card. The listed subroutines
are inserted at the end of the library.

If the AFTER name is not in the directo­
ry, the routine transfers control to the
COPYCL routine to copy the old system tape
up to, but not including, the AFTER-named
subroutine.

Control returns to the AFTER routine,
which checks to see if the entire library
has been copied. If it has, the AFTER­
named subroutine, which would have stopped
the copying, was not found. The routine
prints an error message to this effect and
exits to the RDACRD routine to read another
card. The listed subroutines are inserted
at the end of the library.

If the entire library has not been
copied, the next subroutine on the old
system tape (the AFTER-named subroutine) is
copied onto the new system tape(s). A
switch is set to indicate new subroutines
are to be inserted. Then, the AFTER
routine exits to the RDACRD routine.

EXIT: The AFTER routine exits to the
RDACRD routine.

ROUTINE CALLED: During execution the AFTER
routine calls the COPYCL routine.

ASTRSK Routine: Chart MD

The ASTRSK (ASTERISK Control Car~ rou­
tine terminates editing of the system tape
and copies the remainder of the old system
tape onto the new system tape or tapes.
Under certain conditions, the ASTRSK rou­
tine merely makes new copies of the old
system tape.

ENTRANCE: The ASTRSK routine receives con­
trol from the RDACRD routine if the RDACRD
routine recognizes either an ASTERISK con­
trol card or an end of data set.

CONSIDERATIONS: The only data on the
ASTERISK control card is /*, which is
necessary for recognition. An ASTERISK
control card is not necessarily required

for copying tapes. For example, if an EDIT
control card has been recognized, and if
the START routine encounters an end of data
set, the old system tape is copied. Nor­
mally, the conditions for copying a system
tape are an EDIT control card, followed by
an ASTERISK control card. If there is an
EDIT control card and an end of data set,
there is nothing to replace or delete on
the system tape; therefore, the tapes are
simply copied.

OPERATION: The ASTRSK routine checks first
whether the read position of the old system
tape is at the editor or IBCOM. If it is
not, the routine sets a fictitious library
subroutine name so that copying is not
halted by any recognizable subroutine name.
The COFYCL routine is called to copy the
old system tape, to the end of the library,
onto the new system tapes. Following this,
control returns to the ASTRSK routine,
which writes end of data set on the new
system tapes.

If the read position of the old system
tape is presently at the editor or IBCOM,
the routine determines if IBCOM has already
been copied onto the new system tapes. If
it has not, it is copied.

Next, the routine reads in
from old system tape and copies
new system tapes. The routine
another end of data set.

the editor
it onto the
then writes

The ASTRSK routine then rewinds the old
and new system tapes, prints an END OF EDIT
message. and checks to see if the GO option
is specified. If not, the FORTRAN System
Director is called to terminate the job.

When the GO option is specified, the
routine reads in, from the new system tape,
the new FORTRAN System Director, and over­
lays the old FORTRAN System Director in
main storage. Following this, the Control
Card routine is read in.

The ASTRSK routine revises the device
assignment table to permit aCcess to the
new FORTRAN system tape. The routine then
exits to the FORTRAN System Director.

EXIT: Control is passed to the FORTRAN
System Director under either of two condi­
tions:

1. If the GO option is not specified, the
FORTRAN System Director is called to
terminate the job.

2. If the GO option is specified, the
routine calls the FORTRAN System
Director to return control to the
CCLASS routine to read in a card.

ROUTINE CALLED: During execution the
ASTRSK routine calls the COPYCL routine.

COPYC Routine: Chart ME

The COPYC (Copy Compiler) routine facil­
itates revision of compiler phases by copy­
ing a portion of the compiler from the old
system tape onto new system tapes.

ENTRANCE: The COPYC routine receives con­
trol from the RDACRD, T92CMP, or COPYEC
routine.

OPERATION: The COPYC routine obtains the
name of the phase to be revised from the
loader control card and determines if the
phase name is valid. If not, an error
message is printed and an end-of-job return
is made to FSD.

If the phase name is valid, the routine
computes and stores the number of phases to
be copied. The number, reduced by one each
time a phase is copied, is checked for
zero. At zero, an exit to the calling
routine is made. If the count becomes
minus, an error message is printed to
indicate a phase name that is out of
sequence. The routine then makes an end­
of-job return to FSD.

For each phase to be written on the
system tape, a message is printed
identify the phase just copied, and
the RDOSYS routine is called.

new
to

then

EXIT: The conditions under which exit is
made from the COPYC routine are:

1. When an invalid phase name is found on
the loader control card, control is
returned to the FSD.

2. When the phase count is found to be
less than zero, control is again
returned to the FSD.

3. When the phase count is found to be
zero, indicating that all phases have
been copied from the old to the new
system tapes, control is returned to
the calling routine.

COPYCL Routine: Chart MF

The COPYCL (Copy Compiler and Library)
routine copies the remaining records from
the old system tape, up to the desired
point in the library, onto the new system
tapes.

ENTRANCE: The COPYCL routine receives con­
trol from the T92CMP routine.

OPERATION: The routine checkS to see if
the library is now being copied and/or
modified. If it is not, the routine calls
the COFYEC routine. In either case, the

Editor 457

name of a specified library subroutine is
used to halt copying at that routine. The
routine then calls the COFYL routine. When
the COPYL routine is finished, the COPYCL
routine receives cont.rol and exi ts to the
routine which initiated the call.

EXIT: The COPYCL routine returns control
to the T92CMP routine.

ROUTINE CALLED: During execution the
COPYCL routine calls the COPYEC and COFYL
routines.

COPYL Routine: Chart MG

The COPYL ~opy Library) routine copies
the library from the old system tape onto
the new system tapes. Any subroutines
speCified for deletion on the delete list
are not copied.

ENTRANCE: The COPYL routine is called from
either the COPYCL or AFTER routine.

OPERATION: The COPYL routine initially
determines whether or not the library has
already been copied. If the library is
already copied onto the new system tapes,
the routine exits to the calling routine.

If the library has not been completely
copied, a record is read in from the old
system tape. The routine checks to deter­
mine if the entire library has now been
read. If the record is the last one in the
library, an indicator is set and the rou­
tine exits to the calling routine. The
routine checks the record to see if it is
an ESD card, the fi.rst record of a subrou­
tine. If it is not an ESD card, a subrou­
tine is in the process of being copied and
the card is written on the new system tape.
This process continues until the last
record of the library has been read or
until an ESD card is read, indicating the
start of another subroutine.

If the entire library has not yet been
read, the name on the ESD card, which is
the name of the subroutine, is compared
with the name on the fter card, which
indicates the subroutine after which new
subroutines are to be inserted in the
library. If the names match, insertions
are to be made here, and the routine exits
to the calling routine.

If the name on the ESD card is not the
AFTER name, the name of this subroutine is
checked against the list of subroutines to
be deleted and not copied on the new system
tapes. If the subroutine is to be deleted,
the routine skips to the END card of the
subroutine, prints a message to identify

458

the deleted subroutine. The name of the
next subroutine is then checked against a
stored subroutine name, representing a sub-

. routine in the library before which a stop
is to be made for revisions to the library.
If the names match, a switch is set to
indicate to other routines that a replace­
ment deck is needed. The routine then
exits to the calling routine.

If an ESD card is found, but the subrou­
tine is not to be deleted, the name of the
subroutine is placed on the list or direc­
tory of subroutines in the new library.
The COPYL routine checks the subroutine
name to determine whether or not a stop is
to be made here for revisions to the
library. If the names match, the routine
exits to the calling routine. If not, the
SUbroutine is copied on the new system
tape. The routine returns to read another
record.

EXIT: Control passes from the COPYL rou­
tine to the calling routine under anyone
of the following conditions:

1. A match exists between the name on the
ESD card and the name on the AFTER
card.

2. The library has already been copied.
3. The last record in the library is

copied.
4. A match between the ESD name and the

stored stopping name indicates that a
library subroutine is to be replaced.

COPYEC Routine: Chart MH

The COPYEC (Copy to End of Compiler)
routine controls the copying of the old
system tape onto the new system tape up to,
but not including, the library.

ENTRANCE: The COPYEC routine receives con­
trol from:

1. The COPYCL routine
2. The T92LBl routine

OPERATION: The
if the library is
and/or modified.
processed at this
past the compiler
and the routine
tine.

COPYEC routine determines
currently being copied
If the library is being

time, the tape is already
on the old system tape,
exits to the calling rou-

If the tape is not in the library
portion of the old system tape, the loader
name (LDR) is inserted as the phase name
for terminating the compiler copying proc­
ess. The reason for this is that, if
nothing halts the process before the loader
is reached on the tape, the compiler will

have been copied to the end. Control is
then given to the COPYC routine to perform
the copying.

When the compiler is copied, control
returns to the COPYEC routine, which writes
the loader on the new system tapes and
spaces over the end of data set indicator.
End of data set is then written on the new
system tape. The switch checked at the
beginning of this r'outine to determine if
the library is currently being copied
and/or modified is turned on. That switch,
being set on, indicates that, if the copy­
ing process continued, the library would be
copied next. The routine then exits to the
calling routine.

EXIT: The COPYEC routine exits to the
calling routine under either of the follow­
ing conditions:

1. The library on the old system tape is
currently being copied and/or modi­
fied.

2. The compiler and loader have been
copied from the old system tape to the
new system tape.

ROUTINE CALLED: During execution the COPY­
EC routine calls the COPYC routine.

DELET Routine: Chart MJ

The DELET (Delete) routine produces a
list of library subroutines to be deleted
from the library on the system tape. The
routine also determines if the subroutine
to be deleted from the library in the new
version has already been copied on the new
system tape.

ENTRANCE: The DELET routine receives con­
trol from the RDACRD routine when a DELETE
control card is encountered.

OPERATION: The DELET routine examines the
DELETE control card and makes a list, or
table, of the names of the subroutines to
be deleted. The capacity of the DELETE
table is limited. If the nuwber of subrou­
tines on the DELETE card exceeds the capac­
ity of the table, the routine prints an
error message that the DELETE table is full
and exits to the calling routine.

As each subroutine name is entered in
the DELETE table, the routine checks to see
if the name is in the directory of subrou­
tines which have already been copied onto
the new system tapes. When this occurs, an
error message is printed that the subrou­
tine name is out of sequence. The routine
returns to the FSD to end the jOb.

If no more subroutine names remain to be
examined, the routine exits to the RDACRD
routine to read another card.

EXIT: Exit from the routine and passage of
control to the RDACRD routine occurs in one
of two ways:

1 • A subroutine name on the
trol card is found to

DELETE con­
be out of

sequence.
2. All DELETE table names are checked and

none found in the directory.

REDCRD Routine: Chart MK

The REDCRD (Read New Phase) routine
revises a phase of the compiler by reading
in and processing REP and/or TXT cards to
replace some or all of the information in
the specified phase on the old system tape.

ENTRANCE: Entrance to the REDCRD routine is
from the T92CMP routine.
blished that the editor
be modified or replaced,
copied up to the point
revised. The REDCRD
called.

If it is esta­
or IBCOM is not to
the compiler is

of the phase to be
routine is then

OPERATION: The REDCRD routine reads a card
from the card reader. It then makes a
check for end of data set in the card
reader. An end of data set prior to the
END card means that insufficient cards were
supplied to the card reader and/or the END
card was not furnished. An error message
is printed and the FORTRAN System Director
is called to abort editing.

If no end of data set exists, the
routine checks for an END card. The pre­
sence of an END card means that all of the
cards necessary to the revision of this
phase have been read. The routine calcu­
lates the length of the phase and exits to
the calling routine.

If the card read is not an END card, it
is examined to determine whether or not it
is a REP card. The presence of a REP card
causes the routine to check to determine if
the entire phase is to be replaced.
Replacement of a whole phase implies that
TXT cards follow the REP card with suffi­
cient additional data for replacement of
the entire phase. Another card is read and
all of the above checks are made. If the
entire phase is not to be replaced, the
routine processes the REP card and goes
back to read another card.

Whenever a card is read by the routine,
the checks for end of data set, END card,
and REP card are followed by checks for RLD

Editor 459

and ESDcards. If an RLD or ESD card is
found, the routine ignores it and goes back
to read another card. If the card is still
unidentified, a check is made for a TXT
card. If the card is not a TXT card, the
routine makes a final check for an EDR
card. If the card is an EDR card, it is
processed like a REP card and the routine
then goes back to read another card. If
the card is not an EDR card, the routine
assumes that the card is an invalid control
card. An error message is printed, and an
exit is made to FSD to abort the edit.

If the card is a TXT card, it is applied
to revise the specified portion of the
compiler phase. The routine then reads
another card. TXT cards are read and
applied in this fashion until there is an
illegal end of data set (as noted abov~ ,
or until an END card is found

EXIT: Under anyone of three conditions,
control passes from the REDCRD routine:

1. An end of data set signal is on. An
error message is written and the
FORTRAN System Director is called to
abort the edition.

2. The card read is not a valid control
card for this routine. An error mes­
sage is written and FSD is called to
abort the edit.

3. An END card is encountered. The rou­
tine exits to the calling routine.

,
RDOSYS Routine: Chart ML

The RDOSYS (Read Old System Tap~ rou­
tine reads a record from the old system
tape, then calculates and stores the length
of the record. If the phase just read is
FSD, the machine size is changed to the
current machine size.

ENTRANCE: The RDOSYS routine receives con­
trol from the RDACRD routine to read in the
Initial program Load. Control is also
received from the AFTER routine when one or
more library subroutines are to be read
from the old system tape and copied on the
new tapes. The routine is called in the
COPYC routine when the compiler on the old
system tape is copied on the neW tapes, up
to a specified phase or to the end of the
compiler. The routine- is also called by
theASTRSK routine when the Initial Program
Load and the FORTRAN System Director are to
be read from the old system tape.

OPERATION: The RDOSYS routine sets a poin­
ter at the name of the phase to be read.
It then reads a record from the old system
tape and a check is made for end of data
set. When end of data set is detected,

460

there is an exit from the routine to write
an illegal end of data set message.
Absence of the end of data set causes the
length of the record to be computed and
stored. If the phase read is FSD, the
current machine size is moved from the
communications area to the communications
area in the FSD just read. This move is
performed because the machine size may have
been changed by the EDIT card.

EXIT: In addition to an illegal end of
data set, control is passed from the RDOSYS
routine to the calling routine.

T92CMP Routine: Chart MM

The T92CMP (Compiler) routine checks all
12-9-2 cards that are concerned with phase
modification. The processing consists of
replacing or modifying the specified phase
and copying the old system tape onto the
new system tapes as far as the specified
phase.

ENTRANCE: The T92CMP routine receives con­
trol from the RDACRD routine, when any
loader control card, containing a phase
name is encountered.

OPERATION: Initially the routine gets the
phase name from the loader control card and
stores it. It then determines if the
editor or IBCOM is to be either modified or
replaced. If the editor or IBCOM is not
involved, the routine calls the COPYC rou­
tine in order to copy the old system tape
up to the phase to be modified. Control
then. returns to the T92CMP routine which
branches to read in the new phase Or
modifications from the card reader.

If the editor or IBCOM is to be modified
or replaced, the routine checks to see if
IBCOM has been copied onto the new system
tape. If IBCOM has not been copied, the
routine calls the COPYCL routine to copy
the old system tape as far as IBCOM.
Control returns to the T92CMP routine,
which calls the RDOSYS routine to read
IBCOM from the old system tape.

If an IBCOM replacement is to occur, the
routine passes control to the REDCRD rou­
tine to read in replacement cards from the
card reader. If there is no IBCOM replace­
ment, the routine writes IBCOM on the new
system tape(s) and reads in the editor.
The routine then branches to read in
replacement cards, so the editor can be
modified.

EXIT: The T92CMP routine passes control to
the REDCRD routine, under anyone of three
conditions:

1. Some phase, other than the editor, is
to be modified or replaced and the
system tape has been copied up to the
phase to be modified.

2. IBCOM is to be modified or replaced.
3. IBCOM has been copied and the editor

has been read in from the old system
tape for modification.

ROUTINES CALLED: During execution the
T92CMP routine calls the COPYC, COPYCL, and
RDOSYS routines.

T92LBl Routine: Chart MN

The T92LB1 (Library) routine copies the
compiler and library up to a specified
library subroutine which is to be revised.
The routine adds object decks from the card
reader to the library.

ENTRANCE: The T92LB1 routine receives con­
trol from the RDACRD routine when a loader
control card without a phase name is
encountered.

OPERATION: The T92LBl routine checks a
switch, which is turned on whenever an
AFTER card is encountered, indicating that
there are subroutines to be added to the
new library. If the switch is off, no
library subroutines are to be inserted and
the routine calls the COPYEC routine.

When library subroutines are to be
inserted, or at the end of the COPYEC
routine, T92LBl routine searches the direc­
tory of copied subroutines to see if the
directory contains the name of the subrou­
tine to be revised. If it does, the
revision cards for this subroutine are out
of sequence, causing an Out of Sequence
message to be printed. The routine then
exits to the RDACRD routine to read the
next card.

If the name of the subroutine to be
revised is not in the directory and if the
switch, indicating that subroutines are to
be inserted, is still on, the routine
copies, from the old to the new system
tape, the subroutine after which insertions
are to be made. It then reads a new
subroutine from the card reader and adds it
to the library on the new system tape.
Subroutines are read from the card reader
and copied on tape until the list of
subroutine names is exhausted. At that
time, the name of the subroutine after
which insertions are to be made is blanked
out.

EXIT: When the revision cards for a speci­
fied library subroutine are out of
sequence, the T92LB1 routine exits to the

RDACRD routine to read the next card. The
T92LB1 routine also exits to the T92LB2
routine when a subroutine is to be revised.

Editor T92LB2 Library Routine #2: Chart MO

The T92LB2 (Library) routine replaces a
library subroutine.

ENTRANCE: The T92LB2 routine receives con­
trol from the T92LBl routine, after the
COPYL routine has copied the library up to
the subroutine specified for revision.

OPERATION: The operation performed by this
routine depends upon the last card read
from the card reader. An ESD card indi­
cates that an entire subroutine replacement
exists in the card reader. ThUS, the
subroutine, on the old system tape, that
corresponds to the subroutine replacement
in the card reader is bypassed. If, howev­
er, that same subroutine on the old system
tape has already been copied onto the new
system tape and cannot be bypassed, an Out
of Sequence message is printed. In either
case, the subroutine replacement in the
card reader is copied onto the new system
tapes.

EXIT: The T92LB2 routine passes control to
the RDACRD routine to read the next card.

ROUTINE CALLED: During execution the
T92LB2 routine calls the COPYL routine.

SET Routine: Chart MP

The SET (Editor SET Control Car~ rou­
tine uses information supplied on the edi­
tor SET control card to modify the device
assignment table and line length in the
FORTRAN System Director on the new system
tape.

ENTRANCE: The SET routine receives control
from the RDACRD routine when an editor SET
control card is encountered.

CONSIDERATIONS: The information on the
editor SET control card specifies:

1. The data set reference number of the
device specified.

2. The phYSical address of the device.
3. The designation of the actual type of

input/output device.
4. Where applicable, certain charac­

teristics of the tape and data set to
be used.

5. Length of print line if this is being
changed.

Editor 461

OPERATION: A check is made to determine if
the FSD has already been copied from the
old system tape to the new system tape. If
the FSD has been copied, it is too late to
revise it for thiS job. An error message
is written, and a return is made to the
RDACRD routine to read another card. The
SET routine calls the COPYC routine, if the
FSD has not bee.n copied from the old system
tape.

When control is returned to the SET
routine, it examines each field on the SET
control card to determine if a line length
change or a data set change is involved. A
line length change causes the new line
length to be inserted in the communications
area of the new system tape(s). Data set

462

changes are checked for validity, and the
physical address and device type are stored
in the device assignment table. The device
type code is stored in the DSCB for the
associated data set. If the device is a
7-track tape device, the mode set code to
be used with this device is stored in the
DSCB.

When
trol is
invalid
printed

a blank field is encountered, con­
returned to the RDACRD routine. An
field causes an error message to be
and the job to be terminated.

EXIT: The SET routine exits to the RDACRD
routine, upon encountering the first blank
field.

*10 *
* 82* . " -

X
******82***********

• REWIND •
OLD SYSTEM

* TAPE *
4***4********

X
*****C2**********
" . "ACCESS DATA SET.
"REFERENCE NOS. "
" OF NEW SYSTEM "
" TAPES "

X
*****02**********
" " " FROCESS EDIT "
-CCNTL CARD REAC.
* ey CCLASS ..
" ROUTINE "

.
X

******E2***********

* REWIND *
NEW SYSTEM

.. TAPES *

X
******F2***********

" READ
A

CARD

" " " X •••• * F2 * - " " ****

.x.
G2 •• ******G3***********

.* *.

" " .. G4 * . "

X
****G4*********

•• 1S •• YES *COPY OLD SYSTEM" • CALL FSD -
. CARD READER . •.•.••.• X TAPE TO END AND •••••••• X* TO TERMINATE *

. EMPTY . * REWIND ALL THE JOB *
.. TAPES ***************

. . *************
" NO

", " * G4 *X ••
" .

**** NO
.X. .*.

H2 *. *****H3********** H4 * •
. * *. * * .* * .

• * ASTERISK *. YES * PROCESS .* EDIT *.
. CONTROL . .••••••. X* ASTERISK * •.•••••• X*. AND .*

. CARD. * CONTROL CARD * *. GO .*
.. * * *..*

*. • * ***************** '*. • *
* NO * YES

X
*****J2**********
* * ****
" REVISE SYSTEM " " -
*TAPE ACCORDING * •••• X* F2 *
"TO CONTENTS OF - " "
* CONTROL CARD * ****

X
****J4*********

" CALL FSD TO "
" GET CONTROL *
" CARD ROUTINE *

Chart 10. Editor Overall Logic Diagram

Editor 463

~FROM FORTRAN
*MA *SYSTEM DIRECTOR
.. 83*

* * *

X
******83***********

* REWIND *
OLD SYSTEM

* TAPE *

.X.
C3 * •

• * IS -.
NO .*COMPILATION* •

•••• *.TO FOLLOW THE.*
. ECITION .

. .
* •• * * YES

X
*****03**********
*SET INDICATION *
* FOR ASTERISK *
RTN T~AT SOURCE
* PROGRAM IS TO *
* BE COMPILED *

. .
••.•••••••• x.

X
*****E3**********
* LIST DATA SET *
* REFERENCE *
* NUMBERS OF *
* NEW SYSTEM *
* TAPES *

.
• X.

F3 *. *****F4**********
.* *. * * .* IS *. YES * USE OLD *

. SI~E FIELD . •••••••• X*MACHINE SIZE IN* ••••
. BLANK . *COMMUNICATIONS *
.. * AREA *

* •• * *****************
* NO

.X.
G3 *. *****G4**********

.* IS *. * USE NEW *
.* SPECIFIED *. YES * MACHINE SIZE *

*MACHINE SIZE A - •••••••• X- PLACEO IN *
. NUMBER . *COMMUNICATIONS *
.. * AREA *

* •• * *****************
* NO

. . .
.x •••••••••••

X
******H3***********

. PR INT ERROR

X
******H4********** •

* MESSAGE- *
INVALID CONTROL
* CARD *

-*--**-

X
****J3*********

* END-OF-JOB *
* RETURN TO *
* FSD *

* REWIND NEW *
SYSTEM

* TAPE(S) *

X
*****J4**********
RDOSYS MLB3
--*-*-*-*-*-*-*
* READ OLD *
* SYSTEM TAPE- *
* IPL RECORD *

.
X

*MB *
* A2*
* *
*

Chart MA. START Routine

464

*M8 *
* A2*
* •

ROACRO X
******A2***********

* A2 * x . . READ A
CARD

• x.
62 *. *****83**********

.* *. *
.* HAVE *. YES INDICATE *

*ALL CARDS 8EEN * •••••••• X*THAT ALL CARDS *
. READ. * ARE READ *

******C2** *********

PRINT THE
CARD

.x.
02 *.

.* IS *. .* CARD AN *.
. ASTER ISK

. CONTRCL . X
.CARD .

.x.
E2 * •

• * IS *.
YES.* OLD * •

****"*
MC "
* E2*

x

*MD *
* 82*

.•. ••• ••••••••• ••• *. SYSTEM TAPE .*
.AT EDITOR.

******G 1 **** *** ****
WRI TE ERROR

* MESSAGE- *
INVALID CONTROL
* CARD *

****H 1 **** *****
II- END-OF-JOB

RETURN TO
FSO

********** ***-11-*

. .

.x.
F2 * •

• * IS * •
• * CARD A *. NC

*LCACER CONTROL *
. CARD .

. .
* •• * * YES

.x.
G2 *. ****-II-G3**********

.* *. *T92CMP MMB3*
.* DOES *. YES *-*-*-*-*-*-*-*-*

.CARD CONTAIN . •••••••• x* 12-9-2 *
*PHASE NAME * COMP ILER
.. ROUTINE *

*. .. -II- ****************-11-
* 1\0

*****H2**********
T92LBl MNB3
--*-*-* -*-*-*-*
*12-9-2 LIBRARY *
* RCUTINE =1 *

. .
* A2 * . .

* •
* A2 * . .

Chart MB. RDACRD Routine

.x.
A4 *. *****A5**********

.* IS *. *SET MPB3*
.* CARD A *. YES *-*-*-*-*-*-*-*-*

. SET CONTROL . •••••••• x* SET
. CARD . CARD
.. * ROUTINE *

* •• * *****************
• NO

.x.

**** · . • • x* A2 * · .
84 *. *****85**********

.* IS *. *DELET MJB3*
.* CARD A *. YES *-*-*-*-*-*-*-*-*

*DELETE CONTROL * •••••••• X* DELETE
. CARD. * CARD

* •• *
• NO

.x.

* ROUTINE *

.' .
• • x* A2 * · .

C4 *. *****C5**********
.* IS *. *AFTER MCB3*

.* CARD AN *. YES *-*-*-*-*-*-*-*-*
.AFTER CONTROL. •••••••• x* AFTER

.. CARD. * CARD
.. ROUTINE

* •• * *****************
• NO

X
******04***********

PRINT ERROR
* MESSAGE- *

I NVALID CONTROL
* CARD *

****E4*********
* END-OF-JOB *

RETURN TO *
FSD *

"***********

x

• *
* A2 * . .

Editor 465

*Me *
* 83*
* *
*

AFTER X
*****83********** * LIST FROM *

AFTER CARD *
* NAMES OF *
*SUBROUTINES TO *
* BE INSERTED *

* * * C4 *
* * ****

.x. .x.
*****C2********** C3 *. C4 *. *****C5**********
* COPYCL * .*15 NAME*. .*15 AFTR*. *TURN ON SWITCH *
--*-*-*-*-*-*-* NO .* IN AFTER *. YES .* CARD NAME *. YES * INDICATING *
* COPY OLD TAPE *X •••••••• *.CARD NAME FLD.* •••••••• X*.THE LAST NAME.* •••••••• x* THERE ARE NEW *
*up TO. BUT NOT * *IN DIRECTRV* *IN DIRECTRV* * SUBRTNS TO BE *
INCLUDING NAMEC *..* *..* *AODEO TO LIBRY.*
***************** * •• * * •• * *****************

* * NO

.X.
02 *. ******03***********

.* HAS *. PRINT ERROR .*_ ENTIRE *. YES * MESSAGE- *
.LIBRARY SEEN . •••••••• X SUBROUTINE NAME

. COPIED . * NOT FOUND *

X
******E2***********

CCPV SUBROUTINE
* (UP TO ENO *

CARD) ON NEW
* SYSTEM *

TAPE

* * * C4 *
* * ****

x

*MB * * A2*
* * *

Chart Me. AFTER Routine

466

X
******04***********

PRINT ERROR
* MESSAGE- *

OUT OF
* SEQUENCE *

************* . .
.x •••••••••••••••••••••••••
X

*MB * * A2*
* *

*MD *
* 82*
* * *

.x. .*.
B2 *. 83 *.

.* *. .* *.
.*SYSTEM TAPE*. YES .* HAS *. YES

.AT EDITOR OR . •.•••••• X*. I8COM BEEN .* •.•.
. laCON . *. COPIED .*
.. *..*

* •• * * .• *
* NO * NO

X
J****C2**********
*SET FICTITIOUS *
LIBRARY NAME TO
*PERMIT COPYING *
* TO END OF *
* LIBRARY *

X
*****D2*********~
CCPYCL MF63
--*-*-*-*-*-*-*
COPY OLD SYSTEM * TAPE TO END •
* OF LIBRARY *

X
******E2***********

wRITE END OF
* DATA SET ON •

NEW SYSTEM
* TAPE(S) •

X
******F2***********

*
*

READ IN
OLD IBCOM

*
*

•••..•.••.• x.
X

******C3***********
COpy IBCOM

* ON NEW *
SYSTEM

.. TAPE *

X
******03***********

*
*

READ IN
OLD

EDITOR

x

•
*

***** *E3ir*********· ..
COPY EDITOR

* ONTO NEW *
SYSTEM x •••

• TAPE(S) •

X
******F3***********

WRITE END
* OF DATA SET •

ON NEW SYSTEM
• TAPE(S) *

x

* * * 84 *
* * ****

Chart MD. ASTRSK Routine

* * * 84 *
* * ****

X
******84***********

REWIND OLD
* AND NEW *

SYSTEM
* TAPES *

X
******C4***********

PRINT
* MESSAGE- *

END OF
* EDIT *

.x.
04 *.

*. ****05*********
GO *. NO * CALL FSD TO *

. OPTION . •••••••• X* TERMINATE Joe *
. . * *

. .
* •• * * YES

X
******E4***********

READ IN NEW
* FSD FROM *

NEW TAPE-
• OVERLAY *

OLD FSD

X
*****F4**********
* REVISE DEVICE *
* ASSIGNMENT *
TABLE TO ACCESS
* NEW FORTRAN *
• SYSTEM TAPE *

X
****G4*********

* CALL FSD TO *
READ IN CONTROL * CARD ROUTINE *

Editor 467

*ME *
* 83*
* *
*

COPYC X
*****83********** * GET P~ASE * * NAME FROM *
*LOADER CONTROL *
* CARD *
* * *****************

.x.
C3 *.

.* IS *.
.* NAME A *. NO *

******C4***********
WRITE ERROR

MESSAGE­
INVALID PHASE * *. VALID PHASE .* .••..••. X

. NAME . * NAME *
. .

* •• * * YES

X
*****03**********
* * *COMPUTE NUMBER *
* OF PHASES TO *
* BE COPIED *
* * *****************

* * * E3 *.X.
* * **** .x.

E3 * •
• * ARE *.

NO .*THERE MORE *. YES

X
****04*********

* END-OF-JOB *
* RETURN * * TO FSD *

•••••••••••••••••• *.PHASES TO BE .* ••••••••••••••••••
. COPIED .

. .
* •• *

*

.x.
F2 *.

.* *.
.* IS *. YES *

******F3***********
WRITE ERROR

MESSAGE­ * *. PHASE COUNT .* •••.•.•• X
. MINUS .

. .
. .

* NO

X
****G2*********

* * * *
RETURN

*
*

PHASE OUT OF
* SEQUENCE *

X
****G3*********

* END-OF-JOB *
* RETURN *
* TO FSD *

Chart ME. COPYC Routine

q68

X
******F4***********

wRITE OUT
* CURRENT PHASE *

ON NEW SYSTEM
* TAPE *

X
******G4***********

READ A
* PHASE FROM *

OLD SYSTEM
* TAPE *

X
*****H4**********
* * * REDUCE COUNT * * OF PHASES TO * * BE READ BY 1 *
* * *****************

x

* * * E3 *
* * ****

*MF *
* 83*
* *
*

COPYCL .X.
83 * •

• * IS * •
• * LI8RARY *. YES

8EING COPIED OR ••••
.MODIFIED .

. .
* •• * * NO

X
*****C3**********
COPYEC MHB3
--*-*-*-*-*-*-*
* COpy TO END *
* OF COMPILER *
* ROUTINE *

X
*****03**********
COPYL MGA3
--*-*-*-*-*-*-*
* COpy *x •••
* LIBRARY *
* ROUTINE *

x

*MM *
* 83*
* *
*

Chart MF. COPYCL Routine

Editor 4fi9

*MG *
* A3*
* •

* • * A4 * * •

A3· X.*. X
.* *. ****A4*********

.* ~AS *. YES * *
.LIBRARY BEEN . •••••••• X* RETURN

. COPIED. X *
.. ***************

**** . * •• * • NO

* E!3 *.X.
* •

X
******B3***********

READ A RECORD
* (CARD IMAGE) *

FROM OLD SYSTEM
* TAPE *

· . * C3 *.X. · .
• x.

*****C2********** C3 *.
* SET INDICATCR * .* *.
* THAT LIBRARY * YES.* HAS *.
* HAS BEEN *X •••••••• *ALL OF LIBRARY *
* PROCESSED * *.BEEN READ.*
* *. .*
***************** * •• *

**** .' .
•• X* A4 *

* *
* ** ***02** **** *****

"RITE RECORD

* NO

.x.
03 *.

.* *.
NO .* IS RECORD *. ON NE~

SYSTE~
TAPE

X •••••••• *. AN ESO CARD .*
. IMAGE .

x

• * * C3 ...
• *

. . * •• *
* YES

X
*****E3**********
* PUT NAME IN *
* 0 [RECTORY OF *
NEW SYSTEM TAPE
* SUBRCUT INE *
* NAMES *

.x.
F3 * • • * DOES * •

• *NAME ON ESD*. YES •
CARO MATCH NAME ••••••

.ON AFTER .
.CARD .

* •.• *
• NO

.x. .*.
G3 *. G4 * •

• * IS *. .* IS * •
• ~ASSOCIATED *. NO .* CURRENT *. YES * *

.SUBROUTINE TO. •••••••• X*.SUBROUTINE TO.* •••• X* A4 *
*Be DELETED * *Be REVISED * * *
.. *..*

* •• * * •• * * YES * NO

X
*****H3**********

• * DELETE
NAME FROM
DIRECTORY

X
*****J~**********
* SKIP TO END *

CARD OF
CURRENT

SUBROUT INE

X
******H4***********

WRITE RECORD ON
NEW SYSTEM

TAPE

;
**** • *

* 83 * • *

.*. X
******K3***********

PR INT MESSAGE
TO IDENT IFY

DELETf;O

K4 *. *****K5**********

* SUBROUTINE

Chart MG. COPYL Routine

470

.* ARE *. * SET
* .* LIBRARY *. YES *INOICATOR THAT ...
•••••••• X*.REVISIONS TO .• * •••••••• x* A REPLACEMENT *

.OCCUR NOW. * OECK IS *
.. * NEEDED *

. . *****************
* NO

* * * C3 *
* *

x

• * * All- ..

* *

*M~ *
* 83*

CCPYEC .X.
63 * •

• * IS *. ****84*********
.* LIBRARY *. YES * *

BEING COPIED OR • •••• ••• x* R:=:TURN
.MODIFIED . *
.. ***************

* •• *
• NO

*****C2 4 *********
* SET LOADER *
* NAME (LOR) TO *
* STOP T~E COM- *
"* P ILER COPY ING *
* PROCESS *

••••••• ~ ••• X.

x
* * * * * *0 :::!*** * ****** *

COPY COMP ILER
PrASE ONTO
NEW SYSTEM

TAPE

.x.
E3 * •

. * * •
.. NO.* t-'AS * •
•••• *. LOADER BEEN .*

. REACt-"ED .
*. ..)1

* •• * * YES

******F3*** ********
WR ITE

LOADER ON
NEW SYSTEM

TAPE

*****G3********** · . * SPACE O\lER
* TAPE MARK ON *'
OLD SYSTEM TAPE · . *****************

x
* * * * * *H3****** **** *

,WRITE
TAPE MARK

ON NEW
SYSTEM
TAPE(S)

.. * ** * J 3********iHf
-II' SET INDIC-ATOR
* THAT LIBRARY
... IS NOW BEING
* COPIED

****K3********* · . * RETURN .

Chart MH. COPYEC Routine

Editor 411

*MJ *
* 83*
* " *

.x.
C3 *.

.* *.
.* IS *. YES " " ••• X*.OELETE TABLE .* X

******C4***********
PRINT ERROR

MESSAGE­
DELETE TABLE

. FULL .
.";. .*.*

* NO

X
*****03**********
* OBTAIN NAME "
*OF NEXT SUBRTN *
* FROM DELETE " * CARD AND *
* PUT IN LIST "

..

• X.

" FULL "

X

*MB *
* A2*

" " "

E3 * •
• * HAS *.

.*SUBR TO BE *. YES *

******E4***********
PRINT ERROR

MESSAGE­ "
****E5*********

" END-OF-JOB "
•••••••• X* RETURN TO * *DELETED ALREADY* •••••••• X

*BEEN COPIED"

.X.
F3 *.

• .* IS * •
• YES.* THERE *. NO
•••• *ANOTHER SUBRTN * •••••••.

.ON DELETE.
.CARD .

* •• *
*

X

*MB *
* A2*
* " "

SUBR OUT OF
" SEQUENCE

Chart MJ. DELE'!' Routine

472

" * FSD *
*************-lI--lI-

*MK *
* 83*
* *

x
* **** *8:3 ****** **** *

READ
... 83 * X A
* * CARD

.x.
C3 *.

.* *. .* END OF *. YES

******C4***********
INR I TE ERROR

MESSAGE­
ILLEGAL END *. DATA SET .* •••••.•. x

. .
. .

* •• * • NO

OF DATA
SET

*****02********** . . .x.
03 * ..

.* *. ****04*********
* EXIT TO FSD * CALCULATE

LENGTH OF
PHASE

MB "
* A2"*
* *

YES.* IS 'CARD *.
*X •••••••• *. AN END CARD .*

. .
* •• * * NO

'* TO ABORT
* EDITING

.x. .*.
E3 *. E4 *.

.* *. .* IS *.
.* IS CARD *. YES .* ENTIRE *. NO

* * * E5 * • *

*****E5**********
*

. A REP CARD•... X*. PHASE TO BE .* •....... X*
PROCESS

REP
CARO *. .'* *.REPLACED .* *

.x.
F3 * •

• * * • • * IS CARD *. YES •
if.AN ESD OR RLD.'* •• X.

. CARD .
*. .if

* •• *
• NO

.x.
*****G2********if* G3 *.

• *
'* 83 '*
* *

PROCESS
TXT

CARD

. .
* B3 if
* *

Chart MR.

* • * *.
* YES.* IS CARD *.
*X * .. A TXT CARD .*

'. .'

.x.
H3 * •

• if IS *. YES * * *. CARC AN EoR .* X* E5 *
. CARD. * *

. . * •• * * NO

*****"*J3***********
WRITE ERROR

* MESSA(E-
INVAL ID CONTROL
* CARD "*

X
****K3**"*******

... EX IT TO *
* FSD TO ABORT * * ECITION

REDCRD Routine

Editor 473

*ML *
* 83*
* * *

RDOSYS X
*****83********** * SET POINTER *
* AT NAME OF *
* PHASE TO BE *
* READ *
* * *****************

X
******C3***********

READ A
* RECORD FROM *

OLD SYSTEM
* TAPE *

.X.
D3 *.

.* *.
.* END *. YES * *

******04***********
WRITE ERROR

MESSAGE­
ILLEGAL END *. OF DATA .* .••...•. X

. SET . * OF DATA SET *
. .

* •• * * NO

X
*****E3**********
* * * COMPUTE AND * * STORE LENGTH * * OF RECORD *
* * *****************

X
*****F3**********
* * * SET MACHINE *
* SIZE. IF THE * * PHASE IS FSD *
* * *****************

X
****G3*********

* * * *
RETURN

* *

X
****E4*********

* EXIT TO FSD *
* TO ABORT * * EDITION *

chart MI.. RDOSYS Routine

474

***** ·MM •
* 83* • • •

· X
*****83**********
* •
• GET PHASE •
• NAME FROM CARD *
* AND SAVE *
* .•
**********~******

.X. .*.
C3 *. C4 * •

• *EDITOR *. .* *. ****
.*OR IBCOM TO*. YES .* HAS *. YES * *

*BE MODIFIED OR * •••••••• X*. I8COM BEEN .* •••• X* F4 *
.REPLACEO . *. COPIED.* * *
.. *..* ****

* •• * * •• *
* NO * NO

· X
*****03**********
COPYC MFB3
--*-*-*-*-*-*-*
* COpy SYS TAPE *
.UP TO PHASE TO *
* BE MODIFIED *

· X

*MK *
* B3*
* *.
*

X
*****04**********
COPYCL MFB3
--*-*-*-*-*-*-*
• COpy SYSTEM *
* TAPE UP TO *
* IBCOM *

.
X

*****E4**********
RDOSYS MLB3
--*-*-*-*-*-*-*
* READ RECORD *
* FROM OLD *
* SYSTEM TAPE *

.X.
F4 *.

**** .* IS *.
.. * .* THIS AN *.YES
* F4 * •••• X*I8COM REPLACE- * •.•••••.

Chart MM.

* * *. MENT.* X
**** *..* *****

. . *MK *
* NO * B3*

X
******G4*********.**

WRITE IBCOM
* ON NEW *

SYSTEM
* TAPEIS) *

X
*****H4**********
RDOSYS MLB3
--*-*-*-*-*-*-*
* READ IN * * EDITOR *
* * *****************

.
X

*MK *.
* B3*
* •
*

T92CMP Routine

* * *

Editor 475

*MN *
* 83*
* *
*

.x.
83 *. *****84**********

.* ARE *. *COPYEC MHB3*
.* THERE *. NO *-*-*-*-*-*-*-*-*

.LIBRARY SUBRS. •••••••• X* COpy TO END *
.TO BE IN-. * OF COMPILER *

*SERTED * * ROUTINE *
* •• * *****************

* YES

. .

.X •••••••••••••••••••••••••

• x.
C3 * •

• *15 NAME*.
******C2***********

PRINT ERROR
MESSAGE­* * YES .*OF sueR TO *.

SUBR OUT OF
* SEQUENCE

x

*MB *
* A2*
* * *

*
X •••••••• *BE REVISED AL- *

.READY IN -.
DIRCTRY

«. • *
* NO

.x.
03 *. ******04***********

.* *. COPY LIBRARY
.* WAS *. NO * TO PREVIOUSLY *

*THERE AN AFTER * •••••••• X SPECIFIED
. CARD . * SUBROUTINE *

. ..
* •• * *************

* YES

X
******E2*********** ******E3***********

READ SUBR TO COPY SUBR NAMED
eE INSERTED FRM * ON AFTER CARD *

••• X CARD READER. x........ FROM OLD TO
* COpy ON NEW * *NEW SYS TAPE *

SYS TAPE

.x.

F2 *. *****F3********** *****F4**********
.* IS *. * BLANK OUT * * SET INDICATOR *

• NO.* LIST OF *. YES *SUBR NAME THAT * * THAT THERE IS *

X
*****GO TO
*MO *PROCESS
* B3*ESD CARD
* * *

•••• *.SUBR·S TO BE .* •••••••• X* WAS ON AFTER * •••••••• X* NO LONGER AN * ••••••••
.INSERTED . * CARD * * AFTER CARD TO * X

.EMPTY. * * * BE PROCESSED * *****
. . ***************** ***************** *MB *

* A2*
* *
*

Chart MN. T92LBl Routine

476

*MO *
* 63*
* *
*

.X.
B3 *.

.* *.
.* *. NO * * *. ESD CARD .* X

******84***********
PRINT ERROR

MESSAGE­
INVALID
CONTROL

****85*********
* EXIT TO FSD *

•••••••• x* TO ABORT *
* EDITION * *. .* * * *. .* CARD

* •• * *************
* YES

.X.
C3 *.

.* HAS *.
.* ALL OF *. YES *

******C4***********
PRINT ERROR

MESSAGE­
SUBROUTI NE * *.LIBRARY BEEN .*•... X

. WRITTEN .

X
******03***********

SPACE OVER
* COPY OF *

SUBROUTINE ON
* OLD SYS-

TEM TAPE

* NOT IN
LIBRARY

. .

.X •••••••••••••••••••••••••

X
******E3***********

WR ITE THE NEW
* SUBROUTINE *

ON NEW
* SYSTEM '*

TAPEIS)

x

*M'8 *
* A2*
* * *

Chart MO. T92LB2 Routine

*

Editor 477

*MP *
* 83* . .
.x.

B3 *.
.* HAS *.

******B4***********
PRINT ERROR

MESSAGE-.* FORTRAN *. YES *
.SYSTEM DIREC-. •••••••• X

.TOR BEEN .
*COPIED *

* •• *
• NO

X
*****C3**********
COPYC MEB3
--*-*-*-*-*-*-* * COpy *
* COMPILER
* TO FSD

* * .• * 03 *.X.
* * .x.

FSD ALREADY
COPIED

x
4
*MB *
.. A2*
• *
*

03 *. *****04**********
.* *. * *

.* LINE *. YES CHANGE LINE
. LENGTH . •••••••• X* LENGTH ON NEW *

. Ct'ANGE . * SYSTEM TAPE *
. .

* •• * *********~*******
* NO

x

.x. * K3 *
E3 *. ... *

.* VALID * •
• * LOGICAL *. NO

. DEVICE . •••••••••• ~ •••••••••••••••••••••••••••••••••
. NUMBER .

. . * •• * * YES

X
*****F3********"*
*INSERT ADDRESS *
* OF DEVICE

IN OEVICE·
* ASSIGNMENT *
* TABLE *

.x. .*.
G3 *.. G4 *.

.* *. .* *.
.* 7 *. NO .* VALID *. NO

* * G5 *.X.

* •
x

**** **G5***********
PRINT ERROR

MESSAGE­
INVALID

CHARACTER
. TRACK . •••••••• X*. DEVICE .* •••••••• X

. TAPE . *. TYPE .*
.. *..*

* •• * * •• *
* YES * YES

.x.
H3 *.

.* * •
• * VALID *. NO

. MODE . ••••
. SET .

. . * •• * * YES

X
*****J3********** • *
*STORE MODE SET *
AND DEVICE cooe
* IN osce *

* *

x

* • * G5 * . .

X
*****H4********** . .
* STORE *
* DEVICE CODE *
* INOSCB * . .

* K3 *.X. • * * .X •••••••••••••••••••••••••

• x.
*****K2.********* K3 *.
** *.
* STEP * NO.* END YES

POINTER TO *X •••••••• *. OF SET .* ••••••••
NEXT ITEM * *. CARO.* X

.. *****
***************** * •• * *Me *

x
**** * •

... 03 *
• *

Chart MP.

478

* * A2* • *

SET Routine

X
****H5*********

.. FSD TO *
* ABORT

EDIT
*************it*

MESSAGES

The messages produced by the FORTRAN
system are explained in the IBM System/360
Basic Programming Support Programmer's
Guide. Each message is identified by an
associated number.

Table 3. Error and Warning Messages

APPENDIX A: ANALYSIS AIDS

Table 3 associates a message number with
the particular routine/subroutine in which
the corresponding message is generated.

r---------r----------T---,
I Message Number I Phase I Subroutine or Routine I
~------------+----------+---~
I 029 I 10 I DIMSUB I
~--------------+----------+--~
I 030 I 1 0 I COMMON, EQUIVALENCE . I
~-------------+------------+---~
I 031 I 10 I COMMON, EQUIVALENCE I
~--------------+------------+---~
I 032 I 10 I LITCON I
~---------------+-------------+---~
I 033W I 10 I GETWD I
~-----------+------------+--'---~
1 034 I 101 FUNCTION/SUBRTN 1
~---------------+------------+--~ I 035 I 10 I FUNCTLON/SUBRTN I
f------------+----------+--~
I 036 I 10 I ARITH I
~--------------+--------+----~----------------------------------~
I 037 I 10 I CLASSIFICATION, ARITH, ASF, SUBIF 1
~------------+-------------+--~ I 038 I 10 1 INTEGER/REAL/DOUBLE, EXTERNAL, COMMON, EQUIVALENCE, 1
1 1 I DIMENSION I
~-------------+------------+---~
I 039 I 10 I SYMTLU I
~------------+---------+--~ I 041 1 10 I ASF, EXTERNAL, DIMENSION 1
~-----------+-----------+--~
I 043 1 10 I INTEGER/REAL/DOUBLE, GOTO 1
~--. ----------+---------+--~
I I 12 I ALOC. I
~------------+--------+---~
I 044 1 10 1 LITCON 1
~-------------+------------+---~
1 045 1 10 1 LITCON I
~ +------------+---~ I 04.6 I 10 I LITCON I
~-----------+-------------+---~ I· 047 I 10 I CLASSIFICATION, DIMENSION I
~--------------+-----------+---~
I 048 I 10 I DIMSUB . I
~---------------+-------------+---~--------------~----------------------------------~ I 049 I 10 I DIMENSION, DIM90 I
~-----------+-------------+--~
I 050 I 10 I EQUIVALENCE I
~-----------+-----------+---~ I 051W I 10 1 EQUIVALENCE, DIMENSION I
~-----------+------~----+------------------------------. -------------------~ I 052 I 10 1 SUBS, EQUIVALENCE I L _____________ J. ____________ J. __ J

(continued)

Appendix A: AnalysiS Aids 479

Table 3. Error and Warning Messages ~ontinue~

r---------~---------T-----------------------~------------------,
I Message Number I Phase I Subroutine or Routine I
f----------+__ -+---~ I 053 I 10 I SUBS I
~--------+----------+-------------------------.--------...;.;...---...,.-....,~
I 0511 I 10 I ASF I
~-----------~-------+---~
I 055 I 10 I FUNCTION/SUBRTN I
.--.--------+----------+---~
I 056 I 10 I GOTO I
f----------+----------+--~
I 057 I 10 I READ/WRITE I
.----------+-----------+--~
I 058 I 10 I READ/WRITE I
.----------+------------+--~
I 060 I 10 I EQUIVALENCE I
~------+---------+------------ -------------~---------~
I 061W I 10 I END MARK CHECK I
.---------~----------+-----------------------------~----------~
I 063 I 10 I EQUIVALENCE I
~----------+----------+--~
I 0611 I 10 I LABTLU, SYMTLU I
.-------+--------+--~
I 065W I 10 I CLASSIFICATION, LABLU, PAKNUM I
~--------+------------+---~
I 066 I 10 I DO I
~--------------+------------+---~ I 068 I 10 I LITCON I
.--------+----------+--~
I 069 I 10 I ASF I
.-----------+------------+-----------------------------~----------------~
I 070 I 10 I FUNCTION/SUBRTN I

~---------+-----------+---~
I 071 I 10 I CALL I
.-----------+-----------+--~---~
I 072 I 10 I ARITH I
~----------+----------+--i
I 073 I 10 I PUTX I
.----------+------------+--------------------------~-----------------------~
I 0711 I 10 I COMMON I
~----------+---------+--i
I 075 I 111 I FORMAT, LINECK I
.------------+----------+---~
I 076 I 111 I READ/WRITE, FORMAT, RPARENI
.------------+-------------+---~ I 077 I 10 I ASF, READ/WRITE, END MARK CHECK, DO, SUBS, EQUIVALENCE, I
I I I FUNCTION/SUBRTN, DIMSUB, DIMENSION, SKPBLK I

.----------~-----------+--~ I I 111 I READ/WRITE, DO, FILLEG, SKPBLK I

.------------+-------------+--....,---~
I 078 I 111 I CKENDO I
.------------+------------+---~
I 079 I 10 I GO TO I
.-------------+------------+--~
I I 14 I READ/WRITE, DO I
~-----------+-------------+--~
I 080W I 10 I GOTO I
.----------+--------+--..,---------~
I I' 14 I READ/WRITE I
~-----....,------+-------------+----------------...,.-----------------------------~ I 081W I 10 I ARITH, EQUIVALENCE . I
.--------------+------------+--~ I I 14 I READ/WRITE, D/E/F/I/A I
.------------+------------+--~
I 082 I 10 I LITCON I l _____________ .L-____________ ~ __ J

(continued)

480

Table 3. Error and Warning Messages (continued)
r----------------T-------------T--,
I Message Number I Phase I Subroutine or Routine I

~----------------+-------------+--~
I I 14 I NOFDCT, INTCON 1
~----------------+-------------+--1
1 083 1 10 1 CSORN, INTCON I
~----------------+------------~+--1
1 1 14 1 INTCON I
~----------------+-------------+--1
1 084 1 10 1 ERRET/WARNING 1
~----------------+-------------+--1
I 1 14 I ERROR/WARNING I
~----------------+-------------+--~
I 085 I 12 I DPALOC, SALO I
~----------------+-------------+--~
I I 14 I PRESCN I
~----------------+_------------+--1
I 086 I 14 I BLANKZ I
~----------------+-------------+--~
I 087 I 14 I D/E/F/I/A, T I

~----------------+-------------+--1
I 088 1 14 I LPAREN I
~----------------+-------------+--1
I 089 1 14 1 UNITCK/UNIT1 I
~----------------+-------------+--1
1 090 I 14 I QUOTE/H 1
~----------------+-------------+--1
I 091 I 14 I +/-/P I
~----------------+-------------+--~
I 092 I 14 I FCOMMA 1
~----------------+-------------+--1
I 093 I 14 I GETWDA 1
~----------------+-------------+--1
1 094 1 14 I D/E/F/I/A I
~----------------+-------------+--~
I 095 1 14 I READ/WRITE I
~----------------+-------------+--~

. I 096 I 14 I READ/WRITE I
~----------------+-------------+--~
I 097 I 14 I READ/WRITE I
~---------------+-------------+--~
I 098 I 14 I QUOTE/H I
~----------------+-------------+--1
I 099 I 14 I QUOTE/H I
~----------------+-------------+--~
I 100 I 14 I DO I
~----------------+-------------+--~
I 123 I 15 I MOPUP I
~----------------+-------------+--~
I 124 1 15 I COMMA ·1
~----------------+-------------+--1
I 125 I 15 I DO, BEGIO I
~----------------+-------------+--~
I 126 1 15 I CKARG I
~----------------+-------------+--~
I 127 1 12 I COMAL, ALOC 1
~----------------+-------------+--~
I I 15 I PRESCN, UMINUS, UPLUS, FOSCAN I
~----------------+-------------+--~
I 128 I 15 I LFTPRN I
~----------------+-------------+--1
I 129 I 15 I TYPE I
~----------------+-------. ------+--~
I 130 I 15 I COMMA I l _________ ~ _____ ~ _____________ L _____________________________________ ~ _________________ J

(continued)

Appendix A: Analysis Aids 481

Table 3. Error and Warning Messages ~ontinue~

r---------T-----------T-------------------------------------, I Message Number I Phase I Subroutine or Routine . I
~---------+---------+--~ I 131 I 15 I INLIN1 I
~--------------+----------+--~
, 132 - , 15 , LABEL ,

~-------------+-------------+---~
I 133 I 15 I EQUALS J
~--------------+------------+------------------------------------~-------------~
I 134 , 15 I ERROR/WARNING I
~------------+------------+--~
, 135 I 15 I COMMA, TYPE ,

~------------+----------+---~
I 136 I 15 I LAB ,
~------------+-----------+--~
I 137 I 15 I COMMA, TYPE, RTPRN I
~------------+---------+--~
I 139 I 15 I COMMA I
~------------+-----------+---~
, 140 , 15 , FOSCAN ,

~---------------+-------------+--~ I 141 , 15 ,COMMA ,

~-------------+-------------+---~ I 142 , 15 I DO, BEGIO ,

~--------------+-------------+---~ I 143 , 15 , EQUALS ,

~--------------+--------+-----------------------------------~--------------~ I 144 I 15 I ARTHIF ,

~------------+-----------+--~
, 145 , 12 I EXTCOM ,

~--------------+------------+--~
, ,20, PHEND ,

~---------------+----------+--~ I 146 , 12 , COMAL, RENTER/ENTER, SWROOT ,

~----------+-------------+--1
I 147 I 12 I EQUIVALENCE I
~--------------+-----------+---~ I . 148 I 12 I RENTER/ENTER, SWROOT I
1------------+------------+--'------~
I 149 I 12 I COMAL I
~-----------+------------+---~
I 150 I 12 , ALOC I
~-----.--------+-----------+--~
I HOW I 10 I PUTX I
~----------------+------------+---i
I I 14 , INTCON I
~-------------+-----------+---i I I 15 , COMMA ,

~----------:---+--------+--~
I 161W I 12 I EXTCOM I
~----------+-----------+--i
I 162W I 10 I CLASSIFICATION I
~--------------+-----------+-----~---~
I 163W I 10 I LITCON I
~------------+------------+-------------------. --------------------------------~ I 164W I 10 I CONTINUE/RETURN I
~----------+------~------+---i I I 14 I PAUSE/STOP/SKIP, FORMAT I
~--------+------------+--~---~
I 166W I 10 I END MARK CHECK, DO, FUNCTION/SUBRTN I
~------------. +-----------+--------------~----------. -----------------i
I I 14 I READ/WRITE I
~-------+---------+-. -----------------.,.---------------------~
I 167W I 14 I LINECK I L-. _________ .L-__________ ---L __ J

(continued)

482

Table 3. Error and Warning Messages (continued)
r-------T-------T--,
1 Message Number 1 Phase 1 Subroutine or Routine 1
~----------+----------+--i 1 168W 1 10 1 END MARK CHECK 1
~-----------+-----------+--i 1 169W 1 10 1 DIMSUB ,
~---------+---------+---i
1 1 15 1 COMMA 1
~---------+-----------+---------------------------------:__--------i 1 17 OW , 14 1 X 1
~-------+------------+---------------------------.... -----------i 1 171W' 1 10 - 1 END MARK CHECK 1
~----------+------------+--i - 1 1 14 1 RPAREN 1
~-----------+-----------+--------.--------------------------------------i
1 172W '. 1 1 0 1 ASF 1
~-------------+----------+--------------------~--------------------------i
1 173W 1 10 1 ARITB 1
~------------+-----------+------------------------. -----------------i
1 174 1 15 1 EQUALS, LFTPRN, INARG, TYPE 1
~---------+------:__----+---i 1 175W 1 14 1 LABEL , l _____________ .L ___________ .L ________ ..:. _____________________________________ J

STATEMENT PROCESSING

Table 4 indicates, within each campil- ble for the processing of the statement
er phase, the routine/subroutine responsi- under consideration.

Table 4. processing Subroutines
r----------------~-------T------T-------T------T--------T----------,

IStatement Condition 1 1 1 1 1 1 1
, or Keyword IPhase 10 IPhase 12 IPhase 14 IPhase 15 ,Phase 20lPhase 25 1
~:--------. -------+--------+---------+--------+------+--------+---------i
IArithmetic Expression 1 1 1 I' 1 1 1
I or Statement I ARITB I 1 PASSON" I FOSCAN I ARITB I RXGEN I
~---------------+-------+--------+------~+-----+------+----------i
I 1 1 1 1 1 BANDLE/ 1 FUNGEN/ 1
1 FUNCTION Call I ARITB 1 LDCN I PASSON" 1 FOSCAN I CALSEQ 'EREXIT 1
~-------------+_----------+--------+----~---+--------+--------+---------i
1 1 I I. I MVSBXX/ 1 1 I
ISubscripted Variable ISUBS SSCK 1 PASSON" IMVSBRX IOPTMIZ ISAOP, AOP I
tAS;-definiti~~-;~a---t---------t--------t---------t------t-------t~s;~;;:---1
1 expansion I ASF 1 LDCN ,ASF' . I FOSCAN I ARITB 1 ASFEXP ,
~---------~-------+---------+~--------+--------+---------+-------+---------~ 1 Statement Number 1 CLASS IF- 1 I 1 I 1 I
1 Definitions IICATION 1 ASSNBL 1 LABEL ILABELDEF ILABEL ILABEL I
~-------------+---------+-----------+---------+------+--------+---~---i
1 ASF Call I ARITB . I LDCN 1 PASSON' I FOSCAN 1 CALSEQ 1 ASFUSE 1
~------------------+-----------+--------+-----~-+---------+--------+----------i
1 IBKSP/REWIND/I 1 1 1 I 1
1 BACKSPACE I END/ENDFILE 1 1 BSPREF' 1 SKIP 1 ESDRLD 1 RDWRT 1
.~-------------+---------+--------+---------+------.+-------+--------i
1 1 I' 1 1 1CALL/ IFUNGEN/ 1
1 CALL 1 CALL 1 LDCN 1 PASSON' I FOSCAN 1 CALSEQ 1 EREXIT- 1
~-------------...,--+_-------+__----+------+-------+--------+---------i
1 COMMON 1 COMMON ICOMAL I 1 1 1 1
~---------------+_---------+----------+------+-------+-------+----------i
1 Computed GOTO I GOTO 1 I PASSON" 1 COMPGOTO I CDGOTO I CGOTO 1
~-----------------+_---------+_--------+------+-----+------+----------i
1 ICONTINUE/. 1 ·1 1 1 1 1
I CONTINUE 1 RETURN ' 1 1 SKIp1 1 SKIP I - 1 1
l __________________ .L..., ____ ...,.,.._~-.L--------.L~------.L-------.J.------__ .L __________ J

(continued)

Appendix A: Analysis Aids 483

Table 4. processing Subroutines (continued)
r-------- , ----T-----~-----T-----T----~-------,

I DIMENSION , I DIMENSION I I I I I I
t-----------r_------',+------+------+----+------+--------i
I I I I I I ID01, I
IDO IDO I IDO IDO 100 IENDOO I
I------------+------+------+------+----+------+-------i
I I INTEGER/ I I I I I I
I DOUBLE PRECISION I REALlDOUBLE I DPALOC I ' I I I I
t--- I ----+-------+-~---+-----+-----+-------i'
I IBKSP/REWIND/I I I I I I
I END I END/ENDFILE I I END I MOPUP I PHEND I END I
1------------+---' ---+-----+-------+------+-'------+------:..--i
I I BKSP/REWIND/ I I I I - I I
I END FILE I END/ENDFILE I I BSPREF1 I SKIP I ESDRLD I RDWRT I
1------------+---:----+------+--------+-----+--------+---------i
I EQUIVALENCE I EQUIVALENCE I EQUIVALENCE I I I I I
.---------+------+--.;;;---+-------+--------+-------+---------i
I EXTERNAL I EXTERNAL I LDCN ' I I I I I
.-----------+------+-------+-------+------+-------+---------i
I FORMAT ' I FORMAT I I FORMAT I I I I
.--------.;;.----+--------+-------+-------+-------+-------+---------i
I IFUCTION/ I , , I I I
I FUNCTION I SUBRTN I LDCN I SUBFUN1, I· I , I SUBRUT I
1-----------+---------+---,-----+-------+------+--------+----------i
IGOTO ,GOTO, ,PASSON1 IGOTO, ITRGEN,

.------------+---------+-------+-------+-------+--------+--------i
I IF I SUBIF I I PASSON' I FOSCAN I IF I ARITHI ,
.------------r_-------~+---------+-------+-------+-~----+----------i
I I INTEGER/ I I I I I I

~I~GER __ - _______ +~EAt~~~~~~t~AL~----+------+------+------~+-________ ~
I PAUSE I STOP/PAUSE I I PAUSEt I SKIP I I STOP/PAUSE I
.-------~-----r_--------+---------+-------+------~+-----~--+----------i
I I . I , I I READ, IRDWRT/ 'I
IREAD I READ/WRITE I I READ/wRITEI BEGI/O I LIST I IOLIST I

r------------t;;;GW----t---------t-------t------t--------t---------1
I REAL I REAL/DOUBLE I SALO I , I I ,
.------------+--------+------+--------+------+-------+~--------i
, I CONTINUE/ I I I I I ' I
I RETURN I RETURN' I RETURNt I SKIP I I RETURN I
.----------t--------t-------+------+------+--------+---------i
I IBKSP/REWIND/I I I I I I
I REWIND I END/ENDFlLE , , BSPREFt I SKIP , ESDRLD I RDWRT ,
.-~-----------+__--,---r_~-------+-----+-----+-------+--------i
I STOP I STOP/PAUSE I I STOP' I SKIP I I STOP/PAUSE I
I-------------r_-------+----------+--------+-----+--------+---------i
, , FUNCTION/, , , I I , I
,SUBROUTINE - I SUBRTN , LDCN I SUBFUN" I FOSCAN' I SUBRUT ,
t--------------+-------+------+--------+------+--------+---------i
, I I , I I 'RDWRT/ I
I WRITE 'REAO/WRITE , , READ/WRITE I BEGI/O , LIST I IOLIST I

.----, --------+-------+--------+-------+------r_------+----------i
, 'I" I IFUNGEN/ I
I In-line Functions I ARITIi I LOCN I PASSON1 , FOSCAN I FIXFLO , EREXIT I 1--__ -:--_____ .1. _______ .1. ______ .&. _________ .1. _____ .1.-____ .&. ________ -i

,tDescribed in Phase 14 adjective code subroutine. I L....-______________ ' _______________________ - ________________ J

484

The exponential subprograms are elements
of tne FORTRAN Library_ Their function is
to compute, at object time, the value of
exponential terms appearing in arithmetic
statements.

All linkages to the exponential subpro­
grams are compiler generated. Each time an
exponential term (e.g., x**y) is encoun­
tered during compilation, the compiler sel­
ectstne exponential subprogram which is to
perform the computation. The selection of
the subprogram is dependent upon the modes
of the base and exponent. A calling
sequence to the selected subprogram is then
generated and included as part of the
object program. At object time, the call
is executed, thereby giving control to the
exponential subprogram to compute the value
of the exponential term.

The five exponential SubpI-ograms (FIXPI,
FRXPI, FDXPI, FRXPR, AND FDXPD) compute the
value of an exponential term according to
the modes of the base and exponent.

FIXPI Subprogram

The function of the FIXPI subprogram is
to compute the value of an exponential term
of the form x**y where oath X and Yare of
integer mode.

ENTRANCE: The FIXPI subprogram receives
control from the object time execution of a
compiler generated linkage. This linkage
is generated during compilation when an
exponential term, in which both the base
and exponent are of integer mode, is
encountered.

CONSIDERATION:
tions apply
subprogram:

The following considera­
to the execution of the FIXPI

1. An error exists in the term x**y where
X = 0 and Y :0;; 0

2. Ear Y * 0 and X = 1, x**y = 1
3. For Y * 0 and X = -1

a. x**y = +1 if Y is even
D. x**y = -1 if Y is odd

4. For X = 0 and Y > 0, x**y 0
5. For X * 0 and Y = 0, y**y 1

OPERATION: For positive values of Y,X**Y=
(X**K(31»*«X**2)**K(30»*«X**4)**K(29»
«X**8)**K(28»... whereK(I) is either 1
or 0 and I represents the bit pOSition in
the register containing Y. (The sign bit

APPENDIX B: EXPONENTIAL SUBPROGRAMS

position does not enter into the computa­
tion.) For negative values of Y, X**Y=O.

EXIT: After computing
exponential term, the
returns control to the
However, if an error
subroutine IBFERR which

. IBCOM.

FRXPI Subprogram

the value of the
FIXPI subprogram
object program.

exists, exit is to
is contained in

The FRXPI subprogram computes the value
of an exponential term of the form x**y
where X is of real mode and Y of integer
mode.

EN'rRANCE: The FRXPI subprogram receives
control from the object time execution of a
compiler-generated linkage. This linkage
is generated during compilation when an
exponential operation, in which the base is
of real mode and the exponent of integer
mode, is encountered.

CONSIDERATION:
tions apply
subprogram:

The following considera­
to the execution of the FRXPI

1. An error exists in the term x**y where
X = 0.0 and Y ~ 0

2. For X 0.0 and Y >0, x**y = 0.0
3. For X * 0.0 and Y = 0, x**y = 1.0

OPERATION: For positive values of Y,
implementation of the exponential term x**y
is the same as that described in subroutine
FIXPI. For negative values of Y, the 2's
complement of Y is taken and the exponen­
tial operation is implemented in the same
manner as that described in subroutine
FIXPI for positive values of Y; the reci­
procal of the result is then taken.

EXIT: After computing the value of the
term X**Y, the FRXPI subprogram returns
control to the object program; however, if
an error exists, exit is to subroutine
IBFERR.

FDXPI Subprogram

The function of the FDXPI subprogram is
to compute the value of an exponential term
of the form x**y where X is of double
precision mode and Y of integer mode.

Appendix B: Exponential Subprograms 485

Form Z28-6620-0
Page Revised 1/11/66
By TNL Z28-2117

ENTRANCE: The FDXPI subprogram receives
control from the object time execution of a
compiler-generated linkage. This linkage
is generated during compilation when expo­
nential term, in which the base is of
doubl-e precision mode and the exponent of
integer mode, is encountered.

CONSIDERATION:
tions apply
subprogram:

The following considera­
to the execution of the FDXPI

1.

2.
3.

An error exists
X = 0.0 and Y :::;
For X = 0.0 and
For X *- 0.0 and

in
o
Y
Y

the term x**y where

> 0, X**y 0.0
= 0, x**y 1.0

OPERATION: For positive values of Y,
implementation of the exponential term x**y
is the same as that described in subroutine
FIXPI. For negative values of Y, the 2's
complement of Y is taken and the exponen­
tial operation is implemented in the same
manner as that described in subroutine
FIXPI for positive values of Y; the reci­
procal of the result is then taken.

EXIT: After computing the value of term
X**Y, the FDXPI subprogram returns control
to the object program; however, if an error
exists, exit is to subroutine IBFERR.

FRXPR Subprogram

The function of the FRXPR subprogram is
to COillpute the value of an exponential term
of the form x**y where both X and Yare of
real mode.

ENTRANCL: The FRXPR Subprogram receives
control from the object time execution of a
compiler generated linkage. This linkage
is generated during compilation when an
exponential operation, in which both the
base and exponent are of real mode, is
encountered.

CONSIDERATION: Errors exist in the term
x**y where:

1. X = 0.0 and Y :::; 0.0
2. X<O.O

OPERATION: The computation is based on the
identity:

X**Y=e**(Y*log e X)

486

Log e X is calculated by using the ALOG
subprogram; the result is multiplied by Y
and e is then raised to the power Y*log e X
by using the EXP subprogram.

EXIT: After computing the value of the
exponential term, the FRXPR subprogram
returns control to the object program;
however, if an error exists, exit is to
subroutine IBFERR.

FDXPD SUbprogram

The function of the FDXPD subprogram is
to compute the value of an exponential term
of the form x**y where both X and Yare
double precision mode.

ENTRANCE: The FDXPD subprogram receives
control from the object time execution of a
compiler generated linkage. This linkage
is generated during compilation when an
exponential operation, in which the base is
of double precision mode and the exponent
is of either real or dOUble preciSion mode,
is encountered.

CONSIDERATION:
tions apply
sunprogram:

The following considera­
to the execution of the FDXPD

1. An error exists in the term x**y
where:
a. X = 0.0 and Y ~ 0.0
b. X < 0.0

2. If an exponential term, of the form
x**y where X is double precision mode
and Y is real mode, is encountered
during compilation, the exponent Y is
converted to dOUble precision. This
action permits such an exponential
term to be processed by the FDXPD
subprogram.

OPERATION: Implementation of the exponen­
tial operation is similar to that described
in' subroutine FRXPR; however, because the
operation is double prec~s~on, subprograms
DLOG and DEXP are used instead of subpro­
grams ALOG and EXP.

EXIT: After computing the value of the
exponential term, the FDXPD' subprogram
returns control to the object program;
however, if an error 'exists, exit is to
subroutine IBFERR.

Array displacement is the distance
between the first element in an array and a
specified element to be accessed from the
array. To increase compilation efficiency,
the array displacement is divided into
portions and computed during different
phases. To tie these separate computations
into one cuoLdinated presentation, the
method of array displacement computation is
developed in the following text.

ACCESS

Prior to discussing
tion, it"isdesirable
element is accessed
3-dimensional array.

the actual computa­
to understand how an
in a 1-, 2-, and

ONE DIMENSION

Assume a 1-dimensional array of five
elements, expressed as A (5). - To access any
given element in this array, the only
factor to be considered is the length of
each element. The third element, for exam­
ple, is two element lengths from the begin­
ning of the array.

TWO DIMENSIONS

For a 2-dimensional array, A(3,2), an
element can no longer be thought of as a
single array element. Instead, each ele­
ment in a 2-dimensional array consists of
the number of array elements designated by
the first number in the subscript expres­
sion used to dimension the array. For
reference purposes, an element in a
2.,...dimensional array will be called a'
dimension part. ~or example, in the array
of A (3,2) :

A (1 ,1) A (2,1) A (3, 1) --' - Dimension Part
r-------'--------~--------~
~A (1 ,2) A (2,2) A (3, 2) Dimension Part

the first dimension part consists
A (1,1), A (2, 1) and A (3, 1). Note that
number of elements .in each dimension
is the same as the first number (3) in

of
the

part
the

APPENDIX C: ARRAY DISPLACEMENT COMPUTATION

subscript expression used to dimension
array A. Dimension parts are consistent in
length. Length is determined by multiply.,...
ing the number of elements in a dimension
part by the array element length (e.g., 4
for a real array). The resulting value is
considered a dimension factor for the fol­
lowing discussion. (If the element length
in array A is 4, the dimension factor is 3
times 4 or 12.) The dimension factor plays
a significant role in accessing/a specific
element in a 2-dimensional array.

Prior to discussing how a specified
element is accessed, the hexadecimal number
scheme used to address an array element
must be ~aken into consideration. The
first digit of the hexadecimal number
scheme ~s used in the oompile~ is zero.
The 16 hexadecimal digits are:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F.

Consider that the element A(1,2) is to
be accessed from the array dimensioned as
A(3,2) • Observation showS one dimension
part must be bypassed in order to access
the specified element. The computation to
access this element requires the values in
the subscript expression (1,2). Each num­
ber must be decremented by 1 to compensate
for the zero-addressing scheme used by the
compiler. This leaves an expression of
(0,1). The second number (1) dictates the

number of dimension parts to bypass in
order to arrive at the dimension part in
which the specified element is located.
Once this dimension part is found, the
first number (0) indicates the number of
elements in that dimension part that must
be bypassed to access the specified ele­
ment.

THREE DIMENSIONS

The same reasoning can be projected into
a 3-dimensionaI array. For a three­
dimensional array, A(3,2i3), an element can
neither be considered a single array
element, nor thought of as a dimension
part. Each element in a 3-dimensional
array consists of the number of dimension
parts designated by the second number in
the subscript expression used to dimension
the array. For reference purposes, there­
fore, an element in a 3-dimensional array
will be called a dimension section. For
example, in the array of A(3,2,3):

Appendix C. Array Displacement Computation 487

Dimension Section
A(1,1,1) A(2,1,1) A(3,1,1h - Dim Part

r----------------~-----------~
~A(1,2,1) A(2,2,1) A(3,2,1)] - Dim Part
r-----------------------------
I

I Dimension Section
~A (1,1,2) A (2,1,2) A (3,1,2), - Dim Part
r-----------~----------------I
~A(1,2,2) A(2,2,2) A(3,2,2h - Dim Part
r---------------------------I

I

I Dimension Section
~A(1,1,3) A(2,1,3) A(3,1,3)-, - Dim Part
r---------------------,--------I
~A(1,2,3) A(2,2,3) A(3,2,3) - Dim Part

the first dimension section consists of the
dimension part beginning with A(1,1,1) and
the dimension part beginning with A(1,2,1).
In this example, we have three dimension
sections, as specified by the third number
in the subscript expression used to
dimension the array.

Again, the length of the dimension sec­
tions is consistent. The length, in this
case, is determined by multiplying the
number of elements in a dimension part by
the number of dimension parts by the array
element length. The resulting value is
considered a dimension multiplier for the
following discussion. (If the element
length in array A is 4, the dimension
multiplier is 3 times 2 times 4 or 24.)

Consider that the element A(2,2,3) is to
be accessed from the array dimensioned as
A(3,2,3) • Observation shows two dimension
sections, one dimension part, and one array
element must be bypassed in order to access
the specified element. The computation to
access this element requires the values in
the subscript expression (2,2,3). Each
number must be decremented by 1 to compen­
sate for the zero-addressing scheme used by
the compiler. This leaves an expression of
(1,1,2). The third number (2) indicates

the number of dimension sections to bypass
in order to arrive at the dimension section

A (2,2,3)
I
I Zero-addressing adjustment
I
V

A(1,1,2)
I I I
I I I

in which the specified element is located.
The second number (1) indicates the number
of dimension parts, within the accessed
dimension section, that must be bypassed to
arrive at the dimension part in which the
specified element is located. Once this
dimension part is found, the first number
(1) indicates the number of elements in
that dimension part that must be bypassed
to access the specified element. The
preceding example is illustrated in Figure
72.

This concept of how a specified element
is accessed from an array is generalized in
the following text.

GENERAL SUBSCRIPT FORM

The general subscript form
(C1*Vl+J1 ,C2*V2+J2 ,C3*V3+J3) refers to some
array, A, with dimensions (D1, 02, 03) •
The required number of elements is speci­
fied by (C1*V1+J1); ~2*V2+J2)*D1; and
(C3*V3+J3)*01*D2, representing the first,

second, and third subscript parameters mul­
tiplied by the pertinent dimension informa­
tion for each parameter. Therefore, the
required number of elements for the general
subscript form is:

(C1*V1+J1) + (C2*V2+J2) *01+ (C3*V3+J3) *01*02

ARRAY DISPLACEMENT

The array displacement for a subscript
expression, specifically. stated~ is the
required number 6f array elements mUlti­
plied by the array element length. There­
fore, the array displacement is:

[(C1 *V1+J 1) + (C2*V2+J2) *D1 +
(C3*V3+J3) *D1*D2)] *L

I I
I , L-__ > 2 dimension sections}

Must be bypassed to
, L ____ > 1 dimension part , access specified element
L ______ > 1 array element

Figure 72. Access of Specified Element in Array

488

Because of the zero-addressing scheme, the
displacement is:

(C1*V1+J1-1) *L+ (C2*V2+J2-1) *D1*L+
(C3 *V3+J3-1) *D1.*D2*L

This expression can be rearranged as:

(C1*V1*L+C2*V2*D1*L+C3*V3*D1*D2*L)+
[(J1-1) *L+ (J2-1) *D1*L+ (J3-1) *D1*D2*L)]

The first portion of the array displace­
ment is referred to as the CDL (constant,
dimension, length) portion and is derived
from:

V1,V2, and V3 are the variables of the
expression and cannot be computed until the
execution of the object program. This
leaves the following components, which con­
stitute the CDL portion of the displace~
ment:

C1*L is the first component,
C2*D1*L is the second component, and
C3*D1*D2*L is the third component.

The COL components are calculated during
Phase 20.

The second portion of the array dis­
placement:

(J1':'\) *L+ (J2-1) *D1*L+ (J3-1) *D1*D2*L

is known as the offset portion and is
calculated by Phase 10.

Phase 25 combines the CDL components,
the variables, a~d the offset to produce
the array displacement. The procedure is
as follows: the first component of the CDL

-multiplied by the first variable of the
subscript expression (C1*~ *V1i plus the
second component of the CDL multiplied by
the second variable of the subscript
expression (C2*D1*~*V2, plus the third
component of the CDL multiplied by the
third variable of the sub~cript expression
(C3*01*D2*L) *V3i plus the offset:

(J1-1) *L+ (J2-1) *D1*L+ (J3-1) *D1*D2*L.

Appendix C. Array Displacement Computation QS9

APPENDIX D: LIST OF ABBREVIATIONS

ADDR
ADJ
ARG
ARGLST
ARITH
ASF
ASFDEF

ASGND
ASSOC
AVAIL

BALR
BCD
BGNG
BKSP
BND VAR
BUFF

CHAR
COMM
COND
CORR
CNT
CTRL
CUR

DEC
DICT
DIM
DIRCTRY
D.P.
DR
DRCTOR
DSPL

EBCDIC

ENT
EODS
EOF
EQU
EQUTAB
ESD
ESID

EXP
EXT

FLDCNT
FLT
FSD
FUNC

GENRTED
GT

HEX

INCRMT
IDENT

490

Address
Adjective
Argument
Argument List
A:ti thme'tic
Arithmetic Statement Function
Arithmetic Statement Function

Definition
Assigned
Associated
Available

Branch and Link Register
Binary Coded Decimal
Beginning
Backspace
Bound Variable
Buffer

Character
Common
Condition
Correct
Count
Control
Current

Decimal
Dictionary
Dimension
Directory
Double Precision
Drive
Director
Display

Extended Binary Coded Decimal
Interchange Code

Entry
End of Data Set
End of File
Equivalence
Equivalence Table
External Symbol Dictionary
External Symbol ~dentifi-

cation Number
Exponent
External

Field Count
Floating
FORTRAN System Director
Function

Generated
Greater Than

Hexadecimal

Increment
Identification

IDX
INFO
INSTR
INTERMED
I/O
IPL
ISN

LFTPRN
LNGTH
LOCATN
LOC CTR
LT

NEC
NO

OPRND
OP TBL

PARAM
PAREN
PHSE
PNTR
POS
PREV
PRGNAME
PROG

REF
REFRNCD
REG
REGUL
REP
RLD
ROUT
RR
RTN
RTPRN
RX

SBCRPT
SEQ
SPEC
STD
STMNT
SUBRTN
SUBS
SVC
SW
SYM
SYS

TXT

UNASS

VARS

WARN
WRK

Index
Information
Instruction
Intermediate
Input/OutpUt
Initial Program Load
Internal Statement Number

Left Parenthesis
Length
Location
Location Counter
Less Than

Necessary
Number

Operand
Operations Table

Parameter
Parenthesis
Phase
Pointer
Position
Previous
Program Name
Program

Reference
Referenced
Register
Regular
Represent
Relocatable Dictionary
Routine
Register to Register
Return
Right Parenthesis
Register to Storage

Subscript
Sequence
Specification
Standard
Statement
Subroutine
Subscript
Service
Switch
Sylnbol
System

Text

Unassigned

Variations

Warning
Work

APPENDIX E: AUTOCHART SYMBOLS

......... ell- ** *** ... * ... ** *** *·If * ** *** .. * ... ** ** .. * * * * ... * ** *** **** ** *** *'* * *** ... * * * ** ** * * ** ... * ** ** * *** * *** ... * ** ** ** ****** ... * ******

· *

·

FUNCTIONAL SYMBOLS

A 1 ** *** • *
... LIBRARY

... ROUTINE
*********-)1,*

.

*****81 **** ******
* PROCESSING

· *

· ·

· *,

· · · ·
· ·

· ·
· ·
· *

· ·

BLOCK

• *.
Cl

.* *. • * DECISION *.
. BLOCK .

. .
. .

* •• *
*

****D 1 ***'****** · TERMINAL *
BLOCK

************* **

*****E 1 **** *** · · MODI F leAT ION * · BLOCK .

******F 1 ***********

· INPUT /OtJTPUT
BLOCK

*****G 1 **** ****** · . *-*-*-*-*-*-*-*-*
SUBROUTI NE

BLOCK

ON'PAGE
CONNECT OR

x
**** • *

* C3 * * •

OFF'PAGE
CONNECTOR

* ..

· ·
* ·

*
* · *

· · · ·

· *

· SAMPLE fLOWCHART

****C2*********
* •

USER ENTRY

***** *ZA ...
... C3* . .

* •
... C3 X. · .
*****C3**********
• * .

. .
••••••••••••••••••••••••• X •

• x.
03 *.

.* *.
.* *. •••• *. .* ••••
. . *. .*

* •• * .
.GeTO

*****E3**********
*SUBNM ZCA 1 *
--*-*-*-*-*-*-* .

. .

.X •••••••••••

.x.
F3 *.

BLOCK C3 IS ENTERED FROM THIS CHART AND FROM
AT LEAST ONE OTHER CHA~T. ALL REFERENCES TO
OFF-PAGE ENTRY CONNECTORS CAN BE FOUND IN
AUTOCHART CROSS-REFERENCE TABLE II •

· ·

THE TERMINAL BLOCK IS USED TO SHOW USER ENTRY
AND EXIT POINTS WHEN THE PROGRAM BEING ..
FLOWCHARTED IS AVAILABLE TO AND IBM CUSTOMER. ..
IT IS ALSO USED AS AN EXIT CONNECTOR WHEN
THE TO LOCATION IS TO NO SPECIFIC CHART AS IN
A MULTIPLE USE SUB ROUT I NE. <

· ·

* THE INSTRUCTION AT SYMBOLIC LOCATION GOTO *
CALLS A SUBROUTINE NAMED SUBNM. THE LOGIC OF
SUBNM IS SHOWN ON CHART ZC STARTING AT BLOCK
AI. ALL REFERENCES TO SUBOUTINES CAN BE
FOUND IN AUTOCHART CROSS-REFERENCE TABLE Ill. :

· ·
* ·

****F2********* .* *. ****
* * .* *. * USER EXIT *X •••••••• *. .* •••. X* C3 *

* L *. .* * *
*************** I. *. .*

****H2*********
* •

N. * •• *
E. •
S.

C.
R.
O.
S.
S.
I.
N. •
G ••••••••••• X. LINE JUNCTION

X
*****H3**********
* * *-*-*-*-*-*-*-*-*

*VAR I ABLE RETURN*X •••••••• *
* • * · . *****************

*ZB * * A2* • *

ON-PAGE EXIT CONNECTOR-
CONTROL TRANSFERS TO BLOCK C3 ON THIS CHART.

OFF-PAGE CONNECTOR-
CONTROL TRANSFERS TO BLOCK A2 ON CHART ZS.

* ·

· ·

· ·

*
*

* 4444444***.***

Appendix E: Autochart Symbols 491

GLOSSARY

address constant: Area into which the
address of a respective routine, external
function, or symbol is to be relocated by
the FORTRAN loader. It may be used to
calculate storage addresses.

argument: A variable that is given a con­
stant value for a specific pUrpose or
process. An independent variable.

argument list: List containing the
addresses of arguments constructed when an
adjective code indicating a call to an
external or arithmetic statement function
is detected.

array displacement: The distance in bytes
between the first element in an array and a
specified element to be accessed from the
array.

backward DO: Condition occurring when the
statement ending the DO loop is sequential­
ly in front of the statement that defines
the DO.

base displacement address: A 2-byte
address in hexadecimal representing the
base register and the displacement in a
machine language instruction.

bound variable:
is used in a
redefined.

An integer
subscript

variable that
expression and

branch table: A
FORTRAN compiler:
program: a list
addresses that control

table compiled by the
resident in the object

of statement number
branching.

COL: A portion of the array displacement
for a subscript expression; calculated by
utilizing Constant, Dimension,·· and Length
information.

chain: A series of items linked together
by addresses.

chaining:
compiler
entered
table.

Technique used by the FORTRAN
.to arrange and retrieve items

in the dictionary and overflow

COMMON text: Table of variables aSSigned
to the COMMON area by COMMON statements in
the source program.

communications area: Central gathering
area for information common to all phases
and communications between phases.

control segment: The output of a single
compilation within the user program.

492

DECK option: An option that indicates that
the object program is to be punched on
cards during compilation.

data parameter: The address of the first
byte of data to be processed, and the
nUmber of bytes to be processed.

data set: A named collection of data in
one of several prescribed arrangements.

data set control block (DSCB): A block
that varies in size from 22 to 44 bytes.
Describes the physical device identified in
DSTAB and the extent of operations to be
performed on that device.

data set table (DSTAB): A list referenced
from the I/O routines, and composed of one
6-byte block for each data set.

decimal length: Number of bytes reserved
for decimal places within the field length
in a FORMAT statement.

dictionary: A reference area that contains
all names, constants, and data set ref­
erence numbers used in the program.

displacement: Distance
variable and its root
class or group.

in bytes between a
in an EQUIVALENCE

DO list: A list of subscript expressions
within the DO loop.

dummy: Something characteristic of a spec­
ified item, but not having the capacity to
function as that item.

dummy variable: A dummy used to define
operations performed on arguments in state­
ment function or subprogram definitions.

element count: The number of entries in an
EQUIVALENCE group or class.

end DO: The statement that ends a DO loop.

end of data set: A signal that the last
record of a data set has been read or
written.

~: Incorrect usage of the FORTRAN lan­
guage that can force the end of compila­
tion.

epiloq table: Area containing information
necessary to return the value of variables
used as parameters to the calling program.

EQUIVALENCE class: A number of EQUIVALENCE
groups linked together by names common to
two or more groups.

EQUIVALENCE grout!: Names
and right parenthesis in
statement.

between a left
an EQUIVALENCE

EQUIVALENCE root: A member of an
-EQUIVALENCE group or class to which all
other~variables are equated.

EQUIVALENCE table:
subroutines that
EQUIVALENCE entries.

A table used by the
assign addresses for

EQUIVALENCE text: Table of EQUIVALENCE
groups assigned by EQUIVALENCE statements.

ESD cards: cards containing segment names
and external and internal entries to the
segments in the program being compiled.

ESD table: A table which contains the
address of each external symbol and an
address constant.

executable statement:
causes the compiler
instructions.

A ~ statement that
to generate machine

explicit
statement:
mode of
its name.

specification
Statement which declares the

a particular variable or array by

field count: The number of times a conver­
sion is to be repeated for an I/O list.

field length: NUmber of bytes reserved in
the input/output record for the variable in
the record,;

forcing scan: Directs the ordering of text
words of a statement by comparing the
forcing values of the respective adjective
codes.

FORMAT specification group: FORMAT speci­
fications that appear within a set of
parentheses.

GO (Compile and Go) option: Option indi­
cating that an entire job is to be compiled
and executed if there are no serious source
program errors.

GOGO option: Entire job is to be compiled
and executed irrespective of any source
program errors.

halt number: A number identifying a STOP
or PAUSE.

image: Refers to the BCD card image of a
symbol in the dictionary.

inmediate DO parameter: A constant, less

than 4096 bytes, used as a parameter in a
00 or implied DO statement.

implied DO: A method of indexing arrays in
input/output lists. \

index mapping table: A table which main­
tains a record of all registers used at
object time as index registers in subscript
calculation, and a record of the unique
subscript expression associated with each
register.

in-line function:
code whenever it
program.

intermediate text:
tion of the source
easily converted
instructions.

Function that generates
occurs in the source

An internal representa­
program that can be

to ~ machine language

internal statement number: a number
assigned to each FORTRAN statement before
it is processed.

I/O list: A.list of variables
in READ/WRITE statements.

and arrays

IPL: T he act of initial program load on
an IBM System/360 computer.

job: One ,or more source or object programs
in.many combinations along with any asso­
ciated input data.

keyword: A FORTRAN reserved word which
indicates the specific FORTRAN statement'to
be compiled.

LIST option: An
that the source
(listed) •

option which indicates
program is to be printed

literal: Data which is defined in the
source program as opposed to being read by
I/O commands.

location counter: A counter used to assign
addresses.

main program: A program to which control
is transferred upon completion of the relo­
catable loading of a set of programs.

main storage: All addressable storage
which instructions can be executed or
which data can be loaded directly
registers.

from
from
into

MAP option: Indicates the storage map of
an entry is to be printed on-line.

mode: A code used in the dictionary and
intermediate text denoting whether a symbol
or literal represents real, integer, or
double precision. In I/O, mode ind1cates

Glossary 493

set mode and whether the function is multi­
plex or burst mode.

multiple job: More than one compilation
with no regard to the number of object
programs within a job.

name: A string
characters the
alphabetic.

of alphabetic and numeric
first of which must be

nested implied DO: An implied DO within
another implied DO.

offset: A calculated indexing factor
to find the correct element in an array
a particular subscript expression
EQUIVALENCE element.

used
for
or

operations table: Temporary storage area
used during the ordering of operations
within a statement for any text words
referring to the operation.

ored: An inclusive OR machine operation.

overflow table: A table which contains all
dimension, subscript, and statement number
information within the program.

overlay: Loading a program or data into a
portion of storage where the current resi­
dent program or data is no longer required.

parameters: Variables given a constant
value for a specific process or purpose.

parenthesis count: Determines whether an
implied DO is nested within another implied
DO; determines hierarchy of arithmetic
operations.

pointer: An address indicated in text by p
that denotes the location of data or anoth­
er address.

point of definition: Point at which a
statement number is referenced by some
statement other than a DO or FORMAT state­
ment.

redefinition: Point at which the value of
an integer variable changes.

RLD cards: Contain addresses of items to
be relocated by the FORTRAN loader at LOAD
time.

494

save register technique: When a register
is required but one is not available, the
contents of required registers are placed
in the first available work area.

sequence error: FORTRAN
are out of sequence.

statements that

single job: Single compilation of a source
program or subprogram, with no regard to
the number of object programs within a job.

skeleton instructions: Instructions gener­
ated for use as constants or literals to
generate instructions.

spill base register: When registers 4, 5,
6, and 7 are used as base registers,
register 7 accepts all overflow.

spill technique: A method of using the
spill base register as a temporary base
register by inserting the proper base value
into the register before use, information
spills into the next register with the
exception of register 7 which repeats.

string: Contiguous group of characters
with no embedded blanks.

subprogram: A program that is a FUNCTION
or SUBROUTINE.

subscript table: Temporary storage area
for subscript text.

thumb index: A storage area which contains
the addresses of the first entry for each
chain.

~: A code used in the dictionary and
intermediate text denoting whether a symbol
represents a variable-, array, function, or
constant.

unassigned register: Condition existing
when a register is available for use as an
index register at object time.

warning: An error that is not serious
enough to abort object program execution.

zero addressing scheme: A numerical scheme
with zero as the lowest value.

ABS, Subroutine 344
Access 487
ADD Routine 235
Address Assignment 143
Address Constant 143,332
Adjective Code 78,79,184
Adjective Code and Number 184
Adjective Code, Field Length, and Decimal

Length 185
Adjective Code, Field Length, and Literal

185
Adjective Code Subroutines 186
AFTER Routine 456
ALOC, Subroutine 152
ALOWRN/ALERET, Subroutine 159
Analysis Aids 479
AOP Adjective Code 281
AOP, Subroutine 338
Argument Count 237
Argument List 220,238
ARITH IF Routine 241
ARITHI, Subroutine 334
Arithmetic Expressions 329
Arithmetic Statement Function 88,183
ARITH Part 1, Subroutine 87
ARITH Part 2, Subroutine 87
ARITH Part 3, Subroutine 88
ARITH Routine 287
Array Displacement Computation

76,280,487-489
ASF Argument Register 237
ASF, Subroutine 88
ASFDEF, Subroutine 339
ASFEXP, Subroutine 339
ASFUSE, Subroutine 339
ASGNBL, Subroutine 153
ASTRSK Routine 456
Backward DO 90

BASCHK/RXOUT, Subroutine 347
Base-Displacement Address 143
Base-Displacement Addressing Scheme 151
Base Value Table 328
BEGIO Routine 233
BKSP/REWIND/END/ENDFILE, Subroutine 93
Blank Common 383
BLANKZ, Subroutine 197
Bound Variable 282
Bound Variable List 283
Branch Instructions 334
Branch List Tables 105,146,190,332

for ASF Definitions 328
for DO Statements 328
for St~tement numbers 328

BVLSR, Subroutine 292

CALL Routine 239,288
CALL, Subroutine 90
Calls To a Printer 28
CALSEQ Routine 289
Card Formats 377
CCDATA Routine 59
CCEDIT Routine 59
CCFTC Routine 58
CCJOB Routine 58
CCLASS Routine 57
CCLOAD Routine 59
CCSET Routine 58

CEM/RDPOTA, Subroutine 188
CESDO Routine 385
CESDl Routine 385
CESD2 Routine 386
CGOTO, Subroutine 332
Chaining 35,70-72
CHCKGR, Subroutine 243
CKARG, Subroutine 247
CKENDO, Subroutine 191
CLASSIFICArION, Subroutine 86
CLEAR, Subroutine 293
CMPEND Routine 387
CMPESD Routine 385
CMPICS Routine 384
CMPLDT Routine 388
CMPREP Routine 386
CMPRLD Routine 387
CMPSLC Routine 384
CMPTXT Routine 386
COMAL, Subroutine 147
COMMA Routine 240
COMMON, Subroutine 95
COMMON Text 15,84,147
Communications Area 22,146
COMP GO TO Routine 233
Compilation 14,22,69

Completion of 18
COMPILE Routine 242
Completion of Execution 18
Completion of Modification 19
Continuation Card 95
CONTINUE/RETURN, Subroutine 92
Control Card Routine 14,57-67
Control Dictionary Elements 376
Control Routine 283
CONVERSION Routines 415
COPYC Routine 457
COPYCL Routine 457
COPYEC Routine 458
COPYL Routine 458
CSORN, Subroutine 99

Data Parameters for Print Calls 28
Data Set Designation 25
Decimal Length 183,195
D/E/F/I/A, Subroutine 196
DELET Routine 459
Device Code Bytes 26
Device Assignment Table 22,58,454
Dictionary 15,71-75,87,96,144,182
DIM, Subroutine 343 .
DIM90, Subroutine 103
Dimension Information 74
DIMENSION, Subroutine 93
DIMSUB, Subroutine 102
DINT Routine 29,30
Displacement 145,155
Displacement Field 99
DIV Routine 236
DO Routine 232,286
DO, Subroutine 90, 190
DOl, Subroutine 333
DPALOC, Subroutine 151
DSCB Check Byte 27
DSCB--Data Set Control Block 26,30
DSCB Flag Bytes 27
DSTAB--Data Set Table 25,30
Dummy Array 340

INDEX

Index 495

Dummy Integer Variable 190
Dummy SUbscripted Variable 149
Dummy Variable 89,147,153,340
DUMPR Routine 290
DVARCK, Subroutine 233

Editor 19,59,454-478
Editor T92LB2 Library Routine 12
END Routine 239
END, Subroutine 344
ENDDO Routine 286
ENDDO, Subroutine 333
ENDIO, Subroutine 337
END MARK CHECK, Subroutine 103
ENTRY, Subroutine 345
EODS Routine 390
Epilog Table 328,340
EQSRCH, Subroutine 155
EQUALS Routine 240
EQUIVALENCE Group 149
EQUIVALENCE Part 1, Subroutine
EQUIVALENCE Part 2, Subroutine
EQUIVALENCE Part 3, Subroutine
Equivalence Processing 145
EQUIVALENCE Table 146
EQUIVALENCE Text 15,84,85,145
Error Checks 221
Error Mask Byte 27
Error Recovery Procedures 28
Error Routines 28
ERROR Routine 389
ERROR, Subroutine 104
ERROR/WARNING, Subroutine 189
ERWNEM Routine 233
ESD, Subroutine 157
ESDPUN, Subroutine 294
ESD/RLD Records 282
ESDRLD/CALRLD/CALTXT, Subroutine
EXIT Routine 30
EXPON Routine 236
Exponential Subprograms 485
Exponentiation 283,341
EXTCOM, Subroutine 151
External Functions 153
EXTERNAL, Subroutine 95
External Symbol 156
External Symbol Dictionary (ESD)

Type 0 Card 378
Type 1 Card 378
Type 2 Card 379
Type 5 Card ~80
Identification number 151
Table 376

FBKSP, Subroutine 420
FEOFM, Subroutine 420
FCOMMA, Subroutine 198
FCVAI, Subroutine 419
FCVAO, Subroutine 419
FCVEI/FCBDI, Subroutine 418
FCVEO-FCVDO, Subroutine 418
FCVFI, Subroutine 418
FCVFO, Subroutine 419
FCVII, Subroutine 418
FCVIO, Subroutine 418
FDXPD, Subprogram 486
FDXPI, Subprogram 485
FENDF, Subroutine 416

496

461

94,148
94,149
150

293

FENDN, Subroutine 419
Field Count 195
Field Length 183,195
FILLEG, Subroutine 198
FINDR, Subroutine 243
FIOAF, Subroutine 416
FIOAN, Subroutine 419
FIOCS, Subroutine 421
FIOLF, Subroutine 416
FIOLN, Subroutine 419
FIXFLO, Routine 290
FIXFLT, Subroutine 342
FIXPI, Subprogram 485
Flags

SILI 30
Call wait 34
Wait check 34
Chaining 34
GO· 59
NOGO 59

FLDCNT, Subroutine 200
Forcing Scan 220
Forcing Value Tables 223
FORMAT Entries 83
FORMAT Overall Logic 195
FORMAT Statements 183

Structure of, 183
FORMAT, Subroutine 95,196
FORMAT Text Card 184
FORTRAN Loader Functions 377
FORTRAN Printer Carriage Control
Characters 28,34

FORTRAN Relocating Loader 18,57-59,376-413
FORTRAN System Director 14,22-56,57

Compilation 14
Execution 18
Modification 19

FOSCAN Routine 223
FPAUS, Subroutine 421
FRDNF, Subroutine 419
FRDWF, Subroutine 416
FREER, Subroutine 243
FRWND, Subroutine 420
FRXPR, Subprogram 486
FRXPI, Subprogram 485
FSLASH, Subroutine 199
FSTOP, Subroutine 452
FUNC Routine 239 ..
FUNCTION/SUBRTN, Subroutine 91
FUNGEN/EREXIT, Subroutine 341
FWRNF, Subroutine 419
FWRWF, Subroutine 416

GEN, Subroutine 291
GENBC, Subroutine 346
GENCON, Subroutine 294
GENER, Subroutine 291
General Subscript Form 488
Generation of Literals 280
GET, Subroutine 106,346

97
GETN Routine 291
GETWD, Subroutine
GETWDA, Subroutine
GNBC6, Subroutine
GOFlLE, Subroutine
GO TO Routine 233
GOTO, Subroutine 89

201
342

158,190

Group Count 184
GENGEN, Subroutine 291

HANDLE, Subroutine 293
Header Card 91
HEXB Routine 388
HOUSEKEEPING, Subroutine 96

IBCOM 414-452
IBCOM Subroutines
IBEXIT, Subroutine
IBFERR, Subroutine
IBFINT, Subroutine
IER Routine 383
IFRoutine 288

416
422
421
421

Immediate DO Parameter 334
IMPDO Routine 286
Implied DO 90,182,192
INARG, Subroutine 247
Include Segment Card 378
Indexing Factor 75
Index Mapping Table . 280-292
ININ, Subroutine 245
ININ/GET, Subroutine 19.0
INIT Routine 283
Initialization 14,279,422
INITIALIZATION, Subroutine 330
Initial Program Load 14
In-Line FUnctions 72,153,341
INLINl Routine 246
INLIN2, Subroutine 246
INOUT, Subroutine 188,245
Input/Output

Functions 22,30,31
List Section 415
Operations 22,30
Interrupts 22,31
Formats 224

Instruction Generation 329
INTCON, Subroutine 100,202
INTDCT, Subroutine 156
INTEGER/REAL/DOUBLE, Subroutine 96
Intermediate Text 78-84,87,182,329
INVOP Routine 234
IOLIST, Subroutine 336

Keyword 71,85

LAB, Subroutine 241
LABEL DEF Routine 241
LABEL Routine 286
LABEL, Subroutine 332
LABLU, Subroutine 98
LABTLU, Subroutine 99
Last Record Indicator 419
LDCN, Subroutine 153
LDPH Routine 29,30
Leading Length Accumulator 195
Leading Length Indicator 198
LFTPRN Routine ,1 98, 238
Library Function 341
Line Count 59
LINECK, Subroutine 200
Line Length 461
LINETH, Subroutine 200
Linkage Register 237,347
List Item 418
LIST Routine 287

LITCON Part 1, Subroutine 100
LITCON Part 2, Subroutine 101
LITCON Part 3, Subroutine 101
Literals 154

Generation of 280
offset 280

Load end Card 382
Loading Process 376
LOADR1, Subroutine 244
Load Terminate and Data Cards 382
Location Counter 143,144,376
LODREF Routine 389
LPAREN, Subroutine 198

Mantissa 101
MAP Routine 389
Messages 479,483
MODE, Subroutine 245
Mode/Type Code 78,80
MOPUP Routine 234
MSG/MSGMEM, Subroutine 188
MSGNEM/MSGMEM/MSG Routine 234
MULT Routine 235
MVSBRX, Subroutine 246
MVSBXX, Subroutine 245

Name 71
NIB, Subroutine 292
NOB, Subroutine 292
NOFDCT, Subroutine 201

Object Program 14
execution 18

Object Program Tables 328
Object-Time Execution 375
Offset 78,82,150
Offset Calculations 78
Offset Literal 291
Operation Specification 24
Operations Table 220
OPTMIZ Routine 290
Order of Operations 220
OVerflow Table 15,74-77,99

PAKNUM, Subroutine 99
Parameter List 340
Phase Modification 460
Phase 10 14,70-142
Phase 12 15,143-181
Phase 14 15,182-219
Phase 15 15,220-278
Phase 20 15,279-326
Phase 25 15,327-372
Phase 30 18,373
PHEND Routine 286
PINOUT, Subroutine 187,242
Point of Definition 282,293
PRESCN Routine 223
PRESCN, Subroutine 185,331
PRINT, Subroutine 106
Program Interrupt 421
PSW 29,30
PUNCH, Subroutine 293
PUTFTX, Subroutine 190
PUTX, PUTBUF, PUTRET, Subroutine 104

QUOTE/H, Subroutine 197

Index 497

RD Routine 383
RDACRD Routine 455
RDOSYS Routine 460
ROWRT, Subroutine 335
Read Not Requiring a Format 415
Read Requiring a Format 414
READ Routine 285
READ/WRITE Statements 182
READ/WRITE, Subroutine 191
Record Length 195,420
Record L.ength Accumulator 195
REDCRO Routine 459
Reference Table 376
REFTBL Routine 389
Register Assignment 221,280
RELCTL Routine 390
Relocation Factor 384
Relocation List Dictionary Card 381
Removing Entries From Chains 144
RENTER/ENTER, Subroutine 155
Replace Card 380
Return.

Error 23
Normal 23
Unit Exceptional Condition 23

RETURN, Subroutine 341
Return to User"s Program 28.
RLD, Subroutine 157
RLDTXT, Subroutine 348
RMVBVL, Subroutine 292
Root of EQUIVALENCE Group 150
Routines

(Routines are listed individually)
RPAREN, Subroutine 198
RROUT, Subroutine 347
RTPRN Routine 238
RXGEN/LM/STM, Subroutine 331

SALO, Subroutine 152
SAOP Adjective Code 281
SAOP, Subroutine 337
SAVER, Subroutine 243
Scale Factor 197
SDl Routine 30,32
S02 Routine 30,32
SD5 Routine 30,33
S07 Routine 30,33
SD72 Routine 33
S074 Routine 34
SD741 Routine 34
SERCH Routine 389
SERP Routine 32
Set Location Counter Card 377
SET Routine 461
SETMD Routine 31
SIGN, .Subroutine 343
Significant Byte Accumulator 156
SIODIR Routine 30,31
SIOGO Routine 31
SKIP Routine 234
SKPBLK, Subroutine 98
SKTEM, subroutine 98
Slash Specification

(see T Specification)
SNTPIN Routine 31
SORLIT, Subroutine 154
SORSYM, Subroutine 156

498

Source Program compiled 14
Source Program Compilation 14
Spill Base Register 347
SRETRY Routine 31,34,35
SSCK, Subroutine 154
START Routine 454
STARTA, Subroutine 147
Statement Number Entries 82
Statement Number Information 76
Statement Processing 483
Statements Subject to Optimization 279
Statements that affect Optimization 282
STOP/PAUSE, Subroutine 92,344
SUBIF, Subroutine 90

- Subroutines
(Subroutines are listed individually)

SUBRUT, Subroutine 340
SUBS, Subroutine 102
Subscript Information 76,282
Subscript Optimization 279

Statements subject to 279
Statements that affect 282

Subscript Text Input 280
Subscript Parameter 154
Subscript Table 220
Subscript Text Output 281
Subscripted Variable Entries 82,282
SUBVP, Subroutine 290
Supervisor Call 22
SVC I/O Formats 23
SWROOT, Subroutine 156
Symbol List 292
SYMBOL, Subroutine 242
SYMSRC, Subroutine 292
SYMTLU, Subroutine 98
System

Control segments 21
Modification 14-19,22

Syst~m Tape Device 29

T Specification 195
T,Subroutine 199
Tag and Data Set Byte 23,24
Tail Length Accumulator 195
TBLREF Routine 388
Temporary Root 145
Text Card 380
Text Word Modification 221
Thumb Index 71
Translate and Test

Pointer 201
Table 195
Instruction 97,201

TRGEN, Subroutine 332
TXT, Subroutine 158
TXTEST. Subroutine 347
TXTOUT, Subroutine 348
TYPE, Subroutine 242
Type 3 Program 330
T92CMP Routine 460
T92LB1 Routine 461

UMINUS Routine 237
Unary Minus 237
Unary Plus 237
UNITCK/UNIT1, Subroutine 189
UPLUS Routine 237

WARN Routine 388
WARNING/ERRET, Subroutine 105
WARN/ERROR, Subroutine 244
WRITE Not Requiring A Format 415
WRITE Requiring a Format 414

X, Subroutine 197
XOP Adjective Code 281

Zero Addressing Adjustment

+/-/P, Subroutine 197

488

Index 499 .

Z28-6620-0

c ;;

~)]3~
®

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N. Y_ 1060t

IBM System/360
Basic Programming Support
FORTRAN IV
Program Logic Manual

Form Z28-6620-0

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is ''No'' or requires qualification,
please explatn in the space provided below. All comments will be handled on a non-confi­
dential basis. Copies of this and other IBM publications can be obtained throup IBM
Branch Offices.

Yes No

• Does this publication meet your needs? CJ c::J

• Did you find the material:
Easy to read and understand? CJ c::J
Organized for convenient use? c::J c::J
Complete? c::J c:::l
Well illustrated? CJ c:::::J
Written for your technical level? CJ c:::::J

• What is your occupation? __________________________ _

• How do you use this publication?
As an introduction to the subject? c::J As an instructor in a class? c::J
For advanced knowledge of the subject? c::J As a student in a class? c::J
For information about operating procedures? c::J As a reference manual? c::J
Qher ________________________________ ___

• Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS:

• Thank you for your cooperation. No postage necessary if maUed in the U. S. A.

Technical Newsletter

IBM System/360 Basic Programming Support
FORTRAN IV, 360P-FO-031
Program Logic Manual

File Number

Re: FormNo.

8360-25

Z28-6620-0
(formerly C28-6584-0)

This Newsletter No. Z28-2117

Date January 11, 1966

Previous Newsletter Nos. None

This technical newsletter a~ends theputlication IEMSystem/360Basic
Prograrnroing support FORTRAN IV, Progran: Logic Manual, 360P-FO-031, Forrr
Z28-6620-0 lformerly C28-6584-0)' The attached pages replace and
supplement pag~s in the original publication. Corrections, additions,
and deletions to the text are noted by vertical bars to the left of the
change. The attached pages are:

21-22
23-24
27-28
33-34
35-36
43-44
49-50

Summary of Amendments

51-52
53-54
55-56
59-60
61'- 6 2
67-68

101-102
111-112
123-124
229-230
368A
485-486

The capabilities of the error processor of the FORTRAN Systerf
Director has been expanded. An additional rr~ssage (FIW) has been added.
See pages 22, 33-36, 43, 44, 51-56.

A CCunit routine has been added to the Control Card routine. See
pages 59, 62, 67.

Chart KU, Phase 25, has been added. See page 368A~

Detailed changes have been wade cn pages 23, 27, 101-102, 111, 123,
229, and 486.

Note~ Please file this cover letter at the tack of the publication.
Cover letters provide a quick reference to changes and a means to check
the receipt of all amendments to the rranual.

RESTRICTED DISTRIBUTION

International Business Machines Corp., Programming Systems Publications, P. O. Box 390, Poughkeepsie, N. Y.

PRINTED IN U. S.A. Z28-2117 (Z28-6620-0) page 1 of 1

Technical Newsletter File No. S360-25

Re: Form No. Z28-6620-0
(formerly C28-6584-0)

This Newsletter No. Z3l-5008

Date: March 15, 1966

Previous Newsletter Nos.

Replacement pages for IBM System/360 Basic Programming Support,
FORTRAN IV, Program Logic Manual, Form Z28-6620-0 (formerly Form
C2 8-65 84-0) .

Z28-2ll7

To bring your publication up to date, please replace the following
pages with the corresponding pages attached to this Newsletter.
Changes are indicated by a vertical line at the left of the affected
text, and by a dot (.) at the left of an affected figure.

Replace pages

1-2
35-36
55-56

421-422
447-448
449-450
451-452
499-(500, new back cover)

(501-502, new reader's comment form)

Please insert this page to indicate that your publication now
includes the modified pages issued with Technical Newsletters:

Form Modified Pages Date

Z28-2ll7 22, 23, 27, 28, 33, 34, January 11, 1966
(35, 36 - replaced by following
TNL) 4 3, 4 4, 4 9, 51- 5 6, 5 9, 6 2 ,
67, 101, 102, 111, 123, 229, 368A,
486

Z3l-5008 1, 2, 35, 36, 55, 56, 421, 422, March 15, 1966
448, 450, 452, back cover (500).
reader's comment form (501, 502)

IBM Corp., Programming Publications Dept., Rochester, Minn. 55901

PRINTED IN u. s. A.

