
Systems Reference Library

IBM System/3S0
Basic Operating System
Assembler with Input/Output Macros
Specifications

File Number S360-2l
Form C24-336l-6

This reference publication describes the assembler
language and the input/output (I/O) macros
supplied by IBM for use in writing programs for 8K
disk-oriented System/360 installations. The
general features of. the assembler language are
described first, followed by a description of each
of three types of assembler language statements:
machine-instruction, assembler-instruction, and
macro-instruction statements. The description of
the macro instructions consists of a description
of each of the IBM-supplied I/O macros.

The reader should be familiar with the
information presented in the· publications:

IBM System/360 Principles of Operation, Form
A22-682l;

IBM System/360 Basic Operating System,
Programmer's Guide, Form C24-3372;

IBM System/360 Basic Operating System and IBM
System/360 Bas~c Programm~ng Support, Macro
Def~n~tion Language, Form C24-3364.

For a list of other associated publications,
refer to the IBM System/360 Bibliography, Form
A22-6822.

BoS

PREFACE

This publication is intended as a guide for
the programmer using,the assembler lanquage
and its features. It contains .all the
information needed by the programmer to
code an assembler-language program on the
coding form. The information needed by the
programmer to code user macro definitions
(for inclusion into the macro library) is
presented in the macro-definition language
publication as listed on the cover of this
publication.

The material in this publication is
presented assuming that the reader has had
ex~erience with computer system~ and has

Seventh Edition (July '968)

background in the basic programming
concepts and techniques (or has completed
basic courses of instruction in these
areas). The publication IBM System/360
Pr~n£~Bles of Operation (Form A22-6821)
supplies the necessary background
information about IBM System/360 operations
(particularly storage addressing, data
formats, and machine-instruction formats
and functions). The publication IBM­
System/360 BasicOperati~~stem,
PrQg£ammer's Guide (Form C24-3372) supplies
the necessary background information about
IBM System/360 programming using Basic
Operating System.

This is a major revision of, and obsoletes, C24-3361-5, and
Technical Newsletters N24-5314, N24-5335, N24-5341, and
N33-8534. The changes reflect the availability of BaS
Release 17. The chanqes to the text, an~ small changes to
illustrations, are indicated by a vertical line to the left
of the change; changed or added illustrations are denoted by
t~e symbol • to the left of the caption.

Significant changes or additions to the specifications
contained in this publication are continually being made.
When using this publication in connection with the operation
of IBM equipment, check the latest SRL Newsletter for
revisions or contact the local IBM Branch office. Requests
for copies of IBM publications should be made to your IBM
representative or to the local IBM br~nch office.

A form has been provided at the back of this publication £or
readers' comments. If the form has been detached, comments
may be directed to IBM Laboratory, Publications Dept.,
P.O. Box 24, Uithoorn, Netherlands.

~ Copyright International Business Machines Corporation,
1965,1968

INTRODUCTION • • • • • • • • • 5
Assembler-Language statements 5
PROGRAMMER AIDS •• • • • • • 6
IBM Basic Operating system/360
Relationships • • • • • • • • • 6
Machine Requirements • • • • • 7

GENERAL INFORMATICN • • • • • • 8
Assembler Language Coding Conventions 8
Assembler-Language Structure. 11
Terms and Expressions • • • • 13

Terms • • • • • 13
Expressions • • • • • • • • 17

ADDRESSING PROGRAM SECTIONING AND
LINKING • • • • • • • • •
Addressing • • • • • • • • • • •

Addresses -- Explicit and Implied
Base Register Instructions •

Register Usage • • • • • • • •
Programming with the USING

• • 20.
• • 20

20
• • 20

20

Instruction • • • • • 22
Relat~ve Addressing •• • • 23

Program sectioning and Linking • • • 23
Control Sections • • • •• 23
First Control Section • • • • • • 24
Symbolic Linkages • • 26
ENTRY -- Identify Entry-point Symbol • 27
EXTRN -- Identify External Symbol • • 27

Machine Instructions • • • • •• •• 29
Machine-Instructio.n Statements • 29

Operand Fields and Subfields • • • 29
Lengths -- Explicit and Implied ••• 30

Machine-Instruction Mnemonic Codes. 31
Machine-Instruction Examples • • • 31

Extended Mnemonic Codes • • • • 32

ASSEMBLER INSTRUCTION STATEMENTS
Symbol Definition Instruction

EQU -- EQUATE SYMBOL • • • • •
Data Definition Instructions • •

DC -- DEFINE CONSTANT
DS -- Define Storage • • • •

34
• .' 34

34
• • 35
• • 35

44
CCW -- Define Channel Command Word • • 46

46
46
47

Listing Control Instructions • • • •
TITLE Identify Assembly output
EJECT -- Start New Page
SPACE -- Space Listing • • • •
PRINT -- Print Optional Data •

Program Control Instructions •
ICTL -- Input Format Control •
ISEQ -- Input Sequence Checking
REPRO -- Reproduce Following Card
PUNCH -- Punch a Card ••••••
XFR -- Generate a Transfer Card
ORG -- Set Location Counter
LTORG -- Begin Literal Pool
CNOP -- Conditional No Operation •
END -- End Assembly • • • •

MACRO INSTRUCTION STATEMENTS

• • 47
• • 47

48
48
49

• • 49
• • 49

• 50
• • 50
• • 50

51
• • 52

53

Macro Instruction Format • • • 54
,Assembly of the Macro • • •• • • 55

Input/Output Control Macros 55
Initialization • • • • • • • • • 63
Processing Records Consecutively ••• 71
Processing Disk Records by th~ Direct
Access Method • • • • • • 88
Processing Disk Records by the
Indexed Sequential System 96
Macro Instructions to Load or Extend
a Disk File by ISFMS ••••••••• 105
Macro Instructions to Add Records to
a File by ISFMS • • • • • .107
Macro Instructions for Random
Retrieval by ISFMS •••• .108
Macro Instructions for Sequential
Retrieval by ISFMS •••• •• • • 109

• • J 12 Processing With STR Devices
Processing Records with Physical
Writing Checkpoint Records ••
Completion • • • • • • • • • •

IOCS 124
• • J30
• • 132
• • 137

• • • • J38
File Definition Macros • • • • •

Consecutive Processing (DTFSR)
Direct Access Method (DTFDA) •
Indexed Sequential System (DTFIS)
Processing with STR Devices (DTFSN,

• • 151
• • 158

DTFEF) •••••••••••••••• 165
Binary Synchronous Communication
(DTFBS, DTFRF) • • • • • • • •
Physical IOCS (DTFPH) ••••

Supervisor-Communication Macros
Supervisor-Assembly Macros • • •

• .'66
• • 171
• • 173
• • 182

Macro Instructions to Assemble a
Supervisor • • • • • • • • •• • • 183
Organization to Assemble a Supervisor 188

Job-Control-Assembly Macros (Not For A
Disk-Resident System) •••••• 190

Assembling the Job Control Program •• 191

Control Cards • • 192

Assembler Language Subset Relationship .195

APPENDIX A: CHARACTER CODES--PART • • 197

APPENDIX A: CHARACTER CODES--PART 2 •• 198

APPENDIX B: .MACHINE-INSTRUCTION
MNEMONIC OPERATION CODES • • • • • .203

APPENDIX C: ASSEMBLER-INSTRUCTIONS •• 211

Appendix D~ Machine-Instruction Format .212

Appendix E: Hexadecimal-Decimal Number
Conversion ,Table • • • • • • • • • .214

Appendix F: Summary of Constants • .223

APPENDIX G : IOCS EXAMPLE • .224

Contents 3

APPENDIX H: ASSEMBLER LANGUAGES --
FEATURES COMPARISON CHART ••••••• 230

Appendix. I: Summary of Input/Output
for an Assembly • • • • •• .234

. APPENDIX J: ASSEMBLER DIAGNOSTIC
MESSAGES ••• 245

APPENDIX K: SUMMARY UF IMPERATIVE
MACRO INSTRUCTIONS • • ••••••••• 252

4 S/360 BOS Assembler vith I/O Macros

APPENDIX L: BLANK, SUBSTITUTE BLANK~
AND INTERMEDIATE LRt REQUIREMENTS .255

APPENDIX M:BINARY SYNCHRONOUS
Communication •• • ••
Part 3 - Sample Program • • • •
Part 4 - BOS/BSC Support Channel
Programs • • •
CNTRL Macro •• •• •• • •
Part 5-BOS/BSC TP OP Codes

• •• 256
•••• 258

• •• 265
.266

• • ~ 266

CQmputer programs may be expressed in
machine language, i.e., language directly
interpreted by the computer, or in a
symbolic language, which is much more
meaningful to the programmer. The symbolic
lanquage, however must be translated into
machine languaqe before the computer can
execute the program. This function is
accomplished by an associated processing
program.

Of the various symbolic programming
languages, assembler languages are closest
to machine language in form and content.

The assembler language discussed in this
manual is a symbolic programming language
for the IBM System/360. It enables the
programmer to use all IBM System/360
machine functions, as if he were coding in
System/360 machine language.

The !~El~£translates or processes
assembler-language programs into machine
language for execution by the computer.
The program written in the assembler
language used as input to the Assembler is
called the sou£ce·pro~~; the
machine-language program produced as output
from the Assembler is called the object
~Qg£g~. The translation or processing
procedure performed by the Assembler to
produce the object program is called
as§~mbling. Often, as in this publication,
the object program produced is also
referred to as an assembly.

The System/360 Basic Operating system
Assembler can assemble programs· written in
the Basic Programming Support (8K Card)
assembler language or the Basic Programming
Support (8K Tape) assembler language. It
can also assemble programs written for the
Assembler of the 7090/7094 Support Package
for the IBM System/360. The System/360
Basic Operating System Assembler requires
the EBCDIC punches for the + I () and =
signs.

Any proqram written in the IBM
System/360 Basic Operating System assembler
language can be assembled by the System/360
Operating System Assembler (provided the
necessary macros are in the Macro library)
and the System/360 Basic Programming
Support Assembler with the following
exceptions:

1. The XFR assembler instruction is
considered an invalid mnemonic

INTRODUCTION

operation code by System/360 Operatinq
System Assemblers and System/360 Disk
and Tape Operating System Assemblers.

2. The assignment, size, and ordering of
literal pools may differ among the
assemblers.

ASSEMBLER-LANGUAGE STATEMENTS

Program statements (source statements)
written in assembler language may consist
of: a name to identify the ·statement; a
symbolic operation code lmnemonic) to
identify the function the statement
represents; and an operand, consistinq of
one Qr·more items called operands, to
designate the data or storage locations
used in the operation, and spac~ for
comments.

Assembler-language programs may consist
of up to four types of statements:
machine-instruction, macro-instruction, and
assembler~instruction, and comments
statements.

ffa~chine-instruction statements are
one-for-one symbolic representations of
System/360 machine instructions. The
Assembler produces an equivalent machine
instruction in the object program from each
machine-instruction statement in the source
program.

Macro-instruction statements cause the
Assembler to retrieve a specially-coded
symbolic routine from the macro library,
modify the routine according to the
information in the macro instruction, and
insert the modified routine into the source
program for translation into machine
language. IBM supplies specially-coded
input/butput (I/O) routines as part of the
macro library. The assembler language
includes a set of I/O macro-instruction
statements through which these routines can
be retrieved and modified to suit
particular needs for input or output.
Also, the user can define his own library
routines, and reference them throuqh
macro-instruction statements he defines
himself. These routines and statements are
defined according to a special lanquaqe,
the macro-definition lanquaqe, and are
processed by the Assembler in the same
manner as the IBM I/O routines and
macro-instruction statements. The
macro-definition language is presented in
the macro-definition language publica­
tion, as listed on the front cover of this
publication.

Introduction 5

The Assembler program, in addition to
its translation function, provides
auxiliary functions that assist the
programmer in checking and documenting
programs, in controlling storage-address
assignment, in program sectioning and
linking, in data and storage-field "
defin£tion, and in controlling the
Assembler program itself.
Assembler-instruction statements specify
these auxiliary functions to be performed
by the Assembler, and, with a few
exceptions, do not result in the generation
of any machine-language code by the
Assembler.

Predefined mnemonic codes are provided
in the assembler language for all
machine-instruction, assembler-instruction,
and IBM-supplied I/O macro-instruction
statements. Additional extended mnemonics
are provided for the various forms of the
Branch-on-Condition machine instruction.

The assembler language provides for the
symbolic representation of any addresses,
machine components (such as registers), and
actual values needed in source statements.
Also provided is a variety of forms of data
representation.

The assembler program provides auxiliary
functions that assist thE programmer in
checking and documenting programs, in
controlling address assignment, in
segmenting a program, in data and symbol
definition, in generating
macro-instructions, and in controlling the
assembly program itself. Mnemonic codes,
specifying these functions are provided in
the language.

Va~i~in Data-Representation: Decimal,
binary, hexadecimal, or character
representation" of machine-language binary
values may be employed by the programmer in
writing source statements. The programmer
selects the representation best suited to
his purpose.

Ba.§~ - Re.9ister" Address Calculat"ion: As
discussed in the IBM System/36UPrinciples
of_Qperatig,n manual, the system/360
addressing sdheme requires the designation
of a base register (containing a base
address value) and a displacement value in
specifying a storage location. The
assembler assumes the clerical burden of
calculating storage addresses in these
terms £or the symbolic addresses used by
the programme~. The programmer retains
control of base register usage and the
values entered therein.

6 S/360 BOS Assembler with I/O Macros

Relocatability: The object programs
produced by the assembler are in a format
enabling relocation from the originally
assigned storage area to any other suitable
area.

Sectioning and Linking: The assembler
language and program provide facilities for
partitioning an assembly into one or more
parts called £onirol sections. control
sections may be added or deleted when
loading the object program. Because
control sections do not have to be loaded
contiguously in storage, a sectioned
program may be loaded and executed even
though a continuous block of storage large
enough to accommodate the entire program
may not be available.

The linking facilities of the assembler
language and program allow symbols to be
defined in one assembly and referred to in
another, thus effecting a link between
separately assembled programs This permits
reference to data and/or transfer of
control between programs A discussion of
sectioning and linking is contained in
Program Sectioning and Linking.

Program Listing.§; A listing of the source
program statements and the resulting object
program statements is produced by the
assembler for each source program it
assembles. The programmer can partly
control the form and content of the
listing.-

Er~or-Indication§: As a source program is
assembled, it is analyzed for actual or
potential errors in the use of the
assembler language. Detected errors are
indicated in the program lis~ing.

IBM BASIC OPERATING-SYSTEMLJ60
RELATIONSHIPS-

The Assembler program operates as a part of
the 8K disk resident version of the IBM
System/360 Basic Operating System. The
Assembler runs under control of the
Supervisor, which provides the Assembler
with all input/output and interruption
services needed in assembling a source
program. The object programs produced also
operate as part of the disk resident system
and make use of the functions provided by
the resident control programs. For special
applications not requiring disk, an
independent Supervisor can" be produced to
control object programs outside of the
Basic Operating System environment. Such
independent programs do not include disk
storage "processing capability.

To perform an assembly, the Assembler
program requires a system/360 with at least
the following features and units:

8,192 bytes of main storage. Additional
main storage would be used ~y the
Assembler to allocate area for
input/output buffers and Assembler
tables whenever they are needed.

The Assembler requires a 16K system
if the size of the Supervisor exceeds
4,096 bytes of main storage.

Standard instruction set.

Either one multiplexor or one selector
channel.

One IBM 231' Disk Storage Drive. The
following system programs must be
present in the resident disk pack:
IPL Loader, Supervisor, Job Control,
Assembler, and Macro L'ibr ar.y routines
for all macros issued. At least one
disk workarea must be provided. For
faster processing, an additional disk
drive can be used to split the
Assembler workarea. See AWORK
lAs§emble£~Qrki!~fards.---

One reader IBM 1442, 2501, 2520 (Model
A1 or B1), 2540 or 2400-series tape
unit.* This dsvice may be the same I/O
unit used for punching the output
deck.

One punch IBM 1442, 2520, 2540, or
2400-series tape unit* (if the
Assembler output deck is to be
punched). This device may be the same
I/O unit used for reading the source
deck.

One printer IBM 1403, '404, 1443, or
2400-series tape unit* (if the program
listing is to be printed).

*At least one IBM 2400-series magnetic
tape unit is required 'for any of the
following conditions:

1. If the source program is to be read
from tape.

2. If the output deck from the Assembler
is to be written on tape.

3. If the program listing is to be
written on tape.

A second tape unit is required if both
the output deck and the program listing are

to be written on tape. (See Figure 55 for
7-track tape requirements.)

An IBM 2400-series magnetic tape unit
may be used for source input or object
program output, only if sufficient main
storaqe is available. See the Basic
Operating System Programmer's,Guide for
information relating to main storage
requirements when tape is used.

If an IBM 1052 Printer-Keyboard is
available, it may be used for the output of
special diagnostic messages.

To execute object programs, the minimum
machine reguirements are a System/360 with
at least the following features and units.

8,192 bytes of main storage (except BSC
applications, which require 16,384 bytes of
main storage).

Standard instruction set.

Either one multiplexor or one selector
channel.

One IBM 23" Disk Storage Drive.

One Card Read-Punch (1442 or 2540 or
2501 and 2520).

Data Conversion special feature, if
variable-length records are written on
7-track tape.

Additional units as required by the
object program.

There are two basic approaches to a
minimum resident system:

1 • Problem program (s) that reside on the
disk resident pack with the data to be
processed must have:
a. IPL Loader.
b. Supervisor.
c. Job Control.
d. Appropriate problem program (s) •

2. Problem program(s) that are loaded by
means of a card reader must have:
a. Items a-c above.
b. Disk Linkage Editor.

A full description of the disk residence
functions and the operating system
environment is explained in detail in IB~
~stem/360 Basic Operating System
Programmer's Guide, C24~3372.

For the single drive system, these
residence requirements must reside on each
pack.

In trod uc tion 7

GENERAL-INFORMATION

This section presents information about
assembler language coding conventions, and
assembler source statement structure.

ASSEMBLER LANGUAGE-COOING-CONVENTIONS·

This subsection discusses the general
coding conventions associated with use of
the assembler language.

A source program is a sequence of source
statements that are punched into cards.
These statements may be written on the
standard coding form, X28-6509 (Figure 1),
provided by IBM. One line of coding on the
form is punched into one card. The
vertical columns on the form correspond to
card columns.

Space is provided at the top of the form
for program identification. Instructions
to the keypunch operator can also be given;
any character code that ~oes not have a
corresponding printer graphic can be
assigned any special graphic to identify
the code to the keypunch operator, who can
then punch the corresponding card punch
code wherever he encounters the special
graphic. (See ~haracter-Set for the
presentation of the valid character codes
that can be used in a source program.)
Neither the program information (Program,
Programmer, Date, etc.) nor the
instructions to the keypunch operator are
punched into a card; they are for the
user's own use.

The body of the form (Figure 1) is
composed of two fields: the statement
field, columns 1-71, and the
identification-sequence field, columns
73-80. The identification-sequence field
is not part of a statement and is discussed
following the subsection Statement-Format.

The entries (i.e., coding) composing a
statement occupy columns 1-71 of a

8 S/360 BOS Assembler with I/O Macros

statement line and, if needed, columns
16~71 of a single continuation line.

Cogtinuation-Lines: When it is necessary
to ~ontinue a .statemeat-on another line the
following rules apply. Note that only one
continuation line is permitted per
statement.

1. Enter any nonblank character in column
72 of the statement line. This
character must not be part of the
statement coding. For a positional
macro, there should be no blanks in the
operand to the left of column 72.

2. Continue the statement on the next
line, starting in column 16. All
columns to the left of column 16 wili
be ignored. - .

Statement Boundaries-

Source statements are normally contained in
columns 1--71 of statement lines and
columns 16--71 of any continuation lines.
Therefore, columns 1, 71, and 16 are
referred to as the "begin," "end," and
"continue" columns, respectively This
convention may be altered by the Input
Format Control (ICTL) assembler instruction
discussed later in this publication The
continuation character, if used, always
immediately follows the "end" column.

Statement Format

Statements may consist of one to four
entries in the statement field. They are,
from left to right: a name entry, an
operation entry, an operand entry, and a
comments entry. These entries must be
separated by one or more blanks, and must
be written in the order stated.

The coding form (Figure 1) is ruled to
provide an eight-character name field, a
five-character operation field, and a
56-character operand and/or comments field.

Gl
(!)
::s
(!)
Ii
Pl
I-'

H
::s
HI
o
Ii
!3
Pl
c+
~.

o
::s

I-%j
~.

l.Q
~
Ii
(!)

.-.
(j

0
p..,

~. i

l.Q

I-%j

0
Ii
!3

IBM
PROGRAM

PROGRAMMER

Na ... O~ratiotl
1 8 10

t I I I I I

i
!

I
! I I I

I I I I I I I I
I I i

I I I I I I I
I I I I

I I I I

I I I I

I I I I I
I I I I I

I I I I I I I I
I I
I I I
I I I
I I I I I I
i I I I I I I
I I I I I I I

I I I I I i I
I I I lit I
I I I I I I I
I I I I I

! I I I I I I I

I I i II
I i I i I I I I
! i I I

I

I I :
!

I i I I I ! I I

1 I I I I ! I I

I DATE

Operand
1~ 16 20 ?5 30

I I I ! I ! ! I !

I I I ! i I I I

I i I i
.,

I
I I I I I I 1

i
I I

I I II
I I I, I I I I

I I I I I ! ! I

I i I I I I I I I

I I I I ! I I I I
I i i I I

!

I I I I

I j I I I I I I I I I i

I I I I I I I ! I I I ' I

I : i I I I I I I I I I I I

: I I I I I I ! I i I

I I I I I
I I I i I I I

I I J I I I I I i

I I i I I I I ! I I I

I I I ! [
, ; I I I

I I I i I
I

I I

I I I I i
I ,

I I I I ! ! :

I I I I I
I

• i : I
I I I !

I

!
: I

I , I
I I ! I I I I I

I I

I I I I I I , I I I

IBM Systeml36D Assembler Coding Form
....... L-.u.s.A.

I I L I PAGE OF

I J I I CARD ELECTRO NUMBER

STATEMENT
klentificotion'"

Comments SeqlA:nc.
~5 55 60 65 71 73 80

I I I I I! II I I I I i I
; I i, II', I I 'I ! I : I I I i I ! I
I I: I I i I : I I I I
1 I iii I I I I
I 'I I i I !

I! I I I I I I Ii I I I
I '
I I I f I I I I I I I I I I I I

i I I I I [I ' I ! I I I II ill i I I
! I I I I ! I I I I I I I I I I I I I

I I I I I I I I ! I ! I ! iii ! I I I I i I ! I I
I I I I : I I I I I I I I I I i I ! I I I I I I I
I I ! I I ! 1'1 I : I i I I I I I I I I I I I

i : I I I I I I I
I I I I I I I I i I I i! Ii! II

I I I I I i I: I I t I I I ! ! I I I I I
I I I I I I j I I ! I i I I ! I i ! I i I I I I I I I

Ii: i I I i I i I I I I I' I I ! I I I I I I I I I
I ! f I I ! i I I I I : I I I I i ! I II I I

I I I iii I I I I I i I I I I ! i I I II I I
!I I I I I' I I I I I i I I I I I I I
I I I I I , I i i I I I

I I I I I I I I i I I I
I I I I I I i I I I I

I
i

I I I I I I I I I I I I! I I I : I I I I I ! ! I
i I I: I I I I I I I ! I I I I I I

I
I I I ! I I ! iii I

I i I I I I I I I I ! I I I
! I I I I I I I I I I ! I ! I

I : I ! I II I I I I I I I I i I I I I I I I I I II

If desired, the programm~r may disregard
these boundaries and write the name,
operation, operand, and comment entries in
other positions, subject to the followinq
rules.

1. The entries must not extend beyond
statement boundaries (either the
conventional boundaries or as
designated by the programmer via the
ICTL instruction).

2. The entries must be in proper
sequence, as stated above.

3. The entries must be separated by one
or more blanks.

4. If used, a name entry must be written
starting in the begin column.

5. The name and operation entries must be
completed in the first line of the
statement, including at least one
blank following the operation entry.

A description of the name, operation,
operand, and comments entries follows:

Name Entries: The name entry is a symbol
created-by the proqrammer to identify a
statement. A name entry is optional. The
symbol must consist of eight characters or
less, and be entered with the first
character appearing in the begin column.
If the begin column is blank, the assembler
program assumes no name has been entered.
No blanks may appear within the symbol.

QE~£ati2n-Entries: The operation entry is
the mnemonic operation code specifying the
machine operation or assembler functions
desired. An operation entry is mandatory
and must appear in the first statement
line, starting at least one position to the
right of the begin column. Valid mnemonic
operation codes for machine and assembler
operations are contained in Appendixes B
and C of this publication. Valid operation
codes consist of five characters or less.
No blanks may appear within the operation
entry.

QE~~n~~ntries: Operand entries are the
coding that identifies and describes data
to be acted upon by the instruction, by
indicating such things as storage
locations, masks, storaqe-area lenqths, or
types of data.

Depending on the needs of the
instruction, one or more operands may be
written. Operands are required for all
machine instructions.

Operands must be separated by commas and
no blanks must intervene between operands
and the commas that separate them.

'0 S/360 BOS Assembler with I/O Macros

Symbols can appear in the operand field
of a statement. Symbols that appear in the
operand field must be defined. A symbol is
considered to be defined when it appears in
the name field of a statement.

The operands may not contain embedded
blanks except as follows:

If character representation is
used to specify a constant, a
literal, or immediate data in an
operand, the character, strinq may
contain blanks, e.g., C'AB Dt.

comments Entries: Comments are descriptive
items of information about the proqram that
are to be inserted in the proqram listinq.
All valid characters (see ~h~E~cteE Se1-in
this section), including blanks may be used
in writing a comment. The entry cannot
extend beyond the end column (normally
column 71), and a blank must separate it
from the operand.

An entire line may be used for a comment
by placing an asterisk in the begin column.
Extensive comments entries may be written
by using a series of lines with an asterisk
in the begin column of each line or by
using the aforementioned continuation line.

In statements where an optional operand
entry is omi tted_ but a comments entry is
desired, the absence of the operand entry
must be indicated by a comma preceded and
followed by one or more blanks, as follows:

r------~I' --------~I----------------------__,

IName 10peration 10perand I
II+- 1
I 1 END 1 COMMENT 1
L- ~ ________ J

Statement Example: The following example
illustrates the use of name, operation,
operand, and comments entries. A compare
instruction has beeD named by the symbol
COMP; the operation entry (CR) is the'
mnemonic operation code for a
register-to-register compare operation, and
the two operands (5,6) designate the two
general reqisters whose contents are to be
compared. The comm€nts entry reminds the
programmer that he is comparinq "new sum"
to "old" with this instruction.

I I i I
IName IOperation I Operand I
~I-----rl-----------+--- ~
ICOMP ICR 15,6 NEW SUM TO OLD I L-____ ~~ __ . _______ -L _______________________ J

The· identification-sequence field of the
coding form (columns 73-80) is used to
enter program identification and/or
statement sequence characters. The entry
is optional. If the field, or a portion of
it, is used fo~ program identification, the
identification is punched by the user in
the statement cards, and reproduced by the
Assembler in the printed listing of the
source program.

To aid in keeping source statements in
order, the programmer may code an ascending
sequence of characters in this field or a
portion of it. These characters are
punched into their respective cards, and,
during assembly, the progra~mer may request
the assembler to verify this sequence by
the Input Sequence Checking (ISEQ)
assembler instruction, which is discussed
under PrQqra~fQ~i~Q!_InstrY£iioQ§.

The entries in a statement must always be
separated by at least one blank and must be
in the following order: name, operation,
operand(s), comment.

Every statement, with the exception of
the comments statement, requires an
operation entry. Name and comment entries
are optional. Operand entries are required
for all machine instructions and most
assembler instructions.

The name and operation entries must be
completed in the first statement line,
including at least one blank following the
operation entry.

The name and operation entries must not
contain blanks. Operand entries must not
have a blank· preceding or following the
commas that separate them.

A name entry must always start in the
"begin" column.

If the column after the end column is
blank, the next line must start a new
statement. If the column after the end
column is not blank, the following line
will be treated as a continuation line.

All entries must be contained wi~hin the
designated begin, end, and continue column
boundaries.

Assembler-Language statements may be
written using the following letters,
numeric digits, and special characters:

Letters: 29 characters are classified
as letters. These include
the characters w, i, and $ as
well as the alphabetic
characters A through Z. The
three additional characters
are included so that the
category can accommodate
certain non-English
languages.

Numeric Digits: 0 through 9

Special Characters: + - ,
& blank

* () • /

These letters, digits, and special
characters are only 51 of the set of 256
code combinations defined as the Extended
Binary Coded Decimal Interchange Code
(EBCDIC). Each of the 256 codes (including
the 5' characters above) has a unique card
punch code. Most of the terms used in
Assembler-Language statements are expressed
by the letters, digits, and special
characters shown above. However, such
Assembler- language features as character
self-defining terms and character constants
permit the use of any of the 256 card
codes. ~dix! shows the various forms
of EBCDIC codes.

The basic structure of the language can be
stated as follows.

A source statement is composed of:

• A name entry (optional).

• An operation entry (mandatory).

• An operand entry (usually required).

A nam~ entry is:

• A symbol.

An operation entry is:

• A mnemonic operation code repre~enting
a machine-, assembler-, or
macro-instruction.

An operand entry is:

• One or more operands composed of one or
more expressions, which, in turn, are

General Information "

composed of a term or an arithmetic
combination of terms.

Operands of machine instructions
generally represent such things as storage
locations, general registers, immediate
data, or constant values. Operands of
assembler instructions provide the
information needed by the assembler program
in order to perform the designated
operation.

Figure 2 depicts this structure. Terms
shown in Figure 2 are classed as absolute
or relocatable. Terms are absolute or

Name Operation

I I

relocatable due to the effect of proqram
relocation upon them. Program relocation
is the loading of the object program into
storaqe locations other than thos~
originally assigned by the assembler
program. A term is absolute if its value
does not change upon relocation. A term is
relocatable if its value chanqes by n-when
the program is relocated n-bytes away from
its assembled location.

The following subsection, Terms-and
Ex££ess!Qn§, discusses these items as
outlined in Fiqure 2.

A Symbol Mnemonic Operation Code Operand, ••• ,Operand, •••

LEGEND: AT
RT
+

/
*

~
machine instruction Op-code

assembler instruction Op-code

macro instruction Op-code

absol ute term
relocatable term
addition
subtraction
division
multiplication (or the
Location Counter reference,
depending on the context)

Expression

Term

Symbol (either AT or RT), e.g., BETAl

Self-defining term (AT)

decimal, e.g., 91

hexadecimal, e.g., X'5B'

binary, e.g., B'01011011'

character, e.g., C'$'

Location Counter reference (RT), e.g., *

Literal (RT), e.g., = F'91'

Symbol length attribute reference
(AT), e.g. L'BETAl

Arithmetic combination of terms

±
AT: AT, e.g., L'BETAl * 10

± ±
AT: AT : AT, e.g., 5*X'5B'-1

RT ± AT, e.g., BETA 1+10
±

RT ± AT: AT, e. g ., *+ 1 0/2

Expression (Expression)

Expression (Expression, Expression)

Figure 2. Assembler Language structure--Machine and Assembler Instructions

12 S/360 Bas Assembler with I/O Macros

TERMS AND EXPRESSIONS

TERMS

All terms represent a value. This value
may be assigned by the assembler program
(symbols, symbol length attribute location
counter reference, literals) or may be
inherent in the term itself ~elf-defining
terms) •

An arithmetic. combination of terms is
reduced to a single value by the assembler
program.

The following material discusses each
type of term and the rules for its use.

A symbol is a character or combination of
characters used to represent addresses or
arbitrary values.

Symbols, through theii use as names and
in operands, provide the prog~amme~ with an
efficient way to name arid reference a
program element. A symbol, created by the
programmer for use as a riam~ entry and in
an operand, must conform to these rules:

1. The symbol must not consist of more
than eight characters. The first
character must be a letter. The other
characters may 'be letters, digits, or a
combination of the two.

2. No special characters may be included
in a symbol.

3. No blanks are allowed in a symbol.

4. Symbols used by laCS begin with the
letter I. Therefore,. user symbols in
the problem program should·not begin
with.the letter I. Also, a symbol or
the first portion of a symbol (up to
severi characters) in the problem
program should not be the same as the
file name in a DTF header entry, except
when referring to that file in an laCS
macro instruction.

5. If a Supervisor is being assembled with
a problem program, user symbols shoul~
nQ..:!: start with SYS because symbols used
by the Supervisor start with SYS.

The following are valid symbols:

READER
A23456
X4F2

r.OOP2
N
S4

$~3
Q)PRICE
itB'

The following symbols are invalid, for
the reasons noted:

256B

RECORDAREA2

IN AREA

(first character is not
alphabetic)

(more than eight characters)

(contains a special character
- *)

(con tains a blank)

No£g: Any of several different
combinations of characters can be installed
in a printer. If the characters $, I,. and
Q) are' not included, either a blank space
will occur or a different character will be
printed when the code for one of these
characters is sensed. This varies with the
print arrangement that is used.

DEllNIM~YMBOLS: The assembler program
assigns a~value to each symbol appearing·as
a name entry in a source statement. The
value assigned to symbols naming storage
areas, instructions, constants, and control
sections represents the address of the
leftmost byte 01 the storage field
containing the named item~ Since the
addresses. of these items may change upon
program relocation, the symbols naming them
are considered relocatable terms.

Symbols us~d as name entries in the
Equate Symbol (EQO) assembler instruction
are assigned the value designated in the
operand entry of the instruction. Since
the operand entry may represent a
relocatable value or an absolute (i.e.,
nonchanging) value, the symbol is
considered a relocatable term or an
absolute term depending upon the value to
which it is equated.

The value of a symbol may not be
negative and may not exceed 224-1.

A symbol is said to be defined when i~
appears as the name of a source statement.
(A special case of symbol definition is
discussed in proqram-Sectioning,and
Linking.) . .

Symbol definition also involves the
assignment of a lengthatt~ibute-to the
symbol~ (The assembler program maintains
an internal table -- the symbol table -- in
which the values and attribrites of symbols
are kept. When the assembler program
encounters a symbol in an operand, it
refers to the table for the values
associated with the symbol.) The length
attribute of a symbol is the size, in
bytes, of the storage field whose address
is represented by the symbol. For example,
a symbol naming an instruction that
occupies four bytes of storage has a length
attribute of four.

General Information 13

PR£;Yl0USLY DEF1NED S!l1BOLS: Some
instructions require that a symbol
appearing in the operand entry be
previously defined. This simply means that
the symbol, before it is used in an
operand, must have appeared as a name entry
in a prior statement.

GEE£;R!1-RE~1RI~TIONS_QE-~YMB01~: A symbol
may be defined only once in an assembly.
That is, each symbol used as the name of a
statement must be unique to that assembly.
However, a symbol may be used in the name
field more than once as a control section
name (i.e., defined in the START, CSECT, or
DSECT assembler statements described in
Ad.Q.~si..lliI-==-.R.f.Qgram Sectioning and
Lig~igg) because the coding of a control
section may be suspended and then resumed
at any subseque~t point. The CSECT or
DSECT statement that resumes the section
must be named by the same symbol that
initially named the section; thus, the
symbol that names the section must be
repeated. Such usage is not considered to
be duplication of a symbol definition.

Sel!=De!inin~!,grm.§

A self-defining term is one whose value is
inherent in the term. It is not assigned a
value· by the assembler program. For
example, the decimal self-defining term --
15 -- represents a value of fifteen.

There are four types of self-defining
terms: decimal, hexadecimal, binary, and
character. Use of these terms is spoken of
as decimal, hexadecimal, binary, or
character representatitin of the machine
language binary value or bit configuration
they represent.

Self-defining terms are classed as
absolute terms since the value they
represent does not change upon program
reloca tion.

USINQ_SE1F-DEllNING 1£;RMS: Self-defining
terms are the means of specifying machine
values or bit configurations without
equating the value to a symbol and using
the symbol.

Self-defining terms may be used to
specify such program elements as immediate
data, masks, regi~ters, addresses, and
address increments. The type of term
selected (decimal, hexadecimal, binary, or
character) will depend on what is being
specified.

The use of a self-defining term is quite
distinct from the use of data constants or
literals. When a self-defini.ng ,term is
used in a machine-instruction statement,
its value is assembled into the
instruction. When a data constant or

14 S/360 BOS Assembler with I/O Macros

literal is specified in the operand of an
instiuction, its address is assembled into
the instruction -------

DecimaUelf-Definin~rm: A decimal term
is simply an unsigned decimal number
written as a sequence of decimal digits.
High-order zeros may be used (e.g.,007).
Limitations on the value of the term depend
on its use. FOr example, a decimal term
that designates a general fegister should
have a value between 0 and '5 inclusively;
one that represents an address should not
exceed the size of storage. In any case, a
decimal term may not consist of more than
eight digits, or exceed 16,777,215(2 24-1).
A decimal term is assembled as its binary
equivalent Some examples of decimal
self-defining terms are: 8, 147, 4092,
0002' •

Hexadecimal Self-Definin~Term: A
hexadecimal self-defining term is an
unsigned hexadecimal number written as a
sequence of hexadecimal digits. The digits
must be enclosed in single quotation marks
and preceded by the letter X; for example,
X'C49' •

Each hexadecimal digit ~s assembled as
its four-bit binary equivalent. Thus, a
hexadecimal term used to represent an
eight-bit mask would consist of two
hexadecimal digits. The maximum value of a
hexadecimal term is X'FFFFFF'.

The hexadecimal digits and their bit
patterns are as follows:

0- 0000
1- 0001
2- 0010
3- 00"

4- 0100
5- 0'0'
6- 0110
7- 0" ~

8- 1000
9- 100.
A- 1010
B- 1011

C- 1100
D- 1'0'
E- 1110
F- 1"1

A table for converting from hexadecimal
representation to decimal representation is
provided in Appendix E.

Bi.riarL.~,gl!-Definig.sL.1erm: A binary
self-defining term is written as an
unsigned sequence of 1s and ~s enclosed in
single quotation marks and preceded by the
letter B, as follows: B'10001'01'. This
term would appear in storage as shown,
occupying one byte. A binary term may have
up to 24 bits represented.

Binary representation is used primarily
in designating bit patterns of masks or in
logical operations.

The following example illustrates a
binary term used as a mask in a Test Under
Mask (TM) instruction. The contents of
GAMMA are to be tested, bit by bit, against
the pattern of bits represented by the
binary term.

r---~ Ii

IName IOperaticn IOperand
i----f--.----+_
IALPHA ITM IGAMMA,B'.O'O',O,'
L-_____ ~ ~I ___ _

Ch~~acter self=Definin~~: A character
self-defining term consists of one to three
characters enclosed by single quotation
marks. It may be preceded by the letter C
(this is not mandatory). All letters,
decimal digits, and special characters may
be used in a character term. In addition,
any of the 2~6 punch combinations (shown in
!EE~ndix~) may be designated in a
character self-defining term. Examples of
character self-defining terms are as
follows (the letter C preceding the
quotation mark is optional):

C'I'
C'ABC'

C' , (blank)
C' '3'

Because of the use of quotes in the
assembler language and ampersands in the
macro language as syntactic characters, the
following rule must be observed when using
these characters in a character term.

For each single quotation mark or
ampersand d,esired in a character term, two
singl~ quotation marks or ampersands must
be written. For example, the character
value A'# would be written as 'A"#'. while
a single quotation mark followed by a blank'
and ~nother single guotation mark would be
written as '" "'.

Each character in the character se~uence
is assembled as its eight-bit code
equivalent (see A~ndix-A). The tvo
quotation marks or ampersands that must be
used to represent a single quotation mark
or ampersand within the character sequence
are assembled as a single. ~uotation mark or
am Ifersan d.

Location·Counter Reference

The programmer may refer to· the -current·
value of the Location Counter at any place
in a program, by using an asterisk in an
operand. The asterisk represents the
location of the first byte of currently
available storage (i.e., after;any required
bdundary adjustmen~. Using an asterisk in
a machine-instruction statement is the same
as pla~ing a symbol .in the name field of
the statement and then using that symbol as
an operand of the statement Because a
Location Counter is maintained for each
control section, a Location Counter.
reference designates the Location Counter
for the section in which the.reference
appears.

A reference to the Location Counter may
be made in a literal address constant

(i.e., the asterisk may be used in an
address constant specified in literal
form). The address of the instruction
containing the literal is used for the
value of the Loc~tion Counter. A Location
Counter reference may not be used in a
statement which requires the use of a
predefined symbol, with the exception of
the EQU and ORG assembler instructions.

The·Location·Counter: A Location Counter
is used to assign storage addresses to
program statements. It is the assembler
program's equivalent of the instruction
counter in the computer. As each machine
instruction or data area is assembled, the
Location counter is first adjusted to the
proper boundary for the item, if adjustment
is necessary, and then incremented by the
length of the assembled item. Thus, it
always points to the next available
location. If the statement is named by a
symbol, the value attribute of the symbol
is the value of the Location Counter after
boundary adjustment, but before addition of
the length.

The assembler maintains a Location
Counter starting at a double-word boundary
for each·control section of the program and
manipulates each Location Counter
independently as previously described.
Source statements for each section are
assigned addresses from the Location
Counter for that section The Location
Counter for each successively declared
control section assigns locations. in
consecutively higher areas of storage.
Thus, if a program has multiple control
sections~ all statements identified as
h~longing to the first control section will
be assigned from the Location Counter for
secti6n " the statements for the second
control section will be·assigned from the
Location Counter for section 2, etc. This
procedure is followed whether the
statements from different control sections
are interspersed or written in control
section sequence.

The Location Counter setting can be
controlled by using the START and ORG
assembler instructions, which are described
in Addressinq·--·Proqram-sectioninq-and.
Linking. The counter affected by either of
these assembler instructions is the counter
for the control section in which they
appear. Maximum value for the Location
Counter is 2 24-1.

A literal term is one of three basic ways
to introduce data into a program. It is
simply a constant preceded by an equal sign
(=) •

General Information 15

A literal represents data rather than a
reference to data. The appearance of a
literal in a source stat~ment directs the
assembler program to assemble the value
specified by the literal, store this value
in a "lite'ral Fool", and place the address
of the storage field containing the value
in the oFerand field of the assembled
source statement.

Literals provide a means of enterinq
constants (such as numbers for calculation
addresses, indexinq factors, or words' or
phrases for printinq out a message) into a
program by specifying the constant in the
operand of the instruction in which it is
used. This is in contrast to using the DC
assembler instruction to enter the data
into the program, and then using the name
of the DC instruction in the oFerand. Only
one literal is allowed in a
machine-instruction statement.

A literal term may not be combined with
any other terms.

A literal may not be changed in storaqe.
That is, it may not be used as the
receiving field of an instruction that
modifies storage.

A literal may not be specified in a
constant (see Q~=-Dei~ne C~stan1) or any
other Assembler instruction.

The instruction coded below shows one
use of a literal.

r----T I ,

IName 10peration IOperand I
J-----+-------+_ ,
IGAMMA IL 110,=F f 274' I L-______ L-_________ L-

The statement GAMMA is a load
instruction usirig a literal as the second
operand. When assembled, the second
operand cf the instruction will be the
address at which the binary value
represented by F'274' is stored.

In general, literals may be used
wherever a storaqe address is permitted as
an operand. They may not, however, be used
in any assembler instruction that requires
the use cf a previously defined symbol.
Literals are considered relocatable
because the address of the literal rather
than the literal itself, will be assembled
in the statement that employs a literal.
The assembler generates the literals,
collects them, and places them in a
specific area of storage as explained in
the subsection The Literal Pool. A literal
is not to be confUsed-wit~the-immediate
data in an SI instruction. Immediate data
i~ assemtled into the instruction.

16 S/360 BOS Assembler with I/O Macros

Literal Format: The assembler requires a
description of the type of literal beinq
specified as well as the literal itself.
This descriptive information assists the
assembler in assembling the literal
correctly The descriptive portion of the
literal must indicate the format in which
the constant is to be assembled. It may
also specify the length the constant is to
occupy.

The method of describinq and ~pecifyinq
a constant as a literal is nearly identical
to the method of specifying it in the
operand of a DC assembler instruction. The
major difference is that the literal must
start with an equal sign (=), which
indicates to the assembler that a literal
follows. The reader is referred to the
discussion of the DC assembler instruction
operand format !Qdr~ssin~-- Program
Se.ftioni!!~an~1!nki.!!g·for the means of
specifying a literal. All types of address
constants, except S-type address constants,
can be expressed as literals. Some
ex~mples of literals are:

=A (BETA)
=F'1234'

=C'ABC'
=CL7'PAGE'

address constant literal.
a fixed-point number with
a lenqth of four bytes.
a character literal.
an explicit lenqth literal.

The Literal·Pool: The literals processed
by the assembler are collected and placed
in a special area called the literal pool,
and the location of the literal, rather
than the literal itself, is assembled in
the statement employing a literal. The
positioning of the literal pool may be
controlled by the programmer, if he so
desires. Unless otherwise specified, the
literal pool is placed at the end of the
first control section.

The programmer may also specify that
multiple literal pools be created.
However, the sequence in which literals are
ordered within the pool is controlled by
the assembler. Further information on
positioning the literal pool(s) is under
LTQRG=Begin Literal Pogl.

The lenqth attribute of a symbol may be
used as a term. Reference to the attribute
is made by coding L' followed by the
symbol, as in:

L'BETA

The length attribute of BETA will be
sUbstituted for the term. The followinq
example illustrates the use of L'symbol in
movinq a character constant into either the
high-order or low-order end of a storaqe
field.

For ease in following the example, the
length attributes ofA1 and B2 are
mentioned. However, keep in mind that the
L'symbol term makes coding such as this
possible in situations where lengths are
unknown.

r-­
IName
I--
I A 1
IB2
IHIORD
ILOORD
L-

i i
IOperation IOperand
I -+
IDS ICL8
IDC ICL2'AB'
I MVC I A 1 (L 'B2) , B2 I
IMVC IA1+L'A.-L'B2(L'B2),B21

A1 names a storage field eight bytes in
length and is assigned a length attribute
of eight. B2 names a character constant
two bytes in length and is assigned a
lenqth attribute of two. The statement
named HIORD moves the contents of B2 into
the leftmost two bytes of A1. The term
t'B2 in parentheses provides the length
specification required by the instruction.
When the·instruction is assembled, the
length is placed in the proper field of the
machine instruction.

The statement named LOORD moves the
contents of B2 into the right-most two
bytes of A1. The combination of terms
A1+L'A'-L'B2 results in the addition of the
length of A1 to the beginning address of
A1, and the subtraction of the length of B2
from this value. The result is the address
of the seventh byte in field A1. The
constant represented by B2 is moved into A1
starting at this address. L'B2 in
parentheses provides length specification
as in HIORD.

EXPRES SI ONS

The preceding sUbsection dealt with the
various types of terms that. can be used,
either sinqly or in combination, to form
operand entries.. This subsection now deals
with the more general category of
expressions, where an expression is an
operand entry consisting of either a single
term or an arithmetic combination of terms.

Up to three terms can be combined with
the following arithmetic operators:

+

* /

addition, e.g., ALPHA+2
subtraction, e.g., ALPHA-BETA
multiplication, e.q., 5*L'DATA
division, e.g., (ALPHA-BETA)/2

Two of the terms within a three term
expression can be grouped within
parentheses to indicate to the Assembler
the order in which they are to be
evaluated. When the Assembler program
encounters terms in parentheses in

combination with another term, it first
reduces the combination of terms inside the
parentheses to a single value. This value
then is used in.reducing the rest of the
expression to aiother sinqle value.

certain fixed rules determine the ways
in which terms can be combined. These
rules are discussed under Absolute and
Relocatable-Expressions. In addition to
these, the following general rules can be
stated for coding any expressions:

1. An expression may not start with an
arithmetic operator (+-/*). Therefore,
the. expression -A+BETA is invalid.
However, the expression O-A+BETA is
valid~

2. An expression may not contain two terms
or two operators in succession.

3. An expressi~n may not consist of more
than 3 terms.

4. An expression may not have mo~e than
one pair of parentheses.

5. A multiterm expression may not contain
a literal.

The following are examples of valid
expressions:

AREA1+X'2D'
*+32
N-25
FIELD
FIELD+332

(EXIT-ENTRY}/8 29
=F'1234' L'FIELD
L'BETA*10 TEN/TWO
B'101' LAMBDA+GAMMA
C'ABC'

Evaluation of Expressions

A single term expression, e.g., 29, BETA,
*, L'SYMBOL, takes on the value of the term
involved.

A multiterm expression, e.q.,
BETA+10,ENTRY-EXIT, 10+A/B, is reduced to a
single value, as follows:

1. Each term is given its value.

2. Expressions within parentheses are
evaluated first.

3. Arithmetic operations are performed
left to right. Multiplication and
division are done before addition and
subtraction, e.g., A+B*C is evaluated
as A+(B*C), not (A+B}*C. The compu~ed
result is the value of the expression.

4. Division yields an integer result; any
fractional portion of the result will
be dropped. For example, the
expression 1/2*10 equals zero, but the
expression 10*1/2 equals five.

General Information 17

5. Division by zero is valid and yields a
zero result.

Final values of expressicns representing
storage addresses are never greater than
224-1, however intermediate results may
have a maximum value of 2 31-1.

Absolute and Relocatable Expressions

An expression is called absolute if its
value is unaffected by program relocation

An eXFression is called relocatable if
its value changes upon program relocation

The two types of expressions, absolute
and relocatable, take on these
characteristics from the term or terms
composing them. The following material
discusses this relationship.

AB~QLU1~ EXR]~~SION: An absolute
expression may be an absolute term or any
arithmetic combination of absolute terms.
An absolute term may be an absolute symbol,
any of the self-defining terms, or the
length attribute reference. As indicated
in Figure 2, all arithmetic operations are
permitted between absolute terms.

An absolute expression may contain two
relocatable terms (RT) -- alone or in
combination with an absolute term (AT) -­
under the following conditions:

1. The relocatable terms must be paired,
that is, they must appear in the same
control section in this assembly (see
Rr0.9.!:am2.§ctio.n~!!.L.~nd_Li.nki.lliI) and
have opposite signs •. The paired terms
do not have to be contiguous, e.g.,
RT+AT-RT.

2. No relocatahle term may enter into a
multiply or divide operation. Thus,
RT-RT*10 is invalid However,
(RT-RT) *10 is valid.

The pairing of relocatable terms cancels
the effect of relocation. Therefore the
value represented by the paired terms
remains constant, regardless of program
relocation For example, in the absolute
expression A-Y+X, A is an absolute term,
and X and Y are:relocatable terms from the
same control section. If ~ equals 50, Y
equals 25, and X equals 10, the value of
the expression would be 35. If X and Yare
relocated by a factor of 100 their values
would then be 125 and 1'0. However, the
expression would still evaluate as 35
(50-125+ 110=35) .•

An absolute expression reduces to a
single absolute value.

18 S/360 BOS Assembler with I/O Macros

The following examples illustrate
absolute expressions. A is an absdlute
term; X and Yare relocatable terms from
the same control section.

A-Y+X
A
A*A
X-Y+A
*-Y (a reference to the Location Counter

must be paired with another
relocatable term from the same control
section).

RELOCATABLE EXPRESSIONS: A relocatable
expression is one whose value would change
by n if the program in which it appears is
relocated n bytes away from its originally
assigned area of storage. A relocatable
expression must not have a v~lue below the
starting address of the control section,
except in a USING, CCW, or A- and Y-type
address constant.

A relocatable expression may be a
relocatable term. A relocatable ~xpression
may contain relocatable terms -- alone or
in combination with absolute terms -- under
the followinq conditions:

1. There must be an odd-number-of
relocatable terms.

2. If a relocatable expression contains
three relocatable terms, two of them
must be paired. Pairing is described
in !bsol.!!.t.§ Expressio!!.

3. The unpaired term must not be directly
preceded by a minus sign.

4. No relocatable term may enter into a
multiply or divide operation.

A relocatable expression reduces to a
single relocatable value. This value is
the value of the oad relocatable term,
adjusted by the values represented by the
absolute terms and/or paired relocatable
terms associated with it.

For example, in the expression W-X+W, W
and X are -relocatable terms from the same
control section. If initially W equals 10
and X equals 5, the value of the expression
is 15. However, upon relocation this value
will change. If a relocation factor of 100
is applied, the value of the expression is
115. Note that the value of the paired
terms, W-X, remains constant at 5
regardless of relocation. Thus, the new
value of the expression, '15, is the result
of the value of the odd term (W) adjusted
by the values of W-X.

The following examples illustrate
relocatable expressions. A is an absolute
term, Wand X are relocatable terms from
the same control section. Y is a
relocatable term from a different control
section.

Y-32*A W-X+*
w-x+y
* (reference to

Location Counter)

=F' 1234' (literal)
A*A+W
W-X+W
Y

General Information 19.

ADDRESSING-- PROGRAM SECTIONING·AND~ING

The System/360·addressing technique
requires the use of a base register, which
cont~ins the base address, and a
displacement, which is added to the
contents of the base register~ The
programmer may specify a symbolic address
and request the assembler to determine its
storage address in terms of a base register
and a displacement. The programmer may
rely on the assembler to perform this
service for him by indicating which general
registers are available for assignment and
what values the assembler may assume each
contains. The·programmer may use as many
or ~s few registers for this purpose as he
desires~ The only requirement is that, at
the point of reference, a register
containing an address from the same control
section is available, and that this address
is less than or egual to the address of the
item to ·which the· reference i~ being made.
The difference between the two addresses
may not exceed 4095 bytes.

ADDRESSES -- EXPLICIT A~D IMPLIED

An address is composed of a displacement
plus the contents of a base regist~r. (In
the case of RX instructions the contents
of an index register are also· used to
deri ve t he address.) .

The programmer writes an explicit
address by specifying. the displacem~ent and
the base register. If, in an RX
instruction, an explicit address is used,
it is assembled without being checked for
proper boundary alignment. The assembler
assumes that the programmer has either used
an aligned.explicit address or programmed
with a register to align the address.

The boundary alignment checked by the
assembler is the alignment of the effective
address, when an implied address is used.
The programmer writes an implied address by
specifying an absolute orrelocatable
address. The assembler can select a base
register and compute a displacement,
thereby generating an explicit address from
an implied address, if the programmer has
conveyed the availability and contents of
the base registers. He can do this with
the USING and DROP instructions.

·20 S/360 BOS Assembler with I/O Macros

BASE REGISTER INSTRUCTIONS

The USIN~ and DROP assembler instructions
enable programmers to use expressions
representing implied addresses as operands
of machine-instruction statements, leaving
the assignment of base registers and the
calculation of displacements to the
assemble.r.

In order to use symbols in the operand
field of ~achine-instruction statements
th~ programmer must (1) indicate to the
assembler, by means of a USING statement,
that one or more general registers are
available for use as base registers, (2)
specify by means of the USING statement,
what value each base register contains, and
(3) load each base register with the value
he has specified for it.

A program must bave at least one USING
statement for each control section to be
addressed.

Having .the assembler determine base
registers and displacements relieves the
programmer of separating each ~ddress into
a displacement value and a base address
value. This feature of the· assembler will
eliminate a likely source of programming
errors, thus reducing the time required to
check out programs~ To take advantage of
this feature, the programmer uses the USING
and DROP iristructions described in this
sUbsection. The principal discussion of
this feature follows the description of
both instructions.

Certain general registers have special uses
and are available to the programmer under
certain restrictions; These registers and
the restrictions follow.

0-1 These registers are used bi the
routines generated from the
IBM-supplied macros. Therefore,
these reqisters may be used without
restriction if no IBM macros appear
in the program; otherwise they
should be used only for immediate
computations, where the content of
the register is no longer needed
after the computation. If the
programmer uses them, he must
either save their content himself
(and reload them later) or be
finished with them before IOCS uses
tbem.

12-13

14-15

These registers are used by the
Supervisor Interruption Routine.
Since interru'ptions are
unpredictable, these registers
should not be used by the
programmer, unless SUPVR
SAVEREG=YES is specified" when
assembling the supervisor. (See
Macro Instructions to Assemble·a
SU.E.g.!:vi.§~.)

Not~: Whenever Autotest is
used, the programmer must not use
registers 12 and 13 becaus~these
registers are used by the Autotest
Master Control routine.

Logical IOCS uses these two
registers for linkage. Register 14
contains the return address (to the
problem program) from the DTF
routine. Register'5 contains the
entry point into the DTF routine.
IOCS does not save the contents of
these registers prior' to using
them; if the programmer uses them,
he must either save their contents
himself (and reload them later) or
be finished with them" before 'IOCS
uses them. It should be noted that
IOCS uses these registers only when
the user has called an IOCS routine
such as GET, PUT, OPEN, or CLOSE.

Registers 2-11 are available to the
programmer. To avoid the possibility of
errors, these registers should be the
registers used by the programmer: However,
if for any reason there is a shortage of
registers, 0-1 and 14-15 are available
under the restrictions previously stated.

No~: Whenever the Translate and Test
(TRT) instruction is used, the contents of
register 2 must be saved before this
instruction is executed. After the TRT
instruction has been executed, the contents
of register 2 may be restored. See the
~~te~Ll60 Principles of OEeration manual
listed on the front cover of this
publication for further information on the
TRT instruction.

The USING instruction indicates that one
or more general registers ar.e available for
use as base registers. This instruction
also states the base address values that
the assembler may assume will be in the
registers at object time. Note that a
USING instruction does not load the
registers specified. It is the
programmer's responsibility to see that the
specified base address values are placed
into the registers. Suggested loading
methods are described in the SUbsection
PrQyramminq with the USING Instruction.

The format of the USING instruction
statement is:

ri------~'-----------_,____ I

IName I Operation IOperand I
~I ------I~--------+I----- -1
IBlank IUSING IFrom 2-6 expressions I
I I lof the form v,r', I
I I Ir2,r3,r4,r5 I
~I ______ ~I ___________ -L--- J

Operand v must be an absolute or
relocatable expression. No literals are
permitted. Operand v specifies a value
that the assembler can use as a base
address. The other operands must be
absolute expressions. The operand r1
specifies the general register that can be
assumed to contain the base address
represented by operand v. Operands r2, t3,
r4, and r5 specify registers that can be
assumed to contain v+409i, v+8192~ v+'2288,
and v+16384 respectively The values of the
operands r1, r2, r3, r4, and r5 must be
between 0 and '5. For example, the
statement:

r-------~i-----------_,____ '----------------"
IName ~Operation IOperand I
I I +- I
I I US ING 1*,8,9 I
L-, ______ ~I~ ________ , ~ J

tells the assembler it may assume that the
current value of the Location counter will
be in general register 8 at object time,
and that the current value of the Location
Counter, incremented by 4096, will be in
general register 9 at object time.

The operands rl, r2, r3, r4, and r5 can
be a symbol or an expression provided that
the value of the symbol or expression is
between 0 and 15.

If the programmer changes the value in a
base register currently being used and
wishes the assembler to compute
displacements from this value, the
assembler must be told the new value by
means of another USING statement. In the
following sequence the assembler first
assumes that the value of ALPHA is in
register 9. The second statement then
causes the assembler to assume that
ALPHA+1000 is the value in register 9.

Addressing -- Program Sectioning and Linking 21

r- I -,--

IName I operation IOperand
1----+ -+---
I IUSING IALPHA,9
I I . I
I I . I
I I USING. I ALPHA+ 1000,9
L

A USING statement may specify general
register 0 as a base register if oper~nd v
is a relocatable expression or zero. If
gene-ral register 0 is specified, it must be
operand r1. In this case, the assembler
assumes that register 0 contains the value
zero. Subseguent registers specified in
the same statement are assumed to have the
values 4096, 8192, etc. The assembler
therefore places all subsequent effective
addresses less than 4096 in the
displacement field and uses zero'for the
base register field.

BQ!~: If register 0 is ,made availab~e by a
USING instruction, the program is not
relocatable, despite the'fact that the
value specified by'operand v must be
relocatable. However, the programmer is
able to make the program relocatable at
some future time by:

1. Replacinq register 0 in the USING
statement.

2. Loadinq the register with a relocatable
value.

3. Reassembling the program.

The DROP instruction specifies a previously
available register that may no longer be
used as a base register. The format'of the
DROP instruction statement is as follows~

iii i

IName IOperation IOperand I
I----+-----Ir----------~
IBlank IDROP IUp to 5 absolute I
I I lexpression~ of the I
I 1 I for m r 1 , r 2, I
t t Ir3,r4,r5 t
L-______ ~ __________ L____ I

The expressions indicate general
registers previously named in a USING
statement that are now unavailable for base
addressing. The following statement for
example, prevents the assembler from using
registers 1 and '1:

i

IName
J

I

I Operation
I
1 DROP
I

I

IOperand
I

22 5/360 BOS Assembler with I/O Macros

It is not necessary to use a DROP
statement when the base address in a
register is changed by a USING statement;
nor are DROP statements needed at the end
of the source program.

A register made unavailable by a DROP
instruction can be made available again by
a subsequent USING instruction.

PROGRAMMING WITH THE USING INSTRUCTION

The USING (and DROP) instructions may be
used anywhere in a program, as often as
needed, ·to indicate the general registers
that are available for use as base
registers and the base address values the
assembler may assume each contains at
execution time. Whenever an address is
specified in a machine-instruction
statement, the assembler determines whether
there is an available register containing a
suitable base address. A register is
considered available for a relocatable
address if it was loaded with a relocatable
value that is in the same control section
as the address. A, register with an
absolute value is available 'only for
absolute addresses. In either case, the
base address is considered suitable only if
it is less than or equal to the address of
the item to which the reference is made.
The difference between the two addresses
may not exceed 4095 bytes.

7n the followinq sequence, the BALR
instruction loads register 2 with the
address of the first storaqe location
immediately following. In this case, it i~
the instruction named FIRST. The USING
instruction indicates to the assembler that
register 2 contains this location. When
employing this method, the USING
instruction must immediately follow the
BALR instruction. No other USING or load
instructions are required if the location
named LAST is within 4095 bytes of FIRST.

1 I -,-----
IName IOperation 10perand
I -+' I
IBEGIN IBALR 12,0
1 IUSING 1*,2
IFIRST 1 I
I I · I
I I · I
ILAST I · I
I lEND I BEGIN
I I I

In the following example, the BALR and
LM instructions load reqisters 2-5. The
USING instruction indicates to the
assembler that these reqisters are
available as base, registers for addressing
a maximum of 16,384 consecutive bytes of
storage, beginning with the location named

I f,
I
I
I
I
I
I
I
I

HERE. The number of addressable bytes may
be increased or decreased by altering the
number of registers designated by the USING
and LM instructions and the number of
address constants specified in the DC
instructions.

r-
IName I operation
1----+-------
I BEGIN
I
IHERE
1
IBASEADDR
I
I
IFIRST
I
I
ILAST
I L _____ ...l...-

BALR
USING
LM
B
DC
DC
DC

END

RELATIVE ADDRESSING

j

IOperand
+-
12,0
HERE,2,3,4,5
3,5,BASEADDR
FIRST
A (HERE+4096)
A (HERE+ 8192)
A (HERE+ 12288)

BEGIN

Relative addressing is the technique of
addressing instructions and data areas by
designating their location in relation to
the Location Counter or to some symbolic
location. This ty~e of addressing is
always in bytes, never in bits, words, or
instructions. Thus, the expression *+4
specifies an address that is four bytes
greater than the current value of the
Location Counter. In the sequence of
instructions shown in the following
example, the location of the CR machine
instruction can be expressed in two ways,
ALPHA+2 or BETA-4, because all of the
mnemonics in the example are for 2-byte
instructions in the RR format.

r- Tj--- j

IName IOperation IOperand
}----+ I
IALPHA ILR 13,4
I ICR 14,6
I IBCR 11,14
IBETA IAR 12,3
~ ~I------------~------------------~

It is often convenient, or necessary, to
write a large program in sections. The
sections may be assembled separately~ then
combined subsequently into cne object
program. The assembler provides facilities
for creating multisectioned programs and
symbolically linking separately assembled
programs or program sections. The combined
number of control sections and dummy
sections may not exceed 32. The combined
number of control sections and dummy
sections plus the number of unique symbols

in EXTRN statements and V-type address
constants may not exceed 255. (EXTRN
statements are discussed in this section;
V-type constants under Q~_==~giing
Constant assembler instruction.) If the
sam~ymbol appears in a V-type address
constant and in the name field of any other
statement, it is counted as two symbols.

Sectioning a program is optional, and
many programs can best be written without
sectioning them. The programmer writing an
unsectioned program need not concern
himself with the subsequent discussion of
program sections, which are called control
sections. He need not employ the CSECT
instruction, which is used to identify the
control sections of a mUltisection program.
Similarly, he need not concern himself with
the discussion of symbolic linkages if his
program neither requires a linkage to nor
receives a linkage from another program.
He may; however, wish to identify the
program and/or specify a tentative starting
location for it, both of which may be done
by using the START instruction. He may
also want to employ the dummy section
feature obtained by using the DSECT
instruction.

Note: Program sectioning and linking is
closely related to the specification of
base registers for each control section.
Sectioning and linking examples are
provided under the heading Addressing
External Control sections.

CONTROL SECTIONS

The concept of program sectioning is a
consideration at coding time, assembly
time, and load time. To the programmer, a
program is a logical unit. He may want to
divide it into sections called control
sections; if so, he writes it in such a way
that control passes properly from one
section to another regardless of the
relative physical position of the sections
in storage. A control section is a block
of coding that can be relocated,
independently of other coding, at load time
without altering or impairing the operating
logic of the program. It is normally
identified by the CSECT instruction.
However, if it is desired to specify a
tentative starting location, the START
in~truction may be used to identify the
first control section

To the assembler, there is no such thing
as a program; instead, there is an
assembly, which consists of one or more
control sections. (However, the terms
assembly and program &re often used
interchangeably An unsectioned program is
treated as a single control section. To
the linkage editor, there are no programs,

Addressing -- Program Sectioning and Linking 23

only control sections that must be
fashioned into an object program.

The output of the assembler consists of
the .assembled control sections and a
control dictionary. The control dictionary
contains 'information the linkage editor
needs in order to complete
cross-referencing between control sections,
as"it. combines them into an object program.
The linkage editor can take control
sections from various assemblies and
combine them properly with the help of the
corresponding control dictionaries.
Successful combination of separately
assembled control sections depends on the
techniques used to provide symbolic
linkaqes between the control sections.

Whether the programmer writes an
unsectioned proqram, a multisection
program or part of a ~ultisection program,
he still knows what eventually will be
entered into storage, because he has
described storage symbolically. He may not
know where each section appears in storage,
but he does know what storage contains.
There is no constant relationship between
control sections. Thus, knowin~ the
location of one control section does not
make another control section addressable by
relative addressing techniques.

control section contents can be intermixed
because the assembler provides a Location
counter for each control section.
Locations are assigned to control sections
in such a way that the sections are placed
in storage consecutively, in the same order
as they firs~ occur in the program. Each
control section subsequent to the first
begins at the next available double-word
boundary.

FIRST CONTROL SECTION

The first control section of a program has
the following special properties

1. Its tentative loading location may be
specified as an absolute value.

2. It normally contains the literals
requested in the program, although
their positioning can be altered.
This is further explained under the
discussion of the LTORG assembler
instruction.

The START instruction may be used to give a
name to the first (or only) control section
of a proqram. There may be only one START

24 S/360 BOS Assembler with I/O Macros

instruction in an assembly. It may also be
used to specify a tentative starting
location for the program. The format of
the START instruction statement is as
follows:

i

IName
I

,
10peration
I
I START
I

-,--------------------~
10perand
I
IA self-defining
Iterm or blank

IA symbol
lor blank
L

__ ~I _________ ---L __________ . ________ ~

If a symbol names the'START instruction
the symbol is established as the name of
the control section. If not, the control
section ~s considered to be unnamed. All
subsequent statements are assembled as part
of that control section This continues
until a CSECT instruction identifying a
different· control section or a DSECT
instruction is encountered. A CSECT
instruction named by the same symbol that
names a START instruction is considered to
identify the continuation of the control
section first identified by the START.
Similarly an unnamed CSECT that occurs in
a program initiated by an unnamed START is
considered. to identify the con~inuation of
the unnamed control section

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the
control section. It has a lenqth attribute
of one.

The assembler uses the self-defining
value specified by the operand as the
tentative starting location of the program.
This value must be divisible by eight. For
example, either of the following statements
could be used to assign the name PROG2 to
the first control section and to indicate
an initial assembly location of 2040:

Ii'
IName IOperation 10perand
~---+-----+-----
IPROG2 ISTART 12040
I PROG2 1 START IX '7F8 I
L.. I .l.-

If the operand is omitted, the assembler
sets the tentative starting location of the
program at zero.

Nol~: The START instruction may be
preceded only by ICTL, ISEQ, REPRO, PUNCH,
EJECT, SPACE, TITLE, PRINT, and comments
statements, and by macro tnstructions that
generate only these statements.

If the user plans to write his own
macro-instruction routines, the START
instruction may not be used as an
instruction within his macro routine.

CS~£!_ -- - Identify·· Control·· section

The CSECT instruction identifies the
beginning or the continuation of a control
section. The format of the CSECT
instruction statement is as follows:

r--------~------------,,-------
IName
I
IA symbol
lor blank
I

I Operation
I
I CSECT
I
I
I

I Operand
I
INotused; any I
loperand is treatedl
las a comment I
I I

If a symbol names the CSECT instruction
the symbol is established as the name of
the control section; otherwise the section
is considered to be unnamed. All
statements following the CSECT are
assembled as part of that control section
untIl a statement identifying a different
control section is encountered (i.e.,
another CSECT or a DSECT instruction) •

The symbol in the name field. is a valid
relocatable symbol whose value.represents
the address of the first byte of the
control section~ It has a leagth attribute
of one.

Several CSECT statements with the same
name may appear within a program. The
first is considered to identify the
beginning of the control section; the rest
identify the resumption of the section.
Thus, statements from different control
sections may be interspersed. They are
properly assembled (assigned contiguous
storage locations) as long as the
statements from the various control
sections are identified by the appropriate
CSECT instructions

Unnamed Control-Sectio~

If neither a named CSECT instruction nor
START instruction appears at ~he beginning
of the program, the assembler determines
that it is to assemble an unnamed control
section as the first (or only) control
section. There may be only one unnamed
control section in a program. If one is
initiated and is then followed by a named
control section, any subsequent unnamed
CSECT statements are considered to resume
the unnamed control section. If it is
desired to write a small program that is
unsectioned, the program does not need to
contain a CSECT instruction.

DS]f~ldenti!y_DUN~y-~§ction

A dummy section represents a control
section that is assembled but is not part
of the object program. A dummy section is
a convenient means of describing the layout
of an area of storag.e without actually

reserving the storage. (It is assumed that
the storage is reserved either by some
other part of this assembly or else by
another assembly The DSECT instruction
identifies the beginning or resumption of a
dummy section. More than one dummy section
may be defined per assembly, but each must
be named. The format of the DSECT
instruction statement is as foll~ws:

I

I Name
I
IA symbol
I
I

i

IOperation
I
I·DSECT
I
I

i ,

IOperand I
I I
INotused; any I
loperand is treated I
tas a comment I

The symbol in the name field is a valid
relocatable symbol whose value represents
the· first byte of the dummy section. It
has a length attribute of one.

Program statements be16nging to dummy
sections may be interspersed throughout the
program-or may be written as a unit. In
either case, the appropriate DSECT
instruction should precede each set of
statements. Whenever the assembler
instructions EJECT, SPACE, PRINT, PUNCH,
REPRO, XFR, or TITLE are used within a
DSECT, they are treated as comments and 11Q!
executed. When multiple DSECT instructions
with the same name are encountered . the
first is considered to initiate the dummy
section and the rest to continue it.

Symbols that appear in the name field of
a DSECT statement or in the name field of
statements in a dummy section may be used
in USING instructions. Therefore, they may
be used in program elements (e.g.,
machine-instructions and data definitions)
that specify storage addresses. An example
illustrating the use of a dummy section
appears subsequently under Addressing-Dummy
Se£~.

A symbol that names a statement in a
dummy section may be used in an A-type
address constant only if it is paired with
another symbol (with the opposite sign)
from the same dummy section.

DUMMY SECTION-LOCATION ASSIGNMENT: A
Locationcounter is usedtodetermine the
relative locations of named program
elements in a dummy section. The Location
Counter is always set to zero at the
beginning of the dummy section, and the
location values assigned to symbols that
name statements in the dummy section are
relative to the initial statement in the
section.

ADDRESSING DUMMY SECTIONS: The programmer
mayw"IshtodescrIbe the-format of an area
whose storage location will not be

Addressing -- Program Sectioning and Linking 25

determined until the program is executed.
He can describe the format of the area in a
dummy section, and he can use symbols
defined in the dummy section as the
operands of machine instructions. To
effect references to the storage area, he
does the following:

1. Provides a USING statem-ent specifyinq
both a general register that the
asse~bler can assign to the machine­
instructions as a base register and a
value from the dummy section that the
assembler may assume the register
contains

2. Ensures that the same register is
loaded with the actual address of the
storage area.

The values assiqned to symbols defined
in a dummy section are relative to the
initial statement of the section. Thus,
all machine-instructions which refer to
names defined in the dummy section will, at
execution time, refer to storage locations
relative to the address loaded into the
register.

An example is shown in the following
coding. Assume that two independent
assemblies (assembly 1 and assembly 2) have
been loaded and are to .be executed as a
single overall program. Assembly 1 is an
input routine that places a record in a
specified area of storage, places the
address of the input area containing the
record in general register 3, and branches
to assembly 2. Assembly 2 processes the
record. Coding shown in the example is
from assembly 2.

The input area is described in assembly
2 by the DSECT control section named
INAREA. portio"ns of the input area (i.e.,
record) that the programm€rwishes to work
with are named in the DSECT control section
as shown. The assembler instruction USING
INAREA,3 designates general register 3 as
the base register to be used in addressing
the DSECT control section~ and that general
register 3 is assumed to contain the
address oi INAREA.

Assembly 1, during execution, loads the
actual beginning address of the input area
in general register 3. Because the symbols
used in the DSECT section are defined
relative to the initial statement in" the
section, the address values they represent,
will, at the time of program execution, be
the actu~l storage locations of the input
area.

26 S/360 BOS Assembler with I/O Macros

r----------T�------------"~I--------------------~I
IName IOperation IOperand I
J-- I +---------f

ASMBLY2 CSECT I
BEGIN BALR 12,0

USING 1*,2

ATYPE

WORKA
WORKB

INAREA
INCODE
INPUTA
INPUTB

USING
CLI
BE

MVC
M.VC

DS
DS

DSECT
DS
DS
DS

END

SYMBOLIC LINKAGES

1
1
JINAREA,3
IINCODE,C'A'
ATYPE

WORKA,INPUTA
WQRKB,INPUTB

CL20
CL18

CL1
CL20

ICL18
I
I

Symbols may be defined in one proqram and
referred to in another, thus effectinq
symbolic linkaqes between independently
assembled programs. The linkaqes can be
effected only if the assembler is able to
provide information about the linkaqe
symbols to the linkage editor, which
resolves these linkage references at load
time. The assembler places the necessary
information in the control dictionary on
the basis of the linkage symbols identified
by the ENTRY and EXTRN instructions. Note
that these symbolic linkages are described
as linkages between independent assemblie~;
more specifically, they are linkages
between independently assembled control
sections.

In the program vhere the linkage symbol
is defined (i. e., used as a name) , it must
also be identified to the assembler by
means of " the ENTRY assembler instruction.
It is identified as a symbol that names an
entry point, which means that another
program will use that symbol ~n order to
effect a branch operation or a data
refe~ence. The assembler places this
information in the control dictionary.

Similarly, the program that uses a
symbol defined in some other program must
identify it by the EXTRN assembler
instruction. It is identified as ari
externally defined symbol (i.e., defined in
another ptogram) ihat is used to effect
linkage to the point of definition The

assembler places this information in the
control dictionary.

There is another way to obtain symbolic
linkage, namely by using the V-type address
constant. The subsection Data·Definition
In§tructio!!§. ~ontains the details pertinent
to writing a V-type address constant. It
is sufficient here.to note that this
constant may be considered an indirect
linkage point. It is created from an
externally defined symbol~ but that symbol
does not have to be identified by an EXTRN
statement The V-type address constant may
be used for external branch references
(i.e., for effecting branches to other
programs). It should not be used for
external data references (i.e., for
referrinq to data in other programs).

ENTRY -- IDENTIFY ENTRY-POINT SYMBOL

The ENTRY instruction identifies a linkage
symbol that is defined in this program but
may be used by some other program. The
format of the ENTRY instruction statement
is as follows:

. , ,
IName I Operation Operand I
l---;- ,
IBlank I ENTRY A relocatable I
I I symbol that also I
I I appears as a state- I
I I ment name I
L------L ____________ ~_ I

The symbol in the ENTRY operand field
may be used as an operand by other .
programs. An ENTRY statement operand may
not contain a symbol defined in an unnamed
control section or a dummy section. The
following example identifies the statements
named SINE and COSINE as entry points to
the program.

I

IName Operation Operand
r----~---------~---------
I
I

ENTRY
ENTRY

SINE
COSINE

. Th~ name of a control section does not
have to be identified by an ENTRY
instruction when another program uses it as
an entry point. The assembler
automatically places information on control
section names in the control dictionary. A
maximum of '00 ENTRY statements will be
processed in a single assembly.

EXTRN -- IDENTIFY EXTERNAL SYMBOL

The EXTRN instruction idEntifies a linkage
symbol that is used by this program but

defined in some other proqram Each
external symbol must be identifiedi this
includes symbols that name control
sections. The format of the EXTRN
instruction statement is as follows:

I i

IName I
I

Operation I Operand
r---+
I Blank I

---------+----------------------~
EXTRN I A relocatable

I '1 I symbol
I ,. ..L

The symbol in the operand field may not
appear as the name of a statement in this
program. The following example identifies
three external symbols that have been used
as operands in this program but are defined
in some other program.

r------T------------~-----------.-------------, I ,
IName Operation I Operand
I +
I EXTRN I RATEBI
I EXTRN I PAYCALC
I EXTRN I WITHCALC

An example that employs the EXTRN
instruction appears subsequently under
Addressin~ternal·· Control . S ecti.QJl§.

Not~: A V-type address constant does not
have to be defined by an EXTRN statement.

I ,

Nol~~ When external symbols are used in an
expression they may not be paired. The
assembler processes them as though they
originated from different control sections.

Addressinq External Control Sections

A common way for a program to link to an
external control section is to:

1. create a V-type address constant with
the name of the externa~ symbol.

2. Load the constant into a general
register and branch to the control
section via the register.

rf-----------~,---- ~--~----------------~
IName I Operation IOperand
I I I
IMAINPROG ICSECT
BEGIN IBALR

VCON'

IUSING
I
I
IL
IBALR
I
I
IDC
lEND

3,VCON
1,3

V(SINE)
BEGIN

Addressing -- Program sectioning and Linking 27

For example, to link to the con trol I I I ,
section named SINE, the preceding coding IName I Operation IOperand I
might be used. I I I ,

MAINPROG CSECT
BEGIN BAtR 2,0

An ~xternal symbol naming data may be USING *,2
referred to as follows:

, - Identify the external symbol with the EXTRN RATETBL
EXTRN instruction, and create an
address constant from the symbol.

L 4,RATEADDR
4- Load the constant into a general USING RATETBL,4

register, and use the register for base A 3,RATETBt
addressinq.

For example, to use an area named RATEADDR DC A (RATE TBt)
RATETBL, which is in another control END BEGIN
section, the following coding might be
used:

28 S/360 Bas Assembler with I/O Macros

This section discusses the coding of the
machine-instructions represented in the
assembler language. The reader is reminded
that the functions of each
machine-instruction are discussed in the
pr!ncipl~§ ~i-Qperati£B manual (see
pr~!~£,g) •

Machine-instructions may be represented
symbolically as assembler language
statements. The symbolic format of each
varies according to the actual
machine-instruction format, of which there
are five: RR, RX, RS, SI, and SSe Within
each basic format, further variations are
possible.

The symbolic format of a machine­
instruction is similar to, but does not
duplicate, its actual format. ~dix·D
illustrates machine format for the five
classes of instructions. A mnemonic
operation code is written in the operation
field, and one or more operands are written
in the operand field. Comments may be
appended to a machine-instruction statement
as previously explained in the
In trog uctiQ1l. .

AnY.machine-instruction statement may be
named by a symbol, which other assembler
statements can use as,an operand. The
value attribute of the symbol .is the
address .of the leftmost byte assigned to
the assembled instruction. The length
attribute of the symbol depends on the
basic instruction format, as follows:

Ba§ic Format
RR
RX
RS
SI
SS

. 1.§lgth Attribut~
2 .
4
4
4
6

In§1ructi2!LAl!!l.!!!!!illlLrul.L£h.§£king

All machine-instructions are aligned
automatically by the assembler on half-word
boundaries. If any statement that causes
information to be assembled requires
alignment, the bytes skipped are filled
with hexadecimal zeros. All expressions
that specify storage addresses are checked
to insure that they refer to appropriate
boundaries for the instructions in which
they are used. Register numbers are also
checked to make sure that they specify the
proper registers as follows:

MACHINE-INSTRUCTIONS

1. Floating-point instruc~ions must
specify floating-point registers 0, 2,
4, or 6.

2. Double-shift, full-word multiply, and
full-word divide instructions must
specify an even-numbered general
register in the first operand.

OPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a
single field and other operands are written
as a field followed by one or two
subfields. For example, addresses, consist
of the contents of a base register and a
displacement. An operand that specifies a
base and displacement is written as a
displacement field foilowed by a base
register subfield, as follows: 40(5). In
the RX format, both an index register
subfield and a base register ~ubfield are
written as follows: 40(3,5). In the SS
format, both a length subfield and a base
register subfield are written as follows:
40 (21,5) •

!£pendix-Qshows two types of addressing
formats for RX, RSi SI, and SS
instructions In each case, the first type
shows the method of specifying an address
explicitly, as a base register and
displacement. The second type indicates
how to specify an implied address as an
expression.

~or example, a load multiple instruction
(RS format) may have either of the
following symbolic operands:

R 1 , R 3 , D 2 (B 2)
R.,R3,S2

explicit address
implied address

Whereas D2 and B2 must be represented by
absolute expressions, S2 may be represented
either by a relocatable or an absolute
expression.

In order to use implied addresses, the
following rules must be o~served:

1. The base register assembler
instructions (USING and DROP) must be
used.

2. An explicit base register designation
must not accompany the implied address.

For example, assume that FIELD is a
relocatable symbol, which has been assigned
a value of 7400. Assume also that the

Machine Instructions 29

assembler has been notified (by a USING
instruction) that general register 8
currently contains a relocatable value of
4096 and is available as a base register.
The following example shows a
machine-instruction statement as it would
be written in assembler language and as it
would be assembled. Note that the value of
D2 is the difference between 7400 and 4096
and that X2 is assembled as zero, since it
was omitted. The assembled instruction is
presented in decimal:

Assembler statement:

ST 4,FIELD

Assembled instruction:

Op.code R~ X2 B2
50 4 0 8

D2
3304

An address may be specified explic~tly
as a base register and displacement (and
index register for RX in~tructions) by the
formats shown in the first column of the
following table. The address may be
specified as an implied address by the
formats shown in the second column.
Observe that the two storage addresses
required by the SS instructions are
presented separately; an implied address
may be used for one while an explicit
address is use~ for the other.

r--~

I Type IExplicit
1----+

Ii
Address I Implied

-+-

I

Address I ,
1 EX ID2(X2,B2)
I ID2(0,B2)*
I RS I D2 (B2)
I S I I D 1 (B 1)
1 S SID 1 (L 1 , B 1)
1 ID1(1.,B')
1 ID2(L2,B2)

1 S2 (X2)
I S2
I S2
,I s,
I S 1 (L 1)
I S 1 (L)
I S2(L2)

I
1
I
I
1
1
1

L __ ---1. .L-- ____ .J

*A zero must be supplied in an RX
explicit address when it is desir~d to
omit an index register specification
but include a base register
specification.

A comma must be written to separate
operands. Parentheses must be written to
enclose either one or two subfields of an
operand, and two subfields must be
separated by a comma. If the format of an
operand includes one subfield and if the
subfield is omitted, the parentheses must
also be omitted. If the format includes
two subfields, the following rules apply:

1. If both subfields are omitted, the
separating comma and the parentheses
must also be omitted.

30 S/360 BOS Assembler with I/O Macros

2~

3.

L
L

2,48 (4,5)
2,FIELD (implied address)

If the first subfield in the sequence
is omitted, the comma that separates it
from the second subfield is written.
The parentheses must also be written.

MVC 32(16,5) ,FIELD2
MVC BETA(,5) ,FIELD2 (implied lenqth)

(Beta must be an absolute expression)

In the RX class of instructions if the
index register sub field is not used,
but the base register is specified, the
first subfield (index register) must be
specified as zero. It_may_not-Qg
omitted.

L
L

2,48(4,5)
2,48(0,5)

4. If the second subfield in the sequence
is omitted, the comma that separates it
from the first subfield must be
omitted. The parentheses must be
written

MVC 32 (16,5) , FIELD2
MVC FIELD1(16) ,FIELD2 (implied

ad dress)

Fields and subfields in a symbolic
operand may be represented either by
absolute or by relocatable expreSS10ns,
depending on what the field requires. (An
expression has been defined as consisting
of one term or a series of arithmetically
combined terms.) Refer to Appendix D for a
detailed description of field requirements.

N01~: Blanks may not appear in an operand
unless provided by a character
self-defining term or a character literal
Thus, blanks may not intervene between
fields and the comma separators, between
parentheses and fields, etc.

LENGTHS -- EXPLICIT AND IMPLIED

The length field in SS instructions can be
explicit or implied. To imply a length,
the programmer omits a length field from
the operand. The omission indicates that
the length field is either of the
following:

,. The length attribute of the expression
specifying the displacement, if an
explicit base and displacement have
been written. -

2. The length attribute of the expression
specifying the effective address, if
the base and displacement have been
implied.

In either case, the length attribute for
an expression is the length of the leftmost
term in the expression.

By contrast, an explicit length is
written by the proqrammer in the operand as
an absolute expression. The explicit
length overrides any implied length.

Whether the length is explicit or
implied, it is always an effective lenqth.
The value inserted into the length field of
the assembled instruction is one less than
the effective length in the
machine-instruction statement

No!~: If a length field of zero is
desired, the length may b~ stated either as
a one or as a zero. (This is useful when
the subject instruction is to be executed
by the Execnte (EX) machine instruction.)

To summarize, the length required in an
SS instruction may be specified explicitly
by the formats shown in the first column of
the following table or may be implied by
the formats shovn in the second column.
Observe that the two lengths required in
one of the SS instruction formats are
presented separately. An implied length
may be used for one while an explicit
length is used for the other.

I

I Explicit Length
I--
I Dl (Ll,Bl)
1 S, (L 1)
I D 1 (L, B 1)
I S 1 (L)
I D2 (L2, B2)
I S2 (L2) ,

Implied Length

Dl (,Bl) s,
Dl(,!31) S,
D2 (, B2)
S2

The mnemonic operation codes (shown in
!E£~ndll~) are designed to be easily
remembered codes that indicate the
functions of the instructions The normal
format of the code is shown below; the
items in brackets are not necessarily
present in all codes:

Verb [Modifier] [Data Type] [Machine
Format]

The verb, which is usually one or two
characters, specifies the function. For
exa~ple, k represents Add , and MV
represents Move. The function may be
further defined by a modifier. 'For

I
I
1
1
1
I
I

example, the modifier L indicates a loqical
function, as in AL for Add Logical.

Mnemonic codes for functions involving
data usually indicate the data types, by
letters that correspond to those for the
data types in the DC assembler instruction
(see Assembler·Instruction statements).
Furthermore, letters U and W have been
added to indicate short and long,
unnormalized floating-point operations,
respectively For example, AE indicates Add
Normalized Short, whereas AU indicates Add
Unnormalized Short. Where applicable,
full-word fixed-point data is implied if
the data type is omitted.

The letters R and I are added to the
codes to indicate, respectively~ RR and SI
machine instruction formats~ Thu~, AER
indicates Add Normalized Short in the RR
format. Functions involving character and
decimal data types imply the SS format.

MACHINE-INSTRUCTION EXAMPLES

The examples that follow are grouped
according to machine-instruction format.
They illustrate the various symbolic
operand formats. All symbols employed in
the &xamples must be assumed to be defined
elsewhere in the same assembly. All
symbols that specify register numbers and
lengths must be assumed to be equated
elsewhere to absolute values.

Implied addressing, control section
addressing, and the function of the USING
assembler instruction are not considered
here. For discussion of these
considerations and for examples of coding
sequences that illustrate them, th& reader
is referred to Proqram sectioning and
Linking-and Base-Register Instructions.

RR-Forroat

r--------,--------~.--,r-----

IName Operation IOperand
I 1
IALPHAl LR 11,2
IALPHA2 LR IREG1,REG2
I BETA SPM 16
IGAMMA. SVC 1250
IGAMMA2 SVC ITEN L--________ ~ __________ ~ __________________ ____

.J

The operands of ALPHA1, BETA, and GAMMAl
are decimal self-defining values, which are
categorized as absolute expressions. The
operands of ALPHA2 and GAMMA2 are symbols
that are equated elsewhere to absolute
values.

Machine Instructions 3'

· . ~ IName IOperaticn IOperand
I~-------I~- --+1--------
IALPHA. IL 1.,39(4,.0)
IALPHA2 IL IREG',39 (4,TEN)
IBETA1 IL 12,ZETA(4)
IBETA2 IL IREG2,ZETA(REG4}
lGAMMA1 tL 12,ZETA'
IGAMMA2 IL IREG2,ZETA
IGAMMA3 IL 12,=P'1000'
I LA M B D A 1 I L I 3, 20 (0, S) L-________ i-________ --i-______ ~. __________ ~

Both ALPHA instructions specify explitit
addresses; REG1 and TEN are· absolute
symbols. Both BETA instructions specify
implied addresses, and both use index
registers. Indexing is omitted from the
GAMMA instructions. GAMMA1 and GAMMA2
specify implied addresses. The second
operand of GAMMA3 is a literal. LAMBDA1
specifies no indexing.

r-- ~,.----------_r__ .
IName IOperation IOperarid I
J-----+ I --------l
IALPHA1 IBXH 11,2,20(4) I
IALPHA2 IBXH IREG1,REG2,20(REGD) I
IALPHA3 IBXH IREG1,REG2,ZETA 1
IALPHA4 ISLL IREG2,5 1
IALPHAS ISLL IREG2,0(S) I
L-- I I •

Whereas ALPHA' and ALPHA2 specify
explicit addresses, ALPHA3 specifies an
implied address. ALPHA4 is a shift
instruction shifting the contents of REG2
left S bit positions. ALPHAS is a shift
instruction shifting the contents of REG2
left by the value contained in general
register S.

r---------.r-----------r--
IName IOperation 10perand
J-- 1 1
1 ALP H A 1 I CL I 1 40 (9) , X '40 '
IALPHA2 ICLI 140(REG9),TEN
IBETA. ICLI IZETA,TEN
I BET A 2 I CL T I Z ETA, C ' A '
IGAMMA 1 I SIO 140 (9)
IGAMMA2 ISIO 10(9)
1 GAMMA3 I SIO 140 (0)
IGAMMA4 ISIO IZETA
L--_____ -i--__________ '~ __ _

The ALPHA instructions and GAMMA.-GAMMA3
specify explicit addresses, whereas the

32 S/360 BOS Assembler with I/O Macros

BETA instructions and GAMMA4 specify
implied addresses. GAMMA2 specifies a
displacement of zero. GAMMA3 does not
specify a base register.

r.--------~.~-------_r__'------~------------~
IName 10perationiOpeFand
1-1 -------f__
1 ALPHA. AP
IALPHA2 AP
I ALPHA3' AP
IALPHA4 AP
IBETA AP
IGAMMA 1 MVC
IGAMMA2 MVC
JGAMMA3 MVC
IGAMMA4' MVC

140 (9,8) ,30 (6,7) 1
140 (NINE,REG8) ,30 (L6, 7) I
IFIELD2,FIELD1 1
I FIELD2 (9) , FIELD1 (6) I
IFIELD2(9),FIELD1 I
140(9,8),30(7) I
140(NINE,REG8),DEC(7) I
IFIELD2,FIELD1 I
IFIELD2(9),FIELD1 I

~ _______ ~ __________ ~ ________ ~. ____________ J

ALPHA., ALPHA2, GAMMA., and'GAMMA2
specify explicit lengths and addresses.
ALPHA3 and GAMMA3 specify both implied
length and implied addresses; ALPHA4 and
GAMMA4 specify explic'it length and implied
addresses.. BETA specifies an explicit
length for FIELD2 and an implied length for
FIELD.; both addresses are implied.

EXTENDED MNEMONIC CODES

For the convenience of the programmer, the
assemfuler provides extended mnemonic codes,
which allow conditional branches to be
speci(ied mnemonically as well ~s through
the use of the BC machine-instruction.
These extended mnemonic codes specify both
the machine branch instruction and the
condition on which the branch is to occur.
The codes are not part of the universal set
of machine-instructions, but are translated
by the assembler into the corresponding
operation and condition combinations.

The allowable extended mnemonic codes
and their operand formats are shown in
Figure 3, together with their machine­
instruction equivalents. Unless otherwise
noted, all extended mnemonics shown are for
instructions in the RX format. Note that
the orily difference between the operand
fields of the extended mnemonics and those
of their machine-instruction equivalents is
the absence of the R. field and the comma
that separates it from the rest of the
operand field. The extend€d mnemonic list,
like the machine-instruction list, shows
explicit address formats only. Each
address can also be specified as an implied
address.

r- ~--------------~ --------------------------------------,------------------------, 1

I I
IEXTENDED 1 OPERAND
ICODE 1
I 1

1
1 MEANING
1
1

1
1 MACHINE
1
1

INSTRUCTION
1
1
1
I

l-- 1 1 ---------------------------------+----------------------~ 1
I I 1
J B D2 (X2, B2) 1 Branch Unconditional 1 BC 15, D2 (X2, B2)

1
1
1
1
1

1 BR R2 1 Branch Unconditional (RR Format) 1 BCR 15, R2
J NOP D2 tX2 , B2) 1 No Operation 1 BC 0, D2 (X2, B2)
1 NOPR R2 1 No Operation (RR Format) 1 BCR 0, R2
l- -f 1 ----------------~
I 1 1
I 1 USED AFTER COMPARE INSTRUCTIONS 1

1
1
1

1
1
1
1
1
I

I 1 1
1 BH D2 (X2, B2) 1 Branch on High 1 BC 2, D2 (X 2, B2)
I BL D2 (X2, B2) 1 Branch on Low I BC 4, D2 (X2, B2)
I BE D2 (X2, B2) 1 Branch on Equal 1 BC 8, D2 (X2, B2)
I BNH D2 (X2, B2) 1 Branch on Not High 1 BC 13, D2 (X2, B2)
1 BNL D2 (X2, B2) 1 Branch on Not Low 1 BC q 1, D 2 (X2, B2)
I BNE D2 (X2, B2) 1 Branch on Not Equal 1 BC 7, D2 (X2, B2)
l---------r- 1 -l--- ------,-------l
1 1 1 1
I I IUSED AFTER ARITHMETIC INSTRUCTIONS I

I
1
1
1
1
1
1 ,

1 I 1
I BO I D2 (X2, B2) I Branch on
I BP I D2 (X2, B2) I Branch on
I BM 1 D2 (X2, B2) 1 Branch on
1 BZ 1 D2 (X2, B2) 1 Branch on
I------r---------+_
I 1 1
1 1 IUSED AFTER TEST
1 1 1
1 BO 1 D2 (X2, B2) I Branch if
I BM 1 D2 (X2, B2) 1 Branch if
1 BZ I D2 (X2, B2) 1 Branch if
L-_______ ~ _____ . _________ ~ ______ _

Figure 3. Extended Mnemonic Codes

The following examples illustrate
instructions using extended mnemcnic codes.
In these examples it is assumed that the
symbol GO is definEd elsewhere in the
program.

.-------r i --,

IName 1 Operation IOperand I
l------+.-:.---------+-------------------t
I IE 140(3,6) 1
1 IB 140(0,6) I
I IBL IGO(3) I
1 I BL 1 GO 1
I 1 BR 14 1 L ___ ~ ________ __i_ I

I
Overflow ·1 BC 1, D2 (X2, B2)
Plus 1 BC 2, D2 (X2, B2)
Minus 1 BC 4, D2 (X2, B2)
Zero 1 BC 8, D2 (X2, B2)

+-
1

UNDER MASK INSTRUCTIONI
1

Ones 1 BC , , D2 (X2, B2)
Mixed 1 BC 4, D2 (X2, B2)
Zeros I BC 8, D2 (X2, B2)

The first two instructions specify an
unconditional branch to an explicit

1
1
1
1
I
1

J

address The address in the first case is
the sum of the contents of base register 6,
the contents of index register 3 1 and the
displacement 40; the address in the second
instruction is not indexed. The third
instruction specifies a branch on low to
the address'implied by GO as indexed by the
contents of index register 3; the fourth
instruction does not specify an index
register. The last instruction is an
unconditional branch to the address
contained in register 4.

Machine Instructions 33

Just as machine instructions are used to
request the computer to perform a sequence
of operations durinq program execution
time, so assembler instructions are
requests to the assembler to perform
certain operations durinq the assembly~
Assembler-instruction statements, in
contrast to machine-instruction statements
do not always cause machine-ins~ructions to
be included in the assembled program.
Some, such as DS and DC, generate no
instructions but do cause storage areas to
be set aside for constants and other data.
others, such as EQU and SPACE, are
effective enly at assembly time; they
generate nothing in the assembled program
and have no effect on the Location Counter.

The fellowing is a list of all the
assembler instructions.

~Y~Rol_Q~i~n~!~on lnstruct~Qn
EQU - Equate Symbol

Data Definition Instructions
Dc--=-Define-constant-------
DS - Define Storage
CCW - Define Channel Command Word

* ££Qg~~~~gctiQning_~nd-1inking
Instructions
START-=-start Assembly
CSECT - Identify Control Section
DSECT - Identify Dummy Section
ENTRY - Identify Entry-Peint Symbol
EXTRN - Identify External Symbol

* ~~§~-B~g~§tef_1nst~gctiQn§
USING - Use Base Address Register
DROP - Drop Base Address Register

1i§!ing_~Qn!~Ql_In§!~Q£!~Ens
TITLE - Identify Assembly output
E~ECT - Start New Page
SPACE - Space Listing
PRINT - Print optional Data

ICTL
ISEQ
ORG
I,TORG
CNOP
END
REPRO
PUNCH
XFR

- Input Format Control
Input Sequence Checking
Set I,ocation Counter
Begin Literal Poel
Conditional No Operation
End Assembly
Reproduce Following Card
Punch a Card
Generate a Transfer Card

* Discussed under Adgfess~ng_==-Rrogr~~
Se£iioning~nQ_1inking·

34 S/360 BOS Assembler with I/O Macros

EQU -- EQUATE SYMBOL

The EQU instruction is used to define a
symbol by assigning to it the attributes of
an expression in the operand field. The
form·at of the EQU instruction statement is
as follows:

r-------. --r-----~ ,
I Name 10peration, Operand ,
~ +------+ ---t
IA symbol IEQU IAn expression I
L- I --L- .J

The expression in the operand field must
be absolute or relocatable. Any symbols
appearing in the expression must be
previously defined.

The symbol in the name field is given
the same attributes as the expression in
the operand field. The length attribute of
the symbol is that of the leftmost (or
only) term of the expression. The value
attribute of the symbol is the value of the
expression.

The EQU instruction is the means of
equating symbols to register numbers,
immediate data, and other arbitrary values
The following examples illustrate how this
might be done:

I I

,Name ,Operation 10perand
,
I

~---+----------+- -------l
IREG2 ,EQU 12 (qeneral register)
ITEST IEQU IX'3F' (immediate data)
I I ..L ____ .

1
I

.J

To reduce programming time, the
programmer can equate symbols to frequently
used expressions and then use the symbols
as operands in place of the expressions
Thus, in the statement

r- I -or- ,
IName 10peration , Operand I
~ I -+- I , I I ,
,FIELD ,EQU ,ALPHA-BETA+GAMMA I
'--- -L- .J

FIELD is defined as ALPHA-BETA+GAMMA and
may be used in place of it. Note, however,

that ALPHA, BETA, and GAMMA must all be
previously d,efined.

There are three data definition instruction
statements: Define Constant (DC). Define
storage (DS), and Define Channel Command
Word (CC W) •

These statements are used to enter data
constants into storage, to define and
reserve areas of storage, and to specify
the contents of channel command words. The
statements may be named by symbols so that
other program statements can refer to the
fields generated from them. The DS
instruction is written in the same format
as the DC instruction and may specify some
or all of the information that the DC
instruction provides. Only the function
and treatment of the statements vary. The
DC instruction is presented first and
discussed in more detail than the DS
instruction.

DC -- DEFINE CONSTANT

The DC instruction is used to provide
constant data in storage. It may specify
one constant or a series of constants.
Furthermore, a variety of constants may be
specified: binary fixed-point,
floating-point, decimal, hexadecimal,
character, and storage addresses (Data
constants are generally called constants
unless they are created from storage
addresses, in which case they are called
address constants.)

The format of the DC instruction
statement is as follows:

r- --~I------------~I---
IName I Operation I Operaad
l-----_+_ +-
IA symbol I DC lOne operand in
lor blank I I the following
I I I format

I
I
I

L-- I -'---
____ J

The operand consists of four subfields.
They are written in the following sequence:

,
Dupli­
cation
Factor

2
Type

3
Modifiers

4
Co nst ant (sl

The constant provided in the fourth
subfield is described by subfields 1-3.
Some or all of the three descriptive
subfields may be omitted, depending on the
constant. Note that more than one constant

may be specified in the fourth subfield for
most types of constants, so the programmer
need not write a separate data definition
for every constant desired. However, each
constant so specified must be of the same
type; the descriptive three subfields apply
to all of them. No blanks may occur within
any subfield, except in providing a
character in a character constant. No
blanks may occur between the sub fields of
an operand.

The symbol that names the DC instruction
is the name of the constant, or, if the
instruction specifies more than one, the
first constant. In the case of multiple
constants, relative addressing (for
example, SYMBOL+2) may be used to reach the
various values. The number of bytes
allocated to each constant can readily be
determined from the .four subfields.

The value attributed to the symbol
naming the DC instruction is the address of
the leftmost byte (after alignment) of the
constant, or the first constant where
multiple constants are defined. The length
attribute depends on two things: the type
of constant being defined and the use of a
length specification. If no length
specification is present, the implied
length of the constant is assumed. Should
more than one constant be defined, the
attributed length is the length in bytes
(specified or implied) of the first
constant.

Boundary alignment also varies according
to the type of constant being specified and
the presence of a length specification.
Some·~onstant types are only aligned to a
byte boundary, but the DS instruction can
be used to force any type of word boundary
alignment for them. This is explained
under"DS -- Define Storag~. Other
constants are aligned at various word
boundaries (half, full, or double) in the
absence of a length specification. For
these constants, no bou~dary alignment
occurs if length is indicated.

Bytes that must be skipped in order to
align the field at the proper boundary are
not considered to be part of the constant.
In other words, the Location Counter is
incremented to reflect the proper boundary
(if any incrementing is necessary) b~fore
the address value is established. Thu"S,
the symbol naming the constant will not
receive a value attribute that is the
location of a skipped byte. The bytes
skipped in aligning the constant defined by
a DC instruction will be zeroed, because
information is being assembled. This would
occur, for example, in the alignment of the
statement DC F'123'.

Assembler Instructions 35

!~~di~_f summarizes, in chart form,
the information concerning constants that
is presented in this section.

LITE]A1-DEFINI11.Q.!!1?= The reader is
reminded that the discussion of literals as
machine-instruction operands referred him
to the description of the DC operand for
the methcd of writing a literal operand.
All subsequent operand specifications are
applicable to writing literals, the only
differences being:

1. The literal is preceded by an = siqn.

2. The duplication factor may not be zero.

3. s-ty pe address constants may not be
specified.

Examples of literals appear throughcut
the balance of the DC instruction
discussion.

The duplication factor must be specified by
an unsigned decimal value. It causes the
constant(s) to be generated the number of
times indicated by the factor. It is
applied after the constant has been fully
assembled, that is, after it has been
developed into its proper format. Note
that, except in a literal, a duplication
factor of zero is permitted. It is used to

r----~

I CODE I
...... -----t

C
X
B
F

H

E

D

p

Z
A
Y
S

v

Character
·Hexadecimal
Binary
Fixed-point

Fixed-point

Floating-point

Floating- poin t

Decimal
Decimal
Address
Address
Address

Address

1-----1- ..L-

I

force alignment to a doubleword, full-word,
or h alf- word bound ary, as desired. (See
Fo~cing-Alignm·en1 under DS~-Define
stQ~~gg.) The duplication factor may be
omitted altogether.

~Q1g: If duplication is specified for an
address constant containinq a Location
Counter reference, the value of the
Location Counter used in each duplication
is incremented by the length of the
constant.

The type subfield defines the type of
constant being specified. From the type
specification, the assembler determines how
it is to interpret the constant and
translate it into the appropriate machine
format. The type is specified by a letter
code as shown in Figure 4.

Further information about these
constants is provided in the discussion of
the constants themselves under gE§£~nd
Su~ii~ld 4~ __ £Qn§1~D1.

QB~£~nd-subfield_ll~~Q~iiiers

Modifiers describe the length in bytes
desired for a constant (in contrast to an
implied length), and the scalinq and
exponent for the constant. If multiple
modifiers are written, they must appear in

--,
MACHINE FORMAT I

.----.--1

I ~Qte: The type subfield for a character constant may be omitted, C is assumed.
L-.

Figure 4. Type Codes for Constants

36 S/360 BaS Assembler with I/O Macros

this sequence~ lenqth, scale, exponent.
Each is written and used as describEd in
the following text.

LE]g1~~~IEB: A length modifier may be
specified for any type of constant. It is
written as Ln, where n is an unsigned
decimal value. The value ef n represents
the number of bytes of storage that are
assembled for the constant. No boundary
alignment is provided when a length
modifier is given.

The maximum value permitted for a length
modifier varies with the type of constant.
A character may have a length up to 256
specified, whereas the range of a
fixed-point constant is 1 to 8. Should the
specified length be greater or less than
the constant actually given, padding or
truncation occurs as necessary. If no
length modifier is present, the implied
length of that type of constant is used.
Limits on the modifiers and implied lengths
are found in ~EE§ndi~_I, a summary of
constants.

SCALE·MODIFIER~ This modifier is written
as-sn;-Where-n is a decimal value. The
decimal value may be preceded by a sign; if
none is present, a plus sign is assumed.
The maximum values for scale modifiers are
summarized in !EE§ndi~-I.

A scale modifier may be used with
fixed-point (F, H) and floating-point (E,
D) constants only. It is used to specify
the amount of internal scaling that is
desired, as follows.

Scale·Modifier for Fixed-Point constant:
ThIs-Scale-modIfIer-specifIes-the power of
two by which the constant must be
multiplied after it has been converted to
its binary representation. ~t must fall
within the range -187 to .346.
Multiplication of a binary number by a
power of two causes the binary point to
move. It has the effect of shiftinq the
binary point away from its assumed position
in the binary field, the assumed position
being to the right of the rightmost
position. The process is comparable to the
movement of a decimal point in the
multiplication of a decimal number by a
power of ten.

The scale modifier, then, indicates
either of the following:

1. the number of binary positions to be
occupied by the fractional portion of
the binary number, or .

2. the number of binary positions to be
deleted from the integral portion of
the binary number.

A positive scale of x shifts the inteqral
portion of the number x binary positions to
the left, thereby reserving the rightmost x
binary positions for the fractional
portien. A negative scale shifts the
integral portion of the number riqht,
thereby deleting rightmost integral
positions. 1f-~§£~le~Qgifier does not
aC£Q~E~nY_~_f~~~g=Egin1-£Qn§tant cont~inin~
~fractio~1-E~£iL-~he-K£~£!iQnal part_i§
lo~i~ __ For example, if the decimal portion
of the number 987.65 is to be retained, the
statement DC FS8'987.65'is required. The
statement DC F'987.65' without the scale
factor S8 retains only the integral
portion, 987, of the number.

In all cases where positions are lost
because of scaling (or the lack of
scaling) , rounding occurs in the leftmost
bit of the lost portion. The roundinq is
reflected in the rightmost position saved.

Sc~le_~gQifie~~Q~FIQating-Point Constant:
Only a positive scale ~odifier may be used
with a floating-point constant. It may be
any value from 0 to 13 and indicates the
number of hexadecimal positions that the
fraction is to be shifted to the riqht. It
is specified in this way because a
floating-point constant is always converted
to a fraction. This fraction is
hexadecimally normalized, that is, with a
high-order hexadecimal diqit that is not
zero. Because the point is then assumed to
be to the left of the leftmost position in
the field, and cannot be moved left, the
fraction is shifted right. Note that this
shift amount is in terms of hexadecimal
positions.

Thus, scaling that is specified for a
floating-point constant provides an
assembled fraction that is unnormalized,
i.e., contains hexadecimal zeros in the
leftmost positions of the fraction. When
the fraction is shifted, the exponent is
adjusted accordingly to retain the correct
magnitude. When hexadecimal positions are
lost, rounding occurs in the leftmost
hexadecimal position of the lost portion.
The rounding is reflected in the riqhtmost
hexadeci~al position saved.

EXPONENT MODIFIER: This modifier is
wrItten-as-En~-Where n is a decimal value.
The decimal value may be preceded by a
sign; if none is present, a plus sign is
assumed. The maximum values for exponent
modifiers are summarized in AEBgndiK-1.

An exponent modifier may be used with
fixed-point (F, H) and floating-point (E,
D) constants only. The modifier denotes
the power of 10 by which the constant is to
be multiplied before its conversion to the
proper internal format.

Assembler Instructions 37

This modifier is not to be confused with
the exponent of the constant itself, which
is specified as part of the constant and is
explained under QEeran~Qbfield 4:·
constant. Both are denoted in the same
fashion; as En. The exponent modifier
affects each constant in the operand,
whereas the exponent written as part of the
constant only pertairis to that constant.
Thus, a constant may be specified with an
exponent of +2, and an exponent modifier of
+5 may precede the constant. In effect,
the constant has an exponent of +7.

Note that there is a maximum value, both
positive and negative, listed in !~~~Qi~_l
for exponents. This applies both to
exponent modifier and exponents specified
as part cf the ccnstant, or to their sum if
both are specified.

This subfield supplies the constant (or
constants) described by the subfields that
precede it. A data constant (all types
except A,Y,S,and V) is enclosed by single
quotation marks. An address constant
(types ~, Y, S, and V) is enclosed by
parentheses. For types F,H,E,D,P, and Z
two or more constants may be specified in
the subfield. The constants must be
separated by commas and the entire sequence
of constants must be enclosed by single
quotation marks. Thus, the format for
specifying the constant(s) is one of the
followinq:

Sinqle
Co~§.t~nt
'constant'
(constan t)

Multiple
Co.!!st~nts~
'constant, ••• ,constant'

*Permitted for F,H,E,D,P, and Z type
constants only.

All constant types except character (C),
hexadecimal (X), binary (B), packed decimal
~), and zoned decimal (Z), are aligned on
the proper boundary, as shown in !EE~ndi~
1, unless a length modifi~r is specified.
In the presence of a lengtb modifier, no
boundary alignment is performed. If an
operand specifi~s more than one constant,
any necessary alignment applies to the
first constant only. Thus, for an operand
that provides five full-word constants, the
first would be aligned on a full-word
boundary. The rest, however, would
automatically fallon full-word boundaries
as well.

The total storaqe requirement of an
operand is the product of the length times
the number of constants in the operand
ti~es the duplication factor (if present)
plus an~ bytes skipped for boundary
alignment of the first constant •

38 S/360 BOS Assembler with I/O Macros

If an address constant contains a
Location counter reference, the Location
counter value that is used is the storage
address of the first byte the constant will
occupy. If an address constant is
specified (and it is a Location Counter
reference) with a duplication factor, the
donstant is duplicated with a varying
Location Counter value.

The subsequent text describes each of
the constant types and pr~vides examples.

~h~~~£!~~~fon§!~n!_==~f: Any of the valid
256 punch combinations may be designated in
a character constant. ,only one character
constant may be specified per operand.
Since multiple constants within an operand
are separated by commas, an attempt to
specify two character constants would
result in interpreting th~ comma separating
them as a character.

The maximum length of a character
constant is 256 bytes. No boundary
alignment is performed. Each character is
translated into one byte. If no lenqth
modifier is given, the size in bytes of the
character constant is equal to the number
of characters in the constant. If a lenqth
modifier is provided the result varies as
follows:

,. If the number of characters in the
constant exceeds the specified length,
as ~any rightmost bytes as necessary
are dropped.

2. If the number of characters is less
than the specified length, the excess
rightmost bytes are filled with blanks.

Special consideration must be qiven to
representing quotation marks and ampersands
as characters. Each single quotation mark
or ampersand desired as a character in the
constant must be represented by a pair of
sinqle quotation marks or ampersands. The
double quotation marks and ampersands count
as one character. Only one single
quotation mark or ampersand appears in
storage.

In the following example, the length
attribute of FIELD is 12:

r i i ,
IName 10perat.ion 10perand I
l- I I -f
IFIELD IDC IC'TOTAL IS no' I
L-- I i

However, in this next example, the
length attribute is 15, and three blanks
appear in storage to the riqht of the zero:

r-------T-----------.- ,
IName 10peration 10perand I
1----4 +-------------------1
IFJELD IDC ICL15'TOTAL IS "0' I L-______ ~ _________ ~ ______________ ~

In the next example, the length
attribute of FIELD is 12, although 13
characters appear in the operand. The two
ampersands count as only one byte.

• ,Name
iii
loperation ,Operand ,

I­
IFIELD

I -+------------------1
IDC IC'TOTAL is &&10' I

I I I I
L- I I I

Note that in the next example, a length
of four has been specified, but there are
five characters in the constant

."1('" or--
IName IOperation 10perand
, +---------~I--------·----------~
IFIELD IDC 13CL4'ABCDE' L-_____ ~ __________ ~ _____ .J

The generated constant would be:

ABCDABCDABCD

On the other hand, if the length had
been specified as six instead of four, the
generated constant would have been:

ABCDE ABCDE ABCDE

Note that the same constant could be
specified as a literal.

I i ~--------

IName I Operation lOperand
~---+-----+- -I
I IMVC IAREA(12),=3CL4'ABCDE'1
L-- I I i

Hexadecimal constant -- X: A hexadecimal
constantiscomprised-of one or more of the
hexadecimal digits, which are 0-9 and A-F.
Only one hexadecimal constant may be
specified per statement. The maximum
lenqth of a hexadecimal constant is 256
bytes (512 hexadecimal digits). No word
boundary alignment is performed.

constants that contain an even number of
hexadecimal diqits are translated as one
byte per pair of digits. If an odd number
of digits is specified, a hexadecimal zero
is paired with the leftmost digit to make
up another byte.

If no length modifier is given, the
implied length of the constant is half the
number of hexadecimal digits in the
constant (assuminq that a hexadecimal zero
is added to an odd number of digits). If a

length modifier is given, the constant is
handled as follows:

1. If the number of hexadecimal digit
pairs is greater than the specified
length, the extra leftmost bits
(and/or bytes) are dropped.

2. If the number of hexadecimal digit
pairs is less than the specified
length, the necessary bits (and/or
bytes) are added to the left and
filled with hexadecimal zeros.

An eight-digit hexadecimal constant
provides a convenient way to set the bit
pattern of a full binary word. The
constant in the following example would set
the first and third bytes of a word to 1s:

'--'--~,i --- i

10perand
,

IName 10peration
~ I
I IDS
ITEST IDC

+--
10F
IX'FFOOFFOO'

, , ,
I

L-. ____ ~I~ ______ _ I .J

The DS instruction sets the location
counter to a full-word boundary.

The next example uses a hexadecimal
constant as a literal and inserts 1s into
bits 24 through 31 of register 5.

.~---'II----------~
IName ,operation ,Operand
t-I ---tl- +
I IIC 15,=X'FF'
L- I ...L-

In the following example, the digit A
would be dropped, because five hexadecimal
digits are specified for a length of two
bytes:

.------1"11 --

IName jOperation
I ,
IALPHACON IDC
I I

~

10perand
I
,3XI,2 I A6F4E'
I 1 ~ __ ----L ___ __

The resulting constant would be 6F4E,
which would occupy the two bytes specified
by the length modifier (L2). It would be
generated three times, as requested by the
duplication factor. Had it been specified
as X'A6F4E', the resulting constant would
have contained a hexadecimal zero in th~
leftmost position:

OA6F4E

, , ,
I

.J

,
I
-I
I
I
I

Binary cons~1_==~~ A binary constant is
written using .s and Os enclosed in
quotation marks. Only one binary constant
may be specified in a statement.
Duplication and length may be specified.

Assembler Instructions 39

The maximum length of a binary constant is
256 bytes.

The implied lenqth of a binary constant
is the number of bytes occupied by the
constant including the padding necessary to
complete a byte. The padding bit used is a
O. Paddinq or truncation takes place on
the left.

~he following example shows the coding
used to designate a binary constant.

r--------.-----------.--
IName IOperation IOperand
l- I -+--,---
IBCON IDC IB'nOnQOp
IBTRUNC IDC IBL1'1C0100011'
IBPAD IDC IBL1'101'
L-_____ -L-- -L

BCON would have a length attribute of
one.

BTRUNC would assemble with the leftmost
bit truncated, as follows:

00100011

BPAD would assemble with five zeros as
padding, as follows:

00000101

Fixed-Point constants -- F and H: A
fixed=point constantis writtenas a
decimal number. The number may be an
integer, a fraction, or a mixed number
~.e., one with integral and fractional
portions) and may be followed by a decimal
exponent if desired. The format of the
constant is as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be omitted,
in which case the number is assumed to
be an inte~er. A positive sign is
assumed if an unsigned number is
specified Unless a scale modifier
accompanies a mixed number or fraction,
the fractional portion is lost, as
explained under ~~Rfield 3~~odifie£~.

2. The exponent is optional. If
specified it is written immediately
after the number as En, where n is an
optionally signed decimal value
specifyinq the exponent of the factor
10. The eXfonent may be in the range
-85 to +75. If an unsigned exponent is
specified, a plus sign is assumed. The
exponent causes the value of the
constant to be adjusted by the power of
10 that it specifies before the
constant is converted to its binary
form.

40 5/360 BOS Assembler with I/O Macros

The number is converted to its binary
equivalent and is assembled as a full-word
or half-word, depending on whether the type
is specified as F or H. It is aliqned at
the proper full-word or half-word boundary
if a length is not specified. An implied
length of four bytes is assumed for a
full-word (F) and two bytes for a half-word
(H). However, any length up to and
including eight bytes may be specified for
either type of constant by a lenqth
modifier, in which case no boundary
aliqnment occurs.

Maximum and minimum values, exclusive of
scaling, for fixed-point constants are:

.tlax
2{) 3- 1
2 31 -1
2 15-1
27-1

.tl in
-263

-2 31

-2 15

-2 7

The binary number occupies the rightmost
portion of the field in which it is placed.
The unoccupied portion (i.e., the leftmost
bits) is filled. with the siqn. That is,
the setting of the bit desiqnating the sign
is the settinq for the bits in the unused
portion of the field. If the value of the
number exceeds the length, the necessary
leftmost bits are dropped. A neqative
number is carried in 2s complement form~

If the presence or absence of a scale
modifier is such that the rightmost portion
of the number must be dropped, rounding
occurs. A duplication factor is applied
after the constant is converted to its
binary format and assembled into the proper
number of bytes.

A field of three full-words is generated
from the statement shown here. The
specified numbers occupy the rightmost
three bytes, with the siqn propoqated
through the rest of the word. This
constant then appears three times in
storaqe. The location attribute of CONWRD
is the address of the leftmost byte of the
first word, and the length attribute is
four, the implied length for a full-word
fixed-point constant. The expression
CONWRD+4 could be used to address the
second constant (second word) in the field.

I i ----,-

IName IOperation IOperand
I I ---+
ICONWRD IDC 13F'658474'
L-________ ~i __________ , __ ~i ______ • ________ ___

I
~
I
.J

The next statement causes the qeneration
of a two-byte field containing a negative
constant. Notice that scaling has been
specified in order to reserve six bits for
the fractional portion of the constant.

.-- i i
IName IOperaticn· IOperand
I I I
IHALFCON IDC IHS6'-25.93' L-________ ~I ____________ ~I ____________________ ~

The next constant (3.50) is multiplied
by 10 to the -2 before being converted to
its binary format. The scale modifier
reserves eight bits for th:efractional
portion.

r-----------ri------------~--------------------~i
IName loperaticn IOperand I
~ ·~I------------+- ---1
IFULLCON IDC IHS8'3.50E-2' I L---- __ ~I ____________ i-____________________ ~I

The same constant could be specified as
a literal:

'--~-------------~i·-------
IName I Operation IOperand
1-----+ I
I IAH 17,=HS8'3.50E-2'
L-_---1. I

The final example specifies three
constants. Notice that the scale modifier
requests four bits for the fractional
portion of each constant. The four bits
are provided whether or not the fraction
exists.

r-----
IName
I­
ITHREECON
L-

--,- i -----,

IOperation IOperand I
I ---+ ,
I DC I FS4 '10 I 25.3, 100' I
I ~

FlQ~ti.!!g-Poi.!!j:_Constants-==~~: A
floating-point constant is written as a
decimal number, which may be followed by a
decimal exponent, if desired. The number
may be an integer, a fraction, or a mixed
number (i.e., one with integral and
fractional portions). The format of the
constant is as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be omitt~d,
in which case, the number is assumed to
be an integer. A positive sign is
assumed if an unsigned number is
spec ified.

2. The exponent is optional. If
specified it is written immediately
after the number as En, where n is an
optionally signed decimal value
specifying the exponent of the factor
10. The exponent may be in the range
-85 to +75. .If an unsigned exponent is
specified, a plus sign is assumed.

Machine format for a floatinq-point
number is in two parts: . the portion
containing the exponent, which is sometimes
called the chara~teristic, followed by the
portion containing the fraction, which is
sometimes called the mantissa. The number
specified as a floating-point constant must
be converted to a fraction before it can be
tr~nslated into the proper format. For
example, the constant 27.35E2 represents
the number 27.35 times 10 to the 2nd.
Represented as a fraction, it would be
.2735 times 10 to the 4th, the exponent
having been modified to reflect the
shifting of the decimal point. The
presence of an exponent modifier, which
will pertain to each constant in the
operand, may affect the exponent (see
QEgran£2ubfield·3:---11odifigrs). Thus, the
exponent is also altered before being
translated into machine format. Once the
constant is converted into the proper
fraction and exponent, each is translated
into its binary equivalent and arranqed in
machine floating-point format.

The translated constant is placed in a
full word or a double word, depending on
whether the type is specified as E or D.
The characteristic·occupies the first byte,
and the fraction takes up the remaininq bit
positions. The constant is aligned at the
proper word or double word boundary if a
length is not specified. An implied length
of four bytes is assumed for a full word
(E) and eight bytes is assumed for a double
word (D). However, any length up to and
including eight bytes may be specified for
either type of constant by a length
modifier, in which case no boundary
alignment occurs.

within the portion of the floating-point
field allocated to the fraction, the
hexadecimal point is assumed to be to the
left of the leftmost hexadecimal digit, and
the fraction occupies the leftmost portion
of the field. The fraction is normalized
(no leading hexadecimal zeros), unless
scaling is specified. If the rightmost
portion· of the frac.tion must be dropped
because of length or scale modifiers,
rounding will occur. Negative fractions
are carried in true representation, not in
the 2s complement form.

Any of the following statements could be
used to specify 46.415 as a positive,
full-word, floating-point constant; the
last is a machine-instruction statement
with a literal operand. Note that the last
two constants contain an exponent modifier.

Assembler Instructions 41

IName
~
I
I
I
I
I
I
L

---------r------
I Operation
I
IDC
IDC
IDC
I DC
I DC
IAE
I

IOperand
I
IE'46.415'
IE'46415E-3'
IE' +464 .15E-1'
IE'+.4641SE+2'
I EE2' .46415'
I 6, =E E 2 ' • 46 41 5 '
I

i

I
------~

I
I
I
I
I
I
I

Each of the following would be generated
as double~word floating-point constants.

i I I ----,

IName ,Operation 10perand I
1---' -t-------t____ -----J
I FLOAT I DC I DE+4' +46, -3.729, +473' I
L 1.1.- I

De,£imal Constan.:!:s --_R-l!nd·Z: A decinial
constant is written as a signed or unsigned
decimal value. If the sign is omitted, a
plus sign is assumed. The decimal point
may be written whereverd€sired or may.be
omitted. Scaling and exponent modifiers
may not be specified for decimal constants.
The maximum length of a decimal constant is
16 bytes. No word boundary alignment is
performed.

The placement of a decima~ point in the
definition does nbt affect the assembly of
the constant in any way, because, unlike
fixed-point and floating-point constants, a
decimal constant is not converted to its
binary equivalent. The fact that a decimal
constant is an· integer, a fraction, or a
mixed number is not pertinent to its
generation. Furthermore, the decimal point
is not assembled into the constant~ The
programmer may determine proper decimal
point alignment eithei by defining his data
so that the point is aligned or by
selecting machine-instructions that will
operate.on the data properly (i.e., shift
it for purposes of alignment) •

If zoned decimal format is specified
(Z), each decimal digit. is translated into
one byte. The translation is done
according to the character set shown in
Appendix A. The rightmost byte contains
the sign as well as the rightmost digit.
For packed decimal format (F), each pair of
decimal digits is translated into one byte.
The rightmost digit and the sign ~re
translated into the rightmost byte. The
bit configuration for the digits is
identical to the configurations for the
hexadecimal digits 0-9. as shown in
Hexadecimal Self-Defini~~. For both
packed and zoned decimals, a plus sign is
translated into the hexadecimal digit C,
and a minus s~gn into the digit D. .

If an even number of packed decimal
digits is specified, one digit will be left

42 S/360 BOS Assembler with I/O Macros

unpaired, because the rightmost digit is
paired with the sign. 'Therefore in the
leftmost byte, the leftmost four bits will
be set to zeros and the rightmost four bits
will contain the odd (first) digit.

If no length modifier is given, the
implied length for either constant is the
number of bytes the constant occupies
(taking into account the format, sign, and
possible addition of zero bits for packed
decimals). If a length modifier is given,
the constant is handled as follows~

1. If the constant requ~res fewer bytes
than the length specifies, the
necessary number of bytes is added to
the left. For zoned decimal format,
the decimal digit zero is placed in
each added byte. For packed decimals,
the bits of each added byte are set to
zero.

2. If the constant requires more bytes
than the length sp~cifies, the
necessary number of leftmost digits or
pairs of digits is dropped, depending
on which format is specified.

Examples of decimal constant definitions
follow •.

I j I ,
I Name IOperation 10perand I
r.- I + ----.
1 FIRST I DC IP'+1.25' .1
ISECONDIDC IZ'-S43'
I THIRD IDC IZ'79.68'
IFOURTHIDC IPL3'79.68'
L- I .J.

FIRST would be assembled in two bytes,
vith the one on the right containing the
positive sign and the five specified~
SECOND would require three bytes; four
bytes would be assembled for THIRD. The
length of three specified for FOURTH would
be filled with zeros on the left paired
with the seven, and the assumed plus' sign
paired with· the eight~n the rightmost
byte.

The following example illustrates the
use of a packed decimal literal.

I
I
I

.J

i i I --.
IName I Operation I Operand I
l- I +-- ,
I IUNPK IOUTAREA,=PL2'+2S~ I
L- I I I

ADDRESS CONSTANTS: An address constant is
a storage address that is translated into a
con'stant Address constants are normally
used £or initializing base registers to
facilitate the addressing. of storage.
Furthermore, they provide the means of
communicating between control sections of a

multisection program. However, storage
addressing and control section
communication are also dependent on the use
of the USING assembler instruction and the
loading of registers. Coding examples that
illustrate these considerations are
provided in Proqr~mming with the Using
Instr.!!,ction.

An address constant, unlike other .types
of constants, is enclosed in parentheses
There are four types of address constants:
A, Y, S, and V.

Co~£1exRelocatable Expressions: These
expressions contain two or three unpaired
relocatable terms or a negative relocatable
term in addition to any absolute or paired
relocatable terms that may be present. A
complex relocatable expression can only be
used to specify an A-type or y-type address
constant. In contrast to relocatable
expressions, complex relocatable
expressions may represent a negative value.
A complex relocatable expression might
consist of external symbols (which cannot
be paired) and designate an address in an
independent assembly th~t is to be linked
and loaded with the assembly containing the
address constant.

A-ly~.-!ddre~~onstant: This constant is
specified as an absolute, relocatable, or
complex relocatable expression. (Remember
that an expression may be single term or
multiterm.) The value of the expression is
calculated as explained in the General
IniQrmation section, under Evalu1!tio1Lof
Ex££~ssiQ~§. The maximum value allowed in
this case, however, is 2 31 -1. The implied
length of an A-type constant is four bytes,
and the value is placed in the rightmost
portion. Alignment is to a full-word
boundary, unless a length is specified. A
length modifier may be used, in which case
no alignment will occur. The length that
may be specified depends on the type of
expression used for the constant; a length
of 1-4 bytes may be used for an absolute
expression, while lengths of 3 and 4 bytes
may be used for a relocatable or complex
relocatable expression.

The A-type address constant can be used
to reference external data, in which case
EXTRN and ENTRY points are required.

In this example, ADEND will be assembled
as the value (or the address of the
leftmost byte) of DUMP.

r------~ir-------·-----ri------------------------,
IName IOperation IOperand I
I- I I ,
IADEND IDC IA(DUMP) I
'" ,

In the following example, the field
generated from the statement named ACONST
contains a constant which occupies four
bytes. Note that there is a Location
Counter reference. The value of the
Location Counter will be the address of the
first byte allocated to the constant. The
second statement shows the same constant
specified as a literal (i.e., address
constant literal).

r------,.--
IName operation Operand
I
IACONST DC A(*+4096)
I L 4,=A (*+4096) L----__ ~~ __________ _L ____ ___

]Qte: When the Location Counter reference
occurs in a literal, as in the load
instruction above, the value of the
Location Counter is the address of the
first byte of the instruction.

y-1Y.E~Address CQnstan1: A y-type address
constant has the characteristics and format
of the A-type constant discussed above
except for the following:

,. The constant is assembled as a 16-bit
value and aligned to a half-~ord
boundary.

2. The implied length is two bytes.

3. If length specification is used, a
length of two to four bytes may be
designated for a relocatable or complex
expression and 1 to 4 bytes for an
absolute expression.

S-TY~ Address Constant: The S-type
address constant is used to store an
address in base-displacement form.

The constant may be specified in two
ways:

1. As an absolute or relocatable
expression, e.g., S{BETA).

2. As two absolute expressions, the first
of which represents the displacement
value and the second, the base
register, e.g., S(400(13».

The address value represented by the
expression in (1) will be broken down by
the assembler into the proper base register
and displacement value. An S-type constant
is assembled as a half word and aligned on
a half-word boundary. The leftmost four
bits of the assembled constant represents
the base register designation, the
remaining 12 bits the displacement value.

If lenqth specification is used, only
two bytes may be specified. s-type address

Assembler Instructions 43

constants may not be specified as literals.
A duplication factor may not be used.

V-Type Address-Constant: This constant is
used to reserve storage for the address of
an exteinal symbol that is used in
branching to other programs. A V~type
coristant may not be used for external data
'references. The constant is specified as
one relocatable symbol, which need not be
identified by an EXTRN statement. Whatever
symbol is used is ~ssumed to be an external
symbol by virtue of the fact that it is
supplied in a V-type address constant.

Note that'specifying a symbol as the
operand of a V-type constant ,does not
constitute a definition of the symbol for
this assembly. Until the program is
loaded, the value of the assembled constant
is zero. The implied lenqth of a V-type
address constant is four bytes, and
boundary alignment is to a full word. A
length modifier may be used to specify a
length of either three or four bytes, in
which case no such boundary alignment
occurs.

In the following example, four bytes
will be reserved on a full-vord boundary,
and filled with zeros untii loadtng time.

r--------,-------------Tt'-----------
IName IQperation 10perand
~ I I
I VCCNST I DC I V (SORT)
~------~------------~

tis -- DEFINE STORAGE

The DS instruction is used to reserve areas
of storage and to assign names to those
areas. The use of this instruction is the
preferred way of symbolically defining
storage for work areas, input/output areas,
etc. The size of a storage area that can
be reserved by using the DS instruction is
limited'only by the maximum value' of the
Location Counter. Because the maximum
length specification is 256, an area larger
than 256 must be specified vith a -
duplication factor. For example, the
statement DS 2CL200 can be used to reserve
400 positions of main storage.

t ~ ---,
IName I Operation 10perand I
l I I --l
IA symbol IDS lOne operand I
lor blank I Iwritten in the I
I I Iformat described I
I I lin the following I
I I I text I
L- ~ I -----I

The format of the DS operand is
identical to that of the DC operand;

44 S/360 BOS Assembler with I/O Macros

exactly the same subfields are employed and
are written in exactly the same seguence as
they are in the DC operand, with the
following exception:

The specification of data (subfield 4)
is optional in a DS operand, but it is
mandatory in a DC operand.

If a DS operand specifies a constant in
subfield 4, (and no length is specified in
subfield 3) the assembler determines the
length of the data and reserves the
appropriate amount of storage. It-does not
assemble-the-constant. The ability to
specify data and have the assembler
calculate the storage area that would be
required for such data is a convenience to
the programmer. If he knows the general
format of the data that will be placed in
the storage area during program execution
all he needs to do is show it as the fourth
subfield in a DS operand. The assembler
then determines the correct amount of
storage to be reserved, thus relieving the
programmer of length considerations.

If the DS instruction is named by a
symbol, its ~alue attribute is the location
ot the leftmost byte of the reserved area.
The length attribute of th~ symbol is the
length (implied or explicit) of the type of
data specified. Any positioning required
for aligning the storagear~a to the proper
type of boundary is done before the address
value is determined. Because no data is
assembled at this time, skipped bytes are
not zeroed.

Each field type (e.g., hexadecimal,
character, floating;;;' point) is associated
with certain characteristics (these are
summarized in !EEgngix-f). The associated
characteristics will determine which
field-type code the programmer selects for
the DS operand and what other information
he adds, notably a length specification or
a duplication factor. For example, the E ,
floating-point field and the F fixed-point
field both have an impli€d length of four
bytes. The leftmost byte is aligned to a
full-word boundary. Thus, either code
could be specified if it were desired to
reserve four bytes of storage aligned to a
full-word boundary. To obtain a length of
eight bytes, one could specify either the E
or F field type with a length modifier of
eight. However, a duplication factor would
have to be used tor~serve a larger area,
b~~ause the maximum length specification
for either type is eight bytes. Note also
that specifying length would cancel any
special boundary alignment.

In contrast, packed and zoned decimal (P
and Z), character (C), hexadecimal (X), and
binary (B) fields have an implied length of
one byte. Any of these codes, if used,

would have to be accompanied by a length
modifier, unless ju~t one byte is to be
reserved. Although no alignment occurs,
the use of these field types permits
greater latitude in length specifications
the maximum for these types being 256
bytes. However, if a symbol that is
defined by a P or Z field type with a
length modifier greater than 16 is used as
an operand in a decimal machin~
instruction, a length error will occur.
Unless a field of one byte is desired,
either the length must be specified for the
C, X, P, Z, or B fieid types, or else the
data must be specified (as the fourth
subfield), so that the assembler can
calculate the length.

To define four 10-byte fields and one
100-byte field, the respective DS
statements might be as follows:

.-- II

IName I Operation
I- I
IFIELD IDS
IAREA IDS
L-----1..

~

IOperand
I
14Ct.,0
ICL'OO
I

Although FIELD might have been specified
as one 40-byte field, the preceding
definition has the advantage of providing
FIELD with a length attribute of '0. This
would be pertinent when using FIELD as a
machine- instruction operand governed by a
length consideration.

Additional examples of DS statements are
shown below:

.-----y- I I

IName IOperationlOperand I
I I I -I
lONE DS CLSO(one SO-byte field,
J length attribute of SO)
ITWO DS SOC (SO one-byte fields,
I length attribute of
I one)
ITHREE DS 6F(six full words, length
I attribute of four)
IFOVR DS D(one double word, length
I attribute of eight)
IFIVE DS 4H(four half-words,
I length attribute of
I t~o)
'--~

Note: A DS statement causes the storage
area to be reserved but not set to zeros.
The programmer should not assume that the
area will contain zeros when the prbgram is
loaded.

~ecial Uses of ~Duplication-Fac~or

FORCING ALIGNMENT: The Location Counter
can be forced to a double-word, full-word,
or half-word boundary by using the
appropriate field type (e.g., D, F, or H)
with a duplication factor of zero. This
method may be used to obtain boundary
alignment that otherwise would not be
provided. For example, the following
statements would set the Location counter
to the next double-word boundary and then
reserve storage space for a 12S-byte field
(whose leftmost byte would be on a
double-wbrd boundary).

I r-----rj-----------T -------------------,
IName IOperation 10perand I
'I I ,
I I DS 10D I
IAREA IDS ICL12S I
~'--~~j------------~'-------- ~

DEFINING-FIELDS·OF·ANAREA: A DS
instruction with a duplication factor of
zero can be used to assign a name to an
area of storage without actually reserving
the area .' Additional DS and/or DC
instructions·may then be used to reserve
the area and assign names to fields within
the area (and generate constants if DC ~s
used) •

For example, assume that SO-character
records are to be read into an area for
processing and that each record has the
following format:

positions 5-'0
positions 11-30
positions 31-36
positions 47-54
positions 55-62

Payroll Number
Employee Name
Date
Gross Wages
Withholding Tax

The following example illustrates how DS
instructions might be used to assign a name
to the record area, then define the fields
of the area and allocate the storage for
them. Note that the first statement names
the entire area by defining th~ symbol
RDAREA; the statement gives RDAREA a length
attribute of SO bytes, but does not reserve
any storage. Similarly, the fifth
statement names a 6-byte area by defining
the symbol DATE; the three subsequ~nt
statements actually define the fields of
DATE and allocate storage for them. The
second, ninth, and last statements are used
for spacing purposes and, therefore, are
not named.

Assembler Instructions 45

r----,---------,-- i

IName IOperation IOperand I
.----t-------t------------1
IRDAREA
I
IPAYNO
INAME
IDATE
IDAY
IMONTH
IYEAR
I
IGROSS
IFEDTAX
I

IDS
IDS
IDS
IDS
IDS
IDS
IDS
IDS
IDS
IDS
IDS
ID~

OCL80
CI.4
CL6
CL20
OCL6
CL2
CL2
CL2
CL10
CL8
CL8
CL18

L---__ ~ ______ ~

CCW -- DEFINE CHANNEL COMMAND WORD

The CCW instruction provides a convenient
way to define and generate an eight-byte
channel command word aligned at a
double-wcrd boundary. The format of the
CCW instruction statement is:

r-----,--- I ----,
IName IOperationlOperand
j------+_ I
1 A symboll CCW I Four operands,
lor blankl Iseparat~d by commas,
I I I specifying the con-
I " Itents of the channel
I 1 Icommand word in
I lithe format
I I I described in the
I I Ifollowing text L-_____ ~ ______ ~ ___ __

I
, ,

All fcur operands must appear. They are
written, from left to right, as follows:

1. An absolute expression that specifies
the command code. This expression's
value is right-justified in byte 1.

2. An absolute or relocatable expression
specifying the data address. The value
of this expression is right-justified
in bytes 2-4.

3. An acsolute expression that specifies
the flags for bits 32-36 and zeros for
bits 37-39. The value of this
expression is right-justified in byte
5. (Byte 6 is set to zero.)

4. An acsolute expression that specifies
the count. The value of this
expression is right-justified in bytes
7-8.

The following is an example of a CCW
statemen t:

46 S/360 BOS Assembler with I/O Macros

• i

IName IOperation
T

IOperand
I I ----+
I ICCW 12,READAREA,X'48',80

,
I

• I
L- I

______ J

Note that the third operand sets bits
31-39 to zero, as required. The bit
pattern of this operand is as follows:

32-35
0100

36-39
100{)

If there is a symbol in the name field
of the CCW instruction, it is assigned the
address value of the leftmost byte of the
channel command word. The length attribute
of the symbol is eight. The internal
machine format of a channel command word
is:

r- I ~----------

IByte I Bits I Usage
~--+----+-
11 I 0-7 I Command code
12-4 I 8-31 I Data address
15 I 32-36 I Flags
1 I 37-39 I Must be zero
16 I 40-47 1 Set to zero
17-8 I 48-63 I Count L-__ -'--____ ---L-

-------"
I ,

The listing control instructions are used
to identify an assembly listinq and
assembly output cards, to provide blank
lines in an assembly listing, and to
designate how much detail is to be included
in an assembly listing. In no case are
instructions or constants generated in the
object proqram. If listing control
statements are used within a DSECT, they
are treated as comments and not executed.
For example, if the EJECT instruction is
used within a DSECT, it does not cause the
listing to be ejected.

TITLE -- IDENTIFY ASSEMBLY OUTPUT

The TITLE instruction enables the
programmer to identify the assembly listinq
and assembly output cards. The format of
the TITLE instruction statement is as
follows:

rl-----~i--------~--T.----------------------,

IName IOperation 10perand I
J I I ,
IName ITITLE IA sequence of char- I
I or I lacters, enclosed in I
Iblank I Isingle quotation I
I I I marks I
*-------~-------

If the first TITLE statement in a
program appears before the START statement,
it may contain an entry in the name field.
This entry may contain one to four
alphabetic or numeric characters in any
combination. Any additional characters are
ignored. The contents of the name field
are punched into columns 73-76 of all the
output cards for the program, except in
those cards produced by means of a REPRO or
PUNCH assembler instruction. An entry in
the name field of any other TITLE statement
is ignored.

The operand field of a TITLE ~tatement
may contain up to 100 characters, enclosed
in single quotation marks. A continuation
card may be used, if necessary. Any
characters in excess of 100 are ignored.
The contents of the operand field are
printed at the top of each page of the
assembly listing. The TITLE statement
itself does not appear in the source
listing.

A program may contain more than one
TITLE statement. Each TITLE statement
provides the heading for pages in the
assembly listing that follows it, until
another TITLE statement is encountered.
Each TITLE statement encountered after the
first statement c~uses the listing to be
advanced to a new page (before the heading
is printed).

For example, if the following statement
is the first TITLE statement to appear in a
program, and it appears before the START
statement:

.---,- ~

,Name ,Operation ,Operand
~----+ -------+,-----------.--------~
.IPGM1 ITITLE I'FIRST HEADING'

then PGM1 is punched into all of the output
cards (columns 73-76), except those
produced by a REPRO or PUNCH statement, and
this heading appears at the top of each
page: FIRST' HEADING.

If the following statement occurs later
in the same program:

I I
,Name I Operation
1----+1
, ,TITLE

ii

1 Operand
(
, 'A NEW HEADING' ,

~ ____ ~~ ____ ~ ____ ~ ____ . ____________________ J

then PGM1 is still punched into the output
cards, but each following page begins with
the headinq: A NEW HEADING.

EJECT -- START NEW PAGE

The EJECT instruction affects only the
assembly listing and provides a conveRient
way to separate program routines in the
listinq. This instruction causes the
remainder of the present page to be skipped
and the listing to continue at the top of
the next page, below the heading line. If
the ejection occurs at the first line of
the page, the entire page is skipped.

If two or more EJECT instructions are
issued in succession, a complete page is
skipped for each EJECT after the first, and
the listing continues on the page that is
in printinq position after the last EJECT
has been executed. Each page that is
skipped is printed with a heading line,
however.

The format of the EJECT instruction
statement is:

r-------r-----------~ ._------,
[Name IOperation IOperand
I----_f_ +-
(Blank (EJECT INot used; any
I' loperand is treated
I I 1 as a comment
" ,

The EJECT statement itself does not
appear in the source listinq.

SPACE -- SPACE LISTING

,
I
I
I
I

J

The SPACE instruction is used to insert one
or more blank lines in the listinq. The
format of the SPACE instruction statement
is as follows:

I I

IOperand
--------.,

INam~

I
IBlank
I'
'--

, Operation
I
ISPACE
I

+-
IA decimal value
lor blank

I ,

A decimal value is used to specify the
number of blank lines to be inserted in the
assembly listing. A blank operand causes
one blank line to be inserted. If this·
value exceeds the number of lines re~aininq
on the listinq paqe, the statement will
have the same effect as an EJECT statement
The SPACE statement itself does not appear
in the source listinq.

PRINT -- PRINT OPTIONAL DATA

The PRINT instruction is used to control
printinq of the assembly listing. The
format of the PRINT instruction statement
is:

Assembler Instructions 47

r-------,------------~i-----------------------,
IName IOperation IOperand I
~---+-- ,----f-I- ,
IBlank IPRINT lOne to three operandsl
L- ~, ______ __

One to three of the following operands
are used:

ON

OFF

GEN

NOGEN

DATA

NODATA

A listing is printed.

No listing is printed.

All statements generated by
macro-instructions are printed.

statements generated by
macro-instructions are not
printed. However, the
macro-instruction itself and
messages resulting from the
MNOTE instruction, if used, will
appear in the listing.

Constants are printed out in
full in the listing.

Only the first eight bytes (16
hexadecimal digits) or the first
constant, whichever is shorter,
of the assembled data, is
printed on the listing.

A proqram may contain any number of
PRINT statements. A PRINT statement
controls the printing of the assembly
listing until another PRINT statement is
encountered.

until the first PRINT statement (if any)
is encountered, the following is assumed:

r----~--------~------------------____,
IName I Operation IOperand I
r-----+------+-----------------~
I IPRINT ION,NODATA,GEN I
I- I ~

For example, if the statement:

.---~ ~----------------------,

IName I Operation IOperand I
r----+------+---------------------1
1 IDC IXT,256'00' I
'----~--------~

appears in a program, 256 bytes of zeros
are assembled. If the statement:

.------r ----~i~----------·------·-------,

IName I Operation IOperand I
r----+ I ,
1 I PRINT I DATA I
L-___ ~ _____ ,

is the last PRINT statement to appear
before the DC statement, all 256 bytes of

48 S/360 BOS Assembler with I/O Macros

I

zeros are printed in the assembly listinq.
However, if:

I' I
IName I Operation IOperand
I~----+I- -------+---------------------~
I I PRINT I NODA TA i I ~I ________________________ ~

is the last PRINT statement to appear
before the DC statement, only eight bytes
of zeros are printed in the assembly
listing.

The program control instructions are used,
to specify the end of an assembly, to set
the Location Counter to a value or word
boundary, to specify the placement of
literals in storaqe, to check the seguence
of input cards, to indicate statement
format, and to punch a card. Except for
the LTORG and CNOP instructions, none of
these assembler instructions qenerate
instructions or constants in the object
program.

If program control instructions are used
within ·a DSECT, they are treated as
comments and not executed. For example, if
the XFR instruction is used within a DSECT,
it does not cause any transfer card to be
generated.

If the user plans to write his own macro
instruction routines, the assembler
instructions ICTL (input format control) ,
ISEQ (input sequence checkin~, and LTORG
(begin literal pool) may not be used as
instructions within the macrQ routine.

ICTL -- INPUT FORMAT CONTROL

The ICTL instruction allows the programmer
to alter the normal format of his source
proqram statements. The IeTL statement
~~§1-~reced~ all other statements in the
source program and may be used only once.
The format of the IeTL instruction
statement is as follows:

.--- i --r-
IName I Operation IOperand
r-- I I

i

I ,
/Blank 1 ICTI, 11-3 decimal values ofl
I I Ithe form b,e,c, I
L---- I ~ I

Operand b specifies the beqin column of
the source statement. It must always be
specified, and must be from 1-40,
inclusive. Operand e specifies the end
column of the source statement. The end
column, when specified, must be from 41-79,
inclusive; when not specified, it is

assumed to be 71. The column after the end
column is used to indicate vhether the next
card is· a continu·ation card. Operand c
specifies the continue column of the source
statement. The continue column, vhen
specified, must he from 2-40 and must be
greater than b. If the continue column is
·not specified, the assembler assumes that
there are no continuation cards and all
statements must be contained in a single
card.

If no ICTL statement is used in the
source program, the assembler assumes that
1, 71, and 16 are the begin, end, and
continue columns, respectively.

The ICTL card itself is processed under
normal format and any non-blank character
punched into column 72 indicates the
presence of continuation cards. Therefore,
column 72 should be left blank because
continuation cards are not required for the
ICTL card. If column 72 contains any
non-blank character, the card following the
ICTL card is treated as a continuation card
and reading begins in column 16, causing
columns 1-15, inciusively, to be ignored.

The next example designates the begin
column as column 25. Since the end column
is not specified, it is assumed to be
column 71. No continuation cards are
recognized because the continue column is
not specified.

r---~----------~------ --,
IName I Operation I Operand
1-----+ I
I I ICTL 125

I
I
I

L- I I ---l

ISEQ -- INPUT SEQUENCE CHECKING

The ISEQ instruction is used to c~eck the
sequence of input cards. The format of the
ISEQ instruction statement is as follows:

r----r- I

IOperand
----,

IName IOperation
I

I
I r--+­

IBlanklISEQ
I I

ITwo
I the

decimal values of I
form l,r; or blank I

L. I I

The operands I and r, respectively,
specify the leftmost and rightmost columns
of the field in the input cards to be
checked. Operand r must be equal to or
greater than operand 1. Operand I must be
greater than the end column plus one. The
field specified by operands 1 and r must
not be greater than seven bytes.

Sequence checking begins vith the first
card following the ISEQ statement.

Comparison of adjacent cards makes use of
the eight-bit internal collating sequence

An ISEQ statement vith a blank operand
terminates the operation. Checking may be
resumed with another ISEQ statement

Sequence checking is only performed on
statements contained in the source proqram.
Statements generated by a macro are not
checked for sequence.

REPRO -- REPRODUCE FOLLOWING ·CARD

The basic operating system Linkage Editor
requires Phase Definition (PHASE) and
Include Module (INCLUDE) cards. The REPRO
Assembler instruction aliows the inclusion
of such cards into the object proqram deck
to eliminate the necessity of manually
inserting them.

The REPRO Assembler instruction causes
the Assembler to punch a duplicate (in
80-80 format) of the card immediately
folloving the REPRO instruction. The
punched cards resulting from REPRO
instructions appear at the same point in
the assembled text as they appeared in the
source program. If any REPRO instructions
precede the START instruction, or the
implied start position (if no START
instruction is used), the cards punched
viII precede the ESD cards for the
assembly.

The format of the REPRO Assembler
instruction is as follows:

r------~---- ~

IName Operation I Operand
I +-
IBlank REPRO I Not used; any
I I operand is treated
I I as a comment
L-___ -'- ~

PUNCH -- PUNCH A CARD

The PUNCH assembler instruction may be used
to perform the same functions as the REPRO
assembler instruction. The PUNCH assembler
instruction causes the data in the operand
to be punched into a card. As many PUNCH
statements may be used as are necessary.
The format is:

I -Tj---

.IName I Operation I Operand
I -+---------__+_
1Blank I PUNCH t 'PUNCH A CARD'

I

Using character representation, the
operand is written as a string of up to 8"0
characters enclosed in single quotation

Assembler Instructions 49

marks. A continuation card may be used, if
necessary. Any characters in excess of 80
are ignored. All characters, including
blanks, are valid. The position
immediately to the right of the left
quotation mark is regarded as column one of
the card to be punched. The assembly
program does not process the data in the
operand of a PUNCH statement other than
causing it to be punched in a card.

The punched cards resulting from PUNCH
instructions appear at the same point in
the assembled text as they appeared in the
source program. If any PUNCH instructions
precede the START instruction, or tne
implied start position (if no START
instruction is used), the cards punched
will precede the ESD cards for the
assembly.

The main facility provided by the PUNCH
instruction over t~e REPRO instruction is
the capability of the macro generator to
substitute values for symbolic parameters
or SET variable symbols in the operand of a
PUNCH instruction appearing in a macro
definition. This allows such things as the
controlled generation of phase names.

XFR -- GENERATE A TRANSFER CARD

A transfer card is used by the basic
operating system Linkage Editor program to
define the transfer point or entry point of
a phase, or overlay. The XFR Assembler
instruction is provid€d to cause the
generation of a tr~nsfer card in th~
assembled text in the same- location that
the XFR instruction appeared in the source
program.

The format of t~e XFR instruction is as
follows:

r- i J ,

IName I Operation I Operand I
I----+-----+_ 1
IBlank I XFR I A relocatable symboll
L- .I.--

The symbol in the operand field must
appear within the assembly or b~ previously
defin~d as either an entry or external
symbol.

ORG -- SET LOCATION C0UNTER

The ORG instruction is used to alter the
setting of the Location Counter for the
current control section. The format of the
ORG instruction statement is:

50 S/360 BOS Assembler with I/O Macros

I II

IName 10peration
.1----+---­
IBlank IORG
1 1

I ,

IOperand I
+-----------1
IA relocatable ex- I
Ipression or blank 1

~ ___ ~ ______ L-______________ J

Any symbols in the expression must have
been previously defined. The unpaired
relocatable symbol must be ~efined in the
same control section in which the ORG
statement appears.

The Location Counter is set to the value
of the expression in the operand. If the
operand is omitted, the Location Counter is
set to a location that is one byte higher
than the maximum location assiqned for the
control section up to this point.

An ORG statement must not be used to
specify a location below the beginning of
the control section in which it appears.
For example, the statement:

I ,

IName IOperation
i---+I ~---.
1 IORG
I

I ,

IOperand 1
+--------------1
1*-500 I

. ____ .J

is invalid if it appears less than 500
bytes from the beginninq of the current
control section.

If it is desired to reset the Location
Counter to a value that is one byte beyond
the highest location yet assiqned (in the
control section), the followinq statement
would be used:

rl------~i------------~ ----------------,
IName 1 Operation IOperand 1
II+-- I
I IORG I 1
'--~ ___________ L-- ----J

If previous ORG statements have reduced
the Location Counter for the purpose of
redefining a portion of the current control
section, an ORG statement with an omitted
operand can then be used to terminate the
effects of such statements and restore the
Location Counter to its highest settinq.

LTORG -- BEGIN LITERAL POOL

The LTORG instruction causes all litelals
thus far encountered in the source proqram
up to the LTORG statement (either from the
beginning of the program or from a previous
LTORG statement) to be assembled at
appropriate boundaries starting at the
first double-word boundary following the
LTORG statement. The format of the LTORG
instruction statement is:

...------T ~ I
lName IOperation IOperand I
1------+--------+-----------1
ISymbol ILTORG INot used; any I
lor I loperand is treated ,
,blank I las a comment I
L-- I

The symbol represents the address of the
first byte of the literal pool. It has a
lenqth attribute of one.

Any literals used after the last LTORG
statement in a proqram are placed at the
end of the first control section. If there
are no LTORG statements in a program, all
literals used in the program are placed at
the end of the first control section. In
these circumstances the pro~rammer must
ensure that the first control section is
always addressable. This means that the
base address register for the first control
section should not be changed through usage
in subsequent control sections. If the
programmer does not wish to reserve a
register for this purpose he may place a
LTORG statement at the end of each control
section thereby ensuring that all literals
appearing in that section are addressable.

CNOP -- CONDITIONAL NO OPERATION

The CNOP instrqction allows the programmer
to align an instruction at a specific word
boundary. If any byt.es must be skipped in
order'to align the instruction properly,
the assembler insures an unbroken
instruction flow by generating no-operation
instructions. This facility is useful in
creating calling sequences consistinq cf a
linkage to a subroutine followed by
parameters such as channel ccmmand words
(CCW) •

The CNOP instruction insures the
alignment of the Location Counter setting
to a half-word, wor9, or double-word
boundary. If' the Location Counter is
already properly aligned, the CNOP
instruction has no effect. If the
specified alignment requires the Location
Counter to be incremented, one to three
no-operation instructions are generated,
each of which uses two bytes.

The format of the CNOP instruction
statement is as follows:

r-----.-----------~ I
IName I Operation IOperand I
~----+- +-----------------~
IBlank ICNOP ITwo decimal terms I
I I lof the form b,w I
L I I

Operand b specifies at which byte in a
word or double word the Location Counter is
to be set; b can be 0, 2, 4, or 6. Operand
w specifies whether byte b is in a word
(w=4) or double word (w=8). The following
pairs of band ware valid:

0,4 Beginning of a word
2,4 Middle of a word
0,8 Beqinning of a double word
2,8 Second half word of a double word
4,8 Middle (third half word) of a

double word
6,8 Fourth half word of a double word

Fiqure 5 shows the position in a double
word that each of these pairs specifies.
Note that both 0,4 and 2,4 specify two
locations in a double word.

Double Word

Word Word

Half Word I Half Word Half Word I Half Word

I I I I I
Byte : Byte I Byte ! Byte I Byte Byte I Byte I I

I i I I I

A A ~ ~
0,4 2,4 0,4 2,4
0,8 2,8 4,8 6,8

Figure--5'~ CNOP Alignment

Assume that the Location Counter is
currently aligned at a double-word

Byte

boundary Then the CNOP instruction in this
sequence:

rl------.----------~ ---------------,
IName IOperation ,Operand ,
~I ----~I- + ,
I I CNOP ,0,8 I
I IBALR 12,14 I

.L

has no effect; it is merely printed in the
assembly listing. However, this sequence:

I I I

IName I Operation IOperand I
I I + ------------~--------~
1 ICNOP 16,8 ,
I ,BALR ,2, 14 ,
I I .L--

____________________J

causes three branch-on-conditions
(no-operations) to be qenerated, thus
aligning the BALR instruction at the last
half-word in a double word as follows:

Assembler Instructions 51

• i i

IName I operation IOperand
r-~---------+I
I I BCR 10,0
I IBCR 10,0
I IBCR 10,0
I IBALR 12,14
L-__ ~ ______ ~,~ __________ ~--------~

After the BALR instruction is generated,
the Location counter is at a double-word
boundary, thereby insuring an unbroken
instruction flow.

END -- END ASSEMBLY

The END instruction terminates the assembly
of a program. It may also designate a
point in the program or in a separately
assembled program to which control may be
transferred after the program is loaded.
The END instruction must always be the last
statemen t in the source program.

The format of the END instruction
statement is as follows:

r- T.------------~i----------------------~
IName ,Operation IOperand
1-------+ +-- -. --------:1
IBlank lEND IA relocatable ex-
I I I pression or blank
L- ~' ____ ~ ___ --L-

52 S/360 BOS Assembler with I/O Macros

The operand specifies the point to which
control is transferred when loading is
complete. This point is usually the first
machine-instruction in the program, as
shown in the following sequence

• • 1 ,
IName IOperation IOpe~and I
I I I ,
INAME I CSECT I I
IAREA IDS ISOP I
IBEGIN IBALR 12,0 I
1 IUSING 1*,2 I
I I · I I
I I · I I
I I · I I
1 lEND IBEGIN 1
i ..L- .J

If the END statement contains a symbolic
address in the operand field, the Assembler
automatically inserts the transfer address
in the END card.

If the user plans to write his own
macro-instruction routines, the END
instruction may not be used as an
instructio~ within his ma6ro routines.

No~~: If the operand contains an external
symbol, only a single-term relocatable
expression is allowed.

The assembler provides a macro· system to
reduce the amount of repetitive coding
required for general routines that must be
reused a number of times in the same or
different programs. For example, the
routines for transferring records from disk
to main storage , checking for accuracy,
and deblocking to obtain a single· record
for processing are used for any logical
input file on disk. such routines involve
many instructions that can be written once
and, with modification of addresses, can be
used repeatedly in any number of programs.

The macro system is ccmposed of two
basic parts:

1. Source-program macro instr~tiQll~.

2. A ma~liE!:ar'y of prewrit ten flexible
routines (called ~efifi!tions).

A direct relationship exists between these
parts. That is, a single macro instruction
written in the source program is replaced,
in the assembled object program, by the
routine taken from the macro library. The
macro library routine consists of a
predetermined series of many instructions.
Thus, the system derives its name. A
definition of macro is "of or involvinq
large 'quan ti ties. " For one in struction,
many instructions are assembled.

The proper routine is included in the
object program by the matching of mnemonic
operation codes. ~herefore, the exact same
Op code is used in the macro instruction
and in the identification of the
corresponding set of instructions in the
macro library.

As the macro-library instructions are
assembled, they are tailored to fit the
particular problem program. This is done
by a sUbstitution process. The first
instruction of a macro routine (after the
macro definition header) in the macro
library is a .E!:0t0!:i.E~ stateme.nt. This is
a pattern that consists of variable
symbolic operands (called parameters) for
which values are substituted when the macro
routine is used by a specific program. The
macro instruction that is included in the
user's program specifies the ~!:~mete!:
valyes (commonly a~breviated to the term
parameter) that are to be sUbstituted in
the macro-library routine when it is
assembled. An example of this is:

MULT

A MULT

B MULT

MACRO INSTRUCTION-STATEMENTS·

Prototype in
Macro Library &MIER'&MCAND'&IPROD

Instructions to
perform the
multiplication
(Model Statements)

Macro In­
·structions

RATE, HOURS, GROSS } in two
. different

COST,PIECES,TOTCOST problem
programs
(® and @)

This illustrates the prototype statement of
a multiplication routine that could be u~ed
by any program to multiply any two factors
and store the product in a specified
loca tion. Program ® might use the macro
to multiply !:~te times ho~ and store the
result in a.field labeled gEQ§§. Program
@ might use the same macro from the macro
library to multiply cost times pieces-to
obtain total cost.

Each program specifies in the macro
instruction the values (parameters) that
are applicable to its own job (rate or
cost, hours or pie6es, gross or total
cost). Then when the macro routine is
assembled, these parameter values are
substituted for the parameters in the
prototype statement. The parameter values
are also substituted in all the
instructions that follow the prototype to
actually perform the multiplication. The
statements following the prototype are
knovn as model statements. For the
multiplication example, the complete
routine might be:

MACRO -- Macro Definition Header

&NAME MULT &MIER,&MCAND,&PROD Prototype
Statement

&NAME L
M
ST

3, &MCAND J
2,&MIER
3,&PROD

Model Statements

MEND -- Macro Definition Trailer

In both illustrations the & charact~r
preceding the symbolic name is part of the
syntax of the macro definition language
(see the Macro Defillition-Language

Macro Instruction Statements 53

publication, as listed on the front cover
of this manual).

IBM provides a number of prewritten
macro library routines and specifies the
macro instructions that can be used by the
programmer to call these routines from the
library. Other routines can be written by
the user and stored in the macro library.
User-written routines must follow the same
rules as the IBM routines. The macros
supplied by IBM and discussed in this
publication are grouped in four categories:

• Input/output control macros
• File definition macros
• Supervisor-communication macros
• Supervisor-assembly macros.

MACRO INSTRUCTION FORMAT

A macro instruction, whicb is a source
language statement, is interpreted by the
assembler. The assembler us;es the macro
definition (macro library routine) to
replace the single statement with many
assembler language statements. For correct
interpretation, the format of the macro
instruction must correspond to the format
of the prototype statement in the macro
definition. Therefore, the format of the
prototype'dictates the form in which the
macro instruction must be written in the
problem program.

The name field in the macro instruction
may contain-a-symbolic name if the name
field of the prototype has a parameter.

The Q.Eer~ti.2l!_iield in the macro
instruction must contain exactly the same
mnemonic operation code as the prototype
(for example, MULT). This may be any
alphameric code with a maximum of five
characters, provided the first character is
a letter.

The parameters in the QE~!~n~iie!Q of a
macro instruction must be written in the
same format as those in the operand field
of the prototype. Either of two types of
formats can be used:

1. positional format

2. Keyword format.

Each type of parameter has a set of rules
that must be followed.

In this format the order and placement of
the parameter values in the macro
instruction must correspond exactly with
the order and plac~ment of the parameters
in the prototype statement. Each parameter

54 S/360 BOS Assembler with I/O Macros

except the last must be followed by a
comma. Thus, in the previous illustration:

RATE
HOURS
GROSS

corresponds to MIER
corresponds to MCAND
corresponds to PROD

If a parameter is to be omitted in the
macro instruction, while forlowing
parameters are included, a comma must be
inserted to indicate the omission. In this
way, the proper parameters both before and
after the omission correspond. However, no
commas need to be included after the last
parameter used.

If the parameters cannot be contained in
the operand field of one card, up to 49
continuation cards may be used. The
continue column of each card (except the
last) must contain a continuation punch
(any nonblank character), as in any
assembler language card. The maximum
length of a parameter is the same as for an
assembler symbol--eight characters. When
one or more continuation cards are used,
parameters must fill each card to the
continuation column with no intervening
blanks. (A blank indicates that the card
contains no more parameters.)

Keyword Format

This format provides a direct mnemonic
association between the macro instruction
and the prototype statement. The exact
parameters .used in the prototype are
specified (without the &) in the macro
instruction, cwhere they are equated to the
value for this job. Thus, they have the
form of: keyword followed by an equal sign
followed by the value to be substituted in
the assembled routine. For example:

MIER=RATE, MCAND=HOURS, PROD=GROSS

Because the association of parameters is
performed through the use of the keywords,
the parameters in the macro instruction may
appear in any order, and any that are not
ne~ded may be omitted. This association is
not dependent upon the order in which they
are written. The term to the right of the
equal sign must not exceed eight
characters.

Different keyword parameters may be
punched in the same card, each followed by
a comma, like the positional type. Or,
they may be punched in separate cards.
(When continuation 'cards are used for a
keyword format macro, the parameters need
not fill the operand field to the
continuation column.)

MIER=RATE,
PROD=GROSS~

MCAND=HOURS

SOURCE PROGRAM
(Before)

1
2------

ASSEMBLER
OPERATIONS

Locate Macro
Library Routine

Source
Program
Statements

SOURCE PROGRAM
(After)

1
2

Source
Program
Statements

15-----
16 Macro Instruction ----I~
17-----

Perform Indicated Selection
and Substitution

15-----
16 Macro Instruction

Merge with }
Source Program ~

~Macro
Routine

Figure 6. Schematic of Macro Processing

WhftIl separate cards are used for a set of
parameter specifications each card except
the last must be punched with a comma
immediately following the parameter and a
continuation punch in column 72. ·Comments
may be punched in any card if at least one
space is left after the comma, or, in the
last card, after the parameter.

ASSEMBLY OF THE MACRO

At program assembly time, the macro
instruction specifies which routine is to
be called from the macro library. The
routine is extr~cted, tailored by the
parameters in the macro instruction, and
inserted in the program (Figure 6). The
complete program now consists of both
source-program statements and tailored
model statements from the macro library in
asse~bler languaqe. In subsequent phases
of the assembly, the entire program is
processed to produce the machine-language
object program.

IN,RQT/OUTPUT CONTROL MACROS

A number of macro routines are provided by
IBM for the input/output control (IOCS) of
records from various I/O units. These
routines control such functions as:

Source { 1:
Program •

Statements : =_ -:=_ -==_=~-_=~-_==-

• Opening and closing files

• Transferring records

• Blocking and deblocking records

• Checking and writing disk or tape label

• Error checkin~.

IOCS handles files of records in the
followinq I/O units:

IBM 1442 Card Read-Punetl

IBM 2501 Card Reader

IBM 2520 Card Read-Punch or 2520 Card
Punch

IBM 2540 Card Read-Punch

IBM 1403 Printer

IBM 1404 Printer (continuous forms
only)

IBM 1443 Printer

IBM 1445 Printer

IBM 2311 Disk Storage Drive

IBM 2401, 2402, 2403, 2404 Maqnetic
Tape Units (If

Macro Instruction Statements 55

variable-length records are
written on 7-track tape, the
Data Conversion special
feature is required.)

IBM 1052 Printer-Keyboard (One 1052 is
supported, for operator
communication only. It is
attached to the m~ltiplexor
channel.)

IBM 2671 Paper Tape Reader

IBM 1285, 1287 Optical Readers

STR (Synchronous Transmitter Receiver)
Devices connected by leased or dial
lines through·an IBM Synchronous Data
Adapter - Type I, on an IBM 2701 Data
Adapter Unit. ,The following devices
are supported:
a. 1009 Data Transmission Unit
b. 1013 Card Transmission Terminal
c. 1974 II Data Transmission Terminal
d. 1978 Print, Read, Punch Terminal
e. System/360, Model 30, 40, 50, 65 or

75 with a 2701 Data Adapter Unit
attachEd.

f. System/360, Model 20 with a
Communications Adapter

g. 7701 ~ 7702 Magnetic Tape
Transmission Terminal

h. 77" Data Communication Unit.

BSC (Binary Synchronous Communication) IBM
2701 Data Adapter Unit eguipped with an
IBM Synchronous Data Adapter--Type II,
connected by leased or dial line to a
remote IBM System/360, Model '30, 40,
50, 65, 67 (working in 65 mode), or 75.
The remote CPU is. equipped with an IBM
2701 Data Adapter Unit with an SDA II
or an IBM 2703 Transmission Control
Unit with Binary Synchronous featUres.

No1g: When BSC support routines are used,
a minimum of 16~ of main storage is
required.

laCS supports any channel configuration
up to one multiplexor channel and two
selector channels.

Both IBM-supplied system programs and
user problem programs can use magnetic
tape. However, the main storage required
for physical and logical laCS for both tape
and disk will probably make this unfeasible
in systems with less than 16K bytes of main
storage. For example, IBM-supplied system
programs assume that the system Supervisor
(including physical but not logical laCS)
will occupy a maximum of 4096 bytes of main
storage, leaving 4096 bytes (in an 8K
system) available for the execution of the
system programs. If, however, the user's
installation includes many different types
of I/O units and features, the system

56 S/360 BaS Assembler with I/O Macros

Supervisor may be assembled to include
routines for a combination of units that,
in total, require more than 4096 bytes.
Similarly, the number and size of the
routines included in the Supervisor affect
the number of main storage positions
available for a user's problem program.
For detailed information about Supervisor
and logical laCS main-storage requirements,
see the Prog£ammer's Guide, as listed on
the front cover of this publication.

When the user's program is executed, the
portion of the problem program that
communicates with laCS and with the
Supervisor must be located in the first 64K
of main storage. This includes channel
command words (CCW), command control blocks
(CCB), file definition~ (DTF), and program
ch~ck, interval timer, and
operator-communication routines.
Furthermore, whenever the 'problem program
is executed in a disk-resident system, the
last two routines (interval-timer, arrd
operator communication), if used, must not
be located in the first 2500 main storage
positions above the end of the Supervisor.

The input/output control is considered to
consist of two parts: physical laCS and
logical laCS. Physical IO~~ controls the
actual transfer of records between the
external medium and main storage. That
is, it performs the functions of issuing
channel commands and handling associated
I/O interruptions. Physical laCS consists
of the following routines:

Start I/O. routine
Interruption routine
Channel scheduler
Device error routines.

These physical laCS routines are part of
the Supervisor, which is permanently
located in lower main storage while problem
programs are being executed.

logical·IOCS controls those functions
that a user would have to perform to locate
a logical record for processing. A logical
record is one unit of information in a file
of-like units; for e·xample, one employee's
record in a master payroll file, one
part-number record in an inventory file,
etc. One or many logical records may be
included within one physical record, such
as a physical disk or tape record (from gap
to gap). The term 1~ical~10CS-refers to
routines that perform the following
functions:

• Blocking and deblocking records

• switching between I/O areas when two
areas are specified for a file

• Handling end-of-file and end-of-volume
conditions

• Checking/writing labels.

The logical laCS routines required for
the execution of a problem program are
assembled with that program. The
particular routines required are determined
from the definitions of the logical files
used by the program.

Logical IOCS uses physical laCS to
execute I/O commands whenever it determines
that a transfer of data is required. For
example, if a file consists of blocked
records and a block has been read into main
storage (Figure 7), logical laCS merely
makes each record in succession available
to the u~er, until the end of the block is
reached. No physical laCS is required.
When logical laCS determines that the last
record in the block has been processed,
however, it requests physical laCS to start
an I/O operation to transfer the next
physical record. (gap t6 gap) into main
storage. In the illustration, only logical
laCS (LIO) is required to make records 2
and 3 (and 5 and 6) available;
however,·physical laCS (PIO) is also
required to make record·4 available
(records 4 through 6 are transferred in one
block) •

Block of 3 Records in Main Storage

Record 1
(Record 4)

lIO
for

Record 2
(Record 5)

Record 2 (5)

UO = Logical IOCS
PIO = Physical IOCS

Rec~rd 3
(Record 6)

LlO
for

Record 3 (6)

lIO and PIO
for

Record 4

Figure .7. Physical laCS vs Logical IOCS

Both logical IOCS macros (such as GET,
PUT, READ, WRITE, etc) and physical IOCS
macros (such as EXCP and WA~T) are
available to the programmer for handling
records. The logical laCS macro routines
cause all the functions of both logical and
physical lOtS to be performed for the·
programmer. When he issues an imperative
GET instruction for a record, for example,
that record is transferred to main storage
, if necessary, and it is available for the
execution of tbe next program instruction.

The physical laCS routines completely
bypass the logical laCS functions (for
example, blocking and deblocking). They
permit the problem program to utilize
physical IOCS functions directly. To
transfer a physical record (such as a disk

or tape record), for example, the problem
program issues an EXCP macro ins~ruction
(execute channel program). This causes a
request for data transfer to be placed in
the channel scheduler, and program
execution immediately continues with the
next problem-proqram instruction. However,
the disk or tape record will not be
available· in main storage until some later
time. Therefore when the record is needed
for processing, the program must test to
find out if the transfer has been
completed. This is accomplished by issuing
the WAIT macro instruction.

The functions of physical and logical
IOCS routines are shown schematically in
Figure 8.

The logical IOCS routines. process records
in· consecutive order, in random order by •
the Direc~ Access Method (DAM), or randomly
and sequentially by the Indexed Sequential
File Management System (ISFMS).
Consecutive processing applies to all files
in serial-.. type I/O d:evices (such as card
reader, tape, printer, etc), and to records
on 2311' disk when they are processed in a
serial-type order. The DAM and ISFMS types
of processing apply only to files of disk
records. Other logical laCS routines allow
processing with STR (Synchronous
Transmitter Receiver) devices, or allow
CPU-to-CPU Binary Synchronous
Communication.

Consecutive Processinq~ Consecutive
processing is used to read/write and
process successive records in a logical
file. For example, card records are
processed in the order the cards are fed;
tape records are processed starting with
the first record after a header label and
continuing through the records to the
trailer label; disk records are processed
starting with a beginning disk address and
continuinq in order throuqh the records 6n
successive tracks (and possibly cylinders)
to the ending address.

A consecutive file on disk is contained
within one or more sets of limits, which
are specified by Job Control XTENT cards.
If the logical file consists of more than
one set of limits, IOCS will automatically
process each set as needed by the user.
The records within each set must be
adjacent and contained within one volume
(disk pack). However, the sets need not be
adjacent, and they may be on one or more
volumes. A file written on disk by the
direct access method can also be processed
consecutively, if desired.

The basic macros used for consecutive
~rocessing are GET and PUT. These

.Macro Instruction statements 57

Problem
Program

Logical
IOCS

Physical
IOCS
(Channel
Scheduler)

Input
Device

Using
Logical
10CS

Issue GET ------~. {provide Record (Deblock)
~ and Return to Problem Program
~ -OR- Determine Channel.

place Request in Queue
Next Instruction

(after GET) If I/o Required, Issue EXCP ..

'" and WAIT ...

'" { When I/o Ccxnplete, -
Return to Problem
Program

if Channel Busy, and Return
to Logical 10CS.
If Channel Not Busy, }
Issue START I/O· ~I/o Starts
and Return to Logical 10CS.

When I/o Complete, .go } I/O Com lete
through Interrupt Routine p

----- ----- ----- ----- ---------- ----- ----- ----- -----
Using
Physical
10CS

Set Up CCW and Issue EXCP----------~ Determine Channel.
Place Request in Queue

Next Instruction ______________ _
(after EXCP)

if Channel Busy, and Return
to Problem Program.

Next Instruction
(after WAIT)

If Channel Not Busy, }~ I/o Starts
Issue START I/O
and Return to Problem Program.

When I/o Complete, go }
through Interrupt Routine ~1/0 Complete

Figure 8. Schematic Example of Retrieving a Record Usinq Loqical IOCS (One I/O Area)
or Physical IOCS

instructions overlap data transfer and
processing as much as possible. The extent
of overlap depends on the user's I/O area
assignment.- In any case when a GET or PUT
has been executed, the tIansfer of data is
complete before the instruction followinq
the GET or PU~ is executed.·

Di~~~i~!cces~_~~!hod_1DAM1: The direct
access method is used to process disk
records in a random order. Records stored
at any location within the logical file can
be processed at any time in the proqram.
IOCS locates a disk record for processinq
by referring to record-location references
supplied by the problem program. The
location reference consists of two
parts: a track reference and a record
reference. The !rack referenc~ specifies
the particular track, or the first of
multiple tracks, to be searched for a
specified record. The reccrd reference may
be the record key, if records contain key
areas, or the record ID (identifier), which
is available in the count area of each disk
record. IOCS seeks the spEcified track and
searches for the specified record en that

58 S/360 BOS Assembler with I/O Macros

track, or on that track and on succeeding
tracks in the cylinder. Because reference
to the records is in random order, all
packs of a multipack file must be on-line
for any functions performed by the Direct
Access Method.

The basic macros used for the direct
access method of processing are READ and
WRITE. Variations within these macros
permit records to be read, written,
updated, replaced, or added to a file.
Thus, this method provides a means of
creating and maintaining a logical file in
a random order.· When a READ or WRITE
instruction is executed, the actual I/O
operation is either started or placed in a
queue for later execution. Therefore, when
another problem program instruction
requires that the transfer of data be
complete, a test must be made. A WAITF
macro is provided for this.

In£~~ed~~~gy~ntial Fil~~~n~ement-Svstem
(ISFMS) : The indexed sequential file
management system is used to process disk
records either in random order or in

sequential order by control information.
Both orders utilize the centrol information
of the records (such as employee number,
part number, customer number, etc.), which
must be available in the key area of each
disk record. Random processing means that
any record stored at any location in the
logical file can be processed at any time
in the problem program. The user merely
supplies IOCS with the key (control
information) of the desired record. IOCS
searches for the record and makes it
available for processing.

In sequential processing, IOCS makes a
series of records available, one after the
other, in order by the control information
(key) in the'records. The user specifies
which record he wants first. Then IOCS
retrieves the succeeding records (cn
demand) from the logical file, in key
order, until the problem program specifies
that the operation is to be terminated.

ISFMS provides the means of creating an
organized file (loading) and then adding
to, reading from, and updating records in
that file. The file is organized
originally from records that have heen
pre-sorted by their control information.
As the records are loaded onto the disk
pack, IOCS constructs indices for the
logical file. These indices will permit
individual records to be found quickly and
easily in subsequent processing operations.
The indices are created in such a way that
specific records can be retrieved randomly,
or all records can be retrieved
sequentially. One method can be performed
as readily as the other. If records are
added to the file at some later time, IOCS
updates the indices to reflect the new
records.

The basic macros used for the indexed
sequential system of processing are
READ/WRITE and GET/PUT. READ and WRITE are
used for random opera±ions, and GET and PUT
are used for sequential operations. When a
READ, WRITE, GET, or PUT instruction for a
record is executed, the operation is
complete before the next instruction in the
problem program is executed~

PrQ£essi~ith~~ynchronousTransmitter
Receiver . (STR) Devices: Logical IOCS
provides macro routines for the
transmission of data to, and the reception
of data from, an STR device. All STR
devices use identical data transmission
codes and line control procedures.

Logical IOCS provid€s READ/WRITE level
macro instructions to simplify the use of
STR devices by the problem program.
Another macro instruction, CNTRL, provides
STR line control. The CDCNV (code
conversion) macro provides for the

conversion of the standard STR transmission
code (fixed count four-out-of-eight [4/8])
to or from EBCDIC (used internally in the
System/360) •

Where the STR devices are attached over
a dial network, logical IOCS provides the
macro instruction DIALO to aid in
establishing the connection.

Binar~_~nchronous communication- (BSC)

Logical IOCS provides macro support
routines for sending and receiving data in
a CPU-to-cPU communications environment.
Both CPU's use identical line control
procedures.

Logical IOCS provides READ/WRITE level
macro instructions, which simplify the
process of sending data to or receivinq
data from a remote System/360 by the
problem program. The CNTRL macro
instruction provides the facility for
handling basic BSC line control functions.

Where the CPU's' are connected by a dial
line, logical IOCS provides the IDIAL macro
instruction to handle establishinq the
connection and to provide the optional
facility for ID-verification.

Macro Instructions

Generally two types of macros are required
for processing the records in a logical
file: one declarative file-definition
macro, and one or more imperative macros.

The file-definition ,macro describes the
logical~~ indicateS~he-type of
processing to be used for the file, and
specified main-storage areas for the filer
Six file-definition macros are provided for
defiriing files processed by logical IOCS
mTFSR, DTFDA, DTPIS, DTFSN, DTFBS, and

DTFRF), and one for disk or tape files
processed by physical IOCS (PTFPH). Which
of these applies to a particular file is
determined by the type of processing used
for the file (see Types of processing).
The macros and their use are: '

DTFSR

DTFDA

DTFIS

Define The file in ~e]ial-~ype
device. This macro is used in
conjunction with consecutive
processing of records in any I/O
device.

Define The File for the Direc~
Access method of processinq. This
macro is used whenever disk
records are to be processed in a
random order by the direct access
method.

Define The File for the Indexed
~equentIal system of processinq.

Macro Instruction statements 59

This macro is used whenever a file
is organized by the in~exed
sequential file management system
and is to be processed by that
system.

DTFSN]!efine .The 1:ile for ~Yl!chronous
Transmitter-Receiver use. This
macro is used for processing in a
Tele~processing environment with
STR devices.

DTFRF Define The File for ReFerence.
This macro'Is used wIth the DTFSN
macro and the DTFBS macro to
permit the problem program to
reference the information in 'the
channel command block (CCB).

DTFBS Qefine lhe file for ~inary
~ynchronous Communication use.
This macro is used for processing
in a CPu-to-cPU communications
environment.

DTFPH Define The File for processing by
g]ysical IOeS. This macro is used
only if ,a disk or tape file with
standard labels is to be processed
by physical IOCS. No other files
processed by physical laCS require
definition.

Each file definition macro requires a
set of keyword parameter entry cards
~igure 9) to define the file. At assembly
time these cards must precede the problem
program. The details of these entries are
described in the section entitled File
Definition Macros. The definition-oi-a
file-is utilized-when an imperative macro
instruction (such as GET, PUT, READ, WRITE,
etc.) is issued in a prcblem program
statement. If a GET "is issued, for
example, the file definition supplies such
factors as-:

• Record type and length

•

•

Input device from which the record is
to be retrieved

Main-storage area where the record is
to be located for processing by the
problem program.

File definition macros and imperative
macros that refer to the file definitions
m~st be assembled together. That is, all
file definitions must be asse~bled with the

60 S/360 BaS Assembler with Iio Macros

user '·s problem program. Imperative macros
executed by the Indexed Sequen~ial File
Management System (ISFMS) make use of
literals, and the literal pool must be
addressable any time these macros are
executed. Thus the pool must be available
in each phase. Furthermore, it must be
available in each control section (CSECT)
within a phase if base registers are
changed between control sections.
Therefore, a LTORG statement should be
included at the end of each control section
whenever disk records are to be processed
by ISFMS. If a user defines only one·
control section, he must include a LTORG
statement to ensure the placement of
literals at the end of his control section,
because multiple control sections are also
generated by ISFMS.

Imperative·macro·instructions are
included in the problem program, They
perform such functions as opening a file,
making records available for proc~ssing,
writing records that have been processed,
etc. The macro instructions provided by
IBM for input/output control (Figure 10)
are presented in this section in the
following groups.

Initialization: OPEN and LBRET

Processing Records Consecutively: GET,
PUT, RELSE, TRUNC, READ, WAITF, RDLNE,
DSPLY, RESCN, CNTRL, CHNG, and PRTOV

Processing Disk Records by the Direct
Access Method: READ, WRITE, WAITF,
and CNTRL

Processing Disk Records by the Indexed
Sequential System: SETFL, ENDFL,
WRITE, READ, SETL, ESETL, GET, and PUT

Processing with STR Devices: SOPEN,
DIALO, READ, WRITE, CNTRL, CDCNV,
SCLOS.

Processing Records by Physical
IOCS: CCB, EXCP, WAIT, WAITM, and
CHNG

Binary synchronous
Communication: BOPEN, IDIAL, READ,
W~ITE, CNTRL, BCLOS, and ERRPT.

Writing Checkpoint Records: CHKPT

Completion: CLOSE, LBRET, and FEOV.

IBM IBM Sy.t11lll360 Aaembler CodtJIg PDI'III
......... U.L ...

ll--PROGUM __________ --_-.-____ -.f PUNCHING It-:GUI'::::-HIC--1I-t--tI-It--t--1I_t-I,,1 '$ii1LAGl' iCiiOt<UMiH°'---j
IPlOGIAMMf' 1 DA" INSTlUCTION$ I I I L I I

""-.
ttl If' '

I"~

i

1 1 I

I
',''-., .

I I I I

,
! ,

: , i i 1

11 :

IBM

• 10 "-,''' U I. 20 .30

"I'

I

I' ~. 'I. "I«CI~

Iftl'VII: 1.1'~~~I~~!I.ftl-

"',Ii- 11.~i§"I.
C!vNI, It vIL:=IY:E 51, I : I

"A"MENT

60

I I ..
· ... 1" f"'l"

ift ID I ..

"

1/'

I i

I F I'L!AB LI= SITiDI' ill I i I I
I

,,", 11 A,1. lAI J :c AiR £A I1INIE
1 ... ,_, .. 1... IAT~lo,.

I

I
I I

-I -, 1 I

.. '" c-

IAIL f"ls!l '7trl"

," :::Y,',' "i'l, ,:~f.;:;,," 'f." ::,'" if' ';' '~";" •. ,"~

i ! I X

I
;\:;~:, ' "

,':I·:} ;.I", ::"I·!.

I I I I
I I I i Ix

I I ,
L ',' .

IBM Syatlml360 Aa18mbler Coding Farm

IPROGUM
IPROGRAMMER
I-------------------r------.f PUNCHING I GRAPHIC I

INSTRUCTIONS I I I I
I I

I
I

I PAGE 0'

1 DATE I
STA"MENT

ldefttificofion"

I· ""- . .0 Opo~tJ ... U
"c- '"

Seqwnce ~

, ~S EO FL DIT IF 115 II ,,' IX :':~:;': I;;,

I' .. .; tx ,it' ~;,' ?- ~\ ;,

'ZvA'R£ .. :.:.= lJlS FI/AI!' II' 'AI,!I 0 AIRI£:A ~I~ 1"101 G I.. T "I .. ilt .a ft PI.a. ~< IX ,."" '.":'~hf.:i:t
I i

1 KI£ Y!L E NI=I' IfJ, K'£ viA R. G=U~S EIRIKE,Yi, II ;LII ,ut. Ai=IN,uIIIDi, D ~ K ",' N TI. 1"1' , Ix I

I MSTiINDI=IViEiSI, i'l 1 I il ! IX
I I I i I I IX

i
~I". ~~'~:i j,< ICI~ -'11'1,

I I' I~ , 1-; :,,,':'. Ar':;;','i:'"k;i.:.'~. :';, ;/:",
, It 11",lr I I' "f'" I:,: >" ,,-, i'·

I I i I I I TY" £ F LIE': RlIl.v~ J:"IIl, I Ix
; I I i}(

, " i i I

: :',
. '. I~ ,~~~;iC('.:~ ~~'~~;bf;' ,,'~. 1< " A' ',' ' .. I.·" I'.:':':

.'~-~ ~,~ .:- r~ ~~ ,', r, ~~ ~.~~~:
i ! I I I I i

Figure 9. Sample DTFSR and DTFIS Macro Instruction

Macro Inst~uction Statements 61

TYPE OF PROCESSING WITH LOGICAL 10CS

Consecutive Indexed Sequential
System

·c ...r::: ::> 0 "'0

MACRO INSTRUCTION QI c Q; Q; 0
:::l ...r::: QI a. c.. "'0 "'0 "t > ~ d- o ~ c c

.~ V) QI ~ ~ ~ QI

.~ .~ "I "<t ~ > U
l() l() t. '" .~ "t Q Q "t ~Q; ~ ~~

... "'0 "'0 ~ a:::
~ c QI ... QI .~ .~ 0 "E ~ 8. ~ Cl ~"'O 0

.~~ QI"'O 0 0 ..J
o C "I a.. a. ~ 0 .2 4:

~ l() QI l() ~.L:
a.c 4: 0

.:; a. 0 ... c £~ 0 0 iL E i: u ~a::: ~ ~c.. c.. 0 t ~ QI :::l

~l() 0 QI 0 V) Vi ~ 0

~~ ~
"1-0 ~ QI I.() I"-

~ "'0
"'0 "'0 :::l >-M 0

~~
l() >.. I"- a. to to C C IT a::: U

"<t o QI -0 C ~ ~ 0 .s "'0
~ Q) l- V) :r:

"I "I ~N ~~ "I I- 4: V) V) a::I c..

Initialize
OPEN X X X X X X X X X X X X X X X1
SOPEN X
BOPEN X
DIALO X
IDIAL X
LBREP X X X X

Process
Transfer Records

GET X X X 3 X X X X1C X
PUT X4 X)(S X X X X
READ X11 X X X X
WRITE X X X X X X
RELSE II X X
RDLNE X X10
TRUNC7 X X
WAITF X X
EXCP X
WAIT X X X
WAITM X X X
CDCNV X
DSPLY X11

RESCN X1

Set Mode
SETFL X
ENDFL X
SETL X
ESETL X

Non- Date Operations
CNTRL X X X X X X X X X X
CHNG 8 X X
PRTOV X
CCB X

Write Checkpoint Records
CHKPT X X X X X

Complete
X1 CLOSE X X X X X X X X X X X X X X

LBRET ~ X
FEOV Xg

SCLOS X
BCLOS X
ERRPT X

Notes: 1. Required only for disk or tape files with standard labels.
2. Applies only if DTFSR, DTFDA, or DTFPH LABADDR is specified.
3. In the 2540, GET normally reads cards in the read feed. If TYPEFLE=CMBND is specified, GET reads

cards at the punch - feed - ·read station.
4. PUT rewrites an input disk record if UPDATE is specified.
5. In the 1442, 2520, or 2540, PUT punches an Input card with additional information if TYPEFLE =CMBND

is specified.
6. Applies only to blocked input records.
7. Applies only to blocked output records.
8. Applies only when two selector channels and one or more 2- channel, simultaneous- read- while- write tape

contra I units are installed.
9. Applies only to output tape files with standard labels.

10. Applies only to journal tape processing.
11'. Applies only to document processing.

Figure 10. Macro Instructions for Input/Output Control

62 S/360 BOS Assembler with I/O Macros

INITIALIZATION

Before the first record can be read from
any input file or transferred to any output
file by logical IOCS macro instructions,
t~at file must be readied for use by
issuing an OPEN instruction. This applies
to logical files in all input/output units
available in the system: card readers,
carrl punches, magnetic tape ·units, disk
drives, paper tape reader, printers,
optical readers, and display units. When
physical IOCS macro instructions will te
used for a given file, OPEN is required for
that file only if standard labels on disk
or magnetic tape are to be checked or
written.

Whenever files of records are written en
disk, each disk pack (volume) must contain
standard labels to identify the-pack and
the logical files(s) on the pack. When
logical IOCS is used for a file, the laCS
routines read, check, and/or write standard
disk labels. When physical IOCS is used,
laCS processes the labels if the DTFPH
macro instruction is included in the user's
program. The entry TYPEFLE must be
specified to indicate whether the file is
an input file (rea~ and check labels) or ~n
output· file (read and check old labels and
write new labels).

The standard labels include one volume
laRg1 for each pack and one or more-iIle­
laR~1§ for each logicq,l file on the pack.
The following paragraphs describe briefly
the organization of labels on disk packs.
Additional information about disk labels is
given in the BOS Prog~~m~~£~_Guide.

Volume Labels: The standard volume label
identIfies~he entire volume (pack) and
offers volume protection. It is always the
third record on cylinder 0, track O. The
first two records on this track are Initial
Program Loading (IPL) records. The
volume-label record consists of a count
area, a 4-byte key area, and an aD-byte
data area. Both the key area and the first
four bytes of the data area contain the
label idsntifier VOLle The remaining 76
bytes of the data area contain other
identifying information such as the volume
serial number, and the address of the set
of file labels for the pack (See Standard
Fi1g LaQ€ls). The volume label is
generally written once, when the disk pack
is received, by an IBM-supplied utility
program.

The standard volume label may be
followed by one to seven additional ~2lu~g
laQ~l§ (starting with record 4 on cylinder
0, track 0). These labels must contain the
label identifier VOL2, VOL3 etc in the

fou~-byte key areas and in the first four
bytes of the data areas. The other 76
bytes may contain whatever information the
user requires. The additional volume
labels are also written by the utility
program that writes the standard volume
label. However, IOCS does not· make them
available to the user for checking or
rewriting when problem programs are
executed. These labels are always bypassed
by the OPEN routines.

Standard File Labels: The standard file
labels identify the logical file, give its
loc~tion(s) on the disk pack, and offer
file protection. The labels for all
logical files on a pack are grouped
together and stored in a specific area of
the pack_

The number of labels required for any
one logical file is affected by the file
organization (see ~~~rd_fil~~Label
Formats) and by the number of separate
areas of the pack (extents) used by the
file. The data records for a logical file
may be contained within one area of the
pack, or they may be scattered in different
areas of the pack. The limits (starting
and ending addresses) of each area used by
the file are specified by the standard file
label (s) •

Because each file label contains file
li~its, the group of labels on the pack is
essentially a directory of all data records
on the pack (volume). Therefore, it is
known as the Volume Table of contents
(VTOC). The VTOC itself becomes a file of
records (one or mOIe standard-label records
per logical file) and, in turn, has a
label. The label of the VTOC is th~ first
record in the VTOC. This label identifies
the file as the VTOC file, and gives the
file limits of the VTOC file. The Volume
Table of Contents is contained within one
cylinder of a. disk pack. It does not
overflow onto another cylinder.

If a ~ogical file of data records is
recorded on more than one disk pack
(volume), standard labels for the file must
be included in the VTOC of ~h pack used.
The label(s) on each pack identifies the
portion of the logical file on that pack
and specifies the extent(s) used on that
pack.

Standard File Label-Formats: All
standard-file-label records have a count
area and a 140-byte key/data area. Three
standard-label formats are provided.

Format'. This format is used for all
logical files, and it has a 44-byte key
area and a 96-byte data area. It is always
the first of the series of labels when a

Macro Instruction statements 63

file requires more than one label on a disk
pack (as discus'sed in Forma-:ts 2 and 3).

The Fermat 1 label identifies the
logical file (by a file name assigned by
the user and included in the Q4-byte key
area), and it contains file- and
data-record specifications. It also
provides the addresses for three separate
disk areas (extents) for the file. If the
file is scattered over more than three
separate areas on one pack, a format 3
label is also required. In this case, the
Format 1 label points to the second label
set up for the file on this pack.

If a logical file is recorded on more
than one disk pack, the Format 1 label is
always the first label for the file in the
VTOC on each· pack.

r~1-~ This format is required for
any file that is organized by the Indexed
Sequential File Management System. The
44-byte key area and the 96-byte data area
contain additional specifications unique to
this type of file organization (such as the
highest record in the overflow area).

If an indexed sequential file is
recorded on two or more packs, the Format 2
label is used only on the pack containing
the indices. This pack may, or may not,
contain data records. The Format 2 label
is ~ot repeated on the additional packs (as
the F0rmat 1 label is).

Format 3. If a logical file uses more
than-three-extents on any pack, this format
is used to specify the addresses of the
additional extents. It is used £nly for
extent information. It has a 44-byte key
area and a 96-byte data area that provide
for 13 extents.

The Format 3 label is pointed to by the
Format 1 label for the logical file. It is
included as required on the first pack, or
on additional packs if the logical file is
recorded on two or more packs.

UseI,=Standard File L.212els: The user may
include labels to define his file further,
if he desires, provided the file is
processed consecutively (DTFSR macro
specified), by the direct access method
(DTFDA macro specified), or by physical
laCS (DTFPH macro specified). A file
organized and processed by the indexed
sequential file management system (DTFIS
specified) permits standard labels only. A
file that is to be processed in consecutive
order may have up to eight user-header
labels and up to eight user-trailer labels.
The trailer labels Cqn be written to
indicate an end-of-volume condition. That
is, when the end of an extent on one volume
(pack) is reached and the next extent is on

64 S/360 BOS Assembler with I/O Macros

a different volume, or when the end of the
file is reached, user-trailer labels can be
included to contain whatever trailer
information the user desires (for example,
a record count for the completed volume).

User-standard labels are not stored in
the Volume Table of Contents-:--Instead,
they are written on the first·trac£ of the
first extent allotted for the logical-file
data records. In this case, the user's
data records start with the second track in
the extent, regardless of whether the
labels require a full track. If a file is
written on two or more packs, the labels
are written on each of the packs.

All labels must be eighty bytes 'lonq and
they must contain standard information in
the first four bytes. The remaining 76
bytes may contain whatever information the
user wants.

The standard information in the first
. four bytes is used as a record key when'
reading or writing the labels. The header
labels are identified by UHL1,
UHL2,---UHL8. The trailer labels, when
applicable, are identified by UTLO,
UTL1,---UTL7. Each user-label set (header
or trailer) is terminated by an end-of-file
record (a record with data len~th 0), which
is written by laCS. For example, if a file
has five header labels and four trailer
labels, the contents of the user-label
track is:

RO
R1
R2
R3
RQ
R5
R6
R7
R8
R9
R10
R11

Standard information
UHL1--user's 1st header label I
UHL2--user's 2nd header label
UHL3--user's 3rd header label
UHL4--user's 4th header label
UHL5--user's 5th header label

DL=80

UHL6--end-of-file record --DL=OO
UTLO--user's 1st trailer la,bel}
UTL1--user's 2nd trailer label
UTL2--user's 3rd trailer label DL=80
UTL3--user's 4th trailer label
UTL4--end-of-file record --DL=OO

When files are processed by the direct
access method, (or processed by physical
laCS defined with DTFPH with MOUNTD=ALL)
only user-standard header labels can be
written. In this case, the user-label
track contains:

RO
R1
R2

R (n)

Standard information
UHL1--user's 1st header label

l
UHL2--user's 2nd header label

UHL(n)--user's nth header
label where ~8

DL=80

R(n+1) UHL(n+1)--end-of-file record} DL=OO
R(n+2) UTLO--end-)-file record

The user's label routine can determine
if a label is a header or trailer label by
testing the first four bytes of the label
(see QPE N Macr.Q) •

St~ndard TalliL1~~~ls

When a tape input or output file that has
standard labels is opened, Toes can hand1~
the label checking (on input) or vritinq
(on output). When logical Ioes macros are
used in the program, the DTFSR entry
FILABL=STD must be included to specify
IOeS-processing of labels. When physical
Ioes macros are used, the DTFPH entry
TYPEFLE must be included to indicate
whether this is an input file (check
labels) or an output file (write labels).

If an input tape contains standard
labels but the user does not want Ioes to
check th em·, FILABL=N STD should be specified
in the file definition.

The standard labels for a tape file
are: a volume label, a file header label,
and a file trailer label.

Volume Labels: The standard volume·label,
whIc~is the-first record (eighty
characters) on a reel of tape, identifies
the entire volume (reel) and offers volume
protection. It contains the label
identifier VOL1 in the first four
positions, and other identifying
information such as the volume serial
number. This is a unique number generally
assigned to the reel when it is first
received in the installation. The volume
label is generally written once, when ·the
reel of tape is· received, by an
IBM-supplied utility program. The standard
volume label may be followed by a maximum
of seven additional volume labels if
desired. These must be identified by VOL2,
VOL3, etc, in the first four positions of
each succeeding label. However, IOCS does
not permit the checking or writing of
additional volume labels by the user in the
problem program. These labels are always
bypassed on input.

File labels: The volume label set is
foliowed by a standard 1ile head~abel.
This label (eighty characters) identifies
the logical file recorded on the tape and
offers file protection. It contains the
label identifier HDR1 in the first four
positions, and other identifying
information such as file identifier, file
serial number, creation date, etc. An
input tape may contain standard header
labels HDR1-HDR8. If so, IOCS checks only
label HDR1 and bypasses HDR2-HDR8.

The standard file header label(s) may be
followed by a maximum of eight user-written
standard labels if desired. If so, the

additional file header labels must be
identified by UHL1, UHL2, etc. A tape mark
follows the last file header label.

A standard file trailer label is located
at the end of a logical file (EOF), or at
the eRd of a volume (EOV) if a loqical file
is continued on another volume. The
trailer label has the same format as the
header label. It is identified by EOFl or
EOV 1 (instead of HDR 1) and contains a
physical record count (block count). I·ike
the file header label, the standard file
trailer label on an input file may be
followed by seven additional standard
trailer labels identified by EOV2-EOV8 or
EOF2-EOF8, whichever is applicable. IOCS
~ypasses these labels. If desired, the
standard trailer label{s) may be followed
by a maximum of eight user-written standard
trailer labels, which must be identified by
UTL1-UTL8.

All user-written standard labels must be
eighty characters long and must contain the
standard identification in the first four
positions. The remaininq 76 positions may
contain whatever information the user
wants. Additional information about tape
labels is given in the £roqrammer's Guide,
listed on the front cover of this manual.

Nonstandard Tape Labels

Any tape labels that do not conform to the
standard-label specifications are
considered nonstandard and, if desired,
must be read, checked, or written by the
user. On input the nonstandard labels may,
or may not, be followed by a tapemark.
This choice, combined with the user's
requirements to check the labels, or not,
tesults in the following four possible
conditions that can be encountered~

1, Label(s), followed by a tapemark, are
to be checked.

2. Label(s), not followed by a tapemark,
are to be checked.

3. Label(s), followed by a tapemark, are
not to be checked.

4. Label(s), not followed by a tapemark,
are not to~e checked.

For conditions 1 and~ the DTFSR entries
FILABL=NSTD and LABADDR=Name must be
specified in the file· definition. For
conditi~ the DTFSR entry FILABL=NSTD
must be specified. DTFSR LABADDR is
omitted and Ioes skips all labels, pa~ses
the tapemark, and positions the tape at the
first data record to be read. For
conditiQn~L the DTFSR entries FILABL=NSTD
and LABADDR = Name must be specified. In
this case IOCS cannot distinguish labels

Macro Instruction statements 65

from data records because there is no
tapematk to indicate the end of the labels.
Therefore, the user must read all labels
even though checking is not desired. " This
positions the tape at the first data
record.

For output files created by logical
IOeS, a tape mark always follows the last
nonstandard label, unless the user
specifies the DTFSR entry TPMARK=NO.

On input, unlabeled tapes (DTFSR FILABL=NO)
mayor may not contain a tapemark as the
first record. If the tapemark is present,
the next record is considered to be the
first data record. If there is no
tapemark, Ioes reads the first record,
determines that it is not a tapemark, and
backspaces to the beginning of the first
record which it considers to be the first
da.:!:~ record. For unlabeled output files
~TFSR FILABL=NO) created by logic~l IOeS,
the first record is always a tapemark,
unless the user specifies otherwise. If
the user does not wish to have a tapemark
written, h~ must specify DTFSR TPMARK=NO.

r---~

IName I Op Operand I
r---4-----~---- -1
I I OPEN filename I
I I OPEN filename1,filename2,------ I
'-----'- ,

The OPEN macro instruction is used to
activate each file that is to be utilized
in the problem program. The symbolic name
of the logical file (assigned in the D~FSR,
DTFDA, DTFIS, or DTFPH header entry) is
entered in the operand field of this
instruction. As many as 16 files may be
opened by one instruction, by entering
additional file-name parameters. In this
case, the files are opened in the same
order as they are specified in the OPEN
instruct ion.

For the card r~aders, card pUnches,
printers, and paper-tape readers, OPEN
simply makes the file ava{lable for input
or outpu to.

When LIoes is used for processing
journal tapes on the 1285 and 1287 Optical
Reader, the OPEN macro must be issued at
the beginning of each input roll.

If certain procedures are followed when
an end-of-tape condition occurs, it is
possible to process two or more rolls on
the '287 as one file. The method is to
press the Optical Reader start key
(creating an intervention required

66 S/360 BOS Assembler with I/O Macros

condition) instead of the end-of-file key
to run out this tape. The next tape can
then be loaded and processed as a
continuation of the previous tape.
However, since OPEN is not reissued, no
header information can be entered between
tapes.

When LIoes document processing, OPEN
must be issued to make the file available.
OPEN allows header (identifying)
information to be entered at the 1285 or
1287 keyboard, if desired, for journal tape
or cut documents (1287). When header
information is entered, it is always read
into IOAREA1, which must be large enough to
accommodate the desired information.

OP"EN does not clear the eight binary
counters used in the optical readers.
These coun ters a"re initially zeroed. They
accumulate error statistics, as listed
under eOREXIT=Name, in the section on DTFSR
detail entries.

When a magneti~tSB~fi!~ with standard
labels (ST~ specified in DTFSR FILABL) is
opened, Ioes expects the first record read
to be a label. T~e first record is a label
if the tape file being opened is the first
file on the reel and if Ioes rewinds the
reel (see DTFSR REWIND). If, however,
other specifications are given in DTFSR
REWIND or if a file starting in the middle
of the reel is opened, it is the user's
responsibility to position the tape
properly so that the first record read is a
label. If the first record is not a label,
Ioes indicates an error condition by
issuing a message to the operator. An
unlabeled file (DTFSR FILABL=NO) can,
however, be opened in the middle of data
records without causing an error condition.
If a file with nonstandard labels (DTFSR
FILABL=NSTD) is opened, all label
processing is the responsibility of the
user's routines (see
Initialization..!l!Qn.§tandard Tape·· Labels}.

Whene~er an input/output disk or tape
file is to be opened and the user plans to
process user-standard labels or nonstandard
labels, he must provide the information for
checking or building the labels. If this
information is obtained from another input
file, that file must be opened ahead of the
disk or tape file. This is done by
specifying the input file ahead of the disk
or tape file in the same OPEN instruction,
or by issuing a separate OPEN instruction
preceding the OPEN for the disk or tape
file.

The specific functions that occur on an
OPEN for a disk or tape file vary with the
type of operation (input or output) and
with the use of file labels. These

functions are discussed in the following
sections.

When building an output file and IOREG
is specified, OPEN positions IOREG to the
beginning of IOAREA1.

In addition to the registers used by
logical IOeS, OPEN also uses register 5.
The programmer may use register 5 because
the OPEN macro routine saves and restores
this register. However, if the programmer
plans to use register 5 as a base register,
he should be aware that register 5 is
dropped at the end of the OPEN routine.

For a discussion of reoFening a file
after it has been closed, see CL~Macro.

For a discussion of SOPEN, to initialize
the adapter for STR devices,
see: Processing with STR DellQ~. For a
discussion of BOPEN, to initialize the data
adapter for BSC, see: Binary SynchrQn~2
CO!!l!!ly'nication..

Disk.lnput.Pile

W~en an input file that is recorded on disk
is opened, the OPEN routines:

• Check the standard label(s) for the
file.

• Make any user-standard labels available
to the user for checking, if the DTPSR,
DTFDA, or DTFPH entry LABADDR is
included in the file definition. The
indexed sequential system (DTFIS) does
not permit user-standard labels.

• Locate the area(s) of the disk pack
(extent) where the file is written.

• Make the file records available for
processing.

For these functions, the OPEN routines
refer to the information supplied by the
user in Job Control VOL, XTENT, and DLAB
cards. A VOL card and a DLAB card must be
supplied for each logical file, and an
XTENT card must be supplied for each
separate area (in each volume) used by the
file.

The functions of the OPEN routines may
occur at different times during the job,
depending on the type of processing
specifi~d for the file by the·
file-definition macro instruction. If a
file is to be processed consecutivel~
~TFSR specified), OPEN initially checks
the standard label(s) on the pack or on the
fi£2!·pack of a multipack file, makes any
user-standard labels on the firs1 pack
available for checking, and then Iodates
and makes available the first extent on the

first pack. IOCS processes one extent at a
time, in the sequence specified by the
user's control cards. When IOCS· detects
the end of the current extent, it branches
to the end-of~extent routine. OPEN then
locates the next extent specified by the
control cards, makes sure it is on-line and
ready, and makes it available for
processing. If the next extent is the
first extent of a different pack used by
th~ file, OPEN checks the standard labels
on that pack ans makes any user labels on
that pack available to the user for
checking. If the user has included
user-trailer labels for a consecutive file,
they-ire-made available for checking when
the last extent on one pack is completed
and before the first extent on the next
pack is opened (see ComEletion:--Disk-Input
Fi1gl..

When a file is to be processed by the.
direct access method (DTFDA specified) or
by the y!de,!g~2equential.syste.!!! (DTFIS·
specified), all disk areas specified by
theuser's control cards for the file must
be mounted and ready when the file is first
opened. Therefore, the OPEN routines
initially check all standard labels on all
packs used by the file, make ~ll-user
labels (if any) available for checking, and
check all specified extents and make them.
available for processing. For a multi-pack
file, OPEN processes the standard labels
followed by all user labels on the first
pack, then processes standard labels on the
second pack, etc. Therefore, the user's
label routine is entered for each user
label on each pack in turn, afte~ the
standard label on that pack has been
checked.

If a file is to be processed by £hysical
IOC~ (DTFPH specified) and if the DTFPH .
entry MOUNTD=SINGLE is specified, the file
is treated as consecutive at the initial
opening. That is, only the pack containing
the first extent specified by the user's
control cards must be on-line when the
initial OPEN is issued~ The labels on this
pack are processed, and the first specified
extent is made available for processing.
Thereafter the user must keep track of the
extents and issue an OPEN foi each
succeeding extent when it is required for
processing. Each additional time that OPEN
is issued for the file, IOCS locates and
makes available the next extent specified
by the user's control cards. If the DTFPH
entry MOUNTD=ALL is specified, all extents
spe~ified for the file must be mounted and
ready when the initial OPEN is issued. All
labels are checked (or made available for
user-checking) and all extents are qhecked
and made available for processing. Only
one OPEN is issued for the file, the
function for MOtiNTD=ALL are similar to

Macro Instruction statements 67

those performed when a diDect access or
indexed sequential file:is opened.

ChQ£fill~User-Standard-Labels: When a disk
file contains user-standard iabels, the
programmer can check them in his own
routine if the DTFSR, DTFDA, or DTFPH entry
LABADDR is included in the file definition.
The OPEN routines branch to the -~ser's
routine after each user's label has been
read. IOCS reads each label into the label
read-in area. The address of this area is
supplied to the user in register 1 upon
entry into his routine. The user's routine
can identify the various labels (and
distinguish between header and trailer
lahels) by testing bytes 1-4 of the read-in
area. After checking each label, the user
must return to the OPEN routines by use of
the LBRET macro.

When an output file that is to be recorded
on disk is opened, the OPEN routines:

• Audit the extents specified by control
cards to make sure that any data
previously recorded is no longer active
and may be destroyed.

• Create and write required standard
label sets.

• Permit the user to create user-standard
labels and write those labels, if the
DTFSR, DTFDA, or DTFPH entry LABADDR is
specified. The indexed sequential
system (DTFIS) does not permit
user-standard labels.

• Locate the area(s) of the disk pack
where the records are to be written.

• Make the area(s) available to logical
Ioes.

Similar to the opening functions for an
input file, the OPEN routines refer to the
information supplied _by the user in the Job
Control VOL, XTENT, and DLAB cards for the
output file. For the creation of the
standard labels, OPEN also uses information
supplied by the file-definition macro
(DTFSR, DTFDA, DTPIS, or DTFPH).

As each pack is opened for a file, IOCS
constructs and writes the standard label
(5) for that pack. For consecutive
processing (DTFSR specified) only the first
pack is opened at the initial OPEN. After
the first, each other pack is opened and
the standard labels are written when,
during execution, the processing of records
for one.pack is completed and the file is
to be continued on a different pack. For
the direct access method (DTFDA) or the
indexed sequential system ~TFIS), all

68 S/360 BOS Assembler with I/O Macros

pacKs are opened and all standard labels
are written at the initial OPEN for the
logical file.

After the standard labels are written
for any pack, IOCS branches to the user's
label routine (if one is specified by the
DTFSR, DTFDA, or DTFPH entry LABADDR) and
the user can construct his label(s).

The extents specified by the user are
checked in turn. That is, they are checked
as they are ready to be written when
processing consecutively. Or, they are
checked, one after the other, at the
initial OPEN when the direct access method
or the indexed sequential system is used.
This checking is based on the expiration
dates in the existing standard file labels.
If any files are to be partially or wholly
destroyed, their standard-labels are
removed from the Volume Table of contents.
This, in effect, deletes the entire file
from this pack.

If an output file is to be processed by
physical IOCS, both the initial and
subsequent opening functions are similar to
those described for an input file (see OPEN
Ma£~Q~_Dis~Input~Fi!~, except that
labels are written rather than checked.
Thus, the file is treated like a
consecutive file if DTFPH MOUNTD=SINGLE is
specified. It is treated like a direct
access or indexed sequential file if DTFPH
MOUNTD=ALL is specified.

Writing~~Standa~~HeadQ~_1~Qel~: When
the user specifies that user-standard
labels are to be written (by including the
DTFSR,DTFDA, or DTFPH entry LABADDR), the
user constructs the labels and IOCS writes
them. The OPEN routines branch to the
user's routine after the standard label(s)
is written. OPEN prepares for the user's
label(s) by setting up a label area where
the user can construct the label(s),
supplying the address of the area in
register 1, placing UHL 1 (for the first
label) in the first four bytes of the area,
and storing a return addr~ss in register
14. In his routine the user constructs a
76-byte label and returns to IOCS by use of
the LBRET macro. IOCS checks for a
set-completed indication, writes the label,
determines if eight labels have been
written and, if not, increases the UHL
identification by 1 and returns to the
user's label routine. Because a maximum of
eight user-standard labels is permitted,
IOCS automatically terminates the label set
after a label with UHL8 is written. If the
user requires fewer labels, he can force
the end of the label set by issuing the
LBRET macro with the operand "1". Whenever
the DTFSR, DTFDA, or DTFPH entry LABADDR is
specified, at least one additional label
~§i be written. Upon return to IOCS, the

set is terminated and IOCS writes an
end-of-file record.

When an input file is recorded on magnetic
tape, OPEN rewinds the tape according to
the specifications in 'the DTFSR entry
REWIND. (No rewind is performed if the
file is defined by DTFPH.)

Standard Labels: Both the first volume
label (VOL~l) and first file header labels
(HDR1) are automatically read and checked
if standard label checking is specified
(~!Q specified in DTFSR FILABL or INPUT
specified in DTFPH TYPEFLE) and if the tape
is read forward (!ORR!RD specified in DTFSR
READ). The fields are checked with the
information supplied by the Job Control VOL
and TPLAB cards.

By this label checking, IOCS locates the
file to be processed if more than one file
is written on a tape reel (multifile reel).
For this"laCS compares the file sequence
number in the label with that in the TPLAB
card. The file sequence number gives the
sequential position of the file on the
reel. For example, if the first file on a
multifile reel has file seguence number 1,
the third file has file sequence number 3.
If the first file is numbered 15, the third
file is numbered 18. The OPEN routines
bypass all files until a header label with
the matching file sequence number is read,
or until the end of the ta~e is reached.
Several files on a reel may be processed in
succession without rewinding the tape if
the file sequence numbers ar~ specified in
ascendinq sequence. if not, the tape must
be rewound before the file to be processed
is opened. If the tape is positioned
beyond the desired file when the OPEN for
that file is executed, message 4114A is
given to the oper~tor.

If a tape file that will be read
ba£~J!ard§ <'~ACK - specified in DTFSR READ) is
opened, the file-trailer-label-is
automatically read and checked,if label
checking is specified. The volume label is
not repeated at the end of the tape.
Because the file trailer label ii processed
at this time, it must be complete and
contain both t~e trailer and header
information (except HDR) to identify the
file. If the file labels were originally
written by laCS routines, the trailer label
will be complete. If the tape is not
positioned at the trailer label (EOF1) when
the file is opened, the user is notified
and reading continues. This situation is
possible if the user begins reading
backwards in the middle of his file. When
physical IOCS macros are used to read
records backwards, labels cannot be checked

and the 'file must not be defined with DTFPH
statemen-t;,s.

If a tape contains user-standard-header
labels (UHL1-UHL8) following the standard
file header label (or user-standard trailer
labels, UTL1-UTL8, preceding the standard
trailer when reading backwards), the
programmer can check them in his own
routirie. Tha OPEN routine branches to the
user's routine (identified by the DTFSR or
DTFPH entry LABADDR) after each user's
label has been read. Each label is read
into the label read-in area used by IOCS.
The address of this area is supplied in
register 1 upon entry into the user's
routine. ,After checking each label, the
user must return to the OPEN routine by
useof the LBRET macro. If user-standard
labels exist but the user does not specify
LABADDR, the user labels are bypassed by
laCS.

When the tapemark at the end of the
labels is read, laCS 9pens the next file
specified in the OPEN macro, or returns
control to the problem proqram if all files
have'been opened.

After the labels (if any) for a file
have been processed, that file is ready for
the first GET instruction.

Nonstandard-Labels: To process nonstandard
labels, the user must specify FILABL=NSTD
and LABADDR=Name, and he must define his
own label read-in area. To read-the
n~nstandard labels, physical IOCS macro
instructions must be used instead of
logical IOCS instructions. A 'Command
Control Block (CCB) and a Chaanel Command
Word (CCW) must be established, and an EXCP
instruction must be issued for each label
must be issued for each label record (see
Processing Records with Physical .. IOCS).

In his label routine, the user issues
the EXCP and WAIT macro instructions and
then performs whatever checking he desires
for the labels. After all labels have been
read and processed, the user returns
control to the OPEN routines by use of the
LBRET macro.

If a file with nonstandard labels
utilizes an alternate tape drive (DTFSR
ALTTAPE=SYSnnn), IOCS supplies a code
identifying the symbolic unit (see Figure
26) of the drive currently beinq used in
the two low-order bytes of register
1. This value must be moved to bytes 4 and
5 of the Command Control Block (CCB) used
by the EXCP macro for label reading.

For a magnetic tape output file, OPEN
rewinds the tape as specified in the DTFSR

Macro Instruction Statements 69

entry. REWIND. (NO rewind is performed if
the file is defined by DTFPH.)

Stang~~g_Lab~!§: When standard labels are
to be written (STD specified in DTFSR
FILABLE, or OUTPUT in DTFPH TYPEFLE), the
volume label is checked and the old file
header is read and checked to make sure
that the data on the tape is no longer
active and may be destroyed. The tape is
then backspaced and the new file header
label i~ ~ritten with the information
supplied by the ~ob Control TPLAB card.
The volume label is not· rewritten.

If user-standard header labels
(UHL1-UHL8}-are to~e-written following the
standard header label, the OPEN routine
branches to the user's routine (specified
by the DTFSR or DTFPH entry LABADDR) after
each standard label. In his routine, the
programmer can build a· maximum of eight
user-standard labels. Each label must be
built in the label output area used by
IOCS. The address of ~his area is·supplied
to the user in register 1 upon entry into
his routine. IOCS also supplies the letter
o in the low-oider byte of Register 0, to
indicate that a header label should be·
built. After building each label, he must
return to the OPEN routine by use-of the
LBRET macro. Then IOCS writes. the label.
When the user determines that the last user
label has been written, he must issue the
LBRE T macro with. the operand II 1 ". Whenever
the DTFSR or DTFPH entry LAEADDR is
specified, at least on~ additional label
,!!U!st be written.

After the header labels (if any) for a
file. have been written, the tape is ready
for the first PUT instruction for that
file. .

Multifile Reels. More than one file of
recordsmay-be'":"written on cne reel of tape
{multifile reel}, if desired. If this is
planned, the DTFSR entry REWIND=NORWD
should be spec~fied for each file. With
this specification, the tape is located at
the correct position for tbe OPEN routines
to write the standard file header label for
each additional file (after the first) on
the reel. For the first file, the
programmer can include a CNTRL macro
instruction (with the operand REW) ahead of
the OPEN instruction. Or, the operator can
position the tap~ at the load point.

For the standard file header label of
each file after the first, t~e O~~N
routines obtain the file serial number,
volume sequence number, and file sequence
number from the preceding standard trailer
label. They increase the file sequence
number by 1 for the new file. OPEN writes
the remaining fields of the header label by
using the information supplied in the

70 S/360 BOS Assembler with I/O Macros

corresponding ~ob Control TPLAB card. As
with the first file on the reel,
user-standard header labels may follow the
standard header label.

If a tape is rewound or repositioned
after a file is closed, it is the user's
responsibility to properly position the
tape for writing any additional file. The
tape must be positioned so that· the file
header label is written immediately after
the tape mark that follows the last file
currently on the tape. The header label
will replace the second tape mark that
norm~lly follows the trailer label(s} of
the last file on a tape (see £LOSE·
Macro: Tape output-File). The tape can be
advanced from the load point to the correct
position by skipping three tape marks for
each file presently on the tape. The
layout of tape records is:

Load
Point
v I<-----------File 1
i • I i I I 1,_

lVOL1IHDR'1 UHL ITMIDATA RECORDSITM'IEOFI
1 I I (1-8) I I· 1 1
I , , ., , , ,

-------->I<--------File 2-------------------
'-----1) 1 ~ NI

I UTL ITMIHDR.I UHL ITMIDATA RECORDS1~Ml
1(1-8}1 1(1-8}1 I II
L ' , " I ,

------->1
I Ii iii

IEOF, UTL ITMITMI
I I (1- 8) I
I I I

t
Replaced if another file
is added to the tape.

A Job Control FILES card should be used
to skip the required number of tape marks~
When the tape has been positioned and the
file is opened, the OPEN routines· obtain
the information for the standard file
header label from the preceding standard
trailer label and the ~ob Control TPLAB
card, as described in the preceding
paragraphs. The DTFSR entry REWIND=NORWD
must be·included for this file.

Nonstandard Labels: To process nonstandard
labels, the user must specify FILABL=NSTD
and LABADDR=Name, and he must define hi~
own label read-out area. To write-the
nonstandard labels, physical IOCS macro
instructions must be used instead of
logical IOCS macro instructions. A Command
Control Block (CCB) and a Channel Command
Word (CCW) must be established, and an EXCP
instruction must be issued for each label
record (see Processing Records with
Physical IO£§L.

Upon branching to the user's label
routine, Ioes supplies the letter 0 in the
low-order byte of Register 0 to indicate
that a header label(s) should be written
~ee DTFSR LABADDR). In his routine, the
user issues the EXCP and WAIT macro
instructions after he has built each label
record. After all labels have been
written, the user returns control to the
OPEN routines by use of the LBRET macro.

If a file with nonstandard labels
utilizes an alternate tape drive (DTFSR
ALTTAPE=SYSnnn), Ioes supplies a co~e
identifying the symbolic unit (see Figure
28) of the dr~ve currently being used in
the two low-order bytes of register
1. This value must be moved to bytes 4 and
5 of the Command Control Block (CCB) used
by the EXCP macro for label writing.

..-----,r- II I

IName 1 op 1 Operand I
1-----+-----+---------------1
~ I LBRET I 1 I
I J LBRETI 2 I
'-_--L... I I

The LBRET (label return) macro instruction
applies only to disk or tape files that
contain user-standard labels, or
nonstandard labels, that the user wants to
check or build/write. It must be issued at
the end of tbe user's label routine
(specified by the DTFSR, DTFDA, or DTFPH
entry LABADDR), to return to Ioes after
header or trailer labels have been
processed. This instruction requires ~
of the following operands:

Q.Q~!:anQ-1 User=St~ndard Iabels~~
File:To return to Ioes when the
user wants to eliminate the
checking of one or more
user-standard labels. IOCS
then skips the remaining labels
in the set, and processing
continues. If all labels are
to be checked, operand • is not
used and Ioes terminates label
processing when the disk
end-of-file record or the
tapemark following the last
label is read.

User-standard Labels, Output
File: To return to IOCS when
the-user determines that the
last user-standard label has
been built. Ioes writes the
last label (from the label
output area). and processing
continues. Operand 1 is always
required to terminate the
output label set.

Nonstandard labels:· Operand
is invalid for files that
contain nonstandard labels
(Flf.,ABL=NSTD) •

QEg!:~nQ_l ~§er-StEndard 1~~~1~Eut.
File: To return to IOCS after
each user-standard label has
been checked. Ioes makes the
next label, if any, available
for checking in the label input
area. When IOCS senses the
endof the label set (disk
end-of-file record or
tapemark), it terminates label
processing.

User-standard Labels,output·
File: To return to Ioes after
each user-standard label except
the last has been built. roes
writes the label from the label
output area and returns to the
user's label routine to permit
him to build his next label •
The label set is terminated by
1BRE.'Lj.

Nonstandard labels: To return
to IoeS-after al~nonstandard
labels have been-checked or
written. For nonstandard
labels, IOCS branches to the
user's label routine only once,
and the problem program must
read or write every reguired
label before issuing LBRET to
return to IOCS.

The LBRET routine requires the values
that the IOCS has placed into registers 14
and '5. Hence, if the user requires one or
both of these registers in his routine, he
must save the value placed into these
registers by the IOCS before he starts
using them. He must restore this value
prior to issuing the LBRET macro
instruction •.

PROCESSING RECORDS CONSECUTIVELY

Records in serial-type devices (such as
card reader, tape unit, printer) and
records in a 23'1 disk file used in a
serial-type order can be processed
consecutively. In this type of processing,
successive records are processed, starting
at the beginning of a logical file and
continuing, one record after the other~ to
the end of the file (see Types-of
Pro~ing: Consecutive Processing}. In
this method the user issues GET.or PUT
macro instructions to transfer records.

Whenever a file of records is to be
processed in consecutive order, the logical
file, the device used for the file, and the

Macro Instruction Statements 71

main-storage areas allotted to the £ile
must be defined by the declarative macro
DTFSR (Qe~ine The rile in a ~eBial-type
d~vice). The detail parameter entries for
this definition are described under File
J2gfiniti.Q!LHacIQ,§. ---

Ioes handles records that are:

• Blocked - two or more logical records
in one physical record, such as a tape
record

• Unblocked - one logical record per
physical record

• Fixed-Length - all records the same
length

• Variable-Length - the records differ in
length

• Undefined - the record characteristics
are unknown to laCS.

laCS can process all the different types
in the same program. However, all the
records in a given file must be the same
type, and this must be defined in the DTFSR
entry RECFQRM for that file. The types of
records that can be processed vary with the

"type of I/O device used for reading/writing
the file of records, as shown in the
illustration (Figure 11).

72 5/360 BaS Assembler with I/O Macros

When an application using blosked­
~sOtds-is planned, the number of records
that can be allocated for a block depends
on the size of the records and the amount
of main storage that can be reserved for
the block. The programmer must
predetermine the maximum block size and
specify this in the DTFSR entry BLKSIZE.
All records within the block may be fixed
length or variable length. If the records
are fixed length, the length of the records
is specified in DTFSR RECSIZE.

If the blosked·records are variable­
length, the-Size-of each reGord-must be
included within the record itself (Fiqures
12 and 13). This record-length field must
occupy. the first four bytes of each record.
The first two bytes specify the length of
the record (including the four bytes for
the record-length field itself), and the
next two are blank. In addition, the
actual length of each bl£~~-must be
recorded on disk or tape, preceding the
first record in the block. Block length is
also a four-byte field. The first two
bytes specify the length of the block
~ncluding the four bytes for the
block-length field itself}, and the next
two ~re blan~. Both block length and
record length are expressed in 16-bit
binary form.

.-- i ,

I I I
I 1 TYPES OF RECORDS I
I 1 1
I I ,I l-i
I TYPE OF I/O DEVICE I Fixed-Length I Variable-Length 1 I I
I J I I I , I
I IUnblocked I Blocked I Unblocked I Blocked I I
I I I 1 1 I ,
12311 Disk Storage Drive I X 1 X I X I X I X I
1-- I I I I I I
12400 Series I X I X I X I X2 I X J
I Magnetic Tape Unit I 1 I I I I
I- -+-- I I I 1 -f
11442, 2501, 2520, 2540 1 X I 1 I I I
ICard Reader 1 1 I I I I
I I I I I -+ I
1'442, 2520, 2540 Card Punch f XII X 1 I X I
I- I I I I I ,
11403,1404,1443,1445, printerl X I I X I I X 1
l I I I I I ~
11052 printer-Keyboard I X I I I I X I
I- I +- 1 1 I I
12671 Paper Tape Reader 1 X I 1 I 1 X3 1
I +-----+__ I +-- 1 --I
11285 Optical Reader I X I I 1 1 X I
J I 1 I I I ,
11287 Optical Reader I X I I 1 1 X I
I- .L- I
I
INOTES: 1. For disk or tape records, each record must contain a record-lenqth field
I and' each block must contain a block-lenqth field. In the case of
I ysblocked-records, block length is a block of , record and it equals
I record length +4.
I
I 2. Read backwards must not be specified.
I
I 3. Each record must contain an end-of-record character as the last character
I in the record.
I-

Figure 11. Types of Re~ords and t/o Devices for Consecutive Processinq

Macro Instruction statements 73

BLOCKED RECORDS

Record 1 Record 2

Data Data

BL=234 I RL = 80 RL = 100

Record 1 Record 2

Data Data

I

.BL = 84J RL = 80 RL = 100

BL is Block Length}. . •
RL • R d L th In Binary Half-word (16-Blt) Format

IS ecor eng
IRG is Interrecord Gap

Figure 12. Schematic of Variable-Length Eecords on Tape

BLOCKED RECORDS

Record 1

Data

I I

BL=l841 RL=80

UNBLOCKED RECORDS

Record 1

Data

RL=80

BL is Block Length } In Binary Half-word (16-Bit) Format
RL is Record Length

Record 2

Data

RL=100

Record 3

Data

RL = 50

I

BL = 541

Record 2

Data

RL=100

103:
I
I

I

Record 3

Data

RL = 50

Figure 13. Schematic of Variable-Length Records on Disk (Consecutive processing)

74 5/360 BOS Assembler with I/O Macros

When unblocked-variable-length-records
on disk-orta~e.are processed, each record
must contain the record-length field in the
first four bytes, the same as for blocked
variable-length records. Also, a
block-length field must precede each record
(a block of one record). This four-byte
field always specifies the record length
plus 4.

Because a block-length field must
precede the first data record whenever
variable-length records (either blocked or
unblocked) are processed, this must be
included in the BLKSIZE specification and
in the amount of main storage allotted to
the input/output area.

When unblocked-variable-len9th records
are specified for the card-punch or
prillter, a record-length field must be
1ncluded in the first four bytes of each
output record in main storage. The first
two bytes must specify the length of the
record (including the four bytes for the
record-length field itself), and the next
two are blank. The user must supply the
record length in this field when he builds
the record. Punching, or printing, of the
actual· data record starts with the first
position after the record length field,
unless a control character is included in
the record (see PUT Macro: Punch-and·
Printer-Control). The amount of main
storage allotted for the punch .or printer
output area must allow for the 4-byte
record-length field, and the DTFSR BLKSIZE
specification must include thes~ four
bytes.

When undefined records are to be read or
written, the DTFSRentry RECSIZE must
specify a register. On input, IOCS
supplies the physical record size in this
register. For output, the programmer must
load the length of each record in this
register before he issues the PUT for that
record.

Record·Sizes: The m1n1mum size physical
tape record (gap to gap) that can be
handled is 12 characters (11 characters or
less are considered a noise record). The
maximum size tape record is 32K. The
maximum size input/output record for the
IBM 1052 printer-~eyboard ~s 256
characters; the minimum size input record
is one character. The maximum siZE card or
printer record cannot exceed the capacity
of the corresponding I/O unit.

Storage· Areas

When logical IOCS macro instructions are
used, each input record can be made
available to the program for processing
either in an input area or a work area.
Similarly, on output, each record can be

built in a work area or directly in an
output area. .
Input/output areas and work areas for a
particular file can be specified and
handled by IOCS in any of the following
combinations:

1. One I/O area

2. One I/O area and one work area

3. Two I/O areas

4. Two I/O areas and one work area.

If one I/O area (combination 1) is used,
a register must be specified in DTFSR IOREG
whenever blocked records are processed or
unblocked variable-length records are r~ad
backwards. The register is used to point
to the beginning of each record and thus
locate the record for processing. A
register must also be specified whenever
two I/O areas (combination 3) are used,
regardless of whether the records are
blocked or unblocked. If the blocked
records are variable leng!h-and are being
built in the output area(s), an additional
register must be specified in DTFSR VARBLD.
This register provides the programmer with
the remaining space in the output area each
time a PUT instruct10n is executed.

Whenever a work area (combinations 2 and
4) is used, a register is not required and
IOREG should be omitted. Instead, DTFSR
WORJA must be specified and the work area
must be named in each GET or PUT
instruction. The various ~ombinations are
discussed further in the BOS Programmer's­
Gutde, as listed on the front cover of this
publication.

•
IName
I

Op

GET
GET

Operand

filename
filename,workname

This instruction makes the next consecutive
logical record from an input file avai'lable
for processing in either an input area or a
specified work area. It is used for any
input file in the system, and for any type
of" record: blocked or unblocked, fixed or
variable length, and undefined. When the
GET macro detects an end-of-file condition,
IOCS branches to the user's end-of-file
routine (specified by DTFSR EOFADDR) •

The GET macro instruction is written in
either of two forms, depending on the area
where the records will be processed.
Either form, but not both, can be used for
one DTFSR-specified logical file. The

Macro Instruction Statements 75

first form is used if records are to be
procesSeddirectly in the input area(s),
and it reguires only one'parameter. This
parameter specifies the name of the file
from which. the record is to be retrieved.
The file name must be the same as the one
specified in the DTFSR header entry,for
this file.

The input area must be specified in the
DTFSR entry TOAREA1. Two input areas may
be used to permit an overlap of data
transfer and processing operations. The
second area is specified in DTFSR IOAREA2.
Whenever two input areas are specified, the
IOCS routines transfer records alternately
to each area. They completely handle this
"flip-flop" so that the next consecutive
record is always available to the problem
program for processing.

When records are processed in the input
area(s), a general purpose register must be
specified in the DTFSR entry IOREG if:

1. Records are blocked,

2. Variable-length unblocked tape records
are read backwards, or

3. Two input areas are used, for either
blocked or unblocked records.

This register identifies the next single
record to be processed. It always contains
the absolute base address of the currently
available record. The GET routine places
the proper address in the register.

The second form of the GET instruction
is used-if-records are to be processed in a
work area. Tt causes the GET macro to move
each individual record from the
DTFSR-specified input area to a work area.
As in the first form, the file name must be
entered as the first_Earameter. The name
of the work area must be entered as the
se£Qng~aram~!~~, and X~ must be specified
in the DTFSR entry WORKA. The work-area
name must be the same as that specified in
the DS instruction that reserves this area
of main storaqe. All records from a
logical file may be processed in the same
work area, or different records from the
same logical file may be processed in
different work areas. In the first case,
each GET foi the file specifies the same
work area. In the second case, different
GET instructions specify different work
areas. It might be advantageous to plan
two work areas, for example, and to specify
each area in alternate GET instructions.
This would permit the programmer to compare
each record with the preceding one, for a
control change. Only one work area can be
specified in anyone GET, however.
Whenever this·form·of the GET instruction

76 S/360 BOS Assembler with I/O Macros

is used for a logical file, a register is
llQ~ required for indexing (as it is when
records are processed directly in the input
area) •

The GET macro is used to acquire data
from journal tapes from 1285/1287 optical
reader files. processinq overlap is
obtained by using multiple input areas.

IBM, 2611 ' Pa~r . Tape~Read~: Whenever a GET
instruction is issued for the 267', bits 6
and 7 of main-storage location filename+~~
should be tested to determine if an error
is detected when a record is read. If a
data check or equipment check is detected,
an error message is issued to the operator.
The operator's~eply to this message
determines if bit 6 or 7 is turned on.

If bit 6 is on, the record has been
read, but one or more
record are in error.
an operator reply (4)
the record and ignore
caused the error.

characters in the
Bit 6 is turned on by
to continue reading
the character that

If bit 7 is on, the operator has
positioned the tape either at the beginninq
of ~he same record or at the beqinning of
the next available record. Bit 7 is turned
on by.an operator reply (other than 0-5)
either to reread or ignore the record
containing the error. The next GET
attempts another read operation on the
current record or reads the next available
record. If a torn tape prompts the
operator to advance the tape, more than one
record may be lost.

As another choice for a data check, the
operator may backspace two characters and
attempt another read operation (replY.5)·.
If this read is correct, no data check has
been detected and processing continues.
Neither bit 6 n'or 7 is turned on. If an
error is detected, however, the operator
may reply with a 4 that turns on bit 6, or
with any character other than 0-5 that
turns on bit 7.

.Records retrieved from any input file
except disk or magnetic tape are always
considered unblocked (specified as
unblocked or undefined). Records on disk
or tape are treated as unblocked if this is
specified in the DTFSR entry RECFORM.

Whenever records are unblocked (either
fixed or variable length) and only one
input area is used, each GET transfers a
single 'record from an I/O device to the
input area, and then to a work area if one
is specified in the GET instruction. If
twginEut areas are specified, each GET
makes the last record that was transferred

to main storage available for processing in
the inp~t area or work area. The same GET
also starts the transfer of the following
record to the other input area.

When an IBM-2540 Card Read-Punch is used
for a card input file, each GET instruction
normally reads the record from a card in
the read feed~ However, if the 2540 has
the punch-feed-read special feature
installed and if CMBND is specified in the
DTFSR entry TYPEFLE, each GET reads the
record from a card in the punch-feed, at
the punch-feed-read station. This record
can be updated by additional information
and punched back into the same card, when
that card passes the punch station and a
PUT instruction is issued. (See
PU Tl._!!B1 at.!.n.g.)

On the IBM 1285 and 1287 Optical
Readers, fixed unblocked records should be
used when processing journal tapes
containing lines with an equal number of
characters. For documents on the 1287,
processing is similar to _that of undefined
records, because the fields read may be
treated as either fixed- or variable-length
by setting the suppressed length indicator
(SLI--flag bit 34) in the CCW used to read
the document field. However, the user is
not required to use RECSIZE and IOREG, and
can eliminate these two registers if he
desires.

When records on disk or tape are specified
as blocked in the DTFSR entry RECFORM, each
individual record must be located for
processing (deblocked). Therefore, blocked
records (either fixed or variable length)
are handled as follows:

,. The first GET instruction transfers a
block of records from disk or tape to
the input area. It also initializes
the specified register to the absolute
address of the first data record, or it
transfers the first record to the
specified work area.

2. Subs€quent GET instructions either add
an indexing factor to the register or
move the proper record to the specified
work area, until all records in the
block have been processed.

3. Then the n~xt GET makes a new block of
records available in main storage , and
either initializes the register or
moves the first record.

When undefined records are to be handled,
the DTFSR entries RECFORM=UNDEF and
RECSIZE=n must be included in the file

definition. GET treats undefined records
as unblocked, and the proqrammer must
locate individual records. and fields.
Undefined records are considered to be
variable in length by IOCS. No other
characteristics of the record are known by
IOCS. They are the responsibility of the
user.

Journal tapes containing lines of
variable character length are processed in
this manner on the 1285 and 1287. When
documents specified as undefined are
handled by the 1287 reader, the entry
RECSIZE pertains only to the last field
read by the channel command word chain.

If records on tape are to be read backwards
(]!CK-specified in DTFSR entry READ),
unblocked records or blocks of fixed-lenqth
records are transferred from tape to main
storaqe in reverse order. The last block
is read first; the next-to-the-last block,
second; etc. For blocked redords, each GET
instruction also make~ the individual
records available in reverse order. The
last record in the input area is the first
record available for processing (either by
indexing or in a work area).
Variable-length blocked records cannot be
read cacKwards.

Nine-track tape can be read backwards
without qualification, but 7-track tape can
be read backwards only if:

•

•

the tape was originally written on a
magnetic tape unit of the IBM
System/360,

the Data Conversion special feature was
not used when the tape was written, and

• a tape mark was written at the
beginning of the tape preceding the
data records.

I II ,
IName I Op I Operand
I I +-
I I PUT I filename
I I PUT I filename,workname
L-

This instruction writes, punches, or
displays logical records that have been
built directly in the output area or in a
specified work area. It is used for any
output file in the system, and for any type
of record: blocked or unblocked, fixed or
variable length, and undefined. It
operates much the same as GET but in
reverse. It is issued after a record has
been built. -----

Macro Instruction Statements 77

Similar to GET, the PUT macro
instruction is written in either of two
forms, depending on the area where the
records are bui~t. Either form, but not
both,· can be used for one DTFSR-specified
logical fi1~~ The first form is used if
records are built directly in the output
area(s), and. it requires only one
parameter. This parameter specifies the
name of the file to ~hich the record is to
be transferred. The file name must be the
same as the one specified in the DTFSR
header entry for this file.

The output area must be specified in the
DTFSR entry IOAREA1. Two output areas may
be used to permit an overlap of data
transfer and processing operations. The
second area is specified in DTFSR IOAREA2.
Whenever two output areas are specified,
the IOCS routines transfer records
alternately from each area. They
completely handle this "flip-flop" so that
the proper output-record area is always
available to the program for the next
consecutive output record.

When records are built in the output
area(s), a general-purpose register must be
specified in the DTFSR entry IOREG if:

1. Records are blocked, or

2. Two output areas are used, for either
blocked or unblocked records.

This register always contains the
absolute base address of the currently
available output-record area. The PUT
routine places the proper address in the
register.

The §econd t~xm of the PUT instruction
is used if records are built in a work
area. It causes the PUT macro to move a
record from a specified work area to the
proper location in the DTFSR-specified
output area. As in the first form, the
file name must be entered as the first
parameter. The name of t~e work area is
entered as the second parameter, and YES
must be specified in the DTFSR entry WORKA.
The work-area name must be the same as that
specified in the DS instruction that
reserves the area of main storage •
Indi vidual records for a logical file may
be built in the same work are~ or in
different work areas. Each PUT instruction
specifies the work area where. the completed
record was built. However, only one work
area can be specified in anyone PUT
instruction. Whenever this form of the PUT
instruction is used for ~ logical file, a
register is not· required for indexinq.

Whenever an output data record is
transferred from an output area to an I/O
device (by a PUT instruction), the data

78 S/360 BaS Assembler with I/O Macros

also remains in the output area until it is
either cleared or replaced by other data.
IOCSdoes not clear the output area.
Therefore, if the user plans to build
another record whose data does not use
every position of the output record area,
he must clear that area before he builds
the record. If this is not done, the new
record will contain interspersed characters
from the preceding record. For example; in
the case of output to a printer, the forms
design may require printing in selected
positions on one print line and in
different positions on another line. In
this case, the output area for the printer
file should be cleared between lines.

Unb10ck~ecorg§

Records transferred to any output file
except disk or magnetic tape are always
considered unblocked (specified as
unblocked or undefined). Records for disk
or tape recording are treated as unblocked
if this is specified in the DTFSR entry
RECFORM.

Whenever records are unblocked (either
fixed or variable length), each PUT
transfers a single record from the output
area (or input area if updating is
specified) to the file. If a work area is
specified in the PUT instruction, the
record is first moved from the work area to
the output area (or input area) and then to
the file.

Blocked Records

When blocked records are to be written on
disk or tape (as specified in DTFSR
RECFORM), the ihdividua1ly built records
must be formed into a block in the output
area. Then the block of records ~s
transferred to the output file. The
blocked records may be either fixed or
variable length.

Fix~d-length blocked records can be
bui~t directly in the output area or in a
work ar~a. Each PUT instructi~n for these
records either adds an indexing factor to
the register, or moves' the completed record
from the specified work area to the proper
location in the output area. When an
output block of records is complete, PUT
causes the block to be transferred to the
output file and initializes the register if
one is used.

Variable-l~.illl!.h.:..blocked.:...£§.£Qrds can also
be built in either the output area or a
work area. The length of each
variable-length record must be determined
by the problem program and included in the
output record as it is built. The problem
program can calculate the lenqth of the
output record from the lenqth of the

corresponding input records. That is,
variable-length output records are
generally developed from previously written
variable-length input records, perhaps
modified by current- records. Each
variable-length input record must include
the field that contains the length of the
record (see Figures 12 and 13).

When variable-length blccked records are
built in a work area, the PUT instruction
performs approximately the same functions
as it does for fixed-length blocked
records. The PUT routines check the length
of each output record to determine ~f the
record will fit in the remaining portion of
the output area. If the record will fit,
PUT immediately moves the record. If it
will not fit, PUT causes the completed
block to be written and then moves the
record. Thus, this record becomes the
first record in a new block.

If variable-length blocked records are
to be built directly in the output area
however, an additional DTFSR entry, a TRUNC
macro, and additional user programming are
required. The user's program must
determine if each record to be built will
fit in the remaining portion of the output
area. This must be known E~fore processing
of the record is started so that, if the
record will not fit, the completed block
can be written and the record can be built
at the beginning of a new block. Thus, the
length of the record must be pre-calculated
and compared with the amount of remaining
space.

The amount of space available in the
output area at any time can be supplied to
the program (in a register) by the IOCS
routines. For this, the user must specify
a general-purpose register in the DTFSR
entry VARBLD. This register is in addition
to the register specified in DTFSR IOREG •.
Each time a PUT instruction is executed,
Ioes loads into this register the number of
bytes remaining in the output area. The
problem program uses this to determine if
the ~xt variable-length record will fit.
If it will not fit, a TRUNC macro
instruction must be issued to transfer the
block of records to the output file and
make the entire output area available for
building the next block.

When undefined records are handled, PUT
treats them as unblocked. The programmer
must provide any blocking he wants. He
must also determine the length of each
record (in bytes) and load it in a register
for IOCS use, before he issues the PUT
instruction for that record. The register
that will be used for this purpose must be
specified in the DTPSR entry RECSIZE.

A consecutive file on 2311 disk, a card
input file in a 1442 or 2520, or a card
file in the punch feed of a 2540 equipped
with the punch-feed-read special feature,
can be updated. That is, each disk or card
record can be read, processed, and
transferred back to the same disk location,
or card, from which it was read. This
function must be specified in the file
definition. For a disk file, the DTSFR
entry UPDATE must be specified. In the
case of a card file, the file must be
specified as a combined file (CMBND) in the
DTFSR entry TYPEFLE.

One I/O area can be specified (DTFSR
entry IOAREA1) for both the input and
output of a disk or card record. If the
IBM 1442 is used, however, separate areas
can be specified for input and output
(DTFSR entries INAREA and OUAREA). Each
disk or card record is transferred to the
specified input area (IOAREA1 or INAREA) by
a GET instruction. After the record is
processed, the next PUT instruction causes
the updated record to be written in the
same disk location, or punched in the same
card, from which the record was read. PUT
transfers the record from the main storage
area specified by IOAREA1 (same area for
both input and output) or by OUAREA
(separate input and output areas). If a
work area is specified in the PUT
{nstruction, PUT first moves the updated
record from the work area to the area
specified by IOAREA' or OUAREA, and then
writes the disk record or punches the card.

A GET instruction must always precede a
PUT instruction for a disk or card record,
and bnly one PUT can be issued for each
record. For a file in a 2540 or 2520 with
the punch-feed-read special feature, a PUT
instruction must be issued for ~ach card~
and between jobs the 2540 punch must be run
out. A PUT instruction may be omitted,
however, if a particular disk record or a
card record in a 1442 does not require
updating.

The user, while using logical IOCS
(TYPEFLE=CMBND), is provided with the
standard read error recovery procedure when
reading and punching into the same c~rd.
No punch error recovery procedure, however,
is provided.

Card selection in a card read-punch and
line spacing or skipping in a printer can
be controlled either by specified
characters in the data records or by the
CNTRL macro instruction. Either method,
but not both, may be used for a particular
logical file.

Macro Instruction statements 79

When control characters in data records
are to be used, the DTFSR entry CTLCHR must
be specified, and ev~z record must contain
a control character in the main-storage
output area. This must be the first
character of each fixed-length or undefined
iecord, or the first character following
the record-length field in a
variable-length record. The DTFSR BLKSIZE
specification for the output area must
include the byte for the control character
and, if undefined records are specified,
the DTFSR RECSIZE specification must also
include this byte.

The particular character included in the
record is determined by the function to be
performed. For example, if double spacing
is to occur after a particular line is
printed, the code for double spacing must
be the control character in the output line
to be printed. The contrcl-character codes
are the same as the command codes
(including the modifier bits) used for a
punch or delayed-print command.

When a PUT instruction is executed, the
control character in the data record
becomes the command code (byte) of the
Channel Command Word (CCW) that laCS
establishes. The first character after the
control character in the output data
becomes the first character punched or
printed.

If the CNTRL macro instruction is used
for non-data orders to the punch or printer
(see £NTRL~~~Q), the DTFSR entry CONTROL
is specified and DTFSR CTLCHR must be
omitted. In this case, any control
characters included in data records are
ignored when the PUT instruction is
executed. They are treated as data.

r-----~----~il~------

IName t Op I Operand
~--~---+-----
t I RELSEI filename
L I I

The RELSE macro instruction is used in
conjunction with blocked input records read
from disk or tape. It allows the
programmer to skip the remaining records in
a block and continue processing with the
first record of the next block when the
next GET instruction is issued. This
function can apply to a job in which
records on disk or tape are categorized.
Each category (perhaps a major grouping) is
planned to start as the first record in a
block. For selective reports, specified
categories can be located readily by
checkinq only the first record in each
block.

80 S/360 BaS Assembler with I/O Macros

The symbolic name of the file, specified
in the DTFSR header entry, is the only
parameter required for this instruction.

The release instruction discontinues the
deblocking of the present block of records,
which may be either fixed or variable
length. RELSE causes the next GET
instruction to transfer a new block to the
input area, or switch I/O areas, and make
the first ~ecord of the next block
available for processing. GET initializes
the register or moves the first record to a
work area.

rj-----,-------TI----- ----------------------,
IName Op I Operand I
J~----+------+I---- ,
I TRUNCI filename I
~I----~~ __ --~I----- ~

The TRUNC (truncate) macro instruction is
used in conjunction with blocked output
records that will be written on disk or
tape. It allows the programmer to write a
short block of records. (Blocks do not
include padding.) Thus the TRUNC macro can
be used for a function similar to the RELSE
instruction for input records, but in
reverse. That is, when the end of a
category of records is reached, that block
can be written and the new category can be
started at the beginning of a new block.

The symbolic name of the file, specified
in the DTFSR header entry, is the only
parameter required in this instruction. If
this macro is issued for fixed-length
blocked disk records, the DTFSR entry
TRUNCS mast be included in the file
definition.

When TRUNC is issued, the short block is
written (on disk or tape) and the output
area is made available to build the next
block. The last record included in the
short block is the record that was built
before the last PUT instruction precedinq
TRUNC.was executed. Therefore if records
.are built in a work area and the problem
program determines that a record belongs in
a new block, the TRUNC instruction should
be issued first, followed by the PUT
instruction for this particular record. If
records· are built in the output area, how­
ever, the programmer must determine if a
record belongs in the block before he
builds the record.

When"ever variE!:.bl~-l~n.gth blocked records
are built directly in the output area, this
TRUNC instruction must be used to write a
completed block of-records. When the PUT
instruction is issued after each
variable-length record is built, the output
routines supply the programmer with the

space (number of ~ytes) remaining in t~e
output area. From this the programmer
determines if his ne.!!. variable7'"length
record will fit in the block., If it will
not fit, he issues the TRUNe instruction to
write out the block and make the entire
output area available to build the record.
The amount of remaining space is supplied
in the register specified in the DTFSR
entry VARBLD (see PUT_~and QTFSR
VA.R!!112> •

,-----,-- I I

IName I Op I Operand I
i---t----t-----------------t
I I READ t filename,OR, n~ I
I I I (r) I
I I I

The READ macro is used to transfer records
from the IBM 1287 Optical Reader operating
in document mode. All operands are
required. The f~rst Earam~ter specifies
the symbolic name Gf the file as given in
the DTFSR header entry. The second
~£~mete£, OR, indicates an optical
character reader. The t~~£Q Eg£~metg£
specifies the address of the user-provided
channel command word list. The first
channel command word in the list cannot be
a transfer-in-channel CCW. To designate
the aodress of the channel command word
list, a register entry is used in this
parameter~

Note: Document ejection and/or stacker
'~election and document increment functions

can also be accomplished by including the
appropriate eCW(s) within t~e channel
command word list addressed by the READ
macro rather than by using the CNTRL macro.
This technique results in increased
document throughput.

READ generates an EXCP and a CCB macro,
whic~ cause a branch to the user-provided
channel com~and chain. 'When ~ocuments are
being precessed, only one input area may be
used. The contents of the input, area may
later be moved to a user-defined work area.
Overlap can thus be obtained by processing
the contents of the work area as the
subseguent' document is being read into the
input area. Dividing the fields in a
document into blocks, and processing one
block while reading the rest, is another
means of achieving overlap.

At least one reference mark is required
for all documents. New coordinates for the
reference mark must be specified whenever a
rotation in printing occurs or when a
document is incremented. For this reason,
a load format CCW that specifies the
coordinates of the reference mark
associated with a particular group of

fields must be the first ecw in'all user
channel command word chains.

i I I

I Name Op I
I I
I WAITFI '

Operand

filename

I
-1

I
L-____ ~ ____ ~

The WAITF macro instruction is used only
with the 1287 Optical Reader in document
mode for consecutive processing. It
ensures that the transfer of a record has
been completed. One parameter, the
symbolic name of the file, is required.

With this instruction, the program waits
until data transfer is complete.
Therefore, the instructi9n must come after
a READ and before the next READ for the
same file. It must be issued before the
problem program attempts to process an
input record 'for that file.

r-- II , I
lNa~e 10perationiOperand
I I -+-
l[name]IRDLNE tfilename

I
--t

I
L-- I I

The RDLNE macro selectively performs
on-line correction when journal tapes are
processed on the IBM 1285 or 1287 optic~l
Reader. This macro causes the reader to
read a line in the on-line correction mode
while-processing in the off-line correction
mode. If the reader cannot read a
character, IOCS retries the line that
contains the unread character. If this
retry is unsuccessful, the user is informed
of the condition in his error correction
routine (specified in DTFSR COREXIT). He
may then issue the RDLNE macro causing
another attempt to read the line. If the
character in the line cannot be read during
this attempt, the character is displayed on
the 1285 or 1287 display scope and the
operator, if possible, keys in the correct
character. If the operator cannot readily
correct the error by keying in the correct
character, he may enter the reject
character in the line in error. This
condition is posted in Filename+17 and is
available for the user to examine.
Wrong-length records or incomplete reads
are also posted in Filename+17. See the
description of COREXIT for hexadecimal
indications. RDLNE should be used only in
eOREXIT. Otherwise, the line following the
one in error is read in the on-line
correction mode.

The macro requires o~ly one parameter
(the symbolic name of the 1285 or 1287 file

Macro Instr~ction statements 81

from ~hich the r~cord is to be retrieved).
This name is the same· as that specified in
the DTFSR header entry for this file.

Note: When the RDLNE macro is used, the user must include the' parameter OFFLINE=YES
in his DTFSR· entries~

• i i
IName IOperationlOperand
l- I I
l[name]IDSPLY IFilename,r,r
L---_~ -L

The DSPLY macro is used to display a
document field on the display scope of the
1287. The field is displayed for the
purpose of keying in a complete field cn
the'keyboard when a 1287 read error makes
this type of correction necessary. If a
1287 read error occurs and the reject
character is entered in the field in error
(either by the operato~ if processing in
the on-line correction mode or by the
device if processing in the off-line
correction mode), the user may use the
DSPLY macro to display the field in error.
When the 1287 display tube displays the
full field, the operator, if possible, ~eys
in the correct field from the keyboard.
The field read from the keyboard is always
read into the a4dress specified in the CCW
(normally within IOAREA1) that was
originally intended for the field. The
macro first blanks this field. At
completion of the operation, the data is
left-justified in this field.

This instruction always requires three
parameters •. The first parameter specifies
the symbolic name of the 12'87 file from
which the record is to be retrieved. This
name is the same as that specified in the
DTFSR header entry for this file~ The
second parameter specifies a general
purpose register (2-11) into which the
problem program has plac ed the address of
the Load Format CCW that provides the
document coordinates for the field to be
displayed. The address of this Load Format
CCW is obtained by subtracting 8 from the
address found in a half-word core location
at Filename+10 when the macro is used in
the COREXIT routine. Otherwise the user
must determine the Load Format CCW address.

The third parameter specifies a general
purpose register (2-11) into which the
problem program has placed the address of
the Load Format CCW that provides the
coordinates of the reference mark
associated with the field to be displayed.
When using the DSPLY Macro, the user must
ensure that the Load Format CCW that
provides the document coordinates for the
field to be displayed (second parameter),

82 S/360 BOS Assembler with I/O Macros

is command chained to th~ ccw used to read
that field.

~: The contents of Filename+17 are
meaningful only for X' 40' (1287 scanner
cannot locate the reference mark) and X'04'
(wrong length record), after issuing the
DSPLY macro. Therefore the user must
determine whether the operator was able to
recognize the unreadable line of data.

r-- I I
IName I Operation I Operand
.- I -t-._--
l[name]IRESCN Ifilename,r,r,n,F
'----~--------~-

________ . ________________ J

The RESCN macro selectively rereads a field
on a document when a defective character
makes this type of operation necessary.
The field read is always read
right-justified into the address specified
in the CCW (normally within IOAREA1) that
was originally intended in the field.

The parameter filename specifies the
symbolic name of the 1287 file from which
the record is to be retrieved. This name
is the same as that specified in the DTFSR
header entry for this file. The second
parameter specifies a general purpose
register (2-11) into which the problem
program has placed the address of the Load
Format CCW that provides the document
coordinates for the field to be read. The
address of this Load Format CCW is obtained
by subtracting 8 from the address found in
a half-word core location at Filename+10
when the macro is used in the COREXIT
routine. otherwise the user must determine
the Load Format CCW address. The third
parameter specifies a general purpose
register (2-11) into which the problem
program has placed the address of the Load
Format CCW that provides the coordinates of
the reference mark associated with the
field to be read. The previous three
parameters are always required, and result
in one reread of the unreadable field.

The fourth parameter is required if the
user wishes to attempt more than one reread
of the unreadable field. This parameter
(n) is the number of additional retries
(nine maximum) to be attempted. The fifth
parameter (F) indicates one more reread.
It forces on-line correction of any
unreadable characters by individually
projecting the unreadable character(s) on
the 1287 display scope. The operator must
then key in a correction (or reject)
character(s). The user must determine
whether the read operation generated by
RESCN has resulted in a more satisfactory
read. If the reread of the field results
in a wrong length record, incomplete read,

or an unreadable character error condition,
it is posted in Filename+ 17. (See
description of COREXIT for hexadecimal
values.)

When using the RESCN macro, the user
must ensure that tbe Load Format CCW, which
provides the document coordinates for the
field to be read (second parameter), is
command chained to the CCW used to read
that field.

r---"-T----~ i

I Name lOp IOperand I
I-----+- t--------------.
I ICNTRL Ifilename,code,n,m I
'-_---1., I

The CNTRL (control) macro instruction
provides orders for these input/output
units: maqnetic tape units, card
read-punches, printers, optical readers,
and disk drives. Orders apply to physical
non-data operations of a unit (with the
exception of the 1285 and '287 Optical
Readers) and are peculiar to tbe unit
involved. They specify such functions as
rewindinq tape, card stacker selection,
line spacing on a printer, etc. For
optical readers they specify marking an
error line or keyboard correcting a line
for journal tapes, and stacker selecting,
ejecting, and incrementinq documents. When
a CNTRL macro instruction is executed,
except for certain mnemonics used for
optical re~ders, operation does not wait
for completion of tbe order before
returning control to the user.

CNTRL is used in conjunction with a
logical file in a unit, and it requires
either two, three, or four parameters. The
fi£2~rameter must be tbe name of the
file specified in the DTFSR header entry.
The ~nd-Earame!~·is the mnemonic code
for the order to be performed. This must
be one of a set of predetermined codes
(Figure 14). The thi~arameter (n) is
required whenever the UCS (Universal
Character Set) feature is used, or a number
is needed for stacker selection, immediate
printer carriage control or signal count

for STR devices. The fou£1h E~£am~ter (m)
applies only to printer control and is
required for delayed spacin~ or skippinq.
A number specified as either the third or
fourth parameter must be a self-defininq
vallle.

Whenever CNTRL is issued in the problem
program, the DTFSR entry CONTROL must be
included in the file definition.

The CNTRL macro instruction must not be
used for printer or punch files if the-data
records contain control characters and the
DTFSR entry CTLCRR is included in the file
definition.

The CNTRL macro instruction is used to
control magnetic-tape functions that are
not concerned with readinq or writinq data
on the tape. These functions are grouped
in the following categories:

Rewinding tape to the load point
REW - Rewind
RUN - Rewind and unload

Movinq tape to a specified position
BSR - Backspace to interrecord qap
BSF - Backspace to tapemark
FSR - Forward space to interrecord qap
FSF - ~orward space to tapemark

Writing a tapemark
WTM - Write tapemark

Erasing a portion of the tape
ERG - Erase gap (writes blank tape)

The tape rewind CREW and RUN) and tape
movement (BSR,BSF,FSR,and FSF) functions
can be used before a tape file is opened.
This allows the tape to be positioned at a
desired location for opening a file under
conditions such as:

• The file is located in the middle of a
multifile reel.

• The DTFSR entry REWIND specifies NORWD,
but for some conditions rewindinq is
required for the file.

Macro Instruction statements 83

UNIT
MNEMONIC

n* m**' ORDER CODE

2400 Series REW - - Rewind Tape
Magnetic Tape Units RUN - - Rewind and Unload Tape

ERG - - Erase Gap (Writes Blank Tape)
WTM - - Write Tape Mark
BSR - - Backspace to Interrecord Gap
BSF - - Backspace to Tape Mark
FSR - - Forward Space to Interrecord Gap
FSF - - Forward Space to Tape Mark

1403, 1404, 1443, 1445 Printers SP a d Carriage Space n Lines
SK b e Skip to Channel n

1403 Printer with UCS Feature UCS YES - Ignore Data Checks
UCS NO - Accept Data Checks

2540 Card Read - Punch PS c - Select Stacker n

1442, 2520 Card Read - Punch SS c - Select Stacker n

2311 Disk Storage Drive SEEK - - Seek

1285 Optical Reader READKB - - Read 1285 Keyboard
MARK - - Mark Error Line

1287 Optical Reader READKB - - Read 1287 Keyboard
MARK - - Mark Error Line in Journal Tape Mode
EJD - - Eject Document
SSD c - Select Stacker n
ESD c - Eject and Select Document
INC - - Increment Document at Read Station

STR Devices t EOF f - End of Transmission
INQ f - Inquiry
PREP f - Prepare
TEL f - Alternate Mode

BCS Support t PRP - - Prepare
EOT - - End of Transmission
WABT - - Wait before Transmitting
DSC - - Disconnect
ENQ - - Inquiry

* a = Number of lines to be spaced immediately
b = Number of the carriage tape channel to skip to immediately
c = Number of the stacker to which a card or document is to be selected

** d = Number of I ines to be spaced after printing
e = Number of carriage tape channel to skip to after printing

* f = Count to be used if other than:

EOF - 2
INQ - 10
PREP - Not applicable
TEL - 2

t See Input/Output Control Macros

Figure 14. CNTRL Macro Instruction Codes

84 S/360 BOS Assembler with I/O Macros

The t ape movement functions (B'SR, BSF,
FSR, and FSF) apply to input files only,
and the following factors should be
cons ider ed:

1. Th~ FSR (or BSR) function permits the
user to skip over a physical tape
record (from one interrecord gap to the
next). The record is passed without
being read into main storage. The PSF
(or BSP) function permits the user to
skip to the end of the logical file
(identified by a tapemark) •

2. The functions of FSR, FSP, BSR, and BSF
always start at an interrecord gap.

3. If blocked input records are being
processed and if the user does not want
to process the remaining logical
records in the block, as well as one or
more succeeding blocks (physical
records), he must issue a RELSE macro
before the CNTRL macro. Then the next
GET viII make the first record of the
new block available for processing. If
the CNTRL macro,' with FSR for example,
were issued withQ~~ a preceding RELSE,
the tape would be advanced but the next
GET would make the next record in the
old ' block available 'for processing.

4. For any I/O area combination except one
I/O area and no work area, IOCS is
always reading one physical tape record
ahead of the one that is being
processed. Thu~, the next physical
record (block) after the' one being
processed will be in main storage ready
for processing. Therefore if a CNTRL
FSR function is performed, the §econd
physical tape'record beyond the present'
one will be passed without being read
into main storaqe.

5. If an FSR function (or BSR in a read
backwards file) passes a tape mark,
IOCS branches to the end-of-volume
routine.

6. If any of these four functions is used
during the processing of a file, the
block count accumulated for checking
standard labels, or accumulated for the
checkpoint macro, could be wrong. The
operator can bypass an erroneous block
count when checking standard labels.
However, since it is impossible to
reposition the tape correctly if ·the
block count is wrong in a checkpoint
record, these commands should not be
issued when using the checkpoint macro.

The CNTRL macro instruction is used for any
printer forms control other than the
standard single spacing.

The CNTRL macro codes for printer
operations cause spacing (SP) over a
specified number of lines, skippiriq (S~) to
a specified location on the form
(represented by a carriage-tape channel) ,
or ignoring/accepting data che~ks for
unprintable characters when the Universal
Character set (UCS) special feature is
installed in a 1~03. The third parameter
is required for immediate spacing or
skipping (before printing), or to ignore
(YES) or accept (NO) data checks. The
fourth parameter is required for delayed
spacing or skipping (aft~r printinq).

The SP and SK operations can be used in
any seguence. However, two or more
consecutive immediate skips (S~) to the
same carriaqe channel on the same printer
have the same effect as the i!rst skip
only. That is, any skip order after the
first is ignored. Two or more consecutive
delayed'spaces (SP) and/or skips (SK) to
the same printer result in the las! space
or skip only. Any other combination of
consecutive controls (SP and SK), such as
immediate space followed by a delayed skip
or immediate space followed by another
immediate space, causes both specified
operations to occur.

The CNTRL UCS macro instruction
generates a command code to ignore, or
accept, data checks for unprintable
characters. If the parameter YES is
specified, data checks resulting from
unprintable characters are ignored and
processing continues. If the parameter NO
is specified, an unprintable character data
check causes processing to stop and a
message to be issued to the operator. The
generated command code remains fixed until
another CNTRL UCS instruction is issued, or
until the command code is changed by an
ASSGN control card or the UCS load buffer
program. If CNTRt UCS is issued for.a
printer without the Universal Character ,Set
special feature, a command reject occurs
and the system enters the wait state.

IBM 2540 Card Read-Punch

Cards fed into the IBM 2540 read feed are
normally selected by IOCS to stack in th~
Rl pocket, and those fed in the punch feed
are selected to stack in the P' pocket.
The CNTRL macro code PS is used to select a
card into a different stacker, specified
by the third parameter(n) in this
instruction. Whenever CNTRL is used for
any cards in a file, all cards must be
selected by this macro. For an input file,

Macro Instruction statements 85

each GET instructiQn must be followed by a
CNTRL instruction to properly select the
card just read. For an output file, each
PUT must be preceded by a CNTRL instruction
to properly select the card' that will
contain the record beinq built. The
possible selections are:

Fe~~ pockel· Sel~£tion Number

Read R' ,
Read R2 2
Read RP3 3
Punch P1 1
.Punch P2 2
Punch RP3 3

For input files, the CNTRL macro can be
used only when one I/O area, or one I/O
area and one work area, is specified for
the file. For output. files, the CNTRL
macro may be used in conjunction with any
of the permissible I/O area and work area
combinations (see PrQ£essin~Qrds
Con§ecutively: storage A~) •

IB1!...;.1442-2L~21Q~ar.2.Read-PuI;lch

Cards fed in the IBM 1442 or 2520 are
normally stacked in pocket 1. However,
they may re selected' to stack in pocket 2
by using the CNTRL macro code SSe

In a card-reag operation (input or
combined file), a card can be selected to
pocket 2 by .issuinq t~e CNTRL instruction
after the GET instruction for that card,
and before the GET instruction for the
following card is issued. When the
following card is read, the first card is
stacked in pocket 2. Whenever CNTRL is
used for any card in an input file with a
work area, gIl-cards must be selected by
this macro.

Whenever CONTROL = YES is specified in
DTFSR (Output File), the first PUT for that
file must be. preceded by a CNTRL macro.

For input files, the CNTRL macro can be
used only when one I/O area, or one I/O
area and one work area, is specified for
the file. For output files, the CNTRL
macro may be~sed in conjunction ~ith any
of the permissible I/O area and work area
combinations (see Processing Records
Co~utivelY.i. __ storgge A~). For
combined files (DTFSR TYPE~LE=CMBND), the
CNTRL macro can be used only when one I/O
area (no work area) is specified for the
file.

The CNTRL macro for seeking on the 231'
applies only to files processed
consecutively or by the direct access
method (DAM). It does not apply to files

86 S/360 BOS Assembler with I/O Macros

processed by the indexed sequential system
(ISFMS). This macro permits access
movement to begin for the next READ, WRITE,
GET, or PUT instruction for a file. While
the armis movinq, the programmer may
process data and/or request I/O operations
on other devices.

To use CN~RL for seeking in the direct
access method, the user must first specify
a track address to which access movement
should begin. This address must be stored
in the track-refe-rence field specified by
the' DTFDA entry SEEKARD. (The user must
supply this address before issuinq the
CNTRL macro instruction.) For consecutive
files, IOCS seeks the track that contains
the next block (or physical record) for the
file. The user does not supply a track
address.

If the CNTRL macro is not used, IOCS
performs the seek operation when a READ,
WRITE, GET, or 'PUT instruction is executed.

IBM '285 or 1287 Optical Reader-

The CNTRL macro instruction with the READKB
mnemonic allows the user to read a complete
line from the 1285 or 1287 keyboard when
processing journal tapes. This permits the
user to key in a complete line on the
keyboard when a read error makes this type
of correction necessary. When IOCS exits
to the user's COREXIT routine, the user may
issue the CNTRL macr~ instruction to read
the keyboard. The display tube will
display the full line and the operator
will, if possible, key in the correct line
from the keyboard. The line read from the
keyboard will be'available in the area that
previously contained the erroneous record,
i.e., the area that the GET macro
instruction was serving when the error
occurred. The READKB mnemonic causes the
problem program to wait for completion of
the operation before control is reqained.

If an error (data transfer error) occurs
while processing in the journal tape mode,
the CNTRL macro instruction used with the
MARK code can provide a program-controlled
means of marking lines resulting in actual
or suspected errors. To ensure that the
proper line is marked, the user must issue
the CNTRL macro in his COREXIT routine. If
the CNTRL macro is issued at any other
time, the line following the line in error
will be marked.

When processing in the document mode,
the CNTRL macro may be used with the EJD
mnemonic to eject each document. The EJD
mnemonic ejects the current document and
feeds the next document. The CNTRL macro
with the SSD mnemonic may be used to
perform the stacker selection function.

It is possible to combine the ejection
and selection functions by using the ESD
mnemonic. In such cases, the combined
mnemonic ~us1 not be immediately preceded
by an eject command or immediately followed
by a stacker select command.

A selection number of ~, 2, or 3 will
direct the document to stacker A, B, or R
~eject) ,respectively. It is also
possible to select stacker A a~d B in an
alternate stacking mode. In this mode,
stacker switching is automatically
initiated when one stacker becomes full.
The selection number for alternate stacking
is 4. Stacker A fills first when selection
number 4 is used in the first stacker
selection macro. If selection number 4 is
used subsequently to other selection
numbers, the selection number immediately
preceding number 4 determines the stacker.
Ejection and selection of documents ~st
occur alternately.

For documeats with a scannable length
greater than 6 inches, the INC mnemonic
effects document incrementation, which is
forward document movement of 3 inches. It
may be used only once for each document.

Document ejection and/or stacker selection
and document increment functions can also
be accomplished by including the
appropriate CCW(s) within the channel
command word list addressed by the READ
macro rather than by using the CNTRL macro.
This technique results in increased
document throughput.

The stacker select command must follow the
eject command within 270 milliseconds if
the document was incremented or within 295
~illiseconds if' the document was not
incremented. If timing requirements are
not met, a late stacker selection condition
occurs (see COREXIT routine).

The CNTRL macro for STR devices is
described under Processing· with STR
Devices: CNTRL Macro.

BSC SU.E£.Qrt

The CNTRL macro for BSC support is
described under ~inall' Synchronous
C01!!!!LY1!i£ati.Q'!!: ~NTR1-Macro.

• I
I Name Op 0 perand r
.-,----r---------+---------------------.----------~.
I CHNG SYSnnn I

A system may have one or more 2-channel,
simultaneous read-while-write tape control
units, which must be connected to selector
channels 1 and 2 (special feature). When
it does, the programmer should assign all
tape in£Q! files for a job to one channel,
and all tape output files to the other
channel~ This utilizes the maximum
reading-while-writing capability of such a
system. During the job, however, the
program may require that 'a particular tape
unit be switched from one channel to the
other. For example, an output file of
records may be completed during one phase
of the job, and then be needed as input to
a subsequent phase. Conversely, after the
records from an input file have been
processed, that same file may become an
output file to write changed, or different
records.

The CHNG (change) macro instruction can
be used to switch a tape unit from one
selector channel to the other (from input
to output status, or vice versa). The
symbolic unit, specified in the DTFSR entry
DEVADDR and named in the Job Control ASSGN
car~, is the only parameter required in
this instruction. The CHNG macro merely
switches channel assignments; it does not
change the symbolic reference to the unit.
This macro may be used in conjunction with
either logical or physical IOeS
i~structions. .

This macro instruction must not-be
issued while the file(s) associated with
the symbolic unit is Qpen.

rl----~------~i-------------------------------,
IName op I Operand I
I I ,
I PRTOVI filename,n,routine-name I
i ' ,

The PRTOV (printer overflow) macro
instruction is used in conjunction with a
logical file in a printer to specify the
operation to be performed on a ca~riaqe
overflow condition. Whenever this macro
instruction is to be issued in a problem
program, the DTFSR entry PRINTOV must be
included' in the file definition.

PETOV requires two or three parameters.
The first parameter·must be the name 0f the
logical file specified in the DTFSR header
entry. The second_ parameter must specify
the number of the carriage tape channel {9
or ~2} used to indicate the overflow. This
is entered as immediate data 9 or 12. The
channel 9 or 12 overflow signal is turned
on by any PUT macro insfruction that causes
printing on the overflow line, or by a
CNTRL SP macro instruction that causes
spacing over the overflow line of the form.

Macro InstructLon Statements 87

When the first two parameters are specified
and an overflow condition occurs, IOCS
restores the printer carriage to the first
printing line on the form (Channel 1), and
printing of detail lines continues.

A third parameter is entered in this
instru~tion if the programmer prefers to
branch to his own routine on an overflow
condition, rather than skipping directly to
channel 1 and continuing with the detail
printing., It specifies the symbolic name
of the user's routine. In this case, IOCS
does not restore the carriage to channel 1.

In his routine, th.e user may issue any
IOCS macro instructions (except PRTOV) to
perform whatever functions he desires. For
example, this allows him to print total
lines, skip to channel 1, and print
overflow page headings. At the end of his
routine, the user must return to IOCS by
branching to the address in register 14.
TOCS supplies this address upon entry to
the user's routine. Therefore, if IOCS
macros are used in the routine, the address
must be saved.

If the user requires register 15 in his
routine, he must also save this register
and restore it prior to returning to his
main program.

The PETOV macro instruction may be
issued anywhere in the problem program.
The macro causes a skip to channel 1, or a
branch to the user's routine, only if an
overflow condition (a punch in carriage
channel 9 or 12) was previously detected as
a line was printed. {An overflow punch is
nQi recognized during a carriage skip
operation.} An overflow condition that is
detected as any' line is printed (PUT) is
recognized by the PRTOV macro after the
followinB-line is printed. For example in
the following program steps, if a channel
12 punch was read as line X was printed,
PRTOV causes a skip to channel 1 after lin~
X+ 1 is printed.

Thus, one extra line is always printed
after the overflow punch (9 or 12) is
detected and before the overflow functions
can occur. Therefore, in planning a
printer operation, the overflow punch must
coincide with next-to-the-1ast line to be
printed on the form.

88 S/360 BOS Assembler with I/O Macros

PUT FILEA

PRTOV FILEA,12

PUT FILEA

PRTOV FILEA,12

PUT FILEA

-for Line X

Process

Process

-for Line X+1

Process

Skips to channel 1 if
overflow punch was
detected as Line X was
p'rinted

Process

-for Line X+2

IOCS causes Line X+2 to be printed on
the first line of'the following page
whenever PRTOV specifies only the first two
parameters. If a user's routine is
specified, however, the functions performed
ii that r6utine affect the positioning of
the form and thus determine where IOCS will
prini Line X+2 when the following PUT is
executed.

The channel 9 ~r 12 overflow signal is
turned off after the PRTOV macro has been
executed, or wb~n a CNTRL macro instruction
is issued to cause skipping to the first
printing line on the form (channel 1).

If a channel 9 punch is used in the
carriage tape, the PRTOV macro must request
posting of device end in the Command
Control Block (CCB) or a physical IOCS
error message will result.

PROCESSING DISK RECORDS BY THE DIRECT
ACCESS METHOD

Disk records can be processed in a random
order ,by the Direct Access Method (DAM).
In this method the user specifies the
address of the record to IOCS, and issues a
READ or WRITE macro instruction to transfer
the specified record. Variations in the
parameters of the READ or WRITE
instructions permit records to be readi
written, updated, replaced, or added to a
file. Whenever this method of processing
records is used, the logical file and
main-storage area(s) allotted to the file
must be defined by the declarative macro
DTFDA (Define the File for Direct Access).
The detail parameter entries for this
definition are .described under File-
Definition Macros. ----

Records on disk that will be processed by
DAM can have either of two formats: with a
key area, or without.

with key area
.----, r i

I count I I Key I Data
L---I L L-

Wi thout key area
i , r--,
I count I I Datal
L--____ .J L __ --'

Whenever records in a file have keys
that are to be processed:

•
•

•

Ev,gU record must have a key,

All keys must be the same length, and

The length of the keys must be
specified in the DTFDA entry KEYLEN
(maximum length is 255 bytes).

Whenever the DTFDA entry KEYLEN is n01
specified for a file, IOCS ignores keys and
the disk records may, or may not, contain
key areas.

IOCS considers all records as unblocked
(one logical record per one physical
record). If the user wants blocked
records, he must provide his own blockinq
and deblocking. Records are also
considered to be either fixed length or
undefined. (!!ndefin.§Q includes
variable-length records.) The type of
records in the file must be specified in
the DTFDA entry RECFORM. Whenever records
specified as undefinEd are to be loaded,
added, or written in a file, the user must
determine the length of each data record
and load it in a register (specified by the
DTFDA entry RECSIZE) before he issues the
WRITE instruction for that record. IOCS
adds the length of the key when required.

Records in one logical file are transferred
to or from one I/O area in main storage.
This area must be large enough to contain
the larqest record in the file. If
disk-record key areas are to be transferred

by a READ/WRITE instruction, the I/O area
must also provide space for the the length
of the key (specified in DTFDA KEYLEN).
Furthermore, if a file is to be created or
if records are to be added to a file, the
main-storage I/O area must include an
eight-byte £QQnt area. The I/O area
requirements are illustrated schematically
in Figure 15 and described in detail in the
DTFDA entry IOAREA1.

With the direct access method of
processing, each record that is to be read
or written is specified by providing IOCS
with two references:

•

•

Track reference. This gives the track
on which the desired record is located.

Record reference. This may be either.
the record key (if the records contain
key areas) or the record identifier
(ID) •

IOCS seeks the specified track, searches it
for the individual record, and causes the
record to be read or written, as indicated
by the macro instruction. If a specified
record is not found, IOCS sets a
no-record-found indication in the u'ser' s
error/status field, which is specified by
the DTFDA entry ERRBYTE. This indication
can be tested by the problem program, and
additional processing can be programmed to
suit the user's requirements.

Multiple tracks can be searched for a
record specified by key, if the DTFDA entry
SRCHM is included in the file definition.
In this case, if the record is not found
after an entire cylinder is searched, the
end-of-cylinder bit (instead of the
no-record-found bit) is set on in the
error/status field.

When the I/O operation is started,
control is returned immediately to the
problem program. Therefore when the
program is ready to process the input
record, or build the succeeding output
record for the same file, a test must be
made to ensure that the previous transfer
of data is complete. This is done by
issuing a WAITF macro instruction in the
problem program.

Macro Instruction statements 89

CREATE A FilE OR ADD RECORDS TO A FilE: RECORDS WITH KEY AREAS

I Count Key I Data I
I I I
~11~------~I--------~i-------BlKSIZE=n-------------------------'~1

length ---+-I 8 I KEYlEN=n I largest Record I
{Bytes}' I t I I I

IOAREAl

CREATE A FilE OR ADD RECORDS TO A FilE: RECORDS WITHOUT KEY AREAS

""'I .I--------:~----- BlKSIZE=n --------------------~. I
length ---+1 8 largest Record I
(Bytes) I t I

I Count .Doro I

IOAREAl

READ OR WRITE (UPDATE) BY KEY, OR BY 10 WITHOUT DTFDA KEYlEN

I Data I
I I
I" BlKSIZE=n t I

length ~ largest Record I
(Bytes) I t I

IOAREAl

READ OR WRITE (UPDATE) BY 10 WITH DTFDA KEYlEN

I . Key Data I
I I
1-011 11--------;..---------- BlKS IZE=n ---------------------M. I

length --+I KEYlEN=n : largest Record I
(Bytes) I t I

'IOAREAl '

READ OR WRITE (UPDATE) BY KEY AND BY 10 WITH DTFDA KEYlEN*

I ~_,(_un_:_:_d_)*~i~ ______ ~or ___ :_:_: ____________ ~1

I I I
, 1-01/ 11-----. ---;I~-------BlKSIZE=n -------------------.~I
length ~ 'KEYlEN=n I largest Record I
(Bytes) I t I I

IOAREAl

* DTFDA specifies READKEY (or WRITEKY), READID (or WRITEID),
and KEYlEN for a file. The first n bytes are unused when
a READ (or WRIT~) by key is executed.

Figure 15. Schematic of I/O Area in Main St~raqe, for DAM

90 S/360 BOS Assembler vith I/O Macros

Bytes~

I

May :
Contain~1

I
I
I
I

· Pack
Number
·-(M)

0 1

0-254 0

t
Address
Specified by
SEEKAOR=Name

Cell
(BB)

I

_1 2 3

o o

Fig~re 16. Track Reference Field

Cylinder
(CC)

I

I 4

0-202

After a READ or WRITE instruction for a
specified record has been executed, IOCS
can make the ID of the next record
available to the problem program.- When
record reference is by key and multiple
tracks are searched, the ID of the
specified record (rather than the next
record) is supplied. The function of
supplying the ID is useful for a random
updating operation or for the processing of
successive disk records. If the user is
processinq consecutively on the basis of
the next lD and does not have an
end-of-file record, he can check the ID
supplied by lOCS aqainst his file limits to
determine when he has reached the end of
his loqical file. To request that IOCS
supply the ID, the user must set up a
5-byte field (in which IOCS can store the
ID) and specify the symbolic address of
this field in the DTFDA entry IDLOC.

Tr~£~Re!~ren~: To provide IOCS with the
track reference, the user sets up an 8-byte
track-reference field in main storage ,
assigns a symbolic name, and specifies the
symbolic name in the DTFDA entry SEEKADR.
Before issuing any read or write
instruction for a record, the user must
store the proper track infcrmation
(MBBCCHH) in the first seven bytes of this
field. The field (Figure 16) contains the
followinq seven bytes for track reference.
The eighth byte (R), listed here and shown
in the figure, is used when reference to
records is by record number (see Recg~£
Referen£~~~ntifi~~l. All numbers must
be supplied in binary notation.

Head
(HH)

I 5 I 6

o 0-9

-l
Record I

(R)

7 I
_-1

I
I
I

0-255 :

t
I
I
I
I

Required
for Record
Reference
by 10

Con­
~1~ 11ent. tenl§

o M

1-2 B,B

3-4 C,C

0-254 Number of the pack
(0-254) on which the
record is located.
All packs for a file
must be numbered
consecutively startinq
with O. That is, the
first pack must be
number 0, the second
pack number 1, etc.
This number relates to
a numbered symbolic
unit (SYSOOO-SYS254).
Two or more symbolic
units for a file must
be numbered
consecutively, but the
numberinq may start
with any SYSnnn
number.

0,0 Reserved for cell
number, which relates
to the IBM 2321 Data
Cell Drive. These two
bytes are always zero
for 2311 disk-storaqe
references.

0,0-202 Number of the cylinder
(0-202) in which the
record is located.
The first byte is
always zero, and the
second byte specifies
one of the 203
cylinders in a disk
pack. These two bytes
with the next two

Macro Instruction statements 91

(HH) provide the track
identification.

5-6 H,H 0,0-9 Number of the
read/write head (0-9)
that applies to the
record. The £irst
byte is always zero,
and the second byte
specifies one of the
ten disk surfaces in a
disk pack.

7 .R 0-255 sequential number of
the record on the
track.

When the READ or WRITE is executed, IOCS
refers to this field to select the specific
track on the appropriate disk pack.

Record-Reference: The Direct Access Method
allows records to be specified by record
key or by record identifier.

Key.:.. - If records contain key areas, the
records on a particular track can be
randomly searched by their key numbers.
This allows the user to refer to
records by the logical control
information associated with the
records, such as an employee number, a
part number, a customer number, etc.

For this type of· reference the
programmer must specify, in the DTFDA
entry KEYARG, the symbolic name of a
main-storage ~~ field. He then stores
each desired key in this field.

IdgU1!fi~_Jl~: Records on a particular
track can be randomly searched by their
position on the track, rather than by
control information. This is
accomplished by using the record
identifier (ID). The record
identifier, which is part of the count
area of any 2311 disk record, consists
of five bytes (CCHHR). The first four
bytes (cylinder and head) refer to the
location of the track, and the fifth
byte (record) un~quely identifies the
particular record on the track. When
records are specified by ID, they must
be numbered in succession, and without
missinq numbers, on each track. The
first data record on a track must be
record ~umber 1~ the second number 2,
etc.

Whenever records are to be
identified by the record ID method, the
eighth byte (R) of the track-reference

92 S/360 BOS Assembler with I/O Macros

field (Figure 16) must contain the
number o£ the desired record. When a
READ or WRITE instruction that searches
by ID is executed, IOCS refers to the
track-reference field to determine
which record is requested by the
program. The number in this field is
compared with the corresponding fields
in the count areas of the disk records.
The R byte specifies the particular
record on the track.

Creating a File or Addin~Records to a-File

In addition to readinq, writing, and
updating records randomly, the direct
access method permits the user to create a
file or add records to a file. When this
is done, all three areas of a disk record
are written: the coun! area, the ~§y area
(if present), and the da~ area. The new
record may be written after the last record
written on a specific track. This may be
done by using the WRITE initruction with
the parameter AFTER. The remainder of the
track ~s erased.

When records are to be added to a disk
file by the AFTER method (specified by
DTFDA'AFTER=YES), IOCS ensures that each
record will fit on the track specified for
it. If the record will fit, IOCS writeS
the record; if it will not fit, Ioes sets a
no-room-found indication in the user's
error/status field (specified by the DTFDA
entry ERRBYTE). In the AFTER method IOCS
determines the location where the record is
to be written.

For this, IOCS uses the first record on
each track (RO) to maintain updated
information about the data records on the
track. Record 0 (Figure 17) has a count
area and a data area, and contains the
following:

count Area
Flag (not normally transferred to main

storaqe)
Identifier
Key Lenqth (KL)
Data Length (DL)

Data Area (8 bytes)
5 Bytes - ID of last record written on

track (CCHHR).
2 Bytes - Number of unused bytes

remaining on track.
Byte - (Un used)

Each ~ime WRITE AFTER is executed, IOCS
updates the data area of this record.

Bytes --..

COUNT AREA

I
I
I
I

C)
0
~

0 1

Identifier

-s

Contains --..: Standard Information
I
I
!

Figure 17. Contents of Record 0

KL

6 7

..---~ -,
IName 1 Op Operand
I-----t----+--
I I READ filename,KEY
I J READ filename,ID

I ,
I
I

L--_~ ____ -L-- --1

This instruction causes a record to be
transferred from disk storage to an input
area in main storage. The input area must
be specified in the DTFDA entry IOAREA1.

The READ macro instruction is written in
either of two forms, depending on the type
of reference used to search for the record.
Both forms may be used for records in any
one DTFDA-specified logical file if the
logical file has keys;

The instruction always reguires two
parameters. The fir~1~ar~met~~ specifies
the symbolic name of the file from which
the record is to be retrieved. This name
is the same as that specified in the DTFDA
header entry for this file. The sec~~Q
~rame!~~ specifies the type of reference
used for searching the records in the file.

If the record reference is by key (control
information in the key area of the disk
record), the second parameter in the READ
instruction must be the word KEY, and the
DTFDAentry READKEY must be included in the
file definition.

Whenever this method of reference is
used, the problem program must supply the
key of the desired record to IOCS before
the READ instruction is issued. For this,
the key must be stored in the ~gy field
(specified in the DTFDA entry KEYARG).

DL

DATA AREA

C)

Identifier
c: -=u 'c <I)

of Last Record V) '0 :;
2 E c:
>"'(1) 2-al 0::

8 0 4 5 6 7

I I
I I
I I Number
lc C H H R\ of Unused
I I Bytes I I
I I
I I

When the READ instruction is executed, IOCS
searches the previously specified track
(stored in the 8-byte track-reference
field) for the desired key.

Then when a disk record containinq the
specified key is found, the Qs1a-agE:-of
the record is transferred to the
main-storage input area.

Only the specified track is searched
unless the programmer requests that
multiple tracks be searched on each READ
instruction. A search of multiple tracks
is specified by including the DTFDA entry
SRCHM in the file definition. With this
entry, the sp~cified track and all
following tradks are searched until the
desired record is found or the end of the
cylinder is reached. The search of
multiple tracks continues through the
cylinder even though part of the cylinder
may be assigned to a different logical
file.

If the record reference is by ID
(identifier in the count area of records),
the second parameter in the READ
instruction must be the letters ID, and the
DTFDA entry READID must be included in the
file definition.

Whenever this method of reference is
used, the problem program must supply both
the track information and the record number
in the 8-byte track-reference field. When
the READ instruction is executed, IOCS
searches the specified track for the
particular record. When a disk record
containing the specified ID is found, both
the key~~ (if present and specified iR
DTFDA KEYLEN) and the data_E:reE: of the

Macro Instruction statements 93

record are transferred to the main-storage
in pu.t ar ea.

I i

IName I
I- I
I I
I I
I I
I I

II

Op I Operand
~

WRITEI filename, KEY
WRITEI filename,ID
WRITEI filename,RZERO
WRITEI filename, AFTER

'I
1
1
1

L- '
-L--______________________ ----J

This instruction, except in the case of
RZERO, causes a record, which has been
built in an output area of main storage, to
be transferred from main storage to disk
storage. The output area must be specified
in the DTFDA entry IOAREA1.

The WRITE macro instruction is written
in one of four forms" depending on the type
of reference that is used to search for the
record location in the file. All forms may
be used for records i~ anyone
DTFDA-specified logical file if the logical
file has keys.

The instruction always requires t~o
parameters. The fir.§.!:~meter specifies,
the name of the f~le to which the record is
to be,transferred. This name is the same
as the one specified in the DTFDA header
entry for this file. The .§g£Qnd paramet~
specifies the type of reference that is
used for searching the records on disk to
find the proper location to write the
output record.

Re£Q~g-Beferen£~_~Key

If the disk-storage location fer writing
records is determined by the record key
(control information in the key area of the
disk record), the work KEY is entered as
the second parameter of the WRITE
instruction. Also the DTFDA entry WRITERY
must be included in the file definition.

Whenever this method of reference is
used, the problem program must supply the
key of the desired record to laCS before
the WRITE instruction is issued. For this,
the key must be stored in the key field
(specified by the DTFDA entry KEYARG).
When the WRITE instruction is executed,
IOCS searches the previously specified
track (stored in the 8-byte track-reference
field) for the desired key. Then, when a
disk record containing the ,specified key is
found, the data in the main-sto~age output
area is transferred to the data area of the
disk record. This replaces~Information
previously recorded in the data area. laCS
uses the count field of the original record
to control the writing of the new record.
If a record is shorter than the original

94 S/360 BOS Assembler with I/O Macros

record, it is padded with zeros. A record
longer than the original record is written
only to the extent of the area indicated in
the count field on the track, and any
excess bytes are lost. In either case
(short or long records) laCS turns on the
wrong-length-record bit in the error/status
field.

Only the specified track is searched
unless the programmer requests that
multiple tracks be ,searched on each WRITE
instruction. Searching multiple tracks is
specified by inclu!ing the DTFDA entry
SRCHM in the file definition. In this
case, the specified track and all following
tracks are searched until the desired
record is found or the end of the cylinder
is reached. The search of multiple tracks
continues through the cylinder even though
part of the cylinder may be assigned to a
different logical file.

~~ReferenELQLID

If the disk-storage location for writing
records is determined by the record ID
(identifier in the count area of records),
the letters ID are entered as the second
parameter of the WRITE instruction. Also
the DTFDA entry WRITEID must be includea in
the file definition.

Whenever this method of reference is
used, the problem program must supply both
the track information and the record number
in the 8-byte track-reference field. When
the WRITE instruction is executed, laCS
searches the specified track for the
particular record. When the disk record
containing the specified ID is found, the
information in the main-storage output area
is transferred to the ill-~rea· (i f present'
and specified in DTFDA REYtEN) and the dat~
~~ of the disk record. This replaces the
key and data previously recorded, laCS uses
the count field of the original record to
control the writing of the new record. If
a record is shorter than the oriqinal
recprd, it is padded with zeros. A record
longer than the original record is written
only to the extent of the area indicated in
the count field on the track, and any
excess bytes are lost. In either case
(short 'or long records) laCS turns on the
wrong-length-record bit in the error/status
field.

Record Reference: Record Zero

If record zero (RO) is to be writteni the
second parameter of the WRITE instruction
must be the specification RZERO. Also the
DTFDA entry AFTER must be included in the
filedefini tion.

This reference should be used each time
the problem program reuses a certain

portion of a disk pack. It may be used as
a utility function to initialize a limited
number of tracks or cylinders. Only one
track at a time, however, may be
initialized. This is done by issuing a
WRITE RZERO instruction with the address of
each track to be initialized.

Whenever this method of reference is
used, the problem program must supply the
track information (cylinder and track
number) in the 8-byte track-reference
field. Any record number is valid but will
be ignored. When WRITE is executed, laCS
writes a new RO with the maximum capacity
of the track (3625 characters) and erases
the full track after RO.

If a record is to be written following the
last record previously written on a disk
track (regardless of its key or ID), the
second parameter of the WRITE instruction
must be the specification AFTER. For this
operation the DTFDA entry AFTER must be
included in the filB definition.

Whenever this method of reference is
used for writing records, the problem
pr~gram must supply the track information
in the first seven bytes of the 8-byte
track-reference field. When WRITE is
executed, laCS examines the capacity record
(Record 0) on the specified track to
determine the location and amount of space
available for the record. If the remaining
space is large enough, the information in
the main storage output area is transferred
to the disk track in the location
immediately following the last record. The
co.!!!!.L~.£§, the ~~.£ea (if present and
specified by DTFDA KEYLEN), and the Q~i~
ar~~·are written. laCS then -updates the
capacity record.

If the space remaining on the track is
not large enough for the record, IOCS does
not write the record and, instead, sets a
no-room-found indication in the user's
error/status field (specified by the DTFDA
entry ERRBYTE).

Whenever this instruction will be used
in a problem program, it is the user's
r~sponsibility to ensure that the capacity
record reflects the present condition of
the file. Therefore, if he is going to
build a new file in an area of the disk
pack that contains outdated records, the
capacity records must first be set up to
reflect empty tracks. An IBM-supplied
utility Frogram is available to construct
Record O.

If records in the file are specified as
undefined (RECFORM=UNDEF), the programmer
must determine the length of each record

and load it in a register for laCS use,
before he issues the WRITE instruction for
that record. The register that will be
used for this purpose must be specified in
the DTFDA entry RECSIZE.

.--- -,
IName I Op I Operand I
I---+---+--------------f
I I WAITFI filename I
L-~ I .J

The WAITF macro instruction is used to
ensure that the transfer of a record has
been completed. It requires only one
parameter: the symbolic name of the file
containing the record.

This instruction must be issue~ before
the problem program attempts to process an
input record or build another output record
for the file concerned. The program enters
a waiting loop until the transfer of data
is complete. Thus, the WAITF macro
instruction must be issued after any READ
or WRITE instruction for a file, and before
the succeeding READ or WRITE instruction
for the same file.

The WAITF macro makes error/status
information, if any, available to the
problem program in the field specified by
DTFDA ERRBYTE.

r--~ ,. ,
IName I Op 1 Operand
I-- I +-
I I CNTRLI filename, SEEK

I
--1

I
I,- I --L-

The CNTRL (control) macro instruction is
used to begin access movement for the next
READ or WRITE for a file. It reguires two
parameters.

The firsLEar~me!er specifies the
symbolic name of th~ file, which is the
same name as that specified in the DTFDA
header entry for the file. The second
~.£ameter must be the word SEEK.

Before issuing the CNTRL macro
instruction, the user must specify a track
address to which access movement should
begin. This address must be stored in the
track-reference field specified by the
DTFDA entry SEE~ADR. While the
disk-storage arm is moving, the programmer
may process data and/or reguest I/O
operations for files on other devices.

If the CNTRL macro is not used, laCS
performs the seek operation when a READ,
WRITE, GET, or PUT instruction is executed.

Macro Instruction statements 95

PROCESSING DISK RECORDS BY THE INDEXED
SEQUENTIAL SYSTEM

The Indexed Sequential File Management
Sistem (ISFMS) permits disk records to be
processed in random order or in sequ~ntial
order by control information. For random
processinq, the user supplies the key
~ontrol information) of the desired record
to rSFMS, and issues a READ or WRITE macro
instruction to transfer the specified
record~ For sequential processing by
control information (key), the user
specifies the ii~§1 record to be processed
and then issues~ET or PUT macro
instructions until all desired sequential
records have been processed. The
successive 'records are made available in
seguential order by key. Variations in
macro instructions permit:

• A loqical file of records to be loaded
onto disk (created).

• Individual records to be read from,
added to, or updated in the file.

Whenever the indexed seguential system
of processing is used, the logical file and
main-storaqe areas allotted to the file
~tist be defined by the declarative macro
DTFIS (Define The File for Indexed
Sequential System). The detail parameter
entries for this definition are described
under File~efini1io.n_Mac~.Q.§.

When an ISFMS file is originally organized,
it is loaded onto the disk pack(s) from
pre-sorted input records.' These records
must have been sorted by control
information. All records in the disk file
must contain key areas:

r-------, r-----,
count 1 1 Key

L- L ____ ~

r I

I Data ,I
L __ ---I

All keys must be the same length, and the
length must be specified in the DTFIS entry
KEYLEN, (maximum length is 95 byte~.

The logical records must be fixed
length, and the lenqth must be specified in
the DTFTS entry RECSIZE. Logical records
may be either blocked ,(two or more logical
records in one physical record) or
unblocked (one logical record per one
physical record). This must be specified
in the DTFIS entry RECFORM. When blccked
records are specified, the key of the
highest record (last) in the block is the
key for the block, and therefore must be
stored in the key area of the disk record.

The location of the key withi.n each
logical record must be specified in the

96 S/360 BOS Assembler with I/O Macros

DTFTS entry KEYLOC. The number of records
in a block must be specified in the DTFIS
entry NRECDS. This specification is "1"
for unblocked records.

Records in one logical file are transferred
to, or from, one or more I/O areas in main
storage. The areas must always be larqe
enough to contain the key area and a block
of records, or a single record if unblocked
records ar~ specified. In addition, it
must allow space for the count area when a
file is to be loaded, or when records are
to be added to a file. For the functions
of adding or retrieving records, the I/O
area must also provide space for a sequence
link field that is us~d in conjunction with
overflow records (see Addition of Records,
ang_~gy~rfloJLAre~§). The I/O area
requirements are illustrated schematically
in Figure 18 and described in detail in
DTFIS entries IOAREAL, IOAREAR, and
IOAREAS.

Records may be retrieved and processed
directly in the I/O area or in a work area.
If the records are to be processed in the
I/O area, a 'register must be specified in
the DT~IS entry IOREG. This is used to
point to the beginning of the data portion
of each record and thus locate the record
for processing. Mg1~: For sequential
unblocked records, the key is at the
beginning of the I/O area.

If the records are to be processed in a
work area, the DTFIS entry WORKL, WORKR, or
WORKS must be specified. ISFMS moves each
individual input recordf..rom the I/O area
to the work area where it is available to
the problem program for processing.
Similarly, on output, ISFMS moves ,the
completed record from the work area to the
I/O area where it is available for transfer
to disk storage. Whenever a work area is
used, a register is not required.

Or~nization of Records on Disk

When a logical file of presorted records is
loaded onto disk, ISFMS orqanizes the file
in a way that allows the user access to any
record, in the most efficient manner.

Reference can be made to records at
random throughout the logical file, or to a
series of records in the file in their
presorted sequence (collating sequence).
The organization also provides for
additions to the file at a later time,
while still maintaining both the random and
sequential reference capabilities.

ISFMS loads the records, one after the
other, into a specified area of the disk
pack. This is called the prim§ area of the

logical.file on disk. The starting and
ending limits of this area are specified by
the user in Job Control XTENT cards. The
prime data area must start cn the first
track (track 0) ofa cylinder (other than
0), and it must end on the last track
(track 9) of the same or a different
cylinder. Prime data extents cannot start
or end in the middle of a cylinder.
Whenever the prime area extends into two or
more disk packs, it must be continuous from
one pack to the next and may not be.
interrupted. In this case, an XTENT card
is required to define each area of each
disk pack on which the prime area is
located. For example, if the prime area
extends over three disk packs, three XTENT
cards are required, one for each disk pack.

Whenever any type of processing is being
done for an Indexed Sequential file, all
packs in a multipack file 'must be on-line.

As ISFMS loads a file of records sorted by
control information, it builds a set of
indices for the file. The indices are
utilized for both random and sequential
reference to records as follows:

• They permit rapid access to individual
records for random processing.

• They supply the means of providing
records in key order during sequential
processing.

Either two or three indices are built,
depending on the user's specifications.
Both a trac~inde~ and a £ylinder-indeL are
always constructed. A master-index is also
constructed if the DTFIS entry MSTIND is
included in the file definition.

Once a file has been loaded and the
related indices have been built, the ISFMS
routines ·search for specified records by
referring to the indices. When a
particular record (specified by key) is
requested for processing, ISFMS searches
the master index (if used), then the
cylinder index, then the track index, and
finally the individual track. Each index
narrows the search by pointing to the
portion of the next-lower index whose range
includes the specified key. Because of the
high speed and effici~ncy of the direct
access devices in a System/360, a master
index should be established only for
exceptionally large files, for which the
cylinder index occupies several tracks
(possibly four or more). That is, it is
generally faster to search only the
cylinder index (followed by the track
index) when the cylinder index occupies
less than four tracks.

Macro Instruction Statements 97

LOAD

I Count Key I Ooto I

1 I I
Length~: 8
(Bytes) 1 t KEYLEN=n ;....:.------- RECSIZE x NRECDS -------... ~:

I I

IOAREAL

ADD - Unblocked Records

I I
Data (Unused)

I
Count Key I or

SL I Data
I

I 1 I I

Length ~l B I KEYLEN=n 10 I. RECSIZE=n ~ I
I 1 NRECDS=l I (Bytes) It I I I

IOAREAL

ADD - Blocked Records

I
Count

I
Key

I
Data

I
I 1 I I

Length --+-1 B I KEYLEN=n 1 • RECSIZ:E x NRECDS . ,
I 1 (Minimum size = One record + 10) I (Bytes) 1 t I 1 1

IOAREAL

RETRIEVE - Unblocked Records

I

Length --+-1 KEYLEN=n
(Bytes) I +

IOAREAR
or

IOAREAS

Data (Unused) I
~---------~I-------------------------or-----------------------~~---------~

SL

10

I
I Data

I 1
:1 ~ __________________ RECS IZE=n _________ -+-I~I
I NRECDS=l 1
I I

RETRIEVE - Blocked Records

I Dam I
I I

Length ~ -li-oI .I------------.RECSIZE x· NRECDS --------------too;,.1
(Bytes) .1 • {Minimum size = One record + 10 +KL> I

IOAREAR
or

IOAREAS

SL = S~quence Link

Figure '8. Schematic of I/O Areas in Main Storage, for ISFMS

98 S/360 BOS Assembler with I/O Macros

The indices are made up of a series of
entries, each of which includes the address
of a disk track and the highes~ key on that
track, or cylinder. Each entry ~s a
separate disk record composed of both a key
area and a data ar€a. The key area
contains the highest key on the track or
cylinder, and its length is the same as
that specified for logical data records (in
the DTFIS entry KEYLEN). The data area of
each index is ten bytes long, and it
contains track information including the
track address.

.-------,
Highest I
Key I

L-.. ____ .J

Key Area

.------..
I Track
I Address
L

Data Area

Track Index: The track index is the lowest
level index for the logical file. A
separate track index is built for each
cylinder used by the file, and it contains
index entries for that cylinder only. Each
track index is located on the cylinder that
it is indexing. It is always on the first
track of that cylinder. Track indices are
considered part of the prime data area
specified by a Job Control XTENT card.

When the track indices are originally
constructed, they contain two entries
(normal and overflow) for each track
utilized on the cylinder. For example, if
the prime area of the logical file utilizes
eight tracks on a cylinder, the track index
might contain the entries shown in Figure
19. The use of two index records for each
track is required because of overflow
records that will occur if more records are
inserted in the file at a later time (see
AdQbtion~Re£ords,·and Overflow Areas) •
When overflow reGords for a track exist,
the second (overflow) index record contains

the ~~~ of the h~gh~~~ record in the
overflow chain for this track and the
address of the lowest record in the
overflow chain.--The-dummy ent£yindicates
the end of the track index. Any following
records are logical- file data records.
The COCR entry is required whenever a
cylinder overflow area is specified (see
Example of an~anizeiLFilel.

~lindgr·Index: The cylinder index is an
intermediate-level index for the logical
file. It contains an index entry for each
cylinder occupied by the file~ This index
is built in the location specified by the
user in a Job Control XTENT card. The
cylinder index may be built wherever the
user chooses, but it may not be on one of
the cylinders that contains data records
for this file. It mus± be on a separate
cylinder, or it may be on a separate disk
pack that will be on-line whenever this
logical file is processed.

The cylinder index may be located on one
or more successive cylinders. Whenever the
index is continued from one cylinder to
another, the last index entry on the first
cylinder contains a linkage field that
points to the first track of the next
cylinder. A cylinder index may not be
continued from one ~£~ to another,'
however. It must be.completely contained.
within one disk pack.

This ind~x contains one entry for each
cylinder occupied by the data file. The
key area contains the highest key
associated with the cyling~£, and the data
area contains the address of the track
index for that cylinder. For example if a
fil~'requires nine cylinders, the cylinder
index might contain the entries shown in
Figure 20. The dum~~try indicates the
end of the cylinder index.

Macro Instruction statements 99

TRACK INDEX

COCR [!J 75

~ 240

K

[AliI
~

D

Track 2
Address

D

K D

Dummy Entry

K = Key Area
D = Data Area

K

Track 0
Address

D

u;] 240

K

COCR = Cylinder Overflow Control Record (RO)

I ~~ I Track 0 ~ Address 150

K D K

--------1 ~:; 1
D K

Figure 19. Schematic Example of a Track Index

CYLINDER INDEX

lliiJ Cylinder 1

~
Cylinder 2 ---------1 ~;rO 1 Track 0 Track 0 980

Address
1850

Address

K D

I~~~;ts I
K D

Dummy Entry

K = Key Area
D = Data Area

K D

Figure 20. Schematic ExamFle of a Cylinder Index

100 S/360 BOS Assembler with I/O Macros

K

Track 1 ~ Address 150

D K

Track 7 [;u Address 980

D K

Cylinder 9
Track 0
Address

D

Track 1
Address

D

Track 7
Address

D

MASTER INDEX

§ Track X + 1
4730 Address

K

[AiIl
~

0

K 0
Dummy Entry

K = Key Area
D = Data Area

~ 8560

K

Track X + 2 ~
Track X + 3 ----------I~~o I Track X + 20

Address 12750 Address Address

0 K 0 K 0

Figure 21. Schematic Example of a Master Index

Ma§ter-Ind~: The master index is the
highest level index for a logical file
built by the IBM System/360 Basic Operating
System. This index is optional and it is
built only if it is specified by the DTFIS
entry MSTIND. It is built in the location
specified by a Job Control XTENT card.
Like the cylinder .index, it may be located
on the same disk pac~ with the logical-file
records or on a different pack that will be
on-line whenever the records are processed.

The master index must immediatelY
.E!:ec~de-the cylinder index on a disk pack,
and it may be located on one or more
successive cylinders. Whenever .it is
continued from orie cylinder to another, the
last index entry on the first cylinder
contains ,a linkage field that points to the
first track of the next cylinder. A master
index may not be continued from one ~ck to
another, however. It must be completely
contained within one~isk pack.

The master index contains an entry for
each track of the£y!inder index. The key
area contains the highest key on the
cylinder~index track, and the data area
contains the address of that track. For
example, if a master index is located Qn
track X a.nd a cylinder index is loca ted on
tracks X + 1 through X + 20, the master
index miqht contain the entries shown in
Figure 21. The dummy entry indicates the
end of the master index.

Adgi ti21L_Q.LRecQf:g§.L.-£nd~verflQw Area.§

Some time after a logical file has been
organized on disk it may become necessary
to add records to the file. These records
may contain keys that are above the hiqhest
key presently· in the file, and thus

con~titute an extension of the file~ Or,
they may contain keys that fall between
keys already in the file and therefore
require insertion in the proper sequence in
the organized file.

If all records to be added have keys
that are higher than the highest key in the
organized £ile, the upper limit of the
prime area of the file can be adjusted (if
necessary) by the specification in a Job
Control XTENT card. Then the new records,
which must be presorted, can be added by
lo~dinq them into the file. No overflow
area is required. The file is merely
extended further on the disk pack.

If records must be inserted among tpose
already organized, however, an overflo~­
ar~-will be required. The ISFMS system
uses the overflQw area to permit the
insertion of records without necessitating
a complete reorganization of the
established file. The fast random and
sequential retrieval of records is
maintained by inserting references to the
overflow area in the track indices, and by
using a chaining technique in the overflow
records. For chaining, a sequence-link
field is prefixed to the user's data record
in the overflow area. The sequence-link
field contains the address of the record in
the overflow area that has the next-higher
key. Thus a chain of sequential records
can be followed in a search fora
particular record. The sequence-link field
of the highest record in the chain
indicates the end of the chain._ All
records in the overflow area are unblocked,
regardless of the specification (in DTFIS
RECFORM) for the data records in the
logical file.

Macro Instruction Statements 101

DATA RECORDS

[;] Track 1 100 Data []i] 125 Data 1-------1 ~:; i Data @J 150 Data

Track 2 [;] Data [}ill Data 1-------1 ~;; 1 Data am 200 205 240
Data

Figure 22. Example of Data Records, as Originally Organized on Tracks 1 and 2

To add a record by insertion, ISFMS
searches the established indices first to
determine on which track the record must be
inserted. The keys-of~he las! records on
the tracks in the orig!~~llY-2~g~nized file
determine the track where an inserted
record belongs. A record is always
inserted on the track where:

1. The last key is higher than the
insertion, and

2. The last key of the preceding track is
lower than the insertien.

For example, assume Tracks 1 and 2 are
organized with the record keys shown in
Figure 22. Then records with keys such as
151,175, 199, 215, and 239 are inserted on
Track 2 (or in the related overflow chain
that has developed). Any key lower than
150 is added to either Track 0 or Track 1;
any key hig~er than 240 belongs to Track 3
or above. The track indices always retain
the highest key of each track as it was
originally organized.

After the proper track is determined,
ISFMS searches the individual records on
the track or overflow area (if necessary)
to find where the record belongs in key
order. This results in either of two
conditions:

1. The record falls between two records
presently on the track. ISFMS adds the
record by inserting it in the proper
sequence and shifting each succeeding
record one record location higher en
the track, until the end record is
forced Qff the track. ISFMS transfers
the end 'record to the everflow area,
and prefixes the record (data area)
with a sequence-link field. The first
time a record is inserted on a track,
the sequence link of the overflow
record indicates that this is the
highest record associated with the
track. Thereafter, the sequence-link
field of each ove~flow record points to
the next-higher record for that track.

102 S/360 BOS Assembler with I/O Macros

ISFMS also updates the track index
to reflect this change. The first
index record for the track has the key
field-Changed to indicate the new
last-record located on the track. The
second index record for the track has
the~rack address (in the data area)
changed to point to the address of the
overflow record. If ~ record wit~ key
105 is added to a file organized as
shown in the previous illustrations and
if the overflow area is located on
Track 8, the track index records
contain the information shown in Figure
23.

INDEX ENTRIES FOR ONE TRACK

Before @] Track 1 @] Track 1

Addition 150 Address 150 Address

After @] Track 1 @] Track 8

Addition 140 Address 150 Record X
Address

Figure 23. Example of Track Index Entries
Before and After Addition of a
Record on Track 1

2. The record falls between the last
record presently on the track and the
last record or~ginally on the track~
Thus, it belongs in the overflow area.
ISFMS writes the record in the overflow
area followinq the last record
previously written. ISFMS searches
through the chain of records associated
with the corresponding track for this
record and identifies theseguential
position the record should take. Then
the sequence-link fields of the new
record, and of the record precedinq it
by sequential key, are adjusted to
point to the proper records. If
records 150, 140, and 130 are already
in the overflow area and record 135 is
to be added, for example, the
sequence-link fields of records 130 and
135 must be adjusted (Figure 24).

RECORD
SEQUENCE-LINK FIELD

Before Addition After Addition

130 140 135

13.5 - 140
(New Record)

Figure 24. Example of Sequence-Link Fields
Adjusted for Addition of a
Record (135)

Overflow-Area Option: The location of the
overflow area(s) for a logical file may be
specified by the user. The overflow areas
may be built by one of three methods:

1. Overflow areas for records may be
located on each cylinder within !he
E£im~~ that is specified by a Job
Control XTENT card for the data file.
In this case the user must specify the
number of tracks to be reserved for
overflow on each cylinder occupied by
the file. The overflow records that
occur within a particular cylinder are
written in the f~linde~£flow ~
for that cylinder.

The number of tracks to be reserved
for each cylinder overflow area must be
specified in the DTFIS entry CYLOFL
when a file of records is to be loaded
and when records are to be added to an
orqanized file.

2. An independent overflow area may be
specified for storing all overflow
records for the logical file. This
area may be on the same pack with the
data records, or on a different pack
that is on-line. However it must be
contained within one disk pack. A Job
Control XTENT card must be included
when the program is ex~cuted to specify
the area of the disk pack to be used
for this overflow area. This card must
be the last XTENT card that Job Control
reads for the file.

3. Both cylinder overflow areas (method 1)
and an independent overflow area
(method 2) may be used. In this case
overflow records are placed first in
the cylinder overflow areas within the
data file. When any cylinder overflow
area becomes filled, the additional
overflow records from that cylinder are
written in the independent overflow
area. The specifications required for
both methods 1 and 2 must be included
for this combined method of handling
overflows·.

A simplified example of a file orqanized on
disk by the Indexed Sequential File
Manaqement System is shown schematically in
Fiqure 25. The assumptions made and the
items to be noted are:

1. The track index occupies part of the
first track, and data records fill the
rest of the track.

2. The data records occupy part of Track
o and all of Tracks 1-7. Tracks 8 and
9 are used for overflow records in
this cylinder.

3. The master index is located on Track X
on a different cylinder. The cylinder
index is located on Tracks X+1 throuqh
X+20.

4. A dummy entry siqnals the end of each
index.

5~ The file was 6riginally orqanized with
records as follows:

Track
-0-

1
2

Records
5-75-
100-150
200-240

7 900-980

6. The track index oriqinally had two
entries for each track. It now shows
that overflow records have occurred
for Tracks , and 7.

7. Records 150, '40, and 130 were forced
off the track by insertions on the
track. Record 135 was added directly
in the overflow area. .

8. A sequence-link field (SL) has been
prefixed to each overflow record. The
records for Track , can be searched in
sequential order by·followinq the SL
fields:

Record Seguence-Link field·· {SL}
130 SL points to record with key

135.
135 SL points to record with key

'40.
140 SL points to record with key

150.
150 End of search. (Key 150 was

the hiqhest key on Track 1
when the file was loaded.)

Macro Instruction statements '03

-' o
.t=

til

"­W
0'1
o
ttl
o
til

:r::­
Ul
Ul
CD
E3
0"
I-'
CD
H

~
t+
;:r'

H
"­o
::Ji:
III
o
H
o
Ul

I-zj
LO
t::
H
CD

tv
U1 .
til
o
;:r'
CD
E3
III
t+
o
o
H1

III

I-zj
I-'
CD

o
t:I

t1
Ul
~ ..
o
H

;,Q
III
::l
N
CD
0.

0"
~

H
til
I-zj

:3
til

Track

~

TRACK INDEX DATA RECORDS

0

Track
I

Track
2

Track
7

Track
8

Track
9

Track
X

Track
X + 1

,K, 0 0 0 0 0 0 0 0

DATA RECORDS

1.00 I 0",0 I'~ 0.0 II I'" 000 1120
000

o 0 0

DATA RECORDS

1 'DO ! 00'0 ro i 00'0 I(1 no 000 1,<0 00'0 -I
o K DOD

DATA RECORDS

I~O I Ooro E 00'0 I(I ~O Ooro 1 W5 Ooro

K D K D K OK,D

OVERFLOW DATA RECORDS

,
150: SL :

~ * I

Data

D •

OVERFLOW DATA RECORDS

140 SL
to I
150 I

SL
130

to :
Data

135 I

D

I
Data 980 1 SL '

D K D

Data 135 SL
to i
140 '

Data

D

~--~------ - - - -- -- - - -

MASTER INDEX

K D o o o K D

CYLINDER INDEX

(I
:l' , Cylinder 9.1 4730, Track 0
! Address

L-~ ______ ~ __ ~ ____ ~ ______________________ ~,~ __ ------------------~--~----~

o o o

9. When the file was loaded, the last
record on Cylinder 1 was Record 980,
on Cylinder 2 Record 1850, and on
Cylinder 9 Record 4730. This is
reflected in the cylinder index.

10. When the file was loaded, the last
entry on track X+ 1 (first track of
Cylinder Index) was Record 4730, on
track X+2 Record 8560, on track X+3
Record 12750, and on track X+20 Record
856'0. This is reflected in the
master index.

11. When cylinder overflow areas are used,
the first record (Record 0) in the
track index for a cylinder is the
Cylinder Overflow Control Record
(COCR). It contains the address of
the last overflow recerd on the
cylinder arid the number of tracks
remaining in the cylinder overflow
area. When the number of remaining
tracks is zero, overflow records are
written in the independent overflow
area.

MACRO INSTRUCTIONS TO LOAD OR EXTEND A DISK
FILE BY ISFMS

The function of originally loadinq a file
of presorted records onto disk and the
function of extending the file by adding
new presorted records beyond the previous
high record are essentially the same. Both
are considered a LOAD operation (specified
by the DTFIS entry rOROUT), and they both
use the same macro instructions in the
preblem . program.

The areas of the disk packs used for the
file are specified by Job Control XTENT
cards. The areas are: the E£im~ area
where the data records are written, a
£Y!in~~£_ind~ area where the user wants
ISFMS to build the cylinder index, and a
master index area if a master index is to
be-built-Cspecified by the DTFIS entry
MSTIND) •

Durinq the load operation, ISFMS builds
the track, cylinder, and master (if
specified) indices. If either the data
records, the cylinder index, or the master
index exceeds the area provided for it,
ISFMS branches to a user's routine
(specified by the DTFIS entries DTAREX,
CYNDEX, and MANDEX, respectively). If the
dai~_~~~ has been exceeded, an ENDFL
instruction may be included in the DTAREX
routine to prepare the file for closing.
This permits the remaining records to be
treated as extensions. To continue
loading, the user must supply a,new XTENT
card for the area exceeded and restart the
job.

Whenever ~nY type of processinq is beinq
done for an Indexed Sequential file, all
packs of a multipack file must be on-line.

Whenever an organized file is to be
extended, the identical Job control DLAB
card that was originally used when the file
was loaded must be used aqain. However, if
an organized file is to be loaded on the
same disk pack a second time, the user
should prepare a new Job control DLAB card
to prevent his file from beinq treated as
an extension of itself. In the new DLAB
card, the user must chanqe either the
filename, creation date, or expiration
date.

Name of First Control Section: Whenever
theLOADfunctionisspecIfied, the user
must place a name in the START card in his
source deck to define the first control
section. This permits ISFMS to use an
ENTRY statement to identify a linkaqe
symbol defined in this control section and
used in subsequent control sections.
However, the user-written portion of the
proqram will not be in the control section
named by the START card. Instead, it will
be in a centrol section named by ISFMS.
The name assiqned by ISFMS is Filenaill§~.
Filename is the name of the last file for
whIch-r.OAD is specified, unless sequential
retrieval is specified for another file in
the program (see !1~£roJn§:truction~iQ!:
SegQ~nlial B§lri~Y~l_RY-ISE]kl.

As a result of these conditions, the
programmer must be sure to use the
applicable name if he wishes to continue
his first control section after it has been
Interrupted by a dummy section or a
different control section. He must use the
name assigned by ISFMS (rather than the
START card) whenever LOAD is specified for
any file in the source proqram.

Three different macro instructions are
always required in the problem proqram to
load original or extension records into the
logical file on disk.

,.--- ,I --,-- ,

IName lOp I Operand I
r---+I --+------------~
I ISETFL I filename I L- ---i-_____________________ J

The SETFL (set file load mode) macro
instruction causes ISFMS to set up the file
so that the load function can be performed.
The symbolic name of the file to be loade~
is the only parameter required in this
instruction. This name is the same as that

Macro Instruction Statements 105

specified in the DTFIS header entry for
this file.

When a file is being created, ISFMS
formats the track index, cylinder index,
and master index (if used) with dummy
entries. When a file is being extended,
the SETFL macro simulates a restart
condition so that the load function can
proceed as if it were making its initial
run.

.----.
IName lOp
j I
I I WRITE

Operand

filename,NEWKEY,IS
L---~ ______ ~ ________________ . ____________ ~

When a WRITE macro instruction with the
parameter NEWKEY is issued in the problem
program between a SETFL instruction and an
ENDFL instruction (the third macro reguired
for loading), it causes ISFMS to load a
record onto disk. It reguires three
parameters. The first specifies the
symbolic name of the file, as specified in
the DTFIS header entry. The §~~nd
parameter must be the word NEWKEY. The
thir,Q. parameter must be the letters IS to
indicate processing by the indexed
sequential system.

Before issuing the WRITE instruction for
an unblocked record, the problem program
must store the key of the record followed
by the data in a work area (specified by
DTFIS WORKL).

WORKL - Unblocked Records
J 1

IKey I Data
I I (With or without embedded key)
'---_-1.- ----I

The ISFMS routines construct the I/O area
(see Figure '8) by moving the data record
to the data area, moving the key to the key
area, and building the count area. Then
they transfer the record to disk storage.

For blocked records, the problem program
must store only the logical record in a
work area (specified by DTFIS WORKL). The
key must be part of the data record
(location specified by DTFIS KEYLOC), but
it must not be stored separately as it is
for unblocked records.

WORKL - Blocked Records
r- ---,
I Data I
I (With em bedd ed key) I
L- ---'

106 S/360 BOS Assembler with I/O Macros

The ISFMS routines move each data record to
the I/O area. After the block of records
in the data portion of the I/O area is
completed, ISFMS moves the key of the
highest record in the block into the key
portion of the I/O area. Then ISFMS
constructs the count portion and transfers
the records to disk storage.

As records are transferred, ISFMS
performs both a sequence check (to ensure
that the records are in order by key) and a
duplicate-record check. If an
out-of-sequence record or a
duplicate-record key is detected, ISFMS
branches to the corresponding user's
routine (specified by the DTFIS entries
SQCHEX and DUPREX, respectively).

After each record is written, ISFMS
makes the ID of that record available to
the problem program. The ID is located in
an 8-byte field labeled fi!~na~eH. In this
case filename·must be 5 characters long.
For example; if the file name in the D~FIS
header entry is PAYRD, the ID field is
addressed by PAYRDH. By reference to this
field, the ID of any selected records can
be punched Or printed 'for later use. This
will be required if the user plans to
retrieve records in sequential order
starting with the ID of a particular record
(see SETL..J1acro).

As records are loaded onto disk, ISFMS
writes track-index records each time a
track is filled, writes a cylinder-index
record each time a cylinder is filled, and
writes a master-index record (if DTFIS
MSTIND is specified) each time a track of
the cylinder index is filled. When a track
index is completed, ISFMS writes a dummy
record following the last index record.
This is used in subsequent operations to
indicate the end of the index and the
beginning of data records.

I

IName
I

Op Operand

ENDFL filename
~----~---~

The ENDFL (end file load mode) macro
instruction ends the mode initiated by the
SETFL macro. The symbolic name of the file
that has been loaded is the only parameter
required in this instruction. This name is
the same as the name specified in the DTFIS
header entry and the SETFL instruction for
this file.

The ENDFL macro performs a close-like
operation for the file that has been
loaded. It ~rites the last block of data
records, if necessary, and then writes an

end-of-file record after the last data
record. It also writes any index entries
that are needed.

Note: At least one or more records must be
loaded before the ENDFL macro instruction
can be executed. If no records are loaded
before the ENDFL mac~o is issued, the ENDFL
macro returns control immediately to the
user's program without writing an
end-of-file record. The file then has to
be reloaded with a new DLAB (disk label)
card.

MACRO INSTRUCTIONS TO ADD RECORDS TO A FILE
BY ISFMS

After a file has been organized on disk,
new records can be added to the file. Each
record is inserted in the proper place
sequentially by key. This function is
controlled by specifying ADD or ADDRTR in
the DTFIS entry TOROUT.

The file may contain either blocked or
unblocked records, as specified by the
DTFIS entry RECFORM. When the file
contains blocked records, the user must
provide ISFMS with the location of the key
field within each record. This is
specifiea-in the DTFIS entry KEYLOC. The
records to be added, however, must be
inserted one record at a time, and they
must contain a key field in the same
location as the records already in the
file.

Whenever the addition of records is to
follow sequential retrieval
(IOROUT=ADDRTR), the sequential-retrieval
instruction ESETL must be issued before the
first record is added to the file (see
ES]11- Macrg) •

One macro instruction is available for use
in the problem program, for adding records
to a file.

r--~------~---------
IName j Op Operand
~~----~------
I I WRITE filename,NEWKEY,IS
L-____ L-

When a WRITE macro instruction with the
parameter NEWKEY is issued in the problem
program and the DTFIS entry IOROUT
specifies ADD (or ADDR~R), ISFMS adds the
record to the previously organized file.
This is the same instruction, and requires
the same parameters, as the WRITE
instruction that is used for loading a
file. The only difference is that DTFIS

IOROUT specifies ADD (or ADDRTR) instead of
LOAD.

For adding records, the problem program
must store the key of the record followed
by data in the work area specified by DTFIS
WORKL, before issuing the WRITE
instruction. ISFMS then constructs the I/O
area and· transfers the record to disk
storaqe. As records are transferred, ISFMS
checks for duplicate record keys and
branches to the user's routine (specified
by DTFIS DUPREX) if a duplication is found.

To insert the new record properly, ISFMS
searches the indices to find the correct
track for the record. If the correct track
is not an overflow track, ISFMS then
searches the track for the correct position
sequentially. The record is -inserted, all
following records are shifted, and the
highest record on the track is transferred
to the appropriate overflow area. This is
the cylinder overflow area if CYLOFL has
been specified and if t~e area has not been
filled. If the cylinder overflow area does
not have space available, or if only an
independent overflow area has been
specified by an XTENT card, the overflow
record is transferred to the independent
overflow area. If the cylinder overflow
area has been filled and an independent
area has n01 been specified, however, there
is no place to store the overflow record.
ISFMS then branches to the user's routine
specified by the DTFIS entry ADAREX. The
user should specify an independent overflow
area to store this and other overflow
records. ISFMS also branches to the ADAREX
routine if an independent overflow area is
specified but has become filled. In either
case the job should be restarted with a new
XTENT card included for the independent
overflow area.

Whenever records are to be inserted into
a logical file of Rloc~~~ records, ISFMS
first locates the correct block on the
track (after the proper track has been
found). The block is determined by
checking the key areas of the disk records.
Each key area contains the key of the
highest logical record in the corresponding
block. Then ISFMS examines the key field
wi~h!n each logical record in the block to
find the exact position to insert the
record. After the record is inserted, the
following logical records on the track are
shifted and reblocked, and the key areas
are adjusted. The last logical record on
the track is moved to the overflow area.

If the proper track for a record is an
ovgrflow track, ISFMS writes the record,
preceded by a sequence-link field in the
data area of the record, and adjusts the
appropriate linkages to maintain sequential
order by key. Similar to the operation

Macro Instruction Statements 107

described for the end record in the
preceding paragraphs, ISFMS writes the new
record in either the cylinder overflow area
or the independent overflow area, or .i t
branches to the user's routine if
necessary.

If the new record is higher than all
records presently in the file, ISFMS checks
to determine if the last track containing
data records is filled. If it is not, the
new record is added, replacing the
end-of-file record. The end-of-file record
is written in the next record.location on
the same track, or on the following track
in the prime data area. Another track must
be available within the file limits. If
the end-of-file record is the first record
on a track, the new record is written in
the appropriate overflow area. After each
new record is inserted in its proper
location, ISFMS adjusts all indices that
are affected by the addition.

MACRO INSTRUCTIONS FOR RANDOM RETRIEVAL BY
ISFMS

When a file has been organized by ISFMS,
records can be retrieved in random order
for processing and/or updating. Retrieval
must be specified in the DTFIS entry
IOROUT. Random processing must be
specified in the DTFIS entry TYPEFLE, and
updating (if used) must be specified in
DTFIS UPDATE. If a multipack file is being
processed, all packs must be ·on-line.

Because random refererice to the file is
by record key, the problem program must
supply the key of the ~esired record to
ISFMS. To do this the key must be stored
in the main-storage key field specified.by
the DTFIS entry KEYARG. The specified key
designates both the record to be retrieved
and the record ~o be written back into the
file in an updating operation.

Name of First Control Section: When DTF
IOROUT=RETRVEand-TYPEFLE=RANDOM are used,
ISFMS names the first CSECT in the DTFIG
macro IICSCT •. If this DTF is used alone,
the user's program will come under this
CSECT name. If it is used in the same
program with other DTFs, the name of the
user's first control section will be
determined as explained under ~~££Q
Instructions for S~uential Retrieval by
ISf~~. ------ <

Two macro instructions are available for
use in the problem program for retrieving
and updating records randomly.

108 S/360 BOS Assembler with I/O Macros

I
IName
I

Op

READ
L-____ ~ ___ ~

Operand

filename,KEY,IS

The READ instruction causes ISFMS to
retrieve the specified record from the
file. This instruction requires three
parameters. The fi£st~~meter-specifies
the symbolic name of. the file from which
the record is to be transferred to main
storage. This name is the same as the
name specified in the DTFIS header entry
for this file. The second~ramet~-must
be the word KEY. The thir~rameter-must
be the letters IS to indicate processing by
the indexed sequential system.

To locate the record ISFMS searches the
indices to determine the track on which the
record is stored, and then searches the
track for the specific record. When the
record is found, ISFMS transfers it to the
I/O area specified by the DTFIS entry
IGAREAR. The IOCS routines also move the
data portions of the record to the
specified work area if the DTFIS entry
WORKR is included in the file definition.

Wh~n records are blocked, ISFMS
transfers the block that contains the
specified record to the I/O area. It makes
the individual data record available for
processing either in the I/O area or the
work area (if specified). For processing
in the I/O area, ISFMS supplies the address
of the record in the register specified by
DTFIS IOREG.

If ISFMS does not find the specified
record, it branches to the user's routine
specified by the DTFIS entry RTRVEX.

WRITE Macro

r-----~-------,---------------------------,
IName Op Operand I
r----~----~ ,
I WRITE filename,KEY,IS I ________ .J

The WRITE instruction with the parameter
KEY is used for random updating. It causes
ISFMS to transfer the specified record from
main storage to disk storage. This
instruction requires three parameters. The
fi£st~Earamete~ specifies the symbolic name
of the file to which the record is to be
transferred. This name is the same as the
name specified in the DTFIS header entry
and in the preceding READ instruction for
this file. The §econd~~~~eter-must be
the word KEY. The 1hird £arameter-must be
the letters IS.

ISFMS rewrites the record retrieved by
the previous read instruction for the same
file. The key specified in the key field
for the READ instruction determines where
the record is written. The key need not be
specified again, ahead of the WRITE
instruction.

MACRO INSTRUCTIONS FOR SEQUENTIAL RETRIEVAL
BY ISFMS

When a file has been organized by ISFMS,
records can be retrieved in sequential
order by key for processing and/or
updating. Retrieval must be specified in
the DTFIS entry IOROUT. Sequential
processing must be specified in the DTFIS
entry TYPEFLE, and updating (if used) must
be specified in DTFIS UPDATE.

Although records are retrieved in order
by key, sequential retrieval can §ta£1 at a
record in the file identified either by key
or by the ID (identifier in the count area)
of a record in the prime data area. Or,
sequential retrieval can start at the -
beginning of the logical file. The user
specifies, in the SETL macro, the type of
reference he will use in the problem
program.

Whenever the starting reference is by
key and the file contains B!g£~~g records
(RECFORM=FIXBLK), the user must also
provide ISFMS with the position of the key
field within the records. This is
specifiea-Ifi the DTFIS entry KEYLOC. To
search for a record, ISFMS first locates
the correct block by the key in the ~~~
~~2. of the disk record. (The key area
contains the key of the highest record in
the block.) Then, ISFMS examines the key
field within each record in the block to
find-the-specified-record.

Whenever ~n~ type of processing is being
done for an Indexed Sequential file, all
packs of a multipack file must be on-line.

Name of First Control Section: When
sequential-retrIevalisspecified, the user
must place a name in the START card in his
source deck to define the first control
section. This permits ISFMS to use an
ENTRY statement to identify a linkage
symbol defined in this control section and
used in subsequent control sections.
However, ~he user-written portion of the
program will not be in the control section
named by the START card. Instead, it will
be in a control section named by ISFMS.
The name assigned by ISFMS to the user's
first control section is Filename3 whenever
sequential retrieval alone-CIOROUT=RETRVE
and TYPEFLE=SEQNTL or RANSEQ) is specified
for ~n~ file in the source program.
Fi!~n~me is the DTFIS header name of the

fi£st file (in input sequence) for which
sequential retrieval is specified.

If sequential retrieval alone
(IOROUT=RETRVE) is not specified for any
file, the name assigned to the user's first
control section depends upon the other
functions (IOROUT) and/or types of
processing (TYPEFLE) specified for the
files in the source program. If either
sequential add-retrieve (IOROUT=ADDRTR and
TYPEFLE=SEQNTL or RANSEQ) or load
(IOROUT=LOAD) is specified for any file,
ISFMS names the user's first control
section. If both are specified, for
different files in the source program, the
naNing function that occurs !~st (in input
sequence) determines the name that ISFMS
assigns, as follows:

• If sequential add-retrieve
(IOROUT=ADDRTR and TYPEFLE=SEQNTL or
RANSEQ) occurs last, the control
section name is Filename3. Filename is
the DTFIS header-name-o~the l~st fIle
for which sequential add-retrieve has
been specified.

• If the load function (IOROUT=LOAD)
occurs last, the control section name
is FilenameU. Filename is the DTFIS
header-name-of the-last file for which
the load function has-been specified.

If neither sequential retrieval,
sequential add-retrieve, nor load is
specified for any file in the source
program, ISFMS does nQl name the user's
first control section. In this case, the
first control sect~on is named by the name
(if any) specified in the START card.

As a result of these conditions, the
programmer mus~ be sure to use the
applicable name if he wishes to continue
his first control section after it has been
interrupted by a dummy section or a
different control section. He must use the
name assigned by ISFMS (rather than the
START card) whenever sequential retrieval,
sequential add-retrieve, or load is
specified for any file in the source
program.

Four macro instructions are available
for use in the problem program for
retrieving and updating records
sequentially.

Macro Instruction Statements 109

r-----~

IName I Op
~ I

Operand

I I SETL filename,BOF
I I SETL filename,KEY
I I SETL filename,idname
L--~ ______ ~.

The SETL (set limit) macro instruction
initiates the mods for seguential
r~trieval, and initializes the ISFMS
routines to begin retrieval at the
specified starting address. It requires
two parameters. The iir§i-parameter
specifies the symbolic name of the file
(specified in the DTFIS header entry) from
which records are to be retrieved.

I

I
~
I
I
I

J

The specification entered as the ~~£Qnd
E£££mete£ depends on the starting reference
that is used for the file: beginning of
the file, key, or ID.

BOF: If retrieval is to start at the
beginning of the logical file, the letters
BOF (beginning of file) must be entered as
the second parameter.

KEY: If retrieval is to start at the
record that contains a specific key
(control information), the word KEY must be
entered as the second parameter. In this
case, the key of the desired record must be
stored in the main-storage ~gy field
specified by the DTFIS entry KEYARG. The
key must be supplied in this field before
issuing the SETL instruction for the file.
If ISFMS cannot find the starting record,
it branches to the user's routine specified
by the DTFIS entry RTRVEX.

idname: if retrieval is to start at the
record that has a specific disk address
(identifier - ID), the second parameter
must specify the symbolic name of a field
in main storage. The disk address of the
first record to be retrieved must be stored
~n this field before the SETL instruction
is issued for the file. This idname field
must be eight bytes long and the user must
supply the record identification (MBBCCHHR)
as listed here. All numbers must be
supplied in binary notation •.

Con­
Byte Ident. tents

o M· 2-255

Information

Number of the extent
in which the starting
record is located.
The extents for the
file must be numbered
so that the first
extent is number 2,

11Q S/360 BOS Assembler with I/O Macros

1-2 B,B

3-4 C,C

5-6 H,H

7 R

ESETL Macro

r- •
IName 1 Op
J I

0,0

the second extent
number 3, etc.

Reserved for cell
number, which relates
to the IBM 2321 Data
Cell Drive. These two
bytes are always zero
for 2311 disk-storage
references.

0,1-199 Number of the cylinder
(1-199) in which the
record is located.

0,0-9

1-254

The first byte is
always zero, and the
second byte specifies
o~e of the 199
cylinders avail~ble
for data records in a
disk pack. These two
bytes with the next
two (HH) Frovide the
track identification.

Number of the
read/write head (0-9)
that applies to the
record. The first
byte is always zero,
and the second byte
specifies one of the
ten disk surfaces in a
disk pack.

Sequential number of
the record on the
track.

,
I Operand I
+- ,

I I ESETL I filename I
L---- . I ~ ---J

The ESETL (end set limit) macro instruction
ends the sequential mode initiated by the
SETL macro. The symbolic name of the file,
which must be the same as the name
specified in the DTFIS header entry and in
SETL, is the only parameter required in
this instruction.

If blacked records are specified, ESETL
writes the last block back into the disk
file in its previous location, if
necessary_

When the program requires sequential
retrieval followed by the addition of
records to a file (IOROUT=ADDRTR), the
ESETL macro instruction must be issued at
the end of the sequential retrieval and
before a WRITE instruction is issued for
the first addition. If sequential
retrieval is to be restarted after the

additions are completed, the key or ID of
the last record retrieved must be saved.
To return to sequential retrieval, the SETL
macro instruction must be issued again.

Ir--~----r ,
,Name I Op ,Operand ,
I----+----+---------------~
, ,GET, filename", IS I
I ,GET, filename,workname,IS ,
'-___ ..L-

The GET macro instruction causes ISFMS to
retrieve the next record in sequence from
the file. It can be written in either of
two forms, dependinq on where the record is
to be processed.

The first form is used if records are to
be processed-in-the I/O area (specified by
DTFIS IOAREAS). It requires three
parameters, the second of which is blank
and represented by a comma. The fir§i
N'£,2,mete.f specifioes the symbolic name of
the file from which the record is to be
retrieved. This is the same name as that
specified in the DTFIS header entry and in
the SETL macro instruction for this file.
ISFMS transfers the record from this file
to the I/O area, and the record is
available for the execution of the next
instruction in the problem program. The
thi.£Q_NraID~te.f must be the letters IS to
indicate processinq by the indexed
sequential system. ISFMS makes the data
portion of each record available by
supplyinq its address in' the register
specified by the DTFIS entry IOREG. When
the unblocked records are specified, the
key portion of each record is available at
the area specified in the DTFIS entry
IOAREAS.

The second form of the GET instruction
is used-if-recordS are to be processed in a
work area (DTFIS specifies WORKS). It
requires three parameters. The firs! is
the symbolic name of the file, the second
is the symbolic name of the work area; and
the !hirQ_~ra~~te.f is the letters IS.
ISFMS transfers both the key of the r~cord
and the data to the specified work area for
unblocked records. For blocked records,
ISFMS transfers only the data portion of
the record to the specified work area. The
record is available £or the execution of
the next program instruction.

If blocked records and updatinq are
specified in the file definition, each GET
that transfers a block of records to main
storage will, if necessary, also write the
preceding block tack into the disk file in
its previous location. GET writes the
precedinq block if a PUT instruction has
been issued for at least one of the records

in the block. If no PUT instructions have
been issued, updating is not required for
this block and GET does ll2i write the
block.

r-----~-------,I- ----,
,Name Op ,Operand ,
r- -+- ------1
, PUT, filename" IS ,
, PUT, filename,workname,IS ,
L--.--,-__ ..L-

_____________________ J

The PUT macro instruction is used for
sequefrtial updating of a disk file, and
causes ISFMS to transfer records to the
file in sequential order. It must be
preceded by a GET instruction for that
file. The PUT instruction may be written
in either of two forms, depending on where
records are processed.

The first form is used if records are
processed in the-I/O area (specified by
DTFIS IOAREAS). It requires three
parameters, the second of which is blank
and represented by a comma. The first
parameter specifies the symbolic name of
the file to which the records are to be
transferred. This is the same name as
specified in the DTFIS header entry, the
SETL instruction, and the GET instruction
for this file. The !hi£~£arameter must be
the letters IS to indicate processinq by
the indexed sequential system.

The second form of the PUT instruction
is used'I~records are processed in a work
area. It requires three parameters. The
first is the symbolic name of the file, the
se£QnQ is the symbolic name of the work
area, and the third is the letters IS. The
work-area name may be the same as that
specified in' the precedinq GET for this
file, but this is not required. ISFMS
moves the record from the work area
specified in the PUT instruction to the I/O
area specified for the file in the DTFIS
entry IOAREAS.

When unblocked records are specified,
each PUT writes a record back onto the disk
file in the same location from which it was
retrieved by the preceding GET for this
file. Thus, each PUT updates the last
record that was retrieved from the file.
If some records do not require updating, a
series of GET instructions can be issued
without intervening PUT instructions.
Therefore, it is no! necessary to rewrite
unchanqed records.

When blocked records are specified, PUT
instructions do not transfer records to the
disk file. Instead, each PUT indicates
that the block is to be written after all
the records in the block have been

Macro Instruction Statements 111

processed. When processing for the Block
is complete and a GET is issued to read the
next block into main storage ~ that GET
also writes the completed block back into­
the file in its previous location. If a
PUT instruction is nQ1 issued for any
record in the block, GET does not write the
completed block. At the end of the file
the ESETL macro instruction writes the last
block processed, if necessary.
NOTE: The user should insert an LTORG
statement in his assembler deck whenever
more than one control section. is generated
by the ISFMS macros (Load and/or Retrieve
functions). This is to provide
addressability for·the generated literals
in the imperative macros.

PROCESSING WITH STR DEVICES

Logical IOCS provides macro instructions
for processing with STR (Synchronous
Transmitter-Receiver) devices. The~e
devices can be remotely attached to a
System/360, Model 30, 40, 50, 65 or 75,
through an IBM 2701 Data Adapter Unit,
equipped with an tBM Synchronous Data
Adapter, Type I.

Whenever STR macro instructions are used
to transmit and receive data or furnish
line control, each synchronous data adapter
must be defined by the declarative macro
DTFSN (Qefine !he rile for ~y!chronous
Ttansmitter-Receiver use) •. ~he operand
entries for the DTFSN (and for the DTFRF
macro) are described under Fil~efin!tioll
Mac£os.

Before processing can be done with STR
devices, the adapter must be initialized.
Logical Ioes provides a unique imperative
macro instruction, SOPEN (open STR
adapter), to initialize the adapter for STR
processing.

'12 S/360 BOS Assembler with I/O Macros

SOPEN-Macro

The SOPEN (open STR adapter) macro
instruction turns on the adapter,
establishes the mode, and establishes
synchronization. The SOPEN operands
determine the line interfaces on the
adapter, the data transmission rate, the
data transmission mode, and the type of
data checking to be performed. Where the
dial option is present, SOPENmay also dial
a number, monitor for ringing, and
establish a connection.

SOPEN must be issued for a line before a
READ, WRITE, or CNTRL macro is issued for
that line.

Completion of a SOPEN macro is indicated
in the traffic (or wait) bit and the unit"
exception bit in the channel command block
eCCB). The WAIT macro or the WAITM macro
should be used to check for completion of
the SOPEN macro.

The .lost data and unit exception
(end-of-file) bits should be.checked by the
problem program upon completion of a SOPEN
macro instruction. If SOPEN could not
establish synchronism, and an operator
reply of 4 was given, the lost data and
unit. exception bits will be on. If the
remote terminal attempted to transmit
before synchronism was established, the
unit exception bit will not be on,
indicating the SOPEN macro could not
complete successfully.

SOPEN can be reissued with the same or
different operands after a sctos macro to
begin transmission or reception of data to
the same or another device.

NAME OPERATION OPERAND COMMENTS

SOPEN DTFNAME=dtfname Symbolic name of DTFSN macro

DIAL=IN Answering
OUT Calling

°1 NTFAC=A *Wh ich line interface on the adapter to use.
H If BOTH may only be specified when DIAL=I N.

BOTH

H INTLRC=NO LRC check should be performed on record or
YES group mark.

INTLRCB=NO When I NTFAC=BOTH, I NTLRCB provides for
YES LRC check for interface B as I NTLRC pro-

vides for interface A.

H SPEED=X *data transmission rate expressed in
Y characters/second.
Z
CLOCK

SPEEDB=X When I NTFAC=BOTH, SPEEDB provides the
Y data transmission rate for interface B, as
Z SPEED provides for interface A.
CLOCK

H MODE=FULL Full duplex
FOUR Four wire half duplex
TWO Two wire half duplex

(data transmission modes)

MODEB=FULL When INTFAC=BOTH, MODEB determines the
FOUR data transmission made for interface B, while
TWO MODE provides for interface A. --

NUMB=n General register (2-11) loaded by problem
program with address of DIALO macro. Must
be supplied when DIAL=OUT.

Underlined choices will be assumed if operand is omitted.

°1 NTFAC must be "=A" if Dual Communications Interface feature is not present.

HSupplied by DIALO macro when SOPEN DIAL=OUT.

*For further reference see the section Communications: Synchronous Adapter in the publication IBM 2701 Data Adapter Unit:
Principles of Operation (Form A22-6864).

Figure 26. SOPEN Macro

The SCPEN macro instruction is coded
with the keyword operands as shown in
Figure 26.

Where the problem program wishes to use
the facilities of STR devices attached over
a dial network (with the Automatic Call
Feature installed), logical laCS provides a

declarative macro instruct jon, DIALO (dial
out), to supply the dial address and
various parameters required by the SOPEN
macro.

Macro Instruction Statements 113

NAME OPERATION OPERAND COMMENTS

DIALO

LENGTH=n The total number of digits in the telephone number
to be dialed (sum of IIACODE II and IIDIGITSII).

ACODE=number The area code, or any digits not included in
IIDIGITSII.

DIGITS=number The telephone number to be dialed (maximum of 7
digits).

INTFAC=A *Which line interface on the adapter to use.
B

INTLRC=YES LRC check should be performed on record or
NO group mark.

SPEED=X * Data transmission rate expressed in characters/
Y second.
Z
CLOCK

MODE=FULL Full duplex
FOUR Four- wire half duplex
TWO Two- wire half duplex

(data transmission modes)

Underlined choices will be assumed if operand is omitted.

* For further reference see the section, Communications: Synchronous Adapter, in the publication IBM 2701 Data Adapter Unit:
Principles of Operation (Form A22- 6864).

See SOPEN Macro.

Figure 27. DIALO Macro

DIA1.Q_ Mag:g

The declarative DIALO (dial out) macro
instruction generates the proper constants
required by the SOPEN macro to dial and
synchronize with the selected terminal.

The DIALO macro operands provide the
actual number to be dialed and the number
of digits in that number. Other operands
specify the line interface on the adapter,
the data transmission speed, and the data
transmission mode. For a further
explanation of DIALO operands see Figure
27.

Once the SOPEN and DIALO macros have
established the proper connect~on between
the STR d;evices, logical Ioes provi,des
several imperative macro instructions for
the actual processing (transmission,
reception, and control) of data.

'14 S/360 BOS Assembler with I/O Macros

I II I

INamelOp I Operand
I- I I
I IREADldtfname,STR
L----i----i. __________ __

-----'

The READ macro instruction is used to read
one record from the STR device specified in
the DTFSN (referenced in the READ macro by
"dtfname n).

The area into which the data will be
read must be determined by the problem
program before the READ is issued. The
problem program must store the starting
address of the designated area int9 the
"abuck" portion of the expanded STR CCB
(see Figure 42). The problem proqram must
also store the length of the designated
area in "lbuck" in the STR CCB.

Before a READ macro instruction is
issued, the line must be SOPEN1ed, and a
CNTRL macro with the operand PREP (prepare)
must be issued and successfully completed.
The problem program must be sure that the
READ is complete (using the WAIT or WAITM

macro) before issuing another READ for the
same adapter.

r--~--~I-------------
INamelOp I Operand
r---r---+--------------------.----~
1 IWRITEldtfname,STR
I I I

The WRITE Macro instruction is used to
write one record to the STR device
specified in the DTFSN macro (referenced in
the WRITE macro as "dtfname").

The area from which the data will be
written must be specified by the problem
program before the WRITE is issued. The
problem program must store the starting
address of the designated area into the
"amuck" portion of the expanded STR CCB
(Figure 42). The problem program must also
store the length of the designated area in
"lbuck" in the CCB.

Before a WRITE macro instruction is
issued, the line must be SOPEN'ed, and a
CNTRL macro with the operand tNQ (inquiry)
must be issued and successf~lly completed.
The problem program must be sure that the
WRITE is complete (using the WAIT or WAITM
macro) before issuing another WRITE for the
same adapter.

r---~--~-------------------
INamelOp I Operand
I I --+-~----­
I ICNTRLldtfname,code,n
I I I

I

1
I·

The CNTRL (control) macro instruction
provides orders to the Data Adapter and the
terminal. Orders apply to ph~sical nondata
operations of a unit and are peculiar to
the unit involved.

CNTRL requires either two or three
operands. The first operand (dtfname) must
be the symbolic name of the DTFSN macro or

. line on which to perform· the function
specified in the code operand of the CNTRL
macro. The second operand specifies the
mnemonic codes (see Figure '4) for the
operation to be performed:

EOF (End of Transmission) ends the
transmission to an STR device. EOF
may not be used during a read sequence
(the time between a PREP issued·and an
EOF recei ved) •

INQ (Inquiry) sends INQ to the STR device.
INQ must be successfully completed
before a WRITE is issued. . The INC
RCVD (inquiry received) bit on in the

Expanded STR CCB (see Fiqure 42)
should be checked. If INQ RCVD is ON,
the remote terminal is attemptinq to
transmit and the CNTRL INQ cannot
complete successfully. INQ maybe
issued following a CNTRL PREP (when
INQ is issued following a PREP, the
PREP operation is discontinued). INQ
may not be issued during a read
sequence, or during a write sequence
(the time bet w,een an INQ issued and
EOF).

PREP (Prepare) monitors the line for
receiving INQ, EOF, or TEL from the
5TR device. Before a READ is issued,
PREP must be successfully completed.
PREP may not be issued during a write
sequence.

TEL (Alternate Mode) sends the TEL signal
to an STR device. TEL may not be
issued during a read or write
sequence.

The ihi£~oper~ng (n) specifies a count
to be used if other than:

EOF - 2
TEL - 2
INQ - 10
PREP - Not applicable

This count is the number of times the
particular signal will be sent until the
correct reply to that signal is received.
When the count is exceeded, an error
condition results. An operator messaqe is
given.

The DTFSN must be SOPEN'ed before any
CNTRL macro is issued.

If the problem program issues an EOF,
INQ, PREP, or TEL out of sequence (durinq a
read or write sequence), an operator
messaqe is issued, the STR lines are
properly disabled, and the job is
terminated with a dump.

The problem program must be sure that a
CNTRL macro is complete (using the WAIT or
WAITM macro) before issuing another
imp~rative STR macro instruction.
Exceptions to this are: SCLOS (close STR
adapter), which may be issued at any time,
and an INQ issued following a PREo, which
has been explained previously.

CDCNV Macro

ri----~I-----~'~---------------------·--------------,
INamelOp IOperand I
I I I ,
I ICDCNVltype,startaddr,lenqth I
I I

Macro Instruction statements 115

The CDCNV (code conversion) macro
instruction provides for the ccnversion of
the internal code of the transmitter
(EBCDIC, BCD, or Binary) to the standard
STR transmission code (fixed count
four-out-of-eight [4/8]), or for the
conversidn of 4/8 code to the internal code
of the receiver.

The first·of three required operands,
"type",-is coded as A, B, C, 0, E, or F,
and specifies:

A - Convert for transmitting EBCDIC (256
character set) from System/360.

B - Convert for receiving EBCDIC (256
character set) from the terminal.

C - Convert for transmitting EBCDIC (256
character set) to a 1978 in column
binary mode.

o ~ Convert for receiving EBCDIC (256
character set) from a 1978 in column
binary mode.

E - Convert for transmitting
character set) or binary
set) to any STR device.
characters are replaced
(1248 ••••) •

BCD (56
(64 character
All invalid

wi th colon

F - Convert for receiving BCD (56 character
set) or binary (64 character set) from
any STR ·device.

The §~on~_QE~~2ng (startaddr) specifies
the symbolic name of a full word containing
the actual address of the leftmost byte of
the field to be converted.

The 1hi~g_QEg~~nQ (length) specifies the
symbolic name of a half word containing the
number of bytes to be converted.

For types A and C, each EBCDIC character
is converted to two 4/8 characters.
Therefore, the length of the field provided
for the converted· characters must be twice
the length of the area being converted.

For types Band 0; two 4/8 ·characters
are converted to one" EBCDIC character.
Therefore, the length of the converted
field is one-half the length of the area to
be converted.

Also, for types E and F, the BCD or
substitute blank (2-8 punches) translates
as "2- 4- 8-0" in 4/8 code while a blank (no
punches) translates as "R-O-X-N" in 4/8
code. The CDCNV macro, types E and P, may
be modified to transmit or receive the BCD
or substitute blank. (See !£penQix 1.)

For a discussion of the WAIT and WAITM
macros used for processing with STR

116 S/360 BOS Assembler with I/O Macros

devices, see PROCESSING RECORDS-WITH
PHI.§.!~AL IOCS, under WAI:L~ and WAITM
Magro.

SCLOS Macro

r-- (I Ii ,
INamelOp 10perand
I I I
I I SCLOS I dtfname

I ,
I

L-_~ ___ _'__ _____ J

Logical IOCS also provides a unique macro
for completion of STR processing. The
SCLOS (close STR adapter) macro turns off
the adapter. It may be issued at any time
in the problem program. SCLOS must be
issued when all transmission to the line
specified in dtfname is co~pleted, or when
the problem program wishes to SOPEN the
line with different operands. The problem
program should SCLOS all lines before
end-of-job.

Logical IOCS provides macro support
routines designed to supply the facilities
for sending and receiving data. It uses an
IBM 270' Data Adapter Unit equipped with an
IBM Synchronous Data Adapter--Type II,
connected by leased or dial line to a
remote IBM System/360, Model 30, 4~, 50,
65, 67 (working in 65 mode), or 75. The
remote CPU is equipped with an IBM 2701
Data Adapter Unit with an SDA II or an IBM
2703 Transmission Control Unit with Binary
Synchronous features.

Transmission is initiated in a
point-to-point, CPu-to-cPU communications
environment when one CPU successfully ~ends
the Inquiry (ENQ) signal to the other CPU.
For a leased line, BSC macro support
p~ovides the CNTRL Prepare (PRP) macro
instruction to receive the ENQ and the
CNTRL ENQ macro instruction to send the
ENQ. (READ ENQ--Type TQ--also receives the
ENQ signal.)

The ETX (ETB is also valid) control
character is expected to be the last
character of a message and, as such,
indicates normal completion to a READ
macro. Normally STX is the valid
start-character of a text message. The SOH
character is also valid. For transparent
text, PLE STX and DLE ETX (or OLE ETB) are
valid text-framing characters.

BSC support routines maintain a system
of alternating acknowledgments (ACK-O and
ACK-1), positive responses to alternate
text messages, for protection against
message duplication or loss_ The WRITE
macro includes, following the actual WRITE

channel command, a READ command to receive
the alternating acknowledgment. READ ENQ
(typeTQ) issues a READ command to' receive
a control character (ENQ) from the remote.
cpu. All other READ macro types issue a
WRITE command to send the appropriate
alternating acknowledgment for the last
message (or control character) received,
before issuing a READ command for this
message. If the incorrect alternating
acknowledgment is received, BSC error
recovery retransmits the previous text
mes'sage or con trol character until the
correct alternating acknowledgment is
received or until the retry count (RCOUNT
in the DTFBS macro instruction) is
exhausted. If the retry count has been
exceeded and the correct alternating
acknowledgment has not been received, the
Message Format Error and Wrong ACK bits are
posted to the BSC CCB.

BSC error routines perform ether
line~control analysis functions. The CNTRL
macros (except CNTRL EOT on a leased line
andCNTRL DSC) expect certain responses and
include the channel commands to receive
these responses.

CNTRL PRP
CNTRL EOT (dial line)
CNTRL WABT
CNTRL ENQ

Response-Expected

ENQ
DLE EOT, EOT, or ENQ
ENQ
ACK-Q

Invalid or unexpected responses detected by
BSC error routines are posted to the GCB
(unexpected response and I/O error) after
the retry count is exhausted.

Refer to ~~ndixM, ·Part-2 for CCB bits
to be checked after compfetion of BSC
operations. Refer to Appendix-M,Part-1·
for a table containing a more precise
description of each control character.
Refer to .!EEendix - M, . Part·· 3 for a sample
program illustrating how the problem
program can use BSC support macro
instructions for basic line control.

When BSC support macro instructions are
used to transmit and receive data, the data
adapter (SDA II) must be defined by the
file-definition macro DTFBS (Define The
File for Binary Synchronous Communication).
This macro (and the DTFRF macro) are
described under File Definition Macros.

Before any processing can be done within
the CPu-to-cPU environment, the data
adapter must be initialized •. Logical IOCS
provides the unique imperative macro
instruction, BOP~~ (open BSC adapter). to
initialize the. adapter •.

BOPEN·Macro

I

IName
I

,
OperationlOperand

I
BOPEN I DTFNAME=dtfname,

IINTRFC=!,
I B
IDIAL=YES,
I NO
I
ICODE=!
I B

The BOPEN macro establishes the mode and,
on a leased line, turns on the adapter (SDA
II) •

BOPEN must be issued for a line before
any IDIAL macro or any READ, WRITE, or
CNTRL macro. It may be reissued with the
same or different parameters following the
BCLOS macro instruction.

The firs~key~d·ope~£specifies the
symbolic name given ·to DTFBS for the line.

The second -keyword. operand· (INTRFC=)
specifies which adapter interface (A or B)
is to be used. If this operand is omitted,
INTRFC=A is assumed.

The third-keyword operand (DIAL=)
specifies whether the line is dial
(DIAL=YES) or leased (DIAL=NO). If the
DIAL parameter is omit~ed, DIAL=NO is
assumed.

The fourth-keyword operand (CODE=)
specifies the code that is EBCDIC (A or B).
This parameter applies when the dual code
feature of the SDA II is present. If the
CODE parameter is omitted, CODE=A is
assumed.

If DIAL=YES is specified, the BOPEN
macro must be followed by an IDIAL macro
instruction to establish the connection.
If DIAL=NO is specified, or assumed, BOPEN
should be followed by a CNTRL operation
(PRP or ENQ) or may be followed by a READ

ENQ (Type TQ).

At the completion of the BOPEN macro,
the problem program should check for normal
completion (as in !~ndix M,Part- 2)
before continuing.

The IDIAL macro instruction performs the
initial line control functions necessary
for dial lines. It dials a number,
monitors a line for "ringing" or handles
ID-verification. IDIAL also reads or
writes one text record from or to the
remote cpu.

Macro Instruction Statements 117

IDIAL must be issued for a dial line
immediately following the BOPEN macro
instruction and preceding any READ, WRITE,
or CNTRL operation. IDIAL should not be
used for a leased line.

the starting address and length (including
the text-framing characters) of the data to
be read or written before issuing the IDIAL
macro~

The area address and length fields in
the expanded BSC CCB must be loaded with

r- I --~I----

I Name I Operation I Operand
• -+ I
I I IDIAL I DTFNAME=dtfname
1----+ I
I I I
I I I DIAL=
I I I
r---+ I
I I I
I I I
I I I oID=
I I I
I -+ I

CALL#
ANS*
MAN

MONE
SNDID
RCVID
BOTH

I I I RD
I I I OPTYPE= WT
I I I WTX
I I --+
I I I REG=n
I I I
I I I
I I I
I I I r- I I

The IDIAL macro is coded with the
keyword operands as shown in Figure 28.

--,
Comments I

.----------f
Symbolic name given to the DTFBS for this line. I ,
This CPU is calling, answering, or

establishing the connection with
the remote CPU manually.

I
I
I

._--------1
ID-verification: no ID-verification, I

send ID characters, receive I
ID characters, or both send and I
receive ID characters. I

Read a text record.
Write a text record.
Write a record of transparent text.

General register (2-1') to be loaded by the
problem proqram with the address of the
IDLST~ This parameter may be omitted only
if there is no IDLST (i.e., DI~L=ANS/MAN,
ID=NONE).

-I
I
I
I
I

I # If DIAL=CALL, the Automatic Call Feature must be installed.
I OPTYPE must be either W~ or WTX.
I
I * If DIAL=ANS, OPTYPE must be RD.
I
I 0 If the ID parameter is omitted, ID=NONE is assumed.
L J

Figure 28. IDIAL Macro

For OPTYPE=WT (normal WRITE), the
problem program normally should provide the
text-framing characters, STX and ETX. For
OPTYPE=WTX (transparent WRITE), the problem
program must supply the start-character
sequence, DLE STX; macro support provides
the end-character sequence l DLE ETX. As
with any WRITE macro, no line control
characters should appear in the text unless
a transparent WRITE is used.

ID-verification procedures, if included,
allow two CP~'s connected by dial line to
identify themselves by exchanging sequences

118 S/360 BOS Assembler with I/O Macros

of up to 15 hexadecimal graphic characters.
The problem program must provide these
character sequences in an IDLST. The
correct control (or response) character
must be provided following the last
ID-character in each ID-seguence and must
be added· to the count. See Figure 29 and
!Ependi~~f~£i~l. The IDLST may also
contain the digits to be dialed (for
DIAL=CALL), up to 15 digits (expressed as
characters or as hexadecimal digits).
Refer to Figure 30 for the format of the
IDLST and for examples.

CONTROL (OR RESPONSE) CHARACTER TO BE INCLUDED
AFTER THE LAST ID-CHARACTER *0

i

I
I IDIAL

OPERANDS r---------.---------------------r------------------------------------~

DIAL=CALL/HAN
OPTYPE=WT/WTX

DIAL=ANS/MAN
OPTYPE=RD'

SNDID CHARACTERS

ENQ

ACK-O

RCVID CHARACTERS

ACK-O

ENQ

I ,

* Refer to Appendix H, Part 1 for the hexadecimal representation of the character and I
the length .in bytes to be added to the count. I

o The'problem programmer must provide both·SNDID and RCVID control (or response)
characters if he includes any,ID-verification (if he codes ID=SNDID/RCVID/BOTH).

Figure 29.ID-Character Sequence, Control Characters

I
I
I
I

Macro Instruction Statements 119

IDlST NUMBER OF DIGITS TO BE DIALED
DIAL DIGITS

COUNT * ID CHARACTERS TO BE SENT (SNDID)

COUNT * ID CHARACTERS EXPECTED (RCVID)

RCV AREA - 10 CHARACTERS RECEIVED WI LL BE READ
INTO THIS AREA AND CHECKED **

* COUNT includes the number of 10 - characters (up to 15) plus
the length in bytes of the control (or response) character.

** The length of the RCV AREA should be equal to the number of
10 - characters expected plus the length in bytes of the control
(or response) character expected.

Examples:

ill. DIAl=CAlL,ID=NONE

IDlST I X'4' I C'1234' I no. of digits - dial digits

[No other parameters are required.]

(2) DIAl=CAll,ID=SNDID

IDLST X'4' X '01 020304' I
X'4' C'RAL' X'2D'1
X'2' X '1070'

QL DIAl=CALL, I D=RCVI 0

IDLST X'4' C'1234'
X'l' X'2D'
X'5' C'BOS' X'1070'1

I

~ DIAL=CALL, ID=BOTH

IDLST X'4' C'1234'
X'4' C'RAL' X'2D'1
X'5' C'BOS' X'1070'1

I

no. of digits - dial digits
count ,- SNDID - ENQ
count - ACK-O
RCV AREA

no. of digits - dial digits
count - ENQ
count - RCVID - ACK-O
RCV AREA

no. of digits - dial digits
count - SNDID - ENQ
count - RCVID - ACK-O
RCV AREA

Figure 30. IDLST Format and Examples

ID-checking is performed by the CPU that
receives an ID-seguence. For example, if
ID=SNDID is coded, the remote CPU receives
and checks the ID-characters and control
(or response) characters. If the specified
ID-seguence(s) and responses are valid, the
first text record is read or written.

The WAIT macro or WAITM macro should be
used to check for the completion of the
IDIAL macro instruction •

• 20 S/360 BOS Assembler with I/O Macros

ill DIAL=ANS/MAN, I D=SNDI 0 ,OPTYPE=R 0

IDLST X'5' I C'BOS' X'1070' I count - SNDID - ACK-O
X'l' I X'2D' count - ENQ

RCV AREA

~ DIAL=AND/MAN,ID=RCVID,OPTYPE=RD

IDLST X'2' T X'1070' I count - ACK-O
X'4' I C'RAL' I X'2D' I

I
count - RCVI D - ENQ
RCV AR~A

..EL DIAL=ANS/MAN, I D=BOTH, OPTYPE=RD

IDLST X'5' 1 C'BOS' I X'1070'1 count - SNDID - ACK-O
X'4' I C'RAL' I X'2D'1 count - RCVID - ENQ

L--______ ~I RCV AREA

Notes:
• For DIAL=MAN,OPTYPE=WT;WTX the IDLST form is the

same as for the DIAL=CALL examples, except that no dial
digits are required.

• For DIAL=ANS/MAN,ID =NONE no IDLST is required.
(The REG =n parameter on the IDIAL macro instruction is
also not required.) The IDLST will be provided by macro
support.

Upon.completion of the IDIAL macro
instruction, the problem program should
check the normal completion bit in the BSC
flag bytes of the CCB.· If normal
completion is not indicated, the program
should check further in the "completion"
and "received" BSC flag bytes. (See
!E£endix·M, Part-2.)

Once the proper connection has been
established (with BOPEN and, on a dial
line, IDIAL), logical IOCS' provides

imperative macro instructions for the
actual processing (sending or receiving) of
data.

r----,-----------~i------------ I

INamelOperationlOperand I
----1

I
J---+- I
I IREAD Idtfname,BSC,type-code
L-__ ~ _______ ~~ ______ _

The READ macro instruction provides five
READ types, each of which causes the
reading of one record from the ~emote cpu.

•

•

•

•

The five types are:

~Qll1in~J1Ml. One record, of the
length specified in the lenqth field of
the expanded BSC CCB, is read into the
data area pointed to in the CCB.

Continue with leading graphics (TG) •
'The graphic characters contained in the
parameter list poinbed to by the CCB
are written to the remote cpu. (See
Figure 31 for the form of the parameter
list.) One record, of the length
specified in the CCB, is then read into
the data area pointed to in the
parameter list.

Repe~1Rl. A NAK control character
is sent to the remote cpu to request
retransmission of the last record. The
record, of the length specified in the
CCB, is read into the data area pointed
to by the CCB.

Re~at with leadin~~hics-1TL). The
graphic characters contained in the
parameter list pointed to by the CCB

DTFBS
(eCB) AREA ADDRESS FI ELQ

LENGTH
FIELD

READ area
length

Note: There may be up to seven graphic characters.

PARAMETER
LIST

The byte preceding the first graphic character is
reserved for a binary count of the number of graphics.

•

are written to the remote cpu. The NAK
control character is then sent to the
remote cpu to request retransmission of
the last record. The record, of the
length specified in the CCB, is then
read into the data area pointed to by
the para~eter list. See Fiqure 31.

Ingui£Y-11Ql. This READ-type may be
used to read the ENQ control character.
The ENQ signal, when received, is read
into the response area of the CCB.

The ihir~operanQ on the READ macro must
contain one of the available type-codes:

See the preceding description of each type.

Before issuing a READ macro, (except
READ TQ), the area address field and tpe
length field of the expanded BSC CCB must
be properly loaded with the startinq
address and lenqth (includinq the
text-framing characters) of the data area
(or the parameter list address and data
area length the types TG or TL--READ's with
leading qraphics).

The line must be established (with BOPEN
and, on a dial line, IDIAL) before the
first READ macro instruction is issued. A
CNTRL Prepare (PRP) should have been
successfully completed before issuing the
first READ on a leased line.

READ area address

CT

Figure 31. Parameter List for READ with Leading Graphics
(Type-Code TG or TL)

Macro Instruction Statements 121

The WAIT or WAITM macro should be used
to check for the completion of the READ
macro instruction.

Upon completion of the READ macro
instruction, the problem program sh~uld
check th~ normal completion bit in the BSC
flag bytes of the CCB. If normal
completion is not indicated, the program
should check further in the "completion"
and "received" BSC flag bytes. (See
!E,E.gndix M", Part, 2.) If normal completion
is indicated, the problem program should
also check the EOT received bit in the BSC
flag bytes. '

i M ---,.----------------------------,
INamelOperationlOperand
~ I I
I I WRITE I dtfname,BSC,type-code
i I I

The WRITE macro provides five WRITE types,
each of which causes the writing of one
record to ths remote cPU.

The f~ve WRITE types are:

• continue (Tn. One record, of,:t he
length specified in the CCB, is written
from the data area pointed to in the
CCB.

• .Tran§.Ear en t.:::.1g]f:t.::.JTX) or' Transparent
Block, (TXB1. One record (or block) of
the length specified in the CCB, is
written from the data area pointed to
in the CCB and' the correct
end-character sequence (DLE ETX or DLE
ETB, respectively) is written.

DTFBS ,
(CCB)

LENGTH
FIELD

PARAMETER
LIST

• Conversational-eTC). The problem
program must set'up a parameter list
containinq the length and starting
address of the WRITE d~ta area and the
READ data area in that order. One
record, of the length specified in this
list, is w,ri tten from the data area
specified in the list. The response
message (or control character) is then
read into the specified READ data area.
The' parameter list is of the form
indicated in Figure 32.

• Transparent·- Conversational {TV} • One
record, of the length specified in the
parameter list pointed to in the CCB is
written from the data area pointed to
in the parameter list. The character
sequence DLE ETX is written. The
response message (or control character)

, is then read into the specified READ
data area. Refer to Figure 32 for the
cprrect form of the parameter list.

The third operand must contain one of
the five available type-codes:

See the precedinq description of each type.

Before issuing a WRITE macro; the area
address field and the lenqth field of the
expanded BSC CCB must be properly loaded
with the starting address and length
(including the text-framing characters) of
the data area (or with the parameter list
address and X'FFFF' for types TC or
TV--conversational WRITE's). For

WRITE area length WRITE area starting address

REA D area length READ area starting address

Figure 32. Parameter List for Conversational WRITE's
'(Type TC or TV)

122 S/360 BOS Assembler with I/O Macros

WRITE-types TX, TXB, or TV, the OLE ETX (or
OLE ETB) character sequence provided by
macro support is not to be included in the
length.

The line must be established (with BOPEN
and, on a dial line, IOIAL) before the
first WRITE macro instruction. A CNTRL ENQ
should be issued before the first WRITE
macro on a leased line.

The problem program normally should
provide the text-framing characters, STX
and ETX, for WRITE continue (type TT) and
WRITE Conversational (type TC). For
transparent WRITE's (types TX, TXB, and
TV), the problem program must supply the
start-character sequence, OLE STX. Macro
support provides the corr~ct end-character
sequ~nce: OLE ETX for type TX or TV, OLE
ETB for type TXB. No line control
characters should appear in the text unless
a transparent WRITE is used.

A conversational WRITE (type TC or TV)
that reaches normal completion (a valid
text message was received) should be
followed by a READ continue (type TN) to
ensure that the system of alternating
acknowledgments is correctly maintained. A
conversational WRITE (type TC or TV) that
receives graphics or some other response
(not a valid text message) may be followed
by another WRITE or CNTRL operation.

On a switched line, if an EaT is
received in response to a text write, the
transmitting CPU (which issues the WRITE
macro) must issue a CNTRL EaT macro
instruction to allow the receiving CPU to
issue CNTRL ENQ and begin transmitting.

The WAIT or WAITM macro should be used
to check for the completion of the WRITE
macro instructlon.

Upon completion of the WRITE macro
instruction, the problem program should
check the normal completion bit in the BSC
flag bytes of the CCB. If n~rmal
completion is not indicated, the program
should check further in the "completion"
and "received" BSC flag bytes. (See
~ndix-.!1L-Par.:Ll.)

~1 ,

INamelOperationlOperand
.- I I
I ICNTRL Idtfname,code L-__ ~~ ________ ~ _____________________________ ~

The CNTRL (control) macro instruction
provides orders ·to the data adapter
pertaining to line control.

CNTRL requires two operands. ·The fi£§!
operand· (dtfname) must be the symbolic name
on the DTFBS macro. The second operand
specifies .one of the following mnemonic
codes for the operation to be performed:

•

•

•

•

PRP (Prepare) is used to monitor a
non-switch~d line for activity. The
operation completes when a signal of
activity (normally an ENQ) is received
from the remote CPU. CNTRL Prepare
should be coded preceding the first
READ macro and following BOPEN on a
non-switched line. CNTRL Prepare
should not be used for a dial line.

~End -of·· Transmission) is used to
send the End-Of-Transmission signal to
the remote cpu. -on a non-switched
line, there is no provision for reading
a response from the remote CPU. On a
switcbed line, Message Format Error and
the appropriate bit in the Received •
Byte of the Expanded BSC CCB (EaT, DLE
EaT, or ENW is posted~

WAB1-jWait Before Transmittingl sends
the WAit-l!efore-lransmitting (WABT)
sequence to the remote CPU and waits
for a response, normally an ENQ. The
problem program that reguests th~ delay
may reissue CNTRL WABT if not yet ready
to receive when the ENQ is received.

DSC (Disconnectl is used, on a switched
line, to indicate to the remote CPU
that the connection is being broken
(the line is being disabled) at this
CPU. CNTRL Disconnect must be followed
by BCLOS to disable the line. CNTRL
Disconnect should not be used on a
leased line.

• ENQ-1!ngQ!£Yl is used to bid for the
line and initiate transmission by
sending the ENQ control character.
CNTRL ENQ normally precedes a WRITE
macro. The expected response is ACK-9.
When CP.TRL ENQ elicits an outstanding
acknowledgement from the remote CPU (i.
e., when a WABT has been received), the
response may be ACK-O, ACK-1, or NAK.

The line must be established (with BOPEN
and, on a dial line, IDIAL) before issuing
the CNTRL macro.

The problem program must be sure that a
CNTRL macro is complete by using the WAIT
or WAITM macro instruction immediately
following the CNTRL macro instruction.

Upon completion of the CNTRL macro
instruction, the problem program should
check the normal completion bit in the BSC
flag bytes of the CCB. If normal
completion is not indicated, the problem
program should check further in the

Macro Instruction statements 123

"completion" and "received" BSC flag bytes.
(S ee !.EEendix M, Part~.

BCr.OS·Macro

togical IOCS provides a unique macro
instruction for completion of BSC
processing. The BCtOS macro turns off the
data adapter (SDA II) and clears the BSC
flag bytes. Before disabling the adapter,
BCLOS halts 1/0 on any command outstanding
to the SDA II. BCtOS must be issued when
all transmission on the line specified in
dtfname is completed or ~hen the problem
program wishes to use BOPEN (and IDIAL)
again with different parameters.

.----,-----------r.----------------------------~
INamelOperand IOperand
r-- I I
I 1 BCtOS Idtfname

I I

The problem program should check for the
completion of BCLOS by using the WAIT or
WAITM macrolo

When all data transmissicn is completed and
end-of-job is reached, the problem program
using BSC support macrosmgst issue the
ERRPT macro. ERRPT displays the error
statistics:

• Data Check
• Lost Data
• ;rntervention Required
• Tillie Out
• Unit Check

and the cou.nt of tot-al transmissions
received for this job. These hexadecimal
counts illustrate errors on the line or in
the modern equipment. Reqular display of
the counts ensures maximum. throughput for
the problem program through ea~ly detection
of freg~ently occurring errors.

ERRPT also performs functions essential
to the proper termination of a BSC job.
ERRPT removes the CCB from the CCB table
(BTAB) kept in the supervisor. The CCB is
entered in the table when a BOPEN macro is
issued for th~ CCB, and is only deleted by
ERRPT. Therefore, to avoid filling up the
CCB table, ERRPT should be issued following
the BCLOS macro for this CCB.

. , ---,.---------
INamelOperationtOperand
1 I I
I I ERRPT I dtfname
L--~ ________ ~ ______________ • ____________ ~

The ERRPT macro should follow the BCtOS
macro, and, at end-of-job, precede the EOJ
macro.

124 S/360 BaS Assembler with I/O Mae.ros

For more detailed information on the
format of these messages, refer to IBM
2Y~tem/3eO·Basic-Operatinq Sys~Qperator·
Messages, Form C24-5024.

For a discussion of the WAIT and WAITM
macros used for processing with BSC
support, see prQ£~§sinqRecords-with
Physical laCS, underWAI~MacrQ and WAITM
Ma£~.

PROCESSING RECORDS WITH PHYSICAL laCS

Records can be transferred to or from an
input/output device by issui~g physical
laCS macro instructions. These
instructions relate directly to the
physical laCS routines and bypass all
logical laCS routines. Thus routines for
such functions as blocking or deblockinq
records, performing programmed
wrong-Iength-record checks, swit6hing I/O
areas when two areas are used, and settinq
up Channel Command Words (CCW) are
eliminated. Any of these functions that
are r€quired for a problem proqram must be
provided by the user in his own
programming.

Physical IOCS routines contro1 the
transfer of data to or from the external
devi~e. These routines are:

Start I/O

Interruption

Channel Scheduler

Device Error

Thus, physical laCS macro instructions
provide the user with the capability of
obtaining data and performing non-data
operations in I/O devices, by issuing only
the I/O commands that he requests. For
example, if he is handlinq only physical
records, he does not need the IOCS ioutines
for blocking and deblocking logical
records. He can write his owp routines to
handle the characteristics of his data file
logically.

Three macro instructions are available
to the programmer for direct communication
with physical laCS: CCB (Command Control
Block), EtCP (Execute Channel· Program), and
WAIT. These are explained in the following
sections. Whenever physical IOCS macro
instructions are used, the proqrammer must
construct the Channel Command Words (CCW)
for his input/output operations. He uses
the assembler-instruction CCW statement for
this. However, when using physical laCS
for 7-track tapes, the user need not wrIte
CCW's for setting the mode of the tape.
Physical laCS automatically performs this

function. He must also recognize and
bypass checkpoint records if they are
interspersed with data re~ords on an input
tape.

r-- I

IName tOp 10perand
J------+--+_
IblocknameICCBISYSnnn,command-list-name,X'yyyy'
, I I

The CCB (Command Control Block) macro
instruction must be issued once in the
problem program for each I/O device that is
controlled by physical IOCS macro
instructions. It causes a command control
block (Figure 33) to be created. This
block is necessary to communicate
information to physical IOCS so that it can
perform desired operations (for example,
start I/O). The command control block also
receives status information after an
operation, and makes this available for use
by the problem program.

The CCB instruction must be labeled
(Blockname) with a symbolic name. This
name must be the operand in the EXCP and
WAIT instructions, which must refer to the
command control block.

Two operands are required in this CCB
instruction. A third operand is optional.
The firs~rand specifies the symbolic
unit (SYSnnn) for the actual I/O unit with
which this control block will be
associated. The name may be SYSRDR,
SYSLST, SYSIPT, SYSOPT, SYSLOG,
SYSOOO-SYS254. The actual I/O unit is
assigned to the symbolic unit by a Job
Control ASSGN card, or by the SYMUN macro
instruction.

The ~~Qll~oper~Q (command-list-name)
specifies the symbolic name of the first
CCW to be used with this CCB. This name
must be the same as the name specified in
the assembler CCW statement that constructs
the channel command word.

The 1hird~and (X'yyyy') may be used
to set the bits of bytes 2 and 3 at
assembly time. After the user determines
which bits he wishes to set on, and which
off, he enters the hexadecimal
representation of the binary value that he
wishes. The hexadecimal value must be
preceded by X and enclosed in single
quotes. For example, to set on byte 2, bit
6, he would enter X'0400'.

Only the las~ five bits of byte 2 are
used by the problem program to communicate
with physical IOCS, as shown in Figure 33.

However, the user may also wish to set (at
assembly time) some bits that IOCS normally
sets during program execution. For
example, if the user sets bit 6 of byte 3
on at assembly time, he can cause the
program to act as if the channel 9 overflow
condition has occurred when he begins
executing his program.

From the specifications in this CCB
instruction, the macro sets up an 8-byte
command-control block (Figure 33) as
follows:

0-1

2-3

The first two bytes are used for a
chain field that physical IOCS uses
for channel queueing. After a
record has been transferred, IOCS
places the residual count in these
two bytes. The problem program can
use this to check ~h~ length of the
record that was transferred.

The next two bytes are used for
transmission of information between
physical IOCS and the problem
program. (For example, the problem
program can test byte 2, bit 1 to
determine if the I/O device
detected a wrong-length record when
data was transferred.)

All bits are set to a 0 (off)
when the problem program is
assembled unless the third operand
is included in the CCB macro
instruction. If the third operand
is included,_ all bits set by IOCS
should be assembled as zeros (off).
During execution, each bit may be
set at 1 (on) by the problem
program or by a condition detected
by phy si,cal IOCS. In byte 2 , bits
3 and 5-7 are turned on by the
problem program. Any bits that are
turned on, during program
execution, by physical IOCS are
reset by IOCS the next time an EXCP
macro using the same CCB is
executed. The condition inaicated

Macro Instruction statements 125

4-5

by the setting of each bit is shown
in Figure 34.

Bit 0 of byte 4 is used to indicate
that a program-controlled
interruption has occurred. Like
the bits in bytes 2 and 3 (see
Fiqures 33 and 34), this is used to
transfer information from physical
laCS to the problem program. The
other bits of bytes 4 and 5 are a
hexadecimal representation of the
symbolic unit for the I/O device,
as specified in the first operand
of this CCB instruction.

126 S/360 BaS Assembler with I/O MacroS'

6-7 The last two bytes contain the
address of the CCW (or first
address of a chain of CCW's)
associated with this CCB and
specified symbolically in the
second operand.

For a description of the CCB, expanded
for STR use, see: File Definition-Macros,
Processing with-sTR-Devices~DTFsN,-DT'FRF).
For description of the expanded BSC CCB,
see: File Definition·Macros,-Binary­
~nchronous Communication jDTFBS, DTFRF)·.

Chain
--
Count

Bytes - 0 1 2

Used For: Channel Queuei~g

Residual Count

,,/

.... ..,

Traffic Wrong-
Bit Length
(Wait) Record

Bits 0(X'80') I(X'4d')

Set On by--l PIOCS
I

PIOCS

I
I
I
I
I

Data Track
Check in Overrun-
Count Disk
Area - Disk -----
------ 1287

1285/1287 Late
Data Check Stacker

Select
(Document

----- Mode)
BSC Lost ------
Data BSC Bus-

Out Check

Bits 0(X'80 ') 1 (X '40')

I I

Set ON bY-i PIOCS : PIOCS

PIOCS = Physical 10CS
Pr. Pr. = Problem Program

Unrecov-
erable
I/O Error

2(X'20')

: PIOCS

I

End of
Cylinder
Disk
- - ---
1285/1287
Non-
Recovery

2(X'20')

PIOCS

Transmission
Information

Transmitting
Information
Between Physica I
10CS and Problem
Program

Byte 2

Accept
Unrecov-
erable
I/o Error

3(X'10')

Pro Pro
o

Reserved
for PIOCS

4(X'08')

Byte 3

2540 Equip. Question-
Chk., or able
Disk or Condition
Tape Read
Error
--- --
1285/1287
Keyboard
Correction
(Journal
,ape)

1-------
BSC
Intervention
Required
3(X' l0') 4(X'08 1

)

PIOCS PIOCS

Figure 33. Command Control Block eCCB)

Symbolic Unit
Address

3 4 5

Hexadecimal Representation of
SYSnnn (Assuming that the

I High-Order Bit of Byte 4 is 0):
I I SYSRES = 0000

SYSRDR = 0004
SYSLST = 0008
SYSIPT = OOOC

I SYSOPT = 001 0

I SYSLOG = 0014

I SYSOOO = 0018

I I
SYSOOI = 001C

I I
etc.

ll
..............

...........
.......

.......

Wait for Accept 2311 User
Device End Data Check Error

in Count, or Routine
Disk or
Tp.Rec:id Err.

5(X'04') 6(X'02 1
) 7(X'OI')

Pro Pr. Pro Pro Pr. Pr.

.(

Unit Excep- Carr. Chan. Device End
tion (End 9 Overflow,
of File), or or Verify
Carr. Chan. Error for
12 Overflow Disk
1----- - ---

1287 Hopper 1285/1287
Empty Equipment
(Document Check
Mode) I- - - -- --

BSC Time
Out

5(X'04') 6(X'02') 7(X'OI')

,
PIOCS PIOCS PIOCS

/

6

CCW
Address

Address of CCW
Associated
with This CCB

Byte 4

Program
Controlled

'1
I
I
I

Interruption

0(X'80')

PIOCS

7

Macro Instruction statements 127

CONDITION INDICATED
BYTE BIT

1 (ON) o (OFF)

2 o - Traffic Bit (Wait) I/o Completed (Channel End) I/o Requested and Not Completed

1 - Wrong - Length Record Bit 41 in CSW is ON - -
2 - Unrecoverable I/o Error I/O Not Executed - -
3 - Accept Unrecoverable I/O (Bit 2 ON) Return to User after Physical 10CS Attempts to Terminate Job when Unrecoverable

Correct I/O Error Error Detected

4 - Reserved for PI OC S - - - -
5 - Wait for Device End PrinteVo be Tested for Carriage Channel 9 or 12 - -

overflow, or Punch to be tested for errors, or the
user has issued a CCB requesting physical 10CS
to post byte 3, bit 7 at Device End.

6 - Accept Data Check in Count, or Disk or Return to User After Physical 10CS Attempts to Terminates the Job if the Read
Tape Read Error. (Bit 3 of Byte 3 ON) Correct the Disk or Tape Error. Cannot' be Accomplished

7 - User Error Routine User will Handle Unit Check (Test Bit 2) Physical 10CS Error Routine

3 o - Data Check in Count Area - Disk Yes No

~---- ----------- - - - -- - - - - -- - - - - - --- --- - - - - - --- ---
- Data Check: 1285 or 1287 . Yes No

f------- --- - --- - - -- - ----- - - - - -------- - - ------------
- BSC Lost Data Yes No

1 - Track Overrun - Disk Yes No
--------- - ------- --- - -------- ------ - - ------------

- Late Stacker Select 1287 Document Mode Yes No
-- - -- -------- - - -- -- - - - - - ------ - - --- - --- - --- ----------

- BSC Bus - out Check Yes No

2 - End of Cylinder - Disk Yes No

-------------------- - -- - - - - -- - - --- ---- - - - -- -- --------
- 1285/1287 Non -Recovery Dacument Yes No

Jam or Tom Tape

3 - 2540 Equipment Check, or Tape or Disk Yes No
Read Error

~--------- -------- ------- - - -- -------- - - - - -- - - -----
- 1285/1287 Keyboard Correction Journal Yes No

Tape Mode

~---------------- f---- - - - --- - - - -- - - - - -- - - - - ------
- BSC Intervention Required Yes No

4 - Questionable Condition Card: Unusual Command Sequence - -
Tape: Converter Check
Disk: No Record Found

's - Carriage Channel 12 Overflow *#, or Yes No
Unit Exception (End of File)

1-- -- ------- - ---- -- - -- -- - - - - -- - - - - - - - - - ----
- Hopper Empty 1287 Document Mode Yes No

6 - Carriage Channel 9 Overflow *#, or Yes No
Verify Error for Disk

I- - - -- - - - - -- - - - - ---- -- -- -- - - - - -- - - -- - - --------
- 1285/1287 Equipment Check Yes No

r---- --- - - --- - - - - - - - - - --- - - ------- - -- - - - - - - -- -
- BSC Time Out Yes No

~'> 7 - Device End Has Occurred* - -
4 0- Program-Controlled Interruption PCI Bit in PSW is ON - -

* Set ON Only if Byte 2, Bit 5 is ON
DVE needed in 10CFG Macro

Figure 34. Conditions Indicated by CCB Bytes 2, 3, and q

128 S/360 BOS Assembler with I/O Macros

EXCP i1acro

i
IName
I

Op

EXCP

Operand

blockname

The EXCP (execute channel program) macro
instr1,lction'reguests physical IOCS to start
an input/output operation for a particular
I/O device. The symbolic name (blockname)
of the CCB established for the device is
the only operand required in this
instruction.

Physical IOCS determines the device
conce~~ed,from the command control block
specified by blockname, and either starts
the device orplaces the command control
block (CCB) in a channel queue. Program
control is then returned to the problem
program. If tme CCB is in a queue, the
actual transfer of data will be started at
some later time, when the CCB reaches the
top of the queue.

i

IName
I

Op

WAIT

Operand

blockname
~--~----~-----------

This WAIT or WAITM macro instruction is
issued whenever the program requires that
an I/O operation, started by an EXCP
instruction, be completed before execution
of the problem proqramcontinues. For
example, the transfer of data (a physical
record) to main storage must be completed
before that data can be added, m6ved to
another area of main storage , or otherwise
processed. When this WAIT instruction is
executed, the program enters a waiting loop
until the related CCB indicates that the
associated input/output operation is
finished. Then programming automatically
continues, and the data can be processed.
The WAIT (or WAITM) macro should be issued
to check for the completion of BSC support
macros.

The symbolic name (blockname) of the CCB
established for the I/O device is the only
operand required in this instruction. This
is also the same name as that specified in
the EXCP instruction for this device. When
using STR macro instructicns, the symbolic
n~me (blockname) of the CCB is referred to
as "dtfnameB", where dtfname is the
symbolic name of the DTFSN macro. When
using BSC macro instructions, the symbclic
name (blockname) of , the CCB is ~eferred to

as "dtfnameD," where dtfname is the
symbolic name of the DTFBS macro.

WAITM" Macro

i , ~I--------·--------
INamelOp 10perand
I I I
I I_AITMlblockname1, blockname2 ••••
I I I blocknamen, reg
, I I

This macro is used with both physical IOCS
and logical IOCS for STR devices or for BSC
support. The WAITM macro instruction
allows the problem program to wait on the
completion of one of several specified I/O
operations. When the WAlTH macro is
executed, the problem proqram enters a
waiting loop until the traffic bit in. any
one of the sp~cified CCB's indicates that
the associated I/O operation is completed.

If the problem program is ~sinq physical
IOCS, "blockname" is the symbolic name of
the CCB. For STR devices an expanded CCB
is generated by the DTFSN macro. The
blockname for a DTFSN CCB must.be
referencea in the operand field of a WAlTH
(or WAIT) macro as "dtfnameB" (where
dtfname is the symbolic name of the DTFSN).
The maximum number of blocknames that can
be specified is 17. For BSC support, the
expanded CCB is generated by the DTFBS
macro. The blockname for a BSC CCB must be
referenced in the operand field of a WAlTH
(or WAIT) macro as "dtfnameD" (where
dtfname is the symbolic name of the DTFBS
macro).

The last operand (reg) is a general
register number (2-.1). The address of the
associated CCB (qtfnameB) is loaded into
this register upon completion of an I/O
operation.

The WAITM macro must be issued to check
for completion of a SOPEN, READ, WRITE, or
CNTRL macro, when the problem program uses
these macros with respect to STR I/O
operations. WAITM (or WAIT) should also be
issued to check for the completion of BSC
support macros.

CHNG Macro

i i Tj----------------
INamelOp 10perand
I I t--
I ICHNG ISYSnnn

'-----,
I

---t
I
.J

This macro instruction is used with both
logical and physical IOCS. It is described
in the group included under g~sinq
Re£ords~onsecutively.

Macro Instruction statements 129

WR.ITING CHECKPOINT RECORDS

When a problem program is expected to run
for an extended period of time, provision
should be made for taking checkpoint
records periodicaliy during the run. These
records contain the status of the job and
the system at the time records are written.
Thus, they provide a means of restarting at
some midway point rather than at the
beginning of the entire job, if processing
must. be terminated for any reason before
the normal end of job. For example, a job
of higher priority may require immediate
processinq, or some malfunction such as a
power failure may occur, and cause such an
interruption.

If checkpoint records are written
periodically, operation can be restarted by
using the last set of checkpoint records
written previous to the interruptiqn.
Therefore the records must contain
everything needed to re-initialize the
system when processing is restarted.
Checkpoint records can be ~ritten by
issuing a CHKPT macro instruction in the
problem program. Restarting jobs, for
which checkpoint records have been written
by use of the CHKPT macro, is performed by
the Job Control program. Job Control is
described in the ~grammer's-Guides, as
listed on the front cover of this
pu bl ica tion.

Each time CHKPT is executed, several
records are written on-disk or tape. If
the object program is executed in a
disk-resident system, the checkpoint
records may be written in the checkpoint
area of the system disk pack or on tape.
When they are written on disk, each set of
checkpoint records replaces the previous
set so that the most recent is always
available for restarting the job. When
checkpoint ~e~ords are written on tape, an
additional set is ~ritten each time CHKPT
is executed. Thus all the sets of
checkpoint ,records for a particular run are
saved. Each set should be identified so
that the set to be used for restarting can
be identified. If a disk-resident system
is not used for execution of the object
program, the checkpoint records must be
written on tape. The disk/tape checkpoint
records contain information such as:

• Header information: ///CHKPT//nnnnxxxx
where nnnn is information used by the
restart program, ~nd xxxx is the user's
identification (usually a, number) of
the set of checkpoint records. Before
each set is written, this
identification should be changed by the
user. On t~e restart, this identifies
the set of checkpoint records to be
used. This record is not written when

130 S/360 BOS Assembler with I/O Macros

•

•

•

checkpoint records are written on the
system pack.

The contents of the general registers
are saved. The contents of the
floating-point reqisters are not saved.

The contents of the Supervisor
communication region, except the first
10 bytes.

A table of restart information, such as
the starting point in the problem
program and the positions of the
input/output-data tapes within the
logical file.

• The problem program and data in process
at this time. This includes all main
storage above the supervisor, depending
on the size specified in the
configuration byte (9) of the
communication region.

• Trailer information, when checkpoint
records are written on tape. The
trailer is identical to the header
label.

CHKPT Macro

~ , ,
lOp IOperand I
l- I --j
ICHKPTln,restart-name,SYSnnn,DISK I
I

The CHKPT (checkpoint) macro instruction
causes checkpoint records to be written.
The instructi~n requires either three or
four operands, depending on whether the
object program is to be executed in a
disk-resident system.

The firstoperang specifies the number
(n) of tape reels of input/output data that
will have to be properly posit~oned when
the j9b is restarted. The output tape used
for writing the checkpoint records must not
be included in this count. For all other
tape drives, the macro routines save bdth
the address of the symbolic unit for the
drive and the block count that has been
accumulated at the time the checkpoint
records are written. Block count-is the
number of blocks of data (physical tape
records, from gap to gap) that have been
read or written. When the job is
restarted, the block count is used to
position the tape properly to continue with
the data yet to be processed. If the
object program does not include the
processing of any input/output data that is
recorded on tape, the comma must be entered
first in the operand field of the CHKPT
macro instruction.

The second-o£er~£ (Restart-name)
spec~fies the symbolic name of the
problem-program statement at which
programming is to restart if an
interruption occurs and processing must be
continued at $ome later time.

The !hird~~nd specifies the symbolic
unit (SYSnnn) for the tape drive on which
the checkpoint records are to be written,
if they ar~ to be.recorded on tape rather
than disk. When an interrupted job is
restarted, this same symbolic unit must be
specified in the Job Control RSTRT card.
If the checkpoint records are to be written
on disk, SYSRES must be specified.

When checkpoint records are written on
tape, they may be written on a separate
tape drive, or they may be interspersed
with data records in an output tape file.
When the symbolic unit (SYSnnn) is assigned
to the same driv~ used as an output file
defined by logical IOCS, checkpoint records
are written on this drive regardless of
whether an alternate drive is assigned by
the DTFSR entry ALTTAPE. The CHKPT macro
will not-write checkpoint records on the
alternate drive. If checkpoint records are
intersperseQ with data records in an output
tape file, they can be bypassed on input by
use of the DTF SR entry CKPTREC.

When che6kpoint records are written on
7-track tape"the Data Conversion special
feature must be used.

The.!ourth·operan£ (DISK) indicates that
checkpoint records are to be taken for an
object program executed in a disk-resident
system. Other~ise, it is omitted and the
mac+o instruction contains only three
operands.

Issuing a CH~PT macro instruction in the
problem program causes the macro-library
checkpoint routines to be ass~mbled at the
same time as the problem program •. If the
user's object program is to be executed in
a disk-resident system (DISK specified as
the fourth parameter in the CHKPT macro
instruction), the checkpoint routines must
be stored in the corE-image library on the
system-residence disk pack. They are
transferred from system residence to the
Supervisor transient area in main storage
whenever the CHKPT macro is to be executed.
If a disk-resident system is nat to be used
for execution of the object program (DISK
n21 specified in this instruction), the
checkpoint routines are assembled with ·the
user's problem.program. In either case
(disk-resident system, or no~ the CHKPT
~nstruction, if used, must be issued only
once so that the routines are assembled
only once per program assembly.

The checkpoint routines use registers 1,
14, and 15. It is the user's
responsibility to save the contents of
these registers if the problem proqram also
uses them.

When the object program is to be
executed in a disk-resident system, issuing
the CHKPT macro instruction in the source
program causes a supervisor-call
instruction with code 1, and a statement
with the program name SYSCPT or SYSCPD, to
be assembled (see ~upervisor-Communication
Macros: . FETCH) • During execution, the
supervisor-call interruption routine
analyzes the code and fetches the
checkpoint routines from residence to the
transient area. When a disk-resident
system is not used for program execution,
checkpoint routines are assembled in line.

Included with the assembled checkpoint
routines (for a disk-resident system, or
not) is a table of restart information.
This table may contain such information as
the checkpoint identification, the restart
address, and information about the tape
drives used by the problem proqram. For
example, issuing a CHKPT instruction. such
as:

CHKPT 3, STHERE,SYS004

causes this table to be assembled:

SYSCHKPT DC
DC
DC

Notes:

CL4'
Y (STHERE)
3FL4'O'

(4blanks) 1
2
3

1. This statement provides four bytes for
the checkpoint identification. It is
the user's responsibility to move
updated identification to these four
positions before each set of checkpoint
records is written. For example, he
might move CR01 (Che~kpoint Record 1)
to SYSCHKPT for the first set, CR02 for
the second, etc. Each time checkpoint
records are written, this is part of
the recorded table of restart
information. Then when the job is
restarted after an interruption, the
programmer indicates which set of
checkpoint records is to be used by
specifying the identification in the
Job Control RSTRT card. The tape
containing the checkpoint records is
searched, and the identified set of
records is read from the tape.

2. The symbolic restart-name, STHERE
(start here) in this case, is a~sembled
in this macro-library statement. If
the user wants to restart at a
different location than that specified

Macro Instruction~Statements 131

in his macro instruction, he can move
the address of that location to
SYSCHKPT+4

3. The DC statement defines a full word
(four bytes) constant for each
input/output data file. In this case,
three constants are assembled because
3is specified as the first operand in
the CHKPT instruction. These constants
provide an area to store information
for properly positioning the
input/output data tapes when the job is
restarted after an interruption. The
first two bytes of each statement
contain the address of the symbolic
unit for the-corresponding tape drive.
The second two bytes contain the Eloc~
£Q.lli!! for the corresponding file.
Usually when logical laCS is used for a
file of records, the user does not have
to refer to these fields, The IOCS
routines move the symbolic unit address
before the checkpoint records are
written. They also increment the block
count (if DTFSR CHECKPT specified)
whenever a GET or PUT requires an
actual I/O operation. If the user
(instead of laCS) is supplying
information for certain files, he must
n2! use those 4-byte fields that are
specified for files maintained by
logical laCS (see DTFSR CHECKPT).

The user must supply both
the address and the block count whenever:

• a file with nonstandard labels is
read backwards.

• an unlabeled file is read
backwards.

• a file is processed by physical
laCS macro instructions.

The block count that he supplies must
be relative to the beginning of the
file, regardless of whether the file is
read forw~rd or backwards.

To supply the address information,
the user can move the addresses of the
symbolic units from the Command Control
Blocks (CCB) associated with the files
(see Rroce§§~~B~co~Q§ wi!h_PhY§ical
IQCS~_~f~l. He would have issued
three CCB's, one for each file, perhaps
as follows:

BLOCK' CCB
BLOCK2 CCB
BLOCK3 CCB

SYS001,CCW'
SYS002,CCW2
SYS003,CCW3

'32 S/360 BOS Assembler with I/O Macros

To move the addresses in this case, he
could write these statements:

MVC SYSCHKPT+6(2) ,BLOCK1+4
MVC SYSCHKPT+10(2) ,BLOCK2+4
MVC SYSCHKPT+14(2),BLOCK3+4

For the block count, the user must
increment (or decrement, on a backspace
order) the count each time an EXCP
macro that results in tape movement is
executed. The instructions to add to
(or subtract from) the block count must
precede the EXCP instruction in the
user's program. For the first file,
they might be:

LH
LA
STH
EXCP

R,SYSCHKPT+8
R, , (R)
R,SYSCHKPT+8
BLOCK1

A block count must not be supplied
in the restart table for the output
file that contains both data and
checkpoint records, however. In this
case the tape is positioned, on
restart, at the first data record
following the set of checkpoint records
that are used for restarting.

COt1PLETION

After all the records for a logical output
file have been processed (end-of-file),
that file must be deactivated by an
instruction in the problem program to close
the file. When the end of a logical input
file in an I/O unit other than disk or tape
is sensed, laCS immediately branches to the
user's end-of-file routine (specified by
DTFSR EOFADDR) where the instruction to
close the file can be issued. When the end
of a disk or tape in~1 file is sensed,
IOCS checks standard trailer labels (if
any), makes provision for user-checking of
user labels, and then branches to the
user's end-of-file routine (specified by
EOFADDR) where the file may be closed. A
CLOSE macro instruction is available to the
programmer for closing each input and
output file.

An ~-of-vol~ condition (EOV) , rather
than arr'end-of-file condition (EOF), can
occur during the processing of records in a
logical file on disk or tape.. An EOV
condition means that the processing of all
the records on one volume (disk pack or
tape reel) has been completed, but that
more records for the same logical file are
recorded on another volume. When this
occurs, IOCS checks or writes standard
labels (if any) on the completed volume
(trailer labels) and on the next volume
(header labels), makes provision for
user-processing of user-standard labels on

both volumes, and then makes the data
records on the next volume available for
processing. Because laCS detects the
end-of-volume condition and utilizes many
of the routines established for opening and
closing files, no problem-program
instruc~ions are required specifically for
an EOV condition. However, if the program
requires that the processinq of tape
records on one volume be ended'before the
actual end of the volume is reached, an
end-of-volume condition can be forced. An
FEOV (forced end-of-volume) macro
instruction is provided for this condition
in tape files.

When an EOV or FEOV condition is
detected in a logical fi~e on tape, laCS
increases the volume sequence number (in
storage) by 1. Thus, this number is
updated for checking/writing the header
label on the next reel. (For a description
of tape labels, see the P,roqrammer's
Guide.) laCS also updates the active drive
number if an alternate tape drive has been
specified (see DTFSR ALTTAPE).

The specific functions that occur' on an
EOF or EOV condition for a disk or tape
file vary with the type of operation (input
or output) and with the use of file labels.
These functions are discussed in the
followinq sections.

When records in a logical input file on
disk are processed in consecutive order
(specified by DTFSR) or in sequential order
by key (specified by DTFIS), laCS detects
an end-of-fil~ condition. The end of the
input file is determi~~d either by the
ending address Qf the last extent specified
for the file in Job Control XTENT cards, or
by an end-of-file record read from. the data
file. With sequential processing (DTFIS),
laCS immediately branches to the user's
end-of-file routine (specified by EOFADDR).

When records are p~ocessed in
consecutive order (DTFSR), the file may
contain user trailer labels. Tn this case
IOCS branches first to the user's label
routine (specified by LABADDR)' where the
user may check his trailer labels. Up to
eight trailer labels can be read and
checked. They are written on the first
track of the first extent specified for the
file on each pack. The trailer labels
follow the user header labels for the pack,
and they are identified by UTLO, UTL',
- - - UTL7. When laCS branches to the
user's label routine, it also reads the
trailer label and makes it availabl.e to the
user for checking. laCS sets up a label
area and supplies the address of the area
to the user in Register 1. After each
label is checked, the user returns to laCS

by use of the LBRET macro. After all
trailer labels have been checked, laCS
branches to the user's end-of-file routine
(specified by EOFADDR).

laCS detects end-of-volume·conditions in
a disk input file:--The-ena-of a volume is
recognized when all extents on one volume
have been processed but Job Control XTENT
cards bave specified additional ext~nts on
another pack. At the end of a volume, laCS
allows the user to check his trailer labels
(if any), the same as at the end of a file.
IOCS then checks the standard header. labels
on the next volume, allows the user to
check any user header labels by branchinq
to the address specified by LABADDR~ and
makes the first record in the first extent
available for processing.

DiskOuiEut File·

When ·disk records are processed
consecutively (DTFSR) or loaded
sequentially by key (DTFIS), ~nd when all
records for the logical file have been
completed, the CLOSE instruction is issued
and normal EOF procedures are initiated
(see CLOSE Macro). If the end of the last
extent specified for the file is reached
before CLOSE is issued, IOCS assumes an
error condition.

End-of-volume conditions in a disk
output file are detect€d in the same way as
in a disk input file. At the end of a
volume laCS allows the user to write his
trailer labels (if any), the sam~ as at the
end Qf a file (see fLOSE~]~crol. laCS then
writes standard header labels on the next
volume, allows the user to write any user
header labels by branching to the user's
label routine (specified by LABADDR), and
permits the processinq of output data
records to continue.

Tape Input File

When logical IOCS senses a tape mark on a
tape input file, either an end-of-file or
end-of-volumecondition exists. The
EOF/EOV condition is determined by laCS or
by the user (depending on the type of
labels used for the file) and th~
appropriate functions are performed.

If standard labels are specified, laCS
immediately reads and checks the standard
trailer label. If user labels are also
present and are to be checked (specified by
DTFSR LABADDR), the user's routine is then
entered for each user label that is read
(see OPEN Macro). After all labels have
been checked, the rewind option is
executed, as specified in DTFSR REWIND.

When the standard trailer label is
checked, either an EOV or EOF condition is

Macro Instruction Statements 133

sensed. When an EOV identifier is sensed,
IOCS switches to the alternate tape drive
(if one is specified in the DTFSR entry
ALTTAPE) after user labels have been
checked if specified. If an alternate
drive is not specified, the operator is
notified to change the tape reels and the
system enters the wait state. When the
operator has mounted the new reel and
pressed either the request key (on the
1052) or the interruption key (on the
consol~), proce~sing resumes. laCS checks
the header label(s) if checking is
specified, and normal processing continues.
If an input file is processed by physical
IOCS (DTFPH specified), the user must issue
an OPEN instruction for the new reel. Then
IOCS checks the h~ader label and processing
continues.

When an EOF condition is sensed, IOCS
branches to the programmer's end-of-file
routine, specified by the DTFSR entry
EOFADDR.

If the tape input file has nonstandard
labels, IOCS immediately branches to the
user's label routine (specified by DTFSR
LABADDR) when the tape mark is sensed. In
his Ioutine, the programmer must use
physical IOCS macro instructions to read
his label(s). Furthermore he must
determine the EOF/EOV condition and
indicate this to IOCS by loading either EF
(end-of-file) pr EV (end-of-volume) in the
two low-order bytes of Register O. On an
EF condition, IOCS b~anches to the user~
end-of-file address (specified by DTFSR
EOFADDR) when the problem program returns
to laCS at the end of tbe label routine.
On an EV condition, laCS initiates the
end-of-vclume procedures to close the
completed volume and open the next volume
for proc essing.

If a tape file is not labeled (DTFSR
Flt,ABL=NO) or containslabels that are not
to be checked (DTFSR FILABL=NSTD), laCS
branches to the end-of-file address when
the tape mark following the last data
record is sensed. If an end-of-volume
condition exists instead of an-efld-of-file
condition, the user may indicate this by
issuing an FEOV macro instruction in his
end-of-file routine. If an alternate tape
drive is specified by the DTFSR entry
ALTTAPE, laCS switches to the alternate
drive and processing resumes. If an
alternate tape drive is not specified, the
operator is notified to change the tape
reels, and the system enters the wait
state. When the new tape reel ha~ been
mounted, the operator must press either the
request key on the 1052 or the interruption
key on the console to resume processing.

Whenever an input tape is read backwards
(BACK specified in DTFSR READ), an

134 S/360 BOS Assembler with I/O Macros

end-of-file condition always exists when
the file header label is reached. That is,
backwards reading is confined to one
volume. Therefore, with standard labels,
the input/output routines check only the
block count, which was stored from the
trailer label, and then branch to the
specified end-of-file routine. When
physical laCS macros are used to read
records backwards, labels cannot be checked
(DTFPH must not be specified). For tape
files with nonstandard labels, laCS
branches to the-UserlS~el-routine
specified by DTFSR LABADDR where he may
check the header label. He must use
physical laCS macro instructions to read
the label(s) for checking.

When an end-of-reel reflective marker is
sensed on an output tape, logical laCS
prepares for closing the file by ensuring
that all records have been written on the
tape.· If the programmer issues another
PUT, indicating that more records are to be
written on this output file, normal
end-of-volume (EOV) procedures are
init~ated. If the programmer issues a
CLOSE, the EOF procedures are initiated.

The programmer should be aware that,
under certain conditions, a truncated block
of records may be written at an EOV or EOF
condition, even though the file is defined
as having fixed-length blocked records.
When this file is used for input, the
System/360 logical IOCS will recognize and
handle these short blocks without the
programmer being concerned or aware of this
condi tion.

Labeling procedures for the EOV
condition closely follow those described
under CLOSE Macro. The label is coded EOV
rather than EOF, and only one tape mark is
written after the label set, or after the
data if standard labels are not used.

Forced End-of-Volume: ~e Files

In some cases a programmer may need to
force an end-of-volume condition at a point
other than the normal tape mark (input) or
reflective marker (output). He may want to
discontinue reading or writing the records
on the present volume, and continue with
those records for this same logical file
that are recorded on the next volume. This
may be necessary because of some major
change in the category of records or in the
processing requirements. An FEOV (forced
end-of-volume) macro instruction is
available to the programmer for this
function.

lOp
I
ICLOSE
ICt;,OSE
I

I
Operand I

---I
filename I
filename1,filename2,filename3,---1

I

The_CLOSE instruction is used to deactivate
any file that was previously opened in any
input/output· unit in the system: card
reader, card punch, magnetic tape unit,
disk drive, paper tape reader, printer,
optical roll· reader, or display unit. The
symbolic name of the logical file, assigned
in the DTFSR, DTFDA, DTFIS, or DTFPH header
entry, is required in this instruction. As
many as 16 files ~ay be closed by one
instruction, by entering additional
filename para~.ters. CLOSE is required
whenever logical IOCS macro instructions
are used to transfer data. When physical
IOCS is used, CLOSE i~ required only if
standard labels on magnetic tape are to be
written. A file may b~ closed at any time
by issuing this macro instruction.

ReQEeninq a Closed File: If further
processing of a. closed file is required at
some later time in the program, the file
must be opened again. If a· file of ~is~
~£2~·is reopened after a CLOSE, the
label precessing and extents made available
depend on the type of processing that is
specified for the file. When an input file
is processed in consecutive order (DTFSR
specified), IOCS checks the label(s) on the
first p~ck and makes the first extent
available, the same as at the original
OPEN. When a file is processed by physical
IOCS with SINGLE specified in DTFPH MOUNTD,
Ioes opens the next extent speci~ied by the
user's XTENT cards.~ When a file is
processed by the direct access method
(DTFDA specified), by the indexed
sequential system (DTFIS specified), or by
physical IOCS with ALL specified in DTFPH
MOUNTP. all label processing is repeated
and all extents are again made available.

If a file of tape. records is closed, the
tape is positione in accordance with the
REWIND specification. Therefore to resume
processing of tape records at the point
where CLOSE occurred, NORWD.should be
specified in DTFSR REWIND. When OPEN is
issued later for additional records on that
reel, the first record read must be a file
la~ if standard labels are specified~or
the tape file beinq opened. If the tape
file being opened is unlabeled or contains
non$tandard labels, it is the user's
responsibility to identify the first record
read as a data record or a file label.
When a file beinq reopened is a multireel
file with standard labels, IOCS expects
that the reel available for the OPEN is the

same reel, on the same drive, that was in
process when CLOSE was executed. If not, a
messaqe is issued.

In addition to the reqisters used by
logical IOCS, CLOSE also uses reqister 5.
The programmer may use register 5 because
the CLOSE macro routine saves and restores
this register. However, if the programmer
plans to use register 5 as a base register,
he should be aware that register 5 is
dropped at the end of the CLOSE routine.

Disk Files

When disk records are processed in random
order (specified by DTFDA or DTFIS), the
CLOSE instruction is issued in the problem
program to deactivate the file after all
records have been processed.

When records in a disk input file are
processed in consecutive order (DTFSR) or
in sequential order (DTFIS), the CLOSE
instruction is generally issued in the
user's end-of-file routine (specified by
EOFADDR) to deactivate the file. IOCS
branches to. this routine when it detects an
end-of-file condition (see Completion).

When· records .in a disk· ou.i,put are
processed in consecutive order (DTFSR) or
loaded in sequential order (DTFIS), the
CLOSE instruction is issued after all
records for the file have been processed.
It writes any record, or block of records,
that has not already been written. If a
record block is partially filled, it is
truncated; that is, a short block is
written on disk. CLOSE causes one o~ more
functions to be performed before it
deactivates the file. It always writes an
end-of-file trailer record after the last
data record in the file~ If records are
processed in consecutive order, user
trailer labels may be written if the DTFSR
entry LABADDR is included in the file
definition.

Up to eight trailer. labels can be
written on the first track of the first
extent specified for the file on Each pack.
They fo~low the user-standard header labels
for the pack and are identified by UTLO,
UTL1,---UTL7. For this operation, IOCS
branches to the user's label routine, sets
up a label area, and supplies the address
of the area in Register 1. In his routine
the user constructs the trailer label and
then returns control to IOCS by use of the
LBRET macro. IOCS then writes the trailer
label. Similar to writing user header
labels, these steps are repeated until
eight trailer labels have been written or
until the user indicates that he does not
require any more labels, whichever occurs
first (see OPEN·Macro: Disk output-File.
Writing Additional user-St~ndard Header·

Macro Instruction Statements 135

Labels). After the last trailer label is
written, CLOSE d.eactivates the file.

When an input file recorded on magnetic
tape is processed, CLOSE is generally
issued in the user's end-of-file routine.
It initiates rewind procedures for, the tape
as specified in the DTFSR entry REWIND. It
then deactivates the file.

If CLOSE is issued for any tape input
file before the end of the data is reached,
the tape is rewound as specified by the
DTFSR entry REWIND, and the file is
deactivated. No labels are read or
checked.

Tape out.E.!!!Jile

For a magnetic tape output fiie, CLOSE is
issued when all records for the file have
been processed. It writes any record, or
block of records, that has not already been
written. If a record block is partially
filled, it is truncated; that is, a short
block is written on the tape. Following
the last record, a tape mark is written.
If labels are not specified, a second tape
mark is written and the tape is rewound as
specified in DTFSR REWIND.

When standa£d lab~l~ are specified (STD
in DTFSR FILABL or OUTPUT in DTFPH
TYPEFLE) , CLOSE causes the file trailer
label to be completely written after the
tape mark. The EOF' indication, the block
count accumulated during the run, and the
header-label information (with HDR1
replaced by EOF1) are included in the
trailer label.

IOCS accumulates the block count for the
trailer label whenever logical IOCS (DTFSR)
is used for an output file. When physical
IOCS (DTFPH) is used. however, the problem
program must accumulate the block count, if
desired, and supply it to IOCS for
inclusion in the standard trailer label.
For this, the count (in binary form) must
be moved to the 4-byte field that is
labeled fllen~. For example, if
fil~n~~ specified in the DTFPH header
entry is DETLOUT, the block count field is
addressed by DETLOUTB; if filename-is DETL,
the field is addressed by DETLB. The user
must define this address as an address
constant.

If checkpoint rec~£g§are interspersed
with data records on an output tape, the
block count accumulated by logical IOCS
does not include a count of the checkpoint

136 S/360 BOS Assembler with I/O Macros

records. Only data records are counted.
Similarly if physical laCS is used, the
problem program must omit checkpoint
records and count only data records.

If user-standard labels (UTL) are to
follow the standard trailer, the CLOSE
routine branches to the user's routine
(identified by DTFSR or DTFPH LABADDR)
after the standard label has been written.
Upon entry to the user's routine, laCS
supplies Code F in the low-order byte of
Register 0 to indicate that an end-of-file
trailer label should be built (see ~TF5R
LA]A~DR). In his routine the programmer
can build a maximum of eight user-standard
labels, which the CLOSE routine writes for
him. After building each user-standard
label, he must return to the CLOSE routine
by use of the LBRET macro.

After all trailer labels are written,
the CLOSE routines write two tape marks,
execute the rewind option, and deactivate
the file.

For the proper procedures to handle
user-standard labels and/or nonstandard
labels, see OPEN_Ma~±Q~ l~£e output File.

When the last paper tape or card input
record has been read, IOCS branches to the
user's end-of-file routine where CLOSE is
generally issued.

When a printer or card output file is
completed, CLOSE must be issued for that
file. Any record in the output area that
has not been printed, ~isplayed, or punched
is transferred to the output file before
the file is deactivated.

For a discussion of the SCLOS macro, for
the STR adapter, see Processing with 5TR
Devices. For a discussion of the BCLOS
macrO;-for the BSC adapter, see Binary
~.!!ch.£Q!!.Q!!s Communicatl,Q.n.

LBRET Macro

r---.--,--------r.--- --,
IName Op I Operand
I I
I LERETI 1
I LBRETI 2

I ,
I
I ______________--J

The LBRET (label return) macro instruction
is issued at the end of the user's label
routine to return to IOCS. This macro is
described under InitiaJiza1io~~ET
Macr~.

FEOV Macro: Tape Records

r--~------~----
,Name, Op Operand
j ,
I ,FEOV filename

The FEOV (forced end-of-volume) macro
instruction is used for either input or
output files on tape to force an
end-of-volume condition when neither a tape
mark nor a reflective marker has been
sensed. This indicates that processing of
records on one volume is considered
finished, but that more records for the
same logical file are to be read frcm or
written on the following vclume.

The FEOV macro cannot be issued in the
user's EOF routine when the FEOV refers to
the same file that caused entry to the EOF
routine, except for an unlabeled file or
for a nonstandard labeled file with no user
label address specified.

The symbolic name of the file, specified
in the DTFSR or DTFPH header entry, is the
only parameter required in this
instruction.

When 10gi£~QCS macro instructions are
used for a file (DTFSR specified), FEOV
initiates the same functions th~t occur at
a normal end-of-volume condition, except
trailer-label checking. For an inpu1 tape,
it immediately rewinds the tape as
specified by'DTFSR REWIND and provides for
a volume change as specified by DTFSR
ALTTAPE. Trailer labels are not checked.
FEOV the n checks the stan.dard header label
on the new volume, and provides for
user-checking of any additional
user-standard header labels if DTFSR
LABADDR is specified. If nonstandard
labels are specified (DTFSR FILABL=NSTD),
FEOV provides for user-checking if desired.
For an output tape, FEOV writes the last
block of records if necessary (this may be
a short block) and writes a tape mark.
Then it writes the standard trailer label
and additional user-standard labels (if
any), writes one tape mark, provides for a
volume change, and writes the file header
label(s) on the ne~ volume, as specified in
the DTFSR entries REWIND, ALTTAPE, FILABL,
and LABADDR. If nonstandard labels are
specified, FEOV proviaes for user-~riting
of trailer labels (completed volume) and
header labels (new volume), if desired.

When ~sic~l IOC2 macro instructions
are used and DTFPH is specified for
standard label processing, FEOV may be
issued for an E~1B~1 file only. In this
case FEOV writes the standard trailer
label, and any additional user-standard
trailer labels if DTFPH LABADDR is

specified. When the new volume is mounted
and ready for writing, IOCS writes the
standard neader label and additional
user-standard header labels, if any.

FILE DEFINITION MACROS

Whenever logical IOCS macro instructions
(GET, PUT, READ, WRITE, etc) are used in a
program to control the input/output of
records in a file, that file must be
defined by.a declarative macro instruction.
The parameters of the macro instruction are
punched in a set of entry cards. Each
parameter uses the keyword for-mat (see
Ma£ro-1n§~i~Qn FQrm~~ In addition to
describing the file, the parameter entry
cards indicate the type of processing for
the file, and specify symbolic names of
main-storage areas and routines used by the
file.

When physical IOCS macro instructions
(EXCP, WAIT, etc) are used for a file, a
declarative macro instruction is required
only if disk or tape files with standard
labels a~e to be processed. No other files
require definition.

The file definition macros for all files
in a problem program must be assembled with
that problem program. The logical IOCS
routines that the problem program will
require during its execution are assembled
from the specifications in the file
definitions. A separate set of parameter
entry cards is included for the definition
of each logical file, and the sets may be
placed in any order. If the problem
program is to be executed in a
disk-resident system, a beqin-definition
card (DTFBG macro statement) must precede
the first set of file definition cards. In
all cases, regardless of where the program
will be executed, an end-of-definition
card(DTFEN macru statement) must follow the
last set. At program assembly time, the
entire group of file definition cards
(punched in assembler-card format) is
placed in the card deck immediately after
the START card and ahead of any of the
user's source program. The user's source
program starts after the end-of-definition
card (DTE'EN).

Five different file-definition
declarative macros (DTFSR, DTFDA, DTFRF,
DTFSN, and DTFIS) are available for
defining files processed by logical IOCS,
and one macro (DTFPH) for files processed
by physical IOCS. For logical IOCS
operations, the file-definition macro to
use for a file depends on the type of
processing that will be performed for that
file:

Macro Instruction Statements 137

Consecuti ve -process~nq. This applies to
input/output files in serial devices, or on
231' disk when records are processed
consecutively. The DTFSR (Define The File
in a Serial-type device) macro is used~

Direct Access Method. Whenever a
logical disk file is to be processed
randomly, the direct-access-method macro
DTFDA is used.

Indexed sequentia~tem. When a
logical disk file is to be organized or
processed by the indexed segueniial file
management system (ISFMS), the DTFIS macro
is used.

grocessin,SL.with STR·· dEvices. Where STR
devices are us€d, the adapter must be
defined by the macro, DTFSN. -

Binary Synchronous Communication. Where
BSC support m~cros are-to be used, the data
adapter (SDA I~ must be ~efined by the
DTFBS macro.

The first card of a file-definition
macro instruction is called a header card,
and the continuation cards ar~ called
de!~il~nt~ cards. The header card is
punched with:

• Tha symbolic name of the file in the
name-field. This is the name that must
be specified in any logical IOCS macro
instructions that refer to this file in
the user's program. The symbolic file
name maybe up to sevencharaGters long
in a DTFSR, DTFDA, or DTFPH macro
heade~ card. In a DTFIS macro header
card, the name may be up to five
characters lonq. ----

•

•

DTFIS filenames should be unique to
each other if the program phases are to
be stored permanently in the core image
library. This will prevent one phase
from beinq overlaid by another with the
same filename. (For further
information on the core_ image library,
see the Pr£qrammer'sGuide-listed on
the frent cover of this publica~ion.)

The macro mnem6nic operation code in
the ~erationfield. This is DTFSR,
DTFDA, DTF-IS, or DTFPH, depending on
the type of processing to be performed
for the file.

Keyword entries in the operand field,
if desired.

• A contin ua tion punch in colum-n 7-2, if
detail cards are necessary.

The detail cards follow the header card,
and they may be arranged in any order.

138 S/360 BOS Assembler with I/O Macros

Each detail card is blank in the name and
operation fields and is punched with one or
more operands. These operands must be the
keyword typ~ of macro parameter. That is,
they are expressed as equal-conditions, for
example, DEVICE=DISK1'. All detail cards
except the final ODe used must be punched
with a comma immediately following the last
operand and with a continuation punch in
column 72. They may contain comments if a
space is left after the comma following the
last operand. The final card may contain
comments if a space is left after the last
operand. When a particular detail entry
does not apply to a file, that operand must
be omitted.

The be~n-defini tio.n -card preceding the
first set of DTF cards (when a
disk-resident sy~iem will be used for
program execution) must be punched with
DTFBG in the operation field and DISK in
the operand field. The name field is
blank.

The end-of-definition card followinq the
last set of DTF cards must be punched with
DTFEN in the operation field. The name
field is blank. The operand field may be
blank, or i{ may be punched with one
operand if the object program is not to be
executed in a disk system. In this case
the operand OVLAY may be specified to
reduce the amount of main storaqe used for
the program. When the object proqram is
executed (in a system that does not utilize
a disk-resident supervisor), OVLAY causes
the OPEN routine to be overlaid by the
user's problem program, and the CLOSE
routine to overlay the user's program. All
files should be opened by one OPEN macro
instruction, and ~ll files should be closed:
by one CLOSE macro instruction. In this
case, CLOSE should be the last instruction
before EOJ in the user's proqram.

The reference-card, with DTFRF in the
operation field, must precede the first
DTFSN card for STR processing or the first
DTFBS card for BSC processing. Where other
DTF ~acros are present, DTFRF must follow
the DTFEN card.

The detail parameter entries for each of
the four-declarative macros are described
in the following paqes. They are qrouped
by type of processing.

CONSECUTivE PROCESSING (DTFSm

The following lists show the DTFSR detail
entries that apply to each type of file
when records are processed consecutively.
These entries are explained in the
following text and shown in Figure 35.

2311
Di§~ Driyg

BLKSIZE
CONTROL
DEVICE
EOFADDR
ERROPT
IOAREA'
IOAREA2
IOREG
LABADDR
RECFORM
RECSIZE
TRUNCS
TYPEFLE
UPDATE
VARBLD
VERIFY
WLRERR
WORKA

1403
1404
'443
1445
~inte£

BLKSIZE
CONTROL
CTLCHR
DEVADDR
DEVICE
IOAREA1
IOAREA2
IOREG
PRINTOV
RECFORM
RECSIZE
TYPEFLE
UCS
WORKA

24('0
T a P.~L]!!l:!

ALTTAPE
BLKSIZE
CHECKPT
CKPTREC
CONTROL
DEVADDR
DEVICE
EOFADDR
ERROPT
FILABL
IOAREA1
IOAREA2
IOREG
LABADDR
READ
RECFORM
RECSIZE
REWIND
TPMARK
TYPEFLE
VARBLD
WLRERR
WORKA

'052
Printer­
f{eyboard

BLKSIZE
DEVADDR
DEVICE
IOAREA1
IOREG
RECFORM
RECSIZE
TYPEFLE
WORKA

1442
2501
2520
2540

Reag~£

BLKSIZE
CONTROL
DEVADDR
DEVICE
EOFADDR
INAREA
INBLKSZ
IOAREA1
IOAREA2
IOREG
OUAREA
OUBLKSZ
R~CFORI1

TYPEFLE
WORKA

1285/1287
Optical
Reade£

BLKSIZE
CONTROL
COREXIT
DEVADDR
DEVICE
EOFADDR
HEADER
IO}.REA 1
IOAREA2
OFFLINE
IOREG
RECFORM
RECSIZE
TYPEFLE
WORKA

1442
2520
2540
.RJ!1l£.h

BLKSIZE
CONTROL
CRDERR
CTLCHR
DEVADDR
DEVICE
IOAREA1
IOAREA2
IOREG
RECFORM
RECSIZE
TYPEFLE
WORKA

2671
Paper
Tape
Reade!:

BLKSIZE
DEVADDR
DEVICE
EOFADDR
IOAREA1
IOAREA2
IOREG
RECFORM
RECSIZE
TRANS
TYPEFLE
WORKA

ALTTAPE=SYSnnn

This entry specifies the symbolic unit
(SYSnnn) for a tape drive that will be used
as an alternate when a tape file has two or
more reels (volumes) of data.

The actual drive is assigned to this
symbolic unit either at job-execution
Uoad) time by the Job Control ASSGN card,
or at system-generation time by the SYMUN
macro instruction.

The symbolic unit for the first· drive
used for this file is specified in the
DTFSR entry DEVADDR=SYSnnn. If DEVADDR is
assigned to the same unit used for writing
out checkpoint records, the user should be
aware that checkpoint records may not be
written on the alternate tape drive. (See
the section CHKPT Macro.)

Whenever an alternate drive is specified
and an end-of-volume condition (EOV, EV, or
FEOV) ~ccurs for a multi-reel file, the
IOCS OPEN/CLOSE routines update the number
of the drive actively in Qse. Thus, after
an EOV (or FEOV) on reel 1, 3, 5, etc.,
IOCS expects the next reel to be mounted on
the device assigned to ALTTAPE. After an
EOV (or FEOV) on reel 2, 4, 6, etc., IOCS
expects the next reel to be mounted on the
device assigned to DEVADDR.

Macro Instruction statements 139

NAME OPERATION

Filenam! DTFSRt

Figure 35.

u
~

OPERAND' Z ~ 0-
0; 4:Z
0 ::E::>

=?ii ow.
~~ M -",0 N

X X

AL TT APE=SYSnnn X

BLKSIZE91 X X

CHECKPT91 X

CKPTREC=YES X

CONTROL=YES X X

COREXIT=Name

CRDERR=RETRY

CTLCHR=YES

tDEVADDR=SYSnnn X

DEVICE=DISKII X
TAPE- --- -x-
READoC --
READ20--- - -- - --
REA040- --
READ42- --

IRI~[(~_ ---
CONSOLE
PTAPERO- -
READB5- -- - -
READB7T -- ---
READa70-- f---

EOFADDR=Name X X

ERROPT=IGNORE X X
sKip - - --
Name----

FI LABL =STD X
Nsf6- --­
NO-----

HEADER=YES

I NAREA=Name

INBLKSZ91

IOAREA1=Name

IOAREA2=Name

10REG91

LABADDR=Name

X X

X X

X X

X X

APPLIES TO

~ 0 ~ -.r ~o::
,

11')0:: II') ffi
~w ~

~w

-...... 0 _0 -.rZ Z""
~;1j I/'I:c ~o; -4:
~o:: S~ ~~ ~Q NO "'>-
:!iG :!~ ~~ ~w -:..!

X X X X

X X X X

X X X

X

X X

X X X X

- -
- --

X y- -X- ---
-x- -X-
)I~ --~--

r- -- }<~- -X-
- -
-- - ---
--- - --

X

X

X

X X X X

X X X

X X X X

DTFSR Entries (Part 1 of 2)

140 S/360 BOS Assembler with I/O Macros

-' -'
0:: 4: 4:

ffi~ u U
j:: i= c..;1j
c.."" c..o::

;1;0:: Ow Ow
~w 1/'10 ,,0
"c... 004: 004: -04: ~~ ~~ "'

X X X

X X X

X X

X X

X X X

- - - -,...- - ---

--- ---
-'1:- - --

X-- ---
- --

--~ --X

X X X

X X

X X X

X X X

X X X

MUST BE INCLUDED REMARKS*

Each File Header Card.
Specify Symbolic File Name.

Multi-Valume File Using Two Tape Symbolic Unit for Alternate Tape
Drives Drive.

Each File Except Combined File Length of I/o Area.
with Separate I/O Areas n = Maximum Number af Characters.

CHKPT Macro Used

Bypass Checkpoint Records on Input Applies to Input File Only.

C NTRL Macro Used Does Not Apply to 2501 •
CTLCHR Must Be Omitted.

For Correction Routines Symbolic Name of Correction Routine

Punch Again on Error Condition Applies to 2520 and 2540.

Logical Records Have Control Each Record Must Contain a Control
Character in First Position Character.

CONTROL Must Be Omitted and the
CNTRL Macro Must Nat Be Used for
This File

Each File Except Disk Symbolic Unit far the I/O Device Used
for the File •

..Q~ J~~/Q.u.!p~tJ:!.!e ______ Include for Each File, and Specify
..!~~ In.p~79~tp~!...FJ.I~ _____ Proper Name after DEVICE=.

_ 2~.o!. !!)~tJ..!.I~ __________
~5JQ !n.P~/q,u.!P~!...F.!!e _______

_ 2~4Q !n.p~70.!'!p~t ..f~~ ______
_ ! ~_I!!R.u!19!!..tp_u!. FlI~ _____
J ~03...! J 19ir J~4~,_1 ¥~ 9~e.u!. _
J9~2 J~I:~!lOfi!P~!... _______
_2E?I_lnp!!..t £i_e __________
!}~ !n'puJ' .f1.!e __________

_!.2i!~!a~Ln~u! _____
1287 Document Input

Input File Symbolic Name of End-of-File Routine

Process Error Records Applies Only to Disk or Tape Input.
}~ii.o!~r}i~r-~~ci.r~ ~ =-= ~ ~_-_- Prevents Job Termination on Error
User Routine for Error Records Condition. Enter Desired Specifica-

tion after ERROPT=.

Check or Write Standard Labels Include for Tape Input/Output and
File Contains -Nonstancfa~cfLab;I$- Specify Desired Operation after

- OnlabelTed i'ile- - - - - - - - - - - FILABL=.

Header record wi II be If this entry is omitted, OPEN
read by Open assumes no header record

Separate Areas for Input and Output Applies Only to 1442.
for a Combined File

Separate Areas for Input and Output Applies Only to 1442.
for a Combined File Length of INAREA.

Each File Except Combined File
with Se.parate I/o Areas

Two I/O Areas Used. Not Valid
if DEVICE=READ87D

Process Blocked Records in I/o
Areas; Process, in the Input Area,
Variable-Length Records Read '
Backwards; Process in Two I/O
Areas; or Process Undefined Records
On 1285

Check/Build Additional User­
Standard Labels, or Process
Nonstandard Labels

Symbolic Names of Input/Output
Area. Same as Used in DS.

Symbolic Name of Second Input/Out­
put Area. Same as Used in DS.

n = Number of General Purpose
Register 2-11. Omit WORKA=YES.

Symbolic Name of User's Label
Routine.

APPLIES TO

u ~ 0 ~
NAME OPERATION OPERAND' ;::: .q-

:!~
I -'

Z ~~
VI "" "" <t w

> ~ '-..0- 0-0 ffio U
~!:: ~O g ~Z Z"" >= 0;; ~5

0<t ~<t o..<t
0.."" LOw

~5
.q-O;; g:0 <t w

0 ~"" ~~
0.."" Ow

~~ 8~ ~:e ;::::~ LOo
st~ NZ

~~ ~~ !i2 .q-.q- OW -o<t NO ~N ~::.::: NO-

Filenamet DTFSRt OFFLINE=YES X

OUAREA=NAME X

OUBLKSZ=n X

PRINTOV=YES X

READ=FORWARD X

BACK

RECFORM=FIXUNB X X X X X X X X

-X- -- -- - -- --- - -- - -
FIXBLK X
VARONB -X- - -X- - -- -X- -x:- '---- - -- -- -

- -- - --
VARBLK X X

UNofF- -X-- - 5(- - -- - X- -X-- -X- -X- -5(-

RECSIZE=n X X x X X X X

REWI ND=UNLOAD X
NORW"D-

TPMARK=NO X

TRANS-Name X

TRUNCS=YES X

~TYPEFLE=I NPUT _ '!-_ X
OUTPUT- _~ ____ X~

CMBN-D-

UCS=NO X
VEf - - -- X

UPDATE=YES X

VARBLD=n X X

VERIFY=YES X

WLRERR=Narne X X

WORKA=YES X X X x X X X X

t Must be included. Other entries are included when applicable.

When two or more choices are shown, select only the appropriate ~ and enter it after the· = sign.

-' <t
u
>=
0.."" Ow
,,0
co<t
~~

X

X

-- -

-'1: -

X

X

MUST BE INCLUDED

Allow program controlled correction
on reject character

Separate Areas for Input and Out-
put for a Combined File

Separate Areas for Input and Out-
put for a Combined File

PRTOV Macro Used

R"e;d-Tope Backw;rds - - - - - - - --

-Fi~ed-Le~gth-BI~Zk;d Re-;:o;ds- - -
VarlO5Te-=CengthUiiblo-cked Records

Variabl~~;n9th-BTock~dR-;c-;rch - -

-Undefi;;edRecordS - - - - - - - - -

Fixed-Length Blocked Records
Undefined Records

REMARKS·

If this entry is omitted, reject char-
acters are retried 9 times and keyboard
correction allowed on tenth retry.

Applies only to 1442.

Applies Only ta 1442.
Length of OUAREA.

If This Entry Omitted, 10CS Assumes
FORWARD.

-Oo;s ~ot -Apply-to Va~i;bfe-I~gth--
Blocked Records.

Specify as Needed for Fixed-Length
Unblocked Records.
If This Entry Omitted, 10CS Assumes
fl~llN--.s.!. ______________

DiSk or-Tope Records Re-quire Record--
_L<:!l9..thJ!.e!d.!. __________ --
Blocks Require Block-Length Field.

~~~~ B.e.su.!!~R~~~-!:.e~g.!~ r:J~d..! _ 

n = Number of Characters in Record. 
n = Number of a Register 2-11. 

Unload on CLOSE or End-of-Volume Omit to Rewind Only, at OPEN, 
Prevent ReWinding - - - - - - - - - - CLOSE, or End-of-Volume. 

Prevent a Tape Mark from Being 
Written Ahead of Data Records 

Tape Punched with Code Other 
than EBCDIC and 10CS is to 
Perform Translation 

Applies to Unlabeled Tape Files and 
Files with Non-Standard Labels. 

Symbolic Name of Code-Tronslation 
Table. 

Fixed-Length Blocked Records with Include for Output if TRUNC Macro 
Short Blocks Used. 

Ignore Command Rejects on 1403 
Printer without UCS Feature 

PUT Used For a Disk Input File 

Variable-Length Blocked Records 
Built in Output Area 

Check Record Written on Disk 

User Routine for Wrong-Length 
Records 

Include for Input if TRUNC Macro 
Was Used When File Was Created. 

Specify Proper Type after TYPEFLE=. 
CMBND Applies to 1442, or 2520 or 
to 2540 if Punch-Feed-Read Special 
Feature is installed. 

Applies only to 1403. 
CONTROL=YES Required. 

n = Number of a Register 2-11. 

Symbolic Name of Wrong-Length­
Record Routine. If Omitted, Error 
Handled As in ERROPT, or Job 
Terminated. 

GET or PUT Specifies a Work Area. Omit 10REG=n. 
Not Valid if DEVICE=READ87D. 

• The header and each detail card except the last one used in a file set must contain a continuation punch in column 72. Each detail card except the last one used must also 
contain a comma after the last operand. 

In all entries: Solid caps must be entered as shown (For Example, CONTROL=YES). 

Lower-case letters are to be replaced by programmer's symbolic name or a number (For example, Filename in header card, or BLK SIZE=n where ~ is replaced). 

~ is a decimal self-defining value. 

Figure 35. DTFSR Entries (Part 2 of 2) 

Macro Instruction statements 141 



BLKSIZE=n 

This entry indicates the size of the input, 
or output, a~ea specified by IOAREA1. 
BLKSIZE specifies the maximum number (n) of 
characters that will be transferred to, or 
from, the area at anyone time. When 
variable-length records are read, or 
written, the area must be large enough to 
accommodate the largest bl~ck of records, 
or the longest sinqle record if the records 
are unblocked. 

If card-punch or printer-output records 
includE control characters (DTF5R CTLCHR 
specified) and/or record-length fields for 
variable-length records (RECFORM=VARUNB), 
the BLKSIZE specification must include the 
extra bytes allotted in the main-storage 
output area. 

If two input, or output, areas are used 
for a file (IOAREA1 and IOAREA2), the size 
of only one area is specified in this 
entry. 

IOCS uses this specification to: 

• 

• 

construct the count field of the CCW 
for an input file. 

construct the count field of the CCW 
for an output file of fixed-length 
records. 

• Check physical record length for a file 
of fixed-iength blocked input records. 

• Determine if the space remaining in the 
output area is large enough to 
accommodate the next variable-length 
output record. 

CHECKPT=n 

This entry is required for a tape·input 
file whenever the CHKPT (checkpoint) macro 
instruction is included in the problem 
program. It is required for a tape·output 
file of data records when the CHKPT 
instruction is used, unless the checkpoint 
records are also to be written on this 
file. Whenever an output file is to 
contain checkpoint records interspersed 
with data records, this entry must be 
omitted. 

When the macro-library checkpoint 
routines are assembled, a table of restart 
information is included (see CHKPT-Macro). 
This table coptains a 4-byte field (full 
word) for each tape drive used by the 
problem program and specified by the first 
parameter of the CHKPT instruction. Each 
of these 4-byte fields contains information 
for properly positioning the data file when 
the job is restarted after an interruption. 
Part of the repositioning information is 

142 5/360 BOS Assembler with I/O Macros 

the block count for the file, which is 
contained in two of the four bytes. The 
b~ock count indicates the number of 
physical tape records that have been read 
(or ~ritten), and thus it must be 
incremented whenever an 1/0 operation 
occurs during program execution. TOCS can 
update the block count for a particular 
file if the 4-byte field related to the 
file is identified. Therefore the user 
specifies in the CHECKPT entry the number 
(n) of the 4-byte field that IOCS is to use 
for this file. For example, if three 
input/output tape files are used in a job, 
he could plan that the three 4-byte fields 
would be identified by the numbers 1, 2, 
and 3. Then in the file definition for 
gschfile, he specifies (by CHECKPT=n) one 
of the three numbers (1, 2, or 3). 

This entry is omitted for an output file 
containing both data and checkpoint records 
because, on restart, the tape is positioned 
by the Restart program at the first data 
record following the checkpoint records 
that are used for restarting. 

CT<PTREC=YES 

this entry is required if a tape-input-file 
will contain checkpoint records 
interspersed among the data records. With 
this entry, IOCS recognizes the checkpoint 
records and bypasses them. 

CONTROL=YES 

This entry must be included if a CNTRL 
macro instruction will be issued for this 
file. A control command issues orders to 
the I/O d~vice to perform non-data 
operations such as card or document stacker 
selection, carriage skipping, line marking, 
tape rewinding, etc. 

From this specification IOCS qenerates a 
CCW for control Commands and also 
recognizes a CNTRL macro. If the CNTRL 
macro is not used in the program, then 
DTFS~ entry CONTROL=YES mu§! be omitted. 

When CONTROL is included, the DTFSR 
entry CTLCHR must nQ! be included. 

COREXIT=Name 

COREXIT provides an exit to the user's 
error correction routine for the 1285 or 
1287 Optical Reader. After a GET, WAITF, 
or CNTRL macro (to increment or eject 
and/or stacker select a document) is 
executed and an error occurs, the error 
correction routine is entered, and an 
indication of the reason for the entry is 
provided in Filename+17. 



Filename+17 contains the following 
hexadecimal bits indicating the conditions 
that occurred during the last line or field 
read. Filename+17 should also be tested 
for appropriate error indication(s) after 
issuing the optical reader macros DSPLY, 
RESCN, RDLNE, CNTRL READKB~ and CNTRL MARK. 
More than one error condition may be 
present. 

X' 01' A data check has occurred. (Five 
read attempts for journal tape 
processing or three read attempts 
for document processing were made.) 

X'02' The operator corrected one or more 
characters from the keyboard. 
(Journal tape processing only). 

X'04' A wrong length record condition has 
occurred. (Ten read a ttempts were 
lIlade.) Not applicable for 
undefined records. 

X'08' An equipment check resulted in an 
incomplete read. (Ten read 
attempts were made.) 

X'10' A non-recovery error occurred. 

X'20' A stacker-select command was given 
after the allotted time had elapsed 
and the documEnt had been put in 
the reject pocket (Document 
processing only). 

X'40' The document scanner was unable to 
loca te the reference mark. (Ten 
attempts were made.) 

Filename+17 can be interrogated by the 
user to determine the reason for entry to 
the error-correction routine. This may be 
done by setting up an address constant for 
filename. This also permits the user to 
reference the DTF area at any place in his 
program. Choice of action in the user's 
error-correction rorr±ine will be determined 
by the particular application involved. 

If the user issues the CNTRL, DSPLY, 
RDLNE, or RESCN macros in his error routine 
within COREXIT, he must first save and 
later restore registers 14 and 15. All 
exits from COREXIT (except as noted) must 
be to the address in register 14. This 
address returns the user to the point in 
the program from which the branch to 
COREXIT occurred. If the command chain bit 
is on in the READ cew for which the error 
occurred, Ioes completes the chain upon 
this return from the COREXIT routine. 

When processing journal tapes, a 
nonrecovery error (torn tape, tape jam, 
etc.) normally requires complete 
reprocessing of the tape. In this case, 
the user must not branch tc the address in 

register 14 from the eOREXIT routine. 
Following a nonrecovery error, the Optical 
Reader file must be closed, the condition 
causing the nonrecovery must be cleared, 
and the file must be reopened before 
processing can continue. 

When processing documents, a nonrecovery 
error (indicating that a jam occurred 
during a document incrementation operation 
or a scanner control failure has occurred, 
etc.), requires that the document be 
removed, either manually or by non process 
runout. The user program should branch to 
read the next document. Also, if the 1287 
scanner is unable to locate the document 
reference mark, the document cannot be 
processed. The document must be ejected 
and stacker selected before attempting to 
read the following document or looping will 
occur. In any of these cases, the user 
must not branch to the address in register 
14-fr~the COREXIT routine. The user • 
should ignore any output resulting from the 
document in any case. 

Eight binary counters are used to 
accumUlate totals of certain 1285 and 1287 
error conditions. These counters each 
occupy four bytes, starting. at Filename+20. 
Filen~me is the same, specified in the DTF 
header entry. The error counters are: 

2 

3 

4 

5 

6 

7 

8 

Address contents 

Filename+20 Incomplete read 
(equipment check) 

Filename+24 Incomplete read 
uncorrectable after 
ten read attempts. 

Filename+28 Wrong length records 
(not applicable for 
undefined records) • 

Filename+32 Wrong length records 
uncorrectable after 
ten read attempts 
(not applicable for 
undefined records). 

Filename+36 Keyboard corrections 
(journal tape only). 

Filename+40 Journal tape lines, 
including retried 
line$, or document 
fields including 
retried fields, in 
which data checks are 
present. 

Filename+44 Lines marked (journal 
tape only). 

Filename+48 Count of total lines 
read from journal 

Macro Instruction statements 143 



tape or the number of 
CCW chains executed 
during document 
processing. 

The user may print out the contents of 
these counters for analysis, at 
end-of-file, or at end-of-job, or he may 
ignore the counters. (Bini;\ry contents of 
the counters should be converted to a 
printable format.) 

1!.gte: The user cannot issue a· GET, READ, 
or WAITF macro in his error correction 
routine. In this routine, records must not 
be processed. The record that caused the 
exit to the error routine will be available 
for processing upon return to the user's 
mainline program. Any processing ~ncluded 
in the error routine would be duplicated 
after return to the mainline program. 

CRDERR=RETRY 

This entry applies £n1~ to a card output 
file in the IBM 2520 or 2540. It specifies 
the operation to be performed if an error 
is detected. 

Normally if a punching error occurs, it 
is ignored and operation continues. The 
error card is stacked in pocket 1 (2520) or 
pocket P1 (2540). Correct cards are. 
s~acked in pocket 2 (2520) or pocket P2 
(2540). If this CRDERR entry is included 
to specify retrying, however, IOCS also 
notifies the operator and then enters the 
wait state when an error condition occurs. 
The operator can either terminate the job 
or instruct IOCS to repunch the card. 

From this specification, IOCS generates 
a retry routine for the 2520 OI 2540. IOCS 
also generates a save area for the card 
punch record read from the 2540. 

CTLCHR=YES 

The CTLCHR (control character) entry 
applies only to printer and punch output 
files. It is included if each logical 
record to be written or punched contains a 
control character (carriage control or 
stacker s.election) in the record itself, in 
the main-storage output area. For 
fixed-length or undefined records, the 
control character must be the first 
character. For variable-length records, it 
is the first character after the 
record-length field. The control character 
codes are the same as the ccmmand codes 
~ncluding the modifier byte~ used for a 
punch command or a print command (delayed 
only) • 

144 S/360 BOS Assembler with I/O Macros 

With this entry, the IOCS routines cause 
the control-character-specified printer or 
card punch order to be issued to the I/O 
device. Printing or punching begins with 
the second character in the record. 

When this CTLCHR entry is not included, 
any' control functions desired ~ust be 
performed by the CNTRL macro. 

DEVADDR=SYSnnn 

This entry specifies the symbolic unit 
(SYSnnn) to be associated with this logic~l 
file. The symbolic unit rep~ents-an 
actual I/O device address. The symbolic 
unit may be: 

SYSRDR for system control-card reader 

SYSLST for system printer 

SYSIPT for main system input device 

SYSOPT for main system output device 

SYSLOG for control-card logging device 

SYSOOO-SYS254 for other devices in the 
system. 

This is generally a unique number for each 
logical file (except files on disk). 

The symbolic unit (SYSnnn) is used in 
the Job Control ASSGN card (or in the 
Supervisor-Assembly macro SYMUN) to assign 
the .actual I/O device address to this file. 
If the ASSGN card is used to assign the 
device for program execution, the file of 
logical records can be read from or written 
on different units at different times. For 
example, a reel of tape may be mounted on 
any tape drive that is available at the 
time the job is ready to be run, by merely 
assigning that drive to the symbolic unit. 

Whenever two devices are used for one 
logical file, such as an alternate tape 
drive (specified in DTFSR ALTTAPE), this 
DEVADDR entry specifies the symbolic unit 
for the first. device. 

The symbolic unit is specified for all 
units except the 23q1 disk drive. For 
files on this unit, DEVADDR is omitted. 
The symbolic unit for a disk d.ri ve is 
supplied by a Job Control XTENT card. 

DEVICE= 

This entry must be included to state the 
I/O device associated with this logical 
file. One of the following specifications 
must be entered immediately after the = 
sign. 



DISK 1 ~ 

TAPE 

PRINTER 

READOl 

READ20 

READtJO 

READ42 

CONSOLE 

PTAPERD 

READ85 

READ87T 

READ87D 

fo~ an input or output file on 
disk (2311). 

for an input or output fi~e 
recorded on mpgnetic tape 
(240., 2402, 2403, 2404). 

for reports printed on a 1403, 
1404, 1443, or 1445. 

for an input card file in a 
250 •• 

for an input or output card 
file in a 2520. 

for an input or output card 
file in a 2540. 

for an input or output card 
file in a 1442. 

for input from and output to 
the printer-keyboard (1052). 

for an input file recorded on 
paper tape (267.). -

for input from a 1285 optical 
Reader. 

for journal tape processing 
for a 1287 Optical Reader. 

for document processing for a 
.287 Optical Reader. 

From this specification, IOCS sets up 
the proper CCWs and device-dependent 
routines for this file. For document 
processing on the 1287 Optical Reader, the 
coding of CCWs is accomplished by the user. 
This allows command chaining, comparing, 
and branching without experiencing an 
interrupt for each function. 

EOFA DDR= Name 

This entry must be included for~ 

• Card reader files 
• Paper tape reader files 
• Magnetic tape input files 
• Consecutive disk input files 
• Optical roll reader files. 

It spe~ifies the symbolic name of the 
user's end-of-file routine. IOCS will 
automatically branch to this routine on an 
end-rif-file condition. In his routine, the 
programmer can perform ~ny operations 
required for the end of the job, and he 
generally issues the CLOSE instruction for 
the file. 

IOCS detects end-of-file conditions as 
follows: 

• 

• 

• 

• 

• 

Card reader - by recognizing 1* punched 
in card colum~s 1 and. 2. If cards are 
allowed to run out, without a 1* 
trailer card, an error condition is 
signalled to the operator (intervention 
required)'. 

Paper tape reader - by recognizing the 
end of tape when the end-of-file switch 
is set at ON. 

Magnetic tape input - by reading a tape 
mark and EOP in the trailer label when 
standard labels are specified. If 
standard labels are not specified, IOCS 
assumes an end-of-file condition when 
the tapemark is read. The user must 
determine, in his routine, that this 
actually is the end of the file. 

Consecutive disk input - by reading an 
end-of-file record or reaching th~ end 
of .the last extent supplied by user. 

optical Reader input--when reading data 
from documents on a ·1287, end-of-file 
condition is recognized' by depression 
of the end-of-file key on the console 
when the input hopper is empty. When 
processing journal tapes on a 1285 or 
1287, end-of-file is detected by 
depression of the end-of-file key after 
the end of the tape has been sensed. 

When laCS detects the end of file, it 
branches to the user's routine specified by 
EOFADDR. If journal tapes are being 
pi6cessed it is the user's responsibility 
to determine if the current roll is the 
last roll to be processed. For 1285, it is 
suggested that this be accomplished by 
keying in header information at the 
beginning of each roll. This information 
could then be interrogated in this routine 
to determine whether it is the last roll. 
Regardless of the situation, the tape file 
must be closed for each roll within this 
routine. If the current roll is not the 
last, OPEN must be issued. The OPEN macro 
instruction allows header (identifying) 
information to be entered at the reader 
keyboard and read by the processor when 
using 10gical IOCS. The same procedure, as 
well as the method described under the OPEN 
macro, can be used for 1287 processing of 
multiple journal tape rolls. 

ERROPT= 

This entry applies to disk·ortape input 
files, and it specifies functions to be 
performed for an error block. 

If a parity error is detected when a 
block of consecutive·disk records is read, 
the disk block is reread 10 times before it 
is considered an error block. If a parity 

Macro Instruct£on Statements 145 



error is detected when a block of tape 
records is read, the tape is backspaced and 
reread 100 times before the tape block is 
considered an error block. If either 
FILABL=STD or CHECKPT, or both, is 
specified, the error block is included in 
the block count that is taken. After this 
the jop is automatically terminated, unless 
this ERROPT entry is included to specify 
other procedures to be followed on an error 
condition. Either ~GNORE, SKIP, or the 
symbolic name of an error routine can be 
speciffed in this card. One of these 
specifications is entered immediately after 
the = siqn in this keyword operand. The 
functions of these 3 sp~cifications are: 

IGNORE 

SKIP 

Name 

The error condition is 
completely ignored, and the 
records are made available to 
the user for processing. 

No records in the error block 
-are made available for 
processing. The next block is 
read from disk or tape, and 
processing continues with the 
first record of that block. 
The error block is included in 
t~e block count, however. 

IOCS branches to the user's 
routine, where he may perform 
whatever fUnctions he desires 
to process or make note of the 
error condition. Register 1 
contains the address of the 
block in error, and Register 
14 contains the return 
address. 

In his routine, the 
programmer should address the 
errdr block, or records in the 
error block, by referring to 
the address supplied in 
Register 1. The 90ntents of 
the IOREG register or the work 
area (if either is specified) 
may vary and therefore should 
not be used fer error blocks. 
Also, the programmer must not 
issue any GET instructions for 
records in tbe error block. 
If he uses any oth~r IOCS 
macros in his routine, he must 
save the contents of Registers 

1
14 and 15 and restore them 
prior to returning to IOCS. 
At the end of his routine, he 
must return to IOCS by 
branching to the address in 
Register 14. When control is 
returned to the problem 
program, the first record of 
the next block is available 
for processing in the main 
program. 

146 S/360 BOS Assembler with I/O Macros 

This ERROPT entry does not apply to disk or 
tape output files. The job is 
automatically terminated if a parity error 
still exists after IOCS attempts 10 times 
to write a disk output block, or 15 times 
to write a tape output block. For tape, 
this includes erasing forward 14 times. 

This entry applies to wrong-length 
records if the DTFSR entry WLRERR is not 
incl uded. 

FILABL= 

This entry applies to a ta~ input or 
output file. One of the following 
specifications is entered immediately after 
the = sign 

STD 

NSTD 

NO 

HEADER=YES 

for a tape input file if 
standard labels are to be 
checked by IOCS, or for a tape 
output file if standard labels 
are to be written by IOCS. 

for a tape input or output 
file that has nonstandard 
labels. These labels may be 
processed by the user (see 
Initialization: Nonstandard 
Tape. Labels). NSTD is 
specified for st~neara input 
labels if they are not to be 
checked by IOCS. 

for a tape file that does not 
contain labels. The entry 
FILABL=NO may be omitted, if 
desired, and IOCS will assume 
that there are no labels. 

This entry is required if header 
(identifying) information is to be keyed in 
by the operator on the 1285 or 1287 Optical 
Reader keyboard. The OPEN routine reads 
the information only when this entry is 
present. If the entry is not included, 
OPEN assumes no header informatio~ is to be 
read. 

INAREA=Name 

This entry applies only to a card file in 
an IBM 1442 that is to be updated 
(TYPEFLE=CMBND) and for which separate 
input ~nd output areas are required. 
INAREA specifies the symbolic name of the 
input area to which the card record is to 
be transferred. OUAREA is used in 
conjunction with INAREA, and both IOAREA1 
and IOAREA2 must be omitted. 

If the same I~re~ is to be used for 
both input and output in a combined file, 



INAREA and OUAREA are omitted, and IOAREA1 
specifies the name of the I/O area. 

This entry does not apply to combined 
files in an IBM 2520 or 2540. 

INBLKSZ=n 

This entry is used in conjunction with 
INAREA for a combined file in the 1442 when 
separate input and output areas are 
required. It specifies the maximum number 
(n) of characters that will be transferred 
to the input area (INAREA) at anyone time. 
Whenever this entry is included, the 
corresponding entry OUBLKSZ must also be 
included, and BLKSIZE must be omitted. 

IOAREA1=Name 

This entry is included to specify the 
symbolic name of the input, or output, area 
used by this file. The input/output 
Ioutines will transfer records to or from 
this area. The specified name must be the 
same is the ~ame used in the DS instruction 
that the ~rogrammer must set up to reserve 
this area o~ main storage. If RECFORM 
specifies VARUNB or VARBLK, the I/O area 
must begin on a halfword boundary. 

From this specification, laCS constructs 
the data address field of the CCW for this 
file. 

For a dis~Qutput file, the user must 
iese~ve eight bytes at the beginning of his 
I/O area, ahead of the positions allotted 
for data records. These eight bytes are 
necessary to allow IOCS to construct the 
count area for the disk record. 

This entry must n2i be includ~d for a 
1442 card file if INAREA and OUAREA are 
specified for the file. 

The IBM 1052 printer-Keyboard and the 
1287 Optical Reader .in docum.ent mode can 
have only one I/O area, which must be 
IOAREA 1. 

IOAR EA2= Name 

Two input, or output, areas can be planned 
for a file, to permit an overlap of data 
transfer and processing operations~ When 
this is done, this IOAREA2 ~ntry must be 
incruded. It specifies the symbolic name 
of the second I/O area. The name must be 
the ~ame as the name used in the DS 
ins±ruction that the programmer must set up 
for this area. The second I/O area must be 
the same len~th as the first I/O area. If 
RECFORM specifies VARUNB or VARBLK, the I/O 
area must begin on a halfword boundary. 

This entry must not be included for a 
1442 card file if INAREA and OUAREA are 

specified for the file. Also this entry 
does not apply to the IBM 1052, which 
cannot utilize a second area, and likewise 
it must not be used to process documents on 
the 1287 optical reader. 

IOCS uses this specification to 
construct the data address field of a CCW 
and to determine that overlap of I/O and 
processing is possible. 

For a disk·output·file, the user must 
reserve eight bytes at the beginning of bi$ 
I/O area, ahead of the positions allotted 
fo+ data records. These eight bytes are 
necessary to allow IDes to construct the 
count area for the disk record. 

IOREG=n 

This entry specifies the general-purpose 
register (n) that the input/output routines 
can· use to indicate which individual record 
is available for processing. IDes puts the 
absolute base address of the current record 
in this register each time a GET or PUT is 
issued. Any register number 2-11 may be 
specified. The other registers (0-1 and 
12-15) cannot be used (see Base-Register 
Instruction? for register usage). 

The same register may be specified in 
the IOREG entry for two or more files in 
the same program, if desired. In this case 
the problem program must store the address 
supplied by IOCS for each record, so that 
the address is available for processing the 
contents of the record. 

This entry must be included whenever: 

• 

• 

• 

• 

~locked input or output records (from 
disk or tape) are processed directly in 
the I/O area. 

V.ariable-length unblocked tape records 
are read backwards and processed 
directly in the input area. 

Two input, or output, areas are used 
and the records (either blocked or 
unblocked) are processed in the I/O 
~reas. 

Undefined journal tape records are 
processed by the 1285 and 1287 Optical 
Readers. The "read" by these devices 
~s accomplished bya backward scan 
which places the rightmost character in 
the record in the rightmost position in 
the I/O area and subsequent characters 
in sequence from right to left. The 
register defined by IOREG is used to 
indicate to the user, the leftmost 
position of the record. 

Whenever this entry is included for a 
file, the DTFSR entry WORKA must be 

Macro Instruction statements 147 



omitted, and the GET, or PUT, instructions 
must not specify work areas. 

LABADDR=Name 

The user may require one or more disk or 
tape labels in addition to the standard 
file header label or trailer label (on 
tape) • If so, he must include his cwn 
Ioutine to check, or build, his 
user-standard label(s). The symbolic name 
of his routine is specified in this entry. 
IO~S branches to this routine after it has 
processed the standard label. This entry 
is also required whenever nonstandard 
labels are to be checked or written by the 
user (DTFSR FILABL specifies NSTD). 

LABADDR allows one user's label routine 
to be specified for all types of labels for 
the file: header labels, end-of-file 
labels, and end-of-volume labels. On an 
input file, the user can determine the type 
of label that has been read by the 
identification in the label itself. For an 
output tape file, however, IOCS indicates 
to the user the type of label that is to be 
written. For this, IOCS supplies a code in 
the low-order byte of Register 0, as 
follows: 

o - Header label (letter 0) 
F - End-of-file label 
V - End-pf-volume label 

In his routine the user can test this byte 
and then build the appropriate type of 
label. 

Logical IOCS uses general registers 14 
and 15 for linkaqe to and from a called 
routine; therefore, these registers must 
not be destroyed. If they are required by 
the user's label routine, they must first 
be saved and then restored prior to 
returninq to the mainline of the program. 
At the end of his routine, the programmer 
must return to IOCS by use of the LBRET 
macro. 

OFFLINE=YES 

This entry must be included whenever the 
1285 and 1287 (journal tape mode) optical 
Readers are operat~d in the offline mode. 
It generates coding for the RDLNE macro. 

If this entry is omitted, an additional 
read is performed when five attempts to 
read a line containing a data check(s) are 
unsuccessful. It forces on-line correction 
of any unreadable character(s) by 
individually projecting the unreadable 
character(s) on the display scope. The 
operator must key in a correction (or 
reject) character(s). The RDLNE macro 

148 S/360 BOS Assembler with I/O Macros 

cannot be used if this parameter is 
omitted. 

OUAREA=Name 

This entry is used in conjunction with 
INAREA for a combined file in an IBM 1442 
that requires separate input and output 
areas. It specifies the symbolic name of 
the output area from which the updated card 
record is punched. 

OUBLKSZ=n 

This entry is used in conjunction with 
OUAREA for a combined f~le. Similar to 
INBLKSZ, it specifies the maximum number 
(n) of characters that will be transferred 
from the output area (OUAREA) at anyone 
time. 

PRINTOV=YES 

This entry must be inclQded whenever the 
PRTOV macro instruction is included in the 
problem program. 

READ= 

This entry may be included for a magnetic 
taBeinput file to specify the direction in 
which the tape is to be read. One 
specification or the other is entered 
im~ediately after the = sign: 

FORWARD 

BACK 

for a tape read in the normal 
forward direction. 

for a tape read backwards. A 
tape file may be read 
backwards if it contains 
unblocked records, 
fixed-length blocked records, 
or undefined records. 
READ=BACK cannot be specified 
for a file that contains 
variable-length blocked 
records. 

If this entry is omitted, IOCS assumes 
forward reading. 

RECFORM= 

This entry specifies the type of records 
(fixed or variable lenqth, blocked or 
unblocked, or undefined) in the input or 
output file.· If the entry RECFORM is 
omitted, fixed-length unblocked records are 
assumed. One of the following 
specifications may be entered immediately 
after the siqn: 

FIXUNB for fixed-length unblocked 
records. 



FIXBLK 

VARUNB 

VARBLK 

UNDEF 

for fixed-length blocked 
records. This applies only to 
disk and magnetic tape input 
or output. 

for variable-lenqth unblccked 
re~ords. This applies only to 
disk input or output (23.1), 
magnetic tape input or output 
(2400), card punch output 
P442, 2520, or 2540), and 
printei output (1403, 1404, 
1443, or '445). 

for variable~length blocked 
records. This applies only to 
disk and magnetic tape input 
or output. 

for undefined records. This 
applies to any file except 
card input (1442, 2501, 2520, 
or 2540). 

Thus the records in a file can be specified 
as follovs: 

Disk and magnetic tape input or 
output: FIXUNB, FIXBLK, VARUNB; 
VARBLK, or UNDEF 

Card input: FIXUNB 

Card output: FTXUNB, VARUNB, or UNDEF 

Printer output: FIXUNB, VARUNB, or UNDEF 

Printer-keyboard input or 
output: FIXUNB or UNDEF 

Paper tape input: FIXUNB or UNDEF 

Optical read~r input: FIXUNB or UNDEF 

RECSIZE=n 

This entry mus~ be included for journal 
tape, or magnetic tape records that are 
fixed-length blocked (RECFORM=FIXBLK) or 
undefined (RECFORM=UNDEF), in an input or 
output file. For other files of records, 
this entty must be included whenever 
records are undefined (RECFORM=UNDEF). 

For fixed-length blocked disk or tape 
records, this entry sp~cifies the number 
Cn) of characters in an individual record. 
The input/output routines use this factor 
for blocking or deblocking records, and for 
checking record length of input records. 

For undefined records, this entry 
specifies the number Cn) of the 
ge ne ral- purpose register that will contain 
the length of each individual input or 
output record. This. may be any register 
2-11. When undefined records are read, 

IOCS supplies the physical record size in 
th~ reqister. When undefined records are 
built, the programmer must load the lenqth 
of each record '(in bytes) into the register 
before he issues the PUT instruction for 
the record. This becomes the count portion 
of the CCW that IOCS sets up for this file. 
Thus it determines the lenqth of the record 
to be transferred to the output device. If 
an undefined punch or printer output record 
contains a control character in the 
main-storage output area (DTFSR CTLCHR 
specified), the lenqth loaded into the 
RECSIZE register must also include one byte 
for this character. 

If record format is specified as UNDEF 
for a 1287 Optical Reader that is 
processing documents, RECSIZE contains only 
the length of the last field of a document 
read by the user-supplied channel com~and 
word chain. 

N01g: 'When processing undefined records in 
document mode, the user can gain complete 
usage of the register normally used in the 
RECSIZE parameter. This can be 
accomplished by insuring that the 
suppress-lenqth-indication(SLI) flaq is 
always ON w~enprocessing undefined 
records. 

REWIND= 

If no specifications are qiven ~y the 
programmer, tape-files. are automatically 
rewound, but not unloaded, on an OPEN or 
CLOSE instruction and on an end-of-volume 
condition. If other operations are desired 
for a tape input or output file, this entry 
may be included with one of the followinq 
entered immediately after the =siqn: 

UNLOAD 

NORWD 

TPMARK=NO 

to rewind the tape on OPEN, 
and to'rewind and unload on 
CLOSE or an end-of-volume 
condition. 
to prevent rewinding the tape 
at an y time. 

If this entry is included for unlabeled 
tape files, a tapemark will not-be written 
as the first record on the tape. If 
omitted, a tapemark is written. 

For output files containinq nonstandard­
tape labels, this specification must be 
included to prevent a tapemark from beinq 
written after the last nonstandard header 
label and before the first data record. If 
omitted, the tapemark is written. 

TRANS=Name 

This entry applies to an input file read 
from the IBM 267t Paper Tape Reader, and it 

Macro Instruction Statements 149 



specifies the symbolic name of a 
code-translation table. 

The input file records may be punched in 
5-, 6-, 7-, or 8-channel paper tape, using 
anyone of several different recording 
codes. If a code other than EBCDIC is 
used, it must be translated to EBCDIC code 
for use in System/360 programming. For 
IOCS to perform this translation, the user 
provides a t~anslation table and specifies 
the symbolic name of the table in this 
TRANS eptry. Then the logical IOCS 
routines translate the paper tape code and 
make the record available to the programmer 
in usable. form directly in the input area, 
or in the work area if one is specified in 
the GET instruction. 

The translation table must conform to 
the specifications of the machine 
instruction TRANSLATE. 

TRUNCS=YES 

This entry applies to disk files with 
fixed-length blocked records 
(RECFORM=FIXBL~) when short blocks are to 
be processed. It must be included: 

• For an output file if the TRUNC macro 
instruction is to be issued in the 
problem program. 

• For an input file if the TRUNC macro 
was issued ~o write short blocks when 
the file was originally created. 

TYPEFLE= 

This entry must be included to specify the 
type of file (input, output, or combined). 
One of these specifications is entered 
immediately after the = sign: 

INPUT 

OUTPUT 

must be specified for: 
2311 disk input files (with or 

without updating) 
2400 magnetic tape input files 
1'442, 2501, 2520, 2540 card 

reader files 
1052 keyboard input (only the 

GET instruction may be 
issued) 

2671 paper tape files 
1285 optical reader files 
1287 optical reader files 

must be specified for: 
23" disk output files 
2400 magnetic tape output 

files 
1442, 2520, 2540 card punch 

files 
1403, 1404, 1443, 1445 printer 

output 
1052 printer output (only the 

150 S/360 BOS Assembler with I/O Macros 

CMBND 

PUT instruction may be 
issued) 

must be specified for a 1442, 
2520, or 2540 card file that 
is to be updated. That is, 
card'records are to be read, 
processed, and then punched 
(PUT) in the same-cards from 
which they were read. Thus 
input and output operations 
are combined for the same 
file:--This operation can be 
performed in the IBM 1442 or 
2520, in the IBM 2540 if the 
punch-feed-read special 
feature is installed and cards 
are fed and read in the punch 
feed. (See PUT Macro: 
!Ipd a til1.9:" ) 

From this specification, IOCS sets up 
the CCW for this file and qenerates the 
proper blocking or deblocking routines. 

UCS= 

This entry is used in conjunction with the 
CNTRL UCS macro instruction, which controls 
data ~hecks resul~ing from unprintable 
characters in an IBM 1403 Printer with the 
Universal Character Set special feature. 
DTFSR UCS= should be' specified if a program 
that includes CNTRL UCS will ever be 
e~ecuted in a system that utilizes a 1403 
without the UCS feature. CNTROL UCS issued 
for-~on-UCS-printer causes a command 
reject to occur and the system to enter the 
wait state. This DTFSR UCS= specification 
can be included to override the effect of 
command rejects. Either YES or NO may be 
specified after the = sign. 

YES myst be included to ignore 
command rejects from a non-UCS 
printer and continue 
processing. 

NO may be specified. If it is, a 
command reject is accepted and 
the system enters the wait 
state. If DTFSR UCS= i~ 
omitted, UCS=NO is assumed. 

This DTFSR UCS specification is 
generally omitted if a program will always 
be executed in a system that includes a 
printer with the UCS feature. 

UPDATE=YES 

This entry must be included if a gisk in~1 
file (TYPEFLE=INPUT) is to be updated. 
That is, disk records are to be read, 
processed, and then transferred back (PUT) 
to the §ame disk-record locations from 
which they were read. 



VARBLD=n 

Whenever variable-length blocked records 
are built directly in the output area (no 
work area specified), this entry must be 
included. It specifies the number (n) of a 
general- purpose register, which will always 
contain the length of the available space 
remaining in the output area. Any register 
2-11 may be specified. 

After the PUT instruction is issued for 
a variable-length record, IOCS calculates 
the space still available in the output 
area, and supplies it to the programmer in 
this VARBLD register. The programmer then 
compares the length of h·is next 
variable-length record with the available 
space to determine if the record will fit 
in the area. This check must be made 
before the record is built. If the record 
will not fit, the programmer issues a TRUNC 
instruction to transfer the completed block 
of records to the tape file. Then the 
present record is built at the beginning of 
the output area, as the first record in the 
next block. 

VERIFY=YES 

This entry is included if the user wants 
disk records to be checked after they are 
written. If this entry is omitted, any 
records written on disk are not verified, 

WLRER~=Name 

This entry applies only to disk or· tape 
input files. It specifies the symbolic 
name of. a user's routine to which 
programming will branch if a wrong-length 
record is read. In hj..s routine th·e user-. 
can perform any operation he desires for 
wrong-length records. Ho~ever, he must not 
issue any GET macro instructions for this 
file. Also, if ~e uses any other IOCS 
macros in his routine, he must save the 

Icontents of Registers 14 and 15 and restore 
them· prio~ to returninq to IOCS.The 
address of the wrong-lenqth record is 
supplied by IOCS in Register~. At the end 
of his routine, the user must return to 
IOCS by branching to the address in 
Register ~4. 

Whenever fixed-lenqth blocked records or 
variable-length records are specified 
~ECFORM=FIXBLK,=VARUNB, or =VARBLK), the 
machine check for wrong-length records is 
suppressed and IOCS generates a programmed 
check of record length. For fixed-length 
blocked reco~ds, record length is 
considered incorrect if the physical disk 
or tape record (gap to gap) that is read is 
not a multiple of the logical-record length 
(specified in DTFSR RECSIZE), up to the 

maximum length of the block (specified in 
DTFSR BLKSIZE). This permits the reading 
of short blocks of logical records, withput 
a wrong-length-record indication. 

For variable-length records, record 
length is considered incorrect if the 
length of the disk or tape record is not 
the same as the block lenqth specified in 
the first two bytes of the block. 

When fixed-length unblocked records are 
specified· (RECFORM=FIXUNB), IOCS checks for 
a wrong-length-record indication that may 
have been set as the result of an I/O 
operation. 

If this WLRERR entry is omitted from the 
set of DTFSR errtries but a wrong-length 
record is detected by IOCS, one of the 
following will result: 

• If the DTFSR ERROPT entry is included 
for this file, the wrong-length record 
will be treated as an error block and 
handled accordinq to the user's 
specifications for an error (IGNORE, 
SKIP, or Name of error routine). 

• If the DTFSR ERROPT entry is not 
included, the job will be terminated. 

The WLRERR entry does not apply to 
undefined records on tape. However, a 
WLRERR routine may be used to handle 
undefined records on disk. 

WORKA=YES 

Input/output records can be processed, or 
built" in work areas instead of the 
input/o·utput areas. If this is planned, 
this WORKA=YES entry must be inCluded, and 
the programmer must set up the work area(s) 
in main storage. Then the symbolic name, 
used in the DS instruction that reserves 
the work area must be specified in each 
GET, or PUT, instruction. On a GET or PUT, 
IOCS moves the record to,.or from, the 
specified work area. 

Whenever this entry is included for a 
file, the DTF entry IOREG must be omitted. 
When variable-length records are used, 
WORKA must be ·defined to start on a 
halfword boundary. This entry is not 
applic~ble when documents are being 
processed on the 1287. 

DIRECT ACCESS METHOD' (DTFDA) 

The DTFDA detail entries that apply to a 
file when records are processed by the 
direct access method are explained in the 
following text and shown in DTFDAEntries 
(Figure 36). 

Macro Instruction Statements 151 



AFTER=YES 

This entry must be included if any record 
is to be added to a file following the last 
record previously written on a track. That 
is, whenever the macro instruction WRITE 
Filen~(AFTER will be used in a program, 
this entry is required. 

BLKSIZE=n 

This entry indicates the size of the I/O 
area by specifying the maximum number (n) 
of characters that will be transferred to, 
or from, the area at anyone time. When 
undefined records are read or written, the 
area m~st be large eno~gh to accommodate 
the largest record. 

If key length is specified by DTFDA 
KEYLEN ~nd if macro instructions that 
transfer the key areas of records will be 
issued, this area must provide ~or both the 

152 S/360 BOS Assembler with I/O Macros 

key area and data area of a record (see 
IOAREA1 and Figure 15). If a file is to be 
c"reated or if records are to be added to a 
file, the count area of the records must be 
included in this specification. 

IOCS uses this specification to 
construct the count field of the CCW for 
reading or writing fixed-length records. 

CONTROL=YES 

This entry must be included if a CNTRL 
macro instruction will be issued for this 
file. A control command issues orders to 
the disk drive to perform the non-data 
operation SEEK. 

DEVICE=DISK11 

This entry must be included to state that 
the logical file is on a 231' disk drive. 



NAME OPERATION OPERANDI MUST BE INCLUDED REMARKS * 

Filenamet DTFDAt Each file H eade r Card. Sp'ecify symbolic filename. 

AFTER:: YES Record reference AFTER used for 
an output record 

tBLKSIZE::n Each file Length of I/O area. 
n :: maximum number of characters. 

CONTROL::YES CNTRL macro used 

tDEVICE::DISKII Each file 

t ERRBYTE:: Name Each file Symbolic name of 2- byte field for 
error/status codes supplied by 10CS. 

IDLOC::Name ID of same or next record to be Symbolic name of 5- byte field for ID. 
supplied by 10CS 

tlOAREAI ::Name Each file Symbolic name of input/output area. 
Same as used in DS. 

KEYARG::Name Record reference by key Symbolic name of key field. 

KEYLEN::n Records contain key areas All keys must be the same length. 
n:: length of keys. 

LABADDR:: Name Check/write additional labels Symbolic name of user's label routine. 

READID::YES Record reference by ID used for 
an input record 

READKEY::YES Record reference by key used for 
an input record 

RECFORM:: FIXUNB Fixed - length records If this entry is omitted, 10CS assumes 
ON1fEr -Reco-rds-not fixed:'lengih; or- - -- FIXUNB, 

Records added to a file and EOF 
record written 

RECSIZE::n Undefined records n ::number of a register 2- II. 

tSEEKADR:: Name Each file Symbolic name of track- reference field. 
Field is 8 bytes long. 

SRCHM::YES Search multiple tracks Applies to record reference by key. 

tTYPEFLE:: INPUT Each file Read and check standard labels. 
OUTPU(- - -Write standard labelS: - - - - - - - - - - --

VERIFY::YES Check record written on disk 

WRITEID::YES Record reference by ID used for 
an output record 

WRITEKY::YES Record reference by key used for 
an output record 

XTNTXIT:: Name Symbolic name of user's extent routine. 

t Must be included. Other entries are included when applicable. 

I When two choices are shown, select only the appropriate ~ and enter it after the:: sign. 

* The header card and each detail card except the last one used in a file set must contain a continuation punch 
in column 72. Each detail card except the last one used must also contain a comma after the last operand. 

In all entries: Solid caps must be entered as shown (For example, AFTER=YES) 

Lower- case letters are to be replaced by programmer's symbolic name or a number (For example, Filename 
in header card, or BLKSIZE=n where n is replaced) • ---
.!! is a decimal self- defining value. 

Figure 36. DTFDA En tries 

Macro Instruction statements 153 



ERRB YTE=Name 

This entry is re~uired .for laCS to supply 
indications of exceptional conditions. to' 
the~roblem ·program. .The $ymbolic name ~f 
a .2-byte field, in which laCS can store the 
error-condition. or status codes,. is entered 
in this card after the = sign~ 

The codes are available for testinq by 
the problem program at WAITF tim~, after 
the transfer of a record has been 
completed. One or more of the following 
codes may be set by laCS in the' bits 
indicated: 

I 1 J .----------------, 
IByte I Bit I Error/Status Code Remarks I 
I 'r-
I I 
l-----+-

0 

Posi tion 

0 
1 

2 
3 
4 

• I 
I 

Hex Value 

80 
40 

20 
10 
0.8 

I· 
I 
I 

Wrong-length record 

No room found 
• I 

For fixed unblocked records, 
wrong blocksize specified 
while usinq READID, WRITEID, 
R~ADKEY, and WRITEKY. 

10ccurs only on WRITEAFTER. 
INo ~oom to write record 
Ion .track specified. 

5 04 I 
6 02 I 
7 0' I 

~-1--------;---------+--------~----~----~I~--------
I 1 0 80 Data check in count area IData error detected. 
I Occurs when reading or 
I searching a count field. 

40 

2 20 End of cylinder 

I 
I , 

I 
'1 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

Occurs when record is 
not found·on specified 
while using SRCHM 

cylinder 

3 '0 Data ch~ck wh~n reading 
key 'or data 

Data error detected when 
reading key or data, or 
while searc~inq keys. 

4 08 No record found *) IOccurs when searchinq 

5 

6 
7 

04 

02 
0' 

End of file 

lID or key without SRCHM 
land ID or key is not found 
lin specified track. 
I . 
ICount field with data 
Ilenqth of zeros detected. 
I 
1 

.*) If the ~ead ID command is issued for an ID one g~eater than the highest ID on a 
track, record 1 of that track will be read and no NRF condition is posted in the 
ERRBYTE. The user may use DTFDA parameter IDLOC=name, which supplies the ID of the 
next record to the problem program, to handle this specific type of NRF. 

~: Any bits that were set on by one I/O operat~on' are reset 
before another I/O' operation is started. 

IDLOC=Name 

This entry is included if the programmer 
wants.IOCS to supply the ID of a record 
after each READ or WRITE instruction is 

'54 S/360 BOS Assembler with I/O Macros 

executed for specified records. The 
symbolic name of a 5-byte field~ in which 
laCS is to store the ID, is specified after 
the = sign in this parame~er. 



IOCS supplies the ID of the record 
specified in the READ/WRITE instru~tion, or 
the ID of the next record on the track. 
This is affected~y the type of record 
reference specified in the READ/WRITE 
instruction and by the use of the SRCHM 
specification to search multiple tracks for 
a particular key (Figure 37). 

IOAREA 1= Name 

This entry must be included to specify the 
symbolic name of the input/output area used 
by this file. The input/output routines 
will transfer records to or from this area. 
The specified name must be the same as the 
name used in the DS instruction that 
reserves this area of main storage. 

The main-storage input/output area must 
be large enough to contain the maximum 
number of bytes that will be required in 
any READ or WRITE instruction issued for 
this file in the problem program. This is 
affected by the lenqth of record data 
areas, and by the use of the count and key 
areas as follows: 

• If undefined records are specified in 
the DTFDA entry RECFORM, the area must 
provide for the largest data record 
that will be processed. 

• If the DTFDA entry KEYLEN is specified 
and if any instructicns that read or 
write the key area of a record are to 
be issued in the problem proiram, the 
input/output area must provide" room for 
the key area as well as the data area. 
The length needed for the key is the 
length specified in KEYLEN. 

• If any write instructions that transfer 
the count area to a disk record will be 
issued in the problem program, eight 
bytes of main storage must be allotted 
at the beginning of the I/O area. In 
these eight bytes IOCS will construct 
the count field to be transferred to 
disk. 

Whenever a READ or WRITE instruction is 
issued, IOCS assumes t ha t the input/output 
area (see Figure 15) contains the 
information implied by the type of 
instruction that is to be executed (Figure 
38) • 

10 SUPPLIED 
MACRO INSTRUCTION 

Without SRCHM With SRCHM 

READ filename,KEY Same record Next record 

READ fi lename, 10 (Invalid) Next record 

WRITE filename,KEY Same record Next record 

WRITE fi lename, 10 (Invalid) Next record 

WRITE filename, RZERO (Invalid) None 

WRITE fj lename ,AFTER (Invalid) None 

Figure 37. ID Supplied After a READ or 
WRITE Instruction 

KEYARG=Name 

This entry must be included if records are 
to be identified by key. That is, if the 
macro instruction READ Filename,KEY or 
WRITE Filename,KEY will be issued in the 
problem program, this card is required. 
KEYARG specifies the symbolic name of the 
key field in which the user will supply the 
record key for the READ/WRITE routines. 

When record reference is by key, IOCS 
uses this specification at assembly time to 
construct the data address field of the CCW 
for search commands. 

KEYLEN=n 

This entry must be included if record 
reference is by key or if keys are to be 
read or written. It specifies the number 
(n) of bytes in each key. All keys must be 
~he same length. If this entry is omitted, 
IOCS assumes a key length of zero. 

When record reference is by key, IOCS 
uses this specification to construct the 
count field of the CCW for this file. IOCS 
also'uses this in conjunction with IOAREA. 
to determine where the data field in the 
main-storage I/O area is located (see 
IOAREA') • 

LABADDR=Name 

The user may require one or more labels in 
addition to the standard file label. If 

Macro Instruction Statements 155 



so, he must include his own routine to 
check, or write~ th~ additional label~~ 
Thesymbclic name of his routine is' 
specified in this ~niry. Programming 
branches to this routine after IOCS has 
processed the standard label. 

At the end of his ro~tine, the 
programmer must return to laCS by use of 
the LBRET macro. 

READID=YES 

This entry must be included if any input 
records are tb be specified by ID 
(identifier) in the proble~ program. That 
is, whenever the macro instruction READ 
filename,ID will be used in the program. 
this entry is required. . 

.' 

READKEY=YES 

This entry must be included if any input 
records are to be specifi~d by key in the 
problem program. That is, whenever the_ 
macro instruction READ-filename,KEY~willbe 
used in the progr~m, this card is required. 

Vo AREA CONTENTS 
MACRO INSTRUCTION 

With KEYLEN Without KEYLEN 

READ filename, KEY Data ( Invalid) 

READ filename,ID Key and Data Data 

WRITE filename.l KEY Data (Invalid) 

WRITE filename, 10 Key and Data Data 

WRITE filename,AFTER Count, Key, and Data Count and Data 

Figure 38. I/O Area Requirements for DAM 

RECFORM= 

This entry specifies the type of records in 
the input, or output, file. Either of the 
following specifications may be entered 
immediately ~fter the = siga: 

FIXUNB for ~ixed-l€ngth records. All 
records are co~sidered 
unblocked in the DAM method. 
If the use~ wants blocked 
records r he must provide his 
own blocking and deblocking. 

156 S/360 BaS Assembler with I/O Macros 

UNDEF 

RECSIZE=n 

for undefined .records. This 
specification is required: 

• Whenever records are not 
fixed-length. 

• If records are.to be added 
to a file (RZERO or AFTER 
used in a WRITE 
instruction) and an 
end~of-file record will be 
written. 0 

This entry must be included if undefined 
re~ords are specifi~d (RECFORM=UNDEFl. It 
specifies the number (n) of the 
general-purpose re~ister that will contain 
the length of each individual input or 
output reco~d. This may be'any register 
2-11. 0 

Whenever each undefined record is read, 
laCS supplies the length of the data area 
of that record in the register. 

When an undefined record is to be 
loaded, added, or written in the file, the 
programmer must load the length of' the data 
area of the record (in bytes) into this 
register, before he issues the WRITE 
instruction for the record. IOCS adds the 
length of the key area when required. 

When records are to be loaded or added 
to a file (RZERO or AFTER specified in the 
WRITE instruction},o laCS uses the length .in 
constructing the count area to be written 
on disk. 

SEEI<'ADR=Name 

This entry must be included to speci~y the 
symbolic name of the user's track-reference 
field. In this field the user 'stores the 
track location of the particular record to 
be read or written. The READ/WRITE 
~outines refer to this field to determine 
which disk pack and which track on that 
pack contains the desired record.' Whenever 
records are to be located by searching for 
a specified ID, the track reference field 
must also contain the number of the record 
on the track. 

The track-reference field is an 
eight-byte field (MBBCCHHR), and the 
symbolic name labels the first byte (see 
Figure 16). 



The bytes are used for: 

M Symbolic unit number 

BB Reserved for IBM 2321 Data Cell 
Drive (BB=OO for 2311 disk address) 

CC Cylinder number (the first C=O) 

HH Head number (the first H=O) 

R Record number 

laCS uses this specification to 
construct the data address field of the CCW 
for seek commands. When record reference 
is by ID, laCS also uses this to construct 
the CCW data address field for search 
commands. 

SRCHM=YES 

If input/output records ~ill be identified 
by key, this entry may be included to Cause 
laCS to search multiple tracks for each 
specified record. The instruction READ 
fil~n~~~~EY or ]RI1]_fil~na~~~]1 wIll 
cause a search of the track specified in 
the track-reference field and all following 
tracks in the cylinder, until the record is 
found or the end of the cylinder is 
reached. If the logical file ends before 
the end of the cylinder and the record is 
not found, the search continues into the 
next file, if any, on the cylinder. If the 
record is not found on the cylinder, the 
end-of-cylinder bit in the error/s~atus 
field is set on; the no-record-found bit is 
EQl affected. 

Without this entry, each search is 
confined to the specified track. In this 
case, if the record is not found, the 
no-record-found bit in the error/status 
field is set on. 

TYPEFLE= 

This entry must be included to indicate how 
standard volume and file labels are to be 
processed: 

INPUT 

OUTPUT 

Standard labels are to be read 
and checked. 

Standard labels are to be 
written. 

Because logical files on disk must 
always contain labels, this entry is always 
required. 

VERIFY=YES 

This entry is included if the user wants 
records to be checked after they are 
written on disk. If this entry is omitted, 
any records written on disk are not 
verified. 

WRITEID=YES 

This entry must be included if the disk 
storage location for writing any output 
record is to be ~pecified by record ID 
(identifier) in the problem program. That 
is, whenever the macro instruction WRITE­
filenam~ID will be used in the program, 
this entry is required. 

WRITE~Y=YES 

This entry must be included if the disk 
location for writing any output record is 
to be specified by record key in the 
problem program. That is, whenever the 
macro instruction WRITE-filename,KEY-will 
be used in the program, this entry is 
required. 

XTNTXIT=Name 

This entry is included if the programmer 
wants to process XTENT card information. 
It specifies- the symbolic name of his 
extent routine. Whenever XTNTXIT is 
included, IOCS branches to the user's 
routine during the initial OPEN for the 
f~le. It branches after each specified 
extent has been completely checked and 
conflicts, if any, have been resolved. 

Upon entry to the user's routine, IOCS 
stores in Register 1 the address of a 
12-byte area from which the user can 
retrieve extent card information (in binary 
form). This area contains: 

0-1 

2 

contents 

Symbolic unit (hexadecimal 
representation of SYSnnn) 

SYSRES 0000 
SYSRDR = 0004 
SYSLST 0008 
SYSIPT = OOOC 
SYSOPT 0010 
SYSLOG 0014 
SYSOOO 0018 
SYS001 001C 
etc. 

Extent type code (as specified in 
the XTENT card) 

Macro Instruction Statements 157 



3 Extent sequence number (as 
specified in the XTENT card) 

4-7 Lower limit of the extent (track 
address - CCHH) 

8-11 Upper limit of the extent (track 
p.ddress - CCHH) 

Also upon entry to the user's extent 
routine, IOCS stores a retqrn address in 
Register ~4. Therefore, at the end of his 
routine, the user must branch to this 
address to continue processing. 

INDEXED SEQUENTIAL SYSTEM (DTFIS) 

The DTFIS detail entries that apply to a 
file when records are processed by the 
Indexed Sequential File Management System 
are explained in the following text and 
shown in DTFIS· Entries· (Figure 39). 
Operand entries vary with the application, 
but name and operand must be included. 
Filenames should be unique to each other to 
be cataloged properly into the core 'image 
library.' The length of t~e filename is 
limited to five characters. 

ADAREX=Name 

For each new recbrd inserted within an 
organized file, a record is entered in an 
6verflow area. If the specified overflow 
area(s) becomes filled and more records are 
yet to be stored, ISFMS branches to the 
user's routine specified by this entry. 
The symbolic name of the user's routine is 
entered after the = sign in this entry. 

The user should specify an independent 
overflow area if one has not already been 
specified. ' Or, he should extend the size 
of the independent overflow area, if that 
is filled. For this, he supplies a new 
XTENT card for the independent overflow 
area and restarts th~ job at the point at 
which the overflow area was .exceeded. 

Note: If the CYLOFL option is taken, other 
additions may occur on cylinders where 
there is room for overflow records.' The 
user, therefore, may desire to continue. 

CYLOFL=n 

158 S/360 BOS Assembler with I/O Macros 

This entry must be inclqded if cylinder 
overflow areas are to be reserved for a 
logical file. A cylinder overflow area is 
located on each cylinder within the prime 
area of the data file. It contains records 
that overflow from tracks i~ that cylinder. 

To reserve the areas for cylinder 
overflow this card is required when a fi1e 
is t9 be loaded onto disk and when records 
are to be added to an organized file. It 
specifies the number (n) of tracks to be 
reserved on each cylinder. 

If an independent over~low area, is 
specified (by an XTENT card) along with the 
CYLOFL entry, overflow records are written 
in the independent overflow area after a 
cylinder overflow area becomes filled. 

CYNDEX=Name 

When a file is to be loaded onto disk, the 
user specifies the disk area to be used for 
the cylind~rindex (by including a Job 
Control XTENT card). If the index e~ceeds 
this area as the file is being loaded, 
ISFMS branches to the user's routine 
specified by this entry. The symbolic name 
of the user's routine is entered after the 
= sign in this entry. 

The user must supply a new XTENT card for 
the cylinder index area and restart th~ job 
if the file i~ being load~d or extended. 

, DERREX=Name 

This entry must be included to specify a 
,user's routine for uncorrectable disk 
errors. If any uncorr~ctable error is 
detected when records are transferred 
eithe~ to or from disk storage, ISFMS 
branches to this routine. The symbolic 
name of the user's ~outine is entered after 
the = sign in th1s entry. The user has the 
choice of continuing, but he should save 
the I/O and work areas: . During a LOAD 
function, the job is terminated 
automatically for all the count, key, and 
data WRITE operations. This routine will 
also be entered if a No-Record-Found 
~ondition'occurs and no RTRVEX is 
specified. 



NAME OPERATION OPERAND' MUST BE INCLUDED REMARKS· 

Filenamet DTFIS t Each file Header card. Specify symbolic fi Ie name. 

ADAREX=Name 10ROUT specifies ADD or ADDRTR Symbolic name of user's routine for full overflow areas. 

CYLOFL=n Cylinder overflow areas May be specified alone or with an independent overflow area. 
n = number of tracks for each area. 

CYNDEX=Name 10ROUT specifies LOAD Symbolic name of user's routine for full cylinder index area. 

tOERREX=Name Each file Symbolic name of user's routine for any uncorrectable disk error. 

ItOSKXTNT=n Each file Maximum number of extents specified for the file. 

DTAREX=Name lOR OUT specifies LOAD Symbolic name of user's routine for full prime data area. 

DUPREX=Name 10ROUT specifies LOAD, ADD, Symbolic name of user's duplicate-record routine. 
or ADDRTR 

EOFADDR=Name Sequential processing Symbolic name of user's end-of-file routine. 

ILlDEX=Name TYPEFILE specifies SEQNTL or RANSEQ Symbolic name of user's routine for an ID outside the file limits. 
and SETL macro indicates 10 

10AREAL=Name 10ROUT specifies LOAD, ADD, 
AODRTR 

10AREAR=Name TYPEFLE specifies RANDOM or Symbol ic name of input/output area. Same as used in DS. 
RANSEQ At least one I/o area must be specified for a file. 

10AREAS=Name TYPEFLE specifies SEQNTL or 
RANSEQ 

10REG=n Process records in I/o area n = number of register 2-11 

tIOROUT=LOAD Each file Build or extend a file on disk. 

- - - f- - - - - - - - - - - - - - - - - -
ADD Insert new records in an organized file. 
--- - - r- - - - - - - - - - - - - - - - -

RETRVE Retrieve records for processing/updating. 
- - - - r- - - - - - - - - - - - - - - - - - -
ADDRTR Insert and retrieve records. 

KEYARG=Name Retrieve records randomly, or Symbolic name of key field in main storage. 
sequentially starting by key 

tKEYLEN=n Each file All keys must be the same length. 
n = length of key. (Maximum is 95) 

KEYLOC=n Blocked records n = high-order position of key field within each record 

MANDEX=Name 10ROUT=LOAD and MSTIND=YES Symbolic name of user's routine for full master index area. 

MSTlND=YES Master Index 

tNRECDS=n Each file n = number of records in a block. For unblocked records, n = 1. 

RECFORM=FIXUNB Unblocked records Applies to records in prime data area only. 
- - - - - - -- - - - - - - -
FIXBLK Blocked records 

tRECSIZE=n Each file n = number of characters in each logical record. 

RTRVEX=Name If KEYARG is specified Symbolic name of user's routine for records not found. 

SQCHEX=Name 10ROUT specifies LOAD Symbolic name of user's sequence-error routine. 

TYPEFLE=RANDOM 10ROUT specifies RETRVE or ADDRTR Random processing. 
- - - - - - - - - - - - - - - - - - - - - -
SEQNTL Sequentia' processing. 
- - - - - - - - - - - - - - - - - - - - - --
RANSEQ Random and sequential processing. 

Figure 39. DTFIS Entries (Part , of 2) 

~acro Instruction statements 159 



NAME OPERATION OPERANDI MUST BE INCLUDED REMARKS· 

UPDATE=RANDOM Update records Random processing with updating. ----------------------_. 
SEQNTL Sequential processing with updating. - --- -----------------------
RANSEQ Random and sequenHal pr~cessing with updating. 

VERIFY=YES Check records written on disk 

t WLRERR=Name Each file Symbolic name of user's wrong-length-record 
routine. 

WORKL=Name IOROUT specifies LOAD, ADD, 
or ADDRTR 

WORKR=Name TYPEFLE specifies RANDOM or 
RANSEQ and records are processed 
in a work ar~a 

WORKS=YES TYPEFLE specifies SEQNTL or 
RANSEQ and records are processed 
in work areas 

t Must be included. Other entries are included when applicable. 

II When two choices are shown, select only the appropriate ~ and enter"it after the = sign. 

* The header card and each detail card except the last one used in a file set must contain a continuation punch 
in column 72. Each detail card except the last one used must also contain a comma after the last operand. 

In all entries: Solid caps must be entered as shown (For example, IOROUT=LOAD). 

Lower-case letters are to be replaced by programmer1s symbolic name or a number (For example, Filename 
in header card, or CYLOFL=n where ~ is replaced). 

~ is a decimal self-defining value. 

Figure 39. DTFIS Entries (Part 2 of 2) 

DSKXTNT=n 

This entry must be included to specify the 
maximum number (n) of extents for this 
file. The number must include all the 
prime data area extents (if more than one 
disk ar~a is used for the data records), 
the master and cylinder index areas 
(treated as one extent), and the 
independent overflow area, all of which are 
specified by XTENT cards. Thus the minimum 
number specified by this entry is 2: one 
extent fer one prime data area, and one for 
a cylinder index. 

DTAREX=Name 

When a file is to be loaded onto disk, the 
user specifies the disk area to be used for 
.data records (by including a Job Control 
XTENT card). If the records require more 
than the allotted space as they are being 
loaded, ISFMS branc~es to the user's 
routine specified by this entry. The 
symbolic name of the user's routine is 

160 S/360 BOS Assembler with I/O Macros 

entered after the = sign in this entry. In 
the DTAREX routine, the user can issue an 
ENDFL instruction to prepare the orqanized 
file for closinq. This permits the 
remaining records to be treated as 
extensions. 

To continue loadinq the file, the user 
must supply a rie~ XTENT card for the data 
area and restart the job at the point at 
which the data area was exceeded. 

DUPREX=Name 

When records are loaded or added to a file, 
ISFMS checks for duplicate record keys. If 
a duplication is found, ISFMS branches to 
the user's routine specified by this entry. 
The symbolic name of the user's routine is 
entered after the = sign in this entry. 
The user need not terminate the job. He 
may continue if he desires. 



EOFAOOR;:Name 

This entry must be included when a 
sequential retrieval operation is to be 
performed. It specifies the symbolic name 
of the user's end-of-file Ioutine. ISFMS 
will branch to this routine when the 
end-of-file disk record is read. In his 
routine the user may perform any operations 
required for the end of the job, and he 
generally issues the CLOSE instruction for 
the file. 

ILIOEX=Name 

This.entry is includEd when records are to 
be retrieved in sequential order and 
tetrieval is to start a specified IO. 
ILIOEX gives the symbolic name of the 
user's routine to which ISFMS will branch 
if an 10 that is outside of the file limits 
(specified by XTENT cards) is supplied in 
the SETL idname field. Another SETL may 
then be issued with a ne~ ID. An ESETL is 
not required in this routine. 

10 AR EAL= Name 

This entry must be included when a file is 
created (loaded) or when records are added 
to an organized file. It specifies the 
symbolic name of the output area used for 
loading or adding recoras to the file. The 
specified name must be the same as the name 
us~d in the OS instruction th~t reserves 
this area of main storage. The ISFMS 
routines construct the contents of this 
area and transfer records from tnis area to 
disk storage. 

This main-storage output area must be 
large enough to contain the count area, key 
area, and data area of records. 
Furthermore, the data-area portion must 
provide enough space for the sequence-link 
field of overflow records whenever records 
are added to a file (Figure 40). 

IOAR EAR:: Name 

This entry must be included whenever 
records are processed in random order. It 
spec~fies the symbolic name of the 
input/output area used for random retrieval 
(and updating). The specified name must be 
the same as the name used in the DS 
instruction that reserves this area of main 
storage. 

This main-storage I/O (Figure 41) must 
be large enough to contain: 

• the data area of an unblocked record 
read from the prime data area, 

• the data area of a block of records 
read from the prime data area, or 

• the key area and the data area, 
including the sequence-link field, of a 
record read from an overflow area. 
This applies regardless of whether the 
logical file contains blocked or 
unblocked records, because all overflow 
records are unblocked. 

IOAREAS=Name 

This entry must be included whenever 
records are processed in sequential order 
by key~ It specifies the sy~bolic name of 
the input/output area used for seguential 
retrieval (and updating). The specified 
name must be the same as the name used in 
the DS instruction that reserves this area 
of main storage. 

This main-storage I/O area (Figure 41) 
must be large enough to contain: 

• the key and data areas of an unblocked 
record read from the prime data area, 

• the data area of a block of records 
read from the prime data area, or 

• the key area and the data area, 
including the sequence-link field, of a 
record read from an overflow area. 
This applies regardless of whether the 
logical field contains blocked or 
unblocked records, because all overflow 
records are unblocked. 

IOREG=n 

This entry must be included whenever 
records (blocked or unblocked) are to be 
retrieved and processed directly in the I/O 
area. It specifies the number (n) of the 
register that ISFMS can use to indicate the 
address of the data portion of the record 
that is available for processing. ISFMS 
puts this address in this register each 
time a READ, WRITE, GET, or PUT is 
executed. Any register 2-11 may be 
specified. 

No1g: For sequential unblocked records, 
the key is at the beginning of the I/O 
area. 

Macro Instruction statements 161 



OUTPUT AREA REQUIREMENTS (IN BYTES) 

FUNCTION Sequence Count Key 
Link 

Data 

Load Unblocked Records 8 Key Length - Record Length 

Load Blocked Records 8 Key Length - Record Length x Blocking Factor 

Add Unblocked Records 8 Key Length 10 Record Length 

Add Blocked Records 8 Key Length - Record Length x Blocking Factor 
OR* 

8 Key Length 10 I Record length 

* Whichever Is larger 

Figure 40. output Area Requirements for Loading or Adding Records to a File by ISFMS 

I/O AREA REQUIREMENTS (IN BYTES) 
FUNCTION 

Sequence Count Key 
Link 

Data 

Retrieve Unblocked Records - Key Length 10 Record Length 

Retrieve Blocked Records - - - Record Length x Blocking Factor 
OR* 

- Key Length 10 I Record Length 

* Whichever Is Larger 

Figure 41. I/O Area Requirements for Random or Sequential Retrieval by ISFMS 

Whenever IOREG is specified for a file, 
the program should not include both DTFIS 
entries WORKR and WORKS for that file. 

IOROUT= 

This entry must be included to specify the 
type of function to be performed. Qng of 
the following specifications is entered 
after the = ·sign. 

LOAD 

ADD 

RETRVE 

ADDRTR 

to build a logical file on 
disk or to extend a file 
beyond the highest record 
presently in an organized 
file. 

to insert new records into an 
organized file. 

to retrieve records from a 
file for either random or 
sequential processing and/or 
updating .. 

to both insert new records 
into a file (ADD) and retrieve 

162 S/360 BOS Assembler with I/O Macros 

records for processing and/or 
updating (RTR). 

In ~sing ADD and ADDRTR, it is necessary 
to gua~d against losing records, should the 
problem program not reach normal end of job 
after the instructions are issued. The 
CLOSE macro updates the Format-2 label with 
the address of the last record written in 
the current overflow area. If the program 
aborts, CLOSE is not issued a~d updating 
will not occur. Future ADDS ~ill destroy 
the sequential chain of the file and 
records may be lost. 

KEYARG=Name 

This,entry must be included. for random 
retrieval (READ) or sequential retrieval 
(GET) beginning. with key. It specifies the 
symbolic name of the main-storage key field 
in which the user must supply the record 
key to ISFMS. Whenever this entry is 
included, the DTFIS entry RTRVEX m~st also 
be included. 



KEYLEN=n 

This entry must be included to specify the 
number (n) of bytes in the record key. All 
keys must be the same length (maximum 
length is 95 bytes). 

KEYLOC=n 

This entry must be included if blocked 
records are specified in DTFIS RECFORM. It 
supplies ISFMS with the high-order position 
of the key field ~hin the data record. 
That is, if the key is recorded in 
positions 21-25 of each record in the file, 
this card specifies 11. 

ISFMS uses this specification to locate 
(by ke~ a specified record within a block. 
The key are~ ~f a disk record contains the 
key of the highest record in the block. To 
search for any other record, ISFMS locates 
the proper block and then examines the key 
field within each record in the block. 

MANDEX=Name 

When a logical file is to be loaded onto 
disk, the user may request that the ISFMS 
build a master index (by specifying 
MSTIND=YES). If so, the area reserved for 
the master index is also specified by a Job 
Control XTENT card. If the master index 
exceeds the allotted area as the file is 
being loaded, ISFMS branches to the user's 
routine specified by this entry. The 
symbolic name of the user's routine is 
entered after the = sign- in this entry. 

The user must supply a new ~TENT card 
for the master index area and restart the 
job if the file is being loaded. This may 
also necessitate a new XTENT card for the 
cylinder index area. If the file is being 
extended, the user must reorganize the 
file. 

MSTIND=YES 

This entry is included whenever a master 
index is used for a file. In this case, it 
is required when 'a file is loaded (to 
instruct ISFMS to build the index) and when 
records are added to or retrieved from a 
file with a master index. 

ISFMS always builds a track index and a 
cylinder indEx, but the master index is 
optional. - The master index, if used, is 
the highest level index, and it includes an 
index record for each track of the cylinder 
index. Tpus, it points to the cylinder 
index on a search for a particular record 
(see Indices:- -Master·Index). The location 

of the master index is specified by a Job 
Control XTENT card. 

NRECDS=n 

This entry is always reguired. It 
specifies the number (n) of loqical records 

l

in a block (called the blockirrq factor). 
The maximum number of records (n) that may 
be specified is 255. If unblocked records 
are specified (RECFORM=FIXUNB), this card 
must specify "1". 

RECFORM= 

This entry specifies the type of records in 
the loqical file. All loqical records in 
the file must be fixed lenqth. However, 
they may be either blocked or unblocked. 
One or the other of these specifications 
must be entered after the = siqn: 

FIXUNB 

FIXBLK 

for unblocked records. 

for blocked records. With 
this specification the key of 
the hiqhest reco~d in the 
block becomes the key -for the 
block and must be recorded in 
the key area. 

The specification that is included when 
the logical file is loaded into disk 
storage must also be included whenever the 
file is processed. 

Records in the overflow area(s) &re 
al~ays unblocked (see Addition-of-Records, 
and~Overflow-Areas), but that does not 
affect this entry. RECFORM refers to 
records in the .prime data area only. 

RECSIZE=n 

This entry must be included to specify the 
number(n) of characters in a loqical 
record. This is the lenqth of the data 
area of each individual record. All 
logical records must be the same size. 

RTRVEX=Name 

If a specified record cannot be found in a 
retrieve function, ISFMS branches to the 
user's routine specified in this entry. 
The symbolic ~ame of the user's routine is 
entered after the = sign in this entry~ 
The job need not be terminated. If this 
occurred during a SETL 1 an ESETL mus~be 
issued prior to the next SETL. This entry 
must be included whenever DTFIS KEYARG is 
specified. 

Macro Instruction statements 163 



SQCHEX=N ame 

When records are loaded onto disk, ISFMS 
checks the records for sequential ~rder by 
key. If a sequence error is detected, 
ISFMS branches to the user's routine 
specified by this entry. The symbolic name 
of the user's routine is entered after the 
= sign in this entry. The user may do 
whatever he wishes with the reco~d 
containing the error without terminating 
the loadinq process. 

TYPEFLE= 

This entry must be included when a 
retrieval function is to be performed. It 
specifies the type(s) of processing that is 
to be performed by the problem program for 
this file. Q~ of the following 
specific ations is entered aft,er the = siqn: 

RANDOM 

SEQNTL 

RANSEQ 

for random processing. Records 
are retrieved from the fil~ in 
random order specified by key. 
Only READ instruc~ionsmay be 
issued to transfer records to main 
storage. 

for sequential processing. The 
problem program specifies the 
'iirst-record to be retrieved, and 
thereafter ISFMS retrieves records 
in seguential order by key. The 
first record is specified by key, 
ID, or the beginning of the 
logical file (see SETL Macro) • 
Only GET instructions may be 
issued to transfer records to main 
storage. 

for both random and sequential 
processing. READ and/or GET 
instructions may be issued to 
transfer records. 

TYPEFLE is not required for leading or 
adding function~. 

UPDATE= 

This entry must be included if disk records 
are to be updated. That is, records' are to 
be retrieved, processed, and then 
transferred back (WRITE or PUT) to the same 
disk records from which they were read.---­
One of the following specifications is 
entered after the = sign: 

RANDOM for random processing with 
updating. Records (retrieved by 
READ instructions) are written 
back into the file by WRITE 
instructions. RANDOM may be 
specif~ed only if TYPEFLE 
specifies RANDOM or RANSEQ. 

164 S/360 BOS Assembler with I/O Macros 

SEQNTL 

RANSEQ 

for sequential processinq with 
updatinq~ Records (retrieved by 
GET instructions) are written back 
into the ,file by PUT instructions 
(GET instructions for blocked 
records). See MacrO-Instructions 
for sequential Retrieval by ISFMS. 
SEQNTL may be specified only if 
TYPEFLE specifies SEQNTL or 
RANSEQ. 

for random or sequential retrieval 
with updating. Records (retrieved 
by READ or GET instructions) may 
be written back into the file by 
WRITE or PUT instructions. RANSEQ 
may be specified only if TYPEFLE 
specifies RANSEQ. 

VERIFY=YES 

This entry is included if the user wants 
records to be checked after they are 
written on disk. If th~s entry is omitted, 
any records written on disk are not 
verified. 

WLRERR=Name 

This entry must be included to specify the 
user's routine for wrong-length records. 
If a wrong-length record is detected when 
data is transferred to or from disk 
storaqe, ISFMS branches to this routine. 
The symbolic name of the user's roptine is 
entered after the = siqn in this entry. 

Note: An erroneous specification to ISFMS 
inRECSIZE, KEYLEN, etc., may cause a 
wrong-length record. 

WORKL=Name 

This entry must be included whenever a file 
is to be created (loaded) or records are to 
be added to an organized file. It 
specifies the sjmbolic name of the work 
area in which the user must supply the data 
records to ISFMS for loading or addinq to 
the file. The specified name must be the 
same as the name used in the DS instruction 
that reserves this area of main storaqe. 

This work area must provide space for 
both the logical data record (data area) 
and the record key (for the key area of the 
disk record) when a file of unblocked 
records is created or when records are 
added to £nY-file. To create a file of 
blocked records, however, the work area 
must pr~vide space for data only. 

Due to record shiftinq in an ADD 
function, the original contents of WORKL 
will be changed. 



WORKR=Name 

When records are processed in random order, 
this entry must be included if the 
individual records are to be processed in a 
work area rather than the I/O area. It 
specifies the symbolic name of the work 
area. This name must be th~ same as the 
name used in the DS instruction that 
reserves this area of main storage. This 
area must provide spac~ for one logical 
record (data area) • 

When this entry is included and a READ 
or WRITE instruction is executed, ISFMS 
moves the individual record to, or from, 
this area. Whenever this entry.is included 
for a file, IOREG should not be specified. 

WORKS=YES 

When records are processed in sequential 
order, this entry must be included if the 
individual records are to be processed in 
work areas rather than the I/O area. Each 
GET or PUT instruction must specify the 
symbolic name of the work area to, OI from, 
which ISFMS is to move the record. The 
area must be large enough for one logical 
record (data area) and the record key (key 
area) for unblocked records. For blocked 
records, it must be large enough for data 
only. Whenever this entry is included for 
a file, IOREG should not be specified. 

PROCESSING WITH STR DEVICES (DTFSN~ DTFRF) 

When STR macro instructions ·(READ, WRITE, 
etc.) are used in a program, the 
definition macrosDTFSN and DTFRF must be 
used. Where other DTF macros are not used, 
the DTFRF and DTFSN macros for STR support 
should appear first in the problem. program. 
When the problem progra~ uses other DTF 
macros, the DTFRF should follow the DTFEN 
card. 

• y-----'ij----------------
IName lOp IOperand 
1----+ , 
IdtfnameIDTFSNIDEVADDR=SYSnnn 
t I I AREA=abuck 
I I I LENGTH=lbuck 

I· 

The DTFSN macro generates the STR channel 
command block (CCB), channel command word 
(CCW) lists, and linkages to the READ, 
WRITE, and CNTRL routines for each line. 

The file definition macro DTFSN is coded 
as a keyword macro with three operands: 

DEVADDR=SYSnnn is the symbolic unit 
address. 

AREA=abuck, where abuck is a symbolic name, 
unique to this DTFSN, for a full word 
in the generated STR CCB (Figure 42). 
Before every READ or WRITE to this 
line, abuck must b~ loaded with the 
starting address of the data area. 

LENGTH=lbuck, where lbuck is a symbolic 
name, unique to this DTFSN, for a half 
word in the generated 5TR CCB. Before 
every READ or WRITE to this line,lbuck 
must be loaded with the "lenqth of the 
data. 

During processing with STR devices, bits 
are set in 5TR CCB byte 12 to indicate the 
current status of the file. Figure 43 
shows the conditions indicated by byte 12. 

In addition, each CCB generated by the 
DTFSN macro is preceded by a doubleword 
"user area", which the problem program may 
use for any purpose. For example, this 
area would be useful in providing 
information for multiline controi durinq 
STR processing. 

Bytes- 0 

4 

8 

12 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

USER AREA 

ABUCK 

1 2 3 
RESI DUAL COU NT TRANSMISSION ,INFORMATION 

FLAG 1 FLAG 2 
5 6 7 

SYMBOLIC U NIT ADDRESS CCW LI ST ADDRESS 

9 10 11 

STR FLAG I ERROR COU NT LBUCK 

13 14 15 -

\ 
\ 
\ 
\ 
\ 
\ 

Bits ~\i-0_--,_j _. _"T2 __ r3_--,4 ___ "T5 ___ ,...6 ___ r-----"'-I 

Figure 42. Expanded S~R Channel Command 
Block (CCB) 

Macro Instruction statements 165 



• N T , 
I I I CONDITION INDICATED I 
IBYTEI BIT I- • , 
I I I ( b N) I 0 (0 F F) I 
I- I +- .------------------------1------ I 

12 I 0 - PREP ICNTRL PREP issued IPREP not issued I 
~ ,~I------------------------------41-------------------------~ 
I 1 - READ/WRITE IREAD or WRITE issued IREAD or WRITE not issued I 
~ I I ~ 
I 2 - INQUIRY ICNTRL INQ issued JINQ not issued I 
~ --+- I I 
1* 3 - INQ RCVD IINQUIRY received I 
~ -I-- ----t 
1* 4 - LOST DATA IAbnormal end of message (operator I 
I Ireply 4) vas specified. EOF bit I 
I lin transmission flag also will be I 
I Ion. Depending on the instructions I 
I Ibeing executed, indicates: I 
I 1(1) SOPEN could not establish I 
I I synchronism, or I 
I I (2) lost or duplicate record I 
I I during a READ. I 
~ +- I oJ 
I 5 - Used By 10CS I I I 
~ +- I 1 
I 6 - SOPEN I SOPEN issued I SOPEN not issued I 
~ 1 1 oJ 
I 7 - Used By 10CS I I I 

r-----L- ---1- oJ 
1* To be tested by problem program I 

I 

Figure 43. Conditions Indicated by Expanded STH CCB, Byte 12 

DTFRE-Ma££Q BINARY SYNCHRONOUS COMMUNICATION (DTFBS, 
DTFRF) 

r-----y-----~I------------- i 

IName lOp 10perand 
I I +-------
lendoplDTFRFlstartaddr, reg 

I 
----t 

I 
L I I 

_____ J 

The DTFRF macro instruction is used to 
establish a base register vhich the problem 
program must use to reference the expanded 

'STR channel command block (CCB). 

The name field (endop) must contain the 
symbolic operand that is specified in the 
problem proqram's END card. 

In the operand field, "startaddr" must 
be the symbolic address of the first 
executable inst~uction of the problem 
program. "reg'" is a general register 
(2-") to be used as a base register. This 
register must not be used for any other 
purpose whil~ it is being used for the 
DTFRF. 

This macro must precede the first DTFSN 
macro definition statement. 

These definition type macros (DTFSN and 
DTFRF) should precede the problem program 
and reside in, the first 16K of main 
storage. 

166 S/360 BOS Assembler with I/O Macros 

When BSC support macros (READ, WRITE, etc.) 
are used in a program, the file~definition 
macros DTFBS and DTFRF must be used. The 
DTFRF and DTFBS'macros should appear before 
the first executable instruction of the 
problem program. Where other DTF macros 
are used, the DTFRF and DTFBS should follow 
the DTFEN card. 

DTFBS Macro 

i 

IName , i i 
lOp IOperand 
I I 
IDTFBSIDEVADDR=SYSnnn, 
I IAREA=name, 
I ILENGTH=name, 
I I BSCFLAG=name, 
I IRCOUNT=n 
I , 

, 
I 
I 

The DTFBS macro generates the expanded BSC 
command control block (CCB), linkaqes to 
the READ, WRITE, and CNTRL routines for the 
line and the channel proqramS (channel 
command word lists) used by these routines. 
It also generates a table of EBCDIC special 
characters containing the BSC control 
characters. 



The BSC file definition macro, DTFBS, is 
coded as a keyword macro with five 
operands: 

DEVADDR=SYSnnn is the symbolic unit address 
of the IBM 270'~ SDA II. 

AREA=name is the symbolic name to be 
assigned to the full word area address 
field in the expanded BSC CCB (Figure 
44) • 

LENGTH=name is the symbolic name to be 
assigned to the half-word length field 
in the ~SC CCB (Figure 44). 

BSCFLAG=name is the symbolic name to be 
associated ~ith the first BSC flag 
byte. The problem program may use this 
optional name when referencing the flag 
bytes. (See Figure 44). 

RCOUNT=n is a count of the number of times 
operations ending in I/O errors are to 
be retried before returning to the 
problem program or issuing an 
operator's message. The maximum'retry 
count that can be ,specified is 15. The 
suggested r~try count is either three 
or seven with a higher retry count 
being recommended'for higher speed 
lines. RCOUNT=3 is assumed if the 
RCOUNT parameter is omitted. 

The DTFBS macro generates an EBCDIC 
special character table containing the BSC 
control characters. This table may be 
referenced by the name IOBSCT. The table 
contains only t~e hexadecimal control 
characters (no other attributes). The 
characters are in the same order as in 
!E.£gndix~Part 1. 

During processing using BSC support 
macros, bits are set in the BSC flag bytes 
(bytes' 16-19 of the C;;CB) and in the 
transmission flags (byte 7 of the CCB) to 
indicate the current status of the file. 
Figure 45 shows the conditions indicated by 
these bytes. I/O operations endinq in 
errors are retried by BOS/BSC support up to 
the maximum count (RCOUNT=n) in an attempt 
to get the correct response or to read or 
write a message. 

If the retry count is exceeded, the 
following actions are taken by BSC Support 
error routines: 

• 

• 

A three-part PIOCS message is issued 
with reply requested for the command 
reject, equipment check, data check, 
and overrun error conditions. 

An operator awareness message is issued 
for the lost data, bus-out check, 
intervention required, and time out 
error conditions. These are also 
posted to the CCB (transmission flags). 

operator awareness messages are also 
issued and the job terminated for 
errors occuring on I/O operations 
initiated by the BSC error routines and 
for errors which are meaningless, or 
not defined for the I/O operation. 

• Other errors are posted to the expanded 
CCB (BSC flag bytes). 

For detailed information on the messaqes 
issued by BSC Support, refer to IBM 
System/360 Basic QE~~tinq System, Operator­
Messages-(Form C24-5024). 

, Macro Instruction Statements 167 



dtfname 

bytes 

dtfnameD 

-
--.. 0 

r 
-i-

4 

. . . 
AREA ADDRESS FIELD 

1 2 3 ----. .... 
RESI DUAL COUNT TRANSMISSION FLAGS 

5 6 7 (Normal CCB) .. 
SYMBOLIC UNIT ADDRESS 

- - --. --.. 
CCW LI ST ADDRESS 

8 9 
"" 

10 11 

LENGTH FIELD RESPONSE AREA 
12 ,13 14 i 15 -- I --- BSC FLAG BYTES 

"" '" ", 
", -.", ", 

./ "'" ./ --
16 I 17 II 18 III 19 IV 

-'" RETRY COUNT USED BY lacs 
20 21 22 23 

/ / 
/ .", USED BY lacs CHARACTER TABLE ADDRESS 

/ 

I 

I 
I / 

...... I " bits I \ Transmission Flag s 
I , (byte 7) 

" ..... .... 

'0 

---bits 
Completion Byte 

(byte 16) 

...... 0 

~O 

24 

1 
BSC Lost BSC Bus-
Data Out Check 

1 

Normal I/O Error 

1 bits 
Received Byte 

(byte 17) 
Used by Used by 

IDIAL Byte 
(byte 18) 

\ 
Issued Byte 
(byte 19) 

bits 

bits 

lacs 

( 

-0 

RD 

~O 

Disable 

lacs 

OPSW 
A. 

1 

WT 

1 

Cv. Wt. 

,25 26 

2 3 
BSC Int. 
Req. 

2 3 
Msg. Format Reply 4 
Error 

2 3 

NAK 

DIALSW 
..l 

\ 
2 . 3 

CALL ANS 

2 3 

EaT DSC 

'------ Note: All bits are set a N by PI OCS ~ 

4 

4 

4 

4 

4 

Figure 4q. Expanded BSC Command Control Block (CCB) 

168 S/360 BOS Assembler with I/O Macros 

27 

5 
Unit 
Exception 

5 

Inval. 10 

5 
ENQ OLE EaT 

5 

IDSW CNTRL OP 

5 

WABT Used by 
lacs 

-

6 7 
BSC 
Time Out 

6 7 
Unexpt. 
Resp. 

6 7 

EaT 

6 7 

BOPEN 

6 7 

ENQ 

....... 
"""-

...... 
"-, 

\ 

Wrong 
ACK 

WABT 

IDIAL 
Expt. 

PRP 

" , 
\ 

\ 

\ 
\ 
\ 
I , , 

I 
I 

I 

V 

I 
I 

I 

II 

III 

IV 

\ 
\ 
\ 
\ 
I 
I , 

I 
I 

I 
I 



CONDITION INDICATED 
BYTE BIT 

1 (ON) o (OFF) 

16 *0 Normal I/o operation completion I/O operation did not reach normal completion 

*1 I/o error detected (see Appendix M, Part 2) 

*2 Message format error detected (see Appendix M, Part 2) No message format errors detected 

3 Operator reply 4 specified 

4 Not used 

*5 Invalid ID-sequence received 

*6 Unexpected response received 

*7 Wrong alternating acknowledgment (ACK) received 

17 0 Used by 10CS 

1 Used by 10CS 

2 Not used 

*3 NAK control character received in response to ENQ 

*4 ENQ contral character received insteod of a message 
or 

ENQ control character received in response to ENQ (contention for 
the line) 

*5 Disconnect sequence (DLE EOT) received 

*6 EOT (end of transmission signal received) 

*7 WABT sequence received 

18 0,1 OPSW--set by IDIAL 
ll--WTX (transparent WRITE) 
10--RD (READ) 
O1--WT (WRITE) 

2,3 DIALSW--set by IDIAL 
OO--NO (leased line) 
O1--ANS (answer) 
10--CALL (calling) 
ll-MAN (manual) 

4 ID-verification to be included No ID-verification to be included 

5 CNTRL operation being initiated 

6 BOPEN issued BOPEN not issued 

7 IDIAL macro should be coded following BOPEN (DIAL=tES) IDIAL has been completed if required, or IDIAL is not necessary 

19 0 Disable command issued 

1 Conversational WRITE issued 

2 CNTRL EOT issued 

3 CNTRL Disconnect (DSC) issued 

4 CNTRL WABT issued 

5 Used by 10CS 

6 CNTRL ENQ issued ** ENQ not issued 

7 CNTRL Prepare (PRP) issued PRP not issued 

* Should be checked by the user (see Appendix M, Part 2). 
** Set with PRP issued for conversational made. 

Figure 45. Conditions Indicated by BSC Flaqs, Bytes 16-19 of CCB 

Macro Instruction statements 169 



Before any READ, WRITE or IDIAL macro 
(exc~pt READ ENQ-type TQ), the area address 
field and length field must be properly set 
up. Normally, the tvo fields contain the 
starting address and the length of the data 
area, respectively. 

For a conversational WRITE (type TC or 
TV), the length field should contain 
X'FFFF'. The area address field should 
point to a parameter list·that contains the 
starting addresses and lengths of the WRITE 
data area and the READ data area. 

For a READ with leading graphics (type 
TG or TL), the length fi~ld should contain 
the length of.the READ data area. The area 
address field should point to a parameter 
list that contains the starting address of 
the READ data area and up to seven graphic 
characters (the first of vhich is preceded 
by a binary count). 

DTFRF Macro 

I .1 i 

IName lOp IOperand 
~--+- I 
l~ndoPIDTFRFlstartaddr,reg 
, I ~I ____________ __ 

170 S/360 BOS Assembler with I/O Macros 

The DTFRF macro instruction is used to 
establish a base regipter for referencing 
information stored in a BSC CCB (command 
control block). If this macro is used, the 
base register specified by "reg" must be 
maintained or must be reloadEd with the 
proper address before referencing a BSC CCB 
or e~ecuting any BSC macro instruction. It 
should be coded after the DTFEN card and 
before the DTFBS macro. 

The name field (endop)· must contain the 
symbolic operand specified on the problem 
program END card. 

In the operand field, "startaddr" must 
be the symbolic address of the first 
executable· instruction of the problem 
program. "Reg" is the general register 
(2-11) to be used as a base register. 

These file definition macros (DTFBS and 
DTFRF) should precede the problem program 
and reside in the first 16K of main 
storage. 



APPLIES TO 

u 0 0 ~ 
NAME OPERATION OPERAND i= N "<t "<t w 

~~ 
1.0 "<t~ 

ZI- ~ 
~ W W 

~Z > C>- ~O 0 
02 ~3 

0« N 
0 lOw 1.O:c "<t02 

~~ ~u ..:::::.c... 
~~ 8~ ~~ ~Z 8~ ~ Vl 
M- "<t« "<t1.O "<t:::> "<t"<t NO N I- ~N ~c... ~~ 

Filename DTFPH X X 

DEVADDR=SYSnnn X 

LABADDR=Name X X 

MOUNTD=ALL X 

-SINGLE 

TYPEFLE=I NPUT X X ----
OUTPUT 

XTNTXIT=Name X 

Figure 46. DTFPH Entries 

PHYSICAL IOCS (DTFPH) 

When physical Ioes macro instructions 
(EXCP, WAIT, etc) are used in a program, 

only disk or tape files -with standarg 
labels need to be defined by DTFPH entries 
(DTF~Or a file handled by EhYsical IOeS). 
No other files req~ire definition. 

If a disk or tape file with standard 
volume and file labels is process~d, a 
DTFPH header card and five detail cards may 
be u~ed (Figure 46)~ This 6-card set 
indicates to IOCS that labels are to be 
read and checked (on input) or written (on 
output). The header card is punched with 
DTFPH in the operation field, the symbolic 
name of the file in the name field, blank 
in the operand field, and a continuation 
punch in column 72. The symbolic name may 
be seven characters long. 

The keyword parameters may be specified 
in one or more detail cards (see File 
Definition Macros: .bQgical·· IOCS):-Or in 
the header card if desired. Specifying the 
parameters in the header card eliminates 

I 
~ 
W 

Z~ -« 
g:O 
N cc 
1.0>-
OW 
~~ 

.... MUST BE INCLUDED REMARKS ~ « 
~w U w O i= c...« 
«W c...~ 
c...~ .ow 
~w 1.0 0 
"c... I co « 
-0« NW 
N I- -~ 

. Labelled Disk/Tape File Symbolic File Name 

Labelled Tape File Symbolic Unit for the 
Device Used for the 
File. 

Check/Build Additional User- Symbolic Name of 
Standard Labels User's Label Routine. 

For Tape Input and Disk 
Files, Applies to Header 
Labels Only. 

Each Disk File All Extents Are to Be 
Available at the Initial 
OPEN. ---- - - --
Only the First Extent 
Is to Be Available at 
the Initial OPEN. 

~c:..be!!e~ D~I{T~~I~p~ ~i.!:_ 
Labelled Disk/Tape Output File 

Symbolic Name of 
User's Extent Routine. 

the need for the detail card(s) and the 
continuation punch in the header card. 

DEVADDR=SYSnnn 

This entry specifies the symbolic unit 
(SYSnnn) to be associated with this loqical 
file. The symbolic unit ~~Bre~~nts-an 
actual IIO device address. The symbolic 
unit may be: 

SYSIPT for main system input device 

SYSOPT for main system output device 

SYSOOO-SYS254 for other devices in the 
system 

The symbolic unit (SYSnnn) is used in 
the Job Control ASSGN card (or in the 
Supervisor-Assembly macro SYMUN) to assign 
the actual IIO device address to this file. 
If the ASSGN card is used to assiqn the 
device for program execution, the file of 
records can be read from or written on 
different units at different times. For 

Macro Instruction Statements 171 



example, a reel of tape may be mounted on 
any tape drive that is available at the 
time the job is ready, to he run, by merely 
as§.!.9nin.,g t'h at drive to the sy mbolic unit. 

LA BA DD R= Name 

The 'user may require one or more disk, or 
tape~ labels in addition to the standard 
file labels. If so, he must include his 
own routine to check (on input) or build 
(on output) his label (s). He specifies the 
symbol~c name of his routin~ in this entry, 

. and, IOCS branches to his routine after the 
standard label has been processed. 

LABADDR may be includ~d to specify a 
user routine for header or trailer labels 
as follows: 

• Disk input or output file: 'header 
labels only 

• Tape input file: header labels only 

• Tape output file: header and trailer 
labels 

Thus, if LABADDR is specified for the file, 
user-standard header·labels can be 
processed for an input/output disk or tape 
file, and user-standard trailer labels can 
be built for a tape output file. Similar 
to the functions performed by logical laCS, 
physical laCS reads input labels and makes 
them available to the user for checking, 
and writes output labels after they are 
buil t. 

LABADDR allows one user's label routine 
to be specified for all types of labels for 
the file: header labels, end-of-file 
labels, and end-of-volume labels. On an 
input file, the user can determine the type 
of label that has been read by the 
identification in the label itself. For an 
output tape file, however, laCS indicates 
to the user the type of label that is to be 
written. For this, laCS supplies a code in 
the low-order byte of R~gister 0, as 
follows: 

0- Header label (letter 0) 
F - End-of-file label 
V - End-of-volume label 

In his routine the user can test this byte 
and then build the appropriate type of 
label. 

Logical IOCS uses general registers 14 
and 15 for linkage to and from a called 
routine; therefore, these registers must 
not be destroyed. If they are required by 
the user's label routine, they must first 
be saved and then restored prior to 
returning to the mainline of the program. 

172 S/360 BaS Assembler with I/O Macros 

At the end of his label routine, the 
programmer must return to laCS by use of 
the LBRET macro. 

MOUNTD= 

This entry must be included for a disk file 
to specify how many extents (disk areas) 
for the file are to be made available for 
processing when the fil~ is initially 
opened. One of the. following 
specifications is entered after the = sign: 

ALL 

SINGLE 

if all extents on ali packs 
are to be available for 
processing. When the file is 
opened, laCS checks all labels 
on all packs and makes 
available all extents 
specified by the user's 
control cards. only one OPEN 
is required for the file. ALL 
should be specified whenever 
the user plans to process 
records in a manner similar to 
that performed by the direct 
access method or the indexed 
sequential system. 

if only the first extent on 
the first pack is to be 
available for processing. 
laCS checks the labels on the 
fiist pack arid makes the first 
extent specified by the user's 
control cards available for 
ptocessing. The user must 
keep track of the extents and 
issue a subsequent OPEN 
whenever another extent is 
required for processing. On 
each OPEN after the first, 
laCS makes available the next 
extent specified by the 
control cards. SINGLE should 
be specified when the user 
plans to process records in 
consecutive order. 

When the user issues a 
CLOSE for an output file, the 
pack on which he is currently 
writing records will be 
indicated, in the file label, 
as the last volume for this 
file. 

This entry must n2! be included for a tape 
file. 

TYPEFLE= 

This entry must be included to specify the 
type of file (input or output). One 
specification or the other is entered 
immediately after the = sign: 



INPUT for a disk or tape input file 

OUTPUT for a disk or tape output file 

XTNTXIT=Name 

This entry is included if the programmer 
wants to process XTENT card infoImation. 
It specifies the symbolic name of the 
user's extent routine. 

Whenever XTNTXIT is included, TOCS 
branches to the user's routine during an 
OPEN for the fil~. If the DTFPH entry 
MOUNTD=ALL is also specified for the file, 
IOCS branches during the initial OPEN. It 
branches after each specified extent has 
been completely checking and after 
conflicts, if any, have been resolved. If 
MOUNTD=SINGLE is specified for the file, 
IOCS branches to the user's routine 
whenever an indiv~dual extent is ·opened. 
This includes both the initial OPEN for the 
first extent and each succeeding OPEN for 
additional extents. It branches after 
checking the extent. 

Upon entry to the user's routine, IOCS 
stores in Register 1 the address of an 
12-byte area from which the user can 
retrieve extent card information (in binary 
form). This area contains: 

0-1 

2 

3 

4 - 7 

8 - " 

symbolic unit (hexadecimal 
representation of SYSnnn) 

SYSRES 
SYSRDR 
SYSLST 
SYSIPT 
SYSOPT 
SYSLOG 
SYSOOO 
SYS001 

etc. 

0000 
0004 
0008 
OOOC 
0010 
0014 
0018 
001C 

Extent type code (as specified 
in the XTENT card) 

Extent sequence number (as 
specified in the XTENT card) 

Lower limit of the extent 
(track address -CCHH) 

Upper limit of the extent 
(track address - CCHH) 

Also upon entry to the user's extent 
routine, IOCS stores a return address in 
Register 14. Th~refore at the end of his 
routine the user must branch to this 
address to continue processing. 

SUPERVISOR-COMMUNICATION MACROS 

Durinq problem proqram execution a 
Supervisor is located in lower main storaqe 
, and provides over-all control of 
operations. The functions performed by the 
Supervisor are interruption handlinq, I/O 
requests, and program retrieval. The 
interruptions handled by the Supervisor 
result f~om five basic types of conditions: 

Input/Output Conditions in the channel 
and/or I/O devices, such 
as the completion of an 
I/O operation. 

Program Check Improper spe~ification or 
use of instructions and 
data. 

Machine Check Machine malfunction. 

External Siqnal Siqnal from interruption 
key (operator) or timer. 

Supervisor Call Execution of a Supervisor 
Call instruction to make 
use of a Supervisor 
function or to convey a 
message from the calling 
proqram to the 
Supervisor. 

The Supervisor also contains a 
communicationr~giQn that can be used for 
storing information useful to several 
problem programs or between problem 
programs. 

The region provides for: 

• 

• 

• 

• 

A user area for inter- or intra-proqram 
communication. 

Address of user-supplied routines for 
program check, ti~er interruption, and 
operator communication to the problem 
proqram. 

End-of-Supervisor address. 

User program switches. 

• Machine configuration. 

• Date. 

• Job name. 

Several macro instructions are available 
to the programmer to enable him to 
communicate with the Supervisor. Thus he 
can utilize the functions performed by the 
Supervisor or have access to the 
communication region in the Supervisor. To 
make use of the Supervisor functions 
requires switchinq from problem state to 
Supervisor state. Therefore the macros 

Macro Instruction Statements 173 



used for this purpose generate a Supervisor 
Call (siC) instruction and a specific code 
to indicate the desired routine. These 
macros are: 

EXCP 

FETCH 

EXIT 

MSG 

Execute channel program. 

Load a proqram or a program 
phase. 

Return from the timer or 
operator-communication routine 
to the problem program main 
line. 

Transmit a message from the 
problem program to the 
operator via the Supervisor. 

The macros that provide access to the 
communication region are: 

COMRG 

MVCOM 

To obtain the address of the 
communication region. 

to move information to the 
communication region for 
modifying any portion of it. 

STXIT To place the address of a 
user's interrupticn routine in 
the comm~nication region, or 
to change an interruption 
.option. 

Two other macro .instructions are 
provided: 

DUMP 

EOJ 

EXCP· Macro 

.--
IName Op 

Informs the Supervisor that 
the problem program has 
reached an end-of-job 
dondition and that a storage 
print-out is desired. 

(End of job). Informs the 
Supervisor that the problem 
program has been completed. 

Operand 
i 

I 
I- ----I 
I EXCP blockname I 

I 

This macro instruction (execute channel 
program) is. issued to request that an I/O 
operation be performed. It causes physical 
IOCS (Channel Scheduler) to perform a start­
UQ operation. 

EXCP is used for a file of data that is 
controlled by physical 10CS macro 
instructions and it is described in the 
section Processing Records with Physical 
10£]. 

174 S/360 BOS Assembler with I/O Macros 

i 

IName 
I 

I 
Op I Operand 

I 
FETCHI name , _______ .J 

The FETCH macro instruction is issued 
whenever the program requires that another 
phase of the program, or a different 
program, be loaded for execution. The name 
of the phase or program is specified in the 
operand field, and it may be 1-6 characters 
long. 

Execution: -Disk-Resident .- System 

When the FETCH macro instruction is 
executed in ~ disk~resident system, control 
is turned over to "the System ~oader 
(program-fetch routine), which is one of 
the Supervisor routines. The System Loader 
then retrieves the specified program phase, 
program routine, or separate program, from 
the core image librarY,and loads it into 
main storage. The ,System Loader determines 
the proper phase (or program) to be 
retrieved by matching the name speCified in 
the operand of the FETCH macro with the 
names in the directories of the core image 
library. After the phase is loaded, . 
control is transferred to it at the address 
originally specified when the phase was 
stored in the core image library. If the 
phase requested cannot be found, a program 
check occurs (see Program-Check). 

The program is loaded from the core 
image library, without relocation. 
Therefore it is the user's responsibility 
to ensure that the phase or program to be 
loaded does not contain assembled addresses 
that will load text into the main-storage 
area occupied by the Supervisor or by any 
portion of his program that will be 
required later. Also, the user must make 
provision for returning to his original 
program if that is required. 

Registers 12 and 13 are used by the 
Supervisor, and their contents are not 
saved or restored, unless SUPVR SAVEREG=YES 
was specified when the supeFvisor was 
assembled. (See Macro Instruction to 
Assemble-a Supervisor.) 

Additional information about libraries· 
and the System Loader is given in the BOS 
Programmerfs-Guide, as'listed on the front 
~over of this publication. 

Execution: Not·aDisk-Resident-System 

If the disk-resident system is not used for 
execution of the object program, control is 
turned over to the Program Loader when the 
FETCH is executed. The Program loader must 



be in main storage at this time, and it 
loads the next phase or program that is 
presently available in the system input 
device (designated by SYSIPT). The system 
input device may be a card reader or a tape 
unit. Loading continues until the loader 
recognizes an XFR card or an Assembler END 
card with an operand, at which time control 
is transferred to the problem program. The 
XFR or END card contains the address at 
which execution of the program is to start. 

The program is loaded from TXT or REP 
cards, without relocation. Therefore, it 
is the user's responsibility to ensure that 
the phase or program to be loaded does not 
contain assembled addresses that will load 
text intc the main-storage area occupied by 
the Supervisor, Program Loader, or any 
portion of his program that will be 
required later. Also the ~ser must make 
provision for returning to his original 
program, if that is required, because the 
loader does not save and restore registers. 
Registers 1, 14, and 15 are destroyed by 
the loader. R~gisters 12 and 13 are used 
by the Supervisor, and may be used by the 
programmer if SUPVR SAVEREG=YES was 
specified when the supervisor was 
assembled. (See Macro Instructicn to 
As§~mble~~upervlsor~f--------------

Text and transfer cards (TXT and XFR or 
END) are output from the Assembler and 
input to the Program Loader. Replacement 
cards (REP) can be added to the object deck 
and used as input to the Program Loader. 

Additional information about the Prcgram 
Loader and TXT, REP, XFR, and END cards is 
given in the BPS ££Qgrammer's Guide. 

Fetch Macro Source Statements 

Issuing the FETCH macro instruction in the 
source program causes several statements to 
be assembled, including the following: 

FETCH PHASE2 

SVC 

DC CL6'PHASE2' 

Macro instruction 

Supervisor Call 

6-byte phase or 
program name 

During execution, the Supervisor Call 
interruption routine analyzes the code and 
gives control to the appropriate loader 
(system or program), depending on whether 
the program is executed in a disk system. 

r-----,-------r----- '-----, 
IName Op I Operand 
, .... ---+----+-
J EXIT I TR 
I EXIT I CR 

I 
--t 

I 
I 

'-I 

The EXIT macro instruction is issued at the 
end of either the user's time-interruption 
routine or the user's operator 
communication routine, to return to the 
main line of the problem program at the 
point where the interruption occurred. 
This instruction requires one-of the 
following operands: 

TR To return from the user's timer 
routine. 

CR To return from the user's 
operator-communication routine. 

I ~----~------.--

IName Op I Operand 
~I---~-----+----
IName MSG I code,REPLY 

-L-- -----I 

The MSG (message) macro instruction allows 
a user's problem program or an IBM-supplied 
program to give a message to the operator. 
It is used to indicate error conditions 
and/or to request an operator decision 
before proceeding further with processing 
of the proplem program. 

This instruction can be labeled with a 
symbolic name and it can have one or two 
operands. The first operand (code) is the 
message to be communicated to the operator. 
It may contain 1-4 characters, which are 
generally a code or some meaningful 
characters such as ISEQ for 
input-sequence-error. 

The sec6nd-operand (REPLY) is optional~ 
and it is included only if further 
processing is dependent upon a response 
from the operator. For example, if 
ISEQ,REPLY is specified in the instruction, 
a reply from the operator is required. 
This request for a reply is indicated by 
the letter A following the message. The 
message printed or displayed in this case 
is ISEQA. 

The operator's response to a message 
must be a one-character code as follows: 

o Terminate the job. 

Macro Instruction Statements 175 



2 

3 

4 

5 

6 

8 

Other 

All Code s 

Dump and terminate the job. 

Turn on program switch 7 in the 
UPSI byte of the communication 
region (see Figure 47, Byte 23) 
and return to the problem 
program. 

Turn OFF program switch 7 (UPSI 
byte) and return to the problem 
program. 

Ignore the indicated I/O error 
and continue processing if the 
message was initiated by 
physical IOCS. If not, return 
to the problem program. 

If STR routines are included in 
the assembled supervisor, the 
message is discontinued, but 
processing continues. The lost 
data and EOF bits in the 
Expanded STR CCB are set on. 

I£ BSC routines are included in 
the assembled supervisor, the 
transmission is,discontinued, 
but processing continues. The 
reply 4 bit in the expanded BSC 
CCB is set on. 

Retry the indicated I/O 
operation if the message was 
initiated by physical IOCS. If 
not, return to the problem 
program. 

Disable STR lines, dump the 
program, and terminate the job. 
If STR routines are not 
included in the assembled 
supervisor, the reply of 6 is 
an invalid reply and will be 
ignored. 

Terminate the BSC job by 
disabling the line, displaying 
the error statistics and 
transmission counts, clearing 
the BS9 CCB table, and dumping 
the program before end of job. 
If BSC support routines are not 
includEd i~ the assembled 
supervisor, the reply of 8 is 
an invalid reply and is 
ignored. 

Return to the problem program. 

The reply code is returned to 
the program that initiated the 
message, and (except for 0, 1" 
6, or 8) can be tested by the 
program by addressing "Name+7". 

The MSG instruction can be used in a 
system that includes an IBM 1052 Printer 

176 S/360 BOS Assembler with I/O Macros 

Keyboard, or in one that. does not. However 
the operations differ. If a 1052 is 
available for messages from the MSG macro, 
it must be assigned to SYSLOG. Otherwise, 
the MSG macro cannot determine that the 
1052 is available and reacts as though it 
were not. When a 1052 is available, the 
message is automatically typed and the 
operator types the one-character response, 
if REPLY is specified and indicated by the 
letter A. Then the response, if any, is 
analyzed by the supervisor and processing 
continues. If an error is detected during 
printer-keyboard input/output, operation is 
executed as though there were no 
printer-keyboard available. If no reply is 
required, the message will be printed and 
processing will continue uninterrupted. 

When a 1052 is not available, 
programming waits (enters the wait state) 
and the operator can display the message on 
the console. The message and the response 
request (A), if any, are stored in fixed 
main-sto~age positions 0-4. If a reply is 
required, the operator must press the stop 
key, store the one-character code in fixed 
main-storage position 5, and press the 
start key. TO resume processing, the 
operator presses the interruption key. If 
a reply is not required, the operator need 
only press the interruption key to continue 
processing. 

Issuing the MSG macro instruction in the 
source program causes three statements to 
be assembled. For example: 

NAME 

NAME 

MSG 

SVC 
DC 
DC 

ISEQ,REPLY 

2 
CL4 1 ISE'QI 
CL2 1 Ab l 

Macro Instruction 

Supervisor Call 
4-byte message 
1-byte position 
CA) indicates re­
ply requested, and 
1-byte position 
(b) provides for 
reply. If a reply 
is not required, 
this statement is 
DC CL2 1 bb i 

During execution, the Supervisor 
interruption routine analyzes the code, 
stores the return address, moves the 
message to main-storage positions 0-4, and 
sets up the printer-keyboard (if available) 
for input/output operations. After the 
operator enters the response (either by the 
printer-keyboard, or by the console in 
main~storaqe position 5), the Supervisor 
analyzes the response code, and performs 
the indicated function: 

• Terminates the job. (Code 0 or 1) 



• 
• 

• 

• 

• 

• 

• 

• 

• 

Dumps and terminates the job. (Code 1) 

Sets program switch 7. 
Code 3 = OFF) 

(Code 2 = ON; 

The STR message is discontinued, but 
prQcessing (on other lines or devices) 
continues. EOF is simulated with the 
lost-data and EOF bits on in the 
expanded STR CCB (Code 4). 

The BSC transmission is discontinued, 
but processing continues (on other 
devices). The reply 4 bit in the 
expanded BSC CCB is set on. 

Retries the designated operation (Code 
5) • 

Terminates an STR job. STR lines are 
disacled, and the problem program is 
dumped before the job is terminated, as 
with code 1 (Code 6). 

Terminates a BSC job. The BSC line is 
disabled, the error statistics and 
transmission countlare displayed, the 
BSC CCB table is cleared, and the 
problem program is dumped before the 
job is terminated as with code 1 (Code 
8) • 

Stores the code in the last byte of the 
assembled statements (byte "b" shown in 
DC CL2' A b ' ) 

• Returns control to the problem program, 
at the instruction following the MSG 
macro unless the code is 0, 1, or 6. 
If the STR routines are not included in 
the assembled supervisor, a reply of 6 
is an invalid reply and will be 
ignored. The same applies.to reply of 
8 if BSC routines are not included in 
the assembled supervisor. 

A MSG macro can be reused without 
resetting the reply byte (b). 

Several programs sUPPfied by IBM also 
utilize the MSG macro to give messages to 
the operator. These messages are numerical 
codes that start with a sp.ecified digit: 

Digit 
C1Q~l) 

o , 
2 

3 
4 

Displayed 
(On Console 

1!.Y!.§LQ) 

11110000 
'''10001 
11110010 

11110011 
11110100 

Message from 

IPL or Supervisor 
Job Control 
Linkage Editor 
or Program Loader 
Other IBM programs 
Logical IOCS 

Therefore, when the user establishes his 
messages, he should avoid using 0-4 in the 
first position of his message. 

i 

IName 
I 

i 
Op I Operand 

I 
COMRGI 

The COMRG (communication region) macro 
instruction allows the program to have 
access to information stored in the 
communication region. The program can 
either use this information, or alter the 
information as stored. 

When this' macro instruction is executed, 
the address of the first byte of the 
communication region is loaded into 
register 1. Usi~g this address as a base, 
the program can then refer to any field in 
the communication region. After ~he macro 
has been executed and reference to the 
communication region is completed, register 
1 may be used for other purposes. 

Communication·Region: Both the Supervisor 
and the problem program can use the 
communication region. A problem program 
can use the first 30 bytes of this storage 
area, whi6h is arranged as shown in Figure 
47 and described here: 

0-8 

9 

Calendar date (unpQ~~ed decimal), 
available in two forms. 
For example: 0817~)23)0 

\A./\B 
A = 8/17/64 
B = year ' 64, 230th day 

The first six bytes supply the 
date in the form of month/day/year 
(A). The last five bytes supply 
the date in the form of year, and 
day of the year (B). Form B is 
used by the label routine. 

System configuration, represented 
in binary form: 

0-3 

4 

Number of bytes 
storage: 

0000 
0010 
0011 
0100 
0110 .-
1000 
1010 

in main 

8K 
16K 
24K 
32K 
64K 
128K 
256K 

Model (for diagnostic 
scan-out area): 

o 30 
1 = other 

Macro Instruction Statements 177 



10-11 

12-19 

20-22 

23 

24-29 

30-39 

5 Floating-point I 
feature 

6 Decimal 
feature 0 

7 Printer-
Keyboard 

Address of the end of the 
Supervisor. 

Present 

Not 
Present 

User area for interprogram or 
intraprogram communication. These 
eight bytes are not reset by Job 
Control. 

User area for intraprogram 
communication. These three bytes 
~_res~·by Job Control. 

UPSI byte. 
swi tches. 

User's program 

Program name. The first six bytes 
of the name on the JOB card. 

Area used by the Supervisor to 
retain informaticn ap~licable to 
the problem program being 
executed, e.g., addresses of 

Date c::: User Area 
.Q 

~ :,; .g 

40-45 

user-supplied routines specified 
by the STXIT macro. 

Name of the last phase requested 
by a JOB card or a FETCH macro 
instruction. 

MVCOM Macro 

r-­
IName 
I 

Op 

MVCOM 

----------.--------------, 
Operand I 

byte,n, location 
--1 

I 

The MVCOM (move to communication reqion) 
macro allows the user to modify bytes 12-23 
in the communication reqion of the 
Supervispr. 

Before issuing the MVCOM macro, the user 
must set up the new information he wishes 
to insert in the communication region. 
Then when he issuep the macro, he must 
specify three operands. He specifies the 
first byte that is to be modified in the 
communication region, the number of bytes 
to be modified, and the location of the new 
information. 

User Area ~ Program Name Area used by Phase Name 

2- the Supervisor 

E ~ 
Day of ~ ~o ~ {Inter- program or Intra- (Intra - Program 2-5 {Entered from {last Phase 0)::: 

Bytes 

Month Day 

.0 

t 
Address of first 
byte supplied in 
COMRG macro 

Figure 47. 

Year Year "Q""tI a.. program Communication} Communication) 0 ~.E~ u 
8 9 10 11 12 19 20 22 

,." 
,. 

"'''' ..... ,. ,. ..... 
",." 1 Byte=8 Bits 

'" I 

.2 
r~ a ",,,, "0", cu. E 5 "- 0 

Core ~ j~ ·u "0 !ili; 
Size 0 '" '" ~~ :::E u."- Cu. 

0 3 4 5 6 7 

I r 0000= 8K 
I~I 

Ii 0010= 16K 
I I 

I : 0011 = 24K 
0 1 I ~ .. I I 0100= 32K -g -E I 

Present = 1 I 
I 0110= 64K Absent = 0 I 
I 1000= 128K ~ ?I I 
I 1010=256K 0-1 I 
I 1 I 

Communication Suparvisor (in Supervisor) 

178 S/360 BOS Assembler with I/O Macros 

~~ Job Control} Requested} 

23 24 29 30 39 40 45 



The first operand (byte) specifies the 
first byte that is to be modified relativg 
to t~e'beginning of the communication 
region. For example, to modify the UPSI 
byte, 23 is punched. 

The §~on~QE~ang·specifies the number 
~) of bytes to be modified. If only the 
UPSI byte in the previous example is to be 
altered, n equals 1. 

The third operand· (location) speci fies 
either the symbolic name of the 
main-storage location that contains the 
information, or the register that contains 
the address of the information. When a 
register is to be specified, it must be 
enclosed in parentheses, and it may be 
either a number .or a symbolic name nDt 
exceeding six characters. 

Using this macro, a programmer might set 
up his program switches (UPSI) with the 
following coding: 

MVCOH 23,1,NEWUPSI 

Or, he might prefer to set his switches 
this way: 

LA 5,NEWUPSI 

E HERE 

HERE MVCOH 23,1, (REG5) 

In both examples, NEWUPSI could be defined 
this way: 

NEWUPSI DC X'S7' 

i i 
lap 10perand 
I- I 
ISTXITln,pc-name,it-name,oc-name L-. ____ ~ ________________________________________ ~ 

The STXIT (set exit) macro instruction can 
be used to activate the user's interruption 
routines. The user may provide four 
different routines to which programming 
automatically branches on certain 
interruption conditions: program-check 
interrupt-
tion, interval-timer interruption, and 
operator communication IIO interruption 
(request key on the 1052). The addresses 
of one or more of these four routines may 
be specified by one STXIT instruction. 

When the problem program is executed in 
a disk-resident system, the interval timer 
(it) and operator communication (oc) 
routines must not be located, or begin, in 
the first 2500 ~ain-storage positions above 
the end of the- Supervisor. 

Whenever this STXIT instruction is 
issued, the iirs~QEerand must be included 
to specify the number (n) of a 
general-purpose register. The macro uses 
this register to refer to the address of 
the communication region. Any register 
1~11 or 14-15 may be specified. After the 
macro has been executed, the register may 
be used for other purposes. If this STXIT 
instruction is issued again later in the 
program, the same or a different register 
may be specified. 

Each of the .Q~.h.§r.fouLOpe£.ill.!ds is 
optional. One or more operands are 
specified, depending on the routine(s) 
desired. Each operand specifies either the 
symbolic name of the user's routine or an' 
action to be taken by the Supervisor. The 
STXIT macro s~ores this information in the 
Supervisor's area of the communication 
region. These names or actions must be 
entered in the operand field in the order 
shown: 

pc-name 

it-name 

oc-name 

Symbolic name of user's 
program-check interruption 
routine, ABORT, or DUMP. 

Symbolic name of user's 
interval-timer interruption 
routine, or CLOSE. 

Symbolic name of user's 
operator-communicati0n 1/0 
interruption routine, or CLOSE. 

If any name(s) is omitted but following 
names are to be included, a comma must be 
entered to indicate the omission. For 

Macro Instruction Statements 119 



example, if this instruction is to specify 
Register 5, the name of a program-check 
routine (PROCHK), and the name of an 
operat6r-commun~cation routine (OPCOM), it 
is written: 

STXIT 5,PROCHK"OPCOM 

Effect of CLOSE: The addresses for the it 
and-oc interruption routines can be cleared 
from the Supervisor area by specifying 
CLOSE as the operand in the STXIT macro. 
If an interruption occurs while a routine 
is closed (no address available), the 
interruption is ignored. The IPL procedure 
also closes these three routines. 

When an interruption occurs due to a 
program check, the Supervisor turns control 
over to the user's routine, if that routine 
is presently active (specified by pc-name). 
At the end of his routine, the programmer 
can return to the main line of his problem 
program by loading the address stored in 
the program-check old PSW into a register 
and branching to that address. 

A proqram check may occur if the problem 
program specifies erroneous information to 
the Supervi~or, such as: 

• The proqram phase specified by a JOB 
card or the FETCH macrc instruction 
cannot be found in the core image 
library •. Byte 43 in main storage 
contains a hexadecimal value of 20. 
Bytes 40-45 of the communication region 
contain the phase name, which can be 
examined by the user's program check 
Ioutine. However, if the DUMP option 
is used, Bytes 40-45 do not contain the 
phase name, and, instead, the phase 
name is listed on the first line of the 
printout. 

• The main storage size specified in the 
configuration byte of the communication 
region exceeds the storage actually 
available in the system. 

• The floating-point feature is specified 
as present in the confiquration byte of 
the communication region, but it is not 
actually available in the system. 

• An invalid SVC (Supervisor call) code 
is used. The only valid SVC codes are 
those generated by the macros that 
communicate with the Supervisor (FETCH, 
EXCP, EXIT, MSG, DUMP, EOJ, the STR 
processing macros, STR device error 
routines, BSC support macros and BSC 
error routines). Byte 43 in main 
storage contains a hexadecimal value of 
10. 

180 S/360 BOS Assembler with I/O Macros 

If the user does not specify a routine, 
the actions that can be taken when a 
program check occurs vary dependinq on 
whether the object program is executed in a 
disk-resident system. 

No..:..!!.§,gr Routin~~i.§£-Rg§A:den.:L.System~ 
Instead of specifyinq a routine, the user 
may specify either ABORT or DUMP in the 
STXIT macro instruction when the object 
program is to be executed in a 
disk-resident system. ABORT terminates the 
job; DUMP terminates the job and causes the 
contents of registers and main storaqe to 
be printed. The DUMP specification is 
always activated when Job Control is 
executed before the execution of the 
problem program. 

When a program check occurs, the 
Supervisor issues a MSG macro instruction 
with a message to notify the operator. If 
a 1052 printer-keyboard is available, the 
message is typed, the previously specified 
action (ABORT or DUMP) is taken, and the 
Job Control program is loaded into main 
storaqe to continue operation with the next 
job. If a 1052 is not available, however, 
tnemessage is stored in main-storaqe 
positions 0-3 and the system enters the 
wait state. The operator can display the 
message and then press the interruption key 
to continue operation. At this time the 
specified action (ABORT or DUMP) is taken 
and Job Control is fetched to continue with 
the next jqb. 

No User Routine·- Not a Disk-Resident 
§ystem:--Instead-of specifyinq a routine, 
the user may specify ABORT in the STXIT 
macro instruction when a disk-resident 
system is not to be used for proqram 
execution. The ABORT specification is 
initially set when the Supervisor is loaded 
in to main storaqe. Job Control, if used, 
also sets program check to ABORT. (The 
user may specify DUMP but, if so, it is 
treated the same as ABORT. That is, no 
printing occurs.) 

When a program check occurs, the 
Supervisor issues a MSG macro instruction, 
terminates the job, and causes the system 
to enter the wait state. If a 1052 
printer-keyboard is available, the messaqe 
is typed. If not, the message is stored in 
main-storage positions 0-3 .and the operator 
can display it. The execution of a 
different program can then be initialized. 

Interval Timer 

When an interruption occurs due to the 
timer, the Supervisor turns control over to 
the user's routine if that routine is 
presently active (specified by it-name) and 
if TIMER was specified in the SUPVR macro 
instruction when the Supervisor was 



assembled. The Supervisor saves the 
program status of the main line of the 
problem program so that programming can 
return to it at the end of the 
timer-interruption routine. The Supervisor 
also saves the contents of general 
registers 10 and 11, so that these 
registers may be u~ed in the timer routine. 
The last instruction in the timer routine 
should be the macro instruction EXIT TR. 
When this macro is executed, ~egisters 10 
and 11 are restored to their original value 
and the program status is restored. 

Once a routine has been specified fer an 
interval-timer interruption , that routine 
remains active until it i p either cleared 
or replaced. It is cleared by the IPL 
procedure, or by issuing a STXIT n"CLOSE 
instruction. It is replaced by issuing a 
STXIT instruction with a different it-name. 

If TR=YES was not specified in the SUPVR 
macro instruction at Supervisor-assembly 
time, or if a timer-interruption routine is 
not active, any interval~timer interruption 
that occurs is ignored. 

QEerator Communication 

If a 1052 printer-keyboard is availab~e 
on-line, an operator can initiate a 
communication .to cause anyone of three 
actions: terminate a jot, set a program 
switch w or branch to a user-supplied 
routine. However, if a 1052 is not 
aviilable, only the first two ~ctions can 
be initiated. 

1052-Available: When an IBM 1052 
PrInter-Keyboard is available, the operator 
can initiate a communication to the system 
by pressi~g the request key and then keying 
a one~character code. The cede may be one 
of the following: 

co~ 

Blank 

o 

2 

3 

6 

continue processing. Request key 
pressed in error. 

Terminate the job. 

Print out the contents of 
registers and main storage , and 
terminate the job. 

Set program switch 7 in the UPSI 
byte of the communicatien region 
(see Figure 47, Byte 23) and 
continue with the problem program 

(Code 2=ON; Code 3=OFF). 

Disable STR lines, dump the 
problem program( and termina~e the 
job. If the STR routines are not 
included in the as?embled 

8 

Other 

supervisor, code 6 is an invalid 
reply and will be ignored. 

Terminate the BSC job by disabling 
the line and displaying the error 
statistics and transmission counts 
before end of job. If BSC support 
routines are not included in the 
assembled supervisor, the reply of 
8 is an invalid reply and is 
ignored. 

Turn control over to the user's 
operator-communication routine. 

When some code other than 0-3, 6, or 8 
is entered, the Supervisor turns control 
over to the user's routine if that routine 
is presently active (specified by oc-name) 
and if INQUIRY was specified in the SUPVR 
macro instruction when the Supervisor w~s 
assembled. The Supervisor saves the 
program status of the main line of the 
problem program so that programming can 
return to it at the end of the 
operator-communication routine. The 
Supervisor also saves the contents of 
general registers '0 and 11 so that these 
registers may be used in the 
operator-communication routine. In this 
routine, a GET instruction is issued for 
the printer-keyboard. The operator enters 
his request by keying a message that the 
routine has been programmed to analyze. 
The last instruction in the operator 
communication routine should be the macro 
instruction EXIT CR. When this macro is 
execut.ed, registers 10 and 11 are restored 
to their original value and the program 
status is restored. 

Once a routine has been specified for an 
operator-communication interruption , that 
routine remains active until it is either 
cleared or replaced. It is cleared by the 
IPL procedure, or by issuirrg a STXTT·n,A, 
CLOSE-instruction. It is re~laced by 
issuing a STXIT instruction with a 
different oc-name. 

If CR=YES was not specified in the SUPVR 
macro instruction at Supervisor-assembly 
time, or if an operator communication 
routine is not active, any code other than 
0-3 that is entered as an interruption 
request is ignored. 

1052-Not-Available: When a 1052 is not 
avaIlable; the-Qperator can initiate 
communication to the Supervisor only, not 
to a user routine. For supervisor 
communication, the operator stops th~ 
system operation, enters a code 0-3, 6, or 
8 in fixed main-storage position 5, and 
presses the start and interruption keys. 
As described previously, code 0 terminates 
the job, code 1 causes a print-out and 
terminates the job, code 2 or 3 sets 

Macro Instruction Statements 181 



program switch 7 (ON or OFF, respectively) 
and permits processing to continue, code 6 
terminates an STR job, and code 8 
terminates a BSC job. (Code 6 .m us.:!: - be used 
when the problem 'program is using STR 
devices and code 8 must be used when the 
problem program is' using ESC support, to 
ensure that the lines are properly 
.disabled.) If the operator enters any 
other code, it is ignored. 

r-----~-----r-- ----, 
IWame I Op I Operand 
~---+- -+-1 --
I I DUMP I 

I 
I 
I 

L __ .L- ____________ ----J 

The DUMP macro instruction applies only to 
object programs that will be executed in a 
disk system. It should be issued when an 
unusual condition requires that the job be 
terminated and that a print-out of 
registers and main storage b~ supplied to 
the user. It may also be issued on a 
normal end-of-job condition to cause a 
prin t-out. DUMP does not require an 
operand. In a BSC environment, the DUMP 
macro should be preceded by the ERRPT macro 
(se.e ~inll.L~ch.fon.Q'!!s CO!1.!!!]1ligtion). 

When DUMP is executed, the Supervisor 
causes a print-out to be taken, and then 
fetches and turns control over to the Job 
Control program. 

r- i --,- i 

IName I Op 1 Operand 1 
• I 1 of 
1 I EOJ 1 I 
'--__ ..1- I 

The EOJ (end-of-job) macro instruction 
should be issued at the end of a problem 
program to inform the system (and the 
operator) that the job is finished. EOJ 
does not require an operand. In a BSC 
environment l the EOJ macro should be 
preceded by the ERRPT macro (see Bina~ 
synch!:on~Communicatw) • 

When EOJ is executed in a disk system, 
the system loader (program-fetch routine) 
loads and transfers control to the Job 
Control program. If the disk system is not 
used for execution of the object program, 
however, control is turn~d over to the 
Supervisor and the system enters the wait 
state when the EOJ macro is executed. 
Then, if the program loader has not been 
overlaid, the operator presses the 
interruption and start keys to resume 
operation. This gives control to the 
program loader to load the next program for 
execution. 

182 S/360 BOS Assembler with I/O Macros 

Whenever any program is executed, a 
Supervisor must be iocated in lower main 
storage to piovide over-all control of 
operations. The Supervisor consists of 
routines to control the functions of 
machine interruptions, ~xternal 
interruptions, operator communication, and 
physical IOCS reguests and interruptions. 

PrQsgam . Execution: -. In· a- Disk-Resident­
Syst.§.ill 

In a disk-~esident system, one Supervisor 
contains the routines required to control 
the interruptions and all I/O devices in 
the installa.tion. It is permanently stored 
on the system-resiqence disk pack, from 
which it is loaded into main storage for 
program executions. It can be loaded once 
at the beginning of the day to control the 
execution of all jobs run during the day. 
The jobs that may be executed include both 
the user's object programs and IBM-supplied 
programs, such as Assembler, Report Program 
Generator (~PG), etc. 

This Supervisor also contains routines 
to load programs for execution, and to turn 
control over to those proqrams and/or 
receive control back from the programs that 
are executed. Thus the Supervisor in a 
disk system enables the user to stack jobs, 
so that one job after the other can be run 
without intervention from an operator. 

In addition to interruption toutines, 
physical I/O routines, and loadirig 
routines, the Supervisor contains a 
transient·area. This area starts on a 
doublewordbOundary and provides a section 
of main storage to which certain standard 
but seldom-used routines may be transferred 
for execution. These transient routines 
are permanently stored on the 
system-residence disk pack, and they are 
loaded (by the Supervisor) into the 
transient area only when they are needed. 
This means that only one section of main 
storage must be reserved to accom~odate a 
number of fairly large routines. Some of 
the routines using this area are: 

OPEN 
CLOSE 
End of Volume 

DUMP 
Checkpoint 

A Supervisor that will be used in a disk 
system is generally assembled once, at 
system-generation time when the 
installation is first established. It is 
stored on the system-residence pack at that 
time. Such a Supervisor is assembled to 
contain only·the routines that are needed 
to control those I/O devices included in 
the user~s configuration of the System/360. 
And, as previously stated, it contains 



routines to control all the I/O devices in 
the installation. Therefore the Supervisor 
must be reassembled only if the system 
configuration changes by the addition or 
deletion of I/O devices or special 
features. Several macro instructions 
(SUPVR, SYMUN, IOCFG, and SEND) are used to 
assemble a Supervisor. These are discussed 
in the following pages under Macro 
Instructions to Assemble a Supervisor. 

Additional information about the 
functions of a Supervisor is given in the 
BOS Proqrammer'sGuide, as listed on the 
front cover of this publication. 

PrQg~~Execution: ·Not in a Disk-Resident 
System 

When a disk-resident system (with a system 
Supervisor) is not used for the execution 
of a user's object program, a Supervisor 
that contains all the routines required to 
handle the individual object program must 
be loaded into main storage ahead of the 
obje~t program. This Supervisor must 
remain in main storage during the execution 
of the object program. If it contains the 
appropriate I/O routines for succeeding 
object programs, it can remain in main 
storage for~their execution also. 

Supervisors for object programs that are 
not executed in a disk-resident system must 
be assembled by the user either with his 
source prcqram or separately. One or more 
Supervisors may be assembled and stored in 
card· decks for use in an installation. The 
number of Supervisors that are assembled 
depends upon the input/output devices that 
are available in the installation and used 
in the various problem programs, and upon 
the ~vailable main-storage positions. The 
user can follow these procedures' for. 
Supervisor assembly: 

• A Supervisor that contains all the I/O 
routines required to control all the 
I/O devices in the installation can be 
assembled once for an, installation. It 
is then used for the. execution of any 
problem program, regardless of what 
units are utilized by the prpgram .• 
This Supervisor. does not operate in a 
disk-resident system and will not 
contain any 23" disk input/output 
routines. 

• Several Supervisors can be assembled 
such that each one controls particular 
groups of I/O devices~ For example, 
one Supervisor may contain routines to 
handl~ magnetic-tape units, 2540 card 
reader, 2540 card punch, and 1403 
printer. Another Supervisor could be 
assembled to handle those devices plus 
the '442 card reader and the 2611 paper 

• 

tape reader. Then the appropriate 
Supervisor would be used with each 
problem program to control the I/O 
devices used by that program. 

A Supervisor can be assembled to 
contain only those I/O routines that 
are required for the I/O devices used 
by a particular problem program. Such 
a tailored Supervisor can be assembled 
with the problem program, or it can be 
assembled separately. Separate 
assembly simplifies debugging and 
reassembly if errors are found in the 
problem program. In this case, only 
the problem program would need to be 
reassembled. 

Assembling a Supervisor separately from 
the problem program is possible because 
linkaqe between the problem program and the 
Supervisor is accomplished by Supervisor 
Calls or macros~ There is no symbolic 
linkaqe between the two. 

Whenever a Supervisor and a problem 
program are assembled together, the problem 
program must not contain any symbolic names 
that start with ~ or SYS. 

A Supervisor that controls programs that 
are not·executed in a disk~resideJ.lt system 
does not contain a transient area. Instead 
routines, such as OPEN and CLOSE, are 
assembled with the user's object program. 

Additional information about the 
functions of a Supervisor is given in the 
Tape Programmer's Guide, as listed on the 
front cover of this publication. 

T~e same macro instructions that are 
used to assemble the Supervisor for a 
disk-resident system are used to assemble 
Supervisors for object programs that are 
not to be executed in a disk-resident 
system. However, only those macro 
parameters that apply to devices utilized 
by the problem program should be included. 

MACRO INSTRUCTIONS TO ASSEMBLE A SUPERVISOR 

Whenever a Supervisor is assembled (at 
system-g~neration time, with the problem 
program, or separately), the assembly 
requires four basic macros: SUPVR 
(supervisor), SYMUN (symbolic units), IOCFG 
(I/O configuration), and SEND (supervisor 
end). The IOCFG macro assembles error 
routines for the various dAvices in the 
system. 

The basic macro instructions must be 
issued in the order as listed and described 
in the following sections. 

Macro Instruction Statements 183 



SUPVR·Macro 

I ~-------- i 
lOp I Operand I 
I I -4 
ISUPVR I DISK=YES,CONFG=nnnnnnnn,TR=YES,CR=YES,SAVEREG=YES I 

·1 SUPVR I CONFG=nnnnnnnn" TR=YES ,CR=YES, CHKPT=YES I 
I I I 

The SUPVR (Supervisor) macro instruction 
~ndicates that a Supervisor is to be 
assembled for operation in a particular 
model of the System/360. The system 
residence (if applicable), machine size, 
and available special features are 
specified. 

Keyword parameters are specified in this 
macro. Therefore, the specifications may 
be entered in any order; those that do not 
apply may be omitted. Each keyword 
parameter exc~pt the last must be followed 
by a comma. 

DI~K~YES: This operand must be includeQ 
when a Supervisor is to be assembled to 
operate in a disk-resident system. If the 
supervisor will be used to centrol 
operations for the execution of object 
programs when a disk-resident system is n21 
used, this operand must be omitted. If 
desired, however, DISK=NO may be used to 
achieve the same purpose. 

.£Q..NKQ=nn.!!!ill.!lnn: This operand is the same 
as the configuration byte (byte 9) of the 
communication region. It must consist of 
eight "0" or "1" digits. The eight digits 
indicabe the machine configuratien for 
which the Supervisor is being assembled, as 
follows (numbering from the left) : 

Digit 
i2§tii.Q.n.§ configura1ion 

1-4 

5 

6 
7 

8 

Number of bytes of main storage~ 
8K=0000 

16K=00 10 
24K=OO'1 
32K=0100 
64 K= 0' 10 

128K=1000 
256K=1010 

Model * 
30=0 

other=' 

Floating-point option! Present= 1 
Decimal feature 

Not 
Printer=Keyboard present=O 

* When Model 30 is specified, 12 bytes are 
reserved for a diagnostic scan-out area. 

184 S/360 BOS Assembler with IIO Macros 

For any other model, 256 bytes are 
reserved. 

If this keyword field is omitted, it is 
assumed to be CONFG=OOOOOOOO. This is 
interpreted as an 8K Model 30 without the 
floating point option, the decimal feature, 
and the printer-keyboard. 

If a Supervisor will ever be used in a 
system with main storage greater than 32K, 
CONFG must specify 64K (0110) or greater. 
This is necessary because additional COding· 
is required in the Supervisor for 
configurations greater than 32K. If the 
assembled Supervisor is subseguently used 
for a configuration of 32K or less, a Job 
Control CONFG card must specify the machine 
size for program execution. 

TR=YES: This operand (timer routine) must 
be included if the supervisor being 
assembled is to be used for any problem 
program that contains a routine(s) for the 
interval timer. If this Qperand is 
omitted, the interval timer (INTTMR) switch 
must be set OFF for any program(s} that 
uses this Supervisor. 

CR=XES: This operand (communication 
routine) must be included if the Supervisor 
being assembled is to be used for any 
problem program that contains a routine (s) 
fo~ operator-initiated communication from 
the 1052. 

CH~PT=YES: This operand (checkpoint) must 
be included if the Supervisor being 
assembled is to be used fbr any problem 
program that includes the checkpoint IDacro 
or that requires restarting from 
checkpointed records. This operand applies 
to the assembly of a Supervisor only if a 
disk-resident system will not be used for 
the execution of programs that utilize this 
Supervisor. From the parameters in this 
instruction, the initial vaiues for the 
Supervisor communication region are 
assembled. 

SAVEREG=YES: This operand is optional, but 
mus~be included if the user plans to use 
registers 12 and 13 for programs that are 
executed in a disk-resident system. It 
directs the supervisor and physical IOCS to 
save and restore these registers. If the 
operand is omitted, the programmer must not 
use registers 12 and 13 because these 



registers are used by the Supervisor 
Interruption Routine, and interruptions are 
unpredictable. If the s~pervisor is to be 
used to control operations for the 
execution of object programs when a 
disk-resident system i p not us€d, this 
operand must-be omitted. 

Hote: If Autotest is used, the 
programmer must nQ! use registers 12 and 13 
because these registers are used by the 
Autotest Master Control routine. 

SYMUN Macro· 

i I 

lap Operand I 
I , 
ISYMUN 
I 

n,X'ccuu',X'ddss',X'ccuu',X'ddss'l 
I 

Each file of input or output data is 
associated with an input or output device 
that is represented in a proplem program by 
a§Ymbolic unit. The symbolic unit is used 
instead of a device address (channel and 
unit). Then when the program is executed, 
the file of records (disk pack, tape reel, 
card deck, etc) is placed in an actual 
device and that device is assigned to the 
symbolic unit. Thus~ the actual device 
(which disk or tape drive, for example) 
need not be determined until the jop is 
run. All devices are handled in this 
manner, and a specified set of symbolic 
units can be used: 

SYSRDR - system control-card reader 
SYSLST - system printer 
SYSIPT - main system input device 
SYSOPT - main system output device 
SYSLOG - control card logging device 
SYSOOO-SYS254 - other devices in the 

system 

In the last group (SYSOOO-SYS254) the 
user as~igns numbers, in order, for all the 
devices required in his problem program. 

To relate the actual device (channel and 
unit address) to the symbolic unit, a 
device table is maintained in the 
Supervisor. The number of entries needed 
in the table must be determined by the 
programmer when the Supervisor is 
as~embled. The first five (SYSRDR, SYSLST, 
SYSIPT, SYSOPT, and SYSLOG) are assumed to 
be present, and he must specify only the 
additional number. That is, he specifies 
how many numbered units, starting with 
SYSOOO, are used. This must be the first 
operand (n) in the SYMUN macro instruction. 
If no units above the pasic five are 
required, n is specified as "0". 

When a supervisor is assembled with a 
large number of options (in SUPVR and IOCFG 
macros), the number of devices that can be 

specified (SYMUN macro) may be limited. 
The absolute maximum value for n is 255. 
However, the maximum value of n for a 
supervisor generated specifying a large 
number of options depends upon the options 
specified, and may be less than 255. 

The assignment of an actual device to a 
symbolic unit can be made by the Job 
Control ASSGN card, or it can be made at 
the time the Supervisor is assembled by 
this SYMUN macro. Any, alleu p to - 24), or 
none of the symbolic units may be assigned 
actual devices at assembly time. When the 
assignment is made by this macro, the 
device remains assigned to the symbolic 
unit unless the assignment is overridden by 
a Job Control ASSGN card. Therefore, if no 
change in assignment is required for the 
execution of a program, Job Control 
~ssignment can be bypassed when the object 
program is loaded. 

Any of the first 24 devices 
(SYSRDR-SYS018) to be used during program 
execution may be assigned by the SYMUN 
macro instruction. Any others must be 
assigned by Job Control. 

When devices are assigned by the SYMUN 
macro, the operand should be in the 
positional format. A separate pair of 
parameters (X'ccuu',X'ddss') is entered for 
each device in this exact order: 

SYSRDR, SYSLST, SYSIPT, SYSOPT, SYSLOG, 
SYSOOO, SYS001,---,SYS018 

That is, the first pair of parameters 
(after n) assigns a card reader to be used 
as the system reader for control cards, the 
second pair assigns a printer for system 
listings, the seventh pair assigns a device 
to unit SYS001, etc. When any symboli'c 
unit is not to be assigned a device at this 
time, two commas must be entered to 
in.dicat.e the omission if other assignments 
follow. If no more devices are to be 
assigned, however, the commas are also 
omitted. 

The parameters (X'ccuu',X'ddss') for 
each assigned device are two 4-position 
hexadecimal numbers indicating the channel 
(cc) and unit (uu) address, the devi~e type 
(dd), and specifications (ss), as follows: 

cc - channel number 
00 - multiplexor channel 
01 - 1st selector channel 
02 - 2nd selector channel 

uu - OO-FF- unit address (0-255) 

dd - device type 
00 - 2401, 2402, 2403, 2404 

magnetic tape unit 
02 - 1052 printer-keyboard 

Macro Instruction Statements 185 



04 - 1442 card read-punch 
06 - 1403, 1404 printer 
08 - 2540 card read 
OA - 2540 card punch or punch 

feed read 
OC - 23" disk storage drive 
10 - 2671 paper tape reader 
'2 - 1443, '445 printer 
14 - 2501 card reader 
16 - 2520 card read-punch {reading, 

or reading and punching for 
combined files) 

18 - 1285 optical reader or 1287 
optical reader operated in 
journal tape mode 

1A - 2520 card punch or 2520 card 
read-punch (punching only) 

1C - 2701 data adapter unit 
with SDA I (STR). 
data adapter unit 

1E - 1287 optical reader operated 
in document mode 

20 - 2701 data adapter unit 
with SDA II (BSC) 

ss - specifications 
These two hexadecimal characters 
are 00 unless 7- or 9-track tape 
is specified. With 7-track tape 
they provide 4 different opti6ns: 
Density, parity, Translate, and 
Convert. A code is specified to 
represent a valid combination of 
options (Figure 48). For 9-track 
tape, codes are: C8 to indicate 
800 bytes/inch; CO to indicate 
1600 bytes/inch. If this operand 
is omitted, a density of 800 BPI 
is assumed. This device 
specifications byte is also used 
internally asa queue pointer for 
the channel scheduler. Users 
should not utilize this byte for 
any purpose other than magnetic 
tape specifications. 

From the parameters in this instruction, 
the macro sets up the physical-device table 
that is used by the I/O request and 
interruption routines. 

IOCFG Macro 

r----,-----
lOp I Operand 
I I 
IIOCFG I keyword=YE5,keyword=YES,---
L.. I 

The IOCFG (I/O configuration) macro 
instruction defines the input /output units 
and channels that the Supervisor must 
serv~ce. When a Supervisor is assembled 
fo"r "a disk-resident system, this macro must 
include all the types of devices and 
features "(as indicated in the following 
list of" parameters) that are available in 

186 S/360 BOS Assembler with I/O Macros 

DENSITY PARITY CONVERT TRANSLATE 

CODE 

200 556 800 Odd Even On Off On Off 

10 X X X X 

20 X X X X 

28 X X X X 

30 X X X X 

38 X X X X 

50 X X X X 

60 X X X X 

68 X X X X 

70 X X X X 

78 X X X X 

90 X X X X 

AO X X. X X 

A8 X X X X 

BO X X X X 

B8 X X X X 
.-

Figure 48. options for 7-Track Tape 

the user's inst~llation. However, when a 
supervisor is assembled for an object 
program(s) that is not to be executed in a 
disk-resident system, only those devices 
and features that will be needed by the' 
object program(s) should" be specified. 
Thus, if the object program uses tape 
units, a 2540 reader, and a 1403 printer, 
the parameters that relate t~ these units 
should be included, and all others should 
be omitted~' The available channel(s) and 
certain tape-unit specifications are also 
included, as indicated in the following 
list of parameters. 

Keyword parameters are specified in this 
instruction. Therefore the specifications 
may be entered in any order, and those that 
do not apply may be omitted. Each keyword 
parameter except the last must be followed 
by a comma. 

The parameters that are used to specify 
required devices are: 

Parameter 

MPX=n 

Object: Program~Reguires 

Multiplexor channel. n = 1-255 
to specify the number of queues 



SEL=n 

TAU=YES 

DVE=n 

T=YES 

R1=YES 

R2=YES 

R3=YES 

R4=YES 

R5=YES 

Pl=YES 

P2=YES 

desired for the multiplexor 
channel. (If omitted, n=1 is 
aS$umed. ) 

One selector channel (n is "1 ") 
or both selector channels (n is 
"2") 

Two-channel read-while-write 
Tape Control Unit 

In general DVE should be 
specified if problem programs 
may contain command control 
blocks with the Wait for Device 
End bit on. Such CCB's are 
g~nerated by laCS: 

1. for control commands, 
2. if CRDERR=RETRY is 

specified for 2540 or 2520 
punches, 

3. if PRINTOV=YES is specified 
for printers. 

n = maximum number of devices 
to be tested for Device End. 

A carriage tape should not have 
the channel 9 punch under these 
two conditions: 

1. Supervisor used for the 
problem prcgram does not 
include the DVE 
specification. 

2. Supervisor does include the 
DVE specification, but the 
PRTOV or CCB macro 
instruction in the problem 
program does nqt request 
posting of device end in 
the command control block 
(CCB) • 

If a 9 punch is used under 
either condition, a physical 
laCS error message will result. 

2401, 2402, 2403, or 2404 
Magnetic Tape Unit 

2540 reader 

2540 punch fe~d read 

1442 read, or read and punch 
for combined files 
2501 reader 

2520 read, or read and punch 
for combined files 

2540 punch only 

1442 punch only 

P3=YES 2520 punch only 

L1=YES '403 or 1404 Printer 

L2=YES 1443 or 1445 Printer 

C1=YES 1052 Printer-Keyboard 

RO=YES 2671 Paper Tape Reader 

RR=YES 1285 or 1287 (in either mode) 
Optical Reader 

BAC~WRD=YES Backwards reading of magnetic 
tape 

TRK7=YES 

TRK9=YES 

ST=YES 

ANSWR=n 

BSC=YES 

BTAB=n 

7-track magnetic tape 

9-track magnetic tape. (If 
omitted and T=YES is specified, 
TRK9=YES is assumed.) 

2701 Data Adapter Unit with SDA 
I (STR) 

Used to specify the maximum 
number (n=1-6) of STR devices 
to be monitored for ringing 
wpen using the 5TR SOPEN 
(DIAL=IN) macro. If more lines 
are specified to be monitored 
in the problem proqram than 
were specified in n of ANSWR, 
an error message is issued and 
the job is terminated. 

2701 Data Adapter unit with SDA 
II (BSC) 

Specifies the maximum number 
(n='-'2) of BSC CCB's used in 
any single BSC proqram. If 
BSC=YES is coded and BTAB is 
omitted, BTAB=' is assumed. 

From the parameters in this IOCFG 
instruction, the macro assembles the 
channel scheduler and I/O interruption 
routines for the Supervisor, and selects 
the appropriate device error routines. 

i 
IName 
I 

Op 

SEND 

Operand 

n,REP,nnnn(X'nnnn') 

The SEND (supervisor end) macro instruction 
must be included as the last instruction in 
the set required to assemble the 
Supervisor. It contains one, two or three 
operands. 

The first-operand is optional, and it 
specifies the number (n) of bytes to be 
reserved as a patch area at the end of the 

Macro Instruction Statements 187 



Supervisor in main storage. This area can 
be used for changes or corrections in the 
Supervisor itself. With this area the 
superyisor can be enlarged, if necessary, 
without ~equiring the reassembly of 
programs that utilize main storage 
immediately above the Supervisor. The 
minimum size of this area should be '50 
bytes for IBM-supplied changes to the 
Supervisor. The user may also reserve 
additional room for expansion of the 
Supervisor due to changes in his system 
configuration or for the inclusion of 
additional supervisor functions. If this 
operand is not included but the second 
operand is required, a comma must be 
entered to indicat€ the omission. 

Whenever a Supervisor that is ll21 to be 
used in a disk-resident system is 
assembled, a Program Loader also is 
assembled. It follows the Supervisor and 
is considered part of the Supervisor in 
main storage. In this case, the patch area 
is located in main storage between the 
Supervisor and Program Loader. 

The second operan,g (REP) also is 
optional and applies only to the assembly 
of a Supervisor and Program Loader that are 
not tp be used in a disk-resident system. 
It causes the Program Loader that is 
assembled with the Supervisor to include a 
replace-text function (see Tape . 
Programmer's Guide as listed on the front 
cover of this publication). The ability to 
process REP cards in the Program Loader can 
only be achieved by speoifying this 
operand. 

The third operand is also optional and 
applies only to the assembly of a 
supervisor to be used in a disk~resident 
system. This operand specifies the user's 
desired supervisor end address, and may be 
either in decimal or in hexadecimal. It 
must specify a double word ~oundary; if 
this is not done, alignment w~ll be to the 
next highest double word. Enough room must 
be alloweq for the supervisor being 
assembled or the supervisor could be 
destroyed by the transient routines. (See 
the supervisor core size chart or the 
Programmer's Guide publication.) 

188 S/360 BOS Assembler with I/O Macros 

Whenever the third operand is used an 
MNOTE will be issued at assembly time to 
warn the user. Then the user has to check 
that enough room has been reserved. 

Once a SEND address is specified for a 
given set of parameters, it will never have 
to be changed, thus eliminating the 
necessity of relinkage editing the entire 
system for maintenance purposes when the 
supervisor changes. 

The specified SEND address overrides the 
optional patch area, as specified by the 
first operand of the SEND macro. It also 
overrides the built-in supervisor patch 
area which is reserved along with several 
options in the SUPVR and IOCFG macros. 

ORGANIZATION TO ASSEMBLE A SUPERVISOR 

The set of instructions in Figure 49 
illustratesthereguirements for assembling 
a Supervisor for the control of problem 
program execution and a Program Loader for 
loading problem programs. The example 
assumes the setup described in the 
following eight items: 

1. Job control cards are used to prepare 
for the assembly. These job control 
cards are input to the Job Control 
program on the system tape. The 
assembled object deck is to be punched 
in a 2540 with the address of channel 
0, unit 04. A DA.TE control card also 
is required if this assembly is the 
first job after performing an IPt. 

2. An IPL (Initial Program Loading) loader 
is to be assembled with a Supervisor 
that is assembled for the execution of 
object programs when a disk-resident 
system is not used. The loader will be 
used at pr~gram execution time to load 
the Supervisor and Program Loader from 
a card reader. (If a Supervisor were 
to be assembled for a disk-resident 
system, the AOPTN IPL control card 
would be omitted.) 



J 
(2J -

~ 
I 

o 
I 

IBM IBM SYItaml360 A .. lmbl .. Codln; Form 
1'\oI .... u.l. .. 

PROGU.M 
PUNCHING I GRAPHIC 1 I I PAGE 0< 

lOAn 
INSTRUCTIONS I Plf',ICH I 1 1 

I CAaD lUCIIIQ HUMafR 
PROQAAMMU 

STATEMENT 
tdentmcotlon-...... a,-ratlon O~~ C_"tt ., 71 13 

s. ... ow:. 
80 1 . 10 .. ,. ,. 3. " .. " 50 " .. 

1/111 UkJ~1 ~slSl€'~B~~~ 1 ) I 1 I 1 1 
vVi ~S ls~Gf.J lsy lsb IPTi,~ ,!¢ ¢r1- ' I, 'P 11 ~ Job Control I 1 
[71 IL"'X I~IC I I 1\ I 11 I I 

~~~Ir~ ]IP'L l Assembler Control Card to Assemble IPL Loader I 
~IUPIV R I" ON I~~ =iJ,;;'vAJilil lrJll " I III i I I I ! I I Macro -

I !SYMU'/v 131,!xi' 0 008'!, D<1'~8¢ ~I' I, ~I' 1p'rJ'1 '11:' I,XI"¢6 113'11' ,'X '$ 'liJfJ8 'I,IX ,~ B~ ~fIJ ' I. X 'iP iP~ 14>< instructions _

I I I 'I,~"IO A'DO:'I, ~ ''f,H111 ~I' ,xl' ¢.2.¢¥JI' , t!, 1,1, xl '¢'(11 ~I' ,X' IjIIz 13 (1 , to assemble
the -lIK)cr-G MPX= 1 I, SEL= 1. T =Y ES.Rl =y £'S P l'=y'£ S, L'll= YE SI. C 1 =Iv E,S ~. T RK 19 - IVI.ES Supervisor -

"S'ENIJ ' 12100:,~ ~~: ! I ! I I 1 I I' ,
! ! I I I I I I i I I 1 1

I I_! : II I I iii I I: I I I I , 1 i i I I ! If' i I i I I i I
I I-I : User's problem program source deck I I' 1

,

1 I
, , I

, I I I I I I I I I I ,

f I :_1 I inserted here when the Supervisor is I I I I I, I I I :
, I I I

I-I I assembled with the problem program , I Ii ! I ' I I I I I !
I . ' " - , I

I - I I [I i i I I I I Ii
! I I : ! I

I 'EN'[j i I I I I I! 1 I I I 1 r I 1 I I i 1 1 I I
I ! I I I . I I I: : II 1 i ! I I I I I I I

I I I 1 I !
I I I I 1 :

I I i i

,
i I ~ I 1 I I 1 I

i I I I I I I I , I I I ! I I! I I
I I i: I I I I I I I I I

I I I Ii I III I I I I
,

I
: . : i I I i

I I I I I

I I I I I I I I I I i I I I, I 'I I ! . I I I \ I I
"

I

1 1 I 1 I I I I ! ; I I! I ! I i ! I Ii ! I I i i I I I I I I I

t I I I I I : I I i I I !
I I , I ! I I , i ! I I ! ! I I

I I I ' I I : I I I I I i I I, I I I

I I I I I I I I I ' I ' I ! I I I
,

i

,
I i I I I ! I

1 I ' : I I t

I : I I I I I I I ! : I! I I I

I I I I I I I I I I I Ii : j! i! I I I I I iii I : I ! I ! I I ! I I: I I i I
I 1'1 I I i I \ I I I fl I I I i I I I I i I I : I

Note: Circled numbers refer to items in the text.

Figure 49. Assembling a Supervisor and Program Loader

3. A Supervisor is to be assembled. (If a
Supervisor were to be assembled for a
disk-resident system, DISK=YES would be
specified.)

4. The problem program will require three
I/O units over and above the basic five
(SYSRDR, SYSLST, SYSIPT, SYSOPT, and
SYSLCG) •

Control cards for the execution of
the problem program will be read by the
system reader which is a 2540 reader
addressed as channel 0, unit 08.

A 1403 printer addressed as channel
0, unit 10, is assigned as the system
pri~ter.

The main system input· device is the
same device as the system reader, which
is addressed as channel 0, unit 08.

The main system output device is a
2540 card punch addressed as channel 0,
unit 04,

5

Control cards will be logged on a
1052 printer-keyboard addressed as
channel 0, unit 1F.

Two tape drives will be required by
the object program. They will be
assigned to symbolic units SYSOOO and
SYS001 when the program is execut€d.
Job Control ASSGN cards, rather than
the SYMUN macro, will make these
assignments.

The program also uses the 1052
printer-keyboard addressed as channel
0, unit 1F, and referred to as symbolic
unit SYS002.

The features and types of I/O devices
that will be required by the object
program are:

The multiplexor channel and one
selector channel

Magnetic tape units, with nine-track
tape, on the selector channel

Macro Instruction Statements 189

2540 card reader

2540 card punch

1403 printer

1052 printer-keyboard

6. This is the end of the
Supervisor-Assembly macro instructions.
An area of 200 bytes is to be reserved
at the end of the Supervisor.

This Supervisor is to be assembled
for use in conjunction with the
execution of object programs when a
disk~resident system is not used. The
Program Loader is assembled immediately
after the supervisor and the
replace-text function is assembled as
part of the Program Loader so that REP
cards can be used when problem programs
are loaded for execution. (If a
Supervisor ~ere to be assembled for a
disk-resident system, as indicated by
the SUPVR macro instruction, Program
Loader would not be assembled and REP
is omitted.)

7. The user's problem program is assembled
next. This applies only to the
combined assembly of a Supervisor and a
problem program, when a disk-resident
system is not to be used for the
execution of the object program.

8. If the Supervisor and Program Loader
are not assembled with the problem
program, or if a Supervisor is
assembled for a disk-resident system,
the END card comes immediately after
the SEND card.

JOB-CONTROL-ASSEMBLY MACROS (NCTFOR A
DISK-RES"'iDiNT S~l

When a user's problem program is to be
executed, it may require the setup
functions provided by a program called the
Job-Control program. A Job-Control program
is available on the system pack for problem
programs that are to be executed 'in a
disk-resident system. However, if a
problem prog;ram is to b~ executed w1'ten a
disk-resident system is not used, a
Job-Control program must be made available.
In this case, the Job C~ntrol program must
be assembled by the user from IBM-supplied
macro routines. Once the Job-Control
program has been assembled, it can be
executed any time its functions are
required for a problem program. (This
Job-Control program is separate from and
has no relation to the Job-Centrol program
that resides on the system pack.) For
additional information about Job-Control
programs, see the Programmer's Guides as

190 S/360 BOS Assembier with I/O Macros

listed on the front cover of this
publica tion. -

A Job-Control program has t~o main
functio.ns.: preparing jobs to be run, and
restarting the execrition of a job at some
point other than the beginning. The
·program consists of two phases, which are
obtained by two assemblies, the first using
the JBCTL macro and the second, the RSTRT
macro.

The phase assembled by the JBCTL macro
prepares jobs to be executed. It contains
rQutines to:

1. Indicate the name of the job to be
executed next.

2. Assign actual input/output devices
(addresses) to the symbolic units
(SY~RDR, SYSLST, etc.) use~ by the
problem program-.

3. Place today's date in the
communication region of the
Supervisor. This can be used by
problem programs.

4. Set (ON or OFF) the
user-program-switch indicators {UPSI
byte) in the communication region of
the Supervisor.

5. Reset the program check indicator to
ABORT.

6. Edit and store label information for
later use by the tape label routines.

7. Store m~chine configuration in
communication region of the
Supervisor.

8. Allow restarting of previously
checkpointed records.

9. Print (log) job control cards.

10. Assign I/O request queues to multiplex
mode devices on the multiplexor
channel.

11. Initiate execution of of the next job.

12. Allow the wait state to be entered
before the job is executed, so that
the operator can perform any
preparatory operations.

The user can communicate with this program
using job-control cards such· as JOB, ASSGN,
and EXEC.

The phase obtained from the RSTRT macro
contains routines for continuing the
execution of an interrupted job· at a point
other than the beginning~ The checkpoint

(CHKPT) macro must be used in the problem
program to provide input information about
the status of the job so that the restart
phase of the Job-Centrol program can
continue execution, if necessary.

To restart a job, both phases of Job
Control must be u~ed. The job-control
cards reguired for restarting a
checkpointed job are described in the Tape
Programmer's Guide, as listed on the front
cover of this manual.

These two phases of the Job-Centrol
program must be assembled separately. The
operand field of each macro instruction
must be blank.

i
IName
r­
I

Op Operand

JBCTL
L---__ ~ ______ ~ ________ __

r-----,r--------r------------
IName I Op Operand
I +-
I I RSTRT

---L-

ASSEMBLING THE JOB CONTROL PROGRAM

To obtain both phases of the Job-Control
program, two assemblies are required. The

job-control cards for the system tape
Job-Control program (see section 1 of
Figure 20) must be used at the beginninq of
each assembly. Three other cards must
follow the job-control EXEC ~ard. To
assemble the first phase of the Job-Control
program, these three cards are:

r----~---------------------------.------------
lOp
I I
ISTARTI
1,1BCTL I
lEND I

Operand

4096 - Assembler start Card
- Macro Instruction

START - Assembler End Card

,
I
I

To assemble the restart phase of the
Job-Control proqram, these three cards are:
r---- I --,

lOp I Operand I
I----+- --t
ISTARTI 4096 - Assembler Start Card I
IRSTRTI - Macro Instruction I
lEND I SYSRST - Assembler End Card I

The START cards in these examples qive
an absolute machine address (4096), which
is the address at which the user wishes to
begin loading the Job-Control program. In
general, the user can either specify an
absolute loading address, or he can omit
the address operand and use the Tape
Linkaqe Editor to provide a job-control (or
restart) card deck with the proper loading
addresses.

Macro Instruction Statements 191

CONTROL CARDS

The Assembler program operates. under
control of the Supervisor program, which
resides on the systems pack. certain
job-control cards are therefore needed by
the Job Control program to identify and
initialize each Assembler run, or assembly.
Four Assembler files (or five, if two
w6rkfiles are utilized) are required for an
Assembler run. These files and their
permiisible device assignments are as
follows:

1. Work file 1 (disk)

2. If used, Workfile 2 (disk)

3. Source input (card reader or tape)

4. Text output (card punch, - tape, or
relocatable library)

5. Listing output (printer or tape)

Device assignments for these files are
normally given at systems generation time.
If, however~ these assignments were not
given at that time or the user wishes to
alter any of tbe assignments, certain
job-control cards may be used at assembly
time to make the desired ~ssignments. The
types of job-control cards and their
functions are des~~ibed in !EEendix 1 and
the g£Qg~~~~§_Gui£g for Basic operating
System.

As shown in the preceding list, three of
the Assembler files (source input, text
output, and listing output) may be assigned
to t~pe units. They each may be assigned
to a separate unit or one of the following
two combinations may be assigned to the
same uni t:

1. source input and text output

2. source input and listing output.

Ei~her 7- or 9-track tape may be used for
these assignments, (see Figure 55 for
7-track tape requirements). Special
messages produced by an ALOG card are not
considered to be an Assembler file. They
are listed on tbe priRting device that is
assigned to SYSLOG.

Certain control cards may be supplied
for use by t~e Assembler program. These
cards indicate which of the Assembler
processing options the Assembler program is

192 S/360 BOS Assembler with I/O Macros

to perform or provide. The Assembler
control cards are: AOPTN (Assembler
option) card, ALOG (Assembler log) card,
AWORK (Assembler workfile) card, and AFILE
(system file) card. These cards have the
same format as Assembler-language
instructions. The AOPTN, ALOG, AWORK, and
AFILE appear as if they were mnemonic
operation codes, and the various options
are specified as operand(s).

AOPTN card(s) are required only if the user
wishes to alter the normal output from the
Assembler.

The normal Assembler output consists of
two major files: the object proqram and
the program listing. The object program
consists of three types of information;
the external symbol dictionary (ESD), text,
and the relocation dictionary (RLDt. The
program listing consists of five lists of
information: ESD listing, source and
object program listing, RLD listing, error
listing, symbol table, or cross reference
listing.

The option(s) that may be supp~ied in
the AOPTN cards are shown in Figure 50;
each option is identified by a symbol which
is used in the AOPTN card. Each option of
the AOPTN card may be specified in a
different AOPTN card, or the options may
appear as multiple operands (separated by
commas) in a single card.

If the user wishes to include the
options BGNBATCH (begin batch processing),
BATCH, and ENDBATCH, the AOPTN BGNBATCH
card should be included only in the first
assembly, and AOPTN BATCH in each
succeeding assembly except the last. In
the last assembly, the AOPTN ENDBATCH card
should be included to discontinue the batch
processing environment. Job control cards
should precede only the first assembly
(Figure 51).

The contents of the ALOG card, all
asse~bler-option (AOPTN) cards, all
assembler workfile (AWORK) cards, and all
assembier system file (AFILE) cards
following the ALOG card are printed out on
SYSLOG. A statement of the total number of
errors also is printed out on SYSLOG.

i
OPTION MEANING I

,------------------------------.---~
NO DECK

NOESD

NORLD

NOLIST

NOERR

NOSYM

PCHSYM

CROSSREF

IPt

ENTRY

BGNBATCH

BATCH

ENDBATCH

L

The object deck vi~l not be produced in cards, tape, or disk. (This does
not affect the appearance of the program listing)~ Also, no cards viII be
produced as a result of REPRO or PUNCH instructions.

No ESD data viII appear in the object program or the program listing.
(Program will not be acceptable to a Basic Operating System or operating
System) •

No RLD data will appear in the object program or the program listinq.
(Program viII not be relocatable).

The program listing viII not appear.

The error listing viII not appear in the program listing.

The symbol table viII not appear in the program listing.

The symbol table will be punched out (depending on the device) on the same
device as specified for text output. This table is in the format required
for the Autctest program.

A cross-reference listing will appear instead of the symbol table listing.
The cress-reference listing contains up to a total of 20,625 statement
number references to symbols used. If more than 20,625 references are
used, symbols and references above that number will not be shown.

An IPL routine (for loading an independent Supervisor from a card reader)
will precede the object proqram.

An ENTRY card will be produced at the end of the output text.

If SYSLST and SYSOPT are assigned to a tape unit, the tapes will be opened,
initiating a batched environment. The listing and output tapes will not be
closed at the end of assembly.

A batched environment will be initiated or continued. Listing and output
tapes will not be closed.

If SYSLST and SYSOPT are assigned to tape, the tapes will be closed. The
batched environment will be discontinued and end-of-job will be called.

Figure 50. AOPTN Card option Indicators

AWQ!l.!L..J!.§§§!lB!~£_ Worka~) . Car~

An AWORK card indicates the number of
work areas the Assembler is to use in
processing source-program st~tements. The
Assembler can use either one or two
work areas. Normally two workareas are
provided qnly if two disk drives are
available. In this case, one workarea can
be assigned to each disk drive. Using two
workareas on separate disk drives shortens
the processing time required by the
Assembler.

The AWORK card requires cne operand. If
the digit 1 appears as the operand, the
Assembler assumes one workarea. If the
digit 2 is used, the Assembler assumes two
workareas. If no AWORK card is provided,
the Assembler assumes one workarea.

A workarea cust always be assiqned to a
continuous disk area between specified
limits eXTENT) on one disk pack. This is
accomplished by using the proper
job-control cards.

AFl1~lAssembler Fil~~arg

An AFILE card directs the Assembler to
place the entire output deck (see Fiqure
57) in the relocatable library as a module.
The format of the AFILE Assembler control
card is:

Control Cards 193

r--~ I ---,
IName lOp 10perand
1----+----+
IName JAFILE ILIBRARY, RETAIN
I I I or
I I I LIERARY

A name must be given in the name field.
The name given may include one to six
characters. Any additional characters are
ignored. (The name ALL is not allowed.)
The name is placed in the relocatable
library directory to identify the module.

I

•

The first operand is LIBRARY and must
always appear in the AFILE card. If RETAIN
appears as the second operand in the AFILE
card, the module is entered permanently and
remains until it is deleted or replaced.

Note:
I f any of the other
assembler options
are used, the cards
can be placed any -
where in this deck
between the EXEC
card and the appropriate
source deck.

SOURCE DECK
LAST ASSEMBLY

AOPTN ENDBATCH

•
•

•

SOURCE DECK
ASSEMBLY 2

AOPTN BATCH

SOURCE DECK
ASSEMBLY 1

AOPTN BGNBATCH

II EXEC

II DATE

I I JOB ASSEMBLER

Figure 51. Batch Processing If the second

194 S/360 BOS Assembler with I/O Macros

operand is omitted, the module is entered
temporarily and will be overlaid by the
next module entered into the relocatable
library.

Based upon the intended usaqe of the
module, the user must provide a PHASE
and/or an ENTRY card in the module. The
initial PHASE card can be obtained with a
PUNCH or REPRO statement placed before the
(act ual or implied) START sta temen t. An
ENTRY card can be obtained with an AOPTN
ENTRY card. A description of the
alternatives available for processinq
modules in the relocatable library may be
found in the section 1~qe Editor in the
BOS g~oqrammer's Guide as listed on the
front cover of this publication.

It is possible to load and execute an
object program immediately after the
assembly is completed. This may be
accomplished by entering the name of the
first phase to be executed as the second
operand of the JOB card used for the
Assembler run. The module,' created for this
purpose must be terminated by an ENTRY card
and must contain one or more PHASE cards.
This procedure for processinq a module
immediately after it is assembled and
placed in the relocatable library has no
effect on the future availability of the
module. It remains in the relocatable
library and may be accessed normally until
deleted or (in the case of a temporary
module) the next module is entered.

]Qte: Multiple phases are created in a
single assembly by using an XFR card to end
a phase. A PHASE card, created by a REPRO
or PUNCH statement, follows this XFR card
and precedes the next phase in line. To
ensure proper execution, each phase created
in this manner should be a separate control
section.

There are three separate System/360
assembler languages. One is for Basic
Programming Support (Card) and is called
the basic assembler language. The second
is for Basic programming Support and Basic
Operating System and is called the tape and
disk assembler language. The third is the
Operating System assembler language. The
basic assembler language is a subset. of the
tape and disk assembler language, which in
turn is a subset of the Operating System

A§§EMBLER LANGUAGE SUBSET··RELATIONSHIP

assembler language. Any language features
that exist on one level exist on all higher
levels, with the exception of the XFR .
assembler instruction. (The XFR assembler
instruction is unique to the tape and disk
assembler language.)

The differences between the Operating
System assembler language and the Basic
Operating System disk assembler language
are shown in Figure 52.

Assembler Language Subset Relationship 195

LANGUAGE
FEATURE

Continuation lines

Address Constants

Bit-Length Spec­
ification

DC Operands

Duplication Fac­
tor

Exponent Modifier

Length Modifier

Literals

Scale Modifier

Parentheses

Terms

DS Operand

Length Modifier

CNOP

COM

COpy

CSECT and
DSECT

EXTRN and
ENTRY

TITLE

USING and
DROP

XFR

Figure 52.

BASIC OPERATING SYSTEM
SPECIFICATION

CODING CONVENTIONS

Maximum of one continuation
line allowed

CONSTANTS

Only one address constant may
be specified in a DC statement or
a literal

Feature excluded

Only one operand allowed per
DC statement

Duplication factor expressable
only by a decimal self-defining
term

Exponent modifier expressable only
by a decimal self-defining term

Length modifier expressable only
by a decimal self-defining term

In case of duplicate literals,
more than one may be stored

Scale modifier expressable only
by a decimal self-defining term

EXPRESSIONS

Only one set of parentheses ()
allowed'in an expression

Maximum of three terms allowed
per expressi"n

STORAGE DEFINITION (DS STATEMENT)

Only one operand allowed in a
DS statement

Maximum length designation of a
storage field is 256 bytes

ASSEMBLER-INSTRUCTION STATEMENTS

Each operand expressable only by
a decimal self-defining term

Statement excluded

Statement excluded

In addition to the combined number
ofCSECTs, DSECTs, EXTRNs, and
V-type address constants not being
allowed to exceed 255, the combined
number of CSECT and DSECT state­
ments must not exceed 32.

Only one relocatable symbol is allow­
ed in each EXTRN and ENTRY state­
ment

The first TITLE statement provides
the heading only for pages of the
listing that follow it, until the
next TITLE statement (if any) is
encountered

Maximum of 5 base register desig­
nations allowed in each USING or
DROP statement

Statement providlld In Basic
Operating System

OPERATING SYSTEM
SPECIFICATION

Maximum of two continuation
lines allowed

One or more address constants may
be specified in a DC statement or
a literal

Feature is provided in Oper­
ating System

One or more operands allowed
per DC statement

Duplication factor expressable
by any absolute expression

Exponent modifier expressable
by any absolute expression

Length modifier expressable by
any absolute expression

In case of duplicate literals,
only one is stored

Scale modifier expressable by
any absolute expression

No limit on the number of sets
of parentheses () allowed
in an expression

No limit on the number of terms
allowed per expression

One or more operands allowed
in a DS statement

Maximum length designation of
a storage field is 65,536 bytes

Each operand expressable by
any absolute expression

Statement provided in Oper­
ating System

Statement provided in Oper­
ating System

The combined number of CSECT
statements, DSECT statements,
EXTRN statements, and V-type
address constants must not exceed
255

One or more relocatable sym­
bols are allowed in each
EXTRN and ENTRY statement

The first TITLE statement, in
addition to providing the head­
ing for all pages of the list-
ing that lie between it and the
next TITLE statement (if any),
also provides the heading for
any page(s) of the listing
that precede it.

Maximum of 15 base register
designations allowed in each
USING or DROP statement

Statement excluded

Differences Between Basic Operating System and Operating System
Assembler Languages

196 S/360 BOS Assembler with I/O Macros

APPENDIX A: CHARACTER ·CODES--PART ,

This appendix lists all System/360 card codes to which a printer graphic is assiqned.
See Part 2 for a complete list of character codes.

Card Printer Internal Card Printer Internal
fgg~ ~.Iwl:.f'§ Representa.!ill f£de Graphics RepresentE:tion

blank 0'000000 11,1 J .10'000'
12,8,3 . (period) 01001011 11,2 K 11010010
12, 8, 4 < 0'001100 11,3 L "010011
12,8, 5 (01001101 11,4 M 11010100
12,8,6 + 010011'0 " ,5 N '1010'0'
12 & 01010000 11,6 0 11010110
11,8,3 $ 0'0'1011 11,7 P "0'0'1'
11,8,4 * 01011100 11,8 Q 11011000
11,8,5) 0'0"'01 11,9 R "0'1001
11 01100000 0,2 S 11100010
0, , / 0"00001 0,3 T '''000'1
0,8,3 , 01101011 0,4 U 11100100
0,8,4 % 01101'00 0,5 V '1'00101
8,3 # 01111011 0,6 W 11100110
8,4 Q) 0' l' "00 0,7 X , 1100' 11
8,5 • (prime) 01111101 0,8 y 11101000
8,6 0'1"110 0,9 Z 11101001
12, 1 A 1100000' 0 0 '1"0000
12,2 B 11000010 1 1 11110001
12,3 C ,,000011 2 2 11110010
12,4 D 11000100 3 3 11110011
, 2,5 E 11000'01 4 4 11110'00
12,6 F 11000110 5 5 11110101
12,7 G 11000'., 6 6 111'0110
12,8 H 11.001000 7 7 1111<)111
12,9 I "00100' 8 8 11111000

9 9 11111001

Appendix A '97

APPENDIX A: CHARACTEB-CODES--PART-2

8-BIT CHARACTER SET
BCD PUNCH PRINTER
CODL COMBINATION_ GRAPHICS 1LtG:IMA1 HEXADECIMAL

00000000 12,0,9,8,1 0 00
00000001 12,9,1 1 01
000000.0 12,9,2 2 02
00000011 12,9,3 3 03
00000'00 .2,9,4 4 04
00000101 12,9,5 5 05
00000 ,. 0 12,9,6 6 06
00000111 12,9,7 7 07
0000.000 .2,9,8 8 08
00001001 12,9,8,1 9 09
0000.010 12,9,8,2 10 OA
00001011 12,9,8,3 11 OB
0000' .00 12,9,8,4 '2 OC
00001101 12,9,8,5 13 OD
000011.0 12,9,8,6 '4 OE
00001111 12,9,8,7 15 OF
00010000 .2,",9,8,. '6 '0
00010001 11,9,1 17 '1
000100.0 11,9,2 18 '2
00010011 11,9,3 19 13
00010.00 .1,9,4 20 14
00010101 11,9,5 21 15
000'0 HQ ",9,6 22 '6
00010111 11,9,7 23 17
00011000 ",9,8 24 18
000'1001 11,9,8,1 25 19
000'10'0 '.,9,8,2 26 1A
00011011 11,~,8,3 27 1B
000" '00 1',9,8,4 28 .c
00011101 11,9,8,5 29 1D
0.00" 110 ",9,8,6 30 'E
00011 11 1 11,9,8,7 31 lF
00'00000 '1,0,9,8,. 32 20
00100001 0,9,1 33 21
00.000.0 0,9,2 34 22
00100011 0,9,3 35 23
00100100 0,9,4 36 24
00100101 0,9,5 37 25
00'00"0 0,9,6 38 26
00HjOl11 0,9,7 39 27
0010'000 0,9,8 4·0 28
00101001 0,9,8,1 41 29
0010.010 0,9.,8,2 42 2A
00101011 0,9,8,3 4~ 2B
00101.00 0,9,8,4 44 2C
00101101 0,9,8,5 45 2D
00'0.110 ·0,9,8,6 46 2E
00101111 0,9,8,7 47 2F
00.10000 .2,.',0,9,8,1 48 30
00110001 9,1 49 31
00"00'0 9,2 50 32·
0011001~ 9,3 51 33
00110100 9,4 52 34
00110101 9,5 53 35
00110110 9,6 54 36
00110111 9,7 55 37
0011.000 9,8 56 38
00111001 9,8,1 57 39

198 S/360 BOS Assembler with I/O Macros

0.0.1"0.10 9,8,2 58 3A
0.0111011 9,8,3 59 3B
0.0"1'0.0 9,8,4 60 3C
0.0.11110.1 9,8,5 61 3D
0.0""'0 9,8,6 62 3E
0.0111111 9,8,7 63 3F
0.10.00000 blank 64 40
0.10.00001 12,0,9,1 65 41
0.1000.0.0 12,0.,9,2 66 42
0.10.000.11 12,0,9,3 67 43
0.100.0100 '2,0,9,4 68 44
0.1000.10.1 12,0,9,5 69 45
01000..,0 '2,0,9,6 70. 46
0.1000.111 12,0,9,7 71 47
0.'0.0'000 '2,0,9,8 72 48
0.100.1001 12,8,1 73 49
0'0.0'0'0 12,8,2 74 4A
0100.1011 12,8,3 . (period) 75 4B
0'00"00 '2,8,4 <- 76 4C
010.0. 1101 12,8,.5 (77 4D
0. '0.0' ., 0 12,8,6 + 78 4E
o 100. 11 1 1 12,8,7 79 4F
0'010.00.0 12 & 80 50
010.10.00.1 12,11,9,1 81 51
0.'0.'0.0'0 '2,1',9,2 82 52
0.1010.011 12,11,9,3 83 53
0'0'0.'00 12,",9,4 84 54
01010.10.1 12,11,9,5 85 55
0'0.'0"0 '2,",9,6 86 56
010.10.111 12~11,9,7 87 57
0'0110.0.0 12,1',9,8 88 58
0.101~001 11,8,1 89 59
0.1011010 ",8,2 90 SA
0.1011011 11,8,3 $ 91 5B
010.1"0.0. ",8,4 * 92 5C
0101110.1 11,8,5) 93 5D
0. 1011 ,. 0 '1,8,6 94 5E
0. 10 11111 11,8,7 95 SF
01'0.0.00.0 , , 96 60
0110.0.001 0,1 / 97 61
0. "0.0. 0 1 0 ",0.,9,2 98 62
0.110.0. 0 11 11,0.,9,3 99 63
0.1'0.010.0 ",0.,9,4 100 64
0110.0.101 11,0.,9,5 101 65
0.110.0.,0 , ,,0.,9,6 102 66
0110.0. 111 11,0.,9,7 103 67
0.1'0.'000 11,0.,9,8 '04. 68
0. 110100. 1 0,8,1 105 69
o.HOlo.,O '2," '06 6A
0110.10.11 0,8,3 , 107 6B
0.110.1'0.0 0.,8,4 % 108 6C
0.110.1101 0.,8,5 109 6D
0110.1110. 0.,8,6 110 6E
0110.1111 0,8,7 111 6F
0.111000.0. '2,",0 "2 70
0.11100.01 12,11,0,9,1 113 71
011100.0 12,11,0,9,2 "4 72
0.1110.011 12,11,0,9,3 115 73
0.1110'00 '2,11,0,9,4 116 74
01110.101 12,11,0.,9,5 117 75
0"10"0 12,11,0,9,6 .,8 76
011'0111 12,11,0,9,7 119 77
0.""000 12,1.,0,9,8 '20 78·
01111001 8,1 121 79
0"110'0 8,2 .22 7A
01111011 8,3 # 123 7B

101111100 8,4 11) '24 7C
01111101 8,5 125 7D

Appendix A 199

0'1"HO 8,6 126 7E
01111111 8,7 127 7F
• 0000000 .2,0,8, • 128 80
10000001 12,0,1 129 81
'00000.0 12,0,2 .30 82
10000011 12,0, ·3 131 83
10000100 1.2,0,4 132 84
10000101 12,0,5 133 85
'0000110 12,0,6 134 86
10000111 12,0,7 135 87
.000.000 12,0,8 '36 88
10001001 12,0,9 137 89
10001010 12,0,8,2 '38 8A
10001011 12,0,8,3 139 8B
1000.'00 12;0,8,4 '40 8C
10001101 12,0,8,5 1«1 8D
'0001'10 12,0,8,6 1~2 8E
10001111 12,0,8,7 143 8F
.0010000 12,11,8,' .44 90
10010001 12,11,1 145 91
'00100'0 .2,",2 .46 92
10010011 12,11,3 147 93
'00'0'00 12,",4 148 94
10010101 12,11,5 149 95
10010110 '2,1,,6 '50 96
10010111 12,11,7 151 97
,00.1QOO 12,1',8 152 98
10011001 12,11,9 153 99
'00" 0'0 '2,1',8,2 '54 9A
10011011 12,11,8,3 155 9B
100" 1 0 0 '2,11,8,4 156 9C
10011101 12,11,8,5 157 9D
,001.1.0 12,'1,8,6 158 9E
10011111 12,11,8,7 159 9F
10'00000 11,0,8,1 '60 AO
10100001 11,0,1 161 Al
10,000'0 ",0,2 162 A2
10100011 11,0,3 163 A3
.0100.00 ",0,4 '64 A4
10100101 11,0,5 165 AS
'0100110 '1,0,6 .66 A6
10100111 11,0,7 167 A7
.0.01000 '.,0,8 '68 A8
10101001 11,0,9 169 A9
'010'010 11,0,8,2 '70 AA
10101011 11,0,8,3 171 AB
10,01'OQ ",0,8,4 .72 AC
10101101 11,0,8,5 173 AD
1010' '10 11~O,8,6 174 AE
10101111 11,0,8,7 175 AF
.0110000 12,11,0,8,1 '76 BO
10110001 12,11,0,1 177 B1
10'10010 '2,1',0,2 '78 B2
10110011 12,11,0,3 179 B3
101'0'00 12~1,,0,4 180 B4
10110101 12,11,0,5 181 B5
10"0"0 12,11,0,6 '82 B6
10110111 12,11,0,7 183 B7
10"'000 12,11,0,8 '84 B8
10111001 12,11,0,9 185 B9
19'110'0 ,~""O,8,2 186 BA
10111011 12,11,0,8,3 187 BB
'011'100 12,11,0,8,4 '88 BC
10111101 12,11,0,8,5 189 BD
.0",1,0 12,11,0,8,6 190 BE
10111111 12,11,0,8,7 191 BF
1'000000 '2,0 .92 CO
11000001 12,1 A 193 C1

200 5/360 B05 Assembler with I/O Macros

11000010 12,2 B 194 C2
11000011 12,3 C 195 C3
, 1000.100 12,4 D '96 C4
11000101 12,5 E 197 c5
, 1000" 0 12,6 F '98 C6
11000111 12,7 G 199 C7
11001000 12,.8 H 200 C8
11001001 12,9 I 201 C9
1 1001010 '2,0,9,8,2 202 CA
11001011 12,0,9,8,3 203 CB
11001100 12,0,9,8,4 204 CC
11001101 12,0,9,8,5 205 CO
11001110 12,0,9,8,6 206 CE
11001111 12,0,9,8,7 207 CF
11010000 , 1,0 208 DO
11010001 11, 1 J 209 01
"0'00'0 '1,2 K 210 D2
11010011 11,3 L 211 03
11010100 , 1,4 M 212 D4
11010101 11,5 N 213 D5
1 '0'0" 0 ",6 a 214 06
11010111 11,7 p 215 07
11011000 11,8 Q 216 D8
11011001 11,9 R 217 D9
"011010 '2,1',9,8,2 2'8 DA
11011011 12,11,9,8,3 219 DB
11011100 12,11,9,8,4 220 OC
11011101 12,11,9,8,5 221 DO
11011110 12,1',9,8,6 222 OE
11011111 12,11,9,8,7 223 DF
11100000 0,8,2 224 EO
11100001 11,0,.9,1 225 E-1
'1100010 0,2 S 226 E2
11100011 0,3 T 227 E3
"100'00 0,4 U 228 E4
11100101 0,5 V 229 E5
, 11 00" 0 0,6 W 230 E6
11100111 0,7 X 231 E7
"'01000 0,8 y 232 E8
1110100' 0,9 Z 233 E9
'H010l0 ",0,9,8,2 234 EA
11101011 11,0,9,8,3 235 EB
, '101100 11,0,9,8,4 236 EC
11101101 1',0,9,8,5 237 ED
"10",0 11,0,9,8,6 238 EE
11101111 11,0,9,8,7 239 EF
'11'0000 0 0 240 FO
11110001 1 1 241 F1
"'10010 2 2 242 F2
11110011 3 3 2-43 F3
'11'01(10 4 4 244 F4
11110101 5 5 245 F5
11110110 6 6 246 F6
11110'111 7 7 247 F7
'''''000 8 8 248 F8
11111001 9 9 249 F9
111 "0·, 0 12,",0,9,8,2 250 FA
11111011 12,11,0,9,8,3 251 FB
'1111'00 12,",0,9,8,4 252 FC
11111101 12,11,0,9,8,5 253 FD
"'.',10 '2,11,0,9,8,6 254 FE
11111111 12,11,0~9,8,7 255 FF

Appendix A 20.

202 S/360 BaS Assembler with I/O Macros

APPENDIX B: MACHINE-INSTRUCTION MNEMONIC OPERATION CODES·

This appendix contains a table of the mnemonic operation codes for all machine
instructions that can be represented in assembler language, including extended mnemonic
operation codes. It is in alphabetic order by instruction. Indicated for each
instruction are both the mnemonic and machine operation codes, explicit and implicit
operand formats, program interruptions possible, and condition code set.

The column headings in this appendix and the information each column provides follow.

Instruction: This column contains the name of the instruction associated with the
mnemonic operation code.

Mnemonic Operation Code: This column gives the mnemonic operation code for the machine
instruction. This is written in the operation field when coding the instruction.

Machine~peration Code.
machine operation code.
dumps and when displayed
column also contains the
mnemonic is derived.

This column contains the hexadecimal equivalent of the actual
The operation code will appear in this form in most storage
on the system control pan~l. For extended mnemonics, this
mnemonic code of the instruction from which the extended

Operand Forma!: This column shows the symbolic format of the operand field in both
explicit and implicit form. For both forms, R1, R2, and R3 indicate general registers
in operands one, two, and three, respectively. X2 indicates a general register used as
an index register in the second operand. Instructions which require an index register
(X2) but are not to be indexed are shown with a 0 replacing X2. L, L1, and L2 indicate
lengths for either operand, operand one, and operand two, respectively.

For the explicit format, D1 and D2 indicate a displacement and B1 and B2 indicate a
base register for operands one and two.

For the implicit format, Dl,B1 and D2,B2 are replaced by Sl and S2 which indicate a
storage address in operands cne and two.

Type of Instruction: This column gives the basic machine format of the instruction eRR,
RX, SI, or SS). If an instruction is included in a special feature or is an extended
mnemonic, this is also indicated.

Prog~-1nterruptions Possible: This column indicates the possible program
interruptions for this instruction. The abbreviations used are: A - Addressing, S -
Specification, OV - Overflow, P - Protection, Op - Operation (if feature is not
installed) and Other - other interruptions which are listed. The type of overflow is
indicated by: D - Decimal, E - Exponent, or F - Floating Point.

Condition Code Set: The condition codes set as a result of this instruction are
indicated in this column. (See legend following the table).

~endix B 203

Instruction Mnemonic Machine Operand Format
Operation Operation

Code Code Explicit Implicit

Add A 5A R1, 02(X2, B2) or R1, 02(, B2) 'R1,S2(X2) or R1,52
Add AR 1A R1,R2
Add Decimal AP FA 01 (L 1, B1), 02(L2, 82) 51(Ll),S2(L2)or 51,52
Add Halfword AH 4A R 1, 02(X2, B2)or R 1,02(, B2) R1,S2(X2)or R1,52
Add Logical AL 5E R 1, 02(X2, B2)or R 1,02(, B2) R1,52(X2)or R1,52

Add Logical ALR 1E R1,R2
Add Norma I ized, Long AO 6A R 1, 02(X2, B2)or R 1, 02 (, B2) R 1, 52(X2)or R1 , 52
Add Normalized, Long AOR 2A R1~R2
Add Normalized, Short AE 7A R1, 02(X2, B2)or R1, 02(, B2) R1, S2(X2)or R1 ,.52
Add Norma I ized, Short AER 3A R1,R2

Add Unnormalized,Lohg AW 6E R1 ,02(X2,B2)or R1,02(,B2) R1, S2(X2)or R1, 52
Add Unnormalized,Long AWR 2E R1,R2
Add Unnorma Ii zed, 5hort AU 7E R 1, 02(X2, B2)or R 1,02(, B2) R1, 52 (X2)or R1, 52
Add Unnormalized, ~hort AUR 3E R1,R2
And Logical N 54 R1, 02(X2, B2)or R1, 02(, B2) R1, S2(X2)or R1, 52

And Logical NC D4 01 (L, B1), 02(B2) 51 (L),.52 or 51,52
And Logical NR 14 R1,R2
And Logical Immediate NI 94 01(BO,12 51,12
Branch and Link BAL 45 R 1 , 02(X2, B2)or R 1, 02 (, B2) R1, 52(X2)or R1, 52
Branch and Link BALR 05 R1,R2

Branch on Condition BC 47 R 1 , 02(X2, B2)or R 1, 02 (, B2) R1, 52(X2)or R1, 52
Branch on Condition BCR 07 Rt,R2
Branch on Count BCT 46 R1,02(X2,B2)or R1,02(,B2) R1 , 52(X2)or R1, 52
Branch on Count BCTR 06 R1,R2
Branch on Equal BE 47(BC 8) 02(X2, B2)or 02(,82) 52(X2) or 52

Branch on High BH 47(BC 2) 02(X2, B2)or 02(,82) 52(X2) or 52
Branch on Index High BXH 86 R1 ,R3, 02(B2) R1,R3,52
Branch on Index Low or Equal BXLE 87 R1 ,R3, 02(B2) R1,R3,52
Branch on Low BL 47(BC 4) 02(X2, B2)or 02(,82) $2(X2) or 52
Branch if Mixed BM 47(BC 4) 02(X2, B2)or 02(,82) 52(X2) or 52

Branch on Minus BM 47(BC 4) 02(X2, B2)or 02(,82) 52(X2) or 52
Branch on Not Equal BNE 47(BC 7) 02(X2, B2)or 02(,82) 52(X2) or 52
Branch on Not High BNH 47(BC 13) 02(X2, B2)or 02(, 82) 52(X2) or 52
Branch on Not Low BNL 47(BC 11) 02(X2, B2)or 02(,82) 52(X2) or 52
'.,

Branch if Ones BO 47(BC 1) 02(X2, B2)or 02(, B2) 52(X2) or 52
Branch on Ovelflow BO 47(BC 1) 02(X2, B2)or 02(,82) 52(X2) or 52

Branch on Plus BP 47(BC 2) 02(X2, B2)or 02(, B2) 52(X2) or 52
Branch if Zeros BZ 47(BC 8) 02(X2, B2)or 02(, B2) 52(X2) or 52
Branch on Zero BZ 47(BC 8) 02(X2, B2)or 02(, B2). 52(X2) or 52
Branch Unconditional B 47(BC 15) 02(X2, B2)or 02(,82) 52(X2) or S2
Branch Unconditional BR 07(BCR 1~ R2

Compare Algebraic C 59 RI,02(X2,B2)or R1,02(,B2) RI,S2(X2 or RI,52
Compare Algebraic CR 19 R1,R2
Compare Oec ima I CP F9 01 (Ll, B1), 02(L2, 82) 5I(Ll),52(L2)or 51,52
Compare Halfword CH 49 R1, 02(X2, B2)or R 1,02(, B2) R1, 52(X2)or R1, 52
Compare Logical CL 55 R1 ,02(X2, B2)or R1, 02(,B2) R I, 52(X2)or R1 , 52

Compare Logical CLC 05 01 (L, B1), 02(B2) 5I(L),52 or 51,52
Compare Logical CLR IS R1,R2
Compare Logical Immediate CLI 95 01 (B1), 12 51,12
Compare, Long CO 69 RI, 02(X2, B2)or R1, 02(, B2) R1, 52 (X2)or R1, 52
Compare, Long COR 29 R1,R2

Compare, Short CE 79 R1,02(X2,B2)or R1,02(,B2) R1,52(X2)or R1,52
Compare,5hort CER 39 R1,R2
Conv~rt to Binary CVB 4F R1, 02(X2, B2)or RI, 02(,B2) R 1, S2(X2)or RI, 52
Convert to Decimal CVO 4E R I, 02(X2, B2)or R 1, 02(, B2) R1,S2(X2)or R1,52

Operand Format (Add)

204 S/360 BOS Assembler with I/O Macros

Type of
Program Interruption

Instruction Possible Condition Code Set
Instruction AS Ov P Op Other 00 01 10 11

Add RX x x F Sum=O Sum<O Sum>O Overflow
Add RR F Sum=O Sum<O Sum>O Overflow
Add Decimal SS,Decimal x o x x Data Sum=O Su~<Q Sum>O Overflow
Add Ha I fword RX x x F Sum=O Sum <0 Sum>O Overflow
Add Logical RX x x Sum=O@ Sum O® Sum= 0<0 Sum 0 CD

Add Logical RR Sum=O® Sum= O® Sum= oCD Sum 0 CD
Add Normalized, Long RX, Floating Pt. x x E x B,C R L M P
Add Normalized, Long RR, Floating Pt. x E X B,C R L M P
Add Normalized, Short RX, Floating Pt. x x E X B,C R L M P
Add Normalized, g..ort RR,Floating Pt. x E x B,C R L M P

Add UnnormaHzed, Long RX, Floating Pt. x x E x C R L M P
Add Unnormalized, Long RR,Floating Pt. x E x C R L M P
Add Unnormalized, Short RX,Floating Pt. x x E x C R L M P
Add Unnormal ized, Short RR, Floating Pt. x E x C R L M P
Add Logical RX x x J K

And Logical SS x x J K
And Logical RR J K
And LogiGal Immediate SI x x J K
Branch and Link RX N N N N
Branch and Link RR N N N N

Branch on Condition RX N N N N
Branch on Condition RR N N N N
Branch on Count RX N N N N
Branch on Count RR N N N N
Branch on Equa I RX, Ext.Mnemoni c N N N N

Branch on High RX,Ext.Mnemonic N N N N
Branch on Index High RX, Ext.Mnemonic N N N N
Branch on I ndex Low or Equal RX, Ext.Mnemanic N N N N
Branch on Low RX,Ext.Mnemonic N N N N
Branch if Mixed RX, Ext.Mnemonic N N N N

Branch on Minus RX, Ext. Mnemonic N N N N
Branch on Not Equal RX, Ext.Mnemonic N N N N
Branch on Not High RX, Ext. Mnemonic N N N N
Branch on Not Low RX, Ext.Mnemonic N N N N

Branch if Ones RX, Ext. Mnemoni c N N N N
Branch on Overflow RX,Ext.Mnemonic N N N N

Branch on Plus RX, Ext. Mnemoni c N N N N
Branch if Zeros RX,Ext.Mnemonic N N N N
Branch on Zero RX,Ext.Mnemonic N N N N
Branch Unconditional RX, Ext. Mnemonic N N N N
Branch Unconditional RR,Ext.Mnemonic N N N N

Compare Algebraic RX x x Z AA BB
Compare Algebraic RR Z AA BB
Compare Decimal SS,Decimal x x Data Z AA BB
Compare Halfword RX x x Z AA BB
Compare Logical RX x x Z AA BB

Compare Logical RX x x Z AA BB
Compare Logical SS x Z AA BB
Compare Logical Immediate SI x Z AA BB
Compare, Long RX, Floating Pt. x x x Z AA BB
Compare, Long RR, Floating Pt. x x x Z AA BB

Compare, Short RX, Floating Pt. x x x Z AA BB
Compare, Short RR,Floating Pt. x x Z AA BB
Convert to Binary RX x x Data,F N N N N
Convert to Dec imal RX x x x N N N N

Condition Code set (Add)

Appendix B 205

Instruction Mnemonic Machine . Operand Format
Operation Operation

Code Code Explicit Implicit

Divide D 5D R I, D2(X2, B2) or R I, D2(, B2) Rl, S2(X2) or Rl,52
Divide DR lD Rl,R2
Divide Decimal DP FD Dl, (L 1, Bl), D2(L2, B2) 51(Ll),S2(L2)or 51,52
Divide, Long DD 6D Rl,D2(X2, B2),or Rl, [)2(, B2) Rl,S2(X2) or Rl,52
Divide, Long DDR 2D Rl,R2

Divide, Short DE 7D Rl,D2(X2,B2)or Rl,D2(,B2) Rl, S2(X2) or Rl,52
Divide, 5hort DER 3D Rl,R2
Edit ED DE Dl (L, Bl), D2(B2) 51 (L), 52 or 51,52
Edit and Mark EOMK OF Dl (L, Bl), D2(B2) 51 (L), 52 or 51,52
Exclusive Or X 57 Rl, D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) or Rl,52

Exclusive Or XC D7 Dl (L, Bl), D2(B2) 51 (L), 52 or 51,52
Exclusive Or XR 17 Rl,R2
Exclusive Or Immediate Xl 97 Dl(Bl),12 51,12
Execute EX 44 R 1 i D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) Rl,52
Halve, Long HDR 24 Rl,R2

Halve,5hort HER 34 Rl,R2
Halt I/o HIO 9E Dl (Bl)
Insert Character IC 43 R 1, D2(X2, B2) or Rl, D2(, B2) Rl,52(X2) orRl,52
Insert 5torage Key 15K 09 Rl,R2
Load L 58 Rl,D2(X2,.B2) or Rl,D2(,B2) Rl, S2(X2) or Rl ,52

Load LR 18 Rl,R2
Load Address LA 41 R I, D2(X2, B2) or Rl , D2(, B2) Rl,52(X2). orRl,52
Load and Test LTR 12 Rl,R2
Load and Test, Long LTDR 22 Rl,R2
Load and Test, Short LTER 32 Rl,R2

Load Complement LCR 13 Rl,R2
Load Complement, Long LCDR 23 Rl,R2
Load Complement, 5hort LCER 33 Rl,R2
Load Ha I fword LH 48 R I, D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) or Rl,52
Load, Long LD 68 R I, D2(X2, B2) or Rl, D2(, B2) R 1, S2(X2) orRl,52

Load, Long LDR 28 Rl,R2
Load Multiple LM 98 R 1, R3, D2(B2) Rl,R3,S2
Load Negative LNR 11 Rl,R2
Load' Negative, Long LNDR 21 Rl,R2
Load Negative, 5hort LNE.R 31 Rl,R2

Load Positive LPR 10 RliR2
Load Positive, Long LPDR 20 Rl,R2
Load Positive, Short LPER 30 Rl,R2
Load P5W LPSW 82 Dl (Bl)
Load, 5hort LE 78 Rl, D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) or Rl,52

Load', 5hort LER 38 Rl,R2
Move Characters MVC D2 Dl (L, Bl), D2(B2) 51 (L), 52 or 51,52
Move Immediate MVI 92 Dl(Bl),12 51,12
Move Numerics MVN Dl Dl (L, Bl), D2(B2) 51(L),52 or 51,52
Move with Offset MVO Fl Dl (L 1, Bl), D2(L2, 82) 51(Ll), S2(L2) or 51,52

Move Zones MVZ D3 Dl (L, Bl), D2(B2) 51(L),52 or 51,52
Multiply M 5C R I, D2(X2, B2)or R 1, D2(, B2) Rl, S2(X2) orRl,52
Multiply MR lC Rl,R2
Multiply Decimal MP FC Dl (L 1, B1), D2(L2, 82) 51(Ll),S2(L2) or 51,52
Mulitply Halfword MH 4C Rl,D2(X2,B2) or Rl,D2(,B2) Rl, S2(X2) orRl,52

Mul tiply, Long MD 6C Rl, D2(X2, B2) or Rl, D2(,B2) Rl, S2(X2) or Rl,52
Multiply, Long MDR 2C Rl,R2
Multiply, 5hort ME 7C Rl,D2(X2,B2) or Rl,D2(,B2) Rl, S2(X2) orRl,52
Multiply, 5hort MER 3C Rl,R2
No Operation NOP 47(BC 0) D2(X2, B2) or D2(,82) 52(X2) or S2

Operand Format (Divide)

206 S/360 BOS Assembler with I/O Macros

Type of Program Interruptions
Instruction Instruction Possible Condition Code Set

A SOV P Op Other 00 01 10 11

Divide RX x x F N N N N
Divide RR x F N N N N
Divide Decimal SS, Decimal x x x x D,Data N N N N
Divide, Long RX,Floating Pt. x x E x a,E N N N N
Divide, Long RR, Floating Pt. x E x a,E N N N N

Divide, Short RX, Floating Pt. x x E x a,E N N N N
Divide, Short RR, Floating Pt. x E x a,E N N N N
Edit SS, Decimal x x x Data S T U
Edit and Mark SS, Decimal x x x Data S T U
Exclusive Or RX x x J K

Exclusive Or SS x x J K
Exclusive Or RR J K
Exclusive Or Immediate SI x x J 1<
Execute RX x x G (May be set by this instruction)
Halve, Long RR, Floating Pt. x x N N N N

Halve, Short RR, Floating Pt. x x N N N N
Halt I/O SI A DD CC GG KK
Ins~rt Character RX x N N N N
I nsert Storage Key RR x x x A N N N N
Load RX x x N N N N

Load RR N N N N
Load Address RX N N N N
Load and Test RR J L M
Load and Test, Long RR, Floating Pt. x x R L M
Load and Test, Short RR, Floating Pt. x x R L M

Load Complement RR F P L M 0
Load Complement, Long RR, Floating Pt. x x R L M
Load Complement, Short RR, Floating Pt. x x R L M
Load Halfword RX x x N N N N
Load, Long RX, Floating Pt. x x x N N N N

Load, Long RR, Floating Pt. x x N N N N
Load Multiple R5 x x N N N N
Load Negative RR J L
Load Negative, Long RR, Floating Pt. x x R L
Load Negative, Short RR,Floating Pt. x x R L

Load Positive RR F J M 0
Load Positive, Long RR,Floating Pt. x x R L M
Load Positive, Short RR, Floating Pt. x x R L M
Load PSW 51 x x A QQ QQ QQ QQ
Load, s,ort RX, Floating Pt. x x x N N N N

Load, Short RR, Floating Pt. x x N N N N
Move Characters 5S x x N N N N
Move Immediate 51 x x N N N N
Move Numerics 5S x x N N N N
Move with Offset 55 x x N N N N

Move Zones 55 x x N N N N
Multiply RX x x N N N N
Multiply RR x N N N N
Multiply Decimal 55, Decimal x x x x Data N N N N
Multiply Halfword RX x x N N N N

Multiply, Long RX, Floating Pt. x x E x a N N N N
Multiply, Long RR, Floating Pt. x E x a N N N N
Multiply, s,ort RX, Floating Pt. x x E x a N N N N
Multiply, Short RR, Floati ng Pt. x E x a N N N N
No Operation RX, ExtMnemonic N N N N

Condition Code set (Divide)

APpendix B 207

Instruction
Mnemonic Machine Operand Format
Operation Operation

Code Code Explicit Implicit

No Operation NOPR 07(BCR 0) R2
Or logical 0 56 Rl, 02(X2, B2) or Rl, 02(, B2) Rl,S2(X2) or Rl, S2
Or logical OC 06 01 (l, 81), 02(B2) Sl (l), S2 or Sl, S2
Or logical OR 16 Rl,R2
Or logical Immediate 01 96 01 (Bl), 12 Sl,12
Pack PACK F2 01 (ll ,81), 02(L2, B2) Sl (11), S2(L2) or Sl, S2

Read Direct ROO 85 01 (Bl), 12 Sl,12
Set Program Mask SPM 04 Rl
Set System Key SSK 08 Rl,R2
Set System Mask SSM 80 01 (Bl) Sl
Shift left Double Algebraic SlOA 8F Rl,02(B2) Rl, S2

Shift left Double logical SlOl 80 Rl,02(B2) Rl, S2
Shift left Single Algebraic SlA 8B Rl,02(B2) Rl, S2
Shift left Single Logical SLL 89 Rl,02(B2) R1,52
Shift Right Double Algebraic SROA 8E Rl,02(B2) Rl,52
Shift Right Double logical SROL 8C Rl,02(B2) Rl,S2

Shift Right Single Algebraic SRA 8A Rl,02(B2) Rl,S2
Shift Right Single Logical SRL 88 Rl,02(B2) Rl, S2
Start I/o SIO 9C 01(Bl) Sl
Store ST 50 R 1, 02(X2, B2) or Rl, 02(, B2) Rl, S2(X2) or R1, S2
Store Character STC 42 R 1 , 02(X2, B2) or R 1 , 02(, B2 Rl,02(X2) or R1 , S2

Store Halfword STH 40 R 1 , 02(X2, B2) or R 1 , 02(, B2) R1,S2(X2) orRl,S2
Store Long STO 60 R 1 , 02(X2, B2) R 1, S2(X2) or Rl, S2
Store Multiple STM 90 R1,R2,02(B2) Rl,R2,S2
Store Short STE 70 R 1, 02(X2, B2) or Rl, 02(, B2) Rl,S2(X2) or Rl, S2
Subtract S 5B R1,02(X2 Rl,S2(X2) or R1, S2

Subtract SR 1B Rl,R2
Subtract Decimal SP FB 01 (L 1 ,Bl), 02(L2, B2) Sl(11),S2(L2) or Sl,S2
Subtract Halfword SH 4B R 1, 02(X2, B2) or R1 , 02(, B~) R1, S2(X2) or R1,S2
Subtract Logical Sl 5F R 1 , 02(X2, B2) or R 1, 02(, B2) R1,S2(X2) or R1,S2
Subtract Logical SLR IF R1,R2

Subtract Normalized, Long SO 6B R1, 02(X2, B2) or Rl, 02(, B2) Rl,S2(X2) or R1,S2
Subtract Normalized, Long SOR 2B R1,R2
Subtract Normalized, Short SE 7B R 1, 02(X2, B2) or Rl, 02(, B2) R1, S2(X2) or R1,S2
Subtract Normalized, SER 3B R1,R2
Subtract Unnormal ized, Long SW 6F Rl,02(X2,B2) or Rl,02(,B2) R1,S2(X2) or Rl,S2

Subtract Unnorma I ized, Long SWR 2F Rl,R2
Subtract Unnorma I ized, Short SU 7F R 1, 02(X2, B2) or Rl, 02(, B2) R1,S2(X2) or R1,S2
Subtract Unnormalized, Short SUR 3F R1,R2
Supervisor Call SVC OA I
Test and Set TS 93 01 (B1) S1

Test Channel TCH 9F 01 (~1) S1
Test I/O TIO 90 01 (Bl) Sl
T est Under Mask TM 91 01(B1),12 S1,12
Translate TR DC 01 (L, Bl), 02(B2) Sl(L),S2 orSl, S2
Translate and Test TRT DO 01 (L, B1), 02(B2) S1 (l), S2 orS1, S2

Unpack UNPK F3 01 (11, B 1), 02(L2, B2) Sl (11), S2(L2)or S1, S2
Write Direct WRO 84 01 (B1), 12 Sl,12
Zero and Add Decimal ZAP F8 01 (11 ,Bl), 02(L2, B2) S1(11),S2(L2)or S1,S2

Operand Format {NO Operation)

208 S/360 BaS Assembler with I/O Macros

Type of Program Interruptions
Instruction Possible Condition Code Set Instruction A- S Ov P Op Other 00 01 10 11

No Operation RR, Ext.Mnemonic N N N N
Or Logical RX x x J K
Or Logical SS x x J K
Or Logical RR J K
Or Logical Immediate SI x x J K
Pack SS x x N N N N

Read Direct SI x x x A N N N N
Set Program Mask RR RR RR RR RR
Set Storage Key RR x x x A N N N N
Set System Mask SI x A N N N N
Shift Left Double Algebraic RS x F J L M 0

Shift Left Double Logical RS x N N N N
Shift Left Single Algebraic RS F J L M 0
Shift Left Single Logical RS N N N N
Shift Right Double Algebraic RS x J L M
Shift Right Double Logical RS x N N N N

Shift Right Single Algebraic RS J L M
Shift Right Single Logical RS N N N N
Start I/o SI A MM CC EE AA
Store RX x x x N N N N
Store Character RX x x N N N N

Store Hal fword RX x x x N N N N
Store Long RX, Floating Pt. x x x x N N N N
Store Multiple RS x x x N N N N
Store Short RX, Floating Pt. x x x x N N N N
Subtract RX x x F V X Y 0

Subtract RR F V X Y 0
Subtract Decimal 55, Decimal x D x x Data V X Y 0
Subtract Halfword RX x x F V X Y 0
Subtract Logical RX x x W,H V,I W,I
Subtract Logical RR W,H V,I W,I

Subtract Normarized, Long RX, Floating Pt. x x E X B,C R L M Q

Subtract Normalized, Long RR, Floating Pt. x E x B,C R L M Q

Subtract Normalized, Short RX, Floating Pt. x x E X B,C R L M Q

Subtract Normalized, Short RR,Floating Pt. x E X B,C R L M Q

Subtract Unnor~alized, Long RX, Floating Pt. x x E x C R L M Q

Subtract Unnormalized, Long RR, Floating Pt. x E x C R L M Q

Subtract Unnormalized, Short RX, Floating Pt. x x E x C R L M Q

Subtract Unnormalized, Short RR, Floating Pt. x E x C R L M Q

Supervisor Call RR N N N N
Test and Set 51 x x 55 TT

Test Channel 51 A JJ II FF HH
Test I/o SI A LL CC EE KK
Test Under Mask 51 x UU VV WW
Translate SS x x N N N N
Translate and Test SS x PP NN 00

Unpack SS x x N N N N
Write Direct 51 x x A N N N N
Zero and Add Decimal 5S, Decimal x D x x Data J L M 0

condition Code set (NO operation)

Appendix B 209

Program Interruptions Possible

Under Ov: D = Decimal
E = Exponent
F = Fixed Point

Under Other:
A
B
C
D
E
F
G

Condition Code Set

H No Carry
I Carry
J Result = 0

Privileged Operation
Exponent Underflow
Significance
Decimal Divide
Floating Point Divide
Fixed Point Divide
Execute

K Resu I tis Not Equa I to Zero
L Result i$ Less Than Zero
M Result is Greater Than Zero
N Not Changed
o Overflow
P Result Exponent Underflows
Q Result Exponent Overflows
R Result Fraction = 0
S Result Field Equals Zero
T Result Field is Less Than Zero
U Result Field is Greater Than Zero
V Difference = 0
W Difference is Not Equal to Zero
X Difference is Less Than Zero
Y Difference is Greater Than Zero
Z First Operand Equals Second Operand
AA First Operand is Less Than Second Operand
BB First Operand is Greater Than Second Operand
CC CSW Stored
DD Channel and Subchannel not Working
EE Channel or Subchannel Busy
FF Channel Operating in Burst Mode
GG Burst Operation Terminated
HH Channel Not Operational
II Interruption Pending in Channel
JJ Channel Available
KK Not Operational
LL Available
MM I/O Operation Initiated and Channel Pro.ceeding With its Execution
NN Nonzero Function Byte Found Before the First Operand Field is Exhausted
00 Last Function Byte is Nonzero
PP All Function Bytes Are Zero
QQ Set According to Bits 34 and 35 of the NewPSW Loaded
RR Set According to Bits 2 and 3 of the Register Specified by Rl
SS Leftmost Bit of Byte Specified = 0
TT Leftmost Bit of Byte Specified =1
UU Selected Bits Are All Zeros; Mask is All Zeros
W Selected Bits Are Mixed (:;teros and ones)
WW Selected Bits Are All Ones

Program Interruptions possible

210 5/360 BOS Assembler with I/O Macros

Mnemonic l@.ruLField

CCW An optional sy·mbol

CNOP blank

CSECT An optional symbol

DC An optional symbol

DROP blank

DS An optional symbol

DSECT A required symbol

EJECT blank

END blank

ENTRY blank

EQU A required symbol

EXTRN blank

ICTL blank

ISEQ blank

LTORG an optional symbol

ORG blank

PRINT blank

PUNCH blank

REPRO blank

SPACE blank

START An optional symbol

TITLE 0-4 characters

USING blank

XFR' blank

APPENDIX C: ASSEMBLER-INSTRUCTIONS

Operand·Field

Four operands, separated by commas

Two decimal terms, separated
by a comma

Not used; treated as a comment

One operand.

One to five absolute
expressions, separated by commas

One operand

Not used; treated as a comment

Not used; treated as a comment

A relocatable expression or blank

One relocatable symbol

An absolute or relocatable expression

One relocatable symbol

une to three decimal values,
separated by commas

Two decimal values, separated by a comma
or a blank

Not used; treated as a comment

A relocatable expression or blank

One to three operands

t to 80 characters
enclosed in single quotation marks

Not used; treated as a comment

A decimal term or blank

A self-defininq term or blank

A sequence of characters,
enclosed in single quotation marks

An absolute or relocatable
expression followed by 1 to 5 absolute
expressions, separated by commas

A relocatable symbol

Appendix C 211

r-----.r- ,I i ,

I I I I I
IFormatllnstruction Format IAssembler Operand- IApplicable ISee I
ICode IShowing Bits IField Format I Instructions INotesl
r- I +_ I +---1
I RR lOp Code R' R2 IR1,R2 IAII RR instruc-11,6, I
1 I I Itions except 18,9 I
I I 8 4 4 I I SPM and SVC I I
I l- I 1 ,I
I 10~ Code R' R2 IR1 ISPf1 I I
I I 8 4 (4) I I I I
I ~-------------+-- t 'I
I lOp Code 1 II ISVC I I
I I 8 8 I I I I
l-----f---------------+__ I I.
I RX lOp Code R1 X2 B2 D2 IR1,D2(X2,B2} tALL RX 11-4,
I I I R 1, S2 (X2) I instructions 17, 9
1 I 8 4 4 4 12 1 I t
I----f-------------+_ I 1
1 RS 10~ Code R1 R3 B2 D2 IR1,R3,D2(B2} IBXH,BXLE,LM, 11-3,
I I IR1,R3,S2 ISTM 17,8
I I 8 4 4 4 12 I I I
I l-------------t_ +- I
1 lOp Code R' R3 B2 D2 I R1, D2 (B2) I All shift I
I I IR1,S2 I instructions 1
1 1 8 4 (4) 4 12 I I I
I----f- +_ I +-1 ----4

I S1 lOp Code 12 B1 D1 ID1(B1),I2 IAII SI instruc-12,3,
I 1 IS 1,12 Itions except 16-8
I I 8 8 4 12 1 ILPSW,SSM,HIO, I
I I 1 ISIO,TIO,TCH,TS 1
I I-- +_ 1 I
I 10~ Code 12 B1 D1 ID1(B1} ILPSW,SSM,HIO, I
1 1 IS1 ISIO,TIO,TCH,TS I
I I 8 (8) 4 12 I 1 I
~--f- +_ I --~I~--~
I SS lOp Code L1 L2 B1 D1 B2 D21D1 (L',B1) ,D2{L2,B2) IPACK,UNPK,MVO, 12,3,
I I IS1(L1),S2(L2) IAP,CP,DP,MP,SP,15,7
I I 8 4 4 4 12 4 12 I I Z AP ~
I ~ +_ --+ I
I lOp Code L B1 D1 B2 D2ID1(L,B1),D2(B2) INC,OC,XC,CLC, I
I I IS1 (L) ,S2 IMVC,MVN,MVZ,TR, I
I 1 8 8 4 12 4 121 ITRT,ED,EDMK I
'--_-..1..- -'-- I I

212 S/360 BOS Assembler with 1/0 Macros

Notes.for"Appendix-D:

1. R1, R2, and R3 are absolute expressions that specify general or floating-point
registers. The general register numbers are 0 through 15; floating-point register
numbers are 0, 2, 4, and 6.

2. Dl and D2 are absolute expressions that specify displacements. A value of 0 - 4095
may be specified.

3. B1 and B2 are absolute expressions that specify base registers. Register numbers
are 0 - 15.

4. X2 is an absolute expression that specifies an index register. Register numbers
are 0 - 15. If B2 is specified, X2 must not be omitted; and when indexing is not
desired,X2 must be specified as O.

5. L, L1, and L2 are absolute expressions that specify field lengths. An L expression
can specify a value of , - 256. L' and L2 expressions can specify a value of 1 -
16. In all cases, the assembled value will be one less than the specified "value.

6. I and I2 are absolute expressions that provide immediate data. The value of the
expression may be 0 - 255.

7. 51 and 52 are absolute or"relocatableexpressions that specify an address.
8. RR, RS, and 5I instruction fields whose bits are enclosed in parentheses are not

examined during instruction execution. The fields are not written in the symbolic
operand, but are assembled as b~nary zeros.

9. R1 specifies a 4~bit mask in the Be and BCR machine instructions.

Appendix D 213

APPENDIX E: HEXADECIMAL-DECIMAL NUMBER CONVERSIQN,TABLE

The table in this appendix provides for
direct conversion of decimal and
hexadecimal numbers in these ranges:

Decimal
--r--~

000 to FFF 0000 to 4095

Deci!@1 numbers (0000-4095) are qiven
within the 8-part table. The first two
characters (high-order) of h§xad§cimal
numbers (OOO-FFF) are given in the
left-hand column of the table, and the
third character is arranged across the top
of each part of the table. Thus to find
the decimal equivalent of the hex number
OC9, look for OC in the left column, and
across under the column labeled 9. The
decimal number is 0201.

To convert from decimal to hexadecimal,
look up the decimal number within the table
and read the hexadecimal number by a
combination of the hex characters to the
left and above the decimal number. For

214 S/360 BOS Assembler with I/O Macros

example, decimal number 123 has the hex
equivalent of 07B, and decimal 1478 has the
hex equivalent of 5C6.

For numbers outside the range of the table,
add the following values to the table
figures: .

Hexad'ecimal
'000
2000
3000
40.00
5000
6000
7000
8000
9000
AOOO
BOOO
COOO
DOOO
EOOO
FOOO

Decimal
4096
8'92

12288
'6384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
6'440

i ,
J 0 1 2 3 4 5 6 7 8 9 A B C D E F I
J I
100 0000 000' 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
101 00'6 00'7 0018 00'9 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
102 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
103 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
1
104 0064 0065 C066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
105 0080 0081 0082 0083 OC84 0085 OC86 0087 0088 0089 0090 0091 0092 0093 0094 0095
106 0096 0097 0098 0099 0.00 0'01 0102 0'03 0104 0'05 0106 0'07 0'08 0109 0"0 0'"
107 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
I
J08 0128 0129 0130 0131 01"32 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
109 0'44 0.45 0'46 0'47 0148 0149 0150 0151 0'52 0153 0154 0155 0156 0'57 0'58 0159
lOA 0160 0'61 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
lOB 0.76 0'77 0178 017'9 0.80 018' 0'82 0'83 0184 ·0185 0.86 0187 0'.88 0'89 0190 0191
I
10C 0192 0193 0'94 0'95 0.96 0'97 0198 0199 0200 0201 0202 0203 0204 0205 '0206 0207
10D 0208 0209 02'0 02" 02.2 0213 0214 02'5 0216 0217 0218 02'9 0220 022' 0222 0223
10E 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
10F 0240 024' 0242 0243 0244 0245 0246 0247 0248 0249 0250 025' 0252 0253 0254 0255
I
110 0256 0257 0258 0259 0260 026' 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
'11 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12 0288 0289 0290 029' 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
13 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

14 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0.330 0331 0332 0333 0334 0335
.5 0336 0:337 0338 0339 0340 034' 0342 0343 03'44 0345 0346 0347 0348 0349 0350 035'
16 0352 0353 0354 0355 0356· 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
.7 0368 0369 0370 0371 0372 0373 0374' 0375 0376 0377 0378 0379 0380 0381 0382 0383

.8 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398, 0399
19 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lA 0416 0417 04'8 04'9 0420 042' 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
lB 0432 0433 04.34 0435 0436· 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446'0447

~
11C 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
11D 0464 0465 0466 0467 0468 0469 .. 0470 '0471 0472 0473 0474 0475 0476 0477 0478 0479
I1E 0480 0481 0482 '0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
11F 0496 OU97 0498 0499 0500 0501 C502 0503 0504 0505 0506 0507 0508 0509 0510 0511
I

Appendix E 215

,..--,.-- I

I 1 0 2 3 4 5 6 7 8 9 A B C D E F 1
J--+-- -f
120 0512 0513 0514 0515 0516 0517 C518 0519 0520 0521 0522 0523 0524 0525 0526 0527
121 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
122 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
123 05.60 0561 05162 0563 0564 0565 0566 Q567 0568 0569 0570 0571 0572 0573 0574 0575

·1
124 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
125 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 060~ 0604 0605 0606 0607
126 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

28 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29 06516 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2C 0704 0705· 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0148 0749 0750 0751
2F 0752 0753 0754 0755 C756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

130 0768 0769 0770 0771 0772 0773 0774 0175 0776 0777 0778 0779 0780 0781 0782 0783
131 0784 0785 0786 0787 0788 0789 0790 0791 0792 0193 0194 0795 0796 0797 0798 0799
132 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
133 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
1
134 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
135 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
136 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0815 0876 0877 0818 0879
137 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
1
138 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 09i1
139 0912 0913 0914 0915 0916 0917 0918 09'9 0920 0921 0922 0923 0924 0925 0926 0927
13A 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
13B 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
I
13C 0960 096' 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
13D 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
J3E 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
13F 1008 1009 1010 10' , 1012 1013 1014 1015 ;016 '0'7 1018 1019 1020 1021 1022 1023
'-_..L-

216 5/360 BOS Assembler with I/O Macros

r- ,
J 0 1 2 3 4 5 6 7 8 9 A B C D E F 1
I I
140 .024 '025 1026 '027 1028 1029 '030 '031 '032 1033 1034 1035 1036 1037 1038 1039 J
141 1040 104' .042 '043 '044 1045 .046 1047 1048 1049 1050 1051 .052 '053 '054 1055
142 1056 1057 1058 1059 1060 -1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
143 , 072 1073 '074 1075 '076 '077 1078 1079 '080 1081 1082 .083 '084 1085 1086 1087
1
144 '088 '089 '090 '091 1092 '093 1094 1095 1096 1097 1098 1099 " 00 , '01 1102 1103
145 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
146 , '20 , 121 '122 "23 1124 '125 1126 "27- 1128 "29 "30 '131 "32 "33 1134 1135
147 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
1
148 1152 1,.53 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
149 "68 "69 1170 117' 1172 1173 ',74 1175 1176 1177 1178 1179 "80 1181 1182 1'83
14A 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
14B I '200 1201 1202 '203 '204 1205 1206 1207 1208 '209 '210 121 1 '2'2 '2'3 1214 1215
1 J
14C I '216 '217 12'8 12'9 1220 122' 1222 '223 1224 1225 1226 1227 1228 1229 1230 1231
14D 1 '232 1233 '234 1235 .236 '237 1238 '239- 1240 '241 1242 1243 1244 .245 1246 1247
14E I 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
14F 1 '264 1265 1266 '267 1268 1269 '270 '271 1272 1273 1274 1275 1276 1277 '278 1279
I I
150 I '280 128' .282 '283 1284 '285 1286 1287 1288 1289 .290 1291 1292 1293 1294 1295
J 51 J 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 -1310 1311
152 I '312 13'3 1314 1315 '316 13'7 1318 1319 '320 '321 '322 '323 1324 '325 1326 1327
153 1328 1329 1330 1331 1332 1333 1334 1335 -1336 1337 1338 1339 1340 1341 1342 1343
I
154 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
155 1360 1361 1362 .363 1364 1365 .366 1367 1368 '369 1370 1371 '372 1373 1374 1375
156 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57 1392 1393 1394 1395 '396 '397 '398 '399 1400 1401 '402 _. 403 1404 1405 '406 1407

58 1408 1409 '4'0 1411 '4'2 1413 '414 '4'5 14'6 1417 14'8 '419 1420 '421 '422 1423
59 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SA 1440 '441 1442 1443 '444 1445 1446 '447 1448 '449 1450 '45' '452 1453 '454 1455
5B 1 ~ 56 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5C 1472 147-3 1474 1475 1476 1477 1478 1479 1480 '481 1.482 -1483 1484 1485 1486 1487
5D 14 88~ 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E 1504 '505 '506 '507 1508 1509 1510 15.' 15'2 1513 1514 1515 15'6 '517 15'8 '519
SF 1520 1521 1522 1523 '524 1525 1526 1527 1528 1529 1530 1531 1532 '533 1534 1535

Appendix E 217

I i

1 0 2 3 4 5 6 7 8 9 A B C D E F 1
I ,
160 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 '548 1549 1550 ~551 1
16' 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1
162 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 158' 1582 1583 I
163 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 I
I I
164 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 I
165 1616 1617 16'8 1£19 162P 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
166 1632 1633 16.34 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
167 1648 1649 1650 1651 1652 1653 1654 '655 1656 1657 1658 1659 1660 1661 1662 1663
I
168 '664 1665 1666 '667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 '679
169 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
16A 1696 '697 1698 '699 1700 1701 1702 '703 1704 1705 1706 1707 1708 1709 1710 17'1
16B 1712 1713 1714 1715 171G 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
1
16C 1728 1729 1730 1731 1732 17.33 1734 1735 1736 '737 1738 '739 1740 1741 1742 1743
16D 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754· 1755 1756 1757 1758 1759
16E 1760 1761 1762 '763 1764 1765 1766 1767 1768 ,769 1770 177' '772 1773 '774 '775
16F 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
1
(70 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
17' '808 l809 '810 18'1 18'2 18'3 1814 1815 18Hi 1817 '818 '819 1820 1821 1822 1823
172 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
173 1840 184' 1842 1843 1844 '845 1846 '847 1-848 1849 1850 185. '852 1853 1854 1855
1
174 1856 1857 '858 1859 1860 1861 '862 1863 1864 '865 1866 1867 1868 '869 '870 '871
175 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
176 '888 '889 1890 1891 1892 1893 1894 1895 '896 '897 1898 1899 '900 1901 '902 1903
177 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
1
178 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
179 1936 1937 1938 '939 1940 194' '942 1943 1944 1945 1946 1947 1948 '949 1950 '951
117A 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
I7B '968 1969 1970 1971 1972 1973 1974 1975 '976 1977 '978 1979 1980 '981 1982 1983
I
I7C .984 '985 1986 1987 1988 1989 1990 '991 1992 1<)93 1994 1995 1996 1997 1998 1999
17D 2000 2001 2002 2003 2C04 2005 2006 2007 2008 2009 20'0 20'1 2012 2013 20'4 20'5
17E 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
I7F 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
L--~

218 5/360 BOS Assembler with I/O Macros

i i ,
I I 0 2 3 4 5 6 7 8 9 A B C D E F I
1--1 I
180 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
181 2064 2065 2066 2067 2068 2069 2070 207. 2072 2073 2074 2075 2076 2077 2078 2079
182 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
183 2096 2091 2098 2099 2'00 2'0' 2102 2'03 2.04 2105 2.06 2107 2.08 2.09 21'0 2"1
I
184 2' '2 2113 2"4 2115 21'6 2"7 2'18 2119 2120 2121 2122 2'23 2124 2'25 2'26 2127
185 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
186 2'44 2'45 2146 2147 2'48 2'49 2150 2151 2152 2153 2'54 2155 2'56 2157 2158 2159
187 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
I
188 2176 2177 2178 2179 2180 218,. 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
189 2,92 2193" 2194 2195 2196 2197 2198 2'99 2200 220' 2202 2203 2204 2205 2206 2207
18A 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
18B 2224 2225 2226 2227 2228 2229" 2230 223' 2232 2233 2234 2235 2236 2237 2238 2239
I
18C 2240 224' 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
18D 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
18E 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
18F 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
I
190 2304 2305 2306 2307 2308 2309 23'0 231' 2312 23'3 2314 2315 2316 2317 2318 23'9
191 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
192 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
193 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
I
194 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
195 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
196 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
197 24'6 24.7 2418 2419 2#20 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
I
198 2432 2433 2434 2435 2436 2437 2438 2439 2440 244' 2442 2443 2444 2445 2446 2447
199 2448 2449 2450 2451 2452 2453 24"54 2455 2456 2457 2458 2459 2460 2461 2462 2463
19A 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
19B 2480 2481 2482 2483 2484 2485 2486 2487 2488 2"89 2490 2491 2492 2493 2494 2495
I
19C 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 25'0 25 "
19D 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
19E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
19F 2544 2545 2546 2547 254S 2549 2550 2551, 2552 2553 2554 2555 2556 2557 2558 2559

Appendix E 219

•
I 0 2 3 4 5 6 "7 8 9 A B C D E F
I
lAO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
IA 1 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
IA2 25'_92 2593 2594 2595 2596 2597 2598 "2599 2600 260' 2602 2603 2604 2605 2606 2607
IA3 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
I
IA4 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
IA5 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
IA6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
IA7 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
I
IA8 2688 2,689 2690 2691 2692 2693 2694 2695 2696 2697 2698 269-9 2700 2701 2702 2703
IA9 I 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717. 2718 2719
IAA' 2720 272' 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
lAB 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
I
lAC 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
lAD 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 ·2783
IAE 2784 2785 2786 2787 2788· 2789 2790 279' 2792 2793 2794 2795 2796 2797 2798 2799
IAF 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
I
IBO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
IB 1 2832 2833 2834 2835 2836 283~ 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
IB2 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
IB3 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
I
IB4 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
jB5 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 29'0 2911
IB6 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
IB7 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
I
lB8 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
IB9 29€0 29-61 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
IBA 2976 2977 2'978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2:990 2991
IBB 2992 2993 2994 2995 2996 2997 2998 2999 30'00 3001 3002 3003 3004 3005 3006 3007
I
IBe 3008 300'9 30'0 30" 30'2 30'3 30'4 30'5 30'6 3017 30'8 3019 3020 3021 3022 3023
IBD 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
IBE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
IBF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 ·3070 3071
'--J.--

220 S/360 BOS Assembler with I/O Macros

j Ii ,
I I 0 2 3 4 5 6 7 8 9 A B C D E F I
I---+-- -i
ICO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
IC 1 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
IC2 3104 3105 3106 3107 3108 3109 3' '0 31 l' 3112 3113 3114 3' .5 3"6 3117 3118 3119
IC3 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
I
IC4 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
IC5 3'52 3'53 3154 3155 3156 3157 3158 3159 3'60 3'61 3162 3163 3'64 3165 3166 3167
IC6 3168 ~169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
IC7 3184 3'85 3'86 3'87 3188 3189 3190 3'9' 3'92 3'93 3194 3195 3196 3'97 3198 3199
I
IC8 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
IC9 .3216 3217 3218 3219 3220 3221 3222 3223 32'24 3225 3226 3227 3228 3229 3230 3231
ICA 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
ICB 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
I
.ICC 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
ICD 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
ICE 3296 3297 3298 3299 3300 330' 3302 3303 3304 3305 3306 3307 3308 3309 33'0 3311
jCF 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
I
IDO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
ID 1 3344 3345 3346 3347 3348 3349 3350 335' 3352 3353 3354 3355 3356 3357 -33~8 3359
(D2 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
(D3 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
I
ID'4 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
ID5 3408 3409 3410 34', 34~2 3413 3414 3415 34'6 3417 3418 34'9 3420 342' 3422 3423
ID6 3424 3#25 3426 3427 3428 3429 3430 3431 3432 3433 3434 3f.U5 3436 3437 3438 3439
(D7 3440 344' 3442 3443 3U44 3445 3446 3447 3448 3449 3450 345' 3452 3453 3454 3455
I
ID8 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
ID9 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
IDA 3488 3489 34QO 3491 3492 3,493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
(DB 3504 3505 3506 3507 3508 3509 3010 3511 35.12 3513 3514 3515 3516 3517 3518 3519
I
IDC 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
IDD 3536 3537 3538 3539 3540 35~1 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
,IDE 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 -3566 3567
IDF 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
L-..L--

Appendix E 221

i I i

I I 0 2 3 4 5 6 7 8 9 A B C D E F I
I--+-- of
lEO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
IE 1 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
IE2 36'6 3617 3618 36'9 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
IE3 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3'642 3643 3644 3645 3646 3647
I
IE4 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
IE5 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 36"77 3678 3679
IE6 .3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
IE7 3696 ~697 3698 3699 3700 370 ~ 3702 3703 3704 3705 3706 370'7 3708 3709 3710 37"
I
IE8 3712 3713 3714 37'5 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
IE9 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
lEA 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
IEB 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
I
IEC 3776. 3777 3778 3779 3780 3781 3782 3783 3784 378.5 3786 3787 3788 3789 3790 3791
lED 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
lEE 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 38q9 3820 3821 3822 3823
IEF 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
I
IFO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
IF 1 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 387q
IF2 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
IF3 3888 3889 3890 3891 3892 3893 38'94 3895 3896 3897 3898 38'99 3900 390~ 3902 3903
I
IF4 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
IF5 3920 3921 3922 392.3 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
IF6 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
IF7 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
I
IF8 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
IF9 3984 3985 3986 3987 3~88 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
IFA 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
IFB 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
I
IFC 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
IFD 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
IFE 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
IFF 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 409' 4092 4093 4094 4095
L-.1-

222 S/360 BOS Assembler with I/O Macros

APPENDIX F: SUMMARY OF-CONSTANTS

j ~----.- , I I I

I I I I NUMBER I 1 I
I I I LENGTH 1 OF CON- I 1 TRUN- I
1 IMPLIED I I MODI- I STANTS RANGE I RANGE 1 CATIONI I
I LENGTH I ALIGN- I FIER SPECIFIED I PER FOR EX- I FOR I PADDING I

I TYPE I (BYTES) I MENT I RANGE BY I OPERAND I PONENTS I SCALE I SIDE I
l----t- I --+ +------+- I I -i
I c 1 as I byte I • to characters I one I I I riqht I
1 I needed I I 256 I 1 1 I I I
l- +- -+------+----+- I I -+ I -f
I X I as I byte 1 1 to 1 hexadecimal 1 one I I I left I
I I needed 1 I 256 1 digits I I I I I
~---+- t --+- I I I -+- I 1
I B 1 as I byte I 1 to I binary I one I I I left I
I I needed I I 256 I digits I I I I I
I----+_ I -+-----+--- I I I I -I
I F I 4· I word I 1 to I decimal I mul ti- I -85 to I -187 tol left I
I I I I 8 I digits I pIe I +75 I +346 I I
l----t- I I I I I I I ~
I H I 2 I half I 1 to I decimal I mul ti- I -85 to I -187 tOI left I
I I I word I 8 I digits I pIe I +75 I +346 I I
I +----+-- 1 --+ I I --+--- I -f
I I I I I I I I 0-13 I I
I E I 4 I word I • to I decimal I mul ti- I -85 to I I riqht I
I I I I 8 I digits I pIe I +75 I I I
I----t- I I I I I I -+- -I
I D I 8 I double I 1 to I decimal I multi- I -85 to I 0-13 I right I
I I I word I 8 I diqits I pIe I +75 I I I
I I I I I I I I I I
I I I I I I I --+ I -I
l p *) ., as I byte I to 1 decimal I multi- I I 1 left I
I I need€d I I 16 I digits I. pIe I I I I
I----t- I +----+-- I I I I -I
I z *) I as I byte I 1 to 1 decimal I multi- 1 1 I left I
I 1 needed 1 1 16 1 digits 1 pole 1 I I I
I----+_ 1 1 I 1 1 I I 1
1 A I 4 1 word I 1 to I any 1 one 1 1 I left I
I 1 I 1 4 1 expression 1 1 I I 1
,.---+- +-----+-----+- 1 -+-- --+--- I -f
I V I 4 I word I 3 or I relocatable I one I I left I
1 1 I 1 4 1 symbol 1 I I I
J----+_ I --+ I I 1 I -f
I S I 2 1 half 1 2 only 1 one absolute 1 one 1 I 1
I I f word I I or relocatab-I 1 I I
I I 1 1 I 1-e expression 1 I I 1
I I I 1 1 or tvo absol-I I 1 I
1 1 1 I 1 ute express- I 1 1 1
I 1 I I 1 ions: 1 1 I 1
I I I 1 I exp (exp) 1 I I I
I---_+_ 1 I 1 I I 1 I
I Y I· 2 1 half I 1 to I any I one I I left I
1 I 1 word I 4 I expression I 1 I 1
I I I I I I I I .J

*)Length modifier ranqe in DS from 1 to 256.

Appendix F 223

This example (Figure 53) illustrates tbe
files and main-storage area assignments for
one tape file, one card file, and one disk
file. It is a simplified order and
inventory job in which a master tape is
updated and written onto a disk file, and a
card file of detail orders is processed.
The followinq assumptions are made.

•

•

The old master inventory tape contains
quantity on hand and unit price in
addition to the identifying
information.

The card file reflects quantities
ordered. It is to be completed with
quantity available for shipment, unit
price, and the extensicn of quantity
shipped x unit price.

• The new master inventory disk file
reflects the decrease in qpantity on
hand due to the current orders, or an
increase when items are returned.

The illustration shows this setup:

,. Job Control cards to assign devices for
assembly. It is assumed that a
Supervisor for object program execution
is assembled separately.

2. Declarative macro instructions to
define the three files. The first
definition is preceded by a
begin-definition card.

a. Old master tape file. This is an
input file to be read forward. It
contains standard volume and file
labels and additional user
80-character file labels. It is a
card-image file with a blocking
factor of 5, and uses two input
areas with general purpose register
3 assigned for lo~ating individual
records in the input areas.

b. New master disk file. This is a
disk output file with the same
characteristics as the tape input
file. General purpose register 4
is assigned for locating the next
available output-record area.

c. Detail card file. This is an input
file to be updated. It is read at
the punch-feed-read station of an
IBM 2540 Card Read-Punch. Records

224 S/360 BaS Assembler with I/O Macros

are read in, updated, and punched
from the same I/O area.

d. End of the three file definition
macro instructions. The user's
source program follows this macro
instruction.

3. Assembler instructions to define the
input and output areas for the three
files.

a. Two input and two output areas are
reserved for the master files.
Input records, and fields within
the records, are defined in a
dummy section (DSECT). See part
3c.

b. One I/O area is reserved for detail
card records. Because these are
single unblocked records, the
individual fields within the
records may be defined along with
the allocation of the I/O area as
shown. Note the use of the
zero-duplication factor.

c. Use of the DSECT (dummy section)
assembler instruction is
illustrated here. This permits
the individual fields within a
record to be addressed
symbolically. Whenever ~hese
fields are used as an operand of
an instruction, their length may
be implied and their location is
expressed as a displacement
relative to the contents of the
reqister specified for addressing
the dummy section. In this
example, register 3 is assigned to
the master input file by DTFSR
entry IOREG. Therefore, IOCS
makes the starting address of the
current record available to the
problem proqram in register 3.
Because this reqister is also used
to address the dummy section
(USING statement in section 6),
ipdividual fields can be addressed
regardless of which record in the
input area(s) is being processed.

4. Assembler instruction to resume coding
of original control section. Because
the DSECT coding interrupted the
control section defined by the START
instruction, a CSECT instruction is
required to resume the coding of the

original control section. The user may
include here the remainder of his
storage assignment instructions and any
constants, tamles, or work areas for
calculations.

5. User routines required for processing
additional user-standard labels.

6. Sample instructions to open files and
locate master records that have current
activity. This illustrates the
following!

•

•

•

All files to be processed by
logical Ioes must be opened.

A GET for an unblocked record to be
processed in a single I/O area
causes the record to be physically
transferred from the I/O device to
main storage. This makes it
available to the problem program.

The first GET for a record in a
blocked file causes the physical
transfer of the block(s) of data
from the I/O device to the I/O
area(s). It also initializes the
specified I/O register with the
address of the first record. Each
succeeding GET causes the address
of the currently available record
to be placed in the I/O register,
and mayor may not cause a
physical transfer of data.

•

•

•

•

When output files (with labels)
specify an I/O register, the
register is initialized by the
OPEN routine (after label
proc~ssing). A PUT to an output
file with no work area specified
merely causes the address of the
next available record area to be
placed in the specified I/O
register. No data is moved within
storage, and physical transfer of
data mayor may not occur.

A dummy section is addressed by
means of the USING statement, and
fields (for example, MITEM) within
an individual record that have
been defined in the dummy section
may be referred to by symbolic
names.

A record can be moved from an input
file to an output file, both of
which have I/O registers
specified, by the Mve instruction
with explicit length and explicit
base registers. These base
registers must be the same
registers as those specified by
the IOREG entries in the
corresponding file definitions.

All files that have been opened
must be closed.

Appendix G 225

IB,., IBM 5yst.ml36D Assembler CDdin; FDrm

t-PRO
_

G
.... _

M--=-IO=-=.C=S-----"£::....:.X=A.:..:,.M...:..:.P....:;:1..=£ ______ ---r _____ ---i PUNCHING I GRAPHIC I I I I
I DATE INSTRUCTIONS I Pl.II'\ICH I I I I I

I
PAG' 1 OF 6
CARDfLECTRONUM8ER

1 N.;..... B 10 O~ration '.4 16 20 O~;nd 30 35 040 4.5 50 55 Com nh 60

M 'J,O;a, I ~lS15EMlR~~ 1 I 1 • I I 1 i I: I I I I i I I I I I I I I I I I I I

/i/l :VCJ'L! i lsIY~~0~'JiWOR'}(.1' I i I I I I:: : I I! I i I I ! I i I I' i

I I: 11 i i III 'fJ{Jflfl ',6'5113SI,'(iSif:3:!J' I : I I I I I : I 1 I!

//£!X~ti I I I I : I' i • I I : I 'I I r : I ' : I : I I I I :
e.£ADY I .siriA'llr 'r4's{J4 i ~ 1 : I " • ' : i I I I I : : I I I I 1 Iii i

{~ 11111, I : I' I I" !! " I :1 I I: I III I
® '* I i I II: ! I I 'FILEI D£FINiITION SECTION I I I I II!! I I I II i I I I

: ! ! I I I I "DTiP'8'C; ~ I S }(.I I I I' , I I I I 'I I I I I I I :

~ I ! I ! ! I I I' 'MASTER FI L If._ DEE 1 NED ~S AN INPU T FIL E' i I: iii Iii

I ! I ,
. I

i
i

: I -' !P£VADDR=SY'${J{11, ' I !:: '!': '! I : !

! !
I I iF! LABL=STD, I I I I 1 I I :! I I I! ! !:

I

@ -<
.

I I I ['DREG =-3, ill -' I I iii I
,{OA/2£Al=AR'f,AONE, I I Ii' I ! Ii: 11,

•

,
I

I II!!. ~'OAR.£AZ=ARI£ATWO, I Iii I I! 1111111

,
! I

I 1 I!.-'ABADDR=CK.'(JLIJI-AI,B, ., I I iii ii' I I I

i ,
I I ~RR.o'pr=CKo~D8LK., i Iii 111 II!I 1!11

,

! i WLR£RR=CX.0v..OWLIl, ,i • ! i I I iJ til
I: I ~OFADD/2::£OIF/t1STR , ,: I!!! I: i I I:! I I ,

1
I

i 1 I

Figure 53. Ioes Example (Part 1 of 6)

226 5/360 BOS Assembler with I/O Macros

I

Id.ntification­
s.quenc;.

J
I

I i I I

I I i I

I 1 I
I I I I
I I I

'ii
I: !

I I i

X ': i I :

X I I i
X I I I I I

x ,

: I
!

, , , x r
x I I I

X I i
: I

1

I
I X I

I I I I

IBM Sy.tlml36D AI,"mbl,r Coding Form IB,.,
....... I. U,I,,,,,

l"OGlAM lOCS E.XAMPLE PUNCHING I c;aAPHIC I I I I I I PAG. 2. 0,6
II'lOGAAMMEI I DATE

INSTRUCTIONS I PUNCH I I I I I I CAIlO fUCTIlO NUMBER

STAUMENT
'-n,incallon· No_ 0,. ... ,1001 o~~ C_nll

I . 10 .. "
,.

" " .. " 50 " 71 "
s.quene.

PJ(I III Ii I I j J I I I I
~ ~Af->ITIE RI .FIlLEI IOEF l,"IEO: AISI IA~ DUIH> um ,F I LE I I I I ! I I I
~I III I i ! I I ! I III I! I • Ii . i i I : I

J I I 1 I
NE.WM:5 TR OTF SR OEM11C E;=D:l:S KIIIII,ll O'AIR:EIA II=ARE ATHRE " :

I i I ! I 1 1)(
IOA.RIE AI2'=~A.R E'A1FOU R', I I I I I I I , ;

,
I i I I I I i , I i I! IX

I l,oIR,E:G :=4',; : I I I I I I I I I I I I I I ; , i : I i 1 ! I 11 I I X
I RiE'C F!O R'M-iFI} I'll.SLK;, I I i I: I I ' I : I • I i I I ! ,

: I ,
i I 1 I rx ,

I S!U1<511 1£1=14(Z\ 8;,1 I I I I I I'I! I: i ! ; I ;

I I J ! I I j i I I '/. I
I REelSII lEI=8¢,1 I , ! I I I I I I I I , I I: I I I : I I ,

!

, : i I i I I I)(I I
I TiYPE:F U='I=:O,U T,P;UiTi, I I II I! I I I I , I I I I I I ! I

,
I I :

,

I i ' I ~
,

I I , I ,

I V:E R:I,F YI=IYE,S II I I I II I I I I I I I I I I I I I Ii I : I ! I : I I 1; II I I I
~ J I : I I I

, ; I I I I I I I I I I I I ! i : I
, I! : I ! I , I I I I II , i ,

DEITA'l U ~ I ,F,llE! ,OEF I.N.E:O' A:5i 'Ai C'OMBiI t-lE O! iF I.L Ei I i ,

! I ! ! i I I I , I I
~ I I I I I I I I I , I i I I I ,

I' I : I: I ' : I I I Ii! I , I , .; I Ii : II
,

I I

DE TA II D:T:F"IS:R TIYPEIF LE:=,CM B,t-! D:,.R ECF'OR ~=FiI~ UN$,iB LIK:Sll:c E=Hc;6', I I I I !
,

X : ' I It: , i
I I! I DE,VllC E-REIA D'40,' : I ! : I I : ! :

I I I I X I i ,

I I I DE,VAO D.R-.5Y S'¢¢¢, :
,

! I ' : i 1 I I i I : I I
: ! I I X i i :

i I i , ,

I I I I.OARE AII.=OE TAl LC 0, ,

!
, I: I !

, i : , , I i! ,
: X I I

I I I EOFAD DR=EO FOTAll I , , I . i ! I j : : I , i! I I I I i I : i
I i I I

{ I D~IFEt-! I ! : I ! I I' : I! I I I I i I i : i I ! i
I i I • I

•

I I I I I I I I ,

,

I ,

! I I I ! 1 , i I I! I I I I i . I I :

! I I ! i I ! I
,

i I ,
, I , ! .

!
: :

: :
, I ,

i I , Ii i ! I I ! !

,
1'1' i I ,

! I !
, I I I I

, , ,

11 I I ,
i I I I I I : ! , ,

! : i I I i I! i
, I I ,

! i I I I I I i I ,
,

: I I I I
,

, I : i ! I I
,

, i , i • : , I ,

Figure 53. IOCS Example (Part 2 of 6)

IBM IBM Syotaml36D AIolmbier Coding Form

I-PRo_GlAM---=I:..::=O'--=C=--=S==-----=E.;..:.XA'-'-'-M..;.;..P--"Lc..::E=-----_____ .----____ -I PUNCHING I GRAPHIC I
I DATE INSTRUCTIONS I PUNCH I I I I I

I I I I
PAG.:3 0,6
CARD fLECTRO NUM8fR

• 10 Opotftltlon '.. 16 20 ~~ 30 35 40 .. , 50 55 C_nh 60 6S

kMntlfieation-
5.q.Mnc.

USH-'\G

1"\

@. A,R'EATWO gs
M~EA ~~RIE' OS

A~ ~FOUR 09
os

!

I=IrIA. I LC:O 06

os
OS I

os
\)5

DC DE 0:5
IQ'UA,NT 1 Tri D5

~;UN! rr CiS T OS
AM uwrrl O~

HlPutr 1/1 !O'uT'P'UITi AiRIEiAlS flOiRI ~AI5ITERI IFII LEI US!AS:EI I I I I I

CL2,¢:a I iSECbND i21~~: PO;S:l:TU)NS: .,' iii I I I I I I
C!L2!(t/li I I :MASIrER rrlllL~ INPUlri :ARf:A .2 1- ,FiliR,S11 !'l'r)a POSllrt'10'N5
CjLlZ:0'r. I ! .sFC~:MiD rz:f//r/J: AOSilif IOttS I: I! ! i til j I I I
'C'L!Z~ I I "'AiSifEiR IflIt£. ,OUITPUiTi 'A'REA: 1\ -I Fit RSiTI 12~t1 PO;St!lll0.NI5
CILlZ~¢i ! I :SEr.loHIO i2i¢¢ POS!IIT l,OM,S: :, I I I ! iii I I i I I

C:Li2~¢1 i SEK:KJN~ 12!¢'¢A ~o5!rIT l<J.M:S! I I I I I 1 I I I I , i I I iii, i

iii CiALC!uL'AT',E:O I,ANDi P,U',t-!',cHE'Oi 'S't i1\\'15 IPRb6R'~ I I i I I I Ii
alc,L81:2l I I iDEiTIAIIL CARD IMAGtl " ! I I I! i! I I I I. iii ! I I I I

eLi I:~ I I IIrriEM ,NUMB:~R II NI ISrrORE~ ;CATA LO,Gi iii i ,. I ! I I ~ 1 ,'! I
CLlI,~ I I IIT:EMDE:SCRIlPif;I()t·t , , i i- NOl1 USED IN' IfJ\IS iPRb'GRJ\M , , ,
~CL!' I i I 'Cui5"CO~ER t-!UMBER : I :-~'O1' V:S:EO 1M: ~\nS' P,ROGRA!o\ I I I ill

:CUI I ifRAN5ACTiION CODE -. Il,SSUE!" REITU:RWi ,"to, STORES,! ErG I I ' I I I

iCIU5 I Q VANT'l TM ORpEREO 'oRIl<EiTURN EDI I I I I I I: 1 I I i I I I ,! !

!eLi7 I I U~.n,Ti COST, !OFI IlifEM' I-F~O~ ~\,AS~ER EILiEI R£'CORO I ! ! I ii, I I

lILli3 III EP<ITENSI0t-l' OFi UNrlr1 'Cosiri :B~ Q.U~AtnI,T'(1 S~n{,PED' I, : ! x I ! I

Figure 53. IOCS Example (Part 3 of 6)

00

Appendix G 227

IBM IBM Systaml3SD Anlmbler Codln; Form

II-'PRO_G«AM_-=IO::....::C=S:.-.=EX.=:A....::.M=P:....::t..=E~ ____ -,. ____ ---I PUNCHING I GIIAPHIC I r PROGRAMMER DATE INSTRUCTIONS I PUNCH I I
I

, T .. G. Lf OF 6
ICARD ElfCTRO NUMSU

• 10 OperaIICll'l l' 16

liE
I~

~I
I II I

I I II I I I
uS K;IL If) I

1)1 i I
I I I tf:rs. '''IROGRA~ I I I ! I i I ! I I

:CLl7i I lri7l c;OSTi I()j: 'IlTt.~ I I i I I ! I !
'C 1L'6! 'ANTzrrYi 1I/\ ST.O;T<.~~ I I! I I I

! IU~ NT~IT-,yi IO~ OR])/:. ~ iF!OR ~II ORV;S I I I

I I

I' ,UtA N,T'.I..7IYl ll5 ~ {If;[) 'FRO~ lSiT~il<iclS I i!
I I

I*i I I I I I I I I I i ; I:

i I I
I

• I I
i

I

I i

I i I I
• ~ i I I I I I I I I I I I I i I I

Figure 53. laCS Example (Part 4 of 6)

IBM IBM Systlml3SD Assomblor Codln; Form

1~"O_G«AM_-=ro::....:c=s-=E.::..:.:xA.:....:.:..;.:M~P=LE~ _____ --r--___ --l PUNCHING I GRAPHIC ~I r PltOGRAMMEI DATE INSTRUCTIONS I PUNCH I
T
T

T
T

PAG' 5 Of 6
CARD ElfCnONUMSER

No_ 0p'.-tICln

~~IE~ 17io ~OC~17c 71H~1 !xOIUITI~IE fol~ B~SF-O'S~LA~e~~A'7
IAAt.:: IPlu RIP 0 5 E,S I

• 1

• J I

I I I I I I
I I I I I I I I I I

I I I I i i I I

I I I I I I

I i

I

I I I I I
I

I I I I I
I II I I I I ' I I I I I

i I : Ii: I I

11-1 i II I I I I I i I I I
I

! I I ! I I I: I 1 ! I I I
I I I , I

Figure 53. laCS Example (Part 5 of 6)

228 S/360 BaS Assembler with I/O Macros

I i

I
,

I i

I :
i I
: I

II
I :

! I

i!
I

I

I

I

IBM IBM Syotlml3GO Aulmblor Codlng FDml

l-"o_GlAM--.:I=O:...,::C:....:'=>=----=E:...;,.}<.....,;.f>......;,.M'---'-P...,:.L...;,.E _____ ---.-____ --I1 :~~U::~~N' I I I I
I I I I I(;ARDfLfCTRONUMN.I

• 10 OptNllan 14 16

IX
USER'S MAIN-LINE PRO~R~~

* La AIrE BALR 2,¢ LaCA~E PROGRAM sv lO~DtNG ~E ts~IE~ 2 ~IT" l~~AG
USING ,2 I~FORMATIO" ~~n USING THA~ AS A BASE ~ F~RE~C

• U\ \JSE\{EElpI~G, INCLUDING LOADliNG RE.GIS~E~ 16 f~R AOO~ESS-
• JI~G 11/0 A~EIAS

u TIOTAIl GET VErrALL WE'A,D IN IA DETAIL CArR,\)
GETM51R GEIf O .. iD'MSIrRI L~O~ AilE A MASlfiEf< J<E.C ORt> I(US I fiG RiE.GI !rEI< ~)

® CLt
1 I. DUMMrtl pE irION A"~ FI£lOIS ~I\\\1N IT

6H 'RR'O,R UllnCArt"lES 1ft, ~IISSINIG MAf.JrrER! o,R! NE~ DETAIL N!o,. i
BE i I

PUIr
EITMSIrR: , ! ffHEN; ,G'ET iTHE NE.'XIT 'MIA T 'R rOt< Co.MPARl~G

*1 I I

NOi-OF -IFIIlE ,RoUTINES ! iii I i I I

I I I I I i '; I i I I ! i I I I! ! i I I i I
i I

i

I
I

! I I I i I ~ ;

E'O J I I I,' Ii' I I I I I I I \;1': Iii I I: I I I, I

EN~O LOCA TE' I! I i I: i I ! I I iii I I I i I I I
I I; I I I ! ! i I , iii

Figure 53. IOCS Example (Part 6 of 6)

,Appendix G 229

APP~NDIL~ASSEMBLE1L1!l!ill!AGES .=.=
FEATURES COMPARISON CHART

Features not shown below are common to all assemblers. In the chart:

Dash Not allowed.
X = as defined in System/360 Operating System Assembler Language Manual.

r---- ------.--~,-----------~~-- T '---------rl---------,
1 1 7090/7094 1 1
I Feature IBPS/360: Support IBPS/360 andl
I ICard Basic Package jBOS/360 IOS/360
I IAssembler Assembler IA~semblersllAssembler
.. 1 I I
I No. of Conti nuation Cards/statement I 0 0 I I 2
I (exclusive of macro-instructions) I I 1
J---------------------~ I +-----4
I Input Character Code I BCD & I I
I ,EBCDIC EBCDIC I EBCDIC I EBCDIC
I ~ I I
I ELEMENTS: I I I
.- I I I
I Maximum Characters per symbcl I 6 6 I 8 I 8 I
J--- I --+-----+------f
I Character self-defining terms I Char. I j I
I I only X I X I X 1
I- --------~ --+ I .,
I Binary self-defininq terms I I X 1 X I
I --+ I I ,
I Length attribute reference I I I X I X J
.-- ~ +-----+ +- ,
I Liter als I t I X I X I
I-- ---I- I --+- 1 ,
IExtended mnemonics I I X I X 1 X I
i--- I I I I I
IMaximum Location Counter value I 216-1 1 224-1 I 224-1 12 24-, 1
I-- I I I I ,
I Multiple Control sections per assembly I I I X I X I
I-- I I + I I
I EXPRESSIONS: I I I I I
I--- I I I I ,
I Operators I +-* I +-*/ I +-*/ 1+-*/ I
I--- I 1 --+ I I
1 Number of terms I 3 I '6 I 3 I 16 I
r-- 1 I + I ,
I Number of parentheses I I I Level 15 Levels I
i--- I 1 I 1 ,
I Complex relocatability I I I X 1 X ,
I- --+ I --+ 1 ,
IASSEMBLER INSTRUCTIONS: I I 1 I I
l-- I I +-- I ,
I DC and DS I I I I I
I--- I I I I ,
1 Expressions allowed as modifiersl I 1 I X I
, I I I 1 I
1 Multiple operands I I .1 1 X I
l--- t I --+ I ,
I I I I Except J I
I Multiple constants i~ an operandi I I Address I X 1
I 1 I I Consts. I I

I I I I I

(Continued)

230 S/360 BOS Assembler with I/O Macros

Appendix H: Assembler Languages--Features Comparison Chart (Continued)
I i i i i i

1 1 1 7090/7094 1 1 1
t Feature IBPS/360: 1 Support IBPS/360 and I I
I, ICard Basic I Package IBOS/360 IOS/360 I
1 IAssembler 1 Assembler 1 Assemblers 1]Assembler I
I I I I I I
I Bit length specifications I I I I X I , I I 1 I I
1 Scale modifier I I I X J X 1 , I I I I • I Exponent Modifier I I 1 X I X I

• I I I I I
I I Except 1 Except I I 1
I DC types I B, P, Z, I B, V I X I X I
I I V, y, S I I I 1 .. I I I I of
I 1 Except 1 I Except I I
I DC duplication factor I A I X I S I X I
J I I I I I
I I I I Except I I
I DC duplication factor of zero I I I S I X I
l- I I I I I
I I Except I I 1 I
I DC length modifier 1 H, E', D I X I X 1 X I
I-- I I I I of
I I Only C, I On'ly C, I I I
I DS types I H, F, D I H, F, D I X I X I
I I I I I I
I DS length modifier I Only C , Only C I X I X I
I I I I I 1
I DS maximum length modifier I 256 I 256 I 256 165,535 I
I I I I I I
I DS constant subfield permitted I I I X I X I
~ I I I I ,
I' COpy I I I I X I
I-- I I I I ,
I CSECT I I I X I X I
J I I I I I
1 DSECT I 1 1 X I X 1
I I I I I I
I ISEQ I I I X I X I
J I I I I ,
1 LTORG I I I X I X I
I I I 1 1 ,
1 PRINT I I 1 X I X I
1-- I 1 I I ,
I TITLE I I X I X I X I
l-- I I I I I
I COM I I 1 1 X I
I I 1 I 1 I
I I 1 oprnd 1 I I I
1 ICTL I , or 25 1 , oprnd 1 X I X 1
I I only I I I I
l- I I 1 1 I
1 ~ 2 oprnds 1 2-17 oprndsl 1 I
1 USING I oprnd , 1 oprnd , I 6 oprnds 1 X I
1 I reloc I reloc I 1 I
1 I only I only I I I
I I 1 I I I
I I 1 oprnd I 1 I I
I DROP I only I X I 5 oprnds I X I

(Continued)

Appendix H 231

Appendix H: Assembler Lanquages--Features Comparison Chart (Continued)
I ~ , ~ , ,

I I I 7090/7094 I 1 I
I Fea ture 1 BPS/3 60: I Support I BPS/3 60 and I I
I ICard Basic I Package IBOS/360 IOS/360 I
I IAssembler I Assembler IAssemblersllAssembler 1
I- I + + I 1
I 1 oprnd 2 I I I 1
1 CCW 1 reloc I X I X 1 X I
I 1 only 1 I I 1
.. + I I 1 ~
1 1 no blank I no blank I I 1
I ORG 1 oprnd I oprnd I X I X I
~ +----+ + I I
I I 1 oprnd I 1 oprnd I oprnd I I
I ENTRY 1 only I only I only I X I
~ +-----_+_ f_ 1 I
I 1 max 14 1 I I 1
I EXTRN 1 , oprnd I 1 oprnd I' oprnd I X I
1 I only I only 1 only 1 1
i-- +------+ -+-----+-------1
I I 2 dec I 2 dec I 2 dec I I
I CNQP I digits I diqits I diqits 1 X I
~ +----+-------+-----+_ -1
I PU NC H I I I X I X 1
l- +--------+---------+-------f_ ,
1 REPRO I I I I I
I I I 1 X I X I
~-----------------------+---------+----------+---------f-- -t
I Macro Instructions I I I X I X I L-- .L _______ .L _______ .J.. _________ L--______ J

Not includinq Model 20.
(Contin ued)

232 S/360 BOS Assembler with I/O Macros

Appendix H: Assembler Languages--Features Comparison Chart (Continued)
r-- ~------------~
I I BPS/360 andl
I Macro Lanquage Features J BOS/360 IOS/360
I I AssemblersllAssembler I
r-- -+--------+_---------f
10perand Sublists I I X I
I-- +---------+---------1
I Attributes of macro-instruction operands inside macro I I I
Idefinitions and symbols used in conditional assembly I I X I
linstructions outside macro definitions. I I I
I- +-------+------~
I I I I
ISubstitution in the operation field I I X I
~---------------------------------------+---------+---------I
ISubscripted SET symbcls I I X I
~ +----------+-----~
I Maximum number of operands I 49 I 200 I
I-- +----------+---------1
IConditional assembly instructions outside macro I I X I
I definitions. I I I
~ -+-------+--------1
IMaximum number of SET symbcls I I I
1--------------------------------------+--------+--------1
I global SETA I 16 I 2 I
~ +--------+-------1
I global SETB I 128 I 2 I
I-- +_----------+------~
I global SETC I 16 I 2 I
~ +--------+ ~
I local SETA I 16 I 2 I
I-- +-------+-------:1
I local SETB I 128 I 2 ,I
~ -+------+_ I
I local SETC I 0 I 2 I
L-- -L-________ L-___ ----J

Not including Model 20.
2 The number of SET symbols permitted by the Operatinq System/360 Assembler

is variable, dependent upon available main storage.

Appendix H 233

APPENDIX I: SUMMARY OF INPUT/OUTPUT FOR AN ASSEMBLY

I
I- .

This table lists the card groups that make up the source deck produced by
programmer, with an explanation of each group. The groups are listed in the
which they appear in the source deck.
1!Qte: All job-control cards must enter the system via SYSRDR, all others via

The same device may be assigned to both SYSRDR and SYSIPT.

CARD GROUP CONTENTS REMARKS

i

the I
order inl

I
SYSIPT.I

I
I

Job Control Cardslll JOB ASSEMBLER
I

First card in group (always required)
Assemble-and-execute is initiated when name of
problem program appears as the second operand.) I

11/ DATE
I
III ASSGN
I
I
I
III VOL
III DLAB
III XTENT
I

Required on first job after IPL.

See Figure 50 for device assignments. (Only
those assignments not already in effect are
required.)

Required for SYSOOO (all assemblies).
See Figure 56 for operands.

III VOL Required for SYS001 (when the
I II DLAB I AWORI<' 2 option is used).
III XTENT I
III EXEC I Last card in group (always required).

I I I I
I Assembler I ALOG I See Control Cards section for I
IControl Cards IAOPTN 1 explanation and format. These cards may appear I
I I I in any order. I
I IAWORK I I
I 1 AFILE 1 I
I- I --------+------------- ,
I Supervisor- I Supervisor- 1 Either a BOS or an 1
IA~sembly lassembly I independent Supervisor may be assembled. I
I Source Cards I macro statements. I I
• --+----------+1 ~
I Problem-Program I Assembler, I START card may be omitted if a problem program I
I Source Cards I Machine, and I is assembled alone, (START 0 assumed). START I
I IMacro statements. I card must be omitted if a problem program and a I
I I I supervisor are assemble~ together. I
I---------_+__ +1 ----. I
I End Card I END I Last card of source deck. I

Figure 54. As~embler Source Deck

234 S/360 BOS Assembler with 1/0 Macros

r--- --~i------------- ,
ISymbolic I I
IUnit IFunction and Device I
I ,
I REQUIRED DEVICE ASSIGNMENTS i
Ii'

ISYSRES I System residence device. I
I IIBM 2311 Disk Storage Drive. I
r- I I
ISYSRDR IJob-control input device. May be the same device as SYSIPT. I
1 liBM 1442, 2520, or 2540 Card Read Punch, or 2501 Card Reader. I
r--I.
ISYSIPT ISource proqra~ input device. May be the same device as SYSRDR, I
I 1 IBM 1442, 2520 (Model A 1 or B 1), or 2540 Card Read Punch, or I
I 12501 Card Reader. IBM 2400-series Magnetic Tape Unit (7- or I
I 19-track) may be used. (If the data-conversion feature was used I
I Ito prepare the 7-track tape, it must also be used to read the 1
1 Itape.) Information appearing on tape must be aO-byte unblocked I
I 1 records. ' 1
I 1 ,
ISYSLST IProgram listing device. I
I IIBM '403, 1404 (continuous forms only), or 1443 Printer. 1
I IIBM 2400-series Magnetic Tape Unit (9-track, or 7-track with or I
I Iwithout the data-conversion feature) may be used. I
1 IListinq on tape appears as 121-character print images (a sinqle 1
I I forms-control byte followed by a 120-character line imaqe). I
I I (This forms-control byte is the command code portion of the CCW 1
I lused durinq printout.) I
I I ,
ISYSOOO IUsed for temporary work area durin~ assembly. I
1 IIBM 2311 Disk storage Drive. I
I ~May be same device as SYSRES. 1
r--------~i_-----------.--~--.-----~
1 OPTIONAL DEVICE ASSIGNMENTS 1
r-----~ ..
ISYSLOG IOperator message logging device. I
1 IIBM 1052 Printer-Keyboard, or IBM 1403, 1404 (continuous forms 1
I lonly), or 1443 Printer., 1
1------+ 1
ISYSOPT ,Object proqram output device. I
I IBM 1442, 2520, or 2540 Card Read Punch. I
I IBM 2400-series Magnetic Tape Unit (9~track, or 7-track with I
I data-~onversion feature) may be used. I
I output on tape appears as aO-byte unblocked records. I
I Not requirea when using assemble-and-execute option. I
r-- I
ISYS001 Used for temporary work area during assembly. I
1 IBM 2311 Disk Storage Drive. I
I Reduces assembly time by providing additional work area on a I
I separate disk drive. J i-. _______________ ~ _____________ _

Mot~l: When an IBM 2404 Magnetic Tape Unit and Control is used, all tape drives
must be assigned to the same channel.

MQ~~: For any of the above device assignments, the Supervisor must contain the
corresponding error routines.

Figure 55. Device Assignments

I

A'ppendix I 235

r--- --~I------------- ---------------------.-------------------------------------,
ISymbolic I I
IUnit IFunction and Device I
I ----------------------1
I REQUIRED DEVICE ASSIGNMENTS i
I I ,

ISYSRES I System residence device. I
I IIBM 2311 Disk Storage Drive. I
I-- I I
ISYSRDR IJob-control input device. May be the same device as SYSIPT. I
I ItBM 1442, 2520, or 2540 Card Read Punch, or 2501 Card Reader. I
I---I ' ISYSIPT jSource progra~ input device. May be the same device as SYSRDR, I
I IIBM 1442, 2520 (Model A1 or Bl), or 2540 Card Read Punch, or I
I 12501 Card Reader. IBM 2400-series Magnetic Tape Unit (7- or I
I 19-track) may be used. (If the data-conversion feature was used I
I Ito prepare the 7-track tape, it must also be used to read the I
I Itape.) Information appearing on tape must be aO-byte unblocked I
I I records. . I
~I----------+·------------------------·--------------------------------- ------- ,
ISYSLST IProgram listing device. I
I I IBM l40J, '404 (continuous forms only), or 1443 Printer. I
I IIBM 2400-series Magnetic Tape Unit (9-track, or 7-track with or I
I Iwithout the data-conversion feature) may be used. I
I IListing on tape appears as 121-character print images (a single I
t Iforms-control byte followed by a 120-character line image). I
1 I (This forms-control byte is the command code portion of the CCW I
I lused during printout.) I
, I ,
ISYSOOO IUsed for temporary work area durin~ assembly. I
I IIBM 2311 Disk storage Drive. I
I ~May be same device as SYSRES. I
I-----------~I---------------~-~---·----~I
I OPTIONAL DEVICE ASSIGNMENTS I
I----------r--------.------ --------------------------------- -------------~
ISYSLOG IOperator message logging device. I
I IIBM 1052 printer-Keyboard, or IBM 1403, 1404 (continuous forms I
I I only), or 1443 Printer.. I
1----------+ -------. .---------------------------- 1
ISYSOPT IObject program output device. I
I IIBM 1442, 2520, or 2540 Card Read Punch. I
I IIBM 2400-series Magnetic Tape Unit (9~track, or 7-track with I
I Idata-~onversion feature) may be used. I
I IOutput on tape appears as aO-byte unblocked records. I
I INot requireu when using assemble-and-execute option. I
r--- 1 I
ISYS001 IUsed for temporary work area during assembly. I
I IIBM 2311 Disk Storage Drive. I
I IReduces assembly time by providing additional work area on a I
I Iseparate disk drive. j L- __ ~I______________ I

Mot~l: When an IBM 2404 Magnetic Tape Unit and Control is used, all tape drives
must te assign~d to the same channel.

M2te 2: For any of the above device assignments, the Supervisor must contain the
corresponding error routines.

Figure 55. Device Assignments

Appendix I 235

I
IThis table lists the Disk-label cards,'and their contents.
l----.
I Card I Field
r-- I

I Required for all assemblies
~--.-------------

VOL Symbolic Unit
File Name

DLAB Fi Ie Name
Format Identifier
File Serial Number
Volume Sequence Number
Creation Date
Expiration Date
System Code

XTENT Extent Type
Extent Sequence Number
Lover Limit of Extent
Upper Limit of Extent
Volume Serial Number
symbolic Unit

i------L--,------

-.
I contents
I

SYSOOO
WORK'

BaS 8K DISK WORK FILE 1 ,
Required
000'
Today's Date
Today's Date
optional

1
000
(Define the area, on the disk pack assiqned
to SYSOOO, to be used by the assembler).
Must be the same as DLAB File Serial Number.
SYSOOO

I Required only vhen the AWORK 2 option is used.
I Ii

IVOL ISymbolic Unit
I I File Name
I I
IDLAB IFile Name
I IFormat Identifier
I File Serial Number
I Volume Sequence Number
I Creation Date
J Expiration Date

System Code

XTENT Extent Type
Extent Sequence Number'
Lover Limit of Extent
Upper Limit of Extent
Volume Serial Number
Symbolic Unit

Figure 56. Disk Label Cards

SYSOO,
W'ORK2

BOS 8K DISK WORK FILE 2 ,
Required
0001
Today's Date
Today's Date
optional

1
000
(Define the area, on the disk pack assiqned
to SYS001, to be used by the assembler).
Must be same as DLAB File Serial Number.
SYS001

236 S/360 BaS Assembler vith I/O Macros

I
This table lists the card groups that make up the output deck produced ,

by the assembler, and the conditions of their assembly. The qroups are ,
listed in the order in which they appear in the output deck. ,

I Note: No output deck will be produced when NODECK appears in AOPTN. ,
l--)I ,

I £~£.Q!!.EI Remarks I
l--' ,
I IPL Loader ,Used for loading an independent supervisor from a card I
I Ireader. Produced when IPL appears in AOPTN. I
l--' r
, Reproduced Cards IThese reproduced cards result from REPRO or PUNCH I
, linstructions located before START. I
I- -+ I
, Symbol Table 'Produced when PCHSYM appears in AOPTN. I
I- -+ ,
I External Symbol ,Not produced when NOESD appears in AOPTN. I
I Dictionary (ESD) , I
r------------_+_ r
, Supervisor IEither a BOS or an independent supervisor may be I
, I produced. I
~ +-- 1
I Program Loader IProduceq as part of the independent supervisor. I
1----------------+ ,
I Problem Program ,Consists of TXT, XFR, and reproduced cards. The I
I Ireproduced cards result from REPRO or PUNCH I
I linstructions located after START. I
, --+ I
I Relocation Dictionary (RLD) I Produced if relocatable constants are present, except ,
I Iwhen NORLD appears in AOPTN. I
I _+_ ,
I End Card 'Produced as the last card of the output deck. (Next I
, Ito last if an Entry card is produced.) ,
I I ,
I Entry Card 'Produced as the last card of the output deck when ,
I ,ENTRY appears in AOPTN. I
I --L I

Figure 57. Assembler Output Deck

Appendix I 237

The information in each card is in
EBCDIC--Extended Binary Coded Decimal
Interchange Code.

For each card, the first column indicates
the numbers of the columns to be punched.
The second columrr indicates the information
to be punched.
I. I

fESD Card 1
• ~ 1
11 IMultiple punch (12-2-9). 1
1 IIdentifies this as a loader card. 1
I---+- . ,
12-4 IESD--External Symbol Dictionary 1
1 Icard. . 1
l-- I ~
111-121Number of bytes of information 1
I Icontained in this card. I
I---+- 1
115-16lExternal symbol identification !
1 Inumber (ESID) of the firstSD, PC, 1
1 lor ER on this card. Relates the I
l lSD, PC, or ER to a particular 1
1 control section. 1
i 1
117-72 Variable information.
I 8 positions. Name.
I 1 position. Type code: O=SD,
J 1=LD, 2=ER, or 4=PC.
1 3 positions. Assembled origin_
I 1 position. Blank~
1 3 positions. Control section
1 lenqth, if an SD-type or a PC-type.
1 If an LD-type~ this field ccntains
lithe external symbol identification
1 1 number (ESID) of the SD or PC
1 I containing the label.
I----f- I
173-76lProqram identification taken from I
lithe name field of the first TITLE 1
1 Istatement before the START card. 1
r---+------------------------------.~
177-80lSeguence number startinq with 0001.1

I I

ITXT Card I
I , I
11 IMultiple punch (12-2-9). 1
1 IIdentifies this as a loader card. 1
I 1 ,
12-4 ,TXT--Text card. 1
I 1 ,
16-8 IAssembled origin (address of first 1
, ,byte to be loaded from this card). I
~I----+I------------------------------~
1'1~'2INumber of bytes of text to be 1
1 Iloaded. 1
I I I
1 15-16lExternal symbol identification 1
, Inumber (ESID) of the control 1
1 Isection (SD) containinq the text. 1
I . I --------------------~
117-721UP to 56 bytes of text--data or I
1 linstructions to be loaded. I
I I I
173-76lProqram identification taken from 1
lithe name field of the first TITLE 1
1 ,statement before the START card. 1
I I ,
177-80lSeguence number starting with 0001.1

I'

I

IRLD Card
I •
" 1 Multiple punch (12-2-9).
, I
12-4 IRLD--Relocation Dictionary card.
I 1
111-121Number of bytes of information
1 Icontained in the card.
I 1
,Q7-72IVariable information (multiple
1 items).
, 2 positions. Pointer to the
I relocation factor of the
, contents of the load constant.
, 2 positions. Pointer to the
f relocation factor of the control
1 sections in which the load
I constant occurs.
1 , position. Flaq indicating type
t of constant.
I 3 positions. Assembled address
1 of load constant.

1
I ,

I ,
173-76lProgram identification taken from 1
lithe name field of the first TITLE I
I Istatement before the START card. I
I I -------~
177-80lSequence number starting with 0001.1
I I I

Figure 58. Format of Assembler Output Cards (Part 1 of 2)

238 S/360 BaS Assembler with I/O Macros

r--- ----------"
lEND Card I
~--,- I
11 IMultiple punch (12-2-9). I
• I I
12-4 lEND I
~~ ----------1
16-8 IAssembled or~g~n of the label I
I Isupplied to the Assembler in the I
I lEND card (optional). I
r-.--f- -f
115-161ESID number of the control section I
I Ito which this END card refers. I
~--+- -f
117-22lSymbolic label supplied to the I
I IAssembler if this label was not I
I Idefined within the assembly. I
f----+- -f
173-76lProqram identification taken from I
lithe name field of the first TITLE I
I Istatement before the START card. I
~~ I
177-80lSequence number s~arting with 0001. I
L-.. __ ..l-

r-­
IXFR Card
I II

11 IMultiple punch (12-2-9).
~---f----------
12-4 IXFR. Transfer card.
~ +1-------------
16-8 IAssembled origin of entry point
I I (after the program is loaded, it
I Ireceives control at this point).
I -f-----------------------
115--161 External symbol identification
I Inumber (ESID) of tbe control
I Isection in which the transfer
J loccurs.
f---f-
117-22lSymbolic label of the entry point.
f----+-
173-76lProgram identification taken from
lithe name field of the first TITlE
I Istatement before the START card.
~ I
177-80lSequence number starting with 0001. I
L- I I

I ,

I SYM Card I
I I 1
11 I Multiple punch (12-2-9). I
I I -i
12-4 ISYM I
I I 1
111-121Number of bytes of information •
I Icontained in this card. I
~-~ -f
,14-16IExternal symbol identification I
I Inumber (ESID) of the control I
I Isection (SD) containing ths text. I
I I ~
17-72 Variable information.

~
I
I
I
I
I
I
I
I

I I

12 columns
8 ppsitions - symbol name.
1 position - type identification

(machine or assembler instruc­
tion other than EQU, DC, or DS).

3 positions - Value attribute
(the displacement within
the CSECT).

or

17 columns
8 positions - symbol.
1 position - type identification

(EQU, DC, or DS).
3 positions - Value attribute

(the displacement within
the CSECT) •

1 position - constant type.
1 position - lenqth (one byte
less than the constant) •

3 positions - multiplicity.

173-76lProgram identification taken from
lithe name field of the first TITLE I
I Istatement precedinq the START card.1
I I ..
177-&0ISequence number starting with OOOf.1
, , I

Figure 58. Format of Assembler Output Cards (Part 2 of 2)

Appendix I 239

I
IField

T --,
Print I Meaning I

I positions , I
L-

J--______ ~
I

.­
ISYMBOL

External Symbol Dictionary (ESD)
~ '------,

I
ITYPE
I
I
I
I
I
I
lID
I
IADDR
I
ILENGTH
I
ILD ID

0.-08

1'-12

15-.6

18-23

25-30

34-35

External label.

Symbol type.
SD - Section Definition (named control section)
LD - Label Definition (from ENTRY statement)
ER - External Reference (from EXTRN statement

or v-type constant)
PC - Private Code '(unnamed control section)

ESD entry number.

Address of symbol before relocation.

Length attribute of symbol.

ESD entry number of control section where label appears.
L--_______ ~ _______ ~

Instructions
.----------~----
ILOCATN I 01-06
I ,
10BJECT , 08- 21, or
,CODE I 08-23
I
IWRN
I
ISEQ
I
IERR
I
ICAT
I
IADDR ,
IADDR 2
I
ISTMNT
I

03-05

08- 10

13-15

18-20

23-28

29-34

36-39

Location of assembled instruction (hexadecimal).

Assembled instruction (hexadecimal).
constant generated (hexadecimal).

Flag: possible error in previous statement.

Flaq: Sequence error in previous statement.

Flaq: Error in previous statement.

Flaq: Catastrophic error in previous statement.

Effective address of 1st operand (hexadecimal).

Effective address of 2nd operand (hexadecimal).

statement number (decimal).

ISOURCE 4.-.20 Source statement (card imaqe). Column 40 contains an
ISTATEMENT asterisk if a source statement is generated.
L-________ ~ _______ ~

Relocation Dictionary (RLD)
.- ~--------r-

IPOS.ID I 03-04 I ESD ID number of control section containinq the constant.
I I I
IREL.ID I 10-11 I ESD ID number of control sections containinq the address
I I I the ccnstant.
I I I
IFLGS I , 5- 16 I Type of constant.
I I I
IADDR I 18-23 I 'Address of constant before relocation.
L--________ ~ ______ ~

Figure 59. Assembler output Listing (Part 1 of 2)

240 S/360 BOS Assembler with I/O Macros

in
I
I
I
I
I
I

• IField
I

Print
positions

Meaning

L ------~-----------,~

.---­
ISTATEMENT NO.
I
IERROR
IMESSAGES
I
IACTION ,

i

ISYMBOL
I
I
ILEN
I
I
IVALUE
I
I
ITYPE
I
i

..
ISYMBOL
I
ILEN
I
IVALUE
I
IDEF*
I
ICROSS-
IREFERENCE*
I

05-08

20-79

80-' 20

01-08
65-72

11-13
75-77

15-20
79-84

24
88

0'-08

'0- 13

.5-20

22-26

30-34
36-40
42-46
48-52
54-58
60-64
66-70
72-76
78-82
84-88
90-94
96-100
102-106
108-112
114-1 H~

Diagnostics

Listing sequence number of statement in error.

Explanation of error

Action taken by assembler.

i

I
I
I
I
I
I

--~

Table of Defined Symbols

Source Label

Length Attribute (decimal)

Value Attribute (hexadecimal)

Type Attribute (decimal)

Cross-Reference List

Source Label

(Replaces Table of Defined Symbols
when CROSSREF appears in AOPTN.)

Length Attribute (decimal)

Value Attribute (hexadecimal)

Listing sequence number of statement which defines label.

Listing sequence numbers of statements which
contain the label.

* The maximum number of symbols and cross references to
symbols that can be listed is 20,625.
~

Figure 59. Assembler Output Listing (Part 2 of 2)

Appendix I 241

-.-- - -'-'--- - ---- - --- --'Exnit;ulsvMiOLDic'iToNiiy­

SYMBOL TYPE 10 ADDR LENGTH LO ID

SAI'IPLE SO 01 0012tO 0002E3

t
m
)C

cC;-
-.~
n :I

::::::::::::::::::::::=::::::::::::==::::=:::::::::::::::::~ ~ ~ :1(1)
0-<

LOC~TN OBJECT COO£ ADDRI ADORZ STMHT SOURCE STATEMENT

0001 AOPTN ENTRY SMPLOODI

SAMPLE PROGRAM 08/21/65 'AS! 002

LutATN OBJECT CODE AOORl AODR2 STIIINT SOURCE STATEMENT

000) ISEQ 71.80 SIfPlDOOl
0004 PUNCH iI PHASE SAMPLE. sa SMPlOOO4
0005 SAMPLE START 4800 SlfPlOO05
0006 PRINT NOGEN SHPLOOO6
001)1 OTFBG DISK SH'lOOOT
0009 PRINT OTFSR BLKSJZE'IOO.CONT~Ol'VES.DEVADOR'SVSLST.OEYrCE'PRrNTER.IOXSMPlOO08
DOLO AREA1'KAPA,RECFORM,FIXUNB,TYPEFlE'OUTPUT SlfPlM09
OOS7 OTFEN SMPLD010

001338 0'50 0059 IUGII~ BALR 5.0 $MPLOOll
00133A 0060 USING •• 5 SH'LOO12

0061 OPEN PRINT SM'loon
0069 tNTRl PRINT.SK.l SMPLOO14

OOU62 ISU 0015 SR 1,3 S"PlOOU
00U64 4120 500t 0141l 0076 LA 2.MESSAGE SHPlOOl&
001]611 0263 5015 2000 OUAF 00000 0071 MOVE MVC UPA.oUa SMPlOOIT

0018 PUT PRINT SH'lOO18
001178 4133 0001 00001 0083 LA 3.1I3a S"'PlOO19
00137(, 4230 5014 OUU 00B4 STC 3.TEST SMPlOO20
oOlillo 9504 5014 OllAt: 0085 Cll TEST.xil04a SMPlIlOn
00UII4 4180 5058 01392 0086 BE ENDPROG S"PlOO22
001188 4122 0064 00064 0087 LA 2.1001:2a SM'Loon
00ll8t UFO 5021" 01368 0088 8 MOVE 5MI'lOO24

0089 EHDPROG tNTlll PRINT.SK.l S"'lOO2IJ
0095 EQJ SIlt"lOO26

OOllAE 0100 TEST OS ell S"JLOD27
OOllAf 0101 KAPA os CllOO S"PLoon
001413 484848484848484B 0102 MESSAG£ DC CL100a ••••••••• t8M SYSTEM /360 •••••••• ; S"PLDD29
001411 (2tlE2t9C3400607 0103 DC tllODiSASIC OPfRATING SYSTEM ASSE~8lERa S"PlOO'O
001408 E6t9E3C840C9D501 0104 Dt tLlOoaWITH INPUT OUTPUT MACROS-AK DISKi SMPLOOn
00153F 48484B4848484848 0105 DC CL 100 ••••••••••••••••••••••••••••••••• a SMPLOO]2
001928 0106 END BEGIN It/ilptOO31

::-:=:::::::=~------------------------------------~:--------
-

Figure 60. Example of an Assembler Listing (Part 1 of 2)

242 S/360 BOS Assembler with I/O Macros

':<3
0-
o

:I
CIt -~ c
n -0
:I

- - - - - - - 'flLlIt'l1'Tblf'1flmO"iilRV- - ~ - - - - - - - - - - - - - - -

T '05.10 REL.IO FLGS lDDR

01 01 DC 0012eo
01 01 04 0012el
01 01 01 0012eD
01 01 04 0012E4
01 01 08 0012F9
01 01 04 001314
01 01 04 001120
01 01 08 001329
01 01 DC 001134
01 01 OC 001150
01 aloe 00U5e
01 01 OC 001374
01 01 DC 001398

OIACNOSTlCS

NO ffIRORS' IN THIS ASSEMBLY

TlBLEOF DEFINED SYMBOLS

SYMBOL LEN VALUE TYPE

BEGIN Z Inl I
EHOPROG 4 1392 I
ICCIOOOI Z UIA X
lc;ewoo01 I 1321 A
IGCBOOO) 2 12C4 X
16CIIOOOI 8 IZFI A
10CCOOOS .. 1350 A
IPRROOOl 1 12FZ X
IPKTOOOl 4 12E6 I

. ItAPA 100 UAF C
MESSAGE 100 14n c
MOVE 6 U61 I
PRINT 1 nco
PAINU " In .. A
PRI,NTIS 1 1330 X
PRINTC .. 1300 I
PItIHTP .. 1202 1
SAMPLE I 12eo •
nSf 1 UAf e

.--'-- -------- -- --- -- -
Figure 6 O. Example of an Assembler Listing (Part 2 of 2)

08128/6'

.a
CD

o
n
Q -o
~

o
;.
o
~
Q

-<

-t
Q

0-
CD

o -

1

Appendix I 243

,
The followinq is a listing of the card qroupsreguired for the execution of an I

object proqram when a disk-resident system is not used. Card qroups produced by the I
Assembler in addition to those listed here are the External ~ymbol Dictionary (ESD) I
and the Relocation Dict~onary (RLD), which are used only if a Linkaqe Editor run is I
required before execution. I

~--~,
ICard Groups (in order
lof load inq)

I Loqic of Execution of the Object Program I
I I

~--"- +------------ ------------------------------ ~
IIPL Loader
I
I
ISupervisor
IProqram Loader
I
I
r
IFirst Problem Proqram;
lEnd Card
I
IData (if present
I in card form);
IData End Card
I
ISecond Problem Proqram;
I End Card
I
I
IData (if present
lin card form)
I
I
I (Anyone or several of
Ithese Prob1em Proqrams
Imay be a Job Control
Iprogram. See Operatinq
IConsiderations.)
I
I
ILast Problem Program;
lEnd Card
I
IData (if present
lin card form) ;
IData End Card

The operator initiates the loading of the IPL Loader with
the load key on the eonsole.

The IPL Loader loads the Supervisor and the
Program Leader, and then transfers control to the Program
Loader.

The Proqram Loader loads the First Problem
Program, and then transfers control to it.

The First Problem Program runs to end-of-job,
Sharing control with the Supervisor.

When the First Problem Proqram reaches end-of-job,
control is transferred back to the Program Loader which
loads the next Problem Program and transfers control to it

When the hopper becomes empty, an error message
will be transmitted to the operator, and the
system will enter the wait state.

~
I
I
I
I
I
I
I
I
I
I

l- ----------------------~
I
I
I
I
I
I
I
I
I
I

If the operator has more Problem Programs or data cards to run, he must place
these cards in the hopper and press the interruption key to resume the operation.

If another Supervisor is to be used, that Supervisor and a Proqram Loader must be
loaded together by the IPL Loader.

If the execution of a Problem Proqram causes the Program Loader to be overlaid or
otherwise disturbed, the Supervisor and the Program Loader must be reloaded toqether
by an IPL Loader before the next Problem Program can be executed.

Figure 61. The Object Run When a Disk-Resident System Is Not Used

244 S/360 BaS Assembler with I/O Macros

Diagnostic messages are printed if
violations of the assembler language are
detected by the Assembler program. With
each message is printed the number of the
related source program statement, and the
associated action taken by the Assembler
program (Figure 62). If more than one
error is detected for a source statement,
the diagnostic messages for all errors
detected are listed. In this case, the
Assembler takes the action that is the most
severe (for the errors detected), and that
action is printed with the diagnostic
messages.

The following list gives the types Qf
assembler actions in the order of their
severity. The most severe action is given
first.

APPENDIX J: ASSEMBLER DIAGNOSTIC MESSAGES

ASSEMBLY IN ERROR (AlE) - The user's
program cannot be executed. The
assembly runs to completion, but only
the diagnostic messaqes preceding the
ASSEMBLY IN ERROR message may be
considered valid.

GENERATION TERMINATED - Generation of one
macro is terminated. This does not
affect the generation of other ma~ros.

STATEMENT TREATED AS COMMENTS (STC)

STATEMENT INCOMPLETELY ASSEMBLED (SIA) - If
the statement is a machin~ instruction,
the amount of main storage necessary
for the instruction is reserved and
filled with zeros.

STATEMENT ASSEMBLED (SA)

r------- ----~i--ri----- i
JDiagnostic Message IMeaning IAssociated INotes
I I I Action I
I +- I I
IASSEM CTL CD-INVALID IAn AOPTN, AWORK, or an ALOG card ISA I
INAME FIELD Ihas been detected with an entry I I
J lin the name field. The name I I
I Ifield was igncired, but the rest I I
I lof the card has been processed. I ,
r--------- ----rl~------------------------------------~I~--- I
lASSEM CTL CD-INVALID OR IAn AOPTN card was given with no ISlA I
IMISSING OPERAND IN loperands or with an operand I I
,CONTROL CARD Ifunction which does not equal one I I
I lof the valid options that can be I I
I Ispecified. The invalid operand is I I
I lignored and any other operands I I
I Ipresent are processed. I I
~ ----------rl----------------------------------+I----------~I----~
IBITS 37 THROUGH 39 IN CCW ,Bits 37, 38, and 39 in a CCW ISA I
IARE NON-ZERO Istatement are not zero. I ,
I ------------4_ I I
ICONSTANT TRUNCATED ISpecified constant length is less ISA I
I I than the actual constant length. I I
r-- I I I
ILLEGAL FORMAT 11. Invalid delimiter. SIA I

12. Missing field in CCW statement. I
13. Extra field (s) appear in sta te- I
I ment operand. ,
14. First operand is a literal. I
15. More than one literal operand I
I encoun tered. I
16. Blank operand in a machine I
I instruction or in a CCW, DROP, L
I lCTL, USING, orXFR assembler I
I instruction. I
I I

Figure 62. Assembler Diagnostic M€ssages (Part 1 of 7)

Appendix J 245

I

IDiagnostic Message
I
I
IILLEGAL MODIFIER IN DC
I
1
I
I
I
I
~-------.----------------
IIMMEDIATE DATA INVALID
1
I
I
I
~
IIMPROPER START VALUE
I
I
1 ,
IINVALID ASSEM CTL CD
1
I
I
I
I
I
I .-.-
IINVALID BOUNDARY ALIGNMENT
I
I

• INVALID EXPRESSION

\

IINVALID LENGTH VALUE
1
I
I
I
I
I
I
I

I !
I

iii •

IMeaning IAssociated INotes I
I I Act;i.on I I
+1--------------------------------+ 1 ,
I •• Incorrect modifier or modifier ISlA I I
1 value in a DC statement. I 1 I
12. Incorrect combination of I I I
1 exponent modifiers. 1 1 I
13. Exponent and/or scale cannot be I 1 I
1 applied to the constant I 1 I
I· provided. 1 1 I
1 I 1 ,
IThe immediate operand in an SI ISlA I I
linstruction is: 1 I I
11. Not a self-defining term. I I I
12. An invalid self-defining I I I
1 term (e. g., more than one byte) I I I
+- 'I ,
I T he value in a START sta temen t is I SA I I
I not a multiple of eight. (The I 1 1
Ivalue given is increased to the 1 I I
Inext higher multiple of eight). I I I
I --+--------~I~--~~'
11. The operand of an AWORK card ISTC I
I is not a single operand of I I
1 either 1 or 2. I 1
12. The name field of an AFILE 1 1

. I card is blank or contains ALL. I J
13. The operand field of an AFILE 1 I
1 card is not LIBRARY or LIBRARY, 1 I
1 RETAIN. 1 1
1 1 I
IInstruction is not aligned on the ISA I
Iproper boundary, ie, for use vith 1 I
Ian execute instruction. 1 I
I I I
11. For all instructions except SIA
I CCW, DC, ORG, EQU, and USING:
I the value of the expression
I is negative.
12. The expression has more than
I three terms.
13. The expre~sion is complexly
I relocatable, but it is not
1 alloyed for this instruction.
14. The terms in a multiply or
I divide expression are not
I absolute.
15. An arithmetic operator begins
I or ends an expression.
I
For SS type instructions only. SIA
1. Length is neqative.
2. Length is greater than 256
3. For tvo-Iength instructions:

a. L1 or L2 is negative.
b. L1 or L2 is greater

than '6.
4. For multiply and divide

instructions:
a~ L1 or L2 is negative,
b. Ll greater than 16,

or L2 greater than 8.
c. L2 is greater than Ll.

Figure 62. Assembler Diagnostic Messages (Part 2 of 7)

246 S/360 BOS Assembler vith I/O Macros

I
IDiagnostic Message
I
I
1 INVALID LITERAL
ISPECIFICATION
I
1
1
1
I
1
I
J--

INVALID NAME FIELD

IINVALID OCCURRENCE
IOF ASSEMBLER OPERATION
I
I
1
1
I
IINVALID REGISTER IN
IUSING OR DROP
I
1
I
I
I
I
I
I
IINVALID REGISTER
ISPECIFICATION
I
I ,
I
I
I
I
I-
I
IINVALID SELF DEFINING
ITERR
I
I
L--

----~l------------------------------------~I~----------TI-------'
IMeaning IAssociated INotes I
I I Action 1 I
I I I I
11. A literal appears in the ISlA 1 I
1 first operand of an 1 1 I
1 instruction. 1 1 I
12. The literal is incorrect. I 1 I
I (The rules for literals are I I 1
I identical to the rules for I I I
1 DC constants.) I I I
13. Literal operand has no left I I I
I parenthesis or apostrophe. I I I
I I 1 ,
11. Fer all instructions except SA
I TITLE: The statement name
I begins with a non-alphabetic
I character. ($, w, and # are
I considered alphabetic cnarac-
I ters.)
12. The statement name is longer
I than eight characters.
13. Nonalphameric characters appear
I within the statement name.
14. A statement name is present
I in a statement which may not
I have a name.
15. A DSECT statement has no name.
I
I , .
I
12.

Program has more than one
START card.
A START card is improperly
placed in the program. 1

13. A LTORG appears within a
dummy control section. I

1
11.
I

Register specified in a
USING or DROP statement is
other than 0 to 15. I

12. Register 0 is specified in a
USING statement with a non­
zero absolute value.
Register 0, when used with a
USING statement, is not the
tirst register specified.

I
I
3.

1. Register specified is other
than 0 to 15.

2. Floating point register spec­
ified must be 0, 2, 4, or 6.

3~ Base register specified in a
relocatable operand.

4. In a USING or DROP statement,
a relocatable expression
appears in an R1, R2, a3, R4,
or R5 field.

IThe self-defining term:
11. is too large.
12~ is too long.
13. contains an invalid character.
I

ISTC
1
I
I
1
I
I
I
I
I
I
I
I
I
I
I

-+
ISlA
I
I
I
I
I
I
1
I
I
I
ISlA
I
I
I
I

Figure 62. Assembler Diagnostic Messages (Part 3 of 7)

Appendix J 247

.r---------------------------~ i i
IDiagnostic Message IMeaning IAssociated INotes
I I I Action t
r--'---------- I I I
LIMIT EXCEEDED 11. The value of the location AlE I

I counter has exceeded 224-' I
12. The value of the location coun- I
I ter set by the ORG statement I
I has gone below the initial ,
I value of the control section. I
13. The total number of CSECT, I
I DSECT, EXTRN, and DC (V- I
I type) statements exceeds 255. I
14. The total number of CSECT and I
I DSECT statements exceeds 32. I

I +- I I I
IMACRO-INNER MACRO IAn inner macro instruction has ISTC 11, 2 I
I NESTING DEPTH I been gi ven wi thin a third level I I I
IEXCEEDED Imacro. (This macro will not be I I 1
I 1 expanded.) I 1 I
I --------------------~I- --+-----------~I------~I
IMACRO INST-INVALID 11. Operand longer than 8 char- ISTC I I
IOPERAND 1 acters. 1 I I
I 12. Operand has an equal sign in I I 1
I I other than the first position. I I I
I I I I I
IMACRO INST-TOO IMo~e than 49 operands in a macro ISlA I
IMANY OPERANDS linstruction. The extra operands I I
I lare iqnored. I I
l--- +- I 1
IMACRO INST-UNDEFINED IKeyword in macro instruction does ISlA I
IFEYWORD Inot match any keyword defined in thel I
I Iprototype. This operand is ignored; I I
I I all other operands are processed. I 1
I INOTE: Only one message appears whenl I
I Imore than one undefined keyword I I
I lappears in the same card of a macro I I
I linstruction. I I
l---- ~ -+--------+I----~I
IMACRO-INVALID DATA IN INon-numeric character encountered ISTC 1,2 I
IARITHMETICOPERATION lin an AIF, AIFB, or StTB statement I I
I Iwith an arithmetic relation or a I I
I IS~TA statement. I I
~------~---------------+--- --~I--------~------~'
I I I I
IMACRO-INVALID RESULT IFor an AIF, AIFB, or SETB state- ISTC 1,2 I
lIN ARITHMETIC OPERATION Iment with an arithmetic relation I I
I lor a SETA statement: I I
I 11. Result is negative. I I
I 12. Result is greater than 224-,. I I
r- I I 1
IMACRO-INVALID ISpecified substring not wholly ISTC 1, 2 1
ISUBSTRING Icontained in the character string I I
I lof a SETC instruction. I I
l---- I I I 1
IMACRO-INVALID SYSLST ISYSLST reference to a parameter ISTC 11, 2 I
IREFERENCE Inumber qreater than 49 was I I I
I lencountered. 1 1 I
I- I -+ I I
IMACRO-LONG FINAL RESULT ICharacter string result has exceededlSTC 11,2 I
lIN A CHAR. OPERATION leight characters in an AIF, AIFB, orl 1 I
I ISETB statement with a character I I I
I Irelation or a SETC statement. I I I L-______ . ______________________ ~ _____ ._______________ -L ________ ._~I _______ __"

Figure 62. Assembler Diagnostic Messages (Part 4 of 7)

248 S/360 BOS Assembler with I/O Macros

I

IDiagnostic Message
.1

I
IMACRO-LONG INTERMEDIATE
~RESULT IN A CHAR.
IOPERATION
I
I
I
IMACRO SEQUENCE SYMBOL
I NOT FOUND
I
I
IMACRO-UNDEFINED OP
ICODE
I
I
I
I
r-
IMNOTE (plus a message
Icontained in the macro
I def ini tion)
I
l--

MULTIPLE DEFINITION

II

IMeaning
I
+- .
ICharacter string has exceeded
Isixteen characters for an AIF,
IAIFB, or SETB statemeht with a
Icharacter relation or a SETC
Istatement.
+-
INo sequence symbol found in a
Imacro-definition for an AGO,
IAGOB, AIF, or AIFB statement.
I
IAn instruction with an operation
tcode which is not recognized as
la valid System/360 operation code,
land is not contained in the macro
Ilibrary, was found durinq macro
I qeneration.
+-
IA message from the macro coder to
the macro user, qenerally iden­
tifying an error in the macro
instruction.

1. Identical symbols appear in
the name fields of two or
more statements.

2. For an EXTRN statement:
a. Operand is identical to

the name field of another
statement.

b. Two or more statements
have identical oper~nds

3. The name fields of a CSECT
and a DSECT statement are
identical. The statement
encountered second is con­
sidered unnamed.

r-- ------------+_
IHOT ADDRESSABLE 11.
I I
I I
I 12.
I I
I I
I 13.
I I
I I
I 14.
r-- ----------------+_

Base register(s) specified in
USING statement(s) can not
be applied.
A base register has been spec­
ified in a relocatable op­
erand.
An absolute displacement is:
a. Negative.
b. Greater than ~095.
No base register specified.

IOPERATION TERMINATED IOperator intervention due to
ION UPSI BIT 7 Iloop during macro generation
I I (UPSI bit 7 was turned on) •
I IAGOB, AIFB, and inner macro
I Icalls are not processed.

Figure 62. Assembler DiagnQstic Messages (part 5 of 7)

I

IAssociated
IAction
I
ISTC
I
I
I
I
1
qeneration
terminated

STC

-+
ISlA
I
1
I
I
I
I
I
I
I
1
ISTC
1
1
1
I

I

INotes
I
I
I 1, 2
I
I
I
I
I
I 1, 2
I
1
1
12
1
1
1
1
1
I

I 1, 2
1
1
I
I

Appendix J 249

.-
IDiagnostic Message
I
I--
ISTATEMENT FORMAT CANNOT
BE ANALYZED

J
I
I
I
l--
ISYMBOL NOT PREVIOUSLY
I DEF INED
I

}
ITOO MANY CONTINUATION
ICARDS
I
I-
ITOO MANY REGISTERS
ISPECIFIED IN USING
lOR DROP STATEMENT
I
IUNDEFINED OPERATION
ICODE
I
I
l--
IUNDEFINED SYMBOL
I
I
L--

I

IMeaninq
------------------r-- I

I
I
1 •

2.

3.

4.

Invalid term in a CNOP
statement.
Erroneous operand in an
ICTt, ISEQ, ORG, or EQU
statement.
Blank operand in a DC, DS,
EXTRN, or ENTRY statement.
For a DC, or DS:
a. First character in operand

field is not alphabetic,
numeric, or an apostrophe.

b. No apostrophe or alpha­
betic character follows
the duplication factor.

c. No terminating apostrophe.
d. Terminating apostrophe

followed by a non­
blank character.

e. Length specified is
non-numeric.

IAssociated INotes
IAct~on I

-+ I
STC

f. Duplication factor is lonqer
than eiqht decimal digits.

5.

6.
17.
I
I
18.
I
I
+­

g. Invalid constant type.
h. Explicit le~qth qreater

~jan 256 or equal to O.
~. ~~plicit lenqth for a

V-type constant is 1 or 2.
DC or literal has no fourth
subfield.
Parentheses are not paired.
In a DC or CCW statement:
a. A field is missing.
b. Bad data is given.
No initial apostrophe or no
operand in a PUNCH or TITLE
statement.

IA symbol in the operand of an ORG
lor EQU statement is not defined
lin a previously encountered in­
Istruction.
I
IAn instruction (other than a
Imacro instruction) has more than
lone continuation card.
I
IMore than five registers are spec­
lified in a USING or DROP state­
Iment.
I
IMnemonic operation code is not
Irecognized as a valid IBM System/
1360 operation code, and is not
Icontained in the macro library.
-t-
IA symbol has been referenced but
lit is not defined in the name
Ifield of any instruction.

ISTC
I
I
I
I
ISTC
I
I
I
ISlA
I
I
I
ISTC
I
I
I

-+-----------r------~
ISlA
I
I

~-------------------------------------~I~------__ --~------~
Figure 62. Assembler Diagnostic Messages (Part 6 of 7)

250 S/360 BOS Assembler with I/O Macros

r- -,--
I I
IDiagnostic Message IMeaning
J----------------+_
IUNPAIRED AMPERSAND IOdd number of ampersands en-
I I countered in a constant.. (Two
I lampersands must be specified
I Ifor every ampersand wanted in
I la constant.)

r--
I
I
I NOT..§:

--.-- --.~i------~

IAssociated I
I Action INotes
I I
I SA I
I I
I I
I I
I I , ,

1
11-
I
I
I

These messages refer to statements in the assembly which contain additional
information. This additional information is: the macro name, the operation code
of the instruction in error ~ithin the generated'macro, and a pointer to that
instruction.

1
12.
I
1

Macro diagnostic messaqes may be caused by improper codinq of a macro-definition,
or by improper data in the macro instruction (for example, alphabetic characters
supplied for a lenqth specification).

Figure 62. Assembler Diagnostic Messages (Part 7 of 7)

Appendix J 251

APPENDIX K: SUMMARY OF-IMPERATIVE MACRO INSTRUCTIONS

r-------.------------- i
I Macro Format I
r-- ----------~
I Input/Output Control Macros I
r- iii
IName 10perationiOperand I
I I I ----oj
I IBCLOS Idtfname I
r- I I ~
1 IBOPEN I (SEe Bina±1~chronous-Communication for operands to be used with 1
I I I the BOPEN macro.) I
I -+- I I
IblocknamelCCB ISYSnnn,command~list-name,X'yyyy' I
I f ~ ,
I ICDCNV Itype,startaddr,lenqth I
• I +-------------------------- •
I I CHK,PT In, restart-name, SYSnnn, DISK I
I I I ----------~------- J
I ICHNG ISYSnnn I
• I I I
I ICLOSE Ifilename I
I I Ifilename1,filename2,filename3,... t
r- I I 1
I ICNTRL Ifilename,code,n,m I
I I r----------------.----------------------------- ,
I I Ifilename,SEEK I
I I r- ,
1 I Idtfname,code,n I
1 I r- ,
1 I Idtfname,code 1
r-- I 1 -I
I IDSPLY Ifilename,r,r I
I -+- 1 --------------.--1
I I DIALO 17See Proc~sinq -with_.§~.Y~- for the operand that may be used I
I I Iwith the DIALO macro.) I
I I I ,
1 IENDFL I filename I
r- ---I- +-- ~
I IERRPT Idtfname 1
r- 1 1 ,
1 1 ESETL I filename I
I ---I-·--------+I---------·----~--------------------------- t·
I 1 EXCP Iblockname I
r- 1 +-- -I
1 IFEOV 1 filename I
I -+- --~I~------------------------------------ I
1 1 GET I filename 1
1 1 Ifilename,workname I
1 I r- -I
1 I Ifilename"IS 1
1 I Ifilename,workname,IS I
r-- I + I
I IIDIAL 1 (See Bina~-SynchronousCommunication for operands to be used with 1
I I Ithe IDIAL macro.) 1
I Iii ,
I ILBRET 11 1
I I 12 1
r--- I +-- ,
1 10PEN 1 filename I
1 1 1 fil~ename' ,filename2,. • • • I
, ---L- , ,

252 S/360 BOS Assembler with I/O Macros

r-- I .1 •
IName IOperationlOperand I
J-- -+-1 ------+1-- ,
I IPRTOV Ifilename1n,routine-name 1
.- I I I
I 1 PUT 1 filename I
I I Ifilename,workname I
1 I I-- I
I 1 Ifilename"IS I
1 1 Ifilename,workname,IS I
"'1 ---_+_ ---+-- I
1 IRDLNE Ifilename I
r--·----~I~-------~I------------------------------------· ,

READ Ifilename,KEY I
I filename, ID I
~- I
Ifilename,KEY,IS I

~ename'OR1tc~~e} I
Idtfname,STR I
~ I
Idtfname,BsC,type-code I

rl-------4--------+___ ,
I RELSE Ifilename I
'~-------~I----------+I--~
I IRESCN Ifilename,r,r,n,F I
I I I 1
1 ISCLOS Idtfname I
.- I I ~
I I SETFL 1 filename I
I-- I 1 I
I I SETL I filename, BOF I
I I I filename, KEY I
1 I Ifilename,idname I
r-- ~I~--- 1 I
I ISOPEN 1 (See Processinq,with 5TR Devices for the operands that may be used I
I I I with the SOPEN macro.) I
r-------_+_ I --------------------------~
1 ITRUNC I filename 1
I I I 1
I 1 WAIT I block name I
'~----'---+I--------+-- I
I IWAITF I filename I
I I 1 I
I IWAITM Iblockname1,blockname2,... I
I 1 Iblocknamen,reg I
r-- --rl----------rl------·------------------------~

IWRITE Ifilename,KEY I
I Ifilename,ID I
I Ifilename,RZERO I
I Ifilename,AFTER I
I J I
I Ifilename,NEWKEY,IS I
I r--- I
I Ifilename,KEY,IS I
I r-------~--~
I Idtfna(Il€,STR I
I ~ I
I Idtfname,BSC,type-code I

~ _______ ~ , I

Appendix I<' 253

r--
I , Supervisor Communication Macros

, i

IOperationlOperand IName
r------~I--------~I----------
I ICOMRG I
~ I I
I IDUMP I

• I I I IEOJ I

• I I I IEXCP Iblockname
r------~I--------~I---------

: :EXIT~:} I
I

• I I -------------------~
I IFETCH Iname
r'-------+I---------rl------
I IMSG Icode,REPLY
r-- I I
I IMVCOM Ibyte,n,location
Ir-------;I---------+___
I ISTXIT In,pc-name,it-name,oc-name
I-- • •
I Supervisor Assembly Macros
I --r- ,I

I I IOCFG Ikeyword=YES,keyword=YES, •••
r-----~--------+I---
I I SEND I n,REP
I I I
I ISUPVR IDISK=YES,CONFG=nnnnnnnn,TR=YES,CR=YES,SAVEREG=yes
I I ICONFG=nnnnnnnn,TR=YES,CR=YES,CHKPT=YES
I --+- +--
I ISYMUN In,X'ccuu',X 1 ddss',X'ccuu',X'ddss'
I-- • ..l-

I

• ,
IJBCTL
I
IRSTRT

Job Control Assembly Macros

I ,

I
I

----------~
I
1

I , __ ______ . .1.-
__________________________________ . ____________________________ J

254 S/360 BOS Assembler with I/O Macros

AP~DIX L: BLANKL-2Q]~TE BLANK, AND INTERMEDIATE LRC REQUIREMENTS

,-- iii I i I I I --,----r"l ---.....

1 1 BOS/BPSI7702 17702 17711 17711 11978 11978 11013 11009 11009
1 1 STR 1 BI NARY 1 BCD 1 BINARY 1 BCD 1 BINARY I BCD 1 1 BIN ARY 1 BCD
J -+ 1 1 1 1 1 1 1 ---+---+1-----I
ITransmits IROXN IROXN IINVALIDIROXN IINVALIDIROXN 12480 12480 IROXN 12480
1 Blank I 1 1 I 1 1 1 1 1 I
, I -+---f-- 1 1 1 I -+ 1 --+I----t
ITransmits 12480 12480 12480 12480 12480 12480 IINVALIDIINVALIDI2480 12480
ISubstitutel 1 1 I I 1 I I I 1
I Blank 1 I 1 I I 1 1 1 I I
1------+ ,I 1 1 I I I I +---+-1 ----f
ITranmits I YES I NO I NO I NO I NO I YES 1 YES I YES I NO 1 YES
I and r e- I or 1 I J 1 I 1 1 I I
1 cei ve s I NO 1 1 I I 1 I I I I
lintermed. 1 1 1 1 1 1 I 1 I 1
ILRC I I 1 I I 1 1 1 1 I
l-- I I 1 I 1 I 1 1 I 1 1
IReceives 1 Blank IBlank IINVALIDIBlank ISubst. IBlank IINVALIDIINVALIDIBlank IINVALIDI
J ROX Nil I 1 1 Blank I 1 1 I 1 I
l-- I I I 1 I +---+ +- I -+ I
IReceives I Subst. I Subst. I Subst. I Subst. I Subst. I Blank. 1 Blank I Blank I Subst. I Blank I
12480 IBlank IBlank IBlank IBlank IBlank IBlank I 1 IBlank I 1
, ,--L ___ -'-___ ~, , I , ---'- , I

,'---'--r]--------rll -r--------,
I ICard Code 17 bit Tape Code 17 bit Tape Code I
1 1 1 (E ven parity) I (Odd parity) I
r- I -+--------+--------1
IBlank INo Punches IInvalid IC bit
, 1 -+---------t
ISubst. 12-8 IC-A Bits IA Bit
IBlank Ipunches I I
'-- , --'--________ .1.

The 7702, 771., '978, and 1009, all in binary mode, handle blank
and SUbstitute blank compatibly with BCS/BPS STR support.

THE CDCNV macro instruction may be modified to transmit a blank as
2-4-8-0, or to receive a 2-4-8-0 as a blank. This modification may
be used to provide compatibility with the 7702, 1009, and 1978 in
BCD, and the 1013.

To modify CDCNV, type E, for transmitting a blank as 2-4-8-0,
execute the following instruction before converting the first record:

MVI IOCTBLE+64,X'2E

To modify CDCNV, type F, for receiving a 2-4-8-0 as a blank,
execute the'following instruction before converting the first record:

MVl IOCTBLF+46,X'40'

The CDCNV macro expansion provid~s the table for translation on
the first expansion of a particular type. Therefore, if the problem
program uses types E and F, modified and not modified, in the same
program, the byte in question must be modified before each CDCNV
(type E or F) used.

APPENDIX L 255

CHARACTER
HEXADECIMAL LENGTH

MEANING
PROVIDED

REPRESENTATION IN BYTES BY *

ACK-O 1070 2 Even-odd positive alternating IOCS
a c knowl edg me nts (pr .pr.)

ACK-l 1061 2

ENQ 2D 1 Inquiry--requests permission IOCS
to send (pr .pr.)

EOT 37 1 End-of-transmission character IOCS

DLE STX 1002 2 Start-of-transparent-text pr.pr.
sequence

DLE EOT 1037 2 Disconnect sequence IOCS

WABT 107F 2 Wa i t-before-transm itti ng IOCS
sequence

DLE ETX 1003 2 End-of-transparent-text IOCS
sequence

DLE ETB 1026 2 End-of-transparent-block IOCS
sequence

STX EOT 0237 2 Positive acknowledgment but pr.pr.
signifies inabil ity to continue

DLE ENQ 102D 2 Disregard this record IOCS

NAK 3D 1· Negative acknowledgment - IOCS
requests retransmission

SOH 01 1 Start-oF-header character pr .pr.

* pr .pr. - Th is character is supplied by the problem program as a part of the text message.

(pr .pr.) - This character is included by the problem program after the last ID-character in
each ID-sequence.

IDCS-BSC support (macro routines or error recovery procedures) supplies this character.

256 S/360 BOS Assembler with I/O Macros

PART-2---SUMMARY-OF-CHECKS-TO-BE-~ADE-AT-I/O-CQMPtETION-

CHECK LOCATION IF ON, CHECK FURTHER FOR LOCATION

Normal Completion BSC flag byte I-- No further checking is necessary BSC FLAGS
COMPLETION unless a READ operation--then byte II--
bit 0 check EOT or DLE EOT received RECEIVED f1ags--

(which are normal completions). bit 6

I/O Error BSC flag byte I-- Lost data (READ macros) TRANSMISSION
COMPLETION FLAGS--byte II
bit 1 (dtfname + 7)

bit 0

Bus-out check bit 1

Intervention required bit 3

Time out bit 6

Unit exception* bit 5

Message Format Error BSC flag byte 1-- Th is bit alone:
COMPLETION 1. unrecogn izable response ------
bit 2 characters

2. text messages with invalid ------
text-framing characters

Invalid ID (JDIAL only) BSC flag byte I
COMPLETION
bit 5

Invalid ACK (WRITE macros or BSC flag byte I
(DIAL) COMPLETION

bit 7

Unexpected response and a BSC flag byte I
bit in byte II--RECEIVED COMPLETION
flags (EOT, WABT, etc.)** bit 6 and byte

II RECEIVED
flags

* Set by PIOCS to indicate unit exception ·on a WRITE command, which occurred because the CPU
attempted to transmit while ~n receive mode. This normally is a contention situation, occurring when
both CPUs attempt to transmit at the same time. Because the line has probably been "cleared" by a
READ command with the skip flag on, issued by PIOCS, a retry of the failing macro will probably be
successful.

** If an EOT is received as an unexpected response to a WRITE macro on a switched line, the transmitting
CPU (which issued the WRITE macro) should issue a CNTRL EOT macro. This allows the remote
(receiving) CPU to issue CNTRL ENQ and to transmit.

APPENDIX M 257

PART 3 - SAMPLE~RA~

The BOS/BSC sa~ple program (Figures 63 and
64) illustrates line contrel procedures for
a leased line and error checking after the
completion of BSC macros. The listings are
self-explanatory.

Fig~£§~J: 80-characte~ records are read
from a card reader and sent to the
remote CPU (Figure 63). At EOF on the
reader, EOT is sent to the remote CPU,
signifying end-pf~transmission. READ
TQ (inquiry) is issued to prepare to
receive records from the remote CPU.

258 S/360 BOS Assembler with I/O Macros

The 80-character records received are
printed. At end-of-job, the ERRPT
macro is issued to display the error
statistics and transmission count.

Fiqure-64: CNTRL Prepare is issued to
prepare to receive records from the
remote CPU. The 80 characters received
are printed. When EOTis received,
CNTRL ENQ is issued. 80-character
records are read from a card reader and
sent to the remote CPU (Figure 63). At
end-of-job, the ERRPT macro is issued
to display the error statistics and
transmission count.

Figure 63.

1/ J08 ASSEM8LER
II OATE 67130
II VOL SYSOOO,WORKl
II OLA8 '80S SK DISK 111111!', *

0001,65099,65099,'0000000000000'
II XTENT 1,000,0116000,0195009,'111111',SYSOOO
II EXEC

AOPTN ENTRY
REPRO
PHASE TESTA,S
TITLE 'SAMPLE PROGRAM - CPU-A'
START X'lFOS'

• • FILE DEFINITION SECTION--CARD READER AND PRINTER
• OTF8G DISK
RDFIlE OTFSR BLKSIZE=SO,DEVADDR=SYSIPT,DEVICE=READ40,EOFADDR=EOT, •

IOAREA1=ROCARD,TYPEFlE=INPUT
WTFllE OTFSR BlKSIIE=SO,OEVADDR=SYSLST,DEVICE=PRINTER,IOAREAl=RDCAR0,.

TYPEFlE=OUTPUT
DTFEN

•
• 8SC FILE DEFINITION SECTION
•
8ASE
BSCFILE

•

DTfRF 8EGIN,3
OTF8S DEVADOR=SYS002,AREA=WTAREA,LENGTH=WTlEN,BSCFlAG=ERRFlG, •

RCOUNT=7

• INfTIAlIIATION--OPEN'S AND BOPEN
•
BEGIN REG6,0

*,REG6
8ALR
USING
OPEN
aOPEN
WAIT
TM

ROFIlE, WTF IlE
OTFNAME=BSCFILE,INTRFC=B,DIAl=NO

al
* • SET UP BSC
•

l
LA
ST
LH
STH

•

8SCFILED
ERRFLG,X' SO·
ERPT

CC8 FOR WRITE

REG5,THREE
REG4, SDCARD
REG4,WTAREA
REG4,lENGTH
REG4,WTlEN

(AND

* REQUEST PERMISSION Of REMOTE
• ENOSND

*

CNTRl BSCFILE,ENO
WAIT BSCFILED
TM ERRFlG,X'SO'
80 PROCEDE .
TM ERRFLG,X'22'

eo CHKl
LA REG7,ENQSND

(Part 1 of 3)

TEST FOR NORMAL COMPLETION OF aOPEN
NO---ERRPt EXIT VES---CONTINUE

READ) OPERATION

SET UP REGISTER FOR RETRY lOOP
SET UP AREA ADOR ESS FIELD OF cca

WITH DATA AREA ADDRESS
SET UP LENGTH FIELD OF CCB WITH

DATA lENGTH

CPU TO SEND (CNTRl ENO)

TEST fOR NORMAL COMPLETION OF CNTRl
YES---CONTINUE NO---
TEST FOR MESSAGE FORMAT ERROR AND

UNEXPECTED RESPONSE
BOTH CONDITIONS--CONTINUe CHECKING
SET UP RETURN ADDRESS FOR TIME OUT

APPENDIX M 259

CHKl

*

8
TM
80
TM
80
TM
8l
8CT
8

ERROR
ERRFlG+l,X'08'
READ
ERRFlG+l,X'OZ'
ENOOJ
ERRFlG+l,X'Ol'
ERRORl
REG5,ENQSND
EWA8T

ANY OTHER--ERROR EXIT
WAS UNEXPT. RESP. ANENQ(CONTENTION)
YES--TRY A READ NO--
WAS THE UNEXPT. RESP. AN EDT
YES---END OF J08 NO---
WAS THE UNEXPT. RESP. A WABT

YES---RETRY THE CNTRL ENQ
STill GETllNG WABT---WA8T EXIT

* GET A RECORD FROM THE CARD READER--SEND IT TO CPU-8 CREMOTE)
* PROCEDE

*
RDACD
SNDCD

*

CHK2

*

l
TM

80
GET
WRITE
WAIT
TM
80
TM

80
lA
8
TM
80
TM
8l
01
8CT

REG5,THREE
PGMSW,X'Ol'

SNDCD
RDFIlE
8SCFILE ,8SC, TT
BSCFILED
ERRFlG,X'80'
RDACD
ERRFlG,X'Z2'

CHK2
REG7,SNDCO
ERROR
ERRFlG+l,X'OZ'
ENOOJ
ERRFlG+l,X'Ol'
ERROR!
PGMSW,X'Ol'
REG5,ENOSND

RESET REGISTER FOR RETRY LOOP
WAS THE CNTRl ENQ REISSUED BY THE

WRITE ROUTI NE
YES--SKIP GETTING A NEW RECORD
GET A RECORD FROM THE CARD READER
SEND IT---WRITE-TYPE IS 'CONTINUE'

TEST FOR NORMAL COMPLETION OF WRITE
YES--GET ANOTHER RECORD TO SEND NO­
TEST FOR MESSAGE FORMAT ERROR AND

UNEXPECTED RESPONSE
80TH CONDITIONS--CONTINUE CHECKING
SET UP RET.URN ADDRESS FOR TIMEOUT
ANY OTHER--ERROR EXIT
WAS THE UNEXPT. RESP. AN EDT
YES--END OF JOB NO---
WAS THE UNEXPT. RESP. A WABT
No---ERROR EXIT YES--
SET SWITCH TO RESENO THIS RECORD
SEND ENQ AGAIN

* END-OF-FIlE---SEND EOT (CNTRl EDT) AND PREPARE TO RECEIVE ENQ
* (CNTRl PREPARE)

* EOT

PREPARE

*

CHK3

*

CNTRL
WAIT
TM
Bl
READ
WAIT
TM
80
TM

eo
lA
B
TM
80
8

8SCFILE,EOT
BSCFIlED.
ERRFlG,X'SO'
ERROR!
BSCF II E, 8SC, TO
BSCFIlED
ERRFlG,X'SO'
READ
ERRFlG,X'Z2'

CHK3
REG7,PREPARE
ERROR
ERRFlG+l,X'02'
ENDOJ
ERRORl

TEST FOR NORMAL COMPLETION OF CNTRl
No--ERROR EXIT YES--

TEST FOR NORMAL COMPLETION OF CNTRL
YES--CONTINUE NO--
TEST FOR MESSAGE FORMAT ERROR AND

UNEXPECTED RESPONse .
80TH CONDITIONS--CONTINUE CHECKING
SET UP RETURN ADDRESS FOR TIMEOUT
ANY OTHER--ERROR EXIT
WAS THE UNEXPT.RESP. AN EOT
YES--NORMAL END OF J08
No--ERROR EXIT

* RECEIVE A RECORD AND PRINT IT USING SAME DATA MEA ANO LENGTH

* READ READ BSCFllE,BSC,TN RECEIVE A RECORD--READ-TYPE ,CONTINUE

---------------------------~-------------------------------
Figure 63. (Part 2 of 3)

260 5/360 BaS Assembler with I/O Macros

Fiqure 63.

•

WAIT
TM
LA
BZ
TM

BO
PUT
B

BSCfILEO
ERRfLG,X'SO'
REG1,READ
ERROR
ERRfLG+l,X'02'

ENDOJ
WTflLE
READ

.' ERROR EXIT
* ERROR

ERRORl

•

TM ERRfLG,X'40'
BZ ERRORl
TM BSCfILEO+3,X'OZ'
BO TIMEOUT
MSG ERR
B ENOOJB

• TIME OUT
*
TIMEOUT TM

* • WABT
• eWA8T

•

BO
01
8R
MSG
B

EXIT

MSG
B

PGHSW,X'J.O'
*+10
PGHSW.X·10'
REG7
TIME
ENOOJB

WA8T
ENOOJB

• NORMAL END-Of-JOB EXIT

* ENDO.J MSG EOJ
ENDOJB EOU * CLOSE RDfIlE,WTfILE

BeLOS 8seflLE
WAIT 8SCflLED

ERPT ERRPT 8SCfILE
•

EOJ

*
* • REGISTER EOUATES

* REGIt EOU 4
REG5 EOU 5
ItEG6 EOU 6
REG7 EOU 7

*
* CONSTANTS

* THReE DC F'3'
SOCARO DC X'02'
ROCARD OS CLBO

DC X'03'
LENGTH DC H'SZ'
PGMSW DC X'OO'

* •
END BASE

II END

(Part 3 of 3)

TEST FOR NORMAL COMPLETION OF READ
SET UP RETURN ADDRESS fOR TIMEOUT
NO--ERROR EXIT YES--
TEST FOR EDT RECEIVED WITH NORMAL

COMPLETION
YES--NORMAL END Of JOB
NO--PRINT THE RECORD
RECEIVE ANOTHER RECORD

TEST FOR 1/0 ERROR
NO-EXIT YES­
TEST fOR TIMEOUT
YES--GO TO ROUTINE ELSE
ISSUE INDICATIVE MESSAGE
SEND AN EOT INDltATiNG END Of JOB

HAS TIMEOUT BEEN RETRIED
YES--EXIT
NQ--TURN ON SWITCH INDICATING RETRY
RETRY

ISSUE INDICATIVE MESSAGE
GO TO END OF JOB

ISSUE EOJ MESSAGE

CLOSE THE fILES

PRINT THE ERROR STATISTICS

WORK REGISTER
COUNT-CONTROLLED LOOP REGISTER
BASE REGISTER
TIMEOUT RETURN ADDRESS

LOOP COUNT
STX
DATA AREA
ETX
DATA LENGTH
PROGRAM SWITCH--CONTRO~S EXIT fROM

WABT LOOP

APPENDIX M 261

Figure 64.

II JOB ASSEMBLER
II DATE 67130
II VOL
II DLAB

II XTENT
II EXEC

•

SYSOOO,WORKI
'BOS 8K DISK
0001,65099,65099,'0000000000000'
1,000,OI16000,0195009,'111111',SYSOOO

AOPTN ENTRY
REPRO
PHASE TESTA,S
TITLE 'SAMPLE PROGRAM - CPU-B'
START X'lFOS'

1111111', •

• FILE DEFINITION SECTION--PRINTER AND CARD READER

* DTFBG DISK
RDFLE DTFSR BlKSIZE=80,DEVADDR=SYSIPT,DEVICE=READ40,EOFADDR=ENDOJ, *

IOAREAl=WTCARD,TYPEFLE=INPUT
WTFLE DTFSR BLKSIlE=SO,DEVADDR=SYSLST,OEVICE=PRINTER,IOAREA1=WTCAR0,.

TYPEFLE=OUTPUT
DTFEN

* * BSC FILE DEFINITION SECTION

* BASE DTFRF BEGIN,3
BSCFLE DTFBS DEVAODR=SYS002,AREA=RDAREA,LENGTH=RDLEN,BSCFLAG=ERRFG, *

RCOUNT=-7

* * INITIALIZATION--OPEN'S AND BOPEN

* BEGIN REG6,O
.,REG6

BALR
USING
OPEN
BOPEN
WAIT
TM

ROFLE,WTFLE
DTFNAME=BSCFLE,INTRFC=B,DIAL=NO

BZ
•
* SET UP BSC
•

L
LA
ST
LH
STH

•

BSCFLED
ERRFG,X'SO'
ERPT

cca FOR READ

REG5,THREE
REG4,STCARO
REG4,RDAREA
REG4,LENGTH
REG4,RDLEN

(AND

* PREPARE TO REAO BY RECEIVING

* PREPARE

•

CNTRL BSCFLE,PRP
WAIT 8SCFLED
TM ERRFG,X'SO'
BO READ
TM ERRFG,X'22'

BO tHCKI
LA REG7,PREPARE

(Part 1 of 3,)

TEST FOR NORMAL COMPLETION OF BOPEN
NO---ERRPT EXIT, YES---CONTINUE

WRITE) OPERATION

SET UP REGISTER FOR RETRY LOOP
SET UP AREA ADDRESS FIELD OF CCB

WITH DATA AREA ADDRESS
SET UP LENGTH FIELD OF CCB WITH

DATA LENGTH

ENQ FROM REMOTE CPU

TEST FOR NORMAL COMPLETION OF CNTRL
YES--CONTINUE NO--
TEST FOR MESSAGE FORMAT ERROR AND

UNEXPECTED RESPONSE
BOTH CONDITIONS--CONtINUE CHECKING
SET UP RETURN ADDRESS FOR TIMEOUT

262 S/360 BOS Assembler with I/O Macros

Figure 64.

B
CIiCKl TM

BO
B

*
* RECEIVE A

* ReAD READ

* WAIT
TM
LA
BZ
TM

* BO
PUT
B

*

ERROR
ERRFG+l,X'OZ'
ENQSND
ERRORl

RECORD AND PRINT IT

BSCFLE,BSC,TN

BSCFLED
ERRFG,X'SO'
REG7,READ
ERROR
ERRFG+l,X'OZ'

ENCSND
WTFLE
READ

ANY OTHER--ERROR EXIT
WAS THE UNEXPT. RESP. AN EOT
YES--GO TO WRITE
NO---ERRQR EXn

RECEIVE A RCD FROH CPU-A---READ-TYPE
CONTINUE

TEST FOR NORMAL COMPLETION OF READ
SET UP RETURN ADDRESS FOR TIMEOUT
NO--ERROR EXIT YES--
TEST FOR EOT RECEIVED WITH NORMAL

COMPLETION
YES--BEGIN SENDING RECORDS
NG--PRINT THE RECORD
RECEIVE ANOTHER RECORD

• REQUEST PERMISSION OF REMOTE CPU TO SEND CCNTRL ENO)
4'
ENQSNO

•

OiGK2

*

CNTRL BSCFLE,ENQ
WAIT BSCFLEO
TM ERRFG,X'SO'
BO PROCEDE
TM ERRFG,X'ZZ'

80
LA
8
TM
60
1M
BO
1H
BI
aCT
B

CHCKZ
REG7,ENCSNO
ERROR
ERRFG+l,X'OS'
ENOOJO
ERRFG+l,X'OZ'
ENDOJ
ERRFG+l,X'Ol'
ERRORl
REGS,ENQSNO
EWABT

TEST FOR NORMAL COMPLETION OF CNTRL
YES--CONTINUE NO--
TEST FOR MESSAGE FORHAT ERROR AND

UNEXPECTED RESPONSE
BOTH CONDITIONS--CONlINUE CHECKING
SET UP RETURN ADDRESS FOR TIMEOUT
~NY OTHER--ERROR EXIT
WAS UNEXPT. RESP. AN ENQ(CONTENTION)
YES--END THE JOB NO--
WAS THE UNEXPT. RESP. AN EOT
YES--NORMAL END OF JOB NO-­
WAS THE UNEXPT. RESP. A WABT
NO--ERROR EXIT
VES--RETRY THE CNTRL EN~
STILL GETTING WA.8T-WAST EXIT

* GET A RECORD FROM THE CARD READER--SENO IT TO CPU-A (REMOTE) ..
PRoOl-cOE L REG5,THREE RESET REGISTER FOR RETRY LOOP

MVI STCARD,X'OZ' RESTORE THE STX CHARACTER
TM PGMsw,x'ol' WAS THE CNTRL ENQ REISSUED BY THE .. WRITE ROUTINE
80 SNDCD YES--SKIP GETTING A NEW RECORD

ROACD GET ROFLE GET A RECORD FROM THE CARD READER
SNOCO WRITE BSCFLE,BSC,TT SEND IT---WRITE-TYPE IS 'CONTIN~E'

WAIT BSCFlED
TM ERRFG,X'SO' TEST FOR NORMAL COMPLETION OF WRITE
BO RDACD YES--GET ANOTHER RECORD TO SEND NO-
TM ERRFG,X'22' TEST FOR MESSAGE FORMAT ERROR AND .. UNEXPECTED RESPONSE
BO CHCK3 BOTH CONDITIONS--CONTINUE CHECKING
LA REG7,SNDCD SET UP RETURN ADDRESS FOR TIMEOUT
8 ERROR ANY OTHER--ERROR EXIT

(Part 2 of 3)

APPENDIX M 263

CHCK3 TM ERRFG+l,X'02'
BO ENDOJ
TM ERRFG+1,X'01'
BI ERRORl
OI PG"'SW,X'Ol'
BCT REG5,ENClSND

*
* CONTENTION EXIT

* ENOOJQ MSG CENQ
B ENDOJB

*
* ERROR EXIT

*
E~ROR TM ERRFG.X·40·

BI ERRORl
TM BSCftED*3yX'02'
BO TIMEOUT

ERRORl MSG ERR
B ENDOJB

*
* TI"EOUT
*
TIMEOUT TM PGMSW,X'lO'

BO *+10
01 PGMSW,X'lO'
OR REG7
MSG TIME
B ENDOJB

*
* WAST EXIT

* EWA8T MSG WAST
B ENDOJB

*
* NORMAL END-OF-JOB EXIT
*
ENOOJ MSG EOJ
ENOOJB CNTRl BSCFlE,EOr

WAIT BSCFlED
CLOSE RDFlE,~HFLE

BClOS BSCFlE
WAIT 8SCFLED

ERPT ERRPT BSCFlE

* EOJ

*
* * REGISTER EQUATES

* REG4 EQU 4
REG5 EOU 5
REG6 EQU 6
REG7 EQU 7

*
* CONSTANTS

'" THREE DC F' 3'
STCARD DC X' 02'
WTCARD OS ClBO

DC X'03'
LENGTH DC H'8Z'
PGMSW DC x·OO'

*
* END BASE
II END

Fiqure 64. (Part 3 of 3)

264 S/360 BaS Assembler with I/O Macros

WAS THE UNEXPT. RESP. AN EOT
YES--END OF JOB NO--
WAS THE UNEXPT. RESP. A WAST
NO--ERROR EXIT YES--
SET SWITCH TO RESEND THIS RECORD
SEND ENQ AGAIN

ISSUE INDICATIVE MESSAGE
SEND AN EOT INDICATING END OF JOB

TEST FOR 1/0 ERROR
NO--EX IT YES--
TEST FOR TI MEOUT
YES--GO TO ROUTINE ELSE
ISSUE INDICATIVE MESSAGE
SEND AN EDT INDICATING END OF JOB

HAS TIMEOUT BEEN RETRIED
YES--EXIT NO--
TURN ON SWITCH INDICATING RETRY
GO TO RETRY

ISSUE INDICATIVE MESSAGE
GO TO ENO OF JOB

ISSUE EOJ MESSAGE
SEND AN EOT

CLOSE THE FILES

PRINT THE ERROR STATISTICS

WORK REGISTER
COUNT-CONTROLLED LOOP REGISTER
BASE REGISTER
RETURN ADDRESS FOR TIMEOUT

LOOP COUNT
STX
DATA AREA
ETX
DATA LENGTH
PROGRAM SWITCH--CONTROLS EXIT FROM

WABT lOOP

PAB!~~~BSC SUPPORT CHANNEL PROGRAMS

The BOS/BSC Support channel programs (CCW
lists) set up by BSC macros to facilitate
the sending and receiving of data to and
from a remote CPU follow. For a
description of each macro and/or type
operation, refer to Binary_Synch~ono~~
CO!!U!l~.!!ic atJ:on.

These command sequences may be useful to
the problem program which must interface
with some other BSC support, such as DOS
BTAM BSC.

Using the DIAL keyboard operand coded on
the BOPEN macro instructicn, one of the
followinq BSC channel programs is set up.

. ------------~-------------------.
IDIAL operand I channel commands
j-- +--
IDIAL=YES I Disable
I I Set Mode
j-- +-
IDIAL=NO I Disable
I I Set Mode
I I Enable
L--- ~, ______ _

Using the parameters on the IDIAL macro
instruction and the problem
program-supplied IDLST, one of the
following BSC channel programs is set up.

r- ~------
IIDIAL operands I channel commands
I-------___t_
IDIAL-ANS or I En.able
IDIAL=MAN and I READ [RCVID] ENQ
, OPTYPE=RD I WRITE [SNDID] AC!{-O

, READ data
r ----------+_
IDIAL=CALL and I Dial or Enable
IOPTYPE=WT Q£ I WRITE [SNDID] ENQ
IDIAL=MAN and I READ [RCVID] ACK-O
IOPTYPE=WT I WRITE data
, , READ response
r- ,
IDIAL=CALL and I Dial or Enable
IOPTYPE=WTX or I WRITE [SNDID] ENQ
IDIAL=MAN and I READ [RCVID] ACK-O
IOPTYPE=WTX I WRITE data
I I WRITE DLE ETX
I I READ respons~
L- I

BCLOS Ma.f£g

The following BSC channel program is set
up.

i , ,
I , channel commands I
I -+-- -f
IBCLOS Macro , Disable ,
I I Set Mode I
L- --L- J

The appropriate channel program for R~AD is
set up according to the type-code spec~~ied
on the READ macro instruction.

r---- ~ ,
,Type-code I channel commands I
r- +---------------1
ITN (Continue) , WR ITE ACK
I I READ data
r- +-
ITP (Repea t) I WRITE NAK
I I READ data , I
ITG (Continue with I WRITE qraphics
Ileadinq graphics) I WRITE ACK
I I READ data
I +-
ITL (Repeat with I WR ITE graphics
Ileading qraphics) I WRITE NA K
I I READ data
I -+-
ITQ (Inguiry) I READ ENQ

-'-

WRITE Macro

rne appropriate channel proqram for WRITE
is set up according to the type-code
specified on the WRITE macro instruction.

I
I
I
I
I

-f ,
I
I ,
I
I
I

-f
I

J

i ~ I

Itype-code I channel commands I
I----------+__ ----1
ITT (Continue) I WR ITE data I
I I READ response I
I I -f
ITC (Conversational) I WRITE data I
I I READ data (or I
I I response) I
f-- -+- I
ITX (Transparent I WRITE data I
I Text) I WRITE DLE ETX I
I I READ response I
I -+- ,
ITXB (Transparent I WRITE data I
IBlock) I WRITE DLE ETB I
I I READ response I
, I I
lTV (Transparent I WRITE data I
I Conversational) I WRITE DLE ETX I
I I READ data (or I
I I response) I L-______________ . ____ ~

APPENDIX M 265

For each operation type (code parameter on
the CNTRL macro instruction) the
appropriate channel program is set up.

r--- ------------~ I
loperation type I channel commands I
I-- +--- ,
IWABT (Wait before J WRITE WABT I
I Tra nsmi tting) I Prepare I
I I READ response I
I I ---f
IPRP (Prepare) I Prepare I
I I READ response I
r- I I
IENQ (Inquiry I WRITE ENQ I
I , READ response I
i -+- 1
IDSC (Disconnect) i WRITE Disconnect ,I
I I (DLE EOT) I
I- I I
I EOT (Ie ased line) I WR ITE EOT I
I- +--------------1
I EOT (dial line) I WRITE EOT I
I I READ response I _______ ---L-_________ --J

266 S/360 BOS Assembler with I/O Macros

PART5-BOS/BSCTP OPCODES

BOS/BSC support uses bytes 40-47 of the
channel command word (CCW), which are
normally not used, for a IITP op code ll ,

indentifying to PIOCS the operation being
performed by the command.

r-------~I------------

I J
ITP CODE I
I I
I I
I I
IX'O,. I
I 1
I

MEANING

Prepare, Enable, Dial, or
Disable command

i

I
I
I
-I
I
I
I
I

I x' 02'
I

WRITE special characters: DLE I
ETB, DLE ETX, qraphics, or WABT

I
IX' 03'
I
IX'04'
I
IX'05'
I
I
IX'07'
I
IX'09'
I
I X' , ,.

I
IX'20'
I
IX' 21 '
I
X'24'

X'31'

X'32'

X'34'

X'35'

X'39'

WRITE [ID] ENQ

WRITE [ID] ACK-O

READ response to CNTRL ENQ ..{)~
EOT

READ [ID] ACK-.O

WRITE response to text or ENQ

READ or WRITE text

READ response to text

WRITE EOT, DLE EOT, Set Mode

READ ENQ (READ TQ or READ
response after Prepare)

READ Skip - error recovery

WRITE ENQ - error recovery

READ ENQ - error recovery

WRITE DLE ENQ - error recovery

WRITE NAK or current SNDACK -
error recovery

A-Type Address Constant •••••••••••••••• 43
ABORT 180
Absolute and Relocatable Expressions ••• 18
Absolute Expressions ••••••••••••••••••• 18
Absolute Terms ••••••••••••••••••••••••• 12
ADAREX (DTFIS) •••••••••••••••••••••• 107,158
ADD (DTFIS IOROUT) •••••••••••••••••• 107,162
Adding Records to a File (by DAM)...... 92
Adding Records to a File

(by ISFMS) •••••••••••••••••••• 102,107,158
Addition of Records, and Overflow Areas

(for ISFMS) •••••••••••••••••••••••••• 101
Address Constant, A-Type ••••••••••••••• 43
Address Constant, S-Type ••••••••••••••• 43
Address Constant, V-Type............... 44
Address Constant, Y-Type ••••••••••••••• 43
Address Constants •••••••••••••••••••••• 42
Addresses - Explicit and Implied ••••• ~20,30
Addressing •••••••••••••••••••••• 20,23,29,51
Addressing Dummy sections •••••••••••••• 25
Addressing External Control sections ••• 27
Address, Base •••••••••••••••••••••••••• 6,20
Address, Explicit ••••••••••••••••••••• 20,30
Addres s, Impli ed' •••••••••••••••••••••• 20,30
ADDRTR (DTFIS IOROUT) ••••••••••••••• 107,162
AFILE Card ••••••••••••••••••••••••••••• 193
AFTER (DTFDA) ••••••••••••••••••••• 92,95, 152
Alignment, Boundary •••••••••••••• ~.20,35,38
Alignment, Forcing with DS statement ••• 45
Alignment, Instruction ••••••••••••••••• 29
ALL (DTFPH MOUNTD) ••••••••••••••••••• 67,172
ALOG Card •••••••••••••••••••••••••••••• 192
Alternate Tape Drive Nonstandard Labels

(Tape) ••• 71.
ALTTAPE (DTFSR) ••• , ••••••••••••• .;...... 139
Ampersand •••••••••••••••••••••••.•••••• 15,38
AOPTN Card ••••••••••••••••••••••••••••• 192
Appendix A: Character Codes •••••••••• ~ 197
Appendix B~ Machi~e-Instruction

Mnemonic Codes ••••••••••••••••••••••• 203
Appendix C: Assembler Instructions •••• 211
Appendix D: Machine-Instruction Format 212
Appendix E: Hexadecimal'-Decimal Number

Conversion Table ••••••••••••••••••••• 214
Appendix F: Summary of Constants •••••• 223
Appendix G: IOCS Example •••••••••••••• 224
Appendix H: Assembler Languages --

Features Comparison Chart •••••••••••• 230
Appendix I: ~ummary of Input/Output for

an Assembly •••••••••••••••••••••••••• 234
Appendix J: Assembler Diagnostic

Messages ••••••••••••••••••••••••••••• 245
Appendii K: Summary of Imperative Macro

Instructions. •• 252
Appendix L: Blank, substitute Blank, and

Intermediate LRC Requirements •••••••• 255
APpendix,M: ,Binary Synchronous
Commun~cat~on ••••••••••••••••••.•••••• 256

AREA (DTFBS) ••••••••••••••••••••••••••• 167
AREA (DTFSN) •••••••• ~ •••••••••••••••••• 165

Areas for Consecutive Processing,
storage. 75

Areas for DAM, Storage ••••••••••••••••• 89
Areas for ISFMS, Storage ••••• 96,106,161,164
Area, Cylinder Overflow (ISFMS) ••••••.• 101
Area, Defining Fields of ••••••••••••••• 45
Area, Independent Overflow (ISFMS) ••••• 103
Area, Overflow (ISFMS).................. 101
Assemble a Supervisor,

Organization to ••••••••••••••••••• 182, 188
Assembler ••••••••••••••••••••••••••• 5,23,34
Assembler File (AFILE) ••••••••••••••••• 193
Assem~ler Instruction Statements ••• 5,34,211
Assembler Log (ALOG) ••••••••••••••••••• 192
Assembler Option (AOPTN) ••••••••••••••• 192
Assembler Workarea (AWORK) •••••• ~ •••••• 193
Assembler Languages -- Features

Comparison Chart...................... 230
Assembler-Language Structure ••••••••••• 11
Assembler-Language Subset Relationship. 195
Assembler-Language Coding Conventions.. 8
Assembling ••••••••• " ••••••••••••••••••• 5, 183
Assembling the Job Control Proqram ••••• 191
Assembly ••••••••••••••••••••••••••••••• 5,23
Assembly of the Macro •••••••••••••••••• 55
ASSGN .. 144
Asterisk ••••••••••••••••••••••••••••••• 15
AWORK Card ••••••••••••••••••••••••.•••• 193

BACK (DTF SR READ)...................... 148
Backspace to Interrecord Gap (BSR) •••• 83,85
Backspace to Tape Mark (BSF) •••••••••• 83,85
Back wards, Read Ta pe •••••••••••••• 69,77, 132
Base Address........................... 6
Base Register ••••••••••••••••••••••• 6,20,23
Base Register Address Calculation •••••• 6,20
Base Register Instructions ••••••••••••• 20
Base-Displacement Form of Addresses.... 6
Basic Proqramming suppo~t Relationships 6
BCLOS Macro, for BSC Support •••• 124,136,252
Begin Column............................ 8
Begin Literal Pool •• ~ •••••••••••••••••• 50
Beg,in-Defini tion Card (DTFBG) ••••••• 137, 138
Binary Constant - B •••••••••••••••••••• 39
BinarySelf-Defiriing Term.............. 14
Binary Synchronous

Communication ••••••••••••••••• 116,166,256
'B L K S I Z E (D 'I" FDA) •• 1 5 2
BLKSIZE (DTFSR)........................ 142
Block Count for Checkpoint Records •• 130,132
Block-Length Field ••••• ~ • • • • • • • • • • • • • • • 74
Blocked Records (for Consecutive) .72,78,148
Blocked Records (for DAM) •••••••••••• 89,156
Blocked Records (for ISFMS).106,107,111,163
BOPER Macro, for BSC Support ••••• 67,117,252
Boundary Adjustment •••••••••••••••• 20,29,44
Boundary Alignment for Constants •••••• 35,38
BSC Support, Expanded CCB ••••••••••• 126,166
BSC Support, File Definition Macros •••• 166

Index 267

BSC Support, Imperative Macros ••••••••• 116
BSC Support, Line Control •••••••••••••• 116
BSF (Backspace to Tape Mark) ••••••••• ~83,85
BS R (Backspace to Interrecord Gap) •••• 83,85
Building Records in the Output Are~ •••• 77
Building Records in a Work Area •••••••• 79

Capacity Record (for DAM) •••••••••••••• 92
Card Error ••••••••••••••••••••••••••••• 144
Card File (CLOSE)...................... 136
Card Read-Punch (IBM 2540),

CNTRL for •••••••.••••••••••.••••••••• 85
Card Read-Punch (IBM 1442 or 2520),

CNTRL for •••••••••••••••••••••••••••• 86
Card R~cord Maximum Size ••••••••••••••• 75
Carriage Channel 9 Punch ••••••••••••• 88,1e7
Carriage control, Printer ••••••••••••• 79,83
Carriage Skip (SK)...................... 85
Carriage Space (SP).................... 85
CCB Macro ••••••••••••••••••••.••••••••• 125
CCB, Expanded for BSC •••••••••••••••••• 126
CCB, Expanded for STR ••••••••.••••••••• 165
CCW - Define Channel Command Word •••• 46,211
CDCNV Macro •••••••••••••••••••••••••••• 115
Channel Command Words (CCW) •••••••••• 46, 145
Channel Configuration Supported by IOCS 56
Character Constant -C- •••••••.•• ; •••••• 38
Character Self-Defining Term •.••••••••• 15
Character Set ••••.••••••••••••.••••••• 11, '97
Checking Alignment ••••••••••••••••••• ~~ 29
Checking User Standard Labels (Disk) ••• 68
Checkpoint Records .•••••••••• 85,130,.36,142
CHECKPT (DTFSR) ••••• ~ ••••••••••• ~ ••• ~ •• 142
CHKPT Macro •••••••••••••••.•••••••••• 130, 184
CHNG Macro •••••••••••••••••••••••••• ~87,129
CKPTREC (DTFSR) ••••••••••••••••••••• 131,' 42
CLOSE Macro ••••••••••••••••••••••••• '35,180
Closed File, Reopening a •••• ~ .•••••• ~ •• 1,35
CMBND (DTFSR TYPEFLE) 77,79,150
CNOP - Conditional No Operation •••••• 51~2"
CNTRL Macro •••.••••••••••••••••••••• 83,85,95
CNTRL, for BSC Support •••••••• 84,87,116,252
CNTRL, for STR Devices ••••••••••••••• ~. 115
Code Conversion (CDCNV) Macro •••••••••• 115
Code-Translation Table ••••••••••••••••• 197
Codes, Extended Mnemonic................ 32
Codes, Machine-Instruction •••.••••••••• 31
Codes, Operation ••••••••••••••••••••••• 5, 10
Coding Conventions ••••••••••••••••••••• 8,'7
Cod"ing Form •••••.••••••••• ,............. 8
Combined File (CMBND).................. 77
Command Control Block (CCB) •••••••••• 69,125
Comments Entries ••••••••••••.•••••••••• 10
Communication, Operator ••••••• ~.173,175,181
Communication Region (COMRG) ••••••••••• 173
Compatibility.......................... 5
Completion •••••••• ~ •••••••••••••••••• ;. 132
Complex Relocatable Expressions •••••••• 43
COMRG Macro ••••••••••••••••••••••••• 174,'77
Conditional No Operation -- ~NOP ••••••• 51
CONFG (SUPVR Macro)...................... 184
Consecutive Processing •••••••••••• 57,71,138
corisole (DTFSR DEV ICE) • • • • • • • • • • • • • • • •• 145
Constants, Address" •••••••.••••••••••• 42,223
Constants, Decimal (P and Z) ••••••••• 42,223
Constants, Defining •••••••••••••••••••• 35

268 S/360 BaS Assembler with I/O Macros

Constants, Exponent Modifier ••••••••••• ~7
Constants, Fixed-Point (Fand H) •• 37,40,223
Constants, Floating-Point (E and D) •• 41,223
Constants, Length Modifier •••••• ~ •••••• 37
Constants, Multiple ••••• ~ ••••••••••••• 35,38
Constants, Operand Subfield 1:

Duplication Factor ••••••••••••••••••• 36
Constants, Operand Subfield 2:

Type.................................. 36
Constants, Operand Subfield 3:

Modifiers •••••••••••••••••••••••••••• 36
Constants, Operand Subfield 4:

Constant ••••••••••••••••••••••••••••• 38
Constants, ~cale Modifier •••••••••••••• 37
Constant, Binary (B) ••••••••••••••••• 39,223
Constant, Character (C) •••••••••••••• 38,223
Constant, Hexadecimal (X) •••••••••••• 39,223
Continuation Cards, Macro

Instruction •••••••••••••.•••••••••• 54, 138
Continuation Indicator Column,

Macro Instruction •••••••••••••••••• 54,138
continuation Lines. •.• •.•• ••• ••• ••• ••• ••• 8
Continue Column •••••••••• ·•••••••••••••• 8
continue Column, Macro Instruction ••••• 54
Control Cards •••••••••.••••••••••••• · •• 68,192
Control Character •••••••••••••••••••••• 144
Control Dictionary..................... 26
CONTROL (DTFDA')........................ 152
CONTROL (DTFSR) •••••••••••••••••••••• 83,142
Control Instructions, Program •••••••••• 48
Control Section, First.~ ••••••••••••••• 24
Control Section, Unnamed· ••••••••••••••• 25
Control Section Location Assignment •••• 24
Control Sections •••••••••••••••••••• 6,23,60
Control Sections, External (Addressing) 27
Control, Input/Output •••••••••••••••••• 55
Control, Punch and Printer ••••••••••••• 79
Conversion Table, Decimal-Hexadecimal

Numbers •••••••••••••••••••••••••••••• 214
Core Image Lib'rary •••••••••• " •••••••••• 174
COREXIT (DTFSR)........................ 142
Count Area (DAM) •••••••••••••• ,.. • •••••• 92
CR (EXIT Macro)........................ 175
CR (SUPVR Macro) ".. •• • • • • • •• '84
CRDERR (DTFSR) ••••••••••••••••••••••••• 144
Creating a File or Adding Records to

a File (by DAM) •• ! •••••••••• ~ •••••••• 92
CSECT - Identify Control Section ••••• 25,211
CTLCHR (DTFSR)......................... '44
cylinder Index ••••••••••••••••••••••• 99, 105
Cylinder Overflow Area (ISFMS) ••••••••• 103
CYLOFL (DTFIS)' '03, '58
CYNDEX (DTFIS) •• ~ ••••••••••••••••••• 105,158

Data Area (DAM)........................ 92
Data Conversion Special Feature •••••• 77,13'
Data Definition Instructions ••••••••••• 35
DC - Define .Constant ••••••••••••••••••• 35
Decimal Constants - P and Z •• ~ ••••••••• 42
Decimal Self-Defining Term ••••••••••••• 14
Declarative File-Definition Macro •••••• 59
Defining Fields of an Area ••••••••••••• 45
Defining Symbols ••••••••••••••••••••••• 13
Definitions, Literal ••••••••••••••••••• 36
Definitions, Macro..................... 53
DERREX (DTFIS)......................... 158

Detail Entry, File Definition Macro
Instru~tion •••••••••••••••••••••••••• 138

DEVA DDR (DTFBS) _ • • • • • • • • • • • • •• •• • • •• • •• 167
DEVADDR (DTF·PH) •••••••••••••••••••••••• 171
DEVADDR (DTFSN) •••••••••••••••••••••••• 165
DEVADDR (DTFSR) ••••••••••••••••••••• 139, 144
DEVICE (DTFDA)......................... 152
DEVICE (DTFSR) ••••••••••••••••••••••••• 144
Diagnostic Messages •••••••••••••••••••• 245
DIALO Mac~o, for STR Devices ••••••• ~.59,1'4
Digits, Hexadecimal •••••••••••••••••••• 15
Digits, Numeric ••••••••.•••••••••••••••• 11
Direct Access Method (DAM) .~ •• 58,88,138,151
Disk 11 (DTFDA DEVICE}.................. 152
Disk 11 (DTFSR DEVICE) • • • • • • • • • • • • • • • • •• 145
Disk End-of-Volume ••••••••••••••••••••• 133
Disk Error, Uncorrectable •••• ~ ••••••••• 158
Disk File, CLOSE ••••••••••••••••••••.••• 135
Disk File, Creating a (by DAM)......... 92
Disk File, Cylinder Index Area of

(ISFMS) •••••••••••••••••••••••••••••• 105
Disk File, Macro Instructicn tc Load or

Extend by ISFMS •••••••••••••••••• ~ ••• 105
Disk File, Master Index Area of (ISFMS) 105
Disk File, Pri me Area of {ISFM S) •• • • • •• 105
Disk File, Reopeninq a ••••••••••••••• 67,135
Disk (SUPVR Macro)..................... 184
Disk Input File •••••••••••••••••• 67,'33,145
Disk Labels ~ ••••••••••••••••••••••• 63
Disk Labels, User Trailer •••••••••••••• 133
Disk Output File ••••••••••••••••• 68,133,147
Disk Record Indices (for ISFMS)........ 97
Disk Records, Organization of

(for ISFMS) •••••••••••••••••••••••••• 96
Disk Records, Processing consecutively. 72
Disk Records, Processing by the

Direct Access Method •••••••••••••••• 58,88
Disk Records, Processing by ISFMS •••••• 96
Disk Storaqe Drive (IBM 2311),

CNTRL Macro for •••••••••••••••••••••• 86
Disk Workarea ••••••••••••••••• ~........ 7
Displacement ••••••••••••••••••••••••••• 6,18
DLAB (Job Control Card) •••••••••••••• 67, 107
DRriP - DROP Base Register •••••••••••• 22,211
DS - Define Storage •••••••••••••••••• 44,211
DSECT - Identify Dummy Section ••• 25,21',224
PSKXTNT (DTFIS) •••••••••••••••••••••••• 160
DSPLY Macro............................ 82
DTAREX· (DTFIS) •••••••••••••••••••••• 105,160
DTFBG Macro ••••••••••••••••• ' •••••••• 137,138
DTFBS Macro, for BSC Support ••••• 60,138,166
DTFDA Macro ••••••••••••••••••• 59,88, 138,151
DTFEN Macro •••••••••••••••••••••••••••• 138
DTFIS Macro ••••••••••••••••••• 59,96,138,158
DTFPH (Macro Instruction) •••••••••••• 60,171
DTFRF Macro, for BSC ~upport ••••••••••• 166
DTFRF Macro, for STR Processing •• 60,112,170
DTFSN Macro, for STR

processing ••••••••••••••••• 60-,112,138,165
DTFSR Macro ••••••••••.•••• ~ •••••• 59,138,139
Dummy section Location Assignment •••••• 25
Dummy Sections, Addressing ••••••••••••• 25
DUMP Macro •••• ' •••••••••••••••••• 174,180,182
Duplication Factor, Special Uses of •••• 45
Duplication Factor for Constants •••••• 36,45
DUPREX (DTFIS Duplicate-Record

Check)~ ••••••••••••••••••••••••••• 107,160

EBCDIC Codes ••••••••••••••••••••••••• 10,150
EF (End-of-File) •••••••••••.•••••••••••• 134
E,JD ••••••••••• ~ "'.... 86
EJECT - Start New Page ••••••••••••••• 47,211
END - End Assembly •••••••••••••••• ~ •• 52,211
End Assembly........................... 52
End Column ••••••••••••••••••• ~......... 8
End File Load Mode..................... 106
End set Limit (ESETL) •••••••••• ~ • • • • • •• 110
End-of-Definition Card (DTFEN) ••••••••• 138
End-of-File ••••••••••••••••••••••••• 132,134
End-of-File Detection •••••••••••••••••• 145
End-of-File Record (Disk) ••••••••••• 107,133
End-of-Job (EO.J) ••••••••••••••••••••••• 182-
End-of-Volume, Disk •••••••••••••••••••• 132
End-of-Volume, Forced (Tape)........... 134
ENDFL Macro •••••••••••••••••••••••••• 05,106
Entries, Comments ••••••••••••• ~ •••••••• 10
Entr ies, Name •• ,........................ 10
En tries, Operand •••••• '. • •• • • • • • • • • • • • • • 10
Entries, Operation..................... 10
ENTRY - Identify Entry-Point Symbol •• 27,211
Entry Cards •••••••••• .; ••••••••••••••• _. '38
EOF •• ~ " •••••••• 132,134
EOFl (Tape Label Identifier) ••••••••• 65,136
EOF (DTFSN) •••••••••• ~ ••••••••••••••••• 115
EOFADDR' (DTFIS) ••••••••••••••••••••• 133,161
EOFADDR (DTFSR) ~.; 133,145
EOJ Macro ••••••••••••••••••••••••••• 174,182
EOV ••••••••••••••••••• ~ ••••••••• '32,134,139
EOV1 (Tape Label Identifier) ••••••••••• 65
EQU - Equate Symbol ••••••••••••••• 13,34,211
Erase Gap (ERG - Write Blank Tape) ••••• 83
ERRBYTE (DTFDA Error Status Byte} •••• 95,154
ERROPT (DTFSR) ••••••••••••••••••••••••• 145
Error Condition, Retry for Parity •••••• 145
Error Condition, Uncorrectable (Disk) •• 154
Error Indications ••••••••••••••••••••• 6,143
ERRPT Macro, for BSC Support •••• 124,182,252
ESETL Macro............................ 1'10
EV (End-of-Volume) ••••••••••••••••••••• 134
Evaluation of Expressions •••••••••••••• 17
Example of an Organized File (by ISFMS) 103
Example of IOCS (Appendix G) ••••••••••• 224
EXCP Macro (Execute Channel

Program) ••••••••••••••••••••••• 69,129, 174
EXIT Macro •••••••••••••••••••••••••• 174,175
Ex plici tAd dress •••••••••••••••••••••. 20,30
Exponent Modifier for Constants •••••••• 37
Expressions •••••••••••••••••••••• ' ••••• 13, 17
Expressions'", A'bsolute.................. 18
Expressions, Coding of ••••••••••••••••• 17
Expressions, Complex Relocatable •••••• , 43
Expressions, Evaluation of ••••••••••••• 17
Expressions, Relocatable ••••••••••••••• '8
Expression, Multi term. • • • • • • • • • • • • • • • • • 17
Expression, singie Term~ ••••••••••••••• 17
Extend a Disk File by ISFMS,

Macro Instructions to •••••••••••••••• 105
Extended Mnemonic Codes •••••••••••••••• 32
External Control Sections, Addressing.. 27
External Signal •••••••••••••••••• ·•••••• 173
External SymboT Dictionary (ESD)....... 192
EXTRN - Identify External Symbol ••••• 27,211

Index 269

FEOV Macro, Tape Records •••••••••••• 134,137
FETCH Macro •••••••••••• P •••••••••••• 174,175
Fields, Defining ••••••••••••••••••••••• 45
.Field, Identification-Sequence......... 11
FILABL (DTFSR} ••••••••••••••••••••••• 65,146
File Definition Macros ••••••••••••••• 59~137
File Header Label, Standard (Tape) ••••• 65
File Limits (Disk}..................... 63
File Tra~ler Label, Standard (Tape) •••• 65
Fi len a m e 3 Field......................... 1 09
FilenameB Field ••••••••••• ;. •••••••••••• 136
FilenameH' Field ••.•••••••••••••••••••••• 106
Filename s (File Definition)............ 138
Fitename U Field........................ 109
File, Creating or Adding Records to

(by DAM) •••••••••••••••••••• '........ • 92
File, Example of an Organized (by ISFMS) 103
File, Load or Extend (by ISFMS) •••••••• 105
First control Section.~ •••••• ~ ••••••••• 22
FIXBLK (DTFIS RECFORM) ••••••••••••••••• 163
FIXBLK (DTFSR RECFORM) ••••••••••••••••• 149
Fixed-Length Records (for Consecutive) 72,78
Fixed-T.ength Records (for ISFMS)....... 96
Fixed-Length Records (for DAr-$) ••••••••• 156
Fixed-Point Constant, Scale Modifier for 37
Fixed-Point Constants - F and H ••••••• 37,40
FIXUNB (DTFDA RECFORM) 156
FIXUNB (DTFIS RECFORM) ••••••••••••••••• 163
FIXUNB(DTFSR RECFORM} ••••••••.••••••••• 148
Floating-Point Constant, Sc~le

Modifier for... •.••••••••••••••••••••• 37
Floating-Point CQnstants - E and D •••• 37,41
Forced End-of-Volume (Tape) •••••••••••• 134
Forcinq Alignment (DS ~tatement)....... 45
Format-1: Standard File Label ••••••••• 63
Format-2: Standard File Label ••••••••• 64
Format-3: Standard File Label ••••••••• 64
Formats, Machine-Instruction ••••••••• 31,212
Formats, Standard File Label (Disk) •••• 63
Format, Constant Specifying~ 38
Format, Keyword (Macro)................ 54
Format, Literal •••••••••••••••••••••••• 17
Format, Macro Instruction •••••••••••••• 54
Format, Positional (Macro)............. 54
Format, Statement...................... 8
Format, Statement (Summary of) •• • • •• • • • 11
FORWARD (DTFSR READ) ••••••• ~ •• ' ••••••••• 148
FSF (Forward Space to Tape Mark) •••••• 83,85
FSR (Forward Space to Interrecord Gap) 83,85

General Restrictions on Symbols •••••••• 13
Generate Transfer Card -- XFR •••••••••• 50
GET Macro •••••••••••••••••••••••••••• 75,111

HDR1, HDR2, etc. (Tape Label
Identifier).......................... 65

Header Card, File Definition
Macro Instruction •••••••••••••••••••• 138

HEADER (DTFSR)......................... 146
Hexadecimal Constant -- x 39
Hexadecimal Digits ••••••••••••••••••••• 14
Hexadec'imal Self-Defining Term •••••••• 14,42

270 S/360 BOS Assembler with I/O Macros

IBM 2311 Disk Storage Drive, CNTRL
Macro for •••••••••••••••••••••••••••• 86

IBM 1285 Optical Reader, CNTRL for ••••• 86
IBK 1442 or 2520 Card Read-Punch,

CNTRL for ••••••••• ~ ••••••••••••• 4 •••• 86
IBM 2540 Card Read-Punch, CNTRL for •••• 85
IBM 1052 Printer-Keyboard •••••••••••••• 181
ICTL - Input Format Control •••••••••• 48,211
ID-Verification •••••••••••••••••• 59,117, '18
Identifi6ation - Sequence Field •••••••• "
IOIAL Macro, for BSC Support •••••••• 117,252
IDT ... OC (DTFDA) •••••••• .o ••••••••••••••• 9 1, '54
IDNAME (DTFIS) •••••••••••.••••••••••••• 110
ID, Record (DTFIS) •••••••••••••••••• 106,111
ID, Record Reference After (for DAM) •• 92,94
ID, Record Reference by (for DAM) .91,93, 154
IGNORE (DTFSR ERROPT) •••••••••••••••••• 146
ILIDEX (DTFIS) ••••••••••••••••••••••••• 161
Imperative Macro Instruction •••• , •••• 60,252
Implied Address ••••••••••••••••••••••• 20,30
INAREA (DTFSR) ••••••••••••••••••••••• 79,146
INBL KSZ (DTFSR) ••••••••••••••••••• '. • • •• 147
Independent Overflow Area (ISFMS)...... 103
Indexed Sequential File

Management System (ISFMS) ••• 58,96,138,1.58
Indices (for ISFMS)..................... 97
Initialization. • 63
Input Area, processing Records in the.. 76
Input File, Disk ••••••••••••••••• 67,133,145
Input File, Tape ••••••••• 69,133,136,142,145
Input Format Control -- ICTL ••••••••••• 48
INPUT (DTFDA TYPEFLE) •••••••••••••••••• 157
INPUT (DTFPH TYPEFLE) • •• • • • • • • •• • • •• • •• 173
INPUT (DTFSR TYPEFLE) •••••••••••••••••• 150
Input Sequence 'Checking ~- ISEQ •••••••• 49
Input/Output Control Macros •••••••••••• 55
INQ (DTFSN) •••••••••••••••••••••••••••• 115
Inserting Records (ISFMS) •••••••••••••• 102
Instruction, Base Reqister ••••••••••••• 20
Instruction, Symbol Definition (EQU)... 34
Instruction Aliqnment and Checkinq ••••• 29
Instructions, Assembler •••••••••••••••• 34
Instructions, Data Definition ••••••••• 34,35
Instructions, Listinq Control ••••••••• 34,46
Instructions, Machine •••••••••••••••••• 29
Instructions, Macro •••••••••••••••••••• 53
Instructions, Program Control ••••••••• 34,48
Interruption Han~ling •••••••••••• 21,173,182
Interval Timer· ••••••••••••••••••••••••• 180
Invalid Symbol"s........................ 13
IOAREA1 (DTFDA) •••••••••••••••••••••• 94,155
IOAREA1 (DTFSR) •••••••••••••••••• 79,142,146
IOAREA2 (DTFSR) ••••••••.••••••••••••• 142,146
IO ARE A L (DT F IS) • 9 6 , 1 6 1
IOAREAR (DTFIS) •••••••••••••••••••••• 96, 161
IOAREAS (DTFIS) 96,1 11, 161
IOCFG Macro........................... 186
IOCS Example (Appendix G) •••••••••••••• 224
IOCS, Channel Confiquration

su pported by ••••••••••••••••••••••• 56, 186
IOCS, I/O Units Handled by.~ •.•••••••••• 55
IOCS, Logical and Physical •••• ~ •••••••• 56
IOREG (DTFIS) •••••••••••••••••••••••• 96, 161
IOREG (DTFSR) 76,78,147

IOROUT (DTFIS) •••••••••••••• 105,107, 109, 162
IPL (Initial Program Loader) ••• ' •••••••• 188
I/O Areas for Consecutive ••••••••• 15,76,146
I/O Areas for DAM •••••••••••••••••••••• 88
I/O Areas for ISFMS •••••••••••••• 96,111,161
I/O Assembly -- Summary •••••••••••••••• 234
I/O Configuration (IOCFG) •••••••••••••• 186
IIO Requests ••••••••••••••••••••••••••• 173
I/O Units Handled by IOCS •••••••••••••• 55
ISEQ - Input Sequence Checking •••• ll,49,211
ISFMS (Indexed Sequential File

Management System) •••••••••• 58,96,138,158

JBCTL Macro •••••••••••••••••••••••••••• 191
Job Control ASSGN Card ••••• ~ ••••••••••• 144
Job Control DLAB Card •••••••••••••••••• 67
Job Control Program •••••••••••••••••••• 130
Job Control RSTRT Card ••••••••••••••••• 131
Job Control TPLAB Card ••••••••••••••••• 10
Job Control VOt. Card •••••••••••••••••• 67,69
Job Control XTENT Card ••••••• 67,144,157,158
Job-Cont~ol-Assembly Macros •••••.••• 190,191

KEY (DTFIS) ••••••••••••••••••••••••• 108,110
Key, Record Reference by

(for DAM) ••••••••••••••••••••••• 93,94,155
Key, Record Reference by (for ISFMS) ••• 94
Key Area for DAM....................... 89
Key Area for ISFMS ••••••••••••••••••••• 96
Key Field in Main Storage (for DAM) ••• 89,93
Key Field in Main Storage

(for ISFMS) •••••••••••••••••••••••• 96,102
Key Field within a Record

(for ISFMS) •••••••••••••••••••••••• 96,102
Key Length, Maximum (for DAM).......... 89
KE Y A R G (D T FDA) ••••••••••••••••••••••• 9 3, , 55
KEYARG (DTFIS) •••••••••••••••••••••• 108,162
KEYT.EN (DTFDA) •••••••••••••••••••• 89,94,155
KEYLEN (DTFIS) •••••••••••••••••••• 96,99,163
KEYLOC (DTFIS) ••••••••••••••••••• 96,107,163
~eypunch Instructions (Coding Form) •••• 8
Keyword Format ••••••••••••••••••• 54, 137,184

LA BADDR (DTFDA Label Address).......... '55
LA BA DDR (DTFPH Label Address) • • • • • • • • •• 172
LABADDR (DTFSR Label Address).......... 148
Label Formats, Standard File (Disk) •••• 63
Label Return (LBRET Macro)............. 71
Labels, Disk ••••••••••••••• ' ••• '.. • . •• • • • 63
La bels, Nonstandard (Tape) ••••• 65,69,70,134
Labels, Standard Tape •••••• 65,69,70,133,148
Labels, User-Standard <Tape) •• 95~71,136,172
Labels, User-Standard

File (Disk) •••••••••••••••••• 64,68,71,172
LBRET Macro •••••••••••••••••••••• 71, 136,172
LE NGTH (DTFBS) .,. • • •• • • • • • • • • • • • • • • • • • •• 167
LE NGTH (DTFSN)......................... J 65
Length Attribute ••••••••••••••••••• 16,29,37
Length Attribute Reference of a Symbol. 16
Length Modifier for Constants •••••••••• 37
Lengths - Explicit and Implied,

Machine-Instructions ••••••••••••••••• 30
Letters •••••••••••••••••••••••••••••••• 10
Limits, File (Disk).................... 63

Link, Sequence (in Overflow Records
by ISFMS) •••••••••••••••••••••••••••• 101

Linkage Ed itor •••••••••••••••••••••••• 27,49
Linkage Field for Indices •••••••••••••• 97
Linkages, Symbolic..................... 26
Linking ••••••••••••••••••••••••••••• 6,23,26
Listing Control Instructions •••••••••• 34,46
Literal Definitions •••••••••••••••••••• 36
Literal Format ••••••••••••••••••••••••• 16
Literal Pool •••••••••••••••••••••••••• 16,50
Literals •••• ~ •••••••••••••••••••••••••• 15
LOAD (DTFIS IOROUT) ••••••••••••••••• 105,162
Load or Extend a Disk File by ISFMS.105,158
Location Assignment, Control Section ••• 24
Location Assignment, Dummy Section ••••• 25
Location Counter ••••••• 15,23,35,38,44,45,50
Location Counter Reference ••• ' •••••••••• 15
Logical IOCS (vs Physical IOCS)........ 56
Logical Record ••••••••••••••••••••••••• 56
LTORG - Begin Literal Pool ••••••••••• 50,211

Machine Check •••••••••••••••••••••••••• 173
Machine Instruction Examples ••••••••••• 31
Machine Instruction Formats •••••••••• 31,212
Machine Instruction Statements •••••••• 29,31
Machine Instructions, Lengths -

Explicit and Implied ••••••••••••••••• 30
Machine Instructions, Operand Fields

and Subfields........................ 29
Machine Instructions •••••.•••••••••••• 29,31
Machine Lan'guage....................... 5
Machine Requiremen ts. • • • • • • • • • • • • • • • • • • 7
Machine-Instruction Mnemonic Codes ••• 31,203
Macro, Assembly of the................. 55
Macro Definition Header •••••••••••••••• 53
Macro Definition Lanquage.............. 53
Macro Instruction Format ••••••••••••••• 54
Macro Instruction Statements •••••.••• 53,252
Macro Instructions ••••.•••••••••••••• 59,252
Macro Instructions for Random Retrieval

by ISFMS ••••••••••••••••••••••••••••• 108
Macro Instructions for Sequential

Retrieval by ISFMS................... 109
Macro Instructions to Add Records to

a File by ISFMS...................... 107
Macro Instructions to Assemble a

Supervisor •••••••••••••••••••••••• 182,183
Macro Instructions to toad, Extend Disk

Files by ISFMS ••••••••••••••••••••••• 105
Macro Library •••.•••••••••••••••••••••• 53
Macro System ••••••••••••••••••••••••••• 53
Macros, File Definition •••••••••.••••• 54,59
Macros, Input-Output Control ••••••••••• 55
Macros, Job-Control-Assembly ••••••••••• 190
Macros, Supervisor-Assembly •••••••••• 54,182
Macros, Supervisor-Communication ••••• 54,173
Magnetic Tape Units, CNTRL for ••••••••• 83
MANDEX (DTFIS) 105, 163
Master Index ••••••••••••••••• 97,101,106,163
Message (MSG) ••••••••••••••••••••••• 174,175
Methods of Reference for DAM ••••••••••• 8~
Mnemonic Operation Codes ••••• 5,10,31,32,203
Model Statements....................... 53
Modifiers for Constants................ 37
MOUNTD (DTFPH) ••••••••••.••••••••••••• 67, 172
MSG Macro ••••••••••••••••••••••••••• 174,175

Index 271

MSTIND (DTFIS) •••••••••••••••••••••• 101,163
Multifile Reels •••••••••••••••••••••••• 70
Mul t iple Tracks, Search (DAM) •• ~ •• 89,93,157
Multiterm Expression ••••••••••••••••••• 16
MVCOM Macro 174,178

Name Entries ••••••• ~ ••••••••••••••••••• 10
Name Field, Macro Instruction •••••••••• 54
Naming Control Sections •••••••••• 25,105,109
NEWl<EY (Write Macro for· ISFMS) •••••• 106,107
NO (DTFSR FILABL) •••••••••••••••••••••• 146
Noise Record ••••••••••••••••••••••••••• 75
Nonstandard Tape Labels •••••.• • 65 1 69,70,134
NORWD (DTFSR REWIND) ••••••••••••••••••• 149

. NRECpS (DTFIS) ••••••••••••••••••••••• 96,163
NSTD (DTFSR FILABL) •••••••••••••••••••• 146
Numeric Digits......................... 10

Object Program ••••••••••••••••••••••••• 5,55
OFFLINE (DTFSR)........................ '48
OPEN Macro •••••••••••••••••••••• ~ •••••• 66
Opening a Closed File •••••••••••••••••• 135
Operand................................ 5
Operand Entries ••••••••••••••••••••••• 10,35
Operand Field, Macro Instruction ••••••• 54
Operand Fields and Sub fields, Machine

Instructions. • • • • • • • • • • • • • •• • • • • • • • • • 29
Operand Subfield 1: Duplication Factor

(Constants) • • • • • • • • • • • • • • •• • • • • • • • • • • 36
Operand Subfield 2: Type (Constants) •• 36
Operand Subfield 3: Modifiers

(Constants) •• ••• •• •••••• •••• •• •• •••• • 36
Operand Subfield 4: Constant

(Constants) • • • • • • • • • • • • • • ••• •• • • • • • • • 38
Operation Codes, Mnemonic~ ••••••••••••• 5,10
Operation Entries....................... 10
Operation Field, Macro Instruction ••••• 54
operator Communication ••••••••••• 56,175,181
Optical Reader (IB M 1285 and 1287),

CNTRL for •••••••••••••••••••••••••••• 86
ORG - set Location Counter ••••••••••• 50,21'
Organization of Records on Disk

(for ISFMS).......................... 96
Organization to Assemble a ~upervisor •• 1S8
Organized File, Example of (ISFMS) ••••• 103
Other Files, CLOSE for ••••••••••••••••• 136
OUAREA (DTFSR) ••••••••••••••••••••••• 79,148
OUBLKSZ (DTFSR) •••••••••••••••••••••••• 148
OUTPUT (DTFDA TYPEFLE) . • • • • •• • •• • • •• • •• 157
OUTPUT (DTFPH TYPEFLE) •• • • • • • • • • • • • • • •• 173
OUTPUT (DTFS R TYPEFLE) • • •• • • •• • • • • • • • •• 150
output Area, Building Records in the

(Consecutive) •• .,,. • • •• 77
output File, Disk •••••••••••••••• 68,133,147
output File, Tape •••••••••••••••• 69,134,136
Overflow, printer ••••••• ~ •••••••••••••• 88
Overflow Area, Cylinder (ISFMS) •••••••• 103
Overflow Area (for ISFMS) ••••••••••• 101,107
Overflow Area, Independent (ISFMS) ••••• 103
Overflow Area Option (ISFMS) ••••••••••• 103
OVLAY (DTFEN Card) • • • • • • • • •• • • •• • • • • • •• 138

272 S/360 BOS Assembler with I/O Macros

Packed Format, Decimal Constant •••••••• 42
Paper Tape Reader, IBM 2671 •••••••••••• 76
Parameter Values........................ 53
Par a mete r s ••••••••••••••••••••••••••• 53, 137
Parity Error Retries ••••••••••••••••••• 145
Patch Area in Supervisor ••••••••••••••• 187
Physical IOCS, CLOSE for ••••••••••••••• 135
Physical IOCS, File Definition Macro.60,171
Physical IOCS, OPEN for................ 67
Physical IOCS, Processing

Records with •••••••••••••••••• 124,132,171
Physical IOCS Macros •••••••••••• 124,137,171
Physical IOCS vs Logical IOCS ••••••.••• 56
Physical Tape Record Size •••••••••••••• 75
Positional Format ••.••••••••••••••••••••. 54
Preface................................ 2
PREP (DTFSN)........................... 115
Previously Defined Symbols ••••••••••••• 14
Prime Data Area (ISFMS)................ 96
PRINT - Print Optional Data •••••••••• 47,211
PRINTER (DTFSR DEV ICE) • • • • • • • • • • • • • • • •• 145
Printer Carriage Control ••••••••••••••• 79
Printer Control, Punch and ••••••••••••• 79
Pr in ter Ove rf low. • 87
Printer Record Maximum Size •••••••••••• 75
Printer-Keyboard Record, Maximum Size.. 75
~rinters, CNTRL for •••••••••••••••••••• 85
PRINTOV (DTFSR) •••••••••••••••••••••• 87,148
Processing, Types of.................... 57
Processing Disk Records by the Direct

Access Method ••••••••.••••••••• 88, 138, 151
Processing Disk Records

by ISFMS •••••••••••••••••••• 58,96, 138, '58
Processing Records Consecutively ••••• 71,138
processing Records in a Work Area

(Consecutive) ••• • ••• ••••• ••• ••• •••••• 75
Processing Records in the Input Area

(Consecuti ve) • 75
Processing Records in Random Order

by DAM............................... 88
Processing Records in Random Order

by ISFMS ••••••••••••••••••••••• 96,108,164
Processing Records in Sequential Order

by ISFMS ••••••••••••••••••••••• 96,109,164
Processing Records with

Physical IOCS ••••••••••••••••••••• 124,171
processing with STR Devices •• 59,112,138,165
Program, Object........................ 5
Program, Source........................ 5
Program Check 173,180
Program Control Instructions ••••••••••• 48
Proqram Listinqs....................... 6
Program Sectioning and Linking ••••••••• 23
Program Statements..................... 5
Programmer Aids........................ 6
Programming with the USING Instruction. 22
Prototype statement •.•• •• ••• ••• •• • • •• ••• 53
PRTOV Macro............................ 87
PTAPERD (DTFSR DEVICE) ••••••••••••••••• 145
PUNCH - Punch a Card ••••••••••••••••• 49,211
Punch and Printer control •••••••••••••• 79
PUT Macro ••••••••••••••••• ~ ••••••• 77,88,111

Quote ••••••••••••••••••••••••••••••••• '5~38

RANDOM (DTFIS TYPEFLE) ••••••••••••••••• 16q
RANDOM (tTFIS UPDATE).................. 164
Random Processing by DAM ••••••••••••••• 58
Randem processing by ISFMS ••••••••••••• 96
Random Retrieval by ISFMS, Macro

Instructions for..................... 108
RA NSEQ (DTFIS TYPEFLE) • •• • • • •• • • • • • • • •• 16q
RANSEQ (DTFIS UPDATE) •••••••••••••••••• 16q
RDLNE Macro •••••••••••••••••••••••••••• 81
READ (DTFSR) ••••••••••••••••••••••••••• 148
READO 1 (DTFS R DEVICE) 1 q 5
READ20 (DTFSR DEVICE) •••••••••••••••••• 145
READqO (DTFSR DEVICE) • •• • • • • •• • • • • • • • •• 145
READ42 (DTFSR DEVICE) 145
READ85 (DTFSR DEVICE) •••••••••••••••••• 145
READ 87D Document Processing (1287) •••• 145
READ 87T Journal Tape Processing (1287) 145
Read Backwards, Tape ••••••••••••• 77,132,147
RE AD Mac ro •••••••••••••••••••••••• 81 ,93, 1 08
READ Macro, for BSC Support (DTFBS).121,253
READ Macro, for STR Devices (DTFSN) •• 59,114
READID (DTFDA) 93, 15!6
READKB ••••••••••••••••••••• _.. •• •• •••• • 86
READKEY (DTFDA) •••••••••••••••••••••• 93,156
RECFORM (DTFDA) ••.•••••••••••••••••••• 89,156
PECFORM (DTFIS) •.•••••••••••• :. •••• 96,107,163
RECFORM (DTFSR)........................ 148
Record, Key Fieid within a

(for ISFMS) ••.••• .-•••••••••••••••••• 97,102
Record 0 for Capacity-Record Option •••• 95
Record ID (DTFIS) •••• · ••••••••••••••• , 06,11 ,
Record Length (Tape) ••••••• ·•••••••••••• 72
Record Reference: After

(for DAM) ••••••••••••••••••••••• 92,95,152
Record Reference: After ID (for DAM) •• 92
Record Reference (for DAM) ••••••••• 58,93,94
Record Reference by ID

(for DAM) •••••••••••••••••••• 92,93,94,155
Record Reference by Key

(for DAM) •••••••••••••••••••• 92,93,94,155
Record Sizes ••• ~ ••••••••••••••••••••••• 75
Reco~d Types for Consecutive

P r oc e s sin g • • • • • • • • • • .• • • '. • • • • • • • • • • • • 72, 7 3
Record Types for DAM ••••••••••••••••• 89,156
Record Types for ISFMS.· •••••••••••.••• 96,163
Records, Adding to a File (by DAM) ••• 92, 152
Records, Adding to a File

(by ISFMS) .•••••••••• : ••••••••• 102,107,158
Records, Blocked (for

Consecutive) ••••••••••••••••• 72,77,78,149
Record s, Blocked (for DA M) ••••••••••• 89, 156
Records, Blocked (for

ISFMS) 4 ••••••••••••••••••• 106,107,111,163
Records, Disk Indices for (for ISFMS) •• 99
Records, Fixed-Lenqth (for

Consecutive) ••••••••••••••••• 72,77,78,149
Records, Fixed-Lenqth (for DAM) •••••• 89,156
Records, Fixed-Length (for ISFMS) •••• 97,163
Records, Processinq in Random

Order by DAM ••••••••••••••••••••••• 89,138
Recor~s, Processinq in Randem

Order by ISFMS ••••••••••••• 96, 108, 161,162
Records, Processing in sequential

Order by ISFMS ••••••••••••••••• 96, 109, 161

Records, Unblocked (for
Consecuti vel •••••••••••••• 72,75,76,78,149

Records, Unblocked (for DAM) ••••••••• 89, 156
Records, Unblocke'd (for ISFMS) •• 106,111,163
Records, Undefined· (for

Consecutive) •••••••••••••• 72,75; 77,79,149
Records, Undefined (for DAM) ••••••••• 90,155
Records, Variable-Length

(for Consecutive) ••••••••• 72,75,77,78,149
Records, Variable-Length (for DAM) ••• 90,156
Records on Disk, organizations of

(for ISFMS) •••••••••••••••••••••••••• 97
RECSIZE (DTFDA) •••••••••••••••••••••• 89,156
RECSIZE (DTFIS) •••••••••••••••••••••••• 163
RECSIZE (DTFSR) ••••••••••••••••••• 72, 79,149
Referenc.e, Record (for DAM) •••••••• 89,93,94
Reference, Track (for DAM) •• 89,91,93,94,156
Reference by ID (for DAM) .••••••••• 93,94,155
Reference by Key (for DAM) •••••••• 93,94,155
Reference Card (File Defini tion) ••••••• 138
Reference Methods for DAM •••••••••• 89,93,94
Register Usage ••••••••••••••••••••••• 20, '47
Registe'r Zero........................... 22
Relationships. • 6
Relative Addressing •••••••••••••••••••• 23
Relocatability......................... 6
Relocatable Expressions ••••••••••••••• 18,43
Relocatable Libr ary •••••••••• '. • • • • • • • •• 194
Relocatable Terms •••••••••• ~ ••••••••••• 12
Relocation Dictionary (RLD)............ 192
RELSE Macro............................ 80
Reopening a Closed File •••••••••••••••• 135
REP -{SEND Macro)....................... '87
REPLY (MSG Macro) ••••••••••••••••••••• :. 175
REPRO--Repr<;>duce Followinq Card •••••• 49,211
RESCN Macro •••••••••••••••••••••••••••• 82
Restrictions on Registers •••••••••••••• 20
Restrictions on Symbols •••••••••••••••• '4
Retrieve Records Randomly by ISFMS ••••• 108
Retrieve Records Sequentially by ISFMS. 109
RETRVE (DTFIS IOROUT) •••••••••••••••••• 162
REW (Rewind Tape)...................... 83
REWIND (DTFSR) •••••••••••••••••• 135, '36, '49
Rewind and Unload Tape (RUN)........... 83
Rewind Tape (REW)....................... 83
RR Format •••••••••••••••••••••••••••• 31,212
RS 'Format •••••••••••••••••••••.••••••• 32,212
RSTRT (,-lob Control Card) ••••••••••••••• 131
RSTRT Macro •••••••••••••••••••••••••••• 191
RTRVEX (DTFIS) •••••••••••••••••••••• 108, 163
RUN (Rewind and Unload Tape) ••••••••••• 83
RX Format •••••••••••••••••••• ~ ••••••• 32,212
RZERO (DTFDA). ,. • • • • • • • • • • .. • •• • • • • • •• • • • 95

S-Type Address Constant •••••••••••••••• 43
SAVEREG (SUPVR) ••••••••••••••••••••• 175, 184
Scale Modifier for constants ••••••••••• 37
Scale Modifier for Fixed-Point

Constant ••••••••••••••••••••••••••••• 37
Scale Modifier for Floatinq-Point

Constant ••••••••••••••••••••••••••••• 37
SCLOS Macro, for STR Devices ••••••••• 62,116
Search Multiple Tracks (D~M) ••• 89,91,93,157
Sectioning and Linking.~ ••••••••••••••• 6,23
section One - Introduction............. 5
Section Three - Instructions ••••••••••• 29

Index 273

Section Two - General In£ormation...... 8
SEEK ADR (DTFDA) •••••••••••••••••••••• 95,156
Select Stacker (SS).................... 86
Self-Defining Term, Binary ••••••••••••• 14
Self-Defining Term, Decimal •••••••••••• 14
Self-Defining Term, Character •••••••••• 15
Self-Defining Term, Hexadecimal ••••••• 14,42
Sel£-Defining Terms •••••••••••••••••••• 14
Self-Definin~ ·Terms, Using ••••••••••••• 14
SEND Macro ••••••••••••••••••••••••••••• 187
SEQNTL (DTFIS TYPEFLE) • • •• • • •• • • • • • • • •• 164
SEQNTL (DTFIS UPDATE) •••••••••••••••••• 164
Sequence Check (by ISFMS) •••••••••••••• 108
Sequence-Link Field in Overflow

Records (ISFMS) •.••••••••••••••••••••• 102
Sequential Processing by ISFMS •••• 59,96,109
Sequential Retrieval by iSFMS, Macro

Instructions for ••••••••••••••••••••• 109
Set Exit (STXIT Macro) •••••••••••••• ~74, 179
Set Limit (SETL)....................... 110
Set Location Counter -- ORG •••••••••••• 50
SETFL Macro •••••••••••••••••••••••••••• 105
SETL Macro •••••••••••••••••••••••••• 110,163
Seven-Track Tape •• ~ •••••••••••••••••• 77,192
SI Format •••••••••••••••••••••••••••• 32,212
Simultaneous Read-While-Write Tape

Control Units........................ 87
SINGLE (DTFPH MOUNTD) ••••••••••••• 67,68,172
SINGLE Te~m Expression ••••••••••••••••• 16
Sizes of Records....................... 75
SK (Skip to Carriage-Tape Channel) ••••• 85
SKIP (DTFSR ERROPT) •••••••••••••••••••• 146
SOPEN Macro, for STR Devices ••••••••• 62,112
Source Program......................... 5
Source Sta~ements •••••••••••••••••••••• 5,11
SP (Carriage Space).................... 85
SPACE - Space Listing •••••••••••••••• 47,211
Special Characters ••••••••••••••••••••• 11
Special Addressing Consideration ••••••• 51
Special Uses of the Dupli~ation Factor

(DS Statement)....................... 45
SQCHEX (DTFIS) ••••••••••••••.••••••• 106,164
SRCHM (DTFDA) ••••••••••••••••••••••• 155,157
SS (Select Stacker).................... 86
SS Format •••••••••••••••••••.•••••••• 32,212
SS D. • . • • • • • • • • • • 86
Stacker Selection ••••••••••••••••••••• 86,87
Standard File Label Formats (Disk) ••••• 63
Standard Labels, User-Written

(Tape) ••••••••••••••••••••••• · ••••• 133,136
Standard Ta~e Labels ••••••••.•• 65,69,70,133
Standard Volume Labels (Disk) ••••••••• 63,68
START - Start Assembly._ ••••• A ••• 24,191,211
Start New Page--EJECT •••••••••••••••••• 47
Statement Format ••••••••••••.•••••••••• 8, 11
Statement Boundaries.................... 8
Statement Example............ •••••••••• 10
Statements, Assembler Instruction...... 5
Statements, Assembler-Language......... 5
Statements, Machine Instruction •••••••• 5,~9
Statements, Macro Instruction •••••••••• 53
Statements, Program.................... 5
Statements, Source..................... 5
STD (DTFSR FILABLE).................... 146
Storage Area for Consecutive Processing 75
Storage Areas fot ISFMS •••••••••• 96,106,109
Storage Areas for DAM •••••••••••••••••• 89
Storage, Reserving...................... 44

274 S/360 BOS Assembler with I/O Macros

STR, Expanded CCB •••••••••••••••••••••• 165
STR, File Definition Macros •••••••••••• 112
STR, Imperative Macros ••••••••••••••• 60,112
STR, Processing with~ •••••••• 59,'12,138,165
Structure, Assembler Language •••••••••• 11
STXIT Macro 174,179
Subset Relationships, Assembler

Language •••••••••••••••••••••••••• ~ •• 195
Summary of Statement Format............ 11
Supervisor ••••••••••••.•••••••••••• 13,56,176
Supervisor Call......................... 173
Supervisor End (SEND Macro) •••••••••••• 187
Supervisor Interruption Routine •••••••• 176
Supervisor, Organization to Assemble ••• 188
Supervisor Patch Area •••••••••••••••••• 187
Supervisor-Communication Macros ••••• ~54,173
Supervisor-Assembly Macros ••••••• 54,182#183
SUPVR Macro •••••••••••••••••••••••••• 13, 184
Symbol Definition Instruction (EQU) •••• 34
Symbol Length Attribute Reference...... 16
Symbol Table........................... 13
Symbol Value ••••••••••••••••• -.'!' •••• 13,15,35
Symbolic Language....... •.•• ••• •• ••••••• 5
Symbolic Linkages •••••••••••••••••••••• 26
Symbolic units (SYMUN Macro)........... 185
Symbols •••••••••••••••••••••••••••• 10,13,24
Symbols, Defining...................... 13
Symbols, General Restrictions orr ••••••• 14
Symbols, Previously Defined............ 14
SYMUN Macro ••••••••••••••••••••••••• 139,185
SYSOOO-SYS254 ••••••••••• 144,157,171,173,185
SYSIPT •••••••••••••••••• 144,157,171,173,185
SYSLOG •••••••••••••••••• 144,157,173,176,185
SYSLST •••••••••••••••••••••• 144, 157,173,185
S Y SO PT •••••••••••••••••• 1 44, 157 , 171 , 173, 1 85
SYSRDR •••••••••••••••••••••• 144,157,173,185

Tape (DTFSR DEVICE) • •• •• • •• ••• •• ••••••• 145
Tape, Seven-Track...................... 77
Tape, Write Blank (ERG)................ 83
Tape Control Units, Simultaneous

Read-While-Wri tee ••••• •• • ••• •• • ••• • •• -87
Tape File, Reopening a ••••••••••••••••• 135
Tape Files, Unlabeled •••••••••••••••• 66,i35
Tape Input File •••••••••• 69,133,136,142,145
Tape Labels, Nonstandard ••••••• 65,69,70,134
Tape Labels, standard •••••• 65,69,70,133,172
Tape Movement Functions •••••••••••••••• 83
Tape Out·put File ••••••••••••••••• 69, 134,136
Tape Record, Minimum and Maximum Sizes. 75
Tape Units, CNTRL for •••••••••••••••••• 83
TEL (DTFSN)............................ '15
Term, Binary Self-Defining ••••••••••••• 14
Ter~, Character Self-Defining •••••••••• 15
Term, Decimal Self-Defining •••••••••••• 14
Term, Hexadecimal Self-Defining •••••••• 14
Terms ••••••••••••••••••••••••••••••••• 13,14
Terms, Absolute........................ 14
Terms , Literal......................... 16
Terms, Relocatable •.•••••••• · •••••••••• '3,18
Te r m s, S elf - D e fin i n g • • • • . • • • • • • • • • • • • • • 1 4
Terms and Expressions.................. t3
Timer, Interval 180
TIMER (SUPVR Macro) •.• •• ••• •.• •• . . ••••• 180
TITLE - Identify Assembly Output ••••• 46,211
TPLAB (Job Control Card)............... 70
TPMARK (DTFSR) •••••••••••••••••••.••••• 149

TR (EXIT Macro)........................ 175
TR (SUPVR Macro) ••••••••••••••••••••••• 184
Track Index (ISFMS) •••••••••••••••••• 99,105
Track Reference Field (DAM) •••••••••• 91, 156
Track Reference (for DAM) ••••••••••••• 58,91
TRANS (DTFS'R) •••••••••••••••••••••••••• 149
Transient Area ••••••••••••••••••••••••• 182
Translation Table, Code •••••••••••••••• 150
TRUNC Macro (Truncate) ••••••••••••••• 80,150
Truncate--TRUNC........................ 80
TRUNCS (DTFSR) ••••••••••••••••••••••• 80,150
Type Specifications for Constants •••••• 36
TYPEFLE (DTFDA)........................ 157
TYPEFLE (DTFIS) ••••••• ' •••••••••••••• 108,164
TYPEFLE (DTFPH) •••••••••••••••••••••••• 172
TYPEFLE (DTFSR)........................ 150
Types of Processing •••••••••••••••••••• 57
Types of Records for Consecutive

Processinq........................... 72
Types of Records for DAM ••••••••••••• 89,156
Types of Records for ISFMS ••••••••••• 96,163

UHt1, UHL2, etc. (Label Identifier) •• 64,69
Unblocked Records (for

Consecutive) •••••••••••••• 72,75,76,78,149
Unblocked Records (for DAM) •••••••••• 89,156
Unblocked Records (for ISFMS) ••••••• 111,163
UNDEF (DTFDA RECFORM).................. 156
UNDEF (DTFSR RECFORM).................. 149
Undefined Records (for

Consecutive) ••••••••••••••••• 72,75,79,149
Undefined Records (for DAM) •••••••••• 89,155
Universal Character Set •••••••••••••••• 150
Unlabelled Tape Files •• ' •••••••••••••• 66,135
UNLOAD (DTFS R REWIND) •• • • • • • • • •• •• • • • •• 149
Unnamed Control Section •••••••••••••••• 25
UPDATE (DTFIS) •••••••••••••••••• 108, 109,164
UPDATE (DTFSR) ••••••••••••••••••••••• 79,150
Updating ••••••••••••••••••••••••••••••• 79
User ~railer Labels for Disk ••••••••••• 133
User-Standard File Labels

(Disk) ••••••••••••••••••••••• 64,68,71,172
User-Standard I,abels (Tape) ••• 65,71, 136,172
USING - Use Base Address

Re gist er ••••••••••••••••••••• 20,21 ,43, 2' 1
USING Instruction, Programming with ••• 20,22
Using Self-Defining Terms •••••••••••••• 14
UTLO, UTL 1, etc. (Label Identifier). 64,133

V-Type Address Constant ••••••••••••••• 27,44
Value, Expression ••••••••••••••••••••• 18,43
VARBLD (DTFSR) ••••••••••••••••••••••• 79, '51
VARBLK (DTFSR RECFORM) •• • • ••• • •• •• •• • •• 149

Variable-Length Records (for
Consecutive) ••••••••••••••••• 72,75,78, 149

Variable-Length Records (for DAM) •••• 89,156
Variety in Data Representation......... 6
VARUNB (DTFSR RECFORM) ••••••••••••••••• 149
VERIFY (DTFDA) ••••••••••••••••••••••••• 157
VERTFY (DTFIS)......................... 164
VERIFY (DTF SR) •• 151
VOL2, VOL3, etc. (Label Identifier) ••• 63
VOL1, VOL2, etc. (Label Identifier) ••• 65
VOL (Job Control Card) •••••••••••••••• 67,69
Volume Labels (Disk)................... 63
Volume Table of contents (VTOC)........ 63
VTOC ••••••••••••••••••••••••••••••••••• 63

WAIT Macro •••••••••••••••••••••••••• 112,129
WAITF Macro •••••••••••••••••••••• ~ .58,81,95
WAITM Macro •••••••••••••••••••••• 62,112,129
WLRERR' (DTFIS)......................... 164
WLRERR (DTFSR) ~ ••••• ~ •••••••••••••••••• 151
Work Area, Building Records in a

(Consecuti ve) • • • • • • • • • • •• •• • • • • • • • • • • 76
Work Area for Consecutive ••••••••• 75,76,151
Work Area for ISFMS ••••••••••••••••• 111, 164
Work Area, processing Records in a

(Consecutive) • • • • • •• •• • • • • • • • • • • • • • •• 151
WORKA' (DTFSR) ••• ' •••••••••••••••••••• '47,151
WORKL (DTFIS) •••••••••••••••••••• 96,106,164
WORKR (DTFIS) ••••••••••••••••••••• ' ••• 96,165
WORKS (DTFIS) •••••••••••••••••••••••• 96,165
WRITE ,Macro •••••••••••••••••• 94,106,107,108
WRITE Macro, for BSC Support

(DTFBS) ••••••••••••••••••••••••••• 122,253
WRITE Macro, for STR Devices (DTFSN)... 115
W r it eTa p e Mark (W T M) • • • • • • • • • • • • • • • • • • 83
WRITEID (DTFDA) •••••••••••••••••• 94,152,157
WRITEKY (DTFDA)........................ 157
Writing Checkpoint Records ••••••••••••• 130
Writing User-Standard Header

Labels (Disk)........................ 68
Wrong-Length Record ••••••••••• ; •••••••• 151
WTM (Write Tape Mark).................. 83

XFR - Generate a Transfer Card ••••••• 50,21'
XTENT (Job Control

Card) ••••••••••• 67,99,105,133,144,157,158
XTNTXIT (DTFDA) •••••••••••••••••••••••• 157
XTNTXIT (DTFPH) •••••••••••••••••••••••• 173

Y-Type Address Constant •••••••••••••••• 43

Zoned Format, Decimal Constant......... 42

Index 275

C24-3361-6

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.IOBOI
[USA.Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

.

..

READER'S COMMENT FORM

IBM System/360 Basic Operating System
Assembler with Input/Output Macros
Specifications

• How did you use this publication?

As a reference source 0
As a classroom text 0
As a self-study text 0

• Based on your own experience, rate this publication

As a. reference source:

As a text:

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

Very
Poor

Very
Poor

Form C24-336'-6

• What is your occupation?

• We would appreCiate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name arid address .

• Thank you for your cooperation. No postage necessary if mailed ·in . the U.S.A.

C2.4·3361·6

YOUR COMMENTS PLEASE •••

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold
Fold

· · ·

4 .. e._ •••••••• ~ ••••••••••••••••••••••••••••••••••••• :

Attention: Department 813

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM Corporation

112 East Post Road

White Plains, N. Y. 10601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

· ·

. , .. ;- .. :

Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.IoBol
[USA.only]

IBM World Trade Corporation
821 United Nations Plaza, New York, NawYork 10017
[International]

Fold

