File Number S360-21
Form C24-3361-6 BOS

% A,g Systems Reference Library

IBM System/360

Basic Operating System

Assembler with Input/Output Macros
Specifications |

This reference publication describes the assembler
language and the input/output (I/O) macros
supplied by IBM for use in writing programs for 8K
disk~oriented System/360 installations. The
general features of the assembler language are
described first, followed by a description of each
of three types of assembler language statements:
machine-instruction, assembler-instruction, and
macro-instruction statements. The description of
the macro instructions consists of a description
of each of the IBM-supplied I/O macros.

The reader should be familiar with the
information presented in the publications:

IBM System/360 Principles of Operation, Form
A22-6821;

IBM System/360 Basic Operating System,
Programmer's Guide, Form C24-3372;

IBM System/360 Basic Operating System and IBM
System/360 Basic Programming Support, Macro
Definition Language, Form C24-3364.

For a list of other associated publications,
refer to the IBM System/360 Bibliography, Form
A22-6822.

PREFACE

This publication is intended as a guide for
the programmer using.the assembler lanquage
and its features.. It contains +all the
information needed by the programmer to
code an assembler-language program on the
coding form. The information needed by the
programmer to code. user macro definitions
(for inclusion into the macro library) is
presented in the macro-definition language
publication as listed on the cover of this
publication.

The material in this publication is

presented assuming that the reader has had
experience with computer systems and has

Seventh Edition (July 1968)

background in the basic programming
concepts and techniques (or has completed
basic courses of instruction in these
areas). The publication IBM System/360
Principles. of Operation (Form A22-6821)

supplies the necessary background
information about IBM System/360 operations
(particularly storage addressing, data
formats, and machine-instruction formats
and functions). The publication IBHN-
System/360 Basic Operating_ System,
Programmer's Guide (Form C24-3372) supplies
the necessary background information about
IBM System/360 programming using Basic
Operating Systen.

This is a major revision of, and obsoletes, C24-3361-5, and
Technical Newsletters N24-5314, N24-5335, N24-5341, and

N33-8534.
Release 17.

The changes reflect the availability of BOS
The changes to the text, and small changes to

illustrations, are indicated by a vertical line to the left
of the change; changed or added illustrations are denoted by

the symbol e to the left of the caption.

Significant changes or additions to the specifications
contained in this publication are continually being made.
When using this publication in connection with the operation
of IBM equipment, check the latest SRL Newsletter for

revisions or contact the local IBM Branch office.

. Requests

for copies of IBM publications should be made to your IBM

representative or to the local IBM branch office.

A form has been provided at the back of this publication ‘for

readers' comments.

If the form has been detached, comments

nay be directed to IBM Laboratory, Publications Dept.,

P.0. Box 24, Uithoorn, Netherlands.

© Copyright International Business Machines Corporation,

1965,1968

INTRODUCTION ¢ o o « o o o o o o o o =
Assembler-Language Statements
PROGRAMMER AIDS ¢ o « ¢ « o o o o o
IBM Basic Operating System/360

Relationships .« ¢ ¢« o ¢ o o o « o « «
Machine Requirements . « « « ¢« « o + «

GENERAL INFORMATICN =« ¢« « « o « o o o
Assenbler Lanquage Coding Conventions
Assembler-Language Structure
Terms and Expressions . . .
TELMS o o o o o ¢ o o o o
EXPresSions =« o o o o o @

ADDRESSING —~ PROGRAM SECTIONING AND
LINKING ¢ « o o o o o o = o « o o @
Addressing . ¢« « o ¢« ¢ ¢ ¢ o e o o
Addresses -- Explicit and Implied
Base Register Instructions
Register Usage « e 4 e .
Programming with the USING
Instruction . . o o o o .
Relative Addre551ng e e o e .
Program Sectioning and Linking .
Control Sections
First Control Section
Symbolic Linkages
ENTRY —-- Identify Entry-Point Symbol
EXTRN -- Identify External Symbol .

« e s ¢ o

Machine Instructions . « « « o « &
Machine-Instruction Statements . .
Operand Fields and Subfields . .
Lengths —- Explicit and Implied
Machine-Instruction Mnemonic Codes
Machine-Instruction Examples . .
Extended Mnemonic Codes .« « o «

ASSEMBLER INSTRUCTION STATEMENTS
Symbol Definition Instruction .
EQU -- EQUATE SYMBOL
Data Definition Instructions .

[e)

e Dis & & 4 & o

DC —=- DEFINE CONSTANT . . . o
DS -- Define Storage
CCW -- Define Channel Command Word .
Listing Control Instructions
TITLE -- Identify Assembly Output .
EJECT —-- Start New Page . « . « o« =
SPACE —-- Space Listing . . « + « o« o«
PRINT -- Print Optional Data
Program Control Instructions
ICTL —- Input Format Control
ISEQ -- Input Sequence Checking . .
REPRO -- Reproduce Following Card .
PUNCH -- Punch a Card . . « « o « &
XFR -~ Generate a Transfer Card . .
ORG —-- Set Location Counter
LTORG. -- Begin Literal Pool
CNOP -- Conditional No Operation . .
END -- End Assembly . ¢« ¢« « o o o o«

MACRO INSTRUCTION STATEMENTS . « « « &

@ o o 8 o s ® & & & 8 & * e & & s e & o o

[« WO, N,

~N o

CONTENTS

Macro Instruction Format . « « « « « « 54
Assembly of the Macro . . « « « « . « 55
Input/Output Control Macros 55
Initialization « o« « « o« « « o« « « « o 63
Processing Records Consecutively . . . 71
Processing Disk Records by the Direct
Access Method . ¢« « ¢ ¢« ¢« ¢« « « « . . 88

Processing Disk Records by the
Indexed Sequential System 96
Macro Instructions to Load or Extend
a Disk File by ISFMS + « « o« o & + «
Macro Instructions to Add Records to
a File DY ISFMS v ¢ ¢ « « o o o o «
Macro Instructions for Random
Retrieval by ISFMS « ¢« « ¢ ¢ o o« o &
Macro Instructions for Sequential
Retrieval by ISFMS . « « « « « « « . 109
Processing With STR Devices112
Processing Records with Physical IOCS 124

. 105
« 107

- 108

Writing Checkpoint Records <130

Completion o« « o o o« o o « o & . 132

File Definition Macros . « « « « « « <137
Consecutive Processing (DTFSR) . . «138
Direct Access Method (DTFDA) . . « <151
Indexed Sequential System (DTFIS) . «158
Processing with STR Devices (DTFSN,
DTFBF) « « « « « =« « « o o o« o o « o <165
Binary Synchronous Communication
(DTFBS, DTFRF) « « « « o« « o« « « « « «166
Physical IOCS (DTFPH) =« « « « o « « <171

Supervisor-Communication Macros . . . 173

Supervisor-Assembly Macros . . « « o . .182
Macro Instructions to Assemble a
SUPELVISOL & « o s o o o o « o o« « o« 4183

Organization to Assemble a Supervisor 188
Job-Control-Assembly Macros (Not For A
Disk—-Resident System) .+ « « o o o o o«

Assembling the Job Control Program .

.190
. 191

Control CardS =« o o « o o o o o o « o o192

Assembler Language Subset Relationship .195

APPENDIX A: CHARACTER CODES--PART 1 . .197

APPENDIX A: CHARACTER CODES--PART 2 . .198

APPENDIX B: MACHINE-INSTRUCTION

MNEMONIC OPERATION CODES . « « « « « o« .203

APPENDIX C: ASSEMBLER-INSTRUCTIONS . .211

Appendix D: Machine-Instruction Format .212

Appendix E: Hexadecimal-Decimal Number
conversion Table o« o« ¢ o« « o o o « o « <214

Appendix F: Summary of Constants223

APPENDIX G : IOCS EXAMPLE . . . « . . .224

Contents 3

APPENDIX H: ASSEMBLER LANGUAGES --
FEATURES COMPARISON CHART 4 « ¢ ¢ o «

Appendix. I: Summary of Input/Output
for an Assembly . < ¢ ¢« ¢ o ¢ o o o o

APPENDIX J: VASSEHBLER DIAGNOSTIC
MESSAGES « o« « o o« o o o o o o o o o =

APPENDIX K: SUMMARY OF IMPERATIVE
MACRO INSTRUCTIONS ¢ o« o o o o « o o o

4 S/360 BOS Assembler with I/O0 Macros

.230

.234

. 245

.252

APPENDIX L: BLANK, SUBSTITUTE BLANK,
AND INTERMEDIATE LRC REQUIREMENTS .

APPENDIX M: BINARY SYNCHRONOUS
Communication .« « « o 4 ¢ ¢ a o «
Part 3 - Sample Program .« « « « o &
Part 4 - BOS/BSC Support Channel
PrOgrams o« e o o o« ¢ 5o o o s o o o o
CNTRL MaCIO o & o o o o o o « o o =
Part 5-BOS/BSC TP OP Codes « « o« o o«

. 255

. 256
. 258

«265
« 266
.266

Computer programs may be expressed in
machine language, i.e., language directly
interpreted by the computer, or in a
symbolic language, which is much more
meaningful to the programmer. The symbolic
lanqguage, however must be translated into
machine language before the computer can
execute the program. This function is
accomplished by an associated processing
progran.

O0f the various symbolic programming
languages, assembler languages are closest
to machine language in form and content.

The assembler language discussed in this
manual is a symbolic programming language
for the IBM System/360. It enables the
programmer to use all IBM System/360
machine functions, as if he were codiag in
System/360 machine language.

The Assembler translates or processes
assembler-langquage programs into machine
language for execution by the computer.

The program written in the assembler
lanquage used as input to the Assembler is
called the source program; the
machine-language program produced as output
from the Assembler is called the obiject:
program. The translation or processing
procedure performed by the Assembler to
produce the object program is called
assembling. Often, as in this publication,
the object program produced is also
referred to as an assembly.

Compatibility

The System/360 Basic Operating Systenm
Assembler can assemble programs written in
the Basic Programming Support (8K Card)
assembler language or the Basic Programming
Support (8K Tape) assembler language. It
can also assemble programs written for the
Assembler of the 7090/7094 Support Package
for the IBM System/360. The System/360
Basic Operating System Assembler requires
the EBCDIC punches for the + ' () and =
signs.

Any program written in the IBM
System/360 Basic Operating System assembler
language can be assembled by the System/360
Operating System Assembler (provided the
necessary macros are in the Macro library)
and the System/360 Basic Programming
Support Assembler with the following
exceptions:

1. The XFR assembler imnstruction is
considered an invalid mnemonic

INTRODUCTION

operation code by System/360 Operating
System Assemblers and System/360 Disk
and Tape Operating System Assemblers.

2. The assignment, size, and ordering of
literal pools may differ among the
assemblers.

ASSEMBLER-LANGUAGE STATEMENTS

Program statements (source statements)
written in assembler lanquage may consist
of: a name to identify the 'statement; a
symbolic operation code (mnemonic) to
identify the function the statement
represents; and an operand, consisting of
one or -more items called operands, to
designate the data or storage locations
used in the operation, and space for
comments.

Assembler-lanquage programs may consist
of up to four types of statements:
machine-instruction, macro-instruction, and
assembler-instruction, and comments
statements.

Machine-instruction statements are
one-for-one symbolic representations of
System/360 machine instructions. The
Assembler produces an equivalent machine
instruction in the object program from each
machine-instruction statement in the source
progranm.

Macro-instruction statements cause the
Assembler to retrieve a specially-coded
symbolic routine from the macro library,
modify the routine according to the
information in the macro instruction, and
insert the modified routine into the source
programn for translation into machine
language. IBM supplies specially-coded
input/output (I/0) routines as part of the
macro library. The assembler language
includes a set of I/0 macro-instruction
statements through which these routines can
be retrieved and modified to suit
particular needs for input or output.

Also, the user can define his own library
routines, and reference them through
macro-instruction statements he defines
himself. These routines and statements are
defined according to a special lanquage,
the macro-definition langquage, and are
processed by the Assembler in the sane
manner as the IBM I/0 routines and
macro-instruction statements. The
macro-definition language is presented in
the macro-definition langquage publica-
tion, as listed on the front cover of this

publication.

Introduction 5

The Assembler program, in addition to
its translation function, provides
auxiliary functions that assist the

programmer in checking and documenting
" programs, in controlling storage-address
assignment, in program sectioning and
linking, in data and storage-field
definition, and in controlling the
Assembler program itself.
Assembler-instruction statements specify
these auxiliary functions to be performed
by the Assembler, and, with a few
exceptions, do not result in the generation
of any machine-lanquage code by the
Assembler.

Predefined mnemonic codes are provided
in the assembler language for all
machine-instruction, assembler-instruction,
and IBM-supplied I/0 macro-instruction
statements. Additional extended mnemonics
are provided for the various forms of the
Branch-on-Condition machine instruction.

The assembler language provides for the
symbolic representation of any addresses,
machine components (such as registers), and
actual values needed in source statements.
Also provided is .a variety of forms of data
representation.

PROGRAMMER 'AIDS

The assembler program provides auxiliary
functions that assist the programmer in
checking and documenting programs, in
controlling address assignment, in
segmenting a program, in data and symbol
definition, in generating
macro-instructions, and in controlling the
assembly program itself. Mnemonic codes,
specifying these functions are provided in
the language.

Variety in Data_ Representation:
binary, hexadecimal, or character
representation of machine-language binary
values may be employed by the programmer in
writing source statements. The programmer
selects the representation best suited to
his purpose.

Decimal,

Base-Register-Address-Calculation: As
discussed in the IBM_System/360 Principles
of_Operation manual, the System/360
addressing scheme requires.the designation
of a base register (containing a base
address value) and a displacement value in
specifying a storage location. The
assembler assumes the clerical burden of
calculating storage addresses in these
terms for the symbolic addresses used by
the programmer. The programmer retains
control of base register usage and the
values entered therein.

6 S/360 BOS Assembler with I/0 Macros

Relocatability: The object programs
produced by the assembler are in a format
enabling relocation from the originally
assigned storage area to any other suitable
area.

Sectioning and Linking: The assembler
language and program provide facilities for
partitioning an assembly into one or more
parts called control sectiomns. Control
sections may be added or deleted when
loading the object program. Because
control sections do not have to be loaded
contiquously in storage, a sectioned
program may be loaded and executed even
though a continuous block of storage large
enough to accommodate the entire program
may not be available.

The linking facilities of the assembler
language and program allow symbols to be
defined in one assembly and referred to in
another, thus effecting a link between
separately assembled programs This permits
reference to data and/or transfer of
control between programs A discussion of
sectioning and linking is contained in
Program Sectioning and Linking.

Program-Ytistings: A listing of the source
program statements and the resulting object
program statements is produced by the
assembler for each source program it
assembles. The programmer can partly
control the form and content of the
listing.

Error-Indications: As a source program is
assembled, it is analyzed for actual or
potential errors in the use of the
assembler language. Detected errors are
indicated in the program listing.

IBM BASIC OPERATING- SYSTEM/360
RELATIONSHIPS -

The Assembler program operates as a part of
the 8K disk resident version of the IBM
System/360 Basic Operating System. The
Assembler runs under control of the
Supervisor, which provides the Assembler
with all input/output and interruption
services needed in assembling a source
program. The object programs produced also
operate as part of the disk resident systenm
and make use of the functions provided by
the resident control programs. For special
applications not requiring disk, an

~independent Supervisor cam be produced to

control object programs outside of the
Basic Operating System environment. Such
independent programs do not include disk
storage processing capability.

MACHINE REQUIREMENTS

To perform an assembly, the Assembler
program requires a System/360 with at least
the following features and units:

8,192 bytes of main storage. Additional
main storage would be used by the
Assembler to allocate area for
input/output buffers and Assembler
tables whenever they are needed.

The Assembler requires a 16K systen
if the size of the Supervisor exceeds
4,096 bytes of main storage.

Standard instruction set.

Either one multiplexor or one selector
channel.

One IBM 2311 Disk Storage Drive. The
following system programs must be
present in the resident disk pack:
IPL Loader, Supervisor, Job Control,
Assembler, and Macro Library routines
for all macros issued. At least one
disk workarea must be provided. For
faster processing, an additional disk
drive can be used to split the
Assembler workarea. See AWORK
(Assembler Workfile) Cards.

One reader IBM 1442, 2501, 2520 (Model
A1 or B1), 2540 or 2400-series tape
unit.x This device may be the same I/0
unit used for punching the output
deck.

One punch IBM 1442, 2520, 2540, or
2400-series tape unitx (if the
Assembler output deck is to be
punched). This device may be the same
I/0 unit used for reading the source
deck.

One printer IBM 1403, 1404, 1443, or
2400-series tape unitx (if the program
listing is to be printed).

At least one IBM 2#400-series magnetic
tape unit is required ‘for any of the
following conditions:

1. 1If the source program is to be read
from tape.

2. If the output deck from the Assembler
is to be written on tape.

3. If the program listing is to be
written on tape.

A second tape unit is required if both
the output deck and the program listing are

to be written on tape. (See Figure 55 for
7-track tape requirements.)

An IBM 2400-series magnetic tape unit
may be used for source input or object
program output, only if sufficient main
storage is available. See the Basic
Operating System Programmer's.Guide for
information relating to main storage
requirements when tape is used.

If an IBM 1052 Printer-Keyboard is
available, it may be used for the output of
special diagnostic .messages.

To execute object programs, the minimum
machine requirements are a System/360 with
at least the following features and units.

8,192 bytes of main storage (except BSC
applications, which require 16,384 bytes of
main- storage).

Standard instruction set.

Either one multiplexor or one selector
channel.

One IBM 2311 Disk Storage Drive.

One Card Read-Punch (1442 or 2540 or
2501 and 2520).

Data Conversion special feature, if
variable-length records are written on
7-track tape.

Additional units as required by the
object program.

There are two basic approaches to a
minimum resident system:

1. Problem program(s) that reside on the
disk resident pack with the data to be
processed must have:

a. IPL Loader.

b. Supervisor.

c. Job Control.

d. Appropriate problem program(s).

2. Problem program(s) that are loaded by
means of a card reader must have:
a. Items a-c above.
b. Disk Linkage Editor.

A full description of the disk residence
functions and the operating systen
environment is explained in detail in IBM
System/360 Basic Operating. Systenm
Programmer's_Guide, C24-3372.

For the single drive system, these
residence requirements must reside on each
pack.

Introduction 7

GENERAL -INFORMATION

This section presents information about
assembler language coding conventions, and
assembler source statement structure.

ASSEMBLER LANGUAGE CODING-CONVENTIONS-

This subsection discusses the general
coding conventions associated with use of
the assembler language.

Ccoding -Form

A source program is a sequence of source
statements that are punched into cards.
These statements may be written on the
standard coding form, X28-6509 (Figure 1),
provided by IBM. One line of coding on the
form is punched into one card. The
vertical columns on the form correspond to
card columns.

Space is provided at the top of the form
for program identification. 1Instructioms
to the keypunch operator can also be given;
any character code that does not have a
corresponding printer graphic can be
assigned any special graphic to identify
the code to the keypunch operator, who can
then punch the corresponding card punch
code wherever he encounters the special
graphic. (See Character_.Set for the
presentation of the valid character codes
that can be used in a source program.)
Neither the program information (Progranm,
Progranmer, Date, etc.) mnor the
instructions to the keypunch operator are
punched into a card; they are for the
user's own use.

The body of the form (Figure 1) is
composed of two fields: the statement
field, columns 1-71, and the
identification-sequence fiéld, columns
73-80. The identification-sequence field
is not part of a statement and is discussed
following the subsection Statement Format.

The entries (i.e., coding) composing a
statement occupy columns 1-71 of a

8 S/360 BOS Assembler with I/0 Macros

statement line and, if needed, columns
16-71 of a single continuation line.

Continpuation-Lines: When it is necessary

to continue a statement on another line the
following rules apply. Note that only one
continuation line is permitted per
statement. ‘

1. Enter any nonblank character in column
72 of the statement line. This
character must not be part of the
statement coding. For a positional
macro, there should be no blanks in the
operand to the left of column 72.

2. Continue the statement on the next

line, starting in column 6. All)
columns to the left of column 16 will
be ignored.

Statement - Boundaries-

Source statements are normally contained in
columns 1--71 of statement lines and
columns 16--71 of any continuation lines.
Therefore, columns 1, 71, and 16 are
referred to as the "begin," "end," and
“"continue" columns, respectively This
convention may be altered by the Input
Format Control (ICTL) assembler instruction
discussed later in this publication The
continuation character, if used, always
immediately follows the "end" column.

Statemgnt-Format

Statements may consist of one to four
entries in the statement field. They are,
from left to right: a name entry, an
operation entry, an operand entry, and a
comments entry. These entries must be
separated by one or more blanks, and must
be written in the order stated.

The coding form (Figure 1) is ruled to
provide an eight-character name field, a
five-character operation field, and a
56-character operand and/or comments field.

*} 2InbTd

uwIod butpod

IBM IBM System/360 Assambler Coding Form xzmasce

Prisced is U.5.A.

PROGRAM PUNCHING GRAPHIC PAGE oF

INSTRUCTIONS oen CARD ELECTRO NUMBER
PROGRAMMER DATE
STATEMENT
Name Operation Operand Comments Sequence
1 8 10 w8 2 s 30 as) 4 50 55 & 85 nl In 8

UOT3RUIOIUI TeIausd

6

If desired, the programmer may disregard
these boundaries and write the name,
operation, operand, and comment entries in
other positions, subject to the following
rules.

1. The entries must not extend beyond
statement boundaries (either the
conventional boundaries or as
designated by the programmer via the
ICTL instruction).

2. The entries must be in proper
sequence, as stated above.

3. The entries must be separated by one
or more blanks.

4, If used, a name entry must be written
starting in the begin column.

5. The name and operation entries must be
completed in the first line of the
statement, including at least one
blank following the operation entry.

A description of the name, operation,
operand, and comments entries follows:

Nam t The name entry is a symbol
created by the programmer to identify a
statement. A name entry is optional. The
symbol must consist of eight characters or
less, and be entered with the first
character appearing in the begin column.

If the begin column is blank, the assembler
program assumes no name has been entered.
No blanks may appear within the symbol.

Operation Entries: The operation entry is
the mnemonic operation code specifying the
machine operation or assembler functions
desired. An operation entry is mandatory
and must appear in the first statement
line, starting at least one position to the
right of the begin column. Valid mnemonic
operation codes for machine and assembler
operations are contained in Appendixes B
and C of this publication. Valid operation
codes consist of five characters or less.
No blanks may appear within the operation
entry.

Operand Entries: Operand entries are the
coding that identifies and describes data
to be acted upon by the instruction, by
indicating such things as storage
locations, masks, storage-area lengths, or
types of data.

Depending on the needs of the
instruction, one or more operands may be
written. Operands are required for all
machine instructions.

Operands must be separated by commas and

no blanks must intervene between operands
and the commas that separate then.

10 S/360 BOS Assembler with I/0 Macros

Symbols can appear in the operand field
of a statement. Symbols that appear in the
operand field must be defined. A symbol is
considered to be defined when it appears in
the name field of a statement.

The operands may not contain embedded
blanks except as follows:

If character representation is
used to specify a constant, a
literal, or immediate data in an
operand, the character string may
contain blanks, e.g., C'AB D'.

_____ Comments are descriptive
items of information about the program that
are to be inserted in the program listing.
All valid characters (see Character-Set-in
this section), including blanks may be used
in writing a comment. The entry cannot
extend beyond the end column (normally
column 71), and a blank must separate it
from the operand.

An entire line may be used for a comment
by placing an asterisk in the begin column.
Extensive comments entries may be written
by using a series of lines with an asterisk
in the begin column of each line or by
using the aforementioned continuation line.

In statements where an optional operand
entry is omitted but a comments entry is
desired, the absence of the operand entry
must be indicated by a comma preceded and
follovwed by one or more blanks, as follows:

R

Name |0Operation |Operand
[l

1
1
4
L)
|
L

1
| END COMMENT
L

Statement Example: The following exanmple

. 1llustrates the use of name, operation,

operand, and comments entries. A compare
instruction has been named by the symbol
COMP; the operation entry (CR) is the
mnemonic operation code for a
register-to-register compare operation, and
the two operands (5,6) designate the two
general registers whose contents are to be
compared. The comments entry reminds the
programmer that he is comparing "new sumn"
to "o0ld" with this instruction.

T
| Name
L

L]
jcoMP
L

Operation perand

0o
CR 5,6 NEW SUM TO OLD

po = o ama o
e ade —

o e e

Identification~-Sequence Field

The identification-sequence field of the
coding form (columns 73-80) is used to
enter program identification and/or
statement sequence characters. The entry
is optional. If the field, or a portion of
it, is used for program identificaticn, the
identification is punched by the user in
the statement cards, and reproduced by the
Assembler in the printed llstlng of the
source program.

To aid in keeping source statements in
order, the programmer may code an ascending
sequence of characters in this field or a
portion of it. These characters are
punched into their respective cards, and,
during assembly, the programmer may request
the assembler to verify this sequence by
the Input Sequence Checking (ISEQ)
assembler instruction, which is discussed
under Progqram Control Instructions.

§ggmary of Statement- Format

The entries in a statement must always be
separated by at least one blank and must be
in the following order: name, operation,
operand (s), comment.)

Every statement, with the exception of
the comments statement, requires an
operation entry. Name and comment entries
are optional. Operand entries are required
for all machine instructions and most
assembler instructions.

The name and operation entries must be
completed in the first statement line,
including at least one blank following the
operation entry.

The name and operation entries must not
contain blanks. Operand entries must not
have a blank.preceding or following the
commas that separate thenm.

A name entry must always start in the
"begin" colunmn.

If the column after the end column is
blank, the next line must start a new
statement. If the column after the end
column is not blank, the following line
will be treated as a continuation line.

A1l entries must be contained within the
designated begin, end, and continue column
boundaries.

Character . Set.

Assembler-Lanquage statements may be
written using the following letters,
numeric digits, and special characters:

29 characters are classified
as letters. These include
the characters @, #, and $ as
well as the alphabetic
characters A through Z. The
three additional characters
are included so that the
category can accommodate
certain non-English
languages.

Letters:

Numeric Digits: 0 through 9

Special Characters: + - , = . x () ' /
& blank

These letters, digits, and special
characters are only 51 of the set of 256
code combinations defined as the Extended
Binary Coded Decimal Interchange Code
(EBCDIC). Each of the 256 codes (including
the 51 characters above) has a unique card
punch code. Most of the terms used in
Assembler-Lanquage statements are expressed
by the letters, digits, and special
characters shown above. However, such
Assembler- lanquage features as character
self-defining terms and character constants
permit the use of any of the 256 card
codes. Appendix A shows the various forms
of EBCDIC codes.

ASSEMBLER-LANGUAGE: STRUCTURE

The basic structure of the lanquage can be
stated as follows.

A source statement is composed of:
e A name entry (optional).
e An operation entry (maﬁdatory).
e An operand entry (usually required).
A name entry is:
e A symbol.
An operation entry is:
e A mnemonic operation code representing
a machine-, assembler-, or
macro-instruction.
An operand entry is:
e One or more operands composed of one or

more expressions, which, in turn, are

General Information 11

composed of a term or an arithmetic
combination of terms.

Operands of machine instructioms
generally represent such things as storage
locations, general registers, immediate
data, or constant values. Operands of
assembler instructions provide the
information needed by the assembler progranm
in order to perform the designated
operation.

Figure 2 depicts this structure. Ternms

shown in Figure 2 are classed as absolute
or relocatable. Terms are absolute or

Name Operation

A Symbol Mnemonic Operation Code

machine instruction Op-code
assembler instruction Op-code

macro instruction Op-code

LEGEND: AT

RT
+

/

absolute term

relocatable term

addition

subtraction

division

multiplication (or the
Location Counter reference,
depending on the context)

Figure 2.

12 S/360 BOS Assembler with I/0O Macros

relocatable due to the effect of program
relocation upon them. Program relocation
is the loading of the object program into
storage locations other than those
originally assigned by the assembler
program. A term is absolute if its value
does not change upon relocation. A term is
relocatable if its value changes by n-when
the program is relocated n-bytes away from
its assembled location.

The following subsection, Terms-and
Expressions, discusses these items as

outlined in Fiqure 2.

Operand

Operand, ...,Operand, ...

—— Expression

= Term

— Symbol (either AT or RT), e.g., BETAI
—— Self-defining term (AT)

— decimal, e.g., 91

l— hexadecimal, e.g., X'5B'

t— binary, e.g., B'01011011"

- character, e.g., C'$'

l— Location Counter reference (RT), e.g., *
— Literal (RT), e.g., =F'91'

—— Symbol length attribute reference

(AT), e.g. L'BETAI
L-Arithmetic combination of terms

t
— AT ¥ AT, e.g., L'BETA1 * 10
+ o+

___ AT ¥ AT * AT, e.g., 5*X'5B'~]

— RT + AT, e.g., BETA1+10
t
L RT + AT ¥ AT, e.g., *+10/2

—— Expression (Expression)

~— Expression (Expression, Expression)

Assembler Lanquage Structure--Machine and Assembler Instructions

TERMS AND_ EXPRESSIONS

TERMS

All terms represent a value. This value
may be assigned by the assembler program
(symbols, symbol length attribute 1location
counter reference, literals) or may be
inherent in the term itself (self-defining
terms) . i

An arithmetic combination of terms is
reduced to a single value by the assembler
program.

The following material discusses each
type of term and the rules for its use.

Symbols

A symbol is a character or combination of
characters used to represent addresses or
arbitrary values.

Symbols, through their use as names and
in operands, provide the programmer with an
efficient way to name and reference a
program element. A symbol, created by the
programmer for use as a name entry and in
an operand, must conform: to these rules:

1. The symbol must not consist of more
than eight characters. The first
character must be a letter. The other
characters may be letters, digits, or a
combination of the two.

2. No special characters may be included
in a symbol.

3. No blanks are allowed in a symbol.

4, Symbols. used by IOCS begin with the
letter I. Therefore, user symbols in
the problem program shculd.not begin
with the letter I. Also, a symbol or
the first portion of a symbol (up to
seven characters) in the problem
program should not be the same as the
file name in a DTF header entry, except
when referring to that file in an IOCS
macro instruction.

5. If a Supervisor is being assembled with
a problem program, user symbols should
not start with SYS because symbols used
by the Supervisor start with SYS.

The fecllowing are valid symbols:

READER LOoOP2 $13
A23456 N @PRICE
X4F2 sS4 #LB1

The following symbols are invalid, for
the reasons noted:

2568 (first character is not
alphabetic)

RECORDAREA2 (more than eight characters)

BCD%34 (contains a special character
..*)

IN AREA (contains a blank)

Note: Any of several different
combinations of characters can be installed
in a printer. If the characters $, #, and
@ are not included, either a blank space
will occur or a different character will be
printed when the code for one of these
characters is sensed. This varies with the
print arrangement that is used.

DEFINING SYMBOLS: The assembler program
assigns a:value to each symbol appearing as
a name entry in a source statement. The
value assigned to symbols naming storage
areas, instructions, constants, and control
sections represents the address of the
leftmost byte of the storage field
containing the named item. Since the:
addresses. of these items may change upon
program relocation, the symbols naming thenm
are considered relocatable terms.

Synbols used as name entries in the
Equate Symbol (EQU) assembler instruction
are assigned the value designated in the
operand entry of the instruction. Since
the operand entry may represent a
relocatable value or an absolute (i.e.,
nonchanging) value, the symbol is
considered a relocatable term or an
absolute term depending upoa the value to
which it is equated.

The value of a symbol may not be
negative and may not exceed 224-1,

A synbol is said to be defined when it
appears as the name of a source statement.
(A special case of symbol definition is
discussed in Program-Sectioning-and
Linking.) "

Symbol definition also involves the
assignment of a length-attribute-to the
symbol. (The assembler program maintains
an internal table —- the symbol table ~- in
which the values and attributes of symbols
are kept. When the assembler program
encounters a symbol in an operand, it
refers to the table for the values
associated with the symbol.) The length
attribute of a symbol is the size, in
bytes, of the storage field whose address
is represented by the symbol. For example,
a symbol naming an instruction that
occupies four bytes of storage has a length
attribute of four.

General Information 13

PREV.IOUSLY DEFINED SYMBOLS: Some
instructions require that a symbol
appearing in the operand entry be
previously defined. This simply means that
the symbecl, before it is used in an
operand, must have appeared as a name entry
in a prior statement.

GENERAL RESTRICTIONS ON SYMBOLS: A symbol
may be defined only once in an assembly.
That is, each symbol used as the name of a
statement must be unique to that assembly.
However, a symbol may be used in the name
field more than once as a control section
name (i.e., defined in the START, CSECT, or
DSECT assembler statements described in
Addressing -- Program_Sectioning and

section may be suspended and then resumed
at any subsequent point. The CSECT or
DSECT statement that resumes the section
nust be named by the same symbol that
initially named the section; thus, the
symbol that names the section must be
repeated. Such usage is not considered to
be duplication of a symbol definition.

Self-Defining Terms

A self-defining term is one whose value is
inherent in the term. It is not assiqgned a
value by the assembler program. For
example, the decimal self-defining term --
15 —-- represents a value of fifteen.

There are four types of self-defining
terms: decimal, hexadecimal, binary, and
character. Use of these terms is spoken of
as decimal, hexadecimal, binary, or
character representation of the machine
language binary value or bit configuration
they represent.

Self-defining terms are classed as
absolute terms since the value they
represent does not change upon program
relocation.

USING_SELF-DEFPINING TERMS: Self-defining
terms are the means of specifying machine
values or bit configurations without
equating the value to a symbol and using
the symbol.

Self-defining terms may be used to
specify such program elements as immediate
data, masks, registers, addresses, and
address increments. The type of term
selected (decimal, hexadecimal, binary, or
character) will depend on what is being
specified.

The use of a self-defining term is quite
distinct from the use of data constants or
literals. When a self-defining term is
used in a machine-instruction statement,
its value is assembled into the
instruction. When a data constant or

14 S/360 BOS Assembler with I/0 Macros

literal is specified in the operand of an
instruction, its address is assembled into
the instruction

Decimal Self-Defining Term: A decimal term
is simply an unsigned decimal number
written as a sequence of decimal digits.
High—-order zeros may be used (e.q.,007).
Limitations on the value of the term depend
on its use. For example, a decimal term
that designates a general register should
have a value between 0 and 15 inclusively;
one that represents an address should not
exceed the size of storage. In any case, a
decimal term may not consist of more than
eight digits, or exceed 16,777,215(224-1).
A decimal term is assembled as its binary
equivalent Some examples of decimal
self-defining terms are: 8, 147, 4092,
00021,

Hexadecimal Self-Defining Term: A
hexadecimal self-defining term is an
unsigned hexadecimal number written as a
sequence of hexadecimal digits. The digits
nust be enclosed in single quotation marks
and preceded by the letter X; for example,
Xrcy9r,

BEach hexadecimal digit is assembled as
its four-bit binary equivalent. Thus, a
hexadecimal term used to represent an
eight-bit mask would comnsist of two
hexadecimal digits. The maximum value of a
hexadecimal term is X'FFFFFF!'.

The hexadecimal digits and their bit
patterns are as follows:

0- 0000 4- 0100 8- 1000 c- 1100
1- 0001 5- 0101 9- 1001 D- 1101
2- 0010 6- 0110 a- 1010 E- 1110
3- 00Y1 7- 0111 B- 1011 F- 1111

A table for converting from hexadecimal
representation to decimal representaticn is
provided in Appendix E.

Binary.Self-Defining Term: A binary
self-defining term is written as an
unsigned sequence of 1s and 0s enclosed in
single quotation marks and preceded by the
letter B, as follows: B'10001101'. This
term would appear in storage as shown,
occupying one byte. A binary term may have
up to 24 bits represented.

Binary representation is used primarily
in designating bit patterns of masks or in
logical operations.

The following example illustrates a
binary term used as a mask in a Test Under
Mask (TM) instruction. The contents of
GAMMA are to be tested, bit by bit, against
the pattern of bits represented by the
binary term.

AJ L}
|Name |Operaticn |Operand
- 1 i

L L

L) L) L]
|ALPHA |THM | GAMMA,B'1010110 ¢
| - L L

Character Self-Defining Term: A character
self-defining term consists of one to three
characters enclosed by single quotation
marks. It may be preceded by the letter C
(this is not mandatory). All letters,
decimal digits, and special characters may
be used in a character term. In addition,
any of the 256 punch combinations (shown in
Appendix-A) may be designated in a
character self-defining term. Examples of
character self-defining terms are as
follows (the letter C preceding the
quotation mark is optiomnal):

cr/0 ‘ ce 1
C'ABC! Ccri3¢

(blank)

Because of the use of quotes in the
assembler lanquage and ampersands in the
macro language as syntactic characters, the
following rule must be observed when using
these characters in a character term.

For each single guotation mark or
ampersand desired imn a character term, two
single quotation marks or ampersands must
be written. For example, the character
value A'# would be written as 'A'*'#!', while

a single quotation mark followed by a blank’

and another single guotation mark would be
written as tvv v

Each character in the character sequence
is assembled as its eight-bit code
equivalent (see Appendix-3A). The two
quotation marks or ampersands that must be
used to represent a single quotation mark
or ampersand within the character sequence
are assembled as a single quotation mark or
ampersand.

Location Counter Reference

The programmer may refer to- the .current
value of the Location Counter at any place
in a program, by using an asterisk in an -
operand. The asterisk represents the
location of the first byte of currently
available storage (i.e., after .any reguired
boundary adjustment). Using an asterisk in
a machine-instruction statement is the same
as placing a symbol in the name field of
the statement and then using that symbol as
an operand of the statement Because a
Location Counter is maintained for each
control section, a Location Counter.
reference designates the Location Counter
for the section in which the referemnce
appears.

A reference to the Location Counter may
be made in a literal address constant

(i.e., the asterisk may be used in an
address constant specified in literal
form). The address of the instruction
containing the literal is used for the
value of the Location Counter. A Location
Counter reference may not be used in a
statement which requires the use of a
predefined symbol, with the exception of
the EQU and ORG assembler instructions.

The_-Location -Counter: A Location Counter
is used to assign storage addresses to
program statements. It is the assembler
program's equivalent of the instruction
counter in the computer. As each machine
instruction or data area is assembled, the
Location Counter is first adjusted to the
proper boundary for the item, if adjustment
is necessary, and then incremented by the
length of the assembled item. Thus, it
always points to the next available
location. If the statement is named by a
synbol, the value attribute of the symbol
is the value of the Location Counter after
boundary adjustment, but before addition of
the length.

The assembler maintains a Location
Counter starting at a double-word boundary
for each -control section of the program and
manipulates each Location Counter
independently as previously described.
Source statements for each section are
assigned addresses from the Location
Counter for that section The Location
Counter for each successively declared
control section assigns locations in

- consecutively higher areas of storage.

Thus, if a program has multiple control
sections, all statements identified as
belonging to the first control section will
be assigned from the Location Counter for -
section 1, the statements for the second
control section will be assigned from the
Location Counter for section 2, etc. This
procedure is followed whether the
statements from different control sections
are interspersed or written in control
section sequence.

The Location Counter setting can be
controlled by using the START and ORG
assembler instructions, which are described
in Addressing.---Program-Sectioning-angd.
Linking. The counter affected by either of
these assembler instructions is the counter
for the control section in which they
appear. -Maximum value for the Location
Counter is 224-1.

Literals

A literal term is one of three basic ways
to introduce data into a program. It is
simply a constant preceded by an equal sign

(=).

General Information 15

A literal represents data rather than a
reference to data. The appearance of a
literal in a source statement directs the
assembler program to assemble the value
specified by the literal, store this value
in a "literal pool", and place the address
of the storage field containing the value
in the orerand field of the assembled
source statement.

Literals provide a means of entering
constants (such as numbers for calculation
addresses, indexing factors, or words or
phrases for printing out a message) into a
program by specifying the constant in the
operand of the instruction in which it is
used. This is in contrast to using the DC
assembler instruction to enter the data
into the program, and then using the name
of the DC instruction in the operand. Only
one literal is allowed in a
machine-instruction statement.

A literal term may not be combined with
any cther ternms.)

A literal may not be changed in storage.
That is, it may not be used as the
receiving field of an instruction that
modifies storage.

A literal may not be specified in a
constant (see DC--Define_ Constant) or any
other Assembler instruction.

The instruction coded below shows one
use of a literal.

Ir EJ
{Name |
1 1
L]
|
1

)
|GAMMA L
|

1
Operation |Operand
)

e e e e

L]
110,=F1274"
1

The statement GAMMA is a load
instruction using a literal as the second
operand. When assembled, the second
operand cf the instruction will be the
address at which the binary value
represented by F'274' is stored.

In general, literals may be used
wherever a storaqge address is permitted as
an operand. They may not, however, be used
in any assembler instruction that requires
the use cf a previously defined symbol.
Literals are considered relocatable
because the address of the literal rather
than the literal itself, will be assembled
in the statement that employs a literal.
The assembler generates the literals,
collects them, and places them in a
specific area of storage as explained in
the subsection The Literal Pool. A literal
is not to be confused with the immediate
data in an SI instruction. Immediate data
is assemlled into the instruction.

16 S/360 BOS Assembler with I/O Macros

Literal Format: The assembler requires a
description of the type of literal being
specified as well ‘as the literal itself.
This descriptive information assists the
assembler in assembling the literal
correctly The descriptive portion of the
literal must indicate the format in which
the constant is to be assembled. It may
also specify the length the constant is to
occupy.

The method of describing and specifying
a constant as a literal is nearly identical
to the method of specifying it in the
operand of a DC assembler instruction. The
major difference is that the literal must
start with an equal sign (=), which
indicates to the assembler that a literal
follows. The reader is referred to the
discussion of the DC assembler instruction
operand format Addressing.-- Program
Sectioning and-Linking for the means of
specifying a literal. A1l types of address
constants, except S-type address constants,
can be expressed as literals. Some
examples of literals are:

=A (BETA) - address constant literal.
=Fr1234" - a fixed-point number with
a length of four bytes.
=C'ABC! - a character literal.
=CL7'PAGE' -- an explicit length literal.

The -Literal Pool: The literals processed

by the assembler are collected and placed
in a special area called the literal pool,
and the location of the literal, rather
than the literal itself, is assembled in
the statement employing a literal. The
positioning of the literal pool may be
controlled by the programmer, if he so
desires. Unless otherwise specified, the
literal pool is placed at the end of the
first control section.

The programmer may also specify that
multiple literal pools be created.
However, the sequence in which literals are
ordered within the pool is controlled by
the assembler. Further information on
positioning the literal pool(s) is under
LTORG--Begin -Literal Pool.

Symbol Length Attribute Reference

The length attribute of a symbol may be
used as a term. Reference to the attribute
is made by coding L' followed by the
symbol, as in:

L'BETA

The length attribute of BETA will be
substituted for the term, The following
example illustrates the use of L'symbol in
moving a character constant into either the
high-order or low-order end of a storage
field.

For ease in following the example, the
length attributes of A1 and B2 are
mentioned. However, keep in mind that the
Lt'symbol term makes coding such as this
possible in situations where lengths are
unknown.

r L]
|Name jOperand

¥ 1

|Operation |
F - —+ {
121 IDS ICL8 |
B2 |DC [CL21AB!]
{HIORD |MVC [A1(L'B2),B2 I
{LOORD |MVC |At+L'AY-L'B2 (L'B2),B2]
L 1 X 3

A1 names a storage field eight bytes in
length and is assigned a length attribute
of eight. B2 names a character constant
two bytes in length and is assigned a
length attribute of two. The statement
named HIORD moves the contents of B2 into
the leftmost two bytes of A1. The term
I.'B2 in parentheses provides the length
specification required by the instruction.
~ When the instruction is assembled, the
length is placed in the proper field of the
machine ‘instruction.

The statement named LOORD moves the
contents of B2 into the right-most two
bytes of A1. The combination of terms
A1+L'A1-L'B2 results in the addition of the
length of A1 to the beginning address of
A1, and the subtraction of the length of B2
from this value. The result is the address
of the seventh byte in field A1. The
constant represented by B2 is moved into At
starting at this address. L'B2 in
parentheses provides length specification
as in HIORD.

EXPRESSIONS

The preceding subsection dealt with the
various types of terms that can be used,
either singly or in combination, to form
operand entries. This subsection now deals
with the more general category of
expressions, where an expression is an
operand entry consisting of either a single
term or an arithmetic combination of terms.

Up to three terms can be combined with
the following arithmetic operators:

addition, e.g., ALPHA+2
subtraction, e.qg., ALPHA-BETA
multiplication, e.g., 5xL'DATA
division, e.g., (ALPHA-BETA)/2

N#% |+

Two of the terms within a three term
expression can be grouped within
parentheses to indicate to the Assembler
the order in which they are to be
evaluated. When the Assembler program
encounters terms in parentheses in

combination with another term, it first
reduces the combination of terms inside the
parentheses to a single value. This value
then is used in.reducing the rest of the
expression to another single value.

Certain fixed rules determine the ways
in which terms can be combined. These
rules are discussed under Absolute and
Relocatable -Expressions. In addition to
these, the following general rules can be
stated for coding any expressions:

1. An expression may not start with an
arithmetic operator (+-/%). Therefore,
the expression ~A+BETA is invalid.
However, the expression 0-A+BETA is
valid.

2. An expression may not contain two ternms
or two operators in succession.

3. An expression may not consist of more
than 3 terms.

4. An expression may not have more than
one pair of parentheses.

5. A multiterm expression may not contain
a literal.

The following are examples of valid
expressions:

AREA1+X'2D! (EXIT-ENTRY) /8 29

*+32 =F'1234¢ L'FIELD

N-25 L'BETA%10 TEN/TWO
FIELD B*101! LAMBDA+GAMMA
FIELD+332 C'ABC!

Evaluation of Expressions

A single term expression, e.g., 29, BETA,
%, L'SYMBOL, takes on the value of the term

~involved.

A multiterm expression, e.g.,
BETA+10, ENTRY-EXIT, 10+A/B, is reduced to a
single value, as follows:

1. Each term is given its value.

2. Expressions within parentheses are
evaluated first.

3. Arithmetic operations are performed
left to right. Multiplication and
division are done before addition and
subtraction, e.g., A+BxC is evaluated
as A+ (BxC), not (A+B)%C. The computed
result is the value of the expression.

4. Division yields an integer result; any
fractional portion of the result will
be dropped. For example, the
expression 1/2%10 equals zero, but the
expression 10%1/2 eguals five.

General Information 17

5. Division by zero is valid and yields a
zero result.

Final values of expressicns representing
storage addresses are never greater than
224-1, hovever intermediate results may
have a maximum value of 231-1,

Absolute and Relocatable Expressions

An expression is called absolute if its
value is unaffected by program relocation

An expression is called relocatable if
its value changes upon program relocation

The two types of expressions, absolute
and relocatable, take on these
characteristics from the term or terms
composing them. The following material
discusses this relationship. :

ABSOLUTE EXPRE§SION: An absolute
expression may be an absolute term or any
arithmetic combination of absolute terms.
An absolute term may be an absolute symbol,
any of the self-defining terms, or the
length attribute reference. As indicated
in Fiqure 2, all arithmetic operations are
permitted between absolute terms.

An absolute expression may contain two
relocatable terms (RT) -- alone or in
combination with an absolute term (AT) --
under the following conditions:

1. The relocatable terms must be paired,
that is, they must appear in the same
control section in this assembly (see
Program_Sectioning and Linking) and
have opposite signs. The paired terms
do not have to be contigquous, e.qg.,
RT+AT-RT.

2. No relocatable term may enter into a
multiply or divide operation. Thus,
RT-RT%10 is invalid However,

(RT-RT) %10 is valid.

The pairing of relocatable terms cancels
the effect of relocation. Therefore the
value represented by the paired terms
remains constant, regardless of program
relocation For example, in the absolute
expression A-Y+X, A is an absolute term,
and X and Y are:relocatable terms from the
same control section. If A equals 50, Y
eguals 25, and X equals 10, the value of
the expression would be 35. If X and Y are
relocated by a factor of 100 their values
would then be 125 and 110. However, the
expression would still evaluate as 35
(50-125+110=35) .

An absolute expression reduces to a
single absolute value.

18 S/360 BOS Assembler with I/0 Macros

The following examples illustrate
absolute expressions. A is an absolute
term; X and Y are relocatable terms from
the same control section.

A-Y+X

A

AxA

X-Y+A

%-Y (a reference to the Location Counter
must be paired with another
relocatable term from the same control
section).

RELOCATABLE EXPRESSIONS: A relocatable
expression is one whose value would change
by n if the program in which it appears is
relocated n bytes away from its originally
assigned area of storage. A relocatable
expression must not have a value below the
starting address of the control section,
except in a USING, CCW, or A- and Y-type
address constant.

A relocatable expression may be a
relocatable term. A relocatable expression
may contain relocatable terms -- alone or
in combination with absolute terms -- under

"the following conditions:

1. There must be an odd_-number- of
relocatable terms.

2. If a relocatable expression contains
three relocatable terms, two of them
must be paired. Pairing is described
in Absolute Expression.

3. The unpaired term must not be directly
preceded by a minus sign.

4. No relocatable term may enter into a
multiply or divide operation.

A relocatable expression reduces to a
single relocatable value. This value is
the value of the odd relocatable tern,
adjusted by the values represented by the
absolute terms and/or paired relocatable
terms associated with it.

For example, in the expression W-X+W, W
and X are relocatable terms from the same
control section. If initially W equals 10
and X equals 5, the value of the expression
is 15. However, upon relocation this value
will change. If a relocation factor of 100
is applied, the value of the expression is
115. ©Note that the value of the paired
terms, W-X, remains constant at 5
regardless of relocation. Thus, the new
value of the expression, 115, is the result
of the value of the odd term (W) adjusted
by the values of W-X.

The following examples illustrate Y-32%A W=X+x% =F11234"* (literal)

relocatable expressions. A is an absolute H-X+Y AxA+W
term, W and X are relocatable terms from % (reference to W=X+W
the same control section. Y is a Location Counter) Y
relocatable term from a different control

section.

General Information 19,

ADDRESSING . —— PROGRAM SECTIONING AND LINKING:

ADDRESSIN

The System/360 -addressing technique
requires the use of a base register,
contains the base address, and a
displacement, which is added to the
contents of the base register. The
programmer may specify a symbolic address
and request the assembler to determine its
storage address in terms of a base register
and a displacement. The programmer may
rely on the assembler to perform: this
service for him by indicating which general
registers are available for assignment and
what values the assembler may assume each
contains. The programmer may use as many
or as few registers for this purpose as he
desires.s The only requirement is that, at
the point of reference, a register
containing an address from the same control
section is available, and that this address
is less than or equal to the address of the
item to which the reference is being made.
The difference between the two addresses
may not exceed 4095 bytes. .

which

ADDRESSES -- EXPLICIT AND IMPLIED

An address is composed of a displacement
plus the contents of a base register. (In
the case of RX instructions the contents
of an index register are also used to
derive the address.)

The programmer writes an explicit
address by specifying the displacement and
the base register. 1If, in an RX
instruction, an explicit address is used,
it is assembled without being checked for
proper boundary aligamment. The assembler
assumes that the programmer has either used
an aligned explicit address or programmed
with a register to align the address.

The boundary alignment checked by the
assembler is the alignment of the effective
address, when an implied address is used.
‘'The programmer writes an implied address by
specifying an absolute or relocatable
address. The assembler can select a base
register and compute a displacement,
thereby generating an explicit address fron
an implied address, if the programmer has
conveyed the availability and contents of
the base registers. He can do this with
the USING and DROP imstructions.

.20 S/360 BOS Assembler with I/0 Macros

BASE REGISTER INSTRUCTIONS

The USING and DROP assembler instructions
enable programmers to use expressions
representing implied addresses as operands
of machine-instruction statements, leaving
the assignment of base registers and the
calculation of displacements to the
assembler.

In order to use symbols in the operand
field of machine~instruction statements
the programmer must (1) indicate to the
assembler, by means of a USING statement,
that one or more general registers are
available for use as base registers, (2)
specify by means of the USING statement,
what value each base register contains, and
(3) load each base register w1th the value
he has specified for it.

A program must have at least one USING
statement for each control section to be
addressed.

Having the assembler determine base
registers and displacements relieves the
programmer of separating each address into
a displacement value and a base address
value. This feature of the assembler will
eliminate a likely source of programming
errors, thus reducing the time required to
check out programs. To take advantage of
this feature, the programmer uses the USING
and DROP instructions described in this
subsection. The principal discussion of
this feature follows the description of
both instructiomns.

REGISTER -USAGE

Certain general registers have special uses
and are available to the programmer.under
certain restrictions. These registers and
the restrictions follow.

0-1 These registers are used by the
routines generated from the
IBM-supplied macros. Therefore,
these registers may be used without
restriction if no IBM macros appear
in the program; otherwise they
should be used only for immediate
computations, where the content of
the register is no longer needed
after the computation. If the
programmer uses them, he must
either save their content himself
(and reload them later) or be
finished with them before IOCS uses
then.

12-13 These registers are used by the
Supervisor Interruption Routine.
Since interruptions are
unpredictable, these registers
should not be used by the
Frogrammer, unless SUPVR
SAVEREG=YES is specified when
assembling the supervisor. (See
Macro_Instructions to Assemble-a
Supervisor.)

Note: Whenever Autotest is
used, the programmer must not use
registers 12 and 13 because these
registers are used by the Autotest
Master Control routine.

14-15 Logical IOCS uses these two
reqisters for linkage. Register 14
contains the return address (to the
problem program) from the DTF
routine. Register 15 contains the
entry point into the DTF routine.
IOCs does not save the contents of
these registers prior to using
them; if the programmer uses then,
he must either save their contents
himself (and reload them later) or
be finished with them- before IOCS
uses them. It should be noted that
IOCS uses these registers only when
the user has called an IOCS routine
such as GET, PUT, OPEN, or CLOSE.

Registers 2-11 are available to the
programmer. To avoid the possibility of
errors, these registers should be the
registers used by the programmer. However,
if for any reason there is a shortage of
registers, 0—-1 and 14-15 are available
under the restrictions previously stated.

Note: Whenever the Translate and Test

(TRT) instruction is used, the contents of
register 2 must be saved before this
instruction is executed. After the TRT
instruction has been executed, the contents
of register 2 may be restored. See the
System/360 Principles of Operation manual
listed on the front cover of this
publication for further information on the
TRT instruction.

USING —-- Use Base Address Registers

The USING instruction indicates that one
or more general registers are available for
use as base registers. This instruction
also states the base address values that
the assembler may assume will be in the
registers at object time. Note that a
USING instruction does not load the
registers specified. It is the
programmer's responsibility to see that the
specified base address values are placed
into the registers. Suggested loading
methods are described in the subsection
Programming with the USING Instruction.

The format of the USING instruction
statement is:

1
Name Operation |[Operand
Il

L]

|From 2-6 expressions
|of the form v,r1t,
ir2,r3,r4,r5

| &

Al

|

{
Blank |USING

|

i

L

WP S —

Operand v must be an absolute or
relocatable expression. No literals are
permitted. Operand v specifies a value
that the assembler can use as a base
address. The other operands nust be
absolute expressions. The operand r\?
specifies the general register that can be
assunmed to contain the base address
represented by operand v. Operands r2, 13,
r4, and r5 specify registers that can be
assumed to contain v+4096, v+8192, v+12288,
and v+16384 respectively The values of the
operands r1, r2, r3, r4, and r5 must be
between 0 and 15. For example, the
statement:

[} L]
Name iOperation |[Operand
[[]

e o by o

1 Ll
|USING 1%,8,9
H L

tells the assembler it may assume that the
current value of the Location Counter will
be in general register 8 at object time,
and that the current value of the Location
Counter, incremented by 8096, will be in
general register 9 at object tinme.

The operands r{, r2, r3, r4, and r5 can
be a symbol or an expression provided that
the value of the symbol or expression is
between 0 and 15.

If the programmer changes the value in a
base register currently being used and
wishes the assembler to compute
displacements from this value, the
assenbler must be told the new value by
means of another USING statement. In the
following sequence the assembler first
assumes that the value of ALPHA is in
register 9. The second statement then
causes the assembler to assume that
ALPHA+1000 is the value in register 9.

Addressing -- Program Sectioning and Linking 21

]
|Operand

L] - L] 1
|Name |Operation]
F : = 1
i {USING | ALPHA, S |
l.		
	-	
	USTING.	ALPHA+1000,9
L 1 L 1

A USING statement may specify general
register 0 as a ltase register if operand v
is a relocatable expression or zero. If
general register 0 is specified, it must be
operand r1. In this case, the assembler
assumes that register 0 contains the value
zero. Subsegquent registers specified in
the same statement are assumed to have the

values 4096, 8192, etc. The assembler
" therefore places all subsequent effective
addresses less than 4096 in the
displacement field and uses zero for the
base register field. ’

Note: If register 0 is made available by a
USING instruction, the program is not
relocatable, despite the fact that the
value specified by operand v must be
relocatable. However, the programmer is
able to make the program relocatable at
some future time by:

1. Replacing register 0 in the USING
statement. :

2. Loading the register with a relocatable
value.

3. Reassembling the progranm.

DROP -- Drop Base Register

The DROP instruction specifies a previously
available register that may no longer be
used as a base register. The format of the
DROP instruction statement is as follows:

It is not necessary to use a DROP
statement when the base address in a
register is changed by a USING statement;
nor are DROP statements needed at the end
of the source progranm.

A register made unavailable by a DROP
instruction can be made available again by
a subsequent USING instruction.

PROGRAMMING WITH THE USING INSTRUCTION

The USING (and DROP) instructions may be
used anyvwhere in a program, as often as
needed, to indicate the general registers
that are available for use as base
registers and the base address values the
assembler may assume each contains at
execution time. Whenever an address is
specified in a machine-instruction
statement, the assembler determines whether
there is an available register containing a
suitable base address. A register is
considered available for a relocatable
address if it was loaded with a relocatable
value that is in the same control section
as the address. A register with an
absolute value is available only for
absolute addresses. 1In either case, the
base address is considered suitable only if
it is less than or equal to the address of
the item to which the reference is made.
The difference between the two addresses
may not exceed 4095 bytes.

In the following sequence, the BALR
instruction loads register 2 with the
address of the first storage location
immediately following. In this case, it is
the instruction named FIRST. The USING
instruction indicates to the assembler that
register 2 contains this location. When
enploying this method, the USING
instruction must immediately follow the
BALR instruction. No other USING or load
instructions are required if the location
named LAST is within 4095 bytes of FIRST.

I L] L] 1

|Name |Operation |Operand |

H 1 [M |
L T T 1 r T T N 1
{Blank |DROP |Up to 5 absolute | | Name |Operation |Operand |
i | |expressions of the | } }- - 4 1
| i {form ri,r2, | IBEGIN [BALR 12,0 |
| | ir3,x4,r5 | | |USING 1*,2 |
L 1 L 1 |JFIRST | . | |
‘ | M. | |
The expressions indicate general | I . | {
registers previously named in a USING |LAST | . ‘ | |
statement that are now unavailable for base | |END |BEGIN |
addressing. The following statement for L . L 4

example, prevents the assembler from using
registers 7 and 11:

1 L]
Name |Operation |Operand
Il 1

L) 1
| DROP 17,11
1 1

22 S/360 BOS Assembler with I/0 Macros

In the following example, the BALR and
LM instructions load registers 2-5. The
USING instruction indicates to the
assembler that these reqisters are
available as base registers for addressing
a maximum of 16,384 consecutive bytes of
storage, beginning with the location named

HERE. The number of addressable bytes may
be increased or decreased by altering the
nunber of registers designated by the USING
and LM instructions and the number of
address constants specified in the DC
instructions.

] A Rl 1
|Name | Operation |Operand

1 L L]
q L) 1] 1
| BEGIN | BALR 12,0 {
	USING	HERE,2,3,4,5
HERE	LM 13,5,BASEADDR	
	B	FIBST
BASEADDR	DC	A (HERE+4096)
	DC	A (HERE+8192)
	DC	A (HERE+12288)
FIRST I .		
-		
	-	
LAST 1 . I		
	END	BEGIN
- 1 1 i		

RELATIVE ADDRESSING

Relative addressing is the technique of
addressing instructions and data areas by
designating their location in relation to
the Location Counter or to some symbolic
location. This type of addressing is
always in bytes, never in bits, words, or
instructions. Thus, the expression x+4
specifies an address that is four bytes
greater than the current value of the
Location Counter. 1In the sequence of
instructions shown in the following
example, the location of the CR machine
instruction can be expressed in two ways,
ALPHA+2 or BETA-4, because all of the
mnemonics in the example are for 2-byte
instructions in the RR format.

L} T L] L]
|Name |Operation |Operand |
t t + |
{ALPHA |LR 13,4 |
| {CR 14,6 {
{ | BCR 11,14 |
|BETA |AR 12,3 |
L | R i 1

PROGRAM SECTIONING AND_LINKING
It is often convenient, or necessary, to
write a large program in sections. The
sections may be assembled separately, then
combined subsequently into cne object
program. The assembler provides facilities
for creating multisectioned programs and
symbolically linking separately assembled
programs or program sections. The combined
number of control sections and dummy
sections may not exceed 32. The combined
number of control sections and dummy
sections plus the number of unique symtols

in EXTRN statements and V-type address
constants may not exceed 255. (EXTRN
statements are discussed in this section;
V-type constants under DC_-- Define
Constant assembler instruction.) If the
same symbol appears in a V-type address
constant and in the name field of any other
statement, it is counted as two symbols.

Sectioning a program is optional, and
many programs can best be written without
sectioning them. The programmer writing an
unsectioned program need not concern
himself with the subsequent discussion of
program sections, which are called control
sections. He need not employ the CSECT
instruction, which is used to identify the
control sections of a multisection program.
Similarly, he need not concern himself with
the discussion of symbolic linkages if his
program neither requires a linkage to nor
receives a linkage from another progranm.

He may, however, wish to identify the
program and/or specify a tentative starting
location for it, both of which may be done
by using the START instruction. He may
also want to employ the dummy section
feature obtained by using the DSECT
instruction.

Note: Program sectioning and linking is
closely related to the specification of
base registers for each control section.
Sectioning and linking examples are
provided under the heading Addressing
External Control Sections.

CONTROL SECTIONS

The concept of prodgram sectioning is a
consideration at coding time, assembly
time, and load time. To the programmer, a
program is a logical unit. He may want to
divide it into sections called control
sections; if so, he writes it in such a way
that control passes properly from one
section to another regardless of the
relative physical position of the sections
in storage. A control section is a block
of coding that can be relocated,
independently of other coding, at load time
without altering or impairing the operating
logic of the program. It is normally
identified by the CSECT instruction.
However, if it is desired to specify a
tentative starting location, the START
instruction may be used to identify the
first control section

To the assembler, there is no such thing
as a program; instead, there is an
assembly, which consists of one or more
control sections. (However, the terms
assembly and program are often used
interchangeably An unsectioned program is
treated as a single control section. To
the linkage editor, there are no progranms,

Addressing -- Program Sectioning and Linking 23

only control sections that must be
fashioned into an object program.

The output of the assembler consists of
the assembled control sections and a
control dictionary. The control dictionary
contains ‘information the linkage editor
needs in order to complete
cross-referencing betweén control sections,
as it combines them into an object progranm.
The linkage editor can take control
sections from various assemblies and
combine them properly with the help of the
corresponding control dictionaries.
Ssuccessful combination of separately
assembled control sections depends on the
techniques used to provide symbolic
linkages between the control sections.

Whether the programmer writes an
unsectioned program, a multisection
program or part of a multisection progranm,
he still knows what eventually will be
entered into storage, because he has
described storage symbolically. He may not
know where each section appears in storage,
but he does know what storage contains.
There is no constant relationship between
control sections. Thus, knowing the
location of one control section does not
make another control section addressable by
relative addressing techniques.

Control Section Location Assignment

Control section contents can be intermixed
because the assembler provides a Location
Counter for each control section.

Locations are assigned to control sections
in such a way that the sections are placed
in storage consecutively, in the same order
as they first occur in the program. Each
control section subsequent to the first
begins at the next available double-word
boundary.

FIRST CONTROL SECTION

The first control section of a program has
the following special properties

1. Its tentative loading location may be
specified as an absolute value.

2. It normally contains the literals
requested in the program, although
their positioning can be altered.
This is further explained under the
discussion of the LTORG assembler
instruction.

START -- Start Assembly

The START instruction may be used to give a
name to the first (or only) control section
of a program. There may be only one START

24 S/360 BOS Assembler with I/0O Macros

instruction in an assembly. It may also be
used to specify a tentative starting
location for the program. The format of
the START instruction statement is as
follows:

L) 1 - L] \J
| Name |operation |Operand |
L 1 N 1 . 1
1 L 1 . 1
|A symbol |START |A self-defining |
{or blank | {term or blank |
L 1 N g

If a symbol names the START instruction
the symbol is established as the name of
the control section.. If not, the control
section is considered to be unnamed. All
subsequent statements are assembled as part
of that control section This continues
until a CSECT instruction identifying a
different control section or a DSECT
instruction is encountered. A CSECT
instruction named by the same symbol that
names a START instruction is considered to
identify the continuation of the control
section first identified by the START.
Similarly .an. unnamed CSECT that occurs in
a program initiated by an unnamed START is
considered to identify the continuation of
the unnamed control section

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the ,
control section. It has a length attribute
of one.

The assembler uses the self-defining
value specified by the operand as the
tentative starting location of the program.
This value must be divisible by eight. For
example, either of the following statements
could be used to assign the name PROG2 to
the first control section and to-indicate
an initial assembly location of 2040:

I
|Name

T Al 1

|Operation |Operand |
1 d 1 1
L] L] 1
| PROG2 |START 12040 1
|PROG2 |START [X17F8 ! 1
L (] 1]

If the operand is omitted, the assembler
sets the tentative starting location of the
program at zero.

Note: The START instruction may be
preceded only by ICTL, ISEQ, REPRO, PUNCH,
EJECT, SPACE, TITLE, PRINT, and comments
statements, and by macro instructions that
generate only these statements. '

If the user plans to write his own
macro-instruction routines, the START
instruction may not be used as an
instruction within his macro routine.

CSECT =--—.Identify Control- Section

The CSECT instruction identifies the
beginning or the continuation of a control
section. The format of the CSECT
instruction statement is as follows:

I ﬁ‘ . L} 1
|Name |Operation |Operand |
t 1 . 1 1
¥ . L) 1 1
|A symbol |CSECT | Not used; any |
lor blank | joperand is treated]
| | |as a comment - |
L L 1 N " |

If a symbol names the CSECT instruction
the symbol is established as the name of
the control section; otherwise the section
is considered to be unnamed. All
statements following the CSECT are
assembled as part of that control section
until a statement identifying a different
control section is encountered (i.e.,
another CSECT or a DSECT instruction).

The symbol in the name field is a valid
relocatable symbol whose value .represents
the address of the first byte of the
control section. It has a length attribute
of one.

Several CSECT statements with the same
name may appear within a program. The
first is considered to identify the
beginning of the control section; the rest
identify the resumption of the section.
Thus, statements from different control
sections may be interspersed. They are
properly assembled (assigned contiguous
storage locations) as long as the
statements from the various control
sections are identified by the appropriate
CSECT instructions

Unnamed Control.Section

If neither a named CSECT instruction nor
START instruction appears at the beginning
of the program, the assembler determines
that it is to assemble an unnamed control
section as the first (or only) control
section. There may be only one unnamed
control section in a program. If one is
initiated and is then followed by a named
control section, any subsequent unnamed
CSECT statements are considered to resume
the unnamed control secticn. If it is
desired to write a small program that is
unsectioned, the program does not need to
contain a CSECT instruction.

DSECT -- Identify Dumny Section

A dummy section represents a control
section that is assembled but is not part
of the object program. A dummy section is
a convenient means of describing the layout
of an area of storage without actually

reserving the storage. (It is assumed that
the storage is reserved either by some
other part of this assembly or else by
another assembly The DSECT instruction
identifies the beginning or resumption of a
dummy section. More than one dummy section
may be defined per assembly, but each must
be named. The format of the DSECT
instruction statement. is as follows:

¥ 1 Ll
| Name |Operation |Operand
L i

1

|
i 9
] T L 1
|A symbol |DSECT | Not ‘used; any |
| | |operand is treated]
{ | {as a comment |
L [] L J

The symbol in the name field is a valid
relocatable symbol whose value represents
the first byte of the dummy section. It
has a length attribute of one.

Program statements belonging to dummy
sections may be interspersed throughout the
program ‘or may be written as a unit. 1In
either case, the appropriate DSECT
instruction should precede each set of
statements. Whenever the assembler
instructions EJECT, SPACE, PRINT, PUNCH,
REPRO, XFR, or TITLE are used within a
DSECT, they are treated as: comments and not
executed. When multiple DSECT instructions
with the same name are encountered : the
first is considered to initiate the dummy
section and the rest to continue it.

Symbols that appear in the name field of
a DSECT statement or in the name field of
statements in a dummy section may be used
in USING instructions. Therefore, they may
be used in program elements (e.g.,
machine-instructions and data definitions)
that specify storage addresses. An example
illustrating the use of a dummy section
appears subsequently under Addressing-Dummy

. Sections.

A symbol that names a statement in a
dummy section may be used in an A-type
address constant only if it is paired with
another symbol (with the opposite sign)
from the same dummy section.

DUMMY SECTION -LOCATION -ASSIGNMENT: A
Location Counter is used to determine the
relative locations of named program
elements in a dummy section. The Location
Counter is always set to zero at- the
beginning of the dummy section, and the
location values assigned to symbols that
name statements in the dummy section are
relative to the initial statement in the
section.

ADDRESSING DUMMY SECTIONS: The programmer
may wish to describe the format of an area
whose storage location will not be

Addressing -- Program Sectioning and tinking 25

determined until the program is executed.
He can describe the format of the area in a
dummy section, and he can use symbols
defined in the dummy section as the
operands of machine instructions. To
effect references to the storage area, he
does the following:

1. Provides a USING statement specifying
both a general register that the
assembler can assign to the machine-
instructions as a base register and a
value from the dummy section that the
assembler may assume the register
contains

2. Ensures that the same register is
loaded with the actual address of the
storage area.

The values assigned to symbols defined
in a dummy section are relative to the
initial statement of the section. Thus,
all machine-instructions which refer to
names defined in the dummy section will, at
execution time, refer to storage locations
relative to the address loaded into the
register.

An example is shown in the following
coding. Assume that two independent
assemblies (assembly 1 and assembly 2) have
been loaded and are to be executed as a
single overall program. Assembly 1 is an
input routine that places a record in a
specified area of storage, places the
address of the input area containing the
record in general register 3, and branches
to assembly 2. Assembly 2 processes the
record. Coding shown in the example is
from assembly 2.

The input area is described in assembly
2 by the DSECT control section named
INAREA. Portions of the input area (i.e.,
record) that the programmer wishes to work
with are named in the DSECT control 'section
as shown. The assembler instruction USING
INAREA,3 designates general register 3 as
the base register to be used in addressing
the DSECT control section, and that general
register 3 is assumed to contain the
address of INAREA.

Assembly 1, during execution, loads the
actual beginning address of the input area
in general register 3. Because the symbols
used in the DSECT section are defined
relative to the initial statement in the
section, the address values they represent,
will, at the time of program execution, be
the actual storage locaticns of the input

- area.

26 S/360 BOS Assembler with I/0 Macros

L) L] Ll 1
|Name |Operation [Operand |
[L] |
1 L] L L}
ASMBLY2	CSECT	
BEGIN	BALR 12,0	
	USING [%,2	
I -		
I . {		
I	USING	INAREA, 3
{CLI	INCODE,C'A!	
I	BE	ATYPE
I	‘	
[
ATYPE	Mve	WORKA,INPUTA
	MvVC	WORKB,INPUTB
-		
L.		
WORKA DS ICL20		
WORKB	DS	cL18
I		
)		
INAREA	DSECT	
INCODE	DS	cLY
INPUTA	DS	CL20
INPUTB	DS	CL18 i
l .		
	EN	
L 1 1 J

SYMBOLIC LINKAGES

Symbols may be defined in one program and
referred to in another, thus effecting
symbolic linkages between independently
assembled programs. The linkages can be
effected only if the assembler is able to
provide information about the linkage
symbols to the linkage editor, which
resolves these linkage references at load
time. The assembler places the necessary
information in the control dictionary on
the basis of the linkage symbols identified
by the ENTRY and EXTRN instructions. Note
that these symbolic linkages are described
as linkages between independent assemblies;
more specifically, they are linkages
between independently assembled control
sections.

In the program where the linkage symbol
is defined (i.e., used as a name), it must
also be identified to the assembler by
means of the ENTRY assembler instruction.
It is identified as a symbol that names an
entry point, which means that another
program will use that symbol in order to
effect a branch operation or a data
reference. The assembler places this
information in the control dictionary.

Similarly, the program that uses a
symbol defined in some other program must
jdentify it by the EXTRN assembler
instruction. It is identified as an
externally defined symbol (i.e., defined in
another program) that is used to effect
linkage to the point of definition The

assembler places this information in the
control dictionary.

There is another way to obtain symbolic
linkage, namely by using the V-type address
constant. The subsection Data-Definition-
Instructions contains the details pertinent
to writing a V-type address constant. It
is sufficient here .to note that this
constant may be considered an indirect
linkage point. It is created from an
externally defined symbol, but that symbol
does not have to be identified by an EXTRN
statement The V-type address constant may
be used for external branch reféerences
(i.e., for effecting branches to other
programs). It should not be used for
external data references (i.e., for
referring to data in other progranms).

ENTRY -- IDENTIFY ENTRY-POINT SYMBOL

The ENTRY instruction identifies a linkage
symbol that is defined in this program but
may be used by some other program. The
format of the ENTRY instruction statement
is as follows:

1 1
[Name Operation Operand

L

L}
|Blank ENTRY A relocatable
symbol that also
appears as a state-

ment name

o e e w—
TR S
T Mypmmy

The symbol in the ENTRY operand field
may be used as an operand by other
programs. An ENTRY statement operand may
not contain a symbol defined in an unnamed
control section or a dummy section. The
following example identifies the statements
named SINE and COSINE as entry points to
the progranm.

[} ¥ 1 1
|[Name | Operation | Operand |
L { [b |
L ¥ 1 L)
| | ENTRY | SINE |
| | ENTRY | COSINE |
L L [4 "

. The name of a control section does not
have to be identified by an ENTRY
instruction when another program uses it as
an entry point. The assembler
automatically places information on control
section names in the control dictionary. A
maximum of 100 ENTRY statements will be
processed in a single assembly.

EXTEN —— IDENTIFY EXTERNAL SYMBOL

The EXTRN instruction identifies a linkage
symbol that is used by this program but

Addressing —-- Progranm Sectipninq and»Linking

defined in some other program Each
external symbol must be identified; this
includes symbols that name control
sections. The format of the EXTRN
instruction statement is as follows:

]
Name | Operation Operand
1

1
Blank | EXTRN
|

A relocatable
symbol

o e e e e

The symbol in the operand field may not
appear as the name of a statement in this
program. The following example identifies
three external symbols that have been used
as operands in this program but are defined
in some other program.

) L] L) 1
{Name | Operation | Operand |
L 1] 1
] T) 1
	EXTRN	RATEBIT
	EXTRN	PAYCALC
	EXTRN	WITHCALC
L 1 L J

An example that employs the EXTRN
instruction appears subsequently under
Addressing External-Control-Sections.

Note: A V-type address constant does not
have to be defined by an EXTRN statement.

Note: When external symbols are used in an
expression they may not be paired. The
assembler processes them as though they
originated from different control sections.

Addressing External Control Sections-

A common way for a program to link to an
external control section is to:

1. Create a V-type address constant with
the name of the external symbol.

2. Load the constant into a general
register and branch to the control
section via the register.

F T T T 1
| Name |Operation |Operand |
L 1 A 1
L} L} L) 1
| MAINPROG |CSECT i |
|BEGIN | BALR 12,0 i
| |USING 1%,2 T
I I . | |
| I . | |
| L |13, VCON |
| | BALR 11,3 (
| I . | |
I I | |
{vecon: IDC {V (SINE) l
i | END | BEGIN {
L 1] J

3V]
~!

For example, to link to the control
section named SINE, the preceding coding
might be used.

An external symbol naming data may be
referred to as follows:

1. Tdentify the external symbol with the
EXTRN instruction, and create an
address constant from the symbol.

2. Load the constant into a general
register, and use the register for base
addressing.

For example, to use an area named
RATETBL, which is in another control
section, the following coding might be
used:

28 S/360 BOS Assembler with I/0 Macros

|END
1

r L] T 1
{Name |Operation |Operand |
1 3 1 1
L] L] 1 1
I MAINPROG |CSECT | |
|BEGIN | BALR |2 |
| JUSING EY |
| I - | |
| I . I l
| |EXTRN | RATETBL]
{		
I .		
	IL	4,RATEADDR
	USING	RATETBL, 4
	A {	3,RATETBL
I -		
[i	
{RATEADDR |DC IA(RATETBL) I
1 !

| BEGIN
1

This section discusses the coding of the
machine-instructions represented in the
assembler language. The reader is reminded
that the functions of each
machine-instruction are discussed in the.
Principles of Operation manual (see
Preface) .

MACHINE-INSTRUCTION STATEMENTS

Machine-instructions may be represented
symbolically as assembler language
statements. The symbolic format of each
varies according to the actual
machine~instruction format, of which there
are five: RR, RX, RS, SI, and SS. Within
each basic format, further variations are
possible.

The symbolic format of a machine-
instruction is similar to, but does not
duplicate, its actual format. Appendix D
illustrates machine format for the five
classes of instructions. A mnemonic
operation code is written in the operation
field, and one or more operands are written
in the operand field. Comments may be
appended to a machine-instruction statement
as previously explained in the
Introduction. '

Any machine-instruction statement may be
named by a symbol, which other assembler
statements can use as _an operand. The
value attribute of the symbol is the
address .of the leftmost byte assigned to
the assembled instruction. The length
attribute of the symbol depends on the
basic instruction format, as follows:

. Length Attribute

RR 2
RX b
RS 4
ST 4
SS 6

Instruction Alignment and Checking

All machine-instructions are aligned
automatically by the assembler on half-word
boundaries. If any statement that causes
information to be assembled requires
alignment, the bytes skipped are filled
with hexadecimal zeros. All expressions
that specify storage addresses are checked
to insure that they refer to appropriate
boundaries for the instructions in which
they are used. Register numbers are also
checked to make sure that they specify the
proper registers as follows:

MACHINE- ITNSTRUCTIONS -

1. Floating-point instructions must
specify floating-point registers 0, 2,
4, or 6.

2. Double-shift, full-word multiply, and
full-word divide instructions must
specify an even-numbered general
register in the first operand.

OPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a
single field and other operands are written
as a field followed by one or two
subfields. For example, addresses. consist
of the contents of a base register and a
displacement. An operand that specifies a
base and displacement is written as a
displacement field followed by a base
register subfield, as follows: 40(5). 1In
the RX format, both an index register
subfield and a base register subfield are
written as follows: 40(3,5). In the SS
format, both a length subfield and a base
register subfield are written as follows:
40 (21,5) .

Appendix_ D shows two types of addressing
formats for RX, RS, SI, and SS
instructions 1In each case, the first type
shows the method of specifying dan address
explicitly, as a base register and
displacement. The second type indicates
how to specify an implied address as an
expression.

For example, a load multiple instruction
(RS format) may have either of the
following symbolic operands:

R1,R3,D2(B2) = -
RY,R3,52 - -

explicit address
implied address

Whereas D2 and B2 must be represented by
absolute expressions, S2 may be represented
either by a relocatable or an absolute
expression.

In order to use implied addresses, the
following rules must be observed:

1. The base register assembler
instructions (USING and DROP) must be-
used.

2. An explicit base register designation
must not accompany the implied address.

For example, assume that FIELD is a

relocatable symbol, which has been assigned
a value of 7400. Assume also that the

Machine Instructions 29

assembler has been notified (by a USING
instruction) that general register 8
currently contains a relocatable value of
4096 -and is available as a base register.
The following example shows a
machine-instruction statement as it would
be written in assembler language and as it
would be assembled.
D2 is the difference between 7400 and 4096
and that X2 is assembled as zero, since it
was omitted. The assembled instruction is
presented in decimal:s

Assembler statement:
ST 4,FIELD

Assembled instruction:

Op.Code R1 X2 B2
50 4 0 8

D2
3304

An address may be specified explicitly
as a base register and displacement (and
index register for RX instructions) by the
formats shown in the first column of the
following table. The address may be
specified as an imrlied address by the
formats shown in the second column.
Observe that the two storage addresses
required by the SS instructions are
presented separately; an implied address
may be used for one while an explicit
address is used for the other.

Note that the value of

T T LY 1
| Type |Explicit Address| Implied Address |
1 1 'l N |
L) L) L} 1
] RX | D2 (X2, B2) | S2(X2) |
| ID2(0,B2) | s2 |
| RS | D2(B2) | s2 |
{ ST |D1(B1) 1 st |
ss {D1(L1,B1)	S1(L1)	
IDY(L,BY)	s1(L)	
	p2(L2,B2)	S2(L2)
L 1 1 J
%A zero must be supplied in an RX

explicit address when it is desired to
omit an index register specification
but include a base register
specification.

A comma must be written to separate
operands. Parentheses must be written to
enclose either one or two subfields of an
operand, and two subfields must be
separated by a comma. If the format of an
operand includes one subfield and if the
subfield is omitted, the parentheses mnust
also be omitted. If the format includes
two subfields, the following rules apply:

1. If both subfields are omitted, the
separating comma and the parentheses
must also be omitted.

30 S/360 BOS Assembler with I/0O Macros

L 2,48 (4,5) ,

L 2,FIELD (implied address)

2. If the first subfield in the sequence
is omitted, the comma that separates it
from the second subfield is written.
The parentheses must also be written.

MvC 32(16,5) ,FIELD2
MVC BETA(,5),FIELD2 (implied length)
(Beta must be an absolute expression)

3. In the RX class of instructions if the
index register subfield is not used,
but the base register is specified, the
first subfield (index register) must be
specified as zero. It _may not-be
omitted.

L 2,48 (4,5)
L 2,48(0,5)

4, If the second subfield in the sequence
is omitted, the comma that separates it
from the first subfield must be

omitted. The parentheses must be

written

MVC 32(16,5),FIELD2

MVC FIELD1(16) ,FIELD2 (implied
address)

Fields and subfields in a symbolic
operand may be represented either by
absolute or by relocatable expressions,
depending on what the field requires. (An
expression has been defined as consisting
of one term or a series of arithmetically
combined terms.) Refer to Appendix D for a
detailed description of field requirements.

Note: Blanks may not appear in an operand
unless provided by a character

self-defining term or a character literal

Thus, blanks may not intervene between
fields and the comma separators, between
parentheses and fields, etc.

LENGTHS -- EXPLICIT AND IMPLIED

The length field in SS instructions can be
explicit or implied. To imply a length,
the programmer omits. a length field from
the operand. The omission indicates that
the length field is either of the
following:

1. The length attribute of the expression
specifying the displacement, if an
explicit base and displacement have
been written.

2. The length attribute of the expression
specifying the effective address, if
the base and displacement have been
implied.

In either case, the length attribute for
an expression is the length of the leftmost
term in the expression.

By contrast, an explicit length is
written by the programmer in the operand as
an absolute expression. The explicit
length overrides any implied length.

Whether the length is explicit or
implied, it is always an effective length.
The value inserted into the length field of
the assembled instruction is one less than
the effective length in the
machine-instruction statement

Note: If a length field of zero is
desired, the length may be stated either as
a one or as a zero. (This is useful when
the subject instruction is to be executed
by the Execute (EX) machine instruction.)

To summarize, the length required in an
SS instruction may be specified explicitly
by the formats shown in the first column of
the following table or may be implied by
the formats shown in the second column.
Observe that the two lengths required in
one of the SS instruction formats are
presented separately. An implied length
may be used for one while an explicit
length is used for the other.

Explicit Length fmplied Length

! L !
| D1(L1,B1) | D1(,B1) I
| SY(LY) | st |
| D1(L,B1) | D1(,B1) |
1 S1(L) | st i
| D2(L2,B2) | D2(,B2) |
| S2(L2) | s2 i
[L .|

MACHINE-INSTRUCTION MNEMONIC CODES-

The mnemonic operation codes (shown in
Appendix_-B) are designed to be easily
remenbered codes that indicate the
functions of the instructions The normal
format of the code is shown below; the
items in brackets are not necessarily
present in all codes:

Verb [Modifier] {Data Type] [Machine
Format]

The verb, which is usually one or two
characters, specifies the function. For
example, A represents Add , and MV
represents Move. The function may be
further defined by a modifier. -For

example, the modifier L indicates a logical
function, as in AL for Add Logical.

Mnemonic codes for functions involving
data usually indicate the data types, by
letters that correspond to those for the
data types in the DC assembler instruction
(see Assembler Instruction Statements).
Furthermore, letters U and W have been
added to indicate short and long,
unnormalized floating-point operations,
respectively For example, AE indicates add
Normalized Short, whereas AU indicates aAdd
Unnormalized Short. Where applicable,
full-word fixed-point data is implied if
the data type is omitted.

The letters R and I are added to the
codes to indicate, respectively, RR and SI
machine instruction formats. Thus, AER
indicates Add Normalized Short in the RR
format. TFunctions involving character and
decimal data types imply the SS format.

MACHINE-INSTRUCTION EXAMPLES

The examples that follow are grouped
according to machine-instruction format.
They illustrate the various symbolic
operand formats. All symbols employed in
the examples must be assumed to be defined
elsewhere in the same assembly. All
symbols that specify register numbers and
lengths must be assumed to be equated
elsevhere to absolute values.

Implied addressing, control section
addressing, and the function of the USING
assembler instruction are not considered
here. For discussion of these
conhsiderations and for examples of coding
sequences that illustrate them, the reader
is referred to Program Sectioning.and
Linkjing -and Base Register Instructions.

Bg-Forgat
| o T B hJ 1
| Name | Operation |Operand |
1 1 1 A
) L L] L]
|ALPHA1 |LR 11,2 |
|ALPHA2 |LR | REG1,REG2 i
| BETA | SPM 16 |
|GAMMAY | SVC 1250 |
|
]

|GAMMA2 |SVC | TEN
L 1 [

The operands of ALPHA1, BETA, and GAMMA1
are decimal self-defining values, which are
categorized as absolute expressions. The
operands of ALPHA2 and GAMMA2 are symbols
that are equated elsewhere to absolute
values.

Machine Instructions 31

RX Format

I Al 1 1
|Name |Operaticn |Operand I
[} 1] " |
g 1] 1
|ALPHAY IL 11,39(4,10) (
|ALPHA2 I IREG1Y, 39 (4,TEN) |
|BETA1 IL 12,ZETA (4) |
{BETA2 It IREG2, 2ETA (REGY) i
|GAMMA1 {L 12,ZETA |
|GAMMA 2 |L |REG2,ZETA |
|GAMMA3 L 12,=F'1000°" |
[LAMBDAY |L 13,20(0,5) |
L A [} R J

Both ALPHA instructions specify explicit
addresses; REG1 and TEN are absolute
symbols. Both BETA instructions specify
implied addresses, and both use index
registers. Indexing is omitted from the
GAMMA instructions. GAMMA1 and GAMMA2
specify implied addresses. The second
operand of GAMMA3 is a literal. TLAMBDA1
specifies no indexing.

RS-Format

f T T " 1
{Name |Operation |Operand |
L 1 1]
L L I 1
ALPHA1	BXH 11,2,20(4)	
ALPHA2	BXH	REGY,REG2,20 (REGD)
ALPHA3	BXH	REG1,REG2,ZETA
ALPHAS	SLL	REG2,5
ALPHAS5	SLL	REG2,0 (5)
L i})]

Whereas ALPHA1 and ALPHA2 specify
explicit addresses, ALPHA3 specifiés an
implied address. ALPHA4 is a shift
instruction shifting the contents of REG2
left 5 bit positions. ALPHAS is a shift
instruction shifting the contents of REG2
left by the value contained in general
register 5.

SI Format

L) T T 1
{Name |Operation (|Operand |
1 i 1 1
1 L] L] 1
ALPHA1	CLI 140 (9),X'40!	
ALPHA2	CLI	40 (REGY) ,TEN
BETA1 {CLI	ZETA,TEN	
BETA2	CLT	ZETA,C*A"
IGAMMAY	SIO 140 (9)	
GAMMA2	SIO 10(9)	
IGAMMA3 |SIO 140 (0) |
[GAMMAL |SIO | ZETA |
L 1. [N]

The ALPHA instructions and GAMMA1-GAMMA3
specify explicit addresses, whereas the

32 S/360 BOS Assembler with I/0 Macros

|BETA {AP |FIELD2 (9) ,FIELD1
{GAMMAY [MVC |40 (9,8),30(7)
|GAMMA2 | MVC {40 (NINE, REG8) , DEC (7)
|GAMMA3 |MVC | FIELD2, FIELD 1
|GAMMAL - |MVC | FIELD2(9) , FIELD1

L 1 1

BETA instructions and GAMMAU4 specify
implied addresses. GAMMA2 specifies a
displacement of zero. GAMMA3 does not
specify a base register.

SS-Format

L)
|Name

k] L
|Operation|Operand
1 L]

L]

{40(9,8),30(6,7)

| 40 (NINE,REGS) ,30 (L6,7)
| FIELD2,FIELD1

| FIELD2 (9) , FIELD1 (6)

] Ll

[ALPHAY | AP
|ALPHA2 |AP
{ALPHA3 |AP
|ALPHALG | AP

ALPHAY, ALPHA2, GAMMA1Y1, and GAMMA2
specify explicit lengths and addresses.
ALPHA3 and GAMMA3 specify both implied
length and implied addresses. ALPHA4 and
GAMMAY4 specify explicit length and implied
addresses.. BETA specifies an explicit
length for FIELD2 and an implied length for
FIELDY; both addresses are implied.

EXTENDED MNEMONIC CODES

For the convenience of the programmer,. the
assembler provides extended mhemonic codes,
which allow conditional branches to be
specified mnemonically as well as through
the. use of the BC machine-instruction.
These extended mnemonic codes specify both
the machine branch instruction and the
condition on which the branch is to occur.
The codes are not part of the universal set
of machine-instructions, but are translated
by the assembler into the corresponding
operation and condition combinations.

The allowable extended mnemonic codes
and their operand formats are shown in
Figure 3, together with their machine-
instruction equivalents. Unless otherwvise
noted, all extended mnemonics shown are for
instructions in the RX format. Note that
the only difference between the operand
fields of the extended mnemonics and those
of their machine-instruction equivalents is
the absence of the R1 field and the comma
that separates it from the rest of the
operand field. The extended mnemonic list,
like the machine-instruction list, shows
explicit address formats only. Each
address can also be specified as an implied
address.

1 L] A] 1

| | | |
EXTENDED | OPERAND | MEANING | MACHINE INSTRUCTION |
CODE | | | |
| | | | {
F { 1 } {
B	D2 (X2, B2)	Branch Unconditional	BC 15, D2 (X2, B2)
BR	R2] Branch Unconditional (RR Format)	BCR 15, R2	
NOP	D2 (X2, B2)	No Operation	BC 0, D2 (X2, B2)
NOPR	R2	No Operation (RR Format)	BCR 0, R2
fa 1 i 1 qd			
) T L} 1			
1 (I			
]	JUSED AF¥TER COMPARE INSTRUCTIONS		
{]		
{ BH	D2 (X2, B2)	Branch on High	BC 2, D2 (X2, B2)]
{ BL	D2 (X2, B2) I Branch on Low { BC 4, D2 (X2, B2)		
BE	D2 (X2, B2)	Branch on Equal	BC 8, D2 (X2, B2)
{ BNH	D2 (X2, B2)	Branch on Not High	BC 13, D2 (X2, B2)
BNL	D2 (X2, B2)	Branch on Not Low	BC %1, D2 (X2, B2)
! BNE	D2 (X2, B2)	Branch on Not Equal	BC 7, D2 (X2, B2)
[+ t } {			
		USED AFTER ARITHMETIC INSTRUCTIONS	i
		! i	
} BO	D2 (X2, B2)	Branch on Overflow { BC 1, D2 (X2, B2)	
BP	D2 (X2, B2)	Branch on Plus	BC 2, D2 (X2, B2)
BM { D2 (X2, B2)	Branch on Minus	BC 4, D2 (X2, B2) {	
BZ	D2 (X2, B2)	Branch on Zero	BC 8, D2 (X2, B2)
L) 4. - 1 1			
L] T L 1 1			
i	JUSED AFTER TEST UNDER MASK INSTRUCTION		
(
BO	D2 (X2, B2) 1 Branch if Ones	BC %, D2 (X2, B2)	
BN	D2 (X2, B2)	Branch if Mixed	BC 4, D2 (X2, B2)
B2	D2 (X2, B2)	Branch if Zeros	BC 8, D2 (X2, B2)
1 L 1 L J
Figure 3. Extended Mnemonic Codes

The following examples illustrate
instructions using extended mnemcnic codes.

In these examples it is assumed that the

symbol GO is defined elsewhere in the

program.

4 1 L] 1
|Name |Operation |Operand |
L | 21]
1 { L] 1
	B 140 (3,6)	
	B j40(0,6)	
	BL 1GO (3)	
	BL	GO
	BR	4
L L L J

The first two instructions specify an

unconditional branch to an explicit

address The address in the first case is

the sum of the contents of base register 6,

the contents of index register 3, and the

displacement 40; the address in the second
instruction is not indexed.

instruction specifies a branch on low to

The third

the address implied by GO as indexed by the

contents of index register 3; the fourth

instruction does not specify an index
register. The last instruction is an
unconditional branch to the address

contained in register 4.

Machine Instructions

33

ASSEMBLER INSTRUCTYON STATEMENTS

Just as machine instructions are used to
request the computer to perform a sequence
of operations during program execution
time, so assembler instructions are
requests to the assembler to perform
certain operations during the assenmbly.
Assembler—-instruction statements, in
contrast to machine-instruction statements
do not always cause machine-instructions to
be included in the assembled progranm.

Some, such as DS and DC, generate no
instructions but do cause storage areas to
be set aside for constants and other data.
Others, such as EQU and SPACE, are
effective cnly at assembly time; they
generate nothing in the assembled progran
and have no effect on the Location Counter.

The fcllowing is a list of all the
assembler instructions.

Symbol Definition Instruction
EQU - Fquate Symbol

Data Definition Instructions

DC - Define Comnstant

DS - Define Storage

CCW - Define Channel Ccmmand Word

% Program Sectioning_and_ Linking
Instructions
START - Start Assembly
CSECT Identify Control Section
DSECT - Identify Dummy Secticn
ENTRY - Identify Entry-Pcint Symbol
EXTRN Identify External Symbol

* Base Register Instructions
USING - Use Base Address Register
~DROP - Drop Base Address Register

Listing Control Instructions
TITLE - Identify Assembly Ountput
EJECT - Start New Page

SPACE - Space Listing

PRINT - Print Optional Data
Program Control TInstructions
ICTL, - Input Format Control
ISEQ - Input Sequence Checking
ORG - Set Location Counter
LTORG - Begin Literal Pocl

CNOP - Conditional No Operation
END - End Assembly

REPRO - Reproduce Following Card
PUNCH - Punch a Card
XFR - Generate a Transfer Card

% Discussed under Addressing —-- Program

Sectioning and Linking.

34 S/360 BOS Assembler with I/0 Macros

SYMBOL DEFINITION INSTRUCTION

EQU -- EQUATE SYMBOL

The EQU instruction is used to define a
symbol by assigning to it the attributes of
an expression in the operand field. The
format of the EQU instruction statement is
as follovs:

L) T
| Name |Operation
[N 1

L 1
|A symbol |EQU
H

1
{Operand
i

|An expression
i

R A

The expression in the operand field nmust
be absolute or relocatable. Any symbols
appearing in the expression must be
previously defined.

The symbol in the name field is given
the same attributes as the expression in
the operand field. The length attribute of
the symbol is that of the leftmost (or
only) term of the expression. The value
attribute of the symbol is the value of the
expression.

The EQU instruction is the means of
equating symbols to register numbers,
immediate data, and other arbitrary values
The following examples illustrate how this
might be done:

L 38
|Name

1 1 1

| Operation |Operand i
1 1 [l J
L}] 1 1
|REG2 | EQU 12 (general register) |
|TEST |EQU |X*3F!' (inmediate data) |
L L L 1

" To reduce programming time, the
programmer can equate symbols to frequently
used expressions and then use the symbols
as operands in place of the expressions
Thus, in the statement

1
Name J]Operation Operand
1

|
|
!

ALPHA-BETA+GAMUMA

[.

(o —— e —— -

1

|
FIELD |EQU

1

FIELD is defined as ALPHA-BETA+GAMMA and
may be used in place of it. Note, however,

that ALPHA, BETA, and GAMMA must all be
previously defined.

DATA DEFINITION INSTRUCTIONS

There are three data definition instruction
statements: Define Constant (DC), Define
Storage (DS), and Define Channel Command
Word (CCHW).

These statements are used to enter data
constants into storage, to define and
reserve areas of storage, and to specify
the contents of channel command words. The
statements may be named by symbols so that
other program statements can refer to the
fields generated from them. The DS
instruction is written in the same format
as the DC instruction and may specify some
or all of the information that the DC
instruction provides. 0Only the function
and treatment of the statements vary. The
DC instruction is presented first and
discussed in more detail than the DS
instruction.

DC —— DEFINE CONSTANT

The DC instruction is used to provide
constant data in storage. It may specify
one constant or a series of constants.
Furthermore, a variety of constants may be
specified: binary fixed-point,
floating-point, decimal, hexadecimal,
character, and storage addresses (Data
constants are generally called constants
unless they are created from storage
addresses, in which case they are called
address constants.)

The format of the DC instruction
statement is as follows:

-
|Name Operation Operand

H

4

|A symbol DC One operand in
i

or blank
|
L

the following
format

,___--_-
F——— —
e o e e a—

The operand consists of four subfields.
They are written in the following sequence:

1 2 3 4
Dupli- Type Modifiers Constant (s)
cation
Factor

The constant provided in the fourth
subfield is described by subfields 1-3.
Some or all of the three descriptive
subfields may be omitted, depending on the
constant. Note that more than one constant

may be specified in the fourth subfield for
most types of constants, so the programmer
need not write a separate data definition
for every constant desired. However, each
constant so specified must be of the same
type; the descriptive three subfields apply
to all of them. No blanks may occur within
any subfield, except in providing a
character in a character constant. No
blanks may occur between the subfields of
an operand.

The symbol that names the DC instruction
is the name of the comnstant, or, if the
instruction specifies more than one, the
first constant. In the case of multiple
constants, relative addressing (for
example, SYMBOL+2) may be used to reach the
various values. The number of bytes
allocated to each constant can readily be
determined from the four subfields.

The value attributed to the symbol
naming the DC instruction is the address of
the leftmost byte (after alignment) of the
constant, or the first constant where .
multiple constants are defined. The length
attribute depends on two things: the type
of constant being defined and the use of a
length specification. If no length
specification is present, the implied
length of the constant is assumed. Should
more than one constant be defined, the
attributed length is the length in bytes
(specified or implied) of the first
constant.

Boundary alignment also varies according
to the type of constant being specified and
the presence of a length specification.
Somesconstant types are only aligned to a
byte boundary, but the DS instruction -can
be used to force any type of word boundary
alignment for them. This is explained
under’ DS.—- Define Storage. Other
constants are aligned at various word
boundaries (half, full, or double) in the
absence of a length specification. For
these constants, no boundary alignment
occurs if length is indicated.

. Bytes that must be skipped in order to
align the field at the proper boundary are
not considered to be part of the constant.
In other words, the Location Counter is
incremented to reflect the proper boundary
(if any incrementing is necessary) begfore
the address value is established. Thus,
the symbol naming the constant will not
receive a value attribute that is the
location of a skipped byte. The bytes
skipped in aligning the constant defined by
a DC instruction will be zeroed, because
information is being assembled. This would
occur, for example, in the alignment of the
statemnent DC F'123!.

Assembler Instructions 35

Appendix F summarizes, in chart forn,
the information concerning constants that
is presented in this section.

LITERAL DEFINITIONS: The reader is
reminded that the discussion of literals as
machine~instruction operands referred hinm
to the description of the DC operand for
the methcd of writing a literal operand.
All subsequent operand specifications are
applicable to writing literals, the only
differences being:

1. The literal is preceded by an = sign.
2. The duplication factor may not be zero.

3. S-—-tyre address constants may not be
specified.

Examples of literals appear throughcut
the balance of the DC instruction
discussion.

Operand Subfield 1: Duplication Factor

The duplication factor must be specified by
an unsigned decimal value. It causes the
constant (s) to be generated the number of
times indicated by the factor. It is
applied after the constant has been fully
assembled, that is, after it has been
developed into its proper format. Note
that, except in a literal, a duplication
factor of zero is permitted. It is used to

force alignment to a doubleword, full-word,
or half-word boundary, as desired. (See
Forcing Alignment under DS—--Define
Storage.) The duplication factor may be
omitted altogether.

Notet: If duplication is specified for an
address constant containing a lLocation
Counter reference, the value of the
L.ocation Counter used in each duplication
is incremented by the length of the
constant.

Operand Subfield 2: Type

The type subfield defines the type of
constant being specified. From the type
specification, the assembler determines how
it is to interpret the constant and
translate it into the appropriate machine
format. The type is specified by a letter
code as shown in Figure 4.

Further information about these
constants is provided in the discussion of
the constants themselves under QOperand
Subfield 4: _Constant.

Operand -Subfield 3:. Modifiers

Modifiers describe the length in bytes
desired for a constant (in contrast to an
implied length), and the scaling and
exponent for the constant. If multiple
nodifiers are written, they must appear in

I 1 T 1
| CODE | TYPE OF CONSTANT | MACHINE FORMAT |
1 ['} d
1 T !
} C | Character | 8-bit code for each character |
X	Hexadecimal	4-bit code for each hexadecimal digit
B	Binary	Binary format
F	Fixed-point	Signed, fixed-point binary format;
		normally a full word
H	Fixed-point	Signed, fixed-point binary format;
		normally a half word
E	Floating-point	Short floating-point format; [
		normally a full word
D	Floating=-point	Long floating~point format;
		normally a double word
P	Decimal	Packed decimal format
Z	Decimal	Zoned decimal format
A	Address	Value of address; normally a full word
Y	Address	Value of address; normally a half word
{ S	Address	Base register and displacement value;
l	a half word :	
('	Address	Space reserved for external symbol address; each [
		address normally a full word
:7 1 i i		
‘		

| Note: The type subfield for a character constant may be omitted, C is assumed. |
[&)
Figure 4. Type Codes for Constants

36 S/360 BOS Assembler with I/0 Macros

this sequence: 1length, scale, exponent.
Fach is written and used as described in
the following text.

LENGTH MODIFIER: A length modifier may be
specified for any type of constant. It is
written as Ln, where n is an unsigned
decimal value. The value cf n represents
the number of bytes of storage that are
assembled for the constant. No boundary
alignment is provided when a length
modifier is given.

The maximum value permitted for a length
modifier varies with the type of constant.
A character may have a length up to 256
specified, whereas the range of a
fixed-point constant is 1 to 8. Should the
specified length be greater or less than
the constant actually given, padding or
truncation occurs as necessary. If no
length modifier is present, the implied
length of that type of constant is used.
Limits on the modifiers and implied lengths
are found in Appendix F, a summary of
constants.

SCALE MODIFIER: This modifier is written
as Sn, where n is a decimal value. The
decimal value may be preceded by a sign; if
none is present, a plus sign is assumed.
The maximum values for scale modifiers are
summarized in Appendix_ F.

A scale modifier may be used with
fixed-point (F, H) and floating-point (E,
D) constants only. It is used to specify
the amount of internal scaling that is
desired, as follows.

Scale_ Modifier for Fixed—Point Constant:
This scale modifier specifies the power of
two by which the constant must be
multiplied after it has been converted to
its binary representation. It must fall
within the range -187 to ¢346.
Multiplication of a binary number by a
power of two causes the binary point to
move. It has the effect of shifting the
binary point away from its assumed position
in the binary field, the assumed position
being to the right of the rightmost
position. The process is ccmparable to the
movement of a decimal point in the
multiplication of a decimal number by a
power of ten.

The scale modifier, then, indicates
either of the following:

1. the number of binary positions to be
occupied by the fractional portion of
the binary number, or

2. the number of binary positions to be
deleted from the integral portion of
the binary number.

A positive scale of x shifts the inteqral
portion of the number x binary positions to
the left, thereby reserving the rightmost x
binary positions for the fractional
porticn. A negative scale shifts the
integral portion of the number right,
thereby deleting rightmost inteqral
positions. If a scale modifier does not
accompany_a fixed—-point constant containing
a fractional part, the fractional part_is
lost. . For example, if the decimal portion
of the number 987.65 is to be retained, the
statement DC FS8'987.65' is required. The
statement DC F'987.65' without the scale
factor S8 retains only the integral
portion, 987, of the nunmber.

In all cases where positions are lost
because of scaling (or the lack of
scaling), rounding occurs in the leftmost
bit of the lost portion. The rounding is
reflected in the rightmost position saved.

Scale Modifier_for Floating-Point Constant:
Only a positive scale modifier may be used
with a floating-point constant. It may be
any value from 0 to 13 and indicates the
number of hexadecimal positions that the
fraction is to be shifted to the right. It
is specified in this way because a
floating-point constant is always converted
to a fraction. This fraction is
hexadecimally normalized, that is, with a
high-order hexadecimal digit that is not
zero. Because the point is then assumed to
be to the left of the leftmost position in
the field, and cannot be moved left, the
fraction is shifted right. Note that this
shift amount is in terms of hexadecimal
positions.

Thus, scaling that is specified for a
floating-point constant provides an
assembled fraction -that is unnormalized,
i.e., contains hexadecimal zeros in the
leftmost positions of the fraction. When
the fraction is shifted, the exponent is
adjusted accordingly to retain the correct
magnitude. When hexadecimal positions are
lost, rounding occurs in the leftmost
hexadecimal position of the lost portion.
The rounding is reflected in the rightmost
hexadecimal position saved.

EXPONENT MODIFIER: This modifier is
written as En, where n is a decimal value.
The decimal value may be preceded by a
siqn; if none is present, a plus sign is
assumed. The maximum values for exponent
modifiers are summarized in Appendix F.

An exponent modifier may be used with
fixed-point (F, H) and floating-point (E,
D) constants only. The modifier denotes
the pover of 10 by which the constant is to
be multiplied before its conversion to the
proper internal format.

Assembler Instructions 37

This modifier is not to be confused with
the exponent of the constant itself, which
is specified as part of the constant and is
explained under Operand Subfield 4: .
Constant. Both are denoted in the same
fashion, as En. The exponent modifier
affects each constant in the operand,
whereas the exponent written as part of the
constant only pertains to that constant.
Thus, a constant may be specified with an
exponent of 42, and an exponent modifier of
+5 may precede the constant, In effect,
the constant has an exponent of +7.

Note that there is a maximum value, both
positive and negative, listed in Appendix_ F

If an address constant contains a
Location Counter reference, the Location
Counter value that is used is the storage
address of the first byte the constant will
occupy. If an address constant is
specified (and it is a Location Counter
reference) with a duplication factor, the
constant is duplicated with a varying
Location Counter value.

The subsequent text describes each of
the constant types and provides examples.

Character Constant.---C: Any of the valid

for exponents. This applies both to
exponent modifier and exponents specified
as part cf the ccnstant, or to their sum if
both are specified.

Operand Subfield 4: Constant

This subfield supplies the constant (or
constants) described by the subfields that
precede it., A data constant (all types
except A,Y,S,and V) is enclosed by single
quotation marks. An address constant
(types A, Y, S, and V) is enclosed by
parentheses. For types F,H,E,D,P, and Z
two or more constants may be specified in
the subfield. The constants must be
separated by commas and the entire sequence
of constants must be enclosed by single
quotation marks. Thus, the format for
specifying the constant(s) is one of the
following:

Single Multiple

Constant Constantsx

fconstant!? '‘constant,...,constant!
(constant)

*Permitted for F,H,E,D,P, and Z type
constants only.

A1l constant types except character (C),
hexadecimal (X), binary (B), packed decimal
(P), and zoned decimal (Z), are aligned on
the proper boundary, as shown in Appendix
F, unless a length modifier is specified.
In the presence of a length modifier, no
boundary alignment is performed. If an
operand specifies more than one constant,
any necessary alignment applies to the
first constant only. Thus, for an operand
that provides five full-word constants, the
first would be aligned on a full-word
boundary. The rest, however, would
automatically fall on full-word boundaries
as wvell.

The total storage requirement of an
operand is the product of the length times
the number of constants in the operand
times the duplication factor (if present)
rlus any bytes skipped for boundary

“alignment of the first constant .

38 5/360 BOS Assembler with I/0 Macros

256 punch combinations may be designated in
a character constant. Only one character
constant may be specified per operand.
Since multiple constants within an operand
are separated by commas, an attempt to
specify two character constants would
result in interpreting the comma separating
them as a character.

The maximum length of a character
constant is 256 bytes. No boundary
alignment is performed. Each character is
translated into one byte. " If no length
modifier is given, the size in bytes of the
character constant is egqual to the number
of characters in the constant. If a length
modifier is provided +the result varies as
follows:

1. If the number of characters in the
constant exceeds the specified length,
as many rightmost bytes as necessary
are dropped.

2. If the number of characters is less
than the specified length, the excess
rightmost bytes are filled with blanks.

Special consideration must be given to
representing quotation marks and ampersands
as characters. Each single quotation mark
or ampersand desired as a character in the
constant must be represented by a pair of
single quotation marks or ampersands. The
double quotation marks and ampersands count
as one character. Only one single
quotation mark or ampersand appears in
storage.

In the following example, the length
attribute of FIELD is 12:

T T -
|Name |Operation |Operand
[l]

SR

L 1 L B
|FIELD |DC {C'TOTAL IS 110"
L 1 L

However, in this next example, the
length attribute is 15, and three blanks
appear in storage to the right of the zero:

I
|Name
[l

[4)
|FIELD |DC
L L

L] LS
|Operation |Operand
1 1

e e e e

Ll
[CLY5'TOTAL IS 110!
'l

In the next example, the length
attribute of FIELD is 12, although 13

characters appear in the operand. The two
ampersands count as only one byte.

I Bl 1 1
|Name |Operation |Operand |
L L (] |
1] T Ll 1
| FIELD | DC |C*TOTAL is €&10! |
| | i |
L 1 1 " |

Note that in the next example, a length
of four has been specified, but there are
five characters in the constant

length modifier is given, the constant is
handled as follows:

1. If the number of hexadecimal digit
pairs is greater than the specified
length, the extra leftmost bits
(and/or bytes) are dropped.

2. If the number of hexadecimal digit
pairs is less than the specified
length, the necessary bits (and/or
bytes) are added to the left and
filled with hexadecimal zeros.

An eight-digit hexadecimal constant
provides a convenient way to set the bit
pattern of a full binary word. The
constant in the following example would set
the first and third bytes of a word to 1s:

{ It T Ll

|Name |Operation |Operand |

1 1 L 1
I L 1 1 L}] 1 1
|Name |Operation |Operand | | | DS |OF |
f } { — |TEST |DC | X*FFOOFFO0! |
|[FIELD |DC [3CL4"'ABCDE! | L L L. !
L 1 [} J

The generated constant would be:
ABCDABCDABCD
On the other hand, if the length had
been specified as six instead of four, the
generated constant would have been:

ABCDE ABCDE ABCDE

Note that the same constant could be
specified as a literal.

The DS instruction sets the location
counter to a full-word boundary.

The next example uses a hexadecimal
constant as a literal and inserts s into
bits 24 through 31 of register 5.

Name |Operation Operand
1

T
|
1
r T
| | IC

—_ L

5,=X'FF!

b e e e

In the following example, the digit A
would be dropped, because five hexadecimal

hexadecimal digits, which are 0-9 and A-F.

L T 1 1

|Name |Operation |Operand | digits are specified for a length of two

F } } { bytes:

| |MVC |AREA(12) ,=3CL4"'ABCDE" |

— L A "l f T T 1

|Name {Operation |Operand |

Hexadecimal Constant —- X: A hexadecimal { - |

constant is comprised of one or more of the DC 3XT,2'A6F4E? |
|
1

Only one hexadecimal constant may be
specified per statement. The maximum
length of a hexadecimal ccnstant is 256
bytes (512 hexadecimal digits). No word
boundary alignment is performed.

Constants that contain an even number of
hexadecimal digits are translated as one
byte per pair of digits. If an odd number
of digits is specified, a hexadecimal zero
is paired with the leftmost digit to make
up another byte.

If no length modifier is given, the
implied length of the constant is half the
number of hexadecimal digits in the
constant (assuming that a hexadecimal zero
is added to.an odd number of digits). If a

L
A
|ALPHACON
|
1

The resulting constant would be 6F4F,
which would occupy the two bytes specified
by the length modifier (L2). It would be
generated three times, as requested by the
duplication factor. Had it been specified
as X'A6F4E', the resulting constant would
have contained a hexadecimal zero in the
leftmost position:

OA6FU4E

Binary Constant--- B: A binary constant is

written using s and 0Os enclosed in
quotation marks. Only one binary constant
may be specified in a statement.
Duplication and length may be specified.

Assembler Instructions 39

The maximum length of a binary constant is
256 bytes.

The implied length of a binary constant
is the number of bytes occupied by the
constant including the padding necessary to
complete a byte. The padding bit used is a
0. Padding or truncation takes place on
the left.

The following example shows the coding
used to designate a binary constant.

L] L 1 Ll
|Name |Operation |Operand |
1 (1 1 | |
L) L]] 1
| BCON | DC {B*1101110¢"* |
|{BTRUNC |DC |BL1*1C0100011" |
|BPAD |DC |BL1v 10 1! [
L N 1 J

BCON would have a length attribute of
one.

BTRUNC would assemble with the leftmost
bit truncated, as follows:

00100011

BPAD would assemble with five zeros as
padding, as follows:

00000101

Fixed-Point Constants_-—-_F and H: A
fixed-point constant is written as a
decimal number. The number may be an
integer, a fraction, or a mixed number
(L.e., one with integral and fractional
portions) and may be followed by a decinmal
exponent if desired. The format of the
constant is as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be omitted,
in which case the number is assumed to
be an integer. A positive sign is
assumed if an unsigned number is
specified Unless a scale modifier
accompanies a mixed number or fractionm,
the fractional portion is lost, as
explained under Subfield 3: -Modifiers.

2. The exponent is optional. If
specified it is written immediately
after the number as En, where n is an
optionally signed decimal value
specifying the exponent of the factor
10. The expronent may be in the range
-85 to +#75. If an unsigned exponent is
specified, a plus sign is assumed. The
exponent causes the value of the
constant to be adjusted by the power of
10 that it specifies before the
constant is converted to its binary
forn.

40 S/360 BOS Assembler with I/O Macros

The number is converted to its binary
equivalent and is assembled as a full-word
or half-word, depending on whether the type
is specified as F or H. It is aligned at
the proper full-word or half-word boundary
if a length is not specified. An implied
length of four bytes is assumed for a
full-word (F) and tvwo bytes for a half-word
(H) . However, any length up to and
including eight bytes may be specified for
either type of constant by a length
modifier, in which case no boundary
alignment occurs.

Maximum and minimum values, exclusive of

scaling, for fixed-point constants are:
Length Max Min

8 263-1 -263

4 231-1 -231

2 215-1 -218

1 27-1 -27

The binary number occupies the rightmost
portion of the field in which it is placed.
The unoccupied portion (i.e., the leftmost
bits) is filled with the sign. That is,
the setting of the bit designating the sign
is the setting for the bits in the unused
portion of the field. If the value of the
nunber exceeds the length, the necessary
leftmost bits are dropped. A negative
number is carried in 2s complement fornm.

If the presence or absence of a scale
modifier is such that the rightmost portion
of the number must be dropped, rounding
occurs. A duplication factor is applied
after the constant is converted to its
binary format and assembled into the proper
number of bytes.

A field of three full-words is generated
from the statement shown here. The
specified numbers occupy the rightmost
three bytes, with the sign propogated
through the rest of the word. This
constant then appears three times in
storage. The location attribute of CONWRD
is the address of the leftmost byte of the
first word, and the length attribute is
four, the implied length for a full-word
fixed-point constant. The expression
CONWRD+4 could be used to address the
second constant (second word) in the field.

1 1 1
| Name |Operation |Operand
| - 1

1

|

1] 1 =
[CONWRD |DC I
1 J

L

T
|3F'658474"
'

The next statement causes the generation
of a two-byte field containing a negative
constant. Notice that scaling has been
specified in order to reserve six bits for
the fractional portion of the constant.

L
|Name
1

]
| HALFCON
[

Operaticn’ |Operand
[

i

A A

e | HS6 1-25.931
1

The next constant (3.50) is multiplied
by 10 to the -2 before being converted to
its binary format. The scale modifier
reserves eight bits for the fractional
portion.

§
|Name
1

f T
JFULLCON |DC
L 1

Rl ¥
|Operaticn |Operand
L 1

b e ol e o

|HS813.50E-21
L

The same constant could be specified as
a literal:

)
Name Operation |[Operand
L

o — =
SRS By——

r
|
k t
| AH |7,=HS813.50E-2"
L 1

The final example specifies three
constants. Notice that the scale modifier
requests four bits for the fractional
portion of each constant. The four bits
are provided whether or not the fraction
exists.

1 A 1
|Name |Operation |[Operand I
1 } } 1
Lo 1 T 1
|THREECON |DC |FS4110,25.3,100! |
L] | B _ (]
Floating-Point_ Constants -- E and D: A

floating-point constant is written as a
decimal number, which may be followed by a
decimal exponent, if desired: The number
may be an integer, a fraction, or a mixed
number (i.e., one with integral and
fractional portions). The format of the
constant is as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number, or it may be omitted,
in which case, the number is assumed to
be an integer. 1A positive siqgn is
assumed if an unsigned number is
specified. :

2. The exponent is optional. If
specified it is written immediately
after the number as En, where n is an
optionally signed decimal value
specifying the exponent of the factor
10. The exponent may be in the range
-85 to +75. If an unsigned exponent is
specified, a plus sign is assunmed.

Machine format for a floating-point
number is in two parts: the portion
containing the exponent, which is sometimes
called the characteristic, followed by the
portion containing the fractiomn, which is
sometimes called the mantissa. The number
specified as a floating-point constant must
be converted to a fraction before it can be
translated into the proper format. For
example, the constant 27.35E2 represents
the number 27.35 times 10 to the 2nd.
Represented as a fraction, it would be
«2735 times 10 to the 4th, the exponent
having been modified to reflect the
shifting of the decimal point. The
presence of an exponent modifier, which
will pertdin to each constant in the
operand, may affect the exponent (see
Operand -Subfield 3: -Modifiers). Thus, the
exponent is also altered before being
translated into machine format. Once the
constant is converted into the proper
fraction and exponent, each is translated
into its binary equivalent and arranged in
machine floating-point format.

The translated constant is placed in a
full word or a double word, depending on
whether the type is specified as E or D.
The characteristic occupies the first byte,
and the fraction takes up the remaining bit
positions. The constant is aligned at the
proper word or double word boundary if a
length is not specified. An implied length
of four bytes is assumed for a full word
(E) and eight bytes is assumed for a double
word (D). However, any length up to and
including eight bytes may be specified for
either type of constant by a length
modifier, in which case no boundary
alignment occurs.

Within the portion of the floating-point
field allocated to the fraction, the
hexadecimal point is assumed to be to the
left of the leftmost hexadecimal digit, and
the fraction occupies the leftmost portion
of the field. The fraction is normalized
(no leading hexadecimal zeros), unless
scaling is specified. If the rightmost
portion -of the fraction must be dropped
because of length or scale modifiers,
rounding will occur. Negative fractions
are carried in true representation, not in
the 2s complement form.

Any of the following statements could be
used to specify 46.415 as a positive,
full-word, floating-point constant; the
last is a machine-instruction statement
with a literal operand. Note that the last
two constants contain an exponent modifier.

Assembler Instructions 41

Ll T
Name |Operation |Operand
(1 [

I L]
one forenin | :
] {pc |E*46.415" I
I | DC |E'U46415E-31 I
| | DC |E'+464.15E=1" I
I | DC |E'+.46415E+2" I
1 | DC | EE2'. 464151 |
| |
t 1

| AE |16,=EE2'.46415"
1 1

Each of the following would be generated
as double-word floating-point constants.

T v
| Name |Operation |Operand
L . 4. }

1
|
L] L)) :
|FLOAT |DC | DE+4v+46,-3.729,+4731 |
L. A L]

Decimal Constants —- P and Z: A decimal
constant is written as a signed or unsigned
decimal value. If the sign is omitted, a
plus sign is assumed. The decimal roint
may be written wherever desired or may . be
omitted. Scaling and exponent modifiers
may not be specified for decimal constants.
The maximum length of a decimal constant is
16 bytes. No word boundary alignment is
performed.

The placement of a decimal point in the
definition does not affect the assembly of
the constant in any way, because, unlike
fixed-point and floating-point constants, a
decimal constant is not converted to its
binary equivalent. The fact that a decimal
constant is an integer, a fraction, or a
mixed number is not pertinent to its
generation. Furthermore, the decimal fpoint
is not assembled into the constant., The
programmer may determine proper -decimal
point alignment either by defining his data
so that the point is aligned or by
selecting machine-instructions that will
operate .on the data properly (i.e., shift
it for purposes of alignment).

If zoned decimal format is specified
(Z), each decimal digit.is translated into
one byte. The translation is done
according to the character set shown in
Appendix A. The rightmost byte contains
the sign as well as the rightmost digit.
For packed decimal format (P), each pair of
decimal digits is translated into one byte.
The rightmost digit and the sigmn are
translated into the rightmost byte. The
bit configuration for the digits is
identical to the configurations for the
hexadecimal digits 0-9 as shown in
Hexadecimal Self-Defining Term. For both
packed and zoned decimals, a plus sign is
translated into the hexadecimal digit C,
and a minus sign into the digit D.

If an even number of packed decimal
digits is specified, one digit will be left

42 5S/360 BOS Assembler with I/0 Macros

unpaired, because the rightmost digit is
paired with the sign. Therefore in the
leftmost byte, the leftmost four bits will
be set to zeros and the rightmost four bits
will contain the odd (first) digit.

If no length modifier is given, the
implied length for either constant is the
number of bytes the comnstant occupies
(taking into account the format, sign, and
possible addition of zero bits for packed
decimals). If a length modifier is given,
the constant is handled as fdéllows:

1. If the constant requires fewer bytes
than the length specifies, the
necessary number of bytes is added to
the left. For zoned decimal format,
the decimal digit zero is placed in
each added byte. For packed decimals,
the bits of each added byte are set to
ZEero.

2. 1If the constant requires more bytes
than the length specifies, the
necessary number of leftmost digits or
pairs of digits is dropped, depending
on which format is specified.

Examples of decimal constant definitions

‘follow.

L | L)
| Name |Operation- |Operand
L 1 L

]

1

|
F } 1
{FIRST |DC |P'41.251 0
| SECOND | DC 121-543" I
| THIRD |DC 12'79.68"]
| FOURTH| DC | PL3179.68" I
L L L]

FIRST would be assembled in two bytes,
with the one on the right containing the-
positive sign and the five specified.
SECOND would require three bytes; four
bytes would be assembled for THIRD. The
length of three specified for FOURTH would
be filled with zeros on the left paired
with the seven, and the assumed plus sign
paired with the eight-in the rightmost
byte.

The following example illustrates the
use of a packed decimal literal.

L] L
Name |Operation |Operand
L - L

T -
|QUTAREA,=PL2'+25"

1

L]
| UNPK
L

ADDRESS CONSTANTS: An address constant is
a storage address that is translated into a
constant Address constants are normally
used for initializing base registers to
facilitate the addressing. of storage.
Furthermore, they provide the means of
communicating between control sections of a

multisection program. However, storage
addressing and control section
communication are also dependent on the use
of the USING assembler instruction and the
loading of registers. Coding examples that
illustrate these considerations are
provided in Programming with the Using
Instruction.

An address constant, unlike other types
of constants, is enclosed in parentheses
There are four types of address constants:
A, ¥, s, and V.

Complex_.Relocatable Expressions: These
expressions contain two or three unpaired
relocatable terms or a negative relocatable
term in addition to any absolute or paired
relocatable terms that may be present. A
complex relocatable expression can only be
used to specify an A-type or Y-type address
constant. In contrast to relocatable
expressions, complex relocatable
expressions may represent a negative value.
A complex relocatable expression might
consist of external symbols (which cannot
be paired) and designate an address in an
independent assembly that is to be linked
and loaded with the assembly containing the
address constant.

A-Type Address Constant: This constant is
specified as an absolute, relocatable, or
complex relocatable expression. (Remember
that an expression may be single term or
multiterm.) The value of the expression is
calculated as explained in the General

Expressions. The maximum value allowed in
this case, however, is 231-1, The implied
length of an A-type constant is four bytes,
and the value is placed in the rightmost
portion. Alignment is to a full-word
boundary, unless a length is specified. 2
length modifier may be used, in which case
no alignment will occur. The length that
may be specified depends on the type of
expression used for the constant; a length
of 1-4 bytes may be used for an absolute
expression, while lengths of 3 and 4 bytes
may be used for a relocatable or complex
relocatable expression.

The A-type address constant can be used
to reference external data, in which case
EXTRN and ENTRY points are required.

In this example, ADEND will be assembled
as the value (or the address of the
leftmost byte) of DUMP.

L] | L 1
|Name |JOperation |Operand |
L L L A
L] T L] 1
|ADEND | DC |A (DUNMP) |
[- 1 1 (]

In the following example, the field
generated from the statement named ACONST
contains a constant which occupies four
bytes. Note that there is a Location
Counter reference. The value of the
Location Counter will be the address of the
first byte allocated to the constant. The
second statement shows the same constant
specified as a literal (i.e., address
constant literal).

i L] 1
{Name | Operation | Operand |
L 1 1 1
¢ { L] 1
| ACONST | DC | A(%+4096) |
| { L | 4,=A (x+4096) |
L L L J
Note: When the Location Counter reference

occurs in a literal, as in the load
instruction above, the value of the
Location Counter is the address of the
first byte of the instruction.

Y-Type Address Constant: A Y-type address
constant has the characteristics and format
of the A-type constant discussed above
except for the following:

1. The constant is assembled as a 16-bit
value and aligned to a half-word
boundary.

2. The implied length is two bytes.

3. If length specification is used, a
length of two to four bytes may be
designated for a relocatable or complex
expression and 1 to 4 bytes for an
absolute expression.

S-Type Address Constant: The S-type
address constant is used to store an
address in base-displacement forn.

The constant may be specified in two
ways:

1. As an absolute or relocatable
expression, e.g9., S(BETA).

2. As two absolute expressions, the first
of which represents the displacement
value and the second, the base
register, e.qg., S(400(13)).

The address value represented by the
expression in (1) will be broken down by
the assembler into the proper base register
and displacement value. An S-type constant
is assembled as a half word and aligned on
a half-word boundary. The leftmost four
bits of the assembled constant represents
the base register designation, the
remaining 12 bits the displacement value.

If length specification is used, only
two bytes may be specified. S-type address

Assembler Instructions 43

constants may not be specified as literals.
A duplication factor may not be used.

V-Type Address_-Constant: This constant is
used to reserve storage for the address of
an external symbol that is used in
branching to other programs. A V-type
constant may not be used for external data
references. The constant is specified as
one relocatable symbol, which need not be
identified by an EXTRN statement. Whatever
symbol is used is assumed to be an external
symbol by virtue of the fact that it is
supplied in a V-type address constant.

Note that specifying a symbol as the
operand of a V-type constant does not
constitute a definition of the symbcl for
this assembly. Until the program is
loaded, the value of the assembled constant
is zero. The implied length of a V-type
address constant is four bytes, and
boundary alignment is to a full word. A
length modifier may be used to specify a
length of either three or four bytes, in
wvhich case no such boundary alignment
CCCUrS.

In the following example, four bytes
will be reserved on a full-word boundary,
and filled with zeros until loading time.

L} LS
|Name |Operation

\J
|Operand
[[1

e e e

1 L) L]
|[VCONST | DC |V (SORT)
L 1 1

DS -- DEFINE STORAGE

The DS instruction is used to reserve areas
of storage and to assign names to those
areas. The use of this instruction is the
preferred way of symbolically defining
storage for work areas, input/output areas,
etc. The size of a storage area that can
be reserved by using the DS instruction is
limited only by the maximum value of the
Location Counter. Because the maximum
length specification is 256, an area larger
than 256 must be specified with a
duplication factor. For example, the
statement DS 2CL200 can be used to reserve
400 positions of main storage.

r

1
|Name Operation |Operand
1 1
4 N L]
|A symbol DS |0ne operand
jor blank |written in the

| | format described
lin the following

| text
1

o et e e ma — e G o
S

The format of the DS operand is
jdentical to that of the DC operand;

4 s/360 BOS Assembler with I /0 Macros

exactly the same subfields are employed and
are vwritten in exactly the same sequence as
they are in the DC operand, with the
following exception:

The specification of data (subfield 4)
is optional in a DS operand, but it is
mandatory in a DC operand.

If a DS operand specifies a constant in
subfield 4, (and no length is specified in
subfield 3) the assembler determines the
length of the data and reserves the
appropriate amount of storage. It does not
assemble -the.constant. The ability to
specify data and have the assembler
calculate the storage area that would be
required for such data is a convenience to
the programmer. If he knows the general
format of the data that will be placed in
the storage area during program execution
all he needs to do is show it as the fourth
subfield in a DS operand. The assembler
then determines the correct amount of
storage to be reserved, thus relieving the
programmer of length considerations.

If thevDSAinstruction is named by a
symbol, its value attribute is the location
of the leftmost byte of the reserved area.

"The length attribute of the symbol is the

length (implied or explicit) of the type of
data specified. Any positioning required
for aligning the storage area to the proper
type of boundary is done before the address
value is determined. Because no data is
assembled at this time, skipped bytes are
not zeroed.

Each field type (e.g., hexadecimal,
character, floating-point) is associated
with certain characteristics (these are
summarized in Appendix_ F). The associated
characteristics will determine which
field-type code the programmer selects for
the DS operand and what other information
he adds, notably a length specification or
a duplication factor. PFor example, the E
floating-point field and the F fixed-point
field both have an implied length of four
bytes. The leftmost byte is aligned to a
full-word boundary. Thus, either code
could be specified if it were desired to

" reserve four bytes of storage aligned to a

full-word boundary. To obtain a lenqgth of
eight bytes, one could specify either the E
or F field type with a length modifier of
eight. However, a duplication factor would
have to be used to reserve a larger area,
because the maximum length specification
for either type is eight bytes. VNote also
that specifying length would cancel any
special boundary alignment.

In contrast, packed and zoned decimal (P
and Z), character (C), hexadecimal (X), and
binary (B) fields have an implied length of
one byte. Any of these codes, if used,

would have to be accompanied by a length
modifier, unless just one byte is to be
reserved. Although no alignment occurs,
the use of these field types permits
greater latitude in length specifications
the maximum for these types being 256
bytes. However, if a symbol that is
defined by a P or 2 field type with a
length modifier greater than 16 is used as
an operand in a decimal machine
instruction, a length error will occur.
Unless a field of one byte is desired,

either the length must be specified for the

C, X, P, 2, or B field types, or else the
data must be specified (as the fourth
subfield), so that the assembler can
¢alculate the length.

To define four 10-byte fields and one
100-byte field, the respective DS
statements might be as follows:

L) w L} 1
|Name |{Operation |Operand |
L 1] - |
L] L] L1 1
|FIELD |DS 14CL10 |
IAREA | DS |CL100 I
L 1 1 i |

Although FIELD might have been specified
as one 40-byte field, the preceding
definition has the advantage of providing
FIELD with a length attribute of 10. - This
would be pertinent when using FIELD as a
machine- instruction operand governed by a
length consideration.

Additional examples of DS statements are
shown below:

) L} L] 1
{Name {Operation]Operand |
I + t 1
|ONE |DS |CL80 (one 80-byte field, |
| | { length attribute of 80) |
|THO |DS 180C (80 one-byte fields,
| | length attribute of |
| one) {
ITHREE(DS]6F (six full words, length	
		attribute of four)
FOUR	DS	D (one double word, length]
		attribute of eight)
FIVE	DS	4H (four half-words,
		length attribute of {
		l two)
—] 1 o |
Note: A DS statement causes the storage

area to ke reserved but not set to zeros.
The programmer should not assume that the
area will contain zeros when the program is
loaded.

Special Uses of the Duplication-Factor

FORCING ALIGNMENT: The Location Counter
can be forced to a double-word, full-word,
or half-word boundary by using the
appropriate field type (e.g., D, F, or H)
with a duplication factor of zero. This
nethod may be used to obtain boundary
alignment that otherwise would not be
provided. For example, the following
statements would set the Location Counter
to the next double-word boundary and then
reserve storage space for a 128-byte field
(whose leftmost byte would be on a
double~word boundary).

Ll L}
Name |Operation |Operand
[} 1

RJ L]
| DS 10D
AREA |DS |cL128
5 1

L

(m e o oy — o
L o e e o o

DEFINING -FIELDS-OF AN AREA: A DS
instruction with a duplication factor of
zero can be used to assign a name to an
area of storage without dctually reserving
the area. Additional DS and/or DC
instructions -may then be used to reserve
the area and assign names to fields within
the area (and generate constants if DC is
used) .

For example, assume that 80-character
records are to be read into an area for
processing and that each record has the
following format:

Positions 5-10
Positions 11-30
Positions 31-36
Positions 47-54
Positions 55-62

Payroll Number
Employee Name
Date

Gross Wages
Withholding Tax

The following example illustrates how DS
instructions might be used to assiqgn a nanme
to the record area, then define the fields
of the area and allocate the storage for
them. Note that the first statement names
the entire area by defining the symbol
RDAREA; the statement gives RDAREA a length
attribute of 80 bytes, but does not reserve
any storage. Similarly, the fifth
statement names a 6-byte area by defining
the symbol DATE; the three subsequent
statements actually define the fields of
DATE and allocate storage for them. The
second, ninth, and last statements are used
for spacing purposes and, therefore, are
not named.

Assembler Instructions 45

I Ll L] 1 1] L] T 1

| Name joperation |Operand | |Name |Operation |Operand |

L L L. " | L [l 1 i

L T T 1 L] I 1 L}

|RDAREA |DS 10CL80 | { |cCcw |2, READAREA, X'48',80 |

| IDS |CL.uU | L L 1 1

|IPAYNO DS |CL6 |

| NAME | DS |CL20 | Note that the third operand sets bits

[DATE IDS {0CL6 | 37-39 to zero, as required. The bit

| DAY IDS |CL2 | pattern of this operand is as follows:

{MONTH |DS |cL2 |

|YEAR |DS |CL2 | 32-35 36-39

| {DS {CL10 | 0100 1000

|GROSS |DS |CL8 |

|FEDTAX |DS |CL8 | If there is a symbol in the name field

| IDS |CL18 | of the CCW instruction, it is assigned the

L 1 1 1 address value of the leftmost byte of the
channel command word. The length attribute
of the symbol is eight. The internal
machine format of a channel command word
is:

CCW -- DEFINE CHANNEL COMMAND WORD

The CCW instruction provides a convenient
way to define and generate an eight-byte
channel command word aligned at a
double-wcrd boundary. The format of the
CCH instruction statement is:

1)
{Name
t +
|A symbol|CCHW
Jor blank]|

|

T T
|Operation|Operand
1 1

T

| Four orerands,

| separated by commas,
|specifying the con-
| tents of the channel
|command word in

| the format
|described in the

| following text

L

—

All fcur operands must appear. They are
written, from left to right, as follows:

1. An absolute expression that specifies
the command code. This exrpression's
value is right-justified in byte 1.

2. An absolute or relocatable expression
specifying the data address. The value
of this expression is right-justified
in bytes 2-t4.

3. An atsolute expression that specifies
the flags for bits 32-36 and zeros for
bits 37-39. The value of this
expression is right-justified in byte
5. (Byte 6 is set to zero.)

4. An alsolute expression that specifies
the count. The value of this
expression is right-justified in bytes
7-8.

The following is an example of a CCH
statement:

46 S/360 BOS Assembler with I/0 Macros

L] L i | 1
|Byte | Bits | Usage |
1 i] 1
L] L] L L}
|1 | 0-7 | Command code |
12-4 | 8-31 | Data address |
|5 | 32-36 | Flags }
| | 37-39 | Must be zero |
16 | 40-47 | Set to zero |
{7-8 | u48-63 | Count |
L 1 L 4 L]

LISTING CONTROL INSTRUCTIONS

The listing control instructions are used
to identify an assembly listing and
assembly output cards, to provide blank
lines in an assembly listing, and to
designate how much detail is to be included
in an assembly listing. 1In no case are
instructions or constants generated in the
object program. If listing control
statements are used within a DSECT, they
are treated as comments and not executed.
For example, if the EJECT instruction is
used within a DSECT, it does not cause the
listing to be ejected.

TITLE -- IDENTIFY ASSEMBLY OUTPUT

The TITLE instruction enables the
programmer to identify the assembly listing
and assembly output cards. The format of
the TITLE instruction statement is as
follows:

) T - L]
|Name |Operation |Operand
[l]]

& T T)
|Name |TITLE |A sequence of char-
I or | facters, enclosed in
{blank | |single quotation

|

1

| marks
1

If the first TITLE statement in a
program appears before the START statement,
it may contain an entry in the name field.
This entry may contain one to four
alphabetic or numeric characters in any
combination. Any additional characters are
ignored. The contents of the name field
are punched into columns 73-76 of all the
output cards for the program, except in
those cards produced by means of a REPRO or
PUNCH assembler instruction. An entry in
the name field of any other TITLE statement
is ignored.

The operand field of a TITLE statement
may contain up to 100 characters, enclosed
in single quotation marks. A continuation
card may be used, if necessary. Any
characters in excess of 100 are ignored.
The contents of the operand field are
printed at the top of each page of the
assembly listing. The TITLE statement
itself does not appear in the source
listing.

A program may contain more than one
TITLE statement. Each TITLE statement
provides the heading for pages in the
assembly listing that follows it, until
another TITLE statement is encountered.
Each TITLE statement encountered after the
first statement causes the listing to be
advanced to a new page (before the heading
is printed).

For example, if the following statement
is the first TITLE statement to appear in a
program, and it appears before the START
statement:

EJECT -— START NEW PAGE

The EJECT instruction affects only the
assembly listing and provides a convenient
way to separate program routines in the
listing. This instruction causes the
remainder of the present page to be skipped
and the listing to continue at the top of
the next page, below the heading line. If
the ejection occurs at the first line of
the page, the entire page is skipped.

If two or more EJECT instructions are
issued in succession, a complete page is
skipped for each EJECT after the first, and
the listing continues on the page that is
in printing position after the last EJECT
has been executed. Each page that is
skipped is printed with a heading line,
however.

The format of the EJECT instruction
statement is:

T L] 1
'Name |Operation |Operand |
L i [s
4 T 1]
| Blank | EJECT |Not used; any A
| | Joperand is treated |
| | las a comment |
L [} L . |

The EJECT statement itself does not
appear in the source listing.

SPACE -- SPACE LISTING

The SPACE instruction is used to insert one
or more blank lines in the listing. The
format of the SPACE instruction statement
is ds follows:

] L] L]
|Name | Operation |Operand
1] [

I L] 1
| Name |Operation |Operand
L

R

 § | |)
IPGM1 | TITLE | *"FIRST HEADING®
L 1 1

then PGM1 is punched into all of the output
cards (columns 73-76), except those
produced by a REPRO or PUNCH statement, and
this heading appears at the top of each
page: FIRST HEADING. -

If the following statement occurs later
in the same progranm:

] L]
Name |Operation |Operand
1 L

L
e e e e

1 L4
| TITLE | A NEW HEADING'
[[}

then PGM1 is still punched into the output

cards, but each following page begins with -

the heading: A NEW HEADING.

L

|A decimal value
lor blank

1

Blank SPACE

L
)
|
"
[

A decimal value is used to specify the
number of blank lines to be inserted in the
assembly listing. A blank operand causes
one blank line to be inserted. If this:
value exceeds the number of lines remaining
on the listing page, the statement will
have the same effect as an EJECT statement
The SPACE statement itself does not appear
in the source listing.

PRINT -- PRINT OPTIONAL DATA
The PRINT instruction is used to control
printing of the assembly listing. The

format of the PRINT instruction statement
is:

Assembler Instructions U7

¥ L
|[Name {Operation
L 1

L]]
|Blank |PRINT
t 1

-
|Operand
1

S

]
|One tc three operands
1 . |

One to three of the following operands
are used:

ON - A listing is printed.

OFF - VNo listing is printed.

GEN - All statements generated by

macro-instructions are printed.

NOGEN Statements generated by
macro-instructions are not
printed. However, the
macro-instruction itself and
messages resulting from the
MNOTE instruction, if used, will
appear in the listing.

DATA Constants are printed out in

full in the listing.

NODATA Only the first eight bytes (16
hexadecimal digits) or the first
constant, whichever is shorter,
of the assembled data, is

printed on the listing.

A program may contain any number of
PRINT statements. A PRINT statement
controls the printing of the assembly
listing until another PRINT statement is
encountered.

Until the first PRINT statement (if any)
is encountered, the follcwing is assumed:

Name

T T
| Operation |Operand
L 1

=T
O

L] Ll
| PRINT | ON,NODATA, GEN
1 1

For example, if the statenent:

1 1
Name |Operation |Operand
1

e e e e =

e

—+ i
| DC | X1.256100"
1 1

appears in a program, 256 bytes of zeros
are assembled. TIf the statement:

h |
Name |Operation |[Operand
L L

L L]
| PRINT | DATA
1 1

is the last PRINT statement to appear
before the DC statement, all 256 bytes of

48 S/360 BOS Assembler with I/0 Macros

zeros are printed in the assembly listing.
However, if:

L] T
Name |Operation |Operand
1 1

- — e ——
R

T L
| PRINT | NODATA
1 '}

is the last PRINT statement to appear
before the DC statement, only eight bytes
of zeros are printed in the assembly
listing.

PROGRAM CONTROL INSTRUCTIONS

The program control instructions are used,
to specify the end of an assembly, to set
the Location Counter to a value or word
boundary, to specify the placement of
literals in storage, to check the sequence
of input cards, to indicate statement
format, and to punch a card. Except for
the LTORG and CNOP instructions, none of
these assembler instructions generate
instructions or constants in the object
program.

If program control instructions are used
within a DSECT, they are treated as
comments and not executed. For example, if
the XFR instruction is used within a DSECT,
it does not cause any transfer card to be
generated.

If the user plans to write his own macro
instruction routines, the assembler
instructions ICTL (input format control),
ISEQ (input sequence checking) , and LTORG
(begin literal pool) may not be used as
instructions within the macro routine.

ICTL -- INPUT FORMAT CONTROL

The ICTL instruction allows the programmer
to alter the normal format of his source
program statements. The ICTL statement
must precede all other statements in the
source program and may be used only once.
The format of the ICTL instruction
statement is as follows:

Name Operation Operand

Blank ICTL 1-3 decimal values of

the form b,e,c,

o — e ———

Operand b specifies the begin column of
the source statement. It must always be
specified, and must be from 1-40,
inclusive. Operand e specifies the end
columnn of the source statement. The end
column, when specified, must be from 41-79,
inclusive; when not specified, it is

assumed to be 7t'. The column after the end
column is used to indicate whether the next
card is a continuvation card. Operand c
specifies the continue column of the source
statement. The continue column, when
specified, must be from 2-40 and must te
greater than b. If the continue column is
‘not specified, the assembler assumes that
there are no continuation cards and all
statements must be contained in a single
card.

If no ICTL statement is used in the
source program, the assembler assumes that
1, 71, and 16 are the begin, end, and
continue columns, respectively.

The ICTL card itself is processed under
normal format and any non—blank character
punched into column 72 indicates the
presence of continuation cards. Therefore,
column 72 should be left blank because
continuation cards are not required for the
ICTL card. If column 72 contains any
non-blank character, the card following the
ICTL card is treated as a continuation card
and reading begins in column 16, causing
columas 1-15, inclusively, to be ignored.

The next example designates the begin
column as column 25. Since the end colunn
is not specified, it is assumed to be
column 71. No continuation cards are
recognized because the continue column is
not specified.

Comparison of adjacent cards makes use of
the eight-bit internal collating sequence

An ISEQ statement with a blank operand
terminates the operation. Checking may be
resumed with another ISEQ statement

Sequence checking is only performed on
statements contained in the source progranm.
Statements generated by a macro are not
checked for sequence.

REPRO —- REPRODUCE FOLLOWING CARD

The basic operating system Linkage Editor
requires Phase Definition (PHASE) and
Include Module (INCLUDE) cards. The REPRO
Assembler instruction allows the inclusion
of such cards into the object program deck
to eliminate the necessity of manually
inserting then.

The REPRO Assembler instruction causes
the Assembler to punch a duplicate (in
80-80 format) of the card immediately
following the REPRO instruction. The
punched cards resulting from REPRO
instructions appear at the same point in
the assembled text as they appeared in the
source program. If any REPRO instructions
precede the START instruction, or the
implied start position (if no START
instruction is used), the cards punched
will precede the ESD cards for the
assenbly.

I] T 1

{Name |Operation |Operand] The format of the REPRO Assembler

} } } | instruction is as follows:

i | ICTL 125 |

L L te -] ¥ T 1
|Name | Operation | Operand |
L L L [
Ll 1} 1
|Blank | REPRO | Not used; any |

ISEQ -- INPUT SEQUENCE CBECKING l | | operand is treated |
| | | as a comment |

The ISEQ instruction is used to check the L 1 L J

sequence of input cards. The format of the

ISEQ instruction statement is as followus:
PUNCH —— PUNCH A CARD

T T
Name |Operation |Operand
L [}

] 1
Blank|ISEQ |Tvo decimal values of
| |the form 1,r; or blank

1 | &

b — e e

The operands 1 and r, respectively,
specify the leftmost and rightmost columns
of the field in the input cards to be
checked. Operand r must be equal to or
greater than operand 1l. Orerand 1 must be
greater than the end column plus one. The
field specified by operands 1 and r must
not be greater than seven bytes.

Sequence checking begins with the first
card following the ISEQ statement.

r
| Name

The PUNCH assembler instruction may be used
to perform the same functions as the REPRO
assembler instruction. The PUNCH assembler
instruction causes the data in the operand
to be punched into a card. As many PUNCH
statements may be used as are necessary.
The format is:

Operation Operand

- — 1 —

PUNCH 'PUNCH A CARD'

e

iBlank
L

Using character representation, the .
operand is written as a string of up to 80
characters enclosed in single quotation

Assembler Instructions 49

marks. A continuation card may be used, if
necessary. Any characters in excess of 80
are ignored. All characters, including
blanks, are valid. The position
immediately to the right of the left
quotation mark is regarded as column one of
the card to be punched. The assembly
program does not process the data in the
operand of a PUNCH statement other than
causing it to be punched in a card.

The punched cards resulting from PUNCH
instructions appear at the same point in
the assembled text as they appeared in the
source program. If any PUNCH instructions
precede the START instruction, or tle
implied start position (if no START
instruction is used), the cards punched
will precede the ESD cards for the
assembly.

The main facility provided by the PUNCH
instruction over the REPRQO instruction is
the capability of the macro generator to
substitute values for symbolic parameters
or SET variable symbols in the operand of a
PUNCH instruction appearing in a macro
definition. This allows such things as the
controlled generation of phase names.

XFR -— GENERATE A TRANSFER CARD

A transfer card is used by the basic
operating system Linkage Editor program to
define the transfer point or entry point of
a phase, or overlay. The XFR Assembler
instruction is provided to cause the
generation of a transfer card in the
assembled text in the same location that

the XFR instruction appeared in the source

progranm.

The format of the XFR instruction is as
follows:

L]
|Name
1

Operation Operand

A relocatable symbol

1
|
A
1
|
J

1}

|

H
]
|Blank | XFR
. L

The symbol in the operand field must
appear within the assembly or be previously
definéd as either an entry or external
symbol.

ORG -— SET LOCATION COUNTER

The ORG instruction is used to alter the
setting of the Location Counter for the
current control section. The format of the
ORG instruction statement is:

50 sS5/360 BOS Assembler with I/0 Macros

T
Name Operation |Operand
[l

o
ORG |A relocatable ex-

|pression or blank
[]

Blank

R

o G ———
TS S

Any symbols in the expression must have
been previously defined. The unpaired
relocatable symbol must be defined in the
same control section in which the ORG
statement appears.

The Location Counter is set to the value
of the expression in the operand. If the
operand is omitted, the Location Counter is
set to a location that is one byte higher
than the maximum location assigned for the
control section up to this point.

An ORG statement must not be used to
specify a lecation below the beginning of
the control section in which it appears.
For example, the statement:

1
|Operation

1]
| ORG
L

1}
Name |Operand
]

- Gy —
B .

)
| %-500
1

is invalid if it appears less than 500
bytes from the beginning of the current
controlvsection.

If it is desired to reset the Location
Counter to a value that is one byte beyond
the highest location yet assigned (in the
control section), the following statement
would be used:

AJ
Name |Operation Operand
L

o o e
R e

1
| ORG
L

If previous ORG statements have reduced
the Location Counter for the purpose of
redefining a portion of the current control
section, an ORG statement with an omitted
operand can then be used to terminate the
effects of such statements and restore the
Location Counter to its highest setting.

LTORG -- BEGIN LITERAL POOL

The LTORG instruction causes all literals
thus far encountered in the source program
up to the LTORG statement (either from the
beginning of the program or from a previous
LTORG statement) to be assembled at
appropriate boundaries starting at the
first double-word boundary following the
LTORG statement. The format of the LTORG
instruction statement is:

i L] ¥ 1
{Name |Operation |Operand |
1 1 1 1
§ L} T 1
Symbol {LTORG	Not used; any	
lor		operand is treated
blank	las a comment	
L A L J

The symbol represents the address of the
first byte of the literal pool. It has a
length attribute of one.

Special Addressing Consideration

Any literals used after the last LTORG
statement in a program are placed at the
end of the first control section. If there
are no LTORG statements in a program, all
literals used in the program are placed at
the end of the first control section. 1In
these circumstances the programmer must
ensure that the first control section is
always addressable. This means that the
base address register for the first control
section should not be changed through usage
in subsequent control sections. If the
programmer does not wish to reserve a
register for this purpose he may place a
LTORG statement at the end of each control
section thereby ensuring that all literals
appearing in that section are addressable.

CNOP -- CONDITIONAL NO OPERATION

The CNOP instruction allows the programmer
to align an instruction at a specific word
boundary. If any bytes must be skipped in
order to align the instruction properly,
the assembler insures an unbroken
instruction flow by generating no-operation
instructions. This facility is useful in
creating calling sequences consisting cf a
linkage to a subroutine followed by
parameters such as channel ccmmand words
(CCW) . :

The CNOP instruction insures the
alignment of the Location Counter setting
to a half-word, word, or double-word
boundary. If the Location Counter is
already properly aligned, the CNOP
instruction has no effect. 1If the
specified alignment requires the Location
Counter to be incremented, one to three
no-operation instructions are generated,
each of which uses two bytes.

The format of the CNOP instruction
statement is as follows:

Operand b specifies at which byte in a
word or double word the Location Counter is
to be set; b can be 0, 2, 4, or 6. Operand
w specifies whether byte b is in a word
(w=4) or double word (w=8). The following
pairs of b and w are valid:

bew specifies

0,4 Beginning of a word

2,4 Middle of a word

0,8 Beginning of a double word

2,8 Second half word of a double word

4,8 Middle (third half word) of a
. double word

6,8 Fourth half word of a double word
Fiqure 5 shows the position in a double

word that each of these pairs specifies.
Note that both 0,4 and 2,4 specify two
locations in a double word.

Double Word
Word Word
Half Word Half Word Half Word Half Word
T T T T
|
Byte | Byte : Byte ; Byte Byte f Byte | Byte : Byte
1l L 1 1 1 I
PNy PN P P
0,4 2,4 0,4 2,4
0,8 2,8 4,8 6,8
Figure 5. CNOP Alignment

Assume that the Location Counter is
currently aligned at a double-word
boundary Then the CNOP instruction in this
sequence:

{ L] T 1
| Name |Operation |Operand {
k } + a!
| | CNOP 10,8 |
| |BALR 12, 14]
L 1 [1 . |

has no effect; it is merely printed in the
assembly listing. However, this sequence:

T L] Ry 1
|Name |Operation |Operand |
[L L]
1 L L} L}
| |cNoP 16,8 |
1 { BALR 12,14 |
L L L J

L]
| Name

1] 1 3

|Operation |Operand i
4 A 1 [
L B 1)] Rl
|Blank |CNOP |Two decimal terms |
| | Jof the form b,w |
| - i 1]

causes three branch-on-conditions
(no-operations) to be generated, thus
aligning the BALR instruction at the last
half-word in a double word as follows:

Assembler Instructions 51

1 L] 1] 1
|Name |Operation |Operand I
t —1 5 : 2l
| | BCR 10,0 |
i | BCR 10,0 |
| | BCR 10,0 |
[| BALR 12,14 |
[} 1 1 N |

~The operand specifies the point to which
control is. transferred when loading is
complete. This point is usually the first
machine-instruction in the program, as
shown in the following sequence

After the BALR instruction is generated,
the Location Counter is at a double-word
boundary, thereby insuring an unbroken
instruction flow.

END -- END ASSEMBLY

The END instruction terminates the assembly
of a program. It may also designate a
point in the program or in a separately
assembled program to which control may be
transferred after the program is loaded.
The END instruction must always be the last
statement in the source program.

The format of the END instruction
statement is as follows:

LD LI
ame |Operation |Operand
L

T=1

RE .

END |A relocatable ex-
|pression or blank
1

o

lank

I .

fo
b e w—

52 S/360 BOS Assembler with I/0 Macros

] L A |
|Operation |Operand

L
| Name [
| — 1 1. L |
1] 1) N 1
INAME | CSECT] i
|AREA IDS | 50F |
|BEGIN | BALR 12,0 |
| |USING 1%,2 [
1 .	
i -	
I .	
	END
L [4 1 3

If the END statement contains a symbolic
address in the operand field, the Assembler
automatically inserts the transfer address
in the END card.

If the user plans to write his own
macro-instruction routines, the END
instruction may not be used as an
instruction within his macro routines.

Note: 1If the operand contains an external
symbol, only a single-term relocatable
expression is allowed.

The assembler provides a macro_-system to
reduce the amount of repetitive coding
required for general routines that must be
relised a number of times in the same or
different programs. . For example, the
routines for transferring records from disk
to main storage , checking for accuracy,
and deblocking to obtain a single record
for processing are used for any logical
input file on disk. Such routines involve
many instructions that can be written once
and, with modification of addresses, can be
used repeatedly in any number of programs.

The macro system is ccmposed of two
basic parts:

. Source-program macro_ instructions.

2. A macro library of prewritten flexible

routines (called definitions).

A direct relationship exists between these
parts. That is, a single macro instruction
written in the source program is replaced,
in the assembled object program, by the
routine taken from the macro library. The
macro library routine consists of a
predetermined series of many instructions.
Thus, the system derives its name. A
definition of macro is "of or involving
large quantities." For one instruction,
many instructions are assembled.

The proper routine is included in the
object program by the matching of mnemonic
operaticn codes. Therefore, the exact same
Op code is used in the macro instruction
and in the identification of the
corresponding set of instructions in the
macro library.

As the macro-library instructions are
assembled, they are tailored to fit the
particular problem program. This is dcne
by a substitution process. The first
instruction of a macro routine (after the
macro definition header) in the macro
library is a prototype statement. This is
a pattern that consists of variable
symbolic operands (called parameters) for
which values are substituted when the macro
routine is used by a specific program. The
macro instruction that is included in the
user's program specifies the parameter
values (commonly abbreviated to the term
parameter) that are to be substituted in
the macro-library routine when it is
assembled. An example of this is:

MACRQO INSTRUCTION-STATEMENTS-

Prototype in
MULT &EMIER,G&EMCAND,&EPROD Macro Library

Instructions to

. . perform the
R . nultiplication
. . (Model Statements)
Macro In-
-structions
A MULT RATE,HOURS,GROSS in two
} different
B MULT COST,PIECES,TOTCOST) problen
prograns
(®and @)

This illustrates the prototype statement of
a multiplication routine that could be used
by any program to multiply any two factors
and store the product in a specified
location. . Program @ might use the macro
to multiply rate times hours and store the
result in a field labeled gross. Progqram

might use the same macro from the macro
library to multiply cost times pieces-to
obtain total cost.

Each program specifies in the macro
instruction the values (parameters) that
are .applicable to its own job (rate or
cost, hours or pieces, gross or total
cost). Then when the macro routine is
assembled, these parameter values are
substituted for the parameters in the
prototype statement. The parameter values

‘are also substituted in all the

instructions that follow the prototype to
actually perform the multiplication. The
statements following the prototype are
known as model statements. For the
multiplication example, the complete
routine :might be:

MACRO. -~ Macro Definition Header
&ENAME MULT &MIER,&MCAND,&EPROD -- Prototype
Statement
ENAME L 3,8MCAND
M 2,5MIER Model Statements
ST 3,85PROD
MEND. —— Macro Definition Trailer

In both illustrations the & character
preceding the symbolic name is part of the
syntax of the macro definition language
(see the Macro Definition -Lanquage

Macro Instruction Statements 53

publication, as listed on the fromnt cover
of this manual).

IBM provides a number of prewritten
macro library routines and specifies the
macro instructions that can be used by the
programmer to call these routines from the
library. Other routines can be written by
the user and stored in the macro library.
User-written routines must follow the same
rules as the IBM routines. The macros
supplied by IBM and discussed in this
publication are grouped. in four categories:

Input/output control macros
File definition macros
Supervisor—-communication macros
Supervisor-assembly macros.

MACRO INSTRUCTION FORMAT

A macro instruction, which is a source
language statement, is interpreted by the
assembler. The assembler uses the macro
definition (macro library routine) to
replace the single statement with many
assembler lanquage statements. For correct
interpretation, the format of the macro
instruction must correspond to the format
of the prototype statement in the macro
definition. Therefore, the format of the
prototype dictates the form in. which the
macro instruction must be written in the
problem program.

The name field in the macro instruction
may contain a symbolic name if the name
field of the prototype has a parameter.

The operation_field in the macro
instruction must contain exactly the same
mnemonic operation code as the prototype
(for example, MULT). This may be any
alphameric code with a maximum of five
characters, provided the first character is
a letter.

The parameters in the operand field of a
macro instruction must be written in the
same format as those in the operand field
of the prototype. Either of two types of
formats can be used:

1. Positional format
2. Keyword format.

Each type of parameter has a set of rules
that must be followed.

Positional Format

In this format the order and placement of
the parameter values in the macro
instruction must correspond exactly with
the order and placement of the parameters
in the prototype statement. Each parameter

54 sS/360 BOS Assembler with I/0 Macros

except the last must be followed by a
comma. Thus, in the previous illustration:

RATE corresponds to MIER
HOURS corresponds to MCAND
GROSS corresponds to PROD

If a parameter is to be omitted in the
macro instruction, while following
parameters are included, a comma must be
inserted to indicate the omission. 1In this
way, the proper parameters both before and
after the omission correspond. However, no
commas need to be included after the last
parameter used.

If the parameters cannot be contained in
the operand field of one card, up to 49
continuation cards may be used. The
continue column of each card (except the
last) must contain a continuation punch
(any nonblank character), as in any
assembler lanquage card. The maximum
length of a parameter is the same as for an
assembler symbol--eight characters. When
one or more continuation cards are used,
paraneters must fill each card to the
continuation column with no intervening
blanks. (A blank indicates that the card
contains no more parameters.)

Keyword Format

This format provides a direct mnemonic
association between the macro instruction
and the prototype statement. The exact
parameters .used in the prototype are
specified (without the &) in the macro
instruction, -where they are equated to the
value for this job. Thus, they have the
form of: keyword followed by an equal sign
followed by the value to be substituted in
the assembled routine. For example:
MIER=RATE, MCAND=HOURS, PROD=GROSS

Because the association of parameters is
performed through the use of the keywords,
the parameters in the macro instruction may
appear in any order, and any that are not
needed may be omitted. This association is
not dependent upon the order in which they
are written. The term to the right of the
equal sign must not exceed eight
characters.

Different keyword parameters may be
punched in the same card, each followed by
a comma, like the positional type. Or,
they may be punched in séparate cards.
(When continuation cards are used for a
keyword format macro, the parameters need
not f£ill the operand field to the
continuation column.)

MIER=RATE,
PROD=GROSS,
MCAND=HOURS

SOURCE PROGRAM ASSEMBLER SOURCE PROGRAM
(Before) OPERATIONS (After)
(1 1
2 2
T/ (Source
: Locate Macro Program C—_—
. Library Routine Statements
Source 15 l 15
Program . Perform Indicated Selection W
Statements :3 Macro Instruction ———>- and Substitution 16’ Macro Instruction
) Merge with
: v Source Program v
’ . Macro —
L : Routine
17
Source :
Program *
Statements .
Figure 6. Schematic of Macro Processing

When separate cards are used for a set of
parameter specifications each card except
the last must be punched with a comna
immediately following the parameter and a
continuation punch in column 72. Comments
may be punched in any card if at least one
space is left after the comma, or, in the
last card, after the parameter.

ASSEMBLY OF THE MACRO

At program assembly time, the macro
instruction specifies which routine is to
be called from the macro library. The
routine is extracted, tailored by the
parameters in the macro instruction, and
inserted in the program (Fiqure 6). The
complete program now consists of both
source—-program statements and tailored
model statements from the macro library in
assembler lanquage. In subseguent phases
of the assembly, the entireé program is
processed to produce the machine-language
object program.

INPUT/OUTPUT_ CONTROL_MACROS

A number of macro routines are provided by
IBM for the input/output control (IOCS) of
records from various I/O units. These '
routines control such functions as:

. Opening and closing files

L] Transferring records

. Blocking and deblocking records

o Checking and writing disk or tape label
. Error checking.

I0CS handles files of records in the
following I/0 units:

IBM 1442 Card Read-Puncu

IBM 2501 Card Reader

IBM 2520 Card@ Read-Punch or 2520 Card

Punch

IBM 2540 Card Read-Punch

IBM 1403 Printer

IBM 1404 Printer

only)

(continuous forms

IBM 1443 Printer

IBM 1445 Printer

IBM 2311 Disk Storage Drive

IBM 2401, 2402, 2403, 2404 Magnetic

Tape Units (If

Macro Instruction Statements 55

variable-~length records are
written on 7-track tape, the
Data Conversion special
feature is required.)

IBM 1052 Printer-Keyboard (One 1052 is
supported, for operator
communication only. It is
attached to the multiplexor
channel.)

IBM 2671 Paper Tape Reader
IBM 1285, 1287 Optical Readers

STR (Synchronous Transmitter Receiver)
Devices connected by leased or dial
lines through an IBM Synchronous Data
Adapter - Type I, on an IBM 2701 Data
Adapter Unit. .The following devices
are supported:

a. 1009 pata Transmission Unit

b. 1013 Card Transmission Terminal

c. 1974 II Data Transmission Terminal

d. 1978 Print, Read, Punch Terminal

e. System/360, Model 30, 40, 50, 65 or
75 with a 2701 Data Adapter Unit
attached.

f. System/360, Model 20 with a
Communications Adapter

g. 7701, 7702 Magnetic Tape
Transmission Terminal

h. 7711 pata Communication Unit.

BSC (Binary Synchronous Communication) IBM
2701 pata Adapter Unit equipped with an
IBM Synchronous Data Adapter--Type II,
connected by leased or dial line to a
remote IBM System/360, Model ‘30, 40,
50, 65, 67 (working in 65 mode), or 75.
The remote CPU is equipped with an IBM
2701 Data Adapter Unit with an SDA II
or an IBM 2703 Transmission Control
Unit with Binary Synchronous features.
Note: When BSC support routines are used,
a minimum of 16K of main storage is
required.

I0CS supports any channel configuration
up to one multiplexor channel and two
selector channels.

Both IBM-supplied system programs and
user problem programs can use magnetic
tape. However, the main storage required
for physical and logical IOCS for both tape
and disk will probably make this unfeasible
in systems with less than 16K bytes of main
storage. For example, IBM-supplied system
programs assume that the system Supervisor
(including physical but not logical IOCS)
will occupy a maximum of #4096 bytes of main
storage, leaving 4096 bytes (in an 8K
system) available for the execution of the
system programs. If, however, the user's
installation includes many different types
of I/0 units and features, the systen

56 S/360 BOS Assembler with I/0 Macros

Supervisor may be assembled to include
routines for a combination of units that,
in total, require more than 4096 bytes.
Similarly, the number and size of the
routines included in the Supervisor affect
the number of main storage positions
available for a user's problem program.
For detailed information about Supervisor
and logical IOCS main-storage requirements,
see the Progqrammer's Guide, as listed on
the front cover of this publication.

When the user's program is executed, the
portion of the problem program that
communicates with IOCS and with the
Supervisor must be located in the first 64K
of main storage . This includes channel
command words (CCW), command control blocks
(CCB), file definitions (DTF), and progranm
check, interval timer, and
operator-communication routines.
Furthermore, whenever the problem program
is executed in a disk-resident system, the
last two routines (interval-timer, and
operator communication), if used, must not
be located in the first 2500 main storage
positions above the end of the Supervisor.

Physical -I0CS-vs-Logical - I0CS

The input/output control is considered to
consist of two parts: physical IOCS and
logical I0OCS. Physical I0CS controls the
actual transfer of records between the
external medium and main storage . That
is, it performs the functions of issuing
channel commands and handling associated
I/0 interruptions. Physical IOCS consists
of the following routines:

Start I/O. routine
Interruption routine
Channel scheduler
Device error routines.

These physical IOCS routines are part of
the Supervisor, which is permanently
located in lower main storage while problem
programs are being executed.

Logical -TOCS controls those functions
that a user would have to perform to locate
a logical record for processing. A logical
record-is one unit of information in a file
of like units; for example, one employee's
record in a master payroll file, one
part—-number record in an inventory file,
etc. One or many logical records may be
included within one physical record, such
as a physical disk or tape record (from gap
to gap). The term logical_ IOCS -refers to
routines that perform the following
functions:

e Blocking and deblocking records

e Switching between I/0 areas when two
areas are specified for a file

e Handling end-of-file and end-of-volume
conditions

e Checking/writing labels.

The logical IOCS routines required for
the execution of a problem program are
assembled with that program. 'The
particular routines required are determined
from the definitions of the logical files
used by the program.

Logical IOCS uses physical IOCS to
execute I/0 commands whenever it determines
that a transfer of data is required. For
example, if a file consists of blocked
records and a block has been read into main
storage (Fiqure 7), logical IOCS merely
makes each record in succession available
to the user, until the end of the block is
reached. No physical IOCS is required.
When logical IOCS determines that the last
record in the block has keen processed,
however, it requests physical I0OCS to start
an I/0 operation to tranpsfer the next
physical record (gap to gap) into main
storage. In the illustration, only logical
IoCS (LIO) is required to make records 2
and 3 (and 5 and 6) available;
however, physical IOCS (PIO) is also
required to make record 4 available
(records 4 through 6 are transferred in one
block) .

Block of 3 Records in Main Storage

Record 1 Record 2
(Record 4) (Record 5)

Record 3
(Record 6)

LIO LIO LIO and PIO
for for for
Record 2 (5) Record 3 (6) Record 4

LIO = Logical I0CS
PIO = Physical 10CS

Figure 7. Physical IOCS vs Logical IOCS
Both logical IOCS macros (such as GET,
PUT, READ, WRITE, etc) and physical IOCS
macros (such -as EXCP and WAIT) are
available to the programmer for handling
records. The logical IOCS macro routines
cause all the functions cf both logical and
physical IOCS to be performed for the
programmer. When he issues an imperative
GET instruction for a record, for exanmrle,
that record is transferred to main storage
, if necessary, and it is available for the
execution of the next program instruction.

The physical IOCS routines completely
bypass the logical IOCS functions (for
example, blocking and deblocking). They
permit the problem program to utilize
physical IOCS functions directly. To
transfer a physical record (such as a disk

"(disk pack).

or tape record), for example, the problen
program issues an EXCP macro instruction
(execute channel program). This causes a
request for data transfer to be placed in
the channel scheduler, and progqram
execution immediately continues with the
next problem-proqram instruction. However,
the disk or tape record will mot be
available in main storage until some later
time. Therefore when the record is needed
for processing, the program must test to
find out if the transfer has been
completed. This is accomplished by issuing
the WAIT macro instruction.

The functions of physical and logical
I0CS routines are shown schematically in
Figure 8.

Types of Processing

The logical IOCS routines. process records
in consecutive order, in random order by

the Direct Access Method (DAM), or randomly

and sequentially by the Indexed Sequential
File Management System (ISFMS).

Consecutive processing applies to all files
in serial-type I/0 devices (such as card
reader, tape, printer, etc), and to records
on 2311 disk when they are processed in a
serial-type order. The DAM and ISFMS types
of processing apply only to files of disk
records. Other logical IOCS routines allow
processing with STR (Synchronous
Transmitter Receiver) devices, or allow
CPU-to-CPU Binary Synchronous
Communication.

Consecutive Processing: Consecutive
processing is used to read/vwrite and
process successive records in a logical
file. For example, card records are
processed in the order the cards are fed;
tape records are processed starting with
the first record after a header label and
continuing through the records to the
trailer label; disk records are processed
starting with a beginning disk address and
continuing in order through the records on
successive tracks (and possibly cylinders)
to the ending address.

A consecutive file on disk is contained
within one or more sets of 1limits, which
are specified by Job Control XTENT cards.
If the logical file consists of more than
one set of limits, IOCS will automatically
process each set as needed by the user.
The records within each set must be
adjacent and contained within one volume
However, the sets need not be
adjacent, and they may be on one or more
volumes. A file written on disk by the
direct access method can also be processed
consecutively, if desired.

The basic macros used for consecutive
processing are GET and PUT. These

Macro Instruction Statements 57

Physical

Problem Logical 10CS Input
Program 10CS {Channel Device
Scheduler)
Using Issue GET ————— [Provide Record {(Deblock)
Logical and Return to Problem Program _
10CS Next Instruction -OR- Determine Channel.
(after GET) If 1/O Required, Issue EXCP==| Place Request in Queue
and WAIT if Channel Busy, and Return
‘\ﬁ to Logical 10CS.
If Ch | Not B
When 1/O Complete, Issue OSr"I'TRT I;O ek >—’|/ O Starts
Return to Problem and Return to Logical 10CS.
Program -
When 1/O Complete, go
{ through Interrupt Routine ~=1/O Complete
Using Set Up CCW and Issue EXCP (Determine Channel.
Physical Place Request in Queue
10CS Next Instruction ~t=— if Channel Busy, and Return
(after EXCP) ﬁ to Problem Program.
If Channel Not Busy,
lssve START /O | »—>1/O Starts
Issue WAIT L and Return to Problem Program .
Next Insfl'uc:on\ When I/O Commefe, go
(after WAIT) { through Interrupt Routine ~—1/0O Complete
Figure 8. Schematic Example of Retrieving a Record Using Loqicai IOCS (One I/0 Area)

or Physical IOCS

instructions overlap data transfer and
processing as much as possible. The extent
of overlap depends on the user's I/O area
assignment. . In any case when a GET or PUT
has been executed, the transfer of data is
complete before the instruction following
the GET or PUT is executed.

Direct-Access Method (DAM): The direct
access method is used to process disk
records in a random order. Records stored
at any location within the logical file can
be processed at any time in the progranm.
TOCS locates a disk record for processing
by referring to record-location references
supplied by the problem program. The
location reference consists of two

parts: a track reference and a record
reference. The track reference specifies
the particular track, or the first of
multiple tracks, to be searched for a
specified record. The reccrd reference may
be the record key, if records contain key
areas, or the record ID (identifier), which
is available in the count area of each disk
record. 1IOCS seeks the specified track and
searches for the specified record cn that

58 S/360 BOS Assembler with I/0 Macros

track, or on that track and on succeeding
tracks in the cylinder. Because reference
to the records is in random order, all
packs of a multipack file must be on-line
for any functions performed by the Direct
Access Method.

The basic macros used for the direct
access method of processing are READ and
WRITE. Variations within these macros
permit records to be read, written,
updated, replaced, or added to a file.
Thus, this method provides a means of
creating and maintaining a logical file inmn
a random order. When a READ or WRITE
instruction is executed, the actual I/O
operation is either started or placed in a
queue for later execution. Therefore, when
another problem program instruction
requires that the transfer of data be
complete, a test must be made. A WAITF
macro is provided for this.

Indexed-Sequential File Management-System
(ISFMS) The indexed sequential file
management system is used to process disk
records either in random order or in

sequential order by control information.
Both orders utilize the ccntrol information
of the records (such as employee number,
part number, customer number, etc.), which
must be available in the key area of each
disk record. Random processing means that
any record stored at any location in the
logical file can be processed at any time
in the problem program. The user merely
supplies I0OCS with the key (control
information) of the desired record.
searches for the record and makes it
available for processing.

I0oCs

In sequential processing, IOCS makes a
series of records available, one after the
other, in order by the control information
(key) in the records. The user specifies
which record he wants first. Then IOCS
retrieves the succeeding records (con
demand) from the logical file, in key
order, until the problem program specifies
that the operation is to be terminated.

ISFMS provides the means of creating an
organized file (loading) and then adding
to, reading from, and updating records in
that file. The file is organized _
originally from records that have been
pre-sorted by their control information.

As the records are loaded onto the disk
pack, IOCS constructs indices for the
logical file. These indices will permit
individual records to be found quickly and
easily in subsequent processing operations.
The indices are created in such a way that
specific records can be retrieved randomly,
or all records can be retrieved
sequentially. One method can be performed
as readily as the other. If records are
added to the file at some later time, IOCS
updates the indices to reflect the new
‘records.

The basic macros used for the indexed
sequential system of processing are
READ/WRITE and GET/PUT. READ and WRITE are
used for random operations, and GET and PUT
are used for sequential operations. When a
READ, WRITE, GET, or PUT instructicn for a
record is executed, the operation is
complete before the next instruction in the
problem program is executed.

Processing with-Synchronous Transmitter
Receiver_ (STR) Devices: ULogical IOCS
provides macro routines for the
transmission of data to, and the reception
of data from, an STR device. All STR
devices use identical data transmission
codes and line control procedures.

Logical IOCS provides READ/WRITE level
macro instructions to simplify the use of
STR devices by the problem program.
Another macro instruction, CNTRL, provides
STR line control. The CDCNV (code
conversion) macro provides for the

conversion of the standard STR transmission
code (fixed count four-out-of-eight [4/8])
to or from EBCDIC (used internally in the
Systen/360) .

Where the STR devices are attached over
a dial network, logical IOCS provides the
macro instruction DIALO to aid in
establishing the connection.

Binary Synchronous Communication. (BSC)

Logical IOCS provides macro support
routines for sending and receiving data in
a CPU-to-CPU communications environment.
Both CPU's use identical line control
procedures.

Logical IOCS provides READ/WRITE level
macro instructions, which simplify the
process of sending data to or receiving
data from a remote System/360 by the
problem program. The CNTRL macro
instruction provides the facility for
handling basic BSC line control functioms.

Where the CPU's' are connected by a dial
line, logical I0CS provides the IDIAL macro
instruction to handle establishing the
connection and to provide the optional
facility for ID-verification.

Macro Instructions

Generally two types of macros are required
for processing the records in a logical
file: one declarative file-definition
macro, and one or more imperative macros.

The file-definition macro describes the
logical file, indicates the type of
processing to be used for the file, and
specified main-storage areas for the file.
Six file-definition macros are provided for
defining files processed by logical IOCS
(DTFSR, DTFDA, DTPIS, DTFSN, DTFBS, and
DTFRF), and one for disk or tape files
processed by physical IOCS (DTFPH). Which
of these applies to a particular file is
determined by the type of processing used
for the file (see Types of Processing).
The macros and their use are:

DTFSR Define The File in SeRial-type
device. This macro is used in
conjunction with consecutive
processing of records in any I/0
device.

DTFDA Define The File for the Direct
Access method of processing.
macro is used whenever disk
records are to be processed in a
random order by the direct access
method.

This

DTFIS Define The File for the Indexed

Sequential system of processing.

Macro Instruction Statements 59

This macro is used whenever a file
is organized by the indexed
sequential file management system
and is to be processed by that
systenm.
DTFSN Define The File for SyNchronous
Transmitter-Receiver. use. This
macro is used for processing in a
Tele-processing environment with
STR devices.
DTFRF Define The File fcr ReFerence.
This macro is used with the DTFSN
macro and the DTFBS macro to
permit the problem program to
reference the information in ‘the
channel command block (CCB).
DTFBS Define The File for Binary
Synchronous Communication use.
This macro is used for processing
in a CPU-to-CPU communications
environment.
DTFPH Define The File fcr processing by
: PHysical IOCS. This macro is used
only if a disk or tape file with
standard labels is to be processed
by physical IOCS. No other files
processed by physical IOCS require
definition.

Each file definition macro requires a
set of keyword parameter entry cards
(Figure 9) to define the file. At assembly
time these cards must precede the problen
program. . The details of these entries are
described in the section entitled File
Definition Macros. The definition of a
file is utilized when an imperative macro
instruction (such as GET, PUT, READ, WRITE,
etc.) 1is issued in a prcblem program
statement. If a GET is issued, for
example, the file definition supplies such
factors as:

o Record type and length

. Input device from which the record is
to be retrieved

. Main-storage area where the record is
to be located for processing by the
problem progranm.

File definition macros and imperative
macros that refer to the file definitions
must be assembled together. That is, all
file definitions must be assembled with the

60 S/360 BOS Assembler with I/0 Macros

user*s problem program. Imperative macros
executed by the Indexed Sequential File
Management System (ISFMS) make use of

‘literals, and the literal pool must be

addressable any time these macros are
executed. Thus the pool must be available
in each phase. Furthermore, it must be
available in each control section (CSECT)
within a phase if base registers are
changed between control sections.
Therefore, a LTORG statement should be
included at the end of each control section
whenever disk records are to be processed
by ISFMS. If a user defines only one-
control section, he must include a LTORG
statement to ensure the placement of
literals at the end of his control section,
because multiple control sections are also
generated by ISFMS.

Imperative macro-instructions are
included in the problem program. They
perform such functions as opening a file,
making records available for processing,
writing records that have been processed,
etc. The macro instructions provided by
IBM for input/output control (Figure 10)
are presented in this section in the
following groups.

Initialization: OPEN and LBRET

Processing Records Consecutively: GET,
PUT, RELSE, TRUNC, READ, WAITF, RDLNE,
DSPLY, RESCN, CNTRL, CHNG, and PRTOV

Processing Disk Records by the Direct
Access Method: READ, WRITE, WAITF,
and CNTRL :

Processing Disk Records by the Indexed
Sequential System: SETFL, ENDFL,
WRITE, READ, SETL, ESETL, GET, and PUT

Processing with STR Devices: SOPEN,
DIALO, READ, WRITE, CNTRL, CDCNV,
SCLOS.

Processing Records by Physical
IoCs: CCB, EXCP, WAIT, WAITM, and
CHNG

Binary Synchronous
Communication: BOPEN, IDIAL, READ,
WRITE, CNTRL, BCLOS, and ERRPT.

Writing Checkpoint Records: CHKPT

Completion: CLOSE, LBRET, and FEOV.

IBM 1BM System/360 Assembler Coding Form e
PROGRAM PUNCHING GRAPHIC PAGE OF
ROGRAMNER l DATE NS PUNCH. TARD ELECTRO NUMBER
1 Nome L] 10 Operatien 4 16 20 G;?‘ 30 33 = © 45 73 80
oo sirirl IDlT{e[sR]: Privieisi £lz(zvpiulr],y IRIElCIF 0k IM=F [2]x]BIL{xt, Bl KIS} T
- - -pielvizlclelz riaplE], iRlE 1A ID]=FlolR SRIEMTNIDIE X
plevialoloiel=isixIsiglgle |, [1T 1T 11 L R EELEERL LT
conTR[oiLIzIYE[s], T [+ 1.1 [| X
| F|T'L/AB|L|=/S|TD,| | | I HERE X
| 10REG|=3[,| ! i | | X
1/0lAR E[Al1][AlR[E[AlOINE], T - XL
; -11l0lARE|ARI=IARR|E'A|T W0 TR
‘ '[LiABIAD[DIR's[cC K]0 [pILTAR], i gt
| | ERROP[T|=ICkio|L'D|BIL K|, | X
I ! WLRERR|zCko|lLOWLR], ! I X
I | I'| |e.o[rAlp|olr[='Ejo[r MisiTIR | |
R [TP TT LI TTT I I I L]
IBM IBM System/360 Assembler Coding Farm e
PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER I DATE NS PUNCH CARD ELECTRO NUMBER
|- fome 0 Opsratien 14 16 2 o’;‘;‘d 30 335 = 40 45 50 55 Commens 60 &3
1SEQFIL]- D[TF|1]s] [tiolrio,u[T|=iAlDID[RIT[R], |AIDARIEIX|=IN0'ROJ0 M, ICIY[L]olrIL]=I2], IDIE[RIRIE[X]=]D[ATT]ATcMK],
SRR L] olveiRiE[xI=IEIQIKIEYIS], WILIRIERR[=IS[1iZ'ERIR[0[R], [£]0]F[alD]DIR], [ElolFiMlG],| | :
_ ‘[1jolAlRIE|AlL|=luis|e|L]AIRE Al [T]0lARIEIA R =[S |EIRIAIRIE A, [1]0'AIR[EIA[S]=]S |E[SIAIRTEIA[,
Ll KEYILIEIN=|11g,KE|Y/AR[6=USERKEY,|I LIDE|X=N0ID,D|sKXTNTS=[4,]
VI MSTIND[=[YES[, ||]] R i i
\ NRECID|S[*]1 7y RN |
i | [Rlg[cIFlo|RIM=]FTIXUINE], |- :
RElcsltizel=[8lp], v
IE 1 | RTlRIv[E]X= Mo R]EIClOIR D],
| i | TYPEIF|LIE=RANSIEQ),
UPDAT[E[=IRAIN[SEIQ],
i WORKIL|=U[SEILWO
‘ wWolrkiR]=lulslElR W]
- MWoR[k[s[=lYlElstel 12
i ViERTIFlY|=] R L e
i A ARRERE!
Figure 9. Sample DTFSR and DTFIS Macro Instruction

Macro Instruction Statements

61

11,

Applies only to document processing.

TYPE OF PROCESSING WITH LOGICAL 10CS
Consecutive Indexed Sequential
System
ION ?: E 5| 5|2
MACRO INSTRUCT 5 5 | 5| .8 o
-0 S = i3z o | & 9
> o N Qr g -4 oz = > E (6]
S151I8:18 |12.]L - T 2l 2] L]]2
SlERE S [BEI2L]ed S8 8] 2|5|3]8|5]=
a2 Q2|8 [CElEg|eg|S|S|S|E[8]|e|E|z3|85|9
-~ g |92 S Ig2latlze g |5 9 v | o 2 s|1e (2 gL
AL R E I I E A I iR
R II EQ= T8 |12 a1 8|2 |&e|38|651]48 a
Initialize
OPEN x I x [x Ix [x |x|xIx [x|x]x|x]|x]x x'
SOPEN X
BOPEN X
DIALO
IDIAL X
LBRET2 X X X X
Process
Transfer Records
GET X [x [x® X | x |x | x'9 X
PUT Xl X [X5 X X X X
READ X11 X X X X
WRITE X X X X X X
RELSE ¢ X X
RDLNE : X X19)
TRUNC? X X
WAITF . : X" X
EXCP j X
WAIT X | X X
WAITM X X X
CDCNV X
DsPLY X'
RESCN X'
Set Mode
SETFL X
ENDFL X
SETL X
ESETL X
Non=~ Date Operations)
CNTRL X X | X X X X X X X X
CHNG ® X X
PRTOV X
ccB X
Write Checkpoint Records
CHKPT X X[X | X X
Complete .
CLOSE X[x x| xIx[x|x [x [x]|x]|x]x]x!x X’
LBRET 2 X
FEOV X2
SCLOS X
BCLOS X
ERRPT X
Notes: 1. Required only for disk or tape files with standard labels.
2. Applies only if DTFSR, DTFDA, or DTFPH LABADDR is specified.
3. In the 2540, GET normally reads cards in the read feed. If TYPEFLE=CMBND is specified, GET reads
cards at the punch - feed - read station. .
4. PUT rewrites an input disk record if UPDATE is specified.
5. In the 1442, 2520, or 2540, PUT punches an Input card with additional information if TYPEFLE =CMBND
is specified. i
6. Applies only to blocked input records.
7. Applies only to blocked output records.
8. Applies only when two selector channels and one or more 2- channel, simultaneous- read- while - write tape
control units are installed. k
. 9. Applies only to output tape files with standard labels.
10. Applies only to journal tape processing.

Figure 10. Macro Instructions for Input/Output Control

62 S/360 BOS Assembler with I/0 Macros

INITIALIZATION

Before the first record can be read from
any input file or transferred to any output
file by logical IOCS macro instructions,
that file must be readied for use by
issuing an OPEN instruction. This applies
to logical files in all input/output units
available in the system: card readers,
card punches, magnetic tape units, disk
drives, paper tape reader, printers,
optical readers, and display units. When
physical IOCS macro instructions will te
used for a given file, OPEN is required for
that file only if standard labels on disk
or magnetic tape are to be checked or
written.

Whenever files of records are written cn
disk, each disk pack (volume) must contain
standard labels to identify the pack and
the logical files(s) on the pack. When
logical TI0OCS is used for a file, the IOCS
routines read, check, and/or write standard
disk labels. When physical IOCS is used,
IOCS processes the labels if the DTFPH
macro instruction is included in the user's
program. The entry TYPEFLE must be
specified to indicate whether the file is
an input file (read and check labels) or an
output- file (read and check cld labels and
write new labels).

The standard labels include one volume
label for each pack and one or more file
labels for each logical file on the pack.
The following paragraphs describe briefly
the organization of labels on disk packs.
Additional information about disk labels is
given in the BOS Programmer's Guide.

identifies the entire volume (pack) and

of fers volume protection. It is always the
third record om cylinder 0, track 0. The
first two records on this track are Initial
Program Loading (IPL) records. The
volume-label record consists of a count
area, a U-byte key area, and an 80-byte
data area. Both the key area and the first
four bytes of the data area contain the
label identifier VOL1. The remaining 76
bytes of the data area contain other
identifying information such as the volume
serial number, and the address of the set
of file labels for the pack (see Standard
File La The volume label is
generally written once, when the disk pack
is received, by an IBM-supplied utility
progranm.

The standard volume label may be
followed by one to seven additional volume
labels (starting with record 4 on cylinder
0, track 0). These labels must contain the
label identifier VOL2, VCL3 etc in the

four-byte key areas and in the first four
bytes of the data areas. The other 76
bytes may contain whatever information the
user requires. The additional volume
labels are also written by the utility
program that writes the standard volume
label. However, IQCS does not make them
available to the user for checking or
rewriting when problem programs are
executed. These labels are always bypassed
by the OPEN routines.

Standard File Labels: The standard file
labels identify the logical file, give its
location (s) on the disk pack, and offer
file protection. The labels for all
logical files on a pack are grouped
together and stored in a specific area of
the pack.

The number of labels required for any
one logical file is affected by the file
organization (see Standard File-Label
Formats) and by the number of separate
areas of the pack (extents) used by the
file. The data records for a logical file
may be contained within one area of the
pack, or they may be scattered in different
areas of the pack. The limits (starting
and ending addresses) of each area used by
the file are specified by the standard file
label (s) .

Because each file label contains file
limits, the group of labels on the pack is
essentially a directory of all data records
on the pack (volume). Therefore, it is
known as the Volume Table of Contents
(VTOC) . The VTOC itself becomes a file of
records (one or more standard-label records
per logical file) and, in turn, has a
label. The label of the VTOC is the first
record in the VTOC. This label identifies
the file as the VTOC file, and gives the
file limits of the VTOC file. The Volume
Table of Contents is contained within one
cylinder of a disk pack. It does not
overflow onto another cylinder.

If a logical file of data records is
recorded on more than one disk pack
(volume), standard labels for the file must
be included in the VTOC of each pack used.
The label(s) on each pack identifies the
portion of the logical file on that pack
and specifies the extent (s) used on that
pack.

Standard File_ Label -Formats: All
standard-file-label records have a count
area and a 140-byte keysdata area. Three
standard-label formats are provided.

Format 1. This format is used for all
logical files, and it has a U4-byte key
area and a 96-byte data area. It is always
the first of the series of labels when a

Macro Instruction Statements 63

file requires more than one label on a disk
pack (as discussed in Formats 2 and 3).

The Pcrmat 1 label identifies the
logical file (by a file name assigned by
the user and included in the f#l4-byte key
area), and it contains file- and
data-record specifications. It also
provides the addresses for three separate
disk areas (extents) for the file. If the
file is scattered over more than three
separate areas on one pack, a Format 3
label is also required. In this case, the
Format 1 label points to the second label
set up for the file on this pack.

If a logical file is recorded on more
than ome disk pack, the Format 1 label is
always the first label for the file in the
VTOC on each pack.

Format 2. This format is required for
any file that is organized by the Indexed
Sequential File Management System. The
4y-byte key area and the 96-byte data area
contain additional specifications unique to
this type of file organization (such as the
highest record in the overflow area).

If an indexed sequential file is
recorded on two or more packs, the Format 2
label is used only on the pack containing
the indices. This pack may, or may not,
contain data records. The Format 2 label
is not repeated on the additional packs (as
the Format {1 label is).

Format 3. If a logical file uses more
than three extents on any pack, this format
is used to specify the addresses of the
additional extents. It is used only for
extent information. It has a 44-byte key
area and a 96-byte data area that provide
for 13 extents.

The Format 3 label is pointed to by the
Format 1 label for the logical file. It is
included as required on the first pack, or
on additional packs if the logical file is
recorded on two or more packs.

User—Standard File Labels: The user may
include labels to define his file further,
if he desires, provided the file is
processed consecutively (DTFSR macro
specified), by the direct access method
(DTFDA macro specified), or by physical
I0CS (DTFPH macro specified). A file
organized and processed by the indexed
sequential file management system (DTFIS
specified) permits standard labels only. A
file that is to be processed in consecutive
order may have up to eight user-header
labels and up to eight user-trailer labels.
The trailer labels can be written to
indicate an end-of-volume condition. That
is, when the end of an extent on one volume
(pack) is reached and the next extent is on

64 S/360 BOS Assembler with I/O0 Macros

a different volume, or when the end of the
file is reached, user-trailer labels can be

" included to contain whatever trailer

information the user desires (for example,
a record count for the completed volunme).

User-standard labels are not stored in
the Volume Table of Contents. Instead,
they are written om the first track of the
first extent allotted for the logical-file
data records. In this case, the user's
data records start with the second track in
the extent, reqgardless of whether the
labels require a full track. If a file is
written on two or more packs, the labels
are written on each of the packs.

A1l labels must be eighty bytes ‘lonqg and
they must contain standard information in
the first four bytes. The remaining 76
bytes may contain whatever information the
user wants.

The standard information in the first

_four bytes is used as a record key when-

reading or writing the labels. The header
labels are identified by UHLY,
UHL2,---UHL8. The trailer labels, when
applicable, are identified by UTLO,
UTL1,---UTL7. Each user-label set (header
or trailer) is terminated by an end-of-file
record (a record with data length 0), which
is written by IOCS. TFor example, if a file
has five header labels and four trailer
labels, the contents of the user-label
track is:

RO Standard information
R1 UHL 1-—-user's 1st header label
R2 UHL2--user's 2nd header label

R3 UHL3--user's 3rd header label DL=80
R4 UHL4—-user's U4th header label
RS UHLS5--user's 5th header label
R6 UHL6——-end-of-file record --DL=00
R7 UTLO--user's 1st trailer label
R8 UTLt{--user's 2nd trailer label
R9 UTL2--user's 3rd trailer 1label DL=80
R10 UTL3--user's 4th trailer label
R11 UTL4--end-of-file record --DL=00

When files are processed by the direct
access method, (or processed by physical
T0CS defined with DTFPH with MOUNTD=ALL)
only user-standard header labels can be
written. 1In this case, the user-label
track contains:

RO Standard information
R1 UHL1--user's 1st header 1label
R2 UHL2--user's 2nd header label

. DL=80
R (n) UHL (n) ——user's nth header

label where <8

R(n+1) UHL (n+1)--end-of-file record} DL=00
R(n+2) UTLO--end->-file record

The user's label routine can determine
if a label is a header or trailer label by
testing the first four bytes of the label
(see. OPEN Macro) .

Standard Tape_ Labels

When a tape input or output file that has
standard labels is opened, TIOCS can handle
the label checking (on input) or writing
(on output). When logical IOCS macros are
used in the program, the DTFSR entry
FILABL=STD must be included to specify
IoCs-processing of labels. When physical
TOCS macros are used, the DTFPH entry
TYPEFLE must be included to indicate
whether this is an input file (check
labels) or an output file (write labels).

If an input tape contains standard
labels but the user does not want IOCS to
check them, FILABL=NSTD should be specified
in the file definition.

The standard labels for a tape file
are: a volume label, a file header 1label,
and a file trailer label.

Volume_ Labels: The standard volume_ label,
which is the first record (eighty
characters) on a reel of tape, identifies
the entire volume (reel) and offers volume
protection. It contains the label
identifier VOL?! in the first four
rositions, and other identifying
information such as the volume serial
number. This is a unique number generally
assigned to the reel when it is first
‘received in the installation. The volume
label is generally written once, when -the
reel of tape is received, by an
IBM-supplied utility program. The standard
volume label may be followed by a maximum
of seven additional volume labels if
desired. These must be identified by VOL2,
VoL3, etc, in the first four positions of
each succeeding label. However, IOCS does
not permit the checking or writing of
additional volume labels by the user in the
problem program. These labels are always
bypassed on input.

File labels: The volume label set is
followed by a standard file header -label.
This label (eighty characters) identifies
the logical file recorded on the tape and
offers file protection. ‘It contains the
label identifier HDR?Y in the first four
positions, and other identifying
information such as file identifier, file
serial number, creation date, etc. An
input tape may contain standard header }
labels HDR1-HDR8. If so, IOCS checks only
label HDRY and bypasses HDR2-HDRS8.

The standard file header label(s) may be
followed by a maximum of eight user-written
standard labels if desired. If so, the

additional file header labels must be
identified by UHL1, UHL2, etc. A tape mark
follows the last file header label.

A standard file trailer label is located
at the end of a logical file (EOF), or at
the end of a volume (EOV) if a logical file
is continued on another volume. The
trailer label has the same format as the
header label. It is identified by EOF1 or
EOV1 (instead of HDR1) and contains a
physical record count (block count). Tike
the file header label, the standard file
trailer label on an input file may be
followed by seven additional standard
trailer labels identified by EOV2-EOV8 or
EOF2-EOF8, whichever is applicable. IOCS
bypasses these labels. If desired, the
standard trailer label{s) may be followed
by a maximum of eight user-written standard
trailer labels, which must be identified by
UTL1-UTLS.

All user-vwritten standard labels must be
eighty characters long and must contain the
standard identification in the first four
positions. The remaining 76 positions may
contain whatever information the user
wants. Additional information about tape
labels is given in the Programmer's Guide,
listed on the front cover of this manual.

Nonstandard Tape Labels

Any tape labels that do not conform to the
standard-label specifications are
considered nonstandard and, if desired,
must be read, checked, or written by the
user. On input the nonstandard labels may,
or may not, be followed by a tapemark.

This choice, combined with the user's
requirements to check the labels, or not,
results in the following four possible
conditions that can be encountered:

1, Label(s), followed by a tapemark, are
to be checked.

2. Label(s), not followed by a tapemark,
are to be checked.

3. Label(s), followed by a tapemark, are
not to be checked.

4, TLabel(s), not followed by a tapemark,
are not to be checked.

For conditions 1 and-2, the DTFSR entries
FILABL=NSTD and LABADDR=Name must be
specified in the file definition. For
condition -3, the DTFSR entry FILABL=NSTD
must be specified. DTFSR LABADDR is
omitted and TOCS skips all labels, passes
the tapemark, and positions the tape at the
first data record to be read. For
condition 4, the DTFSR entries FILABL=NSTD
and LABADDR = Name must be specified. 1In
this case IOCS cannot distinguish labels

Macro Instruction Statements 65

from data records because there is no
tapemark to indicate the end of the latels.
Therefore, the user must read all labels
even though checking is not desired. - This
positions the tape at the first data
"record.

For output files created by logical
I0CS, a tapemark always follows the last
nonstandard label, unless the user
specifies the DTFSR entry TPMARK=NO.

Unlabeled Tape.Files

On input, unlabeled tapes (DTFSR FILABL=NO)
may or may not contain a tapemark as the
first record. If the tapemark is present,
the next record is considered to be the
first data record. If there is no
tapemark, IOCS reads the first record,
determines that it is not a tapemark, and
backspaces to the beginning of the first
record which it considers to be the first
data record. For unlabeled output files
(DTFSR FILABL=NO) created by logical IoCS,
the first record is always a tapemark,
unless the user specifies otherwise. If
the user does not wish to have a tapemark
written, he must specify DTFSR TPMARK=NO.

OPEN_Macro

[] T T L
|Name | Op | Operand |
= + | 1
| | OPEN | filename |
| | OPEN | filenameil,filename2,—=-=--- |
L 1 1]

The OPEN macro instruction is used to
activate each file that is to be utilized
in the prodblem program. The symbolic name
of the logical file (assigned in the DTFSR,
DTFDA, DTFIS, or DTFPH header entry) is
entered in the operand field of this
instruction. As many as 16 files may be
opened by one instruction, by entering
additional file-name parameters. In this
case, the files are opened in the same
order as they are specified in the OPEN
instruction.

For the card readers, card punches,
printers, and paper-tape readers, OPEN
simply makes the file available for input
or output.

When LIOCS is used for processing
journal tapes on the 1285 and 1287 Optical
Reader, the OPEN macro must be issued at
the beginning of each input roll.

If certain procedures are followed when
an end-of-tape condition occurs, it is
possible to process two or more rolls on
the 1287 as one file. The method is to
press the Optical Reader start key
(creating an intervention required

66 S/360 BOS Assembler with I/O Macros

condition) instead of the end-of-file key
to run out this tape. The next tape can
then be loaded and processed as a
continuation of the previous tape.
However, since OPEN is not reissued, no
header information can be entered between
tapes.

When LIOCS document processing, OPEN
must be issued to make the file available.
OPEN allows header (identifying)
information to be entered at the 1285 or
1287 keyboard, if desired, for journal tape
or cut documents (1287). When header
information is entered, it is always read
into IOAREA1, which must be large enough to
accommodate the desiréd information.

OPEN does not clear the eight binary
counters used in the optical readers.
These counters are initially zeroed.
accumulate error statistics, as listed
under COREXIT=Name, in the section on DTFSR
detail entries.

They

When a magnetic tape -file with standard
labels (STD specified in DTFSR FILABL) is
opened, IOCS expects the first record read
to be a label. The first record is a label
if the tape file being opened is the first
file on the reel and if IOCS rewinds the
reel (see DTFSR REWIND). 1If, however,
other specifications are given in DTFSR
REWIND or if a file starting in the middle
of the reel is opened, it is the user's
responsibility to position the tape.
properly so that the first record read is a
label. If the first record is not a label, .
I0CS indicates an error condition by
issuing a message to the operator. An
unlabeled file (DTFSR FILABL=NO) can,
however, be opened in the middle of data
records without causing an error condition.
If a file with nonstandard labels (DTFSR
FILABL=NSTD) is opened, all label
processing is the responsibility of the
user's routines (see
Initialization:Nonstandard Tape_-Labels).

Whenever an input/output disk or tape
file is to be opened and the user plans to
process user-standard labels or nonstandard
labels, he must provide the information for
checking or building the labels. If this
information is obtained from another imput
file, that file must be opened ahead of the
disk or tape file. This is done by
specifying the input file ahead of the disk
or tape file in the same OPEN instructionm,
or by issuing a separate OPEN instruction
preceding the OPEN for the disk or tape
file.

The specific functions that occur on an
OPEN for a disk or tape file vary with the
type of operation (input or output) and
with the use of file labels. These

functions are discussed in the following
sections.

When building an output file and IOREG
is specified, OPEN positions IOREG to the
beginning of IOAREA1.

In addition to the registers used by
logical IOCS, OPEN also uses register 5.
The programmer may use register 5 because
the OPEN macro routine saves and restores
this register. However, if the programmer
plans to use register 5 as a base register,
he should be aware that register 5 is
dropped at the end of the OPEN routine.

For a discussion of reorening a file
after it has been closed, see CLOSE Macro.

For a discussion of SOPEN, to initialize
the adapter for STR devices,
see: Processing -with STR Devices. For a
discussion of BOPEN, to initialize the data
adapter for BSC, see: Binary. Synchronous

—— e e

Disk-Input.File

When an input file that is recorded on disk
is opened, the OPEN routines:

. Check the standard label(s) for the
' file.

° Make any user-standard labels available
to the user for checking, if the DTFSR,
DTFDA, or DTFPH entry LABADDR is
included in the file definition. The
indexed sequential system (DTFIS) does
not permit user-standard labels.

. Locate the area(s) of the disk pack
(extent) where the file is written.

. Make the file records available for
processing.

For these functions, the OPEN routines
refer to the information supplied by the
user in Job Control VOL, XTENT, and DLAB
cards. A VOL card and.- a DLAB card must be
supplied for each logical file, and an
XTENT card must be supplied for each
separate area (in each volume) used by the
file.

The functions of the OPEN routines may
occur at different times during the job,
depending on the type of processing
specified for the file by the-
file-definition macro instruction. If a
file is to be processed consecutively
(DTFSR specified), OPEN initially checks
the standard label (s) on the pack or on the
first pack of a multipack file, makes any
user-standard labels on the first pack
available for checking, and then locates
and makes available the first extent on the

first pack. IOCS processes one extent at a
time, in the sequence specified by the
user's control cards. When IOCS detects
the end of the current extent, it branches
to the end-of+-extent routine. OPEN then
locates the next extent specified by the
control cards, makes sure it is on-line and
ready, and makes it available for
processing. If the next extent is the
first extent of a different pack used by
the file, OPEN checks the standard labels
on that pac¢ck ans makes any user labels on
that pack available to the user for
checking. If the user has included

they are made available for checking when
the last extent on one pack is completed
and before the first extent on the next
pack is opened (see Completion:-- Disk-Input

File).

When a file is to be processed by the .
direct access method (DTFDA specified) or
by the ipdexed sequential -system (DTFIS’
specified), all disk areas specified by
theuser's control cards for the file must
be mounted and ready when the file is first
opened. Therefore, the OPEN routines
initially check all standard labels on all-
packs used by the file, make all- user
labels (if any) available for checking, and
check all specified extents and make then.
available for processing. For a multi-pack
file, OPEN processes the standard labels
followed by all user labels on the first
pack, then processes standard labels on the
second pack, etc. Therefore, the user's
label routine is entered for each user
label on each pack in turn, after the
standard label on that pack has been
checked.

If a file is to be processed by physiecal
I0CS - (DTFPH specified) and if the DTFPH
entry MOUNTD=SINGLE is specified, the file
is treated as consecutive at the initial
opening. That is, only the pack containing
the first extent specified by the user's
control cards must be on-line when the
initial OPEN is issued. The labels on this
pack are processed, and the first specified
extent is made available for processing.
Thereafter the user must keep track of the
extents and issue an OPEN for each
succeeding extent when it is required for
processing. Each additional time that OPEN
is issued for the file, IOCS locates and
makes available the next extent specified
by the user's control cards. If the DTFPH
entry MOUNTD=ALL is specified, all extents
specified for the file must be mounted and
ready vhen the initial OPEN is issued. 1All
labels are checked (or made available for
user-checking) and all extents are checked
and made available for processing. Only
one OPEN is issued for the file, the
function for MOUNTD=ALL are similar to

Macro Instruction Statements 67

those performed when a direct access or
indexed sequential file’'is opened.

Checking. User—Standard.Labels: When a disk
file contains user-standard labels, the
programmer can check them in his own
routine if the DTFSR, DTFDA, or DTFPH entry
LABADDR is included in the file definition.
The OPEN routines branch to the user's
routine after each user's label has been
read. IOCS reads each label into the label
read-in area. The address of this area is
supplied to the user in register 1 upon
entry into his routine. The user's routine
can identify the various labels (and
distinguish between header and trailer
labels) by testing bytes 1-4 of the read-in
area. After checking each label, the user
must return to the OPEN routines by use of
the LBRET macro.

Disk _Output_.File

When an output file that is to be recorded
on disk is opened, the OPEN routines:

. Audit the extents specified by control
cards to make sure that any data
previously recorded is no longer active
and may be destroyed.

. Create and write required standard
label sets.

. Permit the user to create user-standard
labels and write those labels, if the
DTFSR, DTFDA, or DTFPH entry LABADDR is
specified. The indexed sequential
system (DTFIS) does not permit
user-standard labels.

. Locate the area(s) of the disk pack
wvhere the records are to be written.

. Make the area(s) available to logical
I0CS.

Similar to the opening functions for an
input file, the OPEN routines refer to the
information supplied by the user in the Job
Control VOL, XTENT, and DLAB cards for the
output file. ¥For the creation of the
standard labels, OPEN also uses information
supplied by the file-definition macro
(DTFSR, DTFDA, DTFIS, or DTFPH).

As each pack is opened for a file, IOCS
constructs and writes the standard label
(s) for that pack. For consecutive
processing (DTFSR specified) only the first
pack is opened at the initial OPEN. After
the first, each other pack is opened and
the standard labels are written when,
during execution, the processing of records
for one pack is completed and the file is
to be continued on a different pack. For
the direct access method {(DTFDA) or the
indexed sequential system (DTFIS), all

68 S/360 BOS Assembler with I/0 Macros

packs are opened and all standard labels
are written at the initial OPEN for the
logical file.

After the standard labels are written
for any pack, IOCS branches to the user's
label routine (if one is specified by the
DTFSR, DTFDA, or DTFPH entry LABADDR) and
the user can construct his label(s).

The extents specified by the user are
checked in turn. That is, they are checked
as they are ready to be written when
processing consecutively. Or, they are
checked, one after the other, at the
initial OPEN when the direct access method
or the indexed sequential system is used.
This checking. is based on the expiration
dates in the existing standard file labels.
If any files are to be partially or wholly
destroyed, their standard labels are
removed from the Volume Table of Contents.
This, in effect, deletes the entire file
from this pack.

If an output file is to be processed by
physical I0CS, both the initial and
subsequent opeaning functions are similar to
those described for an input file (see OPEN
Macro:. -Disk. Input-File), except that
labels are written rather than checked.
Thus, the file is treated like a
consecutive file if DTFPH MOUNTD=SINGLE is
specified. ' It is treated like a direct
access or indexed sequential file if DTFPH
MOUNTD=ALL is specified.

Writing User-Standard Header Labels: When
the user specifies that user-standard
labels are to be written (by including the
DTFSR,DTFDA, or DTFPH entry LABADDR), the
user constructs the labels and IOCS writes
them. The OPEN routines branch to the
user's routine after the standard label (s)
is written. OPEN prepares for the user's
label (s) by setting up a label area where
the user can construct the label(s),
supplying the address of the area in
register 1, placing UHL! (for the first
label) in the first four bytes of the area,
and storing a return address in register
14, 1In his routine the user constructs a
76-byte label and returns to IOCS by use of
the LBRET macro. IOCS checks for a
set-completed indication, writes the label,
determines if eight labels have been
written and, if not, increases the UHL
identification by 1 and returns to the
user's label routine. Because a maximum of
eight user—-standard labels is permitted,
IOCS automatically terminates the label set
after a label with UHL8 is written. If the
user requires fewer labels, he can force
the end of the label set by issuing the
LBRET macro with the operand "1". Whenever
the DTFSR, DTFDA, or DTFPH entry LABADDR is
specified, at least one additional label
must be written. Upon return to IOCS, the

set is terminated and IOCS writes an
end-of-file record.

Tape Input File

When an input file is recorded on magnetic
tape, OPEN rewinds the tape according to
the specifications in the DTFSR entry
REWIND. (No rewind is performed if the
file is defined by DTFPH.)

Standard Tabels: Both the first volume
label (VOL:1) and first file header labels
(HDR1) are automatically read and checked
if standard label checking is specified
(STD specified in DTFSR FILABL or INPUT
specified in DTFPH TYPEFLE) and if the tape
is read forward (FORWARD specified in DTFSR
READ). The fields are checked with the
information supplied by the Job Control VOL
and TPLAB cards.

By this label checking, IOCS locates the
file to ke processed if more than one file
is written on a tape reel (multifile reel).
For this, I0OCS compares the file sequence
number in the label with that in the TPLAB
card. The file sequence number gives the
sequential position of the file on the
reel. TFor example, if the first file on a
multifile reel has file sequence number 1,
the third file has file sequence number 3.
If the first file is numbered 15, the third
file is numbered 18. The OPEN routines
bypass all files until a header label with
the matching file sequence numker is read,
or until the end of the tape is reached.
Several files on a reel may be processed in
succession without rewinding the tape if
the file sequence numbers are specified in
ascending sequence. If not, the tape must
be rewound before the file to be processed
is opened. If the tape is positioned
beyond the desired file when the OPEN for
that file is executed, message 41147 is
given to the operator.

If a tape file that will be read
backwards (BACK-specified in DTFSR READ) is
opened, the file:trailer-label is
automatically read and checked if label
checking is specified. The volume label is
not repeated at the end of the tape.
Because the file trailer label ig processed
at this time, it must be complete and
contain both the trailer and header
information (except HDR) to identify the
file. TIf the file labels were originally
written by IOCS routines, the trailer 1label
will be complete. TIf the tape is not
positioned at the trailer label (EOF1) when
the file is opened, the user is notified
and reading continues. This situation is
possible if the user begins reading
backwards in the middle of his file.
physical IOCS macros are used to read
records backwards, labels cannot be checked

When

and the ‘file must not be defined with DTFPH
statements.

If a tape contains user-standard- header
labels (UHL1-UHL8) following the standard
file header label (or user-standard trailer
labels, UTL1-UTL8, preceding the standard
trailer when reading backwards), the
programmer can check them in his own
routine. The OPEN routine branches to the
user's routine (identified by the DTFSR or
DTFPH entry LABADDR) after each user's
label has been read. Each label is read
into the label read-in area used by IOCS.
The address of this area is supplied in
register 1 upon entry into the user's
routine. -‘After checking each label, the
user must return to the OPEN routine by
useof the LBRET macro. If user-standard
labels exist but the user does not specify
LABADDR, the user labels are bypassed by
IoCsS.

When the tapemark at the end of the
labels is read, IOCS opens the next file
specified in the OPEN macro, or returns
control to the problem program if all files
have been opened.

After the labels (if any) for a file
have been processed, that file is ready for
the first GET instruction.

Nonstandard-Labels: To process nonstandard
labels, the user must specify FILABL=NSTD
and LABADDR=Name, and he must define his
own label read-in area. To read-the
nonstandard labels, physical IOCS macro
instructions must be used instead of
logical IOCS instructions. A Command
Control Block (CCB) and a Channel Command
Word (CCW) must be established, and an EXCP
instruction must be issued for each label
nust be issued for each label record (see
Processing Records with Physical -I0CS}).

In his label routine, the user issues
the EXCP and WAIT macro instructions and
then performs whatever checking he desires
for the labels. After all labels have been
read and processed, the user returns
control to the OPEN routines by use of the
LBRET macro.

If a file with nonstandard labels
utilizes an alternate tape drive (DTFSR
ALTTAPE=SYSnnn), IOCS supplies a code
identifying the symbolic unit (see Figure
26) of the drive currently being used in
the two low-order bytes of register
1. This value must be moved to bytes 4 and
5 of the Command Control Block (CCB) used
by the EXCP macro for label reading.

Tape_ Output File

For a magnetic tape output file, OPEN
rewinds the tape as specified in the DTFSR

Macro Instruction Statements 69

entry REWIND. (No rewind is performed if
the file is defined by DTFPH.)

Standard labels: When standard labels are
to be written (STD specified in DTFSR
FILABLE, or OUTPUT in DTFPH TYPEFLE), the
volume label is checked and the o0ld file
header is read and checked to make sure
that the data on the tape is no longer
active and may be destroyed. The tape is
then backspaced and the new file header
label is written with the information
supplied by the Job Control TPLAB card.
The volume label is not rewritten.

If user-standard ‘header labels
(UHL1-UHL8) are to be written following the
standard header label, the OPEN routine
tranches to the user's routiné (specified
by the DTFSR or DTFPH entry LABADDR) after
each standard label. In his routine, the
programmer can build a maximum of eight
user-standard labels. Each label must be
built in the label output area used by
JoCcS. The address of this area is supplied
to the user in register {1 uwpon entry into
his routine. = IOCS also supplies the letter
0 in the low-order byte of Register 0, to
indicate that a header label should be-
built. After building each label, he must
return to the OPEN routine by use-.of the
IBRET macro. Then IOCS writes. the label.
When the user determines that the last user
label has been written, he must issue the
LBRET macro with the operand "1". Whenever
the DTFSR or DTFPH entry LAEADDR is
specified, at least one additional label
must be written.

After the header labels (if any) for a
file have been written, the tape is ready
for the first PUT instruction for that
file.

Multifile Reels. More than one file of
records may be written on cne reel of tape
(multifile reel), if desired. If this is
planned, the DTFSR entry REWIND=NORWD
should be specified for each file. With
this specification, the tape is located at
the correct position for the OPEN routines
to write the standard file header label for
each additional file (after the first) on
the reel. For the first file, the
programmer can include a CNTRL macro
instruction (with the operand REW) ahead of
the OPEN instruction. Or, the operator can
position the tape at the load point. "

For the standard file header label of
each file after the first, the OPEN
routines obtain the file serial number,
volume sequence number, and file sequence
number frcm the preceding standard trailer
label. They increase the file sequence
number by 1 for the new file. ~OPEN writes
the remaining fields of the header label by
using the information supplied in the

70 s/360 BOS Assembler with I/O Macros

corresponding Job Control TPLAB card. As
with the first file on the reel,
user—-standard header labels may follow the
standard header label.

If a tape is rewound or repositioned
after a file is closed, it is the user's
responsibility to properly position the
tape for writing any additional file. The
tape must be positioned so that the file
header label is written immediately after
the tape mark that follows the last file
currently on the tape. The header label
will replace the second tape.mark that
normally follows the trailer label (s) of
the last file on a tape (see CLOSE- ,
Macro: Tape Output-File). The tape can be

advanced from the load point to the correct
position by skipping three tape marks for
each file presently on the tape. The
layout of tape records is:

Load
Point

v 1< File 1

L L} L} L] L} L] L} v
{VOL1|HDRY| UHL |TM{DATA RECORDS|TM|{EOF|
| A 1(1-8) 1 | | 1
1 1 1 1

L L A L
>|1< File 2 _
) L} L) L) k) 1 L L]
| UTL |TM|HDRY| UHL |TM|DATA RECORDS]|TH|]
1-81 | 1(1-8)1 | o
L i L 1 1 A ' | N

_>

I R B 1 L]
{EOFY UTL |TM|TM
| 1(1-8)1 |
1 1 1

fe e of
e e e

¢
Replaced if another file
is added to the tape.

A Job Control FILES card should be used
to skip the required number of tape marks.
When the tape -has been positioned and the
file is opened, the OPEN routines obtain
the information for the standard file
header label from the preceding standard
trailer label and the Job Control TPLAB
card, as described in the preceding
paragraphs. The DTFSR entry REWIND=NORWD
must be included for this file.

Nonstandard Labels: To process nonstandard
labels, the user must specify FILABL=NSTD
and LABADDR=Name, and he must define his
own label read-out area. To write-the
nonstandard labels, physical IOCS macro
instructions must be used instead of
logical I0CS macro instructions. A Command
Control Block (CCB) and a Channel Command
Word (CCW) must be established, and an EXCP
instruction must be issued for each label
record (see Processing Records with
Physical TOCS).

Upon branching to the user's label
routine, IOCS supplies the letter O in the
low-order byte of Register 0 to indicate
that a header label(s) should be written
(see DTFSR LABADDR). 1In his routine, the
user issues the EXCP and WAIT macro
instructions after he has built each label
record. After all labels have been
written, the user returns control to the
OPEN routines by use of the LBRET macro.

If a file with nonstandard labels
utilizes an alternate tape drive (DTFSR
ALTTAPE=SYSnnn), IOCS supplies a code
identifying the symbolic unit (see Figure
28) of the drive currently being used in
the two low-order bytes of register
1. This value must be moved to bytes 4 and
5 of the Command Control Block (CCB) used
by the EXCP macro for label writing.

op ; Operand
L

L]
LBRET| 1
LBRET| 2

1

b e =

(==T

The LBRET (label return) macro instruction
applies only to disk or tape files that
contain user-standard labels, or
nonstandard labels, that the user wants to
check or build/write. It must be issued at
the end of the user's label routine
(specified by the DTFSR, DTFDA, or DTFPH
entry LABADDR), to return to IOCS after
header or trailer labels have been
processed. This instruction requires one
of the following operands:

Operand 1 User-Standard Iabels, Input
File:To return to IOCS when the
user vwants to eliminate the
checking of one or more
user-standard labels. IOCS
then skips the remaining labels
in the set, and processing
continues. If all labels are
to be checked, operand ?1 is not
used and IOCS terminates label
processing when the disk
end-of-file record or the
tapemark following the last
label is read.

User-Standard Labels, Output
File: To return to IOCS when
the user determines that the
last user-standard label has
been built. IOCS writes the
last label (from the label
output area). and processing
continues. Operand 1 is always
required to terminate the
output label set.

Nonstandard labels:- Operand 1
is invalid for files that
contain nonstandard labels
(FILABL=NSTD) .

Operand 2 User-Standard Labels, Input-
File: To return to IOCS after
each user-standard label has
been checked. TIOCS makes the
next label, if any, available
for checking in the label input
area. When IOCS senses the
endof the label set (disk
end-of-file record or
tapemark), it terminates label
processing.

User—-Standard Labels, Output-
File: To return to IOCS after
each user-standard label except
the last has been built. IOCS
writes the label from the label
output area and returns to the
user's label routine to permit
him to build his next label.
The label set is terminated by
LBRET 1.

Nonstandard labels: To return
to IOCS after all nonstandard
labels have been checked or
written. For nonstandard
labels, IOCS branches to the
user's label routine only once,
and the problem program must
read or write every required
label before issuing LBRET to
return to IOCS.

The LBRET routine requires the values
that the IOCS has placed into registers 14
and 15. Hence, if the user requires one or
both of these registers in his routine, he
must save the value placed into these
registers by the IOCS before he starts
using them. He must restore this value
prior to issuing the LBRET macro
instruction.

PROCESSING RECORDS CONSECUTIVELY

Records in serial-type devices (such as
card reader, tape unit, printer) and
records in a 2311 disk file used in a
serial-type order can be processed
consecutively. In this type of processing,
successive records are processed, starting
at the beginning of a logical file and
continuing, one record after the other, to
the end of the file (see Types-of
Processing: Consecutive Processing). In

this method the user issues GET.or PUT
macro instructions to transfer records.

Whenever a file of records is to be

processed in consecutive order, the logical
file, the device used for the file, and the

Macro Instruction Statements 71

main-storage areas allotted to the file
must be defined by the declarative macro
DTFSR (Define The File in a SeRial-type
device). The detail parameter entries for
this definition are described under File-
Definition Macros.

" Record-Types
I0CS handles records that are:

. Blocked - two or more logical records
in one physical record, such as a tape
record '

. Unblocked - one logical record per
- physical record

. Fixed-Length - all records the same
length

. Variable~Length - the records differ in
length

° Undefined - the record characteristics
are unknovwn to IOCS.

I0CS can process all the different types
in the same program. However, all the
records in a given file must be the same
type, and this must be defined in the DTFSR
entry RECFORM for that file. The types of
‘records that can be processed vary with the
type of I/0 device used for reading/writing
the file of records, as shown in the
illustration (Figqure 11).

72 S/360 BOS Assembler with I/0 Macros

When an application using blocked -
recoxds-is planned, the number of records
that can be allocated for a block depends
on the size of the records and the ‘amount
of main storage that can be reserved for
the block. The programmer must
predetermine the maximum block size and
specify this in the DTFSR entry BLKSIZE.
All records within the block may be fixed
length or variable length. If the records
are fixed length, the length of the records
is specified in DTFSR RECSIZE.

If the blocked records are variable-
length, the size of each record-must be
included within the record itself (Fiqures
12 and 13). This record-length field must
occupy.the first four bytes of each record.
The first two bytes specify the length of
the record (including the four bytes for
the record-length field itself), and the
next two are blank. In addition, the
actual length of each block-must be
recorded on disk or tape, preceding the
first record in the block. Block length is
also a four-byte field. The first two
bytes specify the length of the block
(including the four bytes for the
block-length field itself), and the next
two are blank. Both block length and
record length are expressed in 16-bit
binary form.

TYPES OF RECORDS

T

record length +4,.

in the record.

1 1

| |

| |

| |

: L] L] Jl

TYPE OF I/O DEVICE | Fixed-Length | variable-Lengtht | i

I T { 1 |

iUnblocked | Blocked | Unblocked i Blocked | |

1 1 l l L H

LB LI L} T L L}

12311 Disk Storage Drive | X | X | X | X | X l
- 1 i t + t {
12400 Series | X | X | X i X2] X 1
|[Magnetic Tape Unit | | | | i i |
L 1 L [1 L .l
L o T LE L§ T] 1
{1482, 2501, 2520, 2540 | X | | | | |
|Card Reader | | l i [|
L - R L - 1 i 4
L] LB LB T L] R 1
|1442, 2520, 2540 card Punch T ¢ | | X | | X |
1 . 1 Il 1 L [1
] 1] L] L 1 1 L}
{1403, 1404, 1443, 1445, Printer| X | | X | | X |
[L] [1 [} 1 A
1 3 L L] L L L) 1
{1052 Printer-Keyboard | X | | | { X |
1 [}] 1 L 1 u |
L) L)] L) L i L]
|2671 Paper Tape Reader | X | f | | X3 |
1 1 1 1 Il L 1
] L) L L LIS L] 1
11285 Optical Reader | X | | i | X |
L 1 L 1] L 1
L} 1 L T 1) 1
{1287 Optical Reader | X | | |] X]
Ir_ AL] L - 1 L {
|

NOTES: 1. For disk or tape records, each record must contain a record-length field |
|

|

|

|

l

l

I

|

3

(o — . G — ——— — — —

2. Read backwards must not be specified.

and’' each block must contain a block-length field. In the case of
unblocked -records, block length is a block of 1 record and it equals

3. Each record must contain an end-of-record character as the last character

Figure 11. Types of Records and I/0 Devices for Consecutive Processing

Macro Instruction Statements

73

BLOCKED RECORDS.

Record 1 Record 2 Record 3
RL RL RL
Xbb | XXbb Dota XXbb Data XXbb Data
i 0 34 7 83:84 8 183=184,87
| BL=234 RL=80 ! RL = 100 ' RL = 50

Record 1 Record 2 Record 3
BL RL RL RL
Xbb XXbb,| Data XXbb Dota XXbb Date
{ 0 34 7 4 7 14 7
: .BL=84.= RL =80 RL =100 i BL=54 RL=50

BL is Block Length . 5 .
RL is Record Length } In Binary Half-word (16-Bit) Format

IRG is Interrecord Gap

Figure 12. Schematic of Variable-Length Records on Tape

BLOCKED RECORDS

Record 1 Record 2
RL RL .
t
XXbb | XXbb Data XXbb ata
34 7 8384 87 g
] I
BL=184 RL=80 : RL=100 t

UNBLOCKED RECORDS

Record 1 Record 2
RL |. Data Data
XXbb
4 7
RL=80 RL=100

BL is Block Length
RL is Record Length

} In Binary Half-word (16-Bit) Format

Figure 13. Schematic of Variable-Length Records on Disk (Consecutive Processing)

74 S/360 BOS Assembler with I/0 Macros

When unblocked-variable-length-records
on disk-or tape-are processed, each record
mast contain the record-length field in the
first four bytes, the same as for blocked
variable-length records. Also, a
block-length field must precede each record
(@ block of one record). This four-byte
field always specifies the record length
Plus 4.

Because a block-length field must
precede the first data record whenever
variable-length records (either blocked or
unblocked) are processed, this must be
included in the BLKSIZE specification and
in the amount of main storage allotted to
the input/output area.

When unblocked . variable-length records

are specified for the card.punch or.
rinter, a record-length field must be

included in the first four bytes of each
output record in main storage . The first
two bytes must specify the length of the
record (including the four bytes for the
record-length field itself), and the next
two are blank. The user must supply the
‘record length in this field when he builds
. the record. Punching, or printing, of the
actual.data record starts with the first
position after the record length field,
unless a control character is included in
the record (see PUT Macro: Punch-and-
Printer-Control). The amount of main
storage allotted for the punch .or printer
output area must allow for the 4-byte
record~length field, and the DTFSR BLKSIZE
specification must include these four
bytes.

When undefined records are to be read or
written, the DTFSR entry RECSIZE must
specify a register. On input, IOCS
supplies the physical record size in this
register. For output, the programmer must
load the length of each record in this
register before he issues the PUT for that
record.

Record_ Sizes: The minimum size physical
tape record (gap to gap) that camn be
handled is 12 characters (11 characters or
less are considered a noise record). The
maximum size tape record is 32K. The
maximum size input/output record for the
IBM 1052 Printer-Keyboard is 256 "
characters; the minimum size input record
is one character. The maximum size card or
printer record cannot exceed the capacity
of the corresponding I/O unit.

Storage -Areas

When logical IOCS macro instructions are
used, each input record can be made
available to the program for processing
either in an input area or a work area.
Similarly, on output, each record can be

built in a work area or directly in an
output area. '

Input/output areas and work areas for a
particular file can be specified and
handled by IOCS in any of the following
combinations: ’

1. One I/0 area

2. One I/0 area and one work area
3. Two I/0 areas

4. Two I/0 areas and one work area.

If one I/0 area (combination 1) is used,
a register must be specified in DTFSR IOREG
whenever blocked records are processed or
unblocked variable-length records are read
backwards. The register is used to point
to the beginning of each record and thus
locate the record for processing. A
register must also be specified whenever
two I/0 areas (combination 3) are used,

‘reqardless of whether the records are

blocked or unblocked. If the blocked

‘records are variable_.length-and are being

built in the output area(s), an additional
register must be specified in DTFSR VARBLD.
This register provides the programmer with
the remaining space in the output area each
time a PUT instruction is executed.

Whenever a work area (combinations 2 and
4) is used, a register is not required and
IOREG should be omitted. Instead, DTFSR
WORKA must be specified and the work area
must be named in each GET or PUT
instruction. The various combinations are
discussed further in the BOS Programmer!s-
Guide, as listed on the front cover of this
publication.

GET . Macro -

L] L] 1 1
| Name | Op | Operand |
L L 1 1
L g '’ T 1
| | GET | filename |
| | GET | filename,workname |
1 | - L |

This instruction makes the next consecutive
logical record from an input file available
for processing in either an input area or a
specified work area. It is used for any
input file in the system, and for any type
of record: blocked or unblocked, fixed or
variable length, and undefined. When the
GET macro detects an end-of-file condition,
I0CS branches to the user's end-of-file
routine (specified by DTFSR EOFADDR).

The GET macro instruction is written in
either of two forms, depending on the area
where the records will be processed.
Either form, but not both, can be used for
one DTFSR-specified logical file. The

Macro Instruction Statements 75

first form is used if records are to be
processed directly in the input ared (s),
and it requires only one’ parameter. This
parameter specifies the name of the file
from which the record is to be retrieved.
The file name must be the same as the one
specified in the DTFSR header entry. for
this file.

The input area must be specified in the
DTFSR entry YOAREA1. Two input areas may
be used to permit am overlap of data
transfer and processing operations. The
second area is specified in DTFSR IOAREA2.
Whenever two input areas are specified, the
I0CS routines transfer records alternately
to each area. They completely handle this
"flip-flcp" so that the next consecutive
record is always available to the problen
program for processing.

When records are processed in the input
area (s), a general purpose register must be
specified in the DTFSR entry IOREG if:

1. Records are blocked,

2. Variable-length unblocked tape records
are read backwards, or

3. Two input areas are used, for either
blocked or unblocked records.

This register identifies the next single
record tc be processed. It always contains
the absolute base address of the currently
available record. The GET routine places
the proper address in the register.

The second form of the GET instruction
is used if records are to be processed in a
work area. It causes the GET macro to move
each individual record from the
DTFSR-specified input area to a work area.
As in the first form, the file name must be
entered as the first parameter. The name
of the work area must be eantered as the
second parameter, and YES must be specified
in the DTFSR entry WORKA. The work-area
name must be the same as that specified in
the DS instruction that reserves this area
of main storage . All records from a
logical file may be processed in the same
work area, or different records from the
same logical file may be processed in
different work areas. In the first case,
each GET for the file specifies the sanme
work area. In the second case, different
GET instructions specify different work
areas. - It might be advantageous to plan
two work areas, for example, and to specify
each area in alternate GET instructioms.
This would permit the programmer to compare
each record with the preceding one, for a
control change. Only one work area can be
specified in any one GET, however.
Whenever this. form of the GET instruction

76 S/360 BOS Assembler with I/0 Macros

is used for a logical file, a register is
not required for indexing (as it is when
records are processed directly in the input
area) .

The GET macro is used to acquire data
from journal tapes from 1285/1287 optical
reader files. Processing overlap is
obtained by using mnultiple input areas.

IBM-2671.Paper Tape-Reader: Whenever a GET
instruction is issued for the 2671, bits 6
and 7 of main-storage location filename+16
should be tested to determine if an error
is detected when a record ‘is read. If a
data check or equipment check is detected,
an error message is issued to the operator.
The operator's reply to this message
determines if bit 6 or 7 is turned on.

If bit 6 is on, the record has been
read, but one or more characters in the
record are in error. Bit 6 is turned on by
an operator reply (4) to continue reading
the record and ignore the character that
caused the error.

If bit 7 is on, the operator has
positioned the tape either at the beginning
of the same record or at the beginning of
the next available record. Bit 7 is turned
on by.an operator reply (other than 0-5)
either to reread or ignore the record
containing the error. The next GET
attempts another read operation on the
current record or reads the next available
record. If a torn tape prompts the
operator to advance the tape, more than one
record may be lost.

As another choice for a data check, the
operator may backspace two characters and
attempt another read operation (reply.5).
If this read is correct, no data check has
been detected and processing continues.
Neither bit 6 nor 7 is turned on. If an
error is detected, however, the operator
may reply with a 4 that turns on bit 6, or
with any character other than 0-5 that
turns on bit 7.

Unblocked -Records

.Records retrieved from any input file

except disk or magnetic tape are always
considered unblocked (specified ‘as
unblocked or undefined). Records on disk
or tape are treated as unblocked if this is
specified in the DTFSR entry RECFORM.

WHhenever records are unblocked (either
fixed or variable length) and only one
input area is used, each GET transfers a
single record from an I/0 device to the
input area, and then to a work area if one
is specified in the GET instruction. If
two input areas are specified, each GET
makes the last record that was transferred

to main storage available for processing in
the input area or work area. The same GET
also starts the transfer of the following
record to the other input area.

When an IBM-2540 card Read-Punch is used
for a card input file, each GET instruction
normally reads the record from a card in
the read feed. However, if the 2540 has
the punch-feed-read special feature
installed and if CMBND is specified in the
DTFSR entry TYPEFLE, each GET reads the
record from a card in the punch feed, at
the punch-feed-read station. This record
can be updated by additional information
and punched back into the same card, when
that card passes the punch station and a
PUT instruction is issued. (See
PUT: Updating.)

Oon the IBM 1285 and 1287 Optical
Readers, fixed unblocked records should be
used when processing journal tapes
containing lines with an equal number of
characters. For documents on the 1287,
processing is similar to that of undefined
records, because the fields read may be
treated as either fixed- or variable-length
by setting the suppressed length indicator
(SLI--flag bit 34) in the CCW used to read
the document field. However, the user is
not required to use RECSIZE and IOREG, and
can eliminate these two registers if he
desires.

Blocked Records

When records on disk or tape are specified
as blocked in the DTFSR entry RECFORM, each
individual record must be located for
processing (deblocked) . Therefore, blocked
records (either fixed or variable length)
are handled as follows:

f. The first GET instruction transfers a
block of records from disk or tape to
the input area. It also initializes
the specified register to the absolute
address of the first data record, or it
transfers the first record to the
specified work area.

2. Subsequent GET instructions either add
an indexing factor to the register or
move the proper record to the specified
work area, until all records in the
block have been processed.

3. Then the next GET makes a new block of
records available in main storage , and
either initializes the register or
moves the first record.

Undefined Records

When undefined records are to be handled,
the DTFSR entries RECFORM=UNDEF and"
RECSIZE=n must be included in the file

definition. GET treats undefined records
as unblocked, and the programmer must
locate individual records.and fields.
Undefined records are considered to be
variable in length by IOCS. No other
characteristics of the record are known by
IOCS. They are the responsibility of the
user.

Journal tapes containing lines of
variable character length are processed in
this manner on the 1285 and 1287. When
documents specified as undefined are
handled by the 1287 reader, the entry
RECSIZE pertains only to the last field
read by the channel command word chain.

Read - Backwards, Tape

If records on tape are to be read backwards
(BACK specified in DTFSR entry READ),
unblocked records or blocks of fixed-length
records are transferred from tape to main
storage in reverse order. The last block
is read first; the next-to-the-last block,
second; etc. For blocked records, each GET
instruction also makes the individual
records available in reverse order. The
last record in the input area is the first
record available for processing (either by
indexing or in a work area).
Variable-length blocked records cannot be
read tackwards.

Nine-track tape can be read backwards
without qualification, but 7-track tape can
be read backwards only if:

o the tape was originally written on a
magnetic tape unit of the IBM
System/360,

o the Data Conversion special feature was
not used when the tape was written, and

° a tape mark was written at the
beginning of the tape preceding the
data records.

PUT_Macro

I L] L) Al
[Name | Op | Operand |
I —1 } !
| | PUT | filename |
| { PUT | filename,workname |
L 1 1 I |

This instruction writes, punches, or
displays logical records that have been
built ‘directly in the output area or in a
specified work area. It is used for any
output file in the system, and for any type
of record: blocked or unblocked, fixed or
variable length, and undefined. It
operates much the same as GET but in
reverse. It is issued after a record has
been built.

Macro Instruction Statements 77

Similar to GET, the PUT macro
instruction is written in either of two
forms, depending on the area where the
records are built. Either form, but not
both, can be used for one DTFSR-specified
logical file. The first form is used if
records are built directly in the output
area (s), and it requires only one
parameter. This parameter specifies the
name of the file to which the record is to
be transferred. The file name must be the
same as the one specified in the DTFSR
header entry for this file.

The output area must be specified in the
DTFSR entry IOAREA1. Two output areas may
be used to permit an overlap of data
transfer and processing operations. The
second area is specified in DTFSR IOAREAZ2.
Whenever two output areas are specified,
the IOCS routines transfer records
alternately from each area. They
completely handle this "flip-flop" so that
the proper output-record area is always
available to the program for the next
consecutive output record.

When records are built in the output
area (s), a general-purpose register must be
specified in the DTFSR entry IOREG if:

1. Records are blocked, or

2. Two output areas are used, for either
blocked or unblocked records.

This register always contains the
absolute base address of the currently
available output-record area. The PUT
routine places the proper address in the
register.

The second form of the PUT instruction
is used if records are built in a work
area. It causes the PUT macro to move a
record from a specified work area to the
proper location in the DTFSR-specified
output area. As in the first form, the
file name must be entered as the first
parameter. The name of the work area is
entered as the second parameter, and YES
must be specified in the DTFSR entry WORKA.
The work-area name must be the same as that
specified in the DS instruction that
reserves the area of main storage .
Individual records for a logical file may
be built in the same work area or in
different vwork areas. Each PUT instruction
specifies the work area where the completed
record was built. However, only one work
area can be specified in any one PUT
instruction. Whenever this form of the PUT
instruction is used for a logical file, a
register is pot required for indexing.

Whenever an output data record is

transferred from an output area to an I/0
device (by a PUT instruction), the data

78 S/360 BOS Assembler with I/0 Macros

also remains in the output area until it is
either cleared or replaced by other data.
I0CS does not clear the output area.
Therefore, if the user plans to build
another record whose data does not use
every position of the output record area,
he must clear that area before he builds
the record. TIf this is not done, the new
record will contain interspersed characters
from the preceding record. TFor example, in
the case of output to a printer, the forms
design may require printing in selected
positions on one print line and in
different positions on another line. 1In
this case, the output area for the printer
file should be cleared between lines.

Unblocked Records

Records transferred to any output file
except disk or magnetic tape are always
considered unblocked (specified as
unblocked or undefined). Records for disk
or tape recording are treated as unblocked
if this is specified in the DTFSR entry
RECFORM. ’

Whenever records are unblocked (either
fixed or variable length), each PUT
transfers a single record from the output
area {(or input area if updating is
specified) to the file. If a work area is
specified in the PUT instruction, the
record is first moved from the work area to
the output area (or input area) and then to
the file.

Blocked Records

When blocked records are to be written on
disk or tape (as specified in DTFSR
RECFORM), the individually built records
must be formed into a block in the output
area. Then the block of records is
transferred to the output file. The
blocked records may be either fixed or
variable length.

Fixed-length blocked records can be
built directly in the output area or in a
work area. Each PUT instruction for these
records either adds an indexing factor to
the register, or moves the completed record
from the specified work area to the proper
location in the output area. When an
output block of records is complete, PUT
causes the block to be transferred to the
output file and initializes the reqgister if
one is used.

Variable-length- - blocked records can also

- be built in either the output area or a

work area. The length of each
variable-length record must be determined
by the problem program and included in the
output record as it is built. The problen
program can calculate the length of the
output record from the length of the

corresponding input records. That is,
variable-length output records are
generally developed from previously written
variable-length input records, perhaps
modified by current- records. Each
variable-length input record must include
the field that contains the length of the
record (see Fiqures 12 and 13).

When variable-length blccked records are
built in a work area, the PUT instruction
performs approximately the same functions
as it does for fixed-length blocked
records. The PUT routines check the length
of each output record to determine if the
record will fit in the remaining portion of
the output area. TIf the record will fit,
PUT immediately moves the record. If it
will not fit, PUT causes the completed
block to be written and then moves the
record. Thus, this record becomes the
first record in a new block.

If variable-length blocked records are
to be built directly in the output area
however, an additional DTFSR entry, a TRUNC
macro, and additional user programming are
required. The user's program mnust
determine if each record to be built will
fit in the remaining portion of the output
area. This must be known before processing
of the record is started so that, if the
record will not fit, the completed block
can be written and the record can be built
at the beginning of a new block. Thus, the
length of the record must be pre-calculated
and compared with the amount of remaining
space.

The amount of space available in the
output area at any time can be supplied to
the program (in a register) by the IOCS
routines. For this, the user must specify
a general-purpose register in the DTFSR
entry VARBLD. This register is in addition
to the register specified in DTFSR IOREG.
Fach time a PUT instruction is executed,
I0CS loads into this register the number of
bytes remaining in the output area. The
problem program uses this to determine if
the next variable-length record will fit.
If it will not fit, a TRUNC macro
instruction must be issued to transfer the
block of records to the output file and
make the entire output area available for
building the next block. .

Undefined Records

When undefined records are handled, PUT
treats them as unblocked. The programmer
must provide any blocking he wants. He
mast also determine the length of each
record (in bytes) and load it in a register
- for IOCS use, before he issues the PUT
instruction for that record. The register
that will be used for this purpose must be
specified in the DTPSR entry RECSIZE.

Updating

A consecutive file on 2311 disk, a card
input file in a 1442 or 2520, or a card
file in the punch feed of a 2540 equipped
with the punch-feed-read special feature,
can be updated. That is, each disk or card
record can be read, processed, and)
transferred back to the same disk location,
or card, from which it was read. This
function must be specified in the file
definition. For a disk file, the DTSFR
entry UPDATE must be specified. 1In the
case of a card file, the file must be
specified as a combined file (CMBND) in the
DTFSR entry TYPEFLE.

One I/0 area can be specified (DTFSR
entry IOAREA1) for both the input and
output of a disk or card record. If the
IBM 1442 is used, however, separate areas
can be specified for input and output
(DTFSR entries INAREA and OUAREA). Each
disk or card record is transferred to the
specified input area (IOAREA1 or INAREA) by
a GET instruction. After the record is
processed, the next PUT instruction causes
the updated record to be writtem in the
same disk location, or punched in the same
card, from which the record was read. PUT
transfers the record from the main storage
area specified by IOAREA1 (same area for
both input and output) or by OUAREA
(separate input and output areas). If a
work area is specified in the PUT
instruction, PUT first moves the updated
record from the work area to the area
specified by IOAREAY or OUAREA, and then
writes the disk record or punches the card.

A GET instruction must always precede a
PUT instruction for a disk or card record,
and bnly one PUT can be issued for each
record. For a file in a 2540 or 2520 with
the punch-feed-read special feature, a PUT
instruction must be issued for each card;
and between jobs the 2540 punch must be run
out. A PUT instruction may be omitted,

"however, if a particular disk record or a

card record in a 1442 does not require
updating.

The user, while using logical IOCS
(TYPEFLE=CMBND), is provided with the
standard read error recovery procedure when

reading and punching into the same card.

No punch error recovery procedure, however,
is provided.

Punch and Printer.Control

Card selection in a card read-punch and
line spacing or skipping in a printer can
be controlled either by specified
characters in the data records or by the
CNTRL macro instruction. Either method,
but not both, may be used for a particular
logical file.

Macro Instruction Statements 79

When control characters in data records
are to be used, the DTFSR entry CTLCHR must
be specified, and every record must contain
a control character in the main-storage
output area. This must be the first
character of each fixed-length or undefined
record, or the first character following
the record-length field in a
variable-length record. The DTFSR BLKSIZE
specification for the output area must
include the byte for the control character
and, if undefined records are specified,
the DTFSR RECSIZE specification must also
include this byte.

The particular character included in the
record is determined by the function to be
performed. For example, if double spacing
is to occur after a particular line is
printed, the code for double spacing must
be the control character in the output line
to be printed. The contrcl-character codes
are the same as the command codes
(including the modifier bits) used for a
punch or delayed-print command.

When a PUT instruction is executed, the
control character in the data record
becomes the command code (byte) of the
Channel Command Word (CCW) that IOCS
establishes. The first character after the
control character in the output data
becomes the first character punched or
printed.

If the CNTRL macro instruction is used
for non-data orders to the punch or printer
(see CNTRL Macro), the DTFSR entry CONTROL
is specified and DTFSR CTLCHR must be
omitted. 1In this case, any control
characters included in data records are
ignored when the PUT instruction is
executed. They are treated as data.

op | Operand
|

[o =t e o
R

T
RELSE| filename
L

The RELSE macro instruction is used in
conjunction with blocked input records read
from disk or tape. It allows the
programmer to skip the remaining records in
a block and continue processing with the
first record of the next block when the
next GET instruction is issued. This
function can apply to a 3job in which
records on disk or tape are categorized.
Each category (perhaps a major grouping) is
planned to start as the first record in a
block. For selective reports, specified
categories can be located readily by
checking only the first record in each
block.

80 S/360 BOS Assembler with I/O Macros

The symbolic name of the file, specified
in the DTFSR header entry, is the only
parameter required for this instruction.

The release instruction discontinues the
deblocking of the present block of records,
wvhich may be either fixed or variable
length. RELSE causes the next GET
instruction to transfer a new block to the
input area, or switch I/0 areas, and make
the first record of the next block
available for processing. GET initializes
the register or moves the first record to a
work area.

TRUNC - Macro-

Operand

O
=]

TRUNC| filename

L

I S

L]
(
[l
4
{
L

The TRUNC (truncate) macro instruction is
used in conjunction with blocked output
records that will be written on disk or
tape. It allows the programmer to write a
short block of records. (Blocks do not
include padding.) Thus the TRUNC macro can
be used for a function similar to the RELSE
instruction for input records, but in
reverse. That is, when the end of a
category of records is reached, that block
can be written and the new category can be
started at the beginning of a new block.

The symbolic name of the file, specified
in the DTFSR header entry, is the only
parameter required in this instruction. If
this macro is issued for fixed-length
blocked disk records, the DTFSR entry
TRUNCS must be included in the file
definition.

When TRUNC is issued, the short block is
written (on disk or tape) and the output
area is made available to build the next
block. The last record included in the
short block is the record that was built
before the last PUT instruction preceding
TRUNC .was executed. Therefore if records

.are built in a work area and the problem

program determines that a record belongs in
a new block, the TRUNC instruction should
be issued first, followed. by the PUT
instruction for this particular record. If
records are built in the output area, how-
ever, the programmer must determine if a
record belongs in the block before he
builds the record.

Whenever variable-length blocked records
are built directly in the output area, this
TRUNC instruction must be used to write a
completed block of records. When the PUT
instruction is issued after each
variable-length record is built, the output
routines supply the programmer with the

space (number of bytes) remaining in the
output area. From this the programmer
determines if his next variable-length
record will fit in the block. If it will
not fit, he issues the TRUNC instruction to
write out the block and make the entire
output area available to build the record.
The amount of remaining space is supplied
in the register specified in the DTFSR
entry VARBLD (see PUT Macrc and DTFSR
VARBLD) .

Name

op Operand

READ filename,OR, name

()

- — —t —

r——T

The READ macro is used to transfer records
from the IBM 1287 Optical Reader operating
in document mode. All operands are
required. The first parameter specifies
the symbolic name of the file as given in
the DTFSR header entry. The second

_____ indicates an optical
character reader. The third parameter
‘specifies the address of the user-provided
channel command word list. The first
channel command word in the list cannot be
a transfer-in-channel CCW. To designate
the address of the channel command word
list, a register entry is used in this
parameter.

Note: Document ejection and/or stacker
- selection and document increment functions
can also be accomplished by including the
appropriate CCW(s) within the channel
command word list addressed by the READ
macro rather than by using the CNTRL macro.
This technique results in increased
document throughput.

READ generates an EXCP and a CCB macro,
which cause a branch to the user-provided
channel command chain. ‘When documents are
being prccessed, only one input area may be
used. The contents of the input, area may
later be moved to a user—-defined work area.
Overlap can thus be obtained by processing
the contents of the work area as the
subsequent document is being read into the
input area. Dividing the fields in a
document into blocks, and processing one
block while reading the rest, is another
means of achieving overlap.

At least one reference mark is required
for all documents. New coordinates for the
reference mark must be specified whenever a
rotation in printing occurs or when a
document is incremented. For this reason,
a load format CCW that specifies the
coordinates of the reference mark
associated with a particular group of

fields must be the first CCW in all user
channel command word chainms.

HAITF_ Macro

T
| Operand
L

filename

e e e e o

1
WAITF| .
/]

The WAITF macro instruction is used only
with the 1287 Optical Reader in document
mode for consecutive processing. It
ensures that the transfer of a record has
been completed. One parameter, the
symnbolic name of the file, is reguired.

With this instruction, the program wvwaits
until data transfer is complete.
Therefore, the instruction must come after
a READ and before the next READ for the
same file. It must be issued before the
problem proqram attempts to process an
input record for that file.

RDLNE - Macro

I [L] i]
|Name {Operation|Operand
[[l (]

L—L—J

1 1 {
|{ name]| RDLNE |filename
t L 1

The RDLNE macro selectively performs
on-line correction when journal tapes are
processed on the IBM 1285 or 1287 Optical
Reader. This macro causes the reader to
read a line in the on-line correction mode
while -processing in the off-line correction
mode. If the reader cannot read a
character, IOCS retries the line that
contains the unread character. 1If this
retry is unsuccessful, the user is informed
of the condition in his error correction
routine (specified in DTFSR COREXIT). He
may then issue the RDLNE macro causing
another attempt to read the line. If the
character in the line cannot be read during
this attempt, the character is displayed on
the 1285 or 1287 display scope and the
operator, if possible, keys in the correct
character. If the operator cannot readily
correct the error by keying in the correct
character, he may enter the reject
character in the line in error. This
condition is posted in Filename+17 and is
available for the user to examine.
Wrong-length records or incomplete reads
are also posted in Filename+17. See the
description of COREXIT for hexadecimal
indications. RDLNE should be used only in
COREXIT. Otherwise, the line following the
one in error is read in the on-line
correction mode.

The macro requires only one parameter
(the symbolic name of the 1285 or 1287 file

Macro Instruction Statements 81

from which the record is to be retrieved).
This name is the same as that specified in
the DTFSR header entry for this file.

Note: When the RDLNE macro is used, the
user must include the parameter OFFLINE=YES
in his DTFSR entries.

DSPLY_ Macro

§ L] T
|{Name |Operation|Operand
i 1 'l

b e cdy e

[1 L
|{ name]} DSPLY |Filename,r,T
L 1 1

The DSPLY macro is used to display a
document field on the display scope of the
1287. The field is displayed for the
purpose of keying in a complete field cn
the keyboard when a 1287 read error makes
this type of correction necessary. If a
1287 read error occurs and the reject
character is entered in the field in error
(either by the operator if processing in
the on-line correction mode or by the
device if processing in the off-line
correction mode), the user may use the
DSPLY macro to display the field in error.
WHhen the 1287 display tube displays the
full field, the operator, if possible, keys
in the correct field from the keyboard.
The field read from the keyboard is always
read into the address specified in the CCW
(normally within IOAREA1) that was
originally intended for the field. The
macro first blanks this field. At
completion of the operation, the data is
left-justified in this field.

This instruction always requires three
parameters. The first parameter specifies
the symbolic name of the 1287 file from
which the record is to be retrieved. This
name is the same as that specified in the
DTFSR header entry for this file. The
second parameter specifies a general
purpose register (2-11) into which the
problem program has placed the address of
the Load Format CCW that provides the
document coordinates for the field to be
displayed. The address of this Load Format
CCW is obtained by subtracting 8 from the
address found in a half-word core location
at Filename+10 when the macro is used in
the COREXIT routine. Otherwise the user
nust determine the Load Format CCW address.

The third parameter specifies a general
purpose register (2-11) into which the
problem program has placed the address of
the Load Format CCW that provides the
coordinates of the reference mark
associated with the field to be displayed.
When using the DSPLY Macro, the user must
ensure that the Load Format CCW that
provides the document coordinates for the
field to be displayed (second parameter),

82 S/360 BOS Assembler with I/O Macros

is command chained to the CCW used to read
that field.

Note: The contents of Filename+17 are
meaningful only for X'40¢' (1287 scanner
cannot locate the reference mark) and X*04!
(vrong length record), after issuing the
DSPLY macro. Therefore the user must
determine whether the operator was able to
recognize the unreadable line of data.

RESCN_ Macro

1 Ll Ll
| Name |Operation|Operand
L 1 [}

L Ll L]
|[name]} RESCN |filename,r,r,n,F
L 1 . i

The RESCN macro selectively rereads a field
on a document when a defective character
makes this type of operation necessary.

The field read is always read '
right-justified into the address specified
in the CCW (normally within IOAREA1) that
was originally intended in the field.

The parameter filename specifies the
symbolic name of the 1287 file from which
the record is to be retrieved. This name
is the same as that specified in the DTFSR
header entry for this file. The second
parameter specifies a general purpose
register (2-11) into which the problem
program has placed the address of the Load
Format CCW that provides the document
coordinates for the field to be read. The
address of this Toad Format CCW is obtained
by subtracting 8 from the address found in
a half-word core location at Filename+10
when the macro is used in the COREXIT
routine. Otherwise the user must determine
the Load Format CCW address. The third
parameter specifies a general purpose
register (2-11) into which the problen
program has placed the address of the Load
Format CCW that provides the coordinates of
the reference mark associated with the
field to be read. The previous three
parameters are always required, and result
in one reread of the unreadable field.

The fourth parameter is required if the
user wishes to attempt more than one reread
of the unreadable field. This parameter
(n) is the number of additional retries
(nine maximum) to be attempted. The fifth
parameter (F) indicates one more reread.
It forces on-line correction of any
unreadable characters by individually
projecting the unreadable character(s) on
the 1287 display scope. The operator must
then key in a correction (or reject)
character(s). The user must determine
whether the read operation generated by
RESCN has resulted in a more satisfactory
read. If the reread of the field results
in a wrong length record, incomplete read,

or an unreadable character error condition,
it is posted in Filename+17. (See
description of COREXIT for hexadecimal
values.)

When using the RESCN macro, the user
must ensure that the Load Format CCW, which
provides the document coordinates for the
field to be read (second parameter), is
command chained to the CCW used to read
that field.

CNTRL Macro

T 1
Name |Op |Operand
L 1

= e G-
L— L

1 LI
| CNTRL | filename,code,n, n
1 i

The CNTRIL (control) macro instruction
provides orders for these input/output
units: magnetic tape units, card
read-punches, printers, optical readers,
and disk drives. Orders apply to physical
non-data operations of a unit (with the
exception of the 1285 and 1287 Optical
Readers) and are peculiar to the unit
involved. They specify such functions as
rewinding tape, card stacker selection,
line spacing on a printer, etc. For
optical readers they specify marking an
error line or keyboard correcting a line
for journal tapes, and stacker selecting,
ejecting, and incrementing documents. When
a CNTRL macro instruction is executed,
except for certain mnemonics used for
optical readers, operation does not wait
for completion of the order before
returning control to the user.

CNTRL is used in conjunction with a
logical file in a unit, and it requires
either two, three, or four parameters. The
first parameter must be the name of the
file specified in the DTFSR header entry.
The second parameter - is the mnemonic code
for the order to be performed. This must
be one of a set of predetermined codes
(Figure 14). The third parameter (m) is
required whenever the UCS (Universal
Character Set) feature is. used, or a number
is needed for stacker selection, immediate
printer carriage control or signal count

for STR devices. The fourth parameter (m)
applies only to printer control and is
required for delayed spacing or skipping.
A number specified as either the third or
fourth parameter must be a self-defining
valnpe.

Whenever CNTRL is issued in the problenm
program, the DTFSR entry CONTROL must be
included in the file definition.

The CNTRL macro instruction must not: be
used for printer or punch files if the data
records contain control characters and the
DTFSR entry CTLCHR is included in the file
definition.

Magnetic Tape Units

The CNTRL macro instruction is used to
control magnetic-tape functions that are
not concerned with reading or writing data
on the tape. These functions are grouped
in the following cateqgories:

Rewinding tape to the load point
REW - Rewind
RUN - Rewind and unload

Moving tape to a specified position

BSR - Backspace to interrecord gap

BSF - Backspace to tapemark

FSR - Forward space to interrecord gap
FSF - Forward space to tapemark

Writing a tapemark
WTM - Write tapemark

Erasing a portion of the tape
ERG - Erase gap (writes blank tape)

The tape rewind (REW and RUN) and tape
movement (BSR,BSF,FSR,and FSF) functions
can be used before a tape file is opened.
This allows the tape to be positioned at a
désired location for opening a file under
conditions such as:

. The file is located in the middle of a
multifile reel.

. The DTFSR entry REWIND specifies NORWD,

but for some conditions rewinding is
required for the file.

" Macro Instruction Statements 83

UNIT @SSQAON'C n* | mer ORDER
2400 Series REW - - Rewind Tape
Magnetic Tape Units RUN - - Rewind and Unload Tape
ERG - - Erase Gap (Writes Blank Tape)
WTM - - Write Tape Mark
BSR - - Backspace to Interrecord Gap
BSF - - Backspace to Tape Mark
FSR - - Forward Space to Interrecord Gap
FSF - - Forward Space to Tape Mark
1403, 1404, 1443, 1445 Printers SP a d Carriage Space n Lines
SK b e Skip to Channel n
1403 Printer with UCS Feature UCs YES - Ignore Data Checks
ucs NO - Accept Data Checks
2540 Card Read - Punch PS c - Select Stacker n
1442, 2520 Card Read =Punch SS c - Select Stacker n
2311 Disk Storage Drive SEEK - - Seek
1285 Optical Reader READKB - - Read 1285 Keyboard
MARK - - | Mark Error Line
1287 Optical Reader READKB - - Read 1287 Keyboard
MARK - - Mark Error Line in Journal Tape Mode
EJD - - Eject Document
SsD c - Select Stacker n
ESD c - Eject and Select Document
INC - - Increment Document at Read Station
STR Devices T EOF f - End of Transmission
INQ f - Inquiry
PREP f - Prepare
TEL f - Alternate Mode
BCS Support - ' PRP - - Prepare
EOT - - End of Transmission
WABT - - Wait before Transmitting
DSC - - Disconnect
ENQ - - Inquiry

* a = Number of lines o be spaced immediately
b = Number of the carriage tape channel to skip to immediately
¢ = Number of the stacker to which a card or document is to be selected
** d = Number of lines to be spaced after printing
e = Number of carriage tape channel to skip to after printing
* f = Count to be used if other than:

EOF - 2

INQ - 10

PREP - Not applicable
TEL - 2

T See Input/Output Control Macros

Figure 14. CNTRL Macro Instruction Codes

84 S/360 BOS Assembler with I/0 Macros

The tape movement functions (BSR, BSF,
FSR, and FSF) apply to input files only,
and the following factors should be
considered:

1. The FSR (or BSR) function permits the
user to skip over a physical tape
record (from one interrecord gap to the
next). The record is passed without
being read into main storage . The FSF
(or BSF) function permits the user to
skip to the end of the logical file
(identified by a tapemark).

2. The functions of FSR, FSF, BSR, and BSF
always start at an interrecord gap.

3. If blocked input records are being
processed and if the user does not want
to process the remaining logical
records in the block, as well as one or
more succeeding blocks (physical
records), he must issue a RELSE macro
before the CNTRL macro. Then the next
GET will make the first record of the
new block available for processing. If
the CNTRL macro, with FSR for examrle,
were issued without a preceding RELSE,
the tape would be advanced but the next
GET would make the next record in the
o0ld block available for processing.

4, For any I/0 area combination except one
I/0 area and no work area, IOCS is
always reading one physical tape record
ahead of the one that is being
processed. Thus, the next physical
record (block) after the omne being
processed will be in main storage ready
for processing. Therefore if a CNTRL
FSR function is performed, the second

physical tape record beyond the present-

one will be passed without being read
into main storage.

5. If an FSR function (or BSR in a read
backwards file) passes a tape mark,
TI0CS branches to the end-of-volume
routine.

6. If any of these four functions is used
during the processing of a file, the
block count accumulated for checking
standard labels, or accumulated for the
checkpoint macro, could be wrong. The
operator can bypass an erroneous block
count when checking standard labels.
However, since it is impossible to
reposition the tape correctly ‘if -the
block count is wrong in a checkpoint
record, these commands should not be
issued when using the checkpoint macro.

Printers

The CNTRL macro instruction is used for any
printer forms control other than the
standard single spacing.

The CNTRL macro codes for printer
operations cause spacing (SP) over a
specified number of lines, skipping (SK) to
a specified location on the form
(represented by a carriage-tape channel),
or ignoring/accepting data checks for
unprintable characters when the Universal
Character Set (UCS) special feature is
installed in a 1403. The third parameter
is required for immediate spacing or
skipping (before printing), or to ignore
(YES) or accept (NO) data checks. The
fourth parameter is required for delayed
spacing or skipping (after printing).

The SP and SK operations can be used in
any sequence. However, two or more
consecutive immediate skips (SK) to the
same carriaqge channel on the same printer
have the same effect as the first skip
only. That is, any skip order after the
first is ignored. Two or more consecutive
delayed spaces (SP) and/or skips (SK) to
the same printer result in the last space
or skip only. Any other combination of
consecutive controls (SP and SK), such as
immediate space followed by a delayed skip
or immediate space followed by another
immediate space, causes both specified
operations to occur.

The CNTRL UCS macro instruction
generates a command code to ignore, or
accept, data checks for unprintable
characters. If the parameter YES is
specified, data checks resulting from
unprintable characters are ignored and
processing continues. If the parameter NO
is specified, an unprintable character data
check causes processing to stop and a
message to be issued to the operator. The
generated command code remains fixed until
another CNTRI UCS instruction is issued, or
until the command code is changed by an
ASSGN control card or the UCS load buffer
program. If CNTRL UCS is issued for a
printer without the Universal Character Set
special feature, a command reject occurs
and the system enters the wait state.

IBM 2540 cCard -Read—-Punch

Cards fed into the IBM 2540 read feed are
normally selected by IOCS to stack in the
R1 pocket, and those fed in the punch feed
are selected to stack in the P11 pocket.

The CNTRL macro code PS is used to select a
card into a different stacker, specified
bythe third parameter(n) in this
instruction. Whenever CNTRL is used for
any cards in a file, all cards must be
selected by this macro. For an input file,

Macro Instruction Statements 85

each GET instruction must be followed by a
CNTRL instruction to properly select the
card just read. For an output file, each
PUT must be preceded by a CNTRL instruction
to properly select the card that will
contain the record being built. The
possible selections are:

Feed Pocket Selection: Number:
Read RY 1
Read R2 2
Read RP3 3
Punch P1 1
.Punch P2 2
Punch RP3 3

For -input files, the CNTRL macro can be
used only when one I/0 area, or one I/0
area and one work area, is specified for
the file. For output.files, the CNTRL
macro may be used in conjunction with any
of the permissible I/0 area and work area
combinations (see Processing Records
Consecutively: _Storage Areas) . ’

IBM- 1442 or 2520 Card- Read-Punch

Cards fed in the IBM 1442 or 2520 are
normally stacked in pocket 1. However,
they may te selected to stack in pocket 2
by using the CNTRL macro code SS.

In a card-read operation (input or
combined file), a card can be selected to
pocket 2 by issuing the CNTRL instruction
after the GET instruction for that card,
and before the GET instruction for the
following card is issued. When the
following card is read, the first card is
stacked in pocket 2. Whenever CNTRL is
used for any card in an input file with a
work area, all- -cards must be selected by
this macro.

Whenever CONTROL = YES is specified in
DTFSR (Output File), the first PUT for that
file must be preceded by a CNTRL macro.

For input files, the CNTRL macro can be
used only when one I/0 area, or one I/0
‘area and one work area, is specified for
the file: For output files, the CNTRL
macro may be used in conjunction with any
of the permissible I/0 area and work area
combinations (see Processing Records
Consecutively: -Storage Areas). For
combined files (DTFSR TYPEFLE=CMBND), the.
CNTRL macro can be used only when one I/O
area (no work area) is specified for the
file.

IBM 2311 Disk Storage Drive

The CNTRL macro for seeking on the 2311
applies only to files processed
consecutively or by the direct access
method (LCAM). It does not apply to files

86 S/360 BOS Assembler with I/0O Macros

. GET,

processed by the indexed sequential systen
(ISFMS). This macro permits access
movement to begin for the next READ, WRITE,
or PUT instruction for a file. While
the arm is moving, the programmer may
process data and/or request I/0 operations
on other devices.

To use CNTRL for seeking in the direct
access method, the user must first specify
a track address to which access movement
should begin. This address must be stored
in the track-reference field specified by
the DTFDA entry SEEKARD. (The user must
supply this address before issuing the
CNTRL macro instruction.) For consecutive
files, I0CS seeks the track that contains
the next block {or physical record) for the
file. The user does not supply a track
address.

If the CNTRL macro is not used, IOCS
performs the seek operation when a READ,
WRITE, GET, or ‘PUT instruction is executed.

IBM. 1285 or 1287 .Optical Reader-

The CNTRL macro instruction with the READKB
mnemonic allows the user to read a complete
line from the 1285 or 1287 keyboard when
processing journal tapes. This permits the
user to key in a complete line on the
keyboard when a read error makes this type
of correction necessary. When IOCS exits
to the user's COREXIT routine, the user may
issue the CNTRL macro instruction to read
the keyboard. The display tube will
display the full line and the operator
will, if possible, key in the correct line
from the keyboard. The line read from the
keyboard will be available in the area that
previously contained the erroneous record,
i.e., the area that the GET macro
instruction was serving when the error
occurred. The READKB mnemonic causes the
problem program to wait for completion of
the operation before control is regained.

If an error (data transfer error) occurs
wvhile processing in the journal tape mode,
the CNTRL macro instruction used with the
MARK code can provide a program-controlled
means of marking lines resulting in actual
or suspected errors. To ensure that the
proper line is marked, the user must issue
the CNTRL macro in his COREXIT routine. If
the CNTRL macro is issued at any other
time, the line following the line in error
will be marked.

When processing in the document mode,
the CNTRL macro may be used with the EJD
mnemonic to eject each document. The EJD
mnemonic ejects the current document and
feeds the next document. The CNTRL macro
with the SSD mnemonic may be used to
perform the stacker selection function.

It is possible to combine the ejection
and selection functions by using the ESD
mnemonic. In such cases, the combined
mnemonic must not be immediately preceded
by an eject command or immediately followed
by a stacker select command.

A selection number of {, 2, or 3 will
direct the document to stacker A, B, or R
(reject) , respectively. It is also
possible to select stacker A and B in an
alternate stacking mode. In this mode,
stacker switching is automatically
initiated when one stacker becomes full.
The selection number for alternate stacking
is 4, Stacker A fills first when selection
number 4 is used in the first stacker
selection macro. If selection number 4 is
used subsequently to other selection
numbers, the selection number immediately
preceding number 4 determines the stacker.
Ejection and selection of documents must-
occur altermnately.

For documents with a scannable length
greater than 6 inches, the INC mnemonic
effects document incrementation, which is
forward document movement of 3 inches. It
may be used only once for each document.

Notes:

Document ejection and/or stacker selection
and document increment functions can also
be accomplished by including the
appropriate CCW(s) within the channel
command word list addressed by the READ
macro rather than by using the CNTRL macro.
This technique results in increased
document throughput. ’

The stacker select command must follow the
eject command within 270 milliseconds if
the document was incremented or within 295
milliseconds if the document was not
incremented. If timing requirements are
not met, a late stacker selection condition
occurs (see COREXIT routine).

STR_ Devices
The CNTRL macro for STR devices is

described under Processing with STR
Devices:s CNTRL_Macro.

BSC_Support

The CNTRL macro for BSC support is
‘described under Binary . Synchronous
Communication: CNTRL Macro.

CHNG_Macro

] B 1 Al
{Name | Op | Operand I
t + + 1
| | CHNG | S¥Snnn |
L | & 1]

A system may have one or more 2-channel,
simultaneous read-while-write tape control
units, which must be connected to selector
channels 1 and 2 (special feature). When
it does, the programmer should assign all
tape input files for a job to one channel,
and all tape output files to the other
channel, This utilizes the maximum
reading-while-writing capability of such a
system. During the job, however, the
program may require that ‘a particular tape
unit be switched from one channel to the
other. TFor example, an output file of
records may be completed during one phase
of the job, and then be needed as input to
a subsequent phase. Conversely, after the
records from an input file have been
processed, that same file may become an
output file to write changed, or different
records.

The CHNG (change) macro instruction can
be used to switch a tape unit from one
seélector channel to the other (from input
to output status, or vice versa). - The
symbolic unit, specified in the DTFSR entry
DEVADDR and named in the Job Control ASSGN
card, is the only parameter required in
this instruction. The CHNG macro merely
switches channel assignments; it does not

‘change the symbolic reference to the unit.

This macro may be used in conjunction with
either logical or physical I0CS
instructions.

This macro instruction must neot-be
issued while the file(s) associated with
the symbolic unit is 9pen.

PRTOV_Macro

op Operand

PRTOV filename,n,routine-nane

1
|
L
1
|
1

I S

b — =

The PRTOV (printer overflow) macro
instruction is used in conjunction with a
logical file in a printer to specify the
operation to be performed on a carriaqge
overflow condition. Whenever this macro
instruction is to be issued in a problem
program, the DTFSR entry PRINTOV must be
included in the file definition.

PRTOV requires two or three parameters.
The first parameter must be the name of the
logical file specified in the DTFSR header
entry. The second parameter must specify
the number of the carriage tape channel (9
or 12) used to indicate the overflow. This
is entered as immediate data 9 or 12. The
channel 9 or 12 overflow signal is turned
on by any PUT macro instruction that causes
printing on the overflow line, or by a
CNTRL SP macro instruction that causes
spacing over the overflow line of the form.

Macro Instruction Statements 87

When the first two parameters are specified
and an overflow condition occurs, IOCS
restores the printer carriage to the first
printing line on the form (Channel 1), and
printing of detail lines continues.

A third parameter is entered in this
instruction if the programmer prefers to
branch to his own routine on an overflow
condition, rather than skipping directly to
channel 1 and continuing with the detail
printing. It specifies the symbolic name
of the user's routine. 1In this case, IOCS
does not restore the carriage to channel 1.

~ In his routine, the user may issue any
IOCS macro instructions (except PRTOV) to
perform whatever functions he desires. For
example, this allows him to print total
lines, skip to channel 1, and print
overflow page headings. At the end of his
routine, the user must return to TIOCS by
branching to the address in register 14.
I0CS supplies this address upon entry to
the user's routine. Therefore, if TOCS
macros are used in the routine, the address
must be saved.

If the user requires register 15 in his
routine, he must also save this register
and restore it prior to returnlnq to his
main progran.

The PETOV macro instruction may be
issued anywhere in the problem program.
The macro causes a skip to channel {, or a
branch to the user's routine, only if an
overflow condition (a punch in carriage
channel 9 or 12) was previously detected as
a line was printed. (An overflow punch is
not recoqnized during a carriage skip
operation.) An overflow condition that is
detected as any line is printed (PUT) is
recognized by the PRTOV macro after the
following line is printed. For example in
the following program steps, if a channel
12 punch was read as line X was printed,
PRTOV causes a Sklp to channel 1 after 1line
X+1 is printed.

Thus, one extra line is always printed
after the overflow punch (9 or 12) is
detected and before the overflow functiomns
can occur. Therefore, in-planning a
printer operation, the overflow punch must
coincide with next-to—-the-last line to be
printed on the form.

88 5/360 BOS Assembler with I/O Macros

PUT FILEA -for Line X
. Process
PRTOV FILEA,12

e Process

PUT FILEA -for Line X+1

. Process

PRTOV FILEA,12 Skips to channel 1 if
overflow punch wvas
detected as Line X was
printed

. Process

PUT FILERA -for Line X+2

I0CS causes Line X+2 to be printed on
the first line of the following page
whenever PRTOV specifies only the first two
parameters. If a user's routine is |
specified, however, the functions performed
in that routine affect the positioning of
the form and thus determine where IOCS will
print Line X+2 when the following PUT is
executed.

The channel 9 or 12 overflow signal is
turned off after the PRTOV macro has been
executed, or when a CNTRL macro instruction
is issued to cause skipping to the first
printing line on the form (channel 1).

If a channel 9 punch is used in the
carriage tape, the PRTOV macro must request
posting of device end in the Command
Control Block (CCB) or a physical IOCS
error message Will result.

PROCESSING DISK RECORDS BY THE DIRECT
ACCESS METHOD

Disk records can be processed in a random
order by the Direct Access Method (DaAM).

In this method the user specifies the
address of the record to IOCS, and issues a
READ or WRITE macro instruction to transfer
the specified record. Variations in the
parameters of the READ or WRITE
instructions permit records to be read,
written, updated, replaced, or added to a
file. Whenever this method of processing
records is used, the logical file and
main-storage area(s) allotted to the file

- must be defined by the declarative macro
" DTFDA (Define the File for Direct Access).

The detail parameter entries for this
definition are .described under File-
Definition Macros.

Record Types

Records on disk that will be processed by
DAM can have either of two formats: with a
key area, or without.

With key area

q] r
| Count | | Key | | Data |

L 1 L J L (]

Without key area

L 4)
| Count | |

L] L]

Whenever records in a file have keys
that are to be processed:

. Every record must have a key,
. All keys must be the same length, and

. The length of the keys must be
specified in the DTFDA entry KEYLEN
(maximum length is 255 bytes).

Whenever the DTFDA entry KEYLEN is not
specified for a file, IOCS ignores keys and
the disk records may, or may not, contain
key areas.

I0CS considers all records as unblocked
(one logical record per one physical
record). If the user wants blocked
records, he must provide his own blocking
and deblocking. Records are also
considered to be either fixed length or
undefined. Undefined
variable-length records.) The type of
records in the file must be specified in
the DTFDA entry RECFORM. Whenever records
specified as undefined are to be loaded,
added, or written in a file, the user must
determine the length of each data record
and load it in a register (specified by the
DTFDA entry RECSIZE) before he issues the
WRITE instruction for that record. IOCS
adds the length of the key when required.

Storage Areas

Records in one logical file are transferred
to or from one I/0 area in main storage.
This area must be large enough to contain
the largest record in the file. 1If
disk-record key areas are to be transferred

by a READ/WRITE instruction, the I/0O area
nust also provide space for the the length
of the key (specified in DTFDA KEYLEN).
Furthermore, if a file is to be created or
if records are to be added to a file, the
main-storage I/0 area must include an
eight-byte count area. The I/O area
requirements are illustrated schematically
in Fiqure 15 and described in detail in the
DTFDA entry IOAREA1.

Reference Methods

With the direct access method of
processing, each record that is to be read
or written is specified by providing IOCS
with two references:

. Track reference. This gives the track
on which the desired record is located.

. Record reference. This may be either .
the record key (if the records contain
key areas) or the record identifier
(ID) .

I0CS seeks the specified track, searches it
for the individual record, and causes the
record to be read or written, as indicated
by the macro instruction. TIf a specified
record is not found, IOCS sets a
no-record-found indication in the user's
error/status field, which is specified by
the DTFDA entry ERRBYTE. This indication
can be tested by the problem program, and
additional processing can be programmed to
suit the user's requirements.

Multiple tracks can be searched for a
record specified by key, if the DTFDA entry
SRCHM is included in the file definition.
In this case, if the record is not found
after an entire cylinder is searched, the
end-of-cylinder bit (instead of the
no-record-found bit) is set on in the
error/status field.

When the J/0 operation is started,
control is returned immediately to the
problem program. Therefore when the
program is ready to process the input
record, or build the succeeding output
record for the same file, a test must be
made to ensure that the previous transfer
of data is complete. This is done by
issuing a WAITF macro instruction in the
problem program.

Macro Instruction Statements 89

CREATE A FILE OR ADD RECORDS TO A FILE: RECORDS WITH KEY AREAS

Count Key ‘Data
BLKSIZE=n -
Length———l 8 | KEYLEN=n Largest Record]
(Bytes)) | I
IOAREA1

CREATE A FILE OR ADD RECORDS TO A FILE: RECORDS WITHOUT KEY AREAS

. Count ’ Data
’ |
e BLKSIZE=n >
Length ——» 8 | Largest Record |
(Bytes) i} | '
IOAREAI

READ OR WRITE (UPDATE) BY KEY, OR BY ID WITHOUT DTFDA KEYLEN

‘Data
BLKSIZE=n
Length —— Largest Record
(Bytes) | f : I
IOAREA1

READ OR WRITE (UPDATE) BY ID WITH DTFDA KEYLEN

‘Key Data
- : BLKSIZE=n >
Length——] KEYLEN=n ‘Largest Record |
(Bytes) | f ' !
‘|OAREAT:

READ OR WRITE (UPDATE) BY KEY AND BY ID WITH DTFDA KEYLEN*

.(Unused)* i Data
jor
Key Data
| e : BLKSIZE=n
Length ——{ ' KEYLEN=n Largest Record
(Bytes) | f)
IOAREA1

* DTFDA specifies READKEY (or WRITEKY), READID (or WRITEID),
and KEYLEN for a file. The first n bytes are unused when
a READ (or WRITE) by key is executed.

Figure 15. Schematic of I/0 Area in Main Storage, for DAM

90 S/360 BOS Assembler with I/O Macros

(0-254) on which the
All packs for a file

consecutively starting
That is, the

the second
etc.
This number relates to
a numbered symbolic
(SYS000-SYS254) .
Two or more symbolic
units for a file must

but the
numbering may start

which relates
to the IBM 2321 Data
These two
bytes are always zero
for 2311 disk-storage

"Pack Cell Cylinder Head Record
Nymber (8B) (cC) (HH) R®)
(M) ' I
Bytes—| 0 12 3 | 4 5 1 6 L_!
]]
May I | I | | | I }
Contain—-| 0-254 | 0 : o 1+ 0 ! 0202 O I 0-9 § 0-255 i
A R A
! ! : I I i
Address Required
Specified by for Record -
SEEKADR=Name Reference
by ID
Figure 16. Track Reference Field
After a READ or WRITE instruction for a Con-
specified record has been executed, IOCS Byte Ident. tents Information-
can make the ID of the next record
available to the problem program.. When 0 M 0-254 Number of the pack
record reference is by key and multiple
tracks are searched, the ID of the record is located.
specified record (rather than the next
record) is supplied. The function of must be numbered
supplying the ID is useful for a random
updating operation or for the processing of with 0.
successive disk records. If the user is first pack must be
processing consecutively on the basis of number O,
the next ID and does not have an pack number 1,
end-of-file record, he can check the ID
supplied by IOCS against his file limits to
determine when he has reached the end of unit
his logical file. To request that IOCS
supply the ID, the user must set up a
5-byte field (in which IOCS can store the be numbered
ID) and specify the symbolic address of consecutively,
this field in the DTFDA entry IDLOC.
with any SYSnnn
number.
Track Reference: To provide IOCS with the
track reference, the user sets up an 8-byte
track-reference field in main storage , 1-2 B,B 0,0 Reserved for cell
assigns a symbolic name, and specifies the number,
symbolic name in the DTFDA entry SEEKADR.
Before issuing any read or write Cell Drive.
instruction for a record, the user must
store the proper track infcrmation
(MBBCCHH) in the first seven bytes of this references.
field. The field (Figure 16) contains the
following seven bytes for track reference. 3-4 ¢,C 0,0-202

The eighth byte (R), listed here and shown
in the fiqgure, is used when reference to
records is by record number (see Record
Reference: Tdentifier). All numbers must
be supplied in binary notation.

Number of the cylinder
(0-202) in which the
record is located.

The first byte is
always zero, and the
second byte specifies
one of the 203
cylinders in a disk
pack. These two bytes
with the next two

Macro Instruction Statements 91

(HH) provide the track
identification.

Number of the
read/vwrite head (0-9)
that applies to the
record. The first
byte is always zero,
and the second byte
specifies one of the
ten disk surfaces in a
disk pack.

5-6 H,H 0,0-9

0-255 Sequential number of
the record on the

track.

When the READ or WRITE is executed, IOCS
refers to this field to select the specific
track on the appropriate disk pack.

Record.Reference: The Direct Access Method
allows records to be specified by record
key or by record identifier.

Key: If records contain key areas, the
records on a particular track can be
randomly searched by their key numbers.
This allows the user to refer to
records by the logical control
information associated with the
records, such as an employee number, a
part number, a customer number, etc.

For this type of reference the
programmer must specify, in the DTFDA
entry KEYARG, the symbolic name of a
main-storage key field. He then stores
each desired key in this field.

Identifier (ID): Records on a particular
track can be randomly searched by their
position on the track, rather than by
control information. This is
accomplished by using the record
identifier (ID). The record
identifier, which is part of the count
area of any 2311 disk record, consists
of five bytes (CCHHR). The first four
bytes (cylinder and head) refer to the
location of the track, and the fifth
byte (record) uniquely identifies the
particular record on the track. When
records are specified by ID, they must
be numbered ‘in succession, and without
missing numbers, on each track. The
first data record on a track must be
record number 1, the second number 2,
etc.

Whenever records are to be
identified by the record ID method, the
eighth byte (R) of the track-reference

92 S/360 BOS Assembler with T/0 Macros

field (Figure 16) must contain the
number of the desired record. When a
READ or WRITE instruction that searches
by ID is executed, IOCS refers to the
track-reference field to determine
which record is requested by the
program. The number in this field is
compared with the corresponding fields
in the count areas of the disk records.
The R byte specifies the particular
record on the track. :

Creatinq a File or-Adding Records to a-File

In addition to reading, writing, and
updating records randomly, the direct
access method permits the user to create a
file or add records to a file, When this
is done, all three areas of a disk record
are written: the count area, the key area
(Lf present), and the data area. The new
record may be written after the last record
written on a specific track. This may be
done by using the WRITE instruction with
the parameter AFTER. The remainder of the
track is erased.

When records are to be added to a disk
file by the AFTER method (specified by
DTFDA AFTER=YES), IOCS ensures that each
record will fit on the track specified for
it. If the record will fit, IOCS writes
the record; if it will not fit, IOCS sets a
no-room-found indication in the user's
error/status field (specified by the DTFDA
entry ERRBYTE). In the AFTER method IOCS
determines the location where the record is
to be written.

For this, TIOCS uses the first record on
each track (RO) to maintain updated
information about the data records on the
track. Record 0 (Figure 17) has a count
area and a data area, and contains the
following:

Count Area
Flag (not normally transferred to main
storage)
Identifier
Key Length (KL)
Data Length (DL)

Data Area (8 bytes)
5 Bytes - ID of last record written on
track (CCHHR).
2 Bytes - Number of unused bytes
remaining on track.
1 Byte - (Unused)
Fach time WRITE AFTER is executed, TOCS
updates the data area of this record.

COUNT AREA DATA AREA
2 —
2 - Identifier g 2
2 dentif £ g
w Identifier KL DL of Last Record 82 2
S o)
@ o =
Bytes —| 0 |1 ‘51 6 |7 8 0 415 6 7
1
. | l
: : Number !
Contains —»: Standard Information I C C H H Ri of Unused
! | [
| | Bytes !
! !] |

Figure 17. Contents of Record 0
READ-Macro

I L Ll 1
|Name] Op } Operand |
+ i } 2!
{ | READ | filename,KEY]
| | READ | filename,ID |
L L 1 1

This instruction causes a record to be
transferred from disk storage to an input
area in main storage . The input area must
be specified in the DTFDA entry IOAREA1.

The READ macro instruction is written in
either of two forms, depending on the type
of reference used to search for the record.
Both forms may be used for records in any
one DTFDA-specified logical file 'if the
logical file has keys.

The instruction always requires two
parameters. The first_ parameter specifies
the symbolic name of the file from which
the record is to be retrieved. This nane
is the same as that specified in the DTFDA
header entry for this file. The second
parameter specifies the type of reference
used for searching the records in the file.,

Record Reference by . Key

If the record reference is by key (control
information in the key area of the disk
record), the second parameter in the READ
instruction must be the word KEY, and the
DTFDA .entry READKEY must be included in the
file definition.

Whenever this method of reference is
used, the problem program must supply the
key of the desired record to IOCS before
the READ instruction is issued. For this,
the key must be stored in the key field
(specified in the DTFDA entry KEYARG).

When the READ instruction is executed, IOCS
searches the previously specified track
(stored in the 8-byte track-reference

field) for the desired key.

Then when a disk record containing the
specified key is found, the data-area-of
the record is transferred to the
main-storage input area.

Only the specified track is searched
unless the programmer requests that
multiple tracks be searched on each READ
instruction. A search of multiple tracks
is specified by including the DTFDA entry
SRCHM in the file definition. With this
entry, the specified track and all
following tracks are searched until the
desired record is found or the end of the
cylinder is reached. The search of
multiple tracks continues through the
cylinder even though part of the cylinder
may be assigned to a different logical
file.

Record Reference by ID

If the record reference is by ID
(identifier in the count area of records),
the second parameter in the READ
instruction must be the letters ID, and the
DTFDA entry READID must be included in the
file definition.

Whenever this method of reference is
used, the problem program must supply both
the track information and the record number
in the 8-byte track-reference field. When
the READ instruction is executed, IOCS
searches the specified track for the
particular record. When a disk record
containing the specified ID is found, both
the key area (if present and specified in

Macro Instruction Statements 93

record are transferred to the main-storage
input area.

WRITE Macro-

L) L] L] 1
|Name | Op | Operand |
i [[l 1
4 T ML L}
| | WRITE] filename,KEY 1
| | WRITE| filename,ID |
1 | WRITE| filename,RZERO |
| | filename, AFTER

L J | i]

WRITE|
L

This instruction, except in the case of
RZERO, causes a record, which has been
built in an output area of main storage, to
be transferred from main storage to disk
storage. The output area must be specified
‘in the DTFDA entry IOAREA1.

The WRITE macro instruction is written
in one of four forms, depending on the type
of reference that is used to search for the
record location in the file. All forms may
be used for records in any one
DTFDA-specified logical file if the logical
file has keys.

The instruction always requires two
parameters. The first_ parameter specifies-
the name of the file to which the record is
to be transferred. This name is the same
as the one specified in the DTFDA header
entry for this file. The second parameter
specifies the type of reference that is
used for searching the records on disk to
find the fproper location to write the
output record.

Record Reference by Key

If the disk-storage locaticn fcr writing
records is determined by the record key
(control information in the key area of the
disk record), the work KEY is entered as
the second parameter of the WRITE
instruction. Also the DTFDA entry WRITEKY
must be included in the file definition.

Whenever this method of reference is
used, the problem program must supply the
key of the desired record to IOCS before
the WRITE instruction is issued. For this,
the key must be stored in the key field
(specified by the DTFDA entry KEYARG).

When the WRITE instruction is executed,
JTOCS searches the previously specified
track (stored in the 8-byte track-reference
field) for the desired key. Then, when a
disk record containing the .specified key is
found, the data in the main-storage output
area is transferred to the data area of the
disk record. This replaces the information
previously recorded in the data area. TOCS
uses the count field of the original record
to control the writing of the new record.
If a record is shorter than the original

94 S/360 BOS Assembler with I/0 Macros

record, it is padded with zeros. A record
longer than the original record is written
only to the extent of the area indicated in
the count field on the track, and any
excess bytes are lost. In either case
(short or lcng records) IOCS turns on the
wrong-length-record bit in the error/status
field.

Only the specified track is searched
unless the programmer requests that
multiple tracks be searched on each WRITE
instruction. ' Searching multiple tracks is
specified by including the DTFDA entry
SRCHM in the file definition. 1In this
case, the specified track and all following
tracks are searched until the desired
record is found or the end of the cylinder
is reached. The search of multiple tracks
continues through the cylinder even though
part of the cylinder may be assigned to a
different logical file.

Record -Reference by-ID

If the disk-storage location for writing
records is determined by the record ID
(identifier in the count area of records),
the letters ID are entered as the second
parameter of the WRITE instructiomn. Also
the DTFDA entry WRITEID must be included in
the file definition.

Whenever this method of reference is
used, the problem program must supply both
the track information and the record number
in the 8-byte track-reference field. When
the WRITE instruction is executed, IOCS
searches the specified track for the
particular record. When the disk record
containing the specified ID is found, the
information in the main-storage output area
is transferred to the key area- (if present
and specified in DTFDA KEYLEN) and the data
area of the disk record. This replaces the
key and data previously recorded, IOCS uses
the count field of the original record to
control the writing of the new record. If
a record is shorter than the original
record, it is padded with zeros. A record
longer than the original record is written
only to the extent of the area indicated in
the .count field on the track, and any
excess bytes are lost. 1In either case
(short or long records) IOCS turns on the
wrong-length-record bit in the error/status
field.

Record Reference: Record Zero

If record zero (R0) is to be writtemn, the
second parameter of the WRITE instruction
must be the specification RZERO. Also the
DTFDA entry AFTER must be included in the
file definition.

This reference should be used each tinme
the problem program reuses a certain

portion of a disk pack. It may be used as
a utility function to initialize a limited
nunber of tracks or cylinders. Only one
track at a time, however, may be
initialized. This is done by issuing a
WRITE RZERO instruction with the address of
each track to be initialized.

Whenever this method of reference is
used, the problem program must supply the
track information (cylinder and track
number) in the 8-byte track-reference
field. Any record number is valid but will
be ignored. When WRITE is executed, IOCS
writes a new RO with the maximum capacity
of the track (3625 characters) and erases
the full track after RO.

Record Reference: After

If a record is to be written following the
last reccrd previously written on a disk
track (regardless of its key or ID), the
second parameter of the WRITE instruction
must be the specification AFTER. For this
operation the DTFDA entry AFTER must be
included in the file definition.

Whenever this method of reference is
used for writing records, the problem
program must supply the track information
in the first seven bytes of the 8-byte
track-reference field. When WRITE is
executed, IOCS examines the capacity record
(Record 0) on the specified track to
determine the location and amount of space
available for the record. If the remaining
space is large enough, the information in
the main storage output area is transferred
to the disk track in the location
immediately following the last record. The
count area, the key area (if present and
specified by DTFDA KEYLEN), and the data
area-are written. IOCS then -updates the
capacity record.

If the space remaining on the track is
not large enough for the record, IOCS does
not write the record and, instead, sets a
no~-room-found indication in-the user's
error/status field (specified by the DTFDA
entry ERRBYTE) .

Whenever this instruction will be used
in a problem program, it is the user's
responsibility to ensure that the capacity
record reflects the present condition cf
the file. Therefore, if he is going to
build a new file in an area of the disk
pack that comtains outdated records, the
capacity records must first be set up to
reflect empty tracks. An IBM-supplied
utility rrogram is available to construct
Record 0.

If records in the file are specified as
undefined (RECFORM=UNDEF), the programmer
must determine the length of each record

and load it in a register for IOCS use,
before he issues the WRITE instruction for
that record. The register that will be
used for this purpose must be specified in
the DTFDA entry RECSIZE.

Op Operand

b — ol e

WAITF| filename
L

The WAITF macro instruction is used to
ensure that the transfer of a record has
been completed. It reguires only one
parameter: the symbolic name of the file
containing the record.

This instruction must be issued before
the problem program attempts to process an
input record or build another output record
for the file concerned. The program enters
a waiting loop until the transfer of data
is complete. Thus, the WAITF macro
instruction must be issued after any READ
or WRITE instruction for a file, and before
the succeeding READ or WRITE instruction
for the same file.

The WAITF macro makes error/status
information, if any, available to the
problem program in the field specified by
DTFDA ERRBYTE.

CNTRL_Macro

(@]
e}

Operand

CNTRL| filename, SEEK

-

The CNTRL (control) macro instruction is
used to begin access movement for the next
READ or WRITE for a file. It requires two
parameters.

The first parameter specifies the
symbolic name of the file, which is the
same name as that specified in the DTFDA
header entry for the file. The second
parameter must be the word SEEK.

Before issuing the CNTRL macro
instruction, the user must specify a track
address to which access movement should
begin. This address must be stored in the
track-reference field specified by the
DTFDA entry SEEKADR. While the
disk-storage arm is moving, the programmer
may process data and/or request I/0
operations for files on other devices.

If the CNTRL macro is not used, IOCS

performs the seek operation when a READ,
WRITE, GET, or PUT instruction is executed.

Macro Instruction Statements 95

PROCESSING DISK RECORDS BY THE INDEXED
SEQUENTIAL SYSTEM

The Indexed Sequential File Management
System (ISFMS) permits disk records to be
processed in random order or in sequential
order by control information. ' For random
processing, the user suprplies the key
(control information) of the desired record
to ISFMS, and issues a READ or WRITE macro
instruction to transfer the specified
record. For sequential processing by
control information (key), the user
specifies the first record to be processed
and then issues 6ET or PUT macro
instructions until all desired sequential
records have been processed. The
successive records are made available in
sequential order by key. Variations in
macro instructions permit:

. A logical file of records to be loaded
onto disk (created).

. Individual records to Le read from,
added to, or updated in the file.

Whenever the indexed sequential system
of processing is used, the logical file and
main-storage areas allotted to the file
must be defined by the declarative macro
DTFIS (Define The File for Indexed
Sequential System). The detail parameter
entries for this definition are described
under File Definition Macros.

Record Types

When an ISFMS file is originally organized,
it is loaded onto the disk pack(s) from
pre-sorted input records. These records
must have been sorted by control
information. All records in the disk file
must contain key areas:

] 1
| Count | | Key | | Data |

L.] L 3 L . |

All keys must be the same length, and the
length must be specified in the DTFIS entry
KEYLEN, (maximum length is 95 bytes).

The logical records must be fixed
length, and the length must be specified in
the DTFIS entry RECSIZE. Logical records
may be either blocked (two or more logical
records in one physical record) or '
unblccked (one logical record per one
physical record). This must be specified
in the DTFIS entry RECFORM. When blccked
records are specified, the key of the
highest record (last) in the block is the
key for the block, and therefore must be
stored in the key area of the disk record.

The location of the key within each
logical record must be specified in the

96 S/360 BOS Assembler with I/O0 Macros

DTFIS entry KEYLOC. The number of records
in a block must be specified in the DTFIS
entry NRECDS. This specification is "1"
for unblocked records.

Storage_ Areas

Records in one logical file are transferred
to, or from, one or more I/0 areas in main
storage . The areas must always be larqge
enough to contain the key area and a block
of records, or a single record if unblocked
records are specified. In addition, it
must allow space for the count area when a
file is to be loaded, or when records are
to be added to a file. For the functions
of adding or retrieving records, the I/0
area must also provide space for a sequence
link field that is used in conjunction with
overflow records (see Addition of Records,
and - Overflow Areas). The I/O area
requirements are illustrated schematically
in Fiqure 18 and described in detail in
DTFIS entries IOAREAL, IOAREAR, and
TOAREAS.

Records may be retrieved and processed
directly in the I/0 area or in a work area.
If the records are to be processed in the
I/0 area, a register must be specified in
the DTFIS entry IOREG. This is used to
point to the beginning of the data portion
of each record and thus locate the record
for processing. Note: For sequential
unblocked records, the key is at the
beginning of the I/0 area.

-If the records are to be processed in a
work area, the DTFIS entry WORKL, WORKR, or
WORKS must be specified. ISFMS moves each
individual input record from the I/0O area
to the work area where it is available to
the problem program for processing.
Similarly, on output, ISFMS moves .the
completed record from the work area to the
I/0 area where it is available for transfer
to disk storage. Whenever a work area is
used, a register is not redquired.

Organization of -Records on Disk

When a logical file of presorted records is
loaded onto disk, ISFMS organizes the file
in a way that allows the user access to any
record, in the most efficient manner.

Reference can be made to records at
random throughout the logical file, or to a
series of records in the file in their
presorted sequence (collating sequence).
The organization also provides for
additions to the file at a later time,
while still maintaining both the random and
sequential reference capabilities.

ISFMS loads the records, one after the
other, into a specified area of the disk
pack. This is called the prime area of the

logical file on disk. The starting and
ending limits of this area are specified by
the user in Job Control XTENT cards. The
prime data area must start cn the first
track (track 0) of a cylinder (other than
0), and it must end on the last track
(track 9) of the same or a different
cylinder. Prime data extents cannot start
or end in the middle of a cylinder.
Whenever the prime area extends into two or
more disk packs, it must be continuous from
cne pack to the next and may not be.
interrupted. 1In this case, an XTENT card
is required to define each area of each
disk pack on which the prime area is
located. For example, if the prime area
extends over three disk packs, three XTENT
cards are required, one for each disk pack.

Whenever any type of processing is being
done for an Indexed Sequential file, all
packs in a multipack file must be on-line.

Indices

As ISFMS loads a file of records sorted by
control informaticn, it builds a set of
indices for the file. The indices are
utilized for both random and sequential
reference to records as follows:

) They permit rapid access to individual
records for random prccessing.

] They supply the means of providing

records in key order during sequential
processing.

Either two or three indices are built,
depending on the user's specifications.
Both a track index and a cylinder-indej are
always constructed. A master-index is also
constructed if the DTFIS entry MSTIND is
included in the file definition.

Once a file has been loaded and the
related indices have been built, the ISFMS
routines search for specified records by
referring to the indices. When a
particular record (specified by key) is
requested for processing, ISFMS searches
the master index (if used), then the
cylinder index, then the track index, and
finally the individual track. Each index
narrows the search by pointing to the
portion of the next-lower index whose range
includes the specified key. Because of the
high speed and efficiency of the direct
access devices in a System/360, a master
index should be established only for.
exceptionally large files, for which the
cylinder index occupies several tracks
(possibly four or more). That is, it is
generally faster to search only the
cylinder index (followed by the track
index) when the cylinder index occupies
less than four tracks.

Macro Instruction Statements 97

LOAD

Count Key

Data

RECSIZE x NRECDS

Length —» 8 | KEYLEN=n :4
(Bytes) | 1 I I

IOAREAL

ADD - Unblocked Records

|
Data 1 (Unused)
Count Key I - or |
st | Data
|
Length —— 8 | KEYLEN=n | 10 Le RECSIZE=n N
(Bytes) | | | NRECDS=1]
l * | |] 1
IOAREAL
ADD - Blocked Records
Count Key Data
. |
length —~| 8 | KEYLEN=n e RECSIZE x NRECDS N
(Bytes) 1 || } (Minimum size = One record + 10). }
IOAREAL
RETRIEVE - Unblocked Records
T
Data I (Unused)
Key or l
SL Data
- |
length — = |KEYLEN=n | 10 ke RECSIZE=n J
(Bytes) ‘ l | NRECDS=1 l
4 | | |
IOAREAR
or
IOAREAS
RETRIEVE - Blocked Records
Data
Length —» t RECSIZE x NRECDS -
(Bytes) A (Minimum size = One record + 10+K|) [
IOAREAR
or

|OAREAS

SL = Sequence Link

Figure 18.

98

Schematic of I,/0 Areas in Main Storage, for ISFMS

S/360 BOS Assembler with I/0 Macros

The indices are made up of a series of
entries, each of which includes the address
of a disk track and the highest key on that
track, or cylinder. Each entry is a
separate disk record composed of both a key
area and a data area. The key area
contains the highest key on the track or
cylinder, and its length is the same as
that specified for logical data records (in
the DTFIS entry KEYLEN). The data area of
each index is ten bytes long, and it
contains track information including the
track address.

I 1

{ Highest | | Track |

| Key | | Address |

— i) L)
Key Area Data Area

Track Index: = The track index is the lowest
level index for the logical file. A
separate track index is built for each

cylinder used by the file, and it contains

index entries for that cylinder only. Each
track index is located on the cylinder that
it is indexing. It is always on the first
track of that cylinder. Track indices are
considered part of the prime data area
specified by a Job Control XTENT card.

When the track indices are originally

- constructed, they contain two entries
(normal and overflow) for each track
utilized on the cylinder. For example, if
the prime area of the logical file utilizes
eight tracks on a cylinder, the track index
might contain the entries shown in Figure
19. The use of two index records for each
track is required because of overflow
records that will occur if more records are
inserted in the file at a later time (see
Addition.of Records,-and Overflow_ Areas).
When overflow records for a track exist,
the second (overflow) index record contains

the key of the highest record in the
overflow chain for this track and the
address of the lowest record in the
overflow chain. The dummy entry indicates
the end of the track index. Any following
records are logical- file data records.
The COCR entry is required whenever a
cylinder overflow area is specified (see
Example of an Organized File).

Cylinder .Index: The cylinder index is an
intermediate~level index for the logical
file. It contains an index entry for each
cylinder occupied by the file. This index
is built in the location specified by the
user in a Job Control XTENT card. The
cylinder index may be built wherever the
user chooses, but it may not be on one of
the cylinders that contains data records
for this file. It must be on a separate
cylinder, or it may be on a separate disk
pack that will be on-line whenever this
logical file is processed.

The cylinder index may be located on one
or more successive cylinders. Whenever the
index is continued from one cylinder to
another, the last index entry on the first
cylinder contains a linkage field that
points to the first track of the next
cylinder. A cylinder index may not be
continued from one pack to another,
however. It must be completely contained .
within one disk pack.

This index contains one entry for each
cylinder occupied by the data file. The .
key area contains the highest key
associated with the cylinder, and the data
area contains the address of the track
index for that cylinder. For example if a
file requires nine cylinders, the cylinder
index might contain the entries shown in
Fiqure 20. The dummy entry indicates the
end of the cylinder index.

Macro Instruction Statements 99

TRACK INDEX

COCR Key Track 0 Key Track 0 Key Track 1 Key Track 1
75 Address 75 Address 150 Address 150 Address
D K D K D K D K D
Key Track 2 Key Track2 (__ Key Track 7 Key Track 7
240 Address | 240 Address 980 Address 980 Address
K D K D K D K D
All
1-Bits
K D
Dummy Entry
K = Key Area
D = Data Area
COCR = Cylinder Overflow Control Record (R0)
Figure 19. Schematic Example of a Track Index
CYLINDER INDEX
n N n 5
Key C)’IIEdel' 1 Key CYhEder zy Key CYIIEdgr
980 Track O 1850 Track 0 4730 Trac
Address Address Address
K D K D K D
All
1-Bits
K D

Dummy Entry

K = Key Area
D = Data Area

Figure 20. Schematic Example of a Cylinder Index

BOS Assembler with I/0 Macros

100 s/360

MASTER INDEX

D
Dummy Entry

Key Track X + 1 Key Track X +2 Key Track X + 3 L Key Track X + 20
4730 Address 8560 Address 12750 Address e 85610 Address
K D K D K D K D
All
1-Bits

K = Key Area
D = Data Area
Figure 21. Schematic Example of a Master Index

Master -Index: The master index is the
highest. level index for a logical file
built by the IBM System/360 Basic Operating
System. This index is optional and it is
built only if it is specified by the DTFIS
entry MSTIND. It is built in the location
specified by a Job Control XTENT card.

Like the cylinder index, it may be located
on the same disk pack with the logical-file
records or on a different pack that will be
on-line whenever the records are processed.

The master index must_immediately
precede the cylinder index on a disk pack,
and it may be located on one or more
successive cylinders. Whenever it is
continued from one cylinder to another, the
last index entry on the first cylinder
contains .a linkage field that points to the
first track of the next cylinder. A master
index may not be continued from one pack to

constitute an extension of the file. Or,
they may contain keys that fall between
keys already in the file and therefore
require insertion in the proper sequence in
the organized file.

If all records to be added have keys
that are higher than the highest key in the
organized file, the upper limit of the
prime area of the file can be adjusted (if
necessary) by the specification in a Job
Control XTENT card. Then the new records,
which must be presorted, can be added by
loading them into the file. ©No overflow
area is required. The file is merely
extended further on the disk pack.

If records must be inserted among those
already organized, however, an overflow-
area -will be required. The ISFMS systen

another, however. It must be completely
contained within one ‘disk pack.

The master index contains an entry for
each track of the cylinder index. The key
area contains the highest key on the
cylinder—-index track, and the data area
contains the address of that track. For
example, if a master index is located on
track X and a cylinder index is located on
tracks X + 1 through X + 20, the master
index miqght contain the entries shown in
Figure 21. The dummy entry indicates the
end of the master index.

Addition of Records, and Overflow Areas

Some time after a logical file has been
organized on disk it may become necessary
to add records to the file. These records
may contain keys that are above the highest
key presently in the file, and thus

uses the overflow area to permit the
insertion of records without necessitating
a complete reorganization of the
established file. The fast random and
sequential retrieval of records is
maintained by inserting references to the
overflow area in the track indices, and by
using a chaining technique in the overflow
records. For chaining, a sequence-link
field is prefixed to the user's data record
in the overflow area. The sequence-link
field contains the address of the record in
the overflow area that has the next-higher
key. Thus a chain of sequential records
can be followed in a search for a
particular record. The sequence-link field
of the highest record in the chain
indicates the end of the chain. All
records in the overflow area are unblocked,
regardless of the specification (in DTFIS
RECFORM) for the data records in the
logical file.

Macro Instruction Statements 10}

DATA RECORDS

K
Track 1 ng Data]2e5y Data -
Track 2 | Key Key
racl 200 Data 205 Data
Figure 22.

To add a record by insertion, ISFMS
searches the established indices first to
determine on which track the record must be
inserted. The keys of the last records on
the tracks in the originally organized file
determine the track where an inserted
record belongs. A record is always
inserted on the track where:

1. The last key is higher than the
insertion, and

2. The last key of the preceding track is
lower than the inserticn.

For example, assume Tracks 1 and 2 are
organized with the record keys shown in
Figure 22. Then Tecords with keys such as
151, 175, 199, 215, and 239 are inserted on
Track 2 (or in the related overflow chain
that has developed). Any key lower than
150 is added to either Track 0 or Track 1;
any key higher than 240 belongs to Track 3
or above. The track indices always retain
the highest key of each track as it was
originally organized.

ALfter the proper track is determined,
ISFMS searches the individual records on
the track or overflow area (if necessary)
to find where the record belongs in key
order. This results in either of two
conditions:

1. The record falls between two records
presently on the track. ISFMS adds the
record by inserting it in the proper
sequence and shifting each succeediag
record one record location higher cmn
the track, until the end record is
forced off the track. ISFMS transfers
the end record to the cverflow area,
and prefixes the record (data area)
with a sequence-link field. The first
time a record is inserted on a track,
the sequence link of the overflow ‘
record indicates that this is the
highest record associated with the
track. Thereafter, the sequence-1link
field of each overflow record points to
the next-higher record for that track.

102 S/360 BOS Assembler with I/O0 Macros

Key Key

———— 140 Data 150 Data
Key Key
230 v Data 340 Data

Example of Data Records, as Originally Organized on Tracks 1 and 2

ISFMS also updates the track index
to reflect this change. The first
index_record for the track has the key
field changed to indicate the new
last-record located on the track. The
second index record for the track has
the track address (in the data area)
changed to point to the address of the
overflow record. If a record with key
105 is added to a file organized as
shown in the previous illustrations and
if the overflow area is located on
Track 8, the track index records
contain the information shown in Figure
23.

INDEX ENTRIES FOR ONE TRACK

Before Key Track 1 Key Track 1
Addition 150 Address 150 Address
After Key Track 1 Key ‘ 'lgracdeX
Addition | 140 Address 150 ecor
Address
Figure 23. Example of Track Index Entries

Before and After Addition of a
Record on Track 1

2. The record falls between the last
record presently on the track and the
last record originally on the track.
Thus, it belongs in the overflow area.
ISFMS writes the record in the overflow
area following the last record
previously written. 1ISFMS searches
through the chain of records associated
with the corresponding track for this
record and identifies the sequential
position the record should take. Then
the sequence-1link fields of the new
record, and of the record preceding it
by sequential key, are adjusted to
point to the proper records. If
records 150, 140, and 130 are already
in the overflow area and record 135 is
to be added, for example, the
sequence-link fields of records 130 and
"135 nmust be adjusted (Figure 24).

Example .of an Organized File

- IELD
RECORD SEQUENCE-LINK F
Before Addition After Addition
130 140 135
135 | — 140
(New Record)

Fiqure 24.

Over flow-Area Option:

Example of Sequence-Link Fields
Adjusted for Addition of a
Record (135)

The location of the

overflow area(s) for a logical file may be

specified by the user.

The overflow areas

may be built by one of three methods:

1‘

overflow areas for records may be
located on each cyllnder within the
prime area that is spec1fled by a Job
Control XTENT card for the data file.
In this case the user must specify the
nunber of tracks to te reserved for
overflow on each cylinder occupied by
the file. The overflow records that
occur within a particular cylinder are
written in the cylinder overflow area
for that cylinder.

The number of tracks to be reserved
for each cylinder overflow area must be
specified in the DTFIS entry CYLOFL
when a file of records is to be loaded
and when records are to be added to an
organized file.

An independent overflow area may be
specified for storing all overflow
records for the logical file. This
area may be on the same pack with the
data records, or on a different pack
that is on-line. However it must be
contained within one disk pack. A& Job
Control XTENT card must be included
when the program is executed to specify
the area of the disk pack to be used
for this overflow area. This card must
be the last XTENT card that Job Control
reads for the file.

Both cylinder overflow areas (method 1)
and an independent overflow area
(nethod 2) may be used. In this case
overflow records are placed first in
the cylinder overflow areas within the
data file. When any cylinder overflow
area becomes filled, the additional
overflow records from that cylinder are
written in the independent overflow
area. The specifications required for
both methods 1 and 2 must be included
for this combined method of handling
overflows.

A simplified example of a file organized on
disk by the Indexed Sequential File
Management System is shown schematically in

Fiqure 25.

The assumptions made and the

items to be noted are:

1.

The track index occupies part of the
first track, and data records fill the
rest of the track.

The data records occupy part of Track
0 and all of Tracks 1-7. Tracks 8 and
9 are used for overflow records in
this cylinder.

The master index is located on Track X
on a different cylinder. The cylinder
index is located on Tracks X+1 through
X+20.

A dummy entry signals the end of each
index.

The file was originally organized with
records as follows:

Track Records
0 5-75
1 100-150
2 200-240
7 900-980

The track index originally had two
entries for each track. It now shows
that overflow records have occurred
for Tracks ' and 7.

Records 150, 140, and 130 were forced
off the track by insertions on the
track. Record 135 was added directly
in the overflow area.

A sequence-link field (SL) has been
prefixed to each overflow record. The
records for Track Y can be searched in
sequential order by following the SL
fields:

Record Sequence-Link field. (SL)

130 ST, points to record with key
135 ;iséoints to record with key
140 ;goéoints to record with key
150 égg-éf search. (Key 150 was

the highest key on Track 1
when the file was loaded.)

Macro Instruction Statements 103

0L

*GZ @anbTd

SOI0®H 0/I YITM ISTqUOSSY SOd 09E/S

SHASTI £q peztuebip ‘YsTQ uo 1T ® JO DOTIRWOYDS

TRACK INDEX DATA RECORDS
T .
! Track 8 Track 8 H
Track 0 ! Track 0 Track 1 Track 2 Track 2 Track 7 1
1
COCR | 75} address | 7> | Address | 2% 1 Address Record 3 Address Address 975 1 Address 0 | Record 4 Dummy 75 Data
: Address Address :
D K, D. K D K D D D D K D D D K D
DATA RECORDS
T ‘ ;
]
]1’“"‘ 100 } Data 105 1 Dota ns Data 120 | Data
! ! 1
K D K D K D K D
DATA RECORDS
1 i i
1]
;’“k 200 | Data 210 | Data 230 | Data 240 Data
! : ;
K D K o K D K D
DATA RECORDS
;rack 900 Data 925 Dota 950 Data 975 Data
K D K D K D K D
OVERFLOW DATA RECORDS
Track sL sL , st
: 150 F gy Data v Data 1304 0 Data 980 st Data 1R Data
» i 150 135 | ! 140}
K D, K D K)
OVERFLOW DATA RECORDS
Track
9
MASTER INDEX
T
Track Track Track Track |y
Track | 47301 X +1 8560 X+2 [12750) x+3 85610 X +20 |{Tp. b Dummy
X Address Address Address _ Address !
H
K D K D K D K D K
CYLINDER INDEX
U eyl 1 | 2 Cylinder 9
t Cylinder Cylinder + Cylinder
Trock 1980 & Track0 [1850 | Track 0 4730 | Track 0
| Address Address Address
K D K D K D

9. HWhen the file was locaded, the last
record on Cylinder 1 was Record 980,
on Cylinder 2 Record 1850, and on
Cylinder 9 Record #730. This is
reflected in the cylinder index.

10. When the file was loaded, the last
entry on track X+1 (first track of
Cylinder Index) was Record 4730, on
track X+2 Record 8560, on track X+3
Record 12750, and on track X+20 Record
85610. This is reflected in the
master index.

11. When cylinder overflow areas are used,
the first record (Record 0) in the
track index for a cylinder is the
Cylinder Overflow Control Record
(COCR). It contains the address of
the last overflow reccrd on the
cylinder and the number of tracks
remaining in the cylinder overflow
area. When the number of remaining
tracks is zero, overflow records are
written in the independent overflow
area.

MACRO INSTRUCTIONS TO LOAD OR EXTEND A DISK
FILE BY ISFMS

The function of originally loading a file
of presorted records onto disk and the
function of extending the file by adding
new presorted records beyond the previous
high record are essentially the same. Both
are considered a LOAD operation (specified
by the DTFIS entry TOROUT), and they both
use the same macro instructions in the
rFrcblem -program.

The areas of the disk rpacks used for the
file are specified by Job Control XTENT
cards. The areas are: the prime area
where the data records are written, a
cylinder index area where the user wants
ISFMS to build the cylinder index, and a
master index area if a master index is to
be built (specified by the DTFIS entry
MSTIND).

During the load operation, ISFMS builds
the track, cylinder, and master (if
specified) indices. " If either the data
records, the cylinder index, or the master
index exceeds the area provided for it,
ISFMS branches to a user's routine
(specified by the DTFIS entries DTAREX,
CYNDEX, and MANDEX, respectively). If the
data_area has been exceeded, an ENDFL
instruction may be included in the DTAREX
routine to prepare the file for closing.
This permits the remaining records to be
treated as extensions. To continue
loading, the user must supply a,new XTENT
card for the area exceeded and restart the
job.

Whenever any type of processing is being
done for an Indexed Sequential file, all
packs of a multipack file must be on-line.

Whenever an organized file is to be
extended, the identical Job Control DLAB
card that was originally used when the file
was loaded must be used again. However, if
an organized file is to be loaded on the
same disk pack a second time, the user
should prepare a new Job Control DLAB card
to prevent his file from being treated as
an extension of itself. 1In the new DLAB
card, the user must change either the
filename, creation date, or expiration
date.

Name of First Control Section: Whenever
the LOAD function is specified, the user
must place a name in the START card in his
source deck to define the first control
section. This permits ISFMS to use an
ENTRY statement to identify a linkage
symbol defined in this control section and
used in subsequent control sections.
However, the user-written portion of the
program will not be in the control section
named by the START card. Instead, it will
be in a ccntrol section named by ISFMS.
The name assigned by ISFMS is FilenameU.
Filename is the name of the last file for
which T.0AD is specified, unless sequential
retrieval is specified for another file in
the program (see Macro Instructions for
Sequential Retrieval by ISFMS).

As a result of these conditions, the
programmer must be sure to use the
applicable name if he wishes to continue
his first control section after it has been
interrupted by a dummy section or a
different control section. He must use the
name assigned by ISFMS (rather than the
START card) whenever LOAD is specified for
any file in the source progran.

Macro Instructions

Three different macro instructions are
always required in the problem program to
load original or extension records into the
logical file on disk.

SETFL_ Macro

L)
Name]0p Operand
]

{
| SETFL filename

,_.-_-
s e
Lol e

The SETFL (set file load mode) macro
instruction causes ISFMS to set up the file
so that the load function can be performed.
The symbolic name of the file to be loaded
is the only parameter required in this
instruction. This name is the same as that

Macro Instruction Statements 105

specified in the DTFIS header entry for
this file.

When a file is being created, TISFMS
formats the track index, cylinder index,
and master index (if used) with dummy
entries. When a file is being extended,
the SETFL macro simulates a restart
condition so that the load function can
proceed as if it were making its initial
run.

WRITE_Macro

Operand

e e wfe —

filename,NEWKEY, IS

When a WRITE macro instruction with the
parameter NEWKEY is issued in the problem
program between a SETFL instruction and an
ENDFL instruction (the third macro required
for loading), it causes ISFMS to load a
record onto disk. It requires three
parameters. The first specifies the
symbolic name of the file, as specified in
the DTFIS header entry. The second
parameter must be the word NEWKEY. The
third parameter must be the letters IS to
indicate processing by the indexed
sequential systen.

Before issuing the WRITE instruction for
an unblocked record, the problem program
must store the key of the record followed
by the data in a work area (specified ty
DTFIS WORKL) .

WORKL - Unblocked Records

Data

£
IKey
| (With or without embedded key)

jo = o
- — -

—

The ISFMS routines construct the I/0 area
(see Figure 18) by moving the data record
to the data area, moving the key to the key
area, and building the count area. Then
they transfer the record to disk storage.

For blocked records, the problem program
must store only the logical record in a
work area (specified by DTFIS WORKL). The
key must be part of the data record
{Location specified by DTFIS KEYLOC), but
it must not be stored separately as it is
for unblocked records.

WORKL - Blocked Records

Data
(#ith embedded key)

o e —me o

106 S/360 BOS Assembler with I/0 Macros

- completed,

The ISFMS routines move each data record to
the I/0 area. After the block of records
in the data portion of the I/0 area is
ISFMS moves the key of the
highest record in the block into the key
portion of the I/0 area. Then ISFMS
constructs the count portion and transfers
the records to disk storage.

As records are transferred, ISFMS
performs both a sequence check (to ensure
that the records are in order by key) and a
duplicate-record check. If an
out-of-sequence record or a
duplicate-record key is detected, ISFMS
branches to the corresponding user's
routine (specified by the DTFIS entries
SQCHEX and DUPREX, respectively).

After each record is written, ISFMS
makes the ID of that record available to
the problem program. The ID is located in

lenanm In this
case filename must be 5 characters long.
For example, if the file name in the DTFIS
header entry is PAYRD, the ID field is
addressed by PAYRDH. By reference to this
field, the ID of any selected records can
be punched or printed for later use. This
will be required if the user plans to
retrieve records imn sequential order
starting with the ID of a particular record
(see SETL_-Macro).

As records are loaded onto disk, ISFMS
writes track-index records each time a
track is filled, writes a cylinder-index
record each time a cylinder is filled, and
writes a master-index record (if DTFIS
MSTIND is specified) each time a track of
the cylinder index is filled. When a track
index is completed, ISFMS writes a dumnmy
record following the last index record.
This is used in subsequent operations to
indicate the end of the index and the
beginning of data records.

Operand

filename

o — e e

The ENDFL (end file load mode) macro
instruction ends the mode initiated by the
SETFL macro. The symbolic name of the file
that has been loaded is the only parameter
required in this instruction. This name is
the same as the name specified in the DTFIS
header entry and the SETFL instruction for
this file.

The ENDFL macro performs a close-like
operation for the file that has been
loaded. It writes the last block of data
records, if necessary, and then writes an

end-of-file record after the last data
record. It also writes any index entries
that are needed.

Note: At least one or more records must be
loaded before the ENDFL macro instruction
can be executed. If no records are loaded
before the ENDFL macro is issued, the ENDFL
macro returns control immediately to the
user's program without writing an
end-of-file record. The file then has to
be reloaded with a new DLAB (disk label)
card.

MACRO INSTRUCTIONS TO ADD RECORDS TO A FILE
BY ISFMS

After a file has been organized on disk,
new records can be added to the file. Each
record is inserted in the proper place
sequentially by key. This function is
controlled by specifying ADD or ADDRTR in
the DTFIS entry TOROUT.

The file may contain either blocked or
unblocked records, as specified by the
DTFIS entry RECFORM. When the file
contains blocked records, the user must
provide ISFMS with the location of the key
field within each record. This is
specified in the DTFIS entry KEYLOC. The
records to be added, however, must be
inserted one record at a time, and they
nust contain a key field in the same
location as the records already in the
file.

~Whenever the addition of records is to
follow sequential retrieval
(IOROUT=ADDRTR), the sequential-retrieval
instruction ESETL must be issued before the
first record is added to the file (see
ESETL_Macro) .

Macro Instruction

One macro instruction is available for use
in the problem program, for adding records
to a file.

HRITE Macro

Name Oop Operand

WRITE filename,NEWKEY, IS

(o oy —
o e -
e e b e

When a WRITE macro instruction with the
parameter NEWKEY is issued in the problem
program and the DTFIS entry IOROUT
specifies ADD (or ADDRTR), ISFMS adds the
record to the previously organized file.
This is the same instruction, and requires
the same parameters, as the WRITE
instruction that is used for loading a
file. The only difference is that DTFIS

IOROUT specifies ADD
LOAD.

(or ADDRTR) instead of

For adding records, the problem program
must store the key of the record followed
by data in the work area specified by DTFIS
WORKL, before issuing the WRITE
instruction. ISFMS then constructs the I/0
area and transfers the record to disk
storage. As records are transferred, ISFMS
checks for duplicate record keys and
branches to the user's routine (specified
by DTFIS DUPREX) if a duplication is found.

To insert the new record properly, ISFMS
searches the indices to find the correct
track for the record. 1If the correct track
is pnot an overflow track, ISFMS then

.searches the track for the correct position

sequentially. The record is inserted, all
following records are shifted, and the
highest record on the track is transferred
to the appropriate overflow area. This is
the cylinder overflow area if CYLOFL has
been specified and if the area has not been
filled. If the cylinder overflow area does
not have space available, or if only an
independent overflow area has been
specified by an XTENT card, the overflow
record is transferred to the independent
overflow area. If the cylinder overflow
area has been filled and an independent
area has not been specified, however, there
is no place to store the overflow record.
ISFMS then branches to the user's routine
specified by the DTFIS entry ADAREX. The
user should specify an independent overflow
area to store this and other overflow
records. ISFMS also branches to the ADAREX
routine if an independent overflow area is
specified but has become filled. In either
case the job should be restarted with a new
XTENT card included for the independent
overflow area.

Whenever records are to be inserted into
a logical file of blocked records, ISFMS
first locates the correct block on the
track (after the proper track has been
found) . The block is determined by
checking the key areas of the disk records.
Each key area contains the key of the
highest logical record in the corresponding
block. Then ISFMS examines the key field
within each logical record in the block to
find the exact position to insert the
record. After the record is inserted, the
following logical records on the track are
shifted and reblocked, and the key areas
are adjusted. The last logical record on
the track is moved to the overflow area.

If the proper track for a record is an
overflow track, ISFMS writes the record,
preceded by a sequence-link field in the
data area of the record, and adjusts the
appropriate linkages to maintain sequential

order by key. Similar to the operation

Macro Instruction Statements 107

described for the end record in the
preceding paragraphs, ISFMS writes the new
record in either the cylinder overflow area
or the independent overflow area, or .it
branches to the user's routine if
necessary.

If the new record is higher than all
records presently in the file, ISFMS checks
to determine if the last track containing
data records is filled. If it is not, the
new record is added, replacing. the
end-of~-file record. The end-of-file record
is written in the next record location on
the same track, or on the following track
in the prime data area. Another track must
be available within the file limits. If
the end-of-file record is the first record
on a track, the new record is written in
the appropriate overflow area. After each
new record is inserted in its proper
location, ISFMS adjusts all indices that
are affected by the addition.

MACRO INSTRUCTIONS FOR RANDOM RETRIEVAL BY
ISFMS

When a file has been organized by ISFMS,
records can be retrieved in random order
for processing and/or updating. Retrieval
must be specified in the DTFIS entry
IOROUT. Random processing must be
specified in the DTFIS entry TYPEFLE, and
updating (if used) must be specified in
DTFIS UPDATE. If a multipack file is being
processed, all packs must be on-line.

Because random reference to the file is
by record key, the problem program must
supply the key of the desired record to
ISFMS. To do this the key must be stored
in the main-storage key field specified. by
the DTFIS entry KEYARG. The specified key
designates both the record to be retrieved
and the record to be written back into the
file in an updating operation.

Name of First Control Section: When DTF
IOROUT=RETRVE and TYPEFLE=RANDOM are used,
ISFMS names the first CSECT in the DTFIG
macro IICSCT. . If this DTF is used alone,
the user's program will come under this
CSECT name. If it is used in the sanme
program with other DTFs, the name of the
user's first control section will be
determined as explained under Macro
Instructions for Sequential Retrieval by
ISFHS.

Macro_Instructions

Two macro instructions are available for
use in the problem program for retrieving
and updating records randomly.

108 S/360 BOS Assembler with I/O Macros

READ Macro

g Ll L 1
|Name | Op { Operand |
i + 1 - 4
| | READ | filename,XEY,IS l
1 1 1 J

The READ instruction causes ISFMS to
retrieve the specified record from the
file. This instruction requires three
parameters. The first parameter-specifies
the symbolic name of the file from which
the record is to be transferred to main
storage . This name is the same as the
name specified in the DTFIS header entry
for this file. The second_-parameter-must
be the word KEY. The third parameter-must
be the letters IS to indicate processing by
the indexed sequential system.

To locate the record ISFMS searches the
indices to determine the track on which the
record is stored, and then searches the
track for the specific record. When the
record is found, ISFMS transfers it to the
I/0 area specified by the DTFIS entry
TOAREAR. The IOCS routines also move the
data portions of the record to the
specified work area if the DTFIS entry
WORKR is included in the file definition.

When records are blocked, ISFMS
transfers the block that contains the
specified record to the I/0O area. It makes
the individual data record available for
processing either in the I/0 area or the
work area (if specified). For processing
in the I/0 area, ISFMS supplies the address
of the reccrd in the register specified by
DTFYIS TOREG.

If ISFMS does not find the specified
record, it branches to the user's routine
specified by the DTFIS entry RTRVEX,

HWRITE Macro

0
Op | Operand
1

L =l —d

1
WRITE | filename,KEY,IS
i

The WRITE instruction with the parameter
KEY is used for random updating. It causes
ISFMS to transfer the specified record fronm
main storage to disk storage. This
instructicn requires three parameters. The
first parameter specifies the symbolic name
of the file to which the record is to be
transferred. This name is the same as the
name specified in the DTFIS header entry
and in the preceding READ instruction for
this file. The second-parameter-must be
the word KEY. The third parameter must be
the letters IS.

ISFMS revwrites the record retrieved by
the previcus read instruction for the same
file. The key specified in the key field
for the READ instruction determines where
the record is written. The key need not be
specified again, ahead of the WRITE
instruction.

MACRO INSTRUCTIONS FOR SEQUENTIAL RETRIEVAL
BY ISFMS

When a file has been organized by ISFMS,
records can le retrieved in sequential
order by key for processing and/or
updating. Retrieval must be specified in
the DTFIS entry IOROUT. Sequential
processing must be specified in the DTFIS
entry TYPEFLE, and updating (if used) must
be specified in DTFIS UPDATE.

Although records are retrieved in order
by key, sequential retrieval can start at a
record in the file identified either by key
or by the ID (identifier in the count area)
of a record in the prime data area. Or,
sequential retrieval can start at the
beginning of the logical file. The user
specifies, in the SETL macro, the type of
reference he will use in the problenm
program.

Whenever the starting reference is by
(RECFORM=FIXBLK) , the user must also
provide ISFMS with the position of the key
field within the records. This is
specified in the DTFIS entry KEYLOC. To
search for a record, ISFNMS first locates
the correct block by the key in the key
area of the disk record. (The key area
contains the key of the highest record in
the block.) Then, ISFMS examines the key
field within each_record in the block to
find the specified record.

Whenever any type of processing is teing
done for an Indexed Seguential file, all
packs of a multipack file must be on-line.

Name_of First Control Section: When
sequential retrieval is specified, the user
must place a name in the START card in his
source deck to define the first control
section. This permits ISFMS to use an
ENTRY statement to identify a linkaqge
symbol defined in this ccntrol section and
used in subsequent control sections.
However, the user-written portion of the
program will not be in the control section
named by the START card. Instead, it will
be in a control section named by ISFMS.

The name assigned by ISFMS to the user's
first control section is Filename3 whenever
sequential retrieval alone (IGROUT=RETRVE
and TYPEFLE=SEQNTL or RANSEQ) is specified
for any file in the source progranm.
Filename is the DTFIS header name of the

"first control section.

first file (in input sequence) for which
sequential retrieval is specified.

If sequential retrieval alone
(IOROUT=RETRVE) is not specified for any
file, the name assigned to the user's first
control section depends upon the other
functions (IOROUT) and/or types of
processing (TYPEFLE) specified for the
files in the source program. If either
sequential add-retrieve (IOROUT=ADDRTR and
TYPEFLE=SEQNTL or RANSEQ) or load
(IOROUT=LOAD) is specified for any file,
ISFMS names the usert's first control
section. If both are specified, for
different files in the source program, the
naning function that occurs last (in input
sequence) determines the name that ISFMS
assigns, as follows:

. If sequential add-retrieve
(IOROUT=ADDRTR and TYPEFLE=SEQNTL or
RANSEQ) occurs last, the control
section name is Filename3. Filename is
the DTFIS header name of the last file
for which sequential add-retrieve has
been specified.

. If the load function (IOROUT=LOAD)
occurs last, the control section nanme
is FilenameU. Filename is the DTFIS
header name of the last file for which
the load function has been specified.

If neither sequential retrieval,
sequential add-retrieve, nor load is
specified for any file in the source
program, ISFMS does not name the user's
In this case, the
first control section is named by the name
(if any) specified in the START card.

As a result of these conditions, the
programmer must be sure to use the
applicable name if he wishes to continue
his first control section after it has been
interrupted by a dummy section or a
different control section. He must use the
name assigned by ISFMS (rather than the
START card) whenever sequential retrieval,
sequential add-retrieve, or load is
specified for any file in the source
program.

Macro Instructions

Four macro instructions are available
for use in the problem program for
retrieving and updating records
sequentially.

Macro Instruction Statements 109

w0
e |
-3
[l
=
[}
[¢]
in}
(¢]

Name

L) L} L} 1
| | oOp | Operand |
i 1] 1
r L)] 1
	SETL.	filename,BOF
	SETL.	filename,KEY
	SETL	filename,idname
. 1 L)		
The SETL (set limit) macro instruction

initiates the mode for sequential
retrieval, and initializes the ISFMS
routines to begin retrieval at the
specified starting address. It requires
two parameters. The first parameter
specifies the symbolic name of the file
(specified in the DTFIS header entry) from
which records are to be retrieved.

The specification entered as the second:
parameter depends on the starting reference
that is used for the file: beginning of
the file, key, or 1ID.

BOF: If retrieval is to start at the
beginning of the logical file, the letters
BOF (beginning of file) must be entered as
the second parameter.

KEY: If retrieval is to start at the
record that contains a specific key
(control information), the word KEY must be
entered as the second parameter. 1In this
case, the key of the desired record must be
stored in the main-storage key field
specified by the DTFIS entry KEYARG. The
key must be supplied in this field before
issuing the SETL instruction for the file.
If ISFMS cannot find the starting record,
it branches to the user's routine specified
by the DTFIS entry RTRVEX.

idname: if retrieval is to start at the
record that has a specific disk address
(identifier - ID), the second parameter
must specify the symbolic name of a field
in main storage. The disk address of the
first record to be retrieved must be stored
in this field before the SETL instruction
is issued for the file. This idname field
must be eight bytes long and the user nmust
supply the record identification (MBBCCHHR)
as listed here. All numbers must be
supplied in binary notation.

Con-
Byte Ident. tents Information
0 M. 2-255 Number of the extent

in which the starting
record is located.
The extents for the
file must be numbered
so that the first
extent is number 2,

110 sS/360 BOS Assembler with I/0 Macros

the second extent
nunber 3, etc.

-2 B,B 0,0 Reserved for cell

number, which relates

to. the IBM 2321 Data

Cell prive. These two

bytes are always zero

for 2311 disk-storage
references.

3-4 c,C 0,1-199 VNumber of the cylinder
(1-199) in which the
record is located.

The first byte is
always zero, and the
second byte specifies

" one of the 199
cylinders available
for data records in a
disk pack. These two
bytes with the next
two (HH) rrovide the
track identification.

0,0-9 Number of the

read/vwrite head (0-9)

that applies to the

record. The first
byte is always zero,
and the second byte
specifies one of the

ten disk surfaces in a

disk pack. '

5-6 H,H

1-254 Sequential number of
the record on the

track.

ESETL_ Macro

Name Operand

op
S filename

ESETL

b e o
b e e o

The ESETL (end set limit) macro instruction
ends the sequential mode initiated by the
SETL macro. The symbolic name of the file,
which must be the same as the name
specified in the DTFIS header entry and in
SETL, is the only parameter required in
this instruction.

If blacked records are specified, ESETL
writes the last block back into the disk
file in its previous location, if
necessary.

When the program requires sequential

"retrieval followed by the addition of

records to a file (IOROUT=ADDRTR), the
ESETL macro instruction must be issued at
the end of the sequential retrieval and
before a WRITE instruction is issued for
the first addition. Tf sequential
retrieval is to be restarted after the

additions are completed, the key or ID of
the last record retrieved must be saved.

To return to sequential retrieval, the SETL
macro instruction must be issued again.

in the block. If no PUT instructions have
been issued, updating is not required for
this block and GET does not write the
block.

GET_Macro PUT_Macro

] L] - v 1) T L 1
|Name | Op | Operand | |Name | Op | Operand |
——t : o : : 1
| | GET | filenanme,, IS | | | PUT | filename,,IS |
| | GET | filename,workname, IS | | | PUT | filename,workname,IS |
| - L. 1 [] L 1 L J

The GET macro instruction causes ISFMS to
retrieve the next record in sequence from
the file. It can be written in either of
two forms, depending on vhere the record is
to be processed.

The first form is used if records are to
be processed in the I/O area (specified by
DTFIS IOAREAS). It requires three
parameters, the second of which is blank
and represented by a comma. The first
parameter specifies the symbolic name of
the file from which the record is to be
retrieved. This is the same name as that
specified in the DTFIS header entry and in
the SETL macro instruction for this file.
ISFMS transfers the record from this file
to the I/0 area, and the record is
available for the execution of the next
instruction in the problem program. The
third parameter must be the letters IS to
indicate processing by the indexed
sequential system.' ISFMS makes the data
portion of each record available by
supplying its address in the register
specified by the DTFIS entry IOREG. When~
the unblocked records are specified, the
key portion of each record is available at
the area specified in the DTFIS entry
IOAREAS.

The second form of the GET instruction
is used if records are to be processed in a
work area (DTFIS specifies WORKS). It
requires three parameters. The first is
the symbolic name of the file, the second
is the symbolic name of the work area, and
the third parameter is the letters IS.
ISFMS transfers both the key of the record
and the data to the specified work area for
unblocked records. For blocked records,
ISFMS transfers only the data portion of
the record to the specified work area. The
record is available for the execution of
the next program instructicn.

If blocked records and updating are
specified in the file definition, each GET
that transfers a block of records to main
storage will, if necessary, also write the
preceding block rack into the disk file in
its previous location. GET writes the
preceding block if a PUT instruction has
been issued for at least one of the records

The PUT macro instruction is used for
sequential updating of a disk file, and
causes ISFMS to transfer records to the
file in sequential order. It must be
preceded by a GET instruction for that
file. The PUT instruction may be written
in either of two forms, depending on where
records are processed.

The first form is used if records are
processed in the I/0 area (specified by
DTFIS IOAREAS). It requires three
paramneters, the second of which is blank
and represented by a comma. The first
paramneter specifies the symbolic name of
the file to which the records are to be
transferred. This is the same name as
specified in the DTFIS header entry, the
SETL instruction, and the GET instruction
for this file. The third parameter must be
the letters IS to indicate processing by
the indexed sequential systen.

The second-form of the PUT imstruction
is used if records are processed in a work
area. It requires three parameters. The
first is the symbolic name of the file, the
second is the symbolic name of the work
area, and the third is the letters IS. The
work-area name may be the same as that
specified in the preceding GET for this
file, but this is not required. ISFMS
moves the record from the work area
specified in the PUT instruction to the I/0
area specified for the file in the DTFIS
entry IOAREAS.

When unblocked records are specified,
each PUT writes a record back onto the disk
file in the same location from which it was
retrieved by the preceding GET for this
file. Thus, each PUT updates the last
record that was retrieved from the file.

If some records do not require updating, a
series of GET instructions can be issued
without intervening PUT instructions.
Therefore, it is not necessary to rewrite
unchanged records.

When blocked records are specified, PUT
instructions do not transfer records to the
disk file. 1Instead, each PUT indicates
that the block is to be written after all
the records in the block have been

Macro Instruction Statements 111

processed. When processing for the block

SOPEN - Macro

is complete and a GET is issued to read the
next block into main storage , that GET
also writes the completed block back into-
the file in its previous location. If a
PUT instruction is pot issued for any
record in the block, GET does not write the
completed block. At the end of the file
the ESETL macro instruction writes the last
block processed, if necessary.

NOTE: The user should insert an LTORG
statement in his assembler deck whenever
more than one control section is generated
by the ISFMS macros (Load and/or Retrieve
functions).. This is to provide
addressability for the generated literals
in the imperative macros.

PROCESSING WITH STR DEVICES

Logical I0CS provides macro instructions
for processing with STR (Synchronous
Transmitter-Receiver) devices. These
devices can be remotely attached to a

- System/360, Model 30, 40, 50, 65 or 75,
through an IBM 2701 Data Adapter Unit,
equipped with an IBM Synchronous Data
Adapter, Type T.

Whenever STR macro instructions are used
to transmit and receive data or furnish
line control, each synchronous data adapter
must be defined by the declarative macro
DTFSN (Define The File for SyNchromous
Transmitter-Receiver use). .The operand
entries for the DTFSN (and for the DTFRF
macro) are described under File Definition
Hacros.

Before processing can be done with STR
devices, the adapter must be initialized.
Logical IOCS provides a unique imperative
macro instruction, SOPEN (open STR
adapter), to initialize the adapter for STR
processing.

112 S/360 BOS Assembler with I/0 Macros

The SOPEN (open STR adapter) macro
instruction turns on the adapter,
establishes the mode, and establishes
synchronization. The SOPEN operands
determine the line interfaces on the
adapter, the data transmission rate, the
data transmission mode, and the type of
data checking to be performed. Where the
dial option is present, SOPEN may also dial
a number, monitor for ringing, and
establish a connection.

SOPEN must be issued for a line before a
READ, WRITE, or CNTRL macro is issued for
that line.

Completion of a SOPEN macro is indicated
in the traffic (or wait) bit and the unit-
exception bit in the channel command block .
(CCB) . The WAIT macro or the WAITM macro
should be used to check for completion of
the SOPEN macro.

The lost data and unit exception
(end-of-file) bits should be checked by the
problem program upon completion of a SOPEN
macro instruction. If SOPEN could not
establish synchronism, and an operator
reply of 4 was given, the lost data and
unit.exception bits will be on. If the
remote terminal attempted to transmit
before synchronism was established, the
unit exception bit will not be on,
indicating the SOPEN macro could not
complete successfully.

SOPEN can be reissued with the same or
different operands after a SCLOS macro to
begin transmission or reception of data to
the same or another device.

NAME OPERATION OPERAND COMMENTS
SOPEN DTFNAME=dtfname Symbolic name of DTFSN macro
DIAL=IN Answering
ouT Calling
°INTFAC=A *Which line interface on the adapter to use.
B BOTH may only be specified when DIAL=IN.
BOTH
NTLRC=NO LRC check should be performed on record or
YES group mark .
INTLRCB=NO When INTFAC=BOTH, INTLRCB provides for
YES LRC check for interface B as INTLRC pro-
vides for interface A.
SPEED=X *data transmission rate expressed in
Y characters/second.
z
CLOCK
SPEEDB=X When INTFAC=BOTH, SPEEDB provides the
Y data transmission rate for interface B, as
YA SPEED provides for interface A.
CLOCK
MODE=FULL Full duplex
FOUR Four wire half duplex
WO Two wire half duplex
(data fransmission modes)
MODEB=FULL When INTFAC=BOTH, MODEB determines the
FOUR data transmission made for interface B, while
TWO MODE provides for interface A.

NUMB=n General register (2~11) loaded by problem
program with address of DIALO macro. Must
be supplied when DIAL=OUT.

Underlined choices will be assumed if operand is omitted.
OINTFAC must be "=A" if Dual Communications Interface feature is not present.
#Supplied by DIALO macro when SOPEN DIAL=OUT.
*For further reference see the section Communications: Synchronous Adapter in the publication IBM 2701 Data Adapter Unit:
Principles of Operation (Form A22-6864).

Figure 26. SOPEN Macro

The SCPEN macro instruction is coded
with the keyword operands as shown in
Figure 26.

Where the problem program wishes to use
the facilities of STR devices attached over
a dial network (with the Automatic cCall
Feature installed), logical IOCS provides a

declarative macro instruction, DIALO (dial
out), to supply the dial address and
various parameters required by the SOPEN
macro.

Macro Instruction Statements 113

NAME OPERATION OPERAND

COMMENTS

DIALO

LENGTH=n

The total number of digits in the telephone number
to be dialed (sum of "ACODE" and "DIGITS").

ACODE =number

The area code, or any digits not included in

"DIGITS".
DIGITS =number The telephone number to be dialed (maximum of 7
digits).
INTFAC=A *Which line interface on the adapter to use.
B
INTLRC=YES LRC check should be performed on record or
NO group mark.
SPEED=X * Data transmission rate expressed in characters/
Y second.
Z
cLock
MODE =FULL Full duplex
FOUR Four- wire half duplex
TWO Two - wire half duplex

(data transmission modes)

Underlined choices will be assumed if operand is omitted.

Principles of Operation (Form A22- 6864).

See SOPEN Macro.

* For further reference see the section, Communications: Synchronous Adapter, in the publication IBM 2701 Data Adapter Unit:

Figure 27. DIALO Macro

DIALO Macro

The declarative DIALO (dial out) macro
instruction generates the proper constants
required by the SOPEN macrc to dial and
synchronize with the selected terminal.

The DIALO macro operands provide the
actual number to be dialed and the number
of digits in that number. Other operands
specify the line interface on the adapter,
the data tramsmission speed, and the data
transmission mode. For a further
explanation of DIALO operands see Figure
27.

Oonce the SOPEN and DIALQ macros have
established the proper connection between
the STR devices, logical IOCS provides
several imperative macro instructions for
the actual processing (transmission,
reception, and control) of data.

READ - Macro

114 S/360 BOS Assembler with I/0 Macros

Name|Op

L 1

i | Operand
o R 1

L}

|

AL

o oy —
e — e e

T N
READ|dtfname, STR
L

The READ macro instruction is used to read
one record from the STR device specified in
the DTFSN (referenced in the READ macro by
"dtfname").

The area into which the data will be
read must be determined by the problem
program before the READ is issued. The
problem program must store the starting
address of the designated area into the
"abuck" portion of the expanded STR CCB
(see Figure U42). The problem program must
also store the length of the designated
area in "lbuck" in the STR CCB.

Before a READ macro instruction is
issued, the line must be SOPEN'ed, and a
CNTRL macro with the operand PREP (prepare)
must be issued and successfully completed.
The problem program must be sure that the
READ is complete (using the WAIT or WAITHM

macro) before issuing another READ for the
same adapter.

HRITE Macro

L]]
ame| Op | Operand
R 1

[T T=T
b e e

))
|WRITE| dtfname, STR
1 1

The WRITE Macro instruction is used to
write one record to the STR device
specified in the DTFSN macro (referenced in
the WRITE macro as “dtfname").

The area from which the data will be
written must be specified by the problen
program before the WRITE is issued. The
problem program must store the starting
address of the designated area into the
"abuck" portion of the expanded STR CCB
(Figqure 42). The problem program must also
store the length of the designated area in .
"]buck" in the CCB.

. Before a WRITE macro instruction is
issued, the line must be SOPEN'ed, and a
CNTRL macro with the operand INQ (inquiry)
must be issued and successfully completed.
The problem program must be sure that the
WRITE is complete (using the WAIT or WAITM
macro) before issuing another WRITE for the
same adapter.

CNTRL_Macro

r T T
|Name|{Op | Operand
[- L 4 . N

- —

T LE
|CNTRL{dtfname,code,n
A L

The CNTRL (control) macro instruction
provides orders to the Data Adapter and the
terminal. Orders apply to physical nondata
operations of a unit and are peculiar to
the unit involved.

CNTRL requires either two or three
operands. The first operand (dtfname) must
be the symbolic name of the DTFSN macro or

"line on which to perform the function
specified in the code operand of the CNTRL
macro. The second operand specifies the
mnemonic codes (see Figure 14) for the
operation to be performed:

EOF (End of Transnission) ends the
transmission to an STR device. EOF
may not be used during a read seguence
(the time between a PREP issued and an
EOF received).

INQ (Inquiry) sends INQ to the STR device.
INQ must be successfully completed
before a WRITE is issued. The INC
RCVD (inquiry received) bit on in the

Expanded STR CCB (see Fiqure 42)
should be checked. If INQ RCVD is ON,
the remote terminal is attempting to
transmit and the CNTRL INQ cannot
complete successfully. INQ may be
issued following a CNTRL PREP (when
INQ is issued following a PREP, the
PREP operation is discontinued). INQ
may not be issued during a read
sequence, or during a write sequence
(the time between an INQ issued and
EOF) .

PREP (Prepare) monitors the line for
receiving INQ, EOF, or TEL from the
STR device. Before a READ is issued,
PREP must be successfully completed.
PREP may not be issued during a write

sequence.

TEL (Alternate Mode) sends the TEL signal
to an STR device. TEL may not be
issued during a read or write
sequence.

The third operand (n) specifies a count
to be used if other than:

EOF - 2
TEL - 2
INQ - 10

PREP - Not applicable

This count is the number of times the
particular signal will be sent until the
correct reply to that signal is received.
When the count is exceeded, an error
condition results. An operator message is
given.

The DTFSN must be SOPEN'ed before any
CNTRL macro is issued.

If the problem program issues an EOF,
INQ, PREP, or TEL out of sequence (during a
read or write sequence), an operator
messaqge is issued, the STR lines are
properly disabled, and the job is
terminated with a dunmp.

The problem program must be sure that a
CNTRL macro is complete (using the WAIT or
WAITM macro) before issuing another
imperative STR macro instruction.
Exceptions to this are: SCLOS (close STR
adapter), which may be issued at any time,
and an INQ issued following a PREP, which
has been explained previously.

CDCNV_Macro

Name]Op

T
|
1
L]
|
L

A J
|Operand
4

= —
b e e e

L]
CDCNV|type,startaddr, lenqgth
1

Macro Instruction Statements 115

The CDCNV (code conversion) macro
instruction provides for the ccnversion of
the internal code of the transmitter
(EBCDIC, BCD, or Binary) to the standard
STR transmission code (fixed count
four-out-of-eight [4/81]), or for the
conversion of 4/8 code to the internal code
of the receiver.

. The girst»of three required operands,
"type", is coded as A, B, ¢, D, E, or F,
and specifies:

A - Convert for transmitting EBCDIC (256
character set) from System/360.

B - Convert for receiving EBCDIC (256
character set) from the terminal.

C - Convert for transmitting EBCDIC (256
character set) to a 1978 in column
binary mode.

D - Convert for receiving EBCDIC (256
character set) from a 1978 in column
binary mode.

E - Convert for transmitting BCD (56
character set) or binary (64 character
set) to any STR device. All invalid
characters are replaced with colon
(1248....) .

F - Convert for receiving BCD (56 character
set) or binary (64 character set) from
any STR device.

The second operand (startaddr) specifies
the symbolic name of a full word containing
the actual address of the leftmost byte of
the field to be converted.

The third operand (length) specifies the
symbolic name of a half word containing the
number of bytes to be converted.

For types A and C, each EBCDIC character
is converted to two 4/8 characters.
Therefore, the length of the field provided
for the converted characters must be twice
the length of the area being comnverted.

For types B and D, two 4/8 characters
are converted to one EBCDIC character.
Therefore, the length of the converted
field is one-half the length of the area to
be converted.

Also, for types E and F, the BCD or
substitute blank (2-8 punches) translates
as "2-4-8-0" in 4/8 code while a blank (no
punches) translates as "R-0-X-N" in 4/8
code. The CDCNV macro, types E and F, may
be modified to transmit or receive the BCD
or substitute blank. (See Appendix L.)

For a discussion of the WAIT and WAITM
macros used for processing with STR

116 S/360 BOS Assembler with I/0 Macros

devices, see PROCESSING RECORDS - -WITH
PHYSICAL IOCS, under WAIT Macro and WAITH
Macro.

SCLOS_Macro

Ly L]
Name|Op |0Operand
[] 1

L) L)
|SCLOS |dtfname
')

-

Logical IOCS also provides a unique macro
for completion of STR processing. The
SCLOS (close STR adapter) macro turns off
the adapter. It may be issued at any time
in the problem program. SCLOS must be

-issued when all transmission to the line

specified in dtfname is completed, or when
the problem program wishes to SOPEN the
line with different operands. The problen
program should SCLOS all lines before
end-of-job.

Binary Synchronous_communication

Logical IOCS provides macro support
routines designed to supply the facilities
for sending and receiving data. It uses an
IBM 2701 Data Adapter Unit equipped with an
IBM Synchronous Data Adapter--Type ITX,
connected by leased or dial line to a
remote IBM System/360, Model 30, 40, 50,
65, 67 (vorking in 65 mode), or 75. The
remote CPU is equipped with an IBM 2701
Data Adapter Unit with an SDA II or an IBM
2703 Transmission Control Unit with Binary
Synchronous features.

BSC Line Control

Transmission is initiated in a
point-to-point, CPU-to-CPU communications
environment when one CPU successfully sends
the Inguiry (ENQ) signal to the other CPU.
For a leased line, BSC macro support
provides the CNTRL Prepare (PRP) macro
instruction to receive the ENQ and the
CNTRL ENQ macro instruction to send the
ENQ. (READ ENQ--Type TQ--also receives the
ENQ signal.)

The ETX (ETB is also valid) control
character is expected to be the last
character of a message and, as such,
indicates normal completion to a READ
macro. Normally STX is the valid
start-character of a text message. The SOH
character is also valid. For transparent
text, DLE STX and DLE ETX (or DLE ETB) are
valid text-framing characters.

BSC support routines maintain a systenm
of alternating acknowledgments (ACK-0 and
ACK~-1), positive responses to alternate
text messages, for protection against
message duplication or loss. The WRITE
macro includes, following the actual WRITE

channel command, a READ command to receive
the alternating acknowledgment. READ ENQ
(type TQ) issues a READ command to receive
a control character (ENQ) from the remote.
CPU. All other READ macro types issue a
WRITE command to send the appropriate
alternating acknowledgment for the last
message (or control character) received,
before issuing a READ command for this
message. If the incorrect alternating
acknowledgment is received, BSC error
recovery retransmits the previous text
message or control character until the
correct alternating acknowledgment is
received or until the retry count (RCOUNT
in the DTFBS macro instruction) is
exhausted. TIf the retry count has been
exceeded and the correct alternating
acknowledgment has not been received, the
Message Format Error and Wrong ACK bits are
posted to the BSC CCB.

BSC .error routines perfocrm cther
line-control analysis functions. The CNTRL
macros (except CNTRL EOT on a leased line
and CNTRL DSC) expect certain respcnses and
include the channel commands to receive
these responses.

Macro Response -Expected
CNTRL PRP ENQ

CNTRL EOT (dial line) DLE EOT, EOT, or ENQ
CNTRL WABT ENQ

CNTRL ENQ ACK-0

Invalid or unexpected responses detected by
BSC error routines are posted to the GCB
(unexpected response and I/0 error) after
the retry count is exhausted.

Refer to Appendix M, Part-2 for CCB bits
to be checked after completion of BSC
operations. Refer to Appendix-M, Part_ 1.
for a table containing a more precise
description of each centrol character.
Refer to Appendix-M, Part-3 for a sample
program illustrating how the problen
program can use BSC support macro
instructions for basic line control.

When BSC support macro instructions are
used to transmit and receive data, the data
adapter (SDA II) must be defined by the
file-definition macro DTFBS (Define The
File for Binary Synchronous Communication).
This macro (and the DTFRF macro) are
described under File Definition Macros.

Before any processing can be done within
the CPU-to-CPU environment, the data
adapter must be initialized. Logical I0CS
provides the unique imperative macro
instruction, BOPEN (open BSC adapter) to
initialize the adapter.

BOPEN.Macro

1 3 1
Name|Operation| Operand
1 1l

)
| DTFNAME=dtfnane,
| INTRFC=A,
B
| DIAL=YES,
[¥oO
|
[CODE=A
| B

1

L]
| BOPEN

f
|
k
l
|
|
I
|
|
|
|
L

b —— —— -
. P

The BOPEN macro establishes the mode and,
on a leased line, turns on the adapter (SDA
II). :

BOPEN must be issued for a line before
any IDTIAL macro or any READ, WRITE, or
CNTRL macro. It may be reissued with the
same .or different parameters following the
BCLOS macro instruction.

The first-kevword»operand-specifies the

symbolic name given -to DTFBS for the line.

The second-keyword . operand. (INTRFC=)
specifies which adapter interface (A or B)
is to be used. If this operand is omitted,
INTRFC=A is assumed.

The third keyword operand - (DIAL=)
specifies whether the line is dial
(DIAL=YES) or leased (DIAL=NO). If the
DIAY. parameter is omitted, DIAL=NO is
assumed.

The fourth -keyword operand (CODE=)
specifies the code that is EBCDIC (A or B).
This parameter applies when the dual code
feature of the SDA II is present. If the
CODE parameter is omitted, CODE=A is
assumed.

If DIAL=YES is specified, the BOPEN
macro must be followed by an IDIAL macro
instruction to establish the connection.
If DIAL=NO is specified, or assumed, BOPEN
should be followed by a CNTRL operation
(PRP or ENQ) or may be followed by a READ
ENQ (Type TQ).

At the completion of the BOPEN macro,
the problem proqram should check for normal
completion (as in Appendix M, -Part-2)
before continuing.

IDIAL Macro-

The IDIAL macro instruction performs the
initial line control functions necessary
for dial lines. It dials a number,
monitors a line for "ringing" or handles
ID-verification. IDIAL also reads or
writes one text record from or to the
remote CPU.

Macro Instruction Statements 117

IDIAL must be issued for a dial line
immediately following the BOPEN macro
instruction and preceding any READ, WRITE,
or CNTRL operation. IDIAL should not be
used for a leased line.

The area address and length fields in
the expanded BSC CCB must be loaded with

the starting address and length (including
the text-framing characters) of the data to
be read or written before issuing the IDIAL
macro. '

The IDIAL macro is coded with the
keyword operands as shown in Figure 28.

§ L] Al T 1
| Name | Operation | Operand | Conments |
1 L L L]
| T T L] " N 1
| | IDIAL | DTFNAME=dtfname | Symbolic name given to the DTFBS for this line. |
1 1] 1 1
1 1 T 1
| | | CALL# | This CPU is calling, answering, or i
| | | DIAL= ANS* | establishing the connection with |
| | | MAN | the remote CPU manually. |
L L 1l d d
1 1 T L] 1
.		NONE	ID-verification: no ID-verification,
	{ SNDID	send ID characters, receive	
		0ID= RCVID	ID characters, or both send and
{ | | BOTH | receive ID characters. |
- i } } {
| | | RD | Read a text record. |
| | | OPTYPE= WT | Write a text record. |
| | | WTX | Write a record of transparent text. |
i [] 1 1 1
[8 L] 1 L} 1
| | | REG=n | General register (2-1%1) to be loaded by the |
| | [| problem program with the address of the |
| | | | IDLST. This parameter may be omitted only |
| 1 | { if there is no IDLST (i.e., DIAL=ANS/MAN, |
| | | | ID=NONE) . i
F L . 1 1 :
| # If DIAL=CATL, the Automatic Call Feature must be installed. |
| OPTYPE must be either WT or WTX. |
| |
| * If DIAL=ANS, OPTYPE must be RD. |
| |
| © If the ID parameter is omitted, ID=NONE is assumed. |
1]
Figure 28. IDIAL Macro

For OPTYPE=WT (normal WRITE), the
problem program normally should provide the
text-framing characters, STX and ETX. For
OPTYPE=WTX (transparent WRITE), the problem
program must supply the start-character
sequence, DLE STX; macro support provides
the end-character sequence, DLE ETX. As
with any WRITE macro, no line controcl
characters should appear in the text unless
a transparent WRITE is used.

ID-verificgtion procedures, if included,
allow two CPU's connected by dial line to
identify themselves by exchanging sSequences

118 S/360 BOS Assembler with I/0O Macros

of up to 15 hexadecimal graphic characters.
The problem program must provide these
character sequences in an IDLST. The
correct control (or response) character
must be provided following the last

~ ID-character in each ID-sequence and must
be ddded to the count. See Figure 29 and
Appendix M, Part 1. The IDLST may also
contain the digits to be dialed (for
DIAL=CALL), up to 15 digits (expressed as
characters or as hexadecimal digits).
Refer to Figure 30 for the format of the
IDLST and for examples.

CONTROL (OR RESPONSE) CHARACTER TO BE INCLUDED
IDIAL AFTER THE LAST ID-CHARACTER x©

OPERANDS

SNDID CHARACTERS RCVID CHARACTERS

DIAL=CALL/MAN

e o s e e e — oy —— —
——— —— e ——

OPTYPE=WT/WTX ENQ ACK-0
DIAL=ANS/MAN
OPTYPE=RD ACK-0 | ENQ

* Refer to Appendix M, Part 1 for the hexadecimal representation of the character and
the length .in bytes to be added to the count.

0 The problem programmer must provide both SNDID and RCVID control (or response)
characters if he includes any. ID-verification (if he codes ID=SNDID/RCVID/BOTH).

o — . - I M ——— — S . m—— ——)
| S (SR P g SN S ——

Figure 29. ID-Character Sequence, Control Characters

Macro Instruction Statements 119

IDLST NUMBER OF DIGITS TO BE DIALED

DIAL DIGITS

COUNT *

ID CHARACTERS TO BE SENT (SNDID)

COUNT *

ID CHARACTERS EXPECTED (RCVID)

INTO THIS AREA AND CHECKED **

RCV AREA - ID CHARACTERS RECEIVED WILL BE READ

(or response) character expected.

* COUNT includes the number of ID - characters (up to 15) plus
the length in bytes of the control (or response) character.

** The length of the RCV AREA should be equal to the number of
ID - characters expected plus the length in bytes of the control

Examples:

1) DIAL=CALL,ID=NONE

IDLST C234

[No other parameters are required]

no. of digits - dial digits

(2) DIAL=CALL,ID=SNDID

IDLST [X'4' | X'01020304' | no. of digits - dial digits
X'4' | C'RAL' | X'2D'] count - SNDID - ENQ
X'2' { X"1070' count - ACK-0
RCV AREA

(3) DIAL=CALL,ID=RCVID

IDLST [X'4' | C'1234' no. of digits - dial digits
X'1' | X'2D' count - ENQ
X'5'] C'BOS' [X'1070'| count - RCVID - ACK-0
RCV AREA

(4) DIAL=CALL,ID=BOTH

IDLST | X'4' | C'1234' no. of digits - dial digits
X'4" | CRAL' | X'2D'] count - SNDID - ENQ
X'5' | C'BOS' | X'1070'| count - RCVID - ACK-0
RCV AREA
Fiqure 30. IDLST Format and Examples

ID-checking is performed by the CPU that
receives an ID-sequence. For example, if
ID=SNDID is coded, the remote CPU receives
and checks the ID-characters and control
(or response) characters. 1If the specified
ID-sequence(s) and responses are valid, the
first text record is read or written.

The WAIT macro or WAITM macro should be
used to check for the completion of the
IDIAL macro instruction.

120 S/360 BOS Assembler with I/0 Macros

(5) DIAL=A NS/MAN, ID=SNDID,OPTYPE=RD

IDLST | X'5' [C'BOS'|X'1070'] count - SNDID - ACK-0
X'1'| X'2D' count ~ ENQ
RCV AREA

(6) DIAL=A ND/MAN, ID=RCVID,OPTYPE=RD

IDLST | X'2' | X'1070" | count - ACK-0
X'4'" | C'RAL'| X'2D' count - RCVID - ENQ
. : RCV AREA

) DIAL=ANS/MAN, ID=BOTH, OPTYPE=RD

IDLST [X'5' T C'BOS' | X'1070'] count - SNDID - ACK-0
X'4' | C'RAL' | X'2D' count - RCVID - ENQ
RCV AREA
Notes:

® For DIAL=MAN, OPTYPE =WT/WTX the IDLST form is the
same as for the DIAL=CALL examples, except that no dial
digits are required.

e For DIAL=ANS/MAN, ID =NONE no IDLST is required.
(The REG =n parameter on the IDIAL macro instruction is
also not required.) The IDLST will be provided by macro

support.

Upon .completion of the IDIAL macro
instruction, the problem program should
check the normal completion bit in the BSC
flag bytes of the CCB. If normal
completion is not indicated, the program
should check further in the "completion"
and "received" BSC flag bytes. (See
Appendix M, Part-2.)

once the proper connection has been
established (with BOPEN and, on a dial
line, IDIAL), logical IOCS provides

imperative macro instructions for the
actual processing (sending or receiving) of
data.

READ_Macro

T T
Name|Operation|Operand
] 1

L
l
: L] L]
| | READ |dtfname, BSC,type—-ccde
1 1

—

e e e e o

The READ macro instruction provides five
READ types, each of which causes the
reading of one record from the remote CPU.

The five types are:

. Continue (TN). One record, of the
length specified in the length field of
the expanded BSC CCB, is read into the
data drea pointed to in the CCB.

. Continue with leading graphics _ (TG) .
‘The graphic characters contained in the
parameter list pointed to by the CCB
are written to the remote CPU. (See
Figqure 31 for the form of the parameter
list.) One record, of the length
specified in the CCB, is then read into
the data area pointed to in the
parameter list.

. Repeat (TP). A NAK control character
is sent to the remote CPU to request
retransmission of the last record. The
record, of the length specified in the
CCB, is read into the data area pointed
to by the CCB.

. Repeat with leading graphics_ (TL). The
graphic characters contained in the
parameter list pointed to by the CCB

DTFBS
(CCB) ARE.:\ ADDFESS FIIELQ
LENGTH READ area
FIELD lengtf\
o~ PARAMETER
LIST

Note: There may be up to seven graphic characters.
The byte preceding the first graphic character is
reserved for a binary count of the number of graphics.

Fiqure 31.
(Type-Code TG or TL)

are written to the remote CPU. The NAK
control character is then sent to the
remote CPU to request retransmission of
the last record. The record, of the
length specified in the CCB, is then
read into the data area pointed to by
the parameter list. See Fiqure 31.

. Inquiry_ (TQ). This READ-type may be
used to read the ENQ control character.
The ENQ signal, when received, is read
into the response area of the CCB.

The third operand on the READ macro must
contain one of the available type-codes:

hre
S

See the preceding description of each type.

Before issuing a READ macro, (except
READ TQ), the area address field and the
length field of the expanded BSC CCB must
be properly loaded with the starting
address and length (including the
text-framing characters) of the data area
(or the parameter list address and data
area length the types TG or TL--READ's with
leading graphics).

The line must be established (with BOPEN
and, on a dial line, IDIAL) before the
first READ macro instruction is issued. A
CNTRL Prepare (PRP) should have been
successfully completed before issuing the
first READ on a leased line.

L L LJ

READ area address

CT | GRAPHIC CHARACTERS %

1 | 1

Parameter List for READ with Leading Graphics

Macro Instruction Statements 121

The WAIT or WAITM macro should be used
to check for the completion of the READ
macro instruction.

Upon completion of the READ macro
instruction, the problem program should
check the normal completion bit in the BSC
flag bytes of the CCB. If normal
completion is not indicated, the program
should check further in the "completion"
and "received" BSC flag bytes. (See
Appendix M, -Part.-2.) If normal completion
is indicated, the problem program should
also check the EOT received bit in the BSC
flag bytes.

WRITE Macro

W L
Name|Operation|Operand
1 N}

- — o — o
T SR

LI T
|WRITE |dtfname,BSC,type-code
1 1

The WRITE macro provides five WRITE types,
each of which causes the writing of one
record to the remote CPU.

The five WRITE types are:

. Continue (TT). One record, of:the
length specified in the CCB, is written
from the data area pointed to in the
CCB.

. Transparent-Text (TX) or Transparent
Block_ (TXB). One record (or block) of
the length specified in the CCB, is’
written from the data area pointed to
in the CCB and the correct
end-character sequence (DLE ETX or DLE
ETB, respectively) is written.

. Conversational - (TC}). The problem
program must set up a parameter list
containing the length and starting
address of the WRITE data area and the
READ data area in that order. One
record, of the lenqgth specified in this
list, is written from the data area
specified in the list. The response
message (or control character) is then
read into the specified READ data area.
The parameter list is of the form
indicated in Figure 32.

° Transparent:.Conversational (TV). One
record, of the length specified in the
parameter list pointed to in the CCB is
written from the data area pointed to
in the parameter list. The character
sequence DLE ETX is written. The
response message (or control character)

"is then read into the specified READ
data area. Refer to Figure 32 for the
correct form of the parameter list.

The third operand must contain one of
the five available type-codes:

TT
TX
TXB

TC S
TV

See the preceding description of each type.

Before issuing a WRITE macro, the area
address field and the length field of the
expanded BSC CCB must be properly loaded
with the starting address and length
(including the text-framing characters) of
the data area (or with the parameter list
address and X'FFFF' for types TC or
TV--conversational WRITE's). For

T T T ¥ T

WRITE area starting address

[l + Il I

T T T T

READ area starting address
1 1 — 1

¥ L) T
DTFBS .
(CCB) AI?EA ADD|RESS FIE|LD —_—
LENGTH T
FIELD X'FFFF!
PARAMETER |
LIST WRITE area length
READ area length
Figure 32, Parameter List for Conversational WRITE's

(Type TC or TV)

122 S/360 BOS Assembler with I/0 Macros

WRITE~-types TX, TXB, or TV, the DLE ETX (or
DLE ETB) character sequence provided by
macro support is not to be included in the
length.

The line must be established (with BOPEN
and, on a dial line, IDIAL) before the
first WRITE macro instruction. A CNTRL ENQ
should be issued before the first WRITE
macro on a leased line.

The problem program normally should
provide the text-framing characters, STX
and ETX, for WRITE Continue (type TT) and
WRITE Conversational (type TC). For
transparent WRITE's (types TX, TXB, and
TV), the problem proqram must supply the
start-character sequence, DLE STX. Macro
support provides the correct end-character
sequence: DLE ETX for type TX or TV, DLE
ETB for type TXB. No line control
characters should appear in the text unless
a transparent WRITE is used.

A conversational WRITE (type TC or TV)
that reaches normal completion (a valid
text message was received) should be
followed by a READ Continue (type TN) to
ensure that the system of alternating
acknowledgments is correctly maintained. A
conversational WRITE (type TC or TV) that
receives graphics or some other response
(not a valid text message) may be followed
by another WRITE or CNTRL operationm.

On a switched line, if an EOT is
received in response to a text write, the
transmitting CPU (which issues the WRITE
macro) must issue a CNTRL EOT macro
instruction to allow the receiving CPU to
issue CNTRL ENQ and begin transmitting.

The WAIT or WAITM macro should be used
to check for the completion of the WRITE
macro instruction.

Upon completion of the WRITE macro
instruction, the problem program should
check the normal completion bit in the BSC
flag bytes of the CCB, If normal
completion is not indicated, the program
should check further in the "completion"
and "received" BSC flag bytes. (See
Appendix M, Part 2.)

CNTRL Macro

N X L
Name|Operation|Operand
' 1

{
| dtfname, code
1

o oty
SRR R

1
| CNTRL
1

The CNTRL (control) macro instruction
provides orders to the data adapter
pertaining to line control.

CNTRL requires two operands. "The first
operand - (dtfname) must be the symbolic name
on the DTFBS macro. The second operand
specifies one of the following mnemonic
codes for the operation to be performed:

o PRP . (Prepare) is used to monitor a
non-switched line for activity. The
operation completes when a signal of
activity (normally an ENQ) is received
from the remote CPU. CNTRL Prepare
should be coded preceding the first
READ macro and following BOPEN on a
non-switched line. CNTRL Prepare
should npt be used for a dial line.

. EOT (End-of -Transmission) is used to
send the End-Of-Transmission signal to
the remote CPU. On a non-switched
line, there is no provision for reading
a response from the remote CPU. On a
switched line, Message Format Error and
the appropriate bit in the Received .
Byte of the Expanded BSC CCB (EOT, DLE
EOT, or ENQ) is posted.

. WABT (Wait Before Transmitting) sends
the WAit—-Before-Transmitting (WABT)
sequence to the remote CPU and waits
for a response, normally an ENQ. The
problem program that requests the delay
may reissue CNTRL WABT if not yet ready
to receive when the ENQ is received.

. DSC (pisconnect) is used, on a switched
line, to indicate to the remote CPU
that the connection is being broken
(the line is being disabled) at this
CPU. CNTRL Disconnect must be followed
by BCLOS to disable the line. CNTRL
Disconnect should not be used on a
leased line.

. ENQ (Tnguiry) is used to bid for the
line and initiate transmission by
sending the ENQ control character.
CNTRL ENQ normally precedes a WRITE
macro. The expected response is ACK-9.
When CMNTRL ENQ elicits an outstanding
acknowledgement from the remote CPU (i.
e., when a WABT has been received), the
response may be ACK-0, ACK-1, or NAK.

The line must be established (with BOPEN
and, on a dial line, IDIAL) before issuing
the CNTRL macro.

The problem program must be sure that a
CNTRL macro is complete by using the WAIT
or WAITM macro instruction immediately
following the CNTRL macro instruction.

Upon completion of the CNTRL macro
instruction, the problem program should
check the normal completion bit in the BSC
flag bytes of the CCB. If normal .
completion is not indicated, the problem
program should check further in the

Macro Instruction Statements 123

"completion" and "received" BSC flag bytes.
(See Appendix M, Part 2).

BCILOS -Macro

Logical IOCS provides a unique macro
instruction for completion of BSC
processing. The BCLOS macro turns off the
data adapter (SDA II) and clears the BSC
flag bytes. Before disabling the adapter,
BCLOS halts I/O on any command outstanding
to the SDA II. BCLOS must be issued when
all transmission on the line specified in
dtfname is completed or when the problenm
program wishes to use BOPEN (and IDIAL)
again with different parameters.

Al T
Name{Operand |Operand
1 1

.

o b e e o

L) {
| BCLOS | dtfname
1 A

The problem program should check for the
completion of BCLOS by using the WAIT or
WAITM macro.

ERRPT Macro

When all data transmissicn is completed and
end-of-job is reached, the problem program
using BSC support macros myst issue the
ERRPT macro. ERRPT displays the error
statistics:

Data Check

Lost Data .
Intervention Require
Time Out

Unit Check

® 0o 0 0 o

and the count of total transmissionmns
received for this job. These hexadecinal
counts illustrate errors on the line or in
the modern equipment. Regular display of
the counts ensures maximum. throughput for
the problem program through early detection
of frequently occurring errors.

ERRPT also performs functions essential
to the proper termination of a BSC job.
ERRPT removes the CCB from the CCB table
(BTAB) kept in the supervisor. The CCB is
entered in the table when a BOPEN macro is
issued for the CCB, and is only deleted by
ERRPT. Therefore, to aveid filling up the
CCB table, ERRPT should be issued following
the BCLOS macro for this CCB.

L] 1
Name|Operationi{Operand
[} 1

e e -

1 L
| ERRPT | dtfname
L L

The ERRPT macro should follow the BCLOS
macro, and, at end-of-job, precede the EOJ
macro.

124 S/360 BOS Assembler with I/0 Macros

For more detailed information on the
format of these messages, refer to IBM
System/360 -Basic-Operating System, Operator:
Messages, Form-C24-5024.

For a discussion of the WAIT and WAITHM
macros used for processing with BSC
support, see Processing Records-with
Physical IOCS, under WAIT Macro and WAITM
Magcro. :

PROCESSING RECORDS WITH PHYSICAL IOCS

Records can be transferred to or from an
input/output device by issuing physical
I0CS macro instructions. These
instructions relate directly to the
physical IOCS routines and bypass all
logical IOCS routines. Thus routines for
such functions as blocking or deblocking
records, performing programmed _ .
wvrong-length-record checks, switching I/O
areas when two areas are used, and setting
up Channel Command Words (CCW) are
eliminated. Any of these functions that
are required for a problem program must be
provided by the user in. his own
programming.

Physical IOCS routines control the
transfer of data to or from the external
devigce. These routines are:

Start I/0
Interruption
-Channel Scheduler
Device Error

Thus, physical IOCS macro instructions
provide the user with the capability of
obtaining data and performing non-data
operations in I/0 devices, by issuing only
the I/0 commands that he requests. For
example, if he is handling only physical
records, he does not need the IOCS routines
for blocking and deblocking logical
records. He can write his owp routines to
handle the characteristics of his data file
logically.

Three macro instructions are available
to the programmer for direct communication
with physical I0CS: CCB (Command Control
Block), EXCP (Execute Channel Program), and
WAIT. These are explained in the following
sections. Whenever physical IOCS macro
instructions are used, the proqrammer must
construct the Channel Command Weords (CCW)
for his input/output operations. He uses
the assembler-instruction CCW statement for
this. However, when using physical I0CS
for 7-track tapes, the user need not write
CCW's for setting the mode of the tape.
Physical IOCS automatically performs this

function. He must also recognize and
bypass checkpoint records if they are
interspersed with data records on an input
tape.

CCB_Macro

1
|Name
1

]]
{Op |Operand
1]

]] 1
|blockname{CCB{SYSnnn,command-list-name,X'yyyy"
L

1 1

The CCB (Ccmmand Control Block) macro
instruction must be issued once in the
problem program for each I/0 device that is
controlled by physical IOCS macro
instructions. It causes a command control
block (Fiqure 33) to be created. This
block is necessary to communicate
information to physical IOCS so that it can
perform desired operations (for example,
start I/0). The command control block also
receives status information after an
operation, and makes this available for use
by the problem program.

The CCB instruction must be labeled
(Blockname) with a symbolic name. This
name must be the operand in the EXCP and
WAIT instructions, which must refer to the
command control block.

Two operands are required in this CCB
instruction. A third operand is optional.
The first operand specifies the symbolic
unit (SYSnnn) for the actual I/0O unit with
which this control block will be
associated. The name may be SYSRDR,
SYSLST, SYSIPT, SYSOPT, SYSLOG,
SYS000-sY¥s254. The actual I/O unit is
assigned to the symbolic unit by a Job
Control ASSGN card, or by the SYMUN macro
instruction.

The second operand (command-list-name)
specifies the symbolic name of the first
CCW to be used with this CCB. This name
must be the same as the name specified in
the assembler CCW statement that constructs
the channel command word.

The third operand (X'yyyy') may be used
to set the bits of bytes 2 and 3 at
assembly time. After the user determines
which bits he wishes to set on, and which
off, he enters the hexadecimal
representation of the binary value that he
wishes, The hexadecimal value must be
preceded by X and enclosed in single
quotes. For example, to set on byte 2, bit
6, he would enter X'0400°'.

Only the last five bits of byte 2 are
used by the problem program to communicate
with physical IOCS, as shown in Figure 33.

However, the user may also wish to set (at
assemnbly time) some bits that IOCS normally
sets during program execution. For
example, if the user sets bit 6 of byte 3
on at assembly time, he can cause the
program to act as if the channel 9 overflow
condition has occurred when he begins
executing his progranm.

From the specifications in this CCB
instruction, the macro sets up an 8-byte
command-control block (Fiqure 33) as
follows:

Bytes Contents

0-1 The first two bytes are used for a
chain field that physical IOCS uses
for channel queueing. After a
record has been transferred, IOCS
places the residual count in these
two bytes. The problem program can
use this to check .the length of the
record that was transferred.

2-3 The next two bytes are used for
transmission of information between
physical IOCS and the problenm
programe. (For example, the problem
program can test byte 2, bit 1 to
determine if the I/0 device
detected a wrong-length record when
data was transferred.)

All bits are set to a 0 (off)
when the problem program is
assembled unless the third operand
is included in the CCB macro
instruction. If the third operand
is included, all bits set by IOCS
should be assembled as zeros (off).
During execution, each bit may be
set at 1 (on) by the problem
program or by a condition detected
by physical I0CS. 1In byte 2, bits
3 and 5-7 are turned on by the
problem program. Any bits that are
turned on, during progranm
execution, by physical IOCS are
reset by IOCS the next time an EXCP
macro using the same CCB is
executed. The condition indicated

Macro Instruction Statements 125

126

by the setting of each bit is shown
in Figure 34.

Bit 0 of byte 4 is used to indicate
that a program-controlled
interruption has occurred. Like
the bits in bytes 2 and 3 (see
Fiqures 33 and 34), this is used to
transfer informaticn from physical
JoCS to the problem program. The
other bits of bytes 4 and 5 are a
hexadecimal representation of the
symbolic unit for the I/0 device,
as specified in the first operand
of this CCB instruction.

S/360 BOS Assembler with I/0 Macros

6-7 The last two bytes contain the
address of the CCW (or first
address of a chain of CCH's)
associated with this CCB and
specified symbolically in the
second operand.

For a description of the CCB, expanded
for STR use, see: File Definition-Macros,
Processing with-STR Devices- (DTFSN, -DTFRF) .

For description of the expanded BSC CCB,
see: File Definition Macros,-Bipary-
Synchronous Communication (DTFBS, DTFRF}.

Used For:

Bits ———

Set On by

Bits ——]

Set ON by -

Figure 33.

Chain Transmission Symbolic Unit ccw
Count Information Address Address
12 3|4 5(6 7
| . [1 1
| Channel Queuveing | Transmitting I | Hexadecimal Representation of | Address of CCW |
I [Information 1| SYSnnn (Assuming that the | Associated)
| Residual Count ! Between Physical | 1 High-Order Bit of Byte 4 is 0): with This CCB |
| esidual Loun ! [OCS and Problem {1 SYSRES = 0000 ' |
| ' Program 1| SYSRDR = 0004 : ;
| !) sysLsT=0008 | |
| | 1 SYSIPT=000C | '
! , t SYSOPT =0010 !
| ! |1 SYSLOG =0014 ' |
| : [| SYS000=0018 ! !
| | | | SYS001=001C ! !
I etc. I |
| | I L | |
| 3 1 1
T SN
P R -
-~ - =~ ~ =~ ~
- ~ ~
- - RN ~
-7 Byte 2 \\\\\\
- ~ ~
Traffic Wrong- Unrecov- | Accept Wait for Accept 2311 User = 3
Bit Length erable Unrecov~- Reserved Device End |Data Check Error |
(Wait) Record 1/O Error erable for PIOCS in Count, or| Routine
1/0 Error Disk or I
TpiRead Err. |
0(X'80') 1(X'40") 2(X'20") 3(x"10") 4(x'08') |5(X'04") 6(X'02") 7(X'01") |
plocs | mocs 'eiocs ', opr. | Lpeopr, oppes | opropr. ! |
| | | ! o ! | ! | | | |
| | o [[Lo 1 | [
[t |
| ' l
| |
| Byte 3 | Byte 4 |
Data Track End of 2540 Equip.| Question- |Unit Excep= | Carr. Chan.| Device End | Program
Check in Overrun- Cylinder Chk., or able tion (End 9 Overflow, Controlled
Count Disk Disk Disk or Condition |of File), or | or Verify Interruption
Area = Disk = ——— — 4+ — — — — - Tape Read Carr. Chan. | Error for
——————— 1287 1285/1287 | Error 12 Overflow | Disk
1285/1287 | Late Non- fF—-=-=-=-4 P ——=———+4 = —— —
Data Check | Stacker Recovery 1285/1287 1287 Hopper | 1285/1287
Select Keyboard Empty Equipment
(Document Correction (Document | Check
—————— Mode) (Journal Mode) -—— ===
BSC Lost - — — = '{ope) BSC Time
Data BSCBus- | = p=—=—--— - Out
Out Check BSC
Intervention
Required
0(X'80") 1(X'40') 2(X'20") 3(x'10") 4(X'08") 5(X'04') 6(X'02") 7(X'01')] 0(X'80")
PIOCS ! PIOCS 1 PIOCS | PIOCS ! PIOCS PIOCS PIOCS PIOCS | PIOCS !

PIOCS = Physical 10CS

Pr. Pr. = Problem Program

Command Control Block (CCB)

-

Macro Instruction Statements

127

CONDITION INDICATED
BYTE BIT
1 (ON) 0 (OFF)
2 0 - Traffic Bit (Wait) 1/0O Completed (Channel End) 1/O Requested and Not Completed
1 - Wrong -Length Record Bit 41 in CSW is ON --
2 - Unrecoverable 1/0 Error 1/0 Not Executed --
3 - Accept Unrecoverable I/0 (Bit 2 ON) Return to User after Physical IOCS Attempts to Terminate Job when Unrecoverable
Correct 1/O Error Error Detected
4 - Reserved for PIOCS -- --
5 - Wait for Device End Printe@o be Tested for Carriage Channel 9or 12 | - -
overflow, or Punch to be tested for errors, or the -
user has issued a CCB requesting physical 10CS
to post byte 3, bit 7 ot Device End.
6 - Accept Data Check in Count, or Disk or | Return to User After Physical 10CS Attempts to Terminates the Job if the Read
Tape Read Error. (Bit 3 of Byte 3 ON) Correct the Disk or Tape Error. Cannot be Accomplished
7 = User Error Routine User will Handle Unit Check (Test Bit 2) Physical IOCS Error Routine
3 0 - Data Check in Count Area - Disk Yes No
= Data Check: 1285 or 1287 - Yes No
- BSC Lost Data Yes No
1 - Track Overrun - Disk Yes No
- Late Stacker Select 1287 Document Mode | Yes No
- BSC Bus - out Check Yes No
2 - End of Cylinder - Disk Yes No
- 1285/1287 Non -Recovery Document ‘Yes No
Jam or Tom Tape '
3 - 2540 Equipment Check, or Tape or Disk | Yes No
Read Error
- 1285/1287 Keyboard Correction Journal | Yes No
Tape Mode
- BSC Intervention Required Yes No
4 - Questionable Condition Card: Unusual Command Sequence --
Tape: Converter Check
Disk: No Record Found
5 - Carriage Channel 12 Overflow *#, or Yes No
Unit Exception (End of File)
- Hopper Empty 1287 Document Mode Yes No
6 - Carriage Channel 9 Overflow *#, or Yes No
Verify Error for Disk
- 1285/1287 Equipment Check Yes No
- BSC Time Out Yes No
~>| 7 - Device End Has Occurred* --
4 0 - Program-Controlled Interruption PCI Bit in PSW is ON --

* Set ON Only if Byte 2, Bit 5is ON
DVE needed in [OCFG Macro

Figure 34.

128

Conditions Indicated by CCB Bytes 2, 3, and &4

S/360 BOS Assembler with I/0 Macros

EXCP_Macro

op Operand

EXCP blockname

[T T=]
o e o
e S af ———

b e b e

as "dtfnameD," where dtfname is the
symbolic name of the DTFBS macro.

WAITM. Macre

The EXCP (execute channel program) macro
instruction requests physical IOCS to start
an input/output operation for a particular
1/0 device. The symbolic name (blockname)
of the CCB established for the device is
the only operand required in this
instruction.

Physical IOCS determines the device
concerped, from the command control block
specified by blockname, and either starts
the device or places the command control
block (CCB) in a channel queue. "Program
control is then returned to the problem
program. If the CCB is in a queue, the
actual transfer of data will be started at
some later time, when the CCB reaches the
top of the queue.

WAIT Macro-

L) s L] 1
{Name | Op | Operand |
1 1 1 1
L] L] L] 1
| | WAIT | blockname |
L L 1 - 1

This WAIT or WAITM macro instruction is
issued whenever the program requires that
an I/0 operation, started by an EXCP
instruction, be completed before execution
of the problem proqgram continues. For
example, the transfer of data (a physical
record) to main storage must be completed
before that data can be added, moved to
another area of main storage , or otherwise
processed. When this WAIT instruction is
executed, the program enters a waiting loop
until the related CCB indicates that the
associated input/output operation is
finished. Then programming automatically
continues, and the data can be processed.
The WAIT (or WAITM) macro should be issued
to check for the completion of BSC support
macros. .
The symbolic name (blockname) of the CCB
established for the I/0 device is the omnly
operand required in this instruction. This
is also the same name as that specified in
the EXCP instruction for this device. When
using STR macro instructicns, the symbolic
name (blockname) of the CCB is referred to
as "dtfnameB", where dtfname is the
symbolic name of the DTFSN macro. When
using BSC macro instructions, the symbclic
name (blockname) of the CCB is referred to

Al T
Name|Op {Operand

1 4.

L]

WAITMiblockname!, blockname2....

| blocknamen, reg
L

o ——
SR Sy

This macro is used with both physical IOCS
and logical IOCS for STR devices or for BSC
support. The WAITM macro instruction
allows the problem program to wait on the
completion of one of several specified I/O0
operations. When the WAITM macro is
executed, the problem program enters a
waiting loop until the traffic bit in. any
one of the specified CCB's indicates that
the associated I/0 operation is completed.

If the problem program is using physical
I0CS, "blockname" is the symbolic name of
the CCB. For STR devices an expanded CCB
is generated by the DTFSN macro. The
blockname for a DTFSN CCB must be
referenced in the operand field of a WAITM
(or WAIT) macro as "dtfnameB" (where
dtfnane is the symbolic name of the DTFSN).
The maximum number of blocknames that can
be specified is 17. For BSC support, the
expanded CCB is generdated by the DTFBS
macro. The blockname for a BSC CCB must be
referenced in the operand field of a WAITM
(or WAIT) macro as "dtfnameD" (where
dtfname is the symbolic name of the DTFBS
Macro) . '

The last operand (req) is a general
register number (2-11). The address of the
associated CCB (dtfnameB) is loaded into
this register upon completion of an I/O
operation.

~The WAITM macro must be issued to check
for completion of a SOPEN, READ, WRITE, or
CNTRL macro, when the problem program uses
these macros with respect to STR I/0
operations. WAITM (or WAIT) should also be
issued to check for the completion of BSC
support macros.

CHNG - Macro
1] T B b} 1
|Name|{Op * |Operand |
L. i [] [
q L) ¥ 1
| |CHNG |S¥YSnnn |
[L 1 J

This macro instruction is used with both
logical and physical I0CS. It is described
in the group included under Processing
Records -Consecutively.

Macro Instruction Statements 129

WRITING CHECKPOINT RECORDS

When a problem program is expected to run
for an extended period of time, provision
should be made for taking checkpoint
records periodically during the run. These
records contain the status of the job and
the system at the time records are written.
Thus, they provide a means of restarting at
some midway point rather than at the
beginning of the entire job, if processing
must, be terminated for any reason before
the normal end of job. For example, a job
of higher priority may require immediate
processing, or some malfunction such as a
power failure may occur, and cause such an
interruption.

If checkpoint records are written
periodically, operation can be restarted by
using the last set of checkpoint records
written previous to the interruption.
Therefore the records must contain
everything needed to re-initialize the
system when processing is restarted.
Checkpoint records can be written by
issuing a CHKPT macro instruction in the
problem program. Restarting jobs, for
which checkpoint records have been written
by use of the CHKPT macro, is performed by
the Job Control program. Job Control is
described in the Programmer!s-Guides, as
listed on the front cover of this
publication.

Each time CHKPT is executed, several
records are written on-disk or tape. If
the object program is executed in a
disk-resident system, the checkpoint
records may be written in the checkpoint
area of the system disk pack or on tape.
When they are written on disk, each set of
checkpoint records replaces the previous
set so that the most recent is always
available for restarting the job. When
checkpoint records are written on tape, an
additional set is written each time CHKPT
is executed. Thus all the sets of
checkpoint records for a particular run are
saved. ©Each set should be identified so
that the set to be used for restarting can
be identified. If a disk-resident systen
is not used for execution of the object
program, the checkpoint records must be
written on tape. The disk/tape checkpcint
records contain information such as:

o Header information: ///CHKPT//nnnnxxxx
where nnnn is information used by the
restart program, and xxxx is the user's
identification (usually a. number) of
the set of checkpoint records. Before
each set is written, this
identification should be changed by the
user. On the restart, this identifies
the set of checkpoint records to be
used. This record is not written when

130 S/360 BOS Assembler with I/0 Macros

checkpoint records are written on the
system pack.

. The contents of the general registers
are saved. The contents of the
floating-point registers are not saved.

. The contents of the Supervisor
communication region, except the first
10 bytes.

. A table of restart information, such as
the starting point in the problenm
program and the positions of the
input/cutput data tapes within the
logical file.

. The problem program and data in process
at this time. This includes all main
storage above the supervisor, depending
on the size specified in the
configuration byte (9) of the
communication region.

. Trailer information, when checkpoint
records are written on tape. The
trailer is identical to the header
label.

CHEKPT Macro

|0p |Operand
L 1

r)
| CHKPT|n,restart-name,SYSnnn,DISK

L]

The CHKPT (checkpoint) macro instruction
causes checkpoint records to be written.
The instruction requires either three or
four operands, depending on whether the
object program is to be executed in a
disk-resident systen.

The first operand specifies the number
(n) of tape reels of input/output data that
will have to be properly positioned when
the job is restarted. The output tape used
for writing the checkpoint records must not
be included in this count. For all other
tape drives, the mdcro routines save both
the address of the symbolic unit for the
drive and the block count that has been
accumulated at the time the checkpoint
records are written. Block count-is the
number of blocks of data (physical tape
records, from gap to gap) that have been
read or written. When the job is
restarted, the block count is used to
position the tape properly to continue with
the data yet to be processed. If the
object program does not include the
processing of any input/output data that is
recorded on tape, the comma must be entered
first in the operand field of the CHKPT
macro instruction.

The second-operand (Restart—-name)
specifies the symbolic name of the
problem-program statement at which
programming is to restart if an
interruption occurs and processing must be
continued at gsome later time.

The third_operand specifies the symbolic
unit (SYSnnn) for the tape drive on which
the checkpoint records are to be written,
if they are to be recorded on tape rather
than disk. When an interrupted job is
restarted, this same symbolic. unit. must be
specified in the Job Control RSTRT card.

If the checkpoint records are to be written
on disk, SYSRES must be specified.

When checkpoint records are written on
tape, they may be written on a separate
tape drive, or they may be interspersed
with data records in an output tape file.
When the symbolic unit (SYSnnn) is assigned
to the same drive used as an output file
defined by logical IOCS, checkpoint records
are written on this drive regardless of
whether an alternate drive is assigned by
the DTFSR entry ALTTAPE. The CHKPT macro
will not-write checkpoint records on the
alternate drive. If checkpoint records are
interspersed with data records in an output
tape file, they can be bypassed on input by
use of the DTFSR entry CKPTREC.

When checkpoint records are written on
7-track tape,_the Data Conversion special
feature nust be used.

The fourth operand (DISK) indicates that
checkpoint records are to be taken for an
object program executed in a disk-resident
system. Otherwise, it is omitted and the
macro. instruction contains only three
operands.)

Issuing a CHKPT macro instruction in the
problem program causes the macro-library
checkpoint routines to be assembled at the
same time as the problem proqram. If the
user's object program is to be executed in
a disk-resident system (DISK specified as
the fourth parameter in the CHKPT macro
instruction), the checkpoint routines must
be stored in the core-image library on the
system-residence disk pack. They are
transferred from system residence to the
Supervisor transient area in main storage
vhenever the CHKPT macro is to be executed.
If a disk-resident system is not to be used
for execution of the object program (DISK
not specified in this instruction), the
checkpoint routines are assembled with the
user's problem program. In either case
(disk-resident system, or not) the CHKPT
jnstruction, if used, must be issued only’
once so that the routines are assembled
only once per program assembly. ’

The checkpoint routines use registers 1,
14, and 15. It is the user's
responsibility to save the contents of
these registers if the problem program also
uses them.

When the object program is to be
executed in a disk-resident system, issuing
the CHKPT macro instruction in the source
program causes a supervisor-call
instruction with code 1, and a statement
with the program name SYSCPT or SYSCPD, to
be assembled (see Supervisor-Communication
Macros: -FETCH). During execution, the
supervisor-call interruption routine
analyzes the code and fetches the
checkpoint routines from residence to the
transient area. When a disk-resident
system is not used for program execution,
checkpoint routines are assembled in line.

Included with the assembled checkpoint
routines (for a disk-resident system, or
not) is a table of restart information.
This table may contain such information. as
the checkpoint identification, the restart
address, and information about the tape
drives used by the problem program. For
example, issuing a CHKPT instruction.such
as:

CHKPT 3,STHERE,SYS004

causes this table to be assembled:

Statements Notes
SYSCHKPT bDC CLy? * (4blanks) 1
DC Y (STHERE) 2
DC 3FL4' 0! 3

Notes:

1. This statement provides four bytes for
the checkpoint identification. It is
the user's responsibility to move
updated identification to these four
positions before each set of checkpoint
records is written. For example, he
might move CRO1 (Checkpoint Record 1)
to SYSCHKPT for the first set, CR02 for
the second, etc. Each time checkpoint
records are written, this is part of
the recorded table of restart
information. Then when the job is
restarted after an interruption, the
programmer indicates which set of
checkpoint records is to be used by
specifying the identification in the
Job Control RSTRT card. The tape
containing the checkpoint records is
searched, and the identified set of
records is read from the tape.

2. The symbolic restart-name, STHERE
(start here) in this case, is assembled
in this macro-library statement. If
the user wants to restart at a
different location than that specified

Macro Instruction -Statements . 131

the

132

in his macro instruction, he can move
the address of that location to
SYSCHKPT+U4

The DC statement defines a full word
(four bytes) constant for each
input/output data file. In this case,
three constants are assenbled because
3is specified as the first operand in
the CHKPT instruction. These constants
provide an area to store informpaticn
for properly positioning the
input/output data tapes when the job is
restarted after an interruption. The
first two bytes of each statement
contain the address of the symbolic
unit for the corresponding tape drive.
The second two bytes contain the block
count for the corresponding file.
Usually when logical IOCS is used for a
file of records, the user does not have
to refer to these fields:¢ The IOCS
routines move the symbolic unit address
before the checkpoint records are
written. They also increment the block
count (if DTFSR CHECKPT specified)
whenever a GET or PUT requires an
actual I/0 operation. If the user
(instead of IOCS) is surplying
information for certain files, he nust
not use those U-byte fields that are
specified for files maintained by
logical YOCS (see DTFSR_CHECKPT) .

The user must supply both
address and the block count whenever:

o a file with nonstandard labels is
read backwards.

. an unlabeled file is read
backwards.

. a file is processed by physical
I0CS macro instructions.

The block count that he supplies must
be relative to the beginning of the
file, regardless of whether the file is
read forward or backwards.

To supply the address information,
the user can move the addresses of the
symbolic units from the Command Control
Blocks (CCB) associated with the files
(see Processing Records with Physical

He would have issued
one for each file, perhaps

three CCB's,
as follovws:

BLOCK1 CCB SYS001,CCHY
BLOCK2 CCB SYS002,CCW2
BLOCK3 CCB SYS003,CCH3

S/360 BOS Assembler with I/0 Macros

To move the addresses in this case, he
could write these statements:

MvC SYSCHKPT+6 (2) , BLOCK1+4
MvC SYSCHKPT+10 (2) , BLOCK2+4
MVC SYSCHKPT+ 14 (2) ,BLOCK3+4

For the block count, the user must
increment (or decrement, on a backspace
order) the count each time an EXCP
macro that results in tape movement is
executed. The instructions to add to
(or subtract from) the block count must
precede the EXCP instruction in the
user's program. For the first file,
they might be:

LH R,SYSCHKPT+8

LA R, 1(R)

STH R,SYSCHKPT+8

EXCP BLOCK 1

A block count must not be supplied
in the restart table for the output
file that contains both data and
checkpoint records, however. In this

case the tape is positioned, on
restart, at the first data record
following the set of checkpoint records
that are used for restarting.

COMPLETION

After all the records for a logical output
file have been processed (end-of-file),
that file must be deactivated by an
instruction in the problem program to close
the file. When the end of a logical input
file in an I/0 unit other than disk or tape
is sensed, I0OCS immediately branches to the
user's end-of-file routine (specified by
DTFSR EOFADDR) where the instruction to
close the file can be issued. When the end
of a disk or tape input file is sensed,
IOCS checks standard trailer labels (if
any), makes provision for user-checking of
user labels, and then branches to the
user's end-of-file routine (specified by
EOFADDR) where the file may be closed. A
CLOSE macro instruction is available to the
programmer for closing each input and
output file.

An end-of-volume condition (EOV), rather
than am end-of-file condition (EOF), can
occur during the processing of records in a
logical file on disk or tape. An EOV
condition means that the processing of all
the records on one volume (disk pack or
tape reel) has been completed, but that
more records for the same logical file are
recorded on another volume. When this
occurs, IOCS checks or writes standard
labels (if any) on the completed volume
(trailer labels) and on the next volume
(header labels), makes provision for
user-processing of user-standard labels on

both volumes, and then makes the data
records on the next volume available for
processing. Because IOCS detects the
end-of-volume condition and utilizes many
of the routines established for opening and
closing files, no problem-program
instructions are required specifically for
an EOV condition. However, if the progranm
requires that the processing of tape
records. on one volume be ended before the
actual end of the volume is reached, an
end-of-volume condition can be forced. An
FEOV (forced end-of-volume) macro
instruction is provided for this condition
in tape files.

When an EOV or FEOV condition is
detected in a logical file on tape, IOCS
increases the volume sequence number (in
storage) by 1. Thus, this number is
updated for checking/writing the header
label on the next reel. (For a description
of tape labels, see the Programmer's
Guide.) IOCS also updates the active drive
number if an alternate tape drive has teen
specified (see DTFSR ALTTAPE).

The specific functions that occur on an
EOF or EOV condition for a disk or tape
file vary with the type of operation (input
or output) and with the use of file labels.
These functions are discussed in the
following sections.

Disk_Input_.File

When records in a logical input file on
disk are processed in consecutive order
(specified by DTFSR) or in sequential order
by key (specified by DTFIS), IOCS detects
an end-of-file condition. The end of the
input file is determined either by the
ending address of the last extent specified
for the file in Job Control XTENT cards, or
by an end-of-file record read from.the data
file. With seguential processing (DTFIS),
I0oCS immediately branches to the user's
end-of-file routine . (specified by EOFADDR).

When records are processed in
consecutive order (DTFSR), the file may
contain. user trailer labels. 1In this case
JOCS branches first to the user's label
routine (specified by LABADDR) where the
user may check his trailer labels. Up to
eight trailer labels can be read and
checked. They are written on the first
track of the first extent specified for the
file on each pack. The trailer labels
follow the user header labels for the pack,
and they are identified by UTLO, UTLY,

- - - UTL7. When IOCS branches to the
user's label routine, it also reads the
trailer label and makes it ‘available to the
user for checking. IOCS sets up a label
area and supplies the address of the area
to the user in Register 1, After each
label is checked, the user returns to IOCS

by use of the LBRET macro. After all
trailer labels have been checked, IOCS
branches to the user's end-of-file routine
(specified by EOFADDR).

I0CS detects end-of-volume conditions in
a disk input file. The end of a volunme is
recognized when all extents on one volume
have been processed but Job Control XTENT
cards have specified additional extents on
another pack. At the end of a volume, IOCS
allows the user to check his trailer 1labels
(if any), the same as at the end of a file.
I0CS then checks the standard header. labels
on the next volume, allows the user to
check any user header labels by branching
to the address specified by LABADDR, and
makes the first record in the first extent
available for processing.

Disk -Output File-

When -disk records are processed
consecutively (DTFSR) or loaded
sequentially by key (DTFIS), and when all
records for the logical file have been
completed, the CIOSE instruction is issued
and normal EOF procedures are initiated
(see CLOSE Macro). If the end of the last
extent specified for the file is reached
before CLOSE is issued, IOCS assumes an
error condition.

End-of-volume conditions in a disk
output file are detected in the same way as
in a disk input file. At the end of a
volume IOCS allows the user to write his
trailer labels (if any), the same as at the
end of a file (see CLOSE-Macro). TIOCS then
writes standard header labels on the next
volume, allows the user to write any user
header labels by branching to the user's
label routine (specified by LABADDR), and
permits the processing of output data
records to continue.

Tape Input File

When logical IOCS senses a tape mark on a
tape input file, either an end-of-file or
end-of-volume condition exists. The
EOF/EOV condition is determined by IOCS or
by the user (depending on the type of
labels used for the file) and the
appropriate functions are performed.

If standard labels are specified, IOCS
immediately reads and checks the standard
trailer label. If user labels are also
present and are to be checked (specified by
DTFSR LABADDR), the user's routine is then
entered for each user label that is read
(see OPEN Macro). After all labels have
been checked, the rewind option is
executed, as specified in DTFSR REWIND.

When the standard trailer label is
checked, either an EOV or EOF condition is

Macro Instruction Statements 133

sensed. When an EOV identifier is sensed,
TOCS switches to the alternate tape drive
(if one is specified in the DTFSR entry
ALTTAPE) after user labels have been
checked if specified. If an alternate
drive is not specified, the operator is
notified to change the tape reels and the
system enters the wait state. When the
operator has mounted the new reel and
pressed either the request key (on the
1052) or the interruption key (on the
console) , processing resumes. IOCS checks
the header label(s) if checking is
specified, and normal processing continues.
If an input file is processed by physical
IOCS (DTFPH specified), the user must issue
an OPEN instruction for the new reel. Then
I0CS checks the header label and processing
continues.

When an EOF condition is sensed, IOCS
branches to the programmer's end-of-file
routine, specified by the DTFSR entry
EOFADDR.

If the tape input file has nonstandard
labels, IOCS immediately branches to the
user's label routine (specified by DTFSR
TABADDR) when the tape mark is sensed. 1In
his routine, the programmer must use
physical IOCS macro instructions to read
his label(s). Furthermore he must
determine the EOF/EOV condition and
indicate this to IOCS by loading either EF
(end-of-file) or EV (end-of-volume) in the
two low-crdeér bytes of Register 0. On an
EF condition, IOCS branches to the users
end-of-file address (specified by DTFSR
EOFADDR) when the problem program returns
to IOCS at the end of the label routine.
On an EV condition, IOCS initiates the
end-of-vclume procedures to close the
completed volume and open the next volume
for processing.

If a tape file is not_labeled (DTFSR
FITLABL=NO) or contains labels that are not
to be checked (DTFSR FILABL=NSTD), IOCS
branches to the end-of-file address when
the tape mark following the last data
record is sensed. TIf an end-of-volume
condition exists instead of an end-of-file
condition, the user may indicate this by
issuing an FEOV macro instruction in his
end-of-file routine. If an alternate tape
drive is specified by the DTFSR entry
ALTTAPE, IOCS switches to the alternate
drive and processing resumes. If an
alternate tape drive is not specified, the
operator is notified to change the tape
reels, and the system enters the wait
state. When the new tape reel has been
mounted, the operator must press either the
request key on the 1052 or the interruption
key on the console to resume processing.

Whenever an input tape is read backwards
(BACK specified in DTFSR READ), an

134 s/360 BOS Assembler with I/0 Macros

end-of-file condition always exists when
the file header label is reached. That is,
backwards reading is confined to one
volume. Therefore, with standard labels,
the input/output routines check only the
block count, which was stored from the
trailer label, and then branch to the
specified end-of-file routine. When
physical IOCS macros are used to read
records backwards, labels cannot be checked
(DTFPH must not be specified). For tape
files with nonstandard labels, IOCS
branches to the user's label routine
specified by DTFSR LABADDR where he may
check the header label. He must use
physical IOCS macro instructions to read
the label (s) for checking.

Tape Output File

When an end-of-reel reflective marker is
sensed on an output tape, logical IOCS
prepares for closing the file by ensuring
that all records have been written on the
tape.- If the programmer issues another
PUT, indicating that more records are to be
written on this output file, normal
end-of-volume (EOV) procedures are
initjated. If the programmer issues a
CLOSE, the EOF procedures are initiated.

The programmer should be aware that,
under certain conditiomns, a truncated block
of records may be written at an EOV or EOF
condition, even though the file is defined
as having fixed-length blocked records.
When this file is used for input, the
System/360 logical IOCS will recognize and
handle these short blocks without the
programmer being concerned or aware of this
condition.

L.abeling procedures for the EOV
condition closely follow those described
under CLOSE Macro. The label is coded EOV
rather than EOF, and only one tape mark is
written after the label set, or after the
data if standard labels are not used.

Forced End-of-Volume: Tape Files

In some cases a programmer may need to
force an end-of-volume condition at a point
other than the normal tape mark (input) or
reflective marker (output). He may want to
discontinue reading or writing the records
on the present volume, and continue with
those records for this same logical file
that are recorded on the next volume. This
may be necessary because of some major
change in the category of records or in the
processing requirements. An FEOV (forced
end-of-volume) macro instruction is
available to the programmer for this
function.

CLOSE Macro

I L) L]
|0p | Operand |
1 1 1
] L] L]
|CLOSE | filename , |
ICLOSE | filenamel,filename2,filename3,~—-|
[1]

The CLOSE instruction is used to deactivate
any file that was previously opened in any
input/output unit in the system: card
reader, card punch, magnetic tape unit,
disk drive, paper tape reader, primter,
optical roll reader, or display unit. The
symbolic name of the logical file, assigned
in the DTFSR, DTFDA, DTFIS, or DTFPH header
entry, is required in this instruction. As
many as 16 files .may be closed by one
instruction, by entering additional
filename parameters. CLOSE is required
whenever logical IOCS macro instructiomns
are used to transfer data. When physical
I0CS is used, CLOSE is required only if
standard labels on magnetic tape are to be
written. A file may be closed at any time
by issuing this macro instruction.

Reopening a Closed File: If further
processing of a closed file is required at
some later time in the program, the file
must be opened again. TIf a file of disk:
gggg;g§~is reopened after a CLOSE, the
label prccessing and extents made available
depend on the type of processing that is
specified for the file. When an input file
is processed in consecutive order (DTFSR
specified), IOCS checks the label(s) on the
first pack and makes the first extent
available, the same as at the original
OPEN. When a file is processed by physical
JOCS with SINGLE specified in DTFPH MOUNTD,
I0CS opens the next extent specified by the
user's XTENT cards.: When a file is
processed by the direct access method
(DTFDA specified), by the indexed
sequential system (DTFIS specified), or by
physical IOCS with ALL specified in DTFPH
MOUNTD, all label processing is repeated
and all extents are again made available.

If a file-of tape records is closed, the
tape is positioned in accordance with the
REWIND specification. Therefore to resume
processing of tape records at the point
vhere CLOSE occurred, NORWD .should be
specified in DTFSR REWIND. When OPEN is
issued later for additional records on that
reel, the first record read must be a file
label if standard labels are specified for
the tape file being opened. If the tape
file being opened is unlabeled or contains
nonstandard labels, it is the user's
responsibility to identify the first record
read as a data record or a file label.

When a file being reopened is a multireel
file with standard labels, IOCS expects
that the reel available for the OPEN is the

same reel, on the same drive, that was in
process when CLOSE was executed. If not, a
message is issued.

In addition to the registers used by
logical IOCS, CLOSE also uses register 5.
The programmer may use register 5 because
the CLOSE macro routine saves and restores
this register. However, if the programmer
plans to use register 5 as a base register,
he should be aware that register 5 is
dropped at the end of the CLOSE routine.

Disk Files

When disk records are processed in randon
order (specified by DTFDA or DTFIS), the
CLOSE instruction is issued in the problenm
program to deactivate the file after all
records have been processed.

When records in a disk ipput file are
processed in consecutive order (DTFSR) or
in sequential order (DTFIS), the CLOSE
instruction is generally issued in the
user's end-of-file routine (specified by
EOFADDR) to deactivate the file. IOCS
branches to. this routine when it detects an
end-of-file condition (see Completion).

When records .in a disk: output are
processed in consecutive order (DTFSR) or
loaded in sequential order (DTFIS), the
CLOSE instruction is issued after all
records for the file have been processed.
It writes any record, or block of records,
that has not already been written. 1If .a

- record block is partially filled, it is

truncated; that is, a short block is
written on disk. CLOSE causes one or more
functions to be performed before it
deactivates the file. . It always writes an
end-of-file trailer record after the last
data record in the file. If records are
processed in consecutive order, user
trailer labels may be written if the DTFSR
entry LABADDR is included in the file
definition. .

Up to eight trailer labels can be
written on the first track of the first
extent specified for the file on each pack.
They follow the user-standard header labels
for the pack and are identified by UTLO,
UTL1,~--UTL7. TFor this operation, IOCS
branches to the user's label routine, sets
up a label area, and supplies the address
of the area in Register 1. In his routine
the user constructs the trailer label and
then returns control to IOCS by use of the
LBRET macro. IOCS then writes the trailer
label. Similar to writing user header
labels, these steps are repeated until
eight trailer labels have been written or
until the user indicates that he does not
require any more labels, whichever occurs
first (see OPEN Macro: Disk Output-File,
Writing Additional User-Standard Header -

Macro Instruction Statements 135

Labels). After the last trailer label is
writ?gn, CLOSE deactivates the file.

Tape Input File

When an input file recorded on magnetic
tape is processed, CLOSE is generally
issued in the user's end-of-file routine.
It initiates rewind procedures for, the tape
as specified in the DTFSR entry REWIND. It
then deactivates the file.

If CLOSE is issued for any tape input
file before the end of the data is reached,
the tape is rewound as specified by the
DTFSR entry REWIND, and the file is
deactivated. WNo labels are read or
checked.

Tape Output File

For a magnetic tape output file, CLOSE is
issued when all records for the file have
been processed. It writes any record, or
block of records, that has not already been
written. If a record block is partially
filled, it is truncated; that is, a short
block is written on the tape. Following
the last record, a tape mark is written.
If labels are not specified, a second tape
mark is written and the tare is rewound as
specified in DTFSR REWIND.

When standard labels are specified (STD
in DTFSR FILABL or OUTPUT in DTFPH
TYPEFLE) , CLOSE causes the file trailer
label to be completely written after the
tape mark. The EOF1 indication, the block
count accumulated during the run, and the
header—-label information (with HDR'1
replaced by EOF1) are included in the
trailer 1label.

IOCS accumulates the block count for the
trailer label whenever logical IOCS (DTFSR)
is used for an output file. When physical
IOCS (DTFPH) is used, however, the problem
program nust accumulate the block count, if
desired, and supply it to IOCS for
inclusion in the standard trailer label.
For this, the count (in binary form) must
be moved to the U4-byte field that is
labeled filenameB. For example, if
filename specified in the DTFPH header
entry is DETLOUT, the block count field is
addressed by DETLOUTB; if filename is DETL,
the field is addressed by DETLB. The user
must define this address as an address
constant.

If checkpoint records-are interspersed
with data records on an output tape, the
block count accumulated by logical IOCS
does not include a count of the checkpoint

136 S/360 BOS Assembler with I/0 Macros

records. Only data records are counted.
Similarly if physical IOCS is used, the
problem program must omit checkpoint
records and count only data records.

If user-standard_labels (UTL) are to
follow the standard trailer, the CLOSE
routine branches to the user's routine
(identified by DTFSR or DTFPH LABADDR)
after the standard label has been written.
Upon entry to the user's routine, IOCS
supplies Code F in the low-order byte of
Register 0 to indicate that an end-of-file
trailer label should be built (see DTFSR
LABADDR) . In his routine the programmer
can build a maximum of eight user-standard
labels, which the CLOSE routine writes for
him. After buildimg each user-standard
label, he must return to the CLOSE routine
by use of the LBRET macro.

After all trailer labels are written,
the CLOSE routines vwrite two tape marks,
execute the rewind option, and deactivate
the file.

For the proper procedures to handle
user-standard labels and/or nonstandard
labels, see OPEN Macro: Tape Output File.

Other Files

When the last paper tape or card input
record has been read, IOCS branches to the
user's end-of-file routine where CLOSE is
generally issued.

When a printer or card output file is
completed, CLOSE must be issued for that
file. Any record in the output area that
has not been printed, -displayed, or punched
is transferred to the output file before
the file is deactivated.

For a discussion of the SCLOS macro, for
the STR adapter, see Processing with STR
Devices. For a discussion of the BCLOS
macro, for the BSC adapter, see Binary
Synchronous Communication.

LBRET Macro

I L] L] 1
| Name | Op | Operand |
I } ! i
| | LBRET| 1 |
| | LBRET| 2 i
L 1 1 i]

The LBRET (label return) macro instruction
is issued at the end of the user's label
routine to return to IOCS. This macro is
described under Initialization: _LBRET
Macro.

FEQOV_Macro: _Tape Records

Name Oop Operand

FEOV filename

- oman Wy e o
s
e
IR SR—

The FEOV (forced end-of-volume) macro
instruction is used for either input or
output files on tape to force an
end-of-volume condition when neither a tape
mark nor a reflective marker has been
sensed. This indicates that processing of
records on one volume is considered
finished, but that more records for the
same logical file are to be read frcm or
written on the following vclume.

The FEOV macro cannot be issued in the
user's EOF routine when the FEOV refers to
the same file that caused entry to the EOF
routine, except for an unlabeled file cr
for a nonstandard labeled file with no user
label address specified.

The symbolic name of the file, specified
in the DTFSR or DTFPH header entry, is the
only parameter required in this
instruction.

When logical IOCS macro instructions are
used for a file (DTFSR specified), FEOV
initiates the same functions that occur at
a normal end-of-volume condition, except
trailer-label checking. For an input tape,
it immediately rewinds the tape as
specifjed by DTFSR REWIND and provides for
a volume change as specified by DTFSR
ALTTAPE. Trailer labels are not checked.
FEOV then checks the standard header label
on the new volume, and provides for
user—-checking of any additional
user—-standard header labels if DTFSR
LABADDR is specified. If nonstandard
labels are specified (DTFSR FILABL=NSTD),
FEOV provides for user~-checking if desired.
For an output tape, FEOV writes the last
block of records if necessary (this may be
a short block) and writes a tape mark.

Then it writes the standard trailer latel
and additional user-standard labels (if
any) , writes one tape mark, provides for a
volume change, and writes the file header
label(s) on the new volume, as specified in
the DTFSR entries REWIND, ALTTAPE, FILABL,
and LABADDR. TIf ncnstandard labels are
specified, FEOV provides for user-writing
of trailer labels (completed volume) and
header labels (new volume), if desired.

When physical IOCS macro instructions
are used and DTFPH is specified for
standard label processing, FEOV may be
issued for an output file only. 1In this
case FEOV writes the standard trailer
label, and any additional user-standard
trailer labels if DTFPH LABADDR is

specified. When the new volume is mounted
and ready for writing, IOCS writes the
standard header label and additional
user-standard header labels, if anye.

FILE DEFINITION MACRGOS

Whenever logical IOCS macro instructions
(GET, PUT, READ, WRITE, etc) are used in a
program to control the input/output of
records in a file, that file must be
defined by.a declarative macro instruction.
The parameters of the macro instruction are
punched in a set of entry cards. Each
parameter uses the keyword format (see
Macro. Instruction Format) . In addition to
describing the file, the parameter entry
cards indicate the type of processing for
the file, and specify symbolic names of
main-storage areas and routines used by the
file.

When physical IOCS macro instructions
(EXCP, WAIT, etc) are used for a file, a
declarative macro instruction is required
only if disk or tape files with standard
labels are to be processed. No other files
require definition.

The file definition macros for all files
in a problem program must be assembled with
that problem program. The logical IOCS
routines that the problem program will
require during its execution are assembled
from the specifications in the file
definitions. A separate set of parameter
entry cards is included for the definition
of each logical file, and the sets may be
placed in any order. If the problem
program is to be executed in a
disk-resident system, a begin-definition
card (DTFBG macro statement) must precede
the first set of file definition cards. Imn
all cases, regardless of where the progran
will be executed, an end-of-definition
card (DTFEN macro statement) must follow the
last set. At program assembly time, the
entire group of file definition cards
(punched in assembler-card format) is
placed in the card deck immediately after
the START card and ahead of any of the
user's source program. The user's source
program starts after the end-of-definition
card (DTFEN).

Five different file-definition
declarative macros (DTFSR, DTFDA, DTFRF,
DTFSN, and DTFIS) are available for
defining files processed by logical IOCS,
and one macro (DTFPH) for files processed
by physical IOCS. For logical IOCS
operations, the file-definition macro to
use for a file depends on the type of
processing that will be performed for that
file:

Macro Instruction Statements 137

Consecutive Processing. This applies to
input/output files in serial devices, or on
2311 disk when records are processed
consecutively. The DTFSR (Define The File
in a Serial-type device) macro is used.,

Direct Access Method. Whenever a
logical disk file is to be processed
randomly, the direct-access—-method macro
DTFDA is used.

Indexed Sequential System. When a
logical disk file is to be organized or
processed by the indexed sequential file
management system (ISFMS), the DTFIS macro
is used.

Processing-with STR-devices. Where STR
devices are used, the adapter must be
defined by the macro, DTFSN.

Binary Synchronous_Communication. Where
BSC support macros are to be used, the data
adapter (SDA YI) must be defined by the
DTFBS macro.

The first card of a file-definition
macro instruction is called a header card,
and the continuation cards are called
The header card is

punched wlth‘

o The symbolic name of the file in the
name - field. This is the name that must
be specified in any logical IOCS macro
instructions that refer to this file in
the user's program. The symbolic file
name may be up to seven characters long
in a DTFSR, DTFDA, or DTFPH macro
header card. In a DTFIS macro header
card, the name may be up to five
characters long.

DTFIS filenames should be unigque to
each other if the program phases are to
be stored permanently in the core image
library. This will prevent one phase
from being overlaid by another with the
same filename. (For further
information on the core. image library,
see the Programmer's Guide-listed on
the frent cover of this publication.)

o The macro mnemonic operation code in
the operation field. This is DTFSR,
DTFDA, DTFIS, or DTFPH, depending on
the type of processing to be performed
for the file.

. Keyword entries in the operand field,
if desired.

L] A continuvation punch in column 72, if
detail cards are necessary.

The detail cards follow the header card,
and they may be arranged in any order.

138 S/360 BOS Assembler with I/0 Macros

Each detail card is blank in the name and
operation fields and is punched with one or
more operands. These operands must be the
keyword type of macro parameter. That is,
they are expressed as equal -conditions, for
example, DEVICE=DISK11. All detail cards
except the final omne used must be punched
with a comma immediately following the last
operand and with a continuatipn punch in
column 72. They may contain comments if a
space is.left after the comma following the
last operand. The final card may contain
comments if a space is left after the last
operand. When a particular detail entry
does not apply to a file, that operand must
be omitted. :

The begin-definition.card preceding the
first set of DTF cards (when a .
disk-resident system will be used for
program execution) must be punched with
DTFBG in the operation field and DISK in
the operand field. The name field is
blank.

The end-of-definition_card following the
last set of DTF cards must be punched with
DTFEN in the operation field. The name
field is blank. The operand field may be
blank, or it may be punched with one
operand if the object program is neot to be
executed in a disk system. In this case
the operand OVLAY may be specified to
reduce the amount of main storage used for
the program. When the object program is
executed (in a system that does not utilize
a disk-resident supervisor), OVLAY causes
the OPEN routine to be overlaid by the
user's problem program, and the CLOSE
routine to overlay the user's program. All
files should be opened by one OPEN macro
instruction, and all files should be closed -
by one CLOSE macro instruction. 1In this
case, CLOSE should be the last instruction
before EOJ in the user's progran.

The reference -card, with DTFRF in the
operation field, must precede the first
DTFSN card for STR processing or the first
DTFBS card for BSC processing. Where other
DTF macros are present, DTFRF must follow

the DTFEN card.

The detail parameter entries for each of
the four declarative macros are described
in the following pages. They are grouped
by type of processing.

CONSECUTIVE PROCESSING (DTFSR)

The following lists show the DTFSR detail
entries that apply to eac