
Systems Reference Library

IBM System/360 Basic Operating System

Language Specifications

Assembler ('16K Disk/Tape)

'rhis reference publication contains
specifications for the IBM System/360 Basic
Oper.ating System Assembler Language (16K
Disk/Tape) (inc::luding macro instructions and
conditional assembly facilities>.

The assembler language is a symbolic
programming language used to write programs for
the IBM System/360. The language provides a
convenient means for representing the machine
ins1~uctions and related data necessary to program
the IBM System/360. The IBM System/360 Basic
Operating System Assembler Program processes the
language and provides auxiliary functions useful
in the preparation and documentation of a program,
and includes facilities for processing macro
instructions.

Part 1 of this publication is an introduction
to the assemblt!r language.

Part 2 aescribes the basic functions of the
assembler language.

Part 3 describes the conditional assembly and
macro facilities in the assembler language.

File No. S360-21
Form C24-3414-1

PREFACE

This publication is a reference manual for
the programmer using the assembler language
(including macro instructions).

Part 1 of this publication presents
information common to all parts of the
language. Part 2 contains specific infor
mation concerning the symbolic machine
instruction codes and the assembler program
functions provided for the programmer's
use. Part 3 of this publication describes
the conditional assembly and macro facili
ties in the assembler language.

Appendices A through J follow Part 3.
Appendices A through F are associated with
Parts 1 and 2 and present such items as a
summary chart for constants (Appendix F),
instruction listings, character set .rep
resentations, and other aids to programr
ming. Appendix G contains macro-facility
summary charts, and Appendix H discusses
table capacities for various elements of
the language. Appendix I is a sample pro
gram. Appendix J is a features comparison
chart of System/360 assemblers.

Prerequisite for a thorough understand
ing of this publication is a basic knowl-

Major Revision (December 1965)

edge of System/360 machine concepts. The
publications most closely related to this
one are:

1. IBM System/360 principles of Operation,
Form A22-6821.

2. IBM Svstem/360 Basic Operating System:
Data Management Concepts (16K Disk),
Form C24-3427, or

IBM System/360 Basic Operating System:
~ Management Concepts (16K Tape),
Form C24-3430.

3. IBM System/360 Basic Operating System:
Supervisor and Input/Output Macros (16K
Disk), Form C24-3429, or

IBM System/360 Basic Operating System:
Supervisor and Input/Output Macros (16K
Tape), Form C24-3432.

4. IBM System/360 Basic Operating System:
System Control and system Service Pro
grams (16K Disk), Form C24-3428, or

IBM system/360 Basic Operating system:
System Control and System Service Pro
grams (16K Tape), Form C24-3431.

Titles and abstracts of other related
pu bl ications are listed in the IBM
System/360 Bibliography, Form A22-6822.

This edition, Form C24-3414-1, is a major revision of, and obsoletes,
Form C24-3414-0. Changes are designated in three ways:

1. A vertical line appears at the left of affected text where only a part
of the page has been changed.

2. A dot (0) appears at the left of the page number where the complete
page should be reviewed.

3. A dot (.) appears at the left of the title of each figure that has been
changed.

The affected pages are: 8, 11, 15, 16, 20, 25, 28, 34, 40, 42, 44-46,
51-55,59,62,66"68-69,,71-72,, 78-79" 81-84, 88-89,93"96,108,, 109,
121, 124, 127-130, 135-137, and Index.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
A form has been provided at the back of this publication for reader 1 s comments. If the
form has been detached, comments may be directed to IBM Progr.amming Publications,
Endicott, New York, 13764.

© 1965 by International Business Machines Corporation

PART 1 -- INTRODUC'1~ION TO THE
ASSEMBLER LANGUAGE: 7

section 1: Introduction. • 7

MACHINE FEATURES REQUIRED. 7

Compatibility. • 7

The Assembler Language • 8
Machine operation Codes.. • • 8
Assembler operation Codes. • 8
Macro-Instructions • • 8

The Assembler Program. • 9·
The Macro Generation and
Conditional Assembly Section.. 9

The Assembly Section • •• 9;

Programmer Aids. • 9

Basic operating System Relationships • • 10

SECTION 2: GENERAL INFORMATION • • • • • 11

Assembler Language Coding Conventions. • 11
Coding Form. • • • • 11
Continua tion Lines • • 11
Statement Boundaries • 11
statement F'ormat • • • 13
Summary of Instruction Format. 14
Comments Statements. • .. • • • • • 14
Identification-Sequence Field. 14
Character Set. • • • • • 14

Assembler Language Structure '. 15

Terms and Express ions.. • • • • _ • 15
Terms • • • • 15

Symbols. • • • • .. • • .. 17
Self-Definin<J Terms.. • • • 18
Location counter Reference 19
Literals • • .. • .. • • • • 20
Symbol Length Attribute

Ref erence • • .. • • 21
Expressions • • • .. •

Evaluation of Expressions.
Absolute and Relocatable
Expressions .. • •

PART 2 -- BASDC FUNCTIONS OF THE

'" 21
• .. 22

.. 22

ASSEMBLER LANGUAGE. • .. • .. • • 24

Section 3: Addressing -- Program
sectioning and Linking. • • 24

Addressing • • .. • • • • 24
Addresses -- Explicit and Implied .. • 24
Base Register Instructions. .. 24

USING -- Use Base Address
Register. • .. • • • • • • • • 24

DROP -- Drop Base Register • 25

CONTENTS

Programming with the USING
Instruction. • • • .. •

Rela ti ve Addressing • • .. •

Program Sectioning! and Linking •
Control Sections. • • •

Control Section Location

• 26
• 26

• 27
27

Assignment. .. • .. • .. • • • 28
First Control Section .. • • 28

START -- start Assembly. • • • • • 28
CSEc'r -- Identify Control
Section .. • • .. • .. • .. • 28

Unnamed Control section. • • 29
DSECT -- Identify Dummy Section. • 29

COM -- Define Blank Common Control
Section. .. • • • • • • •

Symbolic Linkages • • .. • • •
ENTRY -- Identify Entry-Point

• 30
• 31

Symbol • .. • • • • • .. • • • • • 31
EXTRN -- Identify External Symbol .. • 31

Addressing External Control
sections • 32

SECTION 4: MACHINE~INSTRUCTIONS. • .. 33

Machine-Instruction statements • 33
Instruction Alignment and
Checking. • • • • • • • .. 33

Of~rand Fields and Subfields. 33
Lengths -- Explicit and Implied • • .. 34

Machine-Instruction Mnemonic Codes •
Machine-Instruction Examples.

RR Format.
RX Format.

• • 35
• 35

35
• • 36

RS Format.
S1 Format.

• .. • • • 36

SS Format ••

Extended Mnemonic Codes. •

SECTION 5: ASSEMBLER INSTRUCTION
STATEMENTS. • .. • • .. • .. • • •

Symbol Definition Instruction. •
EQU -- EQUATE SYMBOL. • .. •

• 36
.. 36

• 36

.. 38

38
38

Data Definition Instructions • .. 39
DC -- DEFINE CONSTANT • .. • • • .. 39

Operand Subfield 1: Duplication
Factor. • • • • .. • • • • • • • • 40

Operand Subfield 2: Type ••••• 40
Operand Subfield 3: Modifiers. • • 40
Operand Subf ield 4: Constant • • • 42

OS -- Define Storage. • .. • • .. • 48
Special Uses of the Duplication
Factor. .. • .. • • • • 49

CCW -- Define Channel Command Word •• 50

Listing Control Instructions • • 51
Title Identify Assembly Output 51
EJECT -- start New Page • • • .. • . . 51

SPACE -- Space Listing.
PRINT -- Print Optional Data. •

• • 52
• 52

Program Control Instructions • • • • 53
ICTL -- Input Format Control. • 53
ISEQ -- Input Sequence Checking • 53
PUNCH -- Punch a Card • • .. • • .. 54
REPRO -- Reproduce Following Card • • 54
ORG -- Set Location Counter • • .. 54
LTORG -- Begin Literal Pool • 55

Special Addressing Consideration • 55
CNOP -- Conditional No Operation. • • 55
COpy -- Copy Predefined Source

Coding • • .. • .. • • .. 57
END -- End Assembly • • • • 57

PART 3 -- CONDITIONAL ASSEMBLY AND
MACRO FACILITIES IN THE ASSEMBLER
LANGUAGE. .. • • .. • • • • .. • • 58

section 6: Introduction to the Macro
Facilities. • • .. • .. • • .. • .. • • • • 58

The Macro-instruction Statement. 58

The Macro-definition .. • 58

The Assembler Source Statement Library • 59

Variable Symbols • .. • .. • .. •
Types of Variable Symbols
Assigning Values to Variable

• 59
• • 59

.. 59 Symbols • • • • • • •
Global SET Symbols • • • 59

Organization of this Part of the
Publication .. • • • • • 59

SECTION 7: HOW TO PREPARE
MACRO-DEFINITIONS • .. • ..

MACRO -- Macro-Definition Header

MEND -- Macro-Definition Trailer •

Macro-Instruction Prototype. • •
Alternate Statement Form

Model Statements • •

Symbolic Parameters. .. • •
Concatenating Symbolic

Parameters with Other
Characters or Other Symbolic
Parameters. • • • ..

.. 61

61

.. 61

• 61
• 62

.. 62

.. 63

• 64
Comments Statements. • • .. • .. 65

Copy Statements

SECTION 8: HOW TO WRITE
MACRO-INSTRUCTIONS. •

Macro-Instruction Operands •

Sta tement Form •

Omitted Operands

• • 65

.. 66

.. 66

67

67

Operand Sublists • • • • •

Inner Macro-Instructions •

Levels Of Macro-Instructions ..

SECTION 9: HOW TO WRITE CONDITIONAL
ASSEMBLY INSTRUCTIONS

SET Symbols. • • • • .. • .. •
Defining SET Symbols
Us ing Var iable Symbols ..

67

68

69

.. 70

70
.. .. 70
.. • 70

Attributes .. • • • • • .. 71
Type Attribute (T'). 72
Length (L'), Scaling (S'), and
Integer (I') Attributes ..

Count Attribute (K')
Number Attribute (N')
Assigning Integer Attributes to

• • 73
.. 7]

.. • 73

Symbols .. • • 74

Sequence Symbols • • 74

LCLA,LCLB,LCLC -- Define SE'T Symbols • • 75

SETA -- Set Arithmetic •
Evaluation of Arithmetic
Expressions. • .. • • •

Using SETA Symbols ..

SETC -- Set Character •••
Type Attribute. .. • • •
Character Expression. •
substring Notation. .. • •

Using SETC Symbols ..

SETB -- Set Binary • • • •
Evaluation of Logical

Expressions • • • •
USing S.E.'TB Symbols •

AIF Conditional Branch.

AGO Unconditional Branch.

ACTR -- Conditional Assembly Loop
Counter • • .. • • • .. • •

ANOP -- Assembly No Operation.

Conditional Assembly Elernents • •

SECTION 10: ADDITIONAL FEATURES.

• • 75

• 76
• 76

78
.. • • 78

• 78
• • • 79

80

• 81

.. 82
82

83

84

84

,. 85

86

88

MEXIT -- Macro-Definition Exit .. • • • • 88

MNOT~ Sta tement.

Global and Local Variable Symbols ••
Defining Local and Global SET

Symbols .' • .. • • .. • • •
Using Global and Local SET

Symbols • • • • • • • • •
Subscripted SET Symbols.

SYSTEM VARIABLE SYMBOLS. • • • •

88

• • 89

• 90

.. 90
• 92

.. 93

&SYSNDX -- Macro-Instruction
Index • • • • • • 93

&SYSECT -- Current Control
Section • • .. • 94

&SYSLIST -- Macro-Instruction
Operand • • .. • .. • • .. 95

Keyword Macro-Definitions And
Instructions. .. • • • • .. • • 95

Keyword Prototype. • .. • 96
Keyword Macro-Instruction 96

Mixed-Mode Macro-Definitions and
.. • 98 Instructions. • • • • •

Mixed-Mode Prototype ..
Mixed-Mode Macro-Instruction ..

.. 98
98

Conditional Assembly compatibility 99

APPENDIX A: EXTENDED BINARY CODED
DECIMAL INTERCHANGE CODE (EBCDIC)

APPENDIX B: HEXADECHlIAL-DECIMAL NUMBER

.100

CONVERSION TABLE 103

APPENDIX C: r1ACHINE-INSTRUCTION FORMAT .108

APPENDIX D: MACHINE-INSTRUCTION
MNEMONIC OPERATION CODES 110

APPENDIX E: ASSEt·iJ.BLER INSTRUC'rIONS ••• 119

APPENDIX F: SUMMARY OF CONSTANTS •• 122

APPENDIX G: t-:ACRO FACILITY SUMMARY • • • 123

APPENDIX H: DICTIONARY AND SOURCE
STATEMENT SIZES .. • .. • .. • •127

Part 1: Dictionaries Used in Macro
Generation. 127

Part 2: Macro Mnemoni c Table. .. • .12 '}

Part 3: Source statement Complexity -
Conditional Assembly and Macro
Generation 129

Part. 4: Source Statement Complexity;
Assembler St.a, tements. • • • .1]0

APPENDIX I: SANPLE PROGRAM • .131

APPENDIX J: ASSEMBLER
LANGUAGES--FEATURES COMPARISON CHART •• 135

INDEX. • • .. • • • .. .138

PART 1 -- INTRODUCTION TO THE ASSEMBLER LANGUAGE

SECTION 1: INTRODUCTION

computer programs may be expressed in
machine language, i.e., language directly
interpreted by the computer, or in a sym
bolic language, which is much more meaning
ful to the programmer. The symbolic lan
guage, however, must be translated into
machine language before the computer can
execute the program. This function is
accomplished by an associated processing
program called an assembler or a compiler.

Of the various symbolic programming
languages, assembler languages are closest
to machine language in form and content.

The assembler language discussed in this
manual is a symbolic programming language
for the IBM System/360. It enables the
programmer to use all IBM System/360
machine functions, as if he were coding in
System/360 machine language.

The assembler program that processes the
language translates symbolic instructions
into machine-language instructions., assigns
storage locations, and performs auxiliary
functions necessary to produce an executa
ble machine-language program.

MACHINE FEATURES REQUIRED

• 16,384 bytes of main storage. At least
10,240 contiguous bytes must be availa
ble to the Assembler. Additional stor
age, if available to the Assembler, is
used to allocate area for expanding
Assembler tables.

• Standard instruction set.

• One I/O Channel (either multiplexor or
selector)

• One Card Reader (1442N1, 2501, 2520B1,
or 2540)1
1 A 2400-series Magnetic Tape Unit may
be substituted for this device. (It
may be 7-track or 9-track. If 7-track
is used the data conversion feature is
required.) The 1052 printer-Keyboard
must be operable if device aSSignment
is tape.

• One Card Punch (1442N1, 1442N2" 2520,
or 2540)1, if punched output is
desired.

• One Printer (1403, 1404 - continuous

forms only, or 1443)1, if a printed
listing is desired.

• One 1052 Printer-Keyboard

• One 2311 Disk Storage Drive. This has
the BOS (16K Disk) resident system
pack.

or

• One 2400-series Magnetic Tape Unit
(9-track). This has the BOS (16K Tape)
resident system.

• Three work files. These can be:

Three 2311 Disk Storage extents. (Disk
system only.) These extents may be on
the same device that contains the BOS
(16K Disk) resident system;

or

Three 2400-series Magnetic Tape Units
(either 7-track or 9-track: If
7-track, the data conversion feature is
required). These can be used for
either the disk or tape system.

The assemble-and-execute option is
an alternative to the DECK option; both
are not supported for the same assem
bly. If the assemble-and-execute
option is chosen, SYSOOO is a
2400-series Magnetic Tape Unit (9-track
or 7-track with the data conversion
feature) for the tape-resident system,
or a 2311 Disk Storage extent (which
may be on the system residence device)
for the disk-resident system.

COMPATIBILITY

wi thin Basic Operating System/360 (16K),
the assemblers can be used on System/360
Models 30, 40, 50, 65, and 75, provided
that main storage and input/output
requirements are satisfied. The assemblers
(16K Disk and 16K Tape) will both accept
the same source language input and produce
identical object output.

The Basic Operating System/360 Assembler
(16K Disk/Tape) assembles source programs
written in the System/360 Basic Programming
support Basic Assemb.ler Language, the Basic
Programming Support Assembler (SK Tape)
Language, the IBN 7090/7094 Support Package

Introduction 7

for IBM System/360 Assembler Language, and
the Basic operating System/360 Assembler
(8R Disk) Language, with the following
exceptions:

1. The XFR assembler instruction, which is
considered an invalid mnemonic opera
-tion code in Basic Operating System/360
(16K Disk/Tape) is not allowed.

2. Additional cards may be required in
:macro definitions (if used by the
source program) to satisfy Basic Oper
ating System/360 (16K DiSk/Tape) macro
requirements.

3. System macro instructions are changed,
where necessary, to conform with the
proper Basic Operating System require
ments.

4. An MNOTE assembler instruction whose
operand entry consists solely of a
message enclosed in apostrophes is
given a severity code of one.

5. AlP operand entries must not contain
explicit boolean zeros or ones.

The Basic Operating System/360 (16K
Disk/Tape) assembler language is a subset
of the Operating System/160 assembler lan
guage. Source programs written in Basic
Operating system/360 (16K Disk/Tape) assem
bler language will be acceptable to the
Operating System/360 assemblers provided
that system macro instructions are changed,
where necessary, to conform with the proper
Operating System requirements.

~ote: The assignment, size, and order
ing of literal pools may differ among the
assemblers.

Differences in conditional assembly
instructions for System/360 assemblers are
descr ibed in Section 10 of this publica
tion.

THE ASSEMBLER LANGUAGE

The basis of the assembler language is a
collection of mnemonic symbols which rep
resent:

1. Systern/360 machine-language operation
codes.

2. Operations (auxiliary functions) to be
performed .by the assembler program.

3. A sequence of machine and assembler
operations.

8

The language is augmented by other sym
bols, supplied by the programmer, and used
to represent storage addresses or data.
Symbols are easier to remember and code
than their machine-language equivalents.
Use of symbols greatly reduces programming
effort and error.

Machine Operation Codes

The assembler language provides mnemonic
machine-instruction operation codes for all
machine instructions in the IBM System/360
Universal Instruction Set, and extended
mnemonic operation codes for the condi
tional branch instruction.

Assembler Operation Codes

The assembler language also contains
mnemonic assembler-instruction operation
codes, used to specify auxiliary functions
to be performed by the assembler program.
These are instructions to the assembler
program itself and, with a few exceptions,
do not result in the generation of any
machine-language code by the assembler
program. Certain assembler instructions,
i.e., conditional assembly instructions,
affect the orde.r of source statement assem
bly and macro generation or the content of
generated instructions.

Macro-Instructions

The assembler language enables the program
mer to define and use macro instructions.
Macro instructions are represented by an
operat ion code which, in turn, actua lly
stands for a sequence of machine and/or
assembler instructions that accomplish the
desired function.

Macro-instructions used in preparing an
assembler language source program fall into
two categories: system macro-instructions,
provided by IBM, which relate the object
program to components of the Basic Opera t
ing System, and macro-instructions created
by the programmer specifically for use in
the program at hand, or fo.r incorporation
in a library, available for future use.

Programmer-created macro-instructions
are used to simplify the writing of a pro
gram and/or to ensure that a standard
sequence of instructions is used to accom
plish a desired function.

For instance, the logic of a program may
require the same instruction sequence to be
executed again and ,again. Rather than code
this entire sequence each time it is need
ed, the programmer creates a macro
instruction to represent the sequence, and
then each time the sequence is needed, the
programmer simply codes the macro
instruction statement. During assembly,
the sequence of instructions represented by
the macro-instruction is insert~d in the
object program.

Part 3 of this publication discusses the
conditional assembly and macro facilities.

THE ASSEMBLER PROGRAM

The aSsembler program, also referred to as
the "assembler," processes source
statements written in the assembler lan
guage. The assembler is separated into an
assembly section and a conditional assembly
and macro generation section.

The Macro Generati()n and Conditiona!.
Assembly Section

Before source statements can be translated
into actual machinE~ language, macro
instructions and conditional assembly
statements within the source program must
be processed. The source program is read.
Any programmer macro-definitions which
appear before the main portion of the pro
gram are stored for use when the macro is
referenced. (System macro-definitions are
retrieved from the macro library and han
dled in the same way.)

The main portion of the program is then
processed. Whenever macro generation or
conditional assembly is required, the gen
erated or conditionally assembled text is
inserted in the original source program.
The resultant augmented source program is
ready for input to the assembly section.

The Assembly Section

Processing a source program involves the
translation of source statements into
machine language, the assignment of storage
locations to instructions and other ele
ments of the program, and the performance
of the auxiliary assembler program fUnc
tions designated by the programmer.. The
output of the assembler program is the
object program, a machine-language equival-

ent of the source program. The assembler
program furnishes a printed listing of the
source statements and object program state
ments and additional information 'Useful to
the programmer in analyzing his program,
such as error indications. The ohject
program is in the format required. by the
linkage editor component of BasicOpe.rating
System/360.

The amount of main and secondary storage
allocated to the assembler program for use
du.ring processing determines the maximum
number of certain language elements that
may be present in the source program. For
a discussion of these dependencies, see
Appendix H.

PROGRAMMER AIDS

The assembler proqram provides auxiliary
functions that assist the programmer in
checking and documenting programs, in con
trolling address assignment, in segmenting
a program, in data and symbol definition,
in generating macro-instructions, and in
controlling the assembly program itself.
Mnemonic codes, specifying these functions,
are provided in the language.

variety in Data Representation: Decimal,
binary, hexadecimal, or character represen
tation of machine-language binary values
may be employed by the programmer in writ
ing source statements. The programmer
selects the representation best suited to
his purpose.

Base Register Address Calculation: As
discussed in the IBM System/360 Principles
of Operation manual, the System/360
addressing scheme requires the designation
of a base register (containing a base
address value> and a displacement value in
specifying a storage location. The assem
bler assumes the cIeri cal burden of calcu
lating storage addresses in these terms for
the symbolic addresses used by the program
mer. The programmer retains control of
base register usage and the values entered
therein.

Relocatability: The object programs pro
duced by the assembler are in a format
enabling relocation from the originally
assigned storage area to any other suitable
area.

Sectioning and Linking: The assembler
language and program provide facilities for
partitioning an assembly into one or more
parts called control sections. Control
sections may be added or deleted when load
ing the object program. Because control
sections do not have to be loaded contigu-

Introduction 9

ously in storage, a sectioned program may
be loaded and executed even though a con
tinuous block of storage large enough to
accommodate the entire program may not be
available.

The linking facilities of the assembler
language and program allow symbols to be
defined in one assembly and referred to in
another, thus effecting a link between
separately assembled programs. This per
mits reference to data and/or transfer of
control between programs. A discussion of
sectioning and linking is in Section 3
under Program Sectioning and Linking.

Program Listings: A listing of the source
program statements and the resulting object
program statements is produced by the
assembler for each source program it assem
bles. The programmer can partly control
the form and content of the listing.

Error Indications: As a source program is
assembled, it is analyzed for actual or
potential errors in the use of the assem-

10

bIer language. Detected errors are indi
cated in the program listing.

BASIC OPERATING SYSTEM RELATIONSHIPS

The assembler program is a component of the
IBM Basic Operating System/360 and, as
such, functions under control of the Basic
Operating System. The Basic Operating
System provides the assembler with
input/output, library, and other services
needed in assembling a source program. In
a like manner, the object program produced
by the assembler will normally operate
under control of the Basic Operating system
and depend on it for input/output and other
services. In writing the source program,
the programmer must include statements
requesting the desired functions from the
Basic Operating system. (See the Supervi
sor and Input/Output Macros publications
listed in the Preface.)

This section presents information about
assembler language coding conventions,
assembler source statement structure,
addressing, and the sectioning and linking
of programs.

ASSEMBLER LANGUAG E CODING CONVENTIONS

This subsection discusses the general cod
ing conventions associated with use of the
assembler language.

Coding Form

A source program is a sequence of source
statements that are punched into cards.
These statements may be written on the
standard coding form, X28-6509 (Figure
2-1), provided by IBM. One line of coding
on the form is punched into one card. The
vertical columns on the form correspond to
card columns.

Space is provided on the form for pro
gram identification and instructions to
keypunch operators. None of this informa
tion is punched into a card.

The body of the form (Figure 2-1) is
composed of two fields: the statement
field, columns 1-71, and the
identification-sequence field, colurons
73~80. The identification-sequence field
is not part of a statement and is discussed
following the subsection Stat.ement Format.

The entries (i.e., coding) composing a
statement occupy columns 1-71 of a

SECTION 2: GENERAL INFORMATION

statement line and, if needed, columns
16-71 of successive continuation lines.

Continuation Lines

When it is necessary to continue a state
ment on another line the following rules
apply.

1. Enter any nonblank character in the
continuation column of the statement
line.

2. Continue the statement on the next line,
starting in the continue column.
Columns to the left of the continue
colUmn must be blank.

Only one continuation line is allowed
except for source macro-instructions and
macro prototype statements, which may have
more than one continuation line (see Part
1)· ---

Statement Boundaries

Source statements are normally contained in
columns 1-71 of statement lines and columns
16-71 of any continuation lines. There
fore, colUmns 1, 71, and 16 are referred to
as the "begin," "end," and "continue"
columns, respectively. This convention may
be altered by lIse of the Input Format Con
trol (rCTL) assembler instruction discussed
later in this publication.

General Information 11

~ I'Zj
to.) ,...

\Q
s=
Ii

IB" IBM System/360 Assembler Goding Form x,,~~ I ",_".U.S.A ••

I PROGRAM PUNCHING l GRAPHIC I I I I I I I I PAG, OF

CD I PROGRAMMER lDATE
INSTRUCTIONS I PUNCH I I I I I 1 I I CARD ELECTRO NUMBER

I\.)
I
~

STATEMENT
fdentific.ation-

Name Open::ltion Operand Comments Sequence

1 8 10 '4 16 20 25 30 35 40 45 50 55 60 65 71 73 80 ..
I I I : I I I •

I i !

,
! i

: I . I
i I I ; I . I I

() !
: I

•

!

I •

i
i ! I I

0
0-,...
;:,

\Q

Pzj
0

~

! i
I

I I
I I I I

. i I
I

I i
:

I i
!

I

I I

I
I !

i I i ! I : • I I I I i

,

I i I !
, ,

\
II

II I I, I I
: !

I
!

i

;

•

.

!
I i , I

,

,

! :

.

I

i

;

!
i

I

, I

. I

i
I

I

I

!
i '

,

.

,

I
,

;

,

i

Statement Format

There are two types of
statements--instructions and commen:ts.

Instructions may consist of one to four
entries in the statement field. They are,
from left to right: a name entry, an
operation entry, an operand entry, and a
comments entry. These entries must be
separated by one or more blanks, and must
be written in the order stated.

The coding form <Figure 2-1) is ruled to
provide an eight-character name field, a
five-character operation field, and a
56-character operand and/or comments field.

If desired, the programmer may disregard
these boundaries and write the name,
operation, operand, and comment entries in
other positions, subject to the following
.rules:

1. The entries must not extend beyond
statement boundaries <either the con
ventional boundaries, or as designated
by the programmer via the ICTL
instruction) •

2. The entries must be in proper sequence,
as stated above.

3. The entries must be separated by one or
more blanks.

4. If used, a name entry must be w'ritten
starting in the begin column.

5. The name and operation entries must be
completed in the first line of the
statement, including at least one blank
following the operation entry.

A description of the name, operation,
operand, and comments entries follows:

Name Entries: The name entry is a symbol
created by the proqrammer to identify a
statement. A name entry is usually option
al, but, if present, must be entered with
the first (or only) character appearing in
the begin column. If the begin column is
blank, the assembler program assumes no
name has been entered. Blanks must not
appear within a name entry, whether the
symbol was introduced directly by the pro
grammer or indirec'tly by conditional assem
bly or macro generation.

Operation Ent.ries: The operation entry is
the mnemonic operation code specifying the
desired machine operation, macro, or assem
bler function. An operation entry is man
datory and must appear in the first state
ment line, starting at least one position
to the right of the begin column. Valid

mneMonic operation codes for machine and
assembler operations are contained in
Appendices 0 and E of this publication.
Valid operation codes consist of five char
acters or less for machine or assembler
operation codes, and eight characters or
less for macro-instruction operation codes.
No blanks may appear within the operation
entry.

Operand Entries: operand entries are the
coding that identifies and describeS data
to be acted upon by the instruction, by
indicating such things as storage loca
tions, masks, storage-area lengths, or
types of data.

Depending on the needs of the instruc
tion, one or more operands may be written.
Operands are required for all machine
instructions.

Operands must be separated by commas.
Blanks must not intervene between ope rd nds
and the commas that separate them.

The operands may not contain embedded
blanks except as follows:

If character representation is
used to specify a constant, a
literal, or immediate data in an
operand, the character string may
contain blanks, e.g., C'AB 0'.

comments Entries: Comments are descriptive
items of information about the program tha t
are to be inserted in the program listing.
All valid characters (see Character Set in
this section), including blanks may be used
in writing a comment. The entry cannot
extend beyond the end column (normally
column 71), and a blank must separate it
from the operand.

In instructions where an operand entry
is not present but a comments entry is
desi'red, the absence of the operand ent ry
must be indicated by a comma preceded and
followed by one or more blanks, as follows:

r-------T---------~----------------------l
IName loperation IOperand I
~-------+----------+----------------------~
I ICSECT I, COMMENT I
1 I I I
I I I I
I I I I
I J END I , COMMENT I l _______ ~ __________ ~ ____________________ J

Instruction Example: The following example
illustrates the use of name, operation,
operand, and comments entries. A compare
instruction has been named by the symbol
COMP; the operation entry (CR) is the mne
monic operation code for a register-to-

General Information 13

register compare operation, and the two
operands (5,6) designate the two general
registers whose contents are to be
compared. The comments entry reminds the
programmer that he is comparing "new sum"
to "old" with this instruction.

r------T----------~----------------------,
1 Name IOperation I Operand I
~------+-----------+----------------------~
ICOMP ICR 15,6 NEW SUM TO OLD 1 L ______ ~ ___________ i_ _____________________ J

Summary of Instruction Format

The entries in an instruction must always
be separated by at least one blank and must
be in the following order: name, operation,
operand(s), comment.

Every statement requires an operation
entry. Name and comment entries are
optional. operand ent.ries are required for
all machine instructions and most assembler
instructions.

The name and operation entries must be
completed in the first statement line,
including at least one blank following the
operation entry.

The name and operation entries must not
contain blanks. Operand entries must not
have blanks preceding or following the
commas that separate them.

A name entry must always start in the
"begin" column.

If the column after the end column is
blank, the next line must start a new
statement. If the column after the end
column is not blank, the following line
will be treated as a continuation line.

All entries must be contained within the
designated begin, end, and continue column
boundaries.

comments statements

Comments statements are used to include a
programmer's notes on an assembly listing.
(These notes can be helpful during debug
ging and maintenance of a program.) Com
ment.s statements have no effect in the
assembled program; they are only printed in
the assembly listing and, therefore, may
appear at any point. Extensive notes, or
comments, may be written by using a series
of comments statements.

14

There are two types of comments state
ments. One type, written with an asterisk
(.) in the begin column, is used for com
ments on the source program. The other
type, written with a period in the begin
column and followed by an asterisk, is used
for comments on a macro-definition. This
type is further described in Section 7.

An example of the comments statement is:

r------T-----------y------------------T---'
I Name 1 Operation I Operand 1 I
~------i----------~------------------+---~
I ·THIS IS A COMMENT STATEMENT WHICH I X I
I IS CONTINUED ON ANOTHER .LINE. I I L-____________________________________ ~ ___ J

Identification-Sequence Field

The identification-sequence field of the
coding form (columns 73-80) is used to
enter program identification and/or state
ment sequence characters. The entry is
optional. If the field, or a portion of
it, is used for program identification, the
identification is punched in ·the statement
cards, and reproduced in the printed list
ing of the source program.

To aid in keeping source statements in
order, the programmer may code an ascending
sequence of characters in this field or a
portion of it. These characters are
punched into their respective cards, and,
during aBsembly, the programmer may reques·t
the assembler to verify this sequence by
use of the Input Sequence Checking (ISEQ)
assembler instruction. This instruction is
discussed in section 5 under Program Con
trol Instructions.

Character set

Source statements are written using the
following characters:

Letters A through Z, and $, #, @

Cigit.s o through 9

Special
Characters + - , • () , / & blank

These characters are represented by the
card punch combinations and internal bit
configurations listed in Appendix A. In
addition, any of the remainder of the 256
punch combinations may be designated in a
character self-defining terre, a character
constant, or a comment.

ASSEMBLER LANGUAGE STRUCTURE

The basic structure of the lan~uage can be
stated as follows.

A source statement is composed of:

• A name entry (usually optiqnal) ..
• An operation entry (mandat~ry).
• An operand entry (usually zjequired).
• A comments entry (optional).

A name entry is:

• A symbol.

An operation ent~ry is:

• A mnemonic operation code ~epresenting
a machine, assembler, or m"cro instruc
tion.

An operand entry is:

• One or more operands composed of one or
more expressions, which, in turn, are
composed of a t~erm or an aytithmetic
combination of terms. In 1eneral, an
operand entry should contain 50 or
fewer terms (see Appendix H).

Operands of machine instru(::tions gener
ally represent such things as $torage loca
tions, general registers, immediate data,
or constant values.. Operands <i>f assembler
instructions provide the information needed
by the assembler program to pe.¢form the
designated operation.

Figure 2-2 depicts this structure.
Terms shown in Figure 2-2 are classed as
absolute or relocatable. Terms are abso
lute or relocatable due to the effect of
program relocation upon them. (Program
reloca tion is the loading of the object
program into storage locations other than
those originally aSSigned by the assembler
program.) A term is absolute if its value
does not change upon relocation. A term is
relocatable if its value changes upon relo
cation.

The following subsection, Terms and
Expressions, discusses these items as out
lined in Figure 2-2.

TERMS AND EXPRESSIONS

TERMS

Every term represents a value. This value
may be assigned by the assembler program
(symbols, symbol length attribute, location
counter reference) or may be inherent in
the term itself (self-defining term,
literal) •

An arithmetic combination of terms is
reduced to a single value by the assembler
program.

The following material discusses each
type of term and the rules for its use.

General Information 15

~ne Entry

r-: Symbol
Lch isan

Cecimal
e.g.,15

• Figure 2- 2.

16

I
Machine
Instruction

Hexadecimal
e.g.,X'C4'

or

cp
Operation Entry

I
Is a Mnemonic
Operation Code

r
I 1

Assembler
Instruction or Macro J Instruction

1
A Location
Counter Refer- A Literal

encei.e.,*
'--'-{R-'-T) ___ _

I

e .g.,=F '1259'
(RT)

Binary
e.g.,B'101'

Character
e.g.,C'AB9'

Exp or

I
Symbol Length
Attribute Refer
ence e.g.,
L 'Symbo I (A T)

Operand Entry

I
One or more
Operands that
are composed
of an

I
I

Exp(Exp)

Exp ~ Expression

AT=Absolute Term

RT=Relocatable Term

I

or Exp(Exp, Exp)

Assembler Language structure--Machine and Assembler Instructions

Symbols

A symbol is a character or combination of
characters used to :represent locations or
arbitrary values.. Symbols, through their
use in name fields and in operands, provide
the programmer with an efficient way to
name and reference a program element .•
There are three types of symbols:

1. Ordinary symbols.
2.. Variable symbols.
3. Sequence symbols.

Ordinary symbols consist of one to eight
letters and/or numbers, the first of which
must be a letter. Such symbols are used to
identify machine locations or arbitrary
values. In the following sections, the
occurrence of symbol refers to this type of
term. Absolute symbols are ordinary sym
bols whose values do not change upon pro
gram relocation. Relocatable symbols are
ordinary symbols whose values change upon
relocation.

The following are valid ordinary sym
bols:

READER
A23456
X4F2
LOOP2
N
S4
O'IB4
$A1
#56

The following ordinary symbols are
invalid, for the reasons noted:

256B

RECORDAREA2

BCD*34

IN AREA

First character is not
alphabetic.

More than eight characters.

Contains a special character
- an asterisk.

Contains a blank.

Variable symbols consist of an ampersand
(&) followed by one to seven letters and/or
numbers, the first of which must be a let
ter. Variable symbols are used within the
source program or macro definition to allow
different values to be assigned to one
symbol. A complete discussion of variable
symbols appears in Part 3.

sequence symbols. consist of a period (.)
followed by one to seven letters and/or
numbers, the first of which must be a let
ter. Sequence symt~ls are used to indicate
the position of statements within the
source program or nacro definition.

Through their use the programmer can vary
the sequence in which statements are proc
essed by the assembler program. (See the
complete discussion in Part 3).

DEFINING SYMBOLS: During the macro genera
tion and conditional assembly process,
variable symbols, sequence symbols, and
relevant ordinary symbols appearing outside
macro definitions in source text are col
lected and entered into one of several
dictionaries. These symbols are defined at
this time exclusively for use in the macro
generation and conditional assembly sec
tion.

The assembly section maintains an inter
nal table: the symbol table, in which sym
bols from the augmented source program are
kept with their basic attributes. A symbol
is defined, i.e., entered into the symbol
table, when it appears as the name of a
source statement (after macro generation).
(A special case of symbol definition is
discussed in Section 3, in the SUbsection
Program sectioning and Li nking.) When the
assembler program encounters a symbol in an
operand, it refers to the table for the
attributes associated with the symbol.

Every symbol has three basic attributes:
value, length, and relocatability. (Others
are discussed in Section 9). The value
attribute is the arbitrary value or the
address of the storage location represented
by the symbol.

The length attribute is the length in
bytes of the storage field represented by
the symbol, or one for arbitrary values.
For example, a symbol naming an instruction
that occupies four bytes of storage has a
length attribute of 4. However, when a
symbol has been defined by an equate to a
location counter value (EQU to *) or to a
self-defining term, the length attribute of
the symbol is 1.

When the assembler encounters a new
control section, it assigns a number to the
section. The relocatability attribute of a
relocatable symbol is the number of the
control section in which the symbol is used
as a name entry. The relocatability attri
bute of an absolute symbol is zero.

The values assigned to symbols naming
storage areas, instructions, constants, and
control sections represent the addresses of
the leftmost bytes of the storage fields
containing the named items. Since the
addresses of these items may change ullon
program relocation, the symbols naming them
are considered relocatable.

A symbol used as a name entry in the
equate symbol (EQU) assembler instruction
is assigned the value ,jesignated in the

General Information 17

operand entry of the instruction. Since
the operand entry may represent a relocata
ble value or an absolute (i.e.,
nonchanging) value, the symbol is consid
ered a relocatable term or an absolute term
depending upon the value to which it is
equated.

The value of a symbol may not be nega
tive and may not exceed 23~-1.

PREVIOUSLY DEFINED SYMBOLS: The assembler
language requires that symbols appearing in
the operand entry of some instructions be
previously defined. This simply means that
the symbols, before their use in an oper
and, must have appeared as the name entry
of a prior statement. For example:

SYMl
SYM2

MVC
EQU

A,B
SYMl

would be a valid sequence of coding. The
same two instructions in reverse order
would be invalid.

GENERAL RESTRICTIONS ON SYMBOLS: A symbol
may be defined only once in an assembly.
While the same symbol may appear as the
name of two or more statements before macro
generation and conditional assembly, only
one such statement should be generated. In
addition, a symbol may be used in the name
field more than once as a control section
name <1. e., defined in the START, CSECT, or
OSECT assembler statements described in
Section 3) because the coding of a control
section may be suspended and then resumed
at any subsequent point. The CSECT or
OSEeI' statement that resumes the section
must be named by the same symbol that ini
tially named the section; thUS, the s~nbol
that names the section must be repeated.
Such usage is not considered to be duplica
tion of a symbol definition.

Self-Defining Terms

A self-defining term is one whose value is
inherent in the term. It is not assigned a
value by the assembler program. For exam
ple, the decimal self-defining term -- 15

represents a value of fifteen.

There are four types of self-defining
terms: decimal, hexadecimal, binary, and
character. Use of these terms is spoken of
as decimal, hexadecimal, binary, or charac
ter representation of the machine language

18

binary value or bit configuration they
represent.

Self-defining terms are classed as a.bso
lute terms because the values they rep
resent do not change upon program reloca
tion.

USING SELF-DEFINING TERMS: self-defining
terms are the means of specifying machine
values or bit configurations without equat
ing the values to symbols and using the
symbols. Self-defining terms may be used
to specify such program elements as immedi
ate data, masks, registers, addresses, and
address increments.

The use of a self-defining term is quite
distinct from the use of data constants or
literals. When a self-defining term is
used in a machine-instruction statement,
its value is assembled into the instruc
tion. When a data constant or literal is
specified in the operand of an instruction,
its address is assembled into the instruc
tion.

Decimal self-Defining Term: A decimal term
is simply an unsigned decimal number writ
ten as a sequence of decimal digits. High
order zeros may be used (e.g.,007).
Limitations on the value of the term depend
on its use. For example, a decimal term
that designates a general register must
have a value between 0 and 15 inclusively;
one that represents an address must not
exceed the size of storage. In any case, a
decimal term may not consist of more than
eight digits or exceed 16,777,215 (22~-1).

A decimal term is assembled as its binary
equivalent. Some examples of decimal self
defining terms are: 8, 147, 4092, 00021.

Hexadecimal Self-defining Term: A
hexadecimal self-defining term is an
unsigned hexadecimal number written as a
sequence of hexadecimal digits. The digits
must be enclosed in single apostrophes and
preceded by the letter X: X' C49 1

•

Each hexadecimal digit is assembled as
its four-bit binary equivalent. Thus, a
hexadecimal term used to represent an
eight-bit mask would consist of two hexa
decimal digits. The maximum value of a
hexadecimal term is X'FFFFFF'.

The hexadecimal digits and their bit
pa tterns are as follows:

0- 0000
1- 0001
2- 0010
3- 0011

4- 0100
5- 0101
6- 0110
7- 0111

8- 1000
9- 1001
A- 1010
B- 1011

c- 1100
D- 1101
g- 1110
F- 1111

A table for converting from hexadecimal
representation to decimal representation is
prov ided in Appendix B •

Binary Self-Defininq Term: A binary self
defining term is written as an unsigned
sequence of l's and O's enclosed in
apostrophes and preceded by the letter B,
as follows: B'10001101'. This term would
appear in storage as shown, occupying one
byte. A binary term may have up to 24 bits
represented. Padding with binary zeros is
on the left.

Binary representation is used primarily
in designa ting bit patterns of masks or in
logical operations.

The following example i.llustrates a
binary term used as a mask. in a Test Under
Mask (TM) instruction. The contents of
GAMMA are to be tested, bit by bit, against
the pattern of bits represented by the
binary term ..

r------,---------·--r---------·------------,
I Name \ Operation \ Operand I
~------+----------.-+---------------------~
\ ALPHA I TM I GAMMA, B' 10101101' I l _______ ~ ___________ ~ _____________________ J

Character Self- refining Term: A character
self-defining term consists of one to three
characters enclosed by apostrophes. It
must be preceded by the letter C. }\ll
letters, decimal digits, and special. char
acters may be used in a character term. In
addition, any of the remainder of the 256
punch combinations may be designated in a
character self-defining term. Examples of
character self-defining terms are as fol
lows:

C'/'
C'ABC'

C' , (blank)
C' 13'

Because of the use of apostrophes in the
assembler language and ampersands in the
macro language as syntactic characters, the
following rule must. be observed when using
these characters in a character te.rm.

For each apostrophe or aml~rsand desired
in a character term, two apostrophes or
ampersands must be written. For example,
the character ValUE! At # would be written as
CtA"n', while an apostrophe followed by a
blank and another apostrophe would be writ-
ten as C··· , I ,

Each character in the character sequence
is assembled as its eight-bit code equiva
lent (see Appendix A). The t~~o apostrophes
or ampersands that must be uSE~d to rep
resent a single apostrophe or ampersand
within the character sequence are assembled
as a single apostrophe or ampersand.

Location Counter Reference

A Location Counter is used to assign
storage addresses to program statements.
It is the assembler program's equivalent of
the instruction counter in the computer.
As each machine instruction or data area is
assembled, the Location Counter is first
adjusted to the proper boundary for the
item, if adjustment is necessary, and then
incremented by the length of the assembled
item. Thus, it always points to the next
available location. If the statement is
named by a symbol, the value attribute of
the symbol is the value of the Location
Counter after boundary adjustment, but
before addit.ion of the length.

The assembler maintains a Location
Counter for each control section of the
program and manipulates each Location
Counter as previously described. Source
statements for each section are assigned
addresses from the Location Counter for
that section. The Location Counter for
each successively declared control section
assigns locations in consecutively higher
areas of storage. If a prog.ram has multi
ple control sections, all statements iden
tified as belonging to the first control
section will be assigned from the Location
Counter for section 1, the statements for
the second control section will be aSSigned
from the Location Counter for section 2,
etc. This procedure is followed whether
the statements from different control sec
tions are interspersed or written in con
trol sect.ion sequence.

The Loca tion Counter setting can be
controlled by using the START and ORG
assembler instructions, which are described
in sections 3 and 2, respectively_ The
counter affected by either of these assem
bler instructions is the counter for the
control section in which they appear. The
maximum value for the Location Counter is
22 '+-1.

The programmer may refer to the current
value of the Location Counter at any place
in a program, by using an asterisk in an
operand. The asterisk represents the loca
tion of the first byte of currently availa
ble storage (i.e., after any required
boundary adjustment). Using an asterisk in
a machine-instruction statement is the same
as placing a symbol in the name field of
the statement and then using that symbol as
an operand of the statement. Because a
Location Counter is maintained for each
control section, a Location Counter ref
erence designates the Location Counter for
the section in which the reference appears.

A reference to the Location Counter may
be made in a literal address constant

General Information 19

(iee., the asterisk may be used in an
address constant specified in literal
form). The address of the instruction
containing the literal is used for the
value of the Location Counter. A Location
Counter reference may not be used in a
statement which requires the use of a
predefined symbol, with the exception of
the EQU and ORG assembler instructions.

Literals

A literal term is one of three basic ways
to introduce data into a program. It is
simply a constant preceded by an equal sign
(=) •

A literal represents data rather than a
reference to data. The appearance of a
literal in a source statement directs the
assembler prograro to assemble the data
specified by the literal, store this data
in a "literal pool", and place the value
(address) of the storage field containing
the data in the operand field of the assem
bled statement.

Literals provide a means of entering
constants (such as numbers for calculation,
addresses, indexing factors, or words or
phrases for printing out a message) into a
program by specifying the constant in the
operand of the instruction in which it is
used. This is in contrast to using the DC
assembler instruction to enter the data
into the program, and then using the name
of the DC instruction in the operand. Only
one reference to a literal is allowed in a
machine-instruction statement.

A literal term may not be combined with
any other terms.

A literal may not be used as the receiv
ing field of an instruction that modifies
storage.

A literal may not be specified in an
address constant (see Section 5, DC--Define
Constant) •

A literal may not have an explicit base
or an explicit index when specified in an
instruction.

The instruction coded below shows one
use of a literal.

r------~-----------T---------------------,
IName I Operation I Operand I
~-------+-----------+---------------------~
I GAMMA IL 110,=F'274· I L-______ ~ ___________ ~ _____________________ J

20

The statement GAMMA is a load instruc
tion using a literal as the second operand.
When assembled, the second operand of the
instruction will be the address at which
the binary value represented by F'274' is
stored.

In general, literals may be used wherev
er a storage address is permitted as an
operand. They nldY not, however, be used in
any assembler instruction. Literals are
considered relocatable, because the address
of the literal, rather than the literal
itself, will be assembled in the statement
that employs a literal. The assembler
generates the literals, collects them, and
places them in a specific area of storage,
as explained in the subsection "The Literal
Pool." A literal is not to be confused
wi th the immediate data in an 31 instruc
tion. Immediate data is assembled into the
instruction.

Literal Format: The assembler requiren a
description of the type of literal being
specified as well as the literal itself.
This descriptive information assists the
assembler in assembling the literal cor
rectly. The descriptive portion of the
literal must indicate the format in which
the constant is to be assembled. It may
also specify the length the constant is to
occupy.

The method of describing and specifying
a constant. as a literal is nearly identical
to the method of specifying it in the oper
and of a DC assembler instruction. The
major difference is that the literal must
start with an equal sign (=), which indi
cates to the assewbler that a literal fol
lows. See the discussion of the DC assem
bler instruction operand format (Section 5)
for the means of specifying a literal. The
type of literal designated in an instruc
tion is not checked for correspondence with
the operation code of the instruction.

Some examples of literals are:

=A (BETA)
=F'1234'

=C'ABC'

dddress constant literal.
a fixed-point number with
a length of four bytes.
a character literal.

The Literal Pool: The literals processed
by the assembler are collected and placed
in a special area called the literal pool,
and the location of the literal, rather
than the literal itself, is assembled in
the statement employing a literal. The
positioning of the literal pool may be
controlled by the programmer, if he so
desires. Unless otherwise specified, the
literal pool is placed at the end of the
first control section.

The p.rogrammer may also specify that
multiple literal pools be created. Howev
er, the sequence in which literals are
ordered within the pool is controlled by
the assembler. Further information on
positioning the literal poolCs) is in Sec
tion 5 underLTORG--BEGIN LITERAL POOL.

Duplicate Literals: If duplicate literals
occur within one literal pool, only one
literal is stored. Literals are considered
duplicates only if their specifications are
identical. A literal will be stored, even
if it appears to duplicate another literal,
if it is an A-type address constant con
taining any reference to the Location
counter.

The following examples illustrate the
foregoing rules:

X'FO'
Both are stored

C'O·

XL3'O'
Both are stored

HL3'O'

Both are stored

X'FFFFt
Identical: the t irst: is stored

X'FFFF'

Symbol Length Attribute Reference

The length attribute of a symbol may be
used as a term by coding L'followed by the
symbol, as in:

L'BETA

The length attribute of BETA will be
substituted for the term. The following
example illustrates the use of L'symbol in
moving a character constant into either the
high-order or low··order end of a storage
field.

For ease in following the example, the
length attributes of A1 and B2 are men
tioned. However, keep in mind tha't the
L'symbol term makes coding such as this
possible in si tua1:ions where lengths are
unknown.

r-------.-----------.---------------------,
JName I Operation I Operand I
~------+----------+-----------------~
IAl IDS ICL8 I
J B 2 I DC I C L2 t AB' I
IHIORD IMVC IA1(L t B2),B2 1
I LOORD I MVC I Al+L' Al-L' B2 (L' B2), B21 l ______ ~ __________ ~ _____________________ J

A1 names a storage field eight bytes in
length and is assigned a length attribute
of eight. B2 names a character constant
two bytes in length and is assigned a
length attribute of two. The statement
named HIORD moves the contents of B2 into
the leftmost two bytes of Al. The term
L'B2 in parentheses provides the length
specification required by the instruction.
When the instruction is assembled, the
length is placed in the proper field of the
machine instruction.

The sta ternent named LOORD moves the
contents of B2 into the rightmost two bytes
of A1. The combination of terms
Al+L'Al-L'B2 results in the addition of the
length of A1 to the beginning address of
Ai, and the subtraction of the length of B2
from this value. The result is the addres~
of the seventh byte in field A1. The con
stant represented by B2 is moved into At
starting at this address. L'B2 in
parentheses prov.ides length specification
as in HIORD.

Note: The length attribute of * is equal
to the length of the instruction in which
it appears, except in an EQU to * instruc
tion where the length attribute is 1.

EXPRESSIONS

Expressions, which are used in coding oper
and entries for assembler language state
ments, are composed of either a single term
or an arithmetic combination of terms (see
Figure 2-2). Arithmetically combined
terms, enclosed in parentheses, may be llsed
in combination with terms outside the
parentheses. For example:

14+BETA- (GAMMA-LAMBDA)

When terms in parentheses are encoun
tered in combination with other terms, like
(GAMMA-LAMBDA) in the exarople, the paren
thesized terms are reduced first to a sin
gle value. This value may be absolute or
relocatable, depending on the combination
of terms. This value then is used in
reducing the rest of the combination to.
another single value.

Genera 1 Informat.ion 21

Parenthesized terms may be included
within another set of terms in parentheses.
For example:

A+B-(C+D-CE+F)+10)

'1~his expression has two levels of
parentheses. A level of parentheses is a
left parenthesis and its matching right
parenthesis. One level of parentheses
surrounds E+F. The next higher level of
parentheses surrounds C+D-(E+F)+10. The
innermost set of terms in parentheses (the
lowest level) is evaluated first.

The following are examples of valid
expressions:
* BETA·10
AREA1+X'20'
*+32
N-25
FIELD+332
FIELD
(EXIT-ENTRY+1)+GO

B'101'
C'ABC'
29
L'FIELD
LAMBDA+GAMMA
TEN/TWO

=F'12 34'
ALPHA-BETA/(10+AREA*L'FIELD)-100
A*CA*(A*CA+l)+3*CB-3»)

The rules for coding expressions are:

1. An expression may not start with an
arithmetic operator, that is, +-/*
Therefore, the expression -A+BETA is
invalid. However, the expression
O-A+BETA is valid.

2. An expression may not contain two terms
or two operators in succession.

3. An expression ~ay not consist of more
than 8 terms.

4. An expression may not have more than
three levels of parentheses.

5. A multi-term expression nay not contain
a literal.

Evaluation of Expressions

A single term expression, e.g., 29, BETA,
., L'SYMBOL, takes on the value of the term
involved.

A multi-term expreSSion, e.g., BETA+10,
ENTRY-EXIT, 25*10+A/B, is reduced to a
single value, as follows:

1. Each term is given its value.

2. Arithmetic operations are performed
left to right. Multiplication and
division are done before addition and
subtraction, e.g., A+B*C is evaluated
as A+{B*C), not (A+B)*C. The computed
result is the value of the expression.

22

3. Every expression is computed to 32
bits.

4. Division always yields an integer
result; any fractional portion of the
result is dropped.. E.g., 1/2*10 yields
a zero result, whereas 10*1/2 yields S.

5. Division by zero is valid and yields d

zero result.

Parenthesized expressions used in an
expression are processed before the rest of
the terms in the expression, e.g. r in the
expression A+BETA*CCON-10), the term CON-10
is evaluated first and the resulting value
used in computing the final value of the
expression.

Final values of expressions may never be
greater than 2~"-1; however, intermediate
results may have a maximum value of 2 31-1.

Absolute and Relocatable Expressions

An expression is called absolute if its
value is unaffected by program relocation.

An expression is called relocatable if
its value changes upon program relocation.

The two types of expressions, absolute
and relocatable, take on these charac
teristics f rom the term or terms r.ompos ing
them. The following material discusses
this relationship.

Absolute Expression: An absolute expres
sion may be an absolute term or any arith
metic combination of absolute terms. An
absolute term may be an absolute symbol,
any of the self-defining terms, or the
length attribute reference. As indicated
in Figure 2-2, all arithmetic operations
are permitted between absolute terms.

An absolute expression may contain relo
eatable terms (RT) -- alone or in combina
tion with absolute terms (AT) -- under the
following conditions:

1. There must be an even number of reloca
table terms in the expression.

2. The relocatable terms must be paired.
Each pair of terms must have the saule
relocatabilityattribute, i.e., th~y
appear in the same control section in
this assembly (see "Program Sectioning
and Linking," Section 3). Each pair
must consist of terms with opposite
signs. The paired terms do not have to
be contiguous, e.g., RT+AT-l{T.

3. No relocatable expression may enter

into a multiply' or divide operation.
Thus, RT-RT.l0 is invalid. However,
(RT-RT) *10 is valid.

The pairing of relocatable terms (with
opposite signs and the same relocatability
attribute> cancels the effect ofreloca
tion. Therefore the value represent.ed by
the paired terms remains constant, regard
less of program relocation. For example,
in the absolute expression A-Y+X, A is an
absolute term, and X and Yare relocatable
terms with the same relocatability attri
bute. If A equals 50, Y equals 25, and X
equals 10, the value of the expression
would be 35. If X and Yare reloca·ted by a
factor of 100 their values would then be
125 and 110. However, the expression would
still evaluate as 35 (50-125+110=35).

An absolute expression reduces to a
single absolute value.

The following examples illustrate abso
lute expressions. A is an absolute term; X
and Yare relocatable terms with the same
relocatability attribute.

A-Y+X
A
1\.1\
X-Y+A
*-Y (a reference to the Location Counter

must be paired with another relocata
ble term from the same control sec
tion, i.e., with the same relocatabil
ity attribute)

Relocatable Expressions: A relocatable
expression is one whose value would change
by n if the program in which it appears is
relocated n bytes away from its originally
assigned area of storage. All relocatable
expressions must have a positive value.

A relocatable expression may be a relo
eatable term. A relocatable expression may
contain relocatable terms -- alone or in
combination with absolute terms -- under
the following conditions:

1. There must be an odd number of reloca
table terms.

2. All the relocatable terms but one must
be paired. pairing is described in
Absolute Expression.

3. The unpaired term must not be directly
preceded by a minus sign.

4. No relocatable term may enter into a
multiply or divide operation.

5. A relocatable expression must have a
posi ti ve va lue.

A relocatable expression reduces to a
single relocatable value. This value is
the value of the odd relocatable term,
adjusted by the values represented by the
absolute terms andlor paired relocatable
terms associated with it.

For example, in the expressionW-X+W-10,
Wand X are relocatable terms with the same
relocatability attribute. If initially W
equals 10 and X equals 5, the value of the
expression is 5. However, upon relocation
this value will change. If a relocation
factor of 100 is applied, the value of the
expression is 105. Note that the value of
the paired terms, W-X, remains constant at
5 regardless of relocation. Thus, the new
value of the expression, 105, is the result
of the value of the odd term (W) adjusted
by the values of w-x and 10.

The following examples illustrate relo
eatable expressions. A is an absolute
term, Wand X are relocatable terms with
the same relocatability attribute, Y is a
relocatable term with a different relocat
ability attribute.

Y-32*.A w-x+·
W-X+Y
• (reference to

Location Counter>

=F'1234' (literal)
A*A+W-W+Y
w-x+w
y

General Informat.ion 23

PART 2 -- BASIC FUNCTIONS OF THE ASSEMBLER LANGUAGE

SECTION 3: ADDRESSING -- PROGRAM SECTIONING
AND LINKING

ADDRESSING

The System/360 addressing technique
requires the use of a base register, which
contains the base address, and a displace
ment, which is added to the contents of the
base register. The programmer may specify
a symbolic address and request the assem
bler to determine its storage address in
terms of a base register and a displace
ment. The programmer may rely on the
assembler to perform this service for him
by indicating which general registers are
available for assignment and what values
the assembler may assume each contains.
The programmer may use as many or as few
registers for this purpose as he desires.
The only requirements are that, at the
point of reference, a register containing
an address from the same control section is
available, and that this address is less
than or equal to the address of the item to
which the reference is being made. The
difference between the two addresses may
not exceed 4095 bytes.

ADDRESSES -- EXPLICIT AND IMPLIED

An address is composed of a displacement
plus the contents of a base register. (In
the case of RX instructions, the contents
of an index register are also used to der
ive the address.)

The programmer writes an explicit
address by specifying the displacement and
the base register number. In designating
explicit addresses a base register may not
be combined with a relocatable symbol.

He writes an implied address by speci
fying an absolute or relocatable address.
The assembler has the facility to select a
base register and compute a displacement,
thereby generating an explicit address from
an implied address, provided that it has
been informed (1) what base registers are
available to it and (2) what each contains.
The programmer conveys this information to
the assembler through the USING and DROP
assembler instructions.

24

BASE REGISTER INSTRUCTIONS

The USI NG and DROP assembler instructions
enable programme.rs to use expressions rep
resenting implied addresses as operands of
machine-instruction statements, leaving the
assignment of base registers and the calcu
lation of displacements to the assembler.

In order to use symbols in the operand
field of ITIdchine-instruction statements,
the programmer must (1) indicate to the
assembler, by means of a USING statement,
that one or more general registers are
available for use as base registers, (2)
specify, by means of the USING statement,
what value each base register contains, and
(3) load each base register with the vctlue
he has specified for it.

A program usually has at least one USING
statement for each control section to be
implicitly addressed.

Having the assembler determine base
registers and displacements relieves the
programmer of separating each address into
a displacement value and a base address
value. This feature of the assembler will
eliminate a likely source of programming
errors, thus reducing the time required to
check out programs. To take advantage of
this feature, the programmer uses the USING
and DROP instructions described in this
subsection. The principal discussion of
this feature .follows the description of
both instructions.

USING -- Use Base Address Register

The USING instruction indicates that one or
more general registers are available for
use as base registers. This instruction
also assigns the base address values that
the assembler may assume will be i.n the
registers at object time. Note that a
USING instruction does not load the reg
isters specified. It is the programmer's
responsibility to see that the specified
base address values are placed into the
registers. Suggested loading methods are
described in the subsection ·Programming
with the USING Instructiona The typical
form of the USING instruction st.atement is:

r-----~----------~-------------·------,

1 Name I Operation 1 Operand 1
~-------+-----------+---------------------~ I Not IUSING IFrom 2-11 expressions I
I used I lof the form v, rl , I
I 1 Ir2,r3, ••• ,r16 I L ______ L-__________ ~ _____________________ J

Operand v must bf~ an absolute or reloca
table expression with a value ranging from
-2a~ to +2aq-l. No literals are permitted.
Operand v specifies a value that the assem
bler can use as a base address,. The other
operands must be absolute expressions. The
operand r1 specifies the general register
that can be assumed to contain the base
address represented by operand v. Operands
r2, r3, r4, • specify registers that
can be assumed to contain v+4096, v+8192,
v+12288, • ., respectively.. The values
of the operands rl, r2, r3, ••• , r16 must
be between 0 and 150 For example, the
statement:

r-------T-----------T---------------------,
I Name I Operation \ Operand \
t-----+-----------+---------.------------~
I I USING 1* ,12,13 1 L ______ ~ ____________ ~ _________ . ____________ J

tells the assembler it may assume that the
current value of the Location Counter will
be in general register 12 at object time,
and that the current value of the Location
Counter, incremented by 4096, will be in
general register 13 at object time.

If the programmer changes the value in a
base register currently being used, and
wishes the assembler to compute displace
ment f~om this value, the assembler must be
told the new value by means of another
USING statement. In the following sequence
the assembler first assumes that the value
of ALPHA is in register 9. The second
statem~nt then causes the assembler to
assume that ALPHA+1000 is the value in
register 9.

r------T-----------r----------------------,
I Name \ Operation I Operand I
~------+---------+----------,------------~
1 \ USING 1 ALPHA, 9 \
I \ . I I
\ I • I 1
I IUSING IALPHA+lOOO,9 I L _____ ~ _________ .1. ________________ --____ J

A USING sta tement may specify general
register 0 as a base register if operand v
is a relocatable expression from any con
trol section in the program or an absolute
value of zero. If general register 0 is

specified, it must be operand r1. In this
case, the assembler assumes that register 0
contains the value zero. Subsequent reg
isters specified in the same statement are
assumed to have the values 4096, 8192, etc.
The assembler therefore places all subse
quent effective addresses less than 4096 in
the displacement field and uses zero for
the base register f iel d.

Note: If register 0 is made available by a
USING instruction, the program is not relo
catable, despite the fact that the value
specified by operand v must be relocatable.
However, the programmer is able to make the
program relocatable at some future time by:

1. Replacing register 0 in the USING
statement.

2. Loading the register with a relocatable
value.

3. Reassembling the program.

DROP -- Drop Base Register

The DROP instruction specifies a previous ly
available register that may no longer be
used as a base register. The typical form
of the DROP instruction statement is as
follows:

r-------T----------~---------------------l
1 Name IOperat.ion I Operand \
~--------+-----------+---------------------~
I Not I DROP I Up to 16 absol ute 1
\ used \ lexpressions of the 1
I I 1 form r1,r2, I
I I \r3, ••• ,r16 \ L _______ i ___________ ~ ____________________ J

The expressions indicate general reg
isters previously specified in a USING
statement that are now unavailable for base
addressing. The following statement, for
example, prevents the assembler from usinq
registers 1 and 11:

r------T--·------~---------------------l
\Name \ Operat ion \ Operand I
~------+-----------+----------------------~ I \DROP 17,11 I L ______ ~ ___________ ~ _____________________ J

It is not necessary to use a DROP state
ment when the base address in a register is
changed by a USING statement; nor are DROP
statements needed at the end of the source
program ..

Addressing -- Program Sectioning and Linking 25

A register made unavailable by a DROP
instruction can be made available again by
a subsequent USING instruction.

PROGRAMMING WITH THE USING INSTRUCTION

The USING Cand DROP) instructions may be
used anywhere in a program, as often as
needed, to indicate the general registers
that are available for use as base reg
isters and the base address values the
assembler may assume each contains at ex
ecution time. Whenever an address is spec
ified in a machine-instruction statement,
the assembler determines whether there is
an available register containing a suitable
base address. A register is considered
available for a relocatable address if it
was assigned a relocatable value that is in
the same control section as the address. A
register assigned an absolute value is
available for addressing absolute locations
only. In either case, the base address is
considered suitable only if it is less than
or equal to the address of the item to
which the reference is made. The differ
ence between the two addresses may not
exceed 4095 bytes. In calculating the base
register to be used, the assembler always
uses the available register giving the
smallest displacement. If there are two
registers with the same value, the highest
numbered register is used.

r-------T-----------T---------------------,
IName I Operation I Operand I
~-------+-----------t---------------------~
'BEGIN tBALR 12,0 I
, I USI NG I * , i I
I FIRST I·' I
I I . I I
I I . I I
I LAST I· I I
I lEND I BEGIN I L-______ ~ ___________ ~ _____________________ J

In the preceding sequence, the BALR
instruction loads register 2 with the
address of the first storage location
immediately following. In this case, it is
the address of the instruction named FIRST.
The USING instruction indicates to the
assembler that register 2 contains this
location. When employing this method, the
USING instruction must immediately follow
the BALR instruction. No other USING or
load instructions are required if the loca
tion named LAST is within 4095 bytes of
FIRST.

In Figure 3-1, the BALR and LM instruc
tions load registers 2-5. The USING
instruction indicates to the assembler that
these registers are available as base reg
isters for addreSSing a maximum of 16,384
consecutive bytes of storage, beginning
with the location named HERE. The number
of addressable bytes may be increased or
decreased .by alte.ring the number of reg
isters designated by the USING and LM
instructions and the number of address
constants specified in the DC instruction.

RELATIVE ADDRESSING

Relative addreSSing is the technique of
addressing instructions and data areas by
designating their location in relation to
the Location Counter or to some symbolic
location. This type of addressing is
always in bytes, never in bits, words, or
instructions. Thus, the expression *+4
specifies an address that is four bytes
greater than the current value of the Loca
tion Counter. In the sequence of instruc
tions shown in the following example, the
location of the CR machine instruction can
be expressed in two ways, ALPHA+2 or
BETA-4. because all of the mnemonics in the
example are for 2-byte instructions in the
RR format.

r----------T-----------~---, I Name I Operation I Operand I
~---------+-----------+--~ I BEGIN IBALR 12,0 I
I I USING IHERE,2,3,4,5 I
I HERE ILM I 3, 5, BASEADDR I
I IB IFIRST I
I BASEADDR I DC I A(HEHE+4096, HERE+8192 ,HERE+12288) I
I FIRST I. I I
I J • I I
I I • I I
I LAST I· I I
I I END , BEG IN I L __________ ~ ___________ ~ ___ J

Figure 3-1. Multiple Base Register Assignment

26

r-----T----------T---------------------,
I Name I Operation I Operand I
.-------+----------+----------------------~
I ALPHA I LR 13, 4 I
I I CR 14,6 I
I I BCR 11,14 I
I BETA IAR 12,3 I L ____ .L _________ .J. ____________________ J

PROGRAM SECTIONING AND LINKING

It is often convenient, or necessary, to
write a large program in sections. The
sections may be assembled separately, then
combined subsequently into one object pro
gram. The assembler provides facilities
for creating multi sectioned programs and
symbolically linking separately assembled
programs or program sections. The combined
number of control sections and dummy sec
tions plus the number of unique symbols in
EXTRN statements and V-type address con
stants may not exceed 255. CEXTRN sta te
ments are discussed in this section; V-type
constants in Section 5 under the DC -
Define Constant assembler instruction.) If
the same symbol appears in a V-type address
constant and in the name field of a CSECT
or DSECT statement, it is counted as two
symbols.

sectioning a program is opt:ional/l and
many programs can best be written without
sectioning them. The progranuner writing an
unsectioned program need not concern him
self with the subsequent discussion of
program sections, which are called control
sections. He need not employ the CSECT
instruction, which is used to identify the
control sections of a multisection program.
Similarly, he need not concern himself with
the discussion of symbolic linkages if his
program neither requires a linkage to nor
receives a linkage from another program.
He may, however, wish to identify the pro
gram and/or specify a tentative starting
location for it, both of which may be done
by using the START instruction. He may
also want to employ the dummy section fea
ture obtained by using the DSECT instruc
tion.

Note: Program sectioning and linking is
closely related to the specification of
base registers for each control section.
Sectioning and linlcing examples are provid
ed under the heading Addressing External
Control, Sections.

CONTROL SECTIONS

The concept of program sectioning is a
consideration at coding time, assembly
time, and load time. To the programmer, a
program is a logical unit. He may want to
divide it into sections called control
sections; if so, he writes it in such a way
that control passes properly from one sec
tion to another regardless of the relative
physical position of the sections in stor
age. A control section is a block of cod
ing that can be relocated, independently of
other coding, at load time without altering
or impairing the operating logic of the
program. It is normally identified by the
CSECT instruction. However, if it is
desired to specify a tentative starting
location,the START instruction may be used
to identify the first control section.

To the assembler, there is no such thing
as a program; instead, there is an assem
bly, which consists of one or more control
sections. (However, the terms assembly and
program are often used interchangeably.)
An unsectioned program is treated as a
single control section. To the linkage
editor I there are no programs, only control
sections that must be fashioned into an
object program.

The output of the assembler consists of
the assembled control sections and a con
trol dictionary. The control dic·tionary
contains information the linkage editor
needs in order to complete cross
referencing between control sections, as it
combines them into an object program. The
linkage editor can take control sections
from various assemblies and combine them
properly with the help of the corresponding
control dictionaries. SUccessful
combination of separately assembled control
sections depends on the techniques used to
provide symbolic linkages between the con
trol sections.

Whether the programmer writes an unsec
tioned program, a multisection program, or
part of a multisection program, he still
knows what eventually will be entered in-t.o
storage, because he bas described storage
symbolically_ He may not know where each
section appears in storage, but he does
know what storage contains. There is no
constant relationship between control sec
tions. Thus, knowing the location of one
control section does not make another con
trol section addressable by relative
addreSSing techniques.

Addressing -- Program sectioning and Link.ing 27

Control Section Location Assignment

Control section contents can be intermixed
because the assembler provides a Location
Counter for each control section. Control
sections are assigned starting locations
consecutively, in the same order as the
control sections first occur in the pro
gram. Each control section subsequent to
the first begins at the next available
double-word boundary.

FIRST CONTROL SECTION

The first control section of a program has
the following special properties.

1. The initial value of its location coun
ter may be specified as an absolute
value.

2. It normally contains the literals
requested in the program, although
their positioning can be altered. This
is further explained under the discus
sion of the LTORG assembler instruc
tion.

START -- Start Assembly

The START instruction may be used to give a
name to the first (or only> control section
of a program. There may be only one STAHT
instruction in an assembly. It may also be
used to specify the initial value of the
location counter for the first control
section of the program. The typical form
of the START instruction statement is as
follows:

r----------T----------~------------------,
I Name I Operation I Operand I
.----------+-----------+------------------~
IA symbol I START IA self-defining I
lor not I Iterm or not I
lused I lused I L __________ ~ ___________ ~ _________________ J

If a symbol names the START instruction,
the symbol is established as the name of
the control section. If not, the control
section is considered to be unnamed. All
subsequent statements are assembled as part
of that control section. This continues
until a CSECT instruction identifying a
different control section or a DSECT
instruction is encountered. A CSECT
instruction named by the same symbol that
names a START instruction is considered to
identify the continuation of the control

28

section first identified by the START.
Similarly, an unnamed CSECT that occurs in
a program initiated by an unnamed START is
considered to identify the continuation of
the unnamed control section.

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the con
trol section. It has a length attribute of
one.

The assembler uses the self-defining
term specified by the operand as the ini
tial value of the location counter of the
program. This value should be divisible by
eight. For example, either of the follow
ing statements:

r-------T-----------T---------------------, I Name IOperation IOperand I
~-------+-----------+---------------------~
IPROG2 I START)2040 I
IPROG2 I START IX'7FS' I l _______ ~ __________ ~ ____________________ J

could be used t.o assign the name PROG2 to
the first control section and to indicate
an initial assembly location of 2040. If
the operand is omitted, the assembler sets
the initial value of the location counter
to zero.

Note: The START instruction may not be
preceded by any type of assembler language
statement that may either affect or depend
upon the setting of the Location Counter.

CSECT -- Identify control section

The CSECT instruction identifies the begin
ning or the continuation of a control sec
tion. The typical form of the CSECT
instruction sta tement is as follows:

r----------T-----------T------------------,
IName I Operation I Operand I
~----------+-----------+------------------~
I A symbol I CSECT I Not used; must I
lor not I Inot be present I
lused I I I l __________ ~ ___________ ~ __________________ J

If a symbol names the CSECT instruction,
the symbol is established as the name of
the control section; otherwise the section
is considered to be unnamed. All state
ments following the CSECT are assembled as
part of that control section until a state
ment identifying a different control sec
tion is encountered <i.e., another CSECT or
a DSECT instruction).

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the con
trol section. It has a length attribute of
one.

several CSECT statements with the same
name may appear within a program. The
first is considered to identify the begin
ning of the control section: the rest iden
tify the resumption of the section. Thus,
statements from different control sections
may be interspersed. They are properly
assembled (assigned contiguous storage
locations) as long as the statements from
the various control sections are identified
by the appropriate CSECT instructions.

Unnamed Control Section

If neither a named CSECT instrfction nor
START instruction appears at tlhe beqinning
of the program, the assembler Fletermines
that it is to assemble an unna~ed control
section as the first (or only>1 control
section. There may be only one unnamed
control section in a program. I If one is
initiated and is then followed by at named
control section, any subsequenf unnamed
CSECT statements are considere~ to resume
the D,nnamed control section. ~f it is
desired to write a small progrrm that is
unsectioned, the program does rot need to
contain a CSECT instruction.

DSECT -- Identify Dummy sectiop

A dummy section represents a ~ntrol sec
tion that is assembled but is ~ot part of
the object program. A. dummy section is a
convenient means of describingl the layout
of an area of storage without ~ctually
reserving the storage. (It iSlassumed that
the storage is reserved either by some
other part of this assembly or else by
another assembly.) The DSECT 'nstruction
identifies the beginning or re~umption of a
dummy section. More than one flummy section
may be defined per assembly, bllUt each must
be named. The typical form of the DSECT

::~::ti::T::::::::_:_:~~::: ______ '
I Name I Operation IOperan(i I

~-;;~b~1--t~~EC;------t~~~-~;Ed;-;~;~----1
L _________ l ___________ l~~~_~:~:~:~~----J

The symbol in the name field is a valid
relocatable symbol whose value represents
the first byte of the section. It has a
length attribute of one.

Program statements belonging to dUImlY
sections may be interspersed throughout the
program or may be written as a unit. In
either case, the appropriate DSECT instruc
tion should precede each set of statements.
When multiple DSECT instructions with the
same name are encountered, the first is
considered to initiate the dummy section
and the rest to continue it.

Symbols that name statements in a dummy
section may be used in USING instructions.
Therefore, they may be used in program
elements (e.g., machine-instructions and
data definitions> that specify storage
addresses. An example illustrating the use
of a dummy section appears subsequently
under "Addressing Dummy Sections."

Note 1: A symbol that names a statement
in a dummy section may be used in an A-type
address constant only if it is paired with
another symbol (with the opposite sign)
from the same dummy section.

Note 2: A LTORG instruction may not
appear in a dummy section.

DUMMY SECTION LO(~TION ASSIGNMENT: A Loca
tion Counter is used to determine the rela
tive locations of named program elements in
a dummy section. The Location Counter is
always set to zero at the beginning of the
dummy section, and the location values
aSSigned to symbols that name statements in
the dummy section are relative to the ini
tial statement in the section.

ADDRESSING DUMMY SECTIONS: The programmer
may wish to describe the forn~t of an area
whose storage location will not be deter
mined until the program is executed. He
can describe the format of the area in a
dummy section, and he can use symbols
defined in the dummy section as the oper
ands of machine instructions. To effect
references to the storage area, he does the
following:

1. Provides a USING statement specifying
both a general register that the assem
bler can assign to the machine
instructions as a base register and a
value from the dummy section that the
assembler may assume the register con
tains.

2. Ensures tha t the same register is load
ed with the actual address of the stor
age area.

The values assigned to symbols defined

Addressing -- Program Sectioning and Linking 29

in a dummy section are relative to the
initial statement of the section.

Thus, all machine-instructions which
refer to names defined in the dummy section
will, at execution time, refer to storage
locations relative to the address loaded
into the register.

An example is shown in the following
coding. Assume that two independent assem
blies (assembly 1 and assembly 2) have been
loaded and are to be executed as a single
overall program. Assembly 1 is an input
routine that places a record in a specified
area of storage, places the address of the
input area containing the record in general
register 3, and branches to assembly 2.
Assembly 2 processes the record. The cod
ing shown in the example is from assembly
2.

The input area is described in assembly
2 by the DSECT control section named INAR
EA. Portions of the input area (i.e.,
record) that the programmer wishes to work
with are named in the DSECT control section
as shown. The assembler instruction USING
INAREA,3 designates general register 3 as
the base register to be used in addressing
the DSECT control section, and that general
register 3 is assumed to contain the
address of INAREA.

Assembly 1, during execution, loads the
actual beginning address of the input area
in general register 3. Because the symbols
used in the DSECT section are defined rela
tive to the initial statement in the sec
tion, the address values they represent,
will, at the time of program execution, be
the actual storage locations of the input
area.

30

r--------,------------T-----------------l
I Name I Operation I Operand I
.---------+-----------+-------------------~
ASMBLY2 ICSECT I I
BEGIN IBALR 12,0 I

ATYPE

IWORKA
IWORKB
I
I
IINAREA
IINCODE
IINPUTA
IINPUTB
I

USING ,*,2 I

USING
CLI
BE

MVC
MVC

OS
IDS
I
I
I DSECT
IDS
IDS
IDS
I .

I I
I I
I INAREA, 3 I
J INCODE, C' A' J
IATYPE I
I I
I I
IWORKA,INPUTA
IWORKB,INPUTB
I
I
leL20
ICLlS
I
I
I
IC.Ll
ICL20
ICL18
I

I lEND I l _________ i-__________ L __________________ _

COM -- DEFINE BLANK COMMON CONTROL SEcTION

The COM assembler instruction identifies
and reserves a common area of storage that
may be referred to by independent assem
blies that have been linked and loaded for
execution as one overall program.

Only one blank common control section
may be designated in an assembly. However,
more than one COM statement may appear
within a program. The first identifies the
beginning of the control section; the rest
identify the resumption of the section.

When several assemblies are loaded, each
deSignating a common control section, the
amount of storage reserved is equal to the
lonqest common control section. The form
is:

r-------T-----------~--------------------,
I Name I Operation I Operand 1
~-------+-----------+---------------------~
I Not I COM I Not used; must not I
/used I Ibe present I l ______ -i-__________ ~ ____________________ J

The common area may be broken up int.o
subfieldsthrough use of the DS and DC
assembler instructions. Names of subfields
are defined relative to the beginning of
the common section, as in the DSECT control
section.

No instructions or constantJ appearing
in a common control section ar~ assembled.
Data can only be placed in a cqmmon control
section through execution of tht,e program.

Note: A LTORG instruction m y not appear
in blank common. I

If the assignment of common
done in the same manner by eac
assembly, re·ference to a locat
by any assembly results in the
tion being referenced. When a
blank common location assignme
zero.

SYMBOLIC LINKAGES

storage is
independent

on in common
same loca
sembled,
t starts at

symbols may be defined in one !rogram and
referred to in another, thus e fecting
symbolic linkages between inde endently
assemb .. led programs.. The linka. es can be
effected only if the assembler is able to
provide information about the inkage sym
bols to the linkage editor, wh~ch resolves
these linkage refe:rences at IOtd time. The
assembler places the neces.sary Informa.tion
in the control dictionary on t e basis of
the linkage symbols identified by the ENTRY
and EXTRN instructions. Note hat these
symbolic linkages are describe~1 as linka. ges
between independent assemblies; more spe
cifically, they are linkages bl_tween inde
pendently assembled control septions.

!

In the program where the lipkage symbol
is defined (i.e., used as a na~e), it must
also be identified to the Linkage Editor by
means of the ENTRY assembler illnstruction.
It is identified as a symbol t~at names an
entry point, which means that~nother pro
gram may use that symbol in or er to effect
a branch operation or a data leference.
The assembler places this information in
the control dictionary. .

Similarly, the program thafuses a sym
bol defined in some other program must
identify it by the EXTRN asse ler instruc
tion. Since the definition of the symbol
appears in another program, t.~e ass.embler
arbitrarily assigns a length f 1 and a
value of o. The assembler places this
information in the control di tionary and
the symbol table. '

Another way to obtain symb~lic linkages,
is by using the V-type addres~' constant.
The subsection "Data Definiti n
Instructions" in section 5 cOitains the
details pertinent to writing v-type
address constant. It is suff"cient here to
note that this constant may b~ considered
an indirect linkage point. I~ is created
from an externally defined syntOOl, but that

symbol does not have to be identified by an
EXTRN statement. The V-type address con
stant is intended to be used for external
branch references <i.e., for effecting
branches to other programs). Therefore, it
should not be used for exte.rnal data ref
erences (i.e., for referring to data in
other programs).

ENTRY' -- IDENTIFY ENTRY-POINT SYMBOL

The ENTRY instruction identifies linkage
symbols that are defined in this program
but ~y be used by some other program. The
typical form of the ENTRY instruction
statement is as follows:

r-------.----------~---------------------, I Name I Operation I Operand I
.-------t-----------t---------------------~ t Not I ENl'RY lOne or more reloca- I
I used I I table symbols, I
I I Iseparated by I
I I lcommas, that also I
I I 1 a ppear as state- I
I I \ment names 1 L ______ ~ __________ _L _____________________ J

A program may contain a maximum of 100
ENTRY symbols. EN'rRY symbols which are not
defined (not appearing as statement names),
although invalid, will also count towards
this maximum.

An ENTRY statement operand may contain a
symbol defined in an unnamed control sec
tion but may not contain a symbol defined
in a dummy section or blank common. The
following example identifies the statements
named SINE and COSINE as entry points to
the program.

r-------T----------~--------------------I I Name \ Operation 1 Operand 1
.-------t-----------+---------------------~ I J ENTRY I SINE, COSINE I l ______ ~ __________ _L ____________________ _1

Note: The name of a control section does
not haVe to be identif ied by an ENTRY
instruction when another prog·ram uses it as
an ent.ry point. The assembler automat
ically places information on control sec
tion names in the control dictionary.

EXTRN -- IDENTIFY EXTERNAL SYMBOL

The EXTHN instruction identifies linkage
symbols that are used by this program but
defined in some other program. Each exter-

AddreSSing -- Program Sectioning and Linking 31

nal symbol must be identified: this
includes symbols that name control sec
tions. The typical form of the EXTRN
instruction statement is as follows:

r-------~---------T---------------------,
IName I operation I operand I
~-------+-----------+---------------------~
INot 1 EXTRN lOne or more symbols, J
I used I Iseparated by commas I L _______ ~ ___________ ~ ____________________ J

The symbols in the operand field may not
appear as names of statements in this pro
gram. The following example identifies
three external symbols that have been used
as operands in this program but are defined
in some other program.

r------~-----------T---------------------,
1 Name 1 operation 1 Operand I

~-------+-----------+---------------------~
1 1 EXTRN IRATEBL,PAYCALC 1
I 1 EXTRN IWITHCALC I l _______ ~ ___________ i _____________________ J

An example that employs the EXTRN
instruction appears subsequently under
"Addressing External Control Sections."

Note 1: A V-type address constant does
not have to be identified by an EXTRN
statement.

Note 2: When external symbols are used
in an expression they may not be paired.
Each external symbol must_ be considered as
having a unique relocatability attribute.

~ddressing External Control Sections

A common way for a program to link to an
external control section is to:

1. Create a v-type address constant with
the name of the external symbol.

2. Load the constant into a general reg
ister and branch to the control section
via the register.

32

r-.;...---------y---------,--------------"'
I Name IOperation IOperand I
.----------+-----------+------------------~
I MAL NPROG JCSECT I ,
I BEG IN I BALR I 2, 0 J
I IUSING 1*,2 J
1 I I I
I I J I
I I L I 3, VCON J
I IBALR 11,3 I
1 I I I
I I I I
I V CON IDC IV(SINE) J
I , END I BEGIN I L __________ i __________ ~ __________________ J

For example, to link to the control
section named SINE, the preceding coding
might be used.

An external symbol naming data may be
referred to as follows:

1. Identify the external symbol with the
EXTRN instruction, and create an
address constant from the symbol.

2. Load the constant into d general reg
ister, and use the register for base
address ing.

For example, to use an area n<'lrred
RATETBL, which is in another control sec
tion, the following coding might be used:

r----------~----------~-----------------l
I Name iOperation IOperand I
.----------+-----------+------------------~

MAINPROG CSECT
BEGIN BALR

I

USING

EXTRN

L
USING
A

2,0
*,2

RATETBL

4,HATEADDR
RATETBL,4
3, RATETBL

IRATEADDR IDC A (RATETBL)
I lEND BEGIN I l __________ L-__________ L-_________________ J

i

This section discusses the COding of the
machine-instructions represent d in the
assembler language. The reade is ;ceminded
that the functions of each mac ine
instruction are discussed in tie principles
of operation manual (see prefa~e).

MACHINE-INSTRUCTION STATEMENTS!
-I

Machi ne-inst. ructions may be re1' resented
symbolically as assembler lang'age
statements. The symbolic form t of each
varies according to the actual I machine
instruction format, of which tmere are
five: RR, RX, RS, SI, and SSe !Within each
basic format, further variatio$s are
possible.

i

The symbolic format of a ma¢hine
instruction is similar to, but II does not
duplicate, its actual format. Appendix (
illustrates machine format fori the five
classes of instructions. A mn$monic opera
tion code is written in the op¢ration
field, and one or more operand, are written
in the operand field. commentt may be
appended to a machine-instruct on statement
as previously explained in Sec ion 1.

,

I

Any machine-instruction statement may be
named by a symbol, which otheriassembler
statements can use as an operarlld. The
value attribute of the symbol jS the
address of the leftmost. byte a Signed to
the assembled instruction.. Th length
attribute of the symbol depend on the
basic instruction format, as f,llows:

Basic Format
RR
RX
RS
SI
S5

i

~enqth Attrib$te

4
4
4
6

Instruction Alignment and Cheering

All machine-inst.ructions ar$ aligned
automatically by the assemblerjon half-word
boundaries. If any statement that causes
information to be assembled re~uires align
ment, the bytes skipped are filled with
h. exad.ecirnal zeros. All expreSi'ions that
specify storage addresses are hecked to
insure that they refer to appr priate
boundaries for the instruction~ in which

SECTION 4: MACHINE-INSTRUCTIONS

they are used. Register numbers are also
checked to make sure that they specify the
proper registers, as follows:

1. Floating-point instructions must spec
ify floating-point registers 0, 2, 4,
or 6.

2. Double-shift, full-word multiply, and
divide instructions must specify an
even-numbered general register in the
first operand.

OPERAND FIELDS AND SUBFIELDS

So-roe symbolic operands are written as a
single field and other operands are written
as a field followed by one or two sub
fields. For example, addresses consist of
the contents of a base register and a dis
placement. An operand that specifies a
base and displacement is written as a dis
placement field followed by a base register
subfield, as follows: 40(5). In the RX
format, both an index register subfield and
a base register subfield are written as
follows: 40(3,5). In the SS format, both a
length subfield and a base register sub
field are written as follows: 40(21,5).

Appendix C shows two types of addressing
formats for RX, RS, SI, and SS instruc
tions. In each case, the first type shows
the method of specifying an address expli
citly, as a base register and displacement.
The second type indicates how to specify an
implied address as an expression.

For example, a load multiple instruction
(RS format) may have either of the follow
ing symbolic operands:

R1,R3,D2(B2)
R1,R3,S2

explicit address
implied address

Whereas D2 and 82 must be represented by
absolute expressions, 52 may be represent.ed
ei ther by a relocatable or an absolute
express ion.

In order to use implied addresses, the
following rules must be observed:

1. The base register assembler instruc
tions (USING and DROP) must be used.

2. An explicit bdse register designation
must not accompany the implied
address.

Machine-Instructions 33

For example, assume that FIELD is a
relocatable symbol, which has been assigned
a value of 7400. Assume also that the
assembler has been notified (by a USING
instruction) that general register 12 cur
rently contains a relocatable value of 4096
and is available as a base register. The
following example shows a machine
instruction statement as it would be
written in assembler language and as it
would be assembled. Note that the value of
02 is the difference between 7400 and 4096
and that X2 is assembled as zero, since it
was omitted. The assembled instruction is
presented in hexadecimal:

Assembler statement:

ST 4, FIELD

Assembled instruction:

Op.Code R1 X2 B2 02
50 4 0 B CE8

An address may be specified explicitly
as a base register and displacement (and
index register for RX instructions) by the
formats shown in the first column of Table
4-1. The address may be specified as an
implied address by the formats shown in the
second column. Observe that the two stor
age addresses required by the SS instruc
tions are presented separately; an implied
address may be used for one while an expli
cit address is used for the other.

Table 4-1. Details of Address Specifi-
cation

r------T----------------T-----------------,
1 Type IExplicit Address 1 Implied Address 1
~-----+---------------+------------------~
1 RX ID2(X2,R2) 1 S2(X2) 1
I 102(,B2) 1 S2 1
1 RS 102 (B2) I S2 1
1 SI 101(Bl} I 51 1
I SS 101(L1,Bl) I Sl(Ll) 1
I ID1(L,B1) 1 Sl(L) I
I ID2(L2,B2} I S2(L2) I L-_____ ~ ________________ ~ _________________ J

A comma must be written to separate
operands. Parentheses must be written to
enclose a subfield or subfields, and a
comma must be written to separate two sub
fields within parentheses. When parenthe
ses are used to enclose one subfield, and
the subfield is omitted, the parentheses
must be omitted. In the case of two sub
fields that are separated by d comma and
enclosed by parentheses, the following
rules apply:

1. If both subfields are omitted, the
separating comma and the parentheses
must also be omitted.

34

2.

3.

L
L

2,48(4,5)
2,FIELD (implied address)

If the first subfield in the sequence
is omitted, the comma that separates
it from the second subfield is writ
ten. The parentheses must also be
written.

MVC 32{16,S),FIELD2
MVC BETA{,S),FIELD2 (implied length)

If the second subfield in the sequence
is omitted, the comma that separates
it from the first sub-field must be
omitted. The parentheses must be
written.

MVC 32{16,S),FIELD2
MVC FIELD1(16),FIELD2 (implied

address)

Fields and subfields in a symbolic oper
and rna y be represented either by absolute
or by relocatable expressions~ depending on
what the field requires. (An expression
has been defined as conSisting of one term
or a series of arithmetically combined
terms.) Refer to Appendix C for a detailed
description of field requirements.

Note: Blanks may not appear in an oper
and unless provided by a character self
defining ttrm or a character literal.
Thus, blanks may not intervene between
fields and the comma separators, between
parentheses and fields, etc.

LENGTHS -- EXPLICIT AND IMPLIED

The length field in SS instructions can
be explicit or implied.. To imply d length,
the programmer omits a length field from
the operand. The omission indicates that
the length field is either of the
following:

1. The length attribute of the expression
specifying the displacement, if an
explicit base and displacement have
been written.

2. The length attribute of the expression
specifying the effective address, if
the base and displacement have been
implied.

In either case, the length attribute for
an expression is the length of the leftmost
term in the expression. The length attri
bute of asterisk (*> is equal to the length
of the instruction in which it appears,
except that in an EQU to * statement, the
length attribute is 1.

By contrast, an explicit le'gth :is writ
ten by the programmer in the 0 erand as an
absolute expression. The expl cit length
overrides any implied length.

Whether the length is expli it or
irnplied, it is always an effec ive length.
The value inserted into the Ie gth field of
the assernbled instruction is 0 e less than
the effective length in the rna hine
instruction staternent.

Note: If a length field of ero is
desired, the length may be sta ed as zero
or one.

To summarize, the length re uired in an
SS instruction may be specifie explicitly
by the formats sho~n in the fi st column of
Table 4-2 or rnay be implied by the formats
shown in the second colurnn. 0 serve that
the two lengths required in onI of the SS
instlfuction formats are presen ed separate
ly. An irnplied length may be sed for one
while an explicit length is us d for the
oth~. !

I

:::le_:=:~ __ ~~:;~~!~~~:~~!~~:I:::~:~:::~::
I Explicit Length I Implied Le gth I
~----------------.~----------+------------~
I Dl(Ll,Bl) I Dl(,B1) II I
I Sl(Ll) I Sl I
I D1(L,B1) I Dl(,B1) I I
I Sl (L) 1 Sl i I
I D2(L2,B2) I D2(,B2)! I
I S2(L2) I S2 : I
L----------------_I-----------t-----------J

I

!
i

MACHINE-INSTRUCTION MNEMONIC CpDES

The mnemonic operation cOde~ (shown in
Appendix D) are designed to be easily
remembered COdes. that indicate~the fUnc
tions of the instructions. Th normal
format of the code is shown below: the
items in brackets are not necefsarily pre-
sent in all codes: i

VerblModifier] [Data Type] £Malchine Format)

... 11 I The verb, wh1ch 1S usua y [one or two
characters, specifies the funcltion. For
example, A represents Add , a d MV rep
resents Move. The function may be further
defined by a modifier. For e ample, the
modifier L indicates -a logica function, as
in AL for Add Logical and MV 's modified by
C (MVC) to indicate Move Char cters.

Mnemonic codes for functio s involving
data usually indicate the dat. types, by

letters that correspond to those for the
data types in the DC assembler instruction
(see Section 5). Furthermore, letters U
and W have been added to indicate short and
long, unnormalized floating-point opera
tions, respectively. For example, AE indi
cates Add Normalized Short, whereas AU
indicates Add Unnormalized Short. Where
applicable, full-word fixed-point data is
implied if the data type is omitted.

The letters R and I are added to the
codes to indicate, respectively, RR and SI
machine instruction, formats. Thus, AER
indicates Add Normalized Short in the RH
format. Functions involving character and
decimal data types imply the SS format.

MACHINE-INSTRUCTION EXAMPLES

The examples that follow are grouped
according to machine-instruction format.
They illustrate the various symbolic oper
and formats. All symbols employed in the
examples must be assumed to be defined
elsewhere in the same assernbly. All sym
bols that specify register numbers and
lengths must be assumed to be equated else
where to absolute values.

Implied addressing, control section
addressing, and the function of the USING
assembler instruction are not considered
here. For discussion of these considera
tions and for examples of coding sequences
that illustrate them, refer to Section 3,
program sectioning and Linkinq, and Base
Register Instructions.

RR Format

r--------T----------~ --------------------,
I Name I operation lOperand I
t--------+-----------+--------------------~
IALPHAl ILH. 11,2 I
IALPHA2 ILR IREG1,REG2 I
1 BETA ISPM 115 I
I GAMMA 1 ISVC 1250 I
IGAMMA2 1SVC ITEN I L ________ ~ __________ ~ ____________________ J

The operands of ALPHA1, BETA, and GAMMAl
are decimal self-defining values, which are
categorized as absolute expressions. The
operands of ALPHA2 and GAMMA2 are symbols
that are equated elsewhere to absolute
va lues.

Machine-Instructions 35

RX Format

r---------~----------T------------------_,
I Name I Operation I Operand I
1 I I I
~---------+-----------+-------------------4 I ALPHAl I L 11, 39 (4 , 10) I
I ALPHA2 I L I REG1, 39 (4, TEN) 1
J BETA 1 I L J 2 , ZETA (4) I
I BETA 2 IL IREG2,ZETA(REG4} I
JGAMMAl IL 12,ZETA I
JGAMMA2 IL IREG2,ZETA I
IGAMMA3 IL 12,=P'1000' I
I LAMBDA1 I L 13,20 (, S) I L _________ ~ __________ ~ ___________________ J

Both ALPHA instructions specify explicit
addresses: REGl and TEN are absolute sym
bols. Both BETA instructions specify
implied addresses, and both use index reg
isters. Indexing is omitted from the GAMMA
instructions. GAMMA1 and GAMMA2 specify
implied addresses. The second operand of
GAMMA3 is a literal. LAMBDA1 specifies no
indexing.

R5 Format

r--------T-----------T--------------------,
I Name I Operation I Operand I
~--------+-----------+--------------------~
IALPHAl IBXH 11,2,20(14) I
IALPHA2 IBXH IREG1,REG2,20(REGD) I
IALPHA3 IBXH IREG1,REG2,ZETA I
lALPHA4 JSLL IREG2,lS I
I ALPHAS ISLL IREG2,0(15} I l _______ ~ ___________ ~ ____________________ J

Whereas ALPHAl and ALPHA2 specify ex
plicit addresses, ALPHA3 specifies an
implied address. ALPHA4 is a shift
instruction shifting the contents of REG2
left 15 bit positions. ALPHAS is d shift
instruction shifting the contents of REG2
left by the value contained in general
register 15.

36

SI Format

r--------T-----------T--------------------,
I Name 10peration)Operand J
~--------+-----------+--------------------~
IALPHA1 leLI 140(9),X'40' I
IALPHA2 JCLI 140(REG9),TEN I
I BETAl I CLI I ZETA, TEN I
IBETA2 ICLI IZETA,C'A' I
lGAMMA1 ISIO 140(9) I
I GAMMA2 J SIO I 0 (9) I
IGAMMA3 ISla 140(0) I
IGAMMA4 ISIO I ZETA I L _______ ~ __________ ~ ____________________ J

The ALPHA instructions and GAMMA1-GAMMA3
specify explicit addresses, whereas the
BETA instructions and GAMMA4 specify
implied addresses. GAMMA2 specifies a
displacement of zero. GAMMA3 does not
specify a base register.

5S Format

r--------T--------~----------------------,
I Name I Operation I Operand I
.--------+---------+----------------------~
IALPHA1 lAP 140(9,S),30(6,7) J
I ALPrlA2 lAP 140 (NINE, REGS). 30 (L6, 7) I
I ALPHA) lAP IFIELD2,FIELDl J
I ALPHA4 1 AP IFIELD2 (9) ,FIELDl (6) I
I BETA lAP IFIELD2(9),FIELDl I
IGAMMA1 IMVC 140 (9,S) ,30(7) I
I GAMMA2 I MVC 140 (NINE,REGS) ,DEC (7) 1
I GAMMA 3 Ir.1VC IFIELD2,FIELDl I
IGAMMA4 It·WC IFIELD2(9),FIEIDl I l ________ ~ ________ ~ ______________________ J

ALPHA1, ALPHA2, GAMMAl, and GAMMA2 spec
ify explicit lengths and addresses. ALPHA3
and GAMMA3 specify both implied length and
implied addresses. ALPHA4 and GAMMA4 spec
ify explici t length and implied addresses.
BETA specifies an explicit length for
FIELD2 and an implied length for FIELD1;
both addresses are implied.

EXTENDED MNEMONIC CODES

For the convenience of the programmer, the
assembler provides extended mnemonic codes,
~hich allow conditional branches to be
specified mnemonically as well as through
the use of the BC machine-instruction.
These extended mnemonic codes specify both
the machine branch instruction and the
condition on which the branch is to occur.
The codes are not part of the universal set
of machine-instructions, but are translated

r-----------------------------~---,
IExtended Code Meaning I Machine-Instruction I
I I I
IB D2(X2,B2) Branch unc3nditional BC 15,D2(X2,B2} I
IBR R2 Branch Uncqnditional (RR format) BeR 15,R2 I
INOP D2(X2,B2) No operati9n Be 0,D2(X2,B2) I
INOPR R2 No operati9n (RR format) BCR 0,R2 I
I' I

I Used After Compare Instr I
I I
IBH D2(X2,B2} Branch on BC 2,D2(X2,B2) 1
IBL D2(X2,B2) Branch on BC 4,D2(X2,B2) I
IBE D2(X2,B2} "Branch on BC 8,D2(X2, B2) I
IBNH D2(X2,B2) Branch on BC 13,D2(X2,B2) I
IBNL D2(X2,B2) Branch on Be 11,D2(X2,B2) I
IBNE D2(X2,B2) Branch on "BC 7,D2(X2,B2) J
I I
I Used After Arithmetic In tructions I
I I I
IBO D2(X2,B2) Branch on ~verflow BC 1,02(X2,B2) J
IBP D2(X2,B2) Branch on ~lus Be 2,D2(X2,B2) I
IBM D2(X2,B2) Branch on~inus BC 4,02(X2,B2)
lBZ D2(X2,B2) Branch on ~,ero BC 8,D2(X2,B2)
IBNP D2(X2,B2} Branch on at Plus BC 13,D2(X2,B2}
IBNM D2(X2,B2) Branch on at Minus Be 11,D2(X2,B2)
IBNZ D2(X2,B2) Branch on at Zero Be 7,D2(X2,B2)
I !

I Used After Test Under Ma~k Instructions

IBO D2(X2,B2) Branch if dnes BC 1,D2(X2,B2}
IBM D2(X2,B2) Branch if Mixed Be 4,D2(X2,B2)
lBZ D2(X2,B2) Branch if ~eros Be 8,D2(X2,B2}
IBNO D2(X2,B2) Branch if . at Ones Be 14,D2(X2,B2)

;i~~;~-4:1:--;;;;~ded-~~~~~i~~~d;;--

by the assembler into the carr
operation and condition combin

The allowable extended mnem nic codes
and their operand fonnats are hown in
Figure 4-1, together with thei machine
instruction equivalents. Unle s otherwise
noted, all extended mnemonics hown are for
instructions in the RX format. Note that
the only difference between th operand
fields of the extended mnemoni s and those
of their machine-instruction e uivalents is
the absence of the Rl field an(the comma
that separates it from the res of the
operand field. The extended m emonic list,
like the machine-instruction lOst, shows
explicit address formats only. I Each
address can also be specified ~s an implied
address. !

i

In the following examples, ~hiCh illus
trate the use of extended mnem nics, it. is
to be assumed that the symbol 0 is defined
elsewhere in the program. '

r-----,.-----------,.--------------------,
I Name I Operation 1 Operand I
.------+-----------+----------------------~
I IB 140(3,6) 1
I IB 140(,6) I
I IBL IGO(3) I
I IBL IGO f
I IBR 14 I L ______ ~ ___________ ~ ______________________ J

The first two instructions specify an
unconditional branch to an explicit
address. The address in the first case is
the sum of the contents of base register 6,
the contents of index register 3, and the
displacement 40: the address in the second
instruction is not indexed. The third
instruction specifies a branch on low to
the address implied by GO as indexed by the
contents of index register 3; the fourth
instruction does not specify an index reg
ister. The last instruction is an uncondi
tional branch to the address contained in
register 4.

Machine-Instructions 37

SECTION 5: ASSEMBLER INSTRUCTION STATEMENTS

Just as machine instructions are used to
request the computer to perform a sequence
of operations during program execution
time, so assembler instructions are
requests to the assembler to perform cer
tain operations during the assembly.
Assembler-instruction statements, in
contrast to machine-instruction statements,
do not always cause machine-instructions to
be included in the assembled program.
Some, such as OS and DC, generate no
instructions but do cause storage areas to
be set aside for constants and other data.
Others, such as EQU and SPACE, are effec
tive only at assembly time; they generate
nothing in the assembled program and have
no effect on the Location Counter.

The following is a list of all the
assembler instructions.

Symbol Definition Instruction
EQU - Equate Symbol

Data Definition Instructions
DC - Define Constant
OS - Define Storage
CCW - Define Channel Command Word

• Program Sectioning and Linking Instruc
~ions
START - Start Assembly
CSECT - Identify Control Section
DSECT - Identify Dununy Section
ENTRY - Identify Entry-Point Symbol
EXTRN - Identify External Symbol
COM - Identify Blank Common Control

section

• Base Register Instructions
USING - Use Base Address Register
DROP - Drop Base Address Register

Listing Control Instructions
TITLE - Identify Assembly Output
EJECT - Start New Page
SPACE - Space Listing
PRINT - Print Optional Data

Program Control Instructions
ICTL - Input Format Control
ISEQ Input Sequence Checking
ORG - Set Location Counter
LTORG - Begin Literal Pool
CNOP - Conditional No Operation
COPY - Copy Predefined Source Coding
END - End Assembly
PUNCH - Punch a Card
REPRO - Reproduce Following Card

* Discussed in Section 3.

38

SYMBOL DEFINITION INSTRUCTION

EQU -- EQUATE SYMBOL

The EQU instruction is used to define a
symbol by assigning to it the attributes of
an expression in the operand field. The
typical form of the EQU instruction state
ment is as follows:

r---------,-----------l------------------,
IName IOperation IOperand I
~----------+-----------+------------------~
I A symbol I EQU I An expression I L __________ ~ __________ ~ __________________ J

The expression in the operand field may
be absolute or relocatable. Any symbols
appearing in the expression must be pre
viously detined.

The symbol in the name field is given
the same attributes as the expression in
the operand field. The length a'ttribut.e of
the symbol is that of the leftmost (or
only) term of the expression. When that
term is *, the length attribute is 1. The
value attribute of the symbol is the value
of the expression.

The EQU instruction is the means of
equating symbols to register numbers,
immediate data, and other arbitrary values.
The following examples illustrate how this
might be done:

r------T-----------~---------------------,
I Name I Operation IOperand I
t------+-----------+----------------------~
IREG2 JEQU 12 (general register) I
ITEST IEQU IX f 3F'(irnmediate data> I L ______ ~ ___________ 4_ _____________________ J

To reduce proq rammi ng time, the program
mer can equate symbols to frequently used
expressions and then use the symbols as
operands in place of the expressions.
Thus, in the statement

r-------T-----------T---------------------,
IName loperation I Operand I
~------+-----------+---------------------~
1 I I I
1 FIELD IEQU IALPHA-BETA+GAMMA I l ______ ~ __________ _L _____________________ J

FIELD is defined as ALPHA-BETA+ I MMA and
may be used in place of it. Nof:, however,
that ALPHA, BETA, and GAMMA mus all be
previously defined.

DATA DEFINITION INS'rRUCTIONS

There are three data definition instruction
statements: Define Constant (DC , Define
Storage (OS), and Define Channet COfmnand
Word (CCW).

These statements are used to enter data
constants into storage, to defi e and re
serve areas of storage, and to ~pecify the
contents of channel command wores. The
statements may be named by symbols so that
other program statements can reifer to the
fields generated from them.. Th~e discussion
of the DC instruction is far mo, e extensive
than that of the DS instruction, because
the DS instruction is written i the same
format as the DC instruction a~ may speci
fy some or all of the informati n that the
DC instruction provides. Only he function
and treatment of the statement~vary. For
this reason, the DC instructio is present
ed first and discussed in more I etail than
the OS instruction.

I

I DC -- DEFINE CONSTANT '

The DC instruction is used to JrOVide con
stant data in storage. It maY~SpeCifY one
constant or a series of consta.ts, thereby
relieving the programmer of th necessity
to write a separate data defin'tion state
mentfor each constant desired. Further
more, a variety of constants - y be speci
fied: fixed-point, floating-po"nt, decimal,
hexadecimal, character, and st~ rage
addresses. (Data constants ar generally
called constants unless they a e created
from storage addresses, in whi h case they
are called address constants.) The typical
form of the DC inst,ruction sta ement. is as
follows:

r--------T---------T------' -----------,
I Name I Operat ion IOperan I
~---------+----------+------. -----------~
IA symbol IDC lOne op rand in I
lor not I Ithe fo mat I
I used I Idescri,ed in the I
I I Ifollow"ng text. I
L----------~-----------~------1-----------J

I
i

Each operand consists of fo~r subfields;
the first three describe the c nstant, and
the fourth subfielcl provides t:e constant

or constants. The first and third sub
fields may be omitted, but the second and
fourth must be specified. Note that more
than one constant may be specified in the
fourth subfield for most types of con
stants. Each constant so specified must be
of the same type; the descriptive subfields
that precede the constants apply to all of
them. No blanks may occur within any of
the subfields (unless provided as charac
ters in a character constant), nor may they
occur between the subfields of an operand.

The subfields of the DC operand are
written in the following sequence:

r---, I Subfield I
11234 I
~------T---~--------~-------------------~
IDupli-ITypeIModifiersIConstant(s) I
I cation) I I I
) Factor I I) I L-_____ ~ ___ ~ _________ ~ ___________________ J

The symbol that names the DC instruction
is the name of the constant (or first con
stant if the instruction specifies more
than one). Relative addressing' (e.g.,
SYMBOL+2) may be used to address the var
ious constants if more than one has been
specified, because the number of bytes
allocated to each constant can be deter
mined.

The value attribute of the symbol naming
the DC instruction is the address of the
leftmost byte (after any necessary
alignment) of the first, or only, constant.
The length attribute depends on two things:
the type of constant being defined and the
presence of a length specification.
Implied lengths are assumed for the various
constant types in the absence of a length
specification.. If more than one constant
is defined, the length attribute is the
length in bytes (specified or implied) of
the first constant.

Boundary alignment also varies according
to the type of constant being specified and
the presence of a length specification.
Some constant types are only aligned to a
byte boundary, but the OS instruction can
be used to force any type of word boundary
alignment for them. This is explained
under "DS -- Define Sto:rage." Other con
stants are aligned at various word boundar
ies (half, full, or double) in the absence
of a length specification. If length is
specified, no boundary alignment occurs for
such constants.

Bytes that must be skipped in order to
align the field at the proper boundary are
not considered to be part of the constant.
In other words, the Location Counter is
incremented to reflect the proper boundary

Assembler Instruction Statements 39

(if any incrementing is necessary) before
the address value is established. Thus,
the symbol naming the constant will not
receive a value attribute that is the loca
tion of a skipped byte.

Any bytes skipped in aligning statements
that do not cause information to be assem
bled are not zeroed. Thus bytes skipped to
align a statement such as DC F'123' are
zeroed, and bytes skipped to align a state
ment such as OS F'123' are not zeroed.

Appendix F summarizes, in chart form,
the information concerning constants that
is presented in this section.

LITERAL DEFINITIONS: The reader is remind
ed that the di~cussion of literals as
machine-instruction operands (in section 2)
referred him to the description of the DC
operand for the method of writing a literal
operand. All subsequent operand specifi
cations are applicable to writing literals,
the only differences being:

1. The literal is preceded by dn = sign.
2. Unsigned decimal values may be used to

express the duplication factor and
length modifier values.

3. The duplication factor may not be
zero.

4. S-type address constants may not be
specified.

5. Signed or unsigned decimal values may
be used for exponent and scale modifi
er values.

Examples of literals appear throughout
the balance of the OC instruction discus
sion.

Operand Subfield 1: Duplication Factor

The duplication factor may be omitted. If
specified, it causes the constantCs) to be
generated the number of times indicated by
the factor. The factor may be specified
either by an unsigned decimal self-defining
term or by a positive absolute expression
that is enclosed by parentheses. The
duplication factor is applied after the
constant is assembled. All symbols in the
expression must be previously defined.

Note that a duplication factor of zero
is permitted except in a literal and
achieves the same result as it would in a

40

OS instruction. A DC instruction with a
zero duplication factor will not produce
control dictionary entries. See "Forcing
Alignment" under "DS -- Define Storage."

Note: If duplication is specified for an
address constant containing a Location
Counter reference, the value of the Loca
tion Counter used in each duplication is
incremented by the length of the operand.

Operand Subfield 2: Type

The type subfield defines the type of con
stant being specified. From the type
specification, the assembler determines how
it is to interpret the constant and trans
late it into the appropriate machine for
mat. The type is specified by a single
letter code as shown in Figure 5-1.

Further information about these
constants is provided in the discussion of
the constants themselves under "Operand
Subfield 4: Constant."

Operand Subfield 3: Modifiers

Modifiers describe the length in bytes
desired for a constant (in contrast to an
implied length), and the scaling and expo
nent for the constant. If mUltiple modifi
ers are written, they must appear in this
sequence: length, scale, exponent. Each is
written and used as described in the fol
lowing te xt.

LENGTH MODIFIER: This is written as Ln,
where n is either an unsigned decimal self
defining term or a positive absolute
expression enclosed by parentheses. Any
symbols in the expression must be previous
ly defined. The value of n represents the
number of bytes of storage that are assem
bled for the constant. The maximum value
permitted for the length modifiers supplied
for the various types of constants is sum
marized in Appendix F. This table also
indicates the implied length for each type
of constant; the implied length is used
unless a length modifier is present. A
length modifier may be specified for any
type of constant. However, no boundary
alignment will be provided when d length
modifier is given.

,--------------------------- ---,

C
X
B
F

H

E

D

p
Z
A
Y
S

v

Type of Censtant

Character
Hexadecimal
Binary
Fixed-point

Fixed-point

Floating-peint

Floating-point

Decimal
Decimal
Address
Address
Address

Address

achine Format

- bi t code for each character
-bit code for each hexadecimal digit
inary format
igned, fixed- point binary format;
ermally a full word
igned, fixed- peint binary fermat;

l
ermallY a half word
hart fleating-peint format;
ormally a full word

teng fleating-pointfermati
~ermally a dOll ble word
acked decimal forma t
oned decimal format
alue of address; normally a full word
alue of address; nermally a half werd
ase register and displacement value:
half word

pace reserved for external

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I ymbol addresses; each I

~~;~;=1~--~;~--~:d;;-f~;-~~f~~;~;;-~~:~l::-=~~=:~~:~----_________________________ J

SCALE MODIFIER: This modifier is w:ritten
as Sn, where n is less than 14 and is eith
er an unsigned decimal self-de ining term
or an absolute expressien encl sed by pa
rentheses. Any symbel in the xpression
must be previously defined. T e de'cimal
value or the parenthesized exp essien may
be preceded by a sign; if nene is present,
a plus sign is assumed. The m ximum values
for scale medifiers are summar-zed in
Appendix F.

A scale modifier may be use
point (F, H) and fleating-poin
constants enly. It is used to.
ameunt of internal scaling tha
as follows.

with fixed
(E, D)

specify the
is desired,

Scale Modifier for Fixed-Point Constants:
the scale modifier specifies t e power ef
two by which the constant must be
multiplied after it has been c nverted to.
its binary representatien. Ju t as multi
plicatien of a decimal number y a power of
10 causes the decimal point to meve, multi
plication of a binary number b a power of
two causes the binary point to move. This
multiplication has the effect f moving the
binary point away from its ass

l
med position

in the binary field; the assum~d position
being to the right of ,the ri9 h,most posi
tion.

Thus, the scale modifier inricates ei
ther of the follewing: (1) thelrl number of
binary positions to be occupie~l by the
fractional portion of the bina1lry number, er
(2) the number ef binary pesitions to be

deleted from the integral portion of the
binary number. A posi ti ve scale of x
shifts the integral portion of the number x
binary pesitions to the left, thereby re
serving the .rightmost x binary positions
fer the fractional portion. A negative
scale shifts the integral pert ion of the
number right, thereby deleting rightmost
integral positions. A scale factor which
causes loss of all significance should not
be used. If a scale modifier does not
accompany a fixed-point censtant containing
a fractional part, the fractional part is
lost.

In all cases where positions are lost
because of scaling (or the lack of
scaling), reunding eccurs in the leftmost
bit of the lest portion. The rounding is
reflected in the rightmost poSition saved.

Scale Modifier fo.r Floatinq-Point Con
stants: Only a positive scale modifier may
be used with a floating-peint constant. It
indicates the number of hexadecimal posi
tions that the fractien is to be shifted to
the right. Note that this shift amount is
in terms ef hexadecimal pOSitions, each of
which is four binary pesitions. (A posi
tive scaling actually indicates that the
point. is to be moved to the left. Hewever,
a floating-point constant is always con
verted to a fraction, ~hich is hexadeci
mally normalized. The point is asswned to
be at the left of the leftmost position in
the field. Since the point cannot be Il,oved
left, the fraction is shifted right.)

Assembler Instruction Statements 41

Thus, scaling that is specified for a
floating-point constant provides an assem
bled fraction that is unnormalized, i.e.,
contains hexadecimal zeros in the leftmost
positions of the fraction. When the frac
tion is shifted, the exponent is adjusted
accordingly to retain the correct magni
tude. When hexadecimal poSitions are lost,
rounding occurs in the leftmost hexadecimal
position of the lost portion. The rounding
is reflected in the rightmost hexadecimal
position saved.

EXPONENT MODIFIER: This modifier is writ
ten as En, where n is either a decimal
self-defining term or an absolute expres
sion enclosed by parentheses. Any symbols
in the expression must be previously
defined. The decimal value or the paren
thesized expression may be preceded by a
sign; if none is present, a plus sign is
assumed. The maximum values for exponent
modifiers are summarized in Appendix F.

An exponent modifier may be used with
fixed-point (F, H) and floating-point (E,
D) constants only. The modifier denotes
the power of 10 by which the constant is to
be multiplied before its conversion to the
proper internal format.

This modifier is not to be confused with
the exponent of the constant itself, which
is specified as part of the constant and is
explained under "Operand Subfield 4: Con
stant." Both are denoted in the same
fashion, as En. The exponent modifier
affects each constant in the operand,
whereas the exponent written as part of the
constant only pertains to that constant.
Thus, a constant may be specified with an
exponent of +2, and an exponent modifier of
+5 may precede the constant. In effect,
the constant has an exponent of +7.

Note 'that there is a maximum value, both
positive and negative, listed in Appendix F
for exponents. This applies both to expo
nent modifier and exponents specified as
part of the constant, or to their swn if
both are specified.

Operand Subfield 4: Constant

This subfield supplies the constant (or
constants) described by the subfields that
precede it. A data constant (all types
except A,Y,S,and V) is enclosed by apos
trophes. An address constant (types A, Y,
S, and V) is enclosed by parentheses. To
specify two or more constants in the sub
field, the constants must be separated by
commas and the entire sequence of constants
must be enclosed by the appropriate delimi
ters (i.e., apostrophes or parentheses).

42

Thus, the format for specifying the
constant(s) is one of the following:

Single
Constant
• constant'
(constant)

Multiple
Constants·
'constant, ••• ,constant'
(constant, ••• ,constant)

* Not permitted for character, hexadecimal,
and binary constants.

All constant types except character (C),
hexadecimal (X), binary (B), packed decimal
(P), and zoned decimal (Z), are aligned on
the proper boundary, as shown in Appendix
F, unless a length modifier is specified.
In the presence of a length modifier, no
boundary alignment is performed. If the
operand specifies more than one constant,
any necessary alignment applies to the
first constant only. Thus, for an operand
that provides five full-word constants, the
first would be aligned on a full-word
boundary, and the rest would automatically
fallon full-word boundaries.

The total storage requirement of the
operand is the product of the length times
the number of constants in the operand
times the duplication factor (if present)
plus any bytes skipped for ooundary align
ment.

If an address constant contains a Loca
tion Counter reference, the Location Count
er value that is used is the storage
address of the first byte the constant will
occupy. Thus, if several address constants
in the same instruction refer to the Loca
tion Counter, the value of the Location
Counter varies from constant to constant.
Similarly, if a single constant is speci
fied (and it is a Location Counter
reference) with a dupl ication factor, the
constant is duplicated with a varying Loca
tion Counter value.

When there are two data types for a
given constant, specifying two different
implied lengths, such as E and D or Hand
F, and the shorter data type is used, the
constant is evaluated to the maximum length
and shortened to fit the type specified.
For instance, E and H constants in this
case would be evaluated as if they were D
and F, respectively, and then shortened.

The subsequent text describes each of
the constant types and provides examples.

Character Constant -- C: Any of the valid
256 punch combinations may be designated in
a character constant. Only one character
constant may be specif ied per statement.

Special consideration must be given to
representing apostrophes and ampersands as

characters. Each apostrophe or ampersand
desired as a character in the constant must
be represented by .a pair of apostrophes or
ampersands. Only one apostrophe or amper
sand appears in storage.

The maximum length of a character con
stant is 256 bytes. No boundary alignment
is performed. Each character is translated
into one byte. Double apostrophes or dou
ble ampersands count as one character. If
no length modifier is given, the size in
bytes of the character constant is equal to
the number of characters in the constant.
If a length modifier is provided, the
result varies as follows:

1. If the number of characte~s in the
constant exceeds the spec~fied length,
as many rightmost bytes as necessary
are dropped.

2. If the number of characters is less
than the specified length, the excess
rightmost bytes are filled with
blanks.

In the following example, the length
attribute of FIELD is 12:

r-------T-----------T---------------------,
I Name I operation I Operand I
~-------+-----------+---------------------~
I FIELD I DC I C'TOTAL IS 110' I l _______ ~ ___________ ~ _____________________ J

However, in this next example, the
length attribute is 15, and three blanks
appear in storage to the right of the zero:

r-------T-----------T---------------------,
I Name I Operation ioperand I
~-------+-----------+---------------------~
I FIELD IDC ICL1S'TOTAL IS 110' I L _______ ~ ___________ ~ ________ . _____ -------J

In the next example, the length attri
bute of FIELD is 12, although 13 characte.rs
appear in the operand. The two ampersands
count as only one byte.

r------T---------'--T---------------------,
I Name I Operation I Operand I
t-------+-----------+---------------------~
IFIELD IDC IC'TOTAL IS &&10' I
I I I I l _______ ~ ___________ ~ _____________________ J

Note that in the next example, a length
of four has been specified, but there are
five characters in the constant.

r------~----------~---------------------,
I Name 1 Operation I Operand I
.-------+-----------+---------------------~
IFIELD IDC 13CL4'ABCDE' I l _______ ~ __________ ~ _____________________ J

The generated constant would be:

ABCDABCDABCD

On the other hand, if the length had
been specified as six instead of four, the
generated constant would have been:

ABCDE ABCDE ABCDE

Note that the same constant could be
specified as a literal.

r------~----------~---------------------,
I Name I operation IOperand I
t-----+-----------+---------------------~ 1 IMVC IAREA(12),=3CL4'ABCDE', L _______ ~ __________ ~ _____________________ J

Hexadecimal constant -- x: A he.x:adecimal
constant consists of one or more of the
hexadecimal digits, which are 0-9 and A-F.
Only one hexadecimal constant may be speci
fied per statement. The maximum length of
a hexadecimal constant is 256 bytes (512
hexadecimal digits). No word boundary
alignment is performed.

Constants that contain an even number of
hexadecimal digits are translated as one
byte per pair of digits. If an odd number
of digits is specified, the leftmost byte
has the leftmost four bits filled with a
hexadecimal zero, while the rightmost four
bits contain the odd (first) digit.

If no length modifier is given, the
implied length of the constant is half the
number of hexadecimal digits in the con
stant (assuming that a hexadecimal zero is
added to an odd number of digits). If d

length modifier is given, the constant is
handled as follows:

1. If the number of hexadecimal digit
pairs exceeds the specified length,
the necessary leftmost bits (and/or
bytes) are dropped.

2. If the number of hexadecimal digit
pairs is less than the specified
length, the necessary bits (and/or
bytes) are added to the left and
filled with hexadecimal zeros.

An eight-digit hexadecimal constant.
provides a convenient way to set the bit
pattern of a full binary word. The con
stant in the following example would set
the first and third bytes of a word to l's.

Assembler Instruction statements 4J

r------T-----------r----------------------,
I Name I Operation IOperand I
~------+-----------+----------------------~
I IDS 10F I
I TEST I DC IX' FFOOFFOO' I L-_____ ~ __________ ~ ______________________ J

The OS instruction sets the location
counter to a full word-boundary.

The next example uses a hexadecimal
constant as a literal and inserts 1s into
bits 24 through 31 of register 5.

r------T-----------T----------------------,
I Name I Operation I Operand I
~------+-----------+----------------------~
I IIC IS,=X' FF' INSERT CHAR. I L-_____ ~ __________ ~ ______________________ J

In the following example, the digit A
would be dropped, because five hexadecimal
digits are specified for a length of two
bytes:

r----------T-----------T------------------,
I Name I Operation I Operand I
~-.---------+-----------+------------------~
IALPHACON IDC 13XL2'A6F4E' I
I I I I L __________ ~ ___________ ~ __________________ J

The resulting constant would be 6F4E,
which would occupy the specified two bytes.
It would then be duplicated three times, dS

requested by the duplication factor. If it
had merely been specified as X'A6F4E', the
resulting constant would have had a hexa
decimal zero in the leftmost position:

OA6F4E

Binary Constant -- B: A binary constant is
written using l's and O's enclosed in apos
trophes. Only one binary constant may be
speci fied in a sta tement. Duplication and
length may be specified. The maximum
length of a binary constant is 256 bytes.

The implied length of a binary constant
is the number of bytes occupied by the
constant including any padding necessary.
Padding or truncation takes place on the
left. The padding bit used is a O.

The following example shows the coding
used to designate a binary constant. BCON
would have a length attribute of one.

44

r--------.----------~-------------------_,
I Name IOperation I Operand I
.--------+-----------+--------------------~
I BCON IDC IB'11011101' I
I BTRUNC I DC I BLl f 100100011' I
I BPAD IDC IBL1'101' I L _______ ~ __________ ~ ____________________ J

BTRUNC would assemble with the leftmost
bit truncated, as follows:

00100011

BPAD would assemble with five zeros as
padding, as follows:

00000101

Fixed-Point Constants -- F and H: A fixed
point constant is written as a decimal
number, which may be followed by a decimal
exponent if desired. The number may be an
integer, a fract~on, or a mixed number
(i.e., one with integral and fractional
port ions) • The format of the cons tan t is
as follows:

1. The number is written as a signed or
unsigned decimal value. Only ten
digits are significant. High-order
zeros are ignored. The decimal point
may be placed before, within, or after
the number, or it may he omitted, in
which case the number is assumed to be
an integer. A positive sign is
assumed if an unsigned number is spec
ified. Unless a scale modifier accom
panies a mixed number or fraction, the
fractional portion is lost, a~
explained under Subfield 3: Modifiers.

2. The exponent is optional. If speci
fied, it is written immediately after
the number as En, where n is an
optionally signed decimal value speci
fying the exponent of the factor 10.
The exponent may be in the range -85
to +75. If an unsigned exponent is
specified, a plus sign is assumed.
The exponent causes the value of the
constant to be adjusted by the power
of 10 that it specifies. The exponent
may exceed the permissible range for
exponents provided that the sum of the
exponent and the exponent modifier do
not exceed that range.

The number is converted to a 64-bit
binary number and scaling is performed, if
specified. The binary nureber is then
rounded and assembled into the proper
field, according to the specifieJ or
implied length. If the value of the number
exceeds the length specified or implied,
the sign is lost, the necessary leftmost
bits are truncated to the length of the
field and the value is then assembled into
the whole field. Any duplication factor
that is present is applied after the con-

stant is assembled. A negative number is
carried in 2's complement form.

An implied length of four bytes is
assumed for a full-word (F) and two bytes
for a half-word (H), and the constant is
aligned to the proper full-word or half
word boundary, if a length is not
specified. However, any lengtti up to and
including eight bytes may be specified for
either type of constant by a length modifi
e.r, in which case no boundary alignment
occurs.

Maximum and minimum values, exclusive of
scaling, for fixed-point constants are:

Length
8
4
2
1

Max
263-1
231-1
215-1
27-1

Min
-2«53

-2 31

-215

-2 7

A field of three full-words is generated
from the statement shown below. The loca
tion attribute of CONWRD is the add~ess of
the leftmost byte of the f lrst: word., and
the length a ttribu1:e is four, the implied
length for a full-word fixed-point con
stant. The expression CONWRD+4 could be
used to address the second constant (second
word) in the fieldu

r--------T-----------T-------------~------,
I Name I Operation lope.rand I
~--------+-----------+--------.-----------~
ICONWRD IDC 13F'658414' I L ________ .l. ____________ .l. ____________________ J

The next statement causes ·the generation
of a two-byte field containing a negative
constant. Notice that scaling has been
specified in order to reserve six bits for
the fractional portion of the constant.

.--------T---------T------------------,
I Name 10 pera ti on I Opera nd I
~---------+-------.--+------------------~
IHALFCON IDC IHS6'-25.46' I L ________ .l. ______ . ___ .l.-_____ . _____________ J

The next constant (3.50) is multiplied
by 10 to the -2 before being converted to
its binary format. The scale modifier
reserves twelve bits for the fractional
portion.

r---------T---------T--·-----------------,
I Name IOperation I Operand 1
~-------+-----------+------------------~
I FULLCON IDC IHS12'3.50E-2' I l _________ .l.-__________ .l.-__________________ J

The same constant could be specified as
a literal:

r------~----------T----------------------,
I Name IOperation I Operand I
~------+-----------+----------------------~
I IAH 11,=HS12'3.50E-2' I L ______ .l. ___________ .l.-_____________________ J

The final example specifies three con
stants. Notice that the scale modifier
requests four bits for the fractional por
tion of each constant. The four bits are
provided whether or not the fraction
exists.

r----------T-----------T------------------, I Name I Operation I Operand I
r----------+-----------+------------------~
I THREECON I DC IFS4' 10,25.3,100' I L __________ .l. __________ -.l. __________________ J

Floating-Point Constants -- E and 0: A
.floating-point constant is written as a
decimal number, which may be followed by a
decimal exponerit, if desired. The number
may be an integer, a fraction, or a mixed
number <i.e., one with integral and frac
tional portions). The format of the con
stant is as follows:

1. The number is written as a signed or
unsigned decimal value. Only ten
digits are significant. High-order
zeros are ignored. The decimal point
may be placed before, within, or after
the number, or it may be omitted, in
which case, the number is assumed to
be an integer. A positive sign is
assumed if an unsigned number is spec
ified.

2. The exponent is optional. If speci
fied, it is written immediately after
the number as En, where n is an
optionally Signed decimal value speci
fying the exponent of the factor 10.
The exponent may be in the range -85
to +75. If an unsigned exponent is
specified, a plus sign is assumed.

Machine format for a floating-point
number is in two parts: the portion con
taining the exponent, which is sometimes
called the characteristic, followed by the
portion containing the fraction, which is
sometimes called the mantissa. Therefore,
the number specified as a floating-point
constant must be converted to a fraction
before it can be translated into the proper
format. For example, the constant 21.35E2
represents the number 27. 35 times 10 to thE.:
2nd. Represented as a fraction, it would
be .2735 times 10 to the 4th, the exponent

Assembler Instruction statements 45

having been modified to reflect the shift
ing of the decimal point. The exponent may
also be af.fected by the presence of an
exponent modifier, as explained under oper
and Subfield 3: Modifiers.

The exponent is then translated into its
binary equivalent, and the fraction is
converted to a 64-bit binary number.

Scaling is performed if specified; if not,
the fraction is normalized (leading hexa
decimal zeros are removed). Rounding of
the fraction is then performed according to
the specified or implied length, and the
number is assembled into the proper field.
within the portion of the floating-point
field allocated to the fraction, the hexa
decimal point is assumed to be to the left
of the leftmost hexadecimal digit, and the
fraction occupies the leftmost portion of
the field. Negative fractions are carried
in true representation, not in the 2's
complement form.

An implied length of four bytes is
assumed for a full-word (E) and eight bytes
is assumed for a double-word (D). The
constant is aligned at the proper word or
double word boundary if a length is not
specified. However, any length up to and
including eight bytes may be specified for
either type of constant by a length modifi
er, in which case no boundary alignment
occurs.

Any of the following statements could be
used to specify 46.415 as a positive, full
word, floating-point constant: the last is
a machine-instruction statement with a
literal operand. Note that the last two
constants contain an exponent modifier.

r----~-----------T----------------------,
J Name I Operation I Operand I
~-----+-----------+---------------------~
I IDC IE'46.41S' I
I IDC IE'46415E-3' I
I IDC IE'+464.1SE-1' I
I JDC IE'+.4641SE+2' I
I I DC I EE2'. 46415' I
I IAE 16,=EE2'.46415' I l ______ ~ ___________ ~ ______________________ J

The following would each be generated as
double-word floating-point constants.
r-------T-----------T---------------------,
I Name IOperation I Operand I
~-------+-----------+---------------------~
I FLOAT IDC IDE+4'+46,-3.729,+473'I l _______ ~ ___________ ~ _____________________ J

Decimal Constants -- P and Z: A decimal
constant is written as a signed or unsigned
decimal value. If the sign is omitted. a
plus sign is assumed. The decimal point

46

may be written wherever desired or may be
omitted. Scaling and exponent modifiers
may not be specified for decimal constants.
The maximum length of a decimal constant is
16 bytes. No word boundary alignment is
performed.

The placement of a decimal point in the
definition does not affect the assembly of
the constant in any way, because. unlike
fixed-point and floating-point constants, a
decimal constant is not converted to its
binary equivalent. The fact that a decimal
constant is an integer, a fraction, or a
mixed number is not pertinent to its
generation. Furthermore, the decimal point
is not assembled into the constant. The
programmer ma.y determine proper decimal
point alignment either by defining his data
so that the·point is aligned or by select
ing machine-instructions that will operate
on the data properly (i.e., shift it for
purposes of alignment).

.If zoned decimal format is specified
CZ), each decimal digit is translated into
one byte. The translation is done accord
ing to the character set shown in Appendix
A. The rightmost byte contains the sign as
well as the rightmost digit. For packed
decimal format (P), each pair of decimal
digits is translated into one byte. 'I'he
rightmost digit and the sign are translated
into the rightmost byte. The bit configu
ration for the digits is identical to the
configurations for the hexadecimal digits
0-9 as shown in section 3 under
"Hexadecimal Self-Defining Value." For
both packed and zoned decimals, a plus sign
is translated into the hexadecimal digit C,
and a minus sign into the digit D.

If an even number of packed decimal
digits is specified, one digit will be left
unpaired, because the rightmost digit is
paired with the sign. Therefore, in the
leftmost byte" the leftmost four bits will
be set to zeros and the rightmost four bits
will contain the odd (first) digit.

If no lp.ngth modifier is given, the
implied length for either constant is the
number of bytes the constant occupies
(taking into account the format, sign, and
possible addition of zero bits for packed
decimals). If a length modifier is given,
the constant is handled as follows:

1. If the constant requires fewer bytes
than the length specifies, the neces
sary number of bytes is added to the
left. For zoned decimal format, the
decimal diqit zero is placed in each
added byte. For packed decimals, the
bits of each added byte are set to
zero.

2. If the constant requires more bytes
than the length specifies, the neces-

sary number of leftmost di:gi ts or
pairs of digits is dropped, depending
on which format is specified.

Examples of decimal constant definitions
follow.

r------T-----------T----------------------,
I Name I Operation I Operand I
~------+-----------+----------------------~
I IDC IP'+1.2S' 1
1 I DC I Z ' - 5 4 3 ' I
I IDC IZ·79.68' I
I I DC I PL3 • 79 • 68 t I L ______ .1 _________ . .1 ______________________ J

The following statement specifies three
packed decimal constants. The :length modi
fier applies to each constant ~n the first
operand (i.e., to each packed decimal
constant) •

r-------T---------T---------·· -----------,
I Name IOperationlOperand I
~-------t--------·+----------------------~
IDECIMALSIDC IPL8'+25 .. 8 11 -3874.,+2.3' I L ________ .1 _________ .1 ________ •• _--_________ J

The last example illustrates the use of
a packed decimal literal.

r----T-----------·T----------------------,
I Name I Operation I Operand I
~-----+---------.. +---------------------~
I I UNPK 1 OUTAREA, =PL2' +25' I L.. _____ ~ ___________ ~ ________________ - _____ J

ADDRESS CONSTANTS: An address constant is
a storage address that is tranSlated into a
constant. Address constants a.re normally
used for initializing base registers to
facilitate the addressing of storage.
Furthermo're, they provide the means of
communicating between control sections of a
multisection program. However, storage
addressing and control section communi
cation are also dependent on the use of the
USING assembler instruction and the loading
of registers. Coding examples that illus
trate these considerations are provided in
section 3 under "Programming with the Using
Instruction."

An address cons·tant, unlike other types
of constants, is enclosed in pa.rentheses.
If two or more address constants are speci
fied in a statement, they are peparated by
commas, and the entire sequence is enclosed
by parentheses. There are four types of
address constants: A, Y, S, and V.

Complex Relocatable Expressions: A complex
relocatable expression can only be used in
an A-type or Y-type address constant.
These expressions contain two or more
unpaired relocatable terms and/or a nega
tive relocatableterm in addition to any
absolute or paired relocatable terms that
may be present. In contrast to relocatable
expressions, complex relocatable expres
sions may represent negative values. A
complex relocatable expression might con
sist of external symbols (which cannot be
paired) and designate an address in an
independent assembly that is to be linked
and loaded with the assembly containing the
address constant.

The assembler partially evaluates the
expression but its final value is deter
mined when the referenced control sections
are loaded. Complex relocatable expres
sions can be used to determine the distance
between two contro+ sections after they are
loaded into main storage.

A-Type Address Constant: This constant is
specified as an absolute, relocatable, or
complex relocatable expression. (Remember
that an expression may be single term or
multiterm.) The value of the expression is
calculated to 32 bits as explained in Sec
tion 2, with one exception: the maximum
value of the expression may be 2 31-1. The
value is then truncated, if necessary, to
the specified or implied length of the
field and assembled into the rightmost bits
of the field. The implied length of an
A-type constant is four bytes and alignment
is to a full-word boundary unless a length
is specified, in which case no alignment
will occur. The length that may be speci
fied depends on the type of expression used
for the constant; a length of 1-4 bytes may
be used for an absolute expression, while a
length of 3 or 4 bytes may be used for a
relocatable or complex relocatable expres
sion.

In the following examples, the field
generated from the statement named ACONST
contains four constants, each of which
occupies four bytes. Note that there is a
Location Counter reference in one. The
value of the Location Counter will be the
address of the first byte allocated to th~
fourth constant. The second statement
shows the same set of constants specified
as literals (i.e., address constant
literals>.

r-------T----------,------------------T---'
I Name IOperation IOperand I I
~-------+----------+------------------+---~
I ACONST J DC I A (108 , LOOP, I X I
I I IEND-STRT,*+4096) I I
I ILM 14 ,7,=A(108,LOOP, I X I
I I IEND-STRT,*+4096) I I L _______ ~ _________ ~ _________________ _i ___ J

Assembler Instruction statements 47

Note: When the Location Counter ref
erence-occurs in a literal, as in the LM
instruction above, the value of the Loca
tion Counter is the address of the first
byte of the instruction.

y-type Address Constant: A Y-type address
constant has much in common with the A-type
constant. It, too, is specified as an
absolute, relocatable, or complex relocata
hIe expression. The value of the expres
sion is also calculated to 32 bits as
explained in section 2. However, the maxi
mum value of the expression may be only
215-1. The value is then truncated, if
necessary, to the specified or implied
length of the field and assembled into the
rightmost bits of the field. The implied
length of a y-type constant is two bytes
and alignment is to a half-word boundary
unless a length is specified, in which case
no alignment occurs. The maximum length of
a y-type address constant is two bytes. If
length specification is used, a length of
two bytes may be designated for a relocata
ble or complex expression and 1 or 2 bytes
for an absolute expression.

Warning: Specification of relocatable
y-type address constants should be avoided
in programs destined to be executed on
machines having more than 32,767 bytes of
storage capacity. In any case y-type
address constants should not be used in
programs to be executed under Basic Operat
ing System/360 control.

S-Type Address Constant: The S-type
address constant is used to store an
address in base-displacement form.

The constant may be specified in two
ways:

1. As an absolute or relocatable expres
sion, e.g., S(BETA}.

2. As two absolute expressions, the first
of which represents the displacement
value and the second, the base reg
ister, e.g., S(400(13}).

The address value represented by the
expression in (1) will be broken down by
the assembler into the proper base register
and displacement value. An S-type constant
is assembled as a half word and aligned on
a half-word boundary. The leftmost four
bits of the assembled constant represents
the base register deSignation, the remain
ing 12 bits the displacement value.

If length specification is used, only
two bytes may be specified. S-type address
constants may not be specified as literals.

V-Type Address Constant: This constant is
used to reserve storage for the address of
a'n external symbol that is used for effect-

48

ing branches to other programs. The con
stant may not be used for external data
references. The constant is specified as
one relocatable symbol, which need not be
identified by an EXTRN statement. Whatever
symbol is used is assumed to be an external
symbol by virtue of the fact that it is
supplied in a V-type address constant.

Note that specifying a symbol as the
operand of a V-type constant does not con
stitute a definition of the symbol for this
assembly. The implied length of a V-type
address constant is four bytes, and bound
ary alignment is to a full word. A length
modifier may be used to specify a length of
either three or four bytes, in which case
no such boundary alignment occurs. In the
following example, 12 bytes will be res
erved, because there are three symbols.
The value of each assembled constant will
be zero until the program is loaded.

r-------~----------~--------------------l
IName I Operation 1 Operand I
~--------+-----------+--------------------~
IVCONST IDC I V (SORT,M.ERGE,CALC) I l _______ ..1.-_________ . .L ___________________ J

os -- DEFINE STORAGE

The OS instruction is used to reserve areas
of storage and to assign names to those
areas. The typical form of the DC state
ment is:

r----------T-----------.------------------,
I Name I Operation I Operand J

~----------+-----------+------------------~
I A symbol I DS lOne ope ra.nd I
lor I Iwritten in the I
I not used I I format described I
J I lin the following I
I I I text I l __________ ..1.-__________ ..1.-________________ .J

The format of the DS operand is identi
cal to that of the DC operand; exactly the
same subfields are employed and are written
in exactly the same sequence as they are in
the DC operand. Although the formats are
identical, there are two differences in the
specification of subfields. They are:

1. The specification of data Csubfield 4)
is optional in a DS operand, but it is
mandatory in a DC operand.

2. The maximum length that may be speci
fied for character CC) and hexadecimal
(X) field types is 65,535 bytes rather
than 256 bytes.

If a DS operand specifies a constant in
subfield 4, and no length is specified in
subfield 3, the assembler dete~mines the
length of the data andreserve~ the
appropriate amount of storage.. It does not
assemble the constant. The ability to
specify data and have the assembler calcu
late the storage area that would be
required for such data is a convenience to
the programmer. It: he knows the general
format of the data that will be placed in
the storage area during program execution,
all he needs to do is show it as the fourth
subfield in a DS operand. The:assembler
then determinesthE~ correct amount of stor
age to be reserved, thus relieving 'the
programmer of length considerations.

If the DS instruction is named by a
symbol, its value attribute is the location
of the leftmost byt:e of the reserved area.
The length attribute of the symbol is det
ermined in the same manner as for a DC.
Any positioning required for aligning the
storage area to the proper type of boundary
is done before the address value is deter
mined. Bytes skipped for alignment are not
set to zero.

Each field type (e.g., hexadecimal,
character, floating-point) is associated
with certain characteristics (these are
summarized in Appendix F). The associated
characteristics will determine which field
type code the programmer selects for the DS
operand and what other information he adds,
notably a length s!~cification or a
duplication factor. For example, the E
floating-point field and the F fixed-point
field both have an implied length of four
bytes. The leftmost byte is aligned to a
full-word boundary. Thus, either code
could be specified if it were desired to
reserve four bytes of storage aligned to a
full-word boundary. To obtain a lenqth of
eight bytes, one could specify either the E
or F field type with a length modifier of
eight. However, a duplication factor would
have to be used to reserve a larger area,
because the naxirnum length specification
for either type is eight bytes. No'te also
that specifying length would cancel any
special boundary alignment.

In contrast, packed and zoned decimal (P
and Z), character (C), hexadecimal (X), and
binary (8) fields have an implied length of
one byte. Any of these codes, if used,
would have to be accompanied by a length
modifier, unless just one byt~~ is to be
reserved. Although no alignment occurs,
the use of C and X field types permits
greater latitude in length speqifications,
the maximum for either type bE~~ng 65,535
bytes. (Note that this differs from the
maximum for these types in a DC ins·truc
tion.) Unless a field of one byte is
desired, either the~ length must be speci-

fied for the C, X, P, Z, or B field types,
or else the data must be specified (as the
fourth subfield), so that the assembler can
calculate the length.

To define four la-byte fields and one
laO-byte field, the respective DS state
ments might be as follows:

r------~----------T----------------------,
I Name I Operation I Operand I
~------+-----------+----------------------~
IFIELD IDS 14CL10 I
I AREA IDS ICL100 I L ______ ~ ___________ ~ _____________________ J

Although FIELD might have been specified
as one 40-byte field, the preceding defini
tion has the advantage of providing FIELD
with a length attribute of 10. This would
be pertinent when using FIELD as a SS
machine-instruction operand.

Additional examples of DS statements are
shown below:

r-----T---------T-------------------------,
IName IOperationlOperand I
~-----+---------+-------------------------~
lONE IDS ICL80(one SO-byte field, I
I I I length attribute of 80 I
I TWO lOS I 80C (8 a one-byte fields, 1
I I I length attribute of onel
ITHREEIDS 16F'(six full words, length I
I I 1 attribute of four) I
IFOUR IDS IDCone double word, length I
1 I I attribute of eight) I
IFIVE IDS 14 H (four half-words, I
I I I length attribute of I
I I I two) I L _____ ~ _________ ~ _________________________ J

Note: A DS statement causes the storage
area to be reserved but not set to zeros.
No assumption should be made as to the
contents of the reserved area.

special Uses of the Duplication Factor

FORCING ALIGNMENT: The Location Counter
can be forced to a double-word, full-word,
or half-word boundary by using the
appropriate field type (e.g., 0, F, or H)
with a duplication factor of zero. This
method may be used to obtain boundary
alignment that otherwise would not be pro
vided. For example, the following state
ments would set the Location counter to the
next double-word boundary and then reserve
storage space for a 128-byte field (whose
leftmost byte would be on a double-word
boundary) •

Assembler Instruction Statements 49

r-----T-----------T-----------------------,
IName IOperation I Operand I
.-----+-----------+----------------------1
I IDS 10D I
IAREA IDS ICL128 I L-____ ~ ___________ ~ ______________________ _J

DEFINING FIELDS OF AN AREA: A DS instruc
tion with a duplication factor of zero can
be used to assign a name to an area of
storage without actually reserving the
area. Additional OS and/or DC instructions
may then be used to reserve the area and
assign names to fields within the area (and
generate constants if DC is used).

For example, assume that aO-character
records are to be read into an area for
processing and that each record has the
following format:

Positions 5-10
Positions 11-30
Positions 31-36
Positions 47-54
Positions 55-62

Payroll Number
Employee Name
Date
Gross Wages
Withholding Tax

The following example illustrates how OS
instructions might be used to assign a name
to th,e record area, then define the fields
of the area and allocate the storage for
them. Note that the first statement names
the entire area by defining the symbol
RDAREAi the statement gives RDAREA a length
attribute of 80 bytes, but does not reserve
any storage. Similarly, the fifth state
ment names a 6-byte area by defining the
symbol DATE; the three subsequent state
ments actually define the fields of DATE
and allocate storage for them. The second,
ninth, and last statements are used for
spacing purposes and, therefore, are not
named.

r-------T-----------T---------------------~
I Name I Operation I Operand t
~-------+-----------+---------------------~
IRDAREA IDS 10CLaO I
I IDS ICL4 t
IPAYNO IDS ICL6 I
I NAME IDS ICL20 I
I DATE IDS IOCL6 ,
1 DAY I OS I CL2 I
I MONTH IDS ICL2 f
I YEAR IDS ICL2 I
I IDS ICL10 t
I GROSS IDS ICLa ,
I FEDTAXI DS I cLa 1
J IDS ICL18 l l ______ .i. __________ ~ _____________________ J

so

CCW -- DEFINE CHANNEL COMMAND WORD

The CCW instruction provides a convenient
way to define and generate an eight-byte
channel command word aligned at a double
word boundary. The internal machine format
of a channel command word is shown in Table
5-1. The typical form of the CCW
instruction statement is:
r--------r---------~---------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~ IA symbollCCW IFour operands, I
lor not I Iseparated by commas, I
lused I Ispecifying the con- I
I I Itents of the channel I
I I I command word in I
I I Ithe format I
I I Idescribed in the 1
I I Ifollowing text I L _______ ~ ________ ~ ______________________ J

All four operands must appear. They are
written, from left to right, as follows:

1. An absolute expression that specifies
the command code. This expression's
value is right-justified in byte 1.

2. An absolute or relocatable expression
specifying the data address. The
value of this expression is right
justified in bytes 2-4.

3. An absolute expression that specifies
the flags for bits 32-36 and zeros for
bits 37-39. The value of this
expression is right-justified in byte
5. (Byte 6 is set to zero.)

4. An absolute expression that specif ies
the count. The value of this expres
sion is right-justified in bytes 7-a.

The following is an example of a CCW
statement:

r-----T-----------r-----------------------,
1 Name tOperation IO-perand I
.----~+-----------+-----------------------~
I ICCW 12,READAREA,X'4a',80 I l _____ .i. ___ . ______ ~ _______________________ J

Note that the form of the third operand
sets bits 37-39 to zero, as required. The
bit pattern of this operand is as follows:

32-35
0100

36-39
1000

If there is a symbol in the name entry
of the CCW ins~ruction, it is assigned the
address value of the leftmost byte of the
channel command word. The length attribute
of the symbol is eight.

Table 5-1. Channel Command Wo:td
r----T-------T----------------------------,
IByte I Bits I Usage 1
~-----+-------+-------------------,------__t
11 I 0-7 J Command code I
12-4 I 8-31 I Data address I
15 I 32-36 I Flags 1
1 I 37-39 I Must be zero I
16 I 40-47 I set to zero 1
J 7-8 I 48-63 I Count I L-____ ~ _______ i ___________________________ J

LISTING CONTROL INSTRUCTIONS

The listing control instructioms are used
to identify an assembly listing and assem
bly output cards, t:o provide blank lines in
an assembly listing, and to designate how
much detail is to be included in an assem
bly listing. In no case are instructions
or constants generated in the object pro
gram. Listing control statem.~nts e.xcept
PRINT are never printed.

TITLE -- IDENTIFY ASSEMBLY OUTPUT

The TITLE instruction enables the program
mer to identify the assembly listing and
assembly output cards. The typical form of
the TITLE instruction statement is as fol
lows:

r------T-----------T----------------------,
I Name I Operation 1 Operand I
~------+-----------+---------.-------------~
IName I TITLE lOne to 100 char- I
I or I laeters, enclosed in I
INot I ISingle apostrophes I
I used I J I L-_____ .l. __________ ._.l. ___ . ______ . ____________ J

The name entry may contain a name of
from one to four alphabetic or numeric
characters in any combination. The con
tents of the name entry are punched into
columns 73-76 of all the output cards for
the program except those produced by the
PUNCH and REPRO assembler instructions.
Only the first TITLE statement in a program
may have a name in the name entry. The
name field of all subsequent TITLE state
ments must be blank.

The operand field may contain up to 100
characters enclosed in apostrophes. Any
ampersands or apostrophes enclosed within
the surrounding apostrophes must be rep
resented by two ampersands or apostrophes.
However, both ampe:rsands and apostrophes
are printed and ar,e counted in the total

number of operand characters. The contents
of the operand field are printed at the top
of each page of the assembly listing.

A program may contain more than one
TITLE statement. Each TITLE statement
provides the heading for pages in the
assembly listing that follow it, until
another TITLE statement is encountered.
Each TITLE statement encountered after the
first one causes the listing to be advanced
to a new page (before the heading is
printed) •

For example, if the following statement
is the first TITLE statement to appear in a
program:

r------T-----------r----------------------,
JName I Operation I Operand I
~------+-----------+-----------------------~
IPGM1 I TITLE I 'FIRST HEADING' I l ______ i-__________ ~ ______________________ J

then PGM1 is punched into all of the output
cards (columns 73-76) and this heading
appears at the top of each page: FIRST
HEADING.

If the following statement occurs later
in the same program:

r------T-----------~---------------------,
IName loperation I operand I
~------+-----------+----------------------~
I I TITLE I' A NEW HEADING' I l _____ .l. ___________ .l.-_____________________ .J

then, PGMl is still punched into the output
cards, but each following page begins with
the heading: A NEW HEADING.

~: The sequence number of the cards
in the output deck is contained in colUmns
77-80, except those produced by the PIJNCH
and REPRO assembler instructions.

EJECT -- START N.EW PAGE

The EJECT instruction causes the next line
of the listing to appear at the top of a
new page. This instruction provides a
convenient way to separate routines in the
program listing. The typical form of the
EJECT inBtruction statement is as follows:

Assembler Instruction statements 51

r-------T---------~--------------------_, I Name I operation I Operand I
.-------+-----------+---------------------~
I Not I EJECT t Not used; must not 1
I used I I be present 1 l _______ ~ ___________ ~ _____________________ J

If the next line of the listing would
appear at the top of a new page without the
EJECT instruction, the EJECT instruction
has no immediate effect. If one or more
EJECT statements appear after the first
EJECT, one or more pages are skipped.

SPACE -- SPACE LISTING

The SPACE instruction is used to insert one I
or more blank lines in the listing. The
typical form of the SPACE instruction
statement is as follows:

r-------T-----------T---------------------,
I Name I operation I Operand 1
~-------+-----------+---------------------i
I Not I SPACE IA decimal value I
I used I lor not used I L __ . ___ ~ __________ ~ ____________________ J

A decimal value is used to specify the
number of blank lines to be inserted in the
assembly listing. A blank operand causes
one blank line to be inserted. If this
value exceeds the number of lines remaining
on the listing page, the statement will
have the same effect as an EJECT statement.

PRINT -- PRINT OPTIONAL DATA

The PRINT instruction controls the content
of the assembly listing. The operands
determine printing of: a listing, state
ments generated by macro - instructions,
and constants. The typical form of the
PRINT instruction is:

r-------T-----------~-------------------,
I Name I Operation I Operand I
~-------+-----------+---------------------~
INot I PRINT lOne to three operands I
lused I I I l _______ ~ ___________ ~ ____________________ J

52

One to three of the following operands
are used:

ON
or

OFF

GEN

or
NOGEN

DATA

or
NODATA

A listing is printed.

No listing is printed.

All statements generated by
macro-instructions are printed.

Statements generated by macro
instructions are not printed,
except MNOTE messages (with a
severity code) which print
regardless of NOGEN. However,
the macro-instruction itself
will appear in the listing.

Constants are printed out in
full in the listing.

Only the leftmost eight bytes
(16 hexadecimal digits) are
printed.

A program may contain any number of
PRINT statements. The conditions set by a
PRINT statement are in effect until another
PRINT statement is encountered.

If an operand is omitted, it is assumed
to be unchanged and continues according to
its last specification.

When OFF is specified, GEN and DATA have
no effect. When NOGEN is specified, DATA
has no effect for generated constants.

Until the first PRINT statement (if any)
is encountered, the following is assumed:

r-------T-----------~---------------------,
I Name I Operation I Operand I
.------+-----------+-------------------~
I I PRINT ION, NODA'l'A,GEN I l _____ ~ __________ ~ _____________ . _________ J

For example, if the statement:

r------T-----------.----------------------,
lName I Operation I Operand I
~------+-----------+----------------------~
I IDC IXL256'OO' I l ______ ~ ___________ L_ _____________________ J

appears in a program, 256 bytes of zeros
are assembled. If the statement:

r------T-----------~---------------------,
I Name I Operation I Operand I
.------+-----------+----------------------i
I I PRINT I DATA I l ______ L-__________ L-______________ . ______ J

is the last PRINT statement to ,appear
before the DC statement, all 256 bytes of
zeros are printed in the assembly listing.
However, if there are no previous PRINT
statements, or:

r------T-----------T----------------------,
\ Name I Operation \ Operand I
~-----+-----------+---------------.------"
I I PRINT \ NODATA \ L _____ ~ ___________ ~ ______________________ J

is the last PRINT statement to appear
befo-re the DC statement, only eight bytes
of zeros are printed in the assembly list
ing.

Whenever an operand is omitted, it is
assumed to be unchanged and continues
according to its last specification. Its
omission must be indicated by a comma.

The hierarchy of PRINT control s'tate
ments is:

1. ON, OFF

2. GEN, NOGEN

3. DATA, NODATA

Thus, with the following statement nothing
would be printed.

r------T-----------.----------------------,
I Name I Operation I Operand I
~-----+-----------+---------.-------------~
I \ PRINT \OFF,DATA,GEN I L _____ ~ ___________ ~ _________ • ______ , _______ J

PROGRAM CONTROL INSTRUCTIONS

The program control instructions are used
to specify the end of an assembly, to set
the Location Counter to a value, to insert
previously written coding in the program,
to specify the placement of literals in
storage, to check the sequence of input
cards, to indicate statement fonnat, and to
punch a card. EXCE~pt for the CNOP and COpy
instructions, none of these asSembler
instructions generate instructions or con
stants in the object program.

ICTL -- INPUT FORMAT CONTROL

The ICTL instruction allows the programmer
to alter the normal format of his source
program statements.. The ICTL statement
must precede all other statements in the

source program and may be used only once.
The form of the ICTL instruction statement
is as follows:

r-----------~----------T-----------------,
I Name I Operation I Operand I
.-----------+-----------+-----------------~
INot used, I ICTL I 1-3 decimal \
Imust not I I values of the I
Ibe present I I form b,e,c I L __________ -i __________ ~ _________________ J

Operand b specifies the begin colUmn of
the source statement. It must always be
specified, and must be from 1-40, inclu
sive. Operand e specifies the end column
of the source statement. The end column,
when specified, must be from 41-80, inclu
sive: when not specified, it is assumed to
be 71. The column after the end column is
used to indicate whether the next card is a
continuation card. Operand c specifies the
continue column of the source statement.
The continue column, when specified, must
be from 2-40 and must be greater than h.
If the continue column is not specified, or
if column 80 is specified as the end
column, the assembler assumes that there
are no continuation cards, and all state
ments must be contained on a single card.
The operand forms b"c and h, are invalid.

If no ICTL statement is used in the
source program, the assembler assumes that
1, 71, and 16 are the begin, end, and con
tinue columns, respectively.

The next example designates the begin
column as column 25. Since the end column
is not specified, it is assumed to be
column 71. No continuation cards are rec
ognized because the continue column is not
specified.

r------T----------~----------------------,
I Name IOperation I Operand I
~------+-----------+----------------------~
\ t ICTL 125 I L ______ ~ __________ ~ ______________________ J

ISEQ -- INPUT SEQUENCE CHECKING

The ISEQ instruction is used to check the
sequence of input cards. The typical form
of the ISEQ instruction statement is as
follows:

Assembler Instruction statements 53

r-----------~----------T-----------------,
lName I Operation I Operand I
~-----------+-----------t-----------------~
I Not used, I ISEQ I Two decimal I
I must not I J values of the I
lbe present f I form l,r, or I
I I I not used I l ___________ ~ __________ ~ _________________ J

The operands 1 and r, respectively,
specify the leftmost and rightmost columns
of the field in the input cards to be
checked. Operand r must be equal to or
greater than operand 1. Columns to be
checked must not be between the "begin" and
"end" columns.

Sequence checking begins with the first
card following the ISEQ statement. Compar
ison of adjacent cards makes use of the
eight-bit internal collating sequence.
System macros and COPYed code are not
sequence checked.

An ISEQ statement with a blank operand
terminates the operation. Checking may be
resumed with another ISEQ statement.

Sequence checking is only performed on
statements contained in the source program.
statements inserted by the COpy
assembler-instruction or generated by a
macro-instruction are not checked for
sequence.

PUNCH -- PUNCH A CARD

The PUNCH assembler-instruction causes the
data in the operand to be punched into a
card. One PUNCH statement produces one
punched card. As many PUNCH statements may
be used as a·re necessa.ry. The typical form
is:

r-------T-----------T---------------------,
I Name lOperation 1 Operand I
.-------+-----------+---------------------i
,Not I PUNCH 11 to 80 characters I
I used I lenclosed in I
'I I apostrophes , L-______ ~ ___________ ~ ____________________ _J

Using character representation, the
operand is written as a string of up to 80
characters enclosed in apostrophes. All
characters, including blank, are valid.
The position immediately to the right of
the left apostrophe is regarded as column
one of the card to be punched. The assem
bly program does not process the data in

54

the operand of a PUNCH statement other than
causing it to be punched in a card. F'or
each apostrophe or ampersand desired in the
operand, two apostrophes or ampersands must
be written. The two apostrophes or amper
sands are reduced to a single apostrophe or
ampersand. However, they count as only one
character in the operand.

PUNCH statements may occur anywhere
within a program, except before macro
definitions. They may occur within a
macro-definition but not between a MEND
statement and the beginning of the next
macro. If a PUNCH statement occurs before
the first control section, the resultant
card will precede all other cards in the
object program card deck; otherwise the
card will be punched in place ..

REPRO -- REPRODUCE FOLLOWING CARD

The REPRO assembler-instruction causes data
on the following statement line to be
punched into a card. The data is not proc
essed; it is punched in a card and no sub
stitution is performed for variable sym
bols. One REPRO instruction produces one
punched card. The REPRO instruction may
not appear before a macro-definition.

REPRO statements that occur before all
statements composing the first or only
control section will punch cards which
precede all cards of the object deck. The
form is:

r-------T-----------~--------------------l I Name I operation I Operand I
r-------t-----------+---------------------~
)Not I REPRO INot used, should I
1 used I ,not be present I L _______ ~ _________ ~ _____________________ J

The line to be reproduced may contain
any combination of up to BO characters.
Characters may be entered starting in
column 1 and continue through column 80 of
the line. Column 1 of the line corresponds
to column 1 of the card to be punched.

ORG -- SET LOCATION COUNTER

The ORG instruction is used to alter the
setting of the Location Counter for the
current control section. The typical form
of the ORG instruction statement is:

r------~--------T--------------·-------l
I Name I Operation I Operand I
~-------+----------+--------.------.-------~
I Not IORG IA relocatable ex- I
I used I I pression or not used I L-______ ~ __________ ~ _____________________ J

Any symbols in the expression must have
been previously defined.. The unpaired
relocatable symbol must be defined in the
same control section in which the ORG
statement appears.

The Location Counter is set to the value
of the expression in the operand. If the
operand is omitted, the Location Counter is
set to a location that is one pyte higher
than the maximum location assigned for the
control section up to this point.

An ORG statement must not be used to
specify a location below the beginning of
the control section in which it appears.
For example, the statement:
r------T----------·,----------------------,
I Name I Operation 'Operand I
.----+----------.-+----------------------~
I IORG ,.-500 I L ____ ~ __________ ._..L _________ . ______ . ______ J

is invalid if it appears less than 500
bytes from the beginning of the current
control section.

If it is desired to reset the Location
Counter to a value that is one byte beyond
the highest location yet assigned (in the
control section), the following statement
would be used:

r------T-----------T----------------------,
IName I Operation I Operand I
~----+----------.-+----------------------~
I IORG, I l ____ ..I. ___________ • ..L ______________________ J

If previous ORG statements have reduced
the Location Counter fo.r the purpos1e of
redefining a portion of the current control
section, an ORG statement with an omitted
operand can then be used to terminate the
effects of such statements and restore the
Location Counter to its highest setting.

LTORG -- BEGIN LITERAL POOL

The LTORG instruction causes all literals
thus far encountered in the source program
to be assembled at appropriate boundaries
starting at the first double-word boundary
following the LTORG statement.. If no

literals follow the LTORG statement, align
ment of the next instruction will occur.
Bytes skipped are not zeroed. The typical
form of the LTORG instruction statement is:

r--------T------------T--------------------, I Name IOperation I operand I
~--------+-----------+--------------------~
IA symbollLTORG INot used, should J
lor not J Inot be present I
lused I I I l ________ ..L __________ -..I. ____________________ J

The symbol represents t.he address of the
first byte of the literal pool. It has a
length attribute of one.

A LTORG statement is not legal within a
dummy section or blank common.

Special Addressing Consideration

Any literals used after the last L'l'ORG
statement in a program are placed at the
end of the first control section. If there
are no LTORG statements in a program, all
literals used in the program are placed at
the end of the first control section. In
these circumstances the programmer must
ensure that the first control section is
always addressable. This means that the
base address register for the first control
section should not be changed through usage
in subsequent control sections.

CNOP -- CONDITIONAL NO OPERATION

The CNOP instruction allows the programmer
to align an instruction at a specific word
boundary. If any bytes must be skipped in
order to align the instruction properly,
the assembler insures an unbroken instrUC
tion flow by generating no-operation
instructions. This facility is useful in
creating calling sequences consisting of a
linkage to a subroutine followed by parame
ters such as channel command words <CCW).

The CNOP instruction insures the align
ment of the Location Counter setting to a
half-word, word, or double-word boundary.
If the Location Counter is already properly
aligned, the CNOP instruction has no
effect. If the specified alignment
requires the Location Counter to be incre
mented, one to three no-operation instruc
tions are generated, each of which uses two
bytes.

Assembler Instruction statements 55

r--, I Double Word I
.---------------------------T--------------------------~
1 Word I Word I
~------------T------------+----------~----------~
I Half word I Half word I Half word I Half word I
.---·----r-----+------~-----+-----~-----+_----~----t
I Byte I Byte I Byte I Byte I Byte I Byte I Byte I Byte I
r------~------~------i------i------i------i------~-----~
1 I
10,4 2,4 0,4 2,4 I
JO,8 2,8 4,8 6,8 I L __ J

Figure 5-2. CNOP Alignment

The typical form of the CNOP instruction
statement is as follows:

r-------T-----------~--------------------, I Name 1 Operation 1 Operand 1
~-------+-----------+---------------------~
1 Not I CNOP I Two absolute I
lused I lexpressions of I
I I Ithe form b,w I l ______ -i ___________ ~ _____________________ J

Any symbols used in the expressions in
the operand field must have been previously
defined.

Operand b specifies at which byte in a
word or double word the Location counter is
to be set; b can be 0, 2, 4, or 6. Operand
w specifies whether byte b is in a word
(w=4) or double word (w=8). The following
pairs of band ware valid:

0,4
2,4
0,8
2,8
4,8

6,8

Specifies

Beginning of a word
Middle of a word
Beginning of a double word
Second half word of a double word
Middle (third half word) of a dou
ble word
Fourth half word of a double word

Figure 5-2 shows the position in a dou
ble word that each of these pairs speci
fies. Note that both 0,4 and 2,4 specify
two locations in a double word.

Assume that the Location counter is
currently aligned at a double-word boUnda
ry. Then the CNOP instruction in this
sequence:

56

r------T-----------y----------------------,
IName I Operation I Operand I
~------+-----------t----------------------~ 1 I CNOP J a , 8 I
I I BALR I 2,14 I l ______ ~ __________ -i ______________________ J

has no effect. However, this sequence:

r------T-----------~---------------------,
1 Name I Operation I Operand I

~----+-----------t--------------------~
I 1 CNOP I 6, 8 I
I I BALR 12,14) l ______ ~ __________ ~ ______________________ J

causes three branch-on-conditions
(no-operations) to be generated, thus
aligning the BALR instruction at the last
half-word in a double word as follows:

r------T-----------,.--------------------,
I Name I Operation 1 Operand I
~------+-----------+----------------------~
I I BCR 10, a I
I IBCR 10,0 I
J IBCR 10,0 I
I I BA LR I 2 , 14 I L _____ ~ __________ ~ ______________________ J

After the BALR instruction is generated,
the Location counter is at a double-word
boundary, thereby insuring an unbroken
instruction flow.

Note: If the location counter is on an
odd-numbered byte- boundary when a CNOP
instruction is encountered, normal align
ment occurs before the CNOP is processed.

COpy -- COPY PREDEFINED SOURCE CODING

The COpy instruction obtains source
language coding from a system libra,ry
(Assembler source sta ternen t library') and
includes it in the program cu;crently being
assembled. The form of the COpy
instruction statement is as follows:

r--------T-----------,-----------------,
1 Name I Operation) Operand I
.---------+------------+-----------------~
INot used, J COpy lOne symbol 1
Imust not t I I
Ibe present I I I l ___________ ..1. ___________ ..l.-_________________ J

The operand is a symbol that identifies
the section of coding to be copied.

The assembler inserts the request.ed
coding immediately after the COpy statement
is encountered. The requested coding may
not contain another COpy statement.

If identical COPY statemen1:s are encoun
tered, the coding they request is b:cought
into the program each time.

C0PYed text is always in the nonnal
format and is not governed by ICTL usage.
See copy Sta tements in Section 7 for furth
er information. The procedure for placing
source language coding in the system
library is described in the System Control
and system Service Programs publication
listed in thePrefa~.

END -- END ASSEMBLY

The END instruction terminates the assembly
of a program. It may also designate a
point in the program or in a separately
assembled program to which control may be
transferred after the program is loaded.
The END instruction must always be the last
statement in the source program.

The typical form of the END instruction
statement is as follows:

r-----------.-----------.-----------------,
I Name I Operation I Operand I
.---------+-----------+----------------~
I A sequence I END 1 A relocatable I
Isymbol or I I expression or I
I not present I 1 not present I l __________ -.L __________ -..l. _________________ J

The operand specifies the point to which
control is transferred when loading is
complete. For example:

r------~-----------T"""--------------------,
I Name IOperation I Operand I
r-------+-----------+---------------------~
I NAME I CSECT 1 I
IAREA IDS ISOF I
I BEGIN IBALR 12,0 I
1 I us ING I • , 2 I
I I • I I
I I . I I
I I . I I
I lEND I BEGIN 1 L _______ ~ __________ _..1. _____________________ J

Assembler Instruction Statements 57

PART 3 -- CONDITIONAL ASSEMBLY /lND MACRO FAC ILITIES IN THE ASSEMBLER LANGUAGE

SECTION 6: INTRODUCTION TO THE MACRO
FACILITIES

The Basic Operating System/360 conditional
assembly and macro facilities are part of
the Basic Operating System/360 assembler
language.

Conditional assembly allows one to spec
ify assembler language statements which may
or may not be assembled# depending upon
conditions evaluated at assembly time.
Conditional assembly statements are used to
define, set, change, and test values during
the course of the assembly itself.

The conditional assembly instructions
may be used to vary the sequence of state
ments generated for each occurrence of a
macro-instruction. Conditional assembly
instructions may also be used outside
macro-definitions, i.e., among the assem
bler language statements in the program.

The macro facilities provide the pro
gra~ner with a convenient way to write a
macro-definition that can be used to gener
ate a desired sequence of machine instruc
tions and certain assembler instructions
many times in one or more programs.

This macro-definition is written only
once, and a single statement, a macro
instruction statement, is written each time
a programmer wants to generate the desired
sequence of statements.

This facility simplifies the coding of
programs, reduces the chance of programming
errors, and ensures that standard sequences
of statements are used to accomplish
desired functions.

THE MACRO-INSTRUCTION STATEMENT

A macro-instruction statement (also called
a macro-instruction) is a source program
statement used to provide information for
generating machine and assembler instruc
tions from a macro-definition. The gener
ated instructions are source statements
which are then processed by the assembler
program.

'rhree types of macro-instructions may be
written. Each type has a different form of
operand. They are:

58

1. Positional (Sections 7 and ~).

2. Keyword (Section 10).

3. Mixed-mode (Section 10).

Positional macro-instruction operands
are written in a fixed order.

Keyword macro-instruction operands can
be written in any order.

Mixed-mode macro-instruction operands
are a combination of both positional and
keyword operands. That is, certain operand
entries (positional) must be written in a
fixed order; other operand entries
(keyword) can be specified in any order.

THE MACRO-DEFINITION

Before a macro-instruction can be assem
bled, a macro-definition must be available
to the assembler.

A macro-definition is a set of state
ments that provide the assembler with:

1.. The name entry, mnemonic operation
code, and the form of the macro
instruction operand, and

2. The sequence of statements the
assembler uses when the macro
instruction appears in the source
program.

Every macro-definition consists of
macro-definition header statement, a macro
instruction prototype statement, a sequence
of model statements, COPY statements, MEXIT
or MNOTE instructions, and a macro
definition trailer statement.

The macro-definition header and trailer
statements denote the beginning and end,
respectively, of a macro-definition.

The macro-instruction prototype
statement specifies the name entry, mnemon
ic operation code, and the form of the
macro-instruction operand.

The model statements contained in a
macro-definition may be used by the assem
bler to generate machine instructions and
certain assembler instructions that replace
each occurrence of the macro-instruction.

The COpy statements may be used to copy
model statements, MEXIT instructions, and
MNOTE instructions from a system library
(Assembler source statement library) into a
macro-definition.

The MEXIT instruction can be used to
terminate processing of a macro-definition.

The MNOTE instruction can be used to
generate a message.

THE ASSEM ELER SOURCE STATEMEWr LIBRARY

The same macro-definition may be made avai
lable to more than one source program by
placing the macro-definition in the assem
bler source statement library.. This system
library is a collection of macro
definitions that can be used by all the
assembler language programs in an
installation. Once a macro-definition has
been placed in the source statement library
it may be used by 'fJriting a corresponding
macro-instruction in a source program.
Macro-definitions must be in 'the assembler
source statement library under the same
name as the prototype. The procedure for
placing macro-definitions in 'the source
statement library is described in the Sys
tem Control and System Service Programs
publication listed in the Preface.

system macro instructions provided by
IBM, are described in the Supervisor and
Input/Output Macros publication, also list
ed in the Preface.

VARIABLE SYMBOLS

A variable symbol is a type of symbol that
is assigned various values by either the
programmer or the assembler. Thus" varia
ble symbols allow different values to be
assigned to one symbol. When the assembler
uses a macro-definition to determine what
statements are to replace a macro
instructio'n, variable symbols in the model
statements are replaced with the current
values assigned to them.

A variable symbol is wri tt~en as an
ampersand followed by from one to seven
letters and/or digits, the first of which
must be a letter.

Types of Variable Symbols

There are three types of variable symbols:
symbolic paramete.rs, system variable sym
bols, and SET symbols. The SET symbols are
further broken down into SETA symbols, SETS
symbols, and SETC symbols. The three types
of variable symbols differ in how they are
assigned values.

Assigning Values to Variable Symbols

Symbolic parameters are assigned values by
the programmer each time he writes a macro
inst.ruction.

System variable symbols are assigned
values by the assembler each time it proc
esses a macro-instruction.

SET symbols are assigned values by the
programmer by means of conditional assembly
instructions.

Global SET Symbols

The values assigned to SET symbolS in one
macro-definition may be used in other
macro-definitions. All SET symbols used
for this purpose must be defined as global
SET symbols. All other SET symbols must be
defined by the programmer as local SET
symbols. Local SET symbols and the other
variable symbols (that is, symbolic param
eters and system variable symbols) are
local variable symbols. Global SET symbols
are global variable symbols.

ORGANIZATION OF THIS PART OF THE
PUBLICATION

sections 7 and..§. describe the basic rules
for preparing macro-definitions and for
writing macro-instructions.

Section 9 describes the rules for writ
ing conditional assembly instructions.

Section 10 describes additional features
including rules for defining global SET
symbols, preparing keyword and mixed-mode
macro-definitions, and writing keyword and
mixed-mode macro-instructions.

Appendix G contains a reference summary
of the complete macro facilities.

Introduction to the Macro Facilities 59

Examples of the use of the features of
the language appear throughout the remain
der of the publication. These examples
illustrate the use of particular features.
However, they are not meant to show the
full versatility of these features.

60

A macro-definition consists of;

1. A macro-definition header·statement.
2. A macro-instruction prototype state

ment.
3. Zero or more model stat~n¢nts, COpy

statements; MEXIT, or MNOTE instruc
tions.

4. A macro-definition trailer statement.

Except for MEXIT, MNOTE, an~ conditional
assembly instructions, this se~tion of the
publication describes the stat~ments that
may be used to prepare macro-definitions.
Conditional assembly instructi~ns are des
cribed in Section 9. MEXIT and MNOTE
instructions are dE;scribed in Section 10.

Macro-definitions in a sour¢e program
must appear before all PUNCH a~d REPRO
statements which appear in theimain pro
gram. Specifically, only the listing con
trol instructions (EJECT, PRINT, SP'ACE, and
TITLE), ICTL and ISEQ instructions, and
comments statements may occur ~efore the
macro-definitions. All but the ICTL
instruction may appear between! macro
definitions if there is more than one
definition in the source program.

MACRO -- MACRO-DEFINITION HEAD}?R

The macro-definition header st~tement
denotes the beginning of a mac~o
definition. It must be the fil:"st statement
in every macro-definition. The form of
this statement is:

r-----------T-----------T-----------------,
I Name I Operation I Operand \
~-----------t----------+---------·-·-·------~
\Not used, I MACRO I Not used, must \
Imust not I I not pe present I
lbe present I \ \ L _________ J. _____ . _____ J. __________ . _______ J

MEND -- MACRO-DEFINITION TRAILER

The macro-definition trailer statement
denotes the end of a macro-definition. It
must be the last statement in ~very macro
definition. The form of this statement is:

SECTION 7: HOW TO PREPARE MACRO-DEFINITIONS

r-------T----------~---------------------,
\ Name \ Operation \ Operand I
~-------+-----------+---------------------~
I Not \ MEND INot used, must not \
lused I Ibe present I L _______ ~ ___________ ~ _____________________ J

MACRO-INSTRUCTION PROTOTYPE

The macro-instruction prototype statement
(also called the prototype statement.)
specifies the name entry, mnemonic opera
tion code, and the form of all macro
instructions that refer to the macro
definition. It must be the second state
ment of every macro-definition. The
typical form of this statement is:

r------------T----------~----------------l
\ Name \Operation \Operand I
~------------+--.--------+-----------------~
\A symbolic IA symbol IZero to 100 sym- I
t parameter I \ bolic parameters, I
lor not I Iseparated by com-I
lused I Imas I L ____________ ~ _________ _J. _________________ J

The symbolic paramete.rs are used in the
macro-definition to represent the name
entry and operands of the corresponding
mac.ro-instruction. A description of sym
bolic parameters appears following Model
Statements.

The name entry of the prototype state
ment may be unused or it may contain a
symbolic parameter.

The symbol in the operation entry is the
mnemonic operation code that must appear in
all macro-instructions that refer to this
macro-definition. The mnemonic operation
code must not be the same as the mnemonic
operation code of another macro-definition
in the source program or of a machine
instruction or assembler instruction.

The operand entry may contain zero to
100 symbolic parameters separated by com
mas.

How to Prepare Macro-Definitions 61

The following is a prototype statement.

r-------T-----------~--------------------l
IName I Operation I Operand I
~------+-----------+---------------------~
I &NAME I MOVE I &TO, & FROM I L-______ ~ ___________ ~ _____________________ J

Alternate Statement Form

The prototype statement may be written in a
form different from that used for machine
or assembler instructions. The normal form
is described in Part 1 of this publication.
The alternate form described here allows
the programmer to write an operand on each
line, and allows the interspersing of oper
ands and comments in the statement.

In the alternate form, as in the normal
form, the name and operation entries must
appear on the first line of the statement,
and at least one blank must follow the
operation entry on that. line. Both types
of statement forms may be used in the same
prototype statement.

The rules for using the alternate state
ment form are:

1. If an operand is followed by a comma
and a blank, and the column after the
end column contains a nonblank charac
ter, the operand entry may be contin
ued on the next line starting in the
continue column. More than one oper
and may appear on the same line.

2. comments may appear after the blank
that indicates the end of an operand,
up to and including the end column.

3. If the next line starts after the
continue column, the information
entered on that line is considered to
be comments, and the operand field is
considered terminated. Any subsequent
continuation lines are considered to
contain only comments.

Note: A prototype statement may be
written on as many continuation lines as is
necessary to contain 100 operands and asso
ciated comments.

The following examples illustrate: (1)
the normal statement form, (2) the alter
nate statement form, and (3) the combina
tion of both statement forms.

62

r--------T----~-----------------------~-,
I Name IOper-loperand Comments I I
I lationl I I
I---------+-----+-----------------------+-~
INAME1 IOPl IOPERAND1,OPERAND2,OPERANIXI
I I 103 THE NORMAL FORM I I
.--------+------+------------------------+-~
INAME2 IOP2 IOPERAND1, THIS IS THE ALIXI
I I IOPERAND2,OPERAND3, TERNAJXI
I I I TE STATEMENT IXI
I I I FORM I I
.--------+-----+------------------------t-~
INAME3 IOP3 IOPERAND1, THIS IS A COMBIXI
I I I OPERAND2 , OPERAND 3 I OPERAN I X I
I I ID4,OPERAND5 INATION OF IXI
I I I BOTH STATEMENT FORMATS I I l _______ ~ _____ ~ ________________________ ~_J

MODEL STAT.EMENTS

Model statements are the macro-definition
statements from which the desired sequences
of machine instructions and certain assem
bler instructions are generated. Zero or
more model statements may follow the proto
type statement. A model statement consists
of one to four entries. They are, from
left to right, the name, operation, oper
and, and comments entries.

The name entry may be unused, or it may
contain an ordinary symbol, a sequence
symbol or a variable symbol, depending on
the particular statement.

The operation entry may contain any
machine, assembler, or macro instruction
mnemonic operation code, except COPY, END,
ICTL, ISEQ, and PRINT; or it may contain a
variable symbol. Variable symbols may not
be used to generate the followinq mnemonic
operation codes, nor may variable symbols
be used in the naree and operand entries of
these instructions: COPY, END, ICTL, or
ISEQ. Variable symbols may not be used to
generate CSECT, DSECT, PRIN'I', REPRO, START,
MACRO, MEND, MEXIT, LCLA, LeLB I LCLC, GBLA,
GBLB, GBLC, SETA, SETB, SETC , AIF, AGO,
ANOP, or macro-instruction mnemonic opera
tion codes. Variable symbols may not be
used to generate the name and operation
code of the ACTR instruction.

Variable symbols may also be used out
side of macro-definitions to generate mne
monic operation codes with the preceding
restrictions.

Although COpy statements may not be used
as model statements, they may be part of a
macro-definition. The use of COPY state
ments is described under COpy Statements.

The operand entry may contain ordinary
symbols or variable symbolS. Sequence

symbols must appear in the operand entry of
AGO and AIF instructions.

The conunents entry may conta in a.ny com
bination of characters. subst~tution by
the use of variable symbols is not allowed.

If a REPRO statement is used as a model
statement, it must be explicitly written in
the operation entry. It may not bE! gener
ated as a result of replacing a variable
symbol by its value. Also, the line fol
lowing it may not contain variable symbols.

SYMBOLIC PARAMETERS

A symbolic parameter is a type of variable
symbol consisting of an ampersand followed
by one to seven letters and/or numbers, the
first of which must be a lette;r. Symbolic
parameters appear in prototype and model
statements. They are assigned values by
the programmer when he writes a macro
instruction. The programmer may vary
statements that are generated for each
occurrence of a macro-instruction by vary
ing the values assigned to symbolic param
eters.

Any symbolic parameters in a model
statement must appear in the prototype
statement of the macro-definition.

The programmer should not use &SYS as
the first four characters of a symbolic
parameter.

The following are valid symbolic param
eters:

&READER
&A23456
&X4F2

& LOOP 2
&N
&S4

The following are invalid symbolic pa
rameters:

CARDAREA (first character is not an
ampersand)

&256B (first character after
ampersand is not a
letter)

&AREA2456 (more t:han seven characters
after the ampersand)

&BCD(34) <contains a special charac
ter other than initial
ampersand)

&IN AREA (contains a special charac
ter, i.e., blank, other
than initial ampersand)

The following is an example of a macro
definition. Note that the symbolic
parameters in the model statements appear
in the prototype statement.

r-------T-----------T------------,
I Name lOperation I Operand I
~------.-+----------+------------t

Heade.r I I MACRO I I
Prototypel&NAME I MOVE J&TO,&FROM I
Model I&NAME 1ST 12,SAVE I
Model I I L 12, & FROM I
Model liST J2,&TO ,
Model I IL 12,SAVE I
Trailer I I MEND , I l ______ -i __________ -i ____________ J

Symbolic parameters in model statements
are replaced by the characters of the
macro-instruction operand that correspond
to the symbolic parameters.

In the following example the characters
HERE, FIELDA, an'd FIELDB of the MOVE macro
instruction correspond to the symbolic
parameters &NAME, &TO, and &FROM,
respectively, of the MOVE prototype state
ment.

r------r------·------r ----------------------,
I Name ,Operation IOperand I
.------+-----------+----------------------~
IHERE I MOVE IFIELDA,FIELDB I l ______ ~ __________ -i ______________________ J

Any occurrence of the symbolic parame
ters &NAME, &TO, and &FROM in a model
statement will be ret)laced by the charac
ters HERE, FIELDA, dnd FIELDB, respectiVe
ly. If the preceding macro-instruction was
used in a source program, the following
assembler language statements would be
generated:

r------T-----------~---------------------,
I Name IOperation I Operand I
~------+-----------+----------------------~
tHERE 1ST I 2, SAVE I
I I L 12, FIELDB I
I I ST I 2, I<~I.c:LDA I
I I L I 2 , SAVE I l ______ ~ __________ ~ _____________________ J

The example below illustrates another
use of the MOVE macro-instruction using
different operands than those that appear
in the preceding example.

How to Prepare Macro-Definitions 63

r-------T-----------T------------,
IName 1 Operation 1 Operand 1
~-------+-----------+------------~

Macro 1 LABEL 1 MOVE 1 IN, OUT I
~------+-----------+------------~

Generated I LABEL 1 ST 12, SAVE I
Generated I IL 12,OUT 1
Generated I 1ST 12,IN I
Generated 1 IL 12,SAVE I L _______ ~ ___________ ~ ___________ J

If a symbolic parameter appears in the
comments field of a model statement, it is
not replaced by the corresponding charac
ters of the macro-instruction.

Concatenating Symbolic Parameters with
Other Characters or Other Symbolic
Parameters

Concatenation is the process of linking or
joining together in a sequence, with a
specified order. To concatenate is to join
together in a specified order.

If a symbolic parameter in a model
statement is immediately preceded or fol
lowed by other characters or another sym
bolic parameter, the characters that cor
respond to the symbolic parameter are com
bined, in the order given, in the generated
statement, with the other characters or the
characters that correspond to the other
symbolic parameter. This process is called
concatenation.

The macro-definition, macro-instruction,
and generated statements in the following
example illustrate these rules.

r-----T--------~----------------l
IName I Operation 1 Operand 1
~-----+---------+----------------~

Header 1 1 MACRO 1 I
Prototypel&NAMEIMOVE I&TY,&P,&TO,&FROMI
Model 1 &NAME 1 ST&TY 12, SAVEAREA I
Model I I L&TY 12, &P&FROM I
Model 1 IST&TY 12,&P&TO 1
Model 1 IL&TY 12,SAVEAREA 1
Trailer I I MEND 1 I

~-----+---------+----------------~
Macro IHERE IMOVE ID,FIELD,A,B I

~-----+---------+----------------~
Generated I HERE ISTD 12, SAVEAREA J
Generated 1 ILD 12,FIELDB I
Generated I I STD 12, FIELDA I
Generated I ILD 12,SAVEAREA I L _____ ~ _________ ~ _______________ _J

The symbolic parameter &TY is used in
each of the four model statements to vary
the mnemonic operation code of each of the

64

genera ted statements. The character D in
the macro-instruction corresponds to sym
bolic parameter &TY. Since &TY is preceded
by other characters (i.e., ST and L) in the
model statements, the cha.racter that cor
responds to &TY (i. e., D) is concatenated
with the other characters to form the oper
ation fields of the generated statements.

The symbolic parameters &P , &TO, and
&FROM are used in two of the model state
ments to vary part of the operand fields of
the corresponding generated statements.
The characters FIELD, A, and B correspond
to the symbolic parameters &P, &TO, and
&FROM, respectively. Since &P is followed
by &FROM in the second model statement, the
characters that correspond to them <i.e.,
FIELD and B) are concatenated to form part
of the operand field of the second generat
ed statement. Similarly, FIELD and A are
concatenated to form part of the operand
field of the third generated statement.

If the programmer wishes to concatenate
a symbolic parameter with a letter, digit,
left parenthesis, or period following the
symbolic parameter he must immediately
follow the symbolic parameter with a per
iod. A period is optional if the symbolic
parameter is to be concatenated with anoth
er symbolic parameter, or a special charac
ter other than a left parenthesis or anoth
er period that follows it.

If a symbolic parameter is immediately
followed by a period, then the symbolic
parameter and the period are replaced by
the characters that correspond to the sym
bolic parameter. A. period that immediately
follows a symbolic parameter does not
appear in the generated statement.

The following macro-definition, macro
instruction, and generated statements
illustrate these rules.

Header
-prototype
Model
Model
Model
Model
Trailer

Macro

Generated
Generated
Generated
Generated

r-----T---------~--------------l
IName I Operation 1 Operand I
~-----+---------+---------------~
1 I MACRO I I
I &NAMEJ MOVE J &P, &S, &Rl, &R2 I
J&NAMEIST I&Rl,&S.(&R2) I
J IL I&Rl,&P.B I
I 1ST I&Rl,~P.A I
I IL I&Rl,&S.(&R2) I
I I MEND I I
~-----+---------+---------------~
I HERE I·MOVE I FIELD, SAVE,.2 ,4 I
~-----+---------+---------------~
IHERE 1ST 12,SAVE(4) I
1 IL 12,FIELDB I
liST 12,FIELDA I
I I L I 2, SAVE (4) I L ____ ~ ________ ~ _______________ J

The symbolic parameter SP is used in the
second and third model stateme!nts to vary
part of the operand field of ea,ch of the
corresponding generated statements. The
characters FIELD of the macro-instruction
correspond to 'P. Since iP is to be conca
tenated with a letter (i.e., B and A) in
each of the statements, a period immediate
ly follows &P in each of the model state
ments. The period does not appear in the
generated statements.

Similarly, symbolic paramet~er &S is used
in the first and fourth model statements to
vary the operand fields of the correspond
ing generated statements. &S is followed
by a period in each of the model state
ments, because it is to be concatenated
with a left parenthesis. The period. does
not appear in the generated st:atements.

Comments statements

A model statement nay be a comments state
ment. A comments statement consists of an
asterisk in the begin column, followed by
comments. The comments statement is used
by the assembler to generate an assembler
language comments statement, just as other
model statements are used by the assembler
to generate assembler language statements.

The programmer rray also write comments
statements in a macro-definition which are
not to be generated. These statements must
have a period in the begin column, immedi
ately followed by an asterisk and the com
ments.

The first statement in the following
example will be used by the assembler to
generate a comments statement; the second
statement will not~

r-------·--------------------------·-------,
IName IOperation IOperand I
~---~ 1* THIS STATEMENT WILL BE GENERATED 1
I • * 'I'HIS ONE WILL NOT BE GENERATED 1 l _________________ . _______________________ J

The use of variable symbols for substi
tution in comments statements is not
allowed. The * or .* of a comment .state
ment, the.refore, cannot be created by sub
stitution for a variable symbol.

COPY STATEMENTS

A COPY statement is not a model statement.
COpy statements may be used to copy model
statements and MEXIT, and MNOTE instruc
tions into a macro-definition from a system
library, just as they may be used outside
macro-definitions to copy source statements
into an assembler language program.

The form of this statement is:

r-----------T-----------T-----------------,
I Name I Ope.ration I Operand I
.-----------+-----------+-----------------~
INot used, I COpy I A symbol I
Imust not I I I
Ibe present I I I L ___________ i-__________ ~ _________________ J

The symbol in the operand entry iden
tifies the section of coding to be copied.
Any statement that may be used in a macro
definition may be part of the copied
coding, except MACRO, MEND, COpy, and pro
totype statements.

Statements COPYed into the program must
obey the restrictions on ordering of state
ments. For example, COpy must be between
global and local declarations in the macro
definition o.r in the main program if the
COPYed text contains global and local
declarations.

How to Prepare Macro-Definitions 65

SECTION 8: HOW TO WRITE MACRO-INSTRUCTIONS

The typical form of a macro-instruction is:

r----------T-----------T------------------,
I Name I Operation I Operand I
~----------+-----------+_-----------------i
fA symbol I Mnemonic IZero or more op- I
lor not I operation lerands, separated I
I used I code Iby commas. I L __________ ~ ___________ ~ __________________ J

The name entry of the macro-instruction
may contain a symbol. The symbol will not
be defined in the generation process unless
a symbolic parameter appears in the name
entry of the prototype and the same param
eter appears in the name entry of a model
statement.

The opera tion entry contains the mnemon
ic operation code of the macro-instruction.
The mnemonic operation code must be the
same as the mnemonic operation code of a
macro-definition in the source program or
in the source statement library.

The macro-definition with the same mne
moniq operation code is used by the assem
bler to process the macro-instruction. If
a macro-definition in the source program
and one in the source statement library
have the same mnemonic operation code, the
macro-definition in the source program is
used.

The placement and order of the operands
in the macro-instruction may be determined
by the placement and order of the symbolic
parameters in the operand entry of the
prototype statement.

MACRO-INSTRUCTION OPERANDS

Any combination of up to 127 characters may
be used as a macro-instruction operand
provided that the following rules concern
ing apostrophes , parentheses, equal signs,
ampersands, commas, and blanks are
obse.rved.

Paired Apostrophes! An operand may contain
one or more sequences of characters, each
of which is enclosed within single apos
trophes.. (The sequence of characters
itself may contain an even number of
apostrophes). The single apostrophes,
which enclose the sequence of characters,
are called paired apostrophes.

66

The first sequence of characters starts
with the first apostrophe in the operand.
Subsequent character sequences start with
the first apostrophe after the apostrophe
that ends the previous sequence of charac
ters ..

In the following example, there are two
sequences of characters enclosed within
single apostrophes. Therefore, there are
two sets of paired apostrophes: the first
and fourth apostrophes, and the fifth and
sixth apostrophes.

'A"B'C'O'

An apostrophe, immediately followed by a
letter, and immediately preceded by the
letter L (when L is preceded by any special
character other than an ampersand), is not
considered in determining paired apostroph
es. For instance, in the following exam
ple, the middle apostrophe is not consid:
ered ..

'L'SYMBOL-
'AL'SYMBOL' is an invalid operand.

Paired Parentheses: There must be an equal
number of left and right parentheses. The
nth left parenthesis must appear to the
left of the nth right parenthesis.

Paired parentheses are a left parenthe
sis and a following right parenthesis with
out any other parentheses intervening. If
there is more than one pair, each addition
al pair is determined by removing any pairs
al.ready recognized and rear:;plying the above
rule for paired parentheses. For instance,
in the following example the first and
fourth, the second and third, and the fifth
and sixth parentheses are each paired pa
rentheses.

(A(B)C)D(E)

A parenthesis that appears between
paired apostrophes is not considered in
determining paired parentheses. For
instance, in the following example the
middle parenthesis is not considered.

(,) ,)

Equal Signs: An equal sign can only occur
as the first character in an operand or
between paired apostrophes or paired pa
rentheses. The following examples illus
trate these rules.

=F'32'

'C=D'
E(F=G)

Ampersands: Except: as noted under "Inner
Macro-Instructions~" each sequ¢nce of con
secutive ampersands must be an even number
of ampersands. The following example
illustrates this rule.

&&123&&&&

Commas: A comma indicates the end of an
operand, unless it is placed between paired
apostrophes or paired parentheses. The
following example illustrates this rule.

(A,B)C','

Blanks: Except as noted under Stat,ement
Form, a blank indicates the end of the
operand entry, unless it is placed between
paired apostrophes. The following example
illustrates this rule.

'A B C'

The following are valid macro
instruction operands:

SYMBOL
123
X'189A'

*
L'NAME
'TEN = 10'
'COMMA IS "

A+2
(TO(S),FROM)
0(2,3)
=F'4096'
AB&&9
'PARENTHESIS IS)'
'APOSTROPHE IS'"

The following are inva lid macro-·
instruction operands:

W'NAME
SA)B

(15 B)

'ONE' IS '1'

STATEMENT FORM

(odd number of apostrophes)
(number of left parentheses

does not equal number of
right parentheses)

(blank not placed between
paired apostrophes)

(blank not placed between
paired apostrophes)

Macro-instructi.ons may be written using
the same alternate form that can be used to
write prototype statements. If this form
is used, a blank does not always indicate
the end of the operand entry.. The
alternate form is described in Section 7,
under the subsection "M.acro- Instruction
Prototype."

OMITTED OPERANDS

If an operand that appears in the prototype
statement is omitted from the macro
instruction, then the comma that would have
separated it from the next operand must be
present. If the last operand(s) is omitted
from a macro-instruction, then the comma(s)
separating the last operand(s) from the
next previous operand may be omitted.

The following example shows a macro
instruction preceded by its corresponding
prototyp~ statement. The macro-instruction
operands that correspond to the third and
sixth operands of the prototype statement
are omitted in this example.

r------T-----------~---------------------l I Name I Operation I Operand I
~------+-----------+----------------------~ I I EXAMPLE I &A, &B , &C, &D, tE, tF I
I I EXAMPLE 117,*+4"AREA,FIELD(6) I L ______ ~ ___________ ~ ______________________ J

If the symbolic parameter that
corresponds to an omitted operand is used
in a model statement, a null character
value (not a blank) replaces the symbolic
parameter in the generated statement, i. e.,
in effect the symbolic parameter is
removed.

For example, the first statement below
is a model statement that contains the
symbolic parameter &C. If the operand that
corresponds to &C was omitted from the
macro-instruction, the second statement
below would be generated from the model
statement.

r------T-----------.----------------------,
IName IOperation I Operand I
~-----+-----------+----------------------~ I IMVC ITHERE&e.25,THIS I
I IMVe I THERE25,THIS I L ______ ~ __________ _L ______________________ J

OPERAND SUBLISTS

An operand of a macro-instruction may be a
sublist.

Sublists provide the programmer with a
convenient way to refer to: (1) a collec
tion of macro-instruction operands as a
single operand, or (2) a single operand in
a collectio·n of operands.

A sublist consists of one or more oper
ands (suboperands) separated by commas and

How to write Macro-Instructions 67

enclosed in paired parentheses. The entire
sublist. including the pare.ntheses. is
considered to be one macro-instruction
operand.

Omitted suboperands are handled in the
same way as omitted operands. If ()
appears as an operand. however. it is
treated as a character string, not as a
sublist with all suboperands omitted.

If a macro-instruction is written in the
alternate statement format, each sublist
operand may be written on a separate line:
the macro-instruction may be written on as
many lines as there are operands, including
sublist operands.

The limit of 100 operands applies to the
total of suboperands and non-sublisted
operands. The limit of 127 characters per
operand applies to an entire sublist
including parentheses and commas.

If &Pl is a symbolic parameter in a
prototype statement, and the corresponding
operand of a macro-instruction is a sub
list, then &Pl(n) may be used in a model
statement to refer to the nth operand of
the sublist, where n may be a decimal self
defining term. (n may also be any
arithmetic expression allowed in a SETA
instruction. The SETA instruction is des
cribed in Section 9.> n must be in the
range of 1 through 100. If &P1 is a sym
bolic parameter, and the corresponding
operand of a macro-instruction is a sub
list, then &P1 refers to the entire sublist
(including parentheses).

For example, consider the following
macro-definition, macro-instruction, and
generated statements.

r------T---------T---------------,
IName I Operation I Operand 1
.------t---------+---------------~

Hea der I I MACRO I I
Prototype 1 I ADDNUM I &NUM, ®, &AREA I
Model I I L I ®, &NUM (1) I
Model I IA I®,&NU.M(2) I
Model I IA I®,&NUM(3) I
Model I I ST I ®, &AREA I
Trailer I I MEND I I

r------+---------+---------------~
Macro I I ADDNUM I (A, B, C) , 6 I SUM I
Generated I IL 16,A I
Generated I IA 16,B I
Generated I IAt6,C I
Generated I 1ST 16,SUM I L-_____ ~ _________ ~ ______________ _J

The operand of the macro-instruction
that co.rresponds to symbolic parameter &NUM
is a sublist. One of the operands in the
sublist is referred to in the operand entry

68

of three of the model statements. For
example. &NUM(l) refers to the first oper
and in the sublist corresponding to symbol
ic parameter &NOM. The first operand of
the sublist is A. Therefore, A replaces
'NUM(1) to form part of the generated
statement.

~ When referring to an operand in a
sublist, the left parenthesis of the sub
list notation must immediately follow the
last character of the symbolic parameter,
e.g., &NUM(1). A period should not be
placed between the left parenthesis and the
last character of the symbolic parameter.

A period may be used between these two
characters only when the programmer wants
to concatenate the left parenthesis with
the characters that the symbolic parameter
represents. The following example shows
what would be generated if a period
appeared between the left parenthesis and
the last character of the symbolic parame
ter in the first model statement of the
above example.

r----.---------,-----------------,
I Name I Operation I Operand I
~----+---------+-----------------~

Prototypef I ADDNUM I &NUM, ®, &AREA I
Model I IL I®,&NUM.(l) I

~---+-------t-----------------~
Macro I I ADDNUM I (A, B,C) ,6 ,SUM I

~----+---------+-----------------~
Generated I I L J 6, (A.B,C) (1) I l ___ -4 ________ -4 _________________ J

The symbolic parameter &NUM is used in
the operand entry of the model statement.
The characters (A,B,C> of the macro
instruction correspond to &NOM. Since &NUM
is immediately followed by a period, &NUM
and the period are replaced by (A,B,C).
The period does not appear in the generated
statement. The reSUlting generated
statement is an invalid assembler language
statement.

INNER MACRO-INSTRUCTIONS

A macro-instruction may be used as a model
statement in a macro-definition. Macro
instructions used as model statements are
called inner macro-instructions.

A macro-instruction that is not used as
a model statement is referred to as an
outer macro-instruction.

Any symbolic parameters used in an inner
macro-instruction are replaced by the
corresponding operands of the outer macro
instruction.

The macro-definition corresppnding to an
inner macro-instruction is used! to generate
the statements that replace the inner
macro-instruction.

The ADDNUM macro-instruction of the
previous example is used as an inner macro
instruction in the following example.

The inner macro-instruction contains two
symbolic parameters, &S and &T. The
characters (X, Y, Z) and J of the: macro
instruction correspond to is and iT ,
respectively. Therefore, these' characters
replace the symbolic parameters: in the
operand entry of the inner macro
instruction.

The assembler then uses the imacra
definition that corresponds to the inner
macro-instruction to generate sitatements to
replace the inner macro-instruotion. The
fourth through seventh generated statements
have been generated for the inner macro
instruction.

r---~-------T-----'------'------'

I Name I Operation I operand I
~----+---------+-----------------~

Header I \ MACRO , I
Prototype I ICOMP I&R1,&R2,&S,&T,&U I
Model I I SR I &R1, &R2 I
Model , 'C I &R1 , &T I
Model I IBNE I&U I

I 1---------+--------, I
Inner I IADDNUM I&S,12,&TI I

I I---------+--------J I
Model I&U IA I&R1,&T I
Trailer I I MEND I I

\ I MACRO I I
I I ADDNUM I & NUM, ®, &AREA I
1 IL I®,&,NUM(l) I
\ I A I ®, &NUM(2) I
I lA I®,&iNUM(3) I
I I ST I & REG, &:AREA I
I IMEND I I
~----+---------+------~----------~

Outer IK ICOMP 110,11,eX,Y,Z),J,KI
~----+---------+------.-----------~

Generated I I SR 110,11 I
Generated I IC 110,J I
Generated I IBNE IK I

I 1---------+-----, I
Generated I IL 112,X I I
Generated I I A 112, Y I I
Generated I IA 112,Z I I
Generated I 1ST 112,J I I

I I---------+-----J I
GeneratedlK IA 110,J I L ____ ~ _________ ~ _________________ J

Note: An ampersand that is part of a
symbolic parameter is not considered in
determining whether a macro-instruction
operand contains an even number of
consecutive ampersands.

LEVELS OF MACRO-INSTRUCTIONS

A macro-definition that corresponds to an
outer macro-instruction may contain any
number of inner macro- instructions. The
outer macro-instruction is called a first
level macro-instruction. Each of the inner
macro-instructions is called a second level
macro-instruction.

The macro-definition that corresponds to
a second level macro-instruction may con
tain any number of inner macro
inst.ructions. These macro-instructions are
called third level macro-instructions, etc.

The number of levels of macro
instructions that may be used depends upon
the complexity of the macro-definition and
the amount of storage available. This is
described in detail in Appendix H.

How to Write Macro-Instructions 69

SECTION 9: HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

The conditional assembly instructions allow
the programmer to: (1) define and assign
values to SET symbols that can be used to
vary parts of generated statements, and (2)
vary the sequence of generated statements.
Thus, the progran~er can use these
instructions to generate many different
sequences of statements from the same
macro-definition.

There are 13 conditional assembly
instructions, 10 of which are described in
this section. The other three conditional
assembly instructions -- GBLA, GBLS, and
GBLC -- are des cribed in Section 10. The
instructions described in this section are:

LCLA
LCLB
LeLC

SETA
SETB
SETC

AIF
AGO
ACTR

ANOP

The primary use of the conditional
assembly instructions is in macro
definitions. However, all of them (except
ACTR) may be used anywhere in an assembler
language source program.

Where the use of an instruction outside
macro-definitions differs from its use
within macro-definitions, the difference is
described in the subsequent text.

The LCLA, LCLB, and LCLC instructions
must be used to define and assign initial
values to local SET symbols.

The SETA, SETB, and SETC instructions
may be used to assign arithmetic, binary,
and character values, respectively, to SET
symbols. The SETB instruction is described
after the SETA and SETC instructions,
because the operand of the SE'T1l instruction
is a combination of the operands of the
SETA and SETC instructions.

The AIF, AGO, and ANOP instructions may
be used in conjunction with sequence sym
bols to vary the sequence in which state
ments are assembled. The programmer can
test attributes aSSigned by the assembler
to macro-instruction operands to determine
which statements are to be processed. The
ACTR instruction may be used to limit the
number of ALP and AGO branches executed in
any assembly.

Examples illustrating the use of condi
tional assembly instructions are included
throughout this section. A chart summariz
ing the elements that can be used in each
instruction appears at the end of this
section .•

70

SET SYMBOLS

SET symbols are one type of variable sym
bol. The symbolic parameters discussed in
Section 7 are another type of variable
syrrbol. SET symbols differ from symbolic
parameters in three ways: (1) where they
can be used in an assembler language source
program, (2) how they are assigned values,
dnd (3) how the values assigned to them can
be changed.

Symbolic parameters can only be used in
macro-definitions, whereas SET symbols can
be used inside and outside macro-
rjefini tions.

symbolic parameters are assigned values
by SETA, SE'fB, and SE.'TC conditional
assembly instruct ions and by local or glo
bal declarations.

Each symbolic parameter is assigned a
single value for one use of a macro
definition, whereas the values aSSigned to
each SETA, SETB 1 and SETC symbol are not so
restricted.

Defining SET Symbols

SET symbols must be defined by the
programmer before they are used. When a
SET symbol is defined it is assigned an
initial value. SET symbols may be assigned
new values by means of the SETA, SETB, and
SETC instructions. A SET symbol is defined
when it appears as an operand of an LeLA,
LCLB, or LCLC instruction.

USing Variable Symbols

The SETA, SETB, and SETC ins·tructions may
be used to change the values assigned to
SETA, SETS, and SETC symbols, respectively.
When a SET symbol appears in the name or
operand entry of a statement, the current
value of the SET symbol (i. e., the last
value aSSigned to it) replaces the SET
symbol in the statement. When a SETC sym
bol appears in the operation entry of a
statement, the current value of the SETe
symbol replaces the SET symbol in the
statement ..

For example, if &A is a symbolic parame
ter, and the corresponding characters of
the macro-instruction are the symbol HERE,
then HERE replaces each occurre;nce of ~A in
the macro-definition. However, if tA is a
SET symbol, the value assigned to &A can be
changed, and a different value can replace
various occurrences of &A in the macro
definition.

The same variable symbol may not be used
as. a symbolic para.meter and as a SET symbol
in the same macro-definition.

The following illustrates this rule.

r------T-----------T-------,·--·------------,
I Name I Operation I Operand I
~-------+-----------+---------------------~ I &NAME I MOVE I &TO, &FROf-ll I L ______ ~ ___________ ~ _______________ --____ J

If the statement above is a prototype
statement, then &NAME, &TO, and &FROM may
not be used as SET symbols in the macro
definition.

The same variable symbol may not be used
as two different types of SET symbols in
the same macro-definition. Similarly, the
same variable symbol may not be used as two
different types of SET symbols outside
macro-definitions.

For example, if &A is a SE'I~A symbol in a
macro-definition, it cannot be used as a
SETC symbol in that definition. Similarly,
if &A is a SETA symbol outside macro
definitions, it cannot be used as d SETC
symbol outside macro-definitions.

The same variable symbol if declared
local may be used in two or more roacro
definitions and outside macro-definitions.
If such is the case, the variable symbol
will be considered a different. variable
symbol each time it is used.

For example, if &A is a variable symbol
(either SET symbol or symbolic parameter)
in one macro-definition, it can be used as
a variable symbol (either SET symbol or
symbolic parameter) in another definition.
Similarly, if &A is a variable symbol (SET
symbol or symbolic parameter) in a macro
definition, it can be used as a SET symbol
outside macro-definitions.

All variable symbols may be concatenated
with other characters in the Same way as
symbolic parameters. The rules for
concatenation are in Section 1 under the
subsection Model Statements.

Variable symbols in macro-instructions
are replaced by the values aSSigned to
them, immediately prior to the start of

processing the definition. If a SET symbol
is used in the operand entry of a macro
instruction, and the value assigned to the
SET symbol is in the form of sublist
notation, the operand is not considered a
sublist.

ATTRIBUTES

The assembler assigns attributes to macro
instruction operands and to symbols in the
program.

There are six kinds of attributes. They
are: type, length, scaling, integer,
count, and number.

Each attribute has a notation associated
with it. The notations are:

Attribute
Type
Length
Scaling
Integer
Count
Number

Notation
T'
L'
S'
I'
K'
N'

The programmer may request an attribute
in the following places:

1. Outside Macro-definitions

a. The attributes L', I', Sf, and T'
may be referenced, where
meaningful, for ordinary symbols
which appear outside macro
definitions as the name entry of an
assembler source statement
(including COPYed statements) or in
the operand of an EXTRN statement.
(see the following detailed
description of these attributes.)

b. Because attributes of other ordi
nary symbols (including those
generated) are not available, only
the T' attribute may be re<luested,
and its value is U (Undefined).

c. Attributes of variable symbols
cannot be referenced outside macro-·
definitions. definitions.

2. Within Outer Macro-definitions

a. Only indirect references (using
symbolic parameters) are permitted
for the L', I', Sf, T', K', and N'
attributes of ordinary symbols in
outer macro-inst.ructions. These
ordinary symbols must appear
outside macro-definitions as the
name entry of an assembler source
statement (including COPYed

Writing Conditional Assembly Instructions 71

statements) or in the operand of an
EXTRN statement.

b. Because attributes of other ordi
nary symbols and SET symbols out
side macro-definitions are not
available, indirect reference
(using symbolic parameters) is
permitted only for T', K', and Nt
attributes. The value of the T'
attribute is always U (Undefined).

c. Attributes of SET variables defined
inside the macro-definition corres
ponding to the outer macro cannot
be referenced.

3. Direct reference to the attributes of
ordinary symbols <using the symbol
itself} is not permitted in macro
definitions.

4. For inner mac.ro-instructions, if the
operand is a symbolic parameter of an
outer macro, the attributes are the
same as those of the corresponding
outer macro-instruction (see item 2).

If a macro-instruction operand is a
sUblist, the programmer may refer to the
attributes of either the sublist or each
operand in the sublist. The type, length,
scaling, and integer attributes of a
sublist are the same as the corresponding
attributes of the first operand in the
sublist.

All the attributes of macro-instruction
operands may be referred to in conditional
assembly instructions within macro
definitions. However, only the type,
length, scaling, and integer attributes of
symbols may be referred to in conditional
assembly instructions outside macro
definitions. Attributes of symbols
appearing in the name entry of generated
statements may not be referred to in condi
tional assembly instructions inside or
outside macro definitions.

Type Attribute (T1)

The type attribute of a macro-instruction
operand or a symbol is a letter.

The programmer may refer to a type
attribute in the operand of a SETC instruc
tion, or in character relations in the
operands of SETB or AIF instruction, or in
other instructions where use of the charac
ter is valid.

The following letters are used for sym
bols that name DC and OS statements and for
outer macro-instruction operands that are
symbols that name DC or DS statements.

72

A

B
C
o

E

F

G

H

P
R

S

v

x
y

Z

A-type address constant,
implied length, aligned.
Binary constant.
Character constant.
Long floating-point constant,
implied length, aligned.
Short floating-point constant,
implied length, aligned.
Full-word fixed-point constant,
implied length, aligned.
Fixed-pOint constant, explicit
length.
Half-word fixed-point constant,
implied length, aligned.
Floating-point constant,
explicit length.
Packed decimal constant.
A-, S-, V-, or Y-type address
constant, explicit length.
S-type address constant,
implied length, aligned.
V-type address constant,
implied length, aligned.
Hexadecimal constant.
Y-type address constant,
implied length, aligned.
Zoned decimal constant.

The "following letters are used for sym
bols (and outer macro-instruction operands
that a re symbols) that name statements
other than DC or DS statements, or that
appear in the operand field of an EXTRN
statement.

I Machine instruction
J Control section name
M Macro-instruction
T External symbol
W CCW assembler instruction

The following letters are used for inner
and outer macro-instruction operands only.

N Self-defining term
o Omitted operand

The letter U (Undefined) is used for
inner and outer macro-instruction operands
that cannot be assigned any of the above
letters. The type attribute of all liter
als appearing as macro-instruction operands
is U. This also is true for inner macro
instruction operands that are ordinary
symbols or variable symbols. Because the
attributes are not available at the
necessary time, this letter is also
assigned to symbols that name EQU and LTORG
statements, to any symbols occurring more
than once in the bame entry of source
statements, and to all symbols naming DC
and DS statements with exp.ressions or vari
able symbols as modifiers. The type attri
bute also is undefined when the modifier
expression consists solely of self-defining
terms.

The attributes of A, B, C, and D in the
following examples are undefined:

A DC
B DC
C DC
D DC

3FLCA-B)'15'
(A-B)F'lS'
'X'l'
FL(3-2)'l'

Length (L'), Scaling (S'), and Integer (I')
Attributes

The length, scaling, and integer attributes
of macro-instruction operands and symbols
are numeric values.

The length attribute of a symbol (or of
a macro-instruction operand that is a
symbol) is as described in Part I of this
publication. Reference to the leng,th
attribute of a variable symbol is illegal
except for symbolic parameters in SETA,
SETB, and AIF statements. If the basic L'
attribute is desired, it can be obtained as
follows:

'A SETC 'z'
&B SETC • L' , •

MVC &A(&B&A),X
After generation, this would result in

MVC Z(L'Z),X

Reference must not be made to the length
attributes of symbols or macro-instruction
operands whose tYPE~ attributes are the
letters M, N, 0, T, or u.

Scaling and integer attributes a.re pro
vided for symbols that name fixed-point,
floating-point, and decimal DC or DS state
ments.

Fixed Point: The scaling attribute of a
fixed-point number is the number of bits
occupied by the fractional portion of the
fixed-point number. The integer attribute
of a fixed-point number is the number of
bits occupied by the integral portion of
the fixed-point number.

Floating Point: The scaling attribute of a
floating-point number is the number of
hexadecimal zeros in the leftmost portion
of the fraction. The integer attribute of
a floating-point number is thE~ number of
significant hexadecimal digits in the frac
tion.

Decimal -: The scaling attribut,e of a deci
mal number is the number of decimal digits
to the right of the decimal point. The
integer attribute of a decimal number is
the number of decimal digits to the left of
the decimal point.

Scaling and integer attributes are
available for symbols and macro-instruction
operands only if their type attributes are
H, F, and G (fixed point); D, E, and K
(floating point); or P and Z (decimal).

The programmer may refer to the length,
scaling, and integer attributes in the
operand field of a SETA instruction, or in
arithmetic relations in the operand fields
of SETB or AIF instructions.

count Attribute CK')

The programmer may refer to the count
attribute of macro-instruction operands
only.

The count attribute is a value equal to
the number of characters in the macro
instruction operand after substituting for
variable symbols, excluding commas. If the
operand is a sublist, the count attribute
includes the beginning and ending
parentheses and the commas within the sub
list. The count attribute of an omitted
operand is zero.

If a macro-instruction operand contains
variable symbols, the characters that
replace the variable symbols, rather than
the variable symbols, are used to determine
the count attribute.

The programmer may refer to the count
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF instruc
tions that are part of a macro-definition.

Number Attribute (N')

The programmer may refer to the number
attribute of macro-instruction operands
only.

The number attribute is a value equal to
the number of operands in an operand sub
list. The number of operands in an operand
sublist is equal to one plus the number of
commas that indicate the end of an operand
in the sublist.

The following examples illustrates this
rule.

(A, B, C, D, E) 5 operands
(A"C,D,E) 5 operands
(A,B,C,O) 4 operands
(, B,C,D,E) 5 operands
(A,B,C,D,) 5 operands
(A,B,C,D,,) 6 operands

Writing Conditional Assembly Instructions 73

If the macro-instruction operand is not
a sublist, the number attribute is one. If
the macro-instruction operand is omitted,
the number a ttribute is zero.

The programmer may refer to the number
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF instruc
tions that are part of a macro-definition.

Assigning Integer Attributes to Symbols

The integer attribute is computed from the
length and scaling attributes.

Fixed Point: The integer attribute of a
fixed-point number is equal to eight times
the length attribute of the nwnber minus
the scaling attribute minus one; i.e.,
I'=S*L'-S'-l.

Each of the following statements defines
a fixed-point field. The length attribute
of HALFCON is 2, the scaling attribute is
6, and the integer attribute is 9. The
length attribute of ONECON is 4, the scal
ing attribute is S, and the inteyer attri
bute is 23.

r---------T-----------T-------------------,
IName IOperation IOperand I
~---------+-----------+-------------------~
I HALF CON IDC IHS6'-25.93' I
IONECON I DC I FSS' 100. 3E-2' I l _________ ~ ___________ ~ ___________________ J

Floating Point: The integer attribute ot a
floating-point number is equal to two times
the difference between the length attribute
of the number and one, minus the scaling
attribute; i.e., I·=2*(L'-1)-S'.

Each of the following statements defines
d floating-point value.. The length attri
bute of SHORT is 4, the scaling attribute
is 2, and the integer attribute is 4. The
length attribute of LONG is 8, the scaling
attribute is 5, and the integer attribute
is 9.

r---·----T---------T---------------------,
I Name I Operation I Operand I
~-------+-----------+---------------------~
I SHORT IDC IES2'46.415' 1
I LONG I DC IDS 5' - 3. 729 • I l _______ ~ ___________ ~ _____________________ J

Decimal: The integer attribute of a packed
decimal number is equal to two times the
length attribute of the number minus the

74

scaling attribute minus one; i.e.,
I'=2*L'-S'-1. The integer attribute of a
zoned decin~l number is equal to the dif
ference between the length attribute and
the scaling attribute; i.e., I'=L'-S'.

Each of the following statements defines
a decimal field. The length attribute of
FIRST is 2, the scaling attribute is 2, and
the integer attribute is 1. The length
attribute of SECOND is 3, the scaling
attribute is 0, and the integer attribute
is 3. The length attribute of THIRD is 4,
the scaling attribute is 2, and the ~nteger
attribute is 2. The length attribute of
FOURTH is 3, the scaling attribute is 2,
and the integer attribute is 3.

r--------~----------T--------------------,
I Name I Operation I Operand I
~--------+-----------+--------------------~
I FIRST IDC IP'+1.25' ,
I SECOND IDC IZ'-543' I
ITHIRD IDC IZ'79.68' I
I FOURTH IDC IP'79.6S· I L ________ ~ __________ ~ ____________________ J

SEQUENCE SYMBOLS

The name entry of a statement may contain a
sequence symbol. Sequence symbols provide
the programmer with the abi Ii ty to vary thE~
sequence in which statements are processed
by the assembler.

A sequence symbol is used in the operand
entry of an AlE' or AGO statement to refer
to the statement named by the sequence
symbol.

A sequence ::>ymbol may be used in the
name entry of any statement that does not
contain a symbol or SET symool, except a
prototype statement, or a MACRO, LeLA,
LC LB, LCLC, GBLA, GBLB, GBLC, ACTR, ICTL,
ISEQ, COPY, or END instruction.

A sequence symbol consist::> of a period
followed by one through seven letters
and/or digits, the first of which must be a
letter.

The following are valid sequence sym
boIs:

• READER
• LOOP2
.. N

.A23456

.X4F2
• S4

The following are invalid sequence sym
hols:

CARDAREA (first character is not
a period)

.246B (first character af·ter
period is not a letter)

.AREA24S6 (more than seven characters
after period)

.BCD%B4 (contains a special character
other than initial period)

.IN AREA (contains a special
character, i .. e .. , blank,
other than initial period)

If a sequence symbol appears in the name
entry of a macro-instruction, and the cor
responding prototype statement contains a
symbolic parameter in the name entry, the
sequence symbol does not replace the sym
bolic parameter wherever it is used in the
macro-definition ..

The following example illustrates this
rule.

r---.... --T-------·----T------------------,
I Name I Operation JOperand I
.-------+-----------+-------------------f
J I MACRO I I

1 J'NAME I MOVE J&TO,&FHOM I
2 J&NAME 1ST 12,SAVEAREA I

1 IL 12,&FROM I
liST 12,&TO I
I I L 12,SAVEAREA I
I IM~D J I
.-------+-----------+-------------------~

3 I .SYM I MOV.E IFIELDA, FIELDB 1
.-------+-----------+-------------------f

4 1 I ST 12, SAVEAREA I
I IL 12, FIELDB J

liST 12,FIELDA 1
I IL 12,SAVEAREA I L _______ ~ ___________ ~ ___________________ J

The symbolic parameter &NAME is used in
the name entry of ·the prototype statement
(statement 1) and the first model statement
(statement 2). In the macro-instruction
(statement 3) a sequence symbol (.SYM)
corresponds to the symbolic parameter
&NAME. &NAME is not replaced by .. SYM, and,
therefore, the generated statement
(statement 4) does not contain a name
entry.

LCLA,LCLB,LCLC -- DEFINE SET SYMBOLS

The typical form of these instructions is:
r---------T---------T---------------------,
J Name I Operation I Operand I
• ---------+--------+--------------·-------f
lNot used, lLCLA, lOne or more va.riable t
Imust not I LCLB, or I symbols, that are I
Ibe I LCLC Ito be used as SET I
I present I I symbols, separated I
1 I Iby commas I L _________ ~ _________ i_ ____________________ J

The LCLA, LCLB, and LCLC instructions
are used to define and assign initial
values to SETA, SETB, and SETC symbols,
respectively. The SETA, SETB, and SETC
symbols are aSSigned the initial values of
0, 0, and null character value, respective
ly ..

The programmer should not define any SET
symbol whose first four characters are
&SYS.

All LCLA, LCLB, or LCLC instructions in
a macro-definition must appear immediately
after the prototype statement and all GBLA,
GBlB or GBLC instructions, or another LCLA,
LCLB, or LCLC instruction. All LCLA, LCLB,
or LCLC instructions outside macro
definitions must appear after all macro
definitions in the source program, after
all GBLA, GBLB, and GBLe instructions
outside macro-definitions, before all con
ditional asse~)ly instructions, and PUNCH
and REPRO statement~ outside macro
definitions, and before the first control
section of the program.

SETA -- SET AHITHMETIC

The SETA instruction may be used to assign
an arithmetic value to a SETA symbol. The
form of this instruction is:
r--------T----------~--------------------,
IName loperation I Operand I
~--------+-----------+--------------------~
IA SETA I SETA IA SETA arithmetic I
Isymbol I I expression I L ________ ~ __________ ~ ____________________ J

The expression in the operand entry is
evaluated as a signed 32-bit arithmetic
va lue which is aSSigned to the SETA symbol
in the name entry. The minimum and maximum
allowable values of the expression are -2 3 1-

and +2 31-1, respectively.

The expression may consist of one tenn
or an arithmetic combination of teems. The
terms that may be used alone or in
corobination with each other are self
defining terms, variable symbols, dnd the
length, scaling, integer, count, and number
attributes. Self-defining terms are
described in Part 1 of this publication.

No embedded blanks may appear in a SETA
arithmetic expression. If the expression
is enclosed in parentheses, blanks are not
permitted within the parentheses •

Note: A SETC variable symbol may appear
in a SETA expression only if the value of
the SETC variable is one to eight decimal
digits. The decimal digits will be con
verted to a positive arithmetic value.

Writing Conditional Assembly Instructions 7~

Note: A SETB symbol may appear in the
operand of a SETA statement. The binary
values of 1 (true) and 0 (false) are con
verted to the arithmetic values 1 and 0,
respectively.

The arithmetic operators that may be
used to combine the terms of an expression
are + (addition), - (subtraction),
• (multiplication), and / (division).

An expression may not contain two terms
or two operators in succession, nor may it
begin with an operator.

The following are valid operand fields
of SETA instructions:

&AREA+X·2D'
&BETA·l0
L' &HERE+32

I"&N/25
&EXIT-S'&ENTRY+l
29

The following are invalid operand fields
of SETA instructions:

&AREAX'C'
&FIELD+
-&DELTA·2
·+]2

NAME/15

(two terms in succession)
(two operators in succession)
(begins with an operator)
(begins with an operator;

two operators in succession)
(NAME is not a valid term)

EVALUATION OF ARITHMETIC EXPRESSIONS

The procedure used to evaluate the arith
metic expression in the operand of a SETA
instruction is the same as that used to
evaluate arithmetic expressions in assem
bler language statements. The only
difference between the two types of arith
metic expressions is the terms that are
allowed in each expression.

The following evaluation procedure is
used:

1. Each term is given its numerical
value.

2. The arithmetic operations are per
formed moving from left to riqht.
However, multiplication and/or divi
sion are performed before addition and
subtraction.

3. The computed result is the value
assigned to the SETA symbol in the
name entry.

The arithmetic expression in the operand
entry of a SETA instruction may contain one
or more sequences of arithmetically com-

76

binedterms that are enclosed in parenthe
ses. A sequence of parenthesized terms may
appear within another parenthesized
sequence.

The following are examples of SETA
instruction operands that contain parenthe
sized sequences of terms •

(L'&HERE+32)·29
&AREA+X'2D'/(&EXIT-S'&ENTRY+l)
&BETA*10·(I'&N/2S/(&EXIT-S'&ENTRY+l»

The parenthesized portion or portions of
an arithmetic expression are evaluated
before the rest of the terms in the expres
sion are evaluated. If a sequence of
parenthesized terms appears within another
pa.renthesized sequence, the innermost
sequence is evaluated first.

The SETA arithmetic expression can only
have three levels of parentheses. The
parenthf...3esrequired in subscripting,
subsrring, and sublist notation count when
determining these levels. A counter is
maintained for each SETA statement and
increased by one for each occurrence of a
variable symbol as well as the operation
entry. The maximum value this counter may
attain is 35. (See Appendix H).

Using SETA Symbols

The arithmetic value assigned to a SETA
symbol is substituted for the SETA symbol
when it is used in the operand of a SETA
instruction, or in arithmetic relations in
the operand of SETB and AIF instructions.
If the SETA symbol is used in any other
statement, the arithmetic value is com
pletely converted to an unsigned integer,
with leading zeros removed. If the value
is zero, it is converted to a single zero.

The following example illustrates this
rule:

r------T----------T------------'------,
I Name I Operation I operand I

~-------+-----------+-------------------~
MACRO I

&NAME MOVE I&TO,&FROM
LeLA I&A,&B,&C,&D

1 &A SETA 110
2 &B SETA 112
3 &C SETA I&A-&B
4 &0 SETA I&A+&C

&NAME ST 12,SAVEAREA
5 L)2,&FROM&C
6 ST 12, &TO&O

L 12,SAVEAREA
MEND I

~------+--------.---+-------------------~ I HERE I MOVE I FIELDA, FIELDS I
~------+-----------+ ------------.------~
IHERE 1ST 12,SAVEAREA I
I IL 12, FIELOB2 I
liST 12,FIELOA8 I
I I L 12, SAVEAREA I L _______ ..L ________ . ___ .1 ____________________ J

statements 1 and 2 assign to the SETA
symbols f.A and f.B the arithmetic values +10
and +12, respectively. Therefore, state
ment 3 assigns the SETA symbol f.C the
arithmetic value -2. When &C is used in
statemen~ 5, the arithmetic value -2 is
converted to the unsigned integer 2. When
&C is used in statement 4, however, the
arithmetic value -2 is used. Therefore, f.D
is assigned the arithmetic value +8. When
f.D is used in statement 6, the arithmetic
value +8 is converted to the unsigned inte
ger 8.

The following ex.ample shows how the
value assigned to a SETA symbol may be
changed in a macro-definition.

r-------T-----------T-------------------,
I Name IOperation I Operand I
t------+-----------+-------------------~
I I MACRO I I
I&NAME I MOVE I&TO&FROM I
I I LeLA I &A I

1 I&A I SETA 15 I
I&NAME 1ST 12, SAVE AREA I

2 I I L 12, &FROM&A I
3 I&A I SETA 18 I
4 I I ST I 2, & TO &A I

I I L 12,SAVEAREA I
I I MEND I I
~-----+--------,---+-------------------~
I HE RE I MOVE I FIELDA, FIELDB I
.-------+----------+-------------------~
I HERE 1ST 12, SAVEAREA I
I I L I 2, FIELDBS I
I 1ST 12,FIELDA8 I
I IL 12,SAVEAREA I l _______ ~ ____________ ..L ___________________ J

statement 1 assigns the arithmetic value
+5 to SETA symbol &A. In statement 2, &A
is converted to the unsigned intege.r 5.
Statement 3 assigns the arithmetic value +8
to &A. In statement 4, therefore, &A is
converted to the unsigned integer 8,
instead of 5.

A SETA symbol may be used with a symbol
ic parameter to refer to an operand in an
operand sublist. If a SETA symbol is used
for this purpose it must have been assigned
a value in the range 1 to 100.

Any expression that may be used in the
operand of a SETA instruction may be used
to refer to an operand in an operand sub
list.

Sublists are described in Section 8
under Operand Sublists.

The following macro-definition may be
used to add the last operand in an operand
sublist to the first operand in an operand
sublist and store the result at the first
operand. A sample macro-instruction and
generated statements follow the macro
definition.

r------T-----------T--------------------,
I Name lOperation IOperand 1

~-----+-----------+--------------------~
1 I MACRO I I

1 I I ADDX I &NUMBER, ® I
I I LCLA j&LAST I

2 I&LAST ISETA IN'&NUMBER I
I IL I®,&NUMBER(1) I

3 I I A I ®, &NUMBER (&LAST) I
liST I®,f.NUMBER(1) I
I IMEND I I
.------+-----------+--------------------~

4 1 IADDX I (A,B,C,D,E),3 1

~-----+-----------+--------------------~
I IL 13,A I
1 IA 13,E I
I I ST 13,A I l ______ ~ __________ _i ____________________ J

&NUMBER is the first symbolic parameter
in the operand entry of the prototype
statement (statement 1). The corresponding
characters, (A,B,C,q,E), of the macro
instruction (statement 4) are a sublist.
Statement 2 assigns to &LAST the arithmetic
value +5, which is equal to the number of
operands in the sublist. Therefore, in
statement 3, &NUMBER(&LAST) is replaced by
the fifth operand of the sublist.

wr itinq Condi·t,ional Assembly Instructions 77

SET C -- SET CHARACTER

The SETC instruction is used to assign a
character value to a SETC symbol. The form
of this instruction is:

r--------~-----------~------------------,
I Name I Operation I Operand 1

~--------+-----------+------------------~
I A SETC J SETC lOne operand, of I
I symbol I Ithe form described I
I I I below I L ________ .J. __________ .J. __________________ J

The operand may consist of the type
attribute, a character expression, a
substring notation, or a concatenation of
substring notations and character expres
sions. A SETA symbol may appear in the
operand of a SETC statement. The result is
the character representation of the decimal
value, unsigned, with leading zeros
removed. If the value is zero, one decimal
zero is used.

A SETB symbol may appear in the operand
of a SETC statement; the binary values 1
(true) and 0 (false) are converted to the
character values 1 and 0, respectively.

The maximum size character value that
can be assigned to a SETC symbol is eight
characters. If a SETC value longer than
eight characte.rs is specified as the oper
and of a SETC statement, the leftmost eight
characters are used.

TYPE ATTRIBUTE

The character value assigned to a SETC
symbol may be a type attribute. If the
type attribute is used, it must appear
alone in the operand field. The following
example assigns to the SETC symbol &TYPE
the letter that is the type attribute of
the macro-instruction operand that corre
sponds to the symbolic parameter &ABC.

r-------T-----------T---------------------,
I Name I operation I Operand I
~-------+-----------+---------------------~
I&TYPE ISETC IT'&ABC I L ______ ~ ___________ i _____________________ J

CHARACTER EXPRESSION

A character expression consists of any
combination of characters enclosed in apos
trophes. The maximum length of a character
expression is 127 characters.

78

The character value enclosed in apos
trophes in the operand field is assigned to
the SETC symbol in the name entry. The
maximum length character value that can be
assigned to a SETC symbol is eight charac
ters. If a value greater than 8 is speci
fied, the leftmost 8 characters will be
used.

EVALUATION OF CHARACTER EXPRESSIONS: The
following statement assigns the character
va lue A.B%4 to the SETC symbol &ALPHA:
r-------T-----------,. ------------------,
I Name I Operation I Operand I
~--------+-----------+--------------------~
I~ALPHA ISETC I WAB%4' I l _______ -.l. __________ ~ ____________________ J

More than one character expression may
be concatenated into a single character
expression by placing a period between the
terminating apostrophe of one character
expression and the opening apostrophe of
the next character expression. For exam
ple, either of the following statements may
be used to assign the character value
ABCDEF to the SErC symbol &BETA.

r------T-----------,----------------'----,
I Name I Operation I Operand I
~-------+-----------+---------------------~
I &BETA I SETC I' ABCDEF' I
I & BETA I SETC I ' ABC' • 'DEF' I l _______ .J. __________ ~ _____________________ J

Two apostrophes must be used to rep
resent a apostrophe that is part of a char
acter expression.

The following statement assigns the
character value L'SYMBOL to the SETC symbol
&LENGTH.

r---------T----------T-----------------,
I Name I Operation I Operand I
~------.---+-----------+--.----------------~
I &LENGTH I SETC I 'L' 'SYMBOL' I l ________ .J. ___________ i __________________ .J

Variable symbols may be concatenated
with other characters in the operand field
of a SETC instruction according to the
general rules for concatenating var:iable
symbols with other characters (see section
]) .

If &ALPHA has been assigned the charac
ter value AB%4, the fo~lowing statement may
be used to assign the character value
AB%4RST to the variable symbol &GAMMA.

r--------~-------·---T-------------·-------,

I Name I Operation I Operand I
~--------+-----------+-------------'------i
I&GAMMA ISETC I'&ALPHA.RST' I L ________ ~ ___________ ~ ____________________ J

r--------T-----------~------·------------,

I Name I Operation I Operand I
~--------+--------.--+-------------------~
I&DELTA ISETC I'&ALPHA'. 'RST' I L ________ ~ ________ • ___ .1. ____________________ J

Two ampersands must be used to represent
an ampersand that is not part of a variable
symbol. Both ampersands become part of the
character value assigned to the SETC sym
bol. They are not replaced by a single
~ersand.

The following statement assigns the
character value HALF&& to the SETC symbol
&AND.
r-------T-----------T---------------------,
I Name I Operation I Operand I
~-------+----------+--------.-------------~
I&AND ISETC I'HALF&&' I L _____ ~ ___________ .l. ________ . _____________ J

In this example,
r-------T-----------T---------------------,
) Name I Operation I Operand I
~-------+-----------+---------------------~
I&A ISETC 1'&&BETA'(2,S) I L _____ .l. ____________ .l. _____________________ J

'&&BETA'(2,S) produces &BETA which is
considered a character string, not a varia
ble symbol.

SUBSTRING NOTATION

The character value assigned to a SETC
symbol may be a substring character value.
Substring character values permit the pro
grammer to assign part of a character val ue
to a SETC symbol.

If the programmer wants to assign part
of a character value to a SETC symbol, he
must indicate to the assembler in the oper
and of a SETC instruction: (1) the charac
ter value itself, and (2) the part of the
character value he wants to assign to the
SETC symbol. The concatenation of (1) and
(2) in the operand of a SETC instruction is
called a substring notation. The character
value that is assigned to the SETC symbol
in the name entry is called a substring
character value.

Substring notation consists of a charac
ter expression, immediately followed by two
arithmetic expressions that are separated
from each other by a comma and are enclosed

in parentheses. These parentheses count
when determining the number of levels of
parentheses. The two arithmetic expres
siomi may be any expression that is allowed
in the operand of a SETA instruction.

The first expression indicates the first
character (in the character expression)
that is to be assigned to the SETC symbol
in the name entry. The second expression
indicates the number of consecutive charac
ters in the character expression (starting
with the character indicated by the first
expression) that are to be assigned to the
SETC symbol. If a substring specifies more
characters than a re in the character
string, the number of available characters
will be supplied.

The maximum size substring character
va 1 ue tha t can be assigned to a SE'TC symbol
is eight characters. The maximum size
character expression the substring charac
ter va lue can be chosen from is 127 charac
ters.

The following are valid substring nota
tions:

'&ALPHA'(2,S)
'AB%4' (&AREA+2, 1)
'&ALPHA'.'RST' (6,&A)
'&ALPHA'.'RST'(6,&A)
'ABC&GAMMA'(&A,&AREA+2)

The following are invalid substrinq
notations:

'&BETA' (4,6)
(blanks between character value

and arithmetic expressions)
, L ' , S Y tv1BO L' (14 2 - & X y Z)

(only one arithmetic expression)
'AB%4&ALPHA'(B &FIELD*2)

(arithmetic expressions
not separated by a comma)

'BETA'4,6
(arithmetic expressions

not enclosed in parentheses)
, & ALPHA' (2, 4) (1, 1)

(double substring notation is not
permitted)

CONCATENATING SUBSTRING NOTATIONS AND CHAR
ACTER EXPRESSIONS: Substring notations may
be concatenated with character expressions
in the operand of a SETC instruction. If a
substring notation follows a character
expression, the two may be concatenated by
placing a period between the terminating
apostrophe of the character expression and
the opening apostrophe of the substriny
notation.

For example, if &ALPHA has been assigned
the character value AB%4, and &BETA has

Writing Conditional Assembly Instructions 79

been assigned the character value ABCDEF,
then the following statement assigns 'GAMMA
the character value AB%4BCD.

r--------T----------T---------------------,
I Name IOperation loperand I
~--------+----------+---------------------~
I&GAMMA ISETC 1'&ALPHA'.f&BETA t (2,3)1 L ________ ~ __________ ~ _____________________ J

If a substring notation precedes a char
acter expression or another substring nota
tion, the two may be concatenated by writ
ing the opening apostrophe of the second
item immediately after the closing paren
thesis of the substring notation.

The programmer may optionally place a
period between the closing parenthesis of a
substring notation and the opening apos
trophe of the next item in the operand.

If &ALPHA has been assigned the charac
ter value AB%4, and &ABC has been assigned
the character value 5RS, either of the
following statements ruay be used to assign
&WORD the character value AB%45RS.

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------f
I&WORD ISETC I '&ALPHA 1 (1,4) "ABC' I
I SWORD I SETC I' &ALPHA' (1,4)' &ABC' (1,3) I L ______ ~ _________ ~ ________________________ J

If a SETC symbol is used in the operand
of a SETA instruction, the character value
assigned to the SETC symbol must be one to
eight decimal digits.

If a SETA symbol is used in the operand
of a SETC statement, the arithmetic value
is converted to an unsigned integer with
leading zeros removed. If the va.lue is
zero, it is converted to a single zero.

Using SETC Symbols

The character value assiqned to a SETC
symbol is substituted for the SETC symbol
when it is used in the naroe or operand of a
statement. It may also be substituted in
the name entry of statements other than
conditional assembly statements.

For example, consider the following
macro-definition, macro-instruction, and
generated statements.

80

r---------T-----------T-----------------,
I Name IOperation J Operand I
~--------+-----------+-----------------~
I I MACRO I I
I&NAME I MOVE I&TO,&FROM I
I I LCLC I &PREFIX I

1 I'PREFIX ISETC I 'FIELD' I
I&NAME 1ST 12,SAVEAREA I

2 1 IL 12,&PREFIX&FROM I
3 I J ST 12, &PREFIX&TO)

I I L 12,SAVEAREA I
I I MEND I I
~---------+-----------+-----------------~
I HERE. I MOVE 1 A,B I
~---------+-----------+-----------------~
I HERE 1ST 12,SAVEAREA I
I I L I 2 , FIELD B I
I 1ST 12,FIELDA J
I IL 12,SAVEAREA I L _________ ~ __________ ~ ________________ J

statement 1 assigns the character value
FIELD to the SETC symbol &PREFIX. In
statements 2 and 3, &PREFIX is replaced by
FIELD.

The following example shows how the
value assigned to a SETC symbol may be
changed in a macro-definition.

r---------T----------~-----------------,
IName I Operation IOperand I
.---------+-----------+-----------------~
I I MACRO I I
I &NAME I MOVE I tTO, &FROM I
I I LCLC I&PREFIX I

1 I&PREFIX ISETC I 'FIELD' I
I&NAME 1ST 12,SAVEAREA I

2 I IL 12,&PREFIX&FROM I
3 I&PREFIX ISETC I 'AREA' I
4 I 1ST 12, &PREFIX&TO I

I IL I 2, SAVE AREA I
I IMEND I I
~---------+-----------+-----------------~
IHERE I MOVE IA,B I
~---------+-----------+-----------------~
I HERE 1ST 12, SAVEAREA I
I IL 12,FIELDB I
I 1ST 12,AREAA I
I IL 12,SAVEAHEA I L ________ ~ __________ ~ _________________ J

Statement 1 assigns the character value
FIELD to the SETC symbol &PREFIX. There
fore, &PREFIX is replaced by FIELD in
statement 2. Statement 3 assigns the char
acter value AREA to &PHEFIX. Therefore,
&PREFIX is replaced by AREA, instead of
FIELD, in statement 4.

The following example illustrates the
use of a substring notation as the operand
field of a SETC instruction.

r---------T-----------T-----------------,
I Name I Operation I Operand I
t---------+-----------+-----------------~
I I MACRO I I
I&NAME I MOVE I&TO,&FROM I
I I LCLC I&PREFIX I

1 I&PREFIX ISETC I'&TO' (1,5) I
I&NAME 1ST 12,SAVEAREA I

2 I IL 12,&PREFIX&FROM I
liST 12 ,&TO I
I IL 12,SAVEAREA I
I I MEND I I
t---------+-----------t-----------------~
I HERE I MOVE IFIELDA,B I
t---------+-----------+-----------------~
I HERE 1ST 12,SAVEAREA I
I IL 12,FIELDB I
I 1ST 12, FIELDA I
1 IL 12,SAVEAREA 1 l _________ ~ ___________ ~ ___________ - _____ J

Statement 1 assigns the substring char
acter value FIELD (the first five chdrac
ters corresponding to symbolic parameter
&TO) to the SETC symbol &PREFIX. There
fore, FIELD replaces &PREFIX in statement
2.

SETS -- SET BINARY

The SETB instruction may be used to assign
the binary value 0 or 1 to a SETB symbol.
The form of this instruction is:

r--------T---------T----------------------,
I Name loperationlOperand I
.--------+---------+----------------------~
IA SETB ISETB IA 0 or a 1, (0) or (1),1
I symbol I lor a logicdl ex- I
I I I pression enclosed in I
I I I parentheses I l ________ ~ ________ ~ ______________________ J

The operand may contain a 0 or a 1 or a
logical expression enclosed in parentheses.
(No explicit boolean zeros or ones are
allowed in parentheses other than in the
form (0) or (1).) A logical expression is
evaluated to determine if it is true or
false; the S~TB symbol in the name entry is
then assigned the binary value 1 or 0 cor
responding to true or false, respectively.

Note: The parentheses enclosing a logi
cal expression do not count towards the
parenthesis level liroit.

A logical expression consists of one
term or a logical combination of terms.
The terms that may be used alone or in
combination with each other are arithmetic
relations, character relations, and SETB

symbols. The logical operators used to
combine the terms of an expression are AND,
OR, and NOT.

A logical expression may not contain two
terms in succession. A logical expression
may contain two operators in succession
only if the first operator is either AND or
OR and the second operator is NOT. A logi
cal expression may begin with the operator
NOT. It may not begin with the operators
AND or OR.

An arithmetic relation consists of two
arithmetic expressions connected by a rela
tional operator. A character relation
consists of two character strings connected
by a relational or€rator. The relational
operators are EO (equal), NE (not equal),
LT (less than), GT (greater than), LE (les::;
than or equal), and GE (greater than or
equal).

Any expression that may be used in th~
operand of a SETA instruction, may be usp~
as an arithmetic expression in the operand
of a SETB instruction. Anything that may
be used in the operand of a SETC instruc
tion, may be used as a character string in
the operand of a SETB instruction. This
includes substring and type attribute nota
tions. The maximum size of the character
values that can be compared is 127 charac
ters. If the two character values are of
unequal length, then the shorter one will
always compare less than the longer one,
regardless of the characters present.

The relational and logical operators
must be immediately preceded and followed
by at least one blank or other special
character. Each relation mayor may not .be
enclosed in parentheses. If a relation is
not. enclosed in parentheses, it must tJe
separated from the logical operators by at
least one blank or other special character.

A relation enclosed in parentheses must
not be separated from the parentheses by
any blanks.

The following rules apply to the use of
variable symbols in SETB operands:

1. If the first term starts with an apmi
trophe, it is a character relation.

2. If the first term starts with any chdr
acter other than an apostrophe, it is
an arithmetic relation.

3. It is illegal to compare a character
expression to a character self-defining
term. Character expressions are valid
in character relations. Self-defining
terms are valid in arithmetic rela
tions.

Writing Conditional Assembly Instructions 81

The following are valid operand fields
of SETB instructions:

1
(&AREA+2 GT 29)
C'AB%4' EQ "ALPHA')
(T"ABC NE T'&XYZ)
(T'&P12 EQ 'F')
(&AREA+2 GT 29 OR &B)
(NOT &B AND &AREA+X'2D' GT 29)
(, & c' EQ' MB')

The following are invalid operand fields
of SETB instructions:

&B (not enclosed in parentheses)

CT' &P12 EQ • F' &B)
(two terms in succession)

('A£%4' EQ 'ALPHA' NOT &B)
(the NOT operator must be

preceded by AND or OR)
(AND T' &P12 EQ 'F')

(expression begins with AND)

Evaluation of Logical Expressions

The following procedure is used to evaluate
a logical expression in the operand field
of a SETB instruction:

1. Each term <i.e., arithmetic relation,
cha'racter relation, or SETB symbol) is
evaluated and qiven its logical value
(true or false) •

2. The logical operations are performed
moving from left to right. However,
NOTs are performed before ANDs, and
ANDs are performed before ORs.

3. The computed result is the value
assigned to the SETB symbol in the
name field.

The logical expression in the operand of
a SETB instruction may contain one or more
sequences of logically combined te.rms that
are enclosed in parentheses. A sequence of
parenthesized terms may appear within
another parenthesized sequence.

The following are examples of SETB
instruction operands that contain parenthe
sized sequences of terms.

(NOTe&B AND &AHEA+X'2D' GT29»
(&B AND(T"P12 EQ'F'OR&B)

The parenthesized portion or portions of
a logical expression are evaluated before
the rest of the terms in the expression are
evaluated. If a sequence of parenthesized
terrr,s appears within another parenthesized
sequence, the innermost sequence is evalu
ated first ..

82

Logical expressions may have only three
levels of parentheses. Subscripting,
substring notation, and logical expression
nesting count when determining the level of
parentheses. The parentheses surrounding
the SETH operand do not count. A counter
is maintained for each statement and is
increased by one for each occurrence of a
variable symbol and an operation entry.
The maximum value this counter may attain
is 35. See Appendix H.

Using SETB Symbols

The logical value assigned to a SETB symbol
is used for the SETB symbol appearing in
the operand of an AIF instruction or anoth
er SETB instruction.

If a SETB symbol is used in the operand
of a SETA instruction, or in arithmetic
relations in the operands of AI F and SETB
instructions, the binary values 1 (true)
and 0 (false) are converted to the arith
metic values +1 and +0, respectively_

If a SETB symbol is used in the operand
of a SETC instruction, in character rela
tions in the operands of AIF and SETB
instructions, or in any other statement,
the binary values 1 (true) and 0 (false),
a.re converted to the character values 1 and
0, respectively.

The following example illustrates these
rules_ It is assumed that L'&TO EQ 4 is
true, and S' &TO EQ 0 is false.

r-------T-----------,------·-------------,
IName I Operation I Operand I
.-------+-----------+-------------------~

I MACRO I
&NAME I MOVE &TO,&FROM I

I LCLA 6A1 I
I LCLB &B1,&B2 I
I LCLC &Cl I

1 & B 1 I SETB (L' & TO E Q 4) I
2 &B2 ISETB (S'&TO EQ 0) I
3 &A1 I SETA &B1 I
4 &C1 ISETC '&B2~ I

JST 2,SAVEAREA J
IL 2,&FROM&Al I
1ST 2,&TO&C1 I
IL 2,SAVEAREA I
I MEND I

~-------+-----------+-------------------~
I HERE I MOVE I FIELDA, FIELDB I
~-------+-----------+-------------------~
I HERE 1ST 12,SAVEAREA I
I IL 12,FIELDBl I
liST 12,FIELDAO I
I IL 12,SAVEAREA I L ______ ~ ___________ ~ ___________________ J

Because the operand of statement 1 is
true, &B1 is assigned the binary value 1.
Therefore, the arithmetic value +1 is sub
stituted for &B1 in statement 3. Because
the operand of statement 2 is false, &B2 is
assigned the binary value o. Therefore,
the character value 0 is substituted for
&B2 in statement 4.

AIF -- CONDITIONAL BRANCH

The AIF instruction is used to alter condi
tionally the sequence in which source pro
graro statements are processed by the assem
bler. The typical form of this instruction
is:

r---------T---------T---------------------,
I Name IOperationlOperand I
~---------+-------.--+---------------------~
IA se- IAIF IA logical expression I
Iquence I lenclosed in paren- I
Isymbol orl Itheses, immediately I
I not used I I followed by a I
I I Isequence symbol I L ________ .L _________ .L _____________________ J

Any logical expression that reay be used
in the operand of a SETB instruction may be
used in the operand of an AIF instruction.
However, the forms

AIF (0), sequence symbol and
AIF (1), sequence symbol

are invalid. The sequence symbol in the
operand must immediately follow the closing
parenthesis of the logical expression. AIF
operand entries must not contain explicit
boolean zeros or ones.

Note: The parentheses enclosing the
logical expression do not count toward the
level limit.

The logical expression in the operand is
evaluated to determine if it is true or
false. If the expression is true, the
statement named by the sequence symbol in
the operand is the next statement processed
by the assembler; however, sequence check
ing is not affected. If the expression is
false, the next sequential statement is
processed by the assembler.

The statement named by the sequence
symbol may precede or follow the AlF
instruction.

If an AIF instruction is in a mdcro
definition, then the sequence symbol in the
operand must appear in the name entry of a
statement in the definition. If an AIF
instruction appears outside rnacro
definitions, then the sequence symbol in

the operand must appear in the name entry
of a statement outside macro-definitions.

The following are valid operands of AIF
instructions:

(&AREA+X'2D' GT 29).READER
(T'&P12 EQ 'F').THERE

The following are invalid operands of
AIF instructions:

(T'&ABC NE T'&XYZ)
.X4F2
(T'&ABC NE T'&XYZ)

(no sequence symbol)
(no logical expression)

• X4F2
(blanks between logical

expression and se
quence symbol)

The following macro-definition may be
used to generate the statements needed to
move a full-word fixed-point nwnber from
one storage are~ to another. The
statements will be generated only if the
type attribute of both storage areas is the
letter F.

r---·--T---------,.----------------------,
IName IOperationloperand I
t-----+---------+----------------------~
I I MACRO I I
I&N I MOVE I&T,&F I

1 I IAIF I (T'&T NE T'&F).END I
2 I IAIF I (T'&T NE 'F') .END I
3 I&N 1ST 12,SAVEAREA I

I IL 12,&F I
liST 12,&T I
I IL 12 I SAVEAREA I

4 I. EN DIM EN D 1 I L _____ .L _________ .L ______________________ J

The logical expression in the operand of
statement 1 has the value true if the type
attributes of the two macro-instruction
operands are not equal. If the type attri
butes are equal, the expression has the
logical value false.

Therefore, if the type attributes are
not equa 1, sta tement 4 (the statement named
by the sequence s~nbol .END) is the next
statement vrocessed by the assembler. If
the type attributes are equal, statement 2
(the next sequential statement) is proc-
essed.

The logical expression in the operand of
statement 2 has the value true if the type
attribute of the first macro-instruction
operand is not the letter F. If the type
attribute is the letter F, the expression
has the logical value false.

Therefore, if the type attribute is not
the letter F, statement 4 (the statement
naIred by the sequence symbol • END) is the

Writing Conditional Assembly Instructions 83

next statement processed by the assembler.
If the type attribute is the letter F,
statement 3 (the next sequential statement)
is processed.

AGO -- UNCONDITIONAL BRANCH

The AGO instruction is used to uncondi
tionally alter the sequence in which source
program statements are processed by the
assembler. The typical form of this
instruction is:

r----------T---------T--------------------,
I Name IOperationloperand I
~----------+---------+--------------------~
IA sequence I AGO IA sequence symbol I
Isymbol or I I I
Inot used \ I J L _________ ~ _________ ~ ____________________ J

The statement named by the sequence
symbol in the operand is the next statement
processed by the assembler.

The statement named by the sequence
symbol may precede or follow the AGO
instruction.

If an AGO instruction is part of a
macro-definition, then the sequence symbol
in the operand must appear in the name
entry of a statement that is in that defi
nition. If an AGO instruction appears
outside macro-definitions, then the .
sequence symbol in the operand must appear
in the name entry of a statement outside
macro-definitions.

The following example illustrates the
use of the AGO instruction.

r------T---------T----------------------,
I Name I Operation I Operand I
~------+---------+----------------------~
I I MACHO I I
I&NAME IMOVE I&T,&F I

1 \ IAIF I (T'&T EQ 'F').FIHST I
2 I I AGO I • END I
3 \.f'IRSTIAIF I (T'&T NE T'&P).END I

I&NAME 1ST 12,SAVEAREA I
I IL 12,&F I
liST 12,&T 1
I I L 12,SAVEAREA I

4 I.END IMEND I I l ______ ~ _________ ~ ______________________ J

statement 1 is used to determine if the
type attribute of the first macro
instruction operand is the 10tter F. If
the type attribute is the letter F,

84

statement 3 is the next statement processed
by the assembler. If the type attribute is
not the letter F, statement 2 is the next
statement processed by the assembler.

statement 2 is used to indicate to the
assembler that the next statement to be
processed is statement 4 (the statement
named by sequence symbol • END) •

ACTR -- CONDITIONAL ASSEMBLY LOOP COUNTER

The ACTR instruction is used to limit the
number of AGO and AlP branches executed
within a macro-definition or within the
main source program.

A separate ACTR sta tement may be used in
each macro-definition and in the main pro
gram. These counters are independent.

The form of this instruction is:

r----------T---·-------T-------------------,
IName IOperation IOperand I
~----------+----------+-------------------~
INot used I ACTR lA.ny valid SETA I
Imust not I lexpression I
Ibe present I I I l _________ ~ __________ ~ ___________________ J

This strltement must be the first execu
tatle statement in the macro definition or
the main portion of the program. There
fore, it must immediately follow any global
or local declarations, or, in their
absence, the macro prototype. This state
ment causes a counter to be set to the
value in its operand. Each time an AGO or
All" branch is executed, the counter is
decremented by one. If the count is zero
before decrement ing, the assemble.r takes
one of two actions:

1. If a macro definition is being proc
essed, the processing of it and any macros
above it in a nest is terminated, and the
next statement in the ma.in portion of t_he
program is processed.

2. If t.he main portion of the program is
being processed, conditional assembly is
t.ermina ted, and the portion of' the program
generated so far is assenbled.

If an ACTR statement :is not given, t.he
assumed value of the counter is 150.

ANOP -- ASSEMBLY NO OPERATION

The ANOP instruction facilitates condi
tional and unconditional branching to
statements named by symbols or variable
symbols.

The typical form of this instruction is:

r--------T---------~--------·------------,

\ Name I Operation \ Operand 1
~-------+-----------+--------.------------~
IA se- IANOP INot used, must not 1
Iquence 1 lbe present I
I symbol I I I L ______ J. _________ . __ J. ___________________ J

If the programmer wants to use an AIF or
AGO instruction to branch to another state
ment, he must place a sequence symbol in
the name entry of the statement to which he
wants to branch. However, if the program
mer has already entered a symbol or varia
ble symbol in t.he name entry of that state
ment, he cannot place a sequence symbol in
the name entry. Instead, the programmer
must place an ANOP instruction before the
statement and then branch to the ANOP
instruction. This has the same effect as
branching to the statement immediately
after the ANOP instruction.

The following example illustrates the
use of the ANOP instruction.

r-------T----------~-------------------,
1 Name IOperation IOperand I
~-------+----------+--------------------~
1 I MACRO 1 I
I&NAME 1 MOVE I&T,&F 1
I ILCLC I&TYPE I

1 I IAIF \ (T' &T EQ 'F') .. F'TYPE 1
2 I&TYPE ISETC I'E' \
3 I.FTYPE IANOP \ 1
4 I&NAME IST&TYPE 12,SAVEAREA 1

I I L&TYPE 12, & F I
I I ST&TYPE 12, &T I
I I L&TYPE \2,SAVEAHEA I
I I MEND I I L _______ J. __________ J. ____________________ J

Statement 1 is used to determine if the
type attribute of the first macro
instruction operand is the letter F. If
the type attribute is not the letter F,
statement 2 is the next stdtement processed
by the assembler. If the type attribute i~
the letter F, statement 4 should be
processed next. However, since there is a
variable symbol (&NAME) in the name field
of statement 4, the required sequence ~ym
bol (.FTYPE) cannot be placed in the name
field. Therefore, an ANOP instruction
(statement 3) must be placed before state
ment 4.

Then, if the type attribute of the first
operand is the letter F, the next statement
processed by the assembler is the sta tement
named by sequence symbol .FTYPE. The valnp
of &TYPE retains its initial null character
value because the SETC instruction is not
process ed. Since. FTYPE names an ANOP
instruction, the next statement p.rocessed
by the assembler is statement 4, the state
ment following the ANOP instruction.

Writing Conditional Assembly Instructions 85

CONDITIONAL ASSEMBLY ELEMENTS

The following chart summarizes the elements
that can be used in each conditiondl assem
bly instruction. Each row in this chart
indicates which elements can be used in a
single conditional assembly instruction.
Each column is used to indicate the condi
tional assembly instructions in which a
particular element can be used.

The intersection of a column and a row
indicates whether an element can be uBed in
an instruction, and if so, in what fields
of the instruction the element can be used.
For example. the intersection of the first
row and the first column of the chart indi
cates that symbolic parameters can be used
in the operand field of SETA instructions.

86

r---------------------·------T----------------------------r------,
1 Variable Symbols I 1 I
1------------------·------1 Attributes I I
1 1 SET Symbols I I I
I r--------------·------t----------------------------t------~
I s. P. I SE~rA I SETB I SETC I T' I L' I S' J I' I K' I N' I S. S. I

r-------t------T------T------T------t----T----T----T----T----T----t------~
I I I I I I I I I I I I I
I SETA I 0 I N,O I 0 I 0 3 I 1 0 I 0 I 0 J 0 I 0 I I
I I I I I I I I J I I I I
~-------+------t------t------t------t----t----t----+----+----t----t------~
I I I I I I I I I I I I I
I SETB I 0 I 0 I N,O I 0 I O~ I 0 2 I 0 2 I 0 2 I 0 2 I 0 2 I I
I I I I I I I I I I I I I
~-------t------+-----t------+·------+---+----t----+----+----+----+------~
I I I I I I I I I I I I I
I SETC I 0 I 0 I 0 I N,O I 0 I I I I I I I
I I I I I I I I I I I I I
~-------t------+------t------+·------t----t---t----t----t----t----+------~
I I I I I I I I I I I I I
I AlF I 0 I 0 1 0 I 0 I O~ I 0 2 J 0 2 I 0 2 I 0 2 I 0 2 I N,O I

I I I I I I I I I I I I I
t-------+------+---·---t------+------·t----t----t---·-t----t----+----+------~
I I I I I I I I I I I I I
I AGO I I I I I I I I I I IN, 0 I
I I I I I I I I I I I I I
~-------+------t------t------+------t----t__--+----+----t----+----+------~
I I I I I I I I I I I I I
I ANOP I I I I I I I I I I I N I
t-------t------t------+------t------·t----t---t----+----+----+----t------~
I ACTR I 0 I 0 I 0 I 0 3 I I 0 I 0 I 0 I 0 I 0 I I
I I I I I I I I I I I I I
L ______ ~ ______ ~_~----~-----~------~----~----~---~----~---_L ____ L-_____ J

~ qnly in character relations
;a Only in arit.hmetic relations
3 Only if one to eight decimal digits

Abbreviations

I
I
I
I
I
I
I

N is Name L' is Length Attribute K' is Count Attribute I
o is Operand s~ is Scaling Attribute N' is Number Attribute I
S. P. is Symbolic I' is Integer l\ttribute S. S. is Sequence Symbol I

I Parameter I 1 __ ...; ________________ J

Additional Features 87

SECTION 10: ADDITIONAL FEATURES

The additional features of the assembler
language allow the proqranuner to:

14 Terminate processing of a rnacro-
definition.

2. Generate error rressages.
3. Define global SET symbols.
4. Define subscripted SET symbols.
5. Use system variable symbols.
6. Prepare keyword and mixed-mode macro

definitions and write keyword and
mixed-mode macro-instructions.

ME~IT. -- MACRO-DEFINITION EXIT

The MEXIT instruction is used to indicate
to the assembler that it should terminate
processing of a macro-definition. The
typical form of this instruction is:

r------------T-----------T----------------,
I Name IOperation IOperand I
t------------+-----------+----------------f
I A sequence IMEXIT I Not used, I
Isymbol or I Imust not be I
I not used I I present I l ____________ i ___________ i ________________ J

The MEXIT instruction may only be used
in a macro-definition.

If the assembler processes an MEXIT
instruction that is in a mncro-definition
corresponding to an outer macro
instruction, the next statement processed
by the assembler is the next statement
outside macro-definitions.

If the assembler processes an MEXIT
instruction that is in a macro-definition
corresponding to a second or third level
Inacro-instruction, the next statement proc
essed by the assembler is the next state
ment after the second or third level macro
instruction in the macro-definition,
respectively.

MEXIT should not be confused with MEND.
MEND indicates the end of a macro
definition.. MEND must be the last
statement of every macro-definition,
including those that contain one or more
MEXIT instructions.

The following example illustrates the
use of the MEXIT instruction.

88

r------T-----------T-----'--------------,
I Name I Operation loperand I
t-------+-----------+-------------------~
I I MACRO I I
I&NAME I MOVE I&T,&F I

1 I I AlF I (T' &T EQ 'F' >. OK I
2 I I MEXIT I I
] I· OK I ANOP I I

I &NAME I S'I' I 2, SAVEAREA I
I IL 12,&F I
I 1ST 12, &T I
I IL 12,SAVEAREA I
I I MEND J I l _______ J. ___________ .1. ____________________ J

statement 1 is used to determine if the
type attribute of the first macro
instruction operand is the letter F. If
the type attribute is the letter F, the
assembler processes the remainder of the
macro-definition starting with statement 3.
If the type attribute is not the letter F,
the next statement processed by the
assembler is statement 2. statement 2
indicates to the assembler that it is to
terminate processing of the macro
definition.

The MNOTE instruction may be used to
qenerate a message and to indicate what
error severity code, if any, is to be asso
ciated with the message. The typical form
of this instruction is:

r·---------T --------~ --------------------,
I Name loperationlOperand I
~----------+---------+--------------------~
IA sequencelMNOTE IThe severity code I
I symbol or I I indicator or blank, I
I not used I I followed by a commd, I
I I I followed by a I
I I Imessage consisting I
I I lof any combination I
I I I of characters I
I I I enclosed in I
I I I apostrophes I l __________ i-________ i ____________________ J

The operand entry of the MNOTE
assembler-instruction may be written in one
of the following forms:

1. severity-code, 'message'
2 • , , me s sa 9 e '
3. 'message t

For 2 and 3 above, the severity code is
assumed to be zero.

The MNOTE instruction may only be used
in a macro-definition. Variable symbols
may be used to generate the MNOTE mnemonic
operation code, the severity code
indicator, and the message.

The resulting severity code indicator
may be a decimal integer 0 to 255, a blank,
or an asterisk. The integers indicate the
severity of the error. (0 is the least
severe; 255 is the most severe). If the
severity code indicator is blank or omit
ted, 1 is assumed. If the severity code is
an asterisk, the MNOTE is not considered an
error message, and the message is consid
ered a comment. Messages can be generated
with substitution using variable symbols.

The MNOTE statement appears in the list
ing with a statement number at the point
where it was generated. If the severity
code indicator was an integer or a blank,
this statement number is placed in a list
of statement numbers of tJINOTE and other
error statements near the end of the assem
bly listing. If the severity code is an
asterisk, the statement number is not
placed in this list.

Since the message portion of the MNOTE
operand is enclosed in apostrophes, two
apostrophes must be used to represent a
single apostrophe. Any variable symbols
used in the message operand are replaced by
values assigned to them. Two ampersands
must be used to represent a single amper
sand that is not part of d variable symbol.

The following example illustrates the
use of the MNOTE instruction.

r----T---------T----------------------,
IName I operation I operand I
~-----+---------+----------------------~
I I MACRO I I
I&NAMEIMOVE I&T,&F I

1 I IAIF I (T'&T NE T'&F).Ml I
2 I I AI F I (T' &T NE • I:-' t) • M2 I
3 I & NAME 1ST 12,f>AVEAREA I

I IL 12,&F I
liST 12,&T I
I I L 12, SAVEAREA I

4 I I MNOTE 1* , • MOVE GENEHATED' I
I I MEXI'l' I I

5 I.Ml IMNOTE 18, 'TYPE NOT SAME' I
\ \MEXIT I I

6 I.M2 IMNOTE 18,'TYPE NOT F' I
I I MEND I I L _____ .1. ________ .~~ _____________________ J

Stat~ment 1 is used to determine if the
type attributes of both macro-instruction

operands are the same. If they are, state
ment 2 is the next statement processed by
the assembler. If they are not, statement
5 is the next statement proceBsed by the
assembler. Statement 5 causes an error
message -- a,TYPE NOT SAME -- to be printed
in the source program listing.

Statement 2 is used to determine if the
type attribute of the first macro
instruction operand is the letter k'. If
the type attribute is the letter F,
statement 3 is the next statement processed
by the assembler. If the attribute is not
the letter F, statement 6 is the next
statement processed by the assembler.
Statement 6 causes an error message -
a,TYPE NOT F -- to be printed in the source
program listing. Statement 4 is an MNOTE
which is not treated as an error message.

GLOBAL AND LOCAL VARIABLE SYMBOLS

The following are local variable symbols:

1. Symbolic parameters.
2. Local SET symbols.
3. System variable symbols.

Global SET symbols are the only global
variable symbols.

The GBLA, GBLB, and GBLC instructions
define global SE.'T symbols, just as the
LCLA, LCLB, and LCLC instructions define
the SET symbols described in Section 9.
Hereinafter, SET symbols defined by LeLA,
LCLB, and LCLC instructions 'will be called
local SET symbols.

Global SE'l' symbols may communicate
values between statements in one or more
macro-definitions and statell'ents outside
macro-definitions. However, local SET
symbols communicate values between state
ments in the same macro-definition, or
between statements outside macro
definitions.

If a local SET symbol is defined in two
or more macro-definitions, or in a cnac.ro
definition and outside macro-definitions~
the SET symbol is considered to be a
different SET symbol in each catie. HowC'v
er, a global SET symbol is the same SET
symbol each place it is defined.

A SET symbol must be defined as a global
SET symbol in each macro-definition in
which it is to be used as a global SET
symbol. A SET symbol must be defined as a
global SET symbol outside macro
definitions, if it is to be used as a glo
bal SET symbol outside macro-definitions.

Additional Features 89

If the same SET symbol is defined as a
g loba 1 SET symbol in one or mo·re places,
and as a local SET symbol elsewhere, it is
considered the same symbol wherever it is
defined as a global SET symbol, and a dif
ferent symbol wherever it is defined as a
local SET symbol.

Defining Local and Global GET Symbols

Local SET symbol~ are defined when they
appear in the operand entry of an LCLA,
LCLB, or LCLC instruction. These instruc
tions are discussed in section 9 under
Defining SET Symbols.

Global SET symbols are defined when they
appear in the operand entry of a GBLA,
GBLE, or GBLC instruction. The typical
forms of these instructions are:

r-----------T-----------T-----------------,
I Name I operation I Operand I
~-----------t-----------t-----------------~
INot used, I GBLA, lOne or more I
Imust not I GBLS, or I variable I
I be present I GBLe I symbols that I
I I I are to be used I
I I I as global SET I
I I I symbolS, sepa- I
I I I rated by commas I L ___________ ~ ___________ ..L _________________ J

The GBLA, GELB, and GBLC instructions
define global SETA, SETB, and SETC symbols,
respectively, and assign the same initial
values as the corresponding types of local
SET symbols. However, a glol~l SET symbol
is assigned an initial value by only the
first GBLA, GBLB, or GBLC instruction proc
essed in which the symbol appears. Subse
quent GBLA, GBLS, or GBLC instructions
processed by the assembler do not affect
the value assigned to the SET symbol.

The programmer should not define any
global SET s~nbols whose first four charac
ters are &SYS.

If a GBLA, GBLB, or GBLC instruction is
part of a macro-definition, it must immedi
ately follow the prototype statement, or
another GBLA, GBLB, or GBLC instruction.
GBLA, GBLB, and GBle instructions outside
macro-definitions must appear after all
macro-definition~ in the source program,
before all conditional assembly instruc
tions and PUNCH dnd REPRO statements out
side macro-definitions, and before the
first control section of the progrdm.

All GBLA, GBLB, and GBLC instructions in
a macro-definition must appear before all
LCLA, LCLB, and LCLC instructions in that

90

macro-definition. All GBLA, GBLB, and GBLC
instructions outside macro-definitions must
appear before all LCLA, LCLB, and LCLC
instructions outside macro-definitions.

Using Global dnd Local SET Symbols

The followinq examples illustrate the use
of global and local SET symbols. Each
example consists of two parts. The first
part is an assembler language source pro
gram. The second part shows the statements
that would be generated by the assembler
after it processed the statements in the
source program.

Example 1: This example illustrates how
the same SErr symbol can be used to communi
cate (l) values between statements in the
same macro-definitions, and (2) different
va lues between statements outside macro
definitions.

r-------T-----------T-------------------,
IName IOperation I operand I
~-------t-----------+-------------------~
I I MACRO I
I&NAME I LOADA I

1 I I LCLA &A I
2 I&NAME ILR 15,&A I
3 J&A I SETA &A+l I

I IMEND I
I I J

4 I I LCLA &A I
IFIRST I LOADA I

5 I I LH 15, &A I
I I LOAD A I

6 I JLR 15,&A I
I lEND FIRST I
~-------+-----------+-------------------~
IFIRST ILR 115,0 I
I I LR 115,0 I
I I LR 115, a I
I I LR 115,0 I
I lEND I FIRST 1 L ______ ~ _____ . ______ ~ __________________ J

&A is defined as a local SETA symbol in
a macro-definition (statement 1) and
outside macro-definitions (statement 4).
&A is used twice within macro-definition
(statements 2 and 3) and twice outside
macro-definit.ions (statements 5 and 6).

Since &A is a local SETA symbol in the
macro-definition and outside macro
definitions, it is one SETA symbol in the
macro-definition, and another SETA symbol
outside macro-definitions. Therefore,
statement 3 (which is in the
macro-definition) does not affect the value
used for &A in stat.ements 5 and 6 (which
are outside macro-definitions).

Example 2: This example illustrates how a
SET symbol can be used to communicate
values between statements that are part of
a macro-definition and statements outside
macro-definitions.

r------~---------T------------·------,

I Name I Operation I Operand I
~-------+---------+------------.-----~
J I MACRO I I
I&NAME I LOADA I I

1 I IGBLA I &A I
2 I &NAME I LR 115, &A I
3 I&A I SETA I&A+l I

I I MEND I I
I 1 I I

4 I IGBLA I&A I
I FIRST I LOADA I I

5 1 I LR 115 , & A I
I I LOADA I I

6 I ILR 115,&A I
I lEND I FIRST I
~-------+-----------+-------------------~
I FIRST ILR 115,0 I
I ILR 115,1 I
I ILR 115,1 I
I ILR 115,2 I
I lEND I FIRST 1 L ______ ..L __________ ..L ___________________ J

&A is defined as a global SETA symbol in
a macro-definition (statement. 1) and out
side macro-definitions (statement L~). &A
is used twice within the macro-definition
(stat~ments 2 and 3) and twic:e outside
macro-definitions (statements 5 and 6).

Since &A is a global SETA symbol in the
macro-definition and outside macro
definitions, it is the same SErA symbol in
both cases. Therefore, statement 3 (which
is in the macro-definition) affect~i the
value used for &A in statements 5 and 6
(which are outside macro-definitions).

Example 3: This example illustrates how
the same SET symbol can be used to
communicate: (1) values between statements
in one macro-definition, and (2) different
values between statements in a different
macro-definition.

&A is defined as a local SETA symbol in
two different macro-definitions (s1t.atements
1 and 4). &A is used twice within each
macro-definition (statements 2,3,5 and 6).

Since &A is a local SETA symbol in each
macro-definition, it is one SE'rA symbol in
one macro-definition, and another SETA
symbol in the other macro-definition.
Therefore, statement 3 (which is in one
macro-definition) does not affect 'the value
used for &A in sta tement 5 (which is in the
other macro-definition). Similarly, state
ment 6 does not affect the value used for
&A in statement 2.

r-------T----------~-------------------,

tName I Operation I Operand I
.-------+-----------+-------------------~
I I MACRO I I
I&NAME I LOADA I I

1 I I LCLA I &A I
2 I&NAME ILR 115,&A I
3 I&A I SETA I&A+1 I

I 1 MEND I I
I I I I
I I MACRO I I
I I LOADB I ,

4 I I LCLA I &A I
5 I ILR 115,&A I
6 I&A I SETA I&A+1 I

1 I MEND 1 I
I I 1 I
I FIRST I LOADA I I
I I LOADB I I
I I LOADA 1 I
I I LOADB I I
I lEND I FIHST I
.-------+-----------+-------------------~
IFIRST ILR \15,0 I
I ILR 115,0 I
I ILR 115,0 I
I ILR 115,0 I
I lEND IFIRST I L-______ ..L __________ -..L ___________________ J

Example 4: This example illust.rates how a
SET symbol can be ~sed to communicate
values between statements that are part of
two different macro-definitions.

r-------T-----------T-------------------l
I Name I Operation I Operand I
.-------+-----------+-------------------~
I I MACRO I I
I&NAME I LOADA I I

1 I I GBLA I &A I
2 I & NAME ILR 115 , & A I
3 I&A 1 SETA I&A+1 I

I I MEND I I
I I I I
I I MACRO I I
I I LOADB I I

4 1 1 GBLA I &A I
5 I ILR 115,&A I
6 I&A I SETA \&A+l I

1 I MEND I I
I I I I
I FIRST I LOAD A I I
I I LOADB I I
1 I LOAD.A I I
I I LOADB I I
1 lEND \FIRST I

.-------+-----------+-------------------~
I FIRST I LR 115, a I
I ILR 115,1 I
I I LR 115,2 I
I I LR 115,3 I
I lEND IFIRST I L _______ ..L ___________ ..L ___________________ J

Additional Features 91

&A is defined as a global SETA symbol in
two different macro-definitions (statements
1 and 4). &A is used twice within each
macro-definition (statements 2,3,5, and 6).

Since &A is a global SETA symbol in each
macro-definition, it is the same SETA sym
bol in each macro-definition. Therefore,
statement 3 <which is in one
macro-definition) affects the value used
for &A in statement 5 (which is in the
other macro-definition). Similarly, state
ment 6 affects the value used for &A in
statement 2.

Example 5: This example illustrates how
the same SET symbol can be used to communi
cate: (1) values between statements in two
different macro-definitions, and (2) dif
ferent values between statements outside
macro-definitions.

r-------T-----------T-------------------,
I Name I Operation I Operand I
~-------+-----------+-------------------~

I MACRO I
&NAME I LOAD A I

1 IGBLA &A
2 &NAME ILR 15,&A
3 &A I SETA &A+1

I MEND
I
I MACRO
I LOADB

4 GBLA &A
5 LR 15,&A
6 &A SETA &A+1

MEND

7 LCLA &A
FIRST LOADA

LOADB
8 LR 15,&A

LOADA
LOADB

9 LR 15,&A I
END FIRST I

~-------+-----------+-------------------~
I FIRST ILR 115,0 I
I ILR 115,1 I
I ILR 115,0 I
I I LH 115,2 I
I I LH 115,3 I
I I LR 115,0 J
I lEND I FIRST I l _______ i ___________ ~ ___________________ J

&A is defined as a global SETA symbol in
two different macro-definitions (statements
1 and 4), but it is defined as a local SETA
symbol outside IPacro-definitions (statement
7). &A is used twice within each macro
definition and twice outside macro
definitions (statements 2,3,5,6,8, and 9).

92

Since &A is a global SETA symbol in each
macro-definition, it is the same SETA
symbol in each macro-definition. However,
since &A is a local SETA symbol outzide
macro-definitions, it is a different SETA
symbol outside macro-definitions.

Therefore, statement 3 (which is in one
macro-definition) affects the value u~ed
fnr &A in statement 5 (which is in the
other macro-definition), but it does not
affect the value used for &A in statement!:>
8 and 9 (which are outside
macro-definitions). Similarly, statement 6
affects the value used for &A in statement
2, but it does not affect the value used
for &A in statements 8 and 9.

subscripted SET Symbols

Both global and local SET symbols may be
defined dS subscripted SET symbols. The
local SET symbols defined in section 9 wer(~
all nonsubscripted SET symbols.

subscripted SET symbols provide the
programmer with a convenient way to use one
SET symbol plus a subscript to refer to
many ari thmetic, binary, or chardcter
values.

A subscripted SET symbol consists of a
SET symbol immediately followed by a sub
script that is enclosed in parentheses.
The subscript may be any arithmetic expres
sion that is allowed in the operand of a
SETA statement in the range of 1 to the
specified dimension.

Only three levels of parentheses are
permitted in a SETA or Sl!."'TB operand.

The following are valid subscripted. SET
symbols.

&READER(17)
&A23456(&S4)
&X4F2(25+&A2)

The following are invalid subscripted
SET symbols.

&X4F2
(2S)
&X4F2 (25)

(no subscript)
(no SET symbol)
(subscript does not

immediately follow
SET symbol)

Defining Subscripted SET Symbols: If the
programmer wants to use a subscripted SET
symbol, he must write in a GBLA, GHLB,
GBLC, LCLA, LCLB, or LCLC instruction, a
SET symbol immediately followed by an
unsigned decimal integer enclosed in paren
theses. The decimal integer, called a

dimension, indicates the number of SET
variables associated with the SET syrmbol.
Every variable associated with a SET symbol
is assigned an initial value that is the
same as the initial value assigned to the
corresponding type of nonsubcripted SET
symbol.

If a subs cri pted SET symbol in def ined
as global, the same dimension must be used
with the SET symbol each time it is defined
as global.

The maximum dimension that can be used
with a SETA, SETB, or SETC symbol is 255.

A subscripted SE'r symbol may be used
only if the declaration was subscripted. A
nonsubscripted SET symbol may be used only
if the declaration had no subscript.

The following statements define the
global SET symbols &SBOX, &WBOX, and &PSW,
and the local SET symbol &TSW. &SBOX has
50 arithmetic variables associated with it,
&WBOX has 20 character variables, &r.3W and
&TSW each have 230 binary variables.

r------T-----------T----------------------,
I Name I Operation I Operand I
~------+-----------+----------------------~
I IGBLA l&SBOX(SO) I
I 1GB LC I & WBOX (20) I
I IGBLB)&PSW(230) I
I I LCLB I&TSW(230) I L ______ ~ __________ J. ______________________ J

Using Subscripted SET Symbols: After the
programmer has associated a number of SET
variables wi th a SET symbol, he may assign
values to each of the variables and use
them in other statements.

If the statements in the previous exam
ple were part of a macro-definition, (and
&A was defined as a SETA symbol in the same
definition), the following statements could
be part of the same macro-definition.

r----------T----------T-----------------,
I Name IOperation IOperand I
~----------+----------+-----------------~

1 I&A I SETA 15 I
2 I &PSW (&A) I SETB 1 (6 LT 2) I
3 I &TSW(9) ISETB I (&PSW(&A» I
4 I IA 12,=F'&SBOX(4S)' I
5 I leLI lAREA,C'&WBOX(17) , I l __________ i __________ i _________________ J

Statement 1 assigns the arithmetic value
5 to the nonsubscripted SETA symbol f.A.
statements 2 and 3 then assign the binary
value 0 to subscripted SETB symbols &PSW(5)

and &TSW(9), respectively. statements 4
and 5 generate statements that add the
value assigned to &SBOX(45)to general
register 2, and compare the value assigned
to &WBOX(17) to the value stored at AREA,
respectively.

SYSTEM VARIABLE SYMBOLS

System variable symbols are local variable
symbols that are assigned values automat
ically by the assembler. There are three
system variable symbols: &SYSNDX, &SYSECT,
and &SYSLIST. System variable symbols ma.y
.be used in the name, operation and operand
entries of statements in macro-definitions,
but not in statements outside macro
definitions. They may not be defined as
symbolicparallleters or SET symbols, nor may
they be ass~gned values by SETA, SETB, and
SETC instructions.

&SYSNDX -- Macro-Instruction Index

The system variable symbol &SYSNDX may be
combined with other characters to credte
unique names for statements generated from
the same model statement.

&SYSNDX is assigned the four-digit
number 0001 for the first macro-instruction
processed by the assembler, and it is
incremented by one for each subsequent
inner and outer macro-instruction proc
essed.

If &SYSNDX is used in a model statement,
SETC or MNOTE instruction, or a character
relation in a SETB or AlP instruction, the
value substitut.ed for &SYSNDX is the four
digit number of the macro-instruction being
processed, including leading zeros.

If &SYSNDX appears in arithmetic
expressions (e.g., in the operand of a SETA
instruction), the value used for &SYSNDX is
an arithmetic value.

Throughout one use of a macro defini
tion, the value of &SYSNDX way be consid
ered a constant, independent of any inner
macro-instruction in that definition.

The example in the next column illus
trates these rules. It is assumed that the
first macro-instruction processed, OUTER 1,
is the 106th {Mcro-instruction processed by
the ass embler •

Additional Features 93

Statement 7 is the 106th macro
instruction processed. Therefore, &SYSNDX
is assigned the number 0106 for that macro
instruction. The number 0106 is
substituted for &SYSNDX when it is used in
statements 4 and 6. statement 4 is used to
assign the character value 0106 to the SETC
symbol &NDXNUM. statement 6 is used to
create the unique name B0106.

r----------T-----------T----------------,
I Name I Operation I Operand I
~----------+-----------+----------------~

MACRO I
INNER1 I
GBLe I&NDXNUM

1 A&SYSNDX SR 12,5
CR I 2, 5

2 BE IB&NDXNUM
3 B IA&SYSNDX

MEND I
I

MACRO I
&NA~£ OUTER1 I

GBLC I&NDXNUM
4 &NDXNUM SETC 1'&SYSNDX a

&NAME ISR 12,4
I AR 12,6

5 I INNER1 I
6 B&SYSNDX IS 12,=F'1000'

I MEND I
~----------+-----------+----------------~

7 IALPHA IOUTER1 I I
8 I BETA IOUTER1 I I

~----------+-----------+----------------~
I ALPHA SR 2,4 I
1 AR 2,6 I
IA0107 SR 2,5 I
I CR 2,5 I
1 BE B0106 1
I B A0107 I
I BO 10 6 S 2, = F ' 1 000 ' I
I BETA SR 2,4 I
I AR 2,6 I
IA0109 SR 2,5 I
I CR 2,5 I
t BE B0108 I
I B A0109 I
IB0108 S 2,=F'1000' 1 L __________ ~ ___________ ~ ________________ J

Statement 5 is the 107th macro
instruction processed. Therefore, &SYSNDX
is assigned the number 0107 for that macro
instruction. The number 0107 is
substituted for &SYSNDX when it is used in
statements 1 and 3. The number 0106 is
substituted for the global SE"rc symbol
&NDXNUM in stateInent 2.

Statement 8 is the 108th macro
instruction processed. Therefore, each
occurrence of &SYSNDX is replaced by the
number 0108. For example, statement 6 is
used to create the unique name B0108.

94

When statement 5 is used to process the
lOath macro-instruction, statement 5
becomes the 109th macro-instruction proc
essed. Therefore, each occurrence of
&SYSNDX is replaced by the number 0109.
For example, statement 1 is used to create
the unique name A0109.

&SYSECT -- Current Control Section

The system variable symbol &SYSECT may be
used to represent the name of the control
section in which a macro-instruction
appears. For each inner and outer macro
instruction processed by the assembler,
&SYSECT is assigned a value that is the
naree of the control section in which the
macro-instruction appears.

When &SYSECT is used in a macro
definition, the value substituted for
&SYSECT is the name of the last CSECT,
DSECT, or START statement that occurs
before the macro- instruction. If no named
CSECT, DSECT, or START statements occur
before a macro-instruction, &SYSECT is
assigned a null character value for that
macro- i nstructi on.

CSECT or DSEc:r statements processed in d

macro-definition affect the value for
&SYSECT for any subsequent inner macro
instructions in that definition, and for
any other outer and inner macro
instructions.

Throughout the use of a macro
definition, the value of &SYSECT may be
considered a constant, independent of any
CSECT or DSECT statements or inner macro
instructions in that definition.

The next. example illustrates these
rules.

Statement 8 is the last CSECT, DSECT, or
START sta tement processed before statement
9 is processed. Therefore, &SYSECT is
assigned the value MAINPROG for macro
instruction OUTERi in statement 9.
MAINPROG is sUbstituted for &SYSECT when it
appears in statement 6.

statement 3 is the last CSECT. DSECT, or
START statement processed before statement
4 is processed. Therefore, &SYSECT is
assigned the value CSOUTi for macro
instruction INNER in statement 4. CSOUTl
is substituted for &SYSECT when it appears
in statement 2.

statement 1 is used to generate a CSECT
statement for statement 4. This is the
last CSECT, DSECT, or START statement that
appears before statement 5. Therefore,
&SYSECT is assigned the value INA for
macro-instruction INNER in statement 5.
INA is substitut.ed for &SYSEC'r when it
appea rs in statement 2.

r----------T-----------T---------------,
I Name I Ope rat ion I Operand I
~---------+-----------+---------------~
I I MACHO I I
I I INNER I&INCSECT I

1 \&INCSECT tCSECT I I
2 I IDC I A (&SYSECT) I

I I MEND I " I
I I I I
I I MACRO I I
I IOUTERl I 1

3 I CSOUT1 I CSECT I j
I IDS 1100C I

4 I I INNER IINA I
5 I I INNER IINB 1
6 I IDC IA(&SYSECT) I

I I MEND I I
I I I I
I I MACRO I I
I IOUTER2 I I

7 I IDC IA(SSYSECT) I
I I MEND I I
t----------+----------+--.-------------~

8 IMAINPROG ICSECT I I
J t DS 1200C I

9 I IOUTERl I I
10 I JOUTER2 I t

.. ----------+-----------+--.-------------~
IMAINPROG lCSECT I I
I IDS 1200C I
ICSOUTl ICSECT t I
t IDS 1100C I
IINA ICSECT I I
1 I DC I A (CSOUT1) I
IINB \CSECT I I
I I DC I A (INA) I
I I DC J A (MAINPROG) I
I I DC I ACINB) I L __ . ______ .L ___ . ________ .L ______________ ~

Statement 1 is used to generate a CSECT
statement for statement 5. This is the
last CSECT, DSECT, or START statement that
appears before statement 10. Therefore,
&SYSECT is assigned the value INBfor
macro-instruction OUTER2 in stdtement 10.
INB is substituted for &SYSECT when it
appears in statement 7.

&SYSLIST -- Macro-Instruction operand

The system variable symbol &SYSLIST pro
vides the programmer with an alternative to
symbolic parameters for referring to macro
instruction operands.

&SYSLIST and symbol ic parameters may be
used in the same macro-definition.

&SYSLIST(n) may be used to refer to the
nth macro-instruction operand. In
addition, if the nth operand is a sublist,
then &SYSLISTtn,m) may be used to refer to
the roth operand in the sublist, where nand
m may be any arithmetic expressions allowed
in the operand field of a SETA statement.

When n is equal to zero, a null operand
results. When n is from 1 to 100, the
value of the operand is given (providing an
operand exists corresponding to n). An
error results when n is greater than 100.

The type, length, scaling, integer, and
count attributes of &SYSLIST(n) and
&SYSLIST Cn, m) and the number attributes of
&SYSLIST(n) and &SYSLIST may be used in
conditional assembly instructions.
N' &SYSLIST may be used to refer to the
total number of operands in a macro
instruction statement. N' &SYS"LIST(n) may
be used to refer to the number of operands
in a sublist. If the nth operand is
omitted, N' is zero; if the nth operand is
not a sublist, Nt is one.

The following procedure is used to
evaluate N'&SYSLIST:

1. A sublist is cons idered to be one
operand •

2.. The number of operands equals one plus
the number of commas indicating the
end of an operand.

Note: &SYSLIST can be used to access
parameters without a corresponding symbolic
parameter appearing in the prototype.

Attributes are discussed in section 7
under Attributes.

KEYWORD MACRO-DEFINITIONS AND INSTRUCTIONS

Keyword macro-definitions provide the pro
grammer with an alternate way of preparinq
macro-definitions.

A keyword macro-definition enables a
programmer to reduce the nurober of operands
in each macro- instruct ion that corresponcls
to the definition, and to write the oper
ands in any order.

The macro-instructions that correspond
to the macro-definitions described in Sec
tion 7 (hereinafter called positional -
macro-instructions and positional rnacro
definitions, respectively) require the
operands to be written in the same order as
the corresponding symbolic parameters in

Additional Features 95

the operand entry of the prototype
statement.

In a keyword macro-definition, the pro
grammer can assign values to any symbolic
parameters that appear in the operand of
the prototype statement. The value
assigned to a symbolic parameter is substi
tuted for the symbolic parameter, if the
programmer does not write anything in the
operand of the macro-instruction to corres
pond to the symbolic parameter.

When a keyword macro-instruction is
written, the programmer need only write one
operand for each symbolic parameter whose
value he wants to change.

Keyword macro-definitions are prepared
the same way as positional macro
definitions, except that the prototype
statement is written differently, and
&SYSLIST may not be used in the definition.
The rules for preparing positional rracro
definitions are in Section 7.

Keyword Prototype

The typical form of this stat.ement is:

r------------T-----------T----------------,
I Name IOperation IOperand I
~------------+-----------+----------------~
IA symbolic IA symbol lOne to 100 I
I parameter I loperands of the I
lor not used I Iform described I
I I I below, separated I
I I Iby commas I l ____________ ~ ___________ ~ ________________ J

Each operand must consist of a symbolic
parameter, immediately followed by an equal
sign and optionally followed by a value.
Nested keywords are not penni tted.

A value that is part of an operand must
immediately follow the equal sign.

Anything that may be used as an operand
in a macro-instruction except variable
symbolS, may be used as a value in a
keyword prototype statement. The rules for
forming valid macro-instruction operands
are detailed in Section 8.

The following are valid keyword proto
type operands ..

&READER=
& LOOP2=SYMBOL
&S4==F'4096 t

96

The following are invalid keyword proto
type operands.

CARDAREA
&TYPE
&TWO =123

(no symbolic parameter)
(no equal sign)
(equal sign does not

irr<mediately follow
symbolic parameter)

&AREA= X'189A' (value does
not irrmediately follow
equal sign)

The following keyword prototype state
ment contains a symbolic parameter in the
name entry and four operand entr ies in the
operand. The first two operand entries
contain values. The mnemonic operation
code is MOVE.

r------T----------~----------------------,
I Name I Operation I Operand I
.------+-----------+----------------------~
I&N I MOVE I&R=2,&A=S,&T=,&F= I L ______ ~ ___________ L ______________________ J

Keyword Macro-Instruction

Aft.er a programmer has prepared a keyword
macro-definition he may use it by writing a
keyword macro-instruction.

The typical form of a keyword macro
instruction is:

r---------T---------~--------------------,
\ Name IOperationlOperand I
~-------+---------+--------------------~
IA symbol,IMnemonic IZero or more operands I
\sequence loperationlof the form described I
\symbol,orlcode I below, separated by I
Inot used I I commas \ l _________ ~ _________ L_ ____________________ J

Each operand consists of a keyword
immediately followed by an equal sign and
an optional value. Nested keywords are not
permitted. Anything that may be used an an
operand in a positional macro-instruction
may be used as a value in a keyword macro
instruction. The rules for forming valid
positional macro-instruction operands are
detailed in section 8.

A keyword consists of one through seven
letters and digits, the first of which must
be a letter.

The keyword part of each keyword macro
instruction operand must correspond to one
of the symbolic parameters that appears in
the operand of the keyword prototype
statement. A keyword corresponds to a

symbolic parameter if the characters of the
keyword are identical to the charac·ters of
the symbolic parameter that follow 'the
ampersand.

The following are valid keyword macro
instruction operands.

LOOP2=SYMBOL
S4==F'4096'
TO=

The following are invalid keyword macro
instruction operands.

&X4F2=O(2,3) (keyword does not begin
wi th a letter)

CARDAREA=A+ 2 (keyword is more than
seven charac1:.ers)

= (TO (8) , (FROM» (no keyword)

The operands in a keyword macro
instruction may be written in any order.
If an operand appeared in a keyword
prototype statement, a corresponding oper
and does not have to appear in the .keyword
macro-instruction. If an operand is omit
ted, the comma that: would have separated it
from the next operand need not be written.

The following rules are used to replace
the symbolic parameters in the statements
of a keyword macro-definitione

1. If a symbolic parameter appears in the
name ent ry of t:he prototype sta 'temen t,
and the name entry of the macro
instruction contains a symbol, 'the
symbolic parameter is replaced by the
symbol. If the name entry of the
macro-instruction is unused or contains
a sequence symbol, the symbolic param
eter is replaced by a null character
value.

2. If a symbolic parameter appears in the
operand of the prototype statement, and
the macro-instruction contains a key
word that corresponds to the symbolic
parameter, the value assigned to the
keyword replaces the symbolic paramet
er.

3. If a symbolic parameter was assigned a
value by a prototype statement, and the
macro-instruction does not contain a
keyword that corresponds to the symbol
ic parameter ,t:he standard value
~ssigned to the symbolic p~ra~eter
replaces the symbolic parameter. oth
erwise, the symbolic parameter is
replaced by a null character value.

Note: If a symbolic parameter value is a
self-defining term the 'type attribute
assigned to the value is the letter N. If
a symbolic parameter value is omitted the
type attribute aSSigned ~o the'valueis'th~

letter o. All other values are assigned
the type attribute U.

The following keyword macro-definition,
keyword macro-instruction, and generated
statements illustrate these rules.

Statement 1 assigns ;the values 2 and S
to the symbolic parameters &R and &A, res
pectively. Statement 6 assigns the values
FA, FB, and THERE to the keywords T, F, and
A, respectively_ The symbol HERE is used
in the name entry of statement 6.

Since a symbolic parameter (&N) appears
in the name entry of the prototype state
ment (statement 1), and the corresponding
characters (HERE) of the macro-instruction
(statement 6) are a symbol, tN is replaced
by HERE in statement 2.

r-----T---------~---------------------~
IName IOperation IOperand I
~-----+----------+----------------------~
1 I MACRO I I

1 J&N I MOVE I&R=2,&A=S,&T=,&F= I
2 I & N I ST 1 &R , & A I
3 I JL I&R,&F I
4 liST I&R,&T I
5 J JL I&R,&A I

I I MEND I I
~-----+----------+----------------------~

6 IHERE IMOVE IT=FA,F=FB,A=THERE I
~-----+----------+--------------------~
IHERE 1ST 12,THERE I
I IL 12, FB 1
liST 12,FA J
I I L 12, THERE I l _____ ~ __________ ~ _____________________ J

Since &T appears in the operand of
statement 1, and statement 6 contains the
keyword (T) that corresponds to &T, the
value assigned to T (FA) replaces &T in
statement 4. Similarly, FB and THERE
replac~ &F and &A in statement 3 and in
statements 2 and 5, respectively. Note
that the value assigned to &A in statement
6 is used instead of the value assigned to
&A in statement 1.

Since&R appears in the operand of
statement 1, and statement 6 does not con
tain a corresponding keyword, the value
assigned to &R (2), replaces &R in state
ments 2, 3, 4', and 5.

ope~ahdSublists: The value assigned to a
keyword and'the value assigned to a symbol
ic parameter may be an operand sublist.
Anything that may be used as an operand
sublist in a posi tiona 1 macro-instruction
may be used as a value in a keyword macro
instruction and as a value in a keyword
prototype statement. The rules for forming
valid operand sublist~ are detailed in
Section 8 unde~ "Operahd SUblists."

Additional Features 97

Keyword Inner Macro-Instructions: Keyword
and positional inner macro-instructions may
be used as model statements in either
keyword or positional macro-definitions.

MIXED-MODE MACRO-DEFINITIONS AND
INSTRUCTIONS

Mixed-mode macro-definitions allow the
programmer to use the features of keyword
and positional macro-definitions in the
same macro-definition.

Mixed-mode macro-definitions are pre
pared the same way as positional macro
definitions, except that the prototype
statement is written differently, and
&SYSLIST may not be used in the definition.
The rules for preparing positional macro
definitions are in Section 1.

Mixed-Mode Prototype

The t'ypical form of this statement is:

r-----------T----------~-----------------,
I Name I Operation I Operand I
t-----------+-----------+----------~------~
IA symbolic IA symbol ITwo to 100' oper- I
I parameter) lands of the form I
lor not used) Idescribed below, I
I I I separated by I
I I I~m~s I ~ ___________ L-__________ ~ _________________ J

The operands must be valid operands of
positional and keyword prototype
statements. All the positional operands
must precede the first keyword operand.
The rules for forming positional operands
are discussed in Section 7 under Macro
Instruction Prototype. The rules for
forming keyword operands a.re discussed
under Keyword Prototype.

The following sample mixed-mode proto
type statement contains three positional
operands and two keyword operands ..

r-------T---------T-----------------------,
I Name I Operation I Operand I
~------+---------+--------------------__i
I &N I MOVE I &TY I &P, &R, &TO=. &F= f l ______ ~ _________ i _______________________ ~

98

Mixed-Mode Macro-Instruction

The typical form of a mixed-mode macro
instruction is:

r---------T--------~---------------------l
I Name I Ope.rati on I 0 perand I
.---------+---------+---------------------~
IA symbol, I Mnemonic IZero or more oper- I
Isequence loperationlands of the form I
Isymbol,orlcode Idescribed below,)
I not used I I separated by I
I J I commas I L ________ ._J.. _______ --.1.-___________________ J

The operand consists of two parts. The
first part corresponds to the positional
prototype operands.. This part of the
operand is written in the same way that the
operand entry of a positional macro
instruction is written. The rules for
writing positional macro-instructions are
in section 8.

The second part of the operand
corresponds to the keywo.rd prototype oper
ands. This part of the operand is written
in the same way that the operand entry of a
keyword macro-instruction is written. The
rules for writing keyword macro
instructions are described under Keyword
Macro-Instruction.

The following mixed-mode macro
definition, mixed-mode macro-instruction,
and generated statements illustrate these
facilities.

r------T-------~----------------------l
tName 1operationl Operand I
.• -----+---------+----------------------~
t I MACRO I 1

1 • & N I MOVE I & TY , & P , & R, & TO= , & F:= I
ibN IST&TY I &R,SAVE I
1 tL&TY I &R, &P&F I
I lST&TY I &R,&P&TO I
I lL&TY I &H, SAVE I
t------+---------+----------------------~

2 IHERE JMOVE I H" 2, F=FB,TO=FA I
~------+---------+----------------------~
~HERE tSTH I 2,SAVE I
, I LH J 2, FB I
1 I STH I 2, FA I
1 ILH J 2,SAVE I L ______ ~ ________ i_ _____________________ J

The prototype statement (statement 1)
contains three poSitional operands (&TY, & P,
and &R) and two keyword operands {&TO and
&P}. In the macro-instruction (statement
2) the positional operands are written in
the same order as the positional operands
in the prototype statement (the second

operand is omitted). The keyword operands
are written in an order that is different
from the order of keyword opelrands in the
prototype statement.

Mixed-mode inner macro-instructions may
be used as model statements in mixed-mode,
keyword, and positional macro--definitions.
Keyword and positional inner macro
instructions may be used as model
statements in mixed-mode macro-definitions.

CONDITIONAL ASSEMBLY COMPATIBILITY

Macro-definitions prepared for use with the
other System/360 assemblers having macro
language facilities may be used with the

Basic Operating System/360 Assembler (16K
Disk/Tape) provided that all SET symbols
are defined in an appropriate LCLB, GBLA,
GBLB, or GBLC statement. The AIFB and AGOB
instructions are processed by the Basic
Operating System/360 Assembler (16K
Disk/Tape) the same way that the AlF and
AGO instructions are processed. AIFB and
AGOB instructions cause the count set up by
the ACTH instruction to be decremented
exactly like the AGO and AIF instructions.

Additional Features 99

APPENDIX A: EXTENDED BINARY CODED DECIMAL INTERCHANGE CODE (EBCDIC)

The following charts and the associated key
show the bit configurations of the 256
possible codes (characters> of the Extended
BCD Interchange Code. To write a given
character in binary, locate the character
on the chart. The top row of coordinates
equates to bit positions 0 and 1, the sec
ond row to bit positions 2 and 3, and the
left row of coordinates equates to bit
positions 4, 5, 6 and 7.

Examples:

Character A equals:

top row - 11 (bit positions 0, 1)

2nd row - 00 (bit positions 2, 3)

left row - 0001 (bit positions 4, 5, 6
and 7)

Therefore, character A is shown as: 1100
OOOL.

Character $ equals:

top row - 01 (bit positions 0, 1)

2nd row - 01 (bit positions 2, 3)

left row - 1011 (bit positions 4, 5, 6
dnd 7)

100

Therefore, character $ is shown as:
0101 1011.

The coordinates on ·the bottom of the
chart are the three zone punches required
to reproduce the character in a punched
card; the coordinates on the right side
represent the numeric punches.

Examples:

Character A = bottom row - 12 punch
right row - 1 punch

The.refore, Character A is shown by d 12
and a 1 punch in the same card column.

Character $ =:; bottom row - 11 punch
right row - 8 and 3 punches

Therefore, Character $ is shown by 11,
8, and 3 punches in the same card column.

There are fifteen exceptions to the
punching equated to bit positions. These
exceptions are shown in the chart by cir
cled numbers 1 through 15, and the substi
tuted punching is shown below the chart
under Exceptions.

Bit Positions Bit Positions
00 01 0, 1

10 11 0, 1

Bit Positions Bit Positions

2, 3 2, 3

oodl a

" OQ1:O FS
-o~ "

b k B K S
IL')~ i Ql -o~

-~J) -l: C T Ql
~~

u .0-c: -l:
:l U

C! PF RES BYP PN a.. ~~ D M U c:
:l

:f .0, C! a..

0 NL LF RS £5 :~ .0,

a.. 0 £5
a:; BS EOB UC

a..

a:;

IL PRE EOT

10~

~
Bit Positions Bit Positions

0, 1 0, 1

!)it Positions Bit Positions
00 2, 3 2, 3

" ¢
..0 SM

"
.0- $

Ql -o~

-l: Q; ,,; u .0-c: -l:

C
:l
~ .. U

< % a.. c:

:~
:l

.0, C a..

~ £5 :f .5l
a..

~ £5
a:; >

a..
+ a:;

CD 12-0-9-8-1 ® No Punches ® 12-0 @ 0-1

0 12-11-9-8-1 0 12 @ 11-0 @ 11-0-9-1

® 11-0-9-8-1 0 11 @ 0-8-2 @ 12-11

8) 12-11-0-9-8-1 ® 12-11-0 @ 0

Extended Binary Coded Decimal Interchange Code (Part 1 of 2)

Appendix A 101

Control Characters

PF Punch Off BS Backspace PN Punch On
HT Horizontal Tab IL Idle RS Reader Stop
LC Lower Case BY Bypass UC Upper Case
DL Delete LF Line Feed ET End of Transmission
RE Restore EB :End of Block SM Set Mode
NL New Line PR Prefix SP Space

DS Digit Select SOS Start of Significance FS Field Separator

Special Graphic Characters

¢ Cent Sign * Asterisk > Greater-than Sign
Period, Decimal Point) Ri ght Parenthesi s ? Question Mark

< Less-than Sign ; Semicofon : Colon
(Left Parenthesis -, Logical NOT * Number Sign

+ PI us Sign - Minus 'Sign, Hyphen @ At Sign

I Vertical Bar, Logical OR I Slash I Prime, Apostrophe

& Ampersand .,' Comma = Equal Sign

! Exdamation Point "% Percent " Quotation Mark

$ Dollar Sign - Underscore

Bit Pattern
I

Hole Pattern
Examples Type' BitP'OSitions

t 01234567 Zone P'Uoches Digit Punches

PF Control Character 0000 0100 12 -9 - 4

% $.pecial Graphic 01 10 HOD 0-8-4
-f--- I

R Upper Case 11 01 1001 117 9

a Lower Case 10000001 12 -0 - 1

Control Cmaracter" 00 11 0000 12 - 11 -;0 -9 - 8 - 1
I

function not yet I
assigned ! f

Extended Binary -Coded Decimal Interchange CodeCPart 2 of 2)

102

APPENDIX B: HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

The table in this appendix provides for
direct conversion of decimal Clnd hexadeci
mal numbers in these ranges:
r--------------T---------------,
I Hexadecimal I Decimal I
~--------------+---------------~
I 000 to FFF I 0000 to 4095 I L-_____________ ~ _______________ J

Decimal numbers (0000-4095) are given with
in the 5-part table. The first two charac
ters (high-order) of hexadecimal numbers
(OOO-FFF) are given in the lefthand column
of the table; the third character (x) is
arranged across the top of each part of the
table.

To find the decimal equivalent of the
hexadecimal number OC9, look for OC in the
left column, and across that row under the
column for x = 9. The decimal number is
0201.

To convert from decimal to hexadecimal,
look up the decimal number within the table
and read the hexadecimal number by a combi
nation of the hex characters in the left
column, and the value for x at the ·top of
the colUmn containing the decimal number.

For example, the decimal number 123 has the
hexadecimal equivalent of 07B; the decimal
number 1478 has the hexadecimal equivalent
of 5C6.

For numbers outside the range of the
table, add the following values to the
table
r--------------T-----------,
I Hexadecimal I Decimal I
~--------------+-----------~
I 1000 4096 I
I 2000 8192 I
I 3000 12288 I
I 4000 16384 I
I 5000 20480 I
,6000 24576 I
I 7000 28672 I
I 8000 32168 I
I 9000 36864 t
I AOOO 40960 t
I BOOO 45056 1
t COOO 49152 I
I DOOO 53248 I
I EOOO 57344 I
I FOOD I 61440 I L ______________ ~ ___________ J

Appendix B 103

x = 0 1 2 3 4 5 6 7 8 9 A B C D E F

OOx 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 001~
01x 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02x 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 00117
03x 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

04x 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0071 0078 0079
05x 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
06x 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
07x 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

08x 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09x 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAx 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBx 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCx 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
ODx 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEx 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFx 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

lOx 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
l1x 0272 0273 0274 0275 0276 0271 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12x 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13x 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

14x 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
15x 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16x 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17x 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

18x 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
19x 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAx 0416 0417 0418 041~ 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
lBx 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCx 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
lDx 0464 0465 0466 0467 0468 0469 0470 0471 1)472 0473 0474 0475 0476 0471 0478 0479
lEx 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
lFx 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

20x 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21x 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22x 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23x 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

24x 0576 0571 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25x 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26x 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27x 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

28x 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29x 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2Ax 0672 0673 0674 0675 0676 0671 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2Bx 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2Cx 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2Dx 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2Ex 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2Fx 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30x 0768 0769 0710 0771 0772 0773 0774 0775 0776 0777 0178 0179 0780 0781 0782 0783
31x 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32x 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33x 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

34x 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35x 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36x 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0871 0878 0879
37x 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

38x 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39x 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3Ax 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3Bx 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3ex 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3Dx 0976 0971 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3Ex 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3Fx 1008 1009 1010 1011 1012 1013 lOU 1015 1016 1017 1018 1019 1020 1021 1022 1023

104

x = 0 1 2 3 4 5 6 7 8 9 A B C D E F

40x 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 lD37 10311 1039
41x 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1Ji()54 1055
42x 1056 1057 1058 1059 1060 106'1 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43x 1072 1073 1014 1075 1016 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

44x 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45x 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 3117 1118 1119
46x 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47x 1136 1137 1138 1139 1140 114 'I 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

48x 1152 1153 1154 1155 1156 1151 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49x 1168 1169 1110 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4Ax 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4Bx 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4Cx 1216 1217 12'18 1219 1220 122'1 1222 1223 1224 1225 1226 1221 1228 1229 1230 1231
4Dx 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4Ex 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4Fx 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1217 1278 1279

50x 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 ,294 1295
51x 1296 1297 1298 1299 1300 130'1 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52x 1312 1313 13'14 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53x 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

54x 1344 1345 13116 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55x 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56x 1316 1317 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57x 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

58x 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59x 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5Ax 1440 1441 14112 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5Bx 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5Cx 1472 1473 1414 1475 1476 1471 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
SOx 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
SEx 1504 1505 1506 1501 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5Fx 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

60x 1536 1531 1538 1539 1540 154 'I 1542 1543 1544 1545 1546 1547 1548 1549 1550 1 ~51
61x 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62x 1568 1569 1510 1511 1572 1573 1514 1515 1576 1511 1578 1519 1580 1581 1582 1583
63x 1584 1585 1586 1581 1588 1589 1590 1591 1592 1593 1594 1595 1596 1591 1598 1599

64x 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65x 1616 1617 16'18 1619 1620 162 'I 1622 1623 1624 1625 1626 1621 1628 1629 1630 1631
66x 1632 1633 1634 1635 1636 1631 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67x 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

68x 1664 1665 1666 1661 1668 1669 1670 1671 1672 1613 1674 1675 1676 1611 1618 1619
69x 1680 1681 1682 1683 1684 1685 1686 1681 1688 1689 1690 1691 1692 1693 1694 1695
6Ax 1696 1697 1698 1699 1700 110~1 1102 1103 1104 1105 1106 1107 1708 1709 1710 1111
6Bx 1112 1713 11'14 1115 1116 1711 1718 1719 1120 1121 1722 1723 1124 1125 1726 1721

6Cx 1128 1729 1730 1731 1132 1733 1734 1735 1736 1731 1138 1739 1140 1141 1142 1143
60x 1144 1745 1746 1141 1148 1149 1150 1151 1152 1153 1754 1755 1156 1151 1158 1159
6Ex 1760 1161 1762 1763 1764 1165 1166 1167 1168 1169 1710 1111 1112 1113 1174 1115
6Fx 1176 1111 1718 1779 1780 1181 1182 1783 1184 1185 1786 1781 1188 1789 1190 1791

70x 1792 1793 1794 1795 179 6 1797 1798 1199 1800 1801 1802 1803 1804 1805 1806 1801
11x 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
12x 1824 1825 1826 1821 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73x 1840 1841 1842 1843 1844 1845 1846 1841 1848 1849 1850 1851 1852 1853 1854 1855

14x 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1861 1868 1869 1810 1871
15x 1812 1813 1874 1815 1816 1817 1878 1879 1880 1881 1882 1883 1884 1885 18ti6 1887
76x 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
17x 1904 1905 1906 1901 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

18x 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79x 1936 1931 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7Ax 1952 1953 1954 1955 1956 1951 1958 1'959 1960 1961 1962 1963 1964 1965 1966 1961
7Bx 1968 1969 1970 1971 1912 1913 1914 1915 1976 1911 1978 1979 1980 1981 1982 1983

7Cx 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
70x 2000 2001 2002 2003 2004 2005 2006 2001 2008 2009 2010 2011 2012 2013 2014 2015
1Ex 2016 2011 2018 2019 2020 20211 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
1Fx 2032 2033 2034 2035 2036 2031 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

Appendix B 105

x = ,) 1 2 3 4 5 6 7 8 9 A B C D E F

80x 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81x 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82x 2080 2081 2082 2083 2084 2085 2086 20g7 2088 2089 2090 2091 2092 2093 2094 2095
83x 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

84x 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85x 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86x 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87x 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

88x 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89x 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8Ax 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8Bx 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8Cx 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8Dx 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8Ex 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8Fx 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90x 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91x 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92x 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93x 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

94x 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95x 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96x 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97x 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

98x 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99x 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9Ax 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9Bx 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9Cx 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9Dx 2512 2513 2514 2515 2516 2517 2518 2519 252(} 2521 2522 2523 2524 2525 2526 2527
9Ex 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9Fx 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

AOx 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Alx 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2x 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3x 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A4x 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5x 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6x 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7x 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A8x 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9x 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAx 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABx 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACx 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 27611 2765 2766 2767
ADx 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEx 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFx 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOx 2816 281 7 2818 2819 2820 2821 2822 2823 2824 282'5 2826 2827 2828 2829 2830 2831
Blx 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847'
B2x 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3x 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2679

B4x 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5x 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6x 2912 2913 2914 2915 2916 2917 2918 2919 29.20 2921 2922 2923 2924 2925 2926 2927
B7x 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B8x 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9x 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAx 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBx 2992 2993 2994 2995 2996 2997 2998' 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCx 3008 3009 3010 3011 3012 3013 301'4 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDx 3024 3025 3026 3027 3028 3029'> 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEx 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFx 3056 3057 3058 3059 3060 3.061 ~O62 3063 3064 3065 3066 3067 3068 3069 3070 3071

106

x = 0 1 2 3 4 5 6 7 8 9 A B C D E F

COx 3072 3073 3074 3075 30'76 3077 3078 3079 3080 3081 3082 3083 3084 3ut)!> 3086 3087
Clx 3088 3089 3090 3091 3092 309'3 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2x 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3x 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C4x 3136 3137 3138 3139 311.0 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5x 1152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6x 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C1x 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C8x 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9x 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAx 3232 3233 3234 3235 3236 3231 3238 3239 3240 3241 3242 3243 3244 3245 3246 3241
CBx 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCx 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3214 3275 3276 3277 3278 3279
CDx 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEx 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFx 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

DOx 3328 3329 3330 3331 3332 3333 3334 3335 3336 3331 3338 3339 3340 3341 3342 3343
Dlx 3344 3345 3346 3347 33118 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2x 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3315
D3x 3376 3377 3378 3319 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D4x 3392 3393 3394 3395 3396 3391 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5x 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6x 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D1x 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D8x 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3411
D9x 3472 3413 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAx 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBx 3504 3505 3506 3501 3508 3509 3510 3511 3512 3513 3514 3515 3516 3511 3518 3519

DCx 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDx 3536 3537 3538 3539 3540 354 'I 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEx 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFx 3568 3569 3570 3511 3572 3513 3574 3515 3576 3577 3578 3579 3580 3581 35b2 3583

EOx 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E1x 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2x 3616 3617 3618 3619 3620 362~ 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3x 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E4x 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5x 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3671 3678 3679
E6x 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7x 3696 3697 3698 3699 3700 37011 3702 3703 3704 3705 3706 3707 3708 370C} 3110 3711

E8x 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9x 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAx 3744 3745 37116 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBx 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3710 3771 3772 3773 3774 3775

ECx 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDx 3792 3793 3794 3795 3796 3791 3798 3799 3800 3801 3802 3803 3804 3805 3806 31:107
EEx 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFx 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3b39

FOx 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3352 3853 3854 3855
Flx 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 31:171
F2x 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 38b6 30b7
F3x 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F4x 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5x 3920 3921 3922 3923 3924 3925, 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6x 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7x 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F8x 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 39&2 39b3
F9x 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAx 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBx 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCx 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDx 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEx 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFx 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

-

Appendix f3 107

APPENDIX C: MACHINE-INSTRUCTION FORMAT

r----------------------------------'r--------------------------~------------------------l
J I ASSEMBLER OPERAND I I
I BASIC MACHINE FORMAT I FIELD FORMAT I APPLICABLE INSTRUCTIONS I
~~-------------------------------+---------------------------+------------------------~
1 1 r---------T--,.--'
I 1 I 8 14 14 I
I 1 I Operation 1 I 1 R1,R2 All RR instructions
I I 1 Code , Rl 'R2 , except SPM and SVC 1 I L _________ ~ __ ~ __ J

, I r---------T--,.--'
I J' 8 ,4, 1
IRRI I Operation I I I Rl SPM
1 'I Code I Rll I , I L--_______ ~ __ ~ __ J

J I ,--------T-----'
I I I 8 I 8 I
I I I Operation I I
1 I' Code , I ,I SVC
I I L-________ ~ _____ J (See Notes 1, 6, A, and 9)

~--+-------------------------------+---------------------------+------------------------~
, I r-------T--T-~-~--, I I I
I 'I 8 14 14 14 1121 I Rl,D2CX2,B2) I I
I RX I I Operation I , I I I I Rl, 02 (, B2) I All RX instructions I
, 1 I Code I R 1 I X2 I B 2 I D 2 I I R 1 , S 2 (X 2) I 1
I 'L _________ ~ __ i__~_~_J I (See notes 1-4,7, and 9)1 I

~--+-------------------------------+---------------------------+------------------------~
1 I r---------T--,.--T--,.--' I I I
1 I I 8 14 14 14 ,121 I I I
I I ,Operation, I I II , Rl,R3,02(B2) IBXH,BXLE,LM,STM I
I I I Code IR11R31B21D21 I R1,R3,S2 I , I I L _________ .l. __ ~_.l. __ .l. __ J I I I
IRSI , 1 ,
I 'r---------T--T--T--T--' , , , , " 8 -,4, ,4,12, , , ,
, I 'Operation! , I " , R1,D2(B2) IAll shift instructions I
I , , Code , R 11 , B 21 021 I R 1 , S 2 I I
I I L _________ .1. __ ~ __ ~ __ ~ __ J I (See Notes 1-3,7, and 8) I I

~--t-------------------------------+---------------------------+------------------------~
I 'r--------T-----T--T--' I I I
I I' 8 I 8 14 1121 I IAll SI instructions I
I I ,Operationl I 1 1 I Dl(Bl),I2 !except LPSW,SSM, 1
I I I Code I 12 IBI1 0 11 ! Sl,I2 IHIO,SIO,TIO,TCH,TS 1 , I L _________ .l.-____ ~ __ ~_J I I I

lSI I I I ,
, I ,--------T----~-~--, I I I
I I I 8 \ 14 112) , \ I
I 1 ,Operation I 1 I I ID1CB1) ILPSW,SSM,HIO,SIO, I
I I I Code I lBl101\ I Sl ITIO,TCH,TS 1 I 1 L _________ .l. ___ -.l. __ J. __ J I (See Notes 2, 3, and 6-8) I J

~--+-------------------------------+---------------------------+------------------------~
I I ,--------T-T-~-~-~-~--, I I ,
I 1 I 8 14 14 14 11214 1121 I I I
I 1 I Operation I I 1 I I I 1 I Dl(Ll,Bl),D2(L2,B2) IPACK,UNPK,MVO,AP, I
I 'I Code ILI1L21B1IDI1B21D21 I Sl(Ll),S2{L2) ICP,DP,MP,SP,ZAP 1 I I L _________ ~ __ ~_~ __ ~ __ ~ __ .l.__J I I I
ISSI I I I
, I r---------T-----~-T--~-T--' , I 1
I I I 8 ,8 I 4 11214 1121 I I I
1 I I Operation ! I I I I I I Dl(L,Bl),D2(B2) I NC,OC,XC,CLC,MVC,MVN, 1
I I I Code I L IB1IDI1 B21021 I Sl(L),S2 IMVZ,TR,TRT,ED,EDMK I
1 'L _________ .l. ____ -.l._-.l._-.l._-.l. __ J I (See Notes 2,3,5, and 7) , I L-_L-______________________________ J. ___________________________ 4 ________________________ J

108

Notes for Appendix C :

1. Rl, R2, and R3 are absolute expressions that specify general or floating-point reg
isters. The general register numbers are 0 through 15; floating-point register num
bers are 0, 2, 4, and 6.

2. 01 and 02 are absolute expressions that specify displacements. A value of 0 - 4095
may be specified.

3. Bt and B2 are absolute expressions that specify base registers. Register numbers are
o - 15.

4. X2 is an absolute expression that specifies an index register. Register numbers are
o - 15.

5. L, Ll, and L2 are absolute expressions that specify field lengths. An L expression
can specify a value of 1 - 256. Ll and L2 expressions can specify a value of 1 - 16.
In all cases, -the assembled value will be one less than the specified value.

6. I and 12 are absolute expressions that provide immediate data. The value of the
expression may be 0 - 255.

7. Sl and S2 are absolute or reloc:atable expressions that specify an address.

8. RR, RS, and SI instruction fields that are blank under BASIC MACHINE FORMAT are not
examined during instruction execution. The fields are not written in the symbolic
operand, but are assembled as binary zeros.

9. Rl specifies a 4-bit mask in the BC and BCR machine instructions.

Appendix C 109

APPENDIX D: MACHINE-INSTRUCTION MNEMONIC OPERATION CODES

This appendix contains a table of the mnemonic operation codes for
all machine instructions that can be represented in assembler
language, including extended mnemonic operation codes. It is in
alphabetic order by instruction. Indicated for each instruction are
both the mnemonic and machine operation codes, explicit and
implicit operand formats, program interruptions possible, and condition
code set.

The column headings in this appendix and the information each
column provides follow.

Instruction: Th is col umn contains the name of the instruction
associated with the mnemonic operation code.

Mnemonic Operation Code: This column gives the mnemonic
operation code for the machine instruction. This is written in the
operation field when coding the instruction.

Machine Operation Code: This column contains the hexadecimal
equivalent of the actual machine operation code. Thp. operation code
will appear in this form in most storage dumps and when displayed on
the system control panel. For extended mnemonics, this column also
contains the mnemonic code of the instruction from which the extended
mnemonic is derived.

Machine-Instruction Operation Codes

110

Operand Format: This column shows the symbolic format of the
operand field;; both explicit and implicit form. For both forms,
R1, R2, and R3 indicate general registers in operands one, two, and
three respectively. X2 indicates a general register used as an index
register in the second operand. Instructions which require an index
register (X2) but are not to be indexed are shown with a 0 replacing
X2. L, L 1, and L2 indicate lengths for either operand, operand one,
and operand two respectively.

For the explicit format, D1 and D2 indicate a displacement and
B 1 and B2 indicate a base register for operands one and two.

For the implicit format, D1,B1 and D2,B2 are replaced by 51
and 52 which indicate a storage address in operands one and two.

Type of Instruction: This column gives the basic machine format of
the instruction (RR, RX, 51, or 55). If an instruction is included
in a special feature or is an extended mnemonic,this is also indicated.

Program Interruptions Possible: This column indicates the possible
program interruptions for this instruction. The abbreviations used are:
A - Addressing,S - Specification, Ov - Overflow, P - Protection,
Op - Operation (if feature is not installed) and Other - other
interruptions which are listed. The type of overflow is indicated by:
D - Decimal, E - Expontmt, or F- Floating Point.

Condition Code Set: The condition codes set as a result of this
instruction are indicated in this column. (See legend following
the table).

Instruction Mnemonic Machine Operand Format
Operation Operation

Code Code Expl icit Implicit

Add A 5A RI, 02(X2, B2) or RI, 02(, B2) RI,S2(X2) or RI,S2
Add AR IA RI,R2
Add Decimal AP FA 01 (Ll, B1), 02(L2, B2) SI(Ll),S2(L2)or SI,52
Add Ha I fword AH 4A R I, 02(X2, B2)or R 1,02(, B2) RI, 52 (X2)or RI ,52
Add Logical AL 5E R I, 02(X2, B2)or R 1,02(, B2) R I, 52(X2)or Rl, S2

Add Logical ALR 1 E Rl,R2
Add Normalized,Long AO 6A R 1, 02(X2, B2)or R 1,02(, B2) R 1, 52(X2)or Rl ,52
Add Normalized, Long AOR 2A Rl,R2
Add Normalized, Short AE 7A R 1, 02(X2, B2)or R 1,02(, B2) Rl, 52(X2)or Rl, 52
Add Normalized, Short AER 3A Rl,R2

Add Unnormalized, Long AW 6E Rl, 02(X2, B2)or Rl, 02(, B2) Rl, 52(X2)or Rl, 52
Add Unnormal ized, Long AWR 2E Rl,R2
Add Unnormal ized, 5hort AU 7E R I, 02(X2, B2)or R 1,02(, B2) RI, 52 (X2)or RI, 52
Add Unnormal ized, 5hort AUR 3E RI,R2
And Logical N 54 R I, 02(X2, B2)or R 1,02(, B2) RI, 52(X2)or RI ,52

And Logical NC 04 01 (L, B1), 02(B2) 51(L),52 or 51,52
And Logical NR 14 RI,R2
And Logical Immediate NI 94 01(BI),12 51,12
Branch and Link BAL 45 R I, 02(X2, B2)or R 1,02(, B2) RI,52(X2)or RI,52
Branch and Link BALR 05 RI,R2

Branch on Condition BC 47 R I, 02(X2, B2)or R 1,02(, B2) R I, 52(X2)or RI, 52
Branch on Condition BCR 07 Rl,R2
Branch on Count BCT 46 R I, 02(X2, B2)or R 1,02(, B2) RI,52(X2)or RI,S2
Branch on Count BCTR 06 RI,R2
Branch on Equal BE 47(BC 8) 02(X2, B2)or 02(, B2) S2(X2) or 52

Branch on High BH 47(BC 2) 02(X2, B2)or 02(, B2) 52(X2) or 52
Branch on Index High BXH 86 RI ,R3, 02(B2) RI, R3,52
Branch on Index Low or Equal BXLE 87 RI ,R3, 02(B2) RI, R3, 52
Branch on Low BL 47(BC 4) 02(X2, B2)or 02(, B2) S2(X2) or 52
Branch if Mixed BM 47(BC 4) 02(X2, B2)or 02(, B2) 52(X2) or 52

Branch on Minus BM 47(BC 4) 02(X2, B2)or 02(, B2) 52(X2) or 52
Branch on Not Equal BNE 47(BC 7) 02(X2, B2)or 02(, B2) S2(X2) or 52
Branch on Not High BNH 47(BC 13) 02(X2, B2)or 02(, B2) S2(X2) or 52
Branch on Not Low BNL 47(BC II) 02(X2, B2)or 02(,B2) S2(X2) or S2
Branch on Not Minus BNM 47(BC II) 02(X2, B2)or 02(, B2) S2(X2) or 52

Branch on Not Ones BNO 47(BC 14) 02(X2, B2)or 02(, B2) 52(X2) or 52
Branch on Not Plus BNP 47(BC 13) 02(X2, B2)or 02(, B2) 52(X2 or 52
Branch on Not Zeros BNZ 47(BC 7) 02(X2, B2)or 02(, B2) 52(X2) or 52
Branch if Ones BO 47(BC I) 02(X2, B2)or 02(, B2) S2(X2) or 52
Branch on Overflow BO 47(BC 1) 02(X2, B2)or 02(, B2) 52(X2) or 52

Branch on Plus BP 47(BC 2) 02(X2, B2)or 02(, B2) 52(X2) or S2
Branch if Zeros BZ 47(BC 8) 02(X2, B2)or 02(, B2) 52(X2) or 52
Branch on Zero BZ 47(BC 8) 02(X2, B2)or 02(, B2) 52(X2) or 52
Branch Unconditional B 47(BC 15) 02(X2, B2)or 02(, B2) 52(X2) or S2
Branch Unconditional BR 07(BCR 15) R2

Compare Algebraic C 59 R I, 02(X2, B2)or RI, 02(, B2) R 1 , 52 (X2 or R I , 52
Compare Algebraic CR 19 RI,R2
Compare Oecimal CP F9 01 (L 1 ,BI), 02(L2, B2) 51 (Ll), 52(L2)or 51 ,52
Compare Halfword CH 49 RI , 02(X2, B2)or RI, 02(, B2) Rl, 52(X2)or RI, 52
Compare Logical CL 55 R I, 02(X2, B2)or R 1,02(, B2) R 1, 52(X2)or RI ,52

Compare Logical CLC 05 01 (L, BI), 02(B2) 51(L),52 or 51,52
Compare Logical CLR 15 Rl,R2
Compare Logical Immediate CLI 95 01(BI),12 51,12
Compare, Long CO 69 R I, 02(X2, B2)or R 1,02(, B2) R I, 52(X2)or RI , 52
Compare, Long COR 29 Rl,R2

Compare, Short CE 79 RI,02(X2,B2)or Rl,02(,B2) Rl, 52 (X2)or Rl, 52
Compare, 5hort CER 39 RI,R2
Convert to Bi nary CVB 4F RI, 02(X2, B2)or RI, 02(,B2) Rl, 52 (X2)or RI, 52
Convert to Decimal CVO 4E R I, 02(X2, B2)or R 1,02(, B2) R I, S2(X2)or RI, 52

Operand Format (Add)

112

Type of
Program Interruption

Instruction Possible Condition Code Set
Instruction ~ 5 Ov P Op Other 00 01 10 11

Add RX x x F Sum=O Sum<O Sum>O Overflow
Add RR F Sum=O Sum<O Sum>O Overflow
Add Decimol 55, Decimal x D x x Data Sum=O Sum<O Sum>O Overflow
Add Ha I fword RX x x F Sum=O Sum <0 Sum >0 Overflow
Add logical RX x x Sum=O(8) Sum 0(8) Sum= oCD Sum 00)

Add logical RR Sum=O(8) Sum= 0(8) Sum= 00) Sum oCD
Add Normalized, long RX,Floating Pt. x x E x B,C R l M P
Add Norma I ized, long RR,Floating Pt. x E x B,C R l M P
Add Normalized, Short RX, Floating Pt. x x E x B,C R l M P
Add Norma I ized, Short RR,Floating Pt. x E x B,C R l M P

Add Unnormal-ized, long RX, Floating Pt. x x E x C R l M P
Add Unnormalized, long RR,Floating Pt. x E x C R l M P
Add Unnormalized, Short RX,Floating Pt. x x E x C R l M P
Add Unnormalized, Short RR,Floating Pt. x E x C R l M P
Add logical RX x x J K

And logical 55 x x J K
And logical RR J K
And logical Immediate 51 x x J K
Branch and link RX N N N N
Branch and link RR N N N N

Branch on Condition RX N N N N
Branch on Condition RR N N N N
Branch on Count RX N N N N
Branch on Count RR N N N N
Branch on Equal RX, Ext. Mnemoni c N N N N

Branch on High RX,Ext.Mnemonic N N N N
Branch on Index High RX,Ext.Mnemonic N N N N
Branch on Index low or Equal RX,Ext.Mnemonic N N N N
Branch on low RX, Ext .Mnemonic N N N N
Branch if Mixed RX, Ext.Mnemonic N N N N

I

Branch on Minus RX,Ext.Mnemonic N N N N
Branch on Not Equal RX, Ext. Mnemonic N N N N
Branch on Not High RX, Ext.Mnemonic N N N N
Branch on Not low RX, Ext.Mnemonic N N N N
Branch on Not Minus RX, Ext .Mnemonic N N N N

Branch on Not Ones RX,Ext.Mnemonic N N N N
Branch on Not Plus RX,Ext.Mnemonic N N N N
Branch on Not Zeros RX,Ext.Mnemonic N N N N
Branch if Ones RX, Ext. Mnemoni c N N N N
Branch on Overflow RX,Ext.Mnemonic N N N N

Branch on Plus RX, Ext.Mnemonic N N N N
Branch if Zeros RX ,Ext. Mnemoni c N N N N
Branch on Zero RX,Ext.Mnemonic N N N N
Branch Unconditional RX,Ext.Mnemonic N N N N
Branch Unconditional RR, Ext.Mnemonic N N N N

Compare Algebraic RX x x Z AA BB
Compare Algebraic RR Z AA BB
Compare Decima I 55, Decimal x x Data Z AA BB
Compare Ha I fword RX x x Z AA BB
Compare logical RX x x Z AA BB

Compare logical RX x x Z AA BB
Compare logical 55 x Z AA BB
Compare logical Immediate 51 x Z AA BB
Compare, long RX, Floating Pt. x x x Z AA BB
Compare, long RR,Flooting Pt. x x x Z AA BB

\ Compare, Short RX, Floating Pt. x x x Z AA BB
Compare, Short RR,Floating Pt. x x Z AA BB
Convert to Binary RX x x Data, F N N N N
Convert to Dec imal RX x x x N N N N

Condition Code Set (Add)

Appendix D 113

Instruction Mnemonic Machine Operand Format
Operation Operation

Code Code Expl icit Implicit

Divide D 5D R 1, D2(X2, B2) or R1 , D2(, B2) R1, S2(X2) or R1,S2
Divide DR 1D R1,R2
Divide Decimal DP FD D1, (L 1, B1), D2(L2, B2) Sl(Ll),S2(L2)or Sl,S2
Divide, Long DD 6D R 1, D2(X2, B2), or R1, D2(, B2) R1, S2(X2) or R1,S2
Divide, Long DDR 2D R1,R2

Divide, Short DE 7D R1, D2{X2, B2)or R 1, D2(, B2) R1, S2(X2) or R1, 52
Divide, Short DER 3D R1,R2
Edit ED DE D1 (L, B1), D2(B2) 51(L),52 or Sl,52
Edit and Mark EDMK DF D1 (L, B1), D2(B2) 51(L),52 or 51,52
Exclusive Or X 57 R 1, D2(X2, B2) or RT, D2(, B2) R1, S2(X2) or R1, 52

Exclusive Or XC D7 D1 (L, Bl), D2(B2) 51 (L), 52 or 51,52
Exclusive Or XR 17 Rl,R2
Exclusive Or Immediate Xl 97 Dl (Bl), 12 51,12
Execute EX 44 R 1, D2(X2, B2) or Rl, D2(, B2) Rl,52(X2) Rl,52
Halve, Long HDR 24 R1,R2

Ha Ive, Short HER 34 Rl,R2
Halt I/O HIO 9E Dl (Bl)
I nsert Character IC 43 R 1, D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) or Rl, 52
Insert 5torage Key 15K 09 R1,R2
Load L 58 R 1, D2(X2, B2) or Rl , D2(, B2) Rl, S2(X2) or Rl,52

Load LR 18 Rl,R2
Load Address LA 41 R 1, D2(X2, B2) or Rl, 02(, B2) Rl,52(X2) or R1 , 52
Load and Test LTR 12 Rl,R2
Load and Test, Long LTDR 22 Rl,R2
Load and Test, Short LTER 32 Rl,R2

Load Complement LCR 13 Rl,R2
Load Complement, Long LCDR 23 Rl,R2
Load Complement, 5hort LCER 33 R1,R2
Load Ha I fword LH 48 R 1, D2(X2, B2) or Rl, D2(, B2) Rlf S2(X2) or Rl,52
Load, Long LD 68 Rl, D2(X2, B2) or R1, D2(, B2) R],52(X2) or Rl,52

Load, Long LDR 28 Rl,R2
Load Multiple LM 98 R 1, R3, D2(B2) R1, R3, 52
Load Negative LNR 11 R1,R2
Load Negative, Long LNDR 21 Rl,R2
Load Negative, 5hort LNER 31 -Rl,R2

Load Positive LPR 10 R1,R2
Load Positive, Long LPDR 20 Rl,R2
Load Positive, Short lPER 30 R1,R2
Load PSW LPSW 82 D1(Bl)
Load, Short LE 78 R 1, D2(X2, B2) or R1, D2(, B2) R1,52(X2) or R1, 52

Load, 5hort LER 38 R1,R2
Move Characters MVC D2 Dl (L, Bl), D2(B2) 51 (L), 52 or 51,52
Move Immediate MVI 92 Dl (B1), 12 Sl,12
Move Numerics MVN Dl D1 (L, Bl), D2(B2} 51 (L), 52 or 51,S2
Move with Offset MVO Fl Dl (L 1, Bl), D2(L2, B2) 51 (L 1), 52(L2)or 51,52

Move Zones MVZ D3 Dl (L, B1), D2(B2) 51 (L), 52 or 51,52
Multiply M 5C R 1, D2(X2, B2)or RT , D2(, B2) R1,52(X2) orR1,52
Multiply MR TC R1,R2
Multiply Decimal MP , FC D 1 (L 1 , B 1), D2 (L2, B2) 51(Ll),52(L2) or 51,S2
Mul itply Halfword MH 4C Rl,D2(X2,B2) or R1,D2(,B2) R1,52(X2) or R1, 52

Multiply, Long MD 6C R1,D2(X2,B2) or R1,D2(,B2) R1,52(X2) or R1,52
Multiply, Long MDR 2C R1,R2
Multiply, 5hort ME 7C R 1, D2(X2, B2) or R1, D2(, B2) R1,52(X2) or R1, 52
Multiply, 5hort MER 3C R1,R2
No Operation NOP 47(BC 0) D2(X2, B2) or D2(, B2) 52(X2) or 52

operand Format (Divide)

114

Type of Program Interruptions
Instruction Possible Condition Code Set Instruction

A Spy P Op Other 00 01 10 11

Divide RX x x F N N N N
Divide RR x F N N N N ..
Divide Decimal 5S, Decimal x x x x D, Data N N N N
Divide, Long RX,Floating Pt. x x E x B,E N N N N
Divide, Long RR, Floating Pt. x E x B,E N N N N

Divide, Short RX, Floating Pt. x x E x B,E N N N N
Divide, Short RR, Floating Pt. x E x B,E N N N N
Edit 5S, Decimal x x x Data S T U
Edit and Mark 5S, Decimal x x x Data S T U
Exclusive Or RX x x J K

Exclusive Or SS x x J K
Exc I usive Or RR J K
Exclusive Or Immediate 51)(x J K
Execute RX x x G (May be set by this instruction)
Halve, Long RR, Floating Pt. x x N N N N

Halve, Short RR, Floating Pt. x x N N N N
Halt I/o SI A DD CC GG KK
Insert Charac ter RX x N N N N
Insert Storage Key RR x x x A N N N N
Load RX x x N N N N

Load RR N N N N
Load Address RX N N N N
Load and Test RR J L M
Load and Test, Long RR, Floating Pt. x x R L M
Load and Test, Short RR, Floating Pt. x x R L M

Load Complement RR F P L M 0
Load Complement, Long RR, Floating Pt. x x R L M
Load Complement, Short RR, Floati ng Pt. x x R L M
Load Halfword RX x x N N N N
Load, Long RX, Floating Pt. x x x N N N N

Load, Long RR, Floating Pt. x x N N N N
Load Multiple RS x x N N N N
Load Negative RR J L
Load Negative, Long RR, Floating Pt. x x R L
Load Negative, Short RR, Floating Pt. x x R L

Load Posi tive RR F J M 0
Load Posi tive, Long RR, Floating Pt. x x R L M
Load Positive, Short RR, FI oati ng Pt. x x R L M
Load PSW SI x x A QQ QQ QQ QQ
Load, Short RX, FI oati ng Pt. x x x N N N N

Load, Short RR, Floating Pt. x x N N N N
Move Characters 55 x x N N N N
Move Immediate SI x x N N N N
Move Numerics S5 x x N N N N
Move with Offset 5S x x N N N N

Move Zones SS x x N N N N
Multiply RX x x N N N N
Multiply RR x N N N N
Multiply Decimal 5S, Decimal x x x x Data N N N N
Multiply Halfword RX x x N N N N

Multiply, Long RX, Floating Pt. x x E x B N N N N
Multiply, Long RR, Floating Pt. x E x B N N N N
Multiply, Short RX, Floating Pt. x x E x B N N N N
Multiply, Short RR, Floating Pt. x E x B N N N N
No Operation RX, ExtMnemonic N N N N

Condition Code Set (Divide)

Appendix D 115

Instruction
Mnemonic Machine Operand Format
Operation Operation

Code Code Explicit Implicit

No Operation NOPR 07(BCR 0) R2
Or Logical 0 56 Rl, D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) or Rl, S2
Or Logical OC D6 Dl (L, Bl), D2(B2) Sl(L), S2 or SI, S2
Or Logical OR 16 Rl,R2
Or Logical Immediate 01 96 Dl(Bl),12 SI,12
Pack PACK F2 D 1 (L 1, B1), D2(L2, B2) SI(Ll), S2(L2) or SI,S2

Read Direct RDD 85 Dl(Bl),12 SI,12
Set Program Mask SPM 04 Rl
Set System Key SSK 08 Rl,R2
Set System Mask SSM 80 Dl(Bl) SI
Shift Left Double Algebraic SLDA 8F Rl, D2(B2) Rl, S2

Shift Left Double Logical SLDL 8D Rl, D2(B2) Rl, S2
Shift Left Single Algebraic SLA 8B Rl,D2(B2) Rl, S2
Shift Left Single Logical SLL 89 Rl, D2(B2) Rl,52
Shift Right Double Algebraic SRDA 8E Rl, D2(B2) Rl,52
Shift Right Double Logical SRDL 8C Rl, D2(B2) Rl, S2

Shift Right Single Algebraic SRA 8A Rl, D2(B2) Rl, S2
Shift Right Single Logical SRL 88 Rl, D2(B2) Rl, S2
Start I/O SIO 9C Dl(Bl) SI
Store ST 50 R 1, D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) or Rl,S2
Store Character STC 42 R 1, D2(X2, B2) or Rl, D2(, B2 Rl, D2(X2) or Rl, S2

Store Ha I fword STH 40 Rl,D2(X2,B2) or Rl,D2(,B2) Rl, S2(X2) or Rl ,S2
Store Long STD 60 R 1 , D2(X2, B2) Rl, S2(X2) or Rl ,S2
Store Multiple STM 90 Rl ,R2, D2(B2) Rl,R2,S2
Store Short STE 70 R 1, D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) or Rl, S2
Subtract S 5B Rl, D2(X2 Rl, S2(X2) or Rl , S2

Subtract SR 1 B Rl,R2
Subtract Deci mal SP FB Dl (L 1, Bl), D2(L2, B2) SI(Ll),S2(L2) or SI,S2
Subtract Halfword SH 4B R 1, D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) or Rl , S2
Subtract Logical SI 5F Rl,D2(X2,B2) or Rl,D2(,B2) Rl, S2(X2) or Rl ,S2
Subtroct Logical SLR 1 F Rl,R2

Subtract Normalized, Long SD 6B Rl, D2(X2, B2) or Rl, D2(, B2) Rl,S2(X2) or Rl ,S2
Subtract Normal ized, Long SDR 2B Rl,R2
Subtract Normalized, Short SE 7B Rl,D2(X2,B2) or Rl,D2(,B2) Rl, S2(X2) or Rl, S2
Subtract Normalized, SER 3B Rl,R2
Subtrac t Unnorma I ized, Long SW 6F Rl, D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) or Rl, S2

Subtract Unnormal ized, Long SWR 2F Rl,R2
Subtract Unnorma I ized, Short SU 7F Rl,D2(X2,B2) or Rl, D2(,B2) Rl, S2(X2) or Rl, S2
Subtract Unnormalized, Short SUR 3F Rl,R2
Supervisor Call SVC OA I
Test and Set TS 93 Dl (B1) SI

Test Channel TCH 9F Dl(BI) SI
Test I/O no 9D Dl(Bl) SI
T est Under Mask TM 91 Dl(BI),12 S1,I2
Translate TR DC Dl (L, B1), D2(B2) SI(L), S2 orSl , S2
Translate and Test TRT DD Dl (L, Bl), D2(B2) SI (L), S2 orSl , S2

Unpack UNPK F3 D 1 (ll, B 1), D2 (L2, B2) SI (Ll), S2(L2)or SI, S2
Write Direct WRD 84 Dl (B1),12 S1,I2
Zero and Add Decimal ZAP F8 Dl (Ll, B 1), D2(L2, B2) SI(Ll), S2(L2)or SI, S2

Operand Format (No Operation)

116

Type of P rog ram Interruptions
Instruction Possible Condition Code Set Instruction

A S Ov P Op Other 00 01 10 11

No Operation RR, Ext. Mnemonic N N N N
Or Logical RX x x J K
Or Logical SS x x J K
Or Logical RR J K
Or Logical Immediate SI x x J K
Pack SS x x N N N N

Read Direct SI x x x A N N N N
Set Program Mask RR RR RR RR RR
Set Storage Key RR x x x A N N N N
Set System Mask SI x A N N N N
Shift Left Double Algebraic RS x F J L M 0

Shift Left Double Logical RS x N N N N
Shift Left Single Algebraic RS F J L M 0
Shift Left Single Logical RS N N N N
Shift Right Double Algebraic RS x J L M
Shift Right Double Logical RS x N N N N

Shift Right Single Algebraic RS J L M
Shift Right Single Logical RS N N N N
Start I/O SI A MM CC EE AA
Store RX x x x N N N N
Store Character RX x x N N N N

Store Halfword RX x x x N N N N
Store Long RX, Floating Pt. x x x x N N N N
Store Multiple RS x x x N N N N
Store Short RX, Floating Pt. x x x x N N hi N
Subtract RX x x F V X Y 0

Subtract RR F V X Y 0
Subtract Decima I SS, Decimal x D x x Data V X Y 0
Subtract Halfword RX x x F V X Y 0
Subtract Logical RX x x W,H V,I W,I
Subtrac t Log i ca I RR W,H V,I W,I

Subtract Normalized, Long RX, Floating Pt. x x E x B,C R L M Q

Subtract Normalized, Long RR, Floating Pt. x E x B,C R L M Q

Subtract Norma I ized, Short RX, Floating Pt. x x E x B,C R L M Q

Subtract Norma I ized, Short RR,Floating Pt. x E x B,C R L M Q

Subtract Unnormalized, Long RX, Floating Pt. x x E x C R L M Q

Subtract Unnormal ized, Long RR, Floating Pt. x E x C R L M Q

Subtract Unnormalized, Short RX, Floating Pt. x x E x C R L M Q

Subtract U nnorma I i zed, Short RR, Floating Pt. x E x C R L M Q

Supervisor Call RR N N N N
Test and Set SI x x S5 TT

Test Channe I SI A JJ II FF HH
Test I/o SI A LL CC EE KK
T est Under Mask SI x UU VV WW
Translate SS x x N N N N
Translate and Test S5 x PP NN 00

Unpack SS x x N N N N
Write Direct SI x x A N N N N
Zero and Add Decimal 55, Decimal x D x x Data J L M 0

Condition Code Set (No Operation)

Appendix D 111

Program Interruptions Possible

Under Ov:

Under Other:

D == Decimal
E == Exponent
F == Fixed Point

A
B
C
D
E
F
G

Privileged Operation
Exponent Underflow
Sign ificance
Decimal Divide
Floating Point Divide
Fixed Point Divide
Execute

Condition Code Set

H No Carry
I Carry
J Result == 0
K Result is Not Equal to Zero
L Result is Less Than Zero
M Result is Greater Than Zero
N Not Changed
o Overflow
P Result Exponent Underflows
Q Result Exponent Overflows
R Result Fraction == 0
S Result Field Equals Zero
T Result Field is Less Than Zero
U Result Field is Greater Than Zero
V Difference == 0
W Difference is Not Equal to Zero
X Difference is Less Than Zero
Y Difference is Greater Than Zero
Z First Operand Equals Second Operand
AA First Operand is Less Than Second Operand
BB Fi rst Operand is Greater Than Second Operand
CC CSW Stored
DD Channel and Subchannel not Working
EE Channe I or Subchannel Busy
FF Channel Operating in Burst Mode
GG Burst Operation Terminated
HH Channel Not Operational
II Interruption Pending in Channel
JJ Channel Available
KK Not Operational
LL Available
MM I/o Operation Initiated and Channel Proceeding With its Execution
NN Nonzero Function Byte Found Before the First Operand Field is Exhausted
00 Last Function Byte is Nonzero
PP All Function Bytes Are Zero
QQ Set According to Bits 34 and 35 of the New PSW Loaded
RR Set According to Bits 2 and 3 of the Register Specified by Rl
SS Leftmost Bit of Byte Specified == 0
TT Leftmost Bit of Byte Specified == 1
UU Selected Bits Are All Zeros; Mask is All Zeros
VV Selected Bits Are Mixed (:;teros and ones)
WW Selected Bits Are All Ones

Program Interruptions Possible

118

APPENDIX E: ASSEMBLER INSTRUCTIONS

r------------T----------------'------------------T---------------------------------------,
I Operation I I I
I Entry I Name Entry I Operand Entry I
~---------- t-----,----------,-------------------t----------------------------------~
I ACTR I Not used, must not be present I An arithmetic SETA expression I
.-----------+-----------------------------------+--------------------------------------~
I AGO , A sequence symbol or not present I A sequence symbol I
~-----------t-----·------------------------------+--------------------------------------~
I AIF I A sequence symbol or not present ,A loqical expression enclosed in I
I' I parentheses, immediately followed by a I
I I I sequence symbol I
.-----------t-----·-----------,------------------t--------------------------------------~
I ANOP , A sequence symbol I Not used, must not be present. I
.----------t-----,------------------------------t--------------------------------------~
, CCW I Any symbol or not present I Four operands, separated by commas I
.----------t-----,------------------------------+--------------------------------------~
I CNOP I A sequence symbol or not present t Two absolute expressions, separated byl
I I , a comma I
~-----------t-----------------------------------t---------------------------------------~
, COM , A sequence symbol or not present I Not used, must not be present I
t-----------+-----------------------------------t---------------------------------------~
I COpy I Not used, must not be present I A symbol I
.-----------t-----------------------------------t---------------------------------------~ I CSECT , Any symbol or not prE!Sent , Not used, must not be present I
~-----------t-----------------------------------t---------------------------------------~
, DC I Any symbol or not present lOne operand I
t-----------t-----,-----------------,------------t---------------------------------------~
I DROP I A sequence symbol or not present lOne to sixteen absolute expressions, I
I I I separat.ed by COIlUTlas I
t-----------t-----------------------------------+---------------------------------------~
, DS I Any symbol or not present lOne operand I
.-----------t-----------------------------------t---------------------------------------~
I DSECT I A va riable symbol or an I Not used, must not be present I
, I ordi na.ry symbol I I
.-----------t-----------------------------------t---------------------------------------~
'EJECT I A sequence symbol or not present I Not used, ITiUSt not be present. I
.-----------t-----------------------------------t---------------------------------------~
, END I A sequence symbol I A relocatable expression I
I I or not present I or not present I
.-----------t--,·--------------------------------t---------------------------------------~
, ENTRY I A sequence symbol or not present lOne or more relocatable symbols, scpa-I
J I , rated by comma!.') I
.-----------t-----------------------------------t---------------------------------------~
I EQU I A variable symbol or an I An absolut,e or relocatable expres~;ion I
I , ordinary symbol I I
t-----------t-----,--------------'---,-------------t--------------------------------------~
I EXTRN I A sequence symbol or not present lOne or more relocatable symhols, s~.'pa-I
I I I rated by commas I
~-----------t-----,------------------------------t---------------------------------------~
I GBLA , Not used, must not be present lOne or lUore variable symbols that are I
I I I to be used as SET symbols, sepdrated I
I I I by comlllas 2 I
~-----------t----------------------------------t---------------------------------------~
, GELE I Not used, must not be present , One or more variable symbols that are I
I I I to be used as SET symbols, separa ted
I' I by comrr~s2 I
~·----------+----------------,-------------------t--------------------------------------~
I GBLe I Not used, must not be present lOne or more variable symbols that are I
'I , to be used as SET symbOlS, separat.ed I
I I I by commas 2 I
~-----------t----------------------------,-----+---------------------------------------~
I ICTL I Not used, must not be present lOne to three decimal values, separated I
I I , by comma s I l ___________ k ___________________________________ ~ _____________________________________ J

Appendix E 11<.J

r-----------T-----------------------------------~--------------------------------------,
I Operation I I I
I Entry I Name Entry I operand Entry I
r-----------f-----------------------------------f---------------------------------------~ 1 ISEQ I Not used, must not be present I Two decimal values, separated by a I
I I I comma I
.-----------+-----------------------------------+---------------------------------------~ I LeLA I Not used, must not be present lOne or more variable symbols that are I
I I I to be used as SET symbols, separated I
I I I by commas.;} I
~-----------+-----------------------------------+---------------------------------------~ I LCLB I Not used, must not be present lone or more variable symbols that are I
I I I to be used as SET symbols, separa ted I
I I I by commas 2 I
~-----------+-----------------------------------f---------------------------------------~
I LCLC I Not used, must not be present lOne or more variable symbols separa ted I
I I I by commas.;} I
~-----------+-----------------------------------f---------------------------------------1
ILTORG I Any symbol or not present I Not used, must not be present. I
~-----------+-----------------------------------+---------------------------------------~ I MACR01 I Not used, must not be present I Not used, must not. be present I
~-----------f-----------------------------------+---------------------------------------~
I MEND1 I A sequence symbol or not present I Not used, must not be rresent I
~-----------+-----------------------------------+---------------------------------------~ I MEXIT1 I A sequence symbol or not present I Not used, must not be present I
.-----------+-----------------------------------+---------------------------------------~ I MNOTE1 I A sequence symbol, a variable I A severity code, followed by a comma, I
I I symbol or not present I followed by dny combination of charac-I
I I I tees enclosed in a postrophes I
~-----------+-----------------------------------+----------------------------.-----------~
I ORG I A sequence symbol or not used I A relocatable expression or not used I
~-----------+----------------------------------+-------------------------------------.- ~
I PRINT I A sequence symbol or not present lOne to three operands I
.-----------f-----------------------------------+---------------------------------------~
I PUNCH I A sequence symbol or not present lOne to eighty characters enclosed in I
I I I apostrophe~i I
.----------+----------------------------------+----------------------------.--------.---~
I REPRO I A sequence symbol or not used I Not used, must not be present I
~-----------+-----------------------------------+---------------------------------------~
J SETA I A SETA symbol I An arithmetic expression I
~-----------+-----------------------------------+---------------------------------------~
I SETB I A SETB symbol I A 0 or a 1, or logical expression I
I I J enclosed in parentheses I
~-----------+-----------------------------------t---------------------------------------~ I SETC I A SETC symbol I A type attribute. a character expres- I
I I I sion, a substring notation, or a con- I
I I I catenation ot character expressions I
I I I and substring notations I
~-----------+-----------------------------------+-----------------------------------.----~ I SPACE I A sequence symbol or not presen t I A decima.l se If-def i nin<j term or not. I
I I I used I
~-----------+---------------------------------+--------------------,--------------.----~
I START I Any symbol or not present I A self-defining term or not used I
~-----------+-----------------------------------+---------------------------------------~
I TITLE3 I A special symbol (0 to 4 charac- lOne to 100 characters, enclosed in I
I I ters), a sequence symbol, a I apostrophes I
I I variable symbol, or not present I I
~-----------+-----------------------------------+---------------------------------------~
I USING I A sequence symbol or not present I An absolute or relocdtable expression I
I I I followed by 1 to 16 absolute expres- I
I I I sions, separated by cormnas I
~-----------.L----------------------------------..1.---------______________________________ ~
I :LMay only be used as part of a macro-definition. I
I .aSET symbols may be defined as subscripted SET symbols. I
I 3See section 5 for the description of the name entry. I l ___ J

120

ASSEMBLER STATEMENTS

r---------------------------T-----------------------------.-----------------------------1
I INSTRUCTION I NAME ENTRY 1 OPERAND ENTRY I
r---------------------------+-----------------------------+----------------------------~
IModel Statements 3 4 IAn ordinary symbol, variable IAny combination of char- I
I (A variable symbol or any I symbol, sequence I acters (including variable I
la3sembler language mnemoniclsymbol, a combination of I symbols) I
loperation code except COPY, Ivariable symbols and other I I
lEND, ICTL, ISEQ, and PRINT Icharacters that is equivalent I I
I Ito a symbol, or not used I I
~---------------------------+-----------------------------t-----------------------------~
IPrototype Statement 1 IA symbolic parameter or IZero or more operands that I
I I not used I are symbo lic parameters, I
I I I separated by commas, followed I
I I I by zero or more operands I
t I I (separated by commas) of the I
I I I form symbolic parameter, I
I I I equal sign, optional standard I
I I Ivalue ,
~---------------------------+-----------------------------+-----------------------------~
I Macro-Instruction IAn ordinary symbol, a IZero or more positional I
I Statement1 I variable symbol, a sequence loperands separated by comrr,as, I
I I symbol D a combi nation of I followed by z.ero or more I
I I variable symbols and other I keyword operands (separa ted I
I Icharacters that is equivalentlby commas) of the forn, 1
I It~o a symbol,2 or not used I keyword, eCflldl siqn, value 2 I
t---------------------------t-----------------------------+-----------------------------~
IAssembler Language IAn ordinary symbol, a var- IAny combination of characters'
Istatement3 4 liable symbol, a sequence I (including variable symbols) I
I I symbol, a combination I I
I lof variable symbols and I ,
I lother characters that i5 I I
I I equi valent to a symbol, I ,
I lor not used I I L __________________ , _________ ..L ____________________________ J. _____________________________ J

1 May only be used as part. of a macro-definition.
:.it Variable symbols appearing in a macro-instruction are

replaced by their values before the macro-instruction is
processed.

3 Variable symbols may not be used to generate the follow
ing mnemonic operation codes ~ ACTR, COPY, END, ICTL,
CSECT, DSECT, ISEQ, PRINT, REPRO, and START. Variable
symbols may not be used in the name and operand entries
of the following instructions: COPY, END, ICTL, and ISEQ.
Variable symbols llIay not be used in the name entry of the
ACTR instruction.

4 The line following a REPRO statement may not contain
I variable symbols. I L __ · ___________________________________ J

Appendix E 121

APPENDIX F: SUMMARY OF CONSTANTS

r------T---------T--------T--------T--------------T---------T--------~--------T---------l
I , I , LENGTH , I CON- I J I TRUN- I
, , IMPLIED , ,MODI-, ,STANTS ,HANGE ,RANGE I CATION/ I
I ,LENGTH I ALIGN- I ~'IER I SPECIFIED I PER I FOR EX- I FOR ,PADDING I
, TYPE , (BYTES) , MENT I RANGE I BY , OPERAND 1 PONENTS 1 SCALE I SIDE I

~------+---------+--------+--------+--------------+---------+---------+--------+---------~
I C I as ,byte I 1 to 1 characters ,one I I I right ,
I ,needed 1 I 256 (1) I 'I' I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------~ 'X I as I byte ,1 to 1 hexadecimal lone I I ,left I
, ,needed I ,256 (1)1 digits I I I I ,
~------+---------+--------+--------+--------------+---------+---------+--------+---------~
I B I as 1 byte ,1 to 1 binary lone I I I left I
I ,needen I ,256 1 digits I 1 1 , I

~------+---------+--------+--------+--------------+---------+---------+--------+---------~
IF, 4 'word I 1 to 8 , decimal I multiple' -85 to I -187 tol left I
, I I I , digits I I +75 ,+346, I
~------+---------+--------+--------+--------------+---------+---------+----.----+---------~
I H I 2 I half I 1 to 8 1 decimal I multiple I -A5 to I -187 I left I
, I I word, 1 digits I I +75 I +346 I ,
.------+---------+--------+--------+--------------+---------+---------+--------+---------~
I E I 4 I word I 1 to 8 I decimal I multiple I -85 to I 0 to 141 right I
1 I I I I digits I I +75 I I t
~------+---------+--------+--------+--------------+---------+---------+--------+---------~
I D I 8 I double I 1 to 8 I decimal t multiplel -85 to I 0 to 141 right I
I I I word I I dig its I I + 75 I I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------~
1 P I as I byte I 1 to I decimal I multiple' I I left I

1 I needed I I 16 I digits I 1 I I ,

~------+---------+-------.-+------.--+-----------~--+---------+---------+--------+---------~
I Z I as I byte I 1 to I decimal t multiple I I I left I
1 I needed I I 16 I digits I I I I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------~
I A I 4 I word I 1 to 4 I an absolute I mUltiple I I I left I

I I I I I expression I J I I I
I I I ~-------+--------------~ I I 1 I
I I I I 3 or 4 I a reloca table I I I I I
I I I 1 1 or complex t I I I I

I I I I I relocatdble I 1 I 1 I
I I I I I expression t I I I I

~------+---------+--------+----~---+--------------+---------+---------+--------+---------~
I V I 4 I word I 3 or 4 I relocatable I multiplel I I left I
1 I I 1 I symbol I I I I I

~------+---------+--.------+--------+--------------+---------+--------.-+--------+---------~
I S I 2 I half I 2 only lone absolute I multiple I I I I
1 I I word I I or relocatab-I I I I I
1 I I I I le express ion I I I I I

I 1 I 1 I or two absol-I 1 I I I

1 I 1 1 I ute express- I I I I I

I 1 I I I ions: I 1 I I I
1 I I I 1 exp (exp) I I I I I
~-----+---------+--------+--------+-------------+------+---------+--------+--------~
I Y I 2 I half I 1 or 2 I an absolute I multiplel , I left I
, , I word I I expression I I I I I
I I I t--------+--------------~ I I I I
, I I I 2 only I a relocatablel I I I I
I I I I I or compl ex' I I I I
, I I I I relocatable I I I I I

J I 1 I I expression I I I I I
~---_--~-_-------~--------~--------~--------------~----_____ L-________ L ________ 4 _________ ~

I I
I (1) In a DS assembler instruction, C and X type constants may have length specification I
I to 65535. I l ___ . _____________________________ J

122

The four charts in this appendix summarize
the macro facility described in Pa.rt 2 of
this publication.

Chart 1 indicates which macro facility
elements may be us ed in t he name and oper
and entries of each statement.

Chart 2 is a summary of the expcessions
that may be used in macro-instruction
sta tements •

APPENDIX G: MACRO FACILITY SUMMARY

Chart 3 is d summary of the attributes
that Hlay be used in each expression.

Chart 4 is a summary of the variable
symbols that may be used in each expres
sion.

.-------.-------------------------------V-a-ria~b~le-S-ym~b~ol-s---------------------------.--------------------------------------,.--~---

Global SET Symbols Local SET Symbols System Variable Symbols
Attributes

Symbolic Sequence
Statement Parameter SETA SETB SETC SETA SETB SETC &SYSNDX &SYSECT &SYSLIST Type Length Scaling Integer Count Number Symbol

I--------f-----+-----f-----+---+-----+----I------t----+_--_+_--__t---_+_--____t------~- - --- --- --- --- ---- -----
MACRO
~---+_--_+---+_----_+---~--~----~--_t_---+_--~--__\---~--____t---_t_----~-

Prototype
Stotement
I-------f----+----f------+---+------+----t-----t-~--+_--_+_--__t---_+_--____t----- -------_+----f-------- ---- -~

GBLA
~---+_--_+---+_----_+--__+--~-~----_t_----r_--____t--__t~--_r--__t---------------- -- ---

GBLB ,- ---

GBLC
--- f------ -- '-- -- -- ----

LCLA
~---+_--_+---+_---_+---~--1----t-----_t_---+_--~--__t---~--____t----_+-----__\-----r-------- ~---

LCLS

LCLC

Model
Statement

COpy

SETA
Operand2

Name
Operand3 Operand9

Name
Operand Operand Operand 3 Operand9 Operand

Name Name
Operation Operation
Operand Operand

Operand2

--

Name

Nome
+------+- -----

Operand Operand Operand Operand Operand

I---------+------+------+------+------+-----~-------t------_r------+_----_+_----~r_----_+_-----+------_r----__t-------------r--
SETS

Ope rand6
Name

Operand6 Operand Operand6
Name

Operand6 Operand Operand6 Operand6 Operand4 Operand6 Operand4 Operand5 Operand5 Operand5 Operand5 Operand5

~------+_----_+---.----r-- -
SETC Name

Operand8
t"ame

Operand Operand7 Operand8 Operand Operand 7 Operand Operand Operand Operand Operand
~----+_--_+-----+-----+---~--_+_----l_---_+_---+_---~--___II___--~--_+---_+_-------1------- ------+--------1

AIF
Ope rand6 Operand6 Operand Operand 6 Operand6 Operand Operand 6 Operand 6 Operand 4 Operand6 Operand4 Operand5 Operand5 Operand5 Operand5

Name
Operand5 Operand

~------+_----_+------+_-----+------~----_r------l_-----_+_------+_----~----___II___----~----_+----~--~-----------~.----_+--.

AGO

ACTR Operand2 Operand Operand3 Operand2 Operand Operand3 Operand2 Operand Operan~ Operand Operand Operand Operand Operand

Name
Operand

~------+-----_+------+_---~_+------+-----~r------l_-----_+_------+_----~----___I~----~----_+------_+_-------j--~-- r------r------
Nome ANOP

~------+_----_+------+_-----+------+-----~r------l------_+_------+_----~----___II___----~----_+-------~-------j------ -----.~-------

MEXIT Nome

MNOTE Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Nome

~----+_--_+----+_-----+---+---~r---l---~_+----+_--~---___II___--~---_+---·· ---- ---~ -----f-- -- ---- ------
MEND

Outer
Macro

Inner
Macro

Assembler
language
Statement

Name
Operand

Name
Operand

Name
Operand

Name
Operation
Operand

Name Name Name Name
Operand Operand Operand Operand

Name Name Name Name
Operand Operand Operand Operand

Name Name Name Name
Operation Operation Operation Operation
Operand Operand Operand Operand

1. Variable symbols in macro-instructions are replaced by their values before processing.
2. Only ifvalue is self-defining term.
3. Converted to arithmetic +1 or +0.
4. Only in character relations.
5. Only in arithmetic relations.
6. Only in arithmetic or character relations.
7. Converted to unsigned number.
8. Converted to character 1 or O.

Name

Name Name

Operand

Name Name Name Name Name

Operand Operand Operand Operand
--

Name Name

Operation
Operand

9. Only if one to eight decimal digits. L-__ ~ __ ~ _____ ~ ___ _

Chart 1. Macro Facility Elements

Appendix G 123

Chart 2. Expressions

r-------------T------------------------~--------------------------~-------------------l I Expression I Arithmetic Expressions I Character Expressions I Logical Expressions I
.-------------f-------------------------f--------------------------f--------------------~ I May 1. Self-defining terms 1. Any combination of 1. SETB symbols I
I contain 2. Length, scaling, characters enclosed 2. Arithmetic re- I
I integer, count, and in apostrophes lations 1 I
I number attributes 2. Any variable symbol 3. Character re- I
I 3. SETA and SETS symbols enclosed in apos- lations.2 I
J 4. SETC symbols whose trophes I
I value is 1-8 decimal 3. A concatenation of I
I digits variable symbols and I
I 5. Symbolic parameters other characters I
I if the corresponding enclosed in apos- I
1 operand is a self- trophes I
I defining term 4. A request for a type I
I 6. &SYSLIST(n) if the attribute. I
I corresponding operand) I
I is a self-defining I I
1 term I I
I 7. &SYSLIST(n,m) if the I I
I corresponding operandi I
I is a self-defining I I
I term I I J
I I 8. &SYSNDX I I I
r-------------f-------------------------f--------------------------f--------------------~ I Operators I +,-,*, and / I concatenation , with a I AND, OR, and NOT I
I are I parentheses permitted I period e.) I parentheses per- I
I I I I mitted I
.-------------f-------------------------f--------------------------f--------------------~ I Range J -2 31 to +2 31_1 I 0 through 127 characters I 0 (false) or I
J of values I I I 1 (true) I
~-------------+-------------------------+--------------------------f--------------------~ I May be I 1. SETA operands I 1. SETC operands 3 I 1. SETB operands I
I used in I 2. Arithmetic relations I 2. Character relations 2 I 2. AIF operands I
I I 3. Subscripted SET I 3. SETA operands~ I I
I I symbols I J I
I I 4. &SYSLIST I J I
I I 5. Substring notation I I I
I I 6. Sublist notation , I I
I I 7. SETC operands I I I
I I 8. ACTR operands I I I
~-------------f-------------------------f--------------------------f--------------------~ I 1 An arithmetic relation consists of two arithmet.ic expressions related by the opera-I
I t.ors GT, LT, EQ, NE, GE, or LE. I
I 2 A character relation consists of two character expressions related by the operator I
I GT, .LT, EQ, NE, GE, or LE. The type attribute notation and the substring notation I
I may also be used in character relations. The maximum length of the charact.er I
I expressions that can be compared is 127 characters. If the two character expres- I
I sions are of unequal length, then the shorter one will always comfare less than thel
I longer. I
I 3 Maximum of eight characters will be assigned. I
I ~ If one to eight decimal digits. I L ______________________________ . __ J

124

Chart 3. Attributes
r-----------T----------T----------------------T-----------------------~----------------1
I Attribute I Notation ,May be used with: IMay be used only if IMay be used in ,
I " 'type attribute is:, I
~-----------+----------+----------------------+----.-------------------+-----------------~
jType ,T' ISymbols outside ICMay always be used) 11. SETC operand 1
1 I I macro-definitions; 1 1 fields I
, , , symbol ic parameters, , 12. Character 1
1 I I&SYSLISTCn), and I I relations ,
I I \ &SYSLIST (n,m) inside I I (SETS) I
I \ I macro-definitions I \ I
~-----------+----------+----------------------+-----------------------+-----------------~
I Length I L' ,Symbols outside IAny letter except I Arithmetic 1
, , I macro-definitions; IM,N,O,T, and U 'expressions ,
I , I symbolic parameters, , , I
I , '&SYSLIST(n), dnd I , I
I I \ &SYSLISTCn,m) inside I , J
, I I macro-definitions , , I
~-----------+----------+----------------------+-----------------------+-----------------~
I Scaling ,S' ISymbols outside IH,F,G,D,E,K,P, and Z ,Arithmetic I
I I I macro-definitions; I ,expressions I
, I ,symbolic parameters, I I I
, , I &SYSLIST Cn), and I , I
, I I&SYSLIST(n,m) inside , I I
I I I macro-definitions I I I
.---------+----------+-------_._-----------+-----------------------+-----------------~
,Integer 'I' ISymbols outside IH,F,G,D,E,K,P, and Z ,Arithmetic I
, I Imacro-definitions; I I expressions I
I I ,symbolic parameters, I I I
I I I &SYSLIST (n), and I I I
I , I&SYSLISTCn,m) inside , , ,
I I I macro-definitions I I I
.-----------+----------+-----------------------+-----------------------+-----------------~
,Count I K' ISymbolic parameters IAny letter I Arithmetic ,
, I I corresponding to I I expressions I
I I I macro-instruction , , I
, I I operands, &SYSLIST I I ,
I I I (n), and &SYSLIST(n,m) I I ,
, I I inside macro- I I ,
I I I definitions I I ,
.-----------+----------+----------------------+-----------------------+-----------------~
I Number I N' ISymbolic parameters, IAny letter I Arithmetic ,
I I I&SYSLIST, and I I expressions I
I I I &SYSLIST (n) inside I I I
I I I macro-definitions I I I l ___________ ~ __________ ~ ______________ - _______ ~ _______________________ ~ _________________ J

l\.ppendix G 125

Chart 4. Variable Symbols
r--------------T-------------T-----------------~-------------~------------------------1
IVariable IDefined by: I Initialized, !Value changed IMay be used in: I
I symbol I lor set to: I by: I I
r-------------+-------------+-----------------+--------------+-------------------------~
ISymbolic1 I Prototype I Corresponding ,(Constant 11. Arithmetic expressions I
1 parameter I statement I macro-instruction I throughout I if operand is self- I
I I I operand I definition) I defining term I
I I I I 12. Character expressions J

~--------------+-------------t-----------------+--------------+-------------------------~
I SETA ILCLA or GBLA 10 'SETA 11. Arithmetic expressions I
I I instruction I I instruction ,2. Character expressions ,
~--------------+-------------+-----------------+--------------+-------------------------~
,SETB ,LCLB or GBLB 10 ,SETB 11. Arithmetic expressions,
, I instruction I I instruction 12. Character expressions I
I , I I 13. Logical expressions I
~--------------t-------------+-----------------+--------------+-------------------------~
ISETC ILCLC or GBLe INuil character ISETC 11. Arithmetic expressions I
I I instruction ,value I instruction, if value is one to I
, , I I) eight decimal digits I
I , I I 12. Character expressions I
~--------------+-------------+-----------------+--------------+-------------------------~
I&SYSNDX1 IThe assembler I Macro-instructionl (Constant 11. Arithmetic expressions I
I I I index I throughout 12. Character expressions I
I , 1 I definition; I I
1 I I Junique for I I
I 1 I I each macro- I I
I I I I instruction) I I
~--------------t-------------+-----------------+--------------+-------------------------~
I&SYSECT1 IThe assemblerlControl section I <Constant ICharacter expressions I
I I I in which macro- I throughout I I
I I I instruction I definition; I I
I I 1 appears I set by CS.ECT, I I
I I I IDSECT, and I I
I I I I START) I I
~--------------+-------------t-----------------t--------------+-------------------------~
I&SYSLISTl. IThe assemblerlNot applicable \Not applicableIN'&SYSLIST in arithmetic I
I 1 I 1 I expressions I

.--------------+-------------+-----------------t--------------+-------------------------~
I&SYSLISTCn)1 IThe assernblerlCorresponding I (Constant 11. Arithmetic expressions I
I &SYSLIST(n,rn) 11 lmacro-instruction\throughout I if operdnd is self- I
I I I operand 1 definition) I defining term I
I 1 I I 12. Character expressions 1
~--------------+-------------+-----------------+--------------+-------------------------~
1 1 May only be used in macro-definitions. I L ___ J

126

APPENDIX H: DICTIONARY AND SOURCE STATEMENT SIZES

PART 1: DICTIONARIES USED IN MACRO GENERATION

A. Dictionaries at Collection Time

For the Macro Generator portion of the Assembler to accomplish macro generation and
conditional assembly, two or more dictionaries must be constructed: a Global Dic
tionary and one or more Local Dictionaries.

Global Dictionan

One Global Dictionary is built for the entire program. It contains macro-instruction
mnemonics and global SET variable names. The capacity of the Global Dictionary is 64
blocks of 256 bytes each. An entry is made for each unique macro-instruction mnemon
ic and each unique global SET variable name. Each block contains complete entries.
Any entry not fitting into a block is placed in the next block with the remaining
bytes in the present block unused. The entries are as follows:

Macro Mnemonic Ope,ration Code

Global SET Variable Name

Fixed Overhead

Local Dictionary

10 bytes plus mnemonic.

6 bytes plus name* (A dimensioned global
SEI' variable is counted only once)

8 bytes for first block
4 bytes for each succeeding block
5 bytes for last block

For the main portion of the pr~Jram, one Local Dictionary is constructed in which
ordinary symbols (relevant to macro generation and conditional assembly), sequence
symbols, and local SET variable names are entered. In addition, one Local Dictionary
is constructed for each different macro definition used in the program. These Local
Dictionaries contain one entry for each local SET variable name, sequence symbol, and
prototype symbolic parameter declared within the macro definition. The capacity of
each Local Dictionary is 64 blocks of 256 bytes each. Each block contains complete
entries. Any entry not fitting into a block is placed in the next block with the
remaining bytes in the present block unused. The following table indicates the size
of each type of entry and will serve to relate dictionary capacities to the structure
of any given program:

Sequence Symbol Names

Local SET Variable Names

Prototype Symbolic Parameters

Relevant ordinary symbols
appearing in the main

portion of the program

F'ixed Overhead

10 bytes plus name*

6 bytes plus name. (A dimensioned local
SET variable is counted only once)

5 bytes plUS name*

10 bytes plus name.

8 bytes for first block
4 bytes for each succeeding block
5 bytes for last block

* One byte is used for each character in the name or mnemonic

B. Dictionaries at Generation Time

Appendix H 127

To conserve storage during the actual conditional assembly and macro generation, the
contents of the Global Dict.ionary and Local Dictionari es are restructured as follows:

Global Dictionary

Fixed Overhead 4 bytes plus word alignment

Macro Mnemonic Operation Code 3 bytes

Global SETA dimensioned 1 byte plus 4N

Global SETA undimensioned 4 bytes

Global SETH dimensioned 1 byt e plus (N /8)
[N/8 is rounded to the next highest int.eger]

Global SETB undimensione<l 1 byte

Global SErrC dimensioned 1 byte pI us 9N

Global SETC undimensioned 9 bytes

Local Dictionary

Fixed Overhead 20 bytes plus word alignment.

Sequence Symbols 5 bytes

Local SETA dimensioned 1 byt(~ plus 4N

Local SETA undimensioned 4 bytes

Local SETS d.imensioned 1 byte plus CN/B)
[N/8 is rounded to the next highest integer]

Local SETH undimensioned 1 byte

Local SETC dimensioned 1 byt e plus 9N

Local SE'l'C undimensioned 9 bytes

Helevant ordinary symbols appearing in
the main portion of the program 5 bytes

N = dimension

Note: Only those symbols which appear in Il'-'!cro instruction operands or whose attri
butes are referenced are included in this table. These entries are required only
for the main program LOCdl Dictionary.

The restructured Global Dictionary and the restructured Local Dictionary for the
main portion of the program must be resident in main storage.

In addi tion, if the program cont .lins any macro-instructions, main storage is
required for the largest Local Dictionary of the macro-definitions being processed.
Furtherniore, if any macro-definitions contain inner macro-instructions, main storage
is required for all the restructured Local Dictionaries of all the macros in the
nest.

In addition to those reqUirements specified above for the Local Dictionary of the main
portion of the program, each macro-definition Local Dictionary requires the following for
the parameter table:

1. Fixed. Overhead 22 bytes

2. Table Entries

128

a. Character string
b. Hexadecimal, binary,

decimal, and character
self-defining values

c. Symbol
d. Sublist

L:::Length of ent.ry
N=Number of entries in sublist

3 bytes plusL

7 bytes plus L
9 bytes plus L
10 bytes plus 2N bytes plus Y

Y=Total length of table ent.ries of a., b., and c. formats

Each nested macro-instruction also requires the following:
Parameter pointer list 2 bytes plus 2N (N = the number of operands)
Pointers to list in table 8 bytes plus word alignment

PART 2: MACRO MNBMONIC TABLE

AS the source text is scanned, a table of macro mnemonics is constructed. There is an
entry for each macro used or defined as a programmer macro in the program. The entries
are made under the premise that every undefined operation is a system macro mnemonic.
This table is then subsetted to locate and edit system macros from the library.

An entry in this subsetted table consists of 9 bytes. With 10,240 bytes of main stor
age available, approximately L~50 distinct macro mnemonics can be handled. When this
table overflows, processing continues with only those macros defined at that point. If
additional storage is available, this table is expanded accordingly.

PART 3: SOURCE STATEMENT COMPLEXITY - CONDITIONAL ASSEMBLY AND MACRO GENERATION

For any statement E~xcept macro-prototype or macro instructions, a counter is increased by
one for each literal occurrence of the following:

1. Ordinary Symbol:

a. Name, operat.ion, or operand entry (when the operand count starts, the counter
is decremented by one), or

b. Operand of an EXTRN statement, or

c. Operand of an attribute operator CL i ,T', I', etc.. in a SETA, SETB or SETC
expression, or

d. Operand of a machine or assembler instruction (only if in the main portion of
the program)

2. Variable Symbo~

3. seguence Symbo~

Note 1: The maximum value the counter may att.ain is 35.

Note 2: This restriction applies to the name and operation entry of a macro-instruction
or prototype taken as a unit. Each wacro-instruction or prototype operand (in sub
list, each sublist operand) is also subject to the counter restriction.

Examples of counts

1. &B2 SETB (T'NA~1E EQ'W' OR 'SC'.'A' EQ'AA')
count=3

2. EXTRN A,~, £, &C
cQunt=4-

Appendix H 129

PART 4: SOURCE STATEMENT COMPLEXITY; ASSEMBLER STATEMENTS

with 10,240 bytes of main storage available, statement size,S, must be less than 727
bytes for DC and DS statements and less than 743 bytes for all others.

For all statements: S = NB"N D+4 (NLS+NSD) +6 (NS+NL)

Where NB =total number of bytes in name, operation, operand, and comments entries
(the maximum value of NB is 187).

ND = number of operators and delimiters in the operand entry {except equal (=), per-
iod (.>, and apostrophe (')]

NLS= number of references to length attribute (L'SYMBOL),

NSD = number of self-defining terms.

NS = number of symbolic terms (including *).

And NL = number of literal operands (maximum of 1)

Example:

NAME MVC A+(B-C)*3(L'D,S),=15CLS'ABCDEFG'
5=39+9+4(1+4)+6(3+1)

=92

In general, all statements can be processed if they contain 50 or fewer terms. If a
statement contains more than SO terms, the formula should be used to determine if the
statement can be processed, or if the statement should be shortened using EQU assembler
instructions. For example, if A+ (B-C) *3 were equated to a symbol, that symbol could be
used as the displacement field of the first operand in ·the example.

130

APPENDIX I: SAMPLE PROGRAM

Given:

1. A TABLE with 15 entries, each 16 bytes long, having the following format:

r-----------------------T----------------y---------------r-------------, I NUMBER of i terns I SWITCHes I ADDRESS I NAP£ I L _________________ . __ . ____ .l..-_______________ .L ______________ .L _____________ J

3 bytes 1 byte 4 bytes 8 bytes

2. A LIST of items, each 16 bytes: long, having the following format:

r------------T----------------r-----------------------.----------------, I NAME I SWITCHes I NUMBER of items I ADDRESS I L __________ .L _______________ ._.1. ____ , _______________ -.L ________ . ________ J

8 bytes 1 byte 3 bytes 4 bytes

Find: Any of the items in the LIST which occur in the TABLE and put the SWITCHeR,
NUMBER o:E i terns, and ADDRESS from that LIST ent.ry into the corresponding TABLE
entry. If the LIST item does not occur in the TABLE, turn on the first bit in
the SWITCHes byte of the LIST entry.

The TABLE entries have been sorted by their NAME.

EXAM
• ..
•

· ..
• +:

• *

• * .*
• *
.*
• * .*

TIT:LE 'SAMP.LE PROGRAM'

THIS IS THE MACRO-DEFINITION

MACRO
MOVE &TO, &FRO~l

DEFINE SETC SYMBOL

LCLC &TYPE

CHECK NUMBER OF OPERANDS

AIF (N'&SYSLIST NE 2).ERRORl

CHECK TYPE ATTRIBUTES OF OPERANDS

AIF
AIF
AIF
AIF
AGO

(T'&TO NE T'iFROM).ERROR2
(T' &TO EQ fC' OR T'i'TO EQ 'G' OR T' &TO EQ 'K') .rrYPECGK
(T'&TO EQ '0' OR T'&TO EQ 'E' OR T'&TO EQ 'H').TYPEDEH
(T' &TOEQ • F'). MOVE
.ERROR3

.TYPEDEH ANOP

.*
• *
· * &TYPE
• tJI0VE

ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL

SETC T' &TO
ANOP

* NEXT TWO STATEMENTS GENERA:TED FOR MOVE MACRO
L&TYPE 2, &FROM
ST&TYPE 2,&TO
MEXIT

.*
· * CHECK LENGTH ATTRIBUTES OF' OPERANDS
.*
TYPECGK AIF (L'&TO NE L'&FROM ORL'&TO GT 256).E;RROR4
* NEXT STATEMENT GENERATED ,r"OR NOVE MACRO

MVe &TO,&F'ROM
MEXIT

Appendix I 131

.*

.* ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS

.*
.ERRORl MNOTE 1, 'IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED'

MEXIT
.ERROR2 MNOTE 1,' OPEHAND TYPES DIFFERENT, NO STATEM.ENTS GENERATED'

MEXIT
.ERROR3 MNOTE 1, ' IMPROPER OPERAND TYPES, NO STATEMENTS G.ENERATED'

MEXIT
.ERROR4 MNOTE 1,' IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERAT.ED'

MEND

*
*
*

MAIN ROUTINE

BEGIN

MORE

*

*

*

NOTTHERE

SWITCH
NONE

*

CSECT
BALR
USING
LM
USING
SAL
TM
SO
USING
MOVE
NEXT
MVC
MOVE
NEXT
MVe
MOVE
NEXT
L
ST
SXLE
STOP
01
BXLE
STOP
DS
EQU

R13,O ESTABLISH ADDRESSABILITY OF PROGRAM
*,R13 AND TELL THE ASSEMBLER
R5,R7,=A(LISTAREA,16,LISTENDl LOAD LIST AREA PARAMETERS
LIST,RS flliGISTER 5 POINTS TO THE LIST
R14,SEARCH FINO LIST ENTRY IN TABLE
SWITCH, NONE CHECK TO SEE IF NAME WAS ~'OUND

NOTTHERE BRANCH IF NOT
TABLE,Rl REGISTER 1 NOW POINTS TO TABLE ENTRY
TSWITCH,LSWITCH MOVg FUNCTIONS

STATEMENT GENERATED FOR MOVE MACRO
TSWITCH,LSWITCH
TNUMBER,LNUMBER FROM LIST ENTRY

STATEMENT GENERATED FOR MOVE MACRO
TNUMBER,LNUMBER
TADDRESS,LADORESS TO TABLE ENTRY

TWO STATEMENTS GENERATED FOR MOVE MACRO
2,LADDRESS
2,TADDRESS
RS, R6,MORE

LSWITCH, NONE
R5, R6 , l10RE

x
X' 80'

LOOP THROUGH THE LIST
END OF PROGRAM, USER LIBRAHY
TURN ON SWITCH IN LIST ENTRY
LOOP THROUGH THE LIST
END OF PROGRAM, USER LIBRARY

MACRO

MACRO

* BINARY SEARCH ROUTINE

* SEARCH NI
LM
LA

LOOP SRL
CLC
BH
BeR
SR

BCT
B

HIGHER AR
BCT

NOTFOUND 01
BR

*
* THIS

* OS
TABLAREA DC

DC
DC
DC
DC
DC

132

SWITCH, 255-NONE TURN OFF NOT FOUND SWITCH
Rl,R3,=F'128,4,128' LOAD TABLE PARAMETERS
Rl, TABLAREA-16 (Rl) GET ADDRESS OF MIDDLE ENTRY
R3,1 DIVIDE INCREMENT BY 2
LNAME,TNAME COMPARE LIST ENTRY WITH TABLE ENTRY
HIGHER BRANCH IF SHOULD BE HIGHER IN TABLE
S,R14 EXIT IF FOUND
Rl,R3 OTHERWISE IT IS LOWER IN THE TABLE X

SO SUBTRACT INCREMENT
R2,LOOP LOOP 4 TIMES
NOTFOUND ARGUMENT IS NOT IN THE TABLE
Ri,R3 ADD INCREMENT
R2,LOOP LOOP 4 TIMES
SWITCH, NONE TURN ON NOT FOUND SWITCH
R14 EXIT

IS THE TABLE

OD
XL8'0'
CLS' ALPHA'
XLS'O'
CLS'BETA'
XLS to'
CLS'DELTA'

* •
•
LISTAREA

LISTEND

*
* •
Rl
R2
R3
R5
R6
R7
R13
R14
•
•
* LIST
LNAME
LSWITCH

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

THIS

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

THESE

EQU
EQU
EQU
EQU
EQU
EQll
EQU
EQU

THIS

DSECT
DS
DS

XLB'O'
CLB' EPSILON'
XLB'O'
CLB' ETA'
XLB to'
CLB 'GAMMA'
XLB'O'
CLBtIOTA'
XLB'O
CLB'KAPPA'
XL8' 0'
CLB~LAMBDA'

XL8'0'
CLB'MU'
XL8'O'
CLB Q NU'
XL8 v O'
CLBoOMICRON'
XLBuO'
CLB °PHI'
XLBuO'
CL8 "SIGMA'
XLB"O'
CL8 II ZETA'

IS THE LIST

CL8 'J LAMBDA'
X'OA'
FL3'29'
A(BEGIN)
CL8'ZETA'
X'05'
FL3'S'
A(LOOP)
CL8 'THETA
X'02'
FL3' 45'
A(BEGIN)
CL8 'TAU'
X'OO'
FL3' O'
A(.1)

CL8'LIST'
X'lF'
FI.3'456'
A(O)
eL8'ALPHA'
X, 00'
FL3'1'
A (123)

AHE THE SYMBOLIC REGISTERS

1
2
3
5
6
7
13
14

IS THE FORMAT DEFINITION OF LIST ENTRIES

CL8
C

Appendix I 133

LNUMBER OS FL3
LAnDRESS DS F THIS IS THE FORMAT DEFINITION OF TABLE ENTRIES ..
TABLE DSECT
TNUMBER DS FL3
'l'SWITCH DS C
TADDRESS DS F
TNAME DS CLB

END BEGIN

134

APPENDIX J: ASSEMBLER LANGUAGES--FEATURES COMPARISON CHART

Features not shown below are common to all assemblers. In the chart:
Dash Not a II owed.
X = As defined in Operating System/360 Assembler Language Manual.

Basic 7090/7094
Model 20 Programming Support BPS 8K Tape, BOS 16K

OS/360 Feature Basic Support/360: Package BOS 8K Disk Disk,lrape
Assembler

Assembler Basic Assembler Assemblers Assembler
Assembler

No. of Conti nuation Cards/Statement 0 0 0 1 1 2
(exclusive of macro-instructions)

I nput Character Code EBCDIC EBCDIC BCD & EBCDIC EBCDIC EBCDIC EBCDIC

ELEMENTS:

Maximum Characters per symbol 4 6 6 8 8 8

Character self--defining terms 1 Char. only 1 Char. only X X X X

Binary self-defining terms - - - - - - X X X

Length attribute reference - - - - - - X X X

Literals - - - - - - X X X

Extended mnemonics - - - - X X X X

Maximum Location Counter value 214_1 2 16 _1 224_1 224_1 224_1 224_1

Multiple Control Sections per assembly - - - - - - X X X

EXPRESSIO NS:

Operators + - + -* + -*/ + -*/ + -*/ + -*/
f-.

Number of terms 3 3 16 3 8 16

Levels of parentheses - - - - - - 1 3 5

Complex relocCitabi I ity - - - - - - X X X

ASSEMBLER INSTRUCTIONS:

DC and DS

Expressions allowed as modifiers - - - - - - - - X X

Multiple operands - - - - - - - - - - X

Multiple constants in an operand - - - - - - Except X X
Address
Consts.

Bit length specifications - - - - - - - - - - X

Scale modifier - - - - - - X X X

Exponent Modifier - - - - - - X X X

DC types Only Except Except X X X

C, X, B, P, Z B, V

H, V V, V, S

DC duplication factor Except V Except A X Except S X X

Appendix J 135

Basic 7090/7094
Model 20 Programming Support BPS 8K Tape, BOS 16K OS/360

Feature Basic Support/360: Package BOS 8K Disk Disk/Tape Assembler
Assembler Basic Assembler Assemblers Assemb~er

Assembler

DC dupl ication factor of zero Except Y - - - - Except S X X

DC length modifier Except Except X X X X
H, Y H, E, D

DS types Only OnlyC, Only C,
X X X

H. C H, F, D H, F, D

DS length modi fer Only C Only C Only C X X X

DS maximum length modifier 256 256 256 256 65,535 65,535

DS constant subfield permitted - - - - - - X X X

COpy - - - - - - - - X X

CSECT - - - - - - X X X

DSECT -- -- X X X --
ISEQ - - - - - - X X X

lTORG - - - - - - X X X

PRINT - - - - - - X X X

TITLE - - - - X X X X

COM - - - - - - - - X X

ICTl - - 1 operand 1 operand X X X
(lor 25
on~y)

USING 2 operands 2 operands 2-17 operands 6 operands X X
(operand 1 (operand 1 (operand 1
relocatable! relocatable relocatable
only) only) only)

DROP 1 operand 1 operand X 5 operands X X
only only

CCW - - operand 2 X X X X
(re locatable
only)

ORG no blank no blank no blank X X X
operand operand operand

ENTRY 1 operand 1 operand 1 operand 1 operand X X
only only only only

EXTRN 1 operand loperond 1 operand 1 operand X X
only only (max 14) only only

CNOP - - 2 decimal 2 decimal 2 decimal X X
digits digits digits

PUNCH - - - - -- X X X

REPRO - - - - - - X X X

Macro Instructions S/360 - - -- X X X
Model 20
IOCS only

• 136

BPS 8K Tape, BOS 16K 05/360
Macro Faci I ity Features BOS 8K Disk Disk/Tape Assembler

Assemblers Assembler

Operand Subl ists - - X I X

Attributes of macro-instruction operands inside macro definitions and symbols used in - - X ~

conditional assembly instructions outside macro definitions.

Subscripted SET symbols - - X X

Maximum number of operands 49 100 200

Conditional assembly instructions outside macro definitions - - X X

Maximum number of SET symbols

global SETA 16 * *

glo~al SETB 128 * *

global SETC 16 * *

local SETA 16 * *

local SETB 128 * *

local SETC 0 * *

* The number of SET symbols permitted by the Basic Operating System/360 Assembler (16K Disk/Tape) and the Operating
System/360 Assembler is variable, dependent upon available main storage.

Note: The maximum size of a character expression is 127 in BOS (16K) and 255 characters in OS.

Appendix J 137

INDEX

&SYS, restrictions on use, 63, 75, 90
&SYSECT (see Current control section nane)
&SYSLIST (see Macro-instruction operand)
&SYSNDX (see Macro-instruction index)
7090/7094 Support Package Assembler, 8, 135
Absolute terms, 15
ACTR instruction 84
Address constants, 47

A--type, 47
Complex relocatable expressions, 47
Literals not allowed, 20
S--type, 48
V--type, 48
Y--type, 47

Address specification, 34
Addressing 24

Dummy sections,
Explicit, 24

29

External control sections,
Implied, 24
Relative, 26

AGO instruction
Example, 84
Form of, 84

84

Inside macro-definitions,
Operand field of, 84
Outside macro-eefinitions,
Sequence symbol in, 84
Use of, 84

AIF instruction
Example of,
Form of, 83

83
B:3

Inside macro-definitions,
Invalid operand fields of,
Logical expression in, 83
Operand field of, 83
Outside macro-definitions,
Sequence symbols in, 83
Use of, 83
Valid operand fields of,

Alignment, boundary
CNOP instruction for,
Machine instruction,

Ampe:rsands in

55
33

Character expressions, 79
Macro-instruction operands,
I'-1NOTE instruction, 89
Symbolic parameters, 63
Variable symbols, 59

ANOP instruction 85
Example of, 85
Form of, 85
Sequence symbol in,
Use of, 85

Apostrophes in

85

Character expressions, 78
Macro-instruction operands,
t1NOTE instruction, 89

Ari thmetic expresE;ions
Arithmetic relations,
Evaluation procedure,
Invalid examples of,
Operand sublists, 77
Operators allowed, 76
Parenthesized terms in

• 138

81
76

76

76

32

84

84

83
83

83

83

66

66

evaluation of,
examples of,

76
76

SETA instruction,
SETB instruction,
Substring notation,
Terms allowed, 76
Valid examples of,

Arithmetic relations,
Arithmetic variable,
Assembler instructions

Statement, 38
Table, 119

Assembler language 8

75
81

79

76
81

93

Basic Programming Support,
Comparison chart, 135

8, 135

Macro facilities, relation to,
Statement format, 13
Structure, 15, 16

Assembler program
Basic functions,
Output, 27

9

Assembly, terminating an, 57
Assembly no operation (see ANOP

instruction)
Attributes 71

How referred to, 72
Inner macro-instruction operands,
Kinds of, 71
Notations, 71
Operand sublists, 72
Outer macro-instruction operands,
Summary chart of, 125
Use of, 71
(see also specific attributes)

Basic Programming Support
Base registers

Assembler,

Address calculation,
DROP instructions,
Loadinq of, 24

9,
24

USING instructions, 24
Binary constant, 44
Binary self-defining term,
Binary variable, 93
Blanks

32, 34

19

Logical expressions, 81
Macro-instruction operands, 67

CCW instruction, 50
Channel command word, defining, 50
Character codes, 100
Character constant, 42
Character expressions, 78

Ampersands in, 79
Character relations, 81
ExaIT'ples of, 78
Periods and, 78
Apostrophes in, 78
SETB insturctions, 81
SETC instructions, 78

Character relations. 81
Character self-defining term, 19
Character set, 15, 100
Character variable, 93

58

72

72

8, 135

CNOP instruction, 55
Coding form, 12
COM instruction, 30
Commas, macro-instruction operands, 67
Comments statements

Examples of, 14, 65
Model statements, 65
Not generated, 65

Comparison chart, 135
Compatibility

Assembler language, 7
Macro-definitions, 99

Complex relocatable expressions, 47
Concatenation

Character expressions, 78, 79
Defined, 64
Examples of, 64
Substring notations, 79

Conditional assembly elements, summary
charts of, 87, 124

Conditional assembly instructions
How to write, 70
Summary of, 87
Use of, 70
(see also specific instructions)

Conditional branch (see AIF instruction)
Constants (see also specific types)

Defining (see DC instructions)
Summary of, 122

Continuation lines, 11
Control dictionary, 27
Conditional branch instruction, 36

Operand format, 37
Control section location assignment, 28
Control sections

Blank common, 30
CSECT instruction, 28
Defined, 27
First control section, properties of

28
START instruction, 28
Unnamed, 29

COpy instruction, 57
COPY statements in macro-definitions

Form of, 65
Hodel statements, contrasted, 65
Operand field of, 65
Use of, 65

Count attribute
Defined, 73
Notation, 71
Operand sublists, 73
Use of, 73
Variable symbols, 73

CSECT instruction, symbol in, length
attribute of, 28

Current control section name (&SYSECT)
Affected by CSECT, DSECT, START, 95
Example of, 95
Use of, 95

Data definition instructions, 39
Channel command words, 50
Constants, 39

Storages, 4 B
DC instruction, 39

Duplication factor operand subfield,
Operand subfield Modifiers v 40

Type operand subfield, 40
Length modifier, 40
Scale modifier, 41
Exponent modifier, 42

Constant operand subfield, 42
Address-constants (see Address
constants)

Binary constant, 44
Character constant, 42
Decimal-constants, 46
Fixed-point constants, 44
Floating-point constants, 45
Hexadecimal constant, 43
Type codes for, 41

Decimal constants, 46
Length modifier, 46
Length, maximum, 46
Packed, 45
Zoned, 45

Decimal field, integer attribute of, 74
Decimal self-defining terms, 78
Defining constants (see DC instruction)
Defining storage (see DC instruction,

DS instruction)
Defining symbols, 17, 70
Dimension, subscripted SET sywbols, 93
Displacements, 34
Double-shift instruction, 33
DROP instruction, 25, 33
DS instruction, 48

Defining areas, 49
Forcing alignment, 49

DSECT instruction, 29
Dummy section location assignment, 29, 31
Duplication factor, 40

Forcing alignment, 49

Effective address, length, 35
EJECT instruction, 51
END instruction, 57
ENTRY instruction, 31
Entry point symbol, identification of, 31
EQU instruction, 38
Equal signs, as macro-instruction operands,

66
Error message (see MNOTE instruction)
Explicit addressing, 24, 34

Length, 34
Exponent modifiers, 42
Expressions, 21, 31

Absolute, 34
Evaluation, 22
Relocatable, 34
Surrmary chart of, 125

Extended mnemonic codes, 36
Operand format, 37
Table, 110

External control section, addressing of,
31

External symbol, identification of, 31
EXTRN instruction, 31

First control section,
Fixed-point constants,

Format, 44
Positioning of, 44

40 Scaling, 44

28
44

• 139

Values, minimum and maximum, 45
Fixed-point field, integer attribute of,

74
Floating-point constants, 45

Alignment, 46
Format, 45
Scale modifiers, 45

Floating-point field, integer attribute
of, 74

Format control, input, 53

GBLA instruction
Form of, 90
Inside macro-definitions, 90
Outside, macro-definitions, 90
Use of, 90

GBLB instruction
Form of, 90
Inside macro-definitions, 90
Outside macro-definitions, 90
Use of, 90

GBLC instruction
Form of, 90
Inside macro-definitions, 90
Outside, macro-definitions, 90
Use of, 90

General register zero, base register
usage, 25

Generated statements, examples of, 64
Global SET symbols

Defining, 90
Examples of, 90, 92
Local SET symbols, compared, 89
Using, 90

Global -variable symbols
Types of, 89
(see also global SET symbols, sub
scripted SET symbols)

Hexadecimal constants, 43
Hexadecimal-decimal conversion chart,

100
Hexadecimal self-defining terms, 18

II (see Integer attribute)
ICTL instruction, 52
Identification-sequence field, 14
Identifying blank common control section,

30
Identifying assemb ly output, 51
Identify dummy section, 29
Implied addressing, 24, 34

Length, 34
Implied length specification, 34
Inner macro-instruction

Defined, 68
Example of, 69
Symbolic parame-ters in, 68

Instruction alignment, 33
Integer attribute

• 140

Decimal fields, 74
Examples of, 74
Fixed-point fields, 74
Floating-point fields, 74
How to compute, 74
Not:ation, 71
Restrictions on use, 74

Use of, 74
ISEQ instruction, 53

KI (see Count attribute)
Keyword

Defined, 96
Keyword macro-instruction, 96
Symbolic parameter and, 96

Keyword, inner macro-instructions used
in, 97

Keyword macro-definition
Positional macro-definitions, compared,
96
Use, 96

Keyword macro-instruction
Example of, 97
Format of, 96
Keywords in, 96
Operanos, 58, 96
Invalid examples, 97
Valid exa~ples, 97
Operand sublists in, 97
Keyword prototype statement
Examples of, 96
Format of, 96
Operands, 96

Invalid exa~ples,
Valid examples,

Standard values,

96
96

96

LI (see Length attribute)
LeLA instruction

Form of, 75
Use of, 75

LCLB instruction
Form of, 75
Use of, 75

LCLC instruction
Form of, 75
Use of, 75

Lengths explicit and implied, 34, 35
Length attribute

Defined, 34, 73
Examples, 73
iJotation, 71
Restrictions on use, 73
Symbols, 17, 73
Use of, 73

Length modifier, 40
Length subfield, 33

Level of parentheses, 22
Lihrary, copying coding form, 57
Linkage symbols (see also ENTRY instruc-

tion, EXTRN instructions)
Entry point symbol, 31
External symbol, 31
Linkage editor, and

use of, 31
Listing, spacing, 52
Listing control instructions, 52
Literal pools, 20, 54
Li terals , 20

Character, 34
DC instruction, used in, 20
Duplicate, 21
Format, 20
Literal pool, beginning, 55

Literal pools, multiple,
Local SET symbols

Defining, 90
Examples of, 90-92
Global SET symbols, compared
Using, 90

Local variable symbols
Types of, 89
(see also local SET symbols)

89

(see also subscripted SET symbols)
Location counter 38, 42, 48

Predefined symbols, 19
References to, 19
Settinq, 54

Logical expressions
83

81

81

AIF instructions,
Arithmetic relations
Blanks in, 81
Character relations
Evaluation of, 82
Invalid examples of
Logical operators in,
Parenthesized terms in

82
81

Evaluation of, 82
Examples of, 82

Relation operators in,
SETB instructions, 81
Terms allowed in, 81
'Valid examples of, 81

LTORG instruction, 55

81

Machine features required, 7
Machine-instructions, 33

Alignment and checking, 33
Literals, limits on, 20
Mnemonic operation codes, 35
Operand fields and subfields, 33
Symbolic operand formats, 35

Machine-instruction mnemonic codes, 35
Alphabetical listing, 110

MACRO
Form of, 61
Use, 61

Macro-definition
Compatibility, 99
Defined, 61
Example of, 63
How to prepare, 61
Keyword (see Keyword macro-definition)
Mixed-mode (see Mixed-mode macro-
definition)

Placement in source program, 61
Use, 61

Macro-definition exit (see XEXIT instruc
tion)

Machine-instruction examples and format
RR, 33, 35
RX, 33, 36
RS, 33, 36
SI, 33, 36
SS, 33, 36
SUmB_ary table, 108

Macro-definition header statement (see
MACRO)

Macro-definition trailer statement (see
MEND)

Macro facility
Additional features 88

Comparison chart 138
Relation to assembler language
Summary 87, 123

Macro-instruction

67
Defined, 58
Example of,
Form of, 66
How to write,
Levels of, 69

66

Mnemonic operation code.
Name entry of, 66
Omitted operands,

Example of, 67
Operand entry of,
Operands

Ampersands,
Blanks, 67
Coromas, 67

66

Equal signs, 66

67

66

Paired parentheses, 66
Paired apostrophes, 66

Operand sublists, 67
Operation entry of, 66
Statement form, 67
Types of, 58

66

Used as model statement, 68
Macro-instruction index (&SYSNDX)

AIF instruction, 93
Arithmetic expressions,
Character relation, 93
Example, 94
MNOTE instruction,
SETB instruction,
SETC instruction,
Use of, 93

93
93
93

93

Macro-instruction operand (&SYSLIST)
Attributes of, 95
Use of, 95

58

(see also symbolic parameters)
Macro-instruction prototype statement

(see Prototype statement)
Macro-instruction statement (see Macro

instruction)
HEND

Form of, 61
MEXIT instruction, contrasted, 88
Use of, 61

MEXIT instruction
Example of, 88
Form of, 88
MEND, contrasted, 88
Use of, 88

Mixed-mode macro-definitions
positional macro-definitions,
contrasted, 98

Use, 98
Mixed-mode macro-instruction

Exareple of, 98
Form of, 98
Operand field of, 58, 98

Mixed-mode prototype statement
Example of, 98
Form of, 98
Operands of, 98

Hnemonic operation codes, 35
Extended, 37
Machine-instruction, 35
Macro-instruction, 61

• 141

MNOTE instruction
Ampersands in,
Error message,
Example of, 88
Operand entry of,
Apostrophes in,
Severity code,
Use of, 88

88
88

88
88

88

Model statements
Comments field of,
Comments statements,
DE~fined, 62

62
65

Name field of, 62
Operation field of,
Operand field of,
Use of, 62

62
62

N' (see Number attribute)
Name entries, 13
Number attribute

Defined, 73
Example of, 74
Notation, 73
Operand sublist, 73

Operands
Entries, 13
Fields, 33
Subfields, 33, 34
Symbolic, 31, 33, 35

Operand Sublist
Alternate statement form, 67
De fined, 67
Example of, 68
U~;e of, 67

Operation field, 33
Ordinary symbol, 17
ORG instruction, 54
Outer macro-instruction defined,

Paired parentheses, 66
Paired apostrophes, 66
Parentheses in

Arithmetic expressions, 76
Loqical expressions, 82
Macro-instruction operands,
Operand fields and subfields,
Paired, 66

Period in
Character expressions,
Comments statemEmts,
Ccmcatenation, 65
Se:quence symbol s , 74

78
65

68

66
34

Positional macro-definition (see Macro
definition)

Positional macro-instruction (see Macro
definition)

Positional macro-instruction (see Macro-
instruction) 58

Previously defined symbols,
PRINT instruction, 52
Program control instructions,
Program listings, 10

18

Program sectioning and linking,
Prototype statemen~

Example of, 6:2
Form of, 61

53

24

Keyword (see Keyword prototype state
ment)

• 142

Mixed-mode (see Mixed-mode prototype
statement)

iJame entry of, 61
61

61
Operand entry of,
Operation entry of,
Statement form, 61
Symbolic parameters in,
Use of, 61

PUNCH instruction, 54

Relocatability, 15, 10
Attributes, 31, 17

61

Program, general register zero, 25
Relocatable expressions, 23, 33

In USING instructions, 25
Relocatable symbols, 17
Relocatable terms, 15

Pairing of, 22
In relocatable expressions, 23

Relative addressing, 26
~EPRO instruction, 54
RR machine·-instruction format, 33

Length attribute, 33
;,ymbolic operands, 35

RS machine-instruction format, 33
Address specification, 34
Length attribute, 33
Symbolic operands, 35

RX machine-instruction format, 33
Address specification, 34
Length attribute, 33
Symbolic operands, 35

S' (see Scaling attribute)
Sample program, 131
Scale modifier

Fixed-point constants, 41
Floating-point constants, 41

Scaling attribute
Decimal fields, 73
Defined, 73
Examples of, 73
Fixed-point fields, 73
Floating-point fields, 73
Notation, 91
Restrictions on use, 73
Symbols, 73
Use of, 73

Self-defining terms, 18
(see also specific terms)

Sequence checking, 53
Sequence symbols, 17, 74

AGO instruction, 84
AIF instruction, 83
ANOP instruction, 85
How to write, 74
Invalid examples of, 75
Macro instruction, 74
Use of, 74
Valid examples of, 75

Set symbols
Assigning values to, 70
Defining, 70
Symbolic parameters, contrasted, 70
Use, 70
(see also local SET symbols)
(see also global SET symbols)
(see also subscripted SET symbols)

SET variable, 92
SETA instruction

Examples of, 76, 77
Form of, 75
Operand entry of, 75

Evaluation procedure, 76
Operators allowed, 76
Parenthesized terms, 76
Terms allowed, 76
Valid examples of, 76

Operand sub1ist, 77
Example, 77

SETB instruction
Example of, 82
Form of, 81
Logical expression in, 81

Arithmetic relations, 81
Blanks in, 81
Character relations, 81
Evaluation of, 82
Operators allowed, 81
Terms allowed, 81

Operand entry of, 81
Invalid examples of, 82
Valid examples of, 82

SETC instruction
Apostrophes, 78
Character expressions in, 78

Ampersands, 79
Periods, 78

Concatenation in
Character expressions, 79
Substring notations, 79

Examples of, 78-81
Form of, 79
Operand entry of, 78
Substring notations in, 79

Arithmetic expressions in, 79
Character expressions in, 79
Invalid examples of, 79
Valid examples of, 79

Type attribute in, 78
Example of, 78

SETA symbol
AIF instruction, 76
Arithmetic relations, 81
Assigning values to, 70
Defining, 70
SETA instruction, 76
SETB instruction, 76
SETC instruction, 81
Using, 76

SETB symbol
AIF instruction, 82
Assigning values to, 70
Defining, 70
SETA instruction, 82
SETB instruction, 82
SETC instruction, 82
Using, 82

SETC symbol
Assinging values to, 70
Defining, 65
SETA instruction, 81
Using, 80

Severity code in MNOTE instruction I 89
SI machine-instruction format., 39

Address specification, 34

Length attribute, 33
Symbolic operands, 35

Source statement library defined,
SPACE instruction, 52
SS machine-instruction format,

Address specification, 34
Length attribute, 33
Length field, 34
Symbolic operands, 35

START instruction
Positioning of, 27
Unnamed control sections,

Statements, 11, 13
Boundaries, 11
Examples, 13
Macro-instructions,
Prototype, 61
Summary of, 121

66

28

59

33

Storage, defining (see DS instruction)
S-type address constant 48
Sub1ist (see Operand sub1ist)
Subscripted SET symbols

Defining, 92
Examples, 93

Dimension of, 93
How to write, 92
Invalid examples of,
Subscript of, 93
Using, 93

Examples, 93
Valid examples of,

92

92
Substring notation

Arithmetic expressions in,
Character expression in,
How to write, 79
Invalid example of,
SETB instruction,
SETC instruction,
Valid examples of,

79
81
79

79

79
79

Symbol definition, EQU instruction for,
Symbols

Defining, 17
Length attributes, 33

Referring to, 21
Length, maximum, 18
Previously defined,
Restrictions, 18
Symbol table capacity,
Types of, 17
Value attributes, 33

Symbolic linkages, 31
Symbolic operand formats,
Symbolic parameter

63

18

Comments field,
Concatenation of,
Defined, 63

64

How to write, 63
Invalid examples of,
Model statements, 63
Prototype statement,
Replaced by, 63
Valid example of, 63

63

62

127

35

System variable symbols
Assigned values by assembler,
Defined, 93

93

(see also specific system variable
symbols)

38

.143

T' (see Type attribute)
Tables, internal, capacity of,
Terms

Expressions composed of, 15
Pairing of, 22

TITLE instruction, 51
Type attribute

Defined, 72
L:L terals, 72
~~cro-instruction operands,
Notation, 71
SETB instruction, 82
SETC instruction, 78
Use, 72

127

72

Unconditional branch (see AGO instruction)
Unna.med control section 28

8144

USING instruction, 24, 33

Value attribute, 17
Variable symbols, 17

Assigning values to, 59
Defined, 59
How to write, 59
Summary chart of, 126
Types of, 59
Use, 59
(see also specific variable

V-type address constant, 48

XFR instruction, 8

Y-type address constant, 47

symbols)

C24-3414-1

Internatilllllal Business Machines Corporation

nata Prol::lIsBing Division

112 Eaat I'ost Road, White Plaina, N. Y. 10BOI

READER'S COMMENT· FORM

IBM System/360 Basic Operating System Form C24-34l4-l
Language Specifications: Assembler (16K Disk/Tape)

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confi
dential basis. Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

• Does this publication meet your needs?
Yes
c::::::J

• Did you find the material:

•
•

Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

What is your occupation?
How do you use this publication?

As an introduction to the subject? CJ
For advanced knowledge of the subject? c:::J
For information about operating procedures? CJ

No
CJ

As an instructor in a class? CJ
As a student in a class? CJ
As a reference manual? c=J

~her __ __

• Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS:

•. Thank you for your cooperation. No postage necessary if mailed in the U. S. A.

C24-3414-1

Fold

[
BUSINESS RE:PLY MAIL

NO POSTAGE NECESSARY If MAILED IN THE UNITED STATES

----"
POSTAGE Will IE PAID IV ...

IBM Corporatic,n

P. O. Box 6

Endicott, N. Y. 13764

Attention: Plrogramming Publicatio.ns, Dept. 157

FIRST CLASS
PERMIT NO. 170

ENDICOTT, N. Y.

Fold

._---
Fold Fold

llrn~
~

Internatill:nal Business Machines Corporation

Data Prol:lIssing Division

112 Ea.t Post Road, Whits Pl.ains, N. Y. 1060t

'S
u

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148

